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General introduction 
 

Ordering in alloys has been extensively studied for many years, and especially for 

materials which are of great technological importance. Numerous experimental and theoretical 

investigations have been performed in order to understand the structural ordering and the 

underlying processes. For magnetic alloys, atomic ordering is accompanied by a magnetic 

ordering and the interplay between these two kinds of ordering has to be investigated. Indeed, the 

magnetic properties are sensitive to the heat treatment and, therefore, to the structure changes. 

Also, magnetic annealing can induce directional atomic ordering and influence the structure of 

the alloy. Hence, the variety of physical properties which appear as a consequence of the mutual 

influence of the two types of order leads to the extensive use of these alloys in the industrial 

applications and, thus, favors both theoretical and experimental investigations. From a 

theoretical point of view, the modeling of such alloys is more complicated and quite a few 

investigations have been performed. However, in principle, the thermodynamic description can 

be used for the prediction of phase diagrams, i.e. the analysis of phase transitions (order, 

temperatures) and domains of coexistence of the different phases. The ageing processes can be 

studied by means of kinetic investigations. In particular, such studies allow to investigate the 

precipitation and phase separation processes, the shape and volume fraction of the precipitates, 

etc. The latter is very important for the industrial applications, for example for the material 

development, due to the precipitation hardening mechanism.  

One of the striking examples of the magnetic alloys are the Ni-Fe alloys which have been 

studied for approximately 100 years but still are interesting from the theoretical point of view. 

These alloys exhibit different physical properties depending on the composition. The Fe-rich 

alloys present a phenomenon of anomalous thermal expansion which is essential, for example, 

for the precision instruments. The Ni-rich alloys have attractive magnetic properties which are 

essential for the signal transmitting and recording devices. In the presented study we have 

investigated the Ni-rich alloys, and, in particular, Permalloys. The phase diagram of these alloys 

predicts a stable Ni3Fe (L12-type) phase over wide temperature and concentration ranges.  

Ni1-xFex alloys (x is the Fe concentration) are ferromagnetics and exhibit a 2nd order 

paramagnetic↔ferromagnetic transition. Then, at lower temperature these alloys undergo a 1st 

order transition from the disordered fcc phase to the ordered L12 structure. The state of order of 

the alloy influences the magnetic properties and vice versa. The assumption of an 

antiferromagnetic Fe-Fe coupling between nearest neighbors [58-62] helps to understand the 

influence of magnetism on the chemical ordering in a wide concentration range. This hypothesis 
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has been widely used for the alloy description [40,44-46,50-51,64, etc.]. Therefore, as the alloy 

orders ferromagnetically, the number of nearest Fe-Fe pairs should be reduced which induces 

atomic rearrangements and stabilizes the L12 ordered structure. The precipitation of the ordered 

phase takes place at relatively low temperatures (<780K) which makes ordering a slow process 

due to the slowing down of diffusion. In most experiments the equilibrium ordered state has not 

been achieved. During the annealing and ageing of the materials, the formation of spherical 

precipitates [130] which grew till the domain sizes with lowering the temperature was observed. 

The combined action of the magnetic and chemical interactions should be considered during the 

investigation of these alloys. Thus, the goal of this work was to investigate mutual influence of 

magnetic and atomic orderings and, more precisely, to understand their effect on the 

thermodynamic properties (phase transition) and on the kinetics of the precipitation in the 

system. 

When experimental investigation of the alloys is complicated by the slow diffusion 

processes and the examination of the low temperature ordered phases becomes unreachable, the 

theoretical modeling becomes a very useful tool. Moreover, the power of today’s 

supercomputers allows sophisticated modeling. The simulations allow modeling of the 

comparatively large systems until the late stages of evolution which cannot be realized in the real 

experiments. Also, the great advantage of the simulations is the possibility to vary the parameters 

of the model (mainly the interaction parameters) and, consequently to study the influence of the 

different energy terms on considered phenomena. Then, a comparison with the experimental data 

permits to obtain a magnitude order of the different energy terms. Moreover, when the 

macroscopic experimental behavior is reproduced (for example, thermal variation of a 

thermodynamic quantity), numerical simulations enable to propose a microscopic scenario which 

is sometimes very difficult (or too expensive) to observe by experiments. In our study we have 

used Monte Carlo and mean-field methods for the thermodynamic investigation and construction 

of the phase diagram of the Ni-rich Ni-Fe alloys. The kinetic behavior was studied only using 

mean-field approach. The thermodynamic properties and the morphology of simulated 

microstructures were compared to the experimental data when possible. The main advantage of 

the Monte Carlo method is taking into account the short range correlations, i.e. the local 

fluctuations, unlike the mean field technique. On the other hand, it is large time consuming, that 

is why we have chosen to investigate the precipitation kinetics using the mean field method 

combined with the Önsager microscopic kinetic equation. 

The presented thesis consists of 4 chapters. In the first chapter, we present a description 

of the Ni-Fe alloys and Permalloys, in particular. The ordering temperatures and the structural 

changes upon ordering alloys are recalled. In this chapter we also discuss the magnetic properties 
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of Ni-Fe alloys such as: magnetic moments of Ni and Fe and their alloys, magnetization and 

Curie temperatures. The main features of Permalloys which are important for the technical 

applications (permeability, magnetostriction and magnetic anisotropy) are shortly reviewed at the 

end of the chapter. 

The 2nd chapter is devoted to the Monte Carlo simulations. The theoretical basis is briefly 

presented as well as the algorithm which has been used. The total Hamiltonian which includes 

both chemical and magnetic interactions and the method of calculation of thermodynamic 

quantities (internal energy, specific heat, magnetization, zero-field magnetic susceptibility and 

chemical order parameters) are given. 

In the 3rd chapter a short review of the theory of ordering phenomenon is presented. In the 

framework of the mean-field approach, the Hamiltonian and the Helmholtz free energy are 

formulated. Thermodynamic mean-field model is followed by the discussion of the alloy 

kinetics. The nucleation, growth and coarsening regimes are discussed and the Lifshitz-Slyozov-

Wagner (LSW) theory is reminded. For the calculation of the kinetic path in Ni-Fe system, the 

formalism of the Önsager-type microdiffusion equation is proposed. 

The 4th chapter is devoted to the description of the obtained results – Monte Carlo and 

mean-field simulations. The Monte Carlo simulation results consist of the investigation of the 

Ni1-xFex alloy near the stoichiometric Permalloy composition. The simulations were performed 

on stoichiometric (75% at. Ni) and non-stoichiometric alloys without external magnetic field. 

The results were compared with the experimental phase diagram. Also, the effect of the 

interaction parameters and the influence of the external magnetic field on the phase transitions 

have been investigated. Then, the mean-field description starts with the extensive description of 

the formulae and numerical results for the modeled ordering alloy with 2 magnetic atoms. The 

thermodynamic properties have been investigated and compared to the Monte-Carlo results. 

From the Helmholtz free energy curves, the phase coexistence intervals have been found and 

used for the following kinetic simulations. The coarsening of the ordered L12 phase and its 

characteristics have been investigated and compared with the predictions of the LSW theory. For 

both Monte Carlo and mean-field simulations, the obtained results have been compared with the 

experimental data when possible (the order of the transition, the temperature of the magnetic and 

chemical order transitions, the obtained crystal structure and morphology of the precipitated 

phases). For both types of simulations the magnetic and atomic ordering is considered and the 

importance of their combined action is discussed.  

At the end of the manuscript the conclusions and perspectives are given. 

 



 - 10 - 



 - 11 - 

 

 

 

 

 

 

 

 
 

Chapter 1 

Ni-Fe alloys 



 - 12 - 

 
 



 - 13 - 

1.1. Introduction 

Ni-Fe alloys are widely used for industrial applications due to their properties. Anomalies 

of abnormal thermal expansion coefficient in Invar alloys (Fe3Ni) have lead to their use in 

metrology and geodesy, in precision metallurgy, microelectronics, television, etc. El’Invars 

(FeNi) are used for the applications where high elasticity is important (for example in 

chronometry), they are also used for the power transmission devices. Permalloys (FeNi3) are soft 

magnetic materials and are widely used in the electronics and engineering (for transformers 

transmitting the weak signals of communication apparatus, for reading heads (in computers), 

etc.). Properties of these alloys can be improved by addition of other elements (Cr, Mo, Al, C, 

etc) [2,9-11]. 

The experimentally obtained phase diagram of Ni-Fe alloys (Fig. 1.1) shows regions 

where different alloys are formed. Due to the slow diffusion processes in these alloys the 

equilibrium is reached very slowly and, therefore, it is hard to obtain experimentally the low 

temperature part of the diagram. 

 
Figure 1.1. Experimental phase diagram [1] 

 

From this diagram it follows that Permalloy alloys (around 75% at. Ni) form a stable 

structure over a wide temperature and concentration ranges. When the temperature, T, is 

decreased, the alloy exhibits two sequential phase transitions (magnetic and structural, 
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respectively). To understand this behavior of Ni-Fe system (and Permalloy, in particular) it is 

necessary at the beginning to consider in details the constituent elements and their properties. 

1.2. Pure Ni and Fe 

Ni and Fe are closely situated in the Mendeleev periodic table of elements and have 

almost identical electronic structure. Both elements are ferromagnetic, and their alloys also 

exhibit ferromagnetic behavior. Some of the properties of the Ni and Fe are presented in 

Table 1.1 [2-3].  

 Fe Ni 

Electronic structure [Ar]3d64s2 [Ar]3d84s2 

Atomic number 26 28 

Atom radius (Å) 1.27 1.25 

Crystalline lattice structure 
α, β, δ – bcc (A2) 

γ – fcc (A1) 
γ - fcc (A1) 

Lattice parameter (Å) 

for γ – fcc phase 

3.6468  

(at 900 °C) 

3.5243 

(at 20 °C) 

Self diffusion coefficient (m2/s) 

for γ – fcc phase 
2.19×10-15 1.749×10-21 

Fusion point (°C, K)  1535, 1808 1453, 1726 

Thermal dilatation at 20 °C (10-6/°C) 

for γ - phase 
12 13 

Magnetic state 
Ferromagnetic (αFe) ; 

Antiferromagnetic (γFe) 
Ferromagnetic 

Curie temperature (°C, K) (bcc αFe) 770, 1043 350, 623 

Neel temperature (°C, K) (fcc γFe) -203, 70 — 

Magnetic moment per atom (μB) 2.2 0.6 

 

Table 1.1. Pure Fe and Ni elements and their properties 

 

Both Fe and Ni belong to the group of 3d-transition elements, therefore pure elements 

and their alloys also exhibit properties of this group, which is characterized by the incomplete 3d 

and complete 4s electronic shells. The overlap of the outer electronic shells and their 

rearrangement leads to the practically full delocalization of outer electrons [5-8]. The analysis of 

the electronic structure of d-metals indicates an enhanced density of electronic states near the 

Fermi level (Fig. 1.2).  
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Figure 1.2. Illustration of the contribution of d- and s- bands 

                     to the density of states of transition metals  

 

Various properties of transition metals appear due to their electronic structure (strong 

cohesion, high electro-resistivity, appearance of magnetism and different chemical properties). 

The magnetic order appears due to the dominance of exchange coupling which is stipulated by 

the active influence of the conduction electrons upon the system of uncompensated magnetic 

moments of former d-electrons [5].  

 

1.3. Fe-Ni alloys 

Fe alloys could be divided in 3 groups: steels, cast iron and precision materials (including 

soft-magnetic and strong-magnetic materials). The properties of the materials are defined by the 

structure and phase composition, which are subject to the type of treatment – deformation, 

thermal treatment, etc. 

Ni alloys are also of great interest from the technological and industrial point of view. 

They present valuable anti-corrosion, mechanical, magnetic and electric properties. When Ni is 

alloyed with Fe, Cr, Cu, Mo, it forms a substitutional solid solution with a fcc lattice over a wide 

concentration range, which gives them high plasticity. The hardening of such alloys is originated 

from the precipitation.  

 

1.3.1. Close review of the phase diagram. Permalloy alloys 

As seen from the phase diagram, at low temperatures the following structures are formed 

from a disordered solid solution: Ni3Fe, NiFe, NiFe3. The existence of stable (or metastable) 

NiFe and NiFe3 was proposed after the study of meteorites and diffraction experiments on Invar 

alloys. Due to the similarity of the electronic structure and lattice parameters of Fe and Ni, it is 

observed [2-3,9-11]: 

 high fusion temperatures and small solidification intervals; 
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 wide concentration region with fcc (γ) structure, which transforms into a bcc (α) structure 

starting from 27% at. Ni (when the concentration of electrons per atom does not allow the 

existence of Ni compact structure). 

 

The fcc structure in the whole region where Ni > 27% presents great advantages: 

 possibility of rolling till small thickness (d ~ 10 µm); 

 fragility does not appear at low temperatures (the Invar effect); 

 possibility of thermal treatment for all temperatures without changing the phase; such 

treatments are useful for developing recrystallization structures and special magnetic 

properties. 

 

For the whole region with Ni > 27% the fcc phase is stable and at low temperature the 

ferromagnetic and chemical order is observed.  

Ni3Fe alloys are of great interest due to their structural and magnetic properties. As was 

previously mentioned, they belong to the soft-magnetic materials and are widely used in the 

industrial applications. Soft magnetic materials are easily magnetized till saturation by weak 

fields; they exhibit narrow hysteresis loops and low coercive fields, small magnetic losses, high 

initial and maximum magnetic permeabilities. Permalloy alloys have very small 

magnetocrystalline anisotropy and magnetostriction. 

To reach better magnetic properties, the soft magnetic materials (Permalloys, in 

particular) should undergo thermal treatments which increase their chemical purity and change 

their long-range and short-range atomic order. Alloying Ni3Fe with Mo, Cr, Cu, Co, Mn, Si also 

improves its properties [3]. For example, Co is added to Permalloys to increase their 

magnetization and improve their susceptibility to magnetic field treatment. Mo and Cu are added 

to improve soft magnetic properties and, in particular, Supermalloy (Ni79Fe16Mo5) has the 

highest permeability among the other soft magnetic materials. 

 

1.3.2. Structural properties 

It was mentioned above that in fcc Ni-Fe alloys the order-disorder transformation is 

observed. As a result, from a disordered fcc solid solution (А1-type), the substitutional 

superstructures Cu3Au (L12-type) and CuAuI (L10-type) are formed (Fig. 1.1 and Fig. 1.3). 
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(a) (b) 

Figure 1.3. Distribution of Ni and Fe atoms on the sites of a fcc lattice for perfect 

                    atomic LRO substitutional superstructures: 

(a) Ni3Fe and Fe3Ni (Cu3Au-L12-type) (●,○ – Fe(Ni) and Ni(Fe) atoms) 

(b) NiFe (CuAuI–L10-type) (●,○ – Fe and Ni atoms) 

 

From the phase diagram it is seen that the order-disorder transformation from fcc to L12 

structure takes place over a wide composition range, from 50 % to 80 % at. Ni. The decrease of 

the lattice parameter of the 75 % at. Ni alloy which occurs on the formation of the ordered (L12 - 

type) structure is about 32 10 Å [12]. The formation of order is extremely sluggish and takes 

place in the temperature range 767K to 773K, so highly disordered condition can be retained, for 

example, at 300K by rapidly cooling from above 773K. The ordered state of the alloy for a wide 

concentration range may be obtained by annealing for some time at a steady temperature below 

the temperature of order-disorder transition, TK, or by cooling at a fixed rate (sufficiently small) 

(for example from just above to well below TK). The alloy exhibits thermal ‘hysteresis’ as the 

order-disorder transition in Ni3Fe is of 1st order type. This kinetic behavior makes Ni3Fe alloy 

attractive for measuring physical properties as a function of temperature for both ordered and 

various metastable disordered conditions, and to compare the effects of configurational order on 

the magnetic properties [13].  

Experimental evidence of ordering and formation of the ordered structure can be obtained 

by means of diffraction techniques (X-ray or thermal neutrons [15-21]), electrical resistivity and 

specific heat measurements [12-14]. Also, ordering can be exhibited during the magnetic 

measurements, such as Mossbauer spectroscopy [22-26]. 

Diffraction experiments are often used for the investigation of the short-range order in the 

alloys (above the order-disorder transition). A small change of the lattice parameter upon 

ordering and near equality of X-ray and neutron scattering factors for Ni and Fe should be taken 

into account during these experiments.  
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 TK (K) 

Shull&Wilkinson [21] 763 

Cranshaw [25] 776 

Orehotsky&Souza&Pinheiro [14] 820 

Koolie&Brooks [13] 773 

Wakelin&Yates [12] 771 

Ferjani&Bley&Calvayrac [17] 
disorder:   776 

    order:    785 

 

Table 1.2. Experimentally obtained order-disorder transition temperatures, TK, for Ni3Fe 

 

The order-disorder transition temperature can be defined using resistivity curves, it is the 

temperature at which the resistivity curve for slowly cooled alloy begins to diverge from the 

rapidly cooled curve (Fig. 1.4a). In the vicinity of 75 % at. Ni there is a maximum decrease in 

the resistivity (Fig. 1.4b). 

 
(a) 

 
(b) 

Figure 1.4. Thermal variation of the resistivity [12]: 

                    (a) Ni3Fe 

                    (b) Alloys containing 70% and 80 % at. Ni 

 

Calorimetric measurements ensure the influence of the configurational order on the 

magnetic properties and, in particular, the Curie temperature, TC, (Fig. 1.5). It is seen that if the 

system is trapped in the metastable state (which could happen if the heating rate was not slow 

enough, SBW = 0.60; 0.66, SBW – is the Bragg-Williams parameter), this would affect the TC 
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value, so the influence of the heating rate on TC is indirect. The higher the state of order of the 

system, the higher the Curie temperature. 

 
(a) 

 
(b) 

Figure 1.5. Heat capacity curves for states having different Bragg-Williams  

                    long-range order parameter S [13]: 

                    (a) SBW = 0.60 (TC = 890K) and SBW = 0.66 (TC = 904K) 

                    (b) SBW = 0.96 (TC = 940K) 

 

1.3.3. Magnetic properties 

1.3.3.1. Magnetic moment distribution and spontaneous magnetization 

The concentration dependence of the average magnetic moment per atom can be written 

in the following form: 

( ) (1 )Fe Fe Fe Ni Ni Fe Fe Fe Nic c c c c         ,   (1.1) 

where 
N

Nc Fe
Fe   is the relative Fe atomic concentration ( )Fe NiN N N  , and Fe , Ni  are the 

atomic magnetic moments of Fe and Ni, respectively. 

Fig. 1.6 shows that, from 50 to 100% at. Ni, the value of   varies almost linearly with 

the alloy composition which means that Fe  and Ni  do not depend on Fec . Consequently, the 

atomic magnetic moments Fe  and Ni , can be taken as constant and chosen from the 

experimentally observed values [54-57].  
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Figure 1.6. Variation of the magnetic moment per atom  

                     for bcc (●) and fcc (○) Ni-Fe alloys [57] 

 

From Fig. 1.6 it is also seen that with increasing Fe content (while approaching Invar 

region) the average magnetic moment first starts to decline from the linearity and then decreases 

(for γ-fcc phase). This phenomenon has a fundamental meaning for the interpretation of the 

physical properties of Invar alloys and is connected to the dependence of the atomic magnetic 

moment of Fe, Fe , on the local environment which changes with concentration. Several 

approaches were proposed to explain the Invar phenomenon (2-γ state approach [58], itinerant 

electron model, etc.). One of the explanations of such behavior is the experimental observation 

of antiferromagnetic nearest-neighbor Fe-Fe interactions [59-62], and with increasing Fe content 

antiferromagnetic interactions start to become dominant.  

The plot of reduced spontaneous magnetization is presented in Fig. 1.7. 

 
Figure 1.7. Reduced magnetization versus reduced temperature [57] 
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Fig. 1.7 shows that the law of corresponding states is not obeyed, i.e. the behavior of 

magnetization for different Fe-content does not follow the same universal curve when 

approaching the transition point TC [63]. The magnetization at given temperature increases with 

the increase of Ni concentration. 

 Fe  (μB) Ni  (μB) 

Wakelin&Yates [12] 2.62 0.6 

Cable&Wallan (for ordered sample) [53] 

(neutron diffuse-scattering experiments) 

3.10 0.68 

Shull&Wilkinson [21] 

(neutron diffraction experiments) 

2.97 (±0.15) 0.62 (±0.05) 

Low&Collins [55] 

(neutron-diffuse-scattering experiments) 

2.8 (±0.2) 0.6 

Wohlfarth [4] 2.8 0.616 

 

Table 1.3.  Experimentally obtained atomic magnetic moments for Ni3Fe 

 

1.3.3.2. Curie temperature 

The Curie temperature, TC, is the paramagnetic↔ferromagnetic transition temperature 

(this transition is known to be 2nd order). It is hard to precise TC due to the “smearing” of the 

transition and the transition temperature is obtained by extrapolating the MS(T) (spontaneous 

magnetization) curve till the intersection with the temperature axis. It can also be located using 

heat capacity and electrical resistivity measurements which exhibit anomalies in the vicinity of 

the Curie temperature. 

The concentration dependence of the Curie temperature in γ-fcc Fe-Ni alloys exhibits a 

maximum in the vicinity of 30% at. Fe (Fig. 1.8). All the experimental data are in good 

agreement for cFe ≤ 60%. Near the Invar region there are some discrepancies in the experimental 

data for TC (it is supposed to decrease down to 0K as cFe increases). In this region the definition 

of TC is complicated from one side by the smeared paramagnetic↔ferromagnetic transition and, 

from the other side, by the structural γ↔α transformation, which does not allow reaching cFe at 

which Curie temperature should become zero. 
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Figure 1.8. Curie temperature versus Fe-concentration [64] 

                     × – [68]; ● – [57]; □ – [66]; ∆ - [67]; 

                    ▲ – [65]; ○ – [64] 

 

The values of TC are influenced by the state of order of the alloy as was shown in Fig. 1.5 

[13]. TC in the ordered state is approximately 100K [13,64] and about 200K higher than in the 

disordered state for Ni3Fe and NiFe, respectively. Experimental values of TC for Ni3Fe are given 

in Table 1.4. 

TC (K)  

Ordered phase (L12) Disordered phase (γ) 

Menshikov&Yurchikov [64] 

a) experimental 

b) theoretical 

 

943 

935 

 

840 

830 

Koolie&Brooks [13], experimental 940 871 

Wakelin&Yates [12], experimental 954 871 

Orehotsky&Souza&Pinheiro [14], experimental  860 

Van Deen&Van DerWoude [26], experimental  863±3 

 

Table 1.4. Experimentally obtained Curie temperatures for Ni3Fe 

 

Consequently, from the theoretical point of view it is interesting to study the dependence 

of the Curie temperature on the state of order of the alloys. This question will be developed later 

(in Chapter 4). 
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1.3.3.3. Permeability, Magnetic anisotropy and Magnetostriction in Ni3Fe alloys 

It was mentioned above that the distinctive features of Permalloy alloys are connected to 

their high permeability, magnetic anisotropy constants and magnetostriction, low coercive force 

and rectangular shape of the hysteresis loop [3,9-11,69].  

On the Fig 1.9 the permeability curves have maximum at about 79% at. Ni and are 

markedly influenced by the heat treatment; they are enhanced by the rapid cooling and magnetic 

anneal (which also changes the form of hysteresis loop). Noted permeability maxima lies 

between the compositions with zeros of polycrystalline magnetostriction (K1) and lattice 

anisotropy (λ111). 

 
(a) 

 
(b) 

 
(c) 

Figure 1.9. Ni-concentration dependences of 

[10]: 

                      (a) Maximum permeability 

                      (b) Initial permeability 

                      (c) Hysteresis loop (induction 

                            versus applied field) 

 

Heat treatment also influences the magnetic anisotropy constants which have lower (more 

negative) values for the slowly cooled alloys. In a range of composition near Ni3Fe a deep 

minimum occurs (Fig 1.10a). 
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(a) 

 
(b) 

Figure 1.10.  Ni concentration dependences of [11]: 

                      (a) Anisotropy constant 

                      (b) Magnetostriction 

 

To explain the behavior of the magnetic anisotropy constants in Ni-Fe alloys, in Ref. [11] 

authors proposed 4 types of anisotropy: magnetocrystalline, magnetostrictive, thermomagnetic, 

and slip-induced. Magnetocrystalline anisotropy is present when one of the crystallographic 

directions is magnetically preferred. The presence of elastic stress in a ferromagnetic sample 

results in magnetostrictive anisotropy (in permalloys the magnetostriction constants λ111 and λ100 

are functions mainly of the composition and not sensitive to heat treatment). Thermomagnetic 

anisotropy is obtained by annealing alloys below the Curie temperature TC , the principal 

mechanism is thought to be “directional ordering”, a preferential alignment of atom pair parallel 

to the local magnetization direction. The mechanism, which is called slip-induced directional 

order, is closely related to that, obtained by magnetic annealing. 

Magnetostriction varies with heat treatment in a narrow composition range that was 

observed for anisotropy, namely, from 68 to 81% at. Ni (Fig. 1.10b). The ordered alloys are 

more isotropic than the disordered alloys, and at about 73% at. Ni λ100 and λ111 are almost equal. 

Finally, it is possible to mention that the reduction of anisotropy to zero does not lead to 

high permeabilities unless the magnetostriction also approaches zero. However, disappearance of 

the magnetostriction in the direction of easy magnetization can cause high permeability even 

though the anisotropy is not zero. 
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1.4 Theoretical approaches to the description of the Ni-Fe alloys 

Besides experimental investigations, theoretical studies have been devoted to the Ni-Fe 

alloys. Both Ni- and Fe-rich parts of the phase diagram have been explored. Different 

approaches have been applied to model these alloys. Among others, it is necessary to mention 

numerical simulations (Monte Carlo [40-41,44-46] and cluster variation [47-49] methods), 

mean-field [42-44,50-51] and ab initio [27-39] calculations. 

Monte Carlo simulations have been widely applied to the investigation of the phase 

diagrams of alloys [73-74,98-100] and Ni-Fe alloys in particular [40-41,44-46]. Taylor et al. [44] 

have performed MC simulations for the Ni-rich alloys using Ising Hamiltonian for both chemical 

and magnetic subsystems. Nearest-neighbor magnetic interaction between Fe atoms has been 

considered as antiferromagnetic, the interaction parameters within next nearest neighbors were 

also examined and the obtained results have been compared to the experimental phase diagram 

and magnetization curves [12,57]. Dang et al. [40] have used the same model with only nearest 

neighbor interactions. In this work the influence of the magnetic interactions on the chemical 

order (and order-disorder transition, in particular) has been evidenced from the behavior of the 

internal energy and order parameters (magnetization and chemical order parameters). It should 

be noted that the specific heat and the magnetic susceptibility have not been investigated. Their 

work is restricted to the stoichiometric NiFe, Ni3Fe and NiFe3 alloys only. However, the Ising 

model is not well suitable to model soft magnetic materials because its critical exponents are 

different from those of Ni [4,70-72]. In particular, it overestimates the magnetization just below 

TC in comparison with the classical Heisenberg model. In Ref. [45] Taylor et al. have attempted 

to investigate Ni-Fe alloys by using the Heisenberg model for the spin system. In their study the 

magnetic and chemical interactions are limited to the nearest neighbors. The compositional 

dependence (in the Ni-rich region) of the transition temperatures has been simulated and 

compared to that obtained by the Ising model [44]. It should be mentioned that no thermal 

variation of the thermodynamic quantities are presented and the separate description of the 

magnetic and chemical subsystems has not been performed. Therefore, it is hard to conclude 

about the mutual influence of the two types of order, and in particular, about the effect of the 

magnetic ordering on the chemical one in the framework of the Heisenberg model. In this work it 

has been underlined that the Heisenberg model better reproduces the diffraction data on the 

chemical short-range order. Finally, let us note that in these previously discussed works [40,44-

45] the influence of an external magnetic field has not been studied. 

By means of Monte Carlo method, in particular its linearized inverse version [46], the 

interaction parameters for Ni3Fe alloys were extracted from experimental data and it was also 
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shown that interactions till 4th coordination shell can explain short-range order at given 

temperature. 

Another widely used simulation technique is the cluster variation method [47-49,106-

108]. In Ref. [47] Lawrence and Rossiter have implemented in their simulations the 

concentration dependent interaction parameters and have obtained a coherent phase diagram of 

the Ni-Fe system. The concentration variation of the interaction parameters in Ni-Fe was also 

discussed in [49] where authors have underlined the influence of the interactions in the 3rd and 

4th coordination shells on the transition temperatures. In Ref. [48] the phenomenological 

investigation of Ni-Fe was performed and stability of L10 phase was predicted. In this work the 

cluster variation method was combined with Lennard-Jones type potentials. In spite of their 

effort to describe the phase diagram of the Ni-Fe system, the mutual influence of magnetic and 

chemical orderings has not been well understood. It should be mentioned that in Refs. [106-108] 

the influence of both interactions on the phase diagram was underlined. 

For the investigation of the phase diagram of the alloys the mean-field approximation has 

been also applied. In this approach the description of the ordering phenomena is mainly based on 

the Bragg-Williams approximation [88-90]. This approach has been applied also to the 

description of the ferromagnetic alloys [50-51,53,102-104]. The internal energy term is usually 

evaluated using Ising- and Heisenberg-type Hamiltonians for chemical and magnetic 

interactions, respectively. The formulation of the magnetic entropy term is usually complicated 

[135-136] and was neglected in most of models. In [50-51] the explicit form of the magnetic 

entropy has been presented and the obtained results for Ni-Fe alloy were compared with the 

experimental data and other simulations. In general, the mutual influence of both magnetic and 

chemical subsystems was noticed for ferromagnetic systems in [53,102-104-98], where the 

obtained thermodynamic quantities have justified the importance of both magnetic and chemical 

interactions. Rancourt et al. [42-43] have presented a cluster-method mean field theory for the 

disordered magnetic alloy which has been applied to Ni-Fe alloys in a wide composition region. 

The concentration dependencies of the magnetic moment, Curie temperature and susceptibility 

were calculated in the framework of the given approximation.  

A key point of modeling of the alloys is the choice of the interaction parameters 

(chemical and magnetic) and the value of the magnetic moments. This is usually done by fitting 

the diffusion scattering data, magnetic measurements, etc. In most of models, these parameters 

are considered to be constant [40-42,44-45] and their concentration and  temperature 

dependences are neglected. Indeed, such dependences should be considered. As have been 

shown by ab initio calculations (mainly for Invar alloys), the magnetic behavior of Ni-Fe alloys 

is closely connected to the dependence of the magnetic moments and interactions on the local 
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environment and studied volume [34,36-39]. In particular, it was found that for Fe-rich alloys 

antiferromagnetically aligned moments occur on Fe sites which have no or only one Ni neighbor. 

In [38] the atomic magnetic moments of Fe were defined as: 2.43μB for ferromagnetic 

orientation and (-)1.64μB for antiferromagnetic orientation. The appearance of 

antiferromagnetically aligned magnetic moments of Fe is supposed due to the locally frustrated 

exchange interaction parameters in Fe-Ni alloys [37]. In most of works, the antiferromagnetic 

coupling between nearest neighbor Fe atoms was considered. However, the hypothesis about 

ferromagnetic Fe-Fe interactions has been discussed [61-62] on the basis of some experimental 

observations. It is necessary to mention the works of Staunton et al. [27-28] in which the mean-

field approach was combined with the first principles (spin polarized KKR-CPA) calculations to 

study of the Ni-rich part of the Ni-Fe phase diagram. The authors have remarked that chemical 

ordering in Ni-Fe systems is stipulated by the magnetic interactions. Also, the stability of the 

ordered structures in Ni-Fe alloys was studied in [30,35]. 

From all these investigations it is possible to conclude about the importance of the 

magnetic and chemical interactions in Ni-Fe systems. Due to the complexity of the theoretical 

description the ordering in this system, only qualitative agreement between experiments and 

theoretical results has been obtained. The goal of this thesis is to develop a model, which will 

take into account magnetic and chemical interactions simultaneously, in order to better 

understand the thermodynamic properties and kinetics in Permalloys. 
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Chapter 2 

Model and Monte Carlo simulation technique 
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2.1. Model description 

For the description of Permalloy (namely Ni3Fe) systems, a model, based on the fcc 

lattice was used. For this lattice the coordination numbers for 1st and 2nd neighbors are z1 = 12 

and z2 = 6, respectively. In the disordered state the Fe and Ni atoms are randomly distributed on 

the sites of the fcc lattice. The ordered structure corresponds to the L12-type superstructure 

shown in Fig. 2.1. 

 
Figure 2.1. Distribution of Ni and Fe atoms on the sites of a fcc lattice for 

                          perfect L12-type superstructure (● – Fe atoms, ○ - Ni atoms) 

 

Since the simulations are performed on finite-size lattices, the periodic boundary conditions were 

imposed to eliminate boundary effects and to reduce finite-size effects. Each vertex of the lattice 

is occupied by a Fe or Ni atom and holds a spin of a respective magnitude, sFe or sNi. We have 

considered the classical Heisenberg model in which each spin is described by a 3D vector 

( , , )x y zS S S S


 which can take all directions. The magnetic moment in this case will be defined 

as: 

Bm g S 
 , 

where the Landé factor g is approximately equal to 2, and μB is the Bohr magneton. 

The choice of the 3D Heisenberg model is reinforced by the similarity of its static critical 

exponents with those of pure Ni (α ≈ -0.11, β ≈ 0.36 and γ ≈ 1.39) [4,70-72]. 

 

2.1.1. Heisenberg Hamiltonian 

The Heisenberg Hamiltonian of the system of interacting spins (atomic magnetic 

moments) can be defined in such a form [5-8]: 

 

( ) ( )x x y y z z
magn ij i j ij i j i j i j

ij ij
J S S J S S S S S S       
 

H ,  (2.1) 
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where ijJ  are the “exchange” parameters, ,i jS S
 

 are spin variables of atoms i and j, respectively, 

and the sum is taken over all interacting pairs. The “exchange” parameters Jij are positive or 

negative for ferromagnetic and antiferromagnetic bonds, respectively. 

Including the external field will transform the Hamiltonian to: 

( )magn ij i j B i i
ij i

J S S B g S    
  

H ,    (2.2) 

The second term represents the Zeeman energy which is caused by the external magnetic 

induction B


. 

 

2.1.2. Hamiltonian of the chemical sub-system 

It was previously discussed in Chapter 1, that Ni3Fe system exhibits structural ordering. 

Thus, the total Hamiltonian will include a component which will describe chemical ordering. 

This term can be written in the Ising-type form: 

,
chem ij i j

ij
V   

 

   H      (2.3) 

where 
1, if site  is occupied by an -atom
0, otherwisei

i 



 


 

( ,  ) defines the type of atom, i.e. Fe or Ni and ijV   is the pair-wise chemical interaction 

parameter. 

 

2.1.3. Total Hamiltonian 

In Ni3Fe alloy magnetic order and structural order co-exist and experience mutual 

influence. Consequently, to describe correctly the properties of this alloy both sub-systems (spins 

and atoms) should be considered in the total Hamiltonian (including external magnetic field): 

( )

                                         

total magn chem ij i j i j ij i j
ij ij

B i i i
i

J S S V

B g S

       

 

  



         

 

 



 



H H H

  (2.4) 

 

2.2. Monte Carlo technique 

The Monte Carlo (MC) method can be used in many research areas, such as physical, 

chemical, mathematical, biological, economical problems and so on. A general definition of the 

MC method can be given as follows [73-75]: 
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The MC method is a method to estimate the parameters of a hypothetical population, 

based on a random sequence of numbers to construct a sample of the population, from which 

statistical estimates of the parameters can be obtained. 

The key point of a problem is to define the Hamiltonian (without the kinetic energy term) 

and an appropriate statistical ensemble. Using associated distribution function and the partition 

function we should compute all the observables needed. So, the idea is to sample the main 

contributions to get an estimate for the observable. 

 

2.2.1. Basic assumptions 

The MC method is a stochastic simulation method which concept is based on the theory 

of Markov chain or Markov process. Markov process is the probabilistic analogue to classical 

mechanics. It is characterized by a lack of memory, i.e., the statistical properties of the 

immediate future are determined by the present, regardless of the past. The important property of 

a Markov chain is the existence of an invariant distribution of states. 

Let us consider a sequence of states x0,...,xn,… of a system (this sequence is a sample of 

the phase space), the transition probabilities per unit time, W(x,x′), from one state x of the 

system to a state x′ are required to undergo certain restrictions in order to ensure that the states 

are distributed according to the equilibrium probability P(x): 

 

i) Ergodicity – for all pairs (S,S′) of sets of phase points: there exists xS and x′S′ 

such that W(x,x′) ≠ 0; 

ii) Positivity – for all x, x′: W(x,x′) ≥ 0; 

iii) Conservation – for all x: 
x'

( , ') 1W  x x ; 

iv) For all x: 
'

( , ')P( ') P( )
x

W  x x x x . 

 

The condition for generating a stationary probability distribution during the process is: 

x x

( , ) ( ) ( , ) ( )W P W P
 

   x x x x x x     (2.5) 

Usually, one considers a more restrictive condition which is called the “detailed balance” 

condition: 

( , ')P( ) ( ', )P( ')W Wx x x x x x     (2.6) 
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2.2.2. Monte Carlo method in the canonical ensemble  

2.2.2.1. Metropolis algorithm  

In the canonical ensemble [76-78] we can define the probability distribution at 

temperature T as:  

       
  *

x

exp / exp /
( ) exp /

B B
T

B

k T k T
P

Z T k T
 

 


x x
x

x
H H

H
,  (2.7) 

where H(x) is the Hamiltonian of the system, kB is the Boltzman constant and Z*(T) is the 

partition function at temperature T. 

Combining Eq 2.7 with the “detailed balance” condition (Eq. 2.6) we obtain the ratio of 

the transition probabilities which depends only on the energy variation during the transition 

x→x΄: 

( , ')/ ( ', ) exp( [ ( ) ( )] / ) exp( / )B BW W k T k T    x x x x x xH H H  (2.8) 

This equation doesn’t specify the unique transition probability and many choices are possible. 

The Metropolis MC method is one of them. In this method [79], the transition probability 

W(x,x′) per unit time is given by: 

 ( , ') min 1,exp( / )BW k T x x H    (2.9) 

 

The Metropolis algorithm is defined as follows: 

1) Specify an initial configuration x0 

2) Choose randomly a new state x΄ 

3) Compute the energy variation associated to the transition: x→x΄ 

4) Compute the transition probability    , min 1,exp( / )BW k T  x x H  

5) Generate a random number R[0,1] 

6) If  ,W R x x  the transition x→x΄ is accepted, 

If  ,W R x x  the transition is rejected 

7) Return to the step 2. 

 

One MC step corresponds to the examination of each site of the system once. 

In general, this algorithm guarantees that time averages are equal (within statistical 

errors) to the statistical mechanical averages which is called the ergodicity principle. 
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To study the behaviour of Ni3Fe alloy we have distinguished 3 types of simulation:  

1. Simulations with Heisenberg Hamiltonian 

For the description of a magnetic system which consists of N interacting Heisenberg spins 

 , ,i i i i
x y zS S S S


 we used the Hamiltonian defined by Eq. 2.1. Thus, each state of the system is 

defined as  1,..., ,...i NS S Sx
  

 and each new state  1,..., ,...i NS S S x
  

 differs from the 

previous one by the change in the orientation of only one spin (single spin rotation algorithm): 

 ( , ) ,i iW W S S x x
 

. 

 

2.  Simulations with chemical Hamiltonian 

The system of N atoms is described by the configuration 1( ,..., ,..., ,... )i k N
      x , 

where α=(Ni or Fe) and α΄≠α. The Hamiltonian corresponds to Eq. 2.3. Each new configuration 

is defined as 1( ,..., ,..., ,... )i k N
       x , and differs from the previous state by the exchange of 

the atoms i and k:     ( , ) , ; ,i k i kW W          x x , α΄≠α. 

 

3.  Simulations with total Hamiltonian 

When the Hamiltonian includes both magnetic and chemical terms (Eq. 2.4) each state of 

the system is described by the atomic configuration and the direction of the spins,  

related to each atom, i.e. each configuration is described by a set of variables: 

    1 1,..., ,..., ,... ; ,..., ,..., ,...,i k N i k NS S S S           x
   

. So, the new state of the system can differ 

from the previous by changes in both spin orientation and chemical configuration: 

    ( , ) , , ; , ,i k i i k iW W S S         x x
 

. The combination of the previously described 

algorithms was implemented in a following way: firstly, two atoms of different types are 

chosen and exchanged, then, a new orientation of their spins was proposed. 

 

2.2.2.2. Simulated annealing – Calculation of thermodynamic quantities 

The algorithm of simulated annealing was proposed by S. Kirkpatrick et al. [80-81] and 

is used for optimization problems. In an annealing process the system, which is initially at high 

temperature and disordered, is slowly cooled so that the system is in thermodynamic equilibrium 

at any time. As cooling proceeds, the system becomes more ordered and approaches a "frozen" 

ground state at T = 0K. If the initial temperature of the system is too low or the cooling is not 
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sufficiently slow, the system may be frozen in a metastable state (i.e. trapped in a local minimum 

energy state). 

At each temperature T, a large number of MC steps are performed in order to reduce 

statistical errors. The probability of transition to the new configuration decreases with the 

temperature (it is approximately 1 at high T in the disordered state and approaches 0 for low T 

when the system is almost ordered).  

In the course of the annealing process it is possible to estimate the observables of the 

system. The technique of calculation is as follows. A certain number of MC steps, n0, is used to 

reach equilibrium at temperature T. This period of time is the so called equilibration time 

(Fig. 2.2). The equilibration time is the time needed for the system to “forget” the initial 

configuration. This is because in the Markov chain the configurations generated one after 

another are correlated. To estimate n0 it is possible to plot the graph of any observable (for 

example, internal energy) as a function of time and to note when the system reaches the 

equilibrium. “Equilibrium” means that the average probability of finding the system in any 

particular state x is proportional to the Boltzmann weight ( ( ) / )Bk Te  xH . Thus, the averaging 

should be done over (n-n0) MC steps, where n is the total number of MC steps. A system in 

equilibrium spends the majority of its time in small subsets of states in which its properties take a 

narrow range of values. 

 
Figure 2.2. Schematic representation of the time variation of the energy during  

                   the simulated annealing  
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When the system has reached the equilibrium, the observables can be estimated (within 

statistical errors) by averaging over the MC steps: 

0 10

1 ( )
n

lT
l n

A A
n n  


  x     (2.10) 

The thermodynamic quantities of our interest are: internal energy, magnetization, specific 

heat, susceptibility, long-range and short-range order parameters. Thus, taking into account 

Eq. 2.10, T  will denote time averaging and the calculation of these quantities can be done as 

follows. 

 Internal energy U(T) per spin (atom): 

0 10

1( ) ( )
( )

n
T

lT
l n

U T E
N n n N  

  
  x

H
H   (2.11) 

where N is the total number of spins (atoms). 

 

 Specific heat C(T) per spin (atom): 

 22
2

( ) 1( )
TT

B

U TC T
T Nk T


  


H H    (2.12) 

 

During the evolution of the system it is interesting to measure its state of order, which can 

be defined using the order parameters, either long-range or short-range. In the ordered state they 

have non-zero values and in the fully disordered state they are equal to zero. 

For the chemical ordering the long-range and the short-range order parameters can be 

defined as follows. The redistribution of the atoms in the lattice leads to a preferential occupation 

of certain “right” positions (appropriate for certain type of atom) in order to form an ordered 

structure (as was previously mentioned, for the Ni3Fe alloy the random structure transforms into 

the ordered L12-type superstructure). In this way the order can be defined by the distribution of 

atoms on all sites (i.e. not only 1st coordination shell) of the lattice and therefore it is called long-

range order. 

 Long-range order parameter η(T): 

,1( ) 4 1
3

Fe A T

Fe

N
T

N

 
   
 
 

,     (2.13) 

where NFe,A is the number of Fe atoms on A – sublattice (in Fig. 2.1 the whole set of Fe atoms 

forms the A-sublattice and the B-sublattice is formed by Ni atoms, respectively), NFe is the total 

number of Fe atoms. So, η = 1 in the ordered state, and η = 0 in the disordered state.  
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The state of order can be characterized in another way, considering how fully atoms of a 

certain kind (in the whole crystal) are surrounded by the atoms of another kind. In this way the 

order is defined by the local environment of the atoms and therefore it is called short-range 

order. It should be underlined that even in a disordered alloy where no long-range order is 

present, there still be short-range order (for example in disordered state above TK). Short-range 

order shows the presence of correlations between atomic substitutions. 

 Short-range order parameters  

SROP(T):  

 1( ) 4 9
3 NiFe TSROP T Z  ,    (2.14) 

where NiFe TZ  is the average number of Ni-Fe bonds per atom. SROP = 1 in the ordered state 

(because for L12 3NiFe TZ  ), and SROP = 0 in the disordered state (because 9
4NiFe TZ  ). 

 

Warren-Cowley parameter ( )r T : 

, ( )
( ) 1 Ni Fe r

r
Ni

p T
T

c
   ,     (2.15) 

where r is the number of the coordination shell and ,Ni Fe rp   is the probability to find a Ni-Fe 

pair. In the disordered state ,Ni Fe rp   is equal to the average concentration, cNi , and therefore 

0r  . For the L12-type superstructure αr = -1/3 and 1, for the 1st and 2nd coordination shells, 

respectively. The negative values of αr signify short-range ordering tendency in the studied 

system. This short-range order parameter is closely connected to the experimental results and its 

value can be obtained from scattering intensity [15-20,96]. 

 

For the ferromagnetic ordering, the reduced magnetization, ( ) / satM T M , characterizes 

the long-range order in the system and can be considered as a long-range magnetic order 

(LRMO) parameter. 

 “Magnetization” M(T) per spin: 

 
0

1/2
2 2 2

10

1( ) ( ) ( ) ( )
x y z

n

l l lT
l n

M T m m m m
n n  

   
  x x x   (2.16a) 

where m  is defined by 1
ii

i
m g S

N
  

  and represents the magnetic moment per atom (in μB 

units). The reduced magnetization ( ) / satM T M  is obtained by using 
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 1
sat Fe Fe Fe Ni Ni NiM N g s N g s

N
      (2.16b) 

 

 Magnetic susceptibility χ(T) per spin: 

 22

0
0

1 ( , )( ) lim
TT

T B

M T H NT m m
H k T


   

 
,   (2.17) 

where H represents the applied magnetic field. 

 

2.2.3. Statistical and systematic errors 

In MC simulations different kinds of errors and limitations can influence the numerical 

results. Firstly, we should mention truncation and round-off errors which arise due to the limited 

computer word length and hence limited precision for the numerical values. Although these 

errors are negligible, they should be indicated. Statistical and systematic errors appear due to the 

limited computer time.  

Statistical errors occur because of the necessarily finite number of MC steps during the 

simulations [73-75, 82-83]. Also, an additional contribution to the statistical errors is present 

when investigating systems with configurational disorder [84]. Then, it is necessary to average 

the numerical results over a sufficient number of MC steps and also over several configurations 

in order to reduce these errors.  

Systematic errors can be divided into those which arise from the finite size of systems (so 

called finite-size effects) and those which appear owing to the finite number of MC steps.  

In order to reduce both statistical and systematic errors, large enough system size and 

number of MC steps (much longer than the correlation time) should be considered. 

In this work we were not interested in a particular analysis of these errors, but in the final 

results the uncertainties are supposed to include them by performing several “identical” 

simulations. 

 

2.2.4. Finite-size effects  

Finite-size effects influence both 2nd and 1st order transitions and introduce systematic 

deviations from the macroscopic behavior.  

A 2nd order phase transition is characterized by the continuous character of the entropy 

and the long-range order parameter at the transition. Due to this fact the transition is not 

accompanied by a latent heat, but at the transition point some singularities occur in the 
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derivatives of the mentioned quantities [77]. Consequently, in the thermodynamic limit the 

specific heat, SC
T
   

, and the susceptibility, M
H


   

 either diverge or exhibit a jump at 

the transition. For finite systems the divergence is rounded and therefore a maximum appears 

[8,76-78].  

In its turn, a 1st order-disorder transition is accompanied by a latent heat, i.e. the entropy 

and the long-range order parameter are discontinuous at the transition. These discontinuities 

result in δ-function singularities in the specific heat and the derivative of the long-range order 

parameter. Due to finite-size effects, they turn into finite peaks with finite width [81,86]. The 

location of these peaks depends on the measured quantity and system size. For both 1st and 2nd 

order transitions, the location of the maxima of the 2nd derivatives of the free energy (for 

example, specific heat and susceptibility) tends to the transition temperature in the 

thermodynamic limit. 
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Chapter 3 

Mean-Field theory for thermodynamic  

and kinetic’s studies 
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3.1. Atomic ordering of alloys 

In the substitutional alloys the atoms can be either randomly distributed on the lattice 

sites (disordered alloy) or different sorts of atoms can preferentially occupy different lattice sites 

and form a periodic ordered structure. Such ordered structures are realized at sufficiently low 

temperatures. Let us remind that we define the temperature of order-disorder phase transition as 

TK . This temperature is also called the Kurnakov temperature. 

The degree of order in the alloy can be characterized by the long-range order and short-

range order parameters. These parameters characterize the state of order and particularly the 

environment of each atom, as was previously defined in section 2.2.2.2. It should be underlined 

that even in disordered alloys where the long-range order parameter is equal to zero, there is still 

short-range order. 

In general case, the transition from a disordered alloy to an ordered state can be 1st or 2nd 

order. The order of transition can be defined from the derivatives of the Helmholtz free energy F. 

At constant volume, V, and pressure, p, the Helmholtz free energy is: 

F U TS  ,      (3.1) 

where U – is the internal energy, T – is the temperature and S – is the entropy. 

The 1st order transitions are those that involve a latent heat. During such a transition, a 

system either absorbs or releases a fixed amount of energy. Because energy can not be 

instantaneously transferred between the system and its environment, 1st order transitions are 

associated with “mixed-phase regimes” in which some parts of the system have completed the 

transition and others have not. At the transition point T = TK  the phase equilibrium is obtained, 

and F(1) = F(2), where F(1) and F(2) are the free energies of the different phases (for example, 

ordered and disordered phases, gas and liquid phases, etc…).  

The 2nd order transition occurs when the 1st derivatives of F with respect to temperature 

and pressure are continuous but the 2nd derivatives exhibit a discontinuity or divergence. 

Consequently, the specific heat, the thermal expansion coefficient and the compressibility have a 

jump at the transition temperature. In this case the latent heat is absent due to the absence of an 

entropy jump. The 2nd order transition proceeds smoothly. The high temperature phase 

transforms itself into the new low temperature phase in a continuous manner. 

As was mentioned earlier, in case of Ni3Fe alloy, two phase transitions take place – the 

2nd order magnetic phase transition from paramagnetic to ferromagnetic state and the 1st order 

phase transition from a disordered fcc to the ordered L12 phase.  
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3.2. Some approaches to the description of ordering.  

To describe the order-disorder phase transitions several theories have been developed. It 

is possible to distinguish between thermodynamic and statistical approaches. The first one is 

based on the properties of crystal symmetry and some thermodynamic functions [77, 88 and 

references therein].  

The second one, the statistical approach is based on some simplified model of alloy. The 

entropic term in Eq. 3.1 is connected to the definition of a statistical sum and this task becomes a 

main problem in these models. The statistical sum, Z, represents the number of atomic 

configurations in the alloy at a given temperature T, and some simplifications should be done for 

its calculation. The internal energy term in Eq. 3.1 is defined using assumptions about the nature 

of the interactions between the atoms (pair-wise, many-body, etc...).  

It is necessary to refer to the mean-field approximation of Bragg and Williams, which 

does not include correlations between the atoms but only long-range order is under investigation; 

the interactions are thought to be pair-wised. In spite of these simplifications, this approach gives 

a qualitative agreement with experimental data, but to improve a quantitative agreement it is 

necessary to make some further assumptions. Later, the short-range order has been taken into 

account by Bethe, Peierls [90 and references therein], Kirkwood [93] and in the “quasi-

chemical” method. The “cluster variation method” proposed by Kikuchi [84-85] is also widely 

used. In terms of this method some results of the previous theories can be obtained (it is by itself 

an appreciable improvement of “quasi-chemical” method). 

The development of the experimental diffraction data led Cowley to the formulation of 

the theory which included the specified short-range order parameter [96-97] which is related to 

the intensity of diffusion scattering. The short-range order in this case can be calculated till nth 

neighbors. 

To investigate the order in alloys the computer simulation methods have been also 

extensively used (Monte Carlo methods [98-100], iteration method (used in “cluster variation 

method”) [95], etc.). 

 

3.3. Mean-field approximation. 

In the present work, to describe the thermodynamics and kinetics in Ni-Fe alloys a mean-

field approximation was used. To calculate the free energy, we can firstly define the occupation 

variable ( ) r  in a substitutional alloy: 

1, if site ( ) is occupied by an -atom
( )

0, otherwise





 


r
r    (3.2) 
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where α – is the sort of atom and r – is the vector which defines the site in the crystal lattice. 

Each lattice site is occupied by an atom, therefore the variables ( ) r  are not independent: 

( ) 1


  r       (3.3) 

Using the model of pair-wise interactions, the Hamiltonian of this system can be defined 

as: 

r,r ,

1 ( ) ( ) ( )
2

V  
  

     r r r rH    (3.4) 

This Hamiltonian is similar to that defined in previous chapter (Eq. 2.3) and ( )V r r  

represents the pair-wise interaction parameter between atoms α and β, which are placed at sites r 

and r΄. It should be noted that the sign in Eq. 3.4 is different from Eq. 2.3. The sign is included 

into the value of ( )V r r . From Eq. 3.4 the internal energy U can be written as: 

r ,r ,

1 ( ) ( ) ( )
2T U V  

  

      r r r rH   (3.5) 

In the framework of mean-field approximation the correlations are neglected and we can 

write: 

( ) ( ) ( ) ( ) ( ) ( )p p            r r r r r r   (3.6) 

where ( )p r  ( ( )p r ) is the probability to find an atom of sort α (β) at the site r (r΄). Then, 

Eq. 3.5 can be rewritten in the next form: 

r ,r ,

1 ( ) ( ) ( )
2

U V p p  
  

   r r r r    (3.7) 

The following condition is satisfied: 

( ) 1p


 r       (3.8a) 

Then, in case of binary A-B alloy we can replace: 

( ) ( )
( ) 1 ( )

p p
p p





 

r r
r r

     (3.8b) 

and the internal energy (Eq. 3.7.) will take the next form: 

r ,r

1 ( ) ( ) ( )
2

U w p p


   r r r r     (3.9) 

where ( )w r r  – is the ordering (“mixing”) energy defined as: 

( ) ( ) ( ) 2 ( )AA BB ABw V V V         r r r r r r r r    (3.10) 
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At high temperature when / 1Bw k T   the minimum of the free energy corresponds to an 

ideal solution. In this case the atoms are randomly distributed on all crystal lattice sites [88-92]. 

At low temperatures when the value of the ordering energy, w, is much larger that the 

thermal energy kBT (i. e. / 1Bw k T  ) the minimum of the free energy can be attained if some 

ordered phase is formed. In this case the lowest energy corresponds to the configurations in 

which each atom is surrounded by the other kind of atoms.  

The phase transition from disordered to ordered phase takes place at an intermediate 

temperature when / 1Bw k T  . 

In the mean-field approximation the second term in Eq. 3.1 corresponds to the 

configurational entropy, which can be written as: 

r

( ) ln ( )BS k p p 


   r r . 

Taking into account Eq. 3.8, for binary A-B alloy this equation can be rewritten in the following 

form: 

 
r

( ) ln ( ) (1 ( )) ln(1 ( ))BS k p p p p     r r r r    (3.11) 

Substituting Eq. 3.7 and Eq. 3.11 into Eq. 3.1, the expression for free energy of the alloy will be 

obtained in the framework of mean-field approximation. 

 

3.4. Static concentration waves approximation. 

In a disordered state, all crystal lattice sites are occupied by the different kinds of atoms 

with the same probability which is equal to the atomic fractions cα ( Nc
N


  ). In the ordered 

structures, there is a preferential occupation of some sites and, therefore, the occupation 

probability becomes dependent on the site r. This dependence subdivides the lattice into 

different sublattices. To describe this dependence, A. G. Khachaturyan has proposed a “static 

concentration waves” (SCW) method [91-92]. 

In the SCW method, the occupation probability p(r) can be presented as:  

( ) ( )p c  r r ,     (3.12) 

where c is the atomic fraction of the solute element and ∆(r) is the fluctuation of concentration 

due to the ordering. In general case, the fluctuation in the solid state has a periodic character and, 

therefore, it can be expanded in a Fourier series. Thus, Eq. 3.12 will have a form: 

*1( ) ( ) ( )
2

j js s

s s
s

i i
j j

s j
p r c Q e Q e     k r k rk k    (3.13) 
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The summation is carried out over all vectors {js} of the star s. The “star” s is defined as a set of 

wave vectors kjs that may be obtained from given wave vector by applying to it all operations of 

the symmetry group of the disordered solution. A static concentration wave is represented by 

exp( )
sj

i k r , kjs are non-zero wave vectors defined in the 1st Brillouin zone of the disordered 

alloy, r is a site vector of the lattice, js is the index, denoting the wave vectors of a star s in the 1st 

Brillouin zone. Static concentration wave amplitude ( )
sj

Q k  can be written as: 

( ) ( )
sj s s sQ j  k , 

where ηs are the long-range order parameters and γs(js) are coefficients which determine the 

symmetry of the occupation probabilities p(r) (the symmetry of superstructure). 

Therefore, Eq. 3.13 gives the transition from the description of the relevant atomic 

distribution in an ordered phase in terms of N occupation probabilities p(r) to the description in 

terms of N amplitudes ( )
sj

Q k . 

The long-range order parameters ηs are proportional to the amplitudes of the static 

concentration waves. To avoid the ambiguity in the definition of ηs it is possible to postulate that 

in the ordered state when the occupation probabilities p(r) are either 0 or 1 on all lattice sites, all 

the parameters ηs should be equal to 1. This condition also completely defines the values of 

constants γs(js). The amplitude of the concentration wave is proportional to the structure 

amplitude of this reflection. 

The L12-type superstructure (Fig. 2.1) is generated by three wave vectors (001), (010) and 

(100). Using the SCW approach the occupation probability for this superstructure can be 

rewritten as: 

 ** *
31 2 22 2( ) e e e

4
ii ip c        a ra r a rr    (3.14) 

where * * *
1 2 3, ,a a a  - are the unit reciprocal lattice vectors of the f.c.c. lattice, * * *

1 2 3 1/ fcca  a a a  

and afcc – is the lattice parameter. In the case of fcc lattice the occupation probabilities can take 

only following values: 

1

2

3
4
1
4

p c

p c





  

  


 

This definition of the probability p(r) can be used to define the internal energy and 

entropy (Eqs. 3.9, 3.11) of a system [91-92,105,119-126]: 
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2 2
0

3( ) ( ) ,
2 16

3 ln 3 1 ln 1
4 4 4 4

( )
4 3 3 3 3ln 1 ln 1

4 4 4 4

at X

B
at

NU w c w

c c c c
NkS

c c c c



   


   

   
 

                                   
                               

k k 

 (3.15) 

The sub-script “at” signifies that these equations consider only chemical interactions, i.e. atomic 

ordering.  w k  represents the Fourier transform of the mixing energy: 

( ) ( ) exp( )w w i 
r

k r kr      (3.16a) 

where * * *
1 2 3( , , ) 2 ( )x y zk k k h k l    k a a a . This Fourier transform can be rewritten in the 

following form [101]: 

     ( ) ( ) exp ( )s s

s
w w i w     

r
k r k r k ,   (3.16b) 

where  sw  is the effective interaction for the shell s and for fcc lattices the shell function ф, for 

an arbitrary coordination shell, is given by a formula: 

   
 

              
3

1 2 1 3 2 3 1 2 2
1
cos 2 cos 2 cos 2 cos 2 cos 2

6

s
s s s s s s

j j j j j
j

z h p h p h p h p h p        


   k , 

where  sz  is the number of lattice points in the coordination shell s,  s
jp  are integers and half-

integers denoting the Cartesian coordinates of a point in a 1st octant of the shell s, ih  denotes 

Cartesian coordinates in the 1st Brillouin Zone. 

Following this formula it is easy to calculate the terms  0w k and  Xw k  in Eq. 3.15 for 

the supersymmetrical points kX, 0 of the fcc lattice in the reciprocal space with coordinates {100} 

and {000}, respectively. Thus,  0w k and  Xw k  are defined as: 

 
 

0 1 2 3 4

1 2 3 4

12 ( ) 6 ( ) 24 ( ) 12 ( ) ...

4 ( ) 6 ( ) 8 ( ) 12 ( ) ...X

w w w w w

w w w w w

    

     

k R R R R

k R R R R




  (3.17) 

where Ri corresponds to the radius of the ith coordination shell. 

 

3.5. Molecular field approach 

The concept of the mean-field can be also applied to the magnetic transitions. To explain 

the spontaneous magnetization of ferromagnets P. Weiss proposed a hypothesis about the 

existence of an internal molecular field Hmol which acts similarly to an external magnetic field 

Hext in paramagnets and induces the parallel orientation of atomic magnetic moments at low 
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temperature without applied field. At high temperatures the magnetic order is destroyed due to 

the strong thermal fluctuations.  

P. Weiss assumed that Hmol would be proportional to the magnetization [5-6,8]. 

Consequently, the total magnetic field is: 

ext mol ext     H H H H M ,    (3.18) 

where λ – is the constant of molecular field. As the molecular field approximation by itself is a 

mean-field approach, all the fluctuations (spatial and time) of the molecular field are neglected 

[6,8,76]. This leads to an overestimation of TC and sometimes to wrong results, especially for 1D 

and 2D systems. 

Using the molecular mean-field approach all the thermodynamic quantities can be 

calculated. For example, the magnetization of the ferromagnetic system per atom, M, for the 

arbitrary spin S can be written in the next form [78]:  

( ) ( )B
B J ext Sat S

B

SgM Sg B H M M B x
k T

 
      

 
,   (3.19) 

where g is the Landé factor (gS≈2, gL≈1), Sat BM g S  is the saturation magnetization and BS( ) 

is the Brillouin function [5-8], which is defined by the formula: 

1 1 1 1( ) 1 1
2 2 2 2SB x coth x coth x

S S S S
                     

,  (3.20) 

B

B

Sg Hx
k T


 . 

In Fig. 3.1 the Brillouin function is plotted for different values of spin S. 

 
Figure 3.1. Brillouin function for different values of spin S 

 

For the case when S = ½, the magnetization formula can be simplified: 
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2 2
B B

B

g gM th M
k T

  
   

 
     (3.21) 

From Fig. 3.2 it is seen that in the temperature range (0; TC) Eq. 3.21 describes quite well 

the experimentally observed data. As follows from this figure, there is a discontinuity of the 

second derivatives of the free energy at TC (the second derivative with respect to the applied field 

is proportional to the first derivative of the magnetization).  

 
Figure 3.2. Saturation magnetization of Ni and theoretical (MFT) curve for S = ½ [2]  

 

In general, the mean-field theory gives a reasonable agreement close to TC only in 3D 

systems. At low temperatures, CTT  , it gives rough approximation of the magnetization 

variation and does not predict spin waves [5-6,8].  

It should be also mentioned that due to the fact that spin-correlations are neglected – the 

definition of the short-range order parameter is not included in the molecular field theory (so as 

in mean-field approximation). However, the experiments have shown that above TC such short-

range order exists [13]. To take into account this effect the microscopic theories have been 

developed [5], but we will further use the presented above approximation. 

Using molecular-field approximation, the expression for the magnetic entropy can be 

evaluated. In case of an arbitrary quantum spin value S (integer or half-integer) and in the 

absence of external magnetic field, it gives a complicated self-consistent formula for the 

magnetic entropy: 

2 1 1ln ln ( )
2 2magn B S
SS Nk sh y sh y yB y

S S
           

    
,  (3.22) 

where BS(y) is a Brillouin function and y is defined as: 
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0;
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H H Hg S g Sy H M
H H Mk T k T

 



  

       
 

The explicit derivation of Eq. 3.22 will be given in Appendix 5.2.1. 

 

3.6. Precipitation processes in the alloys 

A homogeneous non-stoichiometric solid solution is stable only at elevated temperatures. 

With a temperature decrease, the solid solution becomes unstable with respect to the thermal 

fluctuations and solute-rich clusters (precipitates) are formed. This is so called nucleation stage. 

After nucleation the particles of a new phase start to grow by absorption of solute elements from 

the matrix. Therefore, the solute concentration in the initial disordered matrix is lowered and 

precipitates continue to grow until the matrix concentration reaches its equilibrium value. After 

that, the coarsening stage is started. During this stage the free energy of a system is minimized 

by the reduction of the interface energy and it leads to the dissolution of small particles and the 

growth of larger ones. All these stages are described in more details below. 

 

3.6.1 Nucleation and growth 

It is generally known that after quenching the system is in metastable state. In the domain 

of nucleation to go to the equilibrium stable state the system should overcome an activation 

barrier and form the nuclei of a new phase. The formation of the nucleus of a new phase (for 

example, spherical precipitate) induces the increase in the free energy by the value of 24 R , 

where R is the radius of a nucleus and   is the interface energy per surface unit. At the same 

time, the change of the volume free energy is proportional to the volume of nucleus, 34
3

R . 

Thus, when R is small, the volume free energy is smaller than the interfacial free energy and the 

formation of a nucleus is thermodynamically disadvantageous. Only starting from some critical 

radius, nucleus
CR , the growth of a nucleus is accompanied by the reduction of the total free energy 

and the process can continue spontaneously. Therefore the formation of a nucleus of a new phase 

in the metastable state requires a fluctuation with some critical amplitude and size. 

Let us suppose that after nucleation the stable nucleus is embedded into a still 

supersaturated matrix. The particle will then be surrounded by a concentration gradient which 

provides the driving force for a solute diffusion, and thus gives rise to its growth. The solute 

moves to the precipitate’s boundary and matrix becomes depleted as shown in Fig. 3.3. The 
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region with a concentration gradient in the vicinity of precipitate is called the depletion zone. In 

general, it is assumed that in this zone there is a local thermodynamic equilibrium. 

 
Figure 3.3. Schematic concentration profile of a precipitate with the radius R 

 

The flux of atoms through the interface “matrix-precipitate” is described by the 1st Fick’s 

law: 

( )
r

dC rJ D u
dr

    
 

  ,     (3.23) 

where C(r) is the concentration as a function of a radial variable r, ru  is the radial unit vector, 

and D is the diffusion coefficient, which is supposed here to be concentration independent. 

Imposing the mass balance condition at the surface of the precipitate, the following 

expression for the infinitesimal volume variation is obtained: 

3 2 2 24 ( )4           4 4
3 r

d dR dC rR J u R R R D
dt dt dr


            

   

    (3.24) 

Then, the growth rate of the precipitate will be: 

( )dR dC rD
dt dr

   
 

     (3. 25) 

To obtain time dependence of the radius R it is necessary to solve the 2nd Fick’s law for the 

concentration field C(r) in the interval [R; +∞[. For the supersaturated matrix, where  e
m mC C  

is very small ( mC  and e
mC  are the concentration of solute in the matrix and concentration in 

equilibrium matrix, respectively), it is possible to suppose that C(r) is time independent. Then, 

assuming quasi-stationary state it is sufficient to solve ( ) 0C r  , where ∆ is Laplacian. The 

concentration gradient in the vicinity of precipitate’s surface is equal to  
 

( )1
( )

m

p

C C R
R C C R




 and 

therefore: 
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 
 

( )
( )

m

p

C C RdR D
dt RC C R





     (3.26) 

In Eq. 3.26 pC  is the equilibrium concentration in the precipitate (Fig. 3.3). To simplify the 

Eq. 3.26, it is possible to consider that the matrix concentration, mC , is equal to the initial 

concentration 0C . The concentration in the depletion zone, ( )C R , can be approximated by the 

matrix concentration at the end of precipitates’ growth stage, e
mC . Thus, the integration gives: 

 
1
2 1

0 22
e
m
e

p m

C CR Dt
C C

 
    

    (3.27) 

It should be mentioned that in general, the precipitates grow in different sizes and shapes. 

And when the precipitates volume fraction reaches its equilibrium value, small particles begin to 

disappear and larger ones grow – this stage corresponds to coarsening. 

 

3.6.2. Coarsening 

Following the stage of growth, the coarsening (or Ostwald ripening after the physical 

chemist W. Ostwald, who originally described this process qualitatively [109-110]) becomes a 

dominant diffusion process. In general, for the constant volume fraction of precipitates, an alloy 

with a large number of small precipitates has more interfaces than an alloy with a smaller 

number of large precipitates. The interfacial energy gives a positive contribution to the free 

energy of the system and during coarsening the morphology of the microstructure is governed by 

the reduction of this energy. The average radius of the precipitates increases. This occurs as a 

result of dissolution of small particles and growth of larger ones.  

To proceed with the theory of coarsening it is necessary to consider the variation of the 

concentration C(R) in the vicinity of the particle with radius R as a function of time t. The Gibbs-

Thompson equation shows that the concentration C(R) in the vicinity of a particle depends on the 

local curvature of the considered interface: 

0 02 21 1( ) exp 1e e
m m

B B

C R C C
k T R k T R

      
       

   
,   (3.28) 

where Ω0 is a molar volume of a particle, σ is the interfacial energy between the precipitate and 

matrix, T is the absolute temperature. e
mC  is the equilibrium solute concentration at a plane 

interface in the matrix in equilibrium. C(R) can be considered as the concentration at the surface 

of a spherical particle with radius R. The difference between e
mC  and C(R) induces a diffusive 

flux of atoms from the smaller to the larger particles (due to the higher solubility of the small 
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precipitates). Thus, the average particle radius increases and the total number of particles 

decreases with time. 

When C(R) deduced from the Eq. 3.28 is substituted to the Eq. 3.26 it is seen that the 

growth rate dR/dT of a particle in a matrix with concentration mC  depends on the size of a 

particle. The solution of the equation mC C  gives a critical radius for coarsening, coarsening
CR . Big 

particles with coarsening
CR R  for which mC C  will grow (faster when C is small), and small 

particles with coarsening
CR R  and mC C  will be dissolved in the matrix. 

 

3.7. Lifshitz-Slyozov-Wagner (LSW) theory 

A major advance in the theory of Ostwald ripening was made by Lifshitz and Slyozov 

[111] and, just after, by Wagner [112] (LSW). LSW developed a method for treating an 

ensemble of dilute coarsening particles, and were able to make quantitative predictions on the 

long-time behaviour of coarsening systems.  

The assumption about infinite dilution in alloy allows description of the coarsening 

kinetiks without recourse to the details of the interparticle interactions. To treat the continuum 

problem, LSW made the critical assumption that a particle’s coarsening rate is independent of its 

surroundings due to the small volume fraction considered. They also assumed that particles are 

spherically shaped and isolated from each other.  

LSW theory is based on the Gibbs-Thompson equation (Eq. 3.28). For derivation of the 

theoretical results following equations should be introduced: 

- a mass conservation equation: 

  3

0

4 ( , )
3

e
m p mC C C C R f R t dR


    ,   (3.29) 

where C  is the average concentration of the alloy; f(R,t) is the particle’s size distribution 

function, Cm is the matrix concentration; 

- a continuity equation describing the time evolution of a particle size distribution 

function: 

( , ) ( , ) 0f R t dRf R t
t R dt

         
;    (3.30) 

- a kinetic equation describing the growth or dissolution rate of an individual particle of a 

given size is given in Eq. 3.22. In the LSW theory this relation will have a form: 

1 1dR R
dt R R

    
,     (3.31) 
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where R  is the average radius. As follows from this equation there is a critical radius coarsening
CR  

which depends on the matrix concentration Cm and influences the sign of dR
dt

. 

Substituting these equations into the Gibbs-Thompson relation (Eq. 3.28) leads to the 

asymptotic solution of a non-linear equation and thus to the results of the LSW theory: 

1) the critical radius coincide with the average radius: 

0

( ) ( ) ( , )CR t R t R f R t dR


   ;    (3.32) 

2) at latest stages of coarsening the cube of the average particle radius should vary 

linearly with time: 
3 3( ) (0)R t R K t   ,     (3.33) 

where 3(0)R  is the average radius at the beginning of the coarsening, K describes the rate of 

coarsening (in general, it is dependent on the volume fraction). LSW obtained the following 

expression for K: 

 
08

9

e
m

e
p m B

C DK
C C k T

 



     (3.34) 

The rate of supersaturation of matrix  e
m mC C  decreases as t-1/3 and the density of precipitates 

decreases as t-1; 

3) an arbitrary distribution of particle radii when scaled by the average radius should 

assume a specific time-independent form (Fig. 3.4) [111-114]: 

2
4/3

3( ),     if   
2

1( , )

30,                                if   
2

D

A Rh
Rt

f R t

  







       

 


   (3.35) 

where A – is a constant and D   is a constant given by: 

3

0

9 (0)
8

B
D e

m

k TR
D C


  

, 

and function h(ρ) is defined as: 
7 11
3 33 3 2( ) exp

3 3 2 3 2
h 


  
     

             
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Figure 3.4. Normalized size distribution function after LSW [110] 

 

Since the time-independent radii distribution predicted by LSW is usually not observed 

experimentally, modifications of the LSW theory were proposed [114 and references therein, 

115-118]. It has been observed that the parameter K depends on the volume fraction and the 

LSW theory is valid for very small volume fraction of precipitates. The observed particle size 

distribution function is broadened and its peak is decreased if this dependence is considered.  

 

3.8. Önsager microscopic diffusion equation 

To describe the kinetics of phase transitions at the microscopic level the Önsager-type 

microscopic diffusion theory can be applied. This approach has been used for the investigation of 

the kinetic path and microstructure evolution during coarsening [119-124,126]. 

The Önsager-type microscopic diffusion equations were firstly proposed by 

Khachaturyan [91-92]: 

1

( , ) 1 ( ) 
( , )B

dP t FL c c
dt k T P t




  
 

      


r

r r r
r

,   (3.36) 

where ( , )P t r  (for α=1,2,…,ν) is the single-site occupation probability of an atom of sort α at 

the crystal lattice site r at time t; ( )L r r  is the Hermitian matrix of the kinetic Önsager 

coefficients, F is the Helmholtz free energy (it is defined in the Appendix 5.2.2), cα is the atomic 

fraction of atoms of the kind α.  

Due to the fact that the total number of atoms in the system is conserved, the conservation 

condition should be imposed: 

( ) 0L 
r

r       (3.37) 
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For a binary A-B alloy it is possible to reduce the system of (ν-1) equations (Eq. 3.36) to 

one equation in terms of a probability ( )P r which was previously defined (Eq. 3.8): 

( , ) 1 ( ) (1 )
( , )AB

rB

dP t FL c c
dt k T P t

      
r r r

r
   (3.38) 

After regrouping constant terms this equation will be written in the form: 

( , ) ( )
( , )

dP t FL
dt P t

     


r

r r r
r

,    (3.39) 

where (1 )( ) ( )AB
B

c cL L
k T


r r . 

The Fourier transform of this equation gives: 

( , ) ( )
( , )

dP t FL
dt P t

 
   k

k k
r

  ,     (3.40) 

where ( , ), ( ),
( , )
FP t L

P t
 
  k

k k
r

   are the Fourier transforms of ( , ), ( ),
( , )
FP t L

P t



r r

r
, respectively.  

The conservation condition in the reciprocal space becomes:  

( ) ( ) ( ) 0L L L  0
r

k 0 r       (3.41) 

By assuming atomic jumps only between nearest neighbor sites and using the 

conservation condition, for fcc lattice the following equation for the Önsager kinetics coefficient 

can be written: 

 1( ) 4 3 cos cos cos cos cos cosL L h k k l l h             k  (3.42) 

The coefficient L1 is connected to the diffusion coefficient D through the following relation: 

1
2 ( )

(1 )
B

fcc

DL
k Ta w

c c


 

  
0k

,    (3.43) 

where 0( )w k  is the Fourier transform of the ordering energy at k=0. The derivation of the 

presented relation can be found in [113, 121-124]. 

 

3.9. Application to the 2D-model 

The numerical solution of the presented kinetics equations on a 3D lattice can be 

performed. However, this calculation will be large time consuming. That is why 2D simulations 

are performed for the investigation of the kinetic path in Ni-Fe alloys. A 2D projection of a 

respective 3D lattice is equivalent to assuming that the occupation probabilities do not depend on 
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the coordinate z along the [001] axis. In the presented work we investigate Ni3Fe alloy and in the 

ordered L12 phase its 2D projection will have a form presented in Fig. 3.5. 

 
Figure 3.5.  L12 unit cell and its 2D projection along [001] direction 

                                  (● - Fe atoms, ○ - Ni atoms) 

 

As it is seen, the 2D projection of a fcc lattice (in particular, L12 ordered cell) along the [001] 

direction is a square with a lattice parameter equal to 2 / 2D fcca a . Therefore, a lattice vector r 

and the reciprocal vector k will be substituted as follows: 

   
1 2 1 2

* * * *
1 2 1 2

2 2
2 2 2 2

x yx y

h k h k

 
     

         

r b b a a

k b b a a
   (3.44) 

where        * * * *
1 1 2 2 1 1 2 2, , ,b b b b a a a a  are unit cell vectors of the square lattice and a projected 

plane of the fcc lattice in the direct (reciprocal) space, respectively. 

In this case the kinetic equations in the reciprocal space are obtained by substituting 

 2 ,2 ,0h k   for  , ,h k l  in calculation of “mixing” energy and Önsager coefficient (Eqs. 3.16 

and 3.42, respectively): 

1

2

( ) 4 (cos 2 cos 2 cos 2 cos 2 )
             2 (cos 4 cos 4 1) ...
w w h k h k

w h k
   
 

        
   

k
  (3.45) 

and 

 1( ) 4 3 cos 2 cos 2 cos 2 cos 2L L h k k h             k   (3.46) 

The solution of the kinetic equations was done by means of the explicit Euler technique. 

 

3.10. Definition of the local order parameters in the kinetic simulation 

The ordered structure can be described by the average concentration c and order 

parameters ηs, which are proportional to the amplitude of the concentration wave ks (section 3.4). 

If the distribution p(r) is known, it is possible to define the average parameters c and ηs by 

applying the Fourier transformation: 

1 ( )exp( )s s
s

p i
N




 
r

r k r , 
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where N is the total number of atoms in alloy and γs is the symmetry constant. The concentration 

is calculated by imposing k0 = 0 and γ0 = 1, thus ηs = c. Such definition, in general, can give 

negative (complex) values.  

The local order parameters ηs(r) can be defined at each site r of the alloy. The 

formulation will be following.  

 ( ) exp( ) coef ( ) ( )s s si p   r k r r r , 

where    

1 exp( ),    if  
coef ( )

0,                             otherwise

s B
B ss

i S
N 

   


k r r
r  

The symbol   represents the discrete convolution operation. B is the box where the 

order parameters are defined. SB is a ensemble of sites inside this box and NB is the number of 

sites. 

In case of Ni3Fe alloy which has L12 structure in the ordered state, the presented 

expressions will be simplified. For 2D case, the box B corresponds to the L12 unit cell (Fig. 3.5). 

The L12 structure is generated by two wave vectors: 1
2

2 1   0
2x

Da
    
 

k  and 1
2

2 10  
2y

Da
    
 

k , 

where 2Da  is the 2D-lattice parameter. Thus, two corresponding local order parameters, η1x and 

η1y, can be defined. To each site the equilibrium coefficients can be prescribed: ½ to the facets, 

¼ to the corners of a square and 1 to the center. Such coefficients are equal to the inverse of the 

number of atoms which are neighbors to the chosen site. In this case, the number of sites in the 

box NB will be defined as 4∙¼ + 4∙½ + 1 = 4. 

Therefore, the local order parameters can be defined as: 

 

  1 1 1( ) exp( ) coef ( ) ( )x x xi p   r k r r r , 

where    1

1 1 1      
4 2 4
1 1coef ( )    1     
2 2
1 1 1      
4 2 4

x

    
 
     
 
    
 

r  

 

  1 1 1( ) exp( ) coef ( ) ( )y y yi p   r k r r r , 
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where    1

1 1 1      
4 2 4
1 1coef ( )    1     
2 2
1 1 1      
4 2 4
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Chapter 4  

Results 
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The purpose of this study is to investigate the magnetic and structural properties of Ni-Fe 

alloys in the concentration range of Permalloy series. As was mentioned earlier, the co-existence 

of magnetic and chemical ordering greatly influences the behavior of such alloys and, therefore, 

is of our most interest. The investigation is done by means of MC, mean-field thermodynamic 

calculations and Önsager kinetics simulations. 

 

4.1. Monte Carlo simulation 

As was previously mentioned in section 2.2.2.1, three types of simulations were 

performed, in order to distinguish the mutual influence of each subsystem – spin and atomic: 

 Simulations with Heisenberg Hamiltonian – with magnetic interactions only; 

 Simulations with chemical Hamiltonian – with chemical interactions only; 

 Simulations with total Hamiltonian – with both magnetic and chemical interactions. 

Firstly, we separated magnetic and chemical subsystems and made simulations in order to 

investigate separately magnetic and chemical ordering. These simulations are useful for 

comparison with experimental results and with simulations where both spin and atomic 

interactions are included. Obtained results make more visible the mutual influence of both types 

of ordering.  

Simulations were done using different linear system sizes, L, (the total number of atoms 

in the fcc lattice is N=4L3), numbers of MC steps per temperature and temperature steps (∆T). 

All these parameters will be specified further for each type of simulation. Initial atomic 

configurations were chosen in two ways:  

 disordered (atoms are randomly distributed); 

 completely ordered (atoms are placed on the lattice sites according to the L12-type 

superstructure). 

Stoichiometric and non-stoichiometric concentrations were considered, and results will be 

presented in the respective order. 

The interaction parameters were taken in K, i.e. MC

B

WW
k

 , where W is either chemical (Vα-β) 

or magnetic (Jα-β) interaction parameter. All units of calculated thermodynamic quantities are 

given taking into account this assumption. 
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4.1.1. Stoichiometric case (Ni3Fe) 

4.1.1.1 Simulations with magnetic interactions only 

For the Hamiltonian which has a form of Eq. 2.1 it is necessary to choose the values of 

the spins sFe and sNi, and the “exchange” parameters ijJ . According to Ref. [4] (Table. 1.3), 

μFe ≈ 2.8μB and μNi ≈ 0.616μB. So, using the formula Bg S     (α = Ni or Fe), where the 

Landé factor g is very close to 2 for both elements, we obtain 1.4Fes   and 0.308Nis  . Three 

magnetic “exchange” parameters (only for the 1st coordination shell), ,Ni Ni Ni FeJ J   and Fe FeJ   

have to be defined. The value of Ni NiJ   was chosen so that the model provides TC of pure Ni 

(≈ 623K). Since the critical temperature of the Heisenberg model in the fcc lattice with nearest-

neighbor interactions is 2 3.16B Ck T
JS

  [70-72,85], the Ni-Ni interaction is given by 

2093Ni NiJ K  . The Fe-Fe bond was chosen in order to model the antiferromagnetic γ-Fe with 

TN ≈ 70K [4], that is 80Fe FeJ K   . The Ni-Fe interaction has been fitted in order to obtain the 

experimental value of TC (≈ 870K) of the disordered phase at 75% at. Ni. A good agreement 

between our preliminary tests and the experimental TC was obtained with 1060Ni FeJ K  . Due 

to the antiferromagnetic Fe-Fe interaction the system is frustrated, so at 0K one can expect that 

the stable magnetic configuration is no more collinear with Fe additions. 

To reduce statistical errors in the simulations on the disordered alloy we average 

numerical data over few disordered chemical configurations. This was performed using a parallel 

version of the code. 

We have compared simulations with different system sizes L = 10-20 (i.e. 

4000 32000N   ), number of disordered  configurations, (nconf = 1-200), and number of MC 

steps per temperature, ( 3 510 10n   ). Finally, reliable results have been obtained with a 

reasonable computational effort using the following parameters: 

L 20 (N=32000) 

n 50000 

nconf 4 (for disordered alloy) 

∆T (K) 10 

 

All numerical simulations were done without external magnetic field (H = 0). We will 

start with comparison of the magnetic properties of a random alloy (i.e. with disordered atomic 

configuration) with those of the perfect L12 structure. 
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1) Internal magnetic energy 

 

 
(a) (b) 

Figure 4.1.1. (a) Internal magnetic energy versus temperature 

                       (b) Visualization of considered chemical configurations 

                                Red and blue points represent Ni and Fe atoms, respectively 
 

At 0K the system should be in its magnetic ground state, which is expected to be ferromagnetic, 

for this concentration. Using the formula:  

 2 2magn Ni Ni Ni Fe Fe Fe
GS Ni Ni Ni Ni Fe Ni Fe Fe Fe FeE Z J S Z J S S Z J S  

      ,  (4.1.1a) 

where Z   denotes the average number of α-β bonds per atom, we estimated the value of the 

ferromagnetic ground state energy per atom. 

Also, we can estimate the lower limit for the magnetic energy, 0
magnE , which is not 

reachable due to frustration: 
2 2

0
magn Ni Ni Ni Fe Fe Fe

Ni Ni Ni Ni Fe Ni Fe Fe Fe FeE Z J S Z J S S Z J S  
      ,  (4.1.1b) 

According to our numerical data for the random crystal, 0.37;  Fe FeZ    2.25Fe NiZ    and 

3.37Ni NiZ    per atom, so _ 1641.81magn
GS disorderedE K   and 0_ 1758.65magn

disorderedE K  . The 



 - 66 - 

difference between these two values measures the degree of magnetic frustration which also can 

be defined as _

0_

1 0.066
magn
GS disordered

magn
disordered

E
Y

E
   . From the energy plot (Fig. 4.1.1a) it is seen that the 

system is very close to the ferromagnetic ground state as T → 0K ( 1640.68magn
disorderedE K  ). 

When the chemical configuration is the L12 structure, there are no Fe-Fe bonds and 

consequently, no frustration and the ferromagnetic ground state energy is equal to the lower limit 

of the energy ( _ 0_ 1966.85magn magn
GS ordered orderedE E K   ), which is seen in Fig. 4.1.1a. 

 

2) Reduced magnetization (Mtot, MFe and MNi) 

As the reduced magnetization, / SaturationM M , represents the long-range order parameter 

of the ferromagnetic system, we can estimate the transition temperature, TC, from its temperature 

dependence. It is known that paramagnetic ↔ ferromagnetic transition is of 2nd order, so M(T) 

will go continuously to zero (Fig. 4.1.2). 

  
(a) (b) 

Figure 4.1.2. Reduced magnetization versus temperature for: 

                      (a) Random chemical configuration 

                      (b) L12 ordered chemical configuration 

 

In Fig. 4.1.2, / Saturation
Fe FeM M  and / Saturation

Ni NiM M  represent the reduced magnetization of 

Ni- and Fe-sublattices. The difference in the behavior of these quantities is noticeable and 

evidences the influence of the chemical order on the magnetic properties of the system. Indeed, 

as seen from Fig. 4.1.2a, when the crystal is disordered the magnetizations of Fe- and Ni-

sublattices lie very close to each other. When the crystal is ordered (Fig. 4.1.2b) the difference 

between sublattice magnetizations is not negligible anymore (the Fe-sublattice magnetization is 
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larger than Ni-sublattice magnetization). From Fig. 4.1.2 it is seen that the magnetization above 

TC still deviates from zero due to finite-size effects. 

The Curie temperature (dashed line on the figures), TC, also is influenced by the chemical 

order (Table 4.1.1).  

 disordered L12 ordered 

TC from M(T), (K) 870±5 1070±5 

TC from χ(T), (K) 861±5 1061±5 

TC from C(T), (K) 851±5 1051±5 

 

Table 4.1.1. Curie temperature estimated from thermodynamic quantities 

 

This has been shown experimentally during calorimetric measurements (Fig. 1.5) [13]. 

Ordered atomic configuration promotes higher TC due to the absence of Fe-Fe pairs which makes 

easier reaching the ferromagnetic state, i.e. at higher temperatures.  

In Fig. 4.1.3 the state of order is defined by the long-range order parameters: η for MC 

simulation and SBW (Bragg-Williams parameter) for experimental results. From the two plots we 

can conclude that higher state of order promotes higher values of TC. The possible difference in 

the obtained Curie temperatures and the experimental ones can be due to the interaction 

parameters considered in our simulations and, also, due to uncertainties in the experimental data. 

 
Figure 4.1.3. Comparison of the experimental [13] and simulated TC  for alloys  

                        with different state of order, i.e. chemical configuration 
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3) Susceptibility and specific heat 

As was previously mentioned in section 2.2.4, in case of 2nd order transition the specific 

heat and susceptibility exhibit a maximum at the Curie temperature, TC. 

  
(a) (b) 

Figure 4.1.4. Temperature dependence of: 

                       (a) Zero-field magnetic susceptibility 

                       (b) Specific heat 

 

From Fig 4.1.4 we estimate TC from the location of the maxima (dashed line) of C and χ. These 

estimates are reported in Table 4.1.1. As expected, disordered
CT  agrees well with the experimental 

results from Table 1.4. All values are in reasonable agreement and possible discrepancies are due 

to finite-size effects [83]. Further for reason of convenience we will use the estimate obtained 

from the zero-field susceptibility because the behavior of the specific heat of the classical 

Heisenberg model is known to be cusp-like rather divergent at the phase transition [70]. 

It is interesting to visualize the orientations of the magnetic moments obtained by 

simulation. In Fig. 4.1.5 we will present such picture only for the lowest temperature T = 1K. For 

reasons of clarity, we will visualize only (001)* plane. 
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(a) 

 
(b) 

Figure 4.1.5. Visual representation of the magnetic moment orientations at T = 1K for: 

                       (a) Random chemical configuration 

                       (b) L12 ordered chemical configuration 

                        Ni and Fe moments are presented by red and blue arrows, respectively  

 

Although, the ground state is ferromagnetic, it is seen that in the disordered crystal some 

magnetic moments still deviate from the average orientation. As was mentioned before, this 

happens due to magnetic frustration as a result of antiferromagnetic Fe-Fe bonds and also 

because the temperature is not exactly 0K but 1K. 
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When simulations were performed on the ordered structure, all magnetic moments seem 

to be almost parallel to each other because there is no frustration. 

Let us mention that the Curie temperature obtained for the L12–type ordered structure 

( (1061 5)ordered
CT K  ) is higher than experimental ones. But due to the fact that chemical 

ordering temperature, TK, (Table 1.2.) is lower than magnetic transition temperature, the 

experimental TC values can be underestimated because of atomic diffusion during the magnetic 

measurements at temperatures above TK. Therefore the structure of the alloy does not correspond 

to the perfect L12 structure as in our simulation. 

 

4.1.1.2. Simulations with chemical only interactions 

The form of the Hamiltonian for the chemical subsystem was given in Eq. 2.3. In our 

simulation no vacancy or interstitial is present, and many-body interactions are neglected. The 

Hamiltonian is simplified to the form: 

 
,

Fe Fe Fe Fe Fe Ni Fe Ni Ni Ni Ni Ni
chem ij i j r r r r r r

ij r
V Z V Z V Z V        

 

        H  (4.1.2) 

where rZ , rV   are the number of (αβ) pairs and the pair-wise chemical interaction parameter in 

the rth coordination shell, respectively. 

 

In our simulations we have tested 2 sets of pair-wise chemical interactions, rV  . In the 

first case we have assumed only nearest-neighbor interactions (NN), i.e. only within the 1st 

coordination shell, and for the second case we have included also interactions between next-

nearest neighbors (NNN). 

We have also implemented simulations for different initial conditions: 

 The initial configuration is a disordered state and the initial temperature satisfies 

init KT T . The simulated annealing with a temperature step ∆T takes place until 

T = 1K – ordering case. 

 The initial configuration is a perfectly ordered state with L12 structure, the initial 

temperature is 1initT K  and the temperature is increased with a step ∆T until 

T > TK – disordering case. 

 

We have tested different system sizes L = 10-20 (i.e. 4000 32000N   ), numbers of 

MC steps n = 103-104, temperature steps ∆T = 1-20K. To increase the accuracy in the vicinity of 
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the transition temperature we scaled the number of MC steps by a factor 5 or 10. Satisfactory 

results were obtained with the following parameters: 

L 20 (N = 32000) 

n 10 000 

scale 10 

∆T (K) 5 

 

A. Nearest neighbor interactions (NN interactions) 

We have chosen the values of pair-wise interaction parameters from Ref. [40]. The Ni-Ni 

bond, 1 8590Ni NiV K  , is taken in order to correspond to measured cohesive energy of f.c.c. Ni, 

assuming the chemical bond energy is the dominant contribution. The Fe-Fe bond is taken to 

correspond to the cohesive energy of high-spin fcc Fe, 1 8400Fe FeV K  . The Ni-Fe bond is equal 

to 1 9200Ni FeV K  . 

During our simulations we calculated the internal energy, the long-range and short-range 

order parameters, and the specific heat. 

 

1) Internal energy 

From the presented plot of the internal configurational energy (Fig. 4.1.6a) it is seen that 

the system undergoes a 1st order transition as expected. As usual for 1st order transitions, a 

thermal hysteresis is present. Such hysteretic behavior has been also observed experimentally 

[13,17,26]. 

 
(a) 
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(b) 

Figure 4.1.6. (a) Internal energy versus temperature 

                       (b) Visualization of the chemical configuration obtained after annealing 

                              from Tinit>TK. Ni and Fe atoms are presented by red and blue 

                              points, respectively 

 

On Fig 4.1.6b we have presented the visualization of the structure obtained at the end of 

the simulated annealing (at 1K). It is seen that we obtain a structure which contains antiphase 

boundaries between ordered domains of L12-type. In general, L12 structure can be built with four 

translational variants and this induces the appearance of antiphase domains between these 

variants. The obtained picture can be explained by the use of only nearest neighbor interactions. 

Indeed, in this case, the antiphase domains do not make any cost in the internal energy. For the 

two simulations (starting from high temperature or from Tinit = 1K) the energy at very low 

temperature is equal to the ground state energy per atom (Fig. 4.1.6a): 

1 13( )chem Ni Ni Ni Fe
GSE V V    , 

which is equal to 53370chem
GSE K  . 

 

2) Order parameters 

When the state of the system changes abruptly it is expected that the order parameters 

(long-range and short-range) will exhibit a jump at the transition temperature, TK.  
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(a) (b) 

Figure 4.1.7. Thermal variation of: 

(a) Long-range order parameter η 

(b) Order parameter η1 

 

We calculate the long-range order parameter, η, according to Eq. 2.13: 

,1( ) 4 1
3

Fe A T

Fe

N
T

N

 
   
 
 

 

where ,Fe AN  is the number of Fe atoms on the A-sublattice. According to this formula, in the 

ordered state η = 1. But, as seen from Fig 4.1.7a, it is not true for the simulation starting from the 

random crystal at high temperature. This can be explained by the antiphase domains 

(Fig. 4.1.6b), so not all sites of the A-sublattice are occupied by Fe-atoms. To overcome this 

problem we have also calculated another “long”-range order parameter, η1, according to the 

following formula: 

,{ 4 8}, 12
1

1( )
2

Ni Fe NiFe Ni T T

Fe Ni

NN
T

N N


 
 
  
 
 

,    (4.1.3) 

where NFe,Ni=12 (NNi,{Fe=4,Ni=8}) is the number of Fe (Ni) atoms surrounded by exactly 12 Ni (4 Fe 

and 8 Ni) atoms in the 1st coordination shell. The obtained plots are given on Fig. 4.1.7b. 

However, since η1 is not zero above TK, we can not really say that this parameter defines long-

range order. This parameter was used in order to define whether we have obtained L12-type 

superstructure at the lowest temperature or not. 

The short-range order parameters defined by Eqs. 2.14-2.15 are plotted in Fig. 4.1.8. 
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(a) (b) 

Figure 4.1.8. Short-range order parameters versus temperature: 

(a) SROP 

(b)  Warren-Cowley parameter, α1 

 

As expected, it is seen from Fig. 4.1.8a that above the transition temperature the SROP is not 

null. This fact signifies the presence of short-range order above TK. Such conclusion is confirmed 

by experimental results [13]. 

We have also calculated the short-range Warren-Cowley parameter (Fig. 4.1.8b) in order 

to verify our numerical results. Negative values of 1  ensure the ordering tendency in the 

studied system, and its value at low temperature, 1
1
3

   , confirms the formation of L12-type 

superstructure. 

From the presented curves of the order parameters (η and η1) we can estimate the values 

of the transition temperature, TK, i.e. the lowest point of the jump (Table 4.1.2). 

 ordering disordering 

TK from η(T), (K) 636.0±2.5 646.0±2.5 

TK from C(T), (K) 631.0±2.5 646.0±2.5 

 

Table 4.1.2. Ordering temperatures, TK, estimated from thermodynamic quantities 

 

3) Specific heat per atom 

In Fig 4.1.9 the temperature dependence of the specific heat, C(T), is presented. As was 

mentioned in section 2.2.3, the δ-peak turns into a maximum of the specific heat due to finite 

size-effects. From the obtained plot we can locate the transition temperature by the peaks. In 

Table 4.1.2 we have listed estimated transition temperatures. 
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Figure 4.1.9. Temperature dependence of the specific heat, C(T) 

 

The values of transition temperature obtained from order-parameter and specific heat 

curves are in complete agreement with each other.  

From this simulation the order-disorder transition is underestimated in comparison with 

the experimental data. This is due to the choice of the interaction parameters. This estimation 

will be improved by taking into account magnetic interactions. 

 

B. Interaction within 2 coordination shells (NNN interactions) 

It is more realistic to consider interactions beyond the 1st coordination shell, so we have 

performed simulations including next-nearest-neighbor interactions. New pair-wise interaction 

parameters,  1,2rV 
 , were deduced from experimental data using mean-field theory. The 

definition of the ordering (or “mixing”) energy, w, was given by Eq. 3.10. This parameter can be 

extracted from the experimental diffraction data [15-20] in the framework of the mean-filed 

approximation using the Krivoglaz-Clapp-Moss formula [105,133-134]: 

2 (1 )( ) ( ) ( )1 (1 )
B

c cI wc c
k T

 


 
k k k     (4.1.4) 

where I(k) is the diffuse intensity observed in the reciprocal space, φ(k) is the effective atomic 

scattering factor depending on the difference fA-fB of the atomic scattering factors of A and B 

(for binary AB alloys) and on values of the static displacements, ( )w k  is the Fourier transform 

of the “mixing” energy and c is the concentration. 

Since MC simulations are performed in the real-space, it is necessary to recalculate the 

ordering energies (Eqs. 3.16-3.17). As we are interested in the calculation of parameters within 2 

coordination shells, from Eq. 3.17 we will take the expressions only for 2 points in the reciprocal 
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space (Г(000) and X(001)). After the calculation given in Appendix 5.1 we have obtained the 

following values of the interaction parameters: 

1 1 1

2 2 2

5172.79  ;        5665.44  ;       5289.795

2151.353  ;   2356.244  ;   2200.015

Fe Fe Ni Fe Ni Ni

Fe Fe Ni Fe Ni Ni

V K V K V K
V K V K V K

  

  

  

     
  (4.1.5) 

We have tested these values and compared our results with the previous ones (with only 

NN interactions (L = 10, ∆T = 10K)). In Fig. 4.1.10 the plot of the specific heat is presented in 

order to compare the obtained transition temperatures. 

 
Figure 4.1.10. Temperature dependence of the specific heat, C(T) 

 

It is seen that the transition temperature TK is overestimated ( (871.0 2.5)K  ) in comparison 

with the previously determined TK ( (631.0 2.5)K  , see section A). In order to obtain the same 

transition temperature for both sets of {1,2}rV 
 , we have rescaled the new pair-wise parameters 

(Eq. 4.1.5) by the ratio 871 1.38
631

  and obtained: 

1 1 1

2 2 2

3748.3986  ;      4105.3913  ;     3833.1848

1558.9514  ;   1707.4232  ;   1594.2138

Fe Fe Ni Fe Ni Ni

Fe Fe Ni Fe Ni Ni

V K V K V K
V K V K V K

  

  

  

     
 (4.1.6) 

With these parameters TK coincides with that obtained in section A (for chosen system size) 

(Fig. 4.1.10). Simulations with these newly defined {1,2}rV 
  were performed and the 

thermodynamic quantities (internal energy, long-range and short-range order parameters, and 

specific heat) are shown below. It should be noticed that thermal hysteresis is not visible, i.e. all 

plots for systems with different initial configurations and Tinit exhibit the same TK. Due to this 

fact, only the plots for init KT T  will be presented in the following. 

It should be noticed that the choice of the interaction parameters can be done arbitrarily 

but in accordance with the obtained ordering energies. We have tested different sets of {1,2}rV 
  
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and the results were identical if we kept the same w1 and w2.  

1) Internal energy 

With the new interactions within 2 coordination shells, the ground state energy per atom, 
chem
GSE , for the L12 structure, is given by the formula: 

1 1 2 2
3 93( )
4 4

chem Ni Ni Ni Fe Fe Fe Ni Ni
GSE V V V V         

 
, 

where {1,2}rV 
  are defined in Eq. 4.1.6. Then, chem

GSE  is equal to -19059.5337K. As seen from 

Fig. 4.1.11a at very low temperature this value has been reached. The visualization of the final 

configuration confirms that there is no antiphase boundary anymore. 

 
(a) 

 
(b) 

Figure 4.1.11. (a) Internal energy versus temperature 

                         (b) Visualization of the obtained structure at 1K 

                                  Red and blue points represent Ni and Fe atoms, respectively 
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2) Order parameters 

In Fig. 4.1.12a we have superimposed both the SROP and η. The long-range order 

parameter η at very low temperature is equal to 1 due to the perfect L12-type superstructure, so in 

this case it is not necessary to calculate the order parameter η1 defined in Eq. 4.1.3. The Warren-

Cowley parameter, 1 , is given only for the 1st coordination shell, and is equal to –0.33(3) at 1K 

which confirms the L12 ordering at low temperature. 

  

Figure 4.1.12. Temperature dependence of: 

                           (a) Long-range, η, and short range, SROP, order parameters 

                           (b) Warren-Cowley short-range order parameter, α1 

 

It is visible that above the order-disorder transition the short-range order is still present as 

it was mentioned in section A. The jump in η is less pronounced than in the case of only NN 

interactions (Fig. 4.1.7). This will be discussed later in section C. 

 

3) Specific heat, C. 

The specific heat plot is given below in Fig. 4.1.13. From the presented plot of the order 

parameters and the specific heat (Fig. 4.1.12-4.1.13, respectively) we have estimated the order-

disorder phase transition temperature. These estimates (Table 4.1.3) agree with previously 

determined values of TK.  

TK from η(T), (K) 626.0±2.5 

TK from C(T), (K) 621.0±2.5 

 

Table 4.1.3. Ordering temperatures, TK, estimated from thermodynamic quantities  

(with NNN interactions) 
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Figure 4.1.13. Temperature dependence of the specific heat, C(T) 

 

C. Discussion 

The obtained transition temperatures TK are summarized in Table 4.1.4. ordering
KT  is the 

transition temperature defined in simulation when the transition is approached from high 

temperature (ordering case) and disordering
KT  when it is approached from low temperature 

(disordering case). In case of NNN interactions we were not able to distinguish between these 

two temperatures.  

NN interactions NNN interactions 
 

ordering
KT , (K) disordering

KT , (K) KT , (K) 

from η(T) 636.0±2.5 646.0±2.5 626.0±2.5 

from C(T) 631.0±2.5 646.0±2.5 621.0±2.5 

 

Table 4.1.4. Comparison of different estimates of the transition temperature TK 

 

The estimates obtained in the simulations are self-consistent. It is important to notice the 

difference in the internal energy plots, corresponding to different sets of {1,2}rV 
  (Fig. 4.1.14a). It 

can be seen that the latent heat, L, corresponding to the energy jump, E , at TK, 

KE L T S    , has been reduced almost by a factor 2. When NNN interactions are neglected, 

the latent heat is equal to {1} 138rL K  , and when they are considered {1,2} 73.5rL K  . This 

means that taking into account NNN interactions softens the transition. 
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Figure 4.1.14 Comparison between the temperature dependencies of: 

                        (a) Internal energy 

                        (b) Long-range order parameter, η 

                        For 2 sets of interaction parameters 

 

Due to the softening of the transition [84,87], the hysteresis is less pronounced. 

Combined with a finite temperature step, this can explain that it is not visible in this case. One 

should note also that the long-range order parameter still exhibits a significant jump at the 

transition (Fig. 4.1.14b).  

In the studied Ni3Fe alloy the order-disorder transition is of 1st order. Above TK short-

range order still persists and consequently will be able to influence the magnetic order and, 

consequently, the Curie temperature. Thus, in order to adequately describe the alloy it is 

necessary to consider both types of interactions simultaneously. 

 

4.1.1.3. Simulations with chemical and magnetic interactions 

In sections 4.1.1.1-4.1.1.2 we have attempted to describe the Ni3Fe system neglecting one 

of the interactions (chemical or magnetic, respectively). But taking into account properties of this 

system, experimentally observed features (Chapter 1) and presented above results it is necessary 

to mention that more realistic picture will be obtained if both magnetic and chemical interactions 

are included in the model. For this case the Hamiltonian of the system will have the form: 

( )total magn chem ij i j i j ij i j
ij ij

J S S V       

 

          
 

H H H   (4.1.11) 

All symbols correspond to those used for (Eq. 2.1) and (Eq. 4.1.2). 

The algorithm, described in section 2.2.2.1 has been interpreted in a following way: 

 Firstly, two atoms of different kind are exchanged and their spins are rotated; 
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 In case of rejection, only rotation of one of the two previously chosen spins is 

proposed. 

Such algorithm was chosen in order to equilibrate the magnetic subsystem at low 

temperatures, because below TK atomic jumps are rare (η ≈ 1) and the chemical configuration is 

frozen whereas the magnetic moments still fluctuate (M < MSat). 

Different initial conditions ( init KT T  and 1initT K ) and sets of chemical interaction 

parameters, {1,2}rV 
 , have been also implemented (as in case of only chemical interactions). After 

several tests, we have kept the following simulation parameters: 

L 20 (N=32000) 

n 10 000 

scale 10 

∆T (K) 10 

 

A. Nearest neighbor interactions (NN interactions) 

The values of the magnetic “exchange” interactions, J  , and chemical interactions, 1V   

are those that were defined in sections 4.1.1.1 and 4.1.1.2A, respectively. The studied system 

should exhibit two phase transitions: a paramagnetic↔ferromagnetic 2nd order transition at TC, 

and an order-disorder 1st order transition at TK < TC. Due to the mutual influence of magnetic and 

chemical order we can expect some new features in the plots of thermodynamic quantities. The 

following observables were measured: the internal energy (total, magnetic and chemical), the 

order parameters (magnetization (total, Fe- and Ni-sublattice) and the chemical long-range and 

short-range order parameters), the specific heat (magnetic and chemical) and the magnetic 

susceptibility. 

 

1) Internal energy 

In Fig. 4.1.15 we have presented thermal dependence of the magnetic, EMAGN, chemical, 

ECHEM, and total ( TOTAL MAGN CHEME E E  ) internal energies. As expected, a hysteresis appears in 

a narrow temperature interval (≈ 20K). At very low temperature T the system consists of ordered 

domains separated by antiphase boundaries (Fig 4.1.15a). From Fig. 4.1.15b, it is seen that both 

magnetic and atomic subsystems reach their ground state.  
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(a) 

 
(b) 

Figure 4.1.15. (a) Final structure visualization. Ni and Fe atoms are represented  

                               by red and blue points, respectively 

                         (b) Internal energies (chemical, magnetic and total) versus temperature 
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Although the ground state magnetic energy  1966.85magn
GSE K   is much smaller than 

the ground state chemical energy  53370chem
GSE K  , the magnetic contribution can not be 

neglected as usually done. Indeed, the magnetic energy variation during the annealing 

 MAGN 1730E K   is in fact larger than the variation of the chemical one  CHEM 320E K  . 

Furthermore, a new feature is visible from the presented curve of MAGNE  (Fig. 4.1.15b). It 

is seen that MAGNE  exhibits a jump at TK. Such behavior can be explained as following: when the 

atomic configuration changes abruptly this should affect the magnetic configuration and, because 

the destruction of the L12 order above TK increases the number of antiferromagnetic Fe-Fe pairs 

and, therefore, causes a reduction in the effective “exchange” (magnetic) interaction leading to 

an increase in MAGNE . Obviously, the magnetization will exhibit similar feature. 

 

2) Order parameters 

As in the section 4.1.2A, we have calculated for the chemical sub-system long-range and 

short range order parameters. Here we have presented only the plots for the short-range order 

parameter, SROP, and “long”-range order parameter, η1, (Fig. 4.1.16a). The thermal variations of 

the long-range order parameter, η, and of the Warren-Cowley parameter, 1 , are the same as 

have been already shown. The total reduced magnetization, / SaturationM M , is also shown on the 

same plot. 

Comparing with the plots obtained in section 4.1.1.1 (Fig. 4.1.2) it is possible to note the 

change in the behavior of the magnetization (total, Fe- and Ni-sublattices). From Fig. 4.1.16 it is 

seen that the magnetization exhibits a jump (the same as the internal magnetic energy) at TK. 

When magnetic and chemical orders coexist ( KT T ), the magnetization slowly decreases and 

the destruction of the atomic order above TK leads to a more rapid decrease (Fig. 4.1.16b). Below 

the transition point TK, the magnetization behaves as for the L12 ordered system but above TK the 

magnetization behaves similarly to the magnetization of a random chemical configuration. The 

Fe- and Ni sublattice magnetizations exhibit the same behavior (Fig. 4.1.16c). Below TK the 

difference between their values is noticeable (as in Fig. 4.1.2b) and after transition both values 

approach the average total magnetization.  
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(a) (b) 

 

 

(c)  

Figure 4.1.16. Thermal variation of: 

                        (a) Order parameters η1 and SROP, and reduced total magnetization M 

                        (b) Reduced total magnetizations for crystal with different state of order 

                        (c) Reduced magnetizations (total, Fe- and Ni-sublattices) 

 

The existence of short-range chemical order above TK leads to the increase of TC in 

comparison with disordered
CT  (Fig. 4.1.16b). Thus, the estimate of TC is neither equal to 

( 870 )disordered
CT K  nor to ( 1070 )ordered

CT K  but is somewhere in between. It is important to note 

that chemical short-range order still exists above TC (SROPchem+magn(T = 1001K) ≈ 0.446) and 

decreases slowly with the temperature. Thus, the simulated TC corresponds to a chemically short-

range ordered alloy. In this case, this short-range chemical order prevents the appearance of the 

Fe-Fe NN bonds and, therefore, it will influence the magnetic configuration. The short-range 

order parameter decreases faster when the magnetic interactions are not included. Also, magnetic 

short-range order interactions exist in the paramagnetic state and, consequently, are able to 
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influence chemical configuration of the alloy (which is also in the chemically short-range 

ordered state at high temperatures). At intermediate temperatures ( K CT T T  ) also magnetic 

order enhances the values of the short-range order parameter (SROPchem+magn(T = 851K) ≈ 0.55, 

and SROPchem(T = 851K) ≈ 0.48).  

According to the presented plots of the order parameters, the estimated transition 

temperatures (TK – dashed line and TC – dotted line) are given in Table 4.1.5. 

 TC, (K) ordering
KT , (K) disordering

KT , (K) 

from η(T)  — 811±5 821±5 

from CCHEM (T) — 801±5 811±5 

from M(T) 921±5 — — 

from χ(T) (CMAGN(T)) 911±5 — — 

 

Table 4.1.5. Estimated transition temperatures, TC  and TK 

 

From the configuration obtained in MC simulations at each temperature, it is possible to 

calculate the Fourier transformation and therefore to compute the diffraction patterns. For 

ordered structures at low temperature, the superstructure peaks should appear in addition to the 

structure ones. As known, for L12 structure the superstructure reflections correspond to (100) and 

equivalent positions. Such diffuse intensity patterns can be used for the definition of the short-

range and long-range order parameters. 

In Fig. 4.1.17(a-c) we have presented the result of the Fourier transformation of the 

configurations obtained from MC simulations. These MC simulations have been performed 

starting from the disordered crystal, i.e. init KT T . These results correspond to the calculated 

diffuse intensities, I. The patterns above TK (Fig. 4.1.17a) and TC (Fig. 4.1.17b) can be compared 

to the diffuse intensity pattern of the random alloy (Fig. 4.1.17c). 

  
(a) (b) 
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(c) (d) 

Figure 4.1.17. Fourier transformation of different configurations: 

                         (a)–(b) Diffuse intensities measured at T = 881, 981K, respectively 

                         (c) Diffuse intensity of a random alloy 

                         (d) Thermal variation of the long-range order parameter. 

 

As seen, when the crystal is short-range ordered (at T = 881K and T = 981K) we observe the 

increase of the intensity around the superstructure reflections. Using diffuse intensities we can 

also calculate the long-range order parameter by the following formula: 

2 (100)
(200)

I
I

  ,      (4.1.4) 

where I(100) and I(200) are the diffuse intensities at the superstructure and structure reflections, 

respectively. The result of this calculation is presented in Fig. 4.1.17d and can be compared with 

the long-range order parameter, calculated during simulations using Eq. 4.1.3 (Fig. 4.1.16a). The 

estimated transition temperatures are consistent within the errors.  

 

3) Specific heat and susceptibility 

The plots of the chemical specific heat CHEMC  (shown in Fig. 4.1.18a) look similar to the 

previously described simulations (Fig. 4.1.9) showing a maximum at TK  and a weak hysteresis. 

The magnetic specific heat CMAGN (Fig. 4.1.18a) and zero-field magnetic susceptibility χ 

(Fig. 4.1.18b) also have the expected shape (in comparison with Fig. 4.1.3) with a maximum 

corresponding to TC. Moreover, there is one additional peak on both curves at TK, (this feature is 

clearly visible for the susceptibility curve obtained from the simulation in the ordering case with 

Tinit > TK). It can be explained by the influence of the atomic configuration on the magnetic 

ordering. As both internal magnetic energy and magnetization exhibit a jump at TK, 
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consequently a δ-peak (actually, a maximum due to finite size-effects) should be present on the 

plot of their derivatives, the magnetic specific heat and the susceptibility. The obtained transition 

temperatures are summarized in Table 4.1.5. 

  
(a) (b) 

Figure 4.1.18. Temperature dependences of: 

                        (a) Specific heat (magnetic and chemical) 

                        (b) Zero-field magnetic susceptibility 

 

B.  Interactions within 2 coordination shells (NNN interactions) 

For these simulations the same values of the chemical pair-wise interactions, {1,2}rV 
 , have 

been used (Eq. 4.1.6). Moreover, let us remind that taking into account NNN interactions allows 

reaching a perfectly ordered L12-type structure at very low temperature without antiphase 

boundaries. 

 

1) Internal energy 

As a result of this simulation, the crystal with a perfect L12-type superstructure has been 

obtained (Fig. 4.1.19a). The thermal variation of the total, magnetic and chemical energies are 

shown below in Fig. 4.1.19b. The curves look similar to those obtained in section A. The energy 

variation during the annealing, MAGNE  ( CHEME ), is about 1700K (300K). At the order-disorder 

transition, MAGNE exhibits a jump (as expected and described earlier). Both MAGNE  and CHEME  

reach their ground state level at the end of the simulation, as expected.  
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(a) 

 
(b) 

Figure 4.1.19. (a) Visualization of final configuration.  

                               Red and blue points are Ni and Fe atoms 

                         (b) Internal energy (chemical, magnetic and total) versus temperature 
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2) Order parameters 

The thermal variation of the order parameters (long-range and short-range) are plotted in 

Fig. 4.1.20. The Warren-Cowley short-range order parameter, 1 , will not be shown here 

because it has the expected shape and have been discussed earlier in section 4.1.1.2. Due to the 

formation of a perfect ordered L12-type structure at very low temperature (Fig. 4.1.19a) it is 

possible to use the definition of the long-range chemical parameter η (Eq. 2.13).  

As expected and described in the previous section A, the magnetization exhibits a jump at 

TK connected with a formation (or destruction) of chemical order. Short-range chemical order is 

still present above TK (SROPchem+magn(T = 851K) ≈ 0.39) and even above TC 

(SROPchem+magn(T = 1001K) ≈ 0.3). The values of the SROP are lower than for NN interaction 

results (0.55 and 0.46, respectively, see Fig. 4.1.16a) and, therefore, can influence the value of 

TC. The dashed and dotted lines in figure intersect the temperature axis at TK and TC, respectively 

(Table 4.1.6). 

  
(a) (b) 

Figure 4.1.20. Temperature dependence of: 

                         (a) Order parameters η and SROP, reduced total magnetization M 

                         (b) Reduced magnetizations (total, Fe- and Ni-sublattices) 

 

 TC, (K) KT , (K) 

from η(T)  — 791±5 

from CCHEM(T) — 781±5 

from M(T) 881±5 — 

from χ(T) (CMAGN(T)) 871±5 — 

 

Table 4.1.6. Estimated transition temperatures, TC  and TK 
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3) Specific heat and susceptibility 

The specific heat ( CHEMC and MAGNC ) and the zero-field magnetic susceptibility 

(Fig. 4.1.21) have the same shape as in section A. The estimated transition temperatures are listed 

in Table 4.1.6. 

For reasons of clarity, only the curves for simulations in the ordering case with init KT T  

have been shown. It has to be noted that the additional peaks at TK are not visible here because of 

the non zero temperature step ∆T (they are visible on the curves obtained with init KT T ). 

  
(a) (b) 

Figure 4.1.21. Temperature dependence of: 

                        (a) Specific heat (magnetic and chemical)  

                        (b) Zero-field magnetic susceptibility 

 

C. Discussion 

The latent heat changes from {1} 160rL K   when only NN interactions were considered, 

to {1,2} 135rL K   when interactions were extended to NNN. The comparison of the latent heat is 

shown in Fig. 4.1.22 and Table 4.1.7. 

NN interactions NNN interactions 
 

L, (K) L, (K) 

Chemical interactions ( 0J   ) 138 73.5 

Chemical and magnetic interactions  160 135 

 

Table 4.1.7. Comparison of the latent heat for simulations with NN and NNN interactions 
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(a) (b) 

Figure 4.1.22. Comparison of the thermal variation of the internal energy for: 

                        (a) Simulations with NN interactions  

                        (b) Simulations with NNN interactions 

 

As seen from Fig. 4.1.22b and Table 4.1.7, the magnetic interactions have increased the 

values of the latent heat (as seen, in case of NNN interactions, the latent heat has increased by 

almost a factor 2). 

The transition temperatures are slightly different for both cases and are given in 

Table 4.1.8. The difference in the values is attributed to the chemical short-range order, which is 

weaker in case of NNN interactions, as has been mentioned before in section B. 

NN interactions NNN interactions 
 

TC, (K) ordering
KT , (K) disordering

KT , (K) TC, (K) KT , (K) 

from η(T)  — 811±5 821±5 — 791±5 

from C(T) — 801±5 811±5 — 781±5 

from M(T) 921±5 — — 881±5 — 

from χ(T) (C(T)) 911±5 — — 871±5 — 

 

Table 4.1.8. Comparison of the estimated transition temperatures, TC  and TK, for 

simulations with NN and NNN interactions 

4.1.1.4. Conclusion 

In Fig. 4.1.23 we have given a comparison between chemical (η1) and magnetic (M) order 

parameters for different types of simulations to make more evident the mutual influence of the 

two types of interactions. 
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Figure 4.1.23. Comparison between order parameters for magnetic only, chemical only 

               and simultaneous chemical and magnetic simulations (with NN interactions only) 

 

Short-range chemical order (above TK) obviously influences the magnetic behavior 

(because TK < TC) and, thus, the estimated Curie temperature TC is higher than those determined 

from the simulations neglecting chemical ordering. Reciprocally, the magnetic order above TK 

and TC also influences atomic configuration. 

To summarize the results it is interesting to compare our estimated transition 

temperatures for all three types of simulations with the experimental values (Table 4.1.9).  

TC, (K) 
from χ(T) 

TK, (K) 
from η(T)   

disordered L12 ordered ordering disordering 

Magnetic interactions ( 0V   ) 861±5 1061±5 - - 

Chemical interactions ( 0J   ) - - 636±2.5 646±2.5 

M
C
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(2
5%

 a
t. 

Fe
) 

Chemical and magnetic 

interactions 
911±5 811±5 821±5 

 Experiment (25% at.Fe) [12] 871 954 771 

 

Table 4.1.9. Comparison of the estimated transition temperatures with the experimental 

values (for simulation, only results with NN interactions are presented) 

 
As seen from the table, the estimated Curie temperature from the simulation with 

magnetic and chemical interactions is slightly different from the experimentally obtained value. 
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The chemical short-range order could be responsible for the small deviation of estimated 
chem magn

CT   in comparison with experimental data on rapidly cooled alloy [12] which is supposed 

to be disordered. Besides that, the Curie temperature of the ordered alloy (in particular, the alloy 

was slowly cooled and considered to be ordered [12]) is also lower than estimated from the 

magnetic simulation on the L12 ordered crystal. This can be due to the fact, that during the 

measurements above TK, the alloy may have already some “mixed” ordered/disordered structure 

due to the atomic diffusion processes. Such discrepancies in 21L ordered
CT  and exp

CT  have been 

discussed in section 4.1.1.1. 

The obtained results can be compared to the results Dang et al. [40]. We should recall 

that the difference between our model and the model used in Ref. [40] consists in the application 

of the Heisenberg Hamiltonian to the magnetic subsystem. Therefore, the magnetic interactions 

have been also changed but the chemical interactions have been taken the same. The differences 

in the obtained transition temperatures are summarized in Table 4.1.10. 

 chem magn chem
K KT T   chem magn disordered

C CT T   

Our simulation 175 50 

Rancourt et al. [40] 100 100 

 

Table 4.1.10. Comparison of the obtained results with simulations of Dang et al. [40] 

 
From the table it can be noticed that, in our simulations, the influence of the magnetic order on 

the Kurnakov transition temperature is more pronounced in comparison with Ref. [40]. 

Reciprocally, our estimate of the magnetic transition temperature is less influenced by the 

chemical order than in simulations of Dang et al. We can connect such discrepancies to the 

applied models for magnetic subsystems and their ability to adequately reproduce the spin 

fluctuations. 

Finally, we can mention that although our model is quite simple, it is able to reproduce 

with a reasonable agreement the experimental values of TK and TC, i. e. 100C KT T K  . (In 

Ref. [40], the authors have obtained ≈ 210K.) 

 

4.1.2. Non-stoichiometric case (NN interactions) 

In the previous sections we have simulated the case of the Ni3Fe alloy. Considering only 

NN interactions and using the same parameters (magnetic and chemical) as before we would like 
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to investigate the concentration effect on the transition temperatures and compare our results 

with the phase diagram.  

In general, magnetic and chemical interaction parameters are concentration dependent. 

Also, temperature variations affect inter-atomic distances and so produce variations of the 

interaction parameters. In our model we have neglected these dependencies and postulated 

V const   and J const   in the studied concentration range, i.e. [0.15;0.35]Fec  . The 

concentration dependence of the Curie temperature TC and of the order-disorder transition 

temperature TK are presented in Fig. 4.1.24. On the presented plot the uncertainties have been 

taken equal to 
2
T . The experimentally obtained phase diagram is superimposed to give more 

evident comparison.  

When both types of interactions are included in the simulations, the shapes of the 

concentration variation of TC and TK are in a good agreement with the experimental phase 

diagram, although our estimates of TC and TK are slightly higher than exp
CT  and exp

KT . The 

discrepancies can be explained by the simplicity of our model and also by the possible 

experimental errors (due to the difficulties in reaching stable ordered configuration). 

 
Figure 4.1.24. Comparison of the experimental phase diagram with simulated MC results 

                               (black continuous  line – TK, black dash-dotted line – TC)  
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It is worth noting that magnetic interactions alone produce estimates of TC close to the 

experimental data but the shape of the experimental curve is not well reproduced and TC seems 

to be overestimated when cNi increases. This imperfection is eliminated when one considers 

chemical interactions. A better agreement in TC would be probably obtained by considering 

magnetic interactions of smaller magnitude. The shapes of the two curves ( ( )chem
K FeT c  and 

( )chem magn
K FeT c ) are similar and seem to peak at cFe ≈ 0.26. Theoretically, when magnetism of 

constituents is ignored, TK(cFe) should be symmetrical with respect to cFe = 0.25 [88-90,100] due 

to the form of the chemical Hamiltonian. When magnetism is not neglected this maxima is 

shifted towards a higher value of cFe (≈ 0.26) because the form of the Hamiltonian is modified. 

This asymmetry has been previously shown for Ni-Fe and for other systems (for example, Fe-

Co) [50-51,100-104,108].  

Our model quite well reproduces the behavior of Ni3Fe for concentrations close to 

stoichiometry. Let us mention that our numerical data are in reasonable agreement with 

experimental one only in the range [0.23;0.3]Fec  . With addition of either Ni or Fe we move to 

the regions of coexistence of several phases, i.e. L12+disordered and L12+L10. Therefore the 

discussion of the reliability of the model becomes more complex and our estimates of the 

transition temperatures become very approximate. For example we have faced such problem for 

cFe = 0.15 or 0.20. 

 
Figure 4.1.25. Temperature dependence of the chemical specific heat for Ni85Fe15 

 

For such compositions the estimation of TK is very rough, due to a broad peak in the 

chemical specific heat curves (Fig. 4.1.25), and a small magnitude of the jump in the long-range 

order parameter. We can refer this problem to the limitations that we have imposed before 

(constant values of interaction parameters, for example.). And we suspect that it will be possible 
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to overcome such difficulties and reproduce more closely the experimental phase diagram by 

removing these limitations. 

It is also possible to compare the reduced total magnetization curves for different cFe 

(Fig. 4.1.26) with Fig. 1.7. Although, we have investigated only the Ni3Fe region, it can be 

already seen that as the Fe-concentration is increased, the deviation of the curves from a 

universal one becomes more evident. Thus as was mentioned before, the law of corresponding 

states is not obeyed.  

  
(a) (b) 

Figure  4.1.26. Temperature dependence of the reduced total magnetization 

                           for different cFe : (a) when Vαβ=0 and (b) when Vαβ≠0 

In Fig. 4.1.26b it is seen that with changing the Fe-concentration from stoichiometry the 

jump in the magnetization is decreased and it is negligible already for cFe = 0.15 and 0.35. This is 

connected to the previously mentioned change in the value of the jump of the internal magnetic 

energy and the chemical long-range order. 

 

4.1.3. Influence of an external magnetic field on TK (NN interactions) 

It is interesting to investigate the influence of an external magnetic field, B, on the 

chemical ordering process, since magnetic ordering influences chemical ordering. For this 

purpose we have chosen the stoichiometric Ni3Fe alloy (25% at. Fe). 

Due to the form of the Hamiltonian (Eq. 4.1.2), the orientation of the applied field should 

have no influence on the results. This has been checked by performing several simulations with 

different orientations. 

The parameters of the simulations were taken the same as for previously presented 

simulations with both magnetic and chemical (only NN) interactions. To improve the estimation 
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of TK, the temperature step was chosen equal to ∆T = 5K. The magnitude of the external 

magnetic induction B was chosen in interval [0; 1500] T. Such high values are impossible to 

reach experimentally, but such strong fields were applied in order to make more visible the 

change in the ordering temperature TK. The field dependence of the order-disorder transition 

temperature, TK, is drawn in Fig. 4.1.27. 

 
Figure 4.1.27. Order-disorder transition temperature (TK)  

                         versus external magnetic field (black line) 

 

The numerical results can be well fitted by the 2rd order polynom: 
2(B) B B ;KT A C D          (4.1.7) 

with   -1 

5 -2

804.6  
0.068  

1.91 10   

A K
C K T
D K T


  
    

. 

 

The external magnetic field increases the order-disorder transition temperature. This can 

be explained in a following way: as the field induces ferromagnetic alignment of the spins, it has 

the same effect as ferromagnetic interactions, i.e. it increases the order-disorder transition 

temperature, as seen previously (when results of only chemical and simultaneous chemical and 

magnetic simulations have been compared). Consequently, one should admit that an applied field 

could be used in principle in order to make easier the achieving of the equilibrium ordered state.  
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4.2. Mean-field and Önsager-kinetic simulation 

The kinetics of the precipitation in Ni-Fe alloys was investigated using the Önsager-type 

microdiffusion equation (Eq. 3.40). The expression for the free energy was obtained by means of 

molecular field and mean-field approaches. 

In this part we will present the results of simulation of the kinetics in Ni-Fe alloys and in 

particular, in the Ni-rich part of the phase diagram (Fig. 1.1) where the ordered L12 phase 

coexists with the disordered fcc γ phase. To evaluate the driving force of fcc→L12 

transformation, it is necessary to fix the interaction parameters. That is why we will start this 

section with the discussion about the influence of the interaction parameters on the miscibility 

gap on phase diagram. Then, the results of the kinetic simulations, i.e. the microstructural 

evolution and different statistical characteristics of the precipitation process will be given. Also, 

the influence of magnetism on the alloy kinetics is investigated. 

 

4.2.1. Calculation of the interaction parameters 

To calculate the free energy of the Ni-Fe alloy it is necessary to define the interaction 

parameters. We will call “paramagnetic”, the interaction parameters which does not include the 

magnetic contribution, i.e. represent only chemical interactions. Both paramagnetic (chemical) 

and magnetic interaction parameters should be defined. 

The interaction parameters were defined within the Screened Generalized Perturbation 

Method (SGPM) [137]. They were determined within the framework of the Density Functional 

Theory (DFT) using the Exact Muffin-Tin Orbital Method (EMTO). For the exchange 

correlation function the local density approximation (LDA) was employed. The magnetic 

interactions were calculated using the Disordered Local Moments model (DLM) [127].  

We have considered concentration independent interaction parameters which were 

calculated for cFe = 0.25. The values of the interaction parameters for the first 20 coordination 

shells in direct space (R-space) are given in Table 4.2.1, where s indicates the number of the 

coordination shell, Z is the coordination number for a given coordination shell, wprm(r) is the 

value of paramagnetic “mixing” interactions and JFe-Fe(r), JNi-Fe(r) and JNi-Ni(r) are the magnetic 

interactions for Fe-Fe, Ni-Fe and Ni-Ni pairs, respectively. As can be seen from the table, in the 

data obtained from ab initio calculations the magnetic interactions between Fe-Fe pairs are 

positive for the first two coordination shells. This fact is opposite to the assumption about the 

antiferromagnetic interaction in the γ-Fe which was used in previously shown MC simulations, 

where it was considered that JFe-Fe < 0 in the 1st coordination shell. 
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s Z p1 p2 p3 wprm(r), [eV] JFe-Fe(r), [eV] JNi-Fe(r), [eV] JNi-Ni(r), [eV] 

1 12 1 1 0 0,042982083 0,00766741 0,008289 0,001827 

2 6 2 0 0 -0,007344411 0,00793427 0,000581 -0,00028 

3 24 2 1 1 0,005460008 0,00091667 0,00114 0,000266 

4 12 2 2 0 0,004634135 -0,00235316 -0,00062 -3,3E-05 

5 24 3 1 0 0,001021796 0,00032723 0,000172 1,78E-05 

6 8 2 2 2 -0,001311599 0,00079733 0,000119 -3,9E-05 

7 48 3 1 2 0,00110343 -0,00050419 7,46E-06 5,09E-05 

8 6 4 0 0 0,000306131 4,0019E-05 5,66E-05 1,18E-05 

9 24 4 1 1 0,000190481 7,1834E-05 2,39E-05 2,05E-06 

10 12 3 3 0 -0,00229938 0,00074559 -5,6E-05 -8,1E-05 

11 24 4 2 0 0,000439467 -0,00021619 8,56E-06 1,63E-05 

12 24 3 3 2 3,80962E-05 5,8792E-05 -6E-06 -1,1E-05 

13 24 4 2 2 0,000238102 0,0001801 6,65E-05 5,23E-06 

14 24 5 1 0 9,25194E-05 -3,6948E-05 1,1E-05 8,49E-06 

15 48 4 3 1 -0,000103404 -0,00019392 -9,8E-05 -8,4E-06 

16 48 5 2 1 2,17693E-05 5,3662E-05 6,3E-06 -5,1E-06 

17 12 4 4 0 -0,000287082 0,00023024 0,000138 1,74E-05 

18 24 4 3 3 -6,93896E-05 6,5096E-05 4,12E-06 -6E-06 

19 24 5 3 0 3,67357E-05 -7,1893E-05 -2,2E-05 2,41E-06 

20 6 6 0 0 -5,44232E-06 9,4299E-06 4,46E-06 8,24E-07 
 

Table 4.2.1. Ab initio chemical, wprm(r), and magnetic, Jα-β(r), interactions in R-space 

for the first 20 coordination shells 

 

In Fig. 4.2.1 the data from Table 4.2.1 is represented. As can be seen, the oscillating 

character of the interaction parameters is observed. It can be noticed that starting from the 6th 

coordination shell, the amplitude of these oscillations becomes less pronounced for both 

chemical and magnetic interactions. The decay of the magnetic interactions appears to be slower 

than that of the chemical one, and especially this is true for the Fe-Fe interaction, JFe-Fe(r), which 

contribution is seen to be important until 13th coordination shell. 

 



 - 101 - 

 
Figure 4.2.1. Chemical wprm(r), and magnetic, Jα-β(r), interaction parameters in R-space 

 

To calculate the free energy in mean-field approximation, it is necessary to evaluate the 

interaction parameters in the reciprocal space (k-space). Using Eq. 3.16 the calculation of the 

interaction parameters in the reciprocal space can be performed. The result of this calculation is 

given in Fig. 4.2.2 and Table 4.2.2. 

 
Figure 4.2.2. Fourier components of chemical, wprm(k), and magnetic, Jα-β(k), 

interaction parameters 
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It is known that stable L12-type superstructure is generated by wave vectors which 

correspond to the X-point of the reciprocal space. As seen from Fig. 4.2.2, the ab initio data 

reproduce quite well the L12 structure and give a minimum of ( )prmw k  at X-point. In Table 4.2.2 

the values for some high-symmetry points are listed. These energetic parameters will be used 

further in our calculations. 

k ( )prmw k , [eV] ( )Fe FeJ  k , [eV] ( )Fe NiJ  k , [eV] ( )Ni NiJ  k , [eV] 

Γ (0 0 0) 0,715396 0,129901 0,127327 0,027874 
X (1 0 0) -0,21757 -0,006047 -0,041347 -0,011407 

L (1/2 1/2 1/2) 0,103761 -0,060765 -0,008519 0,001605 
W (1 1/2 0) -0,132006 -0,014043 -0,019353 -0,004021 

 

Table 4.2.2. Ab initio chemical ( )prmw k , and magnetic, ( )J  k , interactions in k-space 

 

4.2.2. Thermodynamic description of Ni-Fe alloys 

In general case, the free energy of a system is F U TS  . In case when studied system 

exhibits both atomic (chemical) and magnetic ordering, the presented expression should include 

both chemical and magnetic contributions: 

( ) ( )at magn at magn at magnF F F U U T S S        (4.2.1) 

Using mean-field approach and SCW approximation, for a binary A-B substitutianal 

alloy the Uat and Sat terms were defined from Eq. 3.15. The magnetic entropy Smagn for an 

arbitrary spin S is calculated by means of molecular mean-field approach and is given by 

Eq. 3.22. As the entropy is an additive quantity, for a system of 2 magnetic components (A and 

B) it is possible to write: A B
magn magn magnS S S  . The internal magnetic energy Umagn is defined by a 

Heisenberg Hamiltonian (Eq. 2.1) which in case of magnetic alloy can be written in a following 

form: 

, ,

1 ( ) ( ) ( ) ( ) ( )
2magnH J S S    

 

 


   
r r

r r r r r r ,   (4.2.2) 

where ( ) ( ( ))c c  r r  is the occupation variable defined in (Eq. 3.2) and ( ) ( ( ))S S  r r  is the 

variable of spin of a sort α (β). Averaging of this Hamiltonian gives the internal magnetic energy 

Umagn (see Appendix 5.2.2 for the derivation of the formula): 
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   ,    (4.2.3) 
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where σFe(Ni) represents the reduced magnetization of the Fe (Ni) sublattice. Using the SCW 

method the free energy per atom of the L12 ordered phase can be obtained (see Appendix 5.2.2): 
2 2 2 2 2 2 2

2 2 2 2 2

( ) ( ) ( )(1 ) 2 ( ) (1 )
1

32 ( ) ( ) ( ) 2 ( )
16
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The equilibrium values of the order parameters (η, σFe, σNi) can be deduced by the free 

energy minimization: 0,  0
Fe

F F
 
 

 
 

 and 0
Ni

F






. 

For the system without magnetic interactions ( 0J   ) this condition gives the following 

expression for the equilibrium long-range order parameter eq : 

31
( ) 4 4

ln
31

4 4
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Fe Fe eq
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c c
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k T
c c
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  

k
,   (4.2.5a) 

The jump of the order parameter ∆η at the 1st order phase transition and the temperature of the 

transition can be found from the conditions:  
( )( 0)

0

eq

eq

disorder orderF F

F

 

 





 

 

     (4.2.5b) 

In general, the variation of the long-range order parameter η for 1st order phase transition 

exhibits a shape given in Fig. 4.2.3. In this figure, the x-axis represents the reduced temperature 

* B

prm

k T
w

  . As seen from Fig. 4.2.3, the part a – b on the curve represents equilibrium ordered 

states of the alloy, the part b – c encloses the domain of coexistence of ordered and disordered 

phases, and c – d corresponds to the maximum of the free energy F (Eq. 3.1 or Eq. 4.2.4) and 

therefore the states with such values of η can not exist. 

    (4.2.4) 
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Figure 4.2.3. Thermal variation of the long-range order parameter η  

                                        for 1st order phase transition  

 

The ordering instability temperatures which are situated at points b and c will be called ordering
KT  

and disordering
KT , respectively. Such notation is used for the comparison of estimated transition 

temperatures with MC results. Thus, ordering
KT  is obtained when the simulation has started from 

the fully disordered state at high temperature and disordering
KT  - when the alloy was fully ordered at 

low temperature at the beginning of the simulation. Indeed, the true transition temperature TK is 

located between these two temperatures, at point f, and is found from Eq. 4.2.5b. Therefore, the 

interval b –  f – c corresponds to a two phases coexistence region. At the interval b - f  the free 

energy of the ordered state exceeds the free energy of the disordered state ( ( ) ( 0)eq
order disorderF F    ) 

and the interval f - c corresponds to the opposite condition ( ) ( 0)eq
order disorderF F    . 

Using the interaction parameters discussed in the previous section 4.2.1, it is possible to 

calculate the phase transition temperatures (both TK and TC). As a reference we have taken the 

concentration 27% at. Fe and compared obtained transition temperatures with those given by the 

experimental phase diagram (Table 4.2.3). 

 

 Phase diagram Our calculation with ab initio data 

TK, (K) 789 570 

TC, (K) 881 717 

 

Table 4.2.3. TK and TC according to phase diagram and to ab initio data for cFe = 0.27 
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As seen, the transition temperatures obtained using ab initio interaction parameters are 

different from the phase diagram data. To fit our result to the experimental values of TK and TC, 

we have scaled the interaction parameters: 

 

( ) ( )new
prm prmw w k k   1.42418773...   

( ) ( )newJ J     k k   1.228731...   

 

The new interaction parameters after rescaling are reported in Table 4.2.4. 

 

k ( )prmw k , [eV] ( )Fe FeJ  k , [eV] ( )Fe NiJ  k , [eV] ( )Ni NiJ  k , [eV] 

Γ (0 0 0) 1,01886 0,15961339 0,156450632 0,034249648 
X (1 0 0) -0,30986 -0,00743013636 -0,0508043407 -0,0140161345 

L (1/2 1/2 1/2) 0,14778 -0,0746638392 -0,0104675594 0,0019721133 
W (1 1/2 0) -0,188 -0,0172550694 -0,023779631 -0,00494072735 

 

Table 4.2.4. Rescaled interaction parameters in k-space 

 

This new data will be used in our further calculations. As the interaction parameters are 

considered to be independent of concentration and temperature, we can not expect a full 

agreement with the experimental phase diagram. 

Using the new set of interaction parameters, the thermal variation of the long-range order 

parameter η can be calculated by Eq. 4.2.5. For the stoichiometric case (25% at. Fe) it is given in 

Fig. 4.2.4. This result can be compared to the literature data [89-90]. Also, we have provided 

results for cFe = 0.25 for future comparison with MC simulation results. 
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Figure 4.2.4. Thermal variation of the long-range order parameter η for cFe = 0.25  

                               when magnetic interactions are neglected ( ( ) 0J  k ) 

                (red line – analytical solution of Eq. 4.25, black line – numerical approximation) 

 

As expected for a 1st order phase transitions, there is a domain of coexistence of high 

temperature disordered fcc phase and ordered L12 phase (shaded region on Fig. 4.2.4). The 

estimated order-disorder transition temperature, order
KT  (due to the simulation conditions), is equal 

to 738K and the long-range order parameter jump at order-disorder transition temperature is 

∆η ≈ 0.46. 

For chemically disordered system (η = 0) the variation of σFe and σNi with temperature 

can be calculated using Eq. 4.2.4 from the solution of the following system of equations: 
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0 0

0 0

 

 
  (4.2.6) 

The magnetization curves are plotted in Fig. 4.2.5. From this plot it is seen that the Curie 

temperature is equal to 836K. If we compare this plot with the result of the Monte-Carlo 

simulation (Fig. 4.1.2) we will notice the difference in the Ni-sublattice magnetization. This can 

be explained by the difference in the values of the exchange parameters. As seen from 

Table 4.2.4, ( )Ni NiJ  k  has the smallest value (and, in particular, is much smaller that ( )Fe FeJ  k ). 

The Curie temperature corresponds to disorder
CT , i.e. to the Curie temperature defined for a fully 

disordered alloy. 
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Figure 4.2.5. Temperature dependence of the reduced magnetizations 

                                      of Fe- and Ni sublattices when η=0 

 

When both magnetic and chemical interactions are considered, the minimization of free 

energy (Eq. 4.2.4) and search of the equilibrium order parameters ( ,  ,  Fe Ni   ) becomes more 

complex and is expressed through the following system of transcendental equations (see 

Appendix 5.2.3): 
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To solve Eqs. 4.2.6-4.2.7 the modified globally converging Newton method [128] was applied. 

In Fig. 4.2.6 the equilibrium parameters obtained from the solution of Eq. 4.2.7 are presented. 

From Fig. 4.2.6 it is seen that chemical ordering influences the shape of the magnetization curves 

and at the order-disorder transition temperature they exhibit a jump. Similar behavior was also 

obtained in the previous MC simulations (Fig. 4.1.16). Magnetic transition takes place at the 

same temperature as in the case of solution of Eq. 4.2.6. This can be explained by the absence of 

the chemical order above TK (η = 0 and short-range order is not considered in the mean-field 

approximation). In its turn, the magnetic ordering enhances the order-disorder transition 

temperature from 738K to 759K.  

(4.2.7) 
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Figure 4.2.6. Temperature dependence of the long-range order parameter η, 

                           and reduced magnetizations of Fe- and Ni sublattices 

 

Solving the system Eq. 4.2.7 for different concentrations it is possible to plot the 

concentration dependence of the free energy at given temperature. Using these curves for a 

number of temperatures it is possible to define the miscibility gap on the phase diagram and the 

concentrations of the disordered and ordered phases, disordered
Fec  and ordered

Fec . The results obtained 

using this procedure are presented in Fig. 4.2.7. 

 
Figure 4.2.7. Ni-rich part of the experimental phase diagram (solid black line)  

                       in comparison with theoretically determined using ab initio data 

                                     (solid blue line - TC and solid red line – TK) 
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As was mentioned above, the values of the interaction parameters were considered 

constant. Thus, the agreement with the experimental phase diagram is not enough satisfactory, as 

was expected. However, let us remark that our goal was to understand the influence of the 

magnetic interactions on the ordering kinetics at a given temperature. The difference between the 

calculated and the experimental phase diagrams induces only the difference in the volume 

fractions of coexisting phases. 

 

Comparison with MC results 

In this section the results obtained from the mean-field theory and those from MC 

simulations will be compared. In Fig. 4.2.8 the comparative plots for 3 types of simulations: 

including chemical, magnetic and both interactions are given. The transition temperatures 

obtained from each type of simulations, either by mean-field or MC method, are given in 

Table 4.2.5 in comparison with the experimental data. 

  
(a) (b) 

 

Figure 4.2.8. Comparison between MC and 

                     mean-field results: 

                  (a) η(T), ( ( ) 0J  k ) 

                (b) σFe(T) and σNi(T), ( ( ) 0prmw k ) 

                (c) η(T), σFe(T) and σNi(T) 

(c)  
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disordering
KT , (K) disorder

CT , (K) 
 

chemical chemical+magnetic magnetic chemical+magnetic 

Monte-Carlo 646±2.5 821±5 861±5 911±5 

Mean-field 738 759 836 

Experiment [12] 771 871 

 

Table 4.2.5. Comparison between MC, mean-field and experimental results for cFe=0.25 

 

As can be seen from Fig. 4.2.8, the thermal variation of the different thermodynamic 

quantities is similar for both MC and mean-field simulations. However, the difference in the 

obtained transition temperatures was expected due to the interaction parameters. The order-

disorder transition temperature obtained with mean-field simulation is closer to the experimental 

value. When magnetic interactions are not considered, in both simulations the Kurnakov 

temperature is lower than for simulations with magnetic interactions. The difference is more 

pronounced for MC simulations (≈ 170K) than for mean-field simulations (≈ 20K) due to the fact 

that in MC simulations the short-range order and fluctuations have been taken into account. 

Qualitatively the magnetization plots for both simulations are similar, they both exhibit a jump at 

the order-disorder transition and sub-lattice magnetizations seem to behave alike – the decay of 

Ni-sublattice magnetization is faster than for Fe-subllatice. As in Monte Carlo simulations the 

chemical short-range order is considered, the estimated Curie temperature is influenced by the 

chemical ordering. In mean-field calculation the short-range order interactions are neglected and, 

as a result, the unique value of TC was obtained after solution of Eqs. 4.2.6-4.2.7 due to the 

absence of the chemical long-range order parameter. 

 

4.2.3. Simulations of the kinetics in Ni-Fe alloy 

It is well known that after quenching from high temperature the alloys are in metastable 

disordered state. In this section we will investigate the kinetic path in Ni-Fe alloy from the 

metastable disordered phase to a two-phase state where the L12 ordered phase coexists with the 

disordered fcc phase. 

In Fig. 4.2.9 the Ni-rich part of phase diagram is given together with the marked alloy 

compositions (blue points) chosen for the simulation of the precipitation kinetics and phase 

coexistence intervals (red points) at the given temperatures. 
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Figure 4.2.9. Ni-rich part of the experimental phase diagram 

(blue points – mean concentration of simulated alloys, red points – equilibrium 

concentrations of ordered and disordered phases for T = 650K and T = 716K)  

In order to proceed, we have chosen two isothermal sections on the phase diagram: at 

650K and at 716K. The first one was chosen because the phase coexistence interval is quite wide, 

and the second – because we wanted to see the behavior of system close to the stoichiometric 

concentration for further comparisons with MC results. All simulations were performed on the 

lattice with 1024×1024 sites which is approximately equal to 190×190 nm2. The initial 

configuration corresponds to the supersaturated matrix with 200 randomly distributed nuclei of 

ordered L12 phase. The concentration and the order parameter of the nuclei are equal to the 

respective equilibrium values at the chosen temperature. The Önsager equation was solved by 

the explicit Euler technique. 

 

4.2.3.1. Relation between simulation and real time 

As we are interested in the diffusion of the solutes in the matrix, the Önsager coefficient 

L1 has to be related with the diffusion coefficient D. In our simulation for convenience the 

Önsager coefficient was fixed to a constant value * -1 -1
1 1 meV sL    and, therefore, the results of 

simulations are given in arbitrary time units *t . However, it is possible to estimate a real time by 

using the diffusion coefficient of Fe in Ni. It was mentioned earlier in Chapter 3 that the Önsager 

coefficient is connected to the diffusion coefficient, D (Eq. 3.43): 

1
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B
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DL
k Ta w

c c


 

  
0k

 



 - 112 - 

where 0( )w k  is the Fourier transform of the interaction energy (paramagnetic or total) at k = 0, 

afcc is the lattice parameter of a fcc solid solution ( 3 3.5338Ni Fe
fcca   Å) and c is the matrix 

concentration. The first term in the denominator is due to the interaction between solutes and 

second is the entropic term which corresponds to the Brownian motion of Fe atoms without 

interactions between them. 

The diffusion coefficient can be calculated using the Arrhenius equation:  

0 exp( )AED D
R T

 


 

where D0 is the frequency factor, EA is the activation energy and R is the gas constant 

( A BR N k ). According to Ref. [129], 4 2 -1
0 4.14 10  m sD     and 3 -1287.7 10  J molAE    . Using 

this data the diffusion coefficient D for two chosen temperatures is presented in Table 4.2.6. 

T, (K) D, (m2∙s-1) 

650 3.06817×10-27 

716 4.15896×10-25 

 

Table 4.2.6. Diffusion coefficients of Fe in Ni for the given temperatures 

The Önsager coefficient (L1) and real physical time (
*

*1

1

real Lt t
L

 ) for a given mean 

concentration are presented in Table 4.2.7 together with the calculated unit of the real time step 

( * realt t ). 

T, (K) magnetism cFe w(0), (meV) L1, (meV-1∙s-1) treal, (hours) 

- 1018.86 1.78052×10-11 1.56×107 

+ 
0.192 

954.779094 1.8672×10-11 1.49×107 

- 1018.86 1.80321×10-11 1.54×107 
650 

+ 
0.205 

924.836451 1.93687×10-11 1.43×107 

- 1018.86 2.43589×10-9 1.14×105 

+ 
0.23 

942.564196 2.57985×10-9 1.08×105 

- 1018.86 2.45406×10-9 1.13×105 
716 

+ 
0.24 

926.939653 2.63235×10-9 1.06×105 

 

Table 4.2.7. Estimation of the real time associated with the kinetic simulations 
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It should be mentioned that the time of nucleation was disregarded due to the fact that the 

nuclei of the ordered phase were embedded in the initial matrix configuration. Therefore, the 

calculated physical time is underestimated and characterizes only regimes of growth and 

coarsening. 

As we have investigated the kinetics at low temperatures, it was expected that the real 

time of physical ageing will be so long. From Table 4.2.7 we can conclude that the presence of 

magnetism accelerates the kinetic process. Also, the increase of the matrix concentration results 

in faster kinetics. 

 

4.2.3.2. Simulations at 650K 

Free energy of Ni3Fe system was calculated using Eq. 4.2.4 with ab initio interaction 

parameters (Table. 4.2.4). The shape of the free energy at temperature 650K is presented in 

Fig. 4.2.10a. It is also seen that the magnetic interactions extend the domain of coexistence of the 

ordered and disordered phases. At 650K the concentrations of the disordered and ordered phases 

in ferromagnetic state are 0.18 and 0.23, respectively and in the paramagnetic state: 0.2 and 

0.225. The concentration variation of the equilibrium order parameters in ferromagnetic and 

paramagnetic phases are plotted in Fig. 4.2.10b. From this plot it can be noticed that the 

magnetic interactions increase the critical concentration where the ordering structure appears. 

  
(a) (b) 

Figure 4.2.10. Isothermal section at T = 650K of: 

                        (a) Free energy  

                        (b) Equilibrium long-range order parameters  

 

As seen, magnetic order appears at the concentration of 16% at. Fe. This value does not 

correspond to the value given by the phase diagram (Fig. 4.2.9). Indeed, according to it, the 
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magnetic order at this temperature appears already at 1% at. Fe and, also, pure Ni is 

ferromagnetic. These discrepancies should be due to the interaction parameters, used in this 

simulation. In fact, such behavior of the magnetization is expected, because as seen from 

Table 4.2.1, all three magnetic exchange interactions are ferromagnetic (in particular, JFe-Fe) and 

therefore increase of the Fe-concentration will result in the magnetization increase.  

 

A. Simulation of the precipitation kinetics in Ni-Fe without magnetic interactions 

For these simulations we have used only chemical interaction parameters from 

Table. 4.2.4. The algorithm of kinetic simulation will be described in details in Appendix 5.3. As 

the input data for simulation we will use the interaction parameters, extracted for 4 coordination 

shells in real space. This was done by the solution of the system (Eq. 4.2.8) which is obtained 

from Eq. 3.16 for points (Γ, X, L, W) of the reciprocal space. 

1 2 3 4

1 2 3 4

2 4

1 2 3 4

( ) 12 6 24 12
( ) 4 6 8 12
( ) 6 12
( ) 4 2 8 4

V w w w w
V X w w w w
V L w w
V W w w w w

    
     
   
     

    (4.2.8) 

Thus, we will obtain the following values for the chemical interaction parameters:  

 wprm(r), (meV) 

1 58.865328 
2 -10.45467 
3 12.089796 
4 7.0872625 

 

Table 4.2.8. Chemical interaction parameters, wprm(r). 

 

For this simulation we have chosen the concentration cFe = 0.192 which is inside domain 

of the coexistence of disordered and ordered phases. The microstructure evolution for this alloy 

is presented in Fig. 4.2.11. The time step for this and next simulations will be taken equal to 
51 10t    . 
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(a) (b) (c) (d) 

Figure 4.2.11. Microstructure evolution for cFe = 0.192 at T = 650K when 0J    at time: 

                 (a) * 0 (a.u.)t  ; (b) * 0.012 (a.u.)t  ; (c) * 0.03 (a.u.)t  ; (d) * 0.06 (a.u.)t   

 

It is seen that initially embedded nuclei of the ordered phase (white color) are not stable 

and dissolve progressively in the disordered matrix (black color). At the time * 0.1 (a.u.)t   no 

more precipitates are observed in the system. The time evolution of the volume fraction of the 

ordered phase is shown in Fig. 4.2.12. As can be seen, the precipitates volume fraction goes to 0 

very fast. This fact shows that the ordered L12 phase is unstable at this temperature and 

concentration. 

 
Figure 4.2.12. The time evolution of the volume fraction of the ordered phase  

                              (for cFe = 0.192 at T = 650K when 0J   ) 

 

Other characteristic of the precipitation kinetics is the distribution of the size of 

precipitates. In Fig. 4.2.13 the size distribution obtained in our simulation at * 0.006 (a.u.)t   is 

presented in comparison with the theoretical LSW distribution. 
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Fig. 4.2.13. The size distribution function at * 0.006 (a.u.)t   

                   (cFe = 0.192 at T = 650K when 0J   ) 

 

The maximum of the distribution function obtained in our simulation is shifted from the 

theoretical one towards the smaller size of precipitates. The width of both distribution functions 

is comparable at the beginning of the simulation but the simulation curve is more symmetrical 

than the theoretical LSW curve. In general, the agreement with LSW is satisfactory due to the 

low volume fraction. 

It should be also mentioned that as we introduce the ordered nuclei at the beginning of 

our simulation artificially, it can influence the shape of the distribution function. 

 

B. Simulation of the precipitation kinetics in Ni-Fe with magnetic interactions 

To include magnetic interactions we assumed that sublattice magnetizations ( ,Ni Fe  ) do 

not change during kinetic process and postulate their values at cFe = 0.192 as a constant. Thus, 

the formulation of the Önsager-type kinetic equation did not change from Eq. 3.39 and we 

included the magnetic contribution through the energetic term. The interaction term will change 

according to the following expression: 

  2 2 2 2( ) ( ) ( ) 2 ( )total prm Fe Fe Fe Fe Ni Ni Ni Ni Fe Ni Fe Ni Fe Niw w J s J s J s s        k k k k k    , ( 4.2.9) 

where sFe and sNi are the spins of Fe and Ni, respectively. Using the equilibrium values of 

magnetization and data from Table 4.2.4, after solution of Eq. 4.2.8, the following interaction 

parameters, wtotal(r), were obtained (Table 4.2.9): 
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 wtotal (r), (meV) 

1 54.58669 
2 -15,4978 
3 12.37248 
4 7.982156 

 

Table 4.2.9. Total interaction parameters, wtotal(r), for cFe = 0.192 

 

For calculation we have used 0.50537957Fe   and 0.23716079Ni  .  

The simulation was done with the same conditions but at longer ageing times (till 
* 16 (a.u.)t  ). The statistical results were obtained by the averaging over two simulations with 

different initial precipitates sizes (r = 5 and r = 7).  

In this simulation the ordered phase became stable and precipitates followed the stages of 

growth and coarsening. In Fig. 4.2.14 the microstructure evolution is shown. 

    
(a) (b) (c) (d) 

Figure 4.2.14. Microstructure evolution for cFe = 0.192 at T = 650K at time: 

                     (a) * 0 (a.u.)t  ; (b) * 4 (a.u.)t  ; (c) * 8 (a.u.)t  ; (d) * 16 (a.u.)t   

 

From the presented picture it is seen that precipitates grow in the spherical form. At the 

time * 16 (a.u.)t   the average radius is approximately 7 nm and is twice larger than the average 

radius at * 1 (a.u.)t  . As the lattice misfit between L12 and disordered phases is very small [12], 

the effect of elastic interactions is negligible and therefore can be excluded from further 

discussions. The growth stage at * 2 (a.u.)t   is followed by the stage of coarsening and the 

volume fraction evolves towards the equilibrium value equal to 0.2 as can be seen from 

Fig. 4.2.15. From Fig. 4.2.15a we can also estimate the coarsening rate k (in arbitrary units): 

4380.5k  . Unfortunately, we are not able to make a comparison with any experimental data. 

We can also conclude that the cubic law predicted by LSW theory is valid in this case. 
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(a) (b) 

Figure 4.2.15. The statistical characteristics for simulation for cFe = 0.192 at T = 650K: 

                        (a) The cube of the average radius (black line) and its linear fit (red line) 

                        (b) The volume fraction of the ordered phase 

As can be noticed from Fig. 4.2.15b, the equilibrium constant volume fraction still has 

not been reached at the final time of the simulation. As can be seen from Fig. 4.2.16, the local 

concentration of the ordered precipitates cFe reached at the end of simulation approaches the 

value of 0.21 and, therefore, still has not reached the equilibrium concentration of the ordered 

phase which is equal to 0.23. We can attribute this to the fact, that in this simulation the 

magnetizations, which will obviously influence the results, have been considered constant while 

in mean-field calculation, from which the equilibrium concentration of the ordered phase was 

evaluated, the change of the magnetization with concentration and temperature was included. 

 
Figure 4.2.16. Microstructure and corresponding concentration profile 

                         (at * 16 (a.u.)t   for cFe = 0.192 and T = 650K) 
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(a) (b) 

Figure 4.2.17. The size distribution function for cFe = 0.192 and T = 650K: 

                                        (a) * 0.4 (a.u.)t  ; (b) * 4 (a.u.)t   

 

As seen from Fig. 4.2.17, the size distribution of precipitates varies with time. At * 0.4 (a.u.)t   

(the volume fraction ≈ 0.1) it almost coincides with the theoretical one. At that time the 

distribution is symmetrical. Then the width of the distribution becomes larger as the volume 

fraction increases and the curve is not symmetrical anymore. The center of the distribution also 

does not correspond to the theoretical LSW curve. These discrepancies can be explained by the 

limitations used in LSW theory and the low volume fraction, in particular.  

Comparing these results to the section A it is visible that magnetism influences the 

stability of the ordered L12 phase, in case of absence of magnetic interactions, the ordered phase 

completely disappear. Thus, the important role of magnetic interactions is justified. 

 

C. Simulations of the precipitation kinetics in Ni-Fe alloys for different concentrations 

We have also done the simulation with different concentration of the matrix – going from 

cFe = 0.192 closer to the disordered phase (cFe = 0.185) and to the ordered phase (cFe = 0.205), 

where the chemical long-range order parameter appears for both paramagnetic and magnetic 

states.  

For the first case, the disappearance of the ordered nuclei was faster than for cFe = 0.192. 

In spite of small magnetization values for this concentration, the magnetic interactions increased 

the driving force of the phase transformation. The ordered phase dissolves in the matrix at very 

early times and already at * 0.04 (a.u.)t   it completely disappears. 
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For the second case of cFe = 0.205, two types of simulations were performed. At this 

concentration in the paramagnetic state the chemical long range order already exists and it is 

interesting to see how in this case the magnetic interactions will influence the morphology of 

microstructure.  

 wtotal (r), (meV) 

1 52.57129 
2 -18.1899 
3 12.57007 
4 8.453229 

 

Table 4.2.10. Total interaction parameters, wtotal(r), for cFe = 0.205 

 

For calculation of the total interaction parameters we have used 0.62716354Fe   and 

0.327129Ni  . 

For both chemical (Table 4.2.8) and magnetic interactions (Table 4.2.10) obtained results 

correspond to the expected growth and coarsening of precipitates (Fig. 4.2.18). The simulation 

was held until * 7 (a.u.)t  .  

    

(a) 

* 0.08 (a.u.)t   * 0.8 (a.u.)t   * 3.2 (a.u.)t   * 6.4 (a.u.)t   

    

(b) 

* 0.08 (a.u.)t   * 0.8 (a.u.)t   * 3.2 (a.u.)t   * 6.4 (a.u.)t   

Figure 4.2.18. Microstructure evolution at different time *t  for cFe = 0.205 and T = 650K: 

                        (a) Without magnetic interactions ( 0J   ) 

                        (b) With magnetic interactions 
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When magnetic interactions are ignored, the initial nuclei grow and coarsen forming the 

spherical precipitates (Fig. 4.2.18a) with the average precipitates radius at the final time ≈ 10 nm. 

At the same time when magnetic interactions are included, the precipitates grow till the size of 

the ordered domains separated by the antiphase boundaries (Fig. 4.2.18b). This can be explained 

by the decreasing of the coarsening rate without magnetic interactions. It was also previously 

shown that the real physical time corresponding to the simulation in this case is also delayed. 

The volume fraction of the ordered precipitates as well as the driving force of phase 

transformation is also larger when magnetic interactions are considered. 

It is also possible to compare these results with the previous section B (cFe = 0.192). In 

Fig. 4.2.19 the comparison of the time evolution of the cube of the mean radius and the volume 

fraction is given.  

  

(a) (b) 

Figure 4.2.19. Comparison of the statistical data at T = 650K:  

                        (a) The cube of the average radius and its linear fit (black dashed line) 

                        (b) The volume fraction of the ordered phase 

 

As can be seen from the figure, for simulation with cFe = 0.205, the coarsening stage starts early 

and the rate of coarsening can be approximately estimated as 17965.6k   for the paramagnetic 

case, and 146670.8k   for the ferromagnetic one. From Fig. 4.2.19a it is seen that increasing the 

concentration results in the increase of the coarsening rate. It has also increased when magnetic 

interactions were included in the simulation. The volume fraction of the ordered phase also 

influences the coarsening rate, i.e. as the volume fraction increases, the coarsening rate also 

increases. The volume fraction (Fig. 4.2.19b) is also influenced by the initial matrix 

concentration from one side, and by the magnetic interactions from the other. With a 

concentration increase, the volume fraction has increased almost by a factor 4 (from 0.2 for 
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cFe = 0.192 to 0.9 for cFe = 0.205). Considering the magnetic interactions also has increased its 

value from 0.6 to 0.9 (for cFe = 0.205 in the paramagnetic and ferromagnetic states, respectively). 

 

4.2.3.3 Simulations at 716K 

As it was previously mentioned we are interested in the kinetics at this temperature 

because the phase coexistence interval is very close to the stoichiometric concentration. Notably, 

as it can be seen from the isothermal section of the free energy (Fig. 4.2.20a), the concentration 

of disordered phase is approximately 0.22 and of ordered phase is 0.26. Comparing to the 

experimental phase diagram (Fig. 4.2.9) this interval is too wide. From the comparison of free 

energies of paramagnetic ordered and magnetic ordered systems, it is again seen that magnetism 

induces lowering of the free energy and therefore, again, it should stabilize the ordered structure 

as in the previous case for T = 650K. The plots of the equilibrium chemical and magnetic order 

parameters (Fig. 4.2.20b) are similar to the previously discussed (Fig. 4.2.10b). 

  
(a) (b) 

Figure 4.2.20. Isothermal section at T = 716K of: 

                        (a) Free energy  

                        (b) Equilibrium long-range order parameters  

 

A. Simulation of the precipitation kinetics in Ni-Fe without magnetic interactions 

The interaction parameters in this case correspond to the paramagnetic data and were 

taken from Table. 4.2.8. From the concentration interval  0.22;0.26Fec   we have chosen a 

concentration cFe = 0.23. Starting with the same initial conditions as for previous 

section 4.2.3.2A, the disappearance of the ordered phase is observed at * 0.06 (a.u.)t  . Thus, the 
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simulation was held only until * 0.08 (a.u.)t  . The microstructure evolution is presented in 

Fig. 4.2.21. 

   
(a) (b) (c) 

Figure 4.2.21. Microstructure evolution for cFe = 0.23 at T = 716K when 0J    at time: 

                                      (a) * 0 (a.u.)t  ; (b) * 0.01 (a.u.)t  ; (c) * 0.02 (a.u.)t   

 

Obtained results are consistent with the previously shown for cFe = 0.192. The ordered 

phase disappears quite fast and, therefore, it is not stable due to the interactions and high 

temperature. The time variation of the volume fraction (Fig. 4.2.22) represents the same features 

as for cFe = 0.192 (Fig. 4.2.12). 

 
Figure 4.2.22. The time evolution of the volume fraction of the ordered phase 

                                 ( for cFe = 0.23 at T = 716K when 0J   ) 

 

At the beginning of evolution the number of nuclei decreases very fast and only few of 

them begin to grow, then the process continues the same way until all nuclei will be dissolved. 

The volume fraction tends to zero already at * 0.014 (a.u.)t   and confirms total disappearance 

of the ordered phase at very early time.  

In Fig. 4.2.23 the size distribution of ordered nuclei is compared with the theoretical 

LSW distribution (Eq. 3.33). The center and the width of distribution do not agree with the 
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theoretical curve. As the volume fraction decreases, the width becomes narrower and 

symmetrical. At this concentration the shift of the center of distribution is more pronounced than 

for cFe = 0.192. 

  
(a) (b) 

Figure 4.2.23. The size distribution function for cFe = 0.23 and T = 716K at time: 

                                          (a) * 0 (a.u.)t  ; (b) * 0.012 (a.u.)t   

 

B. Simulation of the precipitation kinetics in Ni-Fe with magnetic interactions 

Following the same way as in section 4.2.3.2B the total interaction parameters, wtotal(r), 

were calculated using Eq. 4.2.9. Obtained parameters are given in Table 4.2.11. 

 wtotal (r), (meV) 

1 53.76043 
2 -16.6812 
3 12.46971 
4 8.187753 

 

Table 4.2.11. Total interaction parameters, wtotal(r), for cFe = 0.23 

 

For calculation of the presented interaction parameters we have used 0.56248371Fe   and 

0.28819062Ni  . 

In Fig. 4.2.24 the microstructure evolution at different time, *t , of simulation is 

presented. 
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(a) (b) (c) (d) 

Figure 4.2.24. Microstructure evolution for cFe = 0.23 at T = 716K at time: 

                        (a) * 0 (a.u.)t  ; (b) * 4 (a.u.)t  ; (c) * 8 (a.u.)t  ; (d) * 16 (a.u.)t   

 

During the ageing the ordered nuclei became stable, grew in size and then the coarsening 

stage started (at * 1 (a.u.)t  ). The average size of the precipitate at the end of simulation is 

approximately 13.5 nm, which is twice larger than in case of cFe = 0.192 at T = 650K. As was 

mentioned earlier, the stabilization of the ordered phase is observed when magnetic interactions 

are included in the simulation. Consequently, they play an important role in the kinetic processes 

and are necessary for the reliable description of the studied system due to the interplay between 

chemical and magnetic order in Ni3Fe alloys. In Fig. 4.2.25 the cube of the average radius of the 

precipitates and the time evolution of the volume fraction of the ordered phase are presented. 

These curves were obtained after averaging over 2 simulations with different initial nuclei sizes 

(r = 5 and r = 7).  

 
 

(a) (b) 

Figure 4.2.25. The statistical characteristics for simulation for cFe = 0.23 at T = 716K: 

                         (a) The cube of the average radius (black line) and its linear fit (red line) 

                         (b) The volume fraction of the ordered phase 
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The cube of the average radius of the precipitates can be approximated by a linear time 

dependence (Fig. 4.2.25a), which is consistent with the previous result from section 4.2.3.1B and 

Eq. 3.33. The coarsening rate can be estimated in arbitrary units as 23655.3k  . The volume 

fraction (Fig. 4.2.25b) tends to the equilibrium value 0.6. However, it has not reached its 

equilibrium value and the concentration of ordered precipitates (≈ 0.24) is not equal to the 

equilibrium concentration of the ordered phase (0.26). Therefore, further ageing time is desirable 

to obtain an equilibrium system. However, already at this concentration and temperature, the 

coarsening rate and the volume fraction has significantly increased in comparison with the 

results from the previous simulation at T = 650K. The size distribution of the ordered precipitates 

is given in Fig. 4.2.26. 

  
(a) (b) 

Figure 4.2.26. The size distribution function for cFe = 0.23 and T = 716K at time: 

                                  (a) * 0.4 (a.u.)t  ; (b) * 4 (a.u.)t  ;  

 

As seen from Fig. 4.2.26, the size distribution changes its shape with time. The width of the 

simulated distribution is wider in comparison with LSW curve. The center of the distribution 

seems to lie very close to the theoretically predicted. But due to the limitations of LSW theory it 

is hard to compare these two distributions. As was mentioned earlier, Lifshitz-Slyozov and 

Wagner assumed very low fraction of precipitates but for presented simulation it is not negligible 

anymore. The form of the size distribution is very similar to that obtained in previous 

section 4.2.3.2B. 

 

C. Simulation of the precipitation kinetics in Ni-Fe alloy for different concentrations 

As in the previous section, it was interesting to check the microstructure evolution with 

other Fe-concentration from the co-existence interval. For cFe = 0.225, which is close to the 
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concentration of the disordered phase, the kinetics is similar to the case without magnetic 

interactions. The same result was obtained for cFe = 0.185 at T = 650K and is due to the small 

magnetization values which make total interaction parameters, wtotal(r), very close to 

paramagnetic ones, wprm(r). In this case the ordered phase disappears at * 1 (a.u.)t  .  

When matrix concentration, cFe = 0.24, is closer to the equilibrium ordered phase, the 

nuclei of the ordered phase follow the growth and coarsening stages. As was mentioned in 

section 4.2.3.2C, the magnetic interactions influence the behavior of the system.  

 wtotal (r), (meV) 

1 52.70558 
2 -18.1526 
3 12.58581 
4 8.444071 

 

Table 4.2.12. Total interaction parameters, wtotal(r), for cFe = 0.24 

 

For calculation of the total interaction parameters we have used 0.62614201Fe   and 

0.33936110Ni  . In Fig. 4.2.27 the obtained results are presented for two types of simulations, 

with and without magnetic interactions. The simulation was held until * 7 (a.u.)t  . 

    

(a) 

* 0.08 (a.u.)t   * 0.8 (a.u.)t   * 3.2 (a.u.)t   * 6.4 (a.u.)t   

    

(b) 

* 0.08 (a.u.)t   * 0.8 (a.u.)t   * 3.2 (a.u.)t   * 6.4 (a.u.)t   

Figure 4.2.27. Microstructure evolution at different time t for cFe = 0.24 and T = 716K: 

                        (a) Without magnetic interactions (Ji-j = 0) 

                        (b) With magnetic interactions 
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Obtained results confirm our previous statement that magnetic interactions intensify the ordering 

processes and increase the soluble fraction of the ordered phase. Therefore, large ordered 

domains are formed earlier than in the paramagnetic state. When magnetic interactions are 

ignored, at the end of the simulation the large precipitates (with average radius at final time 

≈12 nm) were obtained rather than the expected ordered domains.  

As in section 4.2.3.2C, it is interesting to compare the statistical data for cFe = 0.23 and 

cFe = 0.24 (Fig. 4.2.28). As expected, the increase of concentration results in the increase of the 

coarsening rate which is equal to 251021.6k   when magnetic interactions are taken into 

account and is 39014.9k   when they are ignored. Thus, the coarsening reactions are faster at 

larger concentrations. 

  
(a) (b) 

Figure 4.2.28. Comparison of the statistical data at T = 716K: 

                         (a) The cube of the average radius and its linear fit (black dashed line) 

                         (b) The volume fraction of the ordered phase 

 

The volume fraction has also increased with the concentration. As seen from Fig. 4.2.28b it has 

reached 0.96 at cFe = 0.24. Magnetic interactions also influence the volume fraction of the 

ordered phase (it tends to 0.7 when magnetic interactions are not considered). 

 

4.2.3.4. Conclusions 

The results of the performed kinetics simulation at both temperatures (650K and 716K) 

are in good agreement with each other and qualitatively reproduce the kinetics in Ni-Fe alloys.  

From the results of our simulations it follows that including magnetic interactions has a 

great influence on the kinetic properties of the system. The rate of coarsening and the volume 

fraction increases when magnetic interactions are taken into account. It was also outlined that it 

can influence the morphology of microstructure by accelerating the coarsening rate 
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(Table 4.2.13), i.e. at the same evolution time large ordered domains will form instead of 

precipitates with a spherical shape. 

T, (K) magnetism cFe k, (a.u.) volume fraction 

- - 0 

+ 
0.192 

4380.5 0.2 

- 17965.6 0.6 
650 

+ 
0.205 

146670.8 0.9 

- - 0 

+ 
0.23 

23655.3 0.58 

- 39014.9 0.7 
716 

+ 
0.24 

251021.6 0.96 

 

Table 4.2.13. Comparison of the coarsening rate and the volume fraction for presented 

kinetic simulations 

 

The extensive comparison of the obtained simulation results with experiments is 

unfortunately impossible due to the lack of such data. As was estimated in section 4.2.2, the real 

ageing time to obtain simulated microstructure at such low temperatures is scarcely possible (the 

unit simulation time corresponds to 107 and 105 hours in real time for 650K and 716K, 

respectively). Such alloys need very long thermal treatment in order to obtain a perfect ordered 

L12 structure. Thus, in experimental works the results correspond probably to the metastable 

structures and according to the measurements of the long-range order parameter – it just 

approaches equilibrium ordered value [12]. That is why the theoretical investigations of such 

alloys are of great interest. 

From the kinetic simulations at the stoichiometric concentration cFe = 0.25 we have 

obtained structure with very large ordered domains (Fig. 4.2.29) separated by the antiphase 

boundaries. As previously was explained, the ordered domains appear in different orientations 

due to the possible four translation variants for the L12 structure. In MC simulations we have also 

obtained similar feature (Fig. 4.1.15a ) considering only NN interactions. In this case the 

contribution from the interface energy was absent. When we have extended interactions till NNN 

– it seemed that the opposite situation has arisen and the antiphase boundaries have disappeared 

due to the minimization of energy. It should be also mentioned that obtained final configuration 
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in MC simulaions corresponds to the equilibrium state of the system. The microstructure given in 

Fig. 4.2.29 represents the non-equilibrium configuration and it is logical to assume that after 

longer ageing times the small domains will disappear and the system will consist only of large 

antiphase domains. 

 

Figure 4.2.29. Microstructure at * 1.6 (a.u.)t   for cFe = 0.25 at T = 716K  

 

According to the literature data for cFe ≈ 0.27 [130] such domains are indeed seen after 

long ageing time (Fig. 4.2.30). 

   
(a) (b) (c) 

Figure 4.2.30. Electron micrographs illustrating domain boundaries  

                         in Ni73Fe27 alloy [130]: 

                   (a) Annealed for 1070 hours at T = 770K 

                   (b) Annealed 1700 hours at T = 758K 

                   (c) Annealed for 1700 hours at T = 733K 

 

It is seen that ordered domains are separated by the disordered phase and these results are 

consistent with our simulations.  

In the previous study we were not interested in the initial mechanism of the ordering and 

as the order-disorder transition temperature is of the 1st order we assumed and employed the 

nucleation mechanism and, at the beginning of the simulation, the nuclei of the ordered phase 
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were embedded into the disordered matrix. Therefore, the growth and coarsening stages followed 

this process. The growth stage for all simulations was fast.  

We should also mention the importance of choice of the interaction parameters. As in our 

simulations we have chosen constant values of both paramagnetic and magnetic interactions and 

ignored their variation with concentration and temperature, we do not expect that our results will 

repeat exactly experimental ones (Fig. 4.2.7). However, the main features of the system close to 

the stoichiometry, and the expected influence of the magnetism is well reproduced. 
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General conclusion and perspectives 
 

In the present work we have discussed the mutual influence of magnetic and chemical 

ordering in 1 x xNi Fe  alloys (x is the concentration of Fe, cFe) and its effect on the 

thermodynamics and the kinetics of the systems. As was previously mentioned, at low 

temperature, these alloys undergo magnetic and atomic ordering. As the temperature decreases, a 

ferromagnetic order appears firstly, then an order disorder phase transition from a fcc chemically 

disordered state to a L12-type ordered state takes place. The investigation of such alloys is quite 

complicated in view of the necessity to consider both spin and atomic subsystems 

simultaneously. Two approaches (Monte Carlo and mean-field) have been employed to 

investigation of the thermodynamic properties of Ni-Fe alloys and the Önsager microscopic 

diffusion equation was used to study kinetics. Our simulations show that, in spite of some 

simplifications, these two models permit to capture quite well many features observed in Ni-rich 

Ni1-xFex alloys. 

 

Let us mention the most important results obtained by means of Monte Carlo simulations: 

 When magnetic( J  ) and chemical (V  ) interactions are considered simultaneously, the 

increase of both Curie and Kurnakov transition temperatures with respect to the case with 

only one type of interaction is observed. From one side, the short-range atomic order 

above TK increases the Curie temperature and from the other side the antiferromagnetic 

interaction between nearest neighbour atoms leads to a rise in TK in such ferromagnetic 

materials (from 630K to 800K for Ni75Fe25). The Curie temperature of chemically ordered 

phase is higher than the Curie temperature of chemically disordered phase. This behavior 

agrees with experimental data. 

 The chemical ordering at TK is also responsible for creating singularities in the magnetic 

quantities. There is a jump in the magnetization and the magnetic energy curves at TK and 

consequently, a δ-peak in the zero-field susceptibility and the magnetic specific heat 

appears. 

 The application of an external magnetic field, B, which aligns the magnetic moments, 

induces atomic rearrangements due to the antiferromagnetic Fe-Fe coupling and 

promotes the increase of the order-disorder transition temperature. 

 Including chemical interactions for next-nearest neighbors softens the order-disorder 

phase transition. 
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 Our model is able to reproduce quite well the experimental phase diagram around the 

25% at. Fe concentration. The deviations from the experimental data for other 

concentrations are attributed to some restrictions such as constant interactions and 

constant magnetic moments of atoms. Although our simulations have been performed 

only in the vicinity of the stoichiometric concentration, our results seem to confirm the 

asymmetry of the concentration dependence of the order-disorder transition temperature 

(the peak is at 26% at. Ni). The magnetic transition line is also well reproduced. 

 

From the mean-field theory we have obtained both thermodynamic and kinetic 

descriptions of the system. The main results can be summarized as following: 

 The interaction parameters obtained from the first-principles calculations have been used. 

These parameters predict the oscillating character of the Fe-Fe magnetic interaction and 

ferromagnetic nearest neighbor Fe-Fe interaction. However, using these parameters with 

a mean field approach allows qualitatively reproduce the miscibility gap on the phase 

diagram, where the fcc disordered phase coexist with the ordered L12 phase. 

 The comparison of the obtained thermodynamic data with the Monte Carlo results has 

shown similar behavior of order parameters. In particular, the order of both transitions 

and the jump in the magnetization are well reproduced. The difference between the Curie 

and the Kurnakov temperatures has been found smaller using mean field calculations 

than Monte Carlo simulations. 

 The microstructural evolution for different concentrations has been simulated. The 

growth and the coarsening of L12 precipitates have been reproduced.  

 The kinetic analysis indicates a cubic law for the precipitate average radius in agreement 

with the LSW theory. It was shown that magnetic interaction increases the coarsening 

rate. 

 Our simulations evidence that during kinetics the magnetic interactions stabilize the L12 

nuclei and increase the driving force of the order-disorder phase transformation. 

 

Following this work, the perspectives on this subject are: 

 To include the concentration dependencies of the interaction parameters (chemical and 

magnetic) and of the atomic magnetic moments in Monte Carlo and mean-field 

simulations. 

 To take into account more coordination shells for the interaction parameters.  

 To include the variation of the magnetization during the ordering process in the Önsager 

microscopic diffusion equation. 
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 To combine kinetic Monte Carlo simulations and simulations using the Önsager equation, 

i.e. to simulate the nucleation stage by Monte Carlo and to use the obtained configuration 

with L12 nuclei as an initial configuration for the simulations based on the Önsager 

equation. 

 Since our simulations have shown that an external applied field stabilizes the L12 

structure (Monte Carlo simulations), and consequently should increase the kinetics rate 

(Önsager equation based simulations), it would be very interesting to check the speeding-

up of the kinetic process experimentally under an external applied field. Consequently, 

the applied field should favor the achieving of equilibrium ordered state. 
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5.1. Calculation of interaction parameters within 2 coordination shells 

The exchange parameters are defined using KCM formula (Eq. 4.1.3) and experimental 

data. The polynomial dependence can be derived. For the stoichiometric concentration we 

obtain: 

2

( , 0.25) 0.414 0.25 0.450 0.3015 [eV]

( , 0.25) 0.855 0.25 ( 2.177) 0.25 2.087 0.4411875 [eV]
prm X Fe

prm Fe

w c

w c

      

       

k

k




 (5.1.1) 

Including in (Eq. 3.22) terms for 1st and 2nd neighbors, the respective ordering energies are: 

1 2

1 2

( , 0.25) 4 6 0.3015 [eV]

( , 0.25) 12 6 0.4411875 [eV]
prm X Fe

prm Fe

w c w w

w c w w

     

   

k
k




  (5.1.2) 

And real-space ordering energies w1 and w2 will be respectively: 

1

2

46.4 [meV]

19.305 [meV]

MFT

MFT

w
w



 
     

1

2

538.64

224.02

MFT

B
MFT

B

w K
k

w K
k



 

  (5.1.3) 

These values are used to fit interaction parameters 1V   given by Dang et al. [40]. Ordering 

energy defined by 1V   from Ref. [40] is: 

1 1 1 1
1

2 ( ) 1410     121.5 [meV]
MC Ni Fe Fe Fe Ni Ni

MC

B B

w V V V K w
k k

   
     

From Eq. 5.1.2 it is possible to estimate the value of ordering energy if only nearest neighbors 

are considered: 1
0.3015 75.375 [meV]

4
MFTw   . Using the ratio between MC and MFT values of 

w1 ( 1

1

1.612
MC

MFT
w
w

 ) we obtain: 

1 2( , 0.25) 4 6 1.612 0.3015 0.486 [eV]MC MC MC
prm X Few c w w      k , 

and keeping the ratio: 1 1

2 2

2.40445
MFT MC

MFT MC
w w
w w

    we will obtain new ordering energies for Monte 

Carlo simulations: 

1

2

74.826 [meV]

31.12 [meV]

MC

MFT

w
w



 
     

1

2

868.29

361.12

MC

B
MFT

B

w K
k

w K
k



 

  (5.1.4) 

It is possible now to proceed with definition of pair-wise energetic parameters {1,2}rV 
 . 

More intuitive way to define pair-wise interactions is to deduce them from those of 
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Dang et al. [40] but applying obtained above results. Thus, using (Eq. 5.1.4) it is possible to 

define: 
[27]

1

1

1410 1.62388
868.29

MC

MC
w

w
  . This ratio is used to obtain new 1V  :  

1 1

1

8400 92005172.79  ;   5665.44  ;
1.62388 1.62388

8590                            5289.795
1.62388

Fe Fe Ni Fe

B B
Ni Ni

B

V VK K
k k

V K
k

 



   

 

  (5.1.5a) 

To define 2V   we kept the ratio 1 1

2 2

2.40445
MFT MC

MFT MC
w w
w w

    between each respective pair-wise 

parameter and obtained: 

2 1 2 1

2 1

2151.353  ;   2356.244  ; 
2.40445 2.40445

                                2200.015
2.40445

Fe Fe Fe Fe Ni Fe Ni Fe

B B
Ni Ni Ni Ni

B

V V V VK K
k k

V V K
k

   

 

     
 

  


 (5.1.5b) 

 

5.2. Derivation of mean-field formulae 

5.2.1. Magnetic entropy 

In the section 3.4 the approach of molecular field has been introduced. In the framework 

of this approximation it is possible to obtain an expression for the magnetic entropy for an 

arbitrary spin S. According to the (Eq.  3.12) magnetic field which acts on the crystal can be 

written in a following form: 

ext mol ext q     H H H H , 

where q – is the molecular field constant; σ – is the magnetization. 

In the absence of external magnetic field (Hex t = 0) this expression will be simplified to: 

mol q   H H . 

The free energy functional (Eq. 3.1) can be also defined using the definition of a statistical sum: 

lnBF k T Z   

As we are interested in the magnetic ordering, the statistical sum Z represents all possible spins 

configurations and can be written as: 
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The following property has been used for the derivation of this formula: 

 
 

1 1
2 12 2 2

1 1
0 2 2

1
;

1

exp( ) exp( )( )
2

n nnn n
k n l

n
k n l

x x xx x x
x x x x

x xsh x

  


 

 
  




 


 
 

As statistical sum is defined, we proceed to the free energy: 
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The entropy is defined then as a 1st derivative of free energy F: 
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We should mention that for numerical calculation of magnetic entropy, its expression can 

be simplified in order to avoid zero-values of logarithm’s argument. The following should be 

done: 
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It can be seen that the argument can be written in a following form: 
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Using the definition of hyperbolic sinus we will be able to further simplify this expression: 
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So, we obtain following: 
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5.2.2. Free energy of a system with 2 magnetic species 

Free energy functional is defined as (Eq. 3.1.): 

F U TS   

When system comprises both magnetic and chemical subsystems, the internal energy and 

entropy can be written as: 

tot chem magn chem magn

chem magn

U H H H U U

S S S

    

 
 

For final derivation of free energy, we separate chemical and magnetic parts, respectively. These 

expressions were also previously shown in Refs. [50-51]. 

 

I. Internal energy, U. 

1) chemical internal energy, Uchem. 

To define an internal energy, we should start with the Hamiltonian representation. For 

chemical subsystem, the Hamiltonian was given in (Eq. 3.4): 

r ,r ,

1 ( ) ( ) ( )
2chem V c c  

  

   r r r rH , 

where (α, β) represent the type of atom; Vαβ(r-r΄) are the chemical interaction parameters, cα(r) 

(cβ(r΄))-represents the occupation of a site r (r΄) by an atom of type α (β) and is defined as: 

1, if site ( ) is occupied by -atom
( )

0, otherwise
c


 


r
r  

This Hamiltonian can be simplified to: 
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, 

where ( )chemW r r  is the ordering (‘mixing’) energy, previously defined in (Eq. 3.10). The 

constant term 0
chemU  can be taken as an origin of a new coordinate system, so we can rewrite: 

r,r

1 ( ) ( ) ( )
2

chem
chem W c c



   r r r rH  

To obtain internal energy we average the Hamiltonian over all atomic configurations. In the 

framework of mean-field we have: ( ) ( ) ( ) ( ) ( ) ( )c c c c p p   r r r r r r . Using the static 

concentration wave approach (section 3.6) it is possible to define these probabilities (Eq. 3.19). 

As for the studied case of Ni3Fe alloy the ordered structure corresponds to the L12-type, the 

probability p(r) is defined as: 
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where η is the chemical long-range order parameter. So, chemical internal energy will have a 

following form:  
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2) magnetic internal energy, Umagn. 

Magnetic Hamiltonian can be written in the following form: 

r,r ,

1 ( ) ( ) ( ) ( ) ( )
2magn J c c s s    

  

    r r r r r rH , 

where (α, β) represent the type of atom; Jαβ(r-r΄) are the magnetic exchange interaction 

parameters, cα(r) (cβ(r΄))-represents the occupation of a site r (r΄) by an atom of type α (β) and 

spins of each atom is represented by spin variable sα(r) (sβ(r΄)). 

We can rewrite this Hamiltonian as: 
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Magnetic internal energy is obtained after averaging the Hamiltonian over all spin 

configurations. Using the molecular mean-field approach, we have ( )s s   r  and 

( ) ( ) ( ) ( )s s s s s s           r r r r , where σα (σβ) – is the reduced magnetization of 

α (β) sublattice. So, using mean-field and SCW approaches we will obtain: 
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II. Entropy, S. 

1) Chemical entropy, Schem: 

For the system with 2 different kinds of atoms α and β, statistics gives following 

definition of entropy: 
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And therefore for a crystal where each site r can be characterized by a probability p(r), we have: 
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Using SCW approach we obtain: 
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2) Magnetic entropy, Smagn: 

The expression for magnetic entropy was previously obtained in the section 5.2.1. When 

system has magnetic atoms of 2 kinds, like Fe and Ni, the entropy will be defined as a sum: 
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III. Final configurational free energy, F: 
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5.2.3. Definition of equilibrium thermodynamic quantities 

To define equilibrium values of thermodynamic parameters, it is necessary to 

differentiate the presented free energy, i.e. to find derivatives ;  ;  F F F
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, and set them 

equal to 0: 
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





,we have: 

2 2 2 2

3( )(1 )
4 4ln ( ) ( ) ( ) 2 ( )3( )(1 )
4 4

chem

B

c c
W J s J s J s s

k Tc c
          

  
   



  
     

  
k k k k     

Before derivation of F





 and F





, it will be useful to find a derivative of magnetic entropy: 

(2 1) 1ln ln ( )
(2 1)2 2

2

( )(2 1) (2 1) 1 1 ( )
2 2 2 2

2

B B
S y yNk sh sh yB y Nk

ysh

B yy y y y ych ch B y y
ysh

 

   


                                            


                           

 
  

S

S
S

S
SS S

S

S S
S S S S

S

  (2 1) (2 1)
2 2

( )1 1 ( )
2 2

B B B
B

B B B

B B

B B

g g q g qy yy q Nk coth
k T k T k T

B yg q g qycoth B y y
k T k T

  




 






                     
          

S
S

S S SS S
S S

S S
S S

 



 - 150 - 

   

1 1 1 1( ) 1 1
2 2 2 2

( ) ( ) ( )BB
B B

B

B x coth x coth x

N g qB y B y B ygNk y Nk q
k T T

 


  

                   
       

  
       

  

J

S S S

J J J J

SS
 

According to the molecular field, the reduced magnetization, 
SatM

 
M , can be defined using 

(Eq. 3.13): 
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With this simplified expression it is easy to obtain: 
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and, respectively: 
2 2

2 2

( ) (1 ) ( ) (1 )
1

3(1 ) ( ) ( )
16

B

J s c J s s c c
B

k T c J s J s s

      



      

 


  

     
             

S

0 0

k k

 

 
 

 

 

 

 

 



 - 151 - 

5.3. The algorithm of solution of the Önsager-type equation 

The integration of the Önsager equation for binary alloy (Eq. 3.39) was performed using 

the explicit Euler scheme in the reciprocal space (Eq. 3.40). The algorithm is following: 

Input parameters: 
 The “mixing” energies wi (i = 1..4) and thermal energy kBT 

 The concentration of the matrix c, number of nuclei and their radius 

 Equilibrium concentration of ordered and disordered phase 

 The time step (∆t) and simulation time 

 The size of the simulation box (nx, ny) 

 
 

 

 

 

     t = 0 

 

 

 

 

 

 

 

 

 

 

 

 

        t = t+∆t 

 

 

 

Initial configuration, P(r, t = 0): 
Disordered matrix + Nuclei of ordered phase 

Calculation in the reciprocal space of Önsager coefficient L(k) and interactions V(k)  

Fourier transformation P(r, t)→ P(k, t) 

Entropy calculation in real space  

Fourier transformation of entropy term 

Calculation in k-space of the chemical term andkinetic factor L(k) →{δP(k, t)/δt} 

Integration P(r, t+∆t)→P(k, t)+ {δP(k, t)/δt} 

Inverse Fourier transformation P(k, t)→ P(r, t) 
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Résumé et abstract 

 

 

Titre: Modélisation atomique de l'évolution microstructurale dans les alliages Ni-Fe: corrélation 
entre les propriétés magnétiques et structurales 
 
Résumé 

Les alliages Fe-Ni sont largement utilisés en raison de leurs propriétés intéressantes 
fondamentales découlant de la coexistence de l'orde chimique et l'ordre magnétique. L'objectif de 
ce travail était de comprendre l’influence mutuelle de ces deux mises en ordre sur les propriétés 
thermodynamiques d’équilibre et la cinétique dans les alliages Permalloy (Ni3Fe). A partir de 
simulations Monte Carlo et de type Champ Moyen, nous avons mis en évidence l'effet des 
interactions magnétiques sur la température de transition ordre/désordre et réciproquement, 
l'influence des interactions chimiques sur la température de Curie. La cinétique de précipitation a 
été étudiée à partir de l'équation de microdiffusion d’Onsager en utilisant les paramètres déduits 
de calculs ab-initio. Ces simulations ont montré l'influence des interactions magnétiques sur la 
formation des particules L12 stable. Les deux types de simulations, thermodynamique et 
cinétique, ont donc confirmé l'importance de prendre en compte simultanément les interactions 
magnétiques et chimiques. Les résultats obtenus concordent bien avec les données 
expérimentales disponibles. 
 
Mots-clés: alliages Fe-Ni, simulation Monte Carlo, matériaux magnétiques doux, approximation 
de Champ Moyen, transformation de phase ordre/désordre, simulation d’Onsager, température de 
Curie, cinétique de précipitation 

 
 
 
 
 

Title: Atomic modeling of the microstructure evolution in Ni-Fe alloys: correlation between 
magnetic and structural properties 
 
Abstract 

Fe-Ni alloys are widely used due to their interesting fundamental properties which arise 
from the coexistence of the chemical and magnetic order. The aim of this work was to 
understand the mutual influence of these two types of ordering on the thermodynamic and 
kinetic processes in Permalloys (Ni3Fe). From Monte Carlo and Mean Field simulations the 
effect of the magnetic interactions on the order/disorder transition temperature has been 
observed, and reciprocally the influence of the chemical interactions on the Curie temperature. 
The kinetics of the precipitation has been studied by means of the Onsager microdiffusion 
equation using parameters extracted from ab-initio calculations. These simulations have 
evidenced the influence of the magnetic interactions on the formation of the stable L12 particles. 
Both thermodynamic and kinetic investigations have confirmed the importance of taking into 
account simultaneously both magnetic and chemical interactions. The obtained results agree well 
with the available experimental data.  
 
Keywords: Fe-Ni alloys, Monte Carlo simulation, soft magnetic materials, Mean field 
approximation, order/disorder phase transformation, Onsager simulation, Curie temperature, 
precipitation kinetics 

 


