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Abstract

The sequential patterns can be viewed as an extension of the notion of association rules with

integrating temporal constraints, which are effective for representing statistical frequency based

behaviors between the elements contained in sequence data, that is, the discovered patterns are

interesting because they are frequent. However, with considering prior domain knowledge of the

data, another reason why the discovered patterns are interesting is because they are unexpected. In

this thesis, we investigate the problems in the discovery of unexpected sequences in large databases

with respect to prior domain expertise knowledge. We first methodically develop the framework

Muse with integrating the approaches to discover the three forms of unexpected sequences. We

then extend the framework Muse by adopting fuzzy set theory for describing sequence occurrence.

We also propose a generalized framework SoftMuse with respect to the concept hierarchies on

the taxonomy of data. We further propose the notions of unexpected sequential patterns and

unexpected implication rules, in order to evaluate the discovered unexpected sequences by using

a self-validation process. We finally propose the discovery and validation of unexpected sentences

in free format text documents. The usefulness and effectiveness of our proposed approaches are

shown with the experiments on synthetic data, real Web server access log data, and text document

classification.

Keywords : Knowledge discovery in databases, data mining, sequence database, interestingness

measure, belief, unexpected sequences, sequential patterns, sequence rules, fuzzy logic, hierarchy,

validation, text classification.
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The Tao that can be described is not the enduring and unchanging Tao.

The name that can be named is not the enduring and unchanging name.

— Lao Tsi
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Chapter 1

Introduction

Knowledge discovery in databases (KDD) is the process of identifying valid, novel, potentially

useful, and ultimately understandable patterns in data [FPSS96a], which takes account of two

objectives: to discover new patterns that can be interpreted as new knowledge of the data, or to

verify the hypothesis of users that can be reacted to the discovery.

Evaluation
Selection Preprocessing Transformation Data Mining

Preprocessed Data

Patterns

Knowledge

Transformed Data

Target Data

Data

Intepretation

Figure 1.1: A general framework of the knowledge discovery process.

The framework shown in Figure 1.1 illustrates the process of KDD. This process consists of

five principal steps: the selection, preprocessing, and transformation of data, the data mining, and

the interpretation and evaluation of discovered patterns. In this framework, the data mining step

plays an essential role, which applies discovery algorithms that produce a particular enumeration

of potential interesting patterns in terms of an expression in some language describing a subset of

the data or a model applicable to that subset [FPSS96b].

In data mining, the interestingness [PSM94, ST95, HH03, McG05] is an important notion that

takes an overall measure of pattern value. The measures of interestingness can be categorized

into objective measures and subjective measures, where objective measures rely on the structure of
1
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patterns and the underlying data used in the discovery process, however subjective measures do

not depend only on the structure of patterns and the data used in the discovery process, but also

on the user who examines the discovered patterns [ST95].

As investigated in many data mining and knowledge discovery literature, one measure is that

patterns or rules are interesting because they are unexpected to prior user knowledge of the data

[PSM94, SS96, LH96, Suz97, PT98, DL98, LHML99, Spi99, PT00, LMY01, WJL03, JS05, PT06].

Most of those existing approaches focus on discovering unexpectedness in the context of association

rules [AIS93], however none of the existing approaches deals with unexpected sequences and rules

with considering the semantics of data.

Therefore, the discovery of unexpectedness in sequence databases with respect to semantics of

data is an under-investigated problem that can be important and interesting for a large number

of application domains.

1.1 Motivation

Most real-world applications process the data stored in sequence format, where the elements in

data are sequentially ordered with temporal or spatial relation. For examples, in a customer retail

database, a sequence can be all purchases of a customer ordered by the time of transaction; in a

Web access log file, a sequence can be all of those resources accessed during a user session ordered

by the time of request; in a telecommunication network monitoring database, a sequence can be

all events during a period ordered by the time of occurrence; in a DNA segment, a sequence is a

succession of nucleotide subunits with spatial order, and so on.

A great deal of research work focuses on developing efficient and effective sequential pat-

tern mining algorithms [AS95, SA96b, MCP98, GRS99, PHMAP01, Zak01, AFGY02, YHA03,

PHMA+04, WH04, LLT07, PHW07, WHL07, RCP08, Ca09]. With sequential pattern mining, we

can extract the sequences reflecting the most frequent behaviors in a database, which can be fur-

ther interpreted as domain knowledge for variant purposes. However, although mining sequential

patterns is essential in most application, the unexpected sequences that semantically contradict

existing knowledge of data have never less importance when we consider prior knowledge within

the data mining process. On the other hand, the term “unexpected” does not mean that such

sequences must not be frequent, so that it is very different from non-frequent patterns, such as

outliers [KN98, RRS00, JTH01, AP02, BS03, AP05] or rarity [JKA01, Wei04]. In summary, there

exist the following two critical problems in finding unexpected sequences in data with frequency

based mining methods.

Semantics in Unexpected Sequences. If a sequence is considered as unexpected because

it semantically violates a given rule, then frequency based sequence mining approaches are not



1.2. CONTRIBUTIONS 3

applicable to identify such a sequence although it may be extracted.

The redundancy problem is inherent to frequency based data mining methods that they may

return an extremely large number of potentially interesting patterns or sequences. Therefore, an

unexpected sequence will not appear in the post analysis process except the minimum support is

no higher than its support value. Further, it might be difficult to seek low frequency unexpected

sequences in the post analysis process since the result sequence set may be huge.

Some regular expression based approaches, for instance SPIRIT [GRS99] and MSP-Miner

[dAF05], can find the sequences that respect predefined constraints, however the premise sequence

is that the composition of an unexpected sequence must be already known before the extraction

and the semantics of unexpectedness cannot be addressed.

Occurrence in Unexpected Sequences. If a sequence is considered as unexpected because

it does respect previewed occurrences of sequences (e.g., an incomplete or disordered subsequence

of an expected sequence), then it is impossible to determine such an unexpected sequence with

respect to the principle of sequential pattern mining.

In theory, the existence of an unexpected incomplete sequence can be discovered with the closed

sequential pattern model (CloSpan [YHA03]) by computing the difference of support values between

closed sequential patterns (as illustrated in the following example), however, unless the structure

of an unexpected sequence is known, we have to examine the support values of all the combinations

of possible structures of an unexpected sequence to confirm the existence. Nevertheless, even if

the existence of unexpected incomplete sequences can be determined, we cannot identify such

unexpected sequences for further analysis.

On the other hand, the gap (or distance) between two subsequences in a sequence is not taken

into account in sequential pattern mining, thus an unexpected disordered sequence can never be

found by existing approaches.

In this thesis, we investigate the problems of discovering and evaluating unexpected sequences

and rules in large sequence databases.

1.2 Contributions

The work presented in this thesis consists of different contributions to the discovery and evaluation

of unexpected sequences and unexpected implication rules in sequence databases with respect to

the semantics of data.

We investigate the problems including how the unexpectedness can be defined in the context of

sequence data mining, how the unexpectedness can be discovered, how to evaluate or validate the

discovered unexpected sequences, what implies the unexpectedness, and what the unexpectedness
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implies. Moreover, as extensions of the base framework of discovering unexpected sequences, fuzzy

set theory [Zad65] and generalizations of data [SA95] are integrated to the unexpected sequence

discovery process. We also adapt the discovery and evaluation of unexpected sequence into the

context of opinion mining and text classification in terms of exception phrases in free format text

documents.

Ext.

Sequence Database Unexpected Sequences

Prior Knowledge

Sequence Rules Unexpected Rules

Novel Knowledge

Belief System

Multiple Unexpected Sequence Extraction

Evaluation

Fuzzy Methods Generalizations

Ext.

Figure 1.2: Outline of the contributions presented in this thesis.

The work presented in this thesis can be illustrated in Figure 1.2, which include the following

contributions.

1. We state the unexpectedness in sequence databases with respect to the belief system con-

structed from prior knowledge of application domain, where sequence rules are essentials.

Therefore, in this thesis, we first summarize and formalize two categories of sequence rules,

including sequence association rules and predictive sequence implication rules.

2. We methodically develop a framework, Muse, for mutiple unexpected sequence extraction

with respect to a belief system based on sequence rules with integrating semantic contradic-

tions of sequence data. The sequence rules can be either discovered by sequence data mining

approaches or defined by domain experts. According to different forms of sequence rules, we

propose three forms of unexpected sequences with respect to completeness, occurrence, and

semantics of sequences.

3. We extend the framework Muse by adopting fuzzy set theory for describing the unexpect-

edness on sequence occurrence, which is developed as the approach Taufu. We also propose
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the notion of fuzzy recurrence sequence, with which we further develop the approach Ufr

to discover unexpected fuzzy recurrences within the framework Muse.

4. To reduce the complexities in constructing the belief system, we propose a generalization of

the sequence rules and semantic contradictions with respect to the concept hierarchies on

the taxonomy of data. We also propose the notion of soft belief and develop the approach

SoftMuse to discover soft unexpected sequences in hierarchical data, where the belief system

consists only of generalized sequence rules and a concept hierarchy. The unexpectedness

is therefore stated by determining the relatedness and contradiction with computing the

semantic similarity between generalized sequence rules with respect to the concept hierarchy.

5. In order to evaluate the discovered unexpected sequences, we propose the notion of unex-

pected sequential patterns for performing a self-validation process to the evaluation of un-

expected sequences. We also propose three forms of unexpected implication rules, including

unexpected class rule, unexpected association rule, and unexpected occurrence rule, to study

what is associated with the unexpectedness, what implies the unexpectedness, and what the

unexpectedness implies.

6. We adapt the notion of unexpected sequence into the context of opinion mining and text

classification in terms of unexpected sentences. We propose a word relatedness based ap-

proach to discover unexpected sentences in free format text documents. We also design a

crass-validation based experimental evaluation of unexpected sentences by using text clas-

sification methods, which shows that the accuracy of classification can be improved with

eliminating unexpected sentences.

1.3 Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we introduce the state-of-the-art of unexpected pattern and rule discovery.

We first introduce the interestingness measures for data mining, and then we summarize

existing approaches to unexpected pattern and rule discovery.

• In Chapter 3, we formalized two categories of sequence rules. We first introduce existing

sequence rule mining approaches, then we propose the form of sequence association rule and

propose the notion of predictive sequence implication rule. We also propose the notion of

consistent sequence rule set.

• The framework Muse is proposed in Chapter 4. We first propose a belief system consisting

of sequence rules and semantic contradiction between sequences, and then we propose three
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forms of unexpected sequences with respect to the different forms of sequence rules. We also

outline the framework Muse with integrating the approaches to discover the three forms of

unexpected sequences. The usefulness and effectiveness of the framework Muse are shown

with the experiments on real Web server access records data and synthetic data.

• We propose two fuzzy approaches in Chapter 5 to discover unexpected sequences as exten-

sions of the framework Muse with fuzzy methods . We first study the fuzzy unexpectedness

in sequence occurrence as tau-fuzzy unexpected sequences with developing the approach

Taufu. We then propose the notion of unexpected fuzzy recurrence behavior in sequence

data with respect to the belief system consists of fuzzy recurrence rules, and the approach

Ufr is developed to discover unexpected fuzzy recurrences. The approaches Taufu and

Ufr are evaluated with the experiments on real Web server access records data.

• To reduce the complexities of constructing the belief system, we generalize the framework

Muse in Chapter 6. We first formalize the hierarchical data model to propose the gener-

alized belief system, which consists of generalized sequence rules and generalized semantic

contradiction. We therefore propose the notions of generalized unexpected sequences. As an

important improvement of the framework Muse, in Chapter 6 we also propose the notion of

soft belief and soft unexpected sequences in hierarchical data by computing the semantic re-

latedness and semantic contradiction between generalized sequences, so called the approach

SoftMuse. Experiments on real Web server access records data shows the performance of

discovering soft unexpected sequences.

• We propose the notions of unexpected sequential patterns and unexpected implication rules

in Chapter 7. We first propose the notions of unexpected feature and association sequence

of unexpected sequences, which we propose the notions of internal and external unexpected

sequential patterns with. We can therefore evaluate the quality of discovered unexpected

sequences with unexpected sequential patterns by a self-validation process. In this chap-

ter, we also propose the notions of unexpected implication rules, include unexpected class

rule, unexpected association rule, and unexpected occurrence rule. Unexpected class rules

depict the frequent sequences associated with some unexpectedness; unexpected association

rules depict the association relation between the frequent sequences contained in unexpected

features and association sequences; unexpected occurrence rules further include antecedent

rules and consequent rules, which depict what frequently happens before and after the oc-

currence of unexpectedness. We evaluate the discovery of unexpected sequential patterns

and unexpected implication rules in experiments on discovering unexpected Web usage.

• As a derived approach, in Chapter 8 we propose the discovery and evaluation of unexpected

sentences in free format text documents. In this chapter, we first present the part-of-speech
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data model of free format text documents, and then we present the discovery of opposite

sentiments in the context of opinion mining. We then generalize this approach to general

text classification problem, where we propose the notions of unexpected sentences, which

semantically contradict the class descriptors extracted from training documents. We also

design the extraction and validation of unexpected sentences contained in text documents,

where experimental results show that the accuracy of classification can be improved with

eliminating unexpected sentences.

• Finally, in Chapter 9, we summarize the work presented in this thesis and propose the

perspectives of our future research directions.
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Chapter 2

Related Work

In this chapter, we introduce the related work on interestingness measures for data mining and

the discovery of unexpected patterns and rules.

2.1 Introduction

In data mining, the interestingness [PSM94, ST95, HH99a, HH03, McG05, GH06] is an important

notion that takes an overall measure of pattern value with combining validity, novelty, usefulness,

and simplicity, where a pattern is an expression in some language describing a subset of the data

or a model applicable to that subset [FPSS96b]. One reason of patterns or rules being valuable

is because they are unexpected to prior user knowledge of the data [PSM94, SS96, LH96, BT97,

Suz97, PT98, DL98, LHML99, Spi99, HLSL00, PT00, LMY01, WJL03, JS05, PT06].

Before introducing the state-of-the-art of interestingness measures and unexpected pattern

and rule discovery, we first formalize the data model considered in this thesis and related work as

follows.

Let R = {i1, i2, . . . , in} be a finite set of n binary-valued attributes, an item is an attribute

ij ∈ R. An itemset is an unordered collection I = (i1i2 . . . im) of distinct items sorted by lexical

order, where ij ∈ R is an item. A itemset is also called as a pattern. A transactional database is

a large set D of transactions, where each transaction is an itemset. If a pattern X is a subset of

a transaction I, that is, X ⊆ I, then we say that I supports X.

An association rule is a rule in the form X → Y contained in a transactional database, where

X ∩ Y = ∅ are two patterns, which depicts that if the pattern X occurs in a transaction, then

the pattern Y also occurs in the same transaction. Association rules are measured by support and

confidence. Given an association rule X → Y and a database D, the support of the rule is defined

as

supp(X → Y,D) =
|{I ∈ D | X ∪ Y ⊆ I}|

|D|
, (2.1)

9
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that is, the total number of transactions contained in the database that support the pattern X∪Y

on the total number of transactions contained in the database; the confidence of the rule is defined

as

conf(X → Y,D) =
|{I ∈ D | X ∪ Y ⊆ I}|

|{I ∈ D | X ⊆ I}|
, (2.2)

that is, the total number of transactions contained in the database that support the pattern X∩Y

on the total number of transactions support the pattern X.

A sequence is an ordered list s = 〈I1I2 . . . Ik〉 of itemsets, where Ij is an itemset. A sequence

database is a large set of sequences, where each sequence has a unique identification and two

different sequences can contain the same ordered list of itemsets. A sequence database can be

regarded as a transactional database if we consider each itemset contained in each sequence as a

transaction. Therefore we also denoted a sequence database as D, and in the rest of this thesis,

the term database covers both of the notions of transactional database and sequence database.

Given two sequences s = 〈I1I2 . . . Im〉 and s′ = 〈I ′1I
′
2 . . . I

′
n〉, if there exist integers 1 ≤ i1 <

i2 < . . . < im ≤ n such that I1 ⊆ I ′i1, I2 ⊆ I ′i2 , . . . , Im ⊆ I ′im , then s is a subsequence of s′,

denoted as s ⊑ s′, and s′ is a super-sequence of s; we also say that s is included in s′, or s′ supports

s. Given a sequence database D, if a sequence s ∈ D is not included in any other sequence s′ ∈ D,

then we say that the sequence s is a maximal. The support of a sequence s in a database D,

denoted as supp(s,D), is the total number of sequences in D that support s on the total number

of sequences in D, that is,

supp(s,D) =
|{s′ ∈ D | s ⊑ s′}|

|D|
. (2.3)

Denote by suppmin a user defined support threshold minimum support, a sequence s is frequent

if supp(s,D) ≥ suppmin. A sequential pattern is a frequent sequence that is maximal.

ID Sequence

s1 〈(a)(b)(c)(d)〉

s2 〈(ab)(ac)(abc)(ab)(ac)〉

s3 〈(abcde)(be)〉

s4 〈(a)(bc)(d)(be)(a)(ef)〉

s5 〈(a)(b)(c)(d)(e)(f)〉

Table 2.1: A sample sequence database.

Example 1 Table 2.1 shows a sequence database D = {s1, s2, s3, s5, s5} that contains 5 sequences.

Given a minimum support suppmin = 0.5, 〈(b)(c)〉 is a frequent sequence since supp(s,D) >

suppmin; however, 〈(b)(c)〉 is not a sequential pattern because with suppmin = 0.5, we have a

maximal sequence s′ = 〈(a)(b)(c)〉 where supp(s′,D) = 0.6 and s ⊑ s′. �
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The rest of this chapter is organized as follows. In Section 2.2, we introduce interestingness

measures for data mining, which include objective measures and subjective measures. In Section

2.3, we summarize previous approaches to discover unexpected patterns and rules. Section 2.4 is

a discussion on unexpected pattern and rule discovery.

2.2 Interestingness Measure

The discovery of unexpectedness depends on prior knowledge of data that indicates what users

expect. Thus, in comparison with the data mining methods based on statistical frequency of

data, the methods to discover unexpectedness contained in data can be viewed as a process using

user-oriented subjective measures instead of using data-oriented objective measures.

The notions of objective measure and subjective measure for finding potentially interesting

patterns (and sequential patterns) or rules are addressed in terms of interestingness measures

for data mining. McGarry systematically studied the development of interestingness measures

in [McG05], where objective measures are considered as using the statistical strength (such as

support) or structure (such as confidence) of discovered patterns or rules to assess their degree

of interestingness however subjective measures are considered as incorporating user’s subjective

knowledge (such as belief) into the assessment. For instance, in association rule [AIS93] mining,

the support of a rule is defined from the statistical frequency of the patterns that constitutes the

rule and the confidence of a rule is defined from the premise → conclusion structure of rules;

however, in unexpected pattern [PT98] mining, the assessment is based on the beliefs acquired

from prior knowledge of domain.

Not limited to be categorized into objective and subjective, the interestingness measures for

data mining are various. For instance, in [HH99a, HH99b, HH01], Hilderman and Hamilton

studied heuristic measures of interestingness; in [HLSL00], Hussain et al. discussed a relative

interestingness measure; in [JS04], Jaroszewicz and Simovici used Bayesian networks as background

knowledge for measuring the interestingness of frequent patterns; in [BGGB05], Blanchard et al.

proposed information-theoretic based measures to assess association rule interestingness. Hence,

the selection of interestingness is also an important problem in data mining [TKS02].

Piatetsky-Shapiro and Matheus [PSM94] noted that objective measures of interestingness may

not handle all factors involved in pattern discovery as a complicated process. The subjective

measures of interestingness were studied in the context of the Key Findings Reporter (KEFIR),

a system for discovering and explaining “key finding” in large relational databases, applied to the

analysis of healthcare information. KEFIR first classifies all possible findings into a predefined set

of types, then defines a production rule for each type of findings that specifies the actions to be
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taken to indicate how to bring “abnormal” indicators back to their norm. Further, domain experts

need to assign a probability of success to the actions in the rule. Finally, the estimated benefit of

taking the action for the selected rule is computed as a measure of interestingness. This method

provides a good process for defining a subjective measure of interestingness around the correct

actions of interest to users.

Silberschatz and Tuzhilin [ST95, ST96] studied subjective measures of interestingness in a

domain-independent context. In [ST95], subjective measures of interestingness are categorized

into actionability measure and unexpectedness measure. With actionability measure, a pattern

is interesting because “the user can do something about it; that is, the user can react to it to

his or her advantage”; however, with unexpected measure, a pattern is interesting because “it is

surprising to the user”. Unexpectedness is defined by the belief system of data, where two types

of beliefs are considered: soft beliefs and hard beliefs. The soft beliefs are the beliefs associated

with a degree that can be changed by the discovered new evidences in data, and the Bayesian

approach is adopted for updating the degree of belief in [ST95] by computing the conditional

probability (in [ST95], more approaches are discussed in computing the degree of belief, including

the Dempster-Shafer approach [Sme88], the frequency approach, the statistical approach, etc.).

The hard beliefs are the constraints that cannot be changed with new evidences, and if new

evidence in data contradicts such beliefs, then must be some mistakes or errors made in acquiring

this new evidence.

2.3 Unexpected Patterns and Rules

In the past years, unexpectedness measure has been widely studied in various approaches to

pattern and rule discoveries.

Liu and Hsu studied the unexpected structures of discovered rules in [LH96]. In the proposed

approach, the existing rules (denoted as E) from prior knowledge are regarded as fuzzy rules

by using fuzzy set theory and the newly discovered rules (denoted as B) are matched against the

existing fuzzy rules in the post-analysis process. A rule consists of the condition and the consequent,

so that given two rules Bi and Ej , if the conditional parts of Bi and Ej are similar, but the

consequents of the two rules are quite different, then it is considered as unexpected consequent; the

inverse is considered as unexpected condition. The computation of the similarity in the matching

is based on the attribute name and value. The same techniques are extended to find unexpected

patterns in [LHML99].

Moreover, in [LMY01], Liu et al. investigated the problem of finding unexpected information

in the context of Web content mining. The proposed approach aims to discover the Web pages
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relevant but unknown to the user (i.e., competitor Web site) with respect to existing knowledge

of the user (i.e., user Web site), where the vector space model with the TF-IDF (Term Frequency

- Inverse Document Frequency) weight is used in comparing two Web sites: it first computes

the corresponding pages between two Web sites by counting the keywords in the pages, then

term weights in both documents are compared in order to obtain unexpected terms, and finally

unexpected pages and unexpected concepts are extracted by ranking discovered unexpected terms.

Suzuki et al. systematically studied exception rules in the context of association rule mining

[SS96, Suz96, Suz97, SK98, HLSL00, SZ05, Suz06]. An association rule can be classified into two

categories: a common sense rule, which is a description of a regularity for numerous objects, and

an exception rule, which represents, for a relatively small number of objects, a different, regularity

from a common sense rule [SS96, Suz96]. In [SS96, Suz96, Suz97, SK98], the exception rules are

considered with respect to the common sense rules within the rule pair r(µ, ν) defined as follows:

r(µ, ν) =

{

Aµ ⇒ c

Aµ ∧Bν ⇒ c′
,

where Aµ, Bν are itemsets and c, c′ are items. We follow the notions presented in [SK98], Aµ ⇒ c,

Aµ ∧ Bν ⇒ c′, and Bν ⇒ c′ are respectively called a common rule, an exception rule, and a

reference rule. Such a rule pair can be interpreted as “if Aµ then c, however if Aµ and Bν then

c′”. The discovery of rule pairs r(µ, ν) is evolutive from [SS96] to [SK98]. In [SS96], an average

compressed entropy (ACE) based approach ACEP, where the average compressed entropy of c and

Aµ is defined as

ACE(c, Aµ) = p(c, Aµ)log2
p(c|Aµ)

p(c)
+ p(c, Aµ)log2

p(c|Aµ)

p(c)

and the interestingness measure of an exception rule is defined by the average compressed entropy

product (ACEP) of the rule pair is defined as

ACEP (c, Aµ, c
′, Bν) = ACE(c, Aµ) · ACE(c′, Aµ ∧ Bν).

It is not difficult to see that according to the above manner, the an exception rule holds a rel-

atively small number of examples (i.e., low support) in a database. In order to reduce the number

of potential interesting exception rules, the notions of reliable exception rules and surprising ex-

ception rules are addressed in [Suz97] and [SK98] based on probabilistic and statistic models. The

notion of rule pair is extended to rule triplet in [SZ05, Suz06], where a negative rule is regarded

as the reference rule. According to the above form of a rule pair, a rule triplet is represented as

(Aµ ⇒ c, Aµ ∧ Bν ⇒ c′, Bν 6⇒ c′),

where the rule Bν 6⇒ c′ is the reference rule. In summary, the discovery of exception rules proposed

by Suzuki et al. are probabilistic approach based, where the performance is dependent on the
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selection of c. The advantage of Suzuki’s approaches is that they can discover highly unexpected

patterns since it also discovers common sense rules.

In [DL98], Dong and Li proposed neighborhood-based interestingness in association rules,

which is based on the distance between rules and the neighborhoods of rules. The neighborhood-

based interestingness of a rule is defined in terms of the pattern of the fluctuation of confidences or

the density of discovered rules in some of its neighborhoods. The distance between rules is studied

in the syntax: given two rules r1 = X1 ⇒ Y1 and r2 = X2 ⇒ Y2, the syntax distance between r1

and r2 is defined as

distiset(r1, r2) = δ1 |(X1Y1)⊖ (X2Y2)|+ δ2 |X1 ⊖X2|+ δ3 |Y1 ⊖ Y2| ,

where X⊖Y denotes the symmetric difference between two itemsets X and Y (i.e., (X−Y )∪(Y −

X)), and δ1, δ2, δ3 are non negative real numbers that reflect users’ preferences of the contributions

of itemsets. The k-neighborhood (k > 0) of a rule r, denoted as N(r, k), is therefore defined as the

set

N(r, k) = {r′ | distiset(r, r
′) ≤ k}.

SupposeM is a set of discovered rules and r ∈M is a reference rule, the average confidence of the k-

neighborhood of r is defined as the average confidence avg(r, k) of the rules in the set M∩N(r, k)−

{r}; the standard deviation of the k-neighborhood of r is defined as the standard deviation std(r, k)

of the rules in the set M ∩N(r, k)−{r}. So that if the value |(|conf(r)− avg(r, k)|)− std(r, k)| is

larger than a given threshold, then the rule r is said to be interesting with unexpected confidence

in its k-neighborhood.

Padmanabhan and Tuzhilin proposed a semantics-based belief-driven approach [PT98, PT00,

PT02, PT06] to discover unexpected patterns (rules1) in the context of association rules. In

[PT98], Padmanabhan and Tuzhilin first proposed that a rule A ⇒ B is unexpected with respect

to a belief X ⇒ Y in a given database D if: (1) B ∧ Y |= FALSE, which means that the

two patterns B and Y logically contradict each other (i.e., ∄R in D such that B ∪ Y ⊆ R); (2)

A ∧X holds on a statistically large subset of tuples in D (e.g., with respect to a given minimum

support, the pattern A ∪ X is frequent in the database D); (3) the rule A ∧ X ⇒ B holds and

the rule A ∧X ⇒ Y hoes not hold (e.g., the support and confidence of A ∧X ⇒ B satisfy given

minimum support and minimum confidence but those of A ∧ X ⇒ Y do not). An example can

be that given a belief professional ⇒ weekend (professionals shopped on weekends), if the rule

(professional, December)⇒ weekday (professionals shopped on weekdays in December) holds but

the rule (professional, December) ⇒ weekend (professionals shopped on weekends in December)

does not, then the rule December ⇒ weekday is unexpected relative to the belief professional ⇒

1In [PT98, PT00, PT02, PT06], Padmanabhan and Tuzhilin use the terms pattern and rule interchangeably.
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weekend. Notice that in this approach, the logically contradiction between patterns is defined by

domain experts.

In [PT00, PT06], the minimal set of unexpected patterns (rules) is addressed and the refinement

of beliefs by discovered unexpected patterns is further proposed in [PT02]. The notion of minimal

set of unexpected patterns is defined based on the monotonicity assumption |=M of rules, that is,

rule (A ⇒ B) |=M (C ⇒ D) if A ⊆ C and B = D. Then, given a rule set R, the set R′ is the

minimal set of R if and only if the following conditions hold: (1) R′ ⊆ R; (2) ∀r ∈ R, ∃r′ ∈ R′

such that r′ |=M r; (3) ∀r′1, r′2 ∈ R′, r′1 6|=M r′2. The computational task is therefore to discover

the minimal set of rules in all discovered unexpected patterns (rules).

In [Spi99], Spiliopoulou presented a belief-driven approach to find unexpected sequence rules

based on the notion of generalized sequences2. A generalized sequence (or g-sequence) is a sequence

in the form g1∗g2∗. . .∗gn, where g1, g2, . . . , gn are elements contained in the sequence (e.g., itemsets)

and ∗ is a wild-card (i.e., unknown elements). A sequence rule is then built by splitting a given

g-sequence into two adjacent parts: premise (lhs) and conclusion (rhs), denoted as lhs →֒ rhs.

Further, a belief over g-sequences is defined as a tuple 〈lhs, rhs, CL,C〉, where lhs →֒ rhs is a

sequence rule, CL is a conjunction of constraints on the frequency of lhs, and C is a conjunction

of constraints on the frequency of elements in lhs and rhs. For example, a belief in the above form

can be given as 〈a ∗ b, c, CL,C〉 with CL = (support(a∗b) ≥ 0.4∧confidence(a, b) ≥ 0.8) and C =

(confidence(a∗b, c) ≥ 0.9). That is, the belief proposed by Spiliopoulou is based on the statistical

frequency of the elements contained in a g-sequence with respect to a predefined structure (e.g.,

a ∗ b →֒ c). Let B be a collection of predefined beliefs and r = lhs →֒ rhs be a sequence rule

discovered in a given database, then r is expected if there exists a belief b = 〈lhs′, rhs, CL,C〉 ∈ B

such that r and b can be matched by verifying CL and C; otherwise the rule r is unexpected.

In [WJL03], Wang et al. studied unexpected association rules with respect to the value of

attributes. In this approach, a rule is addressed in the form

A1 = a1, A2 = a2, . . . , Ak = ak ⇒ C = c,

where Ai is a non-target attribute, ai is a domain value for Ai, C is the target attribute, and c is

a domain value for C. A1 = a1, A2 = a2, . . . , Ak = ak is called the body and C = c is called the

head of the rule, respectively denoted b(r) and h(r) of a given rule r. Given a database, a tuple

matches a rule r if b(r) holds on the tuple; a tuple satisfies a rule r if both b(r) and h(r) hold on

the tuple. Given a rule r and a data tuple t, the violation of r by t, denoted as v(t, r), is defined

2Notice that the notion of generalized sequences proposed by Spiliopoulou is different from the same term that

we will present in Chapter 6: Generalizations in Unexpected Sequence Discovery.
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as

v(t, r) =

{

hm(t, r)× bm(t, r) if bm(t, r) ≥ σ ∧ hm(t, r) ≥ σ′

0 otherwise
,

where bm(t, r) measures the body match degree and hm(t, r) measures the head match degree

between t and r, hm(t, r) = 1 − hm(t, r), and σ, σ′ are given thresholds. Further, the user

knowledge, denoted as K, is defined from the rules with respect to the preference model, which

species the user’s knowledge about how to apply knowledge rules to a given scenario or a tuple.

Thus, the violation vK(t) of user knowledge K by a data tuple t is defined as

vK(t) = agg({v(t, r) | r ∈ Ct}),

where Ct is the covering knowledge of t (i.e., a set of rules that represent the user knowledge on the

data contain t) and agg is a well-behaved aggregate function (i.e., max(V ) ≤ agg(V ) ≤ max(V )

on a vector V of attribute-value pairs). Therefore, given a database D and discovered rule r, let

S be the set of all tuples that satisfy the rule r, the unexpectedness support of the rule r is defined

as

Usup(r) =

∑
{vK(t) | t ∈ S}

|S|
.

Wang et al. further defined the unexpectedness confidence and the unexpectedness of a rule r as

Uconf (r) =
Usup(r)

|{t ∈ D | t satisfies b(r)}|

and

Unexp(r) =
Usup(r)

|{t ∈ D | t satisfies r}|
.

Hence, the problem of mining unexpected rules is to find all rules with respect to user defined

thresholds on unexpectedness support, unexpectedness confidence, and unexpectedness.

In [BT97], Berger and Tuzhilin discussed the notion of unexpected patterns in infinite temporal

databases, where the unexpectedness is determined from the occurrences of a pattern. In [JS05],

Jaroszewicz and Scheffer proposed a Bayesian network based approach to discover unexpected

patterns, that is, to find the patterns with the strongest discrepancies between the network and the

database. These two approaches can also be regarded as frequency based, where unexpectedness

is defined from whether itemsets in the database are much more, or much less frequent than the

background knowledge suggests.

2.4 Discussion

In this chapter we introduced interestingness measures for data mining, and summarized the

previous approaches to unexpected pattern and rule discovery.



2.4. DISCUSSION 17

As listed in Table 2.2, most of the existing approaches to discover unexpected patterns and rules

are essentially considered within the context of association rules. To the best of our knowledge,

before our work, the approaches proposed in [Spi99] and [BT97] are the only ones that concentrates

on sequence data. Indeed, although this work considers the unexpected sequences and rules, it

is however very different from our problem in the measures and the notions of unexpectedness

contained in sequence data.

Approach Data Model Measure Unexpected Structure

[LH96] Association rule Pattern similarity Association rule

[SS96] – [SZ05] Association rule Probabilistic Association rule

[BT97] Sequence Propositional Temporal Logic Pattern

[DL98] Association rule Distance + Frequency Rule confidence

[PT98] – [PT06] Association rule Belief/Semantics Association rule

[LHML99] Association rule Pattern similarity Pattern

[Spi99] Sequence Belief/Frequency Sequence rule

[LMY01] Text, Web content VSM/TF-IDF Text/Term

[WJL03] Association rule Rule match Association rule

[JS05] Frequent pattern Bayesian network/Frequency Pattern

Table 2.2: A comparison of unexpected pattern and/or rule mining approaches.

In this thesis, the unexpectedness is stated by the semantics of sequence data, instead of the

statistical frequency or distance.

We consider the unexpectedness within the context of domain knowledge and the aspect valid

within the context of the classical notions of support and confidence. With summarizing previous

approaches, we can find that the detection of unexpectedness is often based on rules, that is, the

unexpectedness is considered as the facts that contradict existing rules on data. Therefore, before

proposing the notions of unexpected sequences with respect to the belief system on sequence data,

in the next chapter, we above all formalize the forms of sequence rules.
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Chapter 3

Sequence Rules

In most literatures, unexpectedness is the facts that contradict existing rules on data. Therefore,

in order to define the belief system on sequence data for discovering unexpected sequences, in this

section, we formalized the notions of sequence rules.

3.1 Introduction

Rule mining is an important topic in data mining research and applications, where the most studied

problem is mining association rules [AIS93, AS94, SA95, BMUT97, CA97, DL98, GKM+03, DP06,

CG07, HCXY07, CW08, KZC08], which finds frequent association relations between the patterns

contained in transactional databases. In this chapter, we formalized two categories of sequence

rules, which stand for the fundamentals of the belief system proposed in this thesis. We consider

two types of sequences rules in beliefs: non-predictive sequence rules without occurrence constraint

and predictive sequence rules with occurrence constraint, where we propose the forms of sequence

association rules and predictive sequence implication rules.

The sequence rule mining problems and the definitions of sequence rules are very variant in

comparison with association rules.

Mannila proposed the notion of episode rules [MTV97] that can be regarded as in the form

sα → sβ of sequence association rules, where the constraint sα ⊑ sβ is applied on episode rules for

depicting that the occurrence of the sequence sα implies the occurrence of the sequence sβ.

In [DLM+98], time and occurrence constraints are applied to sequence rules to analyze time

series. Two basic forms 1 on the shapes discretized from time series are proposed: (1) A
t

=⇒ B,

which depicts that “if shape A occurs, then shape B occurs within time t”; (2) A1∧A2∧. . .∧Am
v,t

=⇒

B, which depicts that “if shapes A1, A2, . . .Am occur within v units of times, then shape B occurs

within time t”. In [HD04], the constraint on time lags, which is similar to the form proposed in

1We use the notations → or ⇒ for denoting a sequence rule as how it was defined the original literature.

19
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[DLM+98], is applied to episode rules [MTV97].

In [CCH02], sequence rules are considered with intermediate elements (e.g., 〈(ab) ∗ (c)〉 where ∗

denote a sequence of unknown items between (ab) and (c) in two directions: a forward rule sα → sβ

depicts that the occurrence of sα ⊑ s implies the occurrence of sα · sβ ⊑ s, and a backward rule

sα ← sβ depicts that the occurrence sβ ⊑ s implies the occurrence of sα · sβ ⊑ s

In [HS05], a sequence rule form sα
t

=⇒
w

sβ is proposed in the context of evolutionary computing

and genetic programming with a specialized pattern matching hardware from time series, where

w is the minimum distance and t is the maximum distance between the sequences sα and sβ

contained in a rule; in [LKL08], the sequence rules in the form sα → sβ is studied in terms of

recurrent rules.

Therefore, in order to benefit from existing approaches to sequence rule mining, in this chapter,

we formalize sequence rules in terms of the notions of sequence association rules and predictive

sequence implication rules.

In this thesis, based on the sequence data model introduced in Section 2.1, we further consider

the following supplementary concepts and operations on sequence data.

The length of a sequence s is the number of itemsets contained in s, denoted as |s|; the size

of a sequence s is the number of all items contained in s, denoted as ‖s‖. An empty sequence is

denoted as ∅, where |∅| = ‖∅‖ = 0. A sequence of length k is called a k-length sequence; a sequence

with size n is called a n-size sequence, or simply a n-sequence.

The concatenation of sequences is denoted as s1 · s2, and the result is the sequence obtained

by appending s2 to the end of s1, so that we have |s1 · s2| = |s1|+ |s2| and ‖s1 · s2‖ = ‖s1‖+ ‖s2‖.

For example, 〈(a)(b)〉 · 〈(b)(c)〉 = 〈(a)(b)(b)(c)〉.

The rest of this chapter is organized as follows. In Section 3.2, we formalize the form of sequence

association rule. In Section 3.3, we propose the notion of predictive sequence implication rule. In

Section 3.4 we propose the notion of consistent sequence rule set. Section 3.5 is a discussion on

sequence rules.

3.2 Sequence Association Rules

In this section, we formalize the notion of sequence association rule with extending the notion of

association rule to sequence data.

An association rule is therefore a rule in the form X → Y , where X and Y are two patterns

such that X ∩ Y = ∅, which depicts that in a transactional database, if the pattern X occurs in a
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transaction I, then the pattern Y occurs in the same transaction, that is,

(X ⊆ I)⇒ (Y ⊆ I).

We can extend the notion of association rules to sequence data as the form sα → sβ, which depicts

that if the sequence sα occurs as a subsequence in a sequence s, then the sequence sβ occurs as a

subsequence in the same sequence s, that is,

(sα ⊑ s)⇒ (sβ ⊑ s).

Definition 1 (Sequence association rule) A sequence association rule is a rule in the form

sα → sβ, where sα, sβ are two sequences.

As measuring association rules, a sequence association rule sα → sβ can be measured by support

and confidence with respect to a database D, denoted as supp(sα → sβ,D) and conf(sα → sβ ,D),

which can be defined as

supp(sα → sβ,D) = |{s ∈ D | s |= (sα → sβ)}| , (3.1)

and

conf(sα → sβ,D) =
|{s ∈ D | s |= (sα → sβ)}|

|{s ∈ D | sα ⊑ s}|
. (3.2)

In this thesis, a sequence association rule can be either defined by domain experts or discovered

from sequence databases. Therefore, different from the constraint X ∩Y = ∅ on association rules,

we do not restrict the intersection subsequences of the sequences sα and sβ in a sequence association

rule sα → sβ. For instance, in the following sequence sets

S1 =







〈(a)(a)(b)(d)〉

〈(a)(a)(b)(d)〉

〈(a)(a)(b)(d)〉

〈(a)〉

〈(a)〉







, S2 =







〈(a)(b)(c)(a)(b)(d)〉

〈(a)(b)(c)(a)(b)(d)〉

〈(a)(b)(c)(a)(b)(d)〉

〈(a)(b)(c)〉

〈(a)(b)(c)〉







, and S3 =







〈(a)(b)(c)(a)〉

〈(a)(b)(c)(a)〉

〈(a)(b)(c)(a)〉

〈(a)(b)(c)〉

〈(a)(b)(c)〉







,

the rules 〈(a)〉 → 〈(a)(b)(d)〉, 〈(a)(b)(c)〉 → 〈(a)(b)(d)〉, and 〈(a)(b)(c)〉 → 〈(a)〉 can be obtained

without difficulty.

Given a sequence association rule sα → sβ, the sequence sα is called the premise sequence of

the rule and the sequence sβ is called the conclusion sequence of the rule. Given a sequence s,

if sα ⊑ s and sβ ⊑ s, then we say that the sequence s supports the rule sα → sβ, denoted as

s |= (sα → sβ).

On the other hand, many approaches to sequence classification focus on building sequence

classifiers [LZO99, XPDY08], where the inverse can be represented as the form ℓα → sβ of sequence
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rules, which depicts that given a sequence s, if s can be classified under the class labeled by ℓα

(denoted as s ⊢ ℓα), then sβ ⊑ s. This form of sequence rules can be also consider as sequence

association rules if we consider the class label ℓα as an element of a sequence.

Example 2 Assume a Web site that supports anonymous user sessions (labeled as ANON) and

authorized user sessions (labeled as AUTH). The rules

ANON→ 〈(index)(adv)〉 and AUTH→ 〈(login)(home)〉

depicts that anonymous users should access index and then adv however authorized users should

access login and then home. If we consider the labels ANON and AUTH as itemsets containing one

item in user navigation session sequences, then the above rules can be considered as:

r1 = 〈(ANON)〉 → 〈(index)(adv)〉;

r2 = 〈(AUTH)〉 → 〈(login)(home)〉.

The following authorized user navigation session sequence

s1 = 〈(AUTH)(index)(login)(home)(options)(save)(logout)〉

is therefore a sequence that supports the rule r2. Moreover, the sequence association rule

r3 = 〈(login)(logout)〉 → 〈(options)(save)〉

depicts that the access of login and then logout implies the access options and then save within

a user navigation session. We have that the sequence s1 supports the rule r3. �

Given a sequence rule, if the occurrence position of conclusion sequence can be predicted from

the occurrence position of premise sequence, then we say that such a rule is predictive; otherwise

we say that it is non-predictive.

Sequence association rules are non-predictive because they only depict the associations between

sequences, and there does not exist any constraints on the occurrence of premise and conclusion

sequences. Therefore, given a sequence association rule sα → sβ , we cannot predict the occurrence

position of sβ according to the occurrence position of sα.

3.3 Predictive Sequence Implication Rules

In this section, we formalize the notion of predictive sequence implication rules with considering

an occurrence constraint between the premise and conclusion sequences of a rule.
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In comparison with the form sα → sβ of sequence association rules, many sequence rule mining

approaches take account of various constraints on the occurrence of the sequences sα and sβ.

Not difficult to see, all these approaches can be categorized into predictive sequence rules since

the occurrence position of conclusion sequence can be explicitly determined from the occurrence

of premise sequence. In this section, we propose the form of predictive sequence implication rules

by taking account of a distance range onto the form sα → sβ of sequence association rules, that

is, the occurrence position of the sequence sβ is constrained with respect to the occurrence of the

sequence sα. A predictive sequence implication rules is similar in the form to the sequence rules

addressed in [HD04], however our formalization is focused on the context of sequence databases

and we also consider such a rule in more general cases.

We consider an occurrence constraint on sequence association rules sα → sβ, which is a con-

straint on the range of the number of itemsets (also called the distance or the gap) between the

sequences sα and sβ. The notion of predictive sequence implication rules is formally defined as

follows.

Definition 2 (Predictive sequence implication rule) A predictive sequence implication rule is

a rule in the form sα →
τ sβ, where sα, sβ are two sequences and τ = [min..max] is an occurrence

constraint such that min,max ∈ N and min ≤ max.

Given a predictive sequence implication rule sα →
τ sβ, the sequence sα is called the premise

sequence of the rule and the sequence sβ is called the conclusion sequence of the rule. A predictive

sequence implication rule sα →
τ sβ (τ = [min..max]) represents that given a sequence s, if the

subsequence sα ⊑ s occurs, then the subsequence sβ ⊑ s occurs within a gap range constrained

by τ . This relation can be formally represented as sα · s
′ · sβ ⊑c s, where s′ is a sequence such that

min ≤ |s′| ≤ max (denoted as |s′| |= τ), that is,

(sα ⊑ s)⇒ (sα · s
′ · sβ ⊑c s) ∧ (|s′| |= τ).

Hence, given a sequence s, if there exists a sequence s′ such that |s′| |= τ and sα · s
′ · sβ ⊑c s, then

we say that the sequence s supports the rule sα →
τ sβ, denoted as s |= (sα →

τ sβ).

In a predictive sequence implication rule sα →
τ sβ (τ = [min..max]), the integer min is called

the lower bound of the constraint τ and the integer max is call the upper bound of the constraint

τ . Moreover, if the upper bound max of τ is not specified, then we note τ = [min..∗] and we

write the rule as sα →
[min..∗] sβ; if min = max = 0, then we note τ = 0 and we write the rule as

sα →
0 sβ; if min = 0 and max = ∗, then we note τ = ∗ and we write the rule as sα →

∗ sβ.

When τ = ∗, we also call such a predictive sequence implication rule sα →
∗ sβ a simple

sequence implication rule sα → sβ. A simple sequence implication rule sα → sβ represents that

given a sequence s, if sα ⊑ s, then sα · sβ ⊑ s, that is,

(sα ⊑ s)⇒ (sα · sβ ⊑ s).
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Without loss of generality, we use the term sequence implication rule to cover both the notions of

predictive sequence implication rule and simple sequence implication rule.

Example 3 Considering again the context described in Example 2, the simple sequence implica-

tion rule

r4 = 〈(index)〉 →∗ 〈(logout)〉

depicts that the access of index implies the access of logout later. Not difficult to see, the

navigation session sequence s1 addressed in Example 2 also supports the rule r4. The rule r4 can

be constrained, for example, by τ = [1..5], that is,

r5 = 〈(index)〉 →[1..5] 〈(logout)〉,

which depicts that the gap between the accesses of index and logout must be in the range [1..5].

Considering the sequence s1 addressed in Example 2, we have that s1 |= r5 since within s1, the

length of the subsequence 〈(home)(options)(save)〉 between 〈(index)〉 and 〈(logout)〉 is 3, which

satisfies the constraint τ = [1..5]. However, if we apply the constraint τ ′ = [1..2] to the rule r4,

that is,

r6 = 〈(index)〉 →[1..2] 〈(logout)〉,

then the sequence s1 does not support the rule r6. �

A predictive sequence implication rule can also be measured by the support and confidence,

which have the same definitions to the support and confidence of a sequence association rule

defined in Equation (3.1) and Equation (3.2).

3.4 Consistent Sequence Rule Set

In previous sections, we presented the notions of sequence association rules and predictive sequence

implication rules. Denote by τ = ∅ the occurrence constraint, the sequence association rules can

be represented as the form sα →
∅ sβ.

In the rest of this thesis, we use the term sequence rule for describing such a unified form

sα →
τ sβ of sequence association rules and predictive sequence implication rules. However, in

order to simplify the descriptions, we keep the form sα → sβ for denoting a sequence association

rule where the occurrence constraint is ∅.

Given a sequence rule r = sα →
τ sβ, a premise function Λ(r), a conclusion function ∆(r),

and an occurrence function τ(r) can be defined to return the premise sequence, the conclusion

sequence, and the occurrence constraint of the rule r. Based on the premise function, we propose

the notion of consistent sequence rule set as follows.
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Definition 3 (Consistent sequence rule set) A consistent sequence rule set is a set R of

sequence rules that have the same premise sequence, that is,

∀ri, rj ∈ R, Λ(ri) = Λ(rj).

The following examples show the definition of consistent sequence rule set with respect to

sequence association rules and predictive sequence implication rules.

Example 4 Given two sets R1,R2 of sequence association rules on sequence class, where

R1 =







r1 : 〈(CL1)〉 → 〈(ab)(c)〉

r2 : 〈(CL1)〉 → 〈(a)(b)(c)(d)〉

r3 : 〈(CL1)〉 → 〈(abc)〉







and R2 =







r1 : 〈(CL1)〉 → 〈(a)(c)〉

r2 : 〈(CL2)〉 → 〈(a)(b)(cd)〉

r3 : 〈(CL1)〉 → 〈(abc)〉







,

then the set R1 is a consistent sequence class rule set however the set R2 is not consistent since

in R2 we have at least that Λ(r1) 6= Λ(r2). �

Example 5 Given two sets R1,R2 of sequence association rules, where

R1 =







r1 : 〈(e)(f)〉 → 〈(ab)(c)〉

r2 : 〈(e)(f)〉 → 〈(a)(b)(c)(d)〉

r3 : 〈(e)(f)〉 → 〈(abc)〉







and R2 =







r1 : 〈(e)(f)〉 → 〈(a)(c)〉

r2 : 〈(f)(e)〉 → 〈(a)(b)(cd)〉

r3 : 〈(e)(f)〉 → 〈(abc)〉







,

then the set R1 is a consistent sequence association rule set however the set R2 is not consistent

since in R2 we have at least that Λ(r1) 6= Λ(r2). �

Example 6 Given two sets R1,R2 of sequence rules, where

R1 =







r1 : 〈(e)〉 →∅ 〈(ab)(c)〉

r2 : 〈(e)〉 →∗ 〈(a)(b)(c)(d)〉

r3 : 〈(e)〉 →[2..5] 〈(abc)〉







and R2 =







r1 : 〈(e)〉 →∅ 〈(a)(c)〉

r2 : 〈(f)〉 →∗ 〈(a)(b)(cd)〉

r3 : 〈(e)〉 →[2..5] 〈(abc)〉







,

then the set R1 is a consistent sequence association rule set however the set R2 is not consistent

since in R2 we have at least that Λ(r1) 6= Λ(r2). �

Given a consistent sequence rule set R, for any rules ri, rj ∈ R, we have that Λ(ri) = Λ(rj),

so that we can define the premise function Λ(R) that returns the premise sequence of R, and the

conclusion function ∆(R) that returns the conclusion sequence set of R, which is defined as

∆(R) =
⋃

r∈R

∆(r).

For instance, the conclusion sequence set of the sequence rule set R1 in Example 6 is the sequence

set {〈(ab)(c)〉 , 〈(a)(b)(c)(d)〉 , 〈(abc)〉}.



26 CHAPTER 3. SEQUENCE RULES

3.5 Discussion

In this chapter, we normalized the forms of sequence rules with proposing the forms of sequence

association rule and predictive sequence implication rule. We further proposed the notion of

consistent sequence rule set, where all sequence rules share the same premise sequence.

The discovery of sequence rules can be handled in different manners, where to reduce the

combinations of sequences with the constraints on the rule structure is a core problem. For

instance, in mining episode rules [MTV97], which can be represented in the form sα → sβ of

sequence association rules, the condition sα ⊑ sβ is required.

We are currently working on developing a pattern-growth [PHW07] based method for mining

predictive sequence implication rules. We do not consider only the support ad confidence as

interestingness measures, but also consider the gap distribution between the premise and conclusion

sequences in the mining process, which specifies the predictability of a rule.

We can also apply additional constraints on the sequences sα and sβ in a sequence rule sα →
τ sβ

for reducing the number of rules, such as sβ 6⊑ sα or sα ∧ sβ = ∅, where sα ∧ sβ denotes the

intersection of the sequences sα and sβ, which is the set of all maximal subsequences of sα and sβ.

For instance, we have that

(〈(d)(ab)(bc)(ac)(e)〉 ∧ 〈(ae)(cd)(bf)〉) =







〈(a)(b)〉

〈(a)(c)〉

〈(d)〉

〈(e)〉







.

Not difficult to see, the intersection of two or more sequences is the set of sequential patterns

supported by all of those sequences.

In the next chapter, we will propose the framework Muse, which discovers multiple unexpected

sequences with respect to a belief system on sequence data, where each belief consists of a consistent

sequence rule set and semantic contradictions between sequences.



Chapter 4

Multiple Unexpected Sequence Extraction

In previous chapters we have introduced the problems stated in discovering unexpectedness in

databases and formalized the forms of sequence rules. In this chapter, we present the belief-driven

framework Muse for discovering unexpected sequences with respect to prior knowledge of data.

A part of the work presented in this chapter has been published in the Actes des 8ièmes

Journées Francophones Extraction et Gestion des Connaissances (EGC 2008), in the 8th Industrial

Conference on Data Mining (Industrial ICDM 2008), and in the book Rare Association Rule

Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection (IGI

Publishing, 2009); has been accepted to be published in the journal La Revue des Nouvelles

Technologies de l’Information (RNTI) and in the International Journal of Business Intelligence

and Data Mining (IJBIDM).

4.1 Introduction

Unexpectedness towards existing knowledge is applicative to broad applications like the discovery

of disregarded customer shopping behaviors, analysis of misbehaviors in Web access logs, detection

of credit card frauds, study of variations in DNA segments, and so on.

In Chapter 1, we addressed the problems about the semantics and occurrence in unexpected

sequences, which can be detailed in the following examples.

Example 7 Let D be a customer transaction database and assume that we can find the following

sequential pattern with the minimum support suppmin = 0.5:

s = 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)(Rock-Music)〉 ,

where supp(s,D) = 0.6. This sequential pattern can be interpreted as “60% of all the customers

purchase a Sci-Fi novel, then purchase action and Sci-Fi movies later, and then purchase a

rock music CD later”. Assume that in the database D, there exist 6% of customers who purchased
27
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a Sci-Fi novel then action and Sci-Fi movies, would purchase a classical music CD instead of a

rock music CD, then such a behavior can be considered as unexpected to the behavior interpreted

from the sequential pattern s. Notice that the unexpectedness is caused by the contradiction

between rock music CD and classical music CD, but not because the frequency is low. In fact,

with sequential pattern mining, we are able to find such an unexpected behavior only if the

minimum support is no greater than 0.06. However, with suppmin = 0.06, the result set of

all discovered sequential patterns might be huge and that makes it impossible to identify the

unexpected behavior. �

Example 8 Let D be a Web access log database that with the minimum support suppmin = 0.5,

we can find the sequential pattern

s = 〈(login)(list)(read)(read)(logout)〉 ,

where supp(s,D) = 0.8. This sequential pattern can then be interpreted as “80% of users visit the

login page, then visit the message list page, then read messages, and at last logout”. Now let the

sequential pattern

s0 = 〈(login)(list)(logout)〉

be an expected access sequence with respect to the workflow of services, where we do not require

the access of the page read in the workflow since there can be no new unread messages for a user.

Assume that the sequence

s′0 = 〈(login)(logout)〉

is unexpected to the work flow s0 and it is caused by errors in listing all messages of a user. Let

s1 = 〈(login)(list)(read)(read)(logout)〉

and

s2 = 〈(login)(options)(save)(logout)〉

be two sequential patterns (in order to simplify this example, s1 and s2 are not subsequences of

one same sequence), then we have that

supp(s′0,D) ≥ supp(s0,D) ≥ supp(s1,D) and supp(s′0,D) ≥ supp(s2,D).

Assume that s1 and s2 are the only sequential patterns other than s0 that include s′0, then we can

conclude the existence of the unexpected sequence s′0 if and only if

supp(s′0,D) > supp(s1,D) + supp(s2,D).

Nevertheless, if s′0 is unknown, then we have to examine the support values of all possible combi-

nations of subsequences of s0, s1 and s2 for seeking unexpected sequences, and the computational

task of identifying unexpected sequences will become extremely hard. �
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In order to investigate the unexpectedness mentioned in above problems, in this chapter, we

develop a belief-driven framework Muse (Multiple Unexpected Sequence Extraction) for finding

unexpected sequences with respect to prior knowledge on the occurrence and the semantics of

sequences.

In this chapter, we further consider the following supplementary concepts and operations on

sequence data.

Given a sequence s, we denote s⊤ the first itemset of s and s⊥ the last itemset of s. For two

sequences s and s′ such that s ⊑ s′: we note s ⊑⊤ s′ if we have s⊤ ⊆ s′⊤; note s ⊑⊥ s
′ if we have

s⊥ ⊆ s′⊥; and note s ⊑⊤

⊥
s′ if we have s⊤ ⊆ s′

⊤ and s⊥ ⊆ s′⊥. We denote s ⊑c s
′ that the sequence

s is a consecutive subsequence of the sequence s′, that is, there exist sequences sa, sb, and sc such

that s′ = sa · sb · sc, |s| = |sb|, and s ⊑ sb. For instance, the sequence 〈(a)(b)(c)〉 is a consecutive

subsequence of the sequence 〈(e)(a)(bd)(cd)(f)〉.

The subtraction of two sequences s1 and s2 (s2 ⊑ s1) is denoted as s1 \ s2, and the result is

the sequence obtained by removing the first occurrence of s2 from s1; if s2 6⊑ s1, then s1 \ s2 = s1.

We have |s1 \ s2| ≥ |s1| − |s2| and ‖s1 \ s2‖ = ‖s1‖ − ‖s2‖. For example, 〈(ab)(bc)(ac)(e)〉 \

〈(a)(b)(c)〉 = 〈(b)(c)(a)(e)〉, however 〈(ab)(bc)(ac)(e)〉\〈(a)(d)〉 = 〈(ab)(bc)(ac)(e)〉 since 〈(a)(d)〉 6⊑

〈(ab)(bc)(ac)(e)〉. The complete subtraction of two sequences s1 and s2 is denoted as s1 \
∗ s2, that

is to remove all occurrences of s2 from s1, if s2 ⊑ s1; otherwise s1 \
∗ s2 = s1. For instance,

〈(ab)(bc)(ac)(b)〉 \∗ 〈(a)(b)〉 = 〈(b)(c)(c)〉.

The rest of this chapter is organized as follows. In Section 4.2, we propose a belief system of

sequence data, based on which we propose the notions of unexpected sequences in Section 4.3.

We present the framework Muse in Section 4.4 and show the experimental results in Section 4.5.

Finally, Section 4.6 is a discussion.

4.2 Belief System

In this section, we present the belief system on prior knowledge, which is based on sequence rules

with integrating semantic contradiction between sequences.

Hence, in our approach, a belief specifies that if a sequence sα occurs, then a sequence sβ will

occur with or without an occurrence constraint on the gap between them, however a sequence

sγ should not occur at the occurrence position of the sequence sβ. A sequence s is therefore

unexpected if (1) the sequence sα occurs and the sequence sβ occurs (without respecting the

occurrence constraint, if the occurrence constraint is specified); or (2) the sequence sα and the

sequence sγ occurs (with respect to the occurrence constraint, if the occurrence constraint is

specified).
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4.2.1 Semantic Contradiction

In this section, we introduce the notion of semantic contradiction between sequences. Since a

sequence s can also represent an itemset if it contains only one itemset (i.e., |s| = ‖s‖), or

represent an item if it contains only one item (i.e., ‖s‖ = 1), the semantic contradiction can also

be applied to itemsets and items. Therefore, we use the term element in the following definition

in order to generalize the semantic contradiction.

Definition 4 (Semantic contradiction) Given two elements eφ and eθ, the semantic contra-

diction between eφ and eθ is a boolean value determined by a predicate o(eφ, eθ): if eφ semantically

contradicts eθ, then o(eφ, eθ) returns 1; otherwise o(eφ, eθ) returns 0.

Given two elements eφ and eθ, denote by eφ 6≃sem eθ when o(eφ, eθ) = 1. The semantic

contradiction is symmetric but not transitive. We have that eφ 6≃sem eθ is equivalent to eθ 6≃sem eφ,

however eφ 6≃sem eθ and eθ 6≃sem eϕ do not imply that eφ 6≃sem eϕ. The predicate o(eφ, eθ) can be

designed to compute the semantic contradiction between the elements eφ and eθ in various manners.

For instance, given a set E of elements, we can build a projection table T of predefined relations

on E × E , and then the semantic contradiction between any elements eφ, eθ ∈ E can be returned

by o(eφ, eθ) with searching the table T ; the semantic contradiction can also be determined by the

semantic relatedness between the concepts associated with items contained in elements, which can

be computed with examining the semantic similarity between concepts and even with concept

hierarchies.

The following example illustrates how semantic contradictions between two items are deter-

mined with respect to a concept hierarchy in the context of Web usage analysis.

resource

/

News Entertainment

Politics Science Technologies Music Movies Stars

112.html 113.html 116.html 114.html111.html 118.html117.html115.html

index.html concept

Figure 4.1: A Web site structure hierarchy.

Example 9 In the context of Web usage analysis, the semantic contradictions between resources

can be determined from Web site structure. For instance, login and logout (we ignore the file

extension for simplifying the description) can be viewed as semantically contradicting each other,

that is, login 6≃sem logout. On the other hand, as shown in Figure 4.1, the semantic contradictions

can also be determined from Web site structure hierarchies by computing the relatedness between

concepts. For instance, 115 and 117 can be viewed as semantically equivalent because they are
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both under the concept Politics; however 115 and 118 can be viewed as semantically contradicting

each other if we consider the path length and semantic relatedness between the concepts Politics

and Movies as relative criteria. �

In [PT98, PT06], the contradiction specified by domain experts between two patterns is a con-

straint that two patterns logically contradict each other, that is, such two patterns cannot appear

in same time (e.g., weekday and weekend). Our definition of semantic contradiction is based on the

semantics of two elements, so that logical contradiction can be covered by semantic contradiction.

Semantic contradiction can be specified on a broad of notions, from concepts to user classes, and

even more complex data types. For example, login semantically contradicts logout because they are

two opposite concepts; a purchase of Mac and Snow Leopard semantically contradicts a purchase of

PC and Windows 7 because they belong to two contradicting user groups; opposite functions con-

tained in DNA sequences can be considered as semantically contradicting each other; acceleration

and deceleration processes of a mobile robot can also be considered as semantically contradicting

each other; in natural language, two sentences can semantically contradict each other, such as “I

like Mac” and “I like PC”.

Now we introduce the consistent semantic contradiction set, which is similar to the notion of

consistent sequence rule set and proposed as follows.

Definition 5 (Consistent semantic contradiction set) A consistent semantic contradiction set

is a setM of semantic contradictions that for any two relations (eφi
6≃sem eθi), (eφj

6≃sem eθj) ∈M,

we have that eφi
= eφj

.

The following example shows the definition of consistent semantic contradiction set, where the

relations are considered between sequences.

Example 10 Given two setsM1,M2 of semantic contradictions between sequences, where

M1 =







o1 : 〈(a)(b)〉 6≃sem 〈(b)(a)〉

o2 : 〈(a)(b)〉 6≃sem 〈(ab)〉

o3 : 〈(a)(b)〉 6≃sem 〈(abc)(ef)〉







andM2 =







o1 : 〈(a)(b)〉 6≃sem 〈(b)(a)〉

o2 : 〈(a)(a)〉 6≃sem 〈(ab)〉

o3 : 〈(a)(b)〉 6≃sem 〈(abc)(ef)〉







,

then the set M1 is a consistent semantic contradiction set however the set M2 is not consistent

since inM2 we have at least that o1 = 〈(a)(b)〉 6≃sem 〈(b)(a)〉 and o2 = 〈(a)(a)〉 6≃sem 〈(ab)〉. �

In this thesis, the semantic contradiction is one of the primary criteria to measure unexpected

sequences, which will be presented in the next chapter.
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4.2.2 Sequence Belief

In this section, we propose the notion of sequence beliefs for representing prior knowledge of

sequence data with respect to the occurrence and semantics of sequences.

According to our published works [LLP07, LLP08a, LLP08b, LLP08c, LLP09], a belief is a

sequence implication rule r with respect to a semantic contradiction between ∆(r) and a predefined

sequence, which can be formally denoted as the following form

{sα →
τ sβ} ∧ {sβ 6≃sem sγ}

or simply written as [sα; sβ; sγ; τ ]. The semantics of such a belief is that within a sequence covered

by the knowledge described by the rule sα →
τ sβ, if sα occurs, then sβ occurs with respect to

the occurrence constraint τ where sβ cannot be replaced by sγ. If the semantic contradiction is

empty, which is denoted as {∅}, then only occurrence constraint is examined.

In this manner, let us consider the case that the occurrence of 〈(a)〉 is expected to be followed

the occurrence of 〈(b)〉, or of 〈(c)〉, or of 〈(d)〉, then the following three beliefs must be specified:

b1 = {〈(a)〉 →∗ 〈(b)〉} ∧ {∅},

b2 = {〈(a)〉 →∗ 〈(c)〉} ∧ {∅},

b3 = {〈(a)〉 →∗ 〈(d)〉} ∧ {∅}.

Now given a set of sequences

{s1 = 〈(a)(b)〉 , s2 = 〈(a)(c)〉 , s3 = 〈(a)(d)〉 , s4 = 〈(a)(e)〉},

then we have the following violations:

1. s1 violates b2 and b3 because 〈(a)〉 ⊑ s1 is not followed by 〈(c)〉 ⊑ s1 neither 〈(d)〉 ⊑ s1;

2. s2 violates b1 and b3 because 〈(a)〉 ⊑ s2 is not followed by 〈(b)〉 ⊑ s1 neither 〈(d)〉 ⊑ s1;

3. s3 violates b1 and b2 because 〈(a)〉 ⊑ s3 is not followed by 〈(b)〉 ⊑ s1 neither 〈(c)〉 ⊑ s1;

4. s4 violates b1, b2, and b3 because 〈(a)〉 ⊑ s4 is not followed by 〈(b)〉 ⊑ s4, 〈(c)〉 ⊑ s4, neither

〈(d)〉 ⊑ s4.

Obviously, according to the above context, only the violation caused by the sequence s4 is really

interesting and the violations caused by the sequences s1, s2, and s3 are redundant. We addressed

this problem in [LLP09] by reorganizing all beliefs consisting of simple sequence implication rules

together and then considering the violations of such beliefs integrally. However, even though such

consideration is successful in mining unexpected sequences, the semantics of each belief is not

clear.
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In order to maintain the proper semantics of each belief, we consider a belief as a minimum

semantically complete unit by using the notions of consistent sequence rule set and consistent

semantic contradiction set. We therefore propose the definition of sequence belief as follows.

Definition 6 (Sequence belief) A sequence belief is a conjunction R ∧ M, where R is a

non-empty consistent sequence rule set and M is a consistent semantic contradiction set such

that for each relation (sβi
6≃sem sγi

) ∈ M, we have that sβi
∈ ∆(R), and for any relation

(sβi
6≃sem sγi

) ∈M, there does not exist sβj
∈ ∆(R) such that sγi

⊑ sβj
.

The semantic constraint imposed on R by M requires that for each semantic contradiction

(sβi
6≃sem sγi

) ∈ M, there exists a sequence rule r ∈ R such that sβi
= ∆(r), since a relation

sβj
6≃sem sγj

that does not correspond to any sequence rule in R is meaningless to the semantics of

a belief. A belief can be generated from existing domain knowledge on common behaviors of the

data, or from predefined workflows. Following Example 11 and Example 12 illustrate how beliefs

are constructed with respect to different contexts.

Example 11 Before considering the customer purchase behaviors addressed in Example 7, we

first assume that according to prior knowledge of the retail database, we know the youths like to

watch Sci-Fi movies, thus, the following sequence class rule may be built with respect to youth

purchase behaviors:

r1 = 〈(Youth)〉 → 〈(Sci-Fi-Movie)〉.

With considering that Sci-Fi movies semantically contradict opera movies and drama movies,

then the following belief b1 can be constructed:

b1 =
{

r1 : 〈(Youth)〉 → 〈(Sci-Fi-Movie)〉
}

∧

{

o1 : 〈(Sci-Fi-Movie)〉 6≃sem 〈(Opera-Movie)〉

o2 : 〈(Sci-Fi-Movie)〉 6≃sem 〈(Drama-Movie)〉

}

.

According to frequent customer purchase behaviors, we can create the sequence implication rule

r2 = 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →∗ 〈(Rock-Music)〉,

which indicates that the purchase of a Sci-Fi novel then action and Sci-Fi movies later implies

the purchase of a rock music CD. If we just expect that a purchase of rock music CD should be

performed after the precedent purchases, then following belief b2 can be established for describing

this requirement:

b2 =
{

r2 : 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →∗ 〈(Rock-Music)〉
}

∧
{

∅
}

,

where the semantic contradiction set is empty without considering semantic contradictions between

sequences. Now let the classical music be semantically contradicting the rock music, then we

have the semantic contradiction

o3 = 〈(Rock-Music)〉 6≃sem 〈(Classical-Music)〉,
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so that the belief b2 can be rewritten as follows:

b3 =
{

r2 : 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →∗ 〈(Rock-Music)〉
}

∧
{

o3 : 〈(Rock-Music)〉 6≃sem 〈(Classical-Music)〉
}

.

Moreover, if customer transaction records show that most of customers purchase a rock music CD

in a short delay after purchasing a Sci-Fi novel then action and Sci-Fi movies, for example in

the next 3 to 5 purchases, then belief b3 can be further rewritten as:

b4 =
{

r3 : 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →[3..5] 〈(Rock-Music)〉
}

∧
{

o3 : 〈(Rock-Music)〉 6≃sem 〈(Classical-Music)〉
}

.

�

Example 12 Considering the context described in Example 2 and Example 8, we can construct

the following sequence association rule

r1 = 〈(home)(list)〉 → 〈(login)(logout)〉

based on the assumed facts: (1) the authorized users access user home page home and then access

list for verifying new messages; (2) the access of login is not obligate for user authorization since

the login process can be effected by cookies; (3) the access of logout is not obligated to close user

session. The following sequence implication rules can be also obtained from the above facts and

that the access of logout should not be directly after the access of login:

r2 = 〈(login)(home)〉 →∗ 〈(logout)〉,

r3 = 〈(login)〉 →[1..∗] 〈(logout)〉.

Hence, we have the following beliefs without semantic contradictions:

b1 =
{

r2 : 〈(login)(home)〉 →∗ 〈(logout)〉
}

∧
{

∅
}

,

b2 =
{

r3 : 〈(login)〉 →[1..∗] 〈(logout)〉
}

∧
{

∅
}

.

The beliefs b1 and b2 can be further combined as belief b3:

b3 =
{

r4 : 〈(login)〉 →0 〈(home)〉
}

∧
{

o1 : 〈(home)〉 6≃sem 〈(logout)〉
}

,

where logout can be viewed as semantically contradicting home in the context of user login process.

Other user behaviors can also be represented by beliefs. For instance, the following belief

b4 =
{

r5 : 〈(login)(list)〉 →[0..5] 〈(read)〉
}

∧
{

o2 : 〈(read)〉 6≃sem 〈(logout)〉
}

depicts that we expect that users will not logout to the system too quickly, for example, after

reading at least 5 messages. �
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Given a belief b, if a sequence s supports at least one rule contained in this belief and no

semantic contradiction of any other rules can be found in the sequence s, then we say that the

sequence s satisfies the belief b or the sequence s supports the belief b, denoted as s |= b. The

satisfaction of beliefs is specified in the following manners.

1. Let b be a belief that consists of a consistent sequence association rule set R and a consistent

semantic contradiction setM, if there exists a rule (r = sα → sβ) ∈ R such that s |= r, and

for any semantic contradiction (sβi
6≃sem sγj

) ∈ M there does not exist a rule (r′ = sα →

sβi
) ∈ R such that s |= r′, then we have that sequence s |= b.

2. Let b be a belief that consists of a consistent sequence implication rule set R and a consistent

semantic contradiction set M, if there exists a rule (r = sα →
τ sβ) ∈ R such that s |= r,

and for any semantic contradiction (sβi
6≃sem sγj

) ∈ M there does not exist a rule (r′ =

sα →
τ ′

sβi
) ∈ R such that s |= r′, then we have that sequence s |= b.

Nevertheless, given a belief b = R∧M, we say that a sequence s does not satisfy the belief b

if there does not exist any rule (r = sα → sβ) ∈ R such that s |= r, denoted as s 6|= b.

Example 13 Let us consider the belief

b =







r1 : 〈(a)〉 →∗ 〈(b)〉

r2 : 〈(a)〉 →[2..2] 〈(bc)〉

r3 : 〈(a)〉 →[0..2] 〈(d)〉







∧







o1 : 〈(b)〉 6≃sem 〈(cd)〉

o1 : 〈(bc)〉 6≃sem 〈(bd)(c)〉

o2 : 〈(d)〉 6≃sem 〈(ac)〉







,

and the sequences s1 = 〈(a)(b)(c)(bc)(d)〉, s2 = 〈(a)(b)(ad)(bd)〉, and s3 = 〈(a)(d)(c)〉, we have

that s1 |= b because

s |= {r1, r2} and s 6|=







〈(a)〉 →∗ 〈(cd)〉,

〈(a)〉 →[2..2] 〈(bd)(c)〉

〈(a)〉 →[0..2] 〈(ac)〉







;

we also have s2 6|= b and s3 6|= b because s2 6|= {r1, r2, r3} and s3 6|= {r1, r2, r3}. �

4.2.3 Belief Tree Representation

In this section, we propose a tree representation of a belief base consisting of a set of sequence

beliefs. Before constructing the tree representation, we first propose the notions of the premise

sequence and the conclusion sequence set of belief as follows.

Definition 7 (Premise sequence of belief) Given a belief b = R∧M, the premise sequence of

the belief b, denoted as Λ(b), is the premise sequence of the consistent rule set R contained in the

belief, that is, Λ(b) = ∆(R).
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Definition 8 (Conclusion sequence set of belief) Given a belief b = R ∧M, the conclusion

sequence set of the belief b, denoted as ∆(b), is the set of all conclusion sequences of the consistent

rule set R contained in the belief, that is, ∆(b) = ∆(R).

Considering the Definition 5, multiple contradictions are allowed to be associated with the

same sequence in a consistent semantic contradiction set M, that is, for (sβi
6≃sem sγi

) ∈ M and

(sβj
6≃sem sγj

) ∈ M, the relation (sβi
= sβj

) ∧ (sγi
6= sγj

) is the only constraint on the sequences

addressed inM. Thus, we further propose the notion of the contradiction set of belief b = R∧M

with respect to a conclusion sequence in R, which is defined as follows.

Definition 9 (Contradiction sequence set of belief) Given a sequence belief b = R ∧M, let

sβ ∈ ∆(b) be a conclusion sequence. The contradiction sequence set of the belief b with respect

to the sequence sβ, denoted as Θ(b, sβ), is the set of sequences such that for each sequence sγi

contained in each relation (sβ 6≃sem sγi
) ∈M, we have that sγi

∈ Θ(b, sβ).

Therefore, given a belief b can then be regarded as a tree link Λ(b) −→ ∆(b) −→ Θ(b, sβ).

A belief tree, denoted as T , is a tree representation of a belief. According to the notions defined

in above, a belief tree is a tree structure defined as below.

sα

τ1 τ2 τ3

sβ1
sβ2

sβ3

sγ1
sγ2

sγ3
sγ4

sγ5

Figure 4.2: A belief tree example.

1. A belief tree T corresponding to a belief b consists of one root node sα-node for the sequence

sα = Λ(b), a set of τ -nodes as the sub-nodes of the root, and a set of sequence subtrees

consisting of s-nodes.

2. The τ -node has two field: min and max corresponding to the occurrence constraint in a

sequence implication rule. If the belief consists of sequence association rules, we let min =

−1.
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3. A s-node contains a sequence. In our implementation, a s-node is a reference (e.g., a pointer

in C/C++, or originally a reference in Java) to a sequence stored external to the tree

structure.

4. Each τ -node possesses a sequence subtree. The sub-root node of a sequence subtree cor-

responds to a conclusion sequence sβ ∈ ∆(b) and the sub-nodes correspond to the set of

sequences sγ ∈ Θ(b, sβ). Each τ -node is linked by appending order for optimizing the per-

formance of traversal.

5. A τ -link connects a τ -node and each s-node corresponding to each sequence sγ ∈ Θ(b, sβ).

6. A s-link connects all (sβi
, sβj

) ∈ ∆(b) such that sβi
= sβj

, with respect to the appending

order. For instance, in Figure 4.2, sβ1 = sβ2.

Figure 4.2 shows a belief tree example. Based on this definition, we have the following belief

tree construction algorithm BeliefTree (Algorithm 1). Given an input belief b = R ∧M, the

algorithm first creates a belief tree T with the root node sα = Λ(R). For each sequence rule

r ∈ R, the algorithm appends the occurrence constraint τ as a τ -node to the root node and

appends the conclusion sequence sβ as a s-node to the newly appended τ -node. Then, for each

relation (sβ 6≃sem sγ) ∈ M, the algorithm finds the location of the s-node of sβ in the tree and

appends sγ as a s-node to sβ. Finally, the algorithm outputs the belief tree T . To construct a

belief tree, the algorithm scans the consistent sequence rule set R and the consistent semantic

contradiction set M once.

Algorithm 1: BeliefTree (b) : Belief tree construction.
Input : A belief b = R∧M.

Output : A belief tree T .

sα := Λ(R);1

T := BeliefT ree.Create(sα);2

foreach r ∈ R do3

nτ := T.appendTauNode(r.τ); /∗ do not create new τ -node if the same τ exists ∗/4

ns := T.appendSeqNode(n,∆(r));5

n′

s := T.getLastSeqNode(ns); /∗ find last s-node having the same sequence with ns ∗/6

T.linkSeqNode(n′

s, ns);7

foreach o ∈ M do8

ns := T.getSeqNode(o.sβ);9

n′

s := T.appendSeqNode(ns, o.sγ);10

T.linkTauNode(ns.parent, n
′

s);11

return T ;12

A belief base, denoted as B, is a set of sequence beliefs. Example 14 shows a tree representation

of a belief base with 4 different beliefs.
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Example 14 Given a belief base containing the following 4 beliefs:

b1 =
{

〈(l1)〉 → 〈(a)(ab)〉
}

∧
{

〈(a)(ab)〉 6≃sem 〈(c)(d)〉
}

;

b2 =
{

〈(a)(b)〉 → 〈(c)(d)〉
}

∧
{

〈(c)(d)〉 6≃sem 〈(d)(c)〉
}

;

b3 =
{

〈(a)(d)〉 →[2..5] 〈(b)(c)〉 , 〈(a)(d)〉 →0 〈(d)〉
}

∧
{

〈(b)(c)〉 6≃sem 〈(cd)〉
}

;

b4 =
{

〈(a)(c)〉 →∗ 〈(cd)〉
}

∧
{

〈(cd)〉 6≃sem 〈(ab)〉, 〈(cd)〉 6≃sem 〈(b)(c)〉
}

.

The corresponding belief base tree is shown in Figure 4.3. �

0

−1 0

2 5

0 0

0 −2

ROOT

−1

〈(l1)〉
〈(a)(ab)〉
〈(c)(d)〉
〈(a)(b)〉
〈(d)(c)〉
〈(a)(d)〉
〈(b)(c)〉
〈(d)〉
〈(cd)〉
〈(a)(c)〉
〈(ab)〉

Figure 4.3: An example tree presentation of a belief base.

The tree structure shown in Figure 4.3 is called a belief base tree, denoted as T , which consists

of a null root node shared for all sub belief trees representing each belief b ∈ B.

4.3 Unexpected Sequences

In this section, we propose three forms of unexpected sequences with respect to the belief system

presented in the previous section.

4.3.1 Completeness Unexpectedness

We first study the unexpected sequences stated by the beliefs with simple sequence implication

rules sα →
∗ sβ without considering semantics constraints, where the unexpectedness is caused by

incompleteness of sequence.

We call the unexpectedness caused by incompleteness of sequence the α-unexpectedness, which

is formally called the completeness-unexpectedness. We define a unexpected sequence with completeness-

unexpectedness as follows.
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Definition 10 (Completeness-unexpected sequence) Given a sequence s and a belief b of

consistent simple sequence implication rules, let sα = Λ(b). For each sβ ∈ ∆(b), if (sα ⊑ s) ∧

(sα · sβ 6⊑ s), then the sequence s is a completeness-unexpected sequence with respect to the belief

b, denoted as s 3α b. We also call such an unexpected sequence an α-unexpected sequence,.

The simple sequence implication rules contained in a belief b state that at least one sequence in

the conclusion set ∆(b) of the belief b should occur after the occurrence of the premise sequence Λ(b)

in an expected sequence. Considering that given a simple sequence implication rule (sα →
∗ sβ)

and a sequence s, the occurrence constraint τ = [0..∗] is broken if and only if (sα ⊑ s)∧ (sα · sβ 6⊑

s), so that the only factor of this violation is the sequence sα. We therefore name this form

of unexpectedness the α-unexpectedness, and such an unexpected sequence is so called an α-

unexpected sequence.

Example 15 Let us consider the belief b2 listed in Example 11, i.e.,

b2 =
{

〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →∗ 〈(Rock-Music)〉
}

∧
{

∅
}

,

which determines α-unexpected sequences. This belief depicts that a purchase of rock music CD

is expected after the purchases of a Sci-Fi novel then action and Sci-Fi movies later, otherwise

it is unexpected. Therefore, the sequence

s1 = 〈(Sci-Fi-Novel)(Printer)(Action-Movie Sci-Fi-Movie)(Play-Station)〉 ,

does not support the belief b2 (i.e., s1 6|= b2) and violates the belief b2 (i.e., s1 3α b2); however the

sequence

s2 = 〈(Sci-Fi-Novel)(Printer)(Sci-Fi-Movie)(Play-Station)〉 ,

does not support the belief b2 (i.e., s2 6|= b2) neither violates the belief b2. �

Let us recall the problem stated in Section 4.2.2 with considering the following independent

beliefs

b1 =
{

〈(a)〉 →∗ 〈(b)〉
}

∧
{

∅
}

,

b2 =
{

〈(a)〉 →∗ 〈(c)〉
}

∧
{

∅
}

,

b3 =
{

〈(a)〉 →∗ 〈(d)〉
}

∧
{

∅
}

and the sequence set

{s1 = 〈(a)(b)〉 , s2 = 〈(a)(c)〉 , s3 = 〈(a)(d)〉 , s4 = 〈(a)(e)〉}.

According to the definition of α-unexpected sequences, the following unexpectedness can be ob-

tained:
{

s1 3α b2

s1 3α b3

}

,

{

s2 3α b1

s2 3α b3

}

,

{

s3 3α b1

s3 3α b2

}

, and







s4 3α b1

s4 3α b2

s4 3α b3







.
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Semantically, the beliefs b1, b2, and b3 depict that 〈(b)〉, 〈(c)〉, or 〈(d)〉 should occur after the

occurrence of 〈(a)〉, thus, in this meaning, only the sequence s4 is unexpected. However, with

respect to b1, b2, and b3, all of the 4 sequences are α-unexpected. This ambiguity is avoided by

combining the beliefs b1, b2, and b3 into one single belief with consistent rules, that is,

b4 =







〈(a)〉 →∗ 〈(b)〉

〈(a)〉 →∗ 〈(c)〉

〈(a)〉 →∗ 〈(d)〉







∧
{

∅
}

,

with which we have that s1 |= b4, s2 |= b4, s3 |= b4, and s4 3α b4.

Given a belief b and a sequence s, the α-unexpectedness can be discovered by verifying the

occurrence of the premise sequence sα = Λ(b) and the absence of each conclusion sequence sβ ∈

∆(b).

In order to match the occurrence of s ⊑ s′ within a specified range of the occurrence of the

first itemset of the sequence s, we designed three algorithms SeqMatchFirst (to find the first

occurrence of s in s′), SeqMatchMax (to find the maximal occurrence of s in s′), and SeqMatchMin

(to find the first non-redundant occurrence of s in s′). One of the three algorithms can be selected

with respect to different discovery strategies, thus, in the remainder of this thesis, we use SeqMatch

as the subsequence matching routine, and SeqMatchAll as the routine that matches all occurrences

of a subsequence.

Example 16 Let us consider the sequences s = 〈(a)(b)(c)〉 and s′ = 〈(a)(b)(a)(a)(b)(c)(c)〉. Th

algorithms SeqMatchFirst, SeqMatchMax, and SeqMatchMin return the beginning (starting from

0) and ending positions of the sequence s in s′. These three algorithms are based on linear

matching for subsequence inclusion, which scan the sequence s′ once. SeqMatchFirst returns

(0, 5) corresponding to the first (a) and the first (c); SeqMatchMax returns (0, 6) corresponding to

the first (a) and the last (c); SeqMatchMin returns (3, 5), corresponding to the last (a) and the

first (c). �

With the routine SeqMatch, the discovery of α-unexpectedness is therefore proposed as listed

in Algorithm 2. The algorithm accepts a belief T , a sequence s, and a pair pos indicating the

occurrence of the sequence sα contained in the sα-node of T in the sequence s as inputs (i.e.,

sα ⊑ s is already confirmed). If T contains no τ -node corresponding to τ = ∗ then the algorithm

returns pair(−1,−1) to declare the failure; otherwise, for each s-node connected to the τ -node

corresponding to τ = ∗, the algorithm matches the occurrence of the sequence sβ contained in

the s-node within the range [pos.second+ 1, |s| − 1] (i.e., from the itemset next to the end of the

occurrence of sα ⊑ s till to the end of s). If any sβ is matched, then the algorithm returns a

tuple of -1; otherwise, the algorithm returns tuple(s.id, pos.first, |s| − 1), which corresponds the
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occurrence of the α-unexpectedness discovered in the sequence s, that is, from the beginning of

sα till to the end of s. In the worst case, |∆(b)| matches are performed onto the sequence s.

Algorithm 2: UxpsMatchAlpha (T, s, pos) : Matching α-unexpectedness.
Input : A belief tree T , a sequence s, and a pair pos indicating the occurrence of the sequence sα

contained in the sα-node of T in s.

Output : The occurrence of α-unexpectedness in s with respect to T .

if nτ := T.getTauNode(WILD) then /∗ find the τ -node corresponding to τ = ∗ ∗/1

while nsβ
:= T.nextSubNode(nτ) do2

uxp := SeqMatch(nsβ
.data, s, pair(pos.second+ 1, |s| − 1));3

if uxp.first 6= −1 then4

return pair(−1,−1);5

return tuple(s.id, pos.first, |s| − 1);6

else7

return tuple(−1,−1,−1);8

The α-unexpectedness depicts the unexpectedness contained in data with the characteristics

such as “if the element sα occurs, then at least one of the elements sβ1, sβ2, . . . , sβn
should occurs

later; otherwise it is unexpected”, that is,

sα → (sβA
∨ sβ2 ∨ . . . ∨ sβn

).

This model is essential because the model

sα → (sβ1 ∧ sβ2)

can be reduced to be the model

sα → comp(sβ1, sβ2),

where comp(sβ1, sβ2) is a composition function of sβ1 and sβ2, for example, (sβ1 · sβ2), (sβ2 · sβ1),

etc.

The discovery of α-unexpectedness is applicative in many application domains when the effects

of missing elements are critical. For instance, in Web access log analysis, we may find that an

incomplete user navigation sequence often implies the errors like server failure or remote intrusion

attempts. In the context of bioinformatics, this form of unexpectedness may also be found in DNA

segments and such incomplete segments might cause, for example, abnormal behaviors.

4.3.2 Occurrence Unexpectedness

The notion of completeness-unexpectedness (α-unexpectedness) has been proposed and studied

in the previous section. In this section, we study the unexpected sequences stated by the beliefs
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with predictive sequence implication rules sα →
τ sβ, where τ 6= ∗, without considering semantics

constraints.

The unexpectedness studied in this section is caused by the occurrence position of sequences,

which is called the β-unexpectedness, or formally called the occurrence-unexpectedness. We define

a unexpected sequence with occurrence-unexpectedness as follows.

Definition 11 (Occurrence-unexpected sequence) Given a sequence s and a belief b of con-

sistent sequence implication rules, let sα = Λ(b). If there exists sβ ∈ ∆(b) such that for each rule

(sα →
τi sβ) contained in the belief b we have not that (sα ⊑ s)∧ (sα · s

′ · sβ ⊑c s)∧ (|s′| |= τi), then

the sequence s is an occurrence-unexpected sequence with respect to the belief b, denoted as s 3β b.

We also call such an unexpected sequence a β-unexpected sequence.

The predictive sequence implication rules contained in a belief b state that at least one sequence

in the conclusion set ∆(b) of the belief b should occur after the occurrence of the premise sequence

Λ(b) in an expected sequence, with respect to the occurrence constraint τ associated with the rule.

Considering that given a predictive sequence implication rule (sα →
τ sβ) and a sequence s, the

occurrence constraint τ 6= ∗ is broken if and only if sα · s
′ · sβ ⊑c s where |s′| 6|= τ , so that the

primary factor of this violation is the occurrence position of the sequence sβ. We therefore name

this form of unexpectedness the β-unexpectedness, and such an unexpected sequence is so called

a β-unexpected sequence.

Example 17 Let us consider the belief b4 listed in Example 11:

b4 =
{

r3 : 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →[3..5] 〈(Rock-Music)〉
}

∧
{

o3 : 〈(Rock-Music)〉 6≃sem 〈(Classical-Music)〉
}

.

With this belief, the purchase of a rock music CD is expected within the next 3 to 5 purchases after

the purchases of a Sci-Fi novel then action and Sci-Fi movies later, however if the purchase of a

rock music CD is out of the range [3..5], then the belief is broken. Thus, for example, the customers

who purchase a rock music CD just in the next purchase, such as the sequence

s = 〈(Sci-Fi-Novel)(Printer)(Action-Movie Sci-Fi-Movie)(Rock-Music)〉 ,

is β-unexpected to the belief b4 and might be valuable to make new promotion strategies on

related products. Notice that 〈(Classical-Music)〉 in this belief is not considered in the context

of β-unexpectedness. �

Notice that in a consistent sequence implication rule set, there is no constraints on the value of

the occurrence constraint τ associated with each rule. Therefore, given a belief b, there can exist
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two rules r1 and r2 in this belief such that r1 = sα →
τ1 sβ and r2 = sα →

τ2 sβ. In this case, we

consider the disjunction of the two τ values for determining β-unexpectedness, that is, sα·s
′·sβ 6⊑c s

where |s′| 6|= (τ1 ∨ τ2). For instance, considering two rules sα →
τ1 sβ and sα →

τ2 sβ contained in a

consistent sequence implication rule set, if τ1 = [2..6] and τ1 = [4..8], then (τ1 ∨ τ2) = [2..8], shown

as Figure 4.4.
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Figure 4.4: Disjunction of occurrence constraints.

Further, if (τ1 ∨ τ2) = [0..∗], for example τ1 = [0..5] and τ2 = [4..∗], then in this case, the

occurrence-unexpectedness is equivalent to the completeness-unexpectedness.

Given a belief b, the β-unexpectedness can be discovered by determining the occurrence of the

premise sequence sα = Λ(b) and the occurrence position of each conclusion sequence sβ ∈ ∆(bτ ),

where the computational can be performed to a subset of the consistent sequence implication rule

set R of the belief b. In fact, the rule set R can be considered as a group of subsets J of the rules

r ∈ R such that all rules in such a subset J ⊆ R have the same conclusion sequence sβ , that is,

∀r1, r2 ∈ R,∆(r1) = ∆(r2) ⇐⇒ (r1 ∈ J1) ∧ (r2 ∈ J2) ∧ (J1 = J2).

Such a maximal subset J ⊆ R is called a member set of the belief b.

Lemma 1 Given a belief b, if a sequence s violates a member set J of the belief b, then the

sequence s is β-unexpected to the belief b.

Proof. The proof is immediate. For any two rules r1, r2 ∈ R such that r1 = sα →
τ1 sβ1 and

r1 = sα →
τ2 sβ2, if r1 ∈ Ji and sβ1 = sβ2, then r2 ∈ Ji. Thus, if a sequence s violates each rule

ri ∈ Ji, then s violates each rule rj ∈ R that have the same premise and conclusion sequences.

According to Definition 11, s is therefore β-unexpected to this belief. �

The routine of β-unexpectedness discovery is listed in Algorithm 3, which accepts a belief tree

T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα contained in

the sα-node of T in the sequence s as inputs (i.e., sα ⊑ s is already confirmed).

For each τ -node connected to the root node of T , the algorithm first verifies whether current

τ -node corresponds to a predictive sequence implication rule. If not, next τ -node will be selected
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till to all τ -nodes are processed. If current τ -node corresponds to a predictive sequence implica-

tion rule, from each s-node directly connected to current τ -node, the algorithm uses a recursive

routine SeqNodeMatchBeta (Algorithm 4) to determine the set of all occurrences of the sequence

sβ contained in the s-nodes linked by a s-link. If the set returned by SeqNodeMatchBeta is empty,

then s is not β-unexpected to the belief corresponding to T ; otherwise s is β-unexpected. A global

option FIRST_UXPS_ONLY can be set to profit from Lemma 1, which returns the β-unexpectedness

from the first matched member set of the belief; otherwise, the algorithms returns the set of all

occurrences of the matched β-unexpectedness.

Algorithm 3: UxpsMatchBeta (T, s, pos) : Matching β-unexpectedness.
Input : A belief tree T , a sequence s, and a pair pos indicating the occurrence of the premise sequence

sα contained in the sα-node of T in s.

Output : The set of all occurrences of β-unexpectedness in s with respect to T .

N := NodeSet.Create();1

nτ := T.firstTauNode();2

while nτ 6= null and nτ 6∈ N do3

if nτ .data.min = −1 then4

continue; /∗ skip sequence association rules ∗/5

if nτ .data.min = 0 or nτ .data.max = −1 then6

continue; /∗ skip simple sequence implication rules ∗/7

nsβ
:= nτ .f irstSubNode();8

uxps := SeqNodeMatchBeta(T,N, nsβ
, s, pos); /∗ N will be updated ∗/9

if uxps = ∅ then10

continue;11

if options | FIRST_UXPS_ONLY then /∗ use the conclusion of Lemma 1 ∗/12

return uxps;13

nτ := T.nextTauNode(nτ);14

return uxps;15

As listed in Algorithm 4, SeqNodeMatchBeta accepts a belief tree T , a node set N , a s-node

ns in T containing a sequence sβ, a sequence s, and a pair pos indicating the occurrence of the

premise sequence sα contained in the sα-node of T in the sequence s as inputs, and returns the

set of all occurrences of sβ that violates all sequence implication rules represented by sα →
τ sβ

via the s-link and the occurrence constraints τ as the parent node of each s-node.

The algorithm first examines the τ value of the τ -node associated with the node ns, then

matches the occurrence of sβ ⊑ s with respect to the complement of τ 6= ∗. If the occurrence of

sβ ⊑ s is recursively matched by SeqNodeMatchBeta in each sβ contained in all s-node followed

by the s-link, then a β-unexpectedness is matched and the algorithms returns the set of pairs

containing all such occurrences of sβ; otherwise, the algorithm returns an empty tuple set.
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Algorithm 4: SeqNodeMatchBeta (T, N, ns, s, pos) : Recursive matching of s-node

for β-unexpectedness.
Input : A belief tree T , a node set N , a s-node ns in T , a sequence s, and a pair pos indicating the

occurrence of the premise sequence sα contained in the sα-node of T in s.

Output : The set of all occurrences of the sequence contained in ns in s.

N.add(ns);1

uxps := TupleSet.Create();2

nτ := ns.parent;3

if nτ .data.min = 0 then /∗ τ = [0..max] ∗/4

u := SeqMatch(ns.data, s, pair(pos.second+ nτ .data.max+ 1, |s| − 1));5

if u.first = −1 then6

return TupleSet.Create();7

uxps.add(u);8

else if nτ .data.max = −1 then /∗ τ = [min..∗] ∗/9

u := SeqMatch(ns.data, s, pair(pos.second+ 1, nτ .data.min− 1));10

if u.first = −1 then11

return TupleSet.Create();12

uxps.add(u);13

else /∗ τ = [min..max] ∗/14

u1 := SeqMatch(ns.data, s, pair(pos.second+ 1, pos.second+ nτ .data.min− 1));15

u2 := SeqMatch(ns.data, s, pair(pos.second+ nτ .data.max+ 1, |s| − 1));16

if u1.f irst = −1 and u2.f irst = −1 then17

return TupleSet.Create();18

if u1.f irst 6= −1 then19

uxps.add(tuple(s.id, u1.f irst, u1.second));20

if u2.f irst 6= −1 then21

uxps.add(tuple(s.id, u2.f irst, u2.second));22

if n := T.nextSeqNode(ns) then23

uxps.append(SeqNodeMatchBeta(T,N, n, s, pos)); /∗ recursion ∗/24

return uxps;25

The complement of τ , denoted as (∗ \ τ), is computed in Algorithm 4 with respect to different

values of τ , which is defined as follows.

(∗ \ τ) =







[(max+ 1)..∗] if τ = [0..max]

[0..(min− 1)] if τ = [min..∗]

[0..(min− 1)] ∨ [(max+ 1)..∗] if τ = [min..max]

α-unexpectedness if τ = [0..∗]

. (4.1)

According to the complement of τ , in the worst case, the algorithm UxpsMatchBeta matches

the input sequence s for 2 |∆(b)| times.
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The β-unexpectedness focuses on the disordered elements in sequence data, that is, the char-

acteristics like “if the element sα occurs, then the element sβ should occurs within a range after

the occurrence of sα; if the occurrence of sβ is out of the range, then it is unexpected”, which

are interesting for many application domains including telecommunication network monitoring,

mechanical system exploitation, and so on.

4.3.3 Semantics Unexpectedness

We now study the unexpectedness with considering semantics constraints on sequence rules. This

category of unexpected sequences is addressed in the beliefs with non-empty semantic contradiction

set, and the unexpectedness is caused by semantic contradiction.

In this case, the occurrence of a sequence is replaced by a sequence where the two sequences

semantically contradict each other, so that this form is called the γ-unexpectedness, or formally

the semantics-unexpectedness. We define a unexpected sequence with semantics-unexpectedness

as follows.

Definition 12 (Semantics-unexpected sequence) Given a sequence s and a belief b = R∧M,

where R 6= ∅ and M 6= ∅ are respectively the consistent set of sequence rules and of semantic

contradictions, let sα = Λ(b). If sα ⊑ s, and if there exists a sequence rule r ∈ R and a semantic

contradiction (sβi
6≃sem sγj

) ∈ M such that:

1. s |= (sα → sγj
), if r is a sequence association rule sα → sβi

;

2. s |= (sα →
τi sγj

), if r is a sequence implication rule sα →
τi sβi

,

then the sequence s is a γ-unexpected sequence with respect to the belief b, denoted as s 3γ b. We

also call such an unexpected sequence a semantics-unexpected sequence.

A belief b = R∧M with a non-empty semantic contradiction setM states that the semantic

contradictions of a conclusion sequence sβ ∈ ∆(b) should not occur with the premise sequence

sα = Λ(b) with respect to the form of the involved sequence rules. The presence of contradiction

sequence violates a sequence rule with respect to the following cases.

1. For a sequence association rule sα → sβ and a semantic contradiction sβ 6≃sem sγ, if sα ⊑ s

and sγ ⊑ s, then the rule is broken.

2. For a sequence implication rule sα →
τ sβ and a semantic contradiction sβ 6≃sem sγ, if there

exists a sequence s′ such that s′ |= τ and sα · s
′ · sγ ⊑ s, then the rule is broken.

Therefore, the primary factor is the occurrence the sequence sγ contained in the semantic contradic-

tion, so that we name this form of unexpectedness the γ-unexpectedness, and such an unexpected

sequence is so called a γ-unexpected sequence.



4.3. UNEXPECTED SEQUENCES 47

Example 18 Let us consider again the belief b4 studied in Example 17:

b4 =
{

〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →[3..5] 〈(Rock-Music)〉
}

∧
{

〈(Rock-Music)〉 6≃sem 〈(Classical-Music)〉
}

.

The rock music can be considered as contradicting the classical music, that is, the purchase

of a rock music CD cannot be replaced by a purchase of a classical music CD. Thus, since the

purchase of a rock music CD is expected within the next 3 to 5 purchases after the purchases of a

Sci-Fi novel then action and Sci-Fi movies later, the purchase of a classical music CD is not

expected within the range of the next 3 to 5 purchases, and the following sequence

s = 〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)(PC)(Printer)(PC-Book)(Classical-Music)〉

is γ-unexpected to the belief b4, that is, s 3γ b4. �

As mentioned in Definition 6, given a belief b = R ∧M, we have the following requirements

on the sequence rules in R and semantic contradictions inM:

(1) ∀(sβi
6≃sem sγi

) ∈ M, sβi
∈ ∆(R);

(2) ∀(sβi
6≃sem sγi

) ∈ M, ∄sβj
∈ ∆(R) such that sγi

⊑ sβj
.

We have discussed the requirement (1) in Section 4.2.2, now let us further discuss the requirement

(2) in this section.

We first consider a specialization/generalization relation on sequences. For two sequences sφ

and sθ, if sφ ⊑ sθ, then we say that the sequence sφ is more general than the sequence sθ, denoted

as sφ � sθ; we also say that the sequence sθ is more specific than the sequence sθ. We write

sφ ≺ sθ if sφ � sθ and not sθ � sφ. For example, we have that 〈(a)〉 � 〈(a)(b)〉 since we have

that 〈(a)〉 ⊑ 〈(a)(b)〉. An analogical example in human cognitions can be that, “apples are more

general to appear in market baskets than apples plus oranges appear together”. According to this

observation, we have the following property on semantics based unexpectedness in this thesis.

Property 1 The semantics based unexpectedness is no more general than the expectedness in

the data.

Example 19 Let r = 〈(a)〉 → 〈(b)(c)〉 be a sequence rule, o1 = (b)(c) 6≃sem (b), o2 = (b)(c) 6≃sem

(b)(cd) be two semantic contradictions, and b1 = {r} ∧ {o1}, b2 = {r} ∧ {o2} be two beliefs.

For the belief b1, any expected sequence contains s = 〈(a)(b)(c)〉 and any γ-unexpected sequence

is determined by the occurrence of s′ = 〈(a)(b)〉, thus we have that s′ � s, which means that

any expected sequence is unexpected and violates the basis of semantics based unexpectedness.
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However, for the belief b2, any expected sequence contains s = 〈(a)(b)(c)〉 and any γ-unexpected

sequence is determined by the occurrence of s′ = 〈(a)(b)(cd)〉, that is, s � s′, which confirms that

expectedness is more general than unexpectedness in semantics based context. �

In fact, the γ-unexpectedness stated by the belief b1 shown in the above example can be

replaced by finding α-unexpectedness with a belief containing the rule 〈(a)(b)〉 →∗ 〈(c)〉. Further,

if we have a rule r = 〈(a)〉 → 〈(b)(c)〉 and we want to find the unexpectedness caused by the

absence of (b) (i.e., 〈(a)(c)〉 without (b) between (a) and (c) is unexpected), then the composition

of beliefs can be applied to resolve this kind of problems, and which will be discussed in Section

4.6 at the end of this chapter.

The routine of γ-unexpectedness discovery is listed in Algorithm 5, which accepts a belief tree

T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα contained in

the sα-node of T in the sequence s as inputs (i.e., sα ⊑ s is already confirmed).

Algorithm 5: UxpsMatchGamma (T, s, pos) : Matching γ-unexpectedness.
Input : A belief tree T , a sequence s, and a pair pos indicating the occurrence of the premise sequence

sα contained in the sα-node of T in s.

Output : The set of all occurrences of γ-unexpectedness in s with respect to T .

uxps := TupleSet.Create();1

range := pair(−1,−1);2

nτ := T.firstTauNode();3

while nτ 6= null do4

if nτ .data.min = −1 then5

range.set(0, |s| − 1); /∗ sequence association rules ∗/6

else if nτ .data.max = −1 then7

range.set(pos.second+ nτ .data.min+ 1, |s| − 1); /∗ τ = [min..∗] ,min ≥ 0 ∗/8

else9

range.set(pos.second+ nτ .data.min+ 1, pos.second+ nτ .data.max);10

nsγ
:= nτ .f irstLinkedNode();11

while nsγ
6= null do12

u := SeqMatch(nsγ
.data, s, range);13

if u.first 6= −1 then14

uxps.add(tuple(s.id, u.first, u.second));15

if options | FIRST_UXPS_ONLY then /∗ first occurrence of γ-unexpectedness ∗/16

return uxps;17

nsγ
:= nτ .nextLinkedNode(nsγ

);18

nτ := T.nextTauNode(nτ);19

return uxps;20

For each τ -node connected to the root node of T , the algorithm finds each s-node nsγ
connected
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by each τ -link, which contains the sequence sγ ∈ Θ(b, sα), where b is the belief the tree T represents.

If an occurrence of sγ is matched in s with respect to the range specified by the τ value contained

in the τ -node, the algorithm adds the occurrence to the set uxps of occurrences. If the global

option FIRST_UXPS_ONLY is set, then the algorithm returns as soon as having added the occurrence

of sγ into uxps and returns uxps; otherwise, the algorithm returns the set of all occurrences of

the matched γ-unexpectedness.

In the worst case, for a belief b, the input sequence s is matched
∑

sβ∈∆(b)

|Θ(b, sβ)| times by the

algorithm UxpsMatchGamma.

The discovery of γ-unexpectedness can be used to find the sequences semantically unexpected

to prior knowledge, which is especially interesting for finding the behaviors oriented application

domains. For instance, in customer purchase behavior analysis, new product promotion strategies

can be addressed from the studies of γ-unexpectedness; in Web usage analysis, the studies of

γ-unexpectedness further permit improving site structure, optimizing or personalizing content

organization, and so on.

4.4 Approach Muse

Based on the matching processes of α-unexpected, β-unexpected, and γ-unexpected sequences, we

propose the framework Muse in the sense of Multiple Unexpected Sequence Extraction.

The purpose of Muse is to discover multiple unexpected sequences in a large sequence database

with respect to the belief system acquired from prior domain knowledge, which is illustrated as

the framework shown in Figure 4.5.

Multiple Unexpected Sequence Extraction

Unexpected SequencesSequence Database

Belief System

Figure 4.5: The Muse framework.

The framework accepts a belief base B and a sequence database D as inputs, and outputs all

unexpected sequences stated by each unexpectedness with respect to each belief b ∈ B. For each

sequence s ∈ D, the framework first matches whether the premise sequence sα = Λ(b) occurs in

s. If we have that sα ⊑ s, then the framework tries to match α-, β- or γ-unexpectedness from the
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sequence s by using the algorithms UxpsMatchAlpha, UxpsMatchBeta, and UxpsMatchGamma with

respect to the occurrence of sα in s.

Algorithm 6: Muse: Multiple Unexpected Sequence Extraction.
Input : A belief base B and a sequence database D.

Output : Unexpected sequences stated by each unexpectedness with respect to each belief b ∈ B.

T := BeliefT ree.Create();1

foreach b ∈ B do2

T := T .append(BeliefTree(b));3

foreach s ∈ D do4

foreach T ∈ T do5

pos[] := SeqMatchAll(T.nsα
.data, s, pair(0, |s| − 1));6

while pos[i].f irst 6= −1 do /∗ sα ⊑ s ∗/7

uxp := UxpsMatchAlpha(T, s, pos);8

if uxp.first 6= −1 then9

output tuple(T.id, ALPHA, s, uxp);10

uxps := UxpsMatchBeta(T, s, pos);11

if uxps 6= ∅ then12

output tuple(T.id, BETA, s, pair(pos.first, select(uxps).second));13

uxps := UxpsMatchGamma(T, s, pos);14

if uxps 6= ∅ then15

output tuple(T.id, GAMMA, s, pair(pos.first, select(uxps).second));16

i+ +;17

Once one form of unexpectedness is matched, the framework outputs the sequence s as an

unexpected sequence with the information of the unexpectedness with the ID of the belief and the

form of unexpectedness, and the occurrence of the unexpectedness.

Notice that the algorithms UxpsMatchBeta and UxpsMatchGamma returns a set of occurrences

of the unexpectedness, so that the framework generates a best occurrence of the unexpectedness

by using the start position of the premise sequence sα and the finish position of the conclusion

sequence sβ or of the contradiction sequence sγ . The function select takes account of the selection

of the occurrence of sβ or sγ by using a user defined criterion. In this thesis, we select the

occurrence corresponding to minimize the length of the unexpectedness.

Not difficult to see, the efficiency of Muse depends on the sequence match routine SeqMatch,

which is called in each step of the framework. We have shown that time complexity of SeqMatch

is linear to the size of input sequence, that is, O(n) on sequence size n. Given a belief with rule

sα →
τ sβ and semantic contradiction sβ 6≃sem sγ, the process of mining unexpected sequences is

equivalent to the process of mining sequences that support the rules sα →
(∗\τ) sβ and sα →

τ sγ. In

worst case, the time complexity of rule matching is O(n2). For example, for rule 〈(a)〉 →[1..∗] 〈(b)〉,
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to find β-unexpectedness is equivalent to match the rule 〈(a)〉 →[0..0] 〈(b)〉 in a sequence: given

n-length sequence 〈(a)(a) . . . (a)(a)(b)〉, we need call SeqMatch n − 1 times, so totally n(n − 1)

itemset inclusions are required. However, this case can be optimized to match subsequence 〈(a)(b)〉

in a sequence and the time complexity can be reduced to O(n).

4.5 Experiments

In this section we show the experimental results on synthetic data and real Web server access data

for evaluating the scalability and effectiveness of the approach Muse.

Experiments on Synthetic Sequence Data

The scalability of the approach Muse has been tested first with a fixed belief number of 20

by increasing the size of sequence database from 10,000 sequences to 500,000 sequences, and then

with a fixed sequence database size of 100,000 sequences by increasing the number of beliefs from

5 to 25.
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Figure 4.6: Experiments on synthetic data.
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Figure 4.6(a) shows that when the belief number is fixed, the number of all unexpected se-

quences increases linearly with the increasing of the size of sequence database. Because the data

sets generated by the IBM Quest Synthetic Data Generator1 contain repeated blocks, the un-

expected sequences with respect to the same 20 beliefs are repeated. Therefore, Figure 4.6(b)

shows that, when the belief number is fixed to 20, the run time of the extraction of all unexpected

sequences increases linearly with the increasing of the size of sequence database.

Figure 4.6(c) shows that, when the size of sequence database is fixed, the number of all unex-

pected sequences extracted increases, but not linearly, when the number of beliefs increases. This

is a previewed result since the number of unexpected sequences depends on the structure of beliefs.

In this test the last 10 beliefs address much less unexpected sequences than others. Figure 4.6(d)

shows the increment of run time of the extraction of all unexpected sequences illustrated in Figure

4.6(c), and from which we can find that the increasing rate of extracting time depends on the

number of unexpected sequences. In our implementation of the Muse approach, to predict and

process a non-matched sequence is much faster than to predict and process a matched sequence.

Experiments on Web Access Records Data

The effectiveness of the approach Muse has been tested with Web access data in the framework

of Web Usage Mining, which plays an essential role in modem Web applications [BM98, SPF99,

MPT00, MDL+00, SCDT00, MDLN02, HKCJ06, MVDA07].

In this experiment, we consider the Web access log in the NCSA Common Logfile Format

(CLF, [NCS95]) shown below, which is supported by most mainstream Web servers.

remotehost rfc931 authuser [date] "request" status bytes.

A Web access log file is generally an ASCII text file, each line contains a CLF log entry that

represents a request from a remote client machine to the Web server.

According to the concepts of item, itemset, and sequence, we propose the notion of session

sequence for representing the user session contained in Web access log entries. Notice that we

only consider the remotehost, date, and request fields in our approach for the general-purpose of

protecting user privacy.

Definition 13 (Session sequence) Let L be an ordered list of Web access log entries and ℓ ∈ L

be a log entry consisting of the properties {ip, time, url, query}. A session sequence is a sequence

s = 〈(ip, S0)(ℓ1.url, S1) . . . (ℓn.url, Sn)〉,

such that:

1. for any two integers 1 ≤ i, j ≤ n and i 6= j, we have ℓi.ip = ℓj.ip (denoted as ip);

1http : //www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/

syndata.html
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2. for any two integers 1 ≤ i < j ≤ n, we have ℓi.time < ℓj.time;

3. for any two integers 1 ≤ i < j ≤ n, we have ℓj.time − ℓi.time ≤ µmax, where µmax is the

maximum idle time of a session.

S0 is the global parameter set of the session sequence s. Si (1 ≤ i ≤ n) is the local parameter set

of the log entry ℓi.

Given a session sequence s of n (n > 0) log entries, the sequence can be represented as s =

〈I0R1R2 . . . Rn〉, where I0 = (ip, S0) stands for the identification a session andR1 = (ℓ1.url, S1), R2 =

(ℓ2.url, S2), . . . , Rn = (ℓn.url, Sn) stand for the requests contained in session. Notice that in

Ri = (ℓi.url, Si), the index i corresponds to the position of the log entry in the user session. The

global parameter set S0 of the session sequence s can be empty or contain additional information

that can be associated with this user session, such as geographical region, time period, season and

even weather. The local parameter set Si (1 ≤ i ≤ n) can also be empty or contain additional

information of the log entry ℓi, which is mainly considered as the HTTP query of the request.

Example 20 Let us consider the session sequence shown as follows:

〈(10.0.0.8, 23h, fr)(index.php)(open.php, p=203, g=5)〉 .

This sequence represents a user session consisting of two access log entries. The remotehost field

of this session is 10.0.0.8, the date field is translated to 23h, and we known the remote host is

located in France. The page index.php without HTTP query was first accessed, i.e., the request

field is "index.php"; the page open.php with HTTP query p=203 and g=5 was accessed later,

which corresponds to the request field "open.php?p=203&g=5". �

With the formalization of session sequences, we can apply association rule or sequential pattern

mining algorithms for discovering the most general user behaviors of Web sites.

We performed a group of experiments on two large log files containing the access records of two

Web servers during a period of 3 months. The first log file, labeled as LOGBBS, corresponds to a PHP

based discussion forum Web site of an online game provider; the second log file, labeled as LOGWWW,

corresponds to a Web site that hosts personal home pages of researchers and teaching staffs. We

split each log file into three 1-month period files, i.e., LOGBBS-{1,2,3} and LOGWWW-{1,2,3}.

Table 1 details the number of sequences, distinct items, and the average length of the sequences

contained in the Web access logs.

The experiments consists of three steps, where each log file corresponds to a belief base, that

is, two belief bases are defined, denoted as BBBS and BWWW. We first define each initial belief

base as 5 beliefs constructed from frequent Web usage behaviors and 5 beliefs constructed from
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Access Log Sessions Distinct Items Average Length

LOGBBS-1 27,249 38,678 12.8934

LOGBBS-2 47,868 42,052 20.3905

LOGBBS-3 28,146 33,890 8.5762

LOGWWW-1 6,534 8,436 6.3276

LOGWWW-2 11,304 49,242 7.3905

LOGWWW-3 28,400 50,312 9.5762

Table 4.1: Web access logs in experiments.

workflows, denoted as B1
BBS and B1

WWW, and apply them to discover unexpected sequences in the

data sets LOGBBS-1 and LOGWWW-1. Then, we append each belief base with 5 beliefs defined

from discovered unexpected sequences, denoted as B2
BBS and B2

WWW, and apply them to discover

unexpected sequences in the data sets LOGBBS-2 and LOGWWW-2. Finally, we append each belief

base with 5 beliefs defined from discovered unexpected sequences, denoted as B3
BBS and B3

WWW, and

apply them to discover unexpected sequences in the data sets LOGBBS-3 and LOGWWW-3.

Access Log Unexpected Sequences

LOGBBS-1 – B1
BBS 1,296

LOGBBS-2 – B2
BBS 11,427∗

LOGBBS-3 – B3
BBS 1,512

LOGWWW-1 – B1
WWW 263

LOGWWW-2 – B2
WWW 472

LOGWWW-3 – B3
WWW 1,620

Table 4.2: Number of unexpected sequences.

In the test on data set LOGBBS-2, the number of unexpected sequences is abnormal. After

examining the belief base, we find that a new belief defined from the unexpected sequences dis-

covered in the data set LOGBBS-1 is not well defined, which cause a “loop-back” behavior, that

is, a sequence unexpected to such a belief corresponds to a frequent behavior. This problem is

corrected in the belief base B3
BBS.

The discovery of unexpected sequences can be effective to detect Web frauds or attacks. For

instance, in the test on data sets LOGWWW-{1,2,3}, we defined a belief with respect to the workflow

of the Web based MySQL database management system phpMyAdmin2 as

{

〈(sql.php)〉 → 〈(index.php)(main.php)(tbl_properties_structure.php)〉
}

∧
{

∅
}

,

which states totally 196 unexpected sequences in all three data sets LOGWWW-{1,2,3}, where all 179

2http://www.phpmyadmin.net/
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illegal accesses (which have been identified in the whole log file) that tried to access the resource

sql.php with SQL injection code are detected, and only 17 unexpected sequences are caused by

users.

4.6 Discussion

In this chapter, we proposed the framework Muse for discovering unexpected sequences with

respect to the belief system on sequence data. We first defined the belief system, and then we pro-

posed three forms of unexpected sequences with respect to completeness (α-unexpectedness), oc-

currence (β-unexpectedness), and semantics (γ-unexpectedness) of sequences. We respectively de-

veloped three algorithms for discovering α-unexpected sequences (UxpsMatchAlpha), β-unexpected

sequences (UxpsMatchBeta) and γ-unexpected sequences (UxpsMatchGamma), and designed the

framework Muse to integrate the discovery process. The scalability and effectiveness are evalu-

ated by synthetic data and real Web server access data.

The proposed belief system consists of sequence rules and semantic contradictions between

sequences, where the sequence rules can be discovered in database or defined from domain ex-

pertise knowledge, and the semantic contradictions have to manually defined by domain experts.

Obviously, the effectiveness of the results strongly relies the specification of the belief system.

The occurrence unexpectedness (β-unexpectedness) stated by the belief system strictly depends

on the occurrence constraint on predictive sequence implication rules, however often it might not

be precisely observed or defined. Moreover, considering the taxonomy of the items contained in the

database, more generalized specification are required to reduce the complexities of constructing

the belief system. For instance, given the categories of products, if there exist 10 distinct items

for each product category, then even to construct a belief system on three product categories of

sequence rules Product1 →
τ Product2 and semantic contradiction Product2 6≃sem Product3, 104

sequence rules and 102 semantic contradictions must be defined in order to cover all possible

combinations of items, and it is obligated to totally generate 105 beliefs instead of one belief on

the generalization of the taxonomy.

Therefore, in next chapters, we propose the extensions of the framework Muse with considering

fuzzy set theory in sequence occurrence (Chapter 5) and generalizations in discovering unexpected

sequences with respect to concept hierarchies of the taxonomy of data (Chapter 6).

On the other hand, a limitation of our current approach is that we do not consider any con-

straint on the sequences present in a sequence rule. That is, for a sequence rule sα →
τ sβ, the

sequences sα and sβ do not contain any constraints on their structure. This limitation may effect

the discovered unexpected sequences.
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Considering a belief consisting of a sequence implication rule 〈(a)(b)〉 →∗ 〈(c)(d)〉 (for sim-

plifying the problem, we do not consider the semantic contradiction in this belief), the following

sequences are α-unexpected:






s1 = · · · · · · (a)(b) · · · · · · · · · (c) · · · · · ·

s2 = · · · · · · · · · (a)(b) · · · · · · (c) · · · · · ·

s3 = · · · (a)(b) · · · · · · · · · (c) · · · · · · · · ·

s4 = · · · · · · · · · · · · (a)(b) · · · · · · (c) · · ·

s5 = (a) · · · · · · · · · · · · · · · · · · · · · · · · (b)







.

Not difficult to see, the sequence s5 has obviously different structure than the other sequences and

might be noise data.

Moreover, the sequence rules consider in this thesis do not describe that “if a is directly followed

by b, then c occurs later”, or “if there does not exist b between a and c, then d occurs later and

directly followed by e”.

The above problem imposes at least two perspectives on this thesis: (1) to consider complex

sequence structure in sequence rules, such as regular expression constrained sequences [GRS99,

PHW07]; (2) to refine the discovered unexpected sequences, such as mining outliers [SCA06] in

unexpected sequences. These perspectives will be included in our future work.



Chapter 5

Fuzzy Unexpected Sequence Discovery

We proposed the framework Muse for discovering unexpected sequences in database, with respect

to the belief system constructed from prior knowledge. In this chapter, we extend the Muse

framework with two applications of fuzzy set theory: in the extension Taufu, we measure the

occurrence of unexpected conclusion or contradiction sequences with different fuzzy sets; in the

extension Ufr, we propose a new form of fuzzy sequence rules and discover fuzzy unexpected

sequences with respect to the belief system constructed from such rules.

A part of the work presented in this chapter has been published in the 12th International Con-

ference of Information Processing and Management of Uncertainty in Knowledge-Based Systems

(IPMU 2008), in the 5th International Conference on Soft Computing as Transdisciplinary Sci-

ence and Technology (CSTST 2008), and in the International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems (IJUFKS); has been accepted to be published in the International

Journal of Computational Intelligence Research (IJCIR).

5.1 Introduction

In data mining, fuzzy set theory [Zad65] have been many employed to change the domain of the

attributes, employing granules defined by fuzzy sets instead of precise values.

For instance, an association rule X → Y depicts the relation “if X then Y ” between patterns

X and Y . With fuzzy sets, there is a very extended way of considering fuzzy association rules

as “if X is A then Y is B” in considering various information of attributes (mostly quantitative

attributes [SA96a]), such as the type “if beer is lot then potato chips is lot” or “if age is old then

salary is high” [CA97, DMSV03, DP06, HLW03, KFW98, hLLk97].

In the same manner, the notion of fuzzy sequential patterns [CTCH01, HCTS03, CH06, FLT07,

FMLT08] considers the model sequential patterns like “60% of young people purchase a lot of

soft drinks, then purchase few opera movies later, then purchase many PC games”, where the

sequence represents “people is young, then soft drinks is lot, then opera movie is few, and then
57
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PC game is many”.

Another application of fuzzy set theory is to discovery gradual patterns and rules [Hül02,

BCS+07, DJLT08, FMLT08]. In this form of fuzziness in quantitative attributes considers the

correlations within the gradual trends of the values of attributes, such as the association rule “if

age increases then salary increases”, or the sequential pattern “the more visits of search page,

the more visits of KB articles later, and at the same time the less visits of question submitting

page”.

In this chapter, as extensions of the Muse framework, we consider the binary-valued attributes

in databases as other general data mining approaches, however we use fuzzy sets for describing

the occurrence and recurrence of sequences.

For instance, if the prior knowledge of customer purchase behaviors indicates that in gen-

eral the customers purchase a pop music CD within the next 5 purchases after a purchase of an

action movie DVD, then a sequence rule can be defined1 as

〈(action movie)〉 →[0..5] 〈(pop music)〉,

for describing that “the intervals between the purchases of action movie and pop music should

be no more than 5”; if we further consider that the classical music semantically contradicts the

pop music, then a semantic contradiction that “a purchase of pop music CD semantically contradicts

the purchase of classical music CD” can be applied. We can therefore state the unexpectedness

by specifying “after purchasing an action movie DVD, a customer purchases a pop music CD out of

the next 5 purchases, or purchases a classical music CD within the next 5 purchases”, that is, the

following belief:
{

〈(action movie)〉 →[0..5] 〈(pop music)〉
}

∧
{

〈(pop music)〉 6≃sem 〈(classical music)〉
}

.

However, with respect to this belief, if a pop music CD is purchased after 6 other purchases

after the purchase of an action movie DVD, then it is difficult to say that it is unexpected because

6 is very close to the upper bound of the range [0..5]; in the same manner, if a classical music CD

is purchased after 6 other purchases after the purchase of an action movie DVD, it is also difficult

to say that it is expected. Thus, if we consider fuzzy sets in this case, a description like “weak

unexpected” could be better then simply concludes “unexpected” or “expected”. Therefore, in this

chapter, we first extend the Muse framework with the method Taufu (Tau-Fuzziness) that takes

the fuzzy occurrence of sequences into account.

Other than the unexpectedness on sequence occurrence, the unexpectedness on sequence recur-

rence can be also interesting in the context of sequence data, where elements may occurs repeatedly.

1According to our proposition of building beliefs, a sequence rule required by a belief can be either extracted

from frequent sequences, or defined by domain experts.
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For instance, a custom purchase sequence can be described as “60% of the customers who often

purchase action movie DVDs then pop music CDs later, also purchase PC games often”. This kind

of correlation between elements can be represented by the sequence rules depicting that “if the

sequence sα repeats in a sequence s, then the sequence sβ repeats in the same sequence s”, which

reflect the association relation between repeatedly occurred elements in sequence data. With

this form of sequence rules, for instance, if we consider that the classical music semantically

contradicts PC games, then the fact “1% customers who often purchase action movie DVDs then

pop music CDs later, often purchase classical music CDs” stands for an unexpected recurrence

behavior in a customer purchase database.

Such unexpectedness on sequence recurrence can be interesting for many application domains,

including marketing analysis, finance fraud detection, network intrusion detection, Web content

personalization, weather prediction, DNA segment analysis, and so on. Therefore, after discussing

the fuzzy occurrence of unexpected sequences, in this chapter, we also propose the notion of fuzzy

recurrence rules, based on the belief system constructed from this form of sequence rules, we

further propose an extension Ufr (Unexpected Fuzzy Recurrence) for the Muse framework.

The rest of this chapter is organized as follows. In Section 5.2, we propose the extension

tau-fuzziness of unexpected sequences that considers the fuzziness on the occurrence constraint τ

of sequence implication rules, and develop the method Taufu for discovering fuzzy unexpected

sequences with tau-fuzziness. In Section 5.3, we propose a new form of sequence rules so called the

fuzzy recurrence rules and develop the method Ufr for discovering unexpected fuzzy recurrence

sequences with respect to beliefs of fuzzy recurrence rules. Finally, we discuss fuzzy unexpectedness

in Section 5.4.

5.2 Fuzzy Unexpectedness in Sequence Occurrence

In this section, we first extend the notions of unexpected sequences with the fuzziness on the

occurrence constraint τ of sequence implication rules, and then develop the method Taufu for

discovering fuzzy unexpected sequences with the tau-fuzziness extension.

5.2.1 Tau-Fuzzy Unexpected Sequences

An unexpected sequence is a sequence that violates a belief. In the framework Muse proposed in

the previous chapter, the unexpectedness is stated by the violation of sequence rules or semantic

contradiction contained in a belief. We now extend the framework Muse with the fuzziness on

the occurrence constraint τ (so called the tau-fuzziness) of sequence implication rules sα →
τ sβ.

Notice that we do not consider tau-fuzziness on sequence association rules sα →
∅ sβ, since we have

that τ = ∅ for sequence association rules.
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According to the structure of sequence implication rules sα →
τ sβ with respect to semantic

contradictions sα 6≃sem sβ, three forms of unexpected sequences can be mentioned as following:

an α-unexpected sequence is unexpected because the occurrence of sβ is missing when τ = ∗; a

β-unexpected sequence is unexpected because the occurrence of sβ violates the constraint τ ; a

γ-unexpected sequence is unexpected because the occurrence of sγ with respect to τ violates the

semantic contradiction sβ 6≃sem sγ .

Not difficult to see, the tau-fuzziness is not applicable to α-unexpected sequence stated from

a belief on sequence implication rules sα →
∗ sβ and semantic contradictions sα 6≃sem sβ, because

there does not exist fuzziness of the occurrence of the sequences sβ or sγ when the occurrence

constraint τ = ∗, where the existence of sα or sβ can only be measured by boolean value true or

false.

As defined in Chapter 4, given a belief consisting of a predictive sequence implication rule

sα →
τ 6=∗ sβ and a semantic contradiction sβ 6≃sem sγ , the discovery of β-unexpectedness or γ-

unexpectedness in a sequence s can be determined by examining whether there does exist any

sequence s′ such that |s′| |= τ and sα · s
′ · sβ ⊑c s, or whether there exists a sequence s′ such

that |s′| |= τ and sα · s
′ · sγ ⊑c s. Therefore, we propose the notion of tau-fuzziness on the

satisfiability |s| |= τ between the length of the sequence s and the occurrence constraint τ , denoted

as |s| |= (τ, dτ , µτ ), in order to measure the fuzzy unexpectedness of β- and γ-unexpected sequences,

where dτ is a fuzzy degree and µτ is a fuzzy membership function.

The tau-fuzzy satisfaction |s| |= (τ, dτ , µτ ) of the length of a sequence s can be interpreted as

follows. Given a fuzzy membership function µτ (|s| , F ) which returns the fuzzy membership degree

of the length of the sequence s in fuzzy set F with respect to the range specified by the occurrence

constraint τ . Let F be a set of predefined fuzzy sets on µτ , if there exists a fuzzy set F ∈ F such

that µτ (|s|) ≥ dτ , then we say that the length of the sequence s satisfies the occurrence constraint

τ with respect to tau-fuzziness defined by µτ .

Therefore, the tau-fuzzy β-unexpected and γ-unexpected sequences can be formally defined as

the following definitions.

Definition 14 (Tau-fuzzy β-unexpected sequence) Given a sequence s and a belief b of consis-

tent sequence implication rules, let sα = Λ(b). Let µτ be a fuzzy membership function and dτ be a

minimum tau-fuzzy membership degree, if there exists sβ ∈ ∆(b) such that for each rule (sα →
τi sβ)

contained in the belief b we have not that (sα ⊑ s) ∧ (sα · s
′ · sβ ⊑c s) ∧ (|s′| |= (τ, dτ , µτ)), then

the sequence s is a tau-fuzzy occurrence-unexpected sequence with respect to the belief b, denoted

as s 3τ
β b. We also call such an unexpected sequence a tau-fuzzy β-unexpected sequence.

Definition 15 (Tau-fuzzy γ-unexpected sequence) Given a sequence s and a belief b of consis-

tent sequence implication rules, let sα = Λ(b). Let µτ be a fuzzy membership function and dτ be a
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minimum tau-fuzzy membership degree, if sα ⊑ s, and if there exists a sequence rule r ∈ R and a

semantic contradiction (sβi
6≃sem sγj

) ∈M such that (sα ⊑ s)∧(sα·s
′·sγ ⊑c s)∧(|s′| |= (τ, dτ , µτ)),

then the sequence s is a tau-fuzzy semantics-unexpected sequence with respect to the belief b, denoted

as s 3τ
γ b. We also call such an unexpected sequence a tau-fuzzy γ-unexpected sequence.

1 3 4 5 82 6 7

0.5

1
medium strongweak

µ
τ = [0..5]

Figure 5.1: Fuzzy sets for β-unexpectedness.

Example 21 We consider a belief on Web site log files, where home, login, and logout stand

for the URL resources visited in a user session:

b =
{

〈(home)〉 →[0..5] 〈(login)〉
}

∧
{

〈(login)〉 6≃sem 〈(logout)〉
}

.

We consider three fuzzy sets for the each unexpectedness, they are “weak unexpected” (Fw),

“medium unexpected” (Fm) and “strong unexpected” (Fs). In a sequence

s = 〈(home)(ad1)(ad2)(ad3)(ad4)(login)〉 ,

we have that |(ad1)(ad2)(ad3)(ad4)| = 4. Let F = {Fw, Fm, Fs}, according to the fuzzy membership

functions shown in Figure 5.1, we have that µτ (4, Fw) = 0.67, µτ (4, Fm) = 1 and µτ (4, Fs) = 0.5,

so that the best description of the sequence s is “medium unexpected”. �
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Figure 5.2: Fuzzy sets of the “strong unexpected”.

For more details of the fuzziness on the occurrence constraint τ , Figure 5.2 represents “strong

unexpected” for β-unexpectedness and γ-unexpectedness with (a) τ = [0..3], (b) τ = [3..3], (c)

τ = [3..5] and (d) τ = [3..∗].
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5.2.2 Approach Taufu

In this section, we develop the approach Taufu (Tau-Fuzzy), which include the algorithms

TaufuMatchBeta and TaufuMatchGamma for extending the framework Muse with the tau-fuzziness

of unexpected sequences.

The algorithm TaufuMatchBeta (Algorithm 7) matches the tau-fuzzy β-unexpectedness in a

sequence, which can be a replacement of the β-unexpectedness matching routine UxpsMatchBeta

(Algorithm 3, Section 4.3.2).

Algorithm 7: TaufuMatchBeta (T, s, pos) : Matching tau-fuzzy β-unexpectedness.
Input : A belief T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα

contained in the sα-node of T in s.

Output : The set of all occurrences of tau-fuzzy β-unexpectedness in s with respect to T .

uxps := TupleSet.Create();1

nτ := T.firstTauNode();2

while nτ 6= null and nτ 6∈ N do3

if nτ .data.min = −1 then4

continue; /∗ skip sequence association rules ∗/5

if nτ .data.min = 0 or nτ .data.max = −1 then6

continue; /∗ skip simple sequence implication rules ∗/7

F := FuzzySets(T.id, nτ.id, BETA);8

µτ := FuzzyMembershipFunction(T.id, nτ.id, BETA);9

nsβ
:= nτ .f irstSubNode();10

while nsβ
6= null do11

u := SeqMatchTaufu(nsβ
.data, s, pair(pos.second+ 1, |s| − 1));12

if u.pos.first 6= −1 then13

uxps.add(tuple(s.id, u.pos.first, u.pos.second, u.taufu.first, u.taufu.second));14

if options | FIRST_UXPS_ONLY then /∗ use the conclusion of Lemma 1 ∗/15

return uxps;16

nτ := T.nextTauNode(nτ);17

return uxps;18

The algorithm accepts a belief T , a sequence s, and a pair pos indicating the occurrence of the

premise sequence sα contained in the sα-node of T in the sequence s as inputs, and outputs all

occurrences of tau-fuzzy β-unexpectedness stated in s.

For each occurrence constraint τ , the algorithm first retrieves the fuzzy sets F and the fuzzy

membership function µτ associated with the β-unexpectedness stated by the belief represented by

T.id by calling FuzzySets(T.id, nτ .id, BETA) and FuzzyMembershipFunction(T.id, nτ .id, BETA),

where the fuzzy sets and fuzzy membership function associated with τ can be determined by the
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belief tree ID T.id and the τ -node ID nτ .id. The algorithm then matches the best2 tau-fuzzy

occurrence of the sequence sβ contained in the s-node ns in the sequence s. Finally, a set contains

all occurrences of tau-fuzzy β-unexpectedness stated in s is returned.

The algorithm TaufuMatchGamma (Algorithm 8) matches the tau-fuzzy γ-unexpectedness in a

sequence, which can be a replacement of the γ-unexpectedness matching routine UxpsMatchGamma

(Algorithm 5, Section 4.3.3).

Algorithm 8: TaufuMatchGamma (T, s, pos) : Matching tau-fuzzy γ-unexpectedness.
Input : A belief tree T , a sequence s, and a pair pos indicating the occurrence of the premise sequence

sα contained in the sα-node of T in s.

Output : The set of all occurrences of tau-fuzzy γ-unexpectedness in s with respect to T .

uxps := TupleSet.Create();1

range := pair(−1,−1);2

nτ := T.firstTauNode();3

while nτ 6= null do4

F := FuzzySets(T.id, nτ .id, GAMMA);5

µτ := FuzzyMembershipFunction(T.id, nτ.id, GAMMA);6

nsγ
:= nτ .f irstLinkedNode();7

while nsγ
6= null do8

u := SeqMatchTaufu(nsγ
.data, s, pair(pos.second+ 1, |s| − 1));9

if u.first 6= −1 then10

uxps.add(tuple(s.id, u.pos.first, u.pos.second, u.taufu.first, u.taufu.second));11

if options | FIRST_UXPS_ONLY then /∗ first occurrence of γ-unexpectedness ∗/12

return uxps;13

nsγ
:= nτ .nextLinkedNode(nsγ

);14

nτ := T.nextTauNode(nτ);15

return uxps;16

The algorithm accepts a belief T , a sequence s, and a pair pos indicating the occurrence of the

premise sequence sα contained in the sα-node of T in the sequence s as inputs, and outputs all

occurrences of tau-fuzzy γ-unexpectedness stated in s.

TaufuMatchGamma follows the principle of the algorithm UxpsMatchGamma, however it uses the

subroutine SeqMatchTaufu instead of the subroutine SeqMatch, that is, to find the best tau-fuzzy

occurrence of the contradiction sequence sγ contained in the s-node nsγ
.

The subroutine SeqMatchTaufu mentioned in TaufuMatchBeta and TaufuMatchGamma is listed

in Algorithm 9. The algorithm accepts a sequence s, a sequence s′, and a pair range for bounding

2The selection of the best occurrence of tau-fuzzy unexpectedness by the subroutine SeqMatchTaufu listed in

Algorithm 9.
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the occurrence of s in s′ as inputs, and outputs the best tau-fuzzy occurrence of s in s′.

Algorithm 9: SeqMatchTaufu (s, s′, range) : Matching best tau-fuzzy sequence.
Input : A sequence s, a sequence s′, and a pair range.

Output : Best tau-fuzzy occurrences of s in s′ with respect to range.

rank := Rank.Create();1

while range.first 6= −1 do2

uxp := SeqMatchFirst(s, s′, pair(range.first, range.second));3

while uxp.first 6= −1 do4

len := uxp.first− pos.second− 1;5

foreach F ∈ F do /∗ F is accessible in global scope ∗/6

dτ := µτ (len, F ); /∗ µτ is accessible in global scope ∗/7

if dτ ≥ taufmin then /∗ taufmin is accessible in global scope ∗/8

rank.add(F, dτ , uxp.first, uxp.second);9

uxp := SeqMatchFirst(s, s′, pair(uxp.first+ 1, range.second)); /∗ next sβ ∗/10

range := SeqMatchFirst(s.last, s′, pair(range.first, range.second)); /∗ next sα⊥ ∗/11

if range.first 6= −1 then12

range.first := range.first+ 1;13

if rank = ∅ then14

return pair(−1,−1);15

best := rank.top();16

return pair(best.pos, best.taufu);17

We explain the algorithm SeqMatchTaufu with a running example, in which we illustrate the

routine of matching a tau-fuzzy β-unexpected sequence

s = 〈(11)(11)(12)(21)(12)(22)(21)(22)(21)(12)〉

shown in Figure 5.3, where the numbers stand for event IDs. We consider two fuzzy sets “weak

unexpected” (labeled as W) and “strong unexpected” (labeled as S) for describing tau-fuzzy β-

unexpectedness stated by the belief

b =
{

〈(11)(12)〉 →[1..3] 〈(21)(22)〉
}

∧
{

〈(21)(22)〉 6≃sem 〈(31)〉
}

,

shown in Figure 5.3(b).

In this example, we illustrate how SeqMatchTaufu extracts the tau-fuzzy β-unexpectedness

from s.

A first minimal premise sequence sα = 〈(11)(12)〉 is found by SeqMatchMin, that is, the step 0©,

so that the task is to find the best tau-fuzzy occurrence of the conclusion sequence sβ = 〈(21)(22)〉.

Therefore, the algorithm SeqMatchTaufu starts matching tau-fuzzy occurrence of 〈(21)(22)〉 from

the position 3 (the first itemset in s is considered as the position 0) till to end of the sequence s,

and finds 3 occurrences of 〈(21)(22)〉 as shown as the steps 1©, 2©, and 3© with the first loop of the
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(a) A tau-fuzzy β-unexpected sequence matching routine. (b) Fuzzy sets on the occurrence

constraint τ = [1..3]. (c) A branch of the belief tree. (d) Rank table of matched occurrences.

Figure 5.3: Illustration of a tau-fuzzy β-unexpected sequence extraction.

while block within the line 2 and the line 13 in Algorithm 9. The fuzzy membership degrees of

each occurrence of 〈(21)(22)〉 are sorted as listed in the table rank1 shown in Figure 5.3(a). The

occurrence with higher fuzzy membership degree value has better rank; if two occurrences have

the same degree, the earlier matched occurrence has better rank. The algorithm continues to find

the next position of the last itemset of sβ (i.e., sα⊥
) as shown as the step 4©, and the second loop

finds two occurrences of 〈(21)(22)〉 as shown as the steps 5© and 6©, which are listed in the table

rank2.

The final order of all matched occurrences of sβ is ranked by 3 criteria: (1) fuzzy membership

degree; (2) occurrence position; (3) priority of fuzzy set. In this example, we have that the priority

of “strong unexpected” is higher than the priority of “weak unexpected” since we are discovering

unexpected sequence, so that the final rank of each occurrence of 〈(21)(22)〉 is listed in the table

shown in Figure 5.3(d) and the algorithm SeqMatchTaufu returns the occurrence of 〈(21)(22)〉

at the position pos = (3, 5) with (stored in the pair best.pos) membership degree 1 of “strong

unexpected” (stored in the pair best.taufu).

5.2.3 Experiments

To evaluate the effectiveness of the approach Taufu, we performed a group of experiments to

extract unexpected sequences in the access records of a security testing Web server, where a large
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number of attacks are logged. The sequence database converted from the access log file contains

67,228 session sequences corresponding to 27,552 distinct items.

Totally 4 groups of 20 beliefs corresponding to 4 categories of occurrence constraints are con-

sidered in our experiments: CAT1 stands for 5 beliefs with τ = [0..∗]; CAT2 stands for 5 beliefs with

τ = [0..X] where X ≥ 0 is an integer; CAT3 stands for 5 beliefs with τ = [Y..∗] where Y > 0 is an

integer; and CAT4 stands for 5 beliefs with τ = [X..Y ] where Y ≥ X > 0 are two integers.

To simplify the procedure of our experiments, the ratio of membership function µ is fixed to

±0.2 for all fuzzy sets “weak unexpected” (W), “medium unexpected” (M), and “strong unexpected”

(S). Further, the sets “weak unexpected” and “medium unexpected” do not cover the interval ranges

where the membership degree of “strong unexpected” is 1. The interval value of the fuzzy sets

“weak unexpected” and “medium unexpected” is fixed to 2 when the membership degree equals 1.

(b)
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(a) β-unexpected fuzzy sets. (b) γ-unexpected fuzzy sets.

Figure 5.4: Fuzzy sets considered in the expriments

For instance, Figure 5.4 shows the fuzzy sets for a belief in CAT2

{

〈(viewforum)〉 →[0..5] 〈(viewtopic)〉
}

∧
{

〈(viewtopic)〉 6≃sem 〈(login)〉
}

,

the fuzzy partitions are shown in Figure 5.4. The numbers of unexpected sequences (β-unexpected

and γ-unexpected) that we find with respect to taufmin = 1, taufmin = 0.7, and taufmin = 0.2

are listed in Table 5.1 with comparing unexpectedness/taufmin.

β/1 γ/1 β/0.7 γ/0.7 β/0.2 γ/0.2

Strong unexpected 47 22 49 23 55 25

Medium unexpected 4 2 7 2 10 6

Weak unexpected 4 1 5 5 6 12

Table 5.1: Number of unexpected sequences stated by a belief in CAT2.

For the fuzzy sets “strong unexpected”, “medium unexpected” and “weak unexpected”,Figure

5.5(a) shows the total number of tau-fuzzy unexpected sequences with minimum fuzzy degree

taufmin = 1.0, Figure 5.5(b) shows the total numbers of tau-fuzzy unexpected sequences with

minimum fuzzy degree taufmin = 0.7, and Figure 5.5(c) shows the total numbers of tau-fuzzy

unexpected sequences with minimum fuzzy degree taufmin = 0.2.



5.2. FUZZY UNEXPECTEDNESS IN SEQUENCE OCCURRENCE 67

 CAT1 CAT2 CAT3 CAT4  

Categories of occurrence constraints

0

100

200

300

400

500

N
u
m
b
e
r 
o
f 
u
n
e
x
p
e
c
te
d
 s
e
q
u
e
n
c
e
s Strong unexpected

Medium unexpected

Weak unexpected

(a) taufmin = 1.0.
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Figure 5.5: Number of tau-fuzzy unexpected sequences.
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In our sequence database of Web intrusion data, the experiments show that the beliefs in CAT2

and CAT3 drive a clear view of the unexpectedness, that is, with changing the minimum fuzzy

membership degree, the number of strong unexpected sequences does not considerably change,

and the number of medium and weak unexpected sequences is lower than the number of strong

unexpected sequences, so that they can be considered as noise in the data. However, the number of

unexpected sequences stated by the beliefs in CAT4 show much lower precision in unexpectedness

discovery, and the studies in such unexpected sequences have more importance for improving the

belief base.

5.3 Unexpected Fuzzy Recurrences in Sequence Data

In this section, we present the problem of discovering unexpected fuzzy recurrence sequences.

We first propose the notion of fuzzy recurrence sequence, with which we further propose the fuzzy

recurrence rule as a complement of the forms of sequence rules proposed in Chapter 4. With respect

to the beliefs consisting of fuzzy recurrence sequence rules, we therefore propose the discovery of

unexpected fuzzy recurrence sequences.

5.3.1 Fuzzy Recurrence Rules

In many applications, recurrence behaviors are often present in sequence data. For instance,

customers often purchase the products with the same brand; the price of some stocks repeatedly

change in the same manners; Web users may repeatedly access the same resources; certain segments

repeatedly appear in DNA sequence, and so on.

To study the repeatedly occurred elements in sequences, we first propose the notion of recur-

rence sequence in the form 〈s, ψ〉, where s is a sequence and ψ is a positive integer. If a sequence

s′ supports a recurrence sequence 〈s, ψ〉, then the sequence s occurs in s′ at least ψ times, denoted

as 〈s, ψ〉 ⊑ s′, that is,

(〈s, ψ〉 ⊑ s′) ⇐⇒ (s · · · s
︸ ︷︷ ︸

n

⊑ s′) ∧ (n ≥ ψ).

A recurrence sequence 〈s, ψ〉 is also called a ψ-recurrence sequence. We use the wildcard “∗”

for denoting the general meaning of the support between sequences, that is,

(〈s, ∗〉 ⊑ s′) ≡ (s ⊑ s′).

A recurrence rule is a rule on sequences with form 〈sα, ψ〉 → 〈sβ, θ〉, where sα, sβ are two

sequences, and ψ, θ are two integers for describing recurrence behaviors in sequence data. A

recurrence rule indicates the association relation that given a sequence s, if sα orderly occurs no
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less than ψ times within s, then orderly sβ occurs in s no less than θ times, that is,

(sα · · · sα
︸ ︷︷ ︸

n

⊑ s) ∧ (n ≥ ψ)⇒ (sβ · · · sβ
︸ ︷︷ ︸

k

⊑ s) ∧ (k ≥ θ).

Given a sequence s and a recurrence rule r = 〈sα, ψ〉 → 〈sβ, θ〉, if 〈sα, ψ〉 ⊑ s and 〈sβ, θ〉 ⊑ s,

then we say that s supports r, denoted as s |= r. For instance, the recurrence rule r = 〈(a)(b), 3〉 →

〈(c)(d), ∗〉 depicts that given a sequence s, if 〈(a)(b)〉 is contained repeatedly in s no less 3 times,

then 〈(c)(d)〉 is contained in s; in other words, if 〈(a)(b)(a)(b)(a)(b)〉 ⊑ s, then 〈(c)(d)〉 ⊑ s.

Notice that the occurrences of sα must be ordered, that is, for example, given a rule r1 =

〈(a)(b), 2〉 → 〈(c), ∗〉, the sequence s1 = 〈(a)(a)(c)(b)(b)〉 does not support r1, but the sequence

s2 = 〈(a)(b)(c)(a)(b)〉 supports r1; however, the sequence s1 supports the rules r2 = 〈(a), 2〉 →

〈(c), ∗〉 and r3 = 〈(b), 2〉 → 〈(c), ∗〉.

Considering the integer ψ, a human-friendly interpretation is more flexible and more relevant

to described the recurrence in sequence data. For instance, in market basket analysis, to point out

that “the customers who often purchase action movie DVDs often purchase pop music CDs” is more

relevant than the conclusion “the customers who purchase at least 7 times of action movie DVDs

purchase at least 5 times of pop music CDs”.

We therefore extend the recurrence rule with fuzzy sets, so called the fuzzy recurrence rule,

in the form 〈sα, ζα〉 → 〈sβ, ζβ〉, where ζα and ζβ are two fuzzy sets for describing sα and sβ, and

the sequences 〈sα, ζα〉 and 〈sβ, ζβ〉 are two fuzzy recurrence sequences. Given a sequence s′ and a

fuzzy recurrence rule 〈s, ζ〉, that s′ supports 〈s, ζ〉 is defined as

(〈s, ζ〉 ⊑ s′) ⇐⇒ (s · · · s
︸ ︷︷ ︸

n

⊑ s) ∧ (µζ(n) ≥ recumin), (5.1)

where the fuzzy degree measured by the membership function µζ(n) must be superior or equal to

a threshold recumin.

Let us consider the following example.

rarely
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Figure 5.6: Fuzzy sets for describing recurrence rules.

Example 22 Given a set of distinct events a, b, c, d, . . ., an ordered set of events can be repre-

sented as the data model of sequence. Assuming that given an event sequence s, if s supports the
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recurrence sequence 〈(a)(b), 4〉, then s supports the subsequence 〈(c)(d)〉; if s supports the recur-

rence sequence 〈(a)(b), 9〉, then s supports 〈(c)〉. These behaviors can be described by recurrence

rules, such as the rule r1 = 〈(a)(b), 4〉 → 〈(c)(d), ∗〉 and the rule r2 = 〈(a)(b), 9〉 → 〈(c), ∗〉. Given

a sequence s1 such that 〈(a)(b), 3〉 ⊑ s1 and 〈(c)(d)〉 ⊑ s1, a sequence s2 such that 〈(a)(b), 8〉 ⊑ s2

and 〈(c)〉 ⊑ s2, we have s1 6|= r1 and s2 6|= r2. However, since the recurrence sequences contained

in these sequences and rules are close, the sequences s1 and s2 can be still potentially interesting.

On the other hand, considering the fuzzy recurrence rules r1′ = 〈(a)(b), rarely〉 → 〈(c)(d), ∗〉 and

r2
′ = 〈(a)(b), often〉 → 〈(c), ∗〉, corresponding to the rules r1 and r2 with respect to the fuzzy

partitions shown in Figure 5.6, let the threshold recumin = 0.5, then we have s1 |= r1
′ and s2 |= r2

′.

We can further define more partitions, such as “always” or “rarely”. �

In this thesis, the fuzzy recurrence rules are considered as having been predefined by domain

experts, the discovery of fuzzy recurrence rules will be covered in our future research work.

5.3.2 Unexpected Fuzzy Recurrences

We are considering to discover the sequences contained in a database those semantically contradict

a given set of fuzzy recurrence rules. In order to find such sequences, we construct a belief base

from given fuzzy recurrence rules with semantic contradictions between fuzzy recurrence sequences,

so that each sequence not respecting the belief base is unexpected.

The belief system presented in Chapter 4 can be extended to handle fuzzy recurrence rules

without any changes.

Let 〈sα, ζα〉 → 〈sβ, ζβ〉 be a fuzzy recurrence rule and 〈sβ, ζβ〉 6≃sem 〈sγ , ζγ〉 be a semantic

contradiction, where ζγ is a fuzzy set for the sequence sγ. The fuzzy recurrence rule implies an

association relation between the fuzzy recurrences 〈sα, ζα〉 and 〈sβ, ζβ〉 that if the recurrence of sα

is ζα, then the recurrence of sβ is ζβ. The semantic contradiction then implies that the recurrence

sequences 〈sβ , ζβ〉 and 〈sγ, ζγ〉 semantically contradict each other.

The notion of consistent sequence rule set can also be applied to fuzzy recurrence rules, that

is, a consistent fuzzy recurrence rule set is the set of fuzzy recurrence rules where all the rules has

the same premise sequence 〈sα, ζα〉. We also directly use the notions of conclusion sequence set

and contradiction sequence set defined in Chapter 4.

Given a belief b = R∧M, let 〈sα, ζα〉 = Λ(b) be the premise sequence, ∆(b) be the conclusion

sequence set, and Θ(b, 〈sβ, ζβ〉) be the contradiction sequence set, where 〈sβ, ζβ〉 ∈ ∆(b) is a

conclusion sequence. Such a belief depicts that given a sequence s, if s supports 〈sα, ζα〉, then s

supports at least one 〈sβ, ζβ〉 ∈ ∆(b), however s should not support any 〈sγ, ζγ〉 ∈ Θ(b, 〈sβ, ζβ〉)
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for each 〈sβ, ζβ〉 ∈ ∆(b), that is,

(〈sα, ζα〉 ⊑ s) ∧ (∃ 〈sβ, ζβ〉 ∈ ∆(b), 〈sβ, ζβ〉 ⊑ s)

∧ (∀ 〈sβ, ζβ〉 ∈ ∆(b), ∄ 〈sγ , ζγ〉 ∈ Θ(b, 〈sβ, ζβ〉), 〈sγ , ζγ〉 ⊑ s).
(5.2)

Notice that sβ and sγ are not necessary to be different: we have that 〈(game), rarely〉 and

〈(game), always〉 semantically contradict each other.

Example 23 Assume that the customers who purchase music and movies like to play games. If we

consider that games and books semantically contradict each other, where the semantic contradiction

can be 〈(game), often〉 6≃sem 〈(book), often〉, then a belief can be defined as
{

〈(music movie), often〉 → 〈(game), often〉
}

∧
{

〈(game), often〉 6≃sem 〈(book), often〉
}

.

The fuzzy sets for the purchase of classical music CDs can also be that shown in Figure 5.6. The

above belief describes that the customers who often purchase music and movies also purchase

games often, however do not often purchase books. �

Given a belief b, if a sequence s satisfies Equation (5.2), then we say that the sequence s

supports the belief b, denoted as s |= b. A sequence s unexpected to a belief b is denoted as s 3 b.

In Chapter 4 we proposed 3 forms of unexpectedness. Obviously, the α-unexpectedness is

not applicable to recurrence rules since there does not exist occurrence constraint in recurrence

rules. The occurrence of a conclusion sequence 〈sβ, ζβ〉 can be violated, if there exists sβ in a

sequence however the recurrence of sβ does not satisfies ζβ. Therefore, we consider two forms of

unexpectedness in our approach with respect to the occurrence of a conclusion sequence 〈sβ, ζβ〉

and a contradiction sequence 〈sγ, ζγ〉 contained in a belief.

Definition 16 (β-unexpected fuzzy recurrence) Given a sequence s and a belief b = R∧M,

where R is a consistent fuzzy recurrence rule set and M is a consistent semantic contradiction

set on fuzzy recurrence sequences, if s supports 〈sα, ζα〉 and there exists a conclusion sequence

〈sβ , ζβ〉 ∈ ∆(b) such that sβ ⊑ s and 〈sβ, ζβ〉 6⊑ s, then the sequence s is β-unexpected, denoted as

s 3β b.

The primary factor of the β-unexpectedness in a sequence s is that the recurrence sequence

〈sβ , ζβ〉 does not occur as expected however at least the sequence sβ occurs in s. Therefore, in

comparison with the β-unexpectedness defined in Chapter 4, although the forms of unexpectedness

are different, however they have the same semantics.

For instance, considering the belief in Example 23, noted as b, let s be a customer transaction

sequence, if we have that 〈(music)(movie), often〉 ⊑ s and 〈(game), often〉 ⊑ s, then s is expected

with respect to the fuzzy recurrence rule 〈(music)(movie), often〉 → 〈(game), often〉 (we discuss
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the semantic contradiction later); however, if we have 〈(game)〉 ⊑ s but not 〈(game), often〉 ⊑ s,

for example, the case 〈(game), rarely〉 ⊑ s, since 〈(game), rarely〉 ⊑ s implies that 〈(game)〉 ⊑ s,

then s is a β-unexpected sequence, i.e., s 3β b.

Definition 17 (γ-unexpected fuzzy recurrence) Given a sequence s and a belief b = R∧M,

where R is a consistent fuzzy recurrence rule set and M is a consistent semantic contradiction

set on fuzzy recurrence sequences, if s supports 〈sα, ζα〉 and there exists a contradiction sequence

〈sγ, ζγ〉 ∈ Θ(b, 〈sβ, ζβ〉) where 〈sβ, ζβ〉 ∈ ∆(b), such that 〈sγ, ζγ〉 ⊑ s, then the sequence s is

γ-unexpected, denoted as s 3γ b.

Respectively, the primary factor of the γ-unexpectedness in a sequence s is that at least one

semantic contradiction 〈sβ, ζβ〉 6≃sem 〈sγ, ζγ〉 is broken because the recurrence sequence 〈sγ , ζγ〉

occurs in s. Considering again the belief b in Example 23, let s be a customer transaction sequence,

if we have that 〈(music)(movie), often〉 ⊑ s and 〈(book), often〉 6⊑ s, then the sequence s is

not unexpected with respect to the semantic contradiction 〈(game), often〉 6≃sem 〈(book), often〉;

however, if we have 〈(book), often〉 ⊑ s, then s is a γ-unexpected sequence, i.e., s 3γ b. Of course,

it is not necessary to forbid (book) ⊑ s, for example, according to this belief, the occurrence of

〈(book), rarely〉 does not imply the γ-unexpectedness.

In Chapter 4 we discussed the coherence in a belief defined in Definition 6. Let b = R ∧M

be a belief of sequence rules, we constrain that for any relation (sβi
6≃sem sγi

) ∈ M, there does

not exist sβj
∈ ∆(R) such that sγi

⊑ sβj
. The coherence in a belief consists of fuzzy recurrence

rules and semantic contradictions on fuzzy recurrence sequences must be considered in sequence

inclusions and covers of the fuzzy sets on recurrence.

Given a belief b = R∧M, for any two fuzzy recurrence rules r, r′ ∈ R, let r = 〈sα, ζα〉 → 〈sβ, ζβ〉

and r′ = 〈sα
′, ζα

′〉 → 〈sβ
′, ζβ

′〉, where 〈sβ, ζβ〉 6≃sem 〈sγ, ζγ〉 and 〈sβ
′, ζβ

′〉 6≃sem 〈sγ
′, ζγ

′〉, the

following condition must be satisfied if the belief b is coherent:

(sβ 6⊑ sγ
′) ∨ (ζβ 6= ζγ

′)

For example, let us consider two fuzzy recurrence rules r1 and r2. Let r1 = 〈(a), often〉 →

〈(c)(d), often〉 and r2 = 〈(a), often〉 → 〈(e), often〉 where 〈(c)(d), often〉 6≃sem 〈(e)(f), often〉

and 〈(e), often〉 6≃sem 〈(c), often〉. Then r1 and r2 are in conflict because 〈(e)(f), often〉 implies

that 〈(e), often〉.

Given a sequence database D and a belief base B, the problem of discovering unexpected fuzzy

recurrence sequences is therefore to find all sequences s ∈ D that contain β-unexpectedness and/or

γ-unexpectedness with respect to each belief b ∈ B that consist of recurrence rules and semantic

contradictions on recurrence sequences.
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5.3.3 Approach Ufr

In this section we develop the approach Ufr (Unexpected Fuzzy Recurrence). First, with respect

to the framework Muse, the belief tree construction must take account of the fuzzy sets on the

recurrence of sequences in order to address fuzzy recurrence rules, which can be easily handled

by adding a field to each s-node in a belief tree. Then, the sequence matching routine SeqMatch

(including SeqMatchMax, SeqMatchMin, and SeqMatchFirst) must be redesigned in order to find

the occurrences of fuzzy recurrence sequences.

The fuzzy recurrence sequence matching routine is therefore the core of the approach Ufr, so

that we develop the algorithm SeqMatchUfr (Algorithm 10), which finds the occurrence of a fuzzy

recurrence sequence in a sequence. The algorithm accepts a fuzzy recurrence sequence 〈s, ζ〉, a

sequence s′, and a pair range for bounding the occurrence of 〈s, ζ〉 in s′ as inputs, and outputs

the occurrence of 〈s, ζ〉 in s′, if s′ supports 〈s, ζ〉 with respect to Equation (5.1).

Algorithm 10: SeqMatchUfr (〈s, ζ〉, s′, range) : Matching fuzzy recurrence sequence.
Input : A fuzzy recurrence sequence 〈s, ζ〉, a sequence s′, and a pair range.

Output : The occurrence of 〈s, ζ〉 in s′ with respect to range.

µζ := FuzzyMembershipFunction(ζ);1

pos := pair(0, 0);2

ran := range;3

rec := 0;4

ret := pair(−1,−1);5

while pos.first 6= −1 do6

pos := SeqMatchFirst(s, s′, ran);7

if pos.first = −1 then8

break;9

ran.first := pos.second+ 1;10

rec := rec+ 1;11

if ret.first = −1 then12

ret.first := pos.first;13

ret.seconf := pos.second;14

if µζ(rec) ≥ recumin then /∗ recumin is globally accessible ∗/15

return ret;16

return pair(−1− 1);17

Base on the algorithm SeqMatchUfr, we develop the β-unexpected fuzzy recurrences as the

routine UfrMatchBeta, listed in Algorithm 11.

The algorithm accepts a belief T , a sequence s, and a pair pos indicating the occurrence of the

premise sequence sα contained in the sα-node of T in the sequence s as inputs, and outputs all
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or the first β-unexpected fuzzy recurrence(s) in s. Notice that the argument pos is specified with

respect to the form of calling defined in the framework Muse (Algorithm 6, Section 4.4), which can

be extended to handle the recurrence rules with occurrence constraint3 like 〈sα, ζα〉 →
[1..5] 〈sβ, ζβ〉.

Algorithm 11: UfrMatchBeta (T, s, pos) : Matching β-unexpected fuzzy recurrences.
Input : A belief T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα

contained in the sα-node of T in s.

Output : The set of all β-unexpected fuzzy recurrences in s with respect to T .

uxps := TupleSet.Create();1

nτ := T.firstTauNode();2

while nτ 6= null and nτ 6∈ N do3

if nτ .data.min 6= −1 then4

continue; /∗ recurrence rule is in sequence association rule form ∗/5

nsβ
:= nτ .f irstSubNode();6

while nsβ
6= null do7

u := SeqMatchFirst(nsβ
.data, s, pair(pos.second+ 1, |s| − 1));8

if u.first 6= −1 then9

u := SeqMatchUfr(
〈
nsβ

.data, nsβ
.ζ
〉
, s, pair(pos.second+ 1, |s| − 1));10

if u.first 6= −1 then11

uxps.add(tuple(s.id, u.first, u.second));12

if options | FIRST_UXPS_ONLY then /∗ use the conclusion of Lemma 1 ∗/13

return uxps;14

nτ := T.nextTauNode(nτ);15

return uxps;16

The algorithm first verifies whether the rules are in the form of sequence association rules, that

is, τ = ∅. Then, for each conclusion sequence 〈sβ, ζβ〉 contained in the belief of fuzzy recurrence

rules, the algorithm verifies whether sβ is contained in s by the subroutine SeqMatchFirst. If

sβ ⊑ s, the subroutine SeqMatchUfr matches whether 〈sβ, ζβ〉 6⊑ s. Thus, finally algorithm returns

all β-unexpected fuzzy recurrences 〈sβ, ζβ〉 6⊑ s.

(b)(ab)(c)(ab)(d)(a)(abc)(d)(a)(ab)(a)(abc)(a)(d)(a)(abc)(ab)(a)(d)(abc)(d)

1©

1©

2©

2©

3©

3© 4©

4©

5©

5© 6©

s =

Figure 5.7: Matching β-unexpected fuzzy recurrence.

We illustrate in Figure 5.7 the matching of β-unexpected fuzzy recurrence in a given sequence

3We will take account of the recurrence rules with occurrence constraint in our perspectives of future research

work.
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s with respect to the fuzzy sets shown in Figure 5.6 and the belief

{

〈(a)(ab), often〉 → 〈(c)(d), rarely〉
}

∧
{

〈(c)(d), rarely〉 6≃sem 〈(ef)(g), rarely〉
}

,

where recumin = 0.6.

We have that 〈(a)(ab), often〉 ⊑ s by calling SeqMatchUfr before matching β-unexpected

fuzzy recurrence (i.e., performed in the main routine of the framework Muse, where SeqMatch is

replaced by SeqMatchUfr), which is marked as 1© to 6© above the sequence shown in Figure 5.7

and satisfies the minimum fuzzy membership degree recumin = 0.6. Then, 〈(c)(d), rarely〉 ⊑ s will

be verified, where the recurrence of 〈(c)(d)〉 is marked as 1© to 5© under the sequence shown in

Figure 5.7. According to the fuzzy sets shown in Figure 5.6, we have that µζ(5) = 0.5 for “rarely”,

so that we have that 〈(c)(d), rarely〉 6⊑ s and the sequence s is β-unexpected.

With the illustration of matching β-unexpected fuzzy recurrence in a sequence, the matching

of γ-unexpected fuzzy recurrences UfrMatchGamma is not difficult to understand, which is listed in

Algorithm 12.

Algorithm 12: UfrMatchGamma (T, s, pos) : Matching γ-unexpected fuzzy recurrences.
Input : A belief T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα

contained in the sα-node of T in s.

Output : The set of all γ-unexpected fuzzy recurrences in s with respect to T .

uxps := TupleSet.Create();1

nτ := T.firstTauNode();2

while nτ 6= null and nτ 6∈ N do3

if nτ .data.min 6= −1 then4

continue; /∗ recurrence rule is in sequence association rule form ∗/5

nsγ
:= nτ .f irstLinkedNode();6

while nsγ
6= null do7

u := SeqMatchUfr(
〈
nsγ

.data, nsγ
.ζ
〉
, s, pair(pos.second+ 1, |s| − 1));8

if u.first 6= −1 then9

uxps.add(tuple(s.id, u.first, u.second));10

if options | FIRST_UXPS_ONLY then /∗ first occurrence of γ-unexpectedness ∗/11

return uxps;12

nτ := T.nextTauNode(nτ);13

return uxps;14

The algorithm accepts a belief T , a sequence s, and a pair pos indicating the occurrence of the

premise sequence sα contained in the sα-node of T in the sequence s as inputs, and outputs all or

the first γ-unexpected fuzzy recurrence(s) in s.
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5.3.4 Experiments

The approach Ufr is evaluated with Web access record data. Two types of Web access log are

used in our experiments: one is a large access log file of an online forum site (labeled as BBS), and

another is a large access log file of a mixed homepage hosting server (labeled as WWW).

Data Set Size Distinct Items Average Length

BBS 135,562 126,383 15.5591

WWW 53,325 85,810 8.3507

Table 5.2: Web access logs used for the evaluation of the approach Ufr.

The composition of the two data sets are listed in Table 5.2. We first apply a sequential pattern

mining algorithm to discover frequent sequences for studying the general behaviors of the data

sets. The frequent 4-recurrence sequences and 8-recurrence sequences are shown in Figure 5.8.

The recurrence sequences in the data sets show that the recurrence behaviors depend on the se-

mantic characteristics of data, for instance, in our experimental data sets, the recurrence behaviors

in online forum site are more stronger than those in mixed content Web site.
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(a) Data set BBS. (b) Data set WWW.

Figure 5.8: Number of frequent recurrence sequences.

We generate 15 beliefs for each data set after examining the discovered sequential patterns,

frequent 4-recurrence and 8-recurrence sequences, which correspond to 3 groups of 5 beliefs: with

“rarely”, “often” and “frequently”, with respect to the fuzzy sets shown in Figure 5.6.

Table 5.3 lists several sample beliefs in our experiments. For instance, the belief

BBS1 =
{

〈(f=4), rarely〉 → 〈(f=9), rarely〉
}

∧
{

〈(f=9), rarely〉 6≃sem 〈(f=9), often〉
}

depicts that the forum users who rarely visit the forum No.4 also rarely visit the forum No.9, and

that they often visit the forum No.9 is a contradiction; the belief

WWW2 =
{

〈(/pub/), often〉 → 〈(/), rarely〉
}

∧
{

〈(/), rarely〉 6≃sem 〈(/doc/), often〉
}
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Belief Premise 〈sα, ζα〉 Conclusion 〈sβ, ζβ〉 Contradiction 〈sγ , ζγ〉

BBS1 (f=4), rarely (f=9), rarely (f=9), often

BBS2 (f=0)(f=5), often (f=8), often (f=4), often

BBS3 (f=5), frequently (f=4), rarely (f=9), often

WWW1 (/~li/), rarely (/~li/pub/), often (/~li/pub/), rarely

WWW2 (/~li/pub/), often (/~li/), rarely (/~li/doc/), often

WWW3 (/~li/), frequently (/~li/doc/), rarely (/~li/doc/), often

Table 5.3: Sample beliefs of fuzzy recurrence rules.

(for respecting the thesis layout, we trim the prefix /~li of the path) depicts that the homepage

visitors who often access the publications located in /~li/pub/ rarely access the homepage /~li/,

so that they should not often access the documents located in /~li/doc/.
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Figure 5.9: Number of sequences with unexpected fuzzy recurrences.

Figure 5.9 shows our experimental results. With the decrease of the minimum fuzzy degree

threshold, the number of unexpected sequences increases. In Figure 5.9(a), we find that in the

“frequently” fuzzy set, the number of unexpected sequences is much less than those in the other two

fuzzy sets, because in the data set the number of long recurrence sequences, such as 8-recurrence

sequences, is less. We can also find that the unexpected behaviors focus on the recurrences between

“rarely” and “often”. In Figure 5.9(b), there is a sharp increase of the number of unexpected

sequences in the “often” fuzzy set when the minimum fuzzy membership degree decreases from 0.6

to 0.4, because in the “often” fuzzy set, the fuzzy degree 0.5 corresponds to 4-recurrence sequences,

so that a lot of unexpected sequences in the “rarely” fuzzy set are counted as “often”.
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5.4 Discussion

In this chapter, we first extended the framework Muse with taking account of the fuzziness in the

unexpectedness on sequence occurrence (tau-fuzzy) and developed the approach Taufu. We then

proposed the notion of fuzzy recurrence sequence, with which we developed the approach Ufr to

discover unexpected fuzzy recurrences within the framework Muse. Experiments on various real

Web server access data show the performance of the approaches Taufu and Ufr.

We studied the fuzziness in unexpected sequence occurrence, where the notion of tau-fuzzy is

based on the gap between premise sequence and conclusion sequences, and the notion of fuzzy

recurrence sequence is based on the number of sequence occurrences.

There is a very extended way of considering fuzzy association rules in discovering the unex-

pectedness in data. It can be a more general model that: from a rule “if X is A, then Y is B”, if

we consider “A semantically contradicts to C” or “B semantically contradicts to D”, then “if X is

C, then Y is B” or “if X is A, then Y is D” are unexpected. For instance, if “age is old → salary

is high” corresponds to prior knowledge, then “age is young → salary is high” or “age is old →

salary is low” can be considered as unexpected.

The same manner can also be extended to gradual rules, that is, if prior knowledge shows that

“ age increases → salary increases”, then “age increases → salary decreases” is unexpected,

etc.

The fuzzy extensions presented in this chapter improve the flexibility of representing the un-

expectedness within the framework Muse. Our future research work includes the construction

and discovery of more general models of unexpected sequences and rules within the framework of

fuzzy association rules and fuzzy sequential patterns. On the other hand, in order to improve the

flexibility of representing prior knowledge (i.e., the construction of belief system), we study the

generalization problem of the framework Muse in the next chapter.



Chapter 6

Generalizations in Unexpected Sequence

Discovery

In the previous chapter, we extended the framework Muse with fuzzy methods, which improve

the interpretability of discovered unexpected sequences. On the other hand, the effectiveness of

the framework Muse, with or without fuzzy extensions, depends on the relevancy of beliefs, where

the specification of sequence rules and semantic contradictions with respect to prior knowledge is

an essential however complex task. To reduce the complexities in constructing beliefs, we present

a generalized approach to discover of unexpected sequences with concept hierarchies.

A part of the work presented in this chapter has been published in the International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS).

6.1 Introduction

The framework Muse proposed in Chapter 4 discovers unexpected sequences with respect to

the beliefs based on prior knowledge, where the effectiveness of Muse depends on the relevancy

of beliefs. However, for constructing beliefs, the specification of sequence rules and semantic

contradictions is an essential however complex task.

On the other hand, in real-world database applications, many data have a human-defined

taxonomy that is often organized in hierarchies, where the semantics of an item are represented

with respect to hierarchical taxonomy of concepts.

Hence, although beliefs can be seriously specified with expertise of application domain, the

enumeration of the complete sets of rules and semantic contradiction relations based on items is

often a hard work. The following example illustrates this problem.

Example 24 Let us consider the instance addressed in Example 11, where customer transaction

records are stored as the items purchased by a customer per transaction. Assume that in each
79
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product category, including Sci-Fi Novel, Action Movie DVD, Sci-Fi Movie DVD, Rock Music CD,

and Classical Music CD, there are 10 different products, that is, 10 distinct items under each end

concept with respect to the hierarchical taxonomy shown in Figure 6.1.

Concepts

Product

Book CD DVD

... Music... ... Movie... ...Novel...

... Classical ... Sci−FiAction... RockSci−Fi ...

... ... ... ...

... ...

... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ... ... ...... ... ... ... Items

Figure 6.1: Hierarchical taxonomy of products.

Further, we assume that the product relations and customer transaction records are stored in

a database like the relations listed in Table 6.1.

Prod.ID Prod.Category Prod.Name

· · · · · · · · ·

12101 Book.Novel.SciFi · · ·

12102 Book.Novel.SciFi · · ·

· · · · · · · · ·

22101 CD.Music.Classical

22102 CD.Music.Classical

· · · · · · · · ·

22301 CD.Music.Rock · · ·

22302 CD.Music.Rock · · ·

· · · · · · · · ·

32201 DVD.Movie.Action · · ·

32202 DVD.Movie.Action · · ·

· · · · · · · · ·

32301 DVD.Movie.SciFi · · ·

32302 DVD.Movie.SciFi · · ·

· · · · · · · · ·

Cust.ID Trans.ID Items

· · · · · · · · ·

C00206 T000586 11105 12108

C00206 T000977 12109

C00206 T001108 32201 32202

C00206 T001210 32205 32307

C00206 T001555 21209

C00206 T001809 22303

C00206 T002112 22507

· · · · · · · · ·

C01052 T001375 12101

C01052 T001664 22305 32301

C01052 T001792 12108 32308

C01052 T001860 32201 32202 32302

C01052 T002276 31202

C01052 T002279 22101

· · · · · · · · ·

Table 6.1: Product relations and customer transaction records.

In such a database system, to discover the customer transaction sequences unexpected to the
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behaviors described in the belief

b3 =
{

〈(Sci-Fi-Novel)(Action-Movie Sci-Fi-Movie)〉 →∗ 〈(Rock-Music)〉
}

∧
{

〈(Rock-Music)〉 6≃sem 〈(Classical-Music)〉
}

of Example 11, each item should be specified according to the SeqMatch routine in the approach

Muse, that is, as the form of the following beliefs

· · · · · · · · · ,

bi =
{

〈(12101)(32201 32301)〉 →∗ 〈(22301)〉
}

∧
{

〈(22301)〉 6≃sem 〈(22101)〉
}

,

bj =
{

〈(12102)(32201 32301)〉 →∗ 〈(22301)〉
}

∧
{

〈(22301)〉 6≃sem 〈(22101)〉
}

,

· · · · · · · · · .

Hence, there exist 104 sequence rules and 102 semantic contradiction relations that cover all

possible combinations of items, and it is necessary to totally generate 105 beliefs instead of one

belief on the generalization of hierarchical taxonomy. �

Indeed, generalizations have been well concentrated in mining association rules [SA95, HF95,

HMWG98, TS98, HW02, TL07, KZC08] and sequential patterns [SA96b, TS98, LLW02, dAdSRJ03,

MPT04, HY06] during the past decade.

Srikant and Agrawal first studied the generalization problem in association rule mining [SA95],

where the taxonomy on items is considered as is-a hierarchy. For instance, according to the

hierarchy shown in Figure 6.1, we can say that “Sci-Fi-Novel is-a Novel is-a Book”. The proposed

approach is therefore to discover the association rules like (Novel Rock-Music) → (Action-Movie)

with considering each concept as an item and pruning itemsets containing an item and its ancestor.

This work has been extended to discover generalized sequential patterns in [SA96b], which are

maximal frequent sequences like “Novel and Rock-Music followed by Action-Movie, then followed by

item 32301”. Many approaches have been developed to improve the efficiency of mining generalized

association rules and sequential patterns [HMWG98, HW02, LLW02, dAdSRJ03, MPT04, HY06,

TL07, KZC08], which effectively reduce the number of discovered patterns, rules, or sequences in

comparison with the results without data generalization.

Therefore, to benefit from high-level knowledge on the taxonomy of data, in this chapter, we

propose a generalized approach to discover unexpected sequences with concept hierarchies in order

to reduce the complexities in belief construction.

The rest of this chapter is organized as follows. We first formalize the definitions of concept

hierarchy and generalized sequences in Section 6.2, then propose the notion of generalized beliefs in

Section 6.3. In Section 6.4, we discuss the unexpected sequences in hierarchical data with respect
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to generalized beliefs, and we further propose a method for determining the semantic contradiction

between generalized sequences with respect to concept hierarchies, which proceeds to the discovery

of unexpected sequences without specifying semantic contradictions. We show the experiments

of discovering unexpected sequences with concept hierarchies in Section 6.6 and Section 6.7 is a

discussion.

6.2 Generalized Sequences and Rules

In this section, we first define the notion of concept hierarchies, then we formalize the generalized

sequences and generalized sequence rules.

A concept is a cognitive unit of knowledge, and a group of semantically related concepts can

be represented as a hierarchy, defined as follows.

Definition 18 (Concept hierarchy) A concept hierarchy H = (C,�) is a finite set C of concepts

and a partial order � on C.

In this definition, the partial order � is a specialization/generalization relation on the concepts

in the set C. For two concepts cφ, cθ ∈ C, if cφ � cθ, then we say that the concept cφ is more

general than the concept cθ, and we also say that the concept cθ is more specific than the concept

cφ. We write cφ ≺ cθ if cφ � cθ and not cθ � cφ. Denote by level(cϕ) the level of a concept

cϕ ∈ C, defined as follows: if for no cφ ∈ C we have cφ � cϕ, then level(cϕ) = 0; otherwise

level(cϕ) = max({level(cϕ) | cϕ � cφ}) + 1.

Example 25 In Figure 6.1, we have that Music ≺ CD, Classical ≺ Music, and Classical ≺ CD;

however Classical 6� Rock and Classical 6� Sci-Fi. We also have that level(Product) = 0,

level(Book) = level(CD) = level(DVD) = 1, and so on. �

Given a concept hierarchy H = (C,�), denote by c ∈ H the concept c ∈ C. A generalized

pattern is an unordered collection C = (c1c2 . . . cm) of distinct concepts sorted by lexical order,

where ci is a concept and for any ci 6= cj, ci 6� cj. A generalized sequence is an ordered list

S = 〈C1C2 . . . Ck〉 of generalized patterns, where Ci is a generalized pattern. Denote C ∈ S a

generalized pattern contained in a generalized sequence S.

The specialization relation � can be applied to generalized patterns and generalized sequences.

Given two generalized patterns C and C ′, if for each concept c ∈ C there exists a distinct concept

c′ ∈ C ′ such that c � c′, then we say that the generalized pattern C is more general than the

generalized pattern C ′ (and C ′ is more specific than C), denoted as C � C ′. Given two k-length

generalized sequences S = 〈C1C2 . . . Ck〉 and S ′ = 〈C1
′C2

′ . . . Ck
′〉, if for each generalized pattern
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Ci and Ci
′ (1 ≤ i ≤ k), we have that Ci � Ci

′, than we say that the generalized sequence S is

more general than the generalized sequence S ′ (and S ′ is more specific than S), denoted as S � S ′.

Given a sequence database D and a concept hierarchy H, each item i ∈ D belongs to a concept

c ∈ H, denoted as i |= c; if i |= cθ and cϕ � cθ, then i |= cϕ. Let I be an itemset and C be

a generalized pattern, if for each i ∈ I there exist a distinct concept c ∈ C such that i |= c,

then we say that the itemset I supports the generalized pattern C, denoted as I |= C. Let

S = 〈C1C2 . . . Cm〉 be a generalized sequence on H and s = 〈I1I2 . . . In〉 be a sequence in D, if

there exist integers 1 ≤ i1 < i2 < . . . < im ≤ n such that Ii1 |= C1, Ii2 |= C2, . . . , Iim |= Cm, then

we say that the sequence s supports the generalized sequence S, denoted as s |= S.

Example 26 Considering Figure 6.1, we have that (Novel CD) � (Sci-Fi-Novel Rock-Music)

however (Novel DVD) 6� (Sci-Fi-Novel Rock-Music); we also have

〈(Book)(CD DVD)(CD)〉 � 〈(Sci-Fi-Novel)(Rock-Music Action-Movie)(Classical-Music)〉 .

According to Table 6.1, we have that 12101 |= Sci-Fi-Novel, (22301) |= (Rock-Music), and so on.

For the customer C01052, we have the transaction sequence

〈(12101)(22305 32301)(12108 32308)(32201 32202 32302)(31202)(22101)〉 ,

which supports the generalized sequence

〈(Sci-Fi-Novel)(Rock-Music Action-Movie)(Classical-Music)〉 ,

since we have that (12101) |= (Sci-Fi-Novel), (22305 32301) |= (Rock-Music Action-Movie), and

(22101) |= (Classical-Music). �

With the notion of generalized sequences, we can further define the notions of generalized

sequence rules.

According to the notions of sequence rules proposed in Chapter 3, we generalize the notion

of sequence rules considered in this thesis, including sequence association rules and predictive

sequence implication rules, with respect to concept hierarchies.

Definition 19 (Generalized sequence association rule) A generalized sequence association rule

is a rule in the form Sα → Sβ, where Sα, Sβ are two generalized sequences.

For a generalized sequence association rule r = Sα → Sβ, the sequence Sα is called the premise

sequence and the sequence Sβ is called the conclusion sequence. Given a sequence s, if s |= Sα and

s |= Sβ, then we say that the sequence s supports the rule Sα → Sβ, denoted as s |= (Sα → Sβ).
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Definition 20 (Generalized predictive sequence implication rule) A generalized predictive se-

quence implication rule is a rule in the form Sα →
τ Sβ, where Sα, Sβ are two generalized sequences

and τ = [min..max] is a constraint such that min,max ∈ N and min ≤ max.

Given a sequence s and a generalized predictive sequence implication rule r = Sα →
τ Sβ,

if there exists a sequence s′ such that |s′| |= τ and there exist sequences sα
′, sβ

′ ⊑ s such that

sα
′ |= Sα, |sα

′| = |Sα|, sβ
′ |= Sβ, |sβ

′| = |Sβ|, and sα
′ · s′ · sβ

′ ⊑ s, then we say that the sequence s

supports the rule Sα →
τ Sβ, denoted as s |= (Sα →

τ Sβ).

As discussed in Section 3.4, we use the term generalized sequence rule for describing the unified

form Sα →
τ Sβ of generalized sequence association rules (where τ = ∅) and generalized predictive

sequence implication rules (where τ 6= ∅).

A

D E F G

B C

fcba d e g h

Figure 6.2: A concept hierarchy of items.

Example 27 Figure 6.2 shows a concept hierarchy of concepts and associated items. We have

A ≺ B, A ≺ C, B ≺ D, B ≺ E, C ≺ F , C ≺ G, {a, b} |= D, {c, d} |= E, {e, f} |= F , and

{g, h} |= G. With this hierarchy, given a concept occurrence rule 〈(D)〉 →∗ 〈(E)(EF )〉 and a

sequence s = 〈(a)(b)(c)(de)〉, we have s |= (〈(D)〉 →∗ 〈(E)(EF )〉) since we have a |= D (or

b |= D), c |= E, and (de) |= (EF ). �

6.3 Unexpected Sequences against Generalized Beliefs

The generalization of unexpected sequence discovery is considered in generalizing the belief system

introduced in Chapter 4 with respect to hierarchical data.

In this section, we first formalize the generalized belief system, then we propose the unexpected

sequences against generalized beliefs.

6.3.1 Generalized Beliefs

With generalized sequence rules and the concept hierarchies, we can therefore generalize the belief

system proposed in Section 4.2.
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We first discuss the semantic contradiction on generalized sequences with respect to a concept

hierarchy of items, which is so called the generalized semantic contradiction.

Let us consider a concept hierarchy H = (C,�). Given two concepts cφ, cθ ∈ C, we define that

for cφ 6≃sem cθ, if an item iφ |= cθ and iφ 6|= cθ, then iφ 6≃sem cθ. We also define that for two

generalized patterns Cφ 6≃sem Cθ, if an itemset Iφ |= Cφ and Iφ 6|= Cθ, then Iφ 6≃sem Cθ. In the

same manner, we define that for two generalized sequences Sφ 6≃sem Sθ, if a sequence sφ |= Sφ and

sφ 6|= Sθ, then sφ 6≃sem Sθ.

Given a concept hierarchyH = (C,�), the relation� is monotone to the semantic contradiction

relations: for any cφ, cθ, cϕ ∈ C, if cφ 6≃sem cθ and cφ � cϕ, then cϕ 6≃sem cθ; given three generalized

patterns Cφ, Cθ, and Cϕ on H, where |Cφ| = |Cθ| = |Cϕ|, if Cφ 6≃sem Cθ and Cφ � Cϕ, then

Cϕ 6≃sem Cθ; given three generalized sequences Sφ, Sθ, and Sϕ on H, the semantic contradiction

relation on generalized sequences determines that, if Sφ 6≃sem Sθ and Sφ � Sϕ, then Sϕ 6≃sem Sθ.

Example 28 Consider the hierarchy shown in Figure 6.2. If we assume that B 6≃sem C, then we

have that E 6≃sem F and d 6≃sem C; if we assume that E 6≃sem C, then we also have that E 6≃sem F

and d 6≃sem F , but we do not have that B 6≃sem C. If we assume 〈(D)(F )〉 6≃sem 〈(EG)〉, then we

have that 〈(a)(e)〉 6≃sem 〈(EG)〉, 〈(b)(e)〉 6≃sem 〈(EG)〉, 〈(a)(f)〉 6≃sem 〈(EG)〉, and 〈(b)(f)〉 6≃sem

〈(EG)〉. �

A generalized sequence belief is a belief consisting of generalized sequences and generalized

semantic contradictions with respect to a concept hierarchy, which is formally defined as follows.

Definition 21 (Generalized sequence belief) A generalized sequence belief is a conjunction

R∧M∧H, where R is a non-empty consistent generalized sequence rule set andM is a consistent

generalized semantic contradiction set on the concept hierarchy H, such that for each relation

(Sβi
6≃sem Sγi

) ∈ M, we have that Sβi
∈ ∆(R), and for any relation (Sβi

6≃sem Sγi
) ∈ M, there

does not exist Sβj
∈ ∆(R) such that Sγi

⊑ Sβj
.

Given a generalized belief B, if a sequence s supports at least one rule contained in this belief

and no semantic contradiction of any other rules can be found in the sequence s, then we say that

the sequence s satisfies the belief B or the sequence s supports the belief B, denoted as s |= B.

We discuss the satisfaction of a generalized belief B in following cases.

1. Let B = R∧M∧H be a generalized belief that consists of a consistent generalized sequence

association rule setR and a consistent semantic contradiction setM on the concept hierarchy

H. If there exists a generalized rule (r = Sα → Sβ) ∈ R such that s |= r, and for

any generalized semantic contradiction (Sβi
6≃sem Sγj

) ∈ M there does not exist a rule

(r′ = Sα → Sβi
) ∈ R such that s |= r′, then we have that sequence s |= B.
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2. Let B = R∧M∧H be a generalized belief that consists of a consistent generalized predictive

sequence implication rule setR and a consistent semantic contradiction setM on the concept

hierarchy H. If there exists a rule (r = Sα →
τ Sβ) ∈ R such that s |= r, and for any semantic

contradiction (Sβi
6≃sem Sγj

) ∈ M there does not exist a rule (r′ = Sα →
τ ′

Sβi
) ∈ R such

that s |= r′, then we have that sequence s |= B.

6.3.2 Generalized Unexpected Sequences

In Section 4.3, we proposed three forms of unexpected sequences stated by sequence beliefs of dif-

ferent form of sequence rules. In this section, we respectively propose the three forms of generalized

unexpected sequences with respect to generalized beliefs.

The α-unexpected (completeness-unexpected) sequences can be determined by simple sequence

implication rules sα →
∗ sβ, where sα and sβ are two sequences. We now propose the notion of

generalized α-unexpected sequences determined by generalized simple sequence implication rules

Sα →
∗ Sβ, where sα, sβ are two generalized sequences.

Definition 22 (Generalized α-unexpected sequence) Given a sequence s and a generalized

belief B = R∧M∧H whereR andM are consistent sets of simple generalized sequence implication

rules and semantic contradictions on the concept hierarchy H, if s |= Λ(R) and for each rule r ∈ R

we have that s 6|= r, then the sequence s is a generalized α-unexpected sequence with respect to the

belief B, denoted as s 3α B. We also call such an unexpected sequence a generalized completeness-

unexpected sequence.

A belief B = R∧M∧H of generalized simple sequence implication rules states that at least

one sequence in the conclusion sequence set ∆(B) of the belief B should occur after the occurrence

of the premise sequence Λ(R) in an expected sequence. Hence, given a rule (Sα →
∗ Sβ) ∈ R and

a sequence s, the occurrence constraint τ = [0..∗] is broken if and only if s |= Sα and s 6|= Sα · Sβ.

The β-unexpected (occurrence-unexpected) sequences can be determined by predictive se-

quence implication rules sα →
τ sβ , where sα, sβ are two sequences and τ 6= ∗. Respectively, we

can define the form of generalized β-unexpected sequences from generalized predictive sequence

implication rules Sα →
τ Sβ , where sα, sβ are two generalized sequences.

Definition 23 (Generalized β-unexpected sequence) Given a sequence s and a generalized

belief B = R∧M∧H whereR andM are consistent sets of simple generalized sequence implication

rules and semantic contradictions on the concept hierarchy H, if s |= Λ(R) and for each rule r ∈ R

we have that s 6|= r, then the sequence s is a generalized β-unexpected sequence with respect to the

belief B, denoted as s 3β B. We also call such an unexpected sequence a generalized occurrence-

unexpected sequence.
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A belief B = R ∧M ∧ H with generalized predictive sequence implication rules states that

at least one sequence in the conclusion sequence set ∆(B) of the belief B should occur after the

occurrence of the premise sequence Λ(R) in an expected sequence, with respect to the occurrence

constraint τ associated with the rule. For instance, given a rule (Sα →
τ Sβ) ∈ R and a sequence

s, the occurrence constraint τ = [min..max] is broken if and only if s |= Sα and there does not

exist sequences sα
′, sβ

′, s′ ⊑ s such that sα
′ |= Sα, |sα

′| = |Sα|, sβ
′ |= Sβ , |sβ

′| = |Sβ |, and |s′| |= τ .

The γ-unexpected (semantics-unexpected) sequences can be determined by any sequence rules

sα →
τ sβ defined in this thesis, where sα, sβ are two sequences. So that we can define the form

of generalized γ-unexpected sequences from generalized sequence rules Sα →
τ Sβ, where sα, sβ are

two generalized sequences.

Definition 24 (Generalized γ-unexpected sequence) Given a sequence s and a generalized

belief B = R∧M∧H where R andM are consistent sets of simple generalized sequence implication

rules and semantic contradictions on the concept hierarchy H, if s |= Λ(R) and there exists a rule

r ∈ R and a semantic contradiction relation (Sβi
6≃sem Sγj

) ∈M such that:

1. s |= (Sα → Sγj
), if r is a generalized sequence association rule Sα → Sβi

;

2. s |= (Sα →
τi Sγj

), if r is a generalized sequence implication rule Sα →
τi Sβi

,

then the sequence s is a generalized γ-unexpected sequence with respect to the belief B, denoted as

s 3γ B. We also call such an unexpected sequence a generalized semantics-unexpected sequence.

A belief B = R∧M∧H with generalized sequence rules and a non-empty generalized semantic

contradiction set M states that the semantic contradictions of the generalized sequence rules

contained in R should not occur with the premise sequence λ(R) with respect to the sequence

rule form.

Given a sequence s, we examine generalized γ-unexpectedness with two cases: (2) for a gen-

eralized sequence association rule (Sα → Sβ) ∈ R on H, if there exists (Sβ 6≃sem Sγ) ∈ M such

that s |= Sα and s |= Sγ , then the rule is broken; (2) for a generalized sequence implication rule

(Sα →
τ Sβ) ∈ R on H, if there exists (Sβ 6≃sem Sγ) ∈ M and exist sequences sα

′, sγ
′, s′ ⊑ s such

that sα
′ |= Sα, |sα

′| = |Sα|, sγ
′ |= Sγ , |sγ

′| = |Sγ |, and |s′| |= τ , then the rule is broken. In any

case that there exists a rule r ∈ R broken, then the sequence s is γ-unexpected to the generalized

belief B.

6.4 Soft Unexpected Sequences in Hierarchical Data

In this section, we propose an approach to discover soft unexpected sequences with respect to

generalized rules in hierarchical data without specifying semantic contradictions. We first discuss
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the computation of semantic relatedness and contradiction between generalized sequences, and

then proposed the notions of soft unexpected sequences.

6.4.1 Semantic Relatedness and Contradiction

Before being able to formally define the notions of soft unexpected sequences, in this section, we

first propose the computation of semantic relatedness and contradiction between the generalized

sequences on a given concept hierarchy of data taxonomy.

Let us consider again the instance of Web usage analysis, where a generalized occurrence rule

can be defined as 〈(/)〉 →[0..5] 〈(Politics)〉 with respect to the concept hierarchy shown in Figure

6.3. For example, to build a belief with “technology news semantically contradicts politics news”,

the semantic contradiction 〈(Politics)〉 6≃sem 〈(Technology)〉 is necessary. However, depending on

user experiences and the taxonomy shown in Figure 6.3, not only the technology news contradicts

politics news.

item

/

News Entertainment

Politics Science Technologies Music Movies Stars

112.html 113.html 116.html 114.html111.html 118.html117.html115.html

index.html concept

Figure 6.3: A concept hierarchy of Web site structure.

The semantic contradiction of two concepts in a hierarchy is determined by the distance and

semantic similarity between the concepts.

Given a concept hierarchy H and two concepts ci, cj ∈ H, the semantic distance between the

concepts ci and cj in the hierarchy H is denoted as δ(ci, cj,H); the semantic similarity is defined

as a score λ(ci, cj), where 0 ≤ λ(ci, cj) ≤ 1. For two concepts, we have that the more distance the

less importance for relatedness, and the less similarity the more contradiction.

Therefore, we propose a simple formula for handling the semantic contradiction degree between

concepts, denoted as ωsem(ci, cj,H), as following:

ωsem(ci, cj,H) =
2− λ(ci, cj)

δ(ci, cj,H)
, (6.1)

where the semantic distance between the concepts ci and cj is defined as the path-length (i.e.,

the number of edges) between the nodes ci and cj in the hierarchy H, and if ci = cj, we define

δ(ci, cj,H) = 1.

In Equation (6.1), we have that 0 ≤ λ(ci, cj) ≤ 1 if the semantic similarity between ci and

cj is defined; otherwise, if the semantic similarity is not defined, we define λ(ci, cj) = 1, so that
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ωsem(ci, cj ,H) is the reciprocal value of the length-path between ci and cj in the hierarchy H. In

the case that ci = cj, we define λ(ci, cj) = 2, so that ωsem(ci, cj,H) = 0.

Notice that we consider the semantic contradiction degree ωsem(ci, cj,H) as a value 0 ≤ ωsem <

1, that excludes the case that δ(ci, cj,H) = 1 when λ(ci, cj) is undefined.

Politics Science Technology Music Movie Stars

Politics 1:2 2:0.6857 2:0.7183 4:0.4270 4:0.3388 4:0.2996

Science 2:0.6857 1:2 2:0.6929 4:1 4:1 4:1

Technology 2:0.7183 2:0.9 1:2 4:1 4:1 4:1

Music 4:0.4270 4:1 4:1 1:2 2:0.5159 2:0.4274

Movie 4:0.3388 4:1 4:1 2:0.5159 1:2 2:0.3392

Stars 4:0.2996 4:1 4:1 2:0.4274 2:0.3392 1:2

Table 6.2: Path-length and similarity matrix.

ci : cj δ(ci, cj ,H) λ(ci, cj) ωsem(ci, cj,H)

Politics : Politics 1 2 0

Politics : Science 2 0.6857 0.65715

Politics : Technology 2 0.7183 0.64085

Politics : Music 4 0.4270 0.39325

Politics : Movies 4 0.3388 0.4153

Politics : Stars 4 0.2996 0.4251

Politics : / 2 1 0.5

Politics : News 1 1 1∗

Table 6.3: Semantic contradiction degrees between concepts.

The semantic similarity between concepts can be determined by various approaches [Res95,

NMW97, LCN03, RE03, PS08]. Example 29 shows the computation of semantic contradiction

degrees.

Example 29 With the hierarchy shown in Figure 6.3, we have the relations listed in Table 6.2,

where the semantic similarity between concepts is determined by the JWSL library [PS08] (in

order to compare the the different values, assume that the similarities between concepts Science,

Technology and Music, Movie, Stars are not defined). For instance, the path-length between

concepts Politics and Technology is 2; between Politics and Music is 4. With the JWSL library

we have that the similarity between the concepts Politics and Technology is 0.7183; between

Politics and Music is 0.4270. Thus, according to Equation (6.1), the semantic contradiction



90 CHAPTER 6. GENERALIZATIONS IN UNEXPECTED SEQUENCE DISCOVERY

degrees between Politics and other concepts are listed in Table 6.3, where ωsem between Politics

and News is excluded. �

Given a sequence s, a generalized sequence S, and a concept hierarchy H, where for each

concept c contained in S, we have that c ∈ H. We determine the semantic contradiction degree

between s and S on H in the following manner.

We first consider the compatible-form constraint on a generalized sequence of concepts and a

sequence of items, defined as follows.

Definition 25 (Compatible-form constraint) Given a generalized sequence S and a sequence

s, let S = 〈C1C2 . . . Cm〉 and s = 〈I1I2 . . . In〉. The compatible-form is a constraint that there exist

integers 1 ≤ i1 < i2 < . . . < im ≤ n such that |C1| ≤ |Ii1| , |C2| ≤ |Ii2| , . . . , |Cm| ≤ |Iim |, denoted

as S ⊳ s, and denote by S E s the case |C1| = |Ii1 | , |C2| = |Ii2 | , . . . , |Cm| = |Iim|.

In order to determine the semantic contradiction between S and s, we require that S ⊳ s.

Now we consider the semantic contradiction between a generalized pattern C and an itemset

I (where |C| ≤ |I|) on a hierarchy H, denoted as ωpat(C, I,H) and defined as follows.

Let Ω(ci, ij,H) = max{ωsem(ci, cj,H) | cj ∈ H, ij |= cj} be the maximal semantic contradiction

degree between a concept ci ∈ H and an item ij ∈ I, then the number of the combinations of

Ω(ci, ij,H) on the elements in ci ∈ C and ij ∈ I is the number of permutations of |C| items in I,

that is,

P (|I| , |C|) =
|I|!

(|I| − |C|)!
. (6.2)

Let I be the set of such permutations, we denote the semantic contradiction degree between a

generalized pattern C and an itemset I as:

ωpat(C, I,H) =

max{
∑

ci∈C

Ω(ci, ij,H) | ij ∈ I
′, I ′ ∈ I}

|C|
. (6.3)

Therefore, given a generalized sequence S and a sequence s, for all subsequences s′ ⊑ s such

that SEs′, the semantic contradiction degree between S and s, denoted as ωseq(S, s,H), is defined

as the average of the sum of ωpat(Ci, Ii,H) that is maximal, where Ci and Ii are itemsets contained

in S and s′, that is,

ωseq(S, s,H) =

max{
∑

1≤i≤‖S‖

ωpat(Ci ∈ S, Ii ∈ s
′,H) | s′ ⊑ s, S E s′}

‖S‖
. (6.4)

Respectively, we define the semantic relatedness degree between concepts, denote by ηsem(ci, cj,H),

as following:

ψsem(ci, cj,H) =
λ(ci, cj)

δ(ci, cj,H)
, (6.5)
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and let Ψ(ci, ij ,H) = max{ψsem(ci, cj,H) | cj ∈ H, ij |= cj}, in the same manner with the

permutation set I of a given itemset I with respect to a generalized pattern C, we define the

semantic relatedness degree between C and I as

ψpat(C, I,H) =

max{
∑

ci∈C

Ψ(ci, ij ,H) | ij ∈ I
′, I ′ ∈ I}

|C|
. (6.6)

Given a generalized sequence S and a sequence s, for all subsequences s′ ⊑ s such that SE s′, the

semantic relatedness degree between S and s, denoted as ψseq(S, s,H), is defined as the average

of the sum of ψpat(Ci, Ii,H) that is maximal, where Ci and Ii are itemsets contained in S and s′,

that is,

ψseq(S, s,H) =

max{
∑

1≤i≤‖S‖

ψpat(Ci ∈ S, Ii ∈ s
′,H) | s′ ⊑ s, S E s′}

‖S‖
. (6.7)

6.4.2 Soft Unexpected Sequences

With the notions of semantic relatedness and contradiction degrees, we formally define the soft

unexpectedness of sequences with respect to generalized sequence rules on a concept hierarchy as

follows.

Definition 26 (Soft α-unexpected sequence) Given a sequence s, a generalized sequence rule

r = Sα →
∗ Sβ on a concept hierarchy H, a user defined minimum semantic contradiction degree

ωmin, and a user defined minimal semantic relatedness degree ψmin, if there exists sα ⊑ s such that

sα |= Sα, and there does not exist sβ ⊑ s such that sα · sβ ⊑c s and ψseq(Sβ, sβ,H) ≥ ψmin, then s

is a soft completeness-unexpected sequence, denoted as s 3∼
α B. We also call such an unexpected

sequence a soft α-unexpected sequence.

Definition 27 (Soft β-unexpected sequence) Given a sequence s, a generalized sequence rule

r = Sα →
τ Sβ (τ 6= ∗) on a concept hierarchy H, a user defined minimum semantic contradiction

degree ωmin, and a user defined minimal semantic relatedness degree ψmin, if there exists sα ⊑

s such that sα |= Sα, and there exist s′, sβ, sγ ⊑ s such that |s′| 6|= τ , sα · s
′ · sβ ⊑c s, and

ψseq(Sβ, sβ,H) ≥ ψmin, then s is a soft occurrence-unexpected sequence, denoted as s 3∼
β B. We

also call such an unexpected sequence a soft β-unexpected sequence.

Definition 28 (Soft γ-unexpected sequence) Given a sequence s, a generalized sequence rule

r = Sα →
τ Sβ (τ 6= ∗) on a concept hierarchy H, a user defined minimum semantic contradiction

degree ωmin, and a user defined minimal semantic relatedness degree ψmin, if there exists sα ⊑ s

such that sα |= Sα:

1. if τ = ∅ and there exist s′, sγ ⊑ s such that |s′| |= τ , sα·s
′·sγ ⊑c s, and ωseq(Sγ, sγ,H) ≥ ωmin;

or
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2. if τ 6= ∅ and there exist sγ ⊑ s \∗ sα such that ωseq(Sγ, sγ,H) ≥ ωmin,

then s is a soft semantics-unexpected sequence, denoted as s 3∼
γ B. We also call such an unexpected

sequence a soft γ-unexpected sequence.

The soft unexpectedness on semantic relatedness and contradiction can also be described by

fuzzy sets, like “weak relatedness/contradiction”, “medium relatedness/contradiction”, or “strong re-

latedness/contradiction” with respect to β-unexpected or γ-unexpected sequences, by fuzzy mem-

bership functions µsem(ψseq,F) or µsem(ωseq,F), where F is a set of fuzzy partitions.

strong

0.1 0.3 0.5 0.80.6 0.7

0.5

1

0.9 1.00.2 0.4

weak medium
µ

ωseq

Figure 6.4: Fuzzy sets for semantic contradiction degree.

Example 30 For instance, given a generalized sequence rule 〈(/)〉 →∗ 〈(Politics)(Movies)〉 on

the hierarchy shown in Figure 6.4, the sequence 〈(index)(117)(118)〉 (we ignore file extensions) is

an expected sequence. Given a minimum semantic contradiction degree 0.3, according to Table

6.2 proposed in the previous section, the sequence 〈(index)(112)(113)〉 is fuzzy γ-unexpected with

“medium contradiction” since we have that

ωseq(〈(Politics)(Movies)〉 , 〈(112)(113)〉 ,H) = 0.456;

the sequence 〈(index)(114)(113)〉 is fuzzy γ-unexpected with “weak contradiction” since we have

that

ωseq(〈(Politics)(Movies)〉 , 〈(114)(113)〉 ,H) = 0.338.

�

6.5 Approach SoftMuse

In this section, we develop the approach SoftMuse to discover soft unexpected sequences in a

sequence database. We first present the main framework of SoftMuse because we cannot directly

use the framework Muse for discovering soft unexpected sequences, since the belief system is no

longer required. We then present the semantic relatedness/contradiction computation routine

HyMatchSeq (Hierarchy Matching of Sequences).
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To simplify the descriptions, in the algorithms we consider a sequence as an object with the

properties ψseq, ωseq, µsem, µτ , etc., which correspond to the notions presented in previous sections.

We also assume that the minimum semantic relatedness degree ψmin and the minimum semantic

contradiction degree ωmin addressed in the definitions of soft unexpected sequences are globally

accessible in the algorithms.

The main algorithm of the framework SoftMuse is listed in Algorithm 13, which extracts soft

unexpected sequences in a sequence database D, with respect to a set R of generalized sequence

rules on a concept hierarchy H, where the minimum semantic relatedness degree ψmin and the

minimum semantic contradiction degree ωmin are considered as predefined.

Algorithm 13: SoftMuse: Soft Multiple Unexpected Sequence Extraction.
Input : A set of generalized sequence rules R on a concept hierarchy H, and a sequence database D.

Output : All soft unexpected sequences.

foreach s ∈ D do1

foreach r ∈ R do2

pos := HyMatchSeq(r.Sα, s, null, 1, 0); /∗ τ = null, ψmin = 1, ωmin = 0 ∗/3

if pos.first 6= −1 then /∗ s |= Sα ∗/4

if r.τ 6= ∅ then5

if r.τ = ∗ then6

uxp := HyMatchAlpha(r.Sβ , s, pos);7

if uxp.first 6= −1 then8

output tuple(r.id, ALPHA, s, uxp);9

else10

uxp := HyMatchBeta(r.Sβ , s, pos, r.τ);11

if uxp 6= ∅ then12

output tuple(r.id, BETA, s, uxp);13

uxp := HyMatchGamma(r.Sγ , s, pos, r.τ);14

if uxp 6= ∅ then15

output tuple(r.id, GAMMA, s, uxp);16

For each sequence s ∈ D and each generalized sequence rule (r = Sα →
τ Sβ) ∈ R, the

framework first verifies whether s |= Sα by calling the routine HyMatchSeq with setting ψmin = 1

and ωmin = 0. If s |= Sα, then the framework continues to find soft α-, β-, and γ-unexpectedness

in s with respect to the occurrence position of Sα and the τ .

The routines HyMatchAlpha, HyMatchBeta, and HyMatchGamma match soft α-, β-, and γ-

unexpected sequences with respect to the definitions proposed in Section 6.4.2, hence, we focus

on the semantic relatedness/contradiction computation routine HyMatchSeq (Algorithm 14).
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Given generalized sequence S, a sequence s, the Algorithm HyMatchSeq finds the first highest-

scored subsequence s′ ⊑ s such that s′ |= S with respect to an occurrence constraint τ , a minimum

semantic relatedness degree ψmin and/or a minimum semantic contradiction degree ωmin.

Algorithm 14: HyMatchSeq (S, s, τ, ψmin, ωmin) : Hierarchy Matching of Sequences.
Input : A generalized sequence S, a sequence s, a occurrence constraint τ , a minimum semantic

relatedness degree ψmin, and a minimum semantic contradiction degree ωmin.

Output : First highest-scored subsequence s′ ⊑ s such that s′ |= S.

s′ := empty_sequence;1

s′.ψseq := −1;2

s′.ωseq := −1;3

if not S ⊳ s then4

return s′;5

X := ∅;6

S := seqsat(S, s,⊳);7

S := S \ {s′′ | µτ (|s′′| − |S| , τ,F) < µτmin
, s′′ ∈ S};8

if ψmin > 0 and ωmin = 0 then9

foreach s′′ ∈ S do10

s′′.ψseq := max{ψseq(S, s
′′,H)}; /∗ semantic relatedness ∗/11

s′′.ωseq := −1;12

if τ = ∗ then13

if s′′.ψseq 6≥ ψmin then14

X := X ∪ s′′;15

else16

s′′.µτ := µτ (s′′.dist, τ,F);17

if s′′.ψseq ≥ ψmin and s′′.µτ ≥ µτmin
then18

X := X ∪ s′′;19

else if ψmin = 0 and ωmin > 0 then20

foreach s′′ ∈ S do21

s′′.ωseq := max{ωseq(S, s
′′,H)}; /∗ semantic contradiction ∗/22

s′′.ψseq := −1;23

s′′.µτ := µτ (s′′.dist, τ,F);24

if s′′.ωseq ≥ ωmin and s′′.µτ ≥ µτmin
then25

X := X ∪ s′′;26

if X 6= ∅ then27

hs := max{abs(s′′.µτ ∗ s′′.ψmin ∗ s′′.ωmax) | s′′ ∈ X}; /* highest-score */28

foreach s′′ ∈ X do29

if abs(s′′.µτ ∗ s′′.ψmin ∗ s′′.ωmax) = hs then30

return s′ := s′′;31

return s′;32
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A set F of fuzzy sets is also token into account for handling the fuzzy degrees of µτ and µsem,

with respect to a minimum occurrence degree µτmin
(to integrate tau-fuzzy unexpectedness, see

Chapter 5, Section 5.2). Notice that we assume that F , µτ , µsem, and µτmin
are predefined and

globally accessible.

The algorithm first verifies the compatible form constraint on S and s, if not S ⊳ s, then

returns an empty sequence (line 5); if S ⊳ s, the function seqsat(S, s,⊳) returns the set S of all

maximal subsequences (i.e., without splitting itemsets) of s′′ ⊑ s such that S ⊳ s′′ and |s′′| = |S|.

All sequences s′′ ∈ S that cannot satisfy the constraint τ are removed (line 8).

Not difficult to see, the sequence s′′ ∈ S having the maximal semantic relatedness degree

max{ψseq(S, s
′′,H)} or contradiction degreemax{ωseq(S, s

′′,H)} is also the sequence s′′ ⊑ s having

the same maximal degree such that S E s′′.

The algorithm uses the equations proposed in the previous sections by examining the values

of ψmin and ωmin: if ψmin > 0 and ωmin = 0, then compute the semantic relatedness degree of

each sequence s′′ ∈ S for further determining α-unexpected or β-unexpected sequence; if ψmin = 0

and ωmin > 0, then compute the semantic contradiction degree of each sequence s′′ ∈ S for

further determining γ-unexpected sequence. If the ψseq or ωseq value of a sequence s′′ ∈ S satisfies

the required condition, and the fuzzy occurrence degree s′′.µτ ≥ µτmin
, then s′′ is added to the

candidate sequence set X , where s′′.dist (line 17 and 14) is the offset of s′′ in s, which must

correspond to specified occurrence constraint τ .

As shown in Equation (6.2), totally P (|I| , |C|) queries are needed for computing ωpat(C, I,H)

or ψpat(C, I,H) of a concept pattern C and an itemset I on a hierarchy H. If |C| = |I|, then

totally |I|! queries must be performed. Therefore, in the worst case, when |S| = |s| = 1 and

‖S‖ = ‖s‖, totally ‖s‖! queries are required.

The proof is immediate since we have that (m + n)! ≥ m! + n!. In the best case, when

‖S‖ = ‖s‖ = |S| = |s|, that is, s consists of the itemsets of 1 item, ‖s‖ queries are required.

Therefore, for a sequence s such that ‖s‖ = |s| and a generalized sequence S such that S ⊳ s,

the number of queries is the number of the combinations of |S| itemsets in s, that is,

|s|C|S| =

(

|s|

|S|

)

=
|s|!

|S|!(|s| − |S|)!
.

For instance, if |s| = 10 and |S| = 5, then totally

(

10

5

)

= 252 queries are required.

6.6 Experiments

we perform the tests on extracting soft unexpected sequences with 20 soft beliefs, which are

manually created from sequential patterns discovered in the data set with examining the concepts
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of items.

The hierarchy used in experiments is built from the Web site structure and URI parameters,

which contains 35 concepts with maximal path-length of 8, where the similarities between concepts

are defined with expertise domain knowledge. An item-index file is used for mapping each item i

to an concept c such that i |= c, and a concept-index file is used for indexing the path-length and

semantic similarity between any two concepts contained in the hierarchy instead of traversing the

hierarchy.

Only one category of occurrence constraint τ is considered with soft beliefs: τ = [X..Y ] where

Y ≥ X ≥ 0 are two integers. The soft beliefs are classified to 4 groups with respect to the length

of Sβ (1, 2, 4, 8), each group contains 5 soft beliefs. The length of Sα is no longer than 2. Since the

fuzziness on semantic relatedness/contradiction is determined only by degree, we did not specify

the fuzzy sets. In order to focus on the performance in considering hierarchies, the range τ ± 2 is

used instead of computing the fuzzy occurrence degree.

Figure 6.5 shows the numbers of unexpected sequences extracted by using soft beliefs with

concept hierarchy. The experimental results on soft beliefs show that the effectiveness of the

proposed approach highly depends on the size of the sequence Sβ in beliefs.
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(a) Soft β-unexpected sequences. (b) Soft γ-unexpected sequences.

Figure 6.5: Number of soft unexpected sequences.

For instance, when |Sβ | = 1, the number of β-unexpected sequences extremely increases with

decreasing the minimum semantic relatedness degree ψmin. In fact, according to the combinations

of items in a sequence, if |Sβ| is a small value, then there are higher probability to satisfy the

semantic relatedness required for matching Sβ.

Thus, when |Sβ| is a small value, the probability to satisfy the semantic relatedness is much

lower and much less unexpected sequences are extracted.

The execution time of each test is listed in Table 6.4, which shows that the time for extracting

unexpected sequences significantly increases with the increase of |Sβ|. However, the increase of

execution time is slower than 14C1 → 14C2 → 14C4 → 14C8 because with the increase of |Sβ|, the
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|Sα| ψmin, ωmin = 0.2 ψmin, ωmin = 0.4 ψmin, ωmin = 0.6 ψmin, ωmin = 0.8

1 22.1 s 22.1 s 20.4 s 19.2 s

2 93.1 s 90.2 s 93.8 s 90.7 s

4 577.8 s 563.3 s 581.8 s 569.7 s

8 2024.2 s 1998.8 s 1994.3 s 1955.2 s

Table 6.4: Total execution time of each test by using soft beliefs.

satisfaction of τ in the rest of an input sequence (i.e., s \ sα where sα |= Sα) becomes lower, and

the step at line 8 in Algorithm 14 avoids matching all combinations of subsequences.

6.7 Discussion

In this chapter, we studied the generalizations of unexpected sequence discovery with respect to

concept hierarchies of the taxonomy of data. We formalized the notions of generalized sequences

and generalized sequence rules, and then we proposed two new types of unexpected sequences:

generalized unexpected sequences and soft unexpected sequences.

Generalized unexpected sequences are determined against generalized beliefs, which consist

of generalized sequence rules and semantic contradictions between generalized sequences. The

construction of generalized belief system is the same procedure with the construction of a belief

system addressed in the original Muse framework presented in Chapter 4. In fact, the extraction

of generalized unexpected sequences follows the same manner of Muse, except to consider the

matching between a sequence and a generalized sequence with respect to a concept hierarchy.

Therefore, we did not further list the related algorithms for discovering generalized unexpected

sequences. In contrast, the algorithms and experiments of soft unexpected sequence discovery are

carefully studied.

Soft unexpected sequences are determined in hierarchical with respect to generalized sequence

rules, instead of explicitly constructing a belief system. The most advantages of the approach

SoftMuse to discover soft unexpected sequence include:

1. Generalization of data is addressed by using generalized sequence rules;

2. Semantic contradictions are no longer required, where the determination of semantic con-

tradiction is replaced by computing semantic relatedness/contradiction degrees;

3. The tau-fuzzy unexpectedness is integrated into SoftMuse, and the semantic related-

ness/contradiction degree can also be described by using fuzzy sets.
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Notice that in soft unexpected sequence discovery, when we consider the semantics, we can

determine the semantic contradiction between two single items, for example, between “login” and

“logout”. However, to define the semantic contradiction for operational conjunction of items with

temporal order is hard, which is still an open problem in semantics related data mining tasks.

In the framework Muse, the belief system consists of sequence rules and semantic contradiction

relations, so that the unexpected sequences can be strictly determined within the supervised

discovery process. However, because the auto-determination of semantic contradiction within

SoftMuse is unsupervised, the validation of discovered unexpected sequences is required. Hence,

in the next chapter, we will take account of the evaluation of the discovered unexpected sequences

in the self-validation schema in terms of the notions of unexpected sequential patterns. We will also

present the notions of unexpected implication rules for investigating the structural associations

and predictions of unexpectedness in sequence databases.



Chapter 7

Unexpected Sequential Patterns and

Implication Rules

In previous chapter, we developed and extended the framework Muse for discovering various

unexpected sequences with fuzzy methods and generalizations in data taxonomy. The followed

important task is therefore to evaluate the quality of the discovered unexpected sequences, and

then to acquire useful information from such sequences for studying the structure in order to

predict the unexpectedness. In this chapter, we propose the notions of unexpected sequential

patterns and unexpected implication rules for this purpose.

A part of the work presented in this chapter has been published in the journal La Revue des

Nouvelles Technologies de l’Information (RNTI) and in the International Journal of Business

Intelligence and Data Mining (IJBIDM).

7.1 Introduction

We have discussed the problem relied on unexpected sequence discovery that the number and

quality of discovered sequences strongly depend on the belief system, where the correctness of

beliefs is ensured by the interpretation of domain expertise knowledge.

On the other hand, the discovered unexpected sequences may contain low frequency noisy data

in the database, which cannot be avoided in the discovery process if they violate some beliefs.

Example 31 Let us consider again the example discussed at the end of Chapter 4.

S =







s1 = · · · · · · (a)(b) · · · · · · · · · (c) · · · · · ·

s2 = · · · · · · · · · (a)(b) · · · · · · (c) · · · · · ·

s3 = · · · (a)(b) · · · · · · · · · (c) · · · · · · · · ·

s4 = · · · · · · · · · · · · (a)(b) · · · · · · (c) · · ·

s5 = (a) · · · · · · · · · · · · · · · · · · · · · · · · (b)







.

99
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Given a belief b consisting of a sequence implication rule 〈(a)(b)〉 →∗ 〈(c)(d)〉, the sequences in

the sequence set S are α-unexpected because for each sequence s ∈ S we have that 〈(a)(b)〉 ⊑ s

and 〈(a)(b)(c)(d)〉 6⊑ s. However, the sequence s5 has a completely different structure than other

sequences, which can be considered as noisy data that should not be covered by the belief b.

Obviously, the approaches proposed in previous chapters cannot filter a sequence like s5 from

the result unexpected sequence set. Moreover, after examining the frequent common structure of

the rest unexpected sequences, we can find that a rule 〈(a)(b)(c)〉 →∗ 〈(d)〉 can better state the

unexpectedness. �

Therefore, in this chapter, we study the validation of the discovered unexpected sequences for

the evaluation – interpretation – update process shown in Figure 7.1.

Belief System

Multiple Unexpected Sequence Extraction

Prior Knowledge

Sequence Database Unexpected Sequences

Novel Knowledge

Figure 7.1: The evaluation – interpretation – update process.

We propose a self-validation process for evaluating unexpected sequences with the notions

of unexpected sequential patterns. In this process, for a set of unexpected sequences, we first

discover unexpected sequential patterns, which include internal and external unexpected sequential

patterns for depicting the frequent common structures inside and outside the unexpectedness.

Hence, more contributions to generated unexpected sequential patterns an unexpected sequence

has, more reliable the unexpected sequence is.

Further, with mining sequential patterns in different compositions of unexpected sequences, we

also propose the notions of unexpected implication rules, including unexpected class rule, unexpected

association rule, and unexpected occurrence rule, for understanding what happens associated with

the unexpectedness, what implies the unexpectedness, and what the unexpectedness implies.

The approaches proposed in this chapter have close connections with sequential pattern mining

[AS95].

In the past fifteen years, many approaches have been proposed and developed with focusing on

improving the efficiency of execution time and memory usage in sequential pattern mining, such as

Apriori ([AS95]), GSP ([SA96b]), PSP ([MCP98]), PrefixSpan ([PHMAP01]), SPADE ([Zak01]),
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SPAM ([AFGY02]), and DISC ([Ca09]). There also exist the studies of mining the variances

of sequential patterns, such as SPIRIT ([GRS99]) for mining sequential patterns with regular

expression constraints, or CloSpan ([YHA03]) and BIDE ([WH04]) for mining closed sequential

patterns.

In the approach SPIRIT, the regular expression constraints on the elements in sequences are

considered within the sequential pattern mining process, where each regular expression constraint

is represented as a deterministic finite automata. A sequence s is accepted by the automata if

following the sequence of transitions for the elements of s from the start state results in an accept

result, and only the sequential patterns that can be accepted by the automata will be extracted.

Different from regular expression constraints, the notion of closed sequential patterns is based on

the closure property of the support of sequences, which can be considered as a frequency constraint

on the mining process. For instance, given three sequences s1 = 〈(a)(b)(c)〉, s2 = 〈(a)(b)〉, and

s3 = 〈(a)〉, if in a database D we have that freq(s1,D) = 0.5, freq(s2,D) = freq(s3,D) = 0.7,

then s1 and s2 are two closed sequential patterns.

The sequential pattern mining involved in our proposed approaches can be achieved by any

existing algorithms. In this thesis, the approaches PrefixSpan and CloSpan are used in our imple-

mentation of experiments.

The rest of this chapter is organized as follows. In Section 7.2, we first study the composition

of an unexpected sequence in formalizing the notions of unexpected feature and host sequence

of unexpectedness, with which we then propose the notions of internal and external unexpected

sequential patterns, and then we propose a self-validation process for evaluating the discovered

unexpected sequences. In Section 7.3, we propose the notions of unexpected implication rules,

which include unexpected class rule, unexpected association rule, and unexpected occurrence

rule. We show experimental results of discovering unexpected sequential patterns and unexpected

implication rules on real Web server access data in Section 7.4. Section 7.5 is a discussion.

7.2 Unexpected Sequential Patterns

In this section, we first study the structure of an unexpected sequence with the notions of unex-

pected feature and host sequence, and then propose the notions of internal and external unexpected

sequential patterns for measuring the discovered unexpected sequences.

7.2.1 Unexpected Feature and Host Sequence

In the previous sections, we proposed three forms of unexpected sequences and developed the

discovery algorithms. In order to investigate the unexpected sequences within unified structures,
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in this section, we propose the notions of unexpected feature and host sequence for describing the

unexpectedness.

The unexpected feature of an sequence represents the state of being unexpected, which is defined

as follows.

Definition 29 (Unexpected feature) The unexpected feature of an unexpected sequence s is

the consecutive subsequence sf ⊑c s in which the unexpected elements can be strictly bordered.

The host sequence represents the rest of an unexpected sequence without the state of being

unexpected, which is defined as follows.

Definition 30 (Host sequence) The host sequence of an unexpected sequence s is the maximal

subsequence sa ⊑c s after eliminating the premise sequence and/or the conclusion sequence, and/or

the contradicting sequence.

Obviously, with respect to the occurrence pair set obtained by matching unexpected sequences,

there can exist multiple features and host sequences of an unexpected sequence. Assuming that

an unexpected sequence has multiple features, let
⋃
sf be the set of unexpected features of this

sequence. For a feature sf ∈
⋃
sf , if for any other features sf

′ ∈
⋃
sf , we have |sf | ≤ |sf

′|, then

sf is a minimal feature; if for any other features sf
′ ∈

⋃
sf , we have |sf | ≥ |sf

′|, then sf is a

maximal feature.

According to the various forms of unexpectedness with respect to the sequence rule set of a

belief, we discuss the unexpected feature and host sequence with the following cases. Without loss

of generality, we consider the sequence rule sets of a single rule for simplifying the descriptions.

First, let us consider the unexpected feature and host sequence stated by a belief with a

sequence association rule, that is,

b =
{

sα → sβ

}

∧
{

sβ 6≃sem sγ

}

. (7.1)

As presented in previous sections, only γ-unexpected sequences can be determined by the belief

listed in Equation (7.1). Thus, given a sequence s such that sα ⊑ s, the presence of sγ ⊑ s

constructs the γ-unexpectedness, which can be written as s |= (sα → sγ). The feature of such an

unexpected sequence s is that a consecutive subsequence sf ⊑c s such that sγ ⊑
⊤

⊥
sf ; the host

sequence of s is the sequence s \ sγ.

Example 32 Given a belief

b =
{

〈(e)(e)〉 → 〈(a)(b)〉
}

∧
{

〈(a)(b)〉 6≃sem 〈(c)(d)〉
}

,
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the sequence

s = 〈(a)(c)(e)(c)(e)(d)(c)(d)(e)(e)〉

is γ-unexpected to the belief b. We have that 〈(c)(d)〉 is a minimal unexpected feature and

〈(c)(e)(c)(e)(d)(c)(d)〉 is a maximal unexpected feature of the sequence s. According to sf 1,

the host sequence is sa1 = 〈(a)(c)(e)(c)(e)(d)(e)(e)〉, and to sf 2, the host sequence is sa2 =

〈(a)(e)(c)(e)(d)(c)(e)(e)〉. �

We now discuss the unexpected feature and host sequence stated by a belief with a sequence

implication rule, that is,

b =
{

sα →
τ sβ

}

∧
{

sβ 6≃sem sγ

}

. (7.2)

With different forms of the occurrence constraint τ , all α-, β-, and γ-unexpected sequences can

be determined by the belief listed in Equation (7.2).

We first consider an α-unexpected sequence. Given a sequence s 3α b, which can be considered

as sα ⊑ s and sα · sβ ⊑ s, and the unexpectedness can be viewed as the absence of sβ after the

occurrence of sα. Thus, we define the feature sf of an α-unexpected sequence as follows:

sf = sα
′ such that s = sa · sα

′ · sc,

where |sp| ≥ 0 and sα ⊑c sα
′; with the same context, the host sequence is defined as:

sh = sa · sα
′′ · sc where sα

′′ = sα
′ \ sα.

We then consider a β-unexpected sequence. Given a sequence s 3β b, which can be considered

as s |= (sα →
(∗\τ) sβ), where (∗ \ τ) denotes the complement of τ (e.g., if τ = [3..5], then (∗ \ τ)

denotes the ranges [0..2] ∨ [6..∗], see Equation (4.1) in Section 4.3.3). Thus, we define the feature

sf of a β-unexpected sequence as follows:

sf = sα
′ · s′ · sβ

′ such that s = sa · sα
′ · s′ · sβ

′ · sc,

where |sa| , |sc| ≥ 0, |s′| |= (∗ \ τ), sα ⊑c sα
′, and sβ ⊑c sβ

′; with the same context, the host

sequence is defined as:

sh = sa · sα
′′ · s′ · sβ

′′ · sc where sα
′′ = sα

′ \ sα and sβ
′′ = sβ

′ \ sβ.

Finally, we consider a γ-unexpected sequence. Given a sequence s 3γ b, which can be con-

sidered as s |= (sα →
τ sγ). Therefore, we define the feature sf of a γ-unexpected sequence as

follows:

sf = sα
′ · s′ · sγ

′ such that s = sa · sα
′ · s′ · sγ

′ · sc,
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′
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′
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′′

sf

sh

sa sc

Figure 7.2: A schema of unexpected feature and host sequence.

where |sa| , |sc| ≥ 0, |s′| |= τ , sα ⊑c sα
′, and sγ ⊑c sγ

′; with the same context, the host sequence

is defined as:

sh = sa · sα
′′ · s′ · sγ

′′ · sc where sα
′′ = sα

′ \ sα and sγ
′′ = sγ

′ \ sγ.

Figure 7.2 shows a schema of unexpected feature and host sequence with respect to a belief

with predictive sequence implication rules. Not difficult to see, the unexpectedness stated by a

belief of sequence implication rules can be represented by 〈sα [|s′|] sβ〉 or 〈sα [|s′|] sγ〉, which are

called a signature of the unexpectedness, where we define |〈sα [|s′|] sβ〉| = |sα| + |s
′| + |sβ|. To

respect all forms of unexpectedness, we define the signature of an α-unexpected sequence as the

premise sequence sα.

Example 33 Considering the belief

b =
{

〈(a)(b)〉 →[2..10] 〈(c)(d)〉
}

∧
{

〈(c)(d)〉 6≃sem 〈(e)(f)〉
}

,

the following sequences are γ-unexpected to b, where each dot stands for an itemset:

SU =







s1 = · · · · · · (a) · · · (b) · · · · · · (e)(f) · · · · · ·

s2 = · · · · · · (a)(b) · · · · · · · · · (e) · · · (f) · · ·

s3 = · · · (a) · · · (b) · · · · · · (e) · · · · · · (f) · · ·







.

Two signatures can be found in SU : 〈(a)(b) [6] (e)(f)〉 with respect to s1 and s3, and 〈(a)(b) [9] (e)(f)〉

with respect to s2. �

With the notion of signature, given an unexpected sequence su stated by a belief with sequence

implication rules and let st be the signature, the unexpected feature can be formally described as

a maximal subsequence sf ⊑c s such that |sf | = |st|; the host sequence can be formally described

as the sequence sh = s \ st.
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According to the algorithms UxpsMatchAlpha (Algorithm 2), UxpsMatchBeta (Algorithm 3),

and UxpsMatchGamma (Algorithm 5), the occurrence position of an unexpected feature can be

immediately located by selecting a preferred value (e.g., maximum or minimum) in the returned

pair set of all occurrences of unexpectedness with respect to the starting position of the premise

sequence.

Notice: for reducing the redundancy of text, we will directly use the notations sα, sα
′, sα

′′,

sβ, sβ
′, sβ

′′, sγ, sγ
′, sγ

′′, and ℓU in the rest of this thesis with respect to the above analytical

descriptions.

7.2.2 Internal and External Unexpected Sequential Patterns

In the previous section, we introduced the notion of unexpected features, which represents the

structure of the unexpectedness stated in an unexpected sequence. In this section, we propose the

notions of internal and external unexpected sequential patterns.

Given a sequence database D and a belief b, the algorithms UxpsMatchAlpha, UxpsMatchBeta,

and UxpsMatchGamma for discovering unexpectedness can be regarded as a bijective function πf :

SU → SF that projects an unexpected sequence s ∈ SU to an unexpected feature sf ∈ SF , and a

bijective function πh : SU → SH that projects an unexpected sequence s ∈ SU to an host sequence

sh ∈ SH . The sets SU and SH are respectively called as the unexpected feature set and the host

sequence set of the unexpected sequences stated by the belief b in the database D.

Based on the unexpected feature set, we propose the notion of internal unexpected sequential

pattern as follows.

Definition 31 (Internal unexpected sequential pattern) Given a sequence database D and a

belief b, an internal unexpected sequential pattern is a maximal frequent sequence contained in

an unexpected feature set SF determined by the belief b, with respect to a user defined minimum

support threshold.

Given a sequence database D and an unexpected feature set SF , we consider three criteria

for measuring an internal unexpected sequential patterns. The base measure is called the local

support, denoted as supplocal(s,D) and defined as follows:

supplocal(s,D) = supp(s,SF ) =
|{s′ ∈ SF | s ⊑ s′}|

|SF |
. (7.3)

As described in Definition 31, we use the local support for determining an internal unexpected

sequential pattern. Once we obtain an internal unexpected sequential pattern, dented as ui, we

can further measure the quality by two additional measures: global support and confidence.
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The global support of an internal unexpected sequential pattern ui is the support of the sequence

ui in the database D, denoted as suppglobal(ui,D), that is,

suppglobal(ui,D) = supp(ui,D) =
|{s ∈ D | ui ⊑ s}|

|D|
. (7.4)

Example 34 Assume that D is a sequence database of 100 sequences and

SF =







〈(a)(ef)(x1)(x2)(c)(x3)(d)〉

〈(a)(x4)(aef)(x5)(c)(d)〉

〈(a)(ef)(x6)(x7)(x8)(d)〉

〈(a)(c)(x9)(x10)(d)〉

〈(a)(x11)(c)(x12)(c)(x13)(x14)(d)〉







is an unexpected feature set of 5 sequences, where x1 6= x2 6= . . . 6= x14 are different items.

With the minimum local support threshold 0.5, we can find two internal unexpected sequential

patterns ui1 = 〈(a)(ef)(d)〉 with local support supplocal(ui1,D) = 0.6 and ui2 = 〈(a)(c)(d)〉 with

local support supplocal(ui2,D) = 0.8. Assume that in the database D, there are 20 sequences

that support the sequence ui1 and 50 sequences that support the sequence ui2, then we have that

suppglobal(ui1,D) = 0.2 and suppglobal(ui2,D) = 0.5. �

Based on host sequence sets, the external unexpected sequential pattern is defined as follows.

Definition 32 (External unexpected sequential pattern) Given a sequence database D and a

belief b, an external unexpected sequential pattern is a maximal frequent sequence contained in the

host sequence set SH of an unexpected feature set SF determined by the belief b, with respect to a

user defined minimum support threshold.

External unexpected sequential patterns can also be measured by local support and global

support., and confidence. Given a sequence database D and an host sequence set SH , the local

support for determining external unexpected sequential patterns, denoted as supplocal(s,D), is

defined:

supplocal(s,D) = supp(s,SH) =
|{s′ ∈ SH | s ⊑ s′}|

|SH |
. (7.5)

If an external unexpected sequential pattern, denoted as ue, is found, it can be further measured

by the global support, denoted as suppglobal(ue,D):

suppglobal(ue,D) = supp(ue,D) =
|{s ∈ D | ue ⊑ s}|

|D|
. (7.6)
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Example 35 Assume that D is a sequence database of 100 sequences and

SU =







〈(e)(c)(y1)(a)(ef)(x1)(x2)(c)(x3)(d)(y2)(y3)(f)(y4)〉

〈(ae)(y5)(a)(x4)(aef)(x5)(c)(d)(cf)(y6)(y7)〉

〈(y8)(y9)(e)(f)(a)(ef)(x6)(x7)(x8)(d)(y10)(y11)〉

〈(c)(a)(c)(x9)(x10)(d)(y12)〉

〈(f)(y13)(a)(x11)(c)(x12)(c)(x13)(x14)(d)(y14)(c)〉







is a set of 5 unexpected sequences, where the (a) · · · (d) parts are unexpected features and x1 6=

x2 6= . . . 6= x14 6= y1 6= y2 6= . . . 6= y14 are different items. We can generate the host sequence set

SH =







〈(e)(c)(y1)(ef)(x1)(x2)(c)(x3)(y2)(y3)(f)(y4)〉

〈(ae)(y5)(x4)(aef)(x5)(c)(cf)(y6)(y7)〉

〈(y8)(y9)(e)(f)(ef)(x6)(x7)(x8)(y10)(y11)〉

〈(c)(c)(x9)(x10)(y12)〉

〈(f)(y13)(x11)(c)(x12)(c)(x13)(x14)(y14)(c)〉







without any difficulty. With the minimum local support threshold 0.5, we can find two external

unexpected sequential patterns ue1 = 〈(e)(ef)〉 with local support supplocal(ue1,D) = 0.6 and

ue2 = 〈(c)(c)〉 with local support supplocal(ue2,D) = 0.8. Assume that in the database D, there

are 20 sequences that support the sequence ue1 and 50 sequences that support the sequence ue2,

then we have that suppglobal(ue1,D) = 0.2 and suppglobal(ue2,D) = 0.5. �

The extraction of internal and external unexpected sequential patterns can be performed by

using many existing efficient sequential pattern mining approaches in an unexpected feature set

SF and an host sequence set SH with respect to a user specified minimum local support threshold.

Once an unexpected sequential pattern is extracted, the computation of global support can be

performed by the following simple algorithm GlobalSupport (Algorithm 15).

Algorithm 15: GlobalSupport (s,D): Computing global support of an unexpected sequen-

tial pattern.
Input : An unexpected sequential pattern s, and a sequence database D.

Output : The global support suppglobal(s,D) of s.

supp := 0;1

foreach s′ ∈ D do2

pos := SeqMatchF irst(s, s′, pair(0, |s′| − 1));3

if pos.first 6= −1 then4

supp := supp+ 1;5

return supp/ |D|;6

With respect to a belief, internal unexpected sequential patterns depict frequent structures of

the unexpected features stated by the unexpectedness; external unexpected sequential patterns
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depict frequent correlations between the unexpected sequences that hold the unexpectedness. The

local support permits extracting frequent structures of unexpectedness or frequent correlations

between unexpected sequences, and the global support further permits measuring the quality of

discovered structures correlations. Not difficult to see, an unexpected sequential pattern with high

local support but low global support is more interesting than that with low local support but high

global support.

7.2.3 Evaluating Unexpected Sequences

Given a sequence databaseD and a sequence belief base B, the tasks of the discovery and evaluation

of unexpected sequences can be formally described as the following problems.

Problem 1 Given a belief b ∈ B, find all unexpected sequences s ∈ D such that s 3 b.

Problem 2 Given an extracted unexpected sequence s ∈ D such that s 3 b and b ∈ B, evaluate

the quality of s.

In Section 4.3, we studied three forms of unexpected sequences and proposed the algorithms

of unexpected sequence discovery. With the notions of the unexpected features and host se-

quences proposed in Section 7.2.1 and unexpected sequential patterns proposed in Section 7.2.2,

in this section, we propose a self-validation approach to the evaluation of discovered unexpected

sequences.

Notice that in the rest of this chapter, we discuss the unexpected sequence set S, the unexpected

feature set SF , the host sequence set SH , the internal unexpected sequential pattern set UI , and

the external unexpected sequential pattern set UE within the context of being determined by the

same unexpectedness with respect to the same belief by using the term the set, where all empty

sequences are counted into the size of set.

We now present a self-validation method for evaluating an unexpected sequence by evaluating

its coherence in the internal and unexpected sequential pattern sets UI and UE , with respect to

its contribution to the unexpectedness and its correspondence in host sequences. In order to

facilitating the descriptions, we represent an unexpected sequence s as a tuple 〈s, sf , sh〉 for the

evaluation of unexpected sequences, where sf is the unexpected feature of s and sh is the host

sequence.

The unexpectedness stated in the unexpected sequence 〈s, sf , sh〉 can be evaluated with ranking

the importance contributed by 〈s, sf , sh〉 in generating the internal unexpected sequential pattern

set UI . Hence, we propose the notion of contribution degree of an unexpected sequence as follows.

Definition 33 (Contribution degree) The contribution degree of an unexpected sequence 〈s, sf , sh〉,

denoted as ρf 〈s, sf , sh〉, is the maximal local support value in all internal unexpected sequential
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patterns ui ∈ UI such that ui ⊑ sf , that is,

ρf 〈s, sf , sh〉 = max{supplocal(ui,SF ) | ui ∈ UI , ui ⊑ sf}.

The contribution degree ρf 〈s, sf , sh〉 is also denoted as ρf (s).

We also propose the notion of correspondence degree to measure the association between an

unexpected sequence and all other sequences stating the same unexpectedness, which is defined

as follows.

Definition 34 (Correspondence degree) The correspondence degree of an unexpected sequence

〈s, sf , sh〉, denoted as ρh 〈s, sf , sh〉, is the maximal local support value in all external unexpected

sequential patterns ue ∈ UE such that ue ⊑ sh, that is,

ρh 〈s, sf , sh〉 = max{supplocal(ue,SH) | ue ∈ UE , ue ⊑ sh}.

The correspondence degree ρh 〈s, sf , sh〉 is also denoted as ρh(s).

We therefore finally propose the notion of unexpectedness degree to measure the quality of an

unexpected sequence, which is defined as follows.

Definition 35 (Unexpectedness degree) The unexpectedness degree of an unexpected sequence

〈s, sf , sh〉, denoted as ρ 〈s, sf , sh〉, is a non-negative real number value

ρ 〈s, sf , sh〉 =
θf (ρf 〈s, sf , sh〉) + θh(ρh 〈s, sf , sh〉)

θf + θh

,

where θf > 0 and θh > 0 are two integers standing for user preferences of unexpectedness and

association. The unexpectedness degree ρ 〈s, sf , sh〉 is also denoted as ρ(s).

The unexpectedness degree of a unexpected sequence addresses that the more contribution to

the unexpectedness and the more correspondence to other unexpected sequences stating the same

unexpectedness, the more importance for this sequence.

Example 36 Let us consider the unexpected sequence set S, the unexpected feature set SF , and

the host sequence set SH addressed in Example 34 and Example 35:

S =







s1 = 〈(e)(c)(y1)(a)(ef)(x1)(x2)(c)(x3)(d)(y2)(y3)(f)(y4)〉

s2 = 〈(ae)(y5)(a)(x4)(aef)(x5)(c)(d)(cf)(y6)(y7)〉

s3 = 〈(y8)(y9)(e)(f)(a)(ef)(x6)(x7)(x8)(d)(y10)(y11)〉

s4 = 〈(c)(a)(c)(x9)(x10)(d)(y12)〉

s5 = 〈(f)(y13)(a)(x11)(c)(x12)(c)(x13)(x14)(d)(y14)(c)〉







;
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SF =







〈(a)(ef)(x1)(x2)(c)(x3)(d)〉

〈(a)(x4)(aef)(x5)(c)(d)〉

〈(a)(ef)(x6)(x7)(x8)(d)〉

〈(a)(c)(x9)(x10)(d)〉

〈(a)(x11)(c)(x12)(c)(x13)(x14)(d)〉







;

SH =







〈(e)(c)(y1)(ef)(x1)(x2)(c)(x3)(y2)(y3)(f)(y4)〉

〈(ae)(y5)(x4)(aef)(x5)(c)(cf)(y6)(y7)〉

〈(y8)(y9)(e)(f)(ef)(x6)(x7)(x8)(y10)(y11)〉

〈(c)(c)(x9)(x10)(y12)〉

〈(f)(y13)(x11)(c)(x12)(c)(x13)(x14)(y14)(c)〉







.

With the minimum local and global support threshold 0.5, we can find two internal unexpected

sequential patterns ui1 = 〈(a)(ef)(d)〉 : 0.6 (we use a shorthand notation ui1 = 〈(a)(ef)(d)〉 :

0.6 for ui1 having support value 0.6) and ui2 = 〈(a)(c)(d)〉 : 0.8, and two external unexpected

sequential patterns ue1 = 〈(e)(ef)〉 : 0.6, ue2 = 〈(c)(c)〉 : 0.8. Let us consider the unexpected

sequence s3 ∈ S, we have that ui1 ⊑ s1 and ui2 ⊑ s1, according to the definition, ρf(s3) = 0.8; we

have also that ue1 ⊑ s3, so that ρh(s3) = 0.6. For the the unexpected sequence s4 ∈ S, we have

that ρf (s4) = 0.6 and ρh(s4) = 0.8 in the same manner. �

ρf(s) ρh(s) θf :θh ρ(s) θf :θh ρ(s) θf :θh ρ(s)

s3 0.8 0.6 1:1 0.7 3:2 0.72 1:4 0.64

s4 0.6 0.8 1:1 0.7 3:2 0.68 1:4 0.76

Table 7.1: Unexpectedness degrees with respect to user preferences.

The user preference factors θf and θh further adjust the weight of the contribution degree and

of the correspondence degree. For instance, the following table (Table 7.1) lists the different unex-

pectedness degrees of the two unexpected sequences s3 and s4 listed in Example 36 with respect to

different user preferences. In this example, s3 has higher degree in contribution and s4 has higher

degree in association. If θf :θh = 1:1, then s3 and s4 have the same value of unexpectedness degree,

however if we set θf :θh = 3:2 for considering that the contribution to unexpectedness has more

importance, then s3 is more interesting than s4; if we set θf :θh = 1:4 for focusing on studying the

associations between unexpected sequences, then s4 is more interesting than s3.

With investigating the contribution and association of an unexpected sequence, we can further

indicate whether a sequence is unexpected because of incidentals, which possesses less interesting-

ness.
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7.3 Unexpected Implication Rules

Rule discovery is an important task in data mining. In this section, we propose three forms of

unexpected implication rules including unexpected class rule, unexpected association rule, and

unexpected occurrence rule.

7.3.1 Unexpected Class Rules

In this section, we propose the notion of unexpected class rules for investigating the most frequent

structures1 associated with the unexpected sequences.

Given the host sequence set SH of the unexpected sequence set SU determined by a belief with

sequence class rules, an unexpected class rule is defined as follows.

Definition 36 (Unexpected class rule) Given a belief b, let ℓU be the label of the unexpectedness

stated by b. An unexpected class rule is a rule ℓU → ph, where ph is a maximal frequent sequence

contained in the host sequence set SH such that for the premise sequence sα = Λ(b), for each

conclusion sequence sβ ∈ ∆(b), and for each contradiction sequence sγ ∈ Θ(b, sβ), we have that

sα 6⊑ ph, sβ 6⊑ ph, and sγ 6⊑ ph.

An unexpected class rule ℓU → ph depicts the implication that if a sequence s is unexpected to

a belief on the class labeled by ℓU , then s contains the subsequence ph that is no more specific than

all the sequences mentioned in a belief. We measure an unexpected class rule by the support and

confidence. As proposed in the definition, the sequence ph in an unexpected class rule ℓU → ph is

a sequential pattern discovered in the host sequence set SH , therefore the support of the rule is

the support value of ph in SH , denoted as supp(ℓU → ph,SH ,D), that is,

supp(ℓU → ph,SH ,D) =
|s ∈ SH | ph ⊑ s|

|SH |
.

The confidence of an unexpected class rule ℓU → ph is defined as the fraction of the number of the

sequences in SH that support ph on the number of the sequences in D that support ph, denoted

as conf(ℓU → ph,SH ,D), that is,

conf(ℓU → ph,SH ,D) =
|s ∈ SH | ph ⊑ s|

|s ∈ D | ph ⊑ s|
.

Notice. (1) The sequence database D is not required for computing the support value of an

unexpected class rule, however, in order to keep a consistent form of the formulas, we consider D

as a parameter in representing that such values are addressed in the sequence database D. (2)

1We use the term structure for describing the characteristics of a sequence, which cover the notions of structure,

composition, behavior, etc.
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The sequence ph mentioned in an unexpected class rule has the same definition of an external

unexpected sequential pattern; however, given a belief b, for each conclusion sequence sβ ∈ ∆(b)

and for each contradiction sequence sγ ∈ Θ(b, sβ), we have that sβ 6⊑ ph and sγ 6⊑ ph, thus we

use the notation ph instead of the notation ue and do not discuss ph in the context of external

unexpected sequential patterns.

Example 37 In Web navigation pattern analysis, an authenticated user navigation session starts

from an access of login and then followed by an access of home; however the access of home without

logged in will be redirected back to login. A belief can be

b =
{

〈(AUTH)〉 → 〈(login)(home)〉
}

∧
{

〈(login)(home)〉 6≃sem 〈(home)(login)〉
}

,

which describes that login should be followed by home but the inverse is not allowed: if a user try to

directly access home, and the session will be terminated by bring the user to login. An unexpected

user navigation session may consist of a session identifier (e.g., date and time, remote address,

and/or user agent information of the session) and accesses such as 〈Is(home)(login)〉, where Is

represents the session identifier. Let Ub label such unexpectedness, then, the rule Ub → 〈I
′
s〉 is

an unexpected class rule if the subset I ′s of session identifier present at such sessions is notably

different from other sessions, that is, the rule Ub → 〈I
′
s〉 has a high confidence value. �

Given a sequence database D and the host sequence set SH discovered with respect to a belief

b with sequence class rules, we consider the discovery of unexpected class rules as a two-phase

process in order to obtain the maximal flexibility.

In the first phase, with a user defined minimum support threshold suppmin, a set PH of se-

quential patterns can be extracted from the host sequence set SH by using many existing efficient

sequential pattern mining algorithms.

The second phase is listed in Algorithm 16 (UnexpClassRules: Mining Unexpected Class

Rules), which accepts an unexpectedness class label ℓU , a sequential pattern set PH , an exclude

sequence set SX , a sequence database D, and a minimum confidence threshold confmin as inputs

and outputs all unexpected class rules with respect to confmin. The exclude sequence set contains

the conclusion sequences and contradiction sequences of a belief b, by which the unexpectedness

is determined, that is,

SX = ∆(b) ∪
⋃

sβ∈∆(b)

Θ(b, sβ).

For each sequence ph ∈ SH , the algorithm first verifies that for each conclusion sequence s′ ∈ SX ,

whether s′ 6⊑ ph: if s′ ∈ SX , the algorithm removes all s′ from ph. Then, the algorithm verifies

whether the confidence of ph in D satisfies confmin. If confmin is satisfied, then the algorithm gen-

erates a new unexpected class rules from ph; finally the algorithm outputs all generated unexpected
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class rules.

Algorithm 16: UnexpClassRules (ℓU, PH, SX, D, confmin) : Mining unexpected class

rules.
Input : A class label ℓU , a sequential pattern set PH , an exclude sequence set SX , a sequence database

D, and a minimum confidence threshold confmin.

Output : All unexpected class rules with respect to confmin.

R := ∅;1

foreach ph ∈ PH do2

foreach s′ ∈ SX do3

if s′ ∈ ph then4

ph := ph \∗ s′;5

supp := count(ph,D);6

if (conf := ph.count/supp) ≥ confmin then7

r := ClassRule.Create(ℓU , ph, ph.supp, conf);8

R := R∪ r;9

return R;10

The model of unexpected class rules also permits studying the frequent structures of all types

of unexpected sequences, where we consider the unexpectedness determined by a belief b as a class

labeled by ℓU . For a sequential pattern ph ∈ PH extracted from the host sequence set SH , the

algorithm UnexpClassRules generates a rule ℓU → ph, where ph = ph \
∗ (s′ ∈ SX) and the exclude

sequence set SX is defined as

SX = Λ(b) ∪∆(b) ∪
⋃

sβ∈∆(b)

Θ(b, sβ).

Example 38 Let us consider the unexpected sequence set SU illustrated in Example 35, where

SU =







〈(e)(c)(y1)(a)(ef)(x1)(x2)(c)(x3)(d)(y2)(y3)(f)(y4)〉

〈(ae)(y5)(a)(x4)(aef)(x5)(c)(d)(cf)(y6)(y7)〉

〈(y8)(y9)(e)(f)(a)(ef)(x6)(x7)(x8)(d)(y10)(y11)〉

〈(c)(a)(c)(x9)(x10)(d)(y12)〉

〈(f)(y13)(a)(x11)(c)(x12)(c)(x13)(x14)(d)(y14)(c)〉







can be discovered with respect to a belief

bB[ID] =
{

〈(a)〉 →[2..6] 〈(c)〉
}

∧
{

〈(c)〉 6≃sem 〈(d)〉
}

.

We can therefore label this γ-unexpectedness as B-ID-GA. According to UnexpClassRules, we

have the exclude sequence set SX = {〈(a)〉 , 〈(c)〉 , 〈(d)〉}. Given suppmin = 0.5, the sequence

ph = 〈(e)(a)(ef)(d)〉 is a sequential pattern with support 0.6, and we have that

ph = ph \
∗ (s′ ∈ SX) = 〈(e)(ef)〉 .
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Let confmin = 0.1, if the sequence database D contains 100 sequences and 10 of them support ph,

then we have the rule

B-ID-GA→ 〈(e)(ef)〉

such that supp(B-ID-GA → 〈(e)(ef)〉,SH ,D) = 0.6 and conf(B-ID-GA → 〈(e)(ef)〉,SH ,D) = 0.3,

where SH is the host sequence set, see Example 35. �

7.3.2 Unexpected Association Rules

In this section, we propose the notion of unexpected association rules, including local unexpected

association rules and global unexpected association rule, for investigating the most frequent struc-

tures associated with the unexpected sequences.

Given the unexpected sequence set SU , a local unexpected association rule is formally defined

as follows.

Definition 37 (Local unexpected association rule) Given a belief b, let sα = Λ(b) be the

premise sequence. A local unexpected association rule is a rule sα → ph, where ph is a maximal

frequent sequence contained in the feature set SF such that for each conclusion sequence sβ ∈ ∆(b)

and for each contradiction sequence sγ ∈ Θ(b, sβ), we have that sα 6⊑ ph, sβ 6⊑ ph, and sγ 6⊑ ph.

A local unexpected association rule sα → ph depicts the implication that if the premise sequence

sα occurs together with the sequence ph, then the conclusion sequence sβ will occur without respect

to the occurrence constraint τ , or the contradiction sequence sγ will occur with respect to the

occurrence constraint τ .

We measure a local unexpected association rule by the support and confidence. We define the

support of an unexpected association rule as the support value of ph in the feature set SF , denoted

as supp(sα → ph,SF ,D), that is,

supp(sα → ph,SF ,D) =
|s ∈ SF | ph ⊑ s|

|SF |
.

Without difficulty, the confidence of a local unexpected association rule sα → ph is defined as the

fraction of the number of the sequences in SF that support ph on the number of the sequences in

D that support ph, denoted as conf(sα → ph,SF ,D), that is,

conf(sα → ph,SF ,F) =
|s ∈ SF | ph ⊑ s|

|s ∈ D | ph ⊑ s|
.

Given the unexpected sequence set SU , a global unexpected association rule is formally defined

as follows.

Definition 38 (Global unexpected association rule) Given a belief b, let sα = Λ(b) be the

premise sequence. A global unexpected association rule is a rule sα → ph, where ph is a maximal
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frequent sequence contained in the host sequence set SH such that for each conclusion sequence

sβ ∈ ∆(b) and for each contradiction sequence sγ ∈ Θ(b, sβ), we have that sα 6⊑ ph, sβ 6⊑ ph, and

sγ 6⊑ ph.

A global unexpected association rule sα → ph depicts the implication that if a sequence s is

unexpected to a belief with the premise sequence sα, then s contains the subsequences sα and ph,

where ph is no more specific than all the sequences mentioned in a belief.

We also measure an unexpected association rule by the support and confidence which are defined

as follows:

supp(sα → ph,SH ,D) =
|s ∈ SH | ph ⊑ s|

|SH |
;

conf(sα → ph,SH ,D) =
|s ∈ SH | ph ⊑ s|

|s ∈ D | ph ⊑ s|
.

For instance, in Example 38, we can also find the global unexpected association rule

〈(a)〉 → 〈(e)(ef)〉,

where supp(〈(a)〉 → 〈(e)(ef)〉,SH ,D) = 0.6 and conf(〈(a)〉 → 〈(e)(ef)〉,SH ,D) = 0.3; we also

the following two local unexpected association rules

〈(a)〉 → 〈(c)〉

and

〈(a)〉 → 〈(ef)〉,

where supp(〈(a)〉 → 〈(c)〉,SF ,D) = 0.8, supp(〈(a)〉 → 〈(ef)〉,SF ,D) = 0.8, and the confidence

values can be computed with respect to the whole database D.

Example 39 Let us consider again the context of Web navigation pattern analysis, where a belief

can be defined as
{

〈(options)〉 →[0..2] 〈(save)(home)〉
}

∧
{

〈(save)(home)〉 6≃sem 〈(save)(options)〉
}

for depicting that an authenticated user can change her/his preferences via the page options and

the modifications can be saved by the action save; if the data inputed in options are not correct

or in cases of invalid Captcha2 input, user session will be redirected back to options. Hence, if

user sessions contain 〈(options)〉 and 〈(save)(options)〉 with a gap in the range [0..2], they are

unexpected and can be caused by bad input data. If discovered unexpected association rules show

that, for example, the unexpectedness is often associated with a particular type of Web browsers,

that is, an unexpected association rule like

〈(options)〉 → 〈(user-agent-X)〉

2The term Captcha stands for Completely Automated Public Turing test to tell Computers and Humans

Apart, see http://en.wikipedia.org/wiki/Captcha for details.
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has high confidence value, it is then necessary to improve the site compatibility on user input

checking in order to fit more types of browsers. On the other hand, if discovered unexpected

association rules show that there exist many accesses of the page captcha, such as shown in a local

unexpected association rule like

〈(options)〉 → 〈(captcha)(captcha)(captcha)(captcha)(captcha)〉,

then it is necessary to check the accessibility of the Captcha system. �

With respect to methods proposed in the previous section for mining unexpected class rules,

the discovery of unexpected association rules is immediate.

The unexpected association rule mining process is listed in Algorithm 16 (UnexpAssocRules:

Mining Unexpected Association Rules), which accepts a premise sequence sα, a sequential pattern

set P generated from the unexpected feature set (for local unexpected association rules) or from the

host sequence set (for global unexpected association rule), a sequence database D, and a minimum

confidence threshold confmin as inputs and outputs all unexpected association rules with respect to

confmin. The exclude sequence set contains the conclusion sequences and contradiction sequences

of a belief b, by which the unexpectedness is determined, that is,

SX = Λ(b) ∪∆(b) ∪
⋃

sβ∈∆(b)

Θ(b, sβ).

Algorithm 17: UnexpAssocRules (sα, P, SX, D, confmin) : Mining unexpected asso-

ciation rules.
Input : A premise sequence sα, a sequential pattern set P , an exclude sequence set SX , a sequence

database D, and a minimum confidence threshold confmin.

Output : All unexpected association rules with respect to confmin.

R := ∅;1

foreach ph ∈ P do2

foreach s′ ∈ SX do3

if s′ ⊑ ph then4

ph := ph \∗ s′;5

supp := count(ph,D);6

if (conf := ph.count/supp) ≥ confmin then7

r := AssociationRule.Create(sα, ph, ph.supp, conf);8

R := R∪ r;9

return R;10

For each sequence ph ∈ P, the algorithm first verifies that for each conclusion sequence s′ ∈ SX ,

whether s′ 6⊑ ph: if s′ ∈ SX , the algorithm removs all s′ from ph. Then, the algorithm verifies



7.3. UNEXPECTED IMPLICATION RULES 117

whether the confidence of ph in D satisfies confmin. If confmin is satisfied, then the algorithm

generates a new unexpected association rules from ph; finally the algorithm outputs all generated

unexpected association rules.

7.3.3 Unexpected Occurrence Rules

We finally study the prediction problem of the unexpected sequences. In this section, we propose

the unexpected occurrence rules in terms of the notions of unexpected antecedent rule and unexpected

consequent rule for predicting the occurrence of the unexpectedness stated by the beliefs with

sequence implication rules.

Before we can define the notions of unexpected occurrence rules, let us first examine the

composition of a unexpected sequence set SU determined by a belief. As discussed in Section

7.2.2, the unexpected sequence discovering process can be regarded as a bijective function πf :

SU → SF , which projects the unexpected sequence set SU to the unexpected feature set SF . For

each unexpected sequence su, once the feature sf is extracted, we can also obtain two subsequences

(sa, sc) ⊑ su such that

su = sa · sf · sc,

where |sa| ≥ 0 and |sc| ≥ 0. The sequence sa is called the antecedent sequence of the unexpected

feature sf and the sequence sc is called the consequent sequence of the unexpected feature. Hence,

two bijective functions πa : SU → SA and πc : SU → SC can be further considered in the unexpected

sequence discovering process, where πa and πc respectively project the unexpected sequence set

SU to the antecedent sequence set SA and the consequent sequence set SC .

sequence

Antecedent sequence set Unexpected feature set Consequent sequence set

Unexpected sequence set

sequence

sequence

sequence

sequence

sequence

sequence

sequence

Figure 7.3: Composition of an unexpected sequence set.

An outline of the relations between the unexpected sequence set, the unexpected feature set,

the antecedent sequence set, and the consequent sequence set is illustrated in Figure 7.3. An

antecedent sequence or a consequent sequence can be empty with respect to the occurrence position

of the unexpected feature, however we consider that each empty sequence has its unique sequence

ID during the projection, so that the projection is bijective, as shown in Example 40.
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Example 40 Let the sequence bordered in (a) and (b) be the unexpected feature, we have the

projections πa : SU → SA and πc : SU → SC as follows:

SU =







s1 = 〈(a)(b)(c)〉

s2 = 〈(a)(b)(d)〉

s3 = 〈(c)(a)(b)〉

s4 = 〈(d)(a)(b)〉

s5 = 〈(a)(cd)(b)〉







; SA =







s1 = ∅

s2 = ∅

s3 = 〈(c)〉

s4 = 〈(d)〉

s5 = ∅







; SC =







s1 = 〈(c)〉

s2 = 〈(d)〉

s3 = ∅

s4 = ∅

s5 = ∅







.

�

Given a sequence database D and belief b, let ℓU label the unexpectedness (α-, β-, or γ-

unexpectedness) stated by the belief b, SU be the unexpected sequence set, SF be the unexpected

feature set, SA be the antecedent sequence set, and SC be the consequent sequence set, we can

therefore define the unexpected occurrence rules as follows.

Definition 39 (Unexpected antecedent rule) An unexpected antecedent rule is a rule in the

form pa →
t ℓU , where pa is a maximal frequent sequence contained in the antecedent sequence set

SA, ℓU is an unexpectedness label, and t = [min..max] is a gap range such that min,max ∈ N and

min ≤ max.

Definition 40 (Unexpected consequent rule) An unexpected antecedent rule is a rule in the

form ℓU →
t pc, where ℓU is an unexpectedness label, pc is a maximal frequent sequence contained

in the consequent sequence set SC, and t = [min..max] is a gap range such that min,max ∈ N

and min ≤ max.

An unexpected antecedent rule pa →
t ℓU depicts that the occurrence of the sequence pa implies

that the unexpectedness labeled by ℓU will occur within the gap range t. If the gap range t cannot

be specified, then we write such a rule as pa →
∗ ℓU , which depicts that the unexpectedness labeled

by ℓU will occur after the occurrence of the sequence pa.

We measure the interestingness of an unexpected antecedent rule with three criteria: support,

confidence, and gap distribution. Given an unexpected antecedent rule pa →
t ℓU , the sequence pa

is a sequential pattern in the antecedent sequence set SA, so that the support of an unexpected

antecedent rule, denoted as supp(pa →
t ℓU), is defined as the support value of pa in SA, that is,

supp(pa →
t ℓU) = |{s ∈ SA | pa ⊑ s}| .

The confidence of an unexpected antecedent rule, denoted as conf(pa →
t ℓU), is defined as the

fraction of the support of the sequential pattern pa on the total number of sequences contained in

D that support the sequence pa, that is,

supp(pa →
t ℓU) =

|{s ∈ SA | pa ⊑ s}|

|{s ∈ D | pa ⊑ s}|
.
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An unexpected consequent rule ℓU →t pa depicts that the occurrence of the unexpectedness

labeled by ℓU implies that the sequence pa will occur within the gap range t. If the gap range t

cannot be specified, then we write such a rule as ℓU →∗ pa, which depicts that the sequence pc

will occur after the occurrence of the unexpectedness labeled by ℓU .

We measure the interestingness of an unexpected consequent rule with the same criteria: sup-

port, confidence, and gap distribution. Given an unexpected consequent rule ℓU →t pc, the sequence

pc is a sequential pattern in the antecedent sequence set SC , so that the support of an unexpected

consequent rule, denoted as supp(ℓU →t pc), is defined as

supp(ℓU →
t pc) = |{s ∈ SC | pc ⊑ s}| ,

that is, the support value of pc in SC . The confidence of an unexpected consequent rule, denoted

as conf(ℓU →
t pc), is defined as

supp(ℓU →
t pc) =

|{s ∈ SC | pc ⊑ s}|

|{s ∈ D | pc ⊑ s}|
,

that is, the fraction of the support of the sequential pattern pc on the total number of sequences

contained in D that support the sequence pc.

Algorithm 18: UnexpOccurRules (sα, PA, PC, D, confmin) : Mining unexpected oc-

currence rules.
Input : A class label ℓU , a sequential pattern set PA, a sequential pattern set PC , a sequence database

D, and a minimum confidence threshold confmin.

Output : All unexpected occurrence rules with respect to confmin.

R := ∅;1

foreach pa ∈ PA do2

supp := count(pa,D);3

if (conf := pa.count/supp) ≥ confmin then4

gaps := GapDist(pa,PA, 0); /∗ 0 indicates the gap after pa ∗/5

foreach gap ∈ gaps do6

r := AntecedentRule.Create(ℓU , pa, pa.supp, conf, gap);7

R := R∪ r;8

foreach pc ∈ PC do9

supp := count(pc,D);10

if (conf := pc.count/supp) ≥ confmin then11

gaps := GapDist(pc,PC , 1); /∗ 1 indicates the gap before pc ∗/12

foreach gap ∈ gaps do13

r := ConsequentRule.Create(ℓU , pc, pc.supp, conf, gap);14

R := R∪ r;15

return R;16
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The unexpected occurrence rule mining process is listed in Algorithm 18 (UnexpOccurRules:

Mining Unexpected Occurrence Rules).

The algorithm accepts an unexpectedness class label ℓU , a sequential pattern set PA generated

from the antecedent set SA (for unexpected antecedent rules), a sequential pattern set PC generated

from the consequent set SC (for unexpected consequent rules), a sequence database D, and a

minimum confidence threshold confmin as inputs and outputs all unexpected occurrence rules

with respect to confmin.

For each sequence pa ∈ PA and pc ∈ PC , the algorithm verifies whether the confidence of pa and

pc in D satisfies confmin. If confmin is satisfied, then the algorithm first computes the distribution

of the gap between the last itemset of sequence pa and the last itemset of each antecedent sequence,

and the distribution of the gap between the first itemset of each consequent sequence and the first

itemset of the sequence pc by the routine GapDist (listed in Algorithm 19), and then generates

a new unexpected occurrence rules from pa or pc. Finally the algorithm outputs all generated

unexpected occurrence rules with respect to each correspondence of (pa – gap) or (pc – gap).

Algorithm 19 shows the routine GapDist, which accepts a sequence s, a sequence set S, and

a boolean value dir as the inputs, and outputs all gap ranges with respect to each sequence

s′ ∈ S and the direction indicated by dir, where the usage of dir is shown at the lines 5 and 12

in Algorithm 18 that dir = 0 serves generating antecedent rules and dir = 1 serves generating

consequent rules.

Algorithm 19: GapDist (s, S, dir) : Computing gap distribution.
Input : A sequence s, a sequence set S, and a boolean value dir.

Output : All gap ranges with respect to each sequence s′ ∈ S and the direction indicated by dir.

dist := Array.Create(|max{|s′| | s′ ∈ S}| − |s|);1

foreach s′ ∈ S do2

pos := SeqMatchFirst(s, s′, pair(0, |s′| − 1));3

if dir = 0 then /∗ the gap after p ∗/4

gap := (|s′| − 1)− pos.second;5

else /∗ the gap before p ∗/6

gap := pos.first;7

dist[gap] := dist[gap] + 1;8

ranges := PairSet.Create();9

ran := FindRange(dist, 0);10

while ran.first 6= −1 do11

ranges.add(ran);12

ran := FindRange(dist, ran.second+ 1);13

ran := FindBestRange(dist);14

while ran.first 6= −1 do15

ranges.add(ran);16

return ranges;17
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Figure 7.4: Different distributions of gaps.

The algorithm first counts the gap for each sequence, then finds all ranges of gap, and finally

finds the best range of gap. For instance, Figure 7.4 shows several different cases in finding gap

ranges, where in Figure 7.4(a), 1 range [1..4] can be generated; in Figure 7.4(b), 2 ranges [0..1]

and [3..5] can be generated; in Figure 7.4(c), 2 ranges [0..0] and [2..4] can be generated, and in

additional, a best range [2..2] is generated with respect to a default difference value 50%, that is,

the number of gaps contained in the best range is at least 50% higher than the neighbors, and the

number of gaps contained in this range is maximal.

7.4 Experiments

To evaluate of our approach, we performed a serial of experiments on three Web access log files,

including a very large log file of a BSD UNIX online discussion forum (labeled as UNIX, 11GB) and

a large log file of a customer support forum of an online game provider (labeled as GAME, 1GB).

All log files are converted to session sequence databases. The global parameter sets of session

sequences are fixed to contain hour periods (from 00h to 23h), day periods (from Monday to

Sunday). Due to privacy issues, user location information is not included in global parameter

sets, other sensible information, such as session ID or login name in HTTP query fields, is also

removed.

We first discover closed sequential patterns in data set with the CloSpan approach, in order to

obtain general characteristics of the data sets, which are used for defining sequence rules contained

in beliefs. Figure 7.5 shows the correlations between the number of extracted closed sequential

patterns with respect to minimum support value. We generate sequence rules from for each data

set for describing Web usage, including 10 sequence association rules and 10 sequence implication

rules from the most frequent closed sequential patterns, where one semantic constraint is specified

for each rule. From each data set, we create one semantic hierarchy of concepts according to

topics, and then we generate 10 generalized sequence association rules and 10 generalized sequence
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implication rules from the most frequent sequential patterns with respect to semantic hierarchies.

Therefore, for each data set, totally 20 beliefs with/without hierarchies are used for extracting

unexpected implication rules on Web usage.
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(a) Data set UNIX. (b) Data set GAME.

Figure 7.5: Closed sequential patterns.

For example, the following belief corresponds to an expected browsing order of the GAME data

set, where t=2 corresponds to the access of the discussion topic “user terms” and t=5 corresponds

to “user manual”, such that the site designer wishes that users may read the agreement terms

before reading the manual of the forum:

{

〈(/)〉 →[0..5] 〈(t=2)(t=5)〉
}

∧
{

〈(t=2)(t=5)〉 6≃sem 〈(t=5)(t=2)〉
}

.
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Figure 7.6: Unexpected association rules.

The number of discovered unexpected association rules in each data set with respect to domain

expert defined beliefs and generalized sequence rules is shown in Figure 7.6. In order to not

generate too much unexpected rules I → su, the minimum support for extracting su is fixed to

0.5, which produces less sequential patterns. In the figures, the minimum support is used for
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extracting I. In the experiments, we compared the number of unexpected rules extracted from

domain experts specified beliefs and from hierarchies where minimum semantic degree (include

semantic relatedness degree and semantic contradiction degree) is fixed to 0.8 and 0.5.
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Figure 7.7: Unexpected occurrence rules.

The number of discovered unexpected occurrence rules in each data set with respect to domain

expert defined beliefs and generalized sequence rules is shown in Figure 7.7, where minimum

semantic degree is also fixed to 0.8 and 0.5. In the data set UNIX, the results are similar between

domain experts specified beliefs and hierarchies-enabled beliefs with minimum semantic degree 0.8.

In the data set GAME, the results are similar between hierarchies-enabled beliefs with minimum

semantic degree 0.8 and 0.5.

To illustrated discovered unexpected rules, for example, in the data set GAME, we wish that

users of the forum 3 (discussions on the game noted as G3) view several threads in this forum,

that is, the sequence implication rule 〈(f=3)〉 →∗ 〈(f=3)〉, however we know from prior knowledge

on playing games that the players of G3 may be not interested in the game discussed in the forum

6 (the game noted as G6), thus the semantic contradiction 〈(f=3)〉 6≃sem 〈(f=6)〉 can be defined,

that is, the belief

b =
{

〈(f=3)〉 →∗ 〈(f=3)〉
}

∧
{

〈(f=3)〉 6≃sem 〈(f=6)〉
}

.

With this belief, we discovered the unexpected class rule BETAb → 〈(f=7)〉 where forum 7

discusses a game noted as G7, and the unexpected association rule 〈(f=3)〉 → 〈(Sunday)〉, which

can be further combined as an sequence association rule 〈(Sunday)〉 → 〈(f=7)〉 in the post analysis

process. Moreover, from expertise knowledge given by the game provider, we know that the players

of G7 seldom play the game noted as G5, then the following belief can be defined:

{

〈(Sunday)(f=3)〉 →∗ 〈(f=7)〉
}

∧
{

〈(f=7)〉 6≃sem 〈(f=5)〉
}

.
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7.5 Discussion

In this chapter, we first studied the problem of self-validation of discovered unexpected sequences

with the notions of unexpected sequential patterns with respect to the unexpected feature set

and the host sequence set. We then proposed the notions of unexpected implication rules, which

include unexpected class rule, unexpected association rules and unexpected occurrence rules, where

unexpected association rules further include local and global unexpected association rules, and

unexpected occurrence rules include antecedent and consequent rules. Finally we applied the

notions of unexpected implication rules to discover unexpected Web usage.

Validation is an important problem in the discovery of unexpected sequences, as well as in

machine learning research, where the cross-validation methods are essential. For instance, the

notion of cross-validation is addressed in many text classification oriented data mining tasks to

examine the effectiveness of text classifiers [Seb02].

However, cross-validation of unexpected sequences is relatively difficult to apply. Indeed, the

main issue of performing cross-validation to unexpected sequences is that we cannot measure

the distribution of unexpected sequences in a sequence database. When we randomly regroup a

sequence database to two subset of sequences, the unexpected sequences stated by some belief may

be contained only in one subset, so that in this case it will be impossible to find such unexpected

sequences in another subset and the cross-validation will be invalid.

There are many interesting issues related to the validation of unexpected sequences in particular

cases. In the next chapter, we will study the validation of unexpected sequences in the context

of text classification problems. A approach is derived from Muse to find unexpected information

(including opposite sentiments in the context of sentiment classification and unexpected sentences in

general, which express the information unexpected to what the document expresses) contained in

text documents, where we apply the cross-validation methods to evaluate the discovered exception

phrases by text classification tools.



Chapter 8

Validation of Unexpected Sentences in Text

Documents

In previous chapters, we have developed a general framework for the discovery of unexpected

sequences in databases, and proposed a self-validation process for evaluating discovered unexpected

sequences. In this chapter, we consider the discovery and cross-validation of unexpected sentences

within the context of text classification, where the unexpected sentences are considered in terms

of the notions of sentiment classification and general text classification.

A part of the work presented in this chapter has been published in the 19th International

Conference on Database and Expert Systems Applications (DEXA 2008) and in the Actes des

Rencontres Francophones sur la Logique Floue et ses Applications (LFA 2008); and has been

accepted to be published in the Intelligent Data Analysis Journal (IDA).

8.1 Introduction

Sentiment classification received much attention in analyzing personal opinion orientations con-

tained in user generated contents, such as customer reviews, online forums, discussion groups,

blogs, etc., where the orientations are often classified into positive or negative polarities. Although

the sentiment classification of personal opinions is determinative, the sentences expressing the

sentiment opposite to the overall orientation expressed by the document can be interesting for

many purposes.

For instance, a customer review that has been classified into positive opinions about a product

may contain some sentences pointing out the weakness or faults of the product, or a review

classified as negative may nevertheless recognizes the good points of the product.

Indeed, sentiment classification can be regarded as a sub-category of text classification tasks.

The task of text classification is generally performed by the classifier that describes how a docu-

ment is classified (a systematic survey can be found in [Seb02]). The great practical importance of
125



126 CHAPTER 8. VALIDATION OF UNEXPECTED SENTENCES IN TEXT DOCUMENTS

text classification techniques has been addressed since the last 10 years, which covers the massive

volume of user generated content available in the Web, electronic mail, customer reviews, medical

records, digital publications, and so on.

On the other hand, many examples can be addressed for illustrating the sentences unexpected

to document category as well as the opposite sentiments in the context of sentiment classification.

For instance, in an online news group about politics events, discussions on politics are expected

to be posted, however the contents on football can be considered as unexpected. One reason to

study the unexpected sentences contained in text documents is that according to the principle

of classifiers, unexpected sentences may decrease the accuracy of classification results. Further,

another reason is that unexpected contents can be interesting because they are unexpected (see

Chapter 2).

The task of text classification is performed by the classifier that describes how a document

is classified, of which a systematic survey can be found in [Seb02]. In recent, the effectiveness

of text classification techniques [NMTM00, LSST+02, Seb02] has been addressed in a large range

of application domains including categorizing Web pages [YLW04, YHC04, MLK06, SZH+06,

SWL06], learning customer reviews [Tur02, DLP03, PE05], and detecting sentiment orientations

[PHW02, BCR07]. However, there are many cases where input text documents contain unexpected

contents that are opposite to the thematic categories of document, which make the classes of

documents difficult to be precisely defined and measured, and even decrease the accuracy of

classification results.

Many examples can be addressed in text classification for illustrating the unexpected contents,

just like in an online news group about politics events, discussions on politics are expected to be

posted, however the contents on football can be considered as unexpected. Another example is

that in sentiment classification, which can be viewed as an instance of text classification where

the document classes are considered as “positive” and “negative” sentiment orientations instead of

topics, and the phrases containing a sentiment opposite to document orientation are unexpected.

Therefore, in this context, given a text document under a predefined class, an unexpected sentence

is a phrase contained in the document such that it is semantically opposite or unrelated to the

class.

We study the unexpected sentences in the context of sentiment classification that classifies

documents with respect to the overall sentiment expressed.

Sentiment classification is often used to determine sentiment orientation in user reviews [PLV02,

Tur02, DLP03, HL04, PL04, PE05]. The extraction of sentiment orientations is closely connected

with Natural Language Processing (NLP) problems, where the positive or negative connotation

are annotated by the subjective terms at the document level [Tur02, DLP03, PL04]. In order to

obtain precise results, many approaches also consider sentence level sentiment orientation, such
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as [DLP03, YH03, HL04, WWH04, WWH05, JL06a, JL06b, WWH06].

In recent literatures, many various methods have been proposed to improve the accuracy and

efficiency of sentiment classification, where machine learning based text classification methods are

often applied. For instance, Pang et al. [PLV02] studied the sentiment classification problems

with Naive Bayes, maximum entropy, and support vector machines; Turney [Tur02] proposed an

unsupervised learning algorithm for classifying reviews with sentiment orientations. The effective-

ness of text classification techniques has been addressed in a large range of application domains

including categorizing Web pages [YHC04, MLK06, SZH+06, SWL06], learning customer reviews

[Tur02, DLP03], and detecting sentiment polarities [PLV02, BCR07].

Actually, sentiment classification are performed by considering the adjectives contained in

sentences[HM97, Tur01, ES07]. We use WordNet [Cog, Fel98] for determining the antonyms of

adjectives required for constructing the belief base, which has been used in many NLP and opinion

mining approaches. For instance, in the proposal of [KMMdR04], WordNet is also applied for

detecting the semantic orientation of adjectives. In this paper, we extendedly propose a general

model of document class descriptors, which considers the adjectives, adverbs, nouns, verbs and

negation identifiers.

In this chapter, we propose a general framework for determining unexpected sentences in the

context of text classification. In this framework, we use sequential pattern based class descriptors

for generalizing the characteristics of a document with respect to its class, and unexpected class

patterns are therefore generated from the semantic oppositions of the elements contained in class

descriptors. An unexpected sentence can be stated in a text document by examining whether it

contains any unexpected class patterns. The semantic oppositions of a class descriptor can be

determined in various manners. For sentiment classification tasks, the semantic oppositions of

sentiment can be directly determined by finding antonyms of adjectives and adverbs. Therefore,

in the experiments, we present the extraction of unexpected sentences for sentiment classification

within the proposed framework.

Moreover, the effectiveness of subjective approaches to discover unexpected patterns or rules

are often judged with respect to domain expertise [PT98, Spi99, LLP07, LLRP08]. In this chapter,

we propose a cross-validation process for measuring the overall influence of unexpected sentences

by using text classification methods. The experimental evaluation shows that the accuracy of

classification are increased without unexpected sentences. Our experiments also show that in the

results obtained from the same document sets with randomly-removed sentences, the accuracy

are decreased. The comparison between the classification accuracy of the documents containing

only randomly-selected sentences and containing only unexpected sentences shows that the latter

is significantly lower.

The rest of this chapter is organized as follows. In Section 8.2, we formalize the text documents
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in free format to a common sequence data mining model with the part-of-speech tags in order to

take the grammar attribute of each word into account. In Section 8.3, we present the notion of

contextual opposite sentiments in sentiment classification. We first propose the contextual models

for describing sentiment orientation, and then we propose the discovery of contextual opposite

sentiments. In Section 8.4, we propose sequential pattern based class descriptors, from which

unexpected class patterns can be generated and applied for discovering unexpected sentences.

Section 8.5 shows our experimental results on the discovery and evaluation of unexpected sentences.

Finally, we discuss in Section 8.6.

8.2 Part-of-Speech Tagged Data Model

We are considering free-format text documents, where each document consists of an ordered list

of sentences, and each sentence consists of an ordered list of words.

In this chapter, we treat each word contained in the text as a lemma associated with its part-

of-speech (PoS) tag, including noun (n.), verb (v.), adjective (adj.), adverb (adv.), etc., denoted as

(lemma|pos). For example, the word “are” contained in the text is depicted by (be|v.), where be

is the lemma of “are” and verb is the part-of-speech tag of “be”. Without loss of generality, we use

the wild-card ∗ and simplified part-of-speech tag for denoting a generalized word. For instance,

(∗|adj.) denotes an adjective; (∗|adv.) denotes an adverb, (∗|n.) denotes a noun, (∗|v.) denotes a

verb, and so on. Further, the negation identifiers are denoted as (∗|neg.), including not, ’nt, no

and never. We use a generalization relation between two words having the same part-of-speech

tag, which is a partial relation � such that: let w1 = (lemma1|pos) and w2 = (lemma2|pos),

we have that w1 � w2 implies lemma1 = lemma2 or lemma2 = ∗. For example, we have that

(be|v.) � (∗|v.) but (be|verb) 6� (film|n.).

A vocabulary, denoted as V = {w1, w2, . . . , wn}, is a collection of a limited number of distinct

words. A phrase is an ordered list of words, denoted as s = w1w2 . . . wk. A phrase can also contain

generalized words. For example, (film|n.)(be|v.)(good|adj.) is a phrase; (film|n.)(∗|v.)(good|adj.)

and (∗|n.)(be|v.)(∗|adj.) are two phrases with generalized words. The length of a phrase s is the

number of words (including generalized words) contained in this phrase, denoted as |s|. One single

word can be viewed as a phrase with length 1. An empty phrase is denoted as ∅, we have that

s = ∅ ⇐⇒ |s| = 0. A phrase with the length k is called a k-phrase.

In the context of mining sequence patterns [AS95], a word is an item and a phrase is a

sequence. Given two phrases s = w1w2 . . . wm and s′ = w′
1w

′
2 . . . w

′
n, if there exist integers

1 ≤ i1 < i2 < . . . < im ≤ n such that wi � w′
ji

for all wi, then s is a sub-phrase of

s′, denoted as s ⊑ s′. If we have that s ⊑ s′, we say that s is contained in s′, or s′ sup-
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ports s. If a phrase s is not contained in any other phrases, then we say that the phrase s

is maximal. For example, (film|n.)(good|adj.) is contained in (film|n.)(be|v.)(good|adj.) but

not in (be|v.)(good|adj.)(film|n.); (film|n.)(good|adj.) is contained in (∗|n.)(∗|adj.) but not in

(∗|v.)(∗|adj.). The concatenation of phrases is denoted as s1s2s3 . . .; the subtraction of two phrases

s1 and s2 is denoted s1\s2 if and only if s2 ⊑ s1. For instance, let s1 = wawbwcwbwd and s2 = wbwd,

we have that s2 ⊑ s1 and s1 \ s2 = wawcwb: the first occurrence of s2 in s1 is removed.

A sentence is a grammatical complete phrase, denoted as s#. A document is a set of sentences,

denoted as D. We do not concentrate on the order in the context of sequence data mining though

a document is logically an ordered list of sentences. Moreover, in the same context, a document

can be generalized to be a set of phrases. In this paper, the determination of sentence is addressed

by one of the following symbols “; . ? !” in the text. Given a document D, the support or frequency

of a phrase s, denoted as supp(s,D), is the total number of sentences s# ∈ D that support s.

Given a user specified threshold of support called minimum support, denoted as suppmin, a phrase

is frequent if supp(s,D) ≥ suppmin.

Text 1 The actors in this film are all also very good. This is a good film without big budget sets.

Very good sound, picture, and seats. �

Example 41 Text 1 contains 3 sentences. If we consider only the nouns, verbs, and adjectives

contained in the text, Text 1 corresponds to a document D with 3 phrases:

s1 = (actor|n.)(film|n.)(be|v.)(good|adj.);

s2 = (be|v.)(good|adj.)(film|n.)(big|adj.)(budget|n.)(set|n.);

s2 = (good|adj.)(sound|n.)(picture|n.)(seat|n.).

Given minimum support threshold suppmin = 0.5, we have maximal frequent phrases p1 =

(be|v.)(good|adj.) and p2 = (film|n.) where supp(p1, D) = 0.667 and supp(p2, D) = 1. �

The part-of-speech tagged data model is purposed for the ease of data mining tasks. It is not

difficult to see that the computational process cannot handle the support of the word “actor” in

the sentence “the actors in this film are all also very good” without proper preprocess of the model

of text. On the other hand, importing part-of-speech tags into the data model makes it possible

to focus only on specified parts of text, such as for building text class descriptors by adjectives

and nouns.
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8.3 Contextual Opposite Sentiments

In this section, we present a belief-driven approach to discover contextual opposite sentiments in

classified free format text reviews.

8.3.1 Contextual Models of Sentiment Orientation

We represent sentiment orientations as rule-format on phrases, that is, sα → sβ , where sα and

sβ are two phrases; given a phrase s, if we have that sα · sβ ⊑ s, then we say that the phrase s

supports the rule r, denoted as s |= r. We therefore propose a belief system for formalizing the

opposite sentiments expressed in classified reviews.

A belief on phrases, denoted as b, consists of a rule sα → sβ and a semantic opposition

sβ 6∼ sγ, where the phrase sγ is semantically opposite to the phrase sβ. We note such a belief as

b = [sα; sβ; sγ], which constrains that if the phrase sα appears in a phrase s, that is, sα ⊑ s, then

the phrase sβ should appear in s after sβ, and the phrase sγ should not appear in s after sα, that

is,

[sα; sβ; sγ] ⇐⇒ (sα ⊑ s)⇒ (sα · sβ ⊑ s) ∧ (sα · sγ 6⊑ s).

A phrase s that supports a belief b is expected, denoted as s |= b; that violates a belief b is

unexpected, denoted as s 6|= b. Given a belief b = [sα; sβ; sγ] and a phrase s such that sα ⊑ s, the

unexpectedness is considered as

(sα · sβ 6⊑ s) ∧ (sα · sγ ⊑ s)⇒ (s 6|= b),

that is, if sα appears in s, however sβ does not appear in s and sγ appears in s later, then the

phrase s is unexpected. Notice that this definition is more strict than the unexpected sequences

defined in Chapter 4.

Example 42 Given a belief b = [(be|v.); (good|adj.); (bad|adj.)] and two phrases

s1 = (be|v.)(a|∗)(good|adj.)(film|n.),

s2 = (be|v.)(bad|adj.)(actor|n.),

we have that s1 |= b and s2 6|= b. �

Let M+ be the positive sentiment and M− be the negative sentiment, a sentiment M ∈

{M+,M−} can be expressed in documents (denoted as D |= M), sentences (denoted as S |= M),

phrases (denoted as s |= M) or words (denoted as w |= M). In addition, we denote the negation of

a sentiment M as M , so that we have that M+ = M− and M− = M+. The negation is taken into

account in other text-mining applications (for instance for synonym/antonym extraction process

[Tur01]).
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Property 2 Given a sentiment M ∈ {M+,M−}, if a document D |= M , then there exists at

least one sentence S ∈ D such that S |= M ; if a sentence S |= M , then there exists at least one

word w ⊑ S such that w |= M or at least one phrase (∗|neg.) · w ⊑ S (or w · (∗|neg.) ⊑ S) such

that w |= M .

Currently we focus on the sentiments expressed by the sentences that contain adjectives and

nouns/verbs, such as “this is a good film”. The sentiment expressed by sentences like “this film

is well produced” is currently not considered in our approach. Note that we extract basic words

relations without the use of syntactic analysis tools [ST93] to avoid the silence in the data (i.e.

syntactic relations not extracted by the natural language systems).

With the adoption of rules and beliefs, we can extract the contextual information from reviews

by finding the most frequent phrases that consist of at adjectives and nouns/verbs by sequential

pattern mining algorithms, where the frequent nouns and verbs reflect topic of reviews, and the

sentence-level sentiment orientations are expressed by frequent adjectives.

Contextual Model Sentiment Rule Belief Patterns

ADJ.-N. model (∗|adj.)→ (∗|n.) [(∗|adj.); ∅; (∗|n.)]

[(∗|neg.)(∗|adj.); ∅; (∗|n.)]

N.-ADJ. model (∗|n.)→ (∗|adj.) [(∗|n.); (∗|adj.); (∗|adj.)]

[(∗|n.); (∗|adj.); (∗|neg.)(∗|adj.)]

V.-ADJ. model (∗|v.)→ (∗|adj.) [(∗|v.); (∗|adj.); (∗|adj.)]

[(∗|v.); (∗|adj.); (∗|neg.)(∗|adj.)]

[(∗|v.)(∗|neg.); (∗|adj.); (∗|adj.)]

ADJ.-V. model (∗|adj.)→ (∗|v.) [(∗|adj.); (∗|v.); (∗|v.)(∗|neg.)]

NEG.-ADJ.-N. model (∗|neg.)(∗|adj.)→ (∗|n.) [(∗|neg.)(∗|adj.); ∅; (∗|n.)]

N.-NEG.-ADJ. model (∗|n.)(∗|neg.)→ (∗|adj.) [(∗|n.)(∗|neg.); (∗|adj.); (∗|adj.)]

V.-NEG.-ADJ. model (∗|v.)(∗|neg.)→ (∗|adj.) [(∗|v.)(∗|neg.); (∗|adj.); (∗|adj.)]

ADJ.-V.-NEG. model (∗|adj.)→ (∗|v.)(∗|neg.) [(∗|adj.); ∅; (∗|v.)(∗|neg.)]

Table 8.1: Contextual models of sentiment orientation.

We propose a set of contextual models for constructing the belief base of opinion orientations

within the context of review topic, listed in Table 8.1, where the word (∗|adj.) stands for each

antonym of the word (∗|adj.). Given a review, each sentence violating a belief generated from one

of the belief patterns listed in Table 8.1 stands for an opposite sentiment.

8.3.2 Discovery of Contextual Opposite Sentiments

A training-discovering process is considered in the discovery of contextual opposite sentiments:

given a topic context, first a sequential pattern mining approach is applied to find contextual
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patterns a set of classified training reviews with respect to a set the contextual models listed in

Table 8.1, in order to generate the belief patterns; then, from discovered belief patterns, a belief

base is constructed to represent the sentiment orientation by using a dictionary of antonyms1 of

the adjectives contained in the contextual models.

Let V be a set of adjectives expressing the sentiment M , we denote V the set that contains the

antonym(s) of each word contained in V. Thus, for each (∗|adj.) ∈ V, we have that (∗|adj.) |= M

and (∗|adj.) ∈ V.

Given a training document DL such that for each sentence S ∈ DL, there exist at least one

adjective (∗|adj.) ∈ V or there exist (∗|neg.) and at least one adjective (∗|adj.) ∈ V. In order to

construct the belief base of contextual models, we first apply a sequential pattern mining algorithm

for discovering all maximal frequent phrases fromDL with respect to a minimum support threshold,

denoted as DF . For each phrase s ∈ DF , if s supports a contextual model listed in Table 8.1 with

the listing-order, then a set of beliefs can be generated from s corresponding to the belief pattern(s)

of each contextual model. A belief base BM can therefore be constructed with respect to the topic

of reviews.

Positive Sentiment Rules Negative Sentiment Rules

(be|V )→ (good|J) (bad|J)→ (guy|N)

(good|J)→ (film|N) (bad|J)→ (be|V )

(good|J)→ (be|V ) (bad|J)→ (movie|N)

(good|J)→ (performance|N) (bad|J)→ (film|N)

(good|J)→ (movie|N) (bad|J)→ (thing|N)

(good|J)→ (friend|N) (bad|J)→ (year|N)

(great|J)→ (film|N) (bad|J)→ (time|N)

(great|J)→ (be|V ) (bad|J)→ (dialogue|N)

(special|J)→ (be|V ) (stupid|J)→ (be|V )

(special|J)→ (effect|N) (poor|J)→ (be|V )

Table 8.2: The top-10 most frequent sentiment rules.

Example 43 Given a phrase s = (this)(be|v.)(a)(good|adj.)(film|n.), where the part-of-speech

tags of “this” and “a” are ignored because they are not in the contextual models, we have that s

supports the ADJ.-N. and V.-ADJ. models, and the sentiment rules are (good|adj.) → (film|n.)

and (be|v.) → (good|j.). We have that the priority of ADJ.-N. model is higher than V.-ADJ.

model (according to the order listed in Table 8.1), so that the rule (good|adj.)→ (film|n.) is used

1The antonym dictionary is based on the WordNet project, which can be found at

http://wordnet.princeton.edu/.
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for generating beliefs. Let (bad|adj.) be the antonym of (good|adj.), we have two beliefs generated:

[(bad|adj.); ∅; (film|n.)] and [(∗|neg.)(good|adj.); ∅; (film|n.)]. �

For instance, Table 8.2 lists the top-10 most frequent sentiment rules discovered from the movie

review data2 introduced in [PL04] with respect to the contextual models and belief patterns listed

in Table 8.1.

Belief Base of Positive Sentiment Belief Base of Negative Sentiment

[(be|v.); (good|adj.); (bad|adj.)] [(not|neg.)(bad|adj.); ∅; (guy|n.)]

[(be|v.); (good|adj.); (not|neg.)(good|adj.)] [(n′t|neg.)(bad|adj.); ∅; (guy|n.)]

[(be|v.); (good|adj.); (n′t|neg.)(good|adj.)] [(bad|adj.); (be|v.); (be|V )(not|neg.)]

[(bad|adj.); ∅; (film|n.)] [(bad|adj.); (be|v.); (be|V )(n′t|neg.)]

[(not|neg.)(good|adj.); ∅; (film|n.)] [(good|adj.); ∅; (film|n.)]

[(n′t|neg.)(good|adj.); ∅; (film|n.)] [(not|neg.)(bad|adj.); ∅; (film|n.)]

· · · · · · · · · · · ·

Table 8.3: The belief base for discovering opposite sentiments.

A belief base on sentiment orientation can therefore be generated from the discovered sentiment

rules, where the antonym dictionaries for constructing the belief bases are given by WordNet.

Table 8.3 lists a set of sample beliefs generated from the discovered sentiment rules listed in Table

8.2.

Given a classified review DM and a belief base BM corresponding to the sentiment orientation

M , the procedure of extracting unexpected sentences can be briefly described as follows. For each

sentence S ∈ DM and for each belief b ∈ BM such that b = [sα; sβ; sγ], sα is first matched for

improving the performance; if sα ⊑ S, and then if sα · sβ 6⊑ S and sα · sγ ⊑ S, then S is an

unexpected sentence expressing the contextual opposite sentiment M .

8.4 Unexpected Sentences

In this section, we propose a sequential pattern based class descriptors, from which unexpected

class patterns can be generated and applied for discovering unexpected sentences.

8.4.1 Class Descriptors

In this section, we propose a sequential pattern based class descriptors within the context of text

classification.
2http://www.cs.cornell.edu/People/pabo/movie-review-data/
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In [Seb02], Sebastiani generalized the text classification problem as the task of assigning a

Boolean value to each pair 〈Dj, Ci〉 ∈ D × C where D is a domain of documents and C =

{C1, C2, . . . , C|C|} is a set of predefined classes. A value True assigned to 〈Dj, Ci〉 indicates a

decision to classify Dj under Ci, while a value of False indicates a decision not to classify Dj

under Ci. A target function Φ : D × C → {True, False} is called the classifier. In practical, a

classification status value (or categorization status value) function Ωi : D → [0, 1] is considered in

the classifier for class Ci ∈ C. A threshold τi is therefore defined such that for a document Dj,

Ωi(Dj) ≥ τi is interpreted as True while Ωi(Dj) < τi is interpreted as False. Most of existing

text classifiers can be generalized to this model.

Given a document D and a sentence s# 6∈ D such that for a class Ci we have Ωi(D ∪ s
#) >

Ωi(D), then there exists a set S of phrases such that for each phrase s ∈ S we have s ⊑ s# and

Ωi(D∪s) > Ωi(D). We say that such a phrase s supports the class Ci, denoted as s |= Ci, and this

phrase s is called a key phrase of Ci. Further, given a key phrase s of a class Ci, there exists a set

W of words such that for each word w ∈W we have w ⊆ s and Ωi(D ∪w) > Ωi(D). We say that

such a word w supports the class Ci, denoted as w |= Ci, and this word w is called a key word of

Ci. In additional, we denote s 6|= Ci (respectively for w 6|= Ci) that the phrase s is not a key phrase

of the class Ci, in this meaning, s 6|= Ci does not imply but include the case Ω(D ∪ s) < Ω(D).

With a threshold τi for a class Ci and a document D, let D |= Ci denote that Ωi(D) ≥ τi is

interpreted as True for the classification task, then we have the following property.

Property 3 Given a class Ci and a document D, if D |= Ci, then there exists a subset D′ ⊆ D

such that for each sentence s# ∈ D′ we have s# |= Ci, and for each sentence s# ∈ (D \ D′) we

have s# 6|= Ci.

Notice that for Property 3, the set (D \D′) can be empty. In this case, each sentence s# ∈ D

supports the class Ci. According to the definitions of sentence and phrase in Section 8.2, we have

the following lemma.

Lemma 2 Given a class Ci and a document D |= Ci, the document D contains a set S of

maximal phrases such that if s ∈ S then s |= Ci.

Considering a document domain D and a set Π = {D1, D2, . . . , D|Π|} ∈ D of documents pre-

classified under a class Ci, that is, for each Dj ∈ Π we have Dj |= Ci, let Γ = {s# ∈ D | D ∈ Π} be

the sentences contained in all documents and S+
i be the set of all maximal key phrases contained

in Γ. For any two phrases sm, sn ∈ S
+
i we have sm 6⊑ sn, sm, sn ⊆ Γ and sm, sn |= Ci. The set S+

i

is called the predictive phrase set of the class Ci.

Definition 41 (Class descriptor) Let S+
i be the predictive phrase set of a given document class

Ci, the class descriptor of the class Ci is a set P+
i of phrases such that: (1) each phrase s ∈ P+

i
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consists only of words with PoS tag in {adj., adv., n., v., neg.}; (2) for each phrase s ∈ P+
i , there

exists a phrase s′ ∈ S+
i such that s ⊑ s′; (3) for any two phrases sm, sn ∈ P

+
i , we have sm 6⊑ sn.

Each phrase s ∈ P+
i is a class pattern.

However, given a large set Π of pre-classified documents under the class Ci, it is practically

difficult to construct the predictive phrase set S+
i containing all predictive phrases in each docu-

ment. On the other hand, association rules [AIS93] and sequential patterns [AS95] have been used

for building text classifiers [LG94, LHM98, LHP01, AZ02, JLT06], where word frequency is a key

factor for computing classification status value. In this chapter, we consider the frequent phrases

contained in the pre-classified document set as an approximation of the predictive phrase set, so

that the class descriptor can further be approximately built from the discovered frequent phrases

by filtering the adjectives, adverbs, nouns, verbs, and negation identifiers.

Definition 42 (Approximate class descriptor) Let Π be a set of text document under the class

Ci, an approximate class descriptor of the document set Π for the class Ci, denoted as ∆i(Π), is

the set of maximal frequent phrases consisting of adjectives, adverbs, nouns, verbs, and negation

identifiers in the total text Γ of the document set Π, with respect to a user defined minimum support

threshold.

In the rest of the chapter, unless explicitly noticed, we consider the approximate class descriptor

as the class descriptor.

A class descriptor consists of a set of maximal frequent phrases where each phrase is a class

pattern, which can be modeled by its structure. A class pattern p = w1w2 . . . wn is an ordered list

of words, which can also be denoted as p = (lemma1|pos1)(lemma2|pos2) . . . (lemman|posn). The

structure pos1-pos2-. . . -posn is called a class pattern model. If a class pattern consists of k words,

then we say that it is a k-phrase class pattern, corresponding to a k-phrase class pattern model.

For instance, the 2-phrase class pattern (famous|adj.)(actor|n.) corresponds to the class pattern

model “ADJ.-N.” (we present the PoS tags as upper case in a class pattern model).

Text 2 The other actors deliver good performances as well. �

Example 44 Assume that the sentence listed in Text 2 is contained in one of a large set Π of

text documents, which can be represented as

s = (other|adj.)(actor|n.)(deliver|v.)(good|adj.)(performance|n.)(well|adv.),

where p1 = (actor|n.)(good|adj.) and p2 = (good|adj.)(performance|n.) are two 2-phrases, and

p3 = (actor|n.)(deliver|v.)(good|adj.) is a 3-phrase contained in s. Let Γ be the total text of

all documents in Π. Given a user specified minimum support threshold min_supp, if we have

σ(p1,Γ) ≥ min_supp, σ(p2,Γ) ≥ min_supp, and σ(p3,Γ) ≥ min_supp, then p1, p2, and p3 are
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3 class patterns of the class Ci, respectively corresponding to class pattern models “N.-ADJ.”,

“ADJ.-N.”, and “N.-V.-ADJ.”. �

8.4.2 Discovery and Cross-Validation of Unexpected Sentences

Given a class pattern p of a text document set Π under a class Ci, we consider the pattern p as a

belief on the class Ci. Hence, an unexpected class pattern is a phrase that semantically contradicts

the class pattern p.

We first propose the notion of φ-opposition pattern of class patterns. For facilitating the

following descriptions, let us consider the semantic opposition relation w1 = ¬w2 between two

words, which denotes that the word w1 semantically contradicts the word w2. We have w1 =

¬w2 ⇐⇒ w2 = ¬w1. The semantic opposition between words can be determined by finding

the antonyms or computing the semantic relatedness of concepts. Currently, the computation

of semantic relatedness between concepts have been addressed by various methods [BH06, PS07,

GM08, ZMG08].

Definition 43 (φ-opposition pattern) Let p = w1w2 . . . wk and p′ = w′
1w

′
2 . . . w

′
k be two

k-phrase class pattern. If p′ has a sub-phrase η = w
η
1w

η
2 . . . w

η
φ and p has a sub-phrase ϕ =

w
ϕ
1w

ϕ
2 . . . w

ϕ
φ , where φ ≤ k, such that p′ \ η = p \ϕ and for any 1 ≤ i ≤ φ we have wη

i = ¬wϕ
i , then

the phrase p′ is a φ-opposition pattern of p.

Given a class pattern p, there exist various φ-opposition patterns of p. For example, by

detecting the antonyms of words, for a 2-phrase class pattern (be|v.)(good|adj.), (be|v.)(bad|adj.)

is one of its 1-opposition pattern since (good|adj.) = ¬(bad|adj.); for a 3-phrase class pattern

(be|v.)(good|adj.)(man|n.), according to (good|adj.) = ¬(bad|adj.) and (man|n.) = ¬(woman|n.),

two 1-opposition patterns and one 2-opposition pattern can be generated.

Notice that the negation is not token into account with the notion of φ-opposition pattern,

however it is considered as a general word. For example, (∗|neg.)(bad|adj.) is generated as a

1-opposition pattern of the class pattern (∗|neg.)(good|adj.).

To take into consideration the negation of sentences, the notion of φ-negation pattern is pro-

posed as follows.

Definition 44 (φ-negation pattern of p) Let p = w1w2 . . . wk be a k-phrase class pattern and

p′ = w′
1w

′
2 . . . w

′
k′ be a k′-phrase class pattern where p ⊑ p′ and k′ = k + φ (φ > 0). If w ∈ (p′ \ p)

implies w = (∗|neg.), then the phrase p′ is a φ-negation pattern of p.

Not difficult to see, the generation of φ-negation patterns depends on the value of φ. For exam-

ple, from the class pattern (be|v.)(good|adj.), a 2-negation pattern (∗|neg.)(be|v.)(∗|neg.)(good|adj.)

can be generated.
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Unexpected class patterns can be therefore generated from φ-opposition and φ-negation pat-

terns of a class pattern. In this paper, we focus on 1-opposition and 1-negation patterns for

generating unexpected class patterns.

Given a class descriptor P+
i of a text document set Π under a class Ci, let S−

i be the ensemble

of all φ-opposition and φ-negation patterns of each class pattern p ∈ P+
i . The set P−

i = S−
i \P

+
i is

called an unexpected class descriptor of the class Ci. Each phrase contained in P−
i is an unexpected

class pattern. If a sentence contains an unexpected class pattern, then this sentence is an unexpected

sentence.

The extraction of unexpected sentences can be performed with respect to the framework of (1)

extracting class descriptors from pre-classified documents; (2) building unexpected class descrip-

tors from φ-opposition patterns and φ-negation patterns of each class descriptor; (3) extracting

unexpected sentences that contain unexpected class descriptors.

Not difficult to see, this framework can be performed to extract unexpected sentences with

respect to general text classification problems if the unexpected class descriptors can be built.

To evaluate the unexpected sentences extracted from predefined classes of documents, we

propose a four-step validation process:

1. The test on the classification of original documents, which shows the accuracy of each class

of documents, denoted as α(D);

2. The test on the classification of the documents with randomly-removed n sentences (n is the

average number of unexpected sentences per document) in each document, which shows the

accuracy of disturbed documents, denoted as α(D \R);

3. The test on the classification of the documents without unexpected sentences, which shows

the accuracy of cleaned documents, denoted as α(D \ U);

4. The test on the classification of the documents only consists in unexpected sentences, which

shows the accuracy of unexpectedness, denoted as α(U).

With comparing to the accuracy of original documents α(D), let the change of accuracy of

the documents with randomly-removed sentences be δR = α(D \R)− α(D) and let the change of

accuracy of the documents without unexpected sentences be δU = α(D \U)−α(D). According to

the principe of text classifiers, we have the following property if the removed unexpected sentences

are really unexpected to the document class.

Property 4 (1) δU > 0; (2) δU ≥ δR; (3) δR ≤ 0 is expected.

Therefore, if the results of the cross-validation of document classification shows that the changes

of accuracies correspond to the hypothesis on discovered unexpected sentences as proposed in Prop-
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erty 4, the we can say that the unexpected sentences contained in discovered unexpected sentences

are valid, because the elimination of such sentences increases the accuracy of the classification task.

8.5 Experiments

In this section, we present our experimental evaluation on the unexpected sentences in free for-

mat text documents within the context of sentiment classification, where the unexpected class

descriptors are built from antonyms of word (determined by WordNet, including adjectives and

adverbs) contained in class descriptors.

The data set concerned in our experiments is the movie review data from [PL04], which consists

of pre-classified 1,000 positive-sentiment and 1,000 negative-sentiment text reviews. Thus, we

consider “positive” and “negative” as two document classes in our experiments, and the goal is

to discover unexpected sentences against the two classes and to validate discovered unexpected

sentences.

Discovery of Unexpected Sentences.

All documents are initially tagged by the TreeTagger [Ins] toolkit introduced in [Sch94] to iden-

tify the PoS tag [San90] of each word. In order to reduce the redundancy in sequence-represented

documents, we only consider the words that constitute the class descriptors including the adjec-

tives, adverbs, verbs, nouns, and the negation identifiers. All words associated with concerned

tags are converted to PoS tagged sentences with respect to the order appeared in the documents,

and all other words are ignored.

Class Documents Sentences Distinct Words Average Length

Positive 1,000 37,833 28,777 23.8956

Negative 1,000 36,186 27,224 22.2015

Table 8.4: Total number of sentences and distinct words, with average sentence length.

The total corpus contained in the data set consists of 1,492,681 words corresponding to 7.6

Megabytes. Table 8.4 lists each class of 1,000 documents of the movie review data set in sequence

format. A dictionary totally containing 39,655 entries of item:word mapping is built for converting

the sequences back into text for next steps.

The discovery of class descriptors is addressed as a training process with the same corpus. For

each class, positive or negative in our experiments, all 1,000 sequence-represented documents are

combined into one large sequence database, and then we perform closed sequential pattern mining

algorithm CloSpan [YHA03] to find class patterns describing the document class.
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Figure 8.1 shows the number of the discovered sequential patterns with different sequence

length. According to the figure, the numbers of 4-length and 5-length sequential patterns strongly

deceases when the minimum support value increases, for instance, with min_supp = 0.05%, the

numbers of 2-, 3-, 4-, and 5-length sequential patterns of the class “positive” are respectively 7013,

3677, 705, and 46. Therefore, in order to obtain signifiant results, we find the class patterns limited

to 2- and 3-length sequential patterns for next steps of our experiments.
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Figure 8.1: Number of discovered sequential patterns with different sequence length.

We extract the sequential patterns consisting of the adjectives, adverbs, nouns, verbs, and

negation identifiers as the class descriptor. Figure 8.2 shows the total numbers of 2-phrase and

3-phrase class patterns that contain at least and at most one adjective or/and adverb, since the

adjectives and adverbs are essential in sentiment classification.
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Figure 8.2: Number of 2-phrase and 3-phrase class patterns.

The appearance of discovered 2-phrase class pattern models are listed in Table 8.5, ordered by

the alphabet of models and (∗|neg.) with respect to different minimum support values. In order

to save paper size, we only list the models corresponding to the confmin values 0.01%, 0.03%, and

0.05%.
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Class Pattern Models P-0.01% N-0.01% P-0.03% N-0.03% P-0.05% N-0.05%

ADJ.-ADV. 1089 892 134 134 34 32

ADJ.-N. 4049 3109 566 517 257 206

ADJ.-V. 2813 2474 581 558 321 276

ADV.-ADJ. 1654 1314 219 221 83 76

ADV.-N. 3348 3014 452 469 209 169

ADV.-V. 3084 2954 728 781 394 390

N.-ADJ. 2571 2045 292 286 127 100

N.-ADV. 2929 2729 438 478 194 189

V.-ADJ. 3841 3367 940 901 507 448

V.-ADV. 3157 2940 846 931 498 492

NEG-ADJ. 329 314 103 90 60 49

ADJ.-NEG 254 232 70 64 38 34

NEG-ADV. 166 147 79 83 66 62

ADV.-NEG 147 138 71 71 51 52

Table 8.5: 2-phrase class pattern models.

Number Models for class “positive” Number Models for class “negative”

2289 V.-V.-ADV. 2343 V.-V.-ADV.

2121 V.-ADV.-V. 2106 V.-ADV.-V.

1801 V.-V.-ADJ. 1689 V.-V.-ADJ.

1691 V.-ADJ.-N. 1616 ADV.-V.-V.

1607 ADV.-V.-V. 1433 V.-ADJ.-N.

1546 V.-ADJ.-V. 1362 V.-ADJ.-V.

1340 V.-ADV.-N. 1212 N.-V.-ADV.

1276 N.-V.-ADV. 1159 V.-ADV.-N.

1045 ADJ.-V.-V. 969 ADJ.-V.-V.

946 N.-V.-ADJ. 861 V.-N.-ADV.

Table 8.6: 10 most frequent 3-phrase class pattern models.
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For discovered 3-phrase class pattern models, the top-10 most frequent ones corresponding to

confmin = 0.01% are listed in Table 8.6.

The unexpected class patterns are generated from the semantic oppositions of class patterns.

In our experiments, the lexical database WordNet [Cog] is used for determining the antonyms

of adjectives and adverbs for constructing semantic oppositions. For a class pattern, if there exist

an adjective and an adverb together, then only the antonyms of the adjective will be considered;

if the adjective and adverb have no antonym, then this class pattern will be ignored; if there exist

more than one antonym, than more than one unexpected class pattern will be generated from all

antonyms. The total numbers of unexpected 2-phrase and 3-phrase class patterns are shown in

Figure 8.3.
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Figure 8.3: Number of 2-phrase and 3-phrase unexpected class patterns.

The total numbers of unexpected sentences determined from unexpected 2-phrase and 3-phrase

class patterns are shown in Figure 8.4, and the total numbers of documents that contain unexpected

sentences are shown in Figure 8.5.
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Figure 8.4: Number of unexpected sentences discovered from 2-phrase and 3-phrase unexpected

class patterns.
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Figure 8.5: Number of documents that contain unexpected sentences discovered from 2-phrase

and 3-phrase unexpected class patterns.

Validation of Unexpected Sentences.

The goal of the evaluation is to use the text classification method to validate the unexpect-

edness stated in the discovered unexpected sentences with respect to the document class. The

unexpectedness is examined by the Bow toolkit [McC96] with comparing the average accuracy of

text classification tasks with and without unexpected sentences.

Three methods, k-Nearest Neighbor (k-NN), Naive Bayes, and TFIDF are selected for testing

our approach by using classification tasks. The k-NN method [YC94] based classifiers are example-

based that for deciding whether a document D |= Ci for a class Ci, it examines whether the k

training documents most similar to D also are in Ci. The Naive Bayes based classifiers (see

[Lew98]) compute the probability that a document D belongs to a class Ci by an application of

Bayes’ theorem, which accounts for most of the probabilistic approaches in the text classification.

Nevertheless, the TFIDF (term frequency-inverse document frequency) [SB88] based classifiers

compute the term frequency for deciding whether a document D belongs a class Ci, however an

inverse document frequency factor is incorporated which diminishes the weight of terms that occur

very frequently in the collection and increases the weight of terms that occur rarely. Briefly, in

order to learn a model, a prototype vector based on the TFIDF weight of terms is computed

for each class, and then the cosine value of a new document between each prototype vector is

calculated to assign the relevant class.

In our experiments, two groups of tests are performed, with and without pruning most frequent

words common to all documents in the two classes by selecting words with highest average mutual

information with the class variable. Each test is performed with 20 trials of a randomized test-

train split 40%-60%, and we take into account the final average values of accuracy. All tests are

based on the unexpected sentences extracted with 2-phrase and 3-phrase unexpected class patterns

obtained by different min_supp values from 0.01% to 0.05%.

The evaluation results on the change of accuracy are shown in Figure 8.6, Figure 8.7, and
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(a) Without frequent word pruning. (b) With frequent word pruning.

Figure 8.6: Change of average accuracy before and after eliminating unexpected sentences by

using k-NN method.

Figure 8.8. The results are compared with removing the same number of randomly selected

sentences from the documents. In each figure, the average accuracy of the original documents

α(D) is considered as the base line “0”, and the change of accuracy δR of the documents with

randomly-removed sentences is considered as a reference line.

In the test results on the k-NN classifier shown in Figure 8.6(a), the change of accuracy is

variant with respect to the min_supp value for extracting class patterns, however the results

shown in Figure 8.6(b) well confirms Property 4. The behavior shown in Figure 8.6(a) also shows

that although selecting frequent terms improves the accuracy of classification tasks, the frequent

words common to all classes decrease the confidence of the accuracy of classification.
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Figure 8.7: Change of average accuracy before and after eliminating unexpected sentences by

using Naive Bayes method.

Because Naive Bayes classifiers are probability based, Figure 8.7(a) is reasonable: the unex-

pected class patterns contained in all eliminated unexpected sentences weakly affect the probability

whether a document belongs to a class since the eliminated terms are not frequent, but randomly
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selected sentences contains terms important to classify the documents. The prune of the most

frequent common words enlarges the effects of unexpected sentences, thus the results shown in

Figure 8.7(b) perfectly confirms Property 4.
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Figure 8.8: Change of average accuracy before and after eliminating unexpected sentences by

using TFIDF method.
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Figure 8.9: Change of average accuracy between original documents and the documents consisting

of the unexpected sentences discovered from 2-phrase unexpected class patterns.

According to the principle of TFIDF weight, Figure 8.8(a) shows that the effect of comment

frequent words in classification tasks is important, so that the elimination of limited number of

sentences does not change the overall accuracy. Different from Naive Bayes classifiers, Figure 8.8(b)

well confirms Property 4.(1) and Property 4.(2), however Property 4.(3) is not satisfied because

the elimination of random selected sentences increases the overall accuracy of the classification.

We also test the accuracy of the classification tasks on the documents consisting of only un-

expected sentences, to study the characteristics of unexpected sentences, as shown in Figure 8.9

and Figure 8.10. Not difficult to see, the unexpected sentences are difficult to be classified with
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Figure 8.10: Change of average accuracy between original documents and the documents consisting

of the unexpected sentences discovered from 3-phrase unexpected class patterns.

comparing to original documents. As discussed in previous analysis, the effect of the most frequent

common words in k-NN based classifiers is strong.

8.6 Discussion

In this chapter, we studied the effects of unexpected sentences in text document classification.

We first formalized text documents with part-of-speech tags, and then proposed the notion of

contextual opposite sentiments. We further generalized the formalization of contextual opposite

sentiments by proposing the notions of class descriptors and class patterns, from which we further

proposed the notion of unexpected class patterns. A phrase containing an unexpected class pattern

is therefore an unexpected sentence. In consequence, we evaluated discovered unexpected sentences

by text classification, including k-nearest neighbor and naive Bayes methods. The experimental

results show that the discovery of unexpected sentences is effective and the accuracy of classification

can be improved by eliminating unexpected sentences in text documents.

The approach proposed in this paper considers 1-opposition and 1-negation unexpected class

patterns, which limits the performance of discovering unexpected sentences, although the effec-

tiveness has been already shown. In our future research, we will focus on the construction of

complex unexpected class patterns, such as 2-opposition and 2-negation patterns.

Although our proposed approach is theoretically common for discovering any unexpected sen-

tences with respect to the document classes, however, the generation of φ-opposition unexpected

patterns are currently limited in determining the antonyms of words, which is suitable for ad-

jective and adverb based document classes, for example the positive and negative orientations in

sentiment classification. In order to practically porting our approach to more general cases, for
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example topic-based document classes, we are interested in adopting semantic similarity based

approaches (e.g., [JC97, MCS06]) or semantic hierarchies for generating φ-opposition unexpected

patterns by determining the relatedness between concepts.



Chapter 9

Conclusions

In this chapter, we first summarize this thesis, and then discuss some perspectives on our future

research directions.

9.1 Summary

In this thesis, we investigated the problems in the discovery of unexpected sequences in large

databases with respect to prior domain expertise knowledge.

We proposed a belief system consisting of sequence rules and semantic contradiction between

sequences, and then we proposed three forms of unexpected sequences with respect to the different

forms of sequence rules. We methodically developed the framework Muse with integrating the

approaches to discover the three forms of unexpected sequences. The usefulness and effectiveness

of the framework Muse are shown with the experiments on real Web server access records data

and synthetic data.

We developed the approaches Taufu and Ufr to extend the framework Muse by adopting

fuzzy set theory for describing sequence occurrence. We studied the fuzzy unexpectedness in

sequence occurrence as tau-fuzzy unexpected sequences with developing the approach Taufu. We

then proposed the notion of unexpected fuzzy recurrence behavior in sequence data with respect

to the belief system consists of fuzzy recurrence rules, and the approach Ufr is developed to

discover unexpected fuzzy recurrences. The approaches Taufu and Ufr are evaluated with the

experiments on real Web server access records data.

We proposed a generalization of the framework Muse with respect to the concept hierarchies

on the taxonomy of data. To reduce the complexities in constructing the belief system, we propose

the notions of generalized unexpected sequences. We also proposed the notion of soft belief and

develop the approach SoftMuse to discover soft unexpected sequences in hierarchical data, where

the belief system consists only of generalized sequence rules and a concept hierarchy. Unexpected

sequences are therefore stated by determining the relatedness and contradiction with computing
147
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the semantic similarity between generalized sequence rules on the concept hierarchy.

We proposed the notions of unexpected sequential patterns and unexpected implication rules,

in order to evaluate the discovered unexpected sequences by using a self-validation process. We

also proposed three forms of unexpected implication rules, include unexpected class rule, unexpected

association rule, and unexpected occurrence rule, to study what is associated with the unexpect-

edness, what implies the unexpectedness, and what the unexpectedness implies.

As a derived approach, we proposed the discovery and evaluation of unexpected sentences in free

format text documents. We presented the part-of-speech data model of free format text documents,

and then we presented the discovery of opposite sentiments in the context of opinion mining. We

further generalized this approach to general text classification, where we proposed sequential

pattern based class descriptors, and then we proposed the notion of unexpected sentences in text

documents. The experimental evaluation shows that the accuracy of text classification can be

improved with eliminating unexpected sentences.

9.2 Future Work

In this section, we discuss the perspectives on our future research work, which include the following

directions.

9.2.1 Mining Predictive Sequence Implication Rules

The framework Muse developed in Chapter 4 discovers multiple unexpected sequences with re-

spect to a belief system consists of sequence rules and semantic contradictions between sequences.

In Chapter 6, we further developed SoftMuse that discovers unexpected sequences with respect

to sequence rules and concept hierarchies. Therefore, the construction of sequence rules is essential

to our proposed approaches.

As discussed in Chapter 3, many existing approaches can be used for mining sequence asso-

ciation rules, so that we are much interested in mining predictive sequence implication rules in

the form sα →
τ sβ, where τ is a constraint on the range of gaps between the premise and con-

clusion sequences sα and sβ. However, the discovery of similar sequence rules is very limited. In

[HS05], Hetland and Sætrom proposed a genetic programming [Koz92] based approach to discover

sequence rules in time series, where the addressed sequence rules are very close to our notion of

predictive sequence implication rules.

We are currently developing a pattern-growth [PHW07] based general purposed approach to

discover predictive sequence implication rules in sequence databases. In this approach, we con-

sider three interestingness measures in the mining process, including support, confidence, and gap

distribution. The support of the rule is defined as the number of sequences that support the rule;

the confidence of the rule is defined as the fraction of the number of sequences that support the
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rule on the number of sequences that support the premise sequence sα. Given a rule sα →
τ sβ and

a sequence database D, the gap distribution is the distribution of the gaps between the premise

and conclusion sequences in the mining process, which specifies the predictability of a rule. In

Section 7.3.3 of Chapter 7, we have proposed a routine GapDist (Algorithm 19) to compute the

gap distribution, which can be integrated into the pattern-growth framework.

9.2.2 Mining Unexpectedness with Fuzzy Rules

In Chapter 5, we have discussed that there is a very extended way of considering fuzzy association

rules and gradual rules in discovering the unexpectedness in data. Hence, we are interested in

mining more complex unexpectedness with fuzzy rules, which can be summarized as Table 9.1.

Rule Semantic Contradiction Unexpected Rules

if X is A, then Y is B A 6≃sem C if X is C, then Y is B

if X is A, then Y is B B 6≃sem D if X is A, then Y is D

Table 9.1: Fuzzy unexpectedness.

Unexpectedness can be addressed by considering fuzzy association rules. For instance, if “age

is old → salary is high” corresponds to prior knowledge, then “age is young → salary is high” or

“age is old → salary is low” can be considered as unexpected, since we have that old contradicts

young and high contradicts low. The same manner can also be extended to gradual rules. For

instance, if prior knowledge shows that “ age increases→ salary increases”, then “age increases

→ salary decreases” is unexpected, since we have that increase contradicts decrease, etc.

Rule Semantic Contradiction Unexpected Rules

if X is A, then Y is B A 6≃sem C if X is C and Z is E, then Y is B

if X is A, then Y is B A 6≃sem C if X is C, then Y is B and Z is E

if X is A, then Y is B B 6≃sem D if X is A and Z is E, then Y is D

if X is A, then Y is B B 6≃sem D if X is A, then Y is D and Z is E

Table 9.2: Complex unexpectedness.

Our goal is not discover only unexpected rules, but also the correlations within unexpected

rules. Table 9.2 lists more complex cases, where the correlations within unexpected rules can be

measured by frequency.

9.2.3 Mining Intermediate Patterns

Let us consider a belief b consisting of a sequence association rule sα → sβ and the semantic

contradiction sβ 6≃sem sγ. From this belief, a sequence supporting the rule sα → sγ is unexpected.
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Considering a large sequence database D, a subset Db ⊆ D can be discovered, where each sequence

s ∈ Db supports the rule sα → sγ. If we can find the rule sα ∧ sα
′ → sγ in the sequence set Db

with strong support and confidence value, then we can say that the sequence sα
′ is a key sequence,

which may play an important role in the causality of the unexpectedness.

From this observation, we propose the notion of intermediate patterns in the context of associ-

ation rule mining. Given an association rule X → Y , where X and Y are two patterns (itemsets),

the rule depicts that the presence of X implies the presence of Y . Different from this notion, we

are interested in the case that the patterns X and Y are not present in same itemsets, however, a

pattern Z can occur X ∪ Y . We call such a rule as a transition rule, denoted as X
Z
→ Y , where

X, Y , and Z are three patterns, and the pattern Z is so called a intermediate pattern. Such a rule

can be represented as follows:

(X
Z
→ Y )⇒ (X ∪ ¬Z 6→ Y ) ∧ (X ∪ Z → Y ).

Intermediate patterns can be interesting to many domains. For instance, Swanson found

papers that connected terms A and B are also papers that connected B and C. From that, he

made connections A to C [Swa86], where one example was a connection between fish oil and

migraines. Not difficult to see, in the problem of Swanson’s Raynaud-Fish Oil and Migraine-

Magnesium discoveries, which is also closely connected to text mining applications [GL96, Sri04,

WKdJvdBV01], an intermediate pattern plays the role of the term B.

The notion of intermediate pattern can be push back to the context of sequence mining, with

the notion of sequence transition rule, denoted as sα

sγ

→ sβ, that is,

(sα

sγ

→ sβ)⇒ (sα · ¬sγ 6→ sβ) ∧ (sα · sβ → sγ).

A sequence transition rule sα

sγ
→ sβ depicts that if the sequence sγ occurs after the occurrence of

the sequence sα, then the sequence sβ will occur later; otherwise, without the sequence sγ , the

sequence sβ does not occur.

To discover (sequence) transition rules and intermediate patterns/sequences can be interesting

for finding new trends or new chances for business intelligence. In [Ohs06], a similar business

process is introduced in terms of finding KeyGraph from events or states for chance discovery.

9.2.4 Mining Unexpected Sentences with Dependency Tree

In Chapter 8, we proposed a general framework for discovery unexpected sentences in text doc-

uments, where the semantic contradictions are determined from antonyms of words. Obvious,

we cannot indicate antonyms for most nouns and verbs, hence, even though we have proposed a

general framework, the application is limited to sentiment classification.

We are interested in extending our approach with two methods. On one hand, according to the

framework SoftMuse, concept hierarchies can be used for determining semantic contradictions, so
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that building concept hierarchies from text (e.g., [CHS05, SC99]) can help to improve our approach

to fit the requirement of general text classification problems. On the other hand, dependency

parsing of text is well studied in recent (e.g., [Att06, ACC07, AC07, AD09, CA07]), where the

dependency tree constructed from text contains semantic information of the text. Therefore,

considering the dependency tree constructed from training documents, the unexpected sentences

can be extracted with respect to the unexpected tree patterns discovered from dependency tree

constructed from test documents.

9.2.5 Applications

Research serves applications. We are also interested in pushing our approaches proposed in the

framework of this thesis to real world applications.

In this thesis, we have performed a lot of experiments on Web access log data, which show the

effectiveness of our approaches in (but not limited to) the context of Web usage mining. Hence,

our perspectives include the development of a complete toolkit WebUser for improving Web sites

by analyzing frequent and unexpected Web usage.

Moreover, many data mining approaches consider only binary-valued data model, such as fre-

quent patterns, association rules, sequential patterns, and sequence rules. Hence, our perspectives

also include porting our approaches to real world relational database. In this application, we will

first construct sequence rules, then generate concept hierarchies from relational data [JHP04], and

finally, unexpected behaviors including unexpected sequences, unexpected sequential patterns, and

unexpected implication rules can be discovered.

9.3 Final Thoughts

The rule speed increases→ mass increases is unexpected to classical laws of physics. Unexpect-

edness might predicts new knowledge. Knowledge based knowledge discovery is interesting.

Knowledge is like a round, the inside is known and the outside is unknown: the more known,

the more unknown.
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KnowledgeKnowledge

Unknown Unknown

Figure 9.1: Final thoughts.



Bibliography

[AC07] Giuseppe Attardi and Massimiliano Ciaramita. Tree revision learning for depen-

dency parsing. In HLT-NAACL, pages 388–395, 2007.

[ACC07] Giuseppe Attardi, Atanas Chanev, and Massimiliano Ciaramita. Multilingual

dependency parsing and domain adaptation using DeSR. In EMNLP-CoNLL,

pages 1112–1118, 2007.

[AD09] Giuseppe Attardi and Felice Dell’Orletta. Reverse revision and linear tree com-

bination for dependency parsing. In HLT-NAACL, pages 261–264, 2009.

[AFGY02] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential PAttern

Mining using a bitmap representation. In KDD, pages 429–435, 2002.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association

rules between sets of items in large databases. In SIGMOD, pages 207–216,

1993.

[AP02] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional

spaces. In PKDD, pages 15–26, 2002.

[AP05] Fabrizio Angiulli and Clara Pizzuti. Outlier mining in large high-dimensional

data sets. IEEE Transactions on Knowledge and Data Engineering, 17(2):203–

215, 2005.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ-

ation rules in large databases. In VLDB, pages 487–499, 1994.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

ICDE, pages 3–14, 1995.

[Att06] Giuseppe Attardi. Experiments with a multilanguage non-projective dependency

parser. In CoNLL, pages 166–170, 2006.

[AZ02] Maria-Luiza Antonie and Osmar R. Zaiane. Text document categorization by

term association. In ICDM, pages 19–26, 2002.
153



154 BIBLIOGRAPHY

[BCR07] Farah Benamara, Carmine Cesarano, and Diego Reforgiato. Sentiment analysis:

Adjectives and adverbs are better than adjectives alone. In ICWSM, 2007.

[BCS+07] Fernando Berzal, Juan C. Cubero, Daniel Sánchez, María Amparo Vila Miranda,

and José-María Serrano. An alternative approach to discover gradual depen-

dencies. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 15(559-570), 2007.

[BGGB05] Julien Blanchard, Fabrice Guillet, Régis Gras, and Henri Briand. Using

information-theoretic measures to assess association rule interestingness. In

ICDM, pages 66–73, 2005.

[BH06] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based measures

of lexical semantic relatedness. Computational Linguistics, 32(1):13–47, 2006.

[BM98] Alex G. Büchner and Maurice D. Mulvenna. Discovering internet marketing intel-

ligence through online analytical Web usage mining. SIGMOD Record, 27(4):54–

61, 1998.

[BMUT97] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic

itemset counting and implication rules for market basket data. In SIGMOD,

pages 255–264, 1997.

[BS03] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. In KDD, 2003.

[BT97] Gideon Berger and Alexander Tuzhilin. Discovering unexpected patterns in tem-

poral data using temporal logic. In Temporal Databases: Research and Practice,

pages 281–309. Springer, 1997.

[CA97] Keith C. C. Chan and Wai-Ho Au. Mining fuzzy association rules. In CIKM,

pages 209–215, 1997.

[CA07] Massimiliano Ciaramita and Giuseppe Attardi. Dependency parsing with second-

order feature maps and annotated semantic information. In IWPT, pages 133–

143, 2007.

[Ca09] Ding-Ying Chiu and Yi-Hung Wu and. Efficient frequent sequence mining by a

dynamic strategy switching algorithm. The VLDB Journal, 18(1):303–327, 2009.

[CCH02] Yen-Liang Chen, Shih-Sheng Chen, and Ping-Yu Hsu. Mining hybrid sequential

patterns and sequential rules. Information Systems, 27(5):345–362, 2002.



BIBLIOGRAPHY 155

[CG07] Toon Calders and Bart Goethals. Non-derivable itemset mining. Data Mining

and Knowledge Discovery, 14(1):171–206, 2007.

[CH06] Yen-Liang Chen and Tony Cheng Kui Huang. A new approach for discovering

fuzzy quantitative sequential patterns in sequence databases. Fuzzy Sets and

Systems, 157(12):1641–1661, 2006.

[CHS05] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Learning concept hierarchies

from text corpora using formal concept analysis. Journal of Artificial Intelligence

Research, 24:305–339, 2005.

[Cog] Cognitive Science Laboratory, Princeton University. WordNet: A lexical database

for the english language. http://wordnet.princeton.edu/.

[CTCH01] Ruey-Shun Chen, Gwo-Hshiung Tzeng, C. C. Chen, and Yi-Chung Hu. Discovery

of fuzzy sequential patterns for fuzzy partitions in quantitative attributes. In

AICCSA, pages 144–150, 2001.

[CW08] Yen-Liang Chen and Cheng-Hsiung Weng. Mining association rules from impre-

cise ordinal data. Fuzzy Sets and Systems, 159(4):460–474, 2008.

[dAdSRJ03] Sandra de Amo and Ary dos Santos Rocha Jr. Mining generalized sequential

patterns using genetic programming. In IC-AI, pages 451–456, 2003.

[dAF05] Sandra de Amo and Daniel A. Furtado. First-order temporal pattern mining

with regular expression constraints. In SBBD, pages 280–294, 2005.

[DJLT08] Lisa Di-Jorio, Anne Laurent, and Maguelonne Teisseire. Fast extraction of grad-

ual association rules: A heuristic based method. In CSTST, pages 205–210,

2008.

[DL98] Guozhu Dong and Jinyan Li. Interestingness of discovered association rules in

terms of neighborhood-based unexpectedness. In PAKDD, pages 72–86, 1998.

[DLM+98] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic

Smyth. Rule discovery from time series. In KDD, pages 16–22, 1998.

[DLP03] Kushal Dave, Steve Lawrence, and David M. Pennock. Mining the peanut gallery:

Opinion extraction and semantic classification of product reviews. In WWW,

pages 519–528, 2003.

[DMSV03] Miguel Delgado, Nicolás Marín, Daniel Sánchez, and María-Amparo Vila. Fuzzy

association rules: general model and applications. IEEE Transactions on Fuzzy

Systems, 11(2):214–225, 2003.



156 BIBLIOGRAPHY

[DP06] Didier Dubois and Eyke Hüllermeier Henri Prade. A systematic approach to the

assessment of fuzzy association rules. Data Mining and Knowledge Discovery,

13(2):167–192, 2006.

[ES07] Andrea Esuli and Fabrizio Sebastiani. PageRanking WordNet synsets: An ap-

plication to opinion mining. In ACL, pages 424–431, 2007.

[Fel98] Christiane Fellbaum. WordNet: An electronic lexical database. MIT Press, 1998.

[FLT07] Céline Fiot, Anne Laurent, and Maguelonne Teisseire. From crispness to fuzzi-

ness: Three algorithms for soft sequential pattern mining. IEEE Transactions

on Fuzzy Systems, 15(6):1263–1277, 2007.

[FMLT08] Céline Fiot, Florent Masseglia, Anne Laurent, and Maguelonne Teisseire. Grad-

ual trends in fuzzy sequential patterns. In IPMU, pages 456–463, 2008.

[FPSS96a] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data

mining to knowledge discovery: An overview. In Usama M. Fayyad, Gregory

Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Ad-

vances in Knowledge Discovery and Data Mining, pages 1–34. AAAI/MIT Press,

1996.

[FPSS96b] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Knowledge

discovery and data mining: Towards a unifying framework. In KDD, pages 82–88,

1996.

[GH06] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining:

A survey. ACM Computing Surveys, 38(3):9, 2006.

[GKM+03] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu

Toivonen, and Ram Sewak Sharm. Discovering all most specific sentences. ACM

Transactions on Database Systems, 28(2):140–174, 2003.

[GL96] Michael D. Gordon and Robert K. Lindsay. Toward discovery support systems:

A replication, re-examination, and extension of Swanson’s work on literature-

based discovery of a connection between Raynaud’s and fish oil. Journal of the

American Society for Information Science, 47(2):116–128, 1996.

[GM08] Jorge Gracia and Eduardo Mena. Web-based measure of semantic relatedness.

In WISE, pages 136–150, 2008.



BIBLIOGRAPHY 157

[GRS99] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: Sequential

pattern mining with regular expression constraints. In VLDB, pages 223–234,

1999.

[HCTS03] Yi-Chung Hu, Ruey-Shun Chen, Gwo-Hshiung Tzeng, and Jia-Hourng Shieh.

A fuzzy data mining algorithm for finding sequential patterns. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(2):173–194,

2003.

[HCXY07] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:

current status and future directions. Data Mining and Knowledge Discovery,

15(1):55–86, 2007.

[HD04] Sherri K. Harms and Jitender S. Deogun. Sequential association rule mining with

time lags. Journal of Intelligent Information Systems, 22(1):7–22, 2004.

[HF95] Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules from

large databases. In VLDB, pages 420–431, 1995.

[HH99a] Robert J. Hilderman and Howard J. Hamilton. Heuristic measures of interest-

ingness. In PKDD, pages 232–241, 1999.

[HH99b] Robert J. Hilderman and Howard J. Hamilton. Heuristics for ranking the inter-

estigness of discovered knowledge. In PAKDD, pages 204–209, 1999.

[HH01] Robert J. Hilderman and Howard J. Hamilton. Evaluation of interestingness

measures for ranking discovered knowledge. In PAKDD, pages 247–259, 2001.

[HH03] Robert J. Hilderman and Howard J. Hamilton. Measuring the interestingness

of discovered knowledge: A principled approach. Intelligent Data Analysis,

7(4):347–382, 2003.

[HKCJ06] Yueh-Min Huang, Yen-Hung Kuo, Juei-Nan Chen, and Yu-Lin Jeng. NP-miner:

A real-time recommendation algorithm by using Web usage mining. Knowledge

Based Systems, 19(4):272–286, 2006.

[HL04] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In KDD,

pages 168–177, 2004.

[hLLk97] Jee hyong Lee and Hyung Lee-kwang. An extension of association rules using

fuzzy sets. In IFSA, pages 399–402, 1997.

[HLSL00] Farhad Hussain, Huan Liu, Einoshin Suzuki, and Hongjun Lu. Exception rule

mining with a relative interestingness measure. In PAKDD, pages 86–97, 2000.



158 BIBLIOGRAPHY

[HLW03] Tzung-Pei Hong, Kuei-Ying Lin, and Shyue-Liang Wang. Fuzzy data mining for

interesting generalized association rules. Fuzzy Sets and Systems, 138(2):255–269,

2003.

[HM97] Vasileios Hatzivassiloglou and Kathleen McKeown. Predicting the semantic ori-

entation of adjectives. In ACL, pages 174–181, 1997.

[HMWG98] Jochen Hipp, Andreas Myka, Rüdiger Wirth, and Ulrich Güntzer. A new algo-

rithm for faster mining of generalized association rules. In PKDD, pages 74–82,

1998.

[HS05] Magnus Lie Hetland and Pål Sætrom. Evolutionary rule mining in time series

databases. Machine Learning, 58(2-3):107–125, 2005.

[Hül02] Eyke Hüllermeier. Association rules for expressing gradual dependencies. In

PKDD, pages 200–211, 2002.

[HW02] Yin-Fu Huang and Chieh-Ming Wu. Mining generalized association rules using

pruning techniques. In ICDM, pages 227–234, 2002.

[HY06] Yu Hirate and Hayato Yamana. Generalized sequential pattern mining with item

intervals. Journal of Computers, 1(3):51–60, 2006.

[Ins] Institute for Computational Linguistics of the University of Stuttgart. Tree-

Tagger: A language independent part-of-speech tagger. http://www.ims.uni-

stuttgart.de/projekte/corplex/TreeTagger/.

[JC97] Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statis-

tics and lexical taxonomy. In ICCL, 1997.

[JHP04] Mikael R. Jensen, Thomas Holmgren, and Torben Bach Pedersen. Discovering

multidimensional structure in relational data. In DaWaK, pages 138–148, 2004.

[JKA01] Mahesh V. Joshi, Vipin Kumar, and Ramesh C. Agarwal. Evaluating boosting

algorithms to classify rare classes: comparison and improvements. In ICDM,

pages 257–264, 2001.

[JL06a] Nitin Jindal and Bing Liu. Identifying comparative sentences in text documents.

In SIGIR, pages 244–251, 2006.

[JL06b] Nitin Jindal and Bing Liu. Mining comparative sentences and relations. In AAAI,

pages 1331–1336, 2006.



BIBLIOGRAPHY 159

[JLT06] Simon Jaillet, Anne Laurent, and Maguelonne Teisseire. Sequential patterns for

text categorization. Intelligent Data Analysis, 10(3):199–214, 2006.

[JS04] Szymon Jaroszewicz and Dan A. Simovici. Interestingness of frequent itemsets

using bayesian networks as background knowledge. In KDD, pages 178–186, 2004.

[JS05] Szymon Jaroszewicz and Tobias Scheffer. Fast discovery of unexpected patterns

in data, relative to a bayesian network. In KDD, pages 118–127, 2005.

[JTH01] Wen Jin, Anthony K. H. Tung, and Jiawei Han. Mining top-n local outliers in

large databases. In KDD, pages 293–298, 2001.

[KFW98] Chan Man Kuok, Ada Wai-Chee Fu, and Man Hon Wong. Mining fuzzy associ-

ation rules in databases. SIGMOD Record, 27(1):41–46, 1998.

[KMMdR04] Jaap Kamps, Robert J. Mokken, Maarten Marx, and Maarten de Rijke. Using

WordNet to measure semantic orientation of adjectives. In LREC, pages 1115–

1118, 2004.

[KN98] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based

outliers in large datasets. In VLDB, pages 392–403, 1998.

[Koz92] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. The MIT Press, 1992.

[KZC08] Daniel Kunkle, Donghui Zhang, and Gene Cooperman. Mining frequent gener-

alized itemsets and generalized association rules without redundancy. Journal of

Computer Science and Technology, 23(1):77–102, 2008.

[LCN03] Bing Liu, Chee Wee Chin, and Hwee Tou Ng. Mining topic-specific concepts and

definitions on the Web. In WWW, 2003.

[Lew98] David D. Lewis. Naive (Bayes) at forty: The independence assumption in infor-

mation retrieval. In ECML, pages 4–15, 1998.

[LG94] David D. Lewis and William A. Gale. A sequential algorithm for training text

classifiers. In SIGIR, pages 3–12, 1994.

[LH96] Bing Liu and Wynne Hsu. Post-analysis of learned rules. In AAAI/IAAI, pages

828–834, 1996.

[LHM98] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association

rule mining. In KDD, pages 121–128, 1998.



160 BIBLIOGRAPHY

[LHML99] Bing Liu, Wynne Hsu, Lai-Fun Mun, and Hing-Yan Lee. Finding interesting

patterns using user expectations. IEEE Transactions on Knowledge and Data

Engineering, 11(6):817–832, 1999.

[LHP01] Wenmin Li, Jiawei Han, and Jian Pei. CMAR: Accurate and efficient classification

based on multiple class-association rules. In ICDM, pages 369–376, 2001.

[LKL08] David Lo, Siau-Cheng Khoo, and Chao Liu. Efficient mining of recurrent rules

from a sequence database. In DASFAA, pages 67–83, 2008.

[LLP07] Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Mining unexpected

sequential patterns and rules. Technical Report RR-07027 (2007), LIRMM, 2007.

[LLP08a] Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Découverte de motifs

séquentiels et de règles inattendus. In EGC, pages 535–540, 2008.

[LLP08b] Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Discovering fuzzy un-

expected sequences with beliefs. In IPMU, pages 1709–1716, 2008.

[LLP08c] Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Mining unexpected

Web usage behaviors. In ICDM, pages 283–297, 2008.

[LLP09] Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Mining unexpected

sequential patterns and implication rules. In Yun Sing Koh and Nathan Rountree,

editors, Rare Association Rule Mining and Knowledge Discovery: Technologies

for Infrequent and Critical Event Detection, Advances in Data Warehousing and

Mining Book Series. IGI Publishing, 2009.

[LLRP08] Dong (Haoyuan) Li, Anne Laurent, Mathieu Roche, and Pascal Poncelet. Ex-

traction of opposite sentiments in classified free format text reviews. In DEXA,

pages 710–717, 2008.

[LLT07] Dong (Haoyuan) Li, Anne Laurent, and Maguelonne Teisseire. On transversal

hypergraph enumeration in mining sequential patterns. In IDEAS, pages 303–

307, 2007.

[LLW02] Ming-Yen Lin, Suh-Yin Lee, and Sheng-Shun Wang. DELISP: Efficient discovery

of generalized sequential patterns by delimited pattern-growth technology. In

PAKDD, pages 198–209, 2002.

[LMY01] Bing Liu, Yiming Ma, and Philip S. Yu. Discovering unexpected information

from your competitors’ Web sites. In KDD, pages 144–153, 2001.



BIBLIOGRAPHY 161

[LSST+02] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. Text classification using string kernels. Journal of Machine Learning

Research, 2:419–444, 2002.

[LZO99] Neal Lesh, Mohammed J. Zaki, and Mitsunori Ogihara. Mining features for

sequence classification. In KDD, pages 342–346, 1999.

[McC96] Andrew Kachites McCallum. Bow: A toolkit for statisti-

cal language modeling text retrieval, classification and clustering.

http://www.cs.cmu.edu/~mccallum/bow, 1996.

[McG05] Ken McGarry. A survey of interestingness measures for knowledge discovery. The

Knowledge Engineering Review, 20(1):39–61, 2005.

[MCP98] Florent Masseglia, Fabienne Cathala, and Pascal Poncelet. The PSP approach

for mining sequential patterns. In PKDD, pages 176–184, 1998.

[MCS06] Rada Mihalcea, Courtney Corley, and Carlo Strapparava. Corpus-based and

knowledge-based measures of text semantic similarity. In AAAI, pages 775–780,

2006.

[MDL+00] Bamshad Mobasher, Honghua Dai, Tao Luo, Yuqing Sun, and Jiang Zhu. In-

tegrating Web usage and content mining for more effective personalization. In

EC-Web, pages 165–176, 2000.

[MDLN02] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Using sequen-

tial and non-sequential patterns in predictive Web usage mining tasks. In ICDM,

pages 669–672, 2002.

[MLK06] Alex Markov, Mark Last, and Abraham Kandel. Fast categorization of Web

documents represented by graphs. In WEBKDD, pages 56–71, 2006.

[MPT00] Florent Masseglia, Pascal Poncelet, and Maguelonne Teisseire. Web usage mining:

How to efficiently manage new transactions and new clients. In PKDD, pages

530–535, 2000.

[MPT04] Florent Masseglia, Pascal Poncelet, and Maguelonne Teisseire. Pre-processing

time constraints for efficiently mining generalized sequential patterns. In TIME,

pages 87–95, 2004.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent

episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259–

289, 1997.



162 BIBLIOGRAPHY

[MVDA07] Rokia Missaoui, Petko Valtchev, Chabane Djeraba, and Mehdi Adda. Toward

recommendation based on ontology-powered Web-usage mining. IEEE Internet

Computing, 11(4):45–52, 2007.

[NCS95] NCSA HTTPd Development Team. NCSA HTTPd Online Document: Transfer-

Log Directive, 1995.

[NMTM00] Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, and Tom Mitchell.

Text classification from labeled and unlabeled documents using EM. Machine

Learning, 39(2-3):103–134, 2000.

[NMW97] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical structure in

sequences: A linear-time algorithm. Journal of Artificial Intelligence Research,

7:67–82, 1997.

[Ohs06] Yukio Ohsawa. Chance discovery: The current states of art. In Yukio Ohsawa and

Shusaku Tsumoto, editors, Chance Discoveries in Real World Decision Making,

Studies in Computational Intelligence, pages 3–20. Springer, 2006.

[PE05] Ana-Maria Popescu and Oren Etzioni. Extracting product features and opinions

from reviews. In HLT/EMNLP, pages 339–346, 2005.

[PHMA+04] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qim-

ing Chen, Umeshwar Dayal, and Meichun Hsu. Mining sequential patterns by

pattern-growth: the prefixspan approach. IEEE Transactions on Knowledge and

Data Engineering, 16(11):1424–1440, 2004.

[PHMAP01] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, and Helen Pinto. PrefixSpan: Min-

ing sequential patterns efficiently by prefix-projected pattern growth. In ICDE,

pages 215–224, 2001.

[PHW02] Jian Pei, Jiawei Han, and Wei Wang. Mining sequential patterns with constraints

in large databases. In CIKM, pages 18–25, 2002.

[PHW07] Jian Pei, Jiawei Han, and Wei Wang. Constraint-based sequential pattern min-

ing: the pattern-growth methods. Journal of Intelligent Information Systems,

28(2):133–160, 2007.

[PL04] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts. In ACL, pages 271–278,

2004.



BIBLIOGRAPHY 163

[PLV02] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment

classification using machine learning techniques. In EMNLP, pages 79–86, 2002.

[PS07] Simone Paolo Ponzetto and Michael Strube. Knowledge derived from Wikipedia

for computing semantic relatedness. Journal of Artificial Intelligence Research,

30:181–212, 2007.

[PS08] Giuseppe Pirrò and Nuno Seco. Design, implementation and evaluation of a

new similarity metric combining feature and intrinsic information content. In

ODBASE, pages 1271–1288, 2008.

[PSM94] Gregory Piatetsky-Shapiro and Christopher J. Matheus. The interingness of

deviations. In KDD Workshop, pages 25–36, 1994.

[PT98] Balaji Padmanabhan and Alexander Tuzhilin. A belief-driven method for dis-

covering unexpected patterns. In KDD, pages 94–100, 1998.

[PT00] Balaji Padmanabhan and Alexander Tuzhilin. Small is beautiful: Discovering

the minimal set of unexpected patterns. In KDD, pages 54–63, 2000.

[PT02] Balaji Padmanabhan and Alexander Tuzhilin. Knowledge refinement based on

the discovery of unexpected patterns in data mining. Decision Support Systems,

33(3):309–321, 2002.

[PT06] Balaji Padmanabhan and Alexander Tuzhilin. On characterization and discov-

ery of minimal unexpected patterns in rule discovery. IEEE Transactions on

Knowledge and Data Engineering, 18(2):202–216, 2006.

[RCP08] Chedy Raïssi, Toon Calders, and Pascal Poncelet. Mining conjunctive sequential

patterns. Data Mining and Knowledge Discovery, 17(1), 2008.

[RE03] M. Andrea Rodríguez and Max J. Egenhofer. Determining semantic similarity

among entity classes from different ontologies. IEEE Transactions on Knowledge

and Data Engineering, 15(2):442–456, 2003.

[Res95] Philip Resnik. Using information content to evaluate semantic similarity in a

taxonomy. In IJCAI, pages 448–453, 1995.

[RRS00] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms

for mining outliers from large data sets. In SIGMOD, 2000.

[SA95] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association rules.

In VLDB, pages 407–419, 1995.



164 BIBLIOGRAPHY

[SA96a] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association

rules in large relational tables. In ACM SIGMOD, pages 1–12, 1996.

[SA96b] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: gener-

alizations and performance improvements. In EDBT, pages 3–17, 1996.

[San90] Beatrice Santorini. Part-of-Speech tagging guidelines for the Penn Treebank

project. Technical Report MS-CIS-90-47, Department of Computer and Infor-

mation Science, University of Pennsylvania, 1990.

[SB88] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text

retrieval. Information Processing and Management, 24(5):513–523, 1988.

[SC99] Mark Sanderson and W. Bruce Croft. Deriving concept hierarchies from text. In

SIGIR, pages 206–213, 1999.

[SCA06] Pei Sun, Sanjay Chawla, and Bavani Arunasalam. Mining for outliers in sequen-

tial databases. In SDM, pages 94–105, 2006.

[SCDT00] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan.

Web usage mining: Discovery and applications of usage patterns from Web data.

SIGKDD Explorations, 1(2):12–23, 2000.

[Sch94] Helmut Schmid. Probabilistic Part-of-Speech tagging using decision trees. In

NeMLaP, 1994.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

Computing Surveys, 34(1):1–47, 2002.

[SK98] Einoshin Suzuki and Yves Kodratoff. Discovery of surprising exception rules

based on intensity of implication. In PKDD, pages 10–18, 1998.

[Sme88] P. Smets. Belief functions. In P. Smets, A. Mamdani, D. Dubois, and H. Prade,

editors, Non-standard logics for automated reasoning. Academic Press, 1988.

[SPF99] Myra Spiliopoulou, Carsten Pohle, and Lukas Faulstich. Improving the effec-

tiveness of a Web site with Web usage mining. In WEBKDD, pages 142–162,

1999.

[Spi99] Myra Spiliopoulou. Managing interesting rules in sequence mining. In PKDD,

pages 554–560, 1999.



BIBLIOGRAPHY 165

[Sri04] Padmini Srinivasan. Text mining: Generating hypotheses from MEDLINE. Jour-

nal of the American Society for Information Science and Technology, 55(5):396–

413, 2004.

[SS96] Einoshin Suzuki and Masamichi Shimura. Exceptional knowledge discovery in

databases based on information theory. In KDD, pages 275–278, 1996.

[ST93] Daniel D. Sleator and Davy Temperley. Parsing English with a link grammar.

In 3rd International Workshop on Parsing Technologies, 1993.

[ST95] Abraham Silberschatz and Alexander Tuzhilin. On subjective measures of inter-

estingness in knowledge discovery. In KDD, pages 275–281, 1995.

[ST96] Abraham Silberschatz and Alexander Tuzhilin. What makes patterns interesting

in knowledge discovery systems. IEEE Transactions on Knowledge and Data

Engineering, 8(6):970–974, 1996.

[Suz96] Einoshin Suzuki. Discovering unexpected exceptions: A stochastic approach. In

RSFD, pages 225–232, 1996.

[Suz97] Einoshin Suzuki. Autonomous discovery of reliable exception rules. In KDD,

pages 259–262, 1997.

[Suz06] Einoshin Suzuki. Data mining methods for discovering interesting exceptions

from an unsupervised table. The Journal of Universal Computer Science,

12(16):627–653, 2006.

[Swa86] Don R. Swanson. Fish oil, Raynaud’s syndrome, and undiscovered public knowl-

edge. Perspectives in Biology and Medicine, 30:7–18, 1986.

[SWL06] Weifeng Su, Jiying Wang, and Frederick H. Lochovsky. Automatic hierarchical

classification of structured deep Web databases. In WISE, pages 210–221, 2006.

[SZ05] Einoshin Suzuki and Jan M. Zytkow. Unified algorithm for undirected discovery

of exception rules. International Journal of Intelligent Systems, 20(7):673–691,

2005.

[SZH+06] Yang Song, Ding Zhou, Jian Huang, Isaac G. Councill, Hongyuan Zha, and C. Lee

Giles. Boosting the feature space: Text classification for unstructured data on

the Web. In ICDM, pages 1064–1069, 2006.

[TKS02] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right inter-

estingness measure for association. In KDD, pages 32–41, 2002.



166 BIBLIOGRAPHY

[TL07] Ming-Cheng Tseng and Wen-Yang Lin. Efficient mining of generalized associa-

tion rules with non-uniform minimum support. Data & Knowledge Engineering,

62(1):41–64, 2007.

[TS98] Shiby Thomas and Sunita Sarawagi. Mining generalized association rules and

sequential patterns using SQL queries. In KDD, pages 344–348, 1998.

[Tur01] Peter D. Turney. Mining the Web for synonyms: PMI-IR versus LSA on TOEFL.

In ECML, pages 491–502, 2001.

[Tur02] Peter D. Turney. Thumbs up or thumbs down? Semantic orientation applied to

unsupervised classification of reviews. In ACL, pages 417–424, 2002.

[Wei04] Gary M. Weiss. Mining with rarity: a unifying framework. SIGKDD Explo-

rations, 6(1):7–19, 2004.

[WH04] Jianyong Wang and Jiawei Han. BIDE: Efficient mining of frequent closed se-

quences. In ICDE, pages 79–90, 2004.

[WHL07] Jianyong Wang, Jiawei Han, and Chun Li. Frequent closed sequence mining

without candidate maintenance. IEEE Transactions on Knowledge and Data

Engineering, 19(8):1042–1056, 2007.

[WJL03] Ke Wang, Yuelong Jiang, and Laks V. S. Lakshmanan. Mining unexpected rules

by pushing user dynamics. In KDD, pages 246–255, 2003.

[WKdJvdBV01] Marc Weeber, Henny Klein, Lolkje T. W. de Jong-van den Berg, and Rein Vos.

Using concepts in literature-based discovery: Simulating Swanson’s Raynaud-

fish oil and migraine-magnesium discoveries. Journal of the American Society

for Information Science and Technology, 52(7):548–557, 2001.

[WWH04] Theresa Wilson, Janyce Wiebe, and Rebecca Hwa. Just how mad are you?

finding strong and weak opinion clauses. In AAAI, pages 761–769, 2004.

[WWH05] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual

polarity in phrase-level sentiment analysis. In HLT/EMNLP, 2005.

[WWH06] Theresa Wilson, Janyce Wiebe, and Rebecca Hwa. Recognizing strong and weak

opinion clauses. Computational Intelligence, 22(2):73–99, 2006.

[XPDY08] Zhengzheng Xing, Jian Pei, Guozhu Dong, and Philip S. Yu. Mining sequence

classifiers for early prediction. In SDM, pages 644–655, 2008.



BIBLIOGRAPHY 167

[YC94] Yiming Yang and Christopher G. Chute. An example-based mapping method for

text categorization and retrieval. ACM Transactions on Information Systems,

13(3):252–277, 1994.

[YH03] Hong Yu and Vasileios Hatzivassiloglou. Towards answering opinion questions:

Separating facts from opinions and identifying the polarity of opinion sentences.

In EMNLP, pages 129–136, 2003.

[YHA03] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining closed sequential

patterns in large databases. In SDM, pages 166–177, 2003.

[YHC04] Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. PEBL: Web page classi-

fication without negative examples. IEEE Transactions on Knowledge and Data

Engineering, 16(1):70–81, 2004.

[YLW04] Qiang Yang, Ian Tian Yi Li, and Ke Wang. Building association-rule based

sequential classifiers for Web-document prediction. Data Mining and Knowledge

Discovery, 8(3):253–273, 2004.

[Zad65] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[Zak01] Mohammed Javeed Zaki. SPADE: An efficient algorithm for mining frequent

sequences. Machine Learning, 42(1-2):31–60, 2001.

[ZMG08] Torsten Zesch, Christof Müller, and Iryna Gurevych. Using wiktionary for com-

puting semantic relatedness. In AAAI, pages 861–866, 2008.



168 BIBLIOGRAPHY



Publications

Book Chapters

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Mining unexpected sequential

patterns and implication rules. In Yun Sing Koh and Nathan Rountree, editors, Rare As-

sociation Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical

Event Detection, Advances in Data Warehousing and Mining Book Series. IGI Publishing,

2009.

Publications in Refereed International Journals

• Dong (Haoyuan) Li, Anne Laurent, Pascal Poncelet, and Mathieu Roche. Extraction of un-

expected sentences: A sentiment classification assessed approach. Intelligent Data Analysis

Journal (IDA), 14(1), 2010.

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Discovery of unexpected recur-

rence behaviors in sequence databases. International Journal of Computational Intelligence

Research (IJCIR), accepted 2009.

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. WebUser: mining unexpected Web

usage. International Journal of Business Intelligence and Data Mining (IJBIDM), accepted

2009.

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Discovering fuzzy unexpected

sequences with concept hierarchies. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems (IJUFKS), 17(Supplement-1):113–134, 2009.

Publications in Refereed France National Journals

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Extraction de comportements

inattendus dans le cadre du Web Usage Mining. La Revue des Nouvelles Technologies de

l’Information, deuxième numéro spécial sur la : Fouille de données complexes (RNTI), 2009.

169



Publications in Refereed International Conferences

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Recognizing unexpected recurrence

behaviors with fuzzy methods in sequence databases. In Proceedings of the 5th International

Conference on Soft Computing as Transdisciplinary Science and Technology (CSTST 2008),

pages 37–43, Cergy Pontoise, France, October 2008.

• Dong (Haoyuan) Li, Anne Laurent, Mathieu Roche, and Pascal Poncelet. Extraction of

opposite sentiments in classified free format text reviews. In Proceedings of the 19th In-

ternational Conference on Database and Expert Systems Applications (DEXA 2008), pages

710–717, Turin, Italy, September 2008.

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Mining unexpected Web usage

behaviors. In Proceedings of the 8th Industrial Conference on Data Mining (Industrial ICDM

2008), pages 283–297, Leipzig, Germany, July 2008. (Best Paper Award)

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Discovering fuzzy unexpected se-

quences with beliefs. In Proceedings of the 12th International Conference of Information Pro-

cessing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), pages

1709–1716, Málaga, Spain, Juin 2008.

• Dong (Haoyuan) Li, Anne Laurent, and Maguelonne Teisseire. On transversal hypergraph

enumeration in mining sequential patterns. In Proceedings of the 11th International Database

Engineering and Applications Symposium (IDEAS 2007), pages 303–307, Banff, Canada,

September 2007.

Publications in Refereed France National Conferences

• Dong (Haoyuan) Li, Anne Laurent, Mathieu Roche, and Pascal Poncelet. Recherche de

sentiments opposés par une approche floue à partir de textes libres. In Actes des Rencon-

tres Francophones sur la Logique Floue et ses Applications (LFA 2008), pages 26–33, Lens,

France, October 2008.

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Découverte de motifs séquentiels

et de règles inattendus. In Actes des 8ièmes Journées Francophones Extraction et Gestion

des Connaissances (EGC 2008), pages 535–540, Sophia Antipolis, France, January 2008.

170



Publications in Workshops

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Towards unexpected sequential

patterns. In Atelier Bases de Données Inductives, Plateforme Afia, Grenoble, France, July

2007.

Technical Reports

• Dong (Haoyuan) Li, Anne Laurent, and Pascal Poncelet. Mining unexpected sequential pat-

terns and rules. Technical Report RR-07027 (2007), Laboratoire d’Informatique de Robo-

tique et de Microélectronique de Montpellier, 2007.

171



172









Extraction de séquences inattendues: des motifs séquentiels aux règles d’implication

Les motifs séquentiels peuvent être vus comme une extension de la notion d’itemsets fréquents

intégrant diverses contraintes temporelles. La recherche de tels motifs consiste ainsi à extraire des

enchaînements d’ensembles d’items, couramment associés sur une période de temps bien spécifiée.

La construction de règles à partir de ces motifs séquentiels permet d’étendre la notion de règles

d’association pour la pris en compte de la temporalité. En fait, cette recherche met en évidence

des associations inter-transactions, contrairement à celle des règles d’association qui extrait des

combinaisons intra-transactions. Ce problème, posé à l’origine dans un contexte de marketing,

intéresse à présent des domaines aussi variés que les télécommunications, la finance, ou encore la

médecine et la bioinformatique.

Même s’il existe aujourd’hui de très nombreuses approches efficaces pour extraire des motifs, ces

derniers ne sont pas forcément adaptés aux besoins des applications réelles. En fait, les résultats

obtenus sont basés sur une mesure statistique et ne tiennent pas compte de la connaissance du

domaine. De plus, ces approches sont principalement axées sur la recherche de tendances et ne

permettent pas d’extraire des connaissances sur les éléments atypiques ou inattendus.

Dans le cadre de cette thèse, nous nous intéressons donc à la problématique de l’extraction de

motifs séquentiels et règles inattendus en intégrant la connaissance du domaine. Le travail présenté

dans cette thèse comporte la mise en œuvre d’un cadre MUSE pour l’extraction de séquences

inattendues par rapport à un système de croyances, des extensions avec la théorie de logique floue,

l’intégration des données hiérarchisées, la définition des motifs séquentiels et règles inattendus

et, enfin, l’extraction de phrases inattendues dans des documents textes. Des expérimentations

menées sur des données synthétiques et sur des données réelles sont rapportées et montrent l’intérêt

de nos propositions.

Mots-clés : Extraction de connaissances, fouille de données, base de données de séquences,

mesure d’intérêt, système de croyances, séquences inattendues, motifs séquentiels, règles séquen-

tielles, logique floue, hiérarchie, validation, classification de textes.

Discipline : Informatique
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