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INTRODUCTION (EN FRAN(;AIS)

Ce travail de thése se situe dans le domaine de la géométrie différentielle et a pour objectif
I’étude du probléme du plongement isométrique généralisé de fibrés vectoriels, dont la réso-
lution permet, entre autres, de montrer I'existence d’analogues des lois de conservation en
I’absence de symétries pour des équations aux dérivées partielles.

Les méthodes que nous utilisons pour tenter de répondre et de résoudre le probléme du
plongement isométrique généralisé sont géométriques : nous traduisons et exprimons le prob-
léme en termes de systéemes différentiels extérieurs, et la résolution du probléme consistera a
vérifier si le systéme différentiel extérieur est involutif, ¢’est-a-dire, montrer ’existence ou non
de solutions, appelées dans ce langage, variétés intégrales. Les systémes différentiels extérieurs
constituent des outils importants en géométrie différentielle car ils permettent d’aborder par
des moyens géométriques I'étude des équations aux dérivées partielles. En effet, tout systéme
d’EDP peut s’exprimer en termes de systéme différentiel extérieur dans un certain espace de
jets et réciproquement, et nous n’avons nul besoin de convaincre le lecteur de 'importance des
EDP en mathématiques, et plus généralement en sciences.

L’appellation probléeme du plongement isométrique généralisé se justifie a la fois par des
motivations que nous présentons dans ce qui suit, et par de nombreux faits surgissant lors de
I’élaboration de la stratégie de résolution du probléme dans le cas général, qui rappelle des
phénomeénes similaires observés a propos du probléme du plongement isométrique (classique).
Un des objets de la géométrie différentielle est I'étude de structures sur des variétés différen-
tielles. Tout commence donc avec les travaux de Carl Friedrich Gauss [Gau27| qui a ouvert la
voie dans 1’étude des métriques de surfaces dans l’espace euclidien tri-dimensionnel. Nous lui
devons, a la suite des travaux de Gaspard Monge, I'introduction de la premiére et seconde formes
fondamentales, et un invariant intrinséque : la courbure dite de Gauss (Theorema Egregiumﬂ).
Plus tard, Georg Friedrich Bernhard Riemann révolutionne la géométrie : les notions abstraites
de variété et de variété riemannienne en dimension quelconque voient le jour. Naturellement, la
question s’est posée pour savoir s’il existe réellement des variétés abstraites ou si toute variété
riemannienne n’est autre qu’une sous-variété d’un certain espace euclidien. Cette question,
dont une réponse locale est fournie par le théoréme de Cartan—Janet [Car27, [Jan26| et dont
la démonstration est présentée dans cette thése (annexe du chapitre 3), peut s’exprimer d’une
autre manieére : est-il toujours possible de plonger isométriquement une variété riemannienne
de dimension quelconque dans un espace euclidien?

2Les chapitres et annexes de cette présente thése sont rédigés en anglais.
3Le théoréme remarquable.
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Nous rappelons que la résolution d’un cas particulier du probléme du plongement isométrique
généralisé, dont I’énoncé précis est présenté dans ce qui suit, est d’une certaine fagon appar-
entée au probléme de trouver des lois de conservation. En physique, une loi de conservation
exprime qu'une quantité mesurable d’un systéme physique reste constante pendant 1’évolution
de ce systéme. De mémoire d’écolier, la célébre loi de Lavoisielﬂ « Rien ne se perd, rien ne se
crée, tout se transforme » exprime la conservation de la matiére. C’est aussi le cas pour de
nombreuses propriétés fondamentales de la physique : 1’énergie, la quantité de mouvement, le
moment angulaire, la charge électrique, le flux magnétique, etc.

D’un point de vue mathématique et trés général, une loi de conservation peut étre vue
comme une application définie sur un espace F (qui peut étre, par exemple, un espace de
fonctions, un espace de sections d’un fibré, au dessus d’une variété M, etc.) qui associe a
chaque élément f de F, un champ de vecteurs tangents X sur une variété riemannienne M de
dimension m, tel que si f est solution d’une équation aux dérivées partielles donnée, le champ
de vecteurs associé est alors de divergence nulle. Si nous notons ¢ la métrique riemannienne
de la variété M, nous pouvons canoniquement associer a chaque champ de vecteurs tangents
X € I'(TM), une 1-forme différentielle ax définie par

La divergence d'un champ de vecteurs tangents sur une variété riemannienne orientée est
alors définie par

div(X) = *d * ax ou bien par  div(X)voly = d(X1vol ),

ol * est 'opérateur de Hodge, vol, est la m-forme volume sur M, et X1 voln, est la contraction
de la m-forme voly, par le champ de vecteurs tangents X. Nous constatons que la condition
div(X) = 0 peut étre remplacée par d(Xivoly) = 0. Par conséquent, les lois de conserva-
tion peuvent étre considérées comme des applications de F a valeurs dans les (m — 1)-formes
différentielles sur M telles que les solutions d’une EDP soient associées aux (m — 1)-formes
différentielles fermées de M. Plus généralement, nous pouvons envisager d’étendre la notion
de loi de conservation aux applications a valeurs dans les p-formes différentielles fermées (par
exemple, les équations de Maxwell dans le vide peuvent s’exprimer par un systéme de 2-formes
différentielles fermées).

Le théoreme de Noether exprime 1’équivalence qui existe entre les lois de conservation et
I'invariance des lois physiques en ce qui concerne certaines transformations (typiquement ap-
pelées symétries). Nous nous intéressons au probléme suivant, dont la formulation est due a
Frédéric Hélein [Hel96|, et dont le but est de trouver des lois de conservation pour une classe
d’EDP décrite comme suit :

Probleme 0.1 — Plongement isométrique généralisé Soit V un fibré vectoriel de rang n
muni d’une métrique g, au dessus d’une variété différentielle de dimension m, et d’une connexion
V sur V respectant cette métrique. On note dy la dérivée covariante induite par V et agissant

411 semble que Anaxagore de Clazoménes (500-428 av. J.C.) est a l'origine de cette citation et qu’elle est
reprise par Antoine Lavoisier (1743-1749) dont la citation exacte est: « ... car rien ne se crée, ni dans les
opérations de l'art, ni dans celles de la nature, et 'on peut poser en principe que, dans toute opération, il y a
une égale quantité de matiére avant et apres 'opération ; que la qualité et la quantité des principes est la méme,
et qu’il n’y a que des changements, des modifications. »
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sur les formes différentielles a valeurs dans V. On suppose que ¢ est une p-forme différentielle
sur M, a valeurs dans V, fermée covariante, i.e.,

dy¢ = 0. (1)

Trouver N € N et un plongement ¥ de V dans M x RN donné par ¥(z,X) = (z, ¥,X), ou ¥,
est une application linéaire de V, dans RN telle que:

e U est isométrique, i.e, pour tout x € M, Papplication ¥, : V, — RY est une isométrie,
e Si V(o) est 'image de ¢ par U, i.e., ¥(¢), = ¥, o ¢, pour tout z € M, alors

dW(g) = 0. (2)

L’équation dans le probléme du plongement isométrique généralisé représente le systéme
d’EDP et la relation joue le réle de la loi de conservation. Dans le cas de fibrés vectoriels en
droite réelle, le probléme est trivial. En effet, la seule connexion compatible avec la métrique
sur un fibré en droites réelles est la connexion plate.

MOTIVATIONS Il y a principalement deux motivations au probléme du plongement isométrique
généralisé de fibrés vectoriels:

LE PROBLEME DU PLONGEMENT ISOMETRIQUE Le premier exemple fondamental est
(tout naturellement) le probléme du plongement isométrique des variétés riemanniennes dans
I’espace euclidien, et est lié & notre probléme comme suit : Lorsque M est une variété différen-
tielle riemannienne de dimension m, le fibré vectoriel V est I'espace tangent T.M, la connexion
V est la connexion de Levi-Civita, p = 1 et la 1-forme différentielle sur M a valeurs dans TM
fermée covariante ¢ est 'identité sur T M, alors exprime le fait que la connexion V est sans
torsion. De plus, toute solution ¥ de fournit un plongement isométrique u de la variété
riemannienne M dans un espace euclidien RN par l'intégration de I'équation du = ¥(¢) et
réciproquement.

Le théoréme de Cartan—Janet |[Car27, [Jan26], dont la preuve est exposée dans le chapitre
3, fournit, localement, une réponse positive au probléme du plongement isométrique de var-
iétés riemanniennes, dans le cas analytique. Il peut sembler que les hypothéses de localité et
de régularité des données soient trés restrictives, il n’en demeure pas moins que le résultat
est important car la dimension de I’espace but est optimale, contrairement au plongement de
Nash—Moser qui est un résultat global et dans le cas lisse.

Par conséquent, si le probléme du plongement isométrique généralisé a une solution dans le
cas p = 1, la notion de plongement isométrique est étendue a celle de plongement isométrique
généralisé de fibrés vectoriels. Lorsque le degré de la forme différentielle a valeurs dans un fibré
vectoriel fermée covariante est arbitraire, le plongement isométrique généralisé peut aussi étre
considéré comme un plongement de forme différentielle a valeurs dans un fibré vectoriel fermée
covariante.



6 INTRODUCTION EN FRANGAIS O

APPLICATIONS HARMONIQUES ENTRE VARIETES RIEMANNIENNES L’autre exemple
fondamental traité dans [HéI96| de forme différentielle & valeurs dans un fibré vectoriel fermée
covariante est fourni par les applications harmoniques entre deux variétés riemanniennes. Une
application harmonique u entre deux variétés riemanniennes (M, g) et (N,h) est un point
critique de la fonctionnelle de Dirichlet

Bfu] :%/M]du\Q. (3)

Localement, le systéeme de Euler-Lagrange s’exprime comme sui‘ﬂ

j 9,k
By + g0 () o O = @
ol Fj-k désignent les symboles de Christoffel de la connexion sur N. Le lecteur peut penser que
les applications harmoniques ne sont pas si communes s’il n’a jamais rencontré cette définition.
Néanmoins, les exemples abondent en mathématiques et en physique. Par exemple, lorsque
la variété riemannienne but (N, h) est remplacée par (R, (,)g), les applications harmoniques
sont les fonctions harmoniques de (M, g). Lorsque la variété but est (R™, (, )gn), une applica-
tion u est harmonique si et seulement si chaque composante de u est une fonction harmonique
de M. D’autres exemples d’application harmoniques sont : les isométries, les géodésiques,
les immersions isométriques et les applications holomorphes et anti-holomorphes entre variétés
kdhleriennes, dont certains sont traités dans le chapitre 4.

Les applications harmoniques fournissent des exemples de formes différentielles a valeurs
dans des fibrés vectoriels fermées covariantes [HéI96]. En effet, les applications harmoniques en-
tre variétés riemanniennes peuvent étre caractérisées comme suit : soit u une application définie
d’une variété riemannienne (M, g) de dimension m dans une variété riemannienne (N, h) de
dimension n. Sur le fibré v*TA induit par u au dessus de M, la (m —1)-forme différentielle xdu
a valeurs dans u* TN est fermée covariante si et seulement si 'application u est harmonique, o
la connexion sur le fibré induit est le pull-back par u de la connexion riemannienne sur (N, h).
Par conséquent, si le probléeme du plongement isométrique généralisé a une solution dans le cas
p = m — 1, il est alors possible de trouver ’analogue des lois de conservation sur M a partir
de formes différentielles & valeurs dans des fibrés vectoriels fermées covariantes, en particulier,
par celles produites par les applications harmoniques entre variétés riemanniennes.

Dans [HéI96|, motivé par le probléme de la compacité des applications faiblement har-
moniques dans les espaces de Sobolev dans la topologie faible (qui semble toujours étre un
probléme ouvert), Frédéric Hélein considére les applications harmoniques entre variétés rie-
manniennes, et explique comment obtenir explicitement des lois de conservation en utilisant le
théoréme de Noether dans le cas ou les variétés buts sont symétriques, et formule le probléme
ci-dessus pour le cas de variétés riemanniennes buts non-symétriques.

LES RESULTATS Le premier résultat [Kah08bl [Kah09|, dont la preuve détaillée est présentée
dans le chapitre 4 et 5, est une réponse positive dans le cas local et analytique au probléme
du plongement isométrique généralisé de fibrés vectoriels, lorsque p = m — 1. Comme pour le
théoréeme de Cartan—Janet, nous donnons la dimension minimale de ’espace d’arrivée.

5Nous utilisons la convention de sommation d’Einstein.
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Théoréme 0.2 — Lois de conservation par plongement isométrique généralisé [Kah08b]
Soit V un fibré vectoriel réel analytique de rang n au dessus d’une variété différentielle M réelle
analytique de dimension m, muni d’une métrique analytique g et d’'une connexion compatible
avec g. Etant donnée ¢ une (m—1)-forme différentielle non nulle sur M a valeurs dans V, fermée
covariante, il existe un plongement isométrique local de V dans M x R" *mm-1 au dessus de

Mot ky, .y = (m —1)(n — 1) de sorte que I'image de ¢ soit une loi de conservation.

Nous nous sommes rendus compte que ce résultat peut étre appliqué pour trouver des lois de
conservation a partir de 2-tenseurs contravariants a divergence covariante nulle, en particulier,
pour le tenseur énergie-impulsion, qui joue un roéle important dans la relativité et la théorie de
la gravitation. Pour ce faire, il faut voir le tenseur énergie-impulsion comme une (m — 1)-forme
différentielle & valeurs dans le fibré tangent, et vérifier qu’elle est fermée covariante. Il semble que
cette maniére de voir le tenseur énergie-impulsion n’est pas nouvelle, méme si elle est en pratique
peu utilisée, et apparait dans les oeuvres d’Elie Cartan. En effet, soit T € I'(TM ® TM) un
2-tenseur contravariant dont 'expression dans un repére mobile (&1, ...,&y,) est T =TV ® &,
ot (&1,...,&,) est le duale d’un corepére (nt,...,n™). La m-forme de volume est notée par
n' =nt A--- An™. En utilisant le produit intérieur, nous pouvons canoniquement associer a
tout 2-tenseur contravariant T, une (m — 1)-forme différentielle 7 & valeurs dans TM définie
comme suit :

T(TM @ TM) — T(TM @ A DT M).

avec 7' = T%(&;_m"). Nous montrons dans un lemme que 7 est fermée covariante si et seulement
si le tenseur T est de divergence covariante nulle, et par conséquent, le théoréme admet le
corollaire suivant :

Corollaire 0.3 — Lois de conservation local du tenseur énergie-impulsion  Soit (M™, g)
une variété différentielle réelle analytique de dimension m. Soit T un 2-tenseur contravariant de
divergence covariante nulle. Il existe alors une loi de conservation de T dans M x RmH(m—1)%

Le probléme du plongement isométrique généralisé reste ouvert lorsque le degré p de la forme
différentielle & valeurs dans un fibré vectoriel est strictement inférieur a (m — 1). Néanmoins,
nous avons obtenu des résultats partiels pour les cas p =1 et p = 2.

Théoréme 0.4 — Le cas (V2 M™ g V,¢$);. Soit V? un fibré vectoriel réel analytique
de rang 2 au dessus d'une variété différentielle réelle analytique M de dimension m, muni
d’une métrique ¢ et d’une connexion V compatible avec ¢g. Etant donnée une 1-forme différen-
tielle ¢ a valeurs dans V fermée covariante non-nulle et non-dégénérée, il existe un plongement
isométrique généralisé local de V2 dans M x R"*m1 au dessus M, ol Fmm-1 = 1, tel que
I'image de ¢ soit une loi de conservation.

Nous expliquons dans le chapitre 6 comment prouver le résultat dans le cas d’un fibré de
rang quelconque, i.e., n et m arbitraires et p = 1. Notons aussi qu'une preuve est présentée dans
[HeIO9] dans le cas ou la 1-forme différentielle & valeurs dans un fibré vectoriel fermée covariante
est bijective, injective ou surjective, ou plus généralement de rang constant. De plus, Frédéric
Hélein utilise les ingrédients du plongement isométrique généralisé, a savoir le fibré vectoriel
V" de rang n, la variété différentielle M™ de dimension m, la métrique g, la connexion V
(compatible avec g) et la p-forme différentielle ¢ a valeurs dans V fermée covariante, que nous
notons par le 5-uplet (V*, M™, g, V, ¢),, pour définir des géométries par recollement de points,
lignes, surfaces etc. La forme différentielle ¢ joue ainsi le réle d’'une forme de soudure et les
ingrédients (V", M™, g, V, $), sont associés aux (p — 1)-puzzles.
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Le théoréme suivant est une réponse positive au probléme du plongement isométrique
généralisé dans le cas p = 2 pour un fibré vectoriel de rang 3 au dessus d’une variété dif-
férentielle réelle analytique de dimension 4, qui est une dimension trés importante en physique,
muni d’une connexion anti-auto-duale. Ce cas est lié au 1-puzzle de ces géométries "upstairs”
décrites dans [Hel09).

Théoréeme 0.5 — Plongement isométrique généralisé de 2-formes avec condition d’anti-
auto-dualité Soit M* une variété réelle analytique de dimension 4. Soit V2 un fibré vectoriel
réel analytique de rang 3 au dessus de M*, muni d’une métrique riemannienne ¢, d’une connex-
ion anti-auto-dual g-compatible V, et d’une 2-forme différentielle & valeurs dans V3 covariante
fermée ¢ de la forme . Il existe alors un plongement isométrique généralisé ¥ de V3 dans
M* x R¥*Fiaasp | o K3 9.asp = 4, de sorte que W(¢) soit une loi de conservation locale.

STRATEGIE DE RESOLUTION En utilisant le formalisme de Cartan, nous traduisons le prob-
léme du plongement isométrique en termes de formes différentielles, et nous montrons ainsi qu’il
est équivalent a résoudre un systéme différentiel extérieur sur une variété définie a partir des
données du probléme. Pour montrer 'existence de variétés intégrales, il faut vérifier que le
systéme différentiel extérieur est fermé par rapport a la différentiation extérieure. Il s’avére que
ce n’est pas le cas. Nous devons ajouter donc les différentielles extérieures de toutes les formes
différentielles qui engendrent 1’idéal extérieur pour ainsi obtenir un systéme différentiel fermé.

La grande difficulté dans ce probléme est le fait que plusieurs objets auxquels nous sommes
confrontés ont un sens géométrique dans le cas du fibré tangent et de la 1-forme différentielle
standard (¢ = Idtaq), mais pas sur un fibré vectoriel quelconque. Ce constat nous méne a
définir ces objets et notions dans un sens généralisé de sorte qu’ils coincident avec les notions
standards dans le cas du fibré tangent. Nous définissons tout d’abord la 2-forme de torsion
généralisée qui méne aux identités de Bianchi généralisées, et qui caractérisent en un sens les
géomeétries liées aux p-puzzles. Le lemme de Cartan, qui dans le probléme du plongement
isométrique (classique) exprime la symétrie des coefficients de la seconde forme fondamentale,
ne s’applique pas lorsque le degré de la forme différentielle fermée covariante est différent de
1. Les relations entre ces coefficients sont données par les identités de Cartan généralisées.
Finalement, nous définissons ’analogue des équations de Gauss.

Le coeur de la démonstration du théoréme [4.12] est le lemme fondamentale [5.14] et ce pour
deux raisons : D’une part, il assure I'existence de coefficients de la seconde forme fondamentale
qui satisfont les identités de Cartan généralisées et les équations de Gauss généralisées, et d’autre
part, le lemme fournit la codimension ky, ,,, 1 qui assure l'existence du plongement isométrique
généralisé. Une autre démonstration du théoréme 4.12 est donnée dans le chapitre 5 par une
construction explicite d’un drapeau intégral. Enfin, lorsque I'existence de variétés intégrales est
établie, il ne reste qu’a les projeter sur M x R m.p

DESCRIPTIF DES CHAPITRES ET ANNEXES Cette présente thése se compose de six chapitres
et de deux annexes dont le contenu est:

CHAPITRE 1 Le but de ce chapitre est d’établir les équations de structure de Cartan.
Les notions de base en géométrie différentielle sont introduites dans le langage de Cartan,
c’est-a-dire en utilisant les formes différentielles et les repéres mobiles. Nous introduisons dans
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la premiére section aux notions de 1-forme de connexion et de la 2-forme de courbure sur
un fibré vectoriel quelconque au dessus d’une variété différentielle. La relation entre ces deux
objets donne lieu a la seconde équation de structure de Cartan et aux identités de Bianchi. Nous
montrons aussi une propriété intéressante des formes de connexion et de courbure lorsque le fibré
vectoriel est munit d’une métrique, et comme toujours en géométrie différentielle, les régles de
transformations par changement de coordonnées sont bien entendu spécifiées pour tous les objets
définis. Dans la seconde section, nous nous spécialisons au cas des fibrés tangents de variétés
différentielles. Nous définissons la 2-forme de torsion d’une connexion et nous établissons la
premiére équation de structure de Cartan ainsi que la relation entre la 1-forme de connexion, la
2-forme de courbure, la 2-forme de torsion et le corepére mobile. Les démonstrations et résultats
des deux premiéres sections sont donnés en annexe 1. La section 3 est dédiée a I'exploitation
des équations de structure de Cartan et des formes différentielles dans 1’étude des surfaces :
a partir des métriques riemanniennes, nous donnons l’expression de la 1-forme de connexion,
des symboles de Christoffel et de la courbure de Gauss. Enfin, nous présentons un probléme
étudié par Henri Poincaré concernant l’existence de métriques conformes & courbure de Gauss
constantes.

CHAPITRE 2 Nous introduisons dans ce chapitre les systémes différentiels extérieurs qui
sont une maniere géométrique de voir les systémes d’équations aux dérivées partielles, et la
théorie de Cartan—Kahler, qui est 1'outil utilisé pour montrer 1'existence ou non de solutions.
La premiére section est dédiée donc a l'introduction aux systémes différentiels extérieurs, aux
idéaux différentiels extérieurs, aux variétés intégrales d’un systéme différentiel extérieur et a la
notion d’involution. Nous énongons le théoréme de Frobenius via les formes différentielles qui
fournit une condition nécessaire et suffisante d’involution des systémes de Pfaff. La seconde
section est dédiée a la théorie de Cartan—Kahler, qui permet de montrer 'existence ou non
des variétés intégrales d’un idéal extérieur. Nous commencons par définir les éléments inté-
graux d’un idéal extérieur, leurs espaces polaires et leurs rangs d’extension. Ensuite, nous nous
intéressons aux systémes différentiels extérieurs ayant une condition d’indépendance. Nous
énoncons le test d’involution de Cartan et une proposition qui permet de calculer les caractéres
nécessaires au test de Cartan. Enfin, nous énongons deux théorémes d’existence : le théoréme
de Cauchy-Kowalevskaya pour 'existence de solutions de systémes différentiels et une générali-
sation de ce résultat, le théoreme de Cartan—Kahler pour l'existence des variétés intégrales d’'un
idéal différentiel extérieur.

CHAPITRE 3 Nous présentons dans ce chapitre différents résultats de plongement de sur-
faces riemanniennes : le plongement lagrangien, le plongement isométrique et le plongement
isométrique lagrangien de surfaces riemanniennes. Le but est a la fois de présenter des ap-
plications géométriques importantes des deux premiers chapitres, en particulier la théorie de
Cartan—Kahler, et de familiariser le lecteur avec les techniques que nous utiliserons dans les
prochains chapitres, qui sont destinées a la compréhension et a la résolution de quelques cas
du probléme du plongement isométrique généralisé de fibrés vectoriels. Ce chapitre comporte
une annexe oll nous exposons et démontrons les résultats de plongements qui se généralisent en
dimensions supérieures, a savoir I'existence de variétés lagrangiennes et le théoréeme de Cartan—
Janet.

CHAPITRE 4 Nous posons dans ce chapitre le probléme du plongement isométrique
généralisé de fibrés vectoriels et nous montrons ses liens, d'une part avec le probléme du plonge-
ment isométrique de variétés riemanniennes, et d’autre part, avec les lois de conservation et les
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applications harmoniques entre variétés riemanniennes. La section 1 est donc dédiée a définir
mathématiquement les lois de conservation via les champs de vecteurs puis via les formes dif-
férentielles. Nous énoncons dans la section 2 le probléme du plongement isométrique généralisé
de fibrés vectoriels. Dans la section 3, nous présentons en détails les motivations principales
du probléme. Tout d’abord, le lien entre le probléme classique et le probléme généralisé est
exposé. Ensuite, nous définissons les applications harmoniques entre deux variétés riemanni-
ennes, nous donnons plusieurs exemples, et nous exposons le lien avec notre probléme. Dans
la section 4 sont regroupés les résultats de cette thése concernant le probléme du plongement
isométrique généralisé. Finalement, la section 5 est consacrée a une application aux tenseurs
énergie-impulsion. Une annexe de chapitre est consacrée a des détails supplémentaires sur la
démonstration d’un lemme utilisé dans la preuve du corollaire des lois de conservation pour les
tenseurs énergie-impulsion dans le cas de surfaces.

CHAPITRE 5 Nous détaillons dans ce chapitre la stratégie de résolution du probléme
du plongement isométrique généralisé dans le cas général et nous traitons le cas des lois de
conservation, c’est-a-dire lorsque p = m — 1. Ce chapitre est basé sur [KahO8b, [Kah(9]. Dans
la section 1, nous traduisons le probléme du plongement isométrique généralisé en termes de
systéme différentiel extérieur. Nous définissons les notions de torsion généralisée, les identités
de Bianchi généralisées, 'espace des tenseurs de courbure généralisé, les identités de Cartan
généralisées, et 'application de Gauss généralisée. La section 2 est consacrée a la démonstration
du théoreme dont le point clef réside dans le lemme [5.14] Par ailleurs, une autre preuve
est présentée par construction explicite d’'un drapeau intégral ordinaire. La démonstration
(trés technique) du lemme est exposée pour plusieurs sous-cas afin d’aider le lecteur a
comprendre les détails techniques.

CHAPITRE 6 Finalement, nous présentons les autres résultats du probléme du plongement
isométrique généralisé: le cas d'une 1-forme différentielle a valeurs dans un fibré vectoriel, et
le cas d’une 2-forme sur une variété de dimension 4 & valeurs dans un fibré de rang 3 et d’une
connection anti-auto-duale. L’annexe de chapitre est dédiée a présenter une autre expression
des identités de Bianchi généralisé pour le casn = 2, m = 3 et p = 1 ainsi que pourn =3, m =3
et p =1, et ce en définissant un produit vectoriel a valeurs vectorielles.

ANNEXE 1 Nous avons regroupé dans la premiére annexe les démonstrations et les calculs
techniques des résultats énoncés dans la premiére et seconde section du chapitre 1. Bien que
ces résultats soient classiques, nous avons tenu a les inclure ici a la fois pour ne pas alourdir le
chapitre mais aussi dans le but d’étre complet.

ANNEXE 2 Nous introduisons briévement dans cette seconde et derniére annexe a la
théorie de systémes de Pfaff linéaires et a la théorie de Cartan—Kahler via les tableaux. Nous
présentons quelques exemples d’application : 1’équation de la chaleur sur R2, le plongement
conforme et 'existence des variétés lagrangiennes dans les espaces complexes C™.

PERSPECTIVES En ce qui concerne le théoréme 0.2, il est assez naturel de se demander,
comme pour le probléme du plongement isométrique de variétés riemanniennes, si les hypothéses
de régularité peuvent étre assouplies, i.e., avoir le méme théoréme avec des données C* ou C*.
De plus, nous pensons qu’il est possible d’avoir un plongement isométrique généralisé global en
utilisant le principe d’homotopie de Gromov. Bien entendu, nous nous attendons dans les deux
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cas que la dimension de 'espace d’arrivée soit plus grande.

Le probléme reste ouvert dans plusieurs cas, p = 2,...,m — 2. Néanmoins se pose la
question de l'existence d’obstructions dans certains cas et s’il est possible de construire des
contre-exemples explicites. Enfin, qu’en est-t-il du cas de la forme fermée covariante de rang
non constant?
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INTRODUCTION (IN ENGLISH)H

This thesis pertains to the field of differential geometry. Its main objective is the study of
the generalized isometric embedding problem of vector bundles, whose solutions lead, among
other things, to show the existence of the analogeous of conservation laws when there are no
symmetries for partial differential equation.

The methods used to answer and solve the generalized isometric embedding problem are
geometric: the problem is translated and expressed in terms of an exterior differential sys-
tem, and solving the problem then consists of investigating if the exterior differential system
is involutive, i.e., showing the existence (or not) of solutions, called in this language, integral
manifolds. Exterior differential systems are important tools in differential geometry because
they allow the study of PDEs geometrically. Indeed, any system of PDEs can be expressed in
terms of an exterior differential system on a specific jet space, and conversely, and there is no
need to convince the reader of the importance of PDEs in mathematics, and more generally, in
science.

The denomination generalized isometric embedding problem is justified not only by the moti-
vations (presented below), but also by numerous facts arising from the elaboration of a strategy
to solve the generalized isometric embedding problem in the general case, which calls to mind
similar observed phenomenon of the (classical) isometric embedding problem. One of the goals
of differential geometry is the study of structures on differential manifolds. All began with the
work of Carl Friedrich Gauss [Gau27], who opened the way for the study of metrics of surfaces
in the 3-dimensional Euclidean space. We owe him, after the work of Gaspard Monge, the
introduction of the first and second fundamental forms, and an intrinsic invariant: the so-called
Gauss curvature (Theorema Egregium[]). Later, Georg Friedrich Bernhard Riemann revolu-
tionized the field of geometry: the notions of manifolds and Riemannian manifolds of higher
dimensions appear. Naturally, the question arose of the existence of abstract Riemannian man-
ifolds. In other words, is any abstract Riemannian manifold nothing more than a submanifold
of a given FEuclidean space? This question, whose local answer is provided by the Cartan—Janet
theorem [Car27, [Jan26] among others, and whose proof is presented in this present thesis (ap-
pendix of chapter 3), may be expressed in another way: is it always possible to isometrically
embed any Riemannian manifold in a Euclidean space?

Let us recall that solving a particular case in the generalized isometric embedding problem,
for which a precise statement is presented in what follows, is somehow related to the problem

6Chapters and appendices of the present thesis are written in English.
“The remarkable theorem.
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of finding conservation laws. In physics, a conservation law expresses that a given measurable
quantity of a physical system remains constant during the evolution of the system. This is
the case for numerous fundamental quantities in physics, such as energy, movement quantity,
momenta, electric charge, magnetic fields, etc.

From a mathematical and a very general viewpoint, a conservation law can be seen as a map
defined on a space F (which can be, for instance, a function space, a cross section space, etc.)
that associates each element f of F with a tangent vector field X on a Riemannian manifold
M of dimension m, such that if f is a solution to a given PDE, then the tangent vector field
has a vanishing divergence. If the metric of the Riemannian manifold M is denoted by g, then
we can canonically associate every tangent vector field X € I'(TM) with a differential 1-form

ax defined by
ax = g(X, ).

The divergence of a tangent vector field on an oriented Riemannian manifold is then defined
either by

div(X) = *d * ax or  div(X)voly = d(Xuvoly),

where * is the Hodge operator, voly, is the volume differential m-form on M, and X_Jvoly, is
the contraction of the m-form voly, by the tangent vector field X. One can notice that the re-
quirement div(X) = 0 may be replaced by d(X.voly) = 0. Therefore, a conservation law may
been seen as a mapping from F to the differential (m — 1)-forms on M such that the solutions
to a PDE are associated with the closed differential (m — 1)-forms on M. More generally, one
can foresee extending the notion of conservation law as a mapping to the closed differential
p-forms (for instance, the Maxwell equation in vacuum can be expressed by requiring a system
of differential 2-forms to be closed).

The Noether theorem expresses the equivalence that exists between conservation laws and
the invariance of the physical laws for some transformations (called symmetries). This thesis
is interested in the problem stated by Frédéric Hélein [HEI96] of finding conservation laws for a
class of PDEs expressed as follows:

Problem 0.6 — The generalized isometric embedding problem Let V be an n-dimensional
vector bundle over M. Let g be a metric on the bundle and V a connection that is compatible
with that metric. We then have a covariant derivative dy acting on vector bundle valued
differential forms. Assume that ¢ is a given covariantly closed V-valued differential p-form on
M, ie.,

dyo = 0. (5)
Does there exist N € N and an embedding ¥ of V into M x RN given by ¥(z,X) = (z, ¥,X),
where ¥, is a linear map from V, to RY such that:

e VU is isometric, i.e, for every x € M, the map ¥, : V, — RN is an isometry,
o If W(¢) is the image of ¢ by ¥, i.e., U(¢), = ¥, 0 ¢, for all z € M, then
aw(9) = 0. (6)

The equation in the generalized isometric embedding problem represents the system of
PDEs, and the relation @ plays the role of the conservation law. Note that the generalized
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isometric embedding problem is trivial for real line bundles. Indeed, the only connection com-
patible with the metric in a line bundle is the flat one.

MoTIVATIONS There are basically two main motivations for the generalized isometric em-
bedding problem:

THE ISOMETRIC EMBEDDING PROBLEM The first fundamental example is (naturally)
the isometric embedding problem of Riemannian manifolds in Fuclidean spaces, and is related
to our problem as follows: When M is a differential manifold of dimension m, the vector bun-
dle V is the tangent space TM, the connection V is the Riemannian connection, p = 1 and
the covariantly closed differential 1-form with value on TM is the identity map on TM, then
equation expresses the torsion-free condition of the connection V. Moreover, every solution
¥ to @ provides us with an isometric embedding u of the Riemannian manifold M in an
Euclidean space RY through the integration of the equation du = ¥(¢), and conversely.

The Cartan—Janet theorem [Car27, [Jan26|, whose proof is given in chapter 3, provides lo-
cally a positive answer to the isometric embedding problem of Riemannian manifolds in the
analytic category. Although the regularity condition on the data may seem to be restrictive,
the result is fundamental because the dimension of the target Euclidean space is optimal. This
result contrasts with the Nash—Moser result, which is a global result in the smooth category.

Consequently, if the generalized isometric embedding problem has a solution when p = 1,
the notion of isometric embedding is extended to the generalized isometric embedding of vector
bundles. When the degree of the covariantly closed vector bundle valued differential form is
arbitrary, the generalized isometric embedding may also be considered to be an embedding of
the vector bundle valued differential form.

HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS Another fundamental ex-
ample of covariantly closed vector bundle valued differential forms (expounded in [HéI96]) is
provided by harmonic maps between Riemannian manifolds. A harmonic map u between two
Riemannian manifolds (M, g) and (N, h) is a critical point of the Dirichlet functional

Blu] = %/M|du|2. (7)

Locally, the Euler-Lagrange system is expressed as follows}

ouw? OuF
900 2P (8)

Agu' + g*T5 (u(x))

where T, are the Christoffel symbols of the connection on N. When reading the definition
for the first time, the reader may think that harmonic maps are not common. Nevertheless
many examples abound not only in mathematics but also in physics. For instance, when the
target Riemannian manifold (M, h) is (R, (,)r), harmonic maps are harmonic functions on
(M, g). When the target Riemannian manifold is (R", (,)gn), then a map u is harmonic if
and only if each component of u is a harmonic function of M. Other examples of harmonic
maps are: isometries, geodesic parameterization, isometric immersion, and holomorphic and

8We use the Einstein summation convention.
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anti-holomorphic maps between Kéhlerian manifolds. Some of these examples are expounded
in chapter 4.

Harmonic maps also provides examples of covariantly closed vector bundle valued differential
forms [Hel96]. Indeed, harmonic maps between Riemannian manifolds can be characterized in
the following way: Let u be a map defined on an m-dimensional Riemannian manifold (M, g)
with values in a n-dimensional Riemannian manifold (N, h). On the vector bundle over M
induced by u , the u*TN -valued differential (m — 1)-form *du is covariantly closed if and only if
the map wu is harmonic, where the connection on the induced bundle ©v*TN is the pull-back by
u of the Riemannian connection of (N, h). Therefore, if the generalized isometric embedding
problem has a solution when p = m — 1, it would then be possible to find the analogous of
conservation laws on M from covariantly closed vector bundle valued differential forms, and in
particular, those provided by harmonic maps between Riemannian manifolds.

In [HEI96], motivated by the problem of the compactness of weakly harmonic maps in Soblev
spaces in the weak topology (which remains an open problem), Frédéric Hélein considers har-
monic maps between Riemannian manifolds, explains how conservation laws may be explicitly
obtained by using the Noether theorem when the target Riemannian manifold is symmetric,
and formulates the above problem for non-symmetric Riemannian manifolds.

REsuLTS The first result [KahO8bl, [Kah09], for which a detailed proof is later presented in
chapters 4 and 5, is a positive local and analytic answer to the generalized isometric embedding
problem when p = m — 1 ( also called the conservation law case). As for the Cartan—Janet
theorem, we provide the minimal dimension of the embedding target space.

Theorem 0.7 — Local conservation laws by generalized isometric embeddings [Kah08b]
Let V be a real analytic n-dimensional vector bundle over a real analytic m-dimensional manifold
M endowed with a metric g and a connection V compatible with g. Given a non-vanishing
covariantly closed V-valued differential (m — 1)-form ¢, there exists a local isometric embedding
of Vin M x R"™mm-1 over M, where &}, ..y > (m — 1)(n — 1) such that the image of ¢ is a
conservation law.

We noticed that this result can also be applied to finding conservation laws for contravariant
2-tensors with a vanishing covariant divergence, and in particular, for the energy-momentum
tensor which plays an important role in the general relativity and gravitation theory. For that
purpose, we see the energy-momentum tensor as a differential (m — 1)-form with values in the
vector bundle, and we check that the form is covariantly closed. It seems that this way of
looking at the energy-momentum tensor is not new, although it is in rarely used in practice,
and appears in Elie Cartan’s works. Indeed, let T € ['(TM ®TM) be a contravariant 2-tensor
that is expressed in a coordinate system by T = TY¢ ® &;, where (&,...,&,) is a moving
frame dual to the moving coframe (n',...,n™). The volume differential m-form is denoted by
n' =n' A--- An™. Using the interior product, we can canonically associate any contravariant
2-tensor T with a TM-valued differential (m — 1)-form 7 as follows:

ITM®TM) — I'(TM @ A DT M),
T=Ti¢—T1=60T

where 7° = T% (& _m"). We prove in a lemma that 7 is covariantly closed if and only if the tensor
T has a vanishing covariant divergence, and hence, Theorem leads to the following corollary:
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Corollary 0.8 — Local conservation laws for divergence-free contravariant 2-tensors
Let (M™,g) be a real analytic m-dimensional Riemannian manifold, V be the Levi-Civita
connection and T be a contravariant 2-tensor with a vanishing covariant divergence. Then
there exists a conservation law for T on M x RmHm=1)?,

The generalized isometric embedding problem remains open when the degree of the covari-
antly closed vector bundle valued differential form is less than (m — 1). However, we obtained
partial results when p =1 and p = 2.

Theorem 0.9 — (V2 M™ g V,¢); case Let V? be a real analytic 2-dimensional vector
bundle over a real analytic m-dimensional manifold M endowed with a metric g and a connec-
tion V compatible with ¢g. Given a non-vanishing covariantly closed non-degenerate V-valued
differential 1-form ¢, there exists a local isometric embedding of V2 in M x R™m1 over M,

where £, ., ; > 1 such that the image of ¢ is a conservation law.

We explain in chapter 6 how to prove the above result for a vector bundle of an arbitrary rank
, i.e., n and m arbitrary and p = 1. Let us notice that a proof is also presented in [Hél09] when
the covariantly closed differential 1-form is bijective, injective, surjective, and, more generally,
of constant rank. Moreover, Frédéric Hélein uses the ingredients of the generalized isometric
embedding problem, namely the vector bundle V" of rank n, the differential manifold M™ of
dimension m, the metric g, the connection V (compatible with ¢g) and the covariantly closed
V"-valued differential p-form ¢, that we denote by the 5-uplet (V*, M™ ¢, V,¢),, to define
geometries by gluing points, lines, surfaces, etc. The differential form ¢ plays the role of a
solder form and the ingredients (V"*, M™, ¢, V, ¢), are associated with (p — 1)-puzzles.

The following theorem is a positive answer to the generalized isometric embedding problem
in the case of a vector bundle of rank 3 over a real analytic differential manifold of dimension
4 (which is an important dimension in physics), p = 2, and an anti-self-dual connection. This
case is related to the 1-puzzle of the "upstairs” geometries described in [HélI09).

Theorem 0.10 — Generalized isometric embedding of 2-form with anti-self dual con-
dition Let M* be an oriented real analytic 4-dimensional manifold endowed with a metric
(actually a conformal structure is enough). Consider a real analytic vector bundle V2 of rank 3
over M*, endowed with a Riemannian metric ¢, an anti-self-dual g-compatible connection V,
and a covariantly closed V3-valued differential 2-form ¢ of the form . There exists then a
generalized isometric embedding ¥ of V3 into M* x R**"i.2s0  where K3 0.asp = 4, such that
U(¢) is a local conservation law.

STRATEGY OF SOLVING Using Cartan’s formalism, the generalized isometric embedding
problem is translated in terms of differential forms, and we show that this problem is equiv-
alent to solving an exterior differential system on a manifold constructed from the problem’s
data. To show the existence of integral manifolds, we have to check that the exterior differential
system is closed under the exterior differentiation. However, this is not the case, and we obtain
a closed exterior differential system by adding the exterior differential of all of the differential
forms.

The big difficulty of the generalized isometric embedding problem is due to the fact that
various object and notions with which we are dealing have a geometric meaning in the tangent
bundle case and with the standard differential 1-form (¢ = Idra), but not on a general vector
bundle. This situation leads us to define these objects and notions in a generalized sense in such
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a way that we recover the standard objects and notions in the tangent bundle. Thus, we first
define the generalized torsion that leads to the generalized Bianchi identities that characterize
the "upstairs” geometries and the p-puzzles. The Cartan lemma, which expresses in the (classic)
isometric embedding problem the symmetry of the coefficient of the second fundamental form,
does not hold when the degree of the covariantly closed vector bundle valued differential form
is different than 1. The relations between these coefficients are given by the generalized Cartan
identities. Finally, we define the analogous of the Gauss equation.

The key to Theorem [4.12s proof is the fundamental lemma for two main reasons: On
one hand, it assures the existence of suitable coefficients of the second fundamental form that
satisfy both generalized Cartan identities and the generalized Gauss equations. On the other
hand, it provides the minimum embedding codimension y, ,, ; that assures the existence of a
generalized isometric embedding. An additional proof of Theorem is given in chapter 5
by an explicit construction of an ordinary integral flag. Finally, when the existence of integral
manifolds is established, we then need to merely project them on M x R <m.p.

CHAPTERS AND APPENDICES DESCRIPTION The present thesis is composed of six chap-
ters and two appendices:

CHAPTER 1 The goal of this chapter is to establish Cartan’s structure equations. The
main notions of differential geometry are introduced in Cartan’s language, i.e., in terms of
differential forms and moving coframes. In section 1, the connection 1-form and the curvature 2-
form of a connection are introduced on an arbitrary vector bundle above a differential manifold.
The relation between these objects is expressed by Cartan’s second-structure equation and the
Bianchi identity. Also shown is an interesting property of the connection and curvature forms
when the vector bundle is endowed with a Riemannian metric, and as always in differential
geometry, the transformation rules are established for all of the defined objects. In section
2, we specialize in the tangent bundle case. The torsion 2-form of the connection is defined,
Cartan’s first-structure equation is established, and we give the relation between the connection
1-form, the curvature 2-form, the torsion 2-form, and the moving coframe. The proofs of the
results in sections 1 and 2 are given in appendix 1. Section 3 is dedicated to making the most of
Cartan’s structure equations and differential forms for the study of surfaces: from Riemannian
metrics, we give the expression of the connection 1-form, the Christoffel symbols and the Gauss
curvature. Finally, we present a problem studied by Henri Poincaré pertaining to the existence
of conformal metrics with constant Gauss curvature.

CHAPTER 2 In this chapter, we introduce exterior differential systems, which are merely
a geometric way of studying PDEs, and the Cartan—Ké&hler theory, which is a powerful tool to
show the existence (or not) of solutions. Section 1 is then dedicated to introducing exterior
differential systems, exterior differential ideals, integral manifolds of an exterior differential
system, and the notion of involution. We state the Frobenius theorem via differential forms,
which provides us with a necessary and sufficient condition for the involution of a Pfaffian
system. Section 2 is dedicated to Cartan—Ké&hler theory, which allows us to show the existence
(or not) of integral manifolds of an exterior differential ideal. Defined are also integral elements,
their polar spaces, and their extension ranks. Then we consider exterior differential systems
that possess an independence condition. For the involution, the Cartan test is stated as well
as a proposition which allows us to compute the Cartan characters in order to apply Cartan’s
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test. For the existence of integral manifolds, we state Cauchy-Kowalevskaya theorem and the
Cartan—Kahler theorem.

CHAPTER 3 We present in this chapter different Riemannian surface embedding results:
Lagrangian embedding, isometric embedding, and isometric Lagrangian embedding of Rieman-
nian surfaces. The goal is to present important geometric applications to the two previous
chapters (in particular the Cartan—Kéahler theory), and also to familiarize the reader with
techniques used in the next chapters for understanding and solving the generalized isometric
embedding problem of vector bundles. This chapter has a sub-appendix where we present and
prove the embedding result that can be generalized in higher dimensions, i.e., the existence of
Lagrangian manifolds and the Cartan—Janet theorem.

CHAPTER4 We state the generalized isometric embedding problem of vector bundles,
and show its links, on one hand, with the (classic) isometric embedding problem of Rieman-
nian manifolds, and, on the other hand, with conservation laws and harmonic maps between
Riemannian manifolds. Section 1 is then dedicated to defining conservation laws in terms of
tangent vector fields and in terms of differential forms. The generalized isometric embedding
problem is stated in section 2. The principal motivations are presented in section 3. First,
we present the relation between the classic isometric embedding problem and the generalized
one. Then, we define harmonic maps between two Riemannian manifolds. Several examples
of harmonic maps are expounded, and we give their relations to the conservation laws and to
the generalized isometric embedding problem. In section 4, we gather all of the generalized
isometric embedding results obtained in this thesis. Finally, section 5 is dedicated to presenting
an application to energy-momentum tensors. A sub-appendix is dedicated to presenting supple-
mental details for the lemma’s proof used in the corollary’s proof pertaining to the conservation
laws of energy-momentum tensors.

CHAPTER 5 In this chapter, we explain and establish a strategy to solve the generalized
isometric embedding problem in the general case, and treat the conservation laws case, i.e.,
when p = m — 1. This chapter is based upon [KahO8b, [Kah(09]. In section 1, we translate the
generalized isometric embedding problem in terms of an exterior differential system. We define
the notion of a generalized torsion, generalized Bianchi identities, generalized curvature tensors
space, generalized Cartan identities, and the generalized Gauss map. Section 2 is dedicated to
proving Theorem whose key point is Lemma An additional proof is also presented by
explicitly constructing an ordinary integral flag. The (very technical) proof of Lemma is
presented for several cases in order to ease the comprehension of the technical details.

CHAPTER 6 In this last chapter, we present other results of the generalized isometric
embedding problem: the case of covariantly closed vector bundle valued differential 1-forms,
and the case of a 2-form over a differential manifolds of dimension 4 with values in a vector
bundle of rank 3 equipped with an anti-self-dual connection. The sub-appendix of this chapter
is dedicated to presenting another way of expressing the generalized Bianchi identities for the
case n = 2,m = 3 and p = 1, and also for the case n = m = 3 and p = 1, by defining a
vector-valued cross product.

APPENDIX 1 Here we gather the proofs and the technical computations for the results
stated in the first and second sections of chapter 1. Despite the fact that these results are
classic, we included them in this appendix to lighten chapter 1 and also to be complete.
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APPENDIX 2 We briefly introduce the linear Pfaffian system theory and the Cartan—
Kihler theory via tableaux. We present some applications: the heat equation on R2, the
conformal embedding, and the existence of Lagrangian manifolds in the complex space C™.

PERSPECTIVES Concerning Theorem[0.2] it is natural to wonder, as in the classical isometric
embedding problem of Riemannian manifolds, whether or not the condition of the data’s regu-
larity may be weakened (i.e., having the same result with C* or C* data). Moreover, we expect
that it is possible to have a global generalized isometric embedding using Gromov’s homotopy
principal. Evidently, we expect that, in either case, the dimension of the target space would be
greater.

The generalized isometric embedding problem remains open for p = 2, ..., m—2. Moreover,
the question arises of the existence of possible obstructions, and in the affirmative case, whether
or not an explicit counter-example may be shown. Finally, the case of the covariantly closed
vector bundle valued form of non-constant rank remains an open question.



CHAPTER 1

CARTAN’S STRUCTURE EQUATIONS

The goal of this chapter is to introduce the fundamental notions of differential geometry
expressed in moving frames, and to establish Cartan’s structure equations. Almost everything
revolves around differential forms, and thus is expressed in the Cartan formalism. The first
section is dedicated to introducing and defining the notion of a connection and its curvature
on an arbitrary vector bundle, where the dimension of the fiber is not necessarily equal to the
dimension of the base manifold, and the relationship between the connection and its curvature
is given by Cartan’s second-structure equation. Also shown is an interesting property of the
connection when the vector bundle is endowed with a metric, and, as always in differential
geometry, all of the transformation rules for these objects will be demonstrated. In the second
section, a special and fundamental class of vector bundles is investigated: the tangent bundle of
a differentiable manifold. The notion of torsion of a connection appears and leads to Cartan’s
first-structure equation. An important technical result, the Cartan lemma, is stated because
it is useful in several applications. The proofs from the first and second sections are given in
appendix 1 not only because the calculations are not that difficult and almost all of the results
derive from the definitions, but also to lighten the reading. Finally, since Cartan’s structure
equations are "intensely” used from chapters 3 to 6, the modest purpose of section 3 is to pro-
vide some useful applications to Cartan’s structure equations in the study of surfaces, such
as computing Christoffel symbols, computing the Gauss curvature and presenting a problem
studied by Poincaré pertaining to the conformal metrics of constant curvature.

1.1 CONNECTION ON A VECTOR BUNDLE

Let £ = (V, 7, M) be a vector bundle over a smooth m-dimensional manifold M with an
r-dimensional vector space V as a standard fiber. Denote by (I'(TM),[,]) the Lie algebra of
vector fields on M and by I'(V) the moduli space of cross-sections of the vector bundle V.

Definition 1.1 — Connection on a vector bundle A connection on a vector bundle is
a I'(V)-valued bilinear operator V on I'(TM) x I'(V) which satisfies V(yx)S = fVxS and a
Leibniz identity type Vx(fS) = X(f)S + fVxS for all X € I'(TM) and for all S € I'(V).

A connection on a vector bundle appears to be a way of "differentiating” cross-sections along
vector fields in a way that is analogous to the exterior differential of functions.

Definition 1.2 — Curvature of a connection Let V be a connection on £. The curvature
of V is a I'(V)-valued trilinear operator RY on I'(TM) x T'(TM) x I'(V) which associates any
cross-section S and any two vector fields X and Y with the cross section

RY(X,Y)S = (VXVY — VyVyx — V[X,YOS. (1.1)
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It follows immediately that RY(X,Y)S = —RV(Y,X)S. From the definition, one can easily
check the following property of the curvature of a connection on an arbitrary vector bundle.

Theorem 1.3 — The tensorial nature of the curvature Let V be a connection on a vector
bundle V of rank r over an m-dimensional manifold M. Then, for any f,¢g and h smooth
functions on M, S € T'(E) a section of £ and X,Y € I'(TM) two tangent vector fields of M,
we have:

RY(fX,gY)(hS) = f.g.h.RY(X,Y)S. (1.2)

Depending on the situation, expressing the connection and its curvature following Cartan’s
formalism seems to be more convenient. For that purpose, let us define a flexible generalization
of the notion of a frame which seems to be very useful and more adequate in the study of
extrinsic geometry of embedded submanifolds.

Definition 1.4 — Moving frame  Denote by O an open subset of M. A set of r local
sections S = (S1,S,,...,S,) of £ is called a moving frame (or a frame field) if for all p in O,

S(p) = (Sl(p), Sa(p), ... ,Sr(p)> forms a basis of the fiber V, over the point p.

In the mid 19" century, Frenet and Serret were pioneer in using moving frames in the
study of curves in a 3-dimensional Euclidean space. Later, Darboux studied the problem of
constructing a preferred moving frame on a surface in a Euclidean space, and it turned out to
be impossible in general to construct such a frame because there were integrability conditions
which needed to be satisfied. The definition of a moving frame was developed in the beginning
of the 20" century by Elie Cartan in the study of submanifolds in more general homogeneous
spaces, and he formulated and applied ”la méthode du repére mobile”.

If we consider X € I'(T M) to be a tangent vector field on M, then since VxS; is another
section of £, it can be expressed in the moving frame S as follows:

VxS =Y wi(X)S; (1.3)
=1

where w} € T'(T*M) are differential 1-forms on M.

Definition 1.5 — Connection 1-form  The 7 xr matrix w = (w}) whose entries are differential
1-forms is called the connection 1-form of V.

The connection V is completely determined by the matrix w = (w;) Conversely, a matrix
of differential 1-forms on M determines a connection (in a non-invariant way depending on the
choice of the moving frame).

Let X,Y € I'(TM) be two tangent vector fields. As previously, since RV(X,Y)S; is a
section of £, it can be expressed on the moving frame S as follows:

RY(X,Y)S; = > QUX,Y)S; (1.4)
i=1
where Q) € T(A*T* M) are differential 2-forms on M.

Definition 1.6 — Curvature 2-form of a connection  The r x r matrix Q = (Q}), whose
entries are differential 2-forms, is called the curvature 2-form of the connection V.
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With this viewpoint, we can state the following theorem that gives the relation between the
connection 1-form w and the curvature 2-form 2.

Theorem 1.7 — Cartan’s second-structure equation Let V be a connection on a vector
bundle (V,m, M) of rank r over an m-dimensional manifold. Denote by w = (w}) the gl(r;R)
valued differential 1-form of the connection V. Then

dw! +wp Awl = Q% for all i, j. (1.5)

A condensed way to write the Cartan’s second-structure equation is
dw+wAw=10Q (1.6)

and by exterior differentiation, we establish the Bianchi identities as follows

Proposition 1.8 — Bianchi identities via differential forms Let V be a connection on
¢. Denote by w and 2 the connection 1-form and the curvature 2-form of the connection V
respectively. Then the expression of the Bianchi identities via differential forms is

dQ=0QANw—wAQ. (1.7)

The expressions of the differential 1-form of the connection and the curvature 2-form are
both local. As always in differential geometry, one should know how these expressions are
changed in another coordinate system.

Proposition 1.9 — Connection and curvature transformation rules Let V be a connection
on a vector bundle (V, 7, M) of rank r over an m-dimensional manifold. Let O, and Op be two
neighborhoods of a point M € M. Consider ¢, : 7 1(0,) — O x R" and ¢5 : 77 1(Op) —
Op x R". The transition map is gag : On N Oy — GL(n;R"). Denote by w(a) and w(3) the
expressions of the connection 1-form of V on O, and Op respectively. Denote by Q(«) and
() the expressions of the curvature 2-form of V on O, and Op respectively. Then

w(B) = ga3dgas + 9osw(a)gas
QB) = gagU)gap

An interesting property for a connection, when the vector bundle is endowed with a Rie-
mannian metric, is to be "compatible” with that metric. Let us recall that a Riemannian metric
g on £ is a positively-defined scalar product on each fiber.

Definition 1.10 — Metric connection A connection V on a vector bundle endowed with
a Riemannian metric is said to be compatible with the metric g, or simply, to be a metric
connection, if V satisfies the Leibniz identity

Vx (g(Sl, Sz)) = g(szl, SQ) + g(Sl, szg), VSl, Sy, € F(V) and VX € F(TM) (1.10)

The following result shows an interesting property of the metric connections and will be
useful for many applications in chapter 3 and for the generalized isometric embedding problem.
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Proposition 1.11 — Connection and curvature forms of a metric connection Let S =
(S1,52,-..,5;,) be an orthonormal moving frame with respect to g, i.e. g,(S;,S;) = J;; for all
pe€ O,i,j=1,...,r. The matrix of 1-forms w associated with S and the curvature matrix of
2-forms € are then both skew-symmetric, i.e., w} + w! =0 and Q; + Q=0.

This means that metric connections and their curvatures are o(n)-valued differential forms
rather than gl(n)-valued differential forms.

1.2 THE TANGENT BUNDLE CASE

The first vector bundle that probably every student discovers in a differential geometry class
is the tangent bundle of a differentiable manifold. We consider in this subsection the tangent
bundle of a manifold, i.e., V = TM. This class of vector bundles provides more notions. As a
special type of vector bundles, all the results stated above obviously remain true. For instance,
let us consider, as previous, a local moving frame S = (Sy,...,S,,) over O C M. One can
naturally associate S with a moving coframe n = (n',...,n™) defined as a local frame field of
1-forms, such that for all p € U, 7' (p)(S;) = 0.

Definition 1.12 — Torsion of a connection  Let M be an m-dimensional manifold and
V be a connection on the tangent bundle TM. The torsion of V is a I'(T.M)-valued bilinear
operator TV on I'(TM) x T'(TM) which associates any two vector fields X and Y with the
vector field:

TV(X,Y) := VxY — VyX — [X,Y] (1.11)

As for the connection and the curvature, we express the notion of torsion in moving frames
as follows:

Definition 1.13 = Torsion 2-form of a connection The torsion 2-form of a connection V
is a TM-valued differential 2-form © = (©) such that ©" := dn’ +w! An/. Moreover, if © = 0,
then the connection is said to be torsion-free.

The torsion 2-form can be written in a more condensed way and is sometimes called Cartan’s
first-structure equation in mathematical literature :

dn+wAn=0. (1.12)

On a differentiable manifold equipped with a connection, the torsion of a connection mea-
sures the default for a connection to have a parallelogram property. A torsion-free connection
which is also compatible with a Riemannian metric is said to be a Levi-Civita connection. Note
that a Levi-Civita connection on a Riemannian manifold exists and is unique.

As for the connection 1-form and the curvature 2-form, the following proposition shows how
the local expression of the torsion changes in a different local coordinates.

Proposition 1.14 — Torsion transformation rule Let V be a connection on an m-dimensional
Riemannian manifold (M, g). Let O, and Os be two neighborhoods of a point M € M. Let
us consider ¢, : 7 1(0,) — Oy X R™ and pg : 77 H(Og) — O x R™. The transition map
is then g5 : U, NUz — GL(n; R™). Denote by ©(a) and ©(3) the expressions of the torsion
2-form on O, and Op respectively. Then

0(8) = g;36(a). (1.13)



1.3.1 APPLICATIONS TO SURFACES 25

The following proposition shows the relationship between the connection 1-form, the curva-
ture 2-form and the torsion 2-form on a tangent bundle of a differentiable manifold.

Proposition 1.15 — Relationship between the connection, curvature and torsion Let V
be a connection on an m-dimensional Riemannian manifold (M, g). Denote by w the connection
1-form of V,  its curvature, © its torsion and = (n',...,7™) a moving coframe. Then the
connection, the curvature, torsion and the coframe are related by

dO+wAO =QAn. (1.14)

Finally, the following proposition, which is the purpose of this section, summarizes Car-
tan’s structure equations and the different results obtained above in the case of a Riemannian
manifold.

Proposition 1.16 — Cartan'’s structure-equations for a Riemannian manifold Let (M, g)
be an m-dimensional Riemannian manifold. Let n = (n',7%,...,7™) be an orthonormal moving

coframe on M. By equations (1.12), (A.2) and proposition [1.11] we establish the Cartan’s

structure equations:

{dni + w;’, AnP =0 (torsion-free) (1.15)

dw} + wp A wj = £
?) is the Levi-Civita connection 1-form (torsion-free connection which is
compatible with the Riemannian metric g). Moreover, since 7 is an orthonormal coframe field,

(w?) and (€2) are skew-symmetric.

where the matrix (w

We conclude this section with the statement of a technical result which is easy to prove and
very useful for the applications.

Lemma 1.17 — Cartan lemma Let M be an m-dimensional manifold. Let us consider
whw?, ... w" to be linearly independent differential 1-forms on M, where » < n, and let

;
0',62,...,0" be r differential form on M such that Z 6" A w' = 0. There then exist r? functions
i—1

C> on M h} such that 0 = Z hjwj where h! = h.

J=1

1.3 APPLICATIONS TO SURFACES

As mentioned previously, beginning in chapter 3, there will be many possibilities of applica-
tions of Cartan’s structure equations in the proofs and explanations of geometric problems. The
modest goal of this section is to present some useful and interesting applications of Cartan’s
structure equations for Riemannian surfaces. Moreover, we expound the problem of finding a
conformal metric for a given Riemannian surface of constant Gauss curvature, a problem com-
pletely studied by Poincaré and which has a generalization in higher dimensions and is known
as the Yamabe problem.



26 CHAPTER 1 — CARTAN’S STRUCTURE EQUATIONS 1.3.1

1.3.1 CHRISTOFFEL SYMBOLS AND (FAUSS CURVATURE

s T PS? c2 M2

Figure 1.1: Sphere, torus, pseudo-sphere, catenoid and helicoid

Let u : R? — R? be a parameterization of a surface in the 3-dimensional space R? endowed
with the standard metric. Locally, u(6, ¢) = (X(Q, ©),Y(0,0),7(0, gp))

Examples 1.18 — Parameterization of surfaces.
1. The sphere S?: (0, ¢) — (cosf cos @, sin 6 cos , sin ).

2. The torus of revolution 72: (0,0) — ((R 4 7 cos ¢) cosf, (R + 7 cos @) sin 6, r sin ¢),
where R > r > 0.

3. The pseudo-sphere PS?: (0, ¢) — (cos ¢/ cosh 6, sin ¢/ cosh, 0 — tanh 6).
4. The catenoid C?: (0, ¢) — (cosh 6 cos p, cosh @ sin @, 6).

5. The helicoid H?: (0, ¢) — (6 cosp,fsin g, p).
Thus the pull-back of the Euclidean metric (, )gs = dX ® dX +dY @ dY 4+ dZ @ dZ by u is
w*({ Vgs) = (X§+Y§+z§>d0®de+ (Xexwweywmé)zw) (d02dp+dp@dd)+ (X3,+Y§,+z§) dfodd

where Xy and X, are the partial derivatives of the function X with respect to 6 and ¢ respec-
tively.

Examples 1.19 — Metrics on surfaces.  The metric expressions for the above surfaces are:
1. The Sphere: gs: = cos® pdf ® df + dp ® dy
2. The torus of revolution: g72 = (R + 7 cos ¢)?df @ df + r?’dy @ de.
3. The pseudo-sphere: gps: = R?*p(df @ df + sinh? pdyp ® dy)/ cosh 2.
4. The catenoid: ge» = cosh?A(df @ df + dp @ dyp).

5. The helicoid: g;2 = df ® df + (1 + 6*)de @ de.
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The following propositionﬂ gives three different models of an important manifold: the hy-
perbolic space.

Proposition 1.20 — Three isometric models for the 3-hyperbolic space The following
three Riemannian manifolds are isometric:

1. The hyperboloid upper-sheet: (HU?, g;4.2) where HU? = {(z,y, z) € R3|22—2?—y? =
1 and z > 0} and gyy2 = ¢*(dz @ dz + dy ® dy — dz ® dz), ¢ is the canonical injection of
HU? in R3.

2. The Poincaré ball: (PB?, gpp:) where PB? = {(z,y) € R?|z* + y* < 1}, which is the
usual ball of radius 1 in R? and gppe = 4(dz @ dz + dy ® dy) /(1 — z* — y*)%.

3. The Poincaré half-space:(PH?, gpy2) where PH? = {(z,y) € R*ly > 0} and the
metric gpre = (dz ® do + dy ® dy)/y>.

1 PB? T PH?

Figure 1.2: Hyperbolic space models.

In an integrable moving frame, i.e. such that [S;,S;] = 0 for all i, j, or equivalently, on a
coordinate system, the Christoffel symbols can be computed as follows:

T = %le <aiglj + 0;9i — 3zgij)- (1.16)

To compute the Christoffel symbols for a surface, we need to invert the metric and compute
the derivative in both directions of the coordinate system, then we apply the formula. It
seems to be much easier to compute the 22 Christoffel symbols by taking advantage of Cartan’s
structure equations and the skew-symmetry of the Levi-Civita connection. Denote by (n!,n?)
an orthonormal moving coframe and by (S;, S2) its dual moving frame. The Christoffel symbols
can be expressed as follows

k k
Fij = wj (Si). (1.17)
and hence '

wh =Tk’ (1.18)

(2

Since the connection is a 0(2)-valued differential 1-form,

Ij,=T%=0 andTl},+I?% =0. (1.19)

1See [Kah05] for the proof.
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Proposition 1.21 — Connection 1-form and Gauss curvature of a surface Let (M?, g) be
a Riemannian surface such that the metric ¢ = a*df ® 6 + b*de @ dp in an orthonormal moving
coframe, where @ and b are functions. Then the connection I-form (w!) of the Levi-Civita
connection and the Gauss curvature s of (M?, g) are:

b
a
]_ b99 a’SOSO agbg (I(pb<p
Y i — — ) 1.21
K ab( a + b a? b? ( )

Proof. The g-orthonormal coframe of the surface is: n' = adf and n? = bdy, where a and b
are non-vanishing functions. On one hand, dn* = a,dp Adf = —(a,/b)df An? and on the other
hand, dn? = bpdf A dp = —(bg/a)de A n'. Consequently, by Cartan’s first-structure equation,
which expresses the torison-free of the Levi-Civita connection,

wl = Beqg -~ Yog, (1.22)

b a

Recall that the skew-symmetry of the connection 1-form is due to the fact that the Levi-Civita
connection is compatible with the metric and hence is an 0(2)-valued differential 1-form. Finally,
by computing the exterior derivative dws and by using Cartan’s second-structure equation, we
find the expression of the Gauss equation, as in (1.21)). O

We summarize in table the coframe expression, the non-vanishing term of the connection
1-form, the Christoffel symbols and the Gauss curvature of both the surfaces given in the
examples and for two models of the hyperbolic space. The following proposition shows the new
expression of the Gauss curvature when the metric is multiplied by a positive real number. For
instance it allows us to know the Gauss curvature of a sphere of radius R when we know the
Gauss curvature of the unit sphere. The proof is a special case of Proposition [I.23]

Proposition 1.22 — Gauss curvature for dilated metrics Let (M?, gy) be a Riemannian

surface and let Iy, be its Gauss curvature. If R # 0 is a real number, then the Gauss curvature
of (M2, g), where g = R?gy, is K, = K, /R?.

1.3.2 EXISTENCE OF CONFORMAL METRICS WITH CONSTANT (GAUSS
CURVATURE

In the well-known problem studied by Poincaré, we are interested in finding out whether or
not a Riemannian surface is conformally equivalent to a constant Gauss curvature Riemannian
surface. The problem is generalized in higher dimensions by replacing the Gauss curvature with
the scalar curvature. This is known as the Yamabe problem. Let (M, gg) be a Riemannian
surface. As shown previously, one can consider an orthonormal moving coframe on which the
metric is expressed locally as: go = n* ® n' +n? ® n?. For an arbitrary metric gy, the Gauss
curvature has a higher chance to be non-constant. We also know that multiplying the metric by
a positive number R? changes the Gauss curvature form K to K/R?, and hence, a non-constant
Gauss curvature remains non-constant by just dilating the metric, however, one can imagine
that multiplying the metric by a non-vanishing function can neutralize the variation of the
Gauss curvature. So, is it possible to find a metric g, conformally equivalent to gg, such that
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(M, g) is of constant Gauss curvature? Namely, is it possible to choose a function A such that
the Riemannian surface (M, g), where g = "¢y, is of constant Gauss curvature?

Proposition 1.23 — Prescribed Gauss curvature Let (M, gg) be a Riemannian surface.
Then the Gauss curvature K, of (M, g), where g = e*gy, satisfies the following equation:

Kot Aw? = Kgon' An? 4 d * dA (1.23)

where w! = e*! and w? = e'g

In particular, to find a conformal metric on M with a constant Gauss curvature, one needs
to find the function A solution to the equation where K, is constant.

Proof. Let (n',7n?) be an orthonormal coframe such that gy = n' @ n' +72®@n?. Let g = *'go,
where ) is a function on M. Let us then denote w' = e*! and w? = e*g. Since e* does not
vanish, (w!, w?) is a moving coframe on M. On one hand,

dw! = d(enh)
dw? = d(e*n?)

deM Ant +erdpt = rdAAR — M An?) =dA AW — s Aw?  (1.24)
deM A +erdp? = rdAA? et Ant) =dA AW +my Awt (1.25)

where (n}) is the Levi-Civita connection 1-form on (M, go). On the other hand, g = w' ®
w! + w? ® w? and hence, the coframe (w!,w?), which is orthonormal for the metric g, satisfies
Cartan’s structure equations. Consequently,

dw'+wgAw?=0 and dw? —wjAw' =0 (1.26)
where (w?) is the Levi-Civita connection 1-form for (M, g). Therefore

dAA W + (wy —my) Aw? = 0 (1.27)
(wy —my) Aw' —dAAW? = 0. (1.28)

Applying the Cartan lemma for (1.27) yields to d\ = aw' + bw? and (wi — ) = bw' + cw?,
where a,b and ¢ are functions on M. However, the equation (1.28) imposed that a + ¢ = 0,
and hence

(wy — 1) = *dA. (1.29)

By the exterior differentiation of ((1.29) and by using Cartan’s second-structure equation, we
conclude that dwy — dn} = kow' A w? — K,n' An?* = d* d\, where K, and K, are the Gauss
curvature of the Riemannian surfaces (M, g) and (M, go) respectively. O

Remarks 1.24

1. If the function A is constant, then Proposition [1.23| reduces to Proposition Indeed,
if R = ¢*, then d x d\ vanishes and the equation [1.23| becomes K,w! A w? — Kyon' An? =
KRt AR? — Kgon* An? = (RPK, — Kyo)n' An? =0, and thus R2K, = K.

2. If M? =R? and g is conformal to the standard Euclidean metric on R?, i.e., g = e?(, )pe
then since the Gauss curvature of (R?, (, )g2) vanishes, the equation reduces to

Ky =e AN (1.30)
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3. If M is a compact surface without boundary, then integrating equation leads to

/ Ky A w? :/ Koon* A1
M M

where [ d*dX\ =0 by the Stokes theorem. Moreover, the Gauss-Bonnet formula assures
that the integral of the Gauss curvature is equal to 2wy (M), where x(M) is the Euler
characteristic associated to the topological space M. Therefore, if K, is constant, then

equation has no solution if K, and x(M) are of opposite signs.

(1.31)

Taking advantage of Proposition proof, we present another way to compute the Gauss
curvature of a given Riemannian by using Cartan second-structure equations:

Proposition 1.25 — Gauss curvature Let (M? g) be a Riemannian surface. Denote by
(n*,n*) the moving coframe where the metric g is diagonal, i.e., ¢ = 7' @ n' + n? ® n?, and
denote by (Si,Ss) its dual moving frame. Then the Gauss curvature K, of (M?, g) is:

Ky = S1(n3(S2)) — Sa(n3(S1)) — m([S1,S2))

(1.32)

where 73 is the non-vanishing term of the connection 1-form of the Levi-Civita connection.

Proof. By Cartan second-structure equation, dny = K,n' An?. Thus, K, = dn3(S1,S2), and

by the Cartan formula, K, = S1(73(S2)) — S2(173(S1)) — 73([S1, Sa)). O
M? n' Uk wy ' I3 Ky
R2 a0 dy 0 0 0 0
S? cos pdf de — sin pdf —tan 0 1
T2 R do d — sin ©odf sm—go 0 ___sy
(Rtrcosg) g e (R+rcosy) r(R +rcos )
PS? 40 tanh pdp __ -1 0 -1
cosh cosh ¢
oo 9 1
H? do V1462 — 0 -
4 +0) (1162 |  (1+67)
2 —sinh 6 1
C cosh 6d6 cosh Odyp —tanh 6dp 0 1 — 1
cosh™ 0 cosh™ @
2dx 2dy 2(ydz — zdy)
B? - —1
loep|ltTsw| a-ap| " ’
PH? do dy _do -1 0 —1
Y Y )

Table 1.1: Coframe, connection 1-form, Christoffel symbols, and Gauss curvature of some

surfaces.




CHAPTER 2

EDS AND CARTAN-KAHLER THEORY

The reader will notice that exterior differential systems play a central role in this chapter as
well as those that follow. Why? What make EDSs so special? Actually, an exterior differential
system is nothing but a geometric way of studying a PDE. Indeed, any PDE or system of PDEs
represents an exterior differential system on a certain space, and conversely. Defined in section
1 are exterior differential systems on a manifold, exterior ideals and exterior differential ideals.
Solving an exterior differential system means finding integral manifolds for the exterior differ-
ential ideal generated by it, which represents the equivalent of finding solutions to a PDE. For
the case of Pfaffian systems, the necessary and sufficient condition is provided by the Frobenius
theorem. However, in many geometric and analytic problems, the exterior differential systems
that arise are not always Pfaffian systems, but rather for instance, Lagrangian manifolds for a
symplectic manifold. Therefore, section 2 is a brief introduction to the Cartan—Ké&hler theory
[Car71l [K&h34], which is a general method for finding and constructing integral manifolds. We
start by defining an integral element of an exterior differential system of a given dimension,
then we define its polar space and the extension rank, which are of great importance. The
successive extensions give an integral flag and all of the technical results that follow are dedi-
cated to both checking the involution and to showing the existence of integral manifolds. The
Cartan test is stated to check the involution of an EDS, and to do that, a technical proposi-
tion is stated to provide a way of computing the Cartan characters. Then, for the existence of
integral manifolds, the Cauchy—Kowaleskaya theorem and the Cartan—Kahler theorem are given.

2.1 EXTERIOR DIFFERENTIAL SYSTEMS

Denote by I'(AT*M) the space of smooth differential forms on M. This is a graded algebra
under the wedge product. We do not use the standard notation (M) so as to not confuse it
with the curvature 2-form of the connection.

Definition 2.1 — EDS  Let M™ be an m-dimensional manifold. An exterior differential
system on M is a finite set of differential forms I = {w!,w?, ... w*} C T'(AT*M) with which
the set of equations {w' = 0|w" € I} is associated.

Definition 2.2 — Pfaffian system Let M be an m-dimensional manifold. A Pfaffian
system on M is an exterior differential system I on M which contains only linearly independent
differential 1-forms.

Examples 2.3 — EDS on R3.

1. Pfaffian form: Let I; = {adz + bdy + cdz} be an EDS on R3 where a,b and c are
functions on R3. The EDS I is said to be a Pfaffian system because it contains only one
differential 1-form.
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2. "Non-Pfaffian” system: Let I, = {dx — dy,dz A dy} be an EDS on R3. I, is not a
Pfaffian system because it contains a differential 2-form.

Definition 2.4 — Exterior Ideal Let M be an m-dimensional manifold. An exterior ideal is
a subset of differential forms Z C I'(AT* M) such that the exterior product of any differential
form of Z by a differential form on M belongs to Z, and if the sum of any two differential forms
of the same degree belonging to Z, belongs also to Z.

Definition 2.5 — Exterior ideal generated by an EDS Let M be a m-dimensional manifold
and I an exterior differential system on M. The exterior ideal generated by I is the smallest
exterior ideal containing I.

Examples 2.6 — Exterior ideal generated by an EDS in R*-Continued.

1. Pfaffian form: Denote by w the differential form of I; defined in examples [2.3] Then
the exterior ideal generated by I is:

T, = {whae = {a Awla € T(AT*R?)} (2.1)
2. "Non-Pfaffian” system: Denote by w' and w? the differential forms of I defined in
examples [2.3] The exterior ideal generated by I is:

T = {w", wlae = {a Aw' + BA WP, B € T(AT*R?)} (2.2)

Definition 2.7 — Exterior differential ideal Let M be an m-dimensional manifold. An
exterior differential ideal Z on M is an exterior ideal which is closed under the exterior differ-
entiation, i.e., dZ C 7.

Definition 2.8 — Exterior differential system generated by an EDS  Let M be a m-
dimensional manifold and I an exterior differential system on M. The exterior differential ideal
generated by I is the smallest exterior differential ideal containing I.

Examples 2.9 — Exterior differential ideal generated by an EDS on R3-Continued.
1. Pfaffian form: The exterior differential ideal generated by I; is:
71 = {wlar = {a Aw+ B A dwl|a, B € T(AT*(R?)} (2.3)
2. "Non-Pfaffian” system: The exterior differential ideal generated by I, is:
Ty = {wh, wlar = {a AW+ BAdW +y AW FOAAW?a, B, 7,0 € T(AT* (R} = {w!, w?
because both w! and w? are closed.
Definition 2.10 — Closed EDS  An exterior differential system I C I'(AT*M) is closed if

the exterior differentiation of all its differential forms belongs to the exterior ideal generated by
L.

Proposition-Definition 2.11 — Closed EDS An exterior differential system I C T'(AT*M)
is closed if and only if the exterior differential ideal generated by I is equal to the exterior ideal
generated by I. In particular, I U dI is closed.

Examples 2.12 — Closed EDS.
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1. The EDS 1, is closed because the differential of its forms dz — dy and dz A dy vanishes,
and, as shown by example 2.9 the exterior ideal generated by I is equal to the exterior
differential ideal generated by Is.

2. Let I3 = {dz — zdy} be an EDS on R3. Then I3 is not closed because the differential of
dz — zdy is the differential 2-form —dx A dy which can not be expressed as the wedge
product of the form dz — xdy by another differential form on R3.

Definition 2.13 — Integral manifold Let M be an m-dimensional manifold, Z C I'(AT*M)
be an exterior differential ideal on M, and N be a submanifold of M. The submanifold N is
an integral manifold of Z if t*¢ = 0,V € Z, where ¢ is an embedding ¢ : N' — M.

If an integral manifold of maximal degree exists through each point of M, then the exterior
differential ideal (or the EDS) is said to be completely integrable. From the definition of an
integral manifold, one can see the need to define exterior differential ideals. Indeed, the pull-
back of differential forms commutes with both the wedge product and the exterior differential.
In mathematical literature and in this thesis, integral manifolds of an exterior differential system
mean integral manifolds of the exterior differential ideal generated by that EDS. The following
theorem gives a necessary and sufficient condition for the existence of integral manifolds for
Pfaffian systems.

Theorem 2.14 — Frobenius Let I = {w!,...,w"} be a Pfaffian system on an m-dimensional
manifold M. Then a necessary and sufficient condition for I to be completely integrable is:

dw' AW A AW =0 foralli=1,...,r (2.4)
Example 2.15 — Pfaffian equation-Continued. The necessary and sufficient condition
for the existence of integral surfaces for the Pfaffian equation I; = {adz + bdy + cdz} is:
ob  Oa Jc  Oa Oc  0b
e o) b(o - o) a5 - 50) =0, 2.5
C(@x 8y)+ Jr 0z Ta dy 0z (2:5)

Hence, according to ([2.5)):
1. Iy = {dz — xdy} is not completely integrable in R3.
2. Iy = {xdx + ydy + 2dz} is completely integrable in R3 \ {0}.

3. Iy = {2dz + zdy + ydz} is not completely integrable in R \ {0}.

The well-known Cauchy theorem assures that given a point M, on a manifold M and
a tangent vector field Xy on M, there exists a curve 7 :| — g,¢[ such that v(0) = M and

J(t) = X, for all t. The following corollary of Frobenius theorem may be seen as a differential
form version of the Cauchy theorem.

Corollary 2.16 — Cauchy’s theorem via differential forms Let M™ be an m-dimensional
manifold and Ibe a Pfaffian system generated by (m — 1) linearly independent differential 1-
forms. Then I is completely integrable.
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7(0) =M

M

Figure 2.1: Cauchy theorem

Proof. Let I = {w!,...,w™ '}, where the differential 1-form w’, ¢ = 1,...,m — 1 are linearly
independent. One can complete [ by a 1-form w™ to obtain a coframe of M. Fori=1,...,m—1,
the exterior differential of w* is expressed in the coframe as follows: dw’ = C};w’ Awk. Therefore,
the Frobenius condition is always satisfied since dw! A w! A --- Aw™ 1 = 0. O

Example 2.17 Let I = {zdy — ydz} be an EDS in R? \ {0}. Then according to Proposition
the EDS T is completely integrable. And more generally, any non-vanishing differential
form on a surface is completely integrable.

2.2 CARTAN-KAHLER THEORY

If an EDS contains differential 1-forms and functions, we can still apply the Frobenius the-
orem to the submanifold defined by the vanishing of these functions (except on the possible
singularities). However, if the EDS contains differential forms of a degree greater than 1, the
Frobenius theorem is no longer helpful, as is often the case for EDSs arising from geometric
problems. For instance, let €2 be a closed differential 2-form on an 2m-dimensional manifold
M such that Q™ # 0. The pair (M?™ Q) is called a symplectic manifold. The integral m-
dimensional manifolds of {Q}, if they exist, are called Lagrangian manifolds. Thus finding
Lagrangian manifolds for a given symplectic manifold is equivalent to looking for integral man-
ifolds of a differential 2-form. Besides the Frobenius theorem, there are standard differential
techniques of ordinary differential equations that allow a complete (local) description of integral
manifolds of a exterior differential system, like the Pfaff-Darboux and Goursat theorems. The
following theory represents a general method for finding and constructing integral manifolds
for any exterior differential system.

2.2.1 INTEGRAL ELEMENTS OF AN EDS AND THEIR EXTENSIONS

Definition 2.18 — Integral element Let 7 be an exterior differential ideal on an m-
dimensional manifold M. An integral element of Z at a point M € M is a linear subspace E of
TyM such that pp = 0 for all ¢ € 7, where ¢ means the evaluation of ¢ on any basis of E.

The set of p-dimensional integral elements of Z is denoted by V,(Z).

|Proposition 2.19 — Subspace of an integral element If E is an integral element of the
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exterior differential ideal Z on M, then every vector subspace of E is also an integral element

of 7.

Proof. Let W; be a vector subspace of an n-integral element E of Z such that W; is not an
integral element of Z. Then, there exists a differential form ¢ € Z, such that pw, # 0. Let W,
be a vector subspace of E such that E = W; & W,. Then ¢ A 9, where we choose 1 such that
w, = 0 and ¥w, # 0, and the degree of ¢ is dimWj, belongs to Z and does not annihilate E,
contradicting the assumption that E is an integral element of Z. O

Proposition 2.20 — Integral elements space of an EDI Let Z be an exterior differential
ideal on an m-dimensional manifold. Then V,(Z) = {E € G,(TM)|pg = 0 for all ¢ € Z,}

Proof. The containment "C” is clear by definition. In order to prove the containment 72", it
suffices to show that if g = 0 for all ¢ € Z,,, then ¢ =0 for all p € 7. m

Example 2.21 — Integral element of an EDS.

1. E; = span{0/0z + 0/0y} is an l-integral element of I = {dz — dy,dz A dy} because
(dr — dy)g, vanishes.

2. span{d/0x — 0/0z,0/0y — 0/0z} is a 2-integral element of Iy = {dx + dy + dz} in R3.

One can check that any subspace of E5 is also an integral element of Is.

Definition 2.22 — Polar space Let E be an integral element of an exterior differential ideal
Z on M. Let {e1,ea,...,¢e,} be a basis of E C TyyM. The polar space of E, denoted by H(E),
is the vector space defined as follows:

H(E) = {v e TyM | p(v,e1,€2,...,€e,) =0forall p € 7,1} (2.6)

Let us notice that the integral element E is a subset of its polar space. This is due to the
fact that a differential form is alternate. The polar space H(E) plays an important role in the
EDS theory as shown in the following proposition.

Proposition 2.23 — Extending and integral element Let E € V,(Z) be a p-dimensional
integral element of Z. A (p + 1)-dimensional vector space ET C Ty M which contains E is an
integral element of Z if and only if E* C H(E).

Proof. Suppose that Ef = E @ Rv, and let (ey,...,e,) be a basis of a p-integral element E
of Z. The (p + 1)-subspace is a (p + 1)-integral element of 7 if g+ = 0 for all ¢ € Z,.4. By
definition, E* is a (p + 1)-integral element of Z if v belongs to the polar space of E. ]

In order to determine if a given p-integral element of an exterior differential system 7 is
contained in a (p + 1)-integral element, let us introduce the following function:

Definition 2.24 — Extension rank Let Z be an exterior differential system on an m-
dimensional manifold M. Let r : V,(Z) — Z be a function on the integral element of Z with
values in integer numbers that associates E € V,(Z) with the integer r(E) = dimH(E) — (p+1).
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Remark 2.25 — Extension rank. The extension rank of an integral element of an exterior
differential system is always greater or equal to -1. If the extension rank of an integral element
E is equal to -1, then dimH(E) = dimE so that H(E) = E and consequently, there is no hope
of extending the integral element E.

Example 2.26 — Polar space and Extension rank-continued. The EDSs from the
previous examples do not contain functions. Consequently, any point is a 0-integral element.
Let us then consider M a point in M.

1. The EDS Iy: The polar space of Eg = M is : H(Eq) = {¢ € TyR3|(dz — dy)(¢) =
0}. Hence, H(Ey) = span{d/dx + 0/0y,0/0z}. The extension rank of Eq is r(Ey) =
dimH(Eg) —1 = 2—1 = 1. Therefore, there exist 1-integral elements of I. Consider then
a vector space E; = span{ad/0x 4+ ad/Jy+ $0/0z}, where o and (3 are real numbers not
simultaneously zero. The polar space of E; is then: H(E;) = {£ € TyR3|(dz — dy)(§) =
dz Ady)(€,E;) = 0}. The rank of the polar system is 2, and hence the extension rank of
E; is r(E;) = dimH(E;) — 2 = 1 — 2 = —1. Therefore, there are no 2-integral elements of
12.

2. The EDS 1I,: The polar space of Eq is: H(Eg) = {£ € TuR3|(dz + dy + d2)(€) = 0}.
Hence, H(Ey) = span{0/0z — 0/0z,0/0y — 0/0z}. The extension rank of Eq is r(Eg) =
dimH(Eg) — 1 = 2 — 1 = 1. Therefore, there exist 1-integral elements of I5. Let us take
E, = span{0d/0x — 0/0z}: since there is no differential 2-form, the polar space of E; is
H(Ey) and the extension rank is 7(E;) = 2 —2 = 0. There then exists a unique 2-integral
element of Is.

2.2.2 INTEGRAL FLAGS, INVOLUTION AND EXISTENCE THEOREMS

In this subsection, we are interested in determining whether or not an exterior differential
system which has a condition of independence admits integral manifolds. Such condition is
present, for instance, for exterior differential systems arising from systems of PDEs. It is then
compulsory that the defining equations of the integral manifold do not contain relations between
the independent variables.

Definition 2.27 — EDS with an independence condition An EDS in an m-dimensional
manifold M with independence condition is a pair (I, A) where I is an exterior differential
system on M and A is a differential non-vanishing n-form on M.

Exterior ideal and exterior differential ideal with an independence condition are defined like
an EDS, i.e., by the assignment of a non-vanishing differential n-form.

Definition 2.28 — Integral elements with an independence condition Let Z be an
exterior differential ideal on an m-dimensional manifold M with an independence condition
A € T(A"T*M), and let G,(TM,A) = {E € G,(TM)/Ar # 0} be the Grassmannian
manifold of the tangent bundle T.M, consisting of the n-dimensional subspaces TM on which
A does not vanish. Then the set of integral elements of (Z, A) denoted by V,(Z,A) is the set
of integral elements of Z on which A does not vanish, i.e., V,(Z,A) = V,(Z) N G,(TM, A).

Consequently, solutions to (I, A) are integral manifolds of I on which A does not vanish.

Definition 2.29 — Kahler ordinary integral element An n-integral element E of an exterior
differential ideal is said to be Kéhler ordinary if there exists a differential n-form A such that
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Ag # 0 with with the property that E is an ordinary zero of the set of functions Fa = {palp €
AR

Definition 2.30 — Kahler regular integral element A Kéhler ordinary n-integral element E
of an exterior differential ideal is said to be Kéhler regular if the extension function r is locally
constant in the neighborhood of E in G, (TM, A).

Definition 2.31 — Integral flag An integral flag of an exterior differential ideal Z in M € M
of length n is a sequence (0)yy C Eqy C Eo C --+ C E, C TyM of integral elements Ej, of Z.

Definition 2.32 — Ordinary and regular integral element  An integral element E € V(7)
is ordinary if its base point z € M is an ordinary 0O-integral element of Z and if there exists an
integral flag (0), C Ey C Ey C -+ C E, = E C T, M where the E;, £k =1,...,n—1 are Kéhler
regular integral elements. Moreover, if E is Kéhler regular, then E is said to be regular.

The following results are intended to check the involution of an EDS, and to show and to
construct integral manifolds. The proofs may be found in [Car71l, [K&h34, BCG™91, TL03|

Theorem 2.33 — Cartan’s test Let Z C I'(A*T* M) be an exterior ideal which does not
contain O-forms (functions on M). Let (0)yy C E; C Eo C --- C E,, € TyM be an integral flag
of Z. For any k < n, denote by Cj the codimension of the polar space H(E) in TyyM. Then
Vo(Z) € G,(TM) is at least of codimension Cy + Cy + - -+ C,,_; at E,. Moreover, E, is an
ordinary integral flag if and only if E,, has a neighborhood O in G,,(TM) such that V,(Z)NO
is a manifold of codimension Cy + C; +---+ C,,_1 in O.

In order to be able to use the Cartan test, the following technical result provides an effective
way of computing the characters C; which are associated with an integral flag.

Proposition 2.34 — A way to compute Cartan characters At a point M € M, let E be an
n-dimensional integral element of an exterior ideal Z which does not contain differential O-forms.
Let wi,wo, ... ,wy, T, T, ..., T, where s = dim M — n, be a coframe in an open neighborhood
of M € M such that E = {v € TyM |m,(v) =0 foralla=1,...,s}. For all p < n, we define
E, = {v € E|wg(v) = 0forall & > p}. Let {¢1,¢2,...,p,} be the set of differential forms
which generate the exterior ideal Z, where ¢, is of degree (d, 4+ 1). Then for all p, there exists
an expansion

Yp = Z Wg ANwy+ & (2.7)

[J|=d,

where the 1-forms 7rg are linear combinations of the forms 7 and the terms ¢, are either of

degree 2 or more on 7, or vanish at z. Moreover, the polar space of E, is
H(E,) = {v € TuM]|m)(v) = 0 for all p and supJ < p}. (2.8)

In particular, the Cartan characters C, of the integral flag (0), € E; C E; C --- C E,
correspond to the number of linear independent forms {wg]Z such that supJ < p}.

For a differential equation of one variable, the Cauchy problem is well-posed when the initial
data is specified:

d
d_{ =F(t, f), f=vy for t=t,. (2.9)
The Cauchy problem is generalized with several variables and it is, in general, not well-posed.
The following theorem provides an answer to the Cauchy problem in higher dimensions:
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Theorem 2.35 — Cauchy—Kowalevskaya Let y be a coordinate on R, let z = (z') = be
coordinates on R", let z = (2*) be coordinates on R*, and let p¢ be coordinates on R™. Let
D CR" x R x R* x R™ be an open domain, and let G : D — R* be a real analytic mapping.
Let Dy C R™ be an open domain and let f : Dy — R?® be a real analytic mapping so that the
"1-graph”

Iy =A{(z,y, f(x),Df(z))|lx € Do} (2.10)

lies in D for some constante yy, where Df(z) € R™ is the Jacobian of f described by the
condition that p¢(Df(x)) = 0f*/dz'. Then, there exists an open neighborhood D; C Dy x R
of Dy x {yo} and a real analytic mapping F : D; — R® which satsifies the PDE with initial
condition

OF /0y = G(x,y,F,0F /0x)

F(z,y0) = f(x) for all z € D,. (2.11)

Moreover, F is unique in the sense that any other real-analytic solution to (2.11)) agrees with F
in some neighborhood of Dy x {yo}.

The Cauchy—Kovalevskaya theorem is a local existence theorem. It only asserts that a so-
lution exists in a neighborhood of a point and not in the entire space. As soon as one either
considers the global solutions or relaxes the assumption of analyticity, this is no longer the case
for the existence and/or the uniqueness. As in [BCGT91|, we presented the statement for only
one derivative. One can allow higher order derivatives by introducing new variables.

Up until now, we expounded upon two cases where we can assure the existence of integral
manifolds: for Pfaffian systems with the Frobenius theorem and for systems of partial differ-
ential equation that are in the Cauchy—Kovaleskaya form. The following theorem is of great
importance because it generalizes both.

Theorem 2.36 — Cartan—Kahler Let Z C I'(A*T* M) be a real analytic exterior differential
ideal which does not contain functions. Let X C M be a p-dimensional connected real analytic
Kahler-regular integral manifold of Z. Suppose that the extension rank is constant around M,
and denote its value by r = r(X), and we assume that » > 0. Let Z C M be a real analytic
submanifold of M of codimension r which contains X and such that T\ Z and H(Ty&Xx') are
transversal in Ty M for all M € X C M. There exists then a (p + 1)-dimensional connected
real analytic integral manifold ) of Z, such that X C Y C Z. Moreover, ) is unique in the
sense that another integral manifold of Z having the stated properties coincides with ) on an
open neighborhood of X'

The analycity condition of the exterior differential ideal is crucial because of the requirements
in the Cauchy—Kovalevskaya theorem used in the Cartan—Ké&hler theorem’s proof. It has an
important corollary. Actually, in the application, this corollary is more often used than the
theorem and is sometimes called the Cartan—Kdhler theorem in mathematical literature.

Corollary 2.37 — Cartan—Kahler Let Z be an analytic exterior differential ideal on a manifold
M. It E C TyM is an ordinary integral element of Z, there exists an integral manifold of 7
passing through 2z and having E as a tangent space at point M.



CHAPTER 3

SOME SURFACE EMBEDDING RESULTS

This chapter is dedicated to presenting some embedding results concerning surfaces. This
chapter will also present examples of application in differential geometry from the previous two
chapters. The embedding results are as follows: Lagrangian embeddings, isometric embeddings,
and isometric Lagrangian embeddings of real analytic Riemannian surfaces. The first and second
results admit generalizations in higher dimensions and are expounded upon in the subappendix
of this chapter.

3.1 LAGRANGIAN SURFACES

Symplectic geometry is quite vast and has many interesting results as well as numerous
connections to other great theories. However, we will merely introduce and define only the basic
objects needed in this chapter. The reader may refer to [Ber01l [AdS03] for further investigation.

Definition 3.1 — Symplectic manifold A symplectic manifold is a pair (M,w) where M
is a differentiable manifold and w is a closed nondegenerate differential 2-form on M. Such a
form w is called a symplectic form.

It results from the assumption on w that each tangent space TyM at a point M is endowed
with a symplectic structure, ie., (T M, wy) is a symplectic vector space. Hence, the dimension
of the manifold must be even. Notice that symplectic vector spaces are symplectic manifolds.

Examples 3.2 — Symplectic manifolds. The following list of examples is not exhaustive.

1. Cotangent bundle Let M be a differentiable manifold and consider its cotangent
bundle (T*M, 7, M). There exists a canonical differential 1-form a on T*M, called
the Liouville form, defined by o py)(X) = om(Ti M) X), where (M, om) € T*M,
X € Tmypn) (T*M) and one can easily check that w = da is closed and nondegenerate.

2. Orientable surfaces Any differential 2-form is closed on a surface. The nondegeneracy
condition means that the 2-form does not vanish anywhere, i.e., the 2-form is a volume
form. Therefore, all orientable surfaces may be considered as symplectic manifolds. In
particular, consider the unit sphere in R?, whose tangent space at a point M is the

orthogonal to the unit vector OM. Then the differential 2-form wy(X,Y) := OM.(X,Y) =
—
det(OM, X, Y) is nondegenerate and thus a symplectic form.

3. Kahler manifolds are symplectic.
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A fundamental theorem in symplectic geometry is Darbouz’s theorem.

Theorem 3.3 — Darboux Let (M, w) be a 2m-dimensional symplectic manifold. For all M
in M, there exists a coordinate system (z1, ..., Zs,) at the point M where

Wy = Z da’ A da™m, (3.1)
i=1

Darboux’s theorem affirms that locally, all symplectic forms are isomorphic to each other
(only for an even dimension), and hence there is only one model of symplectic manifold for any
given even dimension. This rigidity result constitutes the major difference between Riemannian
and symplectic geometry and indicates that symplectic geometry is essentially a global theory.

Definition 3.4 — Lagrangian immersion Let (M,w) be a 2m-dimensional symplectic
manifold and A/ a submanifold of M. An immersion f : NV — M is Lagrangian if f*(w) =0
and dimN = m.

From the above definition, it is then natural to define Lagragian manifolds as follows:

Definition 3.5 — Lagrangian manifold Let (M,w) be a 2m-dimensional symplectic manifold.
A Lagrangian manifold of (M, w) is an m-integral manifold of {w}.

In the following proposition, the existence of Lagrangian surface in the 4-dimensional sym-
plectic space is shown. In higher dimensions cf. to the subappendix of this chapter.

Proposition 3.6 — Lagrangian manifolds in R* There exist Lagrangian surfaces of the
4-dimensional symplectic space (R*,w).

It is straightforward to notice that on R* equipped with the symplectic form da! A da® +
da? A dz?, the plane defined by 2® = z* = 0 having span{d/0x',0/0z*} for a tangent space,
is a Lagrangian plane that does not vanish on daz!' A da?. However, can one expect to find
Lagrangian surfaces that are not flat? The solution is well-known and are described as

oS oS
1,2
{z a@@%@(ﬂc)} (32)
The following proof, which includes the case of a plane, is another way of establish this
result using the Cartan—Ké&hler theory.

Proof. Let (R* da! A da?® + da? A da?) be a symplectic space. Let us look for Lagrangian
surfaces, i.e., integral surfaces for €. Since Q = da' A dz® + da? A dz?* is closed, the exte-
rior ideal Z generated by €2 is closed. The EDI Z contains neither function nor differential
1-forms, thus any point M of R* is an integral point and any tangent vector on TyR* ~ R*
is an integral l-element. Denote by E; a given point M on R* Notice that 7 = 3 and
consider Ey such that dey, # 0. Then E; = span{d/dz' + o}0/02* + o{0/0x'} to be an
integral 1-element of Z, where o and «f are functions on R*. The associated polar space is
H(E;) = {¢ € TuRYQ(X,E;) = 0}. Then H(E,) is defined by the equation ¢! — €3 —ai&? = 0,
where £ are the components of the tangent vector € on the frame {0/9z'}. Therefore, C; =1
and the extension rank is 11 = 3 — 2 = 1, and hence there exists a 2-integral element of
{w}. Consider Ey = span{9d/dz"' + a20/02* 4+ af0/0x*,0/0x* + a10/0x* + a50/02*} to be an
integral 2-element of Z. Since the extension ranks rg,r; and ry are constant on a neighbor-
hood of M, the flag M C E; C Es is regular, but let us check the involution by the Cartan
test. On a point E of the Grassmannian Gy(TyR?*, dz! A da?), there exists a unique basis:

(XY(E), X¥*(E)), where X' = 9/0x" + P3(E)0/0x® + P}(E)0/0z*. Hence P3,P3, P}, P} is a set



3.2 ISOMETRIC EMBEDDING OF SURFACES 41

of coordinates on Go(TyR?*, dzt A dz?), the vanishing of the pull-back of the symplectic form
on the Grassmannian reads P3 — P] = 0, whose differential is obviously linearly independent,
and hence codim(Vy(Z,dz! A da?) = 1. The exterior ideal {w}a, passes the Cartan test be-
cause Cy + C; = codimV,(Z, dx! A dz?), and hence the EDS is in involution. Furthermore, the
Cartan—Kahler theorem demonstrates that there are integral manifolds of the symplectic form.
By construction, the Lagrangian surface satisfies the independence condition dzt A dz?. O]

3.2 ISOMETRIC EMBEDDING OF SURFACES

The following proposition is a special case of the Cartan-Janet theorem, a proof of which
is later given in the subappendix of this chapter. Although it is included in the Cartan—Janet
proof, the following proposition will be expounded upon not only for the further understanding
of the reader but also for further use in the embedding results and in the following chapters.

Proposition 3.7 — Isometric embedding of surfaces Every real analytic Riemannian
surface (M?, g) can be, locally, isometrically embedded in a three dimensional Euclidean space.
Moreover, the local isometric embedding depends on two functions of one variable.

Proof. Let (Ei,E;) be a g-orthonormal moving frame in the neighborhood of a point M of
M? and denote the associated moving coframe by (n',n?). Let F(R?) ~ R3 x SO(3) be
the vector bundle over R? consisting of pairs of orthonormal vectors of R? defined as follows:
Fo(R?) = {(N,e1,e2)|N € R? and (eq,e9,e3 = €1 X 62) is a direct orthonormal basis of R3}.
Thus, we obtain on F5(R?) the coframe {w!, w? w3 wi, W}, w3} defined as follows:

w* = (e, dz) and wy = (eq, dep) (3.3)

Let {n',n? w - 7] w n w3 w2 n2,w1,w2} be a movmg coframe of ¥ = M? x Fp(R?).

Let 7T = {w!' —n',w? —n? W wi —n3,wi Ant +ws An?, wi Aws — Kn? An?} be a closed exterior
differential ideal, where K is the Gauss curvature of the surface (M2, g).

COMPUTING CODIMV2(Z,n' A n?):

In order to facilitate the computation of the codimension of 2—integral elements that do

not vanish on n* A n?, we change the notation: {n',n? @' @?* @ @' @° @’} now denotes

', n? wt —nt w? — n? Wi wl —nd wi wil. The exterior dlfferentlal 1deal 7 is newly written

as follows:
IT={a", @’ & " @At + A, @® A — Knt An?) (3.4)

Let {X1(E), X5(E)} be a basis of Go(TX, n' A n?), the space of 2-planes of TY that do not
annihilate the differential 2-form n' A n?. The vectors X;(E) are defined as shown here:

X(E) =Xy + Pi(E)Yl + P%(E)Yg 4+ -4 P?(E)Yﬁ (3.5)
Xy (E) = Xy 4+ PH(E)Y; + P3(E)Yy + --- + PS(E) Y
where the tangent vector family {X;} is the dual basis of {1'}, and the tangent vector family

{Y,.} is the dual of {w”}. Now we can express the differential forms that generate Z on
Go(TE,n' A n?). These forms are denoted by the same symbols with an index E and we
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evaluate these forms on the basis X;(E). We have @*(%;(E)) = P%(E). So, wy, = PAIIV | where
i=1,...,4and j =1,2., and {II} is the dual basis of {X;}.

(@ At + @ An?)(X1(E), Xo(E)) = PS — P} (3.7)
Hence, dw}, = —(@® An' + @ An?)p = —(P§ — P A T2
(@® A@® — Ry' An?) (XL (E), X2(E)) = PSPS — PSPS — K (3.8)

Hence, dog, = (@° A @b — Kn' An?)g = (P3PS — PSP — KO)ITH A TT2.

The vanishing of the differential forms wi, @, @, wg, (w® An' + @ An?)g and (@® Aw® —
Rn"n?)g is equivalent to the system
P} =P} =P? =P =P} =P =P| =P, = P{ — P = PP — PSP, — K = 0. (3.9)

These six relations, which are linearly independent, define Vo(Z,n* An?) the space of 2-integral
elements of Z that do not vanish on ' A % Consequently, the codimension of Vy(Z,n' A n?)
in Go(TE, n' An?) is 10.

CONSTRUCTING AN ORDINARY 2-FLAG OF 7

If we construct an ordinary integral flag of length 2, then the Cartan—Kéhler theorem assures
the existence and the uniqueness of a 2-integral manifold of Z with the independence condition
nt An?. A tangent vector £ € TY is expressed as follows:

E=u X+ X+ Y1+ Yo+ - + €Y (3.10)

The exterior differential ideal Z does not contain functions (0O-forms) . Therefore, every
point of ¥ is an integral point. Consider z = Ey € ¥. The polar space of Ej is:

H(E) = {¢ € T.X[w' (§) = @*(§) = =°(§) = ="(§) = 0} (3.11)
Every tangent vector ¢ satisfying &' = €2 = € = £* = 0 belongs to the polar space of Ej.
The codimension of H(Eg) is Cy = 4. The extension rank is ry = dimH(Ey) —1 =4 -1 = 3.
Therefore, there exist 1-integral elements. For instance, E; = (z,e;) where e; = X; + a3Y5 +
afY with the condition o} # 0. The polar space of E; is

H(E,) = {£¢ € T.Z|w'(§) = - - = @ (&) = (@M +@°Np°) (€, 1) = (@A’ =Ry An?) (€, e1) = 0}.
(3.12)
where
(@ An' + %) (€ e1) = € — iy, — €3, =0 (3.13)
and
(=5 A — R A6, 1) = al€® — al€® + Ked, = 0 (3.14)

Every tangent vector ¢ satisfying ¢! = 2 = & = ¢* = ¢* = (& — af&), — af&3) = 0 and
a8€% — €8 + K3, = 0 belongs to the polar space of E;. The codimension of H(E;) is C; = 6.
The extension rank m = dimH(E;) —2 =2 — 2 = 0. We can thus conclude that there exists a
2-integral element. For instance, Ey = (2, e, e3) where e; = Xy + a5Y5 + a$Yg with af = af

and af = ((a})* + K)/af.

We therefore constructed an integral flag (0), C E; C Ey = E. This flag is ordinary since
Co+Ci =446 =10 = CodimV,(Z,n' An?), and hence passes the Cartan test. We conclude
then that the exterior differential system 7 is in involution, and according to the Cartan—-Ké&hler
theorem, there exists a local isometric embedding of (M2, g). O]
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Remark 3.8 The coefficients o}, a3, a8 and af in the above proof represent the coefficients of

the second fundamental form and satisfy the Gauss equation aa$ — aja$ = K.

3.3 ISOMETRIC LAGRANGIAN EMBEDDING OF SURFACES

The two previous results show that a real analytic Riemannian surface can be realized locally
as a Lagrangian submanifold of the symplectic space (R*, w) and also as a submanifold of the
Euclidean space (R3,(,)gs), and hence in a higher Euclidean space. The question if one can
expect to have both naturally follows. A reasonable target space is then C? since it is a real
4-dimensional vector space and since its complex structure provides a Euclidean and symplectic
structurdl

Theorem 3.9 — Moore—Morvan Let (M? g) be a real analytic Riemannian manifold of
dimension two. If M € M?, then there is an open neighborhood @ of M which possesses an
isometric Lagrangian immersion into C? . Indeed, the local isometric Lagrangian immersions
depend upon three functions of a single variable.

The following proof closely resembles to one expounded upon in [MMO1] except for the fact
that we are using a different complex structure, which is not of major importance. Indeed, the
symplectic structure underlying the complex one in [MMOT] is of the form }_ dz‘ A dz*™™ while
the one in the following proof is of the form > da?~! A dz?.

Proof. Let (M2 g) be a real analytic Riemannian surface. Let (n',n?) be an orthonormal
moving coframe such that ¢ = n' ® n' + n*> ® n?. There is then a unique torsion-free g-
compatible connection. This connection is determined by a matrix-valued differential 1-form
(77;) and satisfies Cartan’s structure equations:

dn' +n; Ay =0 for i =1 and 2 and dns = Q3 = Kn* An? (3.15)

where Q3 and K are the curvature 2-form of the Levi-Civita connection and the Gauss curvature,
respectively. Consider F¢(C") to be the unitary frame bundle of C". An element of F¢(C") is a
pair <N, (é1,...€9,) ), where N € C", J is the standard complex structure of C" and (ey, . .. ea,)

is a real orthonormal frame such that Jey, 1 = ey, for p = 1,...,n. The bundle F¢(C") is
diffeomorphic to C" x U(n). Let us define on F¢(C") the differential 1-forms w* and w), as
follows:

2n 2n
dey = Ze#wﬁf and dz = Z exw’. (3.16)
pn=1 A=1

These differential 1-forms satisfy Cartan’s structure equations:
A A m A A vo__
dw” +w, AWt and  dw;, +w) Aw, =0. (3.17)

The matrix of differential 1-forms w = (w,) takes values in the Lie algebra u(n). This
implies not only that (wj) is skew-symmetric, but also that

2 2p—1 2p—1 __ 2p _
Wap 1 = —Way, and Wap 1 =wy, forp k=1...,n (3.18)

!The existence of Lagrangian manifolds in C™ is expounded in appendix 2 as an application to tableaux and
linear Pfaffian system.



44 CHAPTER 3 — SOME SURFACE EMBEDDING RESULTS 3.3

Indeed, Jdes,_1 = degy, := Z 62p_1w§£_1 + Z €2pu)§£. By multiplying both sides by —J, we
p=1 p=1

obtain
n

n
degk_l == —JJdegk_l == degk_l - — Z 62p_1wgi:} + Z Ggpu)gi_l. (319)

p=1 p=1
Fc(C?) is (real) 8-dimensional, because it is diffeomorphic to C* x U(2). Since w} = wj and
wi = —w3, we conclude that {w! w? w? w* Wl Wi W3 w3} is a coframe of Fc(C?). Consider
on ¥ = M? x Fc(C?) the moving coframe {n',n? w' — ', w® — n? w? Wt Wl — Nl w? W2 Wil
that is denoted, for simplicity, as {n',n? @', @? @?, @', @’ @’ @, @w®}. M? is said to be a
Lagrangian manifold of C? if the complex structure J maps the tangent plane of M? into the
normal fiber of M? in C2. Another way to express this idea is the vanishing of w? and w* on
Y. Moreover, if w! —n! and w® — n? vanish on X, then the resulting Lagrangian embedding is

isometric. By Cartan’s structure equations, we have, modulo the forms (w! —n', w® —n? w2, wW*):

d(w;—n;) = —(wé—né)/\nf

dw’ —n%) = —(wi—m)An
dw? = —wiAnpt —wiAnp? (3.20)
dw! = —wiAnt —wi An?

The first two equations imply that the differential 1-form (wi — n3) vanishes. Consequently, its
exterior differential must also vanish, and provides a Gauss equation type:

wi AW +wi Aws = Knt An? (3.21)

1 3 4 1

Consider Z to be the exterior ideal generated by the forms {w! — n',w? — n? W? w* Wl —
ny,dw? dw?, d(wi — n3)}. This ideal is closed under the exterior differentiation. As in the
previous proof, the EDI 7 is expressed as follows:

IT={c',..., @A)+ A, o A+ A, P AT+ " A® — Kt An?Y (3.22)

Proposition 3.10 Every integral manifold of Z, for which the differential 2-form n' A n? does
not vanish, is locally the graph of map f : M? — F¢(C?) having the property that u = w20 f
is a Lagrangian isometric embedding.

In order to show the existence of an integral manifold of Z for which the 2-form n' A n?
does not vanish, we constuct an ordinary 2-integral element of Z. The Cartan—Ké&hler theorem
assures then the existence and uniqueness of an integral manifold, and hence, by the above
proposition, the existence of a Lagrangian isometric embedding.

CONSTRUCTION OF AN ORDINARY 2-FLAG

As in the previous proof, denote the coordinates of a tangent vector by
=X+ X +EY 1+ ... Y5 (3.23)

The exterior differential ideal Z does not contain O-forms. Every point of ¥ is then an integral
point of Z. Let z = Ey be a fixed point of 3. The polar space H(Ey) = {¢ € T.X|w*(&) =
0, fora =1,...,5}. Every tangent vector £ such that ¢! = €2 = ... = £5 = 0 belongs to the
polar space of Eg. Therefore, Cy = 5 and rp = dimH(Eg) — 1 =5 — 1 = 4. There then exist
1-integral elements of Z. Consider e; to be defined as follows:

e1 = X1 +a8Ys +alY; +alYs where af # 0. (3.24)
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The polar space of Ey is: H(E;) = {£ € T.X[(@)az1... 5(&) = (@ An' + @ An?) (&, e1) =
(@ At = AN er) = (@ NT+ " Aw® —Kn! An?) (€, e1) = 0}. Every tangent vector
¢ satisfying the following system of equations belongs to the polar space of Eq: & = .. = &5 =
0 —aféy —ai&ly = & —affy — oy = af€® —af¢"+af¢" —afg + K&y = 0. Therefore, C; = 8
and 71 = dimH(E;) — 2 =2 — 2 = 0. There then exists a 2-integral element of Z. Consider e,
whose coordinates are solutions to the polar system and set £}, = 0 and &3, = 1. Hence,

(3.25)

a2+ (a8)? — ol + K
:X2+QIYG+Q§Y7+<( 1) ( 1)(17 171 )Yg
1

CODIMENSION OF V,(Z,n' A n?)

As in the previous proof, one can easily check that codimVy(Z,n* An?) in Go(TX, n* An?) is
13. The 2-integral flag is ordinary since it passes the Cartan test, i.e., Co +C; =5+8 =13 =
codimVy(Z, n* A n?). The Cartan-Kéhler theorem assures the existence and the uniqueness of
the integral manifold of Z. By construction, the isometric Lagrangian embedding depends on
three arbitrary functions of one variable (af, o] and of). O

3.A° LAGRANGIAN MANIFOLDS IN R2?™

As for the dimension 4, one can easily expect that on a symplectic space (R*™ dx! A dz™ +

., dz™ A dz?™), the vector space defined by ™™ = ... 2?™ = 0 and which tangent space

is span{d/0x',...,0/0x™}, is a Lagrangian space. As previously, we address the question of
finding Lagrangian manifolds that are not necessarily flat.

Proposition 3.11 — Lagrangian manifolds in R?" There indeed exist m-dimensional La-
grangian manifolds of the 2m-dimensional symplectic space.

Proof. Let (R*™ Q) be a symplectic space, where Q = dz! Adz™ ™! + - - - 4+ da™ A dx?™. As for
the dimension 4, {w} is closed and since it does not contain neither functions nor differential
1-forms, every point and tangent vector of Ty{R?™ are integral points and 1-integral elements
of {w} respectively. Hence, Cy = 0. A tangent vector of R*™ is expressed as follows:

0 0 0 0
1 m+1 2m
=8 t oo 3 T St TS g

Consider then, at a given point M e R2m, the integral element E; = span{e;}, where
e1 = 0/0x' + a1 9/0x™ ! + .- + a?™9/02®™. The polar space of E; is H(E,) = {¢ €
TuR?™|w(€, er) = 0}, and tangent vectors satisfying Tt - - - a2mE™ — €M = () belong to
H(E;). Thus C; = 1 and the extension rank is r; = 2m — 2. There exist then 2-integral elements
of R?™. Consider then E, = span{ey, e; } where ey = 9/022 +a4™0/0z™ 4 - - - +a2m0/0x*™

(3.26)

and o™ = of"*?. The following considerations are the same for A = 2,...,m. Consider
E, = span{ey, ..., e\}, where
e + ot 0 N and o' =™ for v =1 A—1. (3.27)
ST Ham A a2 AT I S
Therefore, the polar space of Ey is H(E,) = {f € TMR2m|w(§, €)= ( ,e,\) =0}, and

tangent vectors that satisfy the system a™1¢l 4 ... 4 o2mg™ §m+” fo =1,... ), belong
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to H(E,). Thus, C) = A, and the extension rank is ry, = 2m — A. There exist then A-integral
elements of {w}. Except for A = m — 1, consider then E,,; = span{ey, ..., exs1} where ey, is
defined as in 3.271

CODIMENSION OF V,,(Z, 1)

Consider a basis of the Grassmannian G,,,(TyR?™) defined by X;(E) = 9/0z'+P"*'9/0z™+!
+ o+ P#9/92* for i = 1,...,m. The vanishing of the pull-back of the symplectic form
on the Grassmannian G,,(TyR?*") leads to the following system: P;J’m — P‘Z+m = 0 where
1,7 = 1,...,m. The differentials of these function are linearly independent and hence, the codi-
mension of V,,,(Z,dz! A Adz™) is m(m + 1)/2. The sum of the characters is also m(m + 1)/2.
Therefore, the Lagrangian EDS passes the Cartan test and consequently, w is in involution.
Finally, the Cartan-Kahler theorem assures the existence of an integral manifold of w. O]

3.B THE CARTAN-JANET THEOREM

We now state and prove the Cartan—Janet theorem concerning local isometric embedding
of a real analytic Riemannian manifold. Schlaefli in his paper in 1871 [Sch71] conjectured that
an m-dimensional Riemannian manifold can always be locally embedded in an N = sm(m+1)
dimensional Euclidean space. In 1926, Janet [Jan26] proved the result for the dimension 2 by
resolving a differential system and explaining how we get the result in the general case. In 1927,
Elie Cartan [Car27| gave the complete proof of the result. His method is based on his theory
of involutive Pfaffian systems. Later, in 1931, Burstin [Bur31] generalized Janet’s method and

obtained the result in the general case.

Theorem 3.12 — Cartan—Janet Every m-dimensional real analytic Riemannian manifold can
be locally embedded isometrically in an m(m + 1)/2-dimensional Euclidean space.

Proof. The details of the computations can be found in [Kah06l [KahO8a|. The proof can be
divided into six steps:

STEP 1. Let (M™, g) be an m-dimensional real analytic Riemannian manifold, where g is a
Riemannian metric, i.e. a covariant symmetric positive defined 2-tensor, such that at a given
point M of M™ g\ reduces in a orthonormal basis to the identity matrix. However in a open
neighborhood of M, the matrix of g can not always be the identity yet it can always be reduced
to the diagonal matrix g = ¢g;;dz! @ da! 4 gooda® @ da? + - - - + grmda™ ® da™, where the terms
gii are positive functions such that g; = 1 at M. We denote ' = ,/g;;d2" and thus g can be
written as follows:

g=n'en +@P@n’ +- - +n" @™ (3.28)

n = (p',n% ...,n™) is then an orthonormal coframe in the neighborhood of M € M which
satisfies Cartan’s structure equations dn' +n; An/ = 0 and dn;-‘ + 0 A 77J’»g = (2% where ();) is the
matrix of 1-form of the Levi-Civita connection on M and (£2}) is the curvature 2-form of the
connection. Note that indices 7, j and k vary from 1 to m = dimM™.

STEP 2. Let EN be an N-dimensional Euclidean space (for the moment, N > m) endowed with
the usual scalar product (,)g~. Let us consider F(EN) to be a positively-oriented orthonormal
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frame bundle on EN. In what follows, we will not work on the entire bundle F(EY), but rather

on a quotient F,,, (EN). An element in F,,,(EY) has the form (z;ey, ey, ..., ey), where z € EN and
(€1, €9, ..., 6ey) is a positively-oriented orthonormal set of vectors in EN. Since any such a frame
(€1,...,€em) can be completed in an oriented orthonormal frame of RN, 7, (EY) is diffeomorphic

to EN x SO(N)/SO(N — m) and hence of dimension N(m + 1) — m(m + 1)/2. On F,,(EN), we
define a set of 1-forms w® and wj by: dz = whes and deg = wQeA, where the indices A, B
and C vary from 1 to N. Therefore (w?,...,w™ w™ ...  wN) form an orthonormal coframe
of F(EN). Furthermore, Cartan’s structure equations on F,,(EY) are dw® + wi A w® = 0 and
dwd + w8 Aw§ = 0. Notice that (wgd) is the N x N skew-symmetric matrix connection form of
the Levi-Civita connection on EN.

STEP 3. Let us consider the product manifold M x F,,(EN). Let Z, be the exterior ideal on
M x F,,(EN) generated by the Pfaffian system Iy = {(w’ — 7)), w}, where the indices a, b and
c vary from m + 1 to N.

Proposition 3.13 Every m-dimensional integral manifold of Z, on which the form A = w! A
-+ A w™ does not vanish is locally the graph of a function f : M — F,(EY) having the
property that u = 7gy o f : M — EN is a local isometric embedding, where mp~ is the
projection of 7, (EN) on the Euclidean space EN. Conversely, every local isometric embedding
u : M — EN arises in a unique way from this construction.

STEP 4. According to proposition the existence of an integral manifold of Z, for which A
is non zero, is a neccessary condition for the existence of a local isometric embedding. However,
the theorems and the results that we discussed deal with closed exterior differential systems.
Therefore it is natural to add to the Pffafian system I, the exterior differentiation of each 1-
form and hence, we obtain a closed exterior differential system: Iy Udl,. When we compute the
exterior differentiation of (w’ — '), we remark new differential forms and an interesting result :

d(w' —7') = —(wi = 7)) Aw’ = 0. (3:29)

By Cartan’s lemma, w! — 7} = hé-kwk, with hfy = hy; = —hl.. With the symmetry and the
skew-symmetry of the functions hf;, we conclude that h}, are zero and so, wj — 7} = 0.

Remark 3.14 — Geometric interpretation.  The vanishing of the forms wg — 7];- = (0 implies
that f*(w!) =, where f is the function of proposition [3.13, which means that the pull-back
of the Levi-Civita connection by an isometric embedding is the Levi-Civita connection on M.

Therefore, we extend the exterior differential Iy and obtain an exterior differential system on
M X Fr(EN) Iy = {(0' = 1")i=1,..ms (@")ammes1,..N, (W — 175 )1<icj<m - In order to have a closed
one, we add the exterior differentiation of each form, and we denote Z the exterior differential
ideal generated by I;. Instead of looking for an integral manifold of Z,, we will look for the
existence of an integral manifold of Z. From the structure equations stated earlier, we obtain,
modulo I;, the following results:

dw' —n)=0 , do”=-wfAw' and d(W)—7))=—(w, Awf+ Q). (3.30)

On X, the integral manifold of Z, w* = 0 , and thus dw” = 0. We conclude that wi A w' = 0.
The Cartan lemma [1.17| assures the existence of m? functions hf; such that wf = hf;w’, where
hi; = hg;. We can then write: w® — hfjwj = 0 on X. However, nothing lead us to believe that
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this equality will be true outside of X'. We then define the differential 1-form 7¢ on M x F,,(EN)

as follows

T = wi — hiw (3.31)

On X, w;'» - nji- = 0, and thus d(wt — 77;) = 0. Restricted to X, the last equation of 1)
becomes w;, A wf + 2 = 0. Using 1) we can establlish the Gauss equation as follows:

N

Z (hiph$ — hghjy) = Riju- (3.32)

a=m-+1

We see that the exterior differential system I = {(w’ — n%),w?, (w! — i), 7¢} when the Gauss

equation is satisfied, generates the exterior differential ideal Z. Looking for integral elements
of I is equivalent to looking for integral elements of I for which the Gauss equation is satisfied.
We shall proceed with this in the following steps. Moreover, I contains less differential 1-forms
than the exterior differential system I.

STEP 5. The functions A{; are symmetric in their two low indices. If we consider an (N —m)-
dimensional euclidean space W, then the matrix (hf;) can be viewed as a symmetric element
of R™(i,j = 1,...,m) taking value in W, i.e. (hqj) € W S?(R™).

Proposition 3.15 Let K,, be the set of Riemannian curvature tensors R defined as follows:
ICm = {(Rmkl) S 82(/\2Rm)‘Riﬂd -+ Rkijl + Rjkil = 0} Then dlm’Cm = m2(m2 — 1)/12

With these considerations, we have the following lemma:

Lemma 3.16 Suppose that K = N —m > m(m —1)/2. Let H C W @ S?(R™) be an open set
containing the elements h = (h;;) such that the vectors {h;;|]1 < i < j < m — 1} are linearly
independent as elements of W. The map v : H — K,,,, that associates h € ‘H with v(h) € IC,,

such that <7(h)>

= hig.hji — hiyhjg, is a surjective submersion.
ijkl

STEP 6. Finally, we want to show the existence of an m-dimensional ordinary integral ele-
ment. Let us recall that the exterior ideal Z of M x F,,,(EN) is generated by s = N(m~+1)—m(m+
1)/2 1-forms {(w’" — 1), (W*), (wj —n}), (78)}. Let Z = {(M, T, h) € M x Fn(EN) x H|y(h) =
R(M)}. Z is a submanifold (the fiber of R by a submersion and the surjectivity of v ensures
that Z # (). We define the map ® : Z — V,,(Z, A) that associates (M, T, h) with the m-plane
at (M, T) annihilated by the 1-forms that generate Z(the exterior differential system I). The
map P is an embedding and so ®(Z) is a submanifold of V,,,(Z, A). We will show that ®(Z) con-
tains only ordinary integral elements. Let (M, T, h) € Z be a point. Denote by E = ®(M, T, h)
the integral element defined as follows: E = {v € Tur)(M x Fp(EN))|(w' — n')(v) = w*(v) =
(w! = n5)(v) = 7 (v) = 0}. Therefore, E is an m-dimensional integral element. As a matter of
fact, s is the number of differential forms that generate the ideal Z and dimM x F,,,(EN)—m = s.
We will apply the proposition . Let Z be the exterior ideal of M x F,,(EN) as defined
above. This ideal does not contain any O-forms . E € V,,(Z) at (M, T) € M x F,,,(EN). Let
W' (W' = 1), w", (Wi —nt), 7 be a coframe of M x F,,(EY) in the neighborhood of (M, T) such
that E = {v € Tyr (M x Fro(BEN))[(0' — 1) (v) = w*(v) = (W) — %) (v) = 7 (v) = 0}. Finally,
the characters c,, which are the codimension of H(E,) in G,,(T(M x F,,EN)), are equal to
Cp =N+4+m(m—1)/2+ (N—m)p+mp(m —p)/2. Since ¢ is an embedding, dim®(Z) = dimZ,
and hence

dimG,,(T(M x {)) — dim®(Z) = Nm(m + 1)/2 + m?*(m? — 1)/12. (3.33)
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We conclude that the codimension of ®(Z) in G,, (T(M xil)) is equal to Cy+Cq1+---+C,,_1. By

Cartan’s test, E € V,,,(Z, ) is an ordinary integral element of Z. The Cartan-Kéhler theorem
(corollary ) ensures the existence of an integral manifold X passing through (M, T) and
having E as a tangent space at (M, T). In particular, E € V,,(Zo, ). By proposition [3.13] there
then exists an isometric embedding of (M™, g) in (EN, (, )g~). O
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CHAPTER 4

ON GENERALIZED ISOMETRIC EMBEDDINGS

The purpose of this chapter is to introduce the generalized isometric embedding problem
and to use it for the construction of conservation laws for a certain class of PDEs. First, the
"usual” definition of conservation laws with tangent vector fields is given. Then, using a Rie-
mannian metric, another definition which uses differential forms is expounded. After stating
the generalized isometric embedding problem, we present two main motivations: the isometric
embedding problem of Riemannian manifolds and harmonic maps between Riemannian mani-
folds. Next, all of the established generalized isometric embedding results are stated. Finally,
we present an application to covariant divergence-free energy-momentum tensors.

4.1 CONERVATION LAWS

Many fundamental quantities in physics, for instance: mass, energy, movement quantity,
momentum, electric charge, etc. when some conditions are satisfied, do not change as the
physical system evolves. Since these quantities are preserved, one can then consider that there
are conservation laws that govern the evolution of a given physical system. A mathematical
definition of conservation laws is as follows:

Definition 4.1 — Conservation laws via vector fields Let (M, g) be an m-dimensional
Riemannian manifold and let F be either a function space or a cross-section space. A conser-
vation law is a mapping from F to the tangent vector fields such that the solutions to a given
PDE are mapped to divergence-free tangent vector fields.

Using the Riemannian metric g, one can canonically associate each vector field X € I'(TM)
with a differential 1-form ax := ¢(X, ). The divergence of a tangent vector field is a function,
and can be defined in two (equivalent) ways:

div(X) = xdx*ax (4.1)
div(X)volyy = d(XLvoly) (4.2)

where * is the Hodge operator, voly, is the volume form on M, and X.Jvoly, is the interior
product of volys by the vector field X. In (4.2)), the requirement div(X) = 0 may be replaced
by the requirement d(X_.voly ) = 0, leading to another possible definition of conservation laws:

Definition 4.2 — Conservation laws via differential forms Let (M, ¢g) be an m-dimensional
Riemannian manifold and let F be either a function space or a cross section space. Then a
conservation law is a mapping from F to differential (m — 1)-forms such that the solutions to
a given PDE are mapped to closed differential (m — 1)-forms.

More generally, we could extend the notion of conservation laws as mapping to differential
p-forms. For instance, Maxwell equations in vacuum can be expressed, as it is well-known, by
requiring a system of differential 2-forms to be closed.
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4.2 THE GENERALIZED ISOMETRIC EMBEDDING PROBLEM

Originally formulated by Hélein [Hél96], the following problem addresses the question of
finding conservation laws for a class of PDEs described as follows:

Problem 4.3 — The generalized isometric embedding problem Let V be an n-dimensional
vector bundle over M. Let g be a metric bundle and V a connection that is compatible with
that metric. We then have a covariant derivative dy acting on vector bundle valued differential
forms. Assume that ¢ is a given covariantly closed V-valued differential p-form on M, i.e.,

dy¢ = 0. (4.3)

Does there exist N € N and an embedding ¥ of V into M x RN given by ¥(z,X) = (z, ¥,X),
where U, is a linear map from V, to RY such that:

e VU is isometric, i.e, for every x € M, the map VU, : V, — RN is an isometry,
o If U(¢) is the image of ¢ by U, i.e., U(¢), = ¥, o ¢, for all z € M, then

dW(g) = 0. (4.4)

In this problem, the equation (4.3)) represents the given PDE (or a system of PDEs) and
equation (4.4)) plays the role of a conservation law. Note that there is no particular structure
on the base manifold.

Remark 4.4 — The line bundle case. The generalized isometric embedding problem is
trivial when the vector bundle is a line bundle (n=1). Indeed, the only connection on a real
line bundle that is compatible with the metric is the flat one.

4.3 MOTIVATIONS

As expounded in [HéI96|, there are basically two main motivations to the statement of
the above problem. The first motivation is the isometric embedding problem of Riemannian
manifolds. We start by recalling the definition of Riemannian isometry between Riemannian
manifolds and state the isometric embedding problem. Then we show how the generalized
isometric embedding problem is related to the isometric embedding and state an important
local isometric embedding result, which solves the generalized problem in this specific case.
The second main motivation is related to harmonic maps between Riemannian manifolds. After
defining harmonics maps and presenting some examples, we explain how harmonics maps can
be characterized by using the generalized isometric embedding problem’s ingredients.

4.3.1 THE ISOMETRIC EMBEDDING PROBLEM

A fundamental example is the isometric embedding of Riemannian manifolds in Euclidean
spaces.
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Definition 4.5 Let (M™,g) and (N, h) be two Riemannian manifolds of dimensions m and
n respectively. A map u defined on (M™, g) with values in (N, h) is a Riemannian isometry if

u*(h) = g.

After the emergence of the abstract notion of manifolds, due to the works of Gauss [Gau27|
and Riemann|Rie68|, a natural question arose: does there exist an abstract manifold? Another
way to express this question: is it possible that any given abstract manifold is in fact a subman-
ifold of a certain Euclidean space? Or equivalently, does any arbitrary Riemannian manifold
admit an isometric embedding in a Euclidean space? This problem is known as the isomet-
ric embedding problem, and has been considered in various specializations and with assorted
conditions. It is related to the generalized isometric embedding problem as follows:

ISOMETRIC EMBEDDING VS GENERALIZED ISOMETRIC EMBEDDING

The generalized isometric embedding problems’ ingredients are: the vector bundle V over
a manifold M, a metric bundle g, a metric connection V and a covariantly closed differential
p-form ¢. Denote these ingredients by the 5-tuple (V", M™, g, V,¢),, which plays a central
role in the puzzles and the upstairs geometries [Hel09]. A Riemannian manifold (M™, g) then
provides the base manifold, the vector bundle, and the metric, i.e., V. = TM. There is also a
natural connection V on TM which is the Levi-Civita connection. The remaining ingredient,
i.e., a covariantly closed differential form is given as follows: Let ¢ be the identity map on T M.
Then ¢ = Idra can be seen as a TM-valued differential 1-form, and it turns out, as explained
later in the theorem [.12s proof, that:

Proposition 4.6 — Canonical covariantly closed 1-form on a Riemannian manifold Let
(M™ g) be an m-dimensional Riemannian manifold and V a g-compatible connection on TM.
Then Idrp is a covariantly closed differential 1-form, i.e., dy(Idra) = 0, if and only if the
connection V is torsion-free.

Since the connection V is already g-compatible, it is equivalent to say that the identity map
on the tangent bundle T M is a covariantly closed TM-valued differential 1-form if and only if V
is the Levi-Civita connection. Actually, any solution to the generalized isometric embedding in
the (TM, M, g,V,Idrpr) case provides an isometric embedding u of the Riemannian manifold
M into a Euclidean space RN through the integration of

du = (o) (4.5)

and conversely. An answer to the local analytic isometric embedding of Riemannian manifolds
is given by the Cartan—Janet theorem (theorem [3.12]). Nash[Nas56] solved the isometric em-
bedding problem in the smooth and global case. Despite the fact that the Cartan—Janet result
is local and the analycity hypotheses on the data may seem to be too restrictive, the Cartan—
Janet theorem is important because it actualizes the embedding in an optimal dimension.

Consequently, if the generalized isometric embedding problem has a positive answer for
p = 1, the notion of isometric embeddings of Riemannian manifolds is extended to the notion
of generalized isometric embeddings of vector bundles. The general problem, when p is arbitrary,
can also be viewed as an embedding of covariantly closed vector bundle valued differential p-
forms.
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4.3.2 HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

Harmonics maps between Riemannian manifolds provide the ingredients of examples of
generalized isometric problem. For that purpose, we give a brief introduction to harmonic
maps and present some examples. The reader may also refer to [HWO0S| for a characterization
of harmonic maps by tension fields, which is not presented in this section, and also for extra
examples. Finally, we explain how harmonic maps between Riemannian manifolds are related
to the generalized isometric embedding of vector bundle and with conservations laws.

Definition 4.7 — Harmonic map between Riemannian manifolds Let (M™, g) and (N, h)
be two Riemannian manifolds of dimension m and n respectively. A map u defined on (M™, g)
with values in (N, h) is a harmonic map if u is a critical point of the Dirichlet functional

Elu] = /M |d"2” voluy (4.6)

where voly, is the volume measure on M by the metric g, and |du|? is the Hilbert—Schmidt
norm of du given at a point M € M.

Let us adopt the following convention: for M™, the indices «, 3,7y vary form 1 to m, and
for N, the indices 4, j, k vary from 1 to n. We also adopt the Einstein summation convention,
i.e., there is a summation when the same index is repeated in high and low positions. In local
coordinates (z',...,2™) on (M, g), the volume measure voly, and the Hilbert-Schmidt norm

of du are expressed as follows:

o on?
ozt Oxd’

vola = /|g|dz' A -+~ A da™ and |dun|? = g7 (M)hos(u(M)) (4.7)
Critical points of the Dirichlet functional must satisfy the Euler-Lagrange system. Thus,
an alternative local definition of harmonic maps is:

Proposition-Definition 4.8 — Harmonic maps A map u between two Riemannian manifolds
(M™ g) and (N™, h) is harmonic if u satisfies:

oud ouF

920 008 (4.8)

Agu' + g*°Tj (u(M))
where A, is the Laplacian operator on (M™, g), (¢g°°) is the inverse metric of g, and the F;k
are the Christoffel symbols on the target manifold (N™, h).

A way to understand physically harmonic maps is to imagine that the source Riemannian
manifold (M, g) is made of rubber and the target Riemannian manifold (N, h) is made of
marble. The shapes at rest of the manifolds are determined by their respective metrics. Then a
map u : M — N is a way to apply the rubber, which can be deformed, onto the marble, which
can not. The energy E[u] then represents the total amount of elastic potential energy resulting
from tension in the rubber. By definition, harmonic maps are the map u which minimizes the
energy. Thus, one can imagine that harmonic maps are the ways of applying the rubber onto
the marble such that, when one releases the rubber but still constrains it to stay everywhere in
contact with the marble, the rubber is then actually itself in a position of equilibrium.

Harmonic maps are actually not that unusual in differential geometry, analysis and physics.
From the above definition, one can easily guess some of the following examples:

Examples 4.9 — Harmonic maps.  Let us consider a map u : (M, g) — (N, h).
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1. Constant maps: Let N be a fixed point in N. A constant map u : (M, g) — (N, h),
that associates any point in M with the point N € A/, is naturally a harmonic map
because the derivatives of u are identically zero, and so for the Laplacian of u. The
equation (4.8)) is then trivially satisfied.

2. The identity map: Id : (M, g) — (M, g) is obviously a harmonic map. Using the
above "physical explanation”, if one applies a rubber manifold onto the same manifold
made of marble to realize identity, then it is not hard to imagine that there is no tension
at all on the rubber manifold.

3. Harmonic functions: If the target manifold (N, h) is the vector space (R, (,)r), then
harmonic maps are nothing but harmonic functions on (M, g) because the equation (4.8])
reduces to Aju = 0. Moreover, if the source manifold is an Euclidean space, namely
(R™, (, )gm), then harmonic maps are (the usual) harmonic functions on R™, i.e., functions
that satisfy Au = 0?u/0z*0z' + - - + 0%u/Ox™dx™ = 0.

4. Harmonic maps to Euclidean spaces: When the target manifold (N™, k) is an n-
dimensional Euclidean space, namely (R", (,)gn), then as one can expect, u is harmonic
if each component u’ is a harmonic function on (M, g).

5. Geodesics on a manifold: Assume that the source manifold (M, g) is (R, (,)r). Let
us consider ¢ as a coordinate in R. The equation (4.8]) reduces then to:

d2u , dw/ du®
I M) —— =0 4.9
which represents the parameterization of a geodesic on the manifold (N, h). If the target
manifold (M, g) is the circle (S', gg1), then parameterizations of closed geodesics are also
harmonic maps.

6. Holomorphic maps: Consider a holomorphic or an antiholomorphic map v : (M, g, JM)
— (N, g, JV) between two Kihler manifolds. The underlying real function is a harmonic
[TEG4]. To be convinced, consider u : R? — R? such that u(x!, 2?) = (u! (2!, 2?), v?(z!, 2?))
satisfy the Cauchy—Riemann system (i.e., the complex underlying function is holomophic):

1/9..1 2/9.2 _
{8u [0zt — 0u?/0x* =0 (4.10)
oul /0x? + Ou? /ox! = 0.

Since the source and target manifolds are flat, one can find local coordinate on which
the Christoffel symbols vanish. Hence, u is a harmonic map if «! and u? are harmonic
functions. This can be easily checked from the Cauchy-Riemann system given the fact
that the second partial derivatives commute by the Schwarz lemma.

As shown by these examples, harmonic maps appear in many areas of geometry and analysis.
But how are they related to the generalized isometric embedding problem? It turns out that
harmonic maps produce the ingredients of the generalized isometric embedding problem: in
other words, by using harmonic maps between Riemannian manifolds, one can produce, as
expounded in [HéI96], a vector bundle over a manifold, a metric bundle, metric connexion, and,
more importantly, a covariantly closed differential form.
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Definition 4.10 — The pull-back bundle Let M and N be two manifolds of dimension m
and n respectively, and let v be a map from M to N. Then the pull-back bundle by u over M
is u*(TN) = {(z,X)|z € M and X € Tyun}.

Proposition 4.11 — Characterization of harmonic maps by covariantly closed forms Let
u be a map from an m-dimensional manifold M to an n-dimensional Riemannian manifold
(N, h). Consider on M to be the pull-back bundle u*TN endowed with the pull-back metric
g = u*(h) and the pull-back connection V = u*V*, where VV is the Levi-Civita connection
on (N,h). Then the u*TN-valued differential (m — 1)-form *du is covariantly closed, i.e.,
dy(xdu) = 0, if and only if u is harmonic.

A positive answer to the generalized isometric embedding problem in this case will make
it possible to construct conservation laws on M from covariantly closed vector bundle valued
differential (m — 1)-forms, provided, for example, by harmonic maps.

In his book [H¢I96|, motivated by the question of the compactness of weakly harmonic maps
in Sobolev spaces in the weak topology (which remains an open question), Hélein considers har-
monic maps between Riemannian manifolds, explains how conservation laws may be obtained
explicitly by Noether’s theorem if the target manifold is symmetric, and formulates the prob-
lem for non-symmetric target manifolds, which is in fact the generalized isometric embedding
problem stated above.

4.4 ON GENERALIZED ISOMETRIC EMBEDDING RESULTS

We state in this section the different positive answers to the generalized isometric embedding
problem. The first is related to the conservation law case, i.e., p = m — 1 and is used in the
next section for constructing conservation laws for covariant divergent-free energy-momentum
tensors on a real analytic Riemannian manifold.

Theorem 4.12 — Local conservation laws by generalized isometric embeddings [Kah08b]
Let V be a real analytic n-dimensional vector bundle over a real analytic m-dimensional manifold
M endowed with a metric g and a connection V compatible with g. Given a non-vanishing
covariantly closed V-valued differential (m — 1)-form ¢, there exists a local isometric embedding
of Vin M x R"**mm-1 over M, where !, . _; = (m — 1)(n — 1) such that the image of ¢ is a
conservation law.

For the remaining case, i.e., for p =1,...,m — 2, the problem is still open in general. The
following result is a positive answer to the covariantly closed vector bundle valued 1-form when
the rank of the vector bundle is n = 2.

Theorem 4.13 = (V2 M™ g V,$); case Let V2 be a real analytic 2-dimensional vector
bundle over a real analytic m-dimensional manifold M endowed with a metric g and a connec-
tion V compatible with g. Given a non-vanishing covariantly closed non-degenerate V-valued
differential 1-form ¢, there exists a local isometric embedding of V2 in M x R 1 over M,

where r, ., ; = 1 such that the image of ¢ is a conservation law.

For an arbitrary n and m and for a non-degenerate ¢, the same type of result is explained in
chapter 6. This corresponds to the case of ¢ is bijective, injective, surjective, or more generally,
of constant rank, as in [Hel09).
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The following theorem is a positive answer to the generalized isometric embedding for p = 2
and for a vector bundle of rank 3 over a 4-dimensional manifold, which is a crucial dimension
in physics. It is important not only because it gives an example for the case of a 2-form, but
also because it provides an example of a 1-puzzle in the upstairs geometry [Hél09].

Theorem 4.14 — Generalized isometric embedding of 2-form with ASD condition Let
M* be an oriented real analytic 4-dimensional manifold endowed with a metric (actually a
conformal structure is enough). Consider a real analytic vector bundle V? of rank 3 over
M?*, endowed with a Riemannian metric g, an anti-self-dual g-compatible connection V, and
a covariantly closed V3-valued differential 2-form ¢ of the form (6.3). There exists then a
generalized isometric embedding ¥ of V3 into M* x R3>*"i.2.4s0 | where K39 asp = 4, such that
U(¢) is a local conservation law.

4.5 APPLICATION TO ENERGY-MOMENTUM TENSORS

We present here an application for Theorem to covariant divergence-free energy-momentum
tensors.

Corollary 4.15 — Local conservation laws for divergence-free contravariant 2-tensors
Let (M™,g) be a real analytic m-dimensional Riemannian manifold, V be the Levi-Civita
connection and T be a contravariant 2-tensor with a vanishing covariant divergence. Then
there exists a conservation law for T on M x Rm+m=1)?,

Proof. Consider a contravariant 2-tensor T € I'(TM ® TM), expressed locally T = T¥&, ®¢,,,
where (&1, .. .,&,) is moving frame dual to the moving coframe (n',...,n™). The volume form
is denoted by n® = n' A --- An™. Using the interior product, we can associate any bivector T
with a TM-valued (m — 1)-differential form 7 defined as follows:

I(TM ® TM) — T(TM @ A DT* M)
T=TYHREr—T=60T =60 (TAM&HUA>

Lemma 4.16 — Energy-momentum tensor vs T.M-valued differential form  Let (M™, g)
be an m-dimensional Riemannian manifold. Let T be a twice contravariant tensor and let 7 be
the associated tangent bundle-valued differential (m — 1)-form. Then 7 is covariantly closed if
and only if the tensor is covariant divergence-free.

Using lemma4.16], we conclude that for an m-dimensional Riemannian manifold M, theorem
applied to (M™, g) relatively to 7, i.e., for the ingredients (TM, M, g, V,7)(n_1), assures
the existence of a (generalized) isometric embedding ¥ : TM — M x R™T(m=D guch that
d(¥(7)) = 0 is a conservation law for a covariant divergence-free energy-momentum tensor T.

For instance, if dimM = 4, then ¥(7) is a closed differential 3-form on M with values in
RIS' ]
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PROOF OF LEMMA [4.16]

The tangent space TM is endowed with the Levi-Civita connection V. The covariant
derivative of 7 is

Ay =& @ (drh + )y ATH). (4.11)

On one hand, by using Cartan’s first-structure equation that expresses the vanishing of the
torsion of the Levi-Civita connection and the expression of the Christoffel symbols in terms of
the connection 1-form, we obtain

dr* = d(T¥(gm")) = d(T) A (§on®) + T¥d(Eeon®) = (6(TY) + T¥IY, )n* - (412)

and
m AT =1 ATy (&) = (T“’Tﬁu)nA (4.13)

are obtained by using the following partial computations

d(T™) = &(TY)y” (4.14)
Eua® = (1M = (1) A AT AT A AT (4.15)
d(m™) = 10" (4.16)

The covariant derivative of 7 is finally
dor =& @ [(€(T) + TV, + T, )] (4.17)

On the other hand, a straightforward computation of the divergence of the bivector leads
to

V T¥ =&, (T™) + T¥TY, + T#T,, forallA=1,...,m. (4.18)

We then conclude that (see the subappendix below for a detailed computation in the case
of a surface):

dy7=0&V,T* =0 VA=1,...,m. (4.19)

4.A DETAILED PROOF OF LEMMA [4.16] FOR SURFACES

Some details of the computations of the proof of lemma [4.16] are not presented above. In
order to help the reader understand them, the detailed computations of the covariant derivative
of the tangent bundle valued differential 1-form for a surface are presented in this subappendix.

Let (M2, g) be a real analytic Riemannian surface. As in the previous section, (n',n?) is
an orthonormal coframe, and denote by (1, &2) the associated orthonormal frame. The volume
form volye is nt An?. Let T be a twice contravariant tensor. T is then expressed in the moving
frame as follows:

T=T*H®E =T R4+ T2 6+ TH6Ee &6 + T2 ® &. (4.20)
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Then the associated TM?2-valued differential 1-form 7 is:
ri= 60 =68 (THEnY) =& (T¥Emn' Ar)

=4 ® <T11<€1—‘771 A?) + TH(En' A 772)) +6® (T”(&ml A?) 4+ T?(&m' A n2))
:§1®(T11 2 T12 1) +€ ®\<T21 2 T22771)J

TV TV
=7l =72

(4.21)

The covariant derivative of 7 is :
dyr =& @ AT+ AT + & @ (AT + i AT (4.22)

for A = 1 and 2, and by using Cartan’s first-structure equation, the expression (|1.18)) of the
Christoffel symbols in term of the connection 1-form of V, and their symmetries (1.19)), we
obtain:

4 = d<T)\1772 _ T)‘2771> = d(T) A7 + TMdi? — d(T*2) A gt — TRdy!
— g,u(T)\l)TIH A 7]2 - T)\l'r]% A 7]1 - é—u(T)\Z)n,LL A 7]1 4 T)\Q,r]% A 7]2
(Tn" A + TN At + &(T)n" A + Ty AP
_ fl(T)‘l)nl AP+ TNy A len“ +£2(T/\2)771 N +TA2F1 1 AT
= &(T")n' AP + TN An? + &(T?)n' A’ +TA2F1277 A’
= (&(TY) +&(T*) + TVIE, + T, )t A = (&u(T) + TTY, ) A

(4.23)

and
WAT = Thgn A (T2 = T2p1) = (THT 4 T4 T2 ! A2 (4.24)
MEAT = 20 A (TP = Ti2gt) = (13,10 4 THT )t A (4.25)
Therefore,

dor = [61@ (T + TTY, + TTL, ) + & @ (€ (T) + T*TY, + T2, ) |0 Anf. (4.26)
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CHAPTER 5

A GENERAL STRATEGY AND THE CONSERVATION
LAW CASE

As expressed by the title, this chapter is dedicated to both presenting a solving strategy
for the generalized isometric embedding problem and establishing the solution to the general-
ized isometric embedding problem in the conservation laws case, i.e., p = m — 1. In section
1, we investigate the problem locally and express the problem in terms of differential forms.
The generalized isometric embedding problem turns out to be equivalent to looking for integral
manifolds for an exterior differential system, and generalized notions are defined in this process.
In section 2, we specialize in the conservation laws case, and then give the answer to the gen-
eralized isometric problem. The key for this result is the lemma Finally, by considering
the case (A2TM3, M3, g,Idps) in the subappendix of this chapter, we illustrate the several
definitions, equations, notations and explanations of the previous two sections.

5.1 THE GENERALIZED ISOMETRIC EMBEDDING PROBLEM VIA EDS

The generalized isometric embedding ingredients are the data (V*, M™, ¢, V., ¢),, i.e, a vec-
tor bundle V" of rank n over an m-dimensional manifold M™, a metric bundle g, a g-compatible
connection and a covariantly closed V-valued differential p-form ¢. As a special case, the iso-
metric embedding ingredients, which are provided by a Riemannian manifolds M™, g, are
(TM, M, g,V,Idrpr)1. Recall that the condition for Idta to be covariantly constant is equiv-
alent, by the proposition [4.0] to the fact that the connection V is torsion-free.

The generalized isometric embedding problem can be represented by the following diagram,
where N7, is an integer that has to be defined in terms of the problem’s data: n, m and p.

.V, yre Yo pm o RN

(dv¢)p=0 d¥(¢)=0

M™ M™

Figure 5.1: Generalized isometric embedding

Denote by xy, , the embedding codimension, i.e., roughly speaking, in how many dimensions
one should extend the fiber in order to be able to achieve the desired embedding, and hence,
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N, = n+ry, . We also adopt the Einstein summation convention, i.e., there is a summation
when the same index is repeated in high and low positions. However, we will write the sign
>~ and make explicit the values of the summation indices where necessary. Since the rank of
the fiber and the manifold’s dimension may be different, and since the dimension of the target
embedding space is larger than the fiber, we thus adopt the following convention on the indices:

Notation 5.1 — Index conventions
e \,u,v=1,...,m are the manifold indices (M™).
e i.j,k=1,... n are the fiber indices (V").
e A\B,C=1,...,n+ k], are the total embedding indices (RNm»).

® a,b,c=n+1,...,n+ Ky, are the extension indices.

In the following, we will fix a moving coframe M denoted by n = (n!,...,n™) and will fix
a g-orthonormal moving frame of V denoted by E = (E4, ... ,E,). Thus a V-valued differential
form ¢ € I'(V® AT*M)) can be, locally, expressed as follows:

¢ =Ei¢’ = B, (5.1)

where @Dih_”’/\p are functions on M. We assume that 1 < \; <--- < A, <m in the sum-

>\17"'7

mation and 7**» means n’ A .- Anle.

Example 5.2 — The isometric embedding case. Let (M,g) be an m-dimensional
Riemannian manifold and consider the isometric embedding ingredients (T M, M, g, V, Idtpz).
Then ¢ = dpa can be viewed as a TM-valued differential 1-form and thus is expressed in a
g-orthonormal coframe (n',...,n™) dual to (E4,...,E,,) as follows:

ldry = Ei¢' = Bl = E\n’, (5.2)
where the functions ¢} are the Kronecker symbols d}.

Definition 5.3 — Generalized torsion  Let V™ be a vector bundle of rank n over an m-
dimensional manifold M™, g a metric bundle on V", V a g-connection on V", and ¢ a V"-valued
differential p-form. In other words, we consider the generalized isometric embedding problem’s
ingredients except that ¢ is not required to be covariantly closed. Then, the generalized torsion
of the connection V relative to the V"-valued differential p-form ¢, or for short, the ¢-torsion,
is the V-valued differential (p + 1)-form defined by © = (") := dy¢, i.e., in a local frame:

where (n}) is the connection 1-form of V which is an o(n)-valued differential 1—formE|. Moreover,
if © vanishes, the connection is said to be ¢-torsion-free.

Example 5.4 — The “usual”’ torsion of a connection. In the isometric embedding case,

the generalized torsion is nothing but the usual torsion, i.e., a TM-valued differential 2-form
as defined in [L.13l

The same relationship between Idta, and the torsion-free condition of the connection in the
isometric embedding case exists in the generalized isometric embedding case, as shown by the
following proposition.

| !The connection V is compatible with the metric bundle g.
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Proposition 5.5 Let (V*, M, g,V ¢), be the generalized isometric ingredients. The condition
of being covariantly closed for ¢ is equivalent to the fact that the connection V is ¢-torsion-free.

Let us now formulate the generalized isometric embedding problem equations by means
of exterior differential systems. Let w be the connection 1-form of the standard connection
on RNmr. For convenience, instead of working with orthonormal frames on RNmr in order to
express the connection 1-form w, we choose an adapted geometry. The reason is the same
as when using adapted frames for the isometric embedding of surfaces in a three dimensional
Euclidean space.

Consider the flat connection 1-form w on the Stiefel space SO(n + &7, ,)/SO(x},, ), the n-
adapted frames of R™%ms) ie., the set of orthonormal families of n vectors (e1,...,€,) of
R™*#ns) which can be completed by orthonormal Ko p VeCtors (Ent1y-- s Crgrn ,p) to obtain an
orthonormal set of (n+#y, ) vectors. Denote by T such a class of coframe. Since we work locally,
we will assume without loss of generality that we are given a cross-section (€p41,. .., €nqwn 7p)
of the bundle fibration SO(n + &7, ) — SO(n + &y, ,)/SO(xy, ). The flat standard 1-form of
the connection w is defined as follows:

(5.4)

n
m,p

w.; = <ei7dej>RN2L,p and wia = <ea7dei>RN

where (, )pwp, , is the standard inner product on R™+#m»_ Notice that w satisfies Cartan’s struc-
ture equations ([1.15]), and since the connection is flat, the curvature of w vanishes.

An isometry between two Riemannian manifolds maps an orthonormal set of vectors of the
source manifold to an orthonormal set of vectors of the target manifold. The conservation law
U, if it exists, maps then (Eq,...,E,) to an element of the Stiefel space. Let us assume for
instance that such a map W exists, then if e; = U(E;), the condition d¥(¢) = 0 yields to

ei(d¢’ +wj A ¢) + ealwf A ') =0, (5:5)
a condition which is satisfied if and only if
7, =V*(w;) and W (w]) A =0. (5.6)

Solutions to the generalized isometric embedding problem is equivalent then in finding mov-
ing frames (eq,...€,, €011, .- ,en+%p) in the Stiefel space such that there exist m-dimensional
integral manifolds of the exterior ideal generated by the naive exterior differential system

SO(n + ky, )
SO(kn )

m,p

{w;. — n;,wf A ¢'}alg on the product manifold Sy =M (5.7)

Strictly speaking, differential forms live in different spaces. Indeed, one should consider the
projections 7y and 7g; of 37, on M and the Stiefel space, and consider the ideal on X7, |
generated by i, (n}) — 7§, (w!) and 7§, (wf) A mh,(¢"). It seems reasonable however to simply
write {w! — 1}, wf A ¢ }ayg.

To find integral manifolds of the naive EDS, we would need to check that the exterior ideal
is closed under the differentiation. However, this turns out not to be the case. The idea is
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then to add to the naive EDS the exterior differential of the forms that generate it and as a
consequence, we obtain a closed one.

Notice that some objects that we are dealing with in the following have a geometric meaning
in the tangent bundle case with a standard 1-form (¢ = Idra) but not in an arbitrary vector
bundle case, as we noticed earlier with the notion of torsion of a connection. That leads us to
extend these notions in a generalized sense in such a way that we recover the standard notions
in the tangent bundle case. First of all, the Cartan lemma, which in the isometric embedding
problem implies the symmetry of the second fundamental form, does not hold. Consequently,
we cannot assure nor assume that the coefficients of the second fundamental form are symmetric
as in the isometric embedding problem. In fact, we will show that these conditions should be
replaced by generalized Cartan identities that express how coefficients of the second fundamen-
tal form are related to each other, and of course, we recover the usual symmetry in the tangent
bundle case. Another difficulty is the analogue of the Bianchi identity of the curvature tensor.
We will define generalized Bianchi identities relative to the covariantly closed vector bundle val-
ued differential p-form and a generalized curvature tensor space which correspond respectively,
in the tangent bundle case, to the usual Bianchi identities and the Riemann curvature tensor
space. Finally, besides the generalized Cartan identities and generalized curvature tensor space,
we will make use of a generalized Gauss map.

The key to the proof of Theorem is Lemma for two main reasons: on the one
hand, it assures the existence of suitable coefficients of the second fundamental form that
satisfy the generalized Cartan identities and the generalized Gauss equation, properties that
simplify the computation of the Cartan characters. On the other hand, the lemma gives the
minimal required embedding codimension ky, ,, ; that ensures the desired embedding. Using
Lemma we give another proof of Theorem by an explicit construction of an ordinary
integral flag. When the existence of an integral manifold is established, we just need to project
it on M x R #msp,

Proposition-Definition 5.6 — The generalized isometric embedding EDS  The closure of
the naive EDS {w! — 7}, wf A ¢'} on the manifold X7,  is the EDS Z7 , called the generalized
isometric embedding EDS, and is defined as follows:

In, = {wh — nhwi Awd + QL w? A ¢ g (5.8)

i i i Ak
where Q) = dn; + . Anj.

Note that the decomposition of the curvature 2-form Q; in the moving frame is

1

Q§:2

R;'-;/\MnA At (5.9)

Proof. The generalized torsion-free of the connection implies that d(w¢ A ¢) = 0 modulo the
naive EDS, but Cartan’s second-structure equation yields to d(w} — ;) = w, A wj + Q2 modulo
the naive EDS, where Q = (€2}) is the curvature 2-form of the connection. O

A first covariant derivative of ¢ has led to the generalized torsion. A second covariant
derivative of ¢ gives rise to generalized Bianchi identities defined as follows:

Definition 5.7 — Generalized Bianchi identities Let (V", M™, ¢, V, ¢), be the generalized
isometric embedding problem’s ingredients. The curvature tensor then satisfies the generalized
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Bianchi identities, encoded by the vanishing of a V-valued differential (p+2)-form By, ,, defined
as follows:

By, =E(Q; A ¢?) = 0. (5.10)

The generalized Bianchi identities are nothing but a condense way of writing a system
of equations that the curvature tensors of the connection V must satisfy. Therefore, is
equivalent to the following system:

Z R;";/\;/])\ At AP =0 Vi=1,...,n. (5.11)

1<A<pgn

Thus, it is then natural to consider the space of curvature tensors that satisfy the generalized
Bianchi identities when dealing with theses geometries.

Definition 5.8 — Generalized curvature space Let (V*, M™, g,V,¢), be the generalized
isometric embedding problem’s ingredients. Then the generalized curvature tensor space defined
at some point is

K2 = {(Riy,) € (R @ A2R™)| QNG =0,Vi=1,...,n}. (5.12)

Examples 5.9 — Generalized curvature spaces.

1. Covariantly closed vector bundle valued form of codegree one: The generalized
Bianchi identities are trivially satisfied for covariantly closed vector bundle valued differ-
ential forms of codegree one, because a differential (m + 1)-form on an m-dimensional
manifold is zero. Consequently, K7, | = A*(R") @ A*(R™).

2. Riemann curvature tensor space: In the isometric embedding case, the generalized
Bianchi identities are the first Bianchi identities, and hence, the generalized curvature
tensor K = {(R}.,,) € SZ(AZ(R™))| RJ s+ Rl]k + R ;= 0}.

All of the data is analytic and we can then apply the Cartan—Ké&hler theory if we are able to
check the involution property of the exterior differential system by constructing an m-integral
flag. If the exterior ideal 7  satisfies the Cartan test, the flag is then ordinary and by the
Cartan-Kéhler theorem, there exist integral manifolds of Z7, . To be able to project the product
manifold 37, on M, we also need to show the existence of m-dimensional integral manifolds
on which the volurne form on '™ on M does not vanish.

The EDS is not involutive and hence we "prolong” by introducing the new variables H,.
Let us express the 1-forms w? in the coframe (n',...,n™) in order to later compute the Cartan
characters. Let Wy, , be an k7, -dimensional Euclidean space, which is a model of a normal
space for the embedding. We then write

w? = H%n*  where NEW, 1 OR"QR™ (5.13)

and define the forms 7 = — H4n*. The HY% can be seen as coefficients of the second
fundamental form. We can also consider Hyy = (H§,) as a vector of W), . The forms that
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generate algebraically 77,  are then expressed as follows:

Zw Awi —Q —Zﬂ' AN T§ +Z (Hjy 7 — M7T§L)/\7]A

1 . - (5.14)
—+ 5\(Hi/\-Hj,u — Hi,ij)\ — Rﬁ)\ﬂ)l?? AN n
; ; ALA — A
WENG =4, mt A Y THG Y et (5.15)

1< < <pp<m

These new expressions of the forms in terms of vectors H and the differential 1-form 7 later
lead us to compute the Cartan characters of an m-integral flag. The expressions marked with
(¥) and (*x) are obstructions for the embedding. They must vanish in order to realize the
generalized isometric embedding. Inspired by the isometric embedding case, we define:

Definition 5.10 — Generalized Gauss equation Let (V*, M™ ¢,V,¢), be the generalized
isometric embedding problem’s ingredients. Let Hj, € Wy , ® R" ® R™ be the coeflicient of
the second fundamental form, where Wy,  is a rp, Euchdean space. For R!,, in K7, , the
generalized Gauss equation is:

H Hjp — Hy Hpy = RE (5.16)

w

Definition 5.11 — Generalized Cartan identities Let (V", M™, g,V ), be the generalized
isometric embedding problem’s ingredients. Let Hf, € W,  @R"®@R™ be the coefficients of the

second fundamental form, where Wy,  is a xy;, -Euclidean space. Let ¢, , be the coordinate

of ¢' in the coframe 1. The "symmetry condition” that the coefficients H%, should satisfy are:
> CHAGL g =0 (5.17)
A=1,..., m

ISpuyr << ppsm

With the generalized Bianchi identities and the generalized Gauss equation, we define a
mapping between the second fundamental form’s coefficients and the generalized curvature
space.

Definition 5.12 — Generalized Gauss map Let (V", M™, ¢,V ¢), be the ingredients of the
generalized isometric embedding. Then the generalized Gauss map Gy, ,: Wy, , @ R" @ R™ —
K. p is defined for (Hf,) € W, @ R" @ R™ by

(G,m)" = S (8], — ). (51)

JiAp

The key is to determine the minimum embedding codimension xy, , and to show the existence
of such coefficients Hf, that satisfy both the generalized Cartan 1dent1tles and the generalized
Gauss equations. Finally, to compute the characters Cy, for A = 0,...,m — 1, in order to
check the involution by the Cartan test, we apply Proposition [2.34] to enumerate the number
of linearly independent differential 1-forms » (Hf\7{ — Hf\7}) and 7,03'\1“.)\177?;‘ that appear in

equation [5.14] and [5.15]
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5.2 SPECIALIZATION IN THE CONSERVATION LAW CASE

Let us specialize to the conservation laws case, i.e., the covariantly closed vector bundle
valued form is of codegree one (p = m — 1). The key is to construct an ordinary m-dimensional
integral element of the generalized isometric embedding exterior ideal Z7, ., on 37, ;. Re-
call that the generalized Bianchi identities are trivial in this case.

Notation 5.13 We adopt these following notations for the conservation law case: A =
(1,2,...,m)and A~ A= (1,...,A—=1,A+1,...,m). We thus have n* = p' A--- A™ and
,,,]A\)\:,),Il/\__‘/\77)\—1/\77)\—{-1/\‘__/\,’77’)’1,.

The different objects, equations and identities introduced above, become as follows in the
conservation law case :

1. The generalized isometric embedding EDS: The generalized isometric embedding
problem is equivalent to finding m-dimensional integral manifolds of 7y, | = = {w} —
s, wh Aw§ 4 Q5w A ¢’} on the product manifold 337, ).

2. Generalized Bianchi identities: They are no constraints of Bianchi type.

3. Generalized curvature space: The generalized curvature tensor space is K, . =
A*R™ @ A?R™. Hence, in particular its dimension is n(n — 1)m(m — 1) /4.

4. Generalized Gauss equation: The generalized Gauss equation is H;y.H;, — H;,.H;\ =

i . . . n
e Where Hiy is viewed as a vector of the xy, ,,,_,-dimensional Euclidean space Wy, 4

5. Generalized Cartan identities: Generalized Cartan identities at M are

Z (—D)M'HAwh =0 foralla=n+1,,...,n+ K, 1, (5.19)
A=1,....m
assuming that ¢ is non-vanishing, and hence, the dimension of the coefficients space Hf,

that satisfy generalized Cartan identities is (nm — Dkpm1

The following lemma, a proof of which is given later, represents the key to the proof of
Theorem [A.12]

Lemma 5.14 — The generalized Gauss map’s submersitivity Let x”
Let

> (m—1)(n—1).

m,m—1

:Ln,mfl<M> C Wrrrll,mfl ® Rn ® Rm (520)
be the open set consisting of those elements H = (HY,) so that the vectors {H;5|[i =1,...,n —
land A =1,. — 1} are linearly independent as elements of W) | and satisfy the gener-
alized Cartan identities Then G, .1 Hp, o1 — K, 18 @ surjective submersion.

Let 2, ={(M,TH)e X} xW] 1®R”®R’"|HEH
from Lemma m that Z7 ,,_, is a submanifoldﬂ and hence,

)}. We conclude

m,m— 1(

dim 2}, =dim X7 |+ dim H M) (5.21)

m,m— 1(

2ZJ .1 is the fiber of R by a submersion. The surjectivity of G\, |, | assures the non-emptiness.



68 CHAPTER 5 — A GENERAL STRATEGY AND THE CONSERVATION LAW CASE 5.2.1

where
-1
dim X7, =m+ % + Nk 1 (5.22)
—1 -1
dim H?, (M) = (nm — D)K?, = n(n );;”(m ) (5.23)
We define the map @7, : 2 — V(I . _1.n") which associates (M, T,H) €

Z0 m—1 with the m-plan on which the differential forms that generate algebraically Z7 .,
vanish and the volume form n* on M does not vanish. @7, m_1 1s then an embedding and hence
dim (2}, ;) =dim Z; . In what follows, we prove that in fact (2], ,, ) contains only
ordinary m-integral elements of Z, .. Since the coeflicients Hf, satisfy the generalized Gauss
equation and generalized Cartan identities, the differential forms that generate the exterior

ideal Z7}, | are as follows:

Wi Aw§ 4+ Q=) md Amd 4+ (HY 7 — Hiyrd ) (5.24)
Wi A Gh =y, T A (5.25)

The final step is then to compute the Cartan characters and to check by Cartan’s test that
®(Z), ,,_1) contains only ordinary m-integral flags. The Cartan-Kéhler theorem then assures
the existence of an m-integral manifold on which 7* does not vanish since the exterior ideal
is in involution. We finally project the integral manifold on M x R"**. Let us notice that
the requirement of the non-vanishing of the volume form n* on the integral manifold yields to
project the integral manifold on M and also to view it as a graph of a function f defined on M
with values in the space of n-adapted orthonormal frames of R"**. In the isometric embedding
problem, the composition of f with the projection of the frames on the Euclidean space is by
construction the isometric embedding map.

5.2.1 PROOF OF LEMMA [5.14]

The generalized Gauss map Gy, ,, 4
is a submersion if and only if the differential dG, ;€ LWV}, ,, ; @ R" @ R™;
has m(m — 1)n(n — 1)/4 lines and &7, ,, ; X m x n columns, is of maximal rank.

defined on Wy, | ® R" @ R™ with values in K}

m,m—1

, which

;nn,mfl)

In what follows, we make the assumption that ¢, , =1 and 3 = --- = ¢} = 0.
It is always possible by changing the frame (E;) and relabeling. With this assumption, the
generalized Cartan identity shows that the vector (H{,,), on a given point of the manifold, is a
linear combination of the H;, where A # m. When n = m = 2, we assume that the determinant
dety) = (1105 — 1397) # 0. In order to understand the proof of the submersitivity of G, |,
we explain and show the proof for two special cases: when the vector bundle is of rank 2 (n = 2)
and when the manifold is a surface (m = 2). The proof of the surjectivity of the generalized
Gauss map is established afterwards.

SUBMERSITIVITY OF THE GENERALIZED (GAUSS MAP

We will proceed step by step in order to expound the proof of Lemma [5.14; For a warm-
up, we start with the case (V3, M2 ¢, V, )1, then the case of a general vector bundle over a
surface, i.e., (V*, M2, g, V)1, next, the case of a vector bundle of rank 2 over an m-dimensional
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manifold, i.e., (V2 M™ ¢g,V,®)m_1, and finally, we expound the conservation laws case, i.e.,
(V, M™, g, V, ¢)im-1.

Recall that the generalized Gauss map associates H = (HY, ) with <(Qm m— 1); /\u> = (Hi\H;,—
H,,Hj))".\,- The differential of G, is then:

JiAawe
G m—1
d Uil ———dHY, 5.26
gmm 1= 8Hg}\ ( )
where
d( m— 1)] = = H; dHM + HiAdeu — Hj,\de — deHj)\. (5.27)

= A2R" ®@ A’R™.

Denote by sj . the natural basis on K7, =

THE CASE (V3, M2,g,V,¢); : Consider a vector bundle V3 of rank 3 over a 2-dimensional
differentiable manifold M?, endowed with a metric g and a connection V compatible with g.
Let ¢ be a non-vanishing covariantly closed V2-valued differential 1-form. By assumption,

, 1 4y 1
p=Eip=Ein* = 0 Z?)’ A ( Zz > . (5.28)
0 vy

The generalized Cartan identities for each normal direction a are:
HY, = ¢%H(111 + ¢§Hgl + nggl (5.29)

The curvature tensors’ space is K5 | = A’R* ® A’R* = A’R? @ R = span{ej, o, €319, €519, }-
The generalized Gauss equations are:

Hyi1 . Hoe — Hig.Hoyy = R%;lZ
HH.H32 - H12'H31 = Ré;lZ <530>
Ho Hss — Hp Hyy = Ri,

When the Cartan identities are not taken into consideration, the differential of the general-
ized Gauss map G3 | is:

dHyy
dH
d(G51)5.10 Hyp —Hip 0 —Hyy Hyy O dei
Ay, = | d(@)3 | = Hee 0 —Hip —Hy 0 Hy dH (5.31)
d(G31)3.12 0 Hyp —Hyp 0 —Hs; Hx
’ ’ dH22
dHjss
If the generalized Cartan identities are taken into consideration, then
dHyy
Hay — ¢yHa  —sHy — ¢3Hyy —Y3Hx Hy 0 dHy,
dgil = | Hs —3Hs —5Hg —iH; —¢3Hy 0 Hy | .| dHgy
0 Haso —Hap —Hs; Hy dHa,
dHsz
(5.32)

Note that H;y are vectors in the Euclidean space W3, of dimension 3, which must be
defined. We want to extract from the W3 -valued matrix dGj a submatrix of maximal rank
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(rank 3). Denote by L the subspace of the cotangent bundle of W3 | R? ® R* defined by dH; =
dHyy = dHz; = 0. Therf| dG3 |1, is :

H;, 0
dH
dG3|;, = 0 Hpy < dHf > (5.33)
_H31 H21 3

Therefore, if /413’1 > 2, the matrix dGj|;, is of maximal rank if Hy; and Hy; are linearly
independent vectors of W3 . For instance, if 3, = 2, i.e., the normal direction are a = 4,5,
then

dH;3

B R
dG; . = 0 0 Hy, Hj, dH4 (5.34)

~Hi, -Hj Hi H} 32

31 31 21 Hon dH5

32

is of maximal rank if Hy; and Hs; are linearly independent vectors.

Before investigating the submersitivity of the generalized Gauss map, let us first define a
flag of the subspaces of K7, . ;.

Flag of K}, ,,_1: Let us define the following subspaces of K7, ,, _; as follows: for k=2,...,n
E o ={ (Riy,) €Kl iRy, =0,if 1<i<j<kandVI<A<p<m} (535)
and forv=2,....m
Elmma ={ (Rip) €K 1IRin, = 0,if 1 <A< p<vand V1 <i<j<n}. (5.36)
By convention, ' = &iln, .1 = K0 ,,_1- Therefore,

OZgn:an 1an 1|mm 1C8n2|mm 1C ngrnnm 1C5’mm 1_ICZm1 (537)
0= gm|m,m—1 - gm—1|m,m—1 - gm—2|m,m—1 C---C 82 Z‘Lm 1 C gl mm—1 — Ky (538)

mm—1-

Example 5.15 = (V3 M* g, V,¢)s.  An element in K} ;3 = A’R® @ A*R* ~ RS is

1 1 1 1 1 1
R2;12 R2;13 R2;23 R2;14 R2;24 R2;34
_ 1 1 1 1 1 1
R = R3;12 R3;13 R3;23 R3;14 R3;24 R3;34 (5.39)
2 2 2 2 2 2
R3;12 R3;13 R3;23 R3;14 R3;24 R3;34

and if R is in £2[}; and in £%|} ; then respectively

0 0 0 0 0 0
R = Rg 12 R3 15 R, ;23 R§;14 Ré;zzx R§;34 and R = (0) (5.40)
R% 12 R?‘I 13 RS ;23 R§;14 R%;QZL R§;34

and if R is in &} 5, 3]} 5 and in £y} 5 then respectively

1 1 1
0 R2;13 R2;23 Rz 14 RQ 24 Rz :34
_ 1 1 1 _
R = 0 R3;13 R3;23 R3,14 R 24 R:s :34 R =
2 2 2
0 R3;13 R3;23 R3;14 R 3:24 R3,34

and R = 0.

0 R% 14 R% 24 RQ ;34
0 ,R’%,M R ;24 RS ;34 )
0 R3;14 R 3;24 733,34

o O O
o O O

3dg3 1|1 is the submatrix of dG3 ; defined by: ((dG3(0/0Haz))a, (AG3(9/0Has))a).
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THE CASE (V*, M2 g, V,¢); ﬂRecaﬂ that K3, = A’R"®@R. Some columns in the Jacobian
of Gy, are expressed as follows

for k=2,... n, dgy, (GH“ ) (Z H{ .15 + (terms in 5k|31)) € 5’“—1]371. (5.41)
k2

=1

Note that £"[3, = 0, and hence,

dgs, (8%;1) = <§H%€;;12> e &3, (5.42)

From the linear map dggﬁl, we want to extract a submatrix of maximal rank. Consider
the submatrix ((dggl(a/aﬁgz))a,...,(dggl(a/aHg2>)a). Each term (dGY, (9/0HZ,)),, for a
fixed k, is a matrix with n(n — 1)/2 lines and x5, columns. The equations (5.41)), ([5.42))

and the inclusions (5.37) show that the submatrix ((dggl(a/aHgQ))a, ce (dggl(a/ang))Q)

is of maximal rank if the vectors Hyy, Hyy, ... Hy,—1)1 are linearly independent vectors of Wiy
and x5, > (n — 1) where the minimal embedding codimension «%, is given by the dimension of

£"'3,. Indeed, the matrix ((dggl(ﬁ/aH§2))a, e (dggl(ﬁ/ang))a> is triangular by different
sized blocks. This is due to the inclusions of the spaces £*[3, . Note that the matrix
((dggl(a/aHgQ))a, ce (dggl(a/ang))a) is rectangular, i.e., n(n—1)/2 lines and (x4, x (n—1))
columns. There are actually (n—1) terms in the "diagonal” and they all have the same number of
columns r35 ;. The first term of the "diagonal” has one line and obviously starts at the first line,

the second term has 2 lines and is at the second line, the third term has 3 lines and starts at the
line number 1+2 = 3, ..., and the last term has (n — 1) lines and starts at the line number (n —

2)(n—1)/2. From (5.41) and (5.42), the "diagonal” of ((dggl(a/ang))a,...,(dggl(a/aHg2))a)
is: diag((H‘fl)a,t (HYy, HS)a, - - -, (HY, .. 7H?n_1)1)a)7 and since 0 C &t Cc &2 C .- C
£* C &' = K3, the terms above this "diagonal” vanish in the matrix ((dggl(a/aHgQ))a, ce

(dggl(a/ang))a). Note that *(Hyy, ..., H), is a matrix with & lines and «4; columns. The

condition of being linearly independent for the vector (Hiy,...H(,—1)1) assures that one can
always extract, for each term of the diagonal, a submatrix of maximal rank. For instance,
the "diagonal” term of dGy,(0/0HS,) is ‘(H{,,Hs;), which is a 2 x s%, matrix, and since the
two vectors are linearly independent, there exists an invertible 2 x 2 submatrix. The same
argument holds for each term of the "diagonal”, and finally, x5, > dim(£""'[5 ) assures that
the last terms of the "diagonal”, (dG3,(0/0Hj,))a, are of maximal rank.

Another explanation and interpretation. Only in this subparagraph, we will change
some notations in order to give the reader another way of interpreting the different equations
and objects. It can also be applied to the next case, i.e., the case (V2, M™ g, V,®)m_1).

4 After proving the submersitivity of the generalized Gauss map in this case, we provide another explanation
and interpretation of the spaces and equations using other notations and conventions.
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The curvature tensor R in K%, is an element of so(n) ® A’R® ~ so(n). Hence , R can be

expressed as follows:

0 Riiz  Rinz Riae ””R’l,“lz
~Ripz 0 Riie Riio :
—Rip —R31, 0 Rip
“Rige Rz —Ripe 0.
—Ri;u' """""""""""""""""""""""""" RZ—lé 0

(5.43)

Notice that if R is in the subspace £ ’“|§‘71 defined previously, then the matrix (5.43)) has an k x k
vanishing sub-matrix located at the top left edge of the matrix (5.43)). Indeed, the elements R

in £2|%, and in 3|}, are respectively

0 0 R%;m Rim """"" R}mz
0 0 R%;lZ ,R’ZQL;IQ
_Ré;w _R?‘s;u 0 Ri;lZ 7
_Réll;12 _Riu _Ri;lz 0
R

1 n—1 "
_Rn;12 """"""""""""""""""""" Rn;12 0

Recall that the generalized Gauss map Gy, is defined by Gy, (H) =

0 0

0 0

0 0
_Rzll;12 Rézl 12
_R?:EL;12

03 R}mz
0 Rilz
0 Ria

Riw 0

is an element of so(n). The differential of the generalized Gauss map is then

dg;l = (HildeQ + HdeHﬂ — HigdH]‘l — HjldH12>;
Then, for k = 2,...,n, the relation (5.41]) becomes

o om,
4G ) 0- -0 Hi 1)1
2’1(31‘122) B —Hf, —H3 - _H?kfl)l 0.
In particular, (5.42)) has the following form:
5
) -
9 OHY,
0 -0
—Hiy —Hg - —He2p —H 0

Hi,
H3
H((ln—Q)l
H((ln—l)l

0

€&z,

€ 5”*1|§,1.

(HilHjZ — HiQHjl); which

(5.44)

(5.45)

(5.46)
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THE CASE (V2 M™ g V,¢)m_1 : Recall that IC,QWR_1 = R ® A%R". Some columns in the
Jacobian of G7, | are expressed as follows:

for v = 27 ceey MM, dgmm 1(8H“ > <ZH1)\€2 )\1/ terms n gl/|72n,m—1)> S gu—lﬁ@,m—l'
2v

(5.47)
Similarly, note that &7, ,,_; = 0 and hence

dg2,,._ 1<6Ha ) = (ZHM@M) € Emt Pt (5.48)

Similarly, from the linear map dG?2 we want to extract a submatrix of maximal rank.

m,m—1
Consider the submatrix ((dgm m-1(0/OH3,))a, ..., (AGY, 1 (0/OHLs,))a ) Each term
(dG},,-1(0/OHS,))a, for a fixed v, is a matrix with m(m —1)/2 lines and &7, ,, _; columns. The

equations (5.47)), (5.48) and the inclusions ([5.38|) show that the submatrix ((dgmm 1(0/0HS,))a,

.,(dg%m_l(a/@Hgm))a) is of maximal rank if the vectors Hyy, Hyo, ... Hy(n-1) are linearly
independent vectors of W2 _, and K2, m—1 = (m—1) where the minimal embedding codimen-
Indeed, the matrix ((dgmm (0/0HE))a,

(G}, (0] 8Hgm))a> is triangular by different sized blocks. This is due to the inclusions
5.38) of the spaces &,2,,, ; . Note that <(dg72n m-1(0/0H3))as ..., (G2, 1(8/8H§m))a> is

rectangular, i.e., n(n —1)/2 lines and (7, ,,,_; x (m — 1)) columns. There are actually (m — 1)
terms in the’ dlagonal” and they all have the same number of columns 2, ,, ;. The first term
of the "diagonal” has one line and obviously starts at the first line, the second term has 2 lines
and is at the second line, the third term has 3 lines and starts at the line number 1+2 =
3, ..., and the last term has (m — 1) lines and starts at the line number (m — 2)(m — 1)/2.

From (5.47) and ([5.48]), the "diagonal” of ((dgmm 1(0/0HSy))as - - -, (AGP, - 1(8/8H5m))a> is:
diag ((Hf,)ao! (HYy Hg)ar o (HEy o HY G, y)a ), and since 0 C £y © &g C oo C & C
&1 = K, the terms above this "diagonal” vanish in the matrix ((dgmm 1(0/0HS))as - - -

sion k2, is given by the dlmensmn of Ep 1|2, 1

(dG2, - 1(8/8Hgm))a). Note that *(Hiy, ..., Hi,), is a matrix with » lines and «, ,, ; columns.

The condition of being linearly independent for the vector (Hii,...Hj(,—1)) assures that one
can always extract, for each term of the diagonal, a submatrix of maximal rank. For instance,
the “diagonal” term of dGy, ,,_,(0/0H3,), is ‘(H{,, H{,, Hf3), which is a 3 x &2, | matrix, and
since the three vectors are linearly independent, there exists an invertible 3 x 3 submatrix. The
same argument holds for each term of the "diagonal”, and finally, 2, > dim(&n_1[2, 1)
assures that the last terms of the "diagonal”, (dG7,,, ,(0/0HS,,))s, are of maximal rank.

THE CASE (V*, M™ g V,0)m_1 : For the general conservation laws case, we define the

following subspaces of K7, ,,_;: for k=2,... ,nand for v =2,...,m,
Elrm 1 = ARy €K 1 IRIp, =0, if1<i<j<kand 1< A<p<v}  (5.49)
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and hence,
nin o n kn kn
gu m,m— 1_5‘mm 1 and gmmm 1_5

m,m— l_ICmm 1and5k _’C|
Remark 5.16 Let us v and k be fixed. We have the same kind of flags as in (5.37)) and ([5.38))

(5.50)

m,m—1"

By convention, £

m,m—1 m,m—1°

__eonin n—1|n n—2|n 2n _ n
(C,' |mm 1 gu m,m—1 - 51/ |m,m71 - 51/ ‘m,mfl c---C gu —1 C (C; |mm 1

m,m—1
k|n k|n k n k n kin k|1 n
g gm m,m—1 C gmfl‘m,mfl - 5m72’m,m71 c--C 82 m,m—1 C g

mm—1 — m,m— 1= mm—1-

Example 5.17 = (V3 M* g, V, ¢)s-Continued. &£} 4113 = 52‘2,& 5§|§1,3 = 52|i,3>5§’|i,3 = 53’?1,3
and £J[3 5 = 0 and if R is in &3} 5, £3]3 5, then respectively

0 Ré;m R%;gg Rém R%-m R5;34
R = Ré;lQ R3 13 R§;23 Rzla;m R§;24 Rzla;34 ) (5'51)
R%;H R3 13 R§;23 R:Qa-m Rg;m R§-34

0 0 0 Ry Riy Riy
R = R%;w R3 13 Régs Rzl«;;14 R§;24 Rzla;34 : (5.52)
R§;12 R3 13 R§;23 R§;14 R§;24 R§;34

Proposition 5.18 — Extension of (5.38) For (V", M™ ¢, V,®),,_1, we can have a longer flag
by replacing in (5.38) each inclusion of the type &,y ., 1 C Eu-1)|mm_1, for v=2,...,m, by

& ¢ (Evnn&r™) c (Gonngr?) oo (Eunyn€l) € (EnnE) € Eury (5.53)

Note that we dropped |7 for each subspace &, in the above equation, for more clarity.

m,m—1
Example 5.19 = (V4 M5 g, V,¢)s4. We drop in this example the signs |§74 next to the
subspaces E}[3 ;. When we put (5.53) in (5.38), we obtain 0 = & C (54 N 55?’) C <54 N 55?) C

& C (53m5§> c (&,m&f) C&C (52m5§> c (&m&f) C&HCECECE =KL,

Using Proposition [5.53], the inclusion flag for the generalized curvature space in the con-
servation law case is the following (the signs [, ; next to the space £ are dropped for more
clarity):

0C (&,  NEHC(E,  NEHC---C(E, NENCI(E, NEHC

Em-1 C (gmfZ N 57?;11) C (gmfZ N 5:;21) c--C (gme N 573171) C (gmfZ N 513171) C
Em-2 C (EnsNENS) C(EsNENTS) C s C(EnsNEny) C(EsNEny) C
E3 C (E,NEF Y C (5 NEF A C--C(ENE) C(ENES)C
EyC & tcer?c c53c82clcmm »

We proceed in the same way to prove lemma [5.14, The inclusion of the spaces £¥|" mom—1 18
more complex and is given by the Proposition .18 We have, for k =2,...,nandv =2,...,m

dgy, . 1(9/0H;,) (Z HY\ ¢}y, + (terms in Sffll)) €&t ma (5.54)

=1,..., k—1
A=1,...v—-1
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and since &[3, .1 =0,
dgmm 1(8/81—1 < Z Hz>\€n /\m> € gn |mm 1 (555)

As we explained previously, from the linear map dG” we want to extract a submatrix

m,m—1)
of maximal rank. Consider the submatrix
(4901 (0/O1) ) - (G 11 (O - (AG 1O/ OH, N, (AG 01 0/ W) )

which has n(n — 1)m(m — 1)/4 lines and &}, ,, ; x (n — 1)(m — 1) columns. This matrix is
of maximal rank if the vectors (H;x)i=1, . (n—1) and A=1,..,m—1 are linearly independent vectors of
W) mo1 where k7 > (n — 1)(m — 1). The minimal embedding codimension is given by
the dimension of ("' N &p1|7,,,_,). Indeed, Proposition shows that the submatrix is
triangular by different sized blocks and that the terms above the block-diagonal are zero. There
are (n — 1)(m — 1) terms in the "diagonal” and they have the same number of columns &},_;.

THE SURJECTIVITY OF THE GENERALIZED (GAUSS MAP

It remains to show that the generalized Gauss map is surjective, namely

no(HE ) =K (5.56)

m,m—1 m,m—1 m,m—1

It is sufficient to show that there exists a pre-image of 0, i.e., vectors Hy in Wy, sat-
isfying generalized Cartan identities and such that the set {H;3} for i = 1,...,n — 1 and
A =1,...,m — 1 are linearly independent vectors in Wy, . ;. Indeed, the differential of the
generalized Gauss map being surjective implies that G, ., (M, ) will contain a neighbor-
hood of 0 in K7, .y, and thus G} \(H}, 1) = K71 as Gl (pH) = pGy, i (H).

We will construct a pre-image of 0 in Hy, ;. Recall that Wy, |, is of dimension y, ,, | >

(n —1)(m — 1). We can choose H;) as follows:
{Hix}i=1,..n—1 and A=1,...,m—1 18 an orthonormal set of vectors in Wy, (5.57)
H,=Hy,=--=H,,=0 (5.58)
Forj=2,...,m, Hj,= > APH;, (5.59)

S
where

A=yl and AP =A (5.60)
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The vectors in (5.59) are expressed as follows

Hy,, ¢i\1 A21 Aé”fl)l ¢%\(m_l) A20m=1) L (n=1)(m 1) H,y

: né—l 7 (n 11 n—1 m—1) (m—1) :
H(nfl)m AN1 A” 1) A(n n wl\\(m—l) A(n 1) A H(”—l)Q

5.2.2 ANOTHER PROOF OF THEOREM (4,12

This proof is based on constructing explicitly an ordinary m-integral element, and Cartan
characters are computed by expliciting the polar space of an integral flag. As defined above,
let us consider I}, to be an exterior ideal on X7 ;. Let us denote by (X,) the dual
basis of (") and by (Y4) the dual basis of (@) = (@°%), 7)) = (wi — 5}, wf) where A =
nn—1) m—i)(n—i+1)

L dim¥? o —moand o(}) = (j — i) + 5 5 fori1<i<ji<n
a n(n — 1) . .
and o($) :T—I—(a—n—l)n—i—zforz:l omanda=n+1,...,n+rp . . Letus
consider on the Grassmannian manifold G,,(37, 1,7 A) a basis X defined as follows:
XNE) =X\ +PYE)Ys, A=1,....dmX} _ —m (5.61)

Let (IT*(E)) be the dual basis of (X,(E)). In order to compute the codimension in the Grassman-
nian G, (T, . _1,n") of m-integral elements of Z7" ., we pull back the forms that generate
the exterior ideal. To do so, we evaluate the forms on the basis X,(E) and hence the expression

of the forms on the Grassmannian are:

@)y = PO (5.62)
o(¢ o(¢ 7 al¢ ‘7( (%) U( )
(Zwu)/\w(])_gj)E _ (ZPA Py _ prp? Mu)l‘ﬁ/\l‘[“ (5.63)
(@ nghn = (D) WP (5.64)
A

The number of functions that have linearly independent differentials represents the desired
codimension and hence with lemma [5.14]

A mn(nQ— 1) n n(n2— 1) m(mg_ 1) + K et (5.65)

We will now construct an explicit ordinary m-integral element of Z7 ;.
in the tangent space of X" is expressed as follows:

codim V,,(Z}), 151

A tangent vector &

m,m—1

E=Xn YA =X+ X + Y + e+ ﬁdimzz’mfl_mYding,m_l—m- (5.66)
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Since the exterior ideal does not contain functions, every point of 37 =, is a O-integral
element. Let us consider then (Ey). = z € 37 ;. The polar space of Eq is defined as follows:

H(Ey) = {¢ € TZE"m7m_1|w“(§')(§) = 0}. Every vector ¢ satisfying ¢0) = 0 belongs to the
polar space of Ey. Therefore, Cy = n(n — 1)/2. Let us consider then e; = X; + a2'Y, , where

A=n(n+1)/2+n(n—-1)/2+1,...,dimE}, , —m. Let E; = (z,e1) be a l-integral element
of I . ..

The polar space of Eq is: H(E;) = {¢ € TZE%’m_ﬂwU@(ﬁ) = (w"(?)/\w”(?)—Qé-)(S, e1) =0},
where

n
n+ﬁm,m71

o(@ o(@ i () po (@ o) go (e - i
O One® —)Ee) = > (afVe® —alPe D) + 3R] L = 0. (5.67)
a n=2

a=n+1

Hence, C; = n(n —1)/2 + n(n — 1)/2. Let us consider ey = Xy + a3 Y such that the
coefficients o satisfy :

n
n+ﬁm,m71
a

Z (O‘T(?) ag(?) . a«lf(?) ag&-
a=n-+1

) i
) — R, (5.68)

The polar space of Ey, where A = 1,... m—2is: H(E)))=1.. . m2={ € TZE“m;m71|w"(§)(§) =

.....

.....

50(3-) -0
= _ZR;',W/\f;\Y/l forp=1,...m—2 (5.69)
HFEX

(%) po (¢ a(®) .o($)
) <0‘uj f)\(z) . Oéu(l)é}\ j >

Therefore, Cy = n(n —1)/2+ An(n —1)/2. Let us consider then ey = X, + a3 Y such that
the coefficients oy are solutions to the following system:

N
Z (az(j)a;(?) - az(?)a;(j)> = —R;M forp=1,...m—2 (5.70)

a=n+1

Finally, the polar space of E,, 1 is: H(E,,_;) = {{ € TZE“m’m_1|wU(§')(§) = (Zw“(?) A
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20 = 9) (€ exrmrm1 = (@O NG E er,- - enr) = 0},

(@O NG (& e, em) =

Z( (=DM At A AT AT A A ))(61, em—1,6)
=1 A=1
3 0
YR 1 Qe 0
n m o(¢ o(@) o($) a($) o) . o)
_ MLy § © Qy Qg1 X, Okt Q-1
S| S
i=1 A=1 M 0 """"""""""""" 0. s
§v 0 0

n

m—1 m—1
=2 (= 0 Y ol ke + S el VU G+ () )
=1 A=1 =

(5.71)

Therefore Cy,—y = n(n—1)/2+(m—1)n(n—1)/24r%, ,,_1. Let us consider €,, = X, +am Y.

The coefficients o are chosen such that the following system admits a solution

Z (az(?)ai(?) — az(?)ai(?)> = R;",;M where p=1,...m—1

a

n ' . n m-—1 o (572)
> V€ = YDy,
i=1 i=1 A=1

~n(n—1) nn—1) nn-1) n(n —1) nn—-1)
AO(JA_TJF(m—2)< 5t )+ 5 +(m—1) 5 Fomm—1

~ nn—=1) nan-1)mm-1)

=m. 5 + 5 5 t Kmm—1-

(5.73)

The coefficients af* are actually the coefficients H%, provided by the lemma , which assures
the existence of solutions to the successive polar systems during the construction of the integral
flag. The coefficients £€°G) for all 1 < i < j < n are zero for all of the vectors e because of @),
Let us denote E, = span{ey,...,ex}. The integral flag is then F =Ey C E; C --- C E,, 1 C
E,,. The Cartan characters are the same as computed previously and the Cartan test assures
that the flag is ordinary. By construction, the flag does not annihilate the volume form n*.
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5.A°  THE CASE (A’TM?3, g, M3,V Id o7 3)

We explicit in this subappendix the case (A°TM?3, g, M3, V,Id\21r) to better understand
the equations, identities and constructions of theorem proof, and also to introduce the
next chapter.

(AMNTM™, M™ g, YV, Id apam) is a special case of vector bundle of rank m!/\!(m — \)! over
an m-dimensional manifold M™ endowed with a vector bundle valued differential A-form.

Consider over a 3-dimensional manifold M? the 3-rank vector bundle A>T M3 consisting of
the contravariant 2-tensors of TM?. Let ¢ € T(A*TM? @ A°T*M?) be a covariantly closed
A2T M3-valued differential 2-form on M? where ¢ = Ids2pas. Let g be a metric bundle and
V be a g-connection on A2’TM3. Consider (E;, Eg, E3) a g-orthonormal frame on A*’TM? and
denote by (n' An?,nt An3 n? An?) the associated coframe. Locally, ¢ = E;¢" = Idp2rqs and
hence

o' =n' AP, ¢ =n' A’ and ¢° = AP, (5.74)

The generalized isometric embedding problem, in this case, is equivalent to finding 3-integral
manifolds of
T3p = {wy =gy w3 =105, W3 — 03, W Awh + D, wy Aws + Qg wg Aws +Q5, Wi NG +wi AP +wi A’}

(5.75)
on the product manifold
5a = M? x SO(3 + £5,)/SO(K} ). (5.76)
We summarize the following results:

¢ Generalized Bianchi identities are trivial and hence the generalized curvature space
in a given point of M? is K5, = A’R® ® A’R?.

e Generalized Cartan identities: for each normal direction a =4,...,3 + RQ’Q, we have

the following identity:
e Generalized Gauss map is H;\H;, — H;\H;, = R}AM.

e The submertivity of the generalized Gauss map The flag of the proposition [5.1§]
in the proof of Lemma is

0= 53|§\,2 - (52|:/3\,2 N 5§|§\2) - 52|Q,2 - 522|z/a\,2 - 51|é\,2 = ]Cz/a\g- (5.78)
We extract a submatrix from deQ, where some columns are as follows:
dgzﬁz(a/aHgﬁ = <(H?15;;12) - H§1(5§;12 + 5;;1?,) - H(2115%;13 + (2H3, - H§1)5§;23
—Hiyen05 + H§35§;23> € K32
dG;,(0/0Hs,) = ((H?ﬁé;u + Hare5,5) + (H§, — Hao)eg — Hg35§;23> € &5y
dQQZ(a/ﬁngg) = ((H?lgé;lii + H125%;23) - Hglgg;w - H§3€§;23) = gZ’Q,z

dggz(a/aHgs) = ((H?ﬂfé;m + H125:1’.;23 + H315§;13 + H325§;23>> S (522|§2 N 532|§2)
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5.1

Thus, the matrix ((AG455(0/0H5,))a, (1G75(0/ 013 )a, (094(0/O1,) ), (AGh(D/0HS, ), )

is triangular by different sized blocks, and if x5, > 4, dgét2 is of maximal rank.

Hi,
0

* O ¥ % X X ¥

(5.79)



CHAPTER 6

OTHER GENERALIZED ISOMETRIC EMBEDDING
RESULTS

In the last chapter, we investigate the generalized isometric embedding in the case of a
vector bundle V3 of rank 3 over a 4-dimensional manifold M*, endowed with a metric g, an
anti-self-dual connection V, and a covariantly closed vector bundle valued differential 2-form
¢. We will use the results of chapter 5, where a general strategy for the proof is expounded.
The notations remain the same. For a warmup, expounded in section 1 is a positive answer to
the case of covariantly closed vector bundle valued differential 1-forms.

6.1 COVARIANTLY CLOSED DIFFERENTIAL 1-FORMS

The following theorem is a positive answer for the generalized isometric embedding problem
in the case of the 2-rank vector bundle V2, an m-dimensional manifold M™ and a closed
covariant non-degeneratd[V2-valued differential 1-form ¢. The result can easily be generalized
for any rank bundle, i.e., n is arbitrary and is explained in [Hél09].

Theorem 6.1 — (V2 M™ g V,¢); case Let V? be a real analytic 2-dimensional vector
bundle over a real analytic m-dimensional manifold M endowed with a metric g and a connec-
tion V compatible with ¢g. Given a non-vanishing covariantly closed non-degenerate V-valued
differential 1-form ¢, there exists a local isometric embedding of V2 in M x R %m1 over M

where r, . ; > 1 such that the image of ¢ is a conservation law.

We proceed gradually to prove this result: First, when m = 3 and for a special ¢. Than
when m is arbitrary with the same special ¢. Finally, we will explain when ¢ is arbitrary.

Consider the case of a 2-rank vector bundle V? over a 3-dimensional manifold M? endowed
with a metric g, a g-compatible connection V and a covariantly closed V2-valued differential 1-
form ¢. We use the same notations introduced in the general strategy as expounded in chapter
5. The generalized isometric embedding problem is equivalent to finding integral manifolds of

75, = {wy =1y, waAws+Qy, wiAn'+wiA@?} on the manifold 33 ; = M?xSO(2+43,)/SO(k3,).

The generalized Bianchi identities are: Q3 A ¢! = Q5 A @' = 0, where Q = Ry 50" +
Ry3n™ + Ryosn® and ¢ = Yln? = ¥in' +n* +5n°. Consequently, the generalized Bianchi
identities can be expressed by the following system:

{R5;12¢§ = Riasts + Rl = 0 (6.1)

’R’%;HQ/}% - R%;13¢% + Ré;zzﬂp% =0

1 = E;¢' = E;¢*An’ is non-degenerate means that the matrix 1% is of maximal rank.
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and the generalized Caratn identities are in that case expressed by the following system:

He by + Hg, 05 — Hiyp — Heyhf = 0
H(fﬂpz}, + H51¢32> - Hcfsi/’% - ngﬂ/’% =0 (6-2)
H(llzﬂ)% + H521/1§ - Hcllslﬁ% - H53¢§ =0

for each normal direction a = 3,...,2 + /{%71. Consequently, depending on the values of the
functions ¢?, the dimk’%, can be either 1 or 2. If the 2 x 3 matrix of the functions 1 is of
maximal rank, than dimlC%1 =1

Examples 6.2 — Generalized Bianchi and generalized Cartan identities. If ¢ =
Ei¢! + Eo¢® = Ein' + Eon?, ie,, ¢1 = ¢5 = 1 and ¢y = 7 = ¢35 = 47 = 0, then the
generalized Bianchi identities are Rj,3 = Riqy = 0, and the generalized Cartan identities
are Hi3 = Hy3 = 0 and Hyjy = Hy;. More generally, in the case (V2, M™, ¢,V,¢);, where
¢ = E1n' + Ean®, the generalized Bianchi identities assure that R}, is the only non-vanishing
term of the curvature tensor and the generalized Cartan identities assure that Hy; = Hy; and
H{, = Hf, =0 for all A = 3,...,m and for all normal directions.

Let us also consider the special case where the matrix 1) is of maximal rank, for instance
¢ = E1¢' +E3¢?. This implies that the dimension of the generalized curvature space K3 ; is one,
i.e., spanned by Ry, ,. Thus, the generalized Gauss equation is then HyyHyy — Hyp. Hip = R3.j9,
and is a surjective submersion if Hy; # 0, which is similar to the Gauss equation of surfaces.
Consequently, /{%71 = 1. In order to check the involution of the EDS, we need to compute the
codimension of Vs (Ig»l, n* An?) and the characters C, by applying Propositionto enumerate
the number of linearly independent differential 1-forms > (Hf\nf — Hfy7§) and 45, , «f that

appear in equation and [5.15] On one hand,

e There is only one 1-form in the EDS (wj — 7;), and hence Cy = 1.
o (H3 7} — H3,73) and 73 are linearly independent 1-forms and hence C; =1+ 2 = 3.

e There are only two independent 1-forms between the 1-forms (H3 73 — H3 73), (H3, 7w} —
H3, %), 73 and 3. Thus, Co =1+ 2 = 3.

On the other hand,
e dimX¥3;, =3+3=6.
o dimGy(TX3,,n' An?) = 15.
o dimHM3, = 2.
o dimZ3, =8.
e Finally, codimVy(Z3 ,,n' An?) = 7.

Thus, the exterior differential system passes Cartan’s test, and the Cartan—Kéahler theorem
assures the existence of an integral manifold and hence of a generalized isometric embedding.

For (V2, M™ g,V,$)1, where ¢ = E1¢'+Ey¢?, the same calculation holds. Indeed, H?ml =1,
and the characters are Cy =1, C; =---=C,,_1 =3. Thus Cy +C; +---+C,,_1 = 3m — 2.
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Besides, dimX2 | = m + 3, dimGy(TX?2

; m,1»
and finally, codimVy(Z3,, 7' A n?) = 3m — 2.

Remark 6.3 Consider the (V?, M3 ¢, V,$); case, where ¢ = E(n* + ¥in®) + Ea(n® + ¢3n?).
The generalized Bianchi identities 1' are: 1&%7'\’,5;12 = Ré;lg and —7,0%72%;12 = R%;%, and
the generalized Cartan identities are: HY, = HY, HYy = »iH}, + 2HY and HYy =
VY3H{,+12HS,. Then if the generalized Cartan identities are substituted in the generalized Gauss
equations H11H22—H12H21 = R%;lQ? H11H23—H13H21 = R%;l:} and H12H23—H13H22 = R%;QS’ then
we recover the generalized Bianchi identities. Moreover, the above characters’ computations
and the codimension of V5(Z3,,7n' A n?) are the same, and thus lead to the same conclusion.

ntAD?) =dm+ 3, dimH2, | =2, dimZ2 ;= m+5

m

6.2 GENERALIZED ISOMETRIC EMBEDDING OF 2-FORM WITH
ANTI-SELF DUAL CONDITION

Consider a vector bundle V? of rank 3 over a 4-dimensional manifold. Let ¢ € T'(V?® ®
ANT*M*) be a V3-valued differential 2-form on M*. Let g be a metric bundle and V be a
g-connection on V3. Denote by (Ei, Es, E3) a g-orthonormal frame on V2, and by (n' An% nt A
2 A3t Antin? Ant 3 Ant) a coframe of A2T* M. Let us consider the case of ¢ defined
as follows:

o' =n' AP+ Ant P =0 AnP =P Antand ¢* = AP + 0t AR (6.3)

Theorem 6.4 — Generalized isometric embedding of 2-form with ASD condition Let
M?* be a real analytic 4-dimensional manifold. Consider a real analytic vector bundle V? of rank
3 over M*, endowed with a Riemannian metric g, an anti-self-dual g-compatible connection V,
and a covariantly closed V3-valued differential 2-form ¢ of the form (6.3). There exists then a
generalized isometric embedding ¥ of V3 into M* x R**" .20 where K3 9asp = 4, such that
U(¢) is a local conservation law.

We summarize in the following the notions and equations needed for solving the general
isometric embedding in this case:

e The generalized isometric embedding EDS is equivalent to finding integral manifolds
of
IiQ,ASD = {w; - 77;, w(iz N wg + Q;a w? A ¢l}
on the manifold

Ei,z,ASD = M* x SO(6 + ’fiz,ASD)/SO(’fi,2,ASD)-
e Generalized Bianchi identities Q; AN¢d =0foralli=1,...,3 are:

_R%;m + R%;lS + Rzla;14 + Rzla;23 =0
R%;M + R%;m - Rg;m - R§;23 =0 (6‘4)
R3;34 + 7—‘%3;12 + R3;24 - R3;13 =0

Since Q; = R;'-;Mn)‘“, the anti-self-duality condition on the connection V, i.e., *Q2+Q = 0,
implies that
12 T Rjss = Rz — Rios = Rjos + Ry =0 (6.5)

73
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and thus the generalized Bianchi identities are trivial. In particular,

dim,ciQ,ASD - 9 (66)

e Generalized Cartan identities, for each normal direction, are given by the following

system:
H?s = HSQ - Hgl
Hi, = Hj3 +HS
a o p 6.7
H24 = H33 - H11 ( )
54 - —H§3 - Hcllz

. . . _ 'L
¢ Generalized Gauss equation is H;3H;, — H;, H;\, = Rj;Au'

The existence of suitable coefficients that satisfy generalized Cartan identities and the gener-

alized Gauss equations, and the minimum required embedding codimension x3 , ygp, is provided
by the following;:

Lemma 6.5 — Yang-Mills type generalized Gauss map submersitivity Let #3, ,gp > 4.
Let H3 o asp € Wisasp ® R* ® R™ be the open set consisting of those elements H = (Hg),
so that the vectors {Hji, Hi2, Ho1, Hao } are linearly independents as elements of Wiz, Asp and
satisfy generalized Cartan identities. Then G, gp @ Hiyasp — Kisagp 18 a surjective
submersion.

The proof of lemma is similar to the proof of lemma Indeed, the submatrix of
dG3, Asp of maximal rank is:

(493 2 50(0/0H) o, (AG3 5 a5 (0/ M) ) (G2 50/ I s (AG3 00509/ OH))a )

If 5272’ asp = 4, then the partial computations of the codimension V4(I4372, ASDs 77A) are:
° dimHi,zASD = 8”2,2,ASD - 9.

o dimX}, xsp = 3K32asp + 7-

g dimZiQ,ASD = 11“3,2,ASD -2

o dimGy(Tx) X3 2 asp) = 15645 asp + 19.

Finally,
dimV4(Ii2,ASDa nt) = 4“2,2,ASD + 2L (6.8)

CONSTRUCTING AN ORDINARY INTEGRAL FLAG

The exterior differential ideal Z3, ygp, is generated by 3 differential 1-forms w} — 7}, by 3
differential 2-forms w) A w$ + Q) and by &}, zgp differential 3-forms wi A ¢*. As explained in
chapter 5, in order to compute the codimension of the consecutive polar spaces of the integral
flag, we consider the following forms: »  Hf\mf — H{,7? which comes from the contribution
of the differential 2-forms of the exterior differential ideal, and ¢} 7 which comes from the
contribution of the differential 3-forms. Hence,

Co=3 , Ci=6 , Co=9+rki,asp and C3=3+3k],9p- (6.9)

and thus, the exterior differential system passes the Cartan test.
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6.A REMARKS ON GENERALIZED BIANCHI IDENTITIES

We present a different way to express the generalized Bianchi identities in terms of the
minors of the coefficients of the covariantly closed vector bundle valued differential forms, for
the following two cases: (V*, M3, ¢,V,¢); and (V3, M3, g, V, ®);.

Definition 6.6 — Inner-cross product of 3 x n matrices Let A = (a;;) and B = (b;;)
be two real 3 x n-matrices. Denote by [;(A) and [;(B) the 1 x n-matrix ( ail ... Qin ) and
( biv ... bin ) respectively. Then the inner-cross product of A and B, denoted by AxB,is
the 3 x 1-matrix defined as follows:

Io(A).13(B) — I3(A).Mo(B)
AXB = | —1,(A)Hs(B) + I5(A). 1L (B) | . (6.10)
1(A).15(B) — Iy(A).H, (B)

Examples 6.7 — Inner-cross product.

1. When n = 1, then the inner-cross product is nothing but the usual cross product of
vectors in R?, i.e.,

a by asbs — asby
AXB = (05} X b2 = —(Ilbg + agbl (611)
as b3 a1by — azby

2. When n = 2, the inner-cross product of A and B in M3y»(R) is

11 Q12 b1 Do Cl2lb31 + Cl22532 - (131521 - a32b22
AxB = Qo1 Q22 X | bar ba = —ay1b31 — a12b32 4 as1b11 + asebio
a3; a3z bs1  bso a11b21 + a12baa — ag1bi1 — agebis

In the following, we find an non-exhaustive list of the inner-cross product’s properties.

Properties 6.8 — Inner-cross product Let A, B and C be three 3 x n real matrices and \ a
real number. Then the inner-cross product is:

1. skew-symmetric: AxB = —BxA, and hence AxA = 0.
2. Compatible with scalar multiplication: X\.(AxB) = (A.A)xB = Ax()\.B).
3. Distributive over addition: (A + B)xC = AxC + BxC.

6‘A‘1 (V27M37gav7¢)l

Recall that the covariantly closed Va-valued differential form ¢ is expressed as follows:
¢ = E;¢' = ;i An?, and can be written in a matrix form as:

1
N AT wé) 7,
¢‘(¢2)‘( pud i)\ 0 (6.13)
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The minors of 1 are denoted by AlZ% = U3 — iy, ALy = vy — V32 and AR =
Va2 — ohip2. The generalized Bianchi identities [6.1| are equivalent to

CAwe\ (R AYRLy, — ARURY,

Aog3th Ris ABYRy3 — Af5UR S,
Examples 6.9 — (V2, M3 g V,¢);-Continued. When m = 3 and ¢ = Id span{E, o}
the only non-vanishing minor is Al2y) = 1. Thus, (6.14) implies the same conclusion as the

examples and the remarks of the first section of this chapter, that is: Rj. 5 = Rj..3 = 0. For
¢ = E1(n* + ¥3n°) + Ea(n?) 4¢3, the minors are: Ai3ey = 1, Al3y = ¢F and A = —3, and
hence (6.14) leads to: Rj.o3 = —3Ry.1p and Ry, 3 = V3RS .

6.A.2 (V3 M3 ¢V, o)

Consider a 2-rank vector bundle V3 over a 3-dimensional manifold M3, endowed with a
Riemannian metric g and g-connection V, and a covariantly closed V3-valued differential 1-
form ¢, which is expressed

. ¢! oy Wy n'
d=Eig'=| ¢ | =| i 3 o3 U (6.15)
¢’ (T Ui

The minors Af\j“@/) = 1/)32%—@/);@/&. Then the generalized Bianchi identities are also expressed
as follows:

| ABY Ay ABGY\ [ R Rhy R 0
AYxR= [ Ay ARy ABY | x| Rys Rius Ris | = 0 (6.16)
Ay Agjp A Rozs Rios Rios 0
Example 6.10 — Isometric embedding of (M3, g). Since the covariantly closed TM?3-

valued differential 1-form ¢ in the isometric embedding problem of 3-dimensional Riemannian
manifold is the identity on TM?, the minors A3t = A3y = A2 = 1 and all of the others
vanish. Thus, leads to: Ri,3 = Riig Rz = R3 and Rioy = R3.3, which are the
usual Bianchi identities.
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APPENDIX A

COMPUTATIONS AND PROOFS

This appendix is dedicated to proving the results stated in sections 1 and 2 of the first
chapter. The exact statement of a result is recalled and is followed by its proof. Even though
the author believe that the best way to understand the computations is take a paper and pencil
and to do them, the computations are expounded in a detailed way in order to help non-experts
better understand these kind of computations.

Theorem - The functoriality of the curvature Let V be a connection on a vector
bundle V of rank r over an m-dimensional manifold M. Then, for any f,¢g and h smooth
functions on M, S € I'(E) a section of £, and X,Y € I'(TM) two tangent vector fields of M,
we have:

RY(fX,gY)(hS) = f.g.h.RY(X,Y)S. (A1)

Proof. By definition of the curvature of a connection,

RUX,gY)(1S) = ([Vx Vo) = Vigx o)) (1S) = Vyx Vi (hS) = Ty Vx (S) = Vigx ) (1S).

TV
< > o

(<) = 1Vx(Vox(hs)) = 1V (g9v(1S)) = FVx(gY(W)S + ghVyS)
= fVx(gY(W)S) + fVx (9hV+$)
— X <gY(h))S + fgY(R)VXS + fX(gh)VyS + fghVxVyS
— [X(g)Y(R)S + fgX (Y(h)) S+ fgY(R)VxS + fhX(9)VyS + FgX(h)VyS + fghVxVyS

The term (I>) is obtained without computation, just by interchanging f by g and X by Y. We
then have

() = gY(N)X()S + g Y (X(0) )S + g/ X (1) VxS + ghY (f)VxS + g/ Y () VxS + g fhVy VxS
To have the last term (), let us first compute the Lie brackets [fX ¢Y].
[FX gY] = [X(9Y) = gY(fX) = [X(9)Y + [gX(Y) = gY (/)X = g fY(X)

and hence,

(0) = Vix(g)y (hS) + Vigx(v)(hS) = Vv (p)x(hS) = Vgpy(x) (hS)
= fX(9)Vy(hS) + fgVxx)(hS) — gY(f)Vx(hS) — gfVyx)(hS)

= [X()Y(R)S + fX(g)hVyS + X (Y (R))S + FghVxex) = gY (FIX(R)S — g (/)hVx

—gfY (X(h))s — gfhVyxS
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Finally, (<) — (>>) — (0) gives
RFX, gY)(hS) = FX(g)Y(W)S + fgX (Y(1))S + fgY (VxS + FhX(9)VyS + FgX(n) VS
+ f9hVxVyS —gY(FX(W)S = 9f Y (X(h))S — gfX(N)VS = ghY (£) VxS — g Y (W) VS

— 9fhVy VxS = fX(g9)Y(h)S — fX(9)hVyS — fgX (Y(h)>8 — fghVxx)S +gY(f)X(h)S
— ————
+ gY(f)RVS + gfY <X(h)) S+ gfhVyx)S
————
Finally, R(fX, 9Y)(hS) = foh(VxVy =Yy Vx—Vxm + Vi )S = fgh(VxVy—Vy Vx -
Vix y}) S = fghR(X,Y)S. All the others terms are pairwise cancelled. O

Theorem - Cartan’s second-structure equation Let V be a connection on a vector
bundle (V, 7, M) of rank r over an m-dimensional manifold. Denote by w = (w}) the gl(r;R)
valued differential 1-form of the connection V. Then

dw} + wy, A wj =

for all 4, 5. (A.2)

Proof. By definition, R(X,Y)S; = Q4(X,Y)S;. In the other hand
R(X,Y)S; = VxVyS; = VyVxS; = Vix v1S; .
—_—— N——— HO/_/
< >

Hence,
(<) = Vx (w;i (Y)s,-) = Vx (w;i(Y)si) - x(w;i(Y)) S; + Wi (Y)VxS,
- X(w;iw)) S; + w! (Y)wh(X)Sy = x(w;‘. (Y)> S, + W (Y)wh (X)Sy
- x(w;iw)) S, + Wk (Y)wi (X)S; = x(w;‘. (Y)) S; + wi (X)wh(Y)Ss.

The term () is obtained without computation by interchanging X by Y, and hence (>>) :=
Y(wé(X))Si + wp(Y)wF(X)S;. Finally, (0) = wi([X Y])S;. Nevertheless, from the Cartan

formula :
(A) : dw(X,Y) = Xwi(Y) — Ywi(X) — wi([X Y])
and

(V) wi AWk(X,Y) = — W ()WA(Y) — i (Y)wk(X)

J

We conclude that
R(X,Y)S; = x<w;i (Y)) S; + wi (X)wk(Y)S; — Y(w? (X)> S; — wi(YV)wh(X)S: — i (X Y))S;

J J

— x(w;‘. (Y)> S, — Y(wé(X))Si — W (X YD)S; + wh (X)wh (Y)S: — wi (Y)wk(X)S;

J
/

-

-~
A \

= dw!(X,Y)S; + wp AwF(X,Y)S; = (dw;l (X,Y) + wj, Awh(X, Y)) Si = Q4(X,Y)S;



A.0.2 91

This result is valid for all X and for all Y, we conclude that dwji- + Wi A wé-“ = Qz or, in a more
condensed expression, dw + w A w = €. O

Proposition - Bianchi identities via differential forms Let V be a connection on
&. Denote by w and €2 the connection 1-form and the curvature 2-form of the connection V
respectively. Then the expression of the Bianchi identities via differential forms is

dQ=QAw—-wAQ (A.3)

Proof. By exterior differentiation on both sides of the equation 2 = dw + w A w, gives dQ2 =
PwtdwAw)=dwAw—-—wAdw=(Q-wWAW)Aw—WA(Q—wWwAW)=QAWw—-WAWAW—
WAQ+wAWAWw=QANw—wA. O

Proposition - Connection and curvature transformation rules Let V be a con-
nection on a vector bundle (V, 7, M) of rank r over an m-dimensional manifold. Let O, and
Op be two neighborhoods of a point M € M. Consider ¢, : 7 1(0,) — O, x R" and
o : ™ 1(Og) — Op x R". The transition map is gos : Oy N O3 — GL(n;R"). Denote
respectively by w(a) and w(3) the expressions of the connection 1-form of V on O, and Og.
Denote respectively by Q(«) and w(5) and Q(3) the expressions of the curvature 2-form of V
on O, and Op respectively. Then

w(B) = gupdgas + gusw(@)gas (A.4)
QB) = gopU)gap (A.5)

Proof. Let X = (Xy,Xs,...,X,,) and Y = (Y1,Ys,...,Y,,)) be two moving frames on O,
and Op respectively. We have Y = g,3X which is a condensed way to write (Y1, Ys,...Y,,) =
(X1, Xa, ..., Xin)Gap) Where go5 @ Oy U O — GL(m;R). Hence

Y; = ¢iX; (A.6)

where the m? functions g§ are the components of the matrixg,g. Let  be a tangent vector field.

By applying V¢ to (A.6), we obtain

< >

On one hand (Q):VeY; = w(ﬁ)kYk = w(B)i (g X;) =

w(
)i X = dgi(§)X; + ghw(a)i X

3)5g:X;. On the other hand, (>):
By replacing the expression of the

Ve(9iX;) = €(90)X; + giw
terms (<) and (>) in we obtain

W(@)?inxi = dgi(OX; + QfW(O‘)ZXz‘ (A.8)
and hence

W(ﬁ)?ﬂixi = dg;(§)X; + g;?w(a);kxi (A.9)

These expressions are valid for all £&. Consequently gosw(0) = dgas+w(a)ga, and by multiplying
both sides by 9;51, we obtain

w(B) = ga5d9as + Gopw(@)gap (A.10)
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The expression of the connection 1-form in another coordinate system is established, we will
deduce the new expression of the curvature 2-form. Since Q(8) = dw(B) + w(B) A w(F) with

w(p) = g;édgag - g;gw(a)gag. on one hand dw(f) is equal to

(9,590 + 925w (@)gap) = dgaz A gap + 9oz N d(dgas) +dgas A w(@)gas + gosdw(a)gas

Ay =0 since d2=0 Vi o1

— gapw(a)dgas
—_——
o

On another hand,

w(B) Aw(B) = (ggédgaﬁ + Q;éw(a)gaﬁ> A (9;51(19046 + ggéw(a)gaﬁ> = 9039908 N 9o39as

A2

+ 959908 N 9w (@) gap + 9usw (@) gap A Gosdgap + 9upw (@) gas A gosw(a)gas

Vv Vv
Va o Q2

However, g;égaﬁ = Id and hence d(g;égaﬁ) = d(9gap)Yas + g;édgaﬁ = d(Id) = 0. We then have
dg;égag = —g;édgag, and by composing the two right sides by g;é we conclude the following
result:

d9as = —9239(908)9as (A.11)
In the sum dw(B) + w(B) A w(F), we will show that the terms (A; + As), (V1 + Vs) and
(0y + Os) vanish and the only remaining terms are ({1) and (O2).
(D1 + B9) = dgos A dgas + 9a5(A9ap)9as A Agap = dgas A dgas — dgas A dgas = 0.

(Vi+V2) = —923d(9as) Iug Aw(Q) Jap + Jag d9as A gopw (@) gas = —gasd(Gap)gus Aw () gas +
g;édgagg;é Aw(a)gas = 0.

Finally, (01+0s) = —g,50(0)dgas+905w()gapgasdgas = — o300 (a)dgas+gaw(@)dgas =
0.

The term (O2) = g;ﬁlw(a)gaﬁg;ﬁl A w(@)gap = goasw(@) A w(a)gas (because gos, which is a
O-form, commutes with a differential p-form). Therefore

Q(B) = dw(B) + w(B) Aw(B) = ga3dw(@)gas + gasw (@) A w()gas
= g3 (dw(@) + (@) A w(@) ) gas = 923 2()gas
]
Proposition - Connection and curvature forms of a metric connection Let
S = (S1,52,...,5,) be an orthonormal moving frame with respect to g, i.e. g,(S;,S;) = d;; for

all p € O, 4,5 = 1,...,r, then the matrix of 1-forms w associated with S and the curvature
matrix of 2-forms € are both skew-symmetric, i.e., w +w! = 0 and Q) + Q] =0 .

f ¢ is a differential p-form and v is a differential q-form, then d(¢ A ¢) = (dp) A + (—=1)Pp A dip.
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Proof. Let V be a metric connection, X € I'(TM) and S = (Sy,Ss,...,S,) an orthonormal
frame on V . Thus, Vx <g(Si,Sj)) = g(VxS:,S;) + 9(Si, VxS;). Since g(S;,S;) = dj, then

Vx (g(Si, Sj)) = 0, and hence

Vi(95::85)) = g(@E (X868 ) + g (S (X)S1) = g (KIS0, S)) + (S0 (X)S1)
= wi(X) g(Sk, S;) +wi(X) g(Si, Sk) = wji(X) + wi;(X) =0 for all X € I(TM).
Ok =dik

Consequently, w} + w{ = 0. The matrix of differential 1-forms w is then skew-symmetric in
an g-orthonormal moving frame. From Cartan’s second-structure equation,

Q;:dw§+w,iAwf:—dwf+wf/\w£:—dwf—wi/\wfz—(duf—l—u}i/\cuf) :—Qg

which concludes the skew-symmetry of the curvature 2-form of the connection V. Another
way to express this result is that metric connections and their curvatures in an orthonormal
moving frame are o(n)-valued differential forms rather than just being gl(n)-valued differential
forms. O

Proposition|1.14]- Torsion transformation rule Let V be a connection on an m-dimensional
Riemannian manifold (M, g). Let O, and Og be two neighborhoods of a point M € M. Let
us consider ¢, : m1H(0,) — Oy X R™ and g : 77 H(Og) — O x R™. The transition map
is then g5 : U, NUz — GL(n; R™). Denote by ©(a) and ©() the expressions of the torsion
2-form on O, and Op respectively. Then

O(f) = g,50(). (A.12)

Proof. Since S(8) = S(a)gas, we can conclude that n(8) = g 5n(c). Therefore,

O(3) = dn(8) +w(8) An(8) = d(gabn(@)) + (924dgas + g4e0(@)gas)
= dgos An(e) + gosdn(a) + go5 Adgas A gogn(a) + gosw(a)gas A gogn(e)
= —=0,5(4908)905 A 1(0) +0,30() + 945(d90p) G5 A 1(0) +9550(@) (9ap)(905) An(e)
N — v —_———

o o —1d
= gahdn(a) + ghw(@) An(a) = goh (dn(a) + w(@) An(a)) = g,30()

]

Proposition - Relationship between the connection, curvature and torsion
Let V be a connection on an m-dimensional Riemannian manifold (M, g). Denote by w the
connection 1-form of V, € its curvature, © its torsion and n = (n',...,n™) a moving coframe.
Then the connection, the curvature, torsion and the coframe are related by

dO+wAO=QAn. (A.13)

Proof. By definition, dn+wAn = ©. By exterior differentiation, we obtain d*n 4+d(wAn) = dO,

=0
and hence

dO =dwAn—wAdn. (A.14)
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On one hand, dw+wAw = €2, and hence dw = Q2 —wAw. On the other hand, dn+wAn = O,
Consequently, dn = © — w A 7. Substituting in (A.14) gives,

dO = (Q—wAW)AN—wWA(O—wAn) = QAN—WAWAN—wWAO+wAwWAN = QAN—wAO (A.15)

]

Lemma - Cartan lemma Let M be an m-dimensional manifold. Let us consider
wh, w?, ..., w" linearly independent differential 1-forms on M, where r < n and let 6%,62,...,0"

.
be the r differential form on M such that Z 6" A w' = 0. There then exist r? functions C>® on
: i=1
M ki such that 6" = Z h.w’ where hi = hl.
j=1
Proof. Let {w"},—1,. . be a basis of T*M such that the first 7 terms are as in Lemma’s

hypothesis (we have just completed w!, w?, ..., w" to form a basis of T*M). 6 are then expressed
in this basis as follows :

m

0 = Zaiwy where the a’, € C*(M),i=1,...,r.
v=1
Therefore
i@i/\wi—Z(Zaw>/\w —ZZaw Aw' —ZZawj/\wz—i—Z Z aw AW
=1 i=1 v=1 =1 j=1 =1 a=r+1
= Z (aﬁ-—af)ijwi+Z Z alw* Aw' =0
1<i<j<r i=1 a=r+1

since the w* are linearly independent, the vanishing of the sum means that each coefficient
vanishes, ie., a’, =0 fora =r+1,...,m and a;'. =a] fori,j =1,...,r. Substituting h; by aé»,

we obtain 6" = Z héwj where hi; = hj;, 1,5 =1,...,r. ]
j=1



APPENDIX B

TABLEAUX AND LINEAR PFAFFIAN SYSTEMS

The second and last appendix is dedicated to briefly reveiwing tableaux and linear Pfaf-
fian systems, and their applications in finding integral manifolds. The reader may refer to
[IL03, BCGT91) [Car7l] for more examples and explanations. We show the involution of the
heat equation and the Cauchy—Riemann system, and recover some geometric results as ex-
pounded in the previous chapters: conformal correspondence between two Riemannian surfaces
(chapter 1, section 3) and the existence of Lagrangian manifolds of the complex space C™
(chapter 3).

B.1 A SHORT REVIEW OF TABLEAUX AND LINEAR PFAFFIAN SYSTEMS

Let X and U be two vector spaces of dimension n and s respectively. Denote by (e;);=1._, and
(fa)a=1.. s the bases of X and U respectively. An element in X and another in U are expressed
r = x'e; and u = u®f, respectively. Denote by (z',... z") and by (u!,...,u*) the coordinate
functions on (X) and U respectively. Any first order, constant-coefficient, homogeneous system
of PDE for maps f : X — U is given by

Ou®
B —
@ Ogt’

where the symbol relations B7* of the system of PDEs (B.1]) are constants.

Example 2.1 = Symbols of the Cauchy—Riemann system. A map u : R? — R2?,
that maps (z',x?) to (u'(x),u*(z)) is a solution to the Cauchy-Riemann system if du'/dx' —
Ou?/0z* = Ou' /0x® + Ou? /Ox' = 0. Thus, the symbol relations of the Cauchy—Riemann system
are: BI! = Bl = B2 = —BI? = 1 and B! = BI! = B = B2,

The system (B.1]) can be described as a subspace B C X ® U*, where

r=1,...,R. (B.1)

B = {Bl'e; ® f*|1 <r <R} (B.2)
B is called the space of symbol relations.

Definition 2.2 — Tableau A tableau of a first-order, constant-coefficient, homogeneous
system of PDEs is a linear subspace A of U ® X* orthogonal to its symbol relations space, i.e.,
A =Bt

A linear subspace A of W ® V* determines a first-order, constant-coefficient, homogeneous

system of PDEs. We usually identify the vector spaces X and U with R™ and R* and write the
tableau and the symbols relations space in matrix form.

Examples 2.3 — Tableaux.
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e Frobenius systems The tableau A = (0) corresponds to a completely integrable system.
The equations are du®/dz* = 0 for all i and a, and the solutions to this system are
constants maps.

e Cauchy—Riemann system The tableau of the Cauchy—Riemann system is:

A ={a(fiwe' + fr0°)+b(— f0e + fiwe’)|a,b € R} ~ { ( Z _ab ) la,b € R}. (B.3)

e When A = W ® V*, there are no equations and any map is a solution.

Definition 2.4 — Prolongation of a tableau Let A C U®X* be a tableau and k be a positive
integer. The k™ prolongation of the tableau A is a subspace A®¥) := (A ® X*®F) N (U ® SF1X*).

Definition 2.5 — Tableau of order p A linear subspace of U ® SPX* is a tableau of order
p. It determines a homogeneous constant-coefficient system of PDEs of order p for U-valued
function on X. In particular, the (p — 1)-st prolongation of a tableau is a tableau of order p.

Example 2.6 — Tableau of the equation a second-order PDE.  Consider X = R? and
U = R, and the second-order PDE 9%u/0x0x + 0*u/dydy = 0. Thus its tableau A is a
subspace of R ® S?((R?)*) defined by:

A={afi®(oe —oe)+bfivwe 0c’la,beRy~{(a b —a)la,beR}. (B4)

Definition 2.7 — Prolongation of a tableau of order p  Let A be a tableau of order
p and k be a positive integer. The k™ prolongation of the tableau A is a subspace A®*) :=
(A @ X*®F) N (U @ SPHFX).

Recall that a Pfaffian system on a manifold ¥ is an exterior differential system which contains
only linearly independent differential 1-forms, i.e., I = {6*} C T*Y where a = 1,...,s. If
Q = w' A--- Aw" represents a condition of independence, then (I,J) := {% w'} is a Pfaffian
system with an independence condition.

Definition 2.8 — Linear Pfaffian system A Pfaffian system I with a condition of indepen-
dence J is a linear Pfaffian system if d9* =0 mod J for alla=1,...,s.

Example 2.9 — Canonical contact system of system of PDE. Any system of PDESs can be
expressed as the pull-back of the canonical contact system on a jet space and is thus a linear Pfaf-
fian system. For instance, consider J!(R? R?) with the coordiantes {z', x% u', u? p1, q1, p2, @2 }-
The canonical contact system on J'(R?, R?) is:

(B.5)

0' = du! — pydat — ¢da?
0% .= du? — poda! — goda?.

One can check that d9' = 0 and d6? = 0 mod {dz!,dz? 6,6}, and thus it is a linear Pfaffian
system. The Cauchy-Riemann system is determined by p; — ¢z = p» + ¢1 = 0 on J*(R? R?).
The Cauchy-Riemann system is then equivalent to the pull-back of on the manifold 3¢
defined by the vanishing of the functions Fy := p; —¢s and F := py+¢;. Note that the pull-back
of the canonical system on any manifold 3 C J'(R? R?) is also a linear Pfaffian system.
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Proposition 2.10 Let I be a linear Pfaffian system with an independence condition J. Let 7°,
e=1,...,dim¥ —n—s, be a collection of 1-forms such that T*¥ is spanned by 6%, w? 7. Then
there exist functions A, and Tf; defined on X such that

do* = A%m® Aw' + T%wi A w? mod 1. (B.6)

The functions Tf; are called the apparent torsion of the linear Pfaffian system. If we replace
the differential 1-forms 7 by 7 = 7° + M56°, where (M$) is an invertible matrix, the apparent
torsion in the new coframe remains unchanged, i.e., Tfj = T7;. It appears that the only possible
way to absorb the apparent torsion is to change the complement of J/I. For instance, if it is
possible to choose a matrix (M5) such that T?j = A%MS + T = 0 with 7 = 7+ MSw/, then the
apparent torsion of the linear Pfaffian system is said to be absorbable, and otherwise, there is
torsion. We denote by [T] = 0 an apparent torsion which is absorbable.

Given a tableau A C U ® X* expressed in terms of bases ¢ = (e',...,e") of X* and u =
(fi,..., fs) of Uand let si(e),...,s,(e) be defined by:

si(e) = +# of independent entries in the first column of A,
si(e) + s2(e) = # of independent entries in the first 2 columns of A,
si(e) + -+ su(e) = # of independent entries in A.

In other words, si(e) is the number of new independent entries in the k" column. The
characters si(e) do not depend on the choice of the basis of U but only on the flag F =
(Fo, ..., F,) of subspaces in X* induced by e, where F; = span{e/™, ... e"} with Fp = X* and
F,, = (0). Define

Ay(F)=(U®Fp)NA
and hence

dimA(F) = 41 (F) + - - + 5,(F) (B.7)

Definition 2.11 = Characters of a tableau Let A C U ® X* be a tableau. The characters
sg, for k=1,... n, are defined by:

s1(A) = max{s;(F)| all flags},
so(A) = max{sy(F)| flags with s1(F) = s;(A)},

sp(A) = max{s(F)| flags withs;(F) = s1(A), ..., sp-1(F) = sp_1(A)}.

Remark 2.12 = The characters sy vs Cy. The characters s, are related to the characters
Cy, defined in chapter 2 by:

s, =Cp —Cpy forl<n—1, and s, = codimE — C,,_;. (B.8)
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Example 2.13 — Cauchy—Riemann system-continued. Recall that the tableau of the
Cauchy—Riemann system is of the form . Thus, the first character of the tableau is s; = 2
and s, = 0. Using the pull-back on 3¢ = {p; —¢s = p2+¢; = 0} of the canonical contact system
of J1(R?, R?), we find (fortunately) the same characters: on X6, dp; = dg, and dpy = —dg;.

0t \ dpy —dq¢; da!
d( 5 ) == ( dg dp )\ a4 (B.9)

(.
-~

A

Note that the Cauchy-Riemann system has no torsion.
The properties of the tableau first prolongation leads to
Proposition-Definition 2.14 — Involutive tableau Let A C U ® X* be a tableau. Then
dimA®Y < 51 + 259 4 355+ - - - 4 n5,,. (B.10)
If equality holds, then the tableau A is said to be involutive.

Example 2.15 — Cauchy—Riemann system-continued. The dimension of the first-
prologation of the Cauchy-Riemann system’s tabelau is dimA® = 2 which is equal to s; + 2s,.
Hence, the tableau is involutive.

Theorem 2.16 — Cartan—Kdahler theorem for linear Pfaffian systems Let (I,J) be an
analytic linear Pfaffian system on a manifold ¥, let x € be a point and let O be a neighborhood
containing x, such that for all y € O, there is no torsion [T], and the tableau A, is involutive.
Then, solving a series of Cauchy problems yields analytic integral manifolds to (I,J) passing
through z that depend on s; functions of [ variables, where s; is the character of the system}

If the linear Pfaffian system, or more generally an exterior differential system, is not invo-
lutive, then we prolong and restart again. Indeed, given an exterior differential system defined
on a manifold M, the Cartan-Kuranishi prolongation theorem [Kur57| says that after a finite
number of prolongations, the system is either in involution (admits at least one ’large’ integral
manifold), or is impossible. Reproduced in figure is the formal algorithm in [ILO3| for
finding whether or not a linear Pfaffian system posses integral manifolds.

B.2 APPLICATIONS

Presented here are some applications to the method of tableaux and linear Pfaffian system.
We start by a partial differential equation, then we treat geometric problems (the conformal
embedding of Riemannian manifolds) and present another way to proof the existence of La-
grangian manifolds of symplectic and complex spaces.

B.2.1 HEAT EQUATION

Let u be a function on R?. We are looking for solutions to the heat equation
ou  Pu
or  Oydy

!The last non-vanishing character of the tableau.

(B.11)
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Let (x,y,u,p,q,7,8,t) be a coordinate system on the 2-jet space J?(R? R).Consequently,
the heat equation is equivalent to the pull-back by ¢ : X7 — J*(R% R) on X7 of the canonical
contact system

0° = du— pdr — qdy
' = dp—rdr— sdy (B.12)
6> = du— sdx —tdy

where Y7 is defined by the equation p —t = 0. The pull-back of the forms 6°, #' and 6? are
denoted by the same symbol. On ¥7, dp = dt, and thus

6° 0 O q
dl 08 | =—| dr ds | A < dx ) : (B.13)
62 ds dp y
=A

The linear Pfaffian system has no torsion and s;(A) = 2 and sy(A) = 1. Besides, dimA®) = 4.
Hence, the linear Pfaffian system associated to the heat equation is in involution since it passes
the Cartan test, i.e., s; + 25, = dimA(®) = 4. Solutions to the heat equation depend upon two
functions of one variable and one function of two variables.

B.2.2 CONFORMAL EMBEDDINGS

Definition 2.17 — Conformal map Let (M™, g) and (N, h) be two real analytic Riemannian
manifolds of dimension m and n respectively. A map u : M™ — N™ is conformal if there
exists a non-vanishing function A on M? such that u*(h) = A\g.

The following result by Jacobowitz and Moore |[JMT73| provides a condition for the local
existence of a conformal map between real analytic Riemannian manifolds. They gave two
different proofs for the following result, one based on Janet’s method and the other on Cartan’s
method.

Theorem 2.18 — Local conformal embedding of Riemannian manifolds  Let (M™, g)
and (N™ h) be two real analytic Riemannian manifolds of dimension m and n respectively,
m > 2and n > m(m+1)/2—1. If M is a point of M™, there exists an open neighborhood O
of M in M™ which can be conformally embedded in N™.

In particular, any two real analytic Riemannian surfaces are locally conformal, and any
real analytic Riemannian surface is locally conformal to the Euclidean space (R?, (, )g2). Using
tableaux and linear Pfaffian systems, we can prove the local conformal embedding of surfaces.

Proof. Let (M2, g) and (N?,h) be two real analytic Riemannian surfaces. Denote by (n',n?)
the g-orthonormal coframe of (M?, g) on which the metric g is diagonal, and denote by (w', w?)
the h-orthonormal coframe of (N2, h) on which the metric A is diagona]ﬂ, ie.,

g=n'@n' +n°en and h=w'®w +uw (B.14)

Cartan’s structure equations for (M?, g) and (N2, h) are:

dpt+m3 A = 0 dw' +wiAw? = 0
dn? —niAnt = 0 and dw? —winwt =0 (B.15)
dnd = Kum* An? = 0 dwl — Kywr Aw? = 0

2As in Cartan—Janet theorem’s proof.
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where 73 and wj are the non-vanishing terms of the connection 1-form of the Levi-Civita on

(M2 g)and (N2, h) respectively.

By definition, if the two Riemannian surfaces are conformal, then there exists a non-
vanishing function A on M? such that the pull-back of h is \%2.g. Consider then in M? x N2
the following Pfaffian systemf’|

[={w"— ' w? — I} (B.16)

with the independence condition J = {n', n? w!,w?}. One can easily check that (I,J) is a linear
Pfaffian system. Using Cartan’s structure equations, we have:

wh =gt _ dA\/ X (wy — ) n'
d<w2_)\772 ) :—\< Cwl—nl)  dA/A l/\ n? mod I (B.17)

-

=A
The linear Pfaffian system (I,J) has non torsion. On one hand, s;(A) = 2 and s2(A) = 0.
On the other hand, dimA® = 2. Thus, the linear Pfaffian system (I, J) passes the Cartan test,

ie., 51+ 2sy = dimA® = 2, and hence, by the Cartan-Kéhler theorem, there exists a local
conformal embedding of M? in N2 ]

B.2.3 LAGRANGIAN MANIFOLDS IN C™

Let C™ be a complex space of complex dimension m. As mentioned in the chapter 3,
dealing with the isometric Lagrangian embedding of surfaces, the complex structure J and a
Euclidean metric induce a symplectic structure. Thus, (C,J) can be viewed as (R*™, w, {, )g2m ),
where w(.,.) = —(., J.)gzm. Consider for instance on C™ the complex structure J which induces
w = dztAdax™+. .. dz™Adx?™. Lagrangian manifolds of C™ are the integral manifolds of w, and,
as explained in the isometric Lagrangian embedding (chapter 3), are obtained by considering
on the unitary frame bundle F(C™), the exterior differential system I = {w™, ..., w?™} with
the condition of independence Q2 = w! A --- Aw™. Note that (I,J) is a linear Pfaffian system.
Matrices in the Lie algebra of u(m) of U(m) = SO(2m) N Sp(R*™ w), for m = 2 and 3, have
the form

0 _51 _52 —a _771 _772

0 =§ —a 7 &0 =& - -5 -
£ 0 -n —p 280 - - -y
a n 0 —€ || a gt 0 —& g (B.18)
n B & 0 g &0 =&
ot oy &80

respectively. For m arbitrary, a matrix in u(m) has the form

A -S
(29) 59
where S € M,,(R) is symmetric and A € M,,(R) is skew-symmetric. We need to check the
involutivity of the linear Pfaffian system (I, J). The general case, i.e., for an arbitrary complex

dimension m, can be done. However, for more clarity, the case m = 2 and m = 3 are expounded
before the general case.

3We denote by the same symbol the pull-back of the forms by the natural projections on M? and N?2.
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Lagrangian manifolds of C?

wd '\ _ wP Wl w!
o(4) = (4 4)a(4 0

The Levi-Civita connection on C? is a u(2)-valued differential form. Hence, wi = w3 and the
character of the tableau are s; = 2 and s, = 1. By the Cartan lemma, dimA® = 4. The
tableau is then involutive.

Lagrangian manifolds in C3

w? wi wy ws w!
5 | — 5 .5 5 2
d| w =—| w wy wy |AN| w (B.21)
6 6 6 6 3
w W) wy ws w

The Levi-Civita connection on C? is a u(3)-valued differential 1-form. Hence, w} = wj,

W = wi, w§ = wi and the character of the tableau are s; = 3, s = 2 and s3 = 1. The

dimension of the first prolongation A is 10.

Lagrangian manifolds of C™

wm+1 w;nJrl o winJrl wl
d : = _ : : A : (B.22)
wm wm o w2m w™
N
-~
—A

The Levi-Civita connection on C? is a u(m)-valued differential 1-form. Hence, the tableau
A is symmetric and the characters of the tableau are:

si=m—1i+1 forall ¢=1,...,m. (B.23)

The Cartan lemma implies that there are w}”” = h;’,‘fiwk, forall 7,5 = 1,...,m, where h;, =

hi;. There should be m x m(m + 1)/2 functions. However, the matrix of 1-forms (w}”i) is
symmetric, and thus there are Y ;" | k(k + 1)/2 and hence

dimA® = m(m + 1)(2m + 1)/6. (B.24)

Since s1 + 289 + ..., mS,, = Z m—i+1= dimA(l), the tableau A is involutive and thus there
i=1
exist Lagrangian manifolds in C™.
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Rename Y/ as X }—>

Done:
there are no
integral manifolds

Input:

(I, J) on X

linear Pfaffian system

Calculate dI mod 1

Is [T] =07

No

Yes

Restrict to X' C 2
defined by [T] =0
and Qy # 0.

Pronlong, i.e., start over
on a larger space ¥;

Rename Y as X
and new systems as (I, J)

No

Is tableau involutive 'D

Yes

Done:
local existence of
integral manifolds

Figure B.1: Linear Pffafian system algorithm
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