
Variational Approaches
to Digital Geometry Processing

Habilitation Thesis

Pierre Alliez
INRIA Sophia Antipolis - Méditerranée



2



This habilitation thesis has been defended June 2, 2009 at INRIA Sophia
Antipolis - Méditerrané.
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Abstract

This habilitation thesis presents a series of contributions in the field of digital
geometry processing. These contributions offer concepts and algorithms for
surface reconstruction, surface approximation, quadrangle surface tiling and
isotropic tetrahedron mesh generation. The narrative aims at highlighting
the common feature shared among our contributions: we adopt a variational
methodology throughout this document, in the sense that we tackle each
digital geometric problem by casting it as an energy minimization so that
low levels of these energies correspond to good solutions of the problem.
The main motivation behind such formulations is a significantly increased
quality and robustness, sometimes at the price of heavier computations than
greedy algorithms. The data structures and concepts involved in our work
lie between computational geometry, geometric computing, and numerical
computing. A general summary also provides a vision of the many remaining
challenges in the field.
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Chapter 1

Introduction

Scientific discoveries in the field of digital signal processing have led the
way to the spectacular technological advances that brought on the digital
revolution that we are now experiencing. The sweeping impacts on multi-
media, numerical engineering and numerical medicine have been both deep,
and broad. We can try measuring technological advances with respect to
the norms, quality standards and other numbers provided by the multime-
dia industry: mp3, mega-pixels, HD television, to cite a few. It is however
important to distinguish a real evolution from a superlative marketing ar-
gument.

Just like for sound, images and videos, the grand challenge for digital
geometry processing consists in elaborating a foundational theory and prac-
tical algorithms. For multimedia, engineering or computer-aided medicine,
geometry plays the special role of premier support to the digital models.
Each model used for the simulation of physical phenomena requires defin-
ing a domain (a geometry); e.g., a mechanical part, a terrain, some organs.
Computer-generated movies, special effects and multimedia applications also
require modeling complex geometries. The impact for the engineer, the ge-
ologist, or the surgeon now corresponds to a real change of paradigm. Nu-
merical engineering substitutes the physical prototype and experience by a
digital model and simulations. The core activity stays the same (conceiving,
anticipating the real), but the efficiency is multiplied tenfold. The geologist
can now simulate with a digital model at the scale of the Mexican gulf. A
surgeon can simulate at the scale of a whole digital patient digitized with a
variety of imaging modalities.

Nevertheless, geometry is not an ordinary signal due to distinctive prop-
erties such as topology, lack of trivial parameterization, irregular structure
and non-uniform sampling, to cite a few. For these reasons, simple ex-
tensions of concepts and algorithms from digital signal processing do not
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12 CHAPTER 1. INTRODUCTION

apply, and a dedicated research effort on digital geometry processing is re-
quired. Geometry processing is now a growing area of research that uses
concepts from applied mathematics, computer science and engineering to
design algorithms for the acquisition, reconstruction, representation, analy-
sis, manipulation, simulation and transmission of complex 3D models.

1.1 Motivations

Contributions to the field of digital geometry processing are motivated both
by scientific objectives and by a variety of applications. Fundamental sci-
entific questions are related to sampling theory, information theory and ap-
proximation for instance. Applications of geometry processing algorithms
cover a wide range of areas from multimedia, entertainment and classical
computer-aided design, to biomedical computing, reverse engineering and
scientific computing.

Research themes in geometry processing, aside from the mere alteration
of geometry, include studying transition mechanisms between physical (real),
mathematical (abstract), and discrete (digital) representations of complex
shapes. Going from physical to digital is commonly referred to as shape
acquisition and reconstruction. Going from mathematical to discrete is
commonly referred to as mesh generation. The transition from discrete to
physical is referred to as machining or rapid prototyping through 3D print-
ing, which is now commonplace in numerical engineering applications. One
way to structure the algorithms concerned with geometry processing is to
enumerate them throughout the geometry processing pipeline:

• Acquisition. There exists a variety of geometric measurement devices
based on e.g., contact sensing, laser scanning and structured lighting.
The output of such devices is often composed of 3D point sets, points
with attributes such as color, time-varying point sets, line of sight, and
oriented normal estimates to the observed surface. 3D imaging devices
such as tomographs or echographs are commonly used in medicine,
geophysics, astrophysics or industrial control. The output is commonly
a gray level image from which isosurfaces can be extracted, or a set
of non-parallel slices. Photogrammetry makes use of regular digital
camera and stereo vision techniques to recover 3D feature point sets
from the salient feature points of the images. The output is commonly
a set of 3D points with color attributes.

• Registration. The output of shape acquisition devices is often a se-
ries of raw samples of the observed physical shape, such as point sets.
When each point set corresponds to a different acquisition viewpoint
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and the pose of the acquisition device is not captured, a registra-
tion is required so as to align the data in a common coordinate frame.
While many approaches employ rigid transforms [RL01] and/or require
manual selection of pairs of corresponding feature points, research is
carried out to automatize the process [AMCO08] and to employ non-
rigid transforms [LSP08, BR04] for compensating for calibration er-
rors, noise, and irregular sampling.

• Reconstruction. Assuming a set of registered sampled data sets such
as points or slices, the process of shape reconstruction amounts to
recovering a surface or a solid from these samples. This problem is
inherently ill-posed since infinitely many surfaces approximating the
samples can potentially exist. The challenge is even greater as the data
set has variable density due to occlusions and other acquisition condi-
tions, as well as uncertainty (noise, outliers) due to various sources of
noise in the acquisition device and complex interactions between, e.g.,
the laser beam and the physical shape material. As the surface recon-
struction problem poses many theoretical and practical challenges, it
has received a considerable attention for over 25 years. Key theoretical
issues are related to sampling conditions required to guarantee faith-
ful topological and geometrical reconstructions of the physical shape
[Dey06], inference models and resilience to noise. Practical issues are
related to the size of the data sets generated by modern acquisition
devices [BKBH07], as it is now common to acquire more than 100M
sample points on a statue.

• Reduction. 3D models automatically generated by either reconstruc-
tion or by automatic surface extraction are often overly complex, thus
calling for a reduction phase that simplifies the data (e.g, a surface
mesh) while preserving its main features and geometry. This funda-
mental problem, related to surface approximation theory, has been
tackled with a variety of paradigms ranging from mesh refinement to
decimation through optimization [LRC+02]. Key issues are related to
the choice of error metric [GH98, GWH01], topology preservation ver-
sus simplification [WHDS03], guaranteed tolerances [BBVK04, BF05],
levels of detail, and view-dependence [HSH09]. Note that data re-
duction is more general than surface mesh simplification and can be
applied to other geometric data such as point sets, slices, terrains, or
volumetric meshes.

• Analysis. The analysis of complex shapes is central for quality control
in industrial applications, for interactive modeling and processing, and
to measure a notion of shape similarity. Quality control requires mea-
suring a digitized representation of a manufactured object. Interactive
modeling and processing requires efficient analysis on the geometry



14 CHAPTER 1. INTRODUCTION

and topology of the digital model for feedback and automatic choice
of parameters for subsequent processing. Common analyses include
estimation of normals [MNG04b], curvature [CSM03] and other differ-
ential properties, and various numbers in topology such as number of
connected components, boundaries, tunnels and handles [DLSCS08].
More sophisticated analyses require the extraction of features such as
sharp creases, cusps and corners [DHOS07]. These features can then
be requested to be preserved during processing. Key theoretical issues
are related to the consistence of the estimation with respect to the dis-
cretization of the shape, the independence to noise and discretization
artifacts, and the inference model used for feature extraction. Push-
ing the analysis further leads us to the segmentation of a shape into
geometrically coherent segments [Sha08], a problem as delicate as the
image segmentation problem because inherently ill-posed. Another
more global aspect of the shape analysis problem is the recognition of
symmetries [MGP06] or structural regularities [PMW+08] in complex
shapes.

• Processing. We use processing to refer to all methods which alter a
shape so as to best prepare it for subsequent operations along the
pipeline. Processing applies to virtually any type of geometric rep-
resentation: point sets, meshes, time-varying shapes, etc. Although
the variety of such methods is almost infinite, we can refer to the
most common operations which range from denoising to idealization
through smoothing and fairing. Denoising suppresses the noise in the
spatial and/or time domain [SBS07]. The noise can be related to the
geometry as well as to the topology as reconstructed surfaces can con-
tain spurious handles which are not part of the physical shape. A
key issue for smoothing is related to the distinction between noise and
real details of the shape. Outlier removal is also part of the denoising
problem [SBS05]. Smoothing, which alters the shape so as to reduce
its high frequency details, can be constrained to preserve sharp fea-
tures [FDCO03]. Fairing is also a form of smoothing usually aiming at
generating energy-minimizing surfaces where the energy is related to
thin plate or higher-order (polyharmonic) functions [SKS01]. One step
further is the idea of shape idealization which amounts to replace parts
of the shape by a set of ideals which are, e.g., parts of canonical shapes
such as planes, spheres, etc. In addition to smoothing, more general
curvature-domain processing can be applied—such as pass-band or ex-
aggeration filters. The idea consists of computing a mapping from the
spatial domain to the curvature domain, manipulating in the curva-
ture domain and inverting the mapping so as to reconstruct a modified
shape which best matches the desired curvature domain [ME08].
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• Editing. At first glance shape editing is a pure modeling task and
hence may not seem to be part of the geometry processing pipeline.
Nevertheless, the recent trend to use polygon meshes throughout the
whole geometry processing requires elaborating upon the best repre-
sentations and modeling metaphors to make the editing process both
intuitive and interactive [Bot05]. Before, the only way for an artist
to change the pose of a character was to first model its skeleton and
attach a skin to it, before animating the skeleton and re-fitting the
skin. Later came the idea of embedding the shape into a cage to allow
the artist modeling through editing the cage. The recent advances in
shape editing are spectacular in the sense that an artist can efficiently
pose a complex triangle mesh by acting on a few modeling handles
or even simply relocating a few mesh vertices. Key issues are related
to the preservation of details during editing [BSPG06], and to proper
scale selection of the modeling metaphors.

Obviously, all possible shape editing operations are impossible to enu-
merate as they are potentially as rich as the expression power of an
artist. We can however list the ones which are common in geomet-
ric modeling software. Hole filling involves patching holes with plau-
sible surfaces [Lie03], often derived from smoothness or continuity
assumption with respect to the hole boundaries. Shape completion
involves the replacement of missing parts of a shape with plausible
shape fragments taken from the shape itself [SACO04] or from exam-
ples [PMG+05]. In the same vein, shape detail transfer is related to
the idea of transposing details from one shape to another. The notion
of animation transfer consists of applying automatically a designed
animation from one shape onto another [SP04]. This way, an artist
can, e.g., efficiently copy-paste the carefully designed animation of a
running cat onto an elephant. Morphing is the process of automati-
cally deforming one shape onto another, with plausible intermediate
shapes [SK04]. A recent trend is to enrich the set of operations with
more global ones. These include shape symmetrization [MGP07] and
non-homogeneous resizing [KSCOS08]. The latter is motivated by the
fact that uniform scaling is limited in its applicability while straight-
forward non-uniform scaling can destroy features and lead to visual
artifacts.

• Simulation. Although the simulation of physical phenomena using,
e.g., finite elements, is not directly related to geometry processing, we
position it in the pipeline to emphasis the fact that it requires the
preparation of quality meshes. The needs for flexible simulations on,
e.g., deformable domains with cracks, require careful design of convex
as well as non-convex polyhedral finite elements [MKB+08]. Note also
that mechanics is often said to be all about geometry.
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• Visualization. Although visualization is not the primary concern for
the geometry processing community, modern graphics hardware archi-
tectures require special care at organizing the data in a cache-oblivious
manner so that memory locality is maximized [YLPM05]. Clever rep-
resentation [SNCH08] and ordering and of mesh primitives for efficient
rendering is one of the topics of interest.

• Protection. A watermarking method faces two competing goals. On
the one hand, the watermark should not degrade the data, e.g. signif-
icantly alter its visual appearance. On the other hand, the watermark
should be as robust as possible, i.e. the extraction of the signature
should be fast and stable, even under malicious attacks on the water-
marked data [CDSM04]. A pirate might modify the original data with
the sole intent to destroy the watermark, for example, by applying fil-
tering or resampling operations. A watermarking scheme is considered
robust if the successful removal of a watermark by these attacks leads
to a severe degradation of the data, i.e. renders it useless for most
applications.

• Transmission and storage. The limited capacity of networks and stor-
age devices requires compressing geometric data. We distinguish loss-
less compression from lossy compression, and progressive compression
well suited to the transmission over networks [AG05]. Progressive com-
pression is related to the geometric approximation problem as the goal
is to optimize the rate-distortion trade-off [KSS00]. Finally, a special
class of networks such as broadcast networks, requires compression
techniques resilient to packet losses as well as to distortion [PKL05].

• Searching and browsing. As for other multimedia data, geometric data
sets must be amenable to efficient searching and browsing. This re-
quires automatic methods to summarize large data bases with compact
descriptors through analysis (see above) as well as methods for content-
based retrieval [FKMS05]. Efficient browsing also requires methods for
the automatic generation of visual summaries and thumbnails with the
“best” viewpoint [PPB+05]. Best herein may refer to visibility criteria
as well as to natural poses such as upright orientation of man-made
objects [FCODS08].

• Printing and Machining. The last step of the pipeline consists of go-
ing back from digital to a physical model by either printing for rapid
prototyping or by controlling a machining process such as numerically
controlled milling machines. As a prerequisite, geometry and topology
of the model must often satisfy a series of constraints such as water-
tightness, bounded minimum feature size, and tool path accessibility
[PK08]. Additional questions arise such as feasibility of the process
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with respect to the constraints of machining tools and to machine
dynamics.

1.2 Approaches and Trends

Many approaches have been proposed along the geometry processing pipeline
to tackle the issues we enumerated. Among all the corresponding algorithms
the following summary is an attempt at identifying the main goals and
choices that guided their development. It is also an interesting exercise
to understand the coupling with the recent trends coming either from the
nature and size of the data or from the recent technological advances in
terms of graphics hardware and multi-core architectures.

Smooth vs discrete. One of the main choices which distinguish the dif-
ferent approaches is the type of representation to represent complex shapes.
One dilemma is the following: should we use smooth surfaces? or polygon
meshes? or just point sets? should the discrete mimic the smooth? or just
be discrete all the way to be self-consistent. In practice the gap between
geometric computing on linear objects and algebraic problems for geometric
computing is substantial. Smooth representations have their own advan-
tages and weaknesses, and in practice only low degree algebraic objects are
really practical [Pet07]. Triangle or polygonal meshes are simple enough
to elaborate complex algorithms, and the recent advances have shown that
we can use them efficiently and all the way along the pipeline [BPK+07].
The current assessment states that it is more efficient to process many sim-
ple primitives than few complex ones. The interest for subdivision surfaces
clearly points to the fact that something in-between discrete and smooth
is perhaps a good trade-off. For rendering applications we have witnessed
the development of pure point-based approaches [BPCZ07, Pau03], the ar-
gument being that the number of polygons of complex shapes leads to a
rendering size lower than a pixel.

Automatic vs Interactive. The quest for automatic algorithms with
very few parameters is prevalent in the literature. Nevertheless a number
of algorithms along the pipeline described above are either inherently ill-
posed, or in essence, necessarily interactive as for editing. For this reason one
thread of work focuses on producing reasonable solutions in a fully automatic
fashion, while another thread delegates the handling of ambiguous cases to
the user. For the latter case a key issue is then to propose new interaction
metaphors and meaningful parameters for the user. This is the case, e.g., of
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a recent reconstruction technique [SLS+07] which lets the user decide over
the topology of the reconstructed shape.

Global vs Local. A majority of problems along the pipeline can not be
solved solely at a local level. This is particularly true for surface reconstruc-
tion, registration, hole filling and other complex editing tasks. Somehow the
global nature of some problems goes against the idea of elaborating upon
an algorithm represented as a sequence of elementary tasks. We can dis-
tinguish roughly three approaches which i) rely on global geometric data
structures and greedily apply elementary operations; ii) aim at bridging the
gap between local and global through hierarchical or multi-resolution data
structures; or iii) reformulate the problem numerically so that the solution
emerges after global numeric computations. For surface reconstruction these
explain the differences between, e.g., a ball pivoting [BMR+99], a shrink
wrapping [KVLpS99] and a graph-cut approach [HK06a].

Guarantees. The quest for reliable computing motivates the elaboration
of algorithms with theoretical and practical guarantees. A guarantee is ob-
tained either by proving that the sequence of elementary steps of the algo-
rithm effectively produces what it is supposed to, or simply by construction.
An example of the first case is the proof of termination of a mesh genera-
tion algorithm [BO05], and an example of the second case is the absence of
self-intersection in 3D tetrahedron mesh represented as a 3D Delaunay tri-
angulation. Carrying on a theoretical analysis for an algorithm may require
prior assumptions over the input data, which are not always in line with
real data. This is the case of, e.g., Delaunay-based surface reconstruction
approaches which guarantee a faithful geometric and topological reconstruc-
tion if and only if the shape is smooth, and the sampling is both noise-free
and dense enough [Dey06]. These conditions are quite often not matched in
practice.

Acquired Data. An increasing trend is to process data acquired from
the physical world, such as laser scanned point sets for reverse engineering,
seismic data in geology, 2D satellite images for dense photogrammetry and
3D images in medicine. Such data are often uncertain (noisy), of variable
density (up to missing data) and may contain outliers. Uncertainty is due
to the noise (electronic, optical) of the shape acquisition device cumulated
with the complex interactions between, e.g., the laser beam and the mate-
rial of the acquired shape. Variable density is due to the variability of an
acquisition procedure (number of passes, distance to the object, orientation
of a laser beam, occlusions, etc.). Outliers arise when, e.g., carrying on
photogrammetry on mismatched feature points. Although it is tempting to
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wait for technological advances which improve the acquisition devices so as
to reduce noise and accuracy, here instead the trend is to choose acquisi-
tion devices with fewer constraints (contactless, based on ordinary cameras).
We are witnessing two main threads of work: algorithms for repairing such
raw, flawed data (see e.g., [BPK05]) or algorithms which are resilient to
noise (both geometric and topological), outliers, missing data and variable
density (see, e.g., [LPK09]).

Massive Data. Modern acquisition devices generate massive data sets
which do not fit into memory and pose many other scalability issues in terms
of storage and computation. One thread of work consists in trying to deal
with all such data, by elaborating upon out-of-core algorithms, which load
only small subsets of the data into main memory at any given time. Another
thread of work, parsimonious, consists in considering only a small fraction
of the data by, e.g., incorporating into a surface reconstruction algorithm
the only points that brings new details to the surface [BC01]. One more
general trend in signal and image processing, so-called compressive sensing,
consists in sampling and simultaneously compressing the signal at a greatly
reduced rate [Can06]. The key argument is that, in practice, the data are
lossy compressed and simplified soon after sensing. The goal is thus to avoid
such waste of valuable sensing resources.

Dimension. Another trend is to deal with data in higher dimensions.
This is the case of time-varying geometric data sets, as well as point sets in
high dimension for, e.g., shape recognition. The key questions that arise are
establishing a theory and algorithms for analysis (manifold learning) and
processing of such data.

Parallel Computing. The recent technological advances show an explo-
sion of parallel architectures, both for personal computers and for super-
computers. Dual and quad-core CPUs with shared memory architecture are
now common on desktop computers. Computational grids with thousands
of CPUs and distributed memory are used to solve large-scale simulations.
Moreover, modern graphics processing units (GPUs) are used to efficiently
manipulate and display computer graphics. In addition, their highly paral-
lel architecture makes them very effective for more general algorithms. This
evolution requires considering new ways of conceiving geometry processing
algorithms, with an eye towards hardware characteristics.
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Chapter 2

Contributions

Before describing our collection of research contributions to the field of dig-
ital geometry processing, we provide a high-level picture that stresses out
our underlying unified approach as well as the fundamental concepts behind
the resulting algorithms.

2.1 Favored Approach

If we had to summarize our choice of approach in a few words, the terms
“variational, discrete, and integral” would be most appropriate.

Variational, in this document, refers to an approach that cast a problem
as a functional minimization (or extremization in general), such as low levels
of the energy correspond to good solutions to the problem. The definition
is left intentionally vague for the moment, and phrasing good solutions in-
stead of optimal solutions alludes to the fact that globally optimal solutions
are often a mirage for many problems of interest. Variational approaches
are designed to maximize the quality of results; although this may come
at the price of heavier computations than greedy algorithms, there are a
number of applications such as mesh generation where quality supersedes
computational cost.

Discrete refers to the fact that we are dealing with discrete data as inputs
(point sets, triangle meshes, tetrahedron meshes, finite dimensional data)
and that we are using discrete data and formulations all the way in the
algorithms without resorting to smooth (high-order) geometric primitives
approximating the input data.

21
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Integral indicates a preference for computations through integration over
domains instead of point-wise computations. This is motivated by the de-
sire to obtain improved robustness of the algorithms (e.g., resilient to noise),
reduced dependency on input sampling and self-consistence of the compu-
tations with respect to the discrete nature of the data structures.

The contributions presented in our narrative are located at the intersec-
tion of geometry processing, computational geometry and geometric com-
puting. Geometric computing is purposely distinguished from computa-
tional geometry here in the sense that it is concerned with practical and
robustness issues and real-world computers with finite, hence limited, capa-
bilities. Geometry processing herein refers to the fact that the geometric
content is altered or reconstructed, see the pipeline Section 1. The funda-
mental geometric data structures involved in the algorithms include Delau-
nay triangulations, Voronoi diagrams, and surface triangle meshes. Other
auxiliary geometric data structures such as KD-trees or AABB-trees are
used to improve efficiency. The fundamental concepts involved in the algo-
rithms range from principal component analysis to clustering through har-
monic one-forms and function interpolation. The numerical aspects involve
solving linear systems as well as generalized eigenvalue problems.

We show in the next sections how these concepts are put to work in order
to generate smooth surface reconstructions, faithful approximations, well-
shaped quadrangle surface tilings and isotropic tetrahedron meshes. These
four contributions have been selected as they provide a good representation
of our favored approach. For each contribution we present a synthesis of the
approach and some results. When available, we list the follow-ups by other
researchers in the field, and we present our vision for future work.

2.2 Surface Reconstruction

In this section we focus on surface reconstruction from unorganized point
sets. This problem is motivated by a number of CAGD, point-based graph-
ics, and reverse engineering applications where scattered point samples of a
surface need to be turned into a proper surface (see Section 1). Challeng-
ing are point sets generated by laser scanners and hand-held digitizers, as
they are often noisy (due to the inherent uncertainty of measurements and
merging of several scans), of variable density, and contain large holes due to
occlusions during the acquisition process.
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2.2.1 Related Work

Delaunay-based surface reconstruction techniques were initially designed to
establish a plausible connectivity between points [Boi84]. One of the first re-
construction techniques that came with theoretical guarantees was proposed
by Amenta and Bern [AB99]. The rationale behind their technique was that
when a sampling is noise-free and dense enough, all Voronoi cells are elon-
gated in the direction of the normal to the inferred surface. An analysis of
the point set’s Voronoi diagram can then be used to derive an interpolating
reconstructed surface. This technique has stimulated many improvements
and variants: we refer to [CG06] for a survey, and to [Dey06] for a com-
prehensive monograph. In practice however, most of these Voronoi-based
techniques are interpolatory, thus not so adequate in the presence of noise.

Noise and sparseness in point sets have led to an approximating class
of approaches, where an implicit function is computed so that one of its
isosurfaces best fits the data points (see e.g., [OBA+03a]). These implicit
approaches mostly differ in the norm used to match the point sets and in the
isosurfacing. Examples of such implicit functions include approximations of
signed distance functions to the inferred surface [HDD+92, CBC+01, BC02].
A reconstruction method for oriented point sets was introduced in which an
implicit function f is derived from a Poisson equation ∆f = div(n), pro-
viding the best L2-match between the gradient of f and the input oriented
normals n [KBH06]. This algorithm scales well as it involves solving a sparse
linear system, and its global L2-minimization nature makes it resilient to
noise. As for the Poisson approach, most current implicit techniques require
a consistent orientation of the normals to perform correctly. Unfortunately,
and unless reliable oriented normals are provided, finding such an orientation
adds another ill-posed problem when the sampling is sparse and noisy. One
of the approaches to normal orientation is through labeling a set of Voronoi
poles; but it requires little or no noise and a dense-enough ε-sampling to
guarantee consistent results, two conditions rarely met in practice.

Given the intrinsic difficulty to estimate and orient normals, some work
has polarized on handling raw point sets without attempting to locally esti-
mate or orient the normals (e.g., [KSO04, WCS05, HK06b, PSQ06]). More
recently, a spectral reconstruction method [KSO04] has been shown remark-
ably robust to outliers due to its reliance on graph partitioning algorithms
[SM00]. However, this method is interpolatory, requiring post-smoothing
for noisy point sets. Similarly, Hornung and Kobbelt [HK06b] propose a
min-cut algorithm on a regular grid which attributes are derived from a
probability density function. Finally, an approach based on eigen analysis
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but derived purely from an optimization standpoint, offers an approximat-
ing reconstruction where smoothness can be controlled [WCS05] although
various coefficients require careful adjustment to provide satisfactory results.

2.2.2 Approach

The key idea of the proposed approach consists of delegating the normal ori-
entation to the implicit function solver. We first perform a robust Voronoi-
PCA estimation of unoriented normals induced by the point set. This step
results in a tensor field which encodes both the (unoriented) normal direction
through its principal component and the confidence in the approximation
through its anisotropy. Second, an implicit function is computed via solving
a generalized eigenvalue problem so as to make its gradient best fit the prin-
cipal components of the tensors, see Figure 2.1. As the solving step favors
both a large aligned gradient of the function and smoothness tangentially
to the inferred surface, a consistent orientation comes out as part of the
solution.

Figure 2.1: Reconstruction procedure. From left to right: input point set and
its Voronoi diagram; covariance matrices of the cells shown as (rescaled) ellipses;
Steiner points added through Delaunay refinement (isotropic tensors are assigned
to Steiner points); piecewise linear function f (solution of a generalized eigenvalue
problem) that best fits the input data, with the reconstructed curve (iso-contouring
of f).

2.2.2.1 Normal Estimation

Our first goal is to estimate unoriented normals along with their reliability
to the inferred surface from the input point set. We do not try inferring
an orientation, as this global task is incumbent upon the second step of our
approach. As a way of motivating our estimation, we briefly review a few
closely related techniques.

Normal estimation from point sets has received a lot of attention in
the past few years, see e.g., [PKKG03, MNG04a, DLS05, OF05, LP05,
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HXMP05]. Various strategies have been proposed, guaranteeing high-order
accuracies through, e.g., local fitting [CP03].

Principal Component Analysis (PCA) A conventional technique for
estimating normal directions is through local principal component analysis.
The main idea is to define a small neighborhood around each input point
(e.g., the k-nearest neighbors [HDD+92]), compute the covariance matrix of
the points in this neighborhood, and deduce the normal direction from the
eigenvector associated to the smallest eigenvalue of the resulting covariance
matrix. Variants have been proposed to improve resilience to noise, see for
instance, [MNG04a].

Voronoi Poles Another common technique for estimating normal direc-
tions is more global by nature as it requires the construction of the Voronoi
diagram of the input point set. A subset of Voronoi vertices called poles
[AB99] is extracted, and used to estimate a normal direction at each sam-
ple point. In absence of noise and for dense-enough samples this method
provides a faithful normal estimate even for irregular sampling, with con-
vergence rates depending on the elongation of the Voronoi cells. A variant
by Dey and Sun [DS05] provides resilience to noise.

We propose a normal approximation technique that combines both of
their qualities. We begin by computing the 3D Voronoi diagram of the input
point set after adding dummy sample points on a very large bounding sphere
so as to bound the Voronoi cells. As the shape of these cells reflects the global
distribution of the points in space, a key observation is that the
covariance matrix of the Voronoi cell of a sample point provides not
only an estimate of the normal direction, but also a measure of its
reliability. Its principal component indicates the axis along which
the cell is elongated (see inset), i.e., a good approximate of the
normal direction if the samples lie on a manifold surface. Moreover,
as described in [AB99], the confidence in the estimate is related
to how long and thin the Voronoi cell is, i.e., in our context to
the anisotropy of the covariance tensor. If the sampling is of good
quality, this procedure will be very accurate as each Voronoi cell is
long and skinny. However, as Figure 2.2(middle) illustrates, Voronoi cells
can become small and/or isotropic if noise is present.

Covariance Matrix of a Union of Voronoi Cells To render our es-
timate robust to noisy point sets, we compute the covariance matrix of a



26 CHAPTER 2. CONTRIBUTIONS

union of Voronoi cells1. As the Voronoi diagram of the point set partitions
the whole domain, elongated cells are present beyond the noisy area, and
accumulating enough neighbors will eventually render the union elongated
enough (see Figure 2.2(right)). Although the idea of combining the influence
from neighbors to promote noise resilience is commonplace, our technique
is adaptive in the sense that we use as many neighbors as needed to find a
reliable approximation as described next. This approach differs from [DS05]
by integrating instead of searching for the most elongated Voronoi cell in a
neighborhood.

Figure 2.2: Voronoi cells of point sets. Left: Voronoi diagram of a point set
without noise. Middle: with noise the cells become irregular. Right: a denser,
noisy point set shows even more diverse cell shapes.

Estimation Procedure Given a sample point p, we first compute the
covariance matrix of its Voronoi cell V (p), and measure its anisotropy σ ∈
[0, 1] as σ = 1 − isotropy(V ), where isotropy(V ) is the ratio between the
smallest and the largest eigenvalues. We then iterate over its k nearest
neighbor points {qi}, and perform the same procedure for V (p) ∪ V (q1),
then for V (p)∪V (q1)∪V (q2), etc., until either the anisotropy is sufficiently
high, or we reach the maximum number of nearest neighbors specified by
the user (typically k = 50). From these covariance matrices, the one with
maximum anisotropy is returned (see Figure 2.3). When the sampling is
dense and noise-free this evaluation procedure stops at a single Voronoi cell.

1The covariance matrix of a union of Voronoi cell is computed in closed form and re-
quires tessellating all cells into tetrahedra. Details about such computations now available
in the CGAL library are detailed in a technical report [GAP08].
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There is indeed no incentive to add an extra neighborhood Voronoi cell as
it would mainly thicken the integration domain, thus decreasing anisotropy.
In presence of noise however the same procedure can also stop at a single
Voronoi cell in the rare cases where the cell is very anisotropic yet inside
the noise. We prevent this issue by narrowing the search interval through
starting the procedure at k = 5.

Figure 2.3: Tracking maximum anisotropy of unions of Voronoi cells. Left: for
k = 5 Voronoi cells the anisotropy is low and the principal component of the
covariance tensor is a bad normal estimate. Right: for k = 5 the anisotropy is
maximum and the normal estimate is better. Further increasing of k would mainly
thicken the integration domain and reduce the anisotropy.

This procedure benefits from both the qualities of PCA (local analysis of
a number of neighboring samples) and those of the Voronoi-based approach
(global analysis of the sample repartition via the Voronoi diagram). Such
Voronoi-PCA normal estimation technique can be seen as an integral PCA
approach, similar to [PWY+06] for curvature estimation. Integration leads
to more stable estimations compared to the pole approach which bases its
estimation on the position of a single pole. In addition, it provides the
surface reconstruction procedure described next with a local characterization
of the sampling quality (see Figure 2.4). Such characterization is effective
in the following sense: where the sampling is very dense the gradient of
the implicit function is highly constrained to be aligned with the principal
component of the tensors, while the function is favored to be smoother on
areas where the sampling is sparse.

We illustrate how our integral-based normal estimation technique pro-
vides improved numerics compared to the usual pole-based approach by ex-
amining a very simple point set configuration, where 2D points are sampled
uniformly along two parallel lines. When the bottom line is slowly shifted,
the shape of the Voronoi cells evolves, triggering changes in the pole-based
normal estimates. Because our approach relies on the integrated moment of
the cells, it is significantly less sensitive to the shift as shown by the curve in
Figure 2.5. Notice also that while a k-nearest neighbor PCA approximation
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Figure 2.4: Variable sampling quality on a 2D curve. A 2D curve is sampled with
noise (left), noise-free (middle), and with variable sampling (right).

loses accuracy when the (Euclidean-based) neighbors include points of both
lines, the proposed approach benefits from the global nature of the Voronoi
diagram, making it more robust to sparse sampling.

The next experiment compares the proposed normal estimation tech-
nique for 3D parametric surfaces with both pole and point-based PCA ap-
proaches. We sample a height field z = sin(x)cos(y) (for which normals are
known analytically) with different sampling criteria:

• Noise free. The height field is first sampled on a regular grid in pa-
rameter space in the interval [−π, π]2, with rates ranging from 20× 20
samples to 100× 100 samples.

• Noise in parameter space. The height field is then sampled on a jittered
grid in parameter space, with the same various densities as above. The
noise is uniform and isotropic, with a maximum magnitude of half the
grid spacing to make it scale with sampling density.

• Noise in embedding space. The samples of the first case (regular grid)
are now jittered in 3D using an isotropic uniform noise of half the grid
spacing.

In these three contexts, we measure the average angle deviation between
normal estimates and true normals for each sample density. For the point-
based PCA technique, we always use the 8 nearest neighbors as it leads to
the best estimates. As Figure 2.6 indicates, our approach is, across all tests,
either as good as or better than the two normal estimation techniques that
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Figure 2.5: Poles vs. covariance matrices in 2D. A point set samples two parallel
lines; (bottom) from left to right, we translate the samples of the bottom line
slowly; pole-based normal estimates are depicted in blue, while our covariance-
based normal estimates (deriving from the Voronoi cells displayed as well) are in
red; (top) the two curves compare the pole-based results (blue, very discontinuous)
with the covariance-based estimate (red) using the angle error (in degrees) as the
bottom line of points is shifted.

it is built upon. Comparing various normal estimation techniques fairly is
notoriously difficult as many parameters come into play, such as sampling
density, sampling anisotropy, noise, so our tests are not intended to be exten-
sive and conclusive. Nevertheless, we conducted several other experiments
(including a comparison with [MNG04a]) that all show numerical relevance.

2.2.2.2 Generalized Eigenvalue Problem

We now wish to compute an implicit function which gradient best aligns to
the (unoriented) normal direction estimates. While a Poisson reconstruction
[KBH06] can directly give us an implicit function so that its gradient best
fits a normal field, we cannot have recourse to such a direct linear solve as
we only have a direction field (i.e., unoriented normals). We need instead to
find an implicit function f whose gradient ∇f is everywhere best aligned to
the the principal component of the tensor field C, where the notion of est
alignment is weighted by the local confidence in the normal direction. We
propose the following constrained maximization procedure to efficiently find
such a function f :
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Figure 2.6: Normal estimation on a parametric surface. (top) noise-free sampling,
(middle) noise added in parameter space, (bottom) noise added in embedding space.
The plots show the average angle deviation in degrees against the sampling density.
Pole-based estimation in blue, point-based PCA in green, and our covariance-based
estimation with a single Voronoi cell in red.

Given a tensor field C, find the maximizer f of:

EDC (f) =
∫

Ω
∇f t C ∇f subject to:

∫
Ω

[
|∆f |2+ ε|f |2

]
= 1,

where Ω is the domain, and ∆ is the Laplacian operator.

The interpretation of this optimization problem is as follows. The en-
ergy function EDC , called anisotropic Dirichlet energy, directly measures the
alignment of ∇f with the normal direction indicated by C. An isotropic
tensor (i.e., unknown normal direction) has little influence on this energy,
whereas an anisotropic tensor (i.e., high confidence in the normal direction)
will play a major role, penalizing misalignment at reliable data point. We
then add as a constraint that EDC must be maximized over the unit ball de-
fined by the biharmonic energy. Just like the Dirichlet (harmonic) energy is
a measure of the smoothness f , the biharmonic energy measures the smooth-
ness of ∇f : therefore, this added constraint imposes a regularization of the
maximizer f . A small amount of the L2 norm of f is added to avoid having
to constraint values of f (either on the boundary or inside the domain), as
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well as to improve conditioning: the resulting constraint is a Sobolev-like
norm EB on f . Solving for this constrained maximization amounts to care-
fully balance smoothness of ∇f vs. alignment of the gradient: it will align
∇f to C if it is particularly rewarding for the anisotropic Dirichlet energy
(i.e., when the normal direction is reliable); on areas where the tensor is
isotropic, the solver will favor smoothness of the function gradient instead.
This global balancing act implicitly induces a consistent orientation to the
tensor field since flipping the sign of ∇f along the tangential direction of the
inferred surface significantly increases the biharmonic energy. The normal
orientation is this way delegated to the solver.

Discrete Formulation We now assume that we have a tetrahedral mesh
of the 3D domain with V vertices {vi} and E edges {ei}. Each edge ei
is arbitrarily oriented. Given this mesh with a tensor Ci at each vertex i,
we wish to solve for a node-based, piecewise linear function f , i.e., to find
a vector F = (f1, f2, . . . , fV )t that satisfies the aforementioned constrained
maximization. The energies involved in the optimization are rather simple
to express. Although various expressions of the anisotropic Dirichlet energy
have been proposed in 2D in the context of quasi-harmonic parameteriza-
tions [Gus02, ZRS05], we construct our 3D energies via matrix assembly
using the language of discrete forms. Thus, EDC (F ) is expressed as:

EDC (F ) ≈ F t A F with A = dt0 ?
1
C d0

where d0 is the transpose of the signed vertex/edge incidence matrix (size
ExV ) of the mesh, and ?1C is the Hodge star operator for the metric induced
by C. We approximate this latter operator by the Euclidean diagonal Hodge
star ?1 modulated by the tensor C, resulting in the following diagonal matrix:

∀i = 1 . . . E, (?1C)ii =
eti C ei
eti ei

(?1)ii with: (?1)ii =
|e∗i |
|ei|

,

where ei is the ith (oriented) edge, |ei| is its length, and |e∗i | is the area of
its dual Voronoi face. The value of the tensor C on an edge is computed by
averaging the tensor values at each vertex of the edge.

Discrete Biharmonic Energy For the biharmonic energy, the following
(simplified) discretization performs adequately in practice (regularization
will be added later through a data fitting term):

EB(f) ≈ F t B F with B = (dt0 ?
1 d0)2

where we used the same notations as above.
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Optimization Procedure Using a Lagrange multiplier λ, we can now
rewrite the constrained optimization as a maximization of the following
functional:

E = F tAF + λ(1− F tBF ).

A necessary condition of optimality is ∂E/∂F = 0, yielding:

AF = λBF.

This expression expresses what is known as a generalized eigenvalue problem
(GEP), where F is an eigenvector of this GEP, and λ is its corresponding
eigenvalue. The solution to such constrained maximization is the eigenvec-
tor of the GEP corresponding to the largest eigenvalue.

Proof: Since the eigenvectors of a GEP form a basis, we can write a
function F as:

F =
∑

aλFλ,

where Fλ is the eigenvector corresponding to the eigenvalue λ (i.e., AFλ =
λBFλ) so that F tλBFλ= 1 and, for λ1 6= λ2, F

t
λ1
BFλ2 = 0. Therefore:

EDC = (
∑
λ

aλFλ)tB(
∑
λ

λaλFλ)=
∑
λ

λa2
λ ≤

∑
λ

λmaxa
2
λ = λmax.

Since the energy is bounded by the max eigenvalue λmax and this value is
attained by EDC (Fλmax), we get: F = Fλmax .

So far our Voronoi-based variational approach requires no parameter-
tweaking to provide a reconstruction of a point set. We can, however, extend
this approach as follows: the matrix B that contains the discrete biLaplacian
can be modified in various ways to allow for more control over smoothness
and/or interpolation: i) Data fitting: we can change the optimization results
by adding a term that controls data fitting. We favor a value of 0 on the
input points by adding to the constraint a fitting factor times the sum of
the squares of the function values at input points. Changing the fitting
factor will provide a controllable data fitting effect to our procedure; and ii)
Splines-under-tension energy: instead of only using the biLaplacian, we can
constrain the optimization over a unit ball defined by a linear combination of
the Dirichlet and the biharmonic energies. It will allow for a better tradeoff
between smoothness of the results vs. fitting of the normal directions, as
it is tantamount to a splines-under-tension energy [SW90]. The matrix B
needs to be modified in order to implement these two generalizations as we
detail next.
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Implementation After reading in the input point set, we compute its
Voronoi diagram and refine its dual Delaunay tetrahedral mesh by Delaunay
refinement [CGA09, RY06] so as to obtain well-shaped tetrahedra. At each
Steiner point added we set the tensor Ci to the 3x3 identity matrix to remain
agnostic as to the normal direction there. We then solve the generalized
eigenvalue problem AF = λBF by turning it into a standard eigenvalue
problem. This is achieved by precomputing a Cholesky factorization of B
using the TAUCS library [TCR05]; this results in a lower triangular matrix
L so that B = LLt. We now rewrite the GEP as:

AF = λLLtF ⇔ L−1AL−tLtF = λLtF ⇔
{
L−1AL−tG = λG
G = LtF

We then employ the implicitly restarted Arnoldi iteration method from the
ARPACK++ library [GS], with L−1AL−t as the Arnoldi operator and by
requesting the maximum eigenvalue. After convergence, we get the solution
F by solving LtF = G, as it corresponds to the eigenvector corresponding
to the maximum eigenvalue of the original GEP. This eigenvector defines
a piecewise linear function over the tetrahedron mesh: we are now ready
for contouring. To find which iso-contour to extract, we first evaluate the
resulting function at all input points (not Steiner points), and pick the me-
dian value for contouring. In practice the median is more robust than the
average value. For the final iso-contouring we use a surface mesh gener-
ation algorithm based on Delaunay refinement and filtering [BO05]. The
latter is preferred to the accustomed marching cubes as it generates meshes
with fewer triangles and a guaranteed quality over the shape of these trian-
gles. Figure 2.7 illustrates outputs of the Delaunay-based mesh generation
algorithm with three uniform sizing criteria.

2.2.3 Results

We first exemplify the similarities and differences between ours and the
Poisson-based method performed on the same simplicial mesh (we imple-
mented the Poisson equation of [KBH06] on a triangle mesh). As Figure
2.8 illustrates, the first point set (dense, noise-free) is correctly oriented
using pole labeling (red/blue dots are poles), which allows us using the
Poisson equation for reconstruction. Both methods lead to very similar re-
constructed curves. When the sampling is sparser, the pole-based orienting
process fails to provide the proper normal orientation, and the Poisson re-
construction reflects this, while the implicit function remains unchanged.

We illustrate in 2D the effects of tuning the parameters. µ∆ allows con-
trolling the smoothness (Figure 2.9, top). µfit controls the fitting of the
input points, and hence the separation of two components (Figure 2.9, mid-
dle). It also provides a way to increase the contrast of the implicit function
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Figure 2.7: Kitten. Top: 20K input point set, Steiner points and implicit function,
and shaded reconstructed surface obtained by marching-tetrahedra. Bottom: three
output meshes at increasing resolutions.

for nested components (Figure 2.9, bottom left). A shape completion exam-
ple from a sparse dataset, obtained with the splines-under-tension energy,
is also shown (Figure 2.9, bottom/middle). Our last 2D example illustrates
(Figure 2.10) the resilience to both sparsity and noise of the point set.

We also processed a number of 3D point sets issued from (laser range)
scanners. We show in Fig.2.11 that our method applied to a raw, unoriented
point set (206K points) recovers a similar surface to the Poisson reconstruc-
tion from [KBH06] for which additional normal information was provided.
We note that even at octree depth 11, the Poisson-based mesh is compara-
tively over smoothed, mostly due to the interpolation of the normals onto the
octree leaves. If such an over smoothing is desirable, we can either smooth
the tensor field around the input points, or increase the smoothness by tun-
ing two parameters (as demonstrated in Figure 2.9). Figure 2.12 illustrates
the reconstruction from 250K points with noise and missing data.
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Figure 2.8: Comparison with Poisson reconstruction in 2D. (top) our approach is
very similar to a Poisson reconstruction for dense point sets as the normal orien-
tations can reliably be deduced; (bottom) for sparser/noisier unoriented datasets,
local orientation becomes prone to errors, while our variational approach remains
valid.
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Figure 2.9: Reconstruction Parameters. (top) adjusting µ∆ (left to right) permits
easy tuning of the resulting smoothness, (middle) while µfit controls the fit to the in-
put point (middle & right), allowing to accurately separate and capture fine, nearby
surface layers. (bottom) data fitting allows the reconstruction of nested components
(left); smooth completion of sparse dataset is achieved using the splines-under-
tension energy (middle); separate components of different geometric complexity
can also be captured accurately.
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Figure 2.10: Noise and Sparsity Resilience. (top) our approach can handle from
dense (left) to sparse (right) raw datasets without any parameter tweaking; (bot-
tom) similarly, results degrade gracefully with noise.
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Figure 2.11: Comparison with Poisson reconstruction in 3D. Without any normal
information, our method (left) results in a similar shape (albeit less over smoothed)
to a Poisson reconstruction (octree depth 11) for which oriented normals were
provided.
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Figure 2.12: Sforza. Reconstruction from 250K points (marching-te reconstructed
surface shown).
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2.2.4 Summary

Our surface reconstruction approach is a mix between Voronoi-based meth-
ods (to estimate normals via PCA), implicit-based approaches (as an implicit
function is globally optimized to allow for smooth approximation through
iso-contouring), and spectral techniques as our optimization procedure in-
volves solving a generalized eigenvalue problem. The main idea is to charac-
terize the sampling quality through computing tensors as covariance matrix
of unions of Voronoi cells, and to compute a scalar function which gradient
best matches the principal component of these tensors. As the function is
requested to be both aligned with the principal components and smooth,
the function gradient is consistently oriented.

2.2.4.1 Strengths

The key added value to this surface reconstruction approach is that it
matches the results of oriented point set reconstruction techniques such as
Poisson reconstruction, without the need for normal orientation. Since the
normal orientation is delicate (if not impossible) on sparse or noisy point
clouds, the latter property is a major advantage. Other distinctive features
include the use of tensors in a generalized eigenvalue problem to balance
fitting and smoothness based on data confidence, as well as the ability to
trade data fitting for smoothness.

2.2.4.2 Weaknesses

One important limitation of the normal estimation procedure is its limited
resilience to outliers. Additionally, the weakness of the reconstruction algo-
rithm is mostly a scalability issue, the bottleneck being the Cholesky factor
as its memory requirement is high (e.g., 20M non-zero elements for the kit-
ten). Out-of-core factorization is a viable option that we use for large models
like Bimba and Sforza, but the overall timings consequently suffer (up to 25
minutes for 250K input points), and the super-nodal ordering still requires
in-core execution. For larger datasets a 64-bit machine is currently indis-
pensable to address these memory issues. We are searching for alternate
scalable solutions to solve the generalized eigenvalue problem.

2.2.4.3 Follow-ups

In a separate work not detailed here, we proved the convergence analysis
of the Voronoi-PCA normal estimation scheme in 2D and for the noise-free
case. By convergence, we mean proving that when the sampling increases the
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principal component of the covariance matrix converges to the true normal
to the curve. Such an analysis draws upon closed-form covariance matrices
of Voronoi cells, the theory of ε-sampling and the Gershgorin circle theorem
for symmetric matrices. The key idea behind the proof is to exploit the
known fact that the aspect ratio of the Voronoi cells increases while the
sampling density increases [Dey06]. We then derive, from this aspect ratio
and the Gershgorin circle theorem, a ratio between the eigenvalues of the
covariance matrix and a decreasing angular deviation between the principal
component of the covariance matrix and the true normal.

In a recent work Merigot et al. [MOG09] show that a small modification
of the Voronoi-PCA approach is amenable to convergence proofs in presence
of noise and when the points are sampled from a compact set (and not only
from a smooth surface). In addition, it is shown that the whole curvature
tensor, not just the normal direction, can be derived from the covariance
tensor.

2.2.4.4 Future Work

As future work we wish to study how the proposed normal estimation tech-
nique can be applied to dimension detection, along the line of [DGGZ03].
For applications where outliers are numerous we wish to elaborate upon a
resilient normal estimation technique. As for surface reconstruction, we ac-
knowledge the fact that the L2 norm used here and in Poisson reconstruction
is not ideal, as sharp transitions are overly penalized. This prevents recon-
structing both sharp indicator functions and piecewise smooth surfaces. An
L1 norm would be worth investigating. As of today, the main remaining
challenge is certainly the reconstruction of piecewise smooth surfaces. A
common sequential approach consists of extracting the features first before
reconstruction [DHOS07]. We believe that delegating the feature extraction
to a global solving stage instead would be more robust as our approach
already shows for normal orientation.
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2.3 Surface Mesh Approximation

In this section we focus on the approximation of triangle surface meshes.
Finding a concise, yet geometrically-faithful digital representation of a sur-
face is at the core of several research themes in graphics. Given the verbosity
of many 3D datasets (and in particular, of scanned meshes), reducing the
number of mesh elements of a surface mesh while maintaining its geometric
fidelity as best as possible is crucial for subsequent geometry processing.
Ideally, each element should be made as efficient as possible by stretching
it locally in order to fit a large area of the shape we wish to approximate,
without introducing significant geometric error. This quest for geometric ef-
ficiency naturally raises the following question: given a 3D surface, a target
number of face elements, and an error metric, what is the best geometric
approximation of the object that one can find with this face budget? Or
similarly, given a distortion tolerance, what is the smallest polygonal mesh
approximant with a distortion lesser than the tolerance? Despite the fun-
damental aspects of this problem, its NP-hard nature has mostly thwarted
the search for practical heuristics for finding such optimal meshes.

2.3.1 Related Work

We start with a background on approximation theory applied to functions,
height fields and surfaces, and motivate an approach to shape approximation
through variational partitioning.

Functional Setting Given a class of functions and a metric (usually Lp or
L∞), approximation theory has provided strong results on the best approx-
imations with n elements, be them piecewise-constant elements or higher
order ones. Such results have given rise, for example, to optimal image
encoders that give the Kolmogorov entropy bounds of the problem at hand
[CDDD01]. However, most of these results cannot be easily extended to sur-
faces: the functional setting relies on a parameterization when comparing
two functions. In the general case of two arbitrary surfaces, with no map-
ping known from one to the other, the functional metrics cannot be used
directly.

Height Fields For the special case of height fields (where a trivial parame-
terization can readily be used), a few results are known about the optimality
of piecewise-linear approximation at the asymptotic limit when the areas of
the approximating elements (typically, triangles) vanish. It has been proven
that with respect to the L2 metric, the triangulation that minimizes the
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error of piecewise linear interpolation for a given large number of triangles
must have an optimal triangles orientation aligned with the eigenvectors of
the Hessian of the function, and an optimal size in each principal direction
given by the reciprocal square root of the absolute value of the corresponding
eigenvalue [Nad86]. Note that there is a subtle twist on hyperbolic regions,
where there is not a unique optimal shape and direction, but a whole family
of it; we will come back to this impediment in Section 2.3.2.4. Such an
alignment and stretching of the triangles optimizes the efficacy of the mesh,
i.e., minimizes the error per surface area. Results basically identical are also
proven for an arbitrary Lp metric [Sim94]. A few results are also known
for optimal approximation of the gradient error [DS91], or for bilinear ap-
proximation [D’A00], but again, they are only asymptotically valid. These
different results are fairly narrow in scope: first, they are restricted to height
fields; second, the triangulations are assumed to be only interpolating the
height field at the vertices; and third, the asymptotic case does not help in
designing a concrete surface approximation for a small number of triangles.
Concrete bounds for the interpolation error and the gradient interpolation
error for a non-infinitesimal triangle [She02a] offers much better insights, but
still does not provide, to date, practical mesh generators with guaranteed
approximation quality for a given number of elements. It is known that
finding the piecewise-linear triangulation with a given number of vertices
that optimally approximates a height field with respect to the L∞ metric is
a NP-hard problem [AS98].

Arbitrary Geometry Aside from the asymptotic results mentioned above,
theoretical knowledge on optimal piecewise linear approximation of arbitrary
surfaces is mostly unchartered territory despite the considerable amount of
practical work on digital geometry. This lack of foundations and the intrin-
sic complexity of this problem explains the overwhelming usage of greedy
algorithms, that can reduce the number of triangles but at the expense
of an uncontrollable approximation error, or conversely, can guarantee a
given approximation error criterion but at the expense of an uncontrollable
number of triangles (with the noticeable exception of computational ge-
ometry papers proposing algorithms for convex and bivariate surfaces (see
[AS98]), or about optimally-sparse ε-sampling for accurate surface recon-
struction [AB99, BO05]). The notion of error distance between two surfaces
is, however, routinely used. Probably the most used metric in graphics, the
Lp distance between a surface X and an approximating surface Y is the
extension of the traditional Lp metric for the functional setting, and is often
defined as:

Lp(X,Y ) =

 1
|X|

∫∫
x∈X

‖d(x, Y )‖pdx

 1
p
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with: d(x, Y ) = inf
y∈Y
‖x− y‖

where ‖.‖ is the Euclidean distance, while |.| is the surface area. The ex-
tension of the L∞ metric, called the Hausdorff distance, is naturally ex-
pressed as: H(X,Y ) = maxx∈X d(x, Y ), but can be quite delicate to com-
pute [ASCE02]. Notice that these definitions are sided: a true distance
measure should add the symmetric version. However, in the context of
surface approximation, the symmetric counterpart increases the complexity
significantly as it contains an integral over the surface that we are basically
looking for. Thus, it is discarded in practice (for instance in [HDD+93]).

Partitioning Many techniques have been specifically designed to exploit
an object’s local planarity, symmetry and features in order to optimize its
geometric representation. While most simplification approaches try to pro-
vide an ε-approximation with respect to various metrics, rare are the meth-
ods that systematically target a minimum distortion error for a given bud-
get of linear mesh elements. A powerful solution to mesh simplification
is to greedily cluster geometric elements, creating in effect a partition of
the original object. Mesh decimation provides an elegant approach to such
a partitioning, through greedy and repeated collapsing of mesh elements
[Hop96, KLS96, GH98, LT98]. However, and although some of the metrics
used for clustering can be proven asymptotically optimal (i.e., for infinitesi-
mal triangles) for the L2 metric [HG99], the greedy nature of decimation is
prone to result in suboptimal meshes. A similar statement is true for an-
other (almost dual) family of approaches [MYV93, IIY+99, She01, SSGH01,
GWH01, LPRM02, MPS+04] which gather faces in a set of characteristic
regions to provide a succinct, higher-level description of the geometry.

Global optimization Contrasting with the previous greedy techniques,
Hoppe et al. [HDD+93] proposed to cast mesh simplification as an optimiza-
tion problem. With an energy functional measuring deviation from the input
mesh, they show that optimizing the number of vertices as well as their po-
sitions and their connectivity captures the curvature variations and features
of the original geometry. Although their functional is mostly a point-to-
surface Euclidean distance, they report excellent results for mesh simplifi-
cation. Despite a spring force restricting the anisotropy of the results, such
optimization techniques often result in irregular meshes for which geometric
efficiency (i.e., how many faces are needed to capture geometry) is particu-
larly good. While other methods use some form of local mesh optimization
(see, for instance, [BVL02, OBP03]), this subject remains marginally studied
to date, most certainly because of the difficulty of the task at hand: the mere
size of the search space seems to hamper efficiency. Although good practical
approaches for shape approximation have been proposed in the past, only
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marginal work has been devoted to global minimization of approximation
error with respect to a chosen metric.

2.3.2 Approach

Our strategy to design succinct meshes is entirely error-driven and uses a
discrete, variational shape approximation method: we distribute mesh ele-
ments over the original geometry by targeting both a best local fit and a
least global error, without resorting to any estimation of differential quan-
tities nor parameterization. To achieve these goals, we define geometric
proxies as a best-fit geometric surrogate to effectively shed topological is-
sues; and we define proper shape error metrics to measure how well a proxy
fits a piece of geometry. Finally, we cast the approximation problem as a
variational partitioning (see overview Figure 2.13).

Figure 2.13: Variational Shape Approximation: Through repeated error-driven
partitioning (left), we find a set of geometric proxies (represented as ellipses, center)
providing a concise geometric description of an input surface (62K triangles) by
capturing the anisotropy of the initial model; notice the presence of disks on near-
spherical regions, and stretched ellipses on near-parabolic regions. These proxies
are then used to construct an approximating polygonal mesh (right).

2.3.2.1 Shape Approximation

We reformulate the problem of surface approximation by introducing the
notions of shape proxies and variational partitions.

2.3.2.2 Variational Partitioning and Proxies

Agarwal and Suri [AS98] mentioned that the problem of functional approx-
imation can be cast as a geometric partitioning one. This idea of clustering
points or faces of a 3D objects into a partition to help approximate the
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geometry has already been used in graphics [HUHJ01, PGK02], and partic-
ularly for mechanical parts [IIY+99, She01], where clear-cut features make
the partitioning easier. After all, an approximating face is nothing but a
surrogate, linear approximant for a set of original clustered faces that share,
on average, similar geometric characteristics. Therefore, clustering faces
into a partition with k regions appears to be a natural way to resample
geometry (see Figure 2.14). Although we base the geometric approximation
on partitioning through clustering too, we iteratively seek a partition that
minimizes a given error metric. We now define some terminology.

Figure 2.14: Bunny: (left and center) L2,1-optimized geometric partition-
ing; (right) Anisotropic polygonal mesh deduced from the partition. Notice the
anisotropy on the ears.

Partition and Proxies Each regionRi of a partitionR can be summarily
represented to first order as an “average” point Xi and an “average” normal
Ni (the word average is here used in a broad sense; it will be made clear later
when we define a metric with respect to which these averages will represent
the best local linear fit). We will denote such a local representative pair
Pi = (Xi,Ni) a shape proxy of the associated region. Thus, for any given
partition of a surface in k regions, we associate a set P of shape proxies
P = {Pi}i=1..k that coarsely approximate the whole geometry. At this point,
it is worthwhile to point out that a k-partition, in effect, defines a dual meta-
mesh of the original: the proxies define k dual meta-faces (obtained through
clustering of original faces), and the connectivity of the k regions of the
partition induces the topology of this dual mesh. Now, for this approximant
to be relevant, we need to evaluate the quality of the partition in order to
find a partition with optimal quality.
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2.3.2.3 Metrics on Proxies

Defining an appropriate error metric is a key ingredient in approximation.
As mentioned earlier, the L2 or Hausdorff metrics are often used when com-
paring two triangulated surfaces. In our case, we want to measure the
geometric relevance of a proxy set for a given surface. It allows us scoring a
partition in terms of how well it approximates a surface.

2.3.2.4 L2L2L2 Metric for Proxies

We can extend the notion of L2 distance. Given a region Ri and its associ-
ated proxy Pi = (Xi,Ni), we denote Πi(.) the orthogonal projection of the
argument on the “proxy” plane passing through Xi and of normal Ni; the
L2 metric is then:

L2(Ri, Pi) =
∫∫
x∈X

‖x−Πi(x)‖2dx (2.1)

This formula (square root and area normalization removed) measures
the integral of the squared error between the region Ri and its linear proxy
Pi. Notice that we integrate the L2 distance over the surface so as to make
the optimization robust to irregular sampling rate of the input geometry
(see Figure 2.15).

Figure 2.15: L2-optimized partition for a highly non-uniform input mesh (notice
the disk-shaped region with refined triangles). The sampling irregularity severely
distorts the partitioning if point-based covariance matrices are used (left), while
the triangle-based covariance matrices (right) provide the expected polygonal ap-
proximation, capturing the true geometry.

As proven for elliptic areas in the asymptotic limit [Nad86], a L2-optimal
approximation of a surface tends to create elements taking advantage of local
anisotropy by being stretched in the minimum curvature direction with an
aspect ratio of

√
|κmax/κmin|. This stretching along the minimum curvature
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direction makes very good use of the local shape of the object. However,
in the hyperbolic case, there is no unique optimal shape and alignment.
Since we are targeting a variational approach, this non-unique optimality
is worrisome: a minimization algorithm can randomly jump around in the
null space of the functional, resulting in either endless oscillations, or in
technically optimal but noise-prone results. To circumvent this issue, we
look for another metric next.

Introducing L2,1L2,1L2,1 as a Shape Metric The L2 metric tries matching ge-
ometry through approximation of the geometric position of the object in
space. However, the normal field is fundamental in the way the visual sys-
tem interprets the object’s shape: normals govern lighting effects such as
diffusion, specularity, as well as curvature lines and silhouettes; a smooth
normal field defines a smooth shape, while normal discontinuities indicate
features. Moreover, there is evidence that our visual perception is actually
more sensitive to changes in normals rather than in changes in positions:
this property has been used in compression for instance, where quantization
noise can be hidden in the low-frequency errors as it induces less visual im-
pact [SCOT03]. In the functional setting, Shewchuk [She02a] advocates that
one should focus on getting good bounds on the gradient interpolation error,
as these are more difficult to control: the functional interpolation errors can
always be improved through refinement, whereas such a refinement may not
improve the gradient interpolation quality. In fact, approximating a func-
tion well does not mean that its gradient will also get approximated [Fu93]:
there are well known examples (Schwarz’s Chinese lantern for instance) of
triangulated surfaces converging to a smooth surface for the Hausdorff met-
ric, but with a surface area and normals diverging. However, as hinted by
the Poincaré-Wirtinger-Sobolev inequality, controlling the upper bound of
the norm of the gradient interpolation error allows to also bound the norm
of the interpolation error. Given the cogent body of evidence in favor of a
normal-based measure of distortion, we introduce a shape metric that we
denote L2,1, as it is based on a L2 measure of the normal field:

L2,1(Ri, Pi) =
∫∫
x∈X

‖n(x)− ni‖2dx (2.2)

We show in Section 2.3.2.9 that this metric is numerically superior to
L2 in several ways: i) The anisotropy of the surface is better exploited,
since the asymptotic aspect ratio of an optimal element is in |κmax/κmin|,
therefore largely superior to the asymptotic L2 behavior. Moreover, we
show that there is a unique optimal shape and alignment in the limit for
all (non-isotropic) surface types, be it parabolic, elliptic, or hyperbolic. The
difference in results with the L2 metric is noticeable (see Figure 2.16); and
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ii) Finding the best normal proxy is as simple as averaging the normals over
the associated region. We do not have to compute a covariance matrix and
thus save a significant amount of computations compared to L2. Finally,
notice that the asymptotic results are in agreement with the optimal case
of the gradient approximation mentioned in [She02a, DS91].

Figure 2.16: Homer: This character illustrates the effect that an error metric
can have on approximation. While L2 (left) and L2,1 (right) behave similarly on
near-spherical regions such as the top of the head, the belly and mouth regions are
very different in each case.

Optimal Shape Proxies We can define what we mean by an optimal
partitioning of an arbitrary surface: Given an error metric E (either L2 or
L2,1), a desired number k of proxies, and an input surface S, we call optimal
shape proxies a set P of proxies Pi associated to the regions Ri of a partition
R of S that minimizes the total distortion: E(R, P ) =

∑
i=1..k

E(Ri, Pi). In

other words, the set of proxies is optimal with respect to an error metric if
it minimizes the total approximation error over the possible sets of proxies
of same cardinality. Of course, in practice we cannot hope to find the global
minimum in a reasonable time. However, we set up our shape approximation
as a discrete, variational partitioning of the initial faces so that we can apply
a simple discrete clustering algorithm.

2.3.2.5 Optimizing Shape Proxies

Given an error metric E, a number k of proxies, and an input geometry S
of arbitrary size and topology, we wish to find a partitioning R of S in k
disjoint, connected regions and its respective set P of optimal proxies that
minimizes (or nearly minimizes) E(R, P ). Because in practice the input
geometry is triangulated, we can consider this mesh as a discrete collection
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of faces: the problem is then cast into optimal discrete clustering, for which
simple algorithms exist.

Background on Lloyd’s Clustering Algorithm Clustering a set of
discrete points involves dividing them into non-overlapping regions (or clus-
ters), where points belonging to a region are closer by some measure of
proximity to one another than to points in other clusters. Every regions can
be characterized by a single, “average” center, and the set of all k regions
is called a k-partition. The Lloyd algorithm is a deterministic, fixed point
iteration that provides such a partitioning [Llo82]. The idea is as follows:
after defining k random centers, all the data points are partitioned into k
regions by assigning each point to its nearest center. Then, the algorithm
updates the centers to be the barycenters (centroids) of their associated re-
gions before starting a new partition with these new centers. This process
is repeated until a stopping criterion is met. It can be proven that such an
algorithm (sometimes referred to as k-means clustering) tries minimizing a
cost function E based on how tightly each region is packed and how well
separated the different clusters are: the functional E defined by a set of
N points {Xj} and k centers {ci} is: E =

∑
i∈1..k

∑
Xj∈Ri

‖Xj − ci‖2. For
such a functional, Lloyd’s algorithm always converges in a finite number of
steps, since each step reduces the energy E: the partitioning stage mini-
mizes E for a fixed set of centers ci, while the fitting stage minimizes E for
a fixed partition. Lloyd’s algorithm is widely used as it manages to find very
good minima (even if sometimes not global) despite its simplicity and ease
of implementation [Hau01, KMN+02, OBA+03b, KT03, SAG03, SWG+03].
Therefore, if we are able to adapt this algorithm to our context, we should be
able to quickly produce a low-distortion partitioning and a set of geometric
proxies that closely approximate any input geometry.

Algorithm At a Glance Lloyd’s method hinges on the two phases of
partitioning and fitting, repeated alternately to drive the total energy down.
Paralleling this process, we present a simple extension of Lloyd’s algo-
rithm to variational, geometry-driven partitioning that includes the follow-
ing steps: i) Geometry Partitioning: In order to create a partition of an
arbitrary non-flat triangulation, we use a error-minimizing region growing
algorithm that will segment the object in non-overlapping connected regions;
ii) Proxy Fitting: Once a partition is found, we compute for each region an
optimal local representative, the proxy (see Section 2.3.2.2). These geo-
metric proxies, that minimize the distortion error for a given partition, are
nothing else but the equivalent of the centroids in Lloyd’s algorithm.
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Nomenclature We now refer to the input surface as S, its current par-
tition as R, its k regions as Ri, and their current respective proxy as
Pi = (Xi,Ni). The distortion error is referred to as E, and can represent
either the L2- or L2,1-based error defined in Section 2.3.2.3.

Figure 2.17: Half-sphere on plane: (left) random initialization of a 6-partitioning;
(center) after one iteration of optimization, the regions self-organize; (right) after
5 iterations, the regions settle.

2.3.2.6 Geometry Partitioning

Knowing a current set of proxies P , we wish to update the partition R while
trying to minimize the distortion error E(R, P ) in the process. We perform
this k-proxy clustering as follows.

Initial Seeding For each region of the previous partition, we first find
the triangle Ti of S that is the most similar to its associated proxy. This
is easily achieved by visiting each current partition region Ri, and by going
once through all its triangles to find the one with the smallest distortion
error E(Ti, Pi). In order to bootstrap the algorithm, we add one region at
a time, perform a partitioning, then proceed by adding a new region at the
triangle of maximum error with respect to the region it belongs to (this is
reminiscent of the farthest point strategy); no fitting between two floodings
is necessary, as the proxy values are directly picked from the seed triangles’
barycenters and normals.

Distortion-minimizing Flooding Once these seed triangles are found,
we wish to grow a region out from them, in order to find a new, better
partition. Just like in Lloyd’s algorithm, we wish to cluster together only
faces that are close (i.e., with a low error distortion) to the proxy. Therefore,
for each seed triangle Ti, we insert its three adjacent triangles Tj in a priority
queue, with a priority equal to their respective distortion error E(Tj , Pi),
and we add an additional tag indicating the label i of the proxy they are
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being tested against (a triangle can therefore appear up to three times in
the queue, with different tags and priorities). The region-growing process is
then performed by repeatedly popping triangles with least priority until the
priority queue is empty. For each triangle popped out from the queue, we
check its proxy assignment: if it has already been assigned to a proxy, we
do nothing and go to the next triangle in the queue; otherwise, we assign
it to region of the proxy indicated by the tag, and push the (up to two)
unlabeled incident triangles in the queue along with the same tag. When
the priority queue has been emptied, each triangle has been assigned to a
proxy: we therefore have a new partition. The use of a global priority queue
ensures that the regions will have grown anisotropically, in the sense that
the direction of growth of each region will be the one with smaller local
slope. Such growing process ensures connected and non-overlapping regions
as required, and is rapid (Nlog(N) complexity).

2.3.2.7 Proxy Fitting

Once we have found a new partition R over the surface S, we now wish
to update the respective proxies Pi = (Xi,Ni) in order for them to be the
best representative of their associated region Ri freshly updated (iterative
partitioning is exemplified by Figure 2.17). Notice that, for the given par-
tition R, this procedure will find the set of proxies that minimizes the total
distortion error E(R, P ). This minimization is done as follows. For the
L2 metric, Xi is the barycenter of the region Ri while Ni is the direction
(the sign does not matter) indicated by the eigenvector associated with the
smallest eigenvalue of the covariance matrix of the region—i.e., the proxy is
the least-square fitting plane traditionally found with Principal Component
Analysis. For the L2,1 metric, proxy normal is the area-weighted average
of the triangles’ normals of the region; the point Xi is chosen to be the
barycenter of the region.

In order to make the variational partitioning more flexible, we let the user
not only pick the desired number of proxies at any time, but we also allow
interactive, incremental insertion and deletion of proxies. The insertion
is done by finding the current region with maximum total distortion, and
within it, we pick the triangle with worst distortion error as the initial seed
for the next flooding (this is yet another farthest-point sampling heuristic);
this will add a new region and proxy in the most needed part of the object.
Similarly, we allow the incremental deletion of a region. We select the region
to be deleted as follows: for each pair of adjacent regions, we simulate a
merging of the two regions and compute the resulting distortion with the
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new best fitting proxy; the pair of regions achieving the smallest distortion
when merged are then replaced with a single one, deleting a proxy in effect.

Teleportation In the course of finding a better distortion minimum, the
algorithm can find itself stuck in a local minimum. Typically, this can
happen on a flat region: if a region happens to be encircled by other regions
with similar proxies, it may be locally stuck in this minimum configuration
as this position prevents it to roam on the surface and find better positions.
Yet it is clearly a waste of efficiency to leave this region as is. We have
therefore implemented a region teleportation procedure to give a region the
chance to tunnel out of a local minimum, similar in spirit to [BH96, LT00].
At regular intervals during the clustering process, we simply force a region
deletion as described above, immediately followed by a region insertion: the
effect of this simple two-step operation is to remove a region stuck in a local
minimum, and teleport it where it is most needed. In practice, it is better
to first test if this operation is worth it: we use a heuristic that test whether
the error added by a (simulated) deletion is smaller than half of the error of
the worst region. If this test fails, no teleportation is necessary.

Convergence We cannot guarantee global convergence of this variational
approach, although we observe in practice a very good behavior: the proxies
start settling down after a few iterations, or oscillate around extremely sim-
ilar distortion errors (see the error as a function of the number of iterations
in Figure 2.18). Convergence is, however, guaranteed for convex objects for
the L2,1 norm, since it amounts to the well-known k-means (area-weighted)
clustering of the discrete normals on the image of the Gauss map. Further-
more, convergence would also be guaranteed for arbitrary surfaces if one
was to relax the connectedness of the regions in the partition; however, hav-
ing proxies that correspond to disconnected patches of surface is not very
relevant.

Figure 2.18: Max Planck: For the two optimized approximations (130 and 300
proxies resp.), we show the associated curves of the L2,1-distortion error as a func-
tion of the number of Lloyd’s iterations; as expected, a few iterations suffice to
reach a much reduced distortion error.
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2.3.2.8 Meshing the Proxies

Now that we found a nearly-optimal partitioning, its proxies capture the
essence of the input geometry. Additionally, the adjacency graph of the par-
tition defines the connectivity of a mesh as well. We create an anchor vertex
at every original vertex where three or more regions meet. The spatial posi-
tion of these anchor vertices is determined as follows: for each neighboring
proxy of an anchor, we compute the projection of the associated vertex from
which the anchor was created onto the proxy (i.e., its ideal position for this
proxy); and we average these projections. We can now add edges between
the anchor vertices by simply visiting each region boundary. Although these
so-constructed edges and vertices are topologically sufficient, they may ap-
proximate the region’s boundary rather coarsely. We thus have recourse to
a recursive chord-length subdividing algorithm. If a and b are during recur-
sion two anchor vertices linked by an edge separating proxy Pi and Pj , we
visit all the original vertices of the associated boundary arc, find the largest
distance d from these vertices to the edge (a,b), and add an anchor vertex
there.

Figure 2.19: Discrete Constrained Delaunay Triangulation: Flooding the mesh
from the anchor vertices (solid dots) creates triangles (light grey, left and center)
whose three corners have different colors. Each of these triangles generates a meta-
triangle during meshing. A final edge-removal pass provides a L2,1-polygonal model
(right, bottom).

With the anchor vertices and edges defined, we already have a polygonal
mesh. However, the polygons have no guarantee of being flat nor convex.
The triangulation of this initial graph is done through a “discrete” Con-
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strained Delaunay triangulation (CDT) to render the process robust: we
create Delaunay-like triangles within each region, while constraining the ex-
isting anchor-based edges to be part of the final triangulation. To achieve
this goal, we have recourse to a flooding algorithm, very similar to the multi-
source Djisktra’s shortest path algorithm with an edge weight equal to its
length, and for which the sources are the anchor vertices. In a first step,
we only flood the boundary of a region so that every vertex on it is colored
depending on the closest anchor vertex: this enforces the constrained trian-
gulation by forcing the boundary to be in it. We then start a flooding of the
interior of the region, coloring the vertices also according to their closest an-
chor vertex. The extraction of the final triangles is now straightforward. We
look at every triangle of the input mesh whose three vertices have distinct
colors: each of them corresponds to a triangle in the final triangulation, em-
anating from the anchor vertices indicated by the three colors. A summary
of this process is depicted in Figure 2.19.

Figure 2.20: Generation of a polygonal model: triangle mesh obtained via CDT
(top-right); creation of well-shaped quads (bottom-right), then polygons (bottom-
left) by iterative edge removal.

We perform a final pass over the triangulation to remove the edges that
do not contribute to the shape. First, we try to make as many nicely-



56 CHAPTER 2. CONTRIBUTIONS

shaped quads as possible: we look at edges that can be safely removed (i.e.,
that produce no normal flips); we sort them by a score linked to the well-
shapedness of every candidate quad [Peb02]; finally, we go down the list
and remove the edges creating the best quads first, until the list is empty.
Second, we perform a second pass in order to create convex polygons when
possible. A close-up on the remeshed Fandisk model in Figure 2.20 exhibits
the type of polygon mesh obtained.

2.3.2.9 Asymptotic Behavior of the L2,1L2,1L2,1 Metric

(A.1) (A.2) (A.3)

Consider an arbitrary surface S. Let R be a small rectangle of dimension
2a × 2b = |R|, and such as R is tangent in its center to the surface S at
a point p. The normal np at p is therefore also normal to R. The only
parameters that are not determined are a, b, and the angle θ between the
minimum curvature direction and the side of R (see Figures A.1 and A.2).
Then we have [Gra98]:

n(x, y) ' np + H
(
x

y

)
.

H is the (symmetrical) Hessian matrix. The average normal N is there-
fore N=np, and the L2,1-based error E is expressed as:

E =
∫∫
R

‖n(x, y)− np‖2dx dy =
∫∫
R

(x y) Ht H
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y

)
dx dy

=
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Notice that Q = HtH = H2 is by definition always symmetric positive,
even if H is not positive (like in hyperbolic regions). We now define the
efficiency f = E/|R| as the ratio of error covered by area unit [Sim94].
Obviously, we wish f to be minimum. In our case, we can rewrite:

f =
1
3

(Q11 a
2 +Q22 b

2).

Now if we try to optimize, using a Lagrange multiplier λ, the efficiency as
a function of a and b under the constraint that the area ab is constant, we
get the following linear system:

2
3

(
Q11 a

Q22 b

)
= λ

(
b

a

)
.

We then find that the optimal dimensions of R (to which our minimization
will converge to in the limit) is: a = µ/

√
|Q11|, b = µ/

√
|Q22|, µ constant.

For this optimal rectangle, we have: f = 2|R|
12

√
Q11Q22. However, notice

that det Q = Q11Q22−Q2
12 ≥ 0 for any θ. The efficiency f is therefore best

when Q12 = 0: Q is then diagonal, which means that H is also diagonal
and thus, θ = 0. As a consequence, we will converge towards a quadrangle
that is aligned with the principal curvature (since θ = 0 - see Figure A.3);

and has a side ratio of a/b =
√

Q11

Q22
= |H11

H22
|, i.e., of ratio |κ2/κ1| since H is

diagonal in the optimal configuration.

2.3.3 Results

Although the L2 metric provides good approximations in general, the L2,1

results are in agreement with what we would have expected from a good
segmentation of geometry, and often capture more details (see Figure 2.21).
It also compares favorably with the QEM approach [GH98], see Figure 2.23.
Figure 2.22 shows a more complex example on a 150K triangle mesh and
800 proxies.
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Figure 2.21: (Left) Dinosaur model; (Center) L2,1-approximation, with a false
color version of the Hausdorff distance to the original mesh. (Right) Results for
QEM [GH98] with same number of edges. Notice that our approach based on
normals reproduces the “highlights” (see the neck), with a symmetric Hausdorff
error 18% smaller (as measured by [ASCE02]).

Figure 2.22: Man. Top: input surface mesh (150K triangles), optimized partition
with 800 proxies, and the corresponding planar proxies. Bottom: triangle mesh ex-
tracted with color attributes from the optimized partition, triangle mesh extracted
without color attributes and final polygon mesh.
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Figure 2.23: Comparison of the Hausdorff error for QEM [GH98] and the L2,1

technique, for equal number of vertices (a comparison using equal number of edges
leads to a similar curve).
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2.3.4 Summary

We proposed a variational shape approximation approach that breaks away
from the common approximation paradigm consisting in directly optimizing
a piecewise-linear approximant of an original surface. Through mutual and
repeated error-driven optimizations of a partition and a set of local proxies,
the proposed method ends up providing concise geometric representations
in the form of either local best-fit proxies or of polygonal meshes.

2.3.4.1 Strengths

The variational aspect of the approach we presented improves over greedy
techniques, albeit at the price of higher computations. The symmetries are
quickly found, the anisotropy is automatically detected and adapted to, and
the regions line up well with the features. The L2,1 shape metric turns out to
capture more subtle details than the common L2 metric, especially for me-
chanical parts. Another added value is its generality, as other error metrics
and proxies can be put to work within the algorithm. The numerics in the
algorithm are based on integration in the sense that the metric is computed
in closed-form over the triangles of each region. This provides better inde-
pendence to the input tessellation, albeit only for the fitting phase. Finally,
the algorithm is amenable to the generation of polygon meshes with nearly
planar polygons, a desirable feature for some applications.

2.3.4.2 Weaknesses

Being based on iterative optimization, our technique cannot compete with
greedy methods such as [GH98] in terms of computational time: our algo-
rithm can be ten to twenty times slower. One important weakness lies within
the partitioning phase. The error-driven priority queue used for region grow-
ing is noise sensitive and depends on the input tessellation, contrary to the
fitting phase. Devising a robust partitioning phase, resilient to noise and
input tessellation, would be be relevant for measurement data. At the algo-
rithmic level, the final mesh generation technique does not guarantee absence
of self-intersections which can happen, e.g., for two close surface sheets.

2.3.4.3 Follow-ups

The simplicity of the proposed approach has inspired several follow-ups2.
In [WK05] our approach is taken a step further by allowing for proxies other

2the paper [CSAD04] is cited 187 times according to Google Scholar.
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than simple planes, such as spheres, cylinders, and rolling-ball blends. Apart
from requiring fewer primitives to achieve a given fitting approximation
quality, this method can also recover the semantic structure of an input
model to some extend. In [JKS05] a similar idea is used to decompose the
input mesh into nearly developable segments. Another extension of this
algorithm to handle general quadric proxies has been elaborated by Yan et
al. [YLW06]. Faithful approximations are obtained using fewer proxies than
when using planar or CAD proxies, see Figure 2.24. Canonical proxies such
as cylinders and spheres can be identified and even favored within the same
framework.

Figure 2.24: Stanford bunny approximated by 28 quadric proxies. Figure taken
from [YLW06].

Another extension to shape approximation with spheres has been pro-
posed [WZS+06], with a variety of error metrics including total outside
volume, shadowing fidelity, and proximity measurement. Finally, an exten-
sion to symmetry preserving remeshing has been proposed by Podolak et al.
[PGR07], where several instances of symmetric proxies are instantiated for
the optimization. The output meshes are shown to preserve and enhance
the symmetries of the input meshes.

2.3.4.4 Future Work

Future work include the investigation of a Sobolev metric (H1), a linear com-
bination of L2 and L2,1 energies, that would require a low-order polynomial
root solver to compute the best fit. Recent advances in improved initial-
izations for k-means clustering [AV07] could also be used to ameliorate the
practical convergence rate and energy minimum of the algorithm.

Our initial reason for not using higher order proxies such as quadrics was
the lack of closed form solutions for both fitting and partitioning phases. The
follow up by Yan et al. [YLW06] shows that even approximations can provide
satisfactory results. A collaboration with experts on low degree algebraic
objects would be required to push these ideas further [Pet07]. Another
issue in fitting general quadrics is the generation of a final representation,



62 CHAPTER 2. CONTRIBUTIONS

especially in the presence of intricate boundaries between regions: should
we try meshing the regions? or fit parametric surface patches instead?

Finally, one important problem for industrial applications is the simpli-
fication of complex geometries with two guarantees: remaining intersection-
free and within a tolerance volume. Although several approaches address the
problem of volume tolerance [BBVK04, BF05], there is a surprisingly few
number of techniques that address the intersection free guarantee [GBK03].
In our approach we are using planes first, before assembling surface meshes
in a perfectible manner; switching to a fully volumetric approach with vol-
umetric proxies may be relevant to satisfy both guarantees simultaneously.
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2.4 Quadrangle Surface Tiling

In this section we focus on quadrangle surface tiling of triangle surface
meshes. Partitioning a surface into quadrilateral regions is a common re-
quirement in computer graphics, computer aided geometric design and re-
verse engineering. Such quad tilings are amenable to a variety of subsequent
applications due to their tensor-product nature, such as B-spline fitting, fi-
nite elements, texture atlasing, and generation of modulation maps. Auto-
matically converting a triangulated surface (issued from a 3D scanner for
instance) into a quad mesh is, however, challenging. Stringent topologi-
cal conditions make quadrangle tiling a rather complex and global problem
[Ede00]. Application-dependent meshing requirements such as edge orthog-
onality, orientation and alignment of the elements with the geometry, sizing,
and mesh regularity add further hurdles.

2.4.1 Related Work

Comprehensive reviews [ACSD+03, BMRJ04, AUGA07, DKG05], hint at a
need for algorithms offering more control on the mesh regularity, as well
as on the shape, size, direction and alignment of the mesh elements with
geometric or semantic features.

One technique proposes to use holomorphic discrete 1-forms [GY03] to
generate fully regular quadrilateral meshes (except along a seam). Unfor-
tunately, the holomorphic requirement leaves little control over the local
alignment of the mesh elements and creates potentially large area distor-
tion, even after optimization [JWYG04]. Another technique introduces a
radically different approach to conformal parameterization with arbitrary
cone singularities [KSS06]: distortion is concentrated at carefully chosen
places so as to allow better, global control of area distortion and hence a
good control over mesh sizing.

An approach proposed in [ACSD+03, MK04] consists in tracing cur-
vature lines, thereby enforcing proper alignment of the mesh edges while
creating quad-dominant tilings. The placement of these lines are based on
local decisions, resulting in “hanging” lines all over the mesh: T-junctions
and poor regularity of the mesh ensue. When targeting higher mesh regu-
larity, a better approach defines these lines as isolevels and steepest descents
of a global potential [DKG05]. As a result of this type of contouring, the
lines are either closed curves (so-called isoparametric flow lines), or stream-
lines (gradient flow lines) obtained by numerical integration, leading to less
T-junctions and a better regularity of the final quad mesh. This method
also allows some design control through user-defined selection of a number
of local extrema of the potential (be they points, or even polylines). How-
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ever, each local extremum corresponds to an index 1 in the gradient field of
the potential; because of the Hopf-Poincaré index theorem, this means that
a number of other singularities (most likely saddles, of index −1) will be
consequently created too, as the indices of all singularities of the vector field
must sum up to the Euler characteristic of the surface. Therefore, design
control does not scale nicely as each additional constraint increases shape
distortion of tiles all over the rest of the surface.

Ray et al. [RLL+06] introduces another contouring technique perform-
ing a non-linear optimization of periodic parameters to best align directions
along two given orthogonal vector fields, offering more freedom on the type of
singularities than any previous approach. In particular, indices of type 1/2
and 1/4 are allowed, providing a satisfactory balance between area distor-
tion and alignment control. In addition, a curl-correction step modulating
the norm of the vector field is devised to minimize the number of point
singularities. A more recent work focuses on the design of direction fields
[RVAL09].

Finally, a Morse-theoretic approach [DBG+06] has also been devised,
but once again, providing little control over design and resulting in singular-
ities at conspicuous places and elements of arbitrary shapes. Nevertheless
this approach was recently improved [HZM+08] so as to control direction,
alignment as well as sizing.

2.4.2 Approach

The use of isolines as a basis for surface tiling is appealing from a practical
point of view: it naturally privileges regularity of the resulting quad mesh,
and is numerically more robust than the use of streamlines as it alleviates
the need for numerical integration. Isovalues can eventually be changed in
order to adapt spacing between isolines. Therefore, we propose to design an
algorithm which computes two piecewise continuous and discretely harmonic
scalar functions, so that their respective contouring provides the final tiling
with no T-junctions (see Figure 2.25).

Based on discrete differential forms, our approach provides control not
only on the position of singularities and their (possibly fractional) indices,
but also on the way these singularities are interconnected in the final tiling.
This information on the topological structure of the output mesh is encoded
in what we call a singularity graph, specified by the user. This singularity
graph is also a way to control directions for the tiles depending on their
locations. The core of our algorithm relies on extensions of the well-known
cotangent formula that enriches the space of discrete harmonic functions:
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Figure 2.25: Quadrangle surface tiling. Left: two harmonic scalar functions
and their gradient depicted with arrows. Right: iso-contouring lines of the scalar
functions and resulting quadrangle tiling with direction control.

we thus stay within the framework of linear algebra, avoiding non-linear
minimization required in [RLL+06, KSS06] that can impair scalability.

2.4.2.1 Local Quadrangulation as Contouring

We start by using a reverse argument. Suppose that we already have a small
surface patch composed of well-shaped quadrangles. From this tiling, we can
first set a local (u, v) coordinate system (with directions eu and ev) of the
surface to be aligned with the edges of the tiles. We can then define a metric
〈 , 〉 so that 〈eu, ev〉=0 everywhere, and so that lengths of each quad edge
are unit. Thus, the mesh is locally defined by integer u and v isovalues. In
addition the gradients of the two parameters ∇u and ∇v are orthogonal in
the prescribed metric. The way we have defined the metric also guarantees
that we must have the magnitudes of the gradients equal to each other. The
two conditions together are known as the Cauchy-Riemann equations for
the parameters u and v of this patch:

〈∇u,∇v〉 = 0 and 〈∇u,∇u〉 = 〈∇v,∇v〉.

These two equations can be formulated using the differentials of u and v,
as well as the Hodge star induced by our metric; the two 0-forms u and v
satisfy:

du = ?dv

Notice that we can deduce (by applying d and d? to the previous equation)
that d ? dv = d ? du = 0, hence du and dv are both co-closed. Since
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d ◦ d = 0, both are also closed. Therefore, du and dv must be harmonic.
In more traditional notation, both gradient fields are curl- and divergence-
free. Another consequence of the co-closedness of the two differentials is
that both u and v are also harmonic, i.e., their Laplacian vanishes. These
properties explain the popularity of harmonic functions in Euclidean space,
where orthogonality means π/2 angles, hence leading to well-shaped quads
[DKG05, GY03].

2.4.2.2 Towards Global Contouring

To extend the basic principle explained in the previous section from a local
to a global quadrangle tiling, we must overcome a number of issues.

Necessity of discontinuities First, globally continuous harmonic scalar
potentials are too restrictive for our purposes. For the case of a genus-0
closed manifold, there are no globally continuous harmonic potentials other
than the constant ones, of little worth. A way to deal with this problem is
to add point singularities, which amounts to piercing point holes (poles) at
various locations on the surface. Let us begin with a trivial topology and
pierce a sphere once at the top and once at the bottom; what remains is a
continuous harmonic potential u, with extrema at the two poles, thus with
flow lines defining longitudes (see Figure 2.26).

Figure 2.26: Two pole singularities on a sphere. Left: two harmonic functions u
and v. u is continuous. v is discontinuous with a constant jump along the singularity
line joining the poles. Middle: derivatives du and dv depicted with arrow textures.
Both du and du are continuous. du goes from the south to the north pole while dv
winds around the poles. Right: tiling obtained through contouring u and v with
integer iso-contouring lines. The discontinuity is visible.

However, the corresponding v potential cannot be globally continuous
since its derivative dv has closed flow lines, namely latitudes. Therefore, the
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only hope to extend the contouring approach is to allow the potentials to be
piecewise continuous, i.e., only continuous inside non-overlapping patches of
the manifold akin to the notion of charts [YZ04]. We may find a potential v
that is continuous everywhere except on a line joining the two poles, along
which the jump of the v-value is constant due to the harmonicity property.
In this case v is discontinuous while dv is not. Quadrangle tiling through
integer-contouring requires that the jump (or equivalently the circulation
around the poles) is an integer number. This requirement is easily matched
by scaling the whole one-form dv so that the jump is rounded to its nearest
integer. This way, the jump is invisible when contouring, see Figure 2.27.

Figure 2.27: Seamless tiling with two poles. Top left: harmonic function u with
two pole singularities. Top middle and right: iso-contouring u and v. v is obtained
by integrating a scaled version of dv so that the jump of v along a line joining the
two poles is integer (not shown). Bottom left: tiling through iso-contouring of u
and v. The discontinuity is invisible. Bottom right: u− v parameterization of the
input mesh cut open at the poles and along the jump line. The red lines delineate
the unit parameter square.

A pole leads to high distortion in the final tiling, as many contouring
lines converge to it. One way to alleviate this issue is to stretch it into a
line, so as to redirect many contouring lines across the line instead of to
a single pole. In essence such a line can be seen as a pole (singularity of
index one) turned into two singularities of index one half, so-called wedges.
The example depicted in Figure 2.28 illustrates how the iso-lines of u are
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constrained to be tangential to the singularity lines. Although this provides
a nice way to control alignment of edges in the final tiling, the iso-lines of
v are discontinuous across the lines as such a singularity is equivalent to
piercing a hole.

Figure 2.28: Line singularity. Two line are defined, along which u is constrained
to 0 and 1 respectively. Left: u, continuous. Middle: iso-contouring lines of u.
Right: iso-contouring lines of v, discontinuous across the lines. This translates into
T-junctions in the final tiling.

For arbitrary topology and number of pole singularities the complication
is substantial, as there is a whole basis of harmonic forms (one form per co-
homology class). We refer to [TACSD06](Appendix) for details about the
computation of such basis, and how we can apply the same integer-rounding
idea as described above to avoid T-junctions, for an arbitrary number of sin-
gularities. When put to work in the design of surface tilings, such continuous
harmonic 1-forms are not ideal. In addition to high distortion (especially
around poles), they inevitably generates saddles when the total index of the
singularities is higher than the Euler characteristic of the surface. Figure
2.29 depicts four poles place on a sphere, and six lines placed on the man-
nequin head model. To be able to generate fractional singularities, one needs
to allow for certain types of discontinuities of 1-forms.

Compatibility conditions We now assume that the 0-forms (the po-
tentials u and v) can contain singularities, i.e., jumps along certain edges.
Similarly, their differentials (the 1-forms du and dv, akin to the gradients of
each potential) may have singularities at the same locations, i.e., the vector
fields representing these 1-forms may jump across patch boundaries. We will
denote such a boundary between two continuous patches a singularity line.
We will set simple compatibility conditions on the jumps of potentials and
of their differentials that will guarantee that a global contouring of u and v
results in a proper tiling. More precisely, linear constraints of continuity on
the two potentials can ensure continuity of the isolines: if we trace all isolines
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Figure 2.29: Undesirable Singularities. Left: more than two poles (each of index
1) on a genus-0 surface inevitably create singularities with negative index (saddles),
creating large and distorted n-gons. Right: six lines placed on a genus-0 surface to
better control alignment also create saddles.

with integer values, then the necessary and sufficient compatibility condi-
tions are that the jumps of the potentials should be integer. On the other
hand, the smoothness of the isolines will be ensured by a (tweaked, yet still
linear) condition of harmonicity of the two potentials at patch boundaries.
This last condition is, in fact, a continuity condition for 1-forms across the
singularity line. We thus call this condition singular continuity to convey
the notion of smoothness modulo the presence of a singularity.

Singular Continuity of Discrete Forms As mentioned above, obtain-
ing a quad-dominant tiling on a disk-like patch through contouring two
0-forms u and v is rather easy. However, enforcing a proper tiling through-
out the surface requires strong compatibility conditions at each singular
line. Fortunately, only three different types of singular continuity across
two neighboring patches can happen (see Figure 2.30): regular (when both
u and v directions individually match between the two patches), reverse
(when both u and v directions change their orientations across the bound-
ary), and switch (when the u and v directions are switched on the shared
boundary). Only then can we get a globally consistent tiling of the surface.
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2.4.2.3 Enforcing Singular Continuity of Forms

We now go over the various cases of continuity. As we use two linear equa-
tions per vertex, we describe the different vertex types that we can encounter
on a mesh: a vertex can be strictly within a patch, or on a particular type
of singularity line.

Free Vertices When a vertex i is within a patch, i.e., not on any singu-
larity line, we simply wish to enforce harmonicity of both 0-forms u and v.
Consequently, the common harmonicity condition [PP93] is imposed on this
vertex, yielding: ∑

j∈N (i)

wij

(
ui − uj
vi − vj

)
= 0

where the index j goes through all the immediate neighboring vertices of i,
uk (resp., vk) represents the value of u (resp., v) at vertex indexed k. For
the Euclidean metric, the weights wij are the well-known sum of cotangents
of angles opposite to edge ij.

Figure 2.30: Singular continuity. Three different types of continuity through a
singularity line: regular, opposite and switch. Blue/red arrows are along isolines of
u/v.

Vertices with Regular Continuity When a vertex is on a regular sin-
gularity line between two patches, we assume that the fields u and v are
smooth across the patch boundary modulo a constant offset. That is, if we
call u− (resp., v−) the potential u of this vertex using its value from one of
the patches, and u+ (resp., v+) the value at the same vertex but considering
its value from the other patch, we wish to have:

u− − u+ = P1 v− − v+ = P2, (2.3)

where P1 and P2 are two arbitrary integer constants associated with this
particular patch boundary (we will discuss how to choose their values ad-
equately later on). Obviously, enforcing this equality modulo offset will
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guarantee that integer isolines of u and v do match up at the boundary.
Notice also that it corresponds to guaranteeing continuity of the 1-forms
du and dv, as d(u+ − u−) = du+ − du− = 0. Finally,
to ensure smoothness of these isolines, we enforce har-
monicity of the two potentials taking the jump into
account (see inset for conventions used):

∑
j∈N−(i)

wij

(
u−i − uj
v−i − vj

)
+
∑

j∈N+(i)

wij

(
u+
i − uj
v+
i − vj

)
= 0

The above conditions can be rewritten using only one
value of u and one value of v for the boundary vertex i, therefore alleviating
the need for storing two different values, one on each side of the singularity
line. Indeed, if we assume ui ≡ u−i , and thanks to Eq. (2.3):

∑
j∈N (i)

wij

(
ui − uj
vi − vj

)
=
∑

j∈N+(i)

wij

(
P1

P2

)
.

Notice that this equation is a variant of the former case, modifying the right
hand side to impose the correct conditions on each side of the boundary.

Vertices with Reverse Continuity This time, we want the 0-forms u
and v to change orientation when crossing the patch boundary. That is, we
wish to have du+ = −du−, and dv+ = −dv−. These constraints are enforced
by defining:

u+ + u− = Q1 v+ + v− = Q2,

where Q1 and Q2 are two integer constants associated to the boundary on
which the vertex lies. We now enforce harmonicity of the two potentials at
i modulo the reversal:∑

j∈N−(i)

wij

(
u−i − uj
v−i − vj

)
+
∑

j∈N+(i)

wij

(
uj − u+

i

vj − v+
i

)
= 0

Again, one notices that a simpler expression using only one value for vertex
i and a non-zero right-hand side, is:

∑
j∈N−(i)

wij

(
ui − uj
vi − vj

)
+
∑

j∈N+(i)

wij

(
ui + uj
vi + vj

)
=
∑

j∈N+(i)

wij

(
Q1

Q2

)
.

This last expression preserves the symmetric nature of the Laplacian matrix.
This is a practical feature as state-of-the-art linear solvers scale well on
symmetric linear systems [TCR05, BBK05].
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Vertices with Switch Continuity Finally, for vertices on a singularity
line on which we want u and v to switch, we simply enforce that du+ = dv−

and dv+ = −du−. Notice the extra minus sign, because switching u and v
reverses one of the two directions. Again, these conditions are satisfied if:

v− − u+ = R1 v+ + u− = R2,

Finally, to ensure smoothness of these isolines, we enforce harmonicity of
both potentials given this discontinuity through:∑

j∈N−(i)

wij

(
u−i − uj
v−i − vj

)
+
∑

j∈N+(i)

wij

(
vj − v+

i

u+
i − uj

)
= 0

The resulting symmetric expression, using only one value for the vertex i
and a non-zero right-hand side, is now:∑

j∈N−(i)

wij

(
ui − uj
vi − vj

)
+
∑

j∈N+(i)

wij

(
ui + vj
vi − uj

)
=
∑

j∈N+(i)

wij

(
R2

R1

)
.

Finally there is an analogous formula for what we could call reverse-switch
continuity vertices, when we switch u and −v.

2.4.2.4 Properties of Singular Continuity

The four cases discussed above are enough to provide a rich repertoire of
singularities. In particular, the previously mentioned case of a genus-0 object
with two poles can be handled quite simply by linking the two poles with
a singularity line: this “virtual” cut on the sphere creates one single patch
touching itself along a regular continuity boundary. Now, the two potentials
u and v can be computed per vertex by solving a modified Laplace equation,
with vertices along the singularity line having different coefficients and non-
zero right-hand sides. One remarkable property of the previous equations
is that the exact position of the various boundaries between patches does
not affect the final result: any boundary line in the same homology class as
the original one will result in the same quad mesh. Although the 0-forms
will be different (since their jumps will be located at distinct locations),
their contouring will stay the same: only the local sign of their gradients
will be affected in the reverse continuity case, while the gradient of u will
become the gradient of v in the switch continuity case. Therefore, the only
real parameters are the set of constants, chosen for each boundary (that
we called P1, P2, Q1, Q2, R1, and R2 previously). This is quite convenient
as no special effort needs to be spent on getting smooth singularity lines
(see Figure 2.31, right). In other words, only the topology of the patches is
needed.
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Figure 2.31: Line Singularity. Top line, from left to right: Piecewise-continuous
harmonic potentials u and v (color-shaded); Red and blue arrows depict the direc-
tion of the potential gradients; a checkerboard is mapped onto the ellipsoid using
(u, v) as texture coordinates. Bottom line: when the singularity line is wiggly, the
two potential functions change, but their isolines remain identical to the previous
case.

Other Typical Singularities Other singularities can be achieved by de-
signing a proper choice of boundary continuity between various patches. For
instance, a trisector singularity is obtained by assembling three concurrent
lines, all of continuity type reverse (see Figure 2.32).

A square singularity, i.e., four index-1/4 poles forming a square-shaped
index-1 singularity, is assembled from four lines in the shape of a square, with
type regular, switch, reverse, and switch in cyclic order (see Figure 2.33).
Notice that these cases create little distortion and by design no T-junctions.
In our approach a singularity graph is the main backbone behind the final
quadrangle tiling design.

2.4.2.5 Design

Allowing quad mesh design flexibility requires the use of a potentially large
set of patches: the more patches we define, the better we can control the
local alignment of edges as well as the local area distortion. Thus, we pro-
pose a user-guided way to create this patch layout through the definition
of a singularity graph, representing a topological template linking the sin-
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Figure 2.32: A trisector singularity is obtained by assembling line singularities of
type regular and reverse.

gularities. We call a singularity graph a meta-mesh whose meta-faces are
non-overlapping patches of the original mesh, and whose meta-edges are
assigned one of the singularity continuity conditions described above. The
vertices of the singularity graph (called meta-vertices to avoid ambiguity) are
a subset of the vertices of the input triangle mesh. They should be thought
of as salient points of the manifold, as they will live at the intersection of
several regular patches in the final quadrangle tiling. Connectivity between
meta-vertices define the meta-edges of the singularity graph. Each of these
meta-edges are made out of two half-edges, oppositely oriented. Finally,
every cycle of half meta-edges defines a (meta-)face of the singular graph.
Such a face corresponds to a patch in which our 0-forms will be smooth
and continuous. In this section, we will call F (resp., E) the number of
meta-faces (resp., meta-edges).

Determining Types of Singular Continuity Given a singular graph,
we must assign to each meta-edge a particular singular continuity type.
These assignments can be automatically obtained if we first tag each meta-
halfedge as u, −u, v, or −v according to their alignment with increasing
or decreasing directions of the parameter. Indeed, we would ideally like to
map each meta-face of the graph to an orthogonal polygon in the parameter



2.4. QUADRANGLE SURFACE TILING 75

Figure 2.33: A square singularity is obtained by assembling line singularities of
type regular, reverse and switch.

domain to guarantee the existence of a regular quadrangulation inside this
patch. That is, the face should conceptually look like a simple polygon in the
(u, v) parameter plane with only angles multiple of π/2
(see inset)—in fact, the choice of which edge is aligned
with u vs. v does not affect the final quad mesh, so
this polygon can be arbitrarily rotated by multiples of
π/2 too. This condition imposes a constraint on the
half-edge assignments, and we will provide an auto-
matic procedure to enforce it on each face. After such
an assignment is provided, the corresponding singular
continuity types for all meta-edges becomes simple, as,
for each pair of half-edge assignments, correspond the following continuity
types:

• Regular: {u,−u}, {−u, u}, {v,−v}, {−v, v};

• Reverse: {u, u}, {v, v}, {−u,−u}, {−v,−v};

• Switch: {u, v}, {v,−u}, {−u,−v}, {−v, u}, and {−u, v}, {−v,−u},
{u,−v}, {v,−u}.
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Designing a Tiling Designing the final quadrangle tiling amounts to de-
ciding on an assignment of (u, v) values at each corner of every meta-face.
These are, indeed, the only constraints that need to be fixed for the modified
Laplace equation to be solvable: once these meta-parameters are known, all
the constants defined per patch-boundary in the continuity equations are
determined. Thus, we begin by computing these values by solving a small
meta-system. We will then inject the resulting meta-parameters into the
system of (modified) Laplace equations for the final solve.

The constraints on these parameters depend only on the differences of
u and v values on each meta-edge. Let Du (resp., Dv) be such a differ-
ence in u (resp., v) value over a meta-edge. In each meta-face, the sum
of all the Du’s of half-edges tagged as u must equal the sum of the Du’s
for those tagged as −u: the meta-face is a closed polygon in parameter
space. The same argument applies for the sum of Dv of v edges and that
of −v edges (in the language of differential forms, this states that du and
dv must be closed on the meta-mesh too). Similarly, as we wish to have
isolines stitching properly across meta-faces, we must have equal differences
for each half-edge of a meta-edge. Thus, these differences are E coefficients
that need to be set, and there are 2F linear constraints on them (one for u
and one for v per meta-face). We now set up in a small linear system these
2F constraint equations for E variables. However, the constraints can (and
will often) be redundant. We thus use Gauss elimination to find the inde-
pendent equations. This process is extremely fast since the graph contains
typically three orders of magnitude fewer edges than the original mesh, and
all the coefficients in this meta linear system are either 1 or -1 (since Du (or
Dv) is computed as the simple difference between two parameter values).
Additionally, notice that the 2F constraint equations sum to zero: we can
thus guarantee that there will be at least E-2F+1 number of independent
variables. Since a meta-face is homeomorphic to an orthogonal polygon,
each meta-face has at least 4 edges. Therefore, E ≥ 2F, and there is always
at least one degree of freedom. The user is requested to enter values based
on the number of isolines desired on those meta-edges (this is, indeed the
geometric meaning of Du).

Once the meta-parameters are set, we can assemble the global linear
system for the 0-forms u and v of the original mesh. The system is created
by assembling two linear equations per vertex vi (depending if it is free or
on a line singularity), and none for the vertices on corners of meta-faces,
as they are already determined by the meta-parameters. Whenever one
of these linear equations involves a meta-face corner, its value (i.e., one of
the meta-parameters) is constrained and therefore substituted and moved
to the right-hand side of the system. The matrix of this system is sparse
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and symmetric. The final mesh is extracted through integer contouring: we
walk in the triangulation from an integer intersection of u and v to the next.
Note that we may cross a line singularity; in that case, we account for the
singularity type to be able to resume the walk on the other side and find
the next intersection.

2.4.3 Results

Figure 2.34 illustrates how the user can finely control the alignment of the
mesh with features or semantically relevant directions. Note how a quarter-
pole is obtained by a regular line and a switch line meeting at a meta-vertex
of the singularity graph.

Figure 2.34: Stanford Bunny. Left: Singularity graph and quadrangle tiling.
Middle: detail of a half-pole. Right: detail of a quarter-pole (using a switch and a
regular line incident to the singularity). The half-pole becomes a degree-2 vertex,
incident to two quads, with two nearly collinear edges. The degree-2 vertex can
optionally be removed by merging its two incident quads into one.

Figure 2.35 illustrates the robustness of the results to an unprocessed
input mesh, here very irregular and non-uniform.

Models of non-trivial topology are handled by designing singularity graphs
whose edges cover the homology generators. Figure 2.36 depicts a genus-1
cup model with a small handle. The number of isolines per meta-edge of the
singularity is chosen so as to generate a nearly uniform tiling. Figure 2.37
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Figure 2.35: Femur. Top: input mesh and singularity graph, u and v. Note the
irregularity and non-uniformity of the mesh. Bottom: du and dv depicted with
texture arrows, isocontouring lines and final quadrangle tiling.

depicts a genus-2 model. Note that although a saddle is present the final
tiling is purely made out of quadrangles.

While the presence of saddles is sometimes unavoidable on certain man-
ifold (as stated by the Hopf-Poincaré theorem), the user can minimize their
distortion by altering the singularity graph: adding a meta-face over a sad-
dle will split it into four lower-index saddles, reducing the effective distortion
quite significantly at the price of three additional irregular vertices (see Fig-
ure 2.38).

Boundaries are handled as follows. Once the assignments of (u, v) at
each corner of the meta-faces are done, we go through the edges tagged as
boundary between two such corners, and force the boundary values to be
linearly interpolating the two corner values. This forces the isovalue of the
potentials to follow the boundaries (see Figures 2.39 and 2.40).
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Figure 2.36: Genus-1 model. Left: input triangle surface mesh with singularity
graph covering the homology generators, and the final quadrangle tiling. Right,
top: u, v. Right, middle: du and dv. Right: bottom: iso-contouring lines, and
du− dv.

Figure 2.37: Genus-2 model: a saddle (imposed by Hopf-Poincaré theorem) is
present on a meta-vertex. The final mesh is still pure quad. The singularity graph
is defined by homology generators.
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Figure 2.38: Splitting a saddle. A saddle (top) is turned into four lower-index
saddles by altering the singularity graph.
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Figure 2.39: Scanned Hand. From a triangulated surface and a set of line singu-
larities assembled into a singularity graph, our technique solves a linear, modified
Laplace equation to get two potentials (top); The pair of 1-forms associated to the
potential differentials is specified as either regular, reverse or switch across singular-
ity lines (center). An isocontouring of these potentials results in a pure-quad mesh
with non-integer index singularities capturing the geometry (see close-up, right),
and no T-junction (bottom).
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Figure 2.40: Beetle. A set of iso-contouring lines are constrained to be parallel
to the boundary.
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2.4.4 Summary

The approach presented above computes two piecewise smooth harmonic
scalar functions, whose isolines tile the input surface into quadrangles, with-
out any T-junctions. The main contribution is an extension of the discrete
Laplace operator which encompasses several types of line singularities. The
resulting two discrete differential 1-forms are either regular, opposite or
switched along the singularity graph edges. We show that this modifica-
tion guarantees the continuity of isolines across singularity lines, while the
locations of the isolines themselves depend on the global solution to the
modified Laplace equation over the whole surface. Design flexibility is pro-
vided through specification of the type of each line singularity of the graph,
as well as the number of isolines along independent meta-edges to control
quad sizes.

2.4.4.1 Strengths

The main strengths of the method include a good control over orientation
through line singularities, and a control over sizing through the number of
isolines along independent meta-edges. In addition, the method is almost
insensitive to the input tessellation due to its global, variational nature,
as Figure 2.35 illustrates. Another appealing feature is the independence
of iso-contouring lines to the geometry of singularity lines (meta-edges), as
Figure 2.31 shows. This allows the user to focus only on the topology of the
lines as well as on the placement of meta-vertices. Finally, the simplicity
and scalability of computations (a linear solve followed by iso-contouring)
is also a desirable feature. In our experiments we could solve up to a 2M
triangle mesh on a 32bit computer with the Cholesky factorization from the
TAUCS library.

2.4.4.2 Weaknesses

The design part of the algorithm is interactive and not automatic. This is
certainly the main weakness of this approach. Unlike previous work [GY03],
we did not require our pair of 1-forms du and dv to be holomorphic (i.e., re-
lated through the Hodge star) to allow for more design flexibility. Therefore,
an unreasonable choice of meta-parameters will result in regions where the
quads are grossly non orthogonal. One way to palliate this issue is to find
the meta-parameters so that the pair (du, dv) minimizes (in the L2 sense)
the 1-form du − ?dv but we have not pushed this idea further. Also, the
iso-contouring lines may not be smooth in the vicinity of a meta-vertex, as
the values of the functions u and v are constrained there, contrary to along
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a singularity line where only the direction and norm of (du, dv) are con-
strained to match (see Figure 2.41). In some cases this can even translate
into, e.g., a trisector (of index minus one half) splitting into a wedge (index
one half) and saddle (index minus one). In our experiments relocating the
meta-vertices often helps, but we have not devised a satisfactory automatic
manner to perform such relocation. Finally, if the user decides to signifi-
cantly override the values on meta-vertices automatically prescribed by our
technique, the resulting meshes may have folds and significant stretch.

Figure 2.41: Cup. The iso-contouring lines may be not smooth in the vicinity of
meta-vertices.

2.4.4.3 Follow-ups

Recent related work include the QuadCover algorithm [KNP07] which com-
putes frame fields based on branched covering spaces on a surface. In this
approach branch points are singular points with fractional indices, and the
equivalent of the singularity graph is a tree that goes through all singular
points. The added value is the alignment of parameter lines with given
vector fields.

2.4.4.4 Future Work

As future work we intend to further investigate approaches which tile a
surface through contouring scalar functions, be they harmonic or with other
variational properties. The main reason for pursuing with such approach
is the robustness of the contouring process, superior to most other greedy
approaches in our belief.

One goal that we wish to pursue is to elaborate upon a variational for-
mulation on top of our approach. The key idea is to consider the input to a
variational formulation as a set of variables (both discrete and continuous),
and to optimize these variables in order to optimize the real final objective.
One example would be to consider as final objective an approximation er-
ror between the bilinear interpolation (or more involved NURBS) over the
quadrangle tiling defined by a set of singularity lines and their associated
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parameters. The optimization algorithm could refine the set of lines, relo-
cate them, and optimized their associated parameters. We wish in essence
to consider the singularity lines and parameters as generator of a unique
quadrangle tiling, similar in spirit to a set of vertices and edges defining a
unique 2D constrained Delaunay triangulation, except that the construction
algorithm involves more numerical tools. Similar to what has been done for
Delaunay refinement and mesh optimization, we wish to elaborate upon a
set of local operators, driven by the end goal of the original problem. The
ultimate surface tiling algorithm would simply take as input parameter an
approximation tolerance and an interpolation scheme over the tiles (e.g.,
bilinear), and would minimize the number of tiles.

Another possible extension consists in changing the Hodge star ?. Al-
tering the metric locally amounts to change the coefficient wij used in the
Laplacian operator. Theoretically speaking, the optimal quad shape for a
best surface approximation derives from the curvature tensor in the asymp-
totic limit, but this asymptotic property may not be appropriate in the
context of mesh coarsening and remeshing.

A recent non-linear approach [SSP08] provides strong theoretical guar-
antees on the resulting maps, based on a precise notion of discrete conformal
equivalence for triangle meshes. As future work we wish to understand how
these concepts can be used for surface tiling.

Finally, the last and most challenging tiling problem we intend to tackle
is the automatic hexahedral tiling of 3D domains bounded by piecewise
smooth surfaces. We intend to use again applied geometry tools (harmonic
forms, discrete differential operators) onto an initial 3D triangulation of
the input domain. The challenge is clearly not a simple extension of the
presented approach with three harmonic functions.
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2.5 Tetrahedron Mesh Generation

In this section we focus on isotropic tetrahedron mesh generation for 3D
domains. Meshing a domain consists in defining a concise set of simple
elements whose non-overlapping union best describes the domain and its
boundaries, while satisfying a series of criteria on element shapes and sizes.
Most ubiquitous in computer animation and computational sciences is the
need for unstructured isotropic tetrahedral meshes: these versatile geomet-
ric representations are used in finite element and finite volume simulations
of physical phenomena as varied as material deformation, heat transfer, and
electromagnetic effects. As the accuracy and stability of such computa-
tional endeavors heavily depend on the shape of the worst element [She02a],
mesh element quality is a priority when conceiving a mesh generation al-
gorithm. In this paper we introduce a robust, hybrid meshing algorithm
to generate high-quality, graded isotropic tetrahedron meshes. Delaunay
refinements and variational optimizations are interleaved in order to pro-
duce a discretization of the domain that meets a series of desired geometric
and topological criteria, while offering smooth gradation of the resulting
well-shaped tetrahedra.

2.5.1 Related Work

Most previous work aimed at generating isotropic tetrahedral meshes were
designed around one (or more) of four basic concepts: packing, regular lat-
tices, refinement, and optimization. While packing methods (including ad-
vancing front approaches) were initially favored, their relatively high com-
putational complexity and lack of theoretical guarantees have spawned the
investigation of alternative methods. Regular lattices (be they red-green tes-
sellations or octrees) have, recently, been at the core of some of the fastest
meshing techniques, as they provide a blazingly fast approach to mesh most
of the domain. While smooth surface boundaries can also be efficiently
handled with guaranteed minimum dihedral angles [LS07], the regularity of
the mesh resulting from these methods (i.e., the presence of preferred edge
directions) induces severe aliasing effects in simulation.

Techniques combining Delaunay triangulation and refinement have re-
ceived special attention due to their versatility and theoretical foundations.
They have been used initially in 2D [Che89], then in 3D for polyhedral do-
mains [NCC02], for smooth surfaces [Che93], for 3D domains bounded by
smooth surfaces [ORY05, BOG02] and for 3D domains bounded by piece-
wise smooth surfaces [RY07, CDL07, CDR07]. They proceed by refining and
filtering a 3D triangulation until a set of user-specified criteria is satisfied.
Refining is achieved through iterative insertion of Steiner points, either in-
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side the domain or on the domain boundary, to meet the desired criteria. A
filtering process is also iteratively applied to cull simplices so that the trian-
gulation restricted to the input domain tessellates the domain and that the
boundary of this restricted triangulation approximates the domain bound-
ary. This procedure becomes more delicate for piecewise-smooth surface
inputs (a more general class of shape where the boundary is a collection of
smooth patches meeting at potentially sharp creases), as sharp creases re-
quire additional care. Non-smooth regions subtending small angles add yet
another level of difficulty for Delaunay refinement. Refinement techniques
are usually judged on the quality of the resulting mesh elements and the
scarcity of Steiner point insertion.

Figure 2.42: Top: Mesh generated by Delaunay refinement (shape and bound-
ary approximation criteria activated). The mesh contains 5499 vertices, notice the
cluster in the middle of the armhole. Right image depicts tetrahedra with dihedral
angles lower than 15 degrees (all angles are in [0.45-179.1]). Bottom: Mesh gen-
erated by interleaving batches of Delaunay refinement and optimization so as to
satisfy the same criteria. The mesh contains 3701 vertices and all dihedral angles
are in [15.01-156.28]. Distribution of dihedral angles are shown on the left.

The quest for ever better quality meshes has also stimulated significant
advancements in mesh optimization, through local vertex relocation to op-
timize a specific notion of mesh quality [ABE99], topological operations
[CDE+00], or both [FOG97]. Further improvement of the mesh quality
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can be achieved by inserting additional vertices, and/or incorporating a
rollback mechanism to undo previous optimizations in order to guarantee a
monotonous increase in mesh quality [KS07]. Among the large body of work
in mesh optimization the Optimal Delaunay Triangulation approach (ODT
for short) stands out, as it casts both geometric and topological mesh im-
provement as a single, unified functional optimization [CX04, Che04], that
tries to minimize in IR4 the volume between a paraboloid and the linear inter-
polation of the mesh vertices lifted onto the paraboloid. This approximation-
theoretical method to obtain isotropic meshes was adapted for tetrahedral
meshing of 3D domains [ACSYD05], mixed with a constrained Lloyd re-
laxation on the domain boundary. While this technique was shown to only
produce nicely-shaped tetrahedra throughout the domain, slivers (i.e., nearly
degenerate elements) could appear near the domain boundary, as the bound-
ary vertices were guided by Lloyd relaxation and thus unaffected by the 3D
optimization. Furthermore, this method lacks a number of useful features.
First, the algorithm is not designed to satisfy the type of user-defined criteria
commonly handled by Delaunay-based mesh generation techniques [RY07].
Also, an estimate of the boundary local feature size is required to derive a
sizing function; such estimate turns out not to be always reliable depend-
ing on the tessellation of the input polyhedral domain boundary. Finally,
this method cannot handle arbitrary boundary meshes as input, requiring a
restricted Delaunay triangulation instead.

2.5.2 Approach

We combine the efficacy of Delaunay refinement methods with the isotropic
quality induced by optimal Delaunay optimization techniques to provide a
practical, high-quality meshing algorithm for domains bounded by piece-
wise smooth boundaries. This combination of techniques is motivated by
the desire to maximize mesh quality while reducing mesh size. Delaunay
refinement alone tends to generate overly complex meshes, with, e.g., spuri-
ous clusters of vertices due both to the greedy nature of the algorithm and
to the encroachment mechanisms; interleaving parsimonious refinement and
mesh optimization instead turns out both to reduce the number of Steiner
points and to improve the overall mesh quality (see Figure 2.42).

Unlike previous mesh optimization methods which either consider the
boundary fixed or use boundary conditions incompatible with global mesh
improvement, we introduce a consistent, unifying variational treatment ap-
plied to both interior and boundary nodes, improving the overall quality
of the mesh. To speed up Delaunay refinement and make it parsimonious,
we pick subsets of isolated Steiner points using the probabilistic multiple
choice approach [WK02, VLV+04] to reduce the occurrence of short-lived



2.5. TETRAHEDRON MESH GENERATION 89

primitives and provide independent refinements before each round of opti-
mization. The practicality of our approach further stems from additional,
distinctive features. First, we only rely on simple intersection tests to probe
the domain boundary to make the approach as generic as possible with re-
spect to the boundary surface representation. Second, we do not require a
mesh sizing function as input and provide instead a dynamic sizing function
which evolves throughout refinement until all user-specified criteria are sat-
isfied. Finally, while we present a concrete implementation of our approach,
the method is versatile enough to serve as a general framework for isotropic
tetrahedron meshing, as each step involved in the process can be adapted
to special requirements.

The algorithm we now detail interleaves refinement and optimization
of an initial 3D Delaunay triangulation. Mesh simplices are gradually im-
proved to meet user-defined criteria on boundary approximation and on the
shape and size of elements through refinements, while passes of optimization
further improve the shape of the elements. The high-level pseudo-code is as
follows:

Algorithm 1 Mesh generation at a glance

Require: Domain Ω ∈ IR3 (Section 2.5.2.1)
and a set {k1, k2, ..., kn} of user-defined criteria (Section 2.5.2.2).
Initialize coarse mesh M (Section 2.5.2.3)
while Refine through sparse vertex insertions (Section 2.5.2.4) do

Optimize mesh (Section 2.5.2.8)
end while
Remove leftover slivers (Section 2.5.2.9)

The refinement procedure inserts Steiner points so as to satisfy the cri-
teria {k1, k2, ..., kn}. It returns true if at least one Steiner point has been
inserted and false otherwise, so that the mesh is further optimized only
when refined. This way, the algorithm benefits from the same guarantee of
common Delaunay refinement algorithms.

2.5.2.1 Input

The input is a 3D domain Ω whose boundary is defined as a piecewise
smooth complex (PSC). More specifically, our current implementation takes
as input a piecewise linear approximation of a PSC. The latter is provided
as a triangle surface mesh, watertight, and forming a 2-manifold with no
self-intersection. In addition, we assume that sharp edges as well as feature
vertices of this mesh are tagged. Dart (resp., corner) vertices are easily
deduced from tagged sharp edges as they are incident to one (resp., three or
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more) sharp edges. Tip and cusp vertices, which are incident respectively to
zero and two sharp edges, cannot be derived solely using the sharp edge tags
and hence must be specified by the user. By chaining sharp edges together,
we obtain a set of polylines that we will refer to as creases from now on. A
crease may either connect two feature vertices, or form a cycle. All creases
are enumerated, and each sharp edge of the input surface mesh is marked
with the index of its associated crease. Finally, we identify and enumerate
surface patches as connected components of the boundary, bounded (or not)
by sharp creases. Each face of the input surface mesh is marked with the
index of its associated patch as depicted in Figure 2.43.

Figure 2.43: Input PSC with sharp creases and surface patches marked.

2.5.2.2 Parameters

The user can also input a number of desired criteria that the final mesh
must satisfy. These criteria will be used to guide the refinement process as
explained in Section 2.5.2.4. Our meshing framework can handle five types
of criteria:

• Sizing: a spatially-varying sizing function (or possibly a single value
if constant) indicates the maximum mesh edge length desired within
the domain.

• Approximation: an approximation control function defines a local up-
per bound for the surface or crease approximation error, εmax. Simi-
larly to the mesh sizing function, it can be defined as a single value if
the function is constant over the boundary, or as a spatially-varying
scalar function.

• Shape: two global element shape quality bounds are defined as the
maximum circumradius to shortest edge ratio allowed in the final mesh.
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We denote by σfmax and σtmax these bounds for facets and tetrahedra,
respectively.

• Topology: a Boolean flag determines whether the topology of the input
PSC should be preserved, i.e., if the vertices of each restricted facet
must belong to the same patch, and the vertices of each restricted edge
must belong to the same crease.

• Manifold: a Boolean flag determines whether the final mesh boundary
should be a two-manifold surface.

These criteria accommodate the typical user requirements for mesh gen-
eration. Note that they are all optional in our implementation, except for
the sizing field.

2.5.2.3 Initialization

A first meshM of the domain is obtained as follows. We begin by inserting
inM all feature vertices (corners and such) of the input surface mesh. These
vertices remain untouched throughout the mesh generation procedure. We
also add the eight corners of a large bounding box of the input domain, in
order not to have to deal with infinite Voronoi cells in later stages. Finally,
we ensure that each surface patch and each crease have received the minimal
number of sample points to seed the refinement process by adding more
vertices if necessary, as in [RY07]. The meshM is defined to be the Delaunay
mesh of all these vertices. Finally, we refine this initial mesh with respect
to looser criteria than the ones defined by the user (typically, we halve the
various input criteria parameters), using our refinement procedure that we
detail next.

2.5.2.4 Refinement

The refinement process is entirely driven by the user-defined criteria listed
in Section 2.5.2.2. Each refinement step is designed to remove a set of bad
elements (simplices that do not satisfy at least one of the given criteria)
by inserting so-called Steiner vertices to M. Unlike typical Delaunay re-
finement techniques which insert one Steiner point at a time, we proceed in
batches of refinement, inserting a sparse subset of all the candidate Steiner
points per batch.
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2.5.2.5 Bad Elements

The simplices considered for refinement are the so-called restricted simplices,
that is, the ones considered as inside the domain Ω or on the domain bound-
ary ∂Ω—namely, edges whose dual Voronoi facet intersects an input crease,
facets whose dual Voronoi edge intersects the domain boundary, and tetra-
hedra whose dual Voronoi vertex is located inside the domain. We consider
one of these restricted elements bad if it violates one of the following criteria.

Size. A restricted edge is considered bad if it is longer than the sizing
function evaluated at its midpoint. A restricted facet or tetrahedron is
considered bad if at least one of its edges is badly sized.

Approximation error. A restricted edge e is considered bad if the dis-
tance from its midpoint to the farthest intersection point between its dual
Voronoi face and an input crease is larger than the local approximation
bound. Similarly, a restricted facet f is considered bad if the distance from
f ’s circumcenter to the farthest intersection point between its dual Voronoi
edge and the domain boundary is larger than the approximation bound.

Shape. A restricted facet (resp., tetrahedron) is considered bad if the
ratio of its circumradius to shortest edge is higher than the user-specified
bound σfmax (resp., σtmax).

Topology. A restricted edge (resp., facet) is considered as not capturing
the proper topology if its two (resp., three) vertices do not belong to the same
input crease (resp., surface patch). If the topology criterion is activated, we
store for each vertex v of the mesh its location with respect to the input
PSC. That is, each vertex is tagged either as an interior vertex, a feature
vertex, a crease vertex, or a boundary vertex. In the last two cases, the
index of the feature (crease or surface patch) is stored too.

In addition to these types of bad elements, we add an extra one to
enforce the topological disk condition [RY07] as it is an important indicator
of topological conformity of the mesh to the input domain. For a vertex v
tagged as boundary (i.e., on an input surface patch), the topological disk
condition is satisfied iff the boundary facets incident to v form a topological
2-disk. If v belongs to an input crease, its incident restricted edges (edges
whose dual Voronoi facet intersects input creases) have to form a topological
1-disk. We thus mark every boundary vertex of the mesh whose topological
disk condition is not satisfied as bad as well.
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2.5.2.6 Steiner Vertices

For each bad simplex, we define its associate Steiner point location. The
associated Steiner point to a restricted edge is the farthest intersection point
between its dual Voronoi face and the input creases. The associated Steiner
point to a restricted facet is the farthest intersection point between its dual
Voronoi edge and the input domain boundary. The associated Steiner point
to a restricted tetrahedron is its circumcenter. Finally, for each boundary
vertex of the mesh whose topological disk condition is not satisfied, we define
its associated Steiner point to be the Steiner point of the facet (resp., crease
edge) incident to v that realizes the largest approximation error: its insertion
will help enforcing the topological disk condition.

Figure 2.44: Left: Steiner point (yellow) of a restricted edge (red) computed
as the furthest intersection point of its dual Voronoi facet (blue) with the input
PSC creases. Right: Steiner point (yellow) of a restricted facet (red) computed as
the furthest intersection point of its dual Voronoi edge (blue) with the input PSC
surface.

To ensure termination of the refinement process, we further check for
encroachment [Rup95, She98, She02b, CDL07, RY07]. The Steiner point
p of a tetrahedron, candidate for insertion, is said to encroach a boundary
facet f if it is inside its restricted Delaunay ball (centered at f ’s Steiner
point and passing through the vertices of f). Similarly, the Steiner point of
a facet is said to encroach a crease edge if it is inside its restricted Delaunay
ball (centered at its Steiner point and passing through its endpoints). In
these two cases of encroachment, we alter the position of the associated
Steiner point, replacing it by the Steiner point of the encroached primitive
(and recursing the encroachment check).

2.5.2.7 Independent Set Refinement

To help define a good subset of Steiner points to add in batch, we introduce
the notion of conflict regions and independent set of conflict regions. For
each Steiner point p, we call “conflict region” the tets that would be affected
by its insertion as well as their adjacent tets, since these elements are likely



94 CHAPTER 2. CONTRIBUTIONS

to be destroyed by the insertion of p. We call “an independent set” of
conflict regions a set that does not contain overlapping conflict regions, so
that none of the insertions of these selected Steiner points would influence
each other. We construct such an independent set of conflict regions: we
iteratively select Steiner points in order of increasing dimension of their
associated simplices. That is, first crease edges are collected and sorted
from worst to best. As many crease-edge Steiner points as possible are
inserted into the set, along with their conflict region, while making sure
there is no overlap of conflict regions. Second, we similarly treat boundary
facets. Finally, tetrahedra are handled; however, as there can be a large
amount of bad tets during the meshing process, the same process of sorting
elements before choosing them would be too costly. We therefore process bad
tetrahedra through a more efficient Multiple-Choice approach as explained
next, and this is done iteratively until no Steiner point can be inserted to
the independent set without overlapping the regions already inserted. Inset
shows an independent set on the mesh of a cylinder for which only the
approximation criterion is not yet satisfied.

Figure 2.45: Refinement steps. From left to right and top to bottom: The mesh
initialized with feature vertices; after a few batch refinement steps (from 5 to 50);
the final refined mesh with shape and approximation criteria satisfied; and its 244
slivers (tetrahedra with dihedral angle smaller than 10 degrees).

Multiple-Choice Selection of Tetrahedra Although many Delaunay
refinement algorithms use modifiable priority queues to store all bad sim-
plices of the mesh M, most queue elements are short-lived as each Steiner
position insertion affects its surrounding. In fact, our experiments consis-
tently showed that the computational burden spent maintaining the global
priority queue of all bad simplices is overly high compared to the number of
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primitives actually refined. We thus depart from the usual refinement strat-
egy by using a multiple choice approach (proposed for mesh decimation in
[WK02, VLV+04]) as follows. At each step, a small container of Nmc“bad”
tetrahedra (Nmc= 20 in our implementation), randomly updated among the
non-conflicted tetrahedra, is used to select the worse tetrahedron. As our
goal is to only sparingly refine the mesh before further optimization, this
multiple-choice approach significantly speeds up our refinement process.

2.5.2.8 Optimization

Chen [Che04] defines an Optimal Delaunay Triangulation (ODT) as the
minimizer of the energy

EODT = ||fPWL − f ||L1 =
∑
j

∫
Tj

|fPWL − f |,

where f(x) = ||x||2 and fPWL is the linear function interpolating the values
of f at the vertices of the tets Tj ’s of the triangulation. This energy has a
simple geometric interpretation: it is the volume between the 4D paraboloid
(defined by f and its inscribed piecewise linear approximation fPWL through
lifting off the triangulation onto the paraboloid [BWY07]. Because of a
result of function approximation theory stating that the best interpolating
approximation of a function is achieved when the elements’ size and orienta-
tion match the Hessian of the function, an ODT is thus isotropic (see Figure
2.46).

By integrating this function over each tet and summing all the contri-
butions, one gets:

EODT =
1
4

∑
xi∈Tj

xi2|Ωi| −
∫
M

x2dx, (2.4)

where |Ωi| is the volume of the 1-ring neighborhood of vertex xi. Noting that
the last term is constant given a fixed boundary ∂M, a simple derivation of
this quadratic energy in xi leads to the following optimal position x?i of the
interior vertex xi in its 1-ring [Che04]:

x?i = − 1
2 |Ωi|

∑
Tj∈Ωi

∇xi |Tj |
[ ∑

xk ∈ Tj
xk 6= xi

||xk||2
]
. (2.5)

The term ∇xi |Tj | is the gradient of the volume of the tet Tj with respect
to xi. Replacing the paraboloid function f(x) = ||x||2 by the translated
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function f(x) = ||x−xi||2, does not change the interpolation error, leading to
the same optimal position. We thus get the following equivalent expression
used to update a vertex position:

x?i =xi −
1

2 |Ωi|
∑
Tj∈Ωi

∇xi |Tj |
[ ∑
xk∈Tj

||xi − xk||2
]. (2.6)

We also know that
∑

Tj∈Ωi
∇xi |Tj | = 0, it thus follows that when all ||xi −

xk||2 are equal, x?i = xi. In other words, when the neighbors of xi lie on a
sphere with center c, x?i = c; we call this property the ODT circumsphere
property.

As a special case of this property, the optimal position of a vertex that
has only four neighbors is exactly at cT . Using Equation (2.6) in this special
case of a 1-ring in the shape of a tet T = (xp,xq,xr,xs), and taking the
point xi to be located at xp, we get:

cT = xp −
1

2 |T |

[
∇xp |T |

[∑
xk∈T

||xp − xk||2
]

+ F(xp,xq,xr) + F(xp,xq,xs) + F(xp,xr,xs)

]
(2.7)

where the extra terms on the rhs only depend on each face of the tet (be-
cause, as we took xi to be at xp, all but one of the tets inside T are degenerate
and become faces of T ). More precisely, these terms are explicitly given as:

F(xp,xq,xr) = +
1
3

[
||xp − xq||2 + ||xp − xr||2

]
Np,q,r

where Np,q,r is the area-weighted normal of the face (p, q, r) pointing to-
wards the inside of the tet, i.e., Np,q,r = |(p, q, r)|np,q,r.. Now, go back to
Equation 2.6 for an arbitrary 1-ring centered on xp, and note that the term
in parenthesis appears as is (for p ≡ i) in Equation 2.7. Substitute this term
by the circumcenter and all the other terms that Equation 2.7 contains. All
the face terms F cancel each other out, thus simplifying the expression to:

x?i =
1
|Ωi|

∑
Tj∈Ωi

|Tj |cj . (2.8)

Natural ODT for Boundary Vertices While [Che04, ACSYD05] do
not involve the boundary vertices in the minimization of the ODT energy,
we propose an extension that changes the update of boundary vertices dur-
ing optimization so as to further reduce the total energy, thus providing a
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Figure 2.46: Comparing Delaunay refinement and mesh optimization. Distribu-
tions of dihedral angles are shown to the left. Slivers are shown for a dihedral angle
bound of respectively 5 (middle) and 10 degrees (right). Top: Delaunay Refine-
ment alone (resp. 35 and 136 slivers). Middle: Optimized mesh with 100 Lloyd
iterations (resp. 23 and 55 slivers). Bottom: Optimized mesh with 100 NODT
iterations (resp. 0 and 3 slivers).

boundary extension to the original ODT mesh smoothing procedure. De-
note by xp a vertex on the boundary of a 3D mesh (i.e., it does not have a
full 1-ring N (xp) of restricted (inside) tetrahedra. For a given connectivity,
the new position x?p of xp that extremizes the ODT energy is a bit more
complicated, as some of the face terms F do not disappear:

x?p =

[ ∑
T∈N (xp)

|T |cT

+B

]
/

∑
T∈N (xp)

|T |,
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where the boundary terms B are

B =
1
6

 ∑
(p,q,r)∈∂M

Np,q,r

[
||xp − xq||2 + ||xp − xr||2

] .

(Again, by Np,q,r, we mean the vector that is along the normal of the face
(pointing toward the inside of the domain), with a magnitude equal to the
area of the triangle.) The first part (|T |cT ) is the weighted barycenter of the
circumcenters and is divided by the total 1-ring volume just as before. Note
however that there is an extra term: a sum on triangles (p, q, r) that are on
the boundary of the domain, involving the squared length of the “spokes”
of the triangle 1-ring.

This formula, applied as is, shrinks the domain as it obviously decreases
the total energy. However, as seen previously, we can add a multiplicative
weight to the supplementary terms B without changing the update rule in
the case of a full 1-ring, because they cancel each other out anyway:

x?p =

[ ∑
T∈N (xp)

|T |cT

+ λB

]
/

∑
T∈N (xp)

|T |.

We now use this flexibility to choose λ so that we retain the ODT circum-
sphere property mentioned earlier, but now in the case of an incomplete
1-ring: if all neighbors of xp are at the same distance from xp, we want
x?p = xp: we will thus obtain a formula valid for both the complete 1-ring
and incomplete 1-ring cases, while preserving the ODT circumsphere prop-
erty. We have

x?i = xi −
1

2|Ωi|
∑
Tj∈Ωi

∇xi |Tj |
[ ∑
xk∈Tj

||xi − xk||2
]

+ (1− λ)
∑
r,s

F(xi,xr,xs)

)
. (2.9)

Consider the case where all ||xi − xk||2 are equal to some constant R.
We want x?i = xi and we know, from the divergence theorem applied on the
1-ring of the boundary vertex, that

∇xi |Tj |+
∑
r,s

1
3
Np,q,r = 0.
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On the one hand, ∇xi |Tj | is weighted by 3R in (2.9). On the other hand,
each 1

3Np,q,r is weighted by 2R in (2.9). It follows that we need (1−λ) = 3/2
for each term∇xi |Tj |

[ ∑
xk∈Tj

||xi − xk||2
]

+ (1− λ)
∑
r,s

F(xi,xr,xs)


to vanish.

Hence, for λ = −1/2, the ODT circumcenter property is still enforced on
the boundary. In particular, the optimal position for this method (denoted
NODT for Natural ODT ) is computed as

x?p =

[ ∑
T∈N (xp)

|T |cT

− 1
2
B

]
/

∑
T∈N (xp)

|T |,

where the boundary terms B (if any) are

B =
1
6

 ∑
(p,q,r)∈∂M

Np,q,r

[
||xp − xq||2 + ||xp − xr||2

] .

Variable Sizing The optimization formula above is only valid to generate
uniform isotropic meshes. To account for a variable mesh sizing, we update
a dynamic mesh sizing function after each batch of refinement, and replace
all measures in above formulas (lengths, areas, volumes) by measures in the
metric of this sizing function. Such measures are obtained by quadratures
over the mesh elements. The dynamic sizing function [ADA07] is guaranteed
to be K-Lipschitz and is obtained by averaging the lengths of the mesh
edges incident to all mesh vertices. Intuitively, the refinement is in charge of
discovering the local feature size of the domain boundary. One of the user-
defined criteria triggers a local refinement of the mesh, which induces the
updating of the sizing function which, in turn, imposes further refinements to
maintain the K-grading of the mesh. The optimization part of the algorithm
then takes the current sizing function as input, so that it does not smooth
out the increased density brought by the refinement steps to satisfy the
user-defined criteria.

Restriction and Projection In practice, as we want the mesh to in-
terpolate the domain, each boundary vertex of the mesh should be on the
boundary ∂Ω of the PSC domain. To enforce this property, the new location
x?p of xp is projected onto ∂Ω. Two cases are distinguished: x?p can belong
to a surface patch, or to a sharp feature of the mesh. If at least one of the
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incident edges to xp is a crease edge (i.e., its dual Voronoi facet intersects a
PSC crease), then we project x?p onto the closest crease. Similarly, if at least
one of the incident facets to xp is a boundary facet (i.e., its dual Voronoi
edge intersects the PSC), we project x?p onto the closest facet of the input
PSC.

2.5.2.9 Sliver Removal

While our NODT boundary treatment significantly reduces the number of
slivers compared to the results reported in [ACSYD05], we cannot guarantee
a total absence of slivers (see Figure 2.47). We thus perform a final phase of
sliver removal. We implemented an explicit perturbation inspired by [Li00],
which performed better and faster than sliver exudation [CDE+00] in our
experiments. This method applies repeatedly a small perturbation of each
vertex incident to slivers. Vertices located on sharp creases or boundary are
then reprojected onto their respective crease or boundary. This relocation
is validated if it both reduces its number of incident slivers and preserves
the restricted triangulation locally. This process is iterated a number of
times (max. 100 in our implementation) for each vertex incident to one
or more slivers, and interrupted earlier if all incident slivers are removed.
Note that for completeness we have also applied such perturbation after
Delaunay refinement and Lloyd-based optimization. In these meshes many
slivers remain due to the presence of chains of slivers, i.e., several slivers
incident to each other.

2.5.2.10 Implementation

The algorithm is implemented using the Computational Geometry Algo-
rithms Library CGAL [CGA09]. We use its 3D regular (weighted Delau-
nay) triangulation as our core data structure. The input PSC is repre-
sented as a surface triangle mesh with attributes. One crucial component
for reaching good timings is the efficient update of the restricted triangula-
tion and Steiner points: this requires many intersection tests between rays
and Voronoi edges and the input domain boundary, as well as intersections
between Voronoi faces and the input sharp creases. We have implemented a
collision detection library based on the principles used in OPCODE [Ter05].
Two hierarchies of axis-aligned-bounding-boxes (AABBs) are created right
after loading the input PSC: one for the PSC triangle facets and one for the
PSC segment sharp creases. Each intersection query (be it a test or an ex-
haustive enumeration) then calls intersection with AABBs during traversal,
and intersection with PSC primitives (triangle or crease segments) at the
leaves of the tree (see [dB05]). In addition, the same AABB trees are used
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for projecting the optimized boundary vertices onto the domain boundary or
creases. The trees are this time queried with 3D balls whose radius decreases
during the tree traversal. In our tests, these hierarchies of AABBs result
in the fastest intersection and projection routines on average, compared to
object-aligned bounding boxes and KD-trees. Finally, we also speed up the
NODT procedure through a locking process. We lock up (i.e., deactivate
the optimization of) all mesh vertices which are incident to only excellent
restricted tetrahedra. A tetrahedron is defined as excellent when all its dihe-
dral angles are within a user-specified interval (typically [45-95]). Only the
vertices newly inserted during refinement or relocated during optimization
are allowed to unlock their incident vertices. Consequently, entire parts of
the mesh which do not need to be improved either by refinement or by op-
timization are skipped throughout the refinement/optimization alternation.
Tuning the interval bounds which qualify excellent tetrahedra is our mean
to trade efficiency for the final mesh quality.

2.5.3 Results

To evaluate our approach, we tested the various steps of our algorithm sep-
arately, then together. Figure 2.45 shows our refinement routine when no
optimization step is performed. Notice that the resulting mesh lacks gra-
dation, as typical for Delaunay refinement methods. We compare results of
Delaunay refinement, Lloyd relaxation [DFG99], and our NODT in terms of
number of slivers (before sliver removal for fairness) in Figure 2.46. Figure
2.47 shows the mesh of an elephant model obtained by Delaunay refinement
(top) as it gets optimized by our NODT routine (middle), then after sliver
removal (bottom).

Figure 2.48 shows the mesh of the bimba model obtained by interleaved
refinement and optimization with approximation and element quality criteria
activated (the sizing criterion lmax = 0.1 is not significant as the input PSC
fits into a unit bounding box). The mesh contains 43K vertices and all
dihedral angles are above 15 degrees. The input PSC has 400K vertices. We
also tested our method on mechanical parts. Figure 2.50 shows the mesh
of a turbine generated by our interleaved algorithm. The mesh contains
significantly fewer vertices (13%) than Delaunay refinement alone.

We also compared our technique to DelPSC [CDL07] and TetGen [Si]
in Figure 2.49. Our interleaved technique improves both over the mesh
quality and complexity. For TetGen we provided as input both the input
PSC (which is then refined) and the boundary of our optimized mesh for fair
comparison. Figure 2.52 shows the mesh of the buddha model obtained by
interleaved refinement and optimization. This example illustrates the mesh
of a domain boundary with larger range of feature size.
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Figure 2.47: Elephant. Top: mesh generated by Delaunay refinement with
lmax = 0.1, εmax = 0.001. Distribution of dihedral angles, and sliver tetrahedra
with dihedral angles lower than 5, 10 and 15 degrees are shown. Middle: out-
put of Delaunay refinement (i.e., top row) optimized with our technique. Bottom:
optimized mesh (middle row) after sliver perturbation.

Activating the topology criterion enforces that each restricted facet has
its three vertices on the same PSC patch, and that each restricted edge has
its two vertices on the same PSC crease. The mesh can thus be refined
beyond the specified approximation criterion until all surface sheets are sep-
arated, as illustrated by Figure 2.51. In our experience, computational times
to obtain a mesh range from seconds for the sphere and nested spheres mod-
els to 3 hours for the Michelangelo David models through minutes for the
anchor, turbine and bimba models (resp. 10, 15 and 23).
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Figure 2.48: Bimba. Mesh generated by interleaved refinement and optimization
with lmax = 0.1, εmax = 0.0005.
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Figure 2.49: Cover rear. Top left: mesh obtained by interleaved refinement
and optimization with lmax = 0.1, εmax = 0.001, σf

max = 1.5, σt
max = 1.5 and

the topology criterion activated. It contains 4,050 vertices and all dihedral angles
are above 12.0 degrees. Top right: mesh generated by DelPSC, with the same
parameters. It contains 15,157 vertices and all dihedral angles are above 0.1 degree.
Bottom left: mesh generated by TetGen, with the same parameters and input. It
contains 6,966 vertices and all dihedral angles are above 0.2 degree. Bottom right:
mesh generated by TetGen, with the same parameters and the boundary of our
optimized mesh taken as input. It contains 4,189 vertices and all dihedral angles
are above 3.0 degrees.
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Figure 2.50: Turbine. Mesh generated by interleaved refinement and optimization
with lmax = 0.1, εmax = 0.001. The inset shows the input PSC with all patches
segmented. The mesh has 14K vertices and 51K tetrahedra, with all dihedral angles
greater than 15 degrees.

Figure 2.51: Nested spheres. Left: input PSC. Middle: mesh generated by re-
finement with lmax = 1, εmax = 0.03 and topology criterion not activated. Right:
mesh further refined with same criteria but with topology activated.
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Figure 2.52: Buddha. Mesh obtained by interleaved refinement and optimization.
All dihedral angles are above 15 degrees.
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Figure 2.53: Michelangelo David. Michelangelo David. In this example, the
input PSC has 800K triangles; on the right, illustrating scalability, a uniform sizing
criterion generates a 1M vertices mesh; on the left, approximation error and shape
criteria alone generate a smaller graded mesh (250K vertices), while guaranteeing
the same quality of tetrahedra, and a better approximation error.
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2.5.4 Summary

We introduced a mesh generation framework based on the idea of inter-
leaving refinement and optimization. Guided by user-defined criteria such
as size, shape, and approximation error of mesh elements, refinement steps
are parsimoniously applied batch-wise through the insertion of independent
sets. Optimization steps are performed through a variant of Chen’s ODT
that handles boundary as well as spatially-varying mesh sizing.

2.5.4.1 Strengths

As the general framework of this algorithm is generic enough, we can ac-
commodate other representations for the input, such as implicit surfaces or
piecewise smooth parametric surfaces represented as NURBS patches. How-
ever, the latter would require efficient intersection computations using, e.g.,
the SINTEF Spline Library.

2.5.4.2 Weaknesses

One important limitation of the current algorithm is that it does not handle
sharp input creases subtending small angles (the theoretical bound on input
angles is 90◦, see [RY07]). Another limitation is that our implementation
is slow (up to 1h for 1M vertices). Activating the interleaving later during
refinement helps reducing the timings, but the mesh complexity can suffer
from this simplification.

2.5.4.3 Future Work

We believe that Delaunay-based mesh generation is a relevant methodologi-
cal framework due to its versatility. Nevertheless, we have identified several
problems which are not yet fully resolved: 3D domains bounded by sharp
creases subtending small angles, slivers and anisotropic meshes. These prob-
lems correspond to the proposed directions of research.

We plan on dealing with small angles through the use of weights of a reg-
ular triangulation [CDL07]. Delaunay triangulation alone is not sufficient to
mesh 3D domains bounded by piecewise smooth surfaces when some sharp
creases subtend small angles. Cheng et al. [CDR07] have shown that switch-
ing to a regular triangulation provides a solution to these inputs. However
this solution is not fully satisfactory, as the final mesh is overly dense along
sharp creases. We intend to investigate a Delaunay refinement technique
which would be more parsimonious while providing the same guarantees.



2.5. TETRAHEDRON MESH GENERATION 109

We intend to improve this work by switching to a function approxima-
tion problem instead of interpolation, where the vertex weights of a weighted
Delaunay triangulation are optimized together with the vertex locations. At
the intuitive level, we wish to embed a sliver exudation process [CDE+00]
as part of the optimization in order to further reduce the number of slivers
in the final mesh. In addition, we wish to investigate sliver perturbation
further [Li00]. Our plan is to characterize a sliver with various criteria (ra-
dius of circumsphere, volume, length of Voronoi edges, intersection with
incident circumspheres) and devise the minimal vertex relocation procedure
which would make the sliver disappear. Although our initial experiments
show that, e.g., simply relocating a sliver vertex along the gradient of its
circumsphere radius is efficient enough to get rid of most isolated slivers by
violating the empty circumsphere Delaunay property, it remains to under-
stand how to get rid of structured chains of slivers. In particular, it may
happen that one vertex incident to two or more slivers exhibit incompatible
relocation vectors, or that the said vertex is constrained to lie on a sharp
crease or corner of the input domain boundary.

At the theoretical level, we wish to certify bounds on the shape of the
elements after optimization. One way to obtain such guarantees is to de-
rive a hill-climbing version of the optimization step (a local optimization
is validated only when the mesh quality is improved), as as to keep the
same guarantees provided by the refinement step. Two reasons prevent us
from deepening this way: the current bounds on dihedral angles of Delau-
nay refinement are not satisfactory and our current experiments show that
the optimization step goes through intermediate states where the quality is
decreased before being increased.

Finally, we wish to investigate the optimization of anisotropic tetrahe-
dron meshes. For many simulations, a mesh must be anisotropic, with long,
skinny tetrahedra with orientations and aspect ratios dictated by the appli-
cation. Functions with strongly anisotropic Hessians are best interpolated
with anisotropic meshes and partial differential equations that are inherently
anisotropic are numerically best conditioned if anisotropic elements are used.
In a recent work [BWY08] it has been shown how anisotropic meshes can
be generated by refining a triangulation which is everywhere the image of
a Delaunay triangulation under a stretching transformation. Refinement is
carried on until all stars of the vertices tile the input domain. The main
added value of this approach is a a guaranteed termination and a straight-
forward implementation as the idea involves simple predicates. It remains
to understand how these ideas can be combined with mesh optimization.
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Chapter 3

General Summary

This habilitation thesis has presented a selection of four contributions in
the field of digital geometry processing achieved between 2004 to 2008:
surface reconstruction from unoriented point sets, surface approximation,
quadrangle surface tiling and generation of isotropic tetrahedron meshes.
The narrative is mostly cumulative of the corresponding papers [ACSTD07,
CSAD04, TACSD06, ACSYD05] (published at ACM SIGGRAPH and EU-
ROGRAPHICS Symposium on Geometry Processing), and includes added
figures and explanations, as well as detailed summaries with follow-ups and
perspective for future work. These contributions have been chosen for two
reasons: they represent important topics in the field, while following the
variational methodology favored by the author.

The variational methodology, which casts each problem as an optimiza-
tion, requires solving two parts: i) defining the most appropriate energy,
and ii) elaborating upon a tractable way to solve for this energy. In general
the second part of the problem (solving) is at least as difficult as defining
the energy, and hoping to reach a global optimum is often wishful thinking.
Nevertheless resorting to global numerical solvers such as eigenvalue solvers
for surface reconstruction provides us not only with a high level of sparse
sampling resiliency, but also with a way to reduce the constraints over the
inputs (in this case, no need for oriented normals).

Optimization comes often at the cost of additional computations com-
pared to greedy algorithms, this being particularly true for the optimization
of tetrahedron meshes. This added cost explains our will to combine op-
timization either interleaved with or applied as a post-process after greedy
mesh refinement. Ideally, we would like to guarantee that the mesh genera-
tion algorithm best trades mesh quality for computational time. Similar in
spirit to [KS07], we would even like to guarantee that each additional cpu
cycle spent is spent improving the mesh.
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3.1 Perspectives

An increasing trend in applications is to deal with measurement data from
the physical world. This calls for an increased robustness of the algorithm
to be resilient not only to, e.g., noise and sparse sampling in point sets,
but also to outliers. None of the algorithms presented in the narrative are
resilient to such data. In addition, measurement data covers a large variety
of input, which calls for algorithms which are as independent as possible to
the representation of the input data. The oracle-based approach adopted
for tetrahedron mesh generation is one step in this direction.

All optimization algorithms presented in this document involve both con-
tinuous variables (values of implicit or harmonic functions, parameters of
planar proxies, vertex coordinates of tetrahedron meshes) and discrete data
structures (connectivity of surface and 3D meshes) and variables (number
of isolines for quadrangle surface tiling). In essence this reflects the dual
nature of geometric data structures, well understood in computational ge-
ometry. Although both can be related using, e.g., finite element formulations
or discrete exterior calculus as done in the discretization of the Laplacian
operator, the discrete variables are in general either not solved with the
continuous ones but solved in sequence or simply provided by the user (e.g.,
integer number of isolines of a tiling). Automating the algorithms calls for
simultaneous or at least coupled solving of both discrete and continuous
variables. This will become in particular crucial when tackling the problem
of hexahedral domain tiling.

These challenges, as well as the many other remaining ones, herald an
exciting future research program, requiring both new concepts as well as
generic and robust algorithms to ultimately result in a “standard applied
geometry toolbox” useful for engineering, medicine and multimedia applica-
tions. Applied, here, means that our primary concern is the computability
on real-world computers, whereas toolbox refers to a coherent set of con-
cepts and software tools which would become indispensable to the engineers
and practitioners in a increasingly digital world.
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