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CHAPTER 1. INTRODUCTION

1.1 Problem Setting

The impressive increase of economical, technological, social, and environmental changes
in our world makes their management become a great challenge. Implementing wrong
policies to solve such problems can make the problem become worse or can generate
new ones. Many of the problems we have to face nowadays arise as non predictable side
effects of our own past actions. Most of these wrong policies are not flexible or adaptive,
and we cannot change them in order to achieve our goals within a dynamic solution
environment. In other words, solving such problems by studying a part of them without
modeling the complexity of the different parts can provide an efficient solution for short
term but a negative one for long term, leading to non reversible system evolution.

Effective decision making and learning in a world of growing dynamic complexity re-
quires us to search a new way of system modeling and to expand the boundaries of our
mental models. We have to develop tools in order to understand how the structure of
complex systems creates their own behavior.

Our purpose is to analyze organizations or societies within their spatial complexity.
Solving this problem in sustainable way, should start by understanding how the individ-
ual behavior in the organization affects the whole system behavior. Observing complex
self-organized systems in the nature (like social insects) and understanding them leads
to discover concepts of emergence. The power of these systems does not come from
any central control but from their flexible interactions with themselves and with their
environment in an adaptive way. This problem involves complex networks of location
interactions, complex networks of individual characteristics’ interaction and even com-
plex networks of multi-scale decision making, that are: the decision of individuals, the
decision of services managers and the decision of society development planners.

The global objective of this work is to contribute to better understanding and exploring
such complex systems using modelling, simulations and analysis. We develop in the
following the objectives and the contributions of this work.

1.2 Objectives

The aim of this study is to model and analyze social organizations from services-users
interactions, respecting their complexity. Our objective is to highlight the emergent
complexity based on the three main factors: (i) the spatial dimension as a major input
for the component interaction, (ii) the self-organization as a major process for the sys-
tem dynamics and adaptation, (iii) the multi-scale decision making as a major factor
for emergence and adaption of the system.

In order to model the dynamics of complex interaction between users and services with
various characteristics, we introduce two levels of description: the entities (users) level
and the level of organizations (services), as described in figure 1.1. The objective is to
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implement an adaptive mechanism for our model structured threefold:

e The emergent process. The inputs are (i) the system of spatial users with various
characteristics and preferences, (ii) the system of spatial services with various char-
acteristics. The output is the spatial distribution of users over the services system.
The process is based on an attraction mechanism involving complex interaction
between users and services.

e The adaptive process. The input is the spatial distribution of users over the services
system which is produced by the emergent process. The output is the response of
the services according to their dynamic usage. This response leads to modify the
characteristics of the services.

o The feed-back process. The input is the new characteristics of the services which
are produced by the adaptive process. The output is the new spatial distribution
of users according to the services evolution.

Adaptive

) N
Interaction ‘/

Network

C )

Feed-bac l
- process \Q .
mergen s ° ° S o e o

o ®
process . - . - . o o _ .
- =1 o e =] @ =] =1
=] = - =] = @ o©
@
® o e =) - @ o e o o o ® -
\ < @ 2 & o e © e e ® o e
Entity Level - e o e o0 © © o o

Figure 1.1: Users and Services spatial organizational model

This three faces model produces an efficient tool to study the complexity of the adap-
tation and evolution of the services-users systems. In urban dynamics, our goals is to
understand, simulate and analyze phenomena like gentrification phenomena or cultural

services evolution. The final objective is to produce relevant decision making tools based
on such simulations and analysis.
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1.3 Contributions

The methods developed for this model use

o Multi-agent systems in order to respect the distributed nature of the complex
systems involved in the model;

o Swarm intelligence algorithms in order to implement self-organization processes;

e (Geographical Information Systems in order to manage the spatial complexity of
the model.

A first contribution of this work is to propose a swarm intelligence engineering system
based on the complex interactions between (i) extended swarm models, (ii) multi-criteria
characteristics (users preferences and services offers) and (iii) multi-center systems (the
spatial interaction of services). The simulations produced by this model lead to com-
plex outputs which need to be analyzed with respect to their complexity. We propose
an analysis methodology for this purpose.

A second contribution is to manage the spatial complexity of the model through the
mixing of spatial data integrated in GIS and the swarm intelligence engineering system
described previously. Many applications can be simulated using this general model, con-
cerning spatial emergent organization within multi-criteria process, like various urban
services-users planning and management. A case-study for modelling urban cultural
dynamics is developed and specific adaptive processes are implemented through the
swarm intelligence engineering system. Some simulations results are provided using
Repast Platform over OpenMap GIS.

These two contributions are facing with the two aspects of our work: (i) developing a
conceptual methodology based on an innovative general swarm intelligence model; (ii)
developing an engineering methodology based on the capability of our general model to
be applied for concrete applications and phenomena.

1.4 Organization of the Document

Part one develops the scientific context. Chapter 2 starts in describing how the con-
cept of complexity emerges in many scientific disciplinary. From the understanding of
this transversal emergence, we give then, the concepts of complex systems and self-
organization process. The chapter ends with computational aspects which detail how
complex systems can be practically computed. Chapter 3 develops the basics of multi-
agent systems and more particularly in spatial modelling environment. Geographical
information Systems which are the ones of such environments, are presented, including
their mixing with multi-agent platform. A contribution of such mixing is given, describ-
ing Schelling’s segregation model. Chapter 4 describes swarm intelligence algorithms as
computable methods for self-organization processes. Social insects algorithms are pre-
sented and a contribution describing implementation of nest building is provided using
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Repast mixing with OpenMap GIS.

The second part develops the original model proposed in this work. Chapter 5 de-
scribes the extension of the nest building model to adaptive multi-criteria, multi-center
systems dynamics. Formalism of this extension is described. The different aspects of
attraction phenomena processes are defined, using dominant component mechanism or
ranking computation mechanism. Experiments are shown and an analysis methodology
of the results in respect to their complexity is studied. Chapter 6 describes an original
contribution in swarm optimization, called Community Swarm Optimization in order to
compute emergent spatial organizations from genetic automata systems.

The third part develops the case study which concerns urban services and infrastruc-
tures dynamics. Chapter 7 describes the context of urban dynamics modeling, in terms
of organizations, services and global planning. A review of methods and models are
studied then our methodology is provided. The place of new evolution of location based
services is presented as a technological solution for individual decision making, based
on the spatial complexity and using GIS and GPS. This leads to conclude on the multi-
scale aspects of the decision making (for users, for services and for planning) involved in
our problem. Chapter 8 presents a project funded by “Région Haute-Normandie” con-
cerning urban cultural center dynamics with application to Rouen agglomeration. The
complexity of the problem is presented in a practical way and we explain how our work
provides the core of the intelligent process leading to simulate this complexity. Analysis
of results is given using our swarm intelligence engineering system and its mixing with
OpenMap GIS to achieve the concrete implementation expected for the final study con-
cerning Rouen agglomeration.

Fourth part concludes, gives references used in our work and provides the publications
in books, journals and international conferences generated by this PhD study.



CHAPTER 1. INTRODUCTION




Part 1

Scientific Context






Chapter 2

Complex Systems and

Self-Organization
Contents
2.1 Emergence of Complexity in Sciences . ... ......... 10
2.1.1 Complexity in Biology and Chemistry . . . .. ... ... .. 10
2.1.2  Complexity in Physics . . . .. . ... ... ... 12
2.1.3 Complexity in Economy and Social Sciences . . . . . . . ... 18
2.2 Complex Systems Concepts . . . . . . .. v v vt v v v v v 20
2.2.1 Complex Systems Definition . . . . . . . ... ... ... ... 20
2.2.2  Complex Systems Properties . . . .. ... ... ... .... 21
2.2.3 Simplicity, Complication and Complexity . . .. .. .. ... 24
2.3 Self-Organization Process . ... ... ... .......... 25
2.3.1 Self-Organization Definition . . . . . . ... ... . ... ... 25
2.3.2 Element of Self-Organization . . ... ... ... ... .... 26
2.4 Computational Aspects of Complex Systems . ... ... .. 27
2.4.1 Evolutionary Algorithms and Adaptivity . . . . . . ... ... 27
2.4.2 Neural Network and Self-Organized Map (Kohonen Map) . . 28
2.4.3 Cellular Automata and Diffusive Rules . . . . . . . ... ... 28

2.4.4 Multi-agent Systems, Cooperation, Competition and Coordi-
nation . . ... L 32




CHAPTER 2. COMPLEX SYSTEMS AND SELF-ORGANIZATION

2.1 Emergence of Complexity in Sciences

Complexity is a relatively new discipline with an immense power to change our way of
thinking and seeing the world. This, in turn, can change the way of world understanding
and so, the way we “manage”, design and structure systems. This allows to create new
ways of working.

Nowadays, our world is usually described by huge complexus of interactions: world-wide
economy connects firm branches in many countries; politic organizations interact all over
the world; high speed communication systems develop interactions between people, their
knowledge and culture; global climate exhibits major changes under the interactions of
local phenomena.

Our world is a large integrated system of a great number of hierarchical sub-systems.
These systems, whatever they are - ecological, social or economical - are complex sys-
tems. Some of them, like ecosystems, are essential for our existence and are in the core
of global Earth equilibrium. Accurate understanding of complex systems is not possible
by isolating their components because of the intensive interactions among these sub-
systems.

In the following, the emergence of complexity is described through a framework of in-
terdisciplinary fields (biology, physics, economy, social science, computer science and
engineering, ...). To illustrate this emergence, examples of specific aspects of complex-
ity properties are expressed in these sciences. After this review which allows to feel
the complexity in these different sciences, we will propose in the next section, a more
conceptual and synthetic description of complex systems.

2.1.1 Complexity in Biology and Chemistry

Biology has a special place in Science. Living systems are the basis of our existence.
Even if humanity studies them since centuries, the core of the living process is still un-
der research. Major improvements, like human genom decryption, finally has made the
understanding of the life roots more complex.

In this section, different examples of complexity in living systems, environmental systems
and collective behavior in animal societies are described.

Living Systems

In the middle of the 20th century, after a long period of formalization in many sciences,
scientific community was still interrogated about the root of Life (Erwin Schrodinger
wrote “What is life?” [108, 28|). At this period, Chemistry and Physics made impressive
developments leading to a coherent understanding of a great number of phenomena in
Physics. Molecular biology followed these formalisms and allowed to obtain spectacular
advances in order to understand many mechanisms in biology. But the life root itself,
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corresponding to the basic questions: “ Why and how life systems evolve differently from
classical systems characterized by their endless increase of entropy 77 was a fundamental
question that the main streams of scientific theories were unable to solve because of the
lack of a relevent formalism.

Living systems are typically based on dissipative structures in the sense of the “new”
laws of thermodynamics proposed by Ilya Prigogyne [97]. These dissipative structures
are able to self-organize themselves under permanent continuous energetic fluxes (light
for plants, oxygen for breathing human, information fluxes for thinking human, emo-
tional fluxes for consciousness human, ...).

Figure 2.1: Self-organization produced by extern stimulation on Bacteri systems (from
Tel-Aviv University - Prof. Eshel Ben-Jacob laboratory [12])

Environmental Systems

Environmental systems are the core of a completely new way of understanding during
the last centuries. In the past many biologists studied separately each animal in a very
accurate but closed and isolated way. The word “Ecology” was introduced by E. Haeckel
in 1866 to highlight the need of linking the individual with its environment. The com-
plex interactions between them has to be considered to understand the individual itself.

In the root of Biology, population dynamics play a major role, allowing to describe how
individual systems - the populations - can evolve under many constraints and interac-
tions. Dynamical systems are able to describe global evolutions by the way of synthetic
parameters. Such mathematical models are based on differential or integral equations
leading to non linear equations which are characteristic of their complexity. One of the
challenges of the last decades is to understand the role of individual behaviors inside
these global evolutions, how these individual behaviors interact and are able to modify
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CHAPTER 2. COMPLEX SYSTEMS AND SELF-ORGANIZATION

or influence the whole system by feedback processes.

Natural populations are generally decomposed in hierarchical structures leading to
metapopulations [48]. How these hierarchies emerge and how individual links and
networks lead to spatial organizations or self-organization is a great challenge whom
conceptual roots belong to complexity science. Ecosystem concept defined by Tansley
[122] is typically based on systemic approach and focus on the systems formation and
evolution within their complexity of the ecological systems.

In such ecological systems, based on individual interactions, spatial interactions within
population dynamics can have major effects over the system behavior and can lead
to emergent properties of these systems. The following section describes well-known
collective behaviors in animal societies.

Animal Society and Collective Behavior

Figure 2.2: Self-organized animal systems

Many animal societies like ants, fishes, birds, bees or wasps ones exhibit collective spatial
interactions (see figure 2.2). The movement of fish banks or ant colonies are typically
systems which emerge from individual interactions without any centralized coordina-
tion. The individual interactions are based and described by individual behaviors and
the whole system, emerging from these behavioral interacting systems, can be seen as
one alone structured entity, like the brain or more generally a human can be seen as a
unique organism composed of many interacting entities.

2.1.2 Complexity in Physics
Fluid Dynamics Instabilities

Physicists are interested since long time with phenomena where spatial self-organiza-
tion mechanisms appear. In fluid dynamics, hydrodynamical instabilities phenomena
have been studied in accurate way since many years. For example, von Karman streets
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are well-known structures which are generated behind obstacles included inside laminar
flow. These von Karman streets are the output of instabilities which appear on the
obstacle border and aggregate in very regular way in order to create vortex formation.
These vortices expand following a very recognizable pattern, by contra-rotatif pairs. It
is typically a self-organization phenomenon under weak constraints (obstacle in flow)
which control only few degrees of freedom and let the flow self-organized in regular way.

On figure 2.3, we show the formation of these von Karman streets within a laboratory
experiment. We can observe similar formations inside oceanic or atmospherical flows,
the same phenomena observed in the air as shown in figure 2.4 corresponding to a satel-
lite photo over Baja California, Mexico.

Figure 2.3: Vortex street at the back of a circular cylinder. Copyright ONERA 1996-
2006

Taylor-Couette instabilities are other examples of self-organized systems which expand
under the influence or the control of few parameters. The classical experiment described
in figure 2.5, consists to study the fluid flow between two rotating cylinders, with different
rotation speeds. Increasing the rotation speed of the inside cylinder, we can observe
various perturbated states described in figure 2.5, until the obtention of vortex formation
of regular size. Many scientific works have been made from this experiment which has
very surprising and reproducing self-organization’s characteristics.

Self-Organized Criticality

The hydrodynamical instability studies described previously have fascinated physicists.
They allow to highlight some mechanism based on instabilities, as well as characteristic
evolution of dynamically stable states. Following these studies, Per Bak has proposed
a general theory for critical self-organized phenomena. This theory allows to describe
some systems which are in critical stable state, also called “far from equilibrium”. Per
Bak claims that the world is constituted of natural and artificial systems in such stability
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Figure 2.4: Von Karman vortex street over Baja California, Mexico (from U.S. Air
Quality - the Smog Blog)
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Figure 2.5: Taylor-Couette flow experiment (first figure from the web site of ASBL
Nicolas-Claude Fabri de Peiresc, second figure from the web site of Theo Team from
LEGI - UMR 5519 - INPG, Grenoble, France)
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states which can suddenly evolve and fall (by bifurcation) inside new stable states, some-
times far from their initial stable state. Per Bak illustrates this purpose with avalanche
phenomena within sand pile formation. These sand pile formations by grain falling on
the pile, are described in figure 2.6.
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Figure 2.6: Sand Pile avalanche formation after Bak [7]

Figure 2.7: Bak’s sand pile model rules

From this observation, Per Bak proposes an easy computable process based on a cellular
automaton where avalanche phenomena can be implemented. It is a regular grid where
sand grains are deposited, allowing to have more than one grain on each grid position.
The process is the following: when a grid position has 4 sand grains, these sand grains
slip on the neighboring positions as described in figure 2.7.

The application of this simple rule allows to build simulations where avalanche phenom-
ena can appear. On figure 2.8, we represent a simulation based on cellular automata
where a number is written on each position, corresponding to the number of sand grains
on this position. The first grid (on top left) describes an initial configuration where we
add only one sand grain in the middle position, making this position recover 4 sand
grains. This position is colored in red and we have to apply the previous rule making
the 4 grains slipping on the neighbor position. On the second grid of this figure, we
describe the grid after this rule application and we observe that some of the neighbor
positions which have received a grain, are now in the critical state and so marked in
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Figure 2.8: Bak’s sand pile simulation

red, corresponding to the fact that they contain 4 grains. So, we have to apply again
the rule; making slipping the grains on the neighborhood. Finally, the 8 grids of figure
2.8, show all the steps of the avalanche process generated by the only depositing of one
grain in the middle grid position, as described in the first grid.

To sum up this avalanche process, we have filled by red color all the positions involved
in this process in figure 2.9, with respect to the simulation of figure 2.8. We say that
the avalanche amplitude generated by this sand grain falling is 9 (8 red cells are shown
but the center cell is involved twice in the avalanche process)

Figure 2.9: Representation of the cells involved in the avalanche process generated by
the simulation of figure 2.8

Following the avalanche process presented previously on a very small grid, we can imple-

16



2.1. EMERGENCE OF COMPLEXITY IN SCIENCES

ment the same rules on a larger grid and iterate the fall of many sand grains in order to
record for each one, the avalanche amplitude generated by its falling. We represent then
on a log-log scales graphic, the avalanche distribution: their amplitude (in y-axis) in
function of the their number during all the simulation (in x-axis). If we run a simulation
with thousands of grains falling, we obtain a graphic similar to figure 2.10.
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Figure 2.10: Power laws from earthquakes frequencies

This graphic exhibits a law emergence which is characterized by the linear distribution
of the points on the log-log scale, meaning that the phenomenon results in a power law:

N(a)=a™"

where a is the avalanche amplitude, N(a) is the number of avalanches with amplitude
a which appear during the simulation and r is a constant number which corresponds
to the slope of the line distribution in the log-log representation. There is no known
explicit computation (except an approximation after a simulation from the avalanche
amplitude distribution) allowing to give a priori the factor r.

We have described in this section, an example of emergence property generated by
the application of simple rules over a structured spatial environment, called cellular
automaton. We will come back, in the following (see section 2.4), to the use of cellular
automata as a specific computational tool to simulate complex systems. From now, we
want to highlight with the sand pile model, how emergent properties can be developed.
The emergent property is here the expression of a general law - the power law - which is
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able to describe many natural and artificial systems properties that Per Bak called self-
organized criticality. Similar to the laws of avalanche distribution for sand pile model,
earthquakes, for example, follow the same distributions: there is a lot of earthquakes
of small amplitude but very few of high amplitude. In linguistics, we can observe, for
example, the same property: in a huge book, we can find a lot of time some usual
words like “the” but with very few frequency, some less usual words. In geographical
systems, we can also observe that the town importance follow the same distribution:
many small population towns but very few high population ones. All these samples
generated an amazing similar property in which their distribution follow a power law,
as defined previously.

Emergence in Physical Laws from Robert Laughlin’s Theory

Robert B. Laughlin, 1998 Nobel Price in Physics, initiates a scientific debate on the
validity of the physical laws [74], facing our world understanding. He claims that the
natural laws are emergent. These emergent laws result from a collective behavior and
are independent of the individual processes which compose them [19]. This approach
about physical laws (which are only models of “natural” laws mentioned previously)
escape from the classical reductionist concepts which search from centuries, an elemen-
tary decomposition of nature in physical particles from where we can recompose all
the world by simple “summation”, respecting deterministic processes. Epistemological
ruptures which characterize the physics of the 20th century (from Newton laws to rela-
tivity or quantum mechanics, for example), generate successive new laws. Each new one
consists in going to a kind of more general concept and so is expected to become the
universal one. The search of universal laws is non relevant because each of these laws
can be finally only the expression of particular emergence on the edge of the natural
complexity and lightened by the current knowledge and understanding goals.

Following R. Laughlin, such emergent physical laws are based on the protection princi-
ple, meaning that the macroscopic description (higher level of description) needs some
kind of “protections” from the complexity of their constituents.

One of the most impressive illustration of this protection principle (and the distinction
between macroscopic description and microscopic one) is the approach of Stefan Wolfram
in [133] who claims to be able to obtain macroscopic fundamentals laws in physics from
computer artefact - cellular automaton - which could substitute to the microscopic
physical laws.

2.1.3 Complexity in Economy and Social Sciences

As in many disciplinaries, social scientists and economists used differential equations
modelling approaches, some decades ago, to formulate some synthetic global descrip-
tions of system evolution. In social sciences, this global description consists in hiding
the low level of description of individual behaviors by physical laws for the whole popu-
lation. Physicists were often the inventors of some fluid and flow models to be adapted
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to human society described by homogeneous behavior of their individual. Jay W. For-
rester, for example, was the first major reference in urban modelling, using “stocks and
flows” descriptions of socio-economic indicators [46]. The urban dynamics and land-use
management modelling will be developed in detail in chapter 7.

Economy is generally defined as the study of description and analysis of production and
distribution of goods and services. In order to achieve these goals, economy needs to
examine the part of individual and social actions which is most closely connected with
attainment and material requisite of well being (from Alfred Marshall, see, for example
http://en.wikipedia.org/wiki/AlfredMarshall).

From many years, economy uses two scales of descriptions:

e Microeconomy where the unit of analysis is the individual agent such as a person
or a firm.

e Macroeconomy where the unit of analysis is the economical system as a whole.

The last scale (Macro-economy) is generally described by global differential systems al-
lowing to represent the global evolution of the system where all agent populations are
homogeneous and can be represented by a global number evolving during the trajectory
of the system evolution.

The lower scale (Micro-economy) represents individual behavior and the development
of Individual-Based Modelling (IBM) and Agent-Based Modelling (ABM) gives a very
attractive vision for simulating the phenomena at this scale. Moreover, economy studies
show how individuals, coalitions and societies seek to satisfy needs and wants. The com-
plexity of such description highlights major nonlinear evolutions in a number of contexts.

Complexity perspective approach and agent-based computational economics approach
(ACE) become one of the favorite theories used by scientists in order to consider economy
as an evolving system, following John Holland’s complex adaptive systems paradigm [62].

W. Brian Arthur, professor at the Santa Fe Institute, and other economists have been
interested to view in economical systems evolution, the major influence of feedbacks
[5]. He gives an interpretation of adaptive complex systems by feedbacks for economy.
Dimanishing returns and negative feedbacks refers to the notion that the return that a
company receives for additional effort decreases as the number of units increases. These
negative feedbacks explain why industrial companies become less efficient once they
grow over a certain size. Increasing returns and positive feedbacks refer to the notion
that the greater the size of the network, the greater the advantage of each participant of
the network. The positive feedback mechanism generates a resulting action which goes
in the same direction as the condition that triggers it. W. Brian Arthur observes that
the part of economy that are resource-based is still subject to diminishing returns and
the part of economy that are knowledge-based is still subject to increasing returns.
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Beside system global evolution, individual behavior have been widely used in the new
economy, mainly based on microeconomy. Game theory [50] is very often used to il-
lustrate the economical interactions between people. Such theory tries to analyse the
possible strategies and implement them inside a regular process which can be repre-
sented by some mathematical sequences. Convergence properties leads to explain the
benefit or the failure of specific application. Dynamic equilibria, like Nash equilibrium,
can be a relevant tools for such studies.

For many complex systems, the dynamics are essential and if some equilibrium can ap-
pears, it is generally only a temporary state. In such context, dynamical cooperation
and competition processes can be involved in order to model adaptive strategies for dy-
namical behaviors. Prisonner dilemma is a well-known problem involving such features
|6]. Previous works have been made to model adaptive behaviors for prisonner dilemma
with automata with multiplicities [140].

Based on such complex systems developments, Geopolitics finds a very relevant context.
Agent concept and programming become an attractive way of studying such systems.
Interacting networks widely developed nowadays increase the geopolitics complexity.
Both game theory and agent-based simulations allow to explain in detail some hypothe-
ses and find root in complexity concepts [29].

Another major contribution of complex systems in economy concerns the market system
which presents sometimes inherent nonlinear and unstable behavior leading to chaotic
evolution. Recent events show how the complexity of market system is able to highlight
its criticality properties, far from equilibrium and far from any kind of external controls.
Didier Sornette [114], professor in Geophysics, investigates the complexity concepts to
analyze financial crises as critical events, highlighting feedbacks and self-organizations
inside economics.

Even if we can feel what is the complexity of such artificial or natural systems, social
or economical systems, as we describe then in this section and the previous ones, we
need now to progress on general concepts that are able to draw some transverse char-
acteristics or properties of all these systems. We need these general concepts to extract
the complexity itself, out of the disciplinary context but crossing all these disciplines.
That is what we propose to do in the two following sections concerning complex systems
concepts and self-organization processes.

2.2 Complex Systems Concepts

2.2.1 Complex Systems Definition

General system theory has been developed by L. von Bertalanffy in 30’s [7 in master
thesis|. The goal is to study the general properties of natural and artificial systems
whatever their physical nature.
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Because of the generic approach proposed by L. von Bertalanffy, this theory is well
suited for various applications and allows a large-scale formalism. Systemic and com-
plex system modelling find their roots in this ambitious framework.

Definition 1 A Complex System is a set of interacting entities which have the fol-
lowing specific characteristic properties that confer its structural aspects:

1. Emergent properties exist and describe the whole system behavior which are not
expressed in the entities behaviors.

2. Feedback process exists and concerns the reaction of the system over its own enti-
ties. There are two kinds of feebacks:

o Positive feedbacks are catalystic functions which increase some emergent prop-
erties. These positive feedbacks can for example, be the generator of the sys-
tem formation, increasing its own constitution;

e Negative feedbacks are stabilizing functions which decrease emergent proper-
ties to reqularize the system itself, allowing to identify it.

3. Energetical fluzes, crossing the system, exist in order to characterize the system
as an open system. These energetics fluxes lead to make evolve the entities inter-
action system in a dynamical way.

In figure 2.11, we illustrate this definition, drawing these different concept item inside
abstract representation.

As defined, a complex system is a system composed of interconnected parts that as a
whole exhibit one or more properties (behavior among the possible properties not obvi-
ous from the properties of the individual parts).

The complexity of a system may be of one of two forms: disorganized complexity and
organized complexity [wikipedia|. In essence, disorganized complexity is a matter of a
very large number of parts, and organized complexity is a matter of the subject system
(quite possibly with only a limited number of parts) exhibiting emergent properties.

2.2.2 Complex Systems Properties

After giving a general definition of complex systems in the previous section, we detail
in this section their characteristic properties to better understand its meaning. We
associate to the definition items, additional concepts or properties linked to these items.
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Figure 2.11: Complex adaptive system (from Wikipedia)

Interacting Entities

Complex systems are basically composed of entities which interact within relationships.
Typically these relationships are short-range and deal with neighborhood. They are not
simple and present nonlinear properties making that small modifications on few entity
relationships can produce large effect on the whole system. These properties are known
as the “Butterfly effect” which comes from a metaphor used by the scientist Lorentz
when he described the sensibility to initial conditions in meteorologic dynamic systems.
Because of the high degree of flexibility in complex system, a small perturbation at some
place can produce major effects further, by combination of interacting effects.

This sensibility to modification generates also sensibility to the entity belonging to the
system on its boundaries. Moreover, the boundaries of the system can be virtual in the
meaning that the system exists but the entities which compose it can change. A water
vortex is an example of such stable structure which are crossed by the entities which
compose it.

People sometime talk about “strong” or “weak” boundaries without an accurate definition
of this terminology. We can consider that a boundary is strong if it involves a great
quantity of interaction between itself and entities within the system. A strong connection
can lead to close the system and avoid its opening.
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Emergence, Hierarchies and Multi-Scale Description

One of the major properties of a complex system is that it is not only the simple sum of
its entities. Its entities interact in collective behavior making the system itself emerg-
ing from this collective behavior. The whole system behavior (or behaviors) cannot be
described inside the entities set because these entities cannot know what is happening
in the system as a whole. We face to multi-level or multi-scale description.

A first consequence of this aspect is that the control of the whole system must be
obtained from the description level of the system itself, if possible, and it cannot be
managed from the entities themselves.

A second consequence of the multi-scale description is that the description level is not
only on one level and usually complex systems are themselves composed of entities
which are themselves complex systems of lower level. Typically ecosystems are well-
known to be hierarchical systems of systems and its stability is larger with the depth
of this hierarchy. In the same way, a social system is composed of countries composed
of a region set, themselves composed of cities sets, themselves composed of a center set
which contains multi-organizations set and groups of people.

Feed-Back and Adaptation

We can understand the feedback process as the tendency of the system to use its own
output to make adjustments in its inputs, most systems include some form of feedback.
Feedback which is an action on the whole system is a primary means of control to guide
the system behavior and adapt it to some evolution. It can take the form of information
or energy that enables the system to get back into balance. Even failure in a system is
only feedback.

Because complex systems have internal degrees of freedom and because we are only able
to act on few of its degrees of freedom, such system cannot be completely controlled and
we can only hope to guide it or influence it [31].

In the most general sense, adaptation is a feedback process in which external change in
the environment are mirrored by compensatory internal change in an adaptive system. In
the simplest case, an adaptive system may act in a regulatory manner, like a thermostat,
so as to maintain some property of environment at constant level [45]. An interesting
type of adaptation is found in complex systems in which the interaction among the
subunits are allowed to change. This process is very similar to a self-modifying program,
since the action of the adaptive unit can effect the environment, which, in turn, feeds
information back to the adaptive system. Thus, adaptation can be seen as a computation
of the most complex form that emerges through the multiplicity and recursion of simple
subunits.
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Open Systems and Dynamics

The richness of the connections between entities means that communications will pass
across the system, but will probably be modified on the way. Dynamics are generally
major aspects of complex systems. Because they are open systems, energy and informa-
tion are continuously being imported and exported across systems boundaries. Because
of this, complex systems are usually far from equilibrium: even though there is constant
change, there is also the appearance of stability.

Finally, a complex system has a history. Small change can make it evolve in an irre-
versible way. Usually a young system has no deep hierarchy and this hierarchy depth
increases with the development of the system respecting its complexity.

2.2.3 Simplicity, Complication and Complexity

To better understand what are complex systems, we can propose the following classifi-
cation, from Jean-Louis Le Moigne [85] and Michel Cotsaftis [32]:

e Complicated systems

A complicated system can be decomposed in smaller parts and each part can be
analyzed separately to understand component by component, the whole system
behavior. We face the reductionism approach, issued from Decartes’s method.
An example of such complicated system could be a description of car engine that
we can analyze piece by piece. The whole car engine is the simple assembly of
its components. The whole car engine is doing not more than the sum of its
component’s contribution, taken in an isolated way.

e Complex systems

A complex system is not reducible to simple systems as complicated systems. If
you try to analyze it by parts, you lose the understanding of the whole system
itself. Isolating a sub-system consists to break some connections inside the whole
system and, as we already explained, breaking connections leads to modify the
system behavior. An example of such phenomena can be found in ecosystems and
food chains in some specific environment. If you isolate few animals of some species
in a food chain and make them live together, they will organize and evolve in a
complete different way than in the whole ecosystem from where they are taken.

Following Edgar Morin [86], complexity helps to evolve in the scientific knowledge by
breaking with the simplification approach which consists in dividing and reducing sci-
ence in a set of dissociated knowledge, hiding the connection between these knowledge.
Complexity principles are to connect the knowledge, to have new understanding of
transversal concepts, and then be able to have new meaning of these concepts even in-
side each specialty. Moreover, complexity is not in opposition with simplicity because,
as we will illustrate by swarm intelligence methods, complex systems modelling consists
sometimes to use simple systems but to be able to connect them and to give meaning to
the connection network in order to lead to emergent properties from this network links.
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2.3 Self-Organization Process

2.3.1 Self-Organization Definition

Self-organization is a phenomenon in which interactions between elements and other
factors, tend to create and improve order inside the whole complex system. Such a
phenomenon goes against the increase of entropy and leads to energy dissipation. This
dissipation has an effect to maintain the structure generated in this way.

So, this phenomenon is a natural tendency of physical dissipative systems or social sys-
tems to generate organization from themselves.

No one knows exactly how self-organization happens - it is a "wonder of nature." Birds
naturally flock together. Bees naturally form hives. People naturally recognize their
interdependence and work together to accomplish shared goals or tasks. They do not
always have to be told what to do.

The study of self-organizing systems was originally developed in physics and chemistry
describing the emergence of macroscopic pattern out of interaction process defined at
microscopic level [23]. Since 1953, this field has been explored by Grassé [56] who stud-
ied the individual behavior of social insects and introduced the concept of Stigmergy.
“Self-organization is a process in which pattern at the global level of a system emerges
solely from numerous interactions among the lower- level components of the system”.
Moreover, the rules specifying interactions among the system’s components are executed
using only local information, without reference to the global pattern.

From Camazine et al. [27], in other words, each individual entity is organized without
any external or central dedicated control entity but by the local interactions simple
rules, emergent behaviors (structure or pattern) appear.

Another definition for self-organization is “a set of dynamical mechanisms whereby struc-
tures appear at the global level of a system from interactions among its lower-level
components”|[23].

The self-organized system has the following properties:

e No central control
There is no global control system or global information available. Each subsystem
must perform completely autonomously, adapting to change conditions.

e Emerging structures
The global behavior or functioning of the system emerges in form of observable
pattern or structures.

e Resulting complexity
Even if the individual subsystems can be simple as well as their basic rules, the
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resulting overall system becomes complex, hierarchical and often unpredictable.

e High scalability
There is no performance degradation if more subsystems are added to the system.
The system should perform as requested regardless of the number of subsystems.

2.3.2 Element of Self-Organization

A self-organized system has four basic elements: positive feedback, negative feedback,
amplification of fluctuations, and multiple interactions.

Positive Feedback

Positive feedback promotes changes in a system, usually in the same direction as the
system is currently moving. It has been described as “simple behavioral rules of thumb”
that promote the creation of structures [22].

An example of this is the aggregation of some birds when building nests. Nesting in
groups may provide benefits in terms of protection from predators, or ease in finding
food. Because of this, birds may prefer to nest where other birds nest. If some birds for
some reason decide to nest at a particular location, other birds will be attracted to nest
on the same site, because they want to nest where other birds nest. This constitutes a
positive feedback in the form that the more birds that nest at a location, the more birds
will be attracted to nest at that location, and as a result the nest site will increase in size.

Positive feedback can have a snowballing effect in that it reinforces an initial change
in a system in the same direction as the initial deviation. In fact, explosive chemical
and nuclear reactions are classical examples of positive feedback. Positive feedback
consequently has a destructive potential in that it can create a cascade of change in one
direction.

Negative Feedback

Negative feedback counterbalances positive feedback and helps to stabilize the collective
pattern. As mentioned above, positive feedback has a destructive potential in that it
can have a snowballing effect. This destructive potential can be counterbalanced by
negative feedback.

Negative feedback can work in the opposite direction of a positive feedback mechanism,
and thus provides inhibition to offset the amplification provided by the positive feedback.
By doing this, negative feedback can help shape the amplification into a specific pattern.
Negative feedback can take the form of a saturation, exhaustion or competition. It
often arises from purely physical constraints, for example in the form of depletion of
a resource. The building of a structure may for example be inhibited by the reduced
amount of building material that is available.
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Amplification of Fluctuations

Self-organization relies on amplification of fluctuations, which is its third basic element.
These fluctuations may take the form of random walks, errors, deposition of objects in
random positions, and so on. This randomness is a key part of self- organized systems.
The random events that occur in a self-organized system are crucial to the system be-
cause they allow the system to discover new solutions. The random fluctuations that

occur in the system can be amplified, and through this, new structures or solutions may
be found.

For example, in the case of ant foraging, a forager may get temporarily lost from its
current trail and discover a new rich food source. This food source can then be exploited
by the ant colony. If it were not for the error of the first ant this food source would not
be discovered, and the colony would not be able to exploit it.

Multiple Interactions

The last element of self-organization is multiple interactions. These interactions may
be either directly exist between the individuals of the system, or indirectly through the
elements that are handled by the individuals in the system. In this latter form two
individuals may interact when one individual modifies the environment, and the other
individual responds to the modified environment at a later time. This modification of
the environment may, for example, take the form of deposition and removal of objects.

2.4 Computational Aspects of Complex Systems

In the previous sections, we have presented the concepts of complex systems. It is an
essential step to understand and to define these concepts allowing to highlight when and
how some phenomenon can be recognized by its complex properties. Applied Mathe-
matics, Physics and Computer Science, as sciences of modelling, have to go further
in concepts description and have to give formalisms to express complexity and self-
organization. In our own scientific approach, based on computer science and computer
engineering, we have to propose computable models toward implementation and simu-
lations. We can see complex systems simulations as a tool to understand and analyze
system dynamics, leading to decision making processes.

In the following sub-section, we propose a short review of methods and algorithms
allowing complex systems implementation, highlighting some of the essential properties
belonging to complexity.

2.4.1 Evolutionary Algorithms and Adaptivity

Evolutionary algorithms are an active research field based on the metaphor of natural
evolution. The principles of such methods is to describe a dynamic process with a popu-
lation of individuals. Fach individual is represented by a chromosom allowing to encode
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the data or properties on which the simulation deals. For example, Genetic algorithms
belong to evolutionary algorithms and have been initially introduced by John Holland
to focus on adaptation in natural and artificial systems [62].

Genetic algorithms are scheduled in two main steps. The first step consists in applying
three genetic operators on the population of chromosomes: duplication, crossing-over
and mutation. The second step consists in applying a selection process on the chromo-
some population, keeping only the individuals performing the best values of a fitness
function. This second step shows that the genetic algorithm is well-suited for optimiza-
tion problems [53]. The advantage of this method is that the genetic operators include
different kinds of operators: (i) the crossing-over is a kind of combination which com-
poses a new value from two others. This leads to improve some previous solution seen
as a candidate to the problem; (ii) the mutation introduces a random aspect allowing
to produce a completely new solution candidate to the problem. This contributes to
continue to explore the solutions space and not only fall into some local optimum, by
only combination of previous solutions.

2.4.2 Neural Network and Self-Organized Map (Kohonen Map)

Neural networks algorithms are based on the use of interaction networks of neurons as
elementary computing entities. We use here the metaphor of the human brain with
two major steps: (i) learning process consists in building the neuronal network, that is
the definition of the best value of weights on each edge connecting two neurons. (ii)
once the learning process is achieved, we have a whole neuronal network which can
be used like a black box. This network receives some input and gives in return some
outputs. Typically, neural networks have been used in an efficient ways for pattern
recognition. More recently, a new kind of neuronal networks have been proposed by
Kohonen who proposed a self organized neural network without the need of learning
step. Because of this improvement, these new kinds of networks, called Kohonen maps,
have been described as self-organized maps. They are able to configure themselves
without learning. They are used for example, in non-supervised classification.

2.4.3 Cellular Automata and Diffusive Rules

Cellular automata are well adapted to simulate spatial phenomena and to reproduce
self-organized systems.

Cellular Automata Definitions

Generally, a cellular automaton is defined as a dynamic system, composed of cell net-
work (generally regular grids). These cells are in one state belonging to a finite set. The
cell evolution is defined by a local rule, according to the state of its neighboring cells.
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In a more formal way, we can give the following definition:

Definition 2 A cellular automaton A of dimension d > 1 is defined on Z%, called
network containing cells characterized by

o S(i,t) is the state of the cell i, at time t;
e v(i,t) is the state of the neighborhood of the cell i, at time t;

e q transition rule f which define the state of the cell i, at time t + 1 by:

S(i,t +1) = f(S(i, 1), v(,1)).

In figure 2.12, we show a 2D cellular automata, in which each cell has 2 states: white
or black. These two states could modelize a dead or living state like in the well-known
Conway’s life game [49].

Figure 2.12: Simple 2D cellular automata with 2 states cells

A cellular automaton is characterized by its cells support, called Z¢ in the definition.
We have to define the domain boundaries which have an important influence on the
computation. In figure 2.13, we describe, on the left side, a finite boundary 2D (d = 2)
regular domain. In the middle of this figure, we introduce a surrounding between the
lateral border of the domain which transforms it as a cylinder. In the right side of
the figure, we introduce also a surrounding between the top and bottom border of the
domain which transforms it as a torus surface.

As an essential part of the previous definition for cellular automata, the cell neigh-
borhood is an essential concept. In a 2D regular grid, the most usual neighborhood
definition given are won Neumann neighborhood and Moore neighborhood. On figure
2.14, we describe these two kinds of neighborhoods and their computation according to
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Figure 2.13: Various configurations of 2D space in cellular automata (from Coquillard
and Hill |30])

the boundary definitions.

We give now a formal definition of these two kinds of neighborhoods (von Neumann and
Moore), generalized to any polygonal cell-based 2D cellular automata.

Definition 3 In a 2D cellular automaton with support Z2, the von Neumann neighbor-
hood of a polygonal cell c is the set of cells of Z? which share an edge with c.

Definition 4 In a 2D cellular automaton with support Z2%, the Moore neighborhood of
a polygonal cell ¢ is the union of the von Neuman neighborhood with the set of cells of
Z?% which share a node with c.

The neighborhood definition has a major effect on cellular automata because we can ob-
serve that the transition rules defined previously, are in some way, only diffusive rules.
The meaning of this remark is that, any dynamics over cellular automata can only be
propagated by neighboring effect. In their paper [72|, Langlois and Daudé study the
geographical diffusion effect based on cellular automata modeling.

More generally computational grid, as extension of cellular automata on which we can
introduce agents, is very efficient and it is the support of many studies presented later
in this document.

Cellular Automata Applications

Cellular automata has been developed in an intensive way from the last decades. In
the 1960s, the mathematician John Conway proposes his very famous game of life, as
an example showing that with a very elementary set of rules, we can obtain very com-
plex unpredictable situations. In the 1980s, the famous physicist Stephen Wolfram who
already made major contributions on computer algebra with his system called Mathe-
matica, revived cellular automata research. In his famous book, “a new kind of sciences”,
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Figure 2.14: Neighborhood definitions in 2D regular cellular automata

Stephen Wolfram [133] presents cellular automata computation. He claims that such
computer tools allow him to recover the main laws of physics, as emergent properties of
this artificial computing.

S. Wolfram gives more phenomenological and systematic definitions, based on the qual-
itative result given by the cells interactions toward a complex global behavior. With
the consideration that a finite cellular automaton can only produce finite states set (but
sometimes of impressive size), he proposes a classification based on 4 classes according to
the phenomenology of the automata dynamics. The first class concerns the cellular au-
tomata which always evolve to a homogeneous arrangement, with stable configuration.
The second class concerns the cellular automata which evolve to stable periodic struc-
tures in endless loop. The third class concerns the similar to “aperiodic” and random-like
configuration evolution (finite state means that all automata will necessary repeat itself
after eventually a very long period but this period has no meaning in the qualitative de-
scription here). The fourth class concerns cellular automata where localized structures
appear and move in the space with time.

Chris Langton, a famous name for artificial life and the inventor of the swarm simulation
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platform [84] in Santa Fe Institute, contributes to define some criteria whom evolution
makes the cellular automata go through the different class of Wolfram’s classification.
He defines a parameter which characterizes the class of the automata and allowing un-
derstanding of cellular automata dynamics in term of fixed, periodic, chaotic or complex
dynamics.

Previous studies, as mathematical studies of cellular automata dynamics, deal mainly
on simple state cell configuration, mainly the cell is white or black, dead or alive. Since
a few years, cellular automata find a huge domain of applications in human sciences
and specifically in geography. For these applications, the cell states must be more
complicated and can allow to describe the state of land-use parcel, that is: non used,
with forest, inside rivers, with industries, in urban area, with shopping, with housing,
etc. We will present some of these simulations in chapter 7

2.4.4 Multi-agent Systems, Cooperation, Competition and Co-
ordination

The grid rules of cellular automata is generally not sufficient to model all the complexity
of some phenomena and we need to add agents entities. In this section, we just give a
short overview of agent-based concepts and programming and we will develop them in
the following chapter, because they constitute a major contribution in our work.

Mainly, multi-agent systems allow to implement computer programs composed of au-
tonomous entities, perceiving and acting on their environment. These active entities
are able to communicate and so to contribute in a collective way to solve some prob-
lems. Social behaviors are proposed between agents to describe communication effects
like cooperation, competition or coordination, but the principles of problem solving by
collective approach have to be built. What agent concept does not define by itself, is
how this communication must be organized to finally produce an efficient distributed
algorithm to solve the problem. The collective mechanism algorithms must be defined,
as well as the agents behavior allowing this collective behavior.

The goal of swarm intelligence is to propose some efficient way to solve such problems,
by the accurate definition of agent behavior, with other agents and the agent environ-
ment, that leads to emergent collective behavior. These methods and algorithms will
be described in chapter 4.
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3.1 Distributed Artificial Intelligence

3.1.1 A Brief History of Artificial Intelligence

Since the beginning of recorded history, people has been fascinated by the idea of non
human agencies or by intelligent machines, but with the development of the electronic
computer in 1941, the technology finally became available to create machine intelligence

[106].

In late 1955, Newell and Simon developed the Logic Theorist, which is considered by
many, to be the first program of Artificial Intelligence (AI). The program, representing
each problem as a tree model, would attempt to solve it by selecting the branch that
would most likely result in the correct conclusion. The impact that the logic theorist
made on both the public and the field of AT has made it a crucial stepping stone in
developing the Al field.

In 1956, John McCarthy who is considered as Al father coined the term "artificial intel-
ligence" as the topic of the Dartmouth Conference, the first conference devoted to the
subject.

In 1957, the first version of a new program, the General Problem Solver (GPS) was
tested. The program was developed by Newell and Simon. The GPS was an extension
of Wiener’s feedback principle, and was capable of solving a greater amount of common
sense problems. After many programs were being produced, Arthur Samuel wrote the
first game-playing program for checkers to achieve sufficient skill to challenge a world
champion. Samuel’s machine learning programs were responsible for the high perfor-
mance of the checkers player.

In 1958, McCarthy announced his new development, the LISP language, which is still
used today. Oliver Selfridge’s paper "Pandemonium: A Paradigm for Learning", which
proposed a collection of small components dubbed "demons” that together would allow
machines to recognize patterns, was a landmark contribution to the emerging science of
machine learning. In the same year, Marvin Minsky’s wrote the paper "Some methods
of heuristic programming and artificial intelligence". Since that time many projects has
been done and served to increase the pace of development in Al research, by computer
scientists around the world [106].

Another turning point of Al development comes in the 1960’s and in the early 1970’s by
the development of knowledge based systems and the experts systems, trying to have
thinking machine. From 1980 until now, Al has been become widely used in industrial
domains. In the mid 1980’s, Neural Networks have become widely used with the Back
Propagation Algorithm (first described by Werbos in 1974). We can say that from
1987 until now, AI becomes a science and many revolutions have been accomplished in
domains like: robotics, computer vision, and knowledge representation [106].
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3.1.2 From Artificial Intelligence to Distributed Artificial Intel-
ligence

A machine that is capable to think and decide is a great achievement for the human
being, which directly connected to expert systems.

“An expert system is a computer program that is capable of replacing human
beings in some tasks that considered as extremely complicated which need
knowledge, experience and a certain type of reasoning” [44].

This conception is the root and the result of the development of centralized and sequen-
tial systems, including control. The decision will be a function of different activities
carried out one after another. However, this concept of sequence and centralization
meets several obstacles:

1. At the theoretical level, the human intelligence is like science (Latour 1989, Lestel
1986) you can’t separate individual characteristics from the social context and the
artificial intelligence methods used are based on reductive and optimistic descrip-
tion.

2. At the practical level, computer systems become more and more complex. For
example, in complex industrial expert systems, the expertise (various kinds of
“know-how”, skills and knowledge) which try to integrate into a knowledge base,
is possessed by different individuals who communicate within a group, exchange
knowledge and collaborate in carrying out a common task. In this case, the knowl-
edge of the group is not equal to the sum of the knowledge possessed by all the
individuals: each kind of know-how is linked to specific points of view and can’t
be brought together to form a coherent whole. So carrying common tasks require
discussion, adjustment, and even negociations to resolve conflicts.

3. Problems can be sometimes naturally expressed in distributed context. For ex-
ample, air traffic control system cannot be completely centralized and it is the
result of the interaction of constraints from many control centers concerned by
each airplane trip.

The need for different approaches of classical artificial intelligent leads to radical changes
from the sequential computation. The need to take into account complex problem solv-
ing leads to the development of Distributed Artificial Intelligence (DAI) which is based
on the establishment of subsystems sharing environment and able to communicate and
coordinate actions. These sub-systems need to be entities relatively independent and
autonomous. These entities called "Agents” have sometimes complex mode of coopera-
tion, conflict and competition in order to survive and perpetuate themselves. Organized
structures emerge from these interactions and these emergent structures to restrict and
modify the behavior of their own agents [44].
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We should mention here that there are three main features that facilitate the DAI
developments. First, the development of Complex Systems understanding, as a mean
of interaction between agents, gives a new way of modeling. This new way of modelling
is based on decentralized representation which is composed of interaction network of
entities from where emergent properties appear. Second, Object-Oriented programming
has proposed a first step in the decomposition of computing, and so in the following,
agent oriented programming adds to objects some autonomous properties. Third, the
development of huge computer networks promotes the distributed computing which
finally allows implementations of these previous concepts.

3.2 Multi-agent Systems Overview

3.2.1 From Object-Oriented Programming to Agent-Based Pro-
gramming

Agent-Based programming can be perceived as an extension of Object-Oriented Pro-
gramming, in terms of conceptual description.

Object-Oriented programming proposes an extension of procedural programming ap-
proach by introducing the notion of attributes and methods (private methods and public
ones). In general, public methods define the interface of the object, allowing the object
to communicate with this outer world (see figure 3.1). Moreover, object programming
promotes abstract concepts like inheritance, that provides the support for representation
by categorization in computer languages. Categorization is a powerful mechanism used
in information processing, crucial to human learning by means of generalization (what
is known about specific entities is applied to a wider group given a member relation
can be established) and cognitive economy (less information needs to be stored about
each specific entity, only its particularities). Finally, an object-based program consists
in running the main object which will create all the objects needed for the program and
solving in a distributed way the problem by the composition of their actions and by the
interaction between them. The program must be scheduled and planned in detail by
the programmer.

Agent-Based Programming proposes a more complex conceptual description. An Agent
still contains attributes and methods but also more sophisticated notions like life cycle,
behavior or knowledge database (see figure 3.2). In addition, the interface is composed of
two major methods corresponding to perception mechanisms and to actions mechanisms
which are described in the following section. Finally, an agent-based program consists
in running a virtual world where many autonomous entities will evolve according to the
dynamics of the environment and the whole system of agents, during the simulation.
The whole evolution of this virtual world can be perceived as unpredictable, according
to the complexity of the entities interaction.
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3.2.2 Agent Definition

“An agent is anything that can be viewed as perceiving its environment
through sensors acting upon that environment through actuators ” [106].

This simple definition which illustrates in figure 3.3 allows us to illustrate the relation
between the agent and its environment in functional aspect.

Following M. Wooldridge [134], we give the following basic definition which is based on
behavioral aspect of agent properties:

“An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet
its design objectives”

An autonomous action for an agent is its ability of deciding for itself what it needs to
do in order to satisfy its design objectives. The environment is an essential notion: it
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Figure 3.3: Agent basic representation

summarizes everything out from the agent; it is the origin of all external perceptions of
the agents. We can then describe the relation between an agent and its environment in
the simple following way:

e The agent has some perceptions from its environment
e The agent has the possibility to act on its environment

Between the perception and the action, the agent can develop some less or more sophis-
ticated behavior. According to this behavior we have outlined four basic kinds of agent
corresponding to their selecting actions methods [106]:

o Simple refler agents: Simple reflex agents act only on the basis of the current
percept. The agent function is based on the condition-action rule: “If condition
then action rule”. This agent function only succeeds when the environment is fully
observable. Some reflex agents can also contain information on their current state
which allows them to disregard conditions whose actuators are already triggered
(see figure 3.4).

o Model-based reflex agents: Model-based agents can handle partially observable en-
vironments. Its current state is stored inside the agent maintaining some kind of
structure which describes the part of the world that can not be seen. This be-
havior requires information on how the world behaves and works. This additional
information completes the "World View” model. A model-based reflex agent keeps
track of the current state of the world using an internal model. It then chooses an
action in the same way as the reflex agent (see figure 3.5).

e (loal-based agents: Goal-based agents are model-based agents which store infor-
mation regarding situations that are desirable. This allows the agent a way to
choose among multiple possibilities, selecting the one which reaches a goal state
(see figure 3.6).
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o Utility-based agents: Goal-based agents only distinguish between goal states and
non-goal states. It is possible to define a measure of how desirable a particular
state is. This measure can be obtained through the use of a utility function which
maps a state to a measure of the utility of the state (see figure 3.7).

In addition, agents can be qualified as learning entities which can be applied to each of
the four previous kinds of agents: Learning has an advantage that it allows the agents
to initially operate in unknown environments and to become more competent, because
its initial knowledge can be improved during the learning process. alone might allow

(see figure 3.8).

All the previous kinds of agent representations define a conceptual modelling for mapping
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the agent behavior from perceptions to actions. It is important to remark that this
mapping classification does not define the agent jobs themselves. These jobs have to be
implemented using Al traditional methods (for example: neural network, expert system)
or other innovative methods (for example: Boids behavior, ant clustering behavior which
are defined in the next chapter).

3.2.3 Multi-agent Systems

Adapting the definition of Ferber [44] the term "multi-agent system" refers to a system
consisting of the following parts which characterize the agents interactions between
themselves or with their environment:
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1. The environment E consisting of the following elements:

e A set of objects O. Objects can be perceived, created, destroyed and modified
by agents.

e A set of agents A. Agents are a subset of objects (A € O) capable of per-
forming actions - the active entities of the system.

2. An assembly of relations R which link objects and also agents to each other.

3. A set of operations Op enabling the possibility for agents to perceive, manipulate,
create, destroy objects of O, in particular representing the agents’ actions.

4. A set of operators U with the task of representing the application of the operations
from Op and the reactions of the world to this attempt of modification.

3.3 Environments for Agent Simulation

As described previously, environments are important elements for agents which provide
percepts and perform actions on them. Multi-agent theory regards the environment
as an integral part of the framework. In general, two classes of environments can be

distinguished: artificial and real environments.

An agent in the environment is located at some position in space (from the set of
locations L). Environment allows agents to have:

e Communications and perceptions.
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e Neighborhood, connectivity of the places and among agents.

e Movement possibilities and constraints.

This environment can be conceptual or spatial. From the conceptual point of view, envi-
ronments can be classified according to task performing aspects. From the spatial point
of view, environments can be classified according to topological aspects.

From [106], the classification on task performing aspects is the following:

e Observable vs. partially observable
In order for an agent to be considered as such, some part of the environment,
relevant to the action being considered, must be observable. In some cases (par-
ticularly in software) all of the environment will be observable by the agent. This,
while useful for the agent, will generally only be true for relatively simple environ-
ments.

o Deterministic vs. stochastic
An environment which is fully deterministic is one in which the subsequent state of
the environment is wholly dependent on the preceding state and the actions of the
agent. If an element of interference or uncertainty occurs then the environment
is stochastic. Note that a deterministic yet partially observable environment will
appear to be stochastic to the agent. An environment state wholly determined by
the preceding state and the actions of multiple agents is called strategic.

e FEpisodic vs. sequential
This refers to the task environment of the agent. If each task that the agent must
perform does not rely upon past performance and will not effect future performance
then it is episodic. Otherwise it is sequential.

e Static vs. dynamic
A static environment, as the name suggests, is one that does not change from
one state to the next while the agent is considering its course of action. In other
words, the only changes to the environment are those caused by the agent itself.
A dynamic environment can change, and if an agent does not respond in time,
this counts as a choice to do nothing.

o Discrele vs. conlinuous
This distinction refers to whether or not the environment is composed of a finite or
infinite number of possible states. A discrete environment will have a finite number
of possible states, however, if this number is extremely high, then it becomes
practically continuous from the agents perspective

The classification of environment on topological aspects, as mention by Charles M.
Macal and Michael J. North [80], is described in the following, see figure 3.9,
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Euclidean Grid: von Neumann
Space: 2D, 3D neighborhood

Network GIS: Geographic
Information
System

Figure 3.9: Environment classification based on topological aspects (from [80])

Fuclidean space: accurate but non structure. It considers the relationships among
distances and angles, so neighborhoods calculation is expensive because each point
has a neighborhood that is homeomorphic to an open set in Euclidean space of
specific dimension. The cost of the neighborhood computation leads to some
limitation in term of terms of entities number.

Grid and cellular automata: in a grid space, the neighborhood is structured. On
2D-space regular grid, we can define 2 standard neighborhoods: Moore (8 neigh-
bours) and von Neumann (4 neighbours). You can compute in that way the
neighborhood easily and efficiently. Cellular automata described in the previous
chapter, are examples for grid agent spaces.

Graphs and Networks: in the previous grid space, the neighbors with which the
agents are able to communicate, are in direct contact and the phenomena involved
by such process can be considered only as diffusion processes: It is the major limi-
tation of grid or cellular automata. In graphs and networks, we are free to consider
all the edges needed between two agents, allowing them to interact, whatever their
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position. In fact, graph and network does not represent a real geographical refer-
ence and only express abstract relationship network.

e Geographic Information Systems (GIS): these systems are based on spatial data
associated to attributed databases. The goal of data representation in GIS is to
provide spatial characterization of thematic ’layers’ at desired scales and level of
detail. Geographic features (like city represented by point or street represented by
line) are usually represented in a GIS as spatial features with z, y, and sometimes,
z and t (time) coordinates. The next section explains this kind of space.

A new concept called spatial network has been proposed recently and has the objective
to link the two previous classes [20]. They are defined as networks of spatial elements
and are able to deal with two objectives. The first objective is to add georeferencing to
the nodes of the graph and to add distance meaning to edges. The second objective is
to describe with edge connections, some graph topologies (small-words graphs, random
graphs, etc) over spatial geographical sites. Current works on urban morphologies have
to deal with such concepts.

3.4 GIS Environment

3.4.1 What is a GIS?

Maps have been used since thousands of years, but it is only within the last few decades
that the technology has existed to combine maps with computer graphics and databases
to create Geographic Information Systems or GIS. Essentially GIS is an automated in-
formation based map. This information which can be stored in different ways, is usually
displayed as a computer-produced map. GIS have a great capability to integrate differ-
ent kinds of huge amount of data. One of the unique feature of GIS is the ability to
relate spatial data to relevant non spatial data. From a point in a digital map inside
GIS, which may represent the location of a school, the user can point and click on it and
so retrieve information regarding this school such as name, level, student population. In
typical relational database, the name of the school can be used to retrieve more informa-
tion about the school. In GIS, we use digital map location to retrieve these information
from the database (see figure 3.10).

GIS does not allow only the retrieval of information through the use of geography, it
also provides new techniques of displaying this information. GIS software provides car-
tographic tools to render data inside the visual form of map. We can visualize the points
which represent the school by charts which describe the student population. The speed
in which such maps can be produced, and the flexibility of the tools provided to create
charts and reports are the reason why GIS are highly used in different domains.

One of the most important feature of GIS is its ability to perform sophisticated analysis

using geography (spatial analysis) that has traditionally been extremely slow to perform
or impossible. For example, a planer might use GIS to quickly determine which parcel
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13 14 13 628 1140 Parks/Playgrounds
"—r 14 252 650 Residential

Figure 3.10: GIS links geographic location with information about those locations. The
upper part shows a schools features the lower part shows a parcels features.

of land fall within several environmentally sensitive areas. Without GIS, this would nor-
mally be performed by overlaying several maps on a light table and visually identifying
and recording the parcels that meet the criteria.

With GIS the digital maps are overlaid in the computer by the GIS software, and the
results are displaying either as a new map or in typical report form, or both in much
less time than required by manual light table process.

This capability of spatial analysis allows a wide variety of professional users: City plan-
ner are using GIS to develop and monitor urban plans. Market analysts are using GIS
to predict and plan business growth. Environmentalists are using GIS to perform en-
vironmental impact studies. Law enforcement officials are using GIS to perform crime
analysis and plan the effective deployment of peace officers.

GIS Data Models

Representing the “real world” in a data model has been a challenge for GIS since their
inception in the 1960’s. A GIS data model enables a computer to represent real ge-
ographical elements as graphical elements. Two representational models are possible:
raster (grid-based) and vector (line-based).

e Raster
Raster representation is based on a cellular organization that divides space into a
series of units. Each unit is generally similar in size to another. Grid cells are the
most common raster representation. Features are divided into cellular arrays and
a coordinate (X,Y) is assigned to each cell, as well as a value. This allows for reg-
istration with a geographic reference system. A raster representation also relies on
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Figure 3.11: GIS data models

tessellation: geometric shapes that can completely cover an area. Although many
shapes are possible (triangles and hexagons), the square is the most commonly
used. The problem of resolution is common to raster representations. For a small
grid, the resolution is coarse but the required storage space is limited. For a large
grid the resolution is fine, but at the expense of a much larger storage space. On
figure 3.11, the real world representation is simplified in the lower stages, as a grid
where each cell color relates to an entity such as road, highway and river.

Vector

The concept of vector assumes that space is continuous, rather than discrete which
gives an infinite (in theory) set of coordinates. A vector representation is composed
of three main elements: points, lines and polygons. Points are spatial objects with
no area but can have attached attributes since they are a single set of coordinates
(X and Y in 2D space) in a coordinate space. Lines are spatial objects made up
of connected points (nodes) that have no width. Polygons are closed areas that
can be made up of a circuit of line segments. On figure 3.11, the real world is
represented in the upper stages, by a series of lines (roads and highway) and one
polygon (the river). A real-world entity could be represented by different types of
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vector features, depending on the map scale used in an application (e.g. a road
can be represented as a line at a smaller scale or as a polygon at a larger scale.)

GIS Data Representation

The existent GIS, almost all of them, adopt the layer-based approach to represent ge-
ographic information in map. In the layer-based approach, the spatial data are repre-
sented in a set of thematic maps, named layers, which denote some given themes such as
road, building, subway, contour, border, and so on. Layer can be vector data or raster
data.

Figure 3.12, based on the same data information than the figure 3.11, shows how these
data are structured in layers.

FIGURE 1: Examples of GIS Layers

Layers are information (usually contained in
databases) that you can map or analyze using GIS.

-- Health Data (such as
low-birth weight)

-- Administrative Data
(such as census tracts)

.-- Environmental Data
(such as toxic releases)

. -- Geographic Data (such
as streams)

«~-- Demographic Data
(such as income)

- Combined Layers

Image Copyright © ESRI

Figure 3.12: GIS data layers

Vector layer made up of number of elements called features: for example, layer of houses
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containing points or polygons, represents houses each one of them is one feature of this
layer. Each feature has two main properties:

1. Georeferencement with spatial coordinates.

2. Connection with attribute data.

Figure 3.13 illustrates this relation.

Monitoring Wells

Well ID (Date Samplad [Concentration

C-5, 594 500

=N 58194 20| g 0 g L

C-134 S08/94 120 ky s TV

CATA 55794 560 i K,
Industries

|Facility |address

Aeme  |3029 Corvington Dr.
[H=ES 742 ¥West Lake 5t .
TP a0 Aspen Dr.

Population
Family Hame |Occupants |Addresss
Elake E 78 Circui St
Hernandez 2 148 Plain St.
Jovy 4 18 Webster S,
Smith 5 4321 Tecumseh Dr.

Figure 3.13: GIS data linked to attributes

GIS Data Format

The common format used to save GIS data is shape file. A number of files are associated
with the shape file format:

1. The shape file itself (.shp) which stores the geographical information and the
coordinates of the features.

2. The data base file (.dbf) which records the attribute data for the features.

3. The index file (.shx) which links the data base file to the shape file by the feature
identifier (ID).
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3.4.2 GIS Evolution: Towards Dynamics, Adaptivity and Intel-
ligent Computation

GIS proposes an accurate information system dedicated to geospatial data. They per-
form a powerful treatment concerning information requests, information visualization
and more generally information returns to users. More than these simple information
requests and returns, GIS users expect to have some analysis tools allowing them to give
help and assistance. For example, users can have to reach a decision about the location
of new housing development that has minimal environmental impact, located in low risk
area, and close to a population center. Because of the integration of statistical compu-
tations and advanced query processes, GIS can now be useful and produces quickly new
thematic map. For example, a thematic map, to represent the population density, can
be produced very quickly with different calculation variables (the percentage of men,
women, etc.).

Computer aided systems has been developed on many aspects since a few decades and
they provide more and more sophisticated tools to users. GIS is now considered like such
systems and one of the major improvement expected by users concerns decision making.
How urban planner can choose the good location for housing or equipment taking into
account very huge database information managed by GIS, combining many interacting
aspects of this information? Another major objective for urban planner is to develop
cities with respect to sustainable development. This objective needs to analyse the data
dynamically and to understand how a specific urban planning can evolve during time,
years and decades. The understanding of the complex adaptive evolution of cities is a
major progress for urban dynamics modelling and simulation in order to guide relevant
decisions.

We develop in the following some of the advances expected today for GIS development
and some of the concepts proposed to answer to these expectations.

Dynamics in Urban Planning

Urban planning has to manage dynamical aspects at different spatial and temporal
scales. Urban sprawl consists in studying in final output the global spatial development
of cities. This study requires to understand the impact of the complex interaction of the
phenomena involved in the sprawling: economical aspects, social aspects and environ-
mental aspects. The impact of local influence has to be analyzed also, like the housing
mechanism: why people stay or leave their house? Do some segregation aspects will
result of their behaviors? To go from these local phenomena until the global behavior
evolution of the city development, we need to model this processes by complex systems
appoaches and we need to deal with self-organization processes.

On another scale, urban planning needs also to understand the dynamics of the city at

the scale of one day or one week in order to analyze the individual mobility of citizen
and how they use urban services for their everyday activities. Decision making for
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transportation systems needs such understanding and needs to model in their complexity
all the citizen actions and behaviors. In a big urban area, the interaction between these
behaviors have a major role on these behaviors themselves which have to adapt to other.
Use of services and feedbacks of the services on the users, while they are used are major
aspects of the understanding of the city dynamics at this scale of description.

Intelligent GIS

Artificial intelligence and multi-agent systems have evolved in recent years within dis-
tributed approaches allowing to propose relevent models for social simulations. When
linked to GIS, such models can be useful for evaluating, monitoring and decision mak-
ing. Neural networks, fuzzy logic, evolutionary computation are promising tools toward
decision-making functionalities [18, 79, 26]. Our work, based on swarm intelligence
for spatial self-organization, use in an intensive way, the concept of adding intelligent
processes to GIS.

SDSS

The previous paragraphs on urban planning and intelligent GIS face with decision mak-
ing involving spatial dimension and the mixing of decision making with GIS are the
origin of the term Spatial Decision Support Systems (SDSS) which has been developed
by Paul J. Densham [39, 40]. This concept speculates on future developments in de-
centralized decision-making which will dominate the field in the next decades. As an
example of such problems, location-allocation consist in linking heuristic optimization
techniques for matching the supply of various facilities such as schools, shopping centers,
hospitals to the demands by the population.

To conclude, we see in this section that GIS will have benefit to integrate advances
of complex modelling. These advances are the only ones able to manage the complex
objectives like sustainable development (which is a compromise between environmental,
economical and social goals) and the complexity of the data to manage.

3.5 Repast: MAS Platform and Spatial Environment

We can implement complex dynamical system using MAS technique. But to implement
a complex spatial system, we need to integrate geospatial data with the agent based
model. Repast is one of the few agent-based simulation software that support the inte-
gration of geospatial data.

Since the 1990s, many multi-agent platforms have been developed on the concept of
simulation tools for distributed interacting entity systems, like for example Madkit,
Jade, Zeus, etc. Most of them can be used to model complex systems. Some of the
most popular to simulate swarm intelligence systems are Swarm, Netlogo, Mason or
Repast. Each of them has some specificities. Netlogo proposes, for example, an easy
programming language which makes this platform popular to scientists who are not
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specialized in computing. We do not make here, a review of multi-agent platforms
which can be found, for example in [105] or [99].

3.5.1 Repast Overview

Repast (REcursive Porous Agent Simulation Toolkit) is a freely available agent-based
simulation toolkit specifically designed for applications to social science. Repast permits
the systematic study of complex systems behavior through controlled and replicable com-
putational experiments. Originally developed by David Sallach and other researchers at
the University of Chicago and the Argonne National Laboratory, Repast is now managed
by the non-profit volunteer organization ROAD (Repast Organization for Architecture
and Development).

Repast provides a core collection of classes for the building and running agent-based
simulations, and for the collection and displaying of data through tables, charts, and
graphs. A particularly attractive feature of Repast is its ability to integrate GIS (geo-
graphical information science) data directly into simulations.

Repast provides functionalities to create, run, display and collect data from agent based
models. With Repast, the modelers have to work more in defining agent interactions
and behaviors and then to set up the simulation, visualizations, and analysis. For this
purposes, Repast provides events scheduling, different types of agent displaying, some
basics and template models, Graphics Users Interfaces (GUI) for model manipulation
and control, displays snapshots, data collection, data recording, batch simulation, chart-
ing.

To summarize, making an agent simulation using repast needs:

1. Specifying the model itself (the agents, their attributes, their interactions with
each other and with the environment and their behavior (written by the modeler).

2. Displaying agents, scheduling the events, running the model, controlling and ma-
nipulating the simulation itself (written by Repast functions).

Figure 3.14 represents a simulation running in Repast with various tools for visualization
and analysis.

Repast implementation languages

To define the agents behaviors and interactions, Repast has different implementation
languages. Repast has been developed as a derivative of the Swarm simulation toolkit
[84]. Currently Repast can be implemented in three different programming languages:
Java (RepastJ and RepastS), Microsoft.Net (Repast.Net), and Python (RepastPy):

e Java - RepastJ
RepastJ is the original java package containing the core of Repast and all its
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functionalities. The other Repast languages are extension of the java package for
script writing (RepastPy) or for advanced interface (Repast Simphony) or simply
translation (Repast.NET)

Python - RepastPy
RepastPy have the benefit of the scripting aspect of the langage Phyton. It propose
a first version of easier way to develop in Repast by point-and-click. Advanced
GUI for model development is proposed. We have to mention that an integration
of Repast as a ArcGIS extension is based on RepastPy and proposed with the
name Repast Analyst.

Microsoft.Net - Repast.NET
Repast.NET is a translation of RepastJ for the Microsoft. NET framework.

Repast Simphony - RepastS The main work in Repast development was made
in the last years by the creation of a friendly user interface for modelling. A great
part of the models can be automatically generated through visual interface but
with some limitations for developers used to write themselves their whole package.
A stable version of RepastS only appeared in the end of 2006 and the integration
with GIS was available later with few documentation.

Choosing the appropriate language implementation for Repast depends of the working
context. A sophisticated library needs more than simple interface and RepastJ is often
needed for such purpose. The most complete GIS interface is provided with ReapstJ
which is integrating the original Java Package of the open-source GIS OpenMap. The
work developped here is based on RepastJ.
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3.5.2 Spaces in Repast

An important point of coupling GIS with MAS is the representation of the space or the
spatial data in GIS. The spatial data in GIS can be represented in two forms (raster,
vector), as explained in the sub-section 3.4.1. In Repast we have three kinds of spaces
which are used by agents and define spatial relationships between them: network space,
cellular space and Euclidean space.

We can represent digital raster image in GIS by cellular space in Repast. Agent can
be either the cells themselves or can sit on these cells and interact with the surface
generated by this digital image. So, each agent has an (x, y) coordinate in 2D-space
and the space contains the agents which allow to define the agent movement and also
neighborhoods calculation easily.

Figure 3.15 shows how we can link a raster data from a GIS shapefile to a Repast grid
space.

For vector GIS data 3.4.1 representation in Repast, GIS vector data can translate to
agent based model in Repast using vector space type by considering each feature with
its attributes in GIS layer as an agent with its attributes in agent based model.

GIS data support in Repast can be done by providing a set of Repast classes in the
model which allows to work directly with these data.

Finally, we have to mention that Repast has the capability to integrate libraries to
manage GIS softwares: ESRI’s ArcGIS and OpenMap. With ESRI, the shape file in-
tegration is not direct and we need to use Java interface package (GeoTools) to access
ESRI software functionalities. With OpenMap, the interface is direct because of the
native language for OpenMap (and Repast) is Java. As OpenMap is an opensource
project, Repast simply includes the Java package corresponding to the OpenMap pro-
gram.

In the next section, we will describe an original implementation on Repast of a well-
known social model proposed by Thomas Schelling. This model leads to spatial self-
organization process. We implement it on a 2D-grid space.

3.6 Schelling Model: Spatial Self-organization Using
Repast

Thomas Schelling’s city segregation model illustrates how spatial organizations can
emerge from local rules, concerning the spatial distribution of people which belong to
different classes. In this model, people can move, depending on their own satisfaction
to have neighbors of their own class. Based on this model, a city can be highly segre-
gated even if people have only a mild preference for living among people similar to them.
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Figure 3.15: Reading in a raster data and creating a landscape (ESRI ASCII file) A:
the original file from a GIS. B: the resulting space created in Repast.|34]

In this model, each person is an agent placed on a 2D-grid (in his original presentation,
a chessboard was used by Thomas Schelling). Each cell can be considered like a house
where the agent lives. Each agent cares about the class of his immediate neighbors who
are the occupants of the abutting squares of the chesshoard. Each agent has a maximum
of eight possible neighbors. It computes the rate of the neighbors of its own class from
its eight possible neighbors. Each agent has a tolerance rate determining whether he is
happy or not at his current house location. If the rate of the neighbors of its own class
is under this tolerance rate, he decides to move to live in another free place in the 2D-grid.

The exact degree of segregation which emerges in the city depends strongly on the speci-
fication of the agents tolerance rate. It is noticeable that, under some rule specifications,
Schelling’s city can transit from a highly integrated state to a highly segregated state
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in response to a small disturbance of the local rules. We can observe some bifurcation
phenomena which leads to chain reaction of displacements.

In figure 3.16, we show an implementation of this algorithm using Repast. Here, we
show the “classical” and original problem, modelling the segregation phenomenon with
two population classes, described by red and blue squares. Both, the initial population
distribution and the final stable distribution are given.

In figure 3.17, we detail the impact of tolerance rate on the segregation result. In this
figure, we extend the original problem based on 2 population classes to 5 classes popula-
tion. Part (a) describes the initial distribution according to a whole population density
equal to 0.625. Part (b) describes the stable population distribution for a similar tol-
erance rate for each agent, equal to 0.375, corresponding to 3 neighbors on 8. This
value is a discrete bifurcation point from where all small additional value leads to a very
different distribution. To illustrate this phenomenon, part (c) describes the population
distribution for a tolerance rate greater than 0.375, corresponding to 4 neighbors. The
final population distribution is completely different than the one in part (b).

Figure 3.18 describes some singular formation which can appear in very few cases, when
we go over the bifurcation point. Generally in this situation, no global clustering forma-
tion appears. But in very few cases, some small cluster kernels can appear from random
moves and then grow.
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CHAPTER 4. SWARM INTELLIGENCE FOR SPATIAL SELF-ORGANIZATION

4.1 Principles of Swarm Intelligence

The term “Swarm Intelligence” is generally attributed to Geraldo Beni and Jing Wang
for their work on cellular robotic systems, which are self-organized, and generate pat-
terns through nearest-neighbor interactions [15]. The concern of swarm intelligence is
to design methods and algorithms implementing collective behavior by emergence of
population or community interaction.

The major inspiration of swarm intelligence methods comes from biology, social insects,
fish school and bird flocks which are amazing natural examples of such emergent collec-
tive behavior and movement (figure 4.1 shows examples of such collective displacement).

Figure 4.1: Collective displacement of fishes, ants and birds

In reference to the previous chapter, we can say that swarm intelligence deals with how
to manage simplicity for complexity. The goal here is to give some computable algo-
rithms based on a distribution of interacting entities which have simple behaviors. In
the one hand, the ability of these methods is to model the emergence of a complex global
behavior. In the other hand, because of their distributed structure, it is generally easy
to compose these methods with others and to link parts of behavior entities to additional
processes. We will use these augmentation capabilities in our work and benefit of the
complexity development resulting of such composition.
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In the following, according to the problems on which we will develop our work, we will
focus on the role of the space inside these methods. Is the space only a parameter or is
it an essential part from self-organization process to find a solution? Another important
topic, facing the self-organization process generated by these methods, is: Do we let the
swarm population evolve freely in self-organized way towards an unknown configuration
or do you need an evaluation to control the swarm evolution in order to achieve and
find some solution under specific constraints?

4.2 Flocking Methods

In this section, we present in the first sub-section a model based on collective movements
inspired by birds flocking. This model typically allows to express emergence of collective
systems from individual behaviors. In the second sub-section, we present a new popular
optimization algorithm called Particle Swarm Optimization which is mainly based on
this bird flocking models. This algorithm typically allows to find emergent solution from
distributed collaborative solvers.

4.2.1 Boids

Flocking models concern algorithms describing the movement of birds flocks. The main
contribution in this topic, is the “Boids” model invented by Craig Reynolds in 1987 [104].
In this model, we describe the behavior of individuals according to their neighborhood in
order to obtain an emergent global movement of the whole system. There is no central
control of the bird flock, but each individual bird is moving, with respect to the following
three rules (described also in figure 4.2):

e Separation. This rule makes the individuals move away from other birds that
are too close, to avoid collisions.

e Alignment. This rule makes the individuals move in the average direction and
velocity of its neighbors.

e Cohesion. This rule makes the individuals move toward the average position of
the local flock perceived.

In this model, there is undirect communications and interactions between birds which
are based for each bird, on the perception of neighbor position and velocity. These
indirect communications are the efficient core of the swarm self-organization.

The boids moves are computed as the weighted average of these three rules. According
to the weights used, different qualitative swarm formation geometries can be observed:
linear or compact. The effect of specific behaviors like leadership (the ones who have
greater importance in the cohesion and alignment rules) or renagade (the ones who don’t
follow the boids rules from time to time) has been also studied in detail. Such partic-
ular behaviors are studied in order to reach some way of controlling complex systems
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Figure 4.2: The 3 rules of Boids model: separation, alignment and cohesion (from C.
Reynolds)

respecting their complexity [33].

Applied engineering applications are developped using the Boids systems. Collective
movement of autonomous vehicles have typically benefited of such rules. Nasa has been
active to use such algorithms for deep space exploration using multiple, small aircrafts.
Collective robotics has also benefited of implementing such processes for collective move-
ment |1, 8.

4.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm proposed by J. Kennedy
and R. Eberhart [67] and inspired by the collective behavior of bird flocking. In PSO, a
group of particles are moving inside a search space, finding some optimum. The particles
can communicate between themselves in a local space of perception.

Like in the Reynold’s Boids model, the particles in PSO are moving, taking into ac-
count the movement of the others, allowing a collective research. Each particle is able
to memorize its best position that it discovers (that is the position with optimal value
discovered until now). The fly direction of each particle is influenced by its own previ-
ous experience and it is a composition of its best previous position and the other best
solutions of the particle group that it perceives in its neighborhood.
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In some way, we can say that the search space is a catalyst to the collective solution.
From the search space, the particles obtain information from their neighborhood and
from the space, they can evaluate their own position according to the problem to solve.

PSO is a simple and a distributed solver which constitutes a powerful search technique
which has been applied to a wide variety of optimization problems with success.

4.3 Social Insects and Ant Systems

Social insects are one of the most relevant examples of natural swarm intelligence. The
mechanisms involved in these collective behaviors are better understood with the notion
of Stigmergy which is developed in the first sub-section. In the following three ones, we
describe three main classes of collective behavior, existing for example in a natural ant
society, and we explain how they lead to algorithms which enable us to solve difficult
engineering problems. We conclude this section by one of the most important application
of ant systems: swarm robotics which is a major evolution in robotic research in order
to produce robust and adaptive systems.

4.3.1 Stigmergy
The concept of Stigmergy has been introduced by P.P. Grassé to describe the termite

building process when they produce sophisticated piles or arches for their nest building
[56].
Grassé describes the nest building activities as successive loops of stimuli and responses:

e The termite is stimulated when it meets some previous elements used for the
building.

e Its response is to contribute to the building by adding new elements for it.
e By its contribution, the termite will incite other termites to continue the building.

The major aspect of this concept is that it involves indirect communications, based on
the environment itself or on the result expected by the process. It is a kind of positive
feedback as we described previously.

We can classify the stigmergy concept in two classes: the quantitative stigmergy and
the qualitative stigmergy.

Quantitative stigmergy concerns successive stimuli which are quantitatively different
and modify the probability of response of others insects. For example, pillar construc-

tion in termites, mass recruitment in ants or corpse aggregation in ants (see figure 4.3).

Qualitative stigmergy concerns different stimulus-responses associations. For example
stimulus 1 causes individuals to respond as A; stimulus 2 causes individuals to respond
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S = slimulus

R = réponze

Figure 4.4: Qualitative stigmergy concept in Polistes wasps nest construction.

64



4.3. SOCIAL INSECTS AND ANT SYSTEMS

with B and stimulus 3 causes individuals to respond with C. Nest construction in poliste
wasps is an example for qualitative stigmergy. Figure 4.4 shows the successive different
stimulus (S1, S2, S3) which lead to different responses (R1, R3, R3) respectively.

Figure 4.5 shows a natural and an artificial simulation for wasp nest construction for
two different configurations. Qualitative stigmergy leads to better understand some very
sophisticated building that social insects are able to produce for efficient use.

Figure 4.5: Natural wasp nest construction (on the left) and modeled wasp nest con-
struction (on the right).

4.3.2 Ant Colony Optimization
Natural Ant Foraging Mechanism

One of the most impressive collective work involved in natural ants is the foraging
mechanism for food research. A famous experiment, made by Jean-Louis Deneubourg,
explains the essential aspect of this mechanism [54|. In figure 4.6, we can see a simple
device with two different lengths of allowing ants to go from the nest to some food place.

The principle of the mechanism is the production, by the ants of a chemical trail, called
pheromon, which it puts on the environment. The other ants are able to smell the
pheromon trail deposited on the environment and are attracted by it. It is typically
a phenomenon induced by stigmergetical mechanism because ants do not communicate
directly but they use the environment to indirectly communicate and to increase the
emergence of the collective processes.

The natural processes can be described by the following steps :
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-
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Figure 4.6: Ant foraging Jean-Louis Deneubourg’s experiment

¥

e Ants move on the device and initially choose one path randomly.
e Ants put some pheromone during their movement.

e When an ant reaches the food source, it comes back by the same path (using its
own pheromone) and puts additional pheromone on its path to indicate an efficient
way to find food.

e Ants come back faster when they use the shortest path and the mechanism of
pheromone deposit becomes more important on this path.

e Pheromone trail, as chemical product put on the environment, has the property
to evaporate with time.

e After the simulation start and some pheromone has already been deposited on
the environment, an ant which has to choose a path, preferes to choose the one
with higher intensity of pheromone trail. But, an important aspect is that it is
only a preference and not a systematic choice (what we can call a probability in
mathematical language). In that way, ants continue to explore the environment
to detect better solutions. So, if the initial random choices is not the best one, it
is possible to finally find it. The pheromone evaporation makes some wrong initial
solutions disappear with time.
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Ant Colony Optimization for Engineering Problem

We present now an engineering problem which can be modeled and solved by an ant
foraging process.

C6  Edge (5,6)

Distance D,
Pheromone quant: T, g

Figure 4.7: Graph for Travelling Salesman Problem (TSP)

The engineering problem is the well-known Traveling Salesman Problem (TSP) which
consists in finding the shortest cycle linking n towns completely interconnected, cross-
ing one and only one time each town (formally, the solution is the minimal hamiltonian
cycle from a weighted complete graph). Figure 4.7 presents an example of such a graph.

We present now a synthetic algorithm:

e When an ant £ is on the town 7, it computes the probability to go to the town j
by the formula:

In the previous formula

— Ji is the set of towns not yet visited by the ant k.
— The numerator means that

+ The more the pheromone trail (7;;(t)) is, the more the probability Pf(t)
is
+ The less the distance (D;;) is, the more the probability P[(t) is
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% Some constant parameters («, ) are used to control the relative impor-
tance of these two parts

The denominator is the sum off all non null possible numerators (for all towns still
to be visited). It allows to obtain a probability value between 0 and 1 (the sum
of all possibilities is 1).

e When an ant finds a solution as a whole cycle between all towns, it deposits some
pheromone on all edges of the cycle, in quantity inversely proportional to the
length of the cycle (Ly):

Q . ..
Ak =] 7, o D EDD (4.2)
0 i (i,5) ¢ Tu(t)

where () is a constant parameter.

e On each edge (1, j), the pheromone quantity is updated from the step ¢ to the step
t + 1, by adding all the contribution of each ant to previous pheromone quantity:

where p is an evaporation factor which allows that some first paths/solutions could
be replaced by better ones, as explained before.

In figure 4.8 (from Antoine Dutot’s PhD [43]), we can see Java applet where this algo-
rithm is implemented in order to reproduce Jean-Louis Deneubourg’s experiment. On
the left side of this figure, we see in yellow color, the greater intensity pheromone trail
which is obtained after several iterations of the processes. On the right side of the fig-
ure, we replace the nodes of the graph, replacing the shortest path by the longest one
and we let the system running and finding the new best solution as we can observe on
the figure. This computation highlights that Ant Colony Optimization is robust and is
able to adapt when the environment changes (like natural ants can do also). It is an
essential aspect and property for us when we have to deal with dynamical systems and
simulation.

4.3.3 Task Allocation

A lot of insect societies are composed of several castes which allow to distribute collective
tasks to individuals. The caste constitutions can be made on physiological properties,
like age intervals, or they can be made only on behavioral aspects. This natural task al-
location has adaptive properties which allow to dynamically modify the class belonging
of some individuals to adapt to the collective need.
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Food

Figure 4.8: Ant foraging (from Antoine Dutot’s Java applet [43])

An algorithm has been proposed to model this natural task allocation and it is based
on adaptive response thresholds processes. A specific task is associated to a stimuli,
similar to a pheromone trail, inciting individuals to achieve it. Each individual has its
own response threshold, according to its caste belonging. When individuals from some
caste disappear and if the caste does not have enough individuals to achieve the task
allocated to it, its task stimuli increase in order to attract more individuals.

Response Threshold Model Formulation

If we consider s, a specific task stimuli quantity and ©, the response threshold for this
task for a specific individual

e if s << O, then the response probability is low
e if s >> O, then the response probability is high

The probability to achieve the task can be computed with

n

Tels) = Gan

where n > 1 is the threshold degree.
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Response Threshold Model for One Task

We suppose that we have one task to achieve. A stimulus of intensity s is associated to
this task and increases when the task is not achieved. X, represents the activity state
of one individual (its value is equal to one if it realizes the task and 0 elsewhere). ©;
represents the task response threshold for the individual ¢. The probability to make the
inactive individual change its state to realize the task can be computed with:

52

P(Xi=0—=Xi=1)=To.(s) = 5

where the threshold degree is equal to 2.

We suppose that the probability to change the active state to an inactive state P(X; =
1 — X; = 0) is equal to p, a constant value, similar for each individual. 1/p corresponds
to the mean time to realize the task.

The stimulus intensity has to change, according to the importance of all the task real-
ization:
s(t+1)=s(t) + 0 — anee

e ) is a constant quantity corresponding to the intensity increase by time step;

e « is a constant quantity corresponding to the intensity decrease because of an
individual activity;

® 7, is the number of active individuals achieving the task.

We suppose now that we have two populations, one with a low response threshold and
the other with a high response threshold. If the first population disappears then the
second population will finish to achieve the task which was not originally affected to its
speciality.

We can extend this model to manage concurrent execution of multiple tasks.

Postman Allocation Task Example

To illustrate the task allocation algorithm, we take the classical well-known problem
of postman allocation [22]: we have to deal with the mail attribution to a postman
company on an urban area splitting in several zones.

The probability for a postman ¢, which is affected to the zone z;, to respond to a task
of intensity s; which are emitted from the zone j is

2
S

2 2 2

JZi

Pij =
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e O;; is the postman ¢ response threshold for a task in the zone j;
e d;., is the distance between j and z;
e o and [ are two parameters of relative influence between the previous quantities.

Each time a postman moves from the zone j to take mail, his response thresholds have
to be updated:

® O — 0y — &,
o O; — O,y — &, VI €n; (zone j neighborhood),
e O;. — O, + ¢, for the other value of £,

where &, & and ¢ are learning coefficients.

In [22], this algorithm is applied to 5 by 5 zones, cyclic grid with 5 postmen. At each
time step, 5 zones make their task pheromone intensity increase with the value 50.

We give the following value for the parameters: a = 0,5, § = 500, ©;; € [0;1], & = 150,
51 — 70, ¢ - 10

When a postman replies, he cannot respond to any new task during the time corre-
sponding to the distance that he has to do to achieve his task.
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Figure 4.9: Postman task allocation simulation (from [22])

We observe a self-organization process which consists to specialize adaptively postmen
to specific zones. In figure 4.9, one postman has been removed. On the left part of the
figure, we can see the increasing of the intensity of the request of the zone allocated to
the postman, after his removing. The right part of the figure describes for another post-
man, the threshold evolution corresponding to the first postman’s zone. As this second
postman was not initially allocated to this zone, the threshold is high in the begining of
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the curve. But as new tasks from this area do not find any postman to manage them,
they finally attract the second postman. This second postman adapts his own behavior
in order to change his threshold to this zone and make it decreases.

4.3.4 Clustering

Ant clustering algorithms are inspired by the corpses or larvae classification and aggre-
gation that the ants colony are able to do in the real life. The ants are moving inside
a closed area and are able to move some material which are randomly put on this area.
After a while, and without any kind of centralized coordination, the ants success to
create some material clusters.

As we explain in the previous sub-section on stigmergy, the collective process is based on
some indirect communications. The goal of the processes is to make some aggregation
of objects. The ants start building such elementary aggregations and then the small
clusters formation acts on the social insects as feed-back and in that way, the clusters
progressively increase. In figure 4.10, we can observe this mechanism and the 4 views
correspond to 4 time steps. Progressively, we can see that the clusters size are growing
as the time increases.

Figure 4.10: Natural ant clustering (from [22])
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The algorithm is based on the following rules which are very simple behavioral rules
that each ant implements :

e When an ant is moving without carrying yet material and finds some material,
the ant will take the material respecting the probability number :

P, = (klki f>2 (4.4)

where f is the material density that the ant perceives locally around itself and &y
is the threshold. It is easy to check that if f << k; then P, is near the value 1
and if f >> k; then P, is near the value 0.

e When an ant is moving when carrying some material, the probability to deposit

it is computed by :
f 2
P, = 4.5
= (2l (45)

where f is still the material density that the ant perceives locally around itself
and ky is another threshold. It is easy to check that if f << ky then P, is near
the value 0 and if f >> ky then P, is near the value 1.

In figure 4.11, we develop an implementation of this algorithm using Repast platform
[103]. The java version of this platform includes some packages allowing to interface with
geographical database and geographical information systems (GIS). In figure 4.11, the
graphical output windows are made under OpenMap GIS software which is developed
using Java language. On this figure, the materials moved by the ants are the small
grey circles, the ant moving without material are the green circles and the ant carrying
material are the red circles.

4.3.5 Swarm Robotic Based on Ant Systems

During a long period, humans tried to build artificial entities which could be similar to
themselves. Robots are mainly perceived as a tentative in that way, building a robot
similar to a human is really a thrilling problem but finally not so useful.

With the distributed way of conception and the development of DAT (Distributed Arti-
ficial Intelligence), Robotics has found a new way of development.

The novelty and interesting properties of swarm robotics approach is to reproduce the
system-level functioning properties observed in social insect systems, especially robust-
ness and flexibility. These are essential properties for deploying large numbers of robots.

With robustness, we mean that swarm-system robots can continue to operate despite

large disturbances. This robustness is based on the use of redundancy, decentralized
coordination and simplicity of the individuals.

73



CHAPTER 4. SWARM INTELLIGENCE FOR SPATIAL SELF-ORGANIZATION

RS o

LY

lustering Model

Nevigate Control Wiews Layers
agl 5
— Mouse Mode:
1:47 379 31 & x I3 gg

Parameters | cus

‘Model Parameters
| Inspect Modal

~RePast Parameters

cellepth: D
cellbeight: =
celwidth: = |
PauseAt: D J‘

Randomseed: | 1o1caoooiang

30| 1
% |2 B 8-> =0

d (2,334, -12,881) - x, y (208,148) ] i
Lo P

location 36. 43

(a) initial step

commiijaval LAnidiava - Eclipse SDR Repast = (=]
Broject Bun Window Help | o ip b b € W Il | @ 9 3 |ekcountizerse  |[[munin
& |
P Ant Clustering Mode! .4 Ant Elustering M[ - [[B](x]
7 Control  Navigate Views Layers C MFW
F Mouse Mode P &) 3 Parameters | Custom Actions
ve ELS \ctions
D e HRC e 8@ s o M B @ | | e
Inspect Model ‘
~RePast Parameters
CellHeight:  [=
can
prven
RandomSeed: | 1216470712050
E‘ 4 loc ; Location
et e
lems % | Bx BE| f B-r9-=10
dsteril Lat, Lon (-21,137, 29,617) - x, y (541,373) [}
ant 1 .
ant location 5, 37 ﬁ

(b) intermediate step

Figure 4.11: Ant clustering simulation using Repast on OpenMap
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By flexibility, we mean that swarm-system robots can offer modularized solutions to
tasks of different nature using different coordination mechanisms. Finally, we expect
that a desired collective behavior emerges from the local interactions among elementary
robots and between the robots and the environment.

Swarm robotics is now a thrilling topic and some projects are now starting to be man-
aged, using these principles. We just want to focus our attention on the European
"swarm-bot" project leaded by Marco Dorigo [20]. The idea of this project is to use a
swarm of small and simple autonomous mobile robots called S-Bots.

Figure 4.12: Swarm-bot project [120]

S-Bots have a particular assembling capability that allows them to connect physically
to other S-Bots and to form a bigger robot entity, the Swarm-Bots (see figure 4.12). A
Swarm-Bot is typically composed by 10 to 30 S-Bots physically interconnected. S-Bots
can autonomously assemble into a Swarm-Bot but also disassemble again. This feature
of the S-Bots provides Swarm-Bot with self-assembling and self-recognizing capabilities.
Such a concept, by taking advantage from the collective and distributed approaches,
ensures robustness to failures even in hard environment conditions.

4.4 Collective Building Systems

In the previous section, we have presented self-organization methods for ant clustering
which can generate unpredictable clusters. For many applications, we can use this
model as it is, because we need to express some spatial constraints where the clusters
are expected. In this section, we present such problems, starting to describe natural
processes which involved spatial constraints for self-organization development.
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4.4.1 Natural Template in Collective Building

Termites mounds, ant nest, bees and wasp hives are some examples of a complex struc-
tures which emerge from the interactions between the social insects and their spatial
environment. One of the mechanisms used in these structures is templates (the others
are: self organization mechanism, stigmergy mechanism). The template is a pattern
existing in the environment and used to construct another pattern [22|. Temperature,
humidity, chemical gradient, physical templates are different kinds of templates that we
can find in different natural structures. Now we give in details three natural structures.

Ants Nest Structure: Brood Sorting in Spatially Different Areas

Some ants use humidity and temperature gradients to distribute their brood. On figure
4.13, we see how this distributon is made in soil along depth. As the diurnal rhythm of
the temperature gradient in the soil changes the local temperature, the ants collectively
shift the brood upwards or downwards in the soil. This way, the brood is always incu-
bated at the adequate temperature, figure 4.13 shows an example of ant nest structure.

Nest Structure in the Ant Acantholepis Custodiens

3.00 a.m. 3.00 p.m.

Figure 4.13: Nest structure in the ant Acantholepis Custodiens from [22]

Termites Nest: The Royal Chamber Construction

Physogastric termite queens of macrotermes subhyalinus emits a pheromone that diffuses
to create a pheromonal template in the form of decreasing gradient around the queen
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body (see figure 4.14). Tt has been shown experimentally that a concentration window
or a threshold exists that controls the workers building activities. A worker deposits
a soil pellet if the concentration of pheromone lies within this window [cmin, cmax].
Otherwise, they do not deposit any pellet and destroy existing walls. The workers
construct this chamber by erecting walls to a certain distance around the queen. As the
queen grows, the queen pheromone emission grows also and the termite workers have to
adapt the chamber permanently, so that it always perfectly fits to the queen.

iy - ey
B T

max =min A s A R

Figure 4.14: Royal Chamber construction from [22]

Ants Nest: Wall Building Around Their Brood/Adult

Another example of template (combined with self organization mechanism) is the one
proposed by Leptothomx albipennis ants which construct simple perimeter walls in a
two-dimensional nest at a given distance from the tight cluster of ants and brood and
which serves as a chemical or physical template. The template mechanism allows the
size of the nest to be regulated as a function of colony size (Each worker always has
about 5 mm? of floor area in the nest) [22|. Deposition behavior is influenced by two
factors:

e The local density of grains.
e The distance from the cluster of ants and brood.

The probability of depositing a grain is:
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e Higher when both the distance from the cluster is appropriate and the local density
of grains is large.

e Lower when the cluster is either too close or too far and when the local density of
grains is small.

When the distance from the cluster does not lie within the appropriate range, deposition
can nevertheless be observed if grains are present. Conversely, if the distance from the
cluster is appropriate, deposition can take place even if the number of grains is small
(see figure 4.15).

_...-.. Dj-'&_
CTUTRT

Figure 4.15: Ant wall [27]

4.4.2 From Natural to Artificial Systems

Swarm intelligence research consists in implementing and simulating biological social in-
sects processes in order to propose meta-heuristics. Then these meta-heuristics are used
to model complex phenomena involved in some engineering applications (see figure 4.16).

This section presents some of these computational methods used in natural template
and collective buildings modeling.

A Reaction-Diffusion Model of the Termites Royal Chamber Construction

Deneubourg [38] proposes an analytical continuous spatio-temporal model describing
the evolution of the material deposited on space by termites.
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Figure 4.16: Swarm intelligence research

When material is dropped, cement pheromone is emitted inside it. This pheromone
diffuses freely in the air and attracts other termites by stigmergy. This accumulation
of material induces a strong emission of pheromone which attracts more and more ter-
mites. Material is called active if it still contains pheromone which have not completely
diffused in the air.

The analytical model (a partial differential equational system) proposed by Deneubourg
involves, for each location r and each time ¢:

e The density of laden termites, C(r,t);
e The amount of active deposited material, P(r,t);
e The concentration of pheromone emitted into the air, H(r,t).
The first equation describes the evolution of the active deposited material:
P = k1C — kyP. (4.6)
where

e ko P represents the production of pheromone emitted in the air by the material
itself;

e k1C represents the rate of pheromone deposited by the termite.
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The second equation represents the evolution of the concentration of pheromone emitted
into the air:

OH = kyP — kyH + Dy V?H, (4.7)
where

e DyV?H is the term of diffusion (V? denotes the Laplacien operator);

e —kyH is the pheromone decay.

The third equation represents the evolution of the density of laden termites:

0,C = ® — k,C + DcV?C —yV(CVH), (4.8)
where

e d is a flux of new loaded termites which is supposed to be constant;

e 7V(CVH) describes the attractiveness of the pheromone gradient (V denotes the
gradient operator) with v > 0;

e D-V2(C describes the random component in individual motion.

The positive feedback generated by the pheromone diffusion at different sites in the
building area gives rise to competition between different pillars which are close to one
another. This leads to an ‘inhibition’ of pillar formation in the immediate neighborhood
of a pillar and also facilitates the emergence of another pillar further away. Note that
the present model is completely deterministic and therefore leads to a perfectly regular
spatial distribution of pillars, where as in reality, this regularity is observed on average.

Deneubourg studied numerically the dynamics of a one dimensional system with v close
to (vVksDc + k1 Dg )?/®, and found that the present system converges to spatially
periodic state (see figure 4.17). The same observation is true for a two-dimensional case
(see figure 4.18).

This differential model gives an accurate physical model which describes the phenomenon
itself by global laws (diffusion, attractiveness on gradient). The global behavior of the
system is described through the three equations and there is no reference to local be-
havior of the termites involved in the building process. This model can be qualified of
knowledge model, expressing the whole system functioning. From a practical point of
view, additional information is needed to make it become a computable model. Like all
partial differential equation systems, in order to be computed, this model needs some
boundary conditions on a domain to be defined. These conditions are not easy to express.

From a completely different approach, we can model the phenomenon from the termites
behavior expressions and model the stigmergic processes as indirect communications
between them. Following the natural processes, we expect to obtain by simulation,
the emergence of the system organization and building, from the entity behaviors and
interactions. We describe such distributed algorithms in the following subsection.
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Figure 4.17: An example of temporal dynamics of the amount of active deposited ma-
terial P for one dimensional system (from [21])

Wall Building Model: Implementation in Repast
A template probability p; should be added to the probability of picking up and dropping.
Using this template function, we replace in the clustering algorithm, the two previous
probabilities of picking up and depositing a grain of material by new values integrating
this template function.
The new probability of picking up a grain of material is:

P, = P,(1-PR) (4.9)
where P, is the previous probability given by equation (4.4).
The new probability of depositing a grain of material is:

P, = P,P, (4.10)

where P, is the previous probability given by equation (4.5).
On figure (4.19), we represent a template function adapted to the natural ant wall build-

ing and we represent the result of a simulation made on Repast. The material which
has been deposited are here represented with blue color.
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Figure 4.18: An example of spatial distribution of the amount of active deposited ma-
terial P for a two dimensional system. The first figure is at ¢ = 4 and the second figure
is at t = 100
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Adaptive Spatial Organization Feedback Implementation

As explained in section 2.2, complex systems deal not only with emergent organization
processes from the interaction of its own entities, but also with the feedback processes
of the organization over its own components. In the proposed model, we can take into
account such feedback process and we present in figure 4.20 an adaptive process which
makes the queen (describing the organization itself) modify the environment and the
clustering processes itself. Following the template function, the queen locally defines
around it two zones. The first zone is near itself and it is not expected to find material
there. The second zone corresponds to the template maximum and it is expected to
find a great concentration of material there. In the simulation, we count in a dynamical
way the number of materials in these two zones and when these numbers reach some
thresholds, we make the queen evolves by increasing its own size and so increasing the
2 associated zones. After this evolution, the ants have to move some material following
the new template function attraction. The low part of the figure shows the evolution
of the queen which has evolved 6 times since the simulation beginning. On this figure,
we can see the red curves counting the zones density. Each gap in these density curves
correspond to an evolution of the queen.

4.4.3 Application Examples
An Ant-Based Algorithm for Annular Sorting

Swarm-based spatial sorting methods, inspired from brood sorting in spatially different
areas (see sub-section 4.4.1), are swarm-based models that require only stochastic agent
behavior coupled with a pheromone-inspired "attraction-repulsion" mechanism [2|. This
algorithm is useful when one has objects that may change over time and require different
amounts of separation. Wilson et al. in [132] create a physical implementation for the
algorithm using mobile robots agents which are able to pull placed objects with weak
probability out of the center of a cluster without disturbing other objects or risking
collision, something that is hard to do with simple robotics. such kind of tasks had been
done with a great environmental spatial stigmergic process which originally template
inspired algorithms [63]

Emergent Structure Built by Robot

Another example that used swarm inspired template mechanism is the establishments
of a structure around a light source as an environmental dynamical template by a set of
autonomous robots. This work [119] uses simple rule robots agents and the information
encoded in the environment by the light template. The intelligence which emerges
from the swarm is the result of simple agent interaction with the complexity that they
decode from their environment. Mason, in his paper [82], generalizes this mechanism to
produce a swarm of agents that build complex compassable structure using phenomenal
templates .
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Self-Organized Data and Image Retrieval

One of the powerful points in using bio-inspired mechanisms are used by social in-
sects is the creation of decentralized systems of simple interaction. The study of ant
colonies behavior and of their self-organization capabilities is of interest to knowledge
retrieval /management and decision support systems science because it provides dis-
tributed adaptive model which are useful to solve difficult optimization, classification,
and distributed control problem. The application of ant systems has been used in digital
image retrieval problems and unsupervised clustering [100].

DNA Chip Analysis

With the advanced technology at hand, the main trend in biological research is rapidly
changing from structural DNA analysis to understanding cellular functions of the DNA
sequences. DNA chips are now being used to perform experiments and DNA analysis
processes are being used by researchers. Clustering is one of the important process
used for grouping together similar entities. M. Lee et al. [75] propose an ant clustering
algorithm that takes into account the features of biological data.

Web Documents Categorization

The self-organization behavior exhibited by ants are used to solve real world clustering
problems like web document categorization [93].

The idea of this application is obtained from template matching mechanism with a
Gaussian Probability Surface (GPS) to constrain the formation of the clusters in pre-
defined areas. This work improves the existing results.

An Algorithm for Site Selection in GIS, Multi-Objective Resource Allocation

While GIS have been designed to handle general spatial analysis problems, most such
spatial analysis problems are computationally inefficient when using conventional algo-
rithms. In particular, it is the case when the problem involves searching large data sets
and different conflict objective have to be optimized. Site selection or resource allocation
problems are such problems.

Ajay Sharma et al. in [112] use swarm intelligence based algorithms inspired from
termite nest building in order to propose an automatic computational tool for the site
selection problem. They apply the algorithm on a set of spatial data and they provide
some simulation results using object oriented discrete event simulation platform inside
GRASS GIS software [55].
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DYNAMICS

In this part, we develop within two chapters, the core of the model proposed in this
work. The first chapter develops an extension to social insect systems modeling and the
second chapter develops an emerging computation in order to detect communities from
automata based system representation.

In this chapter, we start in presenting our general methodology for swarm computation
engineering. Then we describe the formalism based on an extension of nest building
models. In the one hand, we present specifically the process of attraction phenomena,
we give some simulation outputs illustrating the importance of the different components
of the models and we give some conceptual tools to analyze the complexity of these
model outputs. In the other hand, we present how we implement adaptive processes at
this level of abstract modeling and later at the level of applicative case-studies developed
in part 3.

5.1 Introduction

The swarm intelligence algorithms described in the previous part and chapter, are the
direct formalization of natural social insects systems. As described in figure 5.1, they
can be considered as the first stage of our modeling organization.

From these elementary models, we propose to combine different elements and we need
to add other processes in order to model more sophisticated phenomena.

As extensions to the elementary models of the previous chapter, we add advances on
spatial adaptive and self-organized systems by the integration of the following aspects:

e Multi-center: we will consider a spatial environment composed of several centers
attracting ants and their carried material. The advantage of such an extension
concerns the spatial repartition of the attraction phenomena, including concurrent
aspects, and based on decentralized mechanisms.

e Multi-criteria: we need to progress from insect societies toward human societies
which are characterized by the complex interactions of many services and expec-
tations according to non homogeneous populations (various age, various social
position, etc).

e Adaptivity extension for multi-criteria: we need to propose adaptive pro-
cesses to manage the multi-criteria extension of the model. The feedback mech-
anisms become more complex and some of the negative feedbacks can be not the
direct consequence of the positive feedback which leads the emergence of the sys-
tem. In other words, some hidden criteria which are not directly involved in the
systems building emergence can produce feedback and regulation.

Finally, as explained in figure 5.1, the final applicative usage of our model will consist
in plugging the components of the abstract model with concrete features which have
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DYNAMICS

meaning for the applicative system. The study of urban cultural system which will be
the main aspect of the study-case developed in the following part of this document, will
be managed in that way. We will come back to this figure and extend it in order to
better highlight this plugging between abstract model and application features.

5.2 Ant Nest Building Extension for Multi-Criteria
Multi-Center Dynamics for Attraction Phenom-
ena

In this section, we extend the mechanism described in the previous section by multi
queen spatial configuration. Such a spatial configuration, with many queens spread in
all the space, is the core of a multi-center simulation where each criteria of each center
is described by a queen.

5.2.1 Spatial Environment for Multi-Criteria Multi-Center Sim-
ulations

To introduce the concept of multi-criteria phenomena, we introduce different kinds of
pheromones. Each kind of pheromone is represented by a specific color. We introduce
the notion of center which is a specific spatial location. On each center, we are able to de-
fine many queens. Each queen, belonging to a center, is able to emit its own pheromone
which is represented by a colored pheromone that is different from the other queen ones
belonging to the same center. A queen, associated to a spatial center, describes a specific
criterium linked to a colored pheromone. To represent the same criterium on different
centers, we describe it by the same colored pheromone on these different spatial locations.

In order to force the ants to deposit their material only near the center, we have intro-
duced the template function. Even if the pheromone function and the template function
must have similarities in order to attract and make deposit the material at the same
place, we have to separate these two functions. The template function must exhibit a
close area of non null values near the center to link the material to the center. The
pheromone function must attract ants with material on the same place but the attrac-
tion phenomena has to cover a widest area than the template function, in order to be
able to attract materials and ants at some distance from the center.

Definition 5 A spatial multi-criteria multi-center simulation is described by a set of n,
centers, {P;;1 <i<n,}, and by a set of n. colors, {c;;1 < j <n.}.

For each center P;, we define a cj-colored template function, ®,; : S — IR, which
gives the value of the c; template intensity on each spatial position.

For each center P;, we can define a cj-colored pheromone function, f;; : S — IR,
which gives the value of the c; pheromone intensity on each spatial position.
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Remark 1 We can define the cj-colored template function of the P; center by the fol-
lowing radial exponential function

Oy (x,y) = iy exp(—=Bi;(d((2,y), (xp,, yp,)) — 1ij)?) (5.1)

where o;; is the template amplitude, (;; is the template slope, (xp,,yp,) are the P, center
coordinates.
We then define the c;-colored pheromone function for the P; center with a similar formula

fij(%,y) = aij exp(=by;(d((z,y), (zp, yr)) — 14j)°) (5.2)

where a;; 1s the template amplitude, b;; is the template slope.

We have to remark that the radius r;; is the same in the above two formulas and allows
to define the same maximum value position, but the amplitude and slope are different.
The slope of template function has to define close area of mazimal value near the center.
The slope of the pheromone function must not have mazimal area too much close to the
center in order to attract ants or materials which are located at some distance from the
center.

Remark 2 In the previous template function associated to a center, we can consider
that some of the parameters are geometric parameters which can be associated to the
center position and are independent of the pheromone color. Therefore, the parameters
bij and rij can be considered, in such way, as b; and r;. In this case, the previous
template function s then given by:

iz, y) = ayjexp(=Bi(d((2,y), (zp,, yp,)) — 1:)%) (5.3)
The same remark can be applied to the pheromone function too.

Figure 5.2 is similar to figure 2, but we represent here, on the top of the figure, two centers
and two colored pheromones. The template function used to represent the pheromone
emission corresponds to the function defined in remark 2. On the bottom of the figure,
we present the associated simulation in Repast.

We give in the following some definitions which allow to generalize the ant nest building
algorithm for the multi-criteria multi-center simulation.

Definition 6 A center P; has the dominant color c; if
a;; = max{a;; 1 <k <n.}.

Definition 7 On each space location Z = (x,y), we define the c; colored pheromone
intensity as the function F;(Z) or Fj(x,y) defined by the formula:

Fj(Z) = Fj(z,y) = Zifz’j(x,y)- (5.4)
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5.2.2 Spatial Objects and Agents for Multi-Criteria Multi-Center
Simulations

The multi-criteria multi-center model proposed here, implement some spatial objects
that are the material and spatial agents (which are the ants). The ants have to carry
the material in order to achieve the spatial self-organization simulation. We describe in
this section the objects and the agents and we will describe in the following section the
mechanisms involved in the self-organization simulation.

Definition 8 A material involved in a spatial multi-criteria multi-center simulation has
to include a characteristic color table which corresponds to the only colors that the
material is able to perceive and upon which it will be able to react.

Definition 9 An ant involved in a spatial multi-criteria multi-center simulation and
which 1s carrying a materital has to include a characteristic color table which corre-
sponds to the material characteristic color table.

5.2.3 Multi-Criteria Multi-Center Dynamics Algorithms for At-
traction Phenomena

Definition 10 Fach ant of the simulation which is carrying some material M;, has to
implement a decision process which gives, as output, a color pheromone template c; that
is used for the material transportation by the ant. This selected color c; is called the
ant behavior.

At each simulation step, a carried material M is associated to a color ¢;, called the ant
behavior in definition 10. The ant which is carrying this material will then move by
searching in its neighboring position, the one with the highest value of the c¢; colored
pheromone.

We propose two ways to compute the ant behavior as described in the following.

Ant behavior computation based on dominant color

The first way to compute ant behavior consists in searching the highest value of the
colored pheromone on the space position of the ant and to return the color of this
highest value. The ant moves on the neighboring place which has the highest value of
colored pheromone defined by its behavior. The algorithm is the following:

Ant behavior computation based on ranking

The second way to compute ant behavior is based on a specific ranking process which
will evaluate the greatest ranking place between the neighboring place corresponding to
some highest pheromone color rate. In the following, we define the notion of ranking
and then describe the detailed algorithm of this second ant behavior computation.
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Algorithm 1: Ant behavior algorithm based on dominant color

for each color c; belonging to the ant characteristic color table do
phRate < Evaluation of the c¢; colored pheromone rate in the space at the ant

location

if phRate is the maximum pheromone rate find until now then
L update the maximum pheromone rate with phRate;

maxColor « ¢;;
ant behavior « maxColor;
Move the ant on the neighboring place which has the higher rate of maxColor
pheromone;

Definition 11 For each material M (or the ant carrying it), we define the c; color
attribute preference as the rate, a real number sjpr € [0, 1].

Definition 12 For each material M (or the ant carrying it) and each space location
Z = (z,y), we compute the ranking, prrz by the formula:

puz = sin * Fy(Z) (5.5)

J=1

where n. is the number of pheromone colors, F;(Z) is the c; colored pheromone intensity
on the location Z, defined in definition 7 and sjy is the c¢; color attribute attribute
preference for the material M defined in definition 11.

The algorithm 2 describes the ant behavior process as defined in definition 10, using the
ranking computation.

The ranking computation provides more relevant computation according to the multi-
criteria aspects of the model. With ranking, more complex behavior can be involved
to manage the attraction phenomena, taking into account more information inside the
whole system of individual characteristics. In the following, the computation are using
the ranking algorithm better than the dominant color algorithm.

5.3 Attraction Phenomena Experiments

Simulation experiments are made using Repast on OpenMap for the specific configu-
ration described in the next section. We describe in the following the experimental
configuration, then the simulation output and finally an analysis in order to study the
attraction phenomena.

5.3.1 Experimental Configuration

An experimental configuration is defined by the initial positions of all the components
of the system: (i) the centers, (ii) the queens, (iii) the materials and (iv) the ants.
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Algorithm 2: Ant behavior algorithm based on ranking computation
M <« material carried by the ant
rank value < 0
color rank « -1
x_rank « 0; y_rank < 0
for each color c; belonging to the ant characteristic color table do
(xp,yp) < the neighboring place of (z,y) which have the highest pheromone
intensity of color ¢;
rank « Y7 85 * Fj(p,9p)
if rank > rank_wvalue then
rank value « rank
color _rank « ¢;
x_rank < z,; y_rank < y,

if color rank = -1 then
| move the ant in random way

else
move the ant in (x I‘&Ilk, y rank
_ _

In this section, we study a specific experimental configuration, composed of 6 centers
and with random initial places for the materials and for the ants. The center positions
are described on the left top sub-figure of figure 5.3. On each center, we put 8 queens,
each one is associated to a colored pheromone labelled from 0 to 7. In figure 5.3, we also
represent the amplitude of colored pheromone corresponding to the radial exponential
templates as described in figure 5.2.

5.3.2 Simulation Output and General Analysis

In this sub-section, we implement the simulation following the first algorithm of the ant
behavior, defined in the previous section.

On figure 5.4, we show the result of one simulation where ants progressively aggregate
the material around the center, following pheromone trails and clustering algorithm.
On the left top sub-figure, we see the initial distribution of materials and ants. In the
three other sub-figures, we see three successive steps of the simulation. We can observe
the formation of material affectation to each center in order to respect the attraction
process, according to the material characteristics.

On figure 5.5, we make a zoom of the last step of the simulation shown on figure 5.4,
removing the ant representation.
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5.3.3 Attraction Analysis Based on Dominant Component

We need to exhibit some analysis to better understand how the computation produced,
by self-organization, the distribution of the material over the centers system.

In the first part, the analysis is based on the dominant component for the material: a
characteristic color table is associated to each material. The process of attraction is lead
by the ant behavior defined previously. This ant behavior consists here to extract from
the characteristic color table, a selected color corresponding to the colored pheromone
which controls the ant in order to move to the places of highest values for this colored
pheromone.

To better understand the mechanism of attraction, we have to focus on the selected
color associated to each material which controls the ant displacement and to forget the
other colors belonging to the characteristic color table of the material. In this part,
we only associate to each material the dominant color and we study how these colored
material are distributed over all the center system.

To analyze this distribution, we represent 3 graphs for each center. On each graph, we
have a specific representation of the distribution of all attracted material according to
his dominant selected color.

Before defining all these graphs, we have to define a zone of analysis for each center:

Definition 13 For each center P; and each color pheromone c; corresponding to the
template function f;; defined in remark 1, we define the referential disk as

Dij = {M = (z,y); fi;(M) < ray}

where a;; is the template amplitude of the function f;; and r € [0,1] is a real number
whose value is generally equal to 0.5 in the following

According to this referential disk, we compute, by three ways, some indicators corre-
sponding to the quantity of material of each color in this disk, or some relative quantity
of material in function of the pheromone amplitude or in function of the neighborhood.

The three graphs used in our study are defined by

e The material density graph which computes the density of material of each
color (its dominant selected color) in the referential disk. The material density of
dominant color ¢; for the center F; is computed as follow:

n(Di;)
A(D;;)
where 1(D;;) is the number of materials of dominant color ¢; inside the referential

disk D;; of the center P; and A(D;;) is the area (e.g. number of material places)

p<Pi= Cj) =

101



CHAPTER 5. ADAPTIVE MULTI-CRITERIA MULTI-CENTER SYSTEMS
DYNAMICS

e The pheromone efficiency graph which computes the density of material of each
color in the referential disk, relatively to the pheromone amplitude of its color for
the corresponding center. The pheromone efficiency of dominant color ¢; for the
center P; is computed as follow:

Pr(Pz‘, Cj) - M

a;j

e The relative pheromone efficiency graph which computes the queen efficiency

relatively to the neigborhood network. This computation consists in changing

the pheromone amplitude used in the previous graph by a relative pheromone
amplitude a;; defined by:

@ = i

ro=

Yy
kev;

where 9J; is the set of centers belonging to the neighborhood of the center ¢; on the
center neighboring network. The relative pheromone efficiency of dominant color
c; for the center P; is computed as follow:

p(Piv Cj)
a

:087‘(Piv Cj) =

.
)

The last graph exhibits a complex indicator which takes into account the interaction
network of the center system.

On figure 5.6, we show the center neighboring network corresponding to the experimen-
tal configuration. On figure 5.7, we show the neighborhood of the center 0 and of the
center 1 in this experimental configuration.
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Figure 5.6: Center neighboring network

Figure 5.7: Neighborhood of center 0 and center 1 over the centers network

On figures 5.8 to 5.14, we represent for each center, the 3 graphs defined previously and
we represent two additional graphs corresponding to the pheromone amplitude and to
the relative pheromone amplitude according to the neighborhood, for each color.
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Results Analysis

This attraction analysis with the three associated graphs: (i) material density graph,
(ii) pheromone efficiency graph and (iii) relative pheromone efficiency graph, allows us
to better understand the complexity of the phenomena according to the multi-criteria
and to the spatial effects.

To illustrate this analysis, we will observe the results of the center 4, based on figure
5.12:

1. A first remark concerns the non linear properties of the attraction phenomenon
which makes the color of the more important pheromone intensities attracting a
great number of materials of this color and a few number of materials of color
of lower pheromone intensities. There is no linear relation between the number
of colored material and the corresponding colored pheromone intensity. Finally,
the material of color of lower pheromone intensity are not significant. Concerning
center 4 of our current experiment, we will focuss only on the material of the two
dominant colors: orange (color number 6) and blue (color number 1).

2. On center 4, the first graph - material density - shows that the more attracted
colored materials are, in order, the orange colored materials and then the blue
colored materials. The predominance of the orange colored material over the blue
is corrected on the second graph which consists in dividing the colored material
number of each color by the corresponding colored pheromone intensity. As orange
pheromone is greater than the blue one, we could expect that this center will
attract more orange materials than blue ones. The pheromone efficiency graph
shows this, making the orange and blue curve become close.

3. The second graph, the pheromone efficiency graph, takes into account only lo-
cal information about the center and not spatial information. With the third
graph, the spatial pheromone efficiency graph, we correct the importance of the
pheromone intensity of each color on a specific center with respect to the same
color pheromone intensity of the neighboring centers. On figure 5.6, we observe
that the neighbors of center 4 are the centers 1, 3 and 5. For these three centers,
the blue pheromone intensity is low and the orange intensity is high on center
5. And so, if we observe part (5) of figure 5.12, we can see that the relative or-
ange intensity becomes lower than the relative blue pheromone intensity. The last
graph - relative pheromone efficiency - gives a correction according to this rela-
tive pheromone intensity. But, finally, this graph shows that the orange material
number is still greater than the blue one. That is an unpredictable event.

Of course, the complexity of the simulation is not completely predictable by nature and
unpredictable phenomena appear as we finally observe in the previous example. There
are mainly due to the complexity of the spatial configuration and the multi-criteria
characteristics. These unpredictable charateristics of the result overtop our advanced
analysis which integrate a spatial interaction correction of first order (e.g. only direct
neighbors are considered in this analysis).
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5.3.4 Material Distribution Analysis Using Non Dominant Com-
ponents

In the previous section, we have studied and analyzed the simulation results, taking
into account, for each material, only its dominant color (e.g. the color selected after the
ranking process). This dominant color defines the behavior of the ant carrying the ma-
terial: the ant will follow the attraction of the lonely colored pheromone corresponding
to this dominant color. As described in figure 5.15, the attraction interaction with the
center concerns only the dominant criterion /color.

Our goal is to go further on the analysis of the result with respect to its complexity. We
want to observe all the color attribute contained in each material and follow, during the
simulation, how “hidden” colors (e.g. colors which has not been selected as the domi-
nant one in the process) are distributed and organized inside the spatial system of the
simulation. For example, it could be possible that some “hidden” colors become high in
some center and so be able to feed-back on the center during its adaptive process (which
will be described later), as illustrated in figure 5.15.

Attraction Interaction

Dominant criterion Indirect feedback

Cther criterid

Figure 5.15: Material criteria indirect feedback on center

In the following, we give some experiments which highlight some possible effect of “hid-
den” colors/characteristics during the simulation.

The figures 5.16 to 5.22 represent, for each of the seven previous center, the dominant
color repartition graph on the left side, versus the complete color repartition graph on
the right side. In this right graph, all the colors contained in each material are computed
in order to draw the right graph.
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graph with respect to any color (dominant or not) belonging to some material
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Figure 5.17: Material distribution analysis for the center 1: on the left figure, material
density graph with respect to their dominant color; on the right figure, material density
graph with respect to any color (dominant or not) belonging to some material
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Figure 5.18: Material distribution analysis for the center 2: on the left figure, material
density graph with respect to their dominant color; on the right figure, material density
graph with respect to any color (dominant or not) belonging to some material
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Figure 5.19: Material distribution analysis for the center 3: on the left figure, material
density graph with respect to their dominant color; on the right figure, material density
graph with respect to any color (dominant or not) belonging to some material
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Figure 5.20: Material distribution analysis for the center 4: on the left figure, material
density graph with respect to their dominant color; on the right figure, material density
graph with respect to any color (dominant or not) belonging to some material
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Figure 5.21: Material distribution analysis for the center 5: on the left figure, material
density graph with respect to their dominant color; on the right figure, material density
graph with respect to any color (dominant or not) belonging to some material
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Result Analysis

In these result outputs, the complete color repartition graph - right part of each figure
- cannot be predictable. In fact the “hidden” colors are transported like blind character-
istics, by some ant moving with respect to the dominant color of their material.

To illustrate these comments, we will focus again on center 4 corresponding to figure
5.20. We only care of the red (color 0) color distribution and the blue (color 1) color
distribution. To illustrate in a more concrete way, we consider (as it is really done
in the simulation) that each material has only one of these two colors/characteristics.
The interpretation is that these two colors represent gender: blue for man and red for
woman. On figure 5.20, the left part means that the men are attracted by the center but
not the women. On the right part of the figure, we observe a very different situation:
the women are finally a little more numerous than the men. The explanation is that
the women come to this center, not because they are women but because of one of their
other characteristics, represented by another color (probably the orange one - color 6).

5.4 Adaptive Processes in Ant Nest Building for Multi-
Criteria Multi-Center Dynamics

As we explained in the previous section, some color / material characteristics can have
some important effect and it is expected that the simulation, while running, adapt to
such situation.

The adaptation described here concerns some center evolution according to the mate-
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rial usage. At this level of abstraction in our general model, it is difficult to propose
a specific response to some adaptation suggestion. If we take inspiration from nature,
in nest building, termite queen can adapt its size (by growing) when it feels safe inside
protecting walls designed by its congeners. According to the application and case study
in which our model will be applied, different adaptation mechanisms can be defined and
different adaptive responses can be generated, like moving center, make them growing,
make the pheromone intensity increase or decrease, etc.

At our level of method abstraction modeling, we can observe that the adaptive response
from the center makes the centers become active entities during the simulation, instead
of simple data information providers. To achieve this need of making such adaptive
center active, we need to implement, in Repast, the centers as agents themselves. More-
over, because centers contain different colored-pheromone, and because some adaptive
response can concern only changes on specific color, it seems better to define an agent
to manage each colored pheromone associated to the center. For this purpose, we in-
clude the colored pheromone description in a class queen, keeping our inspiration from
the natural mechanisms after which we build our model. As in the nature, the colored
pheromones will be controlled by the queen. And finally, each queen will include a stan-
dard Repast method, called step, which will have finally the role of producing adaptive
response from the center.

In this chapter which describes a general method, we will not go further in the description

of the adaptive process. Chapter 8 will present a complete computation of adaptive
processes which finds its meaning according to the case study.
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6.1 Commmunity Definition

In the following, we will present some of these modern methods concerning artificial
swarm intelligence and we will propose a new one, called Community Swarm Optimiza-
tion (CSO). This method is mainly based on the concept of spatial evolutive populations
of behavioral entities. The concept of community is the basic property of this method.

Definition 14 (Community operational definition)
A community is a system or an organization which is characterized by a spatial property,
a behavior property and the interaction between both.

Example 1 In ecology, a community is a group of plants or animals living in a specific
region and interacting with one another.

Example 2 The spatial patterns generated by Schelling’s segregation models [107] are
some examples of communities and these spatial patterns are linked with some elemen-
tary behavioral rules implemented for each grid case. These rules describe, for each step,
the movement of each individual according to its neighborhood.

In our method, we need to represent an efficient way to describe the behavior of each
entity and we use algebraic structures called automata with multiplicities [109]. The
main advantage of these automata is to be associated with algebraic operators leading to
automatic computations. With these operators, we can define behavioral distances for
the entities modelled with these automata. The behavioral distance is one of the major
keys of this new method. Section 6.2 describes the algebraic basis for the automata
management used in this method and in section 6.3, we describe the proposed method.

The method proposed in this chapter, is called Communities Swarm Optimization (CSO)
and it consists in the co-evolving of both the spatial coordinates and the behavior of
each individual of a virtual population of automata. The feed-back process of the whole
system over the entities is modelled by a genetic algorithm based on this co-evolving.
The automata behaviors allow to define for each individual, a set of arbitrary complex
transition rules. We develop the formalism needed to describe this method and the
associated algorithms in the two next sections.

6.2 Spatial Behavioral Automata

6.2.1 Behavior modelling using automata

An automaton with multiplicities is an automaton with output values belonging to a
specific algebraic structure, a semiring, including real, complex, probabilistic, non com-
mutative semantic outputs (transducers) [52, 116]. In this way, we are able to build
effective operations on such automata, using the properties of the algebraic structures
which belong to the output data. We are specifically able to describe automata by
means of a matrix representation with all the power of the new (i.e. with semirings)
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linear algebra.

Definition 15 (Automaton with multiplicities)

An automaton with multiplicities over an alphabet A and a semiring K is the 5-uple
(A,Q,I,T,F) where

o ) ={S51,5---S,} is the (finite) set of states;

e [:(Q)— K isa function on the set of states, which associates to each initial state
a value in K, called entry cost, and to each non- initial state a zero value ;

o F:Q — K is a function of set states, which associates to each final state a value
of K, called final cost, and to each non-final state a zero value;

e T is the transition function, that is T : Q X A x Q — K which to a state S;, a
letter a and a state S; associates a value z of K (the cost of the transition) if it
exist a transition labelled with a from the state S; to the state S; and zero otherwise.

Remark 3 We have not yet, on purpose, defined what a semiring is. Roughly it is
the least structure which allows the matriz “calculus” with unit (one can think of a
ring without the "minus" operation). The previous automata with multiplicities can be,
equivalently, expressed by a matriz representation which is a triplet

o \ € K@ which is a row-vector which coefficients are \; = 1(.S;),
o v € K91 is a column-vector which coefficients are v; = F(S;),

o i A* — K9%Q is a morphism of monoids (indeed K9*? is endowed with the
product of matrices) such that the coefficient on the g;th row and q;th column of

p(a) is T(qi, a, ;)
Figure 6.1 describes the linear representation of a probabilistic automaton which s a
specific automaton where output values are probabilistic values. For these probabilistic

automata, the sum of the coefficients of each matriz row is equal to 1 (being the sum of
outgoing and loop probability).

Definition 16 (Automata-Based Agent Behavior)
We represent the agent behavior by automata with multiplicities (A, Q,I,T, F) over a
semiring K :

e The agent behavior is composed of a set of states (Q and of rule-based transitions
between them. These transitions are represented by T'; I and F represent the initial
and final costs;

o Alphabet A corresponds to the agent perceptions set;
o The semiring K s the set of agent actions, possibly associated to a probabilistic

value which is the action realization probability (as defined in [140]).
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Figure 6.1: Probabilistic automaton over the alphabet {C,D} and its linear representa-
tion

6.2.2 Spatial Automata and associated spatial distance

Definition 17 (Spatial Automata-Based Agent)
A spatial automata-based agent is defined by its structural representation:

o An automaton with multiplicities corresponding to its behavior as a whole process
managing its perceptions and its actions over its environment. They include its
communication capabilities and so its social behavior;

o A spatial location defined on some specific metric space.

Remark 4 According with this previous definition, we define two metrics on the spatial
automata-based agent. The first one concerns a spatial distance which is directly induced
by the metrics of the spatial location (from any standard Hélder norm). The second one
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18 more innovative and concerns a behavioral distance or semi-distance. One of the major
interest of the previous automata-based modelling is to be able to define such behavioral
distance which leads to powerful automatic processes dealing with self-organization. We
detail this definition in the next section.

6.2.3 Metric spaces for behavioral distances

The main advantage of automata-based agent modelling is their efficient operators. We
deal in the following with an innovative way to define behavioral semi-distance as the
essential key of the swarm algorithm proposed later.

Definition 18 (Evaluation function for automata-based behavior)
Let x be an agent whose behavior is defined by A, an automaton with multiplicities over
the semiring K. We define the evaluation function e(x) by:

e(x) = V(A)

where V(A) stands for the vector of all coefficients of (A, i, ), the linear representation
of A, defined in remark 3.

Definition 19 (Behavioral distance)

Let x and y are two agents and e(x) and e(y) their respective evaluations as described
in the previous definition 18. We define d(x,y) a distance or a metric between the two
agents x and y as

d(z,y) = lle(z) — e(y)|

a vector norm of the difference of their evaluations.

6.2.4 Genetic operators on spatial automata-based agent

We consider in the following, a population of spatial automata-based agents, each of
them is represented by a chromosome, following the genetic algorithm basis. We define
the chromosome for each spatial automata-based agent as a couple of two sequences:

e the sequence of all the rows of the matrices of the linear representation of the
automata. The matrices, associated to each letter from the alphabet of the agent
perceptions, are linearly ordered by this alphabet and we order all the rows fol-
lowing these matrices order [16]. Figure 6.2 describes how this sequence is created
from a linear representation of two matrices;

e the sequence of all its spatial coordinates.

In the following, genetic algorithms are going to generate new automata containing pos-
sibly new transitions from the ones included in the initial automata.

The genetic algorithm over the population of spatial automata-based agent follows an

evolutive iteration composed of two main operators, as on adaptation of the classical
genetic operators [53]:
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M(C) M(D)

Chromosome 1st component

Figure 6.2: Chromosome first component building from the matrix rows of the linear
representation of an automaton over the alphabet {C,D}

e Reproduction (Duplication and Crossing-over): This operator is a combination
of the standard duplication and crossing-over genetic operators. For each couple
of spatial automata (called the parents), we generate two new spatial automata
(called the children) as the result of the chromosome crossings and we keep, with-
out change, the parent spatial automata. To operate for the crossing-over opera-
tion, we have to compute

— the automata of the behaviors of the two children. For this purpose, we
consider a sequence of rows for each matrix of the linear representation of
one of the two parents and we make a permutation on these chosen sequences
of rows between the analogue matrix rows of the other parent;

— the spatial locations of the two children. These children locations can be
chosen by many ways: on the linear segment defined by the parent locations
or as the nodes of the square obtained with the parent and the children as
describe in figure 6.3.

o Mutation: This operator deals only with the linear representation of the spatial
automata-based agent. With a low probability, each matrix row from this linear
representation is randomly chosen and a sequence of new values is given for this
row (respecting some constraints if needed, like probabilistic values [16]).

6.3 Community Swarm Optimization Algorithm

6.3.1 Adaptive objective function for community-based swarm
optimization

The community swarm optimization method is based on a genetic algorithm over a pop-
ulation of spatial automata-based agents. The formation of the community is the result
of the population evolution, crossing by a selection process computed with the fitness
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Figure 6.3: Spatial locations for the children C and D from the parents A and B, after
a reproduction step. Two possible computations of locations are presented in the two
sub-figures.

function defined in the following.

For this computation, we deal with two distances defined on agent sets. The first is
the spatial distance associated with the agent spatial location and the second is the
behavioral semi-distance defined in definition 19.

Definition 20 Community clustering and detection fitness
Let V, be a neighborhood of the agent x, relative to its spatial location. We define f(x)
the agent fitness of the agent x as :

d(V, )
% if > d(xuyi)z # 0
f(x) — ‘ T, Y Yi€Va
Yi€Vz
00 otherwise

where d(x,y) is the behavioral distance between the two agents x and y.

This fitness allows to implement a co-evolution process which generates an emergent
set of community swarms. These community swarm formation is the result of both the
emergence of the spatial location of the generated communities and the adaptive behav-
ior of the communities as the result of the homogenization of the behavioral automata
of all agents which compose these emergent communities.

6.3.2 General CSO algorithm

CSO algorithm needs an initial step description which is the major step of the modelling
process. The way of going from the problem formulation to the initial spatial automata-
based agents must be realized accurately. The formal description of the methodology
to use, for this initial step, is described in Algorithm 3.

The core of the CSO algorithm is described by the iterative scheme defined in algorithm
4.
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Algorithm 3: Methodology to model the initial step of CSO
1. Problem formulation by the definition of a set of transition rules ;
2. Building of the behavioral automata based on the previous set of transition
rules, describing the sequences and the context of their applications ;
3. Decrepitation of the spatial domain, according to its topological properties
(Cellular automaton, network or graph, Geographical Information System) with
the spatial location of the initial virtual population of spatial automata-based
agents;

Algorithm 4: Iterative scheme of CSO
Building the initial virtual population of the spatial automata-based agents
(following the methodology of Algorithm (3)) ;
repeat

for Fach couple of individuals in the population do
Reproduction step generating 2 new children as described in the section

(6.2.4) ;

Mutation step as described in the section (6.2.4) ;
Selection of the half population of the individuals corresponding to the
highest values of the agent fitness described in section (6.3.1) ;
until (the sum of the fitness values of the whole population reaches a threshold)
or (the mazimum iteration number is reached) ;

An example of fitness function computation output is illustrated by figure 6.4 where
we show, on the same population, a high level fitness individual which will be probably
kept inside the population at the next iteration and a low level fitness individual which
will be probably removed from the population at the next iteration. The used colors
describe graphically the chromosome composition, allows to appreciate the similarity of
the individuals.
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Figure 6.4: Two examples of the result of selection operators within the CSO algorithm
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7.1 Urban Dynamics Modelling

Social and human systems are typically complex systems. In urban development and
dynamics we can find many examples for spatial emergence, self-organization and struc-
tural interaction between the system and its components.

In the following, we develop a classification of urban models. The first section presents
the first class of models which are based on top-down approaches. Then, we present the
bottom-up methods: diffusion on grids (cellular automata), agents on grids or spaces.
The concept of mixing agents on grids or spaces allows also to involve dynamical pro-
cesses carrying by these agents as presented in the following section. Then we develop
these dynamical aspects through interaction networks and their hierarchical structures.
We conclude finally by our own urban dynamics model, based on the swarm intelligence
engineering method presented in chapter 5.

7.1.1 “Black-box” Macro-Modelling

The first models of urban systems have been developed in the end of 1960s and concerns
mainly “stocks and flows” descriptions of socio-economic indicators [13]. The main first
contributors are 1.S. Lowry [77| and J.W. Forrester [46]. Lowry’s model of urban sys-
tems, applied to the city of Pittsburg, proposed some “integrated” model, defining flow
charts between the three main indicator classes: (i) the basic sector of industrial and
business activities, (ii) the householder sector and (iii) the retail sector concerning the
local population. This flow chart model already deals with a mile-square decomposition
similar to spatial decomposition which will be used later as an adaptation of cellular
automata grids to geographical real space. The final output of the modeling process led
to a kind of socio-economic equilibrium state. This approach finds its limit because of its
static description and, as a matter of fact, dynamical models are essential to understand
the city evolution. Forrester proposed a dynamical modeling based on the application
of industrial dynamics to urban dynamics. His model is based on non spatial stocks
and flows models. Stocks are exchanged within a three income levels decomposition
into housing, jobs and population. This model, based on a simple urban description,
aims to generate simulation and Forrester boasted, at that time, the benefit of computer
simulation to understand the city evolution and how we can predict its evolution by the
modification of guiding policies within the system.

The “stocks and flows” model continues to be improved and to give more and more
details, including transportation subsystem or land market, for example. One of the
most complete model, called Integrated Urban Model (IUM) was proposed in 1994, by
Bertuglia et al. [17]. The computational complexity increases with the accuracy of the
description and finally allows to avoid obtaining reasonable estimates of the parameters.
These models are more representational tools than simulation ones [13].

To build efficient simulation models, the idea was to simplify the description, using a
more global one facilitating the analytical description. Based on population dynamics
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theory, some researchers proposed to build urban dynamic models originated from eco-
logical modeling. The paradigm of prey-predators systems is then used to give efficient
simulation tools to investigate the main feature allowing to understand the global dy-
namics. For example, Dendrinos and Mulally |37| use a prey-predator model, assuming
that the increase of city population makes the economic status decreasing. The preda-
tors represent the urban population and the preys, the per capita income.

7.1.2 Micro-modelling and Bottom-up Approaches

All the previously described models are based on top-down approaches to model the
system dynamics. We first consider the whole phenomenon and propose a way to split it
in many sub-problems and then in stocks and flows or in different terms constituting the
equational system. Another class of modelling is based on micro-modelling and bottom-
up representation of the city as a collection of individual-based description, behavioral
rule-based description and interaction systems. From this constructive approach, we
want to obtain an emergent description of the whole system or of some sub-systems
included in a hierarchical process. This methodology consists in generating a simulation
where all the components, behavioral and rule-based ones, interact over an environment,
perceiving and acting on it. The environment evolving is the support of emergent
properties. In the following, we describe such methods based on cellular automata and
agent-based modelling.

7.1.3 Grids, Automata and Agents

As explained in section 2.4.3, cellular automata modeling used a bottom-up approach
based on rule-based system. Using cellular automata for urban or regional modeling
consists in the decomposition of the city, region or any geographical area in a lattice of
cells. Fach cell is in some state which belongs to a finite set S. At each time step, the cells
change their own state according to some transition rules, based on its previous state
and its neighbor cells. Many works based on cellular automata, have been developed
for geographical systems and urban dynamics |10, 42|. Extensions on environmental
problems, like water streaming, are using these models as an efficient tool [73]. Cellular
automata can be seen mainly as distributed tools to model diffusive phenomena using
rule-based systems. One of the first researchers in human sciences who proposes models
based on diffusive rule-based systems is T. Hagerstrand in very early period, during 50’s
[58]. But his work itself began to be diffused over the science community more than
15 years later when the computer development became able to implement his model for
realistic studies.

SpaCelle and the Simulation of Urban Dynamics of Rouen Agglomeration

In order to model Rouen agglomeration development, E. Dubos-Paillard et al. [42] have
developped a multi-layer cellular automaton allowing to decribe the land-use. A land-
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use cell can have until 12 states according to the usage (forest, river, industrial area,
household area, etc.). Three families of transition rules have been defined (i) land-use
development shape rules, (ii) spatial coherence rules to avoid, for example, that a firm
being created inside housing area, (iii) hazard rules to include stochastic dimensions.

On figure 7.1, we represent the result of SpaCelle simulation of land-use development of
Rouen agglomeration in 1994, starting from the initial situation of this land in 1950. A
comparison can be done with the real land-use.

Figure 7.1: Rouen agglomeration land-use in 1994: reality on the top and simulation
with SpaCelle from an initial situation in 1950 below (from [42]).
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From Cellular Automata to Agent-Based Modeling

As we said in section 2.4.3, grid rules systems are generally not sufficient to model the
complexity of many phenomena. We need to add on these grids or spaces, agents in
order to move, to act on this space and interact with each others and with the environ-
ment. A classical example of the need of extending cellular-based model with agents
come from T. Schelling’s model describing the segregation process [107]. For this model,
already presented in section 3.6, we face an important extension to cellular automata
where we need to represent moving individuals from a simple deliberative process. The
mixing of spatial data and cellular automata with autonomous entities, like agents, is
here needed [35].

In the following section which develops the dynamics of cities, we present such modelling,
mixing spaces (grid or GIS) and agents, in order to simulate the mobility of users.

7.1.4 Multi-Scale Dynamics for Urban Development

We can consider urban systems on two scales of dynamics. The first scale studies urban
area expanding of the city observed during long time intervals equal to decades or to
centuries. In this scale of representation, many studies have been made, showing how
the urban growth depends on the urban topology. Some studies try to analyze this
topology by the introduction of fractal coefficients for example [11]. The complex link
between the land use and the city dynamics at this scale clearly appears in such studies.
The second scale studies the urban dynamics through the people mobility during a time
interval like, for example, one day, one week or one month. At this time scale, the city
growth is not taken into account and we observe the city area as catalytic of the peo-
ple usage. Clearly, urban infrastructures lead to specific services which induce specific
usages. The city activities are very often compared to a swarming process, similar to
the swarming activities of social insects, where urban space considered as a stigmergical
environment.

Urban Growth and Spatial Epidemy

Urban growth modeling is generally based on a differential system, called aggregate
model, which is inspired by epidemic phenomena [11]. In such models, we divide the
studied area in three constitutive parts at any time t:

e the undevelopped land area, A(t);
e the newly developped land area, N (t);
e the etablished developped land area, P(t).

The dynamics is similar to epidemiological models where A(t) represents the number
of population which is susceptible to be infected, N(t) is the number of infected pop-
ulation and P(t) is the number of removals of infected population. A compartmental
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model describing the interaction of this 3 components population allows to model dis-
ease epidemies [89] or highly aggregate urban evolution [37]. The basic formulation of
this model corresponding to the urban growth phenomenon is as follows:

d’:‘if) — _aN@®A®)
‘”bet) — aN®A() — AN () (7.1)
dl;gt) = YN()

where « is the interaction coefficient leading to the propagation of newly developed
lands from undeveloped lands and - is the coefficient leading to the transformation of
newly developed lands to established developed lands.

From this global differential model and in order to study spatial diffusion, we have to
build spatially disaggregated models which consist in projecting the differential equa-
tions on cellular automata grids and adding a diffusive term for each component of the
population. For example, the equation describing the evolution of the newly developed
area can be transform in the following way:

ON(z,y,t)

5 = oV(z.y, ) A(z,y,1) —yN(x,y, 1) + EAN (x, y, 1) (7.2)

where AN (z,y,t) = 62%(9‘;”2’@/’” + azj\g(;;y’t) is the classical laplacien operator.

Some graphical results of such simulations are given in [11]. Figure 7.2 is extracted from
these studies with some variant from the previous basic model:

e light grey colored cells represent P(x,y,t) cells;
e dark grey colored cells represent N(z,y,t) cells;

e dark colored cells represent A(z,y,t) cells which is here not all the undeveloped
land area but only a part of this land available for urban development.

These models can be completed by introducing a threshold which controls the ability
and the speed of newly developed land spreading. Another additional threshold can be
introduced in order to allow the redevelopment usage of land which consists in demol-
ishing buildings and making new usage of the new free land.

Spatial urban structure and city morphology generate typical development evolutions.
Some studies about the possibility to classify urban growth with respect to their mor-

phology have been developed in the last decades [47, 9].
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Figure 7.2: Urban Sprawl Modeling from [11]

Urban Mobility and Usage

Car transportation or pedestrian movement have been studied since many years. For
both, two scales of modeling are used. At a global scale, the description is based on car
or pedestrian flows [131]| and the typical model is fluid dynamic equations.

To simulate detailed interaction of pedestrians, we need to change the scale of descrip-
tion and we have to work with behavioral model of pedestrians [65]. These behavioral
models have to involve various constraints or concepts like avoiding collisions, finding
path close to the shortest one, changing displacement direction not too rapidly.

Modeling each pedestrian behavior leads to an important computational complexity and
global forces allow to mix individual agents with collective behaviors. Social forces, re-
pulsive forces, potential energy are some conceptual models which have been developed
in new models of pedestrians individual movement inside accurate spatial configuration
[61, 51]. Using such models, crowd simulation involving collective behavior have been
developed and applied to urban simulation recently [76].

Household Preferences

Urban multi-agent modeling has to deal with several kinds of interactions, adaptations
to infrastructure environment and also with choice heuristics and decision making [14].

The development of household preferences shows how decision making can be taken
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into account in urban dynamics [125]. Economical based models have been transposed
to individual behavior [113| and lead to an optimization problem involving various pa-
rameters: benefits at a current location, cost of moving, jobs attraction, etc. A stress-
resistance approach, also called dissatisfaction utility, has been proposed, describing the
final decision of moving from the result of a kind of stress potential threshold reaching
|95, 115].

Interaction Networks and Hierarchical Organizational Systems

Complex systems theory leads to explain system behavior with respect to their enti-
ties interaction. Urban systems are characterized by two scales interaction system: the
interaction system inside cities and the interaction system between cities [98]. This
hierarchical aspect and the interaction between these two scales are major elements in
order to understand urban dynamics.

The city development is generally the result of land use and cost, spatial cooperation and
competition between citizens. After the building of cities, the urban system itself leads
to global constraints which are, for example, essential for firm development. Municipal-
ities have, therefore, to define some global management leading to public equipments
for sport or culture, for example. All these global urban management and constraints
react on citizen preferences and behaviors.

At the governmental level, territorial management leads to increase cities interaction
and some co-evolution phenomena exist between urban development of different cities.
Paulus [94] shows how French cities between 1962 and 1992 co-evolved from industrial
activities to tertiary activities in a similar way. Denise Pumain et al. |98] show how
American urban systems and urban growths are qualitatively different from European
urban growth and development with respect to the fact that the communication network
involved during their respective growth period in their respective area were different for
these two continents.

7.1.5 A Methodological Approach for Spatial Organization Dy-
namics

In this section, we propose our way of describing and modelling the spatial organizations
in urban dynamics, based on the swarm intelligence engineering methodology developed
in chapter 5. Our methodology deals with emergent computation from micro-modelling
in order to detect and manage emergent systems and organizations. Our goal is then to
re-introduce these emergent systems or organizations inside the simulation and manage
their evolutions and their interactions with the components of the system. The re-
integration of the emergent systems, during the simulation, can be explicitly expressed
like in the multi-scale fluid flow simulation proposed by P. Tranouez [123] or like the
process described in chapter 5. It can be also implicitly computed using a self-controlled
process as described in the following, using genetic algorithms like the process described
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in chapter 6.

In figure 7.3, we focus on the emergence of organizational systems from geographical
systems. The continuous dynamic development of the organization feed-backs on the
geographical system which contains the organization components and their environ-
ment. The lower part of this figure explains our analysis methodology. It consists in
describing many applicative problems by dynamical graphs or environments in order to
detect organizations over these dynamical environment. For the organization detection,
we use swarm intelligence processes. We model the feed-back process of this emergent
organization on the system constituents and its environment. To analyze or simulate
urban dynamics, nowadays, we can use the great amount of geographical databases di-
rectly available for computational treatment within Geographical Information Systems.
On the organizational level description, the development of multi-agent systems (MAS)
allows to develop suitable models and efficient simulations.

The applications we focus on, in the proposed models, concern specifically the multi-
center phenomena inside urban development. The city development has to deal with
many challenges, economical, social and environmental aspects in order to achieve the
goal of sustainable development. The proposed decentralized methodology allows to
deal with multi-criteria problems, leading to give a decision making assistance, based
on simulation analysis.

Gentrification phenomena can be modeled using such a methodology. It is typically
a multi-criteria self-organization process where emergent incomings of new population
appear inside urban or territorial areas. This new population firstly attracted by some
criteria, brings some other characteristics which are able to modify and feedback over
the environment.

Cultural dynamics processes in urban areas are also such complex systems where multi-
criteria must be taken into account. A modelling of these dynamics is presented later
in this thesis.

7.2 Users, Services and Decision in Urban Dynamics

In the previous section, we have developed urban dynamics modeling in general aspects
and we have concluded with our conceptual approach in order to model more specifically
the complex urban system of services and users. We present in this section, some specific
aspects of users and services in urban dynamics. Location Based Service is an innovative
technology dealing with spatial complexity using GIS and GPS in order to propose
individual decision. We will discuss in the final section on multi-scale decision making,
from individual level to service management level and urban planning level.
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Figure 7.3: Spatial organization complexity description and the conceptual generic
model based on swarm intelligence
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7.2.1 Location Based Services

Location Based Services (L.BS) is one of the aspects of what is called today Urban Com-
puting. Urban Computing studies interactions between pervasive technologies (mobile,

wireless, sensors), urban environment and infrastructures in order to improve people’s
lives [69].

Following Virrantaus [127], we define LBS as information services that are accessible
with mobile devices, through the mobile network, and the ability to use the geographi-
cal portion of the mobile device.

Location Based Services assist people in their decision-making during the performance
of tasks in a given space and time [101]. Users reach Location Based Services with
mobile devices like phones or personal assistants (see figure 7.4). The first LBS services
have been commercialized in Japan by DoCoMo, in July 2001.
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Figure 7.4: ArcPad desktop emulation on Pocket PC with GIS information, on the left
part and with the definition of relative importance criteria weights by user, on the right
part (from [101])

Location Based Services are designed to be used in a great variety of contexts such per-
sonal life, health, emergency, urban localization and transportation planning, weather
services, etc. Location Based Services include services to identify location of persons,
objects and services at given time: bank cash machines, friends, employees, etc. They
can include commercial applications with adaptive advertising to customers according
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to their current location. LBS is an example of both services and technologies fusion.

Different technologies and infrastructures interact to define Location Based Services, as

described in figure 7.5:
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Figure 7.5: LBS infrastructures and environment

Mobile devices for end users;

Positionning components, based on Global Positionning System (GPS);

e A communication network, as information transport system for the users’ devices;

appropriate answer.

GIS and geospatial databases to manage the request and to give the relevent and

As explained in [117], one of the important aspects of location based services develop-
ment is to produce adaptive systems to answer to requests. This adaptation, as explained
in figure 7.6, consists in managing huge geographical databases accessible through the
communication network in order to filter it and produce relevant information for the
user. The user interface and visualization must select the significant information for the
user. The answer information must be selected according to space and time.

M. Raubal and C. Rinner proposes a multi-criteria decision analysis for Location based
services [101]. They integrate the user preferences in a qualitative way in order to have
more advanced computation in location based services. They implement a prototype in

ESRI ArcPad (see the right part of figure 7.4).
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Figure 7.6: Levels of adaptation for LBS mobile after [102]

Multi-criteria aspects are an important factor for urban services users. European Union
provides today supports to develop LBS, as an emerging technology in pervasive com-
puting [41]. These studies deal today to propose individual decision-making in complex
environments.

The models proposed in our work integrate such individual decision-making analysis
by implementing a ranking process which taking into account qualitative preferences of
the user. Furthermore, our models implement swarm intelligence processes that lead
to analyze the collective usage of urban centers. Also our models implement service
adaptive processes. These adaptive processes are the results of the interaction between
individual behaviors, preferences and decisions.

7.2.2 Multi-Scale Decision Making

Urban or regional planning and management are based on generic problem solving within
a complex set of data and phenomena. As mentioned in section 3.4.2, we can observe that
urban understanding needs three levels of decision making analysis: (i) the individual
decision for service usages, (ii) the service management which has to adapt to their
users, (iii) the global urban or regional planning. In order to have the right decisions for
each level, we need to take into account the interaction between these levels. In other
words, we need a multi-scale representation to model micro-macro interaction.
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Individual Decision Level

The individual decision level is typically what has been presented in the section “Lo-
cation Based Services”. We have to face multi-criteria decisions according to the user
preferences. LBS or other equivalent treatments has to adapt a global service selection
process in given space and time.

Services Management Level

According to the users preferences and characteristics, each service has to adapt its offer
in order to improve it to face the dynamical user demand.

For example, banks need to improve their service qualities and adapt them for the users,
in competition with other banks. Major environmental changes (like 2008 crisis) need
them to adapt their services characteristics in order to face the customers changing de-
mands.

Another example, a system of restaurant services has to deal with customers of different
ages and social positions. Some restaurants, attractive because of its accessibility, can
involve young population and low social level population to become its customers. This
restaurant will have benefit to adapt its prices and to propose for example, lower price
food to continue attracting this population instead of repulse it.

The service management decision making is in that way, linked with the individual
decision level by a feedback loop of adaptation.

Urban Planning Level

Urban planning decision makers have to deal with different kinds of planning decision
problems like site selection for different services (hospital, school, shops, etc). Another
important decision problem is the territorial management in intelligent way to achieve
the goal of sustainable development.

Using modelling and simulation like the models proposed in the previous chapters, we
can simulate and predict the future placement of given services in the space and their
complex interactions with other previous services and users in order to take the right
decision after this simulation and prediction.

Modelling and simulation are important aspects in urban planning and developments
because it can be used as a tool for understanding and analyzing the complexity of
the dynamic interactions between the different parts of the systems like, for example,
services and users interactions.
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This chapter deals with the understanding of collective cultural facilities dynamics within
urban area.

This study has been supported (for a total fund of 65000 euros on 3 years) by “Région
Haute Normandie” with the CPER, project “MCDCU - Modeling the Complexity of the
Urban Cultural Dynamics” as a part of the Great Research Network called GRR TLTT.
Our contribution consists in GIS survey and engineering and in swarm intelligence mod-
eling. We have developed the core of this swarm intelligence model which is described
in the following.

The cultural facilities inside the city are various and follow complex spatial mecanisms.
Both geographical aspects and social factors are major in these dynamics, leading to
specific equipment. The complexity of these phenomena which are the basis of the cul-
tural development, needs some specific modeling techniques. In a first step, we propose
some analysis and description of the cultural activity distribution based on a specific
geographical information system (GIS). A case study is developed for the French city
of Rouen in Normandy. In a second step, and respecting the complexity of the studied
systems, we propose to use swarm intelligence methods over GIS to model the urban
cultural dynamics. The goal is to better understand the relevant interactions within
multi-criteria interactions. We will focus on the adaptive processes to implement and
to analyze the simulation in order to produce elements of decision making. Mixing the
swarm simulation with GIS will end this chapter.

8.1 Urban Cultural Development Analysis Based on
GIS - A Case Study for the Rouen Urban Area

Our goal is to study the diffusion of cultural facilities and propagation during time, inside
the urban area of Rouen. A graphical approach is proposed in order to understand the
spatial dynamics of cultural infrastructures development. We want to better understand
what are the relevant interactions within heterogeneous phenomena.

8.1.1 Data Support

We design the cultural mechanism in a social and territorial context. The cultural ac-
tivities and equipment are particularly all services present in French city |78], where
the majority of the population is located in, considering the general urbanization of the
French society. Like other French cities, Rouen proposes a large diversity of cultural
activities in the hopes of educating, entertaining and satisfying inhabitants and also for
self-promotion.

The data from the city of Rouen concern urban environment and public or private cul-
tural equipments within wide vision of culture. There are composed of academic sites

(museums, operas, theaters, libraries, etc.) and popular ones (musical pubs, concert
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places, festivals, cinemas, etc.). These data have been obtained from the agglomera-
tion population composed of 400,000 inhabitants. We plan to study the various logic
of geographical repartition and the motivation to create and build cultural equipment,
including strategies for municipalities or commercial exploitations.

On figure 8.1, the cultural facilities development on Rouen agglomeration are described
from 1744 to 2004.

At this local level we wish to understand two mechanisms. The first one is the conditions
that conduct people or private and public institutions to create new cultural structures
and how the new locations are chosen. The second one is to better know the circulation
of the inhabitants during time in these cultural places which have different levels of
attraction. Because, in addition to the problem of geographical distances, other param-
eters play an equal role in accessing culture: social, educational and economic selection
constitute another restraint for the cultural practices of citizens [24].

8.1.2 First Graphical Analysis Using GIS

Urban environment is based on land use of Rouen from IGN topographical maps. Various
GIS have been developed from these maps, integrating communication networks and
cultural facilities or integrating land use and cultural equipments. The mixing with the
municipality administration and service attraction is also planned to be studied.

Comparison between Communication Networks and Cultural Facilities De-
velopment

Figures 8.2 and 8.3 describe the location of the major roads (in red lines), the secondary
roads (in blue lines) and the railways (in grey) in 1994. In the two figures, we show the
development of cultural facilities from 1951 to 1970 and from 1970 to 1994, in order to
identify some possible links between them. Black points represent the cultural facilities.
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Figure 8.1: Cultural facilities development in Rouen agglomeration
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Comparison between Land Use and Cultural Facilities Development

Figures 8.4, 8.5 and 8.6 describe the land use development and in parallel the cultural
facilities development. The land use is characterized by colors which are described by
the caption on the left side of the figure. The main colors are green for forests and areas
without buildings, yellow for non dense urban areas, pink for dense buildings areas; the
brown part characterizes the historical center of Rouen.
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Attraction of Municipalities Location on Cultural Facilities Dynamics

The last figure series and graphical analysis concerns a spatial visualization of the mu-
nicipality centers on the cultural facilities development. Historically, on the beginning
of the 20th century, the first cultural equipments like public libraries, were mostly near
the city municipality and even sometimes, inside the municipality building. The devel-
opment of important housing buildings in the suburbs of the city, after the mid of the
20th century, has generated the benefit for the population living there, to have cultural
equipments near their home. This evolution makes the cultural facilities located far
from the municipality center. Figures 8.7, 8.8 and 8.9 describe some circles around the
municipality, whom radius correspond to the maximal distance between the municipal-
ity and their cultural facilities. The increase of these circle radius from 1900 until 2004,
is following the development of dense suburban housing area.

Figure 8.7: Circles of maximal distance between municipality centers and their cultural
facilities, during the period 1744 to 1900
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Figure 8.8: Circles of maximal distance between municipality centers and their cultural
facilities, during the period 1951 to 1970

Figure 8.9: Circles of maximal distance between municipality centers and their cultural
facilities, during the period 1991 to 2004
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8.1.3 Processes Analysis

Cultural equipment repartition within city does not follow stochastic distribution [124].
This implies that the geography of these activities call on other dynamics than that of
chance. This repartition is very different from sports equipment development, for ex-
ample, as we can see from figure 8.10. The sports development follows the public school
development that the cultural equipment does not follow.

Culture Sport A
1 Equipement ou N
enseignement @% -
spécialisé
== Seine
L Forét

1 Commune

© F. Luechini, MTG, UMR IDEES, Université de Rouen, 2007

Figure 8.10: Sports equipments and cultural equipments development within Rouen city
agglomeration

These observations lead us to better understand what are the mechanisms involved in
cultural facilities dynamics. We have to study first the specific spatial constraints: river
separation for the city of Rouen, industrial and housing proximity and municipalities
service location. Spatial constraints are so a major aspect within the development dy-
namics, including heterogeneous factors. To model such a complexity, we propose a
swarm intelligence method based on ant systems as detailed in the next section.

As explained previously, the aim of this project is studying Rouen cultural dynamics
during 3 years (from 2007 until 2010). During the first year, graphical analysis with GIS
as shown in this section, has been developed in order to identify some characteristics
of these dynamics. The second year mainly focuses on the development of a swarm
intelligence method able to simulate the phenomena which has been mainly described
with attraction process and adaptive usage by citizens with respect to a complex set of
criteria. Our goal during this modeling stage, was to be able to propose adaptive pro-
cesses of the cultural center with respect to their usage by citizens. The third year will
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be devoted to the application of this swarm intelligence method on Rouen configuration,
linking GIS data with intelligent processes.

In the following, we will describe the work of the second year (which is now ending at the
date of this document writing). The first steps of the mixing of this method with Rouen
GIS is described at the end of this chapter. The complete integration of the algorithms
on the whole cultural system of Rouen agglomeration is out of the aim of this research
work, developed in this PhD, even if our objective is to show that we produce all the
ingredients to be able to finish this technical engineering work.

8.2 Modelling Cultural Dynamics with Swarm Models

Cultural equipment development within urban dynamics must be understood through
two aspects: the specific mechanisms which control the creation of cultural infrastruc-
tures and the use of attraction phenomena for these cultural equipments to follow their
development. Emergent systems and organization simulation must be implemented to
analyze the cultural dynamics and we will propose swarm intelligence technologies to
model these phenomena.

The service-user dynamics is the core of the project problem. As we explain, this project
recovers many aspects, from data analysis to accurate modeling over Rouen agglomera-
tion. Morover, understanding the evolution of the service-user system is needed and the
analysis of the phenomena through the simulation must lead to appropriate tools. Inside
this huge work which will have a complete development during 3 years, we propose to
implement the core of the model concerning this service-user systems, in order to be
able to describe adaptive processes.

The swarm intelligence engineering model developed in chapter 5, is able to study how
cultural equipments can attract users and the global self-organized system is able to give
a decentralized solution of cultural centers users repartitions. In this case, the solution
emerges from a specific spatial configuration composed of a set of cultural centers and
a set of individuals localized initially at some resident places (ilots).

In chapter 5, we have defined a model composed of different components which are clas-
sified in two main classes: environment and objects or agents.

The environment’s components are:
o {P;1<i<mn,}is the set of centers;
o {c;;1 <j<mn.} is the set of colors;
o ¢;;(x,y) is the template function of the color ¢;, associated to the center P;

o fij(x,y) is the pheromone of color ¢;, associated to the center Pj;
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® a;; is the intensity of the pheromone function f;;;

o if a;; = max{ay;1 <k <n.}, then ¢; is the dominant color of the center P;;
The objects and agents components are:

e A set of materials. Each material contains a table of characteristic colors.

e A set of ants. Each ant has a behavior method which gives the color c; that makes
it moves according to the c;-pheromone function intensity. Each ant implements
a decision process which consists in computing this behavioral color. In chapter
5, we give two kinds of decison processes: dominant color strategy and ranking
strategy.

In this chapter and according to the application of urban cultural dynamics, we have to
specify the connections between the previous abstract model entities with the application
features, as we explain in the conceptual modelling approach described in figure 5.1.
These connections have been developed in a more detailed way in figure 8.11 and are
detailed in the following sections.

8.2.1 Environment Modeling

The centers are modelling the cultural equipments.

The colors are modelling individual user characteristics. These characteristics are of two
kinds: static characteristics and dynamic characteristics.

The static characteristics are belonging to several classes:
e gender class has two characteristic values: man or woman;

e age classe has different characteristic values corresponding to age interval values:
(i) under 15 years old, (ii) between 15 and 30 years old, (iii) between 31 and 50
years old, etc.;

e education level class has different characteritic values corresponding to the highest
diploma obtained until now by the individual;

e social level class has different characteristic values corresponding to a standard
classification;

e ctc.

The dynamic characteristics corresponds to some users preferences. These character-
istics are generally more complex features which can be, for example, the user preference
to lower price services, the user preference to high quality services or the user preference
to easily accessible services, etc. Because these dynamic characteristics play a major
role in the adaptive processes proposed here, we will develop them in an accurate way
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Figure 8.11: Specialisation of the general model to urban cultural dynamics application
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in section 8.3.
Finally we associate a color to each possible characteristic, whatever is its kind belonging

(static or dynamic) and whatever is its class belonging (gender, age, education level,
etc.). So we have a color identifier associated for all the characteristics:

e Male;

e Female;

e age before 15;

e age between 15 and 30;

e age between 31 and 50;

e age after 50;

e primary school diploma education level;
e undergraduated diploma education level;
e preference to lower price services;

e preference to high quality services;

e ctc.

As defined in definition 11, for each material M and each color ¢;, we associate a color
attribute preference belonging to [0, 1]. With respect to the two kinds of characteristics
(static and dynamic), we can complete the previous definition 11.

Definition 21 For each material M (or the ant carrying it), we define the c; color
attribute preference as the rate, a real number s;y; € [0,1]. If the color attribute is
associated to a static characteristic which belongs to the material, this rate sjy equal
1. If the color attribute is associated to a static characteristic which does not belong
to the material, the rate sjy equal 0. If the color attribute is associated to a dynamic
characteristic, the color attribute preference can take any value in [0, 1].

The colored pheromone functions allow to model the attraction capacity of each center,
according to a specific characteristic. The more the cultural center is attractive for a spe-
cific characteristic, for example of color ¢, the more the amplitude of the c,-pheromone
function must be high. On the first part of figure 8.12, we represent an example of a
two centers system with two characteristics and so two associated pheromone functions.
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8.2.2 Objects and Agents Modeling

In the urban cultural dynamics phenomenon, the materials are modelling the individual
users. Each material /user has a table of characteristic colors which corresponds to the
meaning described previously. Each user has only one static characteristic item for each
class: man or woman, only one age value characteristic, only one social level character-
istic, etc. Each material /user has all the dynamic characteristics and a percentage is
associated to each dynamic characteristics. For example, one individual has a preference
to lower prices cultural services corresponding to 70% and a preference to high quality
cultural services corresponding to 30%, etc.

The ants are not associated to application feature meaning because each of them con-
tributes to be a decentralized solver in the swarm intelligence process. In this cultural
services-users modeling, they will manage the materials/users which are initially located
on their resident housing and they have the goal to make them move in abstract way
to a cultural center according to the great number of criteria involved, according to the
spatial organization of the cultural center systems and according to their mutual inter-
action together and with the environment. The users allocation to cultural centers is
abstract and the ant moving is only a spatial solving moving which is not now connected
to any meaning of concrete mobility. But the swarm intelligence engineering model is
composed of easy connectable modules, because of its conception which is based on com-
plex composition. Ant java class includes methods corresponding to the ant moving and
these methods could be connected to more sophisticated and realistic processes which
are not the goal of our model process in this work.

We give in figure 8.12, a schematic representation of an easy-to-understand simula-
tion composed of two cultural centers, a cinema and a theater. We represent the
pheromone/attraction functions as circles around the centers and we label them with
the associated characteristic/color. Materials represent here users which will be carried
and moved by ants, following the complex spatial system of attraction functions.

8.3 Adaptive Processes Modeling

In this section, we develop the implementation of the adaptive mechanism for the case-
study of urban cultural center dynamics.

As described in section 5.4, the adaptive mecanism has to be implemented as the step
method of the agents queens or centers in our general model.

The queens are the manager devices for the colored pheromones. The cultural services
are associated to these colored pheromones which represent their ability to attract users.
The goal of the adaptive process is to be able to act on the system by acting on the
individual behavior as the result of the modification of the pheromones intensity. This
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modification of the pheromone intensity represents the service adaptation from their
own usage by the individuals.

The color themselves are modelling individual user characteristics. As explained in the
previous section, characteristics are of two kinds: the static characteristics and the dy-
namic characteristics.

The first kind corresponds to static users descriptions and the attraction force are de-
fined by statistics data. It is not possible to modify them and the adaptive process is
not expected to act on them.

The second kind of characteristic, the dynamics ones, are defined from the user pref-
erences. For example, as already explained, a user preference can be his preference for
lower prices of cultural services. The colored pheromone associated to this preference
represents, for a service, its capability to attract people according to its practice of
lower prices. The adaptive process is expected to act on such services characteristics.
For example, if a specific service successes to attract people who have a great value of
preference for lower prices or people who are from low social level, so who are only able
to use low cost services, this service will have benefit to adapt to its users by increasing
the pheromone intensity corresponding to lower prices practice.

To define the whole process of the adaptive process, we need first to explain in the
next section, how the individual preferences are modelled, then in the following section,
we will explain the practical computation of services adaptation, based on a rule-based
process.

8.3.1 Individual Preference Model

The dynamic characteristics of users are specific values according to the problem that
we want to model. In the application developed in this case study, we propose a model
of computation which allows to evaluate the preference rate (percentage) of a dynamic
individual characteristic from a product of values associated to some static characteris-
tics. The values of this product can evolve dynamically, according to the whole adaptive
process. This mechanism introduces a link between dynamic and some static character-
istics. These links are motivated because, using a symmetric process, we will propose
an adaptive behavior for the associated dynamic characteristic on the center/services:
its colored pheromone amplitude evolves with respect to the users number that contains
the static characteristics associated to the computation of the weighted average.

For example, if we consider the dynamic user characteristic corresponding to their pref-
erences for lower price services, we will propose to compute it from the following static
user characteristic: the gender, the age and the social level. The gender class has 2
values: M (male) of F (female). In order to simplify the explanations, we consider that
the age class has only 3 values: Y (young), A (Adult) or O (Old). The social level
has also 3 values: S1 (low level), S2 (middle level) or S3 (high level). To compute the
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preference percentage for this dynamic characteristic (lower prices service preference),
we propose a product of values associated to these static characteristics.

0.3 "

Figure 8.13: Preference tree computation based on 3 classes: Gender (M-man or F-
female), Age (Y-Young, A-adult or O-Old) and Social Level (S1-low level, S2-middle
level or s3-high level). On the left side, one level trees for each of the 3 classes are
drawn, with preference rate on each edge. On the right side, a complete preference tree
with the 3 levels is drawn.

On figure 8.13, we represent on the left part, 3 elementary trees for each static charac-
teristic (gender, age and social level). On these elementary trees, we put some weights
on the edge according to the importance of the value of this characteristic in order to
evaluate the dynamic preference. For example, a young user will be more attracted by
a lower price service (0.8 is the associated value) than an adult (0.4 is the associated
value). The right part of the figure, shows that the final computation of the preference
rate of “lower price services” is obtained from an arborescent computation, as the prod-
uct of the values of the individual static characteristics involved in the process.

To “normalize” this product computation, we propose the following definition and for-
mula.
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Definition 22 Preference rate computation for a dynamic characteristic.

If n 1s the number of the static characteristics involved in the dynamic characteristic
evaluation and {v;; 1 < i < n} are their associated values, with v; € [0,1], the preference
rate for the dynamic characteristic is computed by

n 1/n
- i)
=1

Remark 5 The previous computation proposed for the preference rate for a dynamic
characteristic supposes that the values associated to each static characteristic are inde-
pendent. This hypothesis could be felt as important and so it is still possible to use more
advanced computation based on the principles of conditional probabilities. We do not
consider this possible extension in this work.

8.3.2 Rule-Based Processes Model for Center Adaptation

The principle of centers/services adaptation to their usage proposed in this work is
computed with rule-based system which consists of two steps:

e Define the conditions from the users dynamics;
e Define center response with respect of the previous conditions evaluation.

On figure 8.14, we explain this adaptive process. From the simulation while running, we
compute statistics according to the users number of each category (e.g. corresponding
to specific characteristics). These statistics are the inputs of the adaptive process and
according to a rule-based system, we produce some outputs. These outputs describe the
colored pheromone amplitude that we have to modify in order to adapt the attraction
phenomena according to the users behavior.

The statistics on users number of specific characteristic is based on the following defini-
tion using definition 13 of referential disk associated to a center /service.

Definition 23 The density of materials containing the characteristic i near one cen-
ter/service is defined according to Z, the referential disk associated to this center, with
the formula
o Y Mez SiM
=" Az)
where A(Z) is the area of the referential disk Z and s;py is the ¢; color attribute preference
for the material M as given in definition 11.

In a formal way, the adaptive process is based on a rule system to be implemented by
each center/service. Each adaptive rule is describe by the standard formula as follows:

if C' then R (8.1)

where C'is the condition of the adaptive rule and R is the response of the adaptive rule.
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Figure 8.14: Concept of adaptive process

Definition 24 The adaptive condition C' from 8.1 is described with a set of n threshold
conditions: {(i,7;,b);1 < i < n} where i is a characteristic identifier, r; is a threshold
and b can have the values 0 or 1. The threshold is qualified as following:

o if b = 0 then r; is a minimal threshold and the elementary condition consists
to evaluate if p;, the density of material containing the characteristic i near the
center/services, is less than the threshold:

D < Ty

e if b = 1 then r; is a maximal threshold and the elementary condition consists
to evaluate if p;, the density of material containing the characteristic i near the
center/services, is grealer than the threshold:

Di > Ty

Finally, to obtain the adaptive condition C, we have to compose a logical expression
combining all the threshold conditions.

Definition 25 The adaptive response R from 8.1 is described with a set of m pheromone
modifications: {(j,A;);1 < j < n}, where j is the pheromone c; color identifier, A; is
the modification to compute on the pheromone intensity:

Q5 < Qyj + Aj

where i is the center/service identifier when the adaptive rule is currently applied.
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Example 3 The adaptive process concerning the “lower price preference” can be com-
puted as follows. We consider that the individual characteristics affected by this pref-
erence are being young (represented by Y in figure 8.13) and being of low social level
(represented by S1 in the same figure). If we associate for example the characteristic
identifier 2 to being young and the characteristic identifier 5 to being of low social level,
we have to define 2 threshold conditions like

e (2,1, 1), where ry is an arbitrary minimal threshold;
o (5, 13, 1), where ry is another arbitrary minimal threshold.

The response will have a unique pheromone modification like (8, Ay ), if 8 is the pheromone
color identifier associated to the preference “lower price preference” and Ay is an arbi-
trary pheromone intensity modification to apply.

8.3.3 Experiments

This section concerns experiments illustrating the adaptive mechanism involved by the
rule-based process described in the previous section.

To implement the process, we have to define (i) the static characteristics, (ii) the dy-
namic characteristics involved in the individuals and we have to implement them as
material colors.

The static characteristics of this experiment correspond to the 3 classes defined in figure
8.13: gender (male or female), age (young, adult and old) and social level (low level,

middle level and high level).

The dynamic characteristics correspond to the preference which are defined by the pref-
erence tree computation of the same figure 8.13. We implement the example developed
previously concerning the “lower price services”. This preference rate is computed fol-
lowing definition 22 and using the values given in this computation tree. The new color
number associated to this preference is the number 8.

We have to define the adaptive process composed of (i) the adaptive conditions as de-
fined in definition 24 and (ii) the adaptive responses as defined in definition 25. The
experiment implements exactly the adaptive process given in example 3 with the values:
r1 = 0.2, /o = 0.2 and A, = 0.2. The adaptive process is implemented over centers 0
and 2. Initial pheromone function amplitudes are initiated respectively by the values
0.9 and 0.2 to the centers 0 and 2. According to the adaptive process, these amplitudes
will increase during the simulation.

Figures 8.15 and 8.17 show the simulation output after 351 iterations and 843 iterations,
respectively. Between this two steps, the adaptive process will be released making the
pheromone corresponding to the preference “lower price services” increased for the two
centers 0 and 2. We can observe this phenomenon by the increasing number of materials
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of color associated to the preference (light red) around these two centers.

Figures 8.16 and 8.19 describe the material distribution around the center 0 after 351
iterations and 843 iterations. We can identify the release of the adaptive process by the
fast increase of the 8-color (brown) curve on the figures part (a). The adaptive response
characterized by the increase of the pheromone of the same color can be detect on the
figure parts (b) with the decrease of the 8-color curve, describing that this amplitude
increasing makes the associated pheromone efficiency decreasing.

On part (c) of the same figures 8.16 and 8.19, we observe the relative pheromone effi-
ciency associated to the studied preference. During a short period these curve evolutions
follow similar decreasing that in the corresponding curves of the figure part (b). Then,
we observe that these curves increase. This fact means that, in the neighboring centers,
this colored pheromone amplitude is increasing also: it is the consequence of the release
of the adaptive process over center 2. Our analysis allows to follow the spatial effects
and the dynamic interactions between the centers of the simulation.

Figure 8.19 describes the material distribution around center 2 after 843 iterations. We
can observe the adaptive process release on part (a). We can observe the increasing step
of the pheromone efficiency on part (b) due to the fact that the initial pheromone ampli-
tude for the preference is low (0.2) and make this attraction phenomenon being efficient.
After few time, the increase of the pheromone amplitude becomes high and makes the
efficiency decreasing. Part (d) of Figure 8.19 shows that the relative pheromone effi-
ciency curve for the preference pheromone has the same evolution that the pheromone
efficiency curve on part (¢) because there is no significants evolution modification on
this preference pheromone on the neighboring centers.
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Figure 8.15: Center adaptation experiment: configuration at iteration 351

167



CHAPTER 8. APPLICATION TO URBAN CULTURAL CENTER DYNAMICS

centre 0: Density (dominent color)
T . T T : T

color 0 @ centre 0: Density (all colors)
030 T color1 x T [ { [ [ [ [ colord @
color2 o gt colorl x
e color3 a L | | | [#*v | |ralor2 o
0.5 F - colord color3 a
colar5 o 035 f 4 colord
color & . color5 o
L | color? = tolor 6+
0.20 colord A 030 7 color? om
color 8 color8 A
color 9
015 . Q23 1
0.20 7
10 1
015 7
005 1
oo N
000 8 0.05 7
000 4
1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 25 30 35 0n 0.5 1.0 1.5 2.0 2.5 30 35
x10 x10°
(a) material dominant color density (b) material color density
centre 0: spatial relative Density
T T T T T T T T
centre 0: relative Density R | i :E:E:? ;
[T [ I [ [ [ [ T Jeoloro e 0.60 Jealor2 o
0.30 colorl 055 F Jcolor3 a
wolor2 O ’ color 4
color3 & 0.50 q colors o
0.25 7 color4 color 6
calor 5 o 045 T eolor7 m
color & a40F A color & A
0.20 F - color7 m color 8
color § A 035 =
/
caolor 8
0.30 T
015 5
025 T
{ 0.20 . 7
010 1
0.15 7
010 7
0.05 b
005
0.00| i 000 T
b -0.05 | 4
I I L 1 1 1 1 1 I I I I 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
102 e
(¢) pheromone efficiency (d) relative pheromone efficiency

Figure 8.16: Center adaptation experiment analysis: center 0 material distribution until
iteration 351
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Figure 8.17: Center adaptation experiment: configuration at iteration 843
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Figure 8.18: Center adaptation experiment analysis: center 0 material distribution until
iteration 843
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Figure 8.19: Center adaptation experiment analysis: center 2 material distribution until
iteration 843
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8.4 Mixing Swarm Intelligence Algorithms with GIS
on Rouen Agglomeration Configuration

8.4.1 GIS-Repast integration

The integration of GIS data have been made using Repast and OpenMap GIS software.
The main steps can be summarized as follow [90]:

Creating agents from shape file: we have to define agent class by subclassing De-
faultOpenMapAgent class or by implementing OpenMapAgent class.

Using the data classes: after the agent class has been created, we need to have a
list of them (one agent for each feature in the Shapefile), using the following instructions:

First, we get the Data class for the GIS system that we are using:
OpenMapData gisData = OpenMapData.getInstance();

Then we create an ArrayList, and we add the Agents to it:

ArrayList agentList = new ArrayList();
agentList.addAll(gisData.createAgents(Agent.class, datasource));

Here, Agent.class refers to the GisAgent class specified.

Now we have a list of agents. If we specified get and set functions for a specific attribute
named Landuse, for example, each agent in the list would have had the Landuse value
set by the Landuse field in the dbf file associated with the Shapefile.

It is also possible to interrogate data, which means to look into a shapefile and see what
fields it contains. The interrogate function returns an array of type FieldNameAndType.

FieldNameAndType/] nameTypes =
gisData.interrogate(MyProgram.datasource);
for (int i=0; i<nameTypes.length; i++) {
System.out.printin("interrogate " + i +
" field name: " + nameTypes[i]. getFieldName() +
"type : " + nameTypes[i].getField Type());

/

Displaying agents with open map and using open map display: The following
steps should be followed in order to display the agents with OpenMap:

e The Shapefile data must be in decimal degree coordinates. OpenMap does not
handle pre-projected data.

e Create the agents and add them to a list (as shown in the section on Data)
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e Create a new instance of OpenMap Display:
OpenMapDisplay omDisplay = new OpenMapDisplay();

e Add the agents to a layer:
omDisplay.addlayer(gisAgents, "AgentLayer”);

e Update Agents: after changes have been made to the agents, you can update the
layer containg them:
omDisplay.updateLayer(gisAgents, "AgentLayer");

8.4.2 Model of Cultural Dynamics within Rouen Urban Area
GIS

On the left part of figure 8.20, we represent a map of Rouen agglomeration composed of
two shapefiles. The first one describes the location of municipality centers and their as-
sociated area. The second one describes the location of cultural equipments (red points).

On the right part of figure 8.20, we show a first result of the simulation mixing these
shapefiles with the swarm intelligence process. Three cultural centers have been rep-
resented with big yellow ellipses and the process described in this figure shows the
beginning of the attraction phenomena.

As we explain previously, this simulation is the first step of an important regional project
where a technical engineering work will be developed later to cover the whole cultural
center system of Rouen agglomeration. Our model and its ability to be extended both
on attraction phenomena and on the adaptive processes, allow to make in an accurate
way, this engineering tool which is not the aim of the research work developed in this
Ph.D. thesis.

8.5 Perspectives and future works

In the previous section, we propose an adaptive process in order to model the feed-back
of the centers on their attraction mechanism according to their user characteristics.
This adaptive process can also be extended to the user behavior by a another calcula-
tion mechanism. This mechanism is based on the calculation of the satisfaction degree of
each individual attached to a specific center. If this degree passes a given threshold, the
individual can change the chosen center to another one with a better satisfaction degree.
This mechanism could be inspired by the segregation model of Schelling described at
the end of chapter 3.

In the Ph.D. work, we focus on the implementation of the centers adaptivity as feed-

back of the centers as systems on their constituents. The implementation of the user
adaptivity is only described here as a perspective of this work.
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Chapter 9

Conclusion

The problem addressed by this study concerns the dynamics of organizations from ser-
vices and users interactions. Our contribution is to model such phenomena respecting
their complexity. This modeling is based on two main aspects which are the adaptive
evolution of these organizations according to their usage and the spatial dimension of
the processes which influence the organization formations and evolution. This under-
standing allows us to find, in evolutive way, the best policies for the services and the
best choices for the users. The problem can be, in that way, described as a multi-scale
decision making: individual decision of the users and decision about the services. Both
of these decisions are function of multi-criteria aspects. These decisions have also spatial
dimension. For all these reasons, it is difficult to have a deterministic decision making
process without simulating various scenarios within spatial environment evolving accu-
rate spatial data (GIS).

Developing dynamical simulations over GIS leading to adaptive and intelligent decision
processes is nowadays a great challenge. Urban development and management needs
decision making processes which have been developed since many years on determin-
istic global evolution laws (differential models, for example). The spatial dimension
within its complexity is not generally considered in such global model and are often
unable to understand some self-organized systems development. Furthermore, the mod-
ern development of the cities make them being perceived as a huge complex network of
distributed communicating and intelligent devices as mobile phones, PDA, GPS devices
and wireless notebooks. All these new technologies bring to citizens an important per-
vasive environment, full of various information. But finally these environments make
the individual decision, a complex problem based on multi-criteria aspects [69].

In order to develop appropriated models and simulations, we need to respect the com-
plexity of the phenomena inside the conceptual approaches of these models. In our
work, in order to take into account the distributed nature of the problem, we have used
multi-agent systems. In order to take into account the self-organized phenomena, we
have used swarm intelligence methods and algorithms.

The proposed method is based on successive steps. In the first step, we develop elemen-
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tary models based on bio-inspired processes leading to self-organized swarm behavioral
systems. In the second step, we develop these elementary swarm systems inside complex
heuristics mixing multi-criteria aspects in a complex spatial environment. The third step
consists in applying these general model to specific applications. The final step leads
to link abstract components to practical features of the case study developed in each
application.

The innovative work proposed here aims at developing these complex heuristics. This
approach shows that we can model complex phenomena by linking simple elementary
models and we can model adaptive systems with the interaction of these elementary
models.

We develop in this work a case study based on the complex dynamics of urban cultural
facilities development. The model is based on an extension of nest building algorithms
to multi-criteria aspects integrating the various elements of the users characteristics and
preferences (gender, age, social origin, etc.). The innovative model is based on two
major steps. The first step consists in modeling the attraction phenomena of the users
for the cultural facilities with a pheromone based model. The second step consists in
modeling the adaptive behavior of the cultural facilities in order to adapt them to the
users. In that way, we model the complex loop between the users and the services. The
simulation approach allows us to understand this complexity in order to control or make
decision on urban cultural planning.

The perspectives of this work are various. We can first remark that the developed model
is applied in this document only to the urban cultural facilities development. The gen-
erality of our model allows us to apply it to many applications where users and services
interact dynamically in spatial multi-criteria complex environments (telecommunication
infrastructures, wireless sensor networks, etc). Non homogeneous components systems
can be managed by our method.

The ant nest building swarm algorithms are typically based on numerous parameters
(number of ants, pheromone amplitude, various thresholds, etc.) which need to be tuned
according to the problem configuration (space size, number of centers, etc.). We do not
focus in this study on how to adjust these parameters. This problem can be solved by
some optimization methods like particle swarm optimization or also the use of intelligent
controllers.

On this study, we focuss on the swarm algorithm development and the mixing of this
intelligent methods with GIS. Further studies could focuss on a more advanced interac-
tion between the agents and the shapefile in order to modify or update the spatial GIS
data.

The usage of multi-agent models within spatial self-organized systems is nowaday in
increasing research development. We believe that swarm intelligence methods can have
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a promising future in this context, both for the development of theoretical models and
also for the applications of new research fields.
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Rawan GHNEMAT

Adaptive Modelling for Spatial Emergence within Complex Sys-
tems

ABSTRACT: The aim of this work concerns the implementation of swarm intelligence
models in order to study the spatial emergence of organizations within self-organized
systems, under multi-criteria constraints. The scientific context of the modeling for-
malism is developped in this document. A methodology is presented and leads to the
development of a complex heuristic linking bio-inspirated elementary models, based on
ant algorithms. An application is developped and concerns the service/user modeling -
specifically for cultural services - in urban dynamics. Models of adaptive mechanisms
of services during their usage are also proposed.

KEYWORDS: Complex Systems, Self-Organization, Swarm Intelligence, Ant Algo-
rithms, Multi-scale Decision Making, Urban Dynamics.

Modélisation adaptative pour I’émergence spatiale dans les sys-
témes complexes

RESUME : I’objectif de ce travail consiste & mettre en place des modéles d’intelligence
en essaim pour 1’étude de I’émergence spatiale d’organisations dans des systémes com-
plexes auto-organisés, sous des contraintes multi-critéres. Le contexte scientique de la
formalisation dans le cadre de la modélisation des systémes complexes est développé
dans ce document. Une méthodologie est présentée et conduit au développement d’une
heuristique complexe tissant des liens entre des modéles élémentaires bio-inspirés des al-
gorithmes de type fourmis. Une application est développée et concerne la modélisation
de 'usage de services - notamment des services culturels - en dynamique urbaine, ainsi
que la modélisation des mécanismes d’adaptation de ces services en fonction de leurs
usages.

MOTS-CLEF : Systémes complexes, auto-organisation, intelligence en essaim, algo-
rithmes fourmis, aide a la décision multi-échelle, dynamique urbaine.



