
HAL Id: tel-00429417
https://theses.hal.science/tel-00429417

Submitted on 2 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthodologie de prototypage rapide pour systèmes
embarqués parallèles : modélisation des systèmes et
amélioration des heuristiques d’ordonnancement de

tâches
Pengcheng Mu

To cite this version:
Pengcheng Mu. Méthodologie de prototypage rapide pour systèmes embarqués parallèles : modéli-
sation des systèmes et amélioration des heuristiques d’ordonnancement de tâches. Modélisation et
simulation. INSA de Rennes, 2009. Français. �NNT : �. �tel-00429417�

https://theses.hal.science/tel-00429417
https://hal.archives-ouvertes.fr

No d’ordre :

Ecole Doctorale MATISSE

THESE
présentée devant

L’INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE
RENNES

pour obtenir le grade de

DOCTEUR
spécialité : Traitement du Signal et de l’Image

Rapid Prototyping Methodology for Parallel
Embedded Systems

Advanced System Model and Improved Task Scheduling Heuristics
par

MU Pengcheng

Soutenance prévue le 07/07/2009 devant la commission d’Examen
Composition du jury:

Rapporteurs
BOURENNANE El-Bay Professeur des Universités à l’Université de Bourgogne
HOUZET Dominique Professeur des Universités à l’INPG de Grenoble
Examinateurs
GRANDPIERRE Thierry Professeur Associé à l’ESIEE, Noisy-le-Grand
VERDIER François Maître de Conférences (HDR) à l’ETIS
COUSIN Jean-Gabriel Maître de Conférences à l’INSA de Rennes
NEZAN Jean-François Maître de Conférences à l’INSA de Rennes
Directeur de thèse
RONSIN Joseph Professeur des Universités à l’INSA de Rennes

Institut d’Electronique et de Télécommunications de Rennes
Institut National des Sciences Appliquées de Rennes

Université Européenne de Bretagne

Contents

Contents iii

Introduction 1

1 Rapid Prototyping and Hardware/Software Co-design 5
1.1 Introduction . 5
1.2 Design FPGA based MPSoC with AAA Rapid Prototyping Methodology 6

1.2.1 AAA Rapid Prototyping Methodology and SynDEx 6
1.2.2 Rapid Prototyping for Multi-MicroBlaze Systems on FPGA . 8
1.2.3 SynDEx-Ic Tool . 12

1.3 Tools for HDL Code Generation . 13
1.3.1 GAUT: A High-Level Synthesis Tool 14
1.3.2 Open Dataflow Framework . 16
1.3.3 Comparison between GAUT and OpenDF 21

1.4 An Eclipse-Based Open Source Rapid Prototyping Framework 22
1.4.1 Graphiti: A Generic Graph Editor for Editing Architectures,

Algorithms and Workflows . 23
1.4.2 SDF4J: A Java Library for Algorithm Dataflow Graph Trans-

formation . 25

iii

iv contents

1.4.3 PREESM: A Complete Framework for Hardware/Software Co-
design . 27

1.5 Conclusion . 28

2 Graph Models for Parallel Embedded Systems 29
2.1 Introduction . 29
2.2 Algorithm Model . 30

2.2.1 Dataflow Model . 30
2.2.2 DAG Model . 34
2.2.3 DAG Properties . 36

2.3 Architecture Model . 43
2.3.1 Parallel Architectures . 43
2.3.2 Advanced Architecture Model 45
2.3.3 Architecture Specification with IP-XACT Standard 51

2.4 Conclusion . 53

3 Task Scheduling in Parallel Embedded Systems 55
3.1 Introduction . 55
3.2 General Task Scheduling . 56

3.2.1 Without/With Communication Costs 56
3.2.2 Scheduling Methodologies . 58
3.2.3 Advanced Techniques . 60

3.3 Task Scheduling with Advanced Architecture Model 63
3.3.1 Routing with Architecture Model 63
3.3.2 Scheduling with Advanced Architecture Model 65
3.3.3 Causality Conditions . 68
3.3.4 Scheduling Conditions . 69

3.4 Task Scheduling with Topology Graph Model 71
3.4.1 Topology Graph Model . 71
3.4.2 Scheduling with Communication Contention 73

3.5 Conclusion . 75

4 List Scheduling with Communication Contention 77
4.1 Introduction . 77
4.2 Node Levels with Communication Contention 78
4.3 List Scheduling Heuristics . 82

contents v

4.3.1 Static List Scheduling Heuristic 82
4.3.2 Dynamic List Scheduling Heuristic 85

4.4 Experimental Results . 86
4.4.1 Comparison with an Example 87
4.4.2 Comparison with Randomly Generated DAGs 89

4.5 Analysis of Time Complexity . 95
4.6 Conclusion . 97

5 Advanced List Scheduling Methods 99
5.1 Introduction . 99
5.2 Processor Selection with Critical Child 100
5.3 Node and Edge Scheduling with Communication Delay 102

5.3.1 Node Scheduling . 102
5.3.2 Edge Scheduling . 103

5.4 Advanced List Scheduling Heuristics 104
5.5 Experimental Results . 105

5.5.1 Comparison with an Example 106
5.5.2 Comparison with Randomly Generated DAGs 108

5.6 Time Complexity of Advanced List Scheduling Heuristics 114
5.7 Conclusion . 118

Conclusions and Prospects 119

A IP-XACT Code of Advanced Architecture Model 123
A.1 TI’s C6474 DSP . 123
A.2 Xilinx’s FPGA-based MPSoC . 128

List of Figures 135

List of Tables 139

List of Algorithms 141

Personal Publications 143

Bibliography 145

Index 157

vi contents

Abstract 162

Introduction

Context

Embedded systems are pervasive around our everyday life. An embedded system
is an electronic system dedicated to specific applications. These systems especially
exist as consumer electronics: PDAs, mp4 players, mobile phones, videogame consoles,
digital cameras, DVD players, GPS receivers, etc. Most of these systems consist in
digital signal processing and/or image processing applications that require a lot of
processing power.

Specific hardware circuits overcome speed constraints but are not compatible with
a short time-to-market. They also need early and evaluative demonstration proto-
types. An alternative can be provided by programmable software components like
Digital Signal Processor (DSP) and Reduced Instruction Set Computer (RISC) or
programmable hardware components like Field-Programmable Gate Array (FPGA).
However, only one embedded processor is usually not sufficient for modern compli-
cated applications.

As the complexity of the digital signal processing applications increases, multiple
processing units are necessary in an embedded system to satisfy the requirement
of great computation ability. An embedded system with several cores (e.g. multi-
core DSP from TI (1)) and/or several hardware accelerators (e.g. IPs for Intellectual

(1). http://www.ti.com/

2 Introduction

Properties) becomes a parallel embedded system. Hard real-time constraint must be
satisfied by the multicomponent architecture, and the design can provide considerable
flexibility since DSP, RISC and FPGA are programmable. However, for an embedded
system with several processing cores, the flexibility is limited by the system’s fixed
topological structure and the fixed number of the programmable components.

More recent FPGAs offer very dense integration. With the help of multi-million
gate configurable logic and various heterogeneous FPGA hardware components (mul-
tipliers, memory blocks, etc.), soft and hard processors could now be integrated on
FPGA. Examples of such soft RISC processors include Nios from Altera (2) and Mi-
croBlaze from Xilinx (3). In addition, Xilinx has also integrated the PowerPC 405
hard core on its FPGA. With multiple processors integrated on FPGA, we can build
up FPGA based Multiprocessor System-on-Chip (MPSoC). As an example of the re-
search for multiprocessor system, ATLAS is developed in the RAMP project (4) and is
a prototype including 9 PowerPC 405 cores where 8 cores run multithreaded code for
applications and the 9th core handles the operation system and I/O devices. Another
example is the SocLib project (5) that addresses MPSoC.

MPSoC offers flexibility and efficiency, not only as regards its software but also
as regards its hardware. Designers can directly elaborate several scenarios for ar-
chitecture and algorithmic design exploring to reach real-time constraints, and the
time-to-market is shorter in comparison with specific hardware circuits. However,
such “manual explorations” are still complex, needing strong expertise and resulting
in important time development. Therefore, “automatic solutions” with rapid proto-
typing methodologies are necessary for developing MPSoC.

Objective

Applications like digital signal processing usually consist of a set of tasks that are
computations and communications between computations. Task scheduling is nec-
essary when implementing such an application in a parallel computer system. Task
scheduling consists in assigning and ordering computations and communications re-
spectively to processors and communication links of the target system in order to
finish all the tasks as soon as possible. The general task scheduling problem has been

(2). http://www.altera.com
(3). http://www.xilinx.com
(4). http://ramp.eecs.berkeley.edu/
(5). https://www.soclib.fr/

Introduction 3

proven to be NP-hard, therefore, many works try to find heuristics for approaching
the optimal solution. Early scheduling heuristics do not take communication into
account. As the communication increases in modern applications, many heuristics
now consider communication for task scheduling, and most of them use fully con-
nected topology network in which all communications can be performed concurrently.
Arbitrary processor networks are then used to accurately describe parallel computer
systems, where communication links are not contention-free, and task scheduling takes
communication contention into account.

This thesis mainly concerns the task scheduling problem in rapid prototyping
for parallel embedded systems (e.g. MPSoC). We aim at task scheduling models
for parallel embedded systems by accurately considering communications between
computations. We also propose list scheduling heuristics with advanced techniques
to improve the scheduling performance. Our scheduling methods are integrated in
PREESM (Parallel & Real-time Embedded Executives Scheduling Method) (6) that is
an Eclipse-based open source rapid prototyping framework. Scheduling is an impor-
tant step in PREESM. The schedule result of an application on a parallel embedded
system with our advanced heuristics will be further used to generate the code and
finally to efficiently implement the application on the parallel embedded system.

Organization

After being briefly introduced, the rest of this work is organized in 5 chapters as
follows.

Chapter 1 presents the rapid prototyping and hardware/software co-design prob-
lems. We firstly present the AAA (Adequation Algorithm Architecture) rapid proto-
typing methodology used for FPGA based multiprocessor system. Two different tools
for generating Hardware Description Language (HDL) code from high-level languages
are also presented. We introduce our rapid prototyping framework for hardware/soft-
ware co-design at the end of this chapter.

Chapter 2 presents necessary graph models for rapid prototyping and hardware/-
software co-design. We present several dataflow graphs to describe an application
algorithm for parallel programming. As for task scheduling, the Directed Acyclic
Graph (DAG) model is used to describe the application algorithm. Properties of
the DAG model are also presented in details. The target system usually has the

(6). http://sourceforge.net/projects/preesm/

4 Introduction

distributed memory architecture for parallel embedded systems. We propose a graph-
based advanced architecture model to accurately describe parallel embedded systems.
The advanced architecture model can be specified in a graph editor by respecting the
IP-XACT standard.

Chapter 3 presents the task scheduling problem in parallel embedded systems.
After a survey of the general task scheduling, we present the task scheduling with
our advanced architecture model in detail. Since it is difficult to implement the task
scheduling with the advanced architecture model at the very start, the advanced archi-
tecture model is slightly simplified to be the topology graph model. The scheduling
problem with this simplified architecture model is the task scheduling with com-
munication contention, and we will propose advanced techniques of this simplified
scheduling for parallel embedded systems.

Chapter 4 presents list scheduling heuristics for the topology graph model (sim-
plified architecture model in Chapter 3). We propose three new groups of node levels
with communication contention that are used for generating static and dynamic node
lists. With the addition of the other two existing groups of node levels, these five
groups are all used in a list scheduling heuristic, which gives a combined heuristic.
Experimental results are given at the end of this chapter to show the improvement of
the scheduling performance. The time complexity of the list scheduling heuristic is
also analyzed and tested to show its rapidity.

Chapter 5 gives two advanced techniques respectively named the critical child and
the communication delay to extend the list scheduling heuristics of Chapter 4. These
two techniques are combined with the five groups of node levels to further improve
the scheduling performance. Though the time complexity increases by a factor of the
number of processors, our experimental results show that the scheduling performance
are greatly improved and the time complexity is acceptable.

We conclude this work in the end and also give some prospects.

1
Rapid Prototyping and

Hardware/Software Co-design

1.1 Introduction

The multicomponent architecture of MPSoC [Mar06] raises problems in terms of
application distribution: manual data transfers and synchronizations quickly become
very complex and result in loss of time and potential deadlocks.

One suitable design process solution consists in using rapid prototyping method-
ology. The aim is then to go from a high-level description of the application to its
real-time implementation on target architecture as automatically as possible. This
automation saves development time and prevents conflicts and deadlocks. It ensures
processing safety and reduces validation tests.

Hardware/software co-design [MG97] has been proposed as the design method for
embedded systems and is used for designing System-on-Chip (SoC) [SBB06, OH06]. It
needs to generate code for hardware coprocessors in Hardware Description Language
(HDL) that is usually more complicated than software code. A tendency is to generate
HDL code from high-level languages. This topic is interesting and important for
hardware/software co-design.

This chapter presents rapid prototyping and hardware/software co-design. The
rest of the chapter is organized as follows: Section 1.2 presents the AAA rapid pro-
totyping for FPGA based MPSoC, and we use this rapid prototyping methodology

6 Rapid Prototyping and Hardware/Software Co-design

for designing multi-MicroBlaze systems on FPGA with the SynDEx tool. Section 1.3
presents two tools to generate HDL code from high-level languages for hardware/soft-
ware co-design. When rapid prototyping is used with hardware/software co-design,
we will need a new framework. Our new rapid prototyping framework is introduced
in Section 1.4. The conclusion is given in Section 1.5.

1.2 Design FPGA based MPSoC with AAA Rapid
Prototyping Methodology

The AAA (Adequation Algorithm Architecture) rapid prototyping methodology is
suitable for designing image processing systems with heterogeneous multicomponent
architectures. Based on this methodology, the SynDEx (1) tool has been used in
some multi-DSP systems for image processing applications [RUN+05b]. This section
presents the use of this rapid prototyping methodology in multi-MicroBlaze systems
on FPGA. An extension of SynDEx is also introduced.

1.2.1 AAA Rapid Prototyping Methodology and SynDEx

SynDEx is a free academic system level Computer Aided Design tool developed by
INRIA Rocquencourt. It supports the AAA methodology [GLS99] for distributed real-
time processing. The aim of SynDEx is to directly achieve optimized implementation
from descriptions of an algorithm and an architecture.

AAA in SynDEx

Figure 1.1 gives the SynDEx design flow. An algorithm graph is described as a
Dataflow Graph (DFG), and specifies the potential parallelism of the application. An
architecture graph describes the multicomponent target, i.e. a set of interconnected
processors and specific integrated circuits, and specifies the available parallelism. In
the application example given in Figure 1.1, the algorithm graph includes one input,
two outputs and a function that is divided into two identical parts to be executed
simultaneously. The architecture graph of the target system is composed of one PC,
two MicroBlazes and two communication media. Since these two MicroBlazes and the
medium between them are all integrated on an FPGA, the architecture graph gives

(1). http://www.syndex.org

Design FPGA based MPSoC with AAA Rapid Prototyping Methodology 7

a medium-coarse grain description in comparison with the one considering an FPGA
as a black-box [RUN+05b].

Figure 1.1: SynDEx design flow

“Adequation” (Figure 1.1) means efficient mapping, and consists in manually
or automatically exploring the space of implementation solutions with optimization
heuristics [GLS99]. These heuristics aim to minimize the total execution time of the
algorithm running on the multicomponent architecture. The heuristic is a greedy list
scheduling based approach with manual interaction when timing constraints are not
met.

Implementation consists of both performing a distribution (allocating parts of
the algorithm to components) and scheduling the algorithm on the architecture (i.e.
giving a total order for the operations distributed onto a component).

Formal verifications during “adequation” avoid deadlocks in the communication
scheme thanks to semaphores inserted automatically during real-time code generation.
Moreover, since the Synchronized Distributed Executives are automatically generated
and safe, part of the tests and low-level manual coding are eliminated, decreasing the
development lifecycle.

SynDEx provides a timing graph (Figure 1.1), which includes simulation results
of the distributed application and thus enables SynDEx to be used as a virtual proto-
typing tool. SynDEx then automatically generates the generic executives, which are
independent of the hardware target, and places them in several source files, one for

8 Rapid Prototyping and Hardware/Software Co-design

each hardware target.

Automatic Executive Generation

The generic executives automatically generated by SynDEx are static and com-
posed of a list of macro-calls. The M4 (2) macroprocessor transforms this list of macro-
calls into compilable codes for a specific target. The codes are usually C or assemble
codes for processors and VHDL for the specific functions implemented on the FPGA.
The M4 macroprocessor replaces macro-calls by their definitions as given in the cor-
responding executive kernel. The definitions are dependent on a target and/or a com-
munication medium. In this way, SynDEx can be seen as an off-line static operating
system that is suitable for setting data-driven scheduling, such as image processing
applications. For examples, SynDEx kernels have been developed for several proces-
sors such as General Purpose Processors (usually on PC), TMS320C6x (C62x, C64x)
DSP and Virtex FPGA families [RUN+05b]. The generated codes could then be com-
piled by specific Computer-aided design (CAD) tools such as CCS for DSP, Quartus
or ISE for FPGA and Visual Studio for PC.

1.2.2 Rapid Prototyping for Multi-MicroBlaze Systems on
FPGA

The AAA rapid prototyping methodology has been used in a number of multi-
DSP systems for image processing applications, and it could also be used in FPGA-
based MPSoC to integrate multiple components on one or more FPGAs. As an
embedded soft core, MicroBlaze is a RISC processor and optimized for implementation
on Xilinx FPGA. It is highly configurable, allowing users to select a specific set of
features required by their design. Integrating multiple MicroBlazes on one or more
FPGAs can build up a multi-MicroBlaze MPSoC. This multi-MicroBlaze system is
flexible in terms of both software and hardware, so it can be used in complicated and
computation-rich applications such as image processing. This section details the use
of rapid prototyping for multi-MicroBlaze systems on FPGA with SynDEx.

Design Flow

Figure 1.2 shows the design flow for multi-MicroBlaze systems. A number of tools
such as SynDEx, M4, Embedded Development Kit (EDK) and Visual Studio are used

(2). http://www.gnu.org/software/m4

Design FPGA based MPSoC with AAA Rapid Prototyping Methodology 9

for different design stages.

User

Algorithm
graph Constraints Architecture

graph

Adequation

Timing
graph

GENERIC Synchronized
Distributed Executives

Hardware development

Software development

FPGA Device configuration

Software development

Target_1 ,,, Target_N Application Comm_1 ,,, Comm_M
Kernel Kernel Kernel Kernel Kernel

DEDICATED executives for specific targets
(Specific Compilers/Loaders)

SynDEx

M4

EDK
(for FPGA)

Visual Studio 2005
(for PC)

Figure 1.2: Rapid prototyping design flow with SynDEx

In this design flow, users firstly have to model in SynDEx Integrated Development
Environment (IDE) the processors and communication media which are used in their
design. Two different models are possible for the communication media between
processors: Single Access Memory (SAM) and Random Access Memory (RAM, shared
memory) [RUN+05b]. These modules are saved in a library and could be used for
other designs without any modifications. With these modules, users then could build
up the architecture and the algorithm graphs, and the “adequation” would be done by
SynDEx while the Synchronized Distributed Executives are automatically generated
in the form of m4 files. The m4 files then are translated into compilable executives
for specific targets such as MicroBlaze, PC and specific functions on FPGA with the
help of kernels which are explained in this section.

As the codes are generated, the next step is to build up the system. For the Xilinx
FPGA, EDK is used for both hardware and software developments. The hardware
is equivalent to the description of FPGA in the architecture graph of SynDEx ex-
cept that it is described in the finest grain with EDK and can be used to generate
the bitstream that configures the FPGA. For software programming, EDK uses the
generated executives for MicroBlazes and respective drivers to build up Executable
Linked Format (ELF) files for the multi-MicroBlaze system. When PC is used, Vi-

10 Rapid Prototyping and Hardware/Software Co-design

sual Studio is necessary for software development using the generated executives and
several drivers for PC.

SynDEx Executive Kernels

As described in Section 1.2.1, the SynDEx generic executives have to be trans-
lated into a compilable language. The translation of SynDEx macros into the target
language is contained in library files (also called kernels). Figure 1.3 shows the orga-
nization of different kernels for the multi-MicroBlaze system. There are two types of
processors (PC and MicroBlaze) and two types of communication media (Fast Sim-
plex Link (FSL) and TCP/IP) in the multi-MicroBlaze system. FSL is used for the
communication between MicroBlazes, and TCP/IP is used for the communication be-
tween MicroBlaze and PC. The kernel for PC has been used in [RUN+05a], and the
following explains the new kernels for MicroBlaze, FSL and TCP/IP.

Code generation

Generic
SynDEx.m4x

Architecture
dependent

Application dependent
ApplicationName.m4x

Processor type dependent
pentiumOS.m4x

microblazePOSIX.m4x

Media type dependent
TCP.m4x
FSL.m4x

Figure 1.3: SynDEx kernel organization

MicroBlaze Kernel

The program in MicroBlaze-based systems could be designed using either a stan-
dalone Board Support Package (BSP), which has no operating system, or Xilkernel,
which supports the core features required in an embedded real-time operating system
(RTOS). Xilkernel is a POSIX compliant API. When using Xilkernel, the standalone
BSP is used below the operating system layer. In [RRND06], RTOS is introduced
in the AAA methodology. The RTOS has an impact on processor target such as
execution time or allocated memory, but the over-cost is slight, especially for image
processing algorithms where data are often large. Moreover, executives automatically
generated including RTOS primitives are simple leading to a better comprehension for

Design FPGA based MPSoC with AAA Rapid Prototyping Methodology 11

users. They are also more generic and compatible with more components. Therefore,
our software component kernel for MicroBlaze has been developed using Xilkernel.

A software component kernel is used to automatically generate executives that
would run in a specific processor, and different kernels should be used for different
processors. With the MicroBlaze kernel, the generic executives generated by SynDEx
are translated into MicroBlaze compilable C codes. The generated codes are compiled
using Xilkernel, and semaphores are used to synchronize the various threads of the
program.

Executives generated by SynDEx consist of a sequential list of function calls (one
for each DFG operation). Therefore, functions have to be defined outside of SynDEx
to make the whole program executable. Most of these functions are developed in C
language so that they can be reused for any C programmable device.

Communication Media Kernels for Multi-MicroBlaze Systems

FSL: FSL is a uni-directional point-to-point communication channel bus used to
provide fast communication between two IPs. Since FSL is a First-In-First-Out
(FIFO) based communication bus, the kernel is developed based on the SAM
model in SynDEx. C functions are developed for MicroBlaze to send/receive
data to/from FSL, and the calling of these functions is automatically generated
for MicroBlazes.

TCP/IP: TCP/IP could be modeled as a SAM in SynDEx because it uses FIFOs.
With the kernel developed for TCP/IP, SynDEx could generate a sequence of
generic executives to complete TCP/IP-based communication. Like the com-
putation function requirements, the communication functions should also be
developed outside SynDEx, and these functions may be different depending on
the different types of processors. C functions have been respectively developed
for PC and MicroBlaze so that they can communicate using TCP/IP.

Comments on SynDEx

The main advantage of the SynDEx based prototyping process is its simplicity
because most of the tasks performed by the user concern the description of an appli-
cation (creation of the algorithm graph) and a compiling environment. All complex
tasks (adequation, synchronization, data transfers and chronometric reports) are ex-
ecuted automatically or semi-automatically. The user can rapidly explore several

12 Rapid Prototyping and Hardware/Software Co-design

design alternatives by modifying the architecture graph and/or the algorithm graph,
or by adding constraints.

There are some disadvantages in SynDEx. The two models of SAM and RAM
are not suitable to accurately describe the actual advanced communication media like
switch-base network or Network-on-Chip (NoC). SynDEx is usually used for software
code generation in multiprocessor systems; however, it is not natural to use SynDEx
in a heterogeneous system with processors and IP coprocessors. Since the hardware
code generation for coprocessors is usually more complicated than the software code
generation for processors, the AAA rapid prototyping methodology is extended to
be used for hardware code generation in another tool called SynDEx-Ic. This tool is
briefly presented in the next subsection.

1.2.3 SynDEx-Ic Tool

SynDEx-Ic (3) is a free software developed by the “Conception d’architecture”
group of A2SI laboratory in ESIEE. It is a rapid prototyping software for real time
applications as an extension of SynDEx. In comparison with SynDEx, SynDEx-Ic
covers the architectures based on dedicated circuits of Application-Specific Integrated
Circuit (ASIC) and/or FPGA and generates the synthesizable VHDL code.

SynDEx-Ic extends the AAA rapid prototyping methodology to the hardware im-
plementation of real-time applications onto specific integrated circuits [KASG03]. The
algorithm is modeled by a Factorized Data Dependence Graph (FDDG) and is spec-
ified by using the tool’s graphical interface. The objective is to find an offline (i.e.
before the execution) implementation of the algorithm to meet a given latency con-
straint (execution time). This implementation also tries to minimize the required
hardware resources on the target circuit (for example the number of Configurable
Logical Blocks for FPGA). If an implementation of the factorized specification does
not meet the real time constraints, it is necessary to defactorize the implementation
graph. The more a graph is defactorized, the greater the parallelism is, and the more
it is possible to reduce the latency. However, the use of resource increases when the
graph is defactorized.

The optimized implementation of a factorized algorithm graph onto the target
architecture is formalized in terms of graph defactorization transformation. This
optimization problem is known to be NP-hard [GJ79], and its size is usually huge

(3). http://www.esiee.fr/ grandpit/web-ca/syndex-ic/index.htm

Tools for HDL Code Generation 13

for realistic applications. SynDEx-Ic uses a heuristic based on a greedy algorithm
coupled with simulated annealing heuristics. The result of the heuristic is then directly
converted into synthesizable VHDL code to run on the target component or to be
simulated. Figure 1.4 shows the design flow of SynDEx-Ic.

Algorithm
specification

(FDDG)

Real-time
constraints

Characteristics
of the target
component

Optimization
heuristics

(surface/latency)

VHDL code
generation

Prediction
of performance

(surface/latency)

VHDL simulation FPGA synthesis

Figure 1.4: SynDEx-Ic design flow

SynDEx-Ic needs some libraries to generate the final VHDL code. In addition
to the libraries included in the tool, users have to create an application library to
define some specific operations by using VHDL. Since the hardware programming
in VHDL is usually more complicated than the software programming like in C, we
need to search other simpler ways to generate hardware code for hardware/software
co-design.

1.3 Tools for HDL Code Generation

Hardware/software co-design usually needs both hardware programming for Intel-
lectual Property (IP) coprocessors and software programming for general processors,
and the hardware programming is usually more complicated than the software pro-
gramming. However, it is possible to generating HDL code from high-level language
like C. This section introduces two tools for generating HDL code from high-level
languages.

14 Rapid Prototyping and Hardware/Software Co-design

1.3.1 GAUT: A High-Level Synthesis Tool

GAUT (Génération Automatique d’Unités de Traitement) (4) is a high-level syn-
thesis tool developed in Lab-STICC in Lorient (France). It dedicates to Digital Sig-
nal Processing DSP applications from an algorithmic specification in C [LGCH+05].
GAUT generates an IEEE P1076 compliant Register Transfer Level (RTL) VHDL
file. This file is an input for commercial, off-the-shelf, logical synthesis tools like ISE
from Xilinx, Design Compiler from Synopsys, Quartus from Altera, ...

GAUT Design Flow

Figure 1.5 shows the design flow of GAUT. Starting from a pure C function GAUT
extracts the potential parallelism before selecting/allocating operators, scheduling and
binding operations. GAUT synthesizes a potentially pipelined architecture composed
of a processing unit, a memory unit, a communication and multiplexing unit and a
GALS/LIS interface [BMB05, CCB+05, LGCHM05, CSB+04].

Synthesis Constraints:
 -Data average throughput
 -System clock frequency
 -Memory architecture and mapping
 -I/O timing diagram (schedule + ports)
 -FPGA/ASIC target technology

Algorithm

GAUT

GALS/LIS
Interface

&
Communication

Unit

Memory
Unit

Controller

Data Path

Clock enable

Req(i)

Ack(i)

Data(i)

Internal
buses

Figure 1.5: GAUT design flow

(4). http://www-labsticc.univ-ubs.fr/www-gaut/

Tools for HDL Code Generation 15

Use of GAUT

The tool structure in GAUT is shown in Figure 1.6. It mainly consists of seven
blocs which are explained as follows:

A: Algorithm analysis, extraction and visualization of parallelism;

B: Management of libraries;

C: Generation of Memory Unit (memory banks and associated controllers);

D: Synthesis of architecture under constraints of sampling rate;

E: Generation of the communication/protocol interface (FIFO protocol, LIS inter-
face, ...);

F: Visualization of the Gantt chart of the scheduled operations, IOs and memory
access;

G: Generation of the testbench and simulation with ModelSim.

C/C++ compiler
*Editor
*Data flow graph

Memory
synthesis
*Mugen

Result viewer

*Gantt viewer

VHDL synthesis
*Memory contraints
*Selection
*Allocation
*Scheduling
*Binding

Library
*Library viewer
*Library caracterizing

Communication
synthesis
*Cugen

Simulation
*Creat testbench
*Simulate

BA

C
D

E

F G

Figure 1.6: GAUT tool structure

The C or C++ code is developed and compiled in the editor window. GAUT com-
pilation is a parallelism extraction that allows the creation of the dependency graph
file necessary for the VHDL generation. Depending on algorithm specified before the
compilation the generated graph contains the necessary computing operators, inputs,
outputs and buffers. To generate the VHDL code, GAUT requires specifying a ca-
dency, a clock frequency and the type of architecture (with or without memory unit).
The VHDL generation depends on the dependency graph and the chosen library. Af-
ter VHDL generation, the VHDL testbench can be automatically generated by the

16 Rapid Prototyping and Hardware/Software Co-design

tool. A direct connection between GAUT and ModelSim is possible just by specifying
the ModelSim path.

Limits of GAUT

The use of GAUT to transform the C code of an image codec presents some limits
of this tool. In fact, GAUT can not deal with very complex C codes. After achieving
some tests we noted the following limits:

– GAUT does not support dynamic structures: The C code in the input of the tool
must be deterministic which means that all the variable sizes and the treatment
length have to be known by the tool. Consequently, it is not possible to compile
algorithms containing pointers or while or switch structures.

– Function appeal: We cannot use predefined functions so all functions in the
input of the tool must be main ones.

– Preprocessor directives: Some codes contain preprocessor directives used for a
DSP compilation. These directives can not be compiled with GAUT, so they
have to be eliminated.

– Graphs containing a huge number of knots: If the treatment is very complex and
requires a dependency graph with a huge number of knots, the graph generation
can not be achieved, and we would not have the VHDL code.

The results obtained by GAUT were not satisfying. The tool, in the 2.2.0 version,
was considerably limited to treat complex codes. Even the functions that we succeeded
to transform into RTL level VHDL code presented some synthesis problems in Xilinx
ISE tool. Some of the synthesized functions contained a big number of states in their
FSM and consumed a huge percentage of the FPGA area. Considering these results,
we decide to adopt another method for the automatic transformation using the Cal
language.

1.3.2 Open Dataflow Framework

Open Dataflow (OpenDF (5) for short) is an environment for building and executing
actor/dataflow models, including support for the Cal actor language. It is also a
compilation framework that consists of tools to compile Cal to HDL(VHDL/Verilog)
for hardware implementation [JMP+08] and to C for integration with the SystemC
tool chain [RWR+08]. Work on mixed HW/SW implementations is under way.

(5). http://opendf.sourceforge.net/

Tools for HDL Code Generation 17

Cal Language

Cal [EJ03, Jan07] is a domain-specific language that provides useful abstractions
for dataflow programming with actors. Cal has been used in a wide variety of ap-
plications [LMTJ07]. This section gives a brief introduction to the key elements of
actor and network for the Cal language.

Actor: An actor is a parametric entity with inputs, outputs and an internal state. An
actor can not change the state of another actor in the network, but it can com-
municate with others by exchanging tokens through connected inputs/outputs.
The execution of an actor is based on the execution of elementary functions
called actions. The modeling of the actor states can be done using a finite state
machine with the appropriate priorities if necessary.

While executing an action some tokens are consumed, and others are produced
independently from the current state of the actor. The execution of an action can
be controlled by a finite state machine or by a specified condition using the “guard”
syntax or both of them. The “guard” is an expression to test the value of an input
token or a local variable. If more than one action can be executed at the same time,
it is very important to define the priority between them. Therefore, the notion of
priority has been introduced in the language. This notion is very important for the
finite state machines in case of concurrent actions. The actor functioning can be
scheduled using a finite state machine. The required informations are the initial state
and the action that changes the current state to the next state.

The basic structure of a Cal actor is shown in the Add actor below, which has
two input ports t1 and t2, and one output port s, all of type T. The actor contains
one action that consumes one token on each input ports, and produces one token on
the output port. An action may fire if the availability of tokens on the input ports
matches the port patterns, which in this example corresponds to one token on both
ports t1 and t2.
actor Add() T t1 , T t2 ⇒ T s :

action [a] , [b] ⇒ [sum]
do

sum := a + b ;
end

end

Network: A set of Cal actors are instantiated and connected to form a Cal appli-
cation, i.e. a Cal network.

18 Rapid Prototyping and Hardware/Software Co-design

Figure 1.7 shows a simple Cal network Sum, which consists of the previously
defined Add actor and a delay actor Z. The network itself has input and output ports,
and the instantiated entities may be either actors or other networks, which allows for
a hierarchical design. The source code for the delay actor Z and the network Sum is
found below as well as the XML description of the network.

Z(v=0)

Add

Sum

B

A

Out Out

Out

In

In

Figure 1.7: A simple Cal network

actor Z (v) In ⇒ Out :

A: action ⇒ [v] end
B: action [x] ⇒ [x] end

schedule fsm s0 :
s0 (A) −−> s1 ;
s1 (B) −−> s1 ;

end
end

network Sum () In ⇒ Out :

entit ies
add = Add () ;
z = Z(v=0);

structure
In −−> add .A;
z . Out −−> add .B;
add . Out −−> z . In ;
add . Out −− > Out ;

end

<?xml version="1.0" encoding="UTF -8"?>
<XDF name="Sum">

<Port kind="Input" name="In"/>
<Port kind="Output" name="Out"/>
<Instance id="add"/>
<Instance id="z">

<Class name="Z"/>
<Parameter name="v">

<Expr kind="Literal" literal -kind="Integer" value="0"/>
</Parameter >

</Instance >
<Connection dst="add" dst -port="A" src="" src -port="In"/>
<Connection dst="add" dst -port="B" src="z" src -port="Out"/>
<Connection dst="z" dst -port="In" src="add" src -port="Out"/>
<Connection dst="" dst -port="Out" src="add" src -port="Out"/>

</XDF>

Tools for HDL Code Generation 19

Formerly, networks have been traditionally described in a textual language, which
can be automatically converted to FNL (Functional unit Network Language, XML
language standardized in RVC [LMTJ07]) and vice versa. Graphiti editor, which is
presented in Section 1.4.1, is available to create, edit, save and display a network.

Hardware Synthesis - CAL2HDL

Cal program must be implemented in real systems. Therefore, it should be trans-
lated to other technique languages for hardware and software synthesis, and the trans-
lation should be automatic. In fact, OpenDF is also a compilation framework, and
there are backends for converting Cal program to HDL and C programs.

Cal program is translated to HDL by using a tool named CAL2HDL [JMP+08].
When generating hardware implementations from a network of Cal actors, each ac-
tor is separately translated to RTL description in Verilog, and a number of actor
instances that are references of the generated RTL descriptions are connected with
FIFOs to elaborate the network structure in VHDL. Figure 1.8 shows the CAL2HDL
tool structure in OpenDF [Xil08].

Figure 1.8: CAL2HDL tool structure in OpenDF

Cal Simulation

Cal is supported by a portable interpreter infrastructure that can simulate a
hierarchical network of actors. This interpreter was first used in the Moses (6) project.
Moses features a graphical network editor, and allows the user to monitor actors’

(6). http://www.tik.ee.ethz.ch/moses/

20 Rapid Prototyping and Hardware/Software Co-design

execution (actor state and token values). The project being no longer maintained,
it has been superseded by an Eclipse environment composed of 2 tools/plugins - the
OpenDF environment for Cal editing and the Graphiti editor for graphically editing
the network.

An Design Example with OpenDF

We give an example of implementing an MPEG-4 Part 2 decoder for intra frames
on a FPGA platform from Xilinx. The decoder is expressed as a Cal algorithm, and
the top level network is shown in Figure 1.9(a). The decoder consists of one input
port, three entities and one output port. The serialize is an entity of actor; the parser is
an entity of subnetwork composed of actors; and the decode is an entity of subnetwork
composed of other two subnetworks. Figure 1.9(b) shows the two subnetworks acdc
and idct2d of the entity decode.

BITS
B

BTYPE

data
out

VIDEOBTYPEbits
in8 out

serialize parser decode

(a) Network of the decoder

BTYPE out

signed

in
out

outsigned
data

data
BTYPE

acdc idct2d

(b) Subnetwork of decode

Figure 1.9: Algorithm of MPEG-4 Part 2 decoder

Figure 1.10 shows the architecture of a system containing a computer and an
ML402 platform (7) of Xilinx. This system uses the FPGA and the external memory
of the ML402 platform. The FPGA contains a processor of MicroBlaze (uB), an
IP (IP1) connected to the MicroBlaze by two FIFOs (FSL1 and FSL2) of FSL, and
another IP (IP2) connected to the MicroBlaze by the bus of PLB (Processor Local
Bus). The external memory (M) is connected to the MicroBlaze by the bus PLB,
and the computer (PC) is connected to the MicroBlaze by the bus TCP with TCP/IP
protocol.

(7). http://www.xilinx.com/products/devkits/HW-V4-ML402-UNI-G.htm

Tools for HDL Code Generation 21

PC uB M

IP1

TCP PLB

FSL1
FSL2

IP2
ML402FPGA

Figure 1.10: Architecture of PC+ML402

The MPEG-4 Part 2 decoder is implemented on the architecture of PC+ML402.
The top level network is firstly compiled to threads of SystemC by CAL2C [RWR+08],
then it is manually translated to be executed on MicroBlaze with a POSIX API
targeting embedded kernel. The two entities serialize and parser are executed on the
MicroBlaze by calling functions, and the entity decode is executed on the coprocessor
IP1. IP1 is generated by CAL2HDL [JMP+08], and an additional interface is manually
created and added between IP1 and the two FSLs. The output VIDEO is transferred
from IP1 to the external memory M on the platform by the MicroBlaze. VIDEO is
finally displayed by IP2, which is a hardware display controller IP core of Xilinx. All
these entities are synchronized on the MicroBlaze by using semaphores.

1.3.3 Comparison between GAUT and OpenDF

Though GAUT and OpenDF can both generate HDL code from high level lan-
guages, they differ from each other in some aspects. A comparison of these two tools
is given as follows:

Criteria GAUT OpenDF
General use The initial C code has to be CAL can be used for both

simple, deterministic and with simple and complex
a minimum of control structures. Being a high
structures. The perfect code level language, the code
would be a computing development is relatively
algorithm as matrix product, simple.
transforms (Fourier, Laplace,
...), interpolation, ...

22 Rapid Prototyping and Hardware/Software Co-design

HDL code GAUT offers the possibility The Generated codes are a
generation to choose the aspect of the VHDL one for the top file

final structures. If a C code and a Verilog one for each
is correctly compiled, the actor. Connections, inputs
generated VHDL code is and outputs are transformed
synthesizable and correctly into FIFOs synchronized by
simulated. consumption of tokens.

Compilation While compiling a C/C++ The CAL2HDL compilation
code, GAUT extracts the is a generation of
parallelism structures and intermediate files that
creates a *.cdfg file that enable the HDL code
allows the dependency graph generation. These files are
generation. This graph is *.xlim, *.sxlim, *.ssacalml
used for the VHDL code and *.pcalml.
generation.

Simulation The generated VHDL of The CAL code can be
GAUT can be directly simulated before the HDL
simulated via a connection code generation. But for
between GAUT and hardware simulation, a
ModelSim. An adequate testbench has to be written.
testbench is automatically
generated.

Limits GAUT can not support OpenDF can not generate HDL
dynamic structures, pointers for repeat structures because
and non-deterministic an actor is unable to consume
algorithms. more than one token in an

input at a precise time.

1.4 An Eclipse-Based Open Source Rapid Proto-
typing Framework

When we have the hardware/software codes for specific operations, we then need
a tool to implement the rapid prototyping methodology for parallel embedded sys-
tems. This section introduces an Eclipse-based open source rapid prototyping frame-
work. Figure 1.11 shows the framework structure. It is made up of three tools to

An Eclipse-Based Open Source Rapid Prototyping Framework 23

increase their reusability in different contexts. The three tools are Graphiti, SDF4J
and PREEM; they are detailed as follows.

SDF4J

Core

Scheduler Graph transformation

Code generator

Graphiti

Eclipse framework

Rapid prototyping Eclipse plug-ins
Generic graph editor

Eclipse plug-in

Dataflow graph
transformation java library

uses

Plugs in

Figure 1.11: An Eclipse-based rapid prototyping framework

1.4.1 Graphiti: A Generic Graph Editor for Editing Archi-
tectures, Algorithms and Workflows

The first step of rapid prototyping is to describe the target algorithm and archi-
tecture graphs. A graphical editor decreases the development time to create, modify
and edit those graphs. Graphiti (8) is an open-source plug-in for the Eclipse environ-
ment and is provided to support algorithm and architecture graphs for the proposed
framework. Graphiti can also be quickly configured to support any type of file formats
used for graph descriptions.

Graphiti is written using the Graphical Editor Framework (GEF). The editor is
generic in the sense that any type of graph can be represented and edited. Graphiti is
being used routinely with the following graph types and associated file formats: CAL
networks (cf. Section 1.3.2), a subset of IP-XACT (cf. Section 2.3.3), GraphML (cf.
Section 1.4.2) and PREESM workflows (cf. Section 1.4.3).

Overview of Graphiti

A type of graph is registered within the editor by a configuration. A configuration
is an XML (Extensible Markup Language) file that describes:

1. the abstract syntax of the graph: types of vertices and edges, attributes allowed
for objects of each type;

2. the visual syntax of the graph: colors, shapes, etc.;

(8). http://sourceforge.net/projects/graphiti-editor/

24 Rapid Prototyping and Hardware/Software Co-design

3. the transformations from the file format in which the graph is defined to the
XML file format G of Graphiti, and vice-versa (Figure 1.12).

Two kinds of input transformations are supported, from XML to XML and from
text to XML (Figure 1.12). Both these transformations are independent from the
code of the editor: XML is transformed to XML with XSLT (Extensible Stylesheet
Language Transformations), and text is parsed to its Concrete Syntax Tree (CST)
represented in XML according to a LL(k) grammar by the Grammatica (9) parser.
Similarly, two kinds of output transformations are supported, from XML to XML
and from XML to text.

XML

Text
XML
CST

XSLT
transformations

G
parsing

(a) reading an input file to G

G XSLT
transformations

XML

Text

(b) writing G to an output file

Figure 1.12: Input/output with Graphiti’s XML format G

Graphiti handles attributed graphs. According to [JE01], an attributed graph is
defined as a directed multigraph G = (V,E, µ) where

– V is the set of vertices;
– E is the multiset of edges (there can be more than one edge between any two
vertices);

– µ is a function µ : ({G} ∪ V ∪E)×A 7→ U that gives the attribute value (from
the set of possible attribute values U) for an instance (from {G}∪V ∪E)) with
an attribute name (from the attribute name set A).

A built-in type attribute is defined so that each instance i ∈ {G} ∪ V ∪ E has a
type t = µ(i, “type”), and only admits attributes from a set At ⊂ A. Additionally,
a type t has a visual syntax: σ(t) defines the color, shape and size associated with
instances of type t.

Editing a graph with Graphiti is done as follows. The user selects a file and a
set of matching configurations is computed based on the file extension. If the set
contains more than one configuration, Graphiti asks the user which one is suitable for

(9). http://grammatica.percederberg.net/

An Eclipse-Based Open Source Rapid Prototyping Framework 25

the input file. The transformations defined in the configuration file are then applied to
the input file, which results in a graph defined in Graphiti’s XML format G as shown
in Figure 1.12. The editor uses the visual syntax defined by σ in the configuration to
draw the graph, vertices and edges. For each instance of type t the user can edit the
relevant attributes allowed by τ(t) as defined in the configuration. Saving a graph
consists in writing the graph in G, and transforming it back to the input file’s native
format.

Editing a Configuration for a Graph Type

To create a configuration for the graph in Figure 1.13, a single type of vertex
called “node” has to be defined. A “node” has an unique identifier called “id”, and
accepts a list of “values” initially equal to [0] (Figure 1.14). Additionally, ports need
to be specified on the edges, so the configuration describes an edgeType element
(Figure 1.15) that carries “sourcePort” and “targetPort” parameters to respectively
store an edge’s source and target ports, such as acc, in, and out in Figure 1.13.

Figure 1.13: A sample graph

Graphiti is a tool totally independent of the PREESM tool. However, it generates
workflows, IP-XACT and GraphML files that are the main inputs of PREESM. The
GraphML files contain the algorithm description. They are loaded and stored in
PREESM by the SDF4J library that is discussed in next section. The architecture
description respects the IP-XACT standard. It is more specific than the algorithm
description, and no external library is defined for architecture handling.

1.4.2 SDF4J: A Java Library for Algorithm Dataflow Graph
Transformation

An algorithm is described as a Synchronous Dataflow Graph (SDF). The SDF
model is a natural solution to describe algorithms with static behaviors [LM87b].
SDF4J (10) is an open source library providing usual transformations of SDF graphs

(10). http://sourceforge.net/projects/sdf4j/

26 Rapid Prototyping and Hardware/Software Co-design

<vertexType name="node">
<attributes >

<color red="163" green="0" blue="85"/>
<shape name="roundedBox"/>
<size width="40" height="40"/>

</attributes >
<parameters >

<parameter name="id" type="java.lang.String" default=""/>
<parameter name="values" type="java.util.List">

<element value="0"/>
</parameter >

</parameters >
</vertexType >

Figure 1.14: The type of vertices of the graph shown in Figure 1.13
<edgeType name="edge">

<attributes >
<directed value="true"/>

</attributes >
<parameters >

<parameter name="source port" type="java.lang.String" default=""/>
<parameter name="target port" type="java.lang.String" default=""/>

</parameters >
</edgeType >

Figure 1.15: The type of edges of the graph shown in Figure 1.13

in the Java programming language. SDF4J stands for Synchronous Dataflow For
Java. This library aims at providing the user with a large choice of easily expandable
Dataflow models associated to algorithm transformations and optimizations. The
library also defines its own graph representation based on the GraphML [BEH+01]
standard and provides the associated parser and exporter classes.

The SDF4J library defines several Dataflow graph models like SDF graph and
Directed Acyclic Graph (DAG). It provides the user with several classic SDF trans-
formations like hierarchy flattening, HSDF transformation and SDF to DAG trans-
formation. These transformations are explained as follows:

– The hierarchy flattening aims at flattening the hierarchy (remove hierarchy lev-
els) at the chosen depth in order to later extract as much as possible parallelism
from the designer hierarchical description.

– The HSDF transformation transforms an SDF graph to an Homogeneous SDF
graph in which the amount of tokens exchanged on edges are homogeneous (pro-
duction = consumption). The HSDF model reveals all the potential parallelism
of the application but dramatically increases the amount of vertices in the graph.

– The SDF to DAG transformation transforms an HSDF graph to a DAG which
is commonly used for task scheduling.

An Eclipse-Based Open Source Rapid Prototyping Framework 27

1.4.3 PREESM: A Complete Framework for Hardware/Soft-
ware Co-design

The PREESM [PRP+08] project performs the rapid prototyping tasks. PREESM
uses the Graphiti and SDF4J tools to design algorithm and architecture graphs and
generates their transformations. The PREESM core is an Eclipse plug-in that executes
workflows. A workflow is a directed graph representing lists of rapid prototyping
tasks to be executed with the input algorithm and architecture graphs. The rapid
prototyping tasks are delegated to PREESM plug-ins. All these plug-ins are optional
and appear as vertices in a workflow graph. PREESM is also built to be easily
extensible with new plug-ins. There are three PREESM plug-ins at present: the
graph transformation plug-in, the scheduler plug-in and the code-generation plug-in.

Figure 1.16 describes a classic workflow which can be applied in the PREESM tool.
As seen in Section 1.4.2, the first dataflow model chosen to describe applications in
PREESM is the SDF model. This model has the great advantage of enabling formal
verification of static schedulability. The typical number of vertices to schedule in
PREESM is between a hundred and a few thousands. The architecture is described
based on the IP-XACT standard [SPI08] that is an IEEE standard from the SPIRIT
consortium. The typical size of an architecture in PREESM is between a few cores
and a few dozens of cores. A scenario is defined as a set of parameters and constraints
that specify the conditions under which the deployment will run.

SDF

Gantt chart

graph flattening

SDF DAG

Scheduling

Code generation

Algorithm
editor

Architecture
editor

Scenario
editor

SDF

DAG

DAG + implementation
information

S
cenario

IP
-X

A
C

T

code

SDF to HSDF

SDF

PREESM Framework

Graphiti Editor

Figure 1.16: A workflow graph: From SDF and IP-XACT descriptions to code

28 Rapid Prototyping and Hardware/Software Co-design

Prior to entering in the scheduling phase, the algorithm goes through three steps
of transformations: hierarchy flattening, HSDF transformation and SDF to DAG
transformation. These transformations prepare the graph for the static scheduling
and are provided by the Graph Transformation Module. Subsequently, the SDF
graph converted into a Directed Acyclic Graph (DAG) is processed by the scheduler.
As a result of the deployment by the scheduler, code is generated and a Gantt chart
of the execution is displayed. The generated code consists of well scheduled function
calls, synchronizations and data transfers between cores. The functions themselves
are hand-written.

1.5 Conclusion

This chapter presented rapid prototyping and hardware/software co-design. AAA
rapid prototyping methodology has been used in SynDEx to design multiprocessor
embedded systems for many applications like digital signal processing and video com-
pression. We used this methodology for multi-MicroBlaze systems on FPGA. Codes
are automatically generated for each MicroBlaze with the developed kernels. Hard-
ware/software co-design also needs to generate HDL code for hardware coprocessors
that is usually more complicated than software code. GAUT and OpenDF are both
tools for generating HDL code from high-level languages. The generated HDL code
can be synthesized and implemented on FPGA as a complete design or a part of an
embedded system.

We presented a new rapid prototyping framework of PREESM that supports hard-
ware/software co-design for parallel embedded systems. PREESM firstly models an
algorithm and an architecture as graphs, then it schedules the algorithm onto the
architecture. The schedule results are finally used to generate code for the multiple
processors of the architecture. We will mostly concern the scheduling problem in
the following of this work. Therefore, the graph models used for scheduling will be
explained in the next chapter. The scheduling problem will be deeply studied in the
Chapter 3, 4 and 5.

2
Graph Models for Parallel

Embedded Systems

2.1 Introduction

The recent evolution of embedded applications like digital communication and
video compression has dramatically increased the algorithm and system complexities.
In this work the application algorithm and the target system are respectively called
algorithm and architecture. When a complicated algorithm is implemented on a par-
allel architecture for efficient computation, graphs [Die05] are usually used to model
the algorithm and the architecture in order to facilitate the programming.

An algorithm can be modeled as different types of graph according to the different
objectives. Dataflow graph is commonly used and consists in modeling an algorithm
as a directed graph of data flowing between operations. Since an algorithm needs to be
scheduled on the multiple processors of a parallel architecture, it is modeled as a Di-
rected Acyclic Graph (DAG) for task scheduling, where nodes represent computations
and edges represent communications between computations.

Computer architecture has changed from single-processor systems to parallel sys-
tems [Dun90, ERAEB05]. Parallel architectures are classified as the shared mem-
ory architecture and the distributed memory architecture. Parallel computation also
needs appropriate models to describe architectures. The first model for the shared
memory architecture was the parallel random access machine (PRAM) in [FW78].

30 Graph Models for Parallel Embedded Systems

Since PRAM is not accurate to describe a real parallel system, some other models
were introduced to accurately describe real parallel systems. For example, the LogP
model [CKP+93] uses four parameters to roughly describe the parallel system and is
a balance between detail and simplicity.

The trend of parallel architecture is also coming in the domain of embedded sys-
tems. Parallel embedded systems usually use distributed memory architectures. For
performance analysis and estimation, distributed memory architectures are usually
modeled as completely connected graphs. However, this completely connected graph
model is not yet accurate for parallel embedded systems. In [GS03], a parallel em-
bedded system is modeled as an architecture graph containing four kinds of vertices
corresponding to operator, communicator, memory and bus. However, this architec-
ture graph does not describe advanced components like switches which are commonly
used in parallel embedded systems for connecting multiple buses. Therefore, we need
a new architecture model to appropriately describe parallel embedded systems.

This chapter introduces different existing algorithm and architecture models and
proposes an advanced architecture model. The advanced architecture model will be
used in the task scheduling for parallel embedded systems. This chapter is organized
as follows: Section 2.2 introduces several graph models for algorithms. Then differ-
ent architecture models are given in Section 2.3 including our advanced architecture
model. The chapter is concluded in the end.

2.2 Algorithm Model

An algorithm can be modeled in different ways according to different objectives.
These models are usually directed graphs, and this section presents some graph models
for describing an algorithm.

2.2.1 Dataflow Model

Many applications such as signal processing applications aim to transform data.
Systems implementing these applications are data-oriented. They react continuously
to their input dataflows and also produce some output dataflows. Dataflow program-
ming is commonly used in these systems, and the main objective is to explore the
parallelism of an application.

The dataflow model is an efficient model to represent signal processing appli-

Algorithm Model 31

cations. Such applications can be decomposed into a collection of operations that
communicate each other, and they are easily represented by graphs. The dataflow
model represents a program in a directed graph. Nodes of the graph represent opera-
tions to be performed (an instruction or a group of instructions), while data flow on
edges of the graph and form the input to the nodes. The data are carried by tokens.
Dataflow programming is sometimes coupled to functional programming languages in
which the operations are evaluated as functions without side effect (no modification
of state, no interaction with the outside world) and the output tokens are results of a
function by consuming the input tokens.

There are many graph models based on the dataflow principle. Modeling program
in this form does not specify the invocation rules of the operations and the techniques
to model the communication channels. We present some important models as follows.

Kahn Process Networks (KPN)

Kahn described a simple programming language to model the parallel program-
ming for distributed systems at the beginning of 70s [Kah74]. This model is known as
Kahn Process Network (KPN). In such a process network, concurrent processes com-
municate by asynchronous message passing through unidirectional FIFO channels of
infinite capacity. Each FIFO channel carries a sequence of tokens (possibly infinite)
that evolve over time. A process is a mathematical function from a set of sequences
to another set of sequences. Each token is written exactly once to a channel and is
also read exactly once from a channel. Writing to a channel is non-blocking because
of the channel’s infinite capacity. However, reading from a channel is blocking, which
means a process attempting to read from an empty channel stalls until this channel
has sufficient tokens to be read.

A process in the KPN model is usually continuous. The continuity of process is
a sufficient condition to ensure the determinacy of process networks. The network is
determinate when the execution order of the processes in the network has no influence
on the output result. It is shown in [KM77] that the continuity is guaranteed by the
blocking reading of the FIFOs in practice.

While KPN was developed to model the concurrency in a program, the dataflow
model in [Den74] was initially applied in the development of computer architectures.
Operations of a graph are specified by actors in this dataflow model. An actor maps
input tokens into output tokens when it fires. A set of firing rules specify when an actor
can fire. A firing consumes input tokens and produces output tokens. A sequence of

32 Graph Models for Parallel Embedded Systems

firings is a particular type of Kahn process and is called a dataflow process [LP95].
A network of such processes is called a dataflow process network and is a particular
case of KPN. Some special dataflow process models are presented as follows.

Synchronous Dataflow (SDF)

The Synchronous Dataflow (SDF) was firstly introduced in [LM87a, LM87b]. The
SDF model is a special case of the dataflow process model. An actor is a function that
fires when there are enough input tokens available to perform a computation (actors-
lacking inputs can be invoked at any time). When an actor fires, it consumes a fixed
number of new input tokens on each input edge. An actor is said to be synchronous if
we can specify a priori the number of input tokens consumed on each input edge and
the number of output tokens produced on each output edge each time the actor fires.
An SDF actor is a dataflow actor that only contains a single firing rule [LP95]. This
firing rule is valid for all possible numbers of tokens. The number of tokens consumed
and produced is constant each time the actor fires. An SDF graph is a network of
synchronous actors. Figure 2.1 shows an SDF actor and an SDF graph.

a b

c

(a)

a b

c

h i
g

d e
f

(b)

Figure 2.1: (a) An SDF actor; (b) An SDF graph

An SDF graph is well suited to model synchronous multirate signal processing
applications. An application modeled by an SDF graph can be scheduled on single
or multiple processors. It is known at compile time whether an SDF graph can
be scheduled statically (at compile time) or not [LM87a]. When the schedule is
determined, the memory usage is also bounded and known at compile time, then
actors fire repeatedly during the execution.

Boolean Dataflow (BDF)

Although the SDF model is well suited to represent many parts of an application,
it is usually difficult to represent an entire application by this model. For example,

Algorithm Model 33

control structures are very common in an application, and the execution of the appli-
cation depends on the control input. The Boolean Dataflow (BDF) [Buc93] model is
an extension of the SDF model, and it allows modeling a number of control structures
by adding some specific control actors. These control actors have the dynamic com-
portments. The number of tokens consumed or produced can not be known a priori
and depends on the value of an input control token.

SWITCH and SELECT are two control actors in the BDF model as shown in
Figure 2.2. The SWITCH actor consumes an input token (A in Figure 2.2(a)) and
a control token (S in Figure 2.2(a)). If the control token is TRUE, the input token
is copied to the output labeled T; otherwise it is copied to the output labeled F.
The SELECT actor performs the inverse operation, reading a token from the input
labeled T if the control token is TRUE, otherwise reading from the input labeled F,
and copying the token to the output.

SWITCH
T F

S

A

B C

(a) SWITCH

T F
SELECTS

A B

C

(b) SELECT

Figure 2.2: Control actors: SWITCH and SELECT

The main advantage of the BDF model is that it allows modeling a larger class
of programs. In fact, the BDF model is Turing-complete [Buc93], and any algorithm
can be expressed in this model in principle. Unfortunately, it has been shown that
the use of bounded memory and the presence of deadlocking are indeterminate at the
compile time in general for the BDF model.

Dynamic Dataflow (DDF)

Many complex applications (e.g. multimedia) need to make decisions during the
execution by concerning the treatment results. Therefore, some operations depend
on the value of data (data-dependent). We have seen that the SDF model can be
extended to BDF model by adding two dynamic actors of SWITCH and SELECT to

34 Graph Models for Parallel Embedded Systems

express control structures. Since the BDF model is Turing-complete, it is possible to
model all functions that can be defined by an algorithm. Then it is possible to model
all complex applications in the BDF model. However, this model is not convenient
to express control structures other than structures like if-then-else. For example, a
loop can be modeled but requires a really complex graph. The Dynamic Dataflow
(DDF) model is then presented to facilitate the expression of control structures. This
model may contain dynamic actors in addition to SWITCH and SELECT of the BDF
model. They can consume and/or produce variable number of tokens according to
their input tokens.

The DDF network is the most general dataflow process network. Thus the SDF
and BDF models are special cases of the DDF model. Since a dataflow process network
is a particular case of KPN, the containing relation of these four dataflow models is
shown in Figure 2.3.

 KPN DDF BDFSDF

Figure 2.3: Containing relation of different dataflow models

The dataflow model is usually used to represent an application algorithm for pro-
gramming. When this algorithm is implemented on a multi-processor system, schedul-
ing is needed to assign operations on different processors of this system. In fact, we
usually use another graph model to describe the algorithm for the scheduling problem.
This model is called the DAG model and is explained in the next subsection.

2.2.2 DAG Model

DAG model is usually used to represent an algorithm for task scheduling. There-
fore, a DAG is also called a task graph and is defined as follows.

DAG

A DAG is a directed acyclic graph G = (V,E,w, c) where V is the set of nodes
and E is the set of edges. A node represents a computation. For a pair of nodes
(ni, nj) ∈ V 2, eij denotes the edge from the origin node ni to the destination node
nj. eij represents the communication between the node ni and the node nj. The

Algorithm Model 35

weight of node ni is denoted by w (ni) with w (ni) ∈ Q+ (Q+ is the set of positive
rational numbers) and represents the computation cost; the weight of edge eij is
denoted by c (eij) with c (eij) ∈ Q+

0 (Q+
0 is the set of non-negative rational numbers)

and represents the communication cost. A communication is not needed when the
origin node and the destination node are assigned to the same processor, then the
communication cost becomes null in this case.

In this model, the set {nx ∈ V : exi ∈ E} of all direct predecessors of node ni is
denoted by pred (ni); the set {nx ∈ V : eix ∈ E} of all direct successors of node ni is
denoted by succ (ni). A node n with pred (n) = φ is named a source node, and the
set of all the source nodes of G is denoted by source (G). A node n with succ (n) = φ

is named a sink node, and the set of all the sink nodes of G is denoted by sink (G).

Path

A path p in a DAG G = (V,E,w, c) from a node n1 to a node nk is a sequence
〈n1, n2, . . . , nk〉 of nodes where the nodes are connected by edges ei,i+1 ∈ E, i =
1, 2, . . . , k − 1. This path is denoted by p = p (n1, nk) = 〈n1, n2, . . . , nk〉. A node ni
on the path p is denoted by ni ∈ p; an edge eij on the path p is denoted by eij ∈ p.

A DAG can not contain any path from n1 to nk with n1 = nk, which is the meaning
of “Acyclic”. In fact, all the nodes of a path p = 〈n1, n2, . . . , nk〉 of a DAG must be
different because a subsequence of p is also a path and therefore must be acyclic.

Topological Order

A topological order of a DAG G = (V,E,w, c) is a linear ordering of all its nodes
so that if it exists an edge eij ∈ E, then ni ∈ V must appear before nj ∈ V in the
ordering.

A DAG can have multiple topological orders. The Depth First Search (DFS)
algorithm given in [CLRS01] can be modified to sort nodes into a node list with
topological order. This method is shown in Algorithm 2.1 and 2.2 with the complexity
of O (V + E). Some other topological orders will be given in the following sections
and will be used for list scheduling heuristics in the following chapters.

Figure 2.4 gives a DAG example used in [KA99b] to illustrate the performances
of different list scheduling methods. Figure 2.5 gives one topological order (from left
to right) of this DAG. This DAG will also be used in the following chapters to show
the performance of our methods.

36 Graph Models for Parallel Embedded Systems

Algorithm 2.1: Topological_Sort(G)
Input: A DAG G = (V,E,w, c)
Output: A node list with topological order
Create an empty node list NL;1

for each ni ∈ V do2

Mark ni as not discovered;3

end4

for each ni ∈ V do5

if ni not discovered then6

DFS_Visit(ni,NL);7

end8

end9

Algorithm 2.2: DFS_Visit(ni,NL)
Input: A node ni ∈ V and a node list NL
Output: The modified node list NL
Mark ni as discovered;1

for each nj ∈ succ (ni) do2

if nj not discovered then3

DFS_Visit(nj,NL);4

end5

end6

Insert ni into the front of the node list NL;7

2.2.3 DAG Properties

This section gives some properties of DAG that will be considered in the following
chapters.

Path Length

Given a DAG G = (V,E,w, c), the length of a path p in G is the sum of the
weights of its nodes and edges:

len (p) =
∑

ni∈p,ni∈V
w (ni) +

∑
eij∈p,eij∈E

c (eij)

The computation length of a path p in G is the sum of the weights of its nodes:

lencomp (p) =
∑

ni∈p,ni∈V
w (ni)

Algorithm Model 37

2

1114

111
533

n1

n2 n3 n4 n5

n6 n7 n8

n9

10

1

5 6 5

4

4 4 4

1

Figure 2.4: A DAG example

n1 n2n3n4n5 n6n7n8 n9

Figure 2.5: A topological order of the DAG in Figure 2.4

For the DAG given in Figure 2.4, if we choose p = p (n1, n9) = 〈n1, n2, n7, n9〉,
then len (p) = 21 and lencomp (p) = 10.

The path length len (p) is the minimum execution time of a path p when all its
communications exists, which could happen when each node is assigned to a different
processor. Similarly, the computation path length lencomp (p) is the minimum execu-
tion time of a path p when none of its communications exists. This case happens only
when all the nodes of the path p are assigned to the same processor. The path length
becomes the computation path length when all the communication costs are zeros.

Critical Path (CP)

Given a DAG G = (V,E,w, c), a critical path cp of G is the longest path in G

len (cp) = max
p∈G
{len (p)}

A computation critical path cpcomp of G is the longest path in G

lencomp (cp) = max
p∈G
{lencomp (p)}

A critical path always starts at a source node and finishes at a sink node. In fact,

38 Graph Models for Parallel Embedded Systems

if a path does not start at a source node, we can add a predecessor of the first node
to this path, and the path length is prolonged because the added node has a positive
weight. Since a critical path has the maximum length, it must not be prolonged and
therefore must start at a source node. Similarly, we can prove a critical path must
finish at a sink node. The computation critical path must also start at a source node
and finish at a sink node.

Node Levels

Given a DAG G = (V,E,w, c), the top and bottom levels of ni ∈ V is defined as
follows:

– Top level
The top level tl (ni) of ni is the path length of the longest path ending at ni,
excluding w (ni)

tl (ni) = max
nk∈source(G)

{len (p (nk, ni))} − w (ni)

– Bottom level
The bottom level bl (ni) of ni is the path length of the longest path starting at
ni

bl (ni) = max
nk∈sink(G)

{len (p (ni, nk))}

Similar to the critical path, the longest path ending at ni must start at a source
node, and the longest path starting at ni must finish at a sink node. Figure 2.6
illustrates the top and bottom level of node ni, where the longest path is dotted.

Using the computation path length can give another group of node levels, which
are named computation top level and bottom level and are given as follows:

– Computation top level
The computation top level tlcomp (ni) of ni is the computation path length of
the longest path ending at ni, excluding w (ni)

tlcomp (ni) = max
nk∈source(G)

{lencomp (p (nk, ni))} − w (ni)

– Computation bottom level
The computation bottom level bl (ni) of ni is the computation path length of

Algorithm Model 39

n i

Top

Bottom

tl ni

bl ni

Figure 2.6: Top and bottom levels

the longest path starting at ni

blcomp (ni) = max
nk∈sink(G)

{lencomp (p (ni, nk))}

The two groups of top level and bottom level can also be defined recursively.
Figure 2.7 illustrates the dependency between nodes to recursively define different
top levels and bottom levels, where the dotted nodes and dotted edges are used to
define the top levels and bottom levels of ni.

n pred

n i

nsucc
tl

n pred

n i

nsucc
bl

(a)

n pred

n i

nsucc
tlcomp

n pred

n i

nsucc
bl comp

(b)

Figure 2.7: Node dependency of the recursive definition of node levels

– Top and bottom levels (Figure 2.7(a))

40 Graph Models for Parallel Embedded Systems

tl (ni) =

0, if ni ∈ source (G)

max
nk∈pred(ni)

{tl (nk) + w (nk) + c (eki)} , otherwise

bl (ni) =

w (ni) , if ni ∈ sink (G)

max
nk∈succ(ni)

{bl (nk) + c (eik)}+ w (ni) , otherwise

– Computation top and bottom levels (Figure 2.7(b))

tlcomp (ni) =

0, if ni ∈ source (G)

max
nk∈pred(ni)

{tlcomp (nk) + w (nk)} , otherwise

blcomp (ni) =

w (ni) , if ni ∈ sink (G)

max
nk∈succ(ni)

{blcomp (nk)}+ w (ni) , otherwise

Algorithm 2.3 and Algorithm 2.4 respectively compute the top levels and bottom
levels by visiting each node in topological order and inverse topological roder.

Algorithm 2.3: Compute_Top_Level(G)
Input: A DAG G = (V,E,w, c)
Output: Top levels for each node of G
NL← Sort_Topological(G);1

for each ni ∈ NL from front to back do2

max← 0;3

for each nk ∈ pred (ni) do4

max← max {max, tl (nk) + w (nk) + c (eki)};5

end6

tl (ni)← max;7

end8

These two algorithms can also be used to compute the computation top level and
computation bottom level by replacing the corresponding items for max according
to the recursive definitions. The total repetition times in the for-loops of the two
algorithms are the numbers of nodes and their predecessors/successors, which is in

Algorithm Model 41

Algorithm 2.4: Compute_Bottom_Level(G)
Input: A DAG G = (V,E,w, c)
Output: Bottom levels for each node of G
NL← Sort_Topological(G);1

for each ni ∈ NL from back to front do2

max← 0;3

for each nk ∈ succ (ni) do4

max← max {max, bl (nk) + c (eik)};5

end6

bl (ni)← max+ w (ni);7

end8

total O (V + E). Since sorting nodes in topological order with DFS has a complexity
of O (V + E), the total complexity of computing node levels is O (V + E).

Relation between Critical Path and Node Levels

Since the bottom level is the path length of the longest path starting at a node,
the maximum bottom level gives the path length of the longest path of a DAG, and
therefore is the path length of the critical path. In fact, the sum of top level and
bottom level of a node gives the path length of the longest path that passes this node
in a DAG. Therefore, a node with the maximum sum of its top level and bottom level
is on a critical path of the DAG. Similar relation can be obtained for the computation
critical path and the computation top/bottom levels.

Tabel 2.1 summarizes different node levels of the DAG in Figure 2.4. The critical
path length is 23, and n1, n7 and n9 are nodes on a critical path. The computation
critical path length is 11, and n1, n4, n8 and n9 are nodes on a computation critical
path.

Table 2.1: Different node levels for the DAG in Figure 2.4

ni n1 n2 n3 n4 n5 n6 n7 n8 n9
tl 0 6 3 3 3 10 12 8 22
bl 23 15 14 15 5 10 11 10 1

tl + bl 23 21 17 18 8 20 23 18 23
tlcomp 0 2 2 2 2 5 5 6 10
blcomp 11 8 8 9 5 5 5 5 1

tlcomp + blcomp 11 10 10 11 7 10 10 11 11

42 Graph Models for Parallel Embedded Systems

Relation between Topological Order and Node Levels

The topological order is important for task scheduling heuristics, and the order
of nodes usually affects the final result. Since a DAG can have multiple topological
orders, it is necessary to get reasonable topological orders used for task scheduling
heuristics. In fact, sorting nodes according to their levels can give useful topological
orders.

Theorem 1. Given a DAG G = (V,E,w, c), the non-decreasing order of top level and
the non-increasing order of bottom level are both topological orders; the non-decreasing
order of computation top level and the non-increasing order of computation bottom
level are also topological orders.

Proof. In fact, a node always has a greater top level than its predecessors according to
the recursive definition. Therefore, a node always appears after its predecessors in the
non-decreasing order of top level, and this order satisfies the definition of topological
order. Similarly, a node always has a greater bottom level than its successors according
to the recursive definition. Therefore, a node always appears before its successors in
the non-increasing order of bottom level, and this order also satisfies the definition of
topological order.

Similar to the top level and bottom level, the computation top level and compu-
tation bottom level also give topological orders.

The obtained orders based on the four node levels are usually different. Table 2.2
gives four node orders based on the four node levels for the DAG in Figure 2.4 ac-
cording to the node levels in Table 2.1. Nodes with the same node level can be sorted
randomly among themselves like {n3, n4, n5} for tl.

Table 2.2: Different topological orders

Node level Node order
tl n1, {n3, n4, n5} , n2, n8, n6, n7, n9
bl n1, {n2, n4} , n3, n7, {n6, n8} , n5, n9

tlcomp n1, {n2, n3, n4, n5} , {n6, n7} , n8, n9
blcomp n1, n4, {n2, n3} , {n5, n6, n7, n8} , n9

Architecture Model 43

2.3 Architecture Model

On the other side, algorithm implementation on embedded systems with parallel
architecture needs an architecture model. This section presents the classification of
parallel architectures as well as some simple models. We also give an advanced archi-
tecture model to describe parallel embedded systems. This model is more accurate
than the simple models and will be used in Chapter 3 for task scheduling.

2.3.1 Parallel Architectures

Flynn’s taxonomy [Fly66] is the most popular classification of computer architec-
ture. It defines four categories of computer architecture according to the concurrency
of instruction and data streams. These categories are listed as follows:

– Single Instruction, Single Data stream (SISD)
– Single Instruction, Multiple Data stream (SIMD)
– Multiple Instruction, Single Data stream (MISD)
– Multiple Instruction, Multiple Data stream (MIMD)
Classical single-processor systems belong to the category of SISD. A system of

SIMD treats multiple data streams by using a single instruction stream, and it usually
describes a processor array. In a system of MISD, multiple instructions operate on a
single data stream. This kind of architecture is rarely used in real systems. Modern
parallel systems usually belong to the category of MIMD. MIMD is also divided into
two groups: shared memory architecture and distributed memory architecture.

Shared Memory Architecture

In a shared memory architecture, multiple processors connect to a shared global
memory via an interconnection network as shown in Figure 2.8. The interconnection
network can be designed by using a bus or multiple buses, it can also be designed by
using a switch. Communication between processors is achieved by writing/reading
the shared memory. This kind of architecture is modeled as parallel random access
machine (PRAM) in [FW78]. The PRAM model is simple for algorithm design and
complexity analysis, but it is not accurate to describe real systems because of the
competitions and delays for writing and reading.

44 Graph Models for Parallel Embedded Systems

P1 P2 P3 P4 P5 P6

Memory

Interconnection Network

Figure 2.8: Shared memory architecture

Distributed Memory Architecture

A distributed memory architecture is also known as a message passing architec-
ture. Figure 2.9 shows a distributed memory architecture where each processor has
a local memory. A processor and its local memory are usually bound together as a
unique processor module. A processor also includes a communication unit, and it
communicates with another processor by sending/receiving messages.

P1 P2 P3 P4 P5 P6

M1 M2 M3 M4 M5 M6

Interconnection Network
Figure 2.9: Distributed memory architecture

Distributed memory architectures are modeled differently according to the struc-
ture of the interconnection network. A distributed memory architecture can use static
networks to interconnect processors via links. It can also use dynamic networks with
switches. Figue 2.10(a) shows a completely connected static network for the dis-
tributed memory architecture given in Figure 2.9. The completely connected network
is usually used to model a distributed memory architecture for performance analysis
and estimations. Many works of task scheduling for parallel computation are based

Architecture Model 45

on completely connected networks. However, the network is not really completely
connected in all the cases (e.g. Figure 2.10(b)).

P1

P2

P3 P4

P5

P6

(a) Completely connected
network

P1

P2

P3 P4

P5

P6

(b) Ring network

Figure 2.10: Examples of static networks

Parallel embedded systems usually use distributed memory architectures. Though
the completely connected model is simple for performance analysis and estimations,
it is not suitable to accurately describe parallel embedded systems because a parallel
embedded system is usually different from a general parallel computer system. In fact,
an embedded system usually has some specific properties and constraints. We need an
appropriate model to describe the distributed memory architecture in order to reflect
these properties and constraints. Therefore, we propose an advanced architecture
model to describe parallel embedded systems in the following subsection.

2.3.2 Advanced Architecture Model

Rapid prototyping of parallel embedded systems needs abstract models to describe
architectures and to facilitate the programming. An architecture should be modeled
by considering the properties and constraints of embedded systems. It consists in
modeling different components like processors, coprocessors, communication links as
separate modules and describing their necessary properties. We model an architecture
as a hypergraph, and components in the architecture becomes vertices and edges in the
hypergraph. A parallel embedded system usually includes the following component
models.

– Processor
A processor is a component that executes operations for computation and com-
munication. Processors are one class of operators on which operations are exe-

46 Graph Models for Parallel Embedded Systems

cuted sequentially. A processor can only be used for one operation at a time. A
processor contains an internal memory that can be read and written for commu-
nication. A processor can firstly configure a communicator to perform a commu-
nication from/to this processor; when the configuring is finished, the processor
can execute another computation; thus the computation and the communication
become parallel on this processor. A processor is a vertex in the hypergraph.

– IP Coprocessor
Belonging to another class of operators, an IP coprocessor is a component usu-
ally designed with parallelism and pipeline. It is used for a specific operation
that usually needs much more time if executed on a general processor. Therefore,
this kind of operation is usually constrained on the IP coprocessor to shorten the
execution time. An IP coprocessor can not configure a communicator; it needs
another general processor to configure a communicator to perform the communi-
cation from/to it, and a processor can also perform the communication from/to
the IP coprocessor without using a communicator. An IP coprocessor is a vertex
in the hypergraph.

– Memory
A memory is used to store data during the execution of a program. A memory
is a slave terminal and can only be accessed by processors and communicators
via communication nodes and links. A memory can have multiple ports with
each port connecting to one communication link. The speed of reading/writing
a memory depends on the bandwidth of the link. A memory is a vertex in the
hypergraph.

– Communicator
A communicator is a component only used to perform communications, and no
computation can be executed on it. A communicator, which is usually a DMA
controller, is configured by a processor before performing a communication.
Communications on a communicator are done sequentially. A communicator is
a vertex in the hypergraph.

– Communication Node
A communication node is used to connect communication links, and no compu-
tation can be executed on it. A communication node is a vertex in the hyper-
graph. A communication node usually models a switch. The communication
node is considered ideal and is described as follows:
For a communication node cni, let l1, l2, . . . , ln be all the communication links

Architecture Model 47

connected to cni. If two links li1 and li2 of them are not used for the moment,
a communication can be transferred on li1 and li2 without any impact from/to
communications on other communication links connected to cni.
Communication nodes are contention-free according to this description: separate
communication links connected to the same communication node can be used
for different communications at the same time; however if a communication link
is busy, a new communication can not begin on this link.

– Bus
A bus is a hyperedge in the hypergraph, which means multiple vertices can be
connected together by this edge. Data can be flowed among all the vertices
connected to it. However, the bus can only be used to transfer data between
two vertices at a given time, and all other vertices must wait until the bus is
free.

– FIFO
A FIFO is a directed edge from one vertex to another in the hypergraph. Data
are flowed through a FIFO from the origin vertex to the destination vertex, and
the opposite is impossible. A bidirectional FIFO should be presented as two
FIFOs with opposite directions.

Figure 2.11 gives the legend of different vertices and edges. These components are
used in the advanced architecture model.

Vertices: P Processor

M

IP CoprocessorIP

Memory C Communicator

CN Communication Node

Edges: FIFOBus

Figure 2.11: Legend of vertices and edges

48 Graph Models for Parallel Embedded Systems

Definition of Advanced Architecture Model

As shown in Figure 2.12, we model an architecture as a hypergraph that is denoted
by

Archi = (P, IP,M,C,CN,B, F, PF)
= (T,CP,CN,L, PF)

where P , IP , M , C and CN are five sets of different vertices; B and F are two sets
of different edges; PF is a set of property functions for the architecture and contains
four functions of c, s, a and b.

Archi

T CP

OP

CN

M

IP P C

L PF

B F

Figure 2.12: Organization of the architecture model

The union of P and IP is designated the operator set OP , OP = P ∪ IP ; the
union of OP and M is designated the terminal set T , T = OP ∪M ; the union of
C and P is designated the communication performer set CP , CP = C ∪ P ; and the
union of B and F is designated the communication link set L, L = B ∪ F .

The elements in the sets of vertices and edges are explained as follows:
– A vertex of pi ∈ P represents a processor;
– A vertex of ipi ∈ IP represents an IP coprocessor;
– A vertex of mi ∈M represents a piece of memory;
– A vertex of ci ∈ C represents a communicator;
– A vertex of cni ∈ CN represents a communication node;
– An edge of bi ∈ B represents a bus;
– An edge of fi ∈ F represents a FIFO.
c, s, a and b are four functions used for describing properties of a parallel embedded

system. They are described in detail as follows:
– The function c : P 7→ {Ci|Ci ⊆ C} gives the configurability of a processor. c (pi)
is the set of communicators that can be configured by pi.

Architecture Model 49

– The function s : P × C 7→ Q+ gives the setup time for a processor to configure
the communicator before the communication being performed, where Q+ is the
set of positive rational numbers. s (pi, cj) is the time used by pi to configure cj
with cj ∈ c (pi).

– The function a : T 7→ {CPi|CPi ⊆ CP} gives the accessibility of a terminal by
communication performers. a (ti) is the set of communication performers that
can access ti. When a processor pi is used as communication performer, it can
always access its internal memory, therefore pi ∈ a (pi).

– The function b : L 7→ Q+ gives the average data rate of a communication link.
b (li) is the number of bytes transferred per time unit.

Architecture Examples

The architecture model is used to model multiprocessor embedded systems. Fig-
ure 2.13 shows the functional block diagram of the C6474 high-performance multicore
DSP of Texas Instruments in [Tex08]. The C6474 DSP mainly consists of

– three C64x+ DSP cores,
– two high-performance embedded coprocessors [enhanced Viterbi Decoder Co-
processor (VCP2) and enhanced turbo decoder coprocessor (TCP2)],

– one Switched Central Resource (SCR) including a 64-channel enhanced direct
memory access (EDMA3.0),

– other peripherals.
These components are interconnected by buses of TMS320C6474 Common Bus

Architecture, which have different data rates.
Figure 2.14 gives the architecture model for the C6474 DSP:
– Three processors (P1, P2, P3) model three C64x+ DSP cores;
– Two IP coprocessors (IP1, IP2) model the VCP2 and TCP2 coprocessors;
– One communication node (CN1) models the SCR; one communicator (C1) mod-
els the EDMA3.0;

– Other peripherals are omitted.
Any one of the three processors can configure the communicator, and all the five

operators can be accessed by the communicator.
The C6474 Evaluation Module (EVM) (1) includes two C6474 multicore DSPs con-

nected via high speed SERDES interfaces: Serial RapidIO (SRIO), Gigabit Ethernet
MAC (GEMAC), and Antenna Interface (AIF). Figure 2.15 gives an architecture

(1). http://focus.ti.com/docs/toolsw/folders/print/tmdxevm6474.html

50 Graph Models for Parallel Embedded Systems

Figure 2.13: Multicore DSP architecture of Texas Instruments

model for this multi-DSP platform. The architecture is composed of two identical
sub-systems that are interconnected by two FIFOs of SRIO. Each sub-system con-
sists of a memory of DDR2 SDRAM and a C6474 DSP that has been modeled in
Figure 2.14. The SRIO port of a C6474 DSP is indeed a bridge between the bus and
the FIFOs, and it is modeled as a communication node. The three processors share
the communicator in the sub-system, but they can not configure the communicator
in the other sub-system. However, all the processors and memories can be accessed
by the two communicators.

Architecture Model 51

P1

P2 P3

C1

CN1

B1

B2 B4

B5

IP2

IP1

B3

B6

Figure 2.14: Multicore DSP architecture of Texas Instruments

P1

P2 P3 P6 P5

P4

M1 M2

C1 C2

CN1 CN2 CN3CN4

B1

B2

B3 B5

B6

B7 B15 B9

B10

B11B13

B14
F1

F2

IP2

IP1 IP3

IP4

B4

B8 B16

B12

Figure 2.15: A multi-DSP architecture

The architecture model is also used to describe FPGA based MPSoC systems. Fig-
ure 2.16 gives such an example on the FPGA of Xilinx (2). Two MicroBlaze processors
are interconnected by a bridge, and each processor has a DMA controller as commu-
nicator. An IP coprocessor is connected to P1 by two FIFOs of FSL (Fast Simplex
Link), and another IP coprocessor is connected to P2 via a bus of PLB (Processor
Local Bus).

2.3.3 Architecture Specification with IP-XACT Standard

Our advanced architecture model is used in PREESM and aims to describe the
behavior of the most common components for embedded systems. It is consistent
with the IP-XACT [SPI08] standard and can be edited in Graphiti.

The IP-XACT standard is specified by the Spirit Consortium (3) in order to de-

(2). http://www.xilinx.com/
(3). http://www.spiritconsortium.org

52 Graph Models for Parallel Embedded Systems

P1

P2

IP2

IP1

CN1

C1

C2

F1 F2

B1

B2

Figure 2.16: MPSoC architecture on the FPGA of Xilinx

scribe digital hardware architectures. The IP-XACT 1.4 release issued in 2006 defines
a complex XML structure that aims at embracing the hardware description issues at
both abstraction levels of Register Transfer Level (RTL) and Transaction-Level Mod-
eling (TLM). In order to feed a static task scheduling process, we only use a subset
of IP-XACT 1.4 focused on its high-level TLM capabilities. Our subset can describe
TLM level architectures with several parameters. Configuration files in the Graphiti
editor enable the edition of this subset of IP-XACT 1.4 as graphs.

An architecture is a <spirit:design> in an IP-XACT description specified in an
XML file. A <spirit:design> usually consists of several component instances specified
as <spirit:componentInstance>. Parameters are the most important information for
an component instance and are specified in <spirit:configurableElementValue>. For
example, a type parameter is associated to each component instance and is associated
to a type of component in the advanced architecture model. Figure 2.17 gives an
example of the IP-XACT description for a FIFO instance.

Component instances are connected by their interfaces that are edited as ports
of vertices in Graphiti. An interconnection between two interfaces is specified by
a <spirit:interconnection> in a <spirit:design>. A <spirit:interconnection> is usually
used to connect a component to a bus and is undirected. Since the interconnection
between a component and a FIFO is directed, we specify this kind of interconnec-
tions by adding a <spirit:displayName> of directed in <spirit:interconnection>. The
accessing and configuring properties of the architecture model are also specified by
<spirit:interconnection> but with different <spirit:displayName> of access and config-
ure. Interconnections for accessing and configuring are also directed. The direction is
from the first <spirit:activeInterface> to the second <spirit:activeInterface> for all the
three directed interconnection. The code given in Figure 2.18 shows the code of an

Conclusion 53

<spirit:componentInstance >
<spirit:instanceName >fifo1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="Fifo"
spirit:vendor="ietr" spirit:version="1.0"/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
fifo</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
1.0</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >

Figure 2.17: Component instance of a FIFO

interconnection from a processor (proc1) to a FIFO (fifo1).

<spirit:interconnection >
<spirit:name/>
<spirit:displayName >directed </spirit:displayName >
<spirit:activeInterface spirit:busRef="o1" spirit:componentRef="proc1"/>
<spirit:activeInterface spirit:busRef="i1" spirit:componentRef="fifo1"/>

</spirit:interconnection >

Figure 2.18: Interconnection from a processor to a FIFO

We give the codes for the specifation of the architectures in Figure 2.14 and Fig-
ure 2.16 in Appendix A.

2.4 Conclusion

This chapter introduced graph models for parallel embedded systems. Here al-
gorithms and architectures are both modeled as graphs to facilitate the parallel pro-
gramming.

An algorithm can be modeled as different graphs. We made a choice among
these algorithm models, and the DAG model was chosen for task scheduling. In a
DAG, nodes represent computations and edges represent communications between
computations. We presented the properties of the DAG in detail.

Parallel architectures are usually classified as the shared memory architecture and
the distributed memory architecture. We presented several graph models for these two
types of architectures. However, these models are usually not accurate for parallel

54 Graph Models for Parallel Embedded Systems

embedded systems. Since the distributed memory architecture is usually used for
parallel embedded systems, we proposed an advanced architecture model to describe
heterogeneous parallel embedded systems. We use five kinds of vertices (processor,
IP coprocessor, memory, communicator, and communication node) and two kinds of
edges (bus and FIFO) to model different components of an embedded system. In
addition, four functions are used to describe properties of the components.

The advanced architecture model can describe many real systems such as multicore
DSP and FPGA based MPSoC. Architectures of these systems are specified with
Graphiti by respecting the IP-XACT standard. The advanced architecture model
will be used to describe the task scheduling problem in the next chapter.

3
Task Scheduling in Parallel

Embedded Systems

3.1 Introduction

Parallelism is a solution to satisfy the requirement of great computation ability in
embedded systems for modern digital signal processing and image processing appli-
cations. The work of distributing and scheduling tasks of a program over a parallel
embedded system is not straightforward. When performed manually, it is usually
time-consuming and the result is usually a suboptimal solution. Therefore, it is nec-
essary to research automatic task scheduling methodologies that may produce near
optimal results. The time consumed for the task scheduling should also be short.

Scheduling has been used in many domains [BK06, Bru07, BEP+07] and is spe-
cially discussed for parallel and distributed computing [Sar89, SB00, CDKM02, Sin07].
Task scheduling in parallel systems consists in assigning and ordering computations
and communications respectively to processors and communication links of the target
system in order to finish all the tasks as soon as possible. The scheduling can be
static, which is done at compile time, or dynamic, which is done at run time. The
static scheduling is more suitable than the dynamic one for signal processing appli-
cations like digital communication and video compression by leading to lower code
size and higher computation efficiency. Since the static scheduling is usually used in
the context of embedded systems, we only concern static scheduling in this work, and

56 Task Scheduling in Parallel Embedded Systems

all the task scheduling problems discussed in the following parts belong to the static
scheduling.

This chapter is organized as follows: We first introduce the general task scheduling
problem in parallel and distributed computing in Section 3.2, then the task scheduling
with the architecture model is discussed in detail in Section 3.3. Since it is difficult
to start with the advanced architecture model, we simplify the task scheduling with a
topology graph model for architecture in Section 3.4. The simplified task scheduling
is the task scheduling with communication contention, and we will research advanced
heuristic techniques based on it in the following chapters. Section 3.5 gives the con-
clusion of this chapter.

3.2 General Task Scheduling

Task scheduling is an important aspect of parallel programming because the sched-
ule result directly affects the parallel computation performance. Task scheduling con-
sists in assigning computations and communications to components and finding time
intervals on these components to execute the computations and communications. The
aim of task scheduling is to get the shortest execution time which is also called the
schedule length.

General task scheduling uses a DAG to model an algorithm where nodes repre-
sent computations and edges represent communications. An architecture includes
multiple processors interconnected by a communication network. The execution of
computations on a processor is sequential, and a computation can not be divided into
several parts. A computation can not be started until all its input communications
are finished, and all its output communications can not be started until it is finished.

3.2.1 Without/With Communication Costs

Communications are treated differently under different circumstances. Communi-
cation costs were not taken into account in 1970s [ACD74]. Then it was noticed that
scheduling without communication costs was usually not accurate, and people started
to consider communication costs in task scheduling [RS87, HCAL89, YG93, ERA94].
Though scheduling without communication costs is a special case of scheduling with
communication costs, we will present them from special to general as the order of
their appearance in the history.

General Task Scheduling 57

Scheduling DAGs without Communication Costs

Since communication costs were not taken into account in early task scheduling
problems, edges in a DAG only represent precedence constraints. When a computa-
tion is finished, its output communications can be immediately used in other com-
putations even though these computations are executed on different processors. This
circumstance can be considered to occur in an ideal shared memory architecture. In
fact, since all processors use the shared memory, data are written to this memory
when a computation is being executed. Once the computation is finished, another
computation can read the data directly without additional time cost. Figure 3.1(a)
gives a DAG example, and Figure 3.1(b) gives the scheduling on a 3-processor system
without communication costs.

n2

n1

n4n31

1

11

1 1 1

(a) A DAG Example

P1

0 5

P2

P3

n2

n3

2

n4

n1
time

(b) Without communication
cost

P1

0 5

P2

P3

n1

n3

3

n4

n2
e1,3

e1,4

time

(c) With communication
cost

Figure 3.1: Scheduling without/with communication cost

Since a real shared memory architecture is far away from an ideal model, task
scheduling without communication cost is not accurate for parallel embedded systems.
In fact, a parallel embedded system usually uses the distributed memory architecture
and has to consider communication costs in task scheduling.

Scheduling DAGs with Communication Costs

Communication costs are considered for accurate task scheduling in distributed
memory architecture. A general architecture model has the following properties:

– A (local) communication does not need time cost when its origin computation
and destination computation are assigned to the same processor.

– A (remote) communication needs time cost when its origin computation and
destination computation are assigned to different processors.

– Communications and computations are parallel. A processor is not involved for
performing a communication.

58 Task Scheduling in Parallel Embedded Systems

– Processors are completely connected. Each pair of processors can communicate
simultaneously without contention for communication resources.

– Multiple communications can be simultaneously performed between two proces-
sors.

Figure 3.1(c) gives the scheduling with communication costs for the DAG in Fig-
ure 3.1(a). Compared to the scheduling without communication costs in Figure 3.1(b),
the schedule length increases from 2 to 3.

3.2.2 Scheduling Methodologies

The general task scheduling problem has been proven to be NP-hard [GJ79, Sar89,
Bru07], therefore, many works try to find heuristics to go up to the optimal solu-
tion. There are mainly two different scheduling methodologies: Clustering and List
Scheduling.

Clustering

Clustering [GY93] is a kind of scheduling methodology on a virtual system with
unlimited number of processors. The motivation of clustering was given in [Sar89]:
if it is best to execute some computations on the same processors of an ideal system
(a system with as many as possible processors), these computations should also be
executed on the same processor in a real system. Linear clustering is a special class
of clustering where only dependent nodes are grouped into one cluster. Figure 3.2
shows an example of linear clustering: Each node possess a cluster at the beginning
(Figure 3.2(a)), and three clusters are obtained at last (Figure 3.2(b)).

Many heuristics have been reported for DAG clustering like the Edge-zeroing (EZ)
algorithm [Sar89], the Dominant Sequence Clustering (DSC) algorithm [YG94], the
Mobility Directed (MD) algorithm [WG90] and the Dynamic Critical Path (DCP)
algorithm [KA96]. In [HM95], the clustering problem is treated as an integer lin-
ear program problem. The grain packing problem is essentially the clustering prob-
lem [ERLA94, KL88, MG89]. Clustering algorithms can be also used for scheduling
on systems with limited number of processors like in [SL93b].

Though clustering is usually feasible in homogeneous systems, it is also proposed
for heterogeneous systems [CJ01]. Clustering is often proposed as the first step to
schedule for a limited number of processors. The second and third steps are re-
spectively assigning and scheduling clusters on processors. In fact, a heterogeneous

General Task Scheduling 59

a

d

g

b

c

2
2

8

44

2

3
f

e

10

10

2
2

6

4
3

2

(a) Initial clustering

a

d

g

b

c

2
2

8

44

2

3
f

e

10

10

2
2

6

4
3

2

(b) Final clustering

Figure 3.2: Linear clustering

embedded system may include a processor that is designed for a special computation.
If such a computation is grouped into a cluster with other computations, this clus-
ter will be invalid because the other computations can not be executed on the same
processor. Therefore, clustering is not very suitable for task scheduling in parallel
embedded systems.

List Scheduling

List scheduling is a kind of scheduling methodology with limited number of pro-
cessors. List scheduling can be classified as static or dynamic according to whether
the node list is generated before or during the scheduling. Here, the “static” means
that the node list is generated statically, and “dynamic” means that the node list
is generated dynamically. The static list scheduling and dynamic list scheduling are
both static scheduling because they are done at compile time.

Algorithm 3.1 shows the general static list scheduling method. It consists of two
steps: (1) sorting nodes into a list in topological order, (2) schedule each node of the
list onto a processor of the system.

Algorithm 3.2 gives the general dynamic list scheduling method. Though there
is not a static node list, the order in which nodes are scheduled should also be a
topological order.

Many list scheduling heuristics have been proposed since the early era of the
scheduling problem such as the Highest Level First (HLF) algorithm [Hu61], the

60 Task Scheduling in Parallel Embedded Systems

Algorithm 3.1: General_Static_List_Scheduling(G, P)
Input: A DAG G = (V,E,w, c) and a set of processors P
Output: A schedule of G on P
Sort nodes n ∈ V into a list NL in topological order;1

for each n ∈ NL do2

Select a processor p ∈ P for n;3

Schedule n on p;4

end5

Algorithm 3.2: General_Dynamic_List_Scheduling(G, P)
Input: A DAG G = (V,E,w, c) and a set of processors P
Output: A schedule of G on P
UnscheduledNodes ← V ;1

while UnscheduledNodes 6= null do2

Choose a node n ∈ UnscheduledNodes;3

Select a processor p ∈ P for n;4

Schedule n on p;5

Remove n from UnscheduledNodes;6

end7

Highest Level First with Estimated Times (HLFET) algorithm [ACD74], the Criti-
cal Path/Most Immediate Successors First (CP/MISF) algorithm [KN84], the Mod-
ified Critical Path (MCP) algorithm [WG90], the Earliest Time First (ETF) algo-
rithm [HCAL89] and the Dynamic Level Scheduling (DLS) algorithm [SL93a]. This
kind of scheduling also appears in [GG69, YG93]. Though the architecture is a com-
pletely connected model, list scheduling can be also used in heterogeneous architecture
with arbitrary interconnection network like in [SL93a, KA99a].

3.2.3 Advanced Techniques

Since task scheduling is very important for parallel computing, some advanced
techniques are proposed in addition to the basic methodologies.

Node Duplication

Node duplication is an advanced scheduling technique and aims to shorten schedule
length by reducing interprocessor communications. Figure 3.3 shows the scheduling
for the DAG in Figure 3.1(a) with the node n1 being duplicated on each processor.
Since the node n1 is duplicated on each processor, communications from n1 to other

General Task Scheduling 61

nodes are no longer necessary because these communications are all local communi-
cations. Therefore, the schedule length becomes 2.

P1

0 5

P2

P3

n2

n3

2

n4

n1

n1

n1

time

Figure 3.3: Scheduling with node duplication

Node duplication has been used in many scheduling approaches. Clustering heuris-
tics with node duplication are proposed in [PY90, CC91, PLW96, LP98]. List schedul-
ing heuristics with node duplication include the Duplication Scheduling Heuristic
(DSH) algorithm [KL88], the Bottom-Up Top-Down Duplication heuristic (BTDH)
algorithm [CR92] and the Critical Path Fast Duplication (CPFD) algorithm [AkK98].
Another list scheduling heuristic with node duplication is proposed in [HJ05] and can
be used in heterogeneous systems.

Similar to the clustering, the node duplication technique is not practical in het-
erogeneous embedded systems where a processor is designed only for a kind of node.
In fact, the general node duplication technique will become very difficult because a
duplicated node can not be executed on such a special processor. Therefore, the node
duplication technique is not very suitable for task scheduling in parallel embedded
systems.

Search-based Methods

Since heuristics usually can not give the optimal result for task scheduling which is
a NP-hard problem, search-based methods are used to approach the optimal result like
the Fast Assignment using Search Technique (FAST) algorithm [KAG96] which uses
a local search [Gu93, WM89, SG91] technique. Genetic algorithms [HH04, SD08] are
another kind of random search methods, and they are used in [WSRM97, WYKH97,
KA97, DAYA02, WYJ+04] for task scheduling. Search-based methods sacrifice time
to get better results, and they are a complement to heuristics.

62 Task Scheduling in Parallel Embedded Systems

With Arbitrary Architectures

The interconnection network in a parallel embedded system is usually not com-
pletely connected. Therefore, the classic task scheduling methods shown above be-
comes inaccurate for scheduling on an arbitrary architecture, and communication
contention needs to be considered on communication links. Communications are per-
formed sequentially on a communication link, but different computations and com-
munications may be executed simultaneously respecting the inputs and outputs con-
straints. Figure 3.3 shows the scheduling for the DAG in Figure 3.1(a) on the archi-
tecture in Figure 3.4(a). Communication contention occurs in the shared bus, and
the schedule length becomes 4.

P1

P2

P3

L1

(a)

P1

0 5

P2

P3

L1

n1

n3

4

n4

n2

e1,4e1,3

time

(b)

Figure 3.4: Scheduling on an architecture with shared bus

Some scheduling methods for arbitrary architecture have been proposed like the
Mapping Heuristic (MH) algorithm [ERL90], the Dynamic Level Scheduling (DLS)
algorithm [SL93a], the Bottom-Up (BU) algorithm [MG94] and the Bubble Schedul-
ing and Allocation (BSA) algorithm [KA95]. An extension of the DLS algorithm is
reported in [SSRM94], and another method called Latest Starting Time (LST) [KS93]
is proposed for hypercube architecture. An arbitrary parallel system can be hetero-
geneous. Therefore, task scheduling in heterogeneous systems are also considered in
some works like [MSP+95, OH96, KA99a, THW99, THW02, BBR02, SS04, LPX05].
Since we have given an advanced architecture model to accurately describe parallel
embedded systems in Chapter 2, we need to reformulate the task scheduling problem
with this new model and research heuristics based on it.

Task Scheduling with Advanced Architecture Model 63

3.3 Task Scheduling with Advanced Architecture
Model

We explore the task scheduling with our advanced architecture model for parallel
embedded systems. As to the algorithm, the DAG model is used, where nodes and
edges respectively describe computations and communications. Task scheduling with
the advanced architecture model consists in assigning computations and communica-
tions to components and finding time intervals on these components to execute the
computations and communications. A computation is executed on a processor or an
IP coprocessor, and a communication is performed either by a communicator or a
processor. If the communication is performed by a communicator, this communicator
should firstly be configured by a processor, and then the data are transferred from
the origin terminal to the destination terminal by the communicator through com-
munication links and nodes. If the communication is performed by a processor, the
processor can perform the communication immediately without a setup time, but the
processor can not be used to execute a computation at the same time.

3.3.1 Routing with Architecture Model

Since the architecture is not completely connected (some vertices are not connected
directly by edges), routing is necessary to transfer data from one terminal to another.
We divide a route into several steps, and data are transferred from the origin terminal
to the destination terminal step by step.

A route step contains a processor, a beginning terminal, a beginning communica-
tion link, a chain of communication nodes and links, and an ending terminal. The
processor is used to initiate the communication on the route step, and it must be
same to either the beginning or the ending terminal. If a communicator is used to
perform the communication on this route step, the communicator is configured by
the processor and is able to access both the beginning and ending terminals. If no
communicator is used, the processor is used to perform the communication on this
route step and must be able to access both the beginning and ending terminals. We
represent a route step from the beginning terminal tb to the ending terminal te as
follows:

Rs (tb, te) =
{
processor, communicator0/1, 〈tb, l0, (cnk, lk)0→∞ , te〉

}

64 Task Scheduling in Parallel Embedded Systems

where
– communicator0/1 means 0 or 1 communicator is needed for this route step;
– l0 is the first link from tb;
– (cnk, lk)0→∞ means 0 or a finite number of (cnk, lk) two-tuples are used to com-
pose a chain from l0 to te.

We define a route from the origin terminal torigin to the destination terminal
tdestination as a list of route steps that is represented as follows:

R (torigin, tdestination) = 〈Rs (tb1 , te1) , . . . , Rs (tbl , tel) , . . . , Rs (tbm , tem)〉

This route consists of m steps to transfer the data. The route steps are constrainted
by torigin = tb1 , te1 = tb2 , . . . , tem−1 = tbm , tem = tdestination.

Since circuit switching is usually used for communications in embedded systems,
which is different from the packet-based communication, a communication assigned
on a route step must be aligned on all the communication links of this route step even
if these links have different data rates. In addition, the communication can not be
started on the next route step until it is finished on the current route step. Therefore,
the communication is handled

– in the mode of cut-through on a route step;
– in the mode of store-and-forward between route steps.
These two modes have been used in computer networks [HP02] and are shown in

Figure 3.5.

CN1P1 P2CN2
L1 L2 L3

time

comm comm comm

(a) Cut-through

P1 P4
L1 L2 L3

time

comm

comm

comm

P2 P3

(b) Store-and-forward

Figure 3.5: Two routing modes

Task Scheduling with Advanced Architecture Model 65

3.3.2 Scheduling with Advanced Architecture Model

The following terms describe a schedule S of a DAG G = (V,E,w, c) on an archi-
tecture Archi = (T,CP,CN,L, PF) (cf. Chapter 2).

The start time of a node ni ∈ V on an operator op ∈ OP is denoted by ts (ni, op);
the finish time is given by tf (ni, op) = ts (ni, op) + w (ni, op), where w (ni, op) is the
execution duration of ni on op. Since execution durations of a node on different oper-
ators can be very different (w (ni, opj)� w (ni, opk)), this node is usually constrained
to some operators which give relatively small execution durations. The set of operators
on which ni is constrained to be executed is denoted by Oper (ni), and the operator
on which ni is actually assigned is denoted by oper (ni). The node weight is given by
w (ni) = 1

M

∑
op
w (ni, op), where M is the number of operator types in Oper (ni), and

op represents a type of operator in Oper (ni).
The finish time of an operator is the maximum finish time among all nodes

assigned on this operator, tf (op) = max
oper(ni)=op

{tf (ni, oper (ni))}, and the schedule
length of S is the maximum finish time among all the operators in the system,
sl (S) = max

op∈OP
{tf (op)}.

A communication represented by an edge eij ∈ E of a DAG is needed only when its
origin node ni and its destination node nj are assigned to different operators. Since a
communication is transferred on a route consisting of several steps, the route used for
an edge eij is denoted by Route (eij) = 〈Rs (tb1 , te1) , . . . , Rs (tbl , tel) , . . . , Rs (tbm , tem)〉
with tb1 = oper (ni) and tem = oper (nj). A communication is differently treated on a
route step according to its performer.

Performing Communication by Communicator

If a communicator cl is used to perform a communication eij on a route step
Rs (tbl , tel), it must be configured by a processor pl. The start time of eij on processor
pl of Rs (tbl , tel) is denoted by ts (eij, pl, Rs (tbl , tel)), and the finish time of eij on pl is
given by

tf (eij, pl, Rs (tbl , tel)) = ts (eij, pl, Rs (tbl , tel)) + s (pl, cl)

where s (pl, cl) is the setup time for pl to configure cl.
The start time of eij on link lk of Rs (tbl , tel) is denoted by ts (eij, lk, Rs (tbl , tel)),

and the finish time of eij on link lk is denoted by tf (eij, lk, Rs (tbl , tel)). Since the
communication is handled in the cut-through mode on a route step, eij is aligned on

66 Task Scheduling in Parallel Embedded Systems

all the links of this route step, that is

ts (eij, l0, Rs (tbl , tel)) = ts (eij, l1, Rs (tbl , tel)) = . . . = ts (eij, lk, Rs (tbl , tel))

tf (eij, l0, Rs (tbl , tel)) = tf (eij, l1, Rs (tbl , tel)) = . . . = tf (eij, lk, Rs (tbl , tel))

The communication duration on the links of the route step is determined by the
slowest link of the route step. Therefore, the finish time of edge eij on link lk is given
by

tf (eij, lk, Rs (tbl , tel)) = ts (eij, lk, Rs (tbl , tel)) + c (eij)
min
ln
{b (ln)}

where min
ln
{b (ln)} is the minimum data rate of the links in the route step Rs (tbl , tel).

Since eij has the same start/finish time on all the links of the route step, they are uni-
formly denoted by ts (eij, Rs (tbl , tel)) and tf (eij, Rs (tbl , tel)) and present respectively
the start and finish time of eij on all the links of route step Rs (tbl , tel).

The communicator cl is occupied by eij from the start time of the setup on the
processor to the finish time on the links of the route step. Therefore, the start time of
eij on cl is given by ts (eij, cl, Rs (tbl , tel)) = ts (eij, pl, Rs (tbl , tel)), and the finish time
of eij on cl is given by tf (eij, cl, Rs (tbl , tel)) = tf (eij, Rs (tbl , tel)).

Figure 3.6(a) shows the performing of communication with communicator that is
configured by the beginning terminal P1. A communication may be delayed after
the configuring because some links of the route step are occupied; therefore, the
communication is held on the communicator and occupies a longer duration in this
case. In addition, the communicator can also be configured by the ending terminal.
Figure 3.6(b) shows a communication that is set up by the ending terminal and is
delayed after the configuring.

Performing Communication by Processor

If a processor pl is used to perform a communication eij on a route step Rs (tbl , tel),
eij must be aligned on pl and all the links of the route step Rs (tbl , tel). The processor
does not need to configure a communicator, but it is occupied during the performing
of the communication. Figure 3.7 shows the performing of a communication with
processor that may be either the beginning terminal (Figure 3.7(a)) or the ending
terminal (Figure 3.7(b)).

The start time of eij on pl is same to the start time of eij on all the links of

Task Scheduling with Advanced Architecture Model 67

time

n1

e1,2

e1,2 e1,2

n2

P1 P2L2C1L1

e1,2

(a)

time

n1

e1,2

e1,2 e1,2

n2

P1 P2L2C1L1

e1,2
Delay

exy

(b)

Figure 3.6: Performing communication by communicator

time

n1

e1,2 e1,2 e1,2

n2

P1 P2L2L1

(a)

time

n1

e1,2e1,2 e1,2

n2

P1 P2L2L1

(b)

Figure 3.7: Performing communication by processor

Rs (tbl , tel), that is

ts (eij, pl, Rs (tbl , tel)) = ts (eij, Rs (tbl , tel))

The finish time of eij on pl is same to the finish time of eij on all the links of Rs (tbl , tel)
and is given by

tf (eij, pl, Rs (tbl , tel)) = tf (eij, Rs (tbl , tel)) = ts (eij, Rs (tbl , tel)) + c (eij)
min
ln
{b (ln)}

68 Task Scheduling in Parallel Embedded Systems

3.3.3 Causality Conditions

A computation can not be started on an operator when its input data are not avail-
able on this operator, and its output data can not be transferred to other operators
when this computation is not finished. This is the general causality of task scheduling.
Supposing an edge eij from ni on oper (ni) to nj on oper (nj), oper (ni) 6= oper (nj),
eij is assigned on the route R = 〈Rs (tb1 , te1) , . . . , Rs (tbl , tel) , . . . , Rs (tbm , tem)〉 with
tb1 = oper (ni) and tem = oper (nj). The causality also needs to satisfy the store-
and-forward mode between route steps. Following inequalities describe the causality
condition:

tf (ni, oper (ni)) ≤ ts (eij, p1, Rs (tb1 , te1)) (3.1)

tf (eij, Rs (tb1 , te1)) ≤ ts (eij, p2, Rs (tb2 , te2))
· · ·

tf (eij, Rs (tbl , tel)) ≤ ts
(
eij, pl+1, Rs

(
tbl+1 , tel+1

))
· · ·

tf
(
eij, Rs

(
tbm−1 , tem−1

))
≤ ts (eij, pm, Rs (tbm , tem))

(3.2)

tf (eij, Rs (tbm , tem)) ≤ ts (nj, oper (nj)) (3.3)

Equation 3.1 means a communication should be started after its origin computa-
tion is finished. The store-and-forward routing on a route is described by Equation 3.2.
Equation 3.3 means a computation should be started after its input communication
is finished. If the communication of eij does not exist (i.e. oper (ni) = oper (nj)), the
causality condition is simplified as tf (ni, oper (ni)) ≤ ts (nj, oper (ni)).

The time when all its input communications are finished is called a computation’s
Data Ready Time (DRT) and is obtained by

DRT (nj, oper (nj)) = max
{

max
eij∈E,oper(ni)6=oper(nj)

{tf (eij, Rs (tbm , oper (nj)))} ,

max
eij∈E,oper(ni)=oper(nj)

{tf (ni, oper (ni))}
}

(3.4)

Rs (tbm , oper (nj)) is the last route step for eij in Equation 3.4 if the communication
is needed. DRT is the earliest time when a computation can be started. If nj is a
node without input edge, we have DRT (nj, op) = 0,∀op ∈ OP .

Task Scheduling with Advanced Architecture Model 69

3.3.4 Scheduling Conditions

Computations and communications are inserted to the idle time intervals on oper-
ators, communicators and communication links during the scheduling. The following
conditions should be satisfied to guarantee the causality during the insertion.

Node Scheduling Condition

For a node ni, let [A,B] , (A,B) ∈ [0,∞]2 be an idle time interval on the operator
op. ni can be scheduled on op within [A,B] if max {A,DRT (ni, op)}+w (ni, op) ≤ B.
The start time of ni on op is given by ts (ni, op) = max {A,DRT (ni, op)}.

Edge Scheduling Condition with Communication Performed by Commu-
nicator

For an edge eij to be scheduled on the route step Rs (tbl , tel), if the communication
is performed by a communicator,

– let [Ap, Bp] , (Ap, Bp) ∈ [0,∞]2 be an idle time interval on the processor pl of
Rs (tbl , tel),

– let [Ac, Bc] , (Ac, Bc) ∈ [0,∞]2 be an idle time interval on the communicator cl
of Rs (tbl , tel),

– let [Al, Bl] , (Al, Bl) ∈ [0,∞]2 be a common idle time interval on all the links of
Rs (tbl , tel).

We note A = max {Ap, Ac}, B = min {Bc, Bl}, and C = c(eij)
min
ln
{b(ln)} where min

ln
{b (ln)}

gives the minimum data rate of the links in the route step Rs (tbl , tel). eij can be
scheduled on this route step within [A,B] if the following conditions are satisfied:

Bp ≥

max {A, tf (ni, oper (ni))}+ s (pl, cl) ,
if Rs (tbl , tel) is the first route step

max
{
A, tf

(
eij, Rs

(
tbl−1 , tel−1

))}
+ s (pl, cl) ,

otherwise

70 Task Scheduling in Parallel Embedded Systems

B ≥

max {Al,max {A, tf (ni, oper (ni))}+ s (pl, cl)}+ C,

if Rs (tbl , tel) is the first route step

max
{
Al,max

{
A, tf

(
eij, Rs

(
tbl−1 , tel−1

))}
+ s (pl, cl)

}
+ C,

otherwise

where s (pl, cl) is the setup time for pl to configure cl, and Rs
(
tbl−1 , tel−1

)
is the route

step before Rs (tbl , tel).
The start time of eij on the processor pl of Rs (tbl , tel) is given by

ts (eij, pl, Rs (tbl , tel)) =

max {A, tf (ni, oper (ni))} ,
if Rs (tbl , tel) is the first route step

max
{
A, tf

(
eij, Rs

(
tbl−1 , tel−1

))}
,

otherwise

The start time of eij on all the links of route step Rs (tbl , tel) is given by

ts (eij, Rs (tbl , tel)) =

max {Al,max {A, tf (ni, oper (ni))}+ s (pl, cl)} ,
if Rs (tbl , tel) is the first route step

max
{
Al,max

{
A, tf

(
eij, Rs

(
tbl−1 , tel−1

))}
+ s (pl, cl)

}
,

otherwise

The start time of eij on all the links of the route step Rs (tbl , tel) satisfies the
constraint condition of

ts (eij, Rs (tbl , tel)) ≥ tf (eij, pl, Rs (tbl , tel))

It means a communication can not be started until the configuring is finished.

Edge Scheduling Condition with Communication Performed by Processor

For an edge eij to be scheduled on the route step Rs (tbl , tel), if the communication
is performed by a processor, let [A,B] , (A,B) ∈ [0,∞]2 be a common idle time interval
on the processor pl and all the links of Rs (tbl , tel). We note C = c(eij)

min
ln
{b(ln)} where

min
ln
{b (ln)} gives the minimum data rate of the links in the route step Rs (tbl , tel). eij

Task Scheduling with Topology Graph Model 71

can be scheduled on this route step within [A,B] if the following condition is satisfied:

B ≥

max {A, tf (ni, oper (ni))}+ C,

if Rs (tbl , tel) is the first route step

max
{
A, tf

(
eij, Rs

(
tbl−1 , tel−1

))}
+ C,

otherwise

where Rs
(
tbl−1 , tel−1

)
is the route step before Rs (tbl , tel).

The start time of eij on the processor pl is same to the start time of eij on all the
links of Rs (tbl , tel) and is given by

ts (eij, pl, Rs (tbl , tel)) = ts (eij, Rs (tbl , tel)) =

max {A, tf (ni, oper (ni))} ,
if Rs (tbl , tel) is the first route step

max
{
A, tf

(
eij, Rs

(
tbl−1 , tel−1

))}
,

otherwise

3.4 Task Scheduling with Topology Graph Model

Since it is difficult to implement the task scheduling with the advanced architecture
model at the very start, we begin with simplifying the architecture model and the task
scheduling to research useful heuristic techniques. In fact, the architecture model is
simplified to be the topology graph model, and the task scheduling becomes similar
to be the task scheduling with communication contention in [SS05]. The work in the
following chapters is to give advanced techniques to improve the performance of task
scheduling based on the simplified task scheduling.

3.4.1 Topology Graph Model

An architecture of multiple processors interconnected by communication links and
switches is modeled by a topology graph TG = (N,P,D,H, b) in [SS05], where N is
the set of vertices, P is a subset of N (P ⊆ N), D is the set of directed edges, H is
the set of hyperedges, and b is the relative data rate of edge. The union of the two
edge sets D and H is designated the link set L (L = D ∪H), and an element of this
set is denoted by l (l ∈ L). Elements of these sets are explained as follows:

– a vertex p ∈ P represents a processor,

72 Task Scheduling in Parallel Embedded Systems

– a vertex n ∈ N − P represents a switch,
– a directed edge d ∈ D represents a directed communication link,
– a hyperedge h ∈ H represents a multidirectional communication link.
A directed communication link usually represents a FIFO, and a multidirectional

communication link that connects multiple vertices usually represents a half duplex
bus. The positive weight b (l), associated with a link l ∈ L, represents its relative
data rate.

The topology graph model is a simplified model of our advanced architecture
model. The processor, the switch, the directed communication link, and the multi-
directional communication link in the topology graph model respectively correspond
to the processor, the communication node, the bus and the FIFO in the advanced
architecture model. IP coprocessor, communicator and memory are not modeled in
the topology graph. Since a processor can be used to perform a communication when
executing a computation in the topology graph model, the processor is equivalent to
a processor with a communicator in the advanced architecture model. The processor
can only use its communicator, and the setup time is neglected. Figure 3.8 compares
a topology graph with 4 processors interconnected by a switch (Figure 3.8(a)) to its
equivalent advanced architecture model (Figure 3.8(b)).

L2

L4

L3

S1

P1 P4

P3P2

L1

(a) Simplified

B2

B4

B3

CN1

P1 P4

P3P2

B1

C1

C2

C3

C4

(b) Advanced

Figure 3.8: Comparison of two models

We continue to simplify the model by only using homogeneous buses in a topology
graph. Since directed edges are not used in the model, the topology graph can be
denoted by TG = (N,P, L, b) with L = H. Switches are ideal and contention-free
as communication node in the advanced architecture model. Since communication
links are considered homogeneous, data rates of different links are same, and the

Task Scheduling with Topology Graph Model 73

relative data rate for all the links is 1 (b (l) = 1,∀l ∈ L). However, processor can
be heterogeneous, and a computation may need different execution times on different
processors.

Though a route in the advanced architecture usually consists of several route
steps, we suppose that there is at least a route step between any two processors in
the topology graph. Therefore, a route in the topology graph is simplified to be a
chain of links connected by switches and finally connects the origin processor to the
destination processor. Figure 3.9 gives an example of 6 processors interconnected by
buses and switches, and L1→ L7→ L4 is a route from P1 to P4 in this architecture.

P1

P2

P3

S1 S2

P4

P6

P5

L1 L6

L2

L3

L7 L5

L4

Figure 3.9: Examples of architecture

Routing is an important aspect of task scheduling. Since the scheduling is done
at compile time, a route between two processors is also considered to be determined
at compile time. Routes are determined once and stored in a table; therefore, the
routing during the scheduling becomes looking up the table.

3.4.2 Scheduling with Communication Contention

Task scheduling with the topology graph model is a simplified version of the task
scheduling with the advanced architecture model. It is a DAG scheduling with com-
munication contention. A schedule of a DAG is the association of a start time and of
a processor with each node of the DAG. When considering the communication con-
tention, a schedule also includes allocating communications to links and associating
start times on these links with each communication. A communication is aligned on
all the links of a route in the cut-through mode. Therefore, it takes up the same
duration on each link. However, a computation may take up different durations on

74 Task Scheduling in Parallel Embedded Systems

different processors because processors are heterogeneous.
A schedule S of a DAG G = (V,E,w, c) over a topology graph TG = (N,P, L, b)

can be similarly described as in Section 3.3. We briefly give the difference as follows.
The start time of a node ni ∈ V on a processor p ∈ P is denoted by ts (ni, p); the

finish time is given by tf (ni, p) = ts (ni, p) +w (ni, p), where w (ni, p) is the execution
duration of ni on p. Since we only use processor to execute computations in a topology
graph, the set of processors on which ni can be executed is denoted by Proc (ni),
and the processor on which ni is actually allocated is denoted by proc (ni). We use
the average execution duration of a computation on different types of processors to
represent the node weight which is similar to that for the advanced architecture model.

The finish time of a processor is the maximum finish time among all nodes allocated
on this processor, tf (p) = max

proc(ni)=p
{tf (ni, proc (ni))}; the schedule length of S is the

maximum finish time among all the processors of the system, sl (S) = max
p∈P
{tf (p)}.

The start time of an edge eij ∈ E on a link l ∈ L is denoted by ts (eij, l); the finish
time of eij is given by tf (eij, l) = ts (eij, l) + c (eij).

The node scheduling condition for the topology graph is same to that for our ad-
vanced architecture model. However, the edge scheduling condition is a little different
because a processor can perform a communication and a computation at the same
time. In addition, since a route is simplified to be one-step, communications are han-
dled in the way of cut-through on a route. Therefore, an edge eij is aligned on all
the links of the route lR1 → lR2 → . . .→ lRk , that is ts (eij, lR1) = ts (eij, lR2) = . . . =
ts (eij, lRk) and tf (eij, lR1) = tf (eij, lR2) = . . . = tf (eij, lRk). The start time and finish
time of eij on all the links of the route are denoted uniformly by ts (eij) and tf (eij)
with tf (eij) = ts (eij) + c (eij).

Edge Scheduling Condition

For a DAG G = (V,E,w, c) and a topology graph TG = (N,P, L, b), let lR1 →
lR2 → . . . → lRk be route for an edge eij ∈ E and let [A,B] , (A,B) ∈ [0,∞]2 be a
common idle time interval on all the links of the route. eij can be scheduled on this
route within [A,B] if max {A, tf (ni, p)}+ c (eij) ≤ B where p = proc (ni). The start
time of eij on this route is given by ts (eij) = max {A, tf (ni, p)}.

The topology graph model is not yet accurate enough because the processor in-
volvement for communications is not taken into account. A new scheduling model is
proposed based on the topology graph in [SSS06] to take into account the processor
involvement for communications. However, the overhead and involvement for com-

Conclusion 75

munications on a processor are specified based on both the topology graph of target
system and the DAG, and it complicates the specification. In addition, it is not prac-
tical that communicators and memories are not modeled but are assumed to be used
in the communication subsystem of the topology graph for embedded systems.

3.5 Conclusion

This work concerns the static scheduling that is done at compile time and is
more suitable for digital signal processing applications by leading to lower code size
and higher computation efficiency. We firstly introduced the general task scheduling
problem and gave a survey of the commonly used techniques for task scheduling.
Then we formulated the task scheduling with our advanced architecture model. It
consists in assigning computations and communications to components and finding
time intervals on these components for the computations and communications. A
computation is executed on an operator, which is a processor or an IP coprocessor.
A communication is transferred on a route from one operator to another. A route
usually contains several steps. Communications are handled in the cut-through mode
on a route step and in the store-and-forward mode on different route steps. The
start and finish times of computations and communications on different components
were defined with the advanced architecture model. Based on the causality conditions
with the architecture model, the scheduling conditions were finally given to be fulfilled
during the scheduling.

Since it is difficult to start the research of task scheduling with the advanced archi-
tecture model, we simplified the advanced architecture model with a topology graph.
Vertices of topology graph are processors and switches, and edges are communication
links. Communications are assumed to be performed by a communication subsystem
that is composed of switches and links and is contention-aware. The task schedul-
ing problem is also simplified with the topology graph model and is indeed the task
scheduling with communication contention. We will research advanced heuristics and
techniques for the task scheduling with communication contention in the following
chapters.

4
List Scheduling with

Communication Contention

4.1 Introduction

Most scheduling heuristics are based on the approach of list scheduling presented
in Chapter 3. This new chapter introduces list scheduling heuristics for the simplified
task scheduling with communication contention for which the basic techniques have
been given in [Sin07]. In addition to the two existing groups of node levels given in
Chapter 2, we will explore three new groups of node levels for a DAG by considering
the communication contention. All the five groups of node levels can be used as
priorities to sort nodes for list scheduling. Using the five groups of node levels for
the static and dynamic list scheduling usually leads to different scheduling orders of
nodes and finally gives different scheduling results.

This chapter is organized as follows: Section 4.2 gives the three new groups of node
levels considering the communication contention. Heuristics for static list scheduling
and dynamic list scheduling are then given in Section 4.3. Section 4.4 gives experi-
mental results, and the time complexities are analyzed in Section 4.5. This chapter
is concluded in Section 4.6.

78 List Scheduling with Communication Contention

4.2 Node Levels with Communication Contention

Two groups of node levels have been defined in Chapter 2 and are named respec-
tively as

– computation top level and bottom level (tlcomp and blcomp),
– top level and bottom level (tl and bl).
These node levels have been used in task scheduling without communication con-

tention. Since our work concerns about task scheduling with communication con-
tention, it is necessary to consider the communication contention in the definition of
node levels. Therefore, we propose three new groups of node levels by taking into
account the input and output communication contention. These three groups are
respectively named as

– input top level and bottom level (tlin and blin),
– output top level and bottom level (tlout and blout),
– input/output top level and bottom level (tlio and blio).
Definitions of the new node levels are recursive like those of the existing node

levels in Chapter 2. Figure 4.1 illustrates the dependency between nodes to define the
new levels, where the dotted nodes and dotted edges are used to define the top levels
and bottom levels of ni.

n pred

n i

nsucc
tl in

n pred

n i

nsucc
blin

(a)

n pred

n i

nsucc
tlout

n pred

n i

nsucc
bl out

(b)

n pred

n i

nsucc
tl io

n pred

n i

nsucc
blio

(c)

Figure 4.1: Three new groups of node levels

Given a DAG G = (V,E,w, c), the formalized definitions of the three new top and
bottom levels are given as follows:

Input top level and bottom level

As shown in Figure 4.1(a), the input top level and bottom level take into account
the weights of nodes and the weights of all input edges of a node on the path. They

Node Levels with Communication Contention 79

are defined recursively as

tlin (ni) =

0, if ni ∈ source (G)

max
nk∈pred(ni)

{tlin (nk) + w (nk)}+ ∑
eli∈E

c (eli) , otherwise

blin (ni) =

w (ni) , if ni ∈ sink (G)

max
nk∈succ(ni)

{
blin (nk) + ∑

elk∈E
c (elk)

}
+ w (ni) , otherwise

Table 4.1 shows the input top level and bottom level of the DAG given in Fig-
ure 4.2.

2

1114

111
533

n1

n2 n3 n4 n5

n6 n7 n8

n9

10

1

5 6 5

4

4 4 4

1

Figure 4.2: A DAG example

Table 4.1: Input top level and bottom level

ni n1 n2 n3 n4 n5 n6 n7 n8 n9
tlin 0 6 3 3 3 11 20 9 40
blin 41 35 26 27 5 21 21 21 1

tlin + blin 41 41 29 30 8 32 41 30 41

Output top level and bottom level

As shown in Figure 4.1(b), the output top level and bottom level take into account
the weights of nodes and the weights of all output edges of a node on the path. They

80 List Scheduling with Communication Contention

are defined recursively as

tlout (ni) =

0, if ni ∈ source (G)

max
nk∈pred(ni)

{
tlout (nk) + w (nk) + ∑

ekl∈E
c (ekl)

}
, otherwise

blout (ni) =

w (ni) , if ni ∈ sink (G)

max
nk∈succ(ni)

{blout (nk)}+ ∑
eil∈E

c (eil) + w (ni) , otherwise

Table 4.2 shows the output top level and bottom level of the DAG given in Fig-
ure 4.2.

Table 4.2: Output top level and bottom level

ni n1 n2 n3 n4 n5 n6 n7 n8 n9
tlout 0 19 19 19 19 24 24 24 34
blout 35 16 14 15 5 10 11 10 1

tlout + blout 35 35 33 34 24 34 35 34 35

Input/output top level and bottom level

As shown in Figure 4.1(c), the input/output top level and bottom level take into
account the weights of nodes and the weights of all input edges and all output edges
of a node on the path. They are defined recursively as

tlio (ni) =

0, if ni ∈ source (G)

max
nk∈pred(ni)

{
tlio (nk) + w (nk) + ∑

ekl∈E
c (ekl)− c (eki)

}
+ ∑
eli∈E

c (eli) , otherwise

blio (ni) =

w (ni) , if ni ∈ sink (G)

max
nk∈succ(ni)

{
blio (nk) + ∑

elk∈E
c (elk)− c (eki)

}
+ ∑
eil∈E

c (eil) + w (ni) , otherwise

Table 4.3 shows the input/output top level and bottom level of the DAG given in

Node Levels with Communication Contention 81

Figure 4.2.

Table 4.3: Input/output top level and bottom level

ni n1 n2 n3 n4 n5 n6 n7 n8 n9
tlio 0 19 19 19 19 24 34 25 54
blio 55 36 26 27 5 21 21 21 1

tlio + blio 55 55 45 46 24 45 55 46 55

The new node levels can be computed by visiting each node in topological or
inverse topological order as those for the existing node levels in Algorithm 2.3 and
Algorithm 2.4 of Chapter 2. Though the items for max are more complicated ac-
cording to the recursive definitions, the total repetition times are always at a level of
O (V + E), and the total complexity remains O (V + E).

The new levels of a node can also be considered as communication contention path
lengths of the longest path starting or ending at this node. Therefore, the sum of the
new top level and bottom level of a node gives the communication contention path
length of the longest path that passes this node in a DAG. A node with the maximum
sum of its new top level and bottom level is on a critical path with communication
contention. The critical paths with communication contention are respectively named
as input critical path, as output critical path and as input/output critical path for
the three new groups of node levels.

As shown in Table 4.1, the length of the input critical path is 41 for the DAG given
in Figure 4.2. n1, n2, n7 and n9 are nodes on an input critical path. Similarly, the
length of the output critical path is 35 (Table 4.2). n1, n2, n7 and n9 are nodes on an
output critical path. The length of the input/output critical path is 55 (Table 4.3).
n1, n2, n7 and n9 are nodes on an input/output critical path. Though the three
critical path are same for this example, they are not necessarily same for any DAG.

Three nondecreasing orders of new top levels and three nonincreasing orders of
new bottom levels are all topological orders. Table 4.4 gives the six node orders based
on the six node levels with communication contention for the DAG in Figure 4.2.
Nodes with the same level can be sorted randomly among themselves like {n3, n4, n5}
for tlin.

82 List Scheduling with Communication Contention

Table 4.4: Different topological orders

Node level Node order
tlin n1, {n3, n4, n5} , n2, n8, n6, n7, n9
blin n1, n2, n4, n3, {n6, n7, n8} , n5, n9
tlout n1, {n2, n3, n4, n5} , {n6, n7, n8} , n9
blout n1, n2, n4, n3, n7, {n6, n8} , n5, n9
tlio n1, {n2, n3, n4, n5} , n6, n8, n7, n9
blio n1, n2, n4, n3, {n6, n7, n8} , n5, n9

4.3 List Scheduling Heuristics

List scheduling is an important scheduling heuristic. It consists in firstly sorting
nodes into a list and then scheduling each node of the list on a processor. List
scheduling is classified as static or dynamic. This section gives the list scheduling
heuristics in the case of communication contention.

4.3.1 Static List Scheduling Heuristic

Algorithm 4.1 is one static list scheduling heuristic. It is composed of three proce-
dures of Sort_Nodes(), Select_Processor() and Schedule_Node(). Details of the
three procedures are explained in the following sections.

Algorithm 4.1: Static_List_Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph TG = (N,P, L, b)
Output: A schedule S of G on TG
NodeList← Sort_Nodes(V);1

for each n ∈ NodeList do2

pbest ← Select_Processor(n, Proc (n));3

Schedule_Node(n, pbest);4

end5

Sorting Nodes with Node Priorities

Nodes are firstly sorted into a list in the static list scheduling heuristic. The node
order in the list should be a topological order because a node can only be exactly
scheduled after its predecessors being scheduled. We usually have more opportunities
to find an earlier time interval on a good processor when scheduling a node appearing
earlier in the node list. As the number of scheduled nodes increases, it becomes

List Scheduling Heuristics 83

difficult to find earlier time intervals on processors, and the following nodes must be
executed later. Since some nodes should be executed as early as possible to shorten
the total execution time, the node order in the list affects much the schedule result,
and it is important to get a good node order before scheduling.

A DAG usually has many different topological orders, but it is unpractical to
test all the possibilities and choose the best one. Therefore, we need some general
topological orders that usually give good schedule results. Node levels can be used as
priorities to get different orders because nodes can be sorted into different topological
orders by their levels. Since the bottom level of a node reflects the path length from
this node to the end of a DAG, scheduling a node with greater bottom level as early
as possible can make the total execution time shorter. Therefore, the bottom level is
a good priority to sort nodes. In fact, list scheduling heuristics with different priority
schemes to sort nodes have been compared in [SS04], and the experiments show that
list scheduling with static list sorted by bottom level outperforms all other compared
contention aware algorithms.

We also use the top level as an auxiliary priority when several nodes have the same
bottom level. In fact, when two nodes have the same bottom level, the one with a
longer path passing it is usually more “critical” than the other and therefore should
be treated earlier. Since the sum of top level and bottom level gives the length of the
longest path passing a node, the node with greater top level is a more “critical” one
when their bottom levels are same. Nodes are sorted into a list of NodeList in the
procedure Sort_Nodes() according to the following rule:

– Rule for Sorting Nodes
Nodes are sorted by the nonincreasing order of their bottom levels; if two nodes
have equal bottom levels, the one with greater top level is placed before the
other; if both the bottom level and the top level are equal, these nodes are
sorted randomly.

All the five groups of node levels can be similarly used as node priorities according
to this rule, and we usually get different node lists. Since the bottom level reflects
the time needed from this node to the end of the graph, our bottom levels with
communication contention reflect better the reality in the case of communication
contention. However, it is uncertain which priority is better for a specific DAG.
Therefore, we combine the five groups of priorities with the static list scheduling
heuristic and choose the best result. The whole process is called the combined static
list scheduling heuristic.

84 List Scheduling with Communication Contention

Processor Selection

List scheduling selects a good processor to execute a node. The processor allowing
the earliest finish time of a node is selected for this node. The detail of selecting a
processor for a node ni is given in Algorithm 4.2.

Algorithm 4.2: Select_Processor(ni, P)
Input: A node ni ∈ V and the set Proc (ni) of processors
Output: The best processor pbest for the input node ni
Best_Finish_Time ← ∞;1

for each p ∈ Proc (ni) do2

Finish_Time ← Schedule_Node(ni, p);3

if Finish_Time < Best_Finish_Time then4

Best_Finish_Time ← Finish_Time;5

pbest ← p;6

end7

end8

Node Scheduling

A node is scheduled on a processor by respecting the node scheduling condition
(cf. Section 3.3.4). The detail of scheduling a node ni on a processor p is given in
Algorithm 4.3.

Algorithm 4.3: Schedule_Node(ni, p)
Input: ni ∈ V and a processor p ∈ Proc (ni)
Output: The finish time of ni on p
for each nl ∈ pred (ni) , proc (nl) 6= p do1

Schedule_Edge(eli, p);2

end3

Calculate DRT of node ni;4

Find the earliest idle time interval for node ni on processor p respecting the5

node scheduling condition;
Calculate the finish time of ni on p;6

Edge Scheduling

Algorithm 4.4 gives the method for edge scheduling by respecting the edge schedul-
ing condition (cf. Section 3.4.2). Since an edge eij is scheduled only when its origin

List Scheduling Heuristics 85

node ni has been scheduled, the scheduling of this edge needs additionally the pro-
cessor p on which the destination node nj of eij is to be scheduled.

Algorithm 4.4: Schedule_Edge(eij, p)
Input: eij ∈ E and a processor p ∈ Proc (nj) on which the node nj is to be

scheduled
Output: None
if ni is scheduled then1

if proc (ni) 6= p then2

Determine the route R from proc (ni) to p by looking up the route table;3

Find the earliest common idle time interval on all the links of R4

respecting the edge scheduling condition;
end5

end6

4.3.2 Dynamic List Scheduling Heuristic

Algorithm 4.5 gives the dynamic list scheduling heuristic. Since the node order
is not determined before the scheduling but dynamically created during the schedul-
ing, the procedure Sort_Nodes() for the static list scheduling heuristic is no longer
necessary. We use a procedure Choose_Node() to choose a node to be scheduled.
The procedures Select_Processor() and Schedule_Node() are same to those for
the static list scheduling heuristic in Algorithm 4.1.

Algorithm 4.5: Dynamic_List_Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph TG = (N,P, L, b)
Output: A schedule of G on TG
UnscheduledNodes ← V ;1

while UnscheduledNodes 6= null do2

n ← Choose_Node(UnscheduledNodes);3

pbest ← Select_Processor(n, Proc (n));4

Schedule_Node(n, pbest);5

Remove n from UnscheduledNodes;6

end7

The dynamic node order must also be a topological order; therefore, a node to be
scheduled must be a free node with all its predecessors being scheduled. The node
chosen to be scheduled in the next step is one of the free nodes on a path with the

86 List Scheduling with Communication Contention

maximum length. Since the length of the longest path is crucial to the schedule length,
this node must be treated immediately in order to be executed as soon as possible.
This node is named the critical node and is obtained in Algorithm 4.6.

Algorithm 4.6: Choose_Node(UN)
Input: A set UN of all the unscheduled nodes
Output: The critical node nc among all the unscheduled nodes
Create a set FN of all the free nodes from UN ;1

maxLength ← 0;2

for each ni ∈ FN do3

length ← 0;4

for each nl ∈ pred (ni) do5

length ← max {length, tf (nl, proc (nl)) + bl (ni)};6

end7

if max_length < length then8

max_length ← length;9

nc ← ni;10

else if max_length = length then11

if bl (nc) < bl (ni) then12

nc ← ni;13

end14

end15

end16

In this algorithm, the bottom level bl (ni) is the node priority. The bottom level
reflects the time needed from this node to the end of the DAG, and our new bottom
levels reflect better the reality in the case of communication contention. Therefore,
bl (ni) can be replaced by other bottom levels like blcomp (ni), blin (ni), blout (ni) and
blio (ni). Different bottom levels may give different dynamic node orders and can
finally lead to different schedule results. Similar to the static list scheduling, the
dynamic list scheduling heuristic can be combined with the five bottom levels, and
we choose the best result for a specific DAG. We call this whole process the combined
dynamic list scheduling heuristic.

4.4 Experimental Results

This section compares the static and dynamic list scheduling heuristics with dif-
ferent node priorities. Figure 4.3 gives architectures that will be used in the following
comparisons. Figure 4.3(a) is an architecture of three processors sharing a bus, and

Experimental Results 87

Figure 4.3(b) gives another architecture of 8 processors connected to a switch by
buses.

P1

P2

P3

L1

(a)

P2

P4

P6

L8

L6L2

L3

L7

L5L4

P8

S1

P1 P7

P5P3

L1

(b)

Figure 4.3: Examples of architecture

4.4.1 Comparison with an Example

A DAG example is scheduled to show the performance of the list scheduling heuris-
tics with different node priorities in this section. The DAG in Figure 4.2 is used as
the algorithm, and the architecture is shown in Figure 4.3(a).

Static List Scheduling

Table 4.5 gives the different node lists by using the five groups of node priorities for
the DAG in Figure 4.2. When some nodes have the same priority, they are randomly
sorted like {n3, n2} for blcomp & tlcomp.

Table 4.5: Different static node lists

Node priorities Static node list
blcomp & tlcomp n1, n4, {n3, n2} , n8, {n7, n6} , n5, n9

bl & tl n1, n2, n4, n3, n7, n6, n8, n5, n9
blin & tlin n1, n2, n4, n3, n7, n6, n8, n5, n9
blout & tlout n1, n2, n4, n3, n7, {n6, n8} , n5, n9
blio & tlio n1, n2, n4, n3, n7, n8, n6, n5, n9

The schedule result for the node list obtained by using blcomp & tlcomp is shown in
Figure 4.4(a) with the schedule length of 25. Since the node list obtained by using bl
& tl is same to that obtained by using blin & tlin, the same schedule result is obtained
as in Figure 4.4(b) with the schedule length of 21. Using blout & tlout can have the

88 List Scheduling with Communication Contention

same node list as that by using bl & tl and therefore gives the same schedule result.
However, it can give another node list that is same as that by using blio & tlio, and
Figure 4.4(c) gives the schedule result with the schedule length of 21.

P1

0 5 10 15 20 25

P2

P3

L1

n1 n4 n2 n7 n9

n3 n8

n5 n6

e1,3e1,5 e4,8 e2,6 e8,9e6,9

time

(a) blcomp & tlcomp

P1

0 5 10 15 20 25

P2

P3

L1

21

n1 n2 n7 n5

n4 n6

n3 n8

n9

e1,4e1,3 e2,6 e4,8 e7,9 e8,9

time

(b) bl & tl

P1

0 5 10 15 20 25

P2

P3

L1

21

n1 n2 n7 n5

n4 n8

n3 n6 n9

e1,4e1,3 e2,6 e3,8 e7,9 e8,9

time

(c) blio & tlio

Figure 4.4: Schedule results of static heuristic with different node priorities

Dynamic List Scheduling

The node list is generated dynamically during the scheduling of the dynamic
heuristic. Table 4.6 gives the dynamic node lists by using different node priorities
for the DAG in Figure 4.2.

The schedule result for the dynamic node list obtained by using blcomp is shown in
Figure 4.5(a) with the schedule length of 23. Since using bl, using blin and using blout
give the same node list, the same schedule result is obtained as in Figure 4.5(b) with

Experimental Results 89

Table 4.6: Different dynamic node lists

Node priorities Dynamic node list
blcomp n1, n4, n3, n8, n2, n6, n7, n9, n5
bl n1, n2, n4, n3, n8, n7, n6, n9, n5
blin n1, n2, n4, n3, n8, n7, n6, n9, n5
blout n1, n2, n4, n3, n8, n7, n6, n9, n5
blio n1, n2, n4, n3, n8, n6, n7, n9, n5

the schedule length of 21. Figure 4.4(c) gives the schedule result by using blio with
the schedule length of 18. This schedule result is better than all the others.

4.4.2 Comparison with Randomly Generated DAGs

We use random graphs to compare scheduling algorithms in order to get statistical
results which are more persuasive than the result for a particular graph. In fact, we
implemented a Java generator (1) based on SDF3 graph random generator [SGB06] to
generate random SDF graphs. The generated SDF graphs are constrained to have no
cycle. Therefore, an SDF graph becomes a DAG without node and edge weights that
will be generated randomly later.

A random DAG is described in five aspects:
– the number of nodes,
– the average in degree,
– the average out degree,
– the random weights of nodes,
– the random weights of edges.
The average in degree and the average out degree are assumed to be same in

our experiments, and the weights of nodes vary randomly from wmin to wmax. The
communication to computation ratio (CCR) is used to generate random weights of
edges. We define CCR as the average weight of edges divided by the average weight

of nodes: CCR =
1
|E|
∑
e∈E
c(e)

1
|V |
∑
n∈V
w(n) . Therefore, the weights of edges vary randomly from

wmin×CCR to wmax×CCR. The typical values of 0.1, 1 and 10 for CCR are used to
respectively represent the low, medium and high communication cases and are tested
in the following sections.

Since a list scheduling heuristic can use all the five groups of node priorities to

(1). http://sourceforge.net/projects/sdf4j

90 List Scheduling with Communication Contention

P1

0 5 10 15 20 25

P2

P3

L1

23

n1 n2 n7

n5

n4 n8

n3

n6 n9

e1,3e1,5 e3,8

time

(a) blcomp

P1

0 5 10 15 20 25

P2

P3

L1

21

n1 n2 n7 n5

n4 n8

n3 n6 n9

e1,4e1,3 e2,6 e3,8 e7,9 e8,9

time

(b) bl

P1

0 5 10 15 20 25

P2

P3

L1

18

n1 n2 n7

n5

n4 n8

n3

n6 n9

e1,4e1,3e1,5 e3,8 e8,9

time

(c) blio

Figure 4.5: Schedule results of dynamic heuristic with different node priorities

get different results, we combine the five groups of node priorities with a heuristic
and choose the best result; the whole process is called a combined heuristic. The
static list scheduling heuristic with nodes sorted by their bottom levels is used as
the classic list scheduling heuristic, and we compare the schedule lengths of our list
scheduling heuristics to that of the classic one. We define the acceleration factor
(Acc) as Acc = slclassic

slcompared
to show the speed-up of the compared heuristic. We test

1000 random DAGs to obtain the statistical results for each group of DAG. The
weights of nodes are generated randomly from wmin = 100 to wmax = 1000. The
architecture given in Figure 4.3(b) is used for the following comparison.

Experimental Results 91

Static List Scheduling

Figure 4.6 gives the average Acc of the static list scheduling heuristic with the five
groups of node priorities for different groups of random DAGs when CCR = 0.1. All
the static heuristics have almost the same average Acc with Acc ≈ 1. The average Acc
of the combined static heuristic is improved only a little. In fact, the communication
cost is very small in comparison with the computation cost, and it is difficult to
obtain different node lists. Therefore, the schedule results of different node priorities
are usually same, and the improvement on the average Acc of the combined static
heuristic is not remarkable.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,97

0,98

0,99

1

1,01

1,02

Static list scheduling with different node priorities for random DAGs
(CCR=0,1)

blcomp & tlcomp
bl & tl
blin & tlin
blout & tlout
blio & tlio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.6: Average Acc of static heuristic (CCR = 0.1)

Figure 4.7 gives the average Acc of the static list scheduling heuristic with the
five groups of node priorities for different groups of random DAGs when CCR = 1.
All the static heuristics have similar performances to the classic one (Acc ≈ 1), but
the combined static heuristic gives improvement on Acc. In fact, we may obtain
different node lists with the five groups of node priorities when the communication
cost increases. Though a static heuristic can not always give better schedule results
than the classic one for a DAG, the combination of the five schedule results can usually
improves the performance.

Figure 4.8 gives the average Acc of the static list scheduling heuristic with the
five groups of node priorities for different groups of random DAGs when CCR = 10.
We can see that the static heuristic with bl & tl, which is essentially the classic list
scheduling, usually gives greater Acc than the other four static heuristics. In fact,
experiments in [SS04] have shown that this classic list scheduling usually outper-
forms other compared contention aware algorithms. However, our combined static
list scheduling heuristic improves the final result because the classic one is not always

92 List Scheduling with Communication Contention

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

Static list scheduling with different node priorities for random DAGs
(CCR=1)

blcomp & tlcomp
bl & tl
blin & tlin
blout & tlout
blio & tlio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.7: Average Acc of static heuristic (CCR = 1)

the best for any DAG.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

Static list scheduling with different node priorities for random DAGs
(CCR=10)

blcomp & tlcomp
bl & tl
blin & tlin
blout & tlout
blio & tlio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.8: Average Acc of static heuristic (CCR = 10)

Figure 4.9 compares the average Acc of the combined static list scheduling heuristic
for different CCR. We can see that the schedule results are obviously accelerated
(Acc > 1) in the cases of CCR = 1 and CCR = 10 by using the combined static
heuristic. The improvement increases when CCR varies from 0.1 to 10. If CCR is
fixed, the combined static heuristic gives similar performances for DAGs of different
sizes; therefore, the combined static heuristic is proved to be stable.

Dynamic List Scheduling

Figure 4.10 gives the average Acc of the dynamic list scheduling heuristic with the
five groups of node priorities for different groups of random DAGs when CCR = 0.1.
All the dynamic heuristics give Acc < 1, and the Acc decreases as the number of nodes
increases. As to the combined dynamic heuristic, we do not get any improvement

Experimental Results 93

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

Combined static list scheduling for random DAGs

CCR=0,1
CCR=1
CCR=10

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.9: Average Acc of combined static heuristic

on average in comparison with the classic list scheduling. Therefore, the dynamic
list scheduling heuristics can not give any improvement on average in the case of
CCR = 0.1.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,8

0,85

0,9

0,95

1

1,05

Dynamic list scheduling with different node priorities for random DAGs
(CCR=0,1)

blcomp
bl
blin
blout
blio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.10: Average Acc of dynamic heuristic (CCR = 0.1)

Figure 4.11 gives the average Acc of the dynamic list scheduling heuristic with the
five groups of node priorities for different groups of random DAGs when CCR = 1.
Though each dynamic heuristic has Acc ≤ 1, the combined dynamic heuristic gives
Acc > 1 when the number of nodes is not great (less than 200 in this figure). When
DAGs become very complicated (e.g. have more than 200 nodes), the combined
dynamic heuristic can not give any improvement on average.

Figure 4.12 gives the average Acc of the dynamic list scheduling heuristic with the
five groups of node priorities for different groups of random DAGs when CCR = 10.
Though almost all the dynamic heuristics have Acc < 1, the combined dynamic
heuristic stably gives Acc > 1. In fact, since the communication cost is much greater

94 List Scheduling with Communication Contention

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2

0,4

0,6

0,8

1

1,2

Dynamic list scheduling with different node priorities for random DAGs
(CCR=1)

blcomp
bl
blin
blout
blio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.11: Average Acc of dynamic heuristic (CCR = 1)

than the computation cost, the node priority without considering the communication
becomes unpractical and usually gives bad results. The other four node priorities
with considering the communication give similar performances, and the combination
of the different dynamic heuristics improves the final result.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2

0,4

0,6

0,8

1

1,2

1,4

Dynamic list scheduling with different node priorities for random DAGs
(CCR=10)

blcomp
bl
blin
blout
blio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.12: Average Acc of dynamic heuristic (CCR = 10)

Figure 4.13 compares the average Acc of the combined dynamic list scheduling
heuristic for different values of CCR. Similar to the combined static list scheduling
heuristic, the average Acc increases when CCR varies from 0.1 to 10 for each group
of DAGs.

Static VS Dynamic

Figure 4.14 compares the combined static list scheduling heuristic to the combined
dynamic list scheduling heuristic. The combined static heuristic usually has a greater
Acc when CCR = 0.1 and CCR = 1, but its performance is close to that of the

Analysis of Time Complexity 95

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2

0,4

0,6

0,8

1

1,2

1,4

Combined dynamic list scheduling for random DAGs

CCR=0,1
CCR=1
CCR=10

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.13: Average Acc of combined dynamic heuristic

dynamic heuristic for CCR = 10. Therefore, the best way should be using both the
combined static and dynamic heuristics for a specific DAG and choosing the best
schedule result.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2

0,4

0,6

0,8

1

1,2

1,4

Combined static heuristic VS Combined dynamic heuristic

CCR=0,1 (static)
CCR=0,1 (dynamic)
CCR=1 (static)
CCR=1 (dynamic)
CCR=10 (static)
CCR=10 (dynamic)

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 4.14: Comparison of combined static heuristic to combined dynamic heuristic

4.5 Analysis of Time Complexity

The time complexities of the list scheduling heuristics are analyzed as follows:
The route can be determined (calculated or looked up) in O (1) time in the pro-

cedure Schedule_Edge() for static routing. If the route contains O (routing) links,
it takes O (EO (routing)) time to find the earliest common idle time interval on all
links of the route. Thus, the complexity of Schedule_Edge() is O (EO (routing)).

The procedure Schedule_Node() needs firstly O
(
E
V

)
times of Schedule_Edge()

on average, then it takes O
(
E
V

)
time to calculate the DRT, and it takes O

(
V
P

)
time

96 List Scheduling with Communication Contention

to find an idle time interval for a node on average. At last, it takes O (1) time to
calculate the finish time of the node. Therefore, the total complexity of the procedure
Schedule_Node() is O

(
E2O(routing)

V
+ V
P

)
on average.

As to the procedure Select_Processor(), it mainly calls O (P) times of the
procedure Schedule_Node(). Therefore, the complexity is O

(
PE2O(routing)

V
+ V

)
.

In Algorithm 4.1, sorting nodes has the complexity of O (V log V + E) (comput-
ing node levels in O (V + E) + sorting in O (V log V)). Our new definitions of top
level and bottom level do not change the complexity of computing node levels; there-
fore, the complexity of sorting nodes is always O (V log V + E). Since the procedure
Select_Processor() is more complicated than the procedure Schedule_Node(), the
complexity in the for-loop is equal to that of the procedure Select_Processor().
Therefore, the total complexity is O (PE2O (routing) + V 2) for the static list schedul-
ing heuristic.

Algorithm 4.5 consists of a procedure Choose_Node() in addition to the two pro-
cedures of Select_Processor() and Schedule_Node(). In Choose_Node(), creating
the set of all the free nodes need to visit each node and has a complexity of O (V).
Then the total repetition times are no more than V +E in the for-loop; therefore, the
total complexity of the procedure Choose_Node() is O (V + E). Since the procedure
Select_Processor() is more complicated than the procedure Schedule_Node() and
the procedure Choose_Node(), the complexity in the while-loop is equal to that of
the procedure Select_Processor(). Therefore, the total complexity of the dynamic
list scheduling heuristic is O (PE2O (routing) + V 2), which is of the same degree as
that of the static list scheduling heuristic.

The degree of the time complexity for a combined list scheduling heuristic is not
increased though it consists of five heuristics with different node priorities. Therefore,
the time complexity of combined heuristics is also O (PE2O (routing) + V 2).

Figure 4.15 shows the time used to schedule different sizes of DAGs on architectures
with different numbers of processors by our combined static heuristic. All the DAGs
have the average in/out degree of 4, and all the processors are connected to a switch.
As shown in Figure 4.15(a) and Figure 4.15(b), the time increases with the square of
V and increases linearly with P . We run our heuristic on a Pentium Dual-Core PC
at 2.4GHz, and it takes about 18 seconds to schedule a DAG with 500 nodes on an
architecture of 16 processors.

Figure 4.16 shows the time used to schedule different sizes of DAGs on architectures
with different numbers of processors by our combined dynamic heuristic. The result

Conclusion 97

100 200 300 400 500
0

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Time complexity

P=16
P=12
P=8
P=4

V

Ti
m

e
(m

s)

(a)

2 4 6 8 10 12 14 16
0

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Time complexity

V=500
V=300
V=100

P

Ti
m

e
(m

s)
(b)

Figure 4.15: Time complexity of static heuristic

is similar to that of the combined static heuristic. The time increases with the square
of V (Figure 4.16(a)) and increases linearly with P (Figure 4.16(b)). It takes about
16 seconds to schedule a DAG with 500 nodes on an architecture of 16 processors.

100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time complexity

P=16
P=12
P=8
P=4

V

Ti
m

e
(m

s)

(a)

2 4 6 8 10 12 14 16
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time complexity

V=500
V=300
V=100

P

Ti
m

e
(m

s)

(b)

Figure 4.16: Time complexity of dynamic heuristic

4.6 Conclusion

This chapter explored methods for the simplified task scheduling with communi-
cation contention, which used the DAG and topology graph to respectively model
the algorithm and architecture. In addition to the two existing groups of node levels

98 List Scheduling with Communication Contention

for a DAG, we proposed three new groups of node levels by taking into account the
communication contention. These new node levels can be similarly computed as the
existing ones. All these node levels have similar properties and can be used to sort
nodes in topological order.

As we said previously, the general task scheduling problem has been proven to
be NP-hard, and many works try to find heuristics to go up to the optimal solution.
Most heuristics are based on the approach of list scheduling. List scheduling is done at
compile time. It can be classified as static or dynamic according to whether the node
list is generated statically before the scheduling or dynamically during the schedul-
ing. Using the five groups of node levels as priorities for the static and dynamic list
scheduling usually leads to different scheduling orders of nodes and finally can give
different scheduling results.

Since a list scheduling heuristic can not always give good schedule results for
each DAG, we combined the five groups of node levels with the static and dynamic
list scheduling heuristics and chose the best schedule result for a DAG. Experiments
show that the combined static list scheduling heuristics always get improvements in
comparison with the classic one for all kinds of random DAGs. As to the combined
dynamic list scheduling, the performance is not improved in the case of CCR = 0.1; it
is improved a little in the case of CCR = 1; but it is obviously improved in the case of
CCR = 10. The improvement increases with the communication to computation ratio
for both the combined static and dynamic heuristics. When comparing the combined
static heuristic to the combined dynamic heuristic, it is difficult to say which one is
better; therefore, the best way should be using both the combined static and dynamic
heuristics for a specific DAG and choosing the best schedule result.

5
Advanced List Scheduling Methods

5.1 Introduction

Basic methods for list scheduling with communication contention have been given
in Chapter 4. We have explored three new groups of node levels which are used
together with the other two existing groups to compose combined heuristics. However,
the improvement of the schedule result is not very great. In this chapter, we will give
two advanced techniques to greatly improve the performance. The first technique uses
the critical child of a node to select a processor for this node. The second technique
called communication delay delays a communication when necessary to enlarge
idle time intervals on communication links. These two techniques are used together to
compose advanced list scheduling heuristics. The advanced list scheduling heuristics
are also combined with different node priorities as proposed in Chapter 4 in order to
improve the scheduling performance.

The rest of this chapter is organized as follows: Section 5.2 introduces the first
technique of critical child to select a processor for a node. Then the second technique
of communication delay for node and edge scheduling is given in Section 5.3. Heuristics
for advanced static list scheduling and dynamic list scheduling are given in Section 5.4.
Section 5.5 gives experimental results, and the time complexities of the advanced
heuristics are analyzed in Section 5.6. This chapter is concluded in Section 5.7.

100 Advanced List Scheduling Methods

5.2 Processor Selection with Critical Child

Classic list scheduling heuristics select the processor allowing the earliest finish
time for a node. This rule gives probably a locally optimized result. In fact, this
rule usually gives bad results for the join structure of a DAG especially in the case of
great communication cost and communication contention. Figure 5.1(a) shows such
an example and Figure 5.1(b) gives the schedule result with the classic processor
selection method, which selects a new processor for each one of n1, n2 and n3 to
provide the earliest finish time. Therefore, the execution of node n4 has to wait until
the communications from n2 and n3 finish, and the schedule length is 6 at last. By
contrast, the schedule of all nodes on the same processor is shown in Figure 5.1(c)
and has a schedule length of 4.

n1 n2 n3

n4

1 1 1

1

2 2 2

(a)

P1

0 5

P2

P3

L1

n1

n2

6

n3

n4

e3,4e2,4

time

(b)

P1

0 5

P2

P3

L1

n1 n2

4

n3 n4
time

(c)

Figure 5.1: A join DAG and two different schedule results

In [KA96], the critical child of a node is defined as one of its successors that
has the smallest difference between the absolute latest possible start time (ALST)
and the absolute earliest possible start time (AEST). Then the critical child is used
for scheduling with unbounded number of processors. We will use the concept of
critical child for list scheduling with bounded number of processors in the case of
communication contention. We redefine the critical child as follows.

Processor Selection with Critical Child 101

Critical Child

Given a static node list NodeList, the critical child of node ni is denoted by cc (ni)
and is one of ni’s successors that firstly emerges in NodeList.

According to our definition, the critical child of ni may be different if NodeList
differs. This is the difference between our critical child and that in [KA96].

Using critical child makes the processor selection take into account not only the
predecessors of the node, but also its most important successor. Our method of using
the critical child to select processor is given in Algorithm 5.1. Since it is possible that
cc (ni) is not a free node with all its predecessors scheduled during the procedure of
Select_Processor(), the scheduling of cc (ni) takes into account merely its scheduled
predecessors and the edges between cc (ni) and them.

Algorithm 5.1: Select_Processor(ni, P)
Input: A node ni ∈ V and the set P of all processors
Output: The best processor pbest for the input node ni
Choose the critical child cc (ni);1

BestF inishT ime←∞;2

for each p ∈ Proc (ni) do3

FinishT ime← Schedule_Node(ni, p, true);4

MinFinishT ime←∞;5

if cc (ni) 6= null then6

for each p′ ∈ Proc (cc (ni)) do7

FinishT ime← Schedule_Node(cc (ni), p′, true);8

MinFinishT ime← min {MinFinishT ime, F inishT ime};9

end10

else11

MinFinishT ime← FinishT ime;12

end13

if MinFinishT ime < BestF inishT ime then14

BestF inishT ime←MinFinishT ime;15

pbest ← p;16

end17

end18

102 Advanced List Scheduling Methods

5.3 Node and Edge Scheduling with Communica-
tion Delay

Our methods of node and edge scheduling differ from those given in Chapter 4 by
using the As Late As Possible (ALAP) start time to delay communications. Given
the route lR1 → lR2 → . . . → lRk for edge eij, let eRm be the edge before which eij is
scheduled on link lRm , the ALAP for edge eij is defined as

ALAP (eij) = min {ts (eR1) , ts (eR2) , . . . , ts (eRk) , ts (nj, proc (nj))} − c (eij)

where ts (eRm) =∞ if eij is the last edge scheduled on lRm .
The communication can be delayed by using the ALAP, and an idle time interval

is therefore enlarged on a link. The idle time interval between two successive edges
en−1 and en on a link l changes from [tf (en−1, l) , ts (en, l)] to [tf (en−1, l) , ALAP (en)],
where tf (en−1, l) = 0 if en is the first edge on link l and ts (en, l) = ALAP (en) =∞ if
en−1 is the last edge on link l. Figure 5.2 gives an example to show the use of ALAP.
If eij is delayed to its ALAP, the idel time interval on L1 between eab and eij will be
enlarged.

P1

0 5 10

P2

L1

n y

n jna

eab eij

nb

t seij
ALAP eij

n i

nx

e yz

nz

time

Figure 5.2: Communication delay

5.3.1 Node Scheduling

The method of scheduling a node ni onto a processor p is given in Algorithm
5.2. When a node is scheduled, the ALAPs of its input edges are then calculated
(line 6 to 10 in Algorithm 5.2). The ALAP of an edge can not be calculated during
the processor selection. Therefore, a Boolean value is used to indicate whether the
procedure Schedule_Node() is used in the procedure Select_Processor() or not.

Node and Edge Scheduling with Communication Delay 103

Algorithm 5.2: Schedule_Node(ni, p, isTemporary)
Input: ni ∈ V , a processor p ∈ P and a Boolean value isTemporary indicating

whether or not a temporary try for selecting processor
Output: The finish time of ni on p
for each nl ∈ pred (ni) , proc (nl) 6= p do1

Schedule_Edge(eli, p);2

end3

Calculate DRT of node ni;4

Find the earliest idle time interval for node ni on processor p respecting the5

node scheduling condition;
if isTemporary = false then6

for each nl ∈ pred (ni) , proc (nl) 6= p do7

Calculate the ALAP of eli;8

end9

end10

Calculate the finish time of ni on p;11

5.3.2 Edge Scheduling

Since an edge is scheduled only when its origin node has been scheduled, the
scheduling of this edge needs additionally the processor on which the destination
node of this edge will be scheduled. Algorithm 5.3 gives the method for edge schedul-
ing. This algorithm is similar to that given in Chapter 4 except that the ALAP is
considered in the edge scheduling condition (cf. Section 3.4.2).

Algorithm 5.3: Schedule_Edge(eij, p)
Input: eij ∈ E and a processor p ∈ P on which the node nj is to be scheduled
Output: None
if ni is scheduled then1

if proc (ni) 6= p then2

Determine the route R from proc (ni) to p by looking up the route table;3

Find the earliest common idle time interval on all the links of R4

respecting the edge scheduling condition with ALAP;
end5

end6

Figure 5.3 gives a DAG example to show the effect of communication delay. Nodes
are sorted into a static order of n1, n2, n3, n4, n5, n6 by using the priority of bl & tl.
Figure 5.4(a) gives a partial schedule result with n1, n2, n3, n4 having been scheduled.
As to n5, the input edge e1,4 for n4 can start at its ALAP of time 3. Therefore, the

104 Advanced List Scheduling Methods

edge e1,5 is inserted between e1,3 and e1,4 as shown in Figure 5.4(b) and finally a
schedule length of 8 is obtained in Figure 5.4(c). If ALAP is not used, a different
schedule result is obtained in Figure 5.4(d) with the schedule length of 9.

n1

n3

n6

n2 n4 n5

1

1111

1

111
2 226

1

Figure 5.3: A DAG example

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,4e1,3

time

(a) Partial schedule result

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,5e1,3

n5

e1,4

time

(b) Schedule e1,5 and n5 with
communication delay

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,5e1,3

n5

e1,4 e5,6e4,6

n6

8

time

(c) Schedule result with
communication delay

P1

0 5 10

P2

P3

L1

n1 n2

n4n3

e1,4e1,3

n5

e1,5 e4,6e5,6

n6

9

time

(d) Schedule result without
communication delay

Figure 5.4: Scheduling procedures with/without communication delay

5.4 Advanced List Scheduling Heuristics

We call the list scheduling heuristics with the techniques given above the advanced
list scheduling heuristics. By contrast, the list scheduling heurisitcs given in Chapter 4

Experimental Results 105

are called classic list scheduling heuristics. The advanced list scheduling heuristics
differ only a little from the classic list scheduling heuristics by using a Boolean value in
the procedure Schedule_Node(). Algorithm 5.4 and Algorithm 5.5 respectively give
our advanced static list scheduling heuristic and advanced dynamic list scheduling
heuristic.

Algorithm 5.4: Advanced_Static_List_Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph TG = (N,P, L, b)
Output: A schedule of G on TG
NodeList← Sort_Nodes(V);1

for each n ∈ NodeList do2

pbest ← Select_Processor(n, P);3

Schedule_Node(n, pbest, false);4

end5

Algorithm 5.5: Advanced_Dynamic_List_Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph TG = (N,P, L, b)
Output: A schedule of G on TG
UnscheduledNodes ← V ;1

while UnscheduledNodes 6= null do2

n ← Choose_Node(UnscheduledNodes);3

pbest ← Select_Processor(n, P);4

Schedule_Node(n, pbest, false);5

Remove n from UnscheduledNodes;6

end7

5.5 Experimental Results

This section compares the advanced list scheduling heuristics with the classic ones.
Figure 5.5 gives architectures that will be used in the following comparisons. Fig-
ure 5.5(a) is an architecture of three processors sharing a bus, and Figure 5.5(b) gives
another architecture of 8 processors connected to a switch by buses. Experimental
results are given as follows.

106 Advanced List Scheduling Methods

P1

P2

P3

L1

(a)

P2

P4

P6

L8

L6L2

L3

L7

L5L4

P8

S1

P1 P7

P5P3

L1

(b)

Figure 5.5: Examples of architecture

5.5.1 Comparison with an Example

As in Section 4.4.1, we use an example to show the performance of the advanced
list scheduling heuristics with different node priorities. The DAG in Figure 5.6 is used
as the algorithm, and the architecture is shown in Figure 5.5(a).

2

1114

111
533

n1

n2 n3 n4 n5

n6 n7 n8

n9

10

1

5 6 5

4

4 4 4

1

Figure 5.6: A DAG example

Advanced Static List Scheduling

Since the node list for static list scheduling heuristics only depends on the node
priority, node lists for the advanced static list scheduling heuristic are same to those
for the classic static list scheduling heutistic, and they are shown in Table 5.1 by
using the five groups of node priorities. Table 5.2 gives the critical child for each node
according to the static node lists in Table 5.1.

Experimental Results 107

Table 5.1: Different static node lists

Node priorities Static node list
blcomp & tlcomp n1, n4, {n3, n2} , n8, {n7, n6} , n5, n9

bl & tl n1, n2, n4, n3, n7, n6, n8, n5, n9
blin & tlin n1, n2, n4, n3, n7, n6, n8, n5, n9
blout & tlout n1, n2, n4, n3, n7, {n6, n8} , n5, n9
blio & tlio n1, n2, n4, n3, n7, n8, n6, n5, n9

Table 5.2: Critical children according to different node priorities

ni n1 n2 n3 n4 n5 n6 n7 n8 n9
blcomp & tlcomp n4 n7 n8 n8 null n9 n9 n9 null

bl & tl n2 n7 n8 n8 null n9 n9 n9 null
blin & tlin n2 n7 n8 n8 null n9 n9 n9 null
blout & tlout n2 n7 n8 n8 null n9 n9 n9 null
blio & tlio n2 n7 n8 n8 null n9 n9 n9 null

The effect of the advanced static list scheduling heuristic with different priorities
to sort nodes is given as follows. The schedule result for the node list sorted by blcomp
& tlcomp is shown in Figure 5.7(a) with the schedule length of 18. Since the node list
is the same by bl & tl and by blin & tlin, the same schedule result is obtained as in
Figure 5.7(b) with the schedule length of 18. Figure 5.7(c) gives the schedule result
for the same node list sorted by blout & tlout and by blio & tlio. A schedule length of 17
is obtained and is better than the two schedule lengths of 18. By contrast, the classic
static list scheduling heuristics obtain three schedule results with schedule lengths of
25, 21 and 21 in Figure 4.4. Therefore, the advanced static list scheduling heuristics
are better than the classic ones.

Advanced Dynamic List Scheduling

Since a dynamic node list is generated during the scheduling, we can not use the
dynamic node list but use the corresponding static node list to determine the critical
child for each node as shown in Table 5.2. The dynamic node list depends on the
dynamic heuristic. Table 5.3 gives the node orders of the advanced dynamic heuristic
by using different node priorities for the DAG in Figure 5.6.

The schedule result for the node priority blcomp is shown in Figure 5.8(a) with the
schedule length of 18. Since the node list is the same by bl, by blout and by blio, the
same schedule result is obtained as in Figure 5.8(b) with the schedule length of 17.

108 Advanced List Scheduling Methods

P1

0 5 10 15 20 25

P2

P3

L1

18

n1 n4 n2 n7 n6 n9

n3 n8

n5

e1,3e1,5 e4,8 e8,9

time

(a) blcomp & tlcomp

P1

0 5 10 15 20 25

P2

P3

L1

n1

n4

n2 n7 n9

n3

n8

n5

n6

e1,4e1,3 e3,8 e8,9

18

e1,5

time

(b) bl & tl

P1

0 5 10 15 20 25

P2

P3

L1

17

n1 n2 n7 n8 n9

n4 n6

n3 n5

e1,4e1,3e1,5e2,6 e3,8e4,8 e6,9

time

(c) blio & tlio

Figure 5.7: Schedule results of advanced static heuristic with different node priorities

As to the node priority blin, the schedule result is shown in Figure 5.8(c) with the
schedule length of 18. In comparison, the classic dynamic list scheduling heuristics
give scheule lengths of 23, 21 and 18 in Figure 4.5. Therefore, our advanced dynamic
list scheduling heuristics can still get a better schedule result.

5.5.2 Comparison with Randomly Generated DAGs

Random DAGs have been used to evaluate the performance of the classic list
scheduling heuristics in Section 4.4.2. We use the same parameters to generate random
DAGs in this section, and the architecture is also the one given in Figure 5.5(b). The
advanced list scheduling heuristics are compared to the classic static list scheduling
heuristic with nodes sorted by their bottom levels to get accelerator factors (Acc).

Experimental Results 109

Table 5.3: Different dynamic node lists

Node priorities Dynamic node list
blcomp n1, n4, n2, n6, n7, n3, n8, n9, n5
bl n1, n2, n4, n3, n8, n7, n6, n9, n5
blin n1, n2, n4, n3, n8, n6, n7, n9, n5
blout n1, n2, n4, n3, n8, n7, n6, n9, n5
blio n1, n2, n4, n3, n8, n7, n6, n9, n5

Advanced Static List Scheduling

Figure 5.9 gives the average Acc of the advanced static list scheduling heuristic
with the five groups of node priorities for different groups of random DAGs when
CCR = 0.1. The average Acc of the combined static heuristic is also given in this
figure. All the static heuristics have almost the same average Acc with Acc ≈ 1. Since
the techniques of critical child and communication delay are all aimed at optimizing
the scheduling with communication contention, the improvement for the average Acc
of the advanced static heuristics are almost not improved when the communication
cost is very small in comparison with the computation cost. In fact, it is difficult to
obtain different node lists when CCR is very small. Therefore, the schedule results
for different node priorities are usually same, and the improvement for the average
Acc of the combined advanced static heuristic is negligible.

Figure 5.10 gives the average Acc of the advanced static list scheduling heuristic
with the five groups of node priorities for different groups of random DAGs when
CCR = 1. All the advanced static heuristics have Acc > 1, which means the advanced
techniques are efficient to improve the schedule performance. Since different node lists
can be obtained with different node priorities when the communication cost increases,
the combined advanced static heuristic gives a much greater Acc. We also see that
the advanced static heuristic with node priority of blcomp & tlcomp usually gives the
greatest Acc among all the five node priorities.

Figure 5.11 gives the average Acc of the advanced static list scheduling heuristic
with the five groups of node priorities for different groups of random DAGs when
CCR = 10. Differing from that for CCR = 1, the advanced static heuristic with
node priority of blcomp & tlcomp gives the smallest average Acc among all the five
groups of node priorities because the communication contention can not be neglected
in this case. Since the five groups of node priorities usually give different node lists, the
combined advanced static list scheduling heuristic improves greatly the final result.

110 Advanced List Scheduling Methods

P1

0 5 10 15 20 25

P2

P3

L1

18

n1 n2 n7

n5

n4

n8n3

n6 n9

e1,3e1,5 e4,8 e8,9

time

(a) blcomp

P1

0 5 10 15 20 25

P2

P3

L1

17

n1 n2 n7

n5

n4 n8

n3

n6 n9

e1,4e1,3 e2,6 e3,8 e7,9e1,5

time

(b) bl

P1

0 5 10 15 20 25

P2

P3

L1

18

n1 n2 n7

n5

n4 n8

n3

n6 n9

e1,4e1,3 e3,8 e8,9e1,5

time

(c) blin

Figure 5.8: Schedule results of advanced dynamic heuristic with different node priorities

Figure 5.12 compares the average Acc of the combined advanced static list schedul-
ing heuristic for different values of CCR. We can see that the average Acc increases
when CCR varies from 0.1 to 10. If the number of nodes is fixed, the average Acc
increases as the average in/out degree increases when CCR = 10. In fact, the criti-
cal child technique works well for scheduling nodes with many input edges especially
when weights of edges are great; therefore, the Acc increases greatly as the average
in/out degree increases when CCR = 10, but it is relatively stable when CCR = 0.1
and CCR = 1.

Figure 5.13 gives a comparison of the combined advanced static list scheduling
heuristic to the combined classic static list scheduling heuristic. They have a similar
average Acc for CCR = 0.1; however, the combined advanced static heuristic gives
greater performance improvement on average in comparison with the combined classic

Experimental Results 111

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,97

0,98

0,99

1

1,01

1,02

Advanced static list scheduling with different node priorities for random DAGs
(CCR=0,1)

blcomp & tlcomp
bl & tl
blin & tlin
blout & tlout
blio & tlio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.9: Average Acc of advanced static heuristic (CCR = 0.1)

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,9

0,95

1

1,05

1,1

1,15

1,2

Advanced static list scheduling with different node priorities for random DAGs
(CCR=1)

blcomp & tlcomp
bl & tl
blin & tlin
blout & tlout
blio & tlio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.10: Average Acc of advanced static heuristic (CCR = 1)

static heuristic for both CCR = 1 and CCR = 10.

Advanced Dynamic List Scheduling

Figure 5.14 gives the average Acc of the advanced dynamic list scheduling heuristic
with the five groups of node priorities for different groups of random DAGs when
CCR = 0.1. The average Acc decreases as the size of DAG increases. We do not
get improvements from the advanced dynamic heuristics on average though they may
give a good result for a specific DAG.

Figure 5.15 gives the average Acc of the advanced dynamic list scheduling heuristic
with the five groups of node priorities for different groups of random DAGs when
CCR = 1. Though a dynamic heuristic can not give improvements for all the groups
of DAGs, the combined dynamic heuristic always gives Acc > 1, which means the
schedule results are improved on average.

Figure 5.16 gives the average Acc of the advanced dynamic list scheduling heuristic

112 Advanced List Scheduling Methods

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,5

1

1,5

2

Advanced static list scheduling with different node priorities for random DAGs
(CCR=10)

blcomp & tlcomp
bl & tl
blin & tlin
blout & tlout
blio & tlio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.11: Average Acc of advanced static heuristic (CCR = 10)

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Combined advanced static list scheduling for random DAGs

CCR=0,1
CCR=1
CCR=10

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.12: Average Acc of combined advanced static heuristic

with the five groups of node priorities for different groups of random DAGs when
CCR = 10. Except for the heuristic with node priority of blcomp, all the other four
heuristics give Acc > 1 for each group of DAGs. Since the communication cost
is much greater than the computation cost, the node priority without considering
the communication becomes unpractical and usually gives bad results. However, the
other four node priorities with communication give similar performances, and the
combination of the different advanced dynamic heuristics improves greatly the final
result.

Figure 5.17 compares the average Acc of the combined advanced dynamic list
scheduling heuristic for different values of CCR. We can see that the average Acc
increases when CCR varies from 0.1 to 10 for each group of DAGs. When the number
of nodes is fixed, the Acc is relatively stable in the cases of CCR = 0.1 and CCR = 1,
but it increases as the average in/out degree increases in the case of CCR = 10. This
phenomenon is similar to that of the combined advanced static heuristic for the same

Experimental Results 113

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Combined advanced static heuristic VS Combined classic static heuristic

CCR=0,1 (advanced)
CCR=0,1 (classic)
CCR=1 (advanced)
CCR=1 (classic)
CCR=10 (advanced)
CCR=10 (classic)

(Number of nodes; Average in/out degree)

A
ve

ra
ge

 a
cc

el
er

at
io

n
fa

ct
or

Figure 5.13: Comparison of combined advanced static heuristic to combined classic static
heuristic

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,8

0,85

0,9

0,95

1

1,05

Advanced dynamic list scheduling with different node priorities for random DAGs
(CCR=0,1)

blcomp
bl
blin
blout
blio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.14: Average Acc of advanced dynamic heuristic (CCR = 0.1)

reason.
Figure 5.18 gives a comparison of the combined advanced dynamic list scheduling

heuristic to the combined classic dynamic list scheduling heuristic. The combined
advanced dynamic heuristic usually gives greater average Acc than the combined
classic dynamic heuristic, especially in the cases of CCR = 10.

Static VS Dynamic

Figure 5.19 gives a comparison of the combined advanced static list scheduling
heuristic to the combined advanced dynamic list scheduling heuristic. The combined
static heuristic has a greater Acc when CCR = 0.1 and CCR = 1, but the combined
dynamic heuristic usually gives better result than the combined static heuristic when
CCR = 10. Therefore, the best way should be using all the combined heuristics
(classic static, classic dynamic, advanced static, advanced dynamic) for a specific

114 Advanced List Scheduling Methods

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

Advanced dynamic list scheduling with different node priorities for random DAGs
(CCR=1)

blcomp
bl
blin
blout
blio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.15: Average Acc of advanced dynamic heuristic (CCR = 1)

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,5

1

1,5

2

Advanced dynamic list scheduling with different node priorities for random DAGs
(CCR=10)

blcomp
bl
blin
blout
blio
combined

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.16: Average Acc of advanced dynamic heuristic (CCR = 10)

DAG and choosing the best schedule result.

5.6 Time Complexity of Advanced List Scheduling
Heuristics

The time complexities of our advanced list scheduling heuristics are briefly pre-
sented as follows:

As analyzed in Section 4.5, the time complexity of the procedure Schedule_Edge()
is O (EO (routing)). Though the procedure Schedule_Node() additionally needs
O
(
E
V

)
time to calculate the ALAP, the total complexity of this procedure is still

O
(
E2O(routing)

V
+ V
P

)
on average.

As to the procedure Select_Processor(), it takes firstly O (V) time to find the
critical child cc (ni). When cc (ni) is found, given a specific processor p, it needs at

Time Complexity of Advanced List Scheduling Heuristics 115

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Combined advanced dynamic list scheduling for random DAGs

CCR=0,1
CCR=1
CCR=10

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.17: Average Acc of combined advanced dynamic heuristic

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Combined advanced dynamic heuristic VS Combined classic dynamic heuristic

CCR=0,1 (advanced)
CCR=0,1 (classic)
CCR=1 (advanced)
CCR=1 (classic)
CCR=10 (advanced)
CCR=10 (classic)

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.18: Comparison of combined advanced dynamic heuristic to combined classic
dynamic heuristic

most O (P) times of Schedule_Node() for the scheduling of ni and cc (ni). Hence, the
complexity in the outer for-loop is O

(
P
(
E2O(routing)

V
+ V
P

))
, and the total complexity

of Select_Processor() is O
(
P
(
PE2O(routing)

V
+ V

))
.

In Algorithm 5.4, the time complexity lies on the procedure Select_Processor().
Therefore, the total complexity of the advanced static list scheduling heuristic is
O (P (PE2O (routing) + V 2)). Similarly, the total complexity of the advanced dy-
namic list scheduling heuristic is also O (P (PE2O (routing) + V 2)).

Table 5.4 gives all the time complexities of the advanced list scheduling heuristics
and the classic list scheduling heuristics with communication contention. The time
complexities of our advanced list scheduling heuristics are only P times as those of
the classic one given in Chapter 4.

Similar to the classic list scheduling heuristics, the advanced list scheduling heuris-
tics can be combined with different node priorities, and we choose the best result for a

116 Advanced List Scheduling Methods

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

Combined advanced static heuristic VS Combined advanced dynamic heuristic

CCR=0,1 (static)
CCR=0,1 (dynamic)
CCR=1 (static)
CCR=1 (dynamic)
CCR=10 (static)
CCR=10 (dynamic)

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5.19: Comparison of combined advanced static heuristic to combined advanced
dynamic heuristic

Table 5.4: Time complexities of different list scheduling heuristics

List scheduling heuristics Time complexity
Classic static O (PE2O (routing) + V 2)
Classic dynamic O (PE2O (routing) + V 2)
Advanced static O (P (PE2O (routing) + V 2))
Advanced dynamic O (P (PE2O (routing) + V 2))

specific DAG. A combined advanced list scheduling heuristic consists of five advanced
list scheduling heuristics with different node priorities. However, its complexity is
unchanged and is always O (P (PE2O (routing) + V 2)).

Figure 5.20 shows the time used to schedule different sizes of DAGs on architectures
with different numbers of processors by our combined advanced static heuristic. All
the DAGs have the average in/out degree of 4, and all the processors are connected to
a switch. As shown in Figure 5.20(a) and Figure 5.20(b), the time increases with the
square of V and also with the square of P . We run our heuristic on a Pentium Dual-
Core PC at 2.4GHz, and it takes about 3 minutes to schedule a DAG with 500 nodes
on an architecture of 16 processors. In fact, a complicated embedded application
usually has less than 500 nodes in models of coarse and medium grain, and P is
usually much smaller than V and E in a parallel embedded system. Therefore, the
increase of time complexity is reasonable and acceptable for rapid prototyping.

Figure 5.21 shows the time used to schedule different sizes of DAGs on archi-
tectures with different numbers of processors by our combined advanced dynamic
heuristic. The result is similar to that of the combined advanced static heuristic. The
time increases with the square of V (Figure 5.21(a)) and also with the square of P

Time Complexity of Advanced List Scheduling Heuristics 117

100 200 300 400 500
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

P=16
P=12
P=8
P=4

V

Ti
m

e
(m

s)

(a)

2 4 6 8 10 12 14 16
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

V=500
V=300
V=100

P

Ti
m

e
(m

s)
(b)

Figure 5.20: Time complexity of advanced static heuristic

(Figure 5.21(b)). It takes about 3 minutes to schedule a DAG with 500 nodes on an
architecture of 16 processors.

100 200 300 400 500
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

P=16
P=12
P=8
P=4

V

Ti
m

e
(m

s)

(a)

2 4 6 8 10 12 14 16
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

V=500
V=300
V=100

P

Ti
m

e
(m

s)

(b)

Figure 5.21: Time complexity of advanced dynamic heuristic

A complicated embedded application usually has less than 500 nodes in models
of coarse and medium grain, and P is usually much smaller than V and E in a
parallel embedded system. Therefore, the increase of time complexity is reasonable
and acceptable for rapid prototyping.

118 Advanced List Scheduling Methods

5.7 Conclusion

This chapter presented two advanced techniques for list scheduling with commu-
nication contention. The critical child technique helps to select a better processor for
a node, and the communication delay technique enlarges idle time intervals on links.

The advanced techniques are combined with different node priorities to get com-
bined advanced heuristics. Though the performance of the combined advanced static
list scheduling heuristic is similar to that of the combined classic static list schedul-
ing heuristic when CCR = 0.1, the combined advanced static heuristic gives greater
performance improvement on average in comparison with the combined classic static
heuristic when CCR = 1 and CCR = 10. As to the combined advanced dynamic
list scheduling, the performance is almost not improved in the case of CCR = 0.1,
but it is obviously improved in the cases of CCR = 1 and CCR = 10. The im-
provement increases as the communication to computation ratio increases for both
the advanced static and dynamic heuristics. Since the communication cost is increas-
ing from medium to high in modern digital communication and video compression
applications, our method will work well for scheduling these applications on parallel
embedded systems.

Since it is not certain which heuristic gives the best schedule result for a specific
DAG, it will be reasonable to use all the combined heuristics (classic static, classic
dynamic, advanced static, advanced dynamic) for a specific DAG and choosing the
best result. Though the time complexity of the advanced heuristic is increased by a
factor of P (the number of processors) in contrast to the classic one, it is acceptable
because P is usually much smaller than V and E in a parallel embedded system.
Therefore, our proposed method is reasonable and effective for rapid prototyping of
complicated applications on parallel embedded systems.

Conclusions and Prospects

Conclusions

This work aimed at the prototyping methodology for parallel embedded systems.
We first presented the methods of rapid prototyping and hardware/software co-design.
Rapid prototyping is an important methodology for designing multiprocessor systems.
As an example for rapid prototyping, SynDEx and SynDEx-Ic support the AAA rapid
prototyping methodology. We used SynDEx for designing multi-MicroBlaze systems
on FPGA. Hardware/software co-design is the tendency for designing modern em-
bedded systems. Since hardware/software co-design needs to generate HDL code
for a hardware coprocessor that is usually more complicated than software code,
we presented the GAUT and OpenDF tools for generating HDL code from high-
level languages. When considering an embedded system with multiple processors like
MPSoC, the combination of rapid prototyping with hardware/software co-design be-
comes a good solution. We presented a new rapid prototyping framework of PREESM
that supports hardware/software co-design for parallel embedded systems. PREESM
firstly models an algorithm and an architecture as graphs, then it schedules the algo-
rithm onto the architecture. The schedule results are finally used to generate code.

We mostly considered the scheduling problem in this work. As a first step for
scheduling, algorithms and architectures were both modeled as graphs. We presented
different graph models for algorithms and made a choice among them. The DAG

120 Conclusions and Prospects

model was chosen to describe an algorithm because it was simple and described most
information for task scheduling. We proposed an advanced architecture model to de-
scribe parallel embedded systems with distributed memory architecture. This model
uses five kinds of vertices (processor, IP coprocessor, memory, communicator, and
communication node) and two kinds of edges (bus and FIFO) to model different com-
ponents of an embedded system. In addition, four functions are used to describe
properties of the components. In comparison with the existing models such as the
completely connected model, our advanced architecture model describes a parallel
embedded system more accurately. This advanced architecture model was used for
the task scheduling in this work.

Here task scheduling for parallel embedded systems is considered to be static,
which means that the scheduling is done at compile time. After introducing the
general task scheduling problem and giving a survey of the commonly used techniques
for task scheduling, we formulated the task scheduling with our advanced architecture
model. It consists in assigning computations and communications to components and
finding time intervals on these components for the computations and communications.
The aim is to get a minimum schedule length. A computation is executed on an
operator that is a processor or an IP coprocessor. A communication is transferred
on a route from one operator to another. A route usually contains several steps.
Communications are handled in the cut-through mode on a route step and in the
store-and-forward mode on different route steps. We defined the start and finish times
of computations and communications on different components and gave the causality
conditions with the advanced architecture model. Based on the causality conditions,
the scheduling conditions were finally given to be fulfilled during the scheduling.

We simplified the advanced architecture model with a topology graph. The task
scheduling problem is also simplified with the topology graph model and is indeed the
task scheduling with communication contention. We researched advanced heuristics
and techniques for this simplified task scheduling. In addition to the two existing
groups of node levels for a DAG, we proposed three new groups of node levels by
taking into account the communication contention. All these node levels have similar
properties and can be used to sort nodes in topological order. We presented the
classic list scheduling heuristic that can be classified as static or dynamic according
to whether the node list is generated statically before the scheduling or dynamically
during the scheduling. We also proposed two advanced techniques: the critical child
technique helps to select a better processor for a node; the communication delay

Conclusions and Prospects 121

technique enlarges idle time intervals on links. These two techniques are used to
build up advanced static and dynamic list scheduling heuristics.

Using the five groups of node levels as priorities for the static and dynamic list
scheduling usually leads to different scheduling orders of nodes and finally can give
different scheduling results. We combined a list scheduling heuristic with the five
groups of node levels and chose the best schedule result. Then we got four combined
heuristics: classic static, classic dynamic, advanced static and advanced dynamic. We
chose the classic static list scheduling with the node priority of bottom level as a
standard for comparison. We used randomly generated DAGs to these heuristics in
order to get statistical results. Experiments showed that all the combined heuristics
got improvements in the case of medium or high communication. The improvements
increase as the communication cost increases.

When comparing the combined static heuristics to the combined dynamic heuris-
tics, their performances are similar. We also compared the combined advanced heuris-
tics to the combined classic heuristics. Though the performances of the combined
advanced heuristics are similar to those of the combined classic heuristics in the case
of low communication, the combined advanced heuristics give greater improvements
in the case of medium or high communication. An application can be accelerated
up to 80%. The communication cost is increasing from medium to high in modern
digital communication and video compression applications. Therefore, our methods
will work well for scheduling these applications on parallel embedded systems.

Since it is not certain which heuristic gives the best schedule result for a specific
DAG, it will be reasonable to use all the four combined heuristics for a specific DAG
and choose the best result. Though the time complexities of the advanced heuristics
are increased by a factor of P (the number of processors) in contrast to the classic
ones, it is acceptable because P is usually much smaller than V (the number of nodes)
and E (the number of edges) for a parallel embedded system. Therefore, our proposed
method is reasonable and effective for rapid prototyping of complicated applications
on parallel embedded systems.

Prospects

Our advanced techniques have been proven to be effective for the simplified task
scheduling. The next step is to directly apply them for the task scheduling with the
advanced architecture model. We also need to integrate our advanced heuristics into

122 Conclusions and Prospects

PREESM to cooperate with other tools. In fact, the schedule result of an application
on a parallel embedded system should be further used to generate the code and finally
to efficiently implement the application on the parallel embedded system. Since the
advanced architecture model is closer to the real parallel embedded system than the
simplified model, it will be straighter and easier to generate the code with the schedule
result based on the advanced architecture model. We need to test it with some real
applications like MPEG-4 video codec.

Since the task scheduling problem is NP-hard, our heuristics can just give some
near-optimal results to shorten the time-to-market. Sometimes we may also need to
optimize an application without the stress of the time-to-market. In this case, search-
based methods like simulated annealing or genetic algorithms are the only way to get
it. Therefore, finding search-based methods for the task scheduling with our advanced
architecture model is also a research point as in [PMAN09].

Though the DAG model is simple to describe algorithms for task scheduling, it
should be noticed that transforming a dataflow graph to a DAG may lose some in-
formation about the data between operations. For example, data can be broadcasted
from one operation to several operations by a broadcasting edge in a dataflow graph.
Such a broadcasting edge is usually transformed to several independent edges in a
DAG because an edge must have exactly one origin node and one destination node.
Therefore, it will be necessary to extend the DAG model by considering this kind
of information in order to improve the final schedule result. In addition, transform-
ing a dataflow model to a DAG model is not always straightforward. As a dataflow
programming language, Cal is used to describe some applications like RVC. Trans-
forming a Cal application to a DAG will be necessary for scheduling it on a parallel
embedded system.

As to the future architecture of MPSoC, NoC is an emerging solution to connect
different components on a chip [EVA06, DEL07]. A NoC can be modeled as a com-
munication node in our advanced architecture model for simplicity. However, a NoC
is not as ideal as a communication node when considering the details. We will need
a more accurate model to describe the NoC. Extending the architecture model to
include the NoC will be a challenge in our future work.

As a final conclusion, considering the experimental results and the open prospects,
we can say that our approach is full of interest in reference to the objective of a
prototyping methodology for parallel embedded systems.

A
IP-XACT Code of Advanced

Architecture Model

A.1 TI’s C6474 DSP

<?xml version="1.0" encoding="UTF -8"?>
<spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT /1.4">

<spirit:vendor >ietr.org</spirit:vendor >
<spirit:name >C6474</spirit:name >
<spirit:library >preesm </spirit:library >
<spirit:version >1.0</spirit:version >
<spirit:componentInstances >

<spirit:componentInstance >
<spirit:instanceName >P1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="C64x+"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
processor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="setupTime">
(C1:1)</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >P2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="C64x+"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
processor </spirit:configurableElementValue >

124 IP-XACT Code of Advanced Architecture Model

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="setupTime">
(C1:1)</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >P3</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="C64x+"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
processor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="setupTime">
(C1:1)</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >CN1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="SCR"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
communicationNode </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="Bus"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="Bus"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B3</spirit:instanceName >

TI’s C6474 DSP 125

<spirit:componentRef spirit:library="preesm" spirit:name="Bus"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B4</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="Bus"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >C1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="EDMA3 .0"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
communicator </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >IP1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="VCP2"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
ipCoprocessor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B5</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="Bus"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2</spirit:configurableElementValue >

</spirit:configurableElementValues >

126 IP-XACT Code of Advanced Architecture Model

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B6</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="Bus"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >IP2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="TCP2"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
ipCoprocessor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
</spirit:componentInstances >
<spirit:interconnections >

<spirit:interconnection >
<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="P2"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="P1"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io3" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B3"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io4" spirit:componentRef="CN1"/>

TI’s C6474 DSP 127

<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B4"/>
</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P3"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >configure </spirit:displayName >
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="P1"/>
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="C1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >configure </spirit:displayName >
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="P2"/>
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="C1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >configure </spirit:displayName >
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="P3"/>
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="C1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="IP1"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B3"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="P3"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B4"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B5"/>

</spirit:interconnection >

128 IP-XACT Code of Advanced Architecture Model

<spirit:interconnection >
<spirit:name/>
<spirit:activeInterface spirit:busRef="io5" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B5"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io6" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B6"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="IP2"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B6"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="IP2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="IP1"/>

</spirit:interconnection >
</spirit:interconnections >
<spirit:hierConnections/>

</spirit:design >

A.2 Xilinx’s FPGA-based MPSoC

<?xml version="1.0" encoding="UTF -8"?>
<spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT /1.4">

<spirit:vendor >ietr.org</spirit:vendor >
<spirit:name >2P2IP</spirit:name >
<spirit:library >preesm </spirit:library >
<spirit:version >1.0</spirit:version >
<spirit:componentInstances >

<spirit:componentInstance >
<spirit:instanceName >P1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="microblaze"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
processor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="setupTime">
(C1:10)</spirit:configurableElementValue >

Xilinx’s FPGA-based MPSoC 129

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >P2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="microblaze"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
processor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="setupTime">
(C2:10)</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >IP1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="IP1"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
ipCoprocessor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >IP2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="IP2"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
ipCoprocessor </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >C1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="dma"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
communicator </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >C2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="dma"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
communicator </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

130 IP-XACT Code of Advanced Architecture Model

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >CN1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="crossbar"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
communicationNode </spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
</spirit:configurableElementValues >

</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="plb"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2.0</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >B2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="plb"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
bus</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
2.0</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >F1</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="fsl"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">
fifo</spirit:configurableElementValue >

<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
0.5</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >
<spirit:componentInstance >

<spirit:instanceName >F2</spirit:instanceName >
<spirit:componentRef spirit:library="preesm" spirit:name="fsl"
spirit:vendor="" spirit:version=""/>

<spirit:configurableElementValues >
<spirit:configurableElementValue spirit:referenceId="componentType">

Xilinx’s FPGA-based MPSoC 131

fifo</spirit:configurableElementValue >
<spirit:configurableElementValue spirit:referenceId="refinement"/>
<spirit:configurableElementValue spirit:referenceId="dataRate">
0.5</spirit:configurableElementValue >

</spirit:configurableElementValues >
</spirit:componentInstance >

</spirit:componentInstances >
<spirit:interconnections >

<spirit:interconnection >
<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="P1"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io3" spirit:componentRef="B1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="P2"/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="B2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="C2"/>
<spirit:activeInterface spirit:busRef="io3" spirit:componentRef="B2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io2" spirit:componentRef="CN1"/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="B2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:activeInterface spirit:busRef="io1" spirit:componentRef="IP2"/>
<spirit:activeInterface spirit:busRef="io4" spirit:componentRef="B2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >directed </spirit:displayName >
<spirit:activeInterface spirit:busRef="o1" spirit:componentRef="P1"/>
<spirit:activeInterface spirit:busRef="i1" spirit:componentRef="F1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >directed </spirit:displayName >
<spirit:activeInterface spirit:busRef="o1" spirit:componentRef="F1"/>

132 IP-XACT Code of Advanced Architecture Model

<spirit:activeInterface spirit:busRef="i1" spirit:componentRef="IP1"/>
</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >directed </spirit:displayName >
<spirit:activeInterface spirit:busRef="o1" spirit:componentRef="IP1"/>
<spirit:activeInterface spirit:busRef="i1" spirit:componentRef="F2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >directed </spirit:displayName >
<spirit:activeInterface spirit:busRef="o1" spirit:componentRef="F2"/>
<spirit:activeInterface spirit:busRef="i1" spirit:componentRef="P1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="IP1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C2"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="IP2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C2"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >configure </spirit:displayName >
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="P1"/>
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="C1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >configure </spirit:displayName >
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="P2"/>
<spirit:activeInterface spirit:busRef="c" spirit:componentRef="C2"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >

Xilinx’s FPGA-based MPSoC 133

<spirit:activeInterface spirit:busRef="a" spirit:componentRef="C1"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P1"/>

</spirit:interconnection >
<spirit:interconnection >

<spirit:name/>
<spirit:displayName >access </spirit:displayName >
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="P2"/>
<spirit:activeInterface spirit:busRef="a" spirit:componentRef="IP2"/>

</spirit:interconnection >
</spirit:interconnections >
<spirit:hierConnections/>

</spirit:design >

List of Figures

1.1 SynDEx design flow . 7
1.2 Rapid prototyping design flow with SynDEx 9
1.3 SynDEx kernel organization . 10
1.4 SynDEx-Ic design flow . 13
1.5 GAUT design flow . 14
1.6 GAUT tool structure . 15
1.7 A simple Cal network . 18
1.8 CAL2HDL tool structure in OpenDF 19
1.9 Algorithm of MPEG-4 Part 2 decoder 20
1.10 Architecture of PC+ML402 . 21
1.11 An Eclipse-based rapid prototyping framework 23
1.12 Input/output with Graphiti’s XML format G 24
1.13 A sample graph . 25
1.14 The type of vertices of the graph shown in Figure 1.13 26
1.15 The type of edges of the graph shown in Figure 1.13 26
1.16 A workflow graph: From SDF and IP-XACT descriptions to code . . 27

2.1 (a) An SDF actor; (b) An SDF graph 32
2.2 Control actors: SWITCH and SELECT 33
2.3 Containing relation of different dataflow models 34

135

136 list of figures

2.4 A DAG example . 37
2.5 A topological order of the DAG in Figure 2.4 37
2.6 Top and bottom levels . 39
2.7 Node dependency of the recursive definition of node levels 39
2.8 Shared memory architecture . 44
2.9 Distributed memory architecture . 44
2.10 Examples of static networks . 45
2.11 Legend of vertices and edges . 47
2.12 Organization of the architecture model 48
2.13 Multicore DSP architecture of Texas Instruments 50
2.14 Multicore DSP architecture of Texas Instruments 51
2.15 A multi-DSP architecture . 51
2.16 MPSoC architecture on the FPGA of Xilinx 52
2.17 Component instance of a FIFO . 53
2.18 Interconnection from a processor to a FIFO 53

3.1 Scheduling without/with communication cost 57
3.2 Linear clustering . 59
3.3 Scheduling with node duplication . 61
3.4 Scheduling on an architecture with shared bus 62
3.5 Two routing modes . 64
3.6 Performing communication by communicator 67
3.7 Performing communication by processor 67
3.8 Comparison of two models . 72
3.9 Examples of architecture . 73

4.1 Three new groups of node levels . 78
4.2 A DAG example . 79
4.3 Examples of architecture . 87
4.4 Schedule results of static heuristic with different node priorities . . . 88
4.5 Schedule results of dynamic heuristic with different node priorities . 90
4.6 Average Acc of static heuristic (CCR = 0.1) 91
4.7 Average Acc of static heuristic (CCR = 1) 92
4.8 Average Acc of static heuristic (CCR = 10) 92
4.9 Average Acc of combined static heuristic 93
4.10 Average Acc of dynamic heuristic (CCR = 0.1) 93

list of figures 137

4.11 Average Acc of dynamic heuristic (CCR = 1) 94
4.12 Average Acc of dynamic heuristic (CCR = 10) 94
4.13 Average Acc of combined dynamic heuristic 95
4.14 Comparison of combined static heuristic to combined dynamic heuristic 95
4.15 Time complexity of static heuristic 97
4.16 Time complexity of dynamic heuristic 97

5.1 A join DAG and two different schedule results 100
5.2 Communication delay . 102
5.3 A DAG example . 104
5.4 Scheduling procedures with/without communication delay 104
5.5 Examples of architecture . 106
5.6 A DAG example . 106
5.7 Schedule results of advanced static heuristic with different node priorities108
5.8 Schedule results of advanced dynamic heuristic with different node

priorities . 110
5.9 Average Acc of advanced static heuristic (CCR = 0.1) 111
5.10 Average Acc of advanced static heuristic (CCR = 1) 111
5.11 Average Acc of advanced static heuristic (CCR = 10) 112
5.12 Average Acc of combined advanced static heuristic 112
5.13 Comparison of combined advanced static heuristic to combined classic

static heuristic . 113
5.14 Average Acc of advanced dynamic heuristic (CCR = 0.1) 113
5.15 Average Acc of advanced dynamic heuristic (CCR = 1) 114
5.16 Average Acc of advanced dynamic heuristic (CCR = 10) 114
5.17 Average Acc of combined advanced dynamic heuristic 115
5.18 Comparison of combined advanced dynamic heuristic to combined

classic dynamic heuristic . 115
5.19 Comparison of combined advanced static heuristic to combined ad-

vanced dynamic heuristic . 116
5.20 Time complexity of advanced static heuristic 117
5.21 Time complexity of advanced dynamic heuristic 117

List of Tables

2.1 Different node levels for the DAG in Figure 2.4 41
2.2 Different topological orders . 42

4.1 Input top level and bottom level . 79
4.2 Output top level and bottom level 80
4.3 Input/output top level and bottom level 81
4.4 Different topological orders . 82
4.5 Different static node lists . 87
4.6 Different dynamic node lists . 89

5.1 Different static node lists . 107
5.2 Critical children according to different node priorities 107
5.3 Different dynamic node lists . 109
5.4 Time complexities of different list scheduling heuristics 116

139

List of Algorithms

2.1 Topological_Sort(G) . 36
2.2 DFS_Visit(ni,NL) . 36
2.3 Compute_Top_Level(G) . 40
2.4 Compute_Bottom_Level(G) . 41
3.1 General_Static_List_Scheduling(G, P) 60
3.2 General_Dynamic_List_Scheduling(G, P) 60
4.1 Static_List_Scheduling(G, TG) 82
4.2 Select_Processor(ni, P) . 84
4.3 Schedule_Node(ni, p) . 84
4.4 Schedule_Edge(eij, p) . 85
4.5 Dynamic_List_Scheduling(G, TG) 85
4.6 Choose_Node(UN) . 86
5.1 Select_Processor(ni, P) . 101
5.2 Schedule_Node(ni, p, isTemporary) 103
5.3 Schedule_Edge(eij, p) . 103
5.4 Advanced_Static_List_Scheduling(G, TG) 105
5.5 Advanced_Dynamic_List_Scheduling(G, TG) 105

141

Personal Publications

[1] Pengcheng Mu, Michaël Raulet, Jean-François Nezan and Jean-Gabriel Cousin.
Automatic Code Generation for Multi-MicroBlaze System with SynDEx. In 15th
European Signal Processing Conference (EUSIPCO 2007), Poznan, Pologne,
September 2007.

[2] Jonathan Piat, Mickaël Raulet, Maxime Pelcat, Pengcheng Mu and Olivier Dé-
forges. An Extensible Framework for Fast Prototyping of Multiprocessor Dataflow
Applications. In IDT’08: Proceedings of the 3rd International Design and Test
Workshop, Monastir, Tunisia, December 2008.

[3] Pengcheng Mu, Jean-Gabriel Cousin, Jean-François Nezan and Mickaël Raulet.
Heuristique statique améliorée d’ordonnancement de tâches : impact sur le tri
des tâches et sur l’allocation de processeur. In XXIIe Colloque GRETSI, Dijon,
France, September 2009.

[4] Pengcheng Mu, Jean-François Nezan, Michaël Raulet and Jean-Gabriel Cousin. A
List Scheduling Heuristic with New Node Priorities and Critical Child Technique
for Task Scheduling with Communication Contention. In DASIP 2009: Conference
on Design and Architectures for Signal and Image Processing, Sophia Antipolis,
France, September 2009. (Submitted)

[5] Pengcheng Mu, Jean-François Nezan, Jean-Gabriel Cousin and Michaël Raulet.
A Dynamic List Scheduling Heuristic with Communication Contention in Par-
allel Embedded Systems: New Node Priorities, Critical Child and Communica-

143

144 personal publications

tion Delay. In EMSOFT 2009: International Conference on Embedded Software,
Grenoble, France, October 2009. (Submitted)

Bibliography

[ACD74] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list
schedules for parallel processing systems. Commun. ACM, 17(12):685–
690, 1974. 56, 60

[AkK98] Ishfaq Ahmad and Yu kwong Kwok. On exploiting task duplication in
parallel program scheduling. IEEE Transactions on Parallel and Dis-
tributed Systems, 9:872–892, 1998. 61

[BBR02] Olivier Beaumont, Vincent Boudet, and Yves Robert. A realistic model
and an efficient heuristic for scheduling with heterogeneous processors.
In IPDPS ’02: Proceedings of the 16th International Parallel and Dis-
tributed Processing Symposium, page 37, Washington, DC, USA, 2002.
IEEE Computer Society. 62

[BEH+01] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and
M. Scott Marshall. Graphml progress report, structural layer proposal.
In P Mutzel, M Junger, and S Leipert, editors, Graph Drawing - 9th
International Symposium, GD 2001 Vienna Austria,, pages 501–512,
Heidelberg, 2001. Springer Verlag. 26

[BEP+07] Jacek Blazewicz, Klaus Ecker, Erwin Pesch, Günter Schmidt, and
Jan Weglarz. Handbook on Scheduling: From Theory to Applications.
Springer-Verlag, 2007. 55

145

146 bibliography

[BK06] Peter Brucker and Sigrid Knust. Complex Scheduling. Springer-Verlag,
2006. 55

[BMB05] Pierre Bomel, Eric Martin, and Emmanuel Boutillon. Synchro-
nization Processor Synthesis for Latency Insensitive Systems. In
EDAA European design and Automation Association, editors, De-
sign, Automation and Test in Europe DATE’05, volume 2, pages 896–
897, Munich Allemagne, 03 2005. Submitted on behalf of EDAA
(http://www.edaa.com/). 14

[Bru07] Peter Brucker. Scheduling Algorithms. Springer-Verlag, 5th edition,
2007. 55, 58

[Buc93] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model. PhD thesis, EECS Department,
University of California, Berkeley, 1993. 33

[CC91] J. Y. Colin and P. Chretienne. C.P.M. Scheduling with Small Com-
munication Delays and Task Duplication. OPERATIONS RESEARCH,
39(4):680–684, 1991. 61

[CCB+05] Philippe Coussy, Gwenolé Corre, Pierre Bomel, Eric Senn, and Eric
Martin. High-level synthesis under I/O Timing and Memory constraints.
In IEEE, editor, International Symposium on Circuits And Systems,
pages 680–683. IEEE, 2005. 14

[CDKM02] Francis Cottet, Joëlle Delacroix, Claude Kaiser, and Zoubir Mammeri.
Scheduling in Real-Time Systems. John Wiley & Sons Ltd, 2002. 55

[CJ01] B. Cirou and E. Jeannot. Triplet: A clustering scheduling algorithm for
heterogeneous systems. In Parallel Processing Workshops, 2001. Inter-
national Conference on, pages 231–236, 2001. 58

[CKP+93] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay,
Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten
von Eicken. LogP: Towards a realistic model of parallel computation.
In Principles Practice of Parallel Programming, pages 1–12, 1993. 30

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.
35

[CR92] Y.-C. Chung and S. Ranka. Applications and performance analysis of a
compile-time optimization approach for list scheduling algorithms on dis-

bibliography 147

tributed memory multiprocessors. In Supercomputing ’92: Proceedings
of the 1992 ACM/IEEE conference on Supercomputing, pages 512–521,
Los Alamitos, CA, USA, 1992. IEEE Computer Society Press. 61

[CSB+04] Gwenolé Corre, Eric Senn, Pierre Bomel, Nathalie Julien, and Eric
Martin. Memory Accesses management during High Level Synthesis.
In ACM, editor, IEEE ACM CO-DESign symposium and International
Symposium on System Synthesis IEEE ACM CO-DESign symposium
and International Symposium on System Synthesis, pages 42–47, stock-
holm Sweden, 2004. SIGDA ACM. ISBN : 1-58113-937-3. 14

[DAYA02] Muhammad K. Dhodhi, Imtiaz Ahmad, Anwar Yatama, and Ishfaq Ah-
mad. An integrated technique for task matching and scheduling onto
distributed heterogeneous computing systems. J. Parallel Distrib. Com-
put., 62(9):1338–1361, 2002. 61

[DEL07] Julien DELORME. Méthodologie de modélisation et d’exploration
d’architecture de réseaux sur puce appliquée aux télécommunications.
PhD thesis, INSA de Rennes, 2007. 122

[Den74] Jack B. Dennis. First version of a data flow procedure language. In
Proceedings of the Colloque sur la Programmation, volume 19 of Lecture
Notes in Computer Science, pages 362–376. Springer, 1974. 31

[Die05] Reinhard Diestel. Graph Theory. Springer-Verlag, 3rd edition, 2005. 29

[Dun90] R. Duncan. A survey of parallel computer architectures. Computer,
23(2):5–16, Feb 1990. 29

[EJ03] Johan Eker and Jörn W. Janneck. CAL Language Report. Technical re-
port, ERL Technical Memo UCB/ERL M03/48, University of California
at Berkeley, December 2003. 17

[ERA94] Hesham El-Rewini and Hesham H. Ali. On considering communication
in scheduling task graphs on parallel processors. International Journal
of Parallel, Emergent and Distributed Systems, 3(3):177–191, 1994. 56

[ERAEB05] Hesham El-Rewini and Mostafa Adb-El-Barr. Advanced Computer Ar-
chitecture and Parallel Processing. John Wiley & Sons, Inc., 2005. 29

[ERL90] Hesham El-Rewini and T. G. Lewis. Scheduling parallel program tasks
onto arbitrary target machines. J. Parallel Distrib. Comput., 9(2):138–
153, 1990. 62

148 bibliography

[ERLA94] Hesham El-Rewini, Theodore G. Lewis, and Hesham H. Ali. Task
scheduling in parallel and distributed systems. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1994. 58

[EVA06] Samuel EVAIN. µSpider Environnement de Conception de Réseau sur
Puce. PhD thesis, INSA de Rennes, 2006. 122

[Fly66] M.J. Flynn. Very high-speed computing systems. Proceedings of the
IEEE, 54(12):1901–1909, Dec. 1966. 43

[FW78] Steven Fortune and James Wyllie. Parallelism in random access ma-
chines. In STOC ’78: Proceedings of the tenth annual ACM symposium
on Theory of computing, pages 114–118, New York, NY, USA, 1978.
ACM. 29, 43

[GG69] R. L. Graham and R. L. Grahamt. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics, 17:416–429, 1969.
60

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, 1979. 12, 58

[GLS99] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyp-
ing for real-time embedded heterogeneous multiprocessors. In Proceed-
ings of 7th International Workshop on Hardware/Software Co-Design,
CODES’99, Rome, Italy, May 1999. 6, 7

[GS03] T. Grandpierre and Y. Sorel. From algorithm and architecture speci-
fication to automatic generation of distributed real-time executives: a
seamless flow of graphs transformations. In Proceedings of First ACM
and IEEE International Conference on Formal Methods and Models for
Codesign, MEMOCODE’03, Mont Saint-Michel, France, June 2003. 30

[Gu93] J. Gu. Local search for satisfiability (sat) problem. Systems, Man and
Cybernetics, IEEE Transactions on, 23(4):1108–1129, Jul/Aug 1993. 61

[GY93] A. Gerasoulis and T. Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed
Systems, 4(6):686–701, June 1993. 58

[HCAL89] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee
Lee. Scheduling precedence graphs in systems with interprocessor com-
munication times. SIAM J. Comput., 18(2):244–257, 1989. 56, 60

bibliography 149

[HH04] Randy L. Haupt and Sue Ellen Haupt. Pratical Genetic Algorithms.
John Wiley & Sons, Inc., 2nd edition, 2004. 61

[HJ05] T. Hagras and J. Janeček. A high performance, low complexity algo-
rithm for compile-time task scheduling in heterogeneous systems. Par-
allel Comput., 31(7):653–670, 2005. 61

[HM95] C. Hanen and A. Munier. An approximation algorithm for scheduling
dependent tasks on m processors with small communication delays. In
Emerging Technologies and Factory Automation, 1995. ETFA ’95, Pro-
ceedings., 1995 INRIA/IEEE Symposium on, volume 1, pages 167–189
vol.1, Oct 1995. 58

[HP02] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. The Morgan Kaufmann Series in Computer Ar-
chitecture and Design. Elsevier Science, 3 edition, June 2002. 64

[Hu61] T. C. Hu. Parallel Sequencing and Assembly Line Problems. OPERA-
TIONS RESEARCH, 9(6):841–848, 1961. 59

[Jan07] Jörn W. Janneck. NL - a Network Language. Technical report, ASTG
Technical Memo, Programmable Solutions Group, Xilinx Inc., July 2007.
17

[JE01] Jörn W. Janneck and Robert Esser. A predicate-based approach to
defining visual language syntax. In In Symposium on Visual Languages
and Formal Methods, HCC01, Stresa, pages 40–47, 2001. 24

[JMP+08] Jörn W. Janneck, Ian D. Miller, David B. Parlour, Ghislain Roquier,
Matthieu Wipliez, and Mickaël Raulet. Synthesizing hardware from
dataflow programs: an mpeg-4 simple profile decoder case study. In Sig-
nal Processing Systems, 2008. SIPS’08. (Best paper). IEEE Workshop
on, Washington D.C., USA, 2008. 16, 19, 21

[KA95] Yu-Kwong Kwok and I. Ahmad. Bubble scheduling: A quasi dynamic
algorithm for static allocation of tasks to parallel architectures. In SPDP
’95: Proceedings of the 7th IEEE Symposium on Parallel and Distribu-
teed Processing, page 36, Washington, DC, USA, 1995. IEEE Computer
Society. 62

[KA96] Yu-Kwong Kwok and I. Ahmad. Dynamic critical-path scheduling: An
effective technique for allocating task graphs onto multiprocessors. IEEE

150 bibliography

Transactions on Parallel and Distributed Systems, 7(5):506–521, May
1996. 58, 100, 101

[KA97] Yu-Kwong Kwok and Ishfaq Ahmad. Efficient scheduling of arbitrary
task graphs to multiprocessors using a parallel genetic algorithm. J.
Parallel Distrib. Comput., 47(1):58–77, 1997. 61

[KA99a] Yu-Kwong Kwok and Ishfaq Ahmad. Link contention-constrained
scheduling and mapping of tasks and messages to a network of hetero-
geneous processors. In International Conference on Parallel Processing,
pages 551–558, 1999. 60, 62

[KA99b] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. ACM Computing
Surveys, 31(4):406–471, 1999. 35

[KAG96] Yu-Kwong Kwok, Ishfaq Amad, and Jun Gu. Fast: A low-complexity
algorithm for efficient scheduling of dags on parallel processors. In Pro-
ceedings of the 1996 Internationnal Conference on Parallel Processing,
pages 150–157, August 1996. 61

[Kah74] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing, pages 471–475,
Stockholm, Sweden, Aug 1974. North Holland, Amsterdam. 31

[KASG03] L. Kaouane, M. Akil, Y. Sorel, and T. Grandpierre. A methodology
to implement real-time applications on reconfigurable circuits. In Pro-
ceedings of International Conference on Engineering of Reconfigurable
Systems and Algorithms, ERSA’03, Las Vegas, USA, June 2003. 12

[KL88] B. Kruatrachue and T. Lewis. Grain size determination for parallel
processing. Software, IEEE, 5(1):23–32, Jan 1988. 58, 61

[KM77] Gilles Kahn and David B. MacQueen. Coroutines and networks of par-
allel processes. In Proccedings of the IFIP Congress, Toronto, Canada,
pages 993–998, 1977. 31

[KN84] H. Kasahara and S. Narita. Practical multiprocessor scheduling algo-
rithms for efficient parallel processing. Computers, IEEE Transactions
on, C-33(11):1023–1029, Nov. 1984. 60

[KS93] S. Kon’ya and T. Satoh. Task scheduling on a hypercube with link
contentions. In Parallel Processing Symposium, 1993., Proceedings of
Seventh International, pages 363–368, Apr 1993. 62

bibliography 151

[LGCH+05] Bertrand Le Gal, Emmanuel Casseau, Sylvain Huet, Pierre Bomel,
Christophe Jego, and Eric Martin. C-based rapid prototyping for digi-
tal signal processing. In Proceedings of 13th European Signal Processing
Conference, Antalya, Turkey, 2005. 14

[LGCHM05] Bertrand Le Gal, Emmanuel Casseau, Sylvain Huet, and Eric Mar-
tin. Pipelined memory controllers for DSP applications handling unpre-
dictable data acesses. In IEEE Computer Society Annual Symposium on
VLSI, pages 268 – 269. IEEE, 2005. 14

[LM87a] Edward A. Lee and David G. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE Trans.
Comput., 36(1):24–35, 1987. 32

[LM87b] Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987. 25, 32

[LMTJ07] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-Kerr, and Jorn
Janneck. Reconfigurable media coding: A new specification model for
multimedia coders. In Signal Processing Systems, 2007 IEEE Workshop
on, pages 481–486, 2007. 17, 19

[LP95] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of
the IEEE, 83(5):773–801, May 1995. 32

[LP98] Jing-Chiou Liou and Michael A. Palis. A new heuristic for scheduling
parallel programs on multiprocessor. In PACT ’98: Proceedings of the
1998 International Conference on Parallel Architectures and Compila-
tion Techniques, page 358, Washington, DC, USA, 1998. IEEE Com-
puter Society. 61

[LPX05] G. Q. Liu, K. L. Poh, and M. Xie. Iterative list scheduling for hetero-
geneous computing. J. Parallel Distrib. Comput., 65(5):654–665, 2005.
62

[Mar06] Grant Martin. Overview of the mpsoc design challenge. In Proceedings
of the 43rd annual conference on Design automation, San Francisco, CA,
USA, July 2006. 5

[MG89] Carolyn McCreary and Helen Gill. Automatic determination of grain
size for efficient parallel processing. Commun. ACM, 32(9):1073–1078,
1989. 58

152 bibliography

[MG94] Neelima Mehdiratta and Kanad Ghose. A bottom-up approach to task
scheduling on distributed memory multiprocessors. In ICPP ’94: Pro-
ceedings of the 1994 International Conference on Parallel Processing,
pages 151–154, Washington, DC, USA, 1994. IEEE Computer Society.
62

[MG97] G. De Micheli and R. K. Gupta. Hardware/software co-design. Proceed-
ing of the IEEE, 85(3):349–365, March 1997. 5

[MSP+95] Daniel A. Menascé, Debanjan Saha, Stella C. da Silva Porto, Virgilio
A. F. Almeida, and Satish K. Tripathi. Static and dynamic processor
scheduling disciplines in heterogeneous parallel architectures. J. Parallel
Distrib. Comput., 28(1):1–18, 1995. 62

[OH96] Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for hetero-
geneous processors. In Euro-Par ’96: Proceedings of the Second Inter-
national Euro-Par Conference on Parallel Processing-Volume II, pages
573–577, London, UK, 1996. Springer-Verlag. 62

[OH06] Salim Ouadjaout and Dominique Houzet. Generation of embedded hard-
ware/software from systemc. EURASIP J. Embedded Syst., 2006(1):19–
19, 2006. 5

[PLW96] Michael A. Palis, Jing-Chiou Liou, and David S. L. Wei. Task cluster-
ing and scheduling for distributed memory parallel architectures. IEEE
Trans. Parallel Distrib. Syst., 7(1):46–55, 1996. 61

[PMAN09] Maxime Pelcat, Pierrick Menuet, Slaheddine Aridhi, and Jean-François
Nezan. Scalable compile-time scheduler for multi-core architectures. In
DATE’09, Nice, France, April 2009. 122

[PRP+08] Jonathan Piat, Mickaël Raulet, Maxime Pelcat, Pengcheng Mu, and
Olivier Déforges. An extensible framework for fast prototyping of mul-
tiprocessor dataflow applications. In IDT’08: Proceedings of the 3rd
International Design and Test Workshop, Monastir, Tunisia, december
2008. 27

[PY90] Christos H. Papadimitriou and Mihalis Yannakakis. Towards an
architecture-independent analysis of parallel algorithms. SIAM J. Com-
put., 19(2):322–328, 1990. 61

[RRND06] Ghislain Roquier, Michaël Raulet, Jean-François Nezan, and Olivier Dé-
forges. Using RTOS in the AAA methodology automatic executive gen-

bibliography 153

eration. In Proceedings of 14th European Signal Processing Conference,
Florence, Italy, 2006. 10

[RS87] V. J. Rayward-Smith. Uet scheduling with unit interprocessor commu-
nication delays. Discrete Appl. Math., 18(1):55–71, 1987. 56

[RUN+05a] M. Raulet, F. Urban, J.-F. Nezan, C. Moy, and O. Déforges. Syndex
executive kernels for fast developments of applications over heteroge-
neous architectures. In Proceedings of 13th European Signal Processing
Conference, Antalya, Turkey, 2005. 10

[RUN+05b] M. Raulet, F. Urban, J.-F. Nezan, C. Moy, O. Déforges, and Y. Sorel.
Rapid Prototyping For Heterogeneous Multicomponent Systems: An
MPEG-4 Stream Over An UMTS Communication Link. Journal Of
Applied Signal Processing (JASP), 2005. 6, 7, 8, 9

[RWR+08] Ghislain Roquier, Matthieu Wipliez, Mickaël Raulet, Jörn W. Janneck,
Ian D. Miller, and David B. Parlour. Automatic software synthesis of
dataflow program: An mpeg-4 simple profile decoder case study. In
Signal Processing Systems, 2008. SIPS’08. IEEE Workshop on, Wash-
ington, D.C., USA, 2008. 16, 21

[Sar89] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multi-
processors. MIT Press, Cambridge, MA, USA, 1989. 55, 58

[SB00] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multi-
processors - Scheduling and Synchronization. Marcel Dekker, Inc., 2000.
55

[SBB06] Abdelhalim Samahi, El-Bay Bourennane, and Sami Boukhechem. Com-
munication interface generation for hw/sw architecture in the starsoc
environment. pages 1–6, Sept. 2006. 5

[SD08] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms.
Springer-Verlag, 2008. 61

[SG91] Rok Sosic and Jun Gu. Fast search algorithms for the n-queens problem.
IEEE Trans. on Systems, Man, and Cybernetics, 21:1572–1576, 1991. 61

[SGB06] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF For Free. In Appli-
cation of Concurrency to System Design, 6th International Conference,
ACSD 2006, Proceedings, pages 276–278. IEEE Computer Society Press,
Los Alamitos, CA, USA, June 2006. 89

154 bibliography

[Sin07] O. Sinnen. Task Scheduling for Parallel Systems. Wiley, 2007. 55, 77

[SL93a] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures.
IEEE Transactions on Parallel and Distributed Systems, 4:175–187, Feb.
1993. 60, 62

[SL93b] G.C. Sih and E.A. Lee. Declustering: a new multiprocessor schedul-
ing technique. IEEE Transactions on Parallel and Distributed Systems,
4(6):625–637, June 1993. 58

[SPI08] SPIRIT Schema Working Group. IP-XACT v1.4: A specification for
XML meta-data and tool interfaces. Technical report, The SPIRIT Con-
sortium, March 2008. 27, 51

[SS04] O. Sinnen and L. Sousa. List scheduling: Extension for contention aware-
ness and evaluation of node priorities for heterogeneous cluster architec-
tures. Parallel Computing, 30(1):81–101, January 2004. 62, 83, 91

[SS05] O. Sinnen and L. Sousa. Communication contention in task scheduling.
IEEE Transactions on Parallel and Distributed Systems, 16(6):503–515,
June 2005. 71

[SSRM94] C. Selvakumar and C. Siva Ram Murthy. Scheduling precedence con-
strained task graphs with non-negligible intertask communication onto
multiprocessors. IEEE Trans. Parallel Distrib. Syst., 5(3):328–336, 1994.
62

[SSS06] O. Sinnen, L. Sousa, and F. E. Sandnes. Toward a realistic task schedul-
ing model. IEEE Transactions on Parallel and Distributed Systems,
17(3):263–275, 2006. 74

[Tex08] Texas Instruments. TMS320C6474 Multicore Digital Signal Processor.
Technical report, Texas Instruments, October 2008. 49

[THW99] H. Topcuoglu, S. Hariri, and Min-You Wu. Task scheduling algo-
rithms for heterogeneous processors. Heterogeneous Computing Work-
shop, 1999. (HCW ’99) Proceedings. Eighth, pages 3–14, 1999. 62

[THW02] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. Parallel
and Distributed Systems, IEEE Transactions on, 13(3):260–274, Mar
2002. 62

bibliography 155

[WG90] Min-You Wu and Daniel Gajski. Hypertool: A programming aid for
message-passing systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 1(3):330–343, 1990. 58, 60

[WM89] Wing Shing Wong and Robert J. T. Morris. A new approach to choosing
initial points in local search. Inf. Process. Lett., 30(2):67–72, 1989. 61

[WSRM97] Lee Wang, Howard Jay Siegel, Vwani R. Roychowdhury, and Anthony A.
Maciejewski. Task matching and scheduling in heterogeneous comput-
ing environments using a genetic-algorithm-based approach. J. Parallel
Distrib. Comput., 47(1):8–22, 1997. 61

[WYJ+04] A.S. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone. An incremental
genetic algorithm approach to multiprocessor scheduling. Parallel and
Distributed Systems, IEEE Transactions on, 15(9):824–834, Sept. 2004.
61

[WYKH97] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim, and Tack-Don Han.
Task scheduling in distributed computing systems with a genetic algo-
rithm. In High Performance Computing on the Information Superhigh-
way, 1997. HPC Asia ’97, pages 301–305, Apr-2 May 1997. 61

[Xil08] Xilinx. Xilinx dataflow tools. Technical report, ASTG Technical Memo,
Programming Solutions Group, Xilinx, May 2008. 19

[YG93] Tao Yang and Apostolos Gerasoulis. List scheduling with and without
communication delays. Parallel Computing, 19(12):1321–1344, 1993. 56,
60

[YG94] Tao Yang and A. Gerasoulis. Dsc: scheduling parallel tasks on an un-
bounded number of processors. IEEE Transactions on Parallel and Dis-
tributed Systems, 5(9):951–967, Sept. 1994. 58

Index

Acc, 90
Actor, 17
Advanced architecture model, 48
AEST, 100
ALAP, 102
ALST, 100
ASIC, 12
ATLAS, 2

BDF, 33
BSA, 62
BSP, 10
BTDH, 61
BU, 62
Bus, 47

CAD, 8
CAL, 17

CAL2C, 21
CAL2HDL, 19

CCR, 89
CCS, 8
Clustering, 58

Linear clustering, 58
Communication delay, 102

Communication node, 46
Communicator, 46
CP/MISF, 60
CPFD, 61
Critical child, 101
CST, 24
Cut-through, 64

DAG, 26, 34
DCP, 58
DDF, 34
DFG, 6
DFS, 35
Distributed memory architecture, 44
DLS, 60, 62
DRT, 68
DSC, 58
DSH, 61
DSP, 1

EDK, 8
ELF, 9
Embedded system, 1
ETF, 60
EZ, 58

157

158 index

FAST, 61
FDDG, 12
FIFO, 11, 47
Flynn’s taxonomy

MIMD, 43
MISD, 43
SIMD, 43
SISD, 43

FPGA, 1
FSL, 10, 11

GAUT, 14
GEF, 23
Graphiti, 23
GraphML, 26

Hardware/software co-design, 5
HDL, 5
HLF, 59
HLFET, 60

IDE, 9
IP, 13
IP Coprocessor, 46
IP-XACT, 51
ISE, 8

KPN, 31

List scheduling, 59
Dynamic list scheduling, 59, 85
Static list scheduling, 59, 82

LogP, 30
LST, 62

M4, 8
MCP, 60
MD, 58

Memory, 46
Message passing architecture, 44
MH, 62
MicroBlaze, 2
ML402, 20
ModelSim, 16
MPEG-4, 20
MPSoC, 2
multi-MicroBlaze, 8

Network, 17
Nios, 2
NoC, 12
Node duplication, 60
Node level

Bottom level, 38
Computation bottom level, 38
Computation top level, 38
Input bottom level, 78
Input top level, 78
Input/output bottom level, 80
Input/output top level, 80
Output bottom level, 79
Output top level, 79
Top level, 38

NP-hard, 12, 58

OpenDF, 16

Parallel embedded system, 2
Path, 35

CP, 37
Path length, 36

POSIX, 10
PowerPC 405, 2
PRAM, 29
PREESM, 3, 27

index 159

Processor, 45

Quartus, 8

RAM, 9
RAMP, 2
Rapid prototyping, 5

AAA, 6
RISC, 1
Route, 64
Route step, 63
RTL, 14
RTOS, 10
RVC, 19

SAM, 9
SDF, 25, 32
SDF4J, 26
Shared memory architecture, 43
SocLib, 2
Store-and-forward, 64
SynDEx, 6
SynDEx-Ic, 12
SystemC, 21

Task scheduling, 56
TCP/IP, 10, 11
Time complexity, 95, 114
Topological Order, 35
Topology graph, 71

VHDL, 12
Visual Studio, 8

Xilkernel, 10
XML, 23
XSLT, 24

RESUME

L’architecture des ordinateurs est maintenant dans l’ère des multiprocesseurs permettant le cal-
cul en parallèle. Les systèmes embarqués les plus récents s’appuient sur plusieurs processeurs DSP
(Digital Signal Processor) ou MPSoC (Multiprocessor System-on-Chip). Corrélativement, les algo-
rithmes des applications de traitement du signal et de l’image deviennent de plus en plus sophistiqués.
La mise en œuvre de telles applications sur un système embarqué devient complexe. Aussi, les ap-
proches de prototypage rapide et de co-conception matérielle/logicielle sont souvent utilisées pour
faciliter ce travail.

Le problème de l’ordonnancement des tâches, étape importante du prototypage rapide, est discuté
et traité dans cette thèse. Nous cherchons des modèles d’ordonnancement des tâches en considérant
précisément les communications entre les tâches. Nous modélisons ainsi l’algorithme de l’application
comme un graphe acyclique orienté (Directed Acyclic Graph ou DAG), et nous proposons un modèle
avancé décrivant de façon appropriée l’architecture du système embarqué parallèle. Après la formal-
isation du problème de l’ordonnancement des tâches avec ce modèle d’architecture, nous présentons
plusieurs heuristiques d’ordonnancement basées sur la méthode de la liste (list scheduling) pour
améliorer les performances de l’ordonnancement. Nos résultats expérimentaux attestent d’une ac-
célération de l’application dans un contexte de moyenne ou de forte communication. Comme le
poids des communications va en croissant dans les applications les plus récentes, que ce soient en
communication numérique ou en compression vidéo, nos méthodes s’avèrent efficaces dans la mise en
œuvre de ces applications sur systèmes embarqués parallèles. Nos méthodes d’ordonnancement sont
intégrées dans PREESM, environnement de prototypage rapide basé sur Eclipse en “open source”.

Mots-clefs: Prototypage rapide, système embarqué parallèle, ordonnancement des tâches

ABSTRACT

Computer architectures have come into an era of multiprocessor for parallel computing. Modern
embedded systems also tend to consist of multiple processors like multicore DSP (Digital Signal
Processor) or MPSoC (Multiprocessor System-on-Chip). Meanwhile, algorithms of signal and image
processing applications become more and more complicated. Implementing such applications on a
parallel embedded system with multiple heterogeneous components is not straightforward. Rapid
prototyping and hardware/software co-design are usually used to facilitate this work.

The task scheduling problem is discussed in this thesis as an important step of rapid proto-
typing for developing parallel embedded systems. We aim at task scheduling models by accurately
considering communications between computations. The algorithm of an application is modeled
as a Directed Acyclic Graph (DAG) for task scheduling, and we propose an advanced architecture
model to appropriately describe a parallel embedded system. After formalizing the task schedul-
ing problem with the advanced architecture model, we also propose list scheduling heuristics with
advanced techniques to improve the scheduling performance. Experimental results show that our
methods usually accelerate an application in the case of medium or high communication. Since
the communication cost is increasing in modern applications like digital communication and video
compression, our advanced methods are suitable for efficiently implementing these applications on
parallel embedded systems. Our methods are integrated in PREESM that is an Eclipse-based open
source rapid prototyping framework.

Keywords: Rapid prototyping, parallel embedded system, task scheduling

	Contents
	Introduction
	1 Rapid Prototyping and Hardware/Software Co-design
	1.1 Introduction
	1.2 Design FPGA based MPSoC with AAA Rapid Prototyping Methodology
	1.2.1 AAA Rapid Prototyping Methodology and SynDEx
	1.2.2 Rapid Prototyping for Multi-MicroBlaze Systems on FPGA
	1.2.3 SynDEx-Ic Tool

	1.3 Tools for HDL Code Generation
	1.3.1 GAUT: A High-Level Synthesis Tool
	1.3.2 Open Dataflow Framework
	1.3.3 Comparison between GAUT and OpenDF

	1.4 An Eclipse-Based Open Source Rapid Prototyping Framework
	1.4.1 Graphiti: A Generic Graph Editor for Editing Architectures, Algorithms and Workflows
	1.4.2 SDF4J: A Java Library for Algorithm Dataflow Graph Transformation
	1.4.3 PREESM: A Complete Framework for Hardware/Software Co-design

	1.5 Conclusion

	2 Graph Models for Parallel Embedded Systems
	2.1 Introduction
	2.2 Algorithm Model
	2.2.1 Dataflow Model
	2.2.2 DAG Model
	2.2.3 DAG Properties

	2.3 Architecture Model
	2.3.1 Parallel Architectures
	2.3.2 Advanced Architecture Model
	2.3.3 Architecture Specification with IP-XACT Standard

	2.4 Conclusion

	3 Task Scheduling in Parallel Embedded Systems
	3.1 Introduction
	3.2 General Task Scheduling
	3.2.1 Without/With Communication Costs
	3.2.2 Scheduling Methodologies
	3.2.3 Advanced Techniques

	3.3 Task Scheduling with Advanced Architecture Model
	3.3.1 Routing with Architecture Model
	3.3.2 Scheduling with Advanced Architecture Model
	3.3.3 Causality Conditions
	3.3.4 Scheduling Conditions

	3.4 Task Scheduling with Topology Graph Model
	3.4.1 Topology Graph Model
	3.4.2 Scheduling with Communication Contention

	3.5 Conclusion

	4 List Scheduling with Communication Contention
	4.1 Introduction
	4.2 Node Levels with Communication Contention
	4.3 List Scheduling Heuristics
	4.3.1 Static List Scheduling Heuristic
	4.3.2 Dynamic List Scheduling Heuristic

	4.4 Experimental Results
	4.4.1 Comparison with an Example
	4.4.2 Comparison with Randomly Generated DAGs

	4.5 Analysis of Time Complexity
	4.6 Conclusion

	5 Advanced List Scheduling Methods
	5.1 Introduction
	5.2 Processor Selection with Critical Child
	5.3 Node and Edge Scheduling with Communication Delay
	5.3.1 Node Scheduling
	5.3.2 Edge Scheduling

	5.4 Advanced List Scheduling Heuristics
	5.5 Experimental Results
	5.5.1 Comparison with an Example
	5.5.2 Comparison with Randomly Generated DAGs

	5.6 Time Complexity of Advanced List Scheduling Heuristics
	5.7 Conclusion

	Conclusions and Prospects
	A IP-XACT Code of Advanced Architecture Model
	A.1 TI's C6474 DSP
	A.2 Xilinx's FPGA-based MPSoC

	List of Figures
	List of Tables
	List of Algorithms
	Personal Publications
	Bibliography
	Index
	Abstract

