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Je salue mes collègues thésards : Mabrouk Zemzemi, Madjid Saberi,
Ardechir Rabeie, Avi Elkharrat, Julien Queva, Lubka Balkova et Mónica
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Présentation

La convergence entre la mécanique classique et la mécanique quantique
pose un problème naturel d’interprétation qui a soulevé de longs débats tout
au long du siècle dernier. La formulation mathématique établie par Dirac et
von Neumann a fait ses preuves en montrant une capacité predictive d’une
extreme précision. Cependant, dans le sens et dans la définition des quantités
physiques classiques du formalisme quantique demeurent quelques inconsis-
tances, même dans les modèles les plus simples.

Ce travail se concentre sur la méthode de quantification. La façon de
procéder dite canonique consiste à prendre une paire de variables classiques
conjuguées, l’impulsion et la position comme l’exemple le plus commun, et
à identifier leur crochet de Poisson, c’est à dire la structure symplectique de
l’espace des phases, au commutateur des observables quantiques correspon-
dantes. Ceci donne à ces observables une structure algébrique et implique les
inégalités de Heisenberg. Mais la définition de ces quantités doit être faite
avec soin. En suivant le formalisme, les observables sont des opérateurs auto-
adjoints qui agissent sur un espace d’Hilbert particulier. Les valeurs de ces
observables s’expriment comme des résolutions spectrales de ces opérateurs
et doivent être en concordance avec les limites du système physique. Notam-
ment, un Hamiltonien avec un sens physique est toujours borné par dessous,
et la configuration spatiale peut imposer la définition d’un opérateur de po-
sition borné ou semi-borné. Ces restrictions, qui affectent la définition de
l’opérateur auto adjoint conjugué, ont ouvert un large débat autour de sa
définition. Cette situation est présentée dans un théorème dû à W. Pauli
qui explique qu’on ne peut pas définir un opérateur auto-adjoint avec un
spectre semi-borné s’il est conjugué à une autre observable avec un spectre
sans bornes. Ce théorème est valable si on prête une attention particulière
aux domaines des opérateurs, mais soulève la question de la nécessité de
définir autrement des quantités physiquement significatives. De cette façon
la voie reste ouverte à une méthode alternative de quantification, du moment
que le lien canonique entre la mécanique classique et quantique demeure
problématique.

Le point de vue adopté dans ce travail assume que les valeurs d’une
observable quantique ne sont pas nécessairement décrites par la résolution
spectrale sur l’ensemble orthogonal de ses vecteurs propres mais, plus géné-
ralement, comme des valeurs moyennes sur une représentation diagonale de
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l’opérateur associé dans un ensemble non orthogonal d’états dans l’espace
de Hilbert. Cette idée est déjà présente dans la mesure d’observables dans
des mélanges statistiques d’états, pris en tant que mesures POVM (Positive
Operator Valued Measurements) en opposition à la traditionnelle mesure
à valeurs projecteurs (PV) de von Neumann. L’ensemble d’états dans le-
quel l’opérateur auto-adjoint est exprimé peut etre aussi grand qu’on le
souhaite, à condition que la somme, ou l’intégrale, sur la totalité de l’en-
semble respecte la normalisation qui impose l’interprétation probabiliste de
Born, cet à dire, l’ensemble d’états doit être une résolution de l’identité dans
l’espace où il habite. En d’autres mots, les systèmes surcomplets sont, en
principe, aussi bons que n’importe quel autre système complet de vecteurs
pour décrire un opérateur. La question revient naturellement sur quel type
de famille utiliser et de quelle manière trouver celles qui ont un sens phy-
sique. Les états cohérents pour l’oscillateur harmonique constituent une de
ces familles. Leur importance et leur clair sens physique à l’échelle quan-
tique et classique donne un aperçu des usages possibles de sa généralisation.
Un effort notable à été fait pour systématiser la définition des états de ce
type dans une grande quantité de configurations utilisant plusieurs de ses
propriétés et des symétries des systèmes physiques où ils apparaissent. Dans
ce travail, nous nous concentreront seulement sur la résolution de l’identité.

La quantification par états cohérents se fonde sur le principe que l’en-
semble des états cohérents peut etre indexé par un paramètre discret associé
à un famille de vecteurs orthogonaux (les vecteurs propres du Hamiltonien
pour l’oscillateur harmonique) et une variable complexe continue (la locali-
sation dans l’espace des phases dans le même exemple). La liberté de choisir
la variété dans laquelle le paramètre continu prend des valeurs et le choix
de l’ensemble orthogonal des états donne la liberté d’ajuster la méthode
à plusieurs cas particuliers. C’est en effet cette paire de paramètres qui
rend les états cohérents des bons candidats à traduire les opérateurs indexés
par un ensemble discret de valeurs vers des fonctions à variable réelle qui
pourrait correspondre à ces contreparties classiques. Par contre, une obser-
vable classique, c’est à dire, une fonction réelle, peut trouver par ce moyen
un opérateur auto-adjoint bien défini utilisable dans la mécanique quan-
tique. Ceci est important dans les cas où l’auto adjonction est compromise,
comme dans les paires conjuguées impliquées dans le théorème de Pauli. Des
exemples importants du point de vue théorique et physique ont été choisis
dans le but d’explorer les possibilités de cette méthode.

Ce travail se compose de deux parties principales. La première partie est
subdivisée en trois chapitres : le premier chapitre contient des outils de base
de la mécanique quantique et propose une révision de la théorie sur laquelle
repose la définition d’observable quantique, en particulier en ce qui concerne
les paires conjuguées. Ensuite, dans le deuxième chapitre, la définition d’état
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cohérent est revisitée. Enfin, dans le troisième chapitre, j’expose la méthode
de quantification par états cohérents.

Dans la deuxième partie, subdivisée en quatre chapitres, quatre cas par-
ticuliers sont abordés à partir de l’application de la méthode proposée pour
lesquels nous explorons, entre autre, la limite classique. Dans le quatrième
chapitre, se trouve un tout premier exemple qui illustre la définition d’un
opérateur de phase conjugué à l’action. Cette application donne une alterna-
tive à l’opérateur de phase de Pegg-Barnet [32] qui converge analytiquement
vers la limite classique. L’opérateur de phase est construit dans un sous-
espace fini de Hilbert de l’espace de Hilbert des séries de Fourier. L’étude de
la limite pour la dimension infinie des valeurs moyennes de certaines obser-
vables mène à une convergence plus simple vers les relations canoniques de
commutation. Ceci ouvre la possibilité de définir des phases relatives dans
des systèmes à plusieurs niveaux utilisés en calcul quantique.

Le cinquième chapitre présente une construction d’opérateurs de phase
relative pour le groupe SU(N) qui pourrait avoir des applications intére-
ssantes.

Dans le sixième chapitre, nous analysons la quantification du mouvement
dans le puits infini de potentiel, où l’opérateur d’impulsion problématique
est bien défini. Une famille nouvelle d’états cohérents vectoriels à deux com-
posants permet une quantification consistante de l’espace des phases clas-
sique pour une particule dans ce potentiel. J’y explore les observables ba-
siques telles que la position, l’énergie, et une version quantique de l’impul-
sion problématique. Nous prenons en considération, en outre, leurs valeurs
moyennes dans des états cohérents et leur dispersion quantique.

Dans le septième chapitre, en guise de dernier exemple, un opérateur
de temps pour une particule libre est proposé. Ce modèle d’horloge quan-
tique utilise des états cohérents sur des demi-plans de Poincaré. Ces états
cohérents sont du type SU(1, 1). Nous analysons les propriétés fonction-
nelles des opérateurs q̂ et p̂, versions quantiques des coordonnés classiques,

l’opérateur d’énergie H = p̂2/2, l’opérateur de temps intrinsèque T̂ défini

comme la quantification de la fonction
q

p
, avec p 6= 0, et finalement les com-

mutateurs [q̂, p̂] et [T̂ , Ĥ].

Les travaux sur l’opérateur de phase et sur le puits infini ont abouti à la
publication de deux articles [41] [19] et à la participation à deux conférences
et trois séminaires.
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Introduction

The convergence between classical and quantum mechanics is a natu-
ral problem of interpretation that has raised long debates throughout the
last century. The mathematical formalism established by Dirac and von
Neumann has a very accurate predictive power but the meaning and the
mathematical form of classical physical quantities in the quantum formal-
ism have had some inconsistencies even in the simplest of scholar models.

In this work we focus on the quantization method. The so-called canon-
ical way to proceed is to take some conjugated pair of classical variables,
position and momentum as the trivial example, and to identify their Pois-
son bracket, that is the symplectic structure of the phase space, to the
commutator of their corresponding quantum observables. This gives an
algebraic structure to these observables and implies the well known Heisen-
berg inequalities. But more care has to be taken in the definition of these
quantities. Following the formalism, observables are self-adjoint operators
that act in a particular Hilbert space. The values of these observables come
as spectral resolutions of these operators and have to be in accord to the
limits of the physical system. Namely, a physical relevant Hamiltonian is
always lower-bounded, and the spatial configuration may need the definition
of bounded or semi-bounded position operators. These restrictions affect the
definition of the conjugated self-adjoint operator and opened the discussion
on how to define them. The situation is stated in a theorem by Pauli [43] and
implies for the case of the Hamiltonian that no self-adjoint operator with
semi-bounded spectrum can be defined if it is conjugated to another observ-
able with an unbounded spectrum. The validity of this theorem depends
on a careful attention on the domain of the operators but rises question on
the need of an alternative way of defining physical relevant quantities, and
since it affects the canonical link between classical and quantum mechanics,
it opens the way to a new quantization protocol.

The point of view adopted in this work implies the assumption that the
values of a quantum observable are not necessarily described by its spectral
resolution on the orthogonal set of its eigenvectors but, more generally by a
mean value over a diagonal representation of the associated operator on a set
of nonorthogonal states in the Hilbert space. This idea is already present in
the measurement of observables in statistical mixtures as a Positive Opera-
tor Valued Measure (POVM) versus the traditional von Neumann Projection
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Valued (PV) Measures. The set of states on which the self-adjoint operator
is expressed can be as large as we want whenever the sum, or integration,
over the whole set respects the probability normalization that requires the
Born probabilistic interpretation, that is the set must be a resolution of the
identity in the space where it lives. In other words, overcomplete systems
are in principle as good as any complete set of vectors to describe an oper-
ator. The point is of course what kind of family to use and how to find the
ones with physical relevance. Coherent states for the harmonic oscillator
are one of such families. Their relevance and clear meaning in quantum and
classical realms give a good glimpse of their possibilities and the possible
uses of their generalization. A great effort has been done to systematize
the definition of such states in a wide set of configurations using different
properties of the states and the symmetries of the physical systems in which
they appear, but here we will focus just on the resolution of the identity.

Coherent state quantization uses the fact that the set of coherent states
can be labeled by a discrete parameter associated to a set of orthogonal
vectors (the eigenvectors of the Hamiltonian in harmonic oscillator) and a
continuous complex variable (localization on the phase space in the same
example). The freedom of choice on the manyfold on which the continuous
parameter takes values and the set of orthogonal states give the freedom
to adjust the method to different particular cases. This pair of parameters
are what makes them good candidates for translating operators labeled by
a discrete set of values into real valued functions that could correspond to
their classical counterparts. In the opposite sense, a classical observable,
that is, a real valued function, can be mapped by this way onto well defined
self-adjoint operators suitable for their use in quantum mechanics. This is
important in cases where self-adjointness is compromised as the conjugated
pairs implicated in Pauli theorem. In order to explore the possibilities of this
method we have worked on a collection of physical and theoretical relevant
particular cases.

This work is divided in two main parts. The first one is separated in three
chapters that give the basic tools of construction of quantum mechanics and
a survey of the theory that lies behind the definition of quantum observables,
in particular in what concerns to conjugated pairs. Next, in the second
chapter, the definition of coherent states is revisited. In a third chapter the
coherent state quantization procedure is exposed.

The second part treats three particular cases where the method is ap-
plied and where we explore the classical limit. The first one is the definition
of a phase operator conjugated to the action. This application gives an alter-
native to the Pegg-Barnet phase operator [32] that converges analytically to
the classical limit. Phase operator is constructed in finite Hilbert subspaces
of the Hilbert space of Fourier series. The study of infinite dimensional lim-
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its of mean values of some observables lead towards a simpler convergence
to the canonical commutation relations.

This opened the possibility to define relative phases in multilevel sys-
tems used in quantum computation. The fifth chapter presents a way of
constructing relative phase operators in SU(N) that could lead to interest-
ing applications.

In the sixth chapter we treat the quantization of the motion in an infinite
well potential. A new family of 2-component vector-valued coherent states
allow a consistent quantization of the classical phase space for a particle
trapped in this potential. We explore the basic quantum observables that
are derived from such a quantization scheme, namely the position, energy,
and a quantum version of the problematic momentum. We also consider
their mean values in coherent states (“lower symbols”) and their quantum
dispersions.

As a last example, time operator for a free particle is exposed in chapter
seven. We develop a quantum clock model using vector coherent states on
Poincaré half-planes. These coherent states are of the Perelomov SU(1,1)
type. We analyze the functional properties of the operators q̂ , p̂, quan-
tized versions of the classical canonical coordinates, the energy operator

H = p̂2/2, the intrinsic time operator T̂ defined as the quantization of
q

p
,

with p 6= 0, and the commutators [q̂, p̂] and [T̂ , Ĥ ].

The work on phase operator and on the infinite well lead to the publica-
tion of two articles [41] [19] and to the participation in two conferences and
three seminars.
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1
Mathematical formulation of quantum

mechanics

From its beginnings quantum mechanics, with its new set of odd causali-
ties, needed a whole new mathematical formulation to give a clear physical
interpretation to these phenomena and to work as an operative theory1. Al-
though the interpretation has found certain limits, the mathematical struc-
ture was soon developed with proven accuracy. The first formulation started
with the wave equation stated by Schrödinger

Ĥψ = i~
d

dt
ψ , (1.1)

where Ĥ stands for a second order differential operator identifiable with the
classical Hamiltonian, and the wave functions ψ that satisfy this relation are
particular states of the system. Since the set of solutions was known to be
discrete in certain cases, this revealed to give a suitable description of the
observed discrete energy spectra in bounded systems. The dynamics give
time dependent wave functions. In a parallel way, Heisenberg conceived the
dynamics of the system as a matrix eigenvalue problem, and expressed the
motion equation for operators as

[Â(t), Ĥ] = i~
d

dt
Â . (1.2)

This gave a direct correspondence with the Hamiltonian classical formalism
of Poisson brackets and, naturally, a canonical way of translating physical
observables into quantum operators. Now, the time dependence is in the
operators and the value of the physical quantity comes from its spectrum.

This relation can be generalized to other variables, for example, for po-
sition and momentum we can link the Poisson bracket

{q, p} def
=

d

dp
p
d

dq
q − d

dq
p
d

dp
q = 1 , (1.3)

1In contrast from classical mechanics, geometric intuition and differential equations

are not enough for an understanding of quantum mechanics. Basic notions of functional

analysis and measure theory are essential to the construction. A rapid survey to the

concepts used through this work is given in the appendix A
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CHAPTER 1. MATHEMATICAL FORMULATION OF QUANTUM
MECHANICS

with the commutator
[q̂, p̂] = i~ , (1.4)

where the Planck constant ~ scales the non-commutativity to its phenomeno-
logical extent. This equation gives a new consequence to the symplectic
structure of phase space and also reveals clearly the complex nature of quan-
tum mechanics.

Schrödinger himself, and Dirac [33] in a more formal way, proved the
equivalence of both approaches, but the complete formulation of quantum
mechanics using the tools of functional analysis came with the work of von
Neumann [28]. In these, now assumed, mathematical foundations, observ-
ables are self-adjoint operators acting in a Hilbert space H and wave func-
tions ψ(x, t) are vectors in it. Schrödinger and Heisenberg equations are
proved to be equivalent and linked by a unitary transformation by the Stone-
von Neumann theorem.

The physical meaning for the quantum states proposed by Born intro-
duced the now consensual statistical point of view. This probabilistic inter-
pretation implies that the integral of the squared norm of a state needs to
be a probability measure on the real line

∫

R

|ψ(x, t)|2dx = 1 , (1.5)

at any value of t. By this means, the squared norm gives the probability
distribution of the position of localizable object. To keep the probabilistic
interpretation valid, the Hilbert space where wave functions live is the one
of square integrable functions L2(R, dx) with the scalar product

〈φ|ψ〉 =

∫

R

ψ(x)φ(x)dx . (1.6)

Once the states linked with a distribution, a major restriction comes from the
classical correspondence (1.4), as any classical conjugated pair of variables a
and b, with non-null Poisson bracket implies a lower bound for the product
of variances of their associated quantum observables Â and B̂:

∆Â∆B̂ ≥ ~

2
. (1.7)

This is the well known Heisenberg inequality and result in that joint mea-
sures of both observables cannot be done simultaneously with arbitrary pre-
cision. Moreover, the spectra of both operators will be linked and their
definition will depend on each other.

1.1 Measurement of a quantum observable

As has been said, the possible states that a system can attain are represented
as vectors |ψ〉 (using the Dirac convention) in a Hilbert space. In fact each
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1.1. MEASUREMENT OF A QUANTUM OBSERVABLE

state is linked to a class of vectors, a ray, since they can be defined up to
a phase factor due the fact that the physical relevance is on the squared
norm. An observable Â, defined as a self-adjoint operator, has a spectral
resolution with real values that can be discrete or continuous. But this
operator can also be decomposed into a non-orthogonal set of vectors and
this will determine the type of measure needed to perform a measurement.

1.1.1 Projection Valued Measures

Let us start by defining the measure associated to the spectral resolution of
Â, that is the Projection Valued measure.

Definition 1.1.1 Take a measurable space (X,M), where X is some set
and M a σ-algebra on it, and P the set of self-adjoint projections on a
Hilbert space H, a Projection Valued (PV) Operator Measure π is a mapping

π : M −→ P . (1.8)

The PV measure has the following property:

π(A)2 = π(A) for allA ∈M . (1.9)

This implies that for two subsets of A and B of X, if

A ∩B = ∅ , (1.10)

then π(A) and π(B) are orthogonal projections. This leads to

π(A)π(B) = π(A ∩B) . (1.11)

If the measure of the whole set maps to the identity operator then the
measure is said to be normalized

π(X) = IH . (1.12)

We can define the complex measure of some subset A of X, and two elements
φ and ψ in H as the mapping A −→ 〈π(A)φ|ψ〉. The simplest example is the
measure of the set of one single eigenvalue λi ∈ R of a self-adjoint operator,
which is just the projector on the corresponding eigenstate

π({λi}) = |ψi〉〈ψi| . (1.13)

The values of an observable Â, the measurement of this physical quantity,
are reached through the expected value of the operator taken in a particular
state

〈ψ|Âψ〉 ≡ 〈ψ|Â|ψ〉 , (1.14)
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CHAPTER 1. MATHEMATICAL FORMULATION OF QUANTUM
MECHANICS

and it can be shown that this defines again a probability measure. Note that
this definition depends on the nature of the state |ψ〉. If it can be written
as a projector, that is, if

|ψ〉〈ψ| = Pψ = P 2
ψ , (1.15)

this implies that, for any ψ ∈ H, it holds that |Pψ|2 = 〈ψ|P |ψ〉. This means
that Â can be written as

Â =

N∑

i=1

λi|ψi〉〈ψi| , λi ∈ R , (1.16)

in terms of the orthogonal projectors |ψi〉〈ψi|, and where N = dim(H).
More generally, we have the spectral resolution

Â =

∫ ∞

−∞
λdτ(λ) , (1.17)

where τ(λ) is the discrete PV measure

dτ(λ) =

N∑

i=1

δ(λ − λi)dλ|ψλ〉〈ψλ| . (1.18)

Using these expressions for Â, the value 1.14 reads as 〈ψ|Â|ψ〉 =
∑

i λi|〈ψλ|ψ〉|2,
where |〈ψλ|ψ〉|2 represents the probability to get λi in a measurement of the
observable when the system is in the state |ψ〉. The measurement of the
quantity A in a state |ψ〉 will collapse to a particular state in the set of the
eigenvectors of Â. This measurement has the form

〈ψ|Â|ψ〉 = tr(Â|ψ〉〈ψ|) , (1.19)

and corresponds to a fully determined situation where the occurrence of the
system in this precise state in fully ensured. Moreover, once the measure-
ment done, ulterior measurements will give the same result. The projective
measurements defined by Von Neumann [50] are repeatable operations that
follow this “projection postulate”. As we will see this formalism can be ex-
tended to a larger family of measurements that are useful to examine other
parameters in the structure of the quantum state.

1.1.2 Positive Operator Valued Measures

A more general measure definition is a positive operator valued measure
(POVM), where the measurement of the observables will be recovered through
the mean value of their self adjoint operators. We will consider for gener-
ality, quantum systems associated to an infinite dimensional Hilbert space H.
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Let us take the set of positive2 bounded3 operators L+ acting on a Hilbert
space H. Given a measurable space (X,A) with X a nonempty set, and A
a σ-algebra on it, a POVM is a mapping F (X) : A −→ L+ such that it
satisfies some basic properties of a measure for all X,Y ∈ A:

F (Y ) ≤ F (X) Y ⊂ X (1.20)

F (∅) = 0 (1.21)

And notably

F (X) = I , (1.22)

that is, the measure is normalized. This last property, the identity resolu-
tion, allows a probability interpretation of the POVM and makes it a good
frame of reference of the Hilbert space. Moreover this implies that if ψ ∈ H,
the mapping A ∋ X −→ 〈F (X)ψ|ψ〉 is also a measure.

The space X can be discrete or continuous, in the second case it is desir-
able for it to be locally compact in order to define a measure and therefore
an integral on it. A POVM gives a natural generalization of a von Neu-
mann measurement in the sense that it can be seen as projective operator
in a larger Hilbert space to which belong states as |Ψ〉 ⊗ |Φ〉 where the |Φ〉
subsystem has been ignored by taking a partial trace. This is known as the
Naimark theorem.

A POVM appears in a quantum measurement if the initial state is some
statistical mixture of possible outcomes. This state must be written as the
density matrix ρ defined by the sum of the projectors weighted by their
respective probability

ρ =
∑

i

pi|ψi〉〈ψi| . (1.23)

Naturally, the sum
∑

i pi = 1. In this case, the expected value 1.14 is
obtained by

tr(Âρ) = 〈ψ|Â|ψ〉 . (1.24)

More generally, an operator or a density matrix can be expressed as the
sum over a set of non orthogonal projectors, and the size of the set is not
bounded anymore by the dimension of the Hilbert space, whenever the sum
over all projectors is a resolution of the identity. In this sense, a POVM can
be used as an alternative way to express an observable Â. These measures
can appear redundant compared with a PV measure but, as we will see, they
can be useful to construct a quantization protocol.

2An operator B̂ is said to be positive if for every vector |ψ〉 in the domain of B̂,

〈ψ|B̂|ψ〉 ≥ 0, this implies that all eigenvalues are also positive.
3B̂ is bounded if there exist a k > 0 such that for all vectors |ψ〉 ∈ H, ||B̂|ψ〉|| ≤ k|||ψ〉||.
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1.2 Canonical commutation relations

As said before, quantization has been done historically by making Poisson
brackets correspond to quantum commutators. If P and Q are two self-
adjoint operators, the relation

[Q,P ] = QP − PQ = iI , (1.25)

is known to be the canonical commutation relation for quantum mechanics
in correspondence with the Poisson bracket for real observables

{q, p} = (
dp

dp

dq

dq
− dp

dq

dq

dp
) = 1 . (1.26)

This two operators are said to form a Heisenberg pair if their realizations on
a Hilbert space satisfy

[Q,P ]ψ = iψ , (1.27)

where ψ ∈ C, and C is the dense domain of the commutator. The standard
quantum realization of these operators is the Schrödinger representation
with H = L2(R) and where the momentum is associated to the closure of
the differential operator P = −id/dx and the position is the multiplication
by x: Q = x.

The problem is which representation to choose in 1.25. A way of stating
this problem is using unitary groups. We define the one parameter unitary
operators as U(t) = eitP and V (s) = eisQ, then 1.25 gives

U(t)V (s) = eitsV (s)U(t) , (1.28)

using the power series expansion of the exponential. If the commutation
relation can be written as 1.28, operators U and V are said to be a Weyl
pair.

1.2.1 Heisenberg pairs vs Weyl pairs

Even when it is clear that the generators of the unitary operators in (1.28)
satisfy (1.25), the opposite is not always true [35]. Then both problems
are not equivalent. All the self-adjoint operators that don’t admit a series
expansion leading to the exponential unitary operator definition may not
form a Weyl pair. The incompatibility also arises when one or both operators
are bounded since

[Qn, P ] = inQn−1 , (1.29)

leads to

||nQ||n−1 = n||Qn−1|| ≤ 2||P ||||Q||n −→ 2||P ||||Q|| ≥ n , (1.30)
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which is contradictory. It can be shown that all operators that form a Weyl
pair are unitarily equivalent to the standard example and they must have a
continuous unbounded spectrum. This leads to the fact that operators with
bounded or discrete spectra, will not have Weyl canonical conjugates. Still
they can have a Heisenberg conjugate.

1.3 Imprimitivity vs covariance

The link between self-adjoint operators and unitary representation of a group
acting in the configuration space of a particular physical system is a very
useful notion. Unitary representations and measure can be associated in
systems that will extend the implication of canonical commutation relations.

Definition 1.3.1 Let G be a group acting on a measurable space X, A
a Borel set in X. A system of imprimitivity based on (G,X) for infinite
dimensional spaces consists in a separable vector space H, a strongly con-
tinuous unitary representation Ug of the group G acting on H, and a PV
measure π on the Borel sets of X valued in the projections of H. The system
of imprimitivity has to satisfy for A a Borel set in X,

Ugπ(A)Ug−1 = π(g ·A) . (1.31)

This notion is generalized if the measure is not a PV measure but a
POVM. In that case the system is called a system of covariance.

1.3.1 Pauli Theorem

The theorem stated by Pauli in 1926 [43] on the definition of self adjoint op-
erators for canonical conjugated pairs has been subject of a long discussion
since it restricts the quantization of conjugated observables. For example
this affects the definition of a dynamical theory of time in quantum mechan-
ics, once we admit there is a time observable conjugated to the Hamiltonain,
but also some widely used models as the motion in an infinite well or in the
circle. So it is worth to make a detailed analysis of its formulation.

This theorem can be stated at various levels of detail. In a coarse manner
one can establish the following causality

Theorem 1.3.2 Given two bounded densely defined self-adjoint operators
Â and B̂, that satisfy ÂB̂ − B̂Â = −i, and if the spectrum of Â is semi-
bounded, then B̂ cannot be self-adjoint.

This theorem implies that Â and B̂ cannot form a system of imprimitivity
since the application of the unitary representation associated to B̂ would
generate arbitrary translations in the PV measure associated to Â, that is,
in its spectrum. Nevertheless, if both operators form a system of covariance,
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the unitary group acts generating translations on the measurable space. In
this case it will not produce shifts on the spectrum any more but just reorder
the projectors on the POVM so the implications of Pauli are overcome.

1.3.2 Conjugated pairs and coherent states quantization

As will be shown in the following, quantization of canonical pairs, such as
coordinates of the phase space, angle and action, or time and energy, over-
comes several definition problems once the representation of the operators
is done on coherent state families. The method exposed in the next chapter,
and the one proposed for different particular problems is a general one that
might hopefully be extended to other problematic cases and could lead to
the construction of measuring devices.
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2
On how blocks are piled up

2.1 Coherent States

The field of coherent states has been very active for almost half a century
since their rediscovery in the context of quantum optics. Their first appear-
ance, in a work by Schrödinger [18] on the correspondence principle, showed
their closest to classical behaviour which was retaken much later by Glauber
[25] in the context of quantum optics.

2.1.1 The canon in two features

The establishment of a canon for coherent states is not a consensual matter.
For their historic prevalence, coherent states for the harmonic oscillator or
their generalization to group-generated Perelomov-Glauber states are taken
to occupy this place. Besides the need to fill this category, a much wider
set of states are considered as coherent states and at the end of the day two
main features can be retained for their definition: continuity and identity
resolution [29]. The saturation of an uncertainty relation, which can be
accounted for the “coherent” behavior, and the invariance under the action
of some non self-adjoint operator are features that will be found only in
some cases. But in all of them we deal with sets of vectors |z〉 in a finite or
countable infinite Hilbert space H.

The first property shared by all these particular sets is continuity un-
derstood in the strong sense. This is that the limit

lim
z−→z′

‖ |z〉 − |z′〉‖ = 0 , (2.1)

where the norm is ‖ |φ〉‖ =
√

〈φ|φ〉 and z must be an element of a “label”
set Z where continuity can be defined. Note then that vectors satisfying
this are hardly orthogonal since a discrete family is in general excluded, as
well as a continuous orthogonal family as the set of delta functions δ(z−z′).
This implies also that a basis of eigenvectors of a self-adjoint operator will
not in general form a set of coherent states, even if such a basis can be a
subset of CS.
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The second general feature is completeness. As a direct consequence
that one can find a positive measure µ(dz) on Z such that the unity operator
can be expressed as

I =

∫

Z
|z〉〈z|µ(dz) . (2.2)

That is, coherent states are a resolution of the identity. This expression
converges weakly, i.e. in the matrix elements of both sides of 2.2.

In an analog way to linear independence for discrete and orthogonal basis
which imply

|ψ〉 =
∞∑

n=0

an|n〉 = 0 ⇔ an ≡ 0 ∀n ∈ N , (2.3)

for a vector |ψ〉 ∈ H expressed in coherent states we have

|ψ〉 =

∫

Z
f(z)|z〉µ(dz) = 0 ⇔ f(z) ≡ 0 ∀z ∈ Z , (2.4)

at least if we impose on f some smoothness condition, and this means that
we can represent the abstract Hilbert space by means of a class of functions
ψ(z) = 〈z|ψ〉 ∈ H. Introducing an inner product

〈φ|ψ〉 =

∫

Z
〈φ|z〉〈z|ψ〉µ(dz) , (2.5)

this class of functions defines a Hilbert space isometric to H.
The fact that the identity can be expressed in this way implies that the

whole set of states |z〉 span the Hilbert space. Some subsets of coherent
states may have also the same property, as was noted by Von Neumann [28],
and be complete, so the set of |z〉 states is called an overcomplete family.

2.1.2 Representing the Hilbert space

Resolution of identity 2.2 allows to represent the Hilbert space H to some
extent in a “continuous” way. Objects in it will have the following form.

• An abstract vector |ψ〉 can be writen as a function

ψ(z) = 〈ψ|z〉 , (2.6)

• the inner product of two vectors

〈φ|ψ〉 =

∫

Z
〈φ|z〉〈z|ψ〉µ(dz) , (2.7)

• the vector transformation,

〈φ|A|ψ〉 =

∫

Z
〈φ|A|z〉〈z|ψ〉µ(dz) , (2.8)
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• the operator decomposition

A =

∫

Z
|z〉〈z|A|z′〉〈z′|µ(dz)µ(dz′) , (2.9)

• and in particular the diagonal representation of operators

A =

∫

Z
f(z)|z〉〈z|µ(dz) (2.10)

We will discuss later the conditions for this equation to be valid.

2.1.3 Harmonic oscillator

To illustrate the features exposed above, let us revisit the coherent states for
the harmonic oscillator as they take a particularly simple form and satisfy
a set of relevant properties remarkably a closest to classical behavior.

The harmonic oscillator can be constructed from the Weyl-Heisenberg
algebra of operators â, â† and the identity I that satisfy the following rela-
tions

[â, â†] = 1, [â, I] = [â†, I] = 0 , (2.11)

where [·, ·] is the usual antisymmetric commutator. Now, taking an or-
thonormal basis |n〉 such that the action of â and â† in the |n〉 states is

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, (2.12)

and defining the vector |0〉 such that â|0〉 = 0, the repeated action of â† on
|0〉 produces all the states |n〉

(â†)n√
n!

|0〉 = |n〉 . (2.13)

It is easy to see that the operator N̂ = â†â has these states as eigenstates

N̂ |n〉 = n|n〉 , (2.14)

and satisfies
[N̂ , â] = −â , [N̂ , â†] = â† . (2.15)

Operators â and â† are not self-adjoint so their eigenvalues are expected to
be complex.

For the classical harmonic oscillator the dynamical variables are q and
p, that correspond to the quantum operators q̂ and p̂ = −i d

dq that verify
[q̂, p̂] = i. The quantum mechanics Hamiltonian is the same as the classical
one

H =
1

2m
(p2 +m2ω2q2) , (2.16)
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where for simplicity we will make the constants ~ = ω = m = 1. The link
with the Weyl-Heisenberg algebra operators is done through their realization
in the phase space

â =
1√
2
(q̂ + ip̂) â† =

1√
2
(q̂ − ip̂) , (2.17)

and conversely

q̂ =
1√
2
(â+ â†) p̂ = −i 1√

2
(â− â†) . (2.18)

Operator N̂ is

N̂ =
1

2
(p̂− iq̂)(p̂ + iq̂) =

1

2
(p̂2 + q̂2 + i[q̂, p̂]) , (2.19)

It is easy to see that Hamiltonian is then

Ĥ = N̂ +
1

2
, (2.20)

and the solutions of the Schödinger equation are then the eigenstates of Ĥ,
that is, the ones of N̂ ,

Ĥ|n〉 = (n+
1

2
)|n〉 . (2.21)

These states correspond to concentric circles in the classical phase space.
Defining the expectation value as 〈·〉 = 〈ψ||ψ〉, dispersion is defined as

∆q̂ = 〈q̂2〉 − 〈q̂〉2 . (2.22)

The state |0〉 in phase space has minimal dispersion.

Geometric properties

Coherent states have a clear geometric interpretation on the phase space,
they are the displaced ground state centered in a point α ∈ C. As can be
seen in figure 4.3, coherent states preserve the minimal dispersion of the state
|0〉 and they will follow the orbit of the classical solution to the harmonic
oscillator equations of motion.

In the Hilbert space

Coherent states for the harmonic oscillator read as

|α〉 =
∑

n≥0

e−
|α|2

2

αn√
n!
|n〉 . (2.23)
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Figure 2.1: Coherent states are a translation of the ground state to a point
α on the phase space.

As has been said before this family of coherent states is not an orthogonal
one, states overlap as

〈α|β〉 = eiℑα
∗βe−

1

2
|α−β|2 , (2.24)

and the cardinality of the set is higher than the dimension of the Hilbert
space spanned by the Fock basis.

The projector set of states |α〉 resolves the identity
∫

C

|α〉〈α|d
2α

π
= 1 . (2.25)

All relations given in section 2.1.2 hold in this case. Between the projections
on coherent states there is the one used in general to represent the density
matrix of a state, the Glauber-Sudarshan P representation,

ρ̂ =

∫

C

φ(α,α∗)|α〉〈α|d
2α

π
. (2.26)

Here the φ(α,α∗) is a called a quasy-probability distribution. But this inte-
gral representation can be generalized to a large class of symmetric operators
f̂

f̂ =

∫

C

f(α,α∗)|α〉〈α|d
2α

π
. (2.27)

A related notion will be used in the next chapter where we introduce the
quantization method through coherent states.
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Coherent state quantization, or how to

climb the tower

3.0.4 Klauder-Berezin-Toeplitz quantization

Let X = {x | x ∈ X} be a set equipped with a measure µ(dx) and L2(X,µ)
the Hilbert space of square integrable functions f(x) on X:

‖f‖2 =
∫
X |f(x)|2 µ(dx) <∞

〈f1|f2〉 =
∫
X f1(x)f2(x)µ(dx) .

Let us select, among elements of L2(X,µ), an orthonormal set SN = {φn(x)}Nn=1,
N being finite or infinite, which spans, by definition, the separable Hilbert
subspace HN . We demand this set to obey the following crucial condition

0 < N (x) ≡
∑

n

|φn(x)|2 <∞ almost everywhere . (3.1)

Then consider the family of states {|x〉}x∈X in HN through the following
linear superpositions:

|x〉 ≡ 1√
N (x)

∑

n

φn(x)|φn〉 . (3.2)

This defines an injective map (which should be continuous w.r.t some min-
imal topology affected to X for which the latter is locally compact):

X ∋ x 7→ |x〉 ∈ HN ,

These coherent states obey

• Normalisation
〈x |x〉 = 1 , (3.3)

• Resolution of the unity in HN

∫

X
|x〉〈x|N (x)µ(dx) = IHN

, (3.4)
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A classical observable is a function f(x) on X having specific properties.
Its coherent state or frame quantization consists in associating to f(x) the
operator

Af :=

∫

X
f(x)|x〉〈x|N (x)µ(dx) . (3.5)

The function f(x) ≡ Âf (x) is called upper (or contravariant) symbol of the
operator Af and is nonunique in general. On the other hand, the mean
value 〈x|Af |x〉 ≡ Ǎf (x) is called lower (or covariant) symbol of Af .

Such a quantization of the set X is in one-to-one correspondence with
the choice of the frame

∫

X
|x〉〈x|N (x)µ(dx) = IHN

.

To a certain extent, a quantization scheme consists in adopting a certain
point of view in dealing with X (compare with Fourier or wavelet analysis
in signal processing). Here, the validity of a precise frame choice is asserted
by comparing spectral characteristics of quantum observables Af with data
provided by specific protocole in the observation of X.

Coherent state quantization [20, 1, 45, 42, 22, 41, 23] is an alternative
way of representing classical observables into a quantum system. The states
used in it include Glauber and Perelomov coherent states but lie in a wider
definition that admits a large range of state families resolving the identity.
Identity resolution is here the crucial condition.

In fact, these coherent states form a frame of reference well suited to
represent classical quantities and, in that sense, work as a natural quanti-
zation procedure which is in one-to-one correspondence with the choice of
the frame. The validity of a precise frame choice is asserted by comparing
spectral characteristics of quantum observables f̂ with data from the obser-
vational space. Unlike canonical quantization where the whole model rests
upon a pair of conjugated variables within the Hamilton formalism [34], here
we just need the elements that have been described above.

3.0.5 Quantization of the particle motion on the circle S1

We will apply in the next chapters the method to various cases, as the
motion in the infinite square well potential (Chapter 6). The latter can be
viewed as a particular case of the motion on the circle S1, once we have
identified the boundaries of the well with each other and imposed Dirichlet
conditions on them. Functions on this domain will behave as pinched waves
on a circle so it is useful to expose first the more general case.

Applying our scheme of quantization we can define the coherent states
on the circle. The measure space X is the cylinder S1×R = {x ≡ (q, p) | 0 ≤
q < 2π, p, q ∈ R}, i.e. the phase space of a particle moving on the circle,
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where q and p are canonically conjugate variables. We consistently choose
the measure on X as the usual one, invariant (up to a factor) with respect to
canonical transformations: µ(dx) = 1

2π dq dp. The functions φn(x) forming
the orthonormal system needed to construct coherent states are suitably
weighted Fourier exponentials:

φn(x) =
( ǫ
π

)1/4
exp

(
− ǫ

2
(p− n)2

)
einq , n ∈ Z , (3.6)

where ǫ > 0 can be arbitrarily small. This parameter includes the Planck
constant together with the physical quantities characterizing the classical
motion (frequency, mass, etc.). Actually, it represents a regularization. No-
tice that the continuous distribution x 7→ |φn(x)|2 is the normal law centered
at n (for the angular momentum variable p). We establish a one-to-one cor-
respondence between the functions φn and the states |n〉 which form an
orthonormal basis of some generic separable Hilbert space H that can be
viewed or not as a subspace of L2(X,µ(dx)). coherent states, as vectors in
H, read then as

|p, q〉 =
1√
N (p)

( ǫ
π

)1/4∑

n∈Z

exp
(
− ǫ

2
(p− n)2

)
e−inq|n〉 , (3.7)

where the normalization factor

N (x) ≡ N (p) =

√
ǫ

π

∑

n∈Z

exp
(
− ǫ(p− n)2

)
<∞ , (3.8)

is a periodic train of normalized Gaussian functions and is proportional
to an elliptic Theta function. Applying the Poisson summation yields the
alternative form:

N (p) =
∑

n∈Z

exp(2πinp) exp(−π
2

ǫ
n2) . (3.9)

From this formula it is easy to prove that limǫ→0 N (p) = 1.
The coherent states (3.7) have been previously proposed, however through

quite different approaches, by De Bièvre-González (1992-93) [47], Kowalski-
Rembieliński-Papaloucas (1996) [30], and González-Del Olmo (1998) [3].

3.0.6 Quantization of classical observables

The quantum operator acting on H, associated to the classical observable
f(x), is obtained as in (3.5). For the most basic one, i.e. the classical
observable p itself, the procedure yields

p̂ =

∫

X
N (p) p |p, q〉〈p, q|µ(dx) =

∑

n∈Z

n |n〉〈n| , (3.10)
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and this is nothing but the angular momentum operator, which reads in
angular position representation (Fourier series): p̂ = −i ∂∂q .

For an arbitrary function f(q), we have

f̂(q) =

∫

X
µ(dx)N (p)f(q) |p, q〉〈p, q|

=
∑

n,n′∈Z

exp
(
− ǫ

4
(n− n′)2

)
cn−n′(f)|n〉〈n′| , (3.11)

where cn(f) is the n-th Fourier coefficient of f . In particular, we have for
the angular position operator q̂ :

q̂ = πIH + i
∑

n 6=n′

exp
(
− ǫ

4(n− n′)2
)

n− n′
|n〉〈n′| . (3.12)

The shift operator is the quantized counterpart of the “Fourier fundamental
harmonic”:

êiq = e−
ǫ
4

∑

n

|n+ 1〉〈n| . (3.13)

The commutation rule between (3.10) and (3.13) gives

[ p̂, êiq ] = êiq , (3.14)

and is canonical in the sense that it is in exact correspondence with the
classical Poisson bracket {

p, eiq
}

= ieiq . (3.15)

Some interesting aspects of other such correspondences are found in [46].
For arbitrary functions of q the commutator

[ p̂, f̂(q) ] =
∑

n,n′

(n− n′) exp
(
− ǫ

4
(n− n′)2

)
cn−n′(f) |n〉〈n′| , (3.16)

can arise interpretational difficulties. In particular, when f(q) = q, i.e. for
the angle operator

[ p̂, q̂ ] = i
∑

n 6=n′

exp
(
− ǫ

4
(n− n′)2

)
|n〉〈n′| , (3.17)

the comparison with the classical bracket {p, q} = 1 is not direct. Actually,
these difficulties are only apparent if we consider instead the 2π-periodic
extension to R of f(q). The position observable f(q) = q, originally de-
fined in the interval [0, 2π), acquires then a sawtooth shape and its periodic
discontinuities are accountable for the discrepancy. In fact the obstacle is

34



circumvented if we examine, for instance, the behaviour of the corresponding
lower symbols at the limit ǫ→ 0. For the angle operator we have

〈p0, q0| q̂ |p0, q0〉 = π +
1

2

(
1 +

N (p0 − 1
2)

N (p0)

) ∑

n 6=0

i
exp(− ǫ

2n
2 + inq0)

n

∼
ǫ→0

π +
∑

n 6=0

i
exp(inq0)

n
, (3.18)

where we recognize at the limit the Fourier series of f(q). For the commuta-
tor, we recover the canonical commutation rule modulo Dirac singularities
on the lattice 2πZ.

〈p0, q0|[ p̂, q̂ ] |p0, q0〉 =
1

2

(
1 +

N (p0 − 1
2)

N (p0)

)(
−i +

∑

n∈Z

i exp(− ǫ
2
n2 + inq0)

)

∼
ǫ→0

−i + i
∑

n

δ(q0 − 2πn) . (3.19)
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4
Phase operator

In classical mechanics the pair of angle and action variables form a conju-
gated pair. It is natural to seek the corresponding quantum quantities, but
as has been signaled before, the proper definition of the corresponding self-
adjoint operators is limited by the bounded character of these quantities.
An alternative point of view imposes in the definition of the observables
and coherent state quantization will prove to be of great utility to over-
come these consistence difficulties. In the first section of this chapter we
will revise the phase operator problem and the various issues proposed in
literature. The second section will show the alternative way using coherent
state quantization.

4.1 Introduction

Since the first attempt by Dirac in 1927 [33] various definitions of phase
operator have been proposed with more or less satisfying success in terms
of consistency [31, 27, 38, 32, 17]. A natural requirement is that phase
operator and number operators form a conjugate Heisenberg pair obeying
the canonical commutation relation

[N̂ , θ̂] = iId , (4.1)

in exact correspondence with the Poisson bracket for the classical action
angle variables.

To obtain this quantum-mechanical analog, the polar decomposition of
raising and lowering operators

â = exp(iθ̂)N̂1/2, â† = N̂1/2exp(−iθ̂) , (4.2)

was originally proposed by Dirac, with the corresponding uncertainty rela-
tion

∆θ̂∆N̂ ≥ 1

2
. (4.3)

But the relation between operators (4.1) is misleading. The construction of
a unitary operator is a delicate procedure and there are three main problems
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in it. First we have that for a well-defined number state the uncertainty of
the phase would be greater than 2π. This inconvenience, also present in the
quantization of the pair angular momentum-angle, adds to the well-known
contradiction lying in the matrix elements of the commutator

−iδnn′ = 〈n′|[N̂ , θ̂]|n〉 = (n− n′)〈n′|θ̂|n〉 . (4.4)

In the angular momentum case, this contradiction is avoided to a certain
extent by introducing a proper periodical variable Φ̂(φ) [40]. If Φ̂ is just a
sawtooth function, the discontinuities give a commutation relation

[L̂z, Φ̂] = −i{1 − 2π

∞∑

n=−∞

δ(φ − (2n+ 1)π)} . (4.5)

The singularities in (4.5) can be excluded, as proposed by Louisel [26], taking
sine and cosine functions of φ to recover a valid uncertainty relation. But
the problem reveals to be harder in number-phase case because, as showed
by Susskind and Glogower (1964)[31], the decomposition (4.2) itself leads to
the definition of non unitary operators:

exp(−iθ̂) =

∞∑

n=0

|n〉〈n+ 1| {+|ψ〉〈0|}, and h.c. , (4.6)

and this non-unitarity explains the inconsistency revealed in (4.4). To over-
come this handicap, a different polar decomposition was suggested in [31]

â = (N̂ + 1)
1

2 Ê−, â† = (N̂ + 1)
1

2 Ê+ , (4.7)

where the operators E± are still non unitary because of their action on
the extreme state of the semi-bounded number basis [40]. Nevertheless the
addition of the restriction

Ê−|0〉 = 0 , (4.8)

permits to define hermitian operators

Ĉ =
1

2
(Ê− + Ê+) = Ĉ† ,

Ŝ =
1

2π
(Ê− − Ê+) = Ŝ† . (4.9)

These operators are named “cosine” and “sine” because they reproduce the
same algebraic structure as the projections of the classical state in the phase
space of the oscillator problem.

Searching for a hermitian phase operator θ̂ which would avoid constraints
like (4.8) and fit (4.1) in the classical limit, Popov and Yarunin [38] and later
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Pegg and Barnett [32] used an orthonormal set of eigenstates of θ̂ defined
on the number state basis as

|θm〉 =
1√
N

N−1∑

n=0

einθm |n〉 . (4.10)

where, for a given finite N , these authors selected the following equidistant
subset of the angle parameter

θm = θ0 +
2πm

N
, m = 0, 1, . . . , N − 1 , (4.11)

with θ0 as a reference phase. Orthonormality stems from the well-known
properties of the roots of the unity as happens with the base of discrete
Fourier transform

N−1∑

n=0

ein(θm−θm′) =

N−1∑

n=0

ei2π(m−m′) n
N = Nδmm′ . (4.12)

The phase operator on CN is simply constructed through the spectral reso-
lution

θ̂ ≡
N−1∑

m=0

θm|θm〉〈θm| . (4.13)

This construction, which amounts to an adequate change of orthornormal
basis in CN , gives for the ground number state |0〉 a random phase which
avoids some of the drawbacks in previous developments. Note that taking
the limit N −→ ∞ is questionable within a Hilbertian framework, this pro-
cess must be understood in terms of mean values restricted to some suitable
subspace and the limit has to be taken afterwards. In [32] the pertinence
of the states (4.10) is proved by the expected value of the commutator with
the number operator. The problem appears when the limit is taken since it
leads to an approximate result.

More recently an interesting approach to the construction of a phase
operator has been done by Busch, Lahti and their collaborators within the
frame of measurement theory [15][16][17]. Phase observables are constructed
here using the sum over an infinite number basis from their original defini-
tion.

Here we propose a construction based on a coherent state quantization
scheme and not on the arbitrary assumption of a discrete phase nor on an
infinite dimension Hilbert space. This will produce a suitable commutation
relation at the infinite dimensional limit, still at the level of mean values.

4.2 The approach via coherent state quantization

As was suggested in [32] the commutation relation will approximate better
the canonical one (4.1) if one enlarges enough the Hilbert space of states.
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We show here that there is no need to discretize the angle variable as in [32]
to recover a suitable commutation relation. We adopt instead the Hilbert
space L2(S1) of square integrable functions on the circle as the natural
framework for defining an appropriate phase operator in a finite dimensional
subspace. Let us first give an outline of the method already exposed in
[20, 1, 45, 42, 22].

Let us now take as a set X the unit circle S1 provided with the measure
µ(dθ) = dθ

2π . The Hilbert space is L2(X,µ) = L2(S1, dθ2π ) and has the inner
product:

〈f |g〉 =

∫ 2π

0
f(θ)g(θ)

dθ

2π
. (4.14)

In this space we choose as orthonormal set the first N Fourier exponentials
with negative frequencies:

φn(θ) = e−inθ, with N (θ) =

N−1∑

n=0

|φn(θ)|2 = N . (4.15)

The phase states are now defined as the corresponding “coherent states”:

|θ) =
1√
N

N−1∑

n=0

einθ|φn〉 , (4.16)

where the kets |φn〉 can be directly identified to the number states |n〉,
and the round bracket denotes the continuous labeling of this family. The
overlapping of elements of both families is given by

〈n|θ) =
1√
N
einθ . (4.17)

We trivially have normalization and resolution of the unity in HN ≃ CN :

(θ|θ) = 1,

∫ 2π

0
|θ)(θ|Nµ(dθ) = IN . (4.18)

Unlike (4.10) the states (4.16) are not orthogonal but overlap as:

(θ′|θ) =
1

N

N−1∑

n=0

ein(θ−θ′) . (4.19)

This sum has a closed form found by a variation on the Gauss sum [37], that
is, by adding the same series with decreasing n and using the identities for
the sum of sines and cosines, we have, after some reorganization,

(θ′|θ) =
ei

N−1

2
(θ−θ′)

N

sin N
2 (θ − θ′)

sin 1
2 (θ − θ′)

. (4.20)
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Figure 4.1: Phase coherent states overlap is non null, as can be seen here
for N = 4 and for N = 50 respectively, but at the limit N −→ ∞ it tends
to a 2π-periodic comb, that is, to orthogonality.

The overlapping tends to disappear at the limit when N −→ ∞, as one can
see in figure 4.1.

Note that for N large enough |θ) states contain all the Pegg-Barnett
phase states and besides they form a continuous family labeled by the points
of the circle. The coherent state quantization of a particular function f(θ)
with respect to the continuous set (4.16) yields the operator Af defined by:

f(θ) 7→
∫

X
f(θ)|θ)(θ|Nµ(dθ)

def
= Af . (4.21)

An analog procedure has been already used in the frame of positive oper-
ator valued measures [15][16] but spanning the phase states over an infi-
nite orthogonal basis with the known drawback on the convergence of the
|φ〉 =

∑
n e

inθ|n〉 series out of the Hilbert space and the related questions
concerning the operator domain. When expressed in terms of the number
states the operator (4.21) takes the form:

Af =

N−1∑

n,n′=0

cn′−n(f)|n〉〈n′| , (4.22)
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where cn(f) are the Fourier coefficients of the function f(θ),

cn(f) =

∫ 2π

0
f(θ)e−inθ

dθ

2π
. (4.23)

Therefore, the existence of the quantum version of f is ruled by the existence
of its Fourier transform. Note that Af will be self-adjoint only when f(θ)
is real valued. In particular, a self-adjoint phase operator of the Toeplitz
matrix type, is obtained straightforward by choosing f(θ) = θ:

Âθ = −i
N−1∑

n 6=n′n,n′=0

1

n− n′
|n〉〈n′| , (4.24)

One can see, in figure 4.2, how the eigenvalues of Aθ cover the unit circle
for the limit N −→ ∞.

Its lower symbol or expectation value in a coherent state is given by:

(θ|Âθ|θ) =
i

N

N−1∑

n6=n′

n,n′=0

ei(n−n
′)θ

n′ − n
. (4.25)

Due to the continuous nature of the set of |θ), all operators produced by
this quantization are different of the Pegg-Barnett operators. As a matter of
fact, the commutator [N̂ , Âθ] expressed in terms of the number basis reads
as:

[N̂ , Âθ] = −i
N−1∑

n6=n′

n,n′=0

|n〉〈n′| = iId + (−i)IN , (4.26)

and has all diagonal elements equal to 0. Here IN =
∑N−1

n,n′=0 |n〉〈n′| is
the N × N matrix with all entries = 1. The spectrum of this matrix is 0
(degenerate N−1 times) and N . The normalized eigenvector corresponding
to the eigenvalue N is:

|vN 〉 = |θ = 0) =
1√
N

N−1∑

n=0

|n〉 . (4.27)

Other eigenvectors span the hyperplane orthogonal to |vN 〉. We can choose
them as the orthonormal set with N − 1 elements:

{
|vn〉 def

=
1√
2
(|n + 1〉 − |n〉) , n = 0, 1, . . . , N − 2

}
. (4.28)

The matrix IN is just N times the projector |vN 〉〈vN |. Hence the commu-
tation rule reads as:

[N̂ , Âθ] = −i
N−1∑

n6=n′

n,n′=0

|n〉〈n′| = i (Id −N |vN 〉〈vN |) . (4.29)
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Figure 4.2: Eigenvalues of phase operator distributed over the unit circle
in phase space for N = 9, 36, 81, 121, 144. Note how for large N the points
tend to cover densely the whole (0, 2π] interval, and the gap at θ = π closes.
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A further analysis of this relation through its lower symbol provides, for the
matrix IN , the function:

(θ|IN |θ) =
1

N

N−1∑

n,n′=0

ei(n−n
′)θ =

1

N

sin2N θ
2

sin2 θ
2

. (4.30)

In the limit at large N this function is the Dirac comb (a well-known result
in diffraction theory):

lim
N→∞

1

N

sin2N θ
2

sin2 θ
2

=
∑

k∈Z

δ(θ − 2kπ) . (4.31)

Recombining this with expression (4.29) allows to recover the canonical com-
mutation rule:

(θ|[N̂ , Âθ]|θ) ≈N→∞ i− i
∑

k∈Z

δ(θ − 2kπ) . (4.32)

This expression is the expected one for any periodical variable as was seen
in (4.5). It means that in the Heisenberg picture for temporal evolution

~
d

dt
〈Âθ〉 = −i〈[N̂ , Âθ]〉 = 1 −

∑

k∈Z

δ(θ − 2kπ) . (4.33)

A Dirac commutator-Poisson bracket correspondence can be established
from here. The Poisson bracket equation of motion for the phase of the
harmonic oscillator is:

dθ

dt
= {H, θ} = ω(1 − δ(θ − 2kπ)) , (4.34)

where H = 1
2(p2 + ω2x2) is the Hamiltonian and θ = arctan(p/ωx) is the

phase. The identification [N̂ , Âθ] = i~ω{H, θ} is straightforward and we
recover a sawtooth profile for the phase variable just as happened in (4.5)
for the angle variable.

Note that relation (4.32) is found through the expected value over phase
coherent states and not in any physical state as in [32]. This shows that
states (4.16), as canonical coherent states, hold the closest to classical be-
havior. Another main feature is that any |θ) state is equally weighted over
the number basis, which confirms a total indeterminacy on the eigenstates
of the number operator. The opposite is also true, a number state is equally
weighted over all the family (4.16) and in particular this coincides with
results in [32].
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Figure 4.3: Mean value of the phase operator at the N → ∞ limit.

The creation and annihilation operators are obtained using first the quanti-
zation (4.21) with f(θ) = e±iθ:

Âe±iθ =

∫ 2π

0
e±iθN |θ)(θ|dθ

2π
, (4.35)

and then including the number operator as ÂeiθN̂
1

2 ≡ â in a similar way

to [32] where the authors used instead eiθ̂PBN̂
1

2 . The commutation relation
between both operators is

[â, â†] = 1 −N |N − 1〉〈N − 1| , (4.36)

which converges to the common result only when the expectation value is
taken on states where extremal state component vanish as n tends to infinity.

As the phase operator is not built from a spectral decomposition, it is
clear that Âθ2 6= Â2

θ and the link with an uncertainty relation is not straight-
forward as in [32], instead, as is suggested in [16], a different definition for
the variance should be used.

The phase operator constructed here has most of the advantages of the
Pegg-Barnett operator but allows more freedom within the Hilbertian frame-
work. It is clear that a well-defined phase operator must be parametrised
by all points in the circle in order to have a natural convergence to the
commutation relation in the classical limit. It remains also clear that as
in any measure, like Pegg-Barnett’s or this one through coherent sates, the
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inconveniences due to the non periodicity of the phase pointed in [31] are
avoided from the very beginning in the choice of X ≡ S1.
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SU(N)

Now we will see that coherent state quantization can also permit a good de-
scription of the relative phases on a multi-level system. In the two level case,
widely used in quantum information since it allows to encode information
onto a “quantum bit”, the relative phase of any state

(
c1
c2

)
is

α =
c1
c2
. (5.1)

The coset space For the harmonic oscillator is the complex plane C =
H/U(1), where H is the Weyl-Heisenberg group. For the SU(2) group,
corresponding to the two level case, a useful compact expression of this
space is to project it stereographically into the sphere S2, in this context
called Bloch sphere. A SU(N) Cartan decomposition of the same type can
be done in multiple ways, in particular, factorizing the maximal subgroup
S(U(1) × U(N − 1)), the homogeneous space corresponding to the sphere
S2(N−1). This sphere contains all the physical observables of an N level
system, and its states, pure and mixed, are represented faithfully by their
density matrices up to a general phase.
The measurement of the relative phases requires a generalization of the the-
ory of projective measurements first stated by Von Neumann [50]. Instead of
using an orthonormal basis of the observable, the generalization requires the
use of a positive operator-valued measure (POVM). This measure, formed
by an operator set, must resolve the identity and allows the calculation of
a probability, in other words it can be constructed using a total family in-
dexed by the observable to be evaluated. A coherent state density matrix
is a natural candidate for constructing a good POVM as it still resolves the
identity integrated in a marginal way and thus can be used for measuring
the relative phases inside a quantum system. Relative phase measures in
quantum information theory are important in the implementation of con-
ditional phase shifts operations [48] which are universal gates for quantum
computing.

In this part we will expose first the protocol for coherent state con-
struction using SU(2), then we will apply it to SU(3) via the coset X =
SU(3)/S(U(1) × U(2)). With the projector of this coherent state family
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we will then construct the POVM for the phases on a qutrit. In a final
section we will generalize the coherent state construction for SU(N) using
a SU(N)/S(U(N − n) × U(n)) coset and then taking a more general coset
SU(N)/S(U1(n1) × U2(n2) × · · · × Uj(nj)) .

5.1 Coherent state construction

The coherent states have been historically constructed using three of their
properties; if expanded in the Fock basis they can be generated as the eigen-
vectors of the annihilation operator, taken as the shift of an extremal state
on the phase space [10], or be chosen to minimize the Heisenberg uncertainty
relation. In a more general context, the group-theoretical approach [44][54]
use the decomposition of the dynamical group of the quantum system G into
a maximum stability subgroup H and its coset space G/H. The coherent
states are defined then as Ω|φ0〉 ≡ |Ω〉, i.e. the result of applying a group
element to an H invariant, referential state |φ0〉 on the Hilbert space of the
Hamiltonian as

g|φ0〉 = Ωh|φ0〉 = |Ω〉eiφ(h) , (5.2)

where h ∈ H and φ(h) is a phase factor depending on the structure of H.
Here we present a more general canonical form of construction [21] that will
allow us to fit the particular needs of a multi-level system description.

The general procedure consists in doing a Cartan decomposition of an
arbitrary element of the group, then finding a homogeneous space X, with
a measure µ(dX) on it, on which the coset is parametrized. Our coherent
states will be then constructed as a normalized linear combination of ele-
ments of an orthonormal system in this space that will resolve the identity.

Let us expose this procedure for the simplest case, the SU(2) group.
As a first step we will decompose any element g of the group via a polar
decomposition

g =

(
a b
−b̄ ā

)
= UT =

(
|a| ba/|a|

−b̄ā/|a| |a|

)(
eiφ/2 0

0 e−iφ/2

)
, (5.3)

where a, b ∈ C, T is a unitary matrix and eiφ/2 = a/|a|. Since the first
matrix in the decomposition is parametrized by the homogeneous space C =
SU(2)/U(1), it can be indexed by the variable α = b/ā. We can then
reparametrize U as

U =

(
1/(1 + |α|2)1/2 α/(1 + |α|2)1/2
−ᾱ/(1 + |α|2)1/2 1/(1 + |α|2)1/2

)
, (5.4)

where α ∈ C.
We need now a measure for building the inner product in the Hilbert

space L2(C): ∫

C2

µ(dα)f̄ (α)g(α) . (5.5)
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In SU(2), the invariant measure can be found as follows. Acting with an
element of the group over the homogeneous space:

x′ = gx =

(
a b
−b̄ ā

)(
1/(1 + |α|2)1/2 α/(1 + |α|2)1/2
−ᾱ/(1 + |α|2)1/2 1/(1 + |α|2)1/2

)
(5.6)

=

(
a′ b′

−b̄′ ā′

)
, (5.7)

and

α′ =
b′

ā′
=

aα+ b

−b̄α+ ā
. (5.8)

Differentiating and reorganizing we find:

dαdᾱ

|1 + |α|2|2 =
dα′dᾱ′

|1 + |α′|2|2 , (5.9)

which gives the form of the invariant measure.

µ(dα) =
1

2π

d2α

(1 + |α|2)2 . (5.10)

More generally, the power of the denominator can be taken as a parameter
ν, in a way to have the measure µ(dα) parametrized on the homogeneous
space as

µ(dα) =
1

π

d2α

(1 + |α|2)ν , (5.11)

where π comes from normalizing the function 1.
For building the coherent states we take first an orthonormal system

{|n〉} in L2(C) (or after a stereographical projection, in L2(S2)), we con-
struct then a new orthogonal system Φn(α) = Cnα

n, with α ∈ C, and finally
take the normalized finite linear combination of them:

|α〉 =
1√
N (α)

⌊ν−1⌋∑

n=0

Cnα
n|n〉 , (5.12)

where ⌊x⌋ stands for the integer part of a number x and

N (α) =
∑

n

|Cn|2|α|2n . (5.13)

To ensure that the states |α〉 be non trivial and will lie within L2, we must
impose that ν > 2 in the measure. As we will see this choice, quasi-invariant
under the action of SU(2), will allow us to manipulate the extent of the sum.
Now we can calculate the coefficients Cn, and find the normalized states:

|α〉 =
1√
N (α)

∑

n

(
ν + 1

n

) 1

2

αn|n〉 , (5.14)
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where N (α) =
∑

n

(
ν+1
n

)
|α|2n. We can see that this family of states resolve

the identity: ∫

C

N (α)|α〉〈α|µ(dα) = I . (5.15)

and so it can be used to represent any state in L2(C).

We can now follow the same path for the group SU(3) to produce a
coherent state family. First we can write any element of the group as

g =

(
c v†
w m

)
, (5.16)

where c ∈ C, v† = (v1, v2), w =
(w1

w2

)
∈ C2, and m ∈M2×2(C). As before we

factorize its maximal compact subgroup S(U(1) × U(2))

g =

(
1

(1+ξ†ξ)1/2
ξ 1

(1+ξξ†)1/2

−ξ† 1
(1+ξ†ξ)1/2

1
(1+ξξ†)1/2

)(
eiφ 0
0 u

)
, (5.17)

where the first matrix represents the homogeneous spaceX = SU(3)/S(U(1)×
U(2)) = C2 parametrized by a complex two element line vector ξ† = (α β),
and the second is the maximal subgroup where u ∈ U(2) and detu = e−iφ.
This factorization is always possible when the matrix m is invertible which
covers all the cases but a zero measure space.

We can then construct the measure on the space X normalized under
the scalar product (5.5) which must be of the form

µ(dα, dβ) =
1

π2

(
ν − 1

ν − 3

)
d2αd2β

(1 + |α|2 + |β|2)ν , (5.18)

where the binomial term, that comes from the normalization of the function
1, impose that ν ≥ 3. The upper bound of ν will be established latter. We
can take now an orthonormal system in L2(X,µ) of the form

φmn(α, β) = Cnmᾱ
nβ̄m

=

[(
n+m

m

)(
ν − 3

m+ n

)]1/2

ᾱnβ̄m, (5.19)

where m,n must satisfy 0 < n + m < ν − 2 in order to hold the square-
integrability. Finally, expanded in this basis, we find the coherent states
as

|α, β〉 =
1√

N (α, β)

∑

0≤n+m<ν−2

φ̄nm(α, β)|φn,m〉

=
1√

N (α, β)

∑

0≤n+m<ν−2

[(
n+m

m

)(
ν − 3

n+m

)]1/2

αnβm|n,m〉 .

(5.20)
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STATES

Here we have used the Fock notation |n,m〉 = φnm, and the normalization
factor is given by:

N (α, β) =
∑

0≤n+m<ν−2

|φmn(α, β)|2

=
∑

0≤n+m<ν−2

(
n+m

m

)(
ν − 3

n+m

)
|α|2n|β|2m . (5.21)

As in SU(2), resolution of identity is guaranteed through

∫

C2

N (α, β)|α, β〉〈α, β|µ(dαdβ) = I . (5.22)

As an example of a particular application of these coherent states we can
extend the summation to ν = 4 and obtain the state

|α, β〉 =
1√

1 + |α|2 + |β|2
(|0, 0〉 + α|1, 0〉 + β|0, 1〉) , (5.23)

i.e. a three level system, or qutrit, with amplitudes parametrized by X.
Note that the identity resolution allows to keep just some terms in larger
expansions and still have a total family. We have thus multiple ways of
representing a multilevel system.

5.2 Positive Operator Valued Measures and coherent
states

As was said before a POVM can be written as projector of an overcom-
plete system as the coherent states (5.14): ∆̂ = |α〉〈α|, which integrated
marginally in the homogeneous space X will still satisfy appropriate condi-
tions. If the elements of X = C are written here as α = reφ ∈ C, we will
integrate marginally this projector just over the radial part of α:

∆̂(φ) =

∫ ∞

0
∆̂(α) dr =

∫ ∞

0
|α〉〈α|dr . (5.24)

We expect to be able to measure with it the relative phases in a three level
system.

In the case of the qutrit in SU(3) we have many choices for building
a POVM for the relative phases. The first option is to take ν = 4 in the
coherent state (5.20) to have the sum

|α, β〉 =
1√
N

(|0, 0〉 + α|1, 0〉 + β|0, 1〉) . (5.25)
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Here can identify the Fock states with the qutrit levels as |1〉 = |0, 0〉,
|2〉 = |1, 0〉 and |3〉 = |0, 1〉. Integrating over the radial part of the com-
plex numbers α and β, we obtain the POVM:

∆̂(θ1, θ2) =

∫ ∞

0

∫ ∞

0
|α, β〉〈α, β|dr1dr2

=
1

4π2
[ I +

π

4
(e−iθ1 |1〉〈2| + e−iθ2 |1〉〈3|

+ ei(θ1−θ2)|2〉〈3| + h.c.)] , (5.26)

where h.c. denotes the hermitian conjugate.
Modifying the initial relative phases as |1〉 → e−iθ1 |1〉 and |2〉 → e−iθ2 |2〉 we
can see that (5.26) gives a measurement of the relative phases in the qutrit
with a probability

P (θ1, θ2) =
1

4π2
[1 +

π

16
(ρ12e

i2θ1−θ2 + ρ13e
iθ1+θ2

+ ρ23e
i2θ1−θ1) + h.c.)] , (5.27)

where ρij are matrix elements of the density matrix for a qutrit. If we work
out some phase operator which will not be detailed here (see Appendix II),
and we ask it to shift the phases we can see that this POVM is shifted in
the phases

eiE12∆̂(θ1, θ2)e
−iE12 = ∆̂(θ1 + φ, θ2) (5.28)

eiE23∆̂(θ1, θ2)e
−iE23 = ∆̂(θ1, θ2 + φ′) , (5.29)

as expected, where E12 and E23 are the SU(3) generators conjugated to the
corresponding relative phases.

Other possible descriptions of the qutrit can be made with higher values
of ν. In this case we have to choose three terms from expansion (5.20). For
example, with ν = 5 we can keep the terms

|α, β〉 =
1√
N

(|0, 0〉 + α|1, 0〉 + αβ|1, 1〉) . (5.30)

We can also obtain a POVM for this state since this incomplete coherent
state sum still resolves the identity. This leads to a measure of the form

∆̂(θ1, θ2) =
1

4π2
[ I +

π

16
(e−iθ1 |0, 0〉〈1, 0| + e−iθ2|1, 0〉〈1, 1|

+ e−i(θ1+θ2)|0, 0〉〈1, 1| + h.c.)] . (5.31)

Which gives a probability

P (θ1, θ2) =
1

4π2
[1 +

π

16
(ρ10,00e

−iθ1 + ρ11,10e
−iθ2

+ ρ11,00e
−i(θ1+θ2) + h.c.)] , (5.32)

of finding the relative phases on the qutrit.
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5.3 Coherent states of SU(N)

For a space of N dimensions we have more than one possible Cartan decom-
position with coset

X = SU(N)/S(U(N − n) × U(n)) . (5.33)

We can write a general element of SU(N) taking m = N − n as

g =

(
A B
C D

)
, (5.34)

where A, B, C and D are m ×m, m × n, n ×m, and n × n matrices. As
done before we can write the Cartan decomposition as

g =

(
(Im + ZZ†)− 1

2 Z(In + Z†Z)−
1

2

−Z†(Im + ZZ†)− 1

2 (In + Z†Z)−
1

2

)(
UA 0
0 UD

)
. (5.35)

We can see that the last matrix has n2 +m2 parameters, and since Z must
have 2mn parameters, it can be written as am×n complex matrix. Coherent
state construction can be done then using the orthonormal system

φα1α2···αmnν(ξ1ξ2 · · · ξmn) = Cα1α2···αmnν ξ̄
α1

1 ξ̄α2

2 · · · ξ̄αmn
mn , (5.36)

and a measure of the same type we have used until now

µ(dξ) =
d2mnξ

(1 + ||Z||2)ν , (5.37)

where ||Z||2 = |ξ1|2 + |ξ2|2 + · · · + |ξmn|2 and ξj ∈ C. Coefficients can be
calculated to be

Cα1α2···αmnν =

[(
ν −mn− 1

α1 + α2 + · · · + αmn

)(
α1 + α2 + · · · + αmn

αmn

)

(
α1 + α2 + · · · + αmn−1

αmn−1

)
· · ·
(
α1 + α2

α1

)]1/2

, (5.38)

Where 0 < α1 + α2 + · · ·+ αmn < ν −mn− 1. The coherent state will take
then the form

|ξ1, ξ2, · · · , ξmn〉 =
1√
N

∑

α1,α2,···αmn,ν

Cα1α2···αmnν ξ
α1

1 ξα2

2 · · · ξαmn
mn |α1, α2, · · · , αmn〉 ,

(5.39)

normalized by

N (α1, α2, · · · , αmn, ν) =
∑

α1,α2,···αmn,ν

|Cα1α2···αmnνξ
α1

1 ξα2

2 · · · ξαmn
mn |2 . (5.40)
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In quantum information the cases where SU(N) is decomposed as

X = SU(N)/S(U1(2) × · · · × Un(2) × · · · × U1(3) × · · · × Um(3)) , (5.41)

are of particular interest as they represent all the possible interactions be-
tween qubits and qutrits. The SU(N) group has N2 − 1 = 4n2 + 9m2 +
12nm − 1 = parameters and the homogeneous space X will have then
M = N2 − 4n− 9m = 4(n2 − n) + 9(m2 −m) real variables, where n is the
number of qubits and m is the number of qutrits. Note that M is always
even so we can construct the coherent states generalized from the procedure
that we have already followed. More generally, for any multiple partition of
SU(N) decomposed then as SU(N)/S(U1(n1)×U2(n2)× · · · ×Uj(nj)), the
homogeneous space will have M = (

∑
i ni)

2 −∑i n
2
i which is always even

and we will then be able to parametrize X with M/2 complex variables.
Namely the decomposition will have the following form

g =




A11 A12 · · · A1j

A21 A22

...
. . .

Aj1 · · · Ajj




=




(A11A
†
11)

1
2 A12A

−1
22 (A22A

†
22)

1
2 · · · A1jA

−1
jj (AjjA

†
jj)

1
2

A21A
−1
11 (A11A

†
11)

1
2 (A22A

†
22)

1
2

...
. . .

Aj1A
−1
11 (A11A

†
11)

1
2 · · · (AjjA

†
jj)

1
2




×




U1 0 · · · 0
0 U2

...
. . .

0 Uj


 . (5.42)

We have to construct then a measure parametrized by the complex space CM/2 as

µ(dξ) =
dξM/2

(1 + |ξ|2)ν
, (5.43)

and choose the orthonormal vectors φn(~ξ)

φ = Cα1α2···αM/2ν ξ̄
α1

1 ξ̄α2

2 · · · ξ̄αM/2

M/2 , (5.44)

in the Hilbert space L2(ξ), with ξ ∈ C. The general coherent state will be after
normalization

|ξ1, ξ2, · · · ξM/2〉 =
1√
N

∑

α1,α2,···αM/2,ν

Cα1α2···αM/2ν ξ
α1

1 ξα2

2 · · · ξαM/2

M/2 |α1, α2, · · ·αM/2〉,

(5.45)

Where

Cα1α2···αM/2ν =

[(
ν −M/2 − 1

α1 + α2 + · · · + αM/2

)(
α1 + α2 + · · · + αM/2

αM/2

)

(
α1 + α2 + · · · + αM/2−1

αM/2−1

)
· · ·
(
α1 + α2

α1

)]1/2

, (5.46)
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and normalization is given as before as:

N =
∑

α1,α2,···αM/2,ν

|Cα1α2···αM/2ν |2|ξ1|2α1 |ξ2|2α2 · · · |ξM/2|2αM/2 . (5.47)

These coherent states, as before, resolve the identity:
∫

X

N|ξ1, ξ2, · · · ξM/2〉〈ξ1, ξ2, · · · ξM/2|µ(dξ) = I . (5.48)

We have then a systematic protocol to produce coherent states for any partition of
SU(N).

5.4 Relative phase operator

To construct a phase operator we can again use the projector of a coherent state
weighted by an arbitrary phase. This will produce a matrix term by term that we
can adjust then to our needs. In the case of SU(3) we can take:

Ap,q =

∫

C2

N(α, β)ei p φαei q φβ |α, β〉〈α, β|µ(dα, dβ)

= π2
∑

m,n,m′,n′

CνCm,nCm′,n′B( 1
2
(m+n+m′+n′)+2, ν− 1

2
(m+n+m′+n′)−2)

× B( 1
2
(m+m′)+1, 1

2
(n+n′)+1)δp,m′−mδq,n′−n|m,n〉〈m′, n′| , (5.49)

where,

Cν =
1

π2

(
ν − 1

ν − 3

)
(5.50)

Cm,n =

[(
ν − 3

m+ n

)(
m+ n

m

)] 1
2

. (5.51)

Here if ν = 4 then Cν = 3/π2 and p and q take the values given by the following
table

For p =m’-m For q =n’-n
m\m′ 0 1 n\n′ 0 1
0 0 1 0 0 1
1 -1 0 1 -1 0

Note that the case where m = 1,m′ = 1 is allowed when n = 0, n′ = 0. We
have then all the following combinations

p q projector Coefficients
-1 0 |1, 0〉〈0, 0| CνC1,0C0,0B(5/2, 3/2)B(3/2, 1) = 1/8π
-1 1 |1, 0〉〈0, 1| CνC1,0C0,1B(3, 1)B(3/2, 3/2) = 1/24π
0 -1 |0, 1〉〈0, 0| CνC0,1C0,0B(5/2, 3/2)B(1, 3/2) = 1/8π
0 0 |0, 0〉〈0, 0| CνC0,0C0,0B(2, 2)B(1, 1) = 1/2π2

0 0 |0, 1〉〈0, 1| CνC0,1C0,1B(3, 1)B(1, 2) = 1/2π2

0 0 |1, 0〉〈1, 0| CνC1,0C1,0B(3, 1)B(2, 1) = 1/2π2

0 1 |0, 0〉〈0, 1| CνC0,0C0,1B(5/2, 3/2)B(1, 3/2) = 1/8π
1 -1 |0, 1〉〈1, 0| CνC0,1C1,0B(3, 1)B(3/2, 3/2) = 1/24π
1 0 |0, 0〉〈1, 0| CνC0,0C1,0B(5/2, 3/2)B(3/2, 1) = 1/8π
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Here all the diagonal terms are given by different ways of writing A0,0. If we
label the qutrit as |0〉 = |0, 0〉, |1〉 = |0, 1〉, |2〉 = |1, 0〉, the operator will be given
by:

A =



A

(1)
0,0 A0,1 A1,0

A0,−1 A
(2)
0,0 A1,−1

A−1,0 A−1,1 A
(3)
0,0


 . (5.52)
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6
Infinite quantum well

6.1 Introduction

Even though the quantum dynamics in an infinite square well potential represents
a rather unphysical limit situation, it is a familiar textbook problem and a simple
tractable model for the confinement of a quantum particle. On the other hand this
model has a serious drawback when it is analyzed in more detail. Namely, when one
proceeds to a canonical standard quantization, the definition of a momentum oper-
ator with the usual form −i~d/dx has a doubtful meaning. This subject has been
discussed in many places (see [14] for instance), and the attempts of circumventing
this anomaly range from self-adjoint extensions [14] to PT symmetry approaches
[36].

First of all, the canonical quantization assumes the existence of a momentum
operator (essentially) self-adjoint in L2(R) that respects some boundary conditions
on the boundaries of the well. As has been shown, these conditions cannot be
fullfilled by the usual derivative form of the momentum without the consequence
of losing self-adjointness. Moreover there exists an uncountable set of self-adjoint
extensions of such a derivative operator which makes truly delicate the question of
a precise choice based on physical requirements [14, 51].

When the classical particle is trapped in an infinite well of real interval ∆,
the Hilbert space of quantum states is L2(∆, dx) and the quantization problem
becomes similar, to a certain extent, to the quantization of the motion on the
circle S1. Notwithstanding the fact that boundary conditions are not periodic but
impose instead that the wave functions in position representation vanish at the
boundary, the momentum operator p̂ for the motion in the infinite well should
be the counterpart of the angular momentum operator L̂ for the motion on the
circle. Since the energy spectrum for the infinite square well is {n2, n ∈ N∗}, we

should expect that the spectrum of p̂ should be Z∗, like the one for L̂ without the
null eigenvalue. This similarity between the two problems will be exploited in the
present paper. We will adapt the coherent states (CS’s) on the circle [47, 30, 3] to
the present situation by constructing two-component vector CS’s, in the spirit of
[7], as infinite superpositions of spinors eigenvectors of p̂ .

In the present note, we first describe the CS quantization procedure. We recall
the construction of the CS’s for the motion on the circle and the resulting quan-
tization. We then revisit the infinite square well problem and propose a family of
vector CS’s suitable for the quantization of the related classical phase space. Note
that various constructions of CS’s for the infinite square well have been carried
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out, like the one in [9] or yet the one resting upon the dynamical SU(1, 1) symme-
try [2]. Finally, we present the consequences of our choice after examining basic
quantum observables, derived from this quantization scheme, as position, energy,
and a quantum version of the problematic momentum. In particular we focus on
their mean values in CS’s (“lower symbols”) and quantum dispersions. As will be
shown, the classical limit is recovered after choosing appropriate limit values of
some parameters present in the expression of our CS’s.

6.2 Quantization of the motion in an infinite well po-

tential

6.2.1 The standard quantum context

Any quantum system trapped inside the infinite square well 0 6 q 6 L must have
its wave function equal to zero beyond the boundaries. It is thus natural to impose
on the wave functions the conditions

ψ(q) = 0, q > L and q 6 0 . (6.1)

Since the motion takes place only inside the interval [0, L], we may as well ignore
the rest of the line and replace the constraints (6.1) by the following ones:

ψ ∈ L2([0, L], dq), ψ(0) = ψ(L) = 0 . (6.2)

Moreover, one may consider the periodized well and instead impose the cyclic
boundary conditions ψ(nL) = 0, ∀n ∈ Z.

In either case, stationary states of the trapped particle of mass m are easily
found from the eigenvalue problem for the Schrödinger operator with Hamiltonian:

H ≡ Hw = − ~2

2m

d2

dx2
. (6.3)

This Hamiltonian is self-adjoint [35] on an appropriate dense domain in (6.2). Then

Ψ(q, t) = e−
i
~

HtΨ(q, 0) , (6.4)

where Ψ(q, 0) ≡ ψ(q) obeys the eigenvalue equation

Hψ(q) = Eψ(q) , (6.5)

together with the boundary conditions (6.2). Normalized eigenstates and corre-
sponding eigenvalues are then given by

ψn(q) =

√
2

L
sin
(
nπ

q

L

)
, 0 6 q 6 L , (6.6)

Hψn = Enψn , n = 1, 2, . . . , , (6.7)

with

En =
~2π2

2mL2
n2 ≡ ~ωn2 , ω =

~π2

2mL2
≡ 2π

Tr
, (6.8)

where Tr is the “revival” time to be compared with the purely classical round trip
time.
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6.2.2 The quantum phase space context

The classical phase space of the motion of the particle is the infinite strip X =
[0, L] × R = {x = (q, p) | q ∈ [0, L] , p ∈ R} equipped with the measure: µ(dx) =
dq dp. A phase trajectory for a given non-zero classical energy Eclass = 1

2mv
2 is

represented in the figure 6.1.

-

6

-

?

�

6

0

mv

−mv

p

L q

Figure 6.1: Phase trajectory of the particle in the infinite square-well.

Typically, we have two phases in the periodic particle motion with a given
energy: one corresponds to positive values of the momentum, p = mv while the
other one is for negative values, p = −mv. This observation naturally leads us to
introduce the Hilbert space of two-component complex-valued functions (or spinors)
square-integrable with respect to µ(dx) :

L2
C2(X,µ(dx)) ≃ C

2 ⊗ L2
C(X,µ(dx)) =

{
Φ(x) =

(
φ+(x)
φ−(x)

)
, φ± ∈ L2

C(X,µ(dx))

}
.

(6.9)
We now choose our orthonormal system as formed of the following vector-valued

functions Φn,ǫ(x), κ = ±,

Φn,+(x) =

(
φn,+(x)

0

)
, Φn,−(x) =

(
0

φn,−(x)

)
,

φn,κ(x) =
√
c exp

(
− 1

2ρ2
(p− κpn)2

)
sin
(
nπ

q

L

)
, κ = ± , n = 1, 2, . . . ,

(6.10)

where

c =
2

ρL
√
π
, pn =

√
2mEn =

~π

L
n , (6.11)

and the half-width ρ > 0 is a parameter that will be used in the following as a
regulator which has the dimension of a momentum, say ρ = ~πϑ/L with ϑ > 0
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a dimensionless parameter. This parameter can be arbitrarily small (as for the
classical limit) and, of course, arbitrarily large (for a very narrow well, for instance).

The functions Φn,κ(x) are continuous, vanish at the boundaries q = 0 and q = L
of the phase space, and obey the essential finiteness condition (3.1):

0 < N (x) ≡ N (q, p) ≡ N+(x) + N−(x) =
∑

κ=±

∞∑

n=1

Φ†
n,κ(x)Φn,κ(x)

= c

∞∑

n=1

[
exp

(
− 1

ρ2
(p− pn)2

)
+ exp

(
− 1

ρ2
(p+ pn)2

)]
sin2

(
nπ

q

L

)
<∞ .

(6.12)

The expression of N simplifies to :

N (q, p) = c S(q, p) = c ℜ
{

1

2

∞∑

n=−∞

[
1 − exp

(
i2πn

q

L

)]
exp

(
− 1

ρ2
(p− pn)2

)
}
.

(6.13)
It then becomes apparent that N and S can be expressed in terms of elliptic theta
functions. Function S has no physical dimension whereas N has the same dimension
as c, that is the inverse of an action.

We are now in measure of defining our vector CS’s [7]. As in the case of the
circle, we set up a one-to-one correspondence between the functions Φn,κ’s and
two-component states

|n, κ〉 def
= χκ ⊗ |n〉 , χ+ =

(
1
0

)
, χ− =

(
0
1

)
, (6.14)

forming an orthonormal basis of some separable Hilbert space of the form K =
C2 ⊗ H. The latter can be viewed also as the subspace of L2

C2(X,µ(dx)) equal to
the closure of the linear span of the set of Φn,κ’s. We choose the following set of
2 × 2 diagonal real matrices for our construction of vectorial CS’s:

Fn(x) =

(
φn,+(q, p) 0

0 φn,−(q, p)

)
(6.15)

=
√
c

(
exp

(
− 1

2ρ2 (p− pn)2
)

0

0 exp
(
− 1

2ρ2 (p+ pn)2
)
)

sin
(
nπ

q

L

)
, (6.16)

where n = 1, 2, . . . . Note that N (x) =
∑∞

n=1 tr(Fn(x)2).

Vector CS’s, |x, χ〉 ∈ C2 ⊗H = K, are now defined for each x ∈ X and χ ∈ C2

by the relation

|x, χ〉 = N (x)−
1
2

∞∑

n=1

Fn(x) χ⊗ |n〉 . (6.17)

In particular, we single out the two orthogonal CS’s

|x, κ〉 =
1√
N (x)

∞∑

n=1

Fn(x)|n, κ〉 , κ = ± . (6.18)
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By construction, these states also satisfy the infinite square well boundary condi-
tions, namely |x, κ〉q=0 = |x, κ〉q=L = 0. Furthermore they fulfill the normalizations

〈x, κ|x, κ〉 =
Nκ(x)

N (x)
,

∑

κ=±

〈x, κ|x, κ〉 = 1 , (6.19)

and the resolution of the identity in K:

∫

X

|x〉〈x|N (x)µ(dx) =
∑

κ,κ′=±

∞∑

n,n′=1

∫ ∞

−∞

∫ L

0

Fn(q, p)Fn′(q, p)|n, κ〉〈n′, κ′|dqdp

=
∑

κ=±

∞∑

n=1

|n, κ〉〈n, κ| = σ0 ⊗ IH = IK . (6.20)

where σ0 denotes the 2 × 2 identity matrix consistently with the Pauli matrix
notations σµ to be used in the following.

6.2.3 Quantization of classical observables

The quantization of a generic function f(q, p) on the phase space is given by the
expression (3.5), that is for our particular CS choice:

f̂(q, p) =
∑

κ=±

∫ ∞

−∞

∫ L

0

f(q, p)|x, κ〉〈x, κ|N (q, p)dqdp

=
∞∑

n,n′=1

|n〉〈n′| ⊗
(

̂f+(q, p) 0

0 ̂f−(q, p)

)
, (6.21)

where

̂f±(q, p) =

∫ ∞

−∞

dp

∫ L

0

dq φn,±(q, p)f(q, p)φn′,±(q, p) . (6.22)

For the particular case in which f is function of p only, f(p), the operator is given
by

f̂(p) =
∑

κ=±

∫ ∞

−∞

∫ L

0

f(p)|x, κ〉〈x, κ|N (q, p)dqdp =
1

ρ
√
π

∞∑

n=1

|n〉〈n|⊗

⊗
(∫∞

−∞
dp f(p) exp

(
− 1

ρ2 (p− pn)2
)

0

0
∫∞

−∞
dp f(p) exp

(
− 1

ρ2 (p+ pn)2
)
)
.

(6.23)

Note that this operator is diagonal on the |n, κ〉 basis.

Momentum and Energy

In particular, using f(p) = p, one gets the operator

p̂ =
∞∑

n=1

pn σ3 ⊗ |n〉〈n| , (6.24)
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where σ3 =
(

1 0
0 −1

)
is a Pauli matrix.

For f(p) = p2, which is proportional to the Hamiltonian, the quantum coun-
terpart reads as

p̂2 =
ρ2

2
IK +

∞∑

n=1

p2
n σ0 ⊗ |n〉〈n| =

ρ2

2
IK + (p̂ )2 . (6.25)

Note that this implies that the operator for the square of momentum does not
coincide with the square of the momentum operator. Actually they coincide up to
O(~2).

Position

For a general function of the position f(q) our quantization procedure yields the
following operator:

f̂(q) =

∞∑

n,n′=1

exp
(
− 1

4ρ2
(pn − pn′)2

)
[dn−n′(f) − dn+n′(f)]σ0 ⊗ |n〉〈n′| , (6.26)

where

dm(f) ≡ 1

L

∫ L

0

f(q) cos
(
mπ

q

L

)
dq . (6.27)

In particular, for f(q) = q we get the “position” operator

q̂ =
L

2
IK − 2L

π2

∞∑

n,n′≥1,n+n′=2k+1

exp
(
− 1

4ρ2
(pn − pn′)2

)
×

×
[

1

(n− n′)2
− 1

(n+ n′)2

]
σ0 ⊗ |n〉〈n′| , (6.28)

with k ∈ N. Note the appearance of the classical mean value for the position on
the diagonal.

Commutation rules

Now, in order to see to what extent these momentum and position operators differ
from their classical (canonical) counterparts, let us consider their commutator:

[ q̂, p̂ ] =
2~

π

∞∑

n 6=n′

n+n′=2k+1

Cn,n′ σ3 ⊗ |n〉〈n′| (6.29)

Cn,n′ = exp
(
− 1

4ρ2
(pn − pn′)2

)
(n− n′)

[
1

(n− n′)2
− 1

(n+ n′)2

]
. (6.30)

This is an infinite antisymmetric real matrix. The respective spectra of finite ma-
trix approximations of this operator and of position and momentum operators are
compared in figures 6.2 and 6.3 for various values of the regulator ρ = ~πϑ/L = ϑ
in units ~ = 1, L = π. When ρ takes large values, one can see that the eigenvalues
of [ q̂, p̂ ] accumulate around ±i, i.e. they become almost canonical. Conversely,
when ρ→ 0 all eigenvalues become null, which corresponds to the classical limit.
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Evolution operator

The Hamiltonian of a spinless particle trapped inside the well is simply H = p2/2m.

Its quantum counterpart therefore is Ĥ = p̂2/2m. The unitary evolution operator,
as usual, is given by

U(t) = e−
i
~

Ĥt = e−iωϑt
∞∑

n=1

exp
(
− ip2

nt

2m~

)
σ0 ⊗ |n〉〈n| . (6.31)

Note the appearance of the global time-dependent phase factor with frequency ωϑ

which can be compared with the revival frequency

ωϑ =
~π2ϑ2

4mL2
=
ωϑ2

2
. (6.32)

6.3 Quantum behaviour through lower symbols

Lower symbols are computed with normalized CS’s. The latter are denoted as
follows

|x〉 = |x,+〉 + |x,−〉 . (6.33)

Hence, the lower symbol of a quantum observable A should be computed as

Ǎ(x) = 〈x|A|x〉 ≡ Ǎ++(x) + Ǎ+−(x) + Ǎ−+(x) + Ǎ−−(x) .

This gives the following results for the observables previously considered :

Position

In the same way, the mean value of the position operator in a vector CS |x〉 is given
by:

〈x|q̂ |x〉 =
L

2
−Q(q, p) , (6.34)

where we can distinguish the classical mean value for the position corrected by the
function

Q(q, p) =
2L

π2

1

S
∞∑

n,n′=1,n6=n′

n+n′=2k+1

exp
(
− 1

4ρ2
(pn − pn′)2

) [ 1

(n− n′)2
− 1

(n+ n′)2

]
×

×
[
exp

(
− 1

2ρ2
[(p− pn)2 + (p− pn′)2]

)
+

+ exp
(
− 1

2ρ2
[(p+ pn)2 + (p+ pn′)2]

)]
sin
(
nπ

q

L

)
sin
(
n′π

q

L

)
. (6.35)

This function depends on the parameter ϑ, that is on the regulator ρ, as we show
in figure 6.4 with a numerical approximation using finite matrices. As for p̂, we
calculate the dispersion defined as

∆Q =

√
q̌2 − q̌2 . (6.36)

Its behaviour for different values of ϑ is shown in figure 6.6.
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Time evolution of position

The change through time of the position operator is given by the transformation
q̂ (t) := U †(t) q̂ U(t), and differs from q̂ by the insertion of an oscillating term in
the series. Its lower symbol is given by

〈x|q̂ (t)|x〉 =
L

2
−Q(q, p, t) , (6.37)

where this time the series have the form

Q(q, p, t) =
2L

π2

1

S

∞∑

n,n′=1,n6=n′

n+n′=2k+1

exp
(
− i

2m~
(p2

n − p2
n′) t

)
exp

(
− 1

4ρ2
(pn − pn′)2

)
×

×
[

1

(n− n′)2
− 1

(n+ n′)2

]
sin
(
nπ

q

L

)
sin
(
n′π

q

L

)
×

×
[
exp

(
− 1

2ρ2
[(p− pn)2 + (p− pn′)2]

)
+ exp

(
− 1

2ρ2
[(p+ pn)2 + (p+ pn′)2]

)]
.

(6.38)

Note that the time dependence manifests itself in the form of a Fourier series of
with frequencies (n2 − n′2) ~π2/2mL2. This corresponds to the circulation of the
wave packet inside the well.

Momentum

The mean value of the momentum operator in a vector CS |x〉 is given by the affine
combination:

〈x|p̂ |x〉 =
M(x)

N (x)
,

M(x) = c
∞∑

n=1

pn

[
exp

(
− 1

ρ2
(p− pn)2

)
− exp

(
− 1

ρ2
(p+ pn)2

)]
sin2

(
nπ

q

L

)
.

(6.39)

This function reproduce the profile of the function p, as can be seen in the figure
6.5. We calculate then the dispersion ∆P , defined as

∆P =

√
p̌2 − p̌2, (6.40)

using the mean values in a CS |x〉. Its behaviour as a function of x is shown in
figure 6.7.

Position-momentum commutator

The mean value of the commutator in a normalized state Ψ =
( φ+

φ−

)
is the pure

imaginary expression:

〈Ψ|[ q̂, p̂ ]|Ψ〉 =
2i~

π

∞∑

n 6=n′

n+n′=2k+1

exp
(
− 1

4ρ2
(pn − pn′)2

)
(n− n′)×

×
[

1

(n− n′)2
− 1

(n+ n′)2

]
ℑ(〈φ+|n〉〈n′|φ+〉 − 〈φ−|n〉〈n′|φ−〉) . (6.41)
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Given the symmetry and the real-valuedness of states (7.24), the mean value of
the commutator when Ψ is one of our CS’s vanish, even if the operator does not.
This result is due to the symmetric spectrum of the commutator around 0. As is
shown in Part c) of figures 6.2, the eigenvalues of the commutator tend to ±i~ as ρ,
i.e. ϑ, increases. Still, there are some points with modulus less than ~. This leads
to dispersions ∆Q∆P in CS’s |x〉 that are no longer bounded from below by ~/2.
Actually, the lower bound of this product, for a region in the phase space as large
as we wish, decreases as ϑ diminish. Figure 6.8 shows a numerical approximation.

6.4 Discussion

From the mean values of the operators obtained here, we verify that our CS quanti-
zation gives well-behaved momentum and position operators. The classical limit is
reached once the appropriate limit for the parameter ϑ is found. If we consider the
behaviour of the observables as a function of the dimensionless quantity ϑ = ρL/~π,
i.e. the regulator ρ, at the limit ϑ→ 0 and when the Gaussian functions for the mo-
mentum become very narrow, the lower symbol of the position operator is q̌ ∼ L/2.
This corresponds to the classical average value position in the well. On the other
hand, at the limit ϑ → ∞, for which the involved Gaussians spread to constant
functions, the mean value 〈x|q̂|x〉 converges numerically to the function q. In other
words, our position operator yields a fair quantitative description for the quantum
localization within the well. The lower symbol 〈x|p̂|x〉 behaves as a stair-step func-
tion for ρ close to 0 and progressively fits the function p when ρ increases. These
behaviours are well illustrated in the figures 6.4 and 6.5. The effect of the param-
eter ϑ is also noticeable in the dispersions of q̂ and p̂. Here, the variations of the
full width at half maximum of the Gaussian function reveal different dispersions
for the operators. Clearly, if a classical behaviour is sought, the values of ϑ have
to be chosen near 0. This gives localized values for the observables. The numerical
explorations shown in figures 6.6 and 6.7 give a good account of this modulation.
Consistently with the previous results, the behaviour of the product ∆Q∆P at low
values of ϑ shows uncorrelated observables at any point in the phase space, whereas
at large values of this parameter the product is constant and almost equal to the
canonical quantum lowest limit ~/2. This is shown in figure 6.8.

It is interesting to note that if we replace the Gaussian distribution, used here
for the p variable in the construction of the CS’s, by any positive even probability
distribution R ∈ p 7→ ̟(p) such that

∑
n̟(p − n) < ∞ the results are not so

different! The momentum spectrum is still Z and the energy spectrum has the form
{n2 + constant}. In this regard, an interesting approach combining mathematical
statistics concepts and group theoretical constructions of CS’s has been recently
developed by Heller and Wang [11, 12].

The work presented here has possible applications to those particular physical
problems where the square well is used as a model for impenetrable barriers [52],
in the spirit of what has been done in [5].

The generalization to higher-dimensional infinite potential wells is more or less
tractable, depending on the geometry of the barriers. This includes quantum dots
and other quantum traps. Nevertheless, we believe that the simplicity and the
universality of the method proposed in the present work should reveal itself useful
for this purpose.
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Figure 6.2: Eigenvalues of q̂, p̂ and [ q̂, p̂ ] for increasing values of the regulator
ρ = ~πϑ/L of the system, and computed for N×N approximation matrices.
Units have been chosen such that ~ = 1, L = π so that ρ = ϑ and pn = n.
Note that for q̂ with ρ small, the eigenvalues adjust to the classical mean
value L/2. The spectrum of p̂ is independent of ρ as is shown in (6.24). For
the commutator, the values are purely imaginary.
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Figure 6.3: Continued from figure 6.2: N×N approximation matrices eigen-
values of q̂, p̂ and [ q̂, p̂ ] for increasingly larger values of ρ = ~πϑ/L = ϑ in
units ~ = 1, L = π. The spectrum of p̂ is independent of ρ as is shown in
(6.24). For the commutator, the eigenvalues are purely imaginary and tend
to accumulate around i~ and −i~ as ρ increases.
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Figure 6.4: The lower symbol q̌ depicted for various values of the regulator
ρ = ~πϑ/L = ϑ in units ~ = 1, L = π. Note the way the mean value fits the
function q when ρ is large, and approaches the classical average in the well
for low values of the parameter.
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Figure 6.5: The lower symbol p̌ depicted for various values of ρ = ~πϑ/L = ϑ
in units ~ = 1, L = π. The function becomes smoother when ρ is large.

77



CHAPTER 6. INFINITE QUANTUM WELL

78



6.4. DISCUSSION

79



CHAPTER 6. INFINITE QUANTUM WELL

Figure 6.6: Variance of q depicted for various values of ρ = ~πϑ/L = ϑ
in units ~ = 1, L = π. Note how different dispersions are revealed just
by changing the width of the Gaussian function of the p variable. Low
dispersion, close to classical, is found for ϑ near 0 and the quantum behaviour
is recovered at large values of the parameter.
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Figure 6.7: Variance of p depicted for various values of ρ = ~πϑ/L = ϑ
in units ~ = 1, L = π. Consistently with q̌, a well localized momentum is
found for low values of the parameter. This is actually expected since the
Gaussian becomes very narrow.
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Figure 6.8: Product ∆Q∆P for various values of ρ = ~πϑ/L = ϑ in units
~ = 1, L = π. Note the modification of the vertical scale from one picture
to another. Again, the pair position-momentum tends to decorrelate at low
values of the parameter, as they should do in the classical limit. On the
other hand it approaches the usual quantum-conjugate pair at high values
of the regulator ρ.
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7
Time Operator

7.1 Introduction

A quantum time observable conjugate to the energy, as it naturally arises from the
quantum mechanics formalism, deals with questions about its interpretation and
its formal definition, as has been pointed out in [39] and [13]. The commutation
relation [T,H ] = i and its subsequent uncertainty relation suggest that time is an
intrinsic observable of a quantum system. In that way it must be distinguished from
an external time, an observer time, than would enter just as a parameter of the
system dynamics. Instead, a quantum time could be the interval that determines
the occurrence of an event in the system, such as a radioactive decay, or its duration
as a time of flight. It must be pointed that this observable will be specific for each
system and has to be defined in correspondence to the Hamiltonian.
If time observable is conceived as a spectral representation of a unique self-adjoint
operator, the covariance with the Hamiltonian contradicts the semi-bounded energy
spectrum. As is stated in a theorem by Pauli [43], this excludes the existence
of a self-adjoint operator. This is a common problem with phase operator [41]
which in fact is proportional to a time operator for harmonic oscillator. Still, self-
adjoint operators that are covariant with the Hamiltonian can be constructed using
Positive Operator-Valued Measures (POVM). In the later measures, the observable
is defined as a statistical mean value of an operator and not as an eigenvalue
of the operator. Moreover, the eigenstates of the operator are not needed to be
orthogonal whenever they permit a probability distribution on them. In this sense,
coherent states, initially used in quantum optics, can be useful in the construction
of a POVM. Here we will show a systematic procedure and apply it to the time
operator for a free particle.

7.2 Positive Operator Valued Measure

If time is described as a PV measure, it will form a system of imprimitivity with a
unitary representation Ug of a locally compact group if

UgF (X)U∗
g = F (g ·X) (7.1)

for every X ∈ A and every element of the group. If time is described as a POVM,
the pair is a system of covariance. Take the G as the group of time translations
and the generator H from the unitary representations Ug = e−itH . The conjecture
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stated by Pauli implies that H cannot be an operator of semi-bounded spectrum,
as the Hamiltonian of the system, since this would create a contradiction. Some
care has to be taken on the domains of the operators for this to be true and to
ensure

7.3 Coherent states and POVM

Coherent states, historically introduced for the harmonic oscillator in the context
of quantum optics, can be defined upon different properties. But most importantly
they provide resolution of the identity and as such give a good frame of reference
in which to express other states on the Hilbert space. Resolution of the identity is
precisely what is asked as a main property of a POVM, it is natural then to use
coherent states as a basis to define it. Here we present a general method to link
both formalisms.

7.4 Time operator

The specific case we will develop is a quantum clock model based on the one ex-
posed in [24]. The time observable we choose [49] is the conjugate variable of the
Hamiltonian for the motion of a free particle

H =
p2

2
, (7.2)

i.e. a system with one degree of freedom represented by the Hilbert space H =
L2(R). By [7.2] the classical time reads as

T =
q

p
, p 6= 0 . (7.3)

It is indeed straightforward to check that {T,H} = 1 and we expect that a quantum
time operator should, to a certain extent, satisfy a commutation rule of this kind
with the quantum Hamiltonian consistent with (7.3). Note first of all that the
singularity on p = 0 gives a natural cut of the phase space and forbids the use of
standard coherent states in the POVM definition.

7.4.1 Using the Poincaré half-planes

To overcome the singularity at p = 0 we can separate the phase space into the
upper and lower half-planes, for p > 0 and p < 0. We can work then on the unit
disk on the complex plane if we take the homographic transformation, namely de
Cayley transform, that maps the real line stereographically as S1 −→ R

[0, 2π) ∋ θ −→ q =
eiθ + i

ieiθ + 1
∈ R , (7.4)

where θ = 0 → q = 1, θ = π/2 → q = ±∞, θ = π → q = −1 and θ = 3π
2 → q = 0,

and more generally, for the rest of the half-plane, the transformation that maps the
open unit disk D to the upper half-plane P+ in the complex plane C

D ∋ z −→ Z =
z + i

iz + 1
∈ P+. (7.5)
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The inverse transformation is

z =
Z − i

1 − iZ
. (7.6)

Symmetrically, the relation

D ∋ z̄ −→ Z̄ =
z̄ − i

−iz̄ + 1
∈ P− ⇔ z̄ =

Z̄ + i

1 + iZ̄
(7.7)

maps the open unit disk D to the lower half-plane P− in the complex plane C.
First let us define our coherent states on the upper plane, we introduce the

(q, p), p > 0 variables as the real and imaginary parts of Z : Z = q + i/p. These
coordinates are expressed in terms of the pre-image z of Z as :

q =
2ℜ(z)

1 + |z|2 − 2ℑ(z)
, p =

1 + |z|2 − 2ℑ(z)

1 − |z|2 , (7.8)

the following relations are useful

|z|2 =
(q2 + 1

p2 ) + 1 − 2
p

(q2 + 1
p2 ) + 1 + 2

p

z =
2q + i(q2 + 1

p2 − 1)

1 + (q2 + 1
p2 ) + 2

p

(7.9)

and the measures are related as

d2Z =
4

(|z|2 + 1 + 2ℑ(z))2
d2z =

dqdp

p2
=

4dz2

p2(1 − |z|2)2 . (7.10)

and

dz ∧ dz̄ =
(1 − |z|2)2

4
dqdp (7.11)

Let η be a real parameter such that η > 1
2 and let us equip the unit disk D

with the SU(1, 1) invariant measure

µη(dz dz̄)
def
= i

2η − 1

2π

dz ∧ dz̄
(1 − |z|2)2 =

2η − 1

8π
dqdp . (7.12)

Note that, on the half-plane, the symplectic measure is recovered as is needed for
the integration on the phase space. Consider now the Hilbert space L2

η = L(D, µη)
of all functions f(z, z̄) on D which are square integrable with respect to µη. Within
this “large” Hilbert space we select all functions of the form

φ+(z, z̄) = (1 − |z|2)ηg(z̄) , (7.13)

where g(z̄) is antiholomorphic D. The closure of the linear span of such functions
is a Hilbert subspace of L2

η denoted here by H+. An orthonormal basis of H+ is
given by the countable set of functions

φn(z, z̄) ≡
√

(2η)n

n!
(1 − |z|2)ηz̄n with n ∈ N, (7.14)

where (2η)n = Γ(2η+n)
Γ(2η) is the Pochhammer symbol. Note that

∞∑

n=0

|φn(z, z̄)|2 = 1 . (7.15)
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Similarly, in the lower half-plane, we select all functions of the form

φ−(z, z̄) = (1 − |z|2)ηg(z) , (7.16)

where g(z) is holomorphic in D. The closure of the linear span of such functions is
now denoted by H−. An orthonormal basis of H− is given by the countable set of
functions

φn(z, z̄) ≡
√

(2η)n

n!
(1 − |z|2)ηzn with n ∈ N, (7.17)

Now, to define coherent states on the whole phase space, instead of considering
the direct sum H+ ⊕H−, we will deal with the Hilbert space C2 ⊗ L2

η with vector
elements

Φ(z, z̄) =

(
φ(z)
ψ(z̄)

)
, (7.18)

provided with the inner product

〈Φ|Φ′〉 =
∑

±

∫

D

Φ†(z, z̄)Φ′(z, z̄)µη(dz dz̄) . (7.19)

Here the sum is done over both half-planes and the integration over their corre-
spondent unit disks. We then introduce the Hilbert subspace of spinors spanned
by the orthonormal system

Φn(z, z̄) =
1√
2

(
φn

φn

)
, 〈Φn|Φ′

n′〉 = δnn′ . (7.20)

Again, we note here that

∞∑

n=0

Φ†
n(z, z̄)Φn(z, z̄) = 1 . (7.21)

For simplicity let us associate each element of this system to the elements of the
orthonormal basis in some separable Hilbert space of the type C2 ⊗H ≡ K

|n,±〉 ≡ |±〉 ⊗ |n〉 , |+〉 =

(
1

0

)
, |−〉 =

(
0

1

)
, (7.22)

We are now in measure of defining our vector coherent states. The following set of
2 × 2 diagonal real matrices is needed for the construction :

Fn(z, z̄) =
1√
2

(
φn(z, z̄) 0

0 φn(z, z̄)

)
(7.23)

We can define the following two orthogonal coherent states, as vectors in K

|z, k〉 ≡
∞∑

n=0

Fn(z, z̄)|k〉 ⊗ |n〉 k = ± . (7.24)

One easily verifies their normalization and the resolution of the identity as

∑

k=±

〈z, k|z, k〉 = 1 ,
∑

k=±

2

∫

D

µη(dz dz̄) |z, k〉〈z, k| = IK . (7.25)

The components of states (7.24) coincide respectively with Perelomov coherent
states of SU(1, 1) and their conjugates, in the corresponding unit disks, and after
proper transformations to coherent states of SL(2,R) on the half-planes.
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7.4.2 Berezin-Toeplitz quantization of classical observables

Quantization of a general classical observable f(z, z̄, k) is given by the operator

Af = 2
∑

k=±

∫

D

f(z, z̄, k)|z, k〉〈z, k|µη(dzdz̄) ≡
(
A+

f

A−
f

)
(7.26)

If we quantize f(q, p, k) defined by f(q, p,+) = q/p, p > 0, f(q, p,−) = (−1)ǫq/p,
p < 0, ǫ = 0 or 1 (to be made precise later, but we leave it for an option at
the moment), we hope to get the quantum counterpart of the classical time. Let
us take for now on just the upper half-plane, the corresponding results on the
lower half-plane will be joined together later. For this, we just use the normalized
SU(1, 1) coherent states |z〉 =

∑
n φn(z, z̄)|n〉. Time operator will be the result of

the following integral

Θ̂+ = A+
q/p =

2η − 1

π

∫

D

rn+n′+1 cosφ

(1 + r2 − 2r sinφ)2
(1 − r2)2η−1 ×

∞∑

n,n′=0

αnαn′ |n〉〈n′|, (7.27)

where

αn =

√
(2η)n

n!
. (7.28)

After some calculation we get the time operator

Θ̂+ = i(2η − 1)




∞∑

n≥n′

αnαn′(n′ − n)in−n′

B(2η − 1, n+ 1)|n〉〈n′|

+

∞∑

n′≥n

αnαn′(n′ − n)in−n′

B(2η − 1, n′ + 1)|n〉〈n′|


 . (7.29)

If we do a eigenvalue analysis of this operator we find, as is shown on figure 7.1,
that, the eigenvalues give a regular pattern and tends to a dense set over the real
line at the limit η −→ ∞. This recovers the continuous spectrum for the time
variable.

The form of the physical observable has to be recovered through the lower
symbol, that taken in coherent states |z〉 gives

〈z|Θ̂+|z〉 =
4q

p2q2 + (1 + p)2
=
q

p
(1 − r2) , (7.30)

where r = |z2|. As we can see in figure 7.2 the form of the quantized variable is the
one of the classical observable but is regularized at infinity. Note that this manifold
doesn’t depend on the parameter η.

To obtain an operator proportional to the classical Hamiltonian we must quan-

tize p2 which corresponds to use the function f(z, z̄,+) = p4 = (1−r2)4

(1+r2−2r sin φ)4 in
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Figure 7.1: Finite matrix approximation of the eigenvalues of time operator
for η = 0.6, 5, 20, 1000 respectively. Note how the points tend to spread
regularly and to become dense for high values of the parameter.
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Figure 7.2: Classical time function compared with the mean value of time
operator
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(7.26), this is,

A+
p2 = 4

∫
dz2 (1 − |z|2)2

(1 + |z|2 − 2ℑ(z))2
(1 − |z|2)2

(1 + |z|2 − 2ℑ(z))2
2η − 1

4π
×

×
∞∑

n,n′=0

αnαn′(1 − |z|2)2η−2(1 + |z|2 − 2ℑ(z))2znz̄n′|n〉〈n′| . (7.31)

We obtain the following penta-diagonal operator

A+
p2 =(2η − 1)

∞∑

n=0

{
α2

n [B(n+ 1, 2η − 3) + 4B(n+ 2, 2η − 3) + B(n+ 3, 2η − 3)] |n〉〈n|

+ 2 i αn+1αn [B(n+ 2, 2η − 3) + B(n+ 3, 2η − 3)] (|n〉〈n+ 1| − |n+ 1〉〈n|)
−αn+1αnB(n+ 3, 2η − 3) (|n〉〈n+ 2| + |n+ 2〉〈n|)} . (7.32)

Its lower symbol has the form:

〈z|A+
p2 |z〉 =

2η(2η − 1)

(2η − 2)(2η − 3)
p2 , (7.33)

which gives the classic energy, modulated by a factor depending on the group
representation linked to η. At the infinite limit of η, the concordance with the
classical variable is found.

Now, let us take the commutator between this two variables. After some cal-
culation we find the diagonal operator

[Θ̂+, A+
p2 ] = i

1

(2η − 2)(2η − 3)

∞∑

n=0

4n(2η + 2n− 1)|n〉〈n| (7.34)

and its expected value:

〈z| [Θ̂+, A+
p2 ] |z〉 =

i8η2(2η + 1)

(2η − 2)(2η − 3)
(2r4 + r2). (7.35)

The quantization procedure can be extended to other conjugate variables as
momentum and position. For the first quantity we simply use the function f = p
to find the following:

A+
p =

1

η − 1

∞∑

n=0

{
(η + n)|n〉〈n| + i

2
αn+1αn (|n〉〈n+ 1| − |n+ 1〉〈n|)

}
, (7.36)

Similarly, position operator will be given by:

A+
q = −

∑

n>n′

in−n′+1αn′

αn
|n〉〈n′| +

∑

n′>n

in−n′+1αn

α′
n

|n〉〈n′|. (7.37)

Once again, taking the lower symbols we find for the momentum:

〈z|A+
p |z〉 =

η

η − 1
p (7.38)

which recalls the result for p̂2. And for the position:

〈z|A+
q |z〉 = q. (7.39)
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We can see that for the position, this coherent state quantization is exact without
regard of the particular representation of the group that is used. Nevertheless
parameter η still control the distribution of the eigenvalues of A+

q operator. As is
shown in figure 7.3, for a finite matrix numerical approximation, for large values of
the parameter, the values tend to spread regularly on the real line more and more
densely, a similar result than for time operator.

This result is also seen in the commutator [A+
q , A

+
p ], which, after some rear-

rangement has the following matrix form

[A+
q , A

+
p ] =

i

η − 1

∞∑

n=0

(η + n+
1

2
)|n〉〈n|. (7.40)

For the lower symbol we find the following expression

〈z|[A+
q , A

+
p ]|z〉 =

i

η − 1

(
η
1 + r2

1 − r2
− 1

2

)

=
i

η − 1

(
η
1 + q2 + p2

2p
− 1

2

)
. (7.41)

One can see that this function is equal to i on the circle centered in q = 0 and p = 1
with radius 1/2η. As η > 1

2 the circle remains in the upper half-plane and for the
limit η → ∞ it contracts to a point.
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Figure 7.3: Finite matrix approximation of the eigenvalues of position op-
erator for η = 0.5, 5, 10, 1000 respectively. Note the variation on the scale of
the range covered by the eigenvalues. As for time operator, the set tends to
be uniformly distributed and dense at the limit where η −→ ∞.
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8
Conclusions

We have seen through the treated examples that coherent state quantization gives
an useful tool to construct quantum operators. Self-adjointness is ensured by def-
inition from the beginning for the quantization of any real function. The method
is quite general allowing the use of a broad class of states, among them, coherent
states defined by other means. In this way we have avoided the restriction posed
by the Pauli theorem on conjugated pairs of observables remaining in a well defined
Hilbert space context.

8.1 On these examples

In the phase operator case, the advantages of having a larger set of states on which
to represent the phase are clear. The convergence of the commutator at the classical
limit is more natural, analytical, than in previous proposals and the expected value
of the phase operator leads to the 2π-periodical sawtooth profile of the classical
phase.
Creation and annihilation operators can be found by quantizing the exponential of
the angle and their commutator converges to the usual one when the mean value
is taken on states with vanishing components at high energies. In concodance to
intuition, the limit is found by enlarging the dimension of the Hilbert space.

On the infinite well case, the definition of momentum, done by quantizing the
classical p function on the phase space instead of assuming the differential form
that contradict the Hilbert space imposed by the boundary conditions, give some
interesting results. This new operator is diagonal in the set of orthogonal states
chosen for the coherent state construction, with eigenvalues given by the possible
discrete values of momentum and energy operator, resulting from the p2 function
quantization, reproduces the expected spectrum.
The orthogonal functions, with sinusoidal shape on the position and gaussian func-
tions in the momentum, can be modulated to be as narrow or broad as we want
and thus modify the output of the lower symbol.
For position operator, which is not diagonal in these states, the numerical mean
value converges to the function to the classical mean value of position in the well
for sufficiently narrow functions, and reproduces the position q for functions with
a broad profile. That is, the coherent states allow a fair localisation in the well.
In the same way, the modulation of initial functions can show either a total decor-
relation of position and momentum through the product ∆Q∆P , or approach the
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quantum value for a region in the well as large as we want.
Quantization of time for a free particle, taken as the function q/p, shares with

the last example the use of vector coherent states. In this case the choice is imposed
by the singularity on P = 0 and in each component, corresponding respectively to
different halves of the complex plane coherent states where chosen as the ones for
SU(1, 1). Different representations of this group, labeled by a continuous parameter
µ were used to recover the classical limit.
The states used reveal to be useful in the quantization of other observables and
notably, give an exact quantization of position and a good convergence of the mean
value of momentum and energy to their classical values.
The mean value of time operator, has a shape close to the original q/p function
quantized as can be seen in figures.

8.2 Interpretation of CS quantization

Various questions arise from the application of this method. It clearly gives a good
alternative in problematic cases since everything is well defined in the respective
Hilbert spaces. First of all, in the choice of the coherent states used, we dont have a
unique possibility but just some normalization constraints. So what is the physical
relevance of these states? In the phase problem the choice seems to be more direct,
Fourier series being a natural way of decomposing periodical quantities, the addition
of vectors within these functions to enlarge the frame on which represent operators
has a correspondance on the functional properties of the classical observable. This
can be a clue to optimize the quantization method. For the motion on the infinite
well, we dont have such a “natural” choice. The same can be said for time operator
but these first results give a notion on how this mechanism can be tuned to reveal
the desired quantum counterpart of relevant classical observables. This suggests
that quantization is not unique but can be used as a filter, a tool, to bring to light
particular characteristics in the quantum realm. Another interesting question is the
appearance of non-commutativity. This can be attributed to the operator domains
within the Hilbert space and is a matter that opens the way to further explorations.

8.3 Challenges

The perspectives of this approach could be validated in the future through specifical
examples in physical systems. The construction of coherent states of the type used
here could be useful for specific experimental applications. The procedure can
find in this way a systematization that can rely on the configuration of particular
physical systems.
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A
Mathematical tools

In order to have the mathematical tools for the definition of physical relevant quan-
tities let me introduce the mathematical framework of complex functional analysis.
This introduction will follow the program of the book of W. Rudin for complex anal-
ysis [53], Simon and Reed [35] for functional analysis Akhiezer Glazman [6], von
Neumann [28] and A.Peres [4] for the measuring precess in quantum theory, J.P.
Dirac for standard formulation of quantum mechanics and coherent states, Klauder
and Sudarskan [29] and J.P. Antoine, T. Ali and J.P. Gazeau [8] for generalized
coherent states. Basic concepts will be exposed as a list of definitions and theorems
without proof that will allow to set the theoretical frame on which coherent state
quantization lies.

A.1 Measure theory

Definition A.1.1 Let X be a set. A σ-algebra F on X is a nonempty subset
of the powerset (the set of subsets) of X, closed under countable intersections and
countable unions with the following properties:
1) X belongs to F .
2) if A ∈ F , then the complement of A with respect to X, Ā ∈ F , then X̄ = ∅ ∈ F .
3) If a collection of An ∈ F with n = 1, 2, 3, . . . , then the union

⋃
nAn = A ∈ F .

As a consequence of this and 2),
⋃

n Ān ∈ F and its complement is also in the
σ-algebra, (⋃

n

Ān

)
=
⋂

n

An ∈ F . (A.1)

Definition A.1.2 A measurable space is the pair (X,F), and a measurable
set is any element of F .

Definition A.1.3 A topology τ is a nonempty set of subsets of X that satisfy:
1) ∅ ∈ τ and X ∈ τ .
2) Taken a collection of Vn ∈ τ with n = 1, 2, 3, . . . , the unions

⋂
n Vn ∈ τ .

3) The union of an arbitrary collection Vα of elements of τ is also in τ .

Definition A.1.4 The pair (X, τ) is called a topological space, the members of
τ are called open sets. A common example of a topological space is a metric space.
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Definition A.1.5 A measurable function f is a mapping of a measurable space
X into a topological space Y given that f−1(V ) is a measurable set for every open
sets V in Y .

Definition A.1.6 Given a topological space X, a Borel set is an element of the
smallest σ-algebra that contains all the open sets in X. This makes X a measurable
space and the Borel sets are the corresponding measurable sets.

Definition A.1.7 Any continuous mapping f from X to the real line or the com-
plex plane is called a Borel function.

Definition A.1.8 A function that maps X to a finite number of points in [0,∞)
is called a simple function.

Definition A.1.9 A positive measure, or just a measure, is a mapping µ from
a σ-algebra F to the interval [0,∞) such that

µ(∅) = 0 . (A.2)

If the measure of the whole set X is

µ(X) = 1 (A.3)

then the measure is a probability measure. In all cases monotonicity holds, that
is, if If A,B ∈ F and A ⊂ B then

µ(A) ≤ µ(B) . (A.4)

The measure of the union of countable disjoint sets Un gives

µ(
⋃

n

Un) =
∑

n

µ(Un) , (A.5)

that is, the countable additivity property is satisfied. Moreover, the measure of
pairwise disjoint members A1, A2, . . . , An of F

µ(A1 ∩A2 ∩ · · · ∩An) = µ(A1) + µ(A2) + · · · + µ(An) . (A.6)

Definition A.1.10 If a measure µ maps the σ-algebra into the complex plane C it
is quite naturally a complex measure

Definition A.1.11 A measure space is just a space that has a measure defined
on the σ-algebra of its measurable sets. It is defined sometimes as a triplet (X,F , µ).

Definition A.1.12 Let s and f measurable simple functions on a set X such that
0 ≤ s ≤ f , and E ∈ F , the Lebesgue integral of a particular f is defined as

∫

E

fdµ = sup

∫

E

sdµ . (A.7)

This integral is also a measure on F . The analog definition can be made for complex
measures and complex functions.
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A.2 Some topological notions

Definition A.2.1 X is a Hausdorff space if for any two elements a, b ∈ X one
can define a neighborhood V (a) and V (b) such that V (a)

⋂
V (B) = ∅.

Definition A.2.2 Let us suppose for simplicity that a topological space X is a
Hausdorff space. Then X is locally compact if we can define a compact neigh-
borhood for every point in it.

Definition A.2.3 If a set X contains a countable dense subset, it is said to be sep-
arable. This property is usually assumed ensure the validity of results in bounded
dimensional spaces to infinite ones as will be exposed later.

Definition A.2.4 A measure defined on the a σ-algebra of all Borel sets in a locally
compact Hausdorff space X is called a Borel measure on X.

A.3 Hilbert spaces

Definition A.3.1 A set V is called a vector space and its elements vectors if
two operations, commutative and distributive addition and multiplication are de-
fined.

Definition A.3.2 A linear transformation T maps a vector space V into an-
other vector space V ′ as

T (αa+ βb) = αTa+ βTb , (A.8)

for all scalars α and β and all elements a, b ∈ V . If V ′ is the field of scalars, T is
called a linear functional.

Definition A.3.3 The space of all linear functionals on a vector space V is called
the dual space V ∗. As an example, the Lebesgue integral is a linear functional.

Definition A.3.4 The space Lp(µ) consists in all the functions f such that the
Lebesgue integral (∫

|f |pdµ
)1/p

= ||f ||p <∞ . (A.9)

Here ||f ||p is called the Lp norm of f .

Definition A.3.5 Lp(µ) is a complete metric space, that is, every cauchy se-
quence converges to an element in Lp, for 1 ≤ p ≤ ∞ and every positive measure
µ.

Theorem A.3.6 Lp is a vector space

Definition A.3.7 A complex vector space V is an inner product space if we can
define an operation called inner product on it that satisfies the following properties
given x, y ∈ V :
1) (x, y) = (y, x)
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2) (x+ y, z) = (x, z) + (y, z) i.e. it is distributive in the sum
3) (αx, y) = α(x, y)
4) (x, x) ≥ 0 for all x ∈ V , the equality holds only when x = 0

This properties lead to the definition of the norm as ||x|| = (x, x)
1
2

Definition A.3.8 The Schwartz inequality derives from these properties

|(x, y)| ≤ ||x||||y|| (A.10)

Definition A.3.9 As well as the triangle inequality

||x+ y|| ≤ ||x|| + ||y|| (A.11)

Definition A.3.10 An inner product vector space H where every Cauchy sequence
converges to elements in H (i.e. complete) is called a Hilbert space.

Definition A.3.11 Let V be a vector space and A a set in it, now take two ele-
ments x, y ∈ A, A is a convex set if

A ∋ z = ax+ by = (1 − t)x+ ty (A.12)

for any t ∈ [0, 1]. Note that a+ b = 1. This is extendable to the sum

z =

N∑

n=1

anxn (A.13)

where all xn ∈ V , and
N∑

n=1

an = 1. (A.14)

Note that the set of an is a probability measure.

Theorem A.3.12 L2 is the only Lp space that is a Hilbert space. The “square
integrable” space function has an inner product defined as

〈f, g〉 =

∫
f ∗ gdµ (A.15)

where f and g are complex measurable functions.

Definition A.3.13 For x, y ∈ H, if the inner product gives (x, y) = 0, then they
are said to be orthogonal.

Definition A.3.14 If A,B ⊂ H and (x, y) = 0 for every x ∈ A and y ∈ B, then
A and B are orthogonal subsets of H.

Definition A.3.15 If S is an orthogonal set in H and no other set contains S as
a proper subset then S is an orthogonal basis for H.

Definition A.3.16 The set of vectors that are orthogonal to a subset M ∈ H is
called the orthogonal complement M⊥. M and M⊥ are both Hilbert spaces and
have only the 0 vector in common. The whole space H can be written as

H = M +M⊥ (A.16)
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Theorem A.3.17 Projection theorem
If M is a closed subset in a Hilbert space H, and z ∈M , w ∈M⊥ then any x ∈ H
can be decomposed uniquely as x = z + w.

Theorem A.3.18 Every Hilbert space has an orthonormal basis and if this basis
is countable, H is separable.

A.4 Operators:

Definition A.4.1 A linear transformation T from a Hilbert space H to another
H′ is bounded if there exist a positive number α ∈ R such that ||Ax|| ≤ α||x||.

Definition A.4.2 A linear transformation A defined in a dense subspace D(A) ⊂
H is called, in quantum mechanics, an operator. The set D(A) is the domain of
the operator. Two operators A and B are said to be equal if their action on vectors
is the same and if their domains coincide

Aφ = Bφ φ ∈ D(A) = D(B) (A.17)

Definition A.4.3 The infimum of all possible values of α determines the opera-
tor norm of A

||A|| = infα|||Ax|| ≤ α||x||∀x ∈ H. (A.18)

Theorem A.4.4 Riesz for bounded transformations. A linear functional γ on a
Hilbert space H is bounded if and only if there exist a unique vector y ∈ H such
that γ(x) = (x, y) for all x ∈ H.

Definition A.4.5 An operator A is said to be symmetric if

(Ax, y) = (x,Ay) (A.19)

for all x, y ∈ D(A)

Definition A.4.6 If A is an operator, there exists a unique operator A∗ called the
adjoint of A such that

(Ax, y) = (x,A∗y) (A.20)

for all x and y. ||A|| = ||A∗||.

Theorem A.4.7 If A is an operator, x is a vector and {xi} a family of vectors
such that

∑
i xi = x, then

∑
iAxi = Ax.

Definition A.4.8 An operator P is called a projection if it maps a separable
Hilbert space into another and P 2 = P . If in addition P = P ∗ it is an orthogonal
projection.

Definition A.4.9 The spectrum Λ(T ) of an operator T is the set of all complex
numbers λ such that T − λI = 0.

Theorem A.4.10 If T is self-adjoint then Λ(T ) is a subset of the real axis.
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Theorem A.4.11 Spectral theorem
For a bounded self-adjoint operator A on a Hilbert space H and a bounded real
measurable function F on a measure space M , we can always find a measure µ on
M and a unitary operator U such that

(UAU−1f)(x) = F (x)f(x) (A.21)

Theorem A.4.12 Every bounded self-adjoint operator is a multiplication operator.

Theorem A.4.13 Riesz representation theorem
Let X be a locally compact Hausdorff space and T a positive linear functional. Then
there is a σ-algebra F in X such that it contains all the Borel sets and there is a
unique positive measure µ such that it represents T as

Tf =

∫

X

fdµ (A.22)

Theorem A.4.14 Stone theorem
Let A be a self-adjoint operator on a Hilbert space H, there exists a unique unitary
family of operators Ut parametrized by t, such that

Ut ≡ eiAt . (A.23)

The unitary operators are strongly continuous, that is

lim
t−→t0

||Ut − Ut0 || = 0 . (A.24)

Definition A.4.15 Let X be a non-empty set, and G a group acting on it, X is
a homogeneous space if G acts continuously and transitively1 on X. If X is a
topological space, transitivity implies the indistinguishability of the elements in X
under the action of G and gives a structure to the set as a single orbit of G.

In particular, if X is the real line, it is homogeneous for the group of transla-
tions since we can cover ?? all the set continuously through the application of the
group and there is always a g ∈ G that maps two points in the set. Note that a
finite interval is not homogeneous for the group of translations.

A.4.1 Self-adjoint extensions

If an operator A is Hermitian but not self-adjoint, we can measure how far is A from
being self-adjoint operator by analyzing the part of its spectrum that is imaginary.
That is, from the eigenvalue equation

Aφ = ±iφ , (A.25)

we want to know the dimension of the set of states such that

(A∓ i1)φ = 0 , (A.26)

1G acts transitively in X if for any x and y ∈ X there is some g ∈ G such that g ·x = y
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and this will give a deficiency index n±

n+ = dimKer(A− i1)

n− = dimKer(A+ i1) (A.27)

on which to apply a criterion.

Theorem A.4.16 Von Neumann criterion
For an Hermitian operator with deficiency indices n+ and
1) If n+ = n− = 0 then A is self-adjoint and only in this case the spectrum of A is
a subset of the real axis.
2) If n+ = n−, A the domain of A can be extended so as to have a self adjoint
operator. The spectrum 3) If n+ 6= n− there is no self-adjoint extension to A.

But these extensions have to be chosen regarding the correspondence that they
have in the physical conditions they imply. We will return to the problem of higher
dimensional extensions in chapter 6 when we analyze the infinite well problem.
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