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THÈSE

présentée et soutenue publiquement le 16/09/2009

pour l’obtention du

Doctorat de l’Ecole Centrale Paris
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Motivation

Ourselves and all the endless forms we can observe around us are just the final
result of a series of complex and still enigmatic processes that regulate nature. It is
astonishing to discover little by little that we are part of an immense scheme where
each single component knows exactly where to go, what to do and when and how
to do it. Still more fascinating is to find out that the smallest parts of this system,
at first sight the simplest ones, are instead the most organised and fundamental for
the success of the global plan. Cells can for sure be included in this category.

A cell is like a ”social being”: alone, even if extremely intelligent, it can not
completely express itself, but together with other cells it can do unbelievable things.
They are able to divide, proliferate, migrate and many others, but more importantly
they strongly co-operate to give rise to amazing 3D organisms. From the beginning
of the embryogenesis therefore, everything is perfectly synchronized and the slightest
imperfection may compromise the final result.

Since ever biologists have observed and studied intriguing developmental phases,
trying to unveil the cryptic process by which an embryo is transformed in a living
organism. Then mechanics may be very helpful in deciphering part of the whole
problem. Each modification of the embryonic structure is actually driven by forces
generated within the cells that properly react and respond so that the global architec-
ture changes, but the embryo can progressively perform more specialised functions.

The strong connection between mechanics and genetics has been studied for a
long time, showing how genes control and influence the occurrence of many morpho-
genetic movements during embryogenesis. Only recently the inverse process has been
detected; it seems in fact that some mechanical forces might induce the expression
of specific genes, elsewhere than their usual area of action in the embryo.

Therefore two main conclusions can be drawn. First, embryonic cells, as similarly
as other types of cells in nature, are mechanosensible and able to adapt themselves
when an external load is applied on them. Second, a mechanotransduction pattern
is present in the early embryo, so that a mechanical stimulus is transformed into a
chemical signal. If cells behaviour has been largely analyzed and explained through
many and different experiments on cultures, it is still not so clear how mechanics
transform a genetic information into a physical form. It would have been too ambi-
tious to try to cover this gap, but at least with the present study we would like to
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offer to the reader an exhaustive description of part of this complex process that is
embryogenesis.

The huge advances made in numerical modeling allow today to couple together
biology and mechanics. Therefore it is possible not only to investigate those systems
that so far appeared unapproachable, like the embryo, but also and more surprisingly
to discover that the minimal change of peculiar parameters may provide unexpected
and unordinary results. In this work we use computer simulations to reproduce some
of the most interesting and studied events of Drosophila Melanogaster development.
The main goal is to provide a useful support for biologists in order to confirm their
hypotheses resulted by experimental observations, but also and especially to point
out unexplored aspects so that new issues are suggested.



Thesis outline

The present thesis is developed through four principal chapters. The first one pro-
vides a brief but rather exhaustive description of the context, with a global overview
on the complex process of the embryogenesis in Drosophila Melanogaster. We amply
focus on the three morphogenetic movements that will be numerically simulated,
with particular emphasis on both the mechanical and the biological aspects that
constitute the main peculiarity of each event. Also we propose a short review on the
related previous works.

The second chapter supplies the abstract tools for the analysis of the whole
problem and points out the hypotheses that, for sake of simplicity, have been made.
The gradient decomposition method is presented together with some interesting
interpretations that better clarify the approach and put forward novel issues that
have to be considered. By the Principle of the Virtual Power, we are able to write
the mechanical equilibrium of the system which consists of the forces internal to
the embryo domain and of the boundary conditions, such as the yolk pressure and
contact with the vitelline membrane, that are essential for consistent results. A
special concern is attributed to the choice of the constitutive law of the mesoderm
that, from a biological point of view, may appear too simplistic. Here a Saint-
Venant material is used in contrast with the Hyperelastic models found in literature;
therefore a comparison between the two is proposed together with the advantages
and the limitations of our study. Finally, we provide some simple examples that
validate our model and support the exploited method.

The third chapter can be divided into two parts. In the first one, by the paramet-
rical description of the embryo geometry, we obtain the analytical formulations of
the active deformation gradients for each morphogenetic movement according to the
elementary forces introduced. Such expressions will be combined with the passive
gradients in order to get the final deformation of the tissues. In the second part we
interpret the results for each simulation. In particular, we provide a parametrical
analysis for the simulation of the ventral furrow invagination, while for the germ
band extension a comparison with experimental data is done. Furthermore we have
been able to estimate the effects induced by the local deformations within the tis-
sues; specifically, we have evaluated the magnitude of the pressure forces and the
shear stress that may develop at long distance in the embryo when the active forces
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are applied in restraint regions. To conclude, we propose a collateral study on the
influence of the global geometry of the embryo on the final results.

Given the consistence of the results for the individual simulations, we have de-
cided to test the concurrent simulation of the events, by two or three of them. In the
last chapter, we show the results for a first essay for which we use the most intuitive
method; it does not require in fact further manipulations of the analytical formu-
lations previously obtained, but we simply couple together the active deformation
gradients, following the chronological order of the movements. Although the method
works well for the simulation of the two furrows, some drawbacks are detected when
we introduce the germ band extension. Therefore we propose a new approach, more
rigorous and appropriate, which allows to take into account some aspects so far put
aside, but still significant for a realistic and complete reproduction of the different
phases of the Drosophila gastrulation.



Resumé

Ce travail de recherche a eu comme objectif principal la conception d’un modèle
numérique aux éléments finis donnant une représentation réaliste des mouvements
de l’embryon de la Drosophila Melanogaster. Les simulations de trois mouvements
durant la phase de gastrulation de l’embryon ont été realisées soit individuelles soit
simultanées, ce qui jusqu’à présent, n’a jamais été proposé, constituant ainsi une
contribution originale de cette étude.

La thèse est composée de quatre chapitres. Le premier fournit une brève mais
assez complète description du contexte dans lequel ce travail se situe. Le proces-
sus complexe de l’embryogénèse chez la Drosophila Melanogaster est presenté en
se focalisant sur les trois mouvements morphogénetiques qui seront ensuite simulés
numériquement: l’invagination du sillon ventral, la formation du sillon céphalique
et l’extension de la bande germinale. Chaque événement est décrit du point de vue
biologique et mécanique, ce qui permet donc de mettre en avant les aspects les plus
intéressants des différents mouvements. Une revue des plus récents travaux est aussi
proposée à fin de

Dans le deuxième chapitre on présente les outils analytiques pour l’analyse du
problème dans son intégrité. Etant donnée la complexité du système biologique,
plusieurs hypothèses ont été introduites pour simplifier l’approche numérique util-
isée. Seul le mésoderme est modélisé comme un milieu continu dans un espace
tridimensionel par un ellipsöıde épais régulier de 500µm de longueur. La méthode
de la décomposition du gradient de déformation, dont quelques interprètations al-
ternatives sont presentées, permet de coupler les déformations passives et actives
subies par chaque point matériel du milieu. L’équilibre mécanique est écrit à partir
du Principe des Puissances Virtuelles: les forces internes du système sont donc prises
en compte avec les conditions aux limites. Dans notre cas particulier celles-ci sont
fondamentales pour obtenir des configurations finales réalistes et comprennent le con-
tact entre le mésoderme et la membrane vitelline externe et le pression exercée par le
yolk sur la surface interne du mésoderme. Les propriétés mécaniques des tissus em-
bryonnaires ne sont pas faciles à déterminer expérimentalment. Une approximation
a été faite pour ce qui concerne la loi de comportement du mésoderme qui a été mod-
élisé comme un matériau de Saint-Venant linéaire, élastique et isotrope. Notre choix
étant en contraste avec le modèle hyperélastique qu’on retrouve souvent en litéra-
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ture, une comparaison entre les deux matériaux est proposée tout en considérant les
avantages et les limitations de notre démarche. La méthode de la décomposition du
gradient de déformation a été auparavant testée sur des cas géométriquement très
simples dont la solution analytique peut être facilement calculée et validée par les
résultats obtenus à partir des simulations numériques.

Le troisième chapitre peut être divisé en deux parties distinctes. Dans la pre-
mière, grâce à la description paramétrique de l’ellipsöıde qui représente l’embryon,
on calcule les expressions analytiques des positions intermédiaires où on voit appa-
râıtre les déformations actives responsables de chaque mouvement morphogénétique.
Les gradients de déformation active sont donc couplés avec les gradients passifs pour
obtenir la déformation finale. La deuxième partie du chapitre concerne l’analyse des
résultats pour les simulations individuelles des événements. Pour la simulation de
l’invagination du sillon ventral une étude paramétrique a été conduite pour évaluer
l’influence de certains paramètres sur la configuration finale. Pour la simulation de
l’extension de la bande germinale les résultats ont été comparés avec les données ex-
périmentales. En particulier on s’est intéressé à l’analyse des contraintes mécaniques
(les pressions et les contraintes de cisaillement) induites au niveau du pôle antérieur
où un chemin de mécanotransduction aurait lieu et conduirait à l’expression du
twist, un gène normalement exprimé seulement dans la partie ventrale de l’embryon.
Pour conclure, d’autres géométries que celle de l’ellipsöıde ont été utilisées pour les
simulations de l’invagination du sillon ventral et de l’extension de la bande germi-
nale. Ces nouvelles représentations de l’embryon permettent de prendre en compte
deux aspects intéressants: d’un côté l’arrondissement des deux pôles, de l’autre
l’aplatissement de la partie dorsal par rapport à la partie ventrale.

Le dernier chapitre du manuscrit introduit la simulation simultanée des trois
mouvements qui a été mise en place pour deux raisons principales. Tout d’abord le
fait que les événements analysés se produisent l’un après l’autre lors du développe-
ment de l’embryon. Deuxièmement, les résultats obtenus pour les simulations in-
dividuelles sont très encourageants et ont permis aussi de confirmer plusieurs hy-
pothèses avancées par les biologistes; d’où l’intérêt de coupler les mouvements pour
permettre une vision encore plus réaliste de cette phase importante de la gastrulation
chez l’embryon de la Drosophila Melanogaster. Deux méthodes différentes ont été
testées. La première, la plus intuitive et simple, permet de combiner les gradients
de déformation active de chaque mouvement et ne requiert pas de manipulations
supplémentaires des équations précédemment trouvées, tout en prenant en compte
le déphasage réel entre les événéments. Cette approche ne pose pas de problèmes
quand seulement les deux sillons sont couplés, alors que l’introduction de l’extension
de la bande germinale donne lieu à quelque limitations. Une nouvelle démarche est
donc proposée, plus rigoureuse et précise, qui nous a permis de considérer certains
aspects importants pas encore développés d’un point de vue théorique.
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Chapter 1

Introduction

This chapter can be divided into two parts. The first one provides a general overview
of the embryogenesis so that the reader may get familiar with the embryo vocabulary
(Sec. 1.1). The different phases of Drosophila embryo development are described
with particular emphasis on the biological aspects of the process (Sec. 1.2). In
the second part instead, we focus on the three morphogenetic movements that are
numerically simulated later; ventral furrow invagination (Sec. 1.2.3), cephalic furrow
formation (Sec. 1.2.4) and germ band extension (Sec. 1.2.7). We first describe the
different class movements to which the specific events previously mentioned belong
(Sec. 1.2.2, 1.2.5); then we switch to a more detailed analysis of each event pointing
out the mechanics of the problem, without omitting the influence exerted by specific
genes on them. Aware that mechanical modeling plays an important role in the
understanding of the different phases of embryogenesis, we also present a review of
the works we have found in literature. Particularly, Sec. 1.2.3.1 is dedicated to
ventral furrow invagination while Sec. 1.2.6 to convergence-extension movements.

1.1 Embryogenesis

Embryogenesis - how the tissues and organs of the developing embryo take their
forms - is a very complex process which has traditionally been explained in terms
of genes, hormones and chemical gradients. Usually it begins once the egg has been
fertilized and it involves multiplication of cells (by mitosis) and their subsequent
growth, movement and differentiation into all the tissues and organs of a living
insect. Given the remarkable similarity in genes responsible for organizing the fun-
damental body plan in vertebrates and invertebrates, in the last few years the field
of insect embryology has played a significant role in the understanding of develop-
mental processes of humans and other vertebrate organisms. Even if much of insect
embryology still remains mysterious, there has been a notable progress in knowledge
thanks to new methods in molecular biology and genetic engineering. Particularly, it

1
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has recently been shown that biomechanics plays an important role in the formation,
repair and function of bones, organs and arteries (Holzapfel [2000], Taber [2004]),
but it plays an equally important role at the scale of cells and the scale of the em-
bryo. For this reason, developmental processes have been largely studied in terms of
mechanics and physics, although still little is known on how a genetic information
can be translated via mechanics (i.e. forces and movements) into a physical form.

Insect embryogenesis can be described through a precise series of common stages;
in the next section we provide a general overview (also refer to LeMoigne and Foucrier
[2004] and to Forgacs and Newman [2006]) of the processes involved. Later on we will
focus on Drosophila Melanogaster development, which is the object of the present
study; the analysis of three specific morphogenetic movements will point out the
strong connections between biology and mechanics. Actually, it has been recently
shown that not only genetics may control mechanical forces and deformations of the
embryo, as it has been observed and demonstrated so far, but also the vice versa
can occur and therefore mechanotransduction and mechanosensibility paths may be
analyzed and taken into account (Brouzés and Farge [2004], Farge [2003]).

1.1.1 General overview of insect embryogenesis

An insect’s egg is much too large and full of yolk to simply divide in half like a human
egg during its initial stages of development; for this reason, insects ”clone” the zygote
nucleus by mitosis without cytokinesis through 12-13 division cycles to yield about
5000 daughter nuclei. This process of nuclear division is known as superficial cleav-
age; once formed, the cleavage nuclei migrate through the yolk toward the perimeter
of the egg and they subside in the band of periplasm where they construct the mem-
branes to create individual cells. The final result of the cleavage is the blastoderm,
a one-cell-thick layer of cells surrounding the yolk. The first cleavage nuclei to reach
the vicinity of the oosome are ”reserved” for future reproductive purposes, thus they
do not travel to the periplasm and do not form any part of the blastoderm. Instead,
they stop dividing and form germ cells that remain segregated throughout much of
embryogenesis: these cells will eventually migrate into the developing gonads and
only when the adult insect finally reaches sexual maturity they will begin by meiosis
to form gametes of the next generation. This means that germ cells never grow or
divide during embryogenesis, therefore DNA is conserved from the very beginning
of the development. The principal reason of this strategy is to minimize the risk of
an error in replication that would accidently be passed on to the next generation.

The blastoderm cells start enlarging and multiply on one side of the egg and this
region, called germ band or ventral plate, is exactly where the embryo’s body will
develop. The rest of the cells become part of a membrane, the serosa, that forms
the yolk sac; these cells grow around the germ band, enclosing the embryo in an
amniotic membrane.

At this stage of embryogenesis, when the embryo is composed by a single layer of
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cells, a specific group of control genes, the so called homeotic selector genes, become
active. These genes, by proteins with special active site, bind with the DNA and
interact with particular locations in the genome where they activate or inhibit the
expression of other genes. Practically, each selector gene, within a restricted domain
of cells according to their location in the germ band, controls the expression of other
genes that produce hormone-like ”organizer” chemicals, cell-surface receptors and
structural elements. Also the selector genes guide the development of individual cells
and channel them into different functions. Such process is called differentiation and
continues until the fundamental body plan is mapped out; firstly into general regions
along the anterior-posterior axis, secondly into individual segments and finally into
specialized structures or appendages.

When the germ band starts enlarging, it is possible to observe it lengthening
and folding so that its final shape corresponds to a layer of cells on the outside, the
ectoderm, and another one on the inside, the mesoderm. Once the lateral edges
of the germ band fuse along the dorsal midline of the embryo, the dorsal closure
occurs. At this stage, ectodermal cells grow and differentiate forming the epidermis,
the brain, the nervous system and most of the insect’s tracheal system. Furthermore,
the ectoderm folds inward at the front (foregut) and rear (hindgut) regions of the
digestive system. On the other hand, mesodermal cells differentiate to form other
internal structures such as muscles, glands, heart, blood and reproductive organs.
The midgut generates from a third layer, the endoderm, which arises near the fore
and hindgut invaginations and eventually fuse with them to complete the alimentary
canal.

During early development, the embryo looks most like a worm and only later
first segments become visible near the anterior end, to move through the thorax and
the abdomen. Generally, the rate of embryonic development is influenced by the
temperature and by the specific characteristics of species. The entire process ends
when the yolk’s contents have been completely consumed so that the insect is fully
formed and ready to hatch the egg. The eclosion may take place by a chewing of
the insect through the egg’s chorion or simply the insect can swell in size until the
egg shell cracks along a predetermined line of weakness. Contrary to the general
thought, the larva does not end its development with the hatching process, but it
will continue to develop and mature.

1.2 Drosophila embryo

Drosophila melanogaster is a two-winged insect that belongs to the species of the
flies. The species is usually known as the common fruit fly and it is the most studied
organism in biological research, particularly in genetics and developmental biology.
There are several reasons:
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• it is small and easy to grow in laboratory;

• it has a short generation time (about two weeks) so several generations can be
studied within few weeks;

• it presents high fecundity;

• it has only four pairs of chromosomes;

• genetic transformation techniques have been available since 1987;

• its compact genome was sequenced and first published in 2000 (Adams et al.
[2000]).

Drosophila melanogaster has also some similarities with the human embryo; in
fact 75% of known human disease genes have a recognizable match in the genetic
code of fruit flies and 50% of fly protein sequences have mammalian analogues (Reiter
[2001]). Embryogenesis in Drosophila has been extensively studied since the small
size and short generation makes it ideal for genetic studies. It is also unique among
model organisms in which cleavage occurs in a synctium.

1.2.1 Stages of development

The embryonic development of Drosophila melanogaster has been subdivided into 18
stages by Hartenstein and Campos-Ortega (Campos-Ortega and Hartenstein [1985],
Fig. 1.1). The egg is bilaterally symmetrical and distinction between the dorsal and
ventral surfaces is indicated by differences in curvature, in fact the dorsal side is
flattened while the ventral side is somewhat convex. The dimensions of the egg are
variable; an average length is 500µm, the diameter is about 150µm. The mature
egg is enclosed by two envelopes, an inner homogeneous vitelline membrane and an
outer tough, opaque chorion, which is ornamented with hexagonal and pentagonal
figures representing the impressions of the ovarian follicle cells on the original soft
membrane.

Following fertilization and mitosis, nuclear division begins, however cytokinesis,
division of the cytoplasm, does not occur in the early Drosophila embryo, resulting
in a multinucleate cell called syncytium or syncytial blastoderm. The common
cytoplasm allows morphogen gradients to play a key role in pattern formation. At
the tenth nuclear division, the nuclei migrate to the periphery of the embryo and
at the thirteenth division, the 6000 or so nuclei are partioned into separate cells.
This occurs at the fifth stage which corresponds to the formation of the cellular
blastoderm. Although not yet evident, the major axes and segment boundaries are
determined. Subsequent development results in an embryo with morphologically
distinct segments. It is at stage sixth that gastrulation starts. Gastrulation is the
invagination of the blastula creating the mesodermal and ectodermal germ layers
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Figure 1.1: Successive phases of Drosophila embryo development
(http://biology.kenyon.edu).

and usually is a very complex phase of the development of vertebrates; in the fly
it is overwhelming. There is not just a single site for cell invagination, but taken
together, one finds approximatively ten morphogenetic movements, three of which
can be considered gastrulation proper and seven more that should be analyzed in
order to understand Drosophila embryogenesis as a whole. Of the three events one
is involved in mesoderm formation, the ventral furrow invagination, and two others
involve endoderm formation, both anterior and posterior midgut invagination (Costa
et al. [1993]). Seven other events resembling gastrulation are listed below:

• formation of the cephalic furrow;

• formation of dorsal transverse folds;

• germ band extension;

• germ band retraction;

• segmentation;

• dorsal closure;

• head involution.
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It has to be known that there are other programs of cell movement, including
trachea formation, imaginal disc development and segregation of neuroblasts from
the neuroectoderm. The initial structuring for most of these events can be traced
back to the four maternal systems which establish polarity in the egg and, as a
consequence, in the zygote. Thus these events are related to segmentation patterns
built early in development. Ventral furrow formation and dorsal closure have their
origin in the dorsal-ventral system; the other eight events originate with the anterior
and the posterior group of maternal genes, that are responsible for anterior-posterior
polarity.

Gastrulation begins three hours after fertilization; by this time there have been
thirteen mitotic cycles. Prior to the tenth cycle, the dividing nuclei lie in the interior
of the egg, but move out toward the surface, going through four more division cycles
at the periphery until cellularization occurs (Foe et al. [1993]). Immediately after
cellularization, a process taking less than a hour to complete, the ventral furrow,
which marks the beginning of gastrulation, begins to form.

During Drosophila gastrulation it is possible to observe two major invaginations:
the ventral furrow and the posterior midgut, that internalize mesodermal and pos-
terior endodermal precursor cells respectively (Sweeton et al. [1991]). Cells that
internalize by the ventral furrow invagination will give rise to the mesoderm and
about eight minutes after the ventral furrow begins to form, the posterior midgut
invagination starts at the posterior pole with internalization of cells rising the endo-
derm.

As underlined above, in Drosophila embryo several mechanical movements occur.
Even if they take place at different stages of development and at different regions
of the embryo, some of them are thought to be driven by the same coordinated
changes in shape of individual cells at the site of active movement, which generate
global changes in tissue organization (Costa et al. [1993], Leptin and Grunewald
[1990], Leptin [1999], Keller et al. [2003]). In particular, ventral furrow and posterior
midgut invagination appear to be very similar since associated with cell shape change
from columnar to trapezoidal. Further support that ventral furrow and posterior
midgut formation are governed by the same underlying cellular mechanisms might
be obtained from mutations that specifically affect these invaginations, but leave
other morphogenetic aspects of gastrulation unaffected. Two such useful loci on
both invaginations are folded gastrulation and concertina. The folded gastrulation
locus was originally identified by a zygothic letal mutation; in contrast, concertina
is a maternal effect gene whose product is supplied by maternal transcription during
ovogenesis. Many are the differences in the genetics of both mutants, but the most
obvious and common defect is a failure to form a posterior midgut invagination
(Sweeton et al. [1991]). Simultaneously with ventral furrow invagination at stage
six, cephalic furrow forms and generates a partial necklace of inturning tissue which
demarcates head from thorax in the fly.

Approximatively from stage six to stage nine, when invaginations occur, the
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Drosophila embryo is composed by a thin layer of columnar epithelial cells. This
layer of cells is surrounded by a rigid shell comprehensive of a rigid chorion and a
vitelline membrane and it contains a slightly compressible viscous liquid, the yolk.
If we observe the blastoderm by a cross-section, we can see an approximatively
circular array of columnar cells which have the apico-basal axes aligned along the
axis of radial symmetry, with the apical surfaces facing outward. It is interesting
how the embryo maintains this configuration, where each cell is in contact with its
neighbours, over a period of twenty minutes after which the blastoderm becomes
a multilayered structure. Once the ventral furrow has formed, the thick ventral
portion of the embryo consists by a one cell thick outer layer of columnar cells
(ectoderm) and an invaginated inner layer of irregular shaped cells, several cells
deep (endoderm). Taken together, these layers form the germ band that undergoes
an extension along the anterior-posterior axis. In about 105 minutes the germ band
doubles its length and halves its width; this process pushes the posterior midgut
invagination closed and compresses the flattened dorsal tissue of the embryo. During
germ band extension, cells shift their positions relative to one another; actually, they
intercalate so that they are forced to narrow and extend.

While germ band extension is accompanied by cellular interdigitation, germ band
retraction at stage twelve is coupled with the transition from a parasegmental to seg-
mental division of the embryo. Meanwhile the dorsal tissues previously compressed
spread out to cover the entire dorsal region of the embryo. At this time, deep
ventral-lateral grooves form, corresponding to the segmental boundaries that will be
the sites for future muscles attachment. During segmentation, the segregation of the
the imaginal discs can also be observed. Imaginal discs are sacs of cells that give
rise to adult structures.

Stage fourteen includes the dorsal closure which takes place progressively. It
takes about two hours to complete during which stretched dorsal tissues are covered
by epidermal cells that will ultimately fuse at the dorsal midline. Head involution
occurs at the same time of dorsal closure; the anterior ectoderm moves to the interior,
beginning with stomodeal invagination. After that advanced denticles become visible
and the nerve cord starts shortening. It is finally at stage eighteen that the larva
begins the process of hatching.

1.2.2 Invagination

Invagination is the production of a tube by local in-pushing of a surface. There
are two forms of invagination: axial and orthogonal. Axial invagination occurs at a
point and can only produce a dent or a tube; practically the surface pushes inward
directly down the axis of the tube so that a hollow column of epithelium invades
the cavity of the embryo. On the other hand, orthogonal invagination takes place
along a line rather than at a single point and generates a trough, the axis of which
is parallel to the original surface and therefore at right angles to the direction of
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invagination (Davies [2005], Fig. 1.2).

Figure 1.2: Axial (left) and orthogonal (right) invaginations (modified from Davies
[2005]).

The invagination is locally driven and cells show a strong expression of actin/myosin
filaments that run mainly circumferentially under their junctions. Actually, the con-
traction of these filaments squeezes the cytoplasm from the apical to the basal end
of each cell and therefore expands it, so that the basal surface of the epithelium
is forced to bow inward. There is therefore a local increase of the surface tension
and the surface contacts between the cells are apically reduced; together with the
constriction it is also possible to observe a change in the morphology of the apical
surfaces. The surface of contact, that was initially convoluted, acquires a straight
form which is consistent with an upregulation of cortical tension (Lecuit and Lenne
[2007]). The invagination mechanism is more related to the mechanics of the ex-
tracellular matrix rather than the cells themselves. The extracellular matrix is a
thick layer on the external surface of epithelial cells and it consists in an inner apical
lamina and an outer layer. During invagination, the apical layer of the extracellular
matrix expands while the outer layer does not and it is actually this differential
expansion that forces the matrix to buckle inward. The curvature of the tissues is
localized at specific hinge points and can generate convex or concave bending de-
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pending on where it takes place. Therefore cells acquire a distinct wedge shape;
they are apically constricted when located at the median hinge point, while basally
in the case of dorsolateral hinge point (Fig. 1.3).

Figure 1.3: The hinge points during the invagination process (modified from Davies
[2005]).

1.2.3 Ventral furrow Invagination

Ventral furrow invagination (VFI) starts at stage six at the onset of gastrulation; it
is one of the most interesting morphogenetic movements in Drosophila Melanogaster
from a mechanical point of view given the multiple elementary deformations and
forces involved.

The ventral furrow is initiated as a median longitudinal cleft that extends be-
tween 20% and 70% egg length, along the ventral embryonic midline; over a period
of approximately 10 minutes the ventral furrow will extend further by incorporating
additional cells at its anterior and posterior tips, until it extends between 6% and
85% egg length. The ventral furrow forms as a result of cell shape changes which
affect an area of about 12 cells in width centered on the ventral midline. A total
of about 800 cells will become internalized through the ventral furrow: 730 cells



10 Chapter 1. Introduction

represent the mesoderm primordium and 70 cells represent the anterior endodermal
midgut primordium (Fig. 1.4).

Ventral furrow invagination is regulated by a precise series of events. The first of
them is a flattening of the apical surfaces of cells of the blastoderm, followed by the
constriction of the apical domain of scattered cells within this population (Leptin and
Grunewald [1990]). Once the apical changes become more widespread, it is possible
to observe a superficial but effective indentation along the ventral surface of the
embryo (Odell et al. [1981]). Simultaneously, cells within the furrow start elongating
along their apical-basal axis until they reach almost 1.7 times their original height.
Only once the furrow has formed, cells shorten back to their original length altough
they maintain their apical ends constricted so that they assume a wedge-like form
(Costa et al. [1993]). Even if this second event is considered to be the final step able
to drive furrow invagination (Leptin [1995]), many other authors have suggested
that lateral and dorsal ectodermal cells could be involved in this process pushing
laterally on the sides of the embryo. This would facilitate and definitely reinforce
its internalization (Costa et al. [1993], Leptin [1995], Muñoz et al. [2007]). The
first result of these successive events is the formation of the ventral furrow, which
is completely internalized. It is possible to observe a dispersion of single cells which
divide, attach to the mesoderm and finally migrate out on the ectoderm and the
mesoderm becomes then muscle and connection tissues. Simultaneously with the
mesoderm, the ectoderm too starts to deform at the two poles of the embryo. The
anterior endoderm invaginates as the most part of the ventral furrow. The cells of
the posterior endoderm apically constrict and may invaginate while the posterior
pole of the embryo is pushed dorsally by other independent elementary movements
(Leptin [1999]).

Figure 1.4: Successive phases of ventral furrow invagination during Drosophila em-
bryo development (Conte et al. [2008]).

Where the ventral furrow invaginates is regulated by two-ventrally expressed
transcriptions factors, twist and snail (Leptin [1995]). From genetic studies it has
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been observed that:

• none of the morphogenetic events that accompany ventral furrow formation
occurs in the absence of twist and snail ;

• the co-expression of twist and snail is sufficient to generate ectopic furrows.

Figure 1.5: The table shows the strong control exerted by the genes twist and snail
on ventral furrow invagination. The symbols !/X indicate the activa-
tion/repression of the corresponding gene, the presence/absence of the
corresponding cell shape change in the mesodermal primordium or the
success/failure of ventral furrow invagination (Conte et al. [2008]).

Twist is a transcriptional activator that plays a common role in every gastrula-
tion movements in insects (Roth [2004]). Specifically, it induces the expression, in
the ventral region of the embryo, of Fog and T48 (Kolsch et al. [2007]), that recruit
RhoGEF2 a contractile actin/myosin network at apical adherens junctions (Barrett
et al. [1997]) to induce apical constriction of the cells. On the other hand, twist
increases the expression of snail, which can actually rescue several defects observed
in twist mutant embryos (Costa et al. [1993]). During ventral furrow formation
in Drosophila, snail inhibits ectodermal cell fate; in addition it is highly required
for apical constriction and may also influence the rearrangement of adherens junc-
tions within the epithelial layer (Kolsch et al. [2007], Oda and Tsukita [2000]). A
combination of twist and snail leads to ventral furrow invagination via mechanical
events such as apical flattening, apical constriction, early apico-basal elongation,
late apico-basal shortening and basal wedging (Fig. 1.5). Although only apical con-
striction and the signaling pathway inducing it are well understood so far, while
information on the other forces involved in ventral furrow invagination still remain
unknown or less understood. In particular, it is still difficult to distinguish, among
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the deformations mentioned above, the active and the passive processes. The first
ones are represented by the forces internal to each cell, which would trigger a pure
deformation if the cells were isolated and not part of system, in contact with one
each other. The second ones instead correspond to the passive response due to the
incompatibility generated by the active deformations.

Several experimental observations have been conducted on mutant embryos in
which particular aspects of the normal morphogenetic process have been genetically
uncoupled. These studies have provided new information on active forces involved in
furrow formation. In twist mutants embryos for example, the cells in the mid-ventral
region elongate to the same length as in the wild type embryos, even if they do not
undergo apical constriction or furrow formation. This leads to a thicker mesoder-
mal primordium (Leptin and Grunewald [1990]); therefore apico-basal elongation is
not simply a passive response to the apical constriction as nuclei and cytoplasm are
pushed basally (Costa et al. [1993]). For what concerns instead snail mutants em-
bryo, they show an opposite behaviour. In fact they shorten and generate a thinner
mesodermal primordium, even if, also in this case, apical constriction and apical
flattening do not affect the final shape of the cells so that it is possible to deduce an
independence between snail and twist (Leptin and Grunewald [1990]). To conclude,
it seems reasonable to think that the shape modifications mentioned above are in
strong connection with one another and they drive ventral furrow invagination.

1.2.3.1 Modeling of ventral furrow invagination

By previous paragraphs we can easily deduce how biomechanics plays a significant
role during the different phases of embryo development. Therefore, the need more
and more evident of mechanical models and in particular numerical ones, that can
contribute to a complete understanding of the biological system as a whole. Com-
puter simulations provide a realistic reproduction of the biological events and may
point out interesting aspects omitted through experimental observations, so that
new issues and questions are introduced.

In the last decades, several 2D models have been designed to analyze invagination
(also refer to Taber [1995]). The two very first of them (Jacobson and Gordon
[1976], Jacobson [1980]) focused on neurulation in the newt using experiments and
geometric analysis. The authors concluded that the deformation occurring is not
simply a rolling into a tube, but there is also an elongation of the neural plate in the
anterior-posterior direction as the neural tube forms. Jacobson (Jacobson [1980])
also suggested that such elongation may lead to the buckling of the epithelium with
a furrow forming along the direction of the stretch engendering eventually the neural
tube.

The work of Odell (Odell et al. [1981]) provides an epithelial model based on
apical microfilaments contraction. The main characteristics of the model are:

• the cells in the sheet are tightly bound;
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• the cytoplasm is a viscoelastic solid;

• the apical surface of each cell includes a network of microfilaments. When
a small amount of these filaments is stretched, they act as passive viscoelas-
tic material, while when a threshold value of stretch is achieved, an active
contractile force is developed, which remains for all time thereafter.

In order to obtain these features, each cell is represented as a four-sided, two-
dimensional truss element composed by six viscoelastic units, each of which includes
a spring (k) and a dashpot (µ) in parallel (Fig. 1.6). The diagonal components
correspond to the cytoskeleton, while the others to the cell membrane. Only the
apical unit is able to actively contract.

Figure 1.6: Representation of a cell in the Odell’s model (Odell et al. [1981]).

Each element is governed by the equation

F = k(L− L0) + µL (1.1)

where F is the load applied at the ends, L(t) is the current length and L0(t) is
the inital length of the unit. The activation is obtained letting L0 vary with time
according to the following relation

L0 = G(L,L0) (1.2)

where G = 0 for a passive unit. The model behaviour therefore depends on the
choice of G and the authors have chosen a relatively simple form for it, allowing
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to have two stable equilibrium values for L0: one for the passive zero-stress length
and the other for the active zero-stress length. The model was tested for amphibian
gastrulation, Drosophila furrow formation and amphibian neurulation (Fig. 1.7).
It was found that the observed morphology could be obtained by adjusting the
activation parameters in Eq.[1.2].

Figure 1.7: Results for the Odell’s model (Odell et al. [1981]).

Later Oster and Alberch (Oster and Alberch [1982]) used this model to illustrate
epithelial bifurcation (change in local or global stability and equilibrium) during
development. Particularly, they demonstrated how, only by fairly changing the vis-
coelastic properties of the cells, they were able to obtain the gastrulation model
buckling outward rather than inward. This behaviour may influence epithelial mor-
phogenesis since invagination engenders hair or skin glands, while evagination leads
to the formation of feathers or scale. Therefore a small variation of some parameters
can induce significant global changes.

In 1986, Jacobson (Jacobson et al. [1986]) proposed a cortical tractor model in
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which the motile behaviour of the epithelial cells is similar to that of mesenchymal
cells. The model is based on some important assumptions:

• cytoplasm flows continuously in a cell from the basal and lateral surfaces to
the apex and then back toward the base (Fig. 1.8); This flow pattern is the
”cortical tractor”

• adhesion molecules enter the flow at the basal end and move with the flow to
the apical end where they are resorbed;

• the resorption rate for the adhesion molecules is slower than their insertion
in the flow; thus molecules accumulate at the apex keeping the cells bound
together at the apical surface (Fig. 1.8).

Figure 1.8: The cortical tractor model proposed by Jacobson. Intracellular flow
pattern (modified from Jacobson et al. [1986]).

The authors showed how the model could be used to simulate placode formation,
invagination, folding of the neural tube and cells rearrangement. The first two
processes are controlled by differential flow rates between the cells; on the other
hand, if the flow rates of all the cells are equal, they all remain in the plane of the
sheet. Each epithelial cell is modeled as a quadrilateral filled with a viscous fluid.
Both the passive elastic deformation of the cells and the active shear due to the
differences in flow velocity between adjacent cells are included in the model. The
authors simulated various aspects of amphibian neurulation and they found many
of the observations pointed out by Jacobson and Gordon (Jacobson and Gordon
[1976]), specifically the elongation of the neural plate and the rolling of the cells into
the neural tube.
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Very often from a macroscopical point of view it is more convenient to represent
the epithelium as a plate or a shell, therefore as a continuum; Hardin and Cheng
(Hardin and Cheng [1986]) proposed a model in which axisymmetric shell theory was
used to simulate Sea Urchin gastrulation. They analyzed large deformations but the
shell material was taken linear and isotropic. They obtained the gastrulation of the
epithelium applying forces through the archenteron to opposite sides of a spherical
shell representing the blastula (Fig. 1.9). Since the material properties in the entire
structure are considered uniform, the authors observed a flattening of the blastula
roof which is inconsistent with experimental results; furthermore, the model does
not take into account the internal fluid in the blastula whose pressure may help the
closure of the blastopore which is not obtained here.

Figure 1.9: The shell model for gastrulation proposed by Hardin and Cheng (Hardin
and Cheng [1986]).

A limited number of other shell models have been published. Mitthenthal (Mit-
thenthal [1987]) used a fluid-elastic thin-shell theory based on the assumption that
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the shell resists bending and isotropic in-plane stresses elastically, but it cannot sup-
port static shear stresses. Gierer (Gierer [1977]) proposed a model based on adhesive
potential, while Zinemanas and Nir (Zinemanas and Nir [1987]) modeled the blas-
tula as a viscous drop of liquid surrounded by a fluid membrane and embedded in
an ambient fluid.

Davidson (Davidson et al. [1995]) studied very accurately the forces that drive
the Sea Urchin invagination; he proposed a series of finite elements simulations that
test five hypothesized mechanisms and demonstrated that each one of them can
generate invagination. The models he proposed are the following:

• an apical constriction model in which an imposed gradient of constriction along
the cell axis drives the contraction of the apical surface and the expansion of
the basal surface so that the cell volume remains constant;

• a cell contractor model obtained by appending contractile protrusions to a ring
of cells at about 20µm from the center of the plate, a region that includes most
of the cells that participate in primary invagination;

• an apical contractile ring model based on the wound healing mechanism ob-
served in Xenofus embryos. A contractile ring of approximatevely 40µm in
diameter and centered on the vegetal plate is installed at the apical surface of
the cell layer; the contraction of this cable triggers both the invagination of
the plate and the coordinated changes in shape occurring to the cells;

• an apico-basal contraction model in which contractile elements are embedded
across the thickness of the cell layer within 20µm from the center of the vegetal
plate. The forces generated by these contractile units are sufficient to buckle
the epithelial sheet to the correct geometry;

• a gel swelling model where the vegetal plate apical lamina covers the region
which normally invaginates and swells isotropically. The vegetal plate, which
is constrained by the surrounding epithelium, buckles inward as the apical
lamina expands.

The success of each mechanism depends on the passive stiffness of the cell layer
relative to the stiffness of the two extracellular matrix layers. The cell tractoring,
the apicobasal contraction and the gel swelling mechanisms work only when the
extracellular matrix is very stiff with respect to the cell layer. On the other hand,
the apical constriction and the apical contracting ring models work with a more
deformable extracellular matrix.

In 1993 Clausi and Brodland (Brodland and Clausi [1993]) used apical constric-
tion as primary driving force in their finite elements model for neurulation. They
assumed that the microfilament force increases with contraction and they obtained
very realistic results.
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We also mention the work of Pouille (Pouille and Farge [2008]) in which an
epithelium of cells is immersed in an incompressive viscous fluid. Some structural
elements are used to describe the cell membranes, their actin cortex connected by
apical and basal junctions and the apical adherens junctions connected to the con-
tractile actin/myosin ring. These units are connected to each other to shape the cells
of the epithelium enclosing the yolk. The cells and the yolk maintain their internal
volumes of incompressible viscous fluid constant. The cell membranes are under the
contractile elastic tension due to the actin/myosin cortex, while the contractibility
of the adherens junctions is obtained putting additional springs crossing the disc.
The authors pointed out how only the increase in the apical-cortical surface tension
is the control parameter change required to simulate the main multicellular and cel-
lular shape changes in Drosophila gastrulation. Therefore, most of the behaviours
observed in vivo (apical junctions movements at the onset of gastrulation, cell elon-
gation and consequent shortening during invagination) appear to be in this model a
passive response to the genetically controlled apical constriction of the cells.

A common feature of all these models is the presence of structural units as actu-
ators that reproduce elements of the cytoskleton such as microtubules and microfila-
ments. These elements lead the necessary shape changes, mainly apical constriction
or axial elongation on certain region of the embryo. More recently, Muñoz (Muñoz
et al. [2007]) proposed a model with no structural elements (Fig. 1.10). He simulated
ventral furrow invagination using a deformation gradient decomposition method to
model the permanent active deformations and the passive hyperelastic deformations
as a local quantity applied to the continuum that schematises the epithelial layer.
Each point of the epithelial cell layer is able to reproduce the two main deformations
modes involved in invagination: apical constriction and apico-basal elongation.

A similar approach was used by Taber (Ramasubramanian and Taber [2006],
Taber [2007]) that based his models on the Beloussov’s hyper-restoration hypothe-
sis (Beloussov [1998], Beloussov and Grabovsky [2007]) by which morphogenesis is
regulated in part by feedback from mechanical stress. According to this hypothesis,
active tissue responses to stress perturbations tend to restore, but go beyond the
original target stress; the rate of growth or contraction depends on the difference
between the current and the target stresses. He tested several finite elements models
for stretching of epithelia, cylindrical bending of plates, invagination of cylindrical
and spherical shells and early amphibian development. In each of these cases, an
initial perturbation leads to a mechanical response which changes the global shape
of the tissues.

Conte (Conte et al. [2008], Fig. 1.11) extended the work of Muñoz to develop
the first three-dimensional model for ventral furrow invagination. The method used
is the same as for the two-dimensional model previously described so that any point
in the epithelial layer can contribute to the global deformation. In the model, there
are no external constraints other than the presence of the vitelline membrane and
the yolk. The former is modelled as a rigid sleeve-shaped shell constraining the
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Figure 1.10: Deformed configurations for Muñoz’s model; both apical constriction
and apico-basal elongation were implemented depending on two param-
eters τ1 and τ2 respectively that define the temporal evolution of the
active deformations. Images correspond to results obtained for different
values of α = τ1

τ2
(Muñoz et al. [2007]).

deformation and the latter imposes a constant volume constraint to the volume
within the epithelium. The results are very interesting (Fig. 1.11). The authors also
showed the influence of some parameters together with the presence or the absence
of the vitelline membrane and the yolk (Fig. 1.12).

1.2.4 Cephalic furrow formation

The cephalic furrow (CF), first of the seven additional gastrulation-like events listed
in Sec. 1.2, forms at the same time as the ventral furrow and it is triggered by
almost the same mechanical forces described for ventral furrow (Fig. 1.13). It first
becomes visible as a latero-ventral slit at about 65% egg length. Later, it extends
transversely from the dorsal midline, at about 60% egg length, to the ventral midline
at about 75% egg length. Unlike the ventral furrow invagination, the cephalic furrow
is only transient. In fact at the completion of germ band extension, all cells involved
slowly unfold back onto the surface of the embryo to contribute to the ectoderm
(Campos-Ortega and Hartenstein [1985], Costa et al. [1993], Foe et al. [1993]).
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Figure 1.11: The first 3D model of ventral furrow invagination provided by Conte
(Conte et al. [2008]). Three deformed configurations show respectively
a ventral view (a, c, e) and a cross sectional view (b, d, f).

Figure 1.12: Simulations with the modified boundary conditions and unusual active
deformations (Conte et al. [2008]). (a, b) Simulations where no vitelline
membrane is considered, 2D section (a) and 3D view (b). (c, d) Results
when yolk pressure was not implemented, 2D section (c) and 3D view
(d). (e, f) Simulations where apico-basal elongation was not considered,
2D section (e) and 3D view (f).
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Figure 1.13: The formation of the cephalic furrow at the anterior end of a developing
Drosophila Melanogaster embryo visualized with the help of several
fluorescent stains (www.invitrogen.com).

Even though the cephalic furrow is a prominent morphological event of the early
gastrula, its developmental role remains enigmatic (Vincent et al. [1997]). It has
not been possible so far to isolate specific mutations affecting only this event; fur-
thermore” the cellular and genetic mechanisms that control its formation are still
unknown. Eventually, the absence of a cephalic furrow in embryos derives from
mothers mutant for bicoid (Frohnhofer and Nusslein-Volhard [1986]) and the repro-
ducible shifts in its position and its lateral extent indicates that the cell shape is
directly affected by positional information (Zusman and Wieshaus [1985]). Never-
theless, these particular information do not provide interesting tips on how positional
information are translated into specific changes in cellular morphology.

The cephalic furrow forms at an interesting region of the embryo, at the jux-
taposition of the patterning systems that define the head and the trunk segments;
these two systems involve different groups of zygotically active genes, specifically
cephalic furrow coincides with the expression of the pair-rule gene eve and it has
been observed (Costa et al. [1993]) that in eve mutant embryos the cephalic furrow is
eliminated or abnormal, which suggests a strong control of eve on the morphogenetic
event. In addition, the activity of the head gap-like segmentation gene buttonhead
may also influence the formation of the furrow (Vincent et al. [1997]).

The lack of accurate information has definitely restrained mechanical modeling
of the cephalic furrow formation even if it represents one of the most interesting



22 Chapter 1. Introduction

morphogenetic event in Drosophila embryo. Therefore, the present work is original
in this sense since it provides an innovative finite elements model able to simulate
the formation of the furrow.

1.2.5 Convergence-extension movements

During morphogenesis, epithelial tissues undergo changes in shape very rapidly and
often cell division does not play a role in this process. More particularly, tissues
seem to behave like membranes that stretch and bend; usually these mechanical
movements are accompanied by a change in shape of individual cells or by a rear-
rangement of the cells so that they change their neighbours.

1.2.5.1 Occurrence of the convergence-extension

The convergence-extension is a key process leading to the formation of an elongated
axis in many animal phyla (Kimmel et al. [1994], Schoenwolf and Alvarez [1989]).
Also it can take place in epithelial tubes as in the case of the Sea Urchin, where
once the gut has formed, the cells around its circumference decrease, while the
number along its length increases (Davies [2005]). For sure, one of the most studied
examples is the elongation of the germ band in Drosophila Melanogaster (Irvine and
Wieschaus [1994]), which we are going to describe and analyze more in details in
the next section.

Convergence and extension are normally used to indicate the narrowing and the
lengthening of tissues respectively (also refer to Keller et al. [1991b] and Keller et al.
[1991a]). Convergence can be coupled directly to extension with conservation of
tissue volume, therefore a decrease in width occurs with a proportional increase in
length. In other cases, convergence may engender thickening as well as lengthening.
Thus the term ”convergence-extension” is often used for convenience, but one has to
remember and consider the complex relationship between convergence, extension and
thickening. Actually, convergence-extension movements can be included in a larger
and more general class of ”mass movements”, involving change in tissue proportions
with approximate conservation in volume (Keller et al. [2000]). In addition, these
type of movements may be a passive response to forces generated elsewhere in the
embryo or they may be active and force-producing processes.

These ”mass movements” represent a very interesting challenge and also a great
opportunity to better understand the functions of the cells with respect to embryoge-
nesis. So far, little is known about the cellular, molecular and biological mechanisms
of these movements so that it is not easy at all to evaluate their role and importance
in shaping the embryo’s body. Furthermore, cell interactions within populations are
difficult to detect since it is difficult to visualize and interpret cell motility through
the embryo. In fact, the functions of the cells are usually studied on individual cells
in culture at low density, while most of mass movements take place at high densities
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of cells that are interacting with one another or with the extracellular matrix. Fi-
nally it has also to be noticed that in the case of a single cell, the generated forces
have local effects on its movement in culture; for cells populations instead, these
forces have both local effects and effects that are integrated through the population.

1.2.5.2 Cell rearrangement or intercalation

In most of the cases, convergence-extension movements are triggered by the re-
arrangement of the cells; practically the cells intercalate between one another to
produce a significant change in shape of the tissue and then to form a stiff array,
which can distort and deform the surrounding passive tissues (Fig. 1.14).

The first who supposed this type of process was Waddington in 1940 (Wadding-
ton [1940]); by studies on amphibians, he observed that the convergence-extension
occurred in absence of cell growth and the appropriate changes in shape, therefore
he suggested that these movements must take place by cells rearrangement.

Figure 1.14: Cells rearrangement process during convergent-extension movement.

The regions involved in these ”mass movements” are composed by a single layer
of superficial epithelial cells and several layers of deep mesenchymal cells. Morpho-
logical studies have shown that tissues converge and extend by two main types of
cells rearrangement. During the first half of gastrulation, mesenchymal cells and
posterior neural tissues undergo radial intercalation (Keller [1980]); they intercalate
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along the radius of the embryo, normal to its surface, to generate a thinner array that
is also longer in the prospective anterior-posterior axis. Usually superficial epithelial
cells do not participate to this phase of intercalation, but simply spread and divide
to accommodate the larger area of the spreading deep cells. Just after radial inter-
calation, convergence-extension occurs by a mediolateral intercalation in which cells
move between one another to form a narrower, longer and thicker array (Keller and
Tibbetts [1989]). This time the superficial cells accommodate the narrowing and
the extension of the deeper cells intercalating, dividing and spreading themselves
too. Usually, mediolateral intercalation occurs at and beyond the blastoporal lip in
the post-involution region, while radial intercalation is typical of the pre-involution
region.

1.2.6 Cells rearrangement models

Modeling cells rearrangement within an epithelium is complicated by the need to
follow individual cells. Weliky and Oster (Weliky and Oster [1990]) proposed a sim-
ulation for epithelial cells rearrangement taking into account the effects of changing
intra and intercellular forces. In their model, each cell is represented by a two-
dimensional polygon with a variable number of sides and nodes that can slide, ap-
pear and disappear (Fig. 1.15). The forces applied on the node determine its motion
and, to maintain the compatibility, the geometry is updated. The plasma membrane
of each cell contains actin/myosin filaments and encloses a filament-rich gel. The
forces generated on the nodes may be caused by:

• positive osmotic pressure that expands the gel;

• negative elastic pressure due to intracellular filaments opposing gel swelling;

• tension in the sides due to microfilament bundle contraction;

• external loads.

Each node moves proportionally to the force acting on it and in the direction of
the resultant force; therefore internal pressure triggers protrusions while tensile wall
stress drives cellular contraction. The model was used to simulate epiboly (when an
epithelium expands to enclose the interior of the early embryo) and it was observed
that the number of cells at the margin decreases continually during the process even
if its circumference increases.

The model was later modified by Weliky (Weliky et al. [1991]) with some new
features to analyze tissue extension, cell rearrangement and the interactions of cells
with boundaries. The conclusion was that several rules of cell behaviour operate
simultaneously during frog neurulation.

Beloussov and Lakirev (Beloussov and Lakirev [1991]) used a very similar ap-
proach modeling the epithelium as a shell composed by movable elements. The
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Figure 1.15: Cells rearrangement in the epiboly model (Weliky and Oster [1990]).

radial displacement of each element depends on the resultant force acting on that
element. The authors obtained various morphogenetic shapes through a finite ele-
ments formulation.

Another interesting work was provided by Jacobson (Jacobson et al. [1986], Fig.
1.16) whose cortical contractor model has already been described in the previous
section. According to this model, the key of cells rearrangement lies below the apical
surface. The process is initiated by a basal protrusion that moves across a junction
to a separated cell. Subsequently the extent of the protrusion is increased by the
flow and it moves toward the apical surface together with the adhesion molecule.
Once the protrusion has reached the apex, the cell can adhere to the new neighbour
and rearrangement takes place without breaking the apical seal.

1.2.7 Germ band extension

As mentioned in Sec. 1.2.5, one of the most interesting examples of convergence-
extension is given by the elongation of the germ band in Drosophila embryo. The
germ band corresponds to the part of the embryo that will form the trunk and
that shorten and lengthen to curl around the egg and lately bend back on itself
(Davies [2005]). This movement occurs very rapidly during its initial phase and
is quite slow during the following stages. It starts at stage eight and by the end
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Figure 1.16: Cellular rearrangement mechanism (Jacobson et al. [1986]).

of stage ten the elongation has progressed to bring the posterior tip of the germ
band to about 75% egg length. Meanwhile the cells converge from the dorsal to
the ventral region of the embryo and intercalate between one another so that the
tissues elongate along the midline. During the process, the cells never acquire free
edges, therefore the integrity of the epithelium is retained. Particularly before the
convergence-extension movement, the cells form an hexagonal array, while after the
rearrangement the centers of the cells form ordered rows along the anterior-posterior
axis. This means that one third of the cell-cell boundaries are at 90◦ with respect
to the anterior-posterior axis, one third at 30◦ and the remaining at -30◦.

The intercalation of the cells is highly directional since cells intercalate almost ex-
clusively between dorsal and ventral neighbours and only rarely between anterior and
posterior neighbours (Irvine and Wieschaus [1994]). Although evenly distributed, in-
tercalation does not follow a precise pattern given that blastoderm neighbours may
be separated by zero, one, two or three cells. Furthermore, cells only intercalate
between their nearest neighbours and do not migrate widely; this can be observed
following columns that extend from dorsal to ventral. These columns become shorter
and wider as the germ band extends and when they collapse into irregular shape,
the cells of a single column always remain together.

The cells first move slightly dorsally, then more rapidly ventrally and posteriorly
and finally simoultaneously posteriorly and ventrally. The positioning of the cells
may affect the trajectories; in fact more dorsal cells move further ventrally than
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ventral cells do and more posterior cells move further posteriorly than anterior cells
do. In addition cells that are near the cephalic furrow first move anteriorly push-
ing the furrow forward and then they start moving posteriorly (E. Wieschaus and
Kluding [1984]). Intercalation is symmetrical since dorsal cells come between their
ventral neighbours and ventral cells come between their dorsal neighbours. There is
an increase in the number of cells along the anterior-posterior axis, which is more
rapid ventrally than dorsally, and a decrease along the dorsal-ventral axis.

Even if it has not been possible so far to individuate mutations that are specifi-
cally defective of germ band extension, mutations in many of the genes involved in
patterning along the anterior-posterior axis have shown reduction of the elongation.
In particular the process is reduced by mutations in the maternal coordinate genes
and in the zygotic gap and pair-rule segmentation genes; specifically eve seems to
mostly reduce the extension of the germ band (Irvine and Wieschaus [1994]).

1.3 Conclusions

Embryogenesis is a very complex process where mechanics and biology are merged
together, with strong interconnections at different phases of the development. If
for a long time biologists have observed the influence of genetics on the mechani-
cal forces within the embryo, as largely described in the previous paragraphs, only
recently they have supposed the inverse phenomenon: the control exerted by me-
chanics on the expression of specific genes. It is still not so clear and understood how
a mechanical force can be transformed into a chemical signal, but it is evident that
a mechanotransduction pathway must be present all long the embryogenesis. Also,
embryonic cells, as other types of cells in nature (endothelial cells, muscle cells...),
must be mechanosensible and therefore able to deform and to adapt themselves when
external loads are applied on them.

Each cell is characterized by the presence of internal elementary forces, the pri-
mary or active forces, that can occur during embryo development and would lead to
a pure deformation if cells were not part of a system and in contact with one each
other. Instead, boundary conditions at the interfaces must be respected, therefore,
to avoid the incompatibility (i.e. superposition of volumes) potentially caused by the
elementary forces, tissues are forced to deform again (secondary or passive forces)
in order to maintain the continuity of the mesoderm. For the three morphogenetic
movements we have decided to focus on (ventral furrow invagination, cephalic furrow
formation and germ band extension), several elementary forces have been individu-
ated by biologists, but so far it is still difficult to determine which ones among them
can be considered a real primary force and which ones a simple passive response
of the neighbour cells to the active ones. Mechanical modeling, and numerical one
in particular, may help in detecting this peculiar aspect, as we are going to show
later on, other than provide a useful tool in investigating more accurately the global
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response of the embryo to mechanical forces.
That being said, treating with a biological system always represents a real chal-

lenge. Many are the parameters that may affect the global behaviour of the structure
and most of the time they are very difficult to detect. Additionally, for our specific
case, the embryo is composed by several elements not easy to model, therefore many
approximations are made so that the final representation is often a macro-scale rep-
resentation.

The different works we have found in literature and briefly described in this
chapter prove the progresses that have been made in computer simulation in the
last decades. The methods and approaches used are all very interesting and supply
consistent results compared to the biological observations. Nevertheless we think
that our model, which have been first presented at the Second International Confer-
ence on Mechanics of Biomaterials and Tissues (Hawaii, 9-13 December 2007), shows
some innovative aspects with respect to the previous ones (Allena et al. [2008]).

Most of the former works have been conceived in a two dimensional space, while
our description of the embryo is done in a three dimensional space, so that we have
a more realistic representation of the biological reality. In despite of this it has to
be noticed that the geometry of our model has not been obtained from MRI, but an
ellipsoid has been used to represent the embryo, thus the different curvature between
the anterior and the posterior pole is not considered here. We are aware that this
characteristic may influence the final results, especially for the simulation of those
movements that take place along the anterior-posterior axis (i.e. ventral furrow
invagination and germ band extension). Also only mesoderm has been modelled
assuming that the mechanical characteristics of the three embryonic layers, which
form throughout the gastrulation phases, may not be so different so that we can
consider that the mesoderm constitutes the most part of the blastoderm.

With a single model and without introducing any structural elements, we are able
to individually simulate three morphogenetic movements: ventral furrow invagina-
tion (VFI), cephalic furrow (CF) formation (which, to the best of our knowledge, has
never been simulated before) and germ band extension (GBE). This is possible by
the parametrical description of the embryo which constitutes the outstanding advan-
tage of the present work with respect to previous ones where the model allowed to
simulate only one movement and most of the time ventral furrow invagination. Ac-
tually, we have precise active deformation gradients, according to the morphogenetic
movement analyzed, that are analytically obtained and can easily be changed and
elaborated. Furthermore” the active forces we introduce are independent of the mesh
applied on the geometry and thus of the discretization.

Finally we will present here not only the simulation of the three movements
individually, but also and more importantly the concurrent simulation of two or
three of them. This represents a very innovative feature because, to the best of our
knowledge, it is the first time that the three movements are coupled together. The
concurrent simulation provides a more complete view of a fragment of Drosophila
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embryogenesis, the gastrulation, which is one of the most complex and interesting
phase of the developmental process.

The main goal of the present work is therefore to confirm, through the finite
elements model, the hypothesis made by the biologists. Most importantly we prove
how mechanical modeling can be helpful not only in clarifying the whole biological
problem but also and especially in pointing out some of its facets that have been so
far ignored or rarely developed.
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Chapter 2

The kinematic model

In this section of the work, we present the general kinematics of the active and passive
deformations that will be described more in detail for each morphogenetic movement
in the next chapter. As similarly as previous studies, a gradient decomposition
method is applied (Sec. 2.1), so that both the active and the passive deformations
undergone by the embryonic tissues are taken into account and, coupled together,
provide the final deformation. Additionally, we show some interesting interpretations
of the approach and we point out novel aspects of the problem that lead to further
discussions. Specifically, in Sec. 2.4 we compare the gradient decomposition to an
equivalent thermal deformation, while in Sec. 2.5 we analyze the potential effects of
the local active forces on both the active and passive domains and in particular at
the internal and external cellular interfaces.

The Virtual Power Principle is then used to write the equilibrium of the system
(Sec. 2.2) for which, other than the internal forces of the structure, we must take into
account the boundary conditions. We implement the contact between the epithe-
lial layer and the external semi-rigid membrane (Sec. 2.7.1) and the yolk pressure
exerted on the internal surface of the embryo (Sec. 2.7.2). The presence of these
two components, even if not geometrically represented here, is necessary to obtain
realistic final configurations. The model has been validated by testing it on simple
geometries in two or three dimensions (Sec. 2.6).

In Sec. 2.3, we focus on the constitutive law used to describe the embryonic
tissues. A Saint-Venant model is proposed for the present work which may not be
the best representation compared to the Neo-Hookean material used by previous
authors. A comparison between the two models is made; the results obtained for
both cases show similar results (Chapter 3), so that our choice can be considered
appropriate even if presenting some limitations.

31
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2.1 Gradient decomposition method

The model we use for our simulations does not present any structural elements
as other previous works (Chapter 1), but we impose the kinematics of the main
observed active deformations in Drosophila embryo according to the morphogenetic
movement considered. Onto this active part, a passive deformation takes place,
which determines the integrity and the static equilibrium of the embryo. The active
deformation can be identified with the biological impulse of each cell to change its
shape when stimulated by a higher concentration of actin/myosin filaments. If the
cells were not part of a system, therefore in contact with one another and constrained
by the presence of the yolk and the vitelline membrane, we would obtain a free
deformation, as if they were isolated, which means that only the active deformation
would be observed. On the other hand, the boundary conditions, imposed by the
structure of the embryo, lead to an auxiliary deformation, the passive one, that
provides the final configuration observed. The method presented here has already
been tested with success for the analysis of ventral furrow invagination in Drosophila
embryo (Ramasubramanian and Taber [2006], Muñoz et al. [2007], Conte et al.
[2008]). In our model, we do not take into account the causes for the implemented
active deformations, but, contrarily, we consider them as an internal contribution,
specifically chemo-mechanically transduced, that can produce different combinations
of the deformations observed through the embryo, as proposed by Muñoz (Muñoz
et al. [2007]). Furthermore only the contact between the embryonic tissues and
the vitelline membrane and the yolk pressure have been introduced as boundary
conditions. Later on we will discuss more in detail these two aspects that play an
important role and may influence the global behaviour of the embryo; particularly, it
has been demonstrated that the absence of one of these components provides results
that do not match with experimental observations (Conte et al. [2008]).

We assume here that each point of the region where the mechanical transforma-
tions are introduced is able to produce the main modes of deformation. The initial
configuration before any force applied is a stress-free configuration, even if at this
point some internal stress may develop. From this initial configuration, the active
and the passive deformations are obtained.

As previously mentioned and later on more specified, only the mesoderm has
been represented and it has been considered as a regular assembling of cells that
present the same geometry. At the reference configuration, in a curvilinear system
of coordinates, by the position of each point p0(ξ1, ξ2) on the middle surface of the
mesoderm, we obtain all the points p(ξ1, ξ2, ξ3) within the thickness of the tissue as
follows

p = p0 + ζ n0 (2.1)

where ζ is the distance between p and p0 calculated along the normal n0 to the
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middle surface passing by p. If we call x the current position of a generic point and
x̄ its intermediate position once the active deformations applied (Fig. 2.1), we can
write, as similarly as for the approach presented in Sec. B.2, that

F = Dpx = Dx̄xDpx̄ = FmFa (2.2)

where

(Dba)ij =
∂ai

∂bj
(2.3)

and

• F is the total deformation gradient;

• Fa is the active deformation gradient;

• Fm is the passive deformation gradient, which is a necessary response of the
cells to assure the continuity of the mesoderm.

When analyzing the relation linking together the three deformations, different
situations must be contemplated; although, it has to be noticed that the Second
Piola-Kirchhoff tensor Sm, with respect to the intermediate deformation, will still
depend on Em, the Green-Lagrange strain tensor at the relative configuration (see
Sec. 2.3), whatever the deformation will be.

Free cell

First of all, let us consider an isolated cell, without any boundary condition
imposed, which implies the absence of constraints; thus Sm(Em) = 0. We deduce,
by the definition of Em (see Appendix A), that Fm = I, I the identity tensor,
therefore F = Fa: a free deformation, corresponding to the active one itself, is
observed in this case.

Constrained cell

When the cell is totally constrained (Fig. 2.2), no deformation can occur, which
provides F = I and thus Fm = F−1

a . This means that, while the active force tempts
to deform the cell membrane, the passive deformation, because of the boundary
conditions, limits such modification and it is therefore complementary to the former
one. The internal stresses can then be measured on the fixed walls that constrain
the cell.
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Figure 2.1: Initial, intermediate and final configuration for a cell of the embryo.

Figure 2.2: The case of a cell constrained along its boundaries.

Neighbour cells

Finally, we consider the case of a cell whose displacements are limited by the
presence along its boundaries of deformable structures (Fig. 2.3), as similarly as
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for the embryo, where the cells are in contact with one another, with the yolk and
the vitelline membrane and must maintain the integrity of the mesoderm. In this
specific case, Fm is the actual response to the active deformation Fa, so that the
two deformations are composed together to provide the suitable final configuration.

Figure 2.3: The case, as similarly as for the embryo, where the cells are in contact
with one another and with some internal or external components.

Fa gives the elementary cell deformations according to the morphogenetic move-
ment analyzed and it can be written as

Fa =
∂x̄
∂p

(2.4)

It has to be said here that the active deformation involves the cell membrane and
it has therefore to be considered as a micro-scale deformation; for the present study
we have decided to model it as a uniform deformation of the cell. Also, not all the
cells of the mesoderm are active at same time and at same regions; thus, according
to the morphogenetic movement, the elementary deformations will be applied on
restricted domains of the embryo, as it will be shown in Chapter 3, so that we will
have Fa = I elsewhere.

By the tensorial product, we can actually obtain an equivalent expression of
Eq.[2.4], which is

Fa =
∑

m=1,3

∂x̄
∂pm

⊗ im (2.5)

Because of the curved geometry of the embryo, a special curvilinear coordinates
system will be employed in Chapter 3, therefore we develop here the necessary
abstract tools.

By the usual convention of the repeated dummy subscript, we know that
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∂x̄
∂pm

=
∂x̄
∂ξn

∂ξn

∂pm
(2.6)

thus we find the following formulation for Fa

Fa =
∑

n=1,3

∂x̄
∂ξn

⊗∇pξn (2.7)

For instance, ∂x̄
∂ξ1 is the tangent vector at the point

(
ξ1
0 , ξ

2
0 , ξ

3
0

)
to the curve

(ξ1
1 , ξ

2
0 , ξ

3
0) and, together with ∂x̄

∂ξ2 and ∂x̄
∂ξ3 , which are obtained by circular permu-

tation, constitutes the covariant basis in x̄. On the other hand, the component
∇pξ1 is the gradient to the surface ξ1 = ξ1

0 and forms, with ∇pξ2 and ∇pξ2, the
contravariant basis in p (Smith [1993]). Afterwards we will indicate the former as
gx̄,n and the latter as gn

p. Then we can write

Fa = gx̄,n ⊗ gn
p (2.8)

and if no active initial deformation is introduced into the system (Fig. 2.4),
p = x̄ and we have

gp,n ⊗ gn
p = I (2.9)

Without inverting the active configuration from the initial one, we would like
to find the vectors gn

p. The covariant and contravariant basis are related by the
equation

(gm
p ,gp,n) = δmn (2.10)

and, in an orthogonal basis, for instance for ξ3, we know that

∂ξ3

∂ξ1
=

∂ξ3

∂pn

∂pn

∂ξ1
= (∇pξ3)n(gp,1)n =

(
∇pξ3,

∂p
∂ξ1

)
= (g3

p,gp,1) (2.11)

so that g3
p is perpendicular to gp,1 and, similarly, to gp,2. Consequently, it can

be expressed as

g3
p = α(gp,1 ∧ gp,2) (2.12)
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Figure 2.4: Covariant basis when no deformation is applied (p = x̄).

When m = n we have

(gm
p ,gp,n) = 1 (2.13)

and in the specific case analyzed

(g3
p,gp,3) = 1 (2.14)

then Eq.[2.12] can be rewritten as follows

α(gp,1 ∧ gp,2,g
3
p) = 1 (2.15)

If we indicate with g the expression in the parenthesis, we can deduce that
α = 1/g. Therefore it is possible to deduce the expressions of all the vectors gn

p

g1
p =

gp,3 ∧ gp,2

g

g2
p =

gp,1 ∧ gp,3

g

g3
p =

gp,1 ∧ gp,2

g

(2.16)



38 Chapter 2. The kinematic model

Typically, Fa will be calculated in the special curvilinear coordinates system
adapted to the geometry of the embryo, where active elementary deformations such
as apical constriction, apico-basal elongation and convergent-extension will be in-
troduced. In particular we will obtain different expressions of Fa, proper to each
morphogenetic movement considered, since the intermediate position x̄ changes ac-
cording to the deformations applied to the continuum. We will analyze more in
detail in the following chapter what happens for the specific cases of the ventral
furrow invagination (Sec. 3.2), the cephalic furrow formation (Sec. 3.2) and the
germ band extension (Sec. 3.3).

2.2 The Principle of the Virtual Power

The Principle of the Virtual Power that we use here is a variational principle with
only one field of dependent variables, specifically the displacement vector u. These
type of principles are fundamental and essential in establishing finite elements for-
mulations (Holzapfel [2000]). Mechanical systems, all the more so biological systems,
are often constituted by heterogeneous materials, which implies the presence of a
discontinuity of the mechanical properties. Particularly, it is necessary to impose
some boundary conditions such as the continuity of the displacements and the reci-
procity of the stress vectors; the Principle of the Virtual Power allows the user to
automatically take into account the latter aspects.

If Ωmx indicates the mesoderm domain at the actual configuration, with ∂Ωmix

and ∂Ωmex
the internal and the external boundaries respectively (further on the

subscript x will indicate the deformed configuration), the equilibrium of the system
can be written as

Divxσ + ρxfv = 0 inΩmx (2.17)

with σ the Cauchy stress tensor and fv the body forces. When considering large
deformations, we do not exactly know the deformed configuration and consequently
where the boundary conditions are applied, therefore it is useful to rewrite the
equilibrium with respect to the initial configuration. It has to be known that, by the
principle of mass conservation, the mass density should satisfy the following relation

ρx =
ρ

J
(2.18)

where J = DetF and ρ is the mass density at the initial configuration.
Then, classically, the first term of Eq.[2.17] can be rewritten as

Divxσ =
1
J
Divp(JσF−T ) =

1
J
Divpπ (2.19)
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with π the First Piola-Kirchhoff tensor. Thus Eq.[2.17] becomes

Divpπ + ρ fv = 0 (2.20)

Here we neglect the volume forces such as gravity, therefore we obtain

Divpπ = 0 (2.21)

For two vectors (a,b), we define the dot product as

(a,b) =
∑

i=1,2

aibi (2.22)

In order to get the Principle of the Virtual Power, we multiply the equilibrium
equation (Eq.[2.21]) for a virtual displacements field w so that, by the property of
the divergence, we have

(Divpπ,w) = divp
(
πT (w)

)
− Tr(πDpwT ) (2.23)

and, by integrating over the mesoderm domain Ωm at the reference configuration,
we obtain

∫

Ωm

(Divpπ,w) =
∫

Ωm

divp
(
πT (w)

)
−

∫

Ωm

Tr(πDpwT ) = 0 (2.24)

By the Stoke’s formula we can write

∫

Ωm

divp
(
πT (w)

)
=

∫

Ωm

(πT (w),n) =
∫

∂Ωm

(w,π(n))dS (2.25)

therefore

∫

Ωm

Tr(πDpwT ) =
∫

∂Ωm

(w,π(n))dS (2.26)

We also know that (Holzapfel [2000], Smith [1993])

π(n)dS = σ(nx)dSx = fs(nx)dSx (2.27)
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where fs is the modulus of the real surface forces that are supposed to be
like normal pressures on the boundaries of the system. We know that (nx)dSx =
J F−T (n) dS, thus we can substitute in Eq.[2.27] and then in Eq.[2.26] to obtain

∫

Ωm

Tr(πDpwT ) =
∫

∂Ωm

(w, fsJ F−T (n))dS (2.28)

The term on the right hand side bunches all the external loads acting on the
external (∂Ωme) or internal (∂Ωmi) boundaries of the mesoderm; we will analyze
later on in this chapter such loads (Sec. 2.7). On the left hand side instead, the
internal forces of the mesodermal domain Ωm are represented.

The First Piola-Kirchhoff tensor, appearing on the left hand side term of Eq.[2.28],
can actually be written as

π = FS (2.29)

where S is the Second Piola-Kirchhoff tensor, which is equal to

S = J F−1σF−T

= JmJaF−1
m F−1

a σF−T
m F−T

a

(2.30)

where Jm and Ja are the determinants of the passive deformation of the meso-
derm Fm and of the active deformation Fa respectively. Knowing that

σ = J−1
m FmSmFT

m (2.31)

where Sm is the Second Piola-Kirchhoff tensor with reference to the intermediate
configuration, which will define the constitutive law of the mesoderm (see Sec. 2.3)
and is expressed as in Eq.[2.35], Eq.[2.30] becomes

S = JaF−1
a SmF−T

a = Sa (2.32)

From the previous equation, it has to be noticed that the Second Piola-Kirchhoff
tensors are the same for the active and the final configurations, while we can not
state the same for the First Piola-Kirchhoff tensors. In fact we write

πa = FaSa = JaSmF−T
a (2.33)

for the active deformation, which is different from the tensor for the final defor-
mation that can be deduced substituting Eq.[2.32] in Eq.[2.29], so that we find
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π = JaFmSmF−T
a = JaπmF−T

a (2.34)

We can conclude that π is directly function of the active deformation Fa and
the passive deformation Fm through Sm. As previously mentioned (Sec. 2.1) and
later on described (Chapter 3), Fa depends on the elementary forces introduced and
therefore changes according to the morphogenetic movement analyzed.

2.3 The constitutive law of the mesoderm

As described in Chapter 1, the structure of the Drosophila embryo is rather complex
since, by the beginning of gastrulation, three different tissue layers start to form:
an endoderm, an ectoderm and the mesoderm, which is located between these two.
So far it has been very difficult to detect the mechanical characteristics of biological
tissues (Davidson et al. [1999] and Forgacs et al. [1998]). It seems that embryonic
tissues are more linear than mature tissues and they also appear to behave as visco-
elastic materials during embryogenesis (Forgacs et al. [1998]). For the present work
we have decided to not consider the visco-elastic effects, even if we are aware that
they may highly influence the global response of the system. Furthermore, only
the mesoderm has been modelled here, as similarly as many finite elements models
described in Sec. 1.2.3.1 and 1.2.6. We assume in fact that the mechanical character-
istics of the three embryonic tissues may not be so different and that the mesoderm
takes up the most part of the embryo tissues.

We hypothesized that the mesoderm is made of a Saint-Venant material whose
constitutive law is written as

Sm = λLTr EmI + 2 µLEm (2.35)

with Em the Green-Lagrange elastic strain of the mesoderm defined as

Em =
1
2

(
FT

mFm − I
)

(2.36)

and λL and µL are the Lame’s constants

λL =
E ν

(1 + ν)(1− 2 ν)

µL =
E

2 (1 + ν)

(2.37)

where E is the Young’s modulus and ν the Poisson’s coefficient. This approach
may not be the best accurate for our specific case; additionally, previous authors
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(Muñoz et al. [2007], Taber [2007], Conte et al. [2008]) used a Neo-Hookean material
to reproduce the mesoderm. Such model is a particular case of the Mooney-Rivlin
material whose constitutive law can be written as follows

σ = α1FmFT
m + α2(FmFT

m)−1 (2.38)

where

α1 = µNH

(
βNH +

1
2

)

α2 = µNH

(
βNH −

1
2

) (2.39)

with µNH and βNH proper constants of the material; specifically, for the case of
a Neo-Hookean material, we have βNH = 1

2 .
Let us briefly compare the two models. By the definition of the Second Piola-

Kirchhoff tensor (see Appendix A), the Cauchy stress tensor σ can be replaced, so
that Eq.[2.38] becomes

Sm = J [α1F−1
m FmFT

mF−T
m + α2F−1

m (FmFT
m)−1F−T

m ] (2.40)

Thus, knowing that C−1
m = F−1

m F−T
m , we have

Sm = J α1I + J α2C−2
m (2.41)

Now, by the Cayley-Hamilton equation (Holzapfel [2000]), we can write

−C3
m + I1CC2

m − I2CCm + I3CI = 0 (2.42)

where I1C , I2C , I3C are the principal scalar invariants of Cm defined as

I1C(Cm) = Tr Cm

I2C(Cm) =
1
2
[(Tr Cm)2 − Tr C2

m]

I3C(Cm) = DetCm

(2.43)

Therefore we can easily manipulate Eq.[2.41] and the final expression of Sm is
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Sm =
[
J α1 +

J α2

I2
3C

((I2C + I3C)(1− I1C) + I2
2C)

]
I

+
2 J α2

I2
3C

[I3C + I2C(2− I1C)]Em +
4 J α2I2C

I2
3C

E2
m

(2.44)

We have finally demonstrated that the Neo-Hookean material can be expressed
through a quadratic formulation of the Saint-Venant model; the coefficients appear-
ing in Eq.[2.44] are function of the principal scalar invariants of Cm and of some
suitable constants µNH > 0 and |βNH | " 1

2 (Smith [1993]). In order to compare
the two models, we do a power series expansion linearized to the first order of the
Neo-Hookean constitutive law (Eq.[2.44]), knowing that Cm can also be written as
a function of the Green-Lagrange strain tensor Em, so that Cm = 2Em + I. Thus
the invariants can be reformulated as follows

I1C(Cm) = Tr(2Em + I)

I2C(Cm) =
1
2
[(Tr (2Em + I))2 − Tr (2Em + I)2]

I3C(Cm) = Det( 2Em + I)

(2.45)

and furthermore, Jm = DetFm =
√

I3C . If we do here too a 1st order develop-
ment of the invariants and Jm, we obtain

I1C(Cm) = 3 + 2 Tr Em

I2C(Cm) = 3 + 4 Tr Em

I3C(Cm) = 1 + 2 Tr Em

Jm = 1 + Tr Em

(2.46)

Finally, the 2nd Piola-Kirchhoff tensor Sm becomes

Sm = [(α1 + α2)(1 + Tr Em)]I− 4 α2Em (2.47)

Then, in order to have a vanishing initial stress, we must impose α1 = −α2 so
that we obtain

Sm = −4α2Em = 4α1Em (2.48)

and from Eq.[2.35] we have then α1 = µL/2 and α2 = −µL/2.
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We have tested the Neo-Hookean model for our simulations, in particular for
the germ band extension, and we will discuss more in detail later on the results we
have obtained (Sec. 3.3). We notice that they are not so different from the ones for
the Saint-Venant material, which supports then our initial choice, especially with
regards to some aspects:

• given the difficulty to detect the mechanical characteristics of the embryonic
tissues, the Saint-Venant model allows us to have a simple but efficient rep-
resentation of the material without concerning about specific parameters that
would be very tangled to find;

• using a linear and a first order constitutive law for the Saint-Venant material,
we skip out the issue about the initial stress that is not often well illustrated
in literature.

On the other hand, we are aware that the Saint-Venant model presents some
limitations principally because it does not take into account, as similarly as the
Neo-Hookean model, the visco-elastic characteristics of the tissues we are studying.
For this reason, we would like to improve our model from this point of view, also
because so far, to our knowledge, this aspect has not been well developed.

2.4 Pseudo-thermal interpretation of the gradient de-
composition method

The gradient decomposition method takes into account both the active and the
passive deformations of the cells, so that the final deformation can be expressed as
in Eq.[2.2]. In this section we propose an interpretation of the present method as an
equivalent thermal deformation.

The Green-Lagrange tensor for the passive deformation Em, defined in Eq.[2.36],
can be actually rewritten as follows

Em =
1
2

(
F−T

a FTFF−1
a − I

)
=

1
2

F−T
a

(
FTF− FT

a Fa
)

F−1
a

= F−T
a (E−Ea) F−1

a

(2.49)

where E and Ea are the Green-Lagrange tensor for the final and the active
deformations respectively; the active deformation gradient Fa directly appears in
the final formula.

Let us analyze the case where the cells are supposed regular in form and neatly
distributed within the mesoderm that can then be considered as an isotropic mate-
rial. By the definition of the Second Piola-Kirchhoff tensor S (Eq.[2.32]) and of the
constituve law of the mesoderm (Eq.[2.35]), which provides Sm, we obtain
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S = Ja
[
λL Tr(C−1

a (E−Ea) C−1
a ) + 2 µL C−1

a (E−Ea)C−1
a

]
(2.50)

where Ca is the Right Cauchy tensor for the active deformation (Eq.[A.11]).
The last equation shows two main consequences of the active deformation on the
constitutive behaviour:

• Ca affects the isotropy of the material;

• Ea acts as a thermal deformation.

Actually, Sm can be reformulated through a compressed equation as follows

Sm = C : Em (2.51)

where Em can be replaced by Eq.[2.49]. This new expression can also be useful
if we consider that the cells composing the embryonic tissue are not geometrically
the same, which implies a non-perfect distribution of the elements and therefore the
mesoderm must be described as an anisotropic material.

The formula of the Second Piola-Kirchhoff tensor S becomes then

Sin = Ja
(
F−1

a

)
ij

Smjl

(
F−T

a

)
ln

= Ja
(
F−1

a

)
ij

[
Cjlqr

(
F−T

a

)
qt

(E−Ea)ts

(
F−1

a

)
sr

] (
F−T

a

)
ln

(2.52)

If we define

CFa
ints = Ja

(
F−1

a

)
ij

Cjlqr

(
F−T

a

)
qt

(
F−1

a

)
sr

(
F−T

a

)
ln

(2.53)

we finally obtain

S = CFa : (E−Ea) (2.54)

where CFa depends then on the applied active deformation. This expression
shows again, and perhaps more strikingly, the two contributions of the elementary
forces:

• one with respect to the modification of the thermo-elastic stiffness tensor C;

• the other as an initial deformation Ea.
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This formulation is interesting as well with respect to the Principle of the Virtual
Power. If we introduce Eq.[2.54] in Eq.[2.28], the expression of the mechanical
equilibrium of the system, we get

∫

Ωm

Tr
((

CFa : (E−Ea)
) (

DpwTF
)
sym

)
=

∫

∂Ωm

(w, fsJ F−T (n))dS (2.55)

where the subscript sym indicates the symmetric tensor defined as

Asym =
1
2
(A + AT ) (2.56)

If we recall now the expression of a thermal dilatation for small deformations,
we can notice that the term (E − Ea) is similar to the difference between the final
and the initial deformations. In fact we write

σ = C(ε− εT ) = C(ε− αT&T I) (2.57)

where ε and εT are the final and the initial deformation, C is the thermo-elastic
stiffness tensor depending on λL and µL and αT is the dilatation coefficient. &T
is the temperature variation and can be compared here to the active deformation
amplitude αi(t) that will be later defined for each morphogenetic movement (Chapter
3).

2.5 Interpretation in the case of a non uniform active
zone

We consider now a series of 2D cellular domains in contact with one another as
shown in Fig. 2.5; Ωa and Ω are respectively the active and the passive regions. At
the left and right boundary we have u = 0.

Active and passive regions

Let us analyze only the case of small active deformations, assuming that the
elementary forces are limited to the region Ωa and constant in it, while they vanish
outside. Therefore we have εa '= 0 in the Ωa domain, while εa = 0 elsewhere. By
the considerations made in the previous section, σ can be written as

σ = C(ε(u)− εa) (2.58)
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Figure 2.5: Series of 2D cellular domains.

Equivalent volumic forces

The equilibrium of the system (Eq.[2.17]) is

Divx σ = Divx C ε(u)−Divx C εa = 0 (2.59)

and, for the passive and the active regions, we can actually write

Ω : σ = C ε(u)
Ωa : σa = C (ε(ua)− εa)

(2.60)

For instance, we apply now separately the elementary forces that give rise to the
formation of the ventral furrow (Chapter 3), specifically the apical constriction and
the apico-basal elongation, and we introduce them in the 2D system. The former
provides a deformation depending on both the coordinates along ix and iy, so that
we have

εa = α(y ix ⊗ ix + x(ix ⊗ iy + iy ⊗ ix)) (2.61)
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where α is the deformation amplitude. Thus Divxσa is not constant, contrary
to the case of the uniform extension along the apico-basal axis, since we find

εa = α iy ⊗ iy (2.62)

Therefore, in cartesian coordinates, even if cell interface forces are observed, we
obtain volumic forces only when an apical constriction is applied. A more complex
analysis would be required instead for the specific case of the curvilinear coordinates
system adopted to describe the embryo geometry.

Equivalent surface forces at cell interfaces

We are interested now in evaluating the effects that the active forces have along
the cell interfaces. The mechanical equilibrium imposes that:

σ (n) + σa (na) = 0 (2.63)

where n and na are the outward positive normals for the passive and the active
domains respectively (Fig. 2.5). If we introduce the relative expressions for σ and
σa, we obtain

[C ε(u)]n + [C ε(ua)− εa]na = 0 (2.64)

so that

C[ε(u)− ε(ua)]n = C εa na '= 0 (2.65)

Thus the active forces can be replaced by surface forces along the interfaces be-
tween the cells that will provide the main modes of deformation. For the specific
case of the mesoderm, which is modelled here as a continuum, the only interfaces
are the ones between the active region, where the elementary deformations are in-
troduced, and the passive zone. From a mechanical point of view, this means that
the transition between the two regions plays a major role and could be the crucial
site where the tissues deformation is actually triggered. However we do not know
exactly if it is spread out across several cells, one cell or the interface between two
cells.

In our formulation, the active region is defined by a Heaviside function, a unit
step function with a C1 derivative without overshoot whose value is 0 for a nega-
tive argument and 1 for a positive one. The transition between these two values is
smoothed within an interval which is user defined and could therefore represent the
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Figure 2.6: Example of Heaviside functions on a cercle where an active and a passive
regions are defined. The transition between the two zones is determined
by an interval which is user defined; the higher the interval, the greater
the smoothing effect.

key aspect of the problem (Fig. 2.6).

Equivalent surface forces at external cell boundaries

As similarly as for the internal interfaces, we can write the equilibrium along the
external surfaces of each cell, thus we have

σa (nea) = fs (ne) (2.66)

where nea and ne are the outward positive normals to the active and the passive
domains respectively (Fig. 2.5); fs corresponds to the surface forces that are assumed
here equal to 0, while in the real Drosophila embryo they will be the yolk pressure
on the internal surface of the mesoderm and the contact with the semi-rigid vitelline
membrane. If we recall the expression for σa, the previous equation becomes
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C (ε(ua))ne = C(εa)nea + fsne (2.67)

Thus, depending on the type of elementary deformation applied in the active
region Ωa, a further boundary force may develop or not on the external cell surfaces
and it could also be interpreted as the membrane force of each cell.

Conclusions

The previous considerations have shown that the gradient decomposition method
leads to interesting interpretations of the equivalent forces that may be generated
either along the frontier between the active and the passive regions or at the external
cell boundaries.

2.6 Validation of the model

In order to validate our formulation, we have decided to test it on simple cases
either in cartesian or cylindrical coordinates and in two or three dimensions, where
the active region where the elementary forces are applied coincides with the entire
domain. The external boundary conditions such as the contact with the vitelline
membrane and the pressure exerted by the yolk on the mesoderm are not introduced
here. The structures we have decided to analyze present very simple geometries so
that, when elementary forces are applied on them, the analytical solution can be
easily detected. In addition the dimensions and the mechanical characteristics of the
systems are very similar to the ones employed later on for the Drosophila embryo;
therefore the results obtained are reasonably pertinent and support the approach we
have chosen for the present work.

2.6.1 Deformation of a 2D beam

First of all we have considered a two dimensional beam in a cartesian system of
coordinates (ix, iy). The beam is 100µm in length and 20µm in width.

2.6.1.1 Governing equations

Kinematics

Any material point of the beam can be defined by its initial position (before any
force applied on the system), which is expressed as follows

p = x ix + y iy (2.68)
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Let us introduce a longitudinal extension, which can be considered as an active
elementary force on the system. Therefore each particle of the domain deforms to
reach the intermediate position x̄ equal to

x̄ = (x + ū) ix + (y + v̄) iy (2.69)

with ū = α(t)x and v̄ = 0. The deformation amplitude α(t) = α · t, with
α = 0.05, depends on an incremental parameter t, which runs from 0 to 1, so that
the final maximal deformation of the beam is obtained when α(t) = α.

Constitutive relations

We use a Saint-Venant material to describe the beam, as already presented in
Sec. 2.3, whose constitutive law is defined in Eq.[2.35]. The Young’s modulus E is
fixed at 100Pa (as the one adopted for the embryo (Wiebe and Brodland [2005])) and
the Poisson’s coefficient ν is equal to 0.45; thus the Lame’s coefficients are obtained
from Eq.[2.37]. The values exploited for this specific case are the same employed for
the following examples presented in the next sections.

Equilibrium

No external forces are considered here, therefore the equilibrium equation takes
into account only the internal loads of the system and Eq.[2.28] becomes

∫

Ωm

Tr(πDpwT ) = 0 (2.70)

Boundary conditions

The boundary conditions play here an important role and highly affect the global
response of the structure, as already analyzed in Sec. 2.1 for the case of a single cell.
We have considered three different cases:

1. a simply supported beam on the lower boundary where v = 0 (Fig. 2.7a);

2. a cantilver beam on the left side where u = v = 0 and simply supported at the
bottom (Fig. 2.7b);

3. a cantilever beam on both sides, u = v = 0, and simply supported again at
the bottom (Fig. 2.7c).
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Figure 2.7: (a) Free beam (b) One side cantilever beam (c) Two sides cantilever
beam.

2.6.1.2 Solution

The active deformation gradient Fa can be deduced by Eq.[2.4] and we find

Fa = Dpx̄ = [1 + α(t)] ix ⊗ ix + iy ⊗ iy (2.71)

The first case corresponds to a free dilatation; each element of the domain un-
dergoes the elementary active deformation applied and changes its shape: therefore
the elastic passive deformation Fm (Eq. [2.2]) is equal to I so that F = Fa. The
extension is symmetric with respect to the vertical axis of the beam; the maxi-
mal horizontal displacement for the left and right boundaries has been analytically
found, by the expression of the intermediate position x̄, at α(t) = α and is equal
to ∼= ±2.5µm (Fig. 2.8a). The second and the third cases instead represent an ex-
ample of impeded dilatation; when deformed by Fa, the individual cells are not free
to move because of the boundary conditions, therefore Fm '= I; thus the maximal
displacements are the composition of the active and the passive contributions (Figs.
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Figure 2.8: Longitudinal deformation for a 2D beam. From the top to the bottom:
free dilatation (a), impeded dilatation for a one side (b) and both sides
(c) cantilever beam.

2.8b, 2.8c). The values of such displacements can not be analytically calculated any-
more, but we can deduce them from the numerical simulations. Thus we find: for
the second case, at the right boundary of the beam, a maximal extension of about
∼= 5µm, while for the third case the horizontal displacement is much smaller and
approximatively equal to ∼= 7 · 10−5µm at the the centre of the upper boundary.
Given the symmetry of this last problem, we were expected to find a horizontal
displacement equal to 0, which is not the case here probably due to the very small
and therefore negligible errors of the numerical solution.
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2.6.2 Deformation of a 3D beam

We consider now a three dimensional beam, with same length and width as before
and thickness equal to 3µm.

2.6.2.1 Governing equations

Kinematics

As similarly as for the two dimensional case, in a three dimensional space (ix, iy, iz),
the reference position for a generic point p of the beam is expressed as

p = x ix + y iy + z iz (2.72)

If we apply again an extension in the ix direction, the intermediate position x̄
can be written as

x̄ = (x + ū) ix + (y + v̄) iy + (z + w̄) iz (2.73)

where ū = α(t) x , v̄ = w̄ = 0 and α(t) represents again the amplitude for the
longitudinal extension and t the incremental parameter, which runs from 0 to 1;
the maximal dilatations for each case, whose values are the same as in the previous
section, have been found at α(t) = α, α equal to 0.05. The mechanical characteris-
tics of the three dimensional beam are the same as for the two dimensional one; as
similarly as for the equation of the final equilibrium of the system.

2.6.2.2 Solution

The active deformation gradient Fa is equal to

Fa = Dpx̄ = [1 + α(t)]ix ⊗ ix + iy ⊗ iy + iz ⊗ iz (2.74)

We have observed the influence of the boundary conditions on the final results
and thus three different cases have been considered as for the two dimensional case
(Fig. 2.9). For what concerns the contributions of the active and the passive defor-
mation, the considerations made in the previous section are still valid, therefore the
values of the maximal displacements are the same found above (Sec. 2.6.1).
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Figure 2.9: Longitudinal deformation for a 3D beam. From the top to the bot-
tom: free dilatation, impeded dilatation for a one side and both sides
cantilever beam.
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2.6.3 Radial and circular deformation of a circular cylinder section

Consider now a cross-section of a hollow circular cylinder in a cylindrical polar
system of coordinates (r, θ, z), with radius r =

√
x2 + y2. The external and the

internal radius are respectively re = 50µm and ri = 45µm (Fig. 2.10).

Figure 2.10: Cross section of a hollow cylinder.

2.6.3.1 Governing equations

Kinematics

A generic point p can be located at its initial position by

p = r ir(θ) (2.75)

where θ = arctg
( y

x

)
. We have introduced two different elementary forces: a

radial dilatation and a circular deformation. For the first case, the intermediate
position x̄ can be written as follows

x̄rad = [1 + α(t)] r ir(θ) (2.76)
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where α(t) is the amplitude and here again depends on the incremental parameter
t varying from 0 to 1. If otherwise we apply a circular deformation, x̄ becomes

x̄circ = r ir[(1 + α(t))θ] = r ir(θ + θ∗) (2.77)

where θ∗ = α(t) θ is the deformation angle and α(t) again determines the defor-
mation amplitude.

Boundary conditions

Given the radial symmetry of the problem, we have decided to analyze only a
quarter of the structure; thus the relative boundary conditions are imposed. From
Fig. 2.10 we deduce that on the left boundary we must impose u = 0, while on the
lower boundary it is necessary v = 0.

2.6.3.2 Solution

The active deformation gradient Fa in cylindrical polar coordinates is defined as

Fa =
∂x̄
∂r
⊗ ir(θ) +

∂x̄
∂θ
⊗ iθ(θ)

r
(2.78)

Figure 2.11: Radial dilatation for a quarter of a cylindrical section. The scale of the
displacements field has been adjusted of a factor 102 in order to better
show the dilatation.
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Figure 2.12: Circular dilatation for a quarter of a cylindrical section. The scale of
the displacements field has been adjusted again of a factor 102.

Therefore for the case of radial dilatation we find

Fa,rad = [1 + α(t)]ir(θ)⊗ ir(θ) + [1 + α(t)]iθ(θ)⊗ iθ(θ) (2.79)

while for the circular deformation, Fa becomes

Fa,circ = ir(θ + θ∗)⊗ ir(θ) + [1 + α(t)] iθ(θ + θ∗)⊗ iθ(θ) (2.80)

The equilibrium of the system is obtained, here again, from Eq.[2.28], taking
into account the fact that no external forces are introduced. The constitutive law
corresponds to the Saint-Venant model previously presented (Eq.[2.35]). The results
for both the simulations are shown in Figs. 2.11, 2.12. As for the first case of
the two and the three dimensional beam, we observe here a free dilatation of the
circular section. Therefore we have again Fm = I and then F = Fa; the maximal
displacements for both the radial and the circular deformations can be analytically
deduced from the expression of the intermediate position x̄. We find respectively,
at α(t) = 5 · 10−4, a maximal radial displacement of ∼= 2.5 · 10−2µm and, for the
case of the circular dilatation, a maximal displacement at the left and the bottom
boundaries in the order of a few 10−3µm.
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2.6.4 Radial and circular deformation of a sphere

Among the 3D cases, it is interesting to analyze a sphere whose geometry is simple
and regular but more similar to the embryo than the previous examples studied;
due to the symmetry of the problem, we only considered a eight of the sphere. The
sphere is defined in a spherical system of coordinates (r, θ,ϕ). The radius is equal
to r =

√
x2 + y2 + z2 with re = 100µm and ri = 95µm (Fig. 2.13).

Figure 2.13: Geometry of a sphere.

2.6.4.1 Governing equations

Kinematics

If we consider a material point of the sphere, its reference configuration is deter-
mined by

p = r ir(θ,ϕ) (2.81)

where here again θ = arctg
(

z
x

)
. As for the circular cylinder, we impose first

a radial dilatation and then a circular deformation. Therefore the intermediate
position x̄ is, for the first case, expressed as

x̄rad = [1 + α(t)]r ir(θ,ϕ) (2.82)

In the second case we find instead
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x̄circ = r ir[(1 + α(t))θ,ϕ] (2.83)

Boundary conditions

Since only a quarter of a sphere has been taken into account, the symmetry
conditions have been introduced. Therefore, if we observe the geometry presented
in Fig. 2.13, we have

• on the left boundary u = 0

• on the right boundary v = 0

• on the bottom boundary w = 0

2.6.4.2 Solution

The active deformation gradient Fa can be easily deduced from Eq.[2.78], so that
we obtain for the radial dilatation

Fa,rad =[1 + α(t)] ir(θ,ϕ)⊗ ir(θ,ϕ) + [1 + α(t)] iθ(θ,ϕ)⊗ iθ(θ,ϕ)
+ [1 + α(t)] iϕ(θ,ϕ)⊗ iϕ(θ, ϕ)

(2.84)

Figure 2.14: Radial dilatation for a sphere.

while for the circular deformation we have
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Fa,circ =ir(θ + θ∗, ϕ)⊗ ir(θ,ϕ) + [1 + α(t)] iθ(θ + θ∗, ϕ)
+ iϕ(θ + θ∗, ϕ)⊗ iϕ(θ,ϕ)

(2.85)

with θ∗ = α(t) θ the deformation angle and α(t) the amplitude for both the
deformations. Here again a free deformation is observed. For the first case, the
maximal radial displacement obtained, by the intermediate position x̄, at α(t) = 0.01
is equal to 5µm (Fig. 2.14), while for the circular dilatation the displacement is in
the order of a few 10−3µm (Fig. 2.15).

Figure 2.15: Circular dilatation for a sphere; for a better representation, the final
displacement field has been multiplied by a factor 5.

2.7 Required boundary conditions

The weak formula of the mechanical equilibrium of the system found in Eq.[2.28]
presents on the left a term representing the internal forces, while the term on the
right corresponds to the equilibrium of the surface forces acting on the mesoderm.
The fact that we model the mesoderm as a continuum allows us to skip the forces
exerted between the cells to maintain the contact with one another. Also we do
not take into account the interaction forces external to the mesoderm, but only the
contact with the vitelline membrane and the pressure of the yolk on the internal
boundary of the mesoderm, that are essential structural elements. We will analyze
these aspects in the next two sections (Sec. 2.7.1, 2.7.2); the presence or not of these
boundary conditions highly affects the global behaviour of the system, as already
observed by previous authors (Conte et al. [2008]), consequently for the present
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study we have decided to implement both of them, the external contact with the
vitelline membrane and the yolk pressure.

2.7.1 Contact with the vitelline membrane

The vitelline membrane is a structure directly adjacent to the mesoderm which
surrounds the embryo all along its contour. It is considered to be semi-rigid and it
plays a relevant role in the global response of the embryo to mechanical constraints;
particularly, it is essential to take into account the contact force existing between
the membrane and the mesoderm. We are aware, as already mentioned in Sec. 2.2,
that some adhesion forces between the cells membrane and the vitelline membrane
may occur, but so far we have not analyzed this aspect from a theoretical point of
view. Most of the finite elements models presented in Sec. 1.2.3.1 and Sec. 1.2.6 do
not consider the vitelline membrane, even if it represents a key component of the
embryo. Very few of them modelled this structural element taking into account its
influence on mesoderm invagination.

Muñoz (Muñoz et al. [2007]) and Conte (Conte et al. [2008]) have both demon-
strated in their works that the presence of the vitelline membrane is necessary in
providing consistent results that agree with experimental observations. Muñoz de-
veloped a 2D finite elements model of the ventral furrow invagination (Sec. 1.2.3.1)
and he used the same approach as Conte in his 3D model. They represented the
vitelline membrane as a rigid external shell and they imposed a sliding condition
between the apical surfaces of the cells and the membrane. A master-slave method
was adopted (Muñoz and Jelenic [2004]), which allows skipping penalty methods
and uses the minimum set of degree of freedom. In order to prevent the discon-
tinuity of the tangents, that may produce an intermittent in the activation of the
constraints, they also introduced a C1 continuous B-Spline interpolation smoothing
technique on the contact surfaces. In vivo studies (Leptin and Grunewald [1990])
proved that the removal of the vitelline membrane caused the opening of the fur-
row during gastrulation and this is also pointed out by numerical simulations for
both the models of Muñoz and Conte (Fig. 1.12). Therefore the vitelline membrane
clearly constrains the active deformations of the mesoderm in both the intermediate
and final invagination stages.

Pouille (Pouille and Farge [2008]) implemented a reaction pressure of the vitelline
membrane normal to the outer boundary of the mesoderm. Such pressure acts when
any local increase of the embryo size is detected. By his fluid-dynamic model, he
found that the vitelline membrane actually affects the bending of the mesoderm,
especially in the ventral domain where the invagination takes place.

For the present work we do not model the vitelline membrane but we use an adap-
tive penalty method (Belytschko et al. [2000]), which consents to evaluate the contact
between the mesoderm and the outer shell. By observing the embryo throughout
the developmental phases, two situations must be contemplated: when the meso-
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derm invaginates the yolk and when it evaginates exceeding the external boundary
(Fig. 2.16). This last situation is forbidden by the assumption of the rigidity of the
vitelline membrane.

Figure 2.16: Geometrical description of invagination and evagination of the meso-
derm.

To deal with these cases, we want to check the contact constraint with the
vitelline membrane ∂Ωe, which is defined by the equation

fc(xv) = 0 ∀xv (2.86)

where xv are the points on the vitelline membrane.
We evaluate the distance, at the deformed configuration, between a point x on

the external surface of the mesoderm ∂Ωmex
and its projection xv0 on the vitelline

membrane. The distance is calculated along the outward positive normal ncx to the
external boundary of the mesoderm. Therefore we can write
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fc(xv0) * fc(x) + (∇fc(x),xv0 − x) + · · · = 0 (2.87)

from which, in order to evaluate the repulsive forces, we deduce, at first order,
the projection xv0 on the vitelline membrane of the point x

xv0 − x = sc∇fc(x) (2.88)

Thus sc represents the distance we are interested in and can be expressed as

sc(u) =
−fc(p + u)

|∇fc(p + u)|2 (2.89)

where the gradient of fc is evaluated as follows

∇fc ÷ ncx =
F−T (nc)
‖F−T (nc)‖

(2.90)

fc acts as level set function (Osher and Fedkiw [2003], Sethian [1996]), so that
{

fc(x) > 0 sc < 0
fc(x) < 0 sc > 0

(2.91)

When writing the Principle of the Virtual Power, we need to know the expression
of the boundary force at the reference configuration. By Eq.[2.28] the right hand
side term for the specific case of the external contact with the vitelline membrane
becomes

∫

∂Ωm

(w, fsJ F−T (n))dS =
∫

∂Ωme

(w, pc(sc)J F−T (nc))dS (2.92)

where pc(sc) is the real pressure applied.
As already said, the major issue comes when sc < 0 and the mesoderm evaginates

beyond its boundary. It is necessary in that case to apply a pushing-back force, while,
when invagination occurs, we can easily control it by introducing a small constant
force. Thus we can write

{
sc < 0 pc = −tc e(kcsc)/(tc)

sc > 0 pc = tc
(2.93)

where tc and kc are constants whose values will be discussed in the next section.
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2.7.1.1 Circular dilation of a sphere when the external contact is intro-
duced

To show the important role played by the vitelline membrane, we take back now
the case of the sphere previously analyzed (Sec. 2.6.4) and we apply on the external
boundary of the domain the contact force. The values of the constant force tc and
of kc have been chosen for this particular example and they will be the same for
the next simulations. tc is interpreted here as the adhesion force between the apical
surface of a single cell and the vitelline membrane. It has been set at 1Pa and can
be compared to the traction force exerted by the cytoskeleton on the substrate to
which the cells naturally attach. Such force is concentrated at the focal adhesions
and it has been estimated between 10 and 30µN (Nicolas et al. [2004]): the larger
the adhesion zone, the higher the traction force. For our case, we assume that the
contact force involves the entire apical surface; this justifies the greater value of tc
with respect to the experimental data. The value of kc has been fixed at 1 · 108 in
order to have a maximal mesoderm evagination equal to 0.01µm.

If we recall the example of the circular deformation of a sphere (Fig. 2.15), we
notice an inhibition of the displacements compared to the cases where the external
contact is not taken into account. Such reduction in deformation is due to the fact
that, when the elements dilate, they are pushed back by the repulsive force imposed
at the contour.

2.7.2 Internal yolk pressure

The yolk is a viscous fluid filling the internal region of the embryo and exerting
a pressure on the internal surface of the mesoderm. The presence of the yolk can
actually inhibit the invagination of the mesoderm as it has been noticed through
several numerical simulations (Ramasubramanian and Taber [2006], Conte et al.
[2008]). Therefore in the latest models in the literature it has been taken into
account as a required component in order to have consistent results. There is still
an open question whether the fluid is incompressible or presents a residual pressure
at the onset of ventral furrow invagination. Conte (Conte et al. [2008]) implemented
both the constancy of the volume and the initial pressure of the yolk using a penalty
method where the total elastic potential of the epithelium is coupled with an extra
potential depending on the initial and the final volumes of the fluid. This approach
allows not to consider the yolk as a fluid, but it ensures at the same time the
minimal variations in volume. The only drawback of the method lies in the choice
of the penalty parameter, which is function of the stiffness of the embryo; in their
study Conte and co-authors found volume variations less than 3.5%.

Taber modelled the yolk for the analysis of shell problems (Ramasubramanian
and Taber [2006], Taber [2007]); he introduced hydrostatic incompressible fluid ele-
ments and, by an auxiliary weak constraint condition, the embryo cavity was main-
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Figure 2.17: At the top the circular dilatation of the sphere without surface forces,
at the bottom the same example when the external contact is taken into
account (for both the images the displacements field has been adjusted
of a factor 5).

tained at constant volume. He observed that the presence of the yolk dramatically
reduced the amount of invagination in the shell with a cylindrical shape, while for
the spheric ones a marginal decrease was detected. The deformation of the fluid-
filled shell is lasted by the stretching of the shell elsewhere, which demands more
force than bending and restrains the quantity of fluid that can be displaced by the
invaginating cells.

The yolk is considered here as a compressible fluid, therefore we introduce a
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uniform pressure py coupled with the global change of its volume. This method is
computationally efficient since we skip out the meshing of the yolk, thus we have a
drastic decreasing of the number of degree of freedom.

We define the actual inner volume Vy, enclosed by the yolk, as

Vyx =
∫

Ωmix

dV (2.94)

Because of the Stoke’s formula, the previous equation can be rewritten as follows

Vyx =
∫

Ωmix

div x
3

dVx =
1
3

∫

Ωmix

(x,nyx)dSx =
1
3

∫

∂Ωmi

[x, J F−T (ny)] dS (2.95)

where nyx and ny are the positive inward normals to the internal boundary of
the mesoderm at the deformed and undeformed configuration respectively.

Given the assumption of a fluid at rest, the applied pressure py(Vy), with Vy the
initial volume of the yolk, should satisfy the following pressure-volume law

py = py0 − ky
Vyx − Vy

Vy
= py0 −

ky

Vy

∫

∂Ωm

(J F−1(p + u)− p,ny)dS (2.96)

where py0 and ky are respectively the initial pressure and the compressibility
coefficient of the yolk; in Sec. 3.4 we will discuss more in detail the choice of these
two constants. From the formulation of the Principle of the Virtual Power (Eq.
[2.28]), we can write the second right hand side term as follows

∫

∂Ωmi

[π(ny),w] dS =
∫

∂Ωmi

[py(Vy)(ny),w] dS

=
∫

∂Ωmi

py(Vy)[J F−T (ny),w]dS

=
∫

∂Ωmi

py

(
1
3

∫

∂Ωmi

[xa, J F−T (nya)]dS

)
[J F−T (nyb),w]dS

(2.97)

Thus there is a double integration: the first one to get the correct yolk pressure
(indicated here by the subscript a) and the second one to get the virtual work
on the internal boundary of the mesoderm (indicated here by the subscript b). The
numerical issue related to this peculiar term will be discussed in the following section.
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2.8 Iterative scheme and finite elements approximation

We recall here the weak formula of the mechanical equilibrium of the system, ob-
tained in Sec. 2.2, which can be rewritten as follows

∫

Ωm

Tr
(
π(u, αi(t)),DpwT

)
=

∫

∂Ωme

(
pcJF−T (nc),w

)
dS

+
∫

∂Ωmi

(
pyJF−T (ny),w

)
dS

(2.98)

where the left hand side term represents the internal forces expressed by the
First Piola-Kirchhoff tensor π, which is function of the displacement u and of the
deformation amplitude αi(t) that will be later on defined and change according to
the morphogenetic movement considered. The right hand terms instead represent
respectively the contact force between the mesoderm and the vitelline membrane and
the pressure force exerted by the yolk on the internal boundary of the mesoderm.
Such expression is proposed here to describe the numerical method employed for the
present work, which consists of an incremental implicit scheme through the evolution
parameter t, together with a Newton technique to solve the corresponding non linear
problem at each time step.

The time interval ]0, T [ is decomposed into tn steps, n = 1, N , and, starting from
usual vanishing initial values, the displacement un+1 is computed, so that we obtain

∫

Ωm

Tr
(
π(un+1, (αi(t))n+1),DpwT

)
=

∫

∂Ωme

[(
pcJF−T (nc)

)n+1
,w

]
dS

+
∫

∂Ωmi

[(
pyJF−T (ny)

)n+1
,w

]
dS

(2.99)

With respect to the space variable, the displacement vector is decomposed on
the classical finite element basis function with Lagrangian polynomial of degree two
on a thetrahedral mesh. The convergence criterion is based on the L2 norm of the
displacement with a tolerance 10−2 on the relative error. The derivation of the
Newton scheme is done in the following way: at iteration k + 1 and time step n + 1,
the previous equilibrium equation is expanded with respect to un+1,k, thus we have
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∫

Ωm

Tr
[
π

(
un+1,k, (αi(t))n+1

)
,DpwT

]
−

∫

∂Ωme

[(
pcJF−T

)n+1,k (nc),w
]
dS

−
∫

∂Ωmi

[(
pyJF−T

)n+1,k (ny),w
]
dS

+
∫

Ωm

Tr
[
Duπ

((
un+1,k

)
δun+1,k+1,

(
αi(t)

)n+1
)

,DpwT
]

−
∫

∂Ωme

[
Du

(
pcJF−T

)n+1,k
δun+1,k+1(nc),w

]
dS

−
∫

∂Ωmi

[
Du

(
pyJF−T

)n+1,k
δun+1,k+1(ny),w

]
dS = 0

(2.100)

so that the displacement increment δun+1,k+1 can be computed by the solution
of a linear system.

Yolk pressure and contact with the vitelline membrane

The yolk boundary condition presents a special issue because it is non local. This
is mostly due to the fact that the yolk is assumed here to be a fluid at rest and there
is a relation between its global volume change and the uniform pressure applied
on the mesoderm, as shown in Eq.[2.96]. Therefore, as described in Eq.[2.97], we
get a double integral: one provides the correct yolk pressure, the other the virtual
work on the internal boundary ∂Ωmi of the mesoderm. This leads to a Jacobian
matrix Du

(
pyJF−T

)n+1,k where all the nodes at the boundary are coupled. Given
several difficulties related to the large computer memory required, we have decided
to compute the Jacobian one iteration behind in order to annihilate such complex
coupling between the nodes of the inner boundary. The computational cost is very
much reduced with no noticeable degradation in the number of Newton iterations
until convergence. The different examples that have been treated never showed any
pathological difficulty inherited from this simplified choice. This is certainly due to
the fact that only average volume occurs in the expression of the pressure, which is
consequently not significantly oscillating.

For what concerns the contact with the external vitelline membrane, we still
have to consider it as a non linear boundary condition, but, contrary to the yolk, it
is locally defined.
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2.9 Hints for a future stability analysis

The convergence of the previous Newton scheme crucially depends on the Jacobian of
the First Piola-Kirchhoff tensor with respect to the displacement. In this paragraph,
we try to evaluate this quantity through an incremental analysis.

The derivative term Duπ
(
u, αi(t)

)
, as similarly as

(
Du pcJ F−T

)
for the contact

force and
(
Du pyJ F−T

)
for the yolk pressure, can be obtained from the following

rate type equation

dπ

dt
= Duπ

du
dt

+ Dαiπ
dαi(t)

dt
(2.101)

where t is the incremental parameter, which determines the amplitude αi(t) (see
Chapter 3), and u is the displacement. Since π = FS, the term on the left hand
can actually be expressed as

dπ

dt
=

dF
dt

S + F
dS
dt

(2.102)

with F, the final deformation gradient, equal to F = I+Dpu, so that its deriva-
tive becomes

dF
dt

= Dp

(
du
dt

)
(2.103)

The Second Piola-Kirchhoff tensor S can be formulated here as in Eq.[2.54], thus
we obtain

dS
dt

=
dCFa

dt
: (E−Ea) + CFa :

(
dE
dt
− dEa

dt

)
(2.104)

Then Eq.[2.102] can be rewritten as

dπ

dt
= Dp

(
du
dt

) [
CFa : (E−Ea)

]
+ CFa : FTDp

(
du
dt

)

+ F
[
dCFa

dt
: (E−Ea)−CFa :

dEa

dt

] (2.105)

This last equation expresses the dependency of π on both the gradient of the
velocity du

dt and the increment of the active deformations. The analysis of the tangent
stiffness appearing in the first and the second terms of the equation would give the
path to evaluate the stability of the highly non linear problem. Such aspect is not
further elaborated for the present work, but it may be the object of future studies.
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2.10 Conclusions

This section of the work has provided a general overview of the approach used for the
analysis of the specific morphogenetic movements that will be described in details
in the next chapter.

A single cell naturally tends to deform because of chemical signals developing
through the cytoskeleton. Such free deformation is not completely possible when the
cell, with other cells, is part of a system and therefore constrained not only by its
neighbours but also by external boundary conditions. This is the case of the embryo
where the cells are in contact with one another and with the yolk and the vitelline
membrane on their basal and apical surfaces respectively. Therefore when the ele-
mentary forces occur, the cells modify their shape, but a geometrical incompatibility
(i.e. superposition of the volumes) is observed which does not guarantee the con-
tinuity of the system; therefore the mesoderm reacts and the passive deformation
takes place.

The gradient decomposition method is very useful since it allows to take into ac-
count both the active and the passive deformations that are strongly interconnected
and have to be composed to obtain the final and correct tissues deformation. The
necessary abstract tools have been amply described in this chapter. In particular we
have focused on the computation of the active deformation gradient, which, in the
curvilinear coordinates system later on introduced, changes according to each mor-
phogenetic movement considered and therefore to the elementary forces introduced.
Also we have shown how, by the Principle of the Virtual Power, we express the
mechanical equilibrium of the system that includes both the forces at the interior of
the domain and the boundary conditions, such as the yolk pressure and the vitelline
membrane. Actually these two components, even if not explicitly modelled here, are
essential structural elements and the absence of one or both of them may lead to
final configurations that do not correspond to experimental observations.

If from a mechanical point of view the gradient decomposition method is nat-
ural and logic and often used for large deformations problems, biologists may be
perplex in finding the physical meaning of such approach. Thus we have proposed
some interesting interpretations of the method that have pointed out novel aspects
so far unexplored and further hints of discussion. Specifically, we have presented
the similarities between our formulation and the stress analysis in thermodynam-
ics problems. This analysis better clarifies the composition of the active and the
passive deformations, which is here compared to the initial and final contributions
in thermal dilatation. Additionally, we have shown the local effects of the active
forces introduced in our formulation. First of all, we have concluded that they could
be replaced by surface forces along the cells interfaces that would provide the main
deformation modes. For our specific case, it seems to us that the transition between
the active and the passive regions constitutes the crucial site where the deformation
is actually triggered and it has therefore to be taken into account very carefully.
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Secondly, we have noticed that, when introducing the active forces in the active
domain, we also collect a consequent strain at the internal and external boundaries,
to include with the already present yolk pressure and the contact with the vitelline
membrane.

Another point on which biologists may not fully agree concerns the choice of
the constitutive law of the mesoderm. For the present work we have opted for a
linear Saint-Venant model that does not consider instead the non-linearities of the
material provided by its visco-elastic traits and, additionally, it is in contrast with the
previous works where a Hyperelastic material has often been used. The main reason
for this choice is the lack in information about the mechanical characteristics of the
mesoderm that are usually very difficult to detect. Although we have compared
the two models and we will show later that the results for both cases are not so
different, which is also probably due to the very small deformations occurring to
the mesoderm. However we are aware that the Saint-Venant material presents some
limitations and therefore we are working on those aspects so far put aside. On the
other hand it is evident that the analysis of a biological system is not always easy
for the many parameters that take part to the processes, thus the hypothesis made,
even if simplistic at first sight, may still be useful for a qualitative analysis of the
problem.

Finally we have briefly presented the numerical method used to solve the non
linear problem; it consists of an incremental implicit scheme together with a New-
ton technique. Special caution has to be made for the implementation of the yolk
pressure which is not local therefore treated here at a fixed point to avoid large
computer memory. Additionally we have analyzed the stability of the solution in or-
der to evaluate the critical values of the incremental parameter at which bifurcation
effects may occur and thus affect the right properties of convergence.

In the next chapter we are going to focus on each morphogenetic movement.
Specifically we will show how, from the analytical expression of the intermediate
position of a generic point, which changes according to the elementary forces applied,
we obtain the equation corresponding to the active deformation gradients.



Chapter 3

Morphogenetic movements in
Drosophila embryo

This section of the work is dedicated to the detailed description of the relative for-
mulations for the three morphogenetic movements: the two furrows (ventral and
cephalic) are presented together in Sec. 3.2, while the germ band extension in Sec.
3.3. In particular, we show how we obtain, by the parametrical description of the
embryo in a curvilinear system of coordinates (Sec. 3.1), the reference configura-
tion of a material point and its intermediate position when the primary forces are
introduced. The active deformation gradients change according to the active de-
formations and they are therefore user defined and proper to each morphogenetic
movement considered.

In the second part of the chapter we present the results obtained (Sec. 3.4),
evaluating them for each simulation. For the ventral furrow, a parametric analysis
has been conducted, pointing out the variables that may influence the final con-
figuration, such as the size of the active region (Sec. 3.5.1), the dimensions of the
material cells (Sec. 3.5.2) and the presence of the apico-basal elongation (Sec. 3.5.3).
In Sec. 3.9 and 3.10 we propose an estimation of the induced pressures and shear
stress that are engendered elsewhere than the active regions when the elementary
deformations are applied on the cells. This analysis in particular allows us to confirm
not only qualitatively, but also from a quantitative point of view, some hypotheses
put forward by biologists.

As said in Sec. 1.3 and 2.1, we use an ellipsoid to model the embryo, which has to
be considered as an approximation of the real biological system. Actually in this way
we do not consider the different curvature between the anterior and the posterior
pole, which may influence those movements occurring along the anterior-posterior
axis such as ventral furrow invagination and germ band extension. Therefore we
have performed an interesting collateral study, in collaboration with Anne-Sophie
Mouronval of the MSSMat Laboratory, that consents to compare different geometries
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more and more similar to the structure of the embryo. The results are shown in Sec.
3.11.

Finally, we discuss here the simulation of the germ band extension when a Hyper-
elastic material is introduced to represent the mesoderm (Sec. 3.8); the comparison
between this model and the Saint-Venant model, adopted for our study, has been
extensively argued in Sec. 2.3.

3.1 Parametrical description of the embryo

Our model is not obtained by MRI (Magnetic Resonance Imaging) scans that allow
to have a precise description of one embryo but make difficult to analyze the influence
of several parameters that take part to each morphogenetic movement. Only the
mesoderm has been modelled, as mentioned in Sec. 2.3, and it is represented as an
ellipsoid in a cylindrical polar basis (r, θ, z) (see Appendix C), where

ir = (cos θ, sin θ, 0)
iθ = (− sin θ, cos θ, 0)
iz = (0, 0, 1)

(3.1)

Variations on this peculiar geometry will be discussed at the end of this chapter.
Each point p0 of the middle surface Ωm0 of the mesoderm (where ζ = 0), at

the initial configuration, is then expressed in this curvilinear coordinates system as
follows

p0(θ, z) = ρ(z)ir(θ) + ziz (3.2)

where ρ(z) parametrically describes the geometry and is equal to

ρ(z) = b

√
1−

(z

a

)2
(3.3)

with θ = arctan
(

z
y

)
, a and b the semi axes of the ellipsoid.

Since some deformations will be described with respect to the middle surface of
the mesoderm, it is important to define the reference position of any point through
the thickness of the mesoderm as

p(θ, z, ζ) = p0(θ, z) + ζn0(θ, z) (3.4)
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Figure 3.1: Cross-sectional view of the ellipsoid representing the embryo at z = 0.

where ζ is the distance between p and its projection p0 on the middle surface of
the mesoderm (Fig. 3.1). The normal n0(θ, z) to the middle surface can be written
as

n0(θ, z) =
∂p0
∂θ ∧

∂p0
∂z

|∂p0
∂θ ∧

∂p0
∂z |

=
−ρ′(z)iz + ir(θ)√

1 + ρ′2
(3.5)

When the elementary deformations take place, any point p deforms to an in-
termediate position x̄. For each morphogenetic movement, we are interested in
analytically finding this intermediate position that consents to obtain the expres-
sion of the active deformation gradient Fa, which is classically defined as presented
in Chapter 2 and here specifically expressed for the case of this curvilinear system
as

Fa =
∂x̄
∂θ
⊗∇pθ +

∂x̄
∂z
⊗∇pz +

∂x̄
∂ζ
⊗∇pζ (3.6)
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where

∇pθ =
gz ∧ gζ

g

∇pz =
gζ ∧ gθ

g

∇pζ =
gθ ∧ gz

g

(3.7)

form the contravariant basis in p (see Sec. 2.1) and g is defined as in Eq.[2.15].
gθ,gz,gζ are instead the tangent vectors to the curve when ζ '= 0 and they can

be calculated from Eq.[3.4] as

gθ =
∂p
∂θ

=
∂p0

∂θ
+ ζ

∂n0

∂θ

gz =
∂p
∂z

=
∂p0

∂z
+ ζ

∂n0

∂z

gζ =
∂p
∂ζ

= n0(θ, z)

(3.8)

If we develop Eq.[3.8], we find

gθ = ϕθiθ(θ) (3.9)

gz = ϕz(ρ′(z)ir(θ) + iz) (3.10)

gζ =
−ρ′(z)iz + ir(θ)√

1 + ρ′2(z)
(3.11)

where

ϕθ =

(
ρ(z) +

ζ√
1 + ρ′2(z)

)

ϕz =

(
1− ζρ′′(z)

(1 + ρ′2(z))3/2

) (3.12)

Therefore g can be calculated as

g = ϕθϕz

√
1 + ρ′2(z) (3.13)

If we substitute the expressions of the tangent vectors (Eq.[3.9, 3.10, 3.11]) in
the relative gradients (Eq.[3.7]), we obtain
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∇pθ =
iθ(θ)
ϕθ

∇pz =
ρ′(z)ir(θ) + iz
ϕz(1 + ρ′2(z))

∇pζ = n0(θ, z)

(3.14)

The parametrical description of the geometry of the embryo is one of the major
advantage of our model, since it allows having the precise analytical expressions
of the intermediate position x̄, which are therefore proper to each event and user
defined, given the dependence on the elementary forces introduced. The influence of
the geometry will be discussed later on in this chapter; we are now going to analyze
the different morphogenetic movements.

3.2 Ventral furrow invagination and cephalic furrow for-
mation

Ventral furrow invagination and cephalic furrow formation take place simultane-
ously during embryogenesis and are very similar since triggered by almost the same
mechanical constraints. Both the morphogenetic movements can be considered as
orthogonal invaginations of the mesoderm (Sec. 1.2.2); in fact invagination occurs
along a line rather than at a single point. A trough forms (Fig. 1.2), the axis of
which is parallel to the original surface, thus at right angles with respect to the
direction of invagination (Davies [2005]).

Figure 3.2: Cross sections of the embryo showing the successive phases of ventral
furrow invagination (Leptin [1999]). The different colours mark the re-
gions or the cells where invagination occurs.
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Ventral furrow invagination proceeds by infolding of a line of epithelium into the
yolk, forming a cavity, the lips of which then fuse and separate from their parent
epithelium. The cells in the ventral region of the embryo show a strong expression
of actin/myosin filaments and contraction of such filaments leads to the constriction
from the apical to the basal end of each cell and therefore to the bending of the
basal surface inward. This curving is localized at specific hinge points and can
generate convex or concave curvature depending on where it takes place (Fig. 1.3).
A particular aspect of the hinge points is that cells within them become wedged: at
the median hinge point they are apically constricted while basally at the dorso-lateral
hinge point Davies [2005].

The apical constriction and the apico-basal elongation have been individuated as
active processes responsible of the invagination of the embryonic tissues (Sec. 1.2.3),
thus both of them have been implemented for our simulation.

Figure 3.3: On the left, a cell of the mesoderm at the reference configuration. On
the right, the new shape once the apical constriction and the apico-basal
elongation have been applied.

The two active forces are applied on a restricted area of the ventral region of the
embryo; this region covers about 70% of the total length of the embryo along the
anterior-posterior axis and about 15% of the transverse section. The intermediate
position x̄(θ, z, ζ) corresponding to these two deformations combined (Fig. 3.3), can
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be written as follows

x̄(θ, z, ζ) = p0(θ̃, z) +
(
1 + αabe(t)

)
ζn0(θ̃, z) (3.15)

where αabe(t) is the amplitude of the apico-basal elongation and

θ̃ = θ + αac(t)
2ζ

h
m(θ) (3.16)

is the deformation angle depending on αac(t), the amplitude of the apical con-
striction; h is the thickness of the mesoderm (Fig. 3.1). m(θ) is a periodic function,
normalized between −1 and 1, that mimics the material cells themselves by which
the deformation region is subdivided (Fig. 3.4).

Figure 3.4: The trend of the periodic function m(θ) along a circular section. It
allows to have the same deformation along the section of the active region
where ventral furrow invagination takes place. For this specific image
and for sake of simplicity in the representation, the active region covers
all the circular section, while for the case of the embryo it is restrained
to a smaller domain. The same function is used for the cephalic furrow
simulation (m(z)).
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Such function is expressed as

m(θ) = 2
(

θ

θcell
− 1

2
− round

(
θ

θcell
− 1

2

))
(3.17)

with θcell corresponding to the dimensions of a material cell along the section
of the embryo and round being the classical step function, which gives the integer
number of θ

θcell
. The introduction of this periodic function has been necessary in

order to have the same deformation around the mesoderm cross section where θ
increases.

The deformation amplitudes αabe(t) and αac(t) are defined as

αabe(t) = αabe · t
αac(t) = αac · t

(3.18)

with αabe and αac constants that are adjusted in order to assure at the same
time the right properties of convergence and consistent final configurations. t is the
evolution parameter, which varies between timin and tiMAX ; here the superscript i
indicates the movement considered, since the minimal and the maximal values of t
vary according to the simulated event.

Similar equations can be derived for the cephalic furrow, shaped by two parallel
strips of cells undergoing an inward flexion movement. Given the different axis with
respect to which the invagination takes place, this time the active deformation occurs
along the z direction (Fig. 3.5), therefore the intermediate position x̄(θ, z, ζ) of a
generic point can be written as follows

x̄(θ, z, ζ) = p0(θ, z̃) + ζ n0(θ, z̃) (3.19)

with

z̃ = z + αceph(t)
2ζ

h
m(z) (3.20)

where αceph(t) is the amplitude of the deformation (here only apical constriction
has been introduced), defined as αceph(t) = αceph · t, with αceph a suitable constant.
m(z) is again a periodic function as defined in Eq.[3.17], depending this time on z
et zcell , which represents the cell dimensions in the z direction.

Finally, Fi
a can be computed for both cases from Eq.[3.6] in the curvilinear

coordinates system fitted here for the ellipsoidal idealized geometry of the embryo.
Thus we obtain respectively for the ventral furrow
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Figure 3.5: Apical constriction along the anterior-posterior axis for a cell during the
cephalic furrow formation.

FV FI
a =

[
1 + αac(t)2ζ

h m′(θ)
]
ϕ̃V FI

θ

ϕθ
iθ(θ̃)⊗ iθ(θ)

+
(ρ′(z)ir(θ̃) + iz)ϕ̃V FI

z

(1 + ρ′2(z))ϕz
⊗ (ρ′(z)ir(θ) + iz)

+
[
2αac(t)

h
m(θ)ϕ̃V FI

θ iθ(θ̃) + (1 + αabe(t))n0(θ̃, z)
]
⊗ n0(θ, z)

(3.21)

where ϕθ and ϕz are the same as defined in Eq.[3.12], while

ϕ̃θ
V FI =

[
ρ(z) +

(1 + αabe(t))ζ√
1 + ρ′2(z)

]

ϕ̃z
V FI =

[
1− (1 + αabe(t))ζ ρ′′(z)

(1 + ρ′2(z))3/2

] (3.22)

If we analyze the previous expressions we can notice that the term (1 + ρ′2(z))
gives the curvilinear abscissa along the embryo. At the dorsal and ventral regions
we have ρ′(z) = 0, while at the anterior and posterior poles ρ′(z) = ∞, therefore the
deformation determined by αi(t) is whether inhibited or sharpened. On the other
hand ρ′′(z) provides the curvature of the embryo which highly affects the apical
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constriction. Actually the greater the curvature, the more evident the effects of the
constriction. Therefore it would be interesting to perform a sensibility analysis in
order to evaluate the influence of the curvature on the final configuration. This
aspect has been partly argued by testing different embryo geometries that take into
account some peculiar characteristics, as amply described in Sec. 3.11.

For the cephalic furrow the active deformation gradient FCF
a is

FCF
a =

ϕ̃CF
θ

ϕθ
iθ(θ)⊗ iθ(θ)

+

[
1 + αceph(t)2ζ

h m′(z)
]
ϕ̃CF

z

ϕz(1 + ρ′2(z))
(ρ′(z̃)ir(θ) + iz)⊗ (ρ′(z)ir(θ) + iz)

+
{[

2αceph(t)
h

m(z)ϕ̃CF
z (ρ′(z̃)ir(θ) + iz)

]
+ n0(θ, z̃)

}
⊗ n0(θ, z)

(3.23)

where

ϕ̃CF
θ = ρ(z̃) +

ζ√
1 + ρ′2(z̃)

ϕ̃CF
z = 1− ζρ′′(z̃)

(1 + ρ′2)3/2

(3.24)

As mentioned before, each normalized function Fi
a is applied on a restricted

region of the embryo according to the morphogenetic movement considered; this is
possible using a regularized Heaviside function (see Sec. 2.5) that allows having Fi

a

as computed above where the deformation takes place and Fi
a = I elsewhere. The

transition between the two domains, the active and the passive one, is smoothed
within an interval equal to the dimensions of one single cell.

3.3 Germ band extension

Germ band extension is triggered by a convergent-extension movement of the cells.
This movement, as well as related mass tissue movements, may be a passive re-
sponse to some forces generated elsewhere in the embryo or it may be active, force-
producing process (Keller et al. [2000]). Actually during GBE tissues change their
morphology due to interactions occurring between cells rather than interactions with
external boundaries. Since the convergent-extension movement takes place without
cell growth and the appropriate changes in cells shape, probably rearrangement and
intercalation of cells have to be considered (Fig. 1.14) (Waddington [1940]). Harten-
stein and Campos-Ortega (Campos-Ortega and Hartenstein [1985]) have examined
embryos undergoing GBE and they have observed that in the ventral ectoderm much
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of the increase in length of the germ band occurs in absence of cell division or change
in cell shape, instead the number of cells increases along the anterior-posterior axis
and decreases along the dorsal-ventral axis. Thus they deduced that germ band
extension has to be coupled with cells intercalation or cells rearrangement. Interca-
lation seems to be extremely directional since cells intercalate for most of the time
between dorsal and ventral neighbours and only rarely with anterior and posterior
neighbours (Irvine and Wieschaus [1994]).

Figure 3.6: Convergent-extension movement of a cell during the extension of the
germ band.

Let p0(θ, z) be the initial position of a point on the middle surface of the meso-
derm as defined in Eq.[3.2] and p(θ, z, ζ) the position of a generic point through
the thickness of the mesoderm (Eq.[3.4]). Since the cells are not modelled here, the
intercalation phenomenon can not be exactly reproduced, therefore we propose a
membrane convergent-extension movement applied in the region of the germ band,
so that the intermediate position x̄(θ, z, ζ) after deformation comes to be

x̄(θ, z, ζ) = p0(θ̃, z̃) + ζn0(θ̃, z̃) (3.25)

where this time θ̃ and z̃ are equal to

θ̃ = (1 + αGBE
θ (t))θ

z̃ = (1 + αGBE
z (t))z

(3.26)
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with αGBE
θ (t) and αGBE

z (t) the amplitudes respectively of the shortening from
the dorsal to the ventral region of the embryo and of the lengthening along the
anterior-posterior axis. They are expressed, as similarly as in Eq.[3.18], as

αGBE
θ (t) = αθ · t

αGBE
z (t) = αz · t

(3.27)

with αθ and αz specific constants. It has to be noticed here that for the for-
mulation of the germ band extension we do not introduce the periodic function
neither for the deformation of θ̃ nor for the one of z̃. Actually, for the ventral and
the cephalic furrows, the modification of the active region is obtained through the
precise description of the change in shape of each single cell, therefore the need of
having for each element the same amplitude of deformation. In this specific case of
cells intercalation instead, the strain of the active region, which exactly corresponds
to the germ band, is macroscopically obtained without reference to the individual
cells.

Fi
a is here again computed from Eq.[3.6] and it is applied on the associated area

of deformation; its final expression is

FGBE
a =

(1 + αGBE
θ (t))ϕ̃θ

GBE

ϕθ
iθ(θ̃)⊗ iθ(θ)

+
(1 + αGBE

z (t))ϕ̃GBE
z

(1 + ρ′2(z))ϕz
(ρ′(z̃)ir(θ̃) + iz))⊗ (ρ′(z)ir(θ) + iz)

+ n0(θ̃, z̃)⊗ n0(θ, z)

(3.28)

with

ϕ̃GBE
θ = ρ(z̃) +

ζ√
1 + ρ′2(z̃)

ϕ̃GBE
z = 1− ζρ′′(z̃)

(1 + ρ′2(z))3/2

(3.29)

3.4 Results

With the present work, we have been able to reproduce three morphogenetic move-
ments: the ventral furrow invagination, the cephalic furrow formation and the germ
band extension. In this section we show the results for each individual simulation;
the key aspects are presented together with the limits of the model and the improve-
ments to be made, with particular emphasis on some parameters that may affect the
final configurations and have to be taken into account. The results are interesting
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because in good agreement with the experimental observations, and innovative since
never before, to our knowledge, a single FE model has allowed to reproduce more
than one morphogenetic movement (see Chapter 1). Furthermore, the analytical
description of the active forces on the cells consents to have different expressions for
the active deformation gradients Fi

a that are therefore easy to modify and can be
coupled together in order to have a concurrent simulation of two or three movements
at the time (see Chapter 4).

In this study, for sake of simplicity and because of the lack in information re-
garding the mechanical characteristics of the vitelline membrane and the yolk, only
the mesoderm is modelled. It is represented as an ellipsoid with the dimensions of
a real Drosophila embryo: 500µm in length, a cross-section diameter of 150µm and
a thickness of 15µm (Fig. 3.7). When observing the real embryo, it is possible to
notice that the curvature is not the same all long the contour and there is not a
perfect symmetry with respect to the vertical axis; actually the posterior pole is
more rounded than the anterior pole. Therefore the ellipsoid might not be the best
geometrical representation; conscious of this drawback, we have also tested other
sophisticated and accurate parametrical descriptions that allow us to take into ac-
count such aspects (Sec. 3.11). As mentioned in Sec. 2.3, a Saint-Venant model is
used to describe the mesoderm, thus only two parameters have to be chosen. The
Young’s modulus E is set at 100Pa according to literature (Wiebe and Brodland
[2005]). The Poisson’s coefficient ν is fixed at 0.45 which gives a coefficient of com-
pressibility for the mesoderm km = E

3(1−2ν) = 333Pa. If the choice of the mechanical
characteristics of the mesoderm may appear here approximative, we want to remark
that, for a biological system, and a fortiori for a micro-structure like the embryo, it
is not always evident to detect all the parameters.

For the simulations, we have developed our own weak form and we have opted for
a standard FE discretization, usually Lagrange elements of order two. The COM-
SOL Multiphysics software (v 3.4; Comsol, Inc.) is used, a code that permits to
manipulate the governing equations. All the amplitudes αi(t) depend on an incre-
mental parameter t, which varies between a minimal value timin, usually equal to 0,
and a maximal value tiMAX , which changes according to the morphogenetic move-
ment analyzed. Furthermore, the elementary forces are applied on the relative active
deformation region. Such region has almost the same dimensions of the active region
observed in reality, where each event takes place, and is obtained by a regularized
Heaviside function. It consists of a C1 differentiable function whose value is 0 for
a negative argument and 1 for a positive argument and it varies between these two
values over a length fixed by us equal to one single cell (∼= 15µm). This means that,
for our specific case, we are going to have Fi

a as computed earlier for each movement
where the deformation occurs, while elsewhere we will find Fi

a = I.
Although the vitelline membrane and the yolk have not been physically rep-

resented and therefore not meshed here, both the boundary conditions have been
implemented since the absence of one or both of them leads to final configurations
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Figure 3.7: The geometry of the embryo (AP: anterior pole, PP: posterior pole).

that do not correspond to what has been experimentally observed (Sec. 2.7). As
presented in Sec. 2.7.1.1, for the external contact with the vitelline membrane, the
values of tc and kc have been fixed at 1Pa and 1 ·108 respectively. For what concerns
instead the yolk pressure exerted on the internal surface of the mesoderm, we have
chosen the initial pressure py0 = 1 · 10−6Pa and the coefficient of compressibility
ky = 1Pa, which is much smaller than the coefficient of compressibility km previ-
ously found for the mesoderm. We assume here in fact a significant compressibility
of the yolk to consent the complete internalization of the cells that otherwise would
not be possible, unless part of the fluid overflows during the invagination.

As mentioned in Sec. 2.8, the finite elements modelling is used for our simula-
tions. The mesh employed for the ellipsoid representing the embryo is constituted
by 4947 tetrahedral elements (Fig. 3.8) which implies 28314 degrees of freedom.
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Figure 3.8: The mesh employed for the geometry of the embryo. On the left a
perspective view and on the right a cross sectional view.

3.5 Ventral furrow invagination

For the ventral furrow invagination we start by implementing only apical constriction
so that αabe(t) = 0 and Eq. [3.15] becomes

x̄(θ, z, ζ) = p0(θ̃, z) + ζn0(θ̃, z) (3.30)

The active deformation gradient FV FI
a is then

FV FI
a =

[
1 + αac(t)

2ζ

h
m′(θ)

]
iθ(θ̃)⊗ iθ(θ)

+

[
ρ′(z)ir(θ̃) + iz

]

(1 + ρ′2(z))
⊗

[
ρ′(z)ir(θ) + iz

]

+
[
2αac(t)

h
m(θ)ϕθiθ(θ̃) + n0(θ̃, z)

]
⊗ n0(θ, z)

(3.31)

As we can deduce from Eq.[3.31], the final result for this simulation may be
affected by several parameters such as the dimensions of the material cells and the
amplitude of the active deformation region. In the next sections, we will focus on
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the analysis of their influence on the final configuration, but for a first series of tests
we have decided to fix them in order to have some preliminary results. Therefore in
addition to αabe(t) = 0, we set the amplitude of a single cell θcell = π/12.

The deformation region where the ventral furrow invagination takes place is
characterized by:

• the length along the anterior-posterior axis, which remains constant and covers
about 70% (about 350µm) of the entire length of the embryo;

• the amplitude θ along the cross section of the embryo, that is chosen for this
first specific case equal to 50◦, which means about 60µm of the total circum-
ference of the embryo (Fig. 3.9).

Figure 3.9: In red the active deformation region for the ventral furrow invagination
(AP: anterior pole, PP: posterior pole). On the left a cross section of
the embryo, on the right a ventral view.

If we assume that the dimensions of an embryonic cell are approximatively 15µm
along the apico-basal axis (equal to the thickness of the mesoderm since there is a
single layer of cells) and about 10µm along the anterior-posterior axis and the cross-
section, we can deduce that the active region involves about 210 cells. Once the
ventral furrow has formed, we have almost 560 cells that have completely internalized
into the yolk, which is not so different from what it has been experimentally observed
(Sec. 1.2.3). It has to be said that the qualitative dimensions chosen here for a single
cell have been deduced from images of real embryos and have to be considered then
as a reasonable average of multiple cases. One may notice a slight disagreement
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with respect to some parameters implemented for our simulations. For instance, the
value of θcell provides a cross sectional length of a single cell approximatively equal
to 15µm, which does not match with the dimension hypothezised above. This is
due to the fact that often the choice of the numerical variables have been made to
simultaneously assure the right properties of convergence and final consistent results.

For this specific simulation t goes from tV FI
min = 0 to tV FI

MAX = 0.003. If we
consider the cell dimensions assumed above, the maximal value of αac(t) = αac ·
tV FI
MAX , where αac is a constant, provides a maximal apical constriction for a single

cell of ∼= 7µm and therefore an almost equal basal elongation, according to the
embryo curvature. Such maximal constriction corresponds to the maximal active
deformation, calculated by the analytical expression of the intermediate position x̄
of any point of the mesoderm (Eq.[3.15]), and it would be observable if the cells
were totally free (see Sec. 2.1). Here instead, it does not coincide with the final
deformation which is the composition of the active and the passive contributions
and thus larger or smaller according to the initial position of a cell.

In Fig. 3.10 we see the successive phases of ventral furrow invagination for
our simulation. If we compare our results to the real invagination (Fig. 1.4), we
notice that in our case the mesoderm narrows much more than in reality, which
leads to a greater self-contact between the two strips of the mesoderm. So far we
did not analyzed this phenomenon from a theoretical point of view, even if this
type of contact could engender repulsive forces and affects the global behaviour
of the system. Nevertheless, the vertical symmetry of the embryo is not broken
so that the self-contact is naturally taken into account. Additionally, throughout
the simulations, we have observed how some parameters may favor or inhibit such
phenomenon.

The last image (Fig. 3.10d, cross section) represents the material cells that are
obtained here by a cell marker (Heaviside function) transported by the deformation
movement. Each white sector defines a single cell that undergoes the elementary
deformations, while the black zones correspond to the transition between the two
values of the smooth step function; the more the mesoderm invaginates, the more
the apical constriction is evident, particularly at the peak of the furrow, where the
apical surfaces are almost completely shrink. Additionally the constriction switches
from apical to basal according to the mesoderm wedging; specifically, as already
mentioned in Sec. 3.2, they are apically constricted at the medio-lateral hinge point,
while basally at the dorso-lateral hinge points. It has to be noticed that, if at the
medio-lateral hinge point, which is included in the active region, the deformation is
triggered by Fa, at the dorso-lateral hinge points the basal constriction is due to the
passive reaction of the tissues Fm.

These preliminary results confirm what has been pointed out by biologists (see
Sec. 1.2.3). In fact we find that, introducing only the apical constriction as active
elementary deformation on the cells, the ventral furrow invagination still takes place.
This means that apical constriction is effectively an active force acting on the cells,
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Figure 3.10: (a:d) Successive phases of ventral furrow invagination. On the left ven-
tral views, on the right cross sections of the embryo. The cross section
at tV FI

MAX = 0.003 shows the shape changes undergone by the material
cells. Each white domain represents a single cell, while the black ones
are triggered by the smoothing effect of the classical Heaviside function
by which the material cells are obtained.
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Figure 3.11: Intermediary cross sectional view of the embryo. When apical constric-
tion takes place, the cells change their shape, but the deformation does
not guarantee the integrity and the continuity of the system; therefore
a superposition of the volumes occurs.

but furthermore we could affirm that it is also the principal deformation determining
the narrowing of the mesoderm into the yolk as already observed by Pouille (Pouille
and Farge [2008]) in his numerical simulations. This conclusion is very important
from a mechanical point of view since it allows to consider any other deformation
as a passive response of the cells to the apical constriction. Actually when apical
constriction takes place, the cells change their shape, but such modification may not
be compatible with the fact that they are in contact with one another; specifically
there might be a superposition of the volumes. This is evident from Fig. 3.11 where
we can notice the constriction at the apical surface and the widening of the basal
end, which induce a dilatation of the cells with a consequent material overlapping.
The cells are then lead up to find a new configuration assuring the continuity and
the integrity of the system, thus the successive passive deformation occurs.

3.5.1 Influence of the size of the active deformation region

As previously described, the active deformation region where the ventral furrow
invagination takes place, is determined by its length along the anterior-posterior
axis and the amplitude θ along the cross section. We have decided to not change the
size in the horizontal direction, but only to let vary the angle θ; we chose therefore
three different values, θ = 50◦, 60◦and 90◦ (Fig. 3.12). When changing the amplitude
of the active zone, the quantity of cells involved changes too; therefore we have a
number of cells comprised between 210 and 350 at the initial configuration, which
implies that, once the furrow has formed, the total final number of cells that have
internalized is comprised between 560 and 700.

In Fig. 3.13 we show the results for two series of simulations
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Figure 3.12: Variation of the active deformation region for VFI. (a) θ = 50◦ (b)
θ = 60◦ (c) θ = 90◦.

• images (a:c) represent the invagination with θcell = π/10 and θ = 50◦(a),
60◦(b) and 90◦(c)

• for images (d:f), θcell is set to π/12 and again θ varies from 50◦(a), 60◦(e) and
90◦(f)

When modifying the dimensions of the active region of deformation, we expected
that the greater θ, the higher the invagination of the mesoderm into the yolk, but
actually this is really evident only for the case of θ = 90◦ (Fig. 3.13c) and even
more for the case with θcell = π/12 (Fig. 3.13f). On the other hand, we observe
that the self-contact decreases when the active region increases, leading to a wider
invagination.

3.5.2 Influence of the dimensions of the material cells

The next parameter we are going to analyze is θcell, which determines the dimensions
of a single cell by which the mesoderm is divided along the cross section. It has to
be said that, for the simulation of the ventral furrow invagination, we have supposed
that the cells do not deform along the anterior-posterior axis, which means that
their size in the z direction remains constant. Therefore we have only changed the
dimensions along θ; specifically, we have tested θcell = π/8, π/10 andπ/12. The
lesser the value of θcell, the higher the number of the cells in the domain. Such
values for θcell may not be very accurate since, observing a real embryo, we can
count up to 80 cells along the cross-section at z = 0. According to the hypothesis
made in Sec. 3.5 concerning the dimensions of a single cell and given the dimensions
of the embryo, we find about 42 cells along the section. This theoretical number
of cells is still too big compared to the maximal one obtained for our simulations
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Figure 3.13: Influence of the size of the active deformation region on the ventral
furrow invagination; cross sections of the embryo at tV FI

MAX = 0.003.
(a:c) Simulations with θcell = π/10 and the amplitude θ of the region
equal to 50◦(a), 60◦(b) and 90◦(c). (d:f) Simulations with θcell = π/12
and again θ = 50◦(d), 60◦(e) and 90◦(f).

when θcell = π/12, which provides 24 cells. If we consider that θcell corresponds to a
group of 3 cells on which the active forces are applied, we obtain a total number of
cells along the section equal to 72 which is therefore reasonable compared to reality.
This hypothesis allows to optimize the quality of the convergence properties assuring
coherent final results.

Fig. 3.14 shows the results obtained for this specific analysis, for which the size
of the active deformation region is the same as for the first study, with θ = 50◦

(Sec. 3.5). We remark that the more the material cells composing the mesoderm,
the more evident and accentuated the self-contact between the mesodermal strips
and additionally there is a better continuity at the medio-lateral hinge point.

3.5.3 Influence of the apico-basal elongation

The previous tests not only provide a parametric study for the simulation of the
ventral furrow invagination, but they also allow us to define the best set of param-
eters giving the most consistent and similar final configuration compared to reality.
Therefore for the next simulations we have fixed the dimensions of the material cells
θcell = π/12 and the amplitude of the active region θ = 50◦.

When introducing the apico-basal elongation, the intermediate position x̄ is again
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Figure 3.14: Influence of the dimensions of the cells. Cross sections of the em-
bryo at tV FI

MAX = 0.003; the white spots represent a single cell, while
the black ones are triggered by the smoothing effect of the classi-
cal Heaviside function by which the cells are obtained. The size of
the deformation region is still the same (θ = 50◦), while θcell =
π/8 (a), π/10 (b) andπ/12 (c).

Figure 3.15: Influence of the apico-basal elongation on the ventral furrow invagina-
tion; cross sections of the embryo at tV FI

MAX = 0.003. (a) Simulation
with only apical constriction implemented (b) Simulation with both
the elementary cell deformations taken into account.

the one expressed in Eq.[3.15], so that the parameter αabe(t) defines the elongation
of the cells along their apico-basal axis. Considering the tV FI

min and tV FI
MAX previously

indicated (Sec. 3.5), the maximal value for αabe(t) = αabe · tV FI
MAX , where αabe is a

constant, provides a maximal apico-basal elongation equal to ∼= 2 · 10−2µm. As we
see in Fig. 3.15b, the presence of this additional elementary deformation does not
play a significant role for what concerns the size of the invagination, which is almost
the same compared to the simulation where only apical constriction is considered;
nevertheless it highly inhibits the self-contact.
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3.6 Cephalic furrow formation

The formation of the cephalic furrow is induced by a narrowing of the mesoderm
along the horizontal axis over the entire cross section of the embryo; this means that
the apical constriction, which, given the considerations made in Sec. 3.5, is again
the only elementary force introduced, involves a deformation along the z direction
(Eq.[3.19]). Compared to the ventral furrow, the simulation of the cephalic furrow
would have been more complex if some simplifications would have not been done.
Actually the ventral furrow, throughout its formation, maintains a position parallel
to the anterior-posterior axis. On the other hand the cephalic furrow starts to form
vertically but then, probably triggered by the extension of the germ band, which
starts to take place at that moment of gastrulation, it is pushed forward towards the
anterior pole and its final position results to be inclined at about 30◦ with respect
to the dorsal-ventral axis of the embryo. Therefore the cells constrict apically in
the z direction and additionally they skew, so that their θ (Eq.[3.19]) changes as
the process goes along. Technically this issue could have been handled either by
implementing a deformed θ in the equation of the intermediate position x̄ or by
using a Eulerian formulation instead of a Lagrangian one. For the present work we
have decided to leave aside the analysis of this peculiar aspect, which is however in
progress and probably presented for further studies. To sum up, we have modelled
the active deformation region for the cephalic furrow as showed in Fig. 3.16: parallel
to the vertical axis of the embryo, at about one third of the total horizontal length,
and fixed throughout the simulation.

The simulation starts at tCF
min = 0 and stops at tCF

MAX = 0.001; the maximal
apical constriction for a single cell in the z direction is obtained when αceph(t) =
αceph · tCF

MAX , αceph being a constant, and is equal to ∼= 5µm. Here again it has to
be noticed that the maximal active constriction has been obtained from the inter-
mediate position x̄ (Eq.[3.19]) and therefore does not represent the final observed
deformation, which is however the result of the active and the passive contributions.
The results are presented in Fig. 3.17. The maximal active deformation leading
to the formation of the cephalic furrow is much smaller than the one found for the
ventral furrow invagination; this is probably due to the fact that the active region
for this specific simulation is thinner, thus a slighter number of cells is involved and
also that the amplitude of the invagination is smaller in this case.

Finally we want to point out once more that here again only apical constriction is
introduced as elementary deformation of the cells and we still obtain the invagination
of the mesoderm giving the formation of the cephalic furrow; our previous conclusion
is then reconfirmed.



96 Chapter 3. Morphogenetic movements in Drosophila embryo

Figure 3.16: Perspective (top) and cross sectional (bottom) views of the embryo.
In red the active deformation region for cephalic furrow (AP: anterior
pole, PP: posterior pole).

Figure 3.17: (a) Cross sectional view of the embryo at the final configuration
(tCF

MAX = 0.001) for the simulation of the cephalic furrow (b) Global
view of the embryo.
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3.7 Germ band extension

The germ band extension has been the first morphogenetic event we have tried to
reproduce since the main objective was to compare the numerical results with the
experimental ones obtained by Farge and co-workers (Supatto et al. [2005]). They
detected the velocity field of an intact embryo during the convergent-extension move-
ment of the cells and they also observed that the extension of the germ band leads
to a compression at the anterior pole of the embryo. Such compression induces the
expression of the gene twist, which normally is only expressed at the ventral region
(Brouzés and Farge [2004], Farge [2003]). Biologists have therefore supposed that, if
the genes control the mechanical movements of the embryo (see Chapter 1), also the
other way round may be possible, which means that morphogenetic events influence
and regulate the expression of certain genes within the embryo. This phenomenon is
known as mechanotransduction and refers thus to the many mechanisms by which
cells convert a mechanical stimulus into chemical activity. We have been able to es-
timate the induced forces through the embryo when the convergent-extension move-
ment takes place (Sec. 3.9, 3.10); the results are coherent with what has been found
by biologists and therefore constitute an important support for further analysis.

In Fig. 3.18 the active deformation region defined for the present simulation is
represented in red; it covers approximatively 40% of the entire length of the embryo
along the anterior-dorsal axis (∼= 200µm) and it has an amplitude of about 90◦

(∼= 100µm). Therefore, according to the hypothesis made for the dimensions of
a single cell (Sec. 3.5), about 200 cells are involved in the convergent-extension
movement.

In Eq.[3.25], which supplies the intermediate position x̄ during germ band ex-
tension, we indicate with αGBE

θ (t) and αGBE
z (t) the amplitudes of the convergence

and the extension of the cells respectively; their values have been chosen assuming
a regular intercalation of the cells. This means that, given the fact that the cells
do not divide nor bind together, the initial number of cells involved is the same at
the end of the simulation. Therefore, if at the initial configuration (tGBE

min = 0) we
have approximatively 20 cells along the anterior-posterior axis and 10 cells along the
dorsal-ventral axis in the active region, at the final configuration (tGBE

MAX = 0.02),
since the germ band has undergone an elongation of about 50µm and a shorten-
ing of 20µm, we find 25 and 8 cells respectively along the anterior-posterior and
dorsal-ventral axes. The amplitude of the elongation does not correspond here to
the experimental data (Sec. 1.2.7), according to which the germ band almost dou-
bles its length; this is due to the fact that our simulation reproduces only part of the
convergent-extension process, so that the mass movement is not fully completed.

The results are shown in Fig. 3.19. It is possible to outline a confined area of
the dorso-lateral region of the embryo where the cells converge and shorten; on the
side boundary of the area instead, the cells start to elongate and they are involved
in whirlpool movements, in particular at the posterior pole.
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Figure 3.18: In red the active deformation region for the germ band extension; cross
section (left) and ventral (right) views (AP: anterior pole, PP: posterior
pole).

Figure 3.19: Frontal view of the embryo for the simulation of the germ band exten-
sion (tGBE

MAX = 0.02). The black arrows represent the displacements.

The constitutive law adopted for the present work does not depend on time,
but we have tried, through a calibration, to estimate the velocity by which the
tissues deform and we have compared it with experimental data. The germ band
extension of a real Drosophila embryo takes approximatively 2h to complete, with a
final elongation of about 2.5 times the initial length. In our simulation, at the initial
configuration, the active region covers 200µm, which means that theoretically it



3.7 Germ band extension 99

would stretch to 500µm. However, as mentioned before, we observe a total elongation
of 50µm, therefore only part of the morphogenetic process is reproduced; thus we
can deduce that tGBE

MAX = 0.02 corresponds to 20mn of the real convergent-extension
movement. If we indicate for our incremental parameter t that&t = 0.02 and for the
real period of time that &tphysics = 20mn and we calculate the velocity rate vectors
∂umax/∂t at the final configuration, the maximal velocity vmax can be qualitatively
computed from

vmax =
∂umax

∂t

&t

&tphysics

∼= 0.25µm/mn (3.32)

In Fig. 3.20 we show the velocity field for our simulation together with the
experimental one obtained by Supatto (Supatto et al. [2005]). He has detected, by
microscopy observations on wild-type embryos, the velocity field at tphysics = 29mn
and he has found a maximal velocity in the order of a few µm/mn, which is larger
than our previous result. In despite of this, in both cases, the trend of the velocity
field is very similar; in particular we remark an acceleration toward the posterior
pole and the vortex movement at the dorso-lateral region.

Figure 3.20: (a) Frontal view of the embryo at the end of the GBE simulation
(tGBE

MAX = 0.02). The blue arrows show the velocity field (black scale
arrow, ∼= 0.25µm/mn) (b) Velocity field for real wild-type embryo ex-
perimentally obtained (black scale arrow, 5µm/mn) (Supatto et al.
[2005]).
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3.8 Hyperelastic model tested for GBE

As described in Sec. 2.3, we have chosen to model the mesoderm as a Saint-Venant
material, which is probably not the best approach for our problem for two principal
reasons. First of all, in previous works we often found a hyperelastic analysis of the
mechanical characteristics of the embryo. Secondly, we are aware that the embryonic
tissues show visco-elastic properties that are therefore not taken into account here,
but may strongly affect the global behaviour of the system.

In order to catch up with these drawbacks, we have decided first to make a com-
parison between our model, which is simple and linear, and the hyperelastic models
proposed in literature. In Sec. 2.3 we have pointed out the fact that the equation
describing the Neo-Hookean material, which is a particular case of a Mooney-Rivlin
material, corresponds to a quadratic form of the Saint-Venant model (Eq.[2.47]).
By a power extension linearized to the first order of the Neo-Hookean constitutive
law and imposing a vanishing initial stress, we are able, from Eq.[2.48], to deduce
the values for α1 and α2, which are defined for the hyperlastic model considered.
Therefore we obtain for our specific case that α1 = µL/2 * 17 and α2 = µL/2 * −17
(µL is the classical Lamé’s coefficient defined in Eq.[2.37]).

Figure 3.21: Simulation of the GBE with a hyperelastic model; the arrows represent
the displacements field. The results show a high similarity with the
ones with a Saint-Venant model.

We have tested the hyperelastic model for the GBE simulation. The new param-
eters previously found have been implemented and we have replaced the expression
of the Second Piola-Kirchhoff tensor (Eq.[2.44]) with the new one in the PVP for-
mulation. The results are very similar to the ones obtained in Sec. 3.7. It is possible
to see a beginning of the vortex movement at the posterior pole of the embryo even
tough the convergence from the dorsal to the ventral region is less worsen. At the
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maximal values αGBE
θ (t) = αθ · tGBE

MAX and αGBE
z (t) = αz · tGBE

MAX , t varying between
0 and 0.023, we find a maximal elongation and shortening of the germ band respec-
tively of about 56µm and 23µm. Such values are not so different from the ones
found with a Saint-Venant model (Sec. 3.7); we can then conclude that our first
choice can be considered appropriate for the analysis of our problem.

3.9 Estimation of the induced forces through the em-
bryo

In the present study, the gradient decomposition method allows us to take into
account the active and the passive forces that provide the final configuration for
each morphogenetic movement that we simulate. The passive forces are considered
as a consequent response to the active ones that have been individuated by biologists
through experimental observations. It is still difficult to detect which ones among the
elementary deformations acting on the cells have to be hold as active and which ones
as passive forces. In particular this is evident for the ventral furrow invagination
(Sec. 1.2.3) where five movements have been observed and only two of them are
considered as active. Contrarily our simulations have pointed out that even when
only one of these elementary forces, specifically apical constriction, is implemented
we still obtain the invagination of the mesoderm into the yolk (Sec. 3.5).

So far the active forces are directly introduced into our formulation but they are
actually engendered by chemical signals developing within the embryo that are not
taken into account here. Similarly, we are aware that the passive forces produced at
the active regions and responsible, in our specific case, for the formation of the ven-
tral and the cephalic furrows and the germ band extension, may in turn trigger new
active forces elsewhere in the embryo. This key aspect has been amply studied by
Farge and co-workers for the germ band extension. In fact they have demonstrated
that the tissues extension at the ventral region leads to a consequent pressure at the
anterior pole where, therefore, the expression of the twist, a gene which normally is
only ventrally expressed, is observed (Brouzés and Farge [2004], Farge [2003]). This
means that not only there is a continuous and concatenate series of mechanical forces
developing during embryogenesis, but also and more importantly that such forces
may highly influence the expression of specific genes also at long distance in the
embryo, which implies a mechanotransduction pattern throughout the development.

For this reason we believe it is important to evaluate how the tissues adjacent to
the active regions respond and behave when the active forces are applied. In order
to do so, we are going to analyze the volume variation &V within the mesoderm,
which indicates if the cells compress or expand. We can write

&V =
dV − dV0

dV0
=

dV

dV0
− 1 = detF− 1 (3.33)
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From the definition of the Right Cauchy-Green deformation tensor C (Eq.[A.11]),
we have

C = FTF = I + 2E (3.34)

(detF)2 = det(I + 2E) (3.35)

Then, by a 1st order approximation, we obtain

detF ∼= 1 + trE (3.36)

and Eq.[3.33] becomes

&V ∼= trE (3.37)

Consequently, the pressure force that can be engendered within the embryo is
calculated as

pm =
trSm

3
= kmtrEm =

E

3(1− 2 ν)
trEm (3.38)

where Sm is the Second Piola-Kirchhoff tensor which provides the constitutive
law of the mesoderm (Eq.[2.35]), km is the coefficient of compressibility for the
mesoderm and Em is the Green-Lagrange tensor as defined in Eq.[2.36], which varies
between the active and the passive regions.

We are now going to estimate, for each morphogenetic movement, the magnitude
of the induced pressure forces. First of all it has to be noticed that for the simulation
of the ventral and the cephalic furrows the strains are highly concentrated at the
active zone, so that the forces slightly spread around. In the case of the germ band
extension instead, we observe that, even if at a lower rate, the strains can also be
transmitted at long distance, as later on described.

For the ventral furrow (when both apical constriction and apico-basal elongation
are implemented) we observe the elongation of the basal surfaces of the cells at the
median hinge point, while the apical surface are constricted as expected; also tissues
extend internally at the dorso-lateral hinge points, even if the amplitude of such
extension is much smaller than the former one (Fig. 3.22). The same observations
can be drawn for the cephalic furrow where, according to the elementary active force
introduced (apical constriction), we have a compression of the cells on the external
surface, while they enlarge at the internal surface. From a quantitative point of
view it is possible to estimate the range of values for pV FI

m and pCF
m in the active
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and passive region (all the parameters are the same as described in Sec. 3.5 and 3.6
respectively) as reported here below

active region

{
−167Pa < pV FI

m < 1906Pa

−193Pa < pCF
m < 1770Pa

(3.39)

passive region

{
−447Pa < pV FI

m < 447Pa

−440Pa < pCF
m < 209Pa

(3.40)

Figure 3.22: Volume variation &V for the VFI simulation. On the left a bottom
view, on the right a cross-sectional view.

The analysis of the germ band extension is more interesting because the results
can be compared with experimental observations. The convergent-extension move-
ment of the cells is implemented for this simulation in order to obtain the final
extension of the germ band at the ventral area of the embryo. The dorso-lateral tis-
sues around the active region undergo a compression along the dorsal-ventral axis,
while in the ventral area tissues elongate thus an extension is observed. Such exten-
sion reaches the anterior and posterior poles, where it is restrained by the sharpened
curvature of the embryo and where a slight compression occurs on the dorsal side.
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It is possible to locally evaluate the volume variation so that we find &V = −0.0014
and &V = −0.007 respectively at the anterior and the posterior pole (Fig. 3.23).
The negative sign clearly indicates a compression of the cells whose magnitude is
in the order of the mean sagittal deformation that have been experimentally de-
termined (Desprat et al. [2008], Supatto [2005]). The estimated pressure when the
germ band extension occurs can be calculated again for the active and the passive
regions and we obtain

{
active region −13Pa < pGBE

m < 23Pa

passive region −43Pa < pGBE
m < 7Pa

(3.41)

and specifically at the anterior and the posterior pole, which are included in
the passive region, we find −0.46Pa and −2.33Pa respectively. These data confirm
therefore, from a qualitative point of view, the experimental observations that show
the presence of a compression at the anterior pole. In order to have a quantitative
analysis, it would be necessary to evaluate the magnitude of the real pressure, to
compare it with the value found for our simulation.

Figure 3.23: Volume variation &V for the GBE simulation. Here the values scale
has been adapted to highlight the effects on the anterior and posterior
pole.



3.10 Estimation of the induced shear stress through the embryo 105

3.10 Estimation of the induced shear stress through the
embryo

If the variation of the mesoderm volume previously calculated indicates how the
cells compress or expand, the norm of the deviator of the Green-Lagrange tensor
Em for the passive deformation, as similarly as for the Von Mises criterion, consents
to determine how the cells behave with respect to one another. It provides the dis-
tribution of the shear deformations through the mesoderm domain and it is defined
as follows

‖dev Em‖ =
√

E2
mxx

+ E2
myy

+ E2
mzz

−EmxxEmyy −EmyyEmzz −EmxxEmzz

+3E2
mxy

+ 3E2
myz

+ 3E2
mxz

(3.42)

For the germ band extension, when the parameters are the same as the ones
obtained in Sec. 3.7, we find dev Em = 0.01 and dev Em = 0.014 respectively at
the anterior and the posterior pole. In order to estimate the magnitude of the
strain induced at the two poles by the extension of the germ band, dev Em can be
compared, at first approximation, to the shear deformation γ, so that we can write

τ = µ γ * µL‖devEm‖ (3.43)

where τ is the shear stress and µL the Lame’s coefficient (Eq.[2.37]). Therefore,
having µL = 34.4, we obtain τGBE * 0.34Pa at the anterior pole and τGBE * 0.48Pa
at the posterior pole; globally τGBE varies from a minimal value of about 0.01Pa to
a maximal value of 6.88Pa. For the ventral and the cephalic furrow we find instead
0.13Pa < τV FI < 198Pa and 0.07Pa < τCF < 190Pa respectively; these values
are largely greater than the ones obtained for the GBE, where the strains are less
concentrated and may be transmitted at long distance within the embryo. Actually,
if we ma ke a comparison with experimental data, we notice that the maximal value
for τGBE is in the order of the laminar shear stress applied on cells placed in a
bioreactor over 24h, that is usually comprised between 10 and 30Pa (Traub and
Berk [1998]). At this intensity the shear stress may induce several cellular effects
such as coagulation, migration, proliferation or adhesion.

3.11 Influence of the geometry on VFI and GBE

As described in Sec. 3.1, the embryo is parametrically represented here by an el-
lipsoid in a cylindrical coordinates system. However, the real embryo presents a
non-perfect symmetry between the anterior and the posterior pole which may in-
fluence those morphogenetic movements that take place along the horizontal axis.
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Furthermore it is possible to observe several changes in curvature that one must
take into account. Therefore we present an analysis of the curvature radius ρ(z)
(Eq.[3.3]) for the particular cases of the ventral furrow invagination and the germ
band extension. It has to be said that for the VFI we have implemented here only
the apical constriction and, for both the events (VFI and GBE), all the variables are
set as in Sec. 3.2 and 3.3. Any modification of ρ(z) will affect the initial position
of the points p within the thikness of the mesoderm (Eq.[3.4]) and therefore the
expression of the intermediate position x̄ will change too. This specific study has
been conducted in collaboration with Anne-Sophie Mouronval of the MSSMat Lab-
oratory and it has been proposed for the first time at the 9ème Colloque National
en calcul de structure de Giens (Mouronval et al. [2009]).

Figure 3.24: Three different geometries have been tested. (a) The regular ellipsoid
(b) A symmetric geometry where both the poles are enlarged (c) A non-
symmetric geometry where only the posterior pole is more rounded.

So far three geometries have been tested: the ellipsoid (1st case), a symmetric
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geometry with respect to the vertical axis where the poles are enlarged (2nd case),
an asymmetric case with only one enlarged pole (3rd case) (Fig. 3.24). All the
geometries are obtained using the loft function in Matlab, which allows to construct
a three dimensional object from an adjacent series of two dimensional surfaces.

1st case

The first case is represented by the ellipsoid that is parametrically obtained by
ρ(z) as defined in Eq.[3.3] (Fig. 3.24a).

2nd case

Here the symmetry with respect to the vertical axis is maintained, but the radius
ρ(z) is modified and can be written as

ρ(z) = b

√
1−

(z

a

)4
(3.44)

which provides a global geometry as in Fig. 3.24b, where the two poles are more
rounded than for the ellipsoid.

3rd case

The third case is a combination of the classical ellipsoid (1st case) and the pre-
vious geometry (2nd case). Actually ρ(z) changes according to the horizontal coor-
dinate as follows






z < 0 ρ(z) = b

√
1−

(z

a

)2

z > 0 ρ(z) = b

√
1−

(z

a

)4
(3.45)

so that the embryo is represented as in Fig. 3.24c. This geometry better repro-
duces the real embryo since the symmetry with respect to the dorsal-ventral axis of
the embryo is no more respected and only the posterior pole is more rounded.

Results

When comparing the three cases for the VFI (Fig. 3.25, 3.26), we observe a
greater invagination for the case of the ellipsoid for any z considered and in particular
at z = 0. The invagination for the the 3rd case is asymmetric and similar to the
first case for z < 0 and to the second one for z > 0, while at z = 0 the amplitude is
intermediary between the two previous cases.
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Figure 3.25: Frontal sections of the ventral furrow invagination for the 1st geometry
(a), the 2nd (b) and the 3rd (c).

Figure 3.26: Cross sections of the ventral furrow invagination. (a) and (b) represent
the 1st and the 2nd geometries, while (c) and (d) correspond to z < 0
and z > 0 respectively for the 3rd case.
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For the simulation of the GBE (Fig. 3.27) it is evident from the 2nd and the
3rd geometries that when the anterior or the posterior pole are more rounded, the
tissues are able to extend more toward the dorsal region of the embryo than for the
case of the regular ellipsoid. Such greater elongation at the posterior pole is actually
observed in real embryos and, because of the presence of the cephalic furrow which
constipate the displacements, leads to the formation of little invaginations at the
dorsal region that are not reproduced for our simulation.

Figure 3.27: Results for the GBE when the three geometries are used (a) 1st case
(b) 2nd case (c) 3rd case.

These results show how a local change of ρ(z) may non-locally influence the
final configurations because of the longitudinal displacements. In particular a larger
curvature of the poles influences the global displacements, especially for the case of
the GBE at the posterior pole. On the other hand the non-symmetry with respect
the dorsal-ventral axis of the embryo does not provide evident differences between
the anterior and the posterior poles for what concerns the deformations. At present
we are working on two other geometries that take into account the flattening of
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the mesoderm on the dorsal region of the embryo and the greater curvature at the
ventral part.

4th case

Here ρ(z) is still the same as for the ellipsoid but any point p0 on the middle
surface will be expressed this time as

p0 = ρ(z)ir(θ) + z iz + β
(z

a

)2
ix (3.46)

where the last term consents to displace the two dimensional surfaces, used to
obtain the three dimensional geometry, along the vertical axis of the embryo of a
constant β, so that the symmetry with respect to the anterior-posterior axis is no
more respected (Fig. 3.28). The new equation for p0 is not defined in a proper
cylindrical polar basis anymore, thus the covariant and contravariant basis must be
recalculated. With this representation the dorsal region will be flatter, while the
ventral region more rounded and still symmetric with respect to the dorsal-ventral
axis.

Figure 3.28: A symmetric geometry with respect the vertical axis, but asymmetric
with respect to the horizontal axis. The dorsal region is flatter while
the ventral one more rounded.

5th case

The last case is the most complex, but also the most realistic; it results by
the combination of the 3rd and the 4th case. All the points p0 on the middle
surface of the mesoderm are still defined as in Eq.[3.46], but this time also ρ(z)
changes according to Eq.[3.45]. This geometry is the most accurate since it allows to
reproduce both the flattening of the dorsal region of the embryo and the asymmetry
between the anterior and the posterior pole.
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Figure 3.29: An asymmetric geometry with respect to both the vertical and the
horizontal axis. Actually the dorsal region is flatter and the posterior
pole is more rounded than the anterior one.

3.12 Conclusions

We consider that the model we have presented here is innovative and original for
several aspects.

First of all, it allows to simulate three morphogenetic movements: ventral furrow
invagination, cephalic furrow formation and germ band extension. Two of them have
been investigated for long time and many models have been proposed in literature
(Chapter 1); for what concerns the cephalic furrow instead, this is, to the best of
our knowledge, the first time it has been reproduced. The three morphogenetic
events are therefore obtained using the same model, which constitutes one of the
main advantages of the present work. This is possible because, by the parametric
description of the geometry of the embryo, each active deformation gradient Fi

a has
a proper expression according to the movement considered and it is user defined,
which consents to easily modified it.

The elements of the mesh used for our simulations do not coincide with the cells
of the mesoderm. This choice has been made for multiple reasons:

• given the small dimensions of the system we are working with, it would have
not been trivial to obtain a mesh whose elements are exactly equivalent to the
cells of the single layer composing the mesoderm;

• in order to get a higher precision for the results, it would have been probably
necessary to refine the mesh much more than a single cells size, thus more
computer time consuming would have been demanded to run the simulations;

• a mesh element does not correspond to a specific geometrical object, contrarily
to the meshed region (the embryo), but it rather supplies the functions by
which we express the unknown displacements field.
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The elementary active forces introduced for each movement are then mesh inde-
pendent, but it is however possible to visualize, through specific analytical markers,
the material cells and the relative deformations that they undergo all long the sim-
ulation.

To represent the mesoderm we have decided to use a Saint-Venant material,
which may appear at first sight an approach too simplistic and approximative for our
problem, since we are treating with a biological system where many parameters have
to be taken into account. Although, we have extensively compared the constitutive
law we use with the models found in literature and have also showed that the results
obtained for our simulations, specifically for the germ band extension, are not so
different from the ones obtained for a Neo-Hookean material (Sec. 3.8). Therefore
our choice results appropriate and the linearity of the constitutive law consents to
skip out material’s constants that are usually very difficult to detect. Nevertheless,
so far we have not taken into account the visco-elasticity of the mesoderm, which
may play a significant role and may affect the global response of the embryo. This
is one of the aspects we would like to develop in the future and on which we are
working in order to have a model completely coherent with the reality.

The simulation of the ventral furrow invagination provides very interesting re-
sults; if we compare it with the in vivo experiments we notice a strong similarity,
except for the amplitude of the invagination into the yolk, which results more ac-
centuated for our model. Together with an initial simulation where only apical
constriction is introduced as active force on the cells (Sec. 3.5), we have done fur-
ther analysis by which we have individuated the parameters that can influence the
final configuration. Among them we find the size of the active region of the deforma-
tion (Sec. 3.5.1), the dimensions of the material cells (Sec. 3.5.2), the apico-basal
elongation (Sec. 3.5.3) and the geometry of the embryo (Sec. 3.11). With this
study we are able to confirm in part what has been pointed out by biologists and
also to put forward a relevant conclusion, which may change the global view of the
problem. Actually, by experimental observations, it has been possible to find five
elementary cells deformations and it has been deduced that only two of them, the
apical constriction and the apico-basal elongation, are active forces, while the other
three could be considered passive responses of the cells. In spite of this consid-
eration, in our first simulation, where only apical constriction is implemented, we
obtain the invagination of the mesoderm: therefore we can conclude that probably
only this active force really triggers the narrowing of the mesoderm, whereas all the
others are effectively a passive reaction of the cells due to their need to find a final
configuration assuring the integrity and the continuity of the system.

Even though, as mentioned before, the cephalic furrow has never been simulated
and therefore our model can be considered forerunner in this sense, it presents some
limitations on which we are trying to work to get a more realistic representation.
In fact, observing experimental movies of the embryo development, we notice that
the furrow starts to form vertically but then, probably pushed by the germ band
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extension, it moves forwards, towards the anterior pole, so that its final position re-
sults to be inclined at 30◦ with respect to the dorsal-ventral axis of the embryo. The
analysis of this peculiar characteristic would have probably demanded a Eulerian
formulation of the problem, but for sake of simplicity we have decided to begin with
an easier modelling. Therefore the active deformation region is placed vertically at
one third of the horizontal length of the embryo. Given the considerations made for
the ventral furrow simulation, here again we only implemented the apical constric-
tion and we still get the narrowing of the mesoderm into the yolk: once more our
conclusion can be considered valid and pertinent.

The simulation of the germ band extension has been the first to be performed be-
cause the convergent-extension movement seemed to be much simpler than the others
to formulate and reproduce and also because many were the aspects to compare with
the experimental observations. In particular, we have analyzed how the forces are
transmitted through the embryo when the extension of the ventral tissues occurs;
even if at lower rates, for this specific case, the strains are less concentrated than
for the VFI and CF formation and easily spread around. Actually, we have found a
compression at the anterior pole, in the order of some Pa, which may correspond to
the one observed by biologists and responsible for the expression of the twist, a gene
normally expressed at the ventral region only. This represents a significant support
to the hypothesis according to which there would be a mechanotransduction pattern
through the embryo allowing to transform a mechanical stimulus into a chemical
signal. It is therefore necessary to take into account the fact that the passive forces,
so far considered as a consequent response to the active ones directly introduced into
the formulation, may play the role of active forces and lead to new strains elsewhere
in the embryo.

Given the consistence of the results for the individual simulations of the three
morphogenetic movements, we have decided to improve our model coupling together
the single formulations in order to obtain a concurrent simulation of the events. In
the next chapter we are going to present this last part of the work and the approaches
that have been employed.
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Chapter 4

Concurrent simulation of
morphogenetic movements

Given the coherent results obtained for the individual simulations of the morpho-
genetic movements, we have decided to perfom a concurrent simulation. Such simu-
lation allows to put together, by two or three, the events previously described (Sec.
3.2, Sec. 3.3) in the real chronological order, so that an exhaustive representation
of the successive phases of the Drosophila gastrulation is provided. This part of the
study represents the most innovative contribution of our work because, to the best
of our knowledge, never before this aspect of the problem have been treated.

In this chapter we are going to describe the two methods proposed for this specific
simulation. The first approach (Sec. 4.1) is the most intuitive and it does not require
further manipulations to be tested. Actually it consists in coupling together the
movements by the simple multiplication of the proper active deformation gradients
Fi

a, as found in Chapter 3. Therefore the final deformation is still the composition of
the passive and the active deformations, but this time the latter is represented by the
active gradients as many as the morphogenetic movements we want to reproduce.
The results are interesting for the concurrent simulation of the two furrows, while
when the germ band extension is introduced, the method presents some limitations.
Thus a more adapted and precise formulation is necessary, that is an ”updated”
Lagrangian formulation, which consents to take into account some important aspects
so far put aside. Above all, the fact that the cells, when belonging to more than
one active deformation regions, are involved in successive elementary deformations
implies that we have to consider the modification of the initial configuration. For
this second method then, the final deformation of the mesoderm is decomposed into
a series of intermediate deformations, so that the reference configuration is updated
as similarly as for a Eulerian formulation. In Sec. 4.2 we describe in detail the
approach that constitutes one of the major perspective of the present work.

115
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4.1 Lagrangian formulation

When coupling together several morphogenetic movements it is necessary to evaluate
peculiar aspects that generate the complexity of the problem.

First of all, each movement has a proper active deformation gradient Fi
a, which

has been analytycally obtained thanks to the parametrical description of the geom-
etry and according to the elementary forces introduced. Therefore, when combining
more than one event, the values of the constants αi in the relative expressions of
the deformation rates αi(t) = αi · t, have to be adjusted in order to simultaneously
satisfy the suitable properties of convergence and final consistent results.

Secondly, there is a time delay between the occurence of the events. Actually, the
formation of the ventral and the cephalic furrows takes place at the same time (even
if the cephalic furrow takes less time to complete); the germ band extension instead
begins while the ventral furrow is not fully formed. For the sake of simplicity, we
will assume here that the GBE occurs only once the ventral furrow has reached its
final form.

Finally, each morphogenetic movement occurs at a different region of the embryo,
therefore sometimes the intersection of these active regions may not be empty. For
the cephalic and the ventral furrows the size of the intersection is very small, while
a larger area has to be considered for the ventral furrow and the germ band, which
might inhibit the deformations when the Fi

a are superposed. Additionally, from
experimental movies, we can deduce that, once formed, the ventral furrow closes
internally, so that the two strips of the mesoderm fuse together and the ventral region
is no more deformed by the invagination, but a new tissue appears, similar to the
initial one. The open question is then if the germ band extension involves cells that
have already been deformed by the formation of the two furrows, or a population of
new cells undergoes the convergence-extension movement on the dorsal-lateral area
of the embryo.

For the first method, the Lagrangian formulation presented in Chapter 2 is main-
tained. The gradient decomposition is still applied, thus the final deformation can
be written as the composition of the active and the passive deformations (Eq.[2.2]),
but when coupling together more than one morphogenetic movement, the active
deformation gradient is the multiplication of each active deformation gradient, as
many as the events taken into account, so that we can write

F = FmFn
aF

n−1
a ...F1

a (4.1)

This approach is to be related to the multi-configuration advocated by Sidoroff
(Sidoroff [1976]) in the modelization of large visco-elastic deformations with several
Maxwell units.
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Concurrent simulation of VFI and CF formation

First of all, we simulate the ventral and the cephalic furrow formation since they
occur at the same time. The active regions, where the elementary deformations are
applied, are the same as the one described in Sec. 3.2; therefore, by the superposition
of the two, an intersection appears at the ventral area of the embryo (Fig. 4.1).

Figure 4.1: Ventral view of the embryo. Both the active regions for the ventral and
the cephalic furrows are represented (light green); in red the intersection
of the two.

From Eq.[4.1], we can write

F = FmFV FI
a FCF

a (4.2)

The active deformation gradients Fi
a are obtained from Eq.[3.6]. In order to

take into account the time delay between the events, we have introduced a function
g(t)i depending on the icremental parameter t; this function allows us to settle the
beginning and the end of each morphogenetic movement (Fig. 4.2).

Therefore the active deformation gradient for the ventral furrow invagination
(only apical constriction is introduced for this case (Eq.[3.31])) becomes

FV FI
a =

[
1 + αac(g(t)V FI)

2ζ

h
m′(θ)

]
iθ(θ̃)⊗ iθ(θ)

+

[
ρ′(z)ir(θ̃) + iz

]

(1 + ρ′2(z))
⊗

[
ρ′(z)ir(θ) + iz

]

+
[
2αac(g(t)V FI)

h
m(θ)ϕθiθ(θ̃) + n0(θ̃, z)

]
⊗ n0(θ, z)

(4.3)

where
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Figure 4.2: Both the furrows start to form at t = 0, but the cephalic furrow stops
earlier (tCF

MAX = 0.01), while the ventral one takes more time to com-
pletely form (tV FI

MAX = 0.03).

g(t)V FI =

{
t < tV FI

MAX αac · t
t # tV FI

MAX αac · tV FI
MAX

(4.4)

For the cephalic furrow, according to Eq.[3.23], we have

FCF
a =

ϕ̃CF
θ

ϕθ
iθ(θ)⊗ iθ(θ)

+

[
1 + αceph(g(t)CF )2ζ

h m′(z)
]
ϕ̃CF

z

ϕz(1 + ρ′2(z))
(ρ′(z̃)iθ(θ) + iz)⊗ (ρ′(z)ir(θ) + iz)

+
[
2αceph(g(t)CF )

h
m(z)ϕ̃CF

z (ρ′(z̃)ir(θ) + iz)
]

+ n0(θ, z̃)⊗ n0(θ, z)

(4.5)

with

g(t)CF =

{
t < tCF

MAX αceph · t
t # tCF

MAX αceph · tCF
MAX

(4.6)
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The two furrows start at the same time at t = tV FI
min = tCF

min = 0, but, since
involving a smaller number of epithelial cells, the cephalic furrow takes less time to
form. Thus its process of formation stops at tCF

MAX = 0.01, while the ventral fur-
row keeps to develop until tV FI

MAX = 0.03, when the convergent-extension movement
would start and the furrow has completed the invagination into the yolk. It has
to be noticed that the values of tV FI

MAX and tCF
MAX are larger than the ones found

for the individual simulations, even if the maximal values of deformations for the
VFI and CF formation are the same as the previous ones, respectively ∼= 7µm and
∼= 5µm. This is mostly due to the high non-linearity of the problem which requires
a diminution of the αi in the expression of the deformation amplitudes in order to
match the right properties of convergence; therefore the smaller the αi, the greater
tiMAX .

The results are very interesting (Fig. 4.3); the two furrows are clearly developed
and, at the intersection of the two active regions of deformation, it is possible to
observe a further invagination of the mesoderm probably due to the superposition of
the apical constriction along the anterior-posterior axis for the cephalic furrow and
along the radial direction for the ventral furrow.

Figure 4.3: Cross sectional view of the embryo for the concurrent simulation of the
ventral furrow invagination and the cephalic furrow formation (t = 0.03).

Concurrent simulation of VFI , CF formation and GBE

When adding the germ band extension, which is the last morphogenetic move-
ment to take place, the total deformation gradient F can be written as

F = FmFGBE
a FV FI

a FCF
a (4.7)

where FV FI
a and FCF

a are the same of Eq.[4.3, 4.5], while FGBE
a is equal to



120 Chapter 4. Concurrent simulation of morphogenetic movements

FGBE
a =

(1 + αGBE
θ (g(t)GBE)ϕ̃θ

GBE

ϕθ
iθ(θ̃)⊗ iθ(θ)

+
(1 + αGBE

z (g(t)GBE)ϕ̃GBE
z

(1 + ρ′2(z))ϕz
(ρ′(z̃)ir(θ̃) + iz)⊗ (ρ′(z)ir(θ) + iz)

+ n0(θ̃, z̃)⊗ n0(θ, z)

(4.8)

and g(t)GBE is slightly different from g(t)V FI and g(t)CF . In fact, even if in
reality the GBE starts while the process of invagination of the ventral furrow is still
taking place, here we assume that the convergent-extension movement begins once
the VFI has completed. Thus we set tGBE

min = tV FI
MAX = 0.007 while the cephalic furrow

completes its formation at tCF
MAX = 0.001 and tGBE

MAX has been found at t = 0.02.

Figure 4.4: The furrows start their formation at t = 0; the cephalic furrow stops ear-
lier (tCF

MAX = 0.001) and once the ventral furrow has completed formed
(tV FI

MAX = tGBE
min = 0.007), the germ band begins to elongate and will stop

at t = 0.02.

As mentioned earlier, for this specific case we have assumed that the cells in-
volved firstly in the ventral furrow invagination process are later interested by the
convergent-extension movement. Therefore, when superposing the relative active
regions, we obtain this time two intersection: again for the ventral and the cephalic
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furrow and now also for the ventral furrows and the germ band extension (Fig. 4.5).

Figure 4.5: Ventral view of the embryo. The three active regions are represented
(light green: VFI and CF, light blue: GBE); in red the relative intersec-
tions.

If for the ventral and the cephalic furrows, the maximal apical constrictions for
each cell are very similar to the ones found for the previous concurrent simulation,
respectively ∼= 5µm along the cross section and ∼= 4µm along z, we can not state the
same for the germ band extension. In fact for tGBE

MAX = 0.02 we obtain an elongation
of about 2.5 · 10−2µm and a shortening of 2 · 10−2µm. This is probably due to
the fact that the cells in the ventral region of the embryo, that are completely
internalized and apically deformed by now, are not able anymore to undergo the
same convergent-extension movement as observed during the individual simulation.
Such peculiar aspect constitutes an important limitation for our model and it is
possible to notice it if we observe the successive phases of the simulation shown in
Fig. 4.6. The formation of the two furrows is clearly evident as for the individual
simulations; the GBE instead is not so pronounced, except at the posterior pole
where a beginning of a vortex movement is noticeable. Furthermore the presence of
the cephalic furrow toward the anterior pole seems to highly inhibit the extension
of the tissues. We remark also the fact that the ventral furrow, which is supposed
to stop its invagination at tV FI

MAX = 0.007, seems to keep internalizing (Fig. 4.6f),
probably triggered by the convergence of the cells involved in the elongation of the
germ band.

In order to sort out such inconveniences, we propose two different solutions. The
first one concerns the active deformation region for the GBE. So far we have consid-
ered that most of the cells involved in ventral furrow invagination, are successively
deformed by the convergent-extension movement (Fig. 4.5), however in reality such
cells, that completely internalized, later spread through the yolk so that a new tis-
sue forms. Therefore it seems to us that a new population of cells, still affected but
more slightly by the previous elementary deformations, undergoes the extension of
the germ band. Since it would be too difficult to numerically simulate the closure
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of the ventral furrow, we could imagine that the active region for the GBE is con-
stituted by those cells that, at the onset of gastrulation, were placed dorso-laterally
and now, once the furrow has formed, probably pulled by the invagination itself, are
placed latero-ventrally. Even if not totally realistic, this solution could be useful to
obtain the concurrent simulation.

Figure 4.6: Successive phases of the concurrent simulation for the three morpho-
genetic movements. (a) Frontal view of the embryo at tCF

MAX = 0.001,
when the cephalic furrow has formed and the ventral furrow starts to in-
vaginate (b) Cross sectional view at tCF

MAX = 0.001 (c) Frontal view of the
embryo when the furrow has almost completely internalized (t = 0.005)
(d) Cross sectional view at t = 0.005 (e) At tV FI

MAX = tGBE
min = 0.007 the

extension of the germ band starts; we notice a beginning of the tissue
elongation at the posterior pole (f) The simulation finishes at t = 0.02.
The ventral furrow has invaginated more, probably triggered by the con-
vergence movement of the GBE, which is still not so evident except at
the posterior pole (The black arrows indicate the displacements field).
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Nevertheless, it is necessary to take into account that, when the GBE starts,
the initial configuration has changed and it needs therefore to be recalculated. Fur-
thermore, the initial regular geometry representing the embryo, is not an ellipsoid
anymore so that the parametrical description has to be adapted. For this reason
we propose a second solution consisting in introducing an ”updated”Lagrangian for-
mulation that allows to decompose the total deformation into several intermediary
steps, so that the reference configuration is updated, as for the case of a Eulerian
formulation. In the next section we are going to analyze more in detail this new
approach.

4.2 Updated Lagrangian formulation

This method is very similar to the one used by Sidoroff (Sidoroff [1976]) to define
the behaviour of a visco-elastic material. He demonstrated that the greater the
number of the internal variables, the more accurate and rigorous the description of
a real material. The approach fits very well for our specific case since allows us to
introduce the germ band extension on a configuration modified by the formation of
the two furrows, the ventral and the cephalic ones.

4.2.1 Kinematic description

Let us analyze the scheme proposed in Fig. 4.7. The total deformation F is decom-
posed into several intermediate steps that, from the initial undeformed position p
of a generic material point (as defined in Eq. [3.4]), lead to the final configuration
x2 corresponding to the final shape after the three morphogenetic movements have
taken place. Practically we have two main phases:

• the first one when the elementary cell deformations triggering the formation
of the two furrows are applied; the incremental parameter t runs from t0 to t1.
From p we pass to x1 through F1, which can be written as

F1 = Dpx1 = Fm1Fa1 = Dx̄1x1Dpx̄1 (4.9)

with Fa1 and Fm1 the further active and the passive deformation gradients
respectively;

• the second phase corresponds to the extension of the germ band, which is
introduced considering x1 the new reference position (here t runs from t1 to
t2). So, if previously the initial configuration corresponded to p, now we have
x1 = p + u1, where u1 is the displacement during the first phase. As for the
first part, we can write
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F2 = Dx1x2 = Fm2Fa2 = Dx̄2x2Dx1 x̄2 (4.10)

where here again Fa2 and Fm2 are the active and the passive deformation
gradients. The main idea is that now the subsequent cell deformations occur
relative to the new deformed shape and not to the initial one anymore.

Figure 4.7: The gradient decomposition method when more than two movements
are simulated. At the end of the first phase the displacement u1 is
saved so that the reference configuration for the second phase become
x1 = p + u1.

The total deformation of the mesoderm can therefore be expressed as follows

F = Dpx2 = F2F1 (4.11)
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It has to be noticed that, in applying the elementary cell deformations, we fol-
lowed the temporal succession of the events, which provides in order the formation of
the cephalic and ventral furrows and subsequently the convergent-extension move-
ment of the tissues at the germ band region. Additionally, we have again for this
simulation a multiplicative decomposition, but this time each factor itself is the
composition of an active and a passive contributions.

First phase

We are now going to focus on the first part of the simulation. Given the consid-
erations made in the previous chapter, only apical constriction is introduced along
the section and the horizontal axis of the embryo, in order to get respectively the
ventral and the cephalic furrows. Any point p at the initial configuration is defined
as in Eq.[3.4]; the intermediate configuration x̄1 can be written as

x̄1 = ρ(z̄1)ir(θ̄1) + z̄1iz + ζn̄1(z̄1, θ̄1) (4.12)

with ζ the distance between the generic point p and its projection p0 on the
middle surface (Eq. [3.2]), along the normal vector n0(θ, z) (Eq. [3.5]). n̄1(z̄1, θ̄1) is
the normal vector to the intermediate position x̄1 and is equal to

n̄1 =
ir(θ̄1)− ρ′(z̄1)iz√

1 + ρ′(z̄1)2
(4.13)

θ̄1 and z̄1 are defined as in Eq. [3.16] and [3.20] as follows

θ̄1 = θ + αac(t)
2ζ

h
m(θ)

z̄1 = z + αceph(t)
2ζ

h
m(z)

(4.14)

where αac(t) and αceph(t) are the amplitudes of the elementary deformations and
depend on the evolution parameter t (see Chapter 3). Only apical constriction has
been implemented since we have demonstrated in Chapter 3 that it is actually the
active deformation leading to the invagination of the mesoderm for both the furrows.
h is the thickness of the mesoderm and m(θ) and m(z) are the periodic functions as
defined in Eq. [3.17]. The active deformation gradient Fa1 can be directly deduced
from Eq. [3.6], so that we obtain
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Fa1 =

[
1 + αac(t)2ζ

h m′(θ)
]
ϕ̄1θ

ϕθ
iθ

(
θ̄1

)
⊗ iθ(θ)

+

[
1 + αceph(t)2ζ

h m′(z)
]
ϕ̄1z

ϕz (1 + ρ′2(z))
[
ρ′ (z̄1) ir

(
θ̄1

)
+ iz

]
⊗ (ρ′(z)ir(θ) + iz)

+
[
ϕ̄1θ

2αac(t)
h

m(θ)iθ
(
θ̄1

)
+ ϕ̄1z

2αceph(t)
h

m(z)
(
ρ′ (z̄1) ir

(
θ̄1

)
+ iz

)

+n̄1
(
θ̄1, z̄1

)]
⊗ n0(θ, z)

(4.15)

where ϕθ and ϕz are the ones of Eq. [3.12], while ϕ̄1θ and ϕ̄1z are

ϕ̄1θ =

[
ρ (z̄1) +

ζ√
1 + ρ′2 (z̄1)

]

ϕ̄1z =

[
1− ζρ′′ (z̄1)

1 + ρ′2 (z̄1)(3/2)

] (4.16)

Second phase

Once the two furrows have formed, we can implement the convergent-extension
movement, which provides the second and final configuration of the entire system
x2. However, we have to take into account the fact that the new embryo geometry
does not correspond to an ellipsoid anymore, therefore we consider it as a general
shell on which we apply the further elementary strains triggering the germ band
extension. In Fig. 4.8 we show the typical active deformations applied on a cell,
which could be placed at the intersection of the VFI and GBE active regions, that
is therefore apically constricted at t1 along ψ2. Similar considerations could be done
for a cell at the intersection of the CF and GBE active regions, even if in that case
the cell would be apically constricted along ψ1.

Let us call x10 [ψ1(θ), ψ2(z)] all the points on the deformed middle surface of the
mesoderm, with ψ1 and ψ2 the variables of the new system of curvilinear coordinates
and depend on θ and z. Since the active deformations are still defined with respect
to the middle surface, we need to calculate the ”updated” reference position of any
point x1[ψ1(θ), ψ2(z), ζ1(ζ)] through the thickness of the mesoderm as follows

x1(ψ1, ψ2, ζ1) = x10(ψ
1, ψ2) + ζ1n10(ψ

1, ψ2) (4.17)

where ζ1 is the distance between x1 and x10 along the normal n10(ψ1, ψ2) passing
by x1 to the middle surface (Fig. 4.9).
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Figure 4.8: Convergence-extension movement on a cell that is apically constricted
along ψ2.

When applying the convergence from the dorsal to the ventral region of the
embryo, therefore along ψ2, and the extension along the anterior-posterior axis,
therefore along ψ1, the intermediate position x̄2 can be expressed as

x̄2 = x10(ψ̄1, ψ̄2) + ζ1n10(ψ̄1, ψ̄2) (4.18)

where

ψ̄1 = (1 + αGBE
z (t))ψ1

ψ̄2 = (1 + αGBE
θ (t))ψ2

(4.19)

with, once again, αGBE
θ (t) and αGBE

z (t) are the amplitudes of the active de-
formations, as defined in Chapter 3. As previously mentioned, by the formation
of the two furrows, the embryo is not an ellipsoid anymore; thus the expression of
the intermediate position x̄2 can not correspondingly be calculated. Therefore, we
rather proceed in the following way. The initial middle surface is obtained by its
CAD representation (patches of Béziers surfaces) and the initial normal n0(ψ1, ψ2)
is computed over it. The deformed surface at t1 is numerically obtained and its
relative unit normal is given by
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Figure 4.9: Cross-sectional view of the embryo at the end of the first phase (z =
0, t = t1).

n10(ψ
1, ψ2) =

F−T
1

[
n0(ψ1, ψ2)

]

‖F−T
1 [n0(ψ1, ψ2)] ‖

(4.20)

This normal is extended through the thickness of the mesoderm at the same
position, so that the full kinematic supplied by Eq.[4.18] can be formulated.

The active deformation gradient Fa2 in the ”updated” curvilinear system can be
classically obtained as

Fa2 =
∂x̄2

∂ψ1
⊗∇x1ψ

1 +
∂x̄2

∂ψ2
⊗∇x1ψ

2 +
∂x̄2

∂ζ1
⊗∇x1ζ

1 (4.21)

The vectors
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∇x1ψ
1 =

gψ2 ∧ gζ1

g

∇x1ψ
2 =

gζ1 ∧ gψ1

g

∇x1ζ
1 =

gψ1 ∧ gψ2

g

(4.22)

form the new contravariant basis, with g defined as in Eq.[2.15]. gψ1 ,gψ2 ,gζ1

are instead the new tangent vectors when ζ1 '= 0 and they are expressed as

gψ1 =
∂x1

∂ψ1

gψ2 =
∂x1

∂ψ2

gζ1 =
∂x1

∂ζ1

(4.23)

Actually, such tangent vectors can be expressed in function of the initial tangent
vectors at t0, numerically computed in the new system of curvilinear coordinates
(ψ1, ψ2, ζ1). Thus, they can be rewritten as follows

gψ1 = F1(g0ψ1
) = F1

∂p(ψ1, ψ2, ζ1)
∂ψ1

gψ2 = F1(g0ψ2
) = F1

∂p(ψ2, ψ2, ζ1)
∂ψ2

gζ1 = F1(g0ζ1
) = F1

∂p(ψ1, ψ2, ζ1)
∂ζ1

(4.24)

and Eqs. 4.22 become

∇x1ψ
1 = F−T

1 (∇pθ)

∇x1ψ
2 = F−T

1 (∇pz)

∇x1ζ
1 = F−T

1 (∇pζ)

(4.25)

4.2.2 The Principle of the Virtual Power and stress updated scheme

As already mentioned, the concurrent simulation proposed in this section is com-
posed by two separated phases (Fig. 4.10):
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• the first one starts at t0 and stops at t1, when both the ventral and the cephalic
furrows have formed. We calculate F which corresponds here to F1;

• the second one runs from t1 to t2, when the process of convergence-extension
ends. F is calculated on the deformed geometry and is the composition of F2

and F1, this last one fixed.

Figure 4.10: Successive phases of the updated concurrent simulation.

The Principle of the Virtual Power is still employed. Thus, for the first part,
Eq.[2.28] defines the mechanical equilibrium of the system, with the First Piola-
Kirchhoff tensor π1 expressed as in Eq.[2.34]; the displacements u1 are saved so
that we are able, once the ventral and the cephalic furrows have formed at t1, to
obtain the ”updated” reference position x1. Therefore, for the second part of the
simulation, not only we will apply the further active deformations on this new and
deformed initial configuration, but we will also need to take into account the stresses
that have been developed during the first phase. Since the First Piola-Kirchhoff
tensors π1 and π2 can not be added because defined over two configurations, we
must consider the Second Piola-Kirchhoff tensors S1 and S2 that are referred to
only one configuration.

In order to do so, as similarly as for the displacements, we save at t1 the Second
Piola-Kirchhoff tensor S1, which is equal to

S1 = Ja1F
−1
a1

Sm1F
−T
a1

(4.26)

with Ja1 the determinant of Fa1 and Sm1 the Second Piola-Kirchhoff tensor
relative to the intermediate configuration of the first phase. For the second phase
instead, we have

S2 = Ja2J (Fa2F1)−1 Sm2 (Fa2F1)−T (4.27)
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with Ja2 the determinant of Fa2 and Sm2 the Second Piola-Kirchhoff tensor
relative to the intermediate configuration of the second phase.

Therefore π2 is still expressed as in Eq.[2.29], but this time we have

π2 = F (S1 + S2) (4.28)

It has to be noticed that, for both the first and the second phases, the boundary
conditions do not change since they are defined with respect to the very initial
configuration; therefore their expression is the sames as in Eq.[2.28].

4.3 Conclusions

In this chapter we propose the concurrent simulation of the three morphogenetic
movements that have been individually obtained in Chapter 3.

In the first part a preliminary tentative is proposed. The method used is the
most intuitive since it allows to couple the events, following their chronological suc-
cession, by simply multiplying the active deformation gradients; therefore no further
manipulations of the single formulation are required. Two simulations are shown:
the first one allows to reproduce the formation of the two furrows, for the second one
also the germ band extension is introduced. If in the first case the results are consis-
tent and interesting, for the second one some limitations are observed. In particular,
we notice that the convergent-extension movement is not so pronounced compared
to the individual simulation; this is probably due to the fact that the cells involved
in this process have already been deformed by the elementary forces triggering the
ventral and the cephalic furrows. Additionally, the embryo geometry, once the two
furrows have completely formed, is not an ellipsoide anymore, thus the reference
configuration with respect to which the germ band extension is applied has changed
too. A more accurate and reliable approach is necessary.

In the second part of the chapter we amply describe the theory of a new ”updated”
Lagrangian formulation, which allows to take into account the two important aspects
previously pointed out. Specifically, the total deformation is decomposed into several
steps so that the reference configuration is constantly updated; two main phases are
contemplated. During the first one the two furrows are obtained and the analytical
formulation of the active deformation gradient directly couple together the elemen-
tary forces triggering the two movements. During the second one the germ band is
observed; the initial geometry at the beginning of this phase has changed, thus a
new curvilinear system is introduced and both the convergence and the extension
of the tissues are applied. Even though the results for this second essay are still in
progress, we think that the new approach represents one of the major perspective
of the present work. Firstly because of the accuracy in the geometrical description
that rarely has been so detailed; secondly because we will be able to provide a very
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realistic representation of part of the gastrulation process, with the most important
events simulated. Neverthelss, the main difficulty in setting up this simulation is
due to the complexity of the several changes in shape undergone by the tissues and
furthermore by the fact that they are perfectly synchronized in the real embryo.



Chapter 5

Conclusions and perspectives

In this work we present a three dimensional finite element model of the Drosophila
embryo by which we reproduce part of the gastrulation, one of the most impor-
tant phases of the developmental process. If the approach used has often been
employed for similar studies and therefore largely known in mechanics, we think on
the other hand that the results obtained here can be considered rather original for
two principal reasons. First of all, with a single model we are able to simulate three
morphogenetic movements that induce important shape changes of the embryonic
tissues; specifically ventral furrow invagination, cephalic furrow formation and germ
band extension. We can provide both the individual simulation of the main events
and the concurrent simulation by two or three of them, which constitutes the most
innovative feature of our work. Secondly, not only we have confirmed most of the
hypotheses put forward by biologists, but we have also found new hints of discus-
sions that may lead to new interpretations of the problem; therefore our model can
be considered a very useful tool for further analyses.

In the first chapter we have proposed a general overview of the Drosophila em-
bryogenesis so that the major events are traced and the relevant aspects are pointed
out. In particular we have focused on the strong connection between genetics and
mechanics that has actually been observed for long time in in vivo studies. Each
one of the morphogenetic movement considered here is controlled by specific genes
that exert then an important influence on the elementary forces acting on the cells.
Only recently also the inverse process has been detected; it seems in fact that a
certain number of mechanical deformations occurring to the tissues may favour the
expression of genes at different spots than the usual ones. However, it is still unclear
how the mechanical stimuli are transformed into chemical signals, so that such phe-
nomenon, better known as mechanotransduction, remains enigmatic. In this section
of the work we also provide a brief review on previous works that have been found
in literature. Most of them allow to reproduce the invagination of the ventral furrow
and the convergent-extension of the cells, while, to the best of our knowledge, none
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consents to simulate the formation of the cephalic furrow that is instead presented
here. The first models are constituted of structural elements, usually trusses or bars,
that play the role of actuators to reproduce the cytoskeleton components (i.e. mi-
crotubules and microfilaments). In despite of this, many of them do not take into
account external components to the epithelial layer such as the yolk, which fills the
internal cavity, and the vitelline membrane that surrounds the embryo. This is their
main drawback since the absence of one or both of these components may engender
final configurations that do not match with experimental observations. Also it has
to be noticed that the embryo has often been represented in a two dimensional space
which does not assure a realistic reproduction of the biological system. Few recent
works provide three dimensional models of ventral furrow invagination; the embryo
is described as a continuum on which the active and the passive forces acting on the
cells, that are strongly related, are applied. So far then, the models are specific to
a single event, while here we show how the analytical formulation can be modified
and adapted so that more than one movement can be simulated.

A gradient decomposition method is used and it is exhaustively described in the
second chapter. This method allows to take into account both the active and the
passive contributions; the former corresponds to the natural tendency of the cells
to deform as if they were completely free, which can lead to geometrical incompat-
ibilities. Therefore the latter occurs, a consequent response of the tissues in order
to guarantee the continuity of the system. Different interpretations of the approach
can be contemplated, as amply discussed in this section; in particular we propose
a comparison with an equivalent thermal dilatation and we analyze the potential
effects of the local active forces on both the active and passive domains and in par-
ticular at the internal and external cellular interfaces. The mechanical equilibrium
is expressed by the Principle of the Virtual Power so that the internal forces are
included together with the yolk pressure and the contact between the mesoderm
and the vitelline membrane. We have also treated here the choice of the mate-
rial describing the mesoderm, which is assumed to constitute the most part of the
embryonic tissues. Given the very few information about the mechanical charac-
teristics required here, that are often difficult to detect, we have opted for a linear
Saint-Venant constitutive law, which does not take into account the non linearities
engendered by the visco-elastic properties of the embryonic tissues, but may be any-
way a useful tool for a first qualitative analysis of the problem. Nevertheless, aware
of such limitations, we have compared our model to the Hyperelastic one, which has
normally been employed in previous studies.

Chapter three focuses on the analysis of each morphogenetic movement and
the relative results. In the first part we describe how the analytical expressions
of the active deformation gradients are obtained, according to the elementary cell
deformations introduced. Such formulations, coupled with the passive gradients, will
be implemented in the Principle of the Virtual Power, together with the boundary
conditions of the system, in order to get the final tissues deformation. In the second
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part of the chapter we analyze the results for each morphogenetic movement; for the
three events the agreement with the experimental observations is rather consistent,
thus most of the hypotheses made by biologists are confirmed. Additionally we have
been able to put forward some new aspects which may lead to interesting conclusions
and therefore further hints of discussion. Here we resume the major remarks that
can be deduced from the numerical simulations:

• first of all, a parametrical study has been conducted for the ventral furrow,
which has pointed out the influence exerted by some variables such as the
size of the active deformation region and the dimensions of the material cells.
In particular we have observed that, when let varying these parameters, the
invagination is almost the same for all the cases, while the phenomenon of the
self-contact between the two strips of the mesoderm may be evidently inhibited
or enhanced;

• by manipulations on mutants, biologists have individuated only two active
forces leading to ventral furrow invagination: apical constriction and apico-
basal elongation. Although, for our simulation, we have first implemented only
the former and the invagination of the mesoderm still occurs; this allows us to
conclude that probably apical constriction is actually the only responsible of
the entire process of invagination, while apico-basal elongation, together with
the other three elementary deformations detected, are passive responses of the
cells. This hypothesis has been also confirmed through the simulation of the
cephalic furrow, for which again only apical constriction has been introduced
and, even if a small number of cells is involved, the invagination takes place;

• for the germ band extension, the final displacements found for our simulation
reproduce pretty well the real convergence-extension of the tissues; in particu-
lar we have observed the vortex movements at the anterior and posterior poles,
as in the real embryo. Also we have compared the velocity field with exper-
imental data available in literature and they present almost the same trend
through the embryo;

• the Hyperelastic constitutive law, amply discussed in the second chapter, has
been tested for the simulation of the germ band extension. The results are
not so different from the ones obtained with the Saint-Venant model used all
long our analysis, which confirms that our first choice, even if presenting some
limitations, can anyway be considered appropriate for the present work;

• we have estimated the induced forces, specifically pressures and shear stresses,
that may develop through the embryo when the three morphogenetic move-
ments take place. These forces can be compared to the usual ones applied on
cells placed in a bioreactor over 24h that may engender several cellular activ-
ities such as migration, proliferation or adhesion. Most importantly, for the
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specific case of the germ band extension we have found that the convergent-
extension movement of the tissues actually leads to a compression at the an-
terior pole which triggers, as observed during experiments, the expression of
the gene twist, normally expressed at the ventral region of the embryo. This
result could confirm the presence of a mechanotransduction pattern by which a
mechanical stimuli is transformed into a chemical signal, even at long distance;

• finally, aware that the geometry of our model is a simplification of the real
embryo, we have conducted an interesting analysis to evaluate how the varia-
tion of the curvature radius may affect the final configuration during ventral
furrow invagination and germ band extension. So far three geometries have
been tested and other two are in progress in order to take into account two
important aspects: the non symmetry with respect to the vertical axis of the
embryo, which provides a more rounded posterior pole, and the flattening of
the dorsal region.

Given the consistence of the results for the individual simulations of the three
morphogenetic movements, we have decided to perform the concurrent simulation
of the events, which is the object of the fourth chapter. A preliminary essay is pre-
sented which provides a consistent final configuration for the simulation of the two
furrows, but some limitations are observed when the germ band extension is intro-
duced. Therefore a second method, more closely related to the observed succession
of movements, is proposed. It allows to take into account several peculiar aspects so
far put aside, that may instead play a significant role in the global response of the
embryo. Even though the results for this second simulation are still in progress and
thus not presented here, we think that this part of the work represent one major
contribution of the present study, thus an interesting perspective to pursue.

The mechanical properties of the mesoderm and sensibility analysis

During development the thin tissues composing the embryo undergo several
movements and deformations that are crucial to normal morphogenesis. Thus, it
is very important to know the mechanical properties of the embryonic structures
which unfortunately so far, compared to orthopaedic or cardiac mechanics, have
been very difficult to detect. Actually, if many progresses have been made for mea-
suring the mechanical characteristics of individual cells and bulk tissues, still little
has been done to improve methods allowing to obtain information from specimens
of embryonic epithelium. These data play a significant role in biomechanics and es-
pecially in embryogenesis, where materials can exhibit elastic, visco-elastic, viscous
or plastic properties and the consequences of these differences may be substantial
for morphogenetic movements. Our model, as many among the previous ones, is
based on several approximations concerning such properties, so that its validation
may appear uncertain. Therefore, in order to refine this key aspect so far rarely
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explored in numerical simulations, we would like to introduce a visco-elastic model
to describe the mesoderm, which must then be supported by experimental observa-
tions. Nonetheless, if on one hand it is essential to determine the right mechanical
characteristics of the tissues in order to obtain consistent results, on the other it
would be equally interesting to perform a sensibility analysis, which will allow to
evaluate the influence of specific parameters, such as the Young’s modulus, on the
final configurations relative to each morphogenetic movement.

Cephalic furrow simulation

For the cephalic furrow simulation a few simplifications have been made. Actu-
ally, by experimental movies, it has been observed that the furrow starts vertically,
at about 60% of the horizontal length of the embryo, but, throughout its forma-
tion, it is pushed, probably triggered by the extension of the germ band, toward the
anterior pole. Thus, at the final configuration, once the cells in the active region
have completely internalized, the furrow is inclined at about 30◦ with respect to the
dorsal-ventral axis; the cells apically constrict and simultaneously skew, so that their
curvilinear coordinate θ changes too. For the present work we have decided to model
the furrow parallel to the vertical axis of the embryo, without taking into account its
movement during the invagination process. The next step would be to implement an
Eulerian formulation which will provide the expression of the intermediate position
x̄ that will include both the deformation of the cells along the cross section and the
displacement of the tissues associated to a determined velocity.

From the embryo to the single cell

In the present work, the mesoderm is represented as a continuum on which the
elementary forces, that trigger the different morphogenetic movements, are applied.
We use then a macro-scale approach of the problem, whereas the active deformations
involve the membranes of the cells that compose the embryonic tissue at a micro-scale
level. Nevertheless our model provides the useful tools to perform a more detailed
analysis, where each cell will be described including some of its essential components
such as the nucleus, the micro filaments and other elements of the cytoskeleton. In
this way, we will be able to test also other types of strain, such pressure and shear
stress, to which cells in culture or bioreactor are usually submitted to.
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Appendix A

Large deformation theory

All biological tissue can in general undergo large deformation in physiological activ-
ity. Large deformation is typically defined as anything greater 3 to 5 % strain. When
the deformation is small, we can use the small deformation linear strain tensor and
the Cauchy stress tensor. However, once deformations exceed 5% strain, we must
use the appropriate stress and strain tensor, constitutive relations that account for
large deformations.

A.1 The deformation gradient tensor

The first step in defining large deformation strain measures is to determine the rela-
tionship between what is known as the reference, initial or undeformed configuration
and the deformed configuration of a body. The reference, initial or undeformed con-
figuration is the condition of the body in a 3D space before loads and constraints
have been applied to it. The deformed configuration is the location and the shape of
the body after loads have been applied to it. Obviously the body can undergo rigid
body motions in addition to strain when loads are applied to it. An illustration of
the relationship between the initial and deformed configuration is shown below.

We defined two different vectors: one in the reference configuration p and one
for the deformed configuration x. The relationship between the two position vectors
is the displacement vector.

By vector addition, we can directly write the equation defining it:

x = p + u (A.1)

If we consider the vectors describing material orientation in each configuration,
these vectors essentially describe an infinitesimal piece of material of the body. We
will note these vectors as dp in the reference configuration and dx in the deformed
configuration and so, applying the chain rule, we obtain a mapping between the
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Figure A.1: Undeformed and deformed configurations.

material orientation vector in the initial and the deformed configuration:

dx =
∂x
∂p

dp (A.2)

and let us define the deformation gradient tensor as:

F =
∂x
∂p

(A.3)

By the rules of index notation, we know that F is a second order tensor since it
has two independent indices and it is not symmetric. Let us take into consideration
the displacement equation (Eq.[A.1]), so that the deformation gradient defined in
Eq.[A.3] can be written as

F = I +
∂u
∂p

(A.4)
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Because F is a one to one mapping from the undeformed to the deformed con-
figuration, then the inverse mapping must exists (F−1). The following relationships
involving F are useful since they allow us to map the area and the volume between
the undeformed and the deformed configurations. If we map a volume, using the
3rd invariant or determinant of the deformation gradient tensor, we have:

dVx = detFV = JdV (A.5)

For the area, considering the drawings of area change given in Fig. A.2.

Figure A.2: Differential area element before and after deformation.

The mapping between the two configurations is (Smith [1993], Taber [2004]):

nx dSx = J F−Tn dS (A.6)

A.2 Strain and deformation measures

Although the deformation gradient tensor defined above is one measure of how a
body changes under load, it cannot be used directly for strain characterization be-
cause it contains rigid body motions. To define a strain measure, we will try to
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measure the change in length squared in a material vector in going from the initial
configuration to the deformed configuration and these measures should be indepen-
dent of rigid body rotation. For the reference configuration, the length squared of a
vector can be merely written as the dot product with itself:

(dS)2 = dl dl (A.7)

and the same for the deformed configuration:

(dSx)2 = dlx dlx (A.8)

A strain measure should be a mapping that tell us how much a piece of material
is squeezed when going from one to the other configuration, specifically how length
and angle change. Thus for a strain tensor E we write:

(dSx)2 − (dS)2 = dlxdlx − dl dl = 2 dpE dp (A.9)

where

E =
1
2
(FTF− I) (A.10)

We have not made any assumptions about the magnitude of the deformation,
so the strain tensor given above is exact for any size deformation and it is known
as the Green-Lagrange strain tensor. An often used quantity to define constitutive
equations for large deformations, is the Right Cauchy deformation tensor:

C = FTF (A.11)

substituting this in Eq.[A.10] we have:

E =
1
2
(C− I) (A.12)

This tensor is symmetric and positive definite.
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A.3 Large deformation stress measures

We must now define new stress measures and they have to be appropriate when
coupled with the strain measures that we have defined in the previous section. We
have already encountered one stress measure, the Cauchy stress tensor; this stress
is basically defined as force on unit deformed area. The problem with using the
Cauchy stress tensor for analyzing materials undergoing large deformation is that
we generally do not know the area in the deformed configuration, thus we need to
define a stress measure that we can use in the reference configuration. The first
principle used when trying to derive a stress tensor with respect to the reference
configuration is that the stress tensor in the reference configuration area should give
the same force as the Cauchy stress tensor defined in the deformed configuration.
Recalling that the traction is a force on a surface and is the product of the stress
and the normal vector to the surface, we can define the total force in the deformed
configuration as:

dPx = σ nxdSx (A.13)

where dPx is the total force, σ is the Cauchy stress tensor, nx is the normal
vector to the surface of the deformed configuration, and dSx is the surface area in
the deformed configuration. Noting that we would like the same force developed by
the new stress tensor, T, in the reference configuration with normal n and area dSx,
we define:

dPx = π n dS (A.14)

where π is then the 1st Piola-Kirchoff stress tensor. Now recalling the mapping
between reference and deformed configuration surface areas, we can write the defi-
nition of the force in the deformed configuration as:

π ndS = σ nx dSx = σJ F−T n dS (A.15)

Now that we have the expressions for the total force consistent in terms of the
normal and area, we can substract the two expressions and set the result equal to
zero, so that we obtain:

π = J σF−T (A.16)
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therefore the 1st Piola-Kirchoff stress gives us the actual force rendered in the
undeformed surface area.

The 1st Piola-Kirchoff stress tensor is not symmetric; this makes it more difficult
to use with numerical analyses like the finite element method. Furthermore, it is not
directly relied to E, thus we need to look further for an appropriate stress tensor. An
additional step we can take is not to derive a stress tensor based on the force dPx in
the deformed configuration, but rather map the force dPx back into the undeformed
configuration using the inverse of the deformation gradient tensor. Doing this we
obtain:

dP = F−1dPx (A.17)

if we define another stress tensor, S, which gives the total force on the area in
the undeformed configuration, we obtain:

dP = Sn dS (A.18)

then

dP = F−1σ J F−Tn dS (A.19)

Now we can compare the third stress tensor S, which is the 2nd Piola-Kirchoff
stress tensor, to the Cauchy stress tensor as:

S = J F−1σ F−T (A.20)

The number of indices and different stress tensors being thrown around can
be quite confusing; the deformation gradient maps forward to the deformed con-
figuration, while the inverse deformation gradient maps backwards to the initial
configuration.

One difficulty with all these stress tensors is how to envision their physical mean-
ing. In truth, the physical meaning of the 2nd PK stress is hard to interpret. It
is mainly used as a vehicle to get what is called an objective constitutive equation,
after which the Cauchy stress is computed from the 2nd PK stress.
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Mechanics of growing mass

When talking about tissues, one must distinguish between hard tissues, such as
bones and teeth, and soft tissues, such as blood vessels, tendons and ligaments. In
contrast with hard tissues, that usually undergo only small deformations and grow
by simple deposition on a surface, soft tissues can experience large deformations (see
Appendix A) and their growth and remodeling take place during the normal process
of growth, healing process or pathological conditions (Asaro and Lubarda [2006]).
Generally, the changing processes of a tissue are due to the use of the tissue itself.
For instance a cyclical stress leads to the formation of a new bone, while the high
blood pressure enhances the remodeling of the heart to obviate the hyperthropy.
Therefore, by remodeling and modifying their structure, tissues adapt themself to
the loading conditions they are affected to. Taber (Taber [1995]) and Humphrey
(Humphrey [1995]) both analyzed the biomechanical aspects of growth, defined as
a change in volume, remodeling, a change in properties, and morphogenesis, an
isovolumic change in shape and they concluded that the three processes are clearly
correlated and overlapped.

To study the growth in plants and animals, many mathematical descriptions
have been proposed (see review Taber [1995]), most of which provide an analysis
of the problem from a kinematic point of view. It has been observed that, if the
growth strains of each element of an unloaded body are geometrically compatible,
then the body remains stress-free after the growth occurs. On the other hand when
the growth strains are incompatible, a residual stress is generated and it remains
after all external loads are removed. Even if in the last decades the residual stress
has been largely studied, it is still not clear the purpose of its existence; the main
hypothesis is that it could assure a more uniform distribution of the loads through
the tissue so that the global structure can better tolerate them. There are essentially
two types of growth: the surface growth, which occurs without generation of residual
stress and by adding or resorption at a surface and the volumetric growth, which is
very similar to thermal expansion.
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B.1 Surface growth

This type of growth usually involves bones, shells, horns and branches. Let us
consider this time a surface S0 including two material regions R1 and R2 on each
side (Fig. B.1a). Each point of the domain can be located by the surface coordinates
ξα with α = 1, 2. At the initial time t = 0, the surface grows from both of its side so
that two new regions come to form, R3 and R4 (Fig. B.1b), that push R1 and R2

outward and are separated from them by surfaces S1 and S2.

Figure B.1: Geometry for the surface growth of a mass (modified from Taber [1995]).

At t = 0, each point is located by x0, but when growth process starts, each point
on the surface S0 generates an infinite number of particle in the new regions R3 and
R4. An additional time variable τ is introduced in order to skip out the redundancy
of the material coordinates; this new variable provides the time at which each particle
has formed so that we can write

x = x(ξα, τ, t) (B.1)

with 0 < τ < t. The new surfaces S1 and S2 can be considered the first ones of
the new material configuration, so that their points are defined by x(ξα, 0, t), whilst
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the position of S0 at any time is x(ξα, t, t). Therefore, the velocities can be written
respectively

v0 = ẋ0(ξα, t) for a point on S0 (B.2)
v = ẋ(ξα, τ, t) for a point on R3 and R4 (B.3)

The velocity v adjacent to S0 might differ from the surface velocity v0 because
of the relative growth velocity, which is

vg = v− v0 (B.4)

According to the side of S0 we are considering, the normal component of vg to
this surface can be either positive in a case of accretion or negative in a case of
resorption.

B.2 Volumetric growth

In the case of volumetric growth, for linear elastic problems, it is possible to super-
pose the growth stresses, but in non-linear problems it is necessary to use another
approach. The strains measured for each material element are referring to the cur-
rent zero-stress configuration, which changes according to the growth of the element.
Other than the specific case of Drosophila embryo the deformation gradient decom-
position method was first used in 1969 by Lee (Lee [1969]). He applied the method
for elastic-plastic deformations occurring when both components of strain are fi-
nite; doing so, the kinematics are modified to include finite elastic and plastic strain
components. Particularly, he introduced two coupled thermodynamic systems: one
compromising termo-elasticity at finite strain and the other the irreversible pro-
cess of dissipation and absorption of plastic work. For what concerns biomechanics,
Rodriguez (Rodriguez et al. [1994]) studied cardiac hypertrophy during which al-
terations in wall stress arising from changes in mechanical loading lead to cardiac
growth and remodeling. To describe the shape change undergone by an unloaded
tissue during growth, he introduced a mapping decomposed into two deformations.
The first one indicates the local zero-stress reference state, while the second one is
the accompanying elastic transformation that ensures the compatibility of the total
deformation. Also Taber (Taber and Perucchio [2000]) used this approach for the
analysis of growth, remodeling and morphogenesis of cardiac development. This
method is very similar to the one used for the present work, thus in this section we
describe it more precisely (for further details please refer to Taber [1995]).

Let us consider a body B, which at time t0 is free stress (Fig. B.2); the body is
constituted by infinitesimal elements that undergo volumetric growth and that, after
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growing, remain stress free. These particular deformations may not be geometrically
compatible; thus the elements of B(t1) must be deformed again in order to make
them fit together. Therefore three deformation gradients have to be taken into
account:

• the growth deformation gradient Fg, which can be deduced by experiments ;

• the elastic deformation gradient Fe, which allows to maintain the integrity of
the body and cause the presence of a residual stress σ0;

• the external deformation gradient Fl.

Figure B.2: Successive configurations for a growing mass (modified from Taber
[1995]).

This is a case of a Lagrangian description where a reference configuration (B(t0))
is chosen and it is not changing through the time. Once the growth completed
instead, B

′(t1) can be used as reference for the loading step. The total deformation
gradient can be finally expressed as follows

F = FlFeFg (B.5)
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For what concerns the stresses, two of them are particularly interesting: the
residual stress σ0, associated to the B

′(t1) configuration, and the total stress σ
in b(t). To find the residual stress it is necessary that F = FeFg with Fl = I
and traction-free boundary conditions. A similar approach can be used for σ but
this time Fl '= I and the boundary conditions are inhomogeneous. It has to be
notice that the growth is not isovolumic trough the time, therefore detFg '= 1,
specifically detFg > 1 when there is addition of volume and detFg < 1 when
remotion occurs. Finally if the material is incompressible, except for the growth,
then we have Fle = FlFe.

The previous analysis takes into account the effects of growth on stress, but
the inverse process must be considered to know how stress influences growth. So
far, even if experimental data pointed out how stress, strain or strain energy can
modulate growth, it is not well understood which one of this quantity play the most
significant role. However it is possible to write a constitutive relation of a stress-
dependent growth as follows

Fg = Fg(σ) (B.6)

where σ is an implicit fonction of the time. There is another form of the prior
equation

Ḟg = Ḟg(σ) (B.7)

which results to be more accurate from a physiological point of view since it has
been demonstrated that the higher the magnitude of the applied stress, the higher
the growth rate. A rigid-body rotational term is included in Fg, but it might not
affect the stresses and can be directly reassembled into the deformation provided by
Fle.

The growth rate of deformation tensor can be obtained, once Ḟg and Fg have
been determined, from (Rodriguez et al. [1994])

Dg =
1
2

(
ḞgF−1

g + F−T
g Ḟ

T
g

)
(B.8)

where dot indicates the partial differentiation with respect to the time t. Fur-
thermore the rate of volumetric growth can be expressed as

1
V

dV

dt
= tr Dg (B.9)

with V the growth volume.
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Appendix C

Special coordinate system

C.1 Cylindrical polar coordinates

The geometry of the coordinates system is shown in the figure

Geometry:

(x1, x2, x3) = (r, θ, z)

x = r cos(θ) r =
√

x2 + y2

y = r sin(θ) θ = arctg
y

x

ir = cos(θ) ix + sin(θ) iy
iθ = −sin(θ) ix + cos(θ) iy
iz = iz

gr = ir
gθ = r iθ
gz = iz
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Figure C.1: Cylindrical polar coordinates.

Differential operator:

∇ =
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1
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∂θ
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where (R,Θ, Z) are the cylindrical coordinates in the reference configuration.
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C.2 Spherical polar coordinates

The geometry of the coordinates system is shown in the figure

Figure C.2: Spherical polar coordinates.

Geometry:

(x1, x2, x3) = (r, θ,ϕ)

x = r sin(θ)cos(ϕ)
y = r sin(θ)sin(ϕ)
z = r cos(θ)



154 Chapter C. Special coordinate system

g1 = ixsin(θ)cos(ϕ) + iysin(θ)sin(ϕ) + izcos(θ) = ir
g2 = r(ixcos(θ)cos(ϕ) + iycos(θ)sin(ϕ)− izsin(θ)) = riθ
g3 = r sin(θ)(−ixsin(ϕ) + iycos(ϕ)) = r sin(θ)iϕ

Differential operator:

∇ = ir
∂

∂r
+ iθ

1
r

∂

∂θ
+ iϕ

1
r sin(θ)

∂

∂ϕ

Deformation gradient:

Fii,ij =
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1
R sinΘ
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de Drosophile sauvage. PhD thesis, Institut Curie Laboratoire Physico-Chimie,
2005.
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