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Ultrasound imaging

o Blood flow characterization = fundamental clinical data
o Need for blood flow motion estimation methods
o Current methods suffers from some limitations

Objective of the thesis

Propose a new method to estimate blood flow motion that
overcomes known limitations
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General definitions

Ultrasound (US) imaging often used for blood flow evaluation

Advantages Weaknesses
o low cost o limited resolution
o reduced size o limited contrast
= portable US systems o operator-dependent

O non-invasive exam

o real time =
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General definitions

o Definition of the frame of reference
Temporal t

—
Lateral x

Adrien MARION

X is the lateral direction

y is the axial direction

t is the temporal direction
z is the azimuthal direction

Ay is the time interval between
two consecutive images
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Formation of an ultrasonic signal

o Emission of an ultrasonic wave
o Backscattering of signal by scatterers in the medium
o Sum of several contributions to construct one signal
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Different echographic signals
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Point Spread Function

o Point Spread Function (PSF) of a linear probe

e

b
o

o Knowledge of PSF is important

o PSF is asymmetric
= narrower in the axial direction

o Gaussian shape

Normalized amplitude [AU]
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Simulated with Field Il
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Resolution cell

Resolution cell
Full Width at Half Maximum (FWHM) of the PSF envelope J
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Doppler methods

Doppler techniques are a reference
o Advantages
o real time estimation
o robust methods
o Weaknesses

o Estimation of low velocities difficult
o Limited spatial resolution
o Axial component estimated
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lllustrations of Doppler techniques

B1:159914 Jan38  TIs10 MIT CAROTIDNUGULA & 0 17612 17 May 62 Ths02 N:032

= 98: 31 Ja il ™ y
SUNHYEROCKIU TOROHNTO L1 mm SmPartThyr 15:57:08  Fré81 30cm B8 Uit rasound Research 50 CVasciCar 34600 pw  Fr #2208 40cm
o R ———"

Wep 2
L7CdBIC 3
it Low
Fr Rate Med 20 OptGen
2 Aoz Fr RataHgh
Col 74% Mapd
W Med
FRE700 Hz
Flow OptiLas V.

Color Doppler

Adrien MARION Motion estimation in US imaging 12/55



Background and motivations

Simulation of ultrasound image sequences
Spatiotemporal oriented filtering for motion estimation
Conclusions and perspectives

Objectives

Motion estimation

Propose a method for blood flow velocities estimation from
ultrasound image sequences

Data simulation

Propose a fast methodology adapted to simulation of large
amount of flow sequences
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Conclusions and perspectives Displacement model

@ Simulation of ultrasound image sequences
O Simulation of US data in the literature
O Simulation of US data from a set of 3D moving scatterers
O Validation of the simulation model
O Displacement model
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Existing methods

Two families of methods for simulation of ultrasound images :
o Acoustical approach

o use of acoustical propagation equations :
Field Il [Jensen, 96], DREAM [Piwakowsky & Sbai, 99]
o Rayleigh’s integral discrete representation :
Ultrasim [Holm, 01]

o System approach

o use of a linear convolution model :
[Meunier & Bertrand, 95] [Gao et al., 09]
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Existing methods

o Comparison of different approaches

Advantages Drawbacks
important simulation
time, linear model
System reduced simulation | simplified model,
approach | time constant PSF

Field Il acoustical simulation
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Existing methods

o Comparison of different approaches

Advantages Drawbacks
important simulation
time, linear model
System reduced simulation | simplified model,
approach | time constant PSF

Field Il acoustical simulation

— we chose system approach
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Linear convolution mode

We define :
o T(x,y,z) as the impulse response of explored medium
o H(x,y, z) as the impulse response of imaging system

RF signal S (x, y, z) is defined by [Meunier & Bertrand, 95] :

S(x,y,2)=H(x,y,2)® T (x,y,2)

S(X7y7z):///T(M)”)"‘))XH(X_M?.}/_sz_w)d'udydw
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Linear convolution model

o Impulse response of system

1(x2 y?2 22
H(x,y,z) =exp “5(52 + }a/_Z s .cos (2rfy)
X y z

o Impulse response of tissue

T(x,y,2) :Zané(x—xn,y—yn,z—zn)
n

with a, the amplitude of a scatterer located in (Xp, ¥n, Zn)
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Meunier’s proposal

Question
Is it necessary to perform 3D convolution ?

Meunier & Bertrand propose an alternative to perform a 2D
convolution instead of a 3D convolution assuming :

o constant azimuthal profil Hz()

o constant echogenicity at a given depth

o more than 5 scatterers per resolution cell
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Meunier’s proposal

Question
Is it necessary to perform 3D convolution ?

Meunier & Bertrand propose an alternative to perform a 2D
convolution instead of a 3D convolution assuming :

o constant azimuthal profil Hz()
o constant echogenicity at a given depth
o more than 5 scatterers per resolution cell

Limitation : scatterers remain within the imaging plane
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Our solution

Proposition

Account for 3D motion by projecting scatterers before 2D
convolution [Marion & Vray, IEEE Trans. UFFC, 2009]

o Preservation of scatterers within
[k — 302,k+302]

o Projection | towards P x
(X = X 2
Yo = \JYF+(2i—k)? Y
Ap = Aj.exp T op2 I(yi, o) FWps%) :
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Convolution implementation

2 possible approaches for convolution :

o analytical expression
fori=11to Ny,

im =im + A;.exp [—0.5 * (% 4 %)}

.cos(2rf(yi—y))
o numerical convolution with a grid
o approximation of each scatterer to the closest node of a
sampled grid
o use of a numerical convolution algorithm
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Convolution implementation

o Comparison of computation time for each approach
Core 2 duo processor (2.66GHz) - 3Gb RAM

Size of Number of scatterers CPU time [s] Ratio
Image PSF Direct Grid
261*102 | 2721 7700 84 0.014 | 6000
521*202 | 27*21 31600 1264 0.059 | 21400
1040%402 | 27*21 128000 15760 0.27 | 58300

o nthe number of pixels

o complexity of direct method O(n?)

o complexity of grid method O(n)
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Convolution implementation

o Comparison of computation time for each approach
Core 2 duo processor (2.66GHz) - 3Gb RAM

Size of Number of scatterers CPU time [s] Ratio
Image PSF Direct Grid
261*102 | 2721 7700 84 0.014 | 6000
521*202 | 27*21 31600 1264 0.059 | 21400
1040%402 | 27*21 128000 15760 0.27 | 58300

o nthe number of pixels

o complexity of direct method O(n?)

o complexity of grid method O(n)
—> We prefer the grid approach BUT =
mesh size is a critical parameter & LRMN
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Synthesis scheme

3D exact positions of the
scatterers are calculated
for each time volume

N Exact weighted projection
J onto the imaging plane
Selection of the size
of the grid mesh
. Approximation on
the grid
k sk k 2D Convolution

PSF

Computation and
e display of the image
sequence WM
LRMN

Image 1 Image 2 Image n

Y
‘l
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Statistics of simulated signals

o First-order statistics of simulated data [Wagner et al., 83]

5000

4000

000 RF data
2000 = Gaussian distributed

1000

Envelope data
= Rayleigh distributed

2 6
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Statistics of simulated signals

o Second-order statistics of simulated data [Smith & Wagner, 84]
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Flow modelization

Objective
Modelization of blood flow motion

Azimuthal z Lateral x
O 64 : vessel orientation within
the imaging plane
6y = 30°
o 6o : out-of-plane vessel
orientation
0o =5

o R :radius of the vessel

Axial y

O Vinean : mean velocity
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Validation of the displacement model
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O Evaluation of the method
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Specific methods in US imaging

o Doppler-based methods
o Time-shift estimation [Bonnefous & Pesqué, 86] [Hein &
O’Brien, 93] [Viola & Walker, 03]
o Phase-shift estimation [Kasai et al., 85] [Loupas et al., 95]
[Jensen, 96]
o Frequency-shift estimation [Ferrara & Algazi, 91] [Kouamé et
al., 03]
o Multi-beam Doppler [Newhouse et al., 94] [Tortoli et al., 05]

o Synthetic aperture [Jensen & Munk, 98] [Anderson, 98] [Liebgott et
al, 08]

o Decorrelation-based methods [Tuthill et al, 98] [Lupotti et al, 02]
[Aoudi et al, 06]
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Optical flow estimation methods

o Differential methods based on preservation of intensity
o Optical Flow Constraint Equation (OFCE)
8IV +8IV Jr8/_0
aox oy ot
o 1 equation, 2 unknowns =- aperture problem
o Spatial smoothing [Horn & Schunck, 81]
o Locally constant optical flow [Lucas & Kanade, 81]
o Directional smoothing [Nagel & Enkelmann, 86]

Difficulties
o No boundaries in US imaging
o Gradient operator
o local = high frequency in US data

o global = smoothing, reduce resolution g
o Small displacements can be estimated W%
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Block-matching methods

o Motion is visible

Exploration zone ~ Estimated
v

Blood vessel motion vector
\

\ '
\ '

v '

8 '

N i

'

'

z

[Flow direction,

- -|- - Best candidate

- Reference block

AYmaz

:
AZmaz

o 2 images : one reference block, several candidate blocks

o Hypothesis : constant motion within a block, constant value
along time

o (dis)similarity criteria

o Rigid [Bohs et al., 00] or deformable [Basarab et al., 08] W%
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Spatiotemporal/Spatiofrequential approaches

o Steerable filters [Adelson & Bergen,
85][Freeman and Adelson 87]

o Structure tensor [Bigiin et al., 91] [Jihne, 93]
[Lauze et al., 04]

o Physiological studies [Watson & Ahumada, 83] [Foster et al., 85]
neuron < spatiotemporal band-pass filters

o Spatiofrequential = 3D Fourier spectrum =~ plane [Jacobson
& Wechsler, 87]

o Local estimation of the 2D plane [Simoncelli, 92] [Wilson & Gill, .
93] [Oddershede et al., 08] [Marion & Vray, EUSIPCO, 2008] Creiin
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2D Orientation in space-time data

o Moving object = oriented pattern in space-time data

r? z t1 to t3

f temporal sampling
fs spatial sampling

.......
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Spatiotemporal oriented filtering for motion estimation

2D Orientation in space-time data

Temporal t

-
i

Temporal t

Lateral x

Axialy
Proposition : estimate texture {
orientation with spatiotemporal 5 W Lateral x
oriented filtering —

=) Cre i
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Fourier spectrum of US data

Motion estimation in the literature
Spatiotemporal filtering for dense motion field estimation
Evaluation of the method

2 y/2 0.5
9ix.y) = 2moxoy _2702( - 271}2,
X = xcos0 + ysinf
y = —ysin6 + ycos 6

[Marion & Vray, GRETSI, 2007]
[Marion & Vray, IEEE Ultras. Symp., 2007]
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Energy criterion

o Ip : pixel values after filtering by 6-oriented filter
o Definition of an energy criterion

c/2  Nj2

E(x,t,0)= > > (Ie(X+c,t+n)—E(Xaf))2

c=—C/2n=—N/2
o Main orientation obtained by maximization of E

6 = argmax(E(x, t,6))
0

Adrien MARION Motion estimation in US imaging



Background and motivations

Simulation of ultrasound image sequences
Spatiotemporal oriented filtering for motion estimation
Conclusions and perspectives

3D Orientation in space-time data
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f
Vy :f—ttan6.003¢
X

fi ,
Vy :f—;tan 6.sin

[Marion & Vray, Elsevier Pattern Recognition, 2009] Creitii
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Construction of 3D spatiotemporal filters

o We define the filter by :

X”2 yll2 t/l2
T 5 2 5 2 5 2
205 20y 20;

Q(X,yat): exp

(2m)3/20x0y 0y
where (x"y"t") are coordinates after rotations
o We have to bring the frame of reference x”y"t" towards xyt

o Rotation R_gy, with an angle —6 around y-axis then
rotation R_, , with an angle —p around t' = R (1)
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Energy criterion

o 1, : pixel values after filtering by (i, #)-oriented filter
o Definition of an energy criterion
c/2 L/j2  NJ2

E(x,y,to,0)= > > Y [Iw,g(x+c,y+l,t+n)—ﬁ(x,y,t)r

c=—C/2|=—L/2 n=—N/2

o Main orientation obtained by ;
maximization of E g
(.0) = argmax(E(x, y,t,¢,0)) "8

»,0

ol 00 gt it
LRMN
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Sequences and performance criteria

o 9 experimental sequences (Sgp1_5 and Sysg_g)
o mean velocity from 0.25mm/s to 1.73mm/s
o orientation from 0° to 8°

o 16 simulated sequences (Sgs1_16)

o mean velocity from 0.4mm/s to 2mm/s
o orientation from 0° to 30°

o Performance criteria
o Estimated mean velocity components v
o Estimated mean velocity components v,
o Estimated mean modulus \/v\|
o Estimated mean orientation ¢

)
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Experimental configuration

o Phantom o Imaging system
o gelatin to simulate biological > Vevo 660, VisualSonics,

tissues Toronto (40MHz)
o silica to replace scatterers o B-mode image sequences

> 1mm diameter vessel o Axial resolution : 40pm
o Blood mimicking fluid o Lateral resolution : 80pum
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Results with 2D oriented filtering

o Purely lateral motion

5,

---Theoretical
— Estimated
55 55
E E
£ =
= 6] =
B B 6
@ 3
a a
6.5
6.5
-8.2 0 02 04 06 08 0.5 1 1.
Velocity along x [mm/s] Velocity along x [mm/s]
Swo (experimental) Ss3 (simulated)

o Normalized mean values and standard deviations
calculated along 15 temporal frames

o Velocity profile is well estimated :
o Low standard deviations W%
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Results with 2D oriented filtering

25 ——Theoretical velocities

| S|
i1.5 5 age
£ o Estimated mean velocities for each
@ ! sequence

0s o Close to theoretical values

0

222233383
Sequences

= 2
E
£
,51.5 o Pulsed flow
s o Estimated mean velocities
= ~ 1.05mm/s

0 2 4 6 W%

Time [s]
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Results with 3D oriented filtering

o 2D motion estimated from Sgg (simulated, 20°)

5
5

——-Theoretical N —-~-Theoretical
52 —Estimated 5.2 —Estimated
_54 == _54 - =
£ £
Es6 Esg
< <
=4
258 § 5.8
6 6
6.2 6.2
0 0.2 0.4 06 -0.05 0 005 01 015 02 025
Velocity along x [mm/s] Velocity along y [mm/s]
V profile V) profile

o Estimates globally less precise than with 2D filtering
o Errors between theoretical and estimated profiles are
increased :
o Standard deviations are also increased W%
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Results with 3D oriented filtering

— Theoretical velocities 40 — Theoretical orientations
25 + Estimated velocities + Estimated orientations
+
+
2 30
= +
£ = ++
£15 520
=
! 10
e
05
0
0Sfb1 Sfs1 Ss1  Ss&  Ss9 Ssi13 Sl Sfst Ss1 Ss6  Ss9  Ss13
Sequences Sequences
—
V] 9

o Loss of precision when velocity increases
o Orientations are more difficult to estimate

o Errrors on velocity components due to orientation rath

er .
than modulus Cre i
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Comparison with other methods

© 3 motion estimation methods, Sgy (simulated, 0°)

. - 0.8
——-Theory
—BM

——Theory
BDBM

o
>

o

@

o Speckle Flow Index

= CPU Time Ratio = 1
7 ; o Spatiotemporal Filtering
14 1“: 1.8 2 22 2.\47‘&2.6 QA 1.6"/ 18 2 22 2\4 26 :> CPU Time Ratio % 2500
‘ I - |=m=| o Block Matching
ml = CPU Time Ratio ~ 6000

N

Y
N
0.2 ] \R}

Velocity [mm/s]
o
<
Tty [rms]
o
b

o
N

4 §
A 4

B i % o Bilinear Deformable Block
. ' ) Matching

(e / |
14 16 18 2 22 24 26 q 4 16 18 2 22 24 26

Depth [mm] Depth [mm] :> CPU T|me RatIO ~ 6000 <
Cre i
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o> o
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=
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@ Conclusions and perspectives

Adrien MARION



Background and motivations
Simulation of ultrasound image sequences
Spatiotemporal oriented filtering for motion estimation

Conclusions and perspectives

Contributions

o Simulation of ultrasound data
o Efficient methodology for fast simulation of ultrasound
image sequences
o Simulated database for evaluation of blood flow estimation
algorithms

o Blood flow motion estimation
o New method based on a spatiotemporal approach
o Evaluation with a large set of sequences
o Encouraging results for difficult situations
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Perspectives

o Use of RF signals to study small displacements
o more precise estimates but smaller range of velocities

o Investigate other spatiotemporal approaches
o Preliminary results with structure tensor method

o Improvement of the simulator

o Reduce simulation time for a real-time application
[Marion et al., IEEE Ultras. Symp., 2009]

o Evaluation with more conventional data (5MHz)

o Ultrasonix WM
LRMN
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Grid approximation errors

o ME : maximum error

o ACHO95 : abscissa of cumulative histogram superior to 95%
o Evolution as a function of oversampling coefficients
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Validation of the displacement model
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Optical flow estimation methods

o Differential methods based on preservation of luminosity
o Optical Flow Constraint Equation (OFCE)

ol ol ol

avx + @Vy a4 a =0
o 1 equation, 2 unknowns = aperture problem
ATE
@ N @ Null gradient

. — Normal optical flow

= NO

@ Unidirectional gradient
= NO

(@ Bidirectional gradient
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Optimization of research strategy

o For steady flow = 2 steps filtering
o Coarse estimation ¢ with angular resolution dy
o Fine estimation 6> with angular resolution 1°

Nf(59) = 180/59+2*59+1

with N; the number of filters

100

90
80

G o Minimization of dy gives us dy = 9 or
jz 09 =10
0 = 180/39 ~ 4.6

o
3% 10 20 30 40 50 W%
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Quaternion algebra : some definitions

© Ry, y;, @ rotation around V,, with angle 2y
o Q@ the associated quaternion :

Q = a+bi+tcjtdk
Q = (cosy,sinyN)
o U rotated vector of U by rotation R is given by :

0,0) = (o, R, WH(U)) = (cosw, sinyV,).(0, 0).(cosw, —simp Vy)
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Construction of 3D spatiotemporal filters

© We define Qy associated to R_g,y

—0 . (=0 .
Q@ = cos <7) + sin <?>1

o We compute t from :

0,t) = (cos <_29> + sin (_29> j) (0, 7). (cos (_29> — sin <_29) j)

© We then define Q; associated to R_, »

Q. = cos (_Z(’D)Jrsin (—2@) 1‘7(1)+sin (?) t7(2)+sin (_;D) 1‘7(3)
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Performance criteria

o Local criteria

Q
Q
Q
Q

o ©

© 0 0 ©

Normalized mean error E,
Normalized mean error E,

Normalized mean standard deviations stdy
Normalized mean standard deviations std),
o Global criteria
Estimated mean velocity components vy
Estimated mean velocity components v,
Estimated mean modulus |v|

Modulus mean standard deviation std), |
Estimated mean orientation ¢
Orientation mean standard deviation std,
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Results with 3D oriented filtering

— Theoretical velocities —Theoretical velocities
25 + Estimated velocities 12 + Estimated velocities
+ 1
2 +
= + =08 +
£1s £
£ £os6
& @
1 04
05 02
0
Sfb1 Sfs1 Ssi Ss5 Ss9 Ssi3 Sfb1  Sfs1 Ssi Ss5 Ss9 Ssi3
Sequences Sequences
~ ~
Vx vy

o Global criteria to evaluate reliability of estimates
o Velocity components are globally well estimated

o Saturation phenomenon Cre i
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