

Transition vitreuse et hétérogénéités dynamiques dans les liquides moléculaires et les polymères *Glass transition and dynamical heterogeneities in molecular liquids and polymers*

Cécile Dalle-Ferrier

Laboratoire de Chimie-Physique Université Paris-Sud 11

Glass transition phenomenology

Number of dynamically correlated molecules

Signature of the liquid in the glass

Outline

Number of dynamically correlated molecules

Signature of the liquid in the glass

Data from Chang and Bestul, 1972

Glass transition

Glass transition

6

Dramatic viscous slowing down approaching the glass transition How sensititive to external parameters?

Other control parameters : pressure and chain length

Tg changes with pressure P and chain length N

Data from Naoki et al.,1987

Data from Hintermeyer et al.,2008 8

Viscous slowing down and fragility

A. Angell , 1985

The viscous slowing down and the fragility are poorly understood nowadays.

Fragility – sensitivity to control parameters

Isobaric fragility :

$$m_{\rm P} = \left. \frac{\partial \log_{10}(\tau_{\alpha})}{\partial T_{\rm g}/T} \right|_{\rm P} (T = T_{\rm g})$$

Fragility changes - with P - with N

Fragility – sensitivity to control parameters

The divergence of a relaxation time in a system is always accompanied by the divergence of a characteristic length

Glass transition phenomenology

Number of dynamically correlated molecules

- Notion of cooperativity
- Getting a number of correlated molecules
- Results on various molecular liquids

Signature of the liquid in the glass

Cooperativity and correlation length

Cooperativity length

$$\tau(T) = \tau_0 \exp\left[N_{\rm coop}(T) \frac{\Delta \mu}{k_B T}\right]$$

$$N_{\rm coop} \nearrow$$
 as T \searrow

Adam and Gibbs, 1965

Correlation length

E. Weeks *et al.*, Science 287, 627 (2000) www.physics.emory.edu/~weeks/lab/glass

 Φ = 56% supercooled fluid 5% fastest of the particles in red

Large clusters of cooperative fast particles : spatially heterogeneous dynamics

Order parameter of the glass transition

- Divergence of relaxation time associated to a diverging correlation length
- Ergodic to non-ergodic transition

• f_Q^C = non-ergodicity parameter at Tc = order parameter

Correlation length

Intermediate scattering function : averaged correlation function

$$F(Q,t) = < C(t) >$$

Standard 2-time correlation function

e correlation
$$C(t) = \frac{1}{V} \int d^3 \vec{r} c(\vec{r}, t)$$

ion $c(\vec{r}, t) = \delta \rho(\vec{r}, 0) \delta \rho(\vec{r}, t)$

Density fluctuations in r at time t $\ \ \delta \rho(\overrightarrow{r},t) = \rho(\overrightarrow{r},t) - < \rho > 0$

Correlation length

 f_Q^C = non-ergodicity parameter at Tc

Fluctuations of C(t) around its average value :

 $\delta C(0,t) = C(0,t) - F(t)$ $C(0,t) = \delta \rho(0) \delta \rho(t)$

Dasgupta, 1991 Franz and Parisi, 2000 Relaxation function and correlation length

Relaxation function and correlation length

Relaxation function and correlation length

Growing number of dynamically correlated molecules

Generalization to other systems : Ncorr vs τ_{α}

Generalization to other kinds of systems : Ncorr vs τ_{α}

Number of dynamically correlated molecules

- $N_{\rm corr}$ growth over the whole T-range associated to the viscous slowing down

- T-dependence on many systems Comparison of absolute values at Tg rather at different P or N

New tool to understand glass transition
May be compared to other properties related to glass transition

Chain length dependence of glass transition : N effect

Tg data from lit. and from this work

Ncorr(T) very similar to $\tau_{\alpha}(T)$

At the glass transition temperature Tg

Small chain length dependence in Ncorr

compared to the effect on fragility

○ Hintermeyer at al., 2008
▲ other lit.data including ours

Glass transition phenomenology

Number of dynamically correlated molecules

Signature of the liquid in the glass

- Mean-square displacement
- Non-ergodicity factor
- Boson peak

Glass at Tg= frozen liquid

Short time processes as precusors of long time processes such as α relaxation ?

Correlation between fast and slow dynamics

Fast and slow dynamics correlation

Incoherent scattering

Coherent scattering

T-dependence of the mean-square displacement <u2>

T-dependence of u^2 related to T-dependence of τ_{α}

The slope of the MSD around Tg is independent of N While m_p changes with N

INS at the glass transition temperature

Incoherent INS at the glass transition temperature

Extra relaxation process in QES

- R_{BP} independent of N while m_P changes a lot
- Problem of the physical meaning of R_{BP} (QES and Boson Peak)

"Is the fragility of a liquid embedded in the properties of the glass?"

Scopigno at al., Science, 2003

Correlation between m_p and nonergodicity factor

From ESRF website

Fragility of liquids or *fragility* of glasses?

"Is the fragility of a liquid embedded in the properties of the glass?"

IXS spectra and non-ergodicity factor

Scopigno at al., 2003

N dependence of IXS spectra at Tg and low T

Correlation between m_p and nonergodicity factor

-No change in the spectra at Tg with N -Small change with N at low T

Non ergodicity factor versus T

No change in the spectra at Tg with N → Similar T-dependence for all N

Summary of chain length dependences

Conclusion part 3: Correlation between $m_{\rm P}$ and other properties

Conclusion part 3: Ncorr used as a new tool

- Same α and $f_{Q}(Tg)$ for all N
- Same R_{BP} for all N
- Same dlog(u2)/dlog(T) for all N
- Same β stretching parameter for all N Same $\rho_{\rm g}$ density at Tg for all N
 - BUT different m_p : from 60 to 160

Could the N-independent N_{corr,4}(Tg) be related to the N-independent high frequency properties measured in the glass?

rather than m_P

Working on glass transition consists in working:

- on many different systems (universal phenomena)
- on a large t-range (from ps to 1000s): different spectroscopies
- by combining solid and liquid physics and equilibrium/non-equilibrium approaches

It necessitates to:

- choose good observables
- compare to theories

Key points were:

- the choice of the systems
- the extra external parameters

In this context, I chose to present :

- Ncorr on a large choice of systems including molecular liquids, colloids, simulations and polymers

- Fast dynamics versus chain length through various glass properties

- Specific case of polymers