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Abstract

Spectroscopy and quantum transport constitute powerful ways to study the
physics of matter and to access the electronic and atomic structure. Excitations,
in turn determined by the electronic and atomic structure, lie at the origin of
spectroscopy and quantum transport. Ab initio calculation of excited states
requires to go beyond ground-state density-functional theory (DFT).

In this work we review three theoretical frameworks beyond DFT: the first
is time-dependent density-functional theory to describe neutral excitations and
to address energy-loss and optical spectroscopies. We introduce the theory and
the fundamental approximations, i.e. the RPA and the adiabatic LDA, to-
gether with the results one can get with them at the example of bulk silicon
and graphite. We then describe the developments we contributed to the the-
ory beyond TDLDA to better describe optical spectroscopy, in particular the
long-range contribution-only and the Nanoquanta exchange-correlation kernel
approximations.

The second framework is many-body quantum field theory (or Green’s func-
tion theory) in the GW approximation and beyond, well suited to describe pho-
toemission spectroscopy. After a review of the theory and its main success on
the prediction of the band gap, we present two applications on unconventional
systems: 2D graphene and strongly correlated vanadium dioxide. We discuss
the next frontiers of GW, closing with perspectives beyond GW and MBQFT.

The last part presents non-equilibrium Green’s function theory suited to ad-
dress quantum transport. We show how it reduces to the state-of-the-art Lan-
dauer principal layers framework when neglecting correlations. We present a cal-
culation of the conductance on a very simple system, a gold monoatomic chain,
showing the effect of electron-electron scattering effects. Finally we present
theoretical developments toward a new workbench beyond the principal layers,
which led us to the introduction of new generalized Meir and Wingreen and
Fisher-Lee formulas.

This work compares the theoretical and practical aspects of both Green’s
function and density based approaches, each one benefiting insights from the
other, and presents an overview of accomplishments and perspectives.
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Introduction

Spectroscopy constitutes today for the experiment one of the most powerful
way to access and study the physics of condensed matter. Excitations lie at
the origin of any spectroscopy. Every spectroscopy experiment measures the
response of a system to an external perturbation. External incoming photons,
electrons, etc. perturbe the system from its initial state and excite it to another
state. The response to the perturbation is hence related to the excitations
the system undergoes. By measuring the response and with a knowledge of the
perturbation, one can extract important informations about the excitations and
hence about the electronic and atomic structure of the system.

In this work we will focus in particular on electronic excitations and spectro-
scopies related to them. Photoemission, optical absortion and energy-loss can
be taken as prototype spectroscopies in this context. Aside, we will also consider
quantum transport that, dependending on the definition, can be considered a
spectroscopy in itself (one measures the current in response to an applied bias).
In all these cases, in order to describe, reproduce, interpret or even predict a
spectrum, it is fundamental to have an accurate and precise description of exci-
tations, in turn determined by the electronic and atomic structure of the system
which is hence the main problem stated to the theory.

For the interpretation of a spectrum one can already be satisfied with a
more or less simple adjustable-parameters model which tries to capture the
main physics behind observed phenomena. The model can go from a simple fit
of the spectrum by a collection of lorentzians/gaussians, as we did for example in
Ref.s [Battistoni 96, Galdikas 97] to interpret photoemission and Auger spectra.
To a more physical model that tries to speculate on the microscopic nature of
the system, presenting what is guessed to be the most relevant physics to explain
phenomena and neglect the rest. This represents an a priori conjecture done
at the very beginning and which can reveal true or false. In the latter case it
leads to a completely wrong interpretation of phenomena. Moreover, a model
always presents few or many parameters to be adjusted on the experiment. For
this reason it can never achieve the rank of a “predictive theory” in a scientific
and epistemological sense.

For all these reasons, it would be extremely desirable to have a description
of the atomic and electronic structure, of excitations and finally of spectroscopy
by a microscopical ab initio theory. Such a first principles theory should possi-
bly take into account all the microscopic degrees of freedom of the system and
consider the full Hamiltonian presenting the real interactions of nature. The
advantage of an ab initio theory is that it does not rely on a conjecture which
may completely falsify the conclusions about the intepretation of a phenomenon.
Further on, since it does not rely on adjustable parameters, an ab initio the-
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2 CONTENTS

ory can lead to “prediction”, which is a fundamental aspect of the scientific
methodology since Galileo.

The problem in physics of matter is that even the simplest systems present
an enormous level of complexity. Exact analytic solutions are known only in
few and very simple real systems, such as hydrogen and hydrogenoid atoms.
Problems start to appear already for the helium atom, a two-electron system.
In any case, the follow up of all the degrees of freedom cannot be normally
accomplished in an analytic way. Computer calculations are unavoidable to
describe real condensed matter systems. Although ab initio theories try to keep
as much as possible exact in principle, in almost all the cases approximations
are required to achieve a result, either for missing knowledge of key quantities of
the theory or for numerical unfeasibility. Of course, approximations are avoided
for all the quantities which can be calculated exactly, and their application is as
much as possible delayed to the last calculation steps. However, approximations
for which an a priori evaluation of the error is possible like for example in
perturbation theory, are seldom in condensed matter theory. The quality of an
approximation cannot in many cases be stated in advance, and only heuristic
considerations are possible. Most of them can only be validated a posteriori,
after having accumulated a large statistics on systems. Such a state of affairs
and all these difficulties can be traced back and derive from one, although severe,
complication of condensed matter theory: the so-called “many-body problem”.
This is the real “guilty”, responsible of most of the difficulties encountered by
condensed matter theory in the purpose to describe the atomic and the electronic
structure, as well as all physical properties related to them. Its statement will
be exposed in the next section and the various proposed solutions constitute the
main argument of this manuscript and the basic motivation of all my research
work so far.

This work is organized in the following way: in the first chapter we in-
troduce the many-body problem and the most important theories proposed to
tackle it, namely many-body quantum field theory (MBQFT), also known as
Green’s function theory, and density-functional theory. Chapter 2 will present
time-dependent density-functional theory (TDDFT) together with our personal
contributions to the development of new approximations within TDDFT, in
order to address not only energy-loss (EELS, IXSS) but also optical spectro-
scopies. The search for better approximations beyond the local-density has been
the leitmotiv of my research activity since the PhD thesis work [Olevano 99b].
Chapter 3 will present MBQFT and the GW approximation, well suited to pho-
toemission spectroscopy. Our recent contributions to the theory go toward the
study of materials, like strongly correlated systems, where the quality of the
GW approximation is seriously tested. We present also some new ideas with
perspectives that go beyond not only GW but even MBQFT. The last chapter
introduces non-equilibrium Green’s function theory (NEGF) and its application
to the quantum transport problem, together with our most recent contributions.
As recommended for the achievement of a Habilitation à Diriger des Recherches
degree of the Université Joseph Fourier, this work is written in a didactic form,
ad usum of students starting their PhD on these arguments.



Chapter 1

The many-body problem
and theories

1.1 The many-body problem

Let’s take a generic condensed matter system containing N electrons. N can
range from 1 (the hydrogen atom), to tens in atomic systems and simple molecules;
up to the order of the Avogadro number NA ∼ 1023 in solids. In the Born-
Oppenheimer approximation, the Hamiltonian of the system can be written
(atomic units, m = e = ~ = 1, are assumed hereafter):

H = T + V +W = −1

2

N
∑

n=1

∂2
rn

+

N
∑

n=1

v(rn) +
1

2

N
∑

n6=m=1

w(rn, rm), (1.1)

where T = −1/2
∑

n ∂
2
rn

is the kinetic energy; V =
∑

n v(rn) is the external
potential energy, the interaction of the electrons with an assumed external po-
tential v(r) due e.g. to ions supposed in fixed positions with respect to the
electrons (Born-Oppenheimer approximation); and W = 1/2

∑

n6=mw(rn, rm)
is the electron-electron interaction energy, that is the Coulomb repulsion

w(r, r′) =
1

|r − r′|

long range interaction among the N electrons of the system.
In an ideal case where the many-body electron-electron interaction W = 0

is switched off (this ideal system is called the independent-particle system and
indicated with a superscript (0)), the Hamiltonian can be written

H(0) = T + V =

N
∑

n=1

h(0)(rn),

that is, it factorizes in N single-particle Hamiltonians,

h(0)(r) =

[

−1

2
∂2

r + v(r)

]

,

3



4 CHAPTER 1. THE MANY-BODY PROBLEM AND THEORIES

and the single-particle Schrödinger equation,

h(0)(r)φ
(0)
i (r) = ǫ

(0)
i φ

(0)
i (r),

can be easily solved to find the spectrum of the single-particle ǫ
(0)
i eigenenergies

and φ
(0)
i (r) eigenfunctions. The solutions to the Schrödinger equation of the

total N electrons system,

H(0)Φ
(0)
i (r1, . . . , rN ) = E

(0)
i Φ

(0)
i (r1, . . . , rN ),

can then be easily written in terms of the single-particle spectrum. In particular,
keeping into account the fermionic nature of the N particles (the electrons)
composing the system, the ground-state energy is

E
(0)
0 =

N
∑

n=1

ǫ(0)n ,

and the ground-state wavefunction is the Slater determinant

Φ
(0)
0 (r1, . . . , rN ) =

1√
N !

∑

P

(−1)PP{φ(0)
i (rn)} i = 1, N n = 1, N (1.2)

(P is the permutation operator). The independent-particle approximation al-
ready provides an interesting physics. For instance, almost all the physics pre-
sented in condensed matter text books like Ref.s [Ashcroft 76, Kittel 66], is
based on this approximation. The point is that the electron-electron repulsion
is not an order of magnitude less than the electron-ion interaction expressed
via the external potential. In a condensed matter system, positive and negative
charges are usually compensated, or nearly, so that the external potential energy
and the many-body interaction energy are of the same order. As we will show
in the next, the independent-particle approximation reveals inappropriated in
many cases. The problem is that when we try to reintroduce the many-body
W term, the Hamiltonian is not any more factorizable and one should solve the
full many-body Schrödinger equation,

HΨi(r1, . . . , rN ) = EiΨi(r1, . . . , rN ), (1.3)

which is a complicated problem even for a two-electron system, N = 2, like the
helium atom. It becomes a formidable problem in macroscopic solids, where even
just imaging to write the wavefunction Ψ(r1, . . . , rN ), a function of N ∼ 1023

variables, is unaffordable.
This is known as the many-body problem and it is considered as one of the

(if not “The”) fundamental problem of condensed matter theoretical physics, as
well as of other domains like theoretical nuclear (of the nuclei) physics. Start-
ing from the ’20s, several formalisms and theories have been proposed to tackle
the problem. The first attempts were represented by the Hartree-Fock (HF)
and Thomas-Fermi theories [Ashcroft 76, Kittel 66], well-known since taught
in fundamental physics courses, but which were unable to provide a satisfying
solution and are often very far from the experiment, apart from limited cases.
The very final solution to the many-body problem cannot yet be considered
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as found, but there have been important progresses. Efforts have been pro-
vided in particular toward two directions: the development of a quantum field
theoretic and Green’s function based formalism, known as many-body quantum-
field theory (MBQFT), more frequently named many-body perturbation theory
(MBPT); and the development of density-functional based theories, which led
in particular to the succesful density-functional theory (DFT).

1.2 Many-body quantum field theory (MBQFT)

The many-body theory is a quantum field theoretic approach to the many-body
problem. Quantum field theory is a formalism of quantum mechanics which
relies on second quantization. The wavefunction ψ(r) of ordinary quantum
mechanics, which can be seen as a field over the space r ∈ R

3, is itself quantized
in the sense that it becomes a quantum (field) operator ψ̂(r).

This is a formalism largely developed in high-energy, particle and subnu-
clear physics where it gave rise to successful theories such as quantum electro-
dynamics (QED) to describe the electromagnetic interaction among particles,
the electroweak theory, quantum chromodynamics (QCD), up to the standard
model to describe weak and strong nuclear interactions in a unified picture with
electromagnetism. In condensed matter physics, quantum field theory has been
proposed since the sixties as promising candidate to the solution of the many-
body problem. The advantages of a field theoretic treatement of the many-body
problem are:

1. Second quantized operators avoid the need of indeces running on the entire
set of particles composing a many-body system. As we have seen, particle
indeces as in rn, can run up to the Avagodro number in solid state physics.

2. Bosonic symmetrization or fermionic antisymmetrization of many-body
wavefunctions are automatically imposed by second quantized operators.
In first quantization, a many-body wavefunction Ψ(r1, . . . , rN ) should be
symmetrized by hands as for example in the construction (Eq. (1.2)) of a
Slater determinant.

3. In a second quantization formalism it is possible to treat systems with
varying number of particles. This is useful since condensed matter systems
are not isolated but exchange with the rest of the universe. To treat these
cases in a first quantization formalism, one should introduce potentials
with an imaginary part.

4. Second quantization opens towards a Green’s function formalism. On the
basis of field operators, one can define a Green’s function or propagator
which reveals a quantity containing practically all the physical observables
we are interested in, from the ground-state energy to excitations.

The latter is without doubt the most important point: in MBQFT the
fundamental degree of freedom is not any more the complicated many-body
wavefunction Ψ(t, r1, . . . , rN ) of N variables, but rather the Green’s function
G(r1, t1, r2, t2), which is a function of only two space-time variables. It is im-
mediately evident how much more confortable is to handle Green’s functions
instead of many-body wavefunctions.
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Following successful developments carried on for QED, it was hoped that
also MBQFT could be expanded in perturbation theory toward checkable accu-
racy solutions to the many-body problem. So at the beginning a lot of efforts
were given to the developpement of MBQFT in perturbation theory using Feyn-
mann diagrams techniques. This is the reason why the theory is more known
as many-body perturbation theory (MBPT). Sometime later it was however re-
alized that the coupling constant of MBQFT is not small as in QED. Indeed in
MBQFT one would like to consider as perturbation the complicated many-body
term, which is unfortunately of the same order of the external potential term.
The electron-electron interaction is not much smaller than the electron-ions in-
teraction. A condensed matter system is normally neutral, that is it contains
the same number of positive and negative charges. Hence it is not reasonable to
consider the interaction among the electrons as second order with respect to the
interaction between electrons and positive charges. In any case, formulation of
MBQFT in perturbation theory gives back at the first order the Hartree-Fock
theory, which is far to be a systematic good approximation. Since the coupling
constant is not small, it is not granted that the second and further orders are
smaller than the first. The perturbation series is not convergent and stopping
at a given order is arbitrary.

The following orientations of the theory rather addressed toward partial
resummations of the perturbation series along chosen directions. That is, a
certain kind of Feynmann diagrams are summed up to infinity, in the hope to
get the most important contribution. This is the sense of approximations like
the random-phase approximation (RPA), which sums all the ring diagrams. Or
the ladder approximation, for the ladder-like diagrams. Also these developments
were more or less unsuccessful.

The developements of the theory followed at this point two main separate
divergent research lines: the first line renounced to apply the theory to real
systems, considered too complex, and rather focused to simple models. The
initial hope was to achieve an analytical solution to the many-body problem
for models and then, increasing the level of complexity, try to extend it to
real systems. An analytical solution indeed is particularly valuable, since it
allows to completely understand all the physics behind the system. The most
studied models are the homogeneous electron gas (HEG), also known as jellium
model, the largely spread Hubbard model, and others like the Andersson or
the Kondo model. Unfortunately, although a lot of efforts have been devoted
along this line, exact analytical solutions to these models are still unknown,
apart from particular cases such as in 1 dimension, or for particular choices
of the model adjustable parameters. Recent developments of this line desisted
to achieve the exact analytical solution of models, and rather directed toward
approximations and finally toward numerical solutions of models. One example
of these developments is dynamical mean-field theory (DMFT) [Georges 96]
that can provide an approximate and numerical solution to the Hubbard model.
Having faced enormous difficulties to provide even approximate and numerical
solutions to models, the hope then was that such models could somehow already
represent real systems, or at least capture some isolated aspects of them. For
example, the Hubbard model is believed to capture the physics of localized
electrons such as the d or f electrons in transition metals or rare earth, and
describe the so-called strongly-correlated physics in these systems.

The other main research line, instead, oriented since the beginning toward
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providing a numerical solution to the many-body problem, although intrinsi-
cally less appealing than the analytical solution. Within the numerical line,
several directions were taken: the quantum Montecarlo (QMC) approach ad-
dressed toward the achievement of numerical exact (in the sense that there is
a precise estimate of the error) solutions to models. QMC achieved some suc-
cesses like e.g. in providing accurate estimates of correlation energies. Although
the methodology presents some intrinsic problems for fermions and the compu-
tational time scaling is not favourable, QMC was applied with success to very
simple real systems like hydrogen and helium, and starts to be applied to the
next Mendeleev table elements.

Another numerical line, mostly followed by chemistry theoreticians, devel-
opped from the Hartree-Fock theory. This led to the configuration interaction
(CI) theory, a generalization of the Hartree-Fock method to more than one Slater
determinant, so to consider more than one electronic configuration and thus ac-
count for the correlation energy. Indeed, the very mathematical definition of
correlations is: “all contributions that are missing to the HF approximation”.
This is exactly in the direction of CI as genuine theory beyond HF. Although
one of the most accurate many-body theory, the computational time scaling of
CI is extremely unfavourable. CI can be applied only to very small systems,
with no more than 10 electrons, which means the very lightest molecules.

Another numerical line took instead the direction to develop iterative and
functional (as opposed to perturbative) approaches to MBQFT. Here the hope
was to reformulate the theory in a functional scheme, as originally introduced
by Schwinger in elementary particle physics, by individuating a reduced and
complete set of quantities for which it could be possible to write a closed set
of equations. Starting from the Green’s function, the fundamental degree of
freedom of MBQFT, one identifies further quantities (the self-energy, the po-
larizability, . . . ) as functional of the previously introduced plus new quantities,
in the hope that at the end the process closes back. This leads to the Hedin’s
equations [Hedin 65], a set of 5 integro-differential equations that can be solved
iteratively and self-consistently for the 5 quantities, unknown of the problem,
starting from a 0-iteration guess for them. Functional approaches allow a new
kind of approximations, different from the perturbative scheme, where there
can be hope to select the most important contributions. Succesful examples of
such approximations are the GW approximation or the Bethe-Salpeter equation
(BSE) approach. MBQFT and its approximations will be described in chapter 3.

The most succesful line to address the many-body problem, however, dis-
regarded MBQFT and Green’s function theory and rather proposed a further
simplification of the problem. This was achieved by replacing the Green’s func-
tion (and of course the many-body wavefunction) by the simplest electronic
density as fundamental degree of freedom of the theory. These are known as
density-functional approaches and will be introduced in the next section.

1.3 Density-functional theory (DFT)

Density-functional theory [Hohenberg 64, Kohn 65] is an in principle exact many-
body theory to describe ground-state properties such as the total energy, the
electronic density, the atomic structure and the lattice parameters. The ba-
sic fundamental hyphothesis at the base of the theory is that the ground-state
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electronic density ρ(r) of a condensed matter system is a necessary and suffi-
cient quantity to represent all ground-state properties. This is granted by the
Hohenberg-Kohn theorem [Hohenberg 64], whose fundamental thesis states that
the ground-state electronic density is in an one-to-one correspondence with the
external potential v(r), apart from a non-influential constant,

ρ(r) ⇔ v(r) + const. (1.4)

Thank to the Hohenberg-Kohn theorem, all ground-state observables O, and
in particular the total energy E, are unique functionals O[ρ] (and E[ρ]) of the
density. The fundamental degree of freedom of the theory is not any more the
complicated many-body wavefunction Ψ(t, r1, . . . , rN ), nor the Green’s function
G(r1, t1, r2, t2), but the extremely simple ground-state electronic density ρ(r),
scalar function of only one space variable. Density-functional theory represents
hence a considerable simplification with respect to the direct solution of the
many-body Schrödinger equation and also with respect to MBQFT.

The Hohenberg-Kohn theorem provides also a variational principle as a pos-
sible scheme to solve the theory: the ground-state density is in correspondence
to the global minimum of the total energy functional. Provided we know the
total energy as functional dependence on the density1, we can find the ground-
state energy by minimizing the functional,

E0 = minρ(r)E[ρ],

and in correspondence also the ground-state density ρ0(r). Any other ground-
state quantity can then be calculated, provided we know its functional depen-
dence O[ρ] on the density. The energy density-functional can be decomposed
into 4 terms,

E[ρ] = T [ρ] + V [ρ] + EH[ρ] + E′xc[ρ],

where the external potential energy V [ρ] and the Hartree energy EH[ρ] func-
tionals are

V [ρ] =

∫

dr v(r)ρ(r)

EH[ρ] =
1

2

∫

dr1 dr2 w(r1, r2)ρ(r1)ρ(r2),

while the kinetic T [ρ] and the so-called exchange-correlation energy E′xc[ρ] are
unknown as functionals and thus representing a problem for the theory. One can
at this point develop the theory by resorting to approximations on the unknown
terms. Making a local-density approximation (LDA) on both the kinetic and
exchange-correlation terms gives back the Thomas-Fermi theory, which was not
particularly successful. On the other hand, one can develop DFT following
Kohn and Sham [Kohn 65]. We introduce a ficticious non-interacting system
KS submitted to an effective external potential vKS(r) under the hyphothesis
that its ground-state density ρKS(r) is by construction equal to the density of
the real system, ρKS(r) = ρ(r). For this system we can solve the set of simple

1The functional E[ρ] is absolute, independent of the actual condensed matter system.
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single-particle equations,

[

−1

2
∂2

r + vKS(r)

]

φKS
i (r) = ǫKS

i φKS
i (r) (1.5)

ρ(r) =

N
∑

i=1

|φKS
i (r)|2 (1.6)

vKS(r) = v(r) + vH[ρ](r) + vxc[ρ](r), (1.7)

known as Kohn-Sham equations. Here vH and vxc are defined

vH[ρ](r) =
δEH[ρ]

δρ(r)
=

∫

dr′ w(r, r′)ρ(r′) (1.8)

vxc[ρ](r) =
δExc[ρ]

δρ(r)
. (1.9)

The set of Kohn-Sham equations must be solved self-consistently, that is for a
given initial guess density ρ(r) we calculate the corresponding Kohn-Sham ef-
fective potential vKS(r), Eq. (1.7); then we solve the Schrödinger-like Eq. (1.5)
for the Kohn-Sham eigenenergies ǫKS

i and wavefunctions φKS
i (r); finally we re-

calculate the next iteration density by Eq. (1.6) and start back the procedure.
Once at convergence, we get the ground-state density ρ0(r) of the KS ficticious
system, equal by construction to that one of the real system. Introducing it into
the energy functional,

E[ρ] = TKS[ρ] + V [ρ] + EH[ρ] + Exc[ρ],

we get the ground-state total energy. The Kohn-Sham scheme is a way to bet-
ter describe the kinetic energy by calculating it at the level of a non-interacting
system (the known term TKS[ρ]) and transferring all complications into only one
last unknown, which is the exchange-correlation functional Exc[ρ]. The knowl-
edge of this term as a functional of the density is the big unsolved issue of DFT.
However, approximations as simple as the local-density approximation (LDA)
[Kohn 65], and better on, the generalized gradient approximation (GGA), have
demonstrated to work well on the large majority, say 99% of condensed matter
systems. Typical ab initio DFT errors on ground-state total energies, atomic
structures or lattice parameters, are within a few per cent off the experiment,
depending on the approximation. For this reason and for its inherent simplic-
ity, density-functional theory is one of the most succesful physics theories ever
formulated [Redner 05].

Owing to its success on ground-state properties, DFT in the Kohn-Sham
scheme is commonly used to describe not only the ground-state density and en-
ergy, but also electronic excitations and spectroscopy. In practice the electronic
structure of the ficticious non-interacting Kohn-Sham system, which in princi-
ple has no physical meaning, is used to describe the true quasiparticle electronic
structure of the real system. This procedure has no physical foundation. Kohn-
Sham DFT is not an in principle exact framework for electronic excitations and
spectroscopy. KS results can be good for some systems and some excitations,
but there is no guarantee that this is sistematic. For instance, it turns out that
DFT in the LDA or the GGA approximations sistematically underestimate the
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band gap by a 40%. One might hope that the failure of DFT in describing elec-
tronic excitations is due to a failure of the exchange-correlation approximation
and try to go beyond LDA or GGA, toward a better approximation. But even
the true, exact exchange-correlation potential is not supposed to reproduce exci-
tations. And we demonstrated [Gatti 07c] that an effective theory with a static
and local potential v(r), like the effective Kohn-Sham theory, has not enough
degrees of freedom to be able to in principle describe e.g. the band gap of even
a simple model system like the jellium with gap (Callaway model). An effective
theory that can in principle access the band gap must have a potential that is
either non-local or dynamical, which is not the case of the ordinary Kohn-Sham
exchange-correlation potential.

In order to describe electronic excitations, two ways can be followed at this
point: In the first, one keeps a DFT Kohn-Sham scheme and ask for an ap-
proximation to the exchange-correlation potential that tries to do its best in
describing the true quasiparticle electronic structure and excitations. That is,
we search for the best static and local phenomenological approximation to the
true non-local and dynamic self-energy, so that it can be put in the form of
an effective Kohn-Sham potential and used within a Kohn-Sham scheme not
only to calculate ground-state properties, but also the quasiparticle electronic
structure. Along this way one is satisfied with an electronic structure that can
be even a rough approximation to the true quasiparticle structure, but the ad-
vantage is that the calculation is as simple as a DFT calculation. This is a way
we followed effectively during my PhD thesis work [Olevano 99b, Olevano 00].
We tried to parametrize the exchange-correlation potential in the form of an
ordinary LDA approximation plus a Slater exchange term. Then we adjusted
the free phenomenological parameters so that the theory could reproduce the
band gap of semiconducting and insulating system with the least error with
respect to the in principle correct many-body self-energy formalism, using the
best approximation at disposal, i.e. GW. That work concluded that the LDA
approximation is the best static and local approximation for the GW self-energy.
But we did not exclude that there could exist more complicated parametriza-
tions than ours, introducing much more free parameters, so to improve with
respect to LDA.

The second way is to go beyond ordinary DFT. One possibility is time-
dependent density-functional theory (TDDFT), an extension of static DFT to
time-dependent phenomena. That is a way we started to explore during my PhD
thesis. In particular, we showed [Olevano 99b, Olevano 99a] how good TDDFT
is, even in the most elementary approximations like random-phase approxima-
tion (RPA) with local-field effects (LFE) and adiabatic local-density approxima-
tion (ALDA or TDLDA), in reproducing and predicting with a very good, even
quantitative, agreement both electron-energy loss (EELS) and inelastic X-ray
scattering spectroscopy (IXSS). On the other hands, we demonstrated like sim-
ple approximations to the exchange-correlation functional, like RPA, TDLDA
or even jellium based non-local approximations (NLDA), can at best reproduce
optical spectra only qualitatively. In particular, in semiconductors and insula-
tors we found a sistematic red shift of spectra together with an underestimation
of the lowest energy part. The objective to find better approximations in or-
der to improve the performances of TDDFT also for optical spectroscopy, was
the subject of our work in the years later and the topic of the next section on
TDDFT.



Chapter 2

TDDFT: from EELS to
optical spectra

In this chapter we will draw the fundamentals of TDDFT theory, from the
Runge-Gross theorem to the Kohn-Sham scheme, focusing in particular to linear-
response TDDFT. The DP code is an implementation of LR-TDDFT in frequency-
reciprocal space and plane-waves. We will then introduce the basic RPA and
ALDA (or TDLDA) approximations and see how good they are on EELS, IXSS
or CIXS spectra at the example of bulk silicon. We will show the effect on
spectra of crystal local-fields (LF), whose importance grows in systems present-
ing strong inhomogeneities in the electronic density. In particular, local-fields
are strongly affected by atomic structure reduced-dimensionality confinement
effects. Although simple, LF effects have been our true “battle horse” all along
these years. The last sections will present our contributions to the development
of better TDDFT exchange-correlation kernel approximations, in order to de-
scribe optical spectra as measured by ellipsometry. We will first present the
long-range contribution (LRC) kernel (also known as α/q2 kernel) and the so-
called Nanoquanta kernel. We will show how good they are on optical absorption
and finally discuss the still open points of the theory.

In according to the rules stated for a HDR manuscript, we indicate here
that the development of TDDFT in the RPA (with or without LF effects),
TDLDA (plus some other non-local kernels) and the implementation of the DP

code, have been carried out during my PhD thesis work [Olevano 99b]. This
was already sufficient to have good results on EELS, IXSS and CIXS spectra.
However all the work on new approximations, in order to make TDDFT work
also on optical spectra, has been carried out in the years after. The work on
the α/q2 kernel already started during the PhD in Rome, but the right recipe
to make it work was found only later, in Palaiseau [Reining 02]. The work on
the Nanoquanta kernel [Sottile 03b] was carried out by F. Sottile and his PhD
thesis’ work supervised by L. Reining with also a non-official supervision by
myself.

11
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2.1 The Runge-Gross theorem

In order to go beyond ground-state properties but always staying in the spirit
of density-functional like theories, one can try to put on the same footing the
external static potential (due to the ions) v(r) and the external perturbation
which excites the system δv(r, t). Going on along this way, one can do a density-
functional theory considering as external potential the sum of the two terms,

v(r, t) = v(r) + δv(r, t). (2.1)

The extra complication is that the external perturbation, for example an inci-
dent electromagnetic wave or an electron beam switched on at an initial time t0,
is in general represented by a time-dependent external potential δv(r, t). And
the Hohenberg-Kohn theorem holds only for static external potentials. DFT
does not apply to time-dependent external potentials and for this reason cannot
describe excitations.

The solution to this issue is represented by the Runge-Gross theorem [Runge 84]
which extends the Hohenberg-Kohn theorem to the time-dependent case. The
Runge-Gross theorem states that the time-dependent electronic density is in a
one-to-one correspondence with the external (time-dependent) potential, up to
an uninfluential merely time-dependent constant,

ρ(r, t) ⇔ v(r, t) + const(t). (2.2)

It becomes hence possible to build a time-dependent density-functional theory
following the scheme of DFT. In analogy with DFT, in TDDFT any observable
O(t) is a unique functional O[ρ](t) of the time-dependent density ρ(r, t). There
are however some differences and some caveats. The first one is that any ob-
servable is in reality a unique functional O[ρ,Ψ0](t) of the density and of the
initial state Ψ0 = Ψ(t0). We reintroduce the complication to deal with many-
body wavefunctions, although only to fix boundary conditions. To overcome
this problem, we can always assume that the initial state is the ground-state,
the usual situation for common problems, and address this issue by static DFT.

The second problem is that the Runge-Gross theorem has been demonstrated
for a much more restricted domain of validity than the Hohenberg-Kohn the-
orem. There does not exist a general proof of the Rnuge-Gross theorem for
arbitrary time-dependent potentials v(r, t), although it has been demonstrated
for several classes of different potentials, so that one may hope that the theorem
is more general than actually demonstrated. In particular, the original Runge-
Gross demonstration relies on the hypothesis that the external potential v(r, t)
is Taylor expandable around the initial time t0. This excludes step-like switch-
on v(r, t) = v(r) + δv θ(t − t0) potentials that are non analytical in t0. The
external perturbation should be switched on gently, for example adiabatically.
But this implies that the initial state at t0 cannot be the ground-state, since to
build the ground-state we need that the external perturbation be switched off
δv(r, t) = 0 for sufficient long times t < t0 before t0. And so we run again into
the first problem. All these are questions of principle. We can however go on
and assume that for example the domain of validity of the Runge-Gross theorem
is larger than provided in the original demonstration, so that it can deal also
with non-analytical time-dependent external potentials.
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Going on with the analogies and the differences between DFT and TDDFT,
the place that in DFT is assumed by the energy functional E[ρ] = 〈Ψ|Ĥ |Ψ〉, is
in the case of TDDFT taken by the action,

A[ρ] =

∫ t1

t0

dt
〈

Ψ(t)
∣

∣i∂t − Ĥ
∣

∣Ψ(t)
〉

.

Like in DFT where there exists a variational principle on the total energy, in
TDDFT the stationary points δA[ρ]/δρ(r, t) = 0 of the action provide the exact
time-dependent density ρ(r, t) of the system.

We can introduce a Kohn-Sham system and solve the theory following a
Kohn-Sham scheme also in TDDFT. With respect to static DFT, the Kohn-
Sham equation will be a time-dependent Schrödinger-like equation and the
Kohn-Sham potential will contain a term related to the exchange-correlation
action Axc[ρ], instead of the exchange-correlation energy. Kohn-Sham equa-
tions in TDDFT read:

i∂tφ
KS
i (r, t) =

[

−1

2
∂2

r + vKS(r, t)

]

φKS
i (r, t) (2.3)

ρ(r, t) =
∑

i

|φKS
i (r, t)|2 (2.4)

vKS(r, t) = v(r, t) + vH[ρ](r, t) +
δAxc[ρ]

δρ(r, t)
. (2.5)

When following the Kohn-Sham scheme, we run into further caveats. In-
deed, the exchange-correlation action functional Axc[ρ] is defined only for v-
representable densities, i.e. it is undefined for densities ρ(r, t) which do not
correspond to some potential v(r, t). This leads to a problem when, in order
to search for stationary points, we require variations δAxc[ρ] with respect to
arbitrary density variations δρ. It is the so called v-representability problem
which is however present also in DFT and has already been solved [Levy 82].

There is finally a last problem related to the so called causality-symmetry
paradox, which also has been already solved [van Leeuwen 98] by requiring the
time t to be defined on the Keldysh contour (Fig. 4.1) instead of the real axis.

2.2 TDDFT in linear response

Most of the previous problems are however shortcut when working in the lin-
ear response regime [Gross 85]. Suppose that we can split the time-dependent
external potential into a purely static term (to be identified, as usual, to the
potential generated by the positive ions) and a time-dependent perturbation
term, as in Eq. (2.1),

v(r, t) = v(r) + δv(r, t),

and suppose that the time-dependent perturbation term is much smaller than
the static term,

δv(r, t) ≪ v(r), (2.6)

then the theory can be factorized into an ordinary static density-functional
theory plus a linear response theory to the small time-dependent perturbation.
In this case the Hohenberg-Kohn and the Runge-Gross theorems together state
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that the linear response time-dependent variation to the density is one-to-one
with the time-dependent perturbation to the external potential,

δρ(r, t) ⇔ δv(r, t).

The condition Eq. (2.6) is usually verified when considering normal situations
that refer to condensed matter systems submitted to slight excitation. This is
the case in optical spectroscopy using ordinary light, energy-loss spectroscopy
or X-ray spectroscopies. On the other hand, for spectroscopies implying strong
electromagnetic fields, intense lasers and so on, condition Eq. (2.6) does not hold
any more and the situation cannot be described by linear-response TDDFT.

A linear-response TDDFT (LR-TDDFT) calculation consists in two steps:
starting from the static ionic external potential v(r), we perform an ordinary
static DFT calculation of the Kohn-Sham energies ǫKS

i and wavefunctions φKS
i (r)

and hence of the ground-state electronic density ρ(r); then we do a linear-
response TDDFT calculation of the density variation δρ(r, t) corresponding to
the external time-dependent perturbation δv(r, t). From δρ(r, t) we can then
calculate the polarizability χ of the system which is defined as the linear response
proportionality coefficient δρ = χδv of the density with respect to the external
potential,

δρ(x1) =

∫

dx2 χ(x1, x2)δv(x2), (2.7)

where we have used the notation to indicate with x the space and time variables,
x = {r, t}, eventually including also the spin index, x = {r, t, ξ}. In the next,
when clear from the context, we will simplify the notation omitting convolution
products

∫

dx as in Eq. (2.7).

2.3 Kohn-Sham scheme in LR-TDDFT

It is possible to follow a Kohn-Sham scheme also in linear-response TDDFT.
The first step is to introduce a ficticious non-interacting Kohn-Sham system
KS under the hypothesis that its density response δρKS is equal to the density
response of the real system δρ = δρKS when answering to an effective (Kohn-
Sham) external perturbation δvKS,

δvKS(x) = δv(x) + δvH(x) + δvxc(x), (2.8)

where

δvH(x1) =

∫

dx2 w(x1, x2)δρ(x2), (2.9)

δvxc(x1) =

∫

dx2 fxc[ρ](x1, x2)δρ(x2), (2.10)

fxc[ρ](x1, x2) =
δvxc[ρ](x1)

δρ(x2)
. (2.11)

w(x1, x2) = δ(t1, t2)1/|r2 − r1| is the Coulombian and fxc[ρ](x1, x2) is the
so called exchange-correlation kernel, defined as the second density-functional
derivative of the exchange-correlation energy Exc with respect to the density
(the first derivative of the exchange-correlation potential vxc). fxc is the funda-
mental quantity in linear-response TDDFT and also the big unknown.
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For the ficticious KS independent particle system we can introduce the cor-
responding Kohn-Sham polarizability χKS as

δρ(x1) =

∫

dx2 χ
KS(x1, x2)δv

KS(x2), (2.12)

that is, the polarizability of the independent-particle system which responds
to the external perturbation δvKS by the density variation δρ. By applying
perturbation theory to the Kohn-Sham equation (2.3), it can be shown that the
Kohn-Sham polarizability is provided by the analytic expression (in r-ω space)

χKS(r1, r2, ω) =
∑

i,j 6=i

(fKS
i − fKS

j )
φKS

i (r1)φ
KS ∗
j (r1)φ

KS
j (r2)φ

KS ∗
i (r2)

ǫKS
i − ǫKS

j − ω − iη
, (2.13)

(the fKS are occupation numbers) known as Adler-Wiser expression [Adler 62,
Wiser 63]. The Kohn-Sham polarizability can hence be calculated once we have
solved the static DFT problem and we know the DFT Kohn-Sham energies ǫKS

i

and wavefunctions φKS
i (r). By combining Eqs. (2.7), (2.12) and (2.8), we can

express the polarizability χ of the real system in a Dyson-like form,

χ = χKS + χKS(w + fxc)χ, (2.14)

or also in an explicit form,

χ = (1 − χKSw − χKSfxc)
−1χKS, (2.15)

in terms of the Kohn-Sham polarizability χKS and of the unknown exchange-
correlation kernel fxc. So, once we have an expression for the kernel, it is
relatively easy to calculate in LR-TDDFT the polarizability χ and hence spectra.

2.4 The exchange-correlation kernel fxc

The most common approximations for the exchange-correlation kernel are the
random-phase approximation (RPA) and the adiabatic local-density approxima-
tion (indicated as ALDA or also TDLDA). In the RPA approximation the
exchange-correlation kernel is set to zero, fxc = 0, and exchange-correlation
effects are neglected. This is not such a crude approximation as one may think.
Indeed, exchange-correlation effects are neglected only in the linear-response to
the external perturbation. Not in the previous static DFT calculation, where
they are taken into account by choosing an appropriate exchange-correlation
potential vxc, in LDA or GGA for example. In the next we will see examples of
the validity of this approximation.

In the adiabatic local-density approximation, the kernel is taken to be

fALDA
xc (x1, x2) =

δvLDA
xc [ρ](x1)

δρ(x2)
= δ(x1, x2)f

HEG
xc (ρ(r)), (2.16)

which is a local and and ω-independent static (instantaneous) expression. As
we will show, TDLDA is a good approximation to calculate EELS or IXSS and
even CIXS spectra. RPA and TDLDA are however unsatisfactory for optical
spectra in semiconductors and insulators, i.e. spectra where electron-hole (e-
h) interaction effects, giving rise to bound excitons or excitonic effects, are
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important. To provide new good approximations for the exchange-correlation
kernel beyond ALDA and to make TDDFT work also on optical properties, was
the motivation of the last 10 years research efforts. This will be presented in
the last part of this chapter.

2.5 Dielectric function and spectra

From the polarizability we can calculate the microscopic dielectric function
ε(x1, x2),

ε−1 = 1 + wχ. (2.17)

Observable quantities and spectra are related to the macroscopic dielectric func-
tion εM obtained from the microscopic ε by spatially averaging over a distance
large enough with respect to the microscopic structure of the system, for exam-
ple in solids an elementary cell,

εM(r, r′, ω) = ε(r, r′, ω). (2.18)

It can be shown that in reciprocal space the operation of averaging corresponds
to the expression

εM(q, ω) =
1

ε−1
G=0,G′=0(q, ω)

, (2.19)

that is, the macroscopic εM is equivalent to the inverse of the G = G′ = 0
element (G and G′ reciprocal-space vectors) of the reciprocal-space inverse mi-
croscopic dielectric matrix ε−1. This does not correspond to the G = G′ = 0
element of the direct microscopic dielectric matrix ε,

εNLF
M (q, ω) = εG=0,G′=0(q, ω), (2.20)

in all the cases where the microscopic dielectric matrix contains off-diagonal
terms. The expression Eq. (2.20) is an approximation (NLF) to the exact macro-
scopic dielectric function. By this approximation the so-called crystal local-field
effects are neglected (no local-field effects, NLF). These effects are absent in
the homogeneous electron gas, they are marginal in weakly inhomogeneous sys-
tems (e.g silicon), but become important in systems presenting strong inhomo-
geneities in the electronic density. In particular, local-field effects are critical
in reduced dimensionality systems (2D surfaces/graphene, 1D nanotubes/wires,
0D clusters etc.).

The macroscopic dielectric function is the key quantity to calculate observ-
ables and spectra. For example the dielectric constant is given by

ε∞ = lim
q→0

εM(q, ω = 0). (2.21)

The ordinary optical absorption, as measured e.g. in ellipsometry, is directly
related to the imaginary part of the macroscopic dielectric function,

ABS(ω) = ℑεM(q → 0, ω). (2.22)

Finally, the energy-loss function, as measured in EELS or IXSS, is related to
minus the imaginary part of the inverse macroscopic dielectric function,

ELF(q, ω) = −ℑε−1
M (q, ω). (2.23)
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2.6 The DP code

The equations presented in the previous sections have been implemented dur-
ing my PhD thesis work in the DP code [Olevano 98]. DP is a linear-response
TDDFT code on a plane-waves basis set working in frequency-reciprocal space,
although some quantities are calculated in frequency-real space. The code allows
to calculate dielectric and optical spectra such as optical absorption, reflectiv-
ity, refraction indices, EELS, IXSS, CIXS spectra. It uses periodic boundary
conditions and works both on bulk 3D systems and also, by using supercells
containing vacuum, on 2D surfaces, 1D nanotubes/wires and 0D clusters and
molecules. The systems can be insulating or metallic. It implements several
approximations for the exchange-correlation kernel and local-field effects can be
switched on and off.

The DP code relies on a previous DFT calculation of the KS energies and
wavefunctions provided by another PW code, for example ABINIT [Gonze 09].
The first task is to back Fourier transform the KS wavefunctions φKS

i (G) →
φKS

i (r) from reciprocal to real space. Then DP calculates in real space the
optical matrix elements ρKS

ij (r) = φKS ∗
i (r)φKS

j (r), which are Fourier transformed

ρKS
ij (r) → ρKS

ij (G) to reciprocal space. The next step is to calculate the Kohn-
Sham polarizability,

χKS
G1G2

(q, ω) =
∑

i,j 6=i

(fKS
i − fKS

j )
ρKS

ij (G1, q)ρ
KS ∗
ij (G2, q)

ǫKS
i − ǫKS

j − ω − iη
. (2.24)

At this point the RPA dielectric function and spectra in the NLF approxima-
tion are already available via εRPA-NLF

M (q, ω) = 1 − wχKS
00 (q, ω). For approx-

imations beyond, DP first calculates the polarizability χ by Eq. (2.15). The
ALDA exchange-correlation fxc is calculated in real space and then Fourier
transformed in reciprocal space. At the end, DP calculates the dielectric func-
tion ε (Eq. (2.17)) and finally the observable macroscopic dielectric function
εM(q, ω) (Eq. (2.19)) including local-field effects. εM(q, ω) is provided in an
output file both in the real and in the imaginary part as a function of ω (the
BZ vector q is fixed and specified as input parameter to the DP code). The most
time consuming steps are the calculation of χKS, where Fourier transforms are
carried out using FFT (scaling N logN instead of N2), and the matrix inver-
sion to calculate χ (Eq. (2.15)), which is however replaced by the resolution of
a linear system of equations (scaling N2 instead of N3).

2.7 RPA and TDLDA approximations

We will now show examples of typical TDDFT results using the RPA and
TDLDA approximations on both the optical absorption and the energy-loss
spectra of a prototypical system like bulk silicon. Fig. 2.1 presents the experi-
mental imaginary part of the macroscopic dielectric function ℑε(ω) (red dots)
directly related to the optical absorption as measured by e.g. the ellipsome-
try experiment of Ref. [Lautenschlager 87]. Then we show a DP code calculation
[Olevano 99b] of the RPA with and without LF effects and TDLDA spectra. We
remark “some” qualitative agreement of TDDFT with the experiment. Indeed,
we observe in the experiment 3 peeks, at 3.5, 4.3 and 5.3 eV, which are more
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Figure 2.1: Optical absorption in silicon (reproducing Fig. 2 of
Ref. [Olevano 99a]). Imaginary part of the macroscopic dielectric function in
the RPA without (NLF, green dot-dashed line) and with local-field effects (blue
dashed line), TDLDA (black continuous line), ellipsometry experiment (red dots
from Ref. [Lautenschlager 87]).

or less reproduced by 3 structures in the theory, whether in RPA or TDLDA
approximation. Local-field effects seem to have the same weight as exchange-
correlation effects on the result (compare RPA curves with and without (NLF)
local-field effects). We also remark that there is no improvement in passing
from RPA to TDLDA approximation. The agreement with the experiment is
unsatisfactory for 2 reasons:

1. The TDLDA (or RPA) optical onset appears to be red-shifted by ∼ 0.6
eV with respect to the experiment. The whole spectrum (not only the
onset, but also the 3 structures) seems rigidly red-shifted with respect to
the experiment by the same amount.

2. The height of the first lowest energy peak seems underestimated by the
theory with respect to the experiment. Both in RPA and TDLDA this
peak appears like a shoulder of the main peak, while in the experiment
it is almost the same height. Nevertheless, we remark some agreement
between theory and experiment on the height of the second and third
highest energy peaks.

The cause of the first problem seems quite easy to understand. Indeed, 0.6
eV is exactly the band gap underestimation of the DFT-LDA Kohn-Sham elec-
tronic structure with respect to the true quasiparticle electronic structure in
silicon. A quasiparticle self-energy calculation as in the GW approximation
[Hybertsen 85, Godby 87] takes into account in a satisfactory way correlation
electron-electron (e-e) interaction effects and corrects the DFT band gap un-
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Figure 2.2: Optical absorption in silicon (reproducing Fig. 1 of
Ref. [Albrecht 98]). Imaginary part of the macroscopic dielectric function in
the RPA (blue dashed line), GW-RPA (green dot-dashed line), Bethe-Salpeter
equation approach (BSE, black continuous line), ellipsometry experiment (red
dots from Ref. [Lautenschlager 87]).

derestimation. A GW-RPA spectrum (calculated using an RPA approximation
on top of a GW electronic structure) will hence result blue-shifted with respect
to the KS-RPA spectrum by a 0.6 eV (see the GW-RPA curve in Fig. 2.2).
The position of the optical onset, and somehow also of the other structures, are
now more in agreement with the experiment. The remaining disagreements, in
particular the underestimation of the first low-energy peak, have hence to be
ascribed to electron-hole (e-h) interaction effects which are missing in the GW-
RPA approximation. e-h interaction effects give rise to bound excitons in insula-
tors. In materials where the screening is a little bit larger like in semiconductors,
they give rise to so-called excitonic effects which manifest with a strengthening
of the lowest energy part of optical absorption spectra. e-h interaction excitonic
effects are correctly reproduced when going beyond the GW-RPA approxima-
tion by introducing vertex corrections via the ab initio Bethe-Salpeter equation
(BSE) approach. This is demonstrated by a BSE calculation [Albrecht 98] of
the optical absorption as reported in Fig. 2.2. The BSE curve corrects the
underestimation of the first peak, as well as the small residual blue-shift of the
spectrum, and is now in good agreement with the experiment. The conclusion is
that, although TDDFT is an in principle exact theory to predict neutral excita-
tions and spectra, the ALDA approximation on the xc kernel fails to reproduce
optical spectra. The true unknown exact kernel should describe both e-e and
e-h effects, at the same time, while the ALDA kernel does not.

The conclusions are however completely different when considering energy-
loss spectra (EELS). Fig. 2.3 shows the EELS experimental spectrum (red dots
measured at q ∼ 0 by Ref. [Stiebling 78]). The spectrum presents a single peak
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Figure 2.3: Energy-loss spectra (EELS) in silicon (reproducing Fig. 3 of
Ref. [Olevano 99a]). Energy-loss function at q ≃ 0 in the RPA without (NLF,
green dot-dashed line) and with local-field effects (blue dashed line), TDLDA
(black continuous line), EELS experiment (red dots from Ref. [Stiebling 78]).

at ∼ 16.7 eV corresponding to the plasmon resonance collective excitation of
bulk silicon. We then show the energy-loss function calculated [Olevano 99b] by
the DP code in the RPA NLF (without local-field effects), the RPA and TDLDA
approximations using the DP code. Here we remark that the overall agreement of
TDLDA with the experiment is very good. Both the position and the height of
the plasmon resonance are correctly reproduced by the TDLDA approximation.
Also we can conclude that the RPA result at q ∼ 0 is not such bad and at least
qualitatively in agreement. This surprising result can be explained when looking
at Fig. 2.4 where we present the result of a Bethe-Salpeter equation approach
calculation [Olevano 01] on EELS. Here we remark that when introducing e-e
interaction effects by passing from RPA on top of a KS to RPA on top of a GW
electronic structure (GW-RPA curve) the result surprisingly worsens and shifts
away from the experiment toward the highest energies. It is only thank to the
introduction of e-h interaction effects on top of the GW e-e interaction effects
by resolution of the Bethe-Salpeter equation (BSE curve) that the result shifts
back again and recovers a good agreement with the experiment. Thus it turns
out that on EELS e-e and e-h interaction effects compensate each other, and a
low level of approximation as RPA on top of KS is in better agreement with the
experiment than GW-RPA. TDLDA just adds those small exchange-correlation
effects necessary to improve upon RPA.

This improvement upon RPA becomes more and more appreciable when the
transferred momentum q becomes larger, as it is possible to measure by IXSS
spectroscopy. In Fig. 2.5, we show the dynamic structure factor (directly related
to the energy-loss function) at q = 1.25 a.u. along the [111] direction for silicon.
The red curve is the IXSS experiment of Ref. [Weissker 06] carried out at the
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Figure 2.4: Energy-loss spectra (EELS) in silicon (reproducing Fig. 2 of
Ref. [Olevano 01]). Energy-loss function in the RPA (blue dashed line), GW-
RPA (green dot-dashed line) Bethe-Salpeter approach (BSE black continuous
line), EELS experiment (red dots from Ref. [Stiebling 78]).
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Figure 2.5: Inelastic X-ray scattering spectra (IXSS) in silicon (see Fig. 4 of
Ref. [Olevano 99a] and Fig. 1 of Ref. [Weissker 06]). Dyamic structure factor at
q = 1.25 a.u. along [111] in the RPA (blue dashed line) TDLDA (black contin-
uous line) and IXSS experiment (red dots from Ref. [Sturm 92, Weissker 06]).
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Figure 2.6: EELS spectra of graphite (from Ref. [Marinopoulos 02,
Marinopoulos 04]) for small q transferred momentum at several directions, from
in plane (top) to out-of-plane (bottom). Red dots: experiment; blue dashed
line: RPA without LF effects; black solide line: RPA with LF; green dot-dashed
line: TDLDA.

ESRF synchrotron which reproduces an older experiment [Sturm 92]. We then
show the RPA and TDLDA results calculated [Olevano 99b, Weissker 06] using
the DP code. It turns out that TDLDA continues to be in very good agree-
ment with the experiment, especially at the lowest energies. TDLDA is even
able to reproduce the structure at 17 eV which is a Fano resonance with its
typical asymmetric shape. The Fano resonance here is due to the interaction of
a discrete excitation (the plasmon at ∼17 eV in Si) and the continuum of e-h
excitations. The oscillations at higher energies have been ascribed to lifetime ef-
fects and corrected in Ref. [Weissker 06] by introducing a Fermi-liquid quadratic
imaginary part to the energies. At the highest q, RPA turns out to be more and
more faraway from TDLDA and in worst agreement with the experiment.

2.8 Atomic structure and local-field effects

We conclude this section by showing the importance of local-field effects in sys-
tems presenting strong density inhomogeneities especially due to the atomic
structure. In particular in systems presenting a reduced dimensionality atomic
structure1. Local-field effects are particularly sensitive to reductions in the di-
mensionality of the atomic structure and thus are particularly strong e.g. in
1D nanotubes or nanowires. To show this critical point we take the example of

1This is not the same as reduced dimensionality electronic structure. Here we are talking
about systems where the atomic structure lives on a 2D manifold or less, 1D, 0D. Electrons
are free to wander in all the other dimensions.
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graphite [Marinopoulos 02, Marinopoulos 04], a system of intermediate 3D/2D
character: it is in fact a 3D bulk solid but its carbon atoms are arranged in 2D
flat planes of graphene, weakly bounded and stacked one over the other. As a
consequence of this particular atomic structure, the system looks homogeneous
in a xy-direction, while it appears inhomogeneous along the z-direction. This
is immediately appreciable in EELS when varying the direction of the trans-
ferred momentum q (Fig 2.6), from in plane (top) to out-of-plane (bottom).
The red dots are the experiment, done for small q with the indicated angle θ
with respect to z. The important point to remark is how the RPA with and
without LF effects practically coincide when in plane (homogeneous system),
while they start to differ when sampling out-of-plane, reaching the maximum
when along z (inhomogeneous system). Of course, it is always the curve with
LF effects included which is in good agreement with the experiment. For this
small q, xc effects are small. Thus along the direction where the difference be-
tween the theoretical results with and without LF effects is large, the system
presents an inhomogeneity which is a direct consequence of its particular atomic
structure along that direction. When studying truly atomic structure reduced
dimensionality systems like 2D graphene or 1D nanotubes, LF effects are very
large along the direction perpendicular to the 2D plane or the 1D nanotubeaxis.
Along these directions LF gives rise to so-called depolarization effects, strong
suppressions of the imaginary part of the dielectric function that can extend
even for several eV.

All these conclusions have been confirmed by plenty of other calculations on
very different systems all along these years by us as well as many other authors.
The main conclusion is that the ALDA xc kernel is a very good approximation
to predict energy-loss spectra, but is a poor approximation to calculate optical
spectra in insulators and semiconductors. This is a puzzle to be solved in order
to devise better approximations and improve over ALDA on optical spectra.
Local-field (LF) effects are normally equally important as exchange-correlation,
and they become fundamental in systems with reduced dimensionality atomic
structure.

2.9 Long-range contribution (LRC) α/q2 kernel

An important original contribution we think to have provided to TDDFT is the
introduction of a new xc kernel, we have called long-range contribution (LRC)
only, or also α/q2 kernel for its mathematical shape in reciprocal space,

fLRC
xc (q) =

α

q2
, (2.25)

where α was regarded at that time as a material dependent adjustable param-
eter. From the real space expression of this kernel,

fLRC
xc (r, r′) =

α

4π|r − r′| , (2.26)

it can be seen that this kernel contains an ultra non-local, i.e. a long-range
Coulumb-like contribution that represents the important difference with respect
to the ALDA kernel Eq. (2.16) which is instead local.
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We now explain why an LRC kernel can do the right job. We have already
seen (Fig. 2.1) that for optical properties a local kernel like ALDA has no ef-
fect, and TDLDA absorption spectra are not such different from the RPA result.
This can be explained by the following argument: as it can be seen in Eq. (2.14),
the xc kernel only appears in a term χKSfxc that is coupled to the Kohn-Sham
polarizability χKS. In the optical limit q → 0 the Kohn-Sham polarizability goes
to 0 as limq→0 χ

KS(q) ∼ q2 → 0, as it can be seen from Eq. (2.24) and knowing
that ρKS

ij (q) ∼ q → 0. Now a local kernel such as the ALDA behaves as a con-

stant for q → 0, limq→0 f
ALDA
xc = const, such as the term limq→0 χ

KSfALDA
xc = 0

goes to 0 in the optical limit, and the final result cannot be too much different
from the RPA fxc = 0 case. In order to have a result that starts to be different
from the RPA case we should introduce a non-local contribution into the xc
kernel. That was the reason why in our PhD thesis work we tried to go beyond
LDA by introducing some little non-locality by a new approximation we called
NLDA (see section 4.5 in Ref. [Olevano 99b]). However this small non-locality
was still not enough (compare continuous line in Fig. 6.2 of Ref. [Olevano 99b])
and we realized that the true exact kernel must contain an ultra non-local, long-
range 1/q2 Coulomb-like contribution. Indeed in this case the kernel diverges
fxc → ∞ in the optical limit. So that the term χKSfxc keeps finite and the
result is allowed to differ from RPA. We tried then to introduce a kernel of the
form α/q2 (pages 101 and 107 of Ref. [Olevano 99b]). The calculation (green
dot-dashed line in Fig. 2.7) showed that finally the result started to be different
with respect to the RPA (and ALDA) ones. For a positive (α > 0) long-range
contribution, we observed in the optical absorption a redistribution of the spec-
tral weight toward larger energies with respect to RPA. This seemed to go in
the right direction in order to improve upon the rigid red-shift due to e-e inter-
action effects and gave some hope. However the agreement with the experiment
was still completely unsatisfactory. The first low-energy peak was even reduced
with respect to RPA (compare Fig. 2.7 and 2.1).

The right recipe for a correct long-range xc kernel was found only succes-
sively. We indeed realized that for a kernel of the α/q2 form would be extremely
difficult to correct both the RPA drawbacks, i.e. the underestimation of the
optical onset (lack of e-e interaction effects) and the underestimation of the
low-energy spectral weight (lack of e-h excitonic effects). Of course, the true
exact kernel should correct the Kohn-Sham independent particle polarizability
χKS for both effects. But it can be split into two components,

fxc = fe-e
xc + fe-h

xc , (2.27)

the first associated to the task of reproducing e-e effects, the second to e-h. The
right recipe we proposed in Ref. [Reining 02] was to start from a more advanced
point, from an already e-e self-energy corrected independent quasiparticle Π(0),
instead of an independent particle Kohn-Sham χKS,

Π(0) = χKS + χKSfe-e
xc Π(0). (2.28)

In practice, we calculated directly Π(0) using a GW electronic structure instead
of a Kohn-Sham. For simple semiconductors, a shissor operator over a Kohn-
Sham structure is often almost equivalent to GW. The remaining task was
instead taken into account by an fe-h

xc = fLRC
xc long-range contribution kernel,

χ = Π(0) + Π(0)(w + fe-h
xc )χ. (2.29)
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Figure 2.7: Optical absorption in silicon. Imaginary part of the macroscopic
dielectric function in the LRC on top of χKS (green dot-dashed line, reproducing
with higher convergence solid line of Fig. 6.5 in Ref. [Olevano 99b]), LRC on top
of Π(0) (blue dashed line, reproducing Fig. 1 of Ref. [Reining 02]), Nanoquanta
kernel (black continuous line, reproducing Fig. 2 of Ref. [Sottile 03b]), and
ellipsometry experiment (red dots from Ref. [Lautenschlager 87]).

fe-h
xc = α/q2 is taken of the long-range Eq. (2.25) form, but with the important

novelty that the sign of the divergence is taken negative, α < 0, such as to
transfer oscillator weigth to lowest energies instead of highest.

The results we got on silicon [Reining 02] are presented in Fig. 2.7, blue
dashed line. We remark an overall good agreement with the experiment. With
respect to the GW or SO optical absorption (Fig. 2.2), the optical onset is un-
changed and keeps at the good position of the photoemission band gap. How-
ever, most of the spectral weight has been transferred from high to low energy.
The amplitude of the transfer is modulated by the α parameter and the direc-
tion is due to the negative sign in Eq. (2.25). The result is that now the first
peak acquired strength with respect to the rest of the spectrum. This is the
effect of the e-h interaction for materials with screening of the order of ε∞ ≃ 10,
that is semiconductors. In these systems e-h interactions are not such strong
to create bound excitons within the photoemission band gap. However, they
affect and strengthen the low energy part of the optical absorption spectrum.
Thus, with respect to the first essay (green dot-dashed curve in Fig. 2.7), the
right ingredients for a good LRC approximation are: i) start from the QP po-
larizability and the correct (non red-shifted) continuum optical onset; ii) apply
the LRC kernel Eq. (2.25) with the minus sign, since the problem now in Π(0)

is to transfer spectral weight back (to lowest energies).
The adjustable parameter was found to be α = −0.22 for silicon. The

problem of the approximation is that it is not any more ab initio, at least from
a rigorous point of view. Indeed, one year later [Botti 04] we realized that
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(reproducing Fig. 12 of Ref. [Botti 04]) for several materials.

the α parameter which weights the intensity of excitonic effects, is in inverse
relationship with the screening, the dielectric constant ε−1

∞ as in the experiment
or in the RPA approximation (see Fig. 2.8). This was of course expected and
searched. We found that we can calculate α by the linear expression

α = −4.615ε−1
∞ + 0.213, (2.30)

where the coefficients are a fit on the set of materials presented in Fig. 2.8.
Now the approximation can be applied in a first principles way, calculating ε−1

∞

in the RPA approximation, then α, and finally the spectra. This approxima-
tion provides good result for semiconductors and small bandgap insulators like
diamond. It breaks down for large band gap insulators (for example MgO)
where the screening is so low that a simple readjustement of oscillator weight in
the spectrum is not any more sufficient to reproduce the e-h interaction effect.
These systems present bound excitons. A single bound exciton can be conjured
using very large α, beyond Eq. (2.30). However it is difficult to reproduce the
spectrum correctly at low and high energies at the same time using a single
parameter α. We can in principle introduce a complication, such as a frequency
dependent weight of the long-range term, as done in Ref. [Botti 05]. This fre-
quency dependence would be also necessary to reproduce the EELS spectrum at
the same time as the optical absorption. The issue of the frequency dependence
is also discussed in Ref. [Del Sole 03]. I think that some more work should be
done in this direction. In perspective, we could achieve a kernel not too much
more complicated than Eq. (2.25), able to reproduce both bound excitons and
excitonic effects over a wider range of systems, and over several energy scales,
from the optical range to the EELS.
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2.10 Nanoquanta kernel

The problem to have a, let’s say, purer ab initio approach to calculate optical
spectra in presence also of bound excitons, has been addressed and solved in the
following years. This has led to the development and implementation of what
is today called the Nanoquanta kernel, here written diagramatically:

fxc = Π(0)−1GGWGGΠ(0)−1 =
Π(0)−1 Π(0)−1

G G

GG

W

whereW = ε−1w is the screened interaction and G is the Green’s function. This
kernel, written in another form in Eq. (9) of Ref. [Reining 02], was proposed as a
BSE-derived TDDFT kernel able to reproduce spectra as in the Bethe-Salpeter
approach with both excitonic effects and bound excitons. It was derived by L.
Reining relying on the 4-point TDDFT Casida’s equation, which is on the same
footing as the 4-point Bethe-Salpeter equation. The derivation required the two
equations to produce the same spectra. Exactly the same expression was also
previously derived by R. Del Sole [Adragna 01, Adragna 03] following a different
derivation, based rather on perturbation theory and using an expansion along
a new direction. This expression was tested in a tight-binding framework with
satisfactory results [Adragna 01]. This kernel was in the next years rederived
several other times [Tokatly 01, von Barth 05, Bruneval 05, Gatti 07c] starting
from different points of view with several variants. Here we propose a derivation
which is a variant of the I. Tokatly and O. Pankratov [Tokatly 01] original
diagramatic derivation.

Proof: We start from the Hedin’s equation (3.8) for the irreducible vertex Γ̃,

Γ̃ = 1 + ΞMGGΓ̃,

and we define

Γ̃′
def
= ΞMGGΓ̃,

that is, Γ̃′ = Γ̃− 1, which presents more affinity to the xc kernel. The equation
for the irreducible polarizability in terms of Γ̃′ is

χ̃ = GGΓ̃ = GG+GGΓ̃′ = Π(0) +GGΓ̃′, (2.31)

since Π(0) = GG. Here from Eq. (2.29), GGΓ̃′ should equal Π(0)fe-h
xc χ̃. The

Hedin’s equation for Γ̃′ reads

Γ̃′ = ΞMGG+ ΞMGGΓ̃′ =

= ΞMGG+ ΞM(GG−GGΠ(0)−1GG)Γ̃′ + ΞMGGΠ(0)−1GGΓ̃′

We now define the quantity Λ̃′ over which we will later do a development,

Λ̃′ = ΞMGG+ ΞM(GG−GGΠ(0)−1GG)Λ̃′, (2.32)

such as the equation for Γ̃′ takes the form

Γ̃′ = Λ̃′ + Λ̃′Π(0)−1GGΓ̃′. (2.33)
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This can be checked thank to the follwoing relations:

(ΞMGG)−1 = Γ̃
′−1 + 1

(ΞMGG)−1 = Λ̃
′−1 + 1 − Π(0)−1GG

Λ̃
′−1 = Γ̃

′−1 + Π(0)−1GG

Now from Eq. (2.31) we can replace GGΓ̃′ by χ̃− Π(0) in Eq. (2.33)

Γ̃′ = Λ̃′ + Λ̃′Π(0)−1χ̃− Λ̃′Π(0)−1Π(0) = Λ̃′Π(0)−1χ̃.

Finally

χ̃ = Π(0) +GGΓ̃′ = Π(0) +GGΛ̃′Π(0)−1χ̃ = Π(0) + Π(0)Π(0)−1GGΛ̃′Π(0)−1χ̃,

And comparing with Eq. (2.29), the e-h xc kernel turns out to be

fe-h
xc = Π(0)−1GGΛ̃′Π(0)−1.

Using for Λ̃′ its first order in the development Eq. (2.32), or better its first
iteration,

Λ̃′ = ΞMGG,

we arrive at the end to

fe-h (1)
xc = Π(0)−1GGΞMGGΠ(0)−1 ≃ Π(0)−1GGWGGΠ(0)−1,

which is the Nanoquanta kernel
The Nanoquanta kernel has been implemented by F. Sottile during his PhD

thesis [Sottile 03a], overcoming many difficulties. In particular, the problem to
invert the polarizability Π(0)−1 which does not exist at frequencies where the
polarizability presents a 0 eigenvalue. This led to divergencies in the xc kernel,
seen as spikes in the final spectra. The problem has been solved by introducing
the less pathological quantity

T = Π(0)fe-h
xc Π(0) = GGWGG, (2.34)

and rather solving a TDDFT equation of the form

χ = Π(0)(Π(0) − Π(0)wΠ(0) − T )−1Π(0),

instead of Eq. (2.29). Indeed, the xc kernel is not an observable, and it appears
in expressions leading to observables quantities always in the form Eq. (2.34).
So that in principle it can be a non-analytic function.

The Nanoquanta kernel result [Sottile 03b] obtained for silicon is shown in
Fig. 2.7 (black line). We remark again the good agreement with the experiment
(and of course with the BSE result, by construction). In Fig. 2.9 we show the
result [Sottile 07] for solid argon, a system presenting a series of bound excitons.
The Nanoquanta kernel, like the Bethe-Salpeter approach, is able to reproduce
the complete series of 3 peaks associated to bound excitons, while the RPA and
GW-RPA results completely fail. Ref. [Sottile 07] also discuss aspects related
to an improved algorithm to calculate the kernel. Notice that this Nanoquanta
approach have also studied the other term of the xc kernel, namely the e-e
interaction kernel fe-e

xc , and shown that a kernel doing the job to reproduce self-
energy effects effectively exists. The drawback is that to calculate this kernel
the GW electronic structure must be calculated in advance. Which is what
one would like to avoid in order to keep within a, let’s say, as much as pure
density-functional theory as possible.
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Figure 2.9: Optical absorption in solid argon (from Ref. [Sottile 07]). Red
line and dots: experiment; blue dashed line: Nanoquanta (NQ) kernel; black
continuous line: Bethe-Salpeter (BSE) result; green double-dashed-dotted line:
TDLDA; green double-dotted-dashed line RPA. There are two exciton series, the
spin triplet n and the singlet n′. Non spin-polarized calculations are supposed
to reproduce only the spin singlet n′ series. The bandgap is 14.2 eV in Argon.

2.11 Perspectives beyond the Nanoquanta ker-

nel

Although with the Nanoquanta kernel we succeeded in having a truly ab initio
kernel able to reproduce all neutral excitations and spectra, yet fundamental
criticisms persist. The first one is that this approach still is in the path of OEP
schemes for DFT or TDDFT. Indeed, the expression for the kernel is still orbital
dependent with complicated expressions. Regarding this last point, we however
have shown [Sottile 07] that the scaling on evaluating the exchange-correlation
expression is much better than in OEP approaches.

Another fundamental criticism [Gross 03] is that the Nanoquanta scheme
looks a hybrid MBQFT/DFT approach. The kernel is separated into two
terms: one reproducing self-energy effects, whose effect reproduce an indepen-
dent quasiparticle polarizability, a kind of non-interacting polarizability built
however over an interacting (quasiparticle) electronic structure. The second
term introduces vertex corrections to the polarizability so to keep into account
e-h interaction effects, thus allowing to reproduce excitons and excitonic ef-
fects in optical spectra. This separation looks [Gross 03] quite artificial and
is not truly in the spirit of a density-functional like theory that does not deal
with self-energies and vertex functions. Further on, although we provided an
explicit expression for the excitonic term of the kernel, the first term is still
implicit. This means that to do a Nanoquanta kernel calculation, one needs to
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first calculate GW corrections to the Kohn-Sham energies. Apart to be in some
cases the most cumbersome step, this means that the theory is not completely
self-standing as density-functional approach.

Although it has been important to show that TDDFT is able to provide from
ab initio optical spectra in good agreement with the experiment, all the above
drawbacks would require further work. I do not personally consider the problem
as definitely solved. And I think that this could still continue to be an exciting
field of research for us and of course for the new generations of condensed matter
theoreticians.



Chapter 3

MBQFT, GW
approximation and beyond

In this chapter we introduce the fundamentals of MBQFT and the GW ap-
proximation. The main achievements of the theory, in particular the ab initio
prediction of band gaps in insulator and semiconductors as measured in ARPES,
are discussed. We analyze two examples among recent work by us: the first is a
fully dynamical GW calculation on graphene, for some aspects quite an exotic
system. This is a work whose main author is Paolo Emilio Trevisanutto, at that
time Post-Doc in my laboratory. The second is a self-consistent GW calculation
on VO2, work carried out in particular by Matteo Gatti during his PhD thesis
[Gatti 07a] under the supervision of Lucia Reining and myself. These works
point to the next challenges in front of the GW approximation: the access to
spectral functions and the description of strongly-correlated systems. On ordi-
nary insulators, semiconductors and metals, the GW approximation has so far
provided good results. However nobody knows how GW will perform on systems
where the band paradigm breaks down as in the strongly correlated phenomenol-
ogy. These systems hence represent the next frontier for GW. In any case, since
GW is an approximation, we must expect a limit beyond which its validity is
lost. And this could be situated at the level of strong correlations. If we want
to depass this frontier keeping within an ab initio approach, we should be able
to devise new approximations beyond GW, toward vertex corrections. Along
this path, great help will come from the physics learnt from strongly correlated
models, e.g. the Hubbard model. Finally, starting from an idea raised during
Matteo Gatti’s thesis, we present developments even beyond MBQFT, toward
a simpler framework although still in principle exact for excitations. We have
in mind an intermediate framework between DFT and MBQFT, rather than a
hybrid of the two, like in OEP approaches.

3.1 Second quantization and Fock space

The starting point of MBQFT and any quantum field theory is the introduc-
tion of second quantization. In the second quantization formalism the ordinary

31
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wavefunction becomes an operator,

ψ(r) 7−→ ψ̂(r),

acting on the Fock space which is a Hilbert space of the occupation numbers.
In this space a possible state is the vacuum, |0〉, that is the ground-state of
QED or other subnuclear field theories. Another example is the state where it
is present one electron with energy E and momentum p, |1E,p〉. In condensed
matter we introduce the ground-state of an N-electron system |ΨN

0 〉 as well as
its excited states |ΨN

s 〉. Charged excited states are obtained from the N-electron
ground-state by e.g. adding |ΨN+1

0 〉 or removing |ΨN−1
0 〉 an electron. The field

operator ψ̂(r) is defined as the operator that removes an electron at r from a

Fock state, while its conjugate ψ̂†(r) creates an electron at r. This is a tool
formerly introduced by Paul Dirac to reformulate the problem of the harmonic
oscillator. Field operators obey canonical commutation/anticommutation rela-
tions, according to their bosonic/fermionic statistics and in agreement with the
spin-statistics theorem. So, for electrons

{ψ̂(r), ψ̂(r′)} = 0

{ψ̂†(r), ψ̂†(r′)} = 0

{ψ̂(r), ψ̂†(r′)} = δ(r, r′).

These relations are enough to automatically impose fermionic antisymmetriza-
tion everywhere in the theory (point 2. in Sec. 1.2). A first interesting second
quantized operator that can be introduced is the electronic density operator,

ρ̂(r) = ψ̂†(r)ψ̂(r),

whose mean value on a generic state provides the electronic density observable,

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉.
The total number of particles operator is instead

N̂ =

∫

dr ρ̂(r) =

∫

dr ψ̂†(r)ψ̂(r).

A generic o(r, ∂r) first quantization single-particle operator, which would be

o =
∑N

n=1 o(rn, ∂rn
) for an N particle system, always possesses an associated

second quantization expression,

ô =

∫

dr ψ̂†(r)o(r, ∂r)ψ̂(r).

From the last expression, we see that in a field theory there is not any more need
to deal with indeces running on the entire set of particles (point 1. in Sec. 1.2).
Indeed, the many-body hamiltonian Eq. (1.1) is in second quantization

Ĥ = Ĥ(0) + Ŵ = T̂ + V̂ + Ŵ (3.1)

T̂ =

∫

dr ψ̂†(r)

(

−1

2
∂2

r

)

ψ̂(r) (3.2)

V̂ =

∫

dr ψ̂†(r)v(r)ψ̂(r) (3.3)

Ŵ =
1

2

∫

drdr′ ψ̂†(r)ψ̂†(r′)w(r, r′)ψ̂(r′)ψ̂(r) (3.4)
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where, with respect to Eq. (1.1) the index n running on the total number of
particles N , has disappeared.

3.2 Green’s function

We can now define the Green’s function. The time-ordered 0-temperature single-
particle Green’s function is the expectation value on the ground-state of the
operator1 T {ψ̂(r1, t1)ψ̂

†(r2, t2)},

G(r1, t1, r2, t2) = −i〈ΨN
0 |T {ψ̂(r1, t1)ψ̂

†(r2, t2)}|ΨN
0 〉, (3.5)

where T is the time-ordering product, defined (for fermions) as

T {ô(t1)ô†(t2)} =

{

ô(t1)ô
†(t2) t1 > t2

±ô†(t2)ô(t1) t2 > t1
.

The Green’s function has the following interpretation: it represents the prob-
ability amplitude to detect an electron at point r1 and time t1 when an electron
has been added to the system at a point r2 and in a previous time t2. It hence
represents the probability amplitude for the propagation of the electron from
r2, t2 to r1, t1. This is the reason why the Green’s function is also called prop-
agator. When t2 > t1, the Green’s function describes the propagation of a
many-body state in which an electron has been removed in r1, t1, that is the
propagation of a hole from r1, t1 to r2, t2.

To clarify its meaning, it can be usefull to study the Green’s function of the
simple non-interacting system Ĥ(0), characterized by a single-particle Hamilto-

nian h(0) and eigenvalues/vectors ǫ
(0)
i , φ

(0)
i (r). From the definition Eq. (3.5), we

can see that the independent-particle Green’s function G(0) obeys an equation,

[

i∂t1 − h(0)(r1)
]

G(0)(x1, x2) =

[

i∂t1 +
1

2
∂2

r1
− v(r1)

]

G(0)(x1, x2) = δ(x1, x2),

which is the ordinary mathematical definition for the Green’s function of the
differential operator i∂t−h(0)(r). In rω-space, that is Fourier transforming with
respect to (t2 − t1) → ω, the Green’s function is equal to

G(0)(r1, r2;ω) =
∑

i

φ
(0)
i (r1)φ

(0)∗
i (r2)

ω − ǫ
(0)
i + iη sgn

(

ǫ
(0)
i − µ

) . (3.6)

where µ is the chemical potential. We can see that the Green’s function contains
several informations and in particular:

1. The expectation value of any single-particle operator on the ground-state.

2. The ground-state total energy.

3. The excitation spectrum.

1From now on we will use the Heisenberg representation in which the time-dependence is
trasferred from the (Fock) states to the second-quantized operators.
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Indeed it can be shown that a generical observable associated to a single-particle
first quantization operator o(r, ∂r) (point 1.) can be calculated from the Green’s
function via

o(t) = −i
∫

dr lim
r′→r

lim
t′→t+

o(r, ∂r)G(r, t, r′, t′).

Although the total energy (the Hamiltonian) contains the two-particle oper-
ator W , nevertheless the ground-state total energy can be calculated from
the Green’s function (point 2.) by the Galtitskii-Migdal formula [Fetter 71]
(x = (r, t)):

E = −1

2

∫

dr lim
x′→x+

[

i∂t −
1

2
∂2

r + v(r)

]

G(x, x′).

Finally the poles of the Green’s function are the excitation energies ǫi of the
system (point 3.). This can be seen in the non-interacting system from Eq. (3.6),
and in the more general case by expressing the Green’s function in the Lehmann
representation [Fetter 71]

G(r1, r2, ω) =
∑

s

ψs(r1)ψ
∗
s(r2)

ω − ǫs + iη sgn(ǫs − µ)

where the ǫs are the charged excitations, either particle or hole, of the N-particle
system, and the ψs(r) are the so-called Lehmann amplitudes.

Another important observable can be directly extracted from the Green’s
function. This is the spectral weight function A(ω) (or spectral function) which
can be defined as

A(r1, r2, ω) =
∑

s

ψs(r1)ψ
∗
s(r2)δ(ω − ǫs).

The spectral function has the meaning of a weighted density-of-states for the full
interacting many-body system, and can be calculated by taking the imaginary
part of the Green’s function

A(r1, r2, ω) = −π−1ℑG(r1, r2, ω) sgn(ω − µ)

The diagonal of the reciprocal space spectral function AGG(k, ω) is an observable
directly measured in angle-resolved photoemission spectroscopy (ARPES). Most
of the peaks present in the spectral function A(ω) are associated to quasiparticle
excitations. These are excitations with a single-particle character but with a

renormalized energy ǫQP
i (different from the independent particle energy ǫ

(0)
i )

and possessing an imaginary part to be associated to the inverse lifetime of the
excitation. Some other peaks belong to the non-coherent part of the spectrum
and are instead satellites associated to collective and delocalized excitations,
such as plasmons (seen in PES spectra at multiples of the plasma frequency
distance from the quasiparticle peaks). Or also to peaks associated to localized
excitations, such as the so-called Hubbard bands.

3.3 Equations of motion for G and MBPT

Once we have the Green’s function, all the observables can be calculated. The
problem is now how to calculate G for the interacting system. This can be done
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solving the equation of motion for G,

[

i∂t1 +
1

2
∂2

r1
− v(r1)

]

G(x1, x2)+i

∫

dx3 w(x1, x3)G(x1, x
+
3 , x2, x

++
3 ) = δ(x1, x2),

(3.7)
that requires knowledge of the 2-particle Green’s function G(x1, x2, x3, x4). This
is defined analogously to the 1-particle Green’s function with 4 field operators
and is a function of 4 space-time points. In turn the equation of motion for the
2-particle G requires knowledge of the 3-particle G and so on. Along this way
the problem has no solution2.

One possible way is to use perturbation theory by considering as 0-order the
independent-particle Hamiltonian Ĥ(0) which represents a problem that we can
solve. We know how to calculate its Green’s function G(0) Eq. (3.6). We then
consider as perturbation the many-body term Ŵ and the Coulomb e-e repulsion
w(r, r′). Using Wick’s theorem, we can expand the T-product in the definition
of the Green’s function into normal products and contractions on the ground-
state, and expand G till a given order of W in terms of G(0). G can be written
in terms of Feynman diagrams and can be calculated up to a desired order. This
is the way followed to solve the problem in QED and was the first trial to solve
MBQFT. Unfortunately, while in QED the coupling constant around which we
expand the theory is small, in MBQFT this is not the case. The situation is like
in QCD at the low-energies scale, where the strong constant is not small. In
many-body perturbation theory (MBPT) the first order corresponds to Hartree-
Fock theory which is not a good approximation, as we already know, especially
in solids or infinite systems. Second and further orders are not small with respect
to the first, and stopping at a given order cannot represent systematically a good
choice to minimize the error. The error is not under control. In historical order,
the next developments of MBPT went toward partial resummation to all orders
along some chosen directions of Feynman diagrams. For example, summing
all the ring diagrams (RPA approximation). Or summing to all orders ladder-
like Feynman diagrams (ladder approximation). All these approches failed to
provide a systematically correct methodology to the many-body problem.

3.4 The self-energy and Hedin’s equations

There is another way to solve the problem called functional or also iterative
approach. The functional appoach consists in disentangling the series of depen-
dencies of the G in Eq. (3.7) over the 2-particle or further Gs by introducing a
new quantity called self-energy. The irreducible self-energy Σ̃ is defined implic-
itly by a newly introduced equation of motion for the 1-particle G,

[

i∂t1 +
1

2
∂2

r1
− v(r1)

]

G(x1, x2) −
∫

dx3 Σ̃(x1, x3)G(x3, x2) = δ(x1, x2).

In this equation the self-energy sums up to the external potential v(r) and
thus acquires the meaning of an effective potential accounting for the many-
body interaction (Σ̃ = 0 for the non-interacting system). This interpretation is

2One can solve the problem by doing approximations for example on the 2-particle G,
writing it as a functional expression involving the 1-particle G and w. This is equivalent to
do a perturbation theory of G over G(0) and w, which is discussed in the next.
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reinforced knowing that we can write a Schrödinger-like single-particle equation
for the interacting quasielectron,

[

i∂t1 +
1

2
∂2

r1
− v(r1) − vH(r1)

]

ψQP
i (x1)−

∫

dx3 Σ̃M(x1, x3)ψ
QP
i (x3) = ǫQP

i ψQP
i (x1),

where the self-energy has been decomposed into Σ̃(x1, x2) = δ(x1, x2)vH(x1) +
Σ̃M(x1, x2), the Hartree potential vH(x1) =

∫

dx3 ρ(x3)w(x3, x1), representing
the classical repulsion felt by the electron and due to all the other electrons,
and the mass-operator Σ̃M, rather associated to quantistic effects. So far ev-
erything is exact. The exact self-energy is a function of two space-time vari-
ables x1, x2. We can approximate the self-energy by a local potential, for ex-
ample neglecting the rest beyond the local Hartree potential vH(x). This is
equivalent to the Hartree theory and it is a kind of classical mean-field theory
where the self-energy acquires the function of an effective potential. In the
Hartree-Fock approximation we approximate Σ̃M by the exchange operator Σ̃x,
i.e. Σ̃HF

M (x1, x2) = Σ̃x(x1, x2) =
∫

dx3G(x1, x3)w(x3, x2). In the exact theory,

Σ̃M = Σ̃x + Σ̃c contains not only the exchange, but also correlation Σ̃c, whose
rigorous definition is indeed “the contribution beyond the exchange and the
Hartree-Fock approximation”.

The quasiparticle energies ǫQP
i , eigenvalues of Eq. (3.4), represent excitations

of the full interacting system of the single-particle type, that is they can be

traced back, associated to single-particle excitations ǫ
(0)
i of the non-interacting

system. Since the self-energy is not in general a Hermitian operator, the right

eigenvalues ǫQP
i of Eq. (3.4), at difference with the ǫ

(0)
i , can possess also an

imaginary part: the inverse of the imaginary part is associated to the lifetime
τQP
i = 1/2ℑǫQP

i of the excitation, while the real part is its energy. It can

be shown that the spectral function A(ω) presents peaks at ω = ℜǫQP
i of width

ℑǫQP
i . In a solid the set of ℜǫQP

i=nk can be plot as a function of the wave-vector k,
and this is the band-plot of the real interacting system as measured in ARPES.

The problem has now been transferred from the Green’s function to the new
unknown self-energy. We need to find an equation of motion for it. The idea is
that we can repeat the procedure, introduce new equations and new quantities
in the hope that, unlike for many-particle Green’s function, we succeed in closing
the set of equations. This procedure leads to the so-called Hedin’s equations
[Hedin 65], a set of 5 closed integro-differential equations over 5 unknowns:

G(x1, x2) = G(0)(x1, x2) +

∫

dx3 dx4G
(0)(x1, x3)Σ̃(x3, x4)G(x4, x2)

W (x1, x2) = w(x1, x2) +

∫

dx3 dx4 w(x1, x3)Π̃(x3, x4)W (x4, x2)

Σ̃M(x1, x2) = i

∫

dx3 dx4W (x+
1 , x3)G(x1, x4)Γ̃(x4, x2;x3)

Π̃(x1, x2) = −i
∫

dx3 dx4G(x1, x3)Γ̃(x3, x4;x2)G(x4, x
+
1 )

Γ̃(x1, x2;x3) = δ(x1, x3)δ(x1, x2) +

+

∫

dx4 dx5 dx6 dx7
δΣ̃M(x1, x2)

δG(x4, x5)
G(x4, x6)G(x7, x5)Γ̃(x6, x7;x3)
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where we have introduced other 4 quantities: the irreducible polarizability Π̃,
directly related to the macroscopic polarizability of the system; the screened
interaction W , which is the Coulomb interaction screened by the dynamical
dielectric function of the medium, W (ω) = ε−1(ω)w, directly related to the
effective interaction of two electrons in presence of all the others; and the irre-
ducible vertex function Γ̃, of more difficult physical interpretation. G(0) is of
course the well known Green’s function of the non-interacting system, and the
first equation is called the Dyson equation, directly derived from the definition
of the self-energy Eq. (3.4). The set of Hedin’s equations can be solved itera-
tively and self-consistently, by starting from an initial guess for a quantity, say
Σ̃, and solving one after the other all the equations until we get an improved,
first-iteration expression for all the quantities. At this point we cycle again the
5 equation until the quantities do not change any more and convergence has
been achieved on them. At this point we have the exact Green’s function of the
system and we can calculate all the observables.

Unfortunately this approach can be applied only to simple models, such
as the jellium [Holm 98]. For real system the resolution of Hedin’s equations
turned out unfeasable. In particular, the most serious problem is posed by the
last equation for the vertex Γ̃ Eq. (3.8), since the kernel of the equation is repre-
sented by the functional derivative of the self-energy with respect to the Green’s
function ΞM = δΣ̃M/δG which cannot be done analitically and it is difficult to
carry out numerically. However we can now resort to approximations in the
hope that, within this functional scheme, they would work better than in per-
turbation theory. Indeed, judicious approximations on the functional expression
of the self-energy have been found so to select the most important contributions
and neglect small corrections to the main physics.

3.5 The GW approximation

A succesful approximation on the self-energy is represented by the GW approx-
imation [Hedin 65] In this approximation we simplify the complicated vertex
Eq. (3.8) by retaining only its first term, the bare vertex,

Γ̃GW(x1, x2;x3) = δ(x1, x2)δ(x1, x3),

and neglect the second term and the complicated functional derivative. The
equation for the self-energy in the GW approximation then reads

Σ̃GW
M (x1, x2) = iG(x1, x2)W (x+

1 , x2),

expression which is eponym to the approximation. A heuristic justification of
the approximation is that we are neglecting the variations δΣ̃M of the self-
energy with respect to variations induced by many-body effects on the density
δρ(x) ∼ δG(x, x). Another justification have been given by Mahan and Sernelius
[Mahan 89], but the most important justification is provided by the a posteriori
verification of the validity of the GW approximation on real systems by com-
paring with the experiment. Hedin’s equations are now much easier to solve
and we can at least perform a first iteration cycle along them. A self-consistent
resolution of Hedin’s equation even in the GW approximation can also represent
a problem. So that a possibility to be seriously taken into account for real sys-
tems is to stop after the first iteration. This is called the G0W 0 approximation.
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Figure 3.1: Hartree-Fock (HF, magenta diamonds), DFT-LDA (red circles) and
GW (black square) calculated (y-axis) versus photoemission experimental (x-
axis) band-gaps.

Its validity depends in this case also on a right choice of the starting 0-iteration
point. This is normally taken to be the Kohn-Sham electronic structure, which
is the simplest and best guess for an electronic structure to start with. The 0-
iteration guess for the self-energy is hence taken to be the exchange-correlation
functional of DFT, Σ̃0

M(r1, r2, ω) = vxc(r1)δ(r1, r2).

The most striking evidence of the validity of theG0W 0 approximation and all
this approach is provided by Fig. 3.1. Here we report the GW calculated values
(ordinate) of the band-gaps in several systems, from metals to semiconductors
and insulators, compared to the values measured in photoemission (abscissa).
We remark the well known underestimation of DFT (in LDA or GGA approxi-
mation). It is evident that the GW approximation results lye much more along
the diagonal, thus systematically improving upon DFT. Hartee-Fock band-gaps
sistematically overestimate the experimental values.

3.6 Many-body GW effects on graphene

We have seen that the GW approximation typically provides band-gaps in
very good agreement with ARPES experiments in systems like simple semi-
conductors and insulators. Let’s see how GW works on an atypical system
such as graphene. Graphene is a single layer/sheet of graphite, so that it
has a flat 2D atomic honeycomb hexagonal lattice atomic structure. In the
tight-binding formalism, the graphene 2D honeycomb lattice structure gives
rise to a semimetal, that is a semiconductor with zero band gap occurring at
the K point in the Brillouin zone and a cone-like linear band-dispersion at
low energy. This part is usually described by a massless Weyl fermions dis-
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Figure 3.2: Graphene band plot (from Ref. [Trevisanutto 08]). DFT-LDA KS
(black continuous lines) and GW (red dashed lines and dots) bands.

persion, H = −k · σ. Ab initio DFT calculations [Calandra 07] confirm the
linear dispersion picture and give an estimate of the Fermi velocity vF lower
by 15∼20% than the experimental value. Recently, two angle-resolved photoe-
mission spectroscopy (ARPES) experiments on graphene epitaxially grown on
SiC [Bostwick 07, Zhou 07, Rotenberg 08, Zhou 08] raised the general interest.
The first one [Bostwick 07, Rotenberg 08] observed at low energy a nearly lin-
ear band dispersion with slight deviations in the form of small kinks interpreted
as due to many-body electron-electron (e-e) and electron-phonon (e-ph) self-
energy effects. The second one [Zhou 07, Zhou 08] provided a different picture,
with the opening of a band gap occurring at the Dirac K point and attributed
either to substrate (SiC) or to many-body self-energy effects. A DFT calcula-
tion [Kim 08] seemed to confirm a substrate induced symmetry breaking, but
recent STM measures [Brihuega 08] provided some evidence to exclude it. This
situation calls for clarification about the role of e-e self-energy effects on the
quasiparticle (QP) band plot, the Fermi velocity and the band gap opening.
Previous ab initio works have dealt with e-ph effects [Calandra 07, Park 07].
There are also several non ab initio works (see Ref. [Neto 09] and references
therein) which studied e-e self-energy effects in a 2D massless Dirac model.

P. E. Trevisanutto, at that time post-doc in my laboratory, and me decided
to perform a GW many-body calculation in order to clarify all the previous
questions. Our results [Trevisanutto 08] are shown in Fig. 3.2. We compare
the Kohn-Sham DFT-LDA (black thick lines) and the quasiparticle GW (red
circles and dashed lines) electronic structures. Exchange end correlations effects
slightly affect the band shapes. Relevant effects are a lowering of the σ bands
and an increase (up to +20%) of the gaps at M (4 → 4.8 eV) and at Γ (6.4 → 7
eV). This is a normal behavior of GW, as we have seen. The Kohn-Sham bands
however present a qualitative good shape. We now focus on the Fermi energy
Dirac point (K) region (Fig. 3.3). The DFT KS π and π∗ (thick lines) band
dispersion is linear in the first ∼ 0.5 Å−1 from the Dirac K point. The DFT
KS Fermi velocity is 0.95 · 106 ms−1, in agreement with previous calculations
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Figure 3.3: Graphene band plot zoom on the Fermi energy, K Dirac point region
(from Ref. [Trevisanutto 08]): DFT-LDA KS (black lines) and GW (red lines
and dots). Red dashed lines represent a fit of the Fermi velocity for the GW
bands in the linear region.

[Calandra 07]. This underestimates by a 15% the experimental value. The dots
and thin lines represent the GW band plot calculated by a contour deformation
(CD) method. The first evident self-energy effect is the loss of linearity along
the region 0.05 Å−1 close to the Dirac K point. However outside that region
the linearity is soon recovered but with a slope larger than the DFT KS. A
fit of the GW band with a straight line (dashed line) gives a Fermi velocity of
1.12 ·106 ms−1 (1.14 with ath = 2.45 Å). Thus the GW self-energy renormalizes
by a +17% the DFT Fermi velocity and achieves a good agreement with the
experimental magnetotransport measure of 1.1 · 106 ms−1. The residual over-
estimation of 2∼4% should be compensated by negative e-ph renormalization
effects, which has been evaluated to −4% in Ref. [Park 07].

We now focus on the non-linear region. In all the k-points far from the Dirac
point, the GW correction acts in the usual direction to open the gap between
DFT KS bands. On the other hand at k = (0.328, 0.328, 0) (reduced coordi-
nates), that is at ∼ 0.025 Å−1 from K, we have found an unusual negative GW
correction of −0.12 eV which generates a kink at ∼ 0.1 eV from the Dirac point.
This result reproduces the experimental ARPES scenario of Ref. [Bostwick 07]
where a kink interpreted as due to e-e many-body effects is found more or less
in this position. The other experimental kink has been already reproduced by
an e-ph calculation [Calandra 07].

The last important result of our GW calculation is that many-body effects,
within the numerical error bar, do not open the band gap at the Dirac point.
The GW self-energy does not change the DFT-LDA 0 band gap and band 4
and 5 keep degenerate at K. In conclusion, e-e interaction many-body effects,
at least as accounted by the GW approximation, are unable to open a band-gap
and graphene keeps to be a semimetal.
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3.7 GW on a strongly correlated system: VO2

From the previous example and Fig. 3.1 we have seen how large is the domain
of applicability of the GW approximation. The question now arises whether
the GW is able to capture the physics of strongly-correlated systems such as in
transition-metal oxydes. A prototype for such a material is vanadium dioxide
(VO2). At high temperature this oxide is in a rutile metallic phase. At 340
K it undergoes a transition to a monoclinic insulator. In the transition, the
V atoms dimerize and the V pairs tilt around the rutile c-axis. It has long
been debated, dating back to Nevill Mott himself [Zylbersztejn 75], whether the
electronic correlation is strong enough to localize the electrons and form a Mott-
Hubbard insulator [Zylbersztejn 75], or whether the structural distortions alone
are enough to induce the insulating phase (Peierls model) [Wentzcovitch 94]. On
this system, DFT yields ground state properties correctly. The lattice parame-
ters and the atomic positions are in agreement with the experiment within the
usual 1% error, as we also have found in our calculation [Gatti 07b]. However
the Kohn-Sham DFT structure incorrectly predicts both phases to be metal-
lic [Wentzcovitch 94, Eyert 02]. But we remind that this cannot be considered
a failure of DFT, since it is not an in principle exact theory to predict ex-
cited state properties and so it is not supposed to predict the metallic/insulator
character of a system. Even beyond KS-LDA, most state-of-the-art theoretical
approaches were unable to describe this complex transition. Single-site DMFT
gives the insulating phase as metallic [Liebsch 05, Laad 06]. In LDA+U instead
even the metallic rutile structure becomes an insulator [Liebsch 05, Korotin 02].
On the other hand, a cluster-DMFT [Biermann 05] has been able to reproduce
the correct character of both phases and was also able to address a peak which
is clearly visible at 1.3 eV in the photoemission spectrum (PES) of the metallic
phase. Into this approach, correlations are introduced by an adjustable, non
ab initio Hubbard-model on-site parameter U . For all these reasons, no final
conclusion could be drawn from first principles concerning the metal-insulator
transition in VO2 and the corresponding nature of its electronic structure.

We hence decided to carry out a fully ab-initio GW calculation. Our results
[Gatti 07b] show that correlation effects in the electronic structure of both the
metallic and the insulating phases are correctly reproduced provided that quasi-
particle energies and wavefunctions are calculated self-consistently. So from the
point of view of GW, apart from the request of self-consistence in the calcula-
tion, the situation in VO2 is not very much more complicated as for example in
germanium. Ge is a metal in the DFT KS electronic structure, but is correctly
predicted to be a semiconductor with a 0.6 eV band-gap in G0W0.

In Fig. 3.4 we show the density of states for monoclinic VO2 as measured by
a photoemission experiment (red line). The DFT-LDA Kohn-Sham density of
states (blue dashed line) is non-zero at the Fermi level, thus wrongly predicting
the monoclinic phase to be metallic. A G0W0 on top of the DFT-LDA Kohn-
Sham electronic structure does not succeed to open the band-gap and predict
the phase to be metallic as well. It is only a G0W0 on top of a self-consistent
COHSEX (a static approximation to GW with an instataneous screened inter-
action W) that the phase is correctly described as an insulator with a band-gap
of 0.65 eV, in good agreement with the experimental 0.6 eV. In order to identify
the origin of this result, we have verified that a COHSEX calculation where the
wavefunctions are constrained to the LDA ones and only the energies are up-
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Figure 3.4: Vanadium dioxide density of states (from Ref. [Gatti 07b]). Red
thin line: photoemission experiment; blue dashed line: DFT-LDA Kohn-Sham;
black thick line: G0W0 on top of self-consistent COHSEX.

dated self-consistently, does not succeed in opening the band-gap. This points
to the fact that the change of wavefunctions from LDA to QP is of the utmost
importance. Indeed, analysis (see Fig. 2 of Ref. [Gatti 07b]) of the self-consistent
COHSEX top-of-valence and bottom-of-conduction wavefunctions with respect
to the LDA ones reveals a remix of about 10% among the d-states around the
Fermi level, with an increased d‖ character for the top-of-valence state. Notice
that already the self-consistent static COHSEX approximation was able to open
the band gap to a value, 0.78 eV, which is not far from the experimental 0.6
eV. And notice also the importance to include all relevant states within the cal-
culation and not only the t2g orbitals, as done in dynamical mean-field theory
(DMFT) or cluster-DMFT calculations. Indeed, a COHSEX calculation where
the self-consistency is only limited to the t2g still opens the band-gap, but only
to 0.36 eV.

As a final result, we have shown that our RPA result for the energy-loss
function −ℑε−1 that enters the dynamically screening W = ε−1w and thus the
GW self-energy, is itself in good agreement with experimental EELS spectra
(Fig. 3.5) . In particular, in the rutile phase it presents a plasmon resonance at
1.3 eV which is characteristic for the metal, while in the insulator is absent. This
could explain the difference in the satellite structure between the photoemission
spectra of the two phases. Our ab initio GW calculation hence explains the peak
seen in the ARPES spectral function of the metal as being a plasmon satellite
of the main quasiparticle peak, rather than a lower Hubbard band as indicated
by DMFT calculations [Biermann 05].

3.8 Beyond GW: BSE and vertex corrections

We close this chapter by providing two sections to be seen as in perspective,
rather than as already accomplished tasks. Although as shown in the two pro-
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Figure 3.5: Vanadium dioxide energy-loss function −ℑε−1(ω) (from
Ref. [Gatti 07b]). Solid red line: metallic rutile phase in RPA; blue dashed
line: insulating monoclinic in KS-RPA; green dotted line: insulating monoclinic
in GW-RPA.

vided examples and from Fig. 3.1, GW seems to be a valid approach over quite
a large range of systems and applications, we must not forget that GW is an
approximation to the exact result. Breakdowns of the approximation should
be expected, and this will set the limits of GW. The limits of GW might be
set somewhere in the strongly correlated phenomenology and strong-correlated
systems. With strong-correlated systems we here mean systems where the band
paradigm is not any more holding and they are presenting spectral functions
where most of the spectral weight is transferred to the incoherent part, rather
than being concentrated under well defined quasiparticle structures. Or also GW
can surprisingly be able even to describe a strongly correlated phenomenology at
least qualitatively, if not quantitatively. These are the fundamental questions to
be answered in the next years by a deep study of the application of the GW ap-
proximation on strongly correlated systems, starting from transition metal oxy-
des. For most of them we will probably discover that the situation is not much
different from what we have found in VO2. That is, that the band paradigm
could be in many cases predominant over the strongly correlated paradigm than
actually believed. But the important workbench test of the GW approximation
will be on systems where the strongly correlated paradigm is fully realized. In
case the GW approximation will be found not working on these system, we shall
be ready to go beyond the GW approximation if we want to still have an ab
initio first principles theory without adjustable parameters.

From another point of view, we have already evidenced a limit of the GW
approximation. Indeed, when we are dealing with observables related to neu-
tral excitations and optical spectra as measured in ellipsometry rather than
charged excitations and the electronic structure as measured in ARPES, the
GW approximation breaks down and the results are not any more in agree-
ment with the experiment (see Fig. (2.2). Optical spectra in semiconductors
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and insulators are in many cases not even qualitatively reproduced by the GW
approximation. The neglect of the vertex (i.e. Γ̃ = 1) is to be considered a
good approximation for the self-energy Σ̃, Eq. (3.8), but not for the polariz-
ability Π̃, Eq. (3.8). When calculating neutral excitations and optical spectra
extracted from the polarizability, we need to go beyond the GW approximation
and introduce vertex corrections, beyond the GW approximation bare vertex
expression Γ̃GW = 1. This can today be done by the so called Bethe-Salpeter
equation (BSE) approach. It is a way to introduce a vertex correction in the
expression for the polarizability Π̃, Eq. (3.8). In this approach, the kernel of the
Bethe-Salpeter equation, equivalent to the kernel of the Hedin’s vertex equation
Eq. (3.8), ΞM = δΣ̃M/δG, is approximated using its second iteration expression
and considering the GW as the first iteration. That is,

ΞM =
δΣ̃M

δG
≃ δΣ̃GW

M

δG
= iW + iG

δW

δG
≃ iW, (3.8)

and this kernel is used to calculate the irreducible two-particle correlation func-
tion L̃ by resolution of the Bethe-Salpeter equation,

L̃ = GG+GGΞML̃. (3.9)

The polarizability is then directly derived from L̃ by contraction of two of its
indeces, Π̃(x1, x2) = −iL(x1, x2, x

+
1 , x

+
2 ), and from the polarizability the dielec-

tric function and all observables. This is a way to calculate a second iteration
polarizability Π̃ which includes some vertex corrections. The results one can
get by this procedure is shown in Fig. (2.2), where the BSE curve is in good
agreement with the experiment, while the GW approximation curve, neglecting
vertex corrections, is not able to catch electron-hole interaction effects. The
conclusion is that whenever electron-hole interaction effects have an important
role, the GW approximation will be lacking. And the BSE approach can be a
possible way to overcome the problem.

We would like to mention another possible route to go beyond the GW
approximation we have explored in Ref. [Bruneval 05]. In this approach, we
propose to develop the 2-particle effective interaction ΞM in Eq. (3.8) by func-
tional deriving the self-energy Σ̃M with respect to the electronic density ρ, rather
than the Green’s function. This leads to a simplified 3-point expression for the
ΞM(x1, x2;x3) rather than a complete 4-point, and there is hope to simplify fur-
ther the expression by approximating non-local terms, likely to be small with
respect to the rest. Along this way we have shown some encouraging results.
This can be a promising way in order to go beyond the GW approximation in
systems where it will break down.

3.9 Perspectives beyond MBQFT

Finally, excitations and spectroscopy could well be addressed by other, new
theories, else than MBQFT. We have already seen TDDFT, but this theory
is unsuitable for charged excitations. TDDFT is an in principle exact theory
to provide the optical gap, but not the fundamental photoemission gap, the
gap in the electronic band structure of the system. Although it would seem
that charged excitations, such as electron addition/removal energies, would be



3.9. PERSPECTIVES BEYOND MBQFT 45

accessible only to a field theory where we have well defined creation and dis-
truction operators, there are other possible ways to tackle the problem. One of
them has been explored during Matteo Gatti’s PhD thesis’s work [Gatti 07c]
and it is based on a generalization of the so-called Sham-Shlüter equation
[Sham 83]. We introduce a ficticious, unphysical non-interacting system s such
as the single-particle Hamiltonian seen by its electrons is h(0) + vs, that is
the non-interacting (kinetic + external potential) Hamiltonian plus an effec-
tive potential vs which can be a local and static operator vs(x). Here however
we let the freedom of more degrees of freedom, toward non-locality vs(x1, x2)
and/or dynamicity vs(x, ω). We can then calculate the Green’s function of
this ficticious system Gs = (ω − h(0) − vs)−1, and we have a Dyson equation,
G = Gs + Gs(Σ̃ − vs)G, which relates the physical quantities Σ̃, G, to the ac-
cessory ones vs, Gs. The ancillary quantities can then be fixed by imposing
that one or some observables are provided exactly by the ficticious system. For
example, we can construct the auxiliary system s such as the electronic density
ρ(x) = −iG(x, x+) is in principle provided exactly by Gs and the ficticious sys-
tem, ρ(x) = −i diag[G] = −i diag[Gs]. This is the definition of the Kohn-Sham
system. Notice that such a system is constructed such as the electronic density
is provided exactly, but there is no reason why also other quantities, such as the
electronic structure or the band gap, are provided exactly. From the Dyson’s
equation by application of the diag projector we can derive the Sham-Schlüter
equation

diag[Gs(Σ̃ − vs)G] = 0, (3.10)

which allows to calculate the Kohn-Sham potential vs provided we know the
exact Green’s function G and the exact self-energy Σ̃. One can see that a static
and local vs(x) has already enough degrees of freedom to provide an exact
density ρ(x). Used in this way the Sham-Shlüter equation is useless. Indeed,
to calculate vs(x) you need to know the exact self-energy, which corresponds
to having solved the problem. But this approach can help in finding good
approximations for the effective potential vs. For instance, this is the way used
in so called optimized effective potential (OEP) approaches to DFT.

Now the idea contained in Ref. [Gatti 07c] is that we can go beyond DFT KS
and situate half-way from full MBQFT: we can construct the auxiliary system
so that it is in principle exact to provide not only the density, but also the total
spectral function A(ω) = −π−1ℑG(ω), which is related to the trace in reciprocal
or real space of the imaginary part of the Green’s function with its full frequency
dependence. Indeed, from the total non angle-resolved spectral function one can
read the fundamental (indirect) band-gap of the system and conclude whether
the system is a metal or an insulator. The condition to be asked is hence that
ℑG(r, r, ω) = ℑGs(r, r, ω), and this will set the associated effective potential vs.
One important conclusion shown by our work [Gatti 07c] is that an effective
local potential vs(r) has not enough degrees of freedom to allow the ficticious
system to reproduce exactly both the density and the total spectral function. A
local vs(r) can only reproduce the exact density, and there is no possibility that
it can also reproduce the band-gap. This is the reason why an ordinary DFT
Kohn-Sham approach, with a local Kohn-Sham potential, cannot in principle
reproduce the exact band-gap of a system. Looking for approximations of the
Kohn-Sham potential beyond the LDA or GGA, can produce better results on
the band-gap of a given class of systems, but it cannot be systematic.
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On the other hands, we can go beyond DFT and KS toward an intermediate
theory, between DFT and MBQFT, with an effective potential which is for
example dynamic, vs(r, ω) (or non-local vs(r1, r2), since we have shown that
the two are equivalent, one can be reduced to the others). And thank to this
complication, still simpler than the full self-energy Σ̃(r1, r2, ω), we can address
the electronic density and at the same time the band-gap problem. The resulting
effective theory is less complex than full MBQFT and is in principle correct way
to tackle the band-gap problem. I think that such approaches can have a future
in our domain. Provided we are able to find good approximations within the
new theory, as LDA or GGA are good approximations for ordinary DFT and
the Kohn-Sham system.



Chapter 4

Quantum transport by
NEGF

Many-body e-e scattering effects are also important when dealing with the prob-
lem of quantum transport. Electronic quantum transport [Datta 95, Di Ventra 08]
is the field of physics that studies the conductance in electronic devices at the
mesoscopic and, more recently, nanoscopic scale. In fact nanoelectronics repre-
sents the next years’ technological challenge, boosted not only by the need for
shorter integration scales, but also by the expectation that unusual quantum
effects are going to be observed due to quantum phenomena effects. Beside the
experimental efforts to synthesize nanoelectronic devices, the theory of quantum
transport has the formidable task to understand and to model the mechanisms
behind these phenomena, and at last to predict them from first principles by an
ab initio approach.

In this chapter we briefly introduce the very fundamentals of non-equilibrium
Green’s function (NEGF) theory [Kadanoff 62, Haug 96], which is an in princi-
ple exact framework to address quantum transport. NEGF is a theory beyond
the state-of-the-art Landauer formalism applied on top of tight-binding or also
density-functional theory and much more appropriated than Landauer on top
of DFT. Indeed, NEGF can provide the exact electronic structure of the sys-
tem, keeping correctly into account many-body e-e and e-ph interaction effects.
Further, it is a truly out-of-equilibrium theory, which is the situation to be
accounted in quantum transport when applying a finite bias across the sys-
tem. NEGF can also describe the open-system situation of the principal layers
quantum transport workbench, whish is the most used framework to tackle the
problem. In the last section, we describe also recent developments that led us
to the definition of a new quantum transport workbench, beyond the principal
layers and presenting some numerical and physical advantages with respect to
the latter.

All these developments have been carried out during the last 4 years thank
to Pierre Darancet and his PhD thesis work [Darancet 08], which have been
co-supervised by Didier Mayou and myself.

47
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4.1 Non-equilibrium Green’s function theory

Non-equilibrium quantum field theory or non-equilibrium Green’s function (NEGF)
theory is an extension of finite-temperature MBQFT that can describe the sys-
tem even when out of equilibrium. That is the normal situation in quantum
transport where a finite bias/potential difference is applied to make current flow
in the conductor. In NEGF, the full Hamiltonian Eq. (3.1) is extended to be

Ĥ = Ĥ + Û(t) = Ĥ(0) + Ŵ + Û(t) = T̂ + V̂ + Ŵ + Û(t) (4.1)

ÛS(t) =

∫

dr1dr2 u(r1, r2, t)ψ̂
†
S(r)ψ̂S(r) u(r1, r2, t) = 0 ∀t < t0

where ÛS(t) (in the Schrödinger picture) is a time-dependent external potential
term representing the applied bias. It is switched on at t = t0 and drives the
system out-of-equilibrium. This term introduces a further complication, beyond
the problem represented by the many-body term Ŵ . NEGF is a very complete
framework which allows to deal with:

1. The many-body description of incoherent transport, thus including e-ph
and e-e interactions and electronic correlations;

2. The out-of-equilibrium situation;

3. The transient response, beyond the steady-state;

4. It reduces to the Landauer formalism in the coherent regime.

Formulation of the theory starts from writing the expression for time-dependent
observables, average values of quantum operators. In finite-temperature MBQFT
(we take back the case with Û(t) = 0), an observable is given by the average
value of the corresponding quantum operator over the ground and excited states
weighted by the corresponding statistical weight. In the canonical ensemble, this
is written as

ō =
∑

i

e−βEi

Z
〈Ψi|ô|Ψi〉 = tr[̺(Ĥ)ôH(t)], (4.2)

where ̺(Ĥ) = e−βĤ/Z is the canonical statistical weight and Z = tr[e−βĤ ] the
partition function. The expression can eventually be generalized to the grand-

canonical ensemble with ̺(Ĥ, N̂) = e−β(Ĥ−µN̂)/Z, and Z = tr[e−β(Ĥ−µN̂)]
the grand-partition function. ôH(t) is written in the Heisenberg picture with
respect to the Hamiltonian Ĥ . Of course, in the 0-temperature case (β → ∞),
the weight ̺ is such that only the ground state provides a contribution to the
observable and we get the traditional expression ō = 〈Ψ0|ô|Ψ0〉. Now let’s
consider the full Hamiltonian Ĥ and switch on the time-dependent external
source Û(t) which, starting from t = t0, drives the system out of equilibrium.
We can write a generical observable as

ō(t) = tr[̺(Ĥ)ôH(t)],

where the operator ôH(t) is in the Heisenberg picture (H) with respect to the
full Hamiltonian H and the statistical weigth is referred to the unperturbed



4.1. NON-EQUILIBRIUM GREEN’S FUNCTION THEORY 49

Figure 4.1: Schwinger-Keldysh contour.

hamiltonian Ĥ and the equilibrium situation before t0. It can be demonstrated
that the average value can be written in the form

ō(t) =
1

Z
tr

[

Tc

{

e−i
R

c
dτ ÛH(τ)ôH(t)

}]

(4.3)

where everything is in the Dirac or interaction (with respect to U) representation
(H), corresponding to the Heisenberg representation for the unperturbed Hamil-
tonian Ĥ , and we define the operators on times τ over the Schwinger-Keldysh
[Schwinger 61, Keldysh 64] contour c shown in Fig. 4.1, over which it is also
defined the contour-ordered operator Tc. This can be seen as a trick to take
into account, within a single expression, both the time-evolution in presence of
a time-dependent Hamiltonian and the statistical weight ̺, which is accounted
by the Matsubara section of the Keldysh contour, that is an evolution along
imaginary time up to −iβ.

Every observable can be conveniently represented in the form Eq. (4.3)
and so also the Green’s function. We can introduce a contour-time ordered
Tc{ô(t1)p̂(t2)} product which reverts the order of the operators (and changes
the sign for fermions) whenever t2 >c t1 along the contour coordinate τ . The
contour-ordered Green’s function Gco is hence defined

Gco(x1, x2)
def
= (−i)Tc{ψH(x1)ψ

†
H(x2)}. (4.4)

By this definition of the Green’s function on the contour we can recover Wick’s
theorem and hence perturbation theory, exactly as in 0 and finite temperature
MBQFT. The contour-ordered Green’s function Gco is equal to one of the four
ordinary (anti)-time-ordered Green’s function Gto, Gato, or the correlation func-
tions G< or G>, depending on which branch of the ficticious contour, c→ or c←,
the physical time coordinates t1 and t2 are placed. We then have:

Gco(x1, x2) =















Gto(x1, x2) t1, t2 ∈ c→
G>(x1, x2) t1 ∈ c←, t2 ∈ c→
G<(x1, x2) t1 ∈ c→, t2 ∈ c←
Gato(x1, x2) t1, t2 ∈ c←

In NEGF it is not any more sufficient to calculate only one Green’s function,
for example the time-ordered Gto like in 0 or finite temperature MBQFT. In
the most general case we need to calculate three independent quantities among
those indicated above (the forth can be calculated as combination of the others).
For example, we can choose the time-orderedGto (or better the retarded Green’s
function Gr) plus the correlation functions G< and G>. The latter have the
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physical meaning of distribution functions for electrons and holes, respectively.
At equilibrium, of course, only one is linear independent, and we can for example
write

−iG< = fFD(ω)A(ω)

+iG> = [1 − fFD(ω)]A(ω)

that is, the correlations functions are recovered by the spectral function (and
thus ℑGto) and the equilibrium Fermi-Dirac distribution functions. This is not
any more true out of equilibrium.

We can now write the fundamental equation of motions of NEGF for the
three independent quantities:

Gr = [ω − h(0) − Σr]−1 (4.5)

G< = GrΣ<Ga

G> = GrΣ>Ga

that are valid only at the steady-state. The first equation is the ordinary Dyson
equation relying the Green’s function and the self-energy (here written for the
causal retarded quantities). In the last two equations (the equations of motion
for the correlation functions) we have introduced the scattering functions Σ<

and Σ>, physically representing the rates at which electrons and holes scatter
in and out a given energy and momentum. Combination of the two gives the
decay rate Γ (not to be confused with the vertex function)

Γ = i[Σ> − Σ<] = i[Σr − Σa] (4.6)

at a certain energy and momentum. Again, at equilibrium

−iΣ< = fFD(ω)Γ(ω) (4.7)

+iΣ> = [1 − fFD(ω)]Γ(ω) (4.8)

and there is no need to introduce the scattering functions, since the self-energy
is a sufficient degree of freedom for the system. Self-energy and scattering func-
tions contain the effect of the many-body e-e as well as the e-ph interactions. We
will see in the next paragraph the composition of the self-energy in a quantum
transport system.

4.2 The principal layers workbench

To tackle the quantum transport problem the first step is to introduce a “work-
bench” model which we assume to be representative of the system to be studied.
In NEGF and also in the Landauer formalism, the most used workbench is the
so-called principal layers (PL) workbench (Fig. 4.2 top). In PL the quantum
transport system is separated into 3 parts: a central C “extended molecule” re-
gion, including the molecule or the nanodevice we are studying plus some layers
in reality belonging to the leads. This to keep into account relaxation of the
electronic structure at the contact. Then there are two external regions, the left
L and right R leads, which we suppose seminfinite and periodic. Within this
workbench the focus is on the central region, with the effects of the external
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Figure 4.2: Principal layers workbench model (top scheme). It is characterized
by a central C “extended molecule” (here H2) region (including part of the
leads) and the left L and right R leads (here gold) regions. Bottom: mapping
of the real 3D device onto the effective 1D system (the effective atomic chain
at the bottom). The effective channels arise from the central device (here the
hydrogen molecule) and pursue into a non-ballistic section (blue, violet and red
pseudoatoms), until they achieve an asymptotic ballistic behaviour (yellow).

leads taken into account by leads self-energies (together with the correspond-
ing scattering functions) ΣL and ΣR. These can be calculated from the Green’s
functions gL,R of the leads and the coupling HamiltonianHLC andHCR between
the leads and the central region,

ΣL = HCLgLHLC ΣR = HCRgRHRC

gL = (ω −HL)−1 gR = (ω −HR)−1

In the PL the leads are assumed at equilibrium, each one with its chemical
potential µL and µR and with their scattering functions given by the equilibrium
expressions Eqs. (4.7, 4.8). They are also assumed ballistic, in the sense there
are no scattering processes, e-e or else, within the leads.

The total self-energy and scattering functions acting on the central region
result from the sum of the leads self-energies and the e-e and e-ph self-energies,

Σr<> = Σr<>
e-e + Σr<>

e-ph +
∑

T=L,R

Σr<>
T ,

and the Green’s function for the central region is given by the NEGF equations
of motion Eq. (4.5). Once solved the equations and got G for the central C
region, the current flowing from a terminal T = L or R is calculated by the
Meir-Wingreen formula

iT =
e

h
tr[Σ<

TG
> − Σ>

TG
<]. (4.9)
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It can be shown that in the case of coherent transport, that is when both e-e
and e-ph interaction effects are switched off together with their self-energies,
the Meir-Wingreen formula reduces to the Fisher-Lee formula

C =
2e2

h
tr[ΓLG

rΓRG
a], (4.10)

where C is the conductance of the system. In this limit NEGF reduces to the
ordinary Landauer formalism with an electronic structure calculated at the level
of the independent-particle, non-interacting Hamiltonian h(0). In the “Landauer
on top of DFT” approach, the latter is replaced by the Kohn-Sham Hamiltonian
hKS, in the hope to somehow include some exchange and correlation effects.

4.3 GW-NEGF

In the last years, combination of an electronic structure calculated at the level
of ab initio DFT together with the description of transport properties in a Lan-
dauer framework, has demonstrated its ability to describe small bias coherent
transport in nanojunctions. These approaches were successful in accounting
for the contact resistance and conductance degrading mechanisms induced by
impurities, defects and non-commensurability patterns in the conductor region.
The major objections raised to this approach are:

1. The use of the in principle unphysical Kohn-Sham electronic structure
has to be considered only as an approximation to the true quasiparticle
electronic structure;

2. Non-coherent and dissipative effects due to electron-phonon (e-ph) and
electron-electron (e-e) scattering can be taken into account only approxi-
matively in the Landauer formalism;

3. Non-linear response and far from equilibrium finite-bias transport are not
accessible, since DFT cannot be applied to open systems and it is not a
non-equilibrium theory.

NEGF is in principle a correct framework to tackle the above objections.
This is the reason why we decided to address to this theory. The critical point
within this theory is the choice of good approximations to the self-energy Σr,
and coherently to the scattering functions Σ<,>. This ensures that both the
renormalization of the QP energies and the electron diffusion mechanisms due
e.g. to e-ph or e-e interactions, will be properly taken into account. A first work
studying the role of a e-ph self-energy in the self-consistent Born approxima-
tion (SCBA) appeared in literature [Frederiksen 04]. The work studied a very
simple but real system, a gold monoatomic chain, where a reliable experiment
was available [Agräıt 02]. During Pierre Darancet’s thesis work we decided to
study the role of electronic correlations on the same system. The purpose was
to evaluate the effect of e-e interaction with respect to the previously studied
e-ph, whether of the same order or else, and to compare both to the experiment.
Electronic correlations were introduced in the calculation of transport by an ab
initio approach based on the GW approximation in the framework of NEGF.
To do it properly, one should resort a fully non-equilibrium GW approximation
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Figure 4.3: Conductance (top) and spectral function (bottom) for a gold
monoatomic chain (reproducing Fig. 3 of Ref. [Darancet 07]). Thin dashed
line: Landauer result using a DFT KS structure; thin solid line: Landauer
using only a real part GW renormalization of the energies; thick dashed line:
Meir-Wingreen result using GW real part renormalization in the leads and a full
(hermitean+anti-hermitean) dynamical GW self-energy in the conductor; thick
solid line: GW bulk conductance with full dynamical self-energy.

as done in Ref. [Spataru 04]. In our scheme however [Darancet 07], since we
wanted to study as in Refs. [Frederiksen 04, Agräıt 02] the nearly equilibrium
transport at a bias of few tens of meV, the GW self-energy is built at equilibrium
and the Green’s function is calculated by direct solution of the Dyson equation.
For the lead/conductor/lead geometry, the GW self-energy is summed to the
lead’s self-energies. The electronic conductance is calculated through a modi-
fied Meir-Wingreen formula [Meir 92] re-derived by Ref. [Ferretti 05] under more
general conditions. This is a NEGF Landauer-like expression valid for interact-
ing conductors at equilibrium. We apply this scheme to the gold mono-atomic
onedimensional chain and we study the effects induced on transport properties
by the different components of the GW self-energy, the hermitean and the non-
hermitean parts and the dynamical dependence. We study the bulk conductance
and we also artificially partition the system into three regions: the right and
left leads – two semi-infinite gold mono-atomic chains – and a central region,
constituted by a single gold atom. This has the purpose to clarify the role of
both intra-conductor and conductor-lead correlations.

In Fig. 4.3 we show the conductance and the spectral function of the gold
chain obtained using different methods: The black thin dashed line is calcu-
lated using the Landauer formula and the DFT KS electronic structure. The
conductance at the Fermi level appears to be one (in units of 2e2/h) and it
is of s-like character. The red thin solid line is obtained from the Landauer
formula evaluated using the GW real-part-only QP energies. GW corrections
are considered both in the conductor and in the leads. Otherwise, a ficticious
contact resistance, unphysical for a homogeneous system, would appear. At
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Figure 4.4: Differential conductance vs applied bias (reproducing Fig. 4 of
Ref. [Darancet 07]). Thin solid line: DFT Landauer result; dots: NEGF GW
bulk result; dashed and dotted line: e-ph theory of Ref. [Frederiksen 04] cor-
responding to 4 atoms, same interatomic distance and for the damped and
undamped limits; thick solid lines: experimental result of Ref. [Agräıt 02] cor-
responding to 2 and 7 atoms and different chain strains.

this first level, the net effect is a renormalization of KS into QP energies, the
true energies to introduce and remove an electron from the system. Therefore,
the conductance profile is considerably modified by the real part of the GW
correction. The position of the conductance steps is especially modified in the
d-like region (∼ −1 eV). The blue thick dashed line represents the result ob-
tained in the tri-partitioned geometry by using the Meir-Wingreen formula and
introducing a full non-hermitean and dynamical GW self-energy in the conduc-
tor. Static real-part-only QP energies are included in the leads. This introduces
loss-of-coherence only in the conductor, while leaving the leads ballistic. At the
same time it limits the introduction of ficticious contact resistances, i.e. the
QP levels are aligned in the leads and the conductor. The difference of this
curve with respect to the thin solid line genuinely represents the effect of e-
e scattering mechanisms in the conductor, causing diffusion, loss of coherence
and appearance of resistance. Thus the imaginary part of the GW corrections
introduces a suppression of the conductance, which is negligible close to the
Fermi energy, but that increases with energy. The scattering of electrons due
to the e-e interaction leads to degradation of the conductance. With respect
to Landauer approaches, the spectral function now appears as a collection of
broadened QP peaks, whose finite width is directly associated to the inverse of
the electronic lifetime of the QP state. The spectral weight, which is spread
out, results in a lowering and a spill-out of the conductance step-like profile.
This effect is directly related to the imaginary part of the QP energies, and can
be seen to increase with ǫ− EF. Finally, we calculate the fully correlated bulk
GW conductance by taking into account a non-hermitian and dynamical GW
self-energy everywhere in the system, conductor and leads (thick solid line).
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With respect to the previous case, even residual contact resistances (due to the
fact that the conductor and leads spectral peaks were differently shaped, with
finite and infinitesimal widths respectively) are completely removed, and the
conductance increases almost overall. Only around −3 eV we see a slight drop,
which we verified due to an unfavourable ratio (ΓL + ΓR)−1Γ between leads
injection rate and total (plus correlation) one. Moreover, new structures appear
in the conductance at the lowest energies. By inspecting the spectral func-
tion, we can attribute them to the presence of satellites of electronic origin, i.e.
plasmons or shake-ups, of the main QP peaks. Since the e-e interaction is an
elastic scattering mechanism, these satellites are necessary to balance the losses
which occur at energies close to the Fermi level, and are therefore important
for transport. The e-e scattering acts in a way to redistribute the conductance
channels to different energies, rather than globally destroy conductance as in
the e-ph scattering, where momentum and current is lost toward ionic degrees
of freedom.

In Fig. 4.4 we show the voltage characteristics in the small voltage range of
±30 mV for the gold monoatomic chain. We compare our GW results (dots) with
the experimental results of Ref. [Agräıt 02] (thick coloured lines) and the e-ph
result of Ref. [Frederiksen 04] (thin black lines), calculated at exactly the same
atomic geometry and at equilibrium as us. The results from Ref. [Frederiksen 04]
attribute the step in the conductance, occurring at ∼ 15 mV, to the onset of
phononic processes. Instead, the continuous drop observed in our electronic
correlated conductance, occurring in the first 15 mV, compares favorably with
the drop observed experimentally [Agräıt 02]: e-e scattering mechanisms seem
hence responsible for a continous drop in the conductance, especially visible at
very low bias. While the quantitative agreement with the experiment on the
conductance value may be somewhat fortuitous, the trend in this drop is a direct
consequence of the increase in the GW imaginary part of QP energies and it is
very general.

4.4 Generalized Fisher-Lee and Meir-Wingreen

Among the last developments to which, together with Didier Mayou and Pierre
Darancet, we contributed in this field, there is a new quantum transport formal-
ism which goes beyond the principal layer workbench. One may notice that in
the PL (Fig. 4.2 top) the separation between the central region and the ballistic
leads appears somehow arbitrary and unphysical. Indeed, in order to correctly
describe the contact resistance, the central region should contain not only the
conductor under study (e.g. a molecule or a nanodevice), but also some layers
in reality belonging to the leads. Convergence should be checked by increasing
the central region size and thus the number of states in the problem. Its com-
putational resolution is heavier, since it deals with a number of channels much
greater than the true channels of the central device. Furthermore, the natural
physical separation between the leads and the true real device is lost, and a
direct comprehension of resistance mechanisms is difficult.

In Ref. [Darancet 09b] we introduce a new formalism based on a map of the
real 3-dimensional lead-conductor-lead system onto an effective 1-dimensional
system (see Fig. 4.2 bottom). Central to this mapping is the notion of effec-
tive channels as the states through which the current flows up to the central
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Figure 4.5: The conductance can be calculated by the traditional Fisher-Lee
or Meir-Wingreen formulas and 3-partitioned workbench, with ballistic leads L
and R, and extended (molecule + non-ballistic leads) central region C (scheme
above); or the generalized Fisher-Lee or Meir-Wingreen formulas and the 5-
partitioned workbench, with central device c, non ballistic section λ and ρ, and
finally ballistic sections L and R of the effective channels (scheme below).

device. The number of these channels is bounded by the number of states of
the central bottleneck. All the leads’ states orthogonal to the states of the ef-
fective channels do not effectively participate to the conductance and can be
safely disregarded. This is a considerable simplification with respect to the PL.
The effective channels can be viewed as associated to an effective 1-dimensional
system onto which the real 3-dimensional physical system is mapped (Fig. 4.2).
This is a way to restore the natural dimensionality of the quantum transport
problem, which is truly 1D. The resulting 1D effective theory is an in principle
exact formalism to calculate the conductance. In practice we are going to build
an orthonormal basis set {ψn} for the 1D effective system. Let’s first build
the right effective channel space and its basis set {ψn}. We start from a state
localized φc localized in the central bottleneck and we apply the c-r coupling
HamiltonianHrc and then the right HamiltonianHr. The first element ψ1 of the
basis is given by b1|ψ1〉 = Hrc|φc〉. b1 is chosen as normalization factor for ψ1.
Next we calculate a1 = 〈ψ1|Hr|ψ1〉. We then calculate the second element by
b2|ψ2〉 = Hr|ψ1〉 − a1|ψ1〉. ψ2 is orthogonal to ψ1 and normalized by b2. At the
next and all the following steps we iterate the same procedure, an = 〈ψn|Hr|ψn〉
and bn+1|ψn+1〉 = Hr|ψn〉 − an|ψn〉 − b∗n|ψn−1〉. This is an implementation of
the standard Haydock recursion method,

Hr|ψn〉 = an|ψn〉 + b∗n|ψn−1〉 + bn+1|ψn+1〉. (4.11)

In conclusion, we end with an orthonormal basis {ψn} for Seff
r . With increasing

n, the state ψn is a linear combination of real orbitals belonging to atoms deeper
and deeper in the contact. The recursion can be stopped at an n = N where
the coefficients an, bn saturate and converge to an asymptotic regime, a∞, b∞.
From this point on the leads are consequently ballistic and associated to states
achieving a maximum spread into the contact region. On this basis set the
Hamiltonian is tridiagonal, with onsite Heff

nn = an and (only) first neighbours

hopping coefficients Heff
n,n−1 = bn. It can be seen as associated to an effective

1D pseudoatomic chain (Fig. 4.5). Heff is in fact the same original Hamiltonian
but represented on an orthonormal basis where it is tridiagonal. The recursion
basis turns out hence to be an optimal basis set, specific for quantum transport,
where it is numerically very efficient.
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Moreover this approach naturally leads to a physically more intuitive 5-
partitioned (instead of 3-) quantum transport workbench model (Fig 4.5 bot-
tom scheme). This is composed by the true central conductor device, the left
and right sections of non ballistic leads — which contain and isolate contact
resistance mechanisms — and finally the ballistic semi-infinite leads. For this
workbench we can derive a generalized Fisher-Lee formula to be associated to
the 5-partitioned workbench,

C =
2e2

h
tr[Γ̃lG

r
cΓ̃rG

a
c ] (4.12)

Γ̃l = Hclg̃
a
λΓLg̃

r
λHlc

Γ̃r = Hcr g̃
r
ρΓRg̃

a
ρHrc (4.13)

This formula has a Fisher-Lee like form Eq. (4.10). But it now refers to a
workbench where the Green’s function GC of the extended central region is
replaced by the more significative Green’s function Gc of the true device under
study. The injection rates ΓL/R of ballistic leads are replaced by renormalized

injection rates Γ̃l/r which refer to both the ballistic L/R and the non ballistic λ/ρ
sections of the leads. In the principal layers approach all resistance mechanisms
are localized within the extended central region C and considered in GC . Here
contact resistance is separated from other mechanisms, localized in the non-
ballistic sections λ and ρ and transferred into Γ̃ where it is taken into account
via g̃. The contact resistance can be read directly from Γ̃. For example, if
Γ̃(E) = 0 at a given E, this will provide 0 conductance whether or not there
is at E an available channel in the central device. Therefore the generalized
Fisher-Lee formula allows a more clear interpretation of resistance mechanisms.
Notice that the Γ̃l/r depend only on the electronic structure of the contact and
on its coupling to the central device.

The 5-partitioned workbench is particularly convenient in the case of corre-
lated transport within NEGF. Starting from the Meir-Wingreen formula Eq. (4.9)
for the current, the non-coherent term can be separated from the coherent. For
the coherent term we end again to the generalized Fisher-Lee Eq. (4.12). For
the non-coherent current we can derive a generalized Meir-Wingreen expression
of the form:

inoncoh
t =

e

h
tr[Σ̃<

t G
r
cΣ

>
corrG

a
c − Σ̃>

t G
r
cΣ

<
corrG

a
c ], (4.14)

where Σ<>
corr are the in/out scattering functions related only to correlations (e-e

or e-ph), while Σ̃<>
t are the in/out renormalized lead t scattering functions,

Σ̃t(z) = Hctg̃
a
τ (z)ΣT (z)g̃r

τ (z)Htc, where ΣT (z) is calculated in the ballistic re-
gion. Contact resistance is now physically separated into Σ̃t with respect to
the resistance raising from e-e and e-ph scattering mechanisms, associated and
localized into the true central device and Gc. This more faithfully represents
the workbench ideal assumption of lost-of-coherence effects only within the true
central device, with leads assumed as everywhere perfectly coherent. This ap-
proach has been succesfully applied to graphene ribbons in Ref. [Darancet 09a].
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4.5 Perspectives

Quantum transport is a domain where there is a huge gap between the ex-
periment and theory. For instance, for systems like organic molecules between
metallic leads, the DFT plus Landauer approach provides even at 0 bias (i.e. at
equilibrium) conductances which are up to 3 orders of magnitude larger than
the experiment. The role of correlations could be crucial in bridging this gap,
apart from being central in explaining e.g. Coulomb blockade and Kondo effects.
This is the reason why we started a GW-NEGF 0-bias conductance study on
benzene dithiol in between gold leads, a prototype system within that class and
for which quite reliable experiments exist. This is a work started here during
the Post-Doc of Paolo Emilio Trevisanutto and now carried on in collaboration
with the Université Catholique de Lovain, with in particular many efforts by
Tonatiuh Rangel, PhD student under the supervision of Gian-Marco Rignanese.

Further perspectives into this field point toward a truly beyond-equilibrium
approach within GW-NEGF. In principle this would require to achieve also
self-consistence in the recalculation of the GW self-energy. However there is
hope that a first iteration after the calculation of the non-equilbrium distribu-
tion functions will be enough to provide reasonable results. This is however a
project requiring much work, possibly in a coordinated effort within an european
network.
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oltre l’Approssimazione di Densità Locale. PhD thesis, Uni-
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