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Abstract

Experiments and Modeling on an Air-water Interface Populated by Biological

Molecules

by

Yu-Lin Huang

This dissertation is the first stage of a research program devoted to the development

of a new hydrodynamic process in which the object is to facilitate the recognition of

certain important proteins structures (such as membrane protein) in the field of molec-

ular biology. The major objective is to find hydrodynamic conditions which favor the

growth of a two-dimensional (2-D) crystal of proteins at a chemically-functionnalized

air-water interface. It includes researching the best hydrodynamic conditions for grow-

ing 2-D crystal protein sufficiently large and regular, e.g. a single (mono) crystal.

Obtaining such a single (mono) crystal would helpful for X-ray diffraction technique

to identify the primary structure of a protein rapidly.

The state of the art today is based upon a water surface at rest, functionalized

(covered) by a monolayer of lipids thus obtained for Langmuir film (nanometer thick)

at equilibrium. Under the effect of chemical diffusion within water subphase, solubi-

lize dproteins in the subphase adsorb to the lipids specifically designed to trap them

(consider for instance the molecular complex [biotinylated lipid–avidin protein]). A

protein crystal obtained at 2-D interface limited to its 2-D diffusion in the lipid mono-

layer is more like a crystalline powder. The irregularity of the molecular self-assembly

in the crystalline powder is particularly ill-suited to the X-ray diffraction technique to

identify its structure.

The aim of this dissertation is to control a recirculating flow in the subphase to:

⋄ accelerate the capture of proteins to lipids presented in the liquid surface,
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⋄ densification of 2-D complexes [lipid–protein] after adsorption,

⋄ ultimately, should logically lead to a 2-D single crystal assembly.

This dissertation contributes to the experimental and modeling tools needed to develop

a enhanced 2-D single crystal protein assembly.

Initially, we used a fatty acid (pentadecanoic acid) to anticipate the behavior of

a lipid monolayer subjected to flow structuring. To test this concept, an experiment

based on an annular tank has been developed and

A first part of this dissertation is devoted to the experimental set-up which is

based upon an annular channel whose floor is put in rotation whilst its two vertical

(cylindrical) side walls are maintained stationary. The channel is filled with a sup-

porting subphase of acidified ultra-pure water. In order to confirm the feasibility of

a flow-induced molecular densification, the user-friendly pentadecanoic acid (PDA) is

chosen to mimic the response of a lipidic Langmuir monolayer when it is put out of

equilibrium. A monolayer of PDA is therefore submitted to an annular shear flow. we

have studied the behavior of a monolayer of pentadecanoic acid (PDA) simultaneously

subject to two types of shear, one is in-plane shear, the other one is subphase shear

valued at the surface. It is worthy to note that transition between liquid-expanded

and liquid-condensed phases is conserved even in conditions far from thermodynam-

ical equilibrium. Brewster angle microscopy (BAM) is used to image selectively the

mesoscopic morphology of the subsequent two-phase PDA film. The area fraction of

the condensed phase is carefully investigated after a permanent regime is established.

The distribution of the area fraction demonstrates radially-inwards packing along the

liquid surface which is induced by a centripetal surface flow originating from centrifu-

gation of subphase along the rotating floor. For a growing level of centrifugation, a

circular segregation front arises along the liquid surface. For a high enough level of

centrifugation, the Langmuir film even experiences a strong morphological transition

driven by a balance between surface shearing and reduced line tension. As a result, a
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shear-induced melting of the condensed phase generates a new patterning which can

be described as a 2-D monodispersed matrix of tiny condensed droplets.

The last part of this dissertation is devoted to modelling the previous annular shear

flow. The liquid surface at the top of the channel is again supposed to be covered by

a layer of chemically-functionnalised hydrophobic molecules. The flow is considered

as permanent, axisymmetric and creeping. The ratio of the liquid depth to the outer

radius of the channel is small enough (shallow flow) so that it is possible to develop

a matched asymptotic technique. In the rotating subphase, a core flow is therefore

distinguished from the boundary layers along side walls. The modeling includes the

possibility to take into account the impact of the radially-inwards molecular packing

induced by centrifugation of the underlying bulk. More particularly, radial stratifica-

tion of surface viscosity is taken into account via the jump momentum balance at the

liquid surface (Boussinesq-Scriven balance).
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Résumé

Ecoulement d’un Film de Biomolécules Tensioactives : Expériences et Modélisation

par

Yu-Lin Huang

Cette thèse constitue la première étape d’un programme de recherche consacré

à l’élaboration d’un nouveau procédé hydrodynamique dont l’enjeu est de faciliter la

reconnaissance structurale de certaines protéines importantes dans le domaine de la bi-

ologie moléculaire (les protéines membranaires par exemple). L’objectif à moyen terme

est de mettre au point un procédé de croissance bidimensionnelle (2-D) de cristaux de

protéines à une interface eau-air fonctionnalisée chimiquement. Il s’agit notamment

de rechercher les meilleures conditions hydrodynamiques pour obtenir un cristal 2-D

de protéine suffisamment large et régulier, par exemple un monocristal. L’obtention

d’un tel monocristal permettrait d’identifier rapidement la structure primaire d’une

protéine élémentaire en s’adaptant parfaitement à une technique de diffraction par

rayons X sous incidence rasante.

L’état de l’art actuel consiste à utiliser une surface d’eau au repos, fonctionnalisée

(recouverte) par une monocouche de lipides : on obtient ainsi un film de Langmuir

(épaisseur nanométrique) à l’équilibre. Sous l’effet de la diffusion chimique en sous-

phase, des protéines solubilisées dans la sous-phase aqueuse s’adsorbent à la mono-

couche lipidique dès lors que les lipides sont choisis pour s’apparier aux protéines

(lipides ligands, exemple typique d’appariement lipide biotynilé – avidine). Un cristal

de protéine, plus ou moins régulier, s’apparentant davantage à une poudre cristalline

est classiquement obtenu en 2-D sous l’effet de la seule diffusion 2-D dans la mono-

couche lipidique. L’irrégularité de l’auto-assemblage moléculaire dans cette poudre

cristalline se prête particulièrement mal à la diffraction aux rayons X.
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L’objectif de la thèse est de contrôler un écoulement recirculant dans la sous-phase

afin :

⋄ d’accélérer la capture des protéines aux lipides présents à la surface liquide,

⋄ de densifier en 2-D après adsorption les complexes [lipide – protéine],

⋄ ce qui, à terme, devrait logiquement mener à un assemblage moléculaire 2-D plus

régulier.

Cette thèse contribue ainsi à mettre en place les outils expérimentaux et théoriques

nécessaires au développement d’un futur procédé de cristallisation en 2-D.

Dans un premier temps, nous avons utilisé un acide gras (acide pentadecanöıque)

afin d’anticiper sur le comportement d’une monocouche lipidique assujettie à un

écoulement structurant. Pour cela, une expérience basée sur une cuve annulaire a

été développée et nous avons étudié le comportement d’une monocouche d’acide pen-

tadecanöıque (PDA) soumise simultanément à deux types de cisaillement, l’un de

nature volumique, l’autre de nature intrinsèquement surfacique. Ces deux cisaille-

ments sont produits par la rotation d’une couronne annulaire aimantée disposée au

fond de la cuve annulaire. D’un point de vue conditions aux limites hydrodynamiques,

un écoulement annulaire cisaillé de nature toröıdale (ou swirl), est ainsi engendré par

un fond tournant tandis que les deux parois verticales du canal demeurent fixes. Une

nouvelle organisation mésoscopique dans le film de PDA, sous la forme de deux phases

2-D (dites liquide expansée et liquide condensée), a été mise en évidence et étudiée

en régime permanent. En mesurant par microscopie Brewster la distribution de la

fraction aréolaire de phase condensée le long de l’interface, nous avons montré que

l’écoulement centrifuge le long du fond tournant engendre un écoulement radial cen-

tripète le long de l’interface (par conservation de la masse) et que celui-ci privilégie

la condensation de domaines liquides condensés vers les rayons les plus petits. Pour

un niveau suffisamment important de centrifugation, le film de Langmuir expérimente

une transition morphologique marquée, pilotée par un équilibre entre le cisaillement
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de surface et la tension de ligne (analogue 1-D de la tension de surface). Nous avons

montré en particulier qu’un cisaillement surfacique non négligeable peut induire la

fusion des domaines condensés et engendrer une nouvelle organisation morphologique

sous la forme d’une matrice monodispersée de gouttelettes 2-D condensés.

La dernière partie de la thèse est consacrée à une modélisation analytique de

l’écoulement annulaire cisaillé lorsque la surface liquide est recouverte par une dis-

tribution radiale de tensioactifs. L’écoulement est considéré comme permanent, ax-

isymétrique et rampant (petit nombre de Reynolds, approximation de Stokes). A

l’instar des expériences réalisées durant la thèse, le rapport de la profondeur liquide au

rayon extérieur du canal est également considéré comme petit, ce qui permet l’usage de

développements asymptotiques raccordés. Cette modélisation intégre la stratification

radiale de la viscosité surfacique due à la densification moléculaire engendrée par la

composante centripète de l’écoulement le long de l’interface (prise en compte éventuelle

de la présence d’un cristal de protéines à une monocouche lipidique restructurée par

un écoulement).
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6.1 Geometry under consideration. . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 The Boussinesq number Bo as a ratio of shears. . . . . . . . . . . . . . 130

6.3 Two-way coupling between subphase flow v∗θ (r∗, z∗) and surface flow
v∗θ,s (r∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Shear velocity along the liquid surface as predicted from Couette ap-
proximation (continuous line, —) and from composite solution with
δ = 10

70
(◦) and δ = 4

70
(+). Dependence on the Boussinesq number Bo. 141

6.5 Surface stress along the liquid surface (Bo = 0.001) as calculated from
Couette approximation (–, right y-axis) and from composite solutions
(left y-axis) with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+). . . . . . . . . . 142

6.6 Surface stress along the liquid surface (Bo = 0.01) as calculated from
Couette approximation (–, right y-axis) and from composite solutions
(left y-axis) with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+). . . . . . . . . . 142

6.7 Surface stress along the liquid surface (Bo = 0.1) as calculated from
Couette approximation (–, right y-axis) and from composite solutions
(left y-axis) with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+). . . . . . . . . . 143

6.8 Subphase stress at the liquid surface (Bo = 0.001) as calculated from
Couette approximation (–, right y-axis) and from composite solutions
(left y-axis) with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+). . . . . . . . . . 144

6.9 Subphase stress at the liquid surface (Bo = 0.01) as calculated from
Couette approximation (–, right y-axis) and from composite solutions
(left y-axis) with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+). . . . . . . . . . 144

6.10 Subphase stress at the liquid surface (Bo = 0.1) as calculated from
Couette approximation (–, right y-axis) and from composite solutions
(left y-axis) with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+). . . . . . . . . . 145

xi



6.11 Subphase flow at leading order, v∗θ(r
∗, z∗) (with Bo = 0.01, δ = 1

7
and

ri

r0
= 3

7
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.12 Local Boussinesq number, Log10(|BoCouette|), as calculated from Couette
approximation (–) and local Boussinesq number, Log10(|Bocomp|), as
calculated from composite solutions with δ = 10

70
(◦) and δ = 4

70
(+). . 148

6.13 (a) Dimensionless surface viscosity, µ∗
s(r

∗), as plotted according to (6.6)
and (6.51). The symbol ζ is a typical thickness of viscous stratification.
(b) to (f) Surface velocity profiles (− ⊖ −) for five levels of surface
contamination (Bo = 0.001 to 10), a constant jump in surface viscosity:

µs,crystal

µs,monolayer
= 50, a segregation front located at r∗ = rF = ri+ro

2ro
with

typical thickness ζ = 1−ri/ro

10
and finally, the aspect ratios: δ = 4

70
and

ri

ro
= 30

70
. For comparison, two surface velocity profiles are displayed for

a uniform surface contamination with surface viscosities:
µs,crystal

µs
(�)

and
µs,monolayer

µs
(◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.1 Pictorial representations of the molecular statistics in the well-
established smectic categories (adopted from Ref. [59]). The side
view illustrates the layer stacking of molecules. Only the first row
(thick line) is meaningful for Langmuir monolayers. The top view
shows the in-plane ordering of molecules. In the top view, the dots
are a triangular reference net. The open circles indicate the location
of molecules and the molecules are freely and independently rotate
about their long axes; the open triangles indicate the location and tilt
direction of the molecules; and the open ellipses indicate location and
hindered rotation of the molecules with respect to a triangular reference
net (dots). The arrows indicate the tilt direction of the molecules. . . . 181

A.2 Π–T phase diagrams of fatty acid monolayers (C14 to C24 acids).
Adapted from Peterson et al. [132], with data by Overbeck & Möbius
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−→r ) angle between a near neighbor bond at position −→r and external

reference line

θr angle of reflection

θt angle of refraction

κs surface dilatational viscosity

κ(ξ) perturbation, Eq. (6.41)

λ line tension, Eq. (3.9); modified line tension in Eq. (5.1)

λeff effective line tension

λo line (excess) tension

λw wavelength of the light

µb (Newtonian) shear viscosity of subphase

µLC/LE difference in dipole densities between the dipolar PDA molecules

within the LC domain and those diluted in the surrounding LE

continuous phase, Eq. (5.1)

µs, µs(r) surface shear viscosity

µ∗
s dimensionless surface shear viscosity, µ∗

s =
µs(r)
µs
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µs uniform term of surface viscosity

µs,crystal viscosity of the flow-induced molecular packing made from the com-

plexes [protein-lipid], Eq. (6.51)

µs,LC surface shear viscosity in LC domain

µs,LE surface shear viscosity in LE domain

µs,monolayer viscosity of the water surface topped with the lipidic matrix,

Eq. (6.51)

νb molecular viscosity of subphase

ξ influence variable of Green function asociated to the differential

operator ℑ

Π surface pressure

Πc collapse surface pressure

Πd dynamical surface pressure, Eq. (5.14)

ΠESP equilibrium spreading pressure

ΠLC surface pressure in LC phase

ΠLE surface pressure in LE phase

ρa complex relative amplitude attenuation, Eq. (3.20)

ρa,B ellipticity at Brewster angle incidence, Eq. (3.23)

ρa,B
′ ellipticity at Brewster angle incidence without reflected light,

Eq. (3.28)

ρb density of subphase, Eq. (C.4)

ρp density of the rectangular plate, Eq. (3.4)

ρs surface mass density, Eq. (5.14)

ρw density of the liquid, Eq. (3.4)

σ surface tension, Eq. (3.1)

σ0 initial surface tension of the liquid surface (72.8 mN·m−1 for water

at 298 K, 1 atm), Eq. (3.2)

σLG surface tension due to the interaction between liquid and gaseous

(air) phases, Eq. (3.3)
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σLS surface tension due to the interaction between liquid and solid

phases, Eq. (3.3)

σGS surface tension due to the interaction between gaseous (air) and

solid phases, Eq. (3.3)

τ ∗b,comp dimensionless shear stress at the liquid surface based on the com-

posite solution for the flow of the subphase

τ ∗b,Couette dimensionless shear stress at the liquid surface based on the as-

sumption of a Couette flow along the vertical direction within the

subphase, τ ∗b,Couette = v∗θ,s(r
∗) − r∗

τb|s shear stress valued at the surface, Fig. 5.1

τs in-plane shear stress, Fig. 5.1

τ ∗s dimensionless shear stress along the liquid surface, τ ∗s =
dv∗θ,s

dr∗
− v∗θ,s

r∗

τ ∗s,comp dimensionless shear stress along the liquid surface with τ ∗s,comp = τ ∗s

if v∗θ,s(r
∗) is calculated from Eq. (6.27)

τ ∗s,Couette dimensionless shear stress along the liquid surface with τ ∗s,Couette =

τ ∗s if the surface velocity v∗θ,s(r
∗) is calculated from Eq. (6.18)

φ angle between the direction of polarization and the plane of inci-

dence

φ(ξ) forcing term, Eq. (6.41)

ϕ angle between the polarization of the light before the quarter wave

plate and the plane of incidence, Eq. (3.25)

Ψ angle whose tangent is the ratio of the amplitude of the Fresnel

reflection coefficients, Eq. (3.21)

Ψn (−→r ) bond orientational order parameter for n-fold symmetry, Eq. (A.2)

ωn eigenvalue

Ω angular velocity

Other symbols

∂ALC dividing edge around LC domain
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∇ gradient operator

∇r radial gradient operator, Eq. (C.4)

∇s surface gradient operator, Eq. (3.11)

ℑ differential operator

(⊖, ⊕) either the values ( ri
ro

, r∗) or the values (r∗, 1)

〈〉 statistical average, Eq. (A.2), Eq. (A.1)

% percent

Dimensionless groups

Bo Boussinesq number,
µs
vθ,s
/
ro

2

µb
vθ,s/h

, Eq. (6.8)

B̃o (macroscopic) Boussinesq number,
µsh

µbegap
2 , Eq. (4.5); macroscopic

Boussinesq number, Cas
Bos

Bocomp local Boussinesq number based on the composite solution for the

flow of the subphase,
τ ∗s,comp

τ ∗b,comp
Bo

BoCouette local Boussinesq number based on the assumption of a Couette flow

along the vertical direction within the subphase,
τ ∗s,Couette

τ ∗b,Couette
Bo

B̃oLC mesoscopic Boussinesq number at the scale of one LC domain,

CaLC,s

BoLC,s
, Eq. (5.10)

Bos surface Bond number at macroscopic scale,
µbro

3Ω/h
λeff

, Eq. (5.6)

BoLC,s surface Bond number at the scale of an individual LC domain,

τb|s SLC

λeff
, Eq. (5.8)

Cas surface capillary number at macroscopic scale,
µsroΩ
λeff

, Eq. (5.7)

CaLC,s mesoscopic surface capillary number at the scale of one LC domain,

τsRδθ
λeff

, Eq. (5.9)

Re Reynolds number,
roΩegap
νb

, Eq. (4.4)

Abbreviations

2-D two-dimensional
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3-D three-dimensional

A analyzer

BAM Brewster angle microscope

BC boundary condition

C carbon; Compensator

CCD charge-coupled device

DNA deoxyribonucleic acid

DNS direct numerical simulation

EM electromagnetic

EPS equilibrium spreading pressure

FM fluorescence microscope

G gaseous

H hydrogen

IR infra red

JMB jump of momentum balance

L liquid

LE liquid-expanded

LC liquid-condensed

LHS left hand side

LM Langmuir monolayer(s)

N nitrogen; north

NN nearest neighbor

NNN next-nearest neighbor

O oxygen

ODE ordinary differential equation

P phosphorus; polarizer

PDA pentadecanoic acid

PDMS poly(dimethyl)siloxane

RHS right hand side
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RMSE root mean square errors

S sample/surface; solid; south

Sm smectic

TE transverse electric

TM transverse magnetic

U untilted

Symbols for units

atm atmosphere

Å ångström, 10−10

◦C degree Celsius

◦ degree

c centi, 10−2

g gram

h hour

J joule

k kilo, 103

K degree Kelvin

l liter

µ micro, 10−6

m meter

m milli, 10−3

M molar

min minute

mol mole

molecule molecule

N newton

p pico, 10−12

Pa pascal
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rpm revolution per minute

s second

sP surface poise
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Chapter 1

General introduction

1.1 Context

This dissertation is the first stage of a research program on a new hydrodynamical

process supposed to help the identification of the primary structure of certain proteins

which reveal to be important in molecular biology (membrane proteins for instance)

though impossible to crystallise in three dimensions. The practical goal is to develop

a new process which would permit the flow-assisted growth of a large two-dimensional

(2-D) crystal of protein along a air-water interface. This includes to find the best

hydrodynamical conditions for the 2-D crystal protein to be sufficiently large and

regular, such as a single crystal. Obtaining such a single crystal would allow the

biochemist to identify with the best resolution the primary structure of one given

protein as the size and the spatial regularity of a 2-D single crystal could fit well to a

technique like grazing incidence X-rays diffraction (GIXD).

At the time being, the available state of the art on 2-D crystal growth is based on

a water surface chemically functionnalised by a lipidic matrix [30, 68, 50, 176, 25, 52,

143]. The protein of interest, introduced within water subphase, is free to move under

molecular diffusion up to the lipids forming a Langmuir monolayer (LM) at the liquid

surface. A dedicated chemical affinity between lipids and proteins allows them to be

1
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trapped at the LM and to move along it in a 2-D way. Under quiescent condition,

2-D molecular diffusion along the liquid surface is responsible for the percolation and

growth of a 2-D self-assembly of proteins whose structure resembles to a crystalline

powder. This 2-D crystalline powder does not really lend itself to accurate determina-

tion of the protein structure from X-ray diffraction [99]. Consequently, it is necessary

to improve the spatial periodicity of the 2-D self-assembly.

1.2 Motivations and aims

The goal beyond the dissertation is to control a flow recirculation in the subphase:

⋄ in order to accelerate the binding probability of proteins to lipids at the liquid

surface,

⋄ in order to pack molecular complexes, [lipid+protein], along the liquid surface

after binding process,

⋄ what should lead ultimately to a 2-D molecular assembly of proteins, charac-

terised by a high level of spatial regularity.

Historically, the complexity of the hydrodynamical, chemical and physico-chemical

phenomena involved in such a flow process led us to reduce our original ambitions. This

is the reason why, in this dissertation, we primarily decided to focus our research effort

on the following scientific question: how the mesoscopic features of a fluid interface

populated by biological amphiphilic molecules can be changed when the supporting

interface is subjected to a flow reorganisation. As shown in this dissertation, this

issue involves to cope with a delicate coupling between at least four hydrodynamical

and physico-chemical mechanisms (chemical transport disregarded). A fundamental

understanding of this multiphysics requires a significant research effort which, in this

dissertation, was based on an experimental investigation as well as some theoretical

developments.



1.3. Outline of this dissertation ·3·

As a result, this dissertation delivers experimental and theoretical tools necessary

for the future development of a 2-D crystal growth process based on hydrodynamics.

1.3 Outline of this dissertation

A first chapter (Chapter 2) is devoted to the state of the art on the functionalization

of a air-water interface by a Langmuir monolayer. This allows us to better justify the

choice of one particular model system, namely the pentadecanoic acid (or PDA). This

fatty acid is hope to provide a first insight into the dynamic behavior of condensed

domains such as lipidic domains or single-crystalline grains.

Chapter 3 is devoted to the introduction of the instrumental techniques used to

characterize a Langmuir monolayer when thermodynamical equilibrium applies or

when it is submitted to a flow. In particular, the choice of a Brewster angle mi-

croscope is justified as a relevant tool to investigate the impact of a flow at meso scale

upon the morphology of a PDA Langmuir monolayer undergoing a phase transition.

The latter is characterized by the arising of liquid condensed (LC) domains surrounded

by a continuum of liquid expanded (LE) phase. The size and the geometry of these

domains varies greatly depending on the surface concentration in PDA.

To create an end-driven rotating flow inside a channel, which is capable of reor-

ganising the Langmuir monolayer at the same time, a new hydrodynamical process

based on an annular channel has been developed and is presented in detail in Chapter

4. With the coupling between the underlying rotating flow and the surface flow along

the monolayer, we are led to investigate the monolayer when subjected to two types of

shearing, a first one from the subphase, an other one of two-dimensional nature, which

is in-plane, inherent to the liquid surface. Both shears are produced by the rotation

of an annular magnetic ring disposed at the bottom of the annular channel. From

the viewpoint of the boundary conditions, a swirling (toroidal) flow is caused by the

rotating ring while the two vertical sides of the channel remains fixed.
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Chapter 5 is devoted to experimental results. A new two-phase patterning at

mesoscopic scale in the PDA monolayer is confirmed and studied in steady state.

In the experiments on the morphological characterization induced by the imposed

flow, the distribution of a surface fraction in condensed phase is measured along the

interface by making use of Brewster angle microscopy. Evidence is given that, due

to mass conservation, centrifugation along the rotating ring causes a radially-inwards

flow along the liquid surface, which finally favors the packing of LC domains towards

the smallest radii. For both a channel depth and a level of centrifugation large enough,

the Langmuir film experiments an interesting morphological change essentially driven

by a balance between surface shear and line tension (1-D quantity analogous to surface

tension). Among consequences, the surface shear stress is demonstrated for the first

time (to our knowledge) as capable of melting the condensed domains. As a result, a

new morphological organisation is found which can be described as a 2-D matrix of

tiny condensed droplets.

Susceptibility to various control parameters such as PDA surface concentration,

depth of the annular channel, or the magnitude of subphase centrifugation, leads us to

distinguish a second physico-chemical regime within the Langmuir monolayer, referred

to as highly-densified (or stratified) regime. This corresponds to a vanishing role of

flow-induced surface compression at the expense of end-driven shear which plays a

growing role. If the depth of the annular tank is small enough and if the angular

velocity of the ring becomes large enough to yield a significant centrifugation, the

subphase shear at the surface is amplified so that it leads to a widespread fragmentation

of the condensed domains all along the liquid surface. The latter regime, already listed

in the literature, is certainly the one that we must avoid in future experiments devoted

to 2-D flow-focused crystal growth.

The last chapter of this dissertation (Chapter 6) is a contribution to the modelling

of a shear flow within an annular channel whose floor is put in rotation while its

two vertical cylindrical side walls are maintained stationary. The liquid surface at

the top of the annular channel is supposed to be covered by a layer of hydrophobic
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molecules. The flow is considered as permanent, axisymmetric and creeping. The

ratio of the liquid depth to the outer radius is small enough (shallow flow) so that it is

possible to develop a matched asymptotic model. All these geometrical and boundary

conditions are in agreement with our experiments. In the rotating subphase, a core

flow is therefore distinguished from the boundary layers along side walls. In order to

take into account some of the findings made evident from our experiments (Chapter 5),

the modelling includes the possibility to take into account the impact of the radially-

inwards molecular packing induced by centrifugation of the underlying bulk. To this

purpose, a radial distribution of surface viscosity is taken into account via the transport

equation for surface momentum. In this chapter, the well-known model by Mannheimer

& Schechter [112] can be considered as revisited: a new integral formulation is made

evident which enables a fair estimation of the Boussinesq number as well as a simple

measurement of a stratified surface viscosity.

To end this general introduction, it is important to mention that much effort has

been paid to write this dissertation so as to allow, as far as possible, a relatively

independent reading of each of the chapters, while not neglecting the logical connection

between them.
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Chapter 2

On monolayers

Monolayers, and more particularly Langmuir monolayers (LM), are one of the most

interesting state of soft matter. Within a monolayer, the molecules are perfectly ar-

ranged according to a 2-D film one molecule thick, so that from the study of a LM,

much can be learned as to the size, shape, and other properties of the individual

molecules. Growing interest in monolayer is driven in part by their numerous appli-

cations, including coating technologies, chemical and bio-sensors, and optoelectronic

devices. The advantage of studying monolayers at the air-water interface is that they

are easy to handle and that their properties can be easily manipulated by relatively

simple experimental methods. In this chapter, a background knowledge of monolayers

is recalled.

2.1 Basic features of monolayers

A monomolecular film or, briefly, a monolayer 1, is defined from two typical char-

acteristics:

1Strictly speaking, a film is a layer of substance, spread over a surface, whose thickness is small
enough for gravitational effect to be negligible. A monolayer is a film considered to be only one
molecule thick.

7
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⋄ A monolayer is made from surfactants (surface active agents) whose self-assembly

generates a perfect 2-D film one molecule thick.

⋄ Surfactants are typically organic molecules which are straddling at a fluid inter-

face minimising thus its free energy.

Depending on the properties of the surfactants, monolayers can be distinguished

as follows:

⋄ When surfactants are not soluble in the liquid subphase, the monolayer is called

a Langmuir monolayer (or Langmuir film).

⋄ In contrast, when surfactants are partially soluble in the liquid subphase while a

significant amount of them is adsorbed at the interface, the monolayer is called

a Gibbs monolayer [94].

Because a Langmuir monolayer (LM) can be considered as a perfectly two-

dimensional (2-D) self-assembly; they have given a lot of consideration. For a physi-

cist, monolayers provide an excellent model system to investigate thermodynamical

equilibrium of soft matter because the 2-D variables can be controlled properly. In

biophysics, LM is also a good mimetic of biological membranes and a more convenient

tool to investigate some of their biological features. For instance, life scientists usu-

ally investigate phospholipids LM in order to have an insight into the structure and

properties of bilayers involved in cell membranes. Also the applications of Langmuir-

Blodgett (LB) films are based on the control of LM before any transfer upon a solid

support. By definition, LB films are multi- or single-layers transferred layer-by-layer

from a liquid surface covered by a LM to a solid substrate. In this way, LB technique

is a tool of nanolithography which permits to manipulate molecules and to construct

artificially structured materials at nanoscale for optical, electronics or sensor appli-

cations. LB films can also be used as well-defined coatings in some applications of

tribology, wetting or physicochemical sorption.
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To prepare a LM, surfactant molecules are solubilised in a volatile solvent (such

as chloroform or ethanol) at a concentration of the order of mM. This solution is

usually deposited droplet after droplet over a liquid surface (air-water interface, for

instance) from a micro-syringe. As soon as a droplet of spreading solution touches the

air-water interface, it spreads out all over the entire water surface. Finally, the solvent

evaporates and leaves a monolayer afterwards.

To form a monolayer, a surfactant molecule must own a special chemical structure.

In the following section, we will focus on usual surfactants involved to build Langmuir

monolayers.

2.2 Molecular structure of amphiphiles

Most of the surfactant molecules used in a LM are amphiphilic2), which means

their structure is composed of both a hydrophilic group and a hydrophobic chain.

The hydrophilic group is commonly referred to as polar head and the hydrophobic

chain is often made from a sequence of alkyl groups. Because of its dual affinity, an

amphiphilic molecule exhibits a strong tendency to migrate towards a liquid surface

and to orientate so that its polar head lies in water whilst its chain is placed out of it.

There are lots of amphiphiles, some of them are molecules such as fatty acids,

alcohols, esters; others are a little bit more complicated such as di- or tri-glycerides,

phosphoglycerides, sterols or chlorophyll, usually found in biological systems. The

common amphiphiles, which are used to prepare Langmuir monolayers on a water

surface are fatty acids, fatty methyl ester and phospholipids, as shown in Fig. 2.1.

The head group may be ionized if pH and ionic conditions allow dissociation into

underlying subphase (e.g., fatty acid, Fig. 2.1 (a)). The head group may be neutral as

well (e.g., fatty ester, Fig. 2.1 (b)) [85]. The amphiphiles encountered most frequently

2The term amphiphilic means loves both. In other words, the polar head of an amphiphilic molecule
is soluble while its chain behaves as a non-polar solvent [13].
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in nature are the phospholipids3 (Figs. 2.1 (c) and (d)) which consist of coupled fatty

acids.

2.3 The case of amphiphilic fatty acids

In chemistry, especially in biochemistry, carboxylic acids containing at least 4 car-

bon atoms can be considered to be a fatty acid. Fatty acids derived from natural fats

and oils. They are known to behave as amphiphilic species in presence of water if their

hydrophobic chain is made from at least 8 carbon atoms.

A saturated (no double bonds) long-chain fatty acid is a typical monolayer-former;

it consists of a linear chain (CnH2n+1), an alkyl chain, and of a carboxylic acid group

(COOH) which behaves as a polar head. The magnitude of the hydrophobicity is

obtained from the length of the alkyl chain. Any change in the nature of either the

alkyl chain or the polar end group will affect the monolayer properties, especially its

percentage of solubility [133]. Chains longer than about 12 carbons are necessary

to get a solubility low enough, however, not all water-insoluble amphiphilic molecules

spread with the aid of a volatile solvent to a monolayer on the water surface. When the

hydrophobic character of the chain is dominant, i.e. the cohesive forces between the

amphiphilic molecules overcome the attraction with the water subphase and between

the polar heads of the amphiphilic molecules, the amphiphilic molecules will form

a lens rather than a uniform monolayer on the liquid surface. To summarise, the

conditions for which a chemical specie can form a LM are that the chain length must

be sufficiently long to make the molecules insoluble, and that there must be a balance

with the hydrophilic interaction with the surface. Due to the opposing natures of

these two requirements, only some amphiphilic molecules will fulfill these requirements

simultaneously. Table 2.1 lists some common fatty acids used in monolayer studies.

At room temperature, molecules with 22 carbon atoms or more tend to form lenses

rather than monolayers on a water surface.

3A main ingredient of cell membranes.
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Figure 2.1. Some common amphiphiles forming Langmuir monolayers on surface of
water: (a) fatty acid, (b) fatty methyl ester, (c) and (d) phospholipids.
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Table 2.1. Properties of long-chain fatty acids used for monolayer studies (adopted
from Ref. [102]). The first column indicates the carbon chain number of the fatty
acids.

Structure Systematic name Common name Mr
1 Tm

2 Sw
3

C13 C12H25COOH tridecanoic tridecylic 214.35 42 0.0033

C14 C13H27COOH tetradecanoic myristic 228.38 54 0.0020

C15 C14H29COOH pentadecanoic pentadecanoic 242.40 52 0.0012

C16 C15H31COOH hexadecanoic palmitic 256.43 62 0.00072

C18 C17H35COOH octadecanoic stearic 284.48 69 0.00029

C20 C19H39COOH eicosanoic arachidic 312.54 75

C22 C21H43COOH docosanoic behenic 340.59 81

C24 C23H47COOH tricosanoic lignoceric 368.64 84

1molecular weight (g·mol−1)

2melting point (◦C)

3water solubility at 20 ◦C in units of grams of solute per 100 g of water

To obtain an insoluble monolayer of a nonionized fatty acid (a common situation at

sufficiently low pH values), the molecules must contain at least 12 carbon atoms [133].

For instance, if the monolayer of myristic acid (C13H27COOH) is held at a surface

pressure of 10 mN·m−1 and a temperature of 20 ◦C, the loss in monolayer area due

to a small but nevertheless existing solubility of myristic acid in a water subphase is

estimated to be 0.1 %·min−1 [163]. This contrasts with stearic acid (C17H35COOH)

which shows a decrease in monolayer area of less than 0.001 %·min−1 under similar

conditions [51]. The different solubilities of the long-chain fatty acids in a water

subphase at 20 ◦C are displayed in Table 2.1.
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2.4 Phases behavior of Langmuir monolayers

A Langmuir monolayer can be considered to exist in different phases with ther-

modynamic properties analogous to those of three-dimensional (3-D) gases, liquids, or

solids. Various monolayer phases (or states) represent different degrees of molecular

freedom or order, resulting from the intermolecular forces within LM or between LM

and subphase.

The traditional method to study monolayer is to measure the surface pressure, Π

(N·m−1), as a function of the molecular area, A (Å2·molecule−1), which is defined as

the averaged surface made available all around one molecule in the LM. The surface

pressure, Π, originates from the reduction of surface tension due to the intermolecular

forces between amphiphiles along the liquid surface (described in details in section 3.1).

The plot of surface pressure versus the molecular area is known as Π–A isotherm. It is

therefore possible to determine phase diagrams of Langmuir monolayers by measuring

their Π–A relation at different experimental conditions (such as temperature, subphase

pH, etc.).

2.4.1 Isotherms of Langmuir monolayers

The first measurement of one Π–A isotherm was performed by Pockels [137]. Af-

terwards, Lord Rayleigh was inspired to perform his own experiments, from which he

concluded that these layers were a single-molecule thick [141]. Later, Langmuir [96]

was the first to provide essentially the modern understanding of their structure at the

molecular scale, in particular the fact that the molecules demonstrate a preferential

orientation with respect to the liquid surface.

A simple experimental setup, named as Langmuir trough, is devoted to the mea-

surement of a Π–A isotherm (Fig. 2.2). The area of the monolayer is varied by moving

a barrier across the water surface. The surface tension (or equivalently, the surface

pressure) is determined by suspending a plate made from a material completely wet
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by water (Whilhelmy technique). The liquid surface pulls down the plate under the

effect of a downwards force defined as the surface tension times the perimeter of the

plate (all details about surface pressure are given in section 3.1.2).

subphase

barrier

Wilhelmy plate

Figure 2.2. The Langmuir trough used in this dissertation (Nima Ltd.) and surface
pressure as measured by the Wilhelmy plate method. The right scheme illustrates
a LM submitted to a surface compression induced by inwards motion of a floating
barrier.

Figure 2.3 shows a generalized isotherm of Langmuir monolayers of fatty acids.

From its shape, it is possible to recognize four principal monolayer phases: a low-

pressure gaseous (G) phase, a liquid like phase termed liquid-expanded (LE or L1)

phase, a liquid-condensed (LC) phase existing at a higher surface pressure or a lower

temperature, and a solid phase according to the terminology introduced by Adam [89]

and Harkins [61]. Later experiments by Stenhagen [160, 163] and Lundquist [107, 108]

revealed isotherms with many bumps and kinks, which they viewed as evidence for

additional phase transitions. However, isotherm measurements are often difficult to

interpret, a point which is mainly due to uncontrolled insertion of impurities in the

sample or along the walls of the trough. As a result, many small features on the

isotherms have been ignored. Despite the difficulties associated with their interpreta-

tion, isotherms remain still a very convenient method to access the thermodynamic

state of Langmuir monolayers. We should note that due to the narrow ranges of

temperature and surface pressure available in practice, a particular monolayer may

not exhibit all of the features shown in Fig. 2.3. Recent study with the aid of mod-
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ern physical instruments (Small Angle X-ray Scattering for instance) confirmed that

other phases also exist although their presence is somewhat hidden inside the isotherm

diagram of Langmuir monolayers.
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Figure 2.3. A Π–A isotherm as a plot of surface pressure Π against molecular area A
at constant temperature. The molecular area A at which a change in the slope can be
seen, corresponds roughly to the one found for the pentadecanoic acid (PDA) used in
this dissertation (see e.g. Fig. 4.5 in Chapter 4). The insert shows the G–LE transition
region at large molecular areas. Four schemes illustrate the molecular packing for each
of the phases G, LE, LC and Solid.

2.4.2 Generalized phase diagrams of Langmuir monolayers

For a particular LM system under well-controlled environmental parameters such

as pH, ionic strength and humidity, the Π–A relation at various temperatures can be

measured, and from the features of the isotherms one can also build surface pressure–

temperature (Π–T ) diagrams for the phases. This is analogous to the pressure–volume–

temperature diagrams for the ordinary (3-D) phases. Nevertheless, knowledge about

the underlying structures of Langmuir monolayers is complicated. Since the early

1980’s, many experiments at nano-scale on Langmuir monolayers have been made

possible with the aid of modern developments in electronic and optical techniques.

For instance, the phase diagrams of Langmuir monolayers have been classified thanks
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to the development of X-ray diffraction and reflectivity measurements [84, 85]. Al-

though the technique of X-ray crystallography has a long history, it was difficult to

obtain sufficient scattered signal for a sample with only one molecule thick until the

advance of synchrotron radiation as a powerful X-ray source. The high intensity of

synchrotron radiation compensates for the small scattering cross sections of mono-

layers. As for optical measurements, with the aid of laser technologies and optical

electronics development, Langmuir monolayers can be investigated on micro or larger

length scales while X-ray scattering experiments provide information at the scale of

several ångströms. Optical microscopy, such as fluorescence microscope (FM) [140]

or Brewster angle microscope (BAM) [73, 70, 69], also offers the possibility of ac-

tually viewing Langmuir monolayers at micro scale from the optical contrast due to

different properties of various co-existing phases (these techniques will be discussed

later in Section 3.4). Compared to a (macroscopic) rheological measurement such as

a Π–A isotherm, optical microscopy provides a complement of information about the

mesoscopic morphology of transitional Langmuir monolayers.

There are elaborate structures and phase transitions in Langmuir monolayers [95,

85, 150]. Figure 2.4 shows a generalized Π–T phase diagram of Langmuir monolayers

incorporated the results of Refs. [130, 92, 103, 21, 171, 88, 18, 3, 139, 74] by Overbeck

& Möbius [129]. It reveals most of the condensed phases known at present and is

valid for fatty acids [160, 163, 19], for ethyl [107] and other esters of long-chain acids

[142], and for acetate esters of long-chain alcohols [108]. The temperature and pressure

scales vary with chain length and the nature of the head group of amphiphiles (see

Fig. A.2 for fatty acid monolayers). However, up to now, researchers used discrepancy

of nomenclatures for different phases of Langmuir monolayers. The following Table 2.2

lists phases observed in monolayers, and the nomenclatures used by different authors

[85].
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Table 2.2. LM phases observed in different studies and nomenclatures used by different authors (adapted from Ref. [85]).

Literature Refs. Nomenclatures

Adam [1] LE close-packed heads close-packed chains

Dervichian [35] liquid mesomorphous solid

Harkins et al. [66] LE LC superliquid solid

Harkins & Copeland [64] L1 L2 LS S

Stenhagen [163] L1 L2 L
′

2 LS S CS

Lundquist [107, 108] L1 L2 L
′

2 L
′′

2 LS/LS
′

S/S
′

CS/CS
′

Lin et al. [103], Shih et al. [155] D C B RI-RII A
′

A

Bibo et al. [18]: monolayer phases L2/L
′

2 S
′

/L∗
2 L

′′

2 LS S CS

Bibo et al. [18]: related smectic (Sm) categories Sm A Sm I/Sm L Sm H/Sm F Sm K Sm BH Sm E

Schwartz et al. [152] I F I ′ U U ′

Overbeck & Möbius [129], Durbin et al. [44],

and Riviére et al. [147]
L2 Ov L

′

2 L
′′

2 LS S CS

Durbin et al. [43] L2 I-L
′

2 LS S

Theory: Kaganer & Loginov [84] L2d L2h Ov L
′

2 L
′′

2 LS S CS

Azimuth of tilt1 NN NN NNN NNN NN U U U

Azimuth of unit-cell distortion1 U NNN U NN NN U NN NN

1 (normal to chains), NN = tilt or distortion to the nearest-neighbor molecule, NNN = tilt to the next-nearest neighbor molecule, U = untilted

or undistorted hexagonal. Azimuth of distortion is that of stretching of the unit cell.
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Figure 2.4. Generalized phase diagram of Langmuir monolayers that was incorporated
the results of Refs. [130, 92, 103, 21, 171, 88, 18, 3, 139, 74] by Overbeck & Möbius
[129]. The phases are designated according to the Harkins-Stenhagen notation. Ov

denotes the phase discovered by Overbeck & Möbius [128]. The separation of the L2

phase into herringbone ordered L2h and disordered L2d is proposed by Kaganer et al.
[85].

2.4.3 Properties and structures of LM phases

All phases presented in the phase diagram (Fig. 2.4), characterized by using X-ray

diffraction or optical microscopy techniques, have been found to exhibit a variety of

molecular arrangements [95, 129].

Gaseous (G) phase

Generally, a very dilute monolayer, with a molecular area A in the range of hun-

dreds of square angstroms (or more), can be well described as a 2-D gaseous (G) phase.

In the G-phase, a main part of the hydrocarbon chain is hydrated by water, the am-

phiphilic molecules are seen to behave as a 2-D ideal gas4 if the surface concentration,

4e.g. at molecular areas of the order 50000 Å2·molecule−1, the monolayer of PDA exhibits a
behavior consistent with a 2-D ideal gas law [61]
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Γ (Γ ≡ 1
A

), is small enough. Hence, the 2-D ideal gas law (Henry’s model [104]) can

be described as:

ΠA = kT, (2.1)

where Π is the surface pressure, A is the molecular area, k is the Boltzmann’s constant

(1.381 × 10−23 J·K−1) and T is the thermodynamic temperature. In principle, any

monolayer-forming substance will exist as a gaseous film if the molecules are sufficiently

widely separated (large enough molecular area). Other equations of state, based on

various assumptions that to consider the monolayer to be a non-ideal 2-D gas have

been reported (e.g. Volmer model, ven der Waals model, Langmuir model and Frumkin

model etc. [104]).

Liquid-expanded (LE) phase

With further decrease of molecular area (by increasing surface pressure for in-

stance), the monolayer can exhibit LE phase as shown in Fig. 2.3. As for the G phase,

the polar heads of the molecules are disordered and the chains are conformationally

disordered [85]. The surface potential does not show fluctuations, indicating that the

monolayers are homogeneous and the LE phase resembles to a 2-D isotropic arrange-

ment of amphiphiles. The quantitative interpretation of Π–A curves for LE monolayers

is in a less satisfactory state (similar to the theoretical treatment of classical liquids).

Langmuir [97] derived the first equation of state for LE monolayers by assuming that

the upper surface of the monolayer behaves as a bulk hydrocarbon liquid, and there-

fore exhibits a normal liquid surface tension. Various attempts have been made to

complement Langmuir’s ideas with the aim to derive a relevant equation of state for

LE monolayers ([51]). Up to now, there is still a strong debate in the literature on the

criteria which could permit to select the more relevant equation of state for LE phase

[47].
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Condensed phases

The term condensed is used to denote all phases of the monolayer with the hy-

drocarbon chains aligned, in contrast to the G and LE phases for which the chains

are conformationally disordered. On the Π–A isotherm (Fig. 2.3) at a low molecu-

lar area, we can typically note a kink5 which divides the isotherm into two regions.

Each region possesses different level of surface compressibility, generally referred to as

“liquid-condensed” (LC) phase and “solid” phase (see Fig. 2.3). The compressibility

of Langmuir monolayer can be defined as,

C = − 1

A

(
∂A

∂Π

)

T

, (2.2)

where C is of the order of 10−3 m·(mN)−1 for LC phase. From this definition, the

slope of the isotherm is directly related to surface compressibility.

In fact, terminology of LC phase and solid phase for a monolayer was proposed

long before structural data on monolayers became available, and it can be confusing

today since it is inconsistent with the present knowledge. Theoretically, a monolayer

possesses the same degree of translational order in both regions in the isotherm. De-

pending on the temperature, the two regions can be either long range in crystalline

phases or short range in mesophases [84]. According to X-ray diffraction studies [84],

the hydrocarbon chains of the amphiphile are aligned parallel to each other. The

orientation of the chains is respectively tilted to the water surface in LC phase but

perpendicular to the water surface in solid phase, as illustrated in Fig. 2.3. The two

condensed regions in the isotherms can also be named tilted condensed phase and

untilted condensed phase. The monolayer is relatively easier to compress in the tilted

phase (LC phase): by decreasing the tilt angle, the surface area will be decreased.

However, in the untilted phase (solid phase), the gap between close-packed vertical

molecules determines a large area density (or surface concentration Γ), therefore, the

solid phase is much less compressible than the LC phase.

For monolayers, the phases contain only a subtle slope change in the Π–A isotherm,

5The kink was firstly observed and treated as a phase transition by Adam [1].
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however, a rich family of condensed phases (see Fig. 2.4 and Table 2.2) have been re-

vealed thanks to optical microscopy and X-ray-diffraction data. A detailed discussion

on the molecular orientations in condensed Langmuir monolayers is available in ap-

pendix A. It can be nevertheless helpful to introduce briefly here basic ingredients on

that subject. When a substance is close to but lower than the positional order of a

crystal (solid) while being more ordered than an isotropic liquid, it is called a liquid

crystal. There are many different types of liquid crystal phases with different degrees

of orders ([81], Chapter 1), such as nematic, smectic, helical, cholesteric phases, etc..

In the appendix A, one focuses the presentation on smectic phases6 because they are

the more relevant to the molecular orientations in Langmuir monolayers [95].

2.4.4 Phase transitions of Langmuir monolayers

G–LE and LE–LC phase transitions

According to the modified Gibbs phase rule, if the molecular area, A, changes in

a one-component monolayer while the surface pressure, Π, remains constant, there is

coexistence of two phases of different condensation state at a given unchanged tem-

perature. Generally, a fatty acid LM exhibits two major co-existing phase transitions

(see Fig. 2.3), the first one is a transition from gaseous (G) phase to liquid expanded

(LE) phase and the second one is a transition from liquid expanded (LE) phase to

liquid condensed (LC) phase.

The G–LE phase transition is generally interpreted as a first-order phase transition.

Actually, this transition is difficult to study experimentally [90, 131] due to the small

surface pressure involved.

With further compression and for a significant number of amphiphilic fatty acids,

6The term “smectic” derives from the Greek word, meaning soap, since the smectic phases tend to
have mechanical properties similar to those of the layered phases of soaps. Smectic phases are related
to the mesomorphic phase of a liquid crystal in which molecules are closely aligned in a distinct series
of layers, with the axis of the molecules lying perpendicular to the plane of the layers. The smectic
phases do not have the highly ordered structure of a crystalline solid, but they do have a greater
degree of order than liquids. More particularly, they exhibit a long-range orientational order.
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the LE–LC phase transition – of interest here in this dissertation – can be observed

without special effort at room temperature and pressure. Theoretically, the presence

of LE–LC phase transition should be correlated with the arising of a plateau in Π–A

isotherm which indicates the first-order transition (see e.g., Fig. 2.5 which shows the

LE–LC phase transition at different temperature for a pentadecanoic acid monolayer).

However, in many monolayer systems, the phase transition is possibly contrary to the

Gibbs phase rule due to a feature with continuous change of slope. In fact, this ap-

parent noncompliance provokes a long-standing controversy about the real existence

of a transition and about the order and number of phase transitions [148]. For the

phenomenon of non-horizontal isotherms, some researchers presented theoretical treat-

ments based on formation of small molecular aggregates [78, 48, 148]. Pallas & Pethica

[130] were able to obtain flat features on PDA isotherms by taking extreme care to

avoid contamination. Although their results shows that the introduction of impurities

will cause a permanent slope on Π–A isotherm even during the course of LE–LC tran-

sition, it is still not clear that this is the exclusive interpretation (e.g. electrostatic

interaction between domains may also been consider).

G–LE–LC triple point

According to the literature [122, 94], G–LE and LE–LC transitions merge at low

temperatures. Below the G–LE–LC triple point (tamperature: T = Tt), a direct

transition from G to LC phase takes place. The triple point for pentadecanoic acid

is found close to 17 ◦C (as confirmed in Fig. 2.5, see also Ref. [122]). Note that for

myristic acid, one gets Tt ≈ 31 ◦C [168], and for stearic acid, Tt ≈ 40 ◦C [87, 129].

Therefore myristic and pentadecanoic acids are the only fatty acids which can be

conveniently used to study stable LE–LC co-existing phases of a LM under flow at

room temperature and in the neutral form. Due to the length of its alkyl chain, PDA

is expected to be slightly more amphiphilic than myristic acid. The last two points

are among the reasons for which PDA was finally selected as a model system during

this dissertation.
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Figure 2.5. A selection of isotherms of PDA monolayers (after Ref. [45]). Those
isotherms exhibiting a liquid phase (open symbols) were produced by expansion; note
the flat first-order coexistence regions. Increase of surface pressure by successive
addings of PDA was used at T < Tt where Tt ≈ 17 ◦C is the triple point for a
PDA monolayer [45].

2.4.5 Dissociation of fatty acids

When the pH value of the subphaseHH is increased, fatty acid molecules in the

monolayer dissociate [20, 83]. The portion of charged carboxylate in the fatty acid

monolayer varies as a function of pH. The substitution of carboxylates for neutral

fatty acid molecules in monolayer leads to a change in the intermolecular interactions.

Hence the phase behavior of a fatty acid monolayer is expected to depend on the

subphase pH. Aveyard et al. [8] provided the evidence that fatty acid (stearic acid)

start to dissociate and change their behavior measurably at a pH value around 6.

Figure 2.6 shows Π–A isotherms of arachidic acid at 25 ◦C within a certain range of

pH. Johann [83] demonstrated that the plateau onset pressure (it can be regarded as

the surface pressure of LE–LC phase transition) is a linear function of the subphase

pH at constant temperature (see the inset in Fig. 2.6). It should be noted that the
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cleanest subphase made from ultrapure water only is not well defined as regards charge

density. A pH ≈ 5.5 is established after a time delay which is due to dissolution of

the CO2 from air inside water subphase, and the head groups are partially dissociated

[85]. As a consequence, most studies on fatty acid monolayers are performed at pH

= 2 or 3, since ionization is negligibly small. All the experiments of this dissertation

were carried out with a subphase of ultrapure water acidified with hydrochloric acid

of high degree of purity ([HCl] = 10−2 M).
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Figure 2.6. Π–A isotherms of arachidic acid at 25 ◦C for different pH values (adopted
from Ref. [83]). The smallest surface pressure at the onset of the plateau (transition
from LE to LC phases) is found to be a linear function of subphase pH at constant
temperature (see insert).

2.4.6 Stability of fatty acids monolayers

The stability of Langmuir monolayers often refers to collapse, a process which des-

ignates the break-up of the 2-D self-assembly and the arising of a 3-D structure within

the LM. This process can be regarded as a solid phase nucleation. From Π–A isotherms
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recorded during a constant rate of monolayer compression, the collapse surface pres-

sure, Πc (the highest surface pressure to which a monolayer can be compressed without

noticeable expulsion of amphiphiles out of the LM), can be usually determined from

the arising of a spike or a plateau at surface pressures Π > Πc [20]. The critical surface

pressure, Πc, is highly dependent on the rate of compression and it is often difficult to

find a reproducible value of Πc [85].

The spreading pressure of a two-phase monolayer in thermodynamical equilibrium

with its solid phase along an air-water interface is called equilibrium spreading pressure

(ESP). ΠESP , can be properly determined by placing tiny amounts of surfactant on

a water surface and monitoring the progress in surface pressure until a steady value

is achieved. However, according to Iwahashi [80], the published values for the ESP

of fatty acids monolayers are seen inconsistent. He claimed that a discrepancy can

be mainly attributed to the insertion of impurities within the LM, or to geometrical

differences in subsequent solid domains at mesoscopic scale. With a further increase of

pressure, the barrier to nucleation will decrease, and the arrangement of critical nuclei

of 3-D solid phase becomes more possible; once critical nuclei have formed, they grow

into the solid phase [187]. These phenomena could explain why the constant pressure

exceeds ESP can result in the decrease of molecular area with time [157]. If the surface

pressure of a monolayer exceeds ΠESP but lower than Πc, the monolayer is metastable

with respect to the formation of a 3-D crystalline phase subsequent to a collapse.

In fact, for fatty acids, a surface pressure above ESP can also lead to a kinetic

instability of the monolayer [20]. If the monolayer is not kinetically stable, molecules

will move away from the interface during the course of time. In this case, the surfac-

tant molecules can evaporate in air, can be solubilized in the subphase or can form

3-D crystals at the liquid surface. The loss of amphiphilic specie depends on surface

pressure, temperature, subphase pH and the molar balance between the hydrophilic

head and the hydrophobic chain of the amphiphile involved [20]. Below ΠESP , am-

phiphilic specie can only be lost via evaporation or solubilization [83]. Causes for the
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previous kinetic instability include evaporation [26], surface chemical reactions [158],

monolayer dissolution into the subphase [120] and collapse [26, 187].

A monolayer below ΠESP constitutes a main condition for thermodynamic stability

of monolayers. In principle, the thermodynamic stability against the dissolution is

determined by the hydrophilic / hydrophobic balance of the amphiphile (the larger

the hydrophobic chain, the more stable the LM).

2.5 Pentadecanoic acid, as a result of selection

As briefly mentioned above, the surfactant selected for all the experiments in this

dissertation is the pentadecanoic acid (PDA). Fig. 2.7 shows the molecular structure

of PDA. Our reasons for this decisive choice are summed up as follows:

⋄ The triple point and the hydrophilic / hydrophobic balance of PDA are both

in favor of a LE – LC transition which is very quite stable and reproducible at

room temperature.

⋄ The hydrophilic / hydrophobic balance is also small enough to avoid any signifi-

cant solubilisation in the subphase at a time-scale of one hour. Despite this care,

we will see that solubility of PDA can not be considered as entirely negligible in

our experiments.

⋄ The PDA stands also as user-friendly; the protocols of use and its characterisa-

tion around thermodynamical equilibrium were particularly well-established in

the two previous decades (80’s-90’s), as demonstrated by the literature devoted

([91, 118, 80, 29, 131, 184, 45, 166, 122, 74]).

⋄ The PDA is also quite appropriate to imaging under Brewster angle microscope

(or BAM, see also Chapters 3 and 4): the LC domains it forms exhibit a length

scale particularly suitable to the use of a BAM: nor too small compared to the
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spatial resolution of a BAM device, neither too large compared to the typical

size of the laser spot involved (Chapter 3).

As shown in the dissertation, the adsorption isotherms measured with PDA are re-

producible in spite of all the complex molecular arrangements that could arise at

nanometer scale (smectic or hexatic phases, see e.g. appendix A).

As a matter of fact, the details at nanoscale of a condensed phase and more par-

ticularly, all the collective changes induced at molecular scale by a flow ([49, 114, 115,

75, 76, 77, 150]) are definitely not the focus of this dissertation. Here, our interest

is entirely devoted to flow-driven phenomena induced at the mesoscopic scale of a

full LC domain (surface coverage: 100 µm2 to 1 mm2, typically the scale of a future

single-crystalline grain).

To complete this comment, just say that our approach is the one of continuum me-

chanics with a special emphasis on the flow of a two-phase LM made from a continuous

LE phase populated by a dispersion of LC domains.

OH

O
polar head group
(hydrophilic)

nonpolar hydrocarbon chain
(hydrphobic)

carbon

hydrogen

oxygen

Figure 2.7. Molecular structure of pentadecanoic acid (PDA).
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Chapter 3

Experimental characterisation of a

Langmuir monolayer

Monolayers exhibit a variety of measurable quantities due to their specific me-

chanical, physico-chemical and optical properties. A lot of studies about insoluble

monolayers have been carried out by using different experimental techniques. In this

chapter, we consider briefly the relevant background on liquid surfaces. We present

the state of the art about the experimental techniques we selected to measure the sur-

face pressure as well as the surface viscosity, and to visualise specifically the Langmuir

monolayer (LM).

3.1 Static properties of liquid surfaces

The force, due to unbalanced molecular attraction, which tends to pull molecules

of the liquid surface into the inside of a supporting liquid subphase, and hence to

minimize the surface area of a bulk of liquid, is commonly refereed to as surface

tension. Since the work done in extending a surface against this force produces an

increase in the energy of the system, it is appropriate to analyze the thermodynamics

of a system involving an interface between liquid and gas bulks in an attempt to

29
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understand surface tension effects. According to the treatment that was given by

Gibbs, at thermodynamic equilibrium, surface tension σ is referred to as a free energy

per unit area and may equally be thought of as a force per unit length that can be

described by the following relation:

σ =

(
∂G

∂a

)

Π,T,ni

=

(
dF

dc

)

T

, (3.1)

where G is Gibbs surface free energy; a, the area of the interface; ni, the molar amount

of the ith chemical species which make the interface; Π, the surface pressure; T , the

temperature of the interface, and F is the force exerted by the surface upon an edge

of length c. The equilibrium property of surface tension is inherent in many accepted

norms of the interfacial behavior: such as the tendency for bubbles and droplets to

assume a spherical shape, the beading-up of droplets on a solid surface and the rise of

liquids through narrow capillaries.

When amphiphilic species adsorb at an initially clean air-water interface from the

subphase (Gibbs monolayer) or when they are not soluble but directly spread over

the interface (Langmuir monolayer), the initial surface tension of the liquid surface σ0

(72.8 mN·m−1 for water at 298 K, 1 atm) can be reduced down to a value σ. The

difference in surface tension is commonly referred to as surface pressure,

Π = σ0 − σ, (3.2)

and it corresponds to surface (2-D) pressure that results from the molecular interaction

between amphiphilic species along the liquid surface. The quantities σ and Π have

therefore the same units (mN·m−1)1, although their physical meanings are different.

The measurement method of surface pressure will be described in section 3.1.2.

11 mN·m−1 = 1 dyne·(cm)−1
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3.1.1 Contact angle

When a drop of liquid is placed on a smooth solid surface, the extent to which it

will wet the solid surface is governed by a balance between the three surface tensions

involved. The net force issued from the balance between:

⋄ the surface tension, σGS, due to the interaction between gaseous and solid phases,

⋄ the surface tension, σLS, due to the interaction between liquid and solid phases,

⋄ and the surface tension, σLG, due to the interaction between liquid and gas

phases,

gives rise to spreading (or non-wetting) of the liquid phase until an equilibrium position

is found [13]. Typically, the position of the contact line will change in response to the

horizontal components of the surface tensions acting on it. The zeroing of the net

force (static equilibrium) can be illustrated in Fig. 3.1 (a) which shows a sessile drop

of liquid (L) deposited on a flat solid (S) surface, both phases being surrounded by

air (G) as a third phase. The static angle, θC , defined at the contact line as the angle

between the L/S surface and the L/G surface, is referred to as a contact angle. In this

particular equilibrium, the contact line being at rest, the well-known Young’s equation

is recovered as the horizontal projection of the previous balance between all surface

tensions:

σGS = σLS + σGL cos(θC). (3.3)

Although Eq. (3.3) describes the equilibrium contact angle in terms of the inter-

facial tensions, it gives no real insight into the reason that a certain value of contact

angle is reached. An understanding of the origin of contact angle requires knowledge of

the balance of forces between molecules in the liquid drop (cohesive forces) and those

between the liquid molecules and the surface (adhesive forces).

A surface that has primarily polar groups on the surface, such as hydroxyl groups,

will have a good affinity for water and therefore strong adhesive forces and a low



·32· Chapter 3. Experimental characterisation of a Langmuir monolayer
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L
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(b)

Figure 3.1. (a) Surface tensions acting at the contact line for a sessile drop (adopted
form Ref. [13]). (b) 25 µl water droplet on Delrin

TM

demonstrating the contact angle
caused by the balance between all surface tensions (adopted from Ref. [60]).

contact angle. Such a surface is called hydrophilic (the liquid phase wets the solid

surface: θC < 90◦).

If the surface is made up of non-polar groups, which is common for polymer surfaces

or surfaces covered by an organic layer, we say that the surface is hydrophobic (the

liquid phase does not wet the solid surface: θC > 90◦).

If θC = 0◦, wetting is said to be complete or perfect: this is a basic condition of the

Wilhelmy method used in this dissertation.

3.1.2 Surface pressure

The most commonly measurable property of an insoluble monolayer is its surface

pressure, Π. Most of the methods devoted to surface pressure measurement rely on

the difference between two surface tension measurements. The first one is performed

on the pure liquid surface (surface tension σo) whilst the second one is performed on

the same liquid surface but covered by the Langmuir monolayer (surface tension σo).

As a consequence, surface pressure is deduced from the difference: Π = σo − σ.

Most of these measurement methods2, based on capillarity, are ill-suited for the

2such as: capillary rise method [63, 145], maximum bubble pressure method, drop weight method
[170], du Nouy (ring) method [41], Wilhelmy (plate) method [183], pedant drop method [5], sessile
drop or bubble method, flow method [169], capillary waves method, maximum bubble pressure method
[119]...etc.
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study of monolayers except the pendant drop method and the Wilhelmy method [2].

Both approaches are capable of surface pressure measurement with a similar precision:

about 0.01 mN·m−1 [2].

For the pendant drop method, a motor-driven syringe allows changes in drop vol-

ume to study surface tension as a function of surface area (an time-dependent image

processing is required). The advantage of this approach is that it is useful for mate-

rials available in limited quantities and that it can be extended to study monolayers

at liquid-liquid interfaces [101]. However, it is much more time-consuming than the

Wilhelmy plate method and the previous advantages are not really relevant to our

study.

It is obvious that there are many possible variations around the Wilhelmy plate

method3, ranging from extremely simple and inexpensive devices to elaborate instru-

ments with extremely thin plates and sensitive recording balances. This is one of the

important advantages of the Wilhelmy plate method. Another advantage is the fact

that only the plate needs to be in contact with the liquid surface; since the plate may

be made from any inert materials (platinum, quartz...), the possibility of contami-

nation is minimized. Therefore, we choose the Wilhelmy plate method to measure

surface pressure of LM in our study.

Wilhelmy plate method

In the Wilhelmy plate method, an immersing plate is suspended at the air-water

interface as shown in Fig. 3.2 (b). The forces acting on the plate are due to surface

tension and gravity, partially compensated by buoyancy effect due to the weight of

liquid displaced. For a rectangular plate of dimensions l, w and t (length, width and

thickness), and the plate density ρp immersed to a depth d in a liquid with density of

3As a technique close to the Wilhelmy method, the du Nouy method makes use of a circular wire
in replacement of a plate (see Fig. 3.2 (a)). In the du Nouy method, however, the ring has to be kept
as horizontal as possible (a departure of 1◦ is found to introduce an error of 0.5 %, whereas one of
2.1◦ introduces an error of 1.6 % [2]). Besides, special care must be devoted to avoid any disturbance
of the surface as the critical point of detachment is approached.
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Figure 3.2. (a) Photo of a du Nouy ring (left) and a Wilhelmy plate (right). (b)
Schematic of the Wilhelmy method, with d is the depth of the meniscus, t, the thickness
of the Wilhelmy plate, w, its width, and θC the contact angle between the plate and
the liquid surface. (c) Picture of the surface pressure sensor (PS4, Nima) used in
this dissertation with electronics enclosure open. Infra red (IR) diode illuminates the
edge of a moving coil. The position of the coil is detected from IR reflection and two
position sensitive detectors.

ρw, the net downwards force ~F is given by:

~F = (ρp l w t) g︸ ︷︷ ︸
weight

+ 2 (w + t) σ cos θC︸ ︷︷ ︸
surface tension

− (ρw dw t) g︸ ︷︷ ︸
buoyancy

, (3.4)

where σ is the net surface tension; θC , the contact angle and g, the gravity. In Eq. (3.4),

the buoyancy effect of the plate in the air is evidently neglected.

As θC is often unknown, use is made of a completely wetted plate, for instance a

filter paper, which allows us to get θC = 0◦. In addition, when the underlying liquid

is removed from any surfactants, the force reading is set to be zero before making any

measurement. In this way, the surface pressure is directly measured as a difference of

the surface tensions (see Eq. (3.2)). Hence, one eliminates the weight term in Eq. (3.4)

as:

~F = −(ρp dw t) g + 2 (w + t) σ. (3.5)
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We can also eliminate the buoyancy term in Eq. (3.4) because much attention is paid to

keep the plate at a constant level despite downwards surface tension. As a consequence,

the net force writes:

~F = 2 (w + t) σ, (3.6)

and consequently, the surface tension is deduced as follows:

σ =
F

2 (w + t)
. (3.7)

Measuring the relative change in F yields the surface pressure,

Π = −∆σ = −
[

∆F

2 (w + t)

]
. (3.8)

The pressure sensor contains a Nima 16 bit analog-digital converter. With that

device, the surface tension of 70 mN·m−1 can be theoretically resolved with an accuracy

of 10 µN·m−1. However, the absolute accuracy is limited because it depends on the

width of Wilhelmy plate, that is, if we increase the width of the plate, we increase the

absolute accuracy. In our study, we used a piece of chromatography paper (Wattmann)

as a plate (perimeter: 21 mm), which allows for an accuracy of 0.1 mN·m−1. According

to Eq. (3.7), a weight of 100 mg will give a surface tension reading of 46.7 mN·m−1.

This method was systematically used to calibrate our Nima surface pressure sensor.

3.2 Line tension

According to Gibbs [57], the line tension can be regarded as a concept of surface

thermodynamics. However, the wide investigation of this quantity was undertaken

only a century later because line phenomena are much more complex than surface

ones to handle both from the experimental and theoretical points of view [149]. Ex-

perimentally, line tension, λ, is typically a very small force to measure (λ ∼ 10−12 N)

and the availability of an accurate device to do this still remains challenging. Theo-

retically, compared to a surface which can be the merging of only two bulk phases,

three bulks phases or also two surface phases merge simultaneously into one line. As
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a consequence, line tension is a mechanical quantity more complicated than surface

tension to model when the aim is to derive line momentum balances. Moreover, an-

ticipating on Chapter 5 where all useful theoretical ingredients are given, line tension

can not be considered as a mechanical concept only because short-range as well as

long-range forces contribute simultaneously to it. Rusanov [149] presented several

classifications of line tension. In our study, we will focus on the (in-place) line tension

which separates two-dimensional phases (two stratifying LM for instance). According

to Rusanov [149], in two-dimensional systems, because 2-D phases are separated not

by surfaces but by lines, an excess surface pressure arises which yields line tension.

In this situation, line tension can be seen as analogous to surface tension by reducing

nevertheless one dimension.

The thermodynamic definition of line tension λ is

λ =

(
∂G

∂p

)

Π,T

=

(
∂H

∂p

)

Π,T

− T

(
∂S

∂p

)

Π,T

, (3.9)

where H is surface enthalpy and S is surface entropy of a 2-D condensed phase. The

line tension λ is therefore the free energy G required to extend the edge of a condensed

domain by a unit length, or, in other words, to transfer molecules from the bulk of

a 2-D condensed domain to its perimeter of boundary, p. The main contribution

to λ originates from the enthalpy term, since the translational and conformational

freedom of the molecules is not expected to be very different in the subphase and at

the interface. The enthalpy term is the energy required to break the intermolecular

bonds and construct new ones to ensure molecular transfert to (or from) the edge [83].

From the past two decades, the experimental estimates of the line tension in mono-

layer systems were developed [123, 16, 109, 110, 185]. From the measurement of the

excess free energy of molecules between two coexisting phases of monolayer (free energy

from the transition region and from the interior of the phases), one obtains virtually

the line tension. Besides, from the knowledge of the average dipole moment density of

the phases involved, the line tension could be estimated. By making use of the impact

of a surface shearing upon a condensed domain, Benvengnu & McConnell [16] have



3.3. Dynamic properties of liquid surfaces ·37·

produced bola-shaped domains and measured their relaxation to their original circular

shape after switching off imposed shearing; the line tension was determined from the

estimation of the hydrodynamic drag acting against shape recovery. In this way, the

line tension of a lipidic domain (LM made from a binary mixture of average compo-

sition 30 mol % cholesterol, 70 mol % dimyristoylphosphatidylcholine) was measured

and found to decrease with a growing surface pressure. Mann et al. [110] performed a

similar technique to deduce line tension of a poly(dimethyl)siloxane (PDMS) domain:

λ = 1.1 ± 0.3 pN. In a recent paper, Wurlitzer et al. [185], a line tension between gas

and LE phases of methyl octadecanoate, λ = 7.5 pN, was measured by using fluo-

rescence microscopy combined with optical tweezers. With an estimated temperature

(35 ◦C), they also found that the line tension was 0.3 pN smaller than the one for the

LE–LC co-existing phases.

Many phenomena, such as

⋄ transitions between circular, ellipsoidal, and triangular shapes [167],

⋄ the changes for the curvature radius of domains on compression [146],

⋄ the nucleation of domains [123], and

⋄ the buckling instability [165], etc.,

could be explained based on the competition between (excess) line tension and electro-

static interactions. On a macroscopic scale, where the width of the phase boundaries

is negligible, the line tension and electrostatic interactions determine characteristic

patterns of monolayers in the coexistence region of two or more phases [185].

3.3 Dynamic properties of liquid surfaces

Fluid interfaces containing surfactants may exhibit dynamic behavior that differs

considerably from surfactant-free interfaces. For instance, for a surfactant-free fluid
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interface, the resistance to flow under an applied stress is very small, but in the presence

of surfactant, it can become significantly. This difference in flow properties associated

with the presence of a monolayer can produce a number of complicated effects. The

dynamic behavior of fluid interfaces involves both surface rheology and hydrodynamics.

In addition to the arising of a surface pressure gradient which can impact upon

fluid motion (Marangoni effect, see next section), other interfacial rheological stresses

of viscous nature may arise (Fig. 3.3). The interfacial viscosity is involved in the stress

tensor in an isotropic way as well as in a non-isotropic way, and two coefficients of

viscosity are usually proposed for each kind of surface deformation: the surface shear

viscosity and surface dilatation viscosity, respectively. These surface viscosities cause

a damping of the interfacial motion.

(b) surface shear stress
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(c) surface dilatational stress
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Figure 3.3. Three interfacial dynamical properties (surface tension gradient (a), sur-
face shear viscosity (b), and surface dilatational viscosity (c)) modified in presence of
surfactants (adopted from Ref. [177])

3.3.1 Marangoni effect

In conventional circumstances, a fluid interface in equilibrium exhibits uniform

surface tension. The magnitude of this surface tension varies with temperature, sub-

phase pressure, and surfactant concentration within the fluid interface. Thus, should a

nonuniformity (in surfactant concentration, say) develop within the fluid interface, and
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interfacial pressure gradient will result, subsequently inducing both areal and volumet-

ric fluid motions. For instance, since surfactant adsorption at a fluid interface lowers

generally the surface tension, an inhomogeneous distribution of surfactant within the

interface can induce local surface tension gradients and therefore, promote (or damp)

a fluid flow. Such a surface gradient-driven flow (see Fig. 3.3 (a)), which attempts to

restore a uniform surface tension, is basically the well-known “Marangoni effect” [113]

(also referred to as Gibbs-Marangoni effect).

3.3.2 Surface shear viscosity

The shear viscosity is an important property of a Newtonian fluid. By definition, it

is the force required to shear or equivalently, to produce a relative motion between fluid

materials [182]. Analogously, 2-D surface shear viscosity is defined as follows: imagine

a simple shear field imposed upon a planar fluid interface as depicted in Fig. 3.3 (b).

Acting upon the linear boundaries of the 2-D fluid element are surface (2-D) shear

stress τs. If two line elements of a surface are moving relative to each other, with a

surface (2-D) shear rate, ∂vs
∂x

, the associated surface shear stress is µs
∂vs
∂x

, where µs

denotes the surface shear viscosity or, by analogy with bulk-fluid (3-D) hydrodynamics,

the Newtonian4 surface viscosity. The surface shear viscosity µs is normally reported

in units of surface Poise (sP)5. Generally, surface shear viscosity is negligibly small for

a surfactant-free interface and its magnitude increases monotonically with surfactant

concentration [138].

The study of surface viscosity was initiated by Plateau [136] who observed that

compared to the viscosity in the bulk of two neighbouring fluids, the viscosity at the

interface between them is enhanced. At that time, surface viscosity was designated by

superficial viscosity. In 1913, Boussinesq [23] found that a surface viscosity can also

be demonstrated from the measurement of a drag force on a drop moving in another

liquid. In 1959, Sternling & Scriven [164] indicated the effect of surface viscosity

4A fluid for which a stress is directly proportional to a deformation.
51 sP = 10−3 kg·s−1
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on Marangoni instability. Since the work of Sternling & Scriven, the role of surface

viscosity in interfacial processes has received widespread attention.

Measurement of surface shear viscosity

Numerous experimental techniques have been developed with the purpose of mea-

suring the surface shear viscosity µs of Newtonian interfaces. In principle, it should use

viscous-traction driven flows to avoid the existence of surface-tension gradients which

could appreciably complicate the absolute detection of the surface viscous stress [46].

However, many of the earliest techniques for measuring surface shear viscosity were

found to be plagued by the presence of surface-tension gradients [136]. Marangoni [113]

recognised that the oscillation of a needle within a surfactant-adsorbed fluid interface,

as initially proposed by Plateau for the purpose of deducing the surface viscosity,

should cause surface-tension gradients owing to compression of the surface. Even now,

oscillating needle experiments continue to be attractive with constant improvements

of modelling [37] along the lines of Marangoni.

Surface viscometer, first proposed by Dervichian & Joly [35] and Harkins & Mey-

ers [65], utilized surface pressure-driven interfacial flows. This early technique proved

impractical for measuring interfacial shear viscosity owing to the difficulty involved

in unambiguously distinguishing between Marangoni and interfacial viscous effects.

To avoid this complication, Davies [31] later proposed a variation of the surface vis-

cometer (now known as the double knife-edge viscometer), employing viscous traction

forces. However, the induced surface flow of the Davies canal viscometer suffers the

disadvantage of being relatively insensitive to the interfacial viscous stress. The mod-

ern surface viscometer discussed in later section is known as the deep-channel surface

viscometer. It was first proposed by Mannheimer & Schechter [112] as an improvement

of the earlier device of Davies [31].

Modern experimental techniques succeed in avoiding the presence of interfacial-

tension gradients. Therefore, the surface viscosity is often measured by generating
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surface flows while avoiding dilatational motion at the same time. In reality, the

surface viscosity can be measured directly or indirectly. The direct method means

the measurement of the force required by a floating movable object (disc, needle,

ring...etc.) in order to shear the surface. With the indirect method, the surface

viscosity is calculated by fitting the velocity profile along a surface submitted to an

externally-applied shearing. The direct method, is comparatively simpler but it is also

less accurate than the indirect one: the range of sensitivity may be expected to be

on the order of µs ≥ 10−2 sP (10−5 kg·s−1), as estimated from the single knife-edge

method and its derivatives for instance [46]. In contrast, the indirect method, such

as deep-channel surface viscometer, is regarded as very sensitive since it enables the

detection of a surface shear viscosity as low as 10−4 sP (10−7 kg·s−1) [46].

The deep-channel surface viscometer

The original design of the deep-channel surface viscometer [112] consists of two

concentric cylinders lowered into a pool of liquid contained within a dish, to a depth

for which the cylinders nearly touch the bottom of the dish as shown in Fig. 3.4.

During operation of the instrument, the dish is rotated with a monitored angular

velocity Ω. The surface motion of the interface within the channel formed by the

concentric cylinders is measured from glass or Teflon hollow beads (diameter: 100 to

200 µm) distributed all along the fluid interface. The main lines of the modeling by

Mannheimer & Schechter [112], devoted to the deep-channel surface viscometer, are

recalled in Appendix B.

3.3.3 Surface dilatational viscosity

Material compression and expansion is a more commonplace occurrence with inter-

faces than with bulk fluids, owing in part to the ability of an one interface to exchange

molecules with one (or two) underlying(adjacent) 3-D phase(s). Therefore, while the

dilatational viscosity involved in the classical Newtonian approach for 3-D viscous flu-
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Figure 3.4. Schematic cross section of the deep-channel surface viscometer (adopted
from Ref. [112])

ids is seldom encountered in practical applications, its 2-D counterpart – the surface

dilatational viscosity κs – stands as a significant rheological property of Newtonian

interfaces ([46], p. 33).

Nevertheless, the surface dilatational viscosity, κs, remains considerably more prob-

lematic to measure than surface shear viscosity, µs. This is because the surface elas-

ticity (Marangoni stress), which acts in the same direction as the dilatational stress

is often dominant in the surface stress balance. Measured values of κs for Newtonian

interfaces are consequently distinguished in the literature (details in [46], Chapter 8).
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3.3.4 Stress balance at a gas-liquid interface

Scriven [154] and Aris [6] made decisive contribution to the writing of the momen-

tum balance at the gas-liquid interface:

acceleration or inertial force = body force

+ surface tension gradient (Marangoni stress)

+ viscous resistance to dilation (interfacial stress)

+ viscous resistance to shear (interfacial stress)

+ force due to intrinsic curvature

Here, we are principally interested in determining how the presence of monolayers plays

a role in this balance, and as such, we are not interested in the effects of externally

imposed body forces. A main assumption is made in the development of the stress

balance: the interface is supposed to be Newtonian, which permits to write a linear

constitutive law6 between the surface (excess) rate of deformation tensor, Ds, and the

surface (excess) stress tensor T s. As a consequence, the jump momentum balance at

a Boussinesq-Scriven gas-liquid interface [156] can be derived as:

T s = σIs + Ss

= [σ + (κs − µs) divs
−→vs ] Is + 2µsDs,

(3.10)

with Ss, the viscous part of the surface stress tensor, described as a linear function of

the rate of surface deformation tensor:

Ds =
1

2

[
∇s

−→vs · Is + Is · (∇s
−→vs )

T
]
. (3.11)

In this constitutive equation, which plays also the role of boundary condition for the

flow within the adjacent bulks, the tensor Is transforms any 3-D vector located at the

vicinity of the interface into its corresponding 2-D vector, tangential to the interface

(in-plane vector), −→vs is the surface velocity, ∇s and divs are respectively the surface

gradient operator and the surface divergence operator, all defined within the interface,

6also referred to as Boussinesq-Scriven closure law
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σ is the thermodynamical surface tension, κs is the surface dilatational viscosity and

µs is the surface shear viscosity.

In the Gibb’s approach, the barycentric surface (excess) density is set to zero.

Among consequences, the averaged inertia of the interface does make sense and there

is common agreement with the fact that the jump momentum balance at the dividing

interface writes according to the intrinsic notation,

∇s ·
(
Ts − σIs

)
+
[[
T · n

]]
= 0, (3.12)

with the assumption of no mass transfer to or from the surface and the jump notation

[[·]] which writes explicitly:

[[
T · n

]]
= Ts,1.n1→2 − Ts,2.n1→2. (3.13)

The quantity Ts,i denotes the familiar 3-D stress tensor within the ith phase staying be-

low (i = 1) or above (i = 2) the dividing interface and where n1→2 denotes the normal

vector at the dividing surface, directed from the phase 1 to the phase 2, respectively.

3.4 Optical properties of monolayers

The modeling of the light passing through or reflected by a layer separating two

different mediums can, in principle, allow us to characterise the layer thickness, the

jump of refraction index, the absorption coefficient as a function of wavelength, and

even the pattern or structure within the layer. Nevertheless, it is difficult to observe

a monolayer at an air-water interface due to its extremely thin thickness. This is

why few techniques were developed to investigate ultra-thin layers during the last

decades. Techniques such as ellipsometry, spectroscopy, X-ray reflection, fluorescence

microscopy [181, 53], and Brewster angle microscope (BAM) [15, 73, 70, 69] have been

demonstrated relevant to qualitative or quantitative investigations of monolayers.

The ability to image lateral heterogeneity in Langmuir monolayers dates back to

Zocher & Stiebel’s study in 1930 with the use of a divergent light illumination [190].
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More recently, the method shifted toward the use of fluorescence microscopy which

allows the observation of coexisting domains of different phases in monolayers. For

this purpose, a fluorescent amphiphilic molecule is added to the monolayer. This flu-

orescent probe behaves like an impurity in the monolayer, i.e., its solubility in the

coexisting phases can be very different. The contrast in the fluorescence images is suf-

ficient to visualize the domains of different phases in a monolayer. In particular, the

LE–LC and the G–LE phase transitions can be visualized by this method. In the first

case, the fluorescent molecules are not soluble in the LC phase which appears black;

in the second case, the contrast is mainly obtained by the surface density difference

between the two phases. From the images of the fluorescent microscope, one can ob-

serve the shapes of the domains and the kinetics of transitions. Polarized fluorescence

microscopy, with its ability to resolve regions of different molecular tilts, can be used

to infer microscopic properties of the phases directly from imaging [140].

As usual, there are also drawbacks with fluorescence microscopy to investigate

Langmuir monolayers [70]:

1. Fluorescent molecules, used as probes, may affect the phase transition and the

development of phase domains in a LM. Losche et al. [106] reduced the fluores-

cent molecule concentration to a very low level (0.25 %). With such a drastic

restriction, their observations were found independent of the impurity concen-

tration.

2. It is difficult to study phase transitions that appear at a very high surface density

[19] since fluorescent molecules are precisely manufactured to have a very low

solubility in neighbouring bulks.

3. The lighting of the monolayer can induce photochemical transformations of the

fluorescent probes [144]. Photochemical products that result are expected to

behave as additional impurities. They would appear locally where the monolayer

is illuminated and modifies the domain shapes [70].
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For all those reasons, Brewster angle microscopy (BAM) which requires none fluores-

cent labeling appears to be a relevant method, though less user-friendly, for the purpose

of visualising Langmuir monolayers. Consequently, all along this dissertation, use was

made of a BAM to investigate the monolayer behaviors at an air-water interface.

3.4.1 Physical principle of a BAM

The interaction of light with a liquid surface can usually be treated to a very good

level of accuracy by the solutions of Maxwell’s equations with boundary conditions

defined by an infinitely sharp change in refractive index at the gas-liquid interface,

assuming that both media are isotropic and perfectly transparent. Such solutions are

detailed in papers or textbooks on optics [14, 15, 173]. Here, we focus on the theoretical

ingredients which could reveal useful for monolayer studies (especially from a BAM).

Electromagnetic wave

Besides what is commonly called light, electromagnetic (EM) wave includes wave

of longer (infrared, microwave) and shorter (ultraviolet, X-ray) wavelength. The EM

wave is a transverse wave consisting of both an electric field vector
−→
E and a magnetic

field vector
−→
B , which are mutually perpendicular and are perpendicular to the prop-

agation direction of the wave. It can be specified with either the electric field vector

or the magnetic field vector. Here, we use the specification of the electric field
−→
E

because, generally, the interaction between matter and electric field is stronger than

that between matter and magnetic field.

Polarized light

Generally, light emitted from a standard source is non-polarized and therefore

characterised by components of the electric field directed along all possible directions

perpendicular to the optical path. In contrast, if the electric field is always oriented
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along one direction only, the light is referred to as polarised light. Non-polarised light

can always be resolved into two orthogonally polarized waves. If the two electric field

components possess a constant phase difference and equal amplitudes, the resultant

EM wave is found to be circularly polarized. If the amplitudes differ, then the wave is

elliptically polarized. Two important polarisation configurations may be distinguished:

p-polarized (or transverse magnetic (TM)) wave, Ep, in which the electric field vector

is in the plane of the incidence of the EM wave; and s-polarized (or transverse electric

(TE)) wave, Es, where the electric vector is perpendicular to the plane of incidence.

Index of refraction and Snell’s law

When light passes from one medium to another that is not totally transparent, as

suggested by Fig. 3.5, several phenomena can be observed. The parameter used to

describe the interaction of light with material is the complex index of refraction Ñ

which is a combination of a real index of refraction and an imaginary one [172]:

Ñ = n− j k, (3.14)

where n is the refractive index, ke is the extinction coefficient (spatial damping of

light intensity), and j, the square root of −1. For a dielectric material such as glass or

water, no light is absorbed and hence ke = 0. When the light beam reaches the surface

(see Fig. 3.5), some light is reflected and the remaining light is transmitted through

the medium. The law of reflection indicates that the angle of incidence is equal to

the angle of reflection (i.e. θi = θr as shown in Fig. 3.5). The fraction of the incident

light reflected depends on both the angle of incidence and the polarization state of the

incident light. The angles of reflection θr and refraction θt are related to the complex

index of refraction Ñ1 and Ñ2 of the two mediums by the Snell-Descartes’ law:

Ñ1 sin(θr) = Ñ2 sin(θt). (3.15)

For dielectric mediums, ke = 0 and Eq. (3.15) becomes

n1 sin(θr) = n2 sin(θt). (3.16)
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Figure 3.5. Light beams reflecting from and passing through an interface between
two mediums (for instance, air and water). Their respective intensity and polarisation

state are characterized respectively by the complex indexes of refraction Ñ1 and Ñ2.
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Fresnel equation

An incident plane wave moving along the plane of incidence will reflect at a liquid

surface as shown in Fig. 3.5. The plane of incidence is defined from the light beam

prior to and after the reflection; it also contains the unit vector normal to the surface.

A Fresnel interface is characterised by a refractive index which changes steeply from

n1 to n2 between two separated dielectric mediums. The Fresnel reflection coefficient

is the ratio of the amplitude of the reflected wave Er to the amplitude of the incident

wave Ei for a Fresnel interface. The Fresnel reflection coefficients are given by

rp =
Er

p

Ei
p

=
Er

p0 exp(jβp)

Ei
p0 exp(jαp)

=
n2 cos(θi) − n1 cos(θt)

n2 cos(θi) + n1 cos(θt)
;

rs =
Er

s

Ei
s

=
Er

s0 exp(jβs)

Ei
s0 exp(jαs)

=
n1 cos(θi) − n2 cos(θt)

n1 cos(θi) + n2 cos(θt)
,

(3.17)

where the subscript p and s refers to p-polarized and s-polarized wave, respectively.

The quantities Ei
p0 and Ei

s0 are the amplitudes of the incident electric field components,

parallel (p-) and perpendicular (s-) to the plane of incidence, respectively. The param-

eters αp and αs are the phase lags of the incident electric field components attached

to the p- and s-polarisation states, respectively. The quantities Er
p0 and Er

s0 are the

amplitudes of the electric field components after the reflection, which are parallel (p-)

and perpendicular (s-) to the plane of incidence, respectively. The parameters βp and
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βs are the phase lags of the p-polarized and s-polarized components of the reflected

electric field. Similarly, the ratio E
t

Ei defines the Fresnel transmission coefficients with:

tp =
Et

p

Ei
p

=
2n1 cos(θi)

n1 cos(θi) + n2 cos(θt)
,

ts =
Et

s

Ei
s

=
2n1 cos(θi)

n2 cos(θi) + n1 cos(θt)
,

(3.18)

where the superscript t indicates the transmission wave. Eqs. (3.17) and (3.18) are

known as Fresnel equations. The reflectance is defined as the ratio of the reflected

intensity (or power) to the incident intensity. For a single interface, the reflectance

coefficients for both polarization directions can be written as:

Rp = |rp |2,

Rs = |rs |2 .
(3.19)

Ellipsometry and ellipsometer

Ellipsometry refers to the analysis of the polarization of light upon reflection. It is

very sensitive optical technique which makes use of the fact that the polarization state

of light may change when the light is reflected from an interface. For a ellipsometric

microscope (or ellipsometer), monochromatic light (a laser beam for instance) is passed

through a polarizer, rotated by passing through a compensator before it impinges on

the interface to be studied [11]. The reflected light will be elliptically polarized and is

measured by a polarization analyzer. In null ellipsometry, the polarizer, compensator

and analyzer are rotated to produce maximum extinction.

In general, for optically absorbing materials the incident field will be attenuated

and undergo a phase shift. In order to describe this behavior we define complex relative

amplitude attenuation as the ratio of the Fresnel reflection coefficients of p-polarized

and s-polarized wave:

ρa =
rp

rs
=
Er

p0E
r
s0

Ei
p0E

i
s0

exp (j[(βp − βs) − (αp − αs)]) . (3.20)

The fundamental equation of ellipsometry [11] is

ρa = tan(Ψ) exp(j∆), (3.21)
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where ∆ = [(βp − βs) − (αp − αs)] is the phase difference of light wave that occurs

upon reflection and Ψ is the angle whose tangent is the ratio of the amplitude of the

Fresnel reflection coefficients. The parameters ∆ and Ψ are measured by finding the

polarizer and analyzer angles of ellipsometer. When a film is present, the changes in

∆ and Ψ can be related in an implicit form to the complex index of refraction and to

the thickness of the film.

Brewster angle

We suppose that medium #1 is air, with n1 = 1.0, and medium #2 is water

(n2 = 1.33). Figure 3.6 (a) shows a plot of the Fresnel coefficients as a function of

the angle of incidence (from Eq. (3.17)). Figure 3.6 (b) shows the resulting reflectance

Rp and Rs from Eq. (3.19). At normal incidence, θi = 0, the reflectance for both the

parallel and perpendicular component is about 14 %. For other than normal incidence,

we see from Fig. 3.6 (a) that rs is always negative and nonzero. Figure 3.6 (a) also

shows that rp changes from positive to negative as the angle of incidence increases.

From Eq. (3.18) one obtains that rp and hence the reflected intensity of p-polarized

wave Rp become zero for θr +θt = π
2 , i.e. when the directions of reflected and refracted

wave are perpendicular to each other. The corresponding angle of incidence is called

Brewster angle θB (or polarizing angle, or principal angle). From Snell-Descartes’ law

(Eq. (3.16)) the Brewster angle θB can be determined by

tan(θB) =
n2

n1

, (3.22)

as demonstrated by Sir David Brewster in 1815 [24]. The significance of this is that

when polarized light makes a reflection with Brewster angle of incidence, none of the

light polarized initially parallel to the plane of incidence is reflected, i.e., p-polarized

wave is entirely transmitted through the underlying medium #2. The resulting re-

flected light is the s-polarized wave initially perpendicular to the plane of incidence.

Taking n1 = 1 for air and n2 = 1.33 for water, θB is found to be 53.1◦ for an air-water

interface.
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Figure 3.6. (a) The ratios of the amplitudes of the reflected wave to the amplitudes
of the incident wave (the Fresnel coefficients) as a function of angle of incidence θ1 for

water with index Ñ2 = 1.33 − 0.0j. (b) The ratios of the intensities of the reflected
wave to the intensities of the incident wave (the reflectance) as a function of angle of
incidence θ1 for water. The Brewster angle is shown by the dashed line.

For a real interface, the reflected light is characterised by a minimum intensity

at the Brewster angle, but it does not completely vanish [70]. The low reflected

intensity at the Brewster angle is strongly dependent on the interfacial properties.

The reflectivity change of a real interface at the Brewster angle for the p-polarized

wave has three origins:

1. The thickness of the interface. The refractive index of a real interface does not

behave exactly as an Heaviside dependence at the air-water interface, i.e. z = 0

(where z is the direction normal to the interface.). The z-dependence of the
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refractive index is different from n1 or n2, and it can be described by the general

function, n(z), trough the interfacial thickness lt. At first order in lt
λw

(where λw

is the wavelength of the light) , Drude [40] has calculated the reflectivity for the

amplitude of a p-polarized wave at Brewster-angle incidence:

rp(θB) = i rs(θB) ρa,B , (3.23)

where rs(θB) is the reflectivity of a Fresnel interface for the amplitude of a s-

polarized wave at Brewster angle incidence, i.e. θi = θB in Eq. (3.17), i indicates

an increase of π2 between the phase difference of the s- and p-polarized wave

after reflection, and ρa,B is the ellipticity at Brewster angle incidence:

ρa,B = π
lt

λw

√
n1

2 + n2
2

n1
2 − n2

2

∫ +∞

−∞

[n(z)2 − n1
2] [n(z)2 − n2

2]

n(z)2
dz. (3.24)

A dense monolayer of amphiphilic molecules introduces a variation of refractive

index n(z) over a thickness lt ≈ 20 Å. n(z) and lt depend on the phase domain of

the monolayer: two different phase domains demonstrate a different reflectivity.

2. The roughness of real interfaces [14, 189]. At liquid interfaces, the origin of the

roughness is thermal fluctuations. For monolayers at the free surface of water,

the surface tension is large; the surface thermal fluctuations are small and can be

neglected in a first approximation. It introduces a small error on the thickness

of the monolayer (≈ 3 Å).

3. The anisotropy of monolayers. Some concentrated phases in monolayers are

optically anisotropic [17]. If the optically anisotropic monolayer does not have a

vertical axis z of symmetry, the reflected light is a function of the orientation of

the monolayer in its plane.

Technique of BAM

In brief, when a p-polarized wave is incident from air to water on an air-water

interface with Brewster angle θB of incidence, no reflection occurs at the interface for
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p-polarized wave and most of the light is refracted into the water. A detector observing

the reflected intensity of the p-polarized wave will generate a minimum output signal

(ideally zero) at θB . Besides, when a monolayer (even one molecule thick) is present,

its refractive index being different from the one of the substrate value, the Brewster

angle condition is no longer fulfilled, as shown in Fig. 3.7. When a monolayer-covered

air-water interface is illuminated with p-polarized wave at the interface, regions of

different molecular orientations and/or different thickness will reflect differently. Use

is made of an optical image system to pick up this reflected light and form a focused

image upon a dedicated photodetector such as a charge-coupled device (CCD) camera.

This image of the surface will be contrasted as dictated by the mesoscopic structure

of the supporting monolayer.
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Figure 3.7. Principle of Brewster angle microscopy (BAM). The left side figure demon-
strates that when a beam of p-polarized light is incident on a dielectric substrate
medium such as pure water at the Brewster angle, no reflection occurs. All the light is
refracted into the substrate. However, if a thin film such as monolayer is present hav-
ing a refractive index different from the substrate value; some light reflection occurs
as shown in the right side figure.

In Fig. 3.7, a compensator, i.e. quarter-wave plate, is added on the path of the

incident beam and an analyzer is added on the path of the reflected beam. The quarter

wave plate is adjusted to have one of its neutral axes in the plane of incidence. The
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two components of the incident field are:

Ei
p =E0 cos(ϕ) cos(ωt),

Ei
s =E0 sin(ϕ) sin(ωt),

(3.25)

where ϕ is the angle between the polarization of the light before the quarter wave

plate and the plane of incidence. The s-polarized and p-polarized wave have a phase

difference of π2 introduced by the quarter wave plate. The reflected field for optically

isotropic domains can be expressed as follows:

Er
p =E0 rs(θB) ρa,B cos(ϕ) sin(ωt) ,

Er
s =E0 rs(θB) sin(ϕ) sin(ωt).

(3.26)

After reflection, the two components have a phase difference of 0 or π. The direction

of polarization of the analyzer makes the angle φ with the plane of incidence. The

intensity of the light crossing the analyzer is

Ir = Io |rs(θB) |2 [ρa,B cos(ϕ) cos(φ) + sin(ϕ) sin(φ)]2 . (3.27)

If ϕ = 0, this corresponds to an incident light of p-polarized wave. The intensity is

then proportional to the square of the ellipticity ρa,B. Fixing ϕ, it is possible to adjust

φ to increase the contrast between domains of two different phases in the monolayer.

For instance, it is possible to choose φ, so as to cancel the reflected light for one type

of the phase domains of the monolayer where the ellipticity is

ρa,B
′ cos(ϕ) cos(φ) + sin(ϕ) sin(φ) = 0. (3.28)

In summary, the BAM takes advantage of the minimum in the intensity of reflected

p-polarized wave at the Brewster angle for an interface. Generally, a BAM operates

at the Brewster angle (θB = 53.1◦ for an air-water interface). The presence of a

Langmuir monolayer changes the refractive index of the medium, and this modifies the

reflected intensity. The refractive index of the interface with the monolayer present is

dependent on both the density of the molecules and the orientation of the molecular
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chains relative to the incident light [69, 174, 114, 77]. A variation of either the density

or the tilt azimuth gives a corresponding variation in the reflected light intensity. If

the film consists of domains characterized by unique refractive indexes, the reflected

light will reveal the film morphology. A second polarizer is generally used in the

reflected beam as an analyzer. If the variations in intensity are due solely to density

variations, rotation of the analyzer does not change the relative brightness between

distinct regions. However, if the intensity variations are due to a tilt of the molecular

chains, the tensor nature of the refractive index will cause a rotation of the polarization

of the reflected beam. This can be detected by rotating the analyzer. A suitably

designed optical system can be utilized to focus variations in light intensity as an

image on a charge coupled device (CCD) camera.

3.4.2 Brewster angle miscroscope

Brewster angle miscroscopy (BAM) was gradually developed in the early 1990s.

This measurement technique follows a well-known technique known as a ellipsometery

[15]. An ellipsometer is able to achieve a spatial resolution ranging from 1 µm to 10

µm. However, due to the fact that the rotation of the polarisers must be adjusted,

ellipsometric measurement is too slow to allow the detection of a flow phenomenon

along a liquid interface. By comparison, the non-quantitative BAM approach appears

as much more simple to use. The number of optical components involved in a BAM

configuration is not too large (light source, polariser, sample, analyser, and detec-

tor) [40] and the BAM resolution is high enough (few µm) to investigate dynamic

phenomena at a flowing liquid surface.

BAM, as a simplified ellipsometer, is characterised by the optical chain shown in

Fig. 3.8. The BAM technique was developed for the first time in the 90’s, separately

by Hönig & Möbius [73] and by Hénon & Meunier [70]. BAM is usually designed for

the investigation of thin films supported by surfaces of water or aqueous solutions7.

7Instead of a liquid surface, a transparent glass plate some millimeters thick may be also used as
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The liquid surface is impacted by a laser beam, which is initially polarised in the plane

of incidence and reflected at a certain angle from the surface. Then, the reflected

beam is analysed by a second polariser before being detected by a CCD camera. BAM

imaging is therefore performed at the scale of the cross-section of the input laser beam.

The BAM image is contrasted by any mesoscopic pattern able to change locally the

refraction index at the scale of the laser spot (few mm) on the liquid surface.

Analyzer (A)

shutter

z lift
alignment sensor

scanner gonio

objective/scanner

Laser gonio

mounting bridge

Compensator (C)

Polarizer (P)

Laser

camera

Figure 3.8. Components of a BAM.

The BAM utilized in our investigation was produced by Nanofilm Surface Analysis

Company (I-Elli2000, Germany). It consists of an opto-mechanical apparatus, an

electronic control unit and a personal computer. As shown in Fig. 3.8, the series of

optical elements involved in the BAM chain is the following:

⋄ light source (laser),

⋄ polariser (P),

a support of a film coating to image, the refractive index of the glass plate should not deviate too
much from that of water, in order to work at a convenient angle of incidence.
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⋄ compensator (C),

⋄ sample/surface (S),

⋄ microscope objective,

⋄ analyser (A), and

⋄ detector (camera), respectively.

The compensator (C) is a quarter-wave plate designed for the laser wavelength.

Wave plates are anisotropic optical elements. The velocity of the wave depends on its

orientation. In general, the wave plate has a fast axis and a slow axis, both of which

are perpendicular to each other and to the direction of propagation of the wave. The

component of the wave which is aligned with the fast axis passes through the optical

element faster than the component aligned with the slow axis. If the two components

of the wave were in phase before passing through the element (i.e., linear polarized)

then, in general, they will be out of phase when they emerge (elliptically polarized).

The thickness of the wave plate can be chosen such that the phase difference is exactly

90◦, 180◦, or 360◦ and they are called respectively quarter-wave plates, half-wave

plates or full-wave plates [172]. The compensator (C) allows changing the state of

polarization from elliptical to linear to circular and vice versa by using the effect of

optical birefringence.

The polarizer (P) and analyzer (A) are linear polarizers, i.e. the emerging wave

is linearly polarized. The polarizer is an optical element which has a polarizing axis.

If the axis of the polarizer lines up with the angle of polarized wave, the entire wave

is transmitted. When the axis does not line up with the angle of polarized wave,

we separate the wave into components which are parallel to and perpendicular to

the polarizer axis. The component that aligns with the axis is transmitted and the

component that is perpendicular is blocked. Polarizers are used in two different ways.

If the polarizer is used to convert unpolarized light to polarized light, it is called the

polarizer. If it is used to determine the state of polarized light by locating the null, it
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is called an analyzer [172]. The light source of the BAM is a diode pumped Nd:YAG-

Laser with a wavelength of 532 nm (green light) and a primary output power of 52

mW. The field-of-view of the BAM images is 430 µm x 430 µm and its resolution is

roughly, 2 µm, for a 10X objective of numerical aperture: 0.21 [125].

3.4.3 Optical characteristics of the BAM

Due to the requirement of working at a tilted geometry, BAM does not have a

normal plane of view and therefore the depth of field becomes an intrinsic problem.

From Fig. 3.9, we can see that a target lying along air-water interface is being imaged

by an optical system (an objective and a CCD camera) with the light axis tilted away

from the surface normal by the Brewster angle, θB. The outcomes of this tilted image

plane are that the aspect ratio of the image is altered and only a part of the image is

in focus (see Fig. 3.9 (a)). Since the surface is imaged at Brewster angle, the original

image is shortened in one direction, so that circular objects flowing along the interface

appear elliptic. As a consequence, the aspect ratio of the image must be corrected by

the factor cos(θB). It means that scaling the width by the quantity, cos(θB) ≈ 60 %,

while keeping the height unchanged will return the real aspect ratio (1 : 1 for circular

domains, see Fig. 3.9 (b)).

To deal with the depth of field problem, we can use a scanning objective to capture

a series of focused stripes and then to reconstruct a fully focused image from the

concatenation of all these stripes [70, 100] (see Fig. 3.9 (c)). However, the long cycle

required to sweep the entire image (about 5 seconds for our BAM) makes this technique

impossible to use in presence of a surface flow. Therefore only the (central) focused

region of the image was used for the characterisation of LM flow in our experiments

(details in Chapter 4). Lheveder et al. [100] proposed another technique to solve this

disadvantage; this is obtained by using a special custom-made objective. This objective

has a vertical symmetry axis (it is not tilted) and consequently gives an image of the
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water surface in a plane parallel to this surface. But this approach requires a high

power (expensive) laser source.

qB

camera

objective

field of view

depth of field

working distance
of the objective

air

water

(a) (b)

(c)

Figure 3.9. Tilt of the laser beam in Brewster angle microscopy. The right image (a)
illustrates that the aspect ratio of the image is altered and that only a central region
of the image is in focus on the camera. The image (b) results from the scaling of the
width by a factor, cos(θB) ≈ 60 %, keeping the height unchanged. The image (c)
demonstrates the classical method of image scanning as an ideal way to provide a fully
focused image.

Another problem is the inhomogeneous illumination of a BAM image. Fig-

ures 3.10 (a)-(b) show a typical BAM image with inhomogeneous illumination. Two

reasons can be identified to explain it:

1. the Gaussian profile of the laser beam leads to an exponential decrease of light

intensity (brightness) of the image near the edge.

2. the presence of interference fringes due to a possible imperfection of the optical

components, possible “wedge” effects at the cover glass of the CCD camera or a

non-coherent illumination.

There are two possible ways to remove the inhomogeneous illumination.

⋄ A first one is to find a featureless image with only the inhomogeneous background

illumination and interference fringes as a reference image (see e.g. Fig. 3.10 (b)).

Then, the rough BAM image is submitted to a background compensation
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from the reference image and it allows us to produce a homogeneous image

(Fig. 3.10 (c)). Unfortunately, the background quality can slightly change in the

course of time because of changes in experimental conditions: typically, the out-

put power of the laser source may change [125]. If the sample moves (monolayer

flows), it is difficult to get a constant background condition.

Therefore, the compensation technique is only suitable in stationary conditions.

⋄ Another way to do is to perform a 2-D Fourier transform of the image and take

out the features in the frequency domain that corresponds to the interference

fringes. However, this approach works well as long as the physical pattern of

interest exhibit very characteristic lengths different from the interference fringes

to remove. If the patterns to image have a length scale close to the one of

the interference fringes, the filtering in frequency domain will eliminate also the

relevant information [174]. Moreover, a Fourier transform scheme could never

succeed in removing the inhomogeneous illumination due to the Gaussian profile

of the laser beam.

Finally, the first approach based on imaging calibration from a background image

was finally developed in our experiments despite the slight change in lighting conditions

at the time scale of our experiments (several hours).

(a)

100 µm

(b) (c)

Figure 3.10. Original BAM image of a sample (a) that demonstrates the inhomoge-
neous illumination of a BAM image; reference image (b); the reconstructed image after
background compensation (c) (adopted from Ref. [125]).

Finally, note that if the trough is only a few millimeters deep, the laser beams

reflected at the water surface and at the floor of the trough were supposed to interfere
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on the CCD sensor. These laser beams have to be separated by placing an absorbed

material or a reflected material at an angle on the floor. To solve this classical problem,

use is made in our experiments of an absorbing material: the floor and the side walls

of the trough are all made with (black) Delrin resin.
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Chapter 4

Experimental measurement of a

flowing PDA Langmuir monolayer

4.1 State of the art

Studies involving flow of LM, made from fatty acids for instance, provide evidence

of exotic behavior especially within the liquid or solid phases. Examples include reports

of unusual (sharp) velocity profiles in channel flow [79], nonlinear response to applied

shear stress [56, 54], unexpected peak of the monolayer viscosity as a function of

surface pressure [55], and even shear-induced alignment of the monolayer [115, 77].

Schwartz et al. [151] examined the surface-pressure driven flow of a LM through a

channel. A semielliptical velocity profile was found to be insensitive to the structure

and composition of the monolayer within the LE–LC coexistence region. In particular,

the hydrodynamic coupling between the multi-domain monolayers and the underlying

liquid subphase can be neglected because the LM flow is basically surface pressure-

driven.

In fact, two categories of LM hydrodynamics can be introduced:

1. the surface pressure- (or ∇Π-) driven flows of LM, more or less inspired from the

well-known technique of the Langmuir trough (barriers motion),

63
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2. and the shear-driven flows (or surface Couette flows, say). Regarding this last

category, two sub-categories can be again distinguished according to whether

shear originates from the surface itself or from the motion of the underlying

subphase:

⋄ an in-plane surface shear is supplied from a moving wall (supposed to be

perfectly embedded within the monolayer). This sub-category includes all

viscosimetry techniques based on the measurement of a torque or a drag

that a contaminated liquid surface is supposed to apply on a rotating or a

translating planar mobile (disc, needles...) [127, 12, 28].

⋄ shearing may also originate from underlying subphase. A typical configu-

ration is the deep channel viscometer originally introduced by Mannheimer

& Schechter [111, 112]. The paramount advantage of the channel technique

lies in the fact that the origin of the LM deformation is unambiguously

identified: this is a bulk shear in the underlying subphase which is diffused

by the molecular viscosity from the rotating floor up to the surface.

As clearly shown in Fig. 4.1, the geometry of the annular channel involved in the

present study is inspired from the channel viscometer. It consists of:

⋄ two vertical side walls of inner and outer radii, ri and ro, respectively,

⋄ an annular floor rotating about a vertical axis at a constant angular velocity Ω.

The rotation of the annular floor is slow enough to ensure the flow is laminar.

Apart the main shear azimuthal flow, centrifugation gives rise to a weak secondary

recirculating flow. The subphase flow is radially outwards along the rotating floor

and radially inwards along the interface due to continuity equation. Consequently, the

rotating floor causes a 3-D helicoidal flow within the underlying subphase which can

be described, at a small enough Reynolds number (Re < 100), as the super-imposition

[105, 39] of:
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⋄ a main shear flow along the channel, referred to as vθ, whose circular streamlines

are closing within any horizontal cross-section of the channel,

⋄ a centrifugal recirculating (secondary) flow, v⊥, whose circular streamlines are

closing within a meridian cross-section.

Centrifugation causes a radial component of the pressure gradient within a meridian

plane of the channel and is thus able to pack the LM along the interface from the outer

side wall to the inner side wall.

This chapter and next one address the reorganization of a PDA LM, made from

LE–LC co-existing phases of pentadecanoic acid (PDA), to a subphase-induced shear.

PDA, as an amphiphilic long-chain carboxylic acid, is known to behave as a very

convenient support to investigate Langmuir monolayers [151, 130, 22, 45, 122, 166, 74].

We investigate the respective impacts of the leading shear flow and the centrifugal flow

on the PDA LE–LC transition at the air-water interface.

Because the BAM is a well-known tool to image selectively contaminated liquid

surfaces, especially LM, it is used to measure velocity profiles along the surface and

also to follow the morphology of the PDA monolayer at mesoscale by investigating the

spatial distribution of the liquid condensed (LC) domains during LE–LC transition.

The centrifugal shear flow considered in our study is permanent and laminar (Re <

100). Experimental results thus complement existing literature devoted to:

1. shape relaxation of initially stretched domains [93, 162, 67, 4],

2. line tension measurement [16, 185, 186],

3. or dynamics of a two-phase LM strongly reorganized by a large Reynolds number

flow (Re ≈ 1000) [121, 178, 72].

The objective of this chapter is to investigate the impact of this permanent flow of

moderate Re number (Re ≈ 10 to 100) upon phase transition experienced by a LM.

It brings an addition to existing literature devoted to shape relaxation of stretched
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condensed domains [67], line tension [16, 186] and phase transition modified by inertial

flows (Re ≈ 1000) [72].

4.2 Materials and methods

4.2.1 PDA monolayer method

An as-received sample of PDA (C15H30O2, stated purity > 99 %, Sigma-Aldrich)

is dissolved in reagent grade chloroform (Sigma-Aldrich) at a concentration of 1 mM.

To prevent PDA from dissociation, the ultrapure water subphase delivered by a Milli-

Q system (Ohmic resistance: 18.2 MΩ) is further acidified to pH = 2 by making

use of pure chlorhydric acid (HCl). This acidified subphase is topped with the PDA

monolayer made from small addings of PDA solution deposited randomly (using a

Hamilton syringe (Hamilton 801N, Switzerland)). After the chloroform is completely

evaporated, a time delay is respected to get thermodynamic equilibrium. All the

experiments are carried out at a regulated temperature of 23 ± 1 ◦C.

4.2.2 Conception of flow apparatus

The fluid channel geometry that we utilize to study the hydrodynamics of the

PDA monolayer was chosen so as to minimize the mechanisms involved and yet still

be sensitive to the nonlinearities of the PDA monolayer. The geometry is similar

to the deep-channel viscometer [112] but it was modified as a closed annular channel

consisting of bound inner and outer stationary walls, and the flow was primarily driven

by a constant rotating floor. As shown in Fig. 4.1, the use of such a closed channel

geometry, associated with a remote-control magnetic ring, is original if compared to

previous similar setups [111, 105], with the main advantage that it avoids any loss

of soluble chemical species. At the free surface, a monolayer of insoluble surfactant

(PDA) was initially spread uniformly.
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Figure 4.1. A schematic of the annular trough.

4.2.3 Flow apparatus

A schematic of the experimental setup is shown in Fig. 4.2. The entire BAM system

is mounted on a large 2 in. travel translation stage (Thorlabs Inc., PT3, USA) which

permits a micrometric linear motion all along the annular channel gap. Both the BAM

and the annular channel are placed on an optical table (Newport inc., M-BTC-2024-

OPT, USA) to eliminate, as much as possible, external vibrations. A brushless DC

motor (Faulhaber) is used to rotate magnetically the annular ring at the bottom of

the channel; it is isolated from both the optical table and the flow device in order

to prevent the experiments from rotor vibrations. The channel is covered by a thin

plastic lid to

1. minimize subphase evaporation,

2. to ensure a high and constant degree of humidity,

3. and to prevent the LM from any external contamination.

Nevertheless, a narrow window is opened through the plastic lid to allow the laser

beam to scan the interface all along one radius. Finally, a magnetic sensor captured

by Hall Effect was set up to measure the floor angular velocity.
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Figure 4.2. Schematic of the experimental setup with photos.

Our homemade channel is manufactured from polyoxymethylene (Delrin
TM

, Do-

Pont Engineering Polymers, USA). This material is a black resin whose hydrophilic

character allows us to make the liquid surface as planar as possible1. The curvature

of the meniscus is removed by pinning it on the sharp wedges located all around the

channel at the top of both vertical side walls. An apparent contact angle of 90◦ is

accurately monitored by adjusting carefully filling of the channel with a Hamilton sy-

ringe. By imaging the liquid surface under BAM while scanning all the channel gap,

it is also possible to check that any surface curvature is completely removed. In fact,

the level of the subphase is finely adjusted by filling more or less the annular trough

so as to avoid unfocused BAM images.

1One makes use of a BAM to investigate the LM all over the channel gap.



4.2. Materials and methods ·69·

Table 4.1. Physical properties of Delrin
TM

(adapted from Ref. [42, 60]).

Physical property Delrin
TM

water absorption1, 24 h 0.25 %

water droplet contact angle ≈ 45◦

thermal expansion coefficient2 10.4 to 13.5 (×10−5 K−1)

(over a temperature range of −40 to 94 ◦C)

specific gravity3 1.42

1ASTM method D570.

2ASTM method D696.

3ASTM method D792.

Properties of Delrin
TM

Delrin
TM

is an acetal resin made by the polymerisation of formaldehyde (its struc-

ture is shown in Fig. 4.3). It is hydrophilic that can be seen from the contact angle of

a water droplet2 on Delrin
TM

surface as shown in Fig. 3.1 (b) [60]. Estimated contact

angles of water on Delrin
TM

is given in Table 4.1 [42, 60].

H

C

H

O

n

Figure 4.3. Structure diagrams for Delrin
TM

[60].

Delrin
TM

was selected due to the following reasons:

⋄ Delrin
TM

is black; consequently, it can avert the observation of the BAM from

undesired reflection light.

2The droplets (25 µl) were positioned at equal distances from the Delrin
TM

ends so any perspec-
tive/parallax effects can be ruled out.
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⋄ It is chemically neutral so that it can be cleaned without special difficulty and

monolayer molecules do not adsorb to it (no leakage of chemical materials, [60]).

⋄ Its hydrophilic character allows us to make the liquid surface as planar as possi-

ble.

The annular channel

The radii of the inner and outer vertical side walls of the channel are located at

ri = 30 mm and ro = 70 mm, respectively. The depth of the subphase was monitored

to h = 4, 7 and 10 mm. To do this, two ring shaped spacers of different thickness were

used to adjust h, as shown in Fig. 4.1. Because the depth of subphase and the surface

meniscus significantly affects the surface velocity, it is worthy to keep the same surface

conditions. Therefore, sharp wedges are located at the top of the inner and outer side

walls of the annular channel as shown in Fig. 4.4 (a). Accordingly, a contact angle of

90◦ is tuned producing thus a perfectly flat air-water interface.

Mechanical rotation system

In order to put in rotation the channel floor, a solution is adopted which consists

in distributing magnets all around the peripheries of a driving disk and a ring. The

magnets are inserting in such a way that their north (N) and south (S) poles are

sequentially alternated (see Figs. 4.1 and 4.4). This way to do permits to produce a

stable and maximum torque to rotate from a magnetic coupling the ring placed along

the channel floor.

As shown in Fig 4.4 (c), a brushless DC-servomotor (Faulhaber inc., 024BS) is

connected to the aluminum driving disk with twelve magnets inserted (NdFeB magnets,

dimensions: 7 mm length × 7 mm width × 5 mm height). Respectively, twelve

cylindrical magnets are sealed into the Delrin
TM

ring which is also lying on the channel

floor (see Fig 4.4). Keeping in mind the important problem of a possible chemical

contamination, only magnets covered with TeflonR© (Fisher inc. Slim-LineR© TeflonR©,
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dimensions: 25 mm length × 8 mm diameter) are inserted into the Delrin
TM

ring.

Thanks to a magnetic coupling, the ring is able to rotate by way of the driving disk

mounted on a motor reducer axis. The angular velocity of the ring is measured from a

Hall-effect sensor whose sensitive head is inserted at the outer side wall of the annular

channel. The use of a closed geometry associated to a remote-control of the shear flow

is original if compared to previous rheological devices [134, 112, 105].

cylindrical magnet
covered with Teflon

NdFeB magnet

DC servomotor

S N

S N

(b)(a)

(c)

W

Figure 4.4. The annular channel under consideration with the magnetic ring (rotor)
and the magnetic driving disk (stator). (a) Delrin

TM

annular channel with wedges
located at the top of the cylindrical side walls. (b) Photo of the magnetic ring. (c)
Photo of the magnetic disk connected to a DC-servomotor.

4.2.4 Experimental techniques

Experimental protocols

In order to reduce any possibility of external contamination in our experiment,

a stringent cleaning procedure is strictly observed during sample preparation, before

and after all experiments. The annular channel, the Delrin
TM

ring, and the spacers

are cleaned independently using a multistage protocol including:
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1. chloroform and ethanol wiping,

2. wash with Milli-Q water,

3. rinse in boiling Milli-Q water,

4. and continuous washes under Milli-Q water at room temperature (about 1 min).

As soon as the annular channel is filled with acidified water subphase (pH = 2),

a homemade pipette is used to remove surface contamination several times until the

air-water interface is perfectly clean or flat. Next, PDA monolayer is deposited droplet

after droplet. Each droplet is produced from the tip of a Hamilton micro-liter syringe

and is touching slowly the interface. By controlling the amount of solution deposited,

we were able to regulate the surface concentration of the PDA monolayer at different

molecular areas. After 30 min, the chloroform completely evaporates and thermody-

namic equilibrium seems to be achieved. Afterwards, the annular channel is covered

by a thin plastic lid.

The large extent of the subphase area (125.66 cm2) ensures that the meniscus is

essentially flat, eliminating optical aberrations due to surface curvature in the central

part of the gap. To get a perfectly flat interface all along the liquid surface, one recalls

that it is pinned to the wedges at the top of the side walls.

The surface tension was measured (±0.1 mN·m−1) using a surface pressure sensor

(Nima) and homemade Wilhelmy plates cut inside a sheet of Whatman’s chromotog-

raphy paper. An initial calibration of the surface pressure sensor was performed.

Spreading solutions typically contained 1 mM PDA in chloroform. The absence of

surface-active contamination was checked by spreading a quantity of pure chloroform

on water; after evaporation the surface pressure remains zero. The monolayer density

is progressively increased from successive addings of spreading solutions on an acidified

subphase. The subphase was prepared before each experiment from pure chlorhydric

acid ([HCl] = 10−2 M, Chimie-Plus) dissolved in ultra-pure water supplied from a
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Milli-Q water system (Millipore). Long equilibration times (≥ 10 min) were observed

before spreading PDA solution at the surface of the subphase.

Imaging/recording setup

The BAM is set for optimizing image contrast between the different phases of the

PDA monolayer and the servomotor is started to rotate the annular ring at the bottom

of the channel. The CCD signal from the BAM is redirected to an A/D video converter

unit (Canopus ADVC300, Japan) and recorded on a PC hard disk with a maximum

frame rate of 25 frames·s−1 and a spatial resolution of 720 × 576 pixels. Finally, the

BAM images are analyzed frame by frame in order to extract the velocity profile and

the area fraction defined in the following.

4.3 Characterization of PDA monolayer in thermo-

dynamic equilibrium

The Π–A isotherm is measured in situ within the annular channel. After each

adding of PDA solution, a time delay is strictly observed in order to get a constant

surface pressure. BAM images are also useful to follow PDA spreading driven by

Marangoni effect and to check 2-D diffusion within the LM. To prevent any initially

compressed state, droplets of the spreading solution are just put in contact with the

liquid surface, avoiding thus a pool of solvent which might affect the Wilhelmy plate.

Experimental uncertainty on the molecular area A

The molecular area A was calculated from the amount of PDA spreading solution

added over the liquid surface which area is also known. It is difficult to prevent

the evaporation of the chloroform of the PDA solution. Accordingly, it can slightly

increase the concentration of the PDA solution with a possible over estimation of A.
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Besides, a second experimental error on A can be also due to a weak solubility of PDA

in the water subphase which tends to modify slightly A and lead ultimately to an

under-estimation of A. As one can see, both effects are really difficult to quantify and

moreover, they are somewhat expected to compensate each others.

4.3.1 Π–A isotherm of PDA monolayers

The identification of the monolayer phases and their distinction has been based

primarily on measurements of the surface pressure Π as a function of the molecular

area A. According to the phase rule, the slope of a Π–A isotherm for a one-component

system must be horizontal when two phases are in thermodynamic equilibrium; the

limits of a two-phase region should therefore be detectable from a slope change of the

Π–A isotherm. In practice, however, many experimental factors (questionable purity

of the amphiphiles, impurities released by the walls, the subphase or the air, non

negligible solubility of the amphiphile into the subphase, etc.) can distort the shape of

the isotherm and complicate the physical interpretation. The presence of a first order

phase transition can even been called into question [130].

Most of published isotherms are obtained from the continuous or discontinuous

compression of a spread film. In the compression method, a film is spread between

barriers and usually, at least one barrier is moved to reduce the available area. While

the barrier is moved continuously, the surface pressure is simultaneously recorded. In

the discontinuous method, a barrier is moved to prearranged positions and the surface

pressure is recorded until it becomes constant and supposed equal to the homogeneous

pressure in the LM. In fact, due to the motion of the barrier, isotherms represent

dynamic Π–A data even if they are claimed to be obtained in quasi-static conditions.

In contrast, isotherms measured from the technique of successive addings can be

recommended to study the surface properties of monolayers approaching “thermody-

namic equilibrium” state. Earnshaw & Winch [45] demonstrated that, for tempera-

tures above the monolayer triple point, which is about 17 ◦C for PDA, the transition
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Table 4.2. Molecular areas (Å2·molecule−1) at LE–LC coexistence in PDA monolayers,
as measured by different authors. Phase transition is detected between molecular areas
ALE and ALC

Literature Ref. T (◦C) ALE ALC

Moore et al. [122] 20 37 (36) 23

Moore et al. [122] 25 31 (32) 22

Moore et al. [122] 30 28 (29) 21

Harkins & Boyd [62] 20 38 23

Harkins & Boyd [62] 25 33 22

Harkins & Boyd [62] 30 31 21

Pallas & Pethica [130] 25 31 22

Pallas & Pethica [130] 30 28 21

Davoust et al. [32] 23 31 18

regions between LE and LC states are flat at thermodynamic equilibrium, indicating

a first-order phase transition for the use of highly pure PDA and subphase.

However, such a first-order phase transition appears to be clearly observable only

in very careful experimental conditions and for ultra-pure pentadecanoic acid [130,

29, 184]. Table 4.2 displays the limit molecular areas which characterize the LE–LC

coexistence in PDA monolayers, as measured by different authors.

4.3.2 Initial thermodynamic equilibrium of PDA monolayer

Static PDA Π–A isotherm and BAM images

Figure 4.5 shows the static Π-A isotherm for a PDA monolayer at 23 ◦C as mea-

sured from Wilhelmy technique and simultaneously observed from our BAM (Fig. 4.6).

For a higher surface concentration (A ≤ 20 Å2·molecule−1), the PDA monolayer re-

quires more time (≥ 1 h) to reach its thermodynamic equilibrium (steady value of
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Π). When the surface concentration grows up, the surface pressure becomes close

to the equilibrium spreading pressure of 18.7 ± 0.1 mN·m−1 (measured by Iwahashi

et al. [80]). At a working temperature of 23 ◦C, the PDA monolayer exhibits LE–

LC co-existing phases for a molecular area ranging from 31 Å2·molecule−1 to 18.9

Å2·molecule−1 (Figs. 4.6 (c) to (j)) in reasonable agreement with the literature (see

Table 4.2). The LE–LC transition starts with the formation of circular LC domains

(Figs. 4.6 (c) to (f)), as also reported by Knobler [94]. Note that the apparent elliptic

shape of the LC domain is only due to the Brewster angular deviation of the BAM

laser.
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Figure 4.5. Π–A isotherm for a PDA monolayer over acidified pure water (pH = 2,
HCl) at 23 ◦C. (•) (◦) Surface pressure measurements were performed twice in order
to insure repeatability (left axis). (�) Mean area fraction of the condensed phase is
measured from processing of BAM images (right axis) in Fig. 4.6.

In contrast with theoretical expectations, here, the LE–LC region exhibits a non

zero slope along Π–A isotherm which is probably due to the insufficient (though high)

level of purity for the PDA used in our experiments without further purification stage

[130]. The subsequent Π–A slope can cause a Marangoni effect in the low A region even



4.3. Characterization of PDA monolayer in thermodynamic equilibrium ·77·

during phase transition. Anticipating on the following, it will be physically consistent

to notice a non uniform radial distribution of the condensed domains.

For the smallest molecular areas of the LE–LC co-existing phases region, the Π–A

slope is observed to increase significantly though the surface concentration is close

to its maximum packing concentration. For such a high molecular densification, the

arising of Marangoni effect is nevertheless inhibited by the difficulty to create surface

concentration gradients.

In the following, the Langmuir dispersed film will be referred to as weakly densified

or highly densified depending on the area fraction of the LC phase is small or large,

respectively.

Time-dependence of PDA monolayer morphology

Time-dependence of the static organization of the PDA emulsion is investigated

under BAM. When the PDA monolayer is formed at A = 21 Å2·molecule−1 and a

temperature of 23 ◦C, the LC phase nucleates all over the water surface. These (2-D)

LC domains are thus found to grow quickly within several minutes. Afterwards, the

LM continues to evolve according to a slow growth of the LC domains mainly governed

by surface diffusion. In our experiments, the growth of the LC domains is followed for

15 h in order to fully investigate the establishment of the thermodynamic equilibrium.

Two images of the PDA monolayer morphology are displayed in Fig. 4.7 after delays

of 20 min and 15 h, respectively. As indicated by Fig. 4.7 (a), the majority of the LC

domains are circular, although the biggest ones are slightly deformed. Due to mass

conservation, the growth of the LC domains involves vanishing of the smallest ones.

The relative amount of LC phase is found to be 0.83 and 0.79 after a delay of 20

min and a delay of 15 h, respectively, considering that the initial time corresponds

to spreading of the last PDA solution droplet. Evidence is thus given here that the

amount of condensed phase is weakly modified by the time delay in static conditions.

Nevertheless, the LM tends to minimize its free energy by decreasing potential energy
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(a)
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(b) (c)
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(g) (h) (i)
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Figure 4.6. BAM images of PDA at 23 ◦C and pH = 2 (image dimension of 430
× 322 µm). Molecular areas: (a) 40 Å2·molecule−1; (b) 37 Å2·molecule−1; (c) 31
Å2·molecule−1; (d) 29.7 Å2·molecule−1; (e) 27.8 Å2·molecule−1; (f) 26 Å2·molecule−1;
(g) 24.5 Å2·molecule−1; (h) 23.1 Å2·molecule−1; (i) 21.9 Å2·molecule−1; (j) 21
Å2·molecule−1; (k) 18.9 Å2·molecule−1; (l) 15 Å2·molecule−1. Images (a) to (b): LE
phase only, (c) to (k): LE–LC co-existing phases, and (l): LC phase only.
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(a)

100 mm

(b)

Figure 4.7. Slow time-dependence of a PDA monolayer during thermodynamic equi-
librium. The experiment was carried out at 23 ◦C and at A = 21 Å2·molecule−1.
Time after initial formation of the PDA monolayer: (a) 20 min (αAF = 0.83); (b) 15
h (αAF = 0.79).

due to line tension. This is confirmed by the fact that, contrary to the area fraction

of the LC phase, the lineic edge density3 is obviously reduced (see Fig. 4.7).

4.4 Shear-induced perturbation of the thermody-

namic equilibrium

4.4.1 Experimental techniques and error sources

As mentioned above, all our measurements are carried out from BAM imaging (I-

elli2000, Nanofilm) which basically relies on the pioneering paper by Hénon & Meunier

[70]. Not equipped with the improved objective recently developed by [100], our BAM

delivers images which are only focused within a narrow horizontal strip. In order to

get a complete image with the best spatial resolution (about 2 µm), it is necessary

to scan a series of horizontal stripes successively and to reconstruct the final image

by stacking vertically all of them side by side. Scanning and reconstructing thus one

full BAM image requires several seconds; a time scale which is only possible in static

conditions (see e.g. Fig. 4.6).

3To our knowledge, this original terminology is directly inspired from the literature on 3-D two-
phase flows.
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The effect of Ω on Π–A isotherm

In order to confirm that the Marangoni effect is reduced in our experiment, we

tested the effect of the angular velocity Ω on Π–A isotherm. We did not found that

a change in Ω induces a noticeable impact on Π whatever the value of A can be and

even though Ω was as high as 4.376 rpm (Re > 1000). In consequence, we can expect

that surface pressure gradient is negligible along the radius direction of the channel.

Velocity profile along the surface

Perfect two-dimensionality of a LM lends itself very well to particle tracking ve-

locimetry. To characterize the flow of the PDA dispersed monolayer, only a small

horizontal and well-focused stripe is selected from the central area of our BAM im-

ages. Doing so, it is possible to get contrasted BAM images compatible with the

highest frame rate of the CCD camera attached to the BAM.

With none PDA molecule, the azimuthal component of the velocity along the sur-

face is measured from hollow glass beads (3M
TM

scotchlite glass bubbles S60) selected

as tracers. These beads are characterized by a density of 0.6 g·ml−1 and a mean di-

ameter of 35 µm, and allow us to control with a great sensitivity whether the surface

is flat or not. If the surface is a convex meniscus, the beads will gather in the center

of the channel; on the contrary, if the surface is a concave meniscus, they will concen-

trate near the walls. These beads are chemically neutral and can be washed without

difficulties. Their low density is thought of as a criterion to consider them as confident

tracers of the surface motion.

The azimuthal velocity profile along the surface vθ,s, is determined by measuring

the number of frames required for a glass bead to cross the field of view of a BAM image

strip. In presence of PDA, this velocity measurement is also found to be the same as

the one deduced from tracking LC domains of PDA (see enlarged Fig. 4.8). Hence, for

the laminar shear flow considered here, it was not possible to detect any significant

slippage between continuous LE phase and LC domains whatever their typical size (no
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slip or relative velocity). This is why in our study, all LC domains are considered as

intrinsic and non invasive tracers of the Langmuir emulsion under flow. In this way,

the azimuthal velocity profile was estimated at each radial location by averaging 20

measurements performed from one recorded BAM video sequence.

(a) (b) (c)

100 mm

Figure 4.8. (a)–(c) Typical sequence of BAM images during the flow of the PDA
monolayer from right to left. The boundary (see arrow) of a LC domain (bright) is
followed frame-by-frame in order to extract the azimuthal velocity profile along the
radius direction of the channel (PDA molecular area: A = 21 Å2·molecule−1 at 23± 1
◦C, subphase depth: h = 4 mm).

The radial profile of the azimuthal velocity along the interface, vθ,s, is therefore

measured with the following experimental parameters:

⋄ depth of subphase: h = 10, 7, and 4 mm,

⋄ molecular areas: A = 31 to 15 Å2·molecule−1, large enough to get a dispersed

LM whilst small enough to get stratifying stretched domains of condensed phase,

⋄ and a series of five angular velocities ranging from Ω = 0.138 rpm to Ω = 0.247

rpm.

Area fraction measurement

The LE–LC co-existing phases of the PDA monolayer can be characterized by the

area fraction of the LC phase (condensed fraction),

αAF =
ALC

ALC + ALE
=

ALC

Aimage
, (4.1)
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with Aimage the area of the BAM image, ALC and ALE, the areas of the condensed

and expanded phases, respectively.

Note that the free surface is investigated from a laser beam at the Brewster angle

θB = 53◦ (air-water interface) so that the BAM image appears shortened along the

vertical direction, and a circular object seems apparently elliptical. As already men-

tioned in the previous chapter, BAM images are presented with unavoidable artifacts

such like inhomogeneous illumination across the image; due to the Gaussian beam

profile of the incident laser, and interference fringes due to the optical components.

A typical full BAM image for PDA monolayer is shown in Fig. 4.9 (a). By rotating

the quarter wave plate and the analyzer of the BAM, the polarization of the incident

beam is set in such a way that the LE and LC phases appear black and bright, respec-

tively. A smaller horizontal window is cut within the original BAM image (480 × 80

pixels) in order to perform image processing as shown in Fig. 4.9 (b). Afterwards,

gray-scaled digital images of the LE–LC co-existing phases are processed by keeping

always the same threshold in order to produce binary images and to compute the area

fraction, αAF , from the fraction of white pixels (Fig. 4.9 (c)). To avoid overlapping,

BAM images are selected from the video sequence at a small enough frequency (1.25

frames·s−1). The averaged value of αAF , denoted αAF , is computed at any location

along the radial direction of the annular channel. All the digital images are processed

with MatlabR© software to determine the image size, to threshold the digital image, to

remove the background noise and finally, to calculate the mean area fraction of the

LC phase.

4.4.2 Other sources of experimental errors

Depth of the subphase h

The surface velocity vθ,s is very sensitive to the depth of subphase. As an example,

according to the modeling analysis by Drazek et al. [38], for a h = 5 mm, with inner

radius, ri = 40 mm, and with outer radius, ro = 70 mm, it can be demonstrated that a



4.4. Shear-induced perturbation of the thermodynamic equilibrium ·83·

100 mm

(a)

(b)

(c)

Figure 4.9. (a)–(c) Typical processing of original BAM image before computing αAF .

reduction of 100 µm on the depth of a pure water subphase involves an increase of 3%

on the maximum of surface velocity. In fact, a non negligible experimental error can

be attributed to the measurement of the subphase depth h essentially for two reasons:

1. Although all mechanical components are manufactured with a high degree of

accuracy, it is nevertheless difficult to reach a very small level of roughness and

a constant value of h. For instance, to adjust the subphase depths to h = 4

and h = 7 mm, additional Delrin
TM

rings are inserted into the annular channel.

Therefore, the ring thickness stands also as a possible source of experimental er-

ror. Consequently, several measurements of the subphase depth were performed

at different radial locations, especially at the vicinity of the side walls. With a

standard deviation as small as 0.049 mm, as measured, all the depths are found

slightly overvalued with an error of 4.75 %.

2. Despite the large radial extent of the channel gap and the care paid to adjusting

the flatness of the liquid interface, any slight meniscus can also affect the input

value of h. Therefore, we fixed the vertical position of the BAM and the annular

channel and then adjusted the depth of the subphase until we could get a clear

image from the BAM all along the liquid surface. By this method, we can make

sure that the position of the water surface is the same for all experiments.
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Angular velocity Ω

In order to control the angular velocity, Ω, during the experiments, a Hall-effect

sensor (Sick 7900264) is externally placed at the outer side wall and connected to an

electronic counter (Kübler Codix, Germany). To estimate the experimental error, a

scope (Tektronix TDS 1002) is also connected to the Hall sensor, separately. The

control parameter Ω measured in these two ways is characterised by a relative error

smaller than 8.24 % all over the relevant range, between 0.138 rpm and 8.767 rpm.

4.5 Experimental characterization of the two-

phase Langmuir monolayer flow

The shear applied to the LM is expected to destabilize the thermodynamic equi-

librium by enhancing deformation and further the break-up of the LC domains. If the

competition between shearing and line tension has received much attention, especially

as far as transient flows are concerned [110, 67, 72], it is clearly not true for a perma-

nent flow because of the delay in obtaining it (about 15 h). In fact, as demonstrated

in the following, this time delay remains unchanged if one compares between the sit-

uation for which the LM is at rest and the situation for which it is subjected to the

annular shear flow.

4.5.1 Area fraction convergence

A specific effort was devoted to achieving a steady flow-induced organization of

the PDA emulsion. According to Eq. (4.1), the LC-LE co-existing phases can be

characterized by the area fraction of LC phase. To ensure convergence of the area

fraction, time-dependent measurements are carried out at the radial locations, r = 4,

5, and 6 cm, for a subphase depth, h = 10 mm, and for a large molecular area, A = 31

Å2·molecule−1. For each radial locations, the channel floor is put in rotation after the
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spreading of the PDA solution is completed (typical time delay of ∼= 30 min at most).

At first, the monolayer on quiescent water consists of a dispersed phase characterized

by circular condensed domains surrounded by a continuous LE phase with a lower

molecular packing density (Figs. 4.6 (a) to (f)). Then, BAM image sequences are

recorded just after starting the ring rotation. The resulting video is stored for about

14 minutes at frame frequency, 1.25 frames·s−1. In this way, at least 1000 values of the

area fraction can be computed at each radial position. It is thus possible to calculate

a mean value of the area fraction from a given number of BAM images as shown in

Fig. 4.10. The mean area fraction αAF
i is defined as:

αAF
i =

1

Ni

Ni∑

i=1

αAF
i , (4.2)

where αAF
i denotes the ith area fraction calculated from the N th

i BAM image. In this

way, it is possible to test the convergence of the area fraction whether by increasing

Ni or by storing video sequences after time delays of 2 h, 5 h, and 15 h (existence of

a statistically invariant value of αAF
i ).

Competition between several timescales

As made evident from Fig. 4.10, the mean area fraction αAF
i is not capable of

converging unless the number of averaged images is taken larger than Ni ≈ 200. Even

beyond Ni ≈ 200, the Fig. 4.10 exhibits a slightly slope, that is found to be positive

for a small radius (r = 4 cm) and negative for a large radius (r = 6 cm). At midhalf of

the channel (r = 5 cm), no significant slope is observed and αAF
i is no longer affected

during the timescale under consideration. This phenomenon is observed after the floor

was set in motion for 2 or 5 h, but not after a delay as long as 15 h.

⋄ Convective transport along the liquid surface

Considering that the timescale associated to the recirculating flow within the

channel cross-section is of the order of several minutes (a timescale consistent

with Ni ranging from 100 to 500 and a video frequency at 1.25 frames·s−1),
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Figure 4.10. Area fraction convergence tests while the channel floor is rotating for 2,
5, and 15 h. The experiment is carried out at three different radii along the liquid
surface with a monolayer of PDA (23± 1 ◦C, h = 10 mm, A = 31 Å2·molecule−1, and
Ω = 0.138 rpm).
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an experimental scale for the radial component of the velocity along the liquid

surface can be estimated:

vr,s ∼
ro − ri

t
≈ 10−4 (m · s−1).

It can be checked that this velocity scale is also fairly consistent with the one

predicted from Eq. (C.6). According to the surface transport equation,

∂Γ

∂t
∼ ∇s · [v⊥Γ],

the radially inwards flow along the surface is expected to transport and pack PDA

molecules towards smaller and smaller radii. Hence, from the scaling analysis

developed in Appendix C, and more particularly from Eq. (C.6) and the previous

surface transport equation, the timescale for the flow-induced molecular packing

can be estimated as,

Tflow ∼ ro

vr,s
=

4νb

[Ωh]2
≈ 200 s,

which remains nevertheless much smaller than the timescale observed in our

experiments (about 15 h). We can conclude that even if the radially inwards

flow along the liquid surface contributes to transient convergence of the area

fraction at short times, as demonstrated by the positive and negative slopes

near the inner and outer side walls (Fig. 4.10), this is definitely not the limited

kinetics.

⋄ Surface diffusion-limited kinetics

Taking into account the Π–A isotherm, one can expect that, due to the cen-

trifugal flow-induced molecular packing, the size and the number of condensed

domains will grow progressively from large to small radii (Appendix C). As

confirmed later on, this is supported by the steady radial distribution of the av-

eraged LC fraction (see Fig.4.11). Nevertheless, the time scale associated either

to the growth or the coalescence of LC domains could be therefore the prior one

observed in our experiments (more than 5 h). If now we consider that the growth

process of the LC domains is limited by surface diffusion4 (cf. Section 4.3.2), it

4In a frame attached to the shear flow along the liquid surface (no slip velocity).
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can be worthwhile to write the surface transport equation as follows:

∂Γ

∂t
∼ Ds

1

r

d

dr

[
r
dΓ

dr

]
,

a second timescale can be estimated,

Tdiff ∼ [ro − ri]
2

Ds
≈ 40 h,

with a surface diffusion coefficient of PDA molecules,

Ds ≈ 10−8 m2 · s−1,

typical of organic surfactants in LM [175]. Since Tdiff is much closer to the

experimental time delay observed to get a steady distribution of the LC domains

(15 h), surface diffusion can be again considered as the limited kinetics in our

experiments despite the flow imposed.

⋄ On the impact of PDA solubility

Whatever the radial location considered, the asymptotic value of the averaged

LC fraction αAF
i always exhibits a systematic and significant reduction after the

floor is set in motion, even for a time delay far larger than 15 h. Even at mid-half

of the channel, the asymptotic value of αAF
i , defined as the value of αAF

i when

Ni = 1000, exhibits a non negligible drift towards lower and lower values (see

limit values of αAF
i after 2 h, 5 h, and 15 h).

We think that the very large timescale associated to a slow lowering of αAF
i orig-

inates from the solubility kinetics of PDA in the underlying acidified subphase.

As a matter of fact, the solubility of a fatty acid in water decreases as the length

of the alkyl chain grows [51]. To obtain an insoluble monolayer of a nonionized

fatty acid (i.e., our situation with a low pH value), a fatty acid must contain at

least 12 carbon atoms [133]. For instance, if a monolayer made from myristic

acid (C13H26O2) is held at a surface pressure of 10 mM·m−1 and a temperature

of 20 ◦C, then the loss in monolayer area due to solubility in the water subphase

is 0.1 %·min−1 [163]. This contrasts with a long-chain fatty acid such like stearic
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acid (C18H36O2) which demonstrates a decrease in its molecular area of less than

0.001 %·min−1 under similar conditions [51]. These figures simply reflect the

different solubilities of two long-chain compounds in water subphase at 20 ◦C:

0.02 g·l−1 and 0.003 g·l−1 for myristic acid and stearic acid, respectively. In our

case, the monolayer is made from PDA (C15H30O2), a fatty acid whose chain

length is placed between myristic and stearic acids.

To conclude, even with a low-Reynolds number flow, one needs a long time to

get a steady pattern of the LE–LC co-existing phases and therefore to get a

local convergence of αAF
i . During all this time, the total amount of PDA over

the liquid surface slowly decreases due to a slight solubility in the underlying

subphase.

Steady distribution of the LC domains

In light of the aforementioned timescales, all the experimental results which follow

are only concerned with the steady regime strictly obtained after a delay as long as

15 h. As shown in Fig. 4.10, and despite the aforementioned solubility of PDA, one

considers that a sufficient level of convergence is achieved to investigate the flow-

induced meso-patterning of the steady dispersed LM. At each radial location, BAM

images are recorded at a capture frequency 1.25 frames·s−1 during a delay of about

7 min, which means that up to 500 values of the area fraction can be computed and

averaged for each radial position. The mean area fraction,

αAF =
1

500

500∑

i=1

αAF
i , (4.3)

is found to converge accordingly with our selection criterion since a same level of

convergence is achieved whatever the radial location is (see Fig. 4.11).

The experimental error for the steady distribution of the mean area fraction is

estimated from the standard deviation of αAF
i by removing systematically the first

150 values of the instantaneous area fraction αAF
i while retaining the last 350 values.
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As explained by the insert in Fig. 4.11, error bars represent the standard deviation

calculated at each radial locations from the last 350 values of αAF
i .
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Figure 4.11. Steady distribution of the mean area fraction, αAF = 1

500

∑500

i=1
αAF

i as
measured after a time delay of 15 h. The protocol to estimate the experimental errors
is illustrated by the insert at the radial location r∗ = 0.571 (r = 4 cm) where a BAM
image of the condensed domains (elliptical bright spots) under flow is also displayed
(A = 31 Å2·molecule−1, h = 10 mm and Ω = 0.138 rpm).

4.5.2 The case of a highly densified LM

We also investigated the convergence of the mean area fraction for a highly densified

LM (A = 15 Å2·molecule−1, h = 4 mm, Ω = 0.206 rpm). After the PDA monolayer

is in thermodynamic equilibrium (after ∼= 30 min), BAM images shows that all the

monolayer is LC phase. Then we start to rotate the channel floor and video sequences

are recorded for different time delays. Fig. 4.12 shows that αAF
i is quickly convergent,

being nearly constant as soon as Ni ≈ 250 or more. Before convergence - and whatever

the radial location is - all the values of αAF
i uniformly decrease.

This last experimental observation contrasts strongly with the previous experi-

ment performed for a low densified LM with A = 31 Å2·molecule−1, a depth h = 10
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Figure 4.12. Convergence test for the mean area fraction after the channel floor was
set in rotation for 0.5, 1, 2, 5, and 15 h. The experiments are carried out at three
radial locations (23 ± 1 ◦C, h = 4 mm, A = 15 Å2·molecule−1, and Ω = 0.206 rpm).
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mm, and a low rotation speed Ω = 0.138 rpm. For a highly densified LM (A = 15

Å2·molecule−1), the ability of the radial velocity along the monolayer to support molec-

ular packing is no longer significant. Here, and as confirmed later, the shear is sus-

pected to drive to an efficient fragmentation and subsequently, to the fast and steady

organization of the LM.

In Fig. 4.12 whatever the radial location considered, the averaged LC fraction αAF
i

again exhibits a significant reduction after the floor is set in motion for a time delay as

large as 15 h. Even at mid-half of the channel, the asymptotic value of αAF
i exhibits a

non negligible drift towards lower values (see limit values of αAF
i after 2, 5 and even 15

h). Here again, PDA solubility in the water subphase is suspected to play a key-role,

as mentioned above. To consolidate this interpretation, it is worthy to estimate PDA

solubility from our data. In Fig. 4.12, one gets αAF
i ≈ 0.5 after the floor was set in

motion for 15 h. From Figs. 4.5 and 4.6, we can estimate that A ≈ 23 Å2·molecule−1

for αAF
i = 0.5. Assuming that the long time decrease of αAF

i is due to solubility of

PDA in the water subphase, the rate of PDA lost is found closed to 0.0386 %·min−1:

a value which is fairly consistent with the previous data on myristic and stearic acids.

4.5.3 Identification of the surface viscosity

One famous technique devoted to the measurement of the surface shear viscosity,

µs, is the deep-channel (or canal) viscometer [27, 112, 180, 135, 105]. As already

mentioned, the experimental set-up presented in our experiment can play the same

role as the deep-channel viscometer since our annular geometry is very close especially

when the subphase depth is the largest: h = 10 mm (Fig. 4.1). Nevertheless, compared

to the classical deep-channel geometry, and as described later on, our experimental

device distinguishes itself by a decisive technical improvement which allows user to

handle soluble surfactants (small fatty acid chain length, detergents, functionalized

bio-molecules...): no chemical leakage at the bottom of the side walls is made possible

(for sake of comparison, see for instance [112, 72]).
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Even if our prior aim is not to perform viscosity measurements, it is important

(as seen in the following) to assess a possible change in surface shear viscosity during

LE–LC phase transition. As a consequence, the surface flow can be advantageously

modeled and compared to experimental measurements [112]. The modeling of a canal

viscometer proposed by Mannheimer & Schechter is described in Appendix B.

The dimensionless velocity along the surface,

v∗θ,s =
vθ,s

roΩ
,

as measured for the angular velocity Ω = 0.138 rpm and predicted in Appendix B

from Eq. (B.12), is plotted in Fig. 4.13 for pure water with a surface viscosity con-

sidered as negligibly small (µs = 0 sP). The agreement between measurements and

calculated values for a pure interface is rather good if we consider that the aver-

age deviation between the measurements and predictions all along the liquid surface,

|v∗θ,s,measured − v∗θ,s,prediction|
v∗θ,s,measured

, are found to be 9.0 %, 5.2 %, and 6.0 % for the depths

h = 10, 7, and 4 mm, respectively. These discrepancies may be due to the experimental

errors already mentioned about h and Ω.

To obtain the estimation of µs, a least squares method is used to fit the experimen-

tal profile of dimensionless surface velocity, v∗θ,s, with the control parameters, h = 7

mm and Ω = 0.138 rpm. This curve fitting involves Eq. (B.12) as the analytical model

which relates the dimensionless radius r∗ to v∗θ,s; µs stands as the parameter to ad-

just and therefore to identify. The best fits for µs for different molecular areas A are

delivered in Table 4.3 with attached root mean square errors (RMSE).

Previous study performed on stearic acid showed that µs = 0.56 msP, 0.94 msP,

and 0.94 msP (1 sP = 10−3 kg·s−1) for A = 59 Å2·molecule−1, 39.3 Å2·molecule−1, and

29.5 Å2·molecule−1 respectively [71]. Note that the value of µs as measured here for

PDA monolayers is in reasonable agreement with the values measured or referenced

by Earnshaw & Winch [45].
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Figure 4.13. Non-dimensional surface velocity profile for Ω = 0.138 rpm (pure water).
The solid line is a curve fit of the measured data (◦), as obtained from Eq. (B.12) with
a negligibly small surface viscosity (µs = 0.00001 sP).
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Table 4.3. Dependence of the surface shear viscosity µs on the molecular area A for a
PDA monolayer with the corresponding root mean square errors (RMSE) as calculated
after curve fitting.

A (Å2·molecule−1) µs (msP) RMSE

40 0.109 0.030

31 0.128 0.027

26 0.144 0.032

21 0.203 0.029

15 0.243 0.038

13 0.1931 0.046

1questionable since the state of the LM

is perhaps no longer concerned with the

co-existing LE–LC phases only: possible

arising of a solid phase.

4.5.4 The azimuthal velocity profile along the interface vθ,s

The azimuthal velocity profile along the interface vθ,s is measured as shown in

Fig. 4.14 with the following experimental parameters:

⋄ three depths of pure water subphase of h = 10, 7, and 4 mm,

⋄ two angular velocities of Ω = 0.138 rpm and Ω = 0.206 rpm,

⋄ different surface concentrations of the PDA monolayer A from 31 Å2·molecule−1

to 13 Å2·molecule−1.

In addition, vθ,s-profile for pure water at different h and Ω is also shown in Fig. 4.14 (a).

In our experiment, the Reynolds number is defined as:

Re ≡ roΩegap

νb
, (4.4)
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Figure 4.14. Dimensionless azimuthal velocity along the liquid surface v∗θ,s with Ω =

0.138 rpm and for (a) pure water, (b) A = 40 Å2·molecule−1, (c) A = 31 Å2·molecule−1,
(d) A = 26 Å2·molecule−1, (e) A = 21 Å2·molecule−1, (f) A = 15 Å2·molecule−1, (g)
A = 13 Å2·molecule−1. The last figure (h) displays v∗θ,s-profiles with Ω = 0.138 rpm
and h = 10 mm when LM molecular density increases (A: ◦, pure water; △ 40; �, 31;
×, 26; ⋄, 21; + 15; ▽, 13 Å2·molecule−1.)
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where egap = ro − ri and νb denote the channel gap and the molecular viscosity of

the subphase, respectively. Its value remains moderate even with the maximum value

taken by the angular velocity during our experiments, Ω = 0.247 rpm (Re ≈ 70).

Here, the angular velocity Ω is either 0.138 rpm or 0.206 rpm respectively. Ac-

cording to the definition of Eq. (4.4), because Re remains small enough, the flow in

the annular channel is consistently found laminar. As made evident in Fig. 4.14 (a)

to (g), changing the depth h drives to a stronger impact on the shape of the velocity

profile than any change in the molecular area A (see Fig. 4.14 (h) for instance). The

maximum value of vθ,s observed on the velocity profile is seen to increase as h decreases

while the velocity profile approaches the linear Couette profile imposed by the near

rotating floor.

To take into account the coupling between the in-plane shear along the liquid

surface and the shear in the underlying subphase, it is useful to introduce the (macro-

scopic) Boussinesq number:

B̃o ≡ µsh

µbegap
2
, (4.5)

where µs is the surface shear viscosity and µb is shear viscosity of the subphase. Ac-

cording to the identified value of µs in our experiment, the (macroscopic) Boussinesq

number is of the order of, B̃o ≈ 0.4 × 10−3, with µs ≈ 0.2 msP (1 sP = 10−3 kg·s−1),

µb = 10−3 Pa·s and h = 10 mm. In our experiments, the surface shear viscosity is

therefore not expected to impact the bulk flow near the interface (B̃o ≪ 1). And

apparently, the surface velocity vθ,s is not clearly found sensitive to the molecular area

A (Fig. 4.14).

4.5.5 Mean area fraction along the interface αAF

The mean area fraction of LC phase along the interface, αAF , is shown in Fig. 4.15.

Major trends are worthy of note:

⋄ For a weakly densified monolayer, and subsequently for a larger molecular area
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(A = 31, 26, and 21 Å2·molecule−1), the value of αAF for h = 4 and 7 mm is

lower than the one for h = 10 mm (see Figs. 4.15 (a), (b), and (c)).

⋄ For a highly densified monolayer, as illustrated in Fig. 4.15 (d), if the molecular

area A goes down to 15 Å2·molecule−1, the value of αAF for h = 4 mm is found

larger than the one for the two larger depths h.

⋄ In Fig. 4.15 (f), for the same molecular area A = 15 Å2·molecule−1, the rotation

speed of the channel floor is increased and the initial trends observed at a large

surface molecular area when h = 10 and 4 mm are recovered. In Figs. 4.15 (a),

(b), (c), and (f), a slope on the area fraction can be distinguished. This is related

to a radial segregation with the largest value of αAF located near the inner side

wall when the subphase depth is h = 10 mm.

⋄ Finally, for smaller molecular areas A (A = 15 and 13 Å2·molecule−1), the αAF

profiles are uniform whatever the depth of the subphase is.

To elucidate these experimental findings, one has to take into account the interplay

of:

1. the radially inwards flow along the surface,

2. the subphase and surface contributions to the shear-induced deformation expe-

rienced by the LC domains,

3. and evidently, the line tension.

The following chapter focuses on the respective abilities of these physical mechanisms.

4.6 Concluding remarks

The influence of a laminar annular flow, at a moderate Reynolds number (Re ≈ 10

to 100), on the steady morphology of a LM made with co-existing LE–LC phases of



4.6. Concluding remarks ·99·

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r∗

α
A

F
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Figure 4.15. Mean area fraction of LC phase, αAF , along the surface for different
values of A, h, and Ω.
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pentadecanoic acid (PDA) is investigated. Not surprisingly, due to a small macroscopic

Boussinesq number, the surface velocity is found to be weakly modified by successive

addings of PDA amounts during LE–LC transition. Nevertheless, an averaged surface

shear viscosity of the PDA monolayer is estimated from our apparatus by considering

it behaves also as a channel viscometer.

According to our Π–A isotherm, measured from the technique of successive addings,

Marangoni effect is expected to reduce drastically during LE–LC phase transition

provided that the laminar flow is considered as a perturbation of the thermodynamic

equilibrium.

During the transition, and because of the flow, the monolayer shifts from a dis-

persed to a stratified regime. Due to the rotation of the channel floor, a weak cen-

trifugal flow, responsible for a radial transport of the surfactants along the surface

and balanced by Marangoni effect, is found to play a significant role only when the

monolayer is dispersed. Above a given level of surface concentration, the monolayer is

no longer dispersed and becomes stratified. The corresponding flattening of the Π–A

isotherm suggests that Marangoni effect becomes vanishingly small. Accordingly, the

area fraction distribution is found uniform. The condensed domains behave as stripes

elongated along the shear flow.

It has to be mentioned that despite its very slow kinetics, due to the long time

scale of our experiments, PDA solubility in the water subphase can become significant.



Chapter 5

Flow-induced patterning of a

condensed phase within a Langmuir

monolayer

5.1 Theoretical considerations

5.1.1 Thermodynamical equilibrium: the balance between

dipolar electrostatic forces and line (excess) tension

The LM along the surface is conveniently modeled as a sheet of molecular dipoles

with dipolar electrostatic moment mainly oriented perpendicular to the surface. As

a consequence of Gauss’ law, written as a jump at the liquid surface, the difference

in surface dipole densities, which arises here, from the difference in molecular densi-

fication between inner and outer parts of a condensed domain, supports long-range

dipole-dipole repulsive interactions. As described by [116], when the thermodynamic

equilibrium is well-established, the shape of a condensed domain can be considered

as governed by a balance between a line (excess) tension, λo, also referred to as bare

101
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line tension1, the short-range dipole electrostatic interactions inside a condensed do-

main and the aforementioned long-range dipole-dipole repulsive interactions. As a

consequence, line excess tension enhances circular shape of the LC domains whereas

the dipole-dipole electrostatic repulsive interactions support instability of the circu-

lar shape with transition from circular to elongated shapes such as n-fold symmetry

shapes (see e.g. 2-fold symmetry associated to “dog-bone” domains [98]) or thin stripes

[117]). Due to their negative contribution to an effective line tension, the long-range

dipole–dipole interactions result in a process which promotes line edge density.

Since pioneering modeling proposed by McConnell and his collaborators [116], there

is full agreement in the literature to write the total energy of a condensed domain as

the sum of a bulk electrostatic energy, a line tension energy and electrostatic energy

due to long-range interaction

Fs = ALC ε+ λP − 1

2
µLC/LE

2

∫∫
©

∂ALC

ds ds′√
[r − r′]2 + ∆t

2

, (5.1)

where the shape of the condensed domain is described from the local variable r(s), and

ds and ds′ are defined as line elements attached to its outer boundary (see [185] for

instance). The symbols ∂ALC , P and µLC/LE denote, respectively, the dividing edge

around the LC domain, its length and the difference in dipole densities between the

dipolar PDA molecules within the LC domain and those diluted in the surrounding

LE continuous phase. The modified variables introduced in Eq. (5.1) are defined as

follows:

λ = λo − µLC/LE
2,

and

ε = εo +
µLC/LE

2

∆t
,

where εo is the electrostatic energy per unit area within the LC domain and λo is the

line (excess) tension. The symbol µLC/LE denotes the difference in dipole densities

1As an excess variable, analogous to the surface tension in 3-D, the bare line tension stands as a
fictive mechanical variable due to the surface pressure difference between inside and outside of the
closed line which delimitates one LC domain (Gibb’s approach). The bare line tension integrates
short-range forces (such like Van der Waals dispersive forces or steric repulsion) over a distance from
the delimiting line significantly larger than several molecular scales [146].
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between the dipolar PDA molecules within the LC domain and those diluted in the

outer (continuous) LE phase. Finally, ∆t can be understood as a cutoff thickness below

which the dipole-dipole repulsive forces are more and more negligible and increasingly

replaced by short-range forces.

Equation (5.1) of the energy Fs can be written down explicitly for a circular con-

densed spot of radius R (consider for instance updated modelling by Deutch & Low

[36]):

Fs = 2πR

[
λo − µLC/LE

2 ln

(
8R

e2∆t

)]
, (5.2)

where e ≡ exp(1) and, according to the literature, the modified line tension λo ranges

between 1 and 10 pN.

The typical number of PDA molecules, N , packed inside one circular LC domain

can be estimated from the approximation,

aN = ALC = πR2,

where a can be defined as the mean molecular area occupied by one PDA molecule.

Keeping the condensed area ALC constant, the energy per molecule, Fs is classically

minimized with respect to the radius R of a LC domain so that the equilibrium radius

[116] writes as:

Req =
e3∆t

8
exp

(
λ

µLC/LE
2

)
. (5.3)

As already noticed, only a slow time-dependence allows for the PDA co-existing

phases to attain thermodynamic equilibrium, which is highlighted in Fig. 4.7. This

growth kinetics is related to the instantaneous radius which increases up to the equilib-

rium radius Req predicted from Eq. (5.3). It seems consistent to associate this kinetics

with the very long time scale made evident during the time-dependent experiments

which commented in Section 4.5.1 (see Fig. 4.10).
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Beyond the static equilibrium regime defined by Eq. (5.3)

The instability of one isolated condensed domain has been the subject of many

studies, especially when its shape allows the energy Fs to be written down explicitly

[116]. All the literature is based on a linear stability approach and the involvement

of harmonic modes for describing shape distortion: see for instance [98, 34, 167] for

circular or nearly-circular islands of condensed matter, and more recently, de Koker et

al. [33] and Alexander et al. [4] for a stripe and a tether, respectively.

Typically, a circular domain with a radius larger than the equilibrium one defined

by Eq. (5.3) is linearly unstable with respect to a harmonic distortion of its initial

shape. As found by [86], if the radius of a LC domain exceeds the following critical

size,

Req =
∆t

8
exp

(
λ

µLC/LE
2

+ Zn

)
, (5.4)

a transition to a shape with a n-fold symmetry can be observed. Note that in the

paper by Lee & McConnell (1993) (see Figs. 8 to 11 in [98]), shape transitions are

successfully observed using either the initial domain size or the surface pressure as

control parameters.

5.1.2 Non-equilibrium: relevance of the effective line tension

Here, our aim is to deal with a situation out of equilibrium i.e., with a flow ex-

ternally imposed. The effective line tension, λeff , is introduced in order to take into

account the balance between cohesive energy due to line (excess) tension and nonco-

hesive energy due to dipolar electrostatic repulsions. Defining the quantity λeff ,

λeff =
∂Fs

∂P

∣∣∣∣
ALC

,

from the partial derivative of the total energy of a condensed domain, Fs, with respect

to its perimeter, P , de Koker & McConnell [34] demonstrated that the long-range
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dipolar forces contribute in renormalizing line tension in such a way that

λeff = λ− µLC/LE
2


ln




√
ALC/Π

∆t


 + Is


 ,

provided that the cut-off length ∆t (≈ 1 nm) remains much smaller than the typical

size of the condensed domain
√
ALC/Π (a requirement which is commonly fulfilled).

The variable ∆t is nothing but a cut-off thickness below which the dipole–dipole re-

pulsive forces are more and more negligible and increasingly replaced by short-range

forces. Except if λeff becomes very small, the contribution Is can be considered as

negligibly small. Consequently, it can be demonstrated that shape transitions are

mainly monitored by the control parameter,

λeff ≃ λ− µLC/LE
2 ln




√
ALC/Π

∆t


 . (5.5)

5.1.3 Shape change of a LC domain under shearing: the clas-

sical macroscopic approach

For the shape of a condensed domain to be modified by a steady shear, one has to

take into account the balance between the effective line tension, λeff , and the shear

stress whatever its origin is: from the surface, with the contribution of the in-plane

shear stress τs, or from the underlying subphase, with the contribution of the shear

stress valued at the surface: τb|s (see Fig. 5.1).

Keeping in mind the approach of J. W. Gibbs based on a zero-mass dividing surface,

the LM is considered as nothing but a 2-D continuum embedded within 3-D space

(intrinsic point of view). Accordingly, we consider that the shear stress from the

bulk, τb|s, behaves as a (surface) body force, in the same way that buoyancy in 3-D

two-phase flows.

It follows that a surface Bond number can be classically defined at the macroscopic

scale,

Bos ≡
µbro

3Ω/h
λeff

, (5.6)
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where ro, h, and Ω denote the outer radius of the channel, the subphase depth, and

the angular velocity, respectively.

Equivalently, the surface shear can be also taken into account by introducing either

a surface capillary number at macroscopic scale,

Cas ≡
µsroΩ

λeff

, (5.7)

5.1.4 Shape change of a LC domain under shearing: the meso-

scopic scale

To our knowledge, the literature mainly focuses on the transient relaxation of

a condensed domain in a two-phase LM. For instance, it is established that when

submitted to a transient shear rate imposed from the subphase,
o
γ, a condensed domain

is able to deform from a circular- to a bola-shaped domain. If
o
γ increases more,

condensed domains break up. The resisting effect of the line tension is classically

estimated from a viscous relaxation process originating from the subphase [72, 110]

(small macroscopic Boussinesq number).

In our experiments, the macroscopic Boussinesq number is also much smaller than

unity (Bo
∆
= Cas
Bos

≈ 10−4) so that surface shearing can not be suspected to modify

the end-driven flow within the subphase (one-way coupling). To confirm this state-

ment, it has been checked that even if the molecular area is reduced down to A = 15

Å2·molecule−1, the profile of the surface velocity vθ,s is not significantly changed.

However, here the flow under consideration is specific in the sense that it is per-

manent. The LC domains behave as 2-D liquid drops

µs,LC

µs,LE
∼ µs (A = 40 Å

2 · molecule−1)

µs (A = 15 Å
2 · molecule−1)

≈ 2;

this property fully opens the possibility of deformability under the impact of viscous

shear. It follows that a surface Bond number can be defined at the mesoscopic scale,
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that is to say, at the scale of an individual LC domain,

BoLC,s ≡
τb|s SLC

λeff
, (5.8)

with the typical area of one condensed domain defined as

SLC = RδθδR.

The variables Rδθ and δR denote the typical length of a condensed domain along the

direction of shearing (azimuthal cross section) and the typical width of a condensed

domain (radial cross section), respectively (see Fig. 5.1). Surface shear stress, τs, is

also taken into account by introducing the mesoscopic surface capillary number at the

scale of one LC domain,

CaLC,s ≡
τsRδθ

λeff
. (5.9)

A mesoscopic Boussinesq number is therefore defined at the scale of one LC domain

by writing the following ratio:

B̃oLC ≡ CaLC,s

BoLC,s
=

τs

τb|s δR
≈ 1 to 10, (5.10)

with the values of the shear stresses estimated from Fig. 5.6, as follows:

τs = µsΩ

[
dv∗θ,s

dr∗
− v∗θ,s

r∗

]
, (5.11)

τb|s = µb
roΩ

h

∂v∗θ
∂z∗

∣∣∣∣
s

∼ µb
roΩ

h

[
v∗θ,s − r∗

]
, (5.12)

with µs = 0.127× 10−6 kg·s−1 (estimated from the technique of the canal viscometer)

and where µb, ro, h, and Ω denote the Newtonian viscosity of the subphase, the outer

radius of the channel, the subphase depth, and the angular velocity, respectively.

Interestingly, the scale of B̃oLC , which is found of order unity and even more2, is

affected by the stretching rate of the LC domains via its dependence on δR (≈ 10 to

100 µm).

2The Couette profile supposed to hold when writing Eq. (5.12) suggests that B̃oLC is clearly
undervalued.
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Figure 5.1. LC domain under stress-induced stretching, as sketched.

5.1.5 Brief comments on the potential impact of an

externally-imposed flow

The equilibrium size of a LC domain in our PDA LM ranges from 100 µm down to

10 µm (see Fig. 4.6), the smallest size which remains nevertheless much larger than the

cut-off distance. Therefore, the square of the factor µLC/LE , involved in the expression

of the effective line tension (5.5), is expected to contribute importantly to the steady

radius.

If the Reynolds number is large enough (Re ≈ 100), we expect that the LM,

especially the LC domains, be packed under the radially inwards flow-induced pressure

along the liquid surface. By modifying the value of µLC/LE, the effective line tension

and subsequent cohesion of the LC domains could be strongly impacted (see Eq. (5.5)).

Considering the theoretical and experimental findings of Lee & McConnell [98], we

expect that the recirculating flow enhances shape transitions and subsequent elongated

shapes of the LC domains, promoting thus a larger value of the lineic edge density.

The shear flow along the channel could modify strongly the cohesion of a LC

domain because of a competition between effective line tension and the viscous drag
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force from the bulk [16] or the (in-plane) viscous drag force from the surface whether

the Boussinesq number turns out large enough [185].

To anticipate the detailed interplay of all these physical mechanisms reveals to

remain a difficult task at first. The experiments which follow are supposed to help in

doing relevant selection among them.

5.2 Growing impact of the flow upon mesoscopic

morphology

In order to investigate the flow-induced reorganization of the PDA monolayer, a

collection of characteristic BAM images have been selected for different molecular

areas, namely A = 31 and 26 Å2·molecule−1, as displayed in Figs. 5.2 - 5.3.

5.2.1 Low molecular packing and dispersed flow

At a low surface concentration (A = 31 Å2·molecule−1) and a low enough Reynolds

number (Re ≃ 40), line (excess) tension remains large enough to prevent LC domains

from in-plane fragmentation due to either the dipole-dipole repulsion, the in-plane

shear stress along the liquid surface, or the shear stress from the subphase. As a

consequence, the LC domains conserve a cohesive-circular or elliptic shape.

Molecular packing due to radial flow

As clearly demonstrated in Figs. 5.2 - 5.3, the radial distribution of αAF (r∗) exhibits

a negative slope which delivers a first evidence of a radially inwards flow-induced

segregation of the LC domains. The low molecular packing density of the LM confers to

it a fluidity large enough to permit a radial flow along the surface. Taking into account

the scaling analysis developed in the Appendix C, which relies on the hypothesis that

the adsorption isotherm (Fig. 4.5) remains relevant, a decrease in the molecular area
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Figure 5.2. Radial distribution of αAF for A = 31 Å2·molecule−1 and Ω = 0.138 rpm
with typical BAM snapshots. The flow direction is from right- to left-hand sides of
each snapshot.

as small as 0.1 Å2·molecule−1 (Eq. (C.7)) should be theoretically associated with the

radial segregation of the area fraction along the liquid surface. This prediction is

contradicted by the dependence of the mean area fraction on the molecular area as

displayed in Fig. 4.5 during thermodynamic equilibrium: only a change in molecular

area as large as 1 to 10 Å2·molecule−1 could explain the slope observed on the αAF (r∗)-

profile (Fig. 4.11). We believe that the strong disagreement between our experimental

observations and prediction in Eq. (C.7) demonstrates that the adsorption isotherm

and the near-equilibrium approximation (Eq. (C.2)) are no longer valid when a shear

flow is imposed however small its Reynolds number may be.
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Figure 5.3. Radial distribution of αAF for A = 26 Å2·molecule−1 and Ω = 0.138 rpm
with typical BAM snapshots. The flow direction is from right- to left-hand sides of
each snapshot.

Arising of a barrier (Reynolds ridge) along the annular liquid surface

To support definitely the previous physical interpretation, a series of αAF -profiles

is measured for the low molecular density, A = 31 Å2·molecule−1, while the rotation

speed is progressively increased (Fig. 5.4). A clear evidence is given of a flow-induced

segregation on the molecular packing density: when the rotation speed is large enough

(Ω = 0.206 rpm), all the LC domains are removed from the right hand side (RHS) to

the left hand side (LHS) of the liquid surface (see BAM images recorded at r∗ ≃ 0.86).

Proportionally, a peak is made evident on the αAF -profile located on the LHS of the

liquid surface at the radial location r∗ ≃ 0.57. When radial convection intensifies, the
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magnitude of the αAF -peak becomes consistently larger and larger while it expands

radially on the LHS of a (circular) Reynolds ridge. All along the liquid surface, rather

than noting a significant increase in the total area of LC phase,

ALC,t =

∫ r∗=1

r∗=
ri
ro

ALCdr
∗,

to the detriment of the total area of LE phase, ALE,t, the quantity ALC,t remains

roughly unchanged.
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Figure 5.4. Mean area fraction along the interface αAF for a dispersed monolayer and
the following values of the floor rotation speed: ◦: Ω = 0.076 rpm, ((a) and (f)); △:
Ω = 0.138 rpm, ((b) and (g)); �: Ω = 0.160 rpm, ((c) and (h)); ⋄: Ω = 0.206 rpm, ((d)
and (i)); ▽: Ω = 0.247 rpm, ((e) and (j)). Significant BAM snapshots are displayed
on both sides of the Reynolds ridge at two radial locations: (Figs. (a) to (e), top line)
r∗ ≃ 0.57 and (Figs. (f) to (j), bottom line) r∗ ≃ 0.86 .

To complete these observations, the typical diameter of the LC domains, d, is

measured from BAM images recorded on both sides of the cumulating location r∗ ≃
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0.57. Interestingly, Fig. 5.5 demonstrates that the αAF -peak is not explained by the

growing size of the LC domains. In contrast to this, the typical size of LC domain

suddenly decreases by a factor of about 2 when the rotation speed of the annular

floor grows up to the onset Ω = 0.160 rpm. Correlatively, a sudden jump in the

number of LC domains, nLC , is observed at the same rotation speed, which allows us

to understand why ALC,t is not significantly changed.
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Figure 5.5. (◦) Mean diameter (left axis) and (�) number density Nd (right axis) of
the LC domains as measured at the radius, r∗ ≃ 0.57, where the αAF -peak is made
evident.

Physical interpretation of the morphological transition

The LM experiences a strong morphological transition from a rough poly-dispersed

two-phase monolayer (Figs. 5.4 (a) and 5.4 (b), Ω = 0.076 rpm to 0.138 rpm) to a

mono-dispersed matrix of tiny condensed drops (see Figs. 5.4 (c) and 5.4 (d), Ω = 0.160

rpm to 0.206 rpm). If the radially inwards flow-induced pressure increases more (Ω

as large as 0.247 rpm), the 2-D distribution of condensed drops becomes increasingly

regular and exhibits a well-defined spatial frequency (see Fig. 5.4 (e), see also reducing

in error bars for the typical diameter d in Fig. 5.5). Among consequences, there is a
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strong increase of the number density (Fig. 5.5) defined as,

Nd =
nLC

Aimage
,

where Aimage = ALC + ALE is the total area of the BAM image, already involved in

Eq. (4.1) and where nLC is also defined as the number of nucleation sites of the LC

phase.

At the same time, the surface pressure in the LE phase, ΠLE , likely increases in

order to satisfy mass conservation of PDA along the liquid surface. If one considers

thermodynamic equilibrium, one can write a two-dimensional Laplace’s law as [146],

ΠLC − ΠLE =
λ

deq/2
,

with deq, the equilibrium diameter of one condensed drop. Now if one considers that

line tension is not significantly reduced, whilst the difference in surface pressure re-

duces, the equilibrium radius should increase. Here, our experimental results fully

contradict this expectation since the diameter of the condensed drops is reduced un-

der the impact of flow-induced compression.

As a consequence, hydrodynamical ingredients must be introduced. Now, if one

considers the velocity along the surface (Fig. 5.6), one can see the following:

⋄ despite the growing impact of the radial segregation when the rotation speed

increases, the dimensionless profile of the θ-component of the velocity along the

surface, vθ,s, is virtually unchanged (Fig. 5.6) as well as the dimensionless profiles

of the in-plane shear stress and the subphase stress at the surface;

⋄ whatever the value of the rotating speed, the (macroscopic) Boussinesq number

remains very small (B̃o ≈ 10−4) so that it cannot be retained as relevant to

investigate the morphological transition observed;

⋄ the (mesoscopic) Boussinesq number, B̃oLC , defined from Eq. (5.10), is found to

be of order unity and even more near the side walls (Fig. 5.7), which suggests

that the shear along the surface is responsible for breakup of the LC domains

and subsequent reduction in mean diameter (Fig. 5.5).
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Figure 5.6. (—) Curve fitting of the dimensionless velocity along the surface, v∗θ,s

(r∗), for A = 31 Å2·molecule−1 and the angular velocities: (◦) Ω = 0.076 rpm; (△)
Ω = 0.138 rpm; (�) Ω = 0.160 rpm; (⋄) Ω = 0.206 rpm; (▽) Ω = 0.247 rpm.

To explain the morphological transition experienced by the coexisting phases dur-

ing flow-induced compression, it is worthwhile to come back to previous considerations

about the effective line tension λeff . Due to molecular-packing-induced decrease in

λeff and, simultaneously, the increase in shearing due to the growth of the rotating

velocity, the surface capillary number at mesoscale, CaLC,s, can become large enough

to trigger the morphological transition. This is especially true at the vicinity of the left

side wall, r∗ ≈ 0.4 to 0.6 (see Fig. 5.7), where LC domains are packed by the radially

inwards flow along the surface. Hence, a scale for the effective line tension can be put

forward as follows:

λeff ∼ Rδθ τs ≈ 2.5 × 10−13 N, (5.13)

with the triggering angular speed, Ω = 0.160 rpm, the characteristic size, Rδθ ≈ 60

µm (Fig. 5.5), and the shear stress along the surface, τs ≈ 4 × 10−9 N·m−1, estimated

at r∗ ≈ 0.5 from Fig. (5.6) and Eq. (5.11) where µs = 0.127×10−6 kg·s−1. The scaling
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Figure 5.7. Mesoscopic Boussinesq number B̃oLC as calculated from Eq. (5.10) and

curve fitting of v∗θ,s(r
∗)-profile (Rδθ = δR ≈ 60 µm). The value of B̃oLC is clearly

underestimated since a (linear) Couette v∗θ -profile is assumed all along the vertical
direction.

law (5.13) delivers an order of magnitude (λeff ≈ 10−13 N) in fair agreement with

existing literature, [16, 186].

Paying close attention to Fig. 5.5, the mean diameter and, correlatively, the number

density are found to exhibit a jump around the critical angular velocity Ω = 0.15 rpm.

As an attempt to interpret this phenomenon, it can be interesting to mention the

possible instability of a condensed domain. From the motion of a Langmuir barrier,

Lee & McConnell [98] demonstrated how an increase in surface pressure, even small,

can be capable of altering the value of
λ

µLC/LE
2
, bringing about n-fold harmonic shape

disturbances beyond the equilibrium radius. In our experiments, the moving Langmuir

barrier of Lee & McConnell can be seen as virtually replaced by radially inwards surface

flow which allows us to monitor accurately dynamical surface pressure, Πd. From the

scaling law (C.6) established for the radial velocity along the liquid surface, it is easy

to show how Πd is monitored by the angular velocity of the rotating floor Ω,

Πd ∼ ρsv
2
r ∼ ρs





ro

[
Ω h/2

]2

νb





2

, (5.14)

where the surface mass density writes

ρs =
MPDA

A NA

.
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When increasing Πd, it is also possible to scan sequentially the n-fold harmonic modes

found by Lee & McConnell [98]. In our case, shearing as being superimposed to surface

pressure plays a key role in the sense that it could break up the ligaments caused by

the linear instability of the LC domains.

At the time being, we have no doubt about the importance of balance between a

significant mesoscopic surface shear and a reduced effective line tension. The remaining

question is to decide if the last scenario based on shape instabilities would apply as

well, a point which warrants further investigation.

The experiments demonstrate clearly how the joint use of a shear flow and a cen-

tripetal surface flow yields atomization of the LC domains and subsequent reorgani-

zation of the LM at mesoscale. The subsequent patterning reveals to be original and

increasingly structured with a regular matrix of mono-dispersed LC domains whose

typical size becomes smaller and smaller as long as the flow-induced surface compres-

sion grows up.

5.2.2 High molecular packing and stratified flow

When the PDA monolayer is subjected to a significant shear flow, the original

thermodynamical equilibrium is definitely broken. Under the effect of the flow, the

LE to LC transition expands down to lower molecular areas after the monolayer has

reached a new steady regime (time delay as long as 15 h). A close inspection to

Figs. 4.5, 4.6 and 4.15, shows that the imposition of a flow makes the LE–LC transition

to end below A = 13 Å2·molecule−1. The small but non negligible solubility of PDA

in the underlying subphase during the time necessary to achieve steady regime is a

natural explanation of the LE–LC transition enlargement.

The fact that the condensed phase self-assemblies as stratifying monolayers, is

interestingly correlated to a large enough level of densification (Fig. 5.8 for h = 4 mm

and for r∗ ∼= 0.714, h = 7 mm, see also Fig. 5.9). As clearly observed on the BAM

images, the LC domains behave as ligaments which, under shear, are stretching along
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the azimuthal direction with a larger and larger surface concentration (Γ ≡ 1
A

), or

equivalently, a smaller and smaller molecular area A (A < 26 Å2·molecule−1). This

time, with a high packing density and the subsequent growing destabilizing influence of

the long range dipolar forces, the LC domains leave their circular (cohesive) shape and

elongate themselves provided the shear stress is large enough. This reorganization of

the Langmuir foam can therefore be attributed to a larger value of CaLC,s and BoLC,s

defined by (5.9) and (5.8).

For h = 4 mm in Fig. 5.8, the value of αAF is relatively high. Once Ω increases, the

condensed phase break up effectively and this is illustrated by a significant decrease

of the αAF level and the arising of a radial slope on the αAF profile (see Fig. 5.9

for h = 4 mm). Figures. 5.8 and 5.9 also exhibit a stratified surface flow where the

LE phase is organizing according to channels managed between LC ligaments aligned

with the main flow direction. The formation of these channels drive to minimize the

shear-induced deformation of the LC domains since, in this way, their typical cross-line

effectively submitted to a differential shear is drastically reduced.

It is also interesting to point out the presence of an intermediate regime for which

the differential shear, whatever its origin, is large enough to stretch the LC domains,

against the resistive effect of the effective line tension, while it is not large enough to

break them definitely (atomization process).

For a highly densified LM (A = 15 Å2·molecule−1), Fig. 5.4 clearly demonstrates

the need to couple both the effect of a small subphase depth (h = 4 mm) and the

condition of a large rotation speed (Ω = 0.206 rpm) in order to recover a radial slope

on the αAF profile. The ability of the subsequent shear in breaking up the LC domains

is more and more pronounced moving from left to right along the liquid surface.

Of great interest here is the unexpected trend of αAF at h = 4 mm when Ω is

increased (compare Figs. 5.8 and 5.9). When the depth h decreases, the value of vθ,s

increases, approaching the linear velocity profile along the rotating floor. Down to

A = 15 Å2·molecule−1, the shear from the bulk is not sufficient to break up large LC
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Figure 5.8. Radial distribution of αAF for A = 15 Å2·molecule−1 and Ω = 0.138 rpm
with typical BAM snapshots. Inner and outer side walls are located at the top and
bottom of all snapshots and the flow direction is from right- to left-hand sides.
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Figure 5.9. Radial distribution of αAF for A = 15 Å2·molecule−1 and Ω = 0.206 rpm
with typical BAM snapshots. Inner and outer side walls are located at the top and
bottom of all snapshots and the flow direction is from right- to left-hand sides.
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domains unless one increases Ω to provide again a larger shear. As shown in Fig. 5.9,

for h = 4 mm, the shear stress imposed by the subphase at the surface, τb|s, is large

enough so that LC domains are stretched and gives rise to stripe-shaped LC domains.

Therefore, the value of αAF at h = 4 exhibits a level lower than the one for the two

larger depths and recovers in this way the classical trend already observed with a low

enough surface concentration (dispersed regimes).

5.2.3 LC domains fragmentation at a larger Re number

Recently, Hirsa et al. [72] investigated the effect of a very inertial shear flow

on the mesoscale structure of a LM made from vitamin K1. They considered a very

inertial rotating flow (Re = 1000) just below the level from which it becomes unstable.

Despite the absence of an inner wall in their experimental geometry, one expects that

in our experiments, PDA LM reorganization induced by a highly inertial rotating

flow is expected to share similar properties as regards its final mesoscale structure.

Therefore, we also set Re = 1000 with a depth h = 4 mm and a molecular area

A = 15 Å2·molecule−1. Figure 5.10 displays BAM snapshots obtained by scanning the

microscope radially outwards along the channel gap.

(a) * = 0.500r (c) * = 0.643r

(e) * = 0.786r (g) * = 0.929r

(b) * = 0.571r (d) * = 0.714r

(f ) * = 0.857r (h) * = 0.964r

100 mm

Figure 5.10. A collection of BAM snapshots along the channel gap and structure of
the LC domains for a large Reynolds number (Re = 1000), a small depth (h = 4 mm)
and a highly densified foam (A = 15 Å2·molecule−1).
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Due to technical limitations3, the BAM snapshots are triggered after the permanent

flow of the PDA film was stopped (about 15 h after the start of the flow). Much

attention was paid to check that the radial organization of the PDA film did not

change significantly when the flow was temporarily stopped.

As the surface is scanned, stretching of the domains associated with wall regions

of the interface with larger shear can be made evident as shown in Figs. 5.10 (b), (c),

(d), and (e). Figure 5.10 also shows a reduction in the average coverage of the LC

phase domains at larger radii. These phenomena were also demonstrated by Hirsa et

al. [72]. This can be seen also from the radial gradient of area fraction of LC phase.

The physical mechanisms responsible for the arising of a radial gradient of αAF must

be distinguished according to whether the molecular packing is high (small molecular

area: A ≈ 10 to 20 Å2·molecule−1) or low (large molecular area: A ≈ 20 to 30

Å2·molecule−1).

For a large A (Fig. 5.2), LC phase domains are dispersed and free to migrate away

from the wall. In complement, molecular packing due to radial convective flow along

the surface is the prior mechanism which contributes to maintain a significant radial

gradient of αAF over the channel gap but outside of the wall bounded shear regions.

Here, these mechanisms no longer hold as the PDA foam is highly densified with a

molecular area as small as A = 15 Å2·molecule−1. The rotation speed of the channel

floor is set to Ω = 3.4 rpm so as to get Re = 1000. The smallest depth h = 4 mm is

chosen in order to achieve the maximum shear from the bulk. As shown in Fig. 5.10,

the shear-induced stretching of the LC domains is more and more pronounced while

moving towards larger and larger radii. The application of a sufficiently large shear

rate drives to highly elongated slender LC domains with rounded ends: a typical shape

distortion often referred to as bolas-shaped condensed domains [16]. By attaining a

thread-like shape in their mid-part, the LC domains eventually break up into much

3To avoid blurring, imaging of inertial flows usually requires a small time aperture of the camera
sensor. In our experiments, the low level of sensitivity of the BAM camera and the limited power of
the laser source (no more than 50 mW) prevent us to image the LM at very high Re flows.
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smaller domains which recover their circular shape under the effect of the excess line

tension (see e.g. Figs. 5.10 (f) to (h)). As mentioned by [72], this shear-induced

fragmentation justifies the area reduction of the LC domains along the transverse

direction made evident in our experiment from the radial gradient of the area fraction

αAF .

5.3 Concluding remarks

The impact of a laminar annular flow at a moderate Reynolds number (Re ≈ 10

to 100) upon the steady structure of a dispersed LM made with coexisting LE–LC

phases of PDA is investigated in this chapter. The shear stress from the subphase

can be estimated by assuming a Couette profile and the surface shear stress can be

calculated from the experimental profile of the velocity along the surface. Both of

them are compared to a typical value of the effective line tension between coexisting

phases.

Due to the rotation of the channel floor, a weak centrifugal flow, responsible for a

centripetal transport of the surfactants along the surface, is found to play a significant

role when the PDA monolayer is dispersed. Above a given level of centrifugation, for a

low enough molecular density (A ≈ 30 Å2·molecule−1), a new morphological transition

is found during which the two-phase monolayer shifts to a finely divided mesoscopic

morphology of LC domains. The combined impact of surface shearing and reducing

in the effective line tension is proposed as being responsible for such a transition.

Under the effect of the centrifugal flow, the dynamic surface pressure rises up to a

level high enough to reduce significantly the effective line tension. Consequently, the

condensed domains can be considered as literally shear-induced melted above a critical

Reynolds number, Re ≈ 50. One of the main experimental result of this chapter is that,

unlike existing literature devoted to inertial regime (Re ≈ 100 to 1000, [72]), when

the Reynolds number remains moderate (Re ≈ 10 to 100), the balance between the

effective line tension and the surface shear (not the subphase shear) is found to control
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the size of the condensed domains. An original4 consequence is that the mesoscopic

Boussinesq number, B̃oLC , is found to be at least of order unity, which means that

from the uniformly dispersed regime to the morphological transition included, the

distribution of surface shear must be taken into account when interpreting the size

reduction of the condensed domains.

Above a given level of surface concentration, the monolayer is no longer dispersed

and becomes stratified. The corresponding flattening of the Π–A isotherm suggests

that Marangoni effect become vanishingly small. Accordingly, the area fraction distri-

bution is found uniform. The condensed domains behave as stripes elongated along

the shear flow. These condensed stripes break up if the shear stress from the bulk

is large enough (small depth of the channel, larger Reynolds numbers). It is only in

this situation that some of typical results of the literature are recovered with, for in-

stance, bola-shaped condensed domains and a non uniform radial distribution of the

area fraction induced by the radial distribution of the shear stress.

4Unlike existing literature [72, 110], here, at mesoscale, the shear along the surface contributes
more than the shear from the subphase in regard to the capability to distort the inclusions (see

B̃oLC -profile in Fig. 5.7). This is especially true at the vicinity of the side walls (Fig. 5.7). This is
also right all along the liquid surface since the magnitude of τb|s is clearly overvalued from Eq. (5.12)
based on Couette assumption (a point which can be checked in the following chapter).



Chapter 6

Analytical modeling of a

floor-driven shallow flow

6.1 Introduction: the state of the art

This chapter focuses on the long term application of this dissertation: the recog-

nition of the primary structure of a protein from the growth of a 2-D crystal of this

protein at a chemically functionalised Langmuir monolayer (LM). As a matter of fact,

the annular shear flow can reveal itself to be relevant to the growth of a two-dimensional

(2-D) crystal of protein along an air-water interface covered by a monolayer of lipids

[30]. The protein of interest, introduced within aqueous buffer, is free to move under

molecular diffusion up to the lipids staying over the liquid surface. Due to relevant

chemical affinity, a binding between protein and lipids allows the protein to be trapped

at the liquid surface and to move along it in a 2-D way. Under quiescent condition,

2-D molecular diffusion along the liquid surface is responsible for the growth of a 2-D

self-assembly of proteins whose structure resembles to a crystalline powder. This 2-D

crystalline powder does not really lend itself to the accurate determination of the pro-

tein structure from X-ray diffraction [99]. Consequently, it is necessary to improve the

spatial periodicity of the 2-D self-assembly. As an attempt to find a solution, the use

125
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of a surface flow to assist the growth of a protein self-assembly along a lipidic mono-

layer was originally proposed by Drazek et al. [39]. These authors proposed to use an

annular trough in which a shear flow is generated by the rotation of a ring along its

floor. Quite recently, Hirsa and co-workers [10] seem to be successful in implementing

this idea with the characterization of a model protein (streptavidin).

The flow conditions (centrifugal flow and annular shear flow) are sought to pro-

mote the directed growth of a 2-D crystal of protein at a lipidic monolayer spread

over a water bath. Here again, the boundary condition at the interface is mixed: the

left side of the liquid surface is expected to be rigid where the 2-D crystal is stay-

ing while remaining fluid elsewhere (gaseous, expanded or condensed phases). The

application briefly described above involves a one-dimensional stratification of surface

contamination that can be also investigated under Brewster angle microscope (BAM).

Under the impact of surface flow focusing, proteins can be expected to condense

towards smallest radii (radially-inwards molecular packing) in a way similar to the LC

domains in the previous chapter. It should be therefore possible to promote the arising

of a one-dimensional crystalline front [39, 10]. At the same time, a radial stratification

of surface viscosity must be taken into account in order to explain the experimental

distribution of the velocity along the surface.

This chapter addresses the crystal growth process proposed in [39], also considered

recently in [10]. The analytical formulation developed in this chapter is expected to fit

efficiently the annular velocity profile modified by a non-uniform distribution of surface

viscosity. As such, it is expected to facilitate the macroscopic characterizations of a

condensed patch of biomolecules trapped at a chemically-functionalized liquid surface.

6.2 Outlines of this chapter

The geometry of the annular channel complies with some biochemical and mi-

crofluidics requirements. Nowadays, any end-user of a surface viscometer has to cope
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with small amounts of biomolecules (lipids, deoxyribonucleic acid (DNA) strands, anti-

genes, antibodies, proteins, etc.) because either the purchase price of biomolecules is

expensive or, their extraction from rough biological samples is time-consuming. The

geometry of our system (Fig. 6.1) permits to handle small amounts because the chan-

nel flow is annular and shallow. In other words, the aspect ratio, δ = h
ro

, must be

considered as small as possible (depth of the channel, h, much smaller than its outer

radius, ro).

All along this chapter (except in Appendix D), the liquid subphase is therefore

confined within an annular channel whose two side walls (inner radius: ri, outer radius:

ro) are maintained stationary (see Fig. 6.1). Note that in Appendix D, one can find

the derivation of the surface flow for a full cylinder (ri → 0) since this geometry is

also widespread in biochemical applications. The annular floor of the channel is put

in slow rotation in such a way that an annular (azimuthal) shear flow is supplied at a

small Reynolds number, defined as Eq. (4.4).

From our modeling of the annular floor-driven flow, the first objective of this chap-

ter is to put forward a closed-form analytical expression of the shear stress at (and

along) a contaminated surface and therefore to deliver a fairly good estimation of the

Boussinesq number as compared to its definition in the literature which is basically

founded on elementary scaling analysis (see Eq. (6.8)). This prior objective is typ-

ically relevant to the understanding of line tension and phases organization during

flow-induced reorganization of Langmuir monolayers [110, 32]. Our second objective

is a measurement one; this is to get at one disposal a simple analytical model devoted

to quantify a biochemical contamination which departs from uniform conditions with,

for instance, the arising of stratifying phases (see e.g. Fig. 4.5 in Chapter 4); each

of them being characterized by a different level of molecular packing and therefore by

different surface shear viscosities.
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Figure 6.1. Geometry under consideration.

6.2.1 On one particular source of viscous stratification

As already demonstrated in the previous chapter, the rotation of the annular floor

is also responsible for a radially outwards (centrifugal) force which gives rise to an

additional meridian recirculating flow within the cross-section of the annular channel.

The magnitude of it depends on control parameters such as the depth of the channel,

the curvature of the channel and also on the Reynolds number. This meridian recir-

culating flow, as a perturbation of the main annular flow, gives rise to a swirling flow.

As demonstrated by Lopez and co-workers from direct numerical simulation (DNS)

[71], a Reynolds number as large as Re ≈ 1000 is necessary to modify significantly the

basic shear flow calculated from Stokes approximation.

Previous experiments, carried out at a moderate Re (Re < 100), have confirmed

this statement: the recirculating flow gives rise to a radially inwards packing of am-

phiphilic molecules along the liquid surface while it does not modify the azimuthal

component of the velocity along the surface [32]). This flow-induced packing of sur-

factants generates first, a stratified surface viscosity; and second, a surface tension

gradient (Marangoni effect) which is mostly balanced by a viscous stress at the liquid

surface (consider the radial component of the jump momentum balance at the interface

[156]).

This chapter focuses on the modeling of the shear velocity along the liquid surface
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in presence of a stratified surface viscosity. To do this, the mathematical model we

solved is the azimuthal component of the jump momentum balance at the interface

strongly coupled to the annular shear flow of the underlying subphase.

6.2.2 Assumptions and aims

The Reynolds number is considered small or at least moderate (Re < 100) so that

use is made of the Stokes approximation when calculating the azimuthal velocity along

the surface.

The first part of this chapter focuses on the situation of a uniform surface con-

tamination. A matched asymptotic method is developed and a Green function is

analytically calculated to find the azimuthal component of surface velocity at leading

order. The results are compared with the available literature to validate the calculation

of the Green function and to estimate the accuracy level of the leading order.

In the second part of this chapter, as an example relevant to our applications, the

situation of a stratified surface contamination is investigated. A nonlinear function is

proposed as a constitutive law for the stratified surface viscosity µs (r). On both sides,

far from the segregation front, the viscosity is supposed to reach a constant level:

a very large shear viscosity on the side of the interface where the more condensed

phase is staying (near the small radii) and a small value of surface shear viscosity on

the opposite side. By the way, surface velocity profile sensitive to a stratified surface

contamination is made evident and hoped to serve as a tool to detect the radial extent

of a condensed phase like a 2-D single crystal of protein.
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6.3 Mathematical model

The annular shear flow is assumed to be creeping and the azimuthal component of

the Stokes’ equation is written in a dimensionless way as,

δ2 ∂

∂r∗

[
1

r∗
∂ [r∗v∗θ ]

∂r∗

]
+
∂2v∗θ
∂z∗2

= 0. (6.1)

Here are considered the scales ro, h and (roΩ) to non-dimensionalize the radial coor-

dinate r, the vertical coordinate z and the azimuthal velocity vθ, namely:

r∗ =
r

ro
,

z∗ =
z

h
,

v∗θ =
vθ

roΩ
,

with Ω referring to as the angular velocity of the annular rotating floor.

The no-slip boundary conditions (BCs) for the azimuthal velocity must be written

along the stationary sidewalls and the rotating floor:

v∗θ

(
r∗ =

ri

ro

, z∗
)

= 0, (6.2)

v∗θ (r∗ = 1, z∗) = 0, (6.3)

v∗θ (r∗, z∗ = 0) = r∗. (6.4)

As the last boundary condition (BC), a jump momentum balance at the 2-D interface

can be derived from a momentum balance written upon an elementary heterogeneous

volume straddling the liquid surface of zero-thickness (Gibbs approach). To model

the dependence of surface stress to surface strain, use is made of the Boussinesq-

Scriven constitutive law. As a consequence, the (azimuthal) θ-component of the jump

momentum balance writes as [156]:

µs

[
d2vθ,s

dr2
+

1

r

dvθ,s

dr
−vθ,s

r2

]

︸ ︷︷ ︸
2-D viscous shear

+
dµs

dr

[
dvθ,s

dr
−vθ,s

r

]

︸ ︷︷ ︸
2-D non-uniformity

in shear viscosity

= µb
∂vθ (r, z)

∂z

∣∣∣∣
z=h︸ ︷︷ ︸

liquid shear from

underlying subphase

. (6.5)
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The symbols vθ,s, µs(r) and µb denote, respectively, the θ component of surface ve-

locity, the distribution of the (excess) shear viscosity of the liquid surface, and the

Newtonian (shear) viscosity of the underlying subphase. Here, gaseous shearing above

the interface is considered negligible as compared to the liquid shearing. To model

the radially inwards accumulation of surfactants and subsequently the r-dependence

of surface viscosity, a regular non-uniformity function g(r∗) is introduced which yields

an additional contribution to the uniform term of surface viscosity µs. If this last

quantity is chosen to be the scale for the surface viscosity, then a constitutive law for

the dimensionless surface viscosity can be written as:

µ∗
s(r

∗) =
µs(r)

µs
= 1 + g(r∗). (6.6)

Hence, if g(r∗) vanishes, the situation of a uniform surface viscosity is recovered

with µs(r) = µs or µ∗
s(r

∗) = 1, equivalently. Considering Eq. (6.6), BC (6.5) is now

written in a non-dimensional way according to the following non-homogeneous linear

ordinary differential equation (ODE):

[1+g(r∗)]

[
d2v∗θ,s

dr∗2
+

1

r∗

dv∗θ,s

dr∗
−
v∗θ,s

r∗2

]
+
dg (r∗)

dr∗

[
dv∗θ,s

dr∗
−
v∗θ,s

r∗

]
=

1

Bo

∂v∗θ (r∗, z∗)

∂z∗

∣∣∣∣
z∗=1

.

(6.7)

The symbol Bo represents the Boussinesq number which compares the surface shear

to the subphase shear at the vicinity of the interface (Fig. 6.2):

Bo ≡
µs
vθ,s

ro
2

µb
vθ,s

h

. (6.8)

A very small value of the Boussinesq number Bo indicates that the surface shear

does not contribute significantly to subphase hydrodynamics (classical free surface BC

recovered). If the Bo number becomes significant - which means here, Bo ≈ 0.001 or

more - a two-way coupling between the surface and subphase flows has to be taken

into account.
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Figure 6.2. The Boussinesq number Bo as a ratio of shears.

6.4 Two-way coupling between surface and sub-

phase flows

In the case of a uniform contamination, Mannheimer & Schechter [112] solved the

flow in the deep channel viscometer and found the azimuthal velocity as a double

series. Due to singularities at the left and right corners of the channel floor (see e.g.

BCs (6.2) to (6.4)) an abnormal number of eigenvalues (larger than 100) is required

to reach a right level of accuracy on the velocity along the liquid surface.

Moreover, for the problem of interest here, the Stokes Eq. (6.1) and its four BCs

(6.2), (6.4), (6.3), (6.7) constitute a boundary value problem rather difficult to solve

because of the non-linear nature of ODE (6.7) due to surface stratification.

If this problem is tackled as a mixed boundary value problem (only relevant to

the particular situation of a singular front induced by surface stratification), one must

give up definitely the idea to find a simple solution because dual integral equations are

automatically involved (see e.g. [58]).

To model the impact of a regular viscous stratification, the working idea developed

along this chapter consists of splitting the flow system into two components: a surface

flow and a 3-D subphase flow while considering surface velocity vθ,s (r) as a coupling

variable. Accordingly, two coupled mathematical models must be written down for

each of them.
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6.4.1 Subphase flow

In the liquid subphase, the mathematical model for the azimuthal velocity,

v∗θ (r∗, z∗), is the Stokes Eq. (6.1) with the Dirichlet BCs (6.2), (6.3), (6.4) completed

by the following Dirichlet BC at the upper boundary (z∗ = 1):

v∗θ (r∗, z∗ = 1) = v∗θ,s (r∗) . (6.9)

As a consequence, the main unknown of interest in this chapter, the surface velocity

v∗θ,s (r∗), stands as a parameter in the expression of the subphase velocity; a point

which demonstrates a first (one-way) coupling between first and second sub-systems.

6.4.2 Surface flow

Along the liquid surface, the surface velocity v∗θ,s (r∗) is the solution of the

Boussinesq-Scriven Eq. (6.7) completed by two Dirichlet end-points BCs:

v∗θ,s

(
r∗ =

ri

ro

)
= 0, (6.10)

v∗θ,s(r
∗ = 1) = 0. (6.11)

The subphase shear valued at the interface, 1
Bo

∂v∗θ (r∗, z∗)
∂z∗

∣∣∣∣
z∗=1

, on the r.h.s. of

(6.7), can be interpreted as a forcing term which involves the unknown v∗θ,s(r
∗) via

the general analytical expression to be found for the subphase velocity v∗θ (r∗, z∗). The

two-way coupling is therefore illustrated by this forcing term which originates from

the contribution of the underlying subphase shear.

Figure (6.3) is illustrated this two-way coupling between surface flow and subphase

flow.
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Figure 6.3. Two-way coupling between subphase flow v∗θ (r∗, z∗) and surface flow
v∗θ,s (r∗).
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6.5 Lubrication approximation

The shallow subphase flow is characterized by a small value of the aspect ratio δ.

It is therefore possible to introduce a matched asymptotic technique by distinguishing

a core flow, far from the two stationary side walls, from the flow in the boundary layers

which develop along both stationary side walls. This asymptotic approach allows us

to calculate a core solution without taking into account the no-slip BCs (6.3) and

(6.4). In return, the flow of the boundary layers along the side walls must match the

core solution far from the side walls while respecting the no-slip BCs (6.3) and (6.4).

Finally, the subphase velocity is written as a composite solution derived from the core

solution and the two inner solutions calculated within the boundary layers.

Before writing the model for the flow in the boundary layers, the following trans-

formations are introduced [126]:

xi =
r∗ − ri/ro

δγ , (6.12)

xo =
1 − r∗

δγ
, (6.13)

as usual when making use of lubrication approximation (δ ≪ 1). When writing these

last expression, use is made of two new length scales physically more significant. Here,

the stretching parameter γ is found equal to unity.

The solutions for the azimuthal velocity in the core and the boundary layers along

the left and right side walls will be referred to as, respectively, v∗cθ (for the core solution)

and v∗iθ , v
∗o
θ (for the inner solutions). These solutions are then expanded as a regular

perturbation series in powers of the small aspect ratio δ:

v∗cθ = v
∗c,0
θ + O(δ), (6.14)

v∗iθ = v
∗i,0
θ + O(δ), (6.15)

v∗oθ = v
∗o,0
θ + O(δ). (6.16)
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It is important to notice that the Boussinesq-Scriven ODE (6.7) is also linear and

coupled to the former perturbation series by way of its forcing term. It is therefore

also consistent to introduce the same perturbation series for surface velocity:

v∗θ,s = v∗0θ,s (r∗) + O(δ).

6.6 Subphase flow at leading order

6.6.1 Core flow

At leading order, taking into account the perturbation series (6.14), the Stokes’

equation (6.1) simplifies to

∂2v
∗c,0
θ (r∗, z∗)

∂z∗2
= 0.

In the same way, the Dirichlet BCs (6.2) and (6.9) write as:

v
∗c,0
θ (r∗, z∗ = 0) = r∗, (6.17)

v
∗c,0
θ (r∗, z∗ = 1) = v∗0θ,s (r∗) ,

and consequently, the core velocity is easily derived as a radially dependent Couette

profile:

v
∗c,0
θ (r∗, z∗)=

[
v∗0θ,s (r∗) − r∗

]
z∗ + r∗. (6.18)

6.6.2 Boundary layer flow

For sake of succinctness, only the calculation for the flow in the boundary layer

along the left side wall (r∗ = ri
ro

) is given here: a similar calculation can be performed

to get in the same way the azimuthal velocity in the boundary layer along the opposite

side wall (r∗ = 1). Taking account of (6.5) and (6.15), the mathematical model (6.1)

at leading order writes as:

∂2v
∗i,0
θ (xi, z

∗)

∂xi
2

+
∂2v

∗i,0
θ (xi, z

∗)

∂z∗2
= 0. (6.19)
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It has to be completed by the Dirichlet BCs (6.2), (6.3) and (6.9) which write at

leading order:

v
∗i,0
θ (xi = 0, z∗) = 0, (6.20)

v
∗i,0
θ (xi, z

∗ = 0) =
ri

ro
, (6.21)

v
∗i,0
θ (xi, z

∗ = 1)=v∗θ,s

(
ri

ro
+ δxi

)
= v∗θ,s

(
ri

ro

)
= 0. (6.22)

To match inner and core solutions, respectively v
∗i,0
θ and (6.18), a simple Prandtl

matching condition can be invoked [126] since only the leading order is under consid-

eration:

lim
xi→+∞

v
∗i,0
θ (xi, z

∗) = lim
r∗→

ri
ro

v
∗c,0
θ (r∗, z∗) = v

∗i/c,0
θ , (6.23)

with

v
∗i/c,0
θ =

ri

ro

[1 − z∗],

and where use is made of (6.10).

To find the azimuthal velocity v∗i,0θ , it is worth introducing the separated modes si

and ti:

v
∗i,0
θ (xi, z

∗) =
∑

n∈N∗

sn (xi) tn (z∗) + a xi + b z∗ + c, (6.24)

with the following eigenvalues problem:

∀n ∈ N∗, ∃ωn ∈ R+ such as





s
′′

n (xi) − ω2
n sn (xi) = 0,

t
′′

n (z∗) + ω2
n tn (z∗) = 0.

Both the matching condition (6.23) and the Dirichlet BC (6.21) permit to simplify

efficiently the general expression (6.24) while the Dirichlet BC (6.22) allows for finding

the eigenvalue ωn. Finally, the last Dirichlet BC (6.20) is taken into account during

the vertical integration of the velocity performed to invoke the orthogonality of mode

tn(z∗). By making use of (6.5), it can be demonstrated that the series for the azimuthal
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velocity,

v
∗i,0
θ (r∗, z∗) = −2

ri

ro

∑

n∈N∗

sin (nπ z∗)

nπ
exp

(
−nπ

r∗ − ri/ro

δ

)
+
ri

ro

[1 − z∗] . (6.25)

satisfies the transport Eq. (6.19).

Same ideas strictly apply when calculating the leading order of the inner solution

for the boundary layer flow along the right side wall:

v
∗o,0
θ (r∗, z∗) = −2

∑

n∈N∗

sin (nπ z∗)

nπ
exp

(
−nπ 1 − r∗

δ

)
+ [1 − z∗] . (6.26)

A first composite solution, supposed to hold for both a half part of the core and the

left boundary layer (r∗ <
ri + ro

2ro
), is built according to matched asymptotic analysis

[126]:

v
∗i,0
θ + v

∗c,0
θ − v

∗i/c,0
θ .

A second composite solution, supposed to hold for both the second half part of the

core and the right boundary layer (r∗ >
ri + ro

2ro
), is found to be:

v
∗o,0
θ + v

∗c,0
θ − v

∗o/c,0
θ ,

with

v
∗o/c,0
θ = 1 − z∗.

An overall composite solution for the azimuthal velocity is built as the sum of the left

and right composite solutions to which is subtracted the core solution v∗c,0θ :

v
∗i,0
θ − v

∗i/c,0
θ + v

∗o,0
θ − v

∗o/c,0
θ + v

∗c,0
θ .

Finally, the leading order approximation for the azimuthal velocity in the liquid

subphase writes explicitly as:

v∗0θ (r∗, z∗) = [v∗θ,s (r∗) − r∗] z∗ + r∗

− 2
∞∑

n=1

sin (nπ z∗)

nπ

[
exp

(
−nπ 1 − r∗

δ

)
+
ri

ro
exp

(
−nπ

r∗ − ri/ro

δ

)]
.

(6.27)
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6.7 Surface flow at leading order

As already mentioned, the ODE (6.7) for the surface motion is coupled to the

underlying subphase flow by means of the forcing term:

1

Bo

∂v∗0θ (r∗, z∗)

∂z∗

∣∣∣∣
z∗=1

.

Considering the solution (6.27) for the subphase velocity at leading order and given

a radial location, it is evident that without the correction due to the shear boundary

layers along the stationary side walls, the surface should be sollicitated by a shear

typical of a Couette subphase flow.

Since Eq. (6.7) is linear, it is consistent to seek the associated leading or-

der approximation for the surface azimuthal velocity v∗0θ,s (r∗, z∗); the forcing term

1
Bo

∂v∗0θ (r∗, z∗)

∂z∗

∣∣∣∣
z∗=1

being under consideration. The series
∞∑

n=1

un (z∗), with

un =

∞∑

n=1

sin (nπ z∗)

nπ

[
exp

(
−nπ 1 − r∗

δ

)
, exp

(
−nπ

r∗ − ri/ro

δ

)]
,

is found to be currently involved in the expression (6.27) for v∗0θ (r∗, z∗). This series

fills all the derivability conditions whatever the value of the radial coordinate. The

forcing term 1
Bo

∂v∗0θ (r∗, z∗)

∂z∗

∣∣∣∣
z∗=1

can thus be valued at the vicinity of the interface

and doing that, it is easy to check that when n → ∞, the dimensionless shear stress

at the liquid surface tends uniformly to the closed-form analytical expression:

τ ∗b,comp =
∂v∗0θ (r∗, z∗)

∂z∗

∣∣∣∣
z∗=1

= v∗s(r
∗) − r∗ + 2

exp

(
−π 1 − r∗

δ

)

1 + exp

(
−π 1 − r∗

δ

) + 2
ri

ro

exp

(
−π

r∗ − ri/ro

δ

)

1 + exp

(
−π

r∗ − ri/ro

δ

) .

(6.28)

6.8 The case of a uniform surface viscosity

Because this chapter focuses on the leading order, there is no longer any reason to

distinguish the notations v∗θ,s (r∗) and v∗0θ,s (r∗). If the surface viscosity is considered as
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uniform, the mathematical model for the surface flow simplifies according to:

Bo

[
d2v∗θ,s

dr∗2
+

1

r∗

dv∗θ,s

dr∗
−
v∗θ,s

r∗2

]
=
∂v∗0θ (r∗, z∗)

∂z∗

∣∣∣∣
z∗=1

, (6.29)

with two Dirichlet end-points BCs:

v∗θ,s

(
r∗ =

ri

ro

)
= 0, (6.30)

v∗θ,s (r∗ = 1) = 0. (6.31)

Introducing the forcing function f ,

f(r∗) = −r∗ + 2

exp

(
−π1 − r∗

δ

)

1 + exp

(
−π1 − r∗

δ

) + 2
ri

ro

exp

(
−π

r∗ − ri/ro

δ

)

1 + exp

(
−π

r∗ − ri/ro

δ

) , (6.32)

Equation (6.29) becomes:

Bo

[
d2v∗θ,s

dr∗2
+

1

r∗

dv∗θ,s

dr∗
−
v∗θ,s

r∗2

]
− v∗θ,s = f (r∗) , (6.33)

To solve the two end-points boundary value problem (6.31)-(6.30)-(6.33), it is worth-

while to introduce the Green function G(r∗|ξ) (ξ denotes the influence variable) asso-

ciated to the differential operator ℑ:

ℑ ≡ Bo

[
d2

dξ2
+

1

ξ

d

dξ
− 1

ξ2

]
− 1.

6.8.1 Calculation of the Green function for the operator ℑ

Making use of mathematical arguments (see e.g. [159]), and after simple but

tedious calculations, the Green function G(r∗|ξ) is found to be the following piecewise

function:

G(r∗|ξ) =





A(r∗) ξ I1

(
ξ√
Bo

)
+B(r∗) ξ K1

(
ξ√
Bo

)
if ξ ∈

[
ri
ro
, r∗
]
,

C(r∗) ξ I1

(
ξ√
Bo

)
+D(r∗) ξ K1

(
ξ√
Bo

)
if ξ ∈ [r∗, 1],

(6.34)
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where the coefficients A(r∗), B(r∗), C(r∗) and D(r∗) write as:

A(r∗) =
1

Bo
K1

(
1√
Bo

ri

ro

) I1

(
r∗√
Bo

)
K1

(
1√
Bo

)
− I1

(
1√
Bo

)
K1

(
r∗√
Bo

)

I1

(
1√
Bo

)
K1

(
1√
Bo

ri

ro

)
− I1

(
1√
Bo

ri

ro

)
K1

(
1√
Bo

) ,

(6.35)

B(r∗) = − 1

Bo
I1

(
1√
Bo

ri

ro

) I1

(
r∗√
Bo

)
K1

(
1√
Bo

)
− I1

(
1√
Bo

)
K1

(
r∗√
Bo

)

I1

(
1√
Bo

)
K1

(
1√
Bo

ri

ro

)
− I1

(
1√
Bo

ri

ro

)
K1

(
1√
Bo

) ,

(6.36)

C(r∗) =
1

Bo
K1

(
1√
Bo

) I1

(
r∗√
Bo

)
K1

(
1√
Bo

ri

ro

)
− I1

(
1√
Bo

ri

ro

)
K1

(
r∗√
Bo

)

I1

(
1√
Bo

)
K1

(
1√
Bo

ri

ro

)
− I1

(
1√
Bo

ri

ro

)
K1

(
1√
Bo

) ,

(6.37)

D(r∗) = − 1

Bo
I1

(
1√
Bo

) I1

(
r∗√
Bo

)
K1

(
1√
Bo

ri

ro

)
− I1

(
1√
Bo

ri

ro

)
K1

(
r∗√
Bo

)

I1

(
1√
Bo

)
K1

(
1√
Bo

ri

ro

)
− I1

(
1√
Bo

ri

ro

)
K1

(
1√
Bo

) .

(6.38)

Taking into account the definition of a Green function, the analytical expression for

the leading order azimuthal surface velocity along the segment
[
ri
ro
, 1
]

writes as:

v∗θ,s =

∫ r∗

ri
ro

f(ξ)G(r∗|ξ) dξ +

∫ 1

r∗
f(ξ)G(r∗|ξ) dξ. (6.39)

Note the particular situation of a zero vertical aspect ratio (δ = 0) for which the

influence of the side boundary layers vanishes. Then, only the core flow at leading order

is taken into account and the forcing term (6.32) simplifies drastically: f(r∗) = −r∗.

Consequently, for this particular case, a closed-form analytical expression of v∗θ,s can

be derived since the integrals involved in Eq. (6.39) can be analytically calculated.
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6.8.2 Surface velocity at leading order

For a non vanishing aspect ratio δ, the integrals involved in Eq. (6.39) must be

numerically evaluated at each radial location r∗. The surface velocity profile is thus

obtained from a curve fitting based on a set of discrete values obtained from Gauss

integrations performed with MapleR© (release 9.0). We investigate the sensitivity of

v∗θ,s (r∗) to the following non-dimensional numbers:

⋄ the vertical aspect ratio δ = h
ro

,

⋄ and the Boussinesq number, Bo.

Contribution of the boundary layers

If boundary layers along the side walls are not taken into account when writing

the subphase velocity (see e.g. Eq. (6.18)), it is not possible to take into account the

impact of the vertical aspect ratio δ on the dimensionless surface velocity (see Fig. 6.4).

Surface velocity is plotted for two cases:

⋄ whether only the core flow is selected when writing the forcing term (see

Eq. (6.18)),

⋄ or the no-slip BC is also taken into account from matching between core flow

and boundary layers (see Eq. (6.27)).

In Fig. 6.4, the additional viscous dissipation inside the boundary layers along the side

walls is clearly responsible for a lowering of the overall surface velocity magnitude.

Consequently, if boundary layers are taken into account, surface velocity profiles tend

to flatten near the side walls; this is especially true for a large enough aspect ratio δ.

A significant magnitude of the surface velocity is found when the subphase depth is

small enough and therefore when the linear velocity profile imposed by the rotating

floor is able to impact upon the liquid surface via viscosity-driven diffusion of mo-
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mentum within the subphase (see e.g. Fig. 6.4 with Bo = 10−4 to 10−3, δ = 4
70 to

10
70).
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Figure 6.4. Shear velocity along the liquid surface as predicted from Couette approx-
imation (continuous line, —) and from composite solution with δ = 10

70
(◦) and δ = 4

70

(+). Dependence on the Boussinesq number Bo.

Influence of the contamination

In Fig. 6.4, the dependence of surface velocity v∗θ,s (r∗) on the Bo number is also

illustrated with the aspect ratios of our experimental set-up: δ = 4
70, 10

70 and ri
ro

=

30
70. Note that when surface viscosity decreases significantly (small Bo number), the

mobility of the contaminated liquid surface increases accordingly. This is to correlate

with the growing impact of subphase shearing at the liquid surface where τb behaves

as a driving body stress for surface hydrodynamics. A point which is also confirmed

for the smallest value of the vertical aspect ratio (δ = 4
70). For such a shallow flow,
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the magnitude of surface velocity grows and correlatively its profile becomes more and

more linear as imposed by the rotating floor.

Finally, when the aspect ratio is small and when the Bo number is large enough

(Bo = 10−1, see Fig. 6.4), it is worthy to note that composite and Couette solutions

merge into one single velocity profile. For this particular case, the core approximation

is sufficient to describe surface flow whatever the value of δ is.

6.8.3 Subphase velocity at leading order

As illustrated in Fig. 6.3, surface velocity, when known, can be implemented into

the expression of the azimuthal velocity in the subphase. From Eqs. (6.39) and (6.27),

the velocity v∗θ(r
∗, z∗) is plot as a 3-D sheet (see Fig. 6.11). As expected, the profile

of subphase velocity v∗θ(r
∗, z∗) tends to be linear at the vicinity of the rotating floor

and merges into the surface velocity v∗θ,s whose parabolic shape is apparently close to

a 2-D Poiseuille flow. The two singularities on the Dirichlet BCs located at the left



·146· Chapter 6. Analytical modeling of a floor-driven shallow flow

-0.3

-0.2

-0.1

0

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.9
r*

0.5 0.6 0.7 0.8 1

b
,C

o
u
e
tt
e

τ
*τ
* b,
c
o
m

p

Figure 6.8. Subphase stress at the liquid surface (Bo = 0.001) as calculated from
Couette approximation (–, right y-axis) and from composite solutions (left y-axis)
with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+).

0.9
r*

0.5 0.6 0.7 0.8 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
b
,C

o
u
e
tt
e

τ
*τ
* b,
c
o
m

p

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 6.9. Subphase stress at the liquid surface (Bo = 0.01) as calculated from
Couette approximation (–, right y-axis) and from composite solutions (left y-axis)
with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+).



6.8. The case of a uniform surface viscosity ·147·

0.9
r*

0.5 0.6 0.7 0.8 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

b
,C

o
u
e
tt
e

τ
*τ
* b,
c
o
m

p

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 6.10. Subphase stress at the liquid surface (Bo = 0.1) as calculated from
Couette approximation (–, right y-axis) and from composite solutions (left y-axis)
with δ = 10

70
(◦), δ = 7

70
(*) and δ = 4

70
(+).

and right corners of the channel floor yield small oscillations visible along the edges

of the channel (r∗ = ri
ro

and r∗ = 1). These oscillations are due to the truncation

(n = 1 . . . 50) of the infinite series in the Eq. (6.27) leading to this plot.

6.8.4 On the need to get an accurate estimation of the Boussi-

nesq number

The Boussinesq number, Bo, classically defined by Eq. (6.8) in the literature, is

easily written from scaling arguments. With the impact of the side walls upon the

flow system, it can be worthwhile here to calculate a local Boussinesq number. We

introduce two definitions of the local Boussinesq number. A first one is based on the

assumption of a Couette flow along the vertical direction within the subphase,

BoCouette ≡
τ ∗s,Couette

τ ∗b,Couette

Bo,



·148· Chapter 6. Analytical modeling of a floor-driven shallow flow

0
0.2

0.4
0.6

0.8
1 0.4 0.5

0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r*
z*

0.6

v
* θ

Figure 6.11. Subphase flow at leading order, v∗θ(r
∗, z∗) (with Bo = 0.01, δ = 1

7
and

ri

r0

= 3

7
).

while the second one is based on the composite solution for the flow of the subphase:

Bocomp ≡ τ ∗s,comp

τ ∗b,comp

Bo.

The dimensionless shear stress along the liquid surface writes as:

τ ∗s =
dv∗θ,s

dr∗
−
v∗θ,s

r∗
,

with τ ∗s,Couette = τ ∗s if the surface velocity v∗θ,s(r
∗) is calculated from Eq. (6.18) or

τ ∗s,comp = τ ∗s if v∗θ,s(r
∗) is calculated from Eq. (6.27). The dimensionless shear stress at

the liquid surface writes as:

τ ∗b,comp = τ ∗b,Couette + 2

exp

(
−π 1 − r∗

δ

)

1 + exp

(
−π 1 − r∗

δ

) + 2
ri

ro

exp

(
−π

r∗ − ri/ro

δ

)

1 + exp

(
−π

r∗ − ri/ro

δ

) ,
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with

τ ∗b,Couette = v∗θ,s(r
∗) − r∗.

As illustrated in Figs. 6.5 to 6.7 and Figs. 6.8 to 6.10, the shear stress along the

liquid surface is significantly changed when switching from the Couette solution for

the subphase flow to the composite solution. A point which is especially true near the

side walls.

The composite solution delivers as well a far better estimation of the shear stress

at the liquid surface. Typically, a zero value is consistently recovered at the side walls.

It is interesting to notice that even at a large Bo number and a vertical aspect ratio as

small as δ = 4
70, Couette approximation fails to deliver consistent values of the shear

stress at the liquid surface, except at the middle of the channel. Such a result clearly

demonstrates that Couette approximation must be disregarded in the second part of

this chapter devoted to the situation of a viscous stratification especially when it is

distributed all along the liquid surface.

In Fig. 6.11, it is clear that the dependence of the velocity v∗θ(r
∗, z∗) along z-axis

is strongly damped far away from the rotating floor, especially at the liquid surface

(z∗ ≈ 1). Consequently, it is consistent to notice that the shear stress at the liquid

surface is over-estimated when predicted from Couette approximation. In fact, the

local Boussinesq number, Bocomp, estimated from the composite solution, exhibits

corrected values of the Boussinesq number up to several orders of magnitude larger

than those commonly accepted in the literature, especially near the side walls in the

boundary layers (see Fig. 6.12).

A better estimation of the local Boussinesq number helps to understand why surface

shearing cannot be systematically considered as negligible in surface hydrodynamics

[32].
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6.9 Stratified surface viscosity

6.9.1 On the relevance of an integral formulation

To go beyond the situation of a uniform contamination [112], our purpose here is

to address analytically the viscous stratification induced by the molecular packing of

hydrophobic biomolecules. Modeling a viscous stratification, especially a regular one,

is a little bit difficult since it is not necessarily described by co-existing slip/no-slip

(mixed) BCs along the liquid surface. Typically a technique based on the use of dual

integral equations (see e.g. [58]) is not relevant to a regular viscous stratification.

In the following, special attention will be given to the writing of the constitutive

law (6.6) with the purpose of monitoring:
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⋄ the radial extent of a jump in surface viscosity, from the asymptotic case of

a regular viscous stratification to the opposite asymptotic case of a localized

segregation front,

⋄ the magnitude of the jump in surface viscosity, ranging from zero, in order to

recover uniform conditions of contamination, to several orders of magnitude, in

order to take into account a radially inwards segregation spanning from a weakly

viscous (almost gaseous) state to a very viscous (almost rigid) state, for instance.

Surface flow has to be calculated by not considering the linear non-homogeneous

ODE (6.29) with a radius dependent coefficient (g(r∗) 6= 0). To gain benefit as much

as possible from the calculations already performed to solve the previous ODE (6.29)

in the case of a uniform surface viscosity, the same Green function G(r∗|ξ), defined by

Eq. (6.34), is again invoked. The ODE (6.7) is therefore written according to:

Bo

[
d2v∗θ,s

dr∗2
+

1

r∗

dv∗θ,s

dr∗
−
v∗θ,s

r∗2

]
− v∗θ,s = f(r∗) − Bo

dg

dr∗

[
dv∗θ,s

dr∗
−

v∗θ,s

r∗

]

− Bo g(r∗)

[
d2v∗θ,s

dr∗2
+

1

r∗

dv∗θ,s

dr∗
−
v∗θ,s

r∗2

]
,

(6.40)

while the Green function G(r∗|ξ) enables us to write:

∫ 1

ri
ro

{
Bo

[
d2v∗θ,s

dξ2
+

1

ξ

dv∗θ,s

dξ
−
v∗θ,s

ξ2

]
− v∗θ,s(ξ)

}
G(r∗|ξ) dξ = v∗θ,s(r

∗).

As a consequence, defining the forcing term φ(ξ) from the perturbation κ(ξ) as,

φ(ξ) = f(ξ) + κ(ξ), (6.41)

with

κ(ξ) = −Bo dg
dξ

[
dv∗θ,s

dξ
− v∗θ,s

ξ

]
− Bo g(ξ)

[
d2v∗θ,s

dξ2
+

1

ξ

dv∗θ,s

dξ
− v∗θ,s

ξ2

]
, (6.42)

the surface velocity is equivalently expressed as:

v∗θ,s(r
∗) =

∫ 1

ri
ro

φ(ξ)G(r∗|ξ) dξ.
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The differential Eqs. (6.40) and (6.33) differ only by their respective source term

with the addition in Eq. (6.40) of the disturbance κ(r∗) which reflects the discrepancy

caused by the non-uniformity of viscosity. This principle of superposition follows from

the specific writing of the constitutive law for the surface viscosity. It permits the

iterative calculation of the surface velocity especially when the viscous stratification is

particularly marked.

It is also worthy to note that even if the Green function G(r∗|ξ) is not symmet-

ric (G(r∗|ξ) 6= G(ξ|r∗)), it can nevertheless be written as the sum of two separable

(degenerate) kernels:

G (r∗|ξ) = G1 (r∗|ξ) H(r∗ − ξ) +G2 (r∗|ξ) H(ξ − r∗),

where H denotes Heaviside step function, and where

Gi(r
∗|ξ) =

∑

j=1,2

aij(r
∗) bj(ξ) , i = 1, 2,

with: 



a11 = A(r∗) , a21 = C(r∗),

a12 = B(r∗) , a22 = D(r∗),

b1 = ξ I1

(
ξ√
Bo

)
, b2 = ξ K1

(
ξ√
Bo

)
.

Finally, the surface velocity can be equivalently written as:

vθ,s(r
∗) =

∫ r∗

ri
ro

φ(ξ)G1(r
∗|ξ) dξ +

∫ 1

r∗
φ(ξ)G2(r

∗|ξ) dξ. (6.43)

The fact that the surface viscosity is not uniform confers to the non-homogenous

(forcing) term φ(ξ) (defined by Eq. (6.41)) a dependence on v∗θ,s and its derivatives.

The way to solve this problem is same as the previous one before, at least as regards

the homogeneous term of Eq. (6.40), but this time an additional integral term gives

rise to an implicit formulation for v∗θ,s.
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6.9.2 A Fredholm integral equation for v∗θ,s

This section shows how to expand (6.43) in order to get a Fredholm integral for-

mulation which typically writes as:

µ(r∗) v∗θ,s(r
∗) + h(r∗) =

∫ b

a

v∗θ,s(ξ) k(r
∗|ξ) dξ.

Integrations by parts are systematically performed to remove first and second deriva-

tives of v∗θ,s(ξ). The first integral term in Eq. (6.43) is explicitly written according to:

∫ r∗

ri
ro

φ(ξ)G1(r
∗|ξ) dξ =

∫ r∗

ri
ro

φ(ξ) [a11(r
∗) b1(ξ) + a12(r

∗) b2(ξ)] dξ.

In the same way, one finds for the second integral involved in Eq. (6.43):

∫ 1

r∗
φ(ξ)G2(r

∗|ξ) dξ =

∫ 1

r∗
φ(ξ) [a21(r

∗) b1(ξ) + a22(r
∗) b2(ξ)] dξ.

The generic integral term,
∫ ⊕

⊖
aij(r

∗)bj(ξ)φ(ξ)dξ, which can be identified from the

two former expressions if the endpoints (⊖, ⊕) take either the values ( ri
ro

, r∗) or the

values (r∗, 1), is worth being developed and simplified. After simple calculations, the

following integral equation can be made evident:

µ∗
s(r

∗) ∗ v∗θ,s(r
∗) + h(r∗) = Bo

∑

i,j

∫ ⊕

⊖

kij(r
∗|ξ) v∗θ,s(ξ) dξ, (6.44)

with,

h(r∗) = −
∑

i,j

∫ ⊕

⊖

aij(r
∗) bj(ξ) f(ξ) ξ dξ,

µ∗
s (r∗) = 1 + g (r∗) ,

and,

kij (r∗|ξ) = aij (r∗)

{
bj (ξ)

[
1

ξ

dg

dξ
+

1

ξ2
g (ξ)

]
+

d

dξ

[
bj (ξ)

[
dg

dξ
+

1

ξ
g (ξ)

]]}

− aij (r∗)
d2

dξ2
[bj (ξ) g (ξ)] .

Assuming that the non-uniformity function is regular in such a way that g ∈ C1, the

kernel kij(r
∗|ξ) can be simplified as:

kij(r
∗|ξ) = aij(r

∗)

{
g(ξ)

[
b′j

ξ
− b′′j

]
+ g′(ξ)

[
2bj
ξ

− b′j

]}
. (6.45)
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Taking account of (6.6), the integral Eq. (6.44) can be written down in a more

explicit way:

µ∗
s (r∗) ∗ v∗θ,s(r

∗) = −h(r∗)+Bo
∫ r∗

ri
ro

k1(r
∗|ξ)v∗θ,s(ξ)dξ+Bo

∫ 1

r∗
k2(r

∗|ξ)v∗θ,s(ξ)dξ, (6.46)

with the kernels k1(r
∗|ξ), k2(r

∗|ξ), and the non-homogeneous term of the integral

formulation, h(r∗), writing as,

k1(r
∗|ξ) = A(r∗)

{
− ξ

Bo
I1

(
ξ√
Bo

)
g(ξ)

+ g′(ξ)

[
2I1

(
ξ√
Bo

)
− ξ√

Bo
I0

(
ξ√
Bo

)]}

+B(r∗)

{
− ξ

Bo
K1

(
ξ√
Bo

)
g(ξ)

+ g′(ξ)

[
2K1

(
ξ√
Bo

)
+

ξ√
Bo

K0

(
ξ√
Bo

)]}
,

(6.47)

k2(r
∗|ξ) = C(r∗)

{
− ξ

Bo
I1

(
ξ√
Bo

)
g(ξ)

+ g′(ξ)

[
2I1

(
ξ√
Bo

)
− ξ√

Bo
I0

(
ξ√
Bo

)]}

+D(r∗)

{
− ξ

Bo
K1

(
ξ√
Bo

)
g(ξ)

+ g′(ξ)

[
2K1

(
ξ√
Bo

)
+

ξ√
Bo

K0

(
ξ√
Bo

)]}
,

(6.48)

and,

h(r∗) = −A(r∗)

∫ r∗

ri
ro

f(ξ)ξI1

(
ξ√
Bo

)
dξ −B(r∗)

∫ r∗

ri
ro

f(ξ)ξK1

(
ξ√
Bo

)
dξ

− C(r∗)

∫ 1

r∗
f(ξ)ξI1

(
ξ√
Bo

)
dξ −D(r∗)

∫ 1

r∗
f(ξ)ξK1

(
ξ√
Bo

)
dξ.

(6.49)

Then, the integral Eq. (6.46), which remains to solve in order to get the surface

velocity v∗θ,s, can thus be considered as a Fredholm integral equation with, nevertheless,

the continuous piecewise kernel k(r∗|ξ) defined as :

k (r∗|ξ) = k1 (r∗|ξ)H (ξ − r∗) + k2 (r∗|ξ)H (r∗ − ξ) . (6.50)

Two points are worthy of note:
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⋄ If the non-uniformity function vanishes (g ≡ 0), the expression (6.46) not only

stands as a Fredholm integral equation of second kind (µ∗
s (r∗) ≡ 1) but since

k1 ≡ 0 and k2 ≡ 0, merges into the expression (6.39): surface velocity attached

to the situation of a uniform viscosity is finally recovered.

⋄ One easily checks that if g ≡ 1, then surface velocity calculated from Eq. (6.46)

- at a given value of the Bo number - is consistently equal to the surface velocity

calculated from Eq. (6.39) at twice the value of Bo.

6.9.3 Solution of the Fredholm integral equation

To solve Eq. (6.46), several difficulties are worth being mentioned first.

⋄ Despite the fact that the kernels k1 and k2 write as a sum of degenerate ker-

nels (kij(r
∗, ξ) = aij(r

∗)bj(ξ)), the generic term,
∫ ⊕

⊖
aij(r

∗)bj(ξ)φ(ξ)dξ cannot

be handled as a convolution. Consequently, any attempt to find an analytical

expression of v∗θ,s(r
∗) by means of Fourier or Laplace transforms of Eq. (6.46)

can be expected unsuccessful.

⋄ Usually, a Fredholm integral equations with a degenerate kernel classically reduce

to solving a system of linear equations [82]. Here, the last but not least hindrance

is the split nature of the kernel k (r∗|ξ) (see (6.50)) which prevents us to apply

such a technique.

⋄ It could be interesting to investigate what kind of conditions upon the function g

could lead to a symmetric Hilbert-Schmidt kernel kij(r
∗|ξ) [159]. In such a case,

one could seek an approximation for v∗θ,s(r
∗) written as a series based on a com-

plete set of orthogonal functions (v∗θ,s (r∗) =
∑
n

anyn (r∗)). In our case, whatever

the conditions one could apply to g, the kernel kij(r
∗, ξ) cannot be symmet-

ric. Note that an alternative technique based on iterated kernels kL(r∗, ξ) and

kR(r∗, ξ) could stem as a possible way to solve Eq. (6.46). Our choice in this

chapter is to develop a very simple numerical method to solve Eq. (6.46): our
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objective is to assess the ability of the matched asymptotic technique to take ac-

count of a stratification in surface viscosity; further mathematical developments

based on Hilbert-Schmidt or Riemann techniques are going far beyond the scope

of this chapter.

6.9.4 Discretization of the integral equation

The Fredholm integral Eq. (6.46) is finally calculated from the trapezoid rule, essen-

tially due to its simplicity. Here again, both elaborate discretization techniques such

as least square methods, Galerkin or Rayleigh-Ritz methods [159] or other quadrature

integration techniques (see e.g. [7]) could be preferred. But this is not the background

purpose of this chapter. The interval
[
ri
ro
, 1
]

is simply split into N intervals of constant

width, ∆r, and the series (rk)0<k<N (rk = ri
ro

+ k∆r) and (vs,k)0<k<N (vs,k = vθ,s(rk))

are defined. The subsequent linear system to solve writes as:

∀k ∈ [1, N − 1],

[1 + g(rk)] vs,k + h(rk) =
Bo

2

k−1∑

j=1

[k1(rk, rj+1)vs,j+1 + k1(rk, rj)vs,j]∆r

+
Bo

2

N−1∑

j=k

[k1(rk, rj+1)vs,j+1 + k1(rk, rj)vs,j] ∆r,

with the two end-points Dirichlet BCs: vs,0 = 0 and vs,N = 0.

6.9.5 Shear viscosity across a diffuse front

To illustrate the ability of our asymptotic approach to deal with the situation of a

non-uniform surface viscosity, a model system well-known in 2-D bio-crystallization is

retained: a lipidic monolayer is spread over an air-water interface. A soluble protein,

which owns a chemical affinity for the lipidic monolayer (streptavidin for instance), is

injected within the underlying water subphase. Molecular diffusion in the subphase

drives the proteins up to the liquid surface where they bind to the lipidic matrix. 2-D
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molecular diffusion allows the molecular complexes [protein–lipid] to self-assembly in

such a way that, as a result, a crystalline powder is obtained (see e.g. [30, 25, 179]).

This process therefore drives to a diffusion-limited poly-crystalline growth since it is

realized in static conditions.

As briefly mentioned in the introduction of this chapter, the basic idea is to consider

non-equilibrium conditions and typically, to gain benefit from the recirculating flow

which originates from centrifugation along the rotating floor in the annular channel.

At the time being, we know from the literature [10] that this recirculating flow is

responsible for a radially inwards surface pressure which enhances the growth of a 2-D

crystal of protein from the smallest to the largest radii of the annular channel.

To mimic the impact of the flow-induced protein packing upon surface shear viscosity

µs, we consider the following variation law (inspired from Yih [188]):

g(r∗) =
1 − µs,crystal

µs,monolayer

1 +
µs,crystal
µs,monolayer

tanh

(
r∗ − rF

ζ

)
, (6.51)

where µs,monolayer, µs,crystal, rF and ζ denote, respectively, the viscosity of the water

surface topped with the lipidic matrix, the viscosity of the flow-induced molecular

packing made from the complexes {protein − lipid}, the location of a segregation

front and finally, a stiffness parameter which can be seen as the typical thickness of a

diffusive segregation front.

Typically, a radial distribution of the dimensionless surface viscosity µ∗
s(r

∗) (see also

Eq. 6.6) is represented in Fig. 6.13 (a) for the working conditions:

⋄ the segregation front is located at the middle of the interface (rF = ri + ro
2ro

),

⋄ the lipidic monolayer is staying on the right hand side of the functionalized air-

water interface with surface viscosity:
µs,monolayer

µs
,

⋄ the densified proteins adsorbed to the lipidic monolayer are staying on the left

hand side with surface viscosity:
µs,crystal

µs
,

⋄ the jump in surface viscosity is:
µs,crystal
µs,monolayer

= 50, as one can expect from the
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viscous behaviour of a proteomic self-assembly compared to the one of a lipidic

matrix [176, 99]

⋄ the typical thickness of the diffusive segregation front is: ζ =
1 − ri/ro

10 with

ri
ro

= 30
70.

⋄ the typical scale for the surface viscosity is :µs =
µs,crystal + µs,monolayer

2 .

The impact of viscous stratification upon surface flow is investigated for five dif-

ferent levels of surface contamination. The velocity profiles along the liquid surface

(continuous line), as numerically calculated from Eq. (6.46), are displayed for five val-

ues of the Boussinesq number (defined form µs, see Eq. 6.8: Bo = 0.001, 0.01, 0.1, 1,

and 10, see Fig. 6.13 (b) to Fig. 6.13 (f)). For sake of comparison, the jump in surface

viscosity is kept constant for all the velocity profiles (
µs,crystal
µs,monolayer

= 50). The two other

curves plotted on Figs. 6.13 (b) to 6.13 (f) represent surface velocity profile calculated

for a low level and a high level of uniform surface contamination, namely with surface

viscosity
µs,monolayer

µs
(◦) and

µs,crystal

µs
(�). It is not possible to get a local value of

the surface viscosity for a non-uniform distribution using a uniform approximation,

as proven by the big difference between the red and blue curves and the full solution

(− ⊖ −) even close to the inner wall. A maximum of the azimuthal velocity is also

made evident on the full solution: it consistently arises in the region where surface

viscosity is the smallest. A remarkable point to notice is that the more rigid the in-

terface (large viscosity µs,crystal), the more sensitive surface velocity is to the jump in

surface viscosity. Consequently, surface velocity field can be expected to behave as a

sensitive and convenient tool to follow the flow-driven growth of a 2-D self-assembly

of protein along a functionalised liquid surface.

6.10 Final comments

In this chapter, Stokes and lubrication approximations are considered. This allows

us to address in a very simple way for the asymptotic modeling of an floor-driven
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Figure 6.13. (a) Dimensionless surface viscosity, µ∗
s(r

∗), as plotted according to (6.6)
and (6.51). The symbol ζ is a typical thickness of viscous stratification. (b) to (f)
Surface velocity profiles (−⊖−) for five levels of surface contamination (Bo = 0.001 to
10), a constant jump in surface viscosity:

µs,crystal

µs,monolayer
= 50, a segregation front located

at r∗ = rF = ri+ro

2ro
with typical thickness ζ = 1−ri/ro

10
and finally, the aspect ratios:

δ = 4

70
and ri

ro
= 30

70
. For comparison, two surface velocity profiles are displayed for

a uniform surface contamination with surface viscosities:
µs,crystal

µs
(�) and

µs,monolayer

µs

(◦).



·160· Chapter 6. Analytical modeling of a floor-driven shallow flow

annular flow (Re < 100) covered by a layer of amphiphilic molecules. A closed-form

analytical formulation of the shear stresses, both at the liquid surface and along it,

is put forward for the first time, which insures accurate estimation of the Boussinesq

number.

In uniform conditions of surface contamination and for a small vertical aspect ratio

δ, a fair agreement is consistently found between leading order solution and existing

analytical models [39, 112].

Due to the flow-induced radially inwards packing of amphiphilic molecules along

the liquid surface, a radial stratification of the surface shear viscosity is taken into

account in this chapter from a modeling based on the azimuthal component of jump

momentum balance at the liquid surface. In a given sense, this modeling is an extended

version of the analytical model by Mannheimer & Schechter [112] based on a uniform

contamination.

To incorporate the situation of a radial segregation between two stratifying phases

covering the surface of a liquid bath, the constitutive law for surface viscosity is chosen

to depend on the radial coordinate especially across a diffusive front which separates

both phases. Far from the diffusive front, at the vicinity of the inner side wall, the

condensed phase is characterized by a large value of surface viscosity. The bump of the

velocity profile along the liquid surface is consistently found to move radially outwards

where surface viscosity is imposed small. The value and the radial location of this

velocity bump are related to both the jump in surface viscosity and the radial extent

of the more condensed phase (a crystal of protein typically). When surface viscosity

becomes large enough, surface hydrodynamics is seen to be sensitive enough and it

can be expected as a convenient tool to characterize a stratified layer of biomolecules.



Chapter 7

Conclusions and outlook

Conclusions

A new experimental device is presented in this dissertation whose objective is to

demonstrate the ability of an annular shear flow in reorganising the self-assembly of

biomolecules within a Langmuir monolayer (LM). The device is nothing but a trough

based on an annular channel at the bottom of which is placed a ring (inner radius: 30

mm, outer radius: 70 mm). The channel is filled with an acidified bath of ultra pure

water (pH = 2) whose free surface is topped with an LM made from pentadecanoic

acid (PDA). A main annular shear flow is driven by the rotation of the ring along

the channel floor. The ring rotation and subsequently the magnitude of the shear

flow, is remote-controlled by way of an external coupling with a rotating magnet. A

small flow component originating from centrifugation along the rotating ring is also

made evident which is responsible for a centripetal transport of the surfactants along

the liquid surface. If the LM is diluted with a large enough molecular area - or

equivalently, a small enough surface concentration of PDA, the centripetal transport

along the surface is the source of a radially-inwards molecular packing. Because the

LM also experiences phases transition from the liquid-expanded (LE) to the liquid-

condensed (LC) state, this dissertation is also the opportunity to study the flow of a
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perfectly two-dimensional two-phase Langmuir film at a small to moderate Reynolds

number (Re ≈ 10 to 100). The morphology of the two-phase LM is investigated at

meso scale (10 µm to 1 mm) from the area fraction distribution of the LC phase when

permanent regime has been established (10 h at least).

As demonstrated all along Chapters 4 to 5, four physical mechanisms contribute

possibly to LM hydrodynamics:

⋄ the (driving) shear stress from the rotating subphase, τb|s, which behaves as an

(external) body force1,

⋄ the in-plane shear stress along the liquid surface, τs,

⋄ the radially-inwards surface pressure along the liquid surface, Π,

⋄ and finally, the effective line tension between condensed and expanded co-existing

phases, λeff .

To deal with the respective competitions (or balances) between these mechanisms,

relevant dimensionless numbers have been introduced in the dissertation, namely: the

Reynolds number, Re (≈ 10 to 100), the classical (macroscopic) Boussinesq number,

Bo (≈ 10−4), and an original number referred to as a surface Bond number and defined

from Eq. (5.6) in Chapter 5). Depending on their respective values, two main regimes

can be distinguished: a dispersed regime and a stratified one.

As far as the dispersed regime is concerned, the radial distribution of the area frac-

tion demonstrates a radially-inwards packing of the circular condensed domains along

the liquid surface induced by the significant centripetal transport originating from

centrifugation of the subphase. Above a given level of centrifugation, for a molecular

area as large as A ≈ 30 Å2·molecule−1, a new morphological transition is found dur-

ing which the two-phase monolayer shifts to a finely divided mesoscopic morphology

of the LC domains. The combined impact of surface shearing and reducing in the

1The subphase shear stress, τb|s, can be considered as playing a role equivalent to the one of the
gravity force, ρ.g, in one vertical two-phase flow.
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effective line tension is proposed as being responsible for such a transition. In fact,

under the effect of centrifugation, the radially-inwards flow-induced pressure rises up

to a level high enough, 0.18 mN·m−2 for Ω = 0.15 rpm, to reduce significantly the

effective line tension. Consequently, the condensed domains can be considered as lit-

erally shear-induced melted above a critical Reynolds number, Re ≈ 50. The new

patterning thus generated resembles to a perfectly monodispersed matrix of tiny con-

densed droplets, rather well-distributed according to one particular spatial frequency.

Here, it is worthy to note that, unlike existing literature devoted to inertial regimes

(Re ≈ 100 to 1000), when the Reynolds number is small enough (Re ≈ 10 to 100)

and when the depth of the subphase is high enough, the subphase shear stress at the

liquid surface is no longer significant. Consequently, competition between effective

line tension, λeff ≈ 2.5 × 10−13 N, and surface shear stress, τs ≈ 4 × 10−9 N·m−1, is

found to control the size of the condensed domains. An original consequence is that

a Boussinesq number, B̃oLC , defined at meso scale, is found to be at least of order

unity (B̃oLC ≈ 1 to 10), which means that from the uniformly dispersed regime to the

morphological transition included, the distribution of surface shear must be taken into

account when interpreting size reduction subsequent to the melting of the condensed

domains.

As far as the stratified regime is concerned now, which means a significant level

of surface concentration (A ≈ 15 Å2·molecule−1), the LM becomes stratified and the

effective line tension decreases significantly. Note also that the corresponding flatten-

ing of the Π–A isotherm suggests that Marangoni effect become vanishingly small in

this particular regime. Accordingly, the area fraction distribution is found uniform

while the condensed domains behave as stripes elongated by the shear stress from the

subphase, τb|s, for Ω = 0.206 rpm and h = 4 mm. Due to the small level of line tension

(λ ≈ 10−13 N), if the Re number is as large as 1000, these condensed stripes finally

break up since τb|s becomes large enough for Ω = 3.4 rpm and h = 4 mm. It is only in

this regime (shear-induced fragmentation) that typical results of the literature can be

recovered with, for instance, the formation of bola-shaped condensed domains and a
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non uniform radial distribution of the area fraction induced by the radial distribution

of the shear stress τb|s ([72]).

As a last step of this dissertation (Chapter 6), an analytical modelling has been

developed in order to investigate the impact upon surface flow of a stratified sur-

face viscosity whatever its source can be (a shear-induced fragmentation of condensed

domains, a radially-inwards packing due to underlying centrifugation or even the ra-

dial growth of a crystal of protein...etc.). Stokes and lubrication approximations are

considered which allows us to develop a simple matched asymptotic method for the

prediction of the azimuthal surface velocity. A closed-form analytical formulation of

the shear stresses, both at the liquid surface and along it, is put forward for the first

time, which insures accurate estimation of the Boussinesq number (10−1 ≤ Bo ≤ 10−4

is investigated). Despite its simplicity, the asymptotic model is also proved to take fair

account of a stratified surface viscosity. As an example, a radial segregation between

two stratifying phases covering the surface of a liquid bath is taken into account by

way of a surface viscosity which is chosen to depend on the radial direction. Special

attention is paid to describe the particular situation of a diffusive front which separates

both phases with a more condensed phase located along the liquid surface in the inner

part of the channel gap. Not surprisingly, the maximum of the surface velocity moves

radially outwards where the surface viscosity is the smallest. The shape of the veloc-

ity profile along the liquid surface as well as the value and the radial location of the

maximum of surface velocity are completely different from any prediction which could

be made from the approximation of a uniform surface viscosity. Therefore, a simple

measurement of the surface velocity, from particle tracking velocimetry for instance, is

expected to deliver a fair estimation of the radial extent of a growing condensed phase

(a 2-D crystal of protein, typically).
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Outlook

This dissertation has demonstrated the validity of a new hydrodynamical process to

control and monitor the flow-induced reorganization of a Langmuir film of biological

molecules spread over a liquid surface. At short term, our results should help to

investigate the flow-assisted two-dimensional growth of a crystal protein at a air-water

interface functionalized by a monolayer of lipids. In order to mimic the hydrodynamic

behavior of a air-water interface covered by a film of lipids, we chose to work prior with

a well-known fatty acid as a model system, referred to as pentadecanoic acid (PDA)

in the dedicated literature. The non-equilibrium behavior of a Langmuir monolayer of

PDA subjected to a centripetal flow has revealed to be in itself a complex matter: as

shown in Chapter 5 of this dissertation, the LM reorganisation can be understood from

the interplay between three hydrodynamical mechanisms (3-D shearing, 2-D shearing,

surface pressure dynamics) and one physico-chemical mechanism (line tension). This

is only now that the conditions are gathered to consider the investigation of the flow-

assisted self-assembly of a monolayer of lipids. Then, as a further step, it should be

possible to include the phenomenon of protein adsorption to these lipids provided their

hydrophilic termination is suitably functionalised. In that case, it could be necessary

to introduce three additional chemical mechanisms: 3-D diffusion of proteins in the

subphase up to (or from) the liquid surface, adsorption (desorption) of the proteins

to (from) the lipids, 2-D diffusion of the molecular complexes [lipids+proteins] along

the liquid surface. Here again, analytics developed in Chapter 6 should be extended

in order to take into account the coupling with previous chemical kinetics and to be

relevant to the analysis of crystal growth experiments in 2-D. Here again, the delicate

balance between a monitored centripetal compression along the liquid surface (in favor

with a crystal growth), and the destabilizing shearing (in favor with crystal melting),

could be analyzed and controlled by following the main lines of the strategy put in

place during this dissertation.
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[106] M. Lösche, H. P. Duwe, and H. Möhwald. Quantitative analysis of surface
textures in phospholipid monolayer phase transitions. J. Colloid Interface Sci.,
126(2):432–444, 1988.

[107] M. Lundquist. Relation between polymorphism in ”two-dimensional”
monomolecular films on water to polymorphism in the three-dimensional state,
and the formation of multimolecular films on water. I. n-Alkyl acetates. Chem.
Scr., 1(1):5–20, 1971.

[108] M. Lundquist. Relation between polymorphism in two-dimensional monomolec-
ular films on water to polymorphism in the three-dimensional state, and the
formation of multimolecular films on water. ii. ethyl esters of n-aliphatic acids.
Chem. Scr., 1(5):197–209, 1971.

[109] E. K. Mann, S. Heéron, D. Langevin, and J. Meunier. Molecular layers of a
polymer at the free water surface: microscopy at the Brewster angle. J. Phys.
II France, 2:1683–1704, 1992.
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Appendix A

On molecular orientations in
Langmuir monolayers

In principle, there are four order parameters considered to describe the structures
of different liquid crystal phases [59]:

1. Positional order:

One can think of positional order (or in-plane positional order) as the degree of
translational symmetry shown by the position of a group of molecules. Quantita-
tively, positional order is described by means of a density or position correlation
function GPO(−→r ) [161]:

GPO (−→r −−→r ′) = 〈n (−→r )n (−→r ′)〉 − n2, (A.1)

where n(−→r ) and n(−→r ′) are molecular densities at positions −→r and −→r ′, respec-
tively, and n is the mean density of the sample. The brackets 〈〉 denote the
statistical average. The product n(−→r )n(−→r ′) corresponds to the probability of
meeting a certain density n(−→r ) at −→r and simultaneously a certain density n(−→r ′)
at −→r ′.

2. Bond1 orientational order:

Bond orientational order (or lattice orientational order) concerns the relative
geometrical arrangement of adjacent molecules. The degree of order is described
by a bond orientational correlation function GBO

n (r) [124]:

GBO (−→r −−→r ′) = 〈Ψn (−→r ) Ψn (−→r ′)〉 , (A.2)

where

Ψn (−→r ) =
1

N

N∑

i=1

exp [jθi (
−→r )]

is the bond orientational order parameter for n-fold symmetry [124]. θi(
−→r ) is

the angle between a near neighbor bond at position −→r and external reference
line. N is the number of direction neighbors.

1“Bond” refers to the geometrical line between nearest neighbors.
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3. Tilt orientational order:

The phenomenon that neighboring rod-like molecules (such as a long-chain am-
phiphile) adopt the same tilt angle and align parallel to each other is denoted
as tilt orientational order (or molecular tilt azimuth order). This order can exist
only when the molecules are tilted from the normal of the packing plane of the
systems. Optical techniques, such as BAM and polarized FM, reveal that in
condensed monolayer phases the molecules can be ordered by tilt over hundreds
of µm [73, 174].

4. Herringbone order:

If rod-like molecules hindered rotate, the molecules densely pack in the herring-
bone staking in the plane of the layers with herringbone order (or broken axial
symmetry).

Each of these different kinds of orders can be described by its correlation function.
The length scales on which the order is preserved will dominate the behavior of these
correlation functions. One can distinguish short range, quasi long range and long range,
which describe the level of the order parameters, from these correlation functions.

The classification of various smectic phases in Fig. A.1 is based on the above order
parameters and the behavior of their correlation functions [174]. All phases in the right
column of Fig. A.1 have long range tilt orientational order with some difference in the
directions in which the molecular axis points. Only the crystalline phases (smectic
BC, E, J, G, K and H) in Fig. A.1 have long rang positional order. Phases with short
range positional order and long or quasi-long range 6-fold bond orientational order are
term hexatic phases (e.g. smectic BH, I, L and F phases shown in Fig. A.1). When
tilt occurs in the hexatic phase (smectic I, L and F phases), the tilt azimuth is not
arbitrary but related to azimuth of the hexatic. Two symmetry-related tilt directions
are along hexatic bonds (to the nearest neighbor, NN, such as smectic I and L phases)
or between them (to the next-nearest neighbor, NNN, such as smectic F phases). In
the smectic E, K, H and N phases, the rotation of molecules is partially hindered and
the molecules exhibit herringbone stacking in the plane of the layers.

Figure A.1 illustrates the structures of various smectic liquid crystal phases [59,
18, 174]. From published X-ray diffraction data and existing isotherm information, it
is possible to demonstrate a correspondence between the known monolayer phases and
existing smectic categories. From the side view as shown in Fig. A.1, the distinction
between the categories in the second and the third rows is meaningless for a monolayer
system since these differ only in the correlations between different molecular layers. It
is found that there is a strong resemblance between the structural features of single
layers of smectic mesophases2 and those of monolayers of long chain amphiphiles on
water, such as the same types of molecular order, the variety of smectic phases based
on. Therefore, the smectic liquid crystal phases can be applied to description of the
different phases of Langmuir monolayers [18].

The phases in Fig. 2.4 have been characterized according to liquid crystalline smec-
tic phases. The smectic categories have been taken from Ref. [18] (see Fig. A.1). We
will describe these phases briefly [2]:

2synonym of liquid crystal phases
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smectic A

smectic BH
(hexatic)

smectic BC
(crystal)

side view top view

untilted tilted

side view top view

smectic C

smectic I
(hexatic)

smectic F
(hexatic)

smectic L
(hexatic)

smectic J
(crystal)

smectic G
(crystal)

smectic M
(crystal)

smectic N
(crystal)

smectic H
(crystal)

smectic K
(crystal)

smectic E
(crystal)

Figure A.1. Pictorial representations of the molecular statistics in the well-established
smectic categories (adopted from Ref. [59]). The side view illustrates the layer stacking
of molecules. Only the first row (thick line) is meaningful for Langmuir monolayers.
The top view shows the in-plane ordering of molecules. In the top view, the dots are
a triangular reference net. The open circles indicate the location of molecules and the
molecules are freely and independently rotate about their long axes; the open triangles
indicate the location and tilt direction of the molecules; and the open ellipses indicate
location and hindered rotation of the molecules with respect to a triangular reference
net (dots). The arrows indicate the tilt direction of the molecules.
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⋄ L2

This is the primary liquid-condensed (LC) phase first considered by Adam [89]
and Langmuir [97] as a semisolid film having hydrated polar heads. Now it is
identified as a smectic I, or rotator phase, having short-range-positional order
yet enough cross-sectional area to allow free rotation. The molecules are tilted
relative to the normal, and the tilt angle varies with surface pressure. As the
monolayer is compressed, the tilt angle diminishes in magnitude, and across
the transition the tilt direction switches toward the next nearest neighbor. Ov
denotes the phase discovered by Overbeck & Möbius [128]. It has only been
detected by optical measurements and X-ray diffraction, but not by the isotherm
measurements [128]. For symmetry reasons, the separation of the L2 phase into
herringbone ordered L2h and disordered L2d was proposed by Kaganer et al. [85].
Two tilted hexatic phase L2d and Ov differ in their tilt azimuth (NN and NNN,
respectively) [85].

⋄ L
′

2

This region has been divided into two phases, L∗
2 and S

′

. The L∗
2 phase differs

from the L2 phase in the direction of tilt. Molecules tilt toward their nearest
neighbors in L2 and toward next nearest neighbors in L∗

2 (a smectic F phase).
The S

′

phase comprises the higher-Π and lower-T part of L
′

2. This phase is
characterized by smectic H or a tilted herringbone structure and there are two
molecules (of different orientation) in the unit cell. Another phase having a
different tilt direction, L

′

1, can appear between the L2 phase and L
′

2 phase. A
new phase has been identified in the L

′

2 domain. It is probably a smectic L
structure of different azimuthal tilt than L

′

2 [129].

⋄ LS

In the LS phase the molecules are oriented normal to the surface in a hexagonal
unit cell. It is identified with the hexatic smectic BH phase. Chains can rotate
and have axial symmetry due to their lack of tilt. This phase is optically isotropic
and possesses equal mean distances between all neighbor molecules [85].

⋄ S

Experimentally, a S phase is a mesophase with finite correlation lengths of trans-
lational order [85]. Chains in S phase are oriented normal to the surface, yet the
unit cell is rectangular possibly because of restricted rotation. This structure is
characterized as the smectic E or herringbone phase.

⋄ CS

The CS phase is true 2-D crystal with chains oriented vertically. It exists at
low T and high Π in the phase diagram of Fig. 2.4. This phase characterized by
resolution-limited peaks in the X-ray diffraction experiments [85]. The structure
exhibits long-range translational order.
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Phases transitions at the scale of molecular interactions

BAM and polarized FM observations of the transition between condensed phases
can be grouped into three categories with different changes of optical anisotropy [147,
85]:

1. transitions between an isotropic and an anisotropic phase (L
′

2–LS, L2–LS, Ov–
LS, S–LS) are visible due to the complete loss of contrast;

2. transitions between a highly anisotropic tilted phase and a weakly anisotropic
untitled phase (L

′′

2–CS, L
′

2–CS, L
′

2–S) also appear as a complete loss of con-
trast in polarized fluorescence microscopy experiments, but with BAM they are
identified by a substantial decrease in the level of contrast between domains;

3. transitions between two anisotropic phases with approximately the same degree
of anisotropy (L2–L

′′

2 , L
′

2–L
′′

2 , L2–L
′

2, L2–Ov, S–CS) are visible because the
domain structure undergoes a sudden and repeatable rearrangement.

The phase transitions of fatty acids monolayers depend on temperature and the
hydrocarbon chain length of fatty acids. For example, Earnshaw & Winch [45] demon-
strated that the LE–LC phase transition depends on temperature for pentadecanoic
acid monolayer as shown in Fig. 2.5. Bibo & Peterson [19] matched the phase-transition
lines of fatty acids monolayers on a generalized Π–T phase diagram by shifting sys-
tematically the temperature axis by 5 to 10 ◦C per additional methylene group. The
phase diagrams for C20, C22 and C24 fatty acids were matched unambiguously based on
positions of the LS–L

′

2–L2 triple points, while matching of the shorter-chain phase di-
agrams remained somewhat ambiguous. Discovery of the LS–Ov–L2 triple point [129]
allows us to place these phase diagrams more precisely. In Fig. A.2, the phase diagrams
are matched by bringing both triple points in coincidence [132, 129, 85]. Then, a fixed
shift of the temperature axis by 5 ◦C per each methylene group is required for chain
lengths from C16 to C22. Thus, monolayers of fatty acids formed by molecules differing
only in the length of the chain experience the same sequence of phase transitions, but
at different temperatures. Figs. 2.5 and A.2 reveal that an increase in temperature has
increased the surface pressure of the L1–L2 (LE–LC) phase transition. In addition,
Fig. A.2 shows that a decrease in the hydrocarbon chain length produces a similar re-
sult. Both effects may be understood by considering the forces between the molecules
in the floating monolayer. A decrease in the length of the chain leads to decreased
van der Waals’ force between the molecules, which results in reduced cohesion within
the monolayer; in contrast, a decrease in temperature leads to less thermal motion,
which tends to condense the monolayer [133]. Qualitatively, the constructed phase di-
agram (Fig. A.2) has a similar topology to that previously reported in the literatures
[160, 19, 103, 88, 18, 129, 153]. The phase diagrams (Figs. 2.4 and A.2) are not final
yet for Langmuir monolayers since there are various other indications for presence of
phase transitions; however these are not sufficiently well established and sometimes
contradict each other [85].
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Figure A.2. Π–T phase diagrams of fatty acid monolayers (C14 to C24 acids). Adapted
from Peterson et al. [132], with data by Overbeck & Möbius [129] added to locate
the relative positions of the C16 to C20 phase diagrams more precisely (adopted from
Ref. [85]).



Appendix B

Mannheimer & Schechter’s
modeling of the deep-channel
surface viscometer

For a incompressible fluid, the governing equations are: the continuity equation

div−→v = 0 , (B.1)

and the Navier-Stokes equation

ρ

[
∂−→v
∂t

+ −→v · ∇−→v
]

= −∇P + µb∇2−→v + ρ−→g . (B.2)

A theoretical analysis of the annular channel of the viscometer was performed by
Mannheimer & Schechter [112]. The governing equations are the axisymmetric Navier-
Stokes equations, together with the continuity equation and appropriate boundary and
initial conditions. A cylindrical polar coordinate system (r, θ, z) with associated sub-
phase velocity −→v = (ur, vθ, wz) is used, and on the interface the surface velocity vector
is −→vs = (ur,s, vθ,s). Then, the governing equations will be written in cylindrical polar
coordinates as:

1

r

∂rvr

∂r
+
∂wz

∂z
= 0, (B.3)

ρ
∂ur

∂t
= −∂P

∂r
+ µb

{
1

r

∂

∂r

[
r
∂ur

∂r

]
− ur

r2
+
∂2ur

∂z2

}
, (B.4)

and

ρ
∂wz

∂t
= −∂P

∂z
+ ρg + µb

{
1

r

∂

∂r

[
r
∂wz

∂r

]
+
∂2wz

∂z2

}
. (B.5)

The hydrodynamical coupling between surface and sub-phase flow is taken into
account through the the components of the jump of momentum balance (Eq. (3.12))
at the the liquid surface. As demonstrated by [156], the jump of momentum balance
(JMB) can be projected tangentially along the air-water interface and doing that, is is
possible to derive relevant boundary conditions for the sub-phase flow: the azimuthal
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and radial tangential component of the JMB write:

µb
∂vθ

∂z
= µs

[
∂2vθ,s

∂r2
+

1

r

∂vθ,s

∂r
− vθ,s

r2

]
+
∂µs

∂r

[
∂vθ,s

∂r
− vθ,s

r

]
, (B.6)

and

µb
∂ur

∂z

∣∣∣∣
s

+
∂Π

∂r
= [κs + µs]

[
1

r

∂wz

∂z

∣∣∣∣
s

+
∂2ur,s

∂r2
+

2

r

∂ur,s

∂r

]

− ∂ [κs + µs]

∂r

∂wz

∂z

∣∣∣∣
s

+
2ur,s

r

∂µs

∂r
,

(B.7)

respectively. The boundary condition (B.7) exhibits the balance between the

Marangoni term, ∂Π
∂r

, and the shear stress µb
∂ur
∂z

∣∣∣
s

due to the centrifugation-induced

radial flow at the liquid surface.

The following assumptions are formulated to calculate the velocity profile along
the channel:

1. Flat interface.

2. Viscous subphase in the channel.

3. Viscous interface.

4. Air above the monolayer considered as negligible in regard of the momentum
transport.

5. Laminar flow with only one significant azimuthal velocity component (no sec-
ondary flow1).

6. The surface shear viscosity is therefore uniform (∇sµs = 0).

7. Permanent flow.

8. No surface aging.

With the above assumptions, it is consistent to disregard (B.5) and (B.7) and to solve
the following set of coupled Stokes equations (B.4) - (B.6) in polar coordinates:

∂2vθ

∂r2
+

1

r

∂vθ

∂r
− vθ

r2
+
∂2vθ

∂z2
= 0, (B.8)

with the following boundary conditions:

vθ(ro, z) = 0,

vθ(ri, z) = 0;
(B.9)

vθ(r, 0) = rΩ; (B.10)

1This assumption remains consistent if the Reynolds number is small enough (Re << 100) or if
the LM is saturated (vanishingly small Marangoni effect).
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µs

[
d2vθ,s

dr2
+

1

r

dvθ,s

dr
−vθ,s

r2

]
= µb

∂vθ (r, z)

∂z

∣∣∣∣∣
z=h

. (B.11)

Equation (B.9) states that the velocity is zero at both the inner wall (ri) and the
outside wall (ro), Eq. (B.10) describes the Couette flow along the moving floor, and
Eq. (B.11) is the reduced form of the boundary condition (B.6).

An analysis of this boundary value problem resulted in the following series solutions
for the surface velocity [111]:

v∗θ,s =
2
ro
e

∞∑

i=1





[[ro

e

]2
ψ0

(ro

e
βi

)
−
[ri

e

]2
ψ0

(ri

e
βi

)]

βi

[[ri

e

]2
ψ2

0

(ri

e
βi

)
−
[ro

e

]2
ψ2

0

(ro

e
βi

)]

·
ψ1

(r
e
βi

)

[
cosh

(
βi
h

e

)
+ βi

µs

µbe
sinh

(
βi
h

e

)]





(B.12)

where
v∗θ,s =

vθ,s

roΩ
,

ψ0

(r
e
βi

)
= J0

(r
e
βi

)
Y1

(ri

e
βi

)
− J1

(ri

e
βi

)
Y0

(r
e
βi

)
,

and
ψ1

(r
e
βi

)
= J1

(r
e
βi

)
Y1

(ri

e
βi

)
− J1

(ri

e
βi

)
Y1

(r
e
βi

)
.

The quantities J and Y are Bessel functions of the first and second kind with subscripts
to denote their orders. Here βi is the ithe root of the relation:

J1

(ro

e
βi

)
Y1

(ri

e
βi

)
− J1

(ri

e
βi

)
Y1

(ro

e
βi

)
= 0.

To obtain the estimation of µs, the least squares method which minimizes the
summed square of residuals was used to fit the experimental surface velocity. The
fitting process used Eq. (B.12) as a model that relates r to v∗θ,s with adjusting µs.
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Appendix C

Impact of the radial flow on the
packing density: scaling analysis

As already mentioned in the theoretical part (Section 5.2), the molecular packing
due to the radial flow along the surface is to be considered if the LM remains weakly
densified. If the shear deformation induced by the leading azimuthal flow is small
enough, the LC domains are close to condensed drops whose typical shape is circular
as long as the effective line tension is large enough to balance inertial forces or shear
stresses. In such conditions, it remains that the condensed drop diameter is possibly
driven by the radial distribution of the molecular area along the dividing surface. If
shear-induced deformation becomes significant, this typical diameter can be reduced
under the effect of shear atomization but it remains nevertheless that the density
number of condensed drops can significantly increase if molecular area is significantly
small.

The radial flow along the surface, issued from the centrifugation of the underlying
subphase, can generate a surface chemical gradient and consequently, a nonuniform
distribution of the condensed drops. The radial component of the jump momentum
balance along the liquid surface involves that the shear stress at the interface sustains
a (compositional) Marangoni stress:

µb
∂vr

∂z

∣∣∣∣
s

∼ ∂Π

∂r
, (C.1)

as long as the energy dissipation due to surface viscosities is not significant, with

∂Π

∂r
∼= ∂A

∂r

dΠ

dA

∣∣∣∣
equilibrium

, (C.2)

provided that the flow-induced reorganization does not question the experimental
isotherm Π = f(A), a condition which is supposed to hold only for a weak perturbation
of the thermodynamic equilibrium. From Eq. (C.1), we can estimate

∂Π

∂r
∼ δΠ

ro

∼ µbvr

h
.
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Hence, from Eq. (C.2), the molecular segregation scales as:

∂A

∂r
∼

µbvr

h
dΠ
dA

∣∣∣
equilibrium

. (C.3)

A typical scale for the radial flow, vr, remains to be estimated. The radial pressure
gradient within the subphase can be approximated from the centrifugal force,

∇rP ∼ ρbroΩ
2, (C.4)

where ρb denotes the density of the subphase. By considering that inertia is negligible
compared to viscous friction, the balance between the viscous term and the pressure
gradient writes

νb∆vr ∼
1

ρb
∇rP. (C.5)

From Eqs. (C.4) and (C.5), a scale for the recirculating flow writes

vr ∼
ro

[
Ω h/2

]2

νb
. (C.6)

Finally, according to Eq. (C.3), the radially inwards flow-induced molecular packing
along the channel gap scales as

δA ∼ ρbro
2hΩ2

dΠ
dA

∣∣∣
equilibrium

≈ 0.1 Å
2 · molecule−1, (C.7)

with h = 10 mm, ρb = 1000 kg·m−3, ro = 70 mm, Ω ≈ 0.1 rpm and

dΠ

dA

∣∣∣∣
equilibrium

≈ −0.1 (mN · m−1) · (Å2 · molecule−1)−1,

as made evident from adsorption isotherm (Fig. 4.5).



Appendix D

Modelling of surface flow: the
asymptotic case of a full cylinder

This appendix, as a complement of section (6.8), addresses the modelling of surface
flow when the trough becomes a full cylinder since it is also a geometry currently in-
volved in the literature [9, 10]. From our point of view, this corresponds to a particular
case of the present modelling: it is easily checked that the velocity along the liquid
surface, v∗θ,s, tends toward a finite value for a vanishingly small aspect ratio:

ri

ro

→ 0.

In the expressions of v∗θ,s, only the forcing term f(r∗) and the coefficients A(r∗), B(r∗),
C(r∗), D(r∗) depend on ri/ro

. Hence, for a full cylinder, the expressions (6.32) and
(6.35)-(6.38) must be updated as follows:

f(ξ) →
ri
ro

→0

−ξ + 2

exp

(
−π1 − ξ

δ

)

1 + exp

(
−π1 − ξ

δ

) , (D.1)

A(r∗) →
ri
ro

→0

1

Bo

I1

(
r∗√
Bo

)
K1

(
1√
Bo

)
− I1

(
1√
Bo

)
K1

(
r∗√
Bo

)

I1

(
1√
Bo

) , (D.2)

B(r∗) →
ri
ro

→0

0, (D.3)

C(r∗) →
ri
ro

→0

1

Bo
K1

(
1√
Bo

) I1

(
r∗√
Bo

)

I1

(
1√
Bo

) , (D.4)

D(r∗) →
ri
ro

→0

− 1

Bo
I1

(
r∗√
Bo

)
. (D.5)

A straightforward consequence is that the shear stress at the liquid surface simpli-
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fies to:

τ ∗b,comp = vs(r
∗) − r∗ + 2

exp

(
−π1 − r∗

δ

)

1 + exp

(
−π1 − r∗

δ

) . (D.6)

For a uniform contamination, it is worthy to calculate explicitly the velocity along
the liquid. Doing this, it is necessary to verify that the integral

∫ r∗

ri
r0

f(ξ)G(r∗|ξ)dξ

is not singular when
ri

ro
→ 0,

a requirement which is clearly fulfilled since

f(ξ)ξ I1

(
ξ√
Bo

)
→
ξ→0

0.

As a consequence, when
ri

ro
→ 0,

the velocity vθ,s writes explicitly:

v∗θ,s(r
∗) =

1

Bo

I1
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r∗√
Bo

)
K1

(
1√
Bo

)
− I1

(
1√
Bo

)
K1

(
r∗√
Bo

)

I1

(
1√
Bo

)
∫ r∗
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f(ξ)ξ I1

(
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Bo
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dξ

+
1

Bo
K1

(
1√
Bo

) I1

(
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Bo
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I1

(
1√
Bo

)
∫ 1

r

f(ξ)ξ I1

(
ξ√
Bo

)
dξ

− 1

Bo
I1

(
r∗√
Bo

)∫ 1

r

f(ξ)ξ K1

(
ξ√
Bo

)
dξ.

Interestingly, the impact of the outer boundary layer upon v∗θ,s(r
∗) is significantly

reduced (if δ is small enough) as it can be demonstrated from the linearity of the
velocity profile near the axis of revolution.

For the situation of a regular (smooth) viscous stratification, the integral formula-
tion to solve is still defined from (6.46) but with Green kernels, k1(r

∗|ξ) and k2(r
∗|ξ),

and the non-homogeneous term, h(r∗) (see (6.47) to (6.49)), to be updated by taking
into account the new coefficients (D.2) to (D.5).
Nevertheless, it is worthy to note that this modeling is limited to the situation of either
a uniform contamination or a regular stratification at most. As a matter of fact, for
a steep segregation front arising for instance from the radial growth of a 2-D crystal
at the centre of the liquid surface, there is the possibility that the crystal could rotate
under the effect of shearing 1.

1An alternative way to avoid crystal rotation could be to maintain it at rest by applying an external
force at the centre (wire technique for instance).



D.1 Rsum

L’objectif de cette thse est de contrler un coulement recirculant dans une sous-phase
permettant la densification en 2-D de biomolcules amphiphiles une surface liquide.
Pour cela, une exprience base sur une cuve annulaire est dveloppe afin d’tudier le com-
portement d’une monocouche d’acide pentadecanoque (PDA) soumise simultanment
des cisaillements volumique et surfacique. Ces deux cisaillements sont produits par la
rotation d’une couronne annulaire aimante dispose au fond d’une cuve annulaire main-
tenue immobile. Une nouvelle organisation msoscopique dans le film de PDA, sous la
forme de deux phases 2-D (liquide expanse et liquide condense), est mise en vidence
et tudie en rgime permanent par microscopie Brewster. A partir de la distribution de
fraction arolaire de la phase condense, on montre que l’coulement centrifuge le long
du fond tournant engendre une compression radiale centripte le long de l’interface.
Celle-ci privilgie la condensation de domaines condenss vers les rayons les plus pe-
tits. Pour un niveau suffisant de centrifugation, le film de Langmuir exprimente une
transition morphologique pilote par l’quilibre entre cisaillement de surface et tension
de ligne effective. En particulier, le cisaillement surfacique induit la fusion des do-
maines condenss et engendre une nouvelle organisation morphologique sous la forme
d’une matrice monodisperse de gouttelettes 2-D condenses. Dans des conditions plus
densifies, la phase condense s’organise sous la forme de films stratifis. Dans ce cas,
si la vitesse de rotation augmente (nombre de Reynolds de l’ordre de 1000 ou plus),
le niveau de cisaillement volumique devient suffisant pour engendrer la fragmentation
radiale des films condenss, en bon accord avec la littrature. Une nouvelle formula-
tion (analytique) intgrale de l’coulement annulaire cisaill est propose pour estimer le
nombre de Boussinesq et la stratification de viscosit de surface.

D.2 Mots-clefs

Ecoulement, cisaillement, tensioactifs, monocouche de Langmuir, viscosit de sur-
face, Stokes, lubrification

D.3 Abstract

This thesis is devoted to a flow process whose aim is to densify amphiphilic
biomolecules along an air-water interface. Use is made of pentadecanoic acid (PDA)
as a model system. The experiments are based on a shear flow provided in an annu-
lar channel whose floor is put in rotation while its two vertical cylindrical side walls
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are maintained stationary. The flow is considered as permanent and axisymmetric
with a low Reynolds number (Re¡100). The liquid surface at the top of the annular
channel is covered by a Langmuir layer of PDA submitted to a bulk shear at the liq-
uid surface as well as a surface 2-D shear along it. Flow-induced morphology of the
PDA film at mesoscopic scale is made evident and investigated under a Brewster an-
gle microscope (BAM). During phase transition from the liquid-expanded (LE) to the
liquid-condensed (LC) state, a dispersed Langmuir film of PDA is investigated based
on area fraction distribution of the LC phase after a permanent regime is established.
The distribution demonstrates a radially inwards packing along the liquid surface in-
duced by a centripetal flow originating from centrifugation of the subphase along the
rotating floor. For a growing level of centrifugation, the Langmuir film experiences
a strong morphological transition driven by a balance between surface shear and a
reduced line tension. As a result, a shear-induced melting of the condensed domains
generates a new patterning which can be described as a regular and monodispersed
matrix of tiny condensed droplets. For a highly densified PDA film, LC domains are
organised according to stratifying films. If sub-phase rotation is large enough, (Re as
large as 1000), the bulk shear is responsible for the break-up of the streched LC do-
mains in agreement with existing literature. A new analytical modelling is proposed
to include the impact of a radial molecular packing on surface viscosity at a small
Reynolds number. A new integral formulation is made evident which enables a fair
estimation of the Boussinesq number as well as a measurement of a stratified surface
viscosity.

D.4 Key-words

Annular flow, shear, surfactants, Langmuir monolayer, surface viscosity, Stokes,
lubrication

196


	Contents
	List of Tables
	List of Figures
	List of Symbols
	Acknowledgements
	Curriculum Vitæ
	General introduction
	Context
	Motivations and aims
	Outline of this dissertation

	On monolayers
	Basic features of monolayers
	Molecular structure of amphiphiles
	The case of amphiphilic fatty acids
	Phases behavior of Langmuir monolayers
	Isotherms of Langmuir monolayers
	Generalized phase diagrams of Langmuir monolayers
	Properties and structures of LM phases
	Phase transitions of Langmuir monolayers
	Dissociation of fatty acids
	Stability of fatty acids monolayers

	Pentadecanoic acid, as a result of selection

	Experimental characterisation of a Langmuir monolayer
	Static properties of liquid surfaces
	Contact angle
	Surface pressure

	Line tension
	Dynamic properties of liquid surfaces
	Marangoni effect
	Surface shear viscosity
	Surface dilatational viscosity
	Stress balance at a gas-liquid interface

	Optical properties of monolayers
	Physical principle of a BAM
	Brewster angle miscroscope
	Optical characteristics of the BAM


	Experimental measurement of a flowing PDA Langmuir monolayer
	State of the art
	Materials and methods
	PDA monolayer method
	Conception of flow apparatus
	Flow apparatus
	Experimental techniques

	Characterization of PDA monolayer in thermodynamic equilibrium
	–A isotherm of PDA monolayers
	Initial thermodynamic equilibrium of PDA monolayer

	Shear-induced perturbation of the thermodynamic equilibrium
	Experimental techniques and error sources
	Other sources of experimental errors

	Experimental characterization of the two-phase Langmuir monolayer flow
	Area fraction convergence
	The case of a highly densified LM
	Identification of the surface viscosity
	The azimuthal velocity profile along the interface v, s
	Mean area fraction along the interface AF

	Concluding remarks

	Flow-induced patterning of a condensed phase within a Langmuir monolayer
	Theoretical considerations
	Thermodynamical equilibrium: the balance between dipolar electrostatic forces and line (excess) tension
	Non-equilibrium: relevance of the effective line tension
	Shape change of a LC domain under shearing: the classical macroscopic approach
	Shape change of a LC domain under shearing: the mesoscopic scale
	Brief comments on the potential impact of an externally-imposed flow

	Growing impact of the flow upon mesoscopic morphology
	Low molecular packing and dispersed flow
	High molecular packing and stratified flow
	LC domains fragmentation at a larger Re number

	Concluding remarks

	Analytical modeling of a floor-driven shallow flow
	Introduction: the state of the art
	Outlines of this chapter
	On one particular source of viscous stratification
	Assumptions and aims

	Mathematical model
	Two-way coupling between surface and subphase flows
	Subphase flow
	Surface flow

	Lubrication approximation
	Subphase flow at leading order
	Core flow
	Boundary layer flow

	Surface flow at leading order
	The case of a uniform surface viscosity
	Calculation of the Green function for the operator 
	Surface velocity at leading order
	Subphase velocity at leading order
	On the need to get an accurate estimation of the Boussinesq number

	Stratified surface viscosity
	On the relevance of an integral formulation
	A Fredholm integral equation for v,s *
	Solution of the Fredholm integral equation
	Discretization of the integral equation
	Shear viscosity across a diffuse front

	Final comments

	Conclusions and outlook
	References
	On molecular orientations in Langmuir monolayers
	Mannheimer & Schechter's modeling of the deep-channel surface viscometer
	Impact of the radial flow on the packing density: scaling analysis
	Modelling of surface flow: the asymptotic case of a full cylinder
	R”sum”
	Mots-clefs
	Abstract
	Key-words


