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Préface

Comment pouvons-nous expliquer les différences observables entre un pa-
pillon et une chenille ? un neurone et une cellule musculaire ? ou encore entre
une cellule cancéreuse et une cellule saine ? En principe, toutes les cellules d’un
même organisme portent un même génotype, patron de toutes les molécules
produites par une cellule. La réponse se trouve au niveau de l’expression de ce
code, l’activité des gènes peut être modulée conduisant ainsi à des phénotypes
différents. Nous pouvons cependant nous interroger quant aux causes de cette
différenciation dans l’expression des gènes, surtout sachant que la plupart des
êtres vivants sont issus d’un stade unicellulaire. Ou encore sur ce qui se cache
derrière les capacités d’une cellule à répondre à des stimuli externes ou internes
par des réactions appropriées. Celles-ci sont définies par les propriétés du sys-
tème de régulation génétique de la cellule qui peut être perçu comme un réseau
complexe de réactions chimiques auxquelles est corrélé l’expression des gènes.

Il n’y a pas si longtemps de cela, les chercheurs étaient limités à l’étude
extérieure de ces systèmes, par des observations de haut niveau, au mieux en
mesurant l’activité d’un nombre réduit de gènes simultanément. Cependant, les
années 90 ont vu l’émergence de technologies permettant de mesurer l’activité
de plusieurs milliers de gènes simultanément : les puces à ADN. Leur utilisation
permet la mesure de la quantité d’ARNm provenant, en principe, de chacun des
gènes de la cellule étudiée à un moment donné. En d’autres termes, nous dis-
posons des moyens technologiques pour obtenir une représentation quasi-« pho-
tographique » (basée sur le niveau d’ARNm) du réseau de régulation génétique
d’une cellule. Idéalement, ce type de données permet de répondre de manière
pertinente à une question biologique, par exemple, inférer un rôle pour un gène
donné, diagnostiquer ou déchiffrer des mécanismes de maladies complexes à
partir d’échantillons cellulaires.

La taille et la complexité de ces systèmes nécessitent l’utilisation de mé-
thodes de calcul afin d’en extraire une information biologiquement pertinente.
Diverses méthodes issues des mathématiques, des statisques, de la physique ou
de l’informatique se sont révélées très utiles dans l’analyse des données d’ex-
pression. Ces méthodes peuvent être réparties en deux catégories : les méthodes
de classification non supervisée ne se basant sur aucune connaissance préalable,
et les méthodes de classification supervisées nécessitant des données d’appren-
tissage. L’état des connaissances actuelles sur les fonctions des gènes ainsi que
les possibilités d’expériences qu’offrent les puces à ADN impliquent parfois une
méconnaissance totale du système étudié, invalidant ainsi une approche super-
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visée.

Ces approches dites de regroupement (ou clustering) repartissent générale-
ment l’ensemble des gènes en groupes distincts en fonction de leurs similitudes
d’expression. Ce type d’approche permet principalement, par rapprochement
avec des gènes connus, d’inférer un rôle à un nouveau gène. Ici aussi, l’intro-
duction de connaissance est inévitable. Que se passe-t-il lorsque tous les gènes
d’un groupe sont inconnus ? De plus, les méthodes traditionnelles affectant gé-
néralement un gène à un seul et unique groupe, ne nous renseignent que peu
sur l’implication d’un gène au sein du système (c’est à dire de la cellule ou
d’un échantillon biologique). C’est dans ce cadre que nous proposons une nou-
velle méthode permettant, sans aucune connaissance a priori, de caractériser la
spécificité de l’ensemble des gènes pour les échantillons biologiques d’une expé-
rience de puces à ADN et ainsi quantifier leur implication pour un ensemble de
phénotypes et enfin, comme pour les approches classiques, de répondre de ma-
nière pertinente à des questions biologiques fines. Nous appelons cette méthode
distillation sémantique.

Après une brève présentation générale de la thèse (chapitre 1), nous intro-
duirons, dans le chapitre 2, les mécanismes de régulation géniques, les outils
de mesures de l’activité des gènes ainsi que les principaux outils d’analyses. Le
chapitre 3 traite de la représentation mathématique des données présentant la
même structure que les mesures de puces à ADN ainsi que ses propriétés. Nous
passerons ensuite en revue les fondements mathématiques des méthodes de clas-
sification non supervisées, tout d’abord les méthodes ensemblistes (chapitre 4)
ensuite les méthodes spectrales (chapitre 5). Précedant la présentation de la dis-
tillation sémantique (chapitre 7), le chapitre 6 traite des fondements logiques de
notre approche. Le chapitre 8 présente deux cas d’application de notre méthode.
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Chapitre 1

Présentation générale de la

thèse

1.1 Position du problème bioinformatique

Les progrès des technologies de mesure et le séquençage des génomes, ont
permis l’émergence, dans les années 1990, de techniques de mesure globale de
l’expression génique. Jusqu’alors les méthodes employées ne permettaient l’étude
de l’expression que de quelques gènes, les puces à ADN ont alors donné aux
biologistes les outils nécéssaires pour effectuer ces mesures sur l’ensemble des
gènes d’un échantillon biologique à un moment donné. Les résultats de mesure
de l’activité des gènes dans divers échantillons biologiques sont présentés sous
la forme d’une matrice réelle de données d’expression :

X = (xab)a∈A,b∈B

de taille |A| × |B| où xab représente l’expression du gène b dans l’échantillon
biologique a. Les puces à ADN pouvant couvrir l’ensemble du génome d’un in-
dividu, ces matrices sont généralement de grande taille. Idéalement l’étude de
ces matrices permet de répondre de manière efficace à une question biologique.
Par exemple : Existe-il des regroupements de gènes permettant d’inférer une
fonction particulière à un gène dont on ignore le rôle ? Qu’est-ce qui distingue
les divers échantillons de l’expérience ? Peut-on trouver des signatures dans l’ex-
pression des gènes des divers échantillons ? etc.

L’interprétation de ce type de résultats expérimentaux nécéssite des mé-
thodes d’analyse performantes et robustes. Dans ce but, de nombreux outils
mathématiques ont été développés ou adaptés. Ces méthodes d’extraction d’in-
formation reposent généralement sur des algorithmes de classification et per-
mettent la répartition d’un ensemble d’objets en plusieurs sous-ensembles tout
en minimisant la variabilité au sein de ce sous-ensemble.

En fonction de la question posée, il est nécessaire de définir une sémantique
pour le jeu de données. La sémantique apparaît ici comme le sens implicite des
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données, elle permet de définir les objets ainsi que leur(s)rôle(s) dans le système.
Cette sémantique correspond généralement à une mesure de distance traduisant
la proximité (similitude) ou l’éloignement (dissimilitude) entre deux objets du
jeu de données. Parmi les distances les plus utilisées nous pouvons citer, par
exemple, la distance euclidienne, la distance de Manhattan, la correlation de
Pearson, la distance angulaire, la corrélation de Spearman, la corrélation de
Kendall. Chaque distance associe une sémantique différente au jeu des données
et donne potentiellement des résultats différents, il est donc important de bien
choisir sa distance en fonction de la question biologique à laquelle nous voulons
répondre.

Nous pouvons aisement discerner deux groupes au sein des méthodes de
classification :

– les algorithmes de classification non supervisée : sont des processus au-
tomatiques qui séparent les données observées en groupes distincts sans
aucune connaissance préalable des classes existantes. Ces méthodes sont
encore aujourd’hui couramment utilisées dans le cadre de l’interprétation
des résultats expérimentaux de type puces à ADN. De nombreux logiciels
sont aujourd’hui disponibles, regroupant la plupart du temps un certain
nombre de méthodes comme :
– le regroupement hierarchique en amas (hierarchical clustering)
– l’algorithme des k-moyennes ou (k-means)
– les réseaux de Kohonen (self organising map)
– la sous-matrice préservant l’ordre (order preserving submatrix)
– le regroupement lisse (smooth clustering)
– les modèles en plaid
– l’analyse en composantes principales
– la décomposition en valeurs singulières
– les méthodes spectrales des graphes
– le regroupement flou

– les algorithmes de classification supervisée : contrairement aux méthodes
de classification non supervisée, ces algorithmes nécéssitent l’introduction
de connaissances a priori afin de répartir les données en classes. La phase
d’apprentissage permet au système, à partir d’un jeu de données d’appren-
tissage connu et annoté, d’inférer des règles de classification qui servent
ensuite à la classification d’autres jeu de données. Parmi les méthodes
couramment utilisées nous pouvons citer :
– les k plus proches voisins
– la classification par l’analyse des centroïdes
– l’analyse discriminante linéaire
– les machines à vecteurs de support
– les réseaux de neurones
– l’algorithme EM (expectation-maximisation)
Les résultats de ces méthodes dépendent directement de la phase d’ap-
prentissage. Les dimensions et l’aspect bruité des matrices de données
d’expression peuvent limiter l’application des ces algorithmes. Le risque
principal est le sur-apprentissage (mauvaise généralisation des caracté-
ristisques des données, le système classifie parfaitement les échantillons
d’apprentissage mais perd son pouvoir de prédiction sur d’autres jeu de
données).
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Compte-tenu des connaissances actuelles sur la fonctionnalité des gènes, il
est parfois avantageux de pouvoir conduire des analyses sans connaissance a
priori sur le jeu de données, qu’elles soient du type données d’apprentissage
ou simplement des connaissances liées à une annotation (caractéristique, fonc-
tion, rôle des gènes,. . .). Dans cette étude, nous allons tout d’abord détailler les
approches mathématiques liées aux méthodes de classification non supervisée,
ensuite nous allons présenter notre approche appellée « distillation sémantique »,
s’inscrivant dans cette même catégorie et permettant de caractériser l’apparte-
nance de l’ensemble des gènes d’une puce aux divers échantillons biologiques de
l’expérience.

1.2 Résumé de la méthode mathématique dével-

loppée

Soit B un ensemble fini de gènes et A un ensemble fini de contextes cellulaires
(ou échantillons biologiques). Le jeu de donnée est représenté par une matrice
réelle X = (xab)a∈A,b∈B de dimension |A| × |B|. Celle-ci peut être vue comme un
ensemble de B vecteurs colonnes

xb =



xb1

...
xb|A|


 ∈ R

A, pour b ∈ B

Les éléments de la matrice xab sont des réels codant l’intensité lumineuse me-
surée sur la puce à ADN qui représente le niveau d’expression du gène b dans
l’échantillon biologique a.

L’algorithme de la distillation sémantique peut être divisée en trois princi-
pales étapes. Chaque étape est réalisée sur une représentation différente du jeu
de données et de son contenu informationnel. Ces représentations ainsi que les
traitements associés agissent comme des filtres successifs permettant de conser-
ver et révéler la part la plus pertinente et significative de l’information contenue
dans le jeu de données.

1.2.1 Représentation des données dans l’espace des concepts

Pour A et B définis précedement, nous définissons l’espace des concepts HA

comme un espace de Hilbert libre sur A, les élements de A forment la base
orthonormée deHA. Le jeu de données complet peut donc être représenté comme
un ensemble de |B| vecteurs |Ξb 〉 décomposés sur la base orthonormée de HA.

|Ξb 〉 =
∑

a∈A

xab| a 〉 ∈ HA

avec b ∈ B et où | a 〉 représente l’element de la base orthonormée de l’espace
vectoriel libre correspondant à l’attribut a. L’espace vectoriel est équipé d’un
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produit scalaire et des rayons (vecteurs normalisés contruits en divisant les vec-
teurs par leurs normes) sont introduits dans l’espace HA. Nous utiliserons la
notation | ξb 〉 pour représenter le rayon associé au vecteur |Ξb 〉 :

| ξb 〉 =
|Ξb 〉
‖|Ξb 〉‖

.

La structure deHA permet une géométrisation naturelle de l’espace des concepts
en l’équipant d’une pseudo-distance d

d : B× B→ R+

définie par
d(b, b′) = ‖| ξb 〉 − | ξb′ 〉‖.

L’espace HA devient donc l’espace de représentation de toute l’information lo-
gique et probabiliste contenue dans le jeu de données initial. Ceci est détaillé
aux chapitres 2 et 6.

1.2.2 Construction et réduction dimensionnelle d’un graphe
pondéré

À partir de la représentation précédente nous introduisons au paragraphe
5.2 l’ensemble VA = A ∪ B. Donc pour tout v ∈ VA,

|Ξv 〉 =

{
| a 〉 si v = a ∈ A,∑

a∈A
xab| a 〉 si v = b ∈ B.

Les nouveaux vecteurs |Ξa 〉 = | a 〉 sont ici inclus comme des témoins de spéci-
ficité aux divers attributs de A. Comme ces nouveaux vecteurs sont aussi des
élements de HA, la pseudo-distance d s’étend naturellement à VA. Supposons
maintenant une fonction de similitude s basée sur la pseudodistance d.

Comme nous l’avons vu dans la première partie de ce résumé, il existe de
nombreuses fonctions de similitude et chacune associe une sémantique particu-
lière au jeu de données. Dans le cadre de nos exprériences nous avons utilisé
la distance angulaire entre les vecteurs de VA. Cette distance permet d’éviter
d’accorder une importance trop grande (au regard de la sémantique) aux gènes
très fortement exprimés.

Nous pouvons maintenant construire un graphe pondéré sur l’ensemble des
sommets VA. Les poids sont issus de la fonction de similitude s et sont assignés
aux arêtes du graphe complet défini sur VA, constituant ainsi une matrice Wvv′

représentant le graphe.
Wvv′ = s(v, v′).

Nous cherchons maintenant à révéler les interactions les plus pertinentes entre
les gènes. Cette étape est réalisée en appliquant les techniques standard de
réduction dimensionelle du graphe par sa représentation optimale dans des es-
paces euclidiens de petite dimension formés par les vecteurs propres du laplacien
pondéré.
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1.2.3 Regroupement flou et distillation

Les gènes (éléments de B) ne sont en général pas spécifiques d’un seul échan-
tillon biologique (éléments de A). Ils interviennent dans plusieurs contextes cel-
lulaires avec des niveaux d’expression différents et en collaboration avec d’autres
gènes, justifiant ainsi l’approche d’un regroupement flou.

Jusqu’a cette étape, notre méthode est une suite d’algorithmes connus et
utilisés de manière séparée dans divers contextes. L’originalité de notre méthode
repose sur l’étape suivante.

La distillation sémantique est une procédure récursive d’extraction d’infor-
mation (détaillée dans la partie 7.2) où chaque observation effectuée modifie le
contenu informationnel du système, rappelant la procédure de mesure en méca-
nique quantique (il ne s’agit pas ici d’un traitement quantique de l’information
mais d’un traitement classique à l’aide d’un formalisme inspiré de la mécanique
quantique).

L’état du système HA peut être représenté par une matrice densité

σ =
XX†

tr(XX†)

permettant, à chaque itération de notre méthode, de calculer une probabilité
d’appartenance des élements de VA à deux sous-groupes (sous-espaces de HA).
Les éléments de A sont associés à l’un ou l’autre de ces sous-espaces (en fonc-
tion de la probabilité mesurée), les éléments de B sont projetés dans les deux
sous-espaces. De cette manière, nous réduisons l’indétermination du système.
L’information extraite est ici réinjectée dans le système afin de procéder à une
nouvelle mesure. La méthode reprend à la première étape jusqu’à ce que tous
les objets de A soient répartis dans des sous espaces différents. La répétition
de cette opération permet d’obtenir des mesures de probabilité extrémales qui
s’interprétent somme sémantiquement non-ambiguës.

1.3 Application et résumé des résultats obtenus

Nous avons mis à l’épreuve notre méthode sur des données de puces à ADN
publiées dans [77] et disponible sur la base Gene Expression Omnibus [75] sous
la référence GSE803. Ce jeu de données est constitué d’un ensemble de 62637
sondes mesurées dans 12 tissus humains : moelle osseuse, cerveau, coeur, rein,
foie, poumon, pancreas, prostate, muscle squeletique, moelle epinière, rate et
thymus. L’ensemble des sondes est réparti sur cinq puces HG-U95Av2, HG-
U95B, HG-U95C, HG-U95D, HG-U95E). La puce HG-U95Av2 contient 12613
gènes complets tandis que les autres representent approximativement 50000 EST
(Expressed Sequence Tag). Dans le cadre de cette étude nous avons choisi de
n’utiliser que les mesures issues de la puce HG-U95Av2.

Nous ne présentons ici que le cas de la représentation unidimensionnelle du
graphe pour un échantillon biologique (ici le muscle squeletique) parmi les douze
de l’étude.
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Fig. 1.1 – Classement des gènes du jeu de donné GSE803. L’axe horizontal repré-
sente l’ensemble des gènes classés par appartenance décroissante à l’échantillon
biologique (muscle squeletique). L’axe vertical représente la mesure expérimen-
tale de l’activité de ces gènes dans cet échantillon biologique.

Tab. 1.1 – Annotation des gènes les plus proches du témoins de spécificité
« muscle squeletique ».
Ranking Name Annotation
1 ATPase Ca++ transporting, cardiac muscle,

fast twitch 1, calcium signaling
pathway

2 Troponin I type 2 skeletal, fast
3 Myosin, light chain 1 alkali ; skeletal,

fast
4 Ryanodine receptor 1 skeletal ; calcium

signaling pathway
5 Fructose-1,6-bisphosphatase 2 glycolysis

gluconeogenesis
6 Actinin, alpha 3 focal adhesion
7 Troponin C type 2 fast ; calcium signaling

pathway
8 Carbonic anhydrase III muscle specific ;

nitrogen metabolism
9 Nebulin
10 Troponin I type 1 skeletal, slow
11 Myosin, heavy chain 3 skeletal muscle
12 Myogenic factor 6, herculin
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La figure 1.1 représente le type de résultat que nous pouvons obtenir : pour
chaque groupe ne contenant qu’un élement de A (échantillon biologique), l’axe
horizontal représente l’ensemble des gènes classés par leur appartenance décrois-
sante au contexte cellulaire (échantillon biologique). L’axe vertical représente la
mesure expérimentale de l’activité de ces gènes dans cet échantillon biologique.
Pour chaque groupe, nous pouvons observer un gradiant d’expression suivant
notre gradiant de spécificité (classement des gènes). Pourtant, nous pouvons
aussi remarquer que les gènes les plus exprimés ne sont pas obligatoirement les
plus spécifiques. En fait, un gène très exprimé dans divers échantillons biolo-
giques ne sera pas par définition, classé parmi les gènes les plus pertinents pour
un contexte particulier. Respectivement, un gène faiblement exprimé dans un
seul et unique échantillon sera considéré comme spécifique. Le tableau 1.1 donne
un exemple de l’annotation fournie par la base de donnée Unigene [75] pour les
gènes classés comme les plus spécifiques à l’échantillon muscle squeletique. Nous
pouvons remarquer que la majorité de ces gènes est annotée comme spécifique
du muscle squeletique. Toutefois, nous pouvons également remarquer que le
premier de la liste (ATPase) est annoté comme spécifique du muscle cardiaque
(autre échantillon biologique de l’analyse) ce qui pourrait apparaître comme une
erreur de classification. Après avoir contrôlé l’expression de ce gène dans le jeu
de données et avoir analysé la litterature le concernant, il est apparu que ce
gène est exprimé cinq fois plus dans le muscle squeletique que dans le coeur (au
regard des mesures expérimentales), de plus il est considéré comme responsable
d’une forme de myopathie affectant les muscles squeletiques (maladie de Brody)
[52]. Donc, au regard de ces observations notre méthode a effectivement bien
classé ce gène est a permis de lever une ambiguité concernant sa spécificité. Nous
présenterons dans le chapitre 8 des résultats plus détaillés ainsi qu’une étude
statisque de l’efficacité de notre méthode.

Nous avons également mis à l’épreuve la méthode de distillation sémantique
sur un jeu de données cliniques traduisant des mesures d’expression de gènes
chez des patients atteints de fibroses hépatiques plus ou moins sévères. La fibrose
hépatique est définie par l’accumulation excessive d’une matrice extracellulaire
dans le foie. Conséquence des atteintes hépatiques chroniques, sa progression
conduit à terme à la cirrhose et au cancer. Dans le cadre de cette étude nous
disposions d’un ensemble B de 700 gènes exprimés chez 14 patients repartis en
quatre catégories sur critères anatomopathologiques :

– trois patients souffrant de fibrose légère (F1)
– trois patients souffrant de fibrose modérée (F2)
– trois patients souffrant de fibrose sévère (F3)
– cinq patients souffrant de cirrhose (F4).

Cette analyse a été menée dans le but de trouver des signatures dans l’expression
des gènes permettant de caractériser de manière précise les différents stades de
fibrose.

La principale différence entre cette analyse et la précédente est que nous
travaillons ici sur des tissus de type identique (biopsies de foie), contrairement à
l’analyse précedente où la différence entre les échantillons était biologiquement
plus marquée. Nous pouvons aisémment imaginer que, dans ce type de don-
nées, discriminer des gènes spécifiques est bien plus difficile que dans l’analyse
précédente.
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Tab. 1.2 – Termes KEGG associés aux gènes spécifiques des différents stades
de fibroses, un X représente l’association du terme avec l’échantillon

KEGG terms F1 F2 F3 F4

VEGF signalling pathway X X
cell cycle X X
Tcell receptor signalling pathway X
Adherens junction X
jak-STAT signalling pathway X X X
focal adhesion X X X
wnt signalling pathways X
pyrimidine metabolism X X
leukocyte transendothelial migration X
gap junction X
MAPK signalling pathway X X
Regulation of actin cytoskeleton X
apoptosis X X
Bcell receptor signalling pathway X
gap junction X
Antigen processing and presentation X
One carbon pool by folate X
Ubiquitin mediated proteolisis X
purine metabolism X
huntington desease X
neurodegenerative desease X
dentatorubropallidoluysian atrophy X
Insulin signalling pathway X

Nous avons obtenu de bons résultats au regard des analyses statisques per-
mettant de les évaluer (ces méthodes sont détaillées dans le chapitre 8). Comme
pour l’analyse précédente, nous avons annoté les gènes spécifiques à chaque
échantillon de l’analyse. Nous avons choisi deux sources d’annotations :

– KEGG (Kyoto Encyclopedia of Genes and Genomes) est une base de don-
née associant à chaque gène référencé les voies métaboliques dans lesquelles
celui-ci est impliqué.

– GO (Gene Ontology) est une ontologie dédiée à l’annotation des génomes.
Les résultats obtenus (tableau 8.6 pour l’annotation KEGG, et tableau 1.3 pour
l’annotation GO) montrent les différences obtenues au niveau de l’annotation
des gènes spécifiques issus de notre analyse. Nous pouvons observer que des
signatures apparaissent dans les voies métaboliques ansi que dans les proces-
sus biologiques associés aux gènes spécifiques de chaque stade fibrotique. Les
résultats seront détaillés dans le chapitre 8.

Biological process F1 F2 F3 F4

positive regulation of I-kappaB kinase/NF-kappaB cascade X X
positive regulation of cell proliferation X X X X
inflammatory response X X
ossification X
cell division X X
blood coagulation X X
positive regulation of transcription from RNA polymerase X
response to drug X
dephosphorylation X X
embryonic development (sensu Mammalia) X X
DNA unwinding during replication X
mRNA export from nucleus X
DNA replication X X
cell surface receptor linked signal transduction X X
protein amino acid phosphorylation X X X X
immune response X
cell cycle X X X X
skeletal development X
cell proliferation X X
cytokinesis X X X
negative regulation of apoptosis X X
regulation of cyclin-dependent protein kinase activity X X
regulation of progression through cell cycle X
transmembrane receptor protein tyrosine kinase signaling pathway X
negative regulation of cell proliferation X X X
intracellular signaling cascade X X
development X X
cell adhesion X X X
cell cycle arrest X
negative regulation of cell cycle X

suite du tableau page suivante
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Biological process F1 F2 F3 F4

chemotaxis X
traversing start control point of mitotic cell cycle X
apoptosis X X X
protein ubiquitination X
wnt receptor signaling pathway X
signal transduction X
regulation of apoptosis X X
cell-cell signaling X X
insulin receptor signaling pathway X X
insulin-like growth factor receptor signaling pathway X
inner ear morphogenesis X
lung development X
bone mineralization X
angiogenesis X X
fibroblast growth factor receptor signaling pathway X
nuclear mRNA splicing, via spliceosome X
cell growth X X
nervous system development X X
response to hypoxia X
induction of apoptosis X
JNK cascade X
response to wounding X
transcription X
DNA repair X
response to stress X
nucleobase, nucleoside, nucleotide and nucleic acid metabolic process X
protein complex assembly X
anterior/posterior pattern formation X
cell motility X
inactivation of MAPK activity X
regulation of cell growth X
negative regulation of cell cycle X
nucleotide-excision repair X
anti-apoptosis X
regulation of transcription, DNA-dependent X
liver development X
placenta development X
release of cytochrome c from mitochondria X
positive regulation of transcription from RNA polymerase II promoter X
apoptotic mitochondrial changes X
germ cell development X
protein import into nucleus X
cell morphogenesis X
keratinocyte differentiation X
heart development X
positive regulation of transcription X
proteolysis X
apoptotic program X
organ morphogenesis X
actin cytoskeleton organization and biogenesis X
signal complex formation X
positive regulation of T cell proliferation X
epidermis development X
actin filament organization X
cell differentiation X
cell migration X
sensory perception X
T cell activation X
DNA replication initiation X
UTP biosynthesis X
CTP biosynthesis X
GTP biosynthesis X
nucleotide metabolism X
brain development X
regulation of Rho protein signal transduction X
one-carbon compound metabolism X
transcription from RNA polymerase II promoter X
small GTPase mediated signal transduction X
cellular defense response X

Table 1.3 : Termes GO associés aux gènes spécifiques des différents stades de fibroses
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Chapter 2

DNA arrays

2.1 Gene expression and regulation

The cell is a complex system, composed of a set of organic molecules, interacting
with each other and constituting the building blocs of life. This system has
amazing skills of communication, environment adaptation, state regulation from
internal or external stimuli.

Functional and structural elements of cells are proteins and ribonucleic acids
(RNA). Many of these molecules are involved in cell structure and various cellu-
lar reactions; i.e. intracellular signalisation or metabolism. These molecules are
mostly produced by the cell itself. This production is based on genetic infor-
mation stored in DNA (deoxyribonucleic acid), a double-helix shaped molecule
composed of two complementary antiparallel strands each composed of a se-
quence of nucleotides. This sequence determines the informational content of
DNA. The set of nucleotides is composed of four elements (Adenine, Guanine,
Cytosine, Thymine) presenting a complementarity: adenine pairs with thymine
by two hydrogen bonds, cytosine with guanine by three hydrogen bonds. This
complementarity ensures cohesion of the two strands of the DNA double helix.
A gene is a portion of the DNA wich contains the instructions for a specific
molecule, its gene product.

In principle, all cells of a multicellular organism carry the same genetic
code, identical to that of the egg cell. However, higher species have highly
specialised cells grouped into tissues or organs that have a particular role within
the organism. We can therefore ask ourselves the question: How, from an
identical genetic code, can we obtain cells apparently so different? This can
be explained by a different expression of genes within these cells. Some are
induced, others repressed according to the cell type, producing a set of specific
molecules in the cell.

The protein synthesis consists in a functional protein production from the
information given by the corresponding gene. This process can be divided into

13
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two phases: transcription and translation.

During transcription, the genetic code of the gene is duplicated to a messen-
ger RNA (mRNA) molecule, a single-stranded nucleic acid carrying the same
nucleotides as DNA with the exception of thymine being replaced by uracil
(U). Transcription starts when the protein RNA polymerase binds to the pro-
moter region, the start of the gene, and locally unzips the DNA helix so that
the strands become free for reading. The RNA polymerase propagates along
the strand while constructing an mRNA molecule by adding nucleotides com-
plementary to those of the DNA molecule. Eventually, the RNA polymerase
reaches a terminator region and stops transcribing, the mRNA is then released
and the DNA resumes its double helix configuration. Following this, the pri-
mary mRNA is processed into mature mRNA by other molecules, for example
by removing the parts corresponding to introns, non-coding regions of the DNA,
in a process called splicing.

Following transcription, translation takes place, where the four-letter alpha-
bet of the DNA and mRNA is translated into the proteins alphabet. Like the
nucleic acids, proteins are polymers, consisting of sequences of amino acids in-
stead of nucleotides. The number of amino acids is 20 so the protein alphabet is
one of 20 letters. In order to represent 20 amino acids with four nucleotides we
need three nucleotides per amino acid. Such a three-nucleotide word is denoted
a codon. The actual translation between the two alphabets is accomplished by
transfer RNA molecules (tRNA) which attach themselves to the mRNA. The
tRNA has one end with a specific anticodon, that is, a complementary codon,
and another end to which the corresponding amino acid is attached. The last
step in the translation is performed by the ribosomes which join the sequence of
amino acids found on the tRNA along the mRNA together to form the protein.

The same protein can attain different spatial shapes (conformation) in the
three-dimensional space, constituting a number of folds of the protein, each
having their own properties. It is convenient to define the expression level of
a gene as the amount of mRNA in the cell transcribed at a given instant. We
also define the expression profile of a cell as the set of expression levels of all its
genes.

The production of RNA and proteins from a given gene does not take place
independently of the expression of other genes. Conversely, gene products influ-
ence the production of other gene products using positive or negative feedback.
This regulation is essential for the cell to be able to respond to internal and
external circumstances and takes place on all levels in the chain of reactions
that produce a protein from a gene sequence.

To enable transcription of a gene, the binding of certain proteins to the DNA
is necessary, they are called transcription factors. Different genes are either
activated or repressed by different combinations of one or several transcription
factors. Transcriptional control is not the only means of regulation. After
transcription, mRNA molecules may interact with other gene products, resulting
in altered structure or lifetime of the mRNA. After translation, subsequent
protein-protein reactions may be required to finalise the functional protein.
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The description above only sketches a few of the ways that genes interact
to regulate each others expression. The main conclusion is that the cell can be
viewed as a large dynamical system with different molecules interacting with
each other. The explicit study of such genetic regulatory networks is often
referred to as systems biology.

2.2 Methods for genes expression measurment

The 90’s saw the emergence, enabled by advances in measurement technology
and the sequencing of genomes, of technologies for global measurement of gene
expression. Previous techniques were limited to the simultaneous study of a few
genes, while the microarray techniques gave biologists the tools to sample the
expression of, in principle, the whole genome in one single measurement.

Microarrays measure the abundance of mRNA from the set of genes at a
given moment, giving us a “photographic” representation of gene expression in
a biological sample. From a cell sample of interest, mRNA is extracted and
put in contact with an array on which probes (complementary sequences of the
genes) have been attached. The different mRNA in the solution then bind to
their corresponding complements on the chip, and the amount of mRNA for
each gene can be optically measured by fluorometry.

There are two main microarray platforms currently in use; spotted microar-
rays [60, 61] and high-density synthetic oligonucleotide microarrays [43], wich
are basically two variations of the same general solution described above.

A spotted microarray has probes consisting of cDNA or long oligonucleotides
strands attached on a glass slide in a grid shaped pattern. The platform is, in
its most common form, a two-channel technique, meaning that in each measure-
ment, the expression profiles of two cell samples are measured simultaneously.
After extracting RNA from the two samples it is reverse-transcribed to cDNA,
and fluorescently labelled with Cy3 (green) for one sample and Cy5 (red) for
the other. The cDNA molecules of the samples are denoted targets. After la-
belling, the two samples are mixed and put in contact with the probes. During
hybridisation, the targets bind to their corresponding probes. Finally, each spot
is illuminated by a laser at two different wavelengths; one for Cy3 fluorescence
and one for Cy5 fluorescence. Thus two images are obtained; one with green
spots and one with red spots, measuring the abundances of the respective sam-
ple targets. The expression levels of the query sample, are then reported as
relative values compared to the reference expressions:

xi =
xquery

i

xreference
i

This ratio is transformed by taking the logarithm (discussed in section 2.4.1).

High-density synthetic oligonucleotide microarrays have a different construc-
tion. Produced only by specialised companies (Affymetrix, Agilent Technolo-
gies), they are increasingly used. The probes are made of small gene sequences,
with a typical length of 25 nucleotides, and probes for one gene is spread over
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Figure 2.1: Image from a high-density synthetic oligonucleotide microarray.
Expression level is represented by a real value. Measures on several biological
samples allows expression level comparison through microarrays.

the chip in order to decrease the influence of spatial errors. Moreover, associated
with each probe is a mismatch probe, where one nucleotide has been replaced
by its complement, thus providing a means of estimating the amount of false
positive binding. Total mRNA is extracted form a biological sample, marked
and hybridised. As opposed to spotted microarrays, high-density oligonucleotide
microarrays are single-channel, measuring one sample on each array. A direct es-
timation of gene expression is obtained by calculating the average signal through
all probes representing the gene.

Comparing the two platforms, spotted microarrays are more flexible be-
cause they can be designed in the laboratory, the experimentalist deciding which
probes to attach to the chip. On the other hand oligonucleotide chips have less
risk of cross hybridisation and a wider dynamical range.

2.3 Genes expression data analysis

The data processing, from scanned array images to the final biological inter-
pretation involves a long series of computational manipulations and analyses
of the data. The initial steps are the estimation of expression levels from the
raw image data through spot identification, segmentation, intensity estimation
and the computation of expression indices. Follows a number of preprocessing
steps, where various transformations of the data is applied in order to filter out
non-biological variation and to “clean up” data to facilitate subsequent analy-
sis. At this stage, data are ready to be analysed for a biological interpretation.
A range of high-level analysis methods exist, aiming to extracting biologically
relevant information from the data. Clustering, classification, and other types
of methods are all frequently applied in gene expression data analysis. Finally,
the extracted structure needs validation, and here too, computational methods
are helpful, for example while associating the results to prior knowledge which
is often stored in large databases.
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2.4 Preprocessing

2.4.1 Data transformation

As described in Section 2.2, expression values on a spotted microarray are
computed as the logarithm of the ratio between the two channel expressions.
The reason for taking the logarithm is to symmetrize between up and down-
regulation. In the original scale, down-regulation, when the query target is less
abundant than the reference target, is reduced in the interval [0, 1] , while up-
regulation is spread over the interval [1,∞[. Taking the logarithm places the
origin of expression values at 0, values in ]−∞, 0] correspond to down-regulation
while values in [0,∞[ to up-regulation.

2.4.2 Data normalisation

Any given set of microarray measurements contains variation from different
sources. The expression levels may vary across samples due to differences in the
quantity of mRNA, different sample processing, scanner calibration, etc. It is
necessary to minimise the impact of these changes in order to retain only the
biological variation, relevant to the study. This is the goal of normalisation.

The sources of variation are numerous and all are not very well understood,
therefore it is difficult to model them explicitly. Instead, typically some general
assumptions about invariance of certain quantities over samples are made. For
example, in total-intensity normalisation it is assumed that the true average
gene expression is constant across samples, in which case each array is scaled by
its total estimated expression. An alternative approach is to assume that a large
majority of genes are non-differentially expressed across samples. Consider two
microarray samples, for example the query and reference samples on a single
spotted microarray or two samples hybridised on separate oligonucleotide arrays.
In a scatter plot of gene expression in sample one against sample two, the points
should lie along the main diagonal under the assumption that most genes are
non-differentially expressed. If, in the observed data, they do not, the actual
relation between the samples can be estimated by fitting a line through the point
cloud. The data can then be transformed so that this line lies along the main
diagonal. In its most simple form this methodology rotates the point cloud,
but more commonly the nonlinear LOWESS (LOcally WEighed Scatter plot
Smooth) regression is used [78].

Under some circumstances none of the assumptions underlying the normal-
isation methods described above are valid. This is, for example, the case if the
microarray contains relatively few probes, the majority of which are known to
be involved in the biological process under study. In this case, normalisation is
often based on the assumption that expression properties, like those described
above, of a subset of the genes is invariant. This subset can be genes that are
biologically known to have a constant expression, so called housekeeping genes.
If no prior knowledge about invariant genes is available, a suitable subset can
be selected using for example the invariant set algorithm [42].



18

2.4.3 Missing values

Spotted microarray data sets often come perforated with missing values. In a
study with many samples it is quite likely that a rather large fraction of the
genes contain at least one missing value across samples. High-level analysis
methods usually do not allow missing values so in order not to throw away too
much potentially valuable information, the missing values need to be filled in.

Different strategies to achieve this missing value imputation exists. A possi-
ble approach is to use the average expression value of the gene across samples.
Another solution is adopted in K nearest neighbor imputation [68], where, if
gene contains a missing value in a particular sample, the K genes with most
similar gene expressions in the rest of the samples (where the corresponding
sample has a value) are found and the missing value is replaced by a weighted
average of the values in the other genes.

2.4.4 Filtering

Filtering is often applied to a microarray data set before high-level analysis. By
discarding genes that have noisy expression levels and/or do not vary signifi-
cantly over samples it is believed that the performance of subsequent high-level
analysis increases.

Different rules are applied in order to filter genes. For example, the Affymetrix
TM

oligonucleotide microarray platform provides detection p-values estimating the
confidence of the signal presence of each gene and filtering can thus be based on
these p-values by requiring that a gene should be significantly present in at least
a certain number of samples. For spotted microarray data, one can use similar
criteria based on the ratio between foreground and background intensities or
the fraction of missing values.

Furthermore, variation filters can be applied, excluding genes who, for ex-
ample, have a ratio between standard deviation and mean value below some
threshold value.

2.5 High-level analysis

Once data had been properly preprocessed, the next step is to extract some bio-
logical meaning from it. Ideally, the study of expression matrix allows biologists
to answer to biological questions; are there groups of genes allowing inference
of a particular role for an unknown gene? What distinguishes the various sam-
ples of the experience? Can we find signatures in the expression of genes for
various samples? This type of interpretation requires efficient and robust ana-
lytical methods. In that way, many mathematical tools have been developed or
adapted.

These methods for information retrieval are usually based on classification
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algorithms wich distribute the set of objects into several subsets by minimizing
variability within this subset.

We can easily distinguish two groups within the classification methods:

• Unsupervised classification algorithms: are automatic processes that sepa-
rate observed data into distinct groups without any prior knowledge about
the existing classes. These methods are commonly used in the interpreta-
tion of DNA-chips experimental results. Many softwares are now available,
covering most of the time a number of methods such as:

– hierarchical clustering

– k-means algorithm

– self organising map

– order preserving submatrix

– smooth clustering

– plaid models

– principal components analysis

– singular values decomposition

– spectral methods for graphs

– fuzzy clustering

• Supervised classification algorithm: unlike unsupervised classification meth-
ods, these algorithms requires introduction of a priori knowledge to sepa-
rate data into classes. The learning phase allows the system, from a known
and annotated dataset, to infer rules which are then used for classification
of other datasets. Among commonly used methods, we can cite:

– k nearest neighbors

– centroids analysis

– linear discriminant analysis

– support vector machines

– neural networks

– expectation-maximisation algorithm

Results of these methods depend directly on the learning phase. The
dimensions and noisy appearance of expression matrix may limit the ap-
plication of these algorithms. The main risk is over-learning (bad general-
isation of data properties, the system classifies perfectly learning samples
but loses its power of prediction on other data set).

Given the current knowledge on function of genes, it is sometimes convieni-
nent to be able to drive tests without a priori knowledge on the data set, whether
learning data or simply anotations (feature, function and role of genes. . . ). In
this study, we will first give details on mathematical approaches related to unsu-
pervised classification methods, then we will present our approach called “seman-
tic distillation”, within the same category wich allow to characterize membership
of all genes of a DNA-chip to the various biological samples from experience.
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Chapter 3

Abstract data representation

3.1 Mathematical form of the dataset

Let A be a finite set of attributes (or contexts, or keywords) and B be a finite
set of documents (or objects, or books). The dataset is a |A| × |B| matrix
X = (xab)a∈A,b∈B of real or complex elements, where | · | represents cardinality.
The matrix element xab quantifies the level of expression of document b with
respect to the attribute a. Several equivalent ways of representing the dataset
will be given in the subsequent sections.

Example 3.1.1 (Gene expression in various tissular contexts) In one
of the experiments we analysed B is a set of 12613 human genes and A a set of
12 tissular contexts. The matrix elements xab are real numbers encoding lumi-
nescence intensities (or their logarithms) of DNA array ultimately representing
the level of expression of gene b in context a.

Example 3.1.2 (Liver-specific genes expression for patients at various
stages of hepatic cancer) Here B is a set of 700 human genes known to be
differentially expressed in hepatocytes and A a set of 14 patients. Elements xab

are as above.

Example 3.1.3 (Library documents indexing) Let B be a set of books in
a library and A a set of bibliographic keywords. The matrix elements xab can be
{0, 1}-valued: if the term a is present in the book b then xab = 1 else xab = 0. A
variant of this example is when xab are integer valued: if the term a appears k
times in document b then xab = k. An additional variant of this example is the
authoritative weighing of the index, i.e. we suppose that an authority weight
w(a) ∈ R is provided for every term a, that multiplies all entries w(a)xab, b ∈ B,
so that the matrix elements become now real valued. The authority weight is
meant to give larger weight to the most important and informative terms.
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Example 3.1.4 (Students evaluation) Let B be a set of students and A a
set of papers they gave. The matrix elements xab are real valued; xab is the
mark the student b got in paper a.

The previous examples demonstrate the versatility of the method by keeping
the formalism at an abstract level to apply indistinctively into various very
different situations without any change. Note also that the assignment as set of
documents or attributes is a matter of point of view; for instance, example 3.1.4
as it stands is convenient in evaluating students. Interchanging the role of sets
A and B renders it adapted to the evaluation of teaching. As a rule of thumb,
in biological applications, |A| ≪ |B|.

Definition 3.1.5 Let X be an arbitrary set.

1. A function k : X× X→ C verifying the symmetry property

∀x, x′ ∈ X : k(x, x′) = k(x′, x),

where overlining means complex conjugation, is called linkage and the
pair (X, k) a linked space.

2. A linkage such that for all finite subsets J ⊆ X and all collections of
complex numbers (ηx)x∈J the positivity property

∑

x,x′∈J

ηxk(x, x
′)ηx′ ≥ 0

holds is called a positive kernel on X. The set of positive kernels on X

will be denoted by K(X).

3. A non-negative real valued linkage verifying the diagonal vanishing

∀x ∈ X : k(x, x) = 0

is called a (dis)similarity linkage.

4. A dissimilarity linkage verifying the two additional properties of

• separation: k(x, x′) = 0⇒ x = x′,

• and triangular inequality: ∀x, x′, x′′ ∈ X : k(x, x′′) ≤ k(x, x′) +
k(x′, x′′),

is called a distance.

Remark: Obviously [k is a distance] ⇒ [k is a (dis)similarity linkage]⇒ [k is a
linkage], but no implication can be reversed. Therefore, we carefully distinguish
between linkage, (dis)similarity linkage and distance in this text.

A linkage is supposed to express relationships among objects. For instance, if
k is a dissimilarity linkage and x1, x2 and x3 three distinct objects, on observing
that k(x1, x3) ≥ k(x1, x2) we infer that objects x1 and x2 are “more similar”
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than x1 and x3. On the contrary, if k is a similarity linkage, k(x1, x3) ≥ k(x1, x2)
means that x1 and x2 are “less similar” than x1 and x3.

The problems tackled in this paper can be roughly formulated as follows:

1. Given the dataset X, is there a natural way to define a linkage k on the
set of objects giving rise to an associated positive kernel?

2. If yes, is it possible to represent objects by vectors on an appropriate ν-
dimensional Hilbert space (i.e. represent the dataset X by a cloud of points
in this vector space) so that k becomes a Euclidean distance among these
points? Is there a minimal ν?

3. If k is a dissimilarity linkage, how to distribute objects into clusters ac-
cording to their mutual dissimilarity?

4. Is there a way to express different meanings conveyed by documents in
terms of probability measures on the Hilbert space? If yes, how disam-
biguation arises?

These questions have constantly being asked in the literature of various
disciplines like artificial intelligence and information retrieval [69, 20, 5], cog-
nitive sciences [27], mathematical linguistics [76], statistics [54, 38, 35, 3, 31],
biochemistry [71], protein folding [72], bioinformatics [50, 58, 7], image segmen-
tation [47, 64], large networks (like Internet) [17, 40, 41, 6] to mention only a
few of them. They have received the most elaborated formulation in the the-
ory of the quantum mechanical measurement [70, 59, 57] where the existence
of an abstract mathematical substratum composed from a Hilbert space and a
representation of objects in terms of vectors of the Hilbert space is made. This
formalism can be usefully adapted to all other aforementioned disciplines with
minor changes.

Therefore, before continuing, we present here a very general result playing a
crucial role in establishing the existence of a representation space that serves as
the mathematical playground for describing all the statistical methods relying
on spectral properties (principal components analysis, support vector machines,
graph Laplacians, random walk methods, and of course our method of semantic
distillation). This theorem goes back to Mercer [48], Aronszajn [4], Gel’fand
[28], and others.

Theorem 3.1.6 (Gel’fand) Let (X, k) an arbitrary (possibly uncountable) linked
space. Suppose further that for every finite or countable subset J ⊂ X and every
η ∈ CJ,we have ∑

x,x′∈J

ηxk(x, x
′)ηx′ ≥ 0.

Then there exists a (not necessarily separable) Hilbert space HX and a represen-
tation Ψ : X→ HX such that

1. The family of vectors {Ψ(x), x ∈ J} is total in HX, and
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2. k(x, y) = 〈Ψ(x) |Ψ(y) 〉 where 〈 · | · 〉 denotes the scalar product of HX.

The pair (HX,Ψ), unique up to unitary isomorphisms, is called the Gel’fand

pair associated with the linkage k.

Remark: This theorem has a very intuitive meaning providing us with a nice
geometrical picture: every time there exists a linkage on a set of objects that
is associated with a positive kernel k, there exist an essentially unique complex
vector space and a unique mapping of objects into vectors such that the linkage
among two objects can be expressed as a scalar product among their representing
vectors. Since all sets of objects in this article are finite, we shall prove the
theorem 3.1.6 only in the particular case where X is a finite set. We give here a
probabilistic proof that can be extended almost unchanged to cover the infinite
case [53].

Proof of theorem 3.1.6 (in the case of finite sets): In the finite case, without
loss of generality, we can assume that X = J in the sequel. Since k defines a
positive Hermitean form κ : CX × CX → C by κ(η, η′) =

∑
x,x′∈X

ηxk(x, x
′)ηx′ ,

there exists a |X| × |X| matrix C such that the matrix K = (k(x, x′))x,x′∈X

representing the form in the canonical basis can be written as K = CC†, where
the symbol C† means the Hermitean adjoint (complex conjugated and trans-
posed) of C. Let (αx)x∈X and (βx)x∈X be 2|X| independent random variables
identically distributed according to a centred reduced Gaussian. Define for all
x ∈ X, γx = (αx + iβx) and ξ ∈ CX by ξx =

∑
x′∈X

Cxx′γx′ . By construction,
E(ξx) = 0, while E(ξ ⊗ ξ†) = CC† = S. Therefore, there exists a probability
space (Ω,F ,P) and a Hilbert space L2(Ω,F ,P; C) such that for all x ∈ X, we
have E(ξx) = 0 and E(ξxξx′) = k(x, x′). We then define HX = span{ξx, x ∈ X}
the (trivially closed) subspace of L2(Ω,F ,P; C) and Ψ(x) = ξx. �

Let k be a positive kernel, i.e. k ∈ K(X), on a topological space X equipped
with its Borel σ-algebra and a σ-finite measure µ. Denote byH = L2(X,X , µ; C).
Under a continuity condition assumed on k, Mercer’s theorem [48] (see also
[22], vol. 2, page 1088), states that there exists a positive compact operator
K : H → H, defined through its action on ξ ∈ H:

Kξ(x) =

∫

X

k(x, y)ξ(y)µ(dy).

Compactness and positivity ofK imply that there exists a family of non-negative
eigenvalues (λn)n∈N that can be assumed ordered λ1 ≥ λ2 ≥ . . . ≥ 0 with
limn λn = 0 and a total set of corresponding eigenvectors (ψn)n∈N, such that
the operator K admits the spectral decomposition K =

∑
n∈N

λn|ψn 〉〈ψn |,
i.e. k(x, y) =

∑
n∈N

λnψn(y)ψn(x). Suppose now that the set X is finite or
countable. The Hilbert space whose existence is guaranteed by the previous
theorem 3.1.6 can be realised as follows:

• Let Ψ : X→ CX be defined by Ψ(x) = k(·, x). Obviously, Ψ(X) is a vector
space.

• Endow it with a scalar product by satifying the reproducing kernel prop-
erty 〈 k(·, x) | k(·, x′) 〉 = k(x, x′).
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• Complete the space Ψ(X) in the corresponding norm to get a Hilbert space
HX.

In the case of a dissimilarity linkage over a finite set B the theorem 3.1.6
admits a more geometrical form formulated by Shoenberg [62] and going back
the Fréchet who proposed [26] a reformulation of the von Neumann complex
(Hermitean) scalar product on a Hilbert space by an equivalent symmetric one
[32].

The problem of Schoenberg can be formulated as follows. Suppose that
(B, k) is a space linked by dissimilarity instead of being merely linked. What
are the necessary and sufficient conditions that there is a collection of points
Y = (Ψ(b))b∈B lying in a Euclidean space Rν but not in Rν−1 so that k(b, b′) =
‖Ψ(b)−Ψ(b′)‖? In other words, what are the necessary and sufficient conditions
so that there exists a cloud of points Y, living in Rν , so that the linkage is
expressed as the lengths of the edges of Y, while this is impossible if the cloud
is projected in any proper subspace of Rν? If this is the case, the map B ∋ b 7→
Ψb ∈ Rν is a representation of the set of points incorporating all the available
relationships described by the linkage into the distances among the points of the
cloud Y = Ψ(B). Moreover, ν is the minimal dimension of this representation to
faithfully represent the linkage, any trial to represent it into a lower dimensional
space will cause an information loss.

Theorem 3.1.7 (Schoenberg [62]) Let (B, k) be a document space linked by
dissimilarity and κ : RB × RB → R the bilinear form defined for all η, η′ ∈ RB

by κ(η, η′) =
∑

b,b′∈B
ηbk(b, b

′)η′b′ . Let Ψ : B → Rν be a representation of
the documents to Rν . Denote by β the symmetric matrix with matrix elements
β(b, b′) = ‖Ψ(b)−Ψ(b′)‖2 on R|B| and by H the hyperplane H = {η = (ηb)b∈RB ∈
RB :

∑
b∈B

ηb = 0}. The dissimilarity linkage k verifies k(b, b′) = β(b, b′) if and
only if the restriction of κ↾H is negative semi-definite. The minimal ν for such
a representation to be possible is the rank of κ↾H .

Proof: Suppose first that there exists a cloud of points (Ψb)b∈B in Rn for some
n sufficiently large realising the dissimilarity linkage by k(b, b′) = ‖Ψb −Ψb′‖2.
Then, obviously, k(b, b′) = ‖Ψb‖2 + ‖Ψb′‖2 − 2〈Ψb |Ψb′ 〉. Therefore,

κ↾H(η, η′) = −2〈V (η) |V (η′) 〉,

where V (η) =
∑

b∈B
ηbΨb, so that the quadratic form κ↾H(η, η) = −2‖V (η)‖2 ≤

0. Now ν = rank(κ↾H) = dimV (RB) is the minimal dimension of the space
carrying the cloud of points and realising the dissimilarity linkage.

Suppose conversely that k is a dissimilarity linkage on B and that the cor-
responding bilinear form, restricted on the hyperplane, κ↾H is negative semi-
definite with rank(κ↾H) = ν. Particularise a point of B by calling it 0 and write
B = {0} ∪ B0, where B0 = B \ {0}. Denote by (ǫb)b∈B the canonical basis of
RB; obviously, (vb = ǫb − ǫ0, b ∈ B0) is a basis of H. Denote by k′ the matrix
representing κ↾H in the basis (vb)b∈B0 (recalling that the dissimilarity linkage k
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represents the form κ in (ǫb)b∈B). Then,

∀b, b′ ∈ B0 : k′(b, b′) =
1

2
κ(vb, vb′)

=
1

2
(k(b, b′)− k(0, b′)− k(b, 0) + k(0, 0))

= −1

2
(k(0, b) + k(0, b′)− k(b, b′)).

Now, since k′ is supposed negative semi-definite of rank ν, there exists a matrix
R ∈Mν×|B0|(R) such that k′ = −RtR where Rt denotes the transposed matrix
of R. The matrix can be viewed as a collection of |B0| column vectors [Ψb]b∈B0

with Ψb ∈ Rν . Augment this set by adjoining the vector Ψ0 = 0 ∈ Rν . Then,
for all b, b′ ∈ B0, we have:

‖Ψb −Ψb′‖2 = ‖Ψb‖2 + ‖Ψb′‖2 − 2〈Ψb |Ψb′ 〉
= −k′(b, b)− k′(b′, b′) + 2k′(b, b′)

=
1

2
(2k(0, b) + 2k(0, b′)− 2(k(0, b) + k(0, b′)− k(b, b′)))

= k(b, b′).

Additionally, ‖Ψb‖2 = ‖Ψb −Ψ0‖2 = −k′(b, b′) = 1
2 (k(0, b) + k(0, b)− k(b, b)) =

k(0, b). Hence for all b, b′ ∈ B, we have established that k(b, b′) = ‖Ψb −Ψb′‖2.
�

3.2 The space of document representations

The mere representation of the dataset in terms of a matrix with real or complex
numerical entries conveys already the idea of an underlying vector space; the
rows (or columns) of the dataset representing points within this vector space.
This idea, already present — even not already explicitly explained — in the tra-
ditional methods, and thoroughly formalised in theorem 3.1.6, will be exploited
here. Note however that in this subsection, we have not yet a linkage on the set
of objects. Our purpose is to introduce such a linkage based on the dataset X.

For A and B as in the previous subsection, we define HA, to be the real
or complex free vector space over A, i.e. elements of A serve as indices of an
orthonormal basis of HA. Therefore, the complete dataset X can be represented
as the collection of |B| vectors |Ξb 〉 =

∑
a∈A

xab| a 〉 ∈ HA, with b ∈ B and where
| a 〉 represents the element of the orthonormal basis of the free vector space
corresponding to the attribute a. We use here Dirac’s notation to represent
vectors, linear forms and projectors on this space (see any book on quantum
mechanics or [56] for a freely accessible document and [69] for the use of this
notation in information retrieval).

Definition 3.2.1 Let A be a finite set of attributes, B a finite set of documents
and X = (xab)a∈A,b∈B the dataset of expressions. Let HA be the free Hilbert
space over A and Ξ : B→ HA defined by

Ξ(b) ≡ |Ξb 〉 =
∑

a∈A

xab| a 〉, ∀b ∈ B.
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Then the pair (HA,Ξ) is a representation of the set of documents with at-
tribute values expressed by the dataset X.

The vector |Ξb 〉 contains all available experimental information on docu-
ment b in various contexts indexed by the attributes a; it can be thought as
a convenient bookkeeping device of the data (xab)a∈A, in the same way a gen-
erating function contains all the information on a sequence as formal power
series.

In this language, documents are identified as particular vectors of the vector
space that can be combined through addition and scalar multiplication. How-
ever, the space of concepts contains infinitely more vectors than the documents.
In particular, it contains the attributes as particular vectors (orthonormal ba-
sis); it contains also all linear combinations of subsets of attributes, spanning
specific subspaces. Concepts are precisely identified with subspaces of HA.

3.3 The concept space and the metrisation of the

set of documents

The vector space HA is equipped with a scalar product defined for every two
vectors |ψ 〉 =

∑
a∈A

ψa| a 〉 and |ψ′ 〉 =
∑

a∈A
ψ′

a| a 〉 by 〈ψ |ψ′ 〉 =
∑

a∈A
ψaψ

′
a,

where ψa denotes the complex conjugate1 of ψa (it coincides with ψa if it is real).
Equipped with this scalar product, the vector space HA becomes a complex |A|-
dimensional Hilbert space. The scalar product induces a Hilbert norm on the
space, denoted by ‖ · ‖.

Note that since the space HA is finite dimensional (as will be all Hilbert
spaces that will be considered in this article), any vector subspace is a closed
Hilbert subspace. Hence it will be identified with the corresponding orthogonal
projection. We are now in position to define the important notion of the space
of concepts.

Definition 3.3.1 Let H be a finite-dimensional Hilbert space. The family of
all orthogonal projections P(H) (equivalently the family of all Hilbert subspaces
of H) is called space of concepts.

Remark: The space H in the previous definition must be thought as the rep-
resentation space for some set of documents within a given dataset.

In the sequel we introduce also rays on the Hilbert space i.e. normalised
vectors. Since the dataset X does not in principle verify any particular numerical
constraints, rays are constructed by dividing vectors by their norms. We use
the symbol | ξb 〉 = |Ξb 〉/‖|Ξb 〉‖ to denote the ray associated with vector |Ξb 〉.

1We consistently use a scalar product that is antilinear in the first argument and linear in

the second.
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The Hilbert space structure on HA allows a natural geometrisation of the
space of documents by equipping it with a linkage derived from the Hilbert
norm. Let (HA,Ξ) be a Hilbert space representation of the dataset X. Denote
| ξb 〉 = |Ξb 〉

‖|Ξb 〉‖ and define k : B× B→ R by

k(b, b′) = ‖| ξb 〉 − | ξb′ 〉‖2.

Then k is a dissimilarity linkage on B.

What is important here is not the precise form of the dissimilarity structure
of (B, k); several other dissimilarity linkages can be introduced, not necessarily
compatible with the scalar product. Let us mention for example the whole
family of dissimilarity linkages Kp derived from the lp distances (p ∈ [1,+∞])
on HA by

Kp(b, b
′) = [

∑

a∈A

|xba − xb′a|p]2/p = ‖Ξb − Ξb′‖2p, for p < +∞

and
K∞(b, b′) = (sup

a∈A

|xba − xb′a|)2 = ‖Ξb − Ξb′‖2∞
or

kp(b, b
′) = ‖ξb − ξb′‖2p.

Note that the special cases K2 and k2 from the above family are the only
dissimilarity linkages compatible with the Hilbert structure.

Once the space of documents has been linked by dissimilarity, (B, k), we
can define the notion of set linkage, denoted again by k, between non-empty
subsets of B1 and B2 of B as being the degree of linkage between documents
agglomerated in B1 and documents agglomerated in B2. There is no canonical
way of defining a set linkage. To give a flavour of linkages often used in the
literature, we give a few examples.

Example 3.3.2 Let (B, k) be a space linked by dissimilarity and B and B′

non-empty subsets of B.

k(B,B′) = min{k(b, b′), b ∈ B, b′ ∈ B
′},

k(B,B′) = max{k(b, b′), b ∈ B, b′ ∈ B
′},

k(B,B′) =
1

|B||B′|
∑

b∈B,b′∈B′

k(b, b′),

are possible set linkages. Note that only the first one is a dissimilarity! When
elements of B are represented in (HA,Ξ) and the vector space is equipped with
an arbitrary distance d, then

k(B,B′) =

[
d

(
1

|B|
∑

b∈B

Ξb,
1

|B′|
∑

b′∈B′

Ξb′

)]2

is a further example of set dissimilarity linkage.



Chapter 4

Set-theoretical methods of

raw data clustering

Clustering is a generic term meaning dividing the documents into few groups
of similar documents. The previous sentence is far from being a definition since
the notion of clustering is manifestly ill-defined: how dissimilarity is defined,
quantified and detected? how many are “few” groups?

Several methods1 have been developed so far. Some of them (hierarchical
clustering, l-means, principal components analysis, singular value decomposi-
tion, etc.) are extensively tested on small data sets; it remains still an open
problem whether are still adapted to huge datasets generated by DNA arrays.
Other classification or clustering methods have been proposeed (order preserving
sub-matrix, smooth clustering, plaid models, fuzzy methods, etc.).

Very often some of the above methods are included as built-in parts of popu-
lar software suits used by biologists to analyse data. Therefore, for completeness
and in order to avoid the black-box syndrome, a short presentation of the most
commonly used algorithms is made in the sequel.

4.1 Hierarchical clustering

Starting from a set of documents B and a set linkage dissimilarity k defined
for every pair of non-empty subsets of B, hierarchical clustering is a method
to produce an indexing structure on the family of subsets of B, called a den-
drogamme. The dendrogamme is a finite rooted tree whose root indexes the
set B while leaves index all singleton subsets {b}, b ∈ B. Edges of the tree
connect vertices indexing a parent cluster with all its children. An hierarchical
clustering algorithm can be agglomerative, if it starts from singletons and at
each steps subsumes most similar clusters into a unique cluster, or divisive, if

1In the litterature, the method is usually referred as k-means. Since we have reserved the

letter k for denoting linkage, we call it l-means

29
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it starts from the set B and at each step splits clusters into their most dissimilar
subclusters. Algorithm 1 below describes the agglomerative version; an example
of the divisive version is given in section 7.1.

Data: Set of documents B, set linkage k
Result: A Dendrogramme

initialise
Clusters← {{b}, b ∈ B};
L← 0;
EdgesL ← {};
VerticesL ← Clusters;
while |Clusters| > 1 do

L← L+ 1;
(C1, C2) = arg min{k(C,C ′), C, C ′ ∈ Clusters};
C = C1 ∪ C2;
Clusters← Clusters \ {C1, C2};
Clusters← Clusters ∪ {C};
VerticesL ← Clusters;
EdgesL ← Edges ∪ {(C1, C), (C2, C)};

end
Lmax ← L;
Dendrogramme← (VerticesL,EdgesL)L=0,...,Lmax

.
Algorithm 1: AgglomerativeHierarchicalClustering

Note that a possible ambiguity can arise in the step

(C1, C2) = arg min{k(C,C ′), C, C ′ ∈ Clusters}

of the algorithm in case several pairs saturate the minimum. The ambiguity
is resolved either by randomly choosing the pair (C1, C2) among all minimis-
ing ones, or by any standard deterministic or non-deterministic disambiguation
procedure. The produced dendrogrammes are topologically different but seman-
tically equivalent.

4.2 l-means clustering

Prior to presenting the method of l-means clustering, we need a definition.

Definition 4.2.1 Let (X, d) be a metric space and l an integer larger than
1. Let X = {x1, . . . , xl} be a family of l arbitrary distinct points of X. The
Voronoi tesselation associated with X is a splitting of X into l subsets Vi, i =
1, . . . , l, the Voronoi cells, defined by

Vi = {y ∈ X : d(xi, y) ≤ d(xj , y) for all j 6= i}, i = 1, . . . , l.

We denote by VX the Voronoi tesselation associated with X .
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Table 4.1: Example of agglomerative hierarchical clustering. Raw data are
represented on the left side and linked by Euclidian distance. Right side of the
figure represents the dendogramme resulting from agglomerative hierarchical
clustering.

Note that the Voronoi tesselation is not a partition of X since boundaries of the
cells belong to the intersection of two adjacent ones.

To perform a l-means clustering, we work with the Hilbert space represen-
tation of the documents, i.e. with the family X = {Ξ(b) ∈ HA, b ∈ B}. The
Hilbert space is either naturally metrised with its Hilbert norm or with some ad
hoc metric d. Assume that for some fixed integer l > 1, we are given l vectors
Ψi ∈ HA, i = 1, . . . , l and denote by Y this family. Let VY be the correpsonding
Voronoi tesseleation of HA. For all cells Vi of the tesselation VY , we compute
their barycentres relative to X 2, ci(X ), defined by

ci ≡ ci(X ) =
1

Ni

∑

b∈B

Ξ(b)1 Vi
(Ξ(b)), i = 1, . . . , l

where Ni is the cardinality of the set of documents belonging to the cell Vi. The
objective cost function, denoted by ObjCostFun, of the tesselation VY with
respect to the family X is then defined by

ObjCostFun(VY ,X ) =

l∑

i=1

d(Ψi, ci(X )).

The l-means algorithm is then a standard iterative search scheme aiming in
determing a family Y minimising the objective function. The minimisation
procedure can be performed by any valid and/or efficient algorithm. The sought
clustering is then performed by lumping documents belonging to the Voronoi
cells determined by the optimal Y that has been found.

Remark: Note that, simple as it sounds, updating the family Y to the set of
the previously obtained barycentres and starting afresh not always converge to
an optimum clustering. More elaborated minimisation procedures are required
to minimise the multi-valley objective function by efficiently searching the space
Hl

A
of putative barycentres (like simulated annealing, genetic algorithms, etc.).

2Computer scientists use to call them centroids.
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Table 4.2: Illustration of the l-means algorithm. The first figure (up left) shows
the initial randomized centroids and a number of points. In the second, (up
right) points are associated with the nearest centroid. Then (third figure, down
left) the centroids are moved to the center of their respective clusters. Steps 2
and 3 are repeated until a suitable level of convergence has been reached (down
right).

Data: Set X = {Ξ(b), b ∈ B} representing the documents,
l the sought number of clusters,
ObjCostFun the objective cost function,
Y = {Ψi, i = 1, . . . , l} an initial family of putative
barycentres of the clustering,
Minimisation an ad hoc minimisation algorithm.

Result: Y = {Ψi, i = 1, . . . , l} the family of optimal barycentres,
l subsets Ci, i = 1, . . . , l tesselating B and having Y as
family of barycentres.

while Y not optimal do
assign Voronoi tesselation VY corresponding to family Y of putatitve
barycentres;
compute barycentres of the tesselation;
compute ObjCostFun(VY ,X );
use Minimisation to propose new Y.

end
assign optimal Voronoi tesselation V to optimal family Y of barycentres;
for i = 1, . . . , l do

Ci = X ∩ Vi.
end

Algorithm 2: l-MeansClustering
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Table 4.3: Illustration of the importance of choosing initial centroids. This table
and table 4.4 shows different clustering results according to the initial centroids
position.
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Table 4.4: Illustration of the importance of choosing initial centroids. This table
and table 4.3 shows different clustering results according to the initial centroids
position. In this case, the result is not the optimum clustering.
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4.3 Order preserving submatrix

Suppose that the dataset matrix X is real-valued. For every document b ∈ B,
the expression levels induce a natural ordering of the attributes A. Let A ⊆ A

and B ⊆ B be two non-empty sets. Two documents b and b′ of B induce the
same ordering in A if for any distinct a, a′ ∈ A, the differences xab − xa′b and
xab′ − xa′b′ have the same sign (or are both 0).

An order preserving submatrix of X corresponds to subsets A of at-
tributes and B of documents such that the expression levels within attributes A
of all documents in B have the same ordering. We denote X↾A,B the so-defined
order preserving submatrix. The problem is to find maximal (with respect to
cardinality) subsets A and B so that X↾A,B is order-preserving. The documents
in B share obviously a more sophisticated dissimilarity property than mere link-
age dissimilarity. However, since this problem is known, [67], to be np-complete,
no efficient algorithm to solve it is available.

It is algorithmically easier to fix A ⊆ A and seek the largest subset B ⊆ B

such that X↾A,B is order-preserving. This task can been solved in linear time.

4.4 Smooth clustering

There is a whole family of possible smooth clusterings for datasets. Let A ⊆ A

and B ⊆ B be two fixed non-empty subsets of the attribute and the document
sets. The first step consists in a pre-processing of the dataset so that for all
b ∈ B and a ∈ A change the value xab into x′ab = xab − 1

|B|

∑
b′∈B xab′ . The

smooth clustering depends then on the possible definitions of the smoothness
score relative to the subsets A and B, denoted by SmoothScore(A,B), defined
on P(A)×P(B), where P(·) denotes the family of subsets. (To avoid notational
burden, we can define the score to take the value 0 whenever one of its arguments
is void.) The scores proposed in the literature [67] are

SmoothScore(A,B) = max
a∈A

(
max
b∈B
|x′ab|

)
,

SmoothScore(A,B)′ = max
a∈A

(∑

b∈B

|x′ab|2
)
.

Note that reordering rows and columns of the dataset X ′ so that elements in A
and B become contiguous, defines a |A| × |B| submatrix. We propose therefore
two additional scores, induced by the operator norms on the space of matrices
(see, for instance, [34] pp 294–295), and defined by

SmoothScore(A,B)1 = max
a∈A

(∑

b∈B

|x′ab|
)
,

SmoothScore(A,B)∞ = max
b∈B

(∑

a∈A

|x′ab|
)
.
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The smooth clustering problem can be formulated as follows:

Data: X: the |A| × |B| matrix representation of the dataset,
SmoothScore any of the smooth scores defined above,
θ > 0 a smoothness threshold, and
A ⊆ A a given set of attributes.

Result: The maximal B ⊆ B such that SmoothScore(A,B) ≤ θ.
assign X′ ← the column re-centred matrix X;
determine F = {(A,B) : A ⊆ A, B ⊆ B,SmoothScore(A,B) ≤ θ};
determine maximal B such that (A,B) ∈ F .

Algorithm 3: SmoothClustering

The smooth clustering problem is known to be np-hard. It can be viewed
as an assignement, to every subset A of attributes, of the maximal subset
B = B(A) of documents considered as the most pertinent to the character-
istics determined by A. Pertinence is measured by the function SmoothScore.

4.5 Plaid model

Imagine that real expression levels xab in the dataset are encoded into colours.
The dataset matrix X will then be viewed as a collection of coloured cells dis-
posed on the plane. Gene expressions are traditionally using a binary colour
code (green, red) meaning (expressed, suppressed). The encoding proposed here
is a refinement of this encoding to the case of larger colour sets; levels of expres-
sions, in the fashion of heights on a geographical map, will be encoded in terms
of the enlarged colour code. The idea behind the model is that we can rearrange
rows and columns of the dataset as a collection of contiguous sub-blocks of the
same colour. Documents in these sub-blocks are clustered as similar.

An ideal re-ordering consists in partitioning the set of attributes A into L
disjoint subsets Al, l = 1, . . . , L and the set of documents B into M disjoint sub-
sets Bm,m = 1, . . . ,M and define a colour matrix C = (clm)l=1,...,L;m=1,...,M .
The assumption for this ideal case is then that the expression matrix X can be
rewritten as

xab = c(0) +

L∑

l=1

M∑

m=1

clm1 Al
(a)1 Bm

(b),

where c(0) is a background colour. It is evident that if the rows and columns
are permuted so that those corresponding to every Al and Bm are contiguous,
then the dataset acquires a colouring in contiguous blocks of similar documents
according to the attributes determined by the subsets Al.

The plaid model is a modification of the previous ideal situation where in-
stead of a partitioning of the set A × B induced by the Cartesian product
of partitioning of the sets A and B, a covering of the set A × B by M not
necessarily disjoint patches. More precisely, we assume that there are subsets
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Table 4.5: Illustration of sharp plaid model. The left figure shows the raw data.
Clustered data are represented on the right.

Fm,m = 1, . . . ,M of A × B such that ∪M
m=1Fm = A × B while the symmetric

difference Fm△Fm′ is “small” when m 6= m′. We assume further that there is a
family of colours cm,m = 1, . . . ,M and a family Y(m) = (y(m))ab,m = 1, . . . ,M
of |A| × |B| matrices such that

y
(m)
ab =

{
cm if (a, b) ∈ Fm

0 otherwise.

If the original dataset matrix X can be re-expressed as

xab = c0 +

M∑

m=1

y
(m)
ab ,

where c0 is a background colour, we say that the dataset admits a plaid cluster-
ing. Instead of seeking a precise plaid clustering, the minimisation of a Plaid-

Cost function is sought. For a given dataset X and family of patch matrices
Y(m),m = 1, . . . ,M , a convenient cost function is

PlaidCost(X, (Y(m))m=1,...,M ) =
∑

a∈A

∑

b∈B

(
xab − c0 −

M∑

m=1

y
(m)
ab

)2

.

The plaid clustering problem is to determine, for given M , the family of
uniform matrices Y(m),m = 1, . . . ,M minimising the PlaidCost function; it is
known to be np-hard hence no efficient algorithm to solve it is known.
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Chapter 5

Spectral methods of clustering

5.1 Raw probabilistic and statistical methods

Beneath this class of methods lies the idea that the dataset X is a noisy version of
an ideal dataset. Thus all column vectors X(b) of X are supposed to be random
vectors.

5.1.1 Karhunen-Loève decomposition and principal com-
ponents analysis

Principal components analysis was first introduced in [54] and further developed
and popularised in [35] in the context of mathematical statistics; more accessible
references are [38, 31]. The method is best understood as a discrete version of
the so called Karhunen-Loève decomposition [36, 44] of a stochastic process.
Let us recall briefly this decomposition.

Let (Ω,F ,P) be an abstract probability space and

h = {ξ : Ω→ C s.t. E|ξ|2 <∞} = L2(Ω,F ,P; C)

the space of square integrable complex random variables on it. The space
h becomes a complex Hilbert space when equipped with the scalar product
〈 ξ | ξ′ 〉 = E(ξξ′) =

∫
ξ(ω)ξ′(ω)P(dω). Let (X,X , µ) be a measure space with X

a compact topological space equipped with its Borel σ-algebra X and a finite
regular measure µ. A centred square integrable stochastic process indexed by X

is a measurable mapping X : X→ h such that for all x ∈ X, we have EXx = 0.
Let k : X×X→ C be defined by k(x, y) = CovX(x, y) = E(XxXy) = 〈Xy |Xx 〉.
We shall assume in the sequel that the covariance is continuous. Then obviously,
k is a linkage on X. For any finite J ⊂ X and any η ∈ CJ,

∑

x,x′∈J

ηxk(x, x
′)ηx′ = E(V (η)V (η))

= Var(V (η)) ≥ 0,

39
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where V (η) =
∑

x∈J
ηXXx. Hence, k is a positive kernel, i.e. k ∈ K(X). Denote

byH = L2(X,X , µ; C). Under the continuity condition assumed on k, it induces,
thanks to Mercer’s theorem (see [22], vol. 2, page 1088), a positive compact
operator K : H → H, defined through its action on ψ ∈ H:

Kψ(x) =

∫

X

k(x, y)ψ(y)µ(dy).

Compactness and positivity ofK imply that there exists a family of non-negative
eigenvalues (λn)n∈N that can be assumed ordered λ1 ≥ λ2 ≥ . . . ≥ 0 with
limn λn = 0 and a total set of corresponding eigenvectors (ψn)n∈N, such that
the operator K admits the spectral decomposition K =

∑
n∈N

λn|ψn 〉〈ψn |, i.e.
k(x, y) =

∑
n∈N

λnψn(y)ψn(x). Now, since X : X → h, it follows that for all
ω ∈ Ω, X(ω) ∈ H. As the set of eigenvectors (ψn) is total, we can decompose
X(ω) =

∑
n∈N

ζn(ω)ψn, i.e. Xx(ω) =
∑

n∈N
ζn(ω)ψn(x).

Theorem 5.1.1 (Karhunen-Loève decomposition) Let (X,X , µ) be a mea-
sure space composed by a compact topological space X equipped with its Borel
σ-algebra X and a finite regular measure µ. Let X = (Xx)x∈X be a centred
(complex) stochastic process on a probability space (Ω,F ,P), indexed by X and
having finite and continuous covariance function CovX : X × X → C. With
the covariance as positive kernel on X, consider the nuclear compact positive
operator K on H = L2(X,X , µ; C). Let (λn)n∈N be the sequence of eigenval-
ues of K monotonically decreasing to 0 and (ψn)n∈N the sequence of associated
normalised eigenvectors. Then

1. The stochastic process X admits a unique decomposition X =
∑

n∈N
ζnψn.

2. The random variables (ζn) are square integrable and centred verifying
E(ζnζn′) = λnδnn′ .

Sketch of the proof: Since for every ω ∈ Ω the realisation X(ω) belongs in
H and (ψn) is a total system of vectors, we have the decomposition X(ω) =∑

n∈N
ζn(ω)ψn (in the H norm). We have further 〈ψn |X(ω) 〉 = ζn(ω) es-

tablishing thus the unicity of the decomposition. Using this decomposition,
compute for x, y ∈ X,

k(x, y) = E(XxXy)

=
∑

n,n′∈N

E(ζnζn′)ψn(x)ψn′(y).

Now, the eigenvector condition for ψm implies:

λmψm(x) = Kψm(x)

=
∑

n,n′∈N

E(ζnζn′)ψn(x)

∫

X

ψn′(y)ψm(y)µ(dy)

=
∑

n∈N

E(ζnζm)ψn(x).
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Taking finally the scalar product with ψm, we get:

λm = E(ζmζm) = Var(ζm).

Now, since ζn = 〈ψn |X 〉,

E(ζnζn′) =

∫

X

∫

X

E(XxXy)ψn(x)ψn′(y)µ(dx)µ(dy)

= 〈ψn |Kψn′ 〉
= λn′δnn′ .

�

Remark: The total variance of the process reads:
∫

X

E(XxXx)µ(dx) =
∑

n∈N

λn = tr(K).

Since the eigenvalues are positive and in decreasing order, the above formula
has a very intuitive meaning. If instead of using an arbitrary basis of H to
decompose X, we use the basis of the eienvectors of K, the projection of X to
the space spanned by the first eigenvector has a dominant contribution to the
total variance equal to λ1. If we project X to the space spanned by the two first
eigenvectors the variance of the projection is λ1 + λ2, and so on. Thus adding
new dimensions to the projection space improves the approximation of the total
variance but these improvements are smaller and smaller since λn decreases
monotonically to 0.

The principal components analysis can be viewed merely as the discrete
Karhunen-Loève decomposition of a stochastic process defined on a finite set
X = A equipped with the counting measure µ. The stochastic process is now
a mapping X : A → h. One of the basic assumptions of the method of prin-
cipal component analysis, often consciously or unconsciously hidden in most
expositions, is that the dataset X = (X(b))b∈B can be viewed as a collection of
|B| independent and identically distributed copies X(b) : A → h of the process
X. This allows estimating the covariance CovX by the empirical covariance
estimator1.

Since the Karhunen-Loève decomposition is formulated for centred processes
while the dataset X is not assumed to verify any obvious centring, we start by
transforming it into a modified dataset Y that is empirically centred. In other
words, we introduce the empirical mean column vector m = (ma)a∈A and define
the transformed data yab = xab − ma for all a and b. This gives rise to the
transformed dataset matrix Y = X−m⊗1t

B
, where 1B is the vector of CB whose

components are all equal to 1. The empirical covariance matrix estimator of X

is

K̂(a, a′) = ĈovX(a, a′) =
1

|B| − 1

∑

b∈B

yabya′b =
1

|B| − 1
(YY†)aa′ .

1The requirement of independent and identically distributed copies can be somehow re-

laxed, nevertheless, it is essential that the empirical covariance estimator converges to the

covariance of the process and this latter constraint imposes essentially strong stationarity and

mixing properties.
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The matrix K̂ is obviously positive semi-definite and self-adjoint hence admits
a complete orthogonal set of eigenvectors (ψn)n=1,...,|A| and corrsponding eigen-
values (λn)n=1,...,|A|, assumed ordered in decreasing order λ1 ≥ . . . ≥ λ|A| ≥ 0.

Subsequently, K̂ =
∑|A|

n=1 λn|ψn 〉〈ψn |. We have further that the total empirical
variance of the process X verifies

1

|B| − 1

∑

a∈A

∑

b∈B

|yab|2 =

|A|∑

n=1

λn = tr(K̂).

Now the process X can be decomposed into the basis of eigenvectors X =∑|A|
n=1 cn|ψn 〉. For any threshold θ ∈ [0, 1], define

l ≡ lθ = inf{N = 1, . . . , |A| :
N∑

n=1

λn

tr(K̂)
≥ θ}

and Pl =
∑l

n=1 |ψn 〉〈ψn | the orthogonal projector to the space spanned by the
eigenvectors associated with the l dominant eigenvalues (obviously, P|A| = 1 h).
Then PlX is an l-dimensional approximation of the process explaining a propor-
tion θ of the total variance. Similarly, instead of considering the |A|-dimensional
cloud of |B| points of the dataset, the l-dimensional cloud (PlX

(b))b∈B explains
a θ part of the total empirical variance. We can also restrict the spectral decom-
position of K̂ to subspace spanned by the first l most important eigenvectors
by defining:

K̂l ≡ PlK̂Pl =
1

|B| − 1
PlYY†Pl =

l∑

n=1

λn|ψn 〉〈ψn |.

In conclusion, principal components analysis is a representation of the dataset
in a space of dimension lower than the cardinality of attributes, optimally ex-
plaining a given percentage, θ, of the total variance. It is therefore expected that
this lower dimensional representation will be more easily exploited to regroup
documents in similar clusters.

5.1.2 Singular value decomposition and latent semantic
indexing

In the sequel, Mm,n(C) denotes the set of matrices with complex coefficients
having m rows and n columns; the algebra of square n×n complex matrices will
be denoted Mn(C). The set of Hermitean matrices is denoted by HerMn(C) and
the open cone of positive semi-definite Hermitean matrices by HerPosMn(C). By
GL(n,C) we denote the group of invertible n×n complex matrices and by U(n)
its subgroup of unitary matrices. It is well known that the polar decomposition
of a complex number z = r exp(iθ) has a matrix analogue. Namely, for every
Z ∈ GL(n,C) there exist uniquely determined matrices R ∈ HerPosMn(C) and
U ∈ U(n) such that Z = RU . This decomposition is called polar and establishes
a homeomorphism between GL(n,C) and HerPosMn(C)×U(n). This result can
be further extended to the case of not necessarily invertible matrices that can
even be rectangular instead of square.
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Table 5.1: Illustration of principal component analysis. The top figure shows
raw data data in a bi-dimensional projection according to standard basis vectors
of R. The bottom figure shows the same data according to the basis of the 2
first eigenvectors.
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Theorem 5.1.2 (Singular value decomposition) Let Z ∈ Mm,n(C), with
r = rank(Z) ≤ min(m,n). Then there exist matrices U ∈ U(m), V ∈ U(n),

and a block quasidiagonal real matrix D =

(
S 0

0 0

)
∈ Mm,n(R), where S =

diag(s1, . . . , sr) and for all i = 1, . . . , r, we have si ∈]0,∞[, such that Z =
UDV †. The numbers s1, . . . , sr are uniquely determined (up to permutations)
and are called the singular values of Z.

Remark: Note that the above factorisation is far from being unique. This can
be easily seen by counting the dimensions of the vector spaces involved in the
decomposition [63].

Proof of theorem 5.1.2: Both ZZ† and Z†Z are positive semi-definite and
rank(ZZ†) = rank(Z†Z) = r. Further their spectra share the same posi-
tive eigenvalues (with the same multiplicity), differing only by the multiplic-
ity of the eigenvalue 0, i.e. spec(ZZ†) = (s21, . . . , s

2
r, 0, . . . , 0) has cardinality m

while spec(Z†Z) = (s21, . . . , s
2
r, 0, . . . , 0) has cardinality2 n. Since rank(ZZ†) =

rank(Z†Z) = r = rank(Z) and im(ZZ†) ⊆ im(Z), it follows that im(Z) =
im(ZZ†). Now, ZZ† ∈ HerMm(C); therefore ker(ZZ†) = im(Z)⊥ = ker(Z†).
Consequently, Cm = im(ZZ†) ⊕ ker(Z†), implying that there exists an or-
thonormal basis of Cm consisting of the eigenvectors UR = [u1, . . . , ur] of
ZZ†, associated with the positive eigenvalues s21, . . . , s

2
r, completed by a basis

UK = [ur+1, . . . , um] of ker(Z†). Forming the unitary matrix U = [u1, . . . , um] =
[UR, UK ], we have for the respective blocks: ZZ†UR = URS

2 and Z†UK = 0. On
defining VR = Z†URS

−1 ∈Mn,r(C) we have V †
RVR = Ir, i.e. the column vectors

VR = [v1, . . . , vr] form an orthonormal family of Cn that can be completed to an
orthonormal basis [v1, . . . , vn] by adjoining the vectors VK = [vr+1, . . . , vn] be-
longing to kerZ. Writing blockwise V = [VR, VK ], and observing that ZVK = 0

and Z†U†
K = 0, we obtain

U†ZV =

(
U†

RZVR 0

0 0

)
,

with U†
RZVR = S. �

In the sequel, we assume that the singular values of Z are in decreasing
order s1 ≥ . . . ≥ sr > 0. For definitness, we assume also that n > m. For
any integer l = 1, . . . , r let χl(i) = 1 if i ≤ l and 0 otherwise. Define then
Sl = diag(s1χl(1), . . . , srχl(r)). Obviously, Sr = S = diag(s1, . . . , sr). The
construction made in the proof of the theorem 5.1.2 can be generalised, by
replacing the block quasidiagonal matrix D by

Dl =

(
Sl 0l,m−l 0l,n−m

0m−l,l 0m−l,m−l 0m−l,n−m

)
,

where 0p,q means a matrix in Mp,q(C) whose elements are identically 0. With
this definition, we define then Zl = UDlV

† =
∑l

k=1 sk|uk 〉〈 vk | ∈ Mm,n(C)
where (uk)k=1,...,r are the r first column vectors in Cm of U and (vk)k=1,...,r are
the r first column vectors in Cn of V .

2To incorporate multiplicity, we consider the spectrum as an ordrered list of eigenvalues,

possibly with repetitions.



5.1. Raw probabilistic and statistical methods 45

Lemma 5.1.3 If Zl is as above and the singular values are decreasingly or-
dered, then ‖Zl‖22 = s21.

Proof: We have ‖Zl‖22 = supx∈Cn;‖x‖2=1 ‖Zlx‖2. Hence, due to the orthonor-
mality of the vectors (uk),

‖Zlx‖2 =

l∑

k=1

l∑

k′=1

sksk′〈x | vk′ 〉〈uk′ |uk 〉〈 vk |x 〉

=

l∑

k=1

s2k〈x | vk 〉〈 vk |x 〉

≤ s21

n∑

k=1

〈x | vk 〉〈 vk |x 〉

= s21.

Furhter, the inequality becomes an equality if and only if x = v1, proving thus
the lemma. �

Proposition 5.1.4 If l ≤ r = rank(Z) and the singular values of Z are de-
creasingly ordered, then

inf
W∈Mm,n(C);rank(W )=l

‖Z −W‖2 = ‖Z − Zl‖2 = sl+1.

Proof: Since U†ZlV = Sl, it follows that rank(Zl) = l. Now, U†(Z − Zl)V =
diag(0, . . . , 0, sl+1, . . . , sr), and since the biggest singular value of Z−Zl is sl+1, it
follows that ‖Z−Zl‖2 = sl+1. Suppose now that W ∈Mm,n(C) and rank(W ) =
l ≤ min(n,m). Since Cn = kerW ⊕ im(W ), there exist orthonormal vectors
w1, . . . , wn−l ∈ Cn such that kerW = span(w1, . . . , wn−l). Denoting v1, . . . , vl+1

the first column vectors of V , a simple dimensional argument implies that the
space F = span(w1, . . . , wn−l)∩ span(v1, . . . , vl+1) 6= {0}. We can therefore find
a vector y ∈ F with ‖y‖2 = 1. Since Wy = 0 and Zy =

∑l+1
k=1 sk|uk 〉〈 vk | y 〉,

we have

‖Z −W‖22 ≥ ‖(Z − Zl)y‖22 = ‖(Z − Zl)y‖22 =

l+1∑

k=1

s2k〈 y | vk 〉〈 vk | y 〉 ≥ s2l+1.

�

Let X = (xab)a∈A,b∈B be a matrix representing the occurrence of keyword a
in document b or any other variant introduced in the example 3.1.3.

The set A is considered as the thesaurus containing all possible keyowrds
in defining the database. A keyword a ∈ A is expressed as a vector | a 〉 ∈ CA

having a coordinate 1 at position a and 0 in all other places. A query is identified
to the collection of keywords Q ⊆ A it contains or, equivalently, to a vector
q =

∑
a∈Q | a 〉. A document is also identified with the collection of the keywords

it contains, thus to a set W ⊆ A, or, equivalently, with a vector w =
∑

a∈W | a 〉.
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Table 5.2: Illustration of singular value decomposition. Top figure shows the
original dataset plot. Bottom figure shows its singular value decomposition.

Now there are many different ways to express a given concept (synonymy)
and a term may have mulitple meanings (polysemy). The dataset matrix X

is supposed to express a more subtle relationship between terms and docu-
ments than the Hamming distance comparison between vectors q and w. If
r = rankX, latent semantic indexing, for any integer l ≤ r, is an al-
gorithm seeking to take advantage of the singular value decomposition Xl =
UDlV

† =
∑l

k=1 |uk 〉〈 vl | to map the original relationships among documents
into l linearly independent factors [11, 23, 41, 40, 33]. Instead of performing a
mere matching between q and w, we first transform vectors to a query vector
Q = D−1

l U†q and to a document vector W = D−1
l U†w before comparing them,

for instance, by using a dissimilarity determined by the scalar product 〈Q |W 〉.

Remark: Note that singular value decomposition can be thought as a “square
root” of the principal components analysis. As a matter of fact, suppose that
the dataset is centred. Then,

XX† =

r∑

k=1

r∑

k′=1

sksk′ |uk 〉〈 vk | vk′ 〉〈uk′ | =
r∑

k=1

s2k|uk 〉〈uk |,
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expression to be compared with the spectral decomposition of the empirical
covariance.

5.1.3 Support vector machines

The support vector machine algorithm is a supervised learning algorithm
for classifying data. It can be useful when a training set of documents and
their precise function (annotation) are already given. In the biological applica-
tions we have in mind in this work, such a precise information is lacking, or,
more precisely, we don’t wish to rely on any previous existing information for
clustering our objects. Therefore, such a method cannot be applied directly
in our situation. Nevertheless, we briefly describe it here because it illustrates
some aspects of the Hilbert space representation and can prove useful, in the
cases precise annotation is available, to incorporate learning functions into our
method.

Let (B, k) be a space linked by dissimilarity where k ∈ K(B). Then there ex-
ists a real Hilbert spaceH yielding a natural representation ψ : B→ H such that
the set of objects B is mapped into a cloud of points Y = {ψb ∈ H, b ∈ B}. As-
sume further that there exists an a priori known precise classifier c : B→ {−1, 1}
such that every object b is assigned a value determining whether it possesses
(1) or not (−1) a given property. The support vector machine algorithm relies
on the (assumed) linear separability of the dataset, i.e. we suppose that there
exist a hyperplane H of H such that the set c−1({−1}) is represented by vectors
lying on the “left” of the hyperplane H. The algorithm determines the optimal
hyperplane separating the objects; when a new object is added in the dataset,
the position of its representing vector with respect to the hyperplane H uniquely
determines whether it is classified as possessing the property.

In this subsection, denote by X = Rν the Hilbert space H of representation of
documents. The dataset is then represented by the cloud of points Y = {xb, b ∈
B}, where xb = ψ(b) ∈ Rν . For every non zero vector w ∈ X and any real number
r, denote by H = Hw,r the affine hyperplane defined by H = {x ∈ X : 〈w |x 〉+
r = 0}. It is evident that for every real λ 6= 0, the hyperplanes Hλw,λr and Hw,r

coïncide. Hence, we define the canonical hyperplane with respect to the cloud
of points Y, the hyperplane determined by w and r such that minx∈Y |〈w |x 〉+
r| = 1. Note that if w and r defines a canonical hyperplaneH for the cloud Y, the

distance of H to the closest datum in Y is minx∈Y

∣∣∣〈 w
‖w‖ |x 〉+ r

‖w‖

∣∣∣ = 1
‖w‖ . The

norm ‖w‖ is called the margin of the separation by the canonical hyperplane
Hw,r.

The optimisation problem we have to solve is to determine the optimal
canonical separating hyperplane, i.e. the canonical hyperplane maximising the
margin of separation and separating the data correctly. This task corresponds
to minimising ‖w‖2 subject to the constraint c(b)[〈w |xb 〉+r] ≥ 1, for all b ∈ B.
Introducing the array of Lagrange multipliers α = (αb)b∈B with αb ≥ 0 we must
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minimise the Lagrangean

L(w, r, α;Y) =
1

2
‖w‖2 −

∑

b∈B

αb (c(b)[〈w |xb 〉+ r]− 1)

with respect to the variables w and r and maximise it with respect to α. At
the extremum, we have ∂

∂rL(w, r, α;Y) = 0 and ∂
∂wi

L(w, r, α;Y) = 0 for all
i = 1, . . . , ν, yielding

∑
b∈B

αbc(b) = 0 and w =
∑

b∈B
αbc(b)xb. Substituting

back into L, we must maximise
∑

b∈B
αb − 1

2

∑
b,b′∈B

αbαb′c(b)c(b
′)〈xb |xb′ 〉,

subject to the constraints αb ≥ 0 for all b ∈ B and
∑

b∈B
αbc(b) = 0. The

main advantage of the latter form is that the objective function to maximise is
determined in terms of the scalar products 〈xb |xb′ 〉 that by construction are
equal to the kernel k(b, b′).

The method can be extended to handle non-separable problems by allowing
the so-called soft margin generalisation.

5.2 Graph methods

Starting from a finite space (X, k) linked by (dis)similarity, we introduce now a
different form of expressing relationships among elements of X. Recall that a
(dis)similarity linkage is symmetric and vanishes on the diagonal. Define thus
an undirected graph G = (G0, G1), where G0 = X is the set of vertices and
G1 = {{x, y} ∈ (G0)2 : k(x, y) > 0} the set of undirected edges.

Every edge e = {x, y} ∈ G1 will be assigned a real weight w(e) ≡ w(x, y) ≥
0. Assume that k is a similarity and R :]0,∞[→]0,∞[ a strictly decreasing
function. We define then various types of weights:

adjacency : w(x, y) =

{
1 if k(x, y) > 0
0 otherwise;

conductance : w(x, y) = k(x, y);

resistance : w(x, y) =

{
R((k(x, y)) if k(x, y) > 0
0 otherwise.

If k is a dissimilarity, the definitions of conductance and resistance are inter-
changed. We denote W = (w(x, y))x,y∈G0 the corresponding weight matrix that
is obviously real symmetric. For every x ∈ G0, we denote by dx =

∑
y∈G0 w(x, y)

the degree of the vertex x and D = diag(dx, x ∈ G0) the diagonal matrix con-
taining the degrees on its diagonal. In the sequel we consider only connected
graphs so that dx > 0 for all x. Note that when W is an adjacency weight,
dx represents the number of vertices that are neighbours of x (in the sense
that they are connected to x by an edge). The matrix W of adjacency weights
represents then equivalently the undirected graph G while conductance or re-
sistence weights W incorporate additionally the information encoded in the
(dis)similarity linkage.

In the rest of this section, the matrix W , unless explicitly stated, will be al-
ways assumed to denote a conductance weight. If A and B are arbitrary subsets
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of G0, we call volume of A the quantity volA =
∑

x∈A dx and conductance
between A and B the quantity

℧(A,B) ≡
∑

x∈A,y∈B

w(x, y) = 1
t
AW1B = ℧(B,A).

The edge boundary of A, denoted by ∂A, is defined as ∂A = {e = {x, y} ∈
G1 : x ∈ A, y ∈ Ac or y ∈ A, x ∈ Ac}.

A subset of edges C ⊂ G1 is called a cut if the graph G′ = (G0, G1\C) is dis-
connected. Cuts arise naturally in the study of connectivity of graphs, indepen-
dentently of any consideration on the volume of the disconnected components.
The cut problems considered in this section belong to the more complicated
class of discrete isoperimetric problems; several continuous isoperimetric prob-
lems go back to the antiquity. The type of problems considered here are of the
form: find a set A ⊂ G0 such that volA and volAc are comparable while |∂A|,
or ℧(∂A, ∂A), or ℧(A,Ac) are as small as possible, for instance by minimising
the expression

ObjCostFun(A) =

∑
x∈A;y∈Ac w(x, y)

min(vol(A), vol(Ac))
.

It is proved in [15] that the infimum of ObjCostFun(A) is given by the Cheeger
isoperimetric constant hG of the graph. The purpose of any clustering algorithm
is to determine a set A with ObjCostFun(A) as close as possible to hG.

Associated with the matrices W and D are the following graph operators
[16, 29, 18]:

Laplacian : L = −∆ = D −W,
normalised Laplacian : Λ = I −D−1/2WD−1/2,

Markovian : M = I −D−1W.

These operators act to the right on vectors of the (complex) Hilbert space CG0

and to the left on linear forms on this space.

Isoperimetric problems in the discrete setting are known to be hard problems
(usually np-hard). Spectral properties of these operators can be successfully
used to algorithmically obtain approximately optimal cuts and provide us with
quantifiers of their optimality.

5.2.1 Spectral analysis of the weighed Laplacian

Let G = (G0, G1) be a finite weighed graph with |G0| = N . Let λ1, . . . , λN

be the eigenvalues of Λ (counted with multiplicities) and φ1, . . . , φN the corre-
sponding eigenvectors. Denote analogously by µ1, . . . , µN be the eigenvalues of
M and ψ1, . . . , ψN the corresponding eigenvectors [49, 9].

Proposition 5.2.1 1. The spectra of Λ and L are contained in the positive
real axis.
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2. If the eigenvalues of Λ are increasingly ordered λ1 ≤ . . . ≤ λN , then
λ1 = 0.

3.
∑N

k=1 λk = N .

4. The operator M has also real spectrum verifying

1 ≥ µ1 = 1− λ1 ≥ . . . ≥ µN = 1− λN ≥ −1

while the corresponding eigenvectors verify ψk = D−1/2φk for k = 1, . . . , N .

5. The eigenvalues λ1, · · · , λN of Λ and the vectors ψk = D−1/2φk for k =
1, . . . , N verify the generalised eigenvalue problem:

Lψk = λDψk, k = 1, . . . , N.

Proof:

1. Both operators L and Λ are symmetric, therefore their spectra are con-
tained in the real axis. For each edge e of the graph, define an arbitrary
orientation (you can toss a coin to choose one). Once the orientations
are defined, each edge acquires an arrow pointing from its source vertex
to its terminal vertex. Hence there are two functions s : G1 → G0 and
t : G1 → G0 (source and terminal maps) determining the source and ter-
minal vertices of every oriented edge [14]. Define d : ℓ2(G0) → ℓ2(G1)
by

d f(e) = f(s(e))− f(t(e)), e ∈ G1

and its adjoint d∗ : ℓ2(G1)→ ℓ2(G0) by

d
∗φ(x) =

∑

e=s−1(x)

w(e)φ(e)−
∑

e=t−1(x)

w(e)φ(e).

In the finite dimensional case, the operator d can be viewed merely as a
|G1| × |G0| matrix with matrix elements

de,x =





1 if s(e) = x
−1 if t(e) = x
0 otherwise,

while d∗ stands for the matrix representing the adjoint operator. Obvi-
ously L = d

∗
d

2 . The cohomological operator represented by the matrix d is
known as incindence matrix with respect to the given orientation; since
it appears as the “square root” of the Laplacian, it is strongly connected
to the Dirac operator on the graph.

Now 〈 f | 2Lf 〉 = 〈df | d f 〉 proving thus the positivity of the operator L
and consequently3 of Λ, since Λ = D−1/2LD−1/2.

3A direct decomposition of Λ = l
∗
l

2
where

lf(e) =
1

q

ds(e)

f(s(e)) −
1

q

dt(e)

f(t(e)),
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2. To show that 0 belongs to the spectrum, it is enough to apply Λ on D1/2
1

and recall that W1 = D1.

3. We have
∑N

k=1 λk = tr Λ = N−tr(D−1/2WD−1/2) = N because
∑N

k=1 〈 ek |D−1/2WD−1/2ek 〉 =
0.

4. The eigenvalue equation for M

Mψk = µkψk

implies Wψk = µkDψk. On defining φk = D1/2ψk we have Λφk = φk −
D−1/2WD−1/2φk = φk −D−1/2Wψk = φk −D−1/2µkDψk = (1− µk)φk.
To conclude, remark that the spectrum of M is trivially contained into
the unit disk.

5. Since L = D1/2ΛD1/2 and φk = D1/2ψk, we have Lψk = D1/2ΛD1/2D−1/2φk =
λkDψk.

�

Lemma 5.2.2 Let A ∈ Mn(R) be a symmetric matrix with real components.
Let λ1 ≤ . . . ≤ λn be its eigenvalues increasingly ordered and ψ1, . . . , ψn the cor-
responding normalised eigenvectors. For k = 1, . . . , n, denote Vk = span(ψ1, . . . , ψk)
and V0 = {0}. Then,

inf
x∈Rn:x6=0,x⊥Vk−1

〈x |Ax 〉
〈x |x 〉 = 〈ψk |Aψk 〉 = λk.

Proof: Since A is symmetric, its spectrum is real and its eigenvectors can always
be chosen orthonormal; they form therefore an orthonormal basis. Using this
basis to decompose an arbitrary vector x =

∑n
k=1 xk|ψk 〉 and using the spectral

decomposition A =
∑n

k=1 λk|ψk 〉〈ψk |, we get for x ⊥ Vk−1, 〈x |x 〉 =
∑n

j=k x
2
j

and 〈x |Ax 〉 =
∑n

j=k λjx
2
j . Thus 〈 x |Ax 〉

〈 x | x 〉 =
Pn

j=k λjx2
j

P

n
j=k x2

j

≥ λk = 〈ψk |Aψk 〉.
Moreover, the inequality becomes an equality for x = ψk. �

The previous results allow an elegant approach to the problem of optimal
cut of a graph. Denote, for y ∈ RG0

, by

R(y) =
〈 y | (D −W )y 〉
〈 y |Dy 〉

the Raleigh quotient of the graph. For a subset A ⊂ G0, define the cut weight
associated with A as the conductance between A and Ac, i.e.

Cut(A) = ℧(A,Ac) =
∑

x∈A;y∈Ac

w(x, y) = 〈1A |W1Ac 〉

and

l
∗φ(x) =

1
√

dx

0

@

X

e=s−1(x)

w(e)φ(e) −
X

e=t−1(x)

w(e)φ(e)

1

A ,

can be used as well.
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the normalised cut weight

NormalisedCut(A) = Cut(A)

(
1

vol(A)
+

1

vol(Ac)

)
.

Spectral analysis provides the solution to the unconstrained minimisation of
the Raleigh quotient and hence an approximate solution to the normalised cut
problem.

For A ⊆ G0, define r = 〈1A |D1Ac 〉

〈1 |D1 〉
. Let ξ = 1A − 1Ac ; since 1A = 1+ξ

2 , we

have:

NormalisedCut(A) =
〈1 + ξ |W (1− ξ) 〉
4r(1− r)〈1 |D1 〉 =

〈 ξ | (D −W )ξ 〉
4r(1− r)〈 ξ |Dξ 〉 .

Now, giving any vector ξ ∈ {−1, 1}G0

is equivalent in giving a set A because
we can define A = {ξ > 0}. Hence, we can write NormalisedCut(ξ) instead
of NormalisedCut(A) and seeking for the optimal A is equivelent is minising
NormalisedCut(ξ) over discrete vectors ξ ∈ {−1, 1}G0

.

Proposition 5.2.3 Let Hr = {η ∈ RG0

: ∀x ∈ G0 ⇒ η(x) = ± 1
2

√
dx

4r(1−r)}.
Then

inf
A⊂G0

NormalisedCut(A) = inf
η∈Hr

〈 η |Λη 〉
〈 η | η 〉 .

Proof: We have that infA⊂G0 NormalisedCut(A) = infξ
〈 ξ | (D−W )ξ 〉

4r(1−r)〈 ξ |Dξ 〉 , where the

minimisation runs over ξ ∈ {−1, 1}G0

. On defining η(x) = ξ(x)
√

dx

4r(1−r) , we

get that 〈 ξ | (D−W )ξ 〉
4r(1−r)〈 ξ |Dξ 〉 = 〈 η |Λη 〉

〈 η | η 〉 . �

Of course, the discrete problem is very hard. The unconstrained minimisa-
tion over η is nevertheless extremely easy; an approximate solution is provided
by lemma 5.2.2.

5.2.2 Random walk distances

Random walk approach to clustering [25, 24, 47, 64] is based on three very
intuitive ideas:

• Assume that the symmetric weight matrix W is a resistance weight. Then
the effective resistance among two arbitrary vertices x and y of the graph
is computed classically using the Kirchoff’s laws. Roughly speaking, the
more low resistance paths exist among the two points, the lower is the
effective resistance among them.

• The Markovian graph operator M induces a simple random walk on the
graph. Asymptotic properties of the walk are obtained through the electri-
cal circuit analogue (see [21] for an elementary introduction). The reason
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is that harmonic functions on the graph transform the Markov chain to a
martingale.

• Due to the close relationship between random walks and electric circuits,
low effective resistance among two points means that the random walk
jumps easily from one point to the other; large effective resistance means
that the random walk need long times to jump from one to the other.

Let (Xn)n∈N be a (G0,M)-Markov chain on G0 driven by the Markov oper-
ator M (we don’t specify yet the initial probability). Let π be the probability
π(x) = dx

vol(G0) . Obviously, due to the symmetry of W , we have

π(x)M(x, y) =
dx

vol(G0)
d−1

x w(x, y) = π(y)M(y, x).

Thus the chain is reversible.

Definition 5.2.4 Denote by τy = inf{n ≥ 1 : Xn = x} the passage time to
y and let C = (c(x, y))x,y∈G0 be a matrix of positive elements assigning cost
c(x, y) to the transition from x to y, for arbitrary vertices x and y of G0. We
define:

1. the average passage time from x to y: pt(x, y) = Ex(τy);

2. the average commute time between x and y: ct(x, y) = pt(x, y) +
pt(y, x);

3. the average passage cost from x to y: pc(x, y) = Ex(
∑τy

k=1 c(Xk−1, Xk));

4. the average commute cost between x and y: cc(x, y) = pc(x, y) +
pc(y, x).

All these quantities are explicitly expressed in terms of the pseudo-inverse, L+

of the Laplacian operator.

Definition 5.2.5 Let Z ∈Mm,n(C) be a matrix of rank r ≤ min(m,n) and let
Z = UDV † its singular value decomposition with D the pseudo-diagonal matrix

D =

(
S 0

0 0

)
∈Mm,n(C) and S = diag(s1, . . . , sr). The pseudo-inverse of Z

is the matrix Z+ = UD+V † with D+ =

(
S−1

0

0 0

)
∈Mm,n(C).

Remark: Note that since the rank of Z is assumed r, all diagonal elements of
the matrix S are non zero. Additionally, if r = m = n then obviously Z+ = Z−1.

Lemma 5.2.6 Let G = (G0, G1) be a connected graph with |G0| = N . Let
ℓ1 ≤ . . . ≤ ℓN be the eigenvalues of L, increasingly ordered, and ψ1, . . . , ψN the
corresponding normalised eigenvectors. Then
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1. rank(L) = N − 1

2. ℓ1 = 0 and ψ1(x) = 1/
√
N for all x,

3. kerL = span{ψ1},

4. L+ = (L− |ψ1 〉〈ψ1 |)−1 + |ψ1 〉〈ψ1 |.

5. spec(L+) = {0, ℓ−1
2 , · · · , ℓ−1

N }.

Proof: Recall the decomposition L = d
∗

d
2 , where d is the incidence matrix of

the graph associated with an arbitrary orientation, introduced in the the course
of the proof of the proposition 5.2.1.

1. Obviously rank(L) = rank(d∗ d). Now if ψ ∈ ker(d∗ d), then 〈ψ |d∗ dψ 〉 =
〈dψ | dψ 〉 = 0. Hence f = dψ is the null vector of ℓ2(G1), which im-
plies that rank(L) = rank(d). Now suppose that {x, y} ∈ G1 and (x, y)
corresponds to the chosen orientation. Then f({x, y}) = 0 = ψ(x)−ψ(y);
therefore, the vector ψ ∈ RG0

is constant on any connected component of
G. The dimension of this subspace is c, where c is the number of connected
components, showing that rank(d) = N − c.

2. It has been shown in proposition 5.2.1 that the spectrum of L is real and
non-negative. It is immediate to verify that Lψ1 = 0, showing that ψ1 is
a normalised eigenvector associated with the eigenvalue ℓ1 = 0.

3. Since rank(L) = N − 1, it follows that that dim ker(L) = 1 and since
ψ1 ∈ ker(L) the result follows.

4. The operator L being symmetric, use its spectral decomposition L =∑N
k=1 ℓk|ψk 〉〈ψk | and the vanishing of ℓ1 = 0, to write L − |ψ1 〉〈ψ1 | =

−|ψ1 〉〈ψ1 |+
∑N

k=2 ℓk|ψk 〉〈ψk |. Hence

L+ = (L− |ψ1 〉〈ψ1 |)−1 + |ψ1 〉〈ψ1 |

=

N∑

k=2

1

ℓk
|ψk 〉〈ψk |.

5. Immediately follows from the previous expression.

�

Theorem 5.2.7 Let (Xn) be a Markov chain on G0 the vertex set of a a
connected graph. Then the function G0 × G0 ∋ (x, y) 7→

√
ct(x, y), where ct is

the average commute time for the Markov chain, is a distance.

Proof: Introducing taboo probabilities, a straightforward computation leads
to the expression ct(x, y) = vol(G0)〈 ex − ey |L+(ex − ey) 〉, where L+ is the
pseudo-inverse of the weighed Laplacian and ex(z) = δxz. Now, for all x and
y, with x 6= y, the vector ex − ey lies on the orthogonal complement of the
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eigenspace associated with the eigenvalue 0; this space has dimension N−1 and
the restriction of L+ on this subspace is positive definite. Hence ct(x, y) = 0
implies ex − ey = 0, i.e. x = y. The other properties of the distance are also
immediately verified. �

Remark: The distance d on X = G0 defined in terms of the commute time
renders (X, d) a linked space. The intuitive meaning of this distance is that the
random walk on the graph spends most of its time on clusters and from time
to time there are rare transitions from one cluster to another. Thus clusters
are identified by subsets whose occupation measure with respect to the random
walk are high while cuts are only scarcely occupied. This observation gives a
direct stochastic simulation algorithm to determine clusters.

5.2.3 Optimal low-dimensional representations of a graph

Suppose that we have N experimental observations, indexed by a finite set X

with |X| = N ; suppose further that all the available information on the data is
encoded into a weighed graph G = (G0, G1) with G0 = X and weight matrix
W . We have already seen in section 3 that the data can be represented in
an Euclidean space Rν and theorem 3.1.7 determines the minimal ν for which
such a representation can be made without loss of information. However, for all
practical purposes, i.e. for N of the order of 10000, the dimension ν determined
by the Schoenberg’s theorem is very large. Therefore the informationally faithful
representation of the dataset in Rν is very cumbersome and difficult to exploit
by a human.

The problem we address in this section can be stated as follows. Is there
a low-dimensional (typically one-, two-, or three-dimensional) Euclidean repre-
sentation of the weighed graph so that vertices of the graph with small effective
conductance (or small graph distance, or small commute time, etc.) be repre-
sented by points with small Euclidean distance? The idea behind this question
is that the points of the dataset are not just random variables in Rν but variables
related by some mostly hidden and unknown relationships, constraining them to
live on some smooth manifold embedded in this space. If the relationships are
sufficiently smooth and numerous, it is expected that the manifold containing
the representing points is low-dimensional so that the represenation into a one-,
two-, or three-dimensional space does not distort the local geometry too much.

Let ρ : X → Rν be some (not necessarily faithful) representation of the
dataset. A reasonable criterion is to minimise the following objective cost func-
tion, penalising those representations mapping neighbouring points far apart,

ObjCostFun(ρ) =
1

2

∑

x,y∈X

‖ρ(x)− ρ(y)‖2w(x, y),

under some constraints. Now∑

x,y∈X

‖ρ(x)− ρ(y)|2w(x, y) =
∑

x,y∈X

(
‖ρ(x)‖2 + ‖ρ(y)‖2 − 2〈 ρ(x) | ρ(y) 〉

)
w(x, y)

=
∑

x∈X

‖ρ(x)‖2dx +
∑

y∈X

‖ρ(y)‖2dy − 2
∑

x,y∈X

〈 ρ(x) | ρ(y) 〉w(x, y).
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Remark: Note that in the previous formula, ‖·‖ and 〈 · | · 〉 are meant to denote
ν-dimensional Euclidean norm and scalar product respectively.

Lemma 5.2.8 Let ρ : G0 → Rν be a not necessarily faithful representation
of the dataset and denote by R ∈ Mν,|G0|(R) the matrix containing the vector

ρ(x) ∈ Rν as its xth comumn. Then

ObjCostFun(ρ) = 2 tr(RLRt).

Proof: Fix an arbitrary orientation on the graph and denote by d : ℓ2(G0) →
ℓ2(G1) the incidence operator and by d∗ its adjoint. (By abuse of notation,
we shall use the same symbols to denote the matrices representing these opera-
tors). Within the proof of proposition 5.2.1, it is established that L = d∗ d /2.
Now dRt ∈ M|G1|,ν(R) whose (e, k) element, for e = (x, y), reads dRt(e, k) =

ρ(k)(x) − ρ(k)(y). Letting Rd∗ ∈ Mν,|G1| denote the matrix representing the
adjoint, we get

Rd
∗
dR

t(k, k′) =
1

2

∑

x,y∈G0

w(x, y)(ρ(k)(x)− ρ(k)(y))(ρ(k′)(x)− ρ(k′)(y)).

The result follows immediately by taking the trace. �

It is obvious that if we minimise the objective cost function without impos-
ing any constraint, we get the trivial solution ρ ≡ 0. To prevent this collapse,
we fix the scaling of the representation by imposing orthonormality RRt = 1ν .
Without loss of generality, we can assume that

∑
x∈G0 ρ(x) = 0; the representa-

tion is then called balanced. Balancing means that the centre of gravity of the
representation is placed at the origin of the coordinate system [29].

Theorem 5.2.9 Let G = (G0, G1) be a graph with |G0| = N and denote by L
its weighed Laplacian. Assume that the eigenvalues of L are increasingly ordered
0 = λ1 ≤ . . . ≤ λN and that λ2 > 0. Denote the corresponding eigenvectors
ψ1, . . . , ψk. Then the infimum over orhtonormal balanced representations of
dimension ν of ObjCostFun(ρ) is

∑ν+1
k=2 λk. The matrix R saturating the previous

minimum is a ν × |G0| matrix whose row k is the transposed eigenvector ψt
k+1.

Proof: Start from the spectral decomposition of the Laplacian

L =

N∑

k=1

λk|ψk 〉〈ψk |.

Denote Vj = span(ψ1, . . . , ψj) for j = 1, . . . , N and V0 = {0}. Since the matrix
L is symmetric and semi-positive definite, for every η ∈ Vj , we have from lemma

5.2.2 that infη 6=0;η⊥Vj

〈 η |Lη 〉
〈 η | η 〉 = λj+1. The eigenvalue λ1 = 0 corresponds to the

constant vector ψ1(x) = 1
N , for all x. Since the representation is balanced, for

all k = 1, . . . , ν, we shall have ρ(k) ⊥ V1. Therefore, infk=1,...,ν
〈 ρ(k) |Lρ(k) 〉
〈 ρ(k) | ρ(k) 〉

≥ λ2
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and this infimum will be achieved for some k1 ∈ {1, . . . , ν}. Then iteratively
apply this inequality

inf
k=1,...,ν;k 6=k1;...;k 6=kr

〈 ρ(k) |Lρ(k) 〉
〈 ρ(k) | ρ(k) 〉 ≥ λr+1.

Hence for a balanced orthonormal represenation ρ,

ObjCostFun(ρ) =
ν∑

k=1

N∑

j=1

λj(〈 ρ(k) |ψj 〉)2

≥
ν+1∑

j=2

λj .

Obviously the previous inequality becomes an equality if we choose ρ(k) = ψk+1.
�
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Chapter 6

Logics and semantic spaces

Logic investigates the methods of reasoning and provides us with the rules and
techniques of correct and reliable inference. It deals with propositions and their
relations to each other. Its applications can be found in mathematics, computer
sciences, and more generally in every rigorous scientific reasoning but even in
every day life argumentation. Besides the classical Boolean logic there have
been established various generalisations such as modal, intuitionistic, quantum,
or fuzzy logic, as well as propositional structures underlying substructural logics
which focus on relaxations of structural rules governing validity and provability.

Experimental sciences produce experimental data that are analysed by sta-
tistical methods to infer relationships among various quantities and establish a
phenomenology of their disciplines. When underlying mechanisms are discov-
ered that explain all phenomenology, we speak about a scientific theory. The
theory predicts new facts, new experiments are designed and performed to test
these predictions, The new experiments enrich the existing phenomenology and
either they confirm the predictions of the theory, in which case the theory is
reinforced, or they infirm the theoretical predictions, in which case the theory
is rejected as unsatisfactory.

Since statistical inference is used to analyse experimental data, the inferred
relationships are necessarily probabilistic. Now classical probability theory re-
lies on the notion of σ-algebra (i.e. a σ-complete Boolean lattice) and therefore
to classical Boolean logic. The Leitmotiv of this work is that, at the present
stage of ignorance of the underlying mechanisms governing gene interactions and
expressions within the living matter, it is worth exploring whether non tradi-
tional analysis methods can infer relationships unreachable by classical methods.
The results that will be presented in next sections confirm that it is. There-
fore, before presenting our methods and results, we give a brief survey of some
unconventional logical structures.

59
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6.1 Lattices and logics

The basic notions exposed in this subsections are due to Dedekind and have
been extended and elaborated by Birkhoff; a modern and accessible reference is
[13]. A very useful and pedagogical reference is also [19]. The various aspects
of quantum logic are thoroughly treated in [59, 57, 70].

Definition 6.1.1 Let X be an arbitrary set and � a partial order relation on
X (i.e. a reflexive, antisymmetric, and transitive relation). The pair (X,�) is
called a partially ordered set or poset.

Example 6.1.2 Typical posets are (R,≤) and (P(Y),⊆) where P(Y) denotes
the set of subsets of an arbitrary set Y. The poset (R,≤) is totally ordered in the
sense that for every x, y ∈ R, either x ≤ y or y ≤ x, while the poset (P(Y),⊆)
is only partially ordered since there exist x, y ⊆ Y that are incomparable by
inclusion.

If a poset contains a particular element 0 ∈ X such that for all x ∈ X we
have 0 � x, then this element is unique and is called the least element of X.
Dually, if a poset contains a particular element 1 ∈ X such that for all x ∈ X we
have x � 1, then this element is unique and is called the greatest element of
X. In a poset with least element, an element x ∈ X such that 0 ≺ x and there
does not exist y ∈ X such that 0 ≺ y ≺ x is called an atom. If X ⊆ X and
u ∈ X an element such that ∀x : x ∈ X ⇒ x � u, then u is called an upper
bound of X. An upper bound s of X such that s � u for all upper bounds u
of X is called the least upper bound, denoted supX. Lower bounds and the
greatest lower bound infX are defined dually. Note that both supX and infX
if they exist are unique.

Definition 6.1.3 A lattice is a poset X any two of whose elements have a
greatest lower bound, called meet and denoted by x ∧ y = inf{x, y}, and a
least upper bound, called join and denoted by x ∨ y = sup{x, y}. A lattice is
complete if when each of its subsets X ⊆ X has a greatest lower bound and a
least upper bound; it is σ-complete when this property holds for all countable
subsets X. A lattice is atomic if every subset X is the join of atoms.

Example 6.1.4 Let Y be an arbitrary non-empty set. Consider the poset
(P(Y),⊆). Then for all X,Y ⊆ Y the join is defined by X ∧Y = X ∩Y and the
meet by X ∨Y = X ∪Y , rendering P(Y) into a lattice. For Y = {Y1, Y2, . . .} an
arbitrary family of subsets of Y, we have inf Y = ∩iYi and supY = ∪iYi. Thus
P(Y) is a complete lattice.

Example 6.1.5 Denote by K the field of real or complex numbers and by
X = V(Kn) the set of vector subspaces of Kn, equipped with the partial order
� defined as follows: for x, y ∈ X we say that x � y if x is a vector subspace
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of y. Obviously then x ∧ y = x ∩ y and x ∨ y = span(x, y), turning the poset X

into a lattice1.

For all elements x, y, z of a lattice X, whenever the expressions below exist,
operations of join and meet verify the following properties:

1. x ∧ x = x = x ∨ x (idempotence),

2. x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutativity),

3. x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity),

4. x ∧ (x ∨ y) = x = x ∨ (x ∧ y) (absorption),

5. x � y ⇔ x ∧ y = x⇔ x ∨ (x ∧ y) = y (consistency).

Remark: It is worth noting that distributivity, although verified in several
classical examples (see examples 6.1.4 for instance), is not a consequence of the
lattice definition. Only some weaker notions are stemming from the definition
as shown in the following

Theorem 6.1.6 Let X be a lattice. For all x, y, z ∈ X, we have

1. x � z ⇒ x ∨ (y ∧ z) � (x ∨ y) ∧ z (modularity),

2. x ∧ (y ∨ z) � (x ∧ y) ∨ (x ∧ z) (distributive inequality),

3. x ∨ (y ∧ z) � (x ∨ y) ∧ (x ∨ z) (dual distributive inequality).

Proof: Suppose x � z. Now x � x ∨ y, so that x � (x ∨ y) ∧ z. Similarly,
y ∧ z � y � x ∨ y and since y ∧ z � z, we have that y ∧ z � (x ∨ y) ∧ z and
combining with the previous inequality, we get finally x ∨ (y ∧ z) � (x ∨ y) ∧ z
establishing modularity.

To establish distributive inquality, note that x∧y � x and x∧y � y � y∨z,
so that x ∧ y � x ∧ (y ∨ z). Similarly, x ∧ z � x and x ∧ z � z � y ∨ z, hence
x ∧ z � x ∧ (y ∨ z). Therefore, x ∧ (y ∨ z) is an upper bound of both x ∧ y and
x ∧ z. Dual distributive inequality follows by duality. �

Definition 6.1.7 A lattice is called distributive if the distributive inequality
is an equality.

Remark: In a distributive lattice, the dual distributive inequality can easily be
shown to be also an equality.

Definition 6.1.8 Let X be a lattice with universal bounds 0 and 1 (i.e. for all
x ∈ X, we have 0 � x � 1).

1This lattice is complete in this finite dimensional setting but not in the infinite dimensional

one.
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1. A mapping ′ : X → X is called a fuzzy negation if it verifies for all
x, y ∈ X,

• x � (x′)′ (weak double negation),

• x � y ⇒ y′ � x′ (antitony),

• 0
′ = 1 and 1

′ = 0 (Boolean boundary condition).

2. The pair (X,′ ) is called a fuzzy logic and elements of the lattice are called
propositions.

3. If the fuzzy negation further verifies the law of non-contradiction x ∧
x′ = 0, the fuzzy logic is termed simply a (non-contradictory) logic.

4. In a (non-contradictory) logic, the element x′ is called the pseudo-complement
of x; if it verifies further x ∨ x′ = 1 then it is called the complement of
x.

Remark: In a fuzzy logic, the relation x � y will be interpreted as “x implies y”,
the proposition x∧y as the conjunction “x and y”, while x∨y as the disjunction
“x or y”. The proposition 1 is the truth and 0 the falsehood or absurdity.

Theorem 6.1.9 1. Let X be a lattice equipped with a mapping ′ : X → X

verifying the weak double negation property. This mapping is antitone if
and only if the disjunctive de Morgan law

(x ∨ y)′ = x′ ∧ y′

holds for all x, y ∈ X.

2. In a fuzzy logic, the conjunctive de Morgan inequality

(x ∧ y)′ � x′ ∨ y′

holds for all x, y ∈ X.

3. If in a fuzzy logic we have further (x′)′ = x for all propositions, then the
conjunctive de Morgan law

(x ∧ y)′ = x′ ∨ y′

holds for all x, y ∈ X.

Proof:

1. Assume that the disjunctive de Morgan law holds. Now for x � y it follows
that y = x ∨ y. Hence, y′ = (x ∨ y)′ = x′ ∧ y′ � x′ proving antitony.

Conversely, suppose anitony holds, and let v = x ∨ y and w = x′ ∧ y′.
Then v � x and v � y while w � x′ and w � y′. By the antitony, v′ � x′
and v′ � y′, while w′ � x and w′ � y. Hence v′ � x′ ∧ y′ = w, and
consequently v � w′ by antitony, as well as v = x ∨ y � w′; this yields
v = w′.



6.1. Lattices and logics 63

2. By disjunctive de Morgan law, (x′ ∨ y′)′ = (x′)′ ∧ (y′)′ � x ∧ y. Now,
x′ ∨ y′ � ((x′ ∨ y′)′)′ � (x ∧ y)′, establishing the sought inequality.

3. The disjunctive de Morgan law yields (x′ ∨ y′)′ = x ∧ y. Hence (x ∧ y)′ =
((x′ ∨ y′)′)′ = x′ ∨ y′.

�

For a non-contradictory negation, the fuzzy logic becomes a logic where a
stronger result holds, as described by the following

Theorem 6.1.10 (Tertium non datur) In a logic, with a (non-contradictory)
negation verifying further (x′)′ = x for all propositions, the tertium non datur
(exluded middle) x ∨ x′ = 1 holds.

Proof: If the negation verifies (x′)′ = x, both disjunctive and conjuctive de
Morgan laws hold. Non contradiction reads x∧ x′ = 0 and complementation of
the latter yields x ∨ x′ = 1. �

Definition 6.1.11 1. A paraconsistent logic is a fuzzy logic where the
paraconsistent relation

[x � y and x′ ∧ y = 0]⇒ [x = y]

holds.

2. An intuitionistic logic is a distributive logic in which there exist propo-
sitions x with x ≺ (x′)′.

3. A quantum logic is a logic verifying the orthomodularity condition

x � y ⇒ [x ∨ (x′ ∧ y) = y].

4. A Boolean logic is a complemented distributive logic.

The previous definitions introduce a natural hierarchy among various types
of logics as explained in the following graph.

lattice
yfuzzy negation

fuzzy logic
paraconsistency−−−−−−−−−−→ paraconsistent logic

ynon-conradiction

yorthomodularity

logic
orthomodularity−−−−−−−−−−→ quantum logic

ydistributivity

yx=(x′)′

distributive logic
x=(x′)′−−−−−→ Boolean logic

y∃x:x≺(x′)′

intuitionistic logic
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6.2 Boolean, fuzzy, and quantum logics

6.2.1 Boolean logic

Boolean logic is the most common classically used logic. It lies beneath the
main classical mathematical theories. In particular, it is well known that the
Kolmogorov axiomatisation of classical probability theory relies on the notion of
σ-algebra (i.e. a σ-complete Boolean logic). Now this formulation is completed
by the so called Loomis-Sikorski theorem stating that an arbitrary σ-algebra
can be realised as the σ-complete Boolean algebra of subsets of a universal
set Ω. More precisely, if (X1,�1) and (X2,�2) are two σ-complete lattices, a
morphism f is a map f : X1 → X2 verifying for all x, y ∈ X1 the join and
meet-morphism relationships: f(x∨1 y) = f(x)∨2 f(y) and f(x∧1 y) = f(x)∧2

f(y). It is a σ-morphism if the previous equalities hold for countable joins
and meets, it is called an epimorphism if f is surjective, a monomorphism if
f is injective and an isomorphism if f is bijective. The precise formulation of
Loomis-Sikorski theorem [45, 66] (see also [13], p. 255) is that any Borel algebra
is the σ-epimorphic image of a σ-algebra of subsets of a universal set Ω.

The strong intuitive consequences of this theorem are scarcely underlined
in standard texts on classical probability theory. For instance, if (X,X , µ) is a
probability space and X a X-valued random variable distributed according to µ,
the Loomis-Sikorski theorem guarantees the existence of an abstract probability
space (Ω,F ,P) on which the random variable X can be defined! This intuitive
description of random variables defined as observables on abstract probability
spaces, lurking in the original text by Komogorov [39], is almost lost in nowadays
expositions on probability theory.

Let X be a real bounded random variable (i.e. a real-valued (measurable)
observable defined on some probability space (Ω,F ,P)). Let X = X(Ω) ⊆ [a, b]
for some reals a < b. For every B ∈ B([a, b]) define P (B) = 1 X−1(B). For every
ǫ > 0 there exists a finite or countable partition (Ij) of [a, b] into disjoint sets
such that choosing arbitrary xj ∈ Ij for all j, we can approximate X with a
precision at least ǫ by a linear combination of indicators

|X(ω)−
∑

j

xjP (Ij)(ω)| < ǫ,∀ω ∈ Ω.

When the partition gets finer and finer, the function P defined above becomes
an indicator-valued measure on B([a, b]) and we can write X =

∫
X
xP (dx).

This integral is called the spectral decomposition of the random variable
X. Note that since EX =

∫
Ω
X(ω)P(dω) =

∫
X
xPX(dx), where PX is the law

of X, we have PX = EP , i.e. the law of X is the exected value of its spectral
measure. It is worth noting also that the spectral measure of X contains all the
information encoded inX: random variables can be identified with their spectral
measures. Since spectral measures are as a matter of fact indicator functions,
classical probability theory heavily relies on manipulations on indicators. Every
indicator can in turn be identified with a crisp set. It becomes therefore evident
why classical probability is defined on Boolean σ-algebras of subsets of a given
universal set.
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The purpose of this work is to explore probability measures defined on more
general lattices than Boolean algebras. Before dealing with proabability mea-
sures (in the subsection 6.3), we explore first the necessary relaxation of the
notion of crisp set. Otherwise stated, classical probability on Boolean lattices
involves indicators hence crisp sets. What is the underlying model corrsponding
to fuzzy or quantum lattices? We shall see in subsections 6.2.2 and 6.2.3 that to
represent fuzzy lattices we must abandon the notion of crisp set and replace the
notion of sharp indicator by the notion of fuzzy membership (leading to a fuzzy
set theory) while for quantum lattices we must replace indicators by projectors
to Hilbert subspaces.

6.2.2 Fuzzy logic

Fuzzy set theory was initiated in 1965 by Zadeh [79] as a generalisation of
standard set theory (that will be termed crisp set theory in the sequel whenever
this distinction or precision is necessary). The intuitive idea behind fuzzy set
theory is the following: when the outdoor temperature is 32◦C it is definitely
a warm day, when it is −10◦C a cold day; but what about a temperature of
15◦C or 25◦C? It is not possible to find a temperature T such that the set
of temperatures C =] − ∞, T [ to be called indisputably “cold” while the set
W = [T,∞[ to be called indisputably “warm”. It is more reasonable to trade
crisp sets defined by the indicators 1 C and 1 W by some blurred versions of these
sets, defined by the membership function cold : R → [0, 1] and a membership
function warm : R → [0, 1] such that each otdoor temperature t be cold with
possibility cold(t) and warm with possibility warm(t). An example of such
functions is given by:

cold(t) =





1 if t ≤ 10
1− t−10

20 if 10 < t < 30
0 if t ≥ 30

;warm(t) =





0 if t ≤ 10
t−10
20 if 10 < t < 30

1 if t ≥ 30.

More generally, a fuzzy logic is the set X = {x : Ω→ [0, 1]} of membership
functions (propositions) on a given universal set Ω. Contrary to propositions
in a Boolean logic that are either true or false, here propositions can take inter-
mediate truth values. Conjunction is usually defined by x ∧ y = min(x, y) and
disjunction by x ∨ y = max(x, y). Fuzzy complementation is naturally defined
by x′ = 1 − x; therefore a fuzzy logic will be contradictory if there exists a
proposition (membership function) x such that for some ω ∈ Ω the following
inequalities 0 < x(ω) < 1 occur.

More general definitions are possible in terms of t-norms and conorms.

Definition 6.2.1 Binary operations N : [0, 1]2 → [0, 1] and H : [0, 1]2 → [0, 1]
are called triangular norm and triangular conorm (briefly t-norm or t-
conorm) if for u, v, w ∈ [0, 1] the following hold

• commutativity: uNv = vNu and uHv = vHu

• associativity: uN(vNw) = (uNv)Nw and uH(vHw) = (uHv)Hw,
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• monotony: u ≤ v ⇒ uNw ≤ vNw and u ≤ v ⇒ uHw ≤ vHw, and

• boundary neutrality: 1Nu = u and 0Hu = u.

Every t-norm can be used to define the meet of two propositions x ∧ y(ω) =
x(ω)Ny(ω) and a t-conorm the join and, consequently, turn the fuzzy logic into
a poset by determining the corresponding partial order relation �. Obviously,
the min function is a t-norm (also called Gödel t-norm) while max is a t-conorm.
Specific choices of the t-norm and -conorm lead to different variants of fuzzy
logic (Łukasiewicz, Gödel, product logics, etc.).

Definition 6.2.2 Every t-norm N induces a material implication on the
fuzzy logic, denoted by →N, as the proposition defined by

(x→N y)(ω) = sup{s ∈ [0, 1] : x(ω)Ns ≤ y(ω)}

for arbitrary propositions x and y.

Example 6.2.3 [Gödel material implication] Let the t-norm be defined
by Gödel prescription: xNy = min(x, y). Then

x→N y =

{
1 if x � y
y if x ≻ y.

The proposition x→N y is false in the extent that x is “truer” than y.

Fuzzy logic is instrumental in several applied fields where sharp memberships
are not available. In particular it can be used to perform fuzzy clustering as
a generalisation of the classical (Boolean) clustering algorithms introduced in
section 4.

Recently, fuzzy logic (with Gödel t-norm, t-conorm prescriptions) was used
by Aerts [1] to analyse an experiment in cognitive science performed in 1988 by
Hampton [30]. Namely, 40 students have been asked to assign a number in the
set {−3,−2,−1, 0, 1, 2, 3} to quantify the typicality of an “item being element
of a concept”. +3 means that the item is judged being strongly pertinent to the
concept, −3 strongly impertinent. The data were then transformed to produce
empirical fuzzy memberships to the concepts i.e. propositions of the fuzzy logic.
The novelty of the experiment laid in the fact that students were also asked to
rank memberships to disjunction of concepts. Therefore, we have two manners
to compute joins of propositions, either by the empirical membership deter-
mined for the disjunction of concepts, or by applying t-norm to the empirical
memberships of individual concepts. It turned out that there is a discrepancy
among these two determinations, implying that fuzzy logical operations do not
fully explain the experimental observations. Aerts continued the analysis and
encoded the experimental results to a quantum logic instead; this modification
significantly improved the coïncidence of the two determinations.

We view these results as a strong indication that in some situations analysis
of experimental data based on methods of quantum logic is more rewarding
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than using traditional methods. We don’t speculate here on a hypothetical
quantum nature of cognitive activities as was done in [55]; we only claim that
quantum methods applied in the analysis can give better results. For that
reason, we introduce quantum logic in section 6.2.3 below and examine the way
to introduce probability measures on it in section 6.3.

6.2.3 Quantum logic

Quantum logic has been introduced in definition 6.1.11 as a complemented,
orthomodular, non-contradictory logic X; it can be assumed σ-complete if X is
infinite. In the same manner propositions in a Boolean logic arise as indicators
on a family of subsets of a universal set and those of fuzzy logic as membership
functions, the natural model representing a quantum logic arises as the set of
projections to closed subspaces of a Hilbert space H.

More precisely, we have the following

Proposition 6.2.4 Let H be a separable complex Hilbert space of dimension
dimH ≥ 2. Denote by X = P(H) the set of self-adjoint operators with spectrum
contained in {0, 1} and for x, y ∈ X define

• x′ = 1 − x,

• [im(x) ⊆ im(y)]⇒ [x � y].

Then X is the set of projectors to closed subspaces of H; it is also a (σ-complete)
quantum logic.

Proof: Since all experiments analysed in section 8 are modelled by finite dimen-
sional Hilbert spaces, we only prove this proposition in the case of finite dimen-
sional Hilbert spaces. Since every x ∈ X is self-adjoint and has spec(x) ⊆ {0, 1},
it follows that x2 = x, i.e. x is a projection. Now, projections are in bijection
with subspaces of the Hilbert space. It is then trivial to verify that pseudo-
complementation x′ verifies x = (x′)′; consequently the conjuctive de Mor-
gan law holds. Moreover, if x � y then xy = yx = x; define then the meet
by x ∧ y = xy = yx. Thanks to the conjunctive de Morgan law, we have
x∨ y = (x′ ∧ y′)′ = 1 − x′ ∧ y′ = 1 − (1 − x)(1 − y) = x+ y− xy. It is then im-
mediate to verify that the pseudo-complementation is in fact a complementation
and that the set X verifies the axioms of a quantum logic. �

Obviously, the quantum logic defined above fails to be distributive in general.
Consider in fact a two-dimensional Hilbert space H and ξ, ψ two othonormal
vectors in H. Denote by x the projection to span(ξ), by y the projection to
span(ψ) and by z the projection to span(ξ+ψ). Denote further 0 the projection
to the trivial subspace {0} and 1 the projection (identity) to H. Then x ∨ (y ∧
z) = x∨0 = x, while (x∨y)∧(x∨z) = 1∧1 = 1. Hence x∨(y∧z) 6= (x∨y)∧(x∨z).
Similarly, x ∧ (y ∨ z) = x ∧ 1 = x, while (x ∧ y) ∨ (x ∧ z) = 0 ∨ 0 = 0. Hence
x ∧ (y ∨ z) 6= (x ∧ y) ∨ (x ∧ z).
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Now, the main use of logic is to make inferences. The minimal requirement
that a quantum material implication → must verify is obviously

if [x � y], then [x→ y] = 1 (law of entailement).

However, this requirement is not enough to fully determine the logical structure.
In classical logic we can make conditional inference of the form: if x is true and
x → y holds then y is true, while if x → y holds and y is false then x is false.
Therefore, a quantum material implication must also verify

x ∧ (x→ y) � y (modus ponens),

and
y′ ∧ (x→ y) � x′ (modus tollens).

The law of entailement, modus ponens, and modus tollens are collectively called
minimal inference criteria. In a quantum logic there exist three different con-
ditional operations, expressible as lattice polynomials, that verify the minimal
inference criteria:

x→1 y = x′ ∨ (x ∧ y)
x→2 y = (x′ ∧ y′) ∨ y
x→3 y = (x ∧ y) ∨ (x′ ∧ y) ∨ (x′ ∧ y′).

All these conditionals reduce to the classical material implication

x→ y = x′ ∨ y (classical material implication)

when restricted to a Boolean sublogic of the quantum logic. However, they all
violate certain implicative criteria that are satisfied by the classical material
implication. One such violated criterion is

if (x ∧ z) � y, then z � (x→ y) (law of exportation).

As a matter of fact, minimal inference criteria and the law of exportation are
equivalent to the

x ∧ z � y if and only if z � (x→ y) (classical implicative criterion).

Proposition 6.2.5 Let X be an orthocomplemented lattice. If there exists a
conditional → that verifies the classical implicative criterion then X is distribu-
tive and the conditional is in fact the classical material implication.

Proof: Let x, y, z be three arbitrary elements of X. Obviously,

x ∧ z � (x ∧ z) ∨ (y ∧ z)
y ∧ z � (x ∧ z) ∨ (y ∧ z),

and since the conditional → verifies the classical implicative criterion, we con-
clude that

x � [z → [(x ∧ z) ∨ (y ∧ z)]]
y � [z → [(x ∧ z) ∨ (y ∧ z)]] .
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Combining disjunctively the two above inequalities, we get

x ∨ y � [z → [(x ∧ z) ∨ (y ∧ z)]] ,
and applying the classical implicative criterion once more, we obtain finally

(x ∨ y) ∧ z � [(x ∧ z) ∨ (y ∧ z)].
Since, by theorem 6.1.6 the reverse inequality holds in any lattice, we conclude
that the inequality is in fact an equality, proving thus the distributivity of the
lattice. The proof is completed by remarking that in a distributive lattice the
classical material implication is the only one verifying the minimal inference
criteria. �

Corollary 6.2.6 On a the lattice X = P(H) of Hilbert subspaces, for a Hilbert
space with dimH ≥ 2, none of the conditionals→i, with i = 1, 2, 3 defined above
satisfies the classical implicative criterion; hence, each of them violates the law
of exportation.

Proof: Obvious since X is not distributive. �

Classical probability theory is defined on a measurable space (Ω,F) where
F is a Boolean σ-complete logic. Quantum mechanics, originally mathemati-
cally formulated in a different language and point of view, can be viewed as a
probability theory (i.e. a theory of random variables and probability measures)
on a quantum σ-complete logic. Weakening distributivity to orthomodularity,
beyond modifying the quantum material implication, induces a structure on the
quantum probability space richer than the Boolean one, with some new features,
absent from the classical case.

6.3 Classical and quantum probability in a uni-

fied framework

The propositions considered so far are of a particularly simple type: they corre-
spond to indicators in the Boolean case and to projectors in the quantum case.
Our purpose is to construct a genuine probability theory [70, 59, 57, 56], i.e.
define random variables as integrals with respect to an indicator-valued measure
(in the Boolean case) or projector-valued measure (in the quantum case) over
their spectral values. We shall use the term “classical” to speak about Boolean
logics.

Axiom 6.3.1 In any physical system (classical or quantum), the set of all
experimentally verifiable propositions is a logic (classical or quantum).

6.3.1 Observables associated with a logic

Suppose that X is the logic of verifiable propositions of a physical system and
let X be any real physical quantity relative to this system. Denoting by x(B)
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the proposition “the numerical results of the observation of X lie in B”, it is
natural and harmless to consider that B ∈ B(R); obviously then, x is a mapping
x : B(R) → X. We regard two physical quantities X and X ′ as identical
whenever the corresponding maps x, x′ : B(R)→ X are the same. If f : R→ R

is a Borel function, we mean by X ′ = f ◦ X a physical quantity taking value
f(r) whenever X takes value r. The corresponding map is given by B(R) ∋ B :
x′ 7→ x′(B) = x(f−1(B)) ∈ X. Hence we are led naturally to the following

Definition 6.3.2 Let X be a logic. A real observable associated with X is a
mapping x : B(R)→ X verifying:

1. x(∅) = 0 and x(R) = 1,

2. if B1, B2 ∈ B(R) with B1 ∩B2 = ∅ then x(B1) ⊥ x(B2),

3. if (Bn)n∈N is a sequence of mutually disjoint Borel sets, then x(∪n∈NBn) =
∨n∈Nx(Bn).

We write O(X) for the set of all real observables associated with X.

Let X be a logic and x ∈ O(X). Then, for any sequence of Borel sets (Bn)n∈N,
we have

x(∪n∈NBn) = ∨n∈Nx(Bn)

and
x(∩n∈NBn) = ∧n∈Nx(Bn).

Definition 6.3.3 Let X be a logic and O(X) the set of its associated observ-
ables. A real number λ is called a strict value of an observable x ∈ O(X), if
x({λ}) 6= 0. The observable x ∈ O(X) is called discrete if there exists a count-
able set C = {c1, c2, . . .} such that x(C) = 1; it is called constant if there exists
c ∈ R such that x({c}) = 1. It is called bounded if there exists a compact Borel
set K such that x(K) = 1.

Definition 6.3.4 We call spectrum of x ∈ O(X) the closed set defined by

spec(x) = ∩C closed :x(C)=1C.

The numbers λ ∈ spec(x) are called spectral values of x.

Any strict value is a spectral value; the converse is not necessarily true. Obvi-
ously, λ ∈ spec(x) if and only if any open set U containing λ verifies x(U) 6= 0.

If (an)n∈N is a partition of unity, i.e. a family of mutually orthogonal propo-
sitions in X such that ∨n∈Nan = 1, there exists a unique discrete observable
admitting as spectral values a given discrete subset {c1, c2, . . .} of the reals. In
fact, it is enough to define for all n ∈ N, x({cn}) = an and for any B ∈ B(R),
x(B) = ∨n:cn∈Ban. Notice however that discrete observables do not exhaust
all the physics of quantum mechanics; important physical phenomena involve
continuous observables.
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6.3.2 States on a logic

With every classical system is associated a measurable space (Ω,F) (its phase
space); observables are random variables and states are probability measures
that may degenerate to Dirac masses on particular points of the phase space.
This description is incompatible with the experimental observation for quantum
systems. For the latter, the Heisenberg’s uncertainty principle stipulates that
no matter how carefully the system is prepared, there always exist observables
whose values are distributed according to some non-trivial probability distribu-
tion.

Definition 6.3.5 Let X be a logic and O(X) its set of associated observables.
A state function is a mapping ρ : O(X) ∋ x 7→ ρx ∈M+

1 (R,B(R)).

For every Borel function f : R→ R, for every observable x, and every Borel set
B on the line, we have:

ρf◦x(B) = ρx(f−1(B)).

Denoting by o the zero observable and 0 the zero of R, we have that ρo = δ0.
In fact, suppose that f : R→ R is the identically zero map. Then f ◦ o = o and

f−1(B) =

{
R if 0 ∈ B
∅ otherwise.

Hence, if 0 ∈ B, then ρo(B) = ρf◦o(B) = ρo(f
−1(B)) = 1, because ρo is a prob-

ability on R; if 0 6∈ B then similarly ρo(B) = 0. Therefore, in all circumstances,
ρo(B) = δ0(B).

If x ∈ O(X) is any observable and B ∈ B(R) is such that x(B) = 0 ∈ X,
then ρx(B) = 0. In fact, for this B, we have 1 B ◦ x = o and ρx(B) = ρo({1}) =
δ0({1}) = 0. This implies that if x is discrete, the measure ρx is supported by
the set of the strict values of x.

Definition 6.3.6 An observable q ∈ O(X) is a question if q({0, 1}) = 1. A
question is the necessarily discrete. If q({1}) = a ∈ X, then q is the only question
such that q({1}) = a; we call it question associated with the proposition a and
denote by qa if necessary.

Definition 6.3.7 Let X be a logic. A function p : X→ [0, 1] satisfying

1. p(0) = 0 and p(1) = 1,

2. if (an)n∈N is a sequence of mutually orthogonal propositions of X, and
a = ∨n∈Nan, then p(a) =

∑
n∈N

p(an)

is called state (or probability measure) on the logic X. The set of states on X

is denoted by S(X).
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The concept of probability measure on a logic coincides with a classical
probability measure when the logic is a Boolean σ-algebra. For non distributive
logics however, the associated probability measures are genuine generalisations
of the classical probabilities. For standard quantum logics, the associated states
are called quantum probabilities.

Theorem 6.3.8 Let p ∈ S(X), where X is a logic.

1. On defining a map ρp : O(X)→M+
1 (R,B(R)), by the formula: for every

x ∈ O(X) and for every B ∈ B(R), ρp
x(B) = p(x(B)), then ρp is a state

function.

2. Conversely, if ρ is an arbitrary state function, then there exists a unique
probability measure p ∈ S(X) such that, for every x ∈ O(X) and for every
B ∈ B(R), we have ρx(B) = p(x(B)).

Proof:

1. The map ρp
x : B(R) → [0, 1] is certainly a σ-additive, non-negative map.

Moreover, ρp
x(R) = p(1) = 1, hence it is a probability. If f : R → R is a

Borel function,

ρp
f◦x(B) = p(f ◦ x(B)) = p(x(f−1(B))) = ρp

x((f−1(B)).

Hence ρp is a state function.

2. Let ρ be a state function. If a ∈ X and qa ∈ O(X) the question associated
with proposition a, then ρqa

is a probability measure on B(R). Since qa
is a question, ρqa

({0, 1}) = 1. Define p(a) = ρqa
({1}). Obviously, for all

a ∈ X, p(a) is well defined and is taking values in [0, 1]. It remains to show
that p is a probability measure on X, that is to say verify σ-additivity and
normalisation. For 0 ∈ X, q0({1}) = 0. Hence ρq

0
({1}) = 0 = p(0).

Similarly, we show that = p(1) = 1. This shows normalisation.

Let (an)n∈N be a sequence of mutually orthogonal elements of X, and
denote by a = ∨n∈Nan. Let x ∈ O(X) be the discrete observable defined
by x({0}) = a⊥ and x({n}) = an, for n = 1, 2, . . .. Then, 1 {n} ◦ x({1}) =
x({n}) = an. Hence qan

= 1 {n} ◦ x and p(an) = ρx({n}). Since ρx is
a probability measure,

∑
n p(an) = ρx({1, 2, 3, . . .}) = ρx(N). Similarly,

1 N ◦ x = qa because 1 N ◦ x({1}) = x(N) = ∨n∈Nx({n}) = ∨n∈Nan =
a. Hence, finally, p(a) =

∑
n p(an) establishing thus σ-additivity of p.

Finally, for x ∈ O(X) and B ∈ B(R),

ρx(B) = ρ1 B◦x({1}) = ρqx(B)
({1}) = p(x(B)).

�

If p ∈ S(X) and x ∈ O(X), the map B(R) ∋ B 7→ p(x(B)) ∈ [0, 1] defines
a probability measure on B(R). It is called the probability distribution induced
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on the space of its values by the observable x when the system is in state p and
is denoted ρp

x. The expected value of x in state p is

Ep(x) =

∫

R

tρp
x(dt)

and for a Borel function f : R→ R, we have

Ep(f ◦ x) =

∫

R

f(t)ρp
x(dt)

(provided the above integrals exist.) If Ep(x
2) < ∞, the variance of x in p is

Varp(x) = Ep(x
2)− (Ep(x))

2.

Axiom 6.3.9 Observables of a physical system described by the logic X are
O(X).

Axiom 6.3.10 States of a physical system described by the logic X are S(X).

Axiom 6.3.11 Measuring whether the values of a physical observable x ∈
O(X) lie in B ∈ B(R) when the system is prepared in state p ∈ S(X) means
determining ρp

x(B).

6.3.3 Pure states, superposition principle, convex decom-
position

Proposition 6.3.12 Let S(X) be the set of states on the logic X. Let (pn)n∈N

be a sequence in S(X) and (cn)n∈N a sequence in R+ such that
∑

n∈N
cn = 1.

Then p =
∑

n∈N
cnpn, defined by p(a) =

∑
n∈N

cnpn(a) for all a ∈ X, is a state.

Proof: Obvious! �

Corollary 6.3.13 For any logic X, the set S(X) is convex.

Remark 6.3.14 Notice that if p =
∑

n∈N
cnpn as above, for every x ∈ O(X),

we have that ρp
x =

∑
n∈N

cnρ
pn
x . In fact, for all B ∈ B(R),

ρp
x(B) = p(x(B)) =

∑

n∈N

cnpn(x(B)) =
∑

n∈N

cnρ
pn
x (B).

This decomposition has the following interpretation: the sequence (cn)n∈N de-
fines a classical probability on N meaning that in the sum defining p, each pn is
chosen with probability cn. Therefore, for each integrable observable x ∈ O(X),
the expectation Ep(x) =

∑
n∈N

cnEpn
(x) consists in two averages: a classical

average on the choice of pn and a (may be) quantum average Epn
(x).
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Definition 6.3.15 A state p ∈ S(X) is said to be pure if the equation p =
cp1 + (1 − c)p2, for p1, p2 ∈ S(X) and c ∈ [0, 1] implies p = p1 = p2. We write
Sp(X) for the set of pure states of X. Obviously Sp(X) = ExtrS(X).

Definition 6.3.16 Let D ⊆ S(X) and p0 ∈ S(X). We say that p0 is a super-
position of states in D if for a ∈ X,

∀p ∈ D, p(a) = 0⇒ p0(a) = 0.

It is iimediate to show that the state p =
∑

n∈N
cnpn defined in the propo-

sition 6.3.12 is a superposition of states in D = {p1, p2, . . .}. In the case X

is a Boolean σ-algebra, the next theorem 6.3.17 shows that this is in fact the
only kind of possible superposition. This implies, in particular, the unicity of
the decomposition of a classical state into extremal (pure) states. If X is a
standard quantum logic, unicity of the decomposition does not hold any longer!
Technically, the convex structure of classical states is described by a so-called
Choquet simplex; the corresponding convex structure for quantum states is
not Choquet simplex.

Remark: This difference is manifested even for the simplest finite dimensional
situation: classical probability measures over a set of two elements is isomorphic
to the unit segment [0, 1]; quantum probability measures over a two-dimensional
complex Hilbert space is isomorphic to the unit ball in R3. In the classical
situation the extremal states correspond to the boundary points 0 and 1 of the
segment, by identifying them with Dirac measures δ0 and δ1 and any internal
point of the segment can be uniquely decomposed as a convex combination
of the extremal ones. In the quantum case, extremal states are again on the
boundary of the set (the unit sphere in this situation); points in the interior of
the ball can still be represented as convex combinations of extremal points but
this decomposition is not unique since there are infinitely many inequivalent
such decompositions.

Theorem 6.3.17 Let X be a Boolean σ-algebra of subsets of a space X. Sup-
pose that

1. X is separable2,

2. for all a ∈ X, {a} ∈ X.

For any a ∈ X and any A ⊆ X, let δa be the state defined by

δa(A) =

{
1 if a ∈ A
0 otherwise.

Then, (δa)a∈X is precisely the set of all pure states in X. If D ⊆ Sp(X) and
p0 ∈ Sp(X), then p0 is a superposition of states in D if and only if p0 ∈ D.

2i.e. there is a countable collection of subsets An ⊆ X, n ∈ N, generating X by complemen-

tation, intersections, and unions.
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Proof: Denote {A1, A2, . . .} a denumerable collection of subsets of X generating
X. Purity of δa is trivially verified. Suppose that p is a pure state. If for some
A0 ∈ X we have 0 < p0(A) < 1, then, on putting for A ∈ X

p1(A) =
1

p(A0)
p(A ∪A0) (∗)

and

p2(A) =
1

1− p(A0)
p(A ∩Ac

0), (∗∗)

we get p(A) = p(A0)p1(A) + (1 − p(A0))p2(A). Yet, applying (*) and (**) to
A0, we get p1(A0) = 1 and p2(A0) = 0, hence p1 6= p2. This is in contradiction
with the assumed purity of p. Therefore, we conclude that for all A ∈ X, we
have p(A) ∈ {0, 1}. Replacing An by Ac

n if necessary, we can assume without
loss of generality that p(An) = 1 for all the sets of the collection generating X.
Let B = ∩nAn. Then p(B) = 1 and consequently B cannot be empty. Now
B cannot contain more than one point either. In fact, the collection of all sets
C ∈ X such that either B ⊆ C or B ∩ C = ∅ is a σ-algebra containing all the
sets An, n ∈ N. Hence, it coincides with X. As singletons are members of X,
the set B must be a singleton, i.e. B = {a} for some a ∈ X. Put then p = δa.
Finally, let p0 be a superposition of states in D (all its elements are pure states).
If p0 = δa0 but p0 6∈ D, then p({a0}) = 0 for all p ∈ D but p0({a0}) 6= 0, a
contradiction. �

6.3.4 Simultaneous observability

Another distinctive property of non-commutative probability theory, known as
the Heisenberg’s uncertainty principle, is that there are observables (quantum
random variables) that cannot be simultaneously observed with arbitrary pre-
cision.

Definition 6.3.18 Let a, b ∈ X. Propositions a and b are said to be simulta-
neously verifiable, denoted by a ↔ b, if there exists elements a1, b1, c ∈ X such
that

1. a1, b1, c are mutually orthogonal and,

2. a = a1 ∨ c and b = b1 ∨ c hold.

Observables x, y ∈ O(X) are simultaneously observable if for all B ∈ B(R),
x(B)↔ y(B). For A,B ⊆ X, we write A↔ B if for all a ∈ A and all b ∈ B we
have a↔ b.

Lemma 6.3.19 Let a, b ∈ X. The following are equivalent:

1. a↔ b,

2. a ∧ (a ∧ b)⊥ ⊥ b,
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3. b ∧ (a ∧ b)⊥ ⊥ a,

4. there exist x ∈ O(X) and A,B ∈ B(R) such that x(A) = a and x(B) = b,

5. there exists a Boolean sub-algebra of X containing a and b.

Proof:

1⇒ 2:

a↔ b ⇔ a = a1 ∨ c and b = b1 ∨ c
⇒ c ≤ a and c ≤ b
⇒ c ≤ a ∧ b.

From the definition 6.1.8 (logic), it follows that there exists d ∈ X such
that c ⊥ d and c ∨ d = a ∧ b.
Now d ≤ c∨d = a∧b ≤ a and d ≤ c⊥ (since d ⊥ d.) Hence, d ≤ a∧c⊥ = a1

(see remark immediately following the definition 6.1.8.) Similarly, d ≤
b1 ⇒ d ≤ b1 ∧ q1 = 0. Therefore d = 0 and consequently c = a ∧ b. It
follows a1 = a∧(a∧b)⊥. Yet, a1 ⊥ c and a1 ⊥ b1 so that a1 ⊥ (b1 ⊥ c) = b.
Summarising, a ∧ (a ∧ b)⊥ ⊥ b.

1⇒ 3: By symmetry.

2⇒ 1: Since a ∧ (a ∧ b)⊥ ⊥ b, on writing a1 = a ∧ (a ∧ b)⊥, b1 = b ∧ (a ∧ b)⊥,
and c = a ∧ b, we find a = a1 ∨ c and b = b1 ∨ c. Since a1 ⊥ b, it follows
that a1 ⊥ b1 and a1 ⊥ c, while, by definition, c ⊥ b1 which proves the
implication.

Henceforth, the equivalence 1⇔ 2⇔ 3 is established.

1⇒ 4: If a = a1∨c, b = b1∨c and a1, b1, cmutually orthogonal, write d = a1∨b1∨c
and define x to be the discrete observable such that x({0}) = a1, x({1}) =
b1, x({2}) = c, and x({3}) = d. Then x({0, 2}) = a and x({1, 2}) = b.

4⇒ 5: x(A ∩ (A ∩ B)c) = a ∧ (a ∧ b)⊥ and x(B ∩ (A ∩ B)c) = b ∧ (a ∧ b)⊥. On
writing a1 = a∧ (a∧ b)⊥, a2 = a∧ b, a3 = b∧ (a∧ b)⊥, and a4 = (a∨ b)⊥,
we see that (ai)i=1,...,4 are mutually orthogonal and a1 ∨ a2 ∨ a3 ∨ a4 = 1.
If

A = {ai1 ∨ . . . ∨ aik
: k ≤ 4; 1 ≤ i1 ≤ . . . ≤ ik ≤ 4},

it is easily verified that A is Boolean sub-algebra of X. Since a, b ∈ A, this
proves the implication.

5⇒ 2: Let A be a Boolean sub-algebra of X containing a and b. Now, [a ∧ (a ∧
b)⊥] ∧ b = 0. As a, b, a ∧ (a ∧ b)⊥, b⊥ ∈ A, it follows that

a ∧ (a ∧ b)⊥ = [(a ∧ (a ∧ b)⊥) ∧ b]
∨[(a ∧ (a ∧ b)⊥) ∧ b⊥]

= [(a ∧ (a ∧ b)⊥) ∧ b⊥]

≤ b⊥.

Therefore a ∧ (a ∧ b)⊥ ⊥ b.
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�

The significance of this lemma is that if two propositions are simultaneously
verifiable, we can operate on them as if they were classical.

Theorem 6.3.20 Let X be any logic and (xλ)λ∈D a family of observables.
Suppose that xλ ↔ xλ′ for all λ, λ′ ∈ D. Then there exist a space Ω, a σ-algebra
F of subsets of Ω, a family of measurable functions gλ : Ω → R, λ ∈ D, and a
σ-homomorphism τ : X → X such that τ(g−1

l (B) = xλ(B) for all λ ∈ D and all
b ∈ B(R). Suppose further that either X is separable or D is countable. Then,
for all λ ∈ D, there exist a x ∈ O(X) and a measurable function fλ : R → R

such that xλ = fλ ◦ x.

The proof of this theorem is omitted. Notice that it allows to construct
functions of several observables that are simultaneously observable. This latter
result is also stated without proof.

Theorem 6.3.21 Let X be any logic and (x1, . . . , xn) a family of observables
that are simultaneously observable. Then there exists a σ-homomorphism τ :
B(Rn)→ X such that for all B ∈ B(R) and all i = 1, . . . , n,

xi(B) = τ(π−1
i (B)), (∗)

where πi : Rn → R is the projection π(t1, . . . , tn) = ti, i = 1, . . . , n. If g is a
Borel function on Rn, then g ◦ (x1, . . . , xn)(B) = τ(g−1(B)) is an observable. If
g1, . . . , gk are real valued Borel functions on Rn and yi = gi ◦ (x1, . . . , xn), then
y1, . . . , yk are simultaneously observable and for any real valued Borel function
h on Rk, we have h ◦ (y1, . . . , yk) = h(g1, . . . , gk) ◦ (x1, . . . , xn) where, for t =
(t1, . . . , tn), h(g1, . . . , gk)(t) = h(g1(t), . . . , gk(t)).

An immediate consequence of this theorem is that if p is a probability mea-
sure on X, then ρp

x1,...,xn
(B) = p(τ(B)), for B ∈ B(Rn), is the joint probability

distribution of (x1, . . . , xn) in state p.
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Chapter 7

The method of semantic

distillation

The method of semantic distillation is a recursive divisive fuzzy clustering fol-
lowed by a projection on a Hilbert subspace and a thinning of the graph. Each
step, that can be thought as a subroutine of the whole algorithm, is described
in the following sections.

7.1 Fuzzy divisive 2-clustering

Let B be a set of documents, A a set of attributes, and ρ : V ∪ A → Rν a (not
necessarily faithful) geometric representation of both documents and attributes.
We denote collectively V = A∪B and call its elements objects. Suppose further
that a fuzzy membership function m : V × P(A) → [0, 1] assigning a degree of
membership of every object v ∈ V in a subset A ⊆ A is given. The purpose
of a fuzzy divisive 2-clustering algorithm is to construct a partition of A into
2 subsets (Ck)k=1,2 and lump objects into each such subset according to their
fuzzy membership [12].

The algorithm starts with the set A and constructs a sequence of disjoint
subsets of A indexed by the words κ of finite length on a two-letter alphabet.
This set is isomorphic to a subset of the rooted binary tree. If κ is the root, then
define Mκ = A. Otherwise, Mκ will be a proper subset of A, i.e. ∅ ⊂ Mκ ⊂ A,
indexed by κ. When |Mκ| = 1 then the corresponding κ is a leaf of the binary
tree. The algorithm stops when all indices correspond to leaves.

More precisely, let K = {1, 2}, K0 = {κ : κ = ()}, and for integers n ≥ 1 let
Kn = {κ : κ = κ1 · · ·κn;κi ∈ K}. Finally let K∗ = ∪n≥0Kn denote the set of
words on two letters of indefinite length, including the empty sequence, denoted
by (), of zero length that coincides with the root of the tree. If κ = κ1 · · ·κn is
a word of n letters and k ∈ K, we denote the concatenation κk as the word of
n+ 1 letters κ1 · · ·κnk.
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We start from the empty set Leaves = {}, the empty sequence κ = () and
the current attributes set Mκ = M() = A and current tree Tree = {κ}. We
denote Vκ = B ∪ Mκ. The initial fuzzy membership function m induces a
sequence of fuzzy membership functions indexed by the elements of the tree
mκ : Vκ×K→ [0, 1], withm() ≡ m. The fuzzy clustering algorithm is succinctly
described as Algorithm 4 below.

Data: κ, Mκ, ρ, ObjCostFun

Result: Two sets Mκk for k = 1, 2
the fuzzy membership mκ(v, k) for v ∈ Vκ in the clusters Mκk

if |Mκ| > 1 then
assign (v1, v2)← arg max{‖ρ(v)− ρ(v′)‖, v, v′ ∈ Vκ};
assign ρ(v1) and ρ(v2) as centroids for the two putative finer clusters
Mκ1 and Mκ2;
minimise ObjCostFun under the constraint

∑2
k=1m(v, k) = 1, for all

v ∈ Vκ ;
assign Mκ1 ← {v ∈Mκ : mκ(v, 1) > mκ(v, 2)};
assign Mκ2 ←Mκ \Mκ1;

end
Algorithm 4: FuzzyClustering

Note that once the two clusters Mκ1 and Mκ2 are determined in every inter-
mediate step, the fuzzy membership mκ allows determining, for every cluster,
an ordered list of documents (bi1, . . . , b

i
|B|), i = 1, 2 by mκ(bik, i) ≥ mκ(bil, i)

whenever k ≤ l.

To be fully determined, this algorithm need a precise specification of the
cost function ObjCostFun and of the sequence of fuzzy memberships mκ. The
fuzzy memberships will be specified in a subsequent section ??. We give here
an example of ObjCostFun. A 2-clustering of the set V is equivalent with an
element of β ∈ {1, 2}V, i.e. an assignment to every v ∈ V of a label β(v) in
{1, 2}. Define then

ObjCostFun(β) =
∑

v∈V

m(v, β(v))‖ρ(v)− ρ(vβ(v))‖,

where v1 and v2 are the centroids of the putative clusters. Other variants can of
course be used, like ObjCostFun(β) =

∑
v∈V

m(v, β(v))‖ρ(v)− ρ(vβ(v))‖α, with
some α > 0. Although the precise numerical results depend on the particular
choice of the function, no qualitative difference is observed.

7.2 The state described by the collection of doc-

uments

As explained in the previous chapters all the available information about a DNA
array experiment is encoded into the dataset matrix X ∈M|A|,|B|. In general, in
the experiments we analysed, we have |A| ≪ |B|. Without loss of generality, we
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can assume further that the matrix X is of full rank rankX = |A|. Now, singular
value decomposition reads

X =

|A|∑

k=1

sk|uk 〉〈Vk |,

where uk ∈ CA and Vk ∈ CB are unitary vectors. Therefore

XX† =

|A|∑

k=1

s2k|uk 〉〈uk |,

is a self-adjoint positive definite matrix in M|A|,|A|, reminiscent of a density
matrix in quantum mechanics. To become precisely a density matrix, it remains
to normalise it to unit trace, by

σ =
XX†

tr(XX†)
=

|A|∑

k=1

pk|uk 〉〈uk |,

where pk =
s2

k
P|A|

l=1 s2
l

.

This writing has a profound intuitive meaning: σ is a state on the Hilbert
space HA encoding the information on the attributes induced by the experimen-
tal observation. Note that both (| a 〉, a ∈ A) and (|uk 〉, k = 1, . . . , |A|) are
orthonormal bases of this space but the latter is more appropriate to represent
elementary meanings as linear combinations of attributes

|uk 〉 =
∑

a∈A

Υak| a 〉, k = 1, . . . , |A|.

In other words, the attributes do not in general represent elementary mean-
ings in this density matrix formalism; on the contrary linear superpositions of
attributes convey the appropriate meanings induced by the context of the particu-
lar experimental situation. Once a state is constructed, the standard formalism
of quantum mechanics can be deployed to determine, by a kind of quantum
measurement, the degree of pertinence of every document to an attribute as a
fuzzy membership (in fact a quantum probability) of documents to clusters of
attributes.

More precisely, suppose that some putative cluster Ci, i = 1, 2 is proposed
by the previous algorithm. In quantum mechanical terms, this cluster is to be
viewed as a projection Pi =

∑
a∈Ci

| a 〉〈 a |, for i = 1, 2. Asking whether the
pertinent attributes lie in Ci is equivalent in performing the quantum measure-
ment of the observable Pi in state σ. According to the rules governing quantum
measurement the state is then transformed as

σ 7→ Φi(σ) =
PiσPi

tr(Piσ)
.

Now,

PiσPi =
∑

a′,a′′∈A

| a′ 〉




|A|∑

k=1

pk〈 a′ |uk 〉〈uk | a′′ 〉


 〈 a′′ |,
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yielding tr(Piσ) =
∑|A|

k=1 pk

∑
a∈Ci

|Υak|2. It is then natural to define the (fuzzy)
membership of attribute a in cluster Ci by

m(a, i) = ca tr(| a 〉〈 a |PiσPi)

=

{
ca
∑|A|

k=1 pk|Υak|2 if a ∈ CI

0 otherwise,

where ca is a proportionality constant fixed by the constraint
∑2

i=1m(a, i) =

ca
∑|A|

k=1 pk = 1. It easily seen therefore that the thus determined (fuzzy) mem-
bership is as a matter of fact a crisp membership. Defining the membership
in the previous manner, is however not as trivial as the previous remark might
suggest. Consider in fact the fuzzy membership of an arbitrary document b ∈ B

in the cluster Ci. Considering ξb the normalised vector representing b in the
Hilbert space HA, we have:

m(b, i) ∝ tr(| ξb 〉〈 ξb |PiσPi)

=
∑

a′,a′′∈Ci

|A|∑

k=1

pk〈 a′ |uk 〉〈uk | a′′ 〉 tr (| ξb 〉〈 ξb || a′ 〉〈 a′′ |)

=

|A|∑

k=1

pk

∑

a′,a′′∈Ci

〈uk | a′′ 〉〈 a′′ | ξb 〉〈 ξb | a′ 〉〈 a′ |uk 〉.

Since the summation variables a′, a′′ are dummy, the right hand side of the
previous equality is obviously real. The proportionality constant is determined
by the condition

1 =

2∑

i=1

m(b, i) ∝
|A|∑

k=1

pk|〈uk | ξb 〉|2.

Remark: The previous relationships corroborate the claim made earlier that the
natural meaning directions are not given by the orhonormal basis (| a 〉, a ∈ A)
but by the basis (|uk 〉, k = 1, . . . , |A|).

The above procedure is inspired by the theory of quantum measurement as
introduced in [73] and further extended to generalised measurements (see for
instance [2, 10, 51]). Repeated applications of this kind of measurement leads
to a purification of the quantum state [46]. Of course, a natural fundamental
question can be asked: is the information contained in such an experiment
really of quantum nature? The answer is definitely not. We can as a matter
of fact make an arbitrary number of copies (violating thus the quantum non-
cloning theorem) of the intermediate vector states before acting on them by
projections. Therefore, the information is definitely classical. The only thing
that is quantum in this formalism is the intuition of the state collapse and its
purification by successive measurements leading to the disambiguation of the
initial information, encoded into mixed quantum states, to pure states.
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7.3 Semantic distillation

The algorithm of semantic distillation starts with the Hilbert space HA and the
graph with vertex set G0 = A∪B and constructs a sequence of Hilbert subspaces
and subgraphs Note that in the previous construction Mκk ⊂ Mκ for every κ
and every k ∈ K. Therefore, the algorithm explores the branches of a tree from
the root to the leaves. Denote by πκ the orthogonal projection from HA to HMκ

.
The distillation step is described by the following Algorithm 5.

Data: FuzzyClustering

Result: Leaves and sequence of singleton sets Mκ for κ ∈ Leaves

Initialisation{
κ← ();
Mκ ← A;
Leaf(κ)←Mκ;
Leaves← {};
Tree← {κ};
Bookkeeping← {κ};
}
while Bookkeeping 6= ∅ do

for κ ∈ Bookkeeping do
if |Mκ| = 1 then

Leaves← Leaves ∪ {κ};
Bookkeeping← Bookkeeping \ {κ};

else
Use πκ to project from HA to HMκ

;
Thin the graph: Vκ ← B ∪Mκ;
Compute weighed Laplacian L on Vκ;
Diagonalise L;
Compute ν-dimensional representation r;
Call FuzzyClustering;
for k ∈ K do

κ′ ← κk;
Leaf(κ′)←Mκ′ /* Mκ as determined by FuzzyClustering */;
Tree← Tree ∪ {κ′};
Bookkeeping← Bookkeeping ∪ {κ′};

end

end

end

end
Algorithm 5: Distillation

To illustrate the method, let us limit ourselves to the eigenvector u2 cor-
responding to the second smallest eigenvalue of L, providing us with the best
one-dimensional representation of the graph. Now, u2 is a vector of RN , with
N = |G0|. Suppose we order the N components of u2 in ascending order.
This ordering corresponds to a bijective relabelling r : G0 → {1, . . . , N} of the
vertices so that for any i, j ∈ {1, . . . , N} with i < j, we have u2(r

−1(i)) <



84

u2(r
−1(j)). Therefore the set of vertices becomes now a totally ordered set

isomorphic to the set {1, . . . , N}.

Now recall that the set G0 is the set B of documents, augmented by the set A

of attributes, the latter acting as specificity witnesses. In the relabelling induced
by u2, the specificity witnesses are relabelled as elements {r(a1), . . . , r(a|A|)} =
{α1, . . . , α|A|} ⊆ {1, . . . , N}, with α1 ≤ . . . ≤ α|A|. Let

i = arg max{u2(r
−1(αj))− u2(r

−1(αj−1)) : j = 2, . . . , |A|}

correspond to the most frank separation of the attributes and define A1 =
{r−1(α1), . . . , r

−1(αi−1)} and A2 = A\A2. Cluster the documents by assigning

CA1 = {v ∈ G0 : ∀a ∈ A2, |u2(v)− u2(a)| > min
a′∈A1

|u2(v)− u2(a
′)|},

and similarly for CA2
by exchanging the roles of A1 and A2. The set CA1

contains
the documents the most specific1 to attributes A1 and similarly for the set CA2

.

Semantic distillation is a recursive procedure producing partitions A1 and
A2 of subsets of A repeated until both sets A1 and A2 become singletons. The
first step of semantic distillation corresponds to an orthogonal projection P =∑

a∈D
| a 〉〈 a | from the Hilbert space HA onto the Hilbert subspace HD, where

the set D is the smallest of the above defined sets A1 and A2. The graph
construction is started afresh on the vertex set of the thinned graph G0 \ CDc

and weights computed in terms of the Hilbert norm on the Hilbert subspace
HDc . This gives rise to a new weight matrix W and a new Laplacian L on
B∪Dc. We proceed then with the computation of eigenvalues and eigenvectors
of this new Laplacian leading to separation of remaining attributes into two new
subsets and new clustering. The method ends when all objects are clustered.

1For a specificity crisply determined by the graph representation. Note however that noth-

ing prevents us from using more sophisticated specificiy, for instance the quantum specificity

introduced in the previous section.



Chapter 8

Application

The previous formalism has been applied to the bio-informatical problem ex-
plained in the introduction. An integrated computer code, written in C, has
been developed (the main routines are given in appendix A) and applied to
analyse various experimental datasets.

8.1 Analysis of data concerning tissues

This biological experiment clusters genes according to their tissular specificity.
The obtained results have been published in the articles

• Semantic distillation: a method for clustering objects by their contextual
specicity,“Studies in computational intelligence”, Springer-Verlag (2008),
431–442, Volume 129/2008. [65] and

• Robustness and efficiency of semantic distillation to retrieve genes by their
contextual specificity, submitted for publication.

These two articles are reproduced here.
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Semantic distillation: a method for clustering objects
by their contextual specificity

Thomas Sierocinski1, Antony Le Béchec2, Nathalie Théret2, and Dimitri Petritis1

1 Institut de recherche mathématique (UMR6625), Université de Rennes 1
2 INSERM U620, Université de Rennes 1

Summary. Techniques for data-mining, latent semantic analysis, contextual search of databases,
etc. have long ago been developed by computer scientists working on information retrieval
(IR). Experimental scientists, from all disciplines, having to analyse large collections of raw
experimental data (astronomical, physical, biological, etc.) have developed powerful methods
for their statistical analysis and for clustering, categorising, and classifying objects. Finally,
physicists have developed a theory of quantum measurement,unifying the logical, algebraic,
and probabilistic aspects of queries into a single formalism.

The purpose of this paper is twofold: first to show that when formulated at an abstract
level, problems from IR, from statistical data analysis, and from physical measurement the-
ories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose
a novel method of fuzzy hierarchical clustering, termedsemantic distillation— strongly in-
spired from the theory of quantum measurement —, we developed to analyse raw data coming
from various types of experiments on DNA arrays. We illustrate the method by analysing DNA
arrays experiments and clustering the genes of the array according to their specificity.

Keywords: Quantum information retrieval, semantic distillation, DNA microarray, quan-
tum and fuzzy logic

1 Introduction

Sequencing the genome constituted a culminating point in the analytic approach of
Biology. Now starts the era of the synthetic approach in Systems Biology where
interactions among genes induce their differential expression that leads to the func-
tional specificity of cells, the coherent organisation of cells into tissues, organs, and
finally organisms.

However, we are yet far from a complete explanatory theory ofliving matter. It is
therefore important to establish precise and quantitativephenomenology before be-
ing able to formulate a theory. The contribution of this paper is to provide the reader
with a novel algorithmic method, termedsemantic distillation, to analyse DNA ar-
rays experiments (where genes are hybridised with various cell lines corresponding
to various tissues or specific individuals) by determining the degree of specificity of
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every gene to the particular context. The method provides experimental biologists
with lists of candidate genes (ordered by their degree of specificity) for every bio-
logical context, clinicians with improved tools for diagnosis, pharmacologists with
patient-tailored therapies, etc.

In the sequel we present the method split into several algorithmic tasks thought as
subroutines of the general algorithm. It is worth noting that the method, although can
profitably exploit, does not rely on any previous information stored in the existing
databases; its rationale is to help analysing raw experimental data even in the absence
of any previous knowledge.

The main idea of the method is summarised as follows. Experimental information
hold on the objects of the system undergoes a sequence of processing steps; each
step is performed on a different representation of the information. Those different
representation spaces and the corresponding information processing act as successive
filters revealing at the end the most pertinent and significant part of the information,
hence the name “semantic distillation”.

At the first stage, raw experimental data, containing all available information, are
represented in an abstract Hilbert space,the space of concepts— reminiscent of the
space of pure states in Quantum Mechanics —, endowing the setof objects with a
metric space structure that is exploited to quantify the interactions among objects
and encode them into a weighed graph on the vertex set of objects and with object
interactions as edge weights.

Now objects (genes) are parts of an organised system (cell, tissue, organism).
Therefore their mutual interactions are not just independent random variables; they
are interconnected through precise, although certainly very complicated and mostly
unknown relationships. We seek to reveal (hidden and unknown) interactions among
genes. This is achieved by trading the weighed graph representation for a low-
dimensional representation and using spectral propertiesof the weighed Laplacian
on the graph to grasp the essential interactions.

The following step consists in a fuzzy divisive clustering of objects among two
subsets by exploiting the previous low-dimensional representation. This procedure
assigns a fuzzy membership to each object relative to characters of the two subsets.
Fuzziness is as a matter of fact a distinctive property of experimental biological data
reflecting our incomplete knowledge of fundamental biological processes.

Up to this step, our method is a sequence of known algorithms that have been
previously used separately in the literature in various contexts. The novelty of our
method relies on the following steps. The previous fuzzy clustering reduced the in-
determinacy of the system. This information is fed back to the system to perform a
projection to a proper Hilbert subspace. In that way, the information content of the
dataset is modified by the information gained by the previousobservations. After
this feeding back, the three previous steps are repeated butnow referring to a Hilbert
spaces of lower dimension. Therefore our method is not a merefuzzy clustering algo-
rithm but a genuine non-classical interaction informationretrieval procedure where
previous observations alter the informational content of the system, reminiscent of
the measurement procedure in Quantum Mechanics.
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2 A Hilbert space formulation

2.1 Mathematical form of the dataset

Let B be a finite set ofdocuments(or objects, or books) andA a finite set ofattributes
(or contexts, or keywords). The dataset is a|B|× |A|matrixX = (xba)b∈B,a∈A of real
or complex elements, where| · | represents cardinality. Equivalent ways of represent-
ing the dataset are

• a collection of|B| row vectorsxb = (xb1, . . . ,xb|A|),b∈ B of R|A| (or C|A|),
• a collection of|A| column vectorsxa = (x1a, . . . ,x|B|a),a∈A of R|B| (or C|B|).

Example 1.In the experiments we analysedB is a set of 12000 human genes and
A a set of 12 tissular contexts. The matrix elementsxba are real numbers encoding
luminescence intensities (or their logarithms) of DNA array ultimately representing
the level of expression of geneb in contexta.

Example 2.Let B be a set of books in a library andA a set of bibliographic keywords.
The matrix elementsxba can be{0,1}-valued: if the terma is present in the bookb
thenxba = 1 elsexba = 0. A variant of this example is whenxba are integer valued:
if the terma appearsk times in documentb thenxba = k.

Example 3.Let B be a set of students andA a set of papers they gave. The matrix
elementsxba are real valued;xba is the mark the studentb got in papera.

The previous examples demonstrate the versatility of the method by keeping the
formalism at an abstract level to apply indistinctively into various very different sit-
uations without any change. Note also that the assignment asset of documents or at-
tributes is a matter of point of view; for instance, example 3as it stands is convenient
in evaluating students. Interchanging the role of setsA andB renders it adapted to
the evaluation of teaching. As a rule of thumb, in biologicalapplications,|A| ≪ |B|.

2.2 The space of concepts

For A andB as in the previous subsection, we define thespace of concepts, HA, as
the real or complex free vector space overA, i.e. elements ofA serve as indices of
an orthonormal basis ofHA. Therefore, the complete datasetX can be represented
as the collection of|B| vectors|Ξb 〉 = ∑a∈A xba|a〉 ∈HA, with b ∈ B and where
|a〉 represents the element of the orthonormal basis of the free vector space corre-
sponding to the attributea. We use here Dirac’s notation to represent vectors, linear
forms and projectors on this space (see any book on quantum mechanics or [26]
for a freely accessible document and [29] for the use of this notation in information
retrieval). The vector|Ξb 〉 contains all available experimental information on docu-
mentb in various cellular contexts indexed by the attributesa; it can be thought as
a convenient bookkeeping device of the data(xba)a∈A, in the same way a generating
function contains all the information on a sequence as formal power series.
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The vector space is equipped with a scalar product defined forevery two vectors
|ψ 〉 = ∑a∈A ψa|a〉 and |ψ′ 〉 = ∑a∈A ψ′a|a〉 by 〈ψ |ψ′ 〉 = ∑a∈A ψaψ′a, whereψa
denotes the complex conjugate ofψa (it coincides withψa if it is real). Equipped with
this scalar product, the vector spaceHA becomes a real or complex|A|-dimensional
Hilbert space. The scalar product induces a Hilbert norm on the space, denoted by
‖·‖. In the sequel we introduce alsorayson the Hilbert space i.e. normalised vectors.
Since the datasetX does not in principle verify any particular numerical constraints,
rays are constructed by dividing vectors by their norms. We use the symbol|ξb 〉 =
|Ξb 〉/‖|Ξb〉‖ to denote the ray associated with vector|Ξb 〉.

The Hilbert space structure onHA allows a natural geometrisation of the space
of documents by equipping it with a pseudo-distance3 d : B×B→ R+ defined by
d(b,b′) = ‖|ξb 〉 − |ξb′ 〉‖. What is important here is not the precise form of the
pseudo-metric structure of(B,d); several other pseudo-distances can be introduced,
not necessarily compatible with the scalar product. In thispaper we stick however to
the previous pseudo-distance, postponing into a later publication explanations about
the significance of other pseudo-distances.

As is the case in Quantum Mechanics, the Hilbert space description incorporates
into a unified algebraic framework all logical and probabilistic information hold by
the dataset. An enquiry of the type “does the system possess featureF” is encoded
into a projectorPF acting on the Hilbert space. The subspace associated with the pro-
jectorPF is interpreted as the set of documents retrieved by asking the question about
the featureF . Now all experimental information hold by the dataset is encoded into
thestateof the system represented by adensity matrixρ (i.e. a self-adjoint, positive,
trace class operator acting onHA having unit trace). Retrieved documents possess
the featureF with probability tr(ρPF). Thus the algebraic description incorporates
logical information on the documents retrieved as relevantto a given feature and
assign them a probability determined by the state defined by the experiment. For ex-
ample, the probability that a geneb is relevant to an attributea is given by the above
formula withP = |a〉〈a| andρ = |ξb 〉〈ξb |, yieldingtr(ρP) = |〈ξb |a〉|2.

3 A weighed graph with augmented vertex set

The careful reader has certainly already noted that in the above description vectors
|ξb 〉, encoding the information about documentb, and basis vectors|a〉, associated
with attributea, all belong to the same Hilbert spaceHA. Therefore, although ini-
tially the setsA andB are disjoint since they have distinct elements, when passing
to the Hilbert space representation, vectors|ξb 〉 and|a〉 have very similar roles in
representing indistinguishably objects or attributes as vectors ofHA. In the sequel,
we introduce the setV (or more preciselyVA to remove any ambiguity) as the set
VA = A∪B. Thus, for anyv∈ VA,

3 It is termed pseudo-distance since it verifies symmetry and triangle inequality butd(b,b′)
can vanish even for differentb andb′. As a matter of fact,d is a distance on the projective
Hilbert space.
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|Ξv 〉=
{
|a〉 if v = a∈ A,

∑a∈A xba|a〉 if v = b∈ B.

The new vectors|Ξa 〉= |a〉 are included asspecificity witnessesin the dataset. Note
that since these new vectors are also elements of the same Hilbert space, the pseudo-
distanced naturally extends toVA.

Suppose now that asimilarity functionσ : VA ×VA → [0,1] is defined. For
the sake of definiteness, the reader can think ofσ as being given, for example4,

by σ(v,v′) =
√

1− 1
2d(v,v′)2; results we quote in section 5 are obtained with a

slight modification of this similarity function. However, again, the precise form of
the similarity function is irrelevant in the abstract setting serving as foundation of
the method. Several other similarity functions have been used like, for example,
σ(v,v′) = exp(−‖Ξv−Ξv′‖2/τ ) with τ a positive constant or some others, in par-
ticular, functions taking value 0 even for some vertices corresponding to non or-
thogonal rays but the explanation of their significance is postponed to a subsequent
publication.

A weighed graph is now constructed with vertex setVA. Weights are assigned
to the edges of the complete graph overVA; the weights being expressible in terms
of the similarity functionσ . Again, the precise expression is irrelevant for the ex-
position of the method. For the sake of concreteness, the reader can suppose that
the weightsWvv′ are given byWvv′ = σ(v,v′). The pair(VA,W) with W being the
symmetric matrixW = (Wvv′)v,v∈VA

, denotes the weighed graph.
At this level of the description we follow now standard techniques of reduction

of the data dimensionality by optimal representation of thegraph in low dimensional
Euclidean spaces spanned by eigenvectors of the Laplacian.Such methods have been
used by several authors [4, 24]. Here we give only the basic definitions and main
results of this method. The interested reader may consult standard textbooks like
[8, 10, 15] for general exposition of the method.

Definition 1. A mapr : VA → Rν is called aν -dimensional representation of the
graph. The representation is always supposed non-trivial (i.e. r 6≡ 0) and balanced
(i.e.∑v∈VA

r(v) = 0).

From the weights matrixW we construct theweighed Laplacian matrixΛ = D−W
where the matrix elementsDvv′ are 0 ifv 6= v′ and equal to∑v′′∈VA

Wvv′′ if v= v′. More
precisely, we denote byΛ (VA) this weighed Laplacian to indicate that it is defined
on the vertex setVA. This precision will be necessary in the next section specifying
the semantic distillation algorithm where the vertex set will be recursively modified
at each step. Theweighed energy of the representationis given by

EW(r) = ∑
v,v′∈VA

Wvv′‖r(v)− r(v′)‖2,

where in this formula‖ · ‖ denotes the Euclidean norm ofRν .
4 This function is well adapted to datasetsX = (xba), with xba ∈ R+; for more general

datasets, the factor 1/2 must be changed to 1/4.
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Theorem 1.Let N= |VA| and{λ1, . . . ,λN} be the spectrum ofΛ , ordered asλ1 ≤
λ2 . . .λN. Suppose thatλ2 > 0. Theninfr EW(r) = ∑ν+1

i=2 λ i , where the infimum is over
all ν -dimensional non-trivial balanced representations of thegraph.

Remark 1.If u1, . . .uN are the eigenvectors ofΛ corresponding to the eigenvalues
λ1, . . . ,λN ordered as above, thenu2 is the best one-dimensional,[u2,u3] the best
two-dimensional, etc,[u2, . . . ,uν+1] the bestν -dimensional representation of the
graph(VA,W).

4 Fuzzy semantic clustering and distillation

The algorithm of semantic distillation is a recursive divisive fuzzy clustering fol-
lowed by a projection on a Hilbert subspace and a thinning of the graph. It starts
with the Hilbert spaceHA and the graph with vertex setVA and constructs a se-
quence of Hilbert subspaces and subgraphs indexed by the wordsκ of finite length
on a two-letter alphabet. This set is isomorphic to a subset of the rooted binary tree.
If κ is the root, then defineMκ = A. Otherwise,Mκ will be a proper subset ofA, i.e.
/0⊂Mκ ⊂ A,indexed byκ . When|Mκ |= 1 then the correspondingκ is a leaf of the
binary tree. The algorithm stops when all indices correspond to leaves.

More precisely, letK = {1,2}, K0 = {κ : κ = ()}, and for integersn≥ 1 let
Kn = {κ : κ = κ1 · · ·κn;κ i ∈K}. Finally letK∗ =∪n≥0K

n denote the set of words on
two letters of indefinite length, including the empty sequence, denoted by(), of zero
length that coincides with the root of the tree. Ifκ = κ1 · · ·κn is a word ofn letters
andk∈K, we denote the concatenationκk as the word ofn+1 lettersκ1 · · ·κnk.

We start from the empty setLeaves = {}, the empty sequenceκ = () and the
current attributes setMκ = M() = A and current treeTree = {κ}. We denoteVκ =
B∪Mκ . We need further afuzzy membershipfunctionm: Vκ ×K→ [0,1]. The fuzzy
clustering algorithm is succinctly described as Algorithm1 below.

Data: κ , Mκ , r , objective functionF
Result: Two setsMκ1 andMκ2 and the fuzzy membershipm(v,k) for v∈Vκ in the

clustersMκ1 andMκ2
if |Mκ |> 1 then

assign(v1,v2)← argmax{‖r(v)− r(v′)‖,v,v′ ∈ Vκ};
assign r(v1) andr(v2) as centroids for the two candidate finer clustersMκ1 and
Mκ2;
usestandard 2-means fuzzy clustering algorithm to minimise objective functionF
under the constraint∑2

k=1m(v,k) = 1, for all v∈Mκ ;
assignMκ1← {v∈Mκ : m(v,1) > m(v,2)};
assignMκ2←Mκ \Mκ1;

end
Algorithm 1 : FuzzyClustering
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Note that in the previous constructionMκk ⊂Mκ for everyκ and everyk ∈ K.
Therefore, the algorithm explores the branches of a tree from the root to the leaves.
Denote byπκ the orthogonal projection fromHA to HMκ . The distillation step is
described by the following Algorithm 2.

Data: FuzzyClustering

Result: Leaves and sequence of singleton setsMκ for κ ∈ Leaves

Initialisation {
κ ← ();
Mκ ← A;
Leaf(κ )←Mκ ;
Leaves←{};
Tree←{κ};
Bookkeeping←{κ};
}
while Bookkeeping 6= /0 do

for κ ∈ Bookkeeping do
if |Mκ |= 1 then

Leaves← Leaves∪{κ};
Bookkeeping← Bookkeeping\{κ};

else
Useπκ to project fromHA to HMκ ;
Thin the graph:Vκ ← B∪Mκ ;
Computeweighed LaplacianΛ (Vκ );
DiagonaliseΛ (Vκ );
Computeν -dimensional representationr ;
Call FuzzyClustering;
for k∈K do

κ ′← κk;
Leaf(κ ′)←Mκ ′ /* Mκ as determined byFuzzyClustering */;
Tree← Tree∪{κ ′};
Bookkeeping← Bookkeeping∪{κ ′};

end
end

end
end

Algorithm 2 : Distillation

5 Illustration of the method, robustness and complexity issues

We tested the method on a dataset for an experiment on DNA array published in
[35], with the setA of attributes corresponding to 12 cell lines (bone marrow, liver,
heart, spleen, lung, kidney, skeletal muscle, spinal cord,thymus, brain, prostate, pan-
creas) and the setB of documents corresponding to 12000 human genes. To illus-
trate the method we present here only an example of the type ofresults we obtain
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by our method for the simplest case of one-dimensional representation of the graph.
The complete lists of specificity degrees for the various genes (including their Uni-
Gene identifiers) for various dimensions are provided as supplemental material (at
the home page of the first author).

Note that for one-dimensional representation, ordering bythe magnitude of the
eigenvector components is equivalent to a relabelling of genes. The figure 1 repre-
sents, within the previous mentioned relabelling, the levels of expressions for clus-
tered genes. The same procedure has been applied for higher dimensional represen-
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Fig. 1. For every singleton cluster, i.e. tissular contextκ ∈ Leaves (we present solely the cases
Mκ = {liver} andMκ = { skeletal muscle} in this example), the horizontal axis contains the
setB of genesrelabelledaccording to their decreasing (resp. increasing) fuzzy membership to
Mκ . Vertical axis represents the experimentally measured level of expression for those genes.

tation of the graph (i.e.ν > 1). These results are not presented here; they marginally
improved some specifications and helped us removing apparent degeneracy in some
cases. Finally, in the table 1, we give an example of the annotation provided by the
database UniGene for the genes classified as specific of skeletal muscle cell line by
our method.

We observe that the majority of genes classified as most specific by our method
are in fact annotated as specific in the database. To underline the power of our
method, note that the UniGene annotation for the ATPase geneis “cardiac mus-
cle”. Our method determines it as most specific of “skeletal muscle”. We checked
the experimental data we worked on and realised that this gene is, as a matter of fact,
5 times more expressed in the skeletal muscle context than inthe cardiac muscle.
Therefore, our method correctly determines this gene as skeletal-muscle-specific.

In summarising, our method is an automatic and algorithmic method of analy-
sis of raw experimental data; it can be used to any experimentof similar typein-
dependently of any previous knowledge included in genomic databasesto provide
biologists with a powerful tool of analysis. In particular,since most of the genes
are not yet annotated in the existing databases, the method provides biologists with
candidate genes for every particular context for further investigation. Moreover, the
genetic character of documents and attributes is purely irrelevant; the same method
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Table 1. Annotation of the genes closest (within the relabelling induced byu2) to the speci-
ficity witness “skeletal muscle”. Genes are separated by the– symbol.

ATPase, Ca++ transporting, cardiac muscle, fast twitch 1, calcium signaling pathway – Troponin I type 2; skeletal,

fast – Myosin, light chain 1, alkali; skeletal, fast – Ryanodine receptor 1; skeletal; calcium signaling pathway

– Fructose-1,6-bisphosphatase 2, glycolysis / gluconeogenesis – Actinin, alpha 3; focal adhesion – Adenosine

monophosphate deaminase 1 (isoform M) purine metabolism – Troponin C type 2; fast; calcium signaling pathway –

Carbonic anhydrase III, muscle specific; nitrogen metabolism – Nebulin – Troponin I type 1; skeletal, slow – Myosin,

heavy chain 3, skeletal muscle – Myogenic factor 6, herculin– Myosin binding protein C, fast type – Calcium channel,

voltage-dependent, beta 1 subunit – Metallothionein 1X – Bridging integrator 1 – Bridging integrator 1 – Calpain

3, (p94) – Tropomyosin 3 – Phosphorylase, glycogen; muscle (McArdle syndrome, glycogen storage disease type V);

starch and sucrose metabolism – Myozenin 3 – Myosin binding protein C, slow type – Troponin T type 3; skeletal, fast

– Superoxide dismutase 2; mitochondrial – Nicotinamide N-methyltransferase – Sarcolipin – Interleukin 32 – Sodium

channel, voltage-gated, type IV, alpha subunit – Guanidinoacetate N-methyltransferase; urea cycle and metabolism of

amino groups.

can be used to any other dataset of similar structure, let them concern linguistic,
genetic, or image data.

Concerning the algorithmic complexity of the method, the dominant contribution
comes from the diagonalisation of a|B|× |B| dense real symmetric matrix, requiring
at worstO(|B|3) time steps andO(|B|2) space. The time complexity can be slightly
reduced, if only low-dimensional (dimensionν ) representations are sought, toO(ν×
|B|2) time steps. Moreover, we tested the method against additiveor multiplicative
random perturbations of the experimental data; it proved astonishingly robust.

6 Connections to previous work

The algorithm of semantic distillation maps the dataset into a graph and uses spectral
methods and fuzzy clustering to analyse the graph properties. As such, this algorithm
is inspired by various pre-existing algorithms and borrowsseveral elements from
them.

The oldest implicit use of a vector space structure to represent dataset and appli-
cation of spectral methods to analyse them is certainly “principal components anal-
ysis” introduced in [25]. The method seeks finding directions of maximal variability
in the space corresponding to linear combinations of the underlying vectors. The
major drawbacks of principal components analysis are the assumptions that dataset
matrix is composed of row vectors that are independent and identically distributed
realisations of the same random vector (hence the covariance matrix whose princi-
pal components are sought can be approximated by the empirical covariance of the
process) and that there exists a linear transformation maximising the variability.

Vector space representations and singular value decomposition, as reviewed in
[5], have been used to retrieve information from digital libraries. Implementations
of these ideas range from the famous PageRank algoritm used by Google (see [18]
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and [17] for expository reviews) to whole genome analysis based on latent semantic
indexing [23, 16].

From the information contained in the datasetX, a weighed graph of interactions
among documents is constructed. To palliate the weaknessesof principal component
analysis, reproducing kernel methods can be used. The oldest account of these meth-
ods seems to be [21] and their formulation in the context of Hilbert spaces can be
found in [1]. In [31], analysis of features of a microarray experiment is proposed
based on kernel estimates on a graph. Note however that in that paper, the graph in-
corporates extrinsic information coming from participation of genes in specific path-
ways as documented in the KEGG database. On the contrary, in the method we are
proposing here, the graph can be constructed in an intrinsicway, even in the absence
of any additional information from existing databases. In [4, 9, 24], kernel methods
and Laplace eigenspace decomposition are used to generalise principal components
analysis to include non-linear interactions among genes. Particular types of kernels,
defined in terms of commuting times for a random walk on the graph are used in
[13, 20, 30]. All these methods, although not always explicitly stated in these arti-
cles, are as a matter of fact very closely related since the kernels, the weighed graph
Laplacian and the simple random walk on the graph can be described in a unified
formalism [7, 8, 10, 15, 22]. It is worth noting that analysisof Laplacian of the graph
is used in many different contexts, ranging from biologicalapplications (proteins
conformation [32], gene arrays [23]) to web search [3] or image analysis [28].

Fuzzy clustering has been introduced in [6]; lately it was shown [33] equivalent
to probabilistic clustering if the objective function is expressed in terms of the Rényi
entropy.

The idea of describing the data in terms of abstract Hilbert spaces has been used
(in the context of database search) in [2, 12, 14, 29, 34].

The semantic distillation algorithm is based on a quantum-inspired subspace pro-
jection, strongly reminiscent of the quantum procedure of measurement. Although
fully implemented on classical computers, it shares with general quantum algorithms
features of non-distributive quantum logic [26, 27]. The semantic approach of Quan-
tum Mechanics can be found in [27, 11]. It is worth underlyingthat the full fledged
fuzzy logic induced by quantum semantics is not equivalent to the standard fuzzy
logic introduced in [36]; it represents a genuine extensionof it [11].

7 Perspectives

Various data sets (not only biological) are presently semantically distilled and the
method compared with more traditional approaches. Preliminary results obtained so
far seem to confirm the power of the method.

Several directions are in progress:

• Although the method is quantum-inspired, the fuzzy logic induced is still stan-
dard fuzzy logic. We are currently working on the extension to generalised fuzzy
logic induced by full-fledged quantum semantics.
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• The graph analysis we performed provided us with degrees of specificities of ev-
ery gene in a particular context. These data can be reincorporated to the graph as
internal degrees of freedom of a multi-layered graph that can be further analysed.

• The connections of the algorithm of semantic distillation with the algorithm of
purification of quantum states [19] introduced in the context of quantum comput-
ing are currently explored.
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Abstract

Since knowledge on human genes functions is actually incomplete and exhaus-
tive analysis cannot be done in a reasonable amount time, efficient interpretation
of DNA microarrays experimental measurements without a priori knowledge can
be a precious tool for experimental biologists. We introduced in [16] an algorithm
called semantic distillation (inspired from the theory of quantum measurement) to
cluster genes by their contextual specificity (biological context) from raw genechip
experimental measurements. The method can be divided into three steps: raw ex-
perimental data representation in the space of concepts, construction and dimen-
sional reduction of a weighed graph, and, finally fuzzy semantic clustering and
distillation. Here we study DNA arrays experiments and efficiently clustering the
genes of the array according to their tissular specificity.
All supplemental material is available atmettre une adresse

1 Introduction

Microarrays provide a powerful basis to monitor the expression of thousands of genes
in several biological samples [11]. Interpretation of suchmassive experimental results
requires the use of powerful and effective methods to extract relevant information on
genes of interest. For this purpose, several data-mining tools have been developped
using different clustering approaches like hierarchical clustering [6], principal compo-
nent analysis [10, 20],k-means [9, 17], singular value decomposition [8, 1]. In general,
clustering is a division of a dataset into groups of similar items. In the case of DNA
microarrays analysis, the grouping of genes is made in termsof the expression profile
similarity: genes with similar expression in different situations are identified and clus-
tered accordingly. Clustering coexpressed genes into biologically meaningful groups
can help in discovering regulatory motifs from microarray data. Clustering also helps
in inferring the biological role of an unknow gene that is coexpressed with a known
gene. An inherent problem with the commonly used clusteringalgorithmis that they
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force every data point into a cluster. In the case of microarray data, a considerable
number of genes do not contribute to the biological process being studied (and hence
lack expression with other genes). Inclusion of such noisy genes in any cluster causes
contamination, making it less suitable for further analysis. The contribution of this
paper is twofold: first, we recall to the reader a novel algorithmic method we have
introduced in [16] called Semantic Distillation (SD) to analyse DNA micorarray ex-
perimental measures. In a second step we will proceed with the statistical analysis of
results obtained with our method.

SD provide the user with an ordered list of genes for every biological context al-
lowing, for example, to prune a liste of candidate genes for further investigations or
to detect signatures in genes expression for a particular biological sample of the ex-
periment. SD does not relies on any prior knowledge such as database annotations or
learning data, it rationale is to help analysing raw experimental data even in the ab-
sence of any previous knowledge. As principal components analysis or singular value
decomposition, our method is principaly based on two points: the choice of a distance
(or semantics) associated with the dataset and spectral properties of the graph (or ma-
trix) constructed from this distance. The main difference with the methods developed
so far relies ot the last step of the method named “ fuzzy semantic clustering and dis-
tillation” (detailed in the eponymous section).

2 Approach

The method presently used is fully formalised and detailed in [16]. Let B be a fi-
nite set ofgenesandA a finite set ofcellular contexts(or biological samples). The
dataset is a|B| × |A| matrix X = (xba)b∈B,a∈A of real or complex elements, where
| · | represents cardinality. It can be represented by a collection of |B| row vectors
xb = (xb1, . . . ,xb|A|),b∈ B of R|A|. The matrix elementsxba are real numbers encoding
luminescence intensities of DNA array ultimately representing the level of expression
of geneb in biological samplea.

Experimental information hold on the objects of the system undergoes a sequence
of processing steps; each step is performed on a different representation of the infor-
mation. Those different representation spaces and the corresponding information pro-
cessing act as successive filters revealing at the end the most pertinent and significant
part of the information.

2.1 Data representation in the space of concepts

For A andB as in the previous subsection, we define thespace of concepts, HA, as
the real free vector space overA. The spaceHA is equipped with the usual scalar
product so that turns it into a finite dimensional Hilbert space. Therefore, the complete
datasetX can be represented as the collection of|B| vectors|Ξb 〉 decomposed on the
orthonormal basis ofHA.

|Ξb 〉= ∑
a∈A

xba|a〉 ∈HA

with b∈ B and where|a〉 represents the element of the orthonormal basis of the free
vector space corresponding to the attributea. We also introduce rays (by dividing vec-
tors by their norm) on the space. We use the symbol|ξb 〉 to denote the ray associated
with vector|Ξb 〉.
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|ξb 〉=
|Ξb〉

‖|Ξb〉‖

The Hilbert space structure onHA allows a natural geometrisation of the space of
documents by equipping it with a pseudo-distanced.

d : B×B→R+

defined by
d(b,b′) = ‖|ξb 〉− |ξb′ 〉‖

The Hilbert space description incorporates into a unified algebraic framework all logi-
cal and probabilistic information hold by the dataset.

2.2 Construction and dimensional reduction of a weighed graph

In the sequel, we introduce the setVA = A∪B. Thus, for anyv∈VA,

|Ξv 〉=

{
|a〉 if v = a∈ A,

∑a∈A xba|a〉 if v = b∈ B.

The new vectors|Ξa 〉 = |a〉 are included asspecificity witnessesin the dataset. Note
that since these new vectors are also elements of the same Hilbert space, the pseudo-
distanced naturally extends toVA. Suppose now that asimilarity functionσ based on
pseudodistanced (described in the previous section).

Many similarity (or dissimilarity) functions are described in the literature [7] (Pear-
son sample correlation distance, cosine correlation distance, Spearman sample correla-
tion distance, Kendall’s correlation distance...). Each one of these distances expresses
different relationships between objects, resulting semantics (the implied meaning of
data, used to define the significance of entities and their role within the system) is
therefore affected. Cosine distance was used in all experiments described in this paper.
This technique, by privileging directions instead of positions in space, avoid giving too
much semantic significance to highly expressed genes.

A weighed graph is now constructed with vertex setVA. Weights are assigned to
the edges of the complete graph overVA. The weights are expressible in terms of the
similarity functionσ and constitute a weight matrixWvv′ representing the graph.

Wvv′ = σ(v,v′).

We seek to reveal most pertinents interactions among genes.This is achieved by fol-
lowing standard techniques of reduction of the data dimensionality by optimal repre-
sentation of the weighed graph in low dimensional Euclidianspaces spanned by eigen-
vectors of the Laplacian. Such methods have been used by several authors [3, 13].

2.3 Fuzzy semantic clustering and distillation

The following step consists in a fuzzy divisive clustering of objects among two subsets
by exploiting the previous low-dimensional representation. This procedure assigns a
fuzzy membership to each object relative to characters of the two subsets. Fuzziness is
as a matter of fact a distinctive property of experimental biological data reflecting our
incomplete knowledge of fundamental biological processes.
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The algorithm of SD is a recursive divisive fuzzy clusteringfollowed by a pro-
jection on a Hilbert subspace and a thinning of the graph. It starts with the Hilbert
spaceHA and the graph with vertex setVA and constructs recursively a sequence of
Hilbert subspaces and subgraphs. We need further afuzzy membershipfunctionm that
quantifies membership to one of the two subsets.

m : Vκ ×K→ [0,1].

with K the set of Hilbert subspacesK = {K1,K2} The fuzzy clustering algorithm is
described in [4].

Up to this step, our method is a sequence of known algorithms that have been pre-
viously used separately in the literature in various contexts. The novelty of our method
relies on the following steps. The previous fuzzy clustering reduced the indeterminacy
of the system. This information is fed back to the system to perform a projection to a
proper Hilbert subspace. In that way, the information content of the dataset is modi-
fied by the information gained by the previous observations.After this feeding back,
the three previous steps are repeated but now referring to a Hilbert spaces of lower di-
mension. Therefore our method is not a mere fuzzy clusteringalgorithm but a genuine
non-classical interaction information retrieval procedure where previous observations
alter the informational content of the system (reminiscentof the measurement proce-
dure in Quantum Mechanics [12]). Fuzzy membership is computed for every elements
of VA. Elements ofA are assigned to one of the two Hilbert subspaces according to
their membership. Elements ofB are projected in both Hilbert spaces. The method
starts afresh step one until all objects fromA are clustered in different subsets.

3 Dataset

We tested the method on the dataset obtained by an experimenton DNA array pub-
lished in [19] available on Gene Expression Omnibus database [18] under accession
number GSE803. This dataset is composed of a set of 62837 probesets for a col-
lection of 12 major human tissues including bone marrow, brain, heart, kidney, liver,
lung, pancreas, prostate, skeletal muscle, spinal cord, spleen and thymus. The 62837
probesets consisted in five genechips arrays (HG-U95Av2, HG-U95B, HG-U95C, HG-
U95D, HG-U95E). The HG-U95Av2 represents 12613 full lengthgenes, while arrays
B through E represent approximately 50000 EST clusters. Forthis study we choose
only measures from the HG-U95Av2 array.

4 Results

We present here the simplest case of a one dimensional representation of the graph
(higher dimensional representation are actually under consideration) for one tissular
context (skeletal muscle) of the twelve tissues of the study. Complementary result files
are provided as supplemental material.

Fig. 1 represents the type of results we obtain: for every singleton cluster (tissular
context), the horizontal axis represents the set of genes relabelled according to their
decreasing fuzzy membership to the cellular context. Vertical axis represents the ex-
perimentally measured level of expression for those genes in this particular context.
For each cluster we can observe a specificity gradient and also a “global expression
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Figure 1: Ranking of GSE803 dataset genes. The horizontal axis contains the set of
genes relabelled according to their decreasing fuzzy membership to the skeletal muscle
cellular context. Vertical axis represents the experimentally measured level of expres-
sion for those genes.

gradient”. Nevertheless, we note that genes with high expression level are not neces-
sarily specific. In fact, if a gene is very expressed in several tissular contexts, it will
not be, by definition, uni-tissular specific (respectively aweakly-expressed gene can be
nevertheless context specific).

In Table 1, we give an example of annotation provided by the UniGene database
[18, 15] for the first skeletal muscle most specific genes retrieved by our method. We
observe that the majority of those genes are effectively annotated as skeletal muscle
specific. However we can underline that the first one (ATPase)is annotated as cardiac
muscle specific. We checked the experimental data we worked on and bibliography
[14, 2], and realised that this gene is, as matter of fact, fivetimes more expressed in
the skeletal muscle context than in the cardiac muscle, and is also described as skeletal
muscle specific [2]; mutations of this gene leads to Brody disease (affecting skeletal
muscle) [14]. Therefore, our method correctly determines this genes as skeletal muscle
specific.

5 Results analysis

The method previously described allows extraction of the information contained in
experimental results from DNA chips. In the context of information retrieval, the two
desired properties that have been accepted by research community for measurment of
search effectiveness are recall (the proportion of relevant documents retrieved by the
system) and precision (the proportion of retrieved documents that are relevant).

Measuring recall and precision requires a good knowledge ofthe dataset on which
the analysis was made. For DNA microarrays, a part of the information required
for these measures is missing (genes whose functions are unknown, missing anno-
tations. . . ), it is unclear whether the classification of a gene is actually relevant to a
biological sample or not. To enable these measures, we must define what is a specific
gene for a given biological sample.

Broad sense specificity: We consider here only values from the initial dataset. A
gene is considered here to be specific to a biological sample if the value of its expression
is higher in this particular sample than in the others. According to this definition,
we can measure the number of specific genes for each sample of the GSE803 dataset
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Table 1: Annotation of the genes closest to the specificity witness “skeletal muscle”.

Ranking Name Annotation
1 ATPase Ca++ transporting, cardiac muscle,

fast twitch 1, calcium signaling
pathway

2 Troponin I type 2 skeletal, fast
3 Myosin, light chain 1 alkali; skeletal,

fast
4 Ryanodine receptor 1 skeletal; calcium

signaling pathway
5 Fructose-1,6-bisphosphatase 2 glycolysis

gluconeogenesis
6 Actinin, alpha 3 focal adhesion
7 Troponin C type 2 fast; calcium signaling

pathway
8 Carbonic anhydrase III muscle specific;

nitrogen metabolism
9 Nebulin
10 Troponin I type 1 skeletal, slow
11 Myosin, heavy chain 3 skeletal muscle
12 Myogenic factor 6, herculin

Table 2: GSE803 genes distribution in the case of broad sensespecificity

cellular context number of “broad sense specific” genes
bone marrow 749
brain 1796
heart 866
kidney 1050
liver 488
lung 919
pancreas 545
prostate 376
skeletal muscle 951
spinal cord 2503
spleen 212
thymus 2158
total 12613
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Figure 2: Ranking evaluation in the case of skeletal muscle context. Bold curve is
obtained by applying (1) on our results. Solid line represents perfect results according
to a line of slope 1 (mind the difference of scales of horizontal and vertical axes),
crossed line represents results from a random draw of genes.

(reported in table 2). Remind that this definition express specificity for a particular
DNA chip experiment, genes considered here as sample specific (i.e. muscle specific)
may not be defined as sample specific in another experiment.

Annotation specificity: The role of this specificity is to enable an evaluation of
our method by confrontation with an external knowledge source. To achieve this, we
checked annotation in SOURCE [5]. We define “annotation specificity” as follows:
a gene is specific to a particular context if itsnormalised expressionis higher in this
context than in the other contexts of the experiment.

Both definitions will allow us to describe the relevance of the classification of genes
for a biological sample.

It is well accepted that good information retrieval systemsshould retrieve as many
relevant documents as possible (have a high recall), and it should retrieve very few non
relevant documents (have a high precision). Unfortunatelythese two goals have proven
to be quite contradictory over the years. Techniques that tend to improve recall tend to
hurt precision and vice-versa. Both recall and precision are set oriented measures and
have no notion of rank retrieval. Researchers have used several variants of recall and
precision to evaluate ranked retrieval.

In our case, we define the following measure:

O(i) = |Spec
⋂

Reti | (1)

WhereReti is the subset ofRet containing the firsti most specific genes retrieved by
our method andSpec the set of specific genes (broad or annotation) to a particular
biological sample.In fact, this measure is the common root of recall and precision. By
dividing it by the number of genes we get the precision value,by dividing it by the total
number of specific genes we get the recall value.

Fig. 2 illustrates (1) for broad sense specificity in the caseof skeletal muscle cel-
lular context. For this evaluation function, a perfect result would be represented by a
slope line of 1 and results for a random draw are represented by the crossed line. We
can observe that for the first genes retrieved by our method the curve has a slope very
close to 1 and keeps values nearby until all specific genes areretrieved.

As an example, figure 2 shows recall and precision for the samesample. We can
observe that recall follows closely the curve ofO(i). In the case of precision, we can
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Figure 4: Evaluation of our results for the first 200 genes in the case of skeletal muscle
context. Bold curve is obtained by applying (1), crossed (+) line is obtained with re-
spect to annotation specificity, thin and crossed (×) lines represents respectively anno-
tation and broad sense specificity in the case of a random drawof genes in the dataset.

observe that its value is very close to 1 for the first retrivedgenes and then decreases
while the number of retrieved genes increases, reflecting the inclusion of false positive
in the setReti .

The second stage of our analysis is to drawO(i) for the annotation specificity (pre-
viously defined). Figure 4 shows the results for the first 200 genes retrieved by our
method (both specificities were traced, broad sense with thebold line, annotation with
the crossed line (+) ). We observe that there are only few differences for the first 30
genes between the two curves. However, this observation is not true for genes ranked
after 30; Although the slope of broad sense specificity curveremains close to 1, the
slope of annotation specificity curve quickly decreases to 0.

In a first time, we can assume that the definition of broad sensespecificity is too
general explaining the large number of genes considered as specific in the dataset.
However, the two definitions are, in fact, very similar; we determine a gene as specific
exclusively with respect to the other biological samples ofthe microarray experiment,
which should therorically give us the same number of specificgenes in both cases.
As an additional test, we conducted a random sampling from the list of genes and
measuredO(i) for two specificities (also shown in Figure 4: thin line for broad sense,
crossed line (x) for annotation). It turns out that these twospecificities coı̈ncide so that
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Figure 5: Specificity level in the case of skeletal muscle context. Horizontal axis rep-
resents genes ordered by decreasing membership to the cellular context. Vertical axis
denotes (2) for those genes.

their curves coı̈ncide. With a simple calculation we can estimate the number of specific
genes in the sample:

S=
|Spec||B|

|R|

WhereR is the random sample of genes. In both cases, we have 11 specific genes for
200 picked randomly which allows us to estimate 694 specific genes in the dataset.
This value is significantly closer to the number of broad sense specific genes than to
the number of annotation specific genes. We believe that thisdifference in the results
derives from the normalised gene expression computation method from SOURCE. In-
deed, it is based on the relative frequencies of genes in Unigene clusters1 and not on raw
gene expression measures. However, regardless of the specificity defined, our method
is able to characterize specific genes to biological samplesand effectively retrieve them
from the data set.

Now that we have shown our method efficiency to retrieve specific genes, we can
ask about the relevance of genes ranking: Are genes effectevely ranked by decreasing
specificity? Based on broad sense specificity definition we can “quantify” specificity
by comparing gene expression in a context with the highest expression in the comple-
mentary set of cellular contexts. We define the specificity level of a geneb in contexta
by:

Lba =
xba

max{xba′ ,a′ ∈ A,a′ 6= a}
(2)

If Lba≥ 1 then geneb is specific in contexta and the higher this value, the more specific
is geneb in contexta. Inversely, ifLba < 1 thenb is not specific ina. Fig. 5 shows (in
logarithmic scale) this measure in the case of skeletal muscle cellular context. We note
that genes determined as most specific by our method are thosewith highest ratio (on
the left of Fig. 5), respectively the less specific are those with the lower ratio (on the
left of Fig. 5).

1The computation method is fully detailed at http://smd.stanford.edu/help/SOURCE/normalization.html

9



Table 3: Robustness measures for perturbed datasets

λ M δmax δave

0 0 0 0.000000
0.1 20 3 1.500000
0.2 39 6 1.846154
0.3 37 10 3.027027
0.4 43 12 3.953488
0.5 42 11 3.666667
1 44 40 10.50000

multiplicative 43 31 6.976744

6 Complexity and robustness

Concerning the algorithmic complexity of the method, the dominant contribution comes
from the diagonalisation of a|B|× |B| dense real symmetric matrix, requiring at worst
O(|B|3) time steps andO(|B|2) space. The time complexity can be slightly reduced, if
only low-dimensional representations are sought, toO(ν ×|B|2) time steps.

We also tested robustness of SD by adding noise to the experimental data. For this
purpose, two methods were chosen: additive and multiplicative random perturbations
of the dataset. LetX be the original real|B|×|A|matrix withxba∈R, Ra real|B|×|A|
matrix with rba a random variable∈ [0,1], λ ∈ R a perturbation coefficient andX′ a
real|B|× |A|matrix containing perturbed data. We define additive perturbation by:

x′ba = xba(1+λ (2rba−1)) (3)

Hereλ is an adjustable parameter andrba are independent (for different(a,b)) random
variables uniformly distributed over[0,1]. Thereforex′ba are random variables uni-
formly distributed over[(1− λ )xba,(1+ λ )xba]. ObviouslyE(x′ba) = xba whereE(·)
denotes expectation. By applying it, we can add noise to the dataset proportionally to
a coefficient and to original expression valuesxba. Similarly we define multiplicative
perturbation by:

x′ba = xba(rba+1/2) (4)

satisfying againE(x′ba) = xba. There is no perturbation coefficient in (4).
To measure robustness we picked up randomly 50 genes from theGSE803 dataset

and their associated measures for the 12 cellular contexts.We perturbed this matrix
with both methods and variousλ and ran SD. Ranking lists are provided as supple-
mental material.

Random perturbations onX induce bad ranking on certain genes. Denoting byp(b)
the rank of geneb when usingX andp′(b) its ranking when usingX′, we say that there
is a misplacement ofb under perturbation ifp(b) 6= p′(b). The total numberM of
misplacements is a figure of merit for the method. As expected, it increases when the
strength of the perturbationλ increases, as shown in the table 3. The two last columns
contain the maximal displacement

δmax= max
b∈B
|p(b)− p(b′)|
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and the average displacement

δave=
1
M

Σb∈B|p(b)− p(b′)|.

We can observe that the more we perturb the dataset, the more we put noise in its
information content which has a direct impact on ranking quality. Yet, results given by
SD are still pertinent in the case of additive perturbation for low λ e.g. forλ = 0.1
there is only few direct permutation in ranking of genes.

7 Discussion

In this paper we have presented a new information retrieval method called Semantic
Distillation (SD). This method could prove very usefull when interested in tissue spe-
cific genes signatures and/or relating gene deletion phenotypes to specific deseases/
tissues / cellular states without previous knowledge. We have previously shown that
this method is effective and robust against noise. Moreover, it is a versatile method that
can be applied to any data set with the same structure.

7.1 Limitations

Although distillation is a very efficient method to assign membership to a gene for
several cellular contexts (biological samples), reducingthe space of concepts at each
iteration may affect efficiency. It slightly decreases whenthe number of cellular con-
texts is small i.e|B|= 2 (in this caseO(i) keeps good values for the first retrieved genes
but decreases faster than in the case of many tissular contexts). To avoid this problem,
we are actually working on a weighed feed-back of information into the system.

We have presented here the simplest case of a one dimensionalrepresentation of
the weighed graph. In fact, it should be the less robust low-dimensional represen-
tation. Perturbation of the dataset has consequences on thegraph structure, theν -
dimensional representation is then also affected, by representing the graph in a one-
dimensional space we reduce self-averaging (noise absorption) capacities of the sys-
tem: for example, a bi-dimensional representation should rank genes correctly where a
one-dimensional shows permutations in genes order.

A third limitation is that|B| (the number of genes) has to be greater than|A| (num-
ber of biological samples). This is induced by the construction of the space of concepts:
few vectors represented in a very high-dimensional Hilbertspace have a high probabil-
ity of living in orthogonal subspaces which means that similarity functions should be
zero in this case. In fact, we do not encounter this phenomenon when ranking genes
but this remark take all its meaning when conducting a study on ranking tissues with
respect to gene expression (in other word on the transposed matrix of X).

Finally, SD complexity does not allow computation on standard desktop computers
for very large sets of genes (tenths of thousands genes). Forexample in the case of
GSE803 data diagonalisation step needs about 600 Mo of memory aqnd approximately
30 hours of cpu time to be achieved.

7.2 Perspectives

Our method gives to all the genes a membership value for each biological sample of
the analysis. In the microarray field, commonly used approaches are mainly based
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on ”crisp clustering” algorithms, making comparison between our results and those
of currently used methods difficult. However, various data sets (not only biological)
are presently semantically distilled and the method compared with more traditional
approaches. Results obtained so far tend to confirm the powerof the method.

Several directions are in progress: first, although the method is quantum-inspired,
the fuzzy logic induced is still standard fuzzy logic. We arecurrently working on
the extension to generalised fuzzy logic induced by full-fledged quantum semantics.
Secondly, the graph analysis we performed provided us with degrees of specificities
of every gene in a particular context. These data can be reincorporated to the graph
as internal degrees of freedom of a multi-layered graph thatcan be further analysed.
The connections of the algorithm of SD with the algorithm of purification of quantum
states [12] introduced in the context of quantum computing are currently explored.
Finally, requests on the datasets are actually limited to context specificity, quantum
logical operators (NOT, AND, OR) are under test.

8 Conclusion

We presented a novel approach for clustering genes and a measure of its efficiency. The
goal is to correctly characterise specificity of a set of genes to one (or several) biological
contexts from raw experimental DNA microarrays data. The method had been tested
on a dataset composed of 12613 genes expression measures in 12 different tissular
contexts. Our results indicate that not only our method correctly classifies genes with
respect to experimental data and databases annotations, but also, can remove ambiguity
for some genes annotations. Additionally, SD proves robust.Moreover, SD is a very
versatile method that can be applied to any dataset with the same structure.
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8.2 Analysis of clinical data from patient suffer-

ing from hepatic fibrosis

8.2.1 Dataset

Semantic distillation had also been tested on clinical data from DNA chips for
patients suffering from hepatic fibrosis.

Hepatic fibrosis is defined by an excessive accumulation of extracellular ma-
trix in the liver. As a result of chronic liver damage, its progress ultimately leads
to cirrhosis and cancer. Phenotypic transformations of a fibrotic liver involves
complex gene regulation networks.

For this study we have a set B of 700 genes expressed in 14 patients divided
into four categories on anatomopathological criteria:

• Three patients with mild fibrosis (F1)

• Three patients with moderate fibrosis (F2)

• Three patients with severe fibrosis (F3)

• Five patients with cirrhosis (F4).

This analysis was conducted in order to find signatures in the expression of
genes to accurately characterize the different stages of fibrosis.

The main difference between this study and the previous one is that we
work here on histological samples coming from the same type of tissue (liver
biopsy), unlike the previous analysis where the difference between samples was
biologically more marked. Figure 8.2.1 represents standard deviation of gene ex-
pression for the previous (GSE803) dataset (left) and the fibrosis dataset (right).
We can note that the fibrosis dataset has a low variability in the expression of
these genes. It is therefore easy to imagine that discriminating specific genes in
this type of data is far more difficult than in the previous analysis.

8.2.2 Results

In a first step, the analysis was conducted in the same manner as for the previous
dataset, and followed by the same analysis of results (measure of O(i)). We recall
here the following definitions:

• precision is the fraction of the genes retrieved that are effectively specific.
Let Reti represent the subset of Ret containing the first i most specific
genes retrieved by our method and Spec the set of specific genes (broad
or annotation) to a particular biological sample. Then we define

precision =
|Spec

⋂
Reti|

|Reti|
.
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Table 8.1: Comparative analysis of standard deviation of gene expression for
GSE803 dataset (left) and fibrosis dataset (right).

GSE803 dataset fibrosis dataset

Table 8.2: Measures of O(i) for results obtained with the first analysis of fibrosis
dataset

F1-1 F2-1

F3-1 F4-1
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Table 8.3: Measures of L for results obtained with the first analysis of fibrosis
dataset

F1-1 F2-1

F3-1 F4-1
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Table 8.4: Measures of O(i) for results obtained with the second analysis (with
m witness) of fibrosis dataset

F1-1 F2-1

F3-1 F4-1
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Table 8.5: Measures of L for results obtained with the second analysis (with m
witness) of fibrosis dataset

F1-1 F2-1

F3-1 F4-1
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In binary classification, precision is analogous to positive predictive value.
precision takes all retrieved genes into account. It can also be evaluated
at a given cut-off rank, considering only the topmost results returned by
the system. This measure is called precision at n or P@n.

• recall is the fraction of specific genes that are successfully retrieved, more
precisely

recall =
|Spec

⋂
Reti|

|Spec|
.

In binary classification, recall is called sensitivity. So it can be viewed as
the probability that a specific gene is retrieved by the query. It is trivial
to achieve recall of 100% by returning all genes in response to any query.
Therefore recall must be combined with precision to decide whether the
retrieval is successful.

• Define finally
O(i) = |Spec

⋂
Reti|.

In fact, this measure is the common root of recall and precision. By
dividing it by the number of genes we get the precision value, by dividing
it by the total number of specific genes we get the recall value.

It appeared that the classification of genes by our method is not optimal here.
Figure 8.2.2 shows values of O(i) for some patients (all of these measures are
provided in the appendix). We can observe that the classification presented here
is much closer to a random draw of genes. We can assume that the low variability
of gene expression (as shown in the previous section) does not allow fine and
relevant classification of specific genes for each sample biological analysis.

We can ask wether it is possible to make our analysis more discriminant
and thus improve the outcome. Given our observation on genes expression in
this experience, we can say that a large proportion of genes behave, in the
space of concepts, like housekeeping genes, i.e. that their expression is virtually
identical regardless of the biological sample analysis. In order to characterise
housekeeping genes, we introduce an additional specificity witness vector:

m =
∑

a∈A

| a 〉 ∈ HA.

Adding this new vector in the dataset does not change its rank. However,
recall that the weighed graph encoding the gene interactions will contain now
an additional vertex corresponding to m. Seeking a low-dimensional optimal
representation of the graph can be though as a minimisation of the energy of
springs joining the vertices. Now, the new vertex m strongly attracts all vertices
whose vectors form a small angle with m, they are removed from the subspace
corresponding to the elementary specificity witnesses | a 〉 ∈ HA. These genes
will consequently have a small fuzzy membership to the elementary clusters.

We present in figure 8.2.2 measures effectiveness of the method for the same
samples as shown in figure 8.2.2. We can observe that the results are greatly
improved by adding the m witness.



116

Table 8.6: KEGG terms associated to specific genes of each stage of fibrosis, an
X represents a term / sample association

KEGG terms F1 F2 F3 F4

VEGF signalling pathway X X
cell cycle X X
Tcell receptor signalling pathway X
Adherens junction X
jak-STAT signalling pathway X X X
focal adhesion X X X
wnt signalling pathways X
pyrimidine metabolism X X
leukocyte transendothelial migration X
gap junction X
MAPK signalling pathway X X
Regulation of actin cytoskeleton X
apoptosis X X
Bcell receptor signalling pathway X
gap junction X
Antigen processing and presentation X
One carbon pool by folate X
Ubiquitin mediated proteolisis X
purine metabolism X
huntington desease X
neurodegenerative desease X
dentatorubropallidoluysian atrophy X
Insulin signalling pathway X

As for the previous analysis we annotated specific genes for each sample
analysis. We chose two annotation sources:

• KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database where
each gene is associated to a metabolic pathway in wich it is involved.

• GO (Gene Ontology) is an ontology dedicated to genome annotation. This
database associate each gene product with an ontology term (biological
process, cellular component and molecular function).

Each gene was annotated with KEGG and GO (only biological process) via
M@IA [8]. In this study, we have selected only term with p-value lower than
0.01 for Fisher test.

The results (table 8.6 for KEGG annotation and table 9.14 for GO annota-
tion) shows the differences obtained for annotation of specific genes from our
analysis. These tables shows us different signatures obtained for the metabolic
pathways and for biological processes associated with specific genes of each de-
sease stage (each stage represents the addition of annotations of its associated
samples).

Biological process F1 F2 F3 F4

positive regulation of I-kappaB kinase/NF-kappaB cascade X X
positive regulation of cell proliferation X X X X
inflammatory response X X
ossification X
cell division X X
blood coagulation X X
positive regulation of transcription from RNA polymerase X
response to drug X
dephosphorylation X X
embryonic development (sensu Mammalia) X X
DNA unwinding during replication X
mRNA export from nucleus X
DNA replication X X
cell surface receptor linked signal transduction X X
protein amino acid phosphorylation X X X X
immune response X
cell cycle X X X X
skeletal development X

suite du tableau page suivante
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Biological process F1 F2 F3 F4

cell proliferation X X
cytokinesis X X X
negative regulation of apoptosis X X
regulation of cyclin-dependent protein kinase activity X X
regulation of progression through cell cycle X
transmembrane receptor protein tyrosine kinase signaling pathway X
negative regulation of cell proliferation X X X
intracellular signaling cascade X X
development X X
cell adhesion X X X
cell cycle arrest X
negative regulation of cell cycle X
chemotaxis X
traversing start control point of mitotic cell cycle X
apoptosis X X X
protein ubiquitination X
wnt receptor signaling pathway X
signal transduction X
regulation of apoptosis X X
cell-cell signaling X X
insulin receptor signaling pathway X X
insulin-like growth factor receptor signaling pathway X
inner ear morphogenesis X
lung development X
bone mineralization X
angiogenesis X X
fibroblast growth factor receptor signaling pathway X
nuclear mRNA splicing, via spliceosome X
cell growth X X
nervous system development X X
response to hypoxia X
induction of apoptosis X
JNK cascade X
response to wounding X
transcription X
DNA repair X
response to stress X
nucleobase, nucleoside, nucleotide and nucleic acid metabolic process X
protein complex assembly X
anterior/posterior pattern formation X
cell motility X
inactivation of MAPK activity X
regulation of cell growth X
negative regulation of cell cycle X
nucleotide-excision repair X
anti-apoptosis X
regulation of transcription, DNA-dependent X
liver development X
placenta development X
release of cytochrome c from mitochondria X
positive regulation of transcription from RNA polymerase II promoter X
apoptotic mitochondrial changes X
germ cell development X
protein import into nucleus X
cell morphogenesis X
keratinocyte differentiation X
heart development X
positive regulation of transcription X
proteolysis X
apoptotic program X
organ morphogenesis X
actin cytoskeleton organization and biogenesis X
signal complex formation X
positive regulation of T cell proliferation X
epidermis development X
actin filament organization X
cell differentiation X
cell migration X
sensory perception X
T cell activation X
DNA replication initiation X
UTP biosynthesis X
CTP biosynthesis X
GTP biosynthesis X
nucleotide metabolism X
brain development X
regulation of Rho protein signal transduction X
one-carbon compound metabolism X
transcription from RNA polymerase II promoter X
small GTPase mediated signal transduction X
cellular defense response X

Table 9.14: GO terms (biological processes) associated with genes wich are specific to each fibrosis stages
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8.3 Comparison with other methods

Results obtained by semantic distillation were compared with traditional ap-
proaches commonly used in the context of DNA arrays analysis: agglomerative
hierarchical clustering, fuzzy clustering, k-means method. These three methods
are provided in M@IA (Microarray Integrated Application) [8]. We chose (for
computing time reasons) to take fibrosis dataset as reference.

For this comparison, several difficulties have been encountered. The first
one is to compare set-theorical methods with ours. Indeed, semantic distillation
performs for each biological sample, a ranking of all genes according to their
sample specificity, unlike set-theorical methods that affect each gene in a given
group. Secondly, traditional methods usually cluster genes according to their
expression profile similarities and not according to their specificity to a partic-
ular biological sample. Hence, in the context of traditional approaches, even if
we set the number of groups equal to the number of samples, how can we assign
a group to a particular sample?

Given these difficulties, the method adopted for the comparison was as fol-
lows: each of the methods mentioned previously were parametrised to separate
the genes in a number of groups equal to the number of biological samples from
the experience (i.e. 14). After clustering, we have counted for each group, the
number of broad sense specific genes (defined in section 8.1) to each biological
sample. For each of these measures, we then calculated recall and precision
of each group for each sample and took their maximal values per sample. We
then decided to turn semantic distillation to set-theorical by truncating rank-
ings provided at a rank equal to the number of genes in the group (resulting
from a standard approach) with the maximum value (for the recall or accuracy)
for a sample.

8.3.1 Agglomerative hierarchical clustering

First, we compared semantic distillation (using angular distance to quantify
similarity) with agglomerative hierarchical clustering using Ward’s minimum
variance method [74] in order to minimise intra-group variability. The results
of the measurements were are given in tables 8.8 and 8.9.

Table 8.8 presents recall measures for all groups formed by agglomerative
hierarchical clustering. A first observation relates to the size of groups, we can
see that it is relatively homogenous. The second point concerns the values of
this table and mainly their distribution. We can observe a significant propor-
tion of zero values, they reflect a lack of specific genes in a group associated to
a biological sample. The presence of zero values for these measures is normal.
Indeed, unless a group contains all the genes of the experience, it is rare that
specific genes for each biological sample are represented in the same group. The
distribution of non-zero values we gives us information on the contents of each
group, we can see that every group (except 12) contains specific genes for sev-
eral biological samples. Likewise, each biological sample sees its specific genes
distributed in several groups. Therefore, which group represents at best the var-
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Table 8.8: Comparative analysis for recall between agglomerative hierarchical
clustering method and semantic distillation (SD)

f11 f12 f13 f21 f22 f23 f31 clusters size

cluster1 0 0 0 0 0 0 0,08571 29
cluster2 0 0 0 0,04167 0,10714 0 0 76
cluster3 0,08333 0 0 0,04167 0,10714 0,05556 0 24
cluster4 0 0 0,06122 0 0 0 0,65714 39
cluster5 0 0,03333 0,02041 0 0 0 0 93
cluster6 0,16667 0 0,55102 0,04167 0,03571 0 0 43
cluster7 0 0 0 0 0 0 0 54
cluster8 0,04167 0,76667 0,2449 0 0 0 0,02857 48
cluster9 0 0 0 0,125 0 0,58333 0 42
cluster10 0,45833 0,06667 0 0 0 0 0 23
cluster11 0 0 0 0,54167 0,5 0,11111 0 42
cluster12 0 0 0 0 0 0 0 28
cluster13 0 0 0 0 0 0 0 26
cluster14 0 0 0 0 0 0 0,05714 22

max 0,45833 0,76667 0,55102 0,54167 0,5 0,58333 0,65714

SD 0,83333 0,73333 0,28571 0,875 0,67857 0,66667 0,74286

f32 f33 f41 f42 f43 f44 f45

cluster1 0,48485 0,06061 0 0 0,01493 0 0
cluster2 0 0 0,13725 0,07547 0,67164 0 0
cluster3 0 0 0,01961 0 0 0,07317 0,08824
cluster4 0,15152 0 0 0,01887 0 0 0,0098
cluster5 0,0303 0,09091 0 0,01887 0,01493 0,12195 0,58824
cluster6 0 0,06061 0 0,01887 0 0,02439 0
cluster7 0 0,06061 0,60784 0,13208 0 0,02439 0,06863
cluster8 0 0,0303 0,03922 0 0,01493 0,04878 0
cluster9 0,06061 0 0 0,03774 0,0597 0 0,0098
cluster10 0 0 0,03922 0 0 0 0,01961
cluster11 0 0,0303 0 0 0 0 0,0098
cluster12 0 0 0 0,4717 0 0 0
cluster13 0 0 0 0,01887 0,01493 0,41463 0
cluster14 0 0,45455 0 0 0 0 0

max 0,48485 0,45455 0,60784 0,4717 0,67164 0,41463 0,58824

SD 0,51515 0,24242 0,62745 0,28302 0,59701 0,21951 0,10784

Table 8.9: Comparative analysis for precision between agglomerative hierarchi-
cal clustering method and semantic distillation (SD)

f11 f12 f13 f21 f22 f23

cluster1 0 0 0 0 0 0
cluster2 0 0 0 0,01316 0,03947 0
cluster3 0,08333 0 0 0,04167 0,125 0,08333
cluster4 0 0 0,07692 0 0 0
cluster5 0 0,01075 0,01075 0 0 0
cluster6 0,09302 0 0,62791 0,02326 0,02326 0
cluster7 0 0 0 0 0 0
cluster8 0,02083 0,47917 0,25 0 0 0
cluster9 0 0 0 0,07143 0 0,5
cluster10 0,47826 0,08696 0 0 0 0
cluster11 0 0 0 0,30952 0,33333 0,09524
cluster12 0 0 0 0 0 0
cluster13 0 0 0 0 0 0
cluster14 0 0 0 0 0 0

max 0,47826 0,47917 0,62791 0,30952 0,33333 0,5

SD 0,65217 0,45833 0,32558 0,5 0,45238 0,57143

f32 f33 f41 f42 f43 f44 f45

cluster1 0,55172 0,06897 0 0 0,03448 0 0
cluster2 0 0 0,09211 0,05263 0,59211 0 0
cluster3 0 0 0,04167 0 0 0,125 0,375
cluster4 0,12821 0 0 0,02564 0 0 0,02564
cluster5 0,01075 0,03226 0 0,01075 0,01075 0,05376 0,64516
cluster6 0 0,04651 0 0,02326 0 0,02326 0
cluster7 0 0,03704 0,57407 0,12963 0 0,01852 0,12963
cluster8 0 0,02083 0,04167 0 0,02083 0,04167 0
cluster9 0,04762 0 0 0,04762 0,09524 0 0,02381
cluster10 0 0 0,08696 0 0 0 0,08696
cluster11 0 0,02381 0 0 0 0 0,02381
cluster12 0 0 0 0,89286 0 0 0
cluster13 0 0 0 0,03846 0,03846 0,65385 0
cluster14 0 0,68182 0 0 0 0 0

max 0,55172 0,68182 0,57407 0,89286 0,59211 0,65385 0,64516

SD 0,58621 0,36364 0,59259 0,5 0,52632 0,34615 0,35484
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Table 8.10: Comparative analysis for recall between k-means algorithm and
semantic distillation (SD)

f11 f12 f13 f21 f22 f23 f31 cluster size

cluster1 0 0 0 0 0 0 0,085714 10
cluster2 0 0 0 0 0 0 0 8
cluster3 0,375 0 0,469388 0,541667 0,714286 0,611111 0,457143 298
cluster4 0,416667 0 0,367347 0,125 0,035714 0,138889 0,314286 241
cluster5 0 0 0 0 0 0 0 6
cluster6 0 0 0 0 0,035714 0,027778 0 3
cluster7 0 0 0 0 0 0 0 8
cluster8 0 0 0 0 0 0 0 4
cluster9 0 0 0,040816 0 0 0 0 4
cluster10 0 0 0 0 0 0 0 1
cluster11 0 0 0 0 0 0 0 1
cluster12 0 0 0 0,041667 0 0 0 2
cluster13 0 0 0 0 0 0 0 2
cluster14 0 0 0 0 0 0 0 1

max 0,416667 0 0,469388 0,541667 0,714286 0,611111 0,457143

SD 1 1 0,77551 1 1 1 1

f32 f33 f41 f42 f43 f44 f45

cluster1 0,030303 0,121212 0 0 0 0 0
cluster2 0 0 0 0,018868 0,074627 0 0
cluster3 0,454545 0,30303 0,333333 0,113208 0,238806 0,463415 0,519608
cluster4 0,181818 0,393939 0,372549 0,603774 0,373134 0,219512 0,284314
cluster5 0 0 0 0,056604 0 0 0
cluster6 0 0 0 0 0 0 0
cluster7 0 0 0,137255 0 0 0 0
cluster8 0 0 0 0 0,044776 0 0
cluster9 0 0 0 0 0 0,02439 0
cluster10 0 0 0 0 0 0 0
cluster11 0 0 0 0 0 0 0
cluster12 0 0 0 0 0 0 0
cluster13 0 0 0 0 0,014925 0 0
cluster14 0 0 0 0 0 0 0

max 0,454545 0,393939 0,372549 0,603774 0,373134 0,463415 0,519608

SD 1 1 1 1 1 0,97561 0,843137

ious biological samples from the experience? As we have seen before, we chose
the group presenting the maximum value for recall (or precision) for a sample as
characteristic of it. A group may therefore represent several samples, this mark
a huge disadvantage of the traditional methods compared with semantic distil-
lation. The last two rows present, for each sample, the maximum value of the
recall obtained with hierarchical clustering and our degraded method (trunca-
ture of our ranking for a rank equal to the size of the group associated with the
maximum value of the recall). Despite the handicap of these measures for our
method (loss of genes ranking by truncature, size of the group determined by
the competitor method), we can observe that in half cases semantic distillation
had a better recall than agglomerative hierarchical clustering.

Table 8.9 present precision measurements made on the groups formed by
hierarchical clustering. The same observations can be made on these measures
(distribution of non-zero values, better precision in half the cases). We can, how-
ever, add an additional remark: groups for which semantic distillation presents a
highest recall are also generally more accurate. We, therefore, for these groups,
jointly improved recall and precision.

8.3.2 k-means algorithm

Semantic distillation was then compared with the k-means method detailled in
the chapter 4. In the same way than for the previous analysis tables 8.10 and
8.11 respectively introduced measures of recall and precision for groups formed
by this method.
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Table 8.11: Comparative analysis for precision between k-means algorithm and
semantic distillation (SD)

f11 f12 f13 f21 f22 f23 f31

cluster1 0 0 0 0 0 0 0,3
cluster2 0 0 0 0 0 0 0
cluster3 0,030201 0,036913 0,077181 0,043624 0,067114 0,073826 0,053691
cluster4 0,041494 0,062241 0,074689 0,012448 0,004149 0,020747 0,045643
cluster5 0 0 0 0 0 0 0
cluster6 0 0 0 0 0,333333 0,333333 0
cluster7 0 0 0 0 0 0 0
cluster8 0 0 0 0 0 0 0
cluster9 0 0 0,5 0 0 0 0
cluster10 0 0 0 0 0 0 0
cluster11 0 0 0 0 0 0 0
cluster12 0 0 0 0,5 0 0 0
cluster13 0 0 0 0 0 0 0
cluster14 0 0 0 0 0 0 0

max 0,041494 0,062241 0,5 0,5 0,333333 0,333333 0,3

SD 0,099585 0,124481 1 1 1 0,333333 0,4

f32 f33 f41 f42 f43 f44 f45

cluster1 0,1 0,4 0 0 0 0 0
cluster2 0 0 0 0,125 0,625 0 0
cluster3 0,050336 0,033557 0,057047 0,020134 0,053691 0,063758 0,177852
cluster4 0,024896 0,053942 0,078838 0,13278 0,103734 0,037344 0,120332
cluster5 0 0 0 0,5 0 0 0
cluster6 0 0 0 0 0 0 0
cluster7 0 0 0,875 0 0 0 0
cluster8 0 0 0 0 0,75 0 0
cluster9 0 0 0 0 0 0,25 0
cluster10 0 0 0 0 0 0 0
cluster11 0 0 0 0 0 0 0
cluster12 0 0 0 0 0 0 0
cluster13 0 0 0 0 0,5 0 0
cluster14 0 0 0 0 0 0 0

max 0,1 0,4 0,875 0,5 0,75 0,25 0,177852

SD 0,8 0,6 1 0,666667 1 0,75 0,288591

We can observe that in this case, the size of groups formed by the k-means
method is very heterogeneous. Indeed, on 14 groups 12 contain less than 10
elements and two groups (3 and 4) contain respectively 298 and 241 genes.
This explains mainly the distribution of non-zero values in the table wich are
grouped in groups 3 and 4 and is due to the low variability in the expression
of genes in this experiment. Given the size of these two groups, their chances
to contain specific genes are not negligible and results in relatively high recall
values. However, recall obtained with semantic distillation is higher for all
biological samples from experience. Regarding precision, large groups 3 and
4 here contributes to a sharp decline in the accuracy of predicitions for those
groups. Those with high precision contain, in general, a small number of genes.
As for recall values, we can see that the precision values for our method are
higher for all samples than values for k-means method.

8.3.3 Fuzzy clustering

We present here the comparison with fuzzy clustering algorithm. The method
used here is detailed in [37]. Tables 8.12 and 8.13 respectively measure of recall
and precision. The size of groups formed here is more homogeneous than pre-
viously. The recall values are generally better for semantic distillation (except
for samples f13, f23, f42, f43 and f45). Precision values are also generally better
for the semantic distillation (except for samples f13, f23, f42, f43 and f45). As
for comparison with the agglomerative hierarchical clustering, groups for which
semantic distillation presents a higher recall are also generally more accurate.
We, therefore, for these groups, jointly improved the recall and precision.
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Table 8.12: Comparative analysis for recall between fuzzy clustering algorithm
and semantic distillation (SD)

f11 f12 f13 f21 f22 f23 f31 cluster size

cluster1 0 0,033333 0,142857 0 0 0 0,285714 25
cluster2 0 0 0 0 0 0 0 70
cluster3 0,041667 0 0,040816 0,583333 0,535714 0,138889 0 38
cluster4 0 0,033333 0 0,041667 0 0 0,028571 25
cluster5 0 0 0 0 0 0,027778 0 41
cluster6 0,083333 0,233333 0,102041 0 0 0 0,142857 42
cluster7 0,041667 0 0,020408 0,041667 0,071429 0 0 29
cluster8 0,041667 0 0 0,166667 0,214286 0,138889 0,028571 30
cluster9 0 0 0 0 0,035714 0 0 53
cluster10 0,25 0,2 0,122449 0 0 0 0 30
cluster11 0,541667 0,433333 0,530612 0,041667 0,035714 0 0 57
cluster12 0 0 0 0 0 0 0,485714 64
cluster13 0 0 0,020408 0 0 0 0 63
cluster14 0 0 0 0,125 0,071429 0,666667 0 36

max 0,541667 0,433333 0,530612 0,583333 0,535714 0,666667 0,485714

SD 1 0,833333 0,306122 0,791667 0,607143 0,583333 0,914286

f32 f33 f41 f42 f43 f44 f45

cluster1 0,090909 0,090909 0 0 0 0 0
cluster2 0 0,030303 0 0 0 0,219512 0,578431
cluster3 0 0 0 0 0 0 0
cluster4 0,030303 0,030303 0 0,018868 0,134328 0,04878 0,068627
cluster5 0 0 0,235294 0,075472 0 0,170732 0,156863
cluster6 0,121212 0,030303 0 0 0 0,219512 0,078431
cluster7 0,030303 0,060606 0,392157 0 0 0 0
cluster8 0,060606 0 0 0 0 0,146341 0,04902
cluster9 0 0 0,215686 0,735849 0 0,02439 0
cluster10 0 0 0,058824 0 0 0,097561 0,04902
cluster11 0 0 0 0 0,014925 0,02439 0
cluster12 0,636364 0,666667 0,019608 0,037736 0 0,02439 0
cluster13 0,030303 0 0,019608 0,075472 0,80597 0,02439 0
cluster14 0 0,060606 0,019608 0,018868 0,029851 0 0

max 0,636364 0,666667 0,392157 0,735849 0,80597 0,219512 0,578431

SD 0,848485 0,818182 0,411765 0,283019 0,522388 0,365854 0,27451

Table 8.13: Comparative analysis for precision between fuzzy clustering algo-
rithm and semantic distillation (SD)

f11 f12 f13 f21 f22 f23 f31

cluster1 0 0,04 0,28 0 0 0 0,4
cluster2 0 0 0 0 0 0 0
cluster3 0,026316 0 0,052632 0,368421 0,394737 0,131579 0
cluster4 0 0,04 0 0,04 0 0 0,04
cluster5 0 0 0 0 0 0,02439 0
cluster6 0,047619 0,166667 0,119048 0 0 0 0,119048
cluster7 0,034483 0 0,034483 0,034483 0,068966 0 0
cluster8 0,033333 0 0 0,133333 0,2 0,166667 0,033333
cluster9 0 0 0 0 0,018868 0 0
cluster10 0,2 0,2 0,2 0 0 0 0
cluster11 0,22807 0,22807 0,45614 0,017544 0,017544 0 0
cluster12 0 0 0 0 0 0 0,265625
cluster13 0 0 0,015873 0 0 0 0
cluster14 0 0 0 0,083333 0,055556 0,666667 0

max 0,22807 0,22807 0,45614 0,368421 0,394737 0,666667 0,4

SD 0,578947 0,438596 0,263158 0,5 0,447368 0,583333 0,5

f32 f33 f41 f42 f43 f44 f45

cluster1 0,12 0,12 0 0 0 0 0
cluster2 0 0,014286 0 0 0 0,128571 0,842857
cluster3 0 0 0 0 0 0 0
cluster4 0,04 0,04 0 0,04 0,36 0,08 0,28
cluster5 0 0 0,292683 0,097561 0 0,170732 0,390244
cluster6 0,095238 0,02381 0 0 0 0,214286 0,190476
cluster7 0,034483 0,068966 0,689655 0 0 0 0
cluster8 0,066667 0 0 0 0 0,2 0,166667
cluster9 0 0 0,207547 0,735849 0 0,018868 0
cluster10 0 0 0,1 0 0 0,133333 0,166667
cluster11 0 0 0 0 0,017544 0,017544 0
cluster12 0,328125 0,34375 0,015625 0,03125 0 0,015625 0
cluster13 0,015873 0 0,015873 0,063492 0,857143 0,015873 0
cluster14 0 0,055556 0,027778 0,027778 0,055556 0 0

max 0,328125 0,34375 0,689655 0,735849 0,857143 0,214286 0,842857

SD 0,4375 0,421875 0,724138 0,471698 0,555556 0,357143 0,4
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Figure 8.1: Principal components analysis of fibrosis dataset.

8.3.4 Principal component analysis

We also sought to compare our approach to the principal components analysis,
but the low variability of the dataset does not allow this analysis to separate
data into 14 distinct groups. We present in figure 8.1 a representation based on
the two principal components of the dataset, we can observe the small number of
genes that differs from the compact group, explaining the difficulty of separating
the data into 14 groups.

8.3.5 Conclusion

It seems obvious, with the previous analysis, that semantic distillation does not
characterise the same information as traditional methods of data clustering. As
we have mentioned several times during this study, our method provides the user
with an ordered list of specific genes for every biological sample while standard
approaches presented here characterize groups of genes with similar expression
profiles. This explains the difficulty to make a clear comparison of results.

However, those measurements allow us to get a glimpse of the quality of
the results obtained with our method. The latter, although disadvantaged by
comparison method (loss of the concept of rank and size of groups imposed)
performs equally well (in the worst case) or largely outperforms the traditional
methods.
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Chapitre 9

Conclusion et perspectives

Cette étude porte sur l’extraction d’information appliquée au cadre de l’ana-
lyse de résultats expérimentaux de puces à ADN. Les puces à ADN permettent
de mesurer l’activité des gènes (au travers du taux d’ARN messager) d’une cel-
lule à un instant donné. Ces mesures fournissent des données sous forme de
matrices :

X = (xab)a∈A,b∈B

de taille |A| × |B| où xab représente l’expression du gène b dans l’échantillon
biologique a. Une étude de cette représentation des données est effectuée dans
le chapitre 3.

Ce type d’expérience est dit à « haut débit » en raison du volume de don-
nées qu’elles génèrent excluant ainsi une interprétation « humaine » des résul-
tats. Dans ce but, de nombreuses approches (mathématiques, statistiques, infor-
matiques) ont été développées, celles-ci pouvant être classées en deux grandes
familles : les méthodes de classification supervisées et non supervisées. Les pre-
mières requièrent l’apport de connaissances a priori afin d’être effectives. Mal-
heureusement, l’état actuel des connaissances ainsi que la variabilité des expé-
riences de puces ne permet pas toujours leur application.

Il peut donc être avantageux de pouvoir analyser des données sans aucune
connaissance a priori du système. C’est dans ce cadre que nous avons situé
le travail de cette thèse. Les fondements des approches de classification non
supervisées sont détaillées dans les chapitres 4 et 5 présentant respectivement
les méthodes ensemblistes et les méthodes spectrales de regroupement de don-
nées. Ces approches de regroupement (ou clustering) repartissent généralement
l’ensemble des gènes en groupes distincts en fonction de leurs similitudes d’ex-
pression. Ce type d’approche permet principalement, par rapprochement avec
des gènes connus, d’inférer un rôle à un nouveau gène rendant inévitable l’intro-
duction de connaissance. De plus, ces méthodes affectent généralement un gène
à un seul et unique groupe ne nous renseignant que peu sur l’implication d’un
gène au sein du système.

L’approche dévellopée ici s’avère être profondémment différente, elle repose
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sur trois points fondamentaux. Tout d’abord, en l’absence totale de connais-
sance a priori sur le système, il est nécessaire de pouvoir caractériser de ma-
nière précise chacun de ses « états » (par exemple, en mettant en évidence des
signatures d’expression pour chacun des échantillons). De la même manière, le
rôle de chaque objet (gènes) au sein du système doit être clairement défini (en
quantifiant la participation de chaque gène au phénotype de l’échantillon). Le
dernier point, spécifique à la thématique des puces à ADN, repose sur la fonc-
tion et la régulation des gènes : ceux-ci ne sont en général pas spécifiques d’un
seul échantillon biologique. Ils interviennent dans plusieurs contextes cellulaires
avec des niveaux d’expression différents et en collaboration avec d’autres gènes.

Ces trois points ont conduit à la conception d’une nouvelle approche appelée
« distillation sémantique ». Cette méthode fournit à l’utilisateur une liste ordon-
née des gènes par spécificité pour chaque échantillon biologique de l’expérience,
décrivant chaque contexte cellulaire ainsi que la participation de chaque gène
dans ces contextes. L’originalité de cette approche (détaillé dans le chapitre 7)
réside dans son formalisme probabiliste issu de la mécanique quantique decrit
dans le chapitre 6 et surtout dans la fonction d’appartenance floue (chapitre
7) permettant d’attribuer à chaque gène une probabilité d’appartenance à un
échantillon biologique.

La distillation sémantique a, tout d’abord, été mise à l’épreuve sur un jeu
de données de mesures dites « tissus-spécifiques » (partie 8.1) permettant ainsi
de valider notre approche en caractérisant les gènes spécifiques à chaque tissu
de l’expérience. Dans un second temps, nous avons distillé un jeu de données
cliniques, composé de mesure d’activité de gènes chez des patients souffrant de
fibroses hépatiques à divers stades (partie 8.2). Cette étude nous a permis de
caractériser des signatures dans les voies métaboliques ainsi que les processus
biologiques associés aux gènes spécifiques de chaque stade fibrotique. Les ré-
sultats de la distillation sémantique ont été comparés à ceux obtenus avec des
approches plus traditionnelles et permis de montrer (dans la limite de la com-
paraison effectuée) que notre méthode égale (dans le pire des cas) ou surpasse
les approches classiques (partie 8.3).

Bien que la distillation sémantique semble être une méthode efficace pour
l’extraction d’information, elle présente pour l’instant un certain nombre de limi-
tations (celle-ci sont détaillées dans la partie 8.1). Tout d’abord, la réduction de
l’espace des concepts à chaque itération de la méthode peut avoir un impact sur
la qualité des résultats lorsque le nombre d’échantillon biologique devient faible.
Une solution pour contourner ce problème pourrait être un retour pondéré de
l’information dans le système. Deuxièmement, nous avons présenté dans cette
thèse le cas simple de la représentation unidimensionelle du graphe pondéré. En
fait, celle-ci est potentiellement la moins robuste des représentations de faible
dimension. Une exploration des représentations de dimension supérieure est en-
tamée avec des résultats préliminaires prometteurs. Une troisième limitation est
que le nombre de gènes doit être (très) supérieur au nombre d’échantillons bio-
logiques (ce qui représente la majorité des cas d’expériences de puces) et non
l’inverse. Ensuite, la complexité de notre algorithme ne permet pas l’analyse de
très grands jeux de données (puces pangénomiques par exemple) sur des ordi-
nateurs de bureau classiques. Par exemple, l’analyse du jeu de données GSE803
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nécessite 600 Mo de mémoire vive et environ 36 heures de temps CPU. Pour
finir, comme pour toutes les approches d’analyse de données, une réponse pré-
cise à une question biologique nécessite une connaissance et une comprehension
des grands principes de la méthode, un investissement minimum est donc requis
de la part de l’utilisateur (un package R est en cours de développement afin de
faciliter l’accès à la méthode).

L’état actuel de nos travaux laisse entrevoir de nombreuses perspectives
d’utilisation de la méthode : la plus évidente, au regard des expériences me-
nées dans ce travail, est la détection de signatures dans l’expression des gènes
permettant la caractérisation de pathologies (comme les fibroses par exemple)
et la détermination de gènes candidats pour des recherches approfondies, de
manière générale servir d’outil d’aide à la décision. Une autre utilisation, moins
directe, intervient dans la cadre de la reconstruction de réseaux de régulation
nécessitant la résolution de diverses problématiques notamment l’identification
des gènes impliqués dans la réponse d’un organisme à un stimulus particulier.
Enfin, de manière générale, tous les jeux de données présentant une structure
similaire aux résultats de puces peuvent être analysés avec cette méthode (lin-
guistique, web-semantique, analyse d’images,. . . ).
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Appendix A

Supplemental figures for

GSE803 dataset analysis

Supplemental figures for measures of O(i) are provided in table A.1 and table
A.2. Supplemental figures for measures of L are provided in table A.3 and table
A.4.
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Table A.1: Supplemental figures for measures of O(i) in the case of GSE803
dataset (part I)

bone marrow liver

heart spleen

lung kidney

skeletal muscle spinal cord
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Table A.2: Supplemental figures for measures of O(i) in the case of GSE803
dataset (part II)

thymus brain

prostate pancreas
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Table A.3: Supplemental figures for measures of L in the case of GSE803 dataset
(part I)

bone marrow liver

heart spleen

lung kidney

skeletal muscle spinal cord
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Table A.4: Supplemental figures for measures of L in the case of GSE803 dataset
(part II)

thymus brain

prostate pancreas
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Appendix B

Supplemental figures for

fibrosis dataset analysis

Supplemental figures for measures of O(i) are provided in table B.1 and table
B.2. Supplemental figures for measures of L are provided in table B.3 and table
B.4.
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Table B.1: Supplemental figures for measures of O(i) in the case of fibrosis
dataset (part I)

F11 F12

F13 F21

F22 F23

F31 F32
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Table B.2: Supplemental figures for measures of O(i) in the case of fibrosis
dataset (part II)

F33 F41

F42 F43

F44 F45
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Table B.3: Supplemental figures for measures of L in the case of fibrosis dataset
(part I)

F11 F12

F13 F21

F22 F23

F31 F32
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Table B.4: Supplemental figures for measures of L in the case of fibrosis dataset
(part II)

F33 F41

F42 F43

F44 F45
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Appendix C

Main routines of semantic

distillation source code

We also provide here source code of the main routines implemented in this
study.
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Résumé

Les progrès des technologies de mesure et le séquençage des génomes, ont permis
l’émergence, dans les années 1990, de techniques de mesure globale de l’expres-
sion génique, les puces à ADN. Ce type d’expérience, dit à « haut débit », en
raison du volume de données qu’elles génèrent nécessitent un traitement automa-
tique pour l’interprétation des résultats. Dans ce but, de nombreuses approches
ont été développées, essentiellement réparties en deux familles : les méthodes de
classification supervisées et non supervisées.

Nous présentons ici la distillation sémantique, une approche de classification
non supervisée originale fondée sur un formalisme inspiré de la mesure physique
en mécanique quantique permettant l’analyse des résultats d’analyse de puces à
ADN. Cette méthode fournit à l’utilisateur une liste de gènes ordonnée par spé-
cificité pour chaque échantillon biologique de l’expérience, décrivant ainsi chaque
contexte cellulaire ainsi que l’influence de chaque gène dans ces contextes. Celle-
ci a été mise à l’épreuve sur deux jeux de données : un jeu « tissus-spécifique »
pour lequel notre méthode a correctement caractérisé les gènes spécifiques de
chaque tissu, et un jeu de données cliniques de patients atteints de fibroses hépa-
tiques à divers stades pour lequel la distillation sémantique a permis de trouver
des signatures dans les voies métaboliques et les processus biologiques associés
aux gènes spécifiques de chaque stade de la maladie.

Abstract

Advances in measurement technology and sequencing of genomes, have led to
the emergence of DNA microarray technology in the 90’s, allowing overall mea-
surement of gene expression. This type of experience is said “high throughput”
because of the volume of data they generate requiring automatic processing for
results interpretation. In this context, many approaches have been developed
and can be divided into two families: supervised and unsupervised classification
methods.

We present here “semantic distillation” a novel unsupervised classification
approach, based on a formalism inspired by the physical measurement in quan-
tum mechanics, for the analysis of results from DNA chips. This method pro-
vides the user with an ordered list of specific genes for each biological sample
of the experience, and describing each cellular context and the influence of each
gene in these contexts. Semantic distillation was tested on two data sets: a
“tissue-specific” set for which our method has correctly characterised specific
genes for each tissue, and clinical data sets of patients with liver fibrosis at vari-
ous stages for which semantic distillation helped to find signatures in metabolic
pathways and biological processes associated with specific genes of each stage
of the disease.
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