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Ultrasound imaging

Blood flow characterization ⇒ fundamental clinical data
Need for blood flow motion estimation methods
Current methods suffers from some limitations

Objective of the thesis
Propose a new method to estimate blood flow motion that
overcomes known limitations
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General definitions

Ultrasound (US) imaging often used for blood flow evaluation
Advantages

low cost
reduced size
⇒ portable US systems
non-invasive exam
real time

Weaknesses
limited resolution
limited contrast
operator-dependent
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General definitions

Definition of the frame of reference

x is the lateral direction
y is the axial direction
t is the temporal direction
z is the azimuthal direction
∆t is the time interval between
two consecutive images
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Formation of an ultrasonic signal

Emission of an ultrasonic wave
Backscattering of signal by scatterers in the medium
Sum of several contributions to construct one signal
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Different echographic signals

RF

=⇒
Envelope
detection

Envelope

=⇒
Logarithmic
compression

B-mode
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Point Spread Function

Point Spread Function (PSF) of a linear probe

Simulated with Field II

Knowledge of PSF is important
PSF is asymmetric
⇒ narrower in the axial direction
Gaussian shape
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Resolution cell

Resolution cell
Full Width at Half Maximum (FWHM) of the PSF envelope
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Doppler methods

Doppler techniques are a reference
Advantages

real time estimation
robust methods

Weaknesses
Estimation of low velocities difficult
Limited spatial resolution
Axial component estimated
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Illustrations of Doppler techniques

Color Doppler Pulsed Doppler
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Objectives

Motion estimation
Propose a method for blood flow velocities estimation from
ultrasound image sequences

Data simulation
Propose a fast methodology adapted to simulation of large
amount of flow sequences
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Existing methods

Two families of methods for simulation of ultrasound images :
Acoustical approach

use of acoustical propagation equations :
Field II [Jensen, 96], DREAM [Piwakowsky & Sbai, 99]
Rayleigh’s integral discrete representation :
Ultrasim [Holm, 01]

System approach
use of a linear convolution model :
[Meunier & Bertrand, 95] [Gao et al., 09]
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Existing methods

Comparison of different approaches

Advantages Drawbacks

Field II acoustical simulation
important simulation
time, linear model

System
approach

reduced simulation
time

simplified model,
constant PSF

=⇒ we chose system approach
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Linear convolution model

We define :
T (x , y , z) as the impulse response of explored medium
H (x , y , z) as the impulse response of imaging system

RF signal S (x , y , z) is defined by [Meunier & Bertrand, 95] :

S (x , y , z) = H (x , y , z)⊗ T (x , y , z)

S (x , y , z) =

∫ ∫ ∫
T (µ, ν, ω)×H (x − µ, y − ν, z − ω) dµdνdω
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Linear convolution model

Impulse response of system

H (x , y , z) = exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

))
.cos (2πfy)

Impulse response of tissue

T (x , y , z) =
∑

n

anδ (x − xn, y − yn, z − zn)

with an the amplitude of a scatterer located in (xn, yn, zn)
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Meunier’s proposal

Question
Is it necessary to perform 3D convolution ?

Meunier & Bertrand propose an alternative to perform a 2D
convolution instead of a 3D convolution assuming :

constant azimuthal profil Hz()

constant echogenicity at a given depth
more than 5 scatterers per resolution cell

Limitation : scatterers remain within the imaging plane
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Our solution

Proposition
Account for 3D motion by projecting scatterers before 2D
convolution [Marion & Vray, IEEE Trans. UFFC, 2009]

Preservation of scatterers within
[k − 3σz , k + 3σz ]

Projection I towards P

xp = xi

yp =
√

y2
i + (zi − k)2

zp = k

Ap = Ai .exp

(
−(zi − k)2

2σ2
z

)
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Convolution implementation

2 possible approaches for convolution :
analytical expression
for i = 1 to Nd ,

im = im + Ai .exp
[
−0.5 ∗

(
xi−x
σ2

x
+ yi−y

σ2
y

)]
.cos (2πf (yi − y))

numerical convolution with a grid
approximation of each scatterer to the closest node of a
sampled grid
use of a numerical convolution algorithm
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Convolution implementation

Comparison of computation time for each approach
Core 2 duo processor (2.66GHz) - 3Gb RAM

Size of Number of scatterers CPU time [s] Ratio
Image PSF Direct Grid

261*102 27*21 7700 84 0.014 6000
521*202 27*21 31600 1264 0.059 21400

1040*402 27*21 128000 15760 0.27 58300

n the number of pixels
complexity of direct method O(n2)

complexity of grid method O(n)

=⇒ We prefer the grid approach BUT
mesh size is a critical parameter
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Synthesis scheme
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Statistics of simulated signals

First-order statistics of simulated data [Wagner et al., 83]

RF data
⇒ Gaussian distributed

Envelope data
⇒ Rayleigh distributed
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Statistics of simulated signals

Second-order statistics of simulated data [Smith & Wagner, 84]

Autocovariance2D(RF) Autocovariance2D(env)
≈ ≈

Autocovariance2D(PSF) PSF
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Flow modelization

Objective
Modelization of blood flow motion

θ1 : vessel orientation within
the imaging plane
θ1 = 30˚
θ2 : out-of-plane vessel
orientation
θ2 = 5˚
R : radius of the vessel
Vmean : mean velocity
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Validation of the displacement model

longitudinal out-of-plane oriented
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Specific methods in US imaging

Doppler-based methods
Time-shift estimation [Bonnefous & Pesqué, 86] [Hein &
O’Brien, 93] [Viola & Walker, 03]
Phase-shift estimation [Kasai et al., 85] [Loupas et al., 95]
[Jensen, 96]
Frequency-shift estimation [Ferrara & Algazi, 91] [Kouamé et
al., 03]

Multi-beam Doppler [Newhouse et al., 94] [Tortoli et al., 05]

Synthetic aperture [Jensen & Munk, 98] [Anderson, 98] [Liebgott et
al, 08]

Decorrelation-based methods [Tuthill et al, 98] [Lupotti et al, 02]
[Aoudi et al, 06]
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Optical flow estimation methods

Differential methods based on preservation of intensity
Optical Flow Constraint Equation (OFCE)

∂I
∂x

vx +
∂I
∂y

vy +
∂I
∂t

= 0

1 equation, 2 unknowns ⇒ aperture problem
Spatial smoothing [Horn & Schunck, 81]
Locally constant optical flow [Lucas & Kanade, 81]
Directional smoothing [Nagel & Enkelmann, 86]

Difficulties
No boundaries in US imaging
Gradient operator

local ⇒ high frequency in US data
global ⇒ smoothing, reduce resolution

Small displacements can be estimated
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Block-matching methods

Motion is visible

2 images : one reference block, several candidate blocks
Hypothesis : constant motion within a block, constant value
along time
(dis)similarity criteria
Rigid [Bohs et al., 00] or deformable [Basarab et al., 08]
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Spatiotemporal/Spatiofrequential approaches

Steerable filters [Adelson & Bergen,
85][Freeman and Adelson 87]

Structure tensor [Bigün et al., 91] [Jähne, 93]
[Lauze et al., 04]

Physiological studies [Watson & Ahumada, 83] [Foster et al., 85]
neuron ⇔ spatiotemporal band-pass filters
Spatiofrequential ⇒ 3D Fourier spectrum ≈ plane [Jacobson
& Wechsler, 87]

Local estimation of the 2D plane [Simoncelli, 92] [Wilson & Gill,
93] [Oddershede et al., 08] [Marion & Vray, EUSIPCO, 2008]
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2D Orientation in space-time data

Moving object ⇒ oriented pattern in space-time data

v =
ft
fs

tan (θ)

ft temporal sampling
fs spatial sampling
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2D Orientation in space-time data

Proposition : estimate texture
orientation with spatiotemporal
oriented filtering
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Fourier spectrum of US data

g(x , y) =
1

2πσxσy
exp

(
− x ′2

2σ2
x
− y

′2

2σ2
y

)
{

x
′
= xcos θ + ysin θ

y
′
= −ysin θ + ycos θ

[Marion & Vray, GRETSI, 2007]
[Marion & Vray, IEEE Ultras. Symp., 2007]
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Energy criterion

Iθ : pixel values after filtering by θ-oriented filter
Definition of an energy criterion

E(x , t , θ) =

C/2∑
c=−C/2

N/2∑
n=−N/2

(
Iθ(x + c, t + n)− Iθ(x , t)

)2

Main orientation obtained by maximization of E

θ̂ = argmax
θ

(E(x , t , θ))
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3D Orientation in space-time data

vx =
ft
fx

tan θ.cosϕ

vy =
ft
fy

tan θ.sinϕ

[Marion & Vray, Elsevier Pattern Recognition, 2009]
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3D Orientation in space-time data
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Construction of 3D spatiotemporal filters

We define the filter by :

g(x , y , t) =
1

(2π)3/2σxσyσt
exp

(
−x ′′2

2σ2
x
− y

′′2

2σ2
y
− t

′′2

2σ2
t

)

where (x ′′y ′′t ′′) are coordinates after rotations
We have to bring the frame of reference x

′′
y

′′
t
′′

towards xyt
Rotation R−θ,y with an angle −θ around y -axis then
rotation R−ϕ,t ′ with an angle −ϕ around t

′
= R−θ,y (t)
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Energy criterion

Iϕ,θ : pixel values after filtering by (ϕ, θ)-oriented filter
Definition of an energy criterion

E(x , y , t , ϕ, θ) =

C/2∑
c=−C/2

L/2∑
l=−L/2

N/2∑
n=−N/2

[
Iϕ,θ(x + c, y + l , t + n)− Iϕ,θ(x , y , t)

]2

Main orientation obtained by
maximization of E

(̂ϕ, θ) = argmax
ϕ,θ

(E(x , y , t , ϕ, θ))
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Sequences and performance criteria

9 experimental sequences (Sfb1−5 and Sfs6−9)
mean velocity from 0.25mm/s to 1.73mm/s
orientation from 0◦ to 8◦

16 simulated sequences (Ss1−16)
mean velocity from 0.4mm/s to 2mm/s
orientation from 0◦ to 30◦

Performance criteria
Estimated mean velocity components v̂x
Estimated mean velocity components v̂y

Estimated mean modulus |̂v |
Estimated mean orientation ϕ̂

Adrien MARION Motion estimation in US imaging 44/55



Background and motivations
Simulation of ultrasound image sequences

Spatiotemporal oriented filtering for motion estimation
Conclusions and perspectives

Motion estimation in the literature
Spatiotemporal filtering for dense motion field estimation
Evaluation of the method

Experimental configuration

Phantom
gelatin to simulate biological
tissues
silica to replace scatterers
1mm diameter vessel

Blood mimicking fluid

Imaging system
Vevo 660, VisualSonics,
Toronto (40MHz)
B-mode image sequences
Axial resolution : 40µm
Lateral resolution : 80µm
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Results with 2D oriented filtering

Purely lateral motion

Sfb2 (experimental) Ss3 (simulated)

Normalized mean values and standard deviations
calculated along 15 temporal frames
Velocity profile is well estimated
Low standard deviations
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Results with 2D oriented filtering

Estimated mean velocities for each
sequence
Close to theoretical values

Pulsed flow
Estimated mean velocities
≈ 1.05mm/s
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Results with 3D oriented filtering

2D motion estimated from Ss9 (simulated, 20◦)

Vx profile Vy profile

Estimates globally less precise than with 2D filtering
Errors between theoretical and estimated profiles are
increased
Standard deviations are also increased
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Results with 3D oriented filtering

|̂v | ϕ̂

Loss of precision when velocity increases
Orientations are more difficult to estimate
Errrors on velocity components due to orientation rather
than modulus
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Comparison with other methods

3 motion estimation methods, Ss1 (simulated, 0◦)

Speckle Flow Index
⇒ CPU Time Ratio = 1
Spatiotemporal Filtering
⇒ CPU Time Ratio ≈ 2500
Block Matching
⇒ CPU Time Ratio ≈ 6000
Bilinear Deformable Block
Matching
⇒ CPU Time Ratio ≈ 6000
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Contributions

Simulation of ultrasound data
Efficient methodology for fast simulation of ultrasound
image sequences
Simulated database for evaluation of blood flow estimation
algorithms

Blood flow motion estimation
New method based on a spatiotemporal approach
Evaluation with a large set of sequences
Encouraging results for difficult situations
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Perspectives

Use of RF signals to study small displacements
more precise estimates but smaller range of velocities

Investigate other spatiotemporal approaches
Preliminary results with structure tensor method

Improvement of the simulator
Reduce simulation time for a real-time application
[Marion et al., IEEE Ultras. Symp., 2009]

Evaluation with more conventional data (5MHz)
Ultrasonix
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Grid approximation errors

ME : maximum error
ACH95 : abscissa of cumulative histogram superior to 95%
Evolution as a function of oversampling coefficients
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Validation of the displacement model

longitudinal out-of-plane oriented
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Optical flow estimation methods

Differential methods based on preservation of luminosity
Optical Flow Constraint Equation (OFCE)

∂I
∂x

vx +
∂I
∂y

vy +
∂I
∂t

= 0

1 equation, 2 unknowns ⇒ aperture problem

1 Null gradient
⇒ NO

2 Unidirectional gradient
⇒ NO

3 Bidirectional gradient
⇒ OK
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Optimization of research strategy

For steady flow ⇒ 2 steps filtering
Coarse estimation θ1 with angular resolution δθ
Fine estimation θ2 with angular resolution 1◦

Nf (δθ) = 180/δθ + 2 ∗ δθ + 1

with Nf the number of filters

Minimization of δθ gives us δθ = 9 or
δθ = 10
⇒ 180/39 ≈ 4.6
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Quaternion algebra : some definitions

R2ψ, ~Vn
a rotation around ~Vn with angle 2ψ

Q the associated quaternion :

Q = a + b.i + c.j + d .k
Q = (cosψ, sinψ~N)

~U
′

rotated vector of ~U by rotation R is given by :

(0, ~U
′
) =

(
0,R2ψ, ~Vn

(~U)
)

= (cosψ, sinψ ~Vn).(0, ~U).(cosψ,−sinψ ~Vn)
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Construction of 3D spatiotemporal filters

We define Q1 associated to R−θ,y

Q1 = cos
(
−θ
2

)
+ sin

(
−θ
2

)
j

We compute t
′

from :

(0, ~t ′) =

(
cos

(
−θ
2

)
+ sin

(
−θ
2

)
j
)
.(0,~t).

(
cos

(
−θ
2

)
− sin

(
−θ
2

)
j
)

We then define Q2 associated to R−ϕ,t ′

Q2 = cos
(
−ϕ
2

)
+sin

(
−ϕ
2

)
~t ′(1)+sin

(
−ϕ
2

)
~t ′(2)+sin

(
−ϕ
2

)
~t ′(3)
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Performance criteria

Local criteria
Normalized mean error Ex
Normalized mean error Ey

Normalized mean standard deviations stdx
Normalized mean standard deviations stdy

Global criteria
Estimated mean velocity components v̂x
Estimated mean velocity components v̂y

Estimated mean modulus |̂v |
Modulus mean standard deviation std|v |
Estimated mean orientation ϕ̂
Orientation mean standard deviation stdϕ

Adrien MARION Motion estimation in US imaging 62/55



Results with 3D oriented filtering

v̂x v̂y

Global criteria to evaluate reliability of estimates
Velocity components are globally well estimated
Saturation phenomenon
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