
HAL Id: tel-00431464
https://theses.hal.science/tel-00431464

Submitted on 12 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the three-dimensional visibility skeleton:
implementation and analysis

Linqiao Zhang

To cite this version:
Linqiao Zhang. On the three-dimensional visibility skeleton: implementation and analysis. Computer
Science [cs]. Université McGill, 2009. English. �NNT : �. �tel-00431464�

https://theses.hal.science/tel-00431464
https://hal.archives-ouvertes.fr

On the three-dimensional visibility skeleton:
implementation and analysis

Linqiao Zhang

School of Computer Science

McGill University, Montreal

September 2009

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of Ph.D.in Computer Science

c©2009 - Linqiao Zhang

Contents

Title Page . i
Table of Contents . iii
Abstract . vii
Résumé . ix
Declaration . xi
Acknowledgments . xiii
List of Figures . xv
List of Tables . xxi

1 Introduction 1

2 Background and Related Work 11
2.1 The Visibility Complex . 11

2.1.1 The 2D Visibility Complex . 12
2.1.2 The 3D Visibility Complex . 20

2.2 The Visibility Skeleton . 25
2.2.1 The 2D Visibility Skeleton . 26
2.2.2 The 3D Visibility Skeleton . 28
2.2.3 The Size Complexity of the Visibility Skeleton 38

2.3 Overview of the Sweep Algorithm . 40

3 Experimental Study of the Size of the 2 D V isibility Complex 45
3.1 Models . 46
3.2 Experiments . 48

3.2.1 Software . 48
3.2.2 Setting . 48
3.2.3 Experimental Results and Interpretation 50

3.3 Summary and Bibliographic Notes . 59

4 A n Implementation of the Sweep A lgorithm 61
4.1 The Input . 61

iii

iv Contents

4.2 The Output . 62
4.3 Description of the Implementation . 63

4.3.1 Preliminaries: The CGAL Library and Number Types 66
4.3.2 The 2D Visibility Skeleton . 68
4.3.3 Computing Events . 70
4.3.4 The Event List . 74
4.3.5 Updating the 2D Visibility Skeleton and the Event List 75
4.3.6 Computing the Ordering of Bitangents 80
4.3.7 Computing the 3D Visibility Skeleton Vertices 82

4.4 Complexity of the Implementation . 86
4.5 Software Validation . 87

4.5.1 Visualization . 88
4.5.2 Experimental Verification . 92

4.6 Performance . 93
4.6.1 Running Time in Terms of n and k 93
4.6.2 Running Time in Terms of the Number of Polygons 97
4.6.3 Running Time in Terms of Number Types 101

4.7 Conclusion and Bibliographic Notes 103

5 T he A lgebraic Degree of the P redicates 105
5.1 Computing Lines through Four Lines 107
5.2 Predicates . 114

5.2.1 Preliminaries . 114
5.2.2 Transversals to Four Lines . 115
5.2.3 Transversals to Four Segments 117
5.2.4 Ordering Planes through Two Fixed Points, Each Containing a

Third (Rational) Point or a Line Transversal 125
5.3 Experiments . 129
5.4 Discussion . 132
5.5 Bibliographic Notes . 132

6 Experimental Study of the Size of the 3 D V isibility Skeleton 133
6.1 The Visibility Skeleton of a Set of Polytopes 135
6.2 Setting of the Experiments . 136

6.2.1 The Model . 136
6.2.2 The Experiments . 137
6.2.3 Number Type and Machine Characteristics 139

6.3 Experimental Results and Analysis 140
6.3.1 Number of Skeleton Vertices in Terms of n 140
6.3.2 Number of Skeleton Vertices in Terms of n and k 141

6.4 Double versus Filtered_exact . 146
6.5 Summary and Bibliographic Notes . 148

Contents v

7 Computing the 3 D V isibility Skeleton 151
7.1 Preliminaries . 154
7.2 Computational Relations among the Visibility Skeleton Vertices . . . 155
7.3 Recovery of the Full Skeleton . 160
7.4 Tightness of the Succinct Skeleton . 174
7.5 Discussion . 176

8 Conclusion and Future Work 177

Bibliography 183

Thesis advisors Author

Sue W hitesides, Sylvain Lazard Linqiao Zhang

On the three-dimensional visibility skeleton: implementation

and analysis

Abstract

The visibility skeleton is a data structure that encodes global visibility information of

a given scene in either 2D or 3D. While this data structure is in principle very useful

in answering global visibility queries, its high order worst-case complexity, especially

in 3D scene, appears to be prohibitive. However, previous theoretical research has

indicated that the expected size of this data structure can be linear under some

restricted conditions. This thesis advances the study of the size of the visibility

skeleton, namely, using an experimental approach.

We first show that, both theoretically and experimentally, the expected size of

the visibility skeleton in 2D is linear, and present a linear asymptote that facilitates

estimation of the size of the 2D visibility skeleton.

We then study the 3D visibility skeleton defined by visual events, which is a subset

of the full skeleton defined by Durand et al.. We first present an implementation

to compute the vertices of that skeleton for convex disjoint polytopes in general

position. This implementation makes it possible to carry on our empirical study in 3D.

We consider input scenes that consist of disjoint convex polytopes that approximate

randomly distributed unit spheres. We found that, in our setting, the size of the

3D visibility skeleton is quadratically related to the number of the input polytopes

and linearly related to the expected silhouette size of the input polytopes. This

viii Abstract

estimate is much lower than the worst-case complexity, but higher than the expected

linear complexity that we had initially hoped for. We also provide arguments that

could explain the obtained complexity. We finally prove that, using the 3D visibility

skeleton defined by visual events, we can compute the remaining vertices of the full

skeleton in almost linear time in the size of their output.

Directeur de thèse Auteur

Sue W hitesides, Sylvain Lazard Linqiao Zhang

Squelette de visibilité en trois dimensions: implémantation et

analyse

Résumé

Le squelette de visibilité est une structure de donnée qui encode l’information

de visibilité globale pour une scène donnée en 2D ou 3D. Cette structure de donnée

est en principe très utile pour répondre à des requêtes de visiblité globale, mais elle

est, en particulier en 3D, d’une complexité de haut degré dans le pire des cas qui

semble prohibitive. Cependant, les recherches théoriques précédentes ont indiqué que

l’espérance de la taille de cette structure de donnée peut être linéaire sous certaines

conditions restreintes. Cette thèse approfondit l’étude de la taille du squelette de

visibilité, au moyen d’une approche expérimentale.

Nous montrons d’abord qu’aussi bien théoriquement qu’empiriquement, l’espérance

de la taille du squelette de visibilité en 2D est linéaire, et présentons une asymptote

affine qui facilite l’estimation de la taille du squelette de visibilité en 2D.

Nous étudions ensuite le squelette de visibilité 3D défini par événement visuels,

qui est un sous-ensemble du squelette complet défini par Durand et al. . Nous présen-

tons tout d’abord une implantation calculant les sommets de ce squelette pour des

polytopes convexes disjoints en position générale. Cette implantation nous permet de

continuer notre étude empirique en 3D. Nous considérons des scènes données consis-

tant en des polytopes convexes disjoints qui sont une approximation de sphères unités

distribuées aléatoirement. Nous avons découvert que, dans ces conditions, la taille

x Résumé

du squelette de visibilité 3D a une relation quadratique en le nombre de polytopes

donnés, et linéaire en l’espérance de la taille de la silhouette des polytopes donnés.

Cette estimation est bien plus basse que la complexité dans le pire des cas, mais plus

haute que la complexité linéaire que nous espérions initialement. Nous présentons

aussi des arguments qui pourraient expliquer la complexité obtenue. Nous prouvons

finalement qu’en utilisant le squelette de visibilité 3D défini par événement visuels,

nous pouvons calculer les sommets restants du squelette complet en temps presque

linéaire en la taille du résultat.

Declaration

This thesis contains no material which has been accepted in whole, or in part,

for any other degree or diploma. Chapters 3 to Chapter 7 present new contributions

to knowledge. Some of the results have already appeared in conferences or journals.

My contribution to the research described in each of the chapters is given in detail as

follows.

• Chapter 3 is based on joint research with Hazel Everett, Sylvain Lazard and

Sylvain Petitjean. I contributed significantly to the research, and conducted

all the experiments except those in the Section 3.2.3 "Analysis for low densi-

ties", which were conducted by Hazel Everett. I included this section here for

completeness.

• Chapter 4 is my own work.

• Chapter 5 is based on joint work with Hazel Everett, Sylvain Lazard and Bill

Lenhart. I contributed significantly to the research, and also I conducted the

experiments.

• Chapter 6 is based on joint work with Hazel Everett, Sylvain Lazard, Christophe

Weibel and Sue Whitesides. I designed and conducted all the experiments, and

contributed significantly to the discussions of the results and their interpreta-

tion.

• Chapter 7 is based on joint work with Sylvain Lazard, Christophe Weibel, and

Sue Whitesides. I initiated the research ideas, and equally contributed to the

research investigations.

xii Declaration

Part of the material in this thesis has been published in conferences or journals

[40, 41, 106, 107] as annotated in the bibliographic notes at the end of each chapter.1

In writing the chapters of my thesis, I have heavily relied on the existing papers. I

produced the first drafts of all those papers except the paper [40] described in Chapter

5 for which I produced only part of the first draft.

1Papers [40, 41, 107] were quoted, after publication, in the habilitation mémoire of Sylvain Lazard.

Acknowledgments

I would like to thank my supervisors, Sylvain Lazard and Sue Whitesides for

all the help they gave me during my thesis preparation. I particularly appreciated

the time passed with Sue in various cafe bars in Montreal, where we savored many

computational geometry subjects accompanied by the scent of coffee. And I value all

the debates with Sylvain, which give hard time, but shape good work.

I also thank my Ph.D. committee, professor David Avis and Gregory Dudek, for

their helpful comments to my thesis. I thank Professor Gert Vegter for explaining the

2D visibility complex to me; Doctor Laurent Alonso for providing a helpful hand to

solve some engineering issues at the starting point of my Ph.D; and Professor Hazel

Everett for providing much help in general.

Being a joint Ph.D. candidate, I passed my Ph.D. study in both Loria, France

and McGill, and I remember fondly the interesting environment and friends in both

places.

Last but not least, I thank my loving husband Christophe Weibel for his hu-

mor, encouragement, and enlightenment, and my lovely son Tony who has brought

unlimited joy to my life.

List of Figures

2.1 Some of the (a) vertices, (b) edges, and (c) faces of the 2D visibility
complex of discs B, R, and G. 15

2.2 Two directed, rotating tangent lines of object R in (a) Cartesian space,
and (b) their dual representation in polar coordinates. 16

2.3 (a) and (c) Objects B, R, G in Cartesian space and their bitangents.
(b) and (d) Dual representation of directed rotating bitangents. . . . 17

2.4 Some of the faces of the 2D visibility complex of objects B, R, G
(shown as colored regions) and their corresponding dual representation.
(a) Two faces that arise from line segments that have common occluders
B, G, and their dual representations in (c); (b) one face that arises
from line segments that have common occluders B, R and its dual
representation in (d), and another face that arises from line segments
that have common occluders R, G and its dual representation in (e). 18

2.5 The maximal free line segment corresponding to a 3D visibility complex
vertex is tangent to (a) three or (b) four objects. 22

2.6 The set of maximal free line segments corresponding to a 3D visibility
complex edge are tangent to (a) two or (b) three objects. 22

2.7 Dual representation of the 3D visibility complex of two spheres L and
R (image credits: Fredo Durand [34]). 23

2.8 (a) The 2D visibility skeleton vertices and arcs, computed from objects
A and B. Four vertices, labeled 1, 2, 3, 4, are shown as four blue line
segments, and an arc, incident to vertices 1 and 2, is shown as a set
of dashed lines. (b) The corresponding 2D visibility skeleton graph of
(a); the circular cycle corresponds to the vertices whose corresponding
maximal free line segments are tangent to object A in clockwise order;
and the other cycle is similarly defined, based on object B. 27

2.9 The eight types of vertices of the 3D visibility skeleton. (a) EEEE, (b)
VEE, (c) FEE, (d) VV, (e) FF, (f) FvE, (g) FE and (h) FVV. 30

2.10 The degenerate case of type FvE vertex. 30

xv

xvi List of Figures

2.11 The four types of arcs of the 3D visibility skeleton. (a) EEE, (b) VE,
(c) FE and (d) FVE. 31

2.12 The arcs incident to a vertex of type (a) EEEE, (b), (c) VEE, (d) VV,
and (e), (f) FvE. 32

2.13 (a) T-event, (b) V-event, and (c) F-event. 41

3.1 Scenes of random disjoint unit discs with density as (a) 0.0025, (b) 0.1,
and (c) 0.55. 47

3.2 Plots of the number of oriented bitangents, memory usage, and running
time in terms of the number of unit discs, when scene density is equal to
(a) 0.0025, (b) 0.005, (c) 0.025, and (d) 0.55. The unit of the memory
usage is kBs, that of the running time is 10−4 seconds. 50

3.3 The (a) slope and (b) y-intercept, in terms of µ, of the linear asymptote
of the number of oriented bitangents (in terms of the number of discs):
experimental data points and interpolations (of the square points) by
(a) 17.49

µ +5.67−19.17 µ and (b) −4,182
µ +19, 255−23, 789 µ. The dashed

curves are the theoretical upper bounds (8(µ + 4π2

µ)(n − 1) [41]) times
two since the bitangents are here oriented. 52

3.4 Onset of linearity in terms of the density µ: experimental data points
and their fitting by 16.77

µ + 47.55. 54
3.5 Number of non-oriented bitangents for density 0.0025, and an estimate

of Eq. (3.1) for n > 6, 755, with, in (b), the number 4
(

n
2

)

of possibly
obstructed bitangents and the theoretical upper bound, 8(µ + 4π2

µ (n−
1)) [41] (in dashed). 56

3.6 Hexagonal scene model (G4). 58

4.1 Organization of the implementation. 64
4.2 Computing potential future events (marked in purple) arising from

bitangent t: (a) 4 pairs of potential T-events. (b) 4 potential V-events.
(c) 4 potential F-events. 71

4.3 A T-event: (a) two bitangents (b) become collinear, and (c) a third
bitangent appears; (d), (e), and (f): the 2D visibility skeleton corre-
sponding to (a), (b), and (c). 76

4.4 (a) before, (b) during, and (c) after a V-start-event, when a set of new
bitangents appears. 77

4.5 (a) before, (b) during, and (c) after a V-middle-event, a bitangent
changed its supporting edge. 78

4.6 (a) before, (b) during, and (c) after a F-event, a bitangent changed its
supporting edge. 78

4.7 Bitangents that are tangent to a polygon at the same or different vertices. 80

List of Figures xvii

4.8 (a) Dropping z-coordinate results in different orientations of the two
2D discs: I 1 and I 2. (b) Keeping the disc orientation consistent by
using the sign of (v0 · z) × (v2 · z). 81

4.9 The 3D visibility skeleton vertices of type (a) EEEE, (b) VEE and
(c) FEE that are computed from T-, V-, and F-events. Note that the
maximal free line segment lies in lt, but its extent is not shown in the
figure, i.e. if it does not extend to infinity, it is blocked beyond the figure. 83

4.10 Computation of a VEE vertex, in two cases different from Figure 4.9
(b). 84

4.11 (a) Case (i) and (b) Case (ii) of computing an FEE vertex. 86
4.12 Sample scenes of (a) Scene I, (b) Scene II, (c) Scene III 88
4.13 (a) One position of the sweep plane. (b) The view inside the sweep

plane. (c) The eventlist, and (d) the 2D visibility skeleton for polygons
in (b). 89

4.14 Snapshots of visualizing the computational steps of the implementation. 90
4.15 (a) An input of ten polytopes, and the output of (b) 6 EEEE, (c) 438

VEE and (d) 85 FEE type vertices. 91
4.16 Running time (in seconds; 2.88 × 104 seconds = 8 hours) in terms of

n, the number of edges in the scene in Suite I (µ = 0.3). 95
4.17 Running time (in seconds) in terms of n1.5 k log k: for density (a) µ =

0.3, (b) µ = 0.05 and (c) µ = 0.01, where the polytopes have constant
complexity (n/k edges) (Suite I); and (d) for density µ = 0.3, where
the polytope complexity varies in the range of [4 - 24], [4 - 34], and [4
- 44] (Suite III). 96

4.18 Running time ratio of number type double to filtered_exact, tested
on the experiments in Suite I. 102

5.1 (a): Transversal ! intersects segment pq only if (! $ op) (! $ oq) ! 0.
(b-c): An illustration for the proof of Lemma 10. 118

5.2 Planes P1 and P2 such that P1 < P2 126

6.1 Three sample scenes of k = 50 polytopes where n/k, approximately
the number of edges on each polytope, is equal to (a) 6, (b) 42, and
(c) 84. The scene density µ = 0.3 in all cases. 137

6.2 Mean and standard deviation of the number of computed skeleton ver-
tices on ten scenes for each type of scene. 139

6.3 Suite I (µ = 0.3): total number of skeleton vertices in terms of n, the
number of edges in the scene. 140

6.4 Total number of skeleton vertices in terms of k2
√

n/k when (a) the
polytopes have a constant (n/k) number of edges (Suite I), and (b) the
number k of polytopes is constant (Suite II). 142

xviii List of Figures

6.5 Total number of skeleton vertices in terms of k2
√

n/k for polytope
complexity (n/k edges) varying in the range of [4 - 24], [4 - 34], and [4
- 44] (Suite III). 143

6.6 The number of vertices in terms of k2
√

n/k as tested on Suite I (k
polytopes having a constant, n/k, number of edges; µ = 0.3). 143

6.7 Number of (a) VEE, (b) FEE vertices in terms of number of EEEE
vertices (Suite I, µ = 0.3). 146

6.8 Number of (a) VEE, (B) FEE vertices in terms of
√

n/k (Suite II). . 147
6.9 Error percentage of computed skeleton vertices when using number

type double versus filtered_exact (Suite I). 147

7.1 Scene representing a shelf in a room with a fluorescent light on the
ceiling. The black and white regions represent the umbra and full light
regions. The union of the light and dark grey regions corresponds
to the penumbra. The dark gray shape represents a portion of the
penumbra limited by the trace of FE arcs. In this region, the visible
portion of the light source does not exceed about 40%. The schema
on the right represents a section through the middle of the scene. The
points a are at the boundary of umbra, and the points c are at the
boundary of the penumbra. The points b are on the maximal free line
segments corresponding to an arc FE involving a face of the blocker.
From a to b, the percentage of the light source that is visible increases
linearly from 0% to about 40%, and from b to c, it increases linearly
from about 40% to 100%. Since the light grey region can be made
arbitrarily large by moving the light source closer to the blocker, the
trace of the FE arcs on the floor corresponds to a discontinuity of the
derivative in the percentage of visible area of the light source. 153

7.2 The possible computational relations among the types of 3D visibility
skeleton vertices. 157

7.3 The value of each of the free line segments is defined by a linear function
on its intersection with the plane H 161

7.4 The intersections with H of free line segments on the two VE arcs on
each side of a degenerate FvE vertex move in opposite directions. . . 162

7.5 The intersections with H of free line segments on the two FE arcs on
each side of a non-degenerate FvE vertex move in opposite directions. 162

7.6 The silhouette of the polytope from v projected on H is inside the
cone of the projected constraint edges. If the constraint edges are in
the half-plane u′ · x " 0, so is the polytope. 164

7.7 (a) Bird’s eye view and (b) 3D view of degenerate FvE vertices whose
supports are polytope edge e and two sequences of faces incident to v,
starting from e1 and e2, which create VE arcs with v′. 168

List of Figures xix

7.8 When the polytope edge e intersects with the polyhedral cone of the
faces incident to v, the two sequences of faces that are supports of
degenerate FvE vertices turn in opposite directions until they meet,
which indicates a non-degenerate FvE vertex. 169

7.9 In some configurations, a sequence of VE arcs may contain degenerate
FvE vertices only, with a non-degenerate FvE vertex at each end. . . . 169

7.10 (a) Three polytopes admit vertices of type VEE but not vertices of
FEE. (b) Three polytopes admit vertices of type FEE but not vertices
of type VEE. (c) A cross section of (b) as indicated by the red line
segment. 175

List of Tables

2.1 Number of each type of skeleton arc incident to each type of skeleton
vertex. 33

4.1 Experimental results reported in [34, 36], on a 195Mhz R10000 SGI
Onyx2 (taken from [34]). 98

4.2 Experimental results for three pairs of input scenes with the number
of polytope faces approximately 450, 750, and 1000. 99

4.3 Running time (in seconds) in terms of number type: double, filtered_exact,
and CORE, as well as the ratio of filtered_exact and CORE to double,
for four input scenes. 101

5.1 Percentages of failure of the degree 168 and degree 3 predicates using
double-precision floating-point interval-arithmetic, for ε varying from
10−12 to 10−2. 131

xxi

Chapter 1

Introduction

Visibility problems arise commonly in areas such as computer graphics, computer

vision, and robotics. In computer graphics, visibility problems have been studied for

about four decades. Since the earliest problems such as visible surface determina-

tion [98], or occlusion culling [21], visibility has been always an important problem

in computer graphics. In computer vision, visibility is involved in problems such as

object reconstruction [86, 97], or sensor placement [99]. In robotics, it is involved in

problems such as motion planning [68], or robots self-localization [31].

Given a set of objects in the Euclidean space, two points in the space are mutually

visible if the line segment connecting them is not blocked by any objects. Visibility

problems typically address queries on whether the points or objects of interest are

visible to each other. The nature of the problem implies that the study of the visibility

problem is essentially the study of the sets of lines that are related to the queried

objects.

Based on the set of lines that are involved in the visibility queries, the visibility

1

2 Chapter 1: Introduction

problem can be classified as visibility from a point, a line segment, a polygon, a region,

or global visibility [11]. Global visibility addresses the visibility between any pair of

given objects.

Visibility queries from a point are relatively easy to handle and well understood.

Typical problems related to these types of queries are ray shooting [7], visible sur-

face determination [24, 30, 42, 98], and computing shadows cast by a point light

source [101, 104]. Efficient and practical algorithms and data structures, such as ray

tracing [101], Z-buffer [17, 18], binary space partitioning (BSP) tree [10, 43] have been

developed to solve these problems, and some of them even have hardware implemen-

tations [17, 18].

However, when the visibility queries do not involve points, as in the problem of

global illumination [51, 58], little is known. In particular there exists no solution for

determining exactly and efficiently, in a 3D polygonal scene where polygons represent

faces of objects, whether two given triangles see each other, or for determining the

umbra cast by a polygonal light source. This situation suggests that the problem of

global visibility is a hard one. Data structures such as the visibility complex [34, 85]

and the visibility skeleton [36] have been proposed to deal with global visibility.

The visibility complex is a data structure that is designed to encode global visibility

information. Roughly speaking, this data structure partitions the space of maximal

free line segments into connected components of segments that touch the same objects.

This data structure was initially proposed in 2D by Pocchiola and Vegter [85]. This 2D

version has been extensively studied [6, 54, 84, 91], and further applied in graphics

rendering [20, 77]. Later on, Durand et al. [34, 38] extended the study of the 2D

Chapter 1: Introduction 3

visibility complex to 3D. They introduced the 3D visibility skeleton data structure,

which is a simplified version of the 3D visibility complex, that includes only partial

information, i.e. the zero- and one-dimensional cells of the visibility complex.

Durand et al. applied the 3D visibility skeleton data structure to global illumi-

nation computation [34, 36, 37]. In their application, the input scene and the light

source are modeled as 3D polygons lying on the surfaces of the objects. They compute

the 3D visibility skeleton data structure through systematic brute force examination

of combinations of the vertices and edges of the input (see Section 2.2.2 for details).

In addition, they use various heuristics to speed up the computation. This application

produces images with high quality shadow boundaries.

Despite their positive results, the work of Durand et al. also shows some drawbacks.

First, their algorithm is not efficient because it is based on a brute force enumeration,

and thus has worst-case time complexity Θ(n5), where n is the total complexity of

all the input polygons. Although the observed running time complexity, improved

by the heuristics, is Θ(n2.5), it is still relatively high for practical use. Second, the

worst-case size complexity of the 3D visibility skeleton is Θ(n4) in the model used

by Durand et al. , which can easily reach the memory limit of present day machines,

and thus restricts the use of this data structure to small input scenes. Third, their

implementation is not robust and its use requires a great deal of time-consuming

human intervention to remove degeneracies from realistic scenes. As a result, the

largest test scene they report contains less than 1500 polygons [34]. The 3D visibility

skeleton data structure has since been often stated as impractical to use given its large

size, high order complexity and robustness issues [23, 67, 70, 74, 92]. In consequence,

4 Chapter 1: Introduction

this data structure has not gained wide use in practical applications.

On the other hand, the empirical work [34, 36] conducted by Durand et al. reported

that the Θ(n4) worst-case bound is pessimistic, except for some unrealistically con-

trived scenes. On the basis of their preliminary experiments, the observed growth of

the 3D visibility skeleton appears to be quadratic in the size of the input scene.

Motivated by the preliminary results of Durand et al. , more theoretical research

has recently been done to study the size of the 3D visibility skeleton in various as-

pects. Bronnimann et al. [14] studied the dependence of the size of the 3D visibility

skeleton on the number of polytopes rather than on the total number of edges alone.

They found that, when considering the inputs as k polytopes with n edges in total,

the worst-case size complexity is Θ(n2k2). Glisse [48] took into account the worst-

case average silhouette size of the polytopes. He obtained a slightly better bound

of O(nk3h), where h ∈ O(n/k) is the maximum size of the silhouettes of each of

the polytopes, which could be assumed to be in O(
√

n/k) under some reasonable

assumptions. Devillers et al. [27] studied the expected size of the 3D visibility skele-

ton. When considering a simple case, e.g., the input consists of unit balls that are

randomly distributed inside a great sphere, they show that the expected size is linear;

and when extending the results to convex disjoint polytopes with bounded aspect ra-

tio and constant complexity, they show that the expected size is linear for polytopes

that are sufficiently inside the great sphere, and quadratic for polytopes that are near

the boundary of the great sphere.

Although much research has been done on the theoretical aspects of the size of

the 3D visibility skeleton, the problem of estimating its actual size in practice with

Chapter 1: Introduction 5

reasonably large input scenes has remained open. The main reason for this has been

the lack of a robust and efficient implementation for conducting the research.

One of the two main goals of this thesis is to provide a robust and efficient im-

plementation to enable empirical studies of the 3D visibility skeleton. The second

goal is then to use the implementation to investigate when the 3D visibility skeleton

data structure can be of practical interest. For this reason, we study the expected

size experimentally, and determine whether the theoretically proven expected linear

bound for scenes consisting of spheres also holds for polytopal scenes.

Contributions of this thesis

We first provide a systematic experimental study of the expected size of the 2D

visibility skeleton. This is a simpler case than 3D, and there exists software to conduct

our experiments. More importantly, analogous to the theoretical result in 3D [27],

the expected size of the 2D visibility skeleton on the input of unit discs is known to

be linear [41]. Thus, observing a linear behavior in 2D experiments would validate

the motivation for our research in 3D. Our experimental results not only confirm the

asymptotic linear behavior of the 2D visibility skeleton as a function of the number

of unit discs in the input, but also provide an estimation, for a range of different fixed

scene densities of discs, of the slope and y-intercept of the linear asymptote. We also

estimate the onset, in terms of the number of discs, of the linear behavior.

In the 3D case, we focus on studying a 3D visibility skeleton defined by visual

event surfaces, and name it as a succinct 3D visibility skeleton. A skeleton thus

defined is a subset of the skeleton defined by Durand et al. [34, 36], and its size is

about 50% to 75% smaller [25, 26]. The reason that we study the succinct visibility

6 Chapter 1: Introduction

skeleton is because it is the main interest of our research. As a recent result shows,

this smaller size data structure can be used to compute direct shadow boundaries cast

by polytope light source [25, 26]. Furthermore, as we will show in Chapter 7, we can

compute the remaining vertices of the full skeleton from this succinct one efficiently.

We start with an implementation of a sweep algorithm which was initially intro-

duced by Goaoc [50]. This algorithm takes as input a set of disjoint convex polytopes

in arbitrary positions, and outputs the vertices of the 3D visibility skeleton. The

running time of this algorithm is O(n2k2 log n), where k is the number of input poly-

topes and n is the number of polytope edges. We recall the brute force algorithm has

running time Θ(n5) where n is the total number of edges of the input [34].

Slightly different from the sweep algorithm, our implementation takes as input any

set of convex polytopes and either outputs the skeleton vertices, or reports that the

polytopes are not in general position. By polytopes in general position, it is meant

that, for example, no four polytope vertices are coplanar, and no two polytope edges

are parallel. To the best of our knowledge, there exists no implementation of the

3D visibility skeleton that handles degeneracies. Our implementation represents an

improvement in the sense that we systematically detect and report all degeneracies

although the code to handle them remains unwritten. Moreover, our implementation

computes the skeleton vertices but does not build the 3D visibility skeleton itself, as

the focus of this thesis is on analyzing the size of this data structure. On the other

hand, we will propose, in Chapter 7, another method for computing the skeleton from

a subset of the vertices.

Our implementation put a lot effort into the design of predicates to gain some com-

Chapter 1: Introduction 7

putational efficiency. A predicate is a function that returns a value from a discrete set;

typically a geometric predicate returns answers such as "inside", "outside", or "on

the boundary of" a geometric object, and it is typically determined by the evaluation

of the sign ("positive", "negative" or "equal 0") of an expression. Evaluating a predi-

cate is often more efficient than computing the exact numerical result of the function

that represents the predicate. In our implementation, most of the computational pro-

cedures involve the evaluation of a sequence of predicates such as orientation, which

determines the orientation of four ordered 3D points, or compare_xy, which compares

the lexicographical order of two 3D points.

Our implementation addresses robustness issues by the choice of number type. We

implemented all predicates using the CGAL Filtered_exact number type templated

with CGAL interval arithmetic (based on double number type) and the CORE li-

brary [22]. Using Filtered_exact number type allows evaluation of the predicates

by first using interval arithmetic, and only if this fails, using the CORE exact num-

ber type. This ensures that all the predicates are evaluated correctly, and relatively

efficiently.

Several predicates that are required by the algorithm have quite high algebraic

degrees; this is the case, for example, of those that determine whether four segments

admit a line transversal, or those that compare two positions of a sweep plane as

it rotates about a line. Since high algebraic degrees may cause an implementation

to be prone to errors when using fixed-precision floating-point arithmetic, and may

require more memory space and computation time when using exact representation,

it is important to study the degree of the predicates. We show that, in the current

8 Chapter 1: Introduction

implementation, the algebraic degree of the predicate that is used to compare the

positions of two sweep planes can be as high as 168. We also show that the degree of

these predicates can be decreased to 144 by modifying the current implementation.

Finally, we offer some experimental results in this study to show the actual angular

separation of two sweep planes that causes the failure of the algebraic degree 168

predicate when using fixed-precision interval-arithmetic.

We use our implementation to conduct experiments on k disjoint polytopes of

size n/k on average, with vertices on unit spheres randomly distributed with fixed

densities in a given (spherical) universe. We perform these experiments for (i) up to

230 polytopes with up to 1 700 edges and (ii) up to 130 polytopes with up to 9 000

edges. These experiments show that the number of vertices of the succinct visibility

skeleton is roughly C k
√

nk, where the observed constant C varies with scene density

but remains small (less than 5 in our setting).

This is the first experimentally determined asymptotic estimate of the size of the

succinct 3D visibility skeleton for reasonably large n and expressed in terms of both

n and k. The results show that the size of the succinct 3D visibility skeleton may be

sub-quadratic; in particular, they show a sub-linear growth in n and a sub-quadratic

growth in k. Assuming that the size of the silhouette of a polytope on n/k vertices is

O(
√

n/k), our results suggest that we may express the size of the succinct visibility

skeleton as a function that is linear in the size of the silhouette and quadratic in the

number of polytopes; that is, the number of polytope vertices in the scene impacts

the size of the succinct visibility skeleton only insofar as it increases the size of the

silhouettes. Finally, our results indicate that there is no large constant hidden in the

Chapter 1: Introduction 9

big-O notation expressions for the size of the succinct 3D visibility skeleton.

Finally, we prove that the knowledge of the succinct 3D visibility skeleton (i.e.,

the visibility skeleton defined by visual events) is necessary and sufficient to compute

the full skeleton (defined by Durand et al.), in part or in whole, in almost linear time

in the number of vertices computed.

As we discussed before, the visibility skeleton data structure has been used in

graphics rendering in both 2D [20, 77] and 3D [33, 34, 36, 37]. While its size may

appear to be an impediment to further applications, the detailed experimental studies

of its size that we present in this thesis, together with the theoretical results, can

provide a good reference for those who wish to use this data structure in their own

applications.

In the rest of this thesis, we will present our detailed studies and results. We first

provide some background and introduce related work in Chapter 2. We describe our

experimental study of the size of the 2D visibility skeleton in Chapter 3. For the study

of the 3D visibility skeleton, we present the details of our implementation in Chapter 4,

the study of algebraic degree of the predicates that are involved in our implementation

in Chapter 5, and the experimental study of the size of the skeleton defined by visual

event surfaces in Chapter 6. Chapter 7 presents a method to efficiently compute the

full 3D visibility skeleton from the one defined by visual event surfaces. Chapter 8

concludes with a summary of the main results and a discussion of possible future

work.

Chapter 2

Background and Related Work

In this chapter, we provide the background material needed for the rest of the the-

sis, and also, we review the relevant literature. The chapter introduces the concept of

the visibility complex (in Section 2.1) and the visibility skeleton (in Section 2.2), and

describes the sweep algorithm (in Section 2.3) that is the basis of our implementation.

The relevant literature is reviewed in each of these sections.

2.1 The Visibility Complex

Visibility computations are central in applications of computer graphics, robotics,

and motion planning. Methods of reducing the expenses of these computations have

been actively studied. The visibility complex, a data structure that encodes the

visibility information, has been proposed to meet this need. Roughly speaking, this

data structure is a partition of the space of maximal free line segments into connected

components of segments that touch (i.e., are tangent to, or are blocked by) the same

11

12 Chapter 2: Background and Related Work

objects. In comparison with previously defined similar data structures, the visibility

graph for example [46], this data structure has certain advantages in that it encodes

global visibility information.

The visibility complex data structure was initially proposed by Pocchiola and

Vegter as a data structure encoding visibility information of a scene in two dimen-

sions [85]. In 2D, the visibility complex has been extensively studied [84, 91, 54, 6],

including some of its application for rendering [77, 20]. Durand et al. [34, 38] initiated

the study of the visibility complex in three dimensions. Various algorithms have been

studied to compute this data structure [35, 62]; however, due to its size and time

complexity, applications are so far limited to the use of a simplified version, called

the 3D visibility skeleton, which we will describe in Section 2.2.

We introduce the 2D and 3D visibility complex in the following two subsections.

2.1.1 The 2D Visibility Complex

Introduction

As we noted before, the 2D visibility complex was initially introduced by Pocchi-

ola and Vegter [85]. We review this data structure based on their work [85]. The

description of the visibility complex we give here is more intuitive though less formal

than in [85].

As in the spirit of Pocchiola and Vegter [85], we limit the 2D objects to convex

disjoint open sets in general position. Additionally, there is a large circle at infinity

enclosing all other objects.1 The free space is thus defined as the complementary

1Note that this large circle is not part of the input objects. Its functionality is to ensure that
each extremity of any maximal free line segment is on some object.

Chapter 2: Background and Related Work 13

space, with respect to the enclosing circle, of the union of all the objects. A maximal

free line segment is a line segment that is maximal with respect to the inclusion in

this free space. A set of maximal free line segments is connected if, roughly speaking,

each segment can move continuously, within the set, to the others. More formally, a

connected set of maximal free line segments consists of either bounded line segments,

half-lines, or lines. In the case of bounded line segments, each line segment is defined

by two points in R2, and can be parameterized by a point in R4. Such a set of maximal

free line segments is connected if the set of corresponding points in R4 is connected.

Similarly, a half-line can be parameterized by a point and a direction, and a line can

be parameterized by a point in Plücker space.

The 2D visibility complex thus defined is a cell complex [85].2 All the maximal free

line segments that are grouped into the same cell (component) agree on which objects

they touch. Furthermore, the line segments in the same cell have 0-, 1- or 2-degrees

of freedom, and hence these cells are called vertices, edges, and faces respectively.

• vertices. Each vertex of the 2D visibility complex corresponds to a maximal free

line segment that is tangent to two objects. Such a line segment has 0-degrees

of freedom with respect to that property. Figure 2.1 (a) illustrates two such

vertices.

2A cell complex, or CW-complex, is, at first sight, a partition of the space into cells of various
dimensions that are homeomorphic to open balls such that the boundary of any cell (defined as the
image, through the homeomorphism, of the boundary of the corresponding ball) is the union of a
finite collection of cells of smaller dimensions. More precisely, quoting [102] (see also [56]), for each
n-dimensional open cell C in the partition of the space X, there exists a continuous map f from the
n-dimensional closed ball to X such that (i) the restriction of f to the interior of the closed ball is a
homeomorphism onto the cell C, and (ii) the image of the boundary of the closed ball is contained
in a finite union of elements of the partition whose cell dimension is less than n; moreover, (iii) a
subset of X is closed if and only it meets the closure of each cell in a closed set.

14 Chapter 2: Background and Related Work

• edges. Each edge of the 2D visibility complex corresponds to a maximal con-

nected set of maximal free line segments that are all tangent to exactly one and

the same object. This implies that the endpoints of these segments all lie on

the same pair of objects or at infinity. We note that the edge thus defined does

not contain their endpoints. Such a maximal free line segment has 1-degree of

freedom with respect to these properties. Each edge of the complex is incident

to two vertices of the complex. Here we say that an edge is incident to a vertex

if the line segment corresponding to a vertex contains a line segment that is a

limit of line segments that give rise to the edge. For example, Figure 2.1 (b)

shows a component of line segments that are tangent to B and blocked by G.

These line segments have 1-degree of freedom with respect to these properties,

and thus give rise to an edge of the complex. That edge is incident to the vertex

arising from a line segment tangent to B and R and blocked by G, and another

vertex arising from a line segment tangent to B and G. Note that in Figure 2.1

(b), the solid line segment tangent to B and G represents a limit of the segments

defining the edge. This line segment, together with its extension, illustrated as

dotted, is a line that represents the vertex that the edge is incident to. Note

also that the other edges and vertices arising from the objects B, R and G are

not illustrated in Figure 2.1 (b). Finally, we note that in the work of Pocchiola

and Vegter [85], the visibility complex is formally defined in a quotient space,

such that a line segment corresponding to the limit of an edge is identified to a

line segment corresponding to a vertex.

• faces. Each face corresponds to a connected set of maximal free line segments

Chapter 2: Background and Related Work 15

that are blocked by the same two common objects; thus each such line segment

has 2-degrees of freedom with respect to this property. A face is incident to

an edge (or a vertex) if the line segments in the component that gives rise to

the face can be continuously moved within that component to the line segments

that give rise to the edge (or the vertex). For example, Figure 2.1 (c) shows

a component of line segments that are blocked by B and G, and that have

2-degrees of freedom with respect to this property; thus they give rise to a

face of the complex. That face is incident to vertices that are arising from line

segments tangent to B and G, B and R, R and G; and edges that are arising

from line segments tangent to B and blocked by G, tangent to G and blocked

by B, tangent to R and blocked by B and G. The vertices and edges incident

to a face form a cycle.

y

x

B GR

y

x

B GR

y

x

B GR

(a) (b) (c)

Figure 2.1. Some of the (a) vertices, (b) edges, and (c) faces of the 2D visibility complex of discs

B, R, and G.

In the visibility complex, the dimension of a cell corresponds to the number of

degrees of freedom of the maximal free line segment giving rise to the cell. As previ-

ously noted, in the 2D visibility complex, a vertex is a 0D cell, an edge is a 1D cell,

and a face is a 2D cell.

16 Chapter 2: Background and Related Work

The 2D visibility complex can be better viewed in a dual representation that is

expressed in the polar coordinates of a directed line. Here a directed line y cos(θ) −

x sin(θ) = u is expressed by polar coordinates (θ, u), where θ is the angle the line

forms with the x-axis measured in the counterclockwise sense, and u is the signed

distance of the line to the origin. Given an object, for example, disc R in Figure 2.2

(a), and an angle θ, there are two directed lines tangent to the object. As θ varies

from 0 to 2π, the motion of the two directed lines that are tangent to disc R appear

as two sinusoidal waves in the (θ, u) dual representation, as in Figure 2.2 (b).

These two sinusoidal waves partition the line space into three cells, namely, the

space in between the two sinusoidal waves, called cell I, the space that is above the

two sinusoidal waves, called cell II, and the space that is below the two sinusoidal

waves, called cell III. Any (oriented) line that belongs to cell I intersects disc R,

whereas any (oriented) line that belongs to cell II (respectively cell III) leaves disc R

to its left (respectively right), and any line on the cell boundary is tangent to disc R.

θu

y

x

R

0 pi/2 pi 3pi/2 2pi
−5

0

5

Θ

u

cell I

cell II

cell III

(a) (b)

Figure 2.2. Two directed, rotating tangent lines of object R in (a) Cartesian space, and (b) their

dual representation in polar coordinates.

When there are several (more than one) objects in the scene, their tangents in the

Chapter 2: Background and Related Work 17

dual representation appear as several pairs of sinusoidal waves (Figure 2.3). These

sinusoidal waves partition the dual space into cells, such that the vertices of the

visibility complex map to the intersections of two sinusoidal waves, the edges of

the visibility complex map to the curved segments on the sinusoidal waves that are

delimited by two consecutive vertices, and the faces of the visibility complex map to

the cells that are delimited by a chain of vertices and edges.

B

y

x

GR

0 pi/2 pi 3pi/2 2pi
−10

−5

0

5

10

Θ

u

(a) (b)

B GR

1

4
37

9 5
610

8

2

1

2
6

3 7

10

9

8

5

4

(c) (d)

Figure 2.3. (a) and (c) Objects B, R, G in Cartesian space and their bitangents. (b) and (d)

Dual representation of directed rotating bitangents.

Figure 2.3 (d) details the circled region in Figure 2.3 (b). Each numbered vertex

in Figure 2.3 (d) has its corresponding representation in Cartesian space as shown

in Figure 2.3 (c). Figure 2.4 illustrates some of the faces of this example scene in

Cartesian space and in the corresponding dual representation.

18 Chapter 2: Background and Related Work

B R G

1
37

610
2

B R G

1

4
37

9 5
610

8

2

(a) (b)

1

2

3

610

7

9

84

5

10

7
9

8
6

3

4

5

(c) (d) (e)

Figure 2.4. Some of the faces of the 2D visibility complex of objects B, R, G (shown as colored

regions) and their corresponding dual representation. (a) Two faces that arise from line segments

that have common occluders B, G, and their dual representations in (c); (b) one face that arises

from line segments that have common occluders B, R and its dual representation in (d), and another

face that arises from line segments that have common occluders R, G and its dual representation

in (e).

A lgorithms and Implementations

Pocchiola and Vegter presented a greedy flip algorithm to compute the 2D visibility

complex data structure of an input set of n disjoint (or touching) convex objects of

constant complexity. The algorithm runs in O(n logn+k) time, where n is the number

of objects and k is the complexity of the 2D visibility complex [84, 85]. The space

complexity for the computation is linear in k in [85], and improved to be linear in

n in [84]. The size of k is Θ(n2) in the worst case and Ω(n) in all cases. Briefly,

Chapter 2: Background and Related Work 19

the algorithm constructs a pseudo-triangulation of the input objects using their free

bitangents. Starting from a unit vector at angle 0, they then rotate the unit vector

up to angle π. The bitangents that have the same angle as the rotating vector are

flipped, and the pseudo-triangulation is updated accordingly.

Angelier and Pocchiola later on implemented the greedy flip algorithm [5]. In

particular, they improved the flip operation in the algorithm to constant computa-

tion time per flip by means of a “sum of squares” theorem [6]. The implementation

takes convex disjoint discs as input, as allowed by the algorithm [84, 85], and it han-

dles objects such as points, segments, and convex polygons, by applying symbolic

perturbation to ensure these objects satisfy a smooth boundary condition.

Before Angelier and Pocchiola, Rivière implemented a sweep algorithm to compute

the visibility complex of convex disjoint polygons [90]. While this implementation has

O(n log n+ k) running time and O(n) space, where n is the total complexity of input

polygons and k is the size of the computed 2D visibility complex. Like the greedy flip

algorithm, the author shows through experimental results that his implementation is

efficient in practice, as the constant of the big Oh notation is small.

Rivière also gave a method for updating the visibility complex in a dynamic polyg-

onal scene in O(log n) time at each step, after O(k log n) time precomputation of this

data structure [91].

A pplications

The 2D visibility complex has various applications.

In [76], Orti et al. apply the visibility complex in radiosity computation. The

20 Chapter 2: Background and Related Work

vertices of the visibility complex are used to compute the discontinuity mesh, and

the faces of the visibility complex are used to compute the form factor. Computing

radiosity this way can avoid much redundant computation compared to the traditional

method.

In [20], Cho and Forsyth use the 2D visibility complex in ray tracing. Two basic

properties that they use to render images efficiently are: 1) within the same cell of

the visibility complex, the set of rays encounter the same set of objects; 2) radially

sweeping a ray in primary, Cartesian space is equivalent to walking along a line

segment in the dual space. Their experimental results show that their ray tracer,

which uses the 2D visibility complex, is about 3.5 times faster than the conventional

ray tracer.

Moreover, Rivière [91] and Hall-Holt [54] make use of the visibility complex data

structure to design algorithms for maintaining views in scenes in which the view point

moves, but objects are fixed.

2.1.2 The 3D Visibility Complex

Introduction

We introduce the 3D visibility complex based on the work of Durand et al. [34, 38]

as it was initially presented.

The 3D visibility complex is an extension of the concept of the 2D visibility com-

plex. However the 3D visibility complex is not a cell complex since some of the cells

are not contractible to a point. Moreover a line in 3D has four degrees of freedom,

and therefore the cells that partition the 3D line space can have higher dimension

Chapter 2: Background and Related Work 21

than the cells in the 2D case.

In what follows, we define the cells of the 3D visibility complex. We note that the

concept of each cell is based on smooth objects that are in general position. We say

3D objects are in general position when free line segments tangent to any n of them

have 4 − n degrees of freedom with respect to that property, for 0 ! n ! 4.

• a vertex corresponds to a maximal free line segment that is tangent to three

or four objects that are in general position (Figure 2.5). In the case of three

objects, the maximal free line segment lies on a plane that is tangent to two

objects. Such line segment has 0-degrees of freedom. A vertex is a 0D cell.

• an edge corresponds to a set of maximal free line segments that are tangent

to two or three objects that are in general position, and form one connected

component (Figure 2.6). In the case of two objects, the set of maximal free line

segments lie on a set of planes that are tangent to the two objects. In such a

set, each line segment has 1 degree of freedom. An edge is a 1D cell.

• a bitangency (respectively tangency) face corresponds to a set of maximal free

line segments that are tangent to two (respectively one) objects that are in

general position, and form one connected component. In such a set, each line

segment has 2 (respectively 3) degree(s) of freedom. A bitangency (respectively

tangency) face is a 2D (respectively 3D) cell.

• a face corresponds to a set of line segments that are being occluded by the same

two objects, form one connected component. Each of the line segments in such

a set has 4-degrees of freedom. A face is a 4D cell.

22 Chapter 2: Background and Related Work

(a) (b)

Figure 2.5. The maximal free line segment corresponding to a 3D visibility complex vertex is

tangent to (a) three or (b) four objects.

(a) (b)

Figure 2.6. The set of maximal free line segments corresponding to a 3D visibility complex edge

are tangent to (a) two or (b) three objects.

In the dual representation, a line is expressed by the polar coordinates (θ, ϕ, u, v)

where θ is the azimuth and ϕ is the elevation. In order to define u and v, we consider

the plane perpendicular to the line and passing through the origin. We chose an

orthogonal coordinate system u, v on this plane such that the u axis is perpendicular

to the y axis. The values u and v in the dual representation are then the coordinates

in this system of the intersection of the line with the plane. This definition does not

allow representation of a line parallel to the y axis, but the definition is sufficient for

many purposes.

Given a sphere L, as in Figure 2.7, and a direction (θ, ϕ), a set of lines that are

tangent to sphere L appear as a circle in the dual representation. When varying θ from

0 to π, the tangency face of L appears as a curvy tube L in the dual. Furthermore,

Chapter 2: Background and Related Work 23

if considering the fourth dimension ϕ as similar to a time t, then varying ϕ from 0

to π can be described as the morphing motion of the curvy tube. As in Figure 2.7,

this morphing curvy tube L is the dual representation of the tangency face of sphere

L. It partitions the line space into intersecting, tangent, and non-intersecting lines to

sphere L, depending on whether a given line in its dual representation is inside, on,

or outside the curvy tube.

Figure 2.7. Dual representation of the 3D visibility complex of two spheres L and R (image credits:

Fredo Durand [34]).

Similarly, the tangency face of another sphere R, as in Figure 2.7, appears as

24 Chapter 2: Background and Related Work

another morphing curvy tube R. The intersection volume of these two curvy tubes

represents a set of lines that intersect both spheres. In particular, when the surfaces

of these two tubes intersect, it results in a 3D curve in the (θ, u, v) coordinate system

for a given ϕ cross-section, and represents a bitangency face. For convenience we

call this curve a bitangency curve. When two such bitangency curves intersect, their

intersection represents an edge. We call this intersection an edge curve. This edge

curve appears as one point for a given ϕ in (θ, u, v) coordinates, and appears as a

curve when ϕ varies. Note that the extremities of the bitangency curve, at which the

value of θ is minimal or maximal, also result in an edge curve. Such an edge curve

corresponds to a set of lines that lie on a set of planes that are tangent to two spheres.

When two edge curves intersect at some ϕ, this intersection defines a unique 4-tuple

(θ, ϕ, u, v) of coordinates, which corresponds to a line tangent to four objects in 3D

Cartesian space, and represents a vertex of the 3D visibility complex.

A lgorithms and Implementations

Durand et al. presented a double sweep algorithm to compute the 3D visibility

complex of an input scene consisting of 3D polygons or smooth objects [35]. The

running time of this algorithm is O((v + n3) log n) where n is the complexity of the

input, and v is the number of the vertices of the 3D visibility complex, which is Ω(n)

and O(n4). Moreover, the authors emphasized that v is much less than O(n4) in

experimental results. Hence the running time of the algorithm in practice appears to

be less than the worst case theoretical running time of O(n4 log n). Nevertheless, due

to the complicated double sweep nature of the algorithm, no implementation appears

Chapter 2: Background and Related Work 25

to have been done.

Goaoc presented a sweep algorithm to compute the 0D and 1D cells of the visibility

complex (see Section 2.3 for detail) [50]. Based on Goaoc’s sweep algorithm, Hornus

presented another sweep algorithm to compute the 3D visibility complex of an input

scene consisting of disjoint convex polytopes [62]. The running time of this algorithm

is O(n2k2 log n), where k is the number of polytopes and n is the number of edges. The

author claims that this is the first seemingly implementable algorithm for computing

the 3D visibility complex, although there is no implementation available yet.

A pplications

The 3D visibility complex was first proposed for applications such as global il-

lumination, kinetic visibility, etc. However, it has so far not been used, due to its

complicated data structure.

Instead, a simplified version of the 3D visibility complex, that is, the 3D visibility

skeleton, was used for global illumination and has attracted more research attention.

In the next subsection, we introduce the visibility skeleton data structure.

2.2 The Visibility Skeleton

The visibility skeleton data structure is a simplified version of the visibility com-

plex that consists of only the 0D and 1D cells of the visibility complex. This data

structure was first introduced in 3D by Durand et al. [34, 36] and used in shadow

boundary computation [32, 34, 36]. The application of this data structure was suc-

cessful but limited to only small input scenes, since the practical running time com-

26 Chapter 2: Background and Related Work

plexity of the algorithm that is used to compute it is relatively high (O(n2.5)), and

the worst-case size complexity of this data structure is large (O(n4)). These apparent

limitations have motivated researchers to study its average size and to design efficient

algorithms to compute it. The ongoing research of others in this area will be intro-

duced later in this chapter, as indeed, the main part of this thesis also studies the 3D

visibility skeleton.

The 2D visibility skeleton data structure was later introduced by Goaoc [50] when

designing a sweep algorithm to compute the 3D visibility skeleton.

In the visibility skeleton data structure, a 0D cell is called a vertex and a 1D

cell is called an arc. Recall that, in the visibility complex data structure, the 0D

cell corresponds to a maximal free line segment that has 0-degrees of freedom; and

the 1D cell corresponds to a connected set of maximal free line segments that have

1-degree of freedom. This concept holds in the visibility skeleton data structure as

well. Moreover, the incidence relation of vertices and arcs is encoded into a graph,

namely, the visibility skeleton graph. We will introduce this data structure in 2D and

3D in detail in the next two sections.

2.2.1 The 2D Visibility Skeleton

We introduce this data structure based on the work of Goaoc [50], but limit

ourselves to the case where objects are in general position. By general position, we

mean that no three vertices are collinear.

Chapter 2: Background and Related Work 27

1

4
3

2A
B

4

1 2

3
(a) (b)

Figure 2.8. (a) The 2D visibility skeleton vertices and arcs, computed from objects A and B. Four

vertices, labeled 1, 2, 3, 4, are shown as four blue line segments, and an arc, incident to vertices 1

and 2, is shown as a set of dashed lines. (b) The corresponding 2D visibility skeleton graph of (a);

the circular cycle corresponds to the vertices whose corresponding maximal free line segments are

tangent to object A in clockwise order; and the other cycle is similarly defined, based on object B.

2 D V isibility Skeleton Vertices and A rcs

In 2D, there is only one type of vertex and one type of arc. Each vertex corresponds

to a maximal free bitangent that is tangent to two objects. Each arc corresponds to

a set of connected maximal free line segments that are tangent to one given object,

and possibly blocked by 0, 1, or 2 other objects. A graphical illustration of the 2D

visibility skeleton vertices and arcs is shown in Figure 2.8 (a).

T he 2 D V isibility Skeleton G raph

In the 2D visibility skeleton graph, each vertex is incident to four arcs, and each arc

is incident to two vertices. In particular, the corresponding maximal free line segments

of each arc, and its two incident vertices, are tangent to a common object. An example

graph is shown in Figure 2.8 (b), which is computed from the two polygons A and

B, as shown in Figure 2.8 (a).

The 2D visibility skeleton graph is a directed graph whose arcs are oriented as

28 Chapter 2: Background and Related Work

follows. Two adjacent vertices of the graph correspond to two maximal free line

segments tangent to a common object. The free line segments are ordered clockwise,

and the arc incident to both vertices is oriented accordingly. As in Figure 2.8, the

circular cycle of directed arcs gives the ordering of the 4 bitangents around polygon

A; the cycle of the remaining directed arcs gives the ordering of the 4 bitangents

around polygon B.

A lgorithms, Implementations, and A pplications

As we mentioned at the beginning of this section, the 2D visibility skeleton con-

cept was arose during the design of a sweep algorithm to compute the 3D visibility

skeleton [50]. In [50], Goaoc uses the same algorithm [84] (presented by Pocchiola

and Vegter) and implementation [5] (implemented by Angelier and Pocchiola) of the

2D visibility complex (see Section 2.1 for detail), but discards the information about

the faces (2D cells).

2.2.2 The 3D Visibility Skeleton

Unlike the 2D visibility skeleton, the nature of the 3D visibility skeleton varies

with the nature of the input objects, i.e. whether the contour of the object is smooth

or not. Moreover, over the literature history, people have studied the 3D visibility

skeleton according to their own research interests, and defined this data structure

differently.

In this section, we first introduce this data structure using the 0D and 1D cells

of the visibility complex for an input consisting of 3D polytopes, based on the work

Chapter 2: Background and Related Work 29

of Durand et al. [34, 36]. Then we introduce an alternative definition that is based

on visual event surfaces, based on the work of Demouth et al. [25]. Then finally, we

introduce this data structure based on smooth objects.

T he 3 D V isibility Skeleton of a Set of Polytopes

We first make some preliminary definitions in order to explain the types of vertices

and arcs of the 3D visibility skeleton of a set of polytopes.

A support vertex of a line is a polytope vertex that lies on the line. A support edge

of a line is a polytope edge that intersects the line but has no endpoint on it (a support

edge intersects the line at only one point of its relative interior). A support of a line

is one of its support vertices or support edges. The supports of a segment are defined

to be the supports of the interior of the segment; thus if a maximal free segment ends

at a vertex of a polytope, this vertex is not a support. A support polytope of a line is

the polytope that the support of the line lies on.

3 D V isibility Skeleton Vertices. There are eight types of skeleton vertices. We

define them based on [34, 36], and show graphical illustrations in Figure 2.9. Note

that unless stated otherwise, no two supports will come from the same polytope. A

skeleton vertex has type: EEEE if its set of supports consists of four edges; VEE if its

set of supports consists of a vertex and two edges; FEE if its set of supports consists

of two edges on one face, and two additional edges; VV if its set of supports consists

of two vertices; FF if its set of supports consists of two edges on one face, and two

edges on another face; FvE if its set of supports consists of a vertex and an edge on

one face, and an edge; FE if its set of supports consists of two adjacent vertices of the

30 Chapter 2: Background and Related Work

e1

e2

e3

e4

v e

1e

2

e

e4

3

2

e1

e

e3

e4

f e

e

e

e
3

4

1

2

v2

v1

(a) (b) (c) (d)

f

2

1

e

4

e
3

f
e

e

1

2

1

e

e2
e3

e

4

v
f

1

2

v

v

f

v

1

2

v

(e) (f) (g) (h)

Figure 2.9. The eight types of vertices of the 3D visibility skeleton. (a) EEEE, (b) VEE, (c) FEE,

(d) VV, (e) FF, (f) FvE, (g) FE and (h) FVV.

1 e2e

e4

3e
f

v

Figure 2.10. The degenerate case of type FvE vertex.

same polytope; and FVV if its set of supports consists of two non-adjacent vertices

on the same face of a polytope.

We note a degenerate case of the type FvE vertex, as shown in Figure 2.10. Its

set of supports consists of a vertex, a face that the vertex lies on, and an additional

edge. Note that in contrast to a non-degenerate FvE vertex, a degenerate FvE vertex

has only one edge support. Note also that our definition differs from the discussion

in [48], in which this degenerate case of an FvE vertex is not considered to generate

a skeleton vertex.

Chapter 2: Background and Related Work 31

e2

1e

e
3

v

e

f

e

f

v1

v2

(a) (b) (c) (d)

Figure 2.11. The four types of arcs of the 3D visibility skeleton. (a) EEE, (b) VE, (c) FE and (d)

FVE.

It should be stressed that the maximal free line segment corresponding to a skele-

ton vertex is tangent to all its support polytopes.

3 D V isibility Skeleton A rcs. There are four types of skeleton arcs. We define

them, based on [34, 36], as follows, and show graphical illustrations in Figure 2.11.

Note that unless stated otherwise, no two supports will come from the same polytope.

An arc has type: EEE if its set of supports consists of three edges; VE if its set of

supports consists of a vertex and an edge; FE if its set of supports consists of two

edges on one face, and one additional edge; Fv if its set of supports consists of one

vertex and one edge on the same face which is not incident to it.

Again, we emphasize that the maximal free line segments corresponding to a

skeleton arc are tangent to all their support polytopes.

T he 3 D V isibility Skeleton G raph. When the inputs are convex disjoint poly-

topes in general position, each skeleton vertex is incident to three to six skeleton

arcs, according to the type of the skeleton vertex; and each skeleton arc is incident

to two skeleton vertices. We note that the visibility skeleton graph is not necessarily

a connected graph.

32 Chapter 2: Background and Related Work

e2

e3

e4

1e

e2

e1

e3

e4

v e

1e

2

e

e4

3

v e

1e

2

e3

e4

(a1) (a2) (b1) (b2)

v e

1e

2

e3

e4

e1

e4

2e e3v

e1

e4

2e e3v

e

e

e

e
3

4

1

2

v2

v1

(b3) (c1) (c2) (d)

1 e2
e3

e

e4

v
f 1 2e

e4

e

e3

v
f

1e

e4

3e

e2f
v

1 e2e

3e

e4

f
v

(e1) (e2) (f1) (f2)

Figure 2.12. The arcs incident to a vertex of type (a) EEEE, (b), (c) VEE, (d) VV, and (e), (f)

FvE.

An EEEE skeleton vertex has six EEE skeleton arcs incident to it. As in Fig-

ure 2.12 (a), two are supported by edges e1, e2, e3 (Figure 2.12 (a1)), two by edges

e2, e3, e4; and one by edges e1, e2, e4 (Figure 2.12 (a2)), another one by edges e1, e3, e4.

A VEE skeleton vertex has five incident arcs when the polytope vertex is to one side of

the two polytope edges; and six incident arcs when the polytope vertex is in between

the two polytope edges. In the former case, as in Figure 2.12 (b), two VE arcs have

supports v, e3 (Figure 2.12 (b1)), one has supports v, e4 (Figure 2.12 (b2)); one EEE

arc has supports e1, e3, e4 (Figure 2.12 (b3)), and another one has supports e2, e3, e4.

Chapter 2: Background and Related Work 33

EEE VE FE FVE
EEEE 6
VEE 2 3-4
FEE 2 3-4
VV 4

FvE
non-dg. 1 2 2
dg. 2 1

FF 4
FE 4

FVV 4

Table 2.1. Number of each type of skeleton arc incident to each type of skeleton vertex.

In the latter case, as in Figure 2.12 (c), one EEE arc has supports e1, e3, e4 (Figure

2.12 (c1)), one has supports e1, e2, e4; two VE arcs have supports v, e1 (Figure 2.12

(c2)), and another two are supported by v, e4. An FEE skeleton vertex has five or six

incident arcs, in a configuration similar to that of a VEE vertex, but its incident arcs

are of type FE and EEE. A VV skeleton vertex has four incident arcs of type VE. As

in Figure 2.12 (d), one has supports v2, e2, and the other three have supports v2, e1,

v1, e1, and v1, e2 respectively. An FF skeleton vertex has four FE arcs incident to it,

with similar configuration as for a VV vertex. A FvE skeleton vertex in its generic

case has five incident arcs. As in Figure 2.12 (e), one VE arc has supports v, e4

(Figure 2.12 (e1)), one FE arc has supports e1, e3, e4 (Figure 2.12 (e2)), another one

has supports e2, e3, e4; and two FVE arcs have supports v, e3 on each side of the FvE

vertex. The degenerate case of an FvE vertex has three incident arcs: as in Figure

2.12 (f), one FE arc, and two VE arcs. Finally, both FE and FVV skeleton vertices

have four incident FVE arcs. We omit their graphical illustrations because of their

simplicity.

The preceding paragraph is summarized in Table 2.1.

34 Chapter 2: Background and Related Work

We finally note that the 3D visibility skeleton thus defined also applies to 3D

polygonal input.

T he 3 D V isibility Skeleton Defined by V isual Event Surfaces

Later on, in their study of shadow boundaries, based on disjoint convex polytopes,

Demouth et al. [25, 26] take a different approach. They study local changes in the

view, i.e. surfaces in space such that when crossed by a viewpoint, a new polytope

comes into view or a previously seen polytope disappears; in particular, they do not

consider the appearance or disappearance of a polytope feature as a change in the

view.

For pairwise disjoint convex objects with smooth algebraic surfaces, it is well

known that the visual event surfaces for these objects are generated by the maximal

free line segments of arcs that are tangent to three objects (Figure 2.6 (b)) or that

are tangent to two objects in planes tangent to the two objects (Figure 2.6 (a)) [83].

Demouth et al. prove that this also holds for the visual event surfaces of pairwise

disjoint polytopes [25], which was previously only a conjecture.

That is, they prove that local changes in the view happen when crossing the

surfaces generated by any arc of type EEE, whose set of supports consists of three

edges, or any arc of type VE whose set of supports consists of an edge and a vertex

that define a plane tangent to both their respective polytopes (excluding arcs of type

VE that define a plane not tangent to both support polytopes).

They consequently define a skeleton consisting only of these arcs, and of the

incident skeleton vertices. The skeleton vertices include those of type EEEE, whose

Chapter 2: Background and Related Work 35

set of supports consists of four edges; of type VEE, whose set of supports consists of

a vertex and two edges; and the vertices of type VV whose set of supports consists

of two vertices contained in a plane tangent to both polytope. In this definition, two

of the edges supporting a vertex of type EEEE can also be from the same polytope,

which corresponds to a vertex of type FEE as defined by Durand et al. .

We note that the VE arcs thus defined form a subset of the VE arcs as defined by

Durand et al. ; similarly for the VV vertices.

The resulting visibility skeleton graph is a subset of the visibility skeleton defined

by Durand et al. , with the following incidence properties. An EEEE vertex has either

two or six EEE arcs incident to it. A VEE vertex has two EEE arcs, and between

zero and four VE arcs incident to it, and a VV vertex has two VE arcs incident to it.

T he 3 D V isibility Skeleton of a Set of Smooth D isjoint Convex Ob jects

In the visibility literature, the vertices and arcs of the 3D visibility skeleton of

smooth objects have been studied in various ways, e.g. views [88, 89] and visual

events [25, 26, 27, 80, 81, 83]. In what follows, we briefly summarize the 0D and 1D

cells of the 3D visibility complex introduced in Section 2.1.2 (based on the work of

Durand et al. [34, 38]), and thus define the 3D visibility skeleton of a set of smooth

convex objects.

For a given set of smooth convex objects that are in general position,3 the arcs of

the 3D visibility skeleton can be defined by either two or three objects. In the case

of two objects, the corresponding connected set of maximal free line segments of an

3Here general position means that the sets of maximal free line segments defining the arcs of the
skeletons are one-dimensional (in the space of maximal free line segments), defining the vertices of
the skeletons are zero-dimensional.

36 Chapter 2: Background and Related Work

arc lie on a set of planes that are tangent to the two objects (e.g. Figure 2.6 (a)).

This type of arc is called T + +T. In the case of three objects, the corresponding

connected set of maximal free line segments of an arc are tangent to the three objects

(e.g. Figure 2.6 (b)). This type of arc is called T + T + T.

If the maximal free line segments of a T + +T arc can be continuously moved

within the arc to become tangent to a third object, then this gives rise to a vertex

of the 3D visibility skeleton of type T + +T + T (e.g. Figure 2.5 (a)), to which the

T + +T arc is incident. Similarly, if the maximal free line segments of a T + T + T

arc can be continuously moved within the arc to become tangent to a fourth object,

then this gives rise to a vertex of type T + T + T + T (e.g. Figure 2.5 (b)), to which

the T + T + T arc is incident.

The two types of arcs and vertices, together with their incidence relations, define

the 3D visibility skeleton of a set of smooth convex objects.

A lgorithms, Implementations, and A pplications

Several brute force implementations have been presented in the visibility skeleton

literature.

Durand et al. first computed the 3D visibility skeleton data structure using a brute

force algorithm, and applied it to shadow boundary computation [34, 36]. In this

application, they modeled the 3D scene as 3D polygons (representing the surfaces

of the 3D objects) that are in general position. In the case of degenerate input,

they modified the inputs by hand to remove the degeneracies. The worst case time

complexity of this implementation is O(n5), and its practical running time is reported

Chapter 2: Background and Related Work 37

as O(n2.5), due to the heuristics they used to speed up the computation. Nevertheless,

the application of Durand et al. was limited to small input scenes (less than 1500

polygons that are used to describe the surfaces of objects).

Duguet et al. used a subset of the vertices of the 3D visibility skeleton to compute

shadow boundaries [32]; all the vertices were computed by a brute force algorithm.

This application shows an improvement in comparison to the work of Durand et al. in

the sense that it applies an epsilon parameter to merge the details of the shadow

boundaries, which reduces the total computation; however, this method is limited to

point light sources only.

Two other brute force implementations have been done, one by Schröder, which

represents the input scene as 3D polytopes [94], and one by Glaves, which represents

the input scene as a set of 3D triangles [47]. The work of Schröder is an extension of

Durand et al. in terms of the input scenes. The work of Glaves is to study the size

of the 3D visibility skeleton, but her results are limited to small input size (less than

800 polygons).

Goaoc presented a sweep algorithm to compute the 3D visibility skeleton when the

input scene consists of disjoint 3D convex polytopes [50] (see Section 2.3 for details).

This algorithm has complexity O(n2k2 log n) where k is the number of polytopes and

n is the number of edges. The implementation of this algorithm is described later in

this thesis (see Chapter 4 for details).

Brönnimann et al. also presented a sweep algorithm to compute the EEEE ver-

tices of the 3D visibility skeleton when the input consists of possibly intersecting

3D polytopes [14]. This algorithm has the same complexity as the previous sweep

38 Chapter 2: Background and Related Work

algorithm.

Very recently, using the implementation of this thesis, Demouth et al. [25, 26]

computed the 3D visibility skeleton defined by visual event surfaces, and applied it to

the computation of direct shadows cast by convex polyhedra. The preliminary results

have shown that the size of the visibility skeleton defined by visual event surfaces is

much smaller than the classical one; hence it may be useful in computer graphics

rendering.

2.2.3 The Size Complexity of the Visibility Skeleton

Although the visibility skeleton data structure is simpler and smaller than the

visibility complex data structure, its size, especially in 3D, is typically large, which

appears to be a limitation for its practical use. This has motivated previous re-

search [14, 27] to study the size of the visibility skeleton data structure.

Size of the 2 D V isibility Skeleton

Given n pairwise disjoint objects in 2D, the worst-case size complexity of the 2D

visibility complex is Θ(n2) [85]. This bound applies to the 2D visibility skeleton as

well. Moreover, experimental results [20] on scattered triangle scenes suggested that

the actual size of the 2D visibility skeleton can be linear. Everett et al. prove that

the expected size complexity of the 2D visibility skeleton is linear in the number of

the input objects [41].

Chapter 2: Background and Related Work 39

Size of the 3 D V isibility Skeleton

When a 3D scene is modeled by n 3D polygons, the worst-case size complexity

of the 3D visibility skeleton is Θ(n4) [36]. However, worst-case analysis is often

pessimistic. It was pointed out in [14, 27] that the scenes that exhibit the worst-case

size complexity are artificial and rarely exist in reality.

Devillers et al. have modeled the input scenes as k randomly distributed unit

balls, and have shown that the expected size of the 3D visibility skeleton of such

scene models is linear in k [27]. Moreover, they also extended their results to input

scenes that consist of 3D polygons, or 3D polytopes. When the input scene U is

modeled as a great sphere, and the input objects, by polygons or polytopes that have

constant complexity and bounded aspect ratio, and that are uniformly distributed

in U , their result indicates that the expected size the 3D visibility skeleton is linear

for those objects that are "sufficiently" inside U , and is O(k2) for those "near" the

boundary of U .

Brönnimann et al. [14] modeled the 3D scenes as k convex polytopes in arbi-

trary position, and with n edges in total, and they reported that the worst-case

size complexity of the 3D visibility skeleton is Θ(n2k2). Moreover, using the same

scene model, and when considering the worst-case silhouette size of the polytopes,

Glisse [48] showed a slightly better bound of O(nk2
√

nk).

We note that the research articles [14, 33, 34, 36, 37, 48], on either worst-case or

expected size study of the size of the 3D visibility skeleton, are all based on analyses of

type EEEE vertices. We recall that type EEEE vertices have four polytope supports.

The other types of vertices have no more than three polytope supports; thus type

40 Chapter 2: Background and Related Work

EEEE vertices exhibits the highest theoretical worst-case size complexity and have

been the focus of previous size complexity studies. However, in Chapter 6, through

experimental study, we show that, in our setting, the size of the 3D visibility skeleton

is mainly dominated by type VEE or VV vertices, instead of type EEEE vertices.

2.3 Overview of the Sweep Algorithm

Based on their size complexity study, Goaoc [50] and Brönnimann et al. [14] both

proposed sweep algorithms to compute certain types of vertices of the 3D visibility

skeleton of k convex polytopes with n edges in total, and possibly lying in degener-

ate position. In particular, Goaoc [50] assumes the polytopes are pairwise disjoint,

and the proposed algorithm computes a global visibility skeleton data structure that

consists of type EEEE, VEE, FEE and VV vertices.4 Brönnimann et al. [14] ex-

tend the input scene to polytopes that are possibly intersecting, and propose a sim-

ilar algorithm to compute the EEEE vertices. Both algorithms have running time

Θ(n2k2 log n).

We briefly overview the sweep algorithm based on the work of Goaoc [50].

Given k convex disjoint polytopes that have n edges in total, the algorithm sweeps

a plane about each edge e of each polytope in turn. The sweep plane is initially

coplanar with one face incident to edge e and rotates about edge e until it becomes

coplanar with the other face incident to e.

Initially, the sweep plane intersects the input polytopes in a set of polygons, and

4Efrat et al. [39] presented a similar algorithm for computing not necessarily free isolated transver-
sals in the same setting.

Chapter 2: Background and Related Work 41

the 2D visibility skeleton of these polygons is computed. This involves computing

all the bitangents, i.e., the maximal free line segments tangent to two polygons.

Generically, a bitangent is tangent to two polygons in the sweep plane at two vertices.

Each of these vertices lies on an edge of the input polytopes; these edges are called as

the support edges of the bitangent. All the bitangents that are tangent to a polygon

are sorted in clockwise order.

During the sweep, an event occurs whenever a bitangent appears or disappears,

the support edges of a bitangent change, or when there is a change in the order of

the bitangents around a polygon vertex. The 2D visibility skeleton of the polygons

intersected by the sweep plane is updated according to each of these events. Moreover,

a sorted set of special bitangents, defined as maximal free line segments going through

an endpoint of edge e and tangent to a polygon in the sweep plane, are maintained

and updated as well.

e

π π

e

π

e

(a) (b) (c)

Figure 2.13. (a) T-event, (b) V-event, and (c) F-event.

There are three types of events: the T, V, and F-events (see Figure 2.13). A T-

event occurs when two or three bitangents become aligned. At such an event, a new

bitangent may be created, or a bitangent may be deleted, and there is a change in the

order of the bitangents around a polygon vertex. A V-event occurs when the sweep

plane goes through an endpoint of a support edge. If the sweep plane encounters

42 Chapter 2: Background and Related Work

a polytope for the first (resp. last) time, a set of new bitangents is created (resp.

deleted); otherwise, a support edge of a bitangent changes. It should be stressed that

there is no V-event when the sweep plane goes through a vertex of a polytope that is

not a support of a bitangent in the sweep plane. An F-event occurs when a bitangent

becomes coplanar with a face incident to one of its support edges. The bitangent

then contains an edge of one of the polygons to which it is tangent. A support edge

of the bitangent changes.

All events are computed on-line during the sweep except for the O(k) V-events

that correspond to positions the sweep plane that encounter a polytope for the first

time. In particular, the T-events are computed as follows. Whenever two bitangents

are consecutive around a polygon vertex it is possible that they will eventually become

aligned at a T-event. Such a pair of bitangents share a support edge, and thus the

pair has three support edges in total, denoted e1, e2 and e3. Recall that the sweep

plane contains an edge e, by definition, and thus any line in a sweep plane intersects

(possibly at infinity) the line !e containing edge e. Hence, a T-event corresponds to

a position of the sweep plane such that it contains a line transversal to line !e and to

the three support edges e1, e2 and e3. Each T -event can thus be computed in constant

time by computing the line transversals to these four supports.

The vertices of the 3D visibility skeleton are also computed on-line during the

sweep. The EEEE vertices, corresponding to segments tangent to four polytopes, are

computed as follows. When a T-event is computed, we test whether the corresponding

maximal free bitangent intersects edge e between e1 and e2 (or e1 and e3). If so, a

EEEE vertex is reported. The VEE vertices are simply obtained as T -events involving

Chapter 2: Background and Related Work 43

a special bitangent. The VV vertices correspond to V -events involving a special

bitangent. Finally, the FEE vertices are obtained in the initial or final sweep plane

as (maximal free) bitangents intersecting edge e.

The running time of this algorithm is O(n2k2 log n). There are, in the worst

case, Θ(n2k2) events in total [14]. They can be computed in Θ(n2k2 log n) time

because each of the events is computed in constant time except for the V-events that

correspond to positions the sweep plane that encounter a polytope for the first time;

these events can be computed in O(n) per sweep. Now, the insertion and deletion

of events in the event queue takes O(log k) time per event because the event queue

has size O(k) at any time. Indeed, there are O(k) disjoint polygons in any instance

of a sweep plane and thus O(k2) bitangents to these polygons; furthermore, each

bitangent induces a constant number of possible future events, except for the O(k)

V-events that correspond to positions the sweep plane that encounter a polytope for

the first time. The Θ(n2k2) events may result in Θ(n2k2) vertices of the 3D visibility

skeleton, which are kept in a list. Inserting each computed skeleton vertex in the

3D visibility skeleton costs O(log n) time. In total, the running time of the sweep

algorithm is O(n2k2 log n).

We note that when only estimating the number of skeleton vertices but not con-

structing the 3D visibility skeleton, the above sweep algorithm [50] has O(n2k2 log k)

running time. We also note that, although the algorithm in [14] only computes the

type EEEE vertices, it has O(n2k2 log n) running time. This is because the input

polytopes in [14] can be non-disjoint, and in the worst case, there can be O(n2)

bitangents on the sweep plane.

Chapter 3

Experimental Study of the Size of the

2D Visibility Complex

In this chapter, we study experimentally the size of the 2D visibility complex

of discs and disc-like objects. While the worst-case complexity of the 2D visibility

complex is quadratic, experimental results on scenes consisting of scattered triangles

strongly suggest that the size of the visibility complex is linear [20]. In addition,

theoretical results prove that the expected number of free bitangents, i.e. , of maximal

non-occluded line segments tangent to two discs, among n uniformly distributed,

possibly intersecting, unit discs in R2, is linear [41]. Here we carry on a detailed

experimental study of the constants in the asymptotic linear behavior of the expected

number of free bitangents. We provide experimental estimates on the slope and y-

intercept of the asymptote in terms of the density of discs. We also estimate the onset

of the linear behavior in terms of the density.

Note that although we study in this chapter the size of 2D visibility complex,

45

46 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

the obtained results apply to the 2D visibility skeleton as well, since the size of both

structures is dominated by their 0-D cells, i.e. , the non-occluded bitangents, which

are the same.

The rest of this chapter is organized as follows. Section 3.1 describes the models of

distributions of unit discs we consider in this chapter. We present in Section 3.2 our

experiments and the interpolation of the number of free bitangents among random

pairwise disjoint unit discs and summarize in Section 3.3.

3.1 Models

We consider pairwise disjoint discs for our experiments. The reason for this is

because the experimental assessment uses the only known released implementation

of the 2D visibility complex that is time efficient (i.e., the one due to Angelier and

Pocchiola [5]) and this implementation requires disjoint discs.

In what follows, let n ∈ N, D1, . . . , Dn be n unit discs and call pi the center of

Di. Let also U (resp. U+) be the disc of radius R > 0 (resp. R + 1) centered at the

origin O.

A sample scene of our model is constructed by choosing the n centers of discs one

at a time from the uniform distribution over U with the constraint that each newly

generated center is at distance larger than 2 from all the centers already generated.

Since we are interested in asymptotic behavior as n increases, we set µ to a constant

value and define the radius R of the universe U to be

R2 =
n

µ
.

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 47

(a) (b) (c)

Figure 3.1. Scenes of random disjoint unit discs with density as (a) 0.0025, (b) 0.1, and (c) 0.55.

In this model, the density of discs inside U+ (defined as the ratio of area covered by

discs to the total area) is

n

(R + 1)2
∼ µ when n → ∞.

Figure 3.1 shows examples of random scenes for various densities.

Note that we generate random points over a disc of radius R using two uniformly

distributed variables r ∈ [0, R2] and θ ∈ [0, 2π) and then taking











x =
√

r cos θ,

y =
√

r sin θ.

Note also that this distribution is different from the uniform distribution of disjoint

discs which would be achieved by generating sets of n centers independently from the

uniform distribution over U until a set is generated in which all the corresponding

discs are pairwise disjoint (such a distribution is clearly impractical for generating

large and dense scenes).

48 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

3.2 Experiments

We first describe the software we used in our experimental study in Section 3.2.1.

We then describe our experiments in Section 3.2.2 and finally present our experimental

results and their interpretation in Section 3.2.3.

3.2.1 Software

2 D V isibility Complex Package. We use the existing software due to Angelier

and Pocchiola [5] to compute the 2D visibility complex. This software implemented

the greedy flip algorithm[6, 84]. The inputs of this software can be pairwise disjoint

bounded convex polygons, discs, and line segments. Its output is the 2D visibility

complex. The implemented algorithm has complexity O(m + nlogn), where n is the

size of the input, m is the size of the output.

In this experimental study, we use the Simple_cartesian kernel and floating

point (double) number type of CGAL [19] to compute the 2D visibility complex.

ExpLab. ExpLab is software that facilitates setting up and running experiments, as

well as analyzing experimental data. We use this software to manage our experiments.

3.2.2 Setting

With the model defined as in Section 3.1, we measure, for various densities, the

number of bitangents in the scene. We also measure the memory usage and the

running-time costs of computing these free bitangents.

We run experiments on scenes with up to 4, 500 unit discs and density ranging

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 49

from 0.0025 to 0.55. We increment the density by 0.0025 for µ < 0.025 and by 0.025

for µ " 0.025. We increment the number of discs by 40 up to 1, 200 and by 100

after. For small and medium densities, i.e. µ ! 0.01 and µ ∈ [0.0125, 0.0225], we

compute the visibility complex for only up to 1, 200 and 2, 000 discs, respectively,

because of memory limitations in the software implementation (see Section 3.3 for

further discussion on this issue).

We do not consider densities µ larger than 0.55 because our scene generation

scheme fails for such large densities. As Figure 3.1 shows, density 0.55 already implies

a fairly dense scene. (Note that Thue proved in 1890 that the best packing of unit

discs in the infinite plane is the regular hexagonal tiling – each disc being tangent to

six others – and has density π√
12

; thus π√
12

≈ 0.91 is an upper bound for the density

of our scenes.)

For each density value and number of discs we consider, we run 10 experiments

and report the means of the measures. The standard deviations are very small and

we do not report them. We report the number of oriented bitangents, the memory

usage in units of kBs and the running time in units of 10−4 seconds (so that running

time, number of bitangents and memory usage can be drawn on the same figure).

Note that the visibility complex package outputs oriented bitangents: for each

maximal free non-oriented line segment tangent to two discs, the visibility complex

implementation outputs two oriented bitangents. Since it is more intuitive to count

non-oriented bitangents, we make the distinction between the two in what follows.

All the experiments were done on a i686 machine with AMD Athlon 1.73 GHz

CPU running Linux and 1 GB of main memory. We use the getrusage() command to

50 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

a.
 0

 500 000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 200 400 600 800 1 000 1 200
number of unit discs

scene density: 0.0025

bitangents
memory

time

b.
 0

 200 000

 400 000

 600 000

 800 000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 200 400 600 800 1 000 1 200
number of unit discs

scene density: 0.005

bitangents
memory

time

c.
 0

 500 000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500
number of unit discs

scene density: 0.025

bitangents
memory

time

d.
 0

 20 000

 40 000

 60 000

 80 000

 100 000

 120 000

 140 000

 0 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500
number of unit discs

scene density: 0.55

bitangents
memory

time

Figure 3.2. Plots of the number of oriented bitangents, memory usage, and running time in terms

of the number of unit discs, when scene density is equal to (a) 0.0025, (b) 0.005, (c) 0.025, and (d)

0.55. The unit of the memory usage is kBs, that of the running time is 10−4 seconds.

measure user time and mallinfo() function to measure memory usage.

3.2.3 Experimental Results and Interpretation

We present here our experimental results. We display in Figure 3.2 the output of

our experiments for four representative values of the density (equal to 0.0025, 0.005, 0.025

and 0.55). Figure 3.2 shows quite clearly that the number of oriented bitangents, the

memory usage, and the running time have a linear asymptotic behavior in terms of

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 51

the number of discs.1 We note that the slopes of the asymptotes are different for

each density µ and are decreasing functions in terms of µ. We also observe that the

number of discs at which the linear behavior appears to start is a decreasing function

of µ.

In the rest of this subsection, we use least-squares fitting to estimate, in terms of

scene density µ and number of discs n, the linear asymptote of the number of oriented

bitangents and the onset of this linear behavior. For linear least-squares fitting on a

set of p data points (xi, yi), recall that the correlation coefficient r, which measures

the quality of fit, is defined as

r =
p
∑

xiyi −
∑

xi

∑

yi
√

(p
∑

x2
i − (

∑

xi)2)(p
∑

y2
i − (

∑

yi)2)
.

The closer r is to 1, the better the fit is.

Asymptotic P roperties of the N umber of Bitangents

For each experimental density value µ ∈ [0.0025, 0.55], we estimate the asymptote

of the number of oriented bitangents (in terms of the number of discs) using a least-

squares fitting on a subset of all the data points, as follows. We compute a least-

squares fitting, first using all data points, and then recursively after removing the

point corresponding to the smallest number of discs, until the correlation coefficient

of the fit of the remaining set of points is larger than some threshold.

We choose the threshold for the correlation coefficient with care. Indeed, a thresh-

old too small would imply that all the data points are always used for the least-

squares fitting, which would not be satisfactory for small densities (see for instance
1Note that the linear asymptotic behavior of the time complexity is only apparent since the time

complexity of the Greedy Flip Algorithm is in Θ(n logn + m) where m is the size of the output.

52 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

 0

 500

 1 000

 1 500

 2 000

 0 0.1 0.2 0.3 0.4 0.5 0.6

slo
pe

scene density

(a)

-450 000

-400 000

-350 000

-300 000

-250 000

-200 000

-150 000

-100 000

-50 000

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6

y-
in

te
rc

ep
t

scene density

(b)

Figure 3.3. The (a) slope and (b) y-intercept, in terms of µ, of the linear asymptote of the number

of oriented bitangents (in terms of the number of discs): experimental data points and interpolations

(of the square points) by (a) 17.49
µ

+ 5.67− 19.17 µ and (b) − 4,182

µ
+ 19, 255− 23, 789 µ. The dashed

curves are the theoretical upper bounds (8(µ + 4π2

µ
)(n − 1) [41]) times two since the bitangents are

here oriented.

Figure 3.2.a). A threshold too large would imply that only two data points are kept

for the fitting which is also not satisfactory. In practice, we have a small window

for a threshold that is neither too small nor too large. We choose the square of the

threshold for the correlation coefficient to be equal to 0.99969.

Figure 3.3 shows the estimated slopes and y-intercepts of the linear asymptotes

for the scene densities that are larger or equal to 0.0125 in our experiments. We do

not consider the asymptotes for smaller densities because they are not significant;

indeed these asymptotes are only estimated by two points because of our choice of

the correlation coefficient threshold.

We observe that the extracted slopes and y-intercepts appear intimately related

to the inverse of µ. Moreover, the slopes and y-intercepts are bounded theoretically

(in a slightly different model where the discs may intersect) by functions of the type

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 53

a
µ + b µ [41]. We thus try to fit functions of the form a

µ + b µ + c to the data points.

However, we only interpolate the data points corresponding to densities strictly larger

than 0.025 because we are only confident of the quality of the interpolated asymptotes

for these densities. The reason for this is that when the density gets strictly smaller

than 0.025, the number of points used for estimating the asymptotes drops by more

than half because the maximum number of discs used for the experiments drops

from four thousand to two thousand, and the minimum number of discs used for

interpolating the asymptotes increases to over 800 (see Figure 3.4); hence, for densities

in [0.0125, 0.0225], the slopes and y-intercepts are thus estimated with fewer data

points (namely between eight and twelve points). We also do not use the points

of density 0.025 (the cross in Figure 3.3) because the y-intercept data point seems

inaccurate. Note that although they are not used for interpolation, the estimated

slopes and y-intercepts for µ ! 0.025 are used for asserting the quality of the fits.

Using least-squares fitting, we obtain the interpolating functions 17.49
µ + 5.67 −

19.17 µ and −4,182
µ + 19, 255 − 23, 789 µ for the slopes and y-intercepts respectively.

As Figure 3.3 shows, the data points lie very close to the fitting curves. Moreover, the

points corresponding to densities µ < 0.025 lie also quite close to the fitted curves,

which is a good hint that our interpolations are satisfactory.

An interesting issue is to determine, as a function of µ, the value n0 of the number

of discs at which the linear asymptotic behavior starts. We choose n0 to be the

smallest value of n used for estimating the asymptote. Figure 3.4 shows the value of

n0 for densities in [0.0125, 0.125]; note that we substantially refined the increment of

the density for these experiments. We restricted ourselves to these densities because

54 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

 0

 200

 400

 600

 800

 1 000

 1 200

 1 400

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

on
se

t o
f l

in
ea

rit
y

scene density

Figure 3.4. Onset of linearity in terms of the density µ: experimental data points and their fitting

by 16.77
µ

+ 47.55.

our data is only meaningful in that range in view of our choice of the correlation

coefficient threshold. Indeed, outside of it, either only two points or all points are

kept for estimating the asymptote.

Fitting these data points by a function of the form a
µ + b, we obtain the function

16.77
µ + 47.55. As Figure 3.4 shows, this interpolation is not nearly as good as for the

slope and y-intercept of the asymptote. One of the reasons for this is that, for a fixed

value of the density µ, the number of bitangents has not been computed for every

value of n: there is an increment δn between consecutive data points (δn = 40 for

n < 1, 200). So the onset n0 is only accurate up to δn. This impacts the goodness

of fit since least-squares fitting is known to be sensitive to outliers. Better results

are obtained by linearly interpolating the correlation coefficient between consecutive

data points and picking the value of n corresponding to the threshold.

Results. Summarizing, we showed that the number of free non-oriented bitangents

(which is exactly half the number of oriented bitangents) in a scene consisting of n

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 55

randomly distributed disjoint unit discs is approximated by

(

8.74

µ
+ 2.84 − 9.59 µ

)

n−
2, 091

µ
+9, 628−11, 895 µ for n >

16.77

µ
+47.55 (3.1)

where µ denotes the density of the scene.

The approximation is good in the sense that, in our experiments, for all the

densities and all numbers of discs greater than 16.77
µ + 47.55, the error between the

observed and estimated number of bitangents is small. More precisely, this error does

not exceed 2% for densities in the range [0.05, 0.55]. For smaller densities, the error

increases to roughly 10% for µ = 0.025 and 30% for µ = 0.0125. For densities less

than or equal to 0.01, the number of discs in our experiments is 1, 200 which is less

than the estimated linear onset and we thus do not have a measurement of the error.

Note that even though the y-intercept of Equation (3.1) is not always smaller

than the y-intercept of the theoretical upper bound, that is, 8(µ + 4π2

µ)(n − 1) [41]

(as hinted in Figure 3.3.b), a straightforward computation yields that the estimated

number of free bitangents (Eq. (3.1)) is always less than the theoretical upper bound

of for n " 1. (Indeed, if F (n) denotes the upper bound minus the estimated number

of bitangents, as a function of n, both F (1) and the slope of F are positive for all

densities µ > 0.)

A nalysis for Low Densities

To evaluate the quality of our interpolation for low densities, we ran some spe-

cific experiments for density 0.0025 (see Figure 3.1). We implemented a brute force

algorithm for computing the number of bitangents which, compared to Angelier’s

implementation, is extremely slow but, since it merely counts the bitangents without

56 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 5 000 10 000 15 000 20 000

bi
ta

ng
en

ts

discs

(a)

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 0 5 000 10 000 15 000 20 000

bi
ta

ng
en

ts

discs

(b)

Figure 3.5. Number of non-oriented bitangents for density 0.0025, and an estimate of Eq. (3.1)

for n > 6, 755, with, in (b), the number 4
(

n
2

)

of possibly obstructed bitangents and the theoretical

upper bound, 8(µ + 4π2

µ
(n − 1)) [41] (in dashed).

storing them, uses no memory and therefore allowed us to compute the number of

bitangents for rather large numbers of discs. We ran that experiment on random test

scenes from 1, 000 to 20, 000 discs with an increment by one thousand. The entire

set of experiments took over 14 days to compute. Figure 3.5 shows the results of

these experiments as well as the interpolated number of bitangents obtained from

Equation (3.1): 3, 501 n− 826, 846 for n > 6, 755. As Figure 3.5.a shows, the slope of

the asymptote of the number of bitangents seems well estimated by Eq. (3.1) but the

error on the y-intercept is substantial, leading to an error for the number of bitan-

gents decreasing (strictly) from 34.4% to 17.6% for n ranging from 7, 000 to 20, 000.

However, as Figure 3.5.b shows, the estimate is rather accurate when compared to

the theoretical upper bound, 8(µ+ 4π2

µ (n−1)) [41], or to the number, 4
(

n
2

)

, of possibly

obstructed bitangents.

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 57

A nalysis for High Densities

The above experimental study focuses on scenes whose density ranges in [0.0025, 0.55].

Within this density range, we estimated the asymptotic properties of the number of

bitangents in terms of the number of discs. We show here that this estimation is

likely to be reasonable even for very large densities.

We consider a hexagonal grid as follows (see Figure 3.6). For any integer i " 1,

the grid Gi consists of one central hexagon and i rings of hexagons. We set the

distance between the centers of adjacent hexagons to be equal to 2(1 + ε). We place

one unit disc in each hexagon of the grid and we choose ε > 0 small enough so

that any pair of discs that are not on the boundary of the grid admit no free outer

bitangent. All the centers of the discs in grid Gi are contained in a disc of radius

Ri = (1 + 2i)(1 + ε) − 1. Let mi = 6i be the number of hexagons in ring i. The grid

Gi contains ni = 1 +
∑i

j=1 mj = 1 + 3i(i + 1) hexagons, thus the density of centers in

the disc of radius Ri is µi = ni

R2
i

, a decreasing function of i which tends to 3
4(1+ε)2 .

The number of non-oriented bitangents in Gi is as follows. Every disc admits

2 inner bitangents with each of its neighboring discs and with no other disc (for ε

sufficiently small); furthermore, all discs have 6 neighboring discs except for 6(i − 1)

discs on the boundary of the grid which have 4 neighbors and 6 discs on the boundary

of the grid which have 3 neighbors. Summing, and taking into account that each inner

bitangent is counted twice, we get that the number of inner non-oriented bitangents

in Gi is ni−1 · 6 + 6(i − 1) · 4 + 6 · 3 = 6 i (3 i + 1). The discs on the boundary of the

grid also admit outer bitangents: the number of outer bitangents between the i + 1

discs on one of the six sides of the hexagonal ring is between i (if the discs are in

58 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

Figure 3.6. Hexagonal scene model (G4).

“convex position”) and i(i+1)
2 (if the discs are in “non-convex position”). Hence, the

total number τi of non-oriented bitangents in Gi is between 6 i (3 i+2) and 3 i (7 i+3).

As can be seen, when i is greater than 25, ni is larger than 1,951, the density µi

lies in
(

0.75
(1+ε)2 ,

0.78
(1+ε)2

)

and the ratio τi/ni lies in (5.92, 7).

For ε sufficiently small, it is reasonable to believe that any scene of ni unit discs

in a disc of radius Ri + 1 has roughly the same number of bitangents because the

density is high enough that is seems unlikely that scenes may have substantially

different combinatorial characteristics.2 If this assumption is correct, then the slope

of the number of non-oriented bitangents estimated for random scenes should apply.

For a density of 0.75, Equation (3.1) gives an estimated slope of 7.3 instead of some

value in (5.92, 7) in our analysis. Hence, the estimated slope in Equation (3.1) is

reasonably close to the expected slope of the number of bitangents.

2Note that not much is known on optimal disc packing inside a disc; see [53].

Chapter 3: Experimental Study of the Size of the 2D Visibility Complex 59

3.3 Summary and Bibliographic Notes

We made an experimental assessment of the size of the visibility complex for

disjoint random unit discs. Our experiments give a good idea of the asymptotic

behavior of the number of bitangents while the theoretical bound is very rough (see

Figure 3.5.b). Furthermore, the fact that the estimated asymptotic rate of growth

is reasonably small in our random setting indicates that the size of the visibility

complex might be tractable in practical, real-world applications. As an example, for

a reasonable density of µ = 0.1 (see Figure 3.1) and for n > 215 we can expect

90 n − 12, 500 bitangents.

It should be noticed that the visibility complex package [5] we used for our ex-

periments is extremely fast (see Figure 3.2) especially compared to a brute force

algorithm (see Section 3.2.3). However, unlike the brute force approach, the package

uses a substantial amount of memory, which prevented us from running experiments

for very low density and very large numbers of discs. These memory limitations are

however reasonable since the memory consumption per bitangent (roughly 300 bytes)

is substantial but not abnormal considering that the package has not been optimized

for memory space. This situation can nonetheless be improved by using the antichain

feature of the package which, using only O(n) storage, reports the list of free bi-

tangents without storing them in main memory. We unfortunately discovered this

feature after all the experiments were completed and did not redo all the experiments.

Nonetheless, we observed that this feature allows us to compute, with 1 GB of mem-

ory, the number of bitangents among up to 3, 500 discs in a scene of density 0.0025

compared to 1, 500 discs without using the antichain feature.

60 Chapter 3: Experimental Study of the Size of the 2D Visibility Complex

The work presented in this chapter has first appeared in the International Journal

of Computational Geometry and Applications [41].

Chapter 4

An Implementation of the Sweep

Algorithm

In this chapter, we describe in detail our implementation of the sweep algo-

rithm [50] for computing the 3D visibility skeleton (see Section 2.3 for details), along

with its validation and performance analysis. We will discuss the input and the

output of the implementation in Section 4.1 and Section 4.2 respectively; details of

this implementation in Section 4.3; software validation in Section 4.5; and finally the

performance of this implementation in Section 4.6.

4.1 The Input

While the sweep algorithm [50] discussed in Section 2.3 handles convex disjoint

polytopes that can possibly lie in degenerate position, our implementation handles

only polytopes in general position. Here general position means that no two sweep

61

62 Chapter 4: An Implementation of the Sweep Algorithm

events occur at the same sweep position of a rotating sweep plane (see Section 2.3 for

details). This also implies more familiar assumptions such as no two parallel polytope

edges, no four coplanar polytope vertices, and no four line segments belonging to a

common hyperboloid (see [15] for details). In case of degeneracy, the software will

report the type of degeneracy and abort. Extending the implementation to handle

degeneracies remains for future work, based on the theoretical analysis of [14, 50].

We note that to our best knowledge, there exists no implementation of the 3D

visibility skeleton that handles degeneracies, including the implementation of Durand

in which degeneracies were avoided by perturbing the input scenes by hand [34].

Duguet [33] proposed a method for handling degeneracies, but only for computing a

section of the visibility skeleton, that is, a set of maximal free line segments that are

supported by concurrent lines. Our implementation represents an improvement in

the sense that we systematically detect all degeneracies although the code to handle

them remains unwritten.

At the current stage of the implementation, a possible way to handle the degen-

eracies is to avoid them by perturbing the input.

4.2 The Output

Of the eight types of 3D visibility skeleton vertices for inputs consisting of poly-

topes [34, 36], our implementation computes and outputs type EEEE, VEE, and FEE

vertices. Moreover, we systematically enumerate VV vertices. The remaining vertices

can be computed from these four types of vertices (see Chapter 7 for details), or from

the input.

Chapter 4: An Implementation of the Sweep Algorithm 63

We note that the reason we compute VV vertices through systematic enumeration

is because the actual computation, according to our experimental observations, is

fairly fast, although the worst-case running time complexity is Θ(n3) (n is the total

number of edges of the input polytopes). In addition, the implementation becomes

much simpler. Of course, computing vertices of type VV using the sweep algorithm

is always an option.

We note also that the algorithm presented in [50] computes EEEE, VEE, FEE, and

VV vertices, whereas the algorithm presented in [14] computes only EEEE vertices.

4.3 Description of the Implementation

As shown in Figure 4.1, this implementation consists of four major components:

Scene Generator, Base Classes, Sweep, and Visualization. The Scene Generator

generates input scenes. Base Classes defines all the fundamental objects (as in Fig-

ure 4.1). The major computations of the sweep algorithm happen in the Sweep com-

ponent, which is the core part of this implementation. Finally, the Visualization

component displays the algorithm at work, and also serves as a debugging tool.

In terms of software engineering details, this implementation is based on the CGAL

library [19] (see Section 4.3.1). It also uses the 2D visibility complex package [5, 6],

and software which computes line transversals to four lines [87]. This implemen-

tation is written in C + + (since the CGAL library is written in C + +). Roughly

speaking, its four major components, Scene Generator, Base Classes, Sweep, and

Visualization, consist of about 400; 4, 000; 6, 000; and 800 lines of code respectively.

Apart from the other assisting functions, this implementation consists of about 12, 000

64 Chapter 4: An Implementation of the Sweep Algorithm

Visualization

Sweep

Scene Generator Base Classes

2DVisiSkeleton

Comp. Events

Update EventList & 2DVisiSkeleton

Comp. 3DVisiSkeleton Vertices

Point_2

Polygon_2

2DVisiSkeleton Vertices

VsPolyhedron (2DVisiVertices on Polyhedron)

VsPolyhedron_list

Events

Event_list

Sweep_plane

Geomview_write

Transversals_to_4lines

2DVisiComplex

Figure 4.1. Organization of the implementation.

lines of code.

In the rest of this section, we mainly provide a detailed description of the Sweep

component, since it is the most difficult part of this implementation. We classify this

component into four main building blocks as follows: 2D visibility skeleton (de-

Chapter 4: An Implementation of the Sweep Algorithm 65

scribed in Section 4.3.2), Computing Events (described in Section 4.3.3), Updating

Event List and 2D Visibility Skeleton (described in Section 4.3.5), and Computing

the 3D Visibility Skeleton Vertices (described in Section 4.3.7). Section 4.3.6

describes the computation of the ordering of the bitangents, which is not a building

block of the sweep component, but which is related to computing and updating the

2D visibility skeleton. Section 4.3.1 introduces the CGAL library and its number

types, which is the basis of the four building blocks.

For the Base Classes, we provide a description of the Event_list in Section

4.3.4. The classes 2D Visibility Skeleton Vertices, Polygon_2, and Point_2 are

briefly described in Section 4.3.2 (The 2D Visibility Skeleton); and the Events

class is briefly described in Section 4.3.3 (Computing Events). We omit the descrip-

tions of the rest of the classes since their implementation is straightforward. We

however note that the Transversals_to_4lines and 2DVisiComplex classes are the

wrap up classes of the 2D visibility complex package [5, 6] and the software for com-

puting line transversals to four lines [87].

We also omit the description of the Scene Generator and the Visualization

components, since their implementation mainly uses the functions provided by CGAL.

We finally note that this section is meant to provide a bridge from the theo-

retical result [14, 50] to the software engineering work. It is primarily focused on

the difficult or tricky parts in terms of implementation of the theory, so as to pro-

vide some handy references apart from the available software. For this reason, the

content of this section is not a translation of the functions or classes of the writ-

ten software into text description. For further information, the code is available at:

66 Chapter 4: An Implementation of the Sweep Algorithm

http://www.cs.mcgill.ca/˜lzhang15/webpage/software/software.html1

Before we start, to assist in the description, we define the in-event polytope as the

polytope that supports the event, and the in-event bitangent as the bitangent that

supports the event.

4.3.1 Preliminaries: The CGAL Library and Number Types

CGAL [19] is an open source library that is implemented in C + + . It provides

geometric primitive objects, data structures, and many implemented fundamental

computational geometry algorithms. Its implementations emphasize efficiency and

reliability. Moreover, its extensible kernel allows users to extend its geometric objects

and predicates as they need.

One of the reasons we chose to use the CGAL library for our implementation

is that it provides geometric primitive objects, e.g. point, segment, line, polygon,

polyhedron, and operations on these objects. We adopted its polyhedron and polygon

data structures directly. We also intensively used its existing predicates such as

orientation of four 3D points, intersection of lines (or line segments) with a

plane, and so forth. Moreover, we used its existing kernel geometric objects such

as 3D and 2D points, lines, segments, vectors, etc. We also extended its 2D point

kernel [59]. We note that the CGAL geometric objects are parametrized by number

types. This allows us to change easily the number types we use in our implementation

to conduct performance analysis.

Another reason, and also the most important reason for using the CGAL library, is

1Note that the code uses the version of CGAL-3.2.1.

Chapter 4: An Implementation of the Sweep Algorithm 67

that several number types are available, together with a filtering technique [13] that is

based on these number types. The CGAL library provides its own number types, such

as MP_Float for representing multi-precision floating point values, and Interval_nt

for doing interval arithmetic. In addition, it also incorporates the C + + built-in

number types, and the number types that are defined in the GMP [52], LEDA [69]

and CORE [22] libraries.

The classical C + + built-in floating point number types, such as double, have

limited precision and therefore, round off the number whenever the number of bits

exceeds the precision. Such number types, when directly used in a computational

procedure, may cause computation failure, although they are efficient to use. The

CORE library, on the other hand, provides exact number type representation, that is,

it represents the number in a tree that records the entire arithmetic procedure, instead

of evaluating the number at each intermediate step. This number type representation

can guarantee exact comparison results. However, exact computation is inherently

inefficient, especially when division, square root operations, and high algebraic degrees

are involved.

We have tested our implementation on double and CORE number types. The

double number type is very efficient to use, but causes frequent computational failures

with large inputs (more than 50 polytopes, for example). The CORE number type,

although it provides exact computational results, is so inefficient in our context that

it is virtually impossible to use.

The filtering technique [13], which is realized in CGAL as the Filtered_exact

number type, takes advantage of both the floating point and exact number type

68 Chapter 4: An Implementation of the Sweep Algorithm

representations, and provides exact and efficient computation. It is based on interval

arithmetic, which consists of executing relatively fast but imprecise computations

(using limited precision number types), which only guarantees that the result is inside

some interval. When answering predicates, it is only necessary to know whether a

value is positive or negative; so when the whole interval is either positive or negative,

this is enough to provide an accurate answer to the predicate in a certified manner. If

this method fails, the computation is performed again using the exact number type.

To ensure exact and efficient computation, we chose to use the Filtered_exact

number type of CGAL, templated with the CGAL interval arithmetic (based on

double number type) and the CORE library. Using filtered exact computation en-

sures exact computational results; however, it cannot be as efficient as a number type

such as double. On random inputs, in our setting, the computation is roughly three

times slower than when simply using the double number type. But, this is still much

faster than using CORE exact number type, which is 70 times slower than double.2

4.3.2 The 2D Visibility Skeleton

Computation. The initial sweep plane may intersect some input polytopes, result-

ing in a set of 3D polygons (i.e., their vertices have 3D coordinates) on the sweep

plane. We convert the 3D polygons into 2D polygons by dropping one non-trivial

coordinate.3 Specifically, for a given 3D polygon, each vertex, which is a 3D point,

is converted into a 2D point. We then compute a counterclockwise sequence of ex-

2Note that these estimations are based on the performance of our implementation only; see
Section 4.6.3 for details.

3We drop the z-coordinate if the sweep plane is not perpendicular to the x − y plane, and
otherwise, we drop the y-, or the x-coordinate accordingly.

Chapter 4: An Implementation of the Sweep Algorithm 69

treme points from this set of 2D points, using the function ch_graham_andrew (based

on the Graham scan algorithm [4], whose implementation follows the description of

Mehlhorn [72]) provided by CGAL, and compute a 2D polygon from this sequence of

points.

The 2D visibility complex is computed from this set of 2D polygons by using

existing software [5, 6] (see Section 3.2.1 for detail). We furthermore extract the

2D visibility skeleton from the computed 2D visibility complex, and discard the 2D

visibility complex. The reasons for doing this are:

1. the tangents (corresponding to the skeleton vertices) in the output of the soft-

ware we use for the 2D visibility complex are oriented, whereas the orientation

information is unnecessary and indeed cumbersome in the visibility skeleton

structure;

2. the visibility skeleton structure is more concise and compact, so we can save

memory space, which is important because memory space is one of the bottle-

necks in our implementation.

This extraction mainly uses the C++ map data structure to keep track of the oriented

tangents and merge them into the non-oriented ones.

We note that the 2D visibility skeleton is computed only once on the initial sweep

plane. When the sweep plane rotates, the 2D visibility skeleton is updated locally

according to the sweep events, to save computation time (see details in Section 4.3.5).

Structure. Each of the 2D visibility skeleton vertices corresponds to a bitangent,

and encodes the information about the supports of the bitangent, that is, the two

70 Chapter 4: An Implementation of the Sweep Algorithm

polytopes, the two polytope edges, one on each of the polytope, and the two 3D points

that are the intersection of the two polytope edges with the sweep plane. This 3D

information is used to compute the sweep events.

For the computation of the 2D visibility skeleton, each of the polygon vertices is

a 3D point that is projected into 2D. In order to include within the 2D points the 3D

information about the polytope edge supporting the bitangent in the sweep plane,

we extended the Point_2 geometry kernel (this could be done using the Extensible

Kernel feature of CGAL [59]).

Each 2D skeleton vertex has four pointers pointing to its four incident vertices

in the graph, distinguished by the two polygons to which it is tangent, as well as

the clockwise and counterclockwise orientation of the vertices (see details in Section

2.2.1). These pointers build the incidence relations of the visibility skeleton graph.

Finally, the 2D visibility skeleton uses the list data structure to maintain all the

skeleton vertices.

4.3.3 Computing Events

For each vertex (corresponding to a bitangent) of the 2D visibility skeleton that

is either newly computed or being updated, we compute its potential T-, V-, and

F-events. We note that the updates of a 2D skeleton vertex can record the changes

of its supports, or the changes of its incident skeleton vertices. In particular, on

the initial sweep plane, this computation is done for each of the vertices of the 2D

visibility skeleton, since they are all considered as new.

The structure of the events is defined differently according to their type. First,

Chapter 4: An Implementation of the Sweep Algorithm 71

t t t

(a) (b) (c)

Figure 4.2. Computing potential future events (marked in purple) arising from bitangent t: (a) 4

pairs of potential T-events. (b) 4 potential V-events. (c) 4 potential F-events.

they all include the information of the position of the sweep plane and the type of the

event. In addition, the T-event includes the two or three bitangents that are involved

in this T-event. The V-event includes the polytope and the polytope vertex at which

the V-event happens, as well as the type of the V-event, i.e. V-start-, V-middle-, or

V-end-event (see details in Section 4.3.5). And the F-event includes the bitangent

that is involved in this F-event, and the two polytope edges on which the F-event

happens.

In what follows, we describe how each type of event is computed. We first define

the sweep range to be the range through which the sweep plane rotates, as it rotates

about an edge until it hits a face of the polytope to which it is tangent.

Computing potential T -events. Recall that the 2D visibility skeleton is a di-

rected graph. Each bitangent t in a sweep plane Π has a clockwise and counterclock-

wise neighboring bitangent that is tangent in Π to one of two supporting polytopes of

t; this gives rise to four neighboring bitangents. The bitangent, together with each of

its four neighbors, generates four pairs of neighboring bitangents. For each pair of the

neighboring bitangents, we compute potential T-events if 1) the two bitangents are

72 Chapter 4: An Implementation of the Sweep Algorithm

tangent to one common polytope edge, and 2) they are tangent to two other distinct

polytopes.

Computing T-events makes use of the three polytope edges to which the pair of

neighboring bitangents are tangent, in addition to the polytope edge about which the

sweep plane is rotating. The four polytope edges may admit at most two transversals.4

Any of the computed transversals corresponds to one possible future T-event. We add

the T-event to the event list if: case 1) only one transversal is inside the sweep range;

or case 2) the two transversals are both inside the sweep range, in which case we

only add the one that is encountered first by the sweep plane, since, when a T-event

occurs, the neighboring bitangents will change, and thus the second T-event will not

be valid at that stage.

Note that on the initial sweep plane, each of the bitangents is considered as new.

To avoid redundant computation, for each bitangent, we consider only its clockwise

neighboring bitangents.

Note also that a T-event occurs when either two or three bitangents become

colinear. In the latter case, the same T-event may be computed more than once. To

avoid redundant computation, before computing each T-event, we check the event list

to see if there is any T-event that is computed from the same four polytope edges.

We use the software developed by Redburn [87] to compute transversals to four

lines. We omit the computation details here but emphasize that the computational

method implemented in this software involves high algebraic degrees (see Chapter 5

for details). This fact directly affects our choice of number type and raises robustness

4Note that it is well know that four line segments in general position admit up to two transver-
sals [60] (p.164). In the case of the degeneracies, there might be up to four, or infinitely many
transversals to four line segments [15]; this implementation reports any degeneracies and aborts.

Chapter 4: An Implementation of the Sweep Algorithm 73

issues, as described in Section 4.3.1.

Computing potential V -events. As in Figure 4.2 (b), each of the two polytope

edges to which a bitangent is tangent has two incident polytope vertices. Any of

these four polytope vertices, if it is inside the sweep range, admits one V-event. Note

however that for each polytope edge, if both of its incident vertices are inside the

sweep range, only the V-event associated with the vertex that is swept first by the

sweep plane is added to the event list, because the other V-event will be computed

again later on.

For those polytopes that are not intersected by the initial sweep plane, we compute

a V-start-event on each of them. The V-start-event corresponds to the first vertex of

the polytope hit by the sweep plane. We add this event to the event list if it is inside

the sweep range.

Computing potential F-events. As in Figure 4.2 (c), each of the two polytope

edges to which a bitangent is tangent has two incident polytope faces. Any of the

four polytope faces, together with the other polytope edge to which the bitangent is

tangent, and the polytope edge about which the sweep plane rotating, may admit a

transversal. In total, there are possibly four such transversals. Any of the transver-

sals, if inside the sweep range, corresponds to a possible F-event. However, for each

polytope edge, if each of its two incident faces admits one F-event, only the one swept

first by the sweep plane is added to the event list, because the other F-event will be

deleted when updating the first F-event (since the polytope edge is no longer the

support of the bitangent).

74 Chapter 4: An Implementation of the Sweep Algorithm

Note that there are two edges on a polytope face that support the F-event. The old

supporting edge is known already, but the new supporting edge needs to be computed.

We compute it by enumeration, that is, we enumerate the edges that are incident to

the polytope face one after the other until we find the new edge.

4.3.4 The Event List

The computed events are kept in an event list. The actual data structure of the

event list is a skip list, which ensures O(log(x)) time for search, insertion and

deletion operations, where x is the size of the event list.

This event list is a sorted list in which the events are kept in the order in which they

would occur during the sweep. We use an orientation predicate to sort the events.

The orientation predicate takes four input 3D points from which it constructs a

4 × 4 matrix, and returns the sign of the 4 × 4 determinant of the four points in

homogeneous coordinates with the last coordinate equal to 1. The first three input

points define a plane, and the sign of the determinant of the matrix tells on which

side of the plane the fourth point lies. If we denote by e1, e2 the two endpoints of the

polytope edge e that supports the current sweep, given two events that are defined

by two points v1, v2 in R3, the orientation predicate is essentially defined as the

sign of the determinant Det(e1, e2, v1, v2). The actual definition is more complicated

and requires consideration of a point on the polytope of edge e but not on the edge

e; see Section 5.2.4 for details.

Each of the two 3D points v1, v2 that correspond to two events can either be a

polytope vertex, an intersection point of a polytope edge with a plane, or a point on

Chapter 4: An Implementation of the Sweep Algorithm 75

a transversal to four lines. In the latter case, because of the computational proce-

dure, the 3D point inherits high algebraic degree. Thus, designing and analyzing the

predicate of sorting the events requires a substantial study. We present the details of

this study in Chapter 5.

Moreover, each skeleton vertex has pointers pointing to all the events that are

computed from it. Each event also points to all the skeleton vertices that it relates to.

These pointers ensure constant access to skeleton vertices or events during updating.

4.3.5 Updating the 2D Visibility Skeleton and the Event List

Initially, the event list contains all the V-start-events, and all the events that

are computed from the initial 2D visibility skeleton. When the sweep plane starts

rotating, it stops at the event position that is the first in the event list. The 2D

visibility skeleton is updated according to the event. Consequently, the event list is

updated as well, according to the updates of the 2D visibility skeleton. In particular,

the first event in the event list is deleted. The updates of the event list and the 2D

visibility skeleton happen interactively and repeatedly until the event list is empty.

We describe the details of the updates as follows.

Updating the 2 D visibility skeleton according to the event type.

• T-event: Either two bitangents become colinear and a third bitangent appears

at and after the event (Figure 4.3, from (a) to (c)); or three bitangents become

colinear, and one bitangent disappears after the event (Figure 4.3, from (c)

to (a)). In the 2D visibility skeleton, this corresponds to a skeleton vertex

76 Chapter 4: An Implementation of the Sweep Algorithm

1 2

3

1 2
1 2

3

(a) (b) (c)

2v u

z w1

x

y

1

w
u

v
y

x

z y

x

2

1

3

z

v

u

w

(d) (e) (f)

Figure 4.3. A T-event: (a) two bitangents (b) become collinear, and (c) a third bitangent appears;

(d), (e), and (f): the 2D visibility skeleton corresponding to (a), (b), and (c).

appearing or disappearing, respectively. We add or delete the skeleton vertex,

and update the adjacencies of the three skeleton vertices (Figure 4.3, (d), (e),

and (f)).

• V-event: There are three cases related to this event: (i) a V-start-event: the

vertex of the in-event polytope is the first vertex of the polytope to be hit by

the sweep plane, that is, the sweep plane starts intersecting the polytope at

this vertex; (ii) a V-end-event: the vertex of the in-event polytope is the last

vertex of that polytope hit by the sweep plane, that is, the sweep plane finishes

intersecting the polytope at this vertex; and (iii) a V-middle-event: the sweep

plane intersects a vertex of the in-event polytope, such that part of the polytope

is above the sweep plane, and part of the polytope is below the sweep plane.

We update the 2D visibility skeleton according to these V-start-, V-middle-,

and V-end-events as follows:

Chapter 4: An Implementation of the Sweep Algorithm 77

(a) (b) (c)

Figure 4.4. (a) before, (b) during, and (c) after a V-start-event, when a set of new bitangents

appears.

(i) V-start-event: a set of new bitangents may appear involving the vertex of

the in-event polytope (Figure 4.4). We first compute the set of polygons

on the current sweep plane, and then compute the set of new bitangents

that are tangent to the vertex and the set of polygons.5 These bitangents

correspond to the newly appearing 2D visibility skeleton vertices, and we

add them to the 2D visibility skeleton. Moreover, for each new skeleton

vertex, we compute its four adjacent skeleton vertices, using the method

presented in Section 4.3.6.

(ii) V-middle-event: the visibility skeleton itself undergoes no change; however,

a set of bitangents that are tangent to the vertex of the in-event polytope

change their supporting edges (Figure 4.5). We update the supporting

edges of the in-event bitangents.

(iii) V-end-event: a set of bitangents that are tangent to the vertex of an in-

event polytope disappears. We delete their corresponding 2D visibility

skeleton vertices, and update the adjacencies of the remaining vertices.

5In the current implementation, we compute the new bitangents using a brute force method, for
simplicity. An algorithm for computing them with improved theoretical running time is available [2,
95]. We leave the implementation of this algorithm as future work.

78 Chapter 4: An Implementation of the Sweep Algorithm

(a) (b) (c)

Figure 4.5. (a) before, (b) during, and (c) after a V-middle-event, a bitangent changed its sup-

porting edge.

(a) (b) (c)

Figure 4.6. (a) before, (b) during, and (c) after a F-event, a bitangent changed its supporting edge.

The V-end-event can be regarded as the reverse of the V-start-event, as

shown in Figure 4.4 from (c) to (a).

• F-event: the visibility skeleton itself undergoes no change, but the in-event

bitangent changes one of its supporting edges (Figure 4.6), and is updated

accordingly.

Updating the event list according to the event type.

• T-event: we first delete all the T-events related to the in-event bitangents, since

for each skeleton vertex corresponding to the in-event bitangent, its four inci-

dent skeleton vertices may change (see Figure 4.3); therefore, the previously

computed T-events may not be valid anymore (see Section 4.3.3 on the compu-

tation of potential T-events).

Chapter 4: An Implementation of the Sweep Algorithm 79

Then, we recompute the T-events according to the updated arcs. Moreover, if

a new bitangent appears, we compute the potential F-events involving the new

bitangent, and insert the computed new events. Note that we do not compute

potential V-events for this particular new bitangent: since its two supporting

polytope edges are also the supporting edges of the other two bitangents that

are involved in this T-event updating, this means the V-events that are related

to these two supporting polytope edges are already computed. However, we

need to set the pointers between the new bitangent and its related V-events. If

an existing bitangent disappears, we delete all the events that are related to the

bitangent from the event list.

• V-event: for a V-start-event, for each of the new bitangents, we compute 4

potential T-events, 2 potential V-events and 2 potential F-events, and insert the

computed new events. Also, for each existing old bitangent, if the arcs incident

to its corresponding vertex in the 2D visibility skeleton are being updated, we

delete all the related T-events from the event list. For a V-middle-event, we

delete all the T-, V-, F-events related to the old supporting edge from the event

list, and compute new T-, V-, F-events related to the new supporting edge, and

insert the newly computed events. For a V-end-event, we delete from the event

list all the events related to the disappearing bitangents.

• F-event: similar to a V-middle-event, we delete all the events related to the old

supporting edge from the event list, and compute the new events related to the

new supporting edge and insert the newly computed events.

In summary, based on the first event in the event list, we rotate the sweep plane

80 Chapter 4: An Implementation of the Sweep Algorithm

a

b

r

p
q

c

Figure 4.7. Bitangents that are tangent to a polygon at the same or different vertices.

to its next position. At each event position, we update the 2D visibility skeleton and

the event list according to the current event type. The sweep ends when there are no

more events in the list.

4.3.6 Computing the Ordering of Bitangents

The 2D visibility skeleton is a directed graph (see 2.2.1 for details), with the

computed bitangents (2D skeleton vertices) appearing in clockwise order around the

polygon to which they are tangent (see Figure 2.8). The ordering information of the

bitangents is needed when computing the sweep events, or when updating the 2D

visibility skeleton.

A set of bitangents may be tangent to a polygon at the same vertex, e.g. bitangents

pa and pb in Figure 4.7, or on different vertices, e.g. bitangents pa and qc in Figure

4.7. In the former case, we order these bitangents using the same predicate as when

ordering the events. In the latter case, we order these bitangents based on the ordering

of the polygon vertices.

To decide the ordering of the polygon vertices, in our implementation, we choose

to use the predicate is_clockwise_oriented, which is an operation provided by the

Chapter 4: An Implementation of the Sweep Algorithm 81

1

2

3

I1 I2

1

2

3
1

3

2

I1 I2

x

z

y v2

v1

v0

1

2

3

I1 I2

1

2

3
1

3

2

I1 I2

(a) (b)

Figure 4.8. (a) Dropping z-coordinate results in different orientations of the two 2D discs: I 1 and

I 2. (b) Keeping the disc orientation consistent by using the sign of (v0 · z) × (v2 · z).

polygon_2 object. However, the 2D polygons are converted from the 3D polygons by

dropping a non-trivial coordinate (in practice, the z-coordinate), and the 3D polygons

are computed from the intersection of the sweep plane with the polytopes. It may

happen that, for a given polytope, when it intersects a sweep plane at two different

rotational positions, the resulting two 2D polygons have different orientations. For

example, in Figure 4.8 (a), the two discs I 1 and I 2 that result from the intersection

of the cylinder with the sweep plane at positions I 1 and I 2 have different orientations

after dropping the z-coordinate.

During a sweep, the 2D visibility skeleton is updated at each sweep position. This

implies that new bitangents may appear, and thus may be added into the 2D visibility

skeleton, using the predicate is_clockwise_oriented. The different orientations of

the 2D polygons that are computed from the same polytope can cause the wrong

ordering of the skeleton vertices.

To keep the consistency of the polygon orientations with respect to the polytope

82 Chapter 4: An Implementation of the Sweep Algorithm

they are computed from, we choose a direction of view, v0, which can be the normal

vector of the initial sweep plane (Figure 4.8 (b)). During the sweep, we compute the

normal vector vi of the sweep plane at the current sweep position. We use the sign

of (v0 · z) × (vi · z) to keep the orientation of the 2D polygons vi consistent with the

initial view direction. For example, in Figure 4.8 (b), the sign of (v0 · z) × (v2 · z)

is negative, and we therefore reverse the orientation of disc I 2, which results in the

consistent orientation of discs I 1, I 2 with respect to the cylinder from which they are

computed.

4.3.7 Computing the 3D Visibility Skeleton Vertices

When a V- or F-event happens, if the supporting line lt of the in-event bitangent

t intersects edge e (about which the sweep plane rotates), we denote that intersection

point by p = lt ∩e (Figure 4.9 (b) and (c)). Similarly, when a T-event happens, if the

supporting line lt of the two collinear in-event bitangents t1 and t2 intersects edge e,

we denote that intersection point by p = lt∩e (Figure 4.9 (a)). Point p may lie in t (or

in t1 or t2), in which case t itself (or t1, t2 together) is the minimal free line segment

associated with the vertex of the 3D visibility skeleton. If, however, p does not lie in t

(or t1 and t2), as in Figure 4.9, and the line segment between p and the near endpoint

of t (or t1 and t2) is not blocked, then the line segment between p and the far endpoint

of t (or t1 and t2) is the minimal free line segment. To define the maximal free line

segment, we can extend the minimal free line segment in both directions, stopping if

and only if it becomes blocked, or extend it to infinity otherwise. This determines up

to two blockers on lt.

Chapter 4: An Implementation of the Sweep Algorithm 83

e
lp qt2
t

t 1

e1 e e3
2

v(q)e l t
p t

e1

p1
e

p
ltf

t
q

e1

(a) (b) (c)

Figure 4.9. The 3D visibility skeleton vertices of type (a) EEEE, (b) VEE and (c) FEE that are

computed from T-, V-, and F-events. Note that the maximal free line segment lies in lt, but its

extent is not shown in the figure, i.e. if it does not extend to infinity, it is blocked beyond the figure.

In the current implementation, we compute only minimal free line segments,6 since

the main purpose of this thesis is to investigate the size of the 3D visibility skeleton.

However, for the application to global illumination, the maximal free line segments

are required. These can be computed from the minimal free line segments, with

increased computational complexity. From now on, we often refer to the minimal free

line segments.

Recall that each minimal, or maximal free line segment corresponds to a vertex of

the 3D Visibility Skeleton. A minimal or maximal free line segment computed from a

T-event corresponds to a type EEEE vertex; if it is computed from a V-, or F-event,

it corresponds to a vertex of type VEE, or FEE respectively (Figure 4.9).

Given that the sweep algorithm rotates a sweep plane around each polytope edge

in turn, a minimal free line segment may appear in more than one sweep and thus

may be computed more than once. For example, in Figure 4.9 (a), the minimal free

line segment pq appears in those sweeps which the sweep plane rotates about polytope

edge e, e1, e2, or e3. In what follows, we describe how we compute the EEEE, VEE,

6Precisely, we only compute the line segment defined by t (or t1 and t2) without computing its
blockers. As a consequence, we have no knowledge about how far the minimal free line segment can
extend.

84 Chapter 4: An Implementation of the Sweep Algorithm

v(q) l t
tp1

e1

p

e

v(q) l t
p t

e1

p1

e

(a) (b)

Figure 4.10. Computation of a VEE vertex, in two cases different from Figure 4.9 (b).

and FEE vertices, and how we avoid redundant computation.

EEEE vertices. Consider four edges e1, e2, e3, e4 that support a T-event; see

Figure 4.9 (a). As the algorithm sweeps a plane about edges e = e1, e2, e3, e4 in

turn, there will be two sweeps such that p = lt ∩ e is an internal point of the minimal

free line segment, and two sweeps for which it is an endpoint of the minimal free

line segment. To avoid redundancy, we output an EEEE vertex if and only if i)

p = lt ∩ e is an internal point pi on the minimal free line segment; and ii) compared

to the other internal point pj = lt ∩ ej , edge ei contains the polytope vertex that is

lexicographically first among the four polytope vertices on ei and ej .

VEE vertices. In this case, the bitangent t has a polytope vertex v as one endpoint

and its other endpoint lies at a point p1 on some edge e1. Let p = lt ∩ e where e is

the edge about which the sweep plane rotates (see Figure 4.9 (b), also Figure 4.10).

If v is extremal in the ordering of p, p1, and v on lt, and if p lies between p1 and v

(Figure 4.10 (a)), then the bitangent t is a minimal free line segment associated with

a VEE vertex and we output this vertex. If p1 lies between p and v (Figure 4.9 (b)),

then to avoid redundancy, we do nothing (the VEE vertex is output when the sweep

plane rotates about e1).

Chapter 4: An Implementation of the Sweep Algorithm 85

If v is not extremal and v lies between p and p1 on lt (Figure 4.10 (b)), then pp1 is

a minimal free line segment associated with a V-event if and only if pp1 is not blocked.

We check in a brute force manner whether pp1 is blocked. To avoid redundancy, we

check only once whether line segment vp is blocked, that is, when e contains the

polytope vertex that occurs first in lexicographic order among the four endpoints of

edge, e and e1.

FEE vertices. Consider the minimal free line segment associated with an FEE

vertex, and let lt denote its supporting line. To describe the computation of the FEE

vertex, let us view the minimal free line segment associated with the FEE vertex

and lt in the plane πf of the face f associated with the FEE vertex. Let e1 and e2

denote the edges of f intersected by lt, and let e3 and e4 denote the remaining two

support edges of the minimal free line segment associated with the FEE vertex. Let

pi = lt ∩ ei, 1 ! i ! 4. As shown in Figure 4.11, either (i) lt ∩ f does not lie between

p3 and p4 on segment p3 p4, or (ii) lt ∩ f lies between p3 and p4. In Case (i), we

output the FEE vertex as the sweep plane rotates about the edge e3. This has the

advantage that the minimal free line segment p1p4 appears as a bitangent during the

sweep, so that there is no need to further test if the minimal line segment is free.

Computationally, this is equivalent to testing, when the F-event arising from face f

occurs during a sweep, if the associated bitangent t intersects the edge e about which

the sweep plane rotates. In Case (ii), we output the FEE vertex when the sweep plane

begins or ends its rotation about the edges e1 or e2 of face f , whichever contains the

polytope vertex that is lexicographically first among the four endpoints of e1 and e2.

This avoids redundancy and having to check for blockers, since the minimal free line

86 Chapter 4: An Implementation of the Sweep Algorithm

l t

e2
e3
e4e1
π f

p1
p4p3p2

f
l t

e4
π f

e2e1
e3

p3 p1 p2 p4

f

(a) (b)

Figure 4.11. (a) Case (i) and (b) Case (ii) of computing an FEE vertex.

segment p3p4 appears as a bitangent.

4.4 Complexity of the Implementation

As analyzed in Section 2.3, for k given polytopes with n edges in total, the worst-

case complexity of the sweep algorithm is O(n2k2 log k), which is dominated by com-

puting and processing T-events. To simplify the implementation of the algorithm, the

following two operations are implemented using a brute force method. We analyze

their complexity as follows.

Computing the free bitangents at each V -start-event. The worst-case com-

plexity of this operation is O(n3k). Indeed, at each V-start-event, there are O(k)

polygons with total complexity O(n) on the sweep plane. From a single point, the

operation of computing all the tangents to the O(k) polygons costs O(n) time, and

testing non-occlusion of each computed bitangent costs O(n) time. There are O(k)

V-start-events for each sweep and there are n sweeps in total.

Computing VEE vertices when, for a given V -event, the polytope vertex

V lies between the two polytope edges. As discussed in Section 4.3.7 (the case

Chapter 4: An Implementation of the Sweep Algorithm 87

of a VEE vertex) and illustrated in Figure 4.10 (b), we check in a brute force manner,

for this particular case, to see whether a V-event implies a VEE vertex. Again, the

worst-case complexity of this operation is O(n3k). There are O(k) polygons with

total complexity O(n) on the sweep plane, the operation of testing non-occlusion of

the corresponding minimal segment of a VEE vertex is O(n), and there are O(n2k)

VEE vertices.

Note that, through our experimental testing, we observed that the proportion of

the V-events in this particular case is very low in comparison with the rest of the V-

events. As a result, we observed that the brute force implementation for this particular

case has almost no effect on the overall actual running time of our implementation.

Total running time complexity. In total, the running time complexity of this

implementation, in the worst case, is O(n3k) + O(n2k2 log k), which is equivalent to

O(n2k(k log k + n)).

4.5 Software Validation

We validated our software through visualization and experimental verification,

which are explained in detail in Section 4.5.1 and 4.5.2.

The input scenes that were used to test our software were generated artificially.

Briefly, we generated the input scene by first generating k uniformly distributed dis-

joint unit spheres in a spherical universe with density µ. For each sphere, we then

uniformly generated a set of vertices inside the sphere and computed their convex

hull. We show three sample scenes that are generated from this scene generating

88 Chapter 4: An Implementation of the Sweep Algorithm

(a) (b) (c)

Figure 4.12. Sample scenes of (a) Scene I, (b) Scene II, (c) Scene III .

schema in Figure 4.12. Scene I, II, III has 10, 30, 90 polytopes, and 129, 2964, 660

total edges respectively.

4.5.1 Visualization

The input to our implementation is a set of polytopes, and the output is the

vertices of types EEEE, VEE and FEE of the 3D visibility skeleton. At each interme-

diate step, i.e. at each event position, the computed 2D visibility skeleton undergoes

certain updates. We used geomview [45] to display the input, the output, and the

updates of each intermediate step to verify the correctness of the program through

visualization.

This method is limited to a small number of input polytopes. When the number of

input polytopes is large, at each intermediate step, the computed 2D visibility skeleton

contains a large number of vertices, and as a result, the output tends to have a large

number of vertices. In both the 2D and the 3D visibility skeleton displays, the vertices

appear on the display window as a large number of corresponding line segments,

Chapter 4: An Implementation of the Sweep Algorithm 89

(a) (b)

v v v f v v v

4

1 2

3

B A

(c) (d)

Figure 4.13. (a) One position of the sweep plane. (b) The view inside the sweep plane. (c) The

eventlist, and (d) the 2D visibility skeleton for polygons in (b).

which makes the verification difficult. However, when the number of input polytopes

is small, this visualization method can serve as partial evidence for verification.

An example of visualizing the computational step and the computational results

with 4 input polytopes was made into a video [107], which is available at:

http://www.computational-geometry.org/SoCG-videos/socg07video/Visibility.mov

The frames of the video were mostly based on the snapshots of the output of our

implementation at its various steps. When displaying the intermediate computational

90 Chapter 4: An Implementation of the Sweep Algorithm

Figure 4.14. Snapshots of visualizing the computational steps of the implementation.

steps, we showed, in both 3D and 2D views (Figure 4.13 (a) and (b)), the action of

the rotating sweep plane intersecting the input polytopes, as well as the concurrent

states of the eventlist and the 2D visibility skeleton graph (Figure 4.13 (c), (d)). Note

that in Figure 4.13 (c) and Figure 4.14, the V- and F-events are illustrated in the

same color as the corresponding polytope on which the event occurs, and the T-events

Chapter 4: An Implementation of the Sweep Algorithm 91

(a) (b) (c) (d)

Figure 4.15. (a) An input of ten polytopes, and the output of (b) 6 EEEE, (c) 438 VEE and (d)

85 FEE type vertices.

are illustrated in yellow. In Figure 4.13 (d), each of the directed cycles indicates the

clockwise ordering of the bitangents around a polytope which has the same color as

the cycle. Finally, a few frames of the intermediate computational steps are shown in

Figure 4.14.

We briefly discuss the technical details of making this video. The graphical output

was produced using the Geomview software [45] through the interface provided by the

CGAL library. We took snapshots of the Geomview window display, while rotating

the viewpoint to provide a 3D view of the objects in the display window. Finally, we

used iMovie [63] to assemble all the snapshots together into the final video. We used

the Audacity [8] software for the audio.

We display the output for an input scene in Figure 4.15. Figure 4.15 (a) shows 10

input polytopes, which is a subset of Scene II (Figure 4.12 (b)). Figure 4.15 (b), (c),

(d) illustrate the EEEE, VEE, FEE vertices, respectively. Note that each visibility

skeleton vertex corresponds to a free line segment that is tangent to its supporting

polytope edges (or vertices). In Figure 4.15 (b), (c), (d), the vertices are displayed in

92 Chapter 4: An Implementation of the Sweep Algorithm

red, and the supporting polytope edges and polytope vertices are displayed in black.

There are 6 EEEE vertices, 438 VEE vertices, and 85 FEE vertices in the scene in

Figure 4.15 (a).

4.5.2 Experimental Verification

We verified the correctness of our implementation by comparing its output, that is,

the type EEEE, VEE and FEE vertices, with that of an implementation of the brute

force algorithm. Since the brute force algorithm implementation was straightforward,

having only about a thousand lines of code, the output is less error prone, and credible

to use to verify the implemented software.

Given a set of input polytopes, we verified that the two sets of outputs from the

implementations were equal. That is, we checked that each computed 3D visibility

skeleton vertex from one output had an identical vertex from the other output, and

vice-versa. Here we define a pair of identical vertices as two vertices having the same

vertex type, with their corresponding transversals having the same geometric position,

and having the same supporting polytope edges (or vertices).

The example scenes I and III in Figure 4.12 were used for the verification. Ad-

ditionally, we tested another 18 scenes with number of polytopes varying from 5 to

130, and the number of polytope edges up to 1000. We note that the number of

edges in our tested scene is relatively small, because the brute force algorithm (with

complexity O(n5)) tends to be very time consuming.

All the twenty tests used number type filtered_exact. On all twenty input

scenes, experimental results showed that both implementations admit equal sets of

Chapter 4: An Implementation of the Sweep Algorithm 93

output. Naturally, such experiments do not guarantee that our implementation is

error free, but they can at least testify the relative stability of our implementation,

so that we can trust and rely on the experimental data from this implementation to

analyze the software performance and carry on experimental studies.

4.6 Performance

In this section, we study the performance of our implementation in various as-

pects. We first study the running time in terms of parameter n and k, for given k

input polytopes with n edges in total. We then study the running time in terms

of the number of polygons, such that we can compare our implementation with the

existing one of Durand et al. [34, 36]. Finally, we study the running time of our

implementation in terms of the number types double, filtered_exact, and CORE.

All the experiments were done on a i686 machine with Pentium 2.80 GHz CPU

running Linux, with 2 GB of main memory. Running time was measured with the

getrusage() command and the ru_utime attribute.

4.6.1 Running Time in Terms of n and k

We first briefly describe the experiments that were used in our experimental study.

We then analyze the results obtained in terms of parameter n, which is the parameter

used in many other studies on the same subject [34, 36, 47, 94], and in terms of

parameter n
√

n k log k, which suits the running time of our implementation better.

94 Chapter 4: An Implementation of the Sweep Algorithm

T he Experiments. To study the performance of our implementation, we used the

same experiments that were carried out for studying the size of 3D visibility skeleton

(see Chapter 6), since both results were obtained during the same experimental test-

ing. We briefly summarize our experiments here and delay the detailed description

to Section 6.2.2, since the experimental setting corresponds more to the study of the

size of 3D visibility skeleton.

We generated three suites of experiments according to three parameters: µ, the

scene density; k, the number of polytopes; and n/k, the number of edges per polytope.

We recall that n is the total number of edges of the input. In Suite I, we chose n/k ≈ 6,

42, and 84, µ = 0.3, 0.5 and 0.01, and varied k from 10 up to 230 in each input scene.

In Suite III, we chose µ = 0.3, varied n/k in the range of [4, 24], [4, 34], and [4, 44]

uniformly in each input scene for k varying from 10 to 150. We omit the description

of Suite II, since this suite of experiments did not contribute useful information to

our running time study.

Running T ime in Terms of n. We present, in terms of the total number n of

edges in the scene, the running time of our implementation (in seconds) of Suite I

of our experiments, for n/k ≈ 6, 42, and 84, respectively. As shown in Figure 4.16,

for a given value of n/k, the running time appears to be in Θ(n2.5 log n) (see Figures

4.16 and 4.17). Furthermore, we notice that, for a fixed n, the running time drops

drastically when the number k of polytopes gets smaller. These observations are

consistent with the theoretical bounds, that the time complexity of the algorithm is

in O(n2k2 log k).

In what follows we analyze the running time in terms of both n and k.

Chapter 4: An Implementation of the Sweep Algorithm 95

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12
x 104

n

Ru
nn

in
g

Ti
m

e

µ = 0.3

n / k = 6
n / k = 42
n / k = 84

Figure 4.16. Running time (in seconds; 2.88 × 104 seconds = 8 hours) in terms of n, the number

of edges in the scene in Suite I (µ = 0.3).

Running T ime in Terms of n
√

nk logk. We first study the running time of

our implementation in terms of n
√

n k log k for experiments in Suite I, and show

the results in Figure 4.17(a), 4.17(b) and 4.17(c) for scene density µ = 0.3, 0.05

and 0.01 respectively. We observe that for a fixed polytope complexity n/k, the

running time seems linear in n
√

n k log k. More precisely, we observe a running time

of C ′
µ n

√
n k log k seconds with C ′

µ no more than 3 · 10−4 for the considered densities

(roughly equal to 2.1 ·10−4, 1.9 ·10−4, and 1.5 ·10−4 for µ equal to 0.3, 0.05, and 0.01,

respectively). Note, however, that for density 0.3, the data we obtained from groups

n/k ≈ 42 and 84 fit the estimated time complexity well, whereas the data from the

group n/k ≈ 6 is a constant factor away.

We furthermore study the time complexity in terms of n
√

n k log k on Suite III of

our experiments. As shown in Figure 4.17(d), Suite III admits the same observation

as in Suite I, that the running time of our implementation is linear in terms of

n
√

n k log k.

96 Chapter 4: An Implementation of the Sweep Algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 108

0

2

4

6

8

10

12
x 104

sqrt(n3) × k × logk

Ru
nn

in
g

Ti
m

e

µ = 0.3

n / k = 6
n / k = 42
n / k = 84

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 108

0

1

2

3

4

5

6

7

8

9
x 104

sqrt(n3) × k × logk

Ru
nn

in
g

Ti
m

e

µ = 0.05

n / k = 6
n / k = 42
n / k = 84

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 108

0

1

2

3

4

5

6

7
x 104

sqrt(n3) × k × logk

Ru
nn

in
g

Ti
m

e

µ = 0.01

n / k = 6
n / k = 42
n / k = 84

(c)

0 1 2 3 4 5 6 7
x 108

0

2

4

6

8

10

12

14
x 104

sqrt(n3) × k × logk

Ru
nn

in
g

Ti
m

e

µ = 0.3

n / k = [4, 24]
n / k = [4, 34]
n / k = [4, 44]

(d)

Figure 4.17. Running time (in seconds) in terms of n1.5 k log k: for density (a) µ = 0.3, (b)

µ = 0.05 and (c) µ = 0.01, where the polytopes have constant complexity (n/k edges) (Suite I); and

(d) for density µ = 0.3, where the polytope complexity varies in the range of [4 - 24], [4 - 34], and

[4 - 44] (Suite III).

The observed running time can be intuitively explained as follows. Note first

that n
√

n k log k is equal to n
√

n/k k
√

k log k. We dissect this expression as

follows. First, n is the number of sweeps performed by the algorithm. We observe

that the factor k
√

k is linearly related to the average over all sweeps of the maximal

Chapter 4: An Implementation of the Sweep Algorithm 97

number of bitangents encountered in the sweep plane during a sweep (we omit here the

presentation of these experiments). This is reasonable since the number of bitangents

in the sweep plane varies from Θ(k2), the trivial worst-case bound, to Θ(k), the

expected bound in the right setting [41]. Furthermore, the factor
√

n/k naturally

relates to the number of updates caused by each bitangent during the sweep; indeed,

following a bitangent during a sweep, the bitangent will encounter vertices on each

of the two polytopes supporting it; the number of these vertices on each polytope

is related and, intuitively, is less than the worst-case size of the silhouettes of the

polytopes, which is in O(
√

n/k) in our setting.7 Finally, log k is the complexity of

each update of the event list.

We recall that the worst-case running time complexity of this implementation is

O(n2k(k log k + n)), which has much higher order than our observed running time.

4.6.2 Running Time in Terms of the Number of Polygons

We compare the performance of our implementation of the sweep plane algorithm

with the brute force implementation by Durand et al. [34, 36], since it is the most

well-known one among the three existing brute force implementations. The other two

are by Schröder [94] and Glaves [47].

Recall that Durand et al. [34, 36] model the input scene as 3D polygons. For

example, a cube would be modeled as 6 independent polygons (its faces), whereas

7It is shown that for any polyhedron of size Θ(m), the size of its silhouette viewed from a
random point is O(

√
m) under some reasonable hypotheses [49] (see also [65] for the special case of

polyhedra that approximate spheres). Thus, in our setting, it is reasonable to assume that the size
of the silhouette does not depend much on the choice of the viewpoint, that is, for any polytope
with n/k edges we consider, it is reasonable to assume that its silhouette has size O(

√

n/k) from
any viewpoint.

98 Chapter 4: An Implementation of the Sweep Algorithm

our implementation models the input scene as one 3D polytope. The running time of

the implementation of Durand et al. depends on the number n of polygons of constant

complexity. The theoretical worst-case running time of their implementation is O(n5),

and the practical running time, due to the heuristics they used, is about O(n2.5). We

show the experimental results of Durand et al. , which are reported in [34, 36], in

Table 4.1.

a b c d e f g

Scene
Polygons 84 168 312 432 756 1056 1488
Nodes (·103) 7 37 69 199 445 753 1266
Arcs (·103) 16 91 165 476 1074 1836 3087
Construction 1 s 71 12 s 74 37 s 07 1 min

39 s
5 min
36 s

14 min
36 s

31 min
59 s

Mem. (Mb) 1.8 9 21 55 135 242 416

Table 4.1. Experimental results reported in [34, 36], on a 195Mhz R10000 SGI Onyx2 (taken

from [34]).

From Section 4.6.1, our experimental results suggest that the practical running

time of our implementation is O(n
√

nk log k), which depends on the total number of

polytope edges n and the number of polytopes k. The practical running time of the

implementation of Durand et al. depends only on n. We therefore compared the two

implementations by considering input scenes that have similar numbers of polygonal

faces, that is, for each number of polygons, for our implementation, we distinguished

between n ∼ k and n , k. Specifically, we considered 3 pairs of scenes. Each pair

of scenes contains two types: (i): n ∼ k; (ii): n , k, and they have roughly the

same number of polygons. As shown in Table 4.2, we considered the approximate

Chapter 4: An Implementation of the Sweep Algorithm 99

numbers of polygons as 450, 750, and 1000, which are similar to column d, e and f in

Table 4.1. We compare the running time, and the number of computed EEEE, VEE,

and FEE vertices of these three pairs of input scenes with the experimental results

in [34, 36] (Table 4.1). All the tests used number type double, which is the same as

used in [34, 36]. The computational results are listed in Table 4.2.

pair 1 pair 2 pair 3
Polygons approx. 450 approx. 750 approx. 1000
Polytopes n ∼ k n , k n ∼ k n , k n ∼ k n , k

Scene
k 90 9 150 15 200 20
n 660 636 1146 1143 1530 1479
t (min.) 5.30 0.12 29.5 0.91 66.3 2.18
EEEE 843 0 5872 12 11296 64
VEE 22401 199 89804 1571 157771 3597
FEE 1296 41 4738 339 8034 767

Table 4.2. Experimental results for three pairs of input scenes with the number of polytope faces

approximately 450, 750, and 1000.

From Table 4.2, we can observe that, within each of the 3 pairs of input scenes,

the number of polytope faces (i.e. polygons) are similar, but the running times are

very different. Roughly speaking, the running times of scenes that feature n ∼ k are

about 30 to 40 times slower than the running times of scenes that feature n , k.

Comparing the results in Table 4.2 with those in Table 4.1, for the scenes that

have similar number of polygons, we also observe that the running time reported in

Table 4.1 is faster than the scene in Table 4.2 that features n ∼ k, but slower than

the scene in Table 4.2 that features n , k. This should however be moderated by

100 Chapter 4: An Implementation of the Sweep Algorithm

the fact that the machine used for the experiments of Table 4.1 is substantially slower

than the one used in the experiments of Table 4.2. These facts suggest that, for a

given number of polygons, when compared to the brute force implementation, our

implementation appears inefficient for scenes with n ∼ k, but competitive for scenes

with n , k. Therefore, to compare the running time of the two implementations, it

is more accurate to use both parameters n and k, rather than the number of polygons

alone.

Indeed, the reason for these results becomes very clear when we look at the prac-

tical running time of the two implementations, that is, O(n
√

nk log k) versus O(n2.5).

For a given scene, when n ∼ k, the running time of our implementation is about

O(n2.5 log n), which is larger than the practical complexity O(n2.5) of the brute force

implementation; whereas when n , k, the running time of our implementation is

about O(n1.5), which is asymptotically less than the brute force implementation.

In summary, we have compared our implementation with a brute force implemen-

tation that used heuristics for speeding up the computation. Due to the algorithm

we used in our implementation, the same heuristics that are used in the brute force

one are not applicable. As a result, our implementation is only competitive with the

brute force one for certain input scenes, described as n , k. One possibility for

future work arising from this thesis is to design some heuristics that are applicable to

the sweep plane algorithm, and thus to try to improve the practical efficiency of our

implementation.

Chapter 4: An Implementation of the Sweep Algorithm 101

double

(sec.)
filtered_exact

(sec.)

filtered_exact
double

CORE

(sec.)

CORE

double

scene I 1 3.6 3.7 44 45
scene II 117 406 3.5 5, 487 47
scene III 229 742 3.2 15, 100 66
scene IV 1290 3807 3.0 94, 110 73

Table 4.3. Running time (in seconds) in terms of number type: double, filtered_exact, and

CORE, as well as the ratio of filtered_exact and CORE to double, for four input scenes.

4.6.3 Running Time in Terms of Number Types

We compared the running time of our implementation using number type double,

filtered_exact, and CORE. The tests were made on 4 input scenes. Scene I, II and

III are shown in Figure 4.12. We recall that these scenes have 10, 30, 90 polytopes,

and 129, 2964, 660 edges respectively. Scene IV has 150 polytopes and 1146 edges.

Our implementation gives the same outputs with all three number types on each of the

four input scenes. The obtained data is listed in Table 4.3. Note that here, we tested

the running time of the implementation without computing and outputting the 3D

visibility skeleton vertices. Therefore, the computation mainly focused on updating

the 2D visibility skeleton and the event list, which mostly involves computation of

predicates, and thus reflects the performance of the three number types.

From Table 4.3, we observe that using filtered_exact number type is about 3

to 4 times slower than using double, whereas the CORE number type is much slower

than double, and varies from 44 to 73 times from scene I to scene IV.

Based on all our experiments that used number type CORE, we have observed that,

when the input scenes have a large number of polytopes, the CORE number type tends

to be much slower. This may explain the fact that, in Table 4.3, CORE has larger

102 Chapter 4: An Implementation of the Sweep Algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

3

4

5

6

7

8

9

n

Ru
nn

in
g

Ti
m

e
Ra

tio
: f

ilte
re

d_
ex

ac
t/d

ou
bl

e
µ = 0.3, 0.05, 0.01

µ = 0.3, n / k = 6
µ = 0.3, n / k = 42
µ = 0.3, n / k = 84
µ = 0.05, n / k = 6
µ = 0.05, n / k = 42
µ = 0.05, n / k = 84
µ = 0.01, n / k = 6
µ = 0.01, n / k = 42
µ = 0.01, n / k = 84

Figure 4.18. Running time ratio of number type double to filtered_exact, tested on the exper-

iments in Suite I.

running time variation when compared to double.

We further studied the running time ratio of number type filtered_exact to

double using the experiments of Suite I (briefly described in Section 4.6.1, and in

more detail in Section 6.2.2), and show the results in Figure 4.18.

The observation we can make from Figure 4.18 is very similar to that from Table

4.3, that is, the running time ratio may be high (as high as nine times at the highest)

when n is very small, but converges to about three when n gets larger. The cause may

be that, when n is small, the running time is mainly spent on applying the number

Chapter 4: An Implementation of the Sweep Algorithm 103

type filtered_exact itself.

4.7 Conclusion and Bibliographic Notes

We have presented in this chapter an implementation of the sweep-plane algo-

rithm to compute the vertices of the 3D visibility skeleton of disjoint polytopes. The

performance analysis indicates that the skeleton vertices can be computed exactly in

a reasonable amount of time. Further work includes improving the performance of

this implementation and completing the implementation for degenerate situations. A

major challenge is to extend the sweep algorithm to handle general polyhedra.

A terse discussion of this chapter has appeared in the Proceedings of 16th Annual

European Symposium on Algorithms [106], and some of the results in Section 4.5.1

have appeared in the session of video and multimedia presentations in the 23rd Annual

ACM Symposium on Computational Geometry [107].

Chapter 5

The Algebraic Degree of the

Predicates

In this chapter, we study various predicates and their degrees appearing in the

implementation of the sweep algorithm. Note that computing these predicates can

often be an important operation in solving 3D visibility problems arising in computer

graphics [14, 33, 36, 38, 39, 82].

A predicate is a function that returns a value from a discrete set. Typically,

geometric predicates answer questions of the type “Is a point inside, outside or on

the boundary of a set?” and return a value from a discrete set such as “yes”, “no”,

“undetermined”. We consider predicates that are evaluated by boolean functions

of more elementary predicates, the latter being functions that return the sign (−,

0 or +) of a multivariate polynomial whose arguments are a subset of the input

parameters of the problem instance (see, for instance, [12]). By degree of a procedure

for evaluating a predicate, we mean the maximum degree in the input parameters

105

106 Chapter 5: The Algebraic Degree of the Predicates

among all polynomials used in the evaluation of the predicate by the procedure. In

what follows we informally refer to this measure as the degree of the predicate. We are

interested in the degree because it provides a measure of the number of bits required

for an exact evaluation of our predicates when the input parameters are integers or

floating-point numbers; the number of bits required is then roughly the product of

the degree with the number of bits used in representing each input value.

In this chapter, we first study the degree of standard procedures for determining

the number of line transversals to four lines or four segments in 3D. Recall that four

lines in R3 admit 0, 1, 2 or an infinite number of line transversals [60] (p.164) and

that four segments admit up to 4 or an infinite number of line transversals [15]. These

predicates are not only used to compute the T-events, but also are ubiquitous in 3D

visibility problems. Finally, we study the predicate for ordering planes through two

fixed points, each plane containing a third rational point or a line transversal to four

segments or lines. This predicate is used to sort the event list.

Our study shows that standard procedures for solving these predicates have high

degrees. We study, in particular, procedures that involve computing the Plücker coor-

dinates [96] of the line transversals involved in the predicates. Throughout the chap-

ter, the points defining input geometric primitives (which can be lines, segments, and

triangles) are, by assumption, given by their Cartesian coordinates, and the degrees

of the procedures for evaluating predicates are expressed in these coordinates. We

show that, for determining the number of transversals to four lines or four segments,

such standard methods lead to procedures of degree 22 or 36, respectively. Also, in a

rotational sweep about a line, for ordering two planes, each defined by a line transver-

Chapter 5: The Algebraic Degree of the Predicates 107

sal to four lines, such methods lead to a procedure of degree 144. Furthermore, in

some implementations, the Plücker coordinates of the relevant line transversals are

computed in a way that the degrees of these procedures are even higher. For instance,

the procedure for evaluating the latter predicate for ordering planes then becomes of

degree 168 instead of degree 144. These very high degrees may help explain why using

fixed-precision floating-point arithmetic in implementations for solving 3D visibility

problems are prone to errors when given real-world data (see, for instance, [47]).

The degrees we present are tight, that is, they correspond to the maximum degree

of the polynomials to be evaluated, in the worst case, in the procedures we consider.

It should be stressed that these degrees refer to polynomials used in specific evaluation

procedures, and we make no claim as to the optimality of these procedures.

In the next section we describe a standard method used for computing the line

transversals to four lines, which is common to all our predicates. In Section 5.2 we

describe the predicates and their degrees. Some experimental results are presented in

Section 5.3.

5.1 Computing Lines through Four Lines

We describe here a method for computing the line transversals to four lines in

real projective space P3(R). This method is a variant, suggested by Devillers and

Hall-Holt, and also described in Redburn [87], of that by Hohmeyer and Teller [61].

Note that, for evaluating predicates, the latter method is not appropriate because it

uses singular value decomposition for which we only know of numerical methods and

thus the line transversals cannot be computed exactly, when needed.

108 Chapter 5: The Algebraic Degree of the Predicates

Each line can be described using Plücker coordinates (see [96], for example, for a

review of Plücker coordinates). If a line ! in R3 is represented by a direction vector

)u and a point p in R3 then ! can be represented by the six-tuple ()u,)u ×
−→
Op) in real

projective space P5(R), where O is any arbitrarily, fixed, origin and × denote the

cross product. The side product $ of any two six-tuples ! = (a1, a2, a3, a4, a5, a6) and

k = (x1, x2, x3, x4, x5, x6) is ! $ k = a4x1 + a5x2 + a6x3 + a1x4 + a2x5 + a3x6. The

fundamental importance of the side product lies in the fact that a six-tuple k ∈ P5(R)

represents a line in 3D if and only if k $ k = 0; this defines a quadric in P5(R) called

the Plücker quadric. More generally, recall that two lines intersect in real projective

space P3(R) if and only if the side product of their Plücker coordinates is zero. Notice

that this implies that there is a predicate for determining whether two lines intersect

in P3(R) which is of degree two in the Plücker coordinates of the lines and, if the lines

are each defined by two points, of degree three in the Cartesian coordinates of these

points.

Oriented lines in R3, with direction vector)u and through a point p, can be repre-

sented similarly by a six-tuple ()u,)u ×
−→
Op) in real oriented projective space (i.e., the

quotient of R6 \ {0} by the equivalence relation induced by positive scaling). The

sign (positive or negative) of the side operator of two oriented lines ! and k then

determines on which “side” of line !, k lies; for instance, if op and oq are two lines

oriented from o to p and from o to q and ! is an arbitrarily oriented line such that

!, p, q, and o are not coplanar, then (! $ op) (! $ oq) ! 0 if and only if ! intersects

segment pq (see Figure 5.1(a)).

Given four lines !1, . . . , !4, our problem here is to compute all lines

Chapter 5: The Algebraic Degree of the Predicates 109

k = (x1, x2, x3, x4, x5, x6) ∈ P5(R) such that k $!i = 0, for 1 ! i ! 4, which can be

written in the following form:





















a4 a5 a6 a1 a2 a3

b4 b5 b6 b1 b2 b3

c4 c5 c6 c1 c2 c3

d4 d5 d6 d1 d2 d3

























































x1

x2

x3

x4

x5

x6





































=





















0

0

0

0





















(5.1)

where the rows of the 4 × 6 matrix contain the Plücker coordinates of the four lines.

This can be rewritten as





















a6 a1 a2 a3

b6 b1 b2 b3

c6 c1 c2 c3

d6 d1 d2 d3









































x3

x4

x5

x6





















+





















a4x1 + a5x2

b4x1 + b5x2

c4x1 + c5x2

d4x1 + d5x2





















=





















0

0

0

0





















. (5.2)

Let δ denote the determinant of the above 4 × 4 matrix. Assuming δ -= 0, we can

solve the system for x3, x4, x5, and x6 in terms of x1 and x2. Applying Cramer’s rule,

we get






































x3 = −(α1x1 + β1x2)/δ

x4 = −(α2x1 + β2x2)/δ

x5 = −(α3x1 + β3x2)/δ

x6 = −(α4x1 + β4x2)/δ

where αi (respectively βi) is the determinant δ with the ith column replaced by

110 Chapter 5: The Algebraic Degree of the Predicates

(a4, b4, c4, d4)T (respectively (a5, b5, c5, d5)T). We rewrite this system as






































































x1 = −u δ

x2 = −v δ

x3 = α1u + β1v

x4 = α2u + β2v

x5 = α3u + β3v

x6 = α4u + β4v

(5.3)

with (u, v) ∈ P1(R). Since k is a line, we have k $ k = 0, which implies

x1x4 + x2x5 + x3x6 = 0.

Substituting in the expressions for x1 . . . x6, we get

Au2 + Buv + Cv2 = 0 (5.4)

where

A = α1α4 − α2δ,

B = α1β4 + β1α4 − β2δ − α3δ,

C = β1β4 − β3δ.

Solving this degree-two equation in (u, v) and replacing in (5.3), we get (assuming

that A -= 0) that the Plücker coordinates of the transversal lines k are:






































































x1 = B δ ∓ δ
√

B2 − 4 A C

x2 = −2 A δ

x3 = −B α1 + 2 A β1 ± α1

√
B2 − 4 A C

x4 = −B α2 + 2 A β2 ± α2

√
B2 − 4 A C

x5 = −B α3 + 2 A β3 ± α3

√
B2 − 4 A C

x6 = −B α4 + 2 A β4 ± α4

√
B2 − 4 A C.

(5.5)

Chapter 5: The Algebraic Degree of the Predicates 111

Lemma 1. Consider four lines, given by the Cartesian coordinates of pairs of points,

that admit finitely many line transversals in P3(R). If the four lines are not parallel to

a common plane, the Plücker coordinates of their transversals in P3(R) can be written

as φi + ϕi

√
∆, i = 1, . . . , 6, where φi, ϕi, and ∆ are polynomials of degree at most 17,

6, and 22, respectively, in the coordinates of the input points. Otherwise, the Plücker

coordinates of the transversals can be written as polynomials of degree at most 19.

Moreover, these bounds are, in the worst case, reached for three of the coordinates.

Proof. The assumption that the four lines admit finitely many transversals in P3(R)

ensures that the 4 × 6 matrix of Plücker coordinates (in (5.1)) has rank 4. Consider

first the case where the four input lines are not all parallel to a common plane. Then,

the 4 × 3 matrix of the direction vectors of the four lines has rank 3. By the basis

extension theorem, this matrix can be complemented by one of the other columns of

the matrix of Plücker coordinates (of (5.1)) in order to get a 4 × 4 matrix of rank

4. We can thus assume, without loss of generality, that the 4× 4 matrix of (5.2) has

rank 4.

Since, by assumption, the four lines admit finitely many transversals in P3(R),

A, B, and C in (5.4) are not all zero. We compute the degree, in the coordinates

of the input points, of the various polynomial terms in (5.5). For each input line !i,

the first three and last three coordinates of its Plücker representation have degree 1

and 2, respectively. Hence δ, α1, and β1 have degree 5 and αi and βi have degree 6

for i = 2, 3, 4. Hence, A, B, and C have degree 11 and the bounds on the degrees of

φi, ϕi, and ∆ follow. Note, in particular, that, if A -= 0, these bounds are reached for

i = 4, 5, 6.

112 Chapter 5: The Algebraic Degree of the Predicates

Consider now the case where the four input lines are parallel to a common plane.

Since the four lines admit finitely many transversals in P3(R), they are not parallel.

It follows that the 4 × 3 matrix of the direction vectors of the four lines has rank 2.

Two vectors, say (ai, bi, ci, di) for i = 1, 2, are thus linearly independent and, by the

basis extension theorem, the corresponding 4 × 2 matrix can be complemented by

two other columns (say, (ai, bi, ci, di) for i = 4, 5) of the matrix of Plücker coordinates

(of (5.1)) in order to define a 4 × 4 matrix of rank 4. As above, a straightforward

computation gives the Plücker coordinates of the line transversal. We get

x1 = α1 u, x2 = α2 u, x3 = −u δ, x4 = α3 u+β3 v, x5 = α4 u+β4 v, x6 = −v δ

where (u, v) ∈ P1(R) is a solution of the equation

A′ u2 + B′ u v = 0 where A′ = α1α3 + α2α4 and B′ = α1β3 + α2β4 + δ2; (5.6)

δ, α1, α2, β3, β4 have degree 6 and α3, α4 have degree 7 (and β1 = β2 = 0), and

thus A′ and B′ have degree 13 and 12, respectively. Note that A′ and B′ are not

both zero since there are finitely many transversals. The Plücker coordinates of the

transversals can thus be written as polynomials of degree at most 19 and, for one of

the transversals (the one not in the plane at infinity), this bound is reached for three

coordinates (namely, x4, x5, x6).

Lemma 2. Consider four lines, given by the Cartesian coordinates of pairs of points,

that admit finitely many line transversals in P3(R). If the four lines are not parallel

to a common plane, we can compute on each transversal two points whose homoge-

neous coordinates have the form φi + ϕi

√
∆, i = 1, . . . , 4, where φi, ϕi, and ∆ are

polynomials of degree at most 17, 6, and 22, respectively, in the coordinates of the

Chapter 5: The Algebraic Degree of the Predicates 113

input points. Otherwise, we can compute on each transversal two points whose ho-

mogeneous coordinates are polynomials of degree at most 19. Moreover, these bounds

are reached, in the worst case, for some coordinates.

Proof. Denote by w1 (respectively w2) the vector of the first (respectively last) three

coordinates of (x1, . . . , x6), the Plücker coordinates of a line k, and let n denote any

vector of R3. Then, if the four-tuple (w2 × n, w1 · n) is not equal to (0, 0, 0, 0), it

is a point (in homogeneous coordinates) on the line k (by Lagrange’s triple product

expansion formula). By considering the axis unit vectors for n, we get that the four-

tuples (0, x6,−x5, x1), (−x6, 0, x4, x2), (x5,−x4, 0, x3) that are non-zero are points on

the transversal lines k. Either five of the six Plücker coordinates of k are zero or at

least two of these four-tuples are non-zero and thus are points on k. In the latter case,

the result follows from Lemma 1. In the former case, two points with coordinates 0

or 1 can easily be computed on line k since the line is then one of the axes or a line

at infinity defined by the directions orthogonal to one of the axes.

Remark 3. In some implementations (for instance, the one of [87]), the 4 × 4 sub-

matrix of the matrix of Plücker coordinates (see (5.1)) used for computing the line

transversals is chosen, by default, as the leftmost submatrix whose determinant has

degree 7 in the coordinates of the input points. In this case, the Plücker coordinates

of the line transversals are written as φi + ϕi

√
∆, i = 1, . . . , 6, where φi, ϕi, and ∆

are polynomials of degree at most 20, 7, and 26, respectively, in the coordinates of

the input points (and these bounds are reached). A similar statement holds for the

homogeneous coordinates of two points on the transversals.

114 Chapter 5: The Algebraic Degree of the Predicates

5.2 Predicates

5.2.1 Preliminaries

We start with two straightforward lemmas on the degree of predicates for deter-

mining the sign of simple algebraic numbers. If x is a polynomial expression in some

variables, we denote by deg(x) the degree of x in these variables. This first lemma is

trivial and its proof is omitted.

Lemma 4. If a, b, and c are polynomial expressions of (input) rational numbers, the

sign of a + b
√

c can be determined by a predicate of degree max{2 deg(a), 2 deg(b) +

deg(c)}.

Lemma 5. If αi, βi, δ, µ, i = 1, 2, are polynomial expressions of (input) rational

numbers, the sign of α1 + β1

√
δ + (α2 + β2

√
δ)

√
µ can be obtained by a predicate of

degree

max{4 deg(α1), 4 deg(β1) + 2 deg(δ), 4 deg(α2) + 2 deg(µ),

4 deg(β2) + 2 deg(δ) + 2 deg(µ), 2 deg(α1) + 2 deg(β1) + deg(δ),

2 deg(α2) + 2 deg(β2) + 2 deg(µ) + deg(δ)}.

Proof. The predicate is to evaluate the sign of an expression of the form a + b
√

µ,

where a = α1 + β1

√
δ, b = α2 + β2

√
δ, and αi, βi, µ, δ are rational. This can be done

by evaluating the signs of a, b, and a2 − b2µ. The first two signs can be obtained by

directly applying Lemma 4. On the other hand, a2 − b2µ is equal to A + B
√

δ with

A = α2
1 + β2

1δ − α2
2µ − β2

2µδ and B = 2α1β1 − 2α2β2µ. The sign of A + B
√

δ can be

determined by another application of Lemma 4, which gives the result.

Chapter 5: The Algebraic Degree of the Predicates 115

5.2.2 Transversals to Four Lines

We consider first the predicate for determining whether four lines admit 0, 1, 2,

or infinitely many line transversals in P3(R) (that is lines in P3(R) that intersect, in

P3(R), the four input lines). An evaluation of this predicate directly follows from

the algorithm described in Section 5.1 for computing the line transversals. In what

follows, all input points are, by assumption, given by their Cartesian coordinates.

T heorem 6. Given four lines defined by pairs of points, there is a predicate of degree

22 in the coordinates of these points to determine whether the four lines admit 0, 1,

2, or infinitely many line transversals in P3(R).

Proof. We consider three cases. First, if the four lines are parallel, which can easily be

determined by a predicate of degree 3, then they admit infinitely many line transver-

sals in P3(R). Second, if the four lines are not parallel but parallel to a common

plane, which can easily be determined by a predicate of degree 3, then the four lines

admit infinitely many transversals if Equation (5.6) is identically zero and, otherwise,

2 line transversals in P3(R). This can be determined with a predicate of degree 13

(see the proof of Lemma 1). Finally, if the four lines are not parallel to a common

plane, they admit infinitely many transversals if Equation 5.4 is identically zero and

otherwise, 0, 1, or 2 transversals depending on the sign of ∆ (in Lemma 1), which is

of degree 22 in the coordinates of the points defining the lines.

Note that if the leftmost (instead of the rightmost) 4×4 submatrix of the matrix of

Plücker coordinates (in (5.1)) is used for computing line transversals (see Remark 3)

then the procedure described in the above proof has degree 26 instead of 22.

116 Chapter 5: The Algebraic Degree of the Predicates

All line transversals are defined in R3 except when the four input lines are par-

allel to a common plane, in which case the intersection of this plane with the plane

at infinity is a line transversal at infinity. Note also that determining whether a

line transversal in P3(R) is transversal in R3 amounts to determining whether the

transversal is parallel to one of the four input lines !i, that is, if their direction vec-

tors are collinear. This can be done, by Lemmas 1 and 4, by a predicate of degree 36

in the Cartesian coordinates of the points defining the input lines.

Note, however, that if the points defining the !i have rational coordinates and if

the transversal is parallel to one of the !i, the Plücker coordinates of the transversal

are rational; indeed, the multiplicative factor of the direction vectors is rational (since

one of the coordinates of the direction vector of the transversal is rational, e.g., x2 in

(5.5)) and thus all the coordinates of this direction vector are rational, which implies

that ∆ is a square in (5.5). Hence, deciding whether a transversal is parallel to one of

the input lines !i can be done by first determining whether ∆ is a square and, if so,

testing whether the direction vectors are collinear. It thus follows from Lemma 1 that

determining whether a transversal is parallel to one of the input lines !i can be done

with fixed-precision floating-point arithmetic using a number of bits roughly equal to

22 times the number of bits used in representing each input value. This should be

compared to the degree 36 of the above procedure.

In this chapter we have restricted our attention to evaluation procedures for predi-

cates that consist entirely of determining the signs of polynomial expressions in the in-

put parameters. We see here an example of a predicate which may be more efficiently

evaluated by a procedure which permits other operations, in this case, determining

Chapter 5: The Algebraic Degree of the Predicates 117

whether a rational number is a square. This provides an interesting example of a

geometric predicate whose algebraic degree does not seem to be an entirely adequate

measure of the number of bits needed for the computation.

5.2.3 Transversals to Four Segments

We consider here the predicate of determining how many transversals four seg-

ments of R3 admit. Recall that four segments may admit up to 4 or infinitely many

line transversals [15]. In this section, we prove the following theorem.

T heorem 7. Given four line segments, there is a predicate of degree 36 in the coor-

dinates of their endpoints to determine whether those segments admit 0, 1, 2, 3, 4,

or infinitely many line transversals.

Note that if the leftmost (instead of the rightmost) 4×4 submatrix of the matrix of

Plücker coordinates (in (5.1)) is used for computing line transversals (see Remark 3),

then the procedure described below for the predicate of Theorem 7 has degree 42

instead of 36.

We consider, in the following, the supporting lines of the four segments, that is,

the lines containing the segments. In the case where one (or several) segment is

reduced to a point, we regard as a supporting line any line through this point and

parallel to at least another supporting line. We first consider the case where the four

supporting lines admit finitely many transversals in P3(R); this can be determined

by a predicate of degree 22, by Theorem 6.

Lemma 8. Given four segments in R3 whose supporting lines admit finitely many line

118 Chapter 5: The Algebraic Degree of the Predicates

(a) (b) (c)

Figure 5.1. (a): Transversal ! intersects segment pq only if (! $ op) (! $ oq) ! 0. (b-c): An

illustration for the proof of Lemma 10.

transversals in P3(R), determining the number of transversals to the four segments

can be done with a predicate of degree 36 in the coordinates of their endpoints.

Proof. Let ! denote an (arbitrarily) oriented line, as well as its Plücker coordinates,

that is a transversal to the four lines; ! can be computed as described in Section 5.1.

We consider the predicate for determining whether ! intersects each of the four seg-

ments, in turn. Let p and q denote the endpoints of one of these segments. For

any two distinct points r and s, denote by rs the Plücker coordinates of the line rs

oriented from r to s; depending on the context, rs also denotes the line through r

and s or the segment from r to s.

If a point o does not lie in the plane containing line ! and segment pq (see Fig-

ure 5.1(a)), then line ! intersects segment pq if and only if the oriented line ! is on

the opposite side of the two oriented lines from o to p and from o to q, that is, if

(! $ op) (! $ oq) ! 0 (recall that $ denotes the side operator – see Section 5.1).

On the other hand, point o lies in a plane containing line ! and segment pq if and

only if ! intersects (in P3(R)) both lines op and oq, that is both side operators !$ op

Chapter 5: The Algebraic Degree of the Predicates 119

and !$oq are zero. By choosing point o to be, for instance, (1, 0, 0), (0, 1, 0), (0, 0, 1),

or (1, 1, 1), we ensure that one of these points will not be coplanar with ! and segment

pq unless segment pq lies on !.

Hence the predicate follows from the sign of the side operators of the line transver-

sal and of a line defined by two points, one of which has coordinates equal to 0 or 1.

The degree of the Plücker coordinates of the line through these two points is thus 1

(in the coordinates of the input points). Hence, by Lemma 1, the predicate can be

computed by determining the sign of polynomials of degree at most 20 if the input

lines are parallel to a common plane and, otherwise, by determining the sign of ex-

pressions of the form a + b
√

c where a, b and c have degree at most 18, 7, and 22,

respectively; moreover, these bounds are reached. By Lemma 4, the predicate thus

has degree 36, which concludes the proof.

We now consider the case where the four lines admit infinitely many transversals.

Recall that, in P3(R), four lines or line segments admit infinitely many transversals

only if [15]:

1. they lie in one ruling of a hyperbolic paraboloid or a hyperboloid of one sheet,

2. they are all concurrent, or

3. they all lie in a plane, with the possible exception of a group of one or more

that all meet that plane at the same point.

We treat the cases independently.

Lemma 9. Given four segments in R3 whose supporting lines are pairwise skew and

admit infinitely many line transversals, determining the number of their line transver-

sals can be done with a predicate of degree at most 36 in the coordinates of their

120 Chapter 5: The Algebraic Degree of the Predicates

endpoints.

Proof. When four lines are pairwise skew, their common transversals can be param-

eterized by their points of intersection with one of the lines; moreover, the set of

common transversals to the four segments corresponds (through this parameteriza-

tion) to up to four intervals on that line, and the transversals that correspond to

the endpoints of these intervals contain (at least) one endpoint of the segments [15].

We can compute and order all these interval endpoints and determine whether there

exists a transversal (to the four segments) through each midpoint of two consecutive

distinct interval endpoints. By construction and by [15], the four segments admit

such a transversal if and only if they admit infinitely many transversals.

The set of interval endpoints, on, say, segment s1 is a subset of the endpoints of

s1 and of the intersection points of s1 with the planes containing s2 and an endpoint

of s3 or s4 and of the intersection points of s1 with the planes containing s3 and an

endpoint of s2. The coordinates of these points can be trivially computed as rational

expressions of degree 4 in the coordinates of the segment endpoints. The coordinates

of the midpoints are thus rational expressions of degree at most 8.

The transversal to the four lines through (any) one of these midpoints intersects

line !2 and lies in the plane containing line !3 and the considered midpoint; the

coordinates of the intersection point between this plane and !2 are rational expressions

of degree at most 19. Finally, determining whether a transversal (to the four lines)

through two points whose coordinates are rational expressions of degree 8 and 19 is

a transversal to each of the four segments can be done, as in the proof of Lemma 8,

using side operators. Hence, we can decide whether the four segments admit infinitely

Chapter 5: The Algebraic Degree of the Predicates 121

many transversals with a predicate of degree at most 36 since the Plücker coordinates

of the line transversal are of degree at most 35.

Now, if the four segments admit finitely many transversals, we can determine

the number of transversals as follows. As mentioned above, the set of transversals

can be parameterized by intervals on a line and the interval endpoints correspond to

transversals that go through a segment endpoint. A transversal is isolated if and only

if it corresponds to an interval that is reduced to a point. Thus, a transversal is iso-

lated only if it goes through two distinct segment endpoints (the segments necessarily

have distinct endpoints since, by assumption, their supporting lines are pairwise skew

and thus no segment is reduced to a point). Determining whether the lines through

two distinct endpoints intersect the other segments can easily be done, as described

in the proof of Lemma 8, by computing the sign of side operators which are here of

degree 3 in the coordinates of the segment endpoints.

Lemma 10. Given four segments in R3 whose supporting lines are not pairwise skew

and admit infinitely many line transversals, determining the number of their line

transversals can be done with a predicate of degree 7 in the coordinates of their end-

points.

Proof. First, note that testing whether two segments intersect can be done using side

operators with a predicate of degree 3. The four lines containing the segments are

not pairwise skew and they admit infinitely many line transversals. Thus, they are

all concurrent or they all lie in a plane H , with the possible exception of a group of

one or more that all meet that plane at the same point [15]. Four cases may occur:

(i) all four lines lie in a plane H ,

122 Chapter 5: The Algebraic Degree of the Predicates

(ii) three lines lie in a plane H and the fourth line intersects H in exactly one point,

(iii) two lines lie in a plane H and two other lines intersect H in exactly one and

the same point,

(iv) three lines are concurrent but not coplanar.

Differentiating between these cases can be done by determining whether sets of four

segment endpoints are coplanar (which is a predicate of degree 3). We study each

case in turn.

Case (i). The four segments are coplanar. Any component of transversals contains

a line through two distinct segment endpoints. Hence the four segments have finitely

many transversals if and only if any line through two distinct endpoints that is a

transversal to the four segments is an isolated transversal. This only occurs1 (see

Figure 5.1(b)) when the transversal goes through the endpoints of three segments

such that the segment, whose endpoint is in between the two others, lies (in H) on

the opposite side of the transversal than the two other segments. This can be tested by

computing the sign of scalar products and side operators between the transversal and

the lines through a point o not in H and the segment endpoints (see Figure 5.1(b)).

This leads to a predicate of degree 4.

Case (ii). Three lines lie in a plane H . Testing whether the fourth segment inter-

sects the plane H can easily be done by computing the point of intersection between

H and the line containing the fourth segment, leading to a predicate of degree 3. If

the fourth segment does not intersect plane H , the four segments have no transversal
1For simplicity, we do not discuss here the case where the line transversal contains one of the

four segments.

Chapter 5: The Algebraic Degree of the Predicates 123

unless the first three segments are concurrent, in which case the four segments have

one or infinitely many transversals depending on whether the four lines supporting

the segments are concurrent. Otherwise, let p denote the point of intersection. We

assume that the three segments in H are not concurrent; otherwise the four segments

have infinitely many transversals. Thus, any component of transversals contains a

line through p and through a segment endpoint. Hence the four segments have finitely

many transversals if and only if any line through p and a segment endpoint that is

a transversal to the four segments is an isolated transversal. Testing whether such

a line is a transversal to all segments can be done, as in the proof of Lemma 8, by

computing the sign of side operators of the line transversal and of lines through a

segment endpoint and a point o not in H ; the coordinates of point p are rational

expressions of degree 4; thus the Plücker coordinates of the transversal have degree

at most 6, which leads to a predicate of degree 7. Such a line transversal is isolated

(see Figure 5.1(c)) if and only if2 the transversal goes through two endpoints of two

distinct segments that lie on the same side (in plane H) of the transversal or not,

depending whether p is in between the two endpoints or not. This test can be done by

computing the sign of scalar products and side operators between the transversal and

the lines through a point o not in H and the segment endpoints (see Figure 5.1(c)).

This test also leads to a predicate of degree 7. We can thus determine the number of

isolated transversals with a predicate of degree 7.

Case (iii). Two lines lie in a plane H and two other lines intersect H in exactly one

and the same point. (Note that there may be two instances of plane H for a given

2We assume here for simplicity that the line transversal contains no segment.

124 Chapter 5: The Algebraic Degree of the Predicates

configuration.) This case is similar to Case (ii).

Case (iv). Three lines are concurrent but not coplanar. If none of the three corre-

sponding segments intersect, they have no common transversal. If only two segments

intersect, the three segments have exactly one transversal; checking whether that

transversal intersects the fourth segment can easily be done with a predicate of de-

gree 3. Now, if the three segments intersect, then the four segments have infinitely

many transversals if they are concurrent or if their supporting lines are not concur-

rent. Otherwise, if the four segments are not concurrent but their supporting lines

are, the four segments then have a unique transversal. This can also be checked with

a predicate of degree 3.

We can now conclude the proof of Theorem 7. By Theorem 6, we can determine

with a predicate of degree 22 whether the four lines containing the four segments

admit finitely many transversals in P3(R). If the four lines admit finitely many

transversals, then, by Lemma 8, determining the number of transversals to the four

segments can be done with a predicate of degree 36. Assume now that the four lines

admit infinitely many transversals. Note that determining whether the input lines are

pairwise skew can easily be done with a predicate of degree 3. Thus, by Lemmas 9 and

10, determining whether the four segments admit 0, 1, 2, 3, 4, or infinitely many line

transversals can be done by a predicate of degree at most 36. Hence, we can determine

the number of transversals to four segments with a predicate of degree 36.

Chapter 5: The Algebraic Degree of the Predicates 125

5.2.4 Ordering Planes through Two Fixed Points, Each Con-

taining a Third (Rational) Point or a Line Transversal

Let ! be a line defined by two points v1 and v2, and let)! be the line ! oriented in

the direction −−→v1v2.

We define an ordering of all the planes containing ! with respect to the oriented

line)! and a reference point O (not on !). Let P0 be the plane containing O and !,

and let P1 and P2 be two planes containing !. We say that P1 < P2 if and only if

P1 is encountered strictly before P2 when rotating counterclockwise about)! a plane

from P0 (see Figure 5.2a).

Let pi be any point on plane Pi but not on !, for i = 1, 2, and let D(p, q) denote

the determinant of the four points (v1, v2, p, q) given in homogeneous coordinates.

Lemma 11. With χ = D(O, p1) · D(O, p2) · D(p1, p2), we have:

(a) If χ > 0 then P1 > P2.

(b) If χ < 0 then P1 < P2.

(c) If χ = 0 then

(i) if D(p1, p2) = 0, then P1 = P2,

(ii) else if D(O, p1) = 0, then P1 < P2,

(iii) else P1 > P2.

Proof. Assume first that D(O, p1) · D(O, p2) > 0, that is, that p1 and p2 lie strictly

on the same side of the plane P0 (see Figure 5.2b). Then the order of P1 and P2 is

determined by the orientation of the four points (v1, v2, p1, p2), that is, by the sign of

D(p1, p2). It is then straightforward to notice that P1 > P2 if and only if D(p1, p2) > 0.

126 Chapter 5: The Algebraic Degree of the Predicates

p1p2

p1

p2

v1, v2

P0

P1

P2

v1, v2

P0

P1

P2

(b) (c)

v2

v1

O

!

P2

P1

P0

(a)

Figure 5.2. Planes P1 and P2 such that P1 < P2

Hence, if χ > 0, then P1 > P2 and, if χ < 0, then P1 < P2.

Suppose now that D(O, p1) · D(O, p2) < 0, that is, that p1 and p2 lie strictly on

opposite sides of the plane P0 (see Figure 5.2c). The order of P1 and P2 is then still

determined by the sign of D(p1, p2). However, P1 > P2 if and only if D(p1, p2) < 0.

Hence, we have in all cases that, if χ > 0, then P1 > P2 and, if χ < 0, then P1 < P2.

Suppose finally that χ = 0. If D(p1, p2) = 0, then p1 and p2 are coplanar and

P1 = P2. Otherwise, if D(O, p1) = 0, then P0 = P1; thus P1 is smaller than all other

planes (containing)!), and in particular P1 ! P2. Furthermore, since D(p1, p2) -= 0,

P1 -= P2 and thus P1 < P2. Otherwise, D(O, p2) = 0 and we get similarly that

P2 < P1.

Computing a point on a plane defined by ! and a line transversal. We

want to order planes Pi that are defined by line ! and either a rational point not on

!, or by a line transversal to ! and three other lines. In the latter case, we consider a

point on the line transversal (which is non-rational, in general; see Lemma 2). The

following lemma tells us that, in general, such a plane Pi contains no rational points

Chapter 5: The Algebraic Degree of the Predicates 127

outside of !, and that in the cases where it does contain such a rational point, the line

transversal is then rational. Hence, if the points computed on the line transversal, as

described in Lemma 2, are not rational, there is no need to search for simpler points

on the plane (but not on !).

Lemma 12. The plane P containing a rational line ! and a line transversal to ! and

three other segments, each determined by two rational points, contains in general no

rational points except on !. Furthermore, if plane P contains a rational point not on

! then the line transversal is rational.

Proof. Suppose that the plane P contains a rational point p not on !. Then the plane

contains three (non-collinear) rational points, p and two points on !, and thus P is

a rational plane. This plane intersects the three other segments in three points, all

of which are rational and lie on the transversal. So the transversal is a rational line,

which implies that the discriminant B2 − 4 A C in Equation (5.5) is a square, which

is not the case in general.

Comparing two planes. We want to order planes Pi that are defined by either

line ! and another (input rational) point not on !, or by line ! and a line transversal

to ! and three other lines.

By Lemma 11, ordering such planes about ! amounts to computing the sign of

determinants of four points (in homogeneous coordinates). Two of these points are

input (affine rational) points on ! (v1 and v2) and each of the two other points is either

an input (affine rational) point ri, i = 1, 2, or is, by Lemma 2 (and Lemma 12), a point

ui whose homogeneous coordinates have degree at most 19 (in the coordinates of the

128 Chapter 5: The Algebraic Degree of the Predicates

input points) or a point of the form pi + qi

√
∆i, i = 1, 2, where the ∆i have degree 22

and where the pi and qi are points with homogeneous coordinates of degree at most

17 and 6, respectively. If the four points are all input points, then the determinant

of the four points has degree 3 in their coordinates.

If only three of the four points are input points, then the determinant of the four

points is either a polynomial of degree 22 or it has the form D(p1, r1)+D(q1, r1)
√

∆1

where the degrees of the D() are 20 and 9, respectively, in the coordinates of the

input points. Hence, by Lemma 4, the sign of this expression can be determined with

a predicate of degree 40.

Finally, if only two of the four points are input points, then the determinant has

one of the following forms (depending on whether the quadruples of lines defining the

transversals are parallel to a common plane); the degrees are given in terms of the

coordinates of the input points:

(i) D(u1, u2), which is of degree 40.

(ii) D(u1, p1) + D(u1, q2)
√

∆1, where the D() have degree 38 and 27, respectively.

(iii) D(p1, p2)+D(q1, p2)
√

∆1+(D(p1, q2)+D(q1, q2)
√

∆1)
√

∆2, where the D() have

degree 36, 25, 25, and 14, respectively.

Hence, by Lemma 5, the sign of these expressions can be determined with a predicate

of degree at most 144 (and the bound is reached in the worst case). We thus get the

following result.

T heorem 13. Let ! be an oriented line defined by two points, let p0 be a point not on

!, and let P0 be the plane determined by ! and p0. Given two planes P1, P2 containing

! there is a predicate that determines the relative order of P1 and P2 about ! with

Chapter 5: The Algebraic Degree of the Predicates 129

respect to P0 having the following degree in the coordinates of the input points:

(i) degree 3 if Pi, i = 1, 2 are each specified by a (input) point pi;

(ii) degree 40 if P1 is specified by a point p1 and P2 is determined by a line transversal

to ! and three other lines !1, !2, !3, each specified by two (input) points;

(iii) degree 144 if Pi, i = 1, 2 are each determined by a line transversal to ! and three

other lines !i,1, !i,2, !i,3, each specified by two (input) points.

Remark 14. Note that, if the leftmost (instead of the rightmost) 4 × 4 submatrix of

the matrix of Plücker coordinates (in (5.1)) is used for computing line transversals

(see Remark 3) then the predicates of Theorem 13 have degree 3, 46, and 168.

5.3 Experiments

In this section, we report the results of experiments that analyze the behavior of

the predicate for ordering, in a rotational sweep about a line, two planes each defined

by a line transversal to four lines, which is the predicate related to Theorem 13(iii).

The degree of the procedure we use for evaluating this predicate is 168 because we

use for computing line transversals to four lines the code of Redburn [87], which, as

noted in Remarks 3 and 14, leads to degree 168 instead of 144 as in Theorem 13(iii).

The standard approach to comparing two such planes is to first evaluate the

predicate using fixed-precision interval-arithmetic. This is very efficient but may

fail when the sign of an expression cannot be successfully determined because the

result of the evaluation of the expression is an interval that contains zero. If this

happens, the answer to the predicate is then obtained by either evaluating exactly

the expression (and thus its sign) using exact arithmetic or by increasing the precision

130 Chapter 5: The Algebraic Degree of the Predicates

of the interval arithmetic until either the result of the evaluation of the expression

is an interval that does not contain zero or the separation bound is attained (see for

instance [16, 73, 93, 105]); in both approaches the computation is much slower than

when using fixed-precision interval-arithmetic. We are thus interested in determining

how often the fixed-precision interval-arithmetic evaluation of our predicate fails.

To test our predicate, we generate pairs of planes, each defined by two lines,

one chosen at random and common to the two planes, and the other defined as a

transversal to the common line and to three other random lines. We are interested

in evaluating our predicate in the case where the two planes are very close together,

that is, when there is significant risk of producing an error when using finite-precision

floating-point arithmetic.

We generate two sets of four lines. Each line of the first set is determined by two

points, all of whose coordinates are double-precision floating-point numbers chosen

uniformly at random from the interval [−5000, 5000]. The second set of lines is

obtained by perturbing the points defining three of the lines of the first set; the

fourth line is not perturbed and is thus common to the two sets. To perturb a point

p, we translate it to a point chosen uniformly at random in a sphere centered at p,

with radius ε.

We compute, for each of these two sets of four lines, a line transversal. If either

set of four lines does not admit a transversal (which happens roughly 24% of the

time), we throw out that data and start again. Otherwise, we choose a transversal

in a consistent way for the two sets of four lines, that is, such that one transversal

converges to the other when ε tends to zero. Each transversal, together with the

Chapter 5: The Algebraic Degree of the Predicates 131

!
!

!
!

!
!

!
!

!
predicates

ε
10−12 10−10 10−8 10−6 10−4 10−2

degree 168 99.6% 50.4% 7.6% 0.8% 0.08% 0.008%
degree 3 99.5% 8.2% 0.08% 0.001%

Table 5.1. Percentages of failure of the degree 168 and degree 3 predicates using double-precision

floating-point interval-arithmetic, for ε varying from 10−12 to 10−2.

common line, defines a plane.

For various values of ε, varying from 10−2 to 10−10, we evaluate the predicate

using double-precision floating-point interval arithmetic until we obtain 1000 pairs of

planes for which the computation of the predicate fails. We measure the percentage

of time that the computation fails. The results of these experiments are shown in

Table 5.1.

We observe, as expected, that when ε is sufficiently small (10−10), that is, when

the two planes are often close enough to each other, the fixed-precision interval-

arithmetic predicate fails with high probability and that this probability decreases as

ε increases. When ε = 10−2, the probability of failure is close to zero. Finally, we

have also observed that the predicate fails when the angle between the two planes is

less than roughly 10−8 radians, which is, of course, independent of ε.

Note that the percentage of failure of the degree 168 predicate using fixed-precision

interval-arithmetic is, as expected, high compared to lower-degree predicates. Ta-

ble 5.1 shows the failure rate for the degree 3 predicate related to Theorem 13(i).

We use the same experimental scheme as above, that is, we choose at random three

points that define a plane and perturb one of these points by at most ε.

All the experiments were done on a i686 machine with AMD Athlon 1.73 GHz

CPU and 1 GB of main memory using the CGAL interval number type with double-

132 Chapter 5: The Algebraic Degree of the Predicates

precision floating-point numbers [19].

5.4 Discussion

Although the algebraic degrees of the predicates computed with the standard

method is high, we used it in our implementation nevertheless, because, at the time

when we implemented these predicates, this was the only known method, and also

because there was existing software, developed by Redburn [87], which allowed us to

provide a first prototype of our implementation.

A theoretical result presented by Devillers et al. has since shown that the same

predicates can be computed in much lower algebraic degrees [28]. Developing alter-

native software that uses the result of Devillers et al. could be future work.

5.5 Bibliographic Notes

The work presented in this chapter first appeared in the Journal of Computational

Geometry: Theorey and Application [40], which was a special issue of invited papers

from the 18th Canadian Conference on Computational Geometry in 2006.

Chapter 6

Experimental Study of the Size of the

3D Visibility Skeleton

We address in this chapter the problem of computing and estimating the size of

the visibility skeleton of k disjoint polytopes of total complexity n in generic position.

In fact, the visibility skeleton we studied is defined by the visual event surfaces,

and we measure the size of the skeleton as the number of its vertices (since vertices

have constant degree under general position assumptions). A precise definition of

the visibility skeleton defined by the visual event surfaces is given in Section 2.2.2,

and we briefly recall it in Section 6.1. We then present experiments on k disjoint

polytopes of size n/k, with vertices on congruent spheres randomly distributed with

fixed densities in a given (spherical) universe. We perform these experiments for (i) up

to 230 polytopes with up to 1 700 edges and (ii) up to 130 polytopes with up to 9 000

edges. These experiments show that the number of vertices of the visibility skeleton

is roughly C k
√

nk, where the observed constant C varies with scene density but

133

134 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

remains small (! 5 in our setting). Our experiments also indicate that the average

running time of our implementation is O(n3/2k log k). By contrast, the theoretical

worst-case running time of the algorithm in our setting is O(n2k2 log k).

These results are significant for three reasons. First, this is the first experimentally

determined asymptotic estimate of the number of vertices of the 3D visibility skeleton

that takes into account not only the total number n of edges, but also the number k of

polytopes in the scene. The results show that the size of the visibility skeleton may be

sub-quadratic; in particular, they show a sub-linear growth in n and a sub-quadratic

growth in k. Second, assuming that the size of the silhouette of a polytope on n/k

vertices is O(
√

n/k), our results show that we may express the size of the visibility

skeleton as a function that is linear in the size of the silhouette and quadratic in the

number of polytopes; that is, the number of vertices in the scene impacts the size of

the visibility skeleton only insofar as it increases the size of the silhouettes. Finally,

our results indicate that there is no large constant hidden in the big-Oh notation.

We have conducted experiments only for scenes consisting of disjoint polytopes.

However, this is less of a limitation than it may at first appear; it is reasonable to

expect that our bounds will also roughly apply to the case of, for instance, arbitrary

polyhedra decomposed into k convex tessellated surface patches of total complexity n.

In the next section, we briefly recall the definition of the visibility skeleton that

we study in this chapter. We discuss our experimental setting in Section 6.2, present

our experimental results in Section 6.3, compare the experimental results of using

number type double to filtered_exact in Section 6.4, and finally summarize and

discuss our results in Section 6.5.

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 135

6.1 The Visibility Skeleton of a Set of Polytopes

In this chapter, we study not the full one-skeleton [34, 36] but rather the skeleton

that is defined by the visual event surfaces [25, 26]. The skeleton thus defined contains

only those arcs that correspond to local changes in the view, i.e., arcs such that, when

a viewpoint crosses the surface generated by the set of segments corresponding to the

arc, a new polytope comes into view or a previously seen polytope disappears; in

particular, we do not consider the appearance or disappearance of a polytope feature

as a change in the view. More precisely, those are the arcs of type EEE, and type VE

if only its set of supports consists of an edge and a vertex that define a plane tangent

to their respective polytopes. The 3D visibility skeleton thus defined consists only

of vertices that are incident to those arcs, that is, the vertices of type EEEE, VEE,

FEE, and VV if only its set of supports consists of two vertices that lie on a plane

that is tangent to their two respective polytopes.

We study the number of vertices of the visibility skeleton thus defined and refer

to it, with abuse of notation, as the size of the visibility skeleton. Since, under our

general position assumptions, the degree of each skeleton vertex is bounded by a small

constant, the actual size of the skeleton, including the arcs, will be a small constant

factor away from what we measure.

136 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

6.2 Setting of the Experiments

6.2.1 The Model

The input scenes are generated in two phases. First, we generate a set of disjoint

spheres and, in phase two, we generate one convex polytope in each sphere.

In phase one, for a given number of spheres k and scene density µ, we generate k

unit spheres in a spherical universe of center O and radius R, where R = 3

√

k/µ (that

is, µ = k 4
3π/4

3πR3). The centers of the spheres are chosen, one by one, uniformly

from the ball centered at O of radius R−1. When a newly generated sphere intersects

any existing one, the new sphere is discarded. Note that the spheres are not uniformly

distributed since the new sphere is not chosen independently of the previous ones.

In phase two, for each sphere, we generate a set of vertices using the hypercube

rejection method [66] (p.131-132). That is, we first generate the vertices uniformly

in a cube which is circumscribed to the sphere. We reject those that fall out of the

sphere, and project the remaining vertices on the surface of the sphere. This results

in a uniform distribution of the vertices on the surface of sphere. We then compute

the convex hull. This defines one polytope for each sphere and guarantees that all

the polytopes are disjoint. We note that the density of the polytopes in the scene is

somewhat less than the density µ of the spheres of phase one, however it can serve

as an indication of the pairwise distance of the input polytopes.

Here we emphasize that our objective in this chapter is not to study uniformly

distributed disjoint polytopes approximating spheres. We have used this scene model

because it provides a simple way to generate large scenes containing disjoint polytopes.

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 137

(a) (b) (c)

Figure 6.1. Three sample scenes of k = 50 polytopes where n/k, approximately the number of

edges on each polytope, is equal to (a) 6, (b) 42, and (c) 84. The scene density µ = 0.3 in all cases.

Furthermore, it allows us to compare with previous theoretical results [27].

6.2.2 The Experiments

We consider scenes of polytopes, as defined above, depending on three parameters,

the number k of polytopes, the total number n of polytope edges, and the scene

density µ. We perform three suites of experiments in which we measure the number

of visibility skeleton vertices.

In Suite I, we fix the scene density µ and the number n/k of edges per polytope.

For different values of k, we generate scenes of k polytopes each having n/k edges.

We perform experiments for µ = 0.3, 0.05 and 0.01 and for n/k ≈ 6, 42 and 84.1 A

sample scene with k = 50 is shown in Figure 6.1. For each value of n/k, we vary the

number k of polytopes as follows: (a) when n/k ≈ 6, we vary k from 10 to 190 (giving

n ∈ [75, 1 425]), (b) when n/k ≈ 42, we vary k from 10 to 130 (giving n ∈ [400, 5 200]),

1In fact, we generate polytopes whose numbers of vertices range in [4, 6], [15, 17] and [30, 32],
respectively. The number of edges per polytope is thus not actually fixed but varies slightly; the
polytopes we generated have, on average, 7.5, 40, and 85 edges, respectively.

138 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

and (c) when n/k ≈ 84, k varies from 10 to 110 (giving n ∈ [850, 9 400]). As we will

see, the number of visibility skeleton vertices appears to be roughly Cµ k
√

nk in these

experiments where Cµ is a constant that depends on the density.

In Suite II of our experiments, we also fix the scene density µ to 0.3 and vary the

number n/k of edges per polytope for fixed numbers of polytopes. Namely, we consider

k = 30, 60, and 90 and vary n/k from 6 to 102. As we will see, these experiments

confirm that when n/k varies (in the given range), the complexity observed in the

first set of experiments holds.

In Suite III of our experiments, we again fix the scene density µ to 0.3 and vary

n a lot for each scene. Specifically, we vary the number of polytopes k from 10 to

150 in step 10. And for each k, we test on three scenes whose number of polytope

edges are randomly generated in range between [4, 24], [4, 34], and [4, 44]. We note

the difference of this Suite of experiments from Suite I and II is that the number of

polytope edges varies a lot within each scene. Again, we will see in the next section

that the previously observed complexity holds as well in this Suite of experiments.

We remark that, for each type of scene, that is, for each chosen scene density

µ, polytope complexity n/k, and number of polytopes k, we randomly generate one

scene for our experimental study. Since, on small sets of scenes, we have generated

ten scenes for each type, the observed standard deviation of the computed number of

skeleton vertices on the 10 test scenes is small to the mean. In Figure 6.2, we show

the mean and standard deviation of the obtained results on ten scenes of each type,

where the types of scenes vary as: when µ = 0.3, n/k = 12, k varies from 10 to 150 in

step 20; and when µ = 0.01, n/k = 36, k varies from 10 to 80 in step 10. We observe

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 139

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

sqrt(n/k) × k2

Nu
m

be
rs

 o
f V

er
tic

es
: M

ea
n

an
d

St
an

da
rd

 D
ev

ia
tio

n

n / k = 12, µ = 0.3
n / k = 36, µ = 0.01

Figure 6.2. Mean and standard deviation of the number of computed skeleton vertices on ten

scenes for each type of scene.

the standard deviation is within 5% of the mean, and when plotting the data with

our obtained parameter, as shown in Figure 6.2, the displayed error does not affect

our data analysis.

We finally note that a scene with density µ = 0.3 is very dense (see Figure 6.1

and recall Kepler’s Theorem that the density of any sphere packing in 3D space is at

most π/3
√

2 ≈ 0.74). Density µ = 0.3 is close to the highest density we can reach in

a reasonable amount of time with our scene generation scheme.

6.2.3 Number Type and Machine Characteristics

All the experiments use filtered_exact number type. They were all done on an

i686 machine with Pentium 2.80 GHz CPU running Linux, with 2 GB of main mem-

ory. Running time was measured with the getrusage() command and the ru_utime

attribute.

140 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6
x 105

n

Nu
m

be
r o

f A
ll V

er
tic

es

µ = 0.3

n / k = 6
n / k = 42
n / k = 84

Figure 6.3. Suite I (µ = 0.3): total number of skeleton vertices in terms of n, the number of edges

in the scene.

6.3 Experimental Results and Analysis

6.3.1 Number of Skeleton Vertices in Terms of n

We present, in terms of the total number n of edges in the scene, the total number

of visibility skeleton vertices of Suite I of our experiments in Figure 6.3, for n/k ≈ 6,

42, and 84, respectively.

For a given value of n/k, the number of skeleton vertices appears to be quadratic

in n (see Figures 6.3 and 6.4 (a)). Notice also that for a fixed n, the size of the output

drops drastically when the number k of polytopes gets smaller (see Figure 6.3). These

observations are consistent with the theoretical bounds, that is, the worst-case output

size is in Θ(n2k2) [14].

The rest of this section analyses the output size in terms of n and k.

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 141

6.3.2 Number of Skeleton Vertices in Terms of n and k

We present, in Figures 6.4 and 6.5, the number of skeleton vertices in terms of

k
√

nk = k2
√

n/k.2 In all the figures, the number of these skeleton vertices appears

to be linear in this parameter with a constant that depends on the scene density µ.

For µ = 0.3, 0.05, and 0.01, the constant is roughly 5, 4, and 3. The constant appears

to decrease in terms of µ which is consistent with the intuition that the constant goes

to zero as the scene density goes to zero (since the probability that there exists a line

transversal to three polytopes goes to zero as the density goes to zero and that the

number of vertices of type VV is asymptotically negligible).3

Note that, for any fixed density µ and any given value of k2
√

n/k, the number

of these skeleton vertices varies very little in terms of the polytope complexity n/k

(Figure 6.4(a)) and in terms of the number of polytopes (Figure 6.4(b)). Even when

the input scenes that consist of polytopes (with vertices on spheres) whose complex-

ities vary a lot, and when considering n/k as the average complexity of the input

polytopes, the observed results are still very well fit by the function Cµk2
√

n/k (Fig-

ure 6.5). This suggests that Cµ k2
√

n/k is a good predictor of the number of these

skeleton vertices regardless of the polytope complexity, at least for the scene densities

µ and the ranges of n/k used here.

Our experiments thus indicate that, in our setting, the number of skeleton vertices

2For experiment of Suite III, we choose n/k as the average number of polytope edges in each
scene and show results in figure 6.5.

3Note that this observation is also consistent with a related experimental study on the impact
of the density on the constant of the asymptotic linear complexity of the 2D visibility skeleton of
randomly distributed unit discs [41] (also in Chapter 3).

142 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

0 2 4 6 8 10 12 14
x 104

0

1

2

3

4

5

6
x 105

sqrt(n / k) × k2

Nu
m

be
r o

f A
ll V

er
tic

es

µ = 0.3, 0.05, 0.01

µ = 0.3

µ = 0.05

µ = 0.01

n / k = 6
n / k = 42
n / k = 84

(a)

0 1 2 3 4 5 6 7 8 9
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

sqrt(n / k) × k2

Nu
m

be
r o

f A
ll V

er
tic

es

µ = 0.3

k = 30
k = 60
k = 90

(b)

Figure 6.4. Total number of skeleton vertices in terms of k2
√

n/k when (a) the polytopes have a

constant (n/k) number of edges (Suite I), and (b) the number k of polytopes is constant (Suite II).

is roughly

Cµ k2
√

n/k,

where Cµ is a constant that depends on the density µ of the scene. The experiments

hint that this constant is small and is a decreasing function of µ.

This observed complexity is, as expected, much smaller than worst-case bounds.

Recall that, for k polytopes with n edges in total, the worst-case number of skeleton

vertices is Θ(n2k2) [14]. Also, if the silhouettes of the polytopes have size
√

n/k in

the worst case, the worst-case number of skeleton vertices is O(nk3
√

n/k) [48, §6.7].

These worst-case bounds are much larger than our observed size (by a factor n
√

nk

and nk).

We analyze below the observed complexity of Cµ k2
√

n/k in terms of (i) k when

the complexity of the polytopes is constant, and (ii) the silhouette size of the polytopes

when the number k of polytopes is constant.

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 143

0 2 4 6 8 10 12 14 16
x 104

0

1

2

3

4

5

6

7

8
x 105

sqrt(n / k) × k2

Nu
m

be
r o

f a
ll V

er
tic

es

µ = 0.3

n / k = [4, 24]
n / k = [4, 34]
n / k = [4, 44]

Figure 6.5. Total number of skeleton vertices in

terms of k2
√

n/k for polytope complexity (n/k

edges) varying in the range of [4 - 24], [4 - 34],

and [4 - 44] (Suite III).

0 2 4 6 8 10 12
x 104

0

0.5

1

1.5

2

2.5

3

3.5
x 105

sqrt(n / k) × k2

Nu
m

be
rs

 o
f V

er
tic

es

µ = 0.3

VEE

VV

others

n / k = 6
n / k = 42
n / k = 84

Figure 6.6. The number of vertices in terms of

k2
√

n/k as tested on Suite I (k polytopes having

a constant, n/k, number of edges; µ = 0.3).

A nalysis of the number of skeleton vertices in terms of k. If each poly-

tope has constant complexity (i.e., n/k in Θ(1)), our experiments exhibit a quadratic

growth (in terms of k) of the number of skeleton vertices. This is consistent with

previous experiments [36, 47] in which the scenes consist of polygons of constant

complexity and is also consistent with the best known theoretical expected upper

bound of O(k2) [27] corresponding to our setting. However, this contradicts the intu-

itive linear bound of Θ(k) when n/k is constant. Recall that in [27], for k randomly

distributed congruent spheres, the expected number of visibility events is linear and

that, for constant-size polytopes of bounded aspect ratio inside such spheres, the ex-

pected number of visibility events is linear for events that occur sufficiently inside

the universe, but it is upper bounded by O(k2) for events near the boundary of the

universe. It is possible that the expected upper bound of O(k2) is tight but it is also

possible that our experiments did not reach the asymptotic behavior of the complex-

144 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

ity. If this is the case, it is then reasonable to believe that our experimental estimate

of the complexity is an overestimate.

A nalysis of the number of skeleton vertices in terms of the silhouette size

of the input polytopes. If we fix the number k of polytopes and vary the total

number n of edges, our experiments show that the number of skeleton vertices depends

linearly on
√

n/k. We argue below that this means that, in our setting, when k is

fixed, the number of skeleton vertices depends linearly on the silhouette size of the

input polytopes and suggest an explanation for this.

Recall that, for any polyhedron of size Θ(m), the size of its silhouette viewed

from a random point is O(
√

m) under some reasonable hypotheses [49] (see also [65]

for the special case of polyhedra that approximate spheres). Since the vertices of the

polytopes we consider are randomly distributed on a sphere, it is reasonable to assume

that the size of the silhouette does not depend much on the choice of the viewpoint. In

other words, for any polytope with n/k edges we consider, it is reasonable to assume

that its silhouette has size O(
√

n/k) from any viewpoint. Hence, when k is fixed,

the number of skeleton vertices depends linearly on the silhouette size of the input

polytopes.

We offer the following intuitive explanation for this observation. Consider the arcs

of type EEE of the skeleton. The endpoints of these arcs are vertices of type VEE,

FEE or EEEE. When the number k of polytopes is fixed and the number n of edges

tends to infinity, the polytopes tend to spheres and the segments corresponding to

vertices of type EEEE converge to segments that are tangent to four spheres; hence,

in our setting, the number of EEEE vertices converges to a constant. A similarly

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 145

remark holds for those V EE vertices that correspond to intersections of two arcs

of types VE and EEE (thus corresponding to segments tangent to three polytopes

while lying in planes that are tangent to two of them). Moreover, in the successive

refinements of polytopes as n increases, each EEE arc incident to an EEEE vertex

or one of the above VEE vertices will become a sequence of EEE arcs joined at VEE

vertices (that is, subdivision vertices such that the sets of supports are invariant along

the subdivided arcs). For such a sequence of arcs, the number of these VEE vertices

is the number of polytope vertices encountered by a maximal free line segment as it

slides from the segment corresponding to one end of the sequence to the other, while

remaining tangent to the three polytopes (nearly spheres) involved. The number of

such polytope vertices is, intuitively, at most the worst-case size of the silhouette of

each polytope, which we have assumed to be in O(
√

n/k). As a polytope gets more

complex and tends to a sphere, the subset of lines in the line space that are tangent

to the polytope on its vertices tends toward the subset of lines that are tangent to

the sphere. This is also the case for lines tangent to the polytope on its faces. For

this reason, the number of FEE vertices is asymptotically the same as that of VEE

vertices.

Thus, intuitively, we can expect that, for fixed k, (i) the number of vertices of type

EEEE converges to a constant as n goes to infinity, (ii) the number of vertices of type

VEE or FEE is in O(
√

n/k) times the number of EEEE vertices, and thus that (iii)

the number of VEE and FEE vertices is in O(
√

n) (for k fixed). In our experiments,

we have observed (ii) and (iii) (shown in Figure 6.7 and 6.8 respectively), but not (i).

In Figure 6.6, the number of VEE vertices is much larger than the number of EEEE

146 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

0.5

1

1.5

2

2.5

3

3.5
x 105

sqrt(n / k) × Number of EEEE Vertices

Nu
m

be
r o

f V
EE

 V
er

tic
es

µ = 0.3

n / k = 6
n / k = 42
n / k = 84

(a)

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

1

2

3

4

5

6

7
x 104

sqrt(n / k) × Number of EEEE Vertices

Nu
m

be
r o

f F
EE

 V
er

tic
es

µ = 0.3

n / k = 6
n / k = 42
n / k = 84

(b)

Figure 6.7. Number of (a) VEE, (b) FEE vertices in terms of number of EEEE vertices (Suite I,

µ = 0.3).

vertices, which is consistent with the previous discussion, while the convergence of

EEEE is not seen in our experimental range.

Finally, the number of VV vertices is, intuitively, bounded by the product of the

number of pairs of polytopes that are mutually visible and the size of the polytope

silhouettes. In our experiments (Figure 6.6) we observe a complexity of roughly

Θ(k2
√

n/k).

6.4 Double versus Filtered_exact

We also ran all the experiments of Suite I using number type double and compared

the computed results with those we obtained by using number type filtered_exact.

We show the error percentage of the computed skeleton vertices, computed as

(# filtered_exact− # double) ∗ 100/# filtered_exact, in Figure 6.9.

From Figure 6.9, we observe that the error percentages, in the range of our ex-

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 147

2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5
x 105

sqrt(n / k)

Nu
m

be
r o

f V
EE

 V
er

tic
es

µ = 0.3

k = 30
k = 60
k = 90

(a)

2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
x 104

sqrt(n / k)

Nu
m

be
r o

f F
EE

 V
er

tic
es

µ = 0.3

k = 30
k = 60
k = 90

(b)

Figure 6.8. Number of (a) VEE, (B) FEE vertices in terms of
√

n/k (Suite II).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

n

Er
ro

r P
er

ce
nt

ag
e

of
 V

er
tic

es

µ = 0.3, 0.05, 0.01

n / k = 6
n / k = 42
n / k = 84

Figure 6.9. Error percentage of computed skeleton vertices when using number type double versus

filtered_exact (Suite I).

periments, are less than 0.25%. In particular, there is no error when the number of

polytope edges n is small (< 800 in our experiments).

We notice that the values shown in Figure 6.9 appear both positive and negative.

This suggests that using number type double causes different types of computation

error. Some errors may cause the program to abort. In this case, the number of

148 Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton

skeleton vertices will be undercounted. Note that, from our experimental observation,

the abortion rate of our software, when using number type double, is roughly about

0.1%. Some other errors may be to simply overcount a skeleton vertex which does

not exist, or vice-versa. For example, computing the skeleton vertex of type VEE or

FEE uses predicate line_segment_intersect, which tests whether a line and a segment

intersect. The computation error of this predicate may overcount, or undercount, a

VEE or a FEE vertex.

In terms of choosing which number type to use, our experimental study indicates

that the number type filtered_exact is not too slow when one needs to perform

exact computation. Compared to double, it is about 3 to 4 times slower (see Figure

4.18). However, when one can afford occasional failure in a computation, the number

type double can be a good choice. Especially when dealing with small input sizes

(n < 800 in our experimental range), one can even expect exact results.

6.5 Summary and Bibliographic Notes

Our experiments suggest that, in our setting, the number of vertices of the 3D

visibility skeleton is Cµ k
√

n k. The constant Cµ, which depends on the scene density,

is no more than 5 for n and k in our experimental range and for the various densities

that we studied.

This is the first prediction of the actual size of the 3D visibility skeleton, for

reasonably large n, that is expressed in terms of both n and k. Assuming that the

size of the silhouette of a polytope with n/k edges is O(
√

n/k), our results show that

the size of the visibility skeleton is linear in the size of the silhouette and quadratic in

Chapter 6: Experimental Study of the Size of the 3D Visibility Skeleton 149

the number of polytopes. Surprisingly, the constant Cµ is rather small; this indicates

that there is no large constant hidden in the big-Oh notation.

The experiments also suggest that the expected running time of our implementa-

tion of the sweep plane algorithm is C ′
µ n

√
nk log k seconds, where C ′

µ depends on

the scene density but is, on our machine, no more than 3 · 10−4 for the considered

densities.

Our results indicate that the visibility skeleton is of reasonable size and can be

computed exactly in a reasonable length of time.

A succinct version of this chapter, except Section 6.4, has appeared in the Pro-

ceedings of the 16th Annual European Symposium on Algorithms [106].

Chapter 7

Computing the 3D Visibility Skeleton

Recall that in Section 2.2.2, we introduced a 3D visibility skeleton defined by

visual event surfaces [25, 26]. When considering input consisting of a set of convex

disjoint polytopes, a visibility skeleton thus defined consists of only arcs of type EEE,

and a subset of type VE, and vertices of types EEEE, VEE, FEE, and a subset of type

VV. This data structure is a subset of the 3D visibility skeleton defined by Durand

et al. [34, 36], which consists of the 0D and 1D cells of the 3D visibility complex.

For convenience, in this chapter, we refer to the former definition as a succinct 3D

visibility skeleton, and to the latter one as a full 3D visibility skeleton. Moreover,

we define the vertices contained in the succinct skeleton as primary vertices, and the

remaining vertices of the full skeleton as secondary vertices.

From the study of Demouth et al. , the size of the succinct 3D visibility skeleton

is only about 25% to 50% of the full one [25, 26]. However, the skeleton vertices

and arcs it contains are sufficient to compute the direct shadow boundaries cast by

polytopes. While compact and useful on its own, the succinct 3D visibility skele-

151

152 Chapter 7: Computing the 3D Visibility Skeleton

ton does not always contain the necessary visibility information for answering global

visibility queries. For example, in global illumination computation, the form factor

can be approximated by point-to-area calculations [9] computed at the vertices of the

inputs [71, 100]. To compute the point-to-area form factor for vertices, we need all

the VE arcs, including those not encoded in the succinct visibility skeleton [34]. Also,

when generating high quality shadows, the typical approach of linearly interpolating

light intensity within the penumbrae [3, 55, 78] is not always sufficient to express the

subtlety of penumbrae cast by polytope features, as shown in Figure 7.1; in particular,

arcs FE may be needed even though they do not correspond to visual events. Apart

from global illumination, other problems such as visibility culling [103], architectural

acoustics [44], or endoscopy [57] also need global visibility information.

The full visibility skeleton, on the other hand, contains all the necessary informa-

tion for most visibility queries. However its large size has been seen as an impediment

for its practical use [34, 36]. In this chapter, we study in detail the 3D visibility skele-

tons computed from a set of convex disjoint polytopes in general position. We prove

that knowing the succinct 3D visibility skeleton is sufficient to compute efficiently the

secondary vertices; in particular, these computations can be local, that is, only the

vertices and arcs of interest need to be computed. Furthermore, the full skeleton can

be computed if necessary.

In terms of computing the full skeleton, we prove that, given k polytopes with n

edges in total, the full visibility skeleton can be computed from the succinct one in

O(p log p + m log m) time, where p is the number of the primary vertices minus the

EEEE vertices, and m is the number of secondary vertices. The worst-case size com-

Chapter 7: Computing the 3D Visibility Skeleton 153

aab bc c

Figure 7.1. Scene representing a shelf in a room with a fluorescent light on the ceiling. The black

and white regions represent the umbra and full light regions. The union of the light and dark grey

regions corresponds to the penumbra. The dark gray shape represents a portion of the penumbra

limited by the trace of FE arcs. In this region, the visible portion of the light source does not exceed

about 40%. The schema on the right represents a section through the middle of the scene. The

points a are at the boundary of umbra, and the points c are at the boundary of the penumbra. The

points b are on the maximal free line segments corresponding to an arc FE involving a face of the

blocker. From a to b, the percentage of the light source that is visible increases linearly from 0%

to about 40%, and from b to c, it increases linearly from about 40% to 100%. Since the light grey

region can be made arbitrarily large by moving the light source closer to the blocker, the trace of

the FE arcs on the floor corresponds to a discontinuity of the derivative in the percentage of visible

area of the light source.

plexity of the primary vertices of interest to us, EEEE vertices excluded, is Θ(n2k),

and the worst-case size complexity of the secondary vertices is Θ(n2). Thus, in the

worst case, O(p log p + m log m) is equivalent to O(n2k log n).

There exist various algorithms for computing the secondary vertices. For instance

one can use the sweep algorithm described in Chapter 2 (also in [14, 50]), or one can

also compute, in a brute force way, the possibly occluded candidate secondary vertices

and perform ray shooting to check for occlusion [1, 29, 79]. To our knowledge, the

best worst-case running time is O(n2k log n), obtained by computing O(n2) candidate

154 Chapter 7: Computing the 3D Visibility Skeleton

secondary vertices in a brute force way and checking for occlusion using the Dobkin-

Kirkpatrick hierarchical representation [29, 75], which leads to performing O(n2) ray

shooting queries on each of the k polytopes in O(log n) time each. Comparatively,

the method we propose has the same complexity in the worst case. However, our

method is output-dependent, and thus, it can be much more efficient than previously

existing algorithms. In addition, our method takes as input the primary vertices,

whose observed size is, in a random setting, Ck
√

nk for a small constant C (see

Chapter 6), which is much smaller than the worst-case size, that is Θ(n2k).

The rest of this chapter is organized as follows. We provide necessary definitions

in the next section. We then introduce the computational relations among the types

of visibility skeleton vertices in Section 7.2. We prove that we can recover the full

skeleton from the succinct one in O(p log p+m log m) time in Section 7.3. By a series

of examples, we show in Section 7.4 that none of the primary vertex types can be

omitted while maintaining the validity of this result. We discuss our results in Section

7.5.

We note that the study in this chapter heavily depends on the definition of the

3D visibility skeleton that we gave in Section 2.2.2.

7.1 Preliminaries

We first define precisely the primary vertices as the skeleton vertices of types

EEEE, VEE, FEE, together with the vertices of type VV that lie in a plane tangent

to both polytopes; and the secondary vertices as the remaining vertices of type VV,

and the vertices of types FF, FvE, FE, and FVV.

Chapter 7: Computing the 3D Visibility Skeleton 155

Next, we define the concept of constraint. Recall that for any skeleton vertex, a

support vertex is a polytope vertex that lies on the relative interior of the free line

segment, and a support edge is a polytope edge that intersects the free line segment in

its relative interior. For any skeleton vertex or arc, we define its constraint edges as the

edges incident to a support vertex, such that a plane containing the free line segment

and one of these incident edges is tangent to the support polytope. The constraints

of a skeleton vertex or arc are defined as its support edges and constraint edges. It

is easy to see that any skeleton vertex has, in general position, four constraints, and

any skeleton arc has three.

We finally define a master arc as a set of arcs that share the same set of supports.1

On a master arc, the arcs and their incident vertices are sorted according to the

position of their intersections with a chosen support edge of the master arc, in some

chosen direction. We note that the master arc is only a facilitating data structure,

which allows quick access to its associated arcs.

7.2 Computational Relations among the Visibility

Skeleton Vertices

Recall from Section 2.2.2 that a 3D visibility skeleton vertex corresponds to a

maximal free line segment that has 0-degrees of freedom, and the degrees of freedom

are restricted by its supports. Alternatively, the degrees of freedom are restricted by

its constraints.

1The master arc concept was initially presented in [94].

156 Chapter 7: Computing the 3D Visibility Skeleton

Next, we specify that the knowledge of a skeleton vertex includes its corresponding

maximal free line segment and its supports and constraint edges, that is, any support

polytope edges, any support polytope vertices with incident constraint edges, and all

support polytopes. Computing a skeleton vertex includes computing the maximal

free line segment and all these supports and constraint edges.

Note that for any free line segment that corresponds to a skeleton vertex, we

determine the four polytope edges to which it is tangent (the constraints). Since

any incident skeleton arc is tangent to three of those, we can determine all incident

skeleton arcs by relaxing one degree of freedom, removing in turn each edge from

the list of edges to which the free line segment is tangent. The computation time is

constant.

Given a skeleton arc, together with the knowledge of its constraints and support

polytopes, any incident skeleton vertex can be computed from the skeleton arc, pro-

vided that the skeleton vertex has the same set of support polytopes as the skeleton

arc. The computation involves enumerating incident edges of a polytope vertex to

find constraint edges, or edges on a polytope face to find the support edges of the inci-

dent skeleton vertex. This requires O(δ) time computation, where δ is the maximum

degree of a polytope vertex or number of edges on a polytope face. For example, given

an EEE arc, one can compute the vertices of types VEE and FEE that are incident

to the EEE arc in O(δ) time. But, if an EEE arc is incident to an EEEE vertex, then

this EEEE vertex can not be computed directly from the EEE arc, since the EEEE

vertex has an additional, unknown support polytope.

The possible computational relations among skeleton vertex types are summarized

Chapter 7: Computing the 3D Visibility Skeleton 157

EEEE

VEE FEE

VV FvE FF

FE FVV|
|

|
|

1

2

3

4

Figure 7.2. The possible computational relations among the types of 3D visibility skeleton vertices.

in the diagram in Figure 7.2. The edges in this diagram give all possible pairs of vertex

types that can be connected by an arc of the full visibility skeleton. Furthermore,

an arrow oriented from one vertex type to another indicates that the set of support

polytopes of a vertex of the former type contains that of a vertex of the latter type.

This means that vertices of the latter type can be computed from adjacent vertices

of the former type in O(δ) time. Note that skeleton vertices of types appearing in

rows 1 (bottom), ..., 4 (top) of the diagram in Figure 7.2 are supported by 1, ..., 4

polytopes, respectively.

We now prove the correctness of the computational relations illustrated in the

diagram of Figure 7.2 in Lemma 15 and 16.

Lemma 15. Let X and Y denote vertex types in the full skeleton graph, such that

in Figure 7.2, X has more support polytopes than Y (so X appears in a higher row

than Y), and there is an edge directed from X to Y. Then we cannot, from a skeleton

vertex of type Y, determine an adjacent skeleton vertex of type X in time independent

of the number of input polytopes.

Proof. Since any vertex of type X has more support polytopes than any vertex of

158 Chapter 7: Computing the 3D Visibility Skeleton

type Y , when computing an incident vertex from the arc that is created by a vertex of

type Y , the additional support polytope, and furthermore the additional support edge

(or support vertex) on the additional support polytope, is unknown. This requires a

search for the additional polytope and the additional support edge (or support vertex)

on the polytope. In general, this search cannot be done directly from a vertex of type

Y (given only the knowledge of its supports).

Lemma 16. From any skeleton vertex, it is possible to compute each adjacent skeleton

vertex in O(δ) time, where δ is the maximum degree of a polytope vertex or number of

edges on a polytope face, under the condition that all support polytopes of the adjacent

skeleton vertex and of the connecting skeleton arc are also support polytopes of the

starting skeleton vertex.

Proof. By our definition of the 3D visibility skeleton vertex, we already know the

support polytopes of the adjacent skeleton vertex.

From the starting skeleton vertex, we need to find incident skeleton arcs. Since

we know the supports of the skeleton vertex and any constraint edges, we know four

polytope edges tangent to the corresponding free line segment of the skeleton vertex

(the constraints), and thus we can find its incident skeleton arcs in constant time by

removing in turn each of these constraints.

We now consider how to deal with each type of arc incident to a given vertex.

From an EEE arc, it is possible to find unknown incident skeleton vertices of type

VEE or FEE by checking all polytope faces and vertices incident to the polytope

edges, and computing the corresponding candidates. Since their number is constant,

we can find the incident vertices in constant time by enumerating them. Similarly,

Chapter 7: Computing the 3D Visibility Skeleton 159

from a VE arc, we find unknown incident VV vertices by checking polytope vertices

incident to the polytope edge. From an FE arc, we find unknown FF vertices by

checking polytope faces incident to the polytope edge.

Moreover, from a VE arc, we find unknown incident FvE vertices by checking

the four polytope faces that are incident to the two constraint edges incident to the

polytope vertex. From an FE arc, we find unknown FvE vertices by checking the four

polytope vertices that are incident to the two polytope edges lying on the polytope

face.

Thus we can find the free line segment that corresponds to an adjacent skeleton

vertex in constant time, along with any of its support vertices or faces.

According to our definition, we also need to compute the edges incident to any

support vertex or support face that defines an incident skeleton arc. For a VEE or

VV vertex, these are constraint edges, which can be computed by checking through

all the polytope edges incident to the support polytope vertices. This can be done in

O(δ) time. For an FEE or FF vertex, these are support edges, which can be computed

by checking all the polytope edges on the support polytope faces. Again, this can be

done in O(δ) time.

Similarly, one can prove the computational relations for skeleton vertices of type

FE and FVV.

In summary, for any directed edge on Figure 7.2 from type X to type Y , Lemma 16

shows that it is possible to compute a vertex of type Y from an adjacent vertex of

type X ; Lemma 15 shows that it is impossible to compute a vertex of type X from a

vertex of type Y efficiently, that is, in time independent of the number of polytopes.

160 Chapter 7: Computing the 3D Visibility Skeleton

7.3 Recovery of the Full Skeleton

Recall that the five types of secondary vertices are FF, FvE, FVV, FE, and a

subset of VV. The vertices of type FVV and FE are easy to find on their own, and

will be computed separately. In this section, we mainly show how to compute vertices

of type FvE, FF, and the subset of VV that belongs to the secondary vertices. For

this, we explore the subgraph of the visibility skeleton consisting of VE and FE arcs

and their incident vertices, that is, the VEE, FEE, VV, FvE and FF vertices. We call

this subgraph the partial graph.

We first prove that all connected components of the partial graph contain at least

a primary vertex of type VV, VEE or FEE. This allows us to find all FvE, FF and

the remaining VV vertices by simple graph exploration, examining vertices adjacent

to those we have already computed.

To prove that all connected components contain a primary vertex of type VV,

VEE or FEE, we divide the partial graph into the subgraphs of vertices and arcs

that are supported by every pair of polytopes, and prove that they all contain such

a vertex. The proof uses an optimization concept, that is, we define an objective

function, and prove the local minimum of each connected component is a primary

vertex of type VV, VEE, or FEE.

Rather than defining a single objective function for the whole partial graph, we

define a collection of objective functions, one for each pair of polytopes that support

at least one skeleton vertex. Each objective function will be used for the enumeration

of the vertices and arcs supported by the corresponding pair of polytopes. In other

words, the vertices and arcs supported by each pair of polytopes form subgraphs of

Chapter 7: Computing the 3D Visibility Skeleton 161

u

x

H

P1 P2

Figure 7.3. The value of each of the free line segments is defined by a linear function on its

intersection with the plane H .

the partial graph, which are enumerated separately, starting from the primary vertices

of type VEE, FEE, and VV.

For each pair of polytopes P1 and P2 that support at least one vertex, we define

the following objective function. Let H be a plane separating P1 and P2,2 and let u

be a vector that is in generic direction. For any maximal free line segment l tangent

to P1 and P2 that represents a skeleton vertex or a point of a skeleton arc, we define

the value of l as f(l) = u · x, where x is a vector representing the intersection of H

with the supporting line of l.3 Note that l always intersects H , being tangent to P1

and P2, which are separated by H (See Figure 7.3).

Lemma 17. Any vertex v of the visibility skeleton of type FF or FvE that is supported

by P1 and P2 has an adjacent vertex v′, connected by a VE or FE arc, such that the
2This separating plane can be computed when computing the primary vertices using the sweep

algorithm. Specifically, it corresponds to the V-event that places the two polytopes, one supporting
the sweep plane and the other supporting the V-event, on different sides of the sweep plane.

3We can define the generic direction of u as u = (1, ε, ε2), so that when ε goes to 0, f(l1) -= f(l2),
for any free line segments l1 and l2 representing adjacent skeleton vertices.

162 Chapter 7: Computing the 3D Visibility Skeleton

H

e

v

Figure 7.4. The intersections with H of free

line segments on the two VE arcs on each side

of a degenerate FvE vertex move in opposite

directions.

H

e f
v

Figure 7.5. The intersections with H of free

line segments on the two FE arcs on each side of

a non-degenerate FvE vertex move in opposite

directions.

value of f along the arc continuously decreases from v to v′.

Proof. If free line segments are tangent to a common vertex and edge, their intersec-

tion with plane H is on a straight line. If we parametrize these free line segments by

l(t), t ∈ [0, 1], such that l(0) and l(1) correspond to the free line segments tangent to

the extremities of the edge, f(l(t)) is an affine function, which is not constant since

u is in generic position, so f(l(t)) has a minimum at 0 or 1.

In particular, the set of free line segments representing a VE or FE arc of the

visibility skeleton share a 3D point and are tangent to a common polytope edge e,

and so the value of the free line segments increases or decreases monotonically between

two skeleton vertices connected by arcs of these types.

Recall that degenerate FvE vertices are tangent to a polytope edge and a vertex of

a different polytope, and are in the supporting plane of a face incident to the vertex,

Chapter 7: Computing the 3D Visibility Skeleton 163

without intersecting that face except on the vertex (Figure 7.4). A degenerate FvE

vertex always has two incident VE arcs corresponding to the same polytope vertex and

polytope edge, in opposite directions. Therefore, the free line segment corresponding

to a degenerate FvE vertex is in the middle of a set of free line segments defined by

a vertex and an edge, which corresponds to two incident skeleton arcs. Since it is in

the middle, its value is not minimum, so the value is decreasing along one of the arcs.

Non-degenerate FvE vertices are tangent to a polytope face and a polytope vertex

of that face, and to an edge of a different polytope (Figure 7.5). If a non-degenerate

FvE vertex is defined by an edge e of polytope P , a vertex v and a face f of polytope

P ′, then it has two incident FE arcs corresponding to the same intersection point on

e and polytope edge (incident to f , but not v), in opposite directions. Again, the

corresponding free line segment is in the middle of a set of free line segments defined

by a vertex and an edge, which corresponds to two incident skeleton arcs, and the

value is decreasing along one of the arcs.

Vertices of type FF have four incident FE arcs. We define as p and p′ the in-

tersection points of the free line segment corresponding to an FF vertex with the

two support edges on one of the two polytopes. Then the two FE arcs, obtained

by rotating the maximal free line segment corresponding to the FF vertex around p

and p′, will move in opposite directions on a line in H . Therefore, one of them is

decreasing.

Lemma 18. Let v be a vertex of the visibility skeleton of type VV. If all adjacent

vertices of v have a higher value than v, then v lies in a plane tangent to both polytopes,

i.e., v is a primary vertex.

164 Chapter 7: Computing the 3D Visibility Skeleton

e1

e2

v

H

v x v′

u′

Figure 7.6. The silhouette of the polytope from v projected on H is inside the cone of the projected

constraint edges. If the constraint edges are in the half-plane u′ · x " 0, so is the polytope.

Proof. Let v be a VV vertex supported by the polytope vertices v and v′ in the

polytopes P and P ′, respectively, such that adjacent skeleton vertices have a higher

value. Let x be the intersection of v with H . Without loss of generality, we assume

x to be the origin. Since H contains the origin, its equation is H = {x : a · x = 0}

for some vector a. We modify u into u′, such that u′ is perpendicular to v, but the

value function does not change. This can be done by setting

u′ = u −
u · d
a · d

a,

where d is a vector from v to v′. It is easy to check that u′ · d = 0 and u · x = u′ · x

for any x in H .

Vertices of type VV have four incident VE arcs, two supported by each polytope

vertex. Let e1 and e2 be the two constraint edges of v incident to v′; then v and e1

generate a VE arc incident to v, as well as v and e2. Viewed from v, the silhouette

of P projected on H is contained in the cone between e1 and e2 (see Figure 7.6). By

Chapter 7: Computing the 3D Visibility Skeleton 165

assumption, the value of free line segments is increasing along these arcs, so P is in

the half-space u′ · x " 0.

Similarly, P ′ is in the half-space u′ · x " 0, and so v lies in the plane u′ · x = 0

which is tangent to P and P ′.

From Lemma 17 and 18, we obtain Corollary 19.

Corollary 19. Let P1 and P2 be a pair of polytopes, with the related objective function

f defined on the subgraph of the partial graph of the visibility skeleton containing

vertices and arcs whose corresponding maximal free line segments are tangent to P1

and P2, and possibly other polytopes. Any local minimum of the objective function is

a primary vertex of type VV, VEE, or FEE.

Since any non-empty subgraph related to two polytopes is finite, it has a minimum

which has to be a primary vertex.

We now show how to explore the partial graph, in order to compute the secondary

vertices of type VV, FvE and FF from primary vertices of type VEE, FEE and VV. To

explore the partial graph efficiently, we compute the secondary vertices of type VV,

FvE or FF along a sequence of VE or FE arcs. In what follows, we will show that this

can be done in time O(p′ log p + s′), where p′ and s′ are the number of primary and

respectively secondary vertices in the sequence, and p is the total number of primary

vertices in the succinct visibility skeleton.

We will examine separately VE arcs and FE arcs. First we define a sequence of

VE arcs as a maximal set of connected VE arcs that share the same support polytope

edge and vertex.

166 Chapter 7: Computing the 3D Visibility Skeleton

Lemma 20. Any sequence of VE arcs has a VV vertex, a VEE vertex, or a non-

degenerate FvE vertex at each extremity, and arcs in the sequence are separated by

degenerate FvE vertices or VEE vertices.

Proof. Any non-degenerate FvE vertex has a single incident VE arc, and any VV

vertex has four of them, but none are supported by the same polytope vertex and

edge. They are therefore extremities of the sequence of VE arcs. Any degenerate FvE

vertex has two incident VE arcs supported by the same polytope vertex and edge, so

it is in the middle of a sequence. A VEE vertex has three or four incident VE arcs,

which are supported by two different polytope edges. When two arcs are supported

by the same edge, the vertex is in the middle of the sequence; when only one arc is

supported by an edge, the vertex is an extremity of the sequence.

We define a sequence of FE arcs as a maximal set of connected FE arcs that share

the same support polytope face, and are tangent to the same other polytope. We

note that, according to our definition, a sequence of FE arcs is not necessarily always

supported by the same polytope edge.

Lemma 21. Any sequence of FE arcs has a degenerate FvE vertex or FEE vertex at

each extremity, and arcs in the sequence are separated by non-degenerate FvE vertices,

FEE vertices or FF vertices.

Proof. Any degenerate FvE vertex has a single incident FE arc. It is therefore an

extremity of the sequence of FE arcs. Any non-degenerate FvE vertex has two incident

FE arcs supported by the same polytope face and polytope edge. It is in the middle

of a sequence. And any FF vertex has four incident FE arcs, each polytope face

Chapter 7: Computing the 3D Visibility Skeleton 167

supporting two of them, which are tangent to different edges on the other polytope.

They are therefore in the middle of a sequence. An FEE vertex has three or four

incident FE arcs, which are supported by two different polytope edges. When two

arcs are supported by the same edge, the vertex is in the middle of the sequence; when

only one arc is supported by an edge, the vertex is an extremity of the sequence.

Lemma 22. Any sequence of VE arcs can be computed in O(p′ log p + s′) time if we

know its primary vertices, or, when it contains no primary vertices, if we know one

secondary vertex; here p′ and s′ are the number of primary and respectively, secondary

vertices in the sequence, and p is the total number of primary vertices in the succinct

visibility skeleton.

Proof. First, we find the primary vertices in the sequence from the total list of primary

vertices in the succinct visibility skeleton. If the list is sorted by supports, this can be

done in O(p′ log p). We then show that secondary vertices can be computed in linear

time in their number.

All skeleton vertices in a sequence of VE arcs are supported by a vertex v on

polytope P and an edge e. Suppose x is a point moving on e, and let us consider the

free line segment l containing x and v. The constraints of l are e and two constraint

edges incident to v, denoted as e1 and e2. Let p1, p2 be the two planes containing x

and e1, e2 respectively. Then plane p1 (respectively p2) is tangent to P and contains

x, v and e1 (respectively e2). As x moves along e, planes p1 and p2 roll around

the faces and edges incident to v. Let C be the polyhedral cone created by faces

incident to v, and let C ′ be the centrally symmetric cone also having its apex at

v. If the supporting line of e does not intersect C or C ′, the two planes roll in the

168 Chapter 7: Computing the 3D Visibility Skeleton

(a)

e1

e2

v

v′

e

VV

FvE

(b)

e2

v

v′

e

VV

FvE

Figure 7.7. (a) Bird’s eye view and (b) 3D view of degenerate FvE vertices whose supports are

polytope edge e and two sequences of faces incident to v, starting from e1 and e2, which create VE

arcs with v′.

same direction around v (Figure 7.7). Otherwise, they roll in opposite directions

(Figures 7.8 and 7.9).

Suppose we know one of the extremities of the sequence of VE arcs, which can

be either VV, VEE or non-degenerate FvE vertices. We examine each of the cases in

turn as follows.

Case i): The extremity is of type VV (supported by v and v′): Then the planes

tangent to P contain its constraint edges, e1 and e2; the supporting planes of the

polytope faces incident to e1 or e2 intersect the supporting line of the polytope edge

e on either side of v′ (see Figures 7.7 and 7.8). From those two edges (e1 and

e2), circling around the polytope vertex v, we enumerate the two sequences of faces

incident to v. Their supporting planes intersect the polytope edge e, and each of the

intersections indicates a degenerate FvE vertex.

If there is a VEE vertex in the sequence of arcs, then we already know the vertex,

as well as the point where the free line segment corresponding to the VEE vertex in-

Chapter 7: Computing the 3D Visibility Skeleton 169

e2

e1

v

v′

e

VV

FvE

Figure 7.8. When the polytope edge e in-

tersects with the polyhedral cone of the faces

incident to v, the two sequences of faces that

are supports of degenerate FvE vertices turn in

opposite directions until they meet, which indi-

cates a non-degenerate FvE vertex.

e

FvE

Figure 7.9. In some configurations, a sequence

of VE arcs may contain degenerate FvE vertices

only, with a non-degenerate FvE vertex at each

end.

tersects the edge e. Thus we can insert it in the sequence when the intersections reach

that point. The VEE vertex can end the sequence; otherwise we keep enumerating

the faces incident to v.

If the sequence of arcs ends with a VV vertex, we stop when the intersections

reach the other end of edge e.

In case the two sequences of faces are turning in opposite directions, and they

turn until they meet (see Figure 7.8), this indicates a non-degenerate FvE vertex at

the end of the sequence of arcs.

Case ii): The extremity of the sequence of VE arcs formed by vertex v and edge e

is a VEE vertex (supported by v, e and e′): then let e1 and e2 denote the constraint

edges of the VEE vertex, incident to v, and we continue as in the case that the

170 Chapter 7: Computing the 3D Visibility Skeleton

extremity is of type VV.

Case iii): The extremity of the sequence of VE arcs formed by vertex v and edge e

is a non-degenerate FvE vertex (supported by f , v and e): Then we enumerate from

f the two sequences of faces incident to v and proceed as above.

In case we do not know an extremity of the sequence of arcs, but we do know a

vertex in the middle, we can explore the sequence in each direction using the same

method, since we know the constraints of the vertex. If it is of type VEE, then let

e1 and e2 denote its constraint edges incident to v, and continue as above. If it is of

type degenerate FvE (supported by f , v and e), then let e1, e′
1 and e2 be its three

constraint edges incident to v, with e1 and e′
1 incident to f . We then enumerate faces

incident to v in one direction starting with e1 and e2, and in the other starting with

e′
1 and e2.

Note that if the sequence does not have a VV or VEE vertex at any extremity,

then the supporting planes of all faces incident to the vertex v intersect with edge e

(see Figure 7.9). All of these intersections correspond to a FvE vertex.

Lemma 23. Any sequence of FE arcs can be computed in O(p′ log p + s′) if we know

the primary vertices, or, when the sequence contains no primary vertex, if we know

one secondary vertex; here p′ and s′ are the number of primary and, respectively,

secondary vertices in the sequence, and p is the total number of primary vertices in

the succinct visibility skeleton.

Proof. In Lemma 22, first we find the primary vertices in the sequence from the total

list of primary vertices in the succinct visibility skeleton in O(p′ log p) time. We then

show that secondary vertices can be computed in linear time in their number.

Chapter 7: Computing the 3D Visibility Skeleton 171

If the extremity of the sequence of FE arcs formed by face f and polytope P is an

FEE vertex (supported by face f , edge e on P and e′ on some other polytope), then

let ef and e′
f

denote its two support edges on face f . From ef or e′
f
, circling around

the face f , the two sequence of polytope vertices (on face f) will create non-degenerate

FvE vertices with e.

If there is an FEE in the sequence of arcs, then we know the vertex, as well as its

support edges on f . When the sequences of vertices reach the FEE vertex, we insert

it in the sequence of arcs. The FEE vertex can end the sequence; otherwise we keep

enumerating the vertices of f .

If the sequence of arcs contains an FF vertex, it corresponds to face f and a face

f ′ that is incident to edge e. These are inserted in the sequence of arcs when the

sequences of vertices cross the supporting plane of f ′.

In case we do not know an extremity of the sequence of arcs, then they are the

type of degenerate FvE. In this case, all vertices of face f create a degenerate or non-

degenerate FvE vertex with the other polytope. So starting from any skeleton vertex

we know, we can enumerate polytope vertices on face f , adding vertices of type FF

and FEE along the way as above.

We remark that secondary vertices in sequences of arcs are computed in time

linear in their number. However, for each extremity of a sequence that is a secondary

vertex, we need to enumerate the edges incident to a polytope vertex or to a face in

order to compute the constraints of the skeleton vertex, and this is done in O(δ) time.

The method for finding the secondary vertices is to explore the partial graph with

a simple search. That is, we first examine each primary vertex of type VV, VEE or

172 Chapter 7: Computing the 3D Visibility Skeleton

FEE, and find all secondary vertices of type VV, FvE and FF on adjacent sequences

of arcs. We keep a list of discovered secondary vertices, and check before adding

any new one whether it is already there. We then examine each vertex in that list,

looking again for secondary vertices on adjacent sequences of arcs, which are added

to the end of the list on the condition that they are not yet there. In this sense, we

are treating the list like a queue. To search the list more efficiently, we can order

it (lexicographically for example), and keep track of the queuing order by adding to

each vertex a pointer to the next one to be examined. Checking whether a vertex is

already in the list can then be done in logarithmic time.

Since any vertex is adjacent to a constant number of arcs, the whole search is done

in O(p log p + m′ log m′) time, where p is the number of primary vertices of type VV,

VEE and FEE, and m′ is the number of secondary vertices of type VV, FvE and FF.

That is, each of the p primary vertices is found in O(log p) time by searching through

the list of primary vertices, and each of the m′ vertices is found in constant time and

added to the list of secondary vertices in O(log m′) time.

Note that for each sequence that ends with a secondary vertex, computing the

constraints of this vertex is done in O(δ) time, but this is bounded by O(m′δ), which

is negligible in comparison to O(m′ log m′).

Remark 24. The FE vertices correspond to edges of polytopes and can be computed

by simple enumeration. Furthermore, FVV vertices correspond to diagonals of faces

of polytopes, and can also be found by simple enumeration.

T heorem 25. Given the succinct visibility skeleton, one can compute the full visibility

skeleton from the succinct one in O(p log p + m log m) time, where p is the number

Chapter 7: Computing the 3D Visibility Skeleton 173

of primary vertices of type VV, VEE and FEE, and m is the number of secondary

vertices of type VV, FvE, FF, FE, and FVV.

Proof. We start with the knowledge of all the primary vertices, and find the secondary

vertices. In order to do that, we explore the partial subgraph of the visibility skeleton

containing all VE and FE skeleton arcs and the skeleton vertices at their extremities.

We find in this way all vertices of type VV, FvE and FF.

Corollary 19 shows that we know at least one vertex in each connected component

of this partial subgraph. Lemmas 22 and 23 show that from any vertex in a sequence

of VE or FE arcs, we can find all the secondary vertices in the sequence in time linear

in their number. As any unknown vertex is connected to a known vertex through a

series of sequences of arcs, we can find all vertices.

We have seen that using our special exploration procedure, a graph of p known

vertices and m′ unknown vertices can be explored in O(p log p + m′ log m′) time.

Vertices of type FE and FVV are computed separately in linear time in their number

m′′. Thus the complete enumeration is done in O(p log p + m′ log m′ + m′′) time,

where m′ +m′′ = m. Since O(p+m′ log m′ +m′′) ∈ O(p log p+m log m), the theorem

follows.

We finally note that the graph exploration method we explained above can be

applied to only part of the input polytopes. In this case, we can first find all the

primary vertices that are related to the polytopes of interest, and apply the graph

exploration on only these primary vertices.

174 Chapter 7: Computing the 3D Visibility Skeleton

7.4 Tightness of the Succinct Skeleton

In this section, we show, mostly by examples, that Theorem 25 is tight in the sense

that if any type of primary vertices, EEEE, VEE, FEE, or VV, is regarded instead

as a type of secondary vertices, and thus excluded from the succinct skeleton, then

the statement of the theorem no longer holds.

Type EEEE. Any vertex of type EEEE requires four support polytopes, and there

are no skeleton arcs that have four support polytopes, by assumption. Hence, by

Lemma 15, vertices of type EEEE must be regarded as primary.

Types VEE and FEE. When three input polytopes are not the support polytopes

of any EEEE vertex, then the vertices of types VEE and FEE that have supports on

the three polytopes cannot be computed from any EEEE vertex.

Moreover, some scenes may generate vertices of type VEE but no vertices of type

FEE, as shown in Figure 7.10 (a). Hence, by Lemma 15, vertices of type VEE cannot

be dropped.

Furthermore, some scenes may generate vertices of type FEE but no vertices of

type VEE, as shown in Figure 7.10 (b) and explained below.

The scene in Figure 7.10 (b) consists of a prism that approximates a cylinder,

positioned between two truncated pyramids that approximate truncated cones, where

the full cones would barely intersect.

A supporting plane of a face of the prism intersects the two truncated pyramids

in two polygonal arcs that approximate hyperbolas (Figure 7.10 (c)). These two

polygonal arcs admit two bitangents that lie in the supporting plane of the face of

Chapter 7: Computing the 3D Visibility Skeleton 175

(a) (b) (c)

Figure 7.10. (a) Three polytopes admit vertices of type VEE but not vertices of FEE. (b) Three

polytopes admit vertices of type FEE but not vertices of type VEE. (c) A cross section of (b) as

indicated by the red line segment.

the prism and that cross the face, generating two FEE vertices.

As the supporting plane rolls around the prism, either one of the two bitangents

will cross a pyramid face, or both bitangents will cross a face of the prism. Thus for

this scene, each arc of type EEE is incident to two FEE vertices. Since there are no

vertices of type VEE, the vertices of type FEE cannot be computed from vertices of

type VEE. Hence, by Lemma 15, vertices of type FEE cannot be dropped.

Type VV. When two input polytopes are not the support polytopes of any EEEE,

VEE or FEE vertex, then the vertices of type VV that have supports on the two

polytopes cannot be computed from any EEEE, VEE or FEE vertex. Moreover,

when two polytopes resemble two flat tetrahedra and face each other, then the only

primary vertices they admit are of type VV. Therefore, the primary vertices of type

VV must be computed.

176 Chapter 7: Computing the 3D Visibility Skeleton

7.5 Discussion

We have presented a method to recover the full visibility skeleton, either partial

or complete, from a succinct one. The full visibility skeleton is the 0D and 1D cells

of the 3D visibility complex [34, 36], whereas the succinct one is defined by visual

event surfaces, and is a subset of the full one [25, 26]. Recovering the full skeleton

mainly consists of computing the secondary vertices of type FvE, FF, and VV (whose

supports do not lie on a plane that is tangent to both support polytopes), from the

primary vertices of type VEE, FEE, and VV (whose supports lie on a plane that is

tangent to both support polytopes).

The running time of our method, in the worst case, is O(p log p+m log m), where

p is the number of primary vertices, and m is the number of secondary vertices. When

considering the worst-case size of p and m, which is O(n2k) and O(n2) respectively (for

input consisting of k polytopes with n edges in total), O(p log p+m log m) is equivalent

to O(n2k log n). This has the same worst-case complexity as the best running time of

the previous existing algorithms, that is, using the Dobkin-Kirkpatrick Hierarchical

representation to test whether the line segments corresponding to secondary vertices

are free [29]. However, our method can be much more efficient when considering

the expected size of primary vertices, as well as having running time that is output-

dependant.

We finally note that the study of this chapter is at present limited to input consist-

ing of disjoint convex polytopes in general position. Generalizing it to handle other

input types (e.g. polytopes in degenerate position) would be an interesting subject

for future research.

Chapter 8

Conclusion and Future Work

One of the main subjects of this thesis has been the study of the size of the visibil-

ity skeleton. We first studied the size of the 2D skeleton. Through our experimental

study, we provided a linear function that estimates the size of the 2D visibility skele-

ton, in a random setting, in terms of the number of input discs and the scene density.

This experimental result not only shows that the estimated size of the 2D visibility

skeleton is much smaller than the theoretical worst-case sizes, but it is also more

specific than theoretical expected sizes in the sense that we estimated the constants,

y-intercept, and the linear onset in the function that estimates the skeleton size. Thus,

when the size of this data structure is a concern, our experimentally determined size

estimate gives more specific information than a linear function in big Oh notation.

The remainder of the thesis studied the visibility skeleton in 3D. When considering

the input as a set of disjoint convex polytopes in general position, we only studied

the size of the skeleton limited to the skeleton vertices that are related to the visual

events surface, which is a subset of the (classically defined) full visibility skeleton. We

177

178 Chapter 8: Conclusion and Future Work

provided a systematic experimental study to show that the size of the 3D visibility

skeleton thus defined is not too big. Specifically, in our setting, its size is quadratically

related to the number of input polytopes, and linearly related to the average silhouette

size of the polytopes. This estimate is higher than the expected linear complexity

that we had initially hoped for, but much lower than the worst case complexity.

We furthermore proved that, using this subset of the 3D visibility skeleton, we can

compute the remaining vertices of the full skeleton efficiently, that is, essentially, in

almost linear time in the size of the output.

A limitation of our experimental study is the model of the inputs. Recall that the

input scenes consist of randomly distributed convex disjoint polytopes. Compared to

real scenes, this is a very restricted and not so realistic setting. Although our experi-

mental results can provide some indication of the size of the 3D visibility skeleton in

a realistic scene model, estimating its size on real scenes remains to be done.

This thesis also provided an implementation for computing the vertices of the 3D

visibility skeleton. The input of this implementation is a set of randomly distributed

convex disjoint polytopes in general position. To our best knowledge, this is the

first non-brute force implementation that is related to computing the 3D visibility

skeleton, although the current implementation can only handle inputs that are in

general position.

We used our implementation to analyze experimentally the size of the 3D visibility

skeleton defined by visual event surfaces. Our implementation has also been used, by

Demouth and Goaoc, to compute shadow boundaries [25, 26]. We made the imple-

mentation a free software available online [64], so as to provide assistance to those

Chapter 8: Conclusion and Future Work 179

who are interested in studying or experimenting with the 3D visibility skeleton. As we

mentioned in Chapter 1, researchers in various fields, including global illumination,

visibility culling, architectural acoustics, and endoscopy [23, 44, 57, 67, 70, 74, 92, 103],

have stated that the 3D visibility skeleton data structure is impractical to use, though

the global visibility information it encodes would be of interest. We hope our imple-

mentation, in addition to our experimental results, will encourage those researchers

to reconsider this data structure.

For the purpose of providing a robust implementation, we have carefully studied

the algebraic degrees of the predicates that are involved in our implementation. This

study gave some insight on the nature of inputs that may cause the failure of pred-

icates when using fixed-precision floating-point arithmetic. Also, the observed high

algebraic degree of the predicates was an incentive for finding alternative procedures

to compute them. This led to a research result that computes the same predicates

with algebraic degree 36 instead of 168 [28].

We aimed to provide an efficient and robust implementation to compute the 3D

visibility skeleton. Our implementation is efficient when the inputs consist of poly-

topes with a large number of edges, due to the nature of the algorithm. However,

when the input consists of simple polytopes, it is not as efficient as the previous brute

force implementation once it is improved by heuristics. One possible continuation of

this thesis would be to apply heuristics to improve the overall performance of our

implementation. In terms of robustness, our current implementation can handle in-

puts that are in general position, and can detect the inputs that are in degenerate

position. Extending this implementation to handle degenerate inputs remains to be

180 Chapter 8: Conclusion and Future Work

done.

Finally, the research contained in this thesis suggests the following future work.

Implementation. Our implementation can be extended and improved in various

directions.

• Input. As discussed above (see also Chapter 4), our current implementation

only handles input in general position, and if the input is not in general po-

sition, our implementation recognizes it. There has been theoretical research

on enumerating degenerate situations [14]. To design and write code to handle

them is a difficult task that remains to be done.

Furthermore, this implementation only considers inputs that consist of convex

disjoint polytopes, which rarely represent realistic scenes. Designing algorithms

and providing an implementation that handles non-convex or non-disjoint poly-

hedra is a future research direction.

• Algebraic degrees of the predicates. As discussed in Chapter 5, in the current

implementation, the answer to the predicate “number of transversals to four

lines” is computed with a procedure of algebraic degree 27, which results in the

predicate of “ordering two sweep planes” having algebraic degree 168. Providing

an implementation of the predicate proposed in [28] would decrease the algebraic

degree from 168 to 36. When following the exact computation paradigm (which

is the setting of our implementation), those predicates will require less memory

space and possibly less computation time; hence studying the performance of

these lower degree predicates would be an possible future direction.

Chapter 8: Conclusion and Future Work 181

• 3D visibility skeleton. The current implementation only computes the vertices

of the 3D visibility skeleton that is defined by visual event surfaces [25, 26]. An-

other step would be to provide an implementation computing the full visibility

skeleton graph, using the technique introduced in Chapter 7.

A pplications. The main motivation of studying the 3D visibility skeleton is to

apply this data structure in global illumination and shadow boundary computation.

Indeed, the results of this thesis have already been used by Demouth [25, 26] for this

purpose.

Furthermore, the visibility information encoded in the 3D visibility skeleton can be

used for testing the visibility between objects or object features, which is of potential

interest independent of global illumination and shadow computation. Examples can

be found in visibility culling [103], architectural acoustics [44], and endoscopy [57].

However, the use of this data structure in any particular application may raise spe-

cific issues, for example, simplification of the data structure, algorithm design, and

complexity analysis when using this data structure. Considering how little is known

about using the 3D visibility skeleton, these research directions provide a rich ground

for further investigation.

Bibliography

[1] P. K. Agarwal and M. Sharir. Ray shooting amidst convex polyhedra and
polyhedral terrains in three dimensions. SIAM Journal on Computing, 25:100–
116, 1996.

[2] P. K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric
applications. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational
Geometry. North-Holland, 1998.

[3] T. Akenine-Möller and U. Assarsson. Approximate soft shadows on arbitrary
surfaces using penumbra wedges. In Proceedings of the 13th Eurographics Work-
shop on Rendering (EGRW’02), pages 297–306, Aire-la-Ville, Switzerland, 2002.
Eurographics Association.

[4] A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5):216–219, 1979.

[5] P. Angelier and M. Pocchiola. CGAL-based implementation of visibility com-
plexes. Technical Report ECG-TR-241207-01, Effective Computational Geom-
etry for Curves and Surfaces (ECG), 2003.

[6] P. Angelier and M. Pocchiola. A sum of squares theorem for visibility com-
plexes and applications. In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors,
Discrete and Computational Geometry, volume 25 of Algorithms and Combina-
torics, pages 79–139. Springer-Verlag, 2003.

[7] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. Academic
Press Ltd., London, UK, 1989.

[8] Audacity: The Free, Cross-Platform Sound Editor. http://audacity.
sourceforge.net.

[9] D. R. Baum, H. E. Rushmeier, and J. M. Winget. Improving radiosity solutions
through the use of analytically determined form-factors. In Proceedings of
the 16th annual conference on Computer graphics and interactive techniques
(SIGGRAPH’89), pages 325–334, New York, NY, USA, 1989. ACM.

183

184 Bibliography

[10] J. Bittner. Efficient construction of visibility maps using approximate occlusion
sweep. In Proceedings of the 18th spring conference on Computer graphics
(SCCG’02), pages 167–175, New York, NY, USA, 2002. ACM.

[11] J. Bittner and P. Wonka. Visibility in computer graphics. Journal of Environ-
mental Planning, 30:729–756, 2003.

[12] J.-D. Boissonnat and F. Preparata. Robust plane sweep for intersecting seg-
ments. SIAM Journal on Computing, 29(5):1401–1421, 2000.

[13] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. In Proceedings of the 14th ACM
Annual Symposium on Computational Geometry (SoCG’98), pages 165–174,
Minneapolis, Minnesota, 1998.

[14] H. Brönnimann, O. Devillers, V. Dujmović, H. Everett, M. Glisse, X. Goaoc,
S. Lazard, H.-S. Na, and S. Whitesides. Lines and free line segments tangent to
arbitrary three-dimensional convex polyhedra. SIAM Journal on Computing,
37(2):522–551, 2007.

[15] H. Brönnimann, H. Everett, S. Lazard, F. Sottile, and S. Whitesides. Transver-
sals to line segments in three-dimensional space. Discrete and Computational
Geometry, 34(3):381–390, 2005.

[16] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. In Proceedings of the 9th Annual European
Symposium on Algorithms (ESA’01), volume 2161 of Lecture Notes in Computer
Science, pages 254–265, Aarhus, Denmark, 2001. Springer-Verlag.

[17] E. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Sur-
faces. PhD thesis, Department of CS, University of Utah, December 1974.

[18] E. E. Catmull. Computer display of curved surfaces. In Proceedings of the IEEE
Conference on Computer Graphics, Pattern Recognition, and Data Structure,
pages 11—17, May 1975.

[19] CGAL: Computational Geometry Algorithms Library. http://www.cgal.org.

[20] F. Cho and D. Forsyth. Interactive ray tracing with the visibility complex.
Computers and Graphics, 23(5):703–717, 1999. Special issue on Visibility -
Techniques and Applications.

[21] J. H. Clark. Hierarchical geometric models for visible surface algorithms. Com-
munications of the ACM, 19(10):547–554, 1976.

[22] The CORE library. http://cs.nyu.edu/exact/.

Bibliography 185

[23] K. Daubert, J. Kautz, H.-P. Seidel, W. Heidrich, and J.-M. Dischler. Efficient
light transport using precomputed visibility. Computer Graphics and Applica-
tions, IEEE, 23(3):28–37, 2003.

[24] M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal, volume
703 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[25] J. Demouth. Événements visuels et limites d’ombres. PhD thesis, Université
Nancy 2, Nov. 2008.

[26] J. Demouth and X. Goaoc. Computing direct shadows cast by convex polyhedra.
In Proceedings of the 25nd European Workshop on Computational Geometry,
March 2009.

[27] O. Devillers, V. Dujmović, H. Everett, X. Goaoc, S. Lazard, H.-S. Na, and
S. Petitjean. The expected number of 3D visibility events is linear. SIAM
Journal on Computing, 32(6):1586–1620, 2003.

[28] O. Devillers, M. Glisse, and S. Lazard. Predicates for line transversals to lines
and line segments in three-dimensional space. In Proceedings of the 24th ACM
Annual Symposium on Computational Geometry (SoCG’08), Maryland, USA,
2008.

[29] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of prepro-
cessed polyhedra: a unified approach. In Proceedings of the 17th International
Colloquium on Automata, Languages and Programming, volume 443 of Lecture
Notes in Computer Science, pages 400–413. Springer, 1990.

[30] S. E. Dorward. A survey of object space hidden surface removal. International
Journal of Computational Geometry and Applications, 4:325–362, 1994.

[31] M. Drumheller. Mobile robot localization using sonar. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 9(2):325–332, 1987.

[32] F. Duguet. Implémentation robuste du squelette de visibilité. Master’s thesis,
INRIA Sophia-Antipolis, 2001.

[33] F. Duguet and G. Drettakis. Robust epsilon visibility. In Proceedings of the
29th annual conference on Computer graphics and interactive techniques (SIG-
GRAPH’02), pages 567–575, New York, NY, USA, 2002. ACM.

[34] F. Durand. Visibilité tridimensionnelle : étude analytique et applications. PhD
thesis, Université Joseph Fourier - Grenoble I, 1999.

186 Bibliography

[35] F. Durand, G. Drettakis, and C. Puech. The 3D visibility complex: a unified
data-structure for global visibility of scenes of polygons and smooth objects.
In Proceedings of the 9th Canadian Conference on Computational Geometry
(CCCG’97), pages 153–158, Kingston, Canada, 1997.

[36] F. Durand, G. Drettakis, and C. Puech. The visibility skeleton: a powerful and
efficient multi-purpose global visibility tool. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques (SIGGRAPH’97),
pages 89–100, New York, NY, USA, 1997. ACM Press/Addison-Wesley Pub-
lishing Co.

[37] F. Durand, G. Drettakis, and C. Puech. Fast and accurate hierarchical radiosity
using global visibility. ACM Transactions on Graphics, 18(2):128–170, 1999.

[38] F. Durand, G. Drettakis, and C. Puech. The 3D visibility complex. ACM
Transactions on Graphics, 21(2):176–206, 2002.

[39] A. Efrat, L. Guibas, O. Hall-Holt, and L. Zhang. On incremental rendering of
silhouette maps of a polyhedral scene. Computational Geometry: Theory and
Applications, 38(3):129–138, 2007.

[40] H. Everett, S. Lazard, B. Lenhart, and L. Zhang. On the degree of standard geo-
metric predicates for line transversals in 3D. Computational Geometry: Theory
and Applications, 42(5):484–494, 2009.

[41] H. Everett, S. Lazard, S. Petitjean, and L. Zhang. On the expected size of the
2D visibility complex. International Journal of Computational Geometry and
Applications, 17(4):361–382, 2007.

[42] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer graphics:
principles and practice. Addison-Wesley, 1995.

[43] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a
priori tree structures. In Proceedings of the 7th annual conference on Computer
graphics and interactive techniques (SIGGRAPH’80), pages 124–133, New York,
NY, USA, 1980. ACM.

[44] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pin-
gali, P. Min, and A. Ngan. A beam tracing method for interactive architectural
acoustics. The Journal of the Acoustical Society of America, 115(2):739–756,
2004.

[45] Geomview. http://www.geomview.org.

[46] S. K. Ghosh and D. M. Mount. An ouput-sensitive algorithm for computing
visibility graphs. SIAM Journal on Computing, 20:888–910, 1991.

Bibliography 187

[47] L. Glaves. An exploration of the 3D visibility complex. Master’s thesis, Poly-
technic University, Brooklyn, NY., 2007.

[48] M. Glisse. Combinatoire des droites et segments pour la visibilité 3D. Thèse
d’université, Université Nancy 2, Oct 2007.

[49] M. Glisse and S. Lazard. An upper bound on the average size of silhouettes.
Discrete and Computational Geometry, 40(2):241–257, 2008.

[50] X. Goaoc. Structures de visibilité globales : tailles, calculs et dégénérescences.
Thèse d’université, Université Nancy 2, May 2004.

[51] C. Goral, K. Torrance, D. Greenberg, and B. Battaile. Modelling the interac-
tion of light between diffuse surfaces. Computer Graphics Proceedings, Annual
Conference Series, 18(3):212–222, 1984. Proceedings of SIGGRAPH’84.

[52] GMP: The GNU multiple precision arithmetic library. http://gmplib.org.

[53] R. L. Graham, B. D. Luboachevsky, K. J. Nurmela, and P. R. J. Östergård.
Dense packings of congruent circles in a circle. Discrete Mathematics, 181:139–
154, 1998.

[54] O. Hall-Holt. Kinetic Visibility. PhD thesis, Stanford University, 2002.

[55] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and F. Sillion. A survey of real-
time soft shadows algorithms. Computer Graphics Forum, 22(4):753–774, Dec.
2003.

[56] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[57] T. He, L. Hong, D. Chen, and Z. Liang. Reliable path for virtual endoscopy:
ensuring complete examination of human organs. IEEE Transactions on Visu-
alization and Computer Graphics, 7(4):333–342, Oct.-Dec. 2001.

[58] P. Heckbert. Discontinuity meshing for radiosity. In Proceedings of the 3rd
Eurographics Workshop on Rendering (EGRW’92), pages 203–216, 1992.

[59] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and
extensible geometry kernel. In Proceedings of the 5th Workshop on Algorithm
Engineering (WAE’01), volume 2141 of Lecture Notes in Computer Science,
pages 76–91, Ȧrhus, Denmark, Aug 2001. Springer.

[60] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea Pub-
lishing Company, 1952.

[61] M. Hohmeyer and S. Teller. Determining the lines through four lines. Journal
of Graphics Tools, 4(3):11–22, 1999.

188 Bibliography

[62] S. Hornus. Maintenance de la visibilité depuis un point mobile, et applications.
PhD thesis, Université Grenoble I – Joseph Fourier, 2006.

[63] iMovie, Apple Computer Inc.

[64] Implementation of the sweep algorithm: computing the vertices of the 3D vis-
ibility skeleton. http://www.cs.mcgill.ca/~lzhang15/webpage/software/
software.html.

[65] L. Kettner and E. Welzl. Contour edge analysis for polyhedron projections. In
W. Strasser, R. Klein, and R. Rau, editors, Geometric Modeling: Theory and
Practice, pages 379–394. Springer, 1997.

[66] D. E. Knuth. The Art of Computer Programming, Vol. II: Seminumerical Al-
gorithms. Addison-Wesley, 1973.

[67] S. Laine, T. Aila, U. Assarsson, J. Lehtinen, and T. Akenine-Möller. Soft
shadow volumes for ray tracing. ACM Transactions on Graphics, 24(3):1156–
1165, 2005.

[68] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, USA, 1991.

[69] LEDA: Library of Efficient Data Types and Algorithms. http://www.
algorithmic-solutions.com/.

[70] J. Lehtinen, S. Laine, and T. Aila. An improved physically-based soft shadow
volume algorithm. Computer Graphics Forum, 25(3):303–312, 2006.

[71] D. Lischinski, B. Smits, and D. P. Greenberg. Bounds and error estimates for
radiosity. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques (SIGGRAPH’94), pages 67–74, New York, NY, USA,
1994. ACM.

[72] K. Mehlhorn. Data structures and algorithms 3: multi-dimensional searching
and computational geometry. Springer-Verlag New York, Inc., New York, NY,
USA, 1984.

[73] M. Mignotte. Identification of algebraic numbers. Journal of Algorithms,
3(3):197–204, 1982.

[74] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility culling. In Pro-
ceedings of the 13th Eurographics Workshop on Rendering (EGRW’02), pages
191–202, Aire-la-Ville, Switzerland, 2002. Eurographics Association.

Bibliography 189

[75] J. O’Rourke. Computational Geometry in C. Cambridge Univsersity Press, 2nd
edition, 1998.

[76] R. Orti, F. Durand, S. Rivière, and C. Puech. Using the visibility complex
for radiosity computation. In Proceedings of the ACM Workshop on Applied
Computational Geometry, Philadelphia, May 1996.

[77] R. Orti, S. Rivière, F. Durand, and C. Puech. Radiosity for dynamic scenes in
flatland with the visibility complex. In Computer Graphics Forum: Proceedings
Eurographics’96, volume 15, pages 237–248, Poitiers, 1996.

[78] S. Parker, P. Shirley, and B. Smits. Single sample soft shadows. Technical
Report UUCS-98-019, Computer Science Department, University of Utah„ 1998.

[79] M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica, 9:471–494,
1993.

[80] S. Petitjean. Computing exact aspect graphs of curved objects bounded by
smooth algebraic surfaces. Technical report, University of Illinois, June 1992.
Master’s Thesis.

[81] S. Petitjean, J. Ponce, and D. J. Kriegman. Computing exact aspect graphs of
curved objects: algebraic surfaces. International Journal of Computer Vision,
9(3):231–255, 1992.

[82] H. Plantinga and C. Dyer. Visibility, occlusion, and the aspect graph. Interna-
tional Journal of Computer Vision, 5(2):137–160, 1990.

[83] O.A. Platonova. Singularities of the mutual disposition of a surface and a line.
Russian Mathematical Surveys, 36:248–249, 1981.

[84] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via
pseudo-triangulations. Discrete and Computational Geometry, 16(4):419–453,
1996. Proceedings of the 11th ACM Annual Symposium on Computational
Geometry (SoCG’95).

[85] M. Pocchiola and G. Vegter. The visibility complex. International Journal of
Computational Geometry and Applications, 6(3):279–308, 1996. Proceedings of
the 9th ACM Annual Symposium on Computational Geometry (SoCG’93).

[86] M. Potmesil. Generating octree models of 3d objects from their silhouettes
in a sequence of images. Computer Vision, Graphics, and Image Processing,
40(1):1–29, 1987.

190 Bibliography

[87] J. Redburn. Robust computation of the non-obstructed line segments tangent
to four amongst n triangles. B.A. Thesis, Williams College, Massachusetts,
2003.

[88] J. H. Rieger. On the classification of views of piecewise-smooth objects. Image
and Vision Computing, 5:91–97, 1987.

[89] J. H. Rieger. The geometry of view space of opaque objects bounded by smooth
surfaces. Artificial Intelligence, 44(1-2):1–40, July 1990.

[90] S. Rivière. Topologically sweeping the visibility complex of polygonal scenes. In
Proceedings of the 11th ACM Annual Symposium on Computational Geometry
(SoCG’95), pages C36–C37, Vancouver, June 1995.

[91] S. Rivière. Dynamic visibility in polygonal scenes with the visibility complex. In
Proceedings of the 13th ACM Annual Symposium on Computational Geometry
(SoCG’97), pages 421–423, Nice, June 1997.

[92] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Conservative volumetric
visibility with occluder fusion. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques (SIGGRAPH’00), pages 229–238,
New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[93] E. R. Scheinerman. When close enough is close enough. American Mathematical
Monthly, 107:489–499, 2000.

[94] A. Schröder. Globale Sichtbarkeitsalgorithmend. PhD thesis, Philipps-
Universität Marburg, June 2003.

[95] M. Sharir. Algorithmic motion planning. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, CRC
Press, 1997, chapter 40, pages 733–754. CRC Press LLC, Boca Raton, FL,
1997.

[96] K. Shoemake. Plücker coordinate tutorial. Ray Tracing News, 11(1), 1998.

[97] P. Srinivasan, P. Liang, and S. Hackwood. Computational geometric methods in
volumetric intersection for 3d reconstruction. Pattern Recognition, 23(8):843–
857, 1990.

[98] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization of
ten hidden-surface algorithms. ACM Computing Surveys, 6(1):1–55, 1974.

[99] K. A. Tarabanis, P. K. Allen, and R. Y. Tsai. A survey of sensor planning in
computer vision. IEEE Transactions on Robotics and Automation, 11(1):86–
104, 1995.

Bibliography 191

[100] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing algorithm
for progressive radiosity. Computer Graphics Proceedings, Annual Conference
Series, 23(3):315–324, 1989. Proceedings of SIGGRAPH’89.

[101] T. Whitted. An improved illumination model for shaded display. Computer
Graphics Proceedings, Annual Conference Series, 13(2):14, 1979. Proceedings
of SIGGRAPH’79.

[102] Wikipedia. Cw complex — wikipedia, the free encyclopedia, 2009.

[103] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility preprocessing with
occluder fusion for urban walkthroughs. In Proceedings of the Eurographics
Workshop on Rendering (EGRW’00), pages 71–82, London, UK, 2000. Springer-
Verlag.

[104] A. Woo, P. Poulin, and A. Fournier. A survey of shadow algorithms. IEEE
Computer Graphics and Applications, 10(6):13–32, 1990.

[105] C. K. Yap. Towards exact geometric computation. Computational Geometry:
Theory and Applications, 7(1-2):3–23, 1997.

[106] L. Zhang, H. Everett, S. Lazard, C. Weibel, and S. Whitesides. On the size
of the 3D visibility skeleton: experimental results. In Proceedings of the 16th
Annual European Symposium on Algorithms (ESA’08), volume 5193 of Lecture
Notes in Computer Science, pages 805–816, Karlsruhe, Germany, Sept. 2008.
Springer.

[107] L. Zhang, H. Everett, S. Lazard, and S. Whitesides. Towards an implemen-
tation of the 3D visibility skeleton. In Proceedings of the 23rd ACM Annual
Symposium on Computational Geometry (SoCG’07), S. Korea, 2007. Video.

