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1 Introduction 

1.1 Introduction 

When in 1947 the first transistor was introduced, no one could imagine how huge impact it 

would have on the development of the microtechnologies. While Feyman was rather the 

pioneer who predicted that “There’s plenty of room at the bottom”, probably even him was 

rather surprised by the level of the advancement that has taken place after. Since at the 

beginning semiconductors have been used due to their specific electrical properties, soon the 

advancement in the fabrication processes offered us the possibility of easy miniaturization of 

the electronic devices. One may say that forty years ago probably many of us thought that 

there is no limit in such a process what leaded us to some general laws describing it, including 

the Moore’s law. 

In 1967 [1],  Nathanson et al. decided to use the existing fabrication processes in order to 

create not only small electrical devices but also small, very simple mechanical structure which 

was the resonating MOS gate made of gold that was used in standard processes as the 

interconnection layer. Such a device opened the discussion about the possible application of 

the well known technological processes (and relatively simple those days) used for the 

electronics circuits for the fabrication of simple mechanical structures. Of course, such an 

approach caused that engineers started to study not only electrical but also mechanical 

properties of silicon and other materials used for the electronics circuits fabrication. Soon, it 

became obvious that the silicon is very promising material that may be used for both 

applications and then, the Microsystems idea arisen. 

1.1.1 Microsystems and their economical impact 

What are MEMS? 

MEMS is an abbreviation for the Micro Electro Mechanical System and, as it indicates, it 

describes the small scale (ranging from about 0.1µm to a few mm) systems that combines 
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both electrical and mechanical components. In such a system we may have simple mechanical 

structures like membranes, bridges, cantilevers etc. as well as transistors, resistors, diodes and 

other electronic components. Such a variety of “low level” devices is then combined in order 

to create the system level component. The main advantage of such a solution are small 

dimensions that allow us to fabricate extremely small devices like sensors or actuators. 

Moreover, we may try to integrate peripherals that are needed to assure them correct operating 

conditions. Such a combination is called the System on Chip (SoC) which is now an 

extensively developed approach. The advantages of such a system are numerous like the 

elimination of long interconnections which occupy space and add some parasitic effects or the 

possibility of the collective packaging. As the fabrication process is similar to the one used in 

the microelectronic industry, we are able to fabricate multiple systems at the same time at 

high yield what drastically reduce costs. Thus, this branch of the microelectronics industry is 

one of the most expansive one in the last decade. 

Moreover, since last few years many functional materials and processes were developed in 

order to increase the functionality of such microdevices so nowadays, we may easily say that 

the MEMS branch is almost developing faster than the pure microelectronics industry. The 

range of applications becomes wider and wider starting with typical “oldest” ones like 

pressure sensors or accelerometers ending with sophisticated microfluidic lab-on-chips for 

DNA analysis or microrobots.  

Microsystems roadmap 

According to the report published in 2006 by NEXUS [2] and Electronics Industry Market 

Research and Knowledge Network [3], the overall MEMS market was estimated for 5 billion 

US dollars in 2005 and it is forecasted to grow to 15 billion US dollars in 2012 with the 

average annual growth rate of about 15%. It may indicate that we are now on the expansive 

track for the next years and the advancement in research and development of MEMS devices 

should be impressive. As it is shown in Fig. 1.1, the main domain of today’s MEMS devices 

are hard disk RW heads as introduction of such elements reduces drastically costs of 

fabrication. As one can remark, values presented on graph are higher that it was cited and the 

reason is that for complete systems where, for example in printer heads, not all elements are 

classified as MEMS. Nevertheless, an important issue is the application area of MEMS, where 

one of the most promising one is the “life science” domain which covers very wide spectrum 

of interest like medical applications or biological and chemical science. It has to be said that 
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many research successes in these domains were possible only by using specialized MEMS 

systems like DNA analyzers or chemical sensors based on functional layers. 

 
Fig. 1.1 The MEMS market evolution by products category [3]. 

 

Also, the medical domain was even affected by the expansion of microtechnologies. 

According to some reports [4], the MEMS technology opens us the way to use a completely 

different techniques and methods in diagnosis, surgery and the monitoring of our health. For 

example, the surgeons need the fast feedback during operation what may be assured by the 

use of miniaturized sensors. Therefore, the Minimally Invasive Surgery (MIS) idea appeared 

and it is predicted that in the next 15 years almost 80% of the surgery intervention will be 

done by using this technique [5,6]. Engineers then applied their imagination and Fig. 1.2 

shows us the possible surgery tools that may be used in the near future and which are already 

in the phase of early development like micro submarine “fighting” with diseases [7]. 

 
Fig. 1.2 The future surgery tools based on MEMS components [4]. 
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The second important part of medical applications is the diagnosis. There are a lot of attempts 

in order to develop sensors that may be easily used in the places that are difficult to reach and 

thus, the small dimension of MEMS is one of the most promising feature in such applications. 

Of course, there are a lot of chemical, biological and physical sensors that exists but there is 

still a lot of challenges in medical domain where the environment forces some project 

constraints that are not simple to fulfill. Starting with biocompatible packaging and ending 

with power consumption. Moreover, the integration of many sensors and actuators, as well as 

integrated circuits is desirable in order to obtain the complete system. Such a device may be 

implanted in a permanent way, monitor online our physiology and react if necessary what 

may be easily imagined on blood analyzers [8] example or diabetic when the insulin could be 

dosed when necessary at the right dose.  

1.1.2 Pressure sensors in the MEMS family 

About 18% of the MEMS sold in the world are various pressure sensors [2]. They are mostly 

applied in automotive, aeronautic and medical applications where small weight and 

dimensions are crucial. The advancement in microtechnologies allowed us to fabricate 

extremely small and sensitive sensors at low cost and thus, this branch of MEMS is still 

growing, offering cheaper and more reliable solutions. Moreover, if we call the TREAD 

(Transportation Recall Enhancement, Accountability and Documentation) act, all vehicles 

manufactured after 2007 in the United States of America have to be equipped with the tyre 

pressure monitoring unit. Having in mind that the U.S. vehicle market is the biggest in the 

world and such a regulations may affect soon the other countries, we may easily see the 

perspective for the pressure sensors market. 

Basically, there are many different pressure transduction mechanism including two main 

ones: piezoresistive and capacitive but in fact, the main principle of the pressure sensing 

remains unchanged since few decades. The choice between two mechanisms is application 

driven and all advantages and drawbacks have to be considered in order to choose the one that 

suits best the project requirements.  Even though, still the good design of such a device is not 

a trivial task. Mainly, because in order to fabricate the proper sensors we have to simulate 

their behavior in order to reduce cost of development and thus, time-to-market. If one wants 

then to apply the common approach of the “virtual prototyping”, models and simulation tool 

must take into account all phenomena that occurs in such a device and mainly three domains 

have to be considered: mechanical, electrical and thermal one. It leads us to the multidomain, 

coupled analysis which is often tedious. Thus, since few decades along with the development 
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of functional materials and fabrication processes, the advancement in the design and 

simulation tools based on the Finite Element Method [9] or Compact Modeling [10] is also 

visible. 

1.1.3 Project context 

All works on modeling and optimization of the piezoresistive pressure sensor included in this 

thesis were conducted in the frame of the national project of the French National Agency for 

Scientific Research (ANR). The main goal of the project was to develop the micro pressure 

sensor for the intracranial pressure measurement. The medical aspect of the project is 

extremely important while the measurement of the intracranial pressure (ICP) is indicated in 

neuro-traumatology in cases of a serious cranial injury. The necessity of such a device may by 

confirmed by the fact that only in Europe, about 6000 pressure sensors are implanted each 

year for such a purpose. As such a project is definitely application driven, there are many 

partners involved including clinical consultants and the industry.  

Despite some existing solutions that allow us to perform such a task, two main problems 

arise: wire based communication and the temporal drift.  Existing solutions are based on the 

small sensor implanted into the human’s head whereas data are transmitted via long wire to 

the measurement unit. The schematic view of such a system and a photo of the real system 

that is commercially available are shown below (Fig. 1.3). 

 
Fig. 1.3 The schematic view of the ICP measurement system and an example of the existing sensor 

(courtesy of CODMAN®). 

 

As one may easily noticed, such a method is not very convenient for the patient as his ability 

to move freely is strongly reduced during the measurement. Additionally, if we consider the 

fact that in many cases such a procedure of ICP monitoring lasts a few weeks, we may easily 

imagine how difficult it can be for the patient. 

Patient’s 

head 

Measurement 

unit 

Wire 
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The second, and even more important problem from the medical point of view, is the 

temporal drift. As the sensor operates in the “living” environment and once implanted have to 

stay in the human body till the end of monitoring period, it is affected by the different 

processes like the contact with proteins that may deposit on the membrane and, as a result, 

changes its mechanical properties and the output signal. As a solution, we added an auto-

calibration feature that may overcome this problem by the in-vivo self-testing procedure. 

Such a feature is possible by adding the micromachined electrode under the sensor membrane 

what allows us to apply the voltage between them and generate the “electrostatic pressure”. 

Such a generated pressure will influence the sensor output signal and, as a result, allow to 

correct the sensor response. 

 

Such an application, however, sets a lot of project constraints that have to be fulfilled. For 

example, if we want to transmit data via wireless communication protocol and thus increase 

the mobility level of the patient, the transceiver circuit must be an integral part of the sensor. 

As such a circuit needs a lot of power, the sensor itself should operate at power consumption 

level that is the lowest possible. In many cases, the capacitive transduction is envisaged as the 

sensor cell itself consumes a very little amount of power. Nevertheless, the circuit that 

converts the capacitance change into the frequency shift does. Moreover, as we plan to 

connect the sensor cell into the readout electronics via about 20 cm long cable, the parasitic 

capacitance may become a serious issue. Thus, the piezoresistive transduction mechanism 

was chosen as it does not need any complicated electronic circuits to convert the capacity 

change into the useful voltage signal even if the sensor itself will consume some steady state 

power used for the Wheatstone bridge supply what will be further elaborated. 

Having in mind that the implanted device should be as less invasive as possible, it implicates 

that the lateral size of the membrane should be small. Moreover, addition of the second 

electrode under the membrane in order to use the auto-calibration feature limits the membrane 

vertical movement. Such a limit is due to the fact that the generated “electrostatic pressure”, 

which is a function of the distance, should be as high as possible in order to influence the 

output signal as much as possible. 

To summarize, as we want to maximize the sensitivity of the sensor, we may not just increase 

it by simple decreasing of the membrane rigidity what is usually done but it has to be 

achieved by the proper choice of the strain gauge parameter. Moreover such a proper design 

of our sensor may decrease significantly other unwanted phenomena as temperature drift or 

generated noise. 
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It causes that the optimization phase is essential in order to deal with tradeoffs that have to be 

made in order to fulfill the project constraints and, at a time, obtain the best possible sensor 

performance. As a result of this work, the complete simulation tool based on analytical 

models that deals with all above mentioned problems is presented along with it advantages 

and drawbacks that come from some simplifications due to the analytical origin of the 

mechanical models. The electrostatic generator is a subject of a different work and will not be 

presented here. However, it has to be emphasized that all work that have been done and 

presented in this work take into account all project requirements that were mentioned above 

including the limits added by the built-in generator. 

1.2 Thesis layout 

This thesis is divided into three major blocks. At the beginning, the principles of 

piezoresistive pressure sensors design will be presented. All phenomena that occurs in such a 

device will be explained in details along with the theoretical background that is needed in 

order to understand the design logic. Additionally, the alternative method of simulation will 

be presented along with it advantages and drawbacks and an alternative method will be 

explained. It will be followed by the comparison between them in order to validate the 

proposed method. 

The second part of this work will be dedicated to the design and optimization of the pressure 

sensor design in general. The proposed optimization method will be presented as well as the 

CAD tools that were created in order to help the designer in such a task. Moreover, the 

statistical approach will be presented as a simple solution that may be (under some 

conditions) useful in a simple preproduction yield analysis. 

Last part of this work is focused on the fabrication of the sensor and its characterization. The 

complete technological process that was developed will be presented as well as the 

measurement setup that was used for the sensor characterization. Then, experimental results 

that confirm some simulation based results will be given. Additionally, the author’s own 

investigation concerning the experimental verification of the thermal coefficient of resistance 

for uniformly doped layers will be presented. Finally, the overall conclusion as well as the 

perspectives for the future work will be given. 
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2 Piezoresistive pressure 

sensor theory 

In this chapter, an overview on the principle and modeling of MEMS piezoresistive pressure 

sensors will be presented. At the beginning, the basic mechanical transduction mechanism, 

which is the core of every pressure sensor, will be presented along with some theory and its 

mathematical description. That will be followed by the in-deep insight on the piezoresistive 

phenomenon in Silicon including the basic physical description, modeling approaches and 

experimental data published by now. Consequently, it will bring us to the section that will be 

sacrificed on the fabrication method and modeling of the implanted strain gauges which use 

the piezoresistive effect to the mechanical into electrical signal conversion. Moreover, the 

description of all fabrication related modeling issues such as: diffused layer modeling, process 

parameters identification as well as noise issues will be explained. Then, we will focus on the 

brief description of the Wheatstone bridge, the simple electronic readout circuit which is used 

in order to obtain a voltage signal at the output of the sensor, what will explain us the main 

advantages and drawbacks of such a transduction and will help us to understand why it is the 

most common type of the conversion. 

As we presented in the previous chapter, there are some different approaches to modeling 

where the Finite Element Method is mainly used in the Microsystems design so at the end, 

some discussion about drawbacks of such an approach will be presented and, as an 

alternative, all previously mentioned facts will be combined in order to create a complete, 

piezoresistive pressure sensor analytical model which is the base of the created design and 

simulation tool. 

2.1 Mechanical signal transduction 

If we are talking about the pressure measurement, it would be highly desirable to know 

exactly what in fact is measured, so let us cite the basic definition as follows. 
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Pressure – the force per unit area applied to an object in the direction perpendicular to the 

surface. The basic unit in SI units system is Pascal (1 Pa = N/m2) 

 

In other words, the pressure is a mechanical value (force) that has to be measured. It has to be 

emphasized, that in micro scale sensors the amount of particles is enormous in comparison to 

sensor dimensions and they are in constant random motion in every direction what implies, 

that the pressure value do not depend on the position or the direction of the sensor in the 

measured medium. Such an assumption may fails only if we are working under conditions of 

the extremely low pressures were the number of molecules is very low. 

2.1.1 Sensor layout – absolute and relative 

As Einstein said “Everything is relative”, so the pressure should also obey this well known 

rule, and it does. There are mainly three modes of pressure measurement that are in use: an 

absolute, a differential and a relative one (Fig. 2.1) which are somehow similar but the basic 

differences exist. 

 
Fig. 2.1 Three basic modes of the pressure measurement. 

 

In the differential mode, two different external pressures P1 and P2 are supplied to the sensor 

inputs and as a result, the signal which is proportional to the difference between them 

(∆P=P1-P2) is generated at the output. 

The relative mode, however, needs only one input signal P1 and instead of second pressure as 

in the previous case, the reference pressure Pref is used to calculate the output signal. The Pref 

is thus, an integrated part of the measurement system. 

A special case of the relative mode, where the reference pressure is equal to the vacuum 

pressure is called an absolute mode which, for example, is widely use in the atmospheric 

pressure measurement. 

Pressure measurement 

modes 

Absolute Differential Relative 
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As it was written in the first chapter, the main principle of micro pressure sensors remains 

unchanged since a few decades and actually, it is based on the conversion of the applied 

pressure into the mechanical movement of a membrane (Fig. 2.2). 

 
Fig. 2.2 The basic principle of the micromachined pressure sensor. 

 

Because, as we said, there are three basic modes of the pressure measurement, the sensor 

layout for each mode should be different what is presented in Fig. 2.3. 

 
Fig. 2.3 Exemplary sensor layouts for differential a), relative b) and absolute c) pressure measurement. 

 

Considering any type of the pressure sensor, the most important part of it is its membrane, and 

thus, in order to fully understand the conversion mechanism we need to know the mechanics 

that rules the behavior of it.  

2.1.2 Membrane mechanical behavior 

When some solid material has no mechanical load applied on it, all atoms in within it are 

arranged in a way where the potential energy of a system is minimal - a stable equilibrium 

state (Fig. 2.4 a). If we, however, apply some load onto it, it will try to rearrange the atomic 

structure. Considering, for example, a tensile loading we will observe the relative elongation 

∆l/l  of the solid which is called the strain ε. It may be considered as a result of a force that will 

be applied on each atom in a structure what, according to the third law of Newtonian 

dynamics, will cause a reaction forces that will appear between atoms (Fig. 2.4 b). 

Applied pressure 

Thin membrane 

P1 

P2 

P1 P1 

Pref Pvacuum 

a)  b)  c)  
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Fig. 2.4 A two-dimensional view of the crystal lattice and the corresponding macroscopic representation of 

a solid material under tensile loading. 

 

Such a reaction force exerted per unit area is called the stress σ. The macroscopic applied 

force F total load, is an integral of the stress over the sample surface S (2.1). 

∫=
S

totalload dSF σ      (2.1) 

Stress and strain values are related by the known relation, called the Hook’s law (1678) (2.2). 

The coefficient of relation is called the Young’s modulus E and, as we can see, the relation is 

linear. 

εσ ⋅= E       (2.2) 

where 

S

F=σ  and 
l

l∆=ε  

The reason why the linearity occurs is that we consider that all strains (tensile or compressive) 

caused by the external load are small (about few %) and thus, we consider that the potential 

energy of atoms in a function of their relative distance obeys the quadratic law as it is 

depicted in Fig. 2.5. 

 
Fig. 2.5 The potential energy W of two atoms as a function of the relative distance between them r. r0 is the 

equilibrium distance, r1 and r2 are effects of compressive and tensile loading respectively [11]. 

F load 

F reaction 

F total load 

l 
l+∆l 

S 

a) b) c) 
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If we consider the potential energy W in the neighborhood of the equilibrium distance r0, we 

may express it as follows (2.3). 

( ) ( )2
00 rrkwrW −+=     (2.3) 

As we know, the force is the first derivative of the energy over the distance so it leads us to 

the relation (2.4). 

( ) ( )02 rrk
r

rW
F −=

∂
∂=     (2.4) 

It proves that the force has to be the linear function of the relative elongation if we are 

working in the small deformation regime and it has to be emphasized that all mechanical 

calculations which are used in following chapters obey this rule. 

Timoshenko’s model 

Until now, we used the word membrane to describe the thin diaphragm which is used in the 

mechanical signal conversion but at this moment, in order to avoid confusion, we have to 

precise our language according to the mechanical nomenclature. In general, we can 

distinguish three basic theories concerning the diaphragms: 

 

• Thick plate theory 

• Thin plate theory 

• Membranes theory 

 

The factor that distinguishes between these three approaches is the length a to height h 

ratio [12] what is provided in Fig. 2.6. 

 
Fig. 2.6 Distinguishing limits that separate thick plate, thin plate and the membrane. 

10 80 h

a
Thick plate Thin plate Membrane 

a 

h 
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The problem of the analytical description of such a system is not new and throughout the 

years, many outstanding scientists such as: Euler (1766) [13], Bernoulli (1789) [14] or 

Kirchhoff (1850) [15], to name but a few, have worked on it. It has to be noticed that in 

almost all pressure sensors, thin plates and membranes are used (length to height ratio over 

10) and the simple explanation for it is that thick plates provide us with the sensitivity which 

is not enough what will be explained later. Because the membrane theory is a simplification 

of a thin plates theory, in further investigations we will always consider that the sensing part 

of a sensor as a thin plate but for the reason of daily language we will call it the membrane. 

 

Among many theories that have been worked out like the Lagrange equation (1828) [16], 

which was corrected by Poisson (1829) [17], one of the most important is the Kirchhoff’s 

plate theory which was describe in his thesis (1850). After that, as a continuation and 

development of Kirchhoff’s theory, the outstanding work was presented by Timoshenko 

(1913) [18], but just some decades later in 1959 together with Woinowsky-Krieger a textbook 

[19] that is fundamental in the plate bending analysis was published. Thus, all analyses that 

will be performed in next sections are based on that work. 

 

Basically, the out-of-plane deformation of a membrane, which has an uniform thickness and 

is perfectly clamped, in the steady state is governed by the Lagrange equation (2.5) which 

allows us to calculate the out-of-plane membrane deflection w(x,y) as a function of Cartesian 

coordinates (x,y). 

34

4

22

4

4

4

hD

P

y

)y,x(w

yx

)y,x(w
2

x

)y,x(w

⋅
=

∂
∂+

∂∂
∂+

∂
∂ α    (2.5) 

P represents the differential pressure applied on the membrane; h is its thickness; D is a 

rigidity parameter which depends on material properties whereas α is an anisotropy 

coefficient which depends on the crystallographic orientation. 

Material properties 

It is a good moment to say some words about the material which the sensor is made of before 

we proceed to the solution of the equation (2.5). The knowledge about the silicon has 

advanced dramatically since it became the core of the microelectronics industry and thus, we 

can easily say that it is one of the most known materials in the world which was characterized 

in almost all possible ways for the needs of new devices with outstanding performances. The 

main reasons [20] why silicon is so popular also in Microsystems are: 



Chapter 2: Piezoresistive pressure sensor theory 

 18

• High Young modulus (comparable to the steel) while the weight is close to the 

aluminum 

• Melting point at about 1400ºC what causes that it may be processed at high 

temperatures 

• Low coefficient of thermal expansion  

• No mechanical hysteresis, silicon remains elastic in a very wide range of loads. 

 

The monocrystalline silicon is a part of the IV group of the periodic table and its lattice is 

considered to be face-centered diamond cubic structure with the lattice constant b of 5.43Å 

[21] (Fig. 2.7). Thus, its properties are moderately anisotropic, what makes the mathematical 

description much more complex and the crystal orientation has to be taken into account in any 

mechanical calculations. 

 
Fig. 2.7 The model of the crystal lattice of silicon [21] and corresponding crystallographic directions 

expressed as Miller indices. 

 

Normally, each element of a cubic shape crystal lattice under mechanical loading will be 

exposed to normal and shear stresses as it is shown in a Fig. 2.8. 

 
Fig. 2.8 Stress components in a small cubic element of the material. 
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Thus, the stress in a small volume of such a material has to be expressed as a tensor with nine 

independent elements what implies that the generalized Hooke’s law (2.2) for anisotropic 

coefficients has to be rewritten, in more general form (2.6). 

εεεεσσσσ C=       (2.6) 

Stress vector σ consists of nine independent stress components (Fig. 2.8) and strain vector ε 

contains nine corresponding strain components while C is called the stiffness matrix and is 

described by eighty-one coefficients. 

If we, however, consider that the material is in the state of equilibrium, what causes that there 

is no torsional movement, some of the stress components will have the same value (σxy= σyx; 

σzy= σyz; σxz= σzx) and thus, the stress and strain vector may be reduced to only six 

components. 

There is, however, another feature of the silicon that makes all the calculation much easier. 

Fortunately, because of the diamond-like structure, the orthogonal directions have the same 

mechanical properties [22] what causes that the tensor of elasticity, which is used to fully 

describe the stress-strain relation in silicon crystal, which now can be considered as an 

orthotropic material, has only three different nonzero valued coefficients. Generally, after all 

simplifications and applying the following convention of indexing (2.7), the stress-strain 

relation for crystalline silicon, instead of its basic form (2.2) in case of isotropic materials, 

may be provided by the following equation (2.8) if we consider that the wafer is cut along 

the (100) plane what is usually done. 
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The E symbol represents the Young’s modulus whereas ν corresponds to the Poisson’s ratio. 

The factor G in (2.8) is called the shear modulus or Coulomb modulus and it describes the 

reaction of the material to the shear stress. The anisotropy coefficient α that appeared in (2.5) 

is then easily calculated using (2.9) and (2.10). 

( )ν+
=

12
E

G       (2.9) 

( )
E

G 212 ννα −+=      (2.10) 

Nevertheless we have to be conscious about different values of the basic parameters 

depending on the crystallographic directions. In table 2.1, the basic mechanical parameters of 

Silicon are presented for the most popular directions <100> and <110> [23]. 

 

Table 2.1 Mechanical parameters of silicon in a function of crystallographic direction [23]. 

Direction 
Young modulus 

[GPa] 

Shear modulus 

[GPa] 

Poisson 

coefficient 

Anisotropy 

coefficient 

<100> 129.8 79.5 0.278 1.4067 

<110> 168.9 50.4 0.0625 0.6621 

 

As we can easily notice, differences are remarkable and they are essential to perform a proper 

analysis of our system, especially if we consider the piezoresistivity phenomenon what will be 

shown later in this work. 

Solution of the mechanical system 

Let us go back to the equation (2.5) that governs the steady state mechanical behavior of the 

membrane under the uniform loading. To start with, in order to interpret results correctly, we 

have to define the Cartesian coordination system by setting its origin (0,0) in the center of our 

plate. The XY plane is then considered to be parallel to the membrane plane where a and b 

represent the plate lateral dimensions (Fig. 2.9). 

 
Fig. 2.9 Cartesian coordination system that is used for computing of the membrane mechanical behavior. 
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As it is the differential equation, in order to solve it, a set of boundary conditions has to be 

defined. In our case the assumption about the perfectly clamping is enough to formulate them 

as follows (2.11). 
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 (2.11) 

As we can remark, the model supports only the simplest shapes of the membrane like square 

and the rectangular one, what in real applications is rather enough. The circular shapes are 

also supported but for the reason of easier calculations, the coordinates system has to be 

changed into the polar one. During the next few pages we will try to present the solution of 

(2.5) for each of the basic shape and finally we will say some words about the stress 

distribution in the deformed plate. 

Rectangular and square membranes 

The exact solution of (2.5) does not exist and thus, some approaches [24, 25, 26] were 

presented in order to approximate it. The most popular is the polynomial approximation [27] 

where the general formula that provides us with the membrane deformation w(x,y) as a 

function of coordinates is given by a series (2.12). It is valid for rectangular shape and a 

special case of it, a square one. 
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The correction coefficient c in a formula which describes the maximal deflection value w0, is 

dependent on the membrane shape (more precisely on a /b ratio) whereas kij is the matrix of 

coefficients. Both values are calculated using the potential energy minimization method 

proposed by Galerkin [28]. For typical, a/b ratios (ranging from 1 to about 4), the series (2.12) 

is enough approximation if we limit its order n to 3 [29]. Thus, the matrix kij consists of nine 

values. Precise calculations of these coefficients are quite tedious and they are presented in 

details in the literature [30], so here we limit ourselves to provide calculated values for typical 

a/b ratios (tables 2.2 and 2.3). 
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Table 2.2 Correction coefficient c for the maximal deflection value in a function of the membrane shape. 

a/b ratio 1 2 3 

c coefficient 0.0164 0.0314 0.0319 

 

Table 2.3 kij matrix coefficients computed by using the Galerkin method [29]. 

a/b ratio 1 2 3 

k00 1 1 1 

k02 0.214 1.3025 1.9056 

k20 0.214 0.0134 0.005 

k22 0.2748 0.166 -0.2237 

k24 0.9801e-1 0.6994 1.5084 

k42 0.9801e-1 -0.0205 -0.0232 

k40 -0.6227e-2 -0.0013 0.004 

k04 -0.6227e-2 0.4133 3.0122 

k44 -0.1035 0.0801 0.0506 

 

Circular membrane 

The things look a little bit different if one wants to consider the isotropic circular membrane 

which is characterized by its radius R. Such a system is characterized by the axial symmetry 

(Fig. 2.10), so in order to simplify calculations, the out-of-plane deformation w(r) is 

considered to be dependent only on the distance form its center r (2.13). 

 
Fig. 2.10 Axial symmetry of the circular membrane. 
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At this moment, one can ask a question: what about the anisotropy? The answer is that the 

anisotropy, in case of circular membranes, is taken into account only in the maximal 

deformation calculations [31] and the form of the membrane is not considered to be 

orientation dependent. 

Stress distribution 

Having computed the membrane deflection, for our application, the more important thing that 

has to be calculated is the stress distribution over the membrane surface. According to the 

Hooke’s law, for rectangular membrane the in-plane (XY) stress value as a function of the 

position on the membrane surface (x,y) may be expressed by using formulas (2.14) and (2.15). 
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Whereas for the circular membrane the only radius dependent formula is given by (2.16). 
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As we can see, the stress values are independent of the Z-axis. The reason of that is the 

assumption about the thin plate where the thickness of the plate does not influence the stress 

distribution at its surface. In the reality, the bended plate with finite thickness will be exposed 

to tensile stresses at on side and to compressive ones at the opposite side (Fig. 2.11 b). Thus, 

according to the theory of plates and shells [19], the stress value changes linearly form its 

maximal value σmax to - σmax along the membrane thickness, reaching the zero value at the 

midpoint (Fig. 2.11 c). 

 
Fig. 2.11 The simplified model of the unloaded structure a), bended structure with compressive and tensile 

stresses b), model of stress distribution along the membrane thickness c). 
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In other words, the stress value σ(z) at any point inside the membrane, for given (x,y) 

coordinates, may be calculated with help of the following formula (2.17). The maximal stress 

value σmax is calculated by using formulas (2.14) and (2.15). 


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



 +−= 1z
h

2
)z( maxσσ     (2.17) 

where h is the plate thickness. 

 

As we may notice, the mechanical behavior of a thin plate under uniform loading is rather 

known problem that is well described in a literature. Presented model has one strong 

limitation which is the perfectly clamping assumption and consequences of that will be 

explained later. Nevertheless, we put some light on the first stage of our sensor where  

pressure conversion into mechanical response (stress) occurs and now we may proceed to the 

second stage where the mechanical value will be converted into response in the electrical 

domain. 

2.2 Phenomenon of the piezoresistivity 

2.2.1 Theory 

The piezoresistivity phenomenon is not at all a new discovery. If we look back to the history 

in 1856 Sir Thompson (Lord Kelvin), remarked that the resistance value of metallic bars 

changes when they are exposed to the mechanical loading. Let us look more carefully at this 

phenomenon. 

Basics 

To start with, let us consider the bar of the unknown material with the spatial dimensions of L, 

w and t as it is shown in Fig. 2.12. 

 
Fig. 2.12 The bar of material under electrical loading. 

L 

t 

w 

J 



Modeling and optimization of piezoresistive pressure sensors Michal Olszacki 

 25

If we force a current flow J, that passes along its length L, through it, we are able to compute 

its electrical resistance R by using the definition (2.18). 

wt

L
R ρ=       (2.18) 

The coefficient ρ is called the resistivity and it is one of the material properties. As one can 

see, in order to change the electrical resistance, one may perform following actions: change 

dimension or change the resistivity. What Lord Kelvin did, was the observation of resistance 

variation of the metallic bars under tensile loading that changes the lateral dimension of the 

sample (Fig. 2.13). 

 
Fig. 2.13 The simplified Lord’s Kelvin experiment. 

 

Such a behavior was called the piezoresistance effect. Because, such a kind of transducer 

transforms mechanical value (strain) into the electrical one (resistance) it is called a strain 

gauge. In order to compare different gauges or, let us say, different materials, the 

dimensionless coefficient called the gauge factor was introduced. The gauge factor K is 

defined as a relative change of resistance to the applied strain ratio (2.19). 

L/L

R/R
K

∆
∆=       (2.19) 

One of the pioneers that started to use the metallic strain gauges in metrology was Bridgman 

in 1932 [32]. He experimented with different materials and he has been looking for the one 

with the highest gauge factor. Unfortunately, in case of metals or their alloys, gauge factors 

are relatively weak (2 to 4) and thus, the useful output signal is hard to detect. In fact for the 

metallic strain gauges, the piezoresistive effect appears mostly due to the dimension changes 

not to the change in the resistivity parameter. It was reported by Bridgman as the following 

relation (2.20). 
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The C is called the Bridgeman constant whereas V is the volume of the sample. 

Smith’s discovery 

The real milestone in the history was the discovery of the piezoresistive effect in silicon by 

Smith in 1954 [33]. Silicon in the fifties was very promising material since microelectronics 

technology has became more and more mature those days and thus, a lot of work has been 

done in order to characterize it. Smith presented the results of studies on both N and P type 

silicon and Germanium samples and estimated piezoresistive coefficients. Amazingly, those 

first results showed that the estimated possible gauge factors are about 30 times higher 

comparing to those that were achieved in metallic gauges. It is caused by the fact, that in 

silicon, the resistance change is caused mainly by the resistivity then dimensions variation. 

Thus, it is called the piezoresistive effect. It showed that silicon is the material that not only 

may be used as a semiconductor to produce new electronic devices such as transistors, but it 

also offers excellent sensing possibilities. 

Three years later (1957), Mason and Thurston [34] presented the result of study on possible 

application of the piezoresistive effect in silicon based force sensors; it took a four years when 

in 1961 Pfann and Thurston [35] presented the first working device. 

Another important date was the year 1963 when Tufte and Stelzer [36], followed by Kerr and 

Milnes [37] published their studies on dependence of the piezoresistance coefficient on 

temperature, doping level and the crystallographic orientation. 

2.2.2 Modeling 

Let us consider again, the bar of material under tensile loading (Fig. 2.13). As we know from 

the previous part of this chapter, each element of the cubic shape crystal will be exposed to 

normal and shear stresses (Fig. 2.8). It was mentioned that there are two components that may 

change the electrical resistance value: resistivity and geometrical dimensions. Unlike in 

metallic bars, in silicon the variation of resistance is in 99% due to the resistivity change than 

the geometry change and thus, for all calculations we will neglect the second source of the 

piezoresistive effect. Assuming additionally small stresses and thus, small deformations of 

the crystal lattice, if we consider the isotropic material, the piezoresistance effect may be 

expressed by the equation 2.21, where ρ is the resistivity, ρ0 is the resistivity value for 

unstressed sample, σ is an induced stress value and π is called the piezoresistance coefficient. 

 

πσρρρ 00 +=       (2.21) 
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Introducing a more general approach for the anisotropic diamond-like structure of silicon, we 

may apply analogous description as it was used in case of the mechanical behavior. Let us 

then to formulate an Ohms law (2.22) for the three dimensional, cubic element of the Silicon 

(Fig. 2.13) which is exposed to the vector E of the electrical field that stimulates the current 

flow defined as a vector J. 
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In case of the silicon structure there is again some symmetry that may reduce the 

piezoresistivity tensor to the six elements. Moreover, for unstressed silicon, only the diagonal 

elements of the sensor (ρxx, ρyy, ρzz) will have the nonzero values and will have an equal value 

ρ, so if we apply again the conversion (2.7), the tensor ρ may be rewritten as follows (2.23). 
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Finally, it lead us to the final form of the equation that describes the relation between the 

stress and resistivity for anisotropic silicon crystal (2.24). 
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Three coefficients π11, π12 and π44 describe completely the piezoresistive behavior of the 

anisotropic material with diamond-like crystal lattice. Their values were experimentally 

estimated by Smith for the low doped silicon, both N and P type (Table 2.4). 

 

Table 2.4 Piezocoefficients values obtained by Smith for low doped silicon [33]. 

Piezocoefficient π11 [10-11 Pa-1] π12 [10-11 Pa-1] π44 [10-11 Pa-1] 

P-type +6.6 -1.1 +138.1 

N-type -102.2 +53.4 -13.6 
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Kanda’s model 

Euler’s angles 

It has to be emphasized that all above cited formulas are valid for the crystal orientation that 

was presented on Fig. 2.7 and Fig. 2.8, so the stress component σxx is parallel to the <100> 

direction. The basic relation (2.21) for the bar of material (Fig. 2.13) should now be written 

for more general case when the direction of our sample is freely chosen. Such calculations 

were presented by Kanda [38], what is commonly presented as (2.25). 

ttll σπσπ
ρ

∆ρ +=      (2.25) 

Where pairs πl and πt are called longitudinal and transversal piezoresistance coefficients 

whereas σl and σt  are respectively longitudinal and transversal stress components. The factor 

∆ρ/ρ is a relative resistivity change. As a longitudinal, we understand the direction that is 

parallel to the current flow in the bar. Such a convention force us to find the way of 

translation of the description (2.25) to be used for any direction of the current flow in the 

crystal. 

Such a translation is made by using the transformation based on Euler’s angles because every 

rotation (around all three axes) of any Cartesian coordination system may be described by 

using three angles values what is shown below (Fig. 2.14). 

 
Fig. 2.14 Transformation of Cartesian coordination system defined by Euler angles. 

 

In order to perform the translation, the transformation matrix R has to be defined as follows. 

(2.26). 
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The transformation between two coordination system XYZ into X’Y’Z’ is then given by 

(2.27). 
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The transformation is performed in three steps. In the beginning, axes are rotated along Z axis 

with the rotation angle of φ and then the rotation along the X axis with an angle of θ occurs. 

At the end, the third rotation again along the Z axis is done with the angle of ψ. In such a 

case, the matrix R is expressed by (2.28). 
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By using this matrix, we are able to calculate the longitudinal and transversal coefficient of 

piezoresistance if we know the rotational angles that indicate the direction of the current flow 

relatively to the <100> direction. 

As an example, the longitudinal coefficient of piezoresistance in P-type silicon will be traced 

as a function of the crystallographical direction for (100) plane (Fig. 2.15). 
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Fig. 2.15 The longitudinal coefficient of piezoresistance plotted for P-type silicon in (100) plane. 

 

As we may notice, the highest value is reached for <110> direction what is used in practical 

applications during the transducer design stage. 

The physical source of the piezoresistive effect is a shift of the material bandgap due to the 

applied stress. Such a bandgap modification causes that the effective mass of holes and 

Longitudinal piezocoefficient [10-11Pa-1] 
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electrons changes and thus, carriers mobility is affected what influences the resistivity. 

Although such an approach is rather known, the exact model of piezoresistance effect does 

not exist. Moreover, the piezoresistance description differs for N and P type silicon and thus, 

some relevant works for both type of conductivity were performed separately. 

 

The piezoresistance in P type silicon has been thoroughly studied by Suzuki [39] and 

Kleimann [40] but they both considered that almost all holes are located at wave vector k = 0 

what is true but only for very small hole energies (very low temperatures in range of a few K). 

Thus, their model could not be considered for normal operating temperatures. Ohmura [41] 

developed the model that took into account that for room temperature, holes are usually 

located off  k = 0 what was presented by Pikus and Bir [42]. 

Another attempt was the model developed by Kim [43] which takes into account also spin-

orbit split off band. His results were used by Lenkkeri [44] which studied the piezoresistance 

at a room temperature. 

One of the work that thoroughly describes the piezoresistance is the work of Toriyama and 

Sugiyama [45] where they used the model of Pikus and Bir and traced the piezocoefficient as 

a function of doping and temperature for P-type silicon. 

Kanda, however earlier in his work [38], presented the model that enables us to calculate the 

piezocoefficients as a function of doping level and temperature for both N and P type silicon 

in a relatively simple manner and correlated it to the experimental values so for further 

calculation such a model will be used because of above mentioned capabilities. 

Temperature and doping level dependency 

The basic conclusion of Kanda’s work is that the piezoresistance coefficient obeys the 

following relation (2.29). 

( ) ( ) ( )T,NPK300,NT,N 0 ⋅= ππ     (2.29) 

The coefficient π(N0, 300K) stands for piezocoefficient value for the low-doped silicon as 

depicted in a Table 2.4, N is a doping level value and T is an absolute temperature value. 

P(N,T) is a correction function that depends on temperature and doping level and is given by 

the formula (2.30). 
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Formula (2.31) is called the Fermi integral [46] where Ef represents the Fermi energy in doped 

silicon and kb is the Boltzmann’s constant. The s value is called the scattering component and 

according to [47] is equal to -1/2 if we consider the lattice scattering mechanism. Although, 

such an approach gives a good results for N type silicon, it is also used for P type one. 

The Fermi energy is dependent on doping level and thus, the relation between them is 

expressed by (2.32). 
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Parameter v is a number of energy valleys and for silicon is equal to 6, h is a Planck constant 

and md is the density-of-state effective mass of carriers which values published by Smith [48] 

are presented below (Table 2.5). 

Table 2.5 Density-of-state effective masses of carriers for both N and P type silicon [48]. 

Silicon N type P type 

md 0.33 0.55 

 

The most difficult problem with the calculation of the term P(N,T) by using equations (2.30-

2.32) in a function of doping level N is the inversion of the Fermi integral of order +1/2 

(2.31). In fact, the Fermi integral is noninvertable and thus, it is not analytically possible so 

we are forced to use an approximate solution. In the literature, one can find many different 

solutions like the simplest Boltzman or Joyce-Dixon [49] approximations as well as more 

complicated solutions such as Nilson [50] approximations. As a result, the procedure of 

calculations is not straightforward and it will be presented now. To start with, let us define 

two dimensionless variables ηf and ξ as follows (2.33). 
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f
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sN

N=ξ      (2.33) 

where N is the current doping level in a semiconductor and Ns corresponds to the effective 

density of states in the conduction band which for the P type silicon is given by (2.34). 
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The Fermi integral of order +1/2 then may be rewritten as a relation (2.35) 

( ) ( ) η
ηη

ηη d
exp1
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f
f

2
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−+
=     (2.35) 

We now use the simplified approximation of Joyce-Dixon (2.36) 

ξξη
8

1+= )ln(f      (2.36) 

As we remember, the scattering component that corresponds to the lattice scattering is equal 

to -1/2 for P type silicon so if we consider again the equation (2.31), we are obliged to 

calculate the Fermi integral of order zero (2.37) and its first-order derivative (2.38). 
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Our term P(N,T) may now be rewritten as (2.39). 
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Considering now (2.33) and putting (2.36) into (2.39), we can easily trace the function P(N,T) 

(Fig. 2.16). 
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Fig. 2.16 The P(N,T) factor in a function of the doping level N and temperature T for the P type Silicon. 
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2.2.3 Experimental data 

It has to be clearly said, that every model has its limitations and they have to be precisely 

known if one wants to predict the characteristic of the device during the design stage. In the 

next section we will try to give an overview on data published by now by different research 

groups and analyze how accurate results may be achieved by using the Kanda’s model. 

Results reported by now 

A good synthesis of all works that have been done in experimental evaluation and modeling 

of piezoresistivity phenomena was published in 2002 by Toriyama and Sugiyama [45]. In 

fact, it has to be said that there are just a few works that focus on experimental verification of 

piezoresistance coefficients and even in them, measurements are limited to a few values and 

for narrow ranges of temperatures or doping levels. The most important conclusion from [45], 

is the Fig. 2.17. 

 
Fig. 2.17 The shear piezoresistance coefficient π44 for the P type silicon as a function of the doping level: 

existing experimental data (solid dots) and models (dashed lines) [45]. 

 

As one can see, experimental data presented by Tufte and Stelzer are quite coherent with 

those published by Sugiyama. Unfortunately, measurements were taken only at the room 

temperature. If we look carefully, we can easily remark that the piezoresistance coefficient 

may be the linear function (in a semilogarithmic scale) of the doping level for a range of 
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impurity concentration of about 1018 ÷ 1021 at/cm3 what is sometimes done for engineering 

approximations [51]. There is, however, a great inconvenient of such an approximation, 

namely that it tells us nothing about the temperature dependence and thus, the thermal drift of 

sensitivity can not be foreseen. 

Considering models presented by different authors, it may be remarked that there is a large 

spread between them what is a result of different approaches and it confirms that the problem 

of clear and precise description of piezoresistivity is not a trivial task. First thing that we can 

see is that for very high concentrations (>1020 at/cm3) only one model is close to the 

experimental data but on the other hand it underestimates the piezocoefficient for the low 

doping concentrations. Moreover it saturates at 1018 at/cm3 and will never reach the values for 

low doped silicon published by Smith (Table 2.4). For the reasons that will be explained later 

like strong thermal coefficient of resistance and taking into account that sensitivity drops 

rapidly for high doping levels, there is no need to design a strain gauges with the impurity 

concentration higher than a few of 1019 at/cm3, so for the device design, model should be 

rather precise for lower doping levels. Looking again at Fig. 2.17, we may conclude that the 

best model that we could use is the Lenkkeri model based on the theory of optical phonon 

scattering but unfortunately, it is valid only for the room temperature. Thus, in conclusion, the 

only model that is temperature dependent, easy to compute and, at a time, it fits well the very 

wide range of doping concentrations 1016 ÷ 3·1019 at/cm3 is the Kanda model and thus, it was 

chosen to design our device. 

2.2.4 Mobility issue 

Another important parameter that has to be precisely known in order to build a good model of 

strain gauge is the carriers’ mobility, which is a crucial factor determining the resistance value 

and its thermal drift. 

The carriers are drifting in a bulk material when exposed to the electric field, but their motion 

is somehow limited by various scattering mechanisms that have many sources such as crystal 

lattice or material defects, to name but a few. In fact, we may distinguish three basic 

scattering mechanisms as follows: 

 

• Defect scattering 

• Carrier-carrier scattering 

• Lattice scattering 
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As one can easily remark, the physically-based model that takes into account all above 

mentioned phenomena should be quite complex as the mobility value, as well as the 

piezoresistance coefficient value, are doping and temperature dependent. As a results, often 

the physically-based model do not correspond to measured values and semi-empirically 

models are used where some parameters are tuned in order to fit data. 

Over the years, the mobility was thoroughly studied and there were several attempts that have 

been presented. In fact, if one wants to model exactly the mobility, three basic issues have to 

be taken into account. Firstly, at low electric fields the main scattering mechanism is the 

phonon scattering and the so-called low field mobility has to be calculated. Then, at the other 

end for the higher fields, the maximal mobility value is limited by carrier-carrier scattering 

and increased lattice scattering what oblige us to find the saturation carrier velocity. Finally, 

one has to find the suitable transition between these two extremes. In literature, the mostly 

known mobility models are: 

 

• Caughey and Thomas model [52] 

• Arora model [53] 

• Klassen model [54] 

• Dorkel-Leturq model [55] 

 

All these approaches are widely used to calculate the mobility as a function of temperature 

and the doping level. 

Mobility dependence on the doping level and temperature 

It seems to be intuitive that for higher doping levels, the increased number of carriers causes 

that the carrier-carrier scattering component plays an important role in limiting the saturation 

velocity and thus, the mobility has to decrease with higher impurities concentration. 

Nevertheless, for ultra high concentration there are some additional effects like impurities 

clustering which affects the mobility. Also it was observed in literature there is also much 

stronger temperature dependency for lower doping concentrations. In the work of Boukabache 

and Pons [56], the models that were presented above were used to calculate the thermal 

coefficient of resistance TCR using the resistivity definition (2.40), which was compared to 

the experimental data obtained by Bullis in early fifties [57] (Fig. 2.18). 

Nqµ
ρ 1=       (2.40) 
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where q is an elementary charge, µ is a carrier mobility and N is a doping level. It has to be 

emphasized that such an approximation is only valid if we consider that the resistance is a 

linear function of the temperature. 

 
Fig. 2.18 Thermal coefficient of resistance TCR as a function of doping level N [55]. 

 

What can be easily remarked form this figure is that models fit experimental data only at 

some regions i.e. Dorkel-Leturq model suits best the range of 1018 – 1019 at/cm3 while it fails 

completely for the higher concentration values. Nevertheless, the proper choice of model has 

to be done basing on the literature or self obtained experimental data. 

In chapter four, we will present the results of the experiment that provided us with data 

obtained by fabricating the samples of different doping concentration and measuring their 

TCR coefficient but now, basing on the literature data [59], we will chose the Arora’s model 

that suits best experimental data. 

 

The model developed by Arora is a classical semi-empirical approach when theory based 

model taking into account the lattice scattering effect in range of 150-400K and hole-hole 

scattering for the same temperatures range was fitted to the experimental data. 

In the final form, the holes mobility in a bulk semiconductor µ in a function of doping level N 

and temperature T is given by the following formula (2.41). 

Bullis experimental data (i) 
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300
T

TN =  

The mobility value as a function of two variables N, T may be then traced as it is presented in 

Fig. 2.19. 
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Fig. 2.19 Holes mobility value in bulk silicon as a function of Doping concentration N and temperature T. 

 

At this moment, we are able to predict membranes mechanical deformation due to the applied 

pressure and calculate corresponding stresses that appear in it. We then know how strain 

gauges resistance will be affected by knowing the piezoresistance model. Moreover, we can 

predict how strain gauges will response on temperature by using both piezoresistance and 

mobility model. Now we will deal with the basic electronic read-out circuit that allows us to 

obtain useful electrical signal at the output of the sensor that is proportional to the applied 

pressure. 

2.2.5 Electrical readout circuit 

In this short subchapter, a theory and properties of the simple circuit used for the resistance 

measurement along with some supply issues that may significantly affect its performances 

will be discussed. 
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Wheatstone bridge 

The Wheatstone bridge, which is one of the oldest and simplest instrument for the 

measurement of the unknown resistance, was invented in 1833 by Samuel Hunter Christie and 

then improved in 1843 by Sir Charles Wheatstone. The basic schematic of such a device is 

presented in Fig. 2.20. 

 
Fig. 2.20 The basic layout of the Wheatstone bridge. 

 

The principle of the measurement is based on an assumption that one of the resistance i.e. R1 

is unknown while in other two branches resistors R2, R3 have fixed values and R4 is an 

adjustable resistance. During the measurement, the bridge is supplied by the voltage V and by 

adjusting the resistance value of R4 we search for the bridge equilibrium which occurs at the 

zero current flow between two brunches (dV=0). The unknown resistance value R1 may be 

then calculated by applying Kirchhoff’s laws to the bridge what leads us to the formula 

(2.42). 
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Let us consider the more general case in which all four resistors may change. In such a case, 

the output voltage dV in a function of four resistances and supply voltage is given by (2.43). 
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If we assume that each resistance value Ri will change by the ∆Ri and the following relation 

(2.44) is fulfilled, we can rewrite (2.43) in the general form (2.45). 
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As one can notice, it is possible to distinguish two terms of (2.45), the linear and the nonlinear 

one. Because resistance variations ∆Ri are usually much smaller than the resistances Ri 

themselves, we can easily neglect the second-order term. If we apply additionally (2.44), the 

general relation (2.45) may be simplified to (2.46). 

( )3142
04

1
RRRR

RV

dV ∆−∆−∆+∆=     (2.46) 

As it can be remarked, in order to maximize the bridge sensitivity, ideal solution is to use four 

strain gauges system where two pairs of resistors will change their resistance by the same 

value but with the opposite sign, then the sensitivity of the bridge for resistance change may 

be expressed as follows (2.47). 
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One feature that makes the Wheatstone bridge very convenient for sensor application is its 

ability to compensate the temperature effects on the measurement. Let us consider that each 

resistance Ri may change with temperature T obeying the quadratic law (2.48). 
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Where αi and βi are respectively first and second order thermal coefficients of resistance. 

Then (2.43) may be extended to the following form (2.49). 
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Applying again (2.44) we then obtain (2.50). 
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The general conclusion that may be formulated is that the thermal drift of the output voltage 

dV is caused only by the differences between thermal coefficients of resistances among 

resistors that form the bridge. In other words, in the ideal case when the process 

reproducibility is perfect, even if each resistor is characterized by an enormous TCR value, the 

bridge will compensate it and the thermal coefficient of output voltage will be equal to zero. 

Supply issues 

There is one issue that may affect significantly the performance of the designed sensor, 

namely the supply type. If we look again at Fig. 2.20, in order to obtain a useful output signal 
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dV, the bridge has to be biased by the supply voltage V. There is, however another possibility 

where we may force the constant current. The advantage of such a solution was presented in 

details by Tanaskovic in [58] and will be now recalled. One of the most important parasitic 

effects that influence the sensor performance is the temperature and thus, it is highly desirable 

that sensor output signal would be temperature independent. As we showed in the previous 

section, the thermal drift of the output voltage is directly compensated by the bridge itself, but 

there is also the second parameter that is influenced by the temperature, namely the 

sensitivity. Considering again equations (2.25) and (2.47) we may formulate the simplified 

relation that describes the sensitivity of the bridge on the applied pressure for two cases: 

constant voltage supply Sv (2.51) and constant current supply Si (2.52). 
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where ∆P is an applied differential pressure while π represents effective piezocoefficient that 

depends on both, the doping level and the crystallographic orientation. Symbol σ is an average 

stress induced by the applied differential pressure (detailed calculations will be explained in 

the next chapter). We may then, calculate the thermal drift of sensitivity for two cases (2.53-

2.54). 
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If we analyze these two expressions and assume that the thermo-mechanical stresses that 

appear in the structure are small, we may then neglect the last term of each equation and 

formulate general conclusions about these two solutions. Firstly, if we supply our bridge with 

the constant voltage, the thermal drift of the sensitivity TCSv will depend only on the thermal 

drift of the piezocoefficient itself TCπ. Thus, if we look again at the Fig. 2.16, it is quite clear 

that the trade-off between the sensitivity on the applied pressure and the TCSv is unavoidable. 

More precisely, the doping level which allows us to obtain very low TCSv is greater than 

about 2·1019 at/cm3 what implies the significant drop of the piezocoefficient value in 

comparison to its maximal possible value. 

On the other hand, analyzing (2.54) we can easily remark that TCSi depends on both TCπ and 

TCR value. If we take into consideration the fact that TCπ is always negative and TCR is 
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always positive, we may easily imagine that if temperature increase, the loss of sensitivity 

caused by TCπ may be partially compensated by the increase of resistances values in the 

bridge and thus, increased voltage bias. Moreover, if it is possible to choose the doping level 

in such a way that absolute value of TCπ and TCR are equal and according to (2.54), it would 

be possible to obtain TCSi which is equal to zero what offers the passive temperature 

compensation of the sensitivity (Fig. 2.21). 

10
16

10
17

10
18

10
19

10
20

0

1000

2000

3000

4000

5000

6000

7000

Doping level [at/cm3]

T
he

rm
al

 c
oe

ffi
ci

en
t [

pp
m

/d
eg

 C
] TCR

TCpi

 

 

Fig. 2.21 Absolute values of the TCπ and TCR in function of the doping level. 

 

It may be observed that there are two points where curves cross and if we compare it again to 

Fig. 2.16, we may notice that the most convenient uniform doping level, if one wants to keep 

high sensitivity and its low thermal drift, is about 2·1017 at/cm3. One thing that should be 

emphasized, is that both curves are based on models that differs from the experimental data, 

so in the reality the doping level that should be used may be rather chosen at higher doping 

level especially if we analyze data published by Bullis [57] (Fig. 2.18). 

2.3 Analytical model 

All previously presented mathematical descriptions like mechanical behavior or 

piezoresistivity modeling, may now serve us as a base that allows us to create the complete 

mathematical description of the piezoresistive pressure sensor at a system level. 
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2.3.1 Basics 

An overview of the model 

As it was shown earlier, in general, the piezoresistive pressure sensor is based on a thin plate 

called the membrane which bends due to applied the differential pressure, what causes that 

bending stresses appear in it. Those stresses are translated into the relative resistance change 

of the strain gauge by the piezoresistivity phenomenon. The four gauges form the Wheatstone 

bridge that allows us to obtain at its output, the voltage signal which is proportional to the 

applied differential pressure. 

To start with, let us use an output-input approach. Recall that if we consider that our bridge is 

supplied by constant voltage V, the output voltage is given by (2.46) and the maximum of 

output voltage (maximal sensitivity) is reached when two pairs of resistors will change their 

resistance by the same value but with the opposite sign. In order to understand how to achieve 

it, let us remind the general formula that links stress value with corresponding resistance 

change (2.55). 

ttll σπσπ
R

R +=∆
     (2.55) 

Considering Fig. 2.15, and keeping in mind that almost all standard silicon wafers are cut in 

(100) plane, we may easily conclude that the best direction for strain gauge for such a plane is 

<110> family (Fig. 2.15). Such a strain gauge, conducting current I is exposed two the 

longitudinal and transversal stress components as shown in Fig. 2.22. 

 
Fig. 2.22 A strain gauge in (100) plane placed along <110> direction and conducting current I, 

corresponding longitudinal σl and transversal σt stress components are also shown. 

 

<100> 

<010> <110> 

I σl 

σt 

<001> 
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Going further, corresponding longitudinal and transversal piezocoefficients πl and πt must be 

then calculated by using the transformation based on Euler’s angles (2.28) with the following 

angles values: 

 

• φ = 45º 

• ψ = 0º 

• θ = 0º 

  

Then, necessary stress components are given by the following relations (2.56-2.57). 

 

2
441211 ππππ ++=l      (2.56) 

2
441211 ππππ −+=t      (2.57) 

 

If we put (2.56) and (2.57) into (2.55) we obtain (2.58). 

 

( ) ( )tltltlR

R σσπσσππσπππσπππ −+++=−++++=∆
2222
441211441211441211  (2.58) 

 

Considering the values of piezocoefficients given in a Table 2.4, we may easily estimate that 

the main contribution to the resistance change is given by the second term of (2.58) 

( ) ( )tl44 2/ σσπ −⋅ . According to that, in order to control the sign of the resistance change, 

gauges are placed in regions where always one of the stress component is much higher that 

the second one. For a positive resistance change the longitudinal stress component should be 

higher whereas for the negative change the situation should be opposite. 

Gauge position issues 

Let us consider two basic shapes of the membranes: the square and the rectangular one. The 

stress distributions are calculated by using the theory presented in the first part of this chapter. 

On Fig. 2.23, the difference between longitudinal and transversal stress components 

( )tl σσ − , which is the crucial factor in (2.58), is shown for such a square membrane. Similar 

distribution is presented for the rectangular membrane with the length to width ratio equal to 

four in Fig. 2.24. 
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Fig. 2.23 Normalized longitudinal σx and transversal σy stress difference for square membrane with lateral 

dimensions 2 by 2 units. 

-1 -0.5 0 0.5 1

-4-2024
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Normalized position XNormalized position Y

N
or

m
al

iz
ed

 s
tr

es
se

s 
di

ff
er

en
ce

 
Fig. 2.24 Normalized longitudinal σx and transversal σy stress difference for rectangular membrane with 

lateral dimensions 2 by 8 units. 

 

As one can see, in case of the square membrane, gauges should be placed at membranes 

borders and each gauge in one pair should be located at the opposite edges. Moreover, all 

gauges should be parallel and follow the same direction (Fig. 2.25 a). In case of the 

rectangular membrane, if we keep the gauges parallel, one pair (placed on shorter edges) 

should be positioned analogically like in case of square membrane but the second one, should 

be shifted to the membrane centre in order to obtain the same magnitude of the resistance 

change (Fig. 2.25 b). There is, however, one other interesting possibility. If we place two 

pairs of gauges in the middle of the rectangular membrane, but positioning one pair 
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perpendicularly to the second one (Fig. 2.25 c), we may obtain similar sensitivity value as in 

the first configuration, but the stress gradient will be significantly lower and, as a result, less 

sensitive to the misalignment errors. 

 
Fig. 2.25 The possible configuration of four strain gauges for different types of the membranes. 

 

To summarize, it has to be remarked that the choice of proper configuration has to be adapted 

for the application and there is no easy answer which configuration is the best one. The square 

membrane offers high sensitivity and occupy small amount of space but the stress gradient is 

high so any mistakes caused by the fabrication process at the alignment stage may 

significantly affect sensor performance. On the other hand, rectangular membrane with 

gauges in configuration shown at Fig. 2.25 c, offers much lower stress gradient, but slightly 

reduced sensitivity and additionally occupies more space. 

The stress gradient and gauges length 

The stress gradient issue becomes important when we are talking about gauges resistance 

value. The gauge resistance R affects the power consumption of the bridge supplied by the 

constant voltage V, where total dissipated power P (neglecting interconnections) is equal to 

(2.59). 

R

V
P

2

=  (2.59) 

As one can easily see, in order to decrease the power consumption, the resistance should be as 

high as possible. The problem is that the resistance value according to its definition depends 

only on its resistivity which is a function of doping level and resistor dimensions. So 

generally, for a fixed doping level which is chosen rather to reach the desired piezoresistance 

coefficients and thermal drifts (see chapters 2.2.2 and 2.2.5), increasing the resistance value 

may be done only by increasing the gauge length. If we then take into account that the total 

resistance variation is caused by the average stress in the strain gauge, it become obvious 

why the high stress gradient is limiting the resistance dimensions. 

a) b) c) 
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2.3.2 Gauges modeling 

Recall that until now, we considered our system as a membrane with for strain gauges that 

response to mechanical stresses and a Wheatstone bridge that converts such a response in the 

electrical output signal. We even discussed basic gauge parameters as its lateral dimensions or 

doping level and presented its impact on sensors performances such a sensitivity or thermal 

drifts. Now we will put some light on the gauge itself. We will discuss its simplified 

fabrication process and present parameters that are necessary to model it correctly. 

Fabrication process 

The implanted strain gauge is fabricated by performing the ion implantation into crystalline 

structure of silicon membrane and thus, creation of P type resistors isolated by the P-N 

junction. Because, as we said earlier, highest piezoresistance coefficients are achievable for 

the P type silicon (see Table 2.4), usually the Boron implantation into N-type substrate is 

performed. As it was described earlier, the stress value is the highest at the membrane surface, 

so in order to obtain highest possible sensitivity, a low junction depth is desired. Thus, 

avoiding the channeling effect, which is observed [60] when ion implantation is performed 

directly into crystalline silicon, we use a thin SiO2 layer (called the screening oxide) through 

which the implantation is done. Such a layer is used to force scattering of implanted Boron 

atoms and simulates the amorphic behavior of dopants. Simplified view of the whole process 

that creates the strain gauges is presented below (Fig. 2.26). 

 
Fig. 2.26 The simplified process of the P type gauge formation on the N type substrate. 

 

Because of such a fabrication processes, gauges have usually extremely high length-to-deep 

ratio. Moreover the doping profile is not uniform over the gauge depth what has its 

consequences that will now be presented. 

Boron 
Masking photoresist 

Screening oxide 

N type substrate 

Implanted strain gauge 
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Diffused layers modeling 

The dopants, which are introduced to the crystalline structure, do not contribute to the current 

conduction because they are electrically inactive (no chemical bonds between implanted 

Boron and Silicon atoms). In other words, the impurities atoms have to replace the silicon 

ones in the crystal lattice in order to accept some electrons form silicon and create holes that 

may participate in the current conduction. Thus, an energy that is needed to replace silicon 

atoms has to be delivered to dopants. The most common method is a very high temperature 

annealing (about 1000 ºC) which increases particles movement and facilitate atoms exchange. 

Such an approach, however, causes that dopants may easily “flow” in the atomic structure and 

the redistribution of impurities due to diffusion process is unavoidable. Such a phenomenon is 

clearly presented in Fig. 2.27. Basically, after the implantation process impurities are placed 

in a relatively thin layer which is located at the depth which corresponds to the maximal 

dopants concentration Nmax. Such a depth Rp is a function of implantation energy but also 

depends on the dopant type (more precisely on the impurity atom weight) and on the 

screening oxide thickness. It was shown [61], that impurity profile may be successfully 

described by using the Gaussian distribution, so dopants will be distributed with some 

statistical spread around Rp value. 
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Fig. 2.27 Implanted profile evolution due to the high temperature thermal treatment. 

 

During the high temperature annealing, impurities will diffuse naturally because of their 

gradient according to the Fick’s law [62]. It causes that the Gaussian distribution will “lower” 
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and the junction depth Xj increase. The junction depth Xj is defined as a distance from the 

surface at which the concentration of dopants is equal to the intrinsic impurities concentration 

in the substrate. 

It has to be emphasized that the Gaussian approximation of the doping profile may be used 

with success only if we apply a classical high thermal treatment. The modern techniques of 

rapid thermal annealing that base on the extremely rapid and extremely high temperature 

spike annealing produce profiles that vary from Gaussian ones. Nevertheless, if we consider 

that the membranes thicknesses that are used for pressure sensors fabrication are ranging from 

few to few tents of micrometers and, at the same time, classical thermal treatment allows us to 

produce junctions less then 0.5 µm thick in case of Boron and even 0.1 µm for BF2 ions 

doping [63], we may conclude that the Gaussian description of the impurity profile remains a 

good choice. Namely, the function that describes such a profile is given by (2.60). 

 

( ) ( )









 −−= 2

2

0 X

Rpx
NxN exp      (2.60) 

 

where N0 corresponds to the maximal concentration value, Rp is a previously described 

implantation peak and X is a parameter that defines the distribution spread and is 

proportional  to the junction depth. 

If the intrinsic impurities concentration of the substrate Ni is known, the junction depth may 

be calculated by applying (2.61). 

 

Rp
N

N
XXj i +























=

0

ln  (2.61) 

 

To prove that such an approximation may be successfully used, a doping profile that was 

obtained by Boron implant through 400 Å thick screening oxide layer, with an implantation 

energy of 25 keV and an implanted dose of 2.8·1014 at/cm3 which was then annealed at 

1000 ºC for 30 minutes was fabricated. After that, the doping profile was extracted by using 

Secondary Ion Mass Spectroscopy (SIMS) [64]. We than compared the experimental profile 

with its Gaussian approximation what is presented in Fig. 2.28. 



Modeling and optimization of piezoresistive pressure sensors Michal Olszacki 

 49

0 1 2 3 4 5 6 7 8

x 10
-7

10
15

10
16

10
17

10
18

10
19

Depth [m]

D
op

in
g 

le
ve

l [
at

/c
m

3]

Approximation

Real doping profile

 
Fig. 2.28 Comparison of the real doping profile and its approximation using Gaussian distribution. 

 

It clearly confirms that such an approximation may be successfully used for a such kind of 

thermal annealing process. In order to model such a diffused layer which has the nonuniform 

doping profile, all “macroscopic” or rather effective parameters of such a gauge like: 

resistance, piezoresistance coefficients and thermal coefficients of resistance have to be 

integrals over the junction depth. If we for instance want to calculate the resistance value of 

such a diffused layer, we have to use the resistance definition.  

 

Remark: 

 

In the case of the diffused layer when the doping profile plays an important role, the 

parameter that is usually given is the sheet resistance value not the resistance itself. The 

sheet resistance value does not depend on the lateral dimensions of the resistor but 

depends only on the junction depth. It is defined as resistance per square because the 

length and width of the resistor are considered to be equal. 

 

The sheet resistance definition of the layer which has the thickness of Xj and in which we 

consider only holes transport (P type silicon) is given by (2.62). 

( ) ( )∫
= Xjsheet

dxxNxq

R

0

1

µ
     (2.62) 
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Where q = 1.602·10-19 C is an elementary charge, µ(x) is the holes mobility and N(x) is the 

dopants concentration, both are depth dependent. 

 

Let us now calculate the gauge response for the applied pressure taking into account the 

impurity profile. In the beginning we have to consider that according to chapter 2.1, we are 

able to calculate the deformation of a membrane and thus, the corresponding stresses that 

appear into it. We may then calculate the average stress value in the resistor by integrating the 

stress function over the gauge area and then calculate its value at each depth by assuming that 

it changes linearly at is was shown (Fig. 2.11 c). 

Let us then assume that our diffused layer consists of n parallel layers of small thickness ∆x in 

which we can consider all parameters to be depth independent. As we know, in the parallel 

configuration, the global resistance value R is a sum of inverted resistance values of each i-th 

resistor Ri. If we apply the same law to our case, a global strain gauge resistance value that is 

changed R+∆R due to the applied pressure (2.25) obeys the following relation (2.63). 
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If we then consider again (2.62) in a slightly changed form (2.64) 

 

( ) ( ) xxiNxiq

1
Ri ∆⋅∆⋅∆⋅⋅

=
µ

 (2.64) 

 

we can then reformulate (2.63) into (2.65). 

 

( ) ( )
( ) ( ) ( ) ( )( )[ ]∑

= ∆⋅∆+∆⋅∆+
∆⋅∆⋅∆⋅=

∆+

n

1i tll xixixixi1

xxiNxiq

RR

1

σπσπ
µ

 (2.65) 

 

Assuming that ∆x is infinitely small and relation (2.66) is true, we may than obtain the final 

form of (2.65) shown as (2.67). 

Xjxn =∆⋅  (2.66) 
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( ) ( )
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 (2.67) 

Uniformity of the doping profile 

As we can see, all presented calculations were used in order to model the piezoresistive 

pressure sensor which takes into account the real doping profile of the implanted strain gauge. 

The question that may appear at this moment is: do we really need to take into account the 

doping profile? The answer is positive. Very often for simplicity reasons, only the doping 

concentration at the surface is taken into account and all corresponding calculations are 

performed. Although, in case of the resistance calculation designers are conscious of such a 

problem, in case of piezoresistance coefficient and TCR it is not always obvious. In case of 

TCR there are some works [58, 59] that put some light on the problem of the profile 

nonuniformity influence on the TCR value. In case of piezoresistance effective coefficient 

Tufte and Stelzer [36] observed and concluded that the average coefficient of the diffused 

layer would be only slightly larger than in the uniform layer with the same surface 

concentration. Just after them, Kerr and Milnes [37] showed that there is a contribution of the 

profile type on the piezoresistive behavior but it is independent on the diffused layer depth. 

The thing is that they both assumed that the stress distribution over the layer depth is constant 

what was quite obvious those days when achievable membrane thicknesses were many times 

thicker that the junction depth but nowadays, when we reach the membrane thicknesses in 

order of a few micrometers it is definitely not the case. Let us to be quantitative and analyze 

three basic gauge parameters that are important in view of the overall pressure sensor 

performance: its resistance, thermal coefficient of resistance TCR and the effective 

piezoresistance coefficient. 

For simpler analysis that takes into account only two doping parameters (easier visualization), 

we assumed that the Rp parameter is constant and equal to 0.05 µm what seems to be the 

reasonable value for standard, medium energy (15-70 keV) Boron implantation. Then, the 

gauge sheet resistance, TCR and piezoresistance coefficient values for both uniform and 

nonuniform doping profile (Fig. 2.28) were calculated for surface concentrations ranging 

from 1017 to 1020 at/cm3. The whole procedure was repeated for four different junction depths 

that varied from 0.15 µm to 0.9 µm. The substrate impurities level was set to 2·1015 at/cm3 

what corresponds to the typical average wafer resistivity of 1-6 Ω·cm. Finally, the ratio 

between two values for different profile types was calculated and traced. 
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Fig. 2.28 The real Gaussian profile used for gauge parameters calculations and the corresponding uniform 

profile. 

 

All ratios for three gauge parameters are traced below in order to easily visualize errors that 

may arise as a result of the improper model choice. The relative error between resistance 

values is shown at Fig. 2.29. 

 
Fig. 2.29 Ratio of two resistance values obtained by using uniform and nonuniform doping profile with the 

same surface concentration for different junction depths. 
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We may clearly conclude that taking into account uniform doping level causes enormous 

overestimation of the resistance value and the minimal error for low surface concentrations 

reaches over 70% and increase with the doping level. Moreover, as one can easily remark, the 

junction depth is also an important factor and it cannot be neglected in calculations. 

 

 
Fig. 2.30 Ratio of two TCR values obtained by using uniform and nonuniform doping profile with the same 

surface concentration for different junction depths. 

 

Fig. 2.30 shows us the TCR ratios and the thing that may be remarked instantly is that the 

error depends on the surface doping concentration. If the impurity level is close or higher to 

1019 at/cm3 or lower than 1017 at/cm3, one can say that there is no difference (smaller 

than 5%) between two approaches, but if we look at the region that is close to 1018 at/cm3, the 

relative error may easily reach over 70% what can not be definitely neglected. Moreover, the 

influence of the junction depth may be also observed for that region. The reason why there is 

the doping level range where the error is much higher than around it is that the TCR 

coefficient curve in function of the doping level varies significantly around the impurity level 

of 1018 at/cm3 (Fig. 2.18). Thus, if we assume that the quite remarkable part of the current 

circulates in the region which is relatively close to the maximal doping concentration, if 

neighboring concentration has the TCR value that change rapidly, the whole region is then 

strongly affected. In regions where the function is quite slowly changing, the error may be 

neglected. 
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Fig. 2.31 Ratio of two effective piezoresistance coefficient values obtained by using uniform and 

nonuniform doping profile with the same surface concentration for different junction depths. Membrane 

thickness is equal to 50 µm. 

 

The last value that is analyzed is the piezoresistance coefficient of the gauge (Fig. 2.31). As 

one can see the differences are definitely not enormous (less than 10%) if we consider the 

doping level that is lower than a few 1018 at/cm3 (less than 5%) what seems to be quite 

intuitive if we look again at Fig. 2.16 and remark that the piezoresistance coefficient are 

almost constant up to this value. Above that doping level the difference increase dramatically 

as the drop of the piezocoefficients is quite steep (Fig. 2.16) and a doping profile plays a role. 

Nevertheless, the influence of the junction depth may be neglected. Such a conclusion 

strongly confirms result presented in literature but as we remarked earlier, results presented 

by Tufte and Stelzer as well as Kerr and Milnes were obtained with an assumption that the 

stress value is constant over the junction depth. The results presented above (Fig. 2.31) were 

calculated for the gauge that is positioned on the membrane with thickness of 50 µm and 

some load was applied in order to calculate the resistance change. Such a value may easily 

fulfill the condition about the constant stress value. Let us, however, repeat the same 

procedure but this time we take into consideration the membrane with thickness of 4 µm 

where the stress value changes significantly over the gauge depth. Fig. 2.32 shows us the 

result of such an analysis. 

It may be easily remark that differences are much more visible, as well as the junction depth 

influence is. They are of course not as high as in the case of resistance or TCR value but they 

rather should be considered. 
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Fig. 2.32 Ratio of two effective piezoresistance coefficient values obtained by using uniform and 

nonuniform doping profile with the same surface concentration for different junction depths. Membrane 

thickness is equal to 3 µm. 

 

The analysis presented above shows us, that in order to model properly the pressure sensor as 

a system, the more detailed than simple surface concentration value, strain gauge modeling 

fabricated by ion implantation process has to be performed taking into account the 

nonuniformity of the doping profile . Of course there are some cases, like the particular 

doping levels, where such a methodology does not increase the model accuracy but for most 

of the cases it is a highly recommended approach especially if we are talking about resistance 

value and TCR coefficient. 

2.3.3 Noise sources and noise modeling 

Another parameter that also affects significantly the piezoresistive sensor performance is the 

noise value. Basically, the noise limits the minimum detectable pressure value, so in other 

words, the high noise may cause that the low output signal value may be completely 

undistinguishable form it. It has to be remarked that, for simplicity reason, all noises which 

has its origin in interconnections are neglected, so only noises that appear in an implanted 

structure are taken into account. Such an approach may be successfully applied while it is 

commonly known that the higher resistance value generates higher noise so if we consider the 

Wheatstone bridge, only gauges may be treated as noise sources. According to the literature 

data [65, 65], there are two basic components of a noise: a thermal component often called the 

Johnson noise and 1/f noise. 
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Johnson noise 

The first one, called also the thermal noise, has its origin in the scattering due to crystal lattice 

motion caused by the temperature. If we then consider a single resistor that has a resistance 

value of R and is operating at given absolute temperature of T in the range of frequencies 

between f1 and f2, the total RMS value of the noise voltage is given by (2.68). 

 

( )124 ffTRkV bJohnson −=     (2.68) 

where kb is the Boltzmann’s constant.  

1/f noise 

The second noise component is called 1/f noise and it appears at low frequencies when DC 

bias is applied (like in the case of the Wheatstone bridge). Its origin is found in random 

mobility fluctuations and random carriers trapping processes near the surface. If our resistor is 

considered to be operating under DC bias of V, a total RMS value of 1/f noise in it may be 

derived by using Hooge’ formula (2.69). 
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The parameter α is called the Hooge coefficient. It depends on the quality of silicon and varies 

[66] from 5·10-6 for the high quality substrate to 2·10-3 for very poor, full of defects silicon. 

As it can be seen all noise components depend on total number of carriers (resistance value) 

so according to the previous chapter if the doping profile of strain gauge has to be taken into 

account in order to correctly calculate the corresponding noise components. 

2.4 Analytical model vs. FEM approach 

Until now, we have been talking about analytical models of all phenomena that are needed to 

explain and describe the complex behavior of the piezoresistive pressure sensor. However, as 

we mentioned earlier, the most common approach that is used in today’s designer’s world is a 

FEM analysis. There are some good works [67, 68] describing the modeling process of the 

piezoresistive pressure sensors and they all confirmed that such a method is reliable enough to 

be the tool that allows us to design predictable devices. In the next section we will try to 

present shortly, the principles of the pressure sensor modeling by using this technique. Then 

we will try to understand where lays the power and the weakness of the FEM analysis. 
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Consequently, we will compare the result to our analytical model based one and we will 

explain at which level the two techniques really differ. Furthermore, we will show that the 

analytical model may be enough accurate to replace FEM analysis at some stage of the design 

project. Finally, we will present the dedicated CAD simulation tool that was created in order 

to predict the behavior of the piezoresistive pressure sensor. All analysis concerning 

mechanical modeling were performed in commonly known ANSYS® environment whereas 

all fabrication related issues in SILVACO-ATHENA® package. 

2.4.1 FEM model 

Basic assumptions 

According to the previous chapter, the full description of the piezoresistive pressure sensor is 

not a trivial task while a multi-physics analysis has to be envisaged. Basically, three main 

domains have to be taken into account: mechanical, electrical and the thermal one. Thus, all 

domains have to be coupled with each other in order to fully describe and simulate our system 

(Fig. 2.33). 

 
Fig. 2.33 Structural view of tasks needed for the pressure sensor modeling. 

 

In the mechanical domain, FEM method allows us to model almost everything for solid 

materials. Every shape, every material properties may be modeled what offers the extreme 

level of flexibility. Let us look carefully at our case of the pressure sensor where the basic 

structure, without packaging, looks as follows (Fig. 2.34). 
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Fig. 2.34 The basic structure of the piezoresistive pressure sensor which is the base for 3D FEM model. 

 

Every time when one wants to model something, in order to save the time, it is necessary to 

apply all simplifications that are possible without loosing accuracy. One of such a 

simplification is offered by the symmetry. As we can see at Fig. 2.34, the pressure sensor may 

be modeled just in one quarter (shaded area) because other three quarters are symmetrical. If 

we then construct the finite element model of such a structure it may look as it is shown in 

Fig. 2.35. 

 
Fig. 2.35 The finite element model of one quarter of the pressure sensor. 

 

As we can see, the zones where the highest accuracy is needed (clamping borders in case of 

the square membrane (see Fig. 2.23)) are meshed with much smaller elements in comparison 

to the others. Such an approach, as each additional node adds some number of equations,  

reduces significantly the number of equation that have to be solved and thus, the computing 

time. 

The important question is then, how to model the boundary conditions so in other words 

where to “fix” the structure. The answer is not easy and there is a literature [69] dealing with 

such a problem and we will not analyze it but present only some basic issues. For example, 

we may block the “floor” so create an artificial plane (Fig. 2.36 left) that will simulate the 
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virtual substrate on which we place the sensor and do not allow to move nodes that are 

adjacent to it. Such an approach seems to be close to the reality if extremely rigid package is 

applied. On the other hand if the packaging is not very rigid and the sensor is clamped, for 

example at its borders, the whole structure will bend due to the pressure applied. Such a case 

needs different clamping condition what is presented in Fig. 2.36 (right). 

 
Fig. 2.36 The result of applied pressure on the modeled structure for two different clamping conditions: 

clamped “floor” (left) and clamped edge (right). 

 

We have performed all analysis using the clamping condition as in the second case. For an 

analysis, the elements that support anisotropy (SOLID 186, SOLID 187, see [70]) were 

chosen. The stiffness matrix was then introduced and the coordination system was then 

oriented to the desired direction. As a result, the stress distribution was obtained as it is shown 

on a figure (Fig. 2.37 left). If we zoom on the section near the membranes border (Fig. 

2.37 right) we can easily remark that the stress distribution over the membrane thickness, 

changes linearly as it was shown earlier. 

 
Fig. 2.37 Stress distribution in the modeled structure (left) and zoomed view at the clamping zone (right). 
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Coupled mechanical-electrical analysis 

The second important part of our FEM simulation is the transduction of the mechanical 

stresses into gauge resistance change and this is the moment were the advantage of the 

analytical model appears. As we explained earlier, the gauge is the diffused layer that has a 

nonuniform doping profile that has to be taken into account. Firstly, in a FEM tool it is 

extremely difficult to apply to one material, any property that changes in one element. It 

implies that our diffused layer has to be modeled as a multilayer structure, where each layer 

has different values of doping level, as it is shown below (Fig. 2.38). 

 
Fig. 2.38 The diffused layer profile and its approximation by the layer with uniform properties (left) with 

the corresponding FEM model (right). 

 

Generally, the diffused layers are characterized by extremely high length-to-deep ratio when 

gauge which has few or even few tents of micrometers has a typical depth of about 0.5 µm. If 

we then take into account that each gauge has to be divided into several layers in order to 

model correctly all doping profile related effects, the length-to-deep ratio of each layer 

increases dramatically. For the numerical reasons and good convergence conditions of FEM 

analysis [71] it would be desired that each element is equilibrate in its three dimensions. Such 

a condition requires that in case of diffused layer modeling, each gauge has to be represented 

by an enormous number of finite elements, what increases drastically the model complexity 

and significantly affects the computing time. 

 

Fortunately, if one wants to simulate the gauge behavior to the applied stress we do not need 

to create the whole model of a sensor with the strain gauges in it what would dramatically 

increase the number of elements and computing time. What we can do then, is to perform 

separately the mechanical analysis and then transfer the resulting stresses into gauge structure; 

such an operation is called the submodeling. As a result, we may obtain all interesting 
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parameters like conduction current density, or potential distribution in gauge what leads us to 

the resistance change calculations. For example, the stress and electrical potential distribution 

in a strain gauge placed at the membrane border are shown below (Fig. 2.39). 

 
Fig. 2.39 Clamping zone of the membrane where the gauge is placed (left) the electrical potential 

distribution (centre) and the uniaxial stress value (right) in a gauge that was sub modeled. 

 

In order to take into account the piezoresistivity effect, one has to use the proper element 

types that supports at the same time anisotropy and piezoresistive effect. In ANSYS® 

environment we have used SOLID 226 and SOLID 227 elements that perfectly combine these 

two features [70]. As a reference material property, the stiffness as well as piezoresistive 

coefficients matrices were introduced. 

2.4.2 Analytical model advantages and drawbacks 

The important thing that has to be emphasized here is that when introducing layer properties, 

we have to know exactly what doping profile is used. Then we have to use same models of 

piezoresistance and mobility that were used earlier in our analytical model. The obvious 

conclusion is that the difference between these two approaches may be only visible in a 

mechanical analysis while in analytical domain, perfectly clamped membrane with uniform 

thickness and basic shape may be easily modeled. Let us now to put some light on this 

problem. 

Influence of clamping conditions 

As we said earlier, the analytical model of the membrane assumes that the clamping is 

perfect, telling that there is no displacement at the membrane edges (2.10). Intuitively, such a 

condition should cause the wrong estimation of the stress value near that region. Let us take 

into account the plate, and defined XYZ Cartesian coordination system as it is shown in Fig. 

2.40. For example, we may consider the square plate with the lateral dimension of 300 µm 

with the thickness of 5 µm. It will be loaded by uniform differential pressure of 13.33 kPa 

(100 mmHg). Now, we may trace the stress distribution along, for example, the X axis. For 
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easier analysis, we trace the uniaxial stress value (σx) in a function of the distance from the 

membrane center (Fig. 2.41). 

 
Fig. 2.40 The real clamped membrane model with marked perfectly clamped edge. 
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Fig. 2.41 Comparison of the stress distribution for the real and ideal clamping conditions. 

 

One can remark, that the analytical model of the stress distribution fits well to results obtained 

by using the FEM methodology excluding the clamping zone. It implies that in case of the 

square membrane, using the analytical model may lead us to the overestimation of the 

sensibility at this region. On the other hand if we look again at Fig. 2.41, we may easily 

noticed that the error at clamping point reaches 15%, what may be accepted in engineering 

calculations. For gauges that are placed partially at the substrate zone we considering the 

stress on the substrate zone is equal to zero. The useful feature is that in all square 

membranes, such an overestimation is systematic and may be taken into consideration by the 
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designer. For the rectangular membrane, however, where gauges are placed in the middle, 

such an approach seems to be correct and provides is with much more accurate results. 

Thermomechanical stresses 

The second important problem that is not taken into account by the analytical model is the 

thermomechanical stress. Basically, we may define it as the unwanted stress that appears in 

the structure due to the mismatch between thermal coefficients of expansion between different 

materials that form the sensor structure. In other words, when the ambient temperature 

changes, the dilatation of two materials is different and thus, the stress distribution appears in 

the material what may cause the false strain gauge reaction to the applied pressure. Such a 

problem, however, as a crucial to the sensor performance was the subject that inspired a lot of 

R&D work in order to solve it. Generally, in case of silicon based pressure sensors, the 

membrane is in most of the cases made of silicon but the substrate that serves as a base of the 

sensor may be made of something different. It may be just silicon but in many applications 

the use of different kind of glass is envisaged. If we use silicon as the same material that the 

membrane is made of, the thermomechanical stresses do not plays the key role. However, in 

case of the most popular PYREX 7740® glass, the problem may become crucial. Fortunately, 

such a problem was overcome by changing the composition of the borosilicate glass. As a 

result, the SD-2 glass, which is characterized by almost identical thermal coefficient of 

expansion as silicon for a wide temperature range, appeared on the market (Fig. 2.42). 

 
Fig. 2.42 Comparison of the thermal coefficient of expansion value for silicon, PYREX and SD-2 glass. 
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Thus, if one uses the modern material for the sensor fabrication, the thermomechanical stress 

exists but its influence may be significantly reduced. 

Another problem may arise when we want to estimate the influence of the packaging on the 

sensor. Relatively rigid sensors are usually attached to the rigid packaging via soft elastic 

material like silicone or others. Such a composition adds another origin of thermomechnical 

stresses that are unwanted as the thermal coefficients of dilatation are often different. The 

influence of such a stress is extremely difficult to describe by analytical model as the soft 

elastic material are rather difficult to describe and in fact, the only way to estimate them 

precisely is a detailed and tedious FEM analysis. The solution that may be proposed to 

overcome such a problem could use results (stress distribution) of such a simulation that may 

be use as input data to our analytical model that may calculate other sensor parameters. 

Conclusions 

To summarize, two basic drawbacks of the analytical model were presented: perfect clamping 

conditions and neglect of the thermomechanical stress. Nevertheless, the real clamping 

condition affects the results only for the specific gauge configuration and the introduced 

overestimation is acceptable in engineering calculations. The influence of the second term, as 

we presented, may be decreased if someone use appropriate material for sensor fabrication. Of 

course in case of high mismatch between the two materials such a problem may affect the 

simulated results. 

 

As we listed major drawbacks of analytical model, let us say something about the advantages 

of it. The first and the most impressive one is the computing time. We performed all 

calculations on a PC class computer with double core processor and 2 GB of RAM. One 

mechanical analysis of the structure presented at Fig. 2.35 without considering the FEM 

thermomechanical effects takes about 10 seconds. After that, the piezoresistive analysis is 

performed so the stress values are imported and the nonlinear-piezoresistive problem is 

solved. Such an analysis takes about 10 second depending on the gauge size (number of finite 

elements). It may look to be the very short time while the complete mechanical and 

piezoresistive analysis take about thirty seconds but the analytical model of the perfectly 

clamped membrane, performs mechanical, piezoresistive and thermal analysis (excluding 

thermomechanical effect) in just about 2 ms! (measured by the internal function of the 

programming environment). It may seem to be not an advantage if we want only to simulate 

the designed structure because twenty seconds is not a long time but, as we will present later, 
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in order to optimize the design, a few thousands of model evaluations have to be performed. If 

we then multiply twenty seconds by, let us say, one thousand we obtain 334 minutes what 

gives us about 6 hours!!! It may be then desired to perform same task with similar results in 

about 4 seconds by using the analytical model. 

2.4.3 Comparative analysis 

As we mentioned, two approaches that may be used to model the piezoresistive pressure 

sensor, let us to quantitatively compare it in order to know how much they differ. In 

engineer’s environment, the FEM simulation is established solution as a method that gives 

trustworthy results. In next section we will try to show that the analytical model may be also 

successfully used for that task. The FEM model used for that purpose was meshed few times 

in order to assure the convergence of the calculations and at the same time reduce its time. 

We performed the simulation of the square membrane as it was used to calculate the stress 

distribution in the previous paragraph. All structure parameters that were used for simulation 

are listed below (Table 2.6). 

 

Table 2.6 Structure parameters used for the FEM simulation 

Parameter name Value 

Membrane length 300 µm 

Membrane thickness 5 µm 

N0 1.2·1019 at/cm3 

Rp 0.05 µm 

Xj 0.5 µm 

Gauge length 30 µm 

Gauge width 3 µm 

 

 

As a result, the simulation provided us with the piezoresistor response to the applied 

differential pressure. Fig. 2.43 shows us the normalized sensitivity value (relative resistance 

change) in a function of the gauge length (1µm; 10µm; 20µm; 30µm) and a position on the 

membrane (the coordination system is the same as in Fig. 2.40). At the same graph, values 

obtained by using the analytical model are shown. As the membrane is square, the gauge 

orientation may be parallel or perpendicular to the membrane border.  Values presented below 

are calculated for the perpendicular case. 
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Fig. 2.43 a) Comparison of the normalized sensitivity value obtained by two different methodologies. 

Results are traced in the function of the gauge position on the membrane and the gauge length 1µm. 

0 20 40 60 80 100 120 140 160 180

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Position [um]

N
or

m
al

iz
ed

 s
en

si
tiv

ity

 

 

FEM
Analytical

L=10um

 
Fig. 2.43 b) Comparison of the normalized sensitivity value obtained by two different methodologies. 

Results are traced in the function of the gauge position on the membrane and the gauge length 10µm. 
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Fig. 2.43 c) Comparison of the normalized sensitivity value obtained by two different methodologies. 

Results are traced in the function of the gauge position on the membrane and the gauge length 20µm. 
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Fig. 2.43 d) Comparison of the normalized sensitivity value obtained by two different methodologies. 

Results are traced in the function of the gauge position on the membrane and the gauge length 30µm. 

 

What can be easily remarked is, as we mentioned earlier, that the results obtained by using 

two different methodologies are in a very good agreement excluding the region of the 

clamping zone. Nevertheless, it has to be noticed that when we increase the gauge length, 

such a difference decreases what is a result of the averaging effect. If we consider the gauge 

length of 1 µm, it is affected by the local stress which changes rapidly as a function of 

position especially in the clamping region (Fig. 2.43). If we, however, use longer gauge, the 

effective stress will be an average over the gauge length. Thus, the high stress value near the 

membrane border is dominant over the smaller stress over the substrate and it cause that 

differences in perfectly and nonperfectly clamped model are less visible than in case of the 

very short gauge. If we, however, consider the gauge that is parallel to the membrane border 

we rather do not profit from the averaging effect as the width of the gauge is quite small 

(order of a few µm). Thus, the analytical model may provide us with the trustworthy results if 

the gauges are placed outside the clamping zone and if not, when the gauge length is high 

enough. As one can see at Fig. 2.43 c) if the gauge length is higher than about 8% (20 µm of 

300 µm) of the membranes length the difference may be neglected. If gauge is placed close to 

the clamping zone, in the worst case where the gauge is parallel to the membrane border, the 

difference does not reach 20 % and is rather likely to be smaller (Fig. 2.43 a)). 

2.4.4 Simulation tool 

All above mentioned facts were used to construct the dedicated simulation tool. The idea was 

to create the computer program that may be used for piezoresistive pressure sensors 
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simulation taking into account all specific phenomena that may be described by analytical 

models. It has to be emphasized that this tool was created to help in the design of the sensor 

which requirements were described at the beginning of this work. Thus, it is designed to 

cooperate with the simulation tool that is responsible for the electrostatic pressure generator 

and is a subject of the other work. Such a synergy f these two tools allows us to design 

correctly the self-testing pressure sensor taking into account all specific constraints for our 

project. 

 
Fig. 2.44 The main window of the created simulation tool. 

 

Main advantages of our tool were to be the speed of calculation and multi domain analysis. In 

order to create such a tool we used widely known MATLAB® GUI environment. The choice 

of such a tool instead of popular VISUAL C++ was driven by the capabilities and experience 

of the author in creating similar projects. Although, a similar approach has been already 

published [72], it does not treat the sensor in a such complex manner (gauge profile 

consideration, noise analysis etc.). 

The main window of the tool is presented in Fig. 2.44 and shows the functionality of the tool. 
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As one can see, the tool is very simple and includes all parameters that the designer wants to 

know about the sensor. 

The very left part of the window is dedicated to the sensor parameters that are introduced by 

the designer. In the top left corner, three parameters describing the gauge profile are 

introduced. Then, in the lower part, the parameters of silicon as its base doping and Hooge’s 

coefficient as well as the external temperature may be set. Finally, the geometry of the sensor 

like its lateral dimensions, membrane shape and length to width ratio (rectangular membranes 

only) are fixed. The middle left part of the window is dedicated to definition of gauges lateral 

dimensions, supply voltage and operating frequency range (used for the noise calculation). 

 

The upper part of the window is divided into two screens and is used only for visualization 

purposes. The center window presents current doping profile that is reconstructed basing on 

the three fully descriptive parameters whereas the top right window is used for a stress plot. 

For the simplicity reasons, the stress window plots uniaxial stress value and may be switched 

between longitudinal and transversal stress. Additionally, it covers only one quarter of the 

membrane because of symmetry reasons. Under the visualization windows, two sets of sliders 

are placed. They are responsible for the two gauges x and y position. Because as we said 

earlier gauges are placed in pairs, only two of them need to be simulated in order to simulate 

the whole sensors behavior. 

The lower part is dedicated for the results. The tool provides us with the main sensor 

parameters such as: 

 

• Sensitivity 

• Gauge resistance 

• Gauge RMS noise value 

• SNR for minimum detectable pressure set to 1 mmHg 

• Bridge power consumption 

• TCSi 

• TCSv 

 

Presented tool is intended to be very simple and intuitive but at a time its capacities are 

relatively large as it takes into account all phenomena that were described in the analytical 
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way and, at the same time, calculations are done almost in the real time mode (2 ms measured 

by the internal MATLAB® function). 

2.5 Conclusions 

As it was mentioned in the beginning of this chapter, on overview on the all physical 

phenomena that rule the piezoresistive sensor behavior were presented and described in an 

analytical way. The state of the art knowledge of the modeling was presented and the theory 

was explained. Next, the important issue considering the strain gauge modeling as the 

diffused layer was presented with emphasis on the doping profile modeling and the possible 

effects of wrong approach. In the third section, an overview on a FEM modeling was 

presented to be then compared to the analytical solution. The drawbacks and advantages of 

two approaches were presented quantitatively leading us to the conclusion that in many cases, 

the analytical model may be, if not the substitute, surely the solution that may provide us with 

trustworthy results. Moreover, we proved that in fact the FEM analysis of the pressure sensor 

is needed only in the mechanical domain because all piezoresistive or temperature effects on 

the electrical behavior of the strain gauge have to be introduced to the FEM simulator basing 

on the existing analytical models or existing experimental data. Finally, the dedicated design 

tool was presented and described. The next chapter will show us how to use the developed 

model in an efficient optimization procedure. 
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3 Design optimization 

and statistical analysis 

The previous chapter was the base that allowed us to understand all issues that are related to 

the modeling of the piezoresistive pressure sensor. Nevertheless, it showed us how to simulate 

the behavior of our system that is well defined. In other words, all techniques that were 

presented may help us if we want to know what the defined system will be but they add 

absolutely no value if one wants to design the system having as input project requirements. 

From the engineering point of view, such a design is always the most important task. In this 

chapter, we will focus on this issue in details. We will present how to use the presented 

methods in order to perform the design process and its most important phase, the optimization 

stage that is crucial for every designer who wants to deliver the product that fulfills perfectly 

the project requirements within the shortest possible time. In the same section, the case study 

including complete design process will be presented. The second part, of this chapter will 

focus on the statistical analysis and the fabrication yield related issues that are very important 

from the industrial point of view when one wants to create reliable product at high yield. 

3.1 Optimization 

3.1.1 Ideal design and FTR methodology 

Let us consider typical design path of a system as it is presented in a Fig. 3.1. As one can see, 

we always start with project requirements which are the base for the next steps and which 

have to be fulfilled. Then, the oldest engineering technique that we called the “hand-made 

calculations” is applied in order to estimate roughly by the means of very approximate 

solutions if the project is feasible. Of course, such a step depends mostly on the designer’s 

experience but in many cases there are many engineering approximations that allow us to 

perform such a step. The next stage is the heart of the design and we called it the optimization 
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loop. It is composed of three basic substages: simulations, prototype construction and 

experimental verification. 

 
Fig. 3.1 Typical design and development process of any system. 

 

Such a methodology was developed after introducing the CAD tools that allows us to limit the 

number of prototypes and avoid unjustified costs. In the reality, always after the simulation 

phase, a few test runs have to be performed because never, or rarely, the results obtained by 

simulation are accurate enough to design the correct structure at a first time. Nevertheless, the 

advance in simulation caused that today’s models and tools are accurate at such level that in 

many cases the FTR idea raised. FTR – First Time Right methodology is a very catchy word 

on today’s simulation market. It covers the simulations environments that allow the designer 

to perform all simulations in a virtual world and, as a result, design the product that will be 

perfect without any useless or imperfect prototype. The process, called virtual prototyping is a 

series of simulation that allows us to simulate the behavior of the defined system and then 

optimize it. In other words, not only we need the tool that will allow us to simulate the 

defined system, but also to optimize it to our needs. 

 

If we look again at figure Fig. 3.1, we may easily remark that if one wants to decrease time-

to-market, the duration of each step in the chart has to be decreased. It is quite obvious that 

the only step that we can really affect is the simulation process. Let us consider our particular 

case of the piezoresistive pressure sensor. As we mentioned, in order to design the whole 

system, a multidomain analysis has to be performed. The design path concerning the 

simulation stage should generally look as follows (Fig. 3.2). 
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Fig. 3.2 Typical design approach of the piezoresistive sensor. 

 

As one can see in the beginning, basing on a hand made calculations, we apply the process 

simulator in order to find out what doping profile we may obtain. Such a step requires the 

experience form the designer who, basing on the implantation tables [73] or easy approximate 

calculators [74], will choose which dose, energy and annealing time has to be applied in order 

to obtain desired profile parameters. The problem is that at such a moment we do not know 

how the gauge with obtained profile will work as a whole system before performing coupled 

multidomain FEM analysis. If we then applied the coupled analysis, at the output, we obtain 

the results concerning the sensor performance. At this moment one has to answer the question 

if the results are satisfactory and such a design is ready for fabrication or maybe it should be 

changed. If should, the whole procedure should be repeated so each step of the optimization 

includes the complicated and time consuming FEM analysis. Moreover, the optimization 

procedure very often requires thousands of model evaluations so even relatively short FEM 

simulation may lasts very long time in order to provide us with desired results. Let us then 

rearrange Fig. 3.2 a little bit as it is shown below (Fig. 3.3). 

 
Fig. 3.3 Rearranged design path without FEM analysis in the optimization loop. 
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If we use our analytical model in optimization loop, at the output we obtain the sensors 

performances taking into account all physical phenomena that were described in the previous 

chapter including the influence of the doping profile. So after such a stage, we will be 

provided by the complete and optimized design including sensor geometry and gauge 

parameters that fulfills our requirements. After that, we perform only one FEM analysis 

which has to verify the design taking into account the problems that the analytical model can 

not deal with such as nonperfectly clamping conditions and thermomechanical stresses. The 

next and the last stage of the design is the analysis performed by the process simulator in 

order to find the desired profile what is done only once. As one can easily remark, such an 

approach may dramatically reduce the design time and thus reduce costs of the development. 

Until now, we have talked about the optimization phase as a part of the process so let us now 

put some light on this issue. 

3.1.2 Basics of the optimization 

 

Optimization - the procedure or procedures used to make a system or design as effective or 

functional as possible, especially the mathematical techniques involved. 

 

Such a definition tells us that there exist some mathematical tools that allow us perform the 

procedure that, at its output, provides us with the solution that fulfils our requirements. In 

other words, if we are capable to define our system by the mathematical function, we are able 

to define project constraints and then, apply the mathematical apparatus that is able to propose 

us the best solution to our problem. 

Principles 

Basically, in a mathematical sense, optimization is the operation of searching the value of an 

argument x for which the function f(x) reaches its minimal or maximal value (generally 

algorithms search for the minimum value). The first who developed the mathematical method 

of optimization was Gauss with his “steepest descent” algorithm. After him, over the years a 

lot of mathematicians working on such a problem including: Richard Bellman, Leonid 

Khachian or even John von Neumann to name but a few. The basic example of the 

optimization is presented on Fig. 3.4, where function f(x) is a quadratic function which 

arguments are from the set of real values. For such a case the point that we are looking for is 

x=0. 
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Fig. 3.4 Simple example of optimization. 

 

Such a method where we are dealing with a function that has one output variable is called the 

single-objective optimization. Additionally, if we define a set of arguments in which we are 

looking for the optimal one to be, for example, the real set, our problem is called 

unconstrained because we may use every value of this set. In many engineering applications 

it is obviously not the case because the engineer has always to deal with the project 

constraints and thus, a set of function arguments has to be narrower so lower and upper 

borders have to be defined. For example, if we consider again the function shown at Fig. 3.4, 

and if we define our set of arguments to be defined as follows (3.1) 

1,5.0x ∈       (3.1) 

the solution for our optimization problem will be the argument x=0.5. The kind of problem 

that we presented is called one dimensional because f is a function of only one variable x. In 

the real world, we have to deal with many design variables as in the case of piezoresistive 

pressure system so in real applications the constrained, multidimensional optimization is the 

case. Moreover, in our case as we could remark in chapter 2, the function that describes the 

behavior of the pressure sensor is highly nonlinear. It forces us to use an optimization 

algorithm that deals with such a problem. 

There is a lot of works presenting the optimization problems and algorithms [75, 76, 77] and 

we will not explain them as it is not the topic of this work. For our purposes, the most suitable 

and, at a time, simple algorithm called the sequential quadratic programming which was 

described in details in [78] is used. 
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In case of a nonlinear problem, the sequential (iterative) algorithm is used in order to solve 

quadratic subproblem [79] in each step. During each step an optimization procedure that is 

based on Hessian matrix, which allows us to compute the search direction is used. The 

problem may be easily solved in MATLAB® environment where the built-in function 

fmincon [80] is responsible to deal with such task. 

3.1.3 Two-phase optimization algorithm 

If we look back at our sensor model, we can consider it to be a compact model with the design 

parameters at its inputs and its performance at the output what may be presented as follows 

(Fig. 3.5). 

 
Fig. 3.5 The compact model of the piezoresistive pressure sensor. 

 

In other words, the mathematical function that describes our sensor has 8 independent 

parameters including sensor geometry and gauge profile description and generates eight 

output values such as sensitivity, resistance and noise values with corresponding thermal 

drifts. Such a problem is called multiobjective problem and it is well known in the literature 

[81]. Its mutliobjectivity is the reason that there is no clear one value that has to be minimized 

or maximized but a set of output values that very often are concurrent. Such a problem has to 

be treated in a special way and one who presented it first was Francis Edgeworth [82] but the 

problem was later generalized by Vilfredo Pareto [83], so let us look closer at such a problem. 

How to solve multi-objective problem 

The simple multiobjective problem which deals with the maximization of only two objectives 

is schematically presented at Fig. 3.6. 
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Fig. 3.6 Simple two objective function. 

 

y1 and y2 are the output values of a function f(v) where v is a vector of input variables and is 

not limited in its dimension (v = (x1, x2, …, xn)). As one can see, there is a specific point at the 

graph (y1max, y2max) at which both variables have their maximal possible values y1max and y2max 

at the same time. However, very often in the real life such a solution is not possible because 

output variables are concurrent. It means that if one of them increases the second has to 

decrease. It creates a surface of the feasible designs (Fig. 3.6) that may be produced without 

broadening of project constraints. The frontier between the surfaces that covers feasible and 

unfeasible design is called the Pareto’s curve or Pareto’s surface (for three or more objective 

problems) and it represents best possible designs. The plural word “designs” is important 

because there is no one best design that may be proposed in such a situation and, as a result, a 

trade-off between the two values that has to be adjusted regarding the project requirements. 

This is the moment when engineering experience often helps because one has to decide about 

“how much” we can decrease one output value in order to gain on the second one. Thus, it 

would be desired to have a tool that helps the designer to perform such a step. 

Considering again the example shown at Fig. 3.6 let us imagine which design is the best one 

if we do not want to think about trade-offs and just find the best solution laying on the 

Pareto’s surface. Intuitively, the design that is best compromise between the two values is the 

one which is the closest to the ideal design ((y1max, y2max) point). In other words, the 

multiobjective optimization of two output variables may be reduced to the single objective 

problem which deals with the minimization of the Euclidian distance between optimal design 

(y1opti, y2opti) and ideal design (y1max, y2max) (Fig. 3.7). 
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Fig. 3.7 The principle of converting multi into single objective problem. 

 

Thus, we want to propose a two-phase optimization algorithm which reduces the 

multiobjective problem into the singleobjective one. The algorithm uses for both phases the 

sequential quadratic programming minimization algorithm. 

Let us consider our pressure sensor where the function which describes the system has both 

eight inputs and outputs. In the first phase, for given project requirements like maximal and 

minimal membrane dimension as well as gauge parameters, a set of eight single objective 

minimizations is performed in order to find the ideal design (y1max, y2max,… y8max) that can not 

be built. 

The second phase, as it was mentioned earlier, minimize the goal function (3.2) in order to 

find the optimal final design. 
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Such an approach allows the designer to obtain the optimal set of the design variables that 

allows to fabricate the sensor which is optimal in the mathematical sense (best compromise 

between all output values). 

One important remark that has to be placed here is that before any optimization, the model of 

our sensor has to be modified in order to have at its input and generate at its output only 

normalized values. Such an assumption is extremely important form the mathematical point 

of view and it has a dramatic impact on results if not properly applied. The easy example that 

we can imagine is again two objective optimization. If we, for an example, calculate the 

resistance value that usually is given in thousands of ohms (let us say 5000 Ω) and if the 

second variable will be the thermal coefficient of resistance which is usually given in ppm (let 

us say 500 ppm) the ideal design will be described by the coordinates of (5000,0.0005). It is 

almost obvious that our algorithm will propose us the design with the extremely high 
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resistance value with almost random thermal coefficient of resistance because even if TCR 

will be few times greater than its optimal value it will have almost any impact on a relatively 

huge resistance value and thus, on the Euclidian distance when the minimization would be 

performed. As there are different existing methods of normalization, in our case all output and 

input variables are normalized using the simplest linear normalization method to the range of 

<0,1>. 

Design tuning by introduction of weight coefficients 

As we mentioned earlier, the design that is proposed by our two-phase algorithm is an 

optimized design but only in the mathematical sense. In real application very often the output 

parameters may be divided into crucial or no crucial ones form the project requirements point 

of view. For instance we can easily imagine the pressure sensor that has to be extremely 

sensible but the resistance may take any value. In other words, there are some parameters that 

do not have to be optimal or even are unimportant for the final product overall performance 

depending on an application. In such a case, the optimizer may have much more freedom 

during the optimization and provide us with much better values for crucial parameters (Fig. 

3.8). 

 
Fig. 3.8 Application driven optimization where y1 value may be lowered to its acceptable value y1acc. 

 

Such an approach may be called the application driven optimization. It has to be said how we 

can “tell” that optimizer may sacrifice some parameter and how much. The answer is that the 

goal function (3.2) by adding so-called weight coefficients w1,w2,…,w8 that will be 

responsible for it. The modified goal function may then look as follows (3.3). 
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Such introduced weights may tell the optimizer how important corresponding parameters are 

for the designer and thus give it more freedom when search for an optimal solution. 

3.1.4 Optimization tool 

Basing on all previous facts, we decided to extend our simulation tool by the module that will 

be able to handle the optimization task. The main idea was that our tool as its input should 

have the project constraints that are listed below (table 3.1). 

 

Table 3.1 Design variables used in the optimizer. 

Input (design) variable Unit 

Membrane length (Lm) µm 

Membrane width (wm) µm 

Membrane thickness (tm) µm 

Gauge length (Lg) µm 

Gauge width (Lg) µm 

Max. concentration (Ns) at/cm3 

Implantation peak (Rp) µm 

Gauge thickness (Xj) µm 

 

What the designer has to do is to introduce the lower and upper bounds of each design 

variable in order to formulate constrained optimization problem. Then, the optimizer runs the 

first phase of our procedure and shows us sets of design parameters that have to be applied in 

order to obtain designs that are optimized for only one output value such as sensitivity or 

resistance value. Next, the global optimization is performed that provides us with the solution 

which is the trade-of between all output values. In the last part, weight coefficients may be 

adjusted by the designer and the global optimization phase may be performed again in order 

to satisfy the designer needs. The main window of our tool is presented on Fig. 3.9. 

 

As it was in case of the simulation tool, the main screen is divided into sections. In the top left 

corner, project constraints for all design variables are introduced whereas in the top right 

corner the results section is placed. In this section, a few sets of output parameters are shown. 

The first five are the sets of sensor performance for single objective optimizations whereas the 

sixth set is the global optimal design so it is the result of the second phase. The bottom left 
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corner is dedicated for the weight coefficients and for our purposes only four of them are 

possible to apply (it may be extended to all eight coefficients). 

 
Fig. 3.9 The main window of the optimizer tool. 

 

In the middle, the solution appears which is nothing else than a set of the design variables that 

has to be used in order to obtain the desired performance. In other words if the designer 

performs the optimization stage and adjust the design to its needs, the optimizer will “tell” 

him how to do that. 

Let us talk about the performances of such an approach. As we mentioned earlier one 

simulation of the whole sensor last about 2 ms (measured by the internal MATLAB® 

function). For example, one single objective optimization needs about few hundreds of model 

evaluations (an average value tested by author for about 10 different starting points and 

project constraints). It means that the first phase of our algorithm may easily reach thousand 

or more of function evaluations. It means that the whole optimization procedure may last 

about 4 seconds. If we then apply the second phase of the optimization, we have to say that 

the whole optimization procedure lasts rather no longer than few seconds. Recall that one 

complete analysis in ANSYS® environment lasts about 20 seconds. If we then multiply it by 

one thousand it gives us two thousands minutes what is equal to 6 hours! For only first phase 
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of the algorithm and these are just the rough calculations. If we then estimate that each phase 

of adjusted optimization of the second phase needs about 100 evaluations it will add us 

1 additional hour each. It is then clear that the analytical solution is much more convenient if 

one want to design the optimized product. Of course, as we said, at the end of our design 

process the detailed FEM analysis is necessary to check the influence of all phenomena that 

are not taken into account by the analytical model but the design time should decrease 

dramatically, making the piezoresistive pressure sensor design to be the quite simple 

procedure. 

3.1.5 Case study – optimization example 

Let us consider an example that allows us to follow the whole optimization procedure. We 

can easily imagine that our pressure sensor may be placed in many environments. For 

instance, we may fix the project requirements to be specified as it is shown in the table below. 

(Table 3.2). 

Table 3.2 Exemplary project requirements. 

Input (design) variable Technological constraint 

Membrane length (Lm) < 400 µm 

Membrane width (wm) < 400 µm 

Membrane thickness (tm) > 5 µm 

Gauge length (Lg) < 40 µm 

Gauge width (Lg) > 3 µm 

Max. concentration (Ns) (1018 ÷ 4·1019) at/cm3 

Implantation peak (Rp) < 0.1 µm 

Gauge thickness (Xj) > 0.3 µm 

 

If we imagine that the interesting output values are the sensitivity, resistance value and 

thermal coefficient of sensitivity, then after performing the first step of our optimization 

procedure, the best possible value will be given by Table 3.3. 

 

Table 3.3 Results of the first phase of the optimization procedure. 

Output value Best possible value 

Sensitivity [µV/V/mmHg] 152 

Gauge resistance [Ω] 34520 

TCII [ppm/°C] 0.4 
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Then, the mathematical optimum is calculated and the following values are proposed (Table 

3.4). 

Table 3.4 Optimum values calculated after the second optimization phase without introducing weights. 

Output value Best possible value 

Sensitivity [µV/V/mmHg] 139 

Gauge resistance [Ω] 34000 

TCII [ppm/°C] -1012 

 

As one can see proposed solution gives us very good value of the sensitivity and gauge 

resistance while the TCSI stays at quite high level. The proposed set of design variables that is 

proposed is then shown in Table 3.5. 

 

Table 3.5 Proposed set of the design variables calculated after second optimization phase. 

Input (design) variable Proposed value 

Membrane length (Lm) 400 µm 

Membrane width (wm) 400 µm 

Membrane thickness (tm) 5 µm 

Gauge length (Lg) 40 µm 

Gauge width (Lg) 3 µm 

Max. concentration (Ns) 1018 at/cm3 

Implantation peak (Rp) 0µm 

Gauge thickness (Xj) 0.39 µm 

 

As one may easily remarked the membrane is proposed to be as wide as possible and, at a 

time, as thin as possible what is quite obvious if we recall the membrane mechanics form 

chapter 2. The gauge was set to be as long as possible and as narrow as possible what increase 

the number of “squares” and thus, increases the gauge resistance. The gauge doping level is 

set to be minimal as it gives us the highest possible coefficient of piezoresistance and increase 

the resistivty. Let us then modify a little the weight coefficients by decreasing the resistance 

and sensitivity value which are quite high. The result of such a modification and a 

corresponding design variables are given in Table 3.6 and Table 3.7 respectively. 
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Table 3.6 Optimum values calculated after the second optimization phase after introducing weights. 

Output value Best possible value 

Sensitivity [µV/V/mmHg] 99 

Gauge resistance [Ω] 7534 

TCII [ppm/°C] -256 

 

Table 3.7 Proposed set of the design variables calculated after second optimization phase and introduction 

of priority coefficients. 

Input (design) variable Proposed value 

Membrane length (Lm) 400 µm 

Membrane width (wm) 400 µm 

Membrane thickness (tm) 5 µm 

Gauge length (Lg) 40 µm 

Gauge width (Lg) 3 µm 

Max. concentration (Ns) 1.33·1019 at/cm3 

Implantation peak (Rp) 0µm 

Gauge thickness (Xj) 0.46 µm 

 

As one can see the geometry of the sensor stays at the same level while it not influences the 

thermal coefficient of sensitivity. The only parameters that were changed are gauge parameter 

as doping concentration and junction depth. Such a modification was necessary in order to be 

close to the optimal point from Fig. 2.21 what, as a result, lead to decrease in the sensitivity 

and the resistance value. 

3.2 Statistical analysis 

If we know how to use our developed analytical model for simulation and design of the 

piezoresistive pressure sensor, let us try to better match the real world. It seems to be a well 

known problem when the design that is perfect in virtual world does not perfectly match the 

real conditions. There is a lot of reasons of such a behavior starting with model imperfection 

that always are more or less the approximation of the real world. The other problem remains 

the fabrication imperfection. We can easily imagine that in order to obtain the sensor that we 

need, the optimizer may provide us with the membrane thickness equal to 3.456 µm but are 

we really able to fabricate it? The answer is no and as far as the precision of the electronic 
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equipment increases the results are better but at the same time new techniques appears that 

encourage us to make smaller things so the precision is still not enough. 

Considering all above mentioned fact, the real design should not only show the solution that is 

ideal but also should take into account the incertitude. In fact all predicted parameters of our 

sensor should not only be given as a value but all possible sources of errors should be taken 

into account and the range of output parameter should be defined. In this sub chapter we will 

try to show how to use the analytical model in order to perform such an analysis. 

3.2.1 Why the statistical analysis? 

There are different methods of calculating the influence of parameters incertitude on output 

function describe in literature. The most simple and the most popular is an analytical method 

based on the derivative calculation. If we consider the function f(x1,x2,…,xn) where each 

parameter is estimated with known maximal error of ∆x1, ∆x2,…, ∆xn, we may estimate the 

error of function f  basing on the incertitude of its arguments using (3.4). 
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Such a method may provide us with the sensitivity of the output value for each parameter and 

also with the worst case calculations if we know what the maximum incertitude for each 

parameter is. Unfortunately, even in case of analytical models the derivative may be quite 

complex. Moreover, the second problem is that if we base of such an approach, we do know 

nothing about the distribution  of the output value. In other words, we can easily imagine that 

the designed value is equal to 1 and if we calculate it using (3.4), we may obtain values in 

range of <0.5;1.5> but what about distribution? Maybe 99% of our values will be in the range 

of <0.99;1.01> what is great and maybe contrarily only 1% of values is in the range of 

<0.6;1.4> what may be catastrophic. In such a case it would be desirable to know the exact 

distribution of our values. 

If one wants to know what the distribution of output values is, it is necessary to know the 

distribution of the input parameters. The distribution, in a simple definition, is a set of 

probabilities of occurring of certain value in the specified range. The exemplary distributions 

are shown in Fig. 3.10. 
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Fig. 3.10 Sample probability distributions: the Gaussian (normal - left) and uniform (right). 

 

The Gaussian (normal) distribution is one of the oldest one and it is given by the Gauss 

function in the following form (3.5). 
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Where M is the mean or the expected value and σ is a standard deviation value that tells us 

about the spread. The problem is that if we even know the distribution of the input variables it 

is quite tedious to use (3.4) in order to find the distribution of our output function f. And this 

is the moment when statistics comes. 

Having developed the analytical model of our sensor which is very rapid, we may easily 

imagine that we can perform many simulations in a very short time. Such a feature enables us 

to perform the statistical analysis. Basically, for a given set of entry variables generated by the 

optimizer for our design, we generate multiple input sets. In each set the design variable value 

is generated according to the probability distribution that is set by taking into account 

different incertitude sources. Then, for each generated vector an output value is derived so as 

a result, after such an analysis, distributions  of sensor performances are given. 

Of course, the main problem is how many analyses we should perform. Is one thousand trials 

enough or maybe it is far too much? In order to answer that question we propose to use some 

criteria that tell to the program when to stop. In fact our method is an example of the adaptive 

approach where the algorithm checks the conditions and stops when they are fulfilled. In our 

approach we monitor one parameter that describes the spread of values – the standard 

deviation. We then set criteria that if such a value converges (for an example next calculated 

value is not higher or lower than 10% of the mean value) the algorithm is stopped. On an 
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example, the normalized standard deviation value graph in the function of number of trials is 

shown (Fig. 3.11). 

 
Fig. 3.11 The standard deviation value in function of the number of trials. 

 

We may observe that in such a particular case the number of iterations that are used is limited 

to about 180. Such an approach may reduce the computation time dramatically and assures us 

that the results are valid. Of course we may tighten the convergence range to, for example, 1% 

what will result in increase of the computation time but it has to be emphasized that even for 

five hundreds trials the total computation time will not be longer than a few seconds. 

3.2.2 Process characterization 

As we said earlier, in order to perform the statistical analysis, the distributions of input values 

have to be known. The sources of incertitude may be different but generally they have two 

origins: equipment imperfection and human errors. In the next two short subsections we will 

try to give some overview of the problem. 

Equipment incertitude 

It has to be emphasized that all facts presented here are indicative and should be adjusted for 

particular process and fabrication equipment. Each technological step may be performed in 

many ways using different machines, so everybody planning to use presented statistical 

analysis are obliged to characterize it in order to draw the correct conclusions. 

Let us start with the material that should be processed. If we are talking about the pressure 

sensor, the most important part of the system is the micromachined membrane. There are 

many techniques that allow fabricating such a structure starting with etching techniques like 

KOH etching or dry DRIE etch. In our approach we use the SOI wafers with predefined 

device layer thickness and after that we use the box oxide layer as the etch stopper. 
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Nevertheless the products that exist on the market are also imperfect. If we use for example a 

5 µm thick SOI layer its thickness will be given by the wafer vendor with some incertitude 

(for example ±0.5 µm what is a standard value. It would be then desired to know the 

distribution of the thickness. For that case we performed the statistical analysis of the ten SOI 

wafer with such a specification basing on a seven-point standard measurement technique. The 

histogram of the wafer thickness is given in Fig. 3.12. The mean thickness is estimated to be 

about 5.1 µm with standard deviation of 0.18 µm. Talking about geometry, it is important to 

know what the precision of processes that are performed in the particular cleanroom 

equipment is. Some data may be gathered form the equipment datasheet like the 

photolithography incertitude but the other have to be characterized in the field by the machine 

operator as it was mentioned earlier. 
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Fig. 3.12 The thickness distribution of SOI wafer with nominal thickness of 5 µm. 

Human errors 

In fact, the process that has very high impact on the final product is the photolithography as it 

is responsible for the creation of any shape. The problem is that each machine has its 

particular mechanism of the alignment and thus a specified error. There is, however another 

important aspect – the human error. We can easily imagine the simple alignment marks that 

are used during alignment stage as it is shown below (Fig. 3.13). 

 
Fig. 3.13 Sample alignment marks. 
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On the left handed side we can see example of the perfect alignment which is rarely obtained. 

Very often some shift form the final position occurs but nevertheless, the maximal reasonable 

error that may be done by the user is shown on the right handed side of an image. Taking into 

account the fact that we will always try to achieve the perfect results, we may conclude that 

the distribution of the alignment errors may be described by the normal distribution where 

almost all values will be within the range shown on the right. If we look at the Gaussian 

distribution we can easily remark that almost all (99.9%) of values are grouped in range of 

EX ± 3σ where EX is an expected value and σ is the standard deviation. 

Similar procedure may be performed for photoresist development phase or etching process 

and for all input values the incertitude has to be defined. For our case (basing on the 

experience of the operators, the following values were used (Table 2.1). 

 

Table 3.8 The incertitude value for each of the designed variable. 

Input (design) variable Maximal error 

Membrane length (Lm) ± 2 µm 

Membrane width (wm) ± 2 µm 

Membrane thickness (tm) ± 0.5 µm 

Gauge length (Lg) ± 0.5 µm 

Gauge width (Lg) ± 0.5 µm 

Max. concentration (Ns) ± 2 % 

Implantation peak (Rp) ± 5% 

Gauge thickness (Xj) ± 5% 

 

The difference in the incertitude of the membrane lateral and the gauge dimensions is that  

gauges are fabricated by the ion implantation through the screening oxide layer and their 

dimensions are defined by the holes in the photoresist. The membrane formation process, 

however, includes the etching stage that introduces overetching effects. Implantation errors 

are totally based on the data gathered at our laboratory and will vary in other labs. In our tool, 

the distribution of the input variable may be easily introduced as the analytical equation and 

changed quickly to any distribution that is possible to describe analytically. Taking into 

account that we are dealing with the real, physical processes where incertitude maybe 

introduced by many factors described earlier, for test analyses we choose that all input 

variables have the Gaussian distribution. 
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3.2.3 Data analysis 

Having defined distributions of all input parameters we may perform the analysis. The main 

point is that we can perform it but the more important thing is to how interpret the data. 

3.2.3.1 How to interpret data? 

Let us imagine that we performed the analysis with 200 trials which at the end provided us 

with the sensitivity histogram as it is shown in Fig. 3.14. The mean value is estimated to be 

about 55.5 µV/V/mmHg with standard deviation of 0.97. 
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Fig. 3.14 The sample histogram of the sensitivity value. 

 

What can be concluded from such a histogram? Firstly, we are able to calculate the expected 

value that will be the most likely value to appear. Then, the most important, the probability of 

fabricating the sensor that will be characterized with the sensitivity value from defined range 

may be calculated. The last information is crucial form the industrial point of view because if 

we imagine that project requirements of our sensor  define the minimum sensitivity value to, 

for example, 54, we may then say approximately how many sensors that have better or equal 

parameters will be fabricated.  

In other words we may try to estimate the production yield of our sensor. In fact there are 

some advanced approaches used for the yield prediction [84] which gives a good results 

basing on data provided by IC fabricants. They are optimized for integrated circuits and deal 

with specific problems which are not the case in a relatively simple process as we are using. 

Therefore our approach is designed to be simple and easy to use, but as we said, it has to be 

based on particular cleanroom equipment data. 
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Going further, by changing only one entry parameter incertitude while keeping other ones at 

unchanged level, we are able to compute which design variable has the highest impact on our 

design. In other words, after the design and optimization stage we may try to identify the 

parameter of “high risk” and try to focus on technological process steps that are the most 

critical one or modify our design. Moreover, such an analysis may provide us not only with 

the influence on the output value but may also tell us about the distribution of an output value. 

The exemplary result of such an analysis is presented below (Fig. 3.15). 

 
Fig. 3.15 Exemplary result of the sensitivity analysis. 

One may easily remarked that the parameters that have the highest impact on the resistivity 

value are the gauge lateral dimensions and implantation parameters excluding the 

implantation range that may be neglected. 

3.2.4 Offset prediction 

If we look again at the equation that describes the change of the output voltage (2.24), we 

may notice that in case when there is no pressure applied (so no resistance change ∆Ri 

occurs), the output voltage of the bridge should be equal to zero. 

Nevertheless, due to the process incertitude, such a case occurs only if all four resistors that 

form the Wheatstone bridge are identical and all interconnections are also. If they are not, 

some voltage signal appears at the output of the sensor under zero differential pressure 

applied; such a voltage is called the offset value. Let us present what is the graphical 

representation of the offset (Fig. 3.16) considering that the sensor response is linear. 

Such a voltage is highly unwanted as it can drastically influence the dynamic range of the 

sensor. Thus, it would be desired to know it and here we may use our approach which may 

take into account all parameters that may cause the difference between each resistor. The 
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problem simplifies as we treat that the distance between structures is small so we may 

considered that, for example, the annealing time and temperature as well as local variation of 

the screening oxide thickness are the same for each gauge. 

 
Fig. 3.16 Graphical representation of the offset voltage. 

It may lead us to the conclusion that only the geometry related issues may affect the resistance 

values and thus, if we provide the data about the incertitude of geometry reproduction we may 

try to predict the offset value. 

3.2.5 Statistical design tool 

Consequently we decided to create the computer program that will allow the designer to 

perform the full statistical analysis. The main window of our tool is presented below (Fig. 

3.17). 

 
Fig. 3.17 The main window of the statistical tool. 
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As one can see the left section is dedicated to introduce the design that we want to analyze 

and define the incertitude for each parameter. The right section contains six windows that 

provide us with the histograms of the desired output parameters. Each histogram is 

characterized by the two fundamental values: expected value EX and standard deviation STD. 

If one wants to approximate the probability P of the occurrence of the value form the specific 

range, it is necessary to calculate it by using the simple formula (3.6). 

t

r

N

N
P =       (3.6) 

Where Nr is the number of values that are in the specific range while Nt is the total number of 

trials. If someone, however, wants to roughly estimate the probability P basing only on the 

expected value EX and standard deviation σ, it is possible to use the Chebyshev’s inequality 

[85] (3.7) where the k parameter is a natural number bigger than one. 
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To summarize, such an approach may be applied if one wants to have an overview on the 

potential sensor characteristics before the fabrication step but the price that have to be paid is 

the equipment characterization that has to be made a priori. 

3.3 Conclusions 

In this chapter, the previously developed analytical model was used to create two design tools. 

The first one, needless to say the most important one, is the optimizer. It uses an approach 

based on a two phase single objective optimization approach in order to solve multiobjective 

problem. It uses the standard sequential quadratic programming algorithm implemented in 

MATLAB ® environment. As a results, the design that meets the project requirements may be 

found efficiently in a very short time. 

In the second part, we showed the possible approach that uses the statistical method based on 

the experimental data in order to predict how the characteristics of the real sample will differ 

form the designed one. 

It has to be emphasized that all above mentioned procedures are feasible in a traditional way 

of iterative FEM analysis but applying of our approach may reduce the design time by using 

extremely fast analytical methods. Therefore, a modified design path was proposed that uses 

only occasional FEM analysis. 

Now, the results of simulations and calculation have to be faced with the real world so in the 

next chapter will focus of samples fabrication and characterization. 
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4 Sensor fabrication and 

measurements 

The final part of this work will present the experimental work that has been done in order to 

verify all facts presented in the two first chapter because, as it was mentioned earlier, the 

weak point of each modeling technique are models which not always match the reality. In this 

chapter we will present the technological process that was used in order to fabricate the 

piezoresistive pressure sensor. Then, the measurement setup that was used to characterize the 

sensor will be presented what, as a result, will lead us to experimental results. Consequently, 

we will compare the results with the simulation and discuss possible sources of mismatch 

between them. As a supplement, we will describe the procedure and test structures that were 

fabricated as the result of the proper investigation of the author in order to measure 

experimentally the thermal coefficient of resistance in P-type silicon for different doping 

levels. 

4.1 Technological process 

The whole process was conducted at the LAAS laboratory by using own equipment for all 

necessary steps. The fabrication facility of the laboratory contains two basic blocs, the main 

cleanroom used for semiconductor processing and the packaging facility. The cleanroom has 

about 1500 m2 of the surface and is divided in two zones. First one with the purity class 

10000 dedicated for general processing and the second one with class 100 for the complete 

photolithography process (photoresist deposition, insulating and photoresist development). 

4.1.1 Fabrication steps 

Basically, two types of sensors were fabricated: the differential and the absolute one. Recall 

the second chapter and especially Fig. 2.3 we need to perform two different processes in order 

to do that. Generally, the absolute sensor differs from the relative in one way-the space under 
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the membrane is closed (called the cavity) and there is a vacuum inside. Therefore in fact the 

process for both cases is similar excluding one important stage that will be explained. As we 

said earlier the core of our sensor is the membrane and as it was shown later the thickness of 

it is crucial if one want to fabricate the sensor with the desired (designed) parameters. In the 

next subsection we will focus on the membrane fabricating issue. 

4.1.1.1 Membrane fabrication using SOI wafers 

Over the years, many techniques were developed in order to form the silicon membrane layer. 

The crucial case for the membrane formation process is the control of the thickness and its 

uniformity. One of the simplest and oldest, but giving good results, method is the silicon wet 

etching with the KOH solution. Basically, because of the cubic, diamond like crystal shape of 

the silicon lattice, the anisotropy occurs also during the wet etching process. As the 

mechanical properties of the silicon differs with the orientation, also the bonds strength does. 

It enables us to etch silicon along some crystallographic planes more easier than along others. 

Thus, we can easily imagine that we may choose the wafer orientation in such a way that the 

result of etching will always produce the plane that is parallel to the wafer surface what may 

create the membrane. In practical applications we use the wafers cut in (100) plane. In such a 

case, the etching of masked silicon will be look as follows (Fig. 4.1). 

 
Fig. 4.1 Anisotropic KOH etch of silicon in (100) plane. 

 

As one can remark, it enables us to create the membrane with easiness but one has to take into 

account the 54.7° angle during the mask design stage. Even much more complicated 

structures may be obtained by using this technique including multilevel structures fabricated 

with only one single mask [86]. The process control is quite good so we are able to etch 

54.7° 

Photoresist 

(100) plane Silicon 
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silicon with the precisions of about 1 µm. The etch rate depends strongly on both temperature, 

etch rate increases with it, and on the percentage of pure KOH in the solution and the higher it 

is the slower etching occurs (Fig. 4.2). Moreover, the uniformity of the membrane has to be 

assured as we do not want to introduce any roughness throughout the etching process. 

According to the literature [74], if one wants to assure the flat surface after etching the 

solution must contains at least 30% of pure KOH and the initial roughness must be as 

minimum as possible. 

 

 
Fig. 4.2 Etching rate dependence in a function of temperature and the percentage of pure KOH in the 

solution [74]. 
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The KOH method, while it is a wet etching technique it is the one of the favorite industrial 

method because it is possible to etch multiple wafers at a time. Moreover, it provides us with 

the great uniformity over the wafer area if the uniform temperature distribution is assured. 

The second possible technique is the deep reactive ion etching (DRIE) of silicon. Such a 

technique is an example of the dry etching technique. Among different techniques one of the 

most known is the Bosch process [87]. The special gases (SF6) are introduced and then the ion 

bombardment of the unmasked areas occurs what leads to the reaction of silicon with ions 

and, as a result to isotropic etching. After that, the passivation layer (C4F8) is introduced to 

stop the etching. Then, same procedure is repeated in a loop what, as a result, gives us the 

highly anisotropic etching profile due to the ion bombardment which occurs only at the 

bottom and not at the sidewalls. It is usually presented that the angle of anisotropy is in order 

of 88° to 92° and is better controlled when the dimension of the etched structure are smaller 

(in order of tents of micrometers). The DRIE despite its advantages, has also some 

drawbacks. Firstly, the equipment is extremely expensive in relation to the KOH etching and 

we may process only one wafer at a time what leads us to the obvious conclusion that the cost 

of manufacturing increases dramatically. Moreover, if the relatively deep and large areas has 

to be etched the nonuniformity problem appears over the whole wafer area. 

 

As one can remark, both presented process may be used during the membrane formation stage 

but they have to be controlled in extremely precise manner in order to obtain the desired 

membranes thickness. As the membranes used for pressure sensors fabrication ten or more 

years ago reached easily 20 or 30 µm that was not a crucial problem. If we, however, want to 

shrink our sensors to the size of few hundreds of microns, the thinner membrane have to be 

fabricated with good thickness control. A milestone in that field was the introduction of the 

SOI wafers. Such a structure consists of a thick substrate silicon layer, a thin oxide layer and a 

thin silicon layer with the controlled thickness (Fig. 4.3 a)). As both KOH and DRIE process 

are highly selective between oxide and silicon rates etch (about 100), the thin silicon layer 

may be easily use as a stop etch layer for both processes (Fig. 4.3 b) d)). Once the etching 

arrives at the oxide interface we may stop the process and then etch the silicon dioxide by 

selective HF solution (Fig. 4.3 c) e)). Nevertheless we have to keep in mind that in our 

application we are strongly limited for the overall dimensions of the sensors. As it was shown 

earlier the wide of 700 µm is a limit. If we then take into account that the membrane was 

designed to be 300 µm wide, for our purpose we have chosen the RIE technique as it does 

need additional space at the backside of the wafer (Fig. 4.1). 
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Fig. 4.3 An example of using SOI wafer a) for the membrane fabrication by DRIE etching b),c) and KOH 

etching d),e). 

 

Such a technique allows us to buy the wafer with the thickness that we want and then use the 

standard etching process without extremely careful control as it is necessary in case of 

standard silicon wafers. As always, such a solution has to have some drawbacks and in this 

case it is the price of SOI wafers which is about 10 times higher in comparison to the standard 

Si wafer. 

4.1.1.2 Classical MEMS process 

The process that was developed in order to fabricate our sensors is a quite standard (in terms 

of used techniques) approach used in the MEMS fabrication. It contains eleven mask levels in 

order to fabricate the desired structure. Two basic cells were designed in order to test two 

types of the membranes – the square and the rectangular one. The set of two masks used for 

the fabrication are presented below (Fig. 4.4). 

The membrane size is 300 µm x 300 µm for the square membrane and 300 µm x 900 µm for 

the rectangular one. The interconnections that are on the membrane are made of heavily 

doped P++ regions what reduced the thermomechanical stresses that appears when the metal 

is placed on the membrane (high mismatch between thermal coefficients of expansion). The 

overall chip size for two cases is 720 µm x 2000 µm (the maximal cell size according to the 

project specification). 

Si substrate 

SiO2 layer 
SOI layer 

a) 

b) c) 

d) e) 
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Fig. 4.4 Masks of two types of the sensor: with square (up) and rectangular (bottom) membrane. 

 

As we said earlier, there is only one difference between relative and absolute pressure sensor 

but it is a fundamental one. Basically, in case of the relative pressure sensor, the “electronic 

part” of a system that contains all implanted structures and metallic interconnections is 

fabricated on a SOI wafer. Then at the end, as the last step, the membrane is created by using 

the DRIE process as it was shown in Fig. 4.3. If we want, however, fabricate the absolute 

pressure sensor, the sealed cavity has to be made. There are different techniques of sealed 

cavity formation but they used in common the process that, when presented, enabled us to 

push the limit of the MEMS devices – the wafer bonding process. 

 

Wafer bonding – the process of connecting two wafers of the same or different material 

in a permanent way. 

 

Since it was introduced twenty years ago it opened the possibilities that were not achievable. 

By using it, a new type of the absolute pressure sensors [88], accelerometers [89] as well as 

new packaging techniques emerged. There is a lot of good works in the field of wafer bonding 
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that have been done [90] including anoding, eutectic, intermediate layer and direct wafer 

bonding dealing with drawbacks, advantages and features that they offered. In this work we 

will focus on the direct wafer bonding that was used in our process.  

As we remember from chapter two, the thermomechanical stresses may easily affects the 

sensor performance. Thus, in our work we decided to bond two silicon wafers in order to have 

same thermal coefficient of expansion and thus, reduce the thermomechanical stresses. 

Nevertheless, we wanted to use the electrical advantage of the SOI wafer like small parasitic 

capacities so we decided to keep the oxide layer between the membrane and the SOI layer. 

Thus, the wafer bonding between Si and SiO2 layers had to be performed. Such a bonding 

technique is studied in details by many authors [91]. Basically, we start with two silicon 

wafers where one of them is oxidized. In order to obtain good both strength the wafers should 

be as flat as possible and some reports [92] recommend that the total bow on four inches 

wafer should be less than 5 µm. Then, a special cleaning procedure is applied in order to 

create both surfaces hydrophilic. Such a step is necessary as it is well established that in the 

first phase of bonding the bonds between free Si–OH (silanol) groups occurs and such a group 

is responsible for the hydrophilicity of the surface. The standard solution that is used for such 

a purpose is a warm SC-1 (1:1:5 NH3:H2O2:H2O). Just after the cleaning procedure the wafer 

are put into bonding machine (in our case it was AML-AWB) and then put into intimate 

contact. During that process, the water molecules that are trapped between the surfaces start to 

create very weak bonds with the silanol groups (Fig. 4.5 a)). As we want to obtain the 

absolute pressure sensor, the whole process was performed at the near vacuum conditions. 

The force that was applied on the wafer was about 2000 N during the thirty minutes. Such a 

procedure generally produces relatively stronger bonds as the van der Waals forces creates 

bonds directly between silanol groups (Fig. 4.5 b)). 

 
Fig. 4.5 The three basic steps of bonding: weak bonds by trapped water molecules a) stronger bond 

between silanol groups by van der Waals forces b) Strong bonding after high temperature annealing. 
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In order to obtain permanent strong bonding another process is then required - annealing 

stage. The high temperature annealing applied at 1100º C for 2 hours was reported [93] to be 

enough to obtain permanent bonds according to the reaction (4.1). 

OHSiOSiOHSiOHSi 2+−−→−+−     (4.1) 

 

As a product of such a reaction not only the bond is achieved but the free water molecules 

appear. These molecules will then diffuse into silicon dioxide until the moment when they 

reach the silicon-silicon oxide interface when they react with the silicon according to (4.2). 

222 H2SiOOH2Si +→+      (4.2) 

 

The problem is that the remaining hydrogen is still somewhere between and it has to dissolve 

into something. Fortunately it dissolves easily into SiO2 layer and thus, such a layer has to be 

thick enough in order to absorb all hydrogen. If it is not, it may have some consequences as a 

hydrogen traps between the surfaces that will cause the so-called voids. Below (Fig. 4.6), two 

infrared images of bonded pairs are presented. The left one contains many voids due to the 

trapped particles and hydrogen between the surfaces whereas the second one may be 

considered as the voids free. 

 
Fig. 4.6 Example of the bonded wafers pair with many (left) and almost no (right) voids. 

 

Knowing the bonding process, we may then easily present the complete sensors fabrication 

process for absolute and relative pressure sensor. As most of steps are common we will 

present at the beginning how the process for the absolute pressure sensor arrives at the 

moment when it is then almost identical to the one that is used for the relative pressure sensor 

fabrication. The partial diagram of the process is depicted below (Fig. 4.7). 
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Fig. 4.7 The formation of micro cavities for the absolute pressure sensor. 

 

The cavity formation is done by the RIE process which allows us to control the lateral 

membrane dimensions in comparison to wet oxide etching by HF solution which is isotropic 

and may easily overetch the cavity borders what results in increased membranes length and 

width. The substrate removal is made in the beginning by mechanical grinding to be finished 

by wet KOH silicon etching. It has to be finished by wet etching while the membranes with 

thicknesses smaller than 50-80 µm are to fragile to the mechanical grinding. Form this 

moment the rest of the process is identical for both type of sensors excluding the last step 

what will be shown at the end. The simplified process then looks as follows (Fig. 4.8). 
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Fig. 4.8 The simplified fabrication process diagram for a differential and an absolute sensor pressure. 

 

In the beginning, on the wafer (Fig. 4.8 a)) the thermally grown layer (400Å) of screening 

oxide is made (Fig. 4.8 b)). After that, the photolithography process (Fig. 4.8 c)) is used in 

order to prepare the wafer for first ion implantation (Fig. 4.8 d)) that will form strain gauges 

(Fig. 4.8 e)). Then, the photoresist is removed (Fig. 4.8 f)) and another photolitography and 

ion implantation process is performed (Fig. 4.8 g)) in order to fabricated heavily doped 
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interconnections regions (Fig. 4.8 h)). The next photolithography process is finally used in 

order to fabricate the metallic interconnections (Fig. 4.8 i)) by the lift-off process. At this 

stage, the absolute pressure sensor is finished whereas the relative one does not have the 

membrane. Therefore, the SOI wafer is etched from the backside by the DRIE process which 

was described earlier. 

4.2 Measurement setup 

After the fabrication stage, sensors have to be characterized in order to measure precisely their 

performances. In fact, in case of pressure sensors such a characterization stage is not trivial 

because of the need of controlling the environment of the sensor and more precisely the 

pressure and the temperature values. Nevertheless our sensor is some kind of the electronic 

circuit so some tests may be done using the standard characterization tools designed for this 

purpose. Generally, we may divide the characterization stage into two phases: the on-wafer 

testing when we try to characterize all electrical sensor parameters such as the resistance 

value, offset value and their corresponding thermal coefficients. Secondly, we have to 

measure sensor response to the applied pressure and for this purpose the wafer has to be cut 

into single dies that are then packaged in a dedicated testing package that was designed for 

them. Both processes will be now shortly presented. 

4.2.1 On-wafer testing 

After the fabrication stage, the standard 4 inches wafer contains about 2000 test cells. Half of 

them are the rectangular one while rest are square. As the measurement setup, two probe 

stations were used. First one is a semiautomatic SUSS MICROTEC® PA200 station with 

tester HP4120. Such a station allows us for measurement of DC voltage and current in 

semiautomatic mode. It means, that the cartography of cells may be programmed and then the 

automatic measure may be performed without intervention of anybody. Moreover, such a 

station is equipped with the thermal chuck which allows us to control its temperature and thus 

perform the measurements of the thermal drifts of the offset or resistances. 

The second station was CASCADE microtech® with the tester Keithley 4200 which is the 

cutting edge in electrical measurements at high precision. The second station was equipped in 

closed chamber where we can control the temperature. The chamber protects also the wafer 

form the external light and the electromagnetic field. 

In order to get the sensor response to the applied pressure, the new equipment developed last 

year by SUSS microtech was used. It is called the PPM module [94] and in fact, it is an 
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extremely precise generator of the air flow. The principle of the measurement is that if the 

outlet of the moving gas (the nozzle) is close enough to the surface, we may consider the 

pressure applied to the surface to be quasi constant. In fact the module calibrates itself by 

using the chuck built-in pressure sensor each time in order to know what is the outlet pressure 

drop in a function of the distance between the nozzle and the surface. Schematic view of such 

a system is presented below (Fig. 4.9). 

 
Fig. 4.9 Schematic view of the PPM module. 

 

Such a system is of course an approximation of the real pressure generator and due to the 

effects of the flow at the side walls of the nozzle its precision is limited and according to 

datasheet is estimated to be about ± 85 mbar. 

The described measurement setup allowed us to perform the electrical, temperature as well as 

some pressures response preliminary tests whereas the full precision was achieved with the 

packaged sensor which was tested in a fully controlled atmosphere. 

4.2.2 Packaged sensor 

4.2.2.1 Temporary packaging 

The temporary packaging of the sensor consists of a small PCB board on which it was 

mounted by using the silicone. After that, using the micro bonding technique, the contact 

plots were bonded to the PCB gold layer in order to be connected with the RS-232 port which 

allows us to connect the electrical measurement unit. The schema of such a temporary 

packaging is presented on a Fig. 4.10. Such a packaging has also some drawbacks. One of 

them is the thermomechanical stress that comes from the silicone that joints the PCB and the 

silicon sensor cell. Thus, all sensitivity tests were performed in a controlled atmosphere with 

the temperature precision of about 0.05 °C. 
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Fig. 4.10 PCB board used for the temporary packaging. 

4.2.2.2 Test setup 

The PCB is then mounted into a chamber made from stainless steel in order to make the 

atmosphere around the sensor isolated and controllable. The chamber consists of two parts 

which are joined together by the screws. Between them, the PCB board is mounted and to 

rubber joints are placed on each side of the board to achieve hermetic packaging (Fig. 4.11).  

 
Fig. 4.11 Test setup used for the sensor characterization. 

 

Such a solution enables us to obtain the desired pressure form both side of the membrane 

(important in case of the differential pressure sensor) Moreover, it gives us the possibility to 

put whole setup to the chamber with precisely controlled temperature and it protects the 

sensor from the external light and pollution. The fabricated setup is shown in Fig. 4.12. 
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Fig. 4.12 The real view of the experimental setup. 

 

Such tools allowed us to perform a set of tests on our samples and estimate the performance 

of our sensor so let us present he results of measurements in more details. 

4.3 Sensor performance 

As it was mentioned earlier the most important parameters that characterize the pressure 

sensor are its sensitivity, offset value and its thermal drifts. We have to keep in mind that 

according to our application, the pressure range that we would like to measure is about 0÷300 

mmHg and the temperature operating range is set to 20÷40°C. The example photography of 

the single sensor cell with the rectangular membrane is presented below (Fig. 4.13). 

 

 
Fig. 4.13 The photography of the fabricated sensor. 
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4.3.1 Electrical characteristics 

4.3.1.1 Sensor response to the pressure load 

The differential pressure sensor was tested using the measurement chamber that was 

presented at Fig. 4.12. Both, square and rectangular membranes were tested by applying the 

differential pressure ranging from 0 to about 200 mmHg. For both sensors the sensitivity was 

estimated by the preliminary measurements in order to set the gain of the signal conditioner 

circuit that is set to give at its output the signal varying form 0 to 3V for the full scale. In 

order to predict the sensitivity by our model, we have to know what is the doping profile of 

the fabricated gauges. Therefore, the SIMS analysis, which gives us the boron concentration 

in the function of depth, was performed. It has to be remarked that for an absolute and 

differential pressure sensor two different doping profiles were used. We used two in order to 

test two different thermal coefficients of sensitivity as they are inversely proportional to the 

doping level (Fig. 2.16). 

The result of SIMS analysis for the differential sensor is presented in Fig. 4.14 where dots 

represents the measurement while the approximation of such a profile is given by the dashed 

line. 
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Fig. 4.14 The SIMS profile of the strain gauge used in differential pressure sensor. 

 

For the absolute pressure sensor, the profile looks differently like it is depicted below (Fig. 

4.15). 
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Fig. 4.15 The SIMS profile of the strain gauge used in absolute pressure sensor. 

 

The expected sensor performance: gauge resistance and sensor response are presented in a 

table below (Table 4.1). 

 

Table 4.1 The expected sensor parameters predicated by the analytical model. 

differential absolute 
Parameter 

square rectangular square 

Sheet Resistance [Ω/square] 347 347 572 

Sensitivity [µV/V/mmHg] 42.4 50 52.3 

 

All data were computed considering that the membrane thickness is exactly equal to 5µm 

and the Kanda’s model was used in order to calculate the gauge sensitivity as it was explained 

in chapter 2. 

 

We then measured the sensitivity of the relative sensor by using the setup presented earlier 

(Fig. 4.11). For a square membrane, the plot of the output voltage after the amplification is 

shown in Fig. 4.16 whereas for the rectangular membrane the same result is presented in Fig. 

4.17. 
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Fig. 4.16 The output voltage-applied pressure curve for the sensor with square membrane. 

 

 
Fig. 4.17 The output voltage-applied pressure curve for the sensor with rectangular membrane. 

 

For the absolute pressure sensor, we used the PPM module that was presented in Fig. 4.9 and 

tested the sensors on wafer without any amplification or conditioning circuit. The exemplary 

sensor response to the pressure load for the square membrane is presented in Fig. 4.18. We do 

not measured rectangular membranes as due to the technological difficulties all of them were 

not properly bonded to the substrate. 
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Fig. 4.18 Response of the absolute pressure obtained by using the PPM module. 

 

As one can clearly see, responses of the sensor to the applied pressure measured by the use of 

controlled pressure chamber are much more linear than the one obtained by the PPM module. 

Such a difference may be explained by the much smaller precision of the PPM module 

(± 85 mbar) than the one that is offered by the pressure chamber (± 0.1 mbar). Nevertheless, 

for both cases the linearity is high enough to estimate the sensitivity for both cases by 

applying the linear theory of he piezoresistivity. The calculated sensitivity and the resistance 

value are presented in the Table 4.2 as well as the deviation from calculated values. 

 

Table 4.2 Measured sensors performances and their comparison to the calculated ones. 

differential absolute 
Parameter 

square rectangular square 

Sheet Resistance [Ω/square] 360 (+3.7%) 360 (+3.7%) 584 (+2.1%) 

Sensitivity [µV/V/mmHg] 22.2 (-52.1%) 95.4 (+90%) 36.1 (-19%) 

 

If we then compare experimental results to the expected ones we may easily remark that there 

is an enormous mismatch between them in terms of the sensitivity value whereas for the 

resistance value results are correct. Thus, we decided to perform more tests in order to find 

out where is the reason of such a mismatch. 

One of the potential reason of such a problem was the difference between the designed and 

the real dimension of the membrane. Therefore, we tried to estimate what is the real size of 
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the membrane we fabricated. In case of the membrane thickness measurement, we used 

special test structures that were designed inside the sensor cells (Fig. 4.4) where the SOI 

device layer was etched until the box oxide. Then, the optical profilometer was used in order 

to measure the height of the etched hole and thus, the membrane thickness. Of course we 

consider that the SOI device layer thickness is uniform over the whole sensor area what seems 

to be reasonable as we consider small size of the cell. Exemplary result of such a measure is 

presented in Fig. 4.19. The optical profilometry may be applied because on the SOI device 

layer there is still the screening oxide layer which assures that the reflection coefficients 

inside the hole and at the surface layer are identical. Of course if one want to estimate the 

membrane thickness the screening oxide layer thickness of about 400Å has to be considered. 

 
Fig. 4.19 The profile of the test structure used for the membrane thickness estimation obtained by the 

optical profilometer. 

 

In order to estimate the lateral membrane dimensions we also used the optical profilemetry 

but we observed the deflected membranes. In case of the absolute pressure sensor it was quite 

simple while due to the vacuum inside the cavity the membrane was deflected at the 

atmospheric pressure. Moreover, for the absolute pressure sensor the membrane size was 

defined by the oxide etch during the cavity formation before the bonding stage (see Fig. 4.7) 

and the measurement taken before bonding shown that the lateral membrane dimensions were 

correct. 

In case of the differential sensor, membranes were created by using the DRIE technique and 

according to some works [95], there is always some problem with keeping the etched hole 

vertical during the etching process, especially when dealing with relatively large structures. 
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We had to apply the differential pressure to our sensors and perform the measurement of the 

deflected membrane profile. In order to do that, we constructed a simple metallic support with 

a small hole with diameter of 300 µm and used the vacuum supplied to the chuck of the 

optical profilometer. Then, we put the sample on the support which was mounted on the 

profilometer chuck and applied the vacuum which caused the deflection of the membrane as it 

is shown on the schema (Fig. 4.20). 

 
Fig. 4.20 The simplified setup that allowed us to measure the membrane deformation and thus, its lateral 

dimensions. 

 

The results of such a test for both, square and rectangular membrane are shown in Fig. 4.21 

and Fig. 4.22. 

 
Fig. 4.21 The optical profilmeter measurement of the deflected square membrane. 
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Fig. 4.22 The optical profilometer measurement of the deflected rectangular membrane. 

 

As one can clearly remark, measurements show that the lateral dimensions of the membranes 

differs significantly from the ones that were predicted (Table 4.3). The problem of 

discontinuous line at the lower profile of the rectangular membrane (Fig. 4.22) may be 

explained by the different coefficient of reflection of heavily doped P++ interconnection zone 

and it does not influence the lateral dimension measurements. 

Table 4.3 Measured and predicted lateral membrane dimensions. 

 Square Rectangular 

Predicted 300 µm x 300 µm 900 µm x 300 µm 

Measured 433 µm x 433 µm 970 µm x 406 µm 
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In order to verify how the dimensions of the membrane became bigger, we decided to get a 

photo of the sensor cell cut along the membrane border using the scanning electron 

microscope (Fig. 4.23). 

 
Fig. 4.23 The photo of the cut of the pressure sensor along the membrane border. 

 

Observing the picture, one may easily remark that the DRIE process did not work correctly 

and the width of the etched hole increase with the depth (it become wider when closer to the 

membrane). It has to be emphasized that the dimensions marked in Fig. 4.23 are rather 

indicative while the sample was no perfectly aligned with respect to the camera. 

Taking into consideration all above mentioned facts (real membrane lateral dimensions for 

differential sensors and thicknesses for all types of sensors), we recalculated the sensitivity 

value for all three samples and compare it to the measured value. Table 4.2 may be then 

rewritten as follows. 

Table 4.4 Comparison of corrected predicted values and measured ones. 

differential absolute 
Parameter 

square rectangular square 

Sheet Resistance [Ω/square] 360 (+3.7%) 360 (+3.7%) 584 (+2.1%) 

Calculated sensitivity [µV/V/mmHg] 21.3 96.3 44.8 

Measured sensitivity [µV/V/mmHg] 22.2 (+4.2%) 95.4 (-1%) 36.1 (-19%) 



Modeling and optimization of piezoresistive pressure sensors Michal Olszacki 
 

 116

Now one can clearly see that there is a very good match between the experimental and 

calculated results especially for the differential pressure sensor. The reason why for the 

absolute pressure sensor the difference is remarkable (-20%) is that in case of the square 

membrane gauges are placed in the regions were stress value is overestimated by the 

analytical model and the overestimation was shown to reach about 20% (see chapter 2). In 

case of the differential sensor, membrane lateral dimensions were greater so gauges were not 

at the membranes border but about 50 µm from them what proves that the used analytical 

model may be successfully used excluding the small zone at the membranes border where the 

overestimation should not be greater than 20%. 

4.3.2 Offset measurements 

As it was mentioned in the previous chapter, one of the important parameters of the sensor is 

the offset value. In the ideal case, this parameter should be as small as possible but also a 

stable as possible. The first condition is required as the highest offset value may decrease the 

dynamic of the sensor after the signal conditioning. As an example we can imagine easily that 

our sensor produces the sinusoidal output signal within the range -1V to 1V. If we want to use 

the amplifier that is supplied by the symmetrical voltage of -5V, 5V, we may easily set gain 

of our amplifier and use all dynamic range as it is shown in Fig. 4.24. 

 

 
Fig. 4.24 Ideal case of the signal amplification (gain equal to 5) if there is no offset at the sensor output. 

 

However if our sensor has an offset value of 0.5V, we have to decrease the gain of our 

amplifier as the offset will limit our dynamic range as it is shown in Fig. 4.25. 
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Fig. 4.25 The effect of the offset voltage on the dynamic range. 

 

Nevertheless, the offset signal can be easily compensated as the output signal may be easily 

shifted by the simple electronic circuit. The problem arises when the offset voltage drifts due 

to different phenomena like temperature. Thus, we characterized our sensors in order to verify 

offset value and its temperature drift. 

The results of measurements (offset voltage value normalized to the supply voltage value) we 

performed for both square and rectangular differential sensors  (31 samples for each) using 

the on-wafer testing on a SUSS probe station are shown in Fig. 4.26. 

 

 
Fig. 4.26 The offset values for both rectangular and square sensors measured on wafer. 
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For square sensors the average value was calculated to be about -3.3mV with the standard 

deviation value of 1.9mV whereas for the rectangular ones the offset was much higher 

reaching 7.1mV with the corresponding standard deviation value of  3mV. 

We then asked the question, what may be the origin of such an offset value. For square 

sensor, if we analyze the mask, we may easily notice that there is some asymmetry 

concerning the heavily doped interconnection layers (Fig. 4.27). 

 
Fig. 4.27 The asymmetric heavily doped interconnection zones. 

 

The sheet resistance value for the interconnection zones was then measured and calculated. 

Calculations were based on the real doping profile that was obtained using the SIMS 

technique. The sheet resistance values are shown in a Table 4.5. 

 

Table 4.5 Measured and calculated sheet resistance values foe heavily doped zones. 

Calculated sheet resistance [Ohms/square] 18.1 

Measured sheet resistance [Ohms/square] 18.3 

 

The marked asymmetrical regions (Fig. 4.27) are measured to be about 1.5 square each. It 

gives us the resistance value of about 27 Ω per each regions. If we take into account that there 

are two regions we have the asymmetry of the resistance ∆R value between the two 

Wheatstone bridge branches which may be estimated to be about 54 Ω. Having in mind that 

the average resistance value R0 for each gauge was estimated to about 3660 Ω, we may easily 

use the equation 2.45 and calculate the possible offset value dV (4.3). 
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Such a value, corresponds to the measured one (3.3 mV) what means that in future mask we 

may eliminate such an offset by different mask design. 

Nevertheless, in case of rectangular sensor the measured offset value is much higher 

(7.1 mV), even if the mask is perfectly symmetrical (Fig. 4.4 lower part). Applying our 

statistical design tool, we check what factors are the crucial ones and influences the most the 

gauge resistance and thus, the difference between different gauges that causes the offset value. 

We found that there are two factors with the highest impact: gauge width and the implanted 

dose. We also remarked that the only difference between square and rectangular sensors is 

that the orientation of the gauges is different. In case of square sensor all four gauges are 

positioned in the same direction while in case of rectangular one, pairs of gauges are parallel 

to each other (see Fig. 4.4 lower part). We then concluded that the possible source of the 

offset voltage is different lateral dimension in horizontally and vertically placed gauges or the 

implanted dose loss caused by the shadowing effect. 

As we analyzed in details the parameters of the mask fabrication equipment DWL 200 

Heidelberg, we found that the minimal precision in the X axis is set to 200nm whereas for 

Y axis it is set to be 400nm what can be the source of the different gauge width and thus the 

measured offset values. 

The second possible reason of the difference in the gauges resistance may be the shadowing 

effect. Such an effect appears when we implant the dopants with a small tilt angle (typically 

about 7°) in order to avoid the channeling effect (Fig. 4.28 left). As at our laboratory the ionic 

implanter does not support the wafer rotation feature, the tilted ion bunch is always oriented 

in the same configuration with respect to the wafer primary flat. It causes that there is always 

one pair of gauges that is affected by the shadowing effect that limits the effective 

implantation area (Fig. 4.28 right). 

 
Fig. 4.28 The example of the shadowing effect cause by the implantation performed at small tilt angle. 
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4.3.3 Temperature characteristics 

4.3.3.1 Measurement setup 

As we measured the sensitivity at room temperature, we decided to measure the TCR values 

for two doping profiles that were used. In order to measure it we used the semiautomatic 

probestation SUSS microtec® AP200 that was described earlier. Such on-wafer measurement 

allowed us to eliminate all thermomechanical stresses that may appear due to the packaging. 

We then measured the resistance for four different temperatures: 25°C, 40°C, 55°C and 70°C 

in order to evaluate both quadratic and linear terms of TCR. The temperature of the chuck was 

set with a precision of 0.1°C and each time it was changed, the vacuum that holds the wafer in 

the aligned position was cut off and applied again after 20 minutes. Such a procedure was 

necessary in order to allow the wafer to expand due to the thermal coefficient of expansion 

and thus, it eliminated additional thermomechanical stresses that might have been induced 

and cause some additional errors. 

 

Recall that the resistance value R(T) in a function of the temperature ∆T may be expressed as 

follows (4.4), we may easily estimate both linear α and quadratic β terms of TCR if we are 

provided with the quadratic function that was fitted to the measurement data. 

 

( ) ( ) ( )( )2
000 TTTT1RTR −∆+−∆+= βα     (4.4) 

 

It has to be remarked that the R0 value is the reference resistance value at reference 

temperature T0 = 25°C. According to such assumptions the calculation procedure consists of 

fitting the second order polynomial to the measurement results and then extracting searched 

TCR terms. All fitting and calculations were performed in MATLAB® environment. 

4.3.3.2 TCR measurements 

Using the previously described procedure, we then measured the TCR value for our two strain 

gauges with different doping level as it was shown in Fig. 4.14 and Fig. 4.15. The 

measurements were taken for nine different gauges at different positions on the wafer. After 

the fitting of quadratic polynomial values of linear and quadratic TCR coefficients are shown 

below (Fig. 4.29). 
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Fig. 4.29 Measured linear TCR values for two different doping profiles with the surface concentration of 

about 1018 at/cm3 (left) and 1.25·1019 at/cm3 (right). 

 

We also calculated the linear and quadratic TCR coefficients value using the Arora’s model 

taking into account doping profiles. The comparison between them is shown in a Table 4.6. 

 

Table 4.6 The comparison between experimental results and calculated values of linear TCR coefficient. 

Maximal doping concentration  1018 at/cm3 1.25·1019 at/cm3 

Predicted linear TCR [ppm] 1859 1477 

Measured linear TCR [ppm] 2699 (+45%), σ = 68 561 (-63%), σ = 45 

Predicted quadratic TCR [ppm] 3.5 -0.2 

Measured quadratic TCR [ppm] 6.18, σ = 0.76 3.7, σ = 0.99 

 

Such a high mismatch between experiment and calculations leaded us to perform our own 

experiments that allowed us to investigate the TCR value for doped silicon. 

4.3.3.3 Offset thermal drift measurement 

As we mentioned earlier, not exactly the offset value is important but its drift. We have used 

the same set of samples and measured the temperature drift of the offset. We changed the 

temperature for 23°C to 40°C and measured the offset values assuming that the offset changes 

linearly with the temperature. The result of such a measurement for rectangular (Fig. 4.30) 

and square (Fig. 4.31) sensors are shown below. 
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Fig. 4.30 Thermal coefficient of the offset voltage for rectangular sensors. 

 
Fig. 4.31 Thermal coefficient of the offset voltage for square sensors. 

 

As one can see, for the square sensors values are much more dispersed than for the 

rectangular sensors reaching the average value of 255 ppm with the standard deviation value 

of 308 ppm. For the rectangular sensors the mean value is equal to 89 ppm with the standard 

deviation value of 36 ppm. 

Recall that the thermal drift of the offset voltage for a Wheatstone bridge depends only on the 

difference between TCR of the each resistance in a bridge (equation 2.49), the first 

conclusion could be that the mismatch between TCR should be greater for the square sensors. 

Consequently, having in mind that the TCR coefficient depends only on the doping level, the 
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difference in doping level between gauges should be also greater for the square sensors. The 

problem is that it is contradictory to the results that we obtained for the offset measurement 

that were presented earlier. The offset value was much smaller for the square sensors where 

gauges have same orientation and only the asymmetry is rather responsible for the offset 

value. 

The hypothetical explanation of such a behavior may be based on the thermomechanical 

stress appearance. As there is a thin oxide layer between the membrane and the silicon 

substrate (Fig. 4.7), it is possible that due to the difference of thermal coefficient of dilatation 

the thermomechanical stress appears at the interface of these two materials. Having in mind 

that in case of square sensors gauges are placed near the clamping region, such a stress may 

affects stronger such a region and be quite dispersed as the real clamping point is difficult to 

control perfectly due to the imperfect etching process. For the rectangular membranes gauges 

are placed on their centers so very far form the clamping zone and thus, probably the 

influence of the thermomechanical stress may be lower. 

4.3.4 Experimental verification of mobility values 

As we may notice, despite some reports [59, 96] confirming Arora’s model, there is a quite 

large mismatch between the TCR coefficient obtained by using this model and experimental 

results. Therefore, we tried to investigate more deeply TCR values for different doping levels. 

As it was shown in chapter 2, the doping profiles plays a key role in the correct modeling of 

the mobility in the diffused layer. Thus, we decided to fabricate the resistances with different 

but uniformly distributed  doping levels and then measure their TCR values. In order to do 

that, we used the SOI wafers with the very thin device layer with controlled thickness. Among 

many products available on the market we decided to use the product of SOITEC®. The basic 

characteristics of the wafer are presented in the Table 4.7. 

 

Table 4.7 The parameters of SOI wafers that were used. 

Parameter Value 

Device layer thickness 340 nm ± 25nm 

Box oxide thickness 400 nm ± 5 nm 

Overall wafer thickness 523 µm ± 15 µm 

Doping level of the device layer P-type (boron) 1015 at/cm3 
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Such a thin layer allows us to implant the selected dose and then anneal the sample in order to 

redistribute the dopants quasi uniformly over the device layer depth. The word quasi is used 

because some boron will diffuse into the oxide layer due to the phenomenon of the boron out-

diffusion [97],[98]. Nevertheless obtained profile should be considered as uniform what will 

be proven by the SIMS analysis. 

4.3.4.1 Design and fabrication of test structures 

The test structures consists of resistors that are implanted into the device layer. In the 

beginning, the SOI wafer (Fig. 4.32 a)), is oxidized in order to obtain the thin screening oxide 

layer (Fig. 4.32 b)). 

 
Fig. 4.32 The simplified process view. After oxidation b) the ion implantation and annealing is performed 

c). Then the device layer around gauges is etched d) and metallic interconnections are created d). 

 

Then, resistors and highly doped interconnections are subsequently created by using the ion 

implantation technique and the high temperature annealing (Fig. 4.32 c)). Finally, we etch the 

silicon device layer around gauges and interconnections in order to obtain good electrical 

isolation (Fig. 4.32 d)). As the last step, access holes in the oxide layer are etched and metallic 

interconnections are deposited and formed using the lift-off process (Fig. 4.32 e)). 

a) b) c) 

d) e) 
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The mask of the designed cell, which is in fact the pressure sensors, are depicted below (Fig. 

4.33). 

 

Fig. 4.33 The designed cell used for the TCR measurement. 

 

In fact the basic cell consists of three gauges where one is connected directly to the metal via 

highly Boron doped vias in order to preserve good ohmic contact. Two other gauges are 

connected to the metal by highly doped interconnection layers and one of them is placed on 

the membrane what may be used in future for the experimental verification of the 

piezoresistance coefficient. 

 

According to the process shown in Fig. 4.32, six different doses where implanted ranging 

from 1014 at/cm3 to 5·1014 at/cm3 in order to obtain different doping levels. Such a range is 

rather used while the resulting sheet resistance value varies from about 200 Ω/square to 

1500 Ω/square. As we remarked earlier, the quasiuniform doping profile may be achieved by 

using such a fabrication process. If we, for example, consider the implanted dose of  

1014 at/cm3 ,simulations performed in the process simulator provided us with the final dopants 

distribution. Nevertheless, during the annealing stage, as it was mentioned earlier, the Boron 

has the tendency to diffuse into oxide layer. As a result, the real doping profile obtained 

during such a process that was extracted by using the SIMS technique (Fig. 4.34). 

Metallic interconnections 

Resistors 

Heavily doped interconnections 
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Fig. 4.34 Simulation of the dopants distribution for the implanted dose of 1014 at/cm3 and corresponding 

SIMS analysis. 

 

As one can see, the boron that was near the surface diffused into the oxide layer what, as a 

result, caused that the fabricated profile differs from the one obtained by the simulation. 

Nevertheless, we may say that the obtained profile may be considered as quasi uniform while 

the dopants concentration varies approximately from 1018 at/cm3 to 2·1018 at/cm3 over the 

whole structure depth. We then performed the SIMS analysis for the other implanted doses 

that vary form 1014 at/cm3 to 5· 1014 at/cm3 and compared it to the simulation as it is shown on 

Fig. 4.35 ÷ Fig. 4.38. 

 
Fig. 4.35 Simulation and SIMS profile of the dopants distribution for the implanted dose of 2·1014 at/cm3 . 
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Fig. 4.36 Simulation and SIMS profile of the dopants distribution for the implanted dose of 1,5·1014 at/cm3 

 
Fig. 4.37 Simulation and SIMS profile of the dopants distribution for the implanted dose of 3·1014 at/cm3 

 
Fig. 4.38 Simulation and SIMS profile of the dopants distribution for the implanted dose of 4·1014 at/cm3. 



Modeling and optimization of piezoresistive pressure sensors Michal Olszacki 
 

 128

4.3.4.2 TCR measurements 

We used the same measurement setup and methodology that was used in case of the gauges 

TCR measurement. Measurements were taken for about twenty samples for each implanted 

dose. The sample result for the doping level of  1.75÷2.5·1018  is shown below (Fig. 4.39). 

 
Fig. 4.39 Exemple set of measurements of the linear TCR coefficient. 

 

Then, the statistical mean value and standard deviation was calculated. According to this 

methodology, linear and quadratic TCR coefficients were estimated for six different doping 

levels. Of course as we could see the doping level is not perfectly constant but if we consider 

it as linearly changing over the gauge thickness we may give it as the range of the doping 

concentration. The result of such an analysis is shown in Table 4.8. 

 

Table 4.8 Linear and quadratic TCR coefficients for different doping levels. 

Doping level Linear TCR coefficient α [ppm/°C] Quadratic TCR coefficient β [ppm/°C] 

1.75÷2.5·1018 825 9.2 

2.5÷3.25·1018 334 10.1 

4.8÷6.1·1018 161 8.3 

6.8÷8.1·1018 153 8.7 

8.2÷10·1018 200 8.4 

 

Let us then trace the obtained results in comparison to the ones predicted by the Arora’s 

model for the linear and quadratic TCR coefficient (Fig. 4.40). 
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Fig. 4.40 values of the linear and quadratic components TCR in comparison to the predicted ones. 

 

As one can clearly see, for the linear component of TCR there is quite large mismatch 

between the predicted and measured values. If we recall Fig. 2.18, we may then noticed that 

the experimental points published by Bullis are much closer to the measured ones and for the 

narrow range between 1 and 5·1018 are almost identical. If we consider additionally the 

quadratic component, the analytical model also definitely fails. According to the author’s 

knowledge there is no report on the experimental determination of the quadratic component of 

the TCR coefficient so there is no comparison with any experimental data. As a conclusion, 

we may than say that despite some reports that confirm the Arora’s mobility model (more 
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precisely the temperature dependence) results may not be always trustworthy. For example 

the minimum TCR value for mathematical model is about 1000 ppm while we measured 

values lower than 200 ppm what makes five times less. It also confirms that during the design 

stage it has to be taken into account while some assumption about the TCR were crucial like 

in case of the temperature auto compensation (see p. 31). Some more detailed study should be 

conducted in the area of TCR approximation in order to find an analytical formula that allows 

us to predict correct thermal behavior of the doped resistances and this issue remains a future 

problem. Nevertheless, we may conclude that near the room temperature, the data published 

by Bullis or modified Arora’s model should be rather used in order to correctly predict sensor 

performance.
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5 Conclusions 

5.1 Summary 

In this work, an overview on the modeling and optimization of a piezoresistive pressure 

sensor was given. It was shown that such a process is definitely not a trivial task as it is 

necessary to perform a multi domain analysis which includes all specific phenomena that 

occurs in such a system. We started with the basic theory concerning the mechanical behavior 

of the membrane in the linear regime and presented the analytical description concerning 

three basic geometrical shapes of perfectly clamped membranes. It was followed by a detailed 

presentation of the piezoresistivity phenomenon in Silicon along with its analytical 

description that is commonly used in order to model it. Then experimental data that are 

available up to now and justify the choice of the model that was used to simulate the pressure 

sensor were presented. Consequently, some details about the mobility modeling in silicon and 

some existing models were shown. Then, the overview of the Wheatstone’s bridge, the 

simplest electronic readout circuit used for the resistance measurement was discussed along 

with the power supply issues that may affect the sensor characteristics. 

The important problem that was discussed concerned the detailed strain gauge modeling 

which takes into account the nonuniform profile of the diffused layer. It was shown that the 

doping profile of such a layer may be successfully described by the Gaussian approximation 

and based on it, we derived formulas that allow us to calculate the interesting “effective” 

gauge parameter like resistance value, TCR and piezoresistive coefficient. Moreover, it was 

presented that the doping nonuniformity of the profile affects significantly first two 

parameters and under some condition also the third one, so it has to be taken into account if 

one wants to design sensor correctly. 

Finally, it lead us to the description of the most used technique in the Microsystems design-

the FEM analysis. We showed the possible methods of model building and focused on the 

detailed strain gauge modeling. Then, the comparative analysis between FEM and analytical 

approach was performed and advantages, as well as drawbacks, of two methodologies were 
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discussed. It was pointed out that the difference between two methodologies are rather in the 

mechanical domain and two basic phenomena that may make results of the analytical model 

invalid are thermomechanical stresses and real clamping conditions. We quantitatively 

estimated the error that may appear if we take into account such phenomena and discussed at 

which conditions it occurs. 

As a result, the simulation tool that was created by using the MATLAB® environment which 

uses the complete analytical model of the piezoresistive pressure sensor and allows the 

designer to perform the rapid analysis of the defined system was presented. 

 

The next part of this work was dedicated to the optimization tool for the sensor design. We 

introduced the basics of optimization techniques and explained how to use the developed 

rapid analytical model in order to perform the fast optimization stage. Moreover, some 

explanation about how to deal with the multiobjective problem using the standard single 

objective algorithms that are widely known was given. We then tried to propose the different 

design methodology that may decrease the time-consuming optimization loop performed 

usually by the FEM analysis. The results allowed us to present the optimizer tool that was 

created in order to help the designer to obtain the design that fulfils defined project 

requirements in a fast and simple way what was shown in the case study example. 

 

Additionally, we extended our design methodology by the statistical analysis which may be 

helpful from the manufacturing point of view. The statistical analysis was chosen because our 

model is extremely rapid and, at the same time, quite complicated analytically what increases 

the complexity of the standard derivative based method. Such an analysis, if properly used, 

may response to many questions including the estimated production yield at the simulation 

stage. The price that one have to pay is the necessity of the particular cleanroom equipment 

characterization what may be done rather when one use processes that are well characterized. 

Such an analysis is essential from the industrial point of view if one plans to deliver reliable 

product as in the case of the project that was the base of this work. Consequently, we 

proposed the statistical analysis tool that may cooperate with the first two tools giving the 

designer the possibility of estimating the sensor characteristics taking into account the process 

imperfection. 

 

In the last part, the experimental results were presented in order to validate the proposed 

methodology. We presented the fabrication processes that were used for both, differential and 
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absolute pressure sensor where in the second case we put some light onto bonding technique 

that is one of the base of today’s pressure sensors. In case of differential pressure sensor we 

explained the problem of the DRIE overetching what caused the high mismatch between 

experimental and predicted results. After taking into account all fabrication imperfections we 

have shown that the mechanical and piezoresistive model worked correctly in terms of 

sensitivity for the applied pressure within the limits shown in the second chapter concerning 

real clamping conditions. 

Nevertheless, the mobility dependence on temperature did not match experimental data and 

thus, the own investigation was conducted in order to gather the experimental data on the TCR 

coefficient as a function of the doping level. The test structures were then designed and 

fabricated. After the measurements, we have shown that despite some works confirming the 

Arora’s model experimentally, we found that the Bullis experimental data are much closer to 

the reality while the modeled values differs even few times from the one that were measured. 

In conclusion, such data have to be rather used if one wants to predict the thermal behavior of 

the piezoresistive pressure sensor correctly. 

5.2 Perspectives 

As a result of this work, methodology that may decrease time to market during the 

piezoresistive pressure sensor design was proposed. Nevertheless, as one could remark the 

existing models not always match the reality. Thus, the own investigation of the author in 

order to gather the experimental data on TCR coefficient was conducted. Obtained 

experimental results, even covering the narrow range of the doping levels, are very 

encouraging for future work where more test structures will be fabricated in order to cover 

much wider range of implanted doses. Moreover, similar types of structures may be designed 

in order to verify the temperature drift of piezocoefficents experimentally what, as it was 

presented in this work, is crucial in the proper design of the sensor.  

If we consider again the methodology, the interesting continuation of this work may be 

application of the design for reliability approach where one may combine the statistical design 

tool with the optimizer in order to optimize the project to be not only high performance but 

also reliable and fabricated at high yield. We may, for example, easily imagine that the 

optimizer will not only try to maximize the sensitivity value but also minimize its standard 

deviation value using the statistical analysis, Nevertheless for such an approach, the more 

detailed study on the cleanroom equipment reproducibility should be conducted in order to 

verify the proposed method. 
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Résumé: 
 

Depuis 1954, où l’effet piézorésistif a été découvert dans Silicium, la démarche pour mesurer la pression a changé et de 

nouveaux dispositifs avec des performances remarquables sont apparus sur le marché. Grâce au développement des 

microtechnologies, une nouvelle famille de capteurs de pression piézorésistifs miniatures s’est ainsi progressivement imposée 

pour de nombreuses applications. 

Même si le principe de fonctionnement des capteurs de pression piézorésistif en silicium reste le même depuis de nombreuses 

années, l’optimisation des capteurs pour une application donnée reste toujours une étape couteuse. 

C’est pourquoi de nombreux travaux ont été effectués pour développer des outils de conception les plus performants 

possibles afin de limiter les phases de validation expérimentales. Il existe ainsi sur le marché des logiciels de simulation 3D 

multiphysiques qui permettent de prendre en compte aussi bien les phénomènes thermomécaniques qu’électriques qui sont 

nécessaires pour ce type de capteurs. 

Malgré les progrès constants dans la puissance de calcul des ordinateurs, l’optimisation de ces capteurs par des méthodes de 

simulation élément fini peut s’avérer couteuse en temps si on veut prendre en compte l’ensemble des caractéristiques du 

capteur. C’est notamment le cas pour les jauges de contraintes en silicium dont le profil de dopage n’est pas constant dans 

l’épaisseur car les caractéristiques électriques et piézoélectriques dépendent du niveau de dopage. 

Les travaux de cette thèse portent donc sur le développement d’un outil de simulation analytique qui permet d’une part une 

optimisation rapide du capteur par une technique multi-objectif semi-automatique et d’autre part une analyse statistique des 

performances pour estimer le rendement de fabrication potentiel. 

Le premier chapitre décrit le contexte de ces travaux de thèse. Le second chapitre présente le principe de fonctionnement du 

capteur ainsi que tous les modèles analytiques mis en oeuvre pour modéliser le capteur. Ces modèles analytiques sont validés 

par des simulations élément finis. Le troisième chapitre porte sur l’outil d’optimisation et d’analyse statistique développé 

dans un environnement MATLAB. Le quatrième chapitre décrit la fabrication et la caractérisation des cellules de tests dont le 

comportement est ensuite comparé aux modèles analytiques. Ces caractérisations ont permis de montrer notamment que les 

modèles utilisés généralement pour décrire la dérive thermique des piézorésistances présentaient des erreurs notables. Des 

structures de tests spécifiques ont ainsi été mise en oeuvre pour avoir des données plus fiables. Finalement la dernière partie 

du manuscrit donne les conclusions générales ainsi que les perspectives de ce travail. 

 

Les mots-clés: 
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Abstract: 
 

Since 1954, when the piezoresistive effect in semiconductors was discovered, the approach to the pressure measurement has 

changed dramatically and new devices with outstanding performances have appeared on the market. Along with the 

development of microtechnologies for integrated circuits, a new branch of MEMS called devices have stormed our world. 

One of the biggest branches of today’s microsystems are pressure transducers which use the synergy of the piezoresistivity 

phenomenon and microfabrication technologies. 

While the main idea of strain gauge-based pressure measurement has not changed over the last few decades, there has been 

always a need to develop the design methodology that allows the designer to deliver the optimized product in the shortest 

possible time at the lowest possible cost. Thus, a lot of work has been done in the field in order to create tools and develop 

the FTR (first time right) methodology. Obviously, the design of the device that best fulfills the project requirements needs 

an appropriate simulation that have to be performed at the highest possible details level. Such an approach requires the 

detailed model of the device and, in case of its high complexity, a lot of computing power. Although over the last decade the 

most popular approach is the FEM analysis, there are some bottlenecks in such an approach like the difficulty of the 

implanted layers modeling where the doping profile shape has to be taken into account especially in the coupled electro-

mechanical analysis. 

In this thesis, we try to present the methodology of the pressure sensor design which uses the analytical model of such a 

sensor that takes into consideration the nonuniform doping profile of the strain gauge, deals with the basic membrane shapes 

as well as with thermal and noise issues. The model, despite its limitations in comparison to the FEM one, gives trustworthy 

results which may be used for the reliable pressure sensor design in an extremely short time. In order to be quantitative, the 

analysis showing the drawbacks and advantages of the presented method in comparison to the FEM analysis using 

specialized tools like ANSYS ® and SILVACO-ATHENA® packages is also presented. 

Then, the model is used in a multi-objective optimization procedure that semi-automatically generates the design of a sensor, 

taking into account project requirements and constraints. At the end, the statistical analysis that may be helpful to estimate 

the production yield is performed. 

All three steps are included in the dedicated design and optimization tool created in a MATLAB ® environment and 

successfully tested. In the last section, the experimental results of fabricated samples are compared to those obtained by the 

developed tool. 
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