Asymptotic FDP

Contributions to the statistical analysis of DNA microarray data

Pierre Neuvial^{1,2}

¹Université Paris VII, Laboratoire de Probabilités et Modèles Aléatoires

²Institut Curie / INSERM U900 / Mines ParisTech

PhD thesis defence September 30th, 2008

Pierre Neuvial (LPMA & U 900)

PhD thesis defence

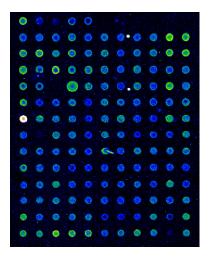
Introduction •••••• Breast cancer recurrences

Multiple testing procedures

Asymptotic FDP

DNA microarrays for cancer research

DNA microarray experiments



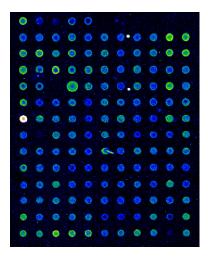
Small part of a scanned microarray

Multiple testing procedures

Asymptotic FDP

DNA microarrays for cancer research

DNA microarray experiments



Small part of a scanned microarray :

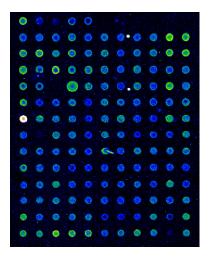
 1 spot ↔ 1 variable e.g. one gene

Multiple testing procedures

Asymptotic FDP

DNA microarrays for cancer research

DNA microarray experiments



Small part of a scanned microarray :

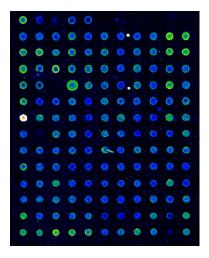
- 1 spot ↔ 1 variable e.g. one gene
- o color ↔ quantitative measurement e.g. that gene's *expression level*

Multiple testing procedures

Asymptotic FDP

DNA microarrays for cancer research

DNA microarray experiments



Small part of a scanned microarray :

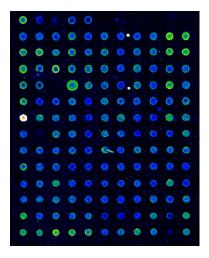
- 1 spot ↔ 1 variable e.g. one gene
- o color ↔ quantitative measurement e.g. that gene's *expression level*
- 1 experiment \leftrightarrow 1 sample

Multiple testing procedures

Asymptotic FDP

DNA microarrays for cancer research

DNA microarray experiments



Small part of a scanned microarray :

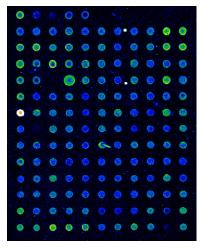
- 1 spot ↔ 1 variable e.g. one gene
- ocolor ↔ quantitative measurement
 e.g. that gene's *expression level*
- 1 experiment \leftrightarrow 1 sample
- 1 experiment ↔ many variables typically 10⁵ - 10⁶

Multiple testing procedures

Asymptotic FDP

DNA microarrays for cancer research

DNA microarray experiments



Small part of a scanned microarray :

- 1 spot ↔ 1 variable e.g. one gene
- ocolor ↔ quantitative measurement
 e.g. that gene's *expression level*
- 1 experiment \leftrightarrow 1 sample
- 1 experiment ↔ many variables typically 10⁵ - 10⁶

Why are microarrays relevant to cancer research ?

DNA microarrays for cancer research

Cancers and genes

Cancer cells

- grow without control
- avoid programmed cell death
- may invade adjacent tissues

Cancer involves dynamic changes in the genome

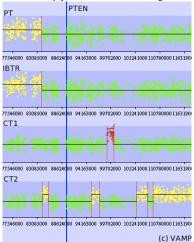
- DNA copy number alterations (e.g. mutations and aneuploidies)
- under- or over-expressed genes

Asymptotic FDP

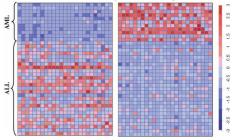
DNA microarrays for cancer research

Microarrays help identify genomic aberrations

DNA copy number changes



under- or over-expressed genes



DNA microarrays for cancer research

Questions

Biological and clinical questions

- understand tumor progression
- Ind new therapeutic targets
- identify prognosis and predictive factors
- \Rightarrow provide treatments adapted to each cancer subtype

Statistical questions raised

- unsupervised classification
- testing theory
- supervised classification, regression

Asymptotic FDP

Statistical issues for microarray data analysis

Microarray data analysis

Characteristics of microarray data

- $10^5 10^6$ variables and only 10 100 observations
- high experimental variability
- variables are not independent

Role of bioinformaticians and statisticians

- understand biological or clinical questions
- use or design adapted methods and software
- analyze statistical properties of the methods used

Asymptotic FDP

Statistical issues for microarray data analysis

Contributions of the thesis

Normalization of DNA copy number data

P. Neuvial, P. Hupé et al, BMC Bioinformatics, 2006

• Correlation between DNA copy number and expression

P. Neuvial, P. Gestraud et al, poster at ISMB 2007

Asymptotic FDP

Statistical issues for microarray data analysis

Contributions of the thesis

Normalization of DNA copy number data

P. Neuvial, P. Hupé et al, BMC Bioinformatics, 2006

• Correlation between DNA copy number and expression

P. Neuvial, P. Gestraud et al, poster at ISMB 2007

• Unsupervised reconstruction of transcriptional regulatory networks M. Elati et al, Bioinformatics, 2007

• Definition of true recurrences among ipsilateral breast cancers

M. Bollet, N. Servant et al, JNCI, 2008

Statistical issues for microarray data analysis

Contributions of the thesis

Normalization of DNA copy number data

P. Neuvial, P. Hupé et al, BMC Bioinformatics, 2006

• Correlation between DNA copy number and expression

P. Neuvial, P. Gestraud et al, poster at ISMB 2007

- Unsupervised reconstruction of transcriptional regulatory networks M. Elati *et al, Bioinformatics,* 2007
- Definition of true recurrences among ipsilateral breast cancers M. Bollet, N. Servant *et al*, *JNCI*, 2008
- Asymptotic properties of multiple testing procedures P. Neuvial, in revision for EJS
- Intrinsic bounds and FDR control in multiple testing problems P. Neuvial, submitted to *JMLR*

Statistical issues for microarray data analysis

Contributions of the thesis

Normalization of DNA copy number data

P. Neuvial, P. Hupé et al, BMC Bioinformatics, 2006

• Correlation between DNA copy number and expression

P. Neuvial, P. Gestraud et al, poster at ISMB 2007

- Unsupervised reconstruction of transcriptional regulatory networks M. Elati *et al, Bioinformatics,* 2007
- Definition of true recurrences among ipsilateral breast cancers
 M. Bollet, N. Servant *et al. JNCI*, 2008
- Asymptotic properties of multiple testing procedures

P. Neuvial, in revision for EJS

• Intrinsic bounds and FDR control in multiple testing problems

P. Neuvial, submitted to JMLR

Statistical issues for microarray data analysis

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Statistical issues for microarray data analysis

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

Statistical issues for microarray data analysis

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Background: breast tumor recurrences

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

Background: breast tumor recurrences

- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Asymptotic FDP

Background: breast tumor recurrences

Breast-conservative cancer treatment

Breast-conservative as compared to mastectomy

- equal survival
- + superior psychosocial outcomes
 - risk of ipsilateral breast tumor recurrence (IBTR)

IBTR: New Primaries (NP) vs True Recurrences (TR)

- NP may be treated as the first tumor
- TR should get a more aggressive treatment
- Problem: no perfect definition

Our goal: improve current definition of NP/TR

Asymptotic FDP

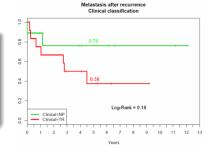
Background: breast tumor recurrences

Current classification of breast tumor recurrences

Clinical definition: related tumors should share location, histological type, grade Genomic definition: related tumors should share DNA copy number alterations (CNA)

Validation

- o difficulty: no ground truth
- a good (posterior) indicator: metastasis-free survival



Multiple testing procedures

Background: breast tumor recurrences

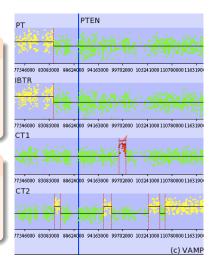
Data

Samples

- primary tumor (PT) and ipsilateral breast tumor recurrence (IBTR) for 22 patients
- 44 control breast tumors

Microarray data

- Affymetrix SNP 50k (Xba)
- copy number estimated using ITALICS (Rigaill *et al*, 2008)



Method: a partial identity score

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Multiple testing procedures

Asymptotic FDP

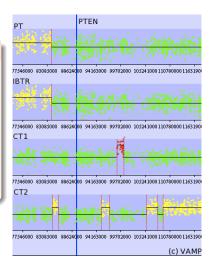
Method: a partial identity score

Biological idea

CNA vs breakpoints

- PTEN loss can be found in many breast cancers
- the breakpoint location is identical in the PT and IBTR of pair 5
- it is different for all other tumors in the study

 \Rightarrow Use breakpoint locations as informative markers



Pierre Neuvial (LPMA & U 900)

Multiple testing procedures

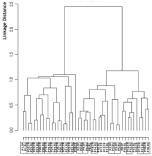
Asymptotic FDP

Method: a partial identity score

Statistical idea

Current method to classify NP/TR

- hierarchical clustering of samples based on copy number alterations
- TR \leftarrow IBTR and PT are neighbors on the dendrogram



Tumor Samples

Problems

- no significance estimation
- not robust to the addition/removal of a sample

\Rightarrow using a score should be more appropriate

Asymptotic FDP

Method: a partial identity score

A partial identity score between tumors

Starting point: Dice's formula (*Ecology*, 1945)

 $S_D(i,j) = \frac{\text{number of common breakpoints between tumors } i \text{ and } j}{\text{mean number of breakpoints of } i \text{ and } j}$

Proposed score

Taking breakpoint frequencies among controls into account:

$$PS(i,j) = \frac{\sum_{s \in S_i \cap S_j} (1 - f_s)^2}{\frac{1}{2} \left(\sum_{s \in S_i} (1 - f_s) + \sum_{s \in S_j} (1 - f_s) \right)}$$

- S_k: set of breakpoints of tumor k
- f_s: frequency of breakpoint s among 44 control tumors

Multiple testing procedures

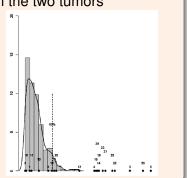
Asymptotic FDP

Method: a partial identity score

Statistical significance

Using "artificial pairs" to estimate a null distribution Null hypothesis : no partial identity between the two tumors

- match each of the 22 primary tumors with the IBTR of the 21 other patients
- calculate the scores of all
 22 × 21 = 462 such artificial pairs
- true recurrence = IBTR with score higher 95% percentile



Result: improved definition of true recurrence

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Introduction 0000000	Breast cancer recurrences ○○○○○○○○●●○○	Multiple testing procedures	Asymptotic FDP
Result: improved definition of true recurrence			
Results			

Assets of breakpoint information

better concordance with clinical information than CNAs

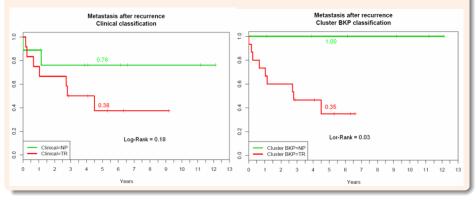
Multiple testing procedures

Result: improved definition of true recurrence

Results

Assets of breakpoint information

- better concordance with clinical information than CNAs
- outperforms clinical information in terms of prognosis:



Pierre Neuvial (LPMA & U 900)

Result: improved definition of true recurrence

Further works

Differential analyses

Finding genes whose copy number differ between

- primary tumors whose IBTR is a true recurrence
- primary tumors from those whose IBTR is a new primary

Distant metastases vs primary tumors

- breast tumors often have ovarian metastases
- distinguish such metastases from primary ovarian cancers

Result: improved definition of true recurrence

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Multiple testing procedures

Multiple testing

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Asymptotic FDP

Multiple testing

Example: Differential analysis of gene expression data

Expression matrix from Golub data

expression levels of m = 3051 genes among n = 38 samples:

- AML Acute Myeloblastic Leukemia $n_1 = 11$
- ALL Acute Lymphoblastic Leukemia $n_2 = 27$

Goal

Find differentially expressed genes between AML and ALL

Multiple testing procedures

Asymptotic FDP

Multiple testing

Example: Differential analysis of gene expression data

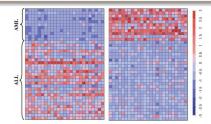
Expression matrix from Golub data

expression levels of m = 3051 genes among n = 38 samples:

- AML Acute Myeloblastic Leukemia $n_1 = 11$
- ALL Acute Lymphoblastic Leukemia $n_2 = 27$

Goal

Find differentially expressed genes between AML and ALL

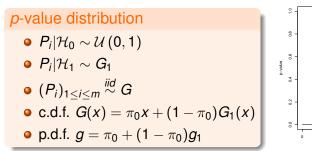


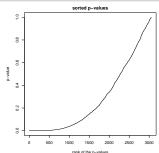
Multiple testing

Mixture model

Notation and settings

- *H*₀, *H*₁: null and alternative hypotheses
- m: number of tested hypotheses
- π₀: (fixed) proportion of true null hypotheses





Multiple testing procedures

Asymptotic FDP

Multiple testing

Multiple testing procedures

Multiple Testing Procedure (MTP)

 $\mathcal{M} = (\mathcal{M}_m)_{m \in \mathbb{N}}$ such that $\mathcal{M}_m : [0, 1]^m \to [0, 1]$ rejects all hypotheses *i* verifying

$$\mathbf{P}_i \leq \mathcal{M}_m(\mathbf{P}_1, \dots, \mathbf{P}_m)$$

for any *m*-dimensional vector of *p*-values (P_1, \ldots, P_m)

Threshold function

A multiple comparison procedure $\mathcal M$ has threshold function $\mathcal T:D[0,1]\to [0,1]$ iff

$$\forall m \in \mathbb{N}, \mathcal{M}_m(P_1, \ldots P_m) = \mathcal{T}(\hat{\mathbb{G}}_m)$$

Multiple testing procedures

Asymptotic FDP

False Discoveries

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

Asymptotic properties of FDR controlling procedures

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

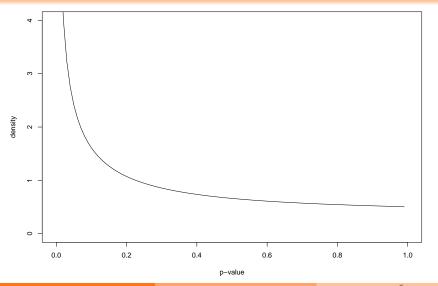
Breast cancer recurrences

Multiple testing procedures

Asymptotic FDP

False Discoveries

False Discovery Proportion and False Discovery Rate



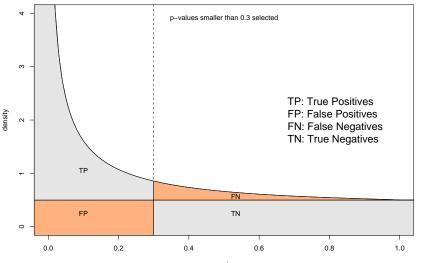
Pierre Neuvial (LPMA & U 900)

Multiple testing procedures

Asymptotic FDP

False Discoveries

False Discovery Proportion and False Discovery Rate



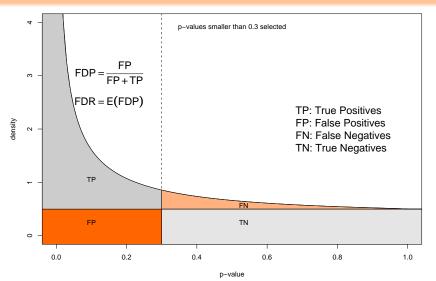
p-value

Multiple testing procedures

Asymptotic FDP

False Discoveries

False Discovery Proportion and False Discovery Rate



Pierre Neuvial (LPMA & U 900)

False Discoveries

FDP as a stochastic process of a random threshold

- we are interested in fluctuations of FDP around FDR
- (*FDP*(*t*))_{0<t<1} as a stochastic process: (Genovese & Wasserman (Ann. Stat., 2004), Storey, Taylor & Siegmund (JRSS B, 2004))
- what about the FDP actually attained by a given MTP ?

$$FDP(\mathcal{T}(\hat{\mathbb{G}}_m))$$

Main idea

- derive asymptotic properties of the attained FDP from the functional Delta method
- understand how these properties rely on the procedure itself, and the p-value distribution

Multiple testing procedures studied

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

Asymptotic properties of FDR controlling procedures

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Multiple testing procedures

Asymptotic FDP

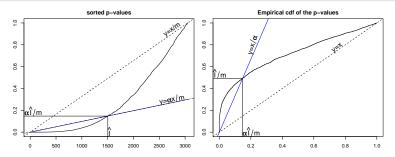
Multiple testing procedures studied

BH95 procedure (Benjamini & Hochberg, JRSS B, 1995)

The BH95 procedure at level α

• Sort the *m p*-values : $P_{(1)} \leq \ldots \leq P_{(m)}$

(3) Reject all *p*-values smaller than $= \alpha \hat{I}/m$



Pierre Neuvial (LPMA & U 900)

Multiple testing procedures

Asymptotic FDP

Multiple testing procedures studied

BH95 procedure: conservative FDR control

Threshold function of the BH95 procedure

 $\mathcal{T}(F) = \sup \left\{ u \in [0, 1], F(u) \ge u/\alpha \right\}$

Conservativeness of the BH95 procedure

If the *p*-values are independent, procedure BH95 yields

 $FDR \leq \pi_0 \alpha \leq \alpha$

Two main types of refinements

plug-in procedures apply the BH95 procedure at level $\alpha/\widehat{\pi_0}$, where $\widehat{\pi_0}$ is an estimator of π_0

adaptive procedures use non-linear rejection curves, larger than Simes' line

Pierre Neuvial (LPMA & U 900)

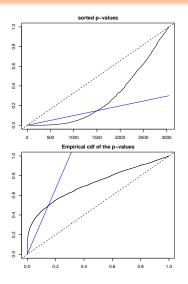
Breast cancer recurrences

Multiple testing procedures

Asymptotic FDP

Multiple testing procedures studied

One-stage vs two-stage adaptive procedures



BH95 procedure

$$\mathcal{T}(F) = \sup\{u \in [0, 1], F(u) \ge u/\alpha\}$$

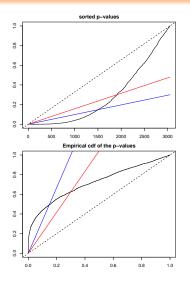
Breast cancer recurrences

Multiple testing procedures

Asymptotic FDP

Multiple testing procedures studied

One-stage vs two-stage adaptive procedures



BH95 procedure $\mathcal{T}(F) = \sup\{u \in [0, 1], F(u) \ge u/\alpha\}$

Two-stage procedures: $\alpha \rightarrow \alpha/\widehat{\pi_0}$

Sto02(
$$\lambda$$
): $\widehat{\pi_0}(\lambda) = \frac{1 - \widehat{\mathbb{G}}_m(\lambda)}{1 - \lambda}$
BKY06: $\widehat{\pi_0} = 1 - \widehat{\mathbb{G}}_m(\widehat{\tau}^{\mathsf{BH95}}(\alpha))$

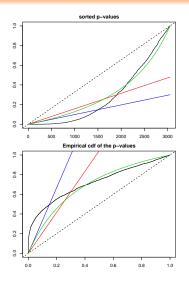
Breast cancer recurrences

Multiple testing procedures

Asymptotic FDP

Multiple testing procedures studied

One-stage vs two-stage adaptive procedures



 $\frac{\mathsf{BH95 \ procedure}}{\mathcal{T}(\mathsf{F}) = \sup\{u \in [0, 1], \mathsf{F}(u) \ge u/\alpha\}}$

Two-stage procedures: $\alpha \rightarrow \alpha/\widehat{\pi_0}$

Sto02(
$$\lambda$$
): $\widehat{\pi_0}(\lambda) = \frac{1 - \widehat{\mathbb{G}}_m(\lambda)}{1 - \lambda}$
BKY06: $\widehat{\pi_0} = 1 - \widehat{\mathbb{G}}_m(\widehat{\tau}^{\text{BH95}}(\alpha))$

One-stage procedures: $u/\alpha \rightarrow r_{\alpha}$ FDR08: $r_{\alpha}(u) = u/(\alpha + (1 - \alpha)u)$ BR08: $r_{\alpha}(u) = u/(\alpha + u)$

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

Asymptotic properties of FDR controlling procedures

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Connections between Multiple Testing Procedures

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

Asymptotic properties of FDR controlling procedures

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

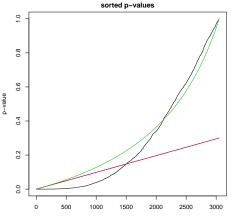
Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

FDR08 as a fixed point of Sto02

Procedure Sto02: apply BH95 at level $\alpha/\widehat{\pi_0}(\lambda)$ Procedure FDR08: a non-linear rejection curve



rank of the p-values

Pierre Neuvial (LPMA & U 900)

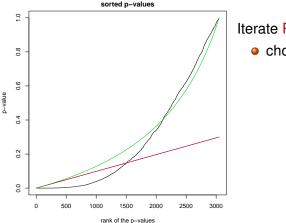
Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

FDR08 as a fixed point of Sto02

Procedure Sto02: apply BH95 at level $\alpha/\widehat{\pi_0}(\lambda)$ Procedure FDR08: a non-linear rejection curve



Iterate Procedure Sto02:

• choose
$$\lambda_0 \in (0, 1)$$

Pierre Neuvial (LPMA & U 900)

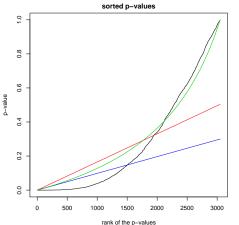
Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

FDR08 as a fixed point of Sto02

Procedure Sto02: apply BH95 at level $\alpha/\widehat{\pi_0}(\lambda)$ Procedure FDR08: a non-linear rejection curve



Iterate Procedure Sto02:

- choose $\lambda_0 \in (0, 1)$
- λ₁ = rejection threshold of Sto02(λ₀)

Pierre Neuvial (LPMA & U 900)

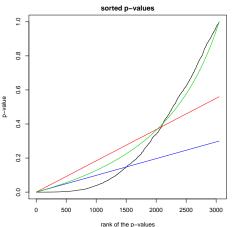
Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

FDR08 as a fixed point of Sto02

Procedure Sto02: apply BH95 at level $\alpha/\widehat{\pi_0}(\lambda)$ Procedure FDR08: a non-linear rejection curve



Iterate Procedure Sto02:

- choose $\lambda_0 \in (0, 1)$
- λ₁ = rejection threshold of Sto02(λ₀)
- λ_2 = rejection threshold of Sto02(λ_1)

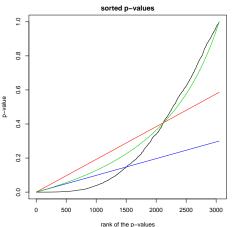
Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

FDR08 as a fixed point of Sto02

Procedure Sto02: apply BH95 at level $\alpha/\widehat{\pi_0}(\lambda)$ Procedure FDR08: a non-linear rejection curve



Iterate Procedure Sto02:

- choose $\lambda_0 \in (0, 1)$
- λ₁ = rejection threshold of Sto02(λ₀)
- λ_2 = rejection threshold of Sto02(λ_1)

Pierre Neuvial (LPMA & U 900)

. . .

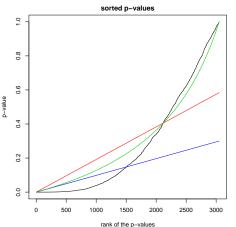
Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

FDR08 as a fixed point of Sto02

Procedure Sto02: apply BH95 at level $\alpha/\widehat{\pi_0}(\lambda)$ Procedure FDR08: a non-linear rejection curve



Iterate Procedure Sto02:

- choose $\lambda_0 \in (0, 1)$
- $\lambda_1 =$ rejection threshold of Sto02(λ_0)
- λ_2 = rejection threshold of Sto02(λ_1)

 (λ_n) converges to the rejection threshold of Procedure FDR08

. . .

Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

Sto02 & FDR08: Comparison of threshold functions

$$\mathcal{T}^{\mathsf{Sto02}(\lambda)}(G) \hspace{.1in} = \hspace{.1in} \sup\left\{ u \in [0,1], G(u) \geq rac{u}{lpha} \hspace{.1in} rac{1-G(\lambda)}{1-\lambda}
ight\}$$

and

$$\begin{aligned} \mathcal{T}^{\mathsf{FDR08}}(G) &= \sup \left\{ u \in [0,1], G(u) \geq \frac{u}{\alpha + (1-\alpha)u} \right\} \\ &= \sup \left\{ u \in [0,1], G(u) \geq \frac{u}{\alpha} \, \frac{1-G(u)}{1-u} \right\} \end{aligned}$$

Comments

- self-consistency of the FDR08 procedure
- FDR08 is less conservative than Sto02 iff *T*^{FDR08}(G) > λ

Pierre Neuvial (LPMA & U 900)

Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

Sto02 & FDR08: Comparison of threshold functions

$$\mathcal{T}^{\mathrm{Sto02}(\lambda)}(G) = \sup\left\{u \in [0,1], G(u) \geq \frac{u}{\alpha} \; \frac{1-G(\lambda)}{1-\lambda}
ight\}$$

and

$$\begin{aligned} \mathcal{T}^{\mathsf{FDR08}}(G) &= \sup \left\{ u \in [0,1], G(u) \geq \frac{u}{\alpha + (1-\alpha)u} \right\} \\ &= \sup \left\{ u \in [0,1], G(u) \geq \frac{u}{\alpha} \, \frac{1-G(u)}{1-u} \right\} \end{aligned}$$

Comments

- self-consistency of the FDR08 procedure
- FDR08 is less conservative than Sto02 iff *T*^{FDR08}(G) > λ

Pierre Neuvial (LPMA & U 900)

Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

BKY06 & BR08: Comparison of threshold functions

Letting $u_0 = \sup \left\{ u \in [0, 1], G(u) \geq \frac{u}{\alpha} \right\}$,

$$\mathcal{T}^{\mathsf{BKY06}}(G) = \sup\left\{u \in [0,1], G(u) \geq rac{u}{lpha} \left(1 - G(u_0)
ight)
ight\}$$

and

$$\begin{aligned} \mathcal{T}^{\mathsf{BR08}}(G) &= \sup\left\{u\in[0,1], G(u)\geq \frac{u}{\alpha+u}\right\} \\ &= \sup\left\{u\in[0,1], G(u)\geq \frac{u}{\alpha} \ (1-G(u))\right\} \end{aligned}$$

Comments

- self-consistency of the BR08 procedure
- BR08 is always more powerful than BKY06

Pierre Neuvial (LPMA & U 900)

Multiple testing procedures

Asymptotic FDP

Connections between Multiple Testing Procedures

BKY06 & BR08: Comparison of threshold functions

Letting $u_0 = \sup \left\{ u \in [0, 1], G(u) \geq \frac{u}{\alpha} \right\}$,

$$\mathcal{T}^{\mathsf{BKY06}}(G) = \sup\left\{u \in [0,1], G(u) \geq \frac{u}{\alpha}\left(1 - G(u_0)\right)
ight\}$$

and

$$\mathcal{T}^{\mathsf{BR08}}(G) = \sup \left\{ u \in [0, 1], G(u) \ge \frac{u}{\alpha + u} \right\}$$

= $\sup \left\{ u \in [0, 1], G(u) \ge \frac{u}{\alpha} (1 - G(u)) \right\}$

Comments

- self-consistency of the BR08 procedure
- BR08 is always more powerful than BKY06

Pierre Neuvial (LPMA & U 900)

Asymptotic false discovery proportion

Outline

Defining True Recurrences Among Ipsilateral Breast Cancers

- Background: breast tumor recurrences
- Method: a partial identity score
- Result: improved definition of true recurrence

Multiple testing procedures

- Multiple testing
- False Discoveries
- Multiple testing procedures studied

Asymptotic properties of FDR controlling procedures

- Connections between Multiple Testing Procedures
- Asymptotic false discovery proportion

Asymptotic FDP

Asymptotic false discovery proportion

Asymptotic distribution of FDP_m for procedure T

Theorem

Let T be a threshold function, and $\tau^* = T(G)$. If T is Hadamard-differentiable at G, then

$$\sqrt{m}\left(\textit{FDP}_m(\mathcal{T}(\hat{\mathbb{G}}_m)) - rac{\pi_0 au^{\star}}{G(au^{\star})}
ight) \rightsquigarrow X,$$

where X is a centered Gaussian random variable whose variance depends on α , π_0 , τ^* , and G.

holds regardless of the form of the threshold function

• FDR is asymptotically controlled as soon as $\frac{\pi_0 \tau^{\star}}{G(\tau^{\star})} \leq \alpha$

Multiple testing procedures

Asymptotic FDP

Asymptotic false discovery proportion

Asymptotic properties of the BH95 procedure

Theorem (BH95 procedure)

Let $\alpha^* = 1/g(0)$, and $\tau^* = \mathcal{T}(G)$. If $\alpha > \alpha^*$, then

$$\sqrt{m} \left(FDP_m^{\text{BH95}} - \pi_0 \alpha \right) \rightsquigarrow \mathcal{N} \left(0, (\pi_0 \alpha)^2 \frac{1 - \tau^*}{\tau^*} \right)$$

Connection to criticality

 α^{\star} is the critical value recently identified by Chi (Ann. Stat., 2007):

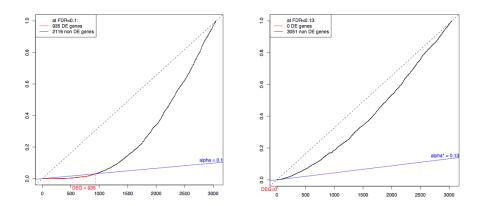
- if α < α*, the number of (true) discoveries is asymptotically bounded as the number of tested hypotheses increases;
- if α > α*, the proportion of discoveries converges in probability to a positive value τ* = T(G).

Multiple testing procedures

Asymptotic FDP

Asymptotic false discovery proportion

Illustration of criticality

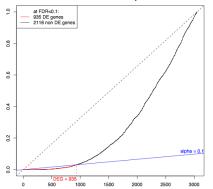


Multiple testing procedures

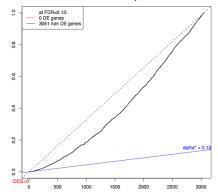
Asymptotic false discovery proportion

Illustration of criticality

27 vs 11 samples



8 vs 3 samples



Multiple testing procedures

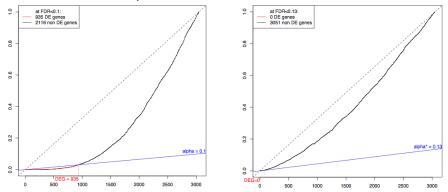
Asymptotic FDP

Asymptotic false discovery proportion

Illustration of criticality

27 vs 11 samples

8 vs 3 samples



 \Rightarrow Criticality vanishes as sample size increases

Asymptotic false discovery proportion

Conclusion

Normalization of DNA copy number data

P. Neuvial, P. Hupé et al, BMC Bioinformatics, 2006

Joint analysis of DNA copy number and expression

P. Neuvial, P. Gestraud et al, poster at ISMB 2007

- Unsupervised reconstruction of transcriptional regulatory networks M. Elati *et al, Bioinformatics,* 2007
- Definition of true recurrences among ipsilateral breast cancers
 M. Bollet, N. Servant et al. JNCI. 2008
- Asymptotic properties of multiple testing procedures

P. Neuvial, in revision for EJS

• Intrinsic bounds and FDR control in multiple testing problems

P. Neuvial, submitted to JMLR

Bonus

- Asymptotic properties of Sto02 procedure
- Connections between one- and two-stage adaptive procedures

Appendix ••••••

Asymptotic properties of Sto02 procedure

• Asymptotic properties of Sto02 procedure

Connections between one- and two-stage adaptive procedures

Asymptotic properties of Sto02 procedure

Asymptotic properties of the Sto02(λ) procedure

$$\mathcal{T}(F) = \sup\left\{u \in [0, 1], F(u) \ge \frac{u}{\alpha} \frac{1 - F(\lambda)}{1 - \lambda}\right\}$$

Theorem (Sto02(λ) procedure)

Let
$$\overline{\pi_0}(\lambda) = \frac{1-G(\lambda)}{1-\lambda}$$
, and $\tau^* = \mathcal{T}(G)$. If $\alpha > \overline{\pi_0}(\lambda) \alpha^*$, then

$$\sqrt{m}\left(\mathsf{FDP}_m^{\mathsf{Sto02}(\lambda)} - \frac{\pi_0}{\overline{\pi_0}(\lambda)}\alpha\right) \rightsquigarrow X^{\mathsf{Sto02}(\lambda)},$$

where $X^{\text{Sto02}(\lambda)}$ is a centered Gaussian random variable whose variance depends on α , τ^* and λ .

Asymptotic properties of Sto02 procedure

Optimal bandwidth — Storey's estimator

Theorem

Assume that g is k times differentiable at 1, with $g^{(l)}(1) = 0$ for $0 \le l < k$, and $g^{(k)}(1) \ne 0$.

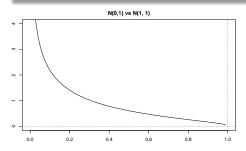
 The optimal bandwidth in terms of MSE is given by
 h_m(k) = C_km^{-^k/_{2k+1}}, where C_k is an explicit constant that depends
 on k, π₀, and g^(k)(1);

$$m^{\frac{k}{2k+1}} \left(\textit{FDP}_m - \alpha \right) \rightsquigarrow \mathcal{N}\left(\mathbf{0}, \frac{\alpha^2 C_k}{\pi_0} \right)$$

Example: one-sided Gaussian location model

Proposition

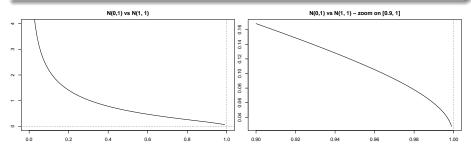
Assume that test statistics are distributed as $\mathcal{N}(0, 1)$ under \mathcal{H}_0 and as $\mathcal{N}(\mu, 1)$ under \mathcal{H}_1 . Then the p-value density under the alternative is not differentiable at 1.



Example: one-sided Gaussian location model

Proposition

Assume that test statistics are distributed as $\mathcal{N}(0, 1)$ under \mathcal{H}_0 and as $\mathcal{N}(\mu, 1)$ under \mathcal{H}_1 . Then the p-value density under the alternative is not differentiable at 1.



Asymptotic properties of Sto02 procedure

Connections between one- and two-stage adaptive procedures

Connections between one- and two-stage adaptive procedures

FDR08 as a fixed point of Sto02

Theorem

For $\alpha \in [0, 1]$, and $t_0 \in (0, 1)$, let

•
$$\tau^{\star} = T^{\mathsf{FDR08}}(G)$$

•
$$\tau(u) = \mathcal{T}^{\operatorname{Sto02}(u)}(G)$$
 for $u \in [0, 1]$

•
$$t_{i+1} = \tau(t_i)$$
 for $n \in \mathbb{N}$

If $\alpha^* < \alpha < \pi_0$, and if G and f_α have at most one interior crossing point, then

$$\lim_{n\to\infty}t_n=\tau^*$$

Connections between one- and two-stage adaptive procedures

BR08 as a fixed point of BKY06

Theorem

For $\alpha \in [0, 1]$, and $t_0 = 0$, let • $\tau^* = T^{\mathsf{FDR08}}(G)$ • $\tau(u) = \mathcal{U}\left(G, \frac{\alpha/(1+\alpha)}{1-G(u)}\right)$ • $t_{i+1} = \tau(t_i)$ for $n \in \mathbb{N}$ With this notation, we have $u_0 = \tau(0)$, and $\mathcal{T}(G) = \tau(u_0)$ is the asymptotic threshold of the BKY06 procedure. Assume that $\frac{\alpha}{1+\alpha} > \alpha^*$ and $G\left(\frac{\alpha}{1+\alpha}\right) \le \frac{1}{2}$. If G and b_α have at most one interior crossing point, then

$$\lim_{n\to\infty}t_n=\tau$$

Pierre Neuvial (LPMA & U 900)

Adaptive multiple testing procedures

Y. Benjamini, A. M. Krieger, and D. Yekutieli.

Adaptive linear step-up procedures that control the false discovery rate. *Biometrika*, 93(3):491, 2006.

G. Blanchard and E. Roquain.

Adaptive FDR control under independence and dependence. Arxiv preprint math.ST/0707.0536v2, 2008.

H. Finner, T. Dickhaus, and M. Roters.

On the False Discovery Rate and an Asymptotically Optimal Rejection Curve.

Ann. Statist. (to appear).

J. D. Storey.

A direct approach to false discovery rates.

J. R. Stat. Soc. Ser. B Stat. Methodol., 64(3):479-498, 2002.

Pierre Neuvial (LPMA & U 900)