
HAL Id: tel-00436707
https://theses.hal.science/tel-00436707v2

Submitted on 27 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Composition of Functionalities of Networked
Devices in the Semantic Web

Sattisvar Tandabany

To cite this version:
Sattisvar Tandabany. Dynamic Composition of Functionalities of Networked Devices in the Semantic
Web. Computer Science [cs]. Université Joseph-Fourier - Grenoble I, 2009. English. �NNT : �. �tel-
00436707v2�

https://theses.hal.science/tel-00436707v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ JOSEPH FOURIER – GRENOBLE 1

École Doctorale Mathématiques, Sciences et Technologies de l’Information, Informatique

Dynamic Composition of

Functionalities of Networked Devices

in the Semantic Web

THÈSE

présentée et soutenue publiquement le 23 novembre 2009

pour l’obtention du

Doctorat de l’Université Joseph Fourier – Grenoble 1

(spécialité informatique)

par

Sattisvar TANDABANY

Directeur de thèse : Marie-Christine ROUSSET

Composition du jury

Président : Christine COLLET Professeur ENSIMAG Grenoble INP – Grenoble

Rapporteurs : Djamal BENSLIMANE Professeur à l’UCBL – Lyon
Farouk TOUMANI Professeur à l’Université du Sud – Toulon

Directeur de thèse : Marie-Christine ROUSSET Professeur à l’UJF – Grenoble

Laboratoire d’Informatique de Grenoble

.

The gift given without any hope for reward, with a sense of
duty, is given in proper place and time to a deserving person,
that gift is said to be pure.

Bhagavad-Gita, XVII

Acknowledgment

The path taken by this thesis was not predictable in its beginning. The tortuous meanders it has made
me follow have uncovered significant people to interact with. I wish to express in these few lines my
gratitude to all those people with whom I was able to complete this thesis.

In particular, I extend my sincere thanks to my supervisor Professor Marie-Christine Rousset, who
guided me throughout these years of my PhD, who committed to this adventure, who has undeniably
managed to show me that the light at the end of this tunnel was not the headlight of another locomotive.
What the research means to me and how much I am attached to it is thanks to her.

I feel particular deference to Professor Yuzuru Tanaka who welcomed me for one year in his labor-
atory in Sapporo, Japan. I owe him for sharpening my scientific cultivation through lengthy discussions.
With him I learned the proverb that framed my concept of time:

“Nothing is more precious than time, so there is no greater generosity than to waste it without
counting”

I also thank Professors Djamal Benslimane and Farouk Toumani, for their careful reading of this
manuscript and their report, and Professor Christine Collet for chairing the jury of my PhD.

My research was enhanced by teaching, and this activity let me explore a different facet of research:
pedagogy. I thank therefore Michel Burlet and Jean-Pierre Peyrin for their invaluable advice regarding
the transmission of knowledge.

My work took place primarily within the team HADAS at Grenoble. I thank its members for their
help and support through the last days. I think especially of my fellow office and other doctoral students
who shared with me moments of distraction: Remi, Benjamin, Noha, Charlotte, Christine, Diana, and
Naga.

My stays in Japan made me mingle with people from across the world with different cultures and
have opened a critical eye on both my Indian and Western heritages. I thank Yu Asano, Akio Takashima,
Hajime Imura, Fubuki Susuki, Tsuyoshi Sugibuchi, Aran Lunzer and all my friends at the Friendship
House. A special thanks to my two roommates Vivi and Kama for the long winter evenings gazing at the
Sapporo snow.

Outside of daily work and scientific exchanges, in need of body and mind to be entertained, I would
like to express my gratitude to all my family who supported me and cheered at every step; to my father
for his determination to explain that we can move mountains provided that it is done stone by stone; to
my mother for her ability to talk to me about various and entertaining subjects. My evening of tango and
lindy hop, as well as the dancers I met then, also gave me a second wind when writing.

I think very tenderly of Helia who has contributed significantly to both the serenity and the tumult of
my life during my PhD. Also, I think with emotion of Florence for our sincere discussions on our slices
of life and philosophies of science. And Étienne who interfered with my life like noone could infer.

In addition, special mention to my friends who have welcome my unclassifiable mind and gave it the
space to flourish. I refer to Christelle, Celine, David, Lucrezia, Mathias, Kathrin, Géraldine, Claudia,
Julie, Fleur.

i

ii

Finally, I have an endless list of friends around the world, met when out traveling, and who have
each introduced their speck of sand into the cogwheels of my mind and made me what I am today. I will
not take up the challenge of listing them all because of the risk of omitting some. I am grateful to all of
them.

Et que mettant mon âme à côté du papier,
Je n’ai tout simplement qu’à la recopier.

Cyrano de Bergerac, II, 3, Cyrano,
Edmond Rostand

Remerciements

Le cheminement pris par cette thèse n’avait rien de prévisible en ses débuts. Les méandres tortueux qu’il
m’aura fait prendre m’auront permis de découvrir des gens marquants et d’échanger avec eux. Je désire
exprimer dans ces quelques lignes ma reconnaissance envers toutes ces personnes grâce à qui j’ai pu
mener à terme ce travail de thèse.

En particulier, j’adresse mes remerciements les plus sincères à ma directrice le Professeur Marie-
Christine Rousset qui m’a guidé tout au long de ces années de doctorat, s’est investie dans cette aventure,
et qui a indéniablement su me montrer que la lumière au bout de ce tunnel n’était pas le phare avant d’une
autre locomotive. Ce que la recherche représente à mes yeux et combien j’y suis attaché a pu se révéler
grâce à elle.

J’éprouve une déférence particulière à l’égard du Professeur Yuzuru Tanaka qui m’a accueilli durant
un an dans son laboratoire à Sapporo au Japon. Je lui dois l’affûtage de ma culture scientifique à travers
de très longues discussions. C’est avec lui que j’ai appris le proverbe qui a dessiné ma conception du
temps:

« Rien n’est plus précieux que le temps, il n’y a donc pas de plus grande générosité qu’à le
perdre sans compter. »

Je remercie également les Professeurs Djamal Benslimane et Farouk Toumani, pour leur lecture
attentive de ce manuscrit et leur rapport, ainsi que le Professeur Christine Collet pour avoir présidé le
jury de ma soutenance.

Ma recherche s’est agrémentée d’enseignements et cette activité a permis d’explorer une autre facette
du chercheur, la pédagogie. Je remercie à ce sujet Michel Burlet et Jean-Pierre Peyrin pour leurs conseils
inestimables en matière de transmission de savoir.

Mon travail s’est déroulé d’abord au sein de l’équipe HADAS à Grenoble dont je remercie les
membres pour leur aide et leur soutien jusque dans les derniers jours. Je pense particulièrement à mes
compagnons de bureau et les autres doctorants qui ont partagé avec moi mes moments d’égarements:
Rémi, Benjamin, Noha, Charlotte, Christine, Diana et Naga.

Puis mon séjour au Japon m’a fait côtoyer des personnes de l’autre bout de la planète avec une
culture différente et m’ont ouvert un oeil critique étonnant sur mes deux cultures indienne et occidentale.
Je remercie Yu Asano, Akio Takashima, Hajime Imura, Fubuki Susuki, Tsuyoshi Sugibuchi, Aran Lunzer
et tous les amis de la House Friendship. Un merci particulier pour mes deux colocatrices Vivi et Kama
pour les longues soirées d’hiver à contempler la neige de Sapporo.

En dehors du travail quotidien et des échanges scientifiques, dans la nécessité du corps et de l’esprit
de se divertir, je voudrais exprimer ma gratitude à toute ma famille pour m’avoir supporté et réconforté à
chaque pas; à mon père pour sa détermination à m’expliquer que l’on peut même déplacer des montagnes
pourvu qu’on s’y prenne pierre après pierre; à ma mère pour sa capacité à me parler de sujets variés et
distrayants. Mes soirées de tango et de lindy-hop et tous les danseurs que j’y ai rencontrés m’ont aussi
donné un second souffle lors de la rédaction.

iii

iv

J’ai une pensée très tendre à l’endroit d’Hélia qui a contribué pour beaucoup à la fois à la sérénité et
au tumulte de ma vie de doctorant. Aussi je pense avec émotion à Florence pour nos discussions sincères
sur nos tranches de vie et sur les philosophies des sciences. Et Étienne qui a interféré dans ma vie comme
personne n’aurait pu l’inférer.

Encore, une mention spéciale à mes amis qui ont su accueillir mon esprit inclassable et lui donner
l’espace nécessaire pour son épanouissement. Je pense ici à Christelle, Céline, David, Lucrezia, Mathias,
Kathrin, Géraldine, Claudia, Julie, Fleur.

Enfin, j’ai une infinie liste d’amis de par le monde, rencontrés au gré des voyages et qui ont chacun
déposé leur grain de sable dans les rouages de ma pensée et qui font de moi ce que je suis aujourd’hui. Je
ne prendrai pas le pari de tous les énumérer sans risquer d’en omettre certains, je leur suis reconnaissant
à tous.

v

Je dédie cette thèse
à mes parents,

à ma soeur Satya,
et à mon frère Steve

vi

Contents

Acknowledgment i

Remerciements iii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Problem statement . 2

1.2 Illustrative scenarios . 3

1.2.1 Mixing console . 3

1.2.2 Viewing a webcam knowing its location . 3

1.2.3 Transferring files . 3

1.2.4 Displaying in a distant location . 4

1.2.5 Screens side by side . 4

1.2.6 Printing a pdf file on a postscript printer . 4

1.2.7 Alert in a house . 4

1.2.8 Requirements . 4

1.3 Sketch of the approach . 5

1.4 Contributions . 6

1.4.1 A logical class-based language with functions 6

1.4.2 A feasability study of inferring compositions on demand using a PROLOG engine 6

1.4.3 A solution for a decentralised deployment of the approach 6

2 A logic-based language to describe devices 7

2.1 Description of classes, instances and properties . 8

2.1.1 Taxonomies . 8

2.1.2 Instances . 8

2.1.3 Predicates . 9

vii

viii CONTENTS

2.2 Description of functionalities . 11

2.2.1 The use of functions . 12

2.2.2 The signature and the assertions of a functionality 12

2.3 Logical description of a device . 14

2.4 Composition of functionalities . 16

2.4.1 The relay race composition . 16

2.4.2 The assembly line composition . 17

2.5 Specification of queries . 17

2.5.1 Yes-no queries . 19

2.5.2 Wh- queries . 19

2.5.3 Composed functionalities as answers to queries 20

2.6 Specification of virtual objects . 20

2.6.1 Virtual devices . 20

2.6.2 Virtual functionalities . 21

2.6.3 Combination of virtual devices and virtual functionalities 22

2.7 Extension to heterogeneous descriptions . 22

3 Centralised reasoning for dynamic composition 25

3.1 Using PROLOG as a reasoning engine . 25

3.2 Experiments . 26

3.2.1 The basis of the scenarios . 26

3.2.2 About the curves . 27

3.3 Different scenarios . 27

3.3.1 Scenario almost without type constraint . 27

3.3.2 Best case: a single possible composition of depth 2 27

3.3.3 A single possible composition of depth n . 29

3.3.4 n possible compositions of depth 2 . 31

3.3.5 n2 possible compositions of depth 2 . 33

3.3.6 2n/2 possible compositions of depth n/2 . 34

3.4 Summary . 36

4 Decentralised reasoning for dynamic composition 39

4.1 Reminders and preliminaries . 40

4.1.1 Logical description of a device and its functionalities 40

4.1.2 Queries . 42

4.1.3 Example . 44

4.1.4 Relevant devices for a query . 45

ix

4.2 Propositional encoding: principles and properties . 48

4.2.1 Encoding of device descriptions and queries . 48

4.2.2 Properties . 52

4.2.3 Examples . 57

4.3 Look-up by decentralised propositional reasoning . 59

4.3.1 Look-up: definition and properties . 59

4.3.2 Decentralised computation of Lookup (Q) using SOMEWHERE 61

4.4 Heterogeneous descriptions . 62

5 Related Work and Conclusion 63
5.1 Semantic Approach of Dynamic Web Services Composition 64

5.2 Web Service Composition via Planning . 67

5.3 Logic based language for Web services composition . 68

5.4 Conclusion . 71

A Glossary 73

B Index 74

C Bibliography 77

x CONTENTS

List of Figures

1.1 Architecture of an opportunistic network . 2

2.1 Graphical representation of the taxonomy shown in table 2.1 9
2.2 Two outputs and their ordered trees of composition . 18

(a) Expressions of outputs . 18
(b) Ordered trees of composition . 18
(c) Semantic of each functionality and device . 18

2.3 Example of mappings between taxonomies . 23

3.1 Schema of connections in the scenario 3.3.2 . 28
3.2 Scenario with a single possible composition of depth 2 28

(a) Time consumption . 28
(b) Memory usage . 28

3.3 Schema of connections in the scenario 3.3.3 . 29
3.4 Scenario with a single possible composition of depth n 30

(a) Time consumption . 30
(b) Memory usage . 30

3.5 Schema of connections in the scenario 3.3.4 . 31
3.6 Scenario with n possible compositions of depth 2 . 32

(a) Time consumption . 32
(b) Memory usage . 32

3.7 Schema of connections in the scenario 3.3.5 . 33
3.8 Scenario with n2 possible compositions of depth 2 . 34

(a) Time consumption . 34
(b) Memory usage . 34

3.9 Schema of connections in the scenario 3.3.6 . 35
3.10 Scenario with 2p composition of depth p = bn/2c . 35

(a) Time consumption . 35
(b) Memory usage . 35

4.1 A derivation tree of a query with respect to a set of rules 43
(a) Derivation tree . 43
(b) Set of rules . 43

4.2 Example of the encoding of a taxonomy . 51
(a) The taxonomy used for the schema . 51
(b) Partial encoding of the taxonomy 4.2(a) in the context of the predicate located . . 51

4.3 The encoding of a description shown in a graph . 58
4.4 Derivation tree of the query Q with respect to the rules in table 4.1 60

xi

xii LIST OF FIGURES

4.5 Propositional implicants of Code (Q) with respect to the encoding of the rules 60
4.6 Schema of the whole process in a device . 61

List of Tables

2.1 Definition of a taxonomy with the syntax of first-order logic 9
2.2 The RDFS notation and the syntax of first-order logic 10
2.3 Description of a functionality in the general case . 13
2.4 Example of the description of a functionality in high-level language and first-order logic 14
2.5 Another example of the description of a functionality 14

(a) Description in high-level language . 14
(b) Description in first-order logic . 14

2.6 Rewriting of the high-level language in first-order logic 15
2.7 Rewriting mappings using only inclusion . 23
2.8 Semantic in first-order logic of the mappings . 24

3.1 Data of the scenario with a single possible composition of depth 2 29
3.2 Data of the scenario with a single possible composition of depth n 31
3.3 Data of the scenario with n possible compositions of depth 2 32
3.4 Data of the scenario with n2 possible compositions of depth 2 33
3.5 Data of the scenario with 2p compositions of depth p = bn/2c 36
3.6 Summary of all the scenarios . 36

4.1 Descriptions of two devices and their encoding . 58
(a) Rules that enable the inheritance of types . 58
(b) Description of a computer . 58
(c) Description of a server . 58

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Contents
1.1 Problem statement . 2
1.2 Illustrative scenarios . 3

1.2.1 Mixing console . 3
1.2.2 Viewing a webcam knowing its location . 3
1.2.3 Transferring files . 3
1.2.4 Displaying in a distant location . 4
1.2.5 Screens side by side . 4
1.2.6 Printing a pdf file on a postscript printer . 4
1.2.7 Alert in a house . 4
1.2.8 Requirements . 4

1.3 Sketch of the approach . 5
1.4 Contributions . 6

1.4.1 A logical class-based language with functions 6
1.4.2 A feasability study of inferring compositions on demand using a PROLOG engine 6
1.4.3 A solution for a decentralised deployment of the approach 6

Technology’s constant progress brings more and more independent devices dedicated to different
goals. Moreover, an easier access to the Internet, and also cheaper and smaller devices, offer wider
possibilities to achieve complex tasks by combining many simple tasks together. However, the problem
is to find the appropriate functionalities; to contact the devices which can perform it; and to explicit how
to combine them.

In this thesis, we address composition of distributed resources. Pervasive computing deals not only
with Web services, but also with services provided by physical smart objects mutually connected through
Peer-to-peer (P2P) networks. By ‘resource’, we mainly mean devices and components, but also data,
Web services and computational resources accessible through the Web. Furthermore, service composi-
tion deals with all these resources as component services, and focuses on their composition. Our model
considers Web services and physical smart objects respectively as logical and physical devices. Con-
sequently, it can model service composition as functionalities composition.

Any smart object which can be connected by a cable or via a network to other objects can be con-
sidered as a device. The interest of the devices is in their functionalities. As we are faced with a growing
number of devices and their various functionalities, it would be of great help to be able to look for a
device (or a group of devices) which realises a certain functionality or matches certain criteria. It would

1

2 CHAPTER 1. INTRODUCTION

fixed node

mobile node

backbone link

connection link

connection range

Figure 1.1: Architecture of an opportunistic network

also be useful to compose functionalities from interoperable devices automatically, to build new func-
tionalities on the fly and to name them in order to reuse them easily.

In order to join the network, a new peer chooses any of the peers in the current network and provides
a description of the functionalities that it offers. To enable it to provide such a description, we propose a
language in which the functionalities are first-class citizens. We want to make it possible to define, infer
and query possibly composed functionalities, and to retrieve the (group of) devices realising them.

In the continuity of the Semantic Web which was first introduced by [5] and extends the current Web
with well-defined meaning and machine-understandable information, we add semantics to the descrip-
tion.

We handle a network of resources which can have either a centralised repository of the descriptions
of each peer; or each peer can be autonomous and none of them may have the knowledge of the whole
topology of the network. Our work is thus split in two steps. In the first part, we assume that every
description is stored in a central repository on which we can use a reasoning system. We will establish
the language of description of the resources and the language of queries. Then, we will extend the case
to a decentralised description storage, where each peer stores its own description.

1.1 Problem statement

An opportunistic network of devices is a network of connected (possibly by wireless) devices either
mobile or fixed. The network topology may change due to device mobility or device activation and
deactivation. The devices provide at least the following two main abilities:

• Discovery: A device is able to discover other network nodes in direct communication range;

• One-hop message exchange: A device is able to send and receive arbitrary data in form of a
message to or from any other node in direct communication range.

An opportunistic network is a quite a low-sized network. But if some fixed node are linked, a wider
backbone network can appear to support many opportunistic networks. For instance some access points
connected to the Internet may play this role. But still, this is not mandatory. Figure 1.1 shows such an
architecture.

On top of such a dynamic network of devices, resource aggregation is facilitated. A mobile device
can effectively ’dock’ into the network thereby enabling resources to be shared between devices within
the network. This ability can be used in many scenarios as detailed in section 1.2. Therefore, sharing

1.2. ILLUSTRATIVE SCENARIOS 3

dynamic resources is of interest if and only if one is able to look for functionalities or devices available
through the dynamic network. This is the first problem we want to address.

Moreover, resources shared are even more interesting if the composition of the functionalities is
possible. A composition of two (or more) functionalities has to meet some condition:

• The functionalities to be composed have to share data, thus, a connection between the devices that
provide the functionalities must exist in the network;

• The data shared must be of the same kind;

• If the functionalities require some conditions to be achieved, we need to check them first.

When the right devices providing the right functionalities meeting the above conditions are found,
we can claim that a composition is computed. The composition, due to the dynamic character of the
network, has to be computed each time it is needed, according to the current devices and functionalities
present. Finding a composition in an opportunistic network is the second problem we are addressing.

Finally, and this is an inherent part of the two first problems, a description language that permits us
to look for devices and functionalities and also to find composition needs to be defined.

1.2 Illustrative scenarios

In order to figure out what the description language — and consequently also the query language — that
we will need, we introduce seven scenarios to illustrate each requirement of the description language and
the query language.

1.2.1 Mixing console

Let us consider an audio mixing console. This device has many functionalities like, for instance, com-
bining two or more audio streams together and possibly applying filters. Filters can amplify the volume,
reduce noises, etc. Each filter applied can be described as a separate functionality, which takes an audio
stream as input and provides a modified audio stream as output. As a result, the type of the input and the
type output are not enough to distinguish those functionalities. Thus, we need to label them — id est to
type them.

1.2.2 Viewing a webcam knowing its location

Suppose you have a device which is able to display a video stream coming from a webcam. Suppose also
that you have to decide whether you can go to ski in a specific winter sports resort. To help your choice
you may want to search a webcam near the resort so that you can check whether there is powder snow
or whether the resort is crowded. So, the query will be about a functionality which captures video of the
environment and which is performed by a device found by its location — near a certain winter sports
resort. The properties, such as the location, of the devices enable us to narrow the scope of a query.

1.2.3 Transferring files

Once you came back from the resort of the previous scenario, you may have to send pictures or videos
to your friends or relatives. As these data can represent many mega octets, emailing them is not suitable.
Then, the need raises to exchange data between two distant devices (computers). If both computers are
connected to the Internet, the first user can publish its file on the Web and give the URL to the second
one, so that he can fetch it. Otherwise, we will have to find and handle a possibly long path of computers

4 CHAPTER 1. INTRODUCTION

in between. The data will be copied from one computer to the next one throughout the path. At every
step, we must have a way to know that the copied data represents the same data.

1.2.4 Displaying in a distant location

Here is a more complete scenario. Suppose you have slides in a file stored somewhere in your computer,
and you need to display it through a projector located in a distant room where people are waiting for
your presentation. So, you are looking for a device that can display your file in that room. It sounds
like the first scenario, except that the projector cannot display files from any computer but from the one
connected to it. This means that the expected answer to the query has to be a composed functionality:

1. Your file must be transferred to the computer connected to the projector;

2. This computer has to convert the copy of your file into a video stream;

3. This video stream has to be sent to the projector in order to be displayed.

1.2.5 Screens side by side

Suppose that in the distant room of the previous scenario, we do not have one but two screens which can
both display. Moreover, we have a device which can divide a video stream into a right and a left part
splitting the video down the middle. It is quite natural to display the right part of the incoming video
stream on the right screen and the left part on the left screen. Then, once for all, we can set these two
screens up to work together, considering them as one single virtual device with a displaying functionality
(with a higher resolution). This scenario leads to the idea of a virtual device made of a set of devices
working together.

1.2.6 Printing a pdf file on a postscript printer

Postscript printers are printers which can only print files in the postscript format. However, articles
and reports are usually stored in the Portable Document File (PDF) format and converters from PDF to
postscript are not always available. A solution could be to give the printer a newly defined functionality
which will, in fact, use an available converter (if there is one) before printing. This scenario shows that
one could need to set up a new functionality, depending on the context — id est the available devices and
functionalities. Following the example of the virtual device, this is a virtual functionality .

1.2.7 Alert in a house

Let us consider a house where simple devices like a phone, a television or lights can be reached and re-
motely controlled. Each of these devices has different functionalities (ring, display subtitles, blink, etc.).
If we want the users to pay attention on a peculiar thing, we can let the lamp blink, display a message on
the TV screen, or ring the phone. Then any of those functionalities could serve this purpose, even though
they are typed differently and have different aims. We need somehow to say that a ringing functionality
is also a warning functionality, that ringing is a subtype of warning. This leads to classify the types in a
hierarchy.

1.2.8 Requirements

The scenarios introduced in this section suggest the following requirements for the description language.
We need of course to describe a device by specifying its functionalities. The important point is that we

1.3. SKETCH OF THE APPROACH 5

need a rich description of the functionalities. In particular, the more we constrain the functionalities,
the easier we will find those matching a given specification or query. Therefore, we use taxonomies to
type (see scenario 1.2.7) devices, functionalities (see scenario 1.2.1) and their inputs and output. We will
allow the specification of preconditions in order to express the conditions under which the functionality
can be realised. We will also allow the specification of post-conditions in order to express properties of
the output after its realisation.

Furthermore, we need to specify the properties which are specific to each device — like its physical
location (see scenario 1.2.2), its availability or its capacity — as well as the properties which are spe-
cific to each functionality. The connection between devices and the sameness of two data are peculiar
properties (see scenario 1.2.3) which require a particular treatment.

Many devices interact with their environment. Some of them (e.g. sensors, cameras, captors, etc.)
get the inputs for some of their functionalities from the environment. Some others (e.g. heater, speaker,
projector, etc.) act on their environment through the outputs of some of their functionalities.

We also need to express complex queries where the searched (group of) devices, the inputs of the
functionalities or their outputs are specified. Doing so makes composition possible (see scenario 1.2.4).
Then, the next idea is to provide a way to store a query, or to define devices or composed functionalities
as an answer to a query. This will lead us to deal with virtual devices (see scenario 1.2.5) and virtual
functionalities (see scenario 1.2.6).

1.3 Sketch of the approach

In this section we will sketch the approach used in this thesis to address the problems defined in sec-
tion 1.1. We want to design a language to describe the devices and their functionalities so that we can
address at the same time the look up problem and the composition problem. In order to search for a
devices or a functionality through the network, if we only need to specify the type and/or some of its
properties such as the location for a device or such as the kind of input or output for a functionality,
a description stored in a simple database can be sufficient to answer. However, we do need more than
a simple database when we have to find compositions of functionalities. That’s why the requirements,
mentioned in section 1.2.8, drive us to use a logical description of the devices and their functionalities.
More specifically, as we need to make compositions at query-time, the description of the functionalities
requires a rich logical formalism, in particular using functions.

Thus, we build a first-order logic based language to describe the resources using a taxonomy of class
to constrain the type of the resources. Each device connecting to a device in the network has to provide
its description to be able to exchange with others nodes. Yet the language provides some flexibility as we
reckon on different taxonomies on the devices. The language is easily translated into the language used
by the reasoner (PROLOG).

We specify also the corresponding query language which again can be translated easily into a PRO-
LOG query. Then, we use PROLOG as a reasoner to answer the queries. If the query needs to find
compositions, the reasoner eventually finds them with no cost and provides an effective composed func-
tionalities using functions.

As there is no distributed PROLOG solution that can fit our needs, in order to deploy our approach in
an opportunistic network, we need to narrow the space of search to a subset of devices of the network
that are sufficient to find all solutions of a query. For that purpose, we encode our first-order logic based
language into propositional logic, so that we can use SOMEWHERE [20] as a look up service. Once a
subset of devices has been retrieved, we get their descriptions and use the reasoner.

6 CHAPTER 1. INTRODUCTION

1.4 Contributions

1.4.1 A logical class-based language with functions

One of the contributions of this thesis is to set up a first-order logic language to describe the devices,
keeping in mind that we want to make queries upon the description by using a reasoner.

The language is class-based. Every object handled is assigned to a class and moreover the classes
are organised in taxonomies. The main difference with other semantic Web languages such as Resource
Document Framework (RDF) [11] is that we use functions to express the composition between function-
alities. The function that link an output of a functionality to its input permits us to deliver a composition
as an answer of a query with no additional cost.

1.4.2 A feasability study of inferring compositions on demand using a PROLOG engine

The main point of building a description language based on logic and a query language is to use a
reasoner to answer to the queries. Queries will mostly lead to build composition of functionalities on the
fly.

We use a PROLOG engine. The nature of our language introduces infinite loops of two kinds that
PROLOG itself cannot avoid. One infinite loop is generated by an infinite possible compositions of
functionalities, mostly due to the inherent nature of some functionalities. For instance, considering a
functionality f taking an input of type A and providing an output of type B; and a functionality g taking
a input of type B and providing an output of type A. These two functionalities can be composed over
and over. This is avoided by limiting the computation to an upper bound of composition depth. In one
hand, doing so prevent the reasoner to give some of the answers but in the other hand it can explore more
answers than if it remained inside that loop.

Another infinite loop is generated by the description language that makes recursive rules. For in-
stance, the equivalence between classes or the symmetrical property of some predicate introduce such
recursion. XSB [23] is a PROLOG engine that can deal with recursion loop by maintaining a table of
local sub-goals already visited during the resolution process [21, 22].

Also, the language may not be decidable. It is half-way between Datalog and PROLOG. Our lan-
guage have some restriction such as absence of negation and any variable in the conclusion of a rule is
guaranteed to appear in a clause of the premise of this rule. However, we allow terms with functions as
argument of predicate.

1.4.3 A solution for a decentralised deployment of the approach

Once we dig into a decentralised deployment of our approach, we meet some problems. There is no fully
distributed PROLOG that we can use to simply translate the problem in an opportunistic network. Some
works [?] address the problem of parallel PROLOG, where a program is known by all the computation
unit and the resolution is distributed. However, we have the opposite need, where the program is dis-
tributed and not fully known by none of the node of the network. The difficulty of making a distributed
first-order logic reasoner remains in the fact that the definition of a predicate is not necessarily where the
computation is made.

Nevertheless, we tried in this thesis to address the problem. The process can be divided in two steps.
First, according to a query, a look up is launched through the network to find a subset of devices that
contain relevant descriptions to answer to the query. Then the device which issued the query download
those descriptions in order to treat locally the query using the PROLOG engine.

Chapter 2

A logic-based language to describe devices
and their functionalities

Contents
2.1 Description of classes, instances and properties . 8

2.1.1 Taxonomies . 8

2.1.2 Instances . 8

2.1.3 Predicates . 9

2.2 Description of functionalities . 11
2.2.1 The use of functions . 12

2.2.2 The signature and the assertions of a functionality 12

2.3 Logical description of a device . 14
2.4 Composition of functionalities . 16

2.4.1 The relay race composition . 16

2.4.2 The assembly line composition . 17

2.5 Specification of queries . 17
2.5.1 Yes-no queries . 19

2.5.2 Wh- queries . 19

2.5.3 Composed functionalities as answers to queries 20

2.6 Specification of virtual objects . 20
2.6.1 Virtual devices . 20

2.6.2 Virtual functionalities . 21

2.6.3 Combination of virtual devices and virtual functionalities 22

2.7 Extension to heterogeneous descriptions . 22

This chapter is dedicated to defining the formal model of the description language. As we want to
describe devices and their functionalities in order to compose them on the fly, we chose to represent them
in logic.

Composed functionalities will be built at query time as answers to queries. Moreover, the reasoning
is constrained by taxonomies of class for the objects involved in our description.

We will use either the Resource Document Framework Schema (RDFS) notation or the PROLOG

notation whenever it is convenient, to express the taxonomies, the predicates, the rules and the functions.
In the PROLOG notation, variables are denoted by words beginning with an upper-case letter. Each time

7

8 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

one of the two notations will be introduced, the equivalence in the other notation will be provided. To
simplify the description for the end-user, we provide a high-level language whose syntax will be intro-
duced throughout the document. We introduce the high-level language to simplify the understanding.

2.1 Description of classes, instances and properties

The language handles four different kinds of objects: devices, functionalities, data, and places. In order
to constrain the reasoning, we associate every objects with a class. That is what we shall call ‘typing’.
Class names are constants of the language. Moreover, a taxonomy of the classes is provided.

2.1.1 Taxonomies

The taxonomy is defined using the triple notation of RDFS where

a rdf :subClassOf b

expresses that the constant a denotes a class which is a subclass of the class denoted by the constant b.
The semantics of such a RDFS triple is first-order logic and corresponds to the following formula

used to shorten the RDFS notation of the corresponding predicate:

subclassof (b, a)

The high-level language defines taxonomies by giving the subclass relation between classes. For
instance, in order to express that computer and printer are subclasses of device, we write:

(define (device :: computer)
(device :: printer))

As a syntactic sugar we can express successive subclass relations in an easy way in the high-level lan-
guage. For instance, in order to express that city is a subclass of country, which is a subclass of place,
we write:

(define (place :: country :: city))

Examples of taxonomies

A sketch of a taxonomy used in our language can be seen in table 2.1, and its graphical representation on
figure 2.1. The classes device, data, funct, placeand top are provided by the language. If there is a need
to add a class name, one can define it.

2.1.2 Instances

We declare instances of the previously introduced classes using the following notations in RDFS:

e rdf :type t

expresses that the constant e denotes an instance of the class denoted by the constant t; the semantics in
first-order logic is the following formula:

type(e, t)

2.1. DESCRIPTION OF CLASSES, INSTANCES AND PROPERTIES 9

top

device

computer printer

data

file

ps pdf

paper

funct

printing

place

country

city

Figure 2.1: Graphical representation of the taxonomy shown in table 2.1

The inheritance is also expressed for any instance by a generic rule

∀X,C,D type(X,C) ∧ subclassof (C,D)→ type(X,D)

A class name followed by a comma-separated list of its instances is the syntax used in the high-level
language to define instances. There is a special treatment for the subclasses of the class funct because
we link a device to a functionality (see section 2.2.1). Below, here is the declaration of some instances
in the high-level language.

(define (country france, japan)
(building ensimag)
(room roomD101, roomD302)
(ps myps)
(pdf apdf)
(computer mypc, yourpc)
(printer prn))

2.1.3 Predicates

In our language, the predicates are used to define properties and valued attributes for objects.
In RDFS notation,

p rdfs :domain a

resp. p rdfs :range b

Table 2.1: Definition of a taxonomy with the syntax of first-order logic

subclassof (device, top) subclassof (file, data)
subclassof (data, top) subclassof (ps, file)
subclassof (funct, top) subclassof (pdf, file)
subclassof (place, top) subclassof (paper, data)

subclassof (computer, device) subclassof (country, place)
subclassof (printer, device) subclassof (city, country)

subclassof (printing, funct)

10 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

expresses that the domain (resp. range) of the predicate named p is the class denoted by the constant a
(resp. by the constant b). The semantics in first-order logic is the following formula:

∀X,Y p(X,Y)→ type(X, a)
resp. ∀X,Y p(X,Y)→ type(Y, b)

Here is a list of predicates provided in our language. This list is not exhaustive and according to his
purpose, a user can define more predicates if their domain and their range are provided. All the predicates
shown here are binary but this is not mandatory.

• connected takes two devices as arguments and holds if and only if the former is connected to
the latter. connected(a, b) holds when the device a can start a communication with b. Once the
communication is established, a and b can exchange through the channel. But, it is possible for b
not to have any means to start a communication with a. This predicate is not symmetrical.

connected rdfs :domain device
connected rdfs :range device

If the connection is assumed once for all, this predicate can be declared. Otherwise, if the connec-
tion is temporary, we have to make a check on this predicate at query time, to make sure that it
mirrors the real connection.

• stored takes two arguments, δ a data object and d a device. stored(δ, d) holds if and only if δ is
stored in d, for instance to express that a file is stored in a certain computer.

stored rdfs :domain data
stored rdfs :range device

This predicate can be declared or infered as a post-condition of a functionality.

• hasfunct holds if and only if the device given as the first argument has the functionality given as the
second argument. It is an explicit link between a device and its functionality. If there is a generic
way to define the association of a class of functionality with a class of device, this predicate can
be infered in a rule — for instance, to declare that every printer has the functionality of printing.
But, this predicate can also be declared for specific instances of devices and functionalities.

hasfunct rdfs :domain device
hasfunct rdfs :range funct

Table 2.2: The RDFS notation and the syntax of first-order logic

RDFS notation Syntax and semantics of first-order logic

b rdf :subClassOf a subclassof (b, a)

e rdf :type t type(e, t)

p rdfs :domain a ∀X,Y p(X,Y)→ type(X, a)

p rdfs :range b ∀X,Y p(X,Y)→ type(Y, b)

2.2. DESCRIPTION OF FUNCTIONALITIES 11

• same holds if and only if the two data given are identical — for example, a file stored in a computer
and a copy of this file stored elsewhere.

same rdfs :domain data
same rdfs :range data

This predicate comes also with some generic rules that show its reflexiveness and its transitivity:

∀I, same(I, I)

∀I, J,K, same(I, J) ∧ same(J,K) → same(I,K)

• located associates a device with its location. It holds if and only if the device given as the first
argument is located in a place denoted by the second argument. The place should be a constant
name, an instance of a subclass of place.

located rdfs :domain device
located rdfs :range place

This predicate can be declared, or in the case of mobile devices it can be modified.

• inside expresses that a location is inside another.

inside rdfs :domain place
inside rdfs :range place

This predicate comes also with a rule. If a device D is located in a place A and if A is assumed
to be inside a place B, then the device D is also located in B. This is expressed by the following
rule:

∀D,L,M location(D,L) ∧ inside(L,M) → location(D,M)

For any predicate defined above, the properties can be expressed in the high-level language. For
instance to declare that myps, an instance of the class ps, is stored in mypc, an instance of the class
computer, we can write:

(define (myps stored mypc))

2.2 Description of functionalities

First of all, we have to describe the functionalities of each subclass of funct. All the functionalities of
a certain class share the same description. Then, we have to associate devices with their functionalities.
The description of a functionality consists in typing the inputs and the output, expressing preconditions
and post-conditions. In order to make this description, we have to use some functions that we will first
introduce. Then, we will present the description in detail.

12 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

2.2.1 The use of functions

Let us define two functions used in both the declaration and the description of functionalities. Functions
are not specified in RDF, so we shall use only the Prolog notation.

This function is called out in reference to ‘output’. It expresses the output of a function F fed
by a list of inputs ~I . As constructor of a new object, it allows to express properties associated with the
output, remembering the functionality and the inputs. This function makes the expression of composition
possible (see section 2.4).

Those functions (with indices), applied to a device, provide one of the functionalities of that device.
This notation associates a device with one of its functionalities.

There are two cases. Let a be a subclass of device and b be a subclass of funct. If all instances of a
have a functionality, which is an instance of b, then we write:

∀D, type(D, a) → type(f1(D), b) ∧ hasfunct(D, f1(D))

Otherwise, if a device, which is an instance of class a and which does not have a functionality instance
of class b, exists, then we cannot write such a rule. Thus, for each particular device which is an instance
of class a and which does have a functionality instance of class b, we have to declare explicitly this
association by writing:

type(f1(d), b) ∧ hasfunct(d, f1(d))

The choice of the name of those functions can be left to the care of a naming system. Normally, the
end-user can completely ignore the existence of these functions and that is why they are not present in
the high-level language.

In the high-level language, to express, for example, that every printer has the printing functionality,
we write:

(define (every printer has printing))

In the second case, to express for instance that only mypc has the upload functionality, we write:

(define (mypc has upload))

After having typed the data and the devices, we have also typed the functionalities and we have bound
them to devices. Then, as we keep in mind that we want to compose functionalities on the fly whenever
it is possible, we will describe in the following section the specification of the functionalities that will
enable us to compose them.

2.2.2 The signature and the assertions of a functionality

As explained earlier in this chapter, there are two kinds of constraint to compose functionalities. Thus,
while describing a functionality we have to describe these constraints.

Definition 1 : The signature of a functionality is the class of each of its inputs and the class of its
output. The signature is mandatory to describe a functionality. A functionality may not have any inputs
but it always has a single output. �

Let us consider a functionality F , and let us assume that it provides an output of class T . In order to
feed this output as an input of a functionality G, T must also be a class of that input: this is the typing

2.2. DESCRIPTION OF FUNCTIONALITIES 13

r : type(F, T) Type the functionality
∧ hasfunct(D,F) Specify the device

∧
n∧
k=1

type(Ik, Tk) Type the inputs

∧ Prec(~I,D) Define preconditions
→ type(out(F, [~I]), To) Type the output
∧ Post(~I, out(F, [~I]), D) Define post-conditions

where

• T is the type of the described functionality;

• D is the device that has the functionality;

• n is the number of inputs for this class T of functionalities;

• Ik is one of the inputs;

• out is a function representing the output of a functionality F on its inputs [~I];

• ~I represents I1, . . . , In;

• Prec is a conjunction of preconditions where the inputs and the device D are involved;

• Post is a conjunction of post-conditions where the inputs, the output and the device D are in-
volved;

Table 2.3: Description of a functionality in the general case

constraint. That explains why so far we needed to type the objects handled, and why now we constrain
the class of the inputs and the class of the output. A functionality that provides only output corresponds
to services that provides only output called by [4] ‘Data-Providing’ services.

Definition 2 : The assertions of a functionality are all the preconditions required and all the
post-conditions claimed to be true once the functionality is completed. Neither the preconditions nor the
post-conditions are mandatory. �

The device which performs a functionality and the devices from which the functionality possibly get
its input can be involved in the preconditions and the post-conditions of the functionality. A functionality
that has post-conditions is equivalent to Web services that changes the state of the system called by [4]
‘Effect-Providing’ services.

Thus, the rule that describe a functionality links its output with its inputs, provides the class of the
output, and then expresses the preconditions (if there is any) about the inputs and the device (connection,
location, ...) and the post-conditions (if any) about the output. The description in the general case written
in logic is showntable 2.3.

Examples: The example shown in table 2.4 defines the uploading functionality. The class of the output
is the same class T as the first input and it has to be a subclass of file. The class of the second input is
computer, it represents the server where the file should be uploaded. The functionality needs two precon-
ditions: the file input must be stored in the device performing the functionality, and the device performing

14 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

(define (upload Fu type(Fu, upload)
(file :: T I1 as Fu.In) ∧ type(I1, T) ∧ subclassof (T, file)
(computer Srv as Fu.In) ∧ type(Srv, computer)
(I1 stored Fu.Dev) ∧ hasfunct(D,Fu) ∧ stored(I1, D)
(Fu.Dev connected Srv) ∧ connected(D,Srv)

⇒ →
(T O as Fu.Out) type(out (Fu, [I1, Srv]) , T)
(O stored Srv) ∧ stored(out (Fu, [I1, Srv]) , Srv)
(O same I1) ∧ same(out (Fu, [I1, Srv]) , I1)
)

)

Table 2.4: Example of the description of a functionality in high-level language and first-order logic

the functionality must be connected to the target computer. There are also two post-conditions for this
functionality. Once the upload is done, the output is a file stored in the target computer, and the output
file is a copy of the input file (expressed by the predicate same). Moreover, in the high-level language,
the list of inputs is ordered by the order in which the inputs appear in the description.

The example in table 2.5 is the description of a printing functionality. The class of the output is paper;
the class of the described functionality is printing, the class of the input should be ps, and the connection
between the device providing the ps file as an input and the device actually printing is required as a
precondition. There is no post-condition in this particular example. First we show the decription written
in the high-level language and then its semantics in logic.
The notation Fp.Dev refers to the device which has the functionality named Fp (Fp is the local name
of the functionality described here). The same way, the notation Fun.Dev (resp. Fun.Out) refers to the
device which has the functionality Fun (resp. the output of the functionality Fun). Then, the line

(I1 is Fun.Out)

leads to replace I1 with the expression out (Fun, X). The fact that Fun.Dev appears in a precondition
leads to replace it with a new variable FunD and to constrain it by adding hasfunct(FunD, Fun).
This way, Fun.Dev alias FunD is the device which has the functionality Fun.

2.3 Logical description of a device

A device d stores its description: a set of facts and rules in first-order logic. It contains:

• a set of facts representing:

Table 2.5: Another example of the description of a functionality
(a) Description in high-level language

(define (printing Fp
(ps I1 as Fp.In)
(I1 is Fun.Out)
(Fun.Dev connected Fp.Dev)

⇒ (paper O as Fp.Out))

(b) Description in first-order logic

type(Fp, printing)
∧ type(out (Fun, X) , ps)
∧ hasfunct(D,Fp)
∧ hasfunct(FunD,Fun)
∧ connected(FunD,D)

→ type(out (Fp, [out (Fun, X)]) , paper)

2.3. LOGICAL DESCRIPTION OF A DEVICE 15

Table 2.6: Rewriting of the high-level language in first-order logic

High-level language First-order logic

(define (α :: β)) subclassof (β, α)

subclassof (β, α)
(define (α :: β :: γ :: δ)) subclassof (γ, β)

subclassof (δ, γ)

type(e1, τ)
(define (τ e1, e2, . . .)) type(e2, τ)

...

(define (e1 p e2)) p(e1, e2)

(define (every δ has φ))
type(D, δ)→ type(fk(D), φ)

∧ hasfunct(D, fk(D))

(define (d has φ)) type(fk(d), φ) ∧ hasfunct(d, fk(d))

(define (φ F
(τ1 I1 as F .In)

...
(τn In as F .In)
(Prec1)(. . .)

⇒
(τo O as F .Out)
(Post1)(. . .)

))

type(F, φ) ∧ hasfunct(D,F)

∧
n∧
k=1

type(Ik, τk)

∧ Prec(~I, D)
→

type(out
(
F, [~I]

)
, τo)

∧ Post(~I, out
(
F, [~I]

)
, D)

• α, β, . . . are names of class;

• keyword represents keywords of the high-level language;

• a, b, ... are instances;

• A, B , ... stands for variables;

• pred represents predicates in the high-level language;

• Prec1 and Post1 stands for preconditions and post-conditions respectively.

16 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

– instanceof relations in the taxonomies: type(d, c);

– subclass relations in the taxonomies: subclassof (c1, c2);

– the assertions of known properties about the device:

∗ type(d, c);
∗ connected(d, d′);
∗ located(d, l), type(l, cl);
∗ inside(l1, l2);
∗ stored(o, d), type(o, co);
∗ hasfunct(d, f(d)), type(f(d), cf); where f is a skolem function denoting one of the

functionalities of the device d.

• a set of rules type(d, cd) → hasfunt(d, f(d)), type(f(d), cf), to assert that every device of
type cd has a functionality of type cf

• a set of rules R describing the functionalities of the device, where a rule r has the form shown in
table 2.3;

• a set of rules expressing the inheritance of types. It can also include transitivity, symmetry, reflex-
ivity of some properties.

Finally, for a device d, Descr (d) denotes the union of facts and rules mentioned above that describe
the device. By extension, for a set D of devices:

Descr (D) =
⋃
d∈D

Descr (d)

2.4 Composition of functionalities

Composing two functionalities F and G consists either in using the output of F as an input of G, or in
performing F so that its effects satisfy the preconditions of G.

2.4.1 The relay race composition

Definition 3 : The relay race composition1 is the composition of two or more functionalities made by
matching up their signatures. Before completing the relay race composition of two functionalities F and
G, we have to check whether the type of the output of F and the type of the input of G match. �

Let us consider the relay race composition between two functionalities F and G where the k-th input
of G is provided by F . Thus, we can express this composition by writing the output of G this way

out (G, [I1, . . . , Ik−1, out (F, X) , Ik+1, . . .])

This expression permits us to read directly the structure of the relay race composition and leads us to
define the ordered tree of composition of an output.

Definition 4 : An ordered tree T is recursively defined by its root r and the ordered list [s1, . . . , sn]
of the sub-trees that are sons of r. We write

T = (r, [s1, . . . , sn])

1named after the relay race where the runners pass one another the baton

2.5. SPECIFICATION OF QUERIES 17

If r is a leaf, then

T = (r, []) �

Definition 5 : The ordered tree of composition TΩ of an output Ω is an ordered tree that reflects
the structure of Ω:

• If Ω = c, where c is a constant of the language, then

TΩ = (c, [])

• If Ω = out (f, [X1, . . . , Xn]), where f is a functionality and each Xi is either an expression of
an output or a constant of the language, then

TΩ = (f, [TX1 , . . . , TXn])

where TXi is the ordered tree of composition of the output Xi.

�

Then, we can define the depth of a relay race composition.

Definition 6 : The depth of a relay race composition is the height of its ordered tree of composition.
�

An example of outputs and their ordered trees of composition can be seen on figure 2.2. The depth
of the output on the right hand side is 2, and the depth of the output on the left hand side is 3.

2.4.2 The assembly line composition

Definition 7 : The assembly line composition2 is the composition of two or more functionalities made
by matching up their assertions. Before completing the assembly line composition of two functionalities
F and G, we have to check whether the preconditions of G can be fulfilled by the post-conditions of F .
�

Note that the expression of an output with the function out does not permit to express the assembly
line composition. The way to express an assembly line composition will be seen in section ??.

2.5 Specification of queries

Here are two kinds of queries and their translation in the high-level language and its semantics in logic.
For each of them, a detailed answer and an interpretation is given.

Definition 8 : A query Q is defined by a set of rules (denoted by Def (Q)) of the form:

2named after the moving assembly line model of production developed by Henry Ford

18 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

out(f2(cmp1), [
out(f1(phn1), [out(f3(phn1), [

out(f1(cmp1), ["Peter", "Zweistein"]), out(f2(phn1), [])
"Hello!"]),

]) out(f2(phn1), [])
])

(a) Expressions of outputs

f1(phn1)

f1(cmp1)

Peter Zweistein

Hello !

f2(cmp1)

f3(phn1)

f2(phn1)

[]

f2(phn1)

[]

(b) Ordered trees of composition

phn1: a phone ; cmp1: a computer
f1(phn1) send a SMS 1: a phone number

2: the message to send
f1(cmp1) find a phone number 1: a first name

2: a last name
f3(phn1) list of price of carriers
f2(phn1) list of carriers
f2(cmp1) return the key of the max 1: a list of value to sort

2: a list of keys
(c) Semantic of each functionality and device

Figure 2.2: Two outputs and their ordered trees of composition

Def (Q):
n∧
i=1

Ri(t1i , t
2
i)→ Q(X0, . . . , Xp)

where tji are terms of the language or variables, Ri are predicates and for all k in [[1 ; p]] it exists i in
[[1 ; n]] and j in {1, 2} so that Xk appears in tji . Afterwards X0, . . . , Xp will be denoted by v̄ and called
variables of interest . In the high-level language, a variable of interest begins with a question mark. �

Definition 9 : Let D be a set of devices. The answers to the query Q against the union of
description Descr (D) — denoted by Answer (Q, D) — is the set of tuples t̄ on Herbrand universe of
Descr (D) instantiated terms for which Q(t̄) can be logically entailed from the devices descriptions and
the definition of the query.

Answer (Q, D) = {t̄ ∈ H(Descr (D))p / Descr (D) ,Def (Q) |= Q(t̄)}
�

2.5. SPECIFICATION OF QUERIES 19

2.5.1 Yes-no queries

A yes-no query is a query without variable of interest. An answer to this kind of queries is either ‘yes’
or ‘no’. It corresponds to the yes-no questions in English. For example:

‘Is the text file mytxt stored in the computer mycmp ?’

In the high-level language, we write:

(query q1 (mytxt stored mycmp))

which is in logic:

stored(mytxt, mycmp)→ q1

Another example:

‘Is there any printer in the room r ?’

In the high-level language, we write:

(query q2 (printer P)
(P location r))

which is in logic:

type(P, printer) ∧ location(P, r)→ q2

The second example contains a variable but it is not a variable of interest. So, the answer of q2 will
be ‘yes’ or ‘no’ rather than an instantiation of the variable P.

2.5.2 Wh- queries

A wh- query is a query with variables of interest. An answer to this kind of queries is an instantiation
of the variables of interest so that the formula of the query holds. It corresponds to the wh- questions in
English. For example:

‘Which device with a printing functionality is mypc connected to ?’

In the high-level language, we write:

(query q3 (mypc connected ?F .Dev)
(printing F))

which corresponds, in logic, to:

connected(mypc, D) ∧ hasfunct(D,F) ∧ type(F, printing)→ q3(D)

20 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

2.5.3 Composed functionalities as answers to queries

Wh- queries can also retrieve composed functionalities. In our approach, the composition of functional-
ities is encoded in the expression of the output with the function out. So, to fetch a possible composition,
it is sufficient to make a query where a variable of interest is the output of a functionality. For instance,
if we want to print a file, we will look for a (possibly composed) functionality which gets a file and
provides a printed paper, under the constraint that the file should be a copy of the file we want to print.
Moreover, we need the printer to be located in a particular room r. The word ‘printer’ should actually be
read ‘the device which performs the searched functionality’. In the high-level language we will write:

(query q4 (Fclass F)
(file I1 as F .In)
(I1 same myps)
(F .Dev location r)
(paper ?Output as F .Out))

which is in logic:

type(F, Fclass)
∧ type(I1, file)
∧ same(I1, myps)
∧ hasfunct(Dev, F) ∧ location(Dev, r)
∧ type(out (F, [I1]) , paper)
→ q4(out (F, [I1]))

An answer to such queries is an instance of the variables of interest. Considering the form of the
variable of interest, the form of the answer will be out (F, [. . .]). Thus, the structure of the composition
can be read in the answer.

As we have described the devices and their functionalities, we have just been able to make queries
on this knowledge. We will now introduce views to define virtual objects.

2.6 Specification of virtual objects

The idea of virtual objects has already been introduced in both scenario 1.2.5 and scenario 1.2.6. The
former brings the concept of virtual devices while the latter brings the concept of virtual functionalities.
Virtual objects are views. They are written in such a way that it is simple to reuse them as normal objects
in other queries.

The advantages of virtual objects are the following ones. Rather than referring to an absolute device
or to a composition of functionalities defined beforehand, the query-based definition of the virtual object
is evaluated: so it reflects the dynamic environment. Though the evaluation may be different each time,
the definition remains the same.

2.6.1 Virtual devices

A virtual device is defined by a query which retrieves a list of devices. Then, all the properties and func-
tionalities have to be redefined. For example, the location of the virtual device has to be set. Sometimes,
it is necessary to keep the instantiations of some of the variables which are present in the definition of a
virtual device. For that purpose, the name of the virtual device can be a function of those variables.

2.6. SPECIFICATION OF VIRTUAL OBJECTS 21

Let us go back to the scenario 1.2.5. In this scenario, two screens in the same room could possibly
work together as a new virtual device to display a wider resolution of a video stream.

In the high-level language, the keyword view is used to introduce the virtual device, and to give it a
name, a type, and some of its properties. Then, the keyword as is used to introduce the specification of
the query which will be the definition of the view. Thus, we should write:

(view (screen bigscreen)
(bigscreen location X)

as (screen ?L, ?R)
(room X)
(?L location X)
(?R location X)

which first-order logic semantics is:

type(L, screen) ∧ type(R, screen)
∧ type(X, room)
∧ location(L,X) ∧ location(R,X)

→ type(bigscreen([L,R]), screen)
∧ location(bigscreen([L,R]), X)

Suppose that leftscr and rightscr are two screens in the same room r, then according to the
previous rules, the class of bigscreen([leftscr, rightscr]) is screen and its location is r.

2.6.2 Virtual functionalities

Let us go back to the scenario on section 1.2.6. To define the virtual functionality which prints files in
PDF format, we write in the high-level language:

1 (view (pdfprinting vf
2 (pdf I as vf.In)
3 ⇒ (paper O as vf.Out)
4)
5 as (I is G .In)
6 (ps P2 as G .Out)
7 (X same P2)
8 (ps X as F .In)
9 (O same F .Out)
10 (vf.Dev is F .Dev)
11)

Let us use the line numbering to explain step by step what it is said in this definition. In line 1,
the class of the virtual functionality is declared. This class name has to be inserted in the taxonomy
beforehand. Lines 2 and 3, the signature of the currently described functionality. The signature is
mandatory here. Line 5, the keyword as introduce the query which defines the functionality.

The input of the virtual functionality should be the input of a functionality G (line 5) whose output
is a ps file (line 6). Then, the input of the functionality F (line 8) should be the same as the output of G
(line 7). This let us the possibility to find a way to transfer the data between G and F in case the devices
that perform them are not connected. The output of the virtual functionality will be the same as the

22 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

output of F (line 9). Finally the device which has this virtual functionality is the device that performs
the last functionality F (line 10).

Thus, here is the semantics of the previous definition, in first-order logic:

type(I, pdf)
∧ type(out (G, [I]) , ps)
∧ same(J, out (G, [I]))
∧ type(J, ps)
∧ type(out (F, [J]) , paper)
∧ hasfunct(D, F)

→
type(out (vf1(D), [I]) , paper)
∧ same(out (vf1(D), [I]) , out (F, [J]))
∧ hasfunct(D, vf1(D))
∧ type(vf1(D), pdfprinting)

Therefore, it is possible to access the new virtual functionality as a normal one. For any device D which
has a functionality providing papers, the virtual functionality described here is associated with D. Then
the query same(out (vf1(D), [I]) , X) instantiate the variable X with the corresponding output which
is hidden behind the output of the virtual functionality.

2.6.3 Combination of virtual devices and virtual functionalities

In section 2.6.1 we have introduced virtual devices, using the scenario 1.2.5 where two screens were
stitched together to make a composed screen with higher resolution. But in that scenario, there was
nothing to split the video stream. So now, we will look for a functionality which performs such an
operation and we will package it together with the two screens as the displaying functionality of the
virtual device. This way, the virtual device will be associated with a virtual functionality .

2.7 Extension to heterogeneous descriptions

So far we defined the language of the description but each class used in the taxonomy. In the language,
this have never been really defined and we implicitly understood that there were a common taxonomy
among the devices. Yet, this is a constraint that is usually not met in real world, and even though a device
which connects to the network must describe itself in the defined language, it can afford a different
taxonomy. The effort of bringing a widely common ontology is usually justified by the will to free
oneself from the complexity of the natural language. Nevertheless, we can spare us one official way of
thinking by providing flexibility to our language, dealing with heterogeneous descriptions.

We regard heterogeneous descriptions as the fact that two different devices may have used different
taxonomies in their description (with other things the same). Now if taxonomies are different, we need a
way to link one to the other, that is to say a mapping between the different taxonomies.

To prevent class name to overlap, we suppose that classes name of a taxonomies of a certain device
are always prefixed with the identifier of that device. Figure 2.3 shows an example of such a mapping
where a class name of the taxonomy of the first device is prefixed with 1 while for the second device, it
is prefixed with 2.

We define three kinds of mappings, all illustrated in figure 2.3:

• the inclusion;

2.7. EXTENSION TO HETEROGENEOUS DESCRIPTIONS 23

1.device

1.display 1.pointer

2.peripheral

2.screen 2.touchscreen

∩

Figure 2.3: Example of mappings between taxonomies

Table 2.7: Rewriting mappings using only inclusion

(a1 ∪ a2) ⊂ b ∧ a1 ⊂ b
a2 ⊂ b

a ⊂ (b1 ∩ b2) ∧ a ⊂ b1
a ⊂ b2

a = b ∧ a ⊂ b
b ⊂ a

• the inclusion to the intersection of more than one class.

• the equivalence.

Note that, as we don’t allow negation in our language, there is no way to express disjointness of
classes.

In figure 2.3, the dashed arrows have the following meaning. 1.device and 2.peripheral are equivalent
and the equivalence is represented by a dashed two-headed arrow. 2.screen is a 1.display. It means that
any device which type is 2.screen are considered as 1.display. This inclusion is represented by a dashed
arrow pointing towards 1.device. A 2.touchscreen is both a 1.display and a 1.pointer. It is represented by
a dashed arrow pointing to a cap joining 1.display and 1.pointer.

Once a device connects to a network (actually it connects to one or more devices that are already in
the network), we assume that it brings is own description and that somehow a mapping is provided. It
can be asked to the user or automatically discovered, but this is out of our scope.

Finally, it is possible to express every mapping into inclusion only as shown in table 2.7. Therefore,
table 2.8 provides the semantics in first-order logic of the mappings.

24 CHAPTER 2. A LOGIC-BASED LANGUAGE TO DESCRIBE DEVICES

Table 2.8: Semantic in first-order logic of the mappings
Mappings between classes Semantic in first-order logic

a ⊂ b type(X, a)→ type(X, b)

(a1 ∪ a2) ⊂ b ∧ type(X, a1)→ type(X, b)
type(X, a1)→ type(X, b)

a ⊂ (b1 ∩ b2) ∧ type(X, a)→ type(X, b1)
type(X, a)→ type(X, b2)

a = b ∧ type(X, a)→ type(X, b)
type(X, b)→ type(X, a)

Chapter 3

Centralised reasoning for dynamic
composition of resources

Contents
3.1 Using PROLOG as a reasoning engine . 25
3.2 Experiments . 26

3.2.1 The basis of the scenarios . 26

3.2.2 About the curves . 27

3.3 Different scenarios . 27
3.3.1 Scenario almost without type constraint . 27

3.3.2 Best case: a single possible composition of depth 2 27

3.3.3 A single possible composition of depth n . 29

3.3.4 n possible compositions of depth 2 . 31

3.3.5 n2 possible compositions of depth 2 . 33

3.3.6 2n/2 possible compositions of depth n/2 . 34

3.4 Summary . 36

In this chapter, we assume that it exists a central repository of the descriptions of each devices of
the network. The description language and the query language as they have been defined in chapter 2,
may be undecidable. The language has some restriction compared to the Horn clause language. We
know that satisfiability of definite Horn clause in first-order logic is undecidable. However, in one hand,
our language contains no existential quantifiers, in the other hand it uses functions. The question of
decidability have not been explored further.

There are reasoner like PROLOG that can answer queries using SLD-resolution methods. Those fit
better our needs then some other tableaux-based reasoners or rule-base semantic reasoner for instance.

3.1 Using PROLOG as a reasoning engine

We need a reasoner to infer the possible composition of functionalities according to the description of
each device. As seen in chapter 2, the description and the queries languages are translated in logic, so
that we can use a reasoner to answer a query. We use PROLOG as a reasoner in order to answer the
queries.

25

26 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

PROLOG instantiate the variables of a query so that the query with the substitutions applied is a
logical consequence of the description. This is achieved by traversing the search space and looking
for solution to the problem. While PROLOG find a possible solution it will dig into the success branch
until either the set of sub-goals becomes empty or a failure appears. In the latter case, a backtracking
process is launched finding another solution in one of the previous alternative not tried yet. Doing so, it
is impossible to avoid infinite loop.

However, XSB [23] uses the concept of tabling [21, 22] to store goal matches and previously partial
answers met during the resolution. This is like carrying a transitive closure of the solution to avoid simple
loop recursion of recursive loop. But not all loop can be caught this way.

3.2 Experiments

We aim to check whether the process of retrieving answers to queries is scalable for the case where the
whole description is centralised and accessible. For that purpose, we will make six variants of a scenario.
Those variants are easily generated by the high-level language introduced in chapter 2. All variants will
declare the same devices, and use the same functionalities. Moreover, each scenario will be repeated
with a variable number of devices. In one of the variants we will almost remove the typing while in
the others the typing described previously will be present. Among those five latter scenarios, the graph
of connections will be different. As connections between devices are necessary for composition in this
case, the graph of connections will determine both the number of the compositions and their depth (see
definition 6).

3.2.1 The basis of the scenarios

The scenarios are basically about printing a file stored in a computer. We will repeat each scenario for a
variable number of devices. In this chapter, the variable n will stand for that number of devices.

All of the following scenarios are made of:

• n printers (prni)i∈[[1 ;n]]

• n+ 1 computers

– mypc: the computer where data are stored;

– (srvi)i∈[[1 ;n]]: computers.

The file myps is stored in the computer mypc. Every computer can upload any of its files onto a
computer to which it is connected. Every printer has a printing functionality.

The query for each scenario is kept identical. In regular english, the query is ‘We want a printed
version of the file myps (which is stored in the computer mypc)’ while in the high-level language it is:

(query q1 (funcF)
(file I1 as F .In)
(I1 same myps)
(paper ?O as F .Out)

)

Definition 10 : A oriented graph G = (V,E) is called graph of connections if and only if the
following conditions are all met:

3.3. DIFFERENT SCENARIOS 27

• V ⊂ { d | type(d, device) }

• (d1, d2) ∈ E ⇔ connected(d1, d2)

In other words a graph of connections is a graph with devices as vertices and where there is an arc from
a device d1 to a device d2 if and only if the atom connected(d1, d2) holds. �

The graph of connections between the devices makes the singularity of each scenario as it changes
the number and the depth of the compositions retrieved for the query. That graph will be detailed for
each scenario.

3.2.2 About the curves

For each scenario, two curves are drawn. The first one represents the time consumption depending on the
number of devices, and the second one represents the memory consumption depending on the number of
devices. To find the best polynomial function passing as near as possible to all the measured points, the
easiest is to find a straight line using the least squares method.

Thus, drawing a curve with a logarithmic scale for the x-axis and the y-axis (called afterwards logar-
ithmic coordinate system) permits us to compute directly the degree of the nearest polynomial function.
A curve with a logarithmic scale for the y-axis only (called afterwards semi logarithmic coordinate sys-
tem) permits us to show that the curve is exponential.

3.3 Different scenarios

3.3.1 Scenario almost without type constraint

In our model, typing is so fundamental that it is impossible to simply remove the types. However, we
can prevent types from being meaningful by providing each object with the same type. Actually, in our
approach we still need to be able to distinguish a functionality from a data, from a device, etc. Thus, we
use the following meaningless types:

• devnull for every device;

• funcnull for every functionality;

• locnull for every location;

• datanull for every data.

We use the same graph of connections as for the scenario described in section 3.3.2. Nevertheless,
there are many more answers to the query than in the equivalent scenario with types, because some of
the compositions retrieved cannot be performed, due to a lack of type constraint. Even worse, some
functionality are claimed to be feasible while they are not when there is typing constraint. Except for the
scenario 3.3.2, all the others when removing types tend to be exponential in time.

3.3.2 Best case: a single possible composition of depth 2

In this scenario, we have the following connections represented by the graph of connections on figure 3.1:

connected(mypc, srv1)
connected(srv1, prn1)

28 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

For any number n of devices, there are only two connections. Thus, there is only one possible
composition: mypc uploads the file myps onto the server srv1 which is in charge to send it to the
printer prn1. But as n grows, the other devices become noises for the search of the solution.

Statistics and curves

Statistical curves depending on the number of devices are drawn on figure 3.2 in a logarithmic coordinate
system. The curve on figure 3.2(a) represents the time consumption. With the least squares method, we
find out that time consumption is quadratic with n. The memory consumption due to the XSB table is
represented by curve on figure 3.2(b). The memory consumption is linear with n.

Interpretation

We have to consider the PROLOG engine used to make the experiments in order to analyse the result. We
use XSB. Before the evaluation of a query, XSB creates an indexed table of the predicates. Then, during

mypc srv1 prn1

srvi prni

srvn prnn

Figure 3.1: Schema of connections in the scenario 3.3.2

0.1

1

10

100

1000

128 256 512 1024 2048 4096 8192 16384
n devices

Time (s)

(a) Time consumption

15

100
400

2000

1 4 16 64 256 1024 4096 16384

n devices

Memory (Ko)

(b) Memory usage

Figure 3.2: Scenario with a single possible composition of depth 2

3.3. DIFFERENT SCENARIOS 29

Number of devices Time (s) Time for table Memory (Ko)
128 0.04 0.03 22
256 0.10 0.12 30
512 0.32 0.26 44
1024 1.28 1 77
2048 5.06 2.3 150
4096 20.2 16.1 298
8192 80.4 70 593

16384 321.7 300 1183

Table 3.1: Data of the scenario with a single possible composition of depth 2

the evaluation, XSB can access the table to prove a sub-goal. In this experiment, we have to remove the
time taken to build up the XSB table as it is done only once. That is why in table 3.1 there is a column
showing the time taken to build the XSB table.

The results of the query type(X,Y) are stored in the XSB table. They represent a portion of
size n of the table, since there are as many lines as devices. The results of the queries same(X,Y)
and stored(X,Y) are also in the XSB table and their size is constant because they appear only for the
possible connection.

Now, to find all the answers to the query, we have to check every printer (n) and for everyone, we
have to look up in the table of size n. This takes a linear time. We can conclude that the time consumption
is quadratic (n2).

3.3.3 A single possible composition of depth n

In this scenario, we have the following connections represented by the graph of connections on figure 3.3:

∀i ∈ [[1;n− 1]]
connected(mypc, srv1)

connected(srvi, srvi+1)
connected(srvn, prnn)

There are n+ 1 connections, so that there is only one possibility to print, through the whole chain of
servers, on the printer prnn.

Statistics and curves

Statistical curves depending on the number of devices are drawn on figure 3.4 in a logarithmic coordinate
system. The curve on figure 3.4(a) represents the time consumption. It appears to be quartic with n. The

mypc srv1 prn1

srvi prni

srvi+1 prni+1

srvn prnn

Figure 3.3: Schema of connections in the scenario 3.3.3

30 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

curve on figure 3.4(b) represents the memory consumption due to the XSB table. The memory space
used is cubic with n.

Interpretation

The results of the query same(X,Y) are stored in the XSB table. There are all the following answers:

∀i, j ∈ [[1 ; n]]

same(out (f(srvi−1), [out (f(srvi−2), [..., srvi−1]) , srvi])︸ ︷︷ ︸
depth i

,

out (f(srvj−1), [out (f(srvj−2), [..., srvj−1]) , srvj])︸ ︷︷ ︸
depth j

)

For any i and j between 1 and n, there is a line in the XSB table; and the size of this line is i+ j. Thus,
this portion of the table represents a portion of size

n∑
i=1

n∑
j=1

i+ j ∼ n3

of the XSB table.
There is also the results of the query type(X,Y) which still represents a portion of size n; and the

results of the query stored(X,Y), which are:

0.2s

1s

5

25

125

1 2 4 8 16 32 64 128
n devices

Time (s)

(a) Time consumption

0.01

1

100

1 2 4 8 16 32 64 128
n devices

Memory (Mo)

(b) Memory usage

Figure 3.4: Scenario with a single possible composition of depth n

3.3. DIFFERENT SCENARIOS 31

Number of devices Time (s) Memory (Ko)
1 0.01 11
2 0.01 18
4 0.01 44
8 0.01 181
16 0.02 1 Mo
32 0.31 6 Mo
64 4.3 48 Mo
128 68 371 Mo

Table 3.2: Data of the scenario with a single possible composition of depth n

mypc srv1 prn1

srvi prni

srvn prnn

Figure 3.5: Schema of connections in the scenario 3.3.4

∀i ∈ [[1 ; n]] stored(out (f(srvi−1), [out (f(srvi−2), [..., srvi−1]) , srvi])︸ ︷︷ ︸
depth i

, srvi)

They represents a portion of size n2 of the XSB table.
Thus, the global size of the table is n3.
Now, to find all the answers to the query, we have to check every server (n) of the chain and for

everyone, we have to look up in the table of size n3. Thus, the time consumption is quartic.

3.3.4 n possible compositions of depth 2

In this scenario, we have the following connections represented by the graph of connections on figure 3.5:

∀i ∈ [[1;n]]
{

connected(mypc, srvi)
connected(srvi, prni)

There are 2n connections, so that there are n possibilities to print the file myps. For any i, uploading
to the server i and then printing on the printer i is a possible answer to the query.

Statistics and curves

Statistical curves depending on the number of devices are drawn on figure 3.6 in a logarithmic coordinate
system. The time consumption is represented on the curve on figure 3.6(a). It appears to be cubic with n.
The curve on figure 3.6(b) represents the memory consumption due to the XSB table. The memory space
used is quadratic with n.

Interpretation

The results of the query same(X,Y) are stored in the XSB table and there are all the following answers:

32 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

Number of devices Time (s) Memory (Ko)
8 0.01 58
16 0.01 162
32 0.04 492 Ko
64 0.29 1.7 Mo

128 2.20 6.3 Mo
256 17.4 24 Mo
512 133 96 Mo

Table 3.3: Data of the scenario with n possible compositions of depth 2

∀i, j ∈ [[1 ; n]] same(out (f(mypc), [myps, srvi]) , out (f(mypc), [myps, srvj]))

They represent a portion of size n2 of the XSB table.
The results of the query stored(X,Y) are:

∀i ∈ [[1 ; n]] stored(out (f(mypc, [myps, srvi]), srvi))

They represent a portion of size n of the XSB table.
Thus, the global size of the table is n2.
Finally, to find each of the n final answers to the main query, we have to access the n2-sized table.

Thus, the time consumption is cubic.

0.01

0.1

1

10

100

8 16 32 64 128 256 512
n devices

Time (s)

(a) Time consumption

0.1
1

100
1000

8 16 32 64 128 256 512
n devices

Memory (Mo)

(b) Memory usage

Figure 3.6: Scenario with n possible compositions of depth 2

3.3. DIFFERENT SCENARIOS 33

mypc srv1 prn1

srvi prni

srvn prnn

Figure 3.7: Schema of connections in the scenario 3.3.5

3.3.5 n2 possible compositions of depth 2

In this scenario, we have the following connections represented by the graph of connections on figure 3.7:

∀i, j ∈ [[1;n]]
{

connected(mypc, srvi)
connected(srvi, prnj)

There are n2 connections and there are n2 possibilities to print the file myps. For any i and j, it is
made possible by the connections to upload the file onto the server i and then to print it on the printer j.

Statistics and curves

Statistical curves depending on the number of devices are drawn on figure 3.8 in a logarithmic coordinate
system. The curve on figure 3.8(a) represents the time consumption. It appears to be quartic with n. The
curve on figure 3.8(b) represents the memory consumption due to the XSB table. The memory space
used is quadratic with n.

Number of devices Time (s) Memory (Ko)
1 0.02 11 Ko
2 0.02 16 Ko
4 0.03 28 Ko
8 0.03 58 Ko
16 0.07 162 Ko
32 0.27 493 Ko
64 2 1.7 Mo
128 21 6.3 Mo
256 280 24.5 Mo
512 4217 96 Mo

Table 3.4: Data of the scenario with n2 possible compositions of depth 2

Interpretation

The results of the query type(X, paper) are stored in the XSB table and there are all the following
answers:

∀i, j ∈ [[1 ; n]] type(out
(
g(prnj), [out (f(mypc), [myps, srvi])]

)
, paper)

34 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

0.1s
1s

1m

1h

8 16 32 64 128 256 512
n devices

Time (s)

(a) Time consumption

0.1
1

100
1000

8 16 32 64 128 256 512
n devices

Memory (Mo)

(b) Memory usage

Figure 3.8: Scenario with n2 possible compositions of depth 2

They represent a portion of size n2 of the XSB table.

The results of the query stored(X,Y) are stored in the XSB table and there are all the following
answers:

∀i ∈ [[1 ; n]] stored(out (f(mypc), [myps, srvi]) , srvi)

These answers represent a portion of size n of the XSB table.

The results of the query same(X,Y) are stored in the XSB table and there are all the following
answers:

∀i, j ∈ [[1 ; n]] same(out (f(mypc), [myps, srvi]) , out (f(mypc), [myps, srvj]))

They represent a portion of size n2 of the XSB table.

Thus, the size of the whole XSB table is n2.
Finally, to find each of the n2 final answers to the main query, we need to access the n2-sized table.

Thus the time consumption is quartic.

3.3.6 2n/2 possible compositions of depth n/2

In this scenario, we suppose that n = 2p. We have the following connections represented by the graph
of connections on figure 3.9:

∀i, j ∈ {0, 1} × [[1; p]] srv2i−j+2 ≡ srvij

3.3. DIFFERENT SCENARIOS 35

∀i ∈ {0, 1}
∀j ∈ [[1; p− 1]]

connected(srvij , srv

i
j+1)

connected(srvij , srv
1−i
j+1)

connected(mypc, srvi1)
connected(srvip, prni)

There are only 2×n connections but there are 2p possibilities to print the file. For any x, if i0, . . . , ip
is the binary writing of x, then it is made possible by the connections to upload the file onto the server i0,
then onto the server i1, ..., and finally onto the server ip before printing it with the printer ip + 1.

mypc srv01 srv0
j srv0

p prn1

srv11 srv1
j srv1

p prn2

Figure 3.9: Schema of connections in the scenario 3.3.6

Statistics and curves

Statistical curves depending on the number of devices are drawn on figure 3.10. Attention should be
paid to the fact that here the curves are drawn in a semi-logarithmic coordinate system. The curve on
figure 3.10(a) represents the time consumption. It appears to be exponential with n. The curve on
figure 3.10(b) represents the memory consumption due to the XSB table. The memory space used is
exponential with n.

0.1s
1s

1m

1h

8 10 12 14 16 18
n devices

Time (s)

(a) Time consumption

1Ko

1Mo

1Go

8 10 12 14 16 18
n devices

Memory

(b) Memory usage

Figure 3.10: Scenario with 2p composition of depth p = bn/2c

36 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

Number of devices Time (s) Memory (Ko)
2 0.01 16 Ko
4 0.02 48 Ko
8 0.06 885 Ko
10 0.53 4 Mo
12 5.3 18.3 Mo
14 48 81.6 Mo
16 441 362 Mo
18 4503 3897 Mo

Table 3.5: Data of the scenario with 2p compositions of depth p = bn/2c

Interpretation

The results of the query type(X, paper) are stored in the XSB table and there are 2p answers of depth p.
Thus, they represent a portion of size p2p of the table.

The results of the query stored(X,Y) are stored in the XSB table and represent a portion of size p2p

of the table.
The results of the query same(X,Y) are stored in the XSB table and represent a portion of size p22p

of the table.
Thus, the size of the whole XSB table is p22p.
Then, to find each of the 2p final answers to the main query, we need to access the p22p-sized table.

Thus the time consumption is n22n.

3.4 Summary

This bunch of scenarios shows the behaviour of a quite common scenario with respects to the number of
devices involved. We have seen with the scenario 3.3.2 how the typing is important. Typing narrows the
field to explore in the description in order to find answers to a query.

There is a summary of all the scenarios seen in this chapter, on table 3.6.

Scenarios 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6
possible compositions 1 1 n n2 2n

depth of the compositions 2 n 2 2 n

time consumption n2 n4 n3 n4 n22n

memory usage n n3 n2 n2 n22n

Table 3.6: Summary of all the scenarios

Let us compare the scenario 3.3.2 — where there is a single possible composition of depth 2 — with
the scenario 3.3.3 — where the depth of the single possible composition is n. The time consumption and
the memory usage are multiplied by n2, when the depth of the compositions are only multiplied by a
n. The comparison between the scenario 3.3.2 and the scenario 3.3.4, considering a number of possible
compositions multiplied by n, we can see that time and memory are multiplied by n too. Cross verifying
with the comparison between scenario 3.3.4 and the scenario 3.3.5 which have the same difference as in
the previous comparison, does not show any differences with the memory usage. This can be explain if
we go back to the scenario and if we see precisely what is stored in memory. There is nothing stored in

3.4. SUMMARY 37

the XSB table that associates a printer and a server in this particular scenario which is the main difference
in the graph of connections.

38 CHAPTER 3. CENTRALISED REASONING FOR DYNAMIC COMPOSITION

Chapter 4

Decentralised reasoning for dynamic
composition of resources

Contents
4.1 Reminders and preliminaries . 40

4.1.1 Logical description of a device and its functionalities 40

4.1.2 Queries . 42

4.1.3 Example . 44

4.1.4 Relevant devices for a query . 45

4.2 Propositional encoding: principles and properties 48
4.2.1 Encoding of device descriptions and queries 48

4.2.2 Properties . 52

4.2.3 Examples . 57

4.3 Look-up by decentralised propositional reasoning 59
4.3.1 Look-up: definition and properties . 59

4.3.2 Decentralised computation of Lookup (Q) using SOMEWHERE 61

4.4 Heterogeneous descriptions . 62

We assume in this chapter that there is not a central repository of the descriptions of each devices.
Instead every device will store their own descriptions. Also, each device has only a few neighbours to
which it is connected. We assume that it cannot exchange data, messages and descriptions but with its
very neighbours. In this context, the first problem to solve for a device that is queried (by a user or by
another device) is to find in the network the relevant devices whose (possibly composed) functionalities
can answer the query. This is a difficult problem since each device has a partial knowledge of the
networked devices and their functionalities.

A flooding strategy could be applied: it would consist of spreading the query from a device to all
its neighbours and so on. Each device that could answer part of the query would transmit back the
corresponding answers. All the answers finally received by the initially requested device would have
to be combined. Such a flooding strategy can be applied to P2P systems sharing files (e.g. gnutella)
because the queries are simple keywords and the expected answers are single file fitting the keywords of
the query instead of a set of tuples. In our setting, queries contain variables that can be unified possibly
within functions in many ways. A flooding strategy would require to spread complex queries and to send
back complex answers that would have to be combined by the queried device, anyway.

39

40 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Our approach to answer queries in this decentralised setting is in two steps. First, a look up step that
looks in the network for the relevant devices (i.e. the ones whose descriptions are sufficient to answer
to the query). Then, the second step, which is achieved by the requested device, consists of getting the
descriptions stored in the relevant devices previously found and to locally reason upon them using its
local PROLOG engine in order to answer the query.

In this chapter, we focus on the look-up step which is the main issue in a decentralised setting — it
corresponds to the (B), (C) and (D) steps in figure 4.6. Our approach can be seen as a flooding strategy
applied to an abstraction in propositional logic of the first-orderquery and the device descriptions. This
way, queries are abstracted into ‘keywords’ queries where the ‘keywords’ are propositional variables;
and device descriptions are abstracted into propositional rules. The look-up is then carried out by a
decentralised reasoning in propositional logic which is implemented by the existing SOMEWHERE plat-
form [20].

We will begin with a set of reminders and preliminaries to define the set of devices that are relevant
to a query. Then we describe the propositional encoding of first-order description that we propose with
its properties. Next, we explain how a decentralised reasoning on this encoding with the encoding of a
query can be exploited to find a subset of relevant devices that are still sufficient to get all the answer to
the query. Finally,

4.1 Reminders and preliminaries

4.1.1 Logical description of a device and its functionalities

A device d stores its description: a set of facts and rules in first-order logic. It contains:

• a set of facts representing:

– instanceof relations in the taxonomies: type(d, c);

– subclass relations in the taxonomies: subclassof (c1, c2);

– the assertions of known properties about the device:

∗ type(d, c);
∗ connected(d, d′);
∗ located(d, l), type(l, cl);
∗ inside(l1, l2);
∗ stored(o, d), type(o, co);
∗ hasfunct(d, f(d)), type(f(d), cf); where f is a skolem function denoting one of the

functionalities of the device d.

• a set of rules type(d, cd) → hasfunt(d, f(d)), type(f(d), cf), to assert that every device of
type cd has a functionality of type cf

• a set of rules R describing the functionalities of the device, where a rule r has the form:

4.1. REMINDERS AND PRELIMINARIES 41

r : type(F, T) Type the functionality
∧ hasfunct(D,F) Specify the device

∧
n∧
k=1

type(Ik, Tk) Type the inputs

∧ Prec(~I,D) Define preconditions
→ type(out(F, [~I]), To) Type the output

∧ Post(~I, out(F, [~I]), D) Define post-conditions

where

– T is the type of the described functionality;
– D is the device that has the functionality;
– n is the number of inputs for this class T of functionalities;
– Ik is one of the inputs;
– out is a function representing the output of a functionality F on its inputs [~I];
– ~I represents I1, . . . , In;
– Prec is a conjunction of preconditions where the inputs and the device D are involved;
– Post is a conjunction of post-conditions where the inputs, the output and the device D are

involved;

• a set of rules expressing the inheritance of types. It can also include transitivity, symmetry, reflex-
ivity of some properties.

Finally, for a device d, Descr (d) denotes the union of facts and rules mentioned above that describe
the device. By extension, for a set D of devices:

Descr (D) =
⋃
d∈D

Descr (d)

For convenience, for a rule r, we define Descr−1 (r)

d = Descr−1 (r)⇔ r ∈ Descr (d)

For a rule r, Condition (r) denotes the set of the atoms that are present in the premise of the rule
r and Conclusion (r) denotes the set of the atoms that are present in the conclusion of the rule r. We
consider an atomic formula as a rule with an empty condition. Thus, we can extend the definition to
atomic formulæ:

Condition (π(t1, t2)) = ∅

Conclusion (π(t1, t2)) = {π(t1, t2)}

The definition of a predicate π, denoted by Def (π, D), is the union of facts of the form π(t1, t2)
and of the rules having an atom π(t1, t2) in their conclusion. As a fact is a rule without conditions, we
can simply write:

Def (π, D) = {r ∈ Descr (D) / ∃t1, t2 π(t1, t2) ∈ Conclusion (r)}

it is important to note that in a decentralised setting, Def (π, D) may be distributed among several
devices.

42 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Moreover, we define a relation between predicates. A predicate π logically depends on a predicate
π′ among the set of devices D if and only if π′ appears in the conditions of a rule in the definition of π.

π � π′ ⇔ ∃r ∈ Def (π, D) , ∃t1, t2 / π′(t1, t2) ∈ Condition (r)

4.1.2 Queries

A query Q is defined by a set of rules (denoted by Def (Q)) of the form:

Def (Q):
n∧
i=1

Ri(t1i , t
2
i)→ Q(X0, . . . , Xp)

where tji are terms of the language or variables, Ri are predicates and for all k in [[1 ; p]] it exists i in
[[1 ; n]] and j in {1, 2} so that Xk appears in tji . Afterwards X0, . . . , Xp will be denoted by v̄ and called
variables of interest.

Let D be a set of devices. The answers to the query Q against the union of description Descr (D)
— denoted by Answer (Q, D) — is the set of tuples t̄ on Herbrand universe of Descr (D) instantiated
terms for which Q(t̄) can be logically entailed from the devices descriptions and the definition of the
query.

Answer (Q, D) = {t̄ ∈ H(Descr (D))p / Descr (D) ,Def (Q) |= Q(t̄)}

Definition 11 : Derivation tree
In first-order logic, a derivation tree of the query Q with respect to the description of a set of

devices D is a tree that reflects a proof (or a refutation) of Q according to the set of descriptions. It
is denoted by DT (Q, D). Each node of the tree is a (possibly empty) list of atoms. The root node is
Q(v̄). Let N = (A1, . . . , Ak) (with 1 ≤ k) be a node in the tree. Then, for each rules

r =
∧p
i=1Bi → π1(x, y) ∈ Def (π1, D)

(or facts if p = 0) such that π1(x, y) and A1 are unifiable with σ their Most General Unifier (MGU),
the node has a child which is the node N where A1 has been replaced by the Bi and the substitution has
been applied:

Biσ, . . . , Bpσ,A2σ, . . . , Akσ

The edge from the node N to this child his labelled by r. If p = 0 (i.e. the atom A1 unifies with a
fact) then we simply erase A1 from the list and apply the substitution σ. Also if k = 1 and p = 0 (i.e.
the node is reduced to one atom unifying with a fact) the child will be an empty clause. Nodes that are
empty clause have no children and are called ‘success’ leaves. Nodes that are not empty clause and have
no children are called ‘failure’ leaves. By extension, the set of paths in the tree that end with a success
leaf (resp. failure leaf) is called the set of success paths (resp. failure paths) of the tree and is denoted by
DT+ (Q, D) (resp. DT− (Q, D)).

Formally, a derivation tree T is a couple made of a node — which is a tuple of atoms — and a list of
sub-trees with the label of the corresponding edge.

T = (R, [(T1, r1), . . . , (Tn, rn)])

4.1. REMINDERS AND PRELIMINARIES 43

[P (X, b)]

[R(X,Y)], P (Y, b)

[P (b, b)]

[P (b, U)], P (U, b)

×

R1

∅
X(X/a)

R2

R3

R1

∅
X(X/b)

R2

(a) Derivation tree

X Success
× Failure
(X/b) Substitution

R1. R(X,Y), P (Y, Z)→ P (X,Z)
R2. P (X,X)
R3. R(a, b)
R4. P (a, c)

(b) Set of rules

Figure 4.1: A derivation tree of a query with respect to a set of rules

where R = (A1, . . . , Ak) is the root of the tree, Ai are atoms, Ti = (Xi, Yi) are derivation trees and ri
are rules so that:

Descr (D) , R, ri |= Xi �

Definition 12 : The height of a derivation tree is:

• zero for a success or a failure

height ((X, ())) = 0

• one more than the height of the highest sub-tree

height ((X, ((T1, r1), . . . , (Tn, rn)))) = 1 + max
1≤i≤n

{height (Ti)} �

Definition 13 : We define Rules (T), the set of all rules that appear in the labels of the edges of
the tree T .

Rules ((X, ())) = ∅

Rules ((X, ((T1, r1), . . . , (Tn, rn)))) = {r1, . . . , rn} ∪
n⋃
i=1

Rules (Ti)

The figure 4.1 shows an example of a derivation tree T of a query with respect to a set of rules and
facts. According to the figure, we have:

height (T) = 3
Rules (T) = {R1, R2, R3} �

44 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

4.1.3 Example

The following represents the logical description of three devices. There are parts of the descriptions that
are common for the three devices and concern the taxonomy , the properties of some predicates, the
inheritance of types, etc. We introduce them before the description of the devices. Identifiers beginning
with an upper-case letter stand for variables.

r1: subclassof (C, D), type(X, C)→ type(X, D).
r2: same(X, Y)→ same(Y, X).

r3:

subclassof (printer, device).
subclassof (room, place).
subclassof (printing, func).
subclassof (download, func).
subclassof (paper, data).
subclassof (computer, device).
subclassof (pc, computer).
subclassof (pocketpc, computer).
subclassof (file, data).
subclassof (postscript, file).

The rule r1 expresses the inheritence of types; the rule r2, the symmetry of the predicate same . And
the set of facts r3 are an extract of the facts expressing the taxonomies in a logical way.

Consider first, a printer prn, which is located in roomD. Here is its description

type(prn, printer).
located(prn, roomD).
type(roomD, room).

r4: type(D, printer)→ type(g0(D), printing) ∧ hasfunct(D, g0(D)).

The rule r4 expresses that every printer has a printing functionality. The following rule describes the
printing functionality.

r5:

type(out (G, J) , postscript)
∧ type(F, printing)
∧ hasfunct(E, G)
∧ hasfunct(D, F)
∧ connected(E, D)

→ type(out (F, [out (G, J)]) , paper).

The rule r5 describes the printing functionality of a device D. It takes an input of type postscript and
provides an output of type paper provided that the printing device D is connected to a device E that has
a functionality able to output postscript file. Note that out (F, [out (G, J)]) expresses the output of the
composed functionality.

Consider a PC srv, which is connected to the printer prn.

type(srv, pc)
connected(srv, prn)

r6: type(D, pc)→ type(g1(D), download) ∧ hasfunct(D, g1(D)).

The rule r6 expresses that every pc has a download functionality. The rule r7 describes the downloading
functionality of a device D. The functionality requires two inputs: a computer S, which is connected to D,

4.1. REMINDERS AND PRELIMINARIES 45

and a file I, which is stored in the computer S and is of a given format C. The functionality provides, as
output, a file of format C, stored in D and with the same content as I.

r7:

type(I, C)
∧type(S, computer) ∧ hasfunct(D, F) ∧ connected(S, D)
∧ subclassof (C, file) ∧ stored(I, S) ∧ type(F, download)

→ type(out (F, [I,S]) , C)
∧ stored(out (F, [I,S]) , D)
∧ same(out (F, [I,S]) , I)

Consider a pocket PC denoted by the constant mypc, storing a postscript file denoted by the con-
stant myps and connected to the PC srv. It is described by the following facts.

type(myps, postscript).
type(mypc, pocketpc).
connected(mypc, srv).
stored(myps, mypc).

Finally, consider the query q1 defined by:

hasfunct(D, F) ∧ located(D, roomD)
∧ type(out (F, Is) , paper)
∧ member(I, Is) ∧ type(I, file) ∧ same(I, myps)

→ q1 (F, Is)

It asks for a functionality F and a list of inputs Is so that

• the device having the functionality F is located in roomD;

• the type of the output of F is paper;

• one of the input from Is is a file which has the same content as the file myps.

An answer to q1 , against the description introduced above, is the following tuple:

(F, Is) = (g0(prn), [out (g1(srv), [myps, mypc])])

where g0(prn) is the printing functionality of prn and its input Is is the output of the functional-
ity g1(srv), which is the download functionality of the server srv, applied to the inputs myps and mypc.
It expresses that to get myps (stored in mypc) printed in roomD we have to compose the downloading
functionality of the PC srv and the printing functionality of the printer prn. Such a composition is
possible because mypc is connected to srv and itself connected to prn.

4.1.4 Relevant devices for a query

Given a query Q asked to a given device d among a set of devices D, the problem is to find a subset
Relevant (Q, D) of D so that the union of their descriptions are sufficient to compute all the answers
to Q.

Answer (Q, Relevant (Q, D)) = Answer (Q, D)

The query Q is nothing but a predicate, so we define Relevant (π, D) for any predicate π. We first
define Support (π, D), which are the rules or facts that are in the definition of π or in the definition of
any predicate on which π logically depends. We formally define it by induction:

46 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Support (π, D) =
∞⋃
i=0

Supporti (π, D)

where Support0 (π, D) = Def (π, D)

and Supporti+1 (π, D) =
⋃
π�π′

Supporti (π′, D)

We get the following immediate property:

Support (π, D) = Def (π, D) ∪
⋃
π�π′

Support (π′, D)

in particular we have

π � π′ ⇒ Support (π′, D) ⊂ Support (π, D)

The relevant devices for a predicate π are the devices whose descriptions contain rules or facts be-
longing to support of π

Relevant (π, D) = {d ∈ D / Support (π, D) ∩Descr (d) 6= ∅}

Since the set of devices — and therefore the set of their description — is finite, so is Relevant (π, D)
and Support (π, D). More precisely, for any predicate π it exists an integer N such that

Support (π, D) =
N⋃
i=0

Supporti (π, D)

We prove in lemma 1 that the rules that appear in the labels of the edges of the derivation tree of an
instantiated query belong to the support of the query.

Lemma 1 : Let Q be a query, D a set of devices and t̄ an answer to Q. Then

Rules (DT (Q(t̄), D)) ⊂ Support (Q, D)

Proof:
Since the SLD strategy of resolution — which is implemented in PROLOG engines — is

complete for definite clauses, for any answers t̄, it exists a deduction of Q(t̄) from the union of
Descr (D) and Def (Q), which can be summarised by a derivation tree.

Let us prove the inclusion by induction on the height of the derivation tree of Q(t̄).
Basis:
Let us assume that the height of the derivation tree of Q(t̄) is 1. It means that Q(t̄) unifies

with a fact F , which belongs to the support of Q by definition. Thus,

Rules (DT (Q(t̄), D)) = {F} ⊂ Support (Q, D)

Inductive step:
Let us assume that for a certain integer n,

if height (DT (Q(t̄), D)) ≤ n

4.1. REMINDERS AND PRELIMINARIES 47

then Rules (DT (Q(t̄), D)) ⊂ Support (Q, D)
Let us prove the property for a height of n+1. Let us assume that the height of the derivation

tree of Q(t̄) is n+ 1.

DT (Q(t̄), D) = (Q(t̄), [(T1, r1), . . . , (Tk, rk)])

with ∀i height (Ti) ≤ n

if we denote Ti = (πi(ti), Yi) = DT
(
πi(ti), D

)
, the inductive hypothesis can be applied and

we deduce that

Rules (Ti) ⊂ Support (πi, D)

Now, Rules (DT (Q(t̄), D)) =
k⋃
i=0

{ri} ∪
k⋃
i=0

Rules (Ti)

and ri ∈ Support (Q, D)

Also Q � πi
thus Support (πi, D) ⊂ Support (Q, D)

and finally Rules (DT (Q(t̄), D)) ⊂ Support (Q, D)

♦

Theorem 1 : Let Q be a query, D a set of devices and d a device in D. Then

Answer (Q, Relevant (Q, D)) = Answer (Q, D)

Proof:
As Relevant (Q, D) is a subset of D we have one inclusion.

Let us go back to the definitions to prove the other inclusion. Let t̄ be an answer to Q against
the descrptions of D.

Descr (D) ,Def (Q) |= Q(t̄)

According to the definition of the derivation tree that correspond to the SLD strategy of
resolution we have

Rules (DT (Q(t̄), D)) |= Q(t̄)

Now, we have proved in lemma 1 that

Rules (DT (Q(t̄), D)) ⊂ Support (Q, D)

And by definition of Relevant (Q, D), we have

Support (Q, D) ⊂ Def (Q) ∪Descr (Relevant (Q, D))

48 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

We can then deduce

Descr (Relevant (Q, D)) ,Def (Q) |= Q(t̄)

�

4.2 Propositional encoding: principles and properties

The principle of our encoding is to abstract the first-order device descriptions and the queries into a set
of facts and rules in propositional logic, while preserving some important properties. The main property
of our encoding is that a propositional backward-reasoning from the encoded query, using the encoded
device descriptions, leads to the identification of the devices whose first-order descriptions are sufficient
to compute the set of all the answers of the first-order query. To relate explicitly a given device d to the
encoding of its description, we introduce a particular propositional variable, denoted d?, and we add it
as a condition into the propositional rules encoding the first-order rules in the description of d. We call
those propositional variables device propositional variables . We have shown (theorem 3) that the devices
whose descriptions are sufficient for answering the query are obtained from the propositional implicants
of the encoded query which are conjunctions of device propositional variables. In section 4.2.1, we
provide the encoding function by defining first the encoding of a device, then the encoding of first-
order (conjunction of) atoms, and finally the encoding of first-order rules. In particular, the encoding
of the class taxonomies is made specific to each device description by encapsulating the inheritance
between classes into as many propositional rules as there are subclass relations for each first-order atoms
involving arguments typed by classes. Section 4.2.2 is dedicated to the transfer property (theorem 3) of
our encoding, which shows that the sufficient devices for answering a first-order query can be obtained
by an appropriate decoding of the proper prime implicants of the encoding of the query. The way this
transfer property can be exploited and implemented in a decentralised setting using SOMEWHERE will
be explained in section 4.3.

4.2.1 Encoding of device descriptions and queries

We define the encoding function denoted by Code.

Encoding of a device

For a device d, assuming that d is an identifier of the device in the network, we define

Code (d) = d?

The definition is extended to a set of devices {d1, . . . , dn}:

Code ({d1, . . . , dn}) =
n∧
i=1

d?i

We define also the inverse function:

Decode

(
n∧
i=1

d?i

)
= {d1, . . . , dn}

In the following, the letter F (or F ′, F0, etc) denotes conjunction of atoms that are made of neither
the predicate type nor the predicate subclassof ; the letter C (or C ′, C0, etc) denotes conjunction of
atoms which are exclusively made of the predicate type; the letter S (or S′, S0, etc) denotes conjunction

4.2. PROPOSITIONAL ENCODING: PRINCIPLES AND PROPERTIES 49

of atoms which are exclusively made of the predicate subclassof . Atoms of the form type(t, τ)and
subclassof (τ1, τ2) are called typing atoms afterwards.

We distinguish in the description of a device d the following sets of rules:

C0(d) = {→ type(t, τ) ∈ Descr (d)}
S0(d) = {→ subclassof (τ, θ) ∈ Descr (d)}
T0(d) = C0(d) ∪ S0(d)
R0(d) = {X ′ → F ∧ C ∈ Descr (d)}

T0(d) plays a particular role in the encoding of the descriptions of d and is called the set of typing facts
of the device d.

Encoding of an atom

The encoding function comes with two flavours. With the symbol i as a subscript, it provides proposi-
tional variables that encode atoms present in the condition of a rule. Those propositional variables are
called ‘in-propositional variables’ afterwards. With the symbol o as a subscript, it provides proposi-
tional variables that encode atom in the conclusion of a rule. Those propositional variables are called
‘out-propositional variables’ afterwards.

We first define the encoding of an atom π(t1, t2) — where π is neither the predicate type nor the
predicate subclassof — denoted by Codei (π(t1, t2) |T) (resp. Codeo (π(t1, t2) |T)) because it depends
on the typing atoms of t1 and t2. T is the context of the encoding of π(t1, t2). It is a set of atoms,
including the typing of t1 (resp. t2). This typing can be explicit with the predicate type or inferred from
the domain (resp. range) of the predicate π.

if type(ti, τi) ∈ T
or type(ti, X), subclassof (X, τi) ∈ T
then Codei (π(t1, t2) |T) = π.τ1.τ2

i

Codeo (π(t1, t2) |T) = π.τ1.τ2
o

We also encode the atoms of the form type(t, τ) the following way:

Codei (type(t, τ) |T) = type.τ.Ti

Codeo (type(t, τ) |T) = type.τ.To

where T denotes the type of the class names. Note that in this case, the encoding is independent of T
and we can write Codei (type(t, τ)) as well.

Encoding of a conjunction of atoms

For convenience, a conjunction of atoms can be seen as a set of atoms. For a conjunction of atoms A,
the encoding of A associated with a set of typing atoms is the conjunction of the encoding of each atom
of A associated with A ∪ T as set of typing atoms.

Codei (A |T) =
∧
a∈A

Codei (a |T ∪A)

Codeo (A |T) =
∧
a∈A

Codeo (a |T ∪A)

For instance, suppose we have the following conjunction of atoms.

50 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Set of atoms A Set of typing facts T

stored(myps, mypc).
type(myps, postscript).
connected(mypc, srv)

type(mypc, pocketpc).

then,
Codei (A |T) = stored .postscript.pocketpci ∧ type.postscript.Ti ∧ connected .pocketpc.devicei

The propositional variable connected .pocketpc.devicei is made from the inferred type of srv, which is
inferred from the range of the predicate connected .

Encoding of a rule

We now define the encoding of a rule R, which is stored in the device d

R : F ′ ∧ T ′ → F ∧ C

Let T0(d) be the set of typing atoms stored in d. T0(d) represents the context of the encoding of all the
rules in the description of d.

Code (R |T0(d)) = d? ∧ Codei (F ′ ∧ T ′ |T0(d))→ Codeo (F ∧ C |T0(d) ∪ T ′)

It is important to note that the encoding of a first-order logic rule provides a propositional logic rule with a
conjunction of in-propositional variables in the condition side and with a conjunction of out-propositional
variables in the conclusion side.

The typing facts that are in C0(d) are particular rules of the form:
→ type(t, τ)

then their encoding is
Code (type(t, τ)) = d? → type.τ.To

Encoding of the taxonomy

The encoding of a fact
→ subclassof (τ, τ ′)

is defined in the context Descr (d).
In the following, if it exists the fact→ subclassof (τ, τ ′) in the description of the device d, we say

that τ is a strict subclass of τ ′. The global subclass relation is the transitive and reflexive closure of the
strict subclass relation. τ is a global subclass of τ ′, denoted τ v τ ′ if and only if either τ = τ ′ or it exists
τ ′′ such that τ is a strict subclass of τ ′′ and τ ′′ is a global subclass of τ ′. Therefore, if τ v τ ′ appears in
the context of the encoding, it means that it exists τ1, . . . , τn such that for all i between 1 and n− 1, the
rule→ subclassof (τi, τi+1) belongs to the context of the encoding.

For each rule→ type(t, τ0) such that τ0 is a global subclass of τ we encode all the instantiation on
Descr (d) of the following rule:

∀X,C,D type(X,C) ∧ subclassof (C,D)→ type(X,D)

this way:
Code (subclassof (τ1, τ2) |→ type(t, τ0), τ0 v τ1) = { type.τ2.To→ type.τ1.To,

type.τ1.Ti→ type.τ2.Ti,

type.τ0.To → type.τ0.Ti }

4.2. PROPOSITIONAL ENCODING: PRINCIPLES AND PROPERTIES 51

device

computer

place

room

(a) The taxonomy used for the schema

located .computer.roomi

located .device.roomi

located .device.placei

located .computer.placei

located .computer.roomo

located .device.roomo

located .device.placeo

located .computer.placeo

(b) Partial encoding of the taxonomy 4.2(a) in the context of the predicate located

Figure 4.2: Example of the encoding of a taxonomy

It is important to pay attention to the fact that rules for the in-propositional variables and for the
out-propositional variables are opposite. For instance when a first-order rule conclude on a object typed
say postscript, it will satisfy any query on objects of type file which is a super-class of postscript. In the
propositional encoding the following rule accounts for it:

type.file.To → type.postscript.To

The same way, when a first-order rule has an object typed file in its conditions, then any object typed
postscript which is a subclass of file would satisfy the request. This corresponds to the following rule in
the propositional encoding:

type.postscript.Ti → type.file.Ti

When other predicates appear in Descr (d) we encapsulate the subclass relation in the propositional
encoding in a similar way. More precisely, for each predicate π we define:

Code

→ subclassof (τ1, τ2)

∣∣∣∣∣∣
{ π(td, tr),

type(td, τd), τd v τ1,
type(tr, τr), τr v α }

 =
{ π.τ1.α

i→ π.τ2.α
i,

π.τ2.α
o → π.τ1.α

o,
π.τd.τr

o → π.τd.τr
i }

Code

→ subclassof (τ1, τ2)

∣∣∣∣∣∣
{ π(td, tr),

type(td, τd), τd v α,
type(tr, τr), τr v τ1 }

 =
{ π.α.τ1

i→ π.α.τ2
i,

π.α.τ2
o→ π.α.τ1

o,
π.τd.τr

o→ π.τd.τr
i }

Finally, the encoding of a rule→ subclassof (τ1, τ2) in the context of Descr (d) is obtained bu taking
the union of all the above encoding:

Code (→ subclassof (τ1, τ2) |Descr (d)) =
⋃

A⊂Descr(d)

Code (→ subclassof (τ1, τ2) |A)

52 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Figure 4.2(b) shows the encoding of the subclass relations in the taxonomy of figure 4.2(a) in the
context of a description containing

located(pc1, roomD), type(pc1, computer), type(roomD, room)

The propositional rules are represented as edges in a graph where vertices are propositional variables and
arrows between two propositional variables a and b denotes a rule a→ b.

Encoding of a whole description

The encoding of the description of a device d is the union of the encoding of its rules and the encoding
of its taxonomy description.

Code (Descr (d)) =
⋃

R∈R0(d)

Code (R |T0(d)) ∪
⋃

C∈C0(d)

Code (C) ∪
⋃

S∈S0(d)

Code (S |Descr (d))

Afterwards, we will note ∆ the union of the encoding of the description of all devices.

∆ =
⋃
d∈D

Code (Descr (d))

Encoding of queries

A query is defined by a set of rules. Thus, the encoding of a query is the union of the encoding of each
rule from its definition:

Code (Q) =
⋃

R∈Def(Q)

Code (R)

4.2.2 Properties

The following properties of the encoding are going to be useful to the transfer property.

Property 1 : This property shows that for a predicate offered in conclusion of a first-order rule, the
associated out-propositional variable entails the corresponding in-propositional variable. It expresses the
relay race composition of functionalities in the propositional side.

If there exists r ∈ Descr (d) such that π(t1, t2) ∈ Conclusion (r) with τ1 (resp. τ2) being the type
of t1 (resp. t2), then

∆, π.τ1.τ2
o |= π.τ1.τ2

i

Proof:
Let θ1 be a strict super-class of τ1. Then

Code (subclassof (τ1, θ1) |Descr (d)) ∈ ∆

Now, π(t1, t2) ∈ Descr (d)
type(t1, τ1) ∈ Descr (d)
type(t2, τ2) ∈ Descr (d)

subclassof (tau1, θ1) ∈ Descr (d)

4.2. PROPOSITIONAL ENCODING: PRINCIPLES AND PROPERTIES 53

So, from the definitions we have:

π.τ1.τ2
o → π.τ1.τ2

i ∈ Code (subclassof (τ1, θ1) |{π(t1, t2), type(t1, τ1)})

♦

Property 2 : We extend the previous property throughout subclass relations.
Let τ1, τ2, θ1, θ2 be class names such that τ1 v θ1 or θ1 v τ1, and τ2 v θ2 or θ2 v τ2. Then,

∆, π.τ1.τ2
o |= π.θ1.θ2

i

Proof:
First case, τ1 v θ1 and τ2 v θ2:
From the definition of the encoding we have

∆, π.τ1.τ2
o |= π.τ1.τ2

i

and ∆, π.τ1.τ2
i |= π.θ1.θ2

i Q.E.D.

Second case, θ1 v τ1 and θ2 v τ2:
From the definition of the encoding we have

∆, π.τ1.τ2
o |= π.θ1.θ2

o

and ∆, π.θ1.θ2
o |= π.θ1.θ2

i Q.E.D.

Third case, θ1 v τ1 and τ2 v θ2:
From the definition of the encoding we have

∆, π.τ1.τ2
o |= π.θ1.τ2

o

and ∆, π.θ1.τ2
o |= π.θ1.τ2

i

and ∆, π.θ1.τ2
i |= π.θ1.θ2

i Q.E.D.

The last case and the previous one are symmetrical.

♦

Property 3 : LetA be a conjunction of atoms, T a set of typing atoms and σ any substitution. Then

∆,Codeo (A |T) |= Codeo (Aσ |T)
∆,Codei (Aσ |T) |= Codei (A |T)

Proof:
For an atom π(t1, t2), where π is not the predicate type, as we treat terms in the encoding

regardless of the presence of variables, we have the equality between encoding with or without
substitutions. Thus, for the atom π(t1, t2), the property is straightforward.

For an atom type(t, X) where the class name is a variable, a substitution may affect the
variable X. And as Xσ v top and

Codeo (type(t, X) |T) = type.top.To

Codeo (type(t, Xσ) |T) = type.Xσ.To

Codei (type(t, X) |T) = type.top.Ti

54 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Codei (type(t, Xσ) |T) = type.Xσ.Ti

we have the result.

♦

Property 4 : Let A, B and C be conjunctions of atoms. Then

Codei (A ∧B |C) = Codei (A |B ∪ C) ∧ Codei (B |A ∪ C)

Proof:
Straightforward with the definition of the encoding for conjunction of atoms.

♦

Property 5 : Let A, B and C be conjunctions of atoms. Then

∆,Codei (A |B ∪ C) |= Codei (A |C)

Proof:
Let us prove it for an atom a and two conjunctions of atoms B and C.
First case: a = type(t, τ). In this case we have,

Codei (type(t, τ) |B ∪ C) = Codei (type(t, τ) |C)

Second case: a = π(t1, t2), with θ1 (resp. θ2) the domain (resp. the range) of the predicate π.

Sub-case 1:
for all k if type(tk, τk) ∈ C
or type(tk, X), subclassof (X, τk) ∈ C
then Codei (π(t1, t2) |B ∪ C) = π.τ1.τ2

i = Codei (π(t1, t2) |C)

Sub-case 2:
for all k if type(tk, τk) 6∈ B ∪ C
or type(tk, X), subclassof (X, τk) 6∈ B ∪ C
then Codei (π(t1, t2) |B ∪ C) = π.θ1.θ2

i = Codei (π(t1, t2) |C)

Sub-case 3:
for all k if type(tk, τk) ∈ B \ C
or type(tk, X), subclassof (X, τk) ∈ B \ C
then Codei (π(t1, t2) |B ∪ C) = π.τ1.τ2

i

Codei (π(t1, t2) |C) = π.θ1.θ2
i

Sub-case 4:
if type(t1, τ1) ∈ B \ C
or type(t1, X), subclassof (X, τ1) ∈ B \ C
and
if type(t2, τ2) ∈ C
or type(t2, X), subclassof (X, τ2) ∈ C
then Codei (π(t1, t2) |B ∪ C) = π.τ1.τ2

i

Codei (π(t1, t2) |C) = π.θ1.τ2
i

4.2. PROPOSITIONAL ENCODING: PRINCIPLES AND PROPERTIES 55

Sub-case 5: Similar to the sub-case 4
Finally, as for all k we have τk v θk we can conclude for an atom a:

∆,Codei (a |B ∪ C) |= Codei (a |C)

The extension for a conjunction of atoms is straightforward.

♦

Property 6 : Let A, B and C be a conjunction of atoms. Then

∆,Codei (A ∧B |C) |= Codei (A |C) ∧ Codei (B |C)

Proof:
This property is a corollary of the property 4 and property 5.

♦

The definition 14 introduces the notion of proper prime implicants which is central for the transfer
propoerty.

Definition 14 : Proper prime implicant with respect to a theory. Let Γ be a clausal theory and q
be a cube (conjunction of literals). A cube m is said to be:

• a prime implicant of q with respect to Γ if and only if Γ,m |= q and for any other cubes m′, if
Γ,m′ |= q and m |= m′ then m ≡ m′.

• a proper prime implicant of q with respect to Γ if and only if it is a prime implicant of q with
respect to Γ and Γ 6|= ¬m.

The set of proper prime implicants of q with respect to Γ is denoted by

Ppi (q,Γ) �

Theorem 2 : Transfer property
Let Q be a query, D a set of devices and ∆ the union of the encoding of the descriptions of all device

in D. Let t̄ an answer to Q, and P = (r1, . . . , rn) be a success path of the derivation tree of Q(t̄). Let di
be the device that stores the rule ri.

Then,

(
n∧
i=1

d?i

)
is a proper prime implicant of Code (Q) with respect to ∆

Proof:
Let us proceed by induction on the length of the path (r1, . . . , rn). We consider the proposi-

tional variable q, the encoding of the query Q

Basis:
Let us assume that the length of the path P is 1. It means that Q(t̄) unifies with a fact F =

π(t1, t2) stored in the device d1, where the type of t1 is τ1 and the type of t2 is τ2.

56 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

{π(t1, t2), type(t1, τ1), type(t2, τ2)} ∈ Descr (d1)

Thus Code (Q) is of the form π.θ1.θ2
i and as Q(t̄) unifies with F we have τ1 v θ1 and τ2 v θ2.

Then, with the property 2, we have:

∆, π.τ1.τ2
i |= π.θ1.θ2

i

It exists in the encoding of the description of d1 the following rule π.τ1.τ2
o → π.τ1.τ2

i.

Then ∆, π.τ1.τ2
o |= π.θ1.θ2

i

and as F belongs to Descr (d1), the following rule d?1 → π.τ1.τ2
o belongs also to ∆, so:

∆, d?1 |= π.τ1.τ2
o

and finally ∆, d?1 |= Code (Q)
Therefore, d1 is the device that stores the rule r and d? is a proper prime implicant of Code (Q)
with respect to ∆.

Inductive step:
Let us assume that for a certain integer n, for any query Q and for any success paths P =

(r1, . . . , rn) in the derivation tree of Q(t̄) so that the length of P is equal to n, if di =
Descr−1 (ri), we have that (

n∧
i=1

d?i

)
∈ Ppi (Code (Q) ,∆)

Let P = (r1, . . . , rn+1) be a success path of length n+ 1 in the derivation tree of Q(t̄). Let
A1, . . . , An the set of atoms of the successor of the root node in the success path. Let us consider
Code (

∧n
i=1Ai). Afterwards, di = Descr−1 (ri).

We have r1 = F ′ ∧ T ′ → F ∧ C
and
Code (r1 |T0(d1)) =

d?1 ∧ Codei (F ′ ∧ T ′ |T0(d1))→ Codeo (F ∧ C |T0(d1) ∪ T ′)

in particular, one of the atoms in the conclusion of r1 (say F1 = π(t1, t2)) unifies with A1 (say
π(u1, u2)) and their MGU is σ. Then after the deletion of A1 by the rule r1 we have

F ′σ, T ′σ,A2σ, . . . , Anσ

Moreover, in our model everything is typed at least implicitly, for each i, in
F ′σ, T ′σ,A2σ, . . . , Anσ, either there is type(tiσ, τi) and type(uiσ, τ ′i) or they are implicit.
As it is a success path, both hold. And as uiσ = tiσ, it results that it is the same object that is
typed twice. So for each i either τi v τ ′i or τ ′i v τi. Thus, in the propositional side, the property 1
assures that it exists a set of rules in ∆ such that:

∆,Codeo (F1σ |T ′ ∪ C ∪ T0(d1)) |= Codei (A1σ |
⋃n
i=2 Ai)

With the property 3 we can remove the substitution and we have:

4.2. PROPOSITIONAL ENCODING: PRINCIPLES AND PROPERTIES 57

∆,Codeo (F1 |T ′ ∪ C ∪ T0(d1)) |= Codeo (F1σ |T ′ ∪ C ∪ T0(d1))
∆,Codei (A1σ |

⋃n
i=2 Ai) |= Codei (A1 |

⋃n
i=2 Ai)

and because Code (r1 |T0(d1)) belongs to ∆, we have

∆, d?1 ∧ Codei (F ′ ∧ T ′ |T0(d1)) |= Codeo (F1 |T ′ ∪ C ∪ T0(d1))

and so, ∆, d?1 ∧ Codei (F ′ ∧ T ′ |T0(d1)) |= Codei (A1 |
⋃n
i=2 Ai)

Now according to the property 4 we have

Codei (A1 |
⋃n
i=2 Ai) ∧ Codei (

∧n
i=2Ai |A1) = Codei (

∧n
i=1Ai)

Therefore, Codei (F ′ ∧ T ′ |T0(d1)) ∧ Codei (
∧n
i=2Ai |A1) ∧ d?1 is an implicant of

Codei (
∧n
i=1Ai) with respect to ∆.

Now, the set of atoms F ′σ, T ′σ,A2σ, . . . , Anσ resulting from the deletion of A1 is encoded
into the set of propositional variables

Codei (F ′σ ∧ T ′σ ∧
∧n
i=2Aiσ)

According to the property 3 we have:

Codei (F ′σ ∧ T ′σ ∧
∧n
i=2Aiσ) = Codei (F ′ ∧ T ′ ∧

∧n
i=2Ai)

According to the property 6 we have:

∆,Codei (F ′ ∧ T ′ ∧
∧n
i=2Ai) |= Codei (F ′ ∧ T ′) ∧ Codei (

∧n
i=2Ai)

Until now we have proved the following:

∆, d?1,Codei (F ′σ ∧ T ′σ ∧
∧n
i=2Aiσ) |= Codei (

∧n
i=1Ai)

Now, P ′ = (r2, . . . , rn+1) the sub-path of P satisfies the inductive hypothesis. Thus, we
have:

(∧n+1
i=2 d

?
i

)
is a proper prime implicant of Code (F ′σ ∧ T ′σ ∧

∧n
i=2Aiσ) with respect to

∆ �

4.2.3 Examples

An example with two computers pc1 — which is located in a room roomD — and srv1 — which is
located in a building batC — is described in table 4.1. The encoding of their description is represented
figure 4.3 by a graph where vertices are propositional variables and arrows between two propositional
variables a and b denotes a propositional rule a → b in the encoding. From the example, a query Q
— asked to the device d1 — in logic can be:

located(X, Y) ∧ type(Y, room)→ Q(X)

and its encoding:

d?1 ∧ located .device.roomi → q

Figure 4.4 shows the derivation tree of the above first-order queryQwith respect to the first-order de-
scription shown in table 4.1. Thus, using the encoding, the set of device propositional variable implicants

58 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

d?1

located .computer.roomo

located .computer.roomi

located .computer.placei

ρ1
4

located .device.roomi

located .device.placei

ρ1
5

ρ1
6

ρ1
12

located .computer.placeo

located .device.placeo

ρ1
11

ρ1
8

located .device.roomo

ρ1
10 ρ1

1

type.computer.To

type.computer.Ti

type.device.Ti

ρ1
14

ρ1
16

type.device.To

ρ1
17

ρ1
2

type.room.To

type.room.Ti

type.place.Ti

ρ1
13

ρ1
15

type.place.To

ρ1
18

ρ1
3

ρ1
7

ρ1
9

Figure 4.3: The encoding of a description shown in a graph

Table 4.1: Descriptions of two devices and their encoding
(a) Rules that enable the inheritance of types

R0: subclassof (C, D), type(X, C)→ type(X, D)

(b) Description of a computer

R1
1: type(pc1, computer)

R1
2: type(roomD, room)

R1
3: subclassof (room, place)

R1
4: subclassof (computer, device)

R1
5: located(pc1, roomD)

(c) Description of a server

R2
1: type(srv1, computer)

R2
2: type(batC, building)

R2
3: subclassof (building, place)

R2
4: subclassof (computer, device)

R2
5: located(srv1, batC)

4.3. LOOK-UP BY DECENTRALISED PROPOSITIONAL REASONING 59

of the encoding of Q is d?1 as shown in figure 4.5

4.3 Look-up by decentralised propositional reasoning

We exploit the transfer property of the propositional encoding to retrieve a (possibly strict) subset of
the relevant devices for a query Q. In section 4.3.1 we show (Theorem 3) that such a subset, denoted
Lookup (Q) can be obtained by decoding the proper prime implicant of the encoding of Q that are
made of device propositional variables only. In section 4.3.2, we show how to use SOMEWHERE for a
decentralised implementation of the computation of Lookup (Q).

4.3.1 Look-up: definition and properties

Definition 15 : Let Ppi? (q,∆) be the set of proper prime implicants of q made of device propositional
variables.

Ppi? (q,∆) = {
n∧
i=1

d?i ∈ Ppi (q,∆)}

Let Lookup (Q) be the set of devices decoded from Ppi? (Code (Q) ,∆).

Lookup (Q) =
⋃

P∈Ppi?(Code(Q),∆)

Decode (P) �

The following theorem states that the look up method consisting in computing Lookup (Q) is sound
and complete. That is to say, for a query Q, an answer is found using only the description of the devices
of Lookup (Q) if and only if it is a correct answer that would have been found also using the whole set
of available devices.

Theorem 3 : Let Q be a query and D a set of devices

Answer (Q, D) = Answer (Q, Lookup (Q))

Proof:
As the Lookup (Q) is a subset of the devices, the lookup is sound.
The other inclusion of the theorem can be rewritten as:

∀t̄ Descr (D) |= Q(t̄) → Descr (Lookup (Q)) |= Q(t̄)

Let us consider the derivation tree of Q(t̄). Let P = (r1, . . . , rn) be the success path and di
the device that stores the rule ri in its description. Then according to the theorem 2

Code

(
n⋃
i=1

di

)
∈ Ppi? (Code (Q) ,∆)

From the definition of Lookup we deduce:
n⋃
i=1

di ∈ Lookup (Q)

60 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

Q(v̄)

[located(X, Y)],
type(Y, room)

[type(roomD, room)]

∅
X(X/pc1)(Y/roomD)

R1
2

R1
5

[type(batC, room)]

[subclassof (Z, room)],
type(batC, Z)

×

R0

R2
5

Figure 4.4: Derivation tree of the query Q with respect to the rules in table 4.1

Code (Q)

[located .device.roomi],
type.room.Ti

[located .computer.roomi],
type.room.Ti

[located .computer.roomo],
type.room.Ti

d?1, [type.room.Ti]

d?1, [type.room.To]

d?1

ρ1
3

d?1, type.place.To

ρ1
18

ρ1
15

ρ1
1

[located .computer.placeo],
type.room.Ti

located .device.placeo,

[type.room.Ti]

located .device.placeo,
[type.room.To]

located .device.placeo, d?1

ρ1
3

located .device.placeo,
type.place.To

ρ1
18

ρ1
15

ρ1
11

ρ1
8

[located .device.roomo],
type.room.Ti

ρ1
10

ρ1
12

ρ1
6

ρ1
9

Figure 4.5: Propositional implicants of Code (Q) with respect to the encoding of the rules

4.3. LOOK-UP BY DECENTRALISED PROPOSITIONAL REASONING 61

and thus, Descr

(
n⋃
i=1

di

)
⊂ Descr (Lookup (Q))

Now we are in a success path so we have

Descr

(
n⋃
i=1

di

)
|= Q(t̄)

And therefore, Descr (Lookup (Q)) |= Q(t̄) �

The important point is that, while the look-up method is complete, Lookup (Q) can provide a strict
subset of Relevant (Q, D). It is shown using the example in table 4.1. From figure 4.4 we see that
Relevant (Q, D) is the set of d1 and d2 — because the rules appearing in the label of the edges of the
derivation tree come from d1 and d2 — while in figure 4.5, we can see that Lookup (Q) is the singleton
d1 — because d?1 is the only proper prime implicants of the query made of device propositional variables.

4.3.2 Decentralised computation of Lookup (Q) using SOMEWHERE

Figure 4.6 illustrates the possible implementation of the look-up method in a decentralised setting by
adding layers on top of SOMEWHERE deployed in each device. the process in the centralised setting.
The top layer, deals with the user interface. The step 1 (resp. step A) represents the translation of the
description (resp. a query) from the high-level language to the first-order logic. The intermediate layer
deals with the first-order logic description and reasoner. The step 2 (resp. step B) represents the encoding

Propositional logic

2

Code (Descr (d))

S
O

M
E
W

H
E
R

E
B

D

C

First-order logic

1

Descr (d)

P
R
O

L
O

G

A

F

E

High-level language

Description
Query

Answer

Figure 4.6: Schema of the whole process in a device

62 CHAPTER 4. DECENTRALISED REASONING FOR DYNAMIC COMPOSITION

of first-order description (resp. first-order query). The bottom layer is the propositional logic encoding
and reasoner handled by SOMEWHERE.

SOMEWHERE is a fully decentralised propositional logic reasoner. It is deployed on each device
of the opportunistic network in a form of a piece of JAVA code. The SOMEWHERE layer computes
the proper prime implicants of a conjunction of propositional variables with respect to a decentralised
propositional theory. In our context, the conjunction of propositional variables is the encoded query
and the propositional theory is the global theory ∆. Some of the propositional variables can be defined
in SOMEWHERE as target variables and we can restrict the computation of proper prime implicants to
those target variables. In our context, device propositional variables are the target variables. Therefore,
the look-up can be achieved by the SOMEWHERE platform (step C).

According to the transfer property (Theorem 2 in section 4.3.1), the decoding of the result returned
by SOMEWHERE triggered on the queried device provides the result of Lookup (Q). Therefore, the
queried device can download the first-order description of the devices selected by the look-up process
(step D), and locally computes using the PROLOG engine the answers to the query with respect to to the
selected descriptions (step E).

4.4 Heterogeneous descriptions

So far in this chapter, we have assumed that the descriptions between devices were homogeneous, i.e. us-
ing a common taxonomy shared by every devices. We describe in this section what changes must be done
in the encoding and the look-up process if we allow heterogeneous descriptions. Throughout this section,
we assume that class names appearing in the taxonomy of a device are prefixed with the identifier of that
device, so that similar class names between taxonomies are disambiguated.

Mappings between heterogeneous taxonomies have been introduced in section 2.7. They establish
a subclass relation between class names in the taxonomies of two different devices. In a decentralised
setting, we just have to add the mappings in the device description: in the description of a device d,
we add the mappings, denoted by M0(d) the subset of Descr (d) made of the predicate subclassof and
contains foreign class names. M0(d) is a subset of S0(d) and therefore it is encoded the same way.
Therefore, the lookup method presented in section 4.3 based on propositional encoding applies without
changes to the case of heterogeneous descriptions.

Bernard de Chartres said that we are like dwarfs sitting on the
shoulders of giants. We see more, and things that are more
distant, than they did, not because our sight is superior or
because we are taller than they, but because they raise us up,
and by their great stature add to ours.

Metalogicon III, Jean de Salisbury (1115–1180)

Chapter 5

Related Work and Conclusion

Contents
5.1 Semantic Approach of Dynamic Web Services Composition 64

5.2 Web Service Composition via Planning . 67

5.3 Logic based language for Web services composition 68

5.4 Conclusion . 71

We focus this chapter on comparing our work to previous existing work on dynamic Web service
composition. A Web service [7] is an application that can be described, published, and invoked over
the network by using standards network technologies. Those characteristics match the characteristics of
devices and functionalities. In our model Web services can be treated as logical devices while embedded
services are equivalent to functionalities.

In the last decade, Web service composition problems and Web service discovery problems have
been addressed (e.g. see [8, 19] for surveys). The Web service discovery problem is to fulfil a request of
a Web service that has initial input parameters and desired output. The Web service composition problem
occurs when no single Web service can satisfy the user request whereas a composite Web service— made
of a combination of either simple or composite Web services — could satisfy it. To achieve this goal, a
large number of research works has been carried out :

• using planning [15, 25];

• given a model to express composition between Web services to verify compositions [10, 18];

• to effectively build composition of Web services down to a lower granularity of the descriptions.

Some works (e.g. [4, 6, 25]) compose Web services by mingling their behaviour and execution, which
needs to describe the Web services at a low level.

Several works on Web service composition are based on predefined patterns [10, 26] or bindings
between services that are known beforehand [3]. A more challenging problem, which is the one we
address, is to compose services dynamically, on demand. Few works address it. We structure this chapter
accordingly, by first situating our approach with respect to semantic approaches, then with respect to
approaches based on planning and finally with respect to logic-based approaches. Note that those three
approaches are not disjoint and some of the works detailed here can be ranked among more than one
section.

63

64 CHAPTER 5. RELATED WORK AND CONCLUSION

5.1 Semantic Approach of Dynamic Web Services Composition

The semantic approach aims to give resources well-defined meaning and to make them machine-under-
standable. Then, resources can be shared and processed by automated tools as well as by human users.
The introduction of semantics in Web service composition is the continuity of the Semantic Web, which
vision was first introduced by [5].

The semantics is described by standard languages including :

• Uniform Resource Identifier (URI) a fundamental component of current Web. It allows to uniquely
identify resources as well as relations among resources;

• eXtensible Markup Language (XML) provides a syntactical interoperability on Web. It is the
universal format for structured documents and data on the Web;

• RDF leverages URI and XML to allow documents being described in the form of metadata by
means of resources, properties, and statements;

• RDFS is an extension of RDF, which defines a simple modeling language on top of RDF. It
enables the representation of class, property and constraint while RDF allows the representation
of instances and facts, thus making it a lightweight ontology language. While RDF and RDFS
are different, they are combined together to form the basic language for knowledge representation
denoted as RDF(S);

• Web Ontology Language (OWL) use the RDF(S) as a starting point and extend it to a more ex-
pressive powered ontology specification language for the description of the semantic Web.

Our language is an extension of RDF(S) that make uses of function. In chapter 2 we expressed our
language in RDF(S) whenever it was possible.

We compare our work to some previous work introducing semantics for data in Web service composition.
The first one introduce the concept of semantic value, and the second builds an ontology upon which the
composition is made.

In [13], Web service composition satisfy two conditions:

• Web services must agree on the meaning of the exchanged data in order to build consistent com-
position;

• semantic-data conflicts — such as incompatibility of types or differences in the unit used — must
be resolved using context.

The data conflicts arisen by the composition make [13] resolve these conflicts by using the concept
of semantic value introduced in [24]. A semantic value is the association of a simple value (like ‘5’ as
an integer) and a semantic information — named the context — to ease the contextual understanding
(e.g. “5(currency = euro)” describes 5 units of currency of type euros). The context is a set of properties
where each property is assigned to a semantic value. This definition is recursive. For instance a rent can
be expressed like:

640 (Periodicity = ‘monthly’(FirstIssueDate = ‘15 Jan’), Currency = ‘Euros’).

Here, the value 640 has two properties: Periodicity and Currency. The value of the former property is
also a semantic value having the property FirstIssueDate. The semantics of 640 can thus be interpreted
as a monthly rent of 640 euros with a beginning on January 15. Upon such a definition, the concept
of semantic mediator is introduced in [17]. A semantic mediator is triggered during a Web service

5.1. SEMANTIC APPROACH OF DYNAMIC WEB SERVICES COMPOSITION 65

composition and execution and it is not embedded in any of the Web services involved in the composition.
It is rather an independent component that permits conversion and comparison between semantic values.

In our approach, data are typed and can have properties (e.g. stored) . They may have a property
that value them. For instance the taxonomy of data-type can contain “Euro” as a sub-type of “Currency”
and a data object — whose value-property is for instance ‘5’ — can be declared to be an instance of
“Euro”. Finally, the semantic mediator is covered by the mappings between taxonomies when there is
no conversion of values or by a functionality that makes the conversion.

To make sure that different users (machine or human) have a common understanding of the terms,
ontologies in which terms are described, and which establish a joint terminology are usually adopted.

For a particular form of Web services called ‘Data-providing’ Web services, [4] addresses the prob-
lem of composition by defining an ontology. Data-providing Web services (as opposed to Effect-providing
Web services) corresponds to our functionalities without post-condition. They define an ontology by a
6-tuple:

1. a set of classes C;

2. a set of data-types L;

3. a set of data-type properties DP ;

4. a set of object properties OP ;

5. a sub-class relationship between classes (C × C);

6. and a sub-property relationship between homogeneous properties (OP ×OP ∪DP ×DP).

A query is defined on the instance graph of an ontology by a 3-tuple:

1. a backbone : a sequence of the form

?c1(C1).Ψ.p1.2.?c2(C2).Ψ.p2.3 . . .Ψ.pn−1.n.?cn(Cn)

where

• ci is a variable of type Ci, which is a class of the ontology;
• pi,j is an object property involving ?ck 1 ≤ k ≤ n;
• Ψ is a linking operator. Instances of ?ci must satisfy all of the conditions specified by Ψ;

2. the constraints set imposed on data-type properties of the variables in the backbone;

3. the output set including output variables.

Implemented in the RDF query language SPARQL, an example of a query that means ‘For a patient
P1 who takes a medication termed “Some Stuff”, what are the tests they had to perform’ could be :

Q1 :
Backbone =
?T1(type : Test).[HasTest]−1.?P1(type : Patient).[TakeDrugs].?M1(type : Drugs)
Ct = {$M1(Name = “Some Stuff′′)},
Out = {?T1(Result)}

They model the Data-Providing Web services as RDF Parametrised views over an OWL ontology. A
parametrised view is a predicate WSi(Ci) called the view head and a 4-tuple called the view body:

66 CHAPTER 5. RELATED WORK AND CONCLUSION

1. a backbone that includes both the variable set C (of classes types) linking input and the output of
the service, and the object properties set OP relating the different variables in C;

2. A set of constraints imposed on the data-type properties of C such that they are not required inputs
of the service;

3. Necessary literals for the service invocation;

4. Output literals.

The parametrised view permits to catch the semantic relation holding between the inputs (literals
for the service invocation) and the outputs. For instance, a Web services that provides the name of the
patients that take a certain medication is written as follow :

WS4(Patient(Name)) : −
{?Patient.[TakeDrugs].?Drug}
Ct : {∅}
In : {$Drug(Name)}
Out : {?Patient(Name)}

The resolution of the query is based on the parametrised views of the services. In order to satisfy
a query, a set of services is selected and the union of their backbones has to cover the backbone of the
query. It means that the requested data items are provided and the query’s constraints list is satisfied with
the union of the constraints of the selected services. As a matter of fact, the composition is guided by
the structure of the query’s backbone. The form of the composed Web services expected as an answer to
the query is known beforehand. Thus, with this approach, one may fail finding composition even if there
is possible composition that would provide the data items requested without satisfying the constraints of
the backbone. In our approach the query is more flexible as it is expressed directly in first-order logic
(without the constraint of the backbone, a sequence of a particular form) used here.

A rule based composition is done in [16] by generating composite services from high-level declarat-
ive description. Rules (called composability rules) are used to determine whether two services are likely
to be composed. The approach consists in four phases:

1. Specification: a high-level description of the desired compositions using Composite Service Spe-
cification Language (CSSL), allowing semantic features and specification of the control flow
between composite service operations.

2. Match-making: composability rules are used to generate composition plans conform to the re-
quests. This phase checks purpose composability and category composability between a compos-
ite service operation and a component service operation. It checks also quality composability and
message compatibility (leading to a one-to-one mapping between messages).

3. Selection: if more than one plan is generated, a selection is made based on quality of composition
parameters like ranking, relevance (also called soundness) and completeness;

4. Generation phase.

The composability rules checks different aspects of the composition that are equivalent to the as-
sembly line composition and relay race composition in our approach and they are expressed and checked
by the reasoner during the answering of a query.

5.2. WEB SERVICE COMPOSITION VIA PLANNING 67

5.2 Web Service Composition via Planning

There are many research tackling Web service composition problem via planning. A planning problem
can be described by a set S of all possible states of the world, a set S0 of initial state, a set G of goals
states the planning system attempts to reach. a set A of actions planner can perform changing one state
to another in the world and a relation Γ ⊂ S × A × S which defines the preconditions and effects for
the execution of each action. In the terms of Web services, S0 (resp. G) is the initial states (resp. the
goal states) specified in the requirement of Web services. A represents a set of available services and Γ
denotes the state change function of each service.

An automated composition task using planning methods is also used in [25] that build a new com-
posed service (i.e. the state transition system), given the OWL-S process model description of n available
services.

A state transition system is a 6-tuple:

1. a set S of states;

2. a set A of actions;

3. a set O of observations;

4. a set I of initial states, subset of S (I 6= ∅);

5. a transition function T : S × A 7→ 2S associating the set of next states T (s, a) after applying an
action a to a state s;

6. an observation function X : S 7→ O.

A Composition goals express requirements for the service to be automatically generated. They should
represent conditions on the temporary evolution of services, and, as shown by the next example, require-
ments of different strengths and preference conditions.

The planner in charge of the composition has two inputs: the composition goal and the planning
domain Σ which represents all the ways in which the services represented by ΣW1 , . . . ,ΣWn can evolve.
The automated composition task consists in finding a plan that satisfies the composition goal G over
a domain Σ. A plan may encode sequential, conditional and iterative behaviors. Therefore a plan is
modelled as an automaton:

A plan for planning domain Σ = {S,A,O, I, T,X} is a 4-tuple where:

• C is the set of plan contexts.

• c0 ∈ C is the initial context.

• α : C × O 7→ A is the action function; it associates to a plan context c and an observation o an
action a = α(c, o) to be executed.

• ε : C × O 7→ C is the context evolutions function; it associates to a plan context c and an
observation o a new plan context c = (c, o).

The generation of a new composition is achieved by translating a process models to non-deterministic
and partially observable state transition systems and by generating automatically a plan that can express
conditional and iterative behaviours of the composition.

68 CHAPTER 5. RELATED WORK AND CONCLUSION

5.3 Logic based language for Web services composition

In this section, we compare our work to situation calculus and some existing works that extend it.
From our approach, a functionality can be seen as an action with parameters, preconditions and

effects on the current state. The situation calculus [14] gives a representation of actions and permits to
detail preconditions and effects like the following. First, one rule for the action preconditions that tells if
an action is executable in a given situation:

Poss(a(~ı), s)↔ Prec(~ı , s)

where Prec(~ı , s) is the preconditions of the action. Then there are as many rules as fluents to change
with the performance of the action:

Poss(a(~ı), s)→ F (~x, do(a(~ı), s))

where do(a(~ı), s)) denotes the new situation resulting from the performance of an action a(~ı) on a
situation s; where F (~x, s′) denotes the fluents that undergo the effects of the action.

Some existing works [15, 18] extend situation calculus to make Web service composition. The
authors conceive a Web service as either a primitive action or a complex action and therefore describe a
Web service down to its components. An adapted version of Golog [12] deductive machinery is used to
address the Web service composition problem. Golog is a high-level logic programming language built
on top of the situation calculus, a first-order logical language for reasoning about action and change.
They extend Golog to allow Golog programs to be used by a variety of different users. For instance,
making a travel plans is a common task, yet it is difficult to task another person — to task a computer
even more so — to make it for you due to your individual constraints and preferences. The adaptation and
extension of the logic programming language in [15] are designed to allow programs to be written but yet
being customisable by indivual users with their own constraints. In their approach a composite service
is a set of atomic services which are connected using procedural constructs (if-then-else, while etc.).

A set of extra-logical constructs to assemble primitive actions, which are defined in the situation
calculus, into complex actions are the following;

• a : primitive actions

• δ1; δ2 : sequences

• φ? : tests

• δ1|δ2 : non deterministic choice of actions

• (πx)δ(x) : non deterministic choice of acrguments

• δ∗ : non deterministic iteration

• if φ then δ1 else δ2 endif = [φ?; δ1]|[¬φ?; δ2] : conditionals

• while φ do δ endwhile = [φ?; δ]∗;¬φ? : loops

Given a domain theory D and a program δ written in the language of the domain theory D and using
the above constructs, program execution must find a sequence of actions ~a such that:

D |= do(δ, S0, do(~a, S0))

where do(~a, S0) stands for do(an, do(an−1, . . . , do(a1, S0)))

5.3. LOGIC BASED LANGUAGE FOR WEB SERVICES COMPOSITION 69

In addition to the fluent Poss(a, s) in situation calculus which expresses that the action a is physic-
ally possible in the situation s, they define Desirable(a, s) to constrains the search space for actions.

In the following we will show how our approach can be adapted to comply with situation calculus. In
our approach, if we want to represent functionalities associated with devices as actions from the situation
calculus, an adaptation of the function symbol do is needed:

do(f(d), [I1, . . . , In], s)

denotes the new situation resulting from the performance of the functionality of the device d, denoted
by f(d), fed with the inputs I1, . . . , In. f(d) is a skolem function with a function symbol f . While the
function symbol f has no semantics, the semantics of f(d) is defined by associating it with a class name
in a taxonomy of functionalities.

The same way an adaptation of the predicat Poss in order to reflect the representation of the func-
tionalities is needed:

Poss(f(d), [I1, . . . , In], s)

Some functionalities have inherently a result that depends on their inputs. Therefore, it is very useful
to link the result of a functionality with the inputs. For instance, when a compilation process transforms
a source file into a file comprehended by the computer, we have to keep the piece of information that the
compiled file comes from a particular source. Furthermore, to type the result of the functionality over a
given situation there is a function symbol out (that refers to ‘output’):

out(f(d), [I1, . . . , In], s)

which denotes the output of the functionality f(d) of the device d fed with the inputs I1, . . . , In and
performed in a situation s.

The introduction of the function do together with the situation permit us to express the assembly line
composition. The assembly line composition can be seen as a sequence of functionalities (actions) where
there is possibly no data exchanged between them. The following example illustrates the expression of
such a composition:

Imagine a mobile phone which provides the functionality of sending a short message to another
mobile phone knowing its number. It may be the case that more than one carrier can be used to send
the message, each one billing different prices depending on the date, the time of the day and the plan
subscribed to the carrier. So the phone can select a carrier. The short messages service functionality
gets the number of a mobile phone and a short message to send. As a precondition, the carrier has to be
selected in order to send the message. Thus, we have a mobile phone phn1 with two functionalities:

• f1(phn1) sends a short messages to a phone number;

• f2(phn1) provides the cheapest carrier among the carriers available, and as a side-effect the carrier
is selected.

Now suppose we have a Personal Digital Assistant (PDA) which contains our address book and
which has a functionality to retrieve someone’s phone number knowing its name. We want to express
the relay race composition which is done with the function out as seen in section 2.4, and the assembly
line composition which is done with the function do as we are going to see it now.

First we select the carrier:

s1 = do(f2(phn1), [], s0)

70 CHAPTER 5. RELATED WORK AND CONCLUSION

Next, in the situation s1 where the carrier is selected, we look for the phone number in the PDA. This
is the expression of the phone number:

N = out(f1(pda1), ["Peter", "Zweistein"], s1)

Yet, the new situation is the following:

s2 = do(f1(pda1), ["Peter", "Zweistein"], s1)

Therefore, the fact that the message is sent is expressed by the following statement:

out(f1(phn1), [N, "Hello!"], s2)

This extension permits us to express the assembly line composition while situation calculus in itself
has no mean to express relay race composition.

5.4. CONCLUSION 71

5.4 Conclusion

In the context of an opportunistic network, we address three problems that come along with dynamic
composition.

1. To express a composition of functionalities that meet certain criteria such as the type of the output,
the properties of the devices, etc.

2. To look for functionalities or devices available through the opportunistic network.

3. To describe devices and their functionalities to make the search and the composition possible.

We have built a logical class-based language upon the first-order logic to describe the devices and
the functionalities. Every object (devices, functionalities, data, etc) is assigned to a set of user-defined
classes which are organised in taxonomies. An important characteristic of the language is the use of
functions to link an output of a functionality to its input. It follows that composition of functionalities
are naturally expressed in the language by composition of functions.

The first-order logical class-based language makes description be a knowledge base upon which we
can reason. Then, thanks to a reasoner, searching for devices (resp. functionalities) according to their
properties (location, type, functionalities’ type, etc.) (resp. input types, output types, etc.) is achieved by
answering to queries.

The main effect of the combination of the language and a reasoner lies in the compositions of func-
tionalities being directly provided as answers to queries. As a composed functionality is considered as a
functionality, an answer to a query looking for a functionality can be indiscriminately a simple function-
ality or a composed functionality.

As there is no fully distributed PROLOG to shift the problem of dynamic composition in an oppor-
tunistic network, we addressed this problem by breaking it down to two steps. According to a query, a
look up process through the network is made thanks to SOMEWHERE. This demands an encoding of the
description and the queries into propositional logic. The look up provides a list of devices’ description
that are proved to be sufficient, once retrieved, for the second step which is to compute locally the answer
of the query.

As perspective, we outline three future works that would worth to be investigated. First, experiment-
ation of the decentralised deployment in a real case and impact on the performance due to an heterogen-
eous description can rely on the experimentation made on SOMEWHERE [1] that shows the scalability
of the approach. Their consequence finding algorithm, deployed on a real cluster of heterogeneous com-
puters, scales well even on queries that solicit a large number of neighbours to be processed and even on
networks with lots of shared variables between couple of neighbours.

Then, an extension of the description language can be investigate to use negation. It would be inter-
esting

• to expect that a certain property does not hold, in a precondition of a functionality;

• to express that a device does not belong to a certain class;

If negation is treated by failure, the reasoner will wrongly answers to some queries involving unbound
variables as shown in the following minimalistic example. “Alice is a woman” is expressed by the first
statement, and “A man is someone who is not a woman” is expressed by the second statement.

woman(alice).
man(X) :− ¬woman(X).

72 CHAPTER 5. RELATED WORK AND CONCLUSION

Therefore, even if man(bob) succeeds, man(X) will fail because woman(X) succeeds. Negation
as failure rely on the close world assumption but the knowledge base in our case is not complete. In our
case, the order of evaluation of the predicate is not significant. So a possible workaround could be to
postpone the evaluation of a negation until all the variables involved are instantiated.

Finally, a decentralised PROLOG to compute answers to a query on a distributed Prolog program can
be an improvement. Instead of retrieving relevant description and compute answers locally, we could
try to partially answer to a query and ask the neighbourhood about the unresolved part of the query and
gather all this partial answers to build up a complete answer to the initial query. Another approach could
be to extend SOMEWHERE algorithm to first-order logic.

Appendix A

Glossary

CSSL Composite Service Specification Language . 66

MGU Most General Unifier . 42

OWL Web Ontology Language. .64

P2P Peer-to-peer . 1

PDA Personal Digital Assistant . 69

PDF Portable Document File . 4

RDF Resource Document Framework . 6

RDFS Resource Document Framework Schema . 7

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier . 64

WSC Web service composition

WSD Web service discovery

XML eXtensible Markup Language . 64

73

Appendix B

Index

A
Assembly line composition, see Composition

C
Composition, 5, 7, 20, 27

assembly line, 17, 66, 69, 70
ordered tree of, 16–18
relay race, 16, 17, 52, 66, 69, 70

Composite Service Specification Language, 66

D
Derivation tree, 42, 43, 46, 47, 55–57, 59–61
Description

First-order, 40, 57, 62
Devices

Display, 4
Mixing console, 3
Printer, 4
Screen, 4
Webcam, 3

F
First-order, see Description, see Logic
Functionality

Assertion, 13, 17
Signature, 12, 16, 21
Virtual functionality, 4, 5, 21, 22

G
Graph

of connections, 26, 27, 29, 31, 33, 34, 37

H
Heterogeneous descriptions, 22, 62
High-level language, 8, 9, 11, 12, 14, 15, 17–21, 61

J
JAVA, 62

L
Logic

First-order, 5, 6, 8–10, 14, 15, 21–25, 40, 42,
50, 61, 66, 71, 72

Propositional, 5, 40, 48, 50, 61, 62, 71

M
Most General Unifier, 42, 56

O
Opportunistic network, 2, 3, 5, 6, 62, 71
Ordered tree of composition, see Composition
OWL, 64, 67

P
Peer-to-peer, 1, 39
Personal Digital Assistant, 69, 70
Portable Document File, 4, 21
Post-condition, 5, 10, 11, 13–15, 17, 41, 65
Precondition, 5, 11, 13–17, 41, 67–69, 71
PROLOG, 5–7, 25, 26, 28, 40, 46, 61, 62, 71, 72

XSB, 6, 26, 28–37

R
Resource Document Framework, 6, 12, 64, 65, 73
Resource Document Framework Schema, 7–10, 64
Relay race composition, see Composition

S
Skolem, 16, 40, 69
SOMEWHERE, 5, 40, 48, 59, 61, 62, 71, 72

T
Taxonomy, 5, 44

74

75

U
Uniform Resource Identifier, 64

V
Variable of interest, 18–20, 42
Virtual object, 20

Virtual device, 4, 5, 20, 22
Virtual functionality, see Functionality

W
Web service composition, 63, 64, 67, 68
Web service discovery, 63

X
eXtensible Markup Language, 64
XSB, see Prolog

76 APPENDIX B. INDEX

Appendix C

Bibliography

[1] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine Rousset, and Laurent
Simon. Scalability study of peer-to-peer consequence finding. In Leslie Pack Kaelbling and Aless-
andro Saffiotti, editors, IJCAI, pages 351–356. Professional Book Center, 2005.

[2] Philippe Adjiman, Francois Goasdoué, and Marie-Christine Rousset. SOMERDFS in the semantic
web. Journal on Data Semantics, 8, 2007.

[3] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Ley-
mann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weer-
awarana. Business process execution language for web services, March 2003.

[4] Mahmoud Barhamgi, Pierre-Antoine Champin, Djamal Benslimane, and Aris Ouksel. Composing
Data-Providing Web Services in P2P-based Collaboration Environments. In Springer, editor, 19th
International Conference on Advanced Information Systems Engineering (CAiSE’07), pages 513–
545. Springer, June 2007.

[5] Tim Berners-Lee and Eric Miller. The semantic web lifts off. ERCIM News, 51:9–10, October
2002.

[6] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated web service composition by on-
the-fly belief space search. In Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee McCluskey,
editors, ICAPS, pages 358–361. AAAI, 2006.

[7] Mike Clark, Peter Fletcher, J. Jeffrey Hanson, Romin Irani, Mark Waterhouse, and Jorgen Thelin.
Web Services Business Strategies and Architectures. Wrox Press, 2002.

[8] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. International
Journal of Web and Grid Services, 1(1):1–30, 2005.

[9] Mike Dean et al. Owl web ontology language reference. Online. http://www.w3.org/TR/owl-ref/.

[10] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service composition. In
ADC ’03: Proceedings of the 14th Australasian database conference, pages 191–200, Darlinghurst,
Australia, 2003. Australian Computer Society, Inc.

[11] Graham Klyne and Jeremy J. Carroll. Resource description framework: Concepts and abstract
syntax. Online. http://www.w3.org/TR/rdf-concepts/.

77

78 APPENDIX C. BIBLIOGRAPHY

[12] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, Richard B. Scherl, and
Richard B. Golog: A logic programming language for dynamic domains, 1994.

[13] Zakaria Maamar, Djamal Benslimane, and Nanjangud C. Narendra. What can context do for web
services? Communications of the ACM, 49(12):98–103.

[14] John McCarthy. Situations, actions and causal laws. Semantic Information Processing, pages 410–
417, 1968.

[15] Shelia McIlraith and Tran Cao Son. Adapting golog for composition of semantic web services. In
Proceedings of the Eighth International Conference on Knowledge Representation and Reasoning
(KR2002), pages 482–493, 2002.

[16] Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid. Composing web services on
the semantic web. The VLDB Journal, 12, 2003.

[17] Michael Mrissa, Chirine Ghedira, Djamal Benslimane, and Zakaria Maamar. Context and semantic
composition of web services. pages 266–275, 2006.

[18] Srini Narayanan and Sheila McIlraith. Simulation, verification and automated composition of web
services. 11th international conference on World Wide Web, 2002.

[19] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition methods. In
Proceedings of the 1st International Workshop on Semantic Web Services and Web Process Com-
position, volume 3387 of Lecture Notes in Computer Science, pages 43–54, San Diego, USA, 2004.
Springer.

[20] Marie-Christine Rousset, Philippe Adjiman, Philippe Chatalic, François Goasdoué, and Laurent
Simon. SOMEWHERE in the semantic web. SOFSEM 2006 (International Conference on Current
Trends in Theory and Practice of Computer Science), january 2006.

[21] Konstantinos Sagonas and Terrance Swift. An abstract machine for tabled execution of fixed-order
stratified logic programs. ACM Trans. Program. Lang. Syst., 20(3):586–634, 1998.

[22] Konstantinos Sagonas, Terrance Swift, and David S. Warren. Xsb as an efficient deductive database
engine. In SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD international conference on
Management of data, pages 442–453, New York, NY, USA, 1994. ACM.

[23] Konstantinos Sagonas, David S. Warren, David Warren, Steve Dawson, Steve Dawson, Juliana
Freire, Juliana Freire, Baoqiu Cui, Michael Kifer, Michael Kifer, Terrance Swift, Terrance Swift,
Terrance Swift, Kostis Sagonas, Prasad Rao, Prasad Rao, Prasad Rao, and Juliana Freire The Break-
down. The xsb system version 2.2 volume 1: Programmer’s manual, 2000.

[24] Michael Siegel, Edward Sciore, and Arnon Rosenthal. Using semantic values to facilitate inter-
operability among heterogeneous information systems. ACM Transactions on Database Systems,
19:254–290, 1994.

[25] Paolo Traverso and Marco Pistore. Automated composition of semantic web services into execut-
able processes. pages 380–394, 2004.

[26] Moe Thandar Tut and David Edmond. The use of patterns in service composition. In Christoph
Bussler, Richard Hull, Sheila A. McIlraith, Maria E. Orlowska, Barbara Pernici, and Jian Yang,
editors, WES, volume 2512 of Lecture Notes in Computer Science, pages 28–40. Springer, 2002.

79

Résumé

Dans des réseaux opportunistes — dont la topologie est dynamique — de dispositifs intelligents, nous
traitons le problème de la recherche et de la composition dynamique de fonctionnalités à l’aide d’une
description logique des dispositifs. Nous définissons un langage logique du premier ordre dans lequel les
dispositifs, leurs fonctionnalités et leur propriétés sont exprimés, en utilisant une taxonomie de classes
pour contraindre le type des ressources. Nous définissons conjointement un langage de requêtes basé
sur celui de la description nous permettant d’utiliser des raisonneurs du type PROLOG pour répondre
aux requêtes. Ces réponses sont des instanciations des variables d’intérêt présentes dans la requête et
représentent des constructions de fonctionnalités composées. Dans un second temps, pour faire face aux
spécificités d’un réseau dynamique, nous utilisons la plateforme SOMEWHERE — qui permet de faire
du raisonnement en logique propositionnel lorsque la base de connaissances est totalement distribuée —
comme un service de lookup récupérant un sous-ensembles des ressources dont les descriptions sont
nécessaires à l’obtention de toutes les réponses à la requête donnée via le raisonneur. Dans cette optique,
nous utilisons un encodage des descriptions et de la requête écrites en logique du premier ordre vers la
logique propositionnelle qui conserve les bonnes propriétés de la description.

Mots-clés: composition, réseau opportuniste, Web sémantique

Abstract

In opportunistic networks — which topology is dynamic — of smart devices, we address the problem
of looking for functionalities and of building a composition of functionalities with a logical description
of the devices. We define a first order logic language in which the devices, their functionalities and
their properties are expressed using taxonomies of classes to constrain the type of resources. We jointly
define a query language based on the description language, allowing us to use a reasoner like PROLOG to
answer to the queries. Those answers are instanciations of the variables of interest which belong to the
query. They represent composed functionalities. Next, to deal with the dynamicity of the network, the
platform SOMEWHERE — that make reasoning in propositional logic in a totally distributed manner —
is used as a lookup service retrieving a subset of resources which descriptions are necessary to obtain all
the answers to a certain query. For that purpose, we use an encoding of the descriptions and of the query,
both written in first order logic, into propositional logic so that some good properties of the descriptions
are kept.

Keywords: composition, opportunistic networks, semantic Web

	Acknowledgment
	Remerciements
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Illustrative scenarios
	Mixing console
	Viewing a webcam knowing its location
	Transferring files
	Displaying in a distant location
	Screens side by side
	Printing a pdf file on a postscript printer
	Alert in a house
	Requirements

	Sketch of the approach
	Contributions
	A logical class-based language with functions
	A feasability study of inferring compositions on demand using a Prolog engine
	A solution for a decentralised deployment of the approach

	A logic-based language to describe devices
	Description of classes, instances and properties
	Taxonomies
	Instances
	Predicates

	Description of functionalities
	The use of functions
	The signature and the assertions of a functionality

	Logical description of a device
	Composition of functionalities
	The relay race composition
	The assembly line composition

	Specification of queries
	Yes-no queries
	Wh- queries
	Composed functionalities as answers to queries

	Specification of virtual objects
	Virtual devices
	Virtual functionalities
	Combination of virtual devices and virtual functionalities

	Extension to heterogeneous descriptions

	Centralised reasoning for dynamic composition
	Using Prolog as a reasoning engine
	Experiments
	The basis of the scenarios
	About the curves

	Different scenarios
	Scenario almost without type constraint
	Best case: a single possible composition of depth 2
	A single possible composition of depth n
	n possible compositions of depth 2
	n2 possible compositions of depth 2
	2n2 possible compositions of depth n/2

	Summary

	Decentralised reasoning for dynamic composition
	Reminders and preliminaries
	Logical description of a device and its functionalities
	Queries
	Example
	Relevant devices for a query

	Propositional encoding: principles and properties
	Encoding of device descriptions and queries
	Properties
	Examples

	Look-up by decentralised propositional reasoning
	Look-up: definition and properties
	Decentralised computation of Q using SomeWhere

	Heterogeneous descriptions

	Related Work and Conclusion
	Semantic Approach of Dynamic Web Services Composition
	Web Service Composition via Planning
	Logic based language for Web services composition
	Conclusion

	Glossary
	Index
	Bibliography

