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Summary

We directly model the quantum many particle dynamics during the transition of a gas of N indlistin-
guishable bosons into a Bose-Einstein condensate. To this end, we develop a quantitative quantum master
equation theory, which takes into account two body interaction processes, and in particular describes the
particle number fluctuations characteristic for the Bose-Einstein phase transition. Within the Markovian
dynamics assumption, we analytically prove and numerically verify the Boltzmann ergodicity conjecture
for a dilute, weakly interacting Bose-Einstein condensate. The physical bottom line of our theory is the
direct microscopic monitoring of the Bose-Einstein distribution during condensate formation in real-time,
after a sudden quench of the non-condensate atomic density above the critical density for Bose-Einstein

condensation.

Résume

Nous étudions la dynamique quantique a N corps d’un gaz atomique composé de N particules
indiscernables lors de la condensation de Bose-Einstein. Pour cela, nous développons une approche
quantitative, fondée sur une équation pilote prenant en compte les interactions a deux corps. Cela permet
en particulier de décrire les fluctuations de nombre de particules caractéristiques de la condensation. Avec
une hypothése markovienne, nous prouvons analytiquement et numériquement I’hypothése d’ergodicité
de Boltzmann dans le régime de gaz faiblement interagissant. Le point essentiel de notre approche
théorique est qu’elle permet le suivi direct, au niveau microscopique, de la distribution de population du
condensat de Bose-Einstein lors de sa formation, aprés une augmentation rapide de densité au-dela de la

densité critique.

Zusammenfassung

Wir beschreiben die Vielteilchen-Quantendynamik eines Gases von N ununterscheidbaren Teilchen
wahrend des Ubergangs in ein Bose-Einstein Kondensat. Hierfiir entwickeln wir eine quantitative Master-
gleichungstheorie, welche den Phasenubergang des Gases in die kondensierte Phase realistisch beschreibt
— unter Einschluss von Zweiteilchenwechselwirkungen und unter der Bertucksichtigung von Teilchen-
fluktuationen. Im Rahmen unseres Ansatzes gelingt ein analytischer Beweis der Boltzmannschen Er-
godizitatshypothese fur schwach wechselwirkende Quantengase unter der Annahme Markovscher Dy-
namik, in Ubereinstimmung mit numerischen Simulationsergebnissen. Das ubergreifende physikalische
Ergebnis unserer Theorie ist die direkte mikrokopische Echtzeitbeschreibung der Bose-Einstein Verteilungs-
funktion wahrend der Kondensation, nach einer instantanen Anderung der atomaren Nichtkondensats-

dichte oberhalb der kritischen Dichte fur die Bose-Einstein Kondensation.
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Introduction

Motivation of this thesis

Bose-Einstein condensates open the path for the in situ investigation of several interesting many
particle effects in atomic gases such as superfluidity [1, 2], or quantized vortices [3, 4, 5]. Due to
the coherent wave nature of ultracold quantum matter, Bose-Einstein condensates are in particular
perfectly suited to study a vast range of quantum phenomena based on quantum coherence - like
Anderson localization [6, 7, 8], or Josephson oscillations [9] — on the micrometer scale. Latter
scenarios are usually known from other fields of physics, such as the theory of quantum optics, or
the realm of solid state theory.

Besides these wonderful examples how to manipulate and employ Bose-Einstein condensates
with high precision in order to access these different physical branches in present days’ exper-
iments, there remains a fundamental theoretical question concerning the condensate formation
process: How can we describe the quantum dynamics of the Bose-Einstein phase transition beyond
the evolution of the average macroscopic ground state occupation, connecting the experimen-
tal observations of average macroscopic occupation with a dynamical, microscopic many particle
picture?

Another motivation of the present work arises from the applicational point of view. The param-
eter regime of typical state of the art experiments does in principle not match the validity range in
which fundamental thermodynamical postulates [10], leading to the thermal state ansatz for the
equilibrium state of the quantum gas, can be taken for granted. Since the theory of thermodynamics
is supposed to be valid only for total particle numbers of the order of Avogadro’s number, N ~ 10%3,
fundamental assumptions [11] like equipartition of energy (ergodicity) and the existence of a unique
and stable equilibrium state are strictly justified only in the thermodynamic limit, under the neglect
of number and energy uncertainties.

These assumptions may not be realistic for Bose-Einstein condensates in the quantum degenerate
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limit, because they consist of a few thousands of atoms [12] - thus being far from the thermodynamic
limit. Moreover, the atoms in a Bose-Einstein condensate interact via (species) specific collision
processes, the occupation numbers of the different energy modes fluctuate, and the particles
exhibit strong phase coherences due to their indisputably quantum mechanical nature at low

temperatu res.!

How is it possible, as conjectured by thermodynamics, that a quantum gas will
always relax into a Boltzmann thermal state of non-interacting particles in the limit of weak (but
non-zero) interactions, independently of their type, i.e. into an equilibrium state lacking any
hysteresis on the condensate formation process? We are hence led to ask how quantum effects
such as phase coherence affect the equilibrium steady state of a Bose gas below T;, and why the
specific type of interactions is not supposed to play a role for the statistics of mesoscopic, weakly
interacting Bose-Einstein condensates — as they obviously do for the microscopic dynamics of Bose-
Einstein condensation? These reflections demonstrate that the so called “Boltzmann ergodicity
conjecture” [13, 14], originating from classical, statistical mechanics, is nontrivial, especially for
weakly interacting quantum systems of finite size.

Under which conditions does a Bose-Einstein condensate exhibit a unique and stable equilibrium
steady state — and, how can we characterize such state in analytical terms? Is the statistics and
the dynamics of a Bose-Einstein condensate well described by an ideal gas, if the atomic sample is

sufficiently dilute? And how does the finite particle number of a Bose-Einstein condensate influence

the equilibrium state of the gas?

In summary, we address two essential points in the present thesis:

¢ Our dynamical, microscopic understanding of the Bose-Einstein phase transition, in particular
concerning the interplay of particle number fluctuations below the critical temperature for
Bose-Einstein condensation, T., and the creation of this new state of matter — the Bose-
Einstein condensate — is so far incomplete. How can we link and model the coherent,
microscopic many particle dynamics during the Bose-Einstein phase transition to the buildup
of a macroscopically occupied ground state mode? Which role plays the particle-wave duality,
and what is the impact of interactions and spatial quantum coherences of the bosonic atoms

onto the process of Bose-Einstein condensation?

¢ The answer to the question [11] whether a dilute, weakly interacting Bose-Einstein condensate

exhibits a unique and stable equilibrium steady state. How close and under which assumptions

Twhere the wave length of the particles is of the order of their average distance
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does a Bose-Einstein condensate consisting of a finite number of weakly interacting atoms
— as given in realistic state-of-the-art experiments [12] — evolve towards a Gibbs-Boltzmann
thermal state of an ideal gas? To which extent are finite size effects, quantum fluctuations and

interactions essential for the condensate equilibrium statistics?

How to model Bose-Einstein condensation microscopically?

Answers to these questions require a direct way of modeling the quantum many particle dynamics
of the Bose gas, i.e., a theory beyond the mean field ansatz mostly studied in the literature [15, 16].

We generally consider the derivation of a master equation [17, 18, 19, 20, 21] as one of the
most efficient and powerful tools to study Bose-Einstein condensation. To this end, we use the
separation of time scales between the rapid non-condensate thermalization dynamics from the
comparably slow condensate formation time, considering the condensate as a system part which
evolves in time under the dynamically depleted thermal non-condensate environment. Deriving the
master equation, we hence (i) account for all two body particle-particle interactions, (ii) circumvent
a factorization of the N-body state of the gas into a condensate and non-condensate density matrix,
(iii) assume particle number conservation, and (iv) take into account the depletion of the non-
condensate thermal component during condensate formation.

Employing these experimental conditions for a quantum gas in our master equation formalism
leads to a fundamentally new master equation ansatz which provides in particular experimentally
desired condensate formation rates, through the first dynamical monitoring of the condensate and
non-condensate particle number distributions during condensate formation. Arising condensate
number fluctuations garnish the onset of the condensate formation process below T, until they
reduce after the approach towards a steady state.

The master equation’s stationary solution defines this equilibrium steady state for the N-body
state of the gas under the inclusion of the wave nature of the quantum particles below T, number
fluctuations and weak two body interactions. This enables the comparison of a microscopically
derived equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate with a
Gibbs-Boltzmann thermal state of exactly N non-interacting, indistinguishable particles.

The physical bottom line of our theory is the first direct monitoring of condensate and non-
condensate particle number distributions during condensate formation. This is based upon the
connection of two fundamental properties, particle number conservation and rapid non-condensate

thermalization, to extent the conventional Born-Markov ansatz to the N-body state of the gas of
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fixed particle number. This N-body Born-Markov ansatz together with the capitalization of the
dilute gas condition ap'/® < 1 reduce the complex dynamics of the Bose-Einstein phase transition

to a numerically accessible quantum master equation.

Outline of the thesis

In Part I of the thesis, the most important state-of-the-art concepts for treating Bose-Einstein
condensates are summarized.

Starting from Einstein’s original prediction of Bose-Einstein condensation for non-interacting, uni-
form gases in Chapter I, theoretical extensions to the case of external confinements are discussed.
We explain how Bose-Einstein condensates are currently created in state-of-the-art experiments,
and deduce a perturbative parameter for our theory, characterizing the dilute gas regime. Care is
taken to point out discrepancies between the grand canonical and canonical ensemble for conden-
sate statistics of indistinguishable particles below the critical temperature, which persist even in the
thermodynamic limit.

In Chapter II, the s-wave scattering approximation relating to two body interactions in dilute
atomic gases is explained, and the concept of second quantized bosonic fields is introduced. We
sketch the derivation of the Gross-Pitaevskii equation for the condensate wave function in terms of

the Hartree ansatz, and summarize the existing theories for the study of average condensate growth.

Part Il is dedicated to the development of a Lindblad quantum master equation theory of
Bose-Einstein condensation.

The conceptual ingredients of the quantum master equation theory are summarized in Chapter
111, focussing on the Markovian dynamics assumption, on two body interactions, on the constraint
of particle number conservation and on the description of the non-condensate depletion during
condensate formation, required for the derivation of the master equation in Chapter IV. We explain
the validity range of the quantum master equation theory, which applies to dilute atomic gases.

In Chapter IV, we start with the microscopic description for the Bose gas in second quantiza-
tion, through the definition of the condensate and the non-condensate. This naturally provides a
decomposition of the many particle Hamiltonian for dilute atomic gases, which allows us to derive
a Lindblad quantum master equation for the condensate degree of freedom under the Markov
dynamics assumption, with the nontrivial part of the dynamics induced by two body interaction

processes. To do so, there is particular need to analyze the underlying single particle Hilbert space
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of wave functions, and the many particle Fock-Hilbert space structure.

In Chapter V, the Lindblad master equation for the time evolution of the reduced condensate
density matrix is derived, describing the time evolution of the entire state of the Bose gas. The Lind-
blad master equation yields formal expressions for all transition rates and energy shifts associated

with two body collision processes between condensate and non-condensate atoms.

In Part 111, we employ the Lindblad quantum master equation to understand the quantum me-
chanical characteristics of the Bose-Einstein phase transition numerically and analytically. Evolution
equations describing Bose-Einstein condensation are extracted, yielding in particular time scales for
condensate formation. The equilibrium steady state of the gas of N bosonic particles is harvested
from the Lindblad quantum master equation.

We hence first extract the master equation for the diagonal elements of the condensate density
matrix from the Lindblad master equation for practical purposes in Chapter VII. This allows us to
numerically study the time evolution of condensate and non-condensate occupation numbers during
condensate formation, and to extract the dynamical behavior of quantum matter fluctuations during
Bose-Einstein condensation. We compare condensate formation times to previous theoretical
predictions and to experimental observations.

In Chapter VI, we show how the formally defined transition rates and associated energy shifts
are evaluated within a perturbative approach for the condensate wave function, valid for dilute and
weakly interacting gases. Explicit analytical expressions for transition rates and energy shifts in
a three-dimensional harmonic trap are obtained. We derive balance conditions for the transition
rates, and deduce a generalized Einstein de Broglie condition for Bose-Einstein condensation.

Finally in Chapter VIII, it is proven that the steady state solution of the master equation defines
a unique and stable equilibrium steady state of the Bose gas. We proof analytically and verify
numerically that this steady state is a Gibbs-Boltzmann thermal state of an ideal gas within the
Markovian dynamics assumption and in the limit of weak interactions. We oppose the steady state
to predictions in the semiclassical limit, and deduce the shift of the critical temperature. Explicit
analytical expressions for all moments of the condensate particle number distribution valid in the
limit of large atomic gases complete the analysis of the present thesis.

Chapter IX concludes the conceptual and physical results of the present work and formulates

some open questions and perspectives.
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CODATA 2006 [22]

Physical constant Symbol Numerical value Unit
Speed of light c 2.99792458 x 108 st
2.99792458 x 1010 cm s~
Planck constant h 6.62606896(33) x 10734 Js
6.62606896(33) x 1027 ergs
he 1.239841875(31) x 107 eV m
Planck constant/27t hi 1.054571628(53) x 10734 Js
1.054571628(53) x 10727 ergs
Elementary charge e 1.602176487(40) x 10~ C
Electron mass e 9.10938215(45) x 10731 kg
9.10938215(45) x 1028 kg
1ec? 0.510998910(13) Me V
Proton mass my 1.672621637(83) x 10727 kg
myc? 938.272013(23) Me V
Atomic mass unit m(C'?)/12  1.660538782(83) x 10™%7 kg
e 31.494028(23) MeV
Boltzmann constant kg 1.3806504(24) x 10723 JK!
1.3806504(24) x 10716 erg K™
8.617343(15) x 107° eV Kl
kg/h 2.0836644(36) x 1010 Hz K1
20.836644(36) Hz nK!
Fine structure constant af_l 137.035999679(94)
Bohr radius ap 5.2917720859(36) x 1011
Classical electron radius e 2.8179402894(58) x 10712
TIEGMeC
Atomic unit of energy e 27.21138386(68) eV
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NOTATION GUIDE

Latin Letters

9B RE,N-Ny,T,7)
g @E,N-Ny,T,7)

gO(F/F’/N_NO/T/T)
hy
H

A

Ho

H.

H,, H,,Hi,
H

4

I

g =4mnah®/m
L.

g«w»

Ly, Ly, L,
mq[z]
fx(N=No, T)

P*(Np)
pn(No, T)

pN(N — Ny, T)

Z*(No)

particle annihilation and creation operators
s-wave scattering length

Fock-Hilbert space

condensate Fock-Hilbert space
non-condensate Fock-Hilbert space
Fock-Hilbert space of N particles
non-condensate Fock-Hilbert space

of (N — Np) non-condensate particles

normal (+) and anti-normal (-) correlation
function for single particle processes ~~

normal (+) and anti-normal (-) correlation
function for pair processes («)

correlation function for scattering processes (0)
first quantized single particle Hamiltonian
second quantized Hamiltonian of the gas
second quantized condensate Hamiltonian
second quantized non-condensate Hamiltonian
hermite polynomials

single particle Hilbert space

condensate single particle Hilbert space
non-condensate single particle Hilbert space
two body interaction strength

Lindblad superoperator for single particle
events (~~)

Lindblad superoperator for pair events (<)
harmonic oscillator lengths in x,y and z direction
Bose function

average single particle occupation numbers

of the non-condensate with (N — Ny) particles
pair quantum jump operators

condensate particle number distribution

of master equation

non-condensate particle number distribution
of master equation

single particle quantum jump operators

Eqgs. (5.32, 5.33)

Eqgs. (5.48, 5.49)

Eq.
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NOTATION GUIDE

Latin Letters

T. critical temperature of the Bose gas Eqg. (1.5)
Ut time evolution operator with respect to Eqg. (5.6)
Uy(t) time evolution operator with respect to H Eqg. (5.6)
‘Z(l(t) time evolution operator with respect to 7:& Eqg. (5.6)
WA/OL condensate and non-condensate interactions Eq. (4.10)
V., single particle interactions (~) Eq. (4.16)
V. pair interactions («) Eq. (4.14)
‘V@ scattering interactions (O) Eq. (4.15)
z fugacity Eq. (1.18)
Zoc(u,T) grand canonical partition sum Eq. (1.17)
Zc(N,T) canonical partition sum Eq. (1.26)
Greek Letters, Labels
s single particle events ANy = ~AN | = +1 Eq. (4.10)
s pair events ANg = —AN| = +2 Eq. (4.10)
O scattering events ANy = AN, =0 Eq. (4.10)
)?k,)?; particle operators associated to the modes |®;) Eq. (4.20)
A(:i)(N — Ny, T) energy shift for single particle events (~-) Eq. (5.41)
A(fl(N —No,T) energy shift for pair events (~) Eq. (5.52)
A(S)(N — Ny, T) energy shift for scattering events (~) Eq. (5.62)
€k eigenenergies of non-condensate Eq. (4.29)
single particle states [Wy)
€ 1 energy tensor for single particle Eq. (4.27)
non-condensate states
Cég overlap integral of single particle Eq. (4.11)
wave functions W4, Wg, W and Wp
Nk unperturbed single particle energies of | ) Eq. (1.15)
|O) complete orthonormal non-condensate Eq. (4.22)
single particle basis
A(:i)(N— Ny, T) complex valued transition rate (~) Eq. (5.40)
for single particle exchange events
A(fl(N — Ny, T) complex valued transition rate Eq. (5.51)

for pair exchange events («~)




15

NOTATION GUIDE

Greek Letters

AP =N, T)
AL (N -No, T)
A (N =N, T)
AE (N =No, T)

A(T)
to

p (N = No)

&= agl/?)

0

0o

oL

pcc(u,T)

pc(T)

Pllgt)

ﬁ(?N)a)

Py (D)

6(N)(t)

oo(t) = (No)(t)/N
UJ_(t) = <NJ_>(t)/N
70

Teol

D)

X1
[Wo)

Wn(r, ..., 1N, 1)

complex valued transition
rate for scattering events (O)

real valued transition rate for single particle
exchange processes (~)

real valued transition rate for

pair exchanges processes ()

real valued transition rate for

scattering processes (O)

thermal de Broglie wave length
eigenvalue of the Gross-Pitaevskii
equation for N particles
non-condensate chemical potential

for (N — Np) particles at temperature T
perturbation parameter of the theory
atomic gas density

atomic condensate density

atomic non-condensate density

thermal state of the grand canonical ensemble
thermal state of the canonical ensemble
single particle density matrix

reduced condensate density matrix

reduced non-condensate density matrix
N-body density matrix

condensate fraction

non-condensate fraction

time scale of condensate evolution
average time scale for two body collisions
eigenbasis of single particle density matrix

single particle eigenbasis of the non-interacting gas

Gross-Pitaevskii wave function

wave functions of non-condensate particles
second quantized bosonic field

second quantized bosonic condensate field
second quantized bosonic non-condensate field
N-body wave function

N~~~ o~~~ o~ o~~~ o~ o~ o~ o~

. (1.3)
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Chapter 1

Bose-Einstein condensation in ideal

Bose gases

We recall the technical terms “Bose-Einstein condensation”, and “quantum ergodicity”, before the
reader is introduced into the experimental state-of-the-art. Einstein’s original prediction of Bose-
Einstein condensation is summarized in a short fashion to demonstrate the link of the Einstein
de Broglie condition! to the first experimental observations of condensate formation [23, 24, 25].
Thereupon, the canonical and the grand canonical statistical ensembles are implemented as state-of-
the-art theoretical techniques to access the condensate particle number statistics of non-interacting

bosonic gases below the critical temperature T, for Bose-Einstein condensation.

1.1 What is a Bose-Einstein condensate?

Encyclopic definition: “When a gas of bosonic particles is cooled below a critical temperature T,
it condenses into a Bose-Einstein condensate. The condensate consists of a macroscopic number
of particles, which are all in the ground state of the system. Bose-Einstein condensation (BEC) is a
phase transition, which does not depend on the specific interactions between particles. It is based
on the indistinguishability and wave nature of particles, both of which are at the heart of quantum
mechanics [26].”

We shall recall here that the purpose of the present thesis is to directly model the microscopic

condensate number distribution during the Bose-Einstein phase transition under inclusion of both

1 The Einstein de Broglie condition results from the definition of a critical temperature in the original theory of Bose-Einstein
condensation (see Section 1.3), and means that the average distance of the particles in the gas must be smaller than their de
Broglie wavelength in order to observe condensate formation.

17
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the wave nature and the indistinguishability of the quantum particles. Within our theory, we will
theoretically proof that the equilibrium steady state indeed depends on the specific (nonlinear) form

of the interactions, nevertheless recovering the statistics of a thermal state for an ideal gas!

1.2 What is quantum ergodicity?

The expression “ergodicity” refers to a concept of classical statistical mechanics. Introduced by
Ludwig Boltzmann in the nineteenth century [13, 14], a system which behaves ergodically is ment
to sample each point in phase space equally over time, so that each state with the same energy
has equal probability to be populated. Boltzmann showed that his conjecture applies for a gas
of non-interacting, classical particles, subject to the condition of fixed energy and fixed particle
number, evolving to a maximum entropy thermal state under the assumption of molecular chaos.
However, some examples from classical statistical mechanics are known to be non-ergodic (e.g.
strictly integrable systems) and do not relax into a thermal state, even after infinitely long times,
such as a chain of coupled, one-dimensional harmonic oscillators [11]. Even less is known about
the accuracy of the thermal state ansatz for quantum systems with finite particle number (where
the density matrix does not necessarily factorize into different partitions such as condensate and
non-condensate), especially for weakly interacting, quantum degenerate bosonic gases. So far, the
ergodicity conjecture has been proven [27] only for ideal quantum gases coupled to an external heat
reservoir. For an ideal gas, it is intuitive that the steady state of the non-interacting particles being
in contact with a heat reservoir is a thermal state — independent of the condensate non-condensate
interaction strength — since entirely the coupling to the external heat reservoir (which itself is in
a thermal state) thermalizes the system. In contrast, the equilibrium steady state of a weakly
interacting Bose gas which undergoes condensation because of atomic collisions as predicted by
our master equation theory still depends on the specific nonlinearity of the atomic interactions: A
question to be answered in the present thesis is hence whether a weakly interacting gas of finite
particle number below T, really relaxes towards a thermal Boltzmann state of an ideal quantum

gas [27], in the limit of very weak interactions, as presumed by the theory of thermodynamics?

1.3 Original prediction of Bose-Einstein condensation

In the 20’s of the twentieth century, Einstein predicted [28, 29] what we call today “Bose-Einstein

condensation”: a macroscopic number expectation value of a single particle quantum state, in a



1.3. ORIGINAL PREDICTION OF BOSE-EINSTEIN CONDENSATION 19

gas of N indistinguishable, non-interacting bosonic particles.

The heart of Bose’s contribution [30, 31] to Bose-Einstein condensation was to treat a photon
gas as an ensemble of indistinguishable bosonic particles, inspiring Einstein to apply [28, 29] Bose’s
statistics [30, 31] equivalently to ideal monoatomic gases enclosed in a volume V. This led him to

the Bose-Einstein distribution function

1
Ny = expla+pn] -1

Equation (1.1) refers to the average occupation number N; of a single particle state with energy
N = hzlflz/Zm, where T = (Iy,1y,12) is a particle’s wave vector in each spatial direction x, y, and
z, B = (kgT)~! the inverse thermal energy of the gas, and « a Lagrangian multiplier. For a gas at
thermal equilibrium, a can be interpreted [10] as the product of the inverse thermal energy p and

the chemical potential u of the gas, defined by

L OnZNT)
BN -

(1.2)
In Eq. (1.2), Z'(N,T) denotes the partition function of N indistinguishable, non-interacting bosonic
atoms at temperature T, i.e. the number of different available microstates to the system, see
Egs. (1.7, 1.9). In thermodynamic terms, u is the change of the Helmholtz free energy .# =
—B~'In.Z°(N, T) with the particle number, being proportional to the change in Boltzmann's entropy
& =kgInZ (N, T).

Einstein speculated that the equilibrium state of a Bose gas — which is the state of maximum
entropy and minimum free energy according to the postulates of thermodynamics [10] — reveals
that all particles in the gas “condense” into the same quantum state, if the number of particles in the
gas tends to infinity. Indeed, in the limit N — oo at fixed temperature, we notice that the number
of available microstates Z°(N, T) in the gas does (intuitively) no longer change significantly with the
particle number, so that the chemical potential in Eq. (1.2) approaches the single particle ground
state energy of the gas, being zero for a non-interacting gas in a box.

According to Eq. (1.1), Einstein recognized that macroscopic average ground state occupation
should especially occur for high particle densities® at fixed temperature. This can be retraced by

imposing that the number of particles in the gas be constant, and by summing Eq. (1.1) over all

2E.g. achieved by lowering the volume at fixed particle number, or by adding particles at constant volume
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possible values of fexcept the condensate single particle mode, 1=(0,0,0)=0. Replacing the
summation by an integration over the density of states ¢(n) = Vm3/2/21/21213n1/2 (see Section 7.3)
and taking the limit 1 — 07 (reflecting the behavior of i in Eq. (1.2) in the limit N — o0), the ground

state occupation number in Eq. (1.1) diverges, if we match the Einstein de Broglie relation:

0A3(Te) = (3/2) =2.612. (1.3)

Equation (1.3) arises from the requirement that the integral over all non-condensate single particle
occupations in Eq. (1.1) equals the total number of particles, N, at the critical point of the phase
transition. Here, ((y) = Zliil k=7 is the Riemann Zeta function, see Table 7.1, o = N/V the

(homogeneous) atomic density of the gas, and A(T) is the de Broglie wavelength of the particles:

21\1/2
2k ) . (1.4)

o=
Equation (1.3) indicates in particular that Bose-Einstein condensation occurs, if the wavelength A(T)
of the quantum particles in the gas becomes larger than their mean inter particle distance.

By default, this condition is interpreted as the wave length of the atoms in the gas getting
infinitely large such that all particles are supposed to overlap and to form a giant matter wave, the
condensate. The first monitoring of the microscopic quantum dynamics in this thesis (see part IlI)
reflects that the reaching of the Einstein de Broglie condition leads to fulminating non-condensate
number fluctuations and an average macroscopic ground state occupation. Our microscopic, many
particle picture thus partially reproduces the idealized, intuitive picture of the condensate to consist
of one giant matter wave, however, reflecting the actual balancing process of particle flow towards
and out of the condensate mode, garnished by large quantum fluctuations characteristic for the
Bose-Einstein phase transition.

Note that the Bose-Einstein phase transition is in particular defined in the thermodynamic limit,
N — o0,V — o0, with g = const., meaning that the particle number and the quantization volume
simultaneously tend to infinity, such as to keep the atomic density ¢ and the critical temperature T
fixed. In this limit, the result obtained in Eq. (1.3) becomes exact (recompensating the approximation
for the density of states g(17) to be continuous, see Chapter 8), defining analytically the transition

3

temperature T, for Bose-Einstein condensation in a uniform,> non-interacting Bose gas:

3uniform = non-interating gas in a box of volume V
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2ﬂﬁ2Q2/3
" ksC(3/27Pm
How was Einstein led to Eq. (1.1)? Having a look to the original predictions of Bose-Einstein
condensation [28, 29], we recognize that the major underlying assumption is the indistinguishability

of particles: The number of quantum cells (in phase space) with energies between ny and 7, + A7 is

27'(V 3/2 1/2
zp ?(Zm) nf An . (1.6)

According to Bose’s previous analysis, Einstein infered [28] that the number of possibilities to
distribute N; indistinguishable particles over z; cells within the infinitesimal energy interval A7 is

given by

(Nf+ - 1)!
Q?_ W . (1.7)

This can be understood as follows [27]: Consider N; particles (drawn as a one-dimensional sequence
of dots), and z; lines which represent the different cells (as vertical lines creating a certain partition
of the one-dimensional row). The number of positions carrying a label in this one-dimensional row
is Nj+zp—1, so that the number of different configurations having Ny dots in N;+z;—1 labels

equals the number of different microstates, which is exactly the binomial coefficient in Eq. (1.7).

Taking into account all different energies 7;, the total number of microstates is (N, T) = [[; 23,
assuming that the state of the gas factorizes. Then, Einstein adopts the definition [10] of Boltzmann's
entropy, . = kgInZ'(N, T), where kg is the Boltzmann constant, which (with the above partition
function) leads to the entropy [10]

Zo N-
Y:kBZ‘[Nfln(1+ﬁlf)+zfln(Z—rl+1)]. (1.8)
1

Equation (1.1) is subsequently derived from maximizing . (by setting the first order variation of
& to zero), under the constraint that }.;N; = N and Y.y Ny = E. Hence, Einstein derived Eq. (1.1)
by assuming a unique maximum entropy equilibrium state which can be factorized, treating the

particles in the gas as indistinguishable, and neglecting number and energy fluctuations.
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What does hence happen, Einstein asked, if the particles are considered as distinguishable? In

that case, the number of possibilities to distribute N; on z; cells is simply

%=, (1.9)

that means, each of the N; particles has the same probability of occupying any cell z;, irrespectively of
a single particle state’s occupation with energy 1, and 1# k. Again, taking into account all energies
as in Eq. (1.8), care has to be taken that a microstate with {Nfl’Nfz’ ...} particles occupying the cells
{Zfl’zfz" ..} can be realized in N!/ HTNT! different ways, considering for a moment the particles as
distinguishable. Hence, the total number of states is given by Z'(N,T) = Hl».,@’i»= N! Hf(zf)Nf/N»!,

which yields the Boltzmann entropy

“a
7 =kp NlnN+§ N; In (N)+Nr (1.10)
7 I
1

by taking the natural logarithm. Equation (1.10) indicates that the resulting entropy cannot be
correct, i.e., the number of possible microstates is overcounted. This is because the first term
in Eq. (1.10) is proportional to N In N — contradicting the extensivity property [10] of the ther-
modynamic entropy, (AN + uN2) = A.(N1) + u-(N3). Moreover, modeling the limit of zero
temperature by setting No — N, and N; — 07, for all I+ (0,0,0), the expression in Eq. (1.8) for
indistinguishable particles gives the correct limit .7 — 0* (as imposed by the 3™ law of thermody-
namics [10]), whereas Eq. (1.10) for distinguishable particles leads to kgN In N.

The main assertion of Bose and Einstein in a nutshell was thus that radiation can be treated as a

photon gas, with the same specific combinatoric results induced by indistinguishability.

1.4 Experimental state-of-the-art

As reported in Section 1.3, Einstein’s original prediction refered to a gas of non-interacting particles
in the thermodynamic limit N — oo,V — oo, with p = const. Thus, his prediction could not be
taken for granted to work also for finite, interacting Bose gases in harmonic, typically anisotropic
traps.* The solidification of almost all materials at typical densities required at usual (e.g. room)

temperatures for the reaching of Einstein’s condition in Eq. (1.3) is the major problem of realizing

4See Section 1.5 for the quantum statistics of non-interacting gases in harmonic traps.
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physical parameter JILA [¥Rb] MIT [»Nal] SI unit
atomic density o 2.6x 10" 1.0x 10" cm™3
s-wave scattering lengtha 5.7 x 1077 49x1077 m

gas parameter ga° 5.0x1077 1.2x107°

trap frequencies vy, vy, vz 42.0,42.0,120.0 235.0,410.0, 745.0 s71
total particle number N 2000 5-10°

critical temperature T, ~32 ~ 2000 nK
typical formation time 79 ~2.0-4.0 ~05-1.0 sec

Table 1.1: Typical parameters of the early experiments at JILA [23] and MIT [32], used for numerical calculations
throughout the thesis. The meaning of the s-wave scattering length as given in the table is explained in Section 2.1.

Bose-Einstein condensation experimentally [33].

To achieve Bose-Einstein condensation in the laboratory, the atomic ensemble is therefore
brought to extremly low atomic densities by laser cooling [34] and is rapidly cooled hereupon to
very low temperatures by evaporative cooling techniques [35, 36]. By this means, the gas has no
time to solidify, whereas Einstein’s condition in Eq. (1.3) can still be matched. Typical densities and

temperature ranges required to achieve Bose-Einstein condensation are [15, 23, 24, 32]:

0~102-10"cm™ and T~20nK -1 uK . (1.11)

First observations of Bose-Einstein condensation in the laboratory were reported in 1995, for
the alkali species 8Rb [23] in the group of Eric Cornell and Carl Wieman, at the Joint Institute for
Laboratory Astrophysics [23], for 22Na [24] in the group of Wolfgang Ketterle, at the Massachusetts
Institute of Technologies [321, and for 7Li [37] at RICE university. Up to date, Bose-Einstein
condensation has been experimentally proven to exist in 'H, “Li, ?*Na, 3K, 52Cr, 8°Rb, 133Cs,
170yb and 4He [15].

Except for the species “He [38, 39], which obeys — contrarily to all other summarized candidates
— very strong interactions between its atomic constituents in the Bose condensed phase, the typical
atomic density of a Bose-Einstein condensate is surprisingly dilute: At the center of the trap, where
the highest atomic density (the condensate) is located, it is of the order of g ~ 1012-10% em=3. In
comparison, the density of air molecules at room temperature and atmospheric pressure is about
four to seven orders of magnitudes larger [15]. A direct quantitative measure for the diluteness of

a Bose gas is the gas parameter & = ap!/3 (where a is the s-wave scattering length, see Section 2.1),
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typically of the order

E=ap'P~107%«1, (1.12)

for a dilute Bose-Einstein condensate. Thus, the experimental path of producing Bose-Einstein
condensates becomes theoretically noticeable as a small parameter in our master equation ansatz
in Part Il of the thesis: The dilute gas parameter & = ap'/? will be identified in the derived transition
rates for particle exchange between the non-condensate and the condensate, and is employed to
quantify condensate formation times in a perturbative approach for the condensate wave function.

The same applies for the condensate and non-condensate steady state number distributions.

In the remainder of the thesis, state-of-the-art experimental parameters such as those of the
early experiments on Bose-Einstein condensation [23, 24, 32] are used for quantitative calculations
of condensate formation times and particle number distributions during and after condensate

formation. A recollection of relevant experimental parameters is shown in Table 1.1.

1.5 Bose-Einstein condensation in harmonic traps

In order to describe the statistics of a bosonic gas in an external confinement, the original analysis
of Bose-Einstein statistics for uniform gases needs to be extended to harmonic traps. This is
realized within the quantum version of the canonical and the grand canonical ensemble, which are
conventually used to describe the statistics of non-interacting bosonic gases [10].

In classical thermodynamics, the two ensembles are equivalent in the thermodynamic limit of
large particle numbers. Note, however, that an unsolved problem in the theory of quantum degen-
erate gases below the critical temperature is that the canonical and the grand canonical ensemble
lead to different predictions for the condensate statistics, even in the thermodynamic limit [27].
Therefore, the results on condensate statistics below T obtained from the grand canonical and the
canonical ensemble shall be contrasted: Although both ensembles predict the same expectation
value of the condensate particle number in the thermodynamic limit (and similar occupation for
finite particle numbers), the grand canonical ensemble features the so called “fluctuation catastro-
phe” (divergence of the condensate particle number variance in the thermodynamic limit) below T.
Hence, it is the canonical ensemble which is in accordance with experimentally observed scenarios

for condensate particle number expectation values and condensate number variances below the
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critical temperature.®

1.5.1 Grand canonical ensemble

We consider a gas of non-interacting atoms in a harmonic trapping potential, described by the first

quantized Hamiltonian

1 1 1
h(¥) = o (p% + pi + pg) + Em(w§x2 + wiyz + wgzz) — E(hwx + hwy + hawz) , (1.13)

with trapping frequencies @ = (wy, wy,w;), momenta p = (px,py,p-) of the atoms in the three
different spatial directions ¥ = (x,y,z) of Euklidian space R3. In Eq. (1.13), the zero point energy
is substracted for convenience. The eigenvectors vectors Ixp) of hy(Y) are labeled by the three
component vector 1 = (Iy,ly,I;), with [; € No. For non-interacting systems, the single particle

eigenstates (f])(f> in position representation are given by

2\1/4 2.2
1 L 13
o= [[ —=|=| e H.w, (1.14)

E=x,y,z \/21615! T

where Lg = y/mw¢/h is the width of the harmonic oscillator ground state, and the Hj,(Ls<) denote

Hermite polynomials [40]. The corresponding single particle eigenenergies 7; read

T]l = tha)x + tha)y + Zzhwz . (1 .1 5)

Since the particles do not interact by assumption, particle exchange between atoms occupying
the different single particle eigenmodes [x;) is a consequence of coupling the gas to an external
heat reservoir. In addition to the energy exchange, the grand canonical ensemble assumes particle
exchange with the external reservoir to account for fluctuations of the total number of particles as

sketched in Fig. 1.1.

5This indicates that a physical description of the Bose gas should keep the number of particles fixed. This is due to the separation
of time scales in the Bose-Einstein condensate, leaving classical number correlations of condensate and non-condensate because of
particle number conservation: Since the thermalization dynamics in the non-condensate is much faster than condensate formation,
the calculation of any observable (X) for fluctuating total particle numbers should consist in calculating its average first for a fixed
particle number N, taking the ensemble average of the N — Njy non-condensate thermal particles for each state of Ny = 0...N
condensate particles. Once the expectation value of the observable (X)y for a fixed N is known, the average of (X)x over
ensembles refering to different total particle numbers N is to be carried out. Not least for this purpose, we keep the number of
atoms in the Bose gas fixed to N for deriving the equilibrium steady state of a Bose-Einstein condensate in Part Il of the thesis.
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Figure 1.1: Schematics of the grand canonical ensemble. Condensate and non-condensate are independently
coupled to an external heat and particle reservoir. Particle flow between condensate and non-condensate is induced
by equilibration of each subsystem (condensate and non-condensate) with the external reservoir. In the limit of
vanishing atomic interactions, the thermodynamical steady state of maximum entropy under the constraint of fixed
average energy and average particle number can still be reached, being a thermal state [10] independent of the
interactions between the atoms, see Eq. (1.16).

Assuming quantum ergodicity (equal occupation probability for all states with the same energy,
see Section 1.2), and neglecting quantum mechanical number and energy fluctuations in the ther-
modynamic limit, the thermodynamical state [10] of the Bose gas at equilibrium is given by the

thermal state
X 1 N
bac(u,T) = T C(/J,T)exp [—,8(7-(— yN)] , (1.16)

where H = Zliio Ul Nf is the second quantized Hamiltonian of a non-interacting gas, u the corre-
sponding chemical potential, i.e. the change of the gas’ free energy with the total particle number,

and N the number operator of atoms in the trap. Moreover,

[ee]

Zacw D =Y Y (INlexp[-p(FH - ul)| Ny =] | exp[ﬁ(,,}— 01— 1 (1.17)
1

=0 Ny=0 1=0
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is the grand canonical partition function for indistinguishable particles,® accounting for normaliza-
tion. Equation (1.17) is obtained by tracing exp[—ﬁ (7A{— yN)] over all possible values of single
particle occupations, Ny = 0...00, ¥ 1, and imposing particle number conservation onto the chemical
potential u [10].

The mean occupation number (Nf> of a single particle mode of energy 7; in the grand canonical

ensemble is given by

1 1 -1
= Pl —1 ]11 [zoptpre; -] 1.18)

where the fugacity z = exp[fu] is introduced with a range of variation 0 < z < 1 (according to
the chemical potential i in Eq. (1.2), ranging from p = —co to 0). The fugacity is a measure of
the quantum degeneracy in the Bose gas: The classical limit (low concentration, i.e., low particle
numbers and high temperatures, meaning that InZ’(N, T) changes rapidly with N) exhibiting a large
number of different possible states available to the system is formally accounted for by the limit
z — 0%, meaning that u — —oo according to the definition of the chemical potential 1 in Eq. (1.2).
Here, Boltzmann occupation numbers (N;) = exp[—pn;] in Eq. (1.1) are recovered.

The quantum degenerate regime (low temperatures and high particle numbers), where the
number of states changes only slightly with the particle number is reflected by the limit u — 07.
This implies z— 17 and thus predicts Bose-Einstein condensation, i.e. a divergence of the average
ground state occupation number, (Np) — co. To evaluate the ground state occupation analytically
in the quantum degenerate limit, first all average occupation numbers of excited (non-condensate)

single particle states are counted,

ksT)\’
(Np)= Z<Nf> = (—) @), (1.19)

£ ha

120
with @ = (wx, wy, w;)'/3 the averaged trap frequency. To derive the right hand side of Eq. (1.19), the
sum ) ;is replaced by an integral fdng(q), given the density of states g(17) = q22_1(h3cuxa)ycuz)1/3 [15]
for a three-dimensional harmonic trap. This ansatz for the density of states is strictly valid only

for large particle numbers, where the approximation of the non-condensate single particle spec-

trum being quasi-continuous is recompensated by assuming a very large Bose gas (N ~ 10%3) thus

6Distinguishable particles would imply a factor of N!/HIZ Nptin each summand in Eq. (1.17), as explained in the derivation of
Eq. (1.10).
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Figure 1.2: Average condensate fraction (Ng)/N predicted by the grand canonical result in Eq. (1.20) (red dashed
line) vs. exact numerical calculations within the canonical ensemble using Eq. (1.27) (blue solid line). Calculations
are performed for a gas of N = 2500 particles in a three-dimensional harmonic trap with trapping frequencies
wx = wy =42.0 Hz, w; =120.0 Hz. The ideal gas critical temperature T = 36.47 nK is defined by Eq. (1.3).

formally using the thermodynamic limit (see Chapter 8).
Imposing particle number conservation (after the calculation), (Ny) + (N, ) = N, the result in

Eq. (1.19) is rewritten in order to find the ground state occupation as a function of temperature in

the grand canonical ensemble:

% _ [1 _(%)3] , (1.20)

with a critical temperature T, for a non-interacting Bose gas in a harmonic trap, given by

haoN/3

= 1.21
PRIORE (20

[

The scaling behavior of the average condensate occupation number (Ny) with T/T. in a three-
dimensional harmonic trap differs from the scaling behavior for a homogenous gas in Eq. (1.5),
i.e., the scaling is (T/T.)? instead of (T/T.)32. This is due to the external confinement which
induces higher condensate occupations, measuring the temperature in units of the ideal gas critical
temperature T.. Thus, the external trap confines the particles in the trap stronger, which leads

to a larger condensate fraction as compared to the uniform case for the same gas temperature at
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Figure 1.3: Standard deviation ANy = ((Né) - (N0>2)1/ 2 of the condensate number occupation, predicted by the

grand canonical ensemble result in Eq. (1.22) (red dashed line) vs. exact numerical calculations within the canonical
ensemble (blue solid line) using Eq. (1.25, 1.27), as a function of relative temperature T/ T, for the same experimental
parameters as in Fig. 1.2: The grand canonical ensemble predicts condensate number variances ANy as large as N2
below Tk.

equilibrium. In turn, a lower temperature is needed for the case of no external confinement in order

to observe the same condensate fraction.

The average condensate occupation number (Ny) versus T/T, predicted by the grand canonical
ensemble result in Eq. (1.20) is illustrated in Fig. 1.2 (red dashed line), and compared with the
exact calculation of Section 1.5.2 (canonical ensemble) in a harmonic trap using the condensate
number distribution in Eq. (1.27). Whereas the grand canonical calculation of (Ny) shows a cusp
at the transition temperature T, of Bose-Einstein condensation, the canonical ensemble predicts
condensate occupations only for temperatures below the ideal gas critical temperature T, (at
~0.95T;), and a smooth transition. These deviations originate from the replacement of the discrete
sum by an integration to derive Eq. (1.20) under the assumption of a quasi-continuous spectrum.
This results effectively in a shift of T,, which is smaller than 5% starting at N ~ 10000, and ranges
from 5 —30% for smaller total particle numbers, starting from the percent level at T = 0.2T, to
approx. 20% at T = 0.95T, in Fig. 1.2. This shift can be incorporated in Eq. (1.20) by replacing
T. — Te x (1-0.7275/N'/3), or by respecting the discreteness of the single particle spectrum via an
exact numerical treatment as we do in Fig. (1.2), blue line (see also Chapter 8).

Albeit the average condensate occupation in Eq. (1.20) is correctly described in the grand

canonical ensemble, it was soon recognized [41] that a grand canonical description of the gas



30 Chapter 1. BOSE-EINSTEIN CONDENSATION IN IDEAL BOSE GASES

cannot be correct below the critical temperature. This is because of the so called “grand canonical
fluctuation catastrophe”, which has been discussed by generations of physicists [42]. In short
terms, the problem of the grand canonical ensemble below the critical temperature is that the

variance of the condensate particle number, given analytically as

A’Ng = (No)((No) +1) , (1.22)

where (Np) is given by Eq. (1.20), becomes comparable to the total particle number and there-
fore diverges in the limit (No) — N. These large fluctuations (4/A2Ny ~ N) are contradictory
to experimental observations, where the condensate number variance has been experimentally
measured [43] to be in the Poisson to sub-Poisson range (hence \/AZ—NO ~ VYN).

Nowadays, the most reliable and numerically accessible state-of-the-art thermodynamic pre-
diction for the condensate number variance is thus governed by the canonical ensemble for non-
interacting gases below T, where the grand canonical and canonical ensemble cease to be equiv-
alent [27]. The standard deviation of the condensate particle number \/A_Ng obtained within the
grand canonical ensemble is shown in Fig. 1.3 as a function of T/T (red dashed line), in comparison

to our numerical prediction within the canonical ensemble discussed in the next section.

1.5.2 The canonical ensemble

The equilibrium state of the Bose gas in the canonical ensemble is derived under the constraint of
a fixed total average energy (E) and a fixed constant particle number N in the system, as sketched
in Fig. 1.4. Within the ergodic assumption (see Section 1.2), and under the neglect of energy
fluctuations in the thermodynamic limit, the (maximum entropy) equilibrium state of the gas is a

thermal one [10, 27],

. exp [—‘Bﬂ] .
L 1.2
NTFNT) 2N, (1.23)
where H = Yy anNE is the many particle Hamiltonian of the ideal gas, 2y a projector onto the
Fock space of N particles, and Z°(N, T) the partition function of N indistinguishable particles in the

canonical ensemble:
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Figure 1.4: Schematics of the canonical ensemble. Condensate and non-condensate are independently coupled to
an external heat reservoir. Particle flow between condensate and non-condensate is induced by the energy exchange
of either one subsystem (condensate and non-condensate) with the external heat reservoir. In the limit of vanishing
interparticle interactions, the maximum entropy equilibrium state of the Bose gas can therefore still be reached, and
is independent of the interacting strength, see Eq. (1.23).

)
Z(N,T) =Te{Dnexp|-pH| I} = Z({Nf}lexp [-BH[INz}) . (1.24)
{Ng}

The symbol Zg%;} labels a partial sum over all tuples {Nf,fe Ng} which satisfy Zli'io N;=N. Clearly,
this partition function differs from the standard ones for distinguishable particles by the missing
prefactor N!/[[;N;!. This factor needs to be included for distinguishable particles in order to
realize that a Fock state |{Nf}) has N!/HTNT! different microscopic realizations, if we considered
the particles as individuals. As we have seen in Section 1.3, however, this is not correct in the
quantum degenerate limit, so that the partition function of indistinguishable particles in Eq. (1.26)

has to be applied.

To access the condensate statistics, we deduce the condensate number distribution pn(No, T)

from the diagonal element of the reduced density matrix in Eq. (1.23), where the trace is taken over
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Figure 1.5: Condensate particle number distribution within the canonical ensemble for a 3-dimensional harmonic
trap with @y = wy = 21 X 42.0 Hz, w; = 21X 120.0 Hz, and N = 2500 87Rb atoms, obtained from pn(No,T) in
Eq. (1.27), for the same parameters as in Fig. 1.2, and for three different temperatures T = 30.0,20.0,10.0 nK (from
left to right).

all number states of the non-condensate which conserve the total number of particles:

(N—No,T)

z
pN(No, T) = (NolTr 150 INp) = e oMo =22 NI (1.25)

where Z| (N — Ny, T) is the partition function of the non-condensate, containing (N —Ny) particles:

(N-No)
Z(N=No,T)= Y (INgllexp[—BFL|lIN), (1.26)
{N;h,

with H, = YisoMi A12' Finally, using Eq. (1.25), we can derive an exact recurrence relation for
PN(NO/ T)

M = 65'70 QPJ‘(N _ NO, T) . (1.27)
pnNo+1,7) Z1(N=-No-1,T)

Some examples of the condensate particle number distribution pn(No, T) in Eq. (1.27) are shown
in Fig. 1.5. As mentioned above, the average condensate occupations and the standard deviations

of the condensate particle number as obtained from Eq. (1.27) are displayed in Figs. 1.2 and 1.3,
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respectively, comparing the grand canonical prediction (red dashed lines) to the canonical prediction

(blue solid lines).

1.6 Bose-Einstein condensation in position space

In order to theoretically verify that Bose-Einstein condensation, i.e. a macroscopic condensate
number expectation value of the single particle ground state mode can be related to the experimen-
tally observed occurrence of a high condensate density at the center of the trap below the critical
temperature [23, 32], it is possible to apply the concept of the reduced one-body density operator
as follows.

The bosonic gas of N particles, whether interacting or not, is fully described by the many particle
N-body state 5N (t). The one-body density matrix, p; [44], is the statistical operator of one particle
in the quantum gas, averaged over all permutations of the (N — 1) remaining particles. It is defined

by the quantum mechanical average

POt =N f d3% ... Py &... BN DI .. By, (1.28)
€

where ¢ denotes the volume of non-vanishing atomic density in the external trapping confinement.
The diagonal elements of the one-body density matrix in position representation, (£]p|), provide
the average particle density in the trap. Off-diagonal elements, (fl;|f"), characterize spatial
correlations in the Bose gas. The one-body density matrix is conveniently normalized to N.

We now take a closer look on ideal gases in a harmonic potential. In this case, the diagonal

elements of the one-body density operator in spatial representation turn into

@B = Y Npx: Oxi® (1.29)
T

with the harmonic oscillator states x;(¥) = (tlxy) in Eq. (1.14), and average single particle occupations
(Nyp) given by Eq. (1.18). Assuming thermal equilibrium, we can write the one-body density matrix

as

1
W=—— 1.30
# z lexp(Bh1) — 1 130
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using the spectral decomposition of the first quantized Hamiltonian /; in Eq. (1.13), and the
definition of the fugacity z in Eq. (1.18).
To calculate the representation in position space |f), we assume for simplicity an isotropic

trapping potential, and use the expansion pt) = Y*°_ z"e=F"M1 to arrive at [45]:

3/2.& k 2 khow
s _ (M@ z _malf] p
<ﬂp = ( mh ) 1;‘ (1- e_Zﬁkhw)3/2 exp[ 3 tanh 5 . (1.31)

Equation (1.31) highlights the occurrence of the condensate part of the gas at the center of the
trap, as the fugacity tends to unity below the transition temperature for Bose-Einstein condensation,
z — 17: Large summation indices k in the sum entail a contribution close to one, i.e., the term
(1- e_zﬁkh“’)‘w2 — 1, and moreover, the term tanh (Bkiw/2) — 1. Around the center of the trap,
[l — 0%, the sum in Eq. (1.31), and consequently the atomic density diverges in the limit z — 17,
whereas it tends to zero for distances larger than the harmonic oscillator length, |f] > Vi/mow.
Condensation onto the single particle ground state mode x(), i.e., an expectation value of (Nj) ~
N, hence manifests itself as enhanced atomic density at the center of the trap in harmonic trapping
potentials.

It is evident that the situation is modified in the interacting case, which exhibits nevertheless a
smooth transition [45] into the non-interacting case for sufficiently weak interactions (a/LN < 1,
where L is the extension of the harmonic oscillator ground state). In this case, single particle wave
functions of the interacting system do not significantly differ from the harmonic oscillator states in
Eq. (1.14).



Chapter 2

Interacting Bose-Einstein condensates

In this Chapter, important concepts for treating interacting Bose-Einstein condensates are sum-
marized. Under the restriction to two body interactions, justified for dilute atomic gases, the
microscopic derivation of an effective interaction strength ¢ for atomic interactions in the Bose gas
is sketched in Section 2.1. The Hamiltonian of an interacting Bose gas in second quantization is
specified in Section 2.2. The Gross-Pitaevskii equation [15] constitutes a closed equation for the
condensate mode in dilute atomic gases [46, 47, 48, 49]. It will be derived in Section 2.3 within
the Hartree ansatz for the N-body state of the system. Section 2.4 finally summarizes theories for
the study of the average condensate growth to establish the relation and contribution of the master

equation theory of this thesis.

2.1 S-wave scattering approximation

In dilute atomic gases, it is possible to neglect three-body and higher order interactions [50], since
atomic collisions are captured by successive two body interactions between the atoms in the Bose

gas [16, 51]. These are described [52] by the first quantized Hamiltonian

-2

hip = ZP_M + V(D) 2.1)

where ¥ = ¥} — 1, is the relative coordinate, and p = p; — P, is the relative momentum of the
two identical colliding particles, while M = m/2 is their reduced mass, and V1, (¥) the two body
interaction potential. From standard scattering theory [45, 52], we know that scattering states with

positive energy E = h2k? /2M obey the differential equation

35
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(2+12) W@ = 22V v, 2.2

with the Laplacian operator Ay, and k = |p; — p,|/%, the absolute value of the relative wave vector

between the two identical particles. Equation (2.2) has the formal solution:

27

iklF-1 |
W) = v - 2 [ i *’T_ Vi VPR, 23)

where WM (?) is the unperturbed wave function of the incoming particle, satisfying the differential
equation AP (F) = —k2 WIN (@), with k2 as the wave vector of the incoming wave (Ki| =
kin). For sufficiently weak interactions, we employ the first order (in the interaction V15) Born
approximation [52], which effectively consists in replacing W(¥") — W (£’) on the right hand
side of Eq. (2.3). This approximation is valid for sufficiently weak interactions, as discussed below.
There are two main ingredients used to derive an effective interaction strength for two body
collisions:

First, assuming a sufficiently short, finite range interaction potential between the atoms, with
an effective radius R, the asymptotic behavior of the scattering state for large distances r = |[f] > R

between the two atoms turns into

) ikr
W(F) = win) @) - 67 F@), (2.4)

where 11 = ¥/r is the direction of scattering, and where

2 . .
f(ﬁ)z_ﬁl\;2 %df’elk“f Vi)W (") (2.5)

represents the scattering amplitude for the given scattering process. This amplitude does not
depend on the relative distance r between the atoms in the asympotic scattering region r >> R.
Second, the limiting case of low energy collisions with a kinetic energy h%k?/2M of the atoms
of the order of the thermal energy kgT (with T < 1.0...2.0 uK) is much smaller than the typical
centrifugal barrier energy around T =1 mK to scatter into higher angular momentum states than

=0 [53]. In this case, the scattering amplitude does not depend on the direction 1 of scattering,
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and is set constant f(f) — —a = const. The scattered part of the wave is thus rotationally symmetric,
see Eq. (2.4), and a is called “s-wave scattering length” as the strength of the interaction does not
depend on the angle between the two scattered identical particles to lowest order, since only
scattering states with angular momentum [ = 0 are supposed.

Since ab-initio calculations of the s-wave scattering amplitude a for realistic interatomic interac-

tion potentials V1,(¥') are difficult tasks on their own [45, 53], we use a pseudo-potential [54],

Vip(f) — 1) = g6(f) - 1) , (2.6)

with ¢ = 4mth?a/m, in order to satisfy the same properties as the derived s-wave scattering amplitude
f(R) = —a, in the asympotic limit of large distances r > R and low kinetic energies kR < 1. The
actual value of the s-wave scattering length a is taken as an experimentally determined parameter,
according to Table 1.1.

Using the s-wave scattering pseudo potential in Eq. (2.6) to describe two body collisions is
justified [45], if £ = ap'/® < 1, called “dilute gas condition”. As noticed before, the dilute gas

condition is satisfied in most state-of-the-art experiments for alkali atoms (see Section 1.4).

2.2 Hamiltonian for two body interactions

Given the effective description of two body interactions in Section 2.1 in terms of the s-wave
scattering length, the formalism of second quantized bosonic fields can be introduced to describe
the interacting Bose gas. Let’s consider a gas of bosonic particles, each of which may be in a
particular state of an orthonormal and complete set of single particle wave functions {|vi),k € Ny}.
Corresponding to the basis states |[v), we introduce annihilation/creation operators, & and @Z,
respectively, which satisfy bosonic commutation relations, [6;(,6” = 0. The operators ¢ and 6;:
create particle states such as plane waves, or the harmonic oscillator states |v;) — |X12’> inEq. (1.14),
depending on the choice of the basis.

The operators W(¥) and W*(¥) are called “bosonic field operators” [55], which describe the

quantized field of the gas, and satisfy the commutation relations

9@, 9G] =@, @) =0 and |[¥@V'E)]=0E-7"). (2.7)



38 Chapter 2. INTERACTING BOSE-EINSTEIN CONDENSATES

The interpretation of the fields W(¥) and W' (¥) is that they annihilate and create, respectively, a
bosonic particle at position ¥. Expanding the state |¥) of a particle at position ¥ in the orthonormal,
complete basis {|vg), k € Np}, the ket [F) = Y i [vi)(vk[E) translates in particle number representation

into
B = P @10y = ) (vl &10) . 2.8)
k

Hence, the two bosonic fields W(¥) and W (%) are defined" by

i) = Zvl’:(f‘)é,t and W) = ka(f)ék . (2.9)

k k

This definition entails the bosonic commutation relations for the fields ¥(¥) and W*(¥) in Eq. (2.7),
given that the creation and annihilation operators é,t and ¢y satisfy bosonic commutation relations.

The Hamiltonian of a gas of bosonic particles, including two body interactions, is specified [55]
in terms of the quantized fields W (¥) and W (¥) as

. B 2—)2
P = f df\if‘”(f){ va +Voul®| V@ + 5 f FV OV OVOVEH . 2.10)
3 €

In Eq. (2.10), such as in the sequel of this thesis, the effective two body s-wave scattering interaction
>/

potential V1(¥—7") = g5(F—1 ") of Eq. (2.6) is adapted. The region of non-vanishing spatial atomic

density is denoted by €.

2.3 Gross-Pitaevskii equation from the Hartree ansatz

Here, the Gross-Pitaevskii equation [15, 16] is introduced, constituting a closed equation for the
macroscopically occupied single particle mode Wy(%,t) below T, called the “condensate wave
function”. Assuming N particles in the Bose gas to share the same, in general time dependent
single particle mode W, (%,t), the Hartree ansatz [15] can be used to derive the Gross-Pitaevskii

equation. The first quantized N-particle Hamiltonian Hy for N atoms interacting via two body

"Note that the second quantized field represents a particle and a wave simultaneously. The first can be associated to the
particle operators ¢; and 6;, whereas the wave nature is typified by the basis of wave functions {v,(£)}, in which we expand the

field W¥(2). The choice of this basis is in general arbitrary.
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collisions in the Bose gas is given by

N —)2
V= DS V@) |+ 5 ) oG- ), .11)
k=1 k#l

where Ve is the external trapping potential, and the factor 1/2 ensures that each pair of particles
contributes only once (independent of the order of k,I) in Eq. (2.11). Assuming that all particles
share the same quantum state at T = 0, the Hartree-Fock ansatz is employed for the N-body ket of

the Bose gas:

WN (- B ) = [ [ Yol (2.12)
k=1

Now, we can calculate the expectation value of the N-particle Hamiltonian in Eq. (2.11) with
respect to the N-body ket [Wy). According to Eqs. (2.11, 2.12), the latter is given as a functional

EN = é”N(‘Ifo,‘Ifg) of the condensate wave function W, and its conjugate \Ifa‘:

N-1
leo(ﬁt)l‘* : (2.13)

v d hz = -2 -2
En(Wo, W) =N L dr [%W%(nt)hvext(f>|%(r,t)|2+ 5

In Eq. (2.13), the term N(N — 1)/2|W(%,t)|* describes the two body interactions between the
particles, thus proportional to the number of N(N —1)/2 ways to pair the bosons, times the
corresponding single particle densities [Wq(¥, )|* of each boson contributing to a two body collision
process. To derive an evolution equation for the condensate wave function W (%,f), one uses
Hamiltonian’s principle of least action [15, 56] (in analogy to the derivation of the Schrodinger
equation), with the Lagrangian

W, I,

g(\yo,‘ya)zfd E(\I]g T, -Y 8t) éDN(\I/(),\I/g). (2.14)

2 2
Demanding the action fti Zdt to get extremal, thus insisting that 6[; Zdt =0, and imposing
vanishing variations 6Wo and 6W§ at the temporal boundaries t = t; and t = f, and at the spatial
boundaries of the region ¢ of non-vanishing gas density leads to the time dependent Gross-Pitaevskii

equation
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S 22
YD NV ) N0 o ) .15
Equation (2.15) quantitatively determines the macroscopically occupied mode W (%, t) of the gas
below T¢, termed the “condensate mode”.

For a static condensate mode, with N particles of the gas occupying this mode, the Gross-
Pitaevskii wave function W (%, t) in Eq. (2.15) will evolve in time only with respect to a trivial phase
factor, Wy(t,t) = Wo(f) eto/", 11y being defined as the eigenvalue of the static Gross-Pitaevskii

equation:

-2
—h2V
2m

+ Vext(®) + gNIWo(D) — o Wo(F) = 0. (2.16)

In view of the quantum master equation theory of Bose-Einstein condensation in Part Il of this
thesis, we adapt one issue which arises from the above mean field theory:> The linear part of
the Gross-Pitaevskii equation is identical to the well-known Schrodinger equation, whereas the
nonlinear part reflects the presence of (N —1) — here, (N —1) is replaced by N for convenience in
Eq. (2.15) — other particles with which a condensate particle interacts. From Eq. (2.15), it follows
that the condensate mode Wy(F,t) is a function of the product ¢N. Hence, the condensate wave
function [Wy) has a well-defined limit to the Schrodinger wave function |x) of a particle in an ideal

gas in the formal limiting case of weak interactions, 2 — 07 [45].

2.4 Theories of condensate growth

There exist different quantum kinetic theories to describe the time evolution of the average con-
densate fraction during Bose-Einstein condensation. Summarizing their relevant results in a short
fashion, we demonstrate that — to our knowledge — none of the theories could so far address

the dynamics of the full condensate number distribution during Bose-Einstein condensation which

2Mean field theories are often termed as such because they treat the dynamics of the Gross-Pitaevskii wave function Wy for a
given average number of condensate particles, N — (Nj) in Eq. (2.15), representing the mean value of condensate particles which
populate the average condensate mode W. Since this mode depends itself on the number of condensate particles, the product
V(Ng)W is often called mean field, or order parameter, depending on the community. Note that, within the quantum master
equation, the Hartree ansatz is used to quantify the condensate mode assuming all particles to share the same (non-averaged)
single particle quantum mode Wj. Indeed, we will see that this is an accurate assumption since any term proportional to g in
Eq. (2.15) will enter the dynamics and statistics of ultracold quantum gases only negligibly small, if only ap!/3 < 1 (see Part Il and
Part IlI).
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highlights the condensate formation process of the atoms in the gas below T.. This is because
either the full quantum problem is in most cases impossible to solve numerically, the total particle
number is not conserved, or/and condensate formation is studied in terms of the quantum Boltz-
mann equation. Moreover, we notice that there exists no quantitative master equation theory for
closed and interacting dilute Bose gases below T, imposing particle number conservation onto the

state of the system.

2.4.1 Condensate growth from quantum Boltzmann equation

Many works focus on Bose-Einstein condensation in terms of the quantum Boltzmann equation
(QBE) which describes the kinetics of a quantum gas in terms of time dependent particle number

occupations f(t). More explicitly, the QBE is given by

&ff(’ 5o 67]*+W*_'71ﬁ_'7ﬁ
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where f. = f.(f) denotes the average particle number occupation of a single particle state with
energy 1. The Kronecker delta in Eq. (2.17) ensures energy conservation, the choice of the typical
spectral energy spacing An depending on the external trapping geometry. The transition rate
% (k,1,m, i) appearing in Eq. (2.17) is given by

- 27'(g2

2
%(k,l,nﬁ,ﬁ)’vTfdfxf(f)x;(F)Xﬁ(F)Xﬁ(f) , (2.18)

k

with (), the single particle eigenfunctions of a non-interacting gas, and g the two body interaction
strength.

The QBE is controversially discussed [57] with regard to its character as a good approximation
to the true Hamiltonian dynamics, or, as a defining theory on its own right. From the Hamiltonian
point of view, one way to decompose the total Hamiltonian for an interacting gas is H = ﬂideal +V,

with

i ats v_ & At ot s s
Hideal = anaﬁak and V= > Z CT ALd gl , (2.19)
k

where Ck‘f‘fﬁ = de )(l’z‘(f)))(lf(f)))(ﬁ(f)))(ﬁ(f)). The interaction term ¥ commutes with %, only if the
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energy is balanced, i.e. np + 1y =1z +1z. In this case, the time evolution of the gas is governed
by the unitary time propagator () = exp[~iFigeart/flexp[-iVt/h]. Calculating all different
non-vanishing transition rates proportional to I({le}l(il(t‘)l{Nf})l2 between the eigenstates |{le}) of
Higeal With respect to the interaction term Y to second order (in g) with the Fermi golden rule [58],
and imposing energy conservation by adding a delta function 6(n + 1y — 13 —1z) to the coupled

Atzﬁ@(t) subsequently leads to Eq. (2.17).

a
K
The problems with the above derivation are:

evolution equations for f(t) =

(i) The eigenvectors of ﬂideal are not the same as the eigenvectors of H. So, interpreting
the expectation value of H as the true energy, the time evolution governed by €/(t) cannot lead
to any transition between the eigenstates of the Hamiltonian % for the interacting gas. Thus,
the time evolution governed by the QBE (2.17) may therefore not represent the real dynamics of
the interacting system, since it assumes transitions and energy conservation with respect to the

eigenstates of a non-interacting gas as described by the Hamiltonian ffideal.

(i) The use of Fermi’s golden rule causes a problem, considering that H, commutes with
V. Expanding the time propagator T(t) = exp[—iFf;gealt/h] [ﬁ - ifi/t/h+0(g2)], and taking the
short time limit t — 07, the off-diagonal (transition) matrix elements ({le}l(ﬁl(t)l{Nl»}) tend to zero,

meaning that the instantaneous rates of the collision processes vanish (quantum Zeno effect [57]).

For these reasons, the QBE is often regarded as a phenomenological ansatz rather than being
justified from the microscopic point of view. In Chapters 5-7, we will show that — under the
inclusion of all two body interactions and accounting for the finite phase coherence time 7.y
between two colliding particles (avoiding the Zeno paradox) — the derived condensate growth
equation (6.5) resembles the QBE in Eq. (2.17) for k=0 refering to the ground state mode, and
assuming a finite with of the o-function. Our quantum approach does not impose the assumption
of microscopic energy conservation, following naturally in the derivation of the master equation.
Support to the validity of the QBE is given by the master equation as concerns the use of single
particle wave function for non-interacting atoms: we will show that corrections of the atomic single
wave functions with respect to atomic interactions (neglected in the microscopic derivation of the
QBE) occur indeed as ¢/(¢%)-terms in the time evolution of single particle occupations, scaling as
ap'/® < 1 relatively to the leading order contribution (governed by the QBE). Under the restriction
to two body collisions and therefore to contributions proportional to g2 in the limit ap'/3 < 1,
the QBE (2.17) is thus perfectly justified from the microscopic point of view, despite the lack of
the finite I' width of the o-function arising from the finite spatial phase coherences between the

quantum particles — which has to be included (see Chapter 7).
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Since the product of the different occupation numbers on the right hand side of Eq. (2.17)
describes the equilibration of the atoms in the gas due to atomic two body collisions, Bose-
Einstein condensation is studied within the QKB by regarding the population of the ground state
mode k = (0,0,0) in Eqg. (2.17). A practical problem for simulating the QBE, however, is that the
degeneracy of states increases rapidly with increasing energy. For example, the choice kpT = 10hw
in an isotropic harmonic trap already limits significantly the numerical speed [59]. Nevertheless,
the QBE can be simulated numerically for small total particle numbers (N ~ 100 — 1000) assuming
that each occupation number £ with arbitrary K refering to the same energy depends only on the
energy of the state® (see Section 2.4.4). The advantage of the condensate growth equation (6.6) is
that it can be applied in a large desired range of particle numbers (we probed the range N = 200 to
N =10°).

2.4.2 Pioneering works of Levich and Yakhot

First investigations on Bose-Einstein condensation have been performed by Levich and Yakhot [60]
using the QBE in order to study the dynamics of a gas in a box coupled to a bath of fermionic
particles below the critical temperature. In this first study, the authors made the important assertion
that there exist two macroscopically distinct stages of condensate formation, the first being a fast
equilibration of the gas’ high energetic part within a few two body collision times (thermalization),
Teol ~ 50— 100 ms, and the second stage, the actual formation of the condensate® — highlighting a
clear separation of the time scale 7., for thermal equilibration of the non-condensate part of the

gas from the time scale 7( for Bose-Einstein condensation.

2.4.3 Predictions of Kagan, Svistunov and Shlyapnikov

First considerations on Bose-Einstein condensation by Svistunov [61] were also conducted for
the simplified case of a Bose gas in a box, replacing the terms (f;+1) by 1, and thus assuming
fy <1in Eq. (2.17). Within this approximation, Svistunov was led to an analytical solution for the
distribution function fy(E,t) being a function of energy E. According to Svistunov, the distribution
fo(E, t) propagates from high energies to the ground state energy within a time scale 7 after it
returns to the initial energy region. The predictions of Svistunov correspond to our observation that

particles are transported from the non-condensate modes towards the condensate mode (with net

350 that each state with the same energy has the same occupation number/probability, what represents the ergodic dynamics
assumption
4In accordance with the separation of time scales found by Holland, Walser and Cooper [59] (see Section 2.4.4).
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positive current towards the condensate mode below T.), until a slow (linear) convergence® into a
detailed balance particle flow (compare Chapters 6, 8).

Subsequently [61, 62], Kagan, Svistunov and Shlyapnikov studied the dynamics of condensate
growth in more detail again showing that there exist two distinct stages of condensate formation:
Initially, the non-equilibrium state of the gas rapidly equilibrates and implies the transport of high-
energetic particles to the low-energy region, occuring on the average time scale 7., of two body
collisions in the gas, which is equivalent to the observations of Levich and Yakhot [61, 62] (see
Section 2.4.2) and the results of Holland, Walser and Cooper [59, 63] (see Section 2.4.4). Our
theory will show that this separation of time scales — theoretically found by Levich et al., Walser
et al., and experimentally confirmed by Miesner et al. [64] — enables and justifies the derivation
of a Markov quantum master equation. The second step comprises the experimentally observable
condensate formation process, where average macroscopic occupation of the ground state mode
occurs within a time scale 7, which is much longer than the time scale of two body collisions, T...

Kagan, Svistunov and Shlyapnikov cannot give a number for the time scale 7o, however providing
a qualitative understanding of Bose-Einstein condensation. In contrast to 7, the time scale 7., ~
50 — 100 ms can be theoretically estimated for a thermal gas (see Chapter 3). A direct monitoring
of the full quantum distribution during the second stage of Bose-Einstein condensation in real-time

is displayed in Chapter 6.

2.4.4 Kinetic evolution obtained from Holland, Williams and Cooper

In an early work of Holland, Williams and Cooper [59], the kinetics of condensation formation are
studied in a harmonic trap using a simulation procedure of the QBE within the ergodic assumption.

Therein, the authors find the characteristic dynamical behavior of exponential condensate growth,
fo®) = fo(eo) [1—e7/0] 2.20)

where fy(0) is the equilibrium condensate occupation (which depends on specific parameters such
as temperature, trap frequencies, etc.), and 7o ~ 1...4 s, the characteristic time scale of condensate
formation, being extracted from the condensate growth curves obtained from the exact numerical
propagation of the QBE. The times scales are in agreement with our results in Chapters 6, and

Eq. (2.20) qualitatively resembles the condensate growth Eq. (6.6) for the average condensate

5The slope of the linear growth is time dependent and tends to zero while reaching the equilibrium state.
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population as predicted by our master equation theory of Bose-Einstein condensation.

The exact numerical propagation of Eq. (2.17) is possible to be carried out for small particle
numbers of the order of N = 10?~103, entailing the dynamics of the expectation value of the average
condensate occupation, fo(t). As evident from Eq. (2.17), the full quantum state of the Bose gas
cannot be reproduced from the QBE. The equilibrium occupations of non-condensate single particle
modes f;:(c0) are found [59] to be in accordance with Bose-Einstein statistics (including the discrete
nature of single particle levels (see Chapter 1)), and hence with the results of our quantum master
equation theory (see Chapter 8). Again, the important implication of the QBE for our quantum
master equation of Bose-Einstein condensation is the separation of time scales between the thermal
equilibration in the gas from the condensate formation time. The time scale for equilibration in the
non-condensate, i.e. the high-energetic part of the gas, is [59, 63, 65] of the order of the average
time scale for two body collisions, 7., ~ 50 —100 ms, whereas condensation formation is predicted

to last a few seconds.

2.4.5 Stoof’s contribution

Stoof [66, 67] adopts the distinct stages of condensation formation in a Keldysh formalism for the
condensate mean field. The central result of this theory is that the initial condensate population
(nucleation) is due to particle transport from energetically low lying states towards the condensate
mode, within a time scale 7, the relevant time scale for the first equilibration stage of condensation
— as in the theory of Kagan, Svistunov and Shlyapnikov (see Section 2.4.3). In addition [68], Stoof
presented a Fokker-Planck equation for the distribution function of the condensate mean field, which
could highlight the coherent nature of bosonic particles. A numerical solution of this complicated
equation, however, has not yet been published (to the best of our present knowledge). Stoof’s
main assertion concerning the (non-equilibrium) dynamics of the gas is thus that population of the
condensate mode occurs at the expense of the energetically low-lying states, a fact that agrees with
the condensate formation rates of the present thesis (see Chapters 6, 7). The main contribution to
condensate feeding therein is due to the overlap of weakly excited single particle states with the

condensate wave function after the initiation of the condensate formation process.

2.4.6 Quantum kinetic theory

Quantum kinetic theory (QKT) [17, 18, 69, 70, 71, 72, 73, 74, 75, 76] is the closest non-equilibrium

approach to our quantum master equation theory. The results of quantum kinetic theory are
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summarized for three-dimensional, trapped Bose gases [17, 18], being close to experimental setups
and to the case typically considered numerically in Chapters 6 and 8 of this thesis. We point out

important conceptual improvements of our theory.

In QKT, single particle states of the Bose gas are devided into a condensate band, Ry, and a non-
condensate band, R, (we adopt our nomenclature 0 and L for condensate and non-condensate,
respectively), the first containing all single particle states of which the spectrum is significantly
shifted (with respect to the unperturbed one) by the presence of a large average condensate
fraction, and the latter consist of all states, where this shift can be neglected. Since the temperature
in the experiment is sufficiently large, implying a large non-condensate particle number, the state

of the non-condensate is approximated by an undepleted thermal mixture,
pu(T) =2 texp|-p(Ho - pNL)|, (2.21)

where #{, is the Hamiltonian of the non-condensate, acting on number states associated with
R, only, N, is the (constant) equilibrium particle population in R, u, is the time independent
(assuming no depletion of the non-condensate) chemical potential of the non-condensate, and
B = (kgT)~! is the inverse temperature (of the bath and the locally thermalized non-condensate part
of the gas). Hence, the Bose gas in QKT represents an open system, meaning that particles are
exchanged with an external reservoir (because N is fixed and Ny grows), and detailed balance
particle flow at equilibrium is particularly reached with the (virtual) external, particle reservoir.
In contrast, we assume the particle number to be conserved and respect the depletion of the

non-condensate during condensate formation (serving as a finite size thermal environment).

Within QKT, the total state 6(t) of the Bose gas is supposed to be a product state of the reduced
condensate density matrix, po(t) = Tr (), and the time independent thermal state p, (T) describing

the non-condensate, i.e.
6(t) = po(t)® pL(T), (2.22)

even in the presence of particle exchange between condensate and non-condensate. As we will
see in Chapter 5, this is in general not true for a closed gas containing a finite particle number.
The derivation of the master equation for various different two body interaction terms follows

the standard quantum optical procedure [58, 77]. Two body interactions are distinguished by
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interactions terms which lead to transport of particles between the bands Ry and R, , and those,

which leave the occupations in Ry and R, unchanged.

For sufficiently low temperatures and large condensate occupation [17, 18], the condensate
band reduces to only one single particle mode, Wy (¥). The bosonic field operator W(¥) hence splits
into a condensate part, Wy(¥), which is (to accuracy 1/N) determined by the time-independent
solution of the Gross-Pitaesvkii equation with N particles occupying the single particle ground state
mode W (¥) (see Eq. (2.15) of Chapter 3) and by the non-condensate field ‘iﬁ(f‘), expanded in the
momentum basis, which spans the single particle subspace orthogonal to the condensate mode.

As mentioned before, the non-condensate is treated as an undepleted thermal mixture of non-
condensate particles, see Egs. (2.21, 2.22), with a linearized non-condensate Hamiltonian using a
Bogoliubov transformation [17, 18]. An equation for condensate growth is obtained by evaluating
the different terms for two body interaction processes (see also Chapter 4), and by neglecting terms
which act within Rg and R only, as well as terms which account for pair processes, i.e., processes
which create and annihilate two condensate particles simultaneously. Those processes are found
to change the condensate dynamics only slightly, confirmed in Chapter 7 of this thesis, showing
that they occur as off-resonant (not energy conserving) in the dynamical evolution of the gas.

All together, this leads to the following equation for the diagonal elements p(No, t) = (No|po(t)|No)

of the reduced condensate density matrix [17, 18]:

dp(Ny, t
PN N A* (N =1, T) = 2No + 1)A* (No, T)p(No, 1
ot (2.23)

+ 2(N0 + 1)/\_(1\]0 + 1,T)p(NO + 1) - ZNQA_(No,T)p(NQ, t) .

The essential physics of Bose-Einstein condensation lies in the condensate feeding and loss rates,

A*(No,T) and A~(Ny, T). Within quantum kinetic theory, they are given by

2.2 L S ..
AE(No, T) = = f dF f f f f AR dT diih dft 7% 7 11, R)6(Aw() )5 (k+T——R), (2.24)

2m2m3
where

2107 2 > 1 - = v - v l'_»~‘7
F (7 k1, m, 1) = fi(1) fz (D[1 +fﬁ(F>]W f dv ‘Ifo(r+§)‘lfo(r—§)ek , (2.25)
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for feeding processes, and

N -

TR T ) = L0+ 1A + 10 s [ 09w+ Do, @26

for losses of condensate particles. Here, f;:(¥) are occupation numbers of non-condensate particles

2
with momentum K at position ¥, Wy(f) is the condensate wave function, w = wp(¥) = hK /2m +
Vext(F)/1, given the external confinement of the three-dimensional harmonic trapping potential,
Vext(F) = m/2(wxx* + wyy* + 0:2%). Aw(F) = wy(f) + 0 (F) — wz(¥) is the energy difference of a
particular two body collision process, respectively, and the 6 symbol is a Kronecker delta, which
doesn’t account for the finite spatial coherence time of the interacting particles. As the non-
condensate is described as an undepleted thermal mixture at temperature T, the average non-
condensate particle number occupations f;(f) are given by
1

(£ = - , 227
Je(®H) ePlhw@K)—pL] _ 1 2:27)

depending on the coordinate ¥ and the momentum K. Itis evident from the explicit expressions of
the transition rates in Eq. (2.24) that evolution Eq. (2.23) is highly complex to solve numerically,
because of the extensive momentum and spatial integrals, leading to an exponential growth of the
internal degrees of freedom. Hence, the master Eq. (2.23) was not solved in a numerically exact
way [17, 18]. Within our theory, we find the formally equivalent equation (6.3), the master equation
of Bose-Einstein condensation, which is numerically accessible — due to the choice of our single
particle basis and a perturbation theory for single particle wave functions in the small parameter

1p'/3 < 1 (see Chapters 7 and 6).

To obtain condensate formation rates approximately, it is firstly assumed in QKT that the ground
state condensate wave function W (%) is sharply peaked at the center of the trap (an assumption
which becomes accurate, if the interactions are weak and the temperature is low), so that the
spatial dependence of the occupation numbers f(¥, K) are ignored and replaced by the value f(O,lz)
at the center of the trap. The latter are approximated/replaced by the Maxwell-Boltzmann form
£, 12) - f(lz) ~ e‘ﬁ(h“’(ﬁ)‘“i), being assumed to be negligible as compared to unity, f(lz)+1 ~1 (an
approximation which looses its validity in the highly quantum degenerate limit of low temperatures).

The condensate feeding rate is finally evaluated [17, 18] to be
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2
j,';?;z eH [Buo(No)Ks (Buio(No))] , (2.28)

A*(No, T) »

where Kj is a Bessel function [40]. The loss rate is acquired from a balance condition [17, 18],

At (N, T) = ePlr—toWNo) A~ (N, T) . (2.29)

To obtain the feeding rate in Eq. (2.28), the condensate wave function and the corresponding
chemical potential is obtained by neglecting the Laplacian term of the Gross-Pitaevskii equation [16],
see Eq. (2.15), with respect to the interaction energy, called “Thomas-Fermi approximation”, valid
for strongly interacting gases. From our point of view, this varies with the second order Born
approximation needed to derive the master equation [17, 18, 77] and to the previous assumptions
for approximating W (¥) ~ W (0).

In contrast, the quantum master equation of this thesis employs the diluteness of Bose-Einstein
condensates to derive the time scales for condensate formation neglecting terms of the order
a@1/3 < 1 (see Chapter 6) in accordance with the second order iteration of the quantum master
equation. Notably, the condensate feeding and loss rates of QKT are independent of the total
number of particles in the system, and the non-condensate chemical potential is constant. One of
the purposes of this thesis is to show that the essential dynamics of Bose-Einstein condensation is
due to the change of this chemical potential accounting for the dynamics of the non-condensate
environment. The arising non-condensate number fluctuations in number representation are deeply
related to the spatial quantum coherence of the gas particles. The circumvention of the above
approximations for the transition rates is hence conceptually important, and finally leads to a
direct monitoring of the full condensate and non-condensate quantum distribution functions during
condensate formation, spelling out the interplay of spatial quantum coherences and quantum
number fluctuations (see Chapters 7-8).

The eigenvalue of the Gross-Pitaevskii equation po(Np) in QKT is evaluated within the Thomas-

Fermi approximation, given [16] by

)2/ > (2.30)

to(No) = (15aa)xa)ya)zm1/2h2/25/2No

As the Bessel function Kj is close to unity [17, 18] in Eq. (2.28), the rates are approximately
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independent (or only slightly dependent) on the condensate particle number (which is assumed to
be of the order of the total particle number N).

To study condensate formation within QKT in a quantitative manner, a “simple growth equation”
was derived from the master Eq. (2.23) under the neglect of particle number fluctuations, i.e. the

finite width of the condensate number distribution p(Ny,t) [17, 18, 19], leading to

dNo(t)
ot

=21*(No, T)[(1 - efto™mt)) No(t) +1] (2.31)
with the condensate feeding rate A*(Np, T) in Eq. (2.28). This equation was simulated to study
condensate growth [17, 73], typically leading to a S-shaped condensate growth curve, as shown in
Fig. 6.3, complying with approximately the same final saturation behavior as the exponential law
in Eq. (2.20). The relation of the growth Eq. (6.6) arising from the master equation to the growth
Eq. (2.31) is discussed in detail in Chapter 6.

Since the gas is not closed and the state is assumed to factorize, QKT can evidently not yield an

equilibrium steady state of a closed gas of exactly N number of particles.

Survey: Which current aspects can we adopt to monitor the many

body dynamics during Bose-Einstein condensation?

In essence, we can learn from, and keep the following aspects from the short introduction in the

previous two chapters:

(i) Fundamental aspects: Bose-Einstein condensation occurs, if the thermal de Broglie wave
length of the bosonic atoms is larger than their mean average distance. In this quantum degenerate
regime, particles have to be treated as indistinguishable (see Section 1.3), in order to observe
Bose-Einstein condensation.

(ii) Statistical aspects: The grand canonical and the canonical ensemble are no longer equivalent
below the critical temperature, even in the thermodynamic limit (see Section 1.5). Comparison
of predictions for condensate number expectation values and variances indicate that the most
reasonable statistical predictions are governed by the equilibrium (thermal) state of the canonical
ensemble - i.e., assuming a fixed total particle number in the gas. We will hence consider a

conserved total number of particles in the Bose gas for the derivation of the quantum master
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equation.

(iii) Condensate mode: We use the Gross-Pitaesvkii equation to define a condensate mode
(see Section 2.3). We will see in Part I of this thesis that the terms in the Gross-Pitaevskii equation
proportional to g enter the many body dynamics of dilute atomic gases only with negligible terms

of the order ag'/3

< 1. An important implication from state-of-the art experiments on Bose-Einstein
condensation (see Section 1.4) is the existence of this naturally small parameter, ag'/3, in most of the
available Bose-Einstein condensates. This parameter can be used to expand the condensate wave
function perturbatively, leading to a numerically efficient and quantitatively accurate monitoring of
Bose-Einstein condensation (in Part IlI).

(iv) Separation of time scales: Concerning theories for average condensate growth (see Sec-
tion 2.4), we use the clear separation of the time scale for rapid non-condensate thermalization
from the time scale for condensate formation. This is the fundamental background for a quantum
master equation ansatz for the condensate part which undergoes its time evolution in the presence
of the non-condensate environment. As already mentioned, the separation of time scales has also
been confirmed experimentally (see Section 2.4.3).

(v) Condensate formation: An evolution equation for condensate growth is meant to predict
a typical S-shape behavior and condensate formation times of the order of a few seconds (see
Section 2.4). In order to monitor the full quantum distributions of the Bose gas and to deduce
reliable predictions for condensate formation times, we have to well include the wave nature of the
particles, i.e. the spatial variations of the single particle wave functions, as well as the finite spatial

phase coherence time between the interacting particles (leading to a finite energy uncertainty).



52

Chapter 2. INTERACTING BOSE-EINSTEIN CONDENSATES




Part 1l

QUANTUM MASTER EQUATION OF
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Reality is what we can calculate. An experimentalist would probably replace the word

“calculate”, by “measure”.

David Gross, Nobel Lecture December 8, 2004
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Chapter 3

Concepts, basic assumptions and

validity range

This chapter briefly summarizes the novel conceptual parts of the quantum master equation theory
of Bose-Einstein condensation developed throughout Chapters 4-8.

The separation of time scales between condensate formation and non-condensate thermalization
in dilute atomic gases is discussed in Section 3.1, enabling the derivation of a Markov quantum mas-
ter equation for the reduced condensate state in the presence of the non-condensate environment.
In Section 3.2, we collect considerations on two body interactions, particle number conservation,
rapid non-condensate thermalization and the depletion of the non-condensate thermal environ-
ment during condensate formation, required in order to conceptually improve the existing theories
of condensate growth summarized in Section 2.4. The N-body Born-Markov ansatz for a dilute
Bose-Einstein condensate motivated by the separation of time scales is explained in Section 3.3.

The validity range of the master equation theory of Bose-Einstein condensation is justified for

the case of sufficiently dilute atomic gases, ap'/3 < 1, as argued in Section 3.4.

3.1 Motivation for master equation: Separation of time scales

The fundamental property behind the derivation of the master equation is the separation of time
scales between non-condensate thermalization and condensate formation. A sketch of the physical
situation to be modeled is displayed in Fig. 3.1: As the Bose gas is cooled below the critical point
with an evaporative cooling cycle, a condensate appears at the center of the trap, arising from the

residual gas of non-condensate particles [78].

57
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Intensity

0] 50 100

Figure 3.1: Evaporative cooling cycles to achieve Bose-Einstein condensation [78]. The non-condensate, corre-
sponding to the low-intensity fraction (green area — distributed around the center of the atomic cloud), surrounds
and interacts with the condensate, which is shown as the high-intensity part (yellow-red area — center of the atomic
cloud) of the backscattered light. Our goal is to model one evaporative cooling step (three different steps are dis-
played in sequences from left to right in the figure), where the gas forms a Bose-Einstein condensate due to atomic
collisions [60, 64] within a typical formation time of Ty ~ 1000 — 4000 ms [64, 76].

Considering one such evaporative cooling step (one sequence in Fig. 3.1), the typical time scale
of condensate formation is given by 7o ~ 1000—-4000 ms [17, 18, 59, 64, 76]. On the other hand, one
observes that equilibration within the gas of non-condensate particles occurs on a much time scale,
Teol ® 10—-100 ms [47, 51, 59, 64] (see also Appendix A.5). Thus, there exists a clear separation of

the time scale for condensate formation from the equilibration time within the non-condensate,

Teol KX 170 - (3.1)

Conceptually, this physical separation of time scales allows us to trace out the non-condensate, and
thereby to derive a master equation for the reduced condensate density matrix. More specifically,
the separation of time scales is expressed in two different formal assumptions required for the
derivation of the master equation: (i) we describe the non-condensate as a diagonal thermal state
for each given number occupation of the condensate and non-condensate subsystem employing
particle number conservation (N-body Born ansatz, see Section 3.3.2), and (ii) we suppose that
spatial phase coherences between the condensate and the non-condensate particles decay rapidly
within the time scale 7., (Markov assumption in a Bose-Einstein condensate, see Section 3.3.3)

faster than the finite time resolution At (coarse-grained rate of variation [20]) — yielding the Born-
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Markov ansatz for a Bose-Einstein condensate of N particles. This “N-body Born-Markov ansatz”
is discussed in more detail in Section 3.3 leading to a closed, time local quantum master equation
of Lindblad type for the reduced condensate density matrix.

Since the time scale 7 for the overall process of interest — Bose-Einstein condensation — is much
larger than At, a coarse-grained description for the time evolution is appropriate to describe also
the instantaneous rate of condensate formation with a quantum master equation.

In the following, the most important concepts to describe the many particle dynamics in the
gas are summarized, before the N-body Born-Markov ansatz for a Bose-Einstein condensate is

explained and justified.

3.2 Modeling of many particle dynamics

In this section, we summarize the strategy for modeling the N-body dynamics during Bose-Einstein

condensation. For technical details, consult chapters 4-8.

3.2.1 Two body interactions in dilute gases

In sufficiently dilute atomic gases, it is justified to account only for two body interaction pro-
cesses [79] in the Bose gas. This amounts to replace the exact interaction potential Vin(¥y, ..., EN)

by the contact potential V(f; - ;) = go(¥; — ¥;) introduced in Section 2.1,

o - 1 - - 3
Vint(F-. B) = 5 ; VE-2)+ 0(VO). (3.2)
1#]

All two body interactions are described by one effective interaction strength, ¢ = 4nh?a/m,

given [16] in terms of the s-wave scattering length a:

Amth?a
m

V(i —1)) = o(f; — 1)) . (3.3)

Using the formalism of second quantization, the N-body Hamiltonian is given by

7{ f dr \lﬁ F)[_i + Vext(a

V@) + 8 f FUOTVOVOVE, G4
3
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where W(¥) denotes the second quantized bosonic field, and " c R? the volume of the trap (see
Section 2.2). Higher order corrections to the s-wave scattering approximation are negligibly small,

if the gas is dilute, a@1/3 < 1 (see Section 2.1).

3.2.2 Condensate and non-condensate subsystems

Motivated by the separation of time scales (see Section 3.1), we split the N-particle Bose gas into
a condensate and a non-condensate subsystem. For this purpose, the second quantized field is

decomposed into

WP = Wod)ig+ W, (D) . (3.5)

Here, W((¥) denotes the condensate wave function, which we quantify by the Gross-Pitaevskii
equation (see Eq. (2.16) of Chapter 2.3). The operator 4y annihilates a particle in the condensate
mode. On the other hand, W_ (¥) = Y. Wx(Pd; denotes the non-condensate field operator, with
annihilation operators d; of the single particle modes W (), which are by definition orthogonal to
the condensate mode W () (see Section 3.2.3 and Chapter 4).

Corresponding to the splitting of the second quantized field in Eq. (3.5), the Hamiltonian in

Eqg. (3.4), including two body interactions, falls into
7’A{=7'A{0+7t{l+ri/0l, (3.6)

where 7:{() and H, denote the condensate and the non-condensate Hamiltonian'

, respectively,
and V. the various two body interaction processes between condensate and non-condensate.
The latter can be classified as single particle events (ANy = —AN, = +1, labeled by ~-), pair
events (ANg = —AN, = +2, labeled by «) and scattering events (ANy = AN, =0, labeled by ©),

according to the net exchange of condensate particles AN per two body interaction process.

3.2.3 Thermalization in the non-condensate

To model the thermalization process arising from self-interactions in the non-condensate during

condensate formation, we introduce the following approximation: we replace the non-condensate

"The Hamiltonian parts F and F{, are time independent.
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Figure 3.2: Representation of microsopic many particle dynamics. The total number of atoms in the Bose gas is
fixed to N and conserved during condensate formation. Atomic collisions within the non-condensate are modeled
by coupling the non-condensate part of the gas to a heat reservoir, which has a fixed temperature T. The condensate
part is initially not in detailed particle balance with the non-condensed fraction, and both systems undergo a net
exchange of particles, induced by atomic two bodly collisions between condensate and non-condensate atoms, which
are fully taken into account in the derivation of the master equation. Finally, an equilibrium steady state of the gas is
reached corresponding to the appearance of the condensate after one evaporative step in Fig. 3.1 below T, exhibiting
detailed balance particle flow between condensate and non-condensate.

Hamiltonian , by its linearized version, and account for thermalization within the non-condensate
by coupling the non-condensate to an external heat reservoir of fixed temperature T. Thereby, we
arrive at the picture given in Fig. 3.2, demonstrating the modeling of the microscopic many particle
dynamics and the subdivision of the Bose gas into the subsystems condensate and non-condensate.

It is important to note that only energy, but no particles are exchanged with the thermal
environment, since any two body interaction event in the Bose gas leaves the total particle number
invariant. Hence, the particle number N of the Bose gas remains conserved (after the completion
of the evaporative shock cooling cycle) throughout the whole condensation process.

Furthermore, we note that only the non-condensate but not the condensate subsystem is directly
coupled to the environment (because of the separation of time scales), see Fig. 3.2. Thus, the
condensate subsystem is only coupled to the non-condensate via the interaction Hamiltonian V.
— even in the limit of very weak interactions, a — 0%, i.e. the steady state depend on Yor. In
contrast, the standard thermodynamical approach in the canonical ensemble (compare Section 1.5)
assumes the coupling of the whole system (condensate and non-condensate) to the thermal heat
bath, see Fig. 1.4. The corresponding thermal equilibrium state is independent of Vo, in the limit
a — 0%, where it reduces to the thermal equilibrium state of an ideal gas. These considerations

indicate that there is, apriori, no guaranty that, according to the model shown in Fig. 3.2, the Bose
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gas approaches finally a thermal equilibrium state. We therefore compare the steady state of the
quantum master equation to the canonical Boltzmann thermal state of an ideal quantum gas in
Eq. (1.23) (see Chapter 8), showing that this steady state is a thermal Boltzmann state under the
Markov dynamics assumption (which applies, if the interacting particles exhibit a finite spatial phase

coherence time, hT‘lﬁ < 1).
col

3.3 N-body Born-Markov ansatz

Here, we explain the Born-Markov ansatz for a Bose-Einstein condensate of exactly N particles
under the inclusion of two body interactions, arising from the coupling of the non-condensate to a

thermal bath (see chapter 3.2.3) and the separation of time scales discussed in Section 3.1.

3.3.1 General Born-Markov ansatz

The basic, general assumption for the derivation of a quantum Markov master equation [19] is the
neglect of memory effects of the system’s past onto its present time evolution, due to the rapid
decay of memory effects in the external environment. In other words, the total state of the system
plus environment at any time ¢ is considered to be approximately characterized in terms of the
reduced state of the system at the same time ¢, independent on its previous history.

Typically, one therefore assumes initially a product state between system and environment, the
latter being in (local) thermal equilibrium, p(0) = ps(0) ® pe(T). Furthermore, the environment is
supposed to remain in the same thermal state also during the subsequent time evolution, i.e., the
total state is p(t) = ps(t)®pPre(T)+06p(t) with negligible deviation 6p(t) from a product state of system
and environment.

In the present case of the condensate as a system and the non-condensate as an environment
part, however, the total N-body state ™) () of the gas is actually not a product state between a

condensate and non-condensate density matrix,

™) # ps(t) @ pe(T) - (3.7)

This is due to correlations originating from particle number conservation: obviously, if there are
Ny populating the condensate mode, this determines the number of non-condensate particles as

(N — Np). However, it turns out that this is not excluding the derivation of a Markov quantum
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master equation, as long as the total state ™) (t) is completely determined by the reduced state of

the condensate, py(t) = Tr, 6MN)(#), such as in Eq. (3.8).

3.3.2 Born ansatz for gases of fixed particle number

For this purpose, the constraint of particle number conservation has to be employed when ap-
proximating the non-condensate by a thermal state. Indeed, since the particle exchange with the
environment is not allowed, thermal equilibration can only occur within subspaces of fixed parti-
cle number. Assuming, in addition, that any coherences between subspaces of different particle
number are destroyed by the thermalization process leads us to the following ansatz for the total

N-body state of the gas:

N
6™ (t)= Y pn(No,HINoXNol® p (N = No, T), (3.8)
Np=0

where [No){Ny| denotes a state of Ny particles populating the condensate mode W (%) (see Sec-
tion 3.2.2), weighted with the positive probability distribution px(Np,t). The states p (N — Ny, T)
in Eq. (3.8) represent thermal mixtures of (N — Np) non-condensate particles,

. ~pH.
PpL(N=No,T) = Zn-N, ma@N—NO , (3.9)

leading to non-condensate single particle occupations (see Appendix A.3):

1
~ eBle—ui(N-NoD) _1 °

felN =Ny, T) = Tr {a}agp . (N — No, T)} (3.10)

The temporal change of single particle occupations while reaching the Bose condensed phase can
thus be described in terms of the function u, (N — Ny, T), which normalizes non-condensate single
particle occupations to (N — Np) particles, given that Ny particles populate the condensate mode.

Due to particle number conservation, 1, (N — Ny, T) obeys the closed equation:

1
;; Fe Ny _7 - N =No)- (3.11)

The N-body Born ansatz in Eq. (3.8) furthermore allows us to express the entire state of the Bose
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gas as a function of the reduced condensate state defined by the condensate number distribution
pn(No, ), thereby enabling the derivation of a closed evolution equation for the latter under the
inclusion of all two body interaction processes between the condensate and the non-condensate
particles. This equation, however, may still contain memory effects. In order to get a time local
Markov quantum master equation of Lindblad type, the rapid decay of spatial phase coherences

(Markov assumption) has to be adopted.

3.3.3 Markov approximation for a Bose-Einstein condensate

Any collision event of two particles in a quantum gas produces spatial phase coherences (coherent
coupling of single particle wave functions in position space) between them. The thermalization
process of the non-condensate environment erases these coherences, thus providing the rapid decay
of correlations between system and environment required for the Markov dynamics assumption in
a Bose-Einstein condensate. The corresponding decay rate can be estimated [47, 51, 59, 64] to be
Teol = (00%0)~1 ~ ms, with @ = \3kgT/m ~ cm/s (see also Section 2.4 for a detailed discussion),
and implemented in our theory by assuming an irreversible Gaussian decay of the non-condensate
correlation functions within the time scale ;.

Microscopically, this decay process can be understood as due to the fact that a non-condensate
particle with which a condensate particle obeys phase coherence has a higher probability to collide
(randomly) with many other non-condensate particles than subsequently colliding with a condensate
particle again. Hence, spatial phase coherences between condensate and non-condensate particles

are rapidly destroyed by non-condensate thermalization.

3.4 Limiting cases and validity range

Now, the dilute gas limit, the perturbative limit of very weakly interacting gases and the thermody-

namic limit are differentiated and discussed [10].

3.4.1 Dilute gas condition

The dilute gas condition is defined by the requirement that the gas parameter ap'/3 < 1, where
o is the atomic density and a is the s-wave scattering length. As a matter of fact, this condition
theoretically arises from the Born approximation and therefore from the use of an s-wave scattering

length a (see Section 2.1) to describe two body interactions. This reduces the validity range of the
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master equation theory to

E=ap'P <. (3.12)

Since the condition ap!/® < 1 implies a%p < 1 (but not vice versa), it justifies as well the neglect
of three body and higher order atomic collisions [59]. Hence, & is considered to be the small
parameter of our theory, which is indeed the case for many experiments treating dilute atomic

gases where typically & ~ 1072 [15, 23, 24, 32, 64] (see Section 1.4).

3.4.2 Perturbative limit

For numerical simplicity, quantitative numerical calculations throughout the thesis are restricted to
the weakly interacting case, formally indicated by the limit & — 0" with ¢ = const and a # 0. Within
this limit, a perturbation theory for single particle wave functions shows that the transition rates
between condensate and non-condensate to the lowest non-vanishing order are still proportional
to a%, however being fully quantified by the Schrodinger equation (see Chapter 7).

The perturbative limit yields equilibrium distributions for weakly interacting gases given by the
ratio of the leading order terms for two body transition rates. However, these do still contain the
specific nonlinearity of two body collisions which lead to condensate formation, in contrast to a
thermal state of an ideal gas. The steady state distributions of the master equation are therefore
compared to the thermodynamic prediction of the canonical ensemble (in Section 1.5.2) for non-

interacting gases.

3.4.3 Thermodynamic limit
It is important to distinguish the dilute gas limit from the thermodynamic limit [10], which is

specified by the condition that

N — oo with T, =const, (3.13)

being in general different from the dilute gas limit in Eq. (3.12). The thermodynamic limit accounts
for the asymptotic of large particle numbers and large traps at constant density, independent of the

actual value of the interaction strength g and the atomic density g. In contrast, the dilute gas and
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the perturbative limit employ that the effective interaction range of the particles is much smaller

than the average distance between them.

3.4.4 Semiclassical limit

The semiclassical limit assumes the single particle spectrum to be quasi continuous (see chapter 1),
replacing the sums over states by an integral to calculate thermodynamic properties (such as the
non-condensate number occupation), smearing out the details (in particular the degeneracy of
single particle states) of the single particle spectrum. This limit results in a (positive) shift of the
critical temperature for Bose-Einstein condensation with respect to the prediction for T, including
the discreteness of the single particle energies (see Chapters 1 and 8). We will see in Chapter 8
that the shift of the critical temperature does not originate from the neglect of the single particle

ground state energy (zero-point motion [15]), but is a result of the quasi continuum approximation.

3.4.5 Physical realization of limiting cases

The semiclassical and the thermodynamic limits are difficult to realize exactly [15, 80], being likely
to reflect the physics of bosonic gases with particle numbers of the order of Avogadro’s number,
N ~ 10?3, a fact that motivates the development of quantitatively accurate theories for mesoscopic
quantum gases.

The situation is different for the perturbative and the dilute gas limit valid in particular for small
atomic gases, which are used throughout the thesis: For a three-dimensional (isotropic) harmonic
trap, the formal perturbative limit, & — 0% with o = const. and a # 0, is well realized, if the single
particle energy (hw) exceeds the condensate interaction energy (¢No/L?), with L = Vh/maw as the
unit length of the harmonic oscillator (see Section 1.5). In this case, /LNy < 1 is a leading condition
for the applicability of perturbative transition rates, being realized with small atomic samples of the
order of a few hundred of atoms (or using Feshbach resonances to reduce the atomic interaction
strength [15]). Quantitative predictions of the perturbative limit may as well apply in the dilute gas
regime as indicated by the comparisons to experimental condensate formation times in Chapter 6.
This statement, however, cannot be proven analytically.

The dilute gas limit — the validity range of the master equation theory of Bose-Einstein condensa-
tion — is satisfied in most experiments with currently available alkali species [15] (see Section 1.4).

A leading condition for its applicability is therefore ap!/3 < 1.



Chapter 4

Quantized fields, two body

interactions and Hilbert space

The physical separation of time scales between non-condensate thermalization and condensate
growth (see Section 3.3.1) motivates a formal decomposition of the gas into a condensate “system”
part and a non-condensate “environment” part.

In this chapter, we establish the algebraic background for the derivation of the master equation.
To this end, the condensate mode is defined in Section 4.1. In Section 4.2, this definition is used to
separate the second quantized condensate field from the non-condensate field. Correspondingly,
the interaction term of the N-body Hamiltonian in Eq. (3.4) yields formally nontrivial two body
interactions between condensate and non-condensate besides the Hamiltonian parts describing the
coherent time evolution in the master equation later on. Interactions in a Bose-Einstein condensate
fall into three different physically motivated classes of two body vertices: single particle, pair and
scattering events. Finally, diagonalization of the Bose gas’ non-condensate Hamiltonian leads to a
single particle basis in Section 4.3, defining the underlying single particle Hilbert space as well as
the many particle Fock-Hilbert space for a gas of N indistinguishable particles. Those are analyzed

in Section 4.4.

4.1 Definition of the condensate

For agas of N interacting bosonic particles in an arbitrary external trapping potential, the condensate
and the non-condensed part can be defined [81] with the help of the single particle density matrix

of Eq. (1.28),

67
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PV =NTry ne™(t), (4.1)

.....

where 6MN)(t) is the exact N-body state of the interacting system at time t, and p(V)(t) is normalized
to N. Taking the trace in Eq. (4.1) in coordinate space, like in Eq. (1.28), immediately shows that
p(t) is hermitian [2, 48, 49] and hence diagonalizable. The eigenvectors {|®;),k € N} of p()(t)

yield an orthonormal basis for one particle in the interacting system,

PO DOIDL(D) = fi(h)Pk(t) (4.2)

The eigenvalues of Eq. (4.2) denote average occupation numbers fi(f) of the single particle states
{|®x)} in the gas of N interacting atoms.
In order to determine a condensate mode, we consider macroscopic occupation of only one

mode in the long time limit t — co:

(No)(e0) = sup{fi(0),ke N} ~ O(N), (4.3)

meaning that gp(c0) = (Np)(c0)/N = const. in the thermodynamic limit, whereas all other modes
remain weakly occupied, fi(co) ~ €(1), for k # 0. Bose-Einstein condensation is now supposed to
occur into the single particle mode |[©g) = [Dg(c0)).

The replacement of the time dependent condensate mode by the equilibrium one becomes
quantitatively accurate in either one of the following cases: For weak interactions & < 1, where the
condensate state is approximately the ground state of the external trapping potential [Dg(t)) = |xo)
at all times, or, for initial states close to equilibrium, such that the condensate ket vector [®) does
not significantly change in time.

In order to quantify the condensate mode, we adopt [48, 49, 82] that, for dilute atomic gases at
temperatures below T, |®p) is determined to terms ¢(N~!) by the Gross-Pitaevskii equation with

all N particles occupying the condensate mode:

hZ

—— * Veut(®) + SNIWo@)F* — 10| Wo()) =0, (4.4)
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For this reason, the approximate wave function [Wy) in Eq. (4.4) is employed from now on, instead

of the exact, but quantitatively unknown condensate mode |®).

4.2 Interactions between condensate and non-condensate

In Section 4.1, we have defined the condensate mode [Wj) in an interacting Bose gas. Here, a
decomposition procedure for the full two body Hamiltonian in Eq. (3.4) is proposed, particularly
for the nonlinear interaction term. The latter separates into three different types of two body
interaction processes between condensate and non-condensate fields: single particle, pair and

scattering events, which will be taken into account in the quantum master equation.

4.2.1 Separation of the second quantized field

The total bosonic field W is expanded in the basis' {|¥}), k € Ny}, where [¥y) is the Gross-Pitaevskii
ket in Eq. (4.4), and {|W),k € N} an arbitrary orthonormal, complete basis in the subspace of

non-condensate particle wave functions. It thus separates into

\i] = |\y0>ﬁ0 + Z |\I/k>ﬁk = \i/() + qu_ . (4.5)
k+0

In Eq. (4.5), dx and ﬁ]‘: are creation and annihilation operators, respectively, which satisfy usual
bosonic commutation relations [ﬁk,ﬁ” = Oy and [dg, 4] = [dz,d;‘] = 0. The corresponding Fock
states on which these operators act are denoted by [Ny, {Nk}); the interpretation of a many particle
Fock state is hence to find Ny particles in the condensate mode [Wy), and {N¢} = {N1,N>,...} in the

non-condensate single particle modes {|\W1),|W¥>),...}.

4.2.2 Decomposition of the Hamiltonian

The following decomposition of the Hamiltonian only requires the validity of the Gross-Pitaevskii
equation for the condensate field, Yo(¥), and the orthogonality of the two fields ‘ifg and ¥,

meaning that

f dF Vi@V, @ =0. (4.6)
€

1The choice of the basis states {IW), k € N} is arbitrary at this point, despite that the basis states have to be chosen pairwise
orthogonal to |Wy). Later in Chapter 4.3, we will choose the basis states {|¥}),k € N} such that they diagonalize the linearized
non-condensate Hamiltonian.
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The Hamiltonian % in second quantization, including two body interactions, is given by Eq. (3.4).

The decomposition in Eq. (4.5) splits the Hamiltonian F{ into three basic contributions

77:7?0+7Aﬁ+(%l, (4.7)

where Fy and . describe a pure condensate and non-condensate, respectively.
The condensate Hamiltonian H contains the single particle contribution linear in the field ¥,

as well as the nonlinear, self-interacting two body interaction term, and is given by

A ) -2
Ho = f dr W ?){ My Vext(®) | Wo(®) + = f dF W@V @ Wo@®Wo () - (4.8)
@ @

The Hamiltonian of the background gas 9, includes only non-condensate field modes:

2—)2

WL—fdr\Iﬁ F)[——+Vextf)

v.@+5 [ VeV enene. @
4

The decomposition of the field in Eq. (4.5) furthermore induces different interaction terms between
condensate and non-condensate fields, as evident from the Hamiltonian in Eq. (3.4), which are
summarized by the term ¥, . It includes all possible two body interaction processes which will

be separated and specified in the following section.

4.2.3 Two body interaction processes

The term Vg, includes all possible two body interactions which can naturally be decomposed
into three distinct kinds, according to the different net exchange of condensate particles, ANy, per
interaction process. We call these different interaction events single particle (ANyg = —AN, = +1,
labeled by X =~-), pair (ANg = —AN, = +2, labeled by X =«+) and scattering (ANy = AN, =0,
labeled by X =0) processes. Moreover, we distinguish condensate feeding and loss processes,
corresponding to an effective annihilation (X), or creation (X™*) of a condensate atom.

In the following, it will be verified that all two body interactions can be split and identified as

r’VJ_O:r,VW'F(,‘\/W"'rVO. (4.10)
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o O
0 0 l 0

Figure 4.1: Diagrammatic representation of all microscopic two body loss processes in Eq. (4.10). Upper two
diagrams represent single particle losses (~+), where one non-condensate particle is effectively created and one
condensate atom is annihilated. The collection of all first order terms in the non-condensed field, &(V 1) (upper
left diagrams), vanish in combination with crossed single particle terms, as a consequence of the Gross-Pitaevskii
Eq. (4.4) and the orthogonality condition in Eq. (4.6). Lower diagrams display pair losses («~, lower left) and
scattering processes (O, lower right). Conjugate processes (not shown), related to condensate feeding, are obtained
by exchanging the corresponding labels with respect to the diagram center.

The different interaction terms are illustrated by a diagrammatic representation of the Hamilto-

nian’s matrix elements [20, 45], meaning that a diagram

A* B*

= Scibatatacap (4.11)

refers to an interaction process in which two particles C and D populating the single particle modes

W and Wp are annihilated, resulting in a creation of two particles, A and B, occupying subsequently
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the single particle modes W4 and Wp. Each diagram is associated with a probability amplitude,
Cep = L df Wi (OWE(OWc@Wp(D) , (4.12)

multiplied with the interaction strength ¢/Z, which gives the interaction energy of the different
two body vertices, where Z =1 for single particle (X =~-), Z = 2 for pair (X =«w) and Z =1/2
for scattering (X =0) processes. The factor Z is hence related to the multiple occurrences of
condensate and non-condensate fields in the interaction term (i’m in Eq. (4.10).

The different types of two body diagrams — only including loss events, whereas feeding processes
are formally obtained by exchanging the (time) arrows in the diagram — are depicted in Fig. 4.1:
The nonlinear part of first order diagrams (&(W_), upper left in Fig. 4.1) cancel out with mixed,
single particle contributions between condensate and non-condensate fields in the Hamiltonian in
Eqg. (3.4). This is a consequence of the orthogonality of the two fields ‘i/g(l?) and W (7), and of the fact
that Wy(¥) is the solution of the Gross-Pitaevskii equation in Eq. (4.4). Indeed, combining the upper
left diagrams in Fig. 4.1 and their hermitian conjugates with mixed single particle contributions in

Eq. (3.4), entails the term

2—)2

f df ¥l (@ [% + Vext(D) + \ifg(f)\ifo(a]\ifo(a +h.c. = g f df Wl @Wo(@) +h.c.=0, (4.13)
¢ €

which vanishes for sufficiently weak interactions,? because of Egs. (4.4, 4.6).

All remaining diagrams contribute to interactions between condensate and non-condensate, and
are grouped into single particle (according to ANy = +1 and AN, = F1 - upper right diagram in
Fig. 4.1), pair (ANg = 2 and AN, = ¥2 - lower left diagram in Fig. 4.1) and scattering (ANy = 0
and AN, =0 - lower right diagram in Fig. 4.1) events.

Generally, a pair event (0(¥2), lower left diagram in Fig. 4.1) effectively creates (annihilates)
two condensate particles and annihilates (creates) two non-condensate particles. Pair loss events
(see bottom - left diagram) destroy two condensate and create two non-condensate particles by
self-interaction in the condensate. Vice versa, a pair feeding event is an interaction of two non-

condensed atoms, creating two condensate particles (bottom - right diagram). These processes can

2
o

since in this case, Wy (?) is still an approximate solution of the Gross-Pitaevskii equation (4.4) for arbitrary Ny with eigenvalue
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consequently be summarized by all diagrams of the type

k* * 0* 0*

which represent the interaction term

~

W%w=gﬁ}ﬁ@HﬂWHﬂWMﬂWNﬂ+gl;ﬂ¢ﬁﬂ@yﬂ®gﬂ®ﬂﬁ- (4.14)

Scattering events (0(W?2), lower right diagram in Fig. 4.1) leave the condensate and non-condensate

particle number unchanged, ANy = AN, =0:

0* k*
O
I 0
‘%=%fﬁ%@%®%®%®. (4.15)
4

Finally, the last and most important type of two body contributions during the process of Bose-
Einstein condensation are single particle events (0(\W3), upper right in Fig. 4.1). Single particle
losses originate from interactions between one non-condensate and one condensate particle, which
lead to an annihilation of the condensate and creation of one non-condensate particle (bottom —
left diagram). Here, a single particle feeding process is a creation of a condensate particle, which
originates from self-interaction in the background gas (bottom — right diagram). The sum of all

these events are all diagrams of the type

k* * m* 0*

which correspond to the interaction term
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%=§ f df‘i{(f)\i{(f)%m\ifo(m% f SEAOVHGN NG AGR (4.16)
¢ 4

We subsequently get the exact decomposition of the total Hamiltonian # into

H=Hy+H +V s + Vs +Vey, (4.17)

where the different interaction terms, V... in Eq. (4.16), V..., in Eq. (4.14) and V', in Eq. (4.15),
describe single particle (~), pair («+~) and scattering () processes between condensate and non-

condensate atoms.

4.3 Hamiltonian of the non-condensate background gas

The non-condensed cloud is a rapidly decorrelating and thermalizing gas of particles. We describe
this thermalization process by the coupling of the non-condensate to a heat reservoir, thus using
the N-body Born-Markov ansatz for the state of the gas (see Chapter 3), adding the irreversible
decay of non-condensate correlations arising from the thermalization process [59, 63, 64] by the
transformation:

(5"*(?, T)é"(?’,o» — exp[-I27?] (5"*(?, T)é"(?’,o» (4.18)

Born—-Markov ’

with T = ’l'c_oll the thermalization rate, EEY. 7 - 7, arbitrary non-condensate field operators
(see Chapter 5), and where the right hand side of Eq. (4.18) indicates the ensemble average over
the Bose gas’ state 6™)(t) in Eq. (3.8) in N-body Born-Markov approximation. Omitting negli-
gible &'(¢%)-contributions (arising from the nonlinear self interaction term of the non-condensate
Hamiltonian %{,) from the master equation describing the dynamics of two body collisions (~ g2),
only the linearized part of the non-condensate Hamiltonian 94, is needed to describe the thermal-
ized non-condensate state occuring in the correlation functions of the type like in Eq. (4.18). The

non-condensate Hamiltonian is thus replaced according to

-2
—h?V
2m

H, ~ f df ‘ifI(F)[ + Vet | VLD + O(3) - (4.19)
4
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We will see in Chapter 5 in more detail that the thermalization process occuring on a time scale 7.

justifies the Born-Markov dynamics assumption for a dilute Bose-Einstein condensate [59, 63, 64].

4.3.1 Diagonalization of the non-condensate Hamiltonian

So far, the non-condensate single particle wave functions |Wy) have been chosen arbitrarily (pairwise
orthogonal to [Wy)). They are now quantified by the constraint of diagonalizing the non-condensate
Hamiltonian in Eq. (4.19).

To this end, we introduce arbitrary unitary matrices 7~ and 7" = 7!, and an arbitrary orthonor-
mal complete basis® {|©y),k € N} spanning the single particle subspace orthogonal to [Wp). Let's
denote the corresponding bosonic creation/annihilation operators by 7, and )9;: Expanding the total
bosonic field according to Eq. (4.5) in the basis |®y), and transforming the particle operators y; and

)?;: according to

. . ~t Lt
D= ;; Twiy and  Pp= ;‘;Tﬁa, , (4.20)
+ ”

respectively, for k # 0, leads to the representation of the second quantized field in a new basis set:

®=®0+Z|\I]z>ﬁl , (4.21)
1#0

where the states [\V;) are superpositions of the single particle states [©):

W) = ZTk”@k) . (4.22)
k#0

The basis {|Wy),k € N} has the same properties as {|©),k € N}: It is orthonormal, (W[\WV;) = Oy, it

is complete in the subspace of non-condensate single particle wave functions,

Y I = ) 10X0] = T - [WoXWol , (4.23)

k#0 k#0

as well as each [Wy) is orthogonal to [Wy). Since 7 is just a unitary transformation, it is easy to

3The basis {|@y),k € N} can always be constructed out of the single particle states |x;) of the non-interacting system by the
Gram-Schmidt procedure, which, however, does not necessarily diagonalize the non-condensate Hamiltonian in Eq. (4.19). Since
each ket |®y) is orthogonal to [Wy), it is evident that |®) # |xg) in general.
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verify that the operators ﬁ;: and 4y, satisfy usual bosonic commutations relations:

[dkrﬁ” = Z [7?],797,]77:]7—11/ = ZT;:]T]] =0y - (4.24)
i’ #0 j#0

The basis change in Eqgs. (4.20, 4.22) conserves the total number of particles due to the invariance

of the number operator N = f(p df WH (@)W (¥) under the transformation 7"

By introducing infinite dimensional vectors & = (d1,4y,...) and y = (P1,72,...), Eq. (4.20) turns

into

y=74 and P =a7". (4.25)

To show that the basis {|Wy),k € N} diagonalizes H, for the correct choice of the matrices 7~ and

‘T+, the Hamiltonian in Eq. (4.19) is rewritten into a general bilinear form

H, =377, (4.26)

defining the non-diagonal energy tensor e:
€k = Z<®k|Xl><Xl|®k’>T]l , (4.27)
]

where |xy) are the eigenstates of the first quantized Hamiltonian h; = [ﬁz/Zm + Vext(Y)] for non-
interacting particles, and 1y the corresponding unperturbed eigenenergies.
Since the tensor e is hermitian, e itself and hence %, are diagonalizable by a unitary matrix M,

which is defined by the equation

€1 0 0
e=M-0 e 0| M. (4.28)
0 0

Here, the €, mark the single particle energies of non-condensate single particle states [\Wy).

The relation between the matrices M and 7 is now obvious from Eq. (4.26), i.e., the choice
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T=M diagonalizes H, in the basis {IWi), k e N}:

H, =Z€k{ﬁz{ﬁk=Z€ka . (4.29)
k+0 k+0

Single particle states [W;) are hence interpreted as non-condensate particles,* being uniquely

quantified by Eqs. (4.22, 4.27, 4.28).

4.3.2 Perturbative spectrum of non-condensate particles

For completeness, the relation between the perturbative expansion of the single particle states [\Wy)
in terms of the small parameter & = ag'/3 and the perturbative spectrum of non-condensate particles
in Eq. (4.29) is presented here.

The condensate wave function |Wy) in Eq. (4.4) can be considered as a function of the parameter
ap = £0?/3, given the fact that the atomic density ¢ can be replaced by the peak density N|W(0)[? at

the center of the trap. Note that the dimensionless parameter & = ap!/3

< 1 is the small parameter
of our theory. It is thus possible to expand the Gross-Pitaevskii state |\V() around & = 0, the formal

limit of unperturbed eigenstates:

Wo) = lxo) + Y "W, (4.30)
m#0

where the expansion coefficients |‘lfg")) are independent of &:

1 9"wp)

i T (4.31)

P =

In Eq. (4.30), the unperturbed state |x) is the solution of the Schrodinger equation, obtained by
formally setting a = 0 in Eq. (4.4). Non-condensate single particle basis states [W) in the interacting
system can obviously be expanded as well in an infinite series of the parameter £. They also turn
into the eigenstates of a non-interacting gas |x;) for all k € Ny in the formal limiting case £ — 0" at
constant density g.

The physical interpretation of the above analysis is that interactions between the atoms exchange

not only particles between the different single particle modes due to atomic scattering, but moreover

4The kets [W;) are of course in general not equal to the single particle states |x;) of the non-interacting system for a finite
interaction strength g # 0.
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perturb the shape of the particles’ quantum mechanical wave functions.
Expansion of the states [Wy) in terms of the parameter & like in Eq. (4.31) entails the following

expansion of the energy tensor € in Eq. (4.27):

en = by + Z gmel (4.32)
m#0

Hence, the expansion in Eq. (4.32) guides us to an energy tensor €, which is diagonal in the 0t

order in &, with unperturbed single particle energies n;. Corrections scale as & with weighting
(1m)

coefficients €, given by
1 _
e = — SV m+ (2 o o ) [Pl Pt [ -sm) . @433)
1

O<z<m

This yields the spectrum for non-condensate single particle states

e=m+ Y "M e™-M] (4.34)

m#0

reflecting that single particle energies €, of non-condensate states are shifted by the interaction in
the Bose gas. Indeed, they turn into single particle energies 1, of the non-interacting system, as

well as W) — |xx) in the formal perturbative limit & — 0.

4.4 Hilbert spaces

We finally analyze the underlying Hilbert space of single particle wave functions, #, and the many
particle Fock-Hilbert space .# of the Bose gas. For the latter case, we distinguish the Fock-Hilbert
space .# (N) containing all Fock states of a fixed particle number N from the general (extended)
Fock-Hilbert space .# spanned by the set of all possible linear combinations of multi-mode Fock

states |{Ni}).

4.4.1 Single particle Hilbert space

An eigenbasis for one particle in the interacting system is defined by the single particle basis

{IWk), k € Np}, which spans the complete Hilbert space of single particle states, see Eq. (4.23). The
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Hilbert space of single particle wave functions is consequently defined by

A =span{|Wo),|¥1),[¥2),...} = A&, (4.35)

with J7) = span {|Wy)}, the space of condensate wave functions, and .7 = span{|W),k € N}, the
space of non-condensate single particle wave functions, which are constructed pairwise orthogonal

to the condensate wave function |Wy).

4.4.2 Fock-Hilbert space

Here, we aim at emphasizing the tensor structure of the underlying Fock-Hilbert space .# = .%,®.%
with Fock basis elements [{N}), which applies even for finite particle numbers. The Fock number
states refer to particle occupations of the underlying single particle wave functions {|W),k € N},
defining the functional space .7 in Section 4.4.1. Our Fock-Hilbert space .# is spanned by an

infinite countable set of vectors [83, 84]
INo) ® [{Ni}) = [No,Nq,...) , (4.36)

where Ny and {Ny} = Ny,Nj,... are arbitrary sequences of integer numbers (Ny = 0,1,2,...). In
our treatment, the basis state |[Np) ® [{Nk}) thus refers to a state with Ny particles occupying the
condensate mode [Wj), and {Nj} particles the non-condensate modes {|W),k € N}. The total

Fock-Hilbert space is thus simply a product space,

F = F00.F,, (4.37)

with the condensate Fock-Hilbert space .% = span{|Np) : Ny € N}, and the non-condensate Fock-
Hilbert space .%#| = span{|N1,N>,...) : Ny € NJ. In the following, the partial traces over the two
subsystems condensate and non-condensate are thus taken with respect to the basis elements of
the two Hilbert spaces .%; and .%# in Eq. (4.37).

4.4.3 Fock-Hilbert space of states with fixed particle number

All Fock states of a fixed particle number in the Bose gas of N atoms are elements of a reduced

Hilbert space, .# (N), including the linear combination of all states |Ny, {Nk}) with Y x Ny = N. The
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latter can be related to the total Fock-Hilbert space .% in Section 4.4.2. Consider a given state with
Ny particles in the condensate, and consequently (N — Np) particles in the non-condensate. The

corresponding space .% ™) (Nj) is a subset of 7 = %) ® %,

FN(Ng) = span {[No)} ® Z, (N = Ng) € T ®.7, , (4.38)

where .% | (N — Np) is the set of all possible non-condensate Fock states with (N — Nj) particles:

FL(N-Np) = span{I{NkD :Y Ni= (N—No)} . (4.39)
k+0

The entire Hilbert space .7 (N) of states with fixed particle number N is the direct sum of the
subspaces .7 (Np):

N N
Z(N) = B 7™ (No) = span{ (P INo)® Z1 (N - No) } - (4.40)
No=0 No=0

Therefore, the reduced Fock-Hilbert space .# (N) is in general different from the total Fock-Hilbert
space . in Eq. (4.37).

The constraint of particle number conservation, however, need not be imposed onto the Fock
spaces, but can be imposed onto the state of the system, thus simplifying and disentangling the
two Fock-Hilbert spaces of condensate and non-condensate, as in Eq. (4.37). This way formally
allows all occupations to vary from Ny = 0...c0, and thus the total number of atoms N to vary from
N =0...00 in the partial traces of a general operator average.

Particle number conservation is thus accounted for by defining the (in general mixed) N-body
state of fixed particle number N as a map sMN(t) : F — FZ(N) in order to ensure that any state
INo, {Ng}) with ) N # N, in a gas of N atoms, has zero probability to occur and therefore does not
contribute to an operator average taken over .%. The state 6")(t) of the Bose gas is hence formally
defined by the constraint that it maps any number state [V) with total particle number different

from N to zero, i.e.

oW . 7 — F(N) with Ker{aW)} = {|{Nk}> : ZNk # N} : (4.41)
k
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An example of such a state is given by the N-body Born ansatz, see Eq. (3.8), which we will use in

the derivation of the master equation in Chapter 5.
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Chapter 5

Lindblad master equation for a

Bose-Einstein condensate

In this chapter, the Lindblad quantum master equation for the Bose-Einstein phase transition in a
Bose gas of N atoms is derived under the constraint of particle number conservation and within
the Markovian dynamics assumption. This quantum master equation describes the time evolution
of the condensate and non-condensate particle number distribution during the relaxation of the full
N-body state ™)(t) of the gas to the Bose-condensed phase. We give analytical expressions for the
transition rates and energy shifts corresponding to the various two particle interaction processes

specified in Chapter 4.

5.1 Evolution equation of the total density matrix

In analogy to the standard quantum optical derivation [20, 21, 77], we start with the von-Neumann
equation for the many particle state 5N (t) : .# +— .Z(N) of fixed particle number N (see Sec-
tion 4.4.3), defined on the Fock-Hilbert space .# = .7, ®.%, in Eq. (4.37):

6Nty
at

—% [#,6M )], (5.1)

where H is the total many particle Hamiltonian including two body interactions in Eq. (3.4). Since
the N-body state includes only Fock states of fixed particle number according to its definition in
Eq. (4.41), it commutes initially with the total number of atoms, [6(N)(0),N] = 0. As the number

of atoms is conserved during the further time evolution, [VA{,N] = 0, the state doesn’t change its

83
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particle number, so that

[6™ ), ] =0 (5.2)

for any time. The Hamiltonian 7 has been shown to split in the standard (quantum optical) fashion

into

7-,\{:7-,\10+7:{J_+r1\/0J_, (5.3)

where 7A{0 is the condensate Hamiltonian in Eq. (4.8), 7A{L the non-condensate Hamiltonian in
Eq. (4.19), and V. the two body interaction term in Eq. (4.10). As discussed in Section 4.3, the
thermalization process due to interactions within the non-condensate is modeled by coupling the
non-condensate to a thermal bath (see Section 5.2.1).

With the decomposition of # in Eq. (5.3), the von-Neumann equation turns into

26N (1) i irs irs
bl \C AP N ] = = N ] = = 5MN)

= = =7 [ Ho, 6N = 2 [HL6N 0] - [ Vor,aM0)] . (5.4)
Now, all operators, i.e., the condensate and the non-condensate field, Wy(8) and W (¥), as well as
the density matrix 3™N)(t) are transformed into the interaction picture (denoted by the label I) with
respect to the Hamiltonian parts Hy and . Consequently, the different operators undergo the

following transformation (consult Appendix A.1 for a detailed evaluation of \ifg)(?, t) and \i/(i)(?, t)):

X)) - XO® =UpXit @), (5.5)

where the time evolution operator ¥(t) is given by
U = exp [% (ﬂo + 7CIL) t] =exp [%f{ot] exp [%fﬁt] = U(HUL®), (5.6)

—ipgt/h —iept/h

since [7:10,72&] = 0. The time evolution operator T/(t) leads to 4o(t) = dge and di(t) = dre
(see Appendix A.1), leading to the time dependent condensate and non-condensate fields in the in-

teraction picture, Wy (f) — \ifg)(?, t) = dge ot/ (7) and W (F) — ‘i’&l)(?, t) = Y g0 ke W (F).
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The time evolution of the full density operator 3™ (#) in the interaction picture is consequently

determined by the interaction between condensate and non-condensate particles, according to:

95WND (¢ | .
P 0.0, 5.7)

1/3

Considering sufficiently dilute Bose gases, ap'/° < 1, and thus only two body interactions, Eq. (5.7)

can be solved in the second order! iteration [20] in (Vgl(t). To this end, Eq. (5.7) is integrated
between the time interval t and t + Atf, where 7., < At < 7( according to the separation of time

scales? in a Bose gas:

At
302 =0000) -+ [ [ e8] 5.9
t

Iteration up to second order in the interaction term ff/gi(t) — containing interaction terms up to

order g? —finally leads to

t+At t+At t
A i 1 [AD) (o7 A ’ dt’ e N [ 7y A
AW = -7 f dt' [ V) (), 6N ()| - f dt f = VoL [ Vel @), 6N w]] 5.9
t t t
where AGND(#) = 6ND(t + At) — 6ND(#). Note that the time integral over t” is replaced by t,
setting 6ND (") — 6D (t) on the right hand side of Eq. (5.9), which corresponds to the Markov
dynamics assumption (see below). Breaking the iteration procedure in Vg, in the second order

1/3 « 1, since

suffices to model the dynamics of two body interactions in dilute atomic gases, ap
they are described by the terms proportional to g2 within the time scale At of the temporal iteration

of Eq. (5.9).

5.2 Time evolution of the reduced condensate density matrix

In order to access the time evolution of the reduced condensate subsystem in the presence of the
non-condensate gas, the partial trace over .%, in Eq. (5.9) needs to be taken. Here, we explain

the N-body Born ansatz which leads to a time local quantum master equation for the reduced

1This second order iteration is necessary, because the first order iteration vanishes (see Section 5.3).
2Remember that, in the present case, the time scale for At is to be chosen slightly larger than the average time of two body
collisions according to the separation of time scales in a Bose-Einstein condensate (see Section 3.1).
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condensate density matrix.

5.2.1 N-body Born ansatz

The standard quantum optical ansatz [17, 18, 19, 20, 21] to derive a Markov quantum master
equation of Lindblad type considers the non-condensate as a large (undepleted) thermal bath and
separates its dynamics from the condensate subsystem. In the present case, however, this is not

possible because the non-condensate exchanges particles with the condensate, so that

s™(#) # po(t) ® p(T) . (5.10)

The circumvention of this ansatz is conceptually essential for the dynamics of a Bose gas of exactly
N particles. However, the standard Born ansatz in Eq. (5.10) can be generalized by describing the
non-condensate as a series of thermal states with different particle numbers (N —Nj), given that Ny
particles occupy the condensate mode. This ansatz is physically justified, since the non-condensate
thermalizes rapidly [51, 64], therefore decohering all off-diagonal elements between subspaces of
different non-condensate particle numbers.

This rapid non-condensate thermalization is formally taken into account by the map & obeying
the following properties: (i) It does not change the particle number in the gas, and (ii) it erases co-
herences between states of different particle numbers (N—Nj) and (N—M)) in the non-condensate,
and (iii) it turns each non-condensate state of (N — Ny) particles into a thermal state of correspond-
ing particle number occupation. From (i)-(iii), it follows that the N-body state of the Bose gas is

diagonal in particle number representation:

N

s™M)~ 2(6™M 1) = Y pn(No,0)INoXNol® (N = No, T), (5.11)
No=0

where each condensate state of Ny particles necessarily implies a condensate state of (N — No)
particles, and vice versa, due to particle number conservation — in agreement with Eq. (5.2). Each
non-condensate state p, (N — Ny, T) of (N — Np) particles is a thermal mixture projected onto the

subspace of (N — Np) particles,

QN—NO e PH. QN—NO
6, (N—Ny,T)= ,
Pl =No D= N —No)

(5.12)
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where QN_NO denotes the projector onto the non-condensate subspace .7, (N — Ny) (see Sec-
tion 4.4). The normalization factor 2 (N — Ny) corresponds to the partition function [10] of

(N = Np) indistinguishable non-condensate particles, given by

Z1(N—=Np) = Trz, {QN_Noe_ﬁ(i_(l QN—NO} . (5.13)

The non-condensate Hamiltonian %, is diagonalized according to Section 4.3, by expanding the
non-condensate field in the basis {|\W),k € N}. Hence the spectral decomposition of H, leads to

the statistical mixture:

k0 ZN,=0 PNk, TN N
Z, (N —Np)

pL(N-No,T)= 2n_n, INoN, - (5.14)

In Eq. (5.14), Ny are occupation numbers of non-condensate single particle states [Wy) and
pk(Ni, T) = exp[—PerNk] are Boltzmann probability factors for indistinguishable particles. The
corresponding partition function 2, (N — Ny) of (N — Np) particles turns into:

(N=No)
% (N-Np) = Z exp [—ﬁZeka] . (5.15)
(Ve k70

In Eq. (5.15), we have introduced the partial sum Z?I\\]I_NO)

K}
partitions Ny =0...00,Np =0...09,... : Y0 Nk = (N = N).

, which denotes a summation over all

5.2.2 Evolution equation for the condensate

The partial trace of 5N)(t) over the non-condensate subspace .%, defines the reduced condensate

density matrix ﬁéN)(t) of the state of N particles,

N
P30 =Trz, (6N 0} = Y py(No,HINoXNl (5.16)
Np=0

with Tr z po(t) = 1. As already mentioned, also the total N-body state is completely described in
terms of the condensate particle number distribution pn(No, t), see Eq. (5.11), under the assumption

of rapid thermalization in the non-condensate. This allows us to derive a closed evolution equation
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for the reduced condensate density matrix, po(f), within the Markov dynamics assumption by
inserting the thermalized state, Eq. (5.11), into the N-body evolution Eq. (5.9). Finally, taking the

partial trace over the non-condensate leads to:

N t+At
1 ’ 1 ’ A
apy =~ ) f dt’ Trz, [Vou (), pn(No, H)INoXNol @ p (N = No, T)]
Np=0
ot (5.17)
N t+At t 4
=Y [ ar [ T [T @[T @ o NNl 8 9 (- No, D]
No=0 % t

At this stage, we can verify that, according to Eq. (5.17), the time evolution of the N-body state
5MN)(At) is completely determined by ﬁgN)(At), such that the thermalization ansatz in Eq. (5.11) is
valid for any iterative step At, and therefore in fact for all times during the condensate formation

process, reflecting the Born-Markov dynamics assumption for a dilute Bose-Einstein condensate.

5.3 Contribution of first order interaction terms

In Eq. (5.17), the contribution of the individual interaction terms for single particle (~), pair («~)
and scattering () processes are taken into account by the interaction term V=V _, + V... + V..
First, we will verify that all contributions linear in the interaction operator 4. vanish, before the

evolution equations for the second order terms in g are derived from Eq. (5.17).

5.3.1 General operator averages in the Bose state

First, we introduce a useful identity for operator averages, frequently applied in the derivation of
the condensate quantum master equation. For the N-body state 6™ (t) in Eq. (5.11), the partial
trace of an operator of the form L RE: Fo®.F, — Fy®.F,, where . : Fy — Fp acts solely on
the condensate Fock space, and & : .%, — .7, solely on the non-condensate Fock space, adopts

the form

N
Tz, (7 ©&)6MD(p) = Z pn(No, t) (2 INoY(Nol) Tr 7, {€p.L(N = No, T)} - (5.18)
No=0

Moreover, the abbreviation
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j Fi(E 1) SIED ) D)

- gWo@ 1) W@ 1 U Env, GV EH WEHVEHV L@
o @U@ NWE ) gWEEHVHE D Wt @ nWt @) W, @HY . (@)
o gWENWED gViERHVEH  VIEHVLEY RN

Table 5.1: The formal structure of each interaction term <V j is identical for single particle (j = ~), pair (j = «~)
and scattering (j = ) processes. The operators 52]’(?/ t), 52].*(?, f), (fj(f’, t) and ée';f(f’, t), have thus to be substituted in
Eq. (5.21) for each process according to the table.

A\ (N=N| 5 6 o—BF
<(§>( 0 _ Tr o { PL(N - NO,T)} = 27 N = No)Tr 7, (N-Ny) {é”e_ﬁ(ﬂl} , (5.19)

denotes the average of an operator & . F, — F, over the non-condensate subspace .7, with

respect to the thermal non-condensate state p, (N — Ny, T) of (N — Np) particles, see Eq. (5.14).

5.3.2 Vanishing of linear interaction terms

Linear and nonlinear contributions in g in Eq. (5.17) need to be determined separately. With the
decomposition of the interaction term (Vgi(t') = (V(Q(t’) + (i/gv)w(t’) + (Vg)(t’), first order terms in

Eq. (5.17) can be rewritten as

Tez, [Vi,(t),6N0®)] =) Trs, [(Vﬁ-”(t’),ﬁ‘N'”(t)] , (5.20)
7

where j =~+, e, O. Furthermore, each of the different interaction terms (f/(fl(t),(f/g&(t) and (Vg)(t)

can be formally decomposed as
fV;.I)(t’) = f df [5,?(?, )@ &E )+ FE ) @], v, (5.21)
¢

where the operators ,52]'(1?, ) : Fy — %y and éA"j(F, t') : F, — F, represent the different field

operators in the interaction picture, see Table 5.1, with j =~~, «~ and O, acting on the condensate
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and non-condensate subspaces .%j and .%, separately.

For any (VEI)(t) in Eq. (5.21) the operator average in Eq. (5.18) yields

N
To, [¥0),0000] = [ a3 [ 0o NNl (1)
7 N;:O (5.22)
v [at Y [AGO, o NN (676 0) S
g Ng=0

For single particle interaction processes described by (V(fl(t’), i.e., j =~ in Eq. (5.21), first order

contributions vanish as a result of particle number conservation,

Trz, [P2@),6M 0] =0, (5.23)

which can be directly checked by setting the corresponding single particle interaction terms of
Table 5.1 for the operators.Z...(£,#') and &... (¢, t’), respectively, as well as their hermitian conjugates,
into Eq. (5.22). This is a direct consequence of the fact that V... changes the number of non-

condensate particles from initially (N — Ny) to (N — Ny + 1), and hence:

~ ~ ~ N-N ~ ~ ~ N-N
(VL@ WLE WL, t’)>; v (W @)W (WL (F, t')>(m V. (5.24)
7 /L

The same argument applies also to the first order contributions for pair events described by VO ),

i.e., j=e~in Eq. (5.21). They too do not contribute to the master equation,
Tro, [(i/i{L(t'),aWJ)(t)] =0, (5.25)

because again, due to the changing number of non-condensate particles,

(N-No)
F.

R (N-No) _

(i@nviEn) (U @nP.@), " =0. (5.26)

In contrast, scattering terms (Vg)(t’) lead to non-vanishing non-condensate expectation values from

o N N-N
first order terms, <Wi(ﬁt')WL(F’t')>; v # 0. Nevertheless, they neither arise in the master
T
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k* I* m* 0*
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Figure 5.1: Correlations between different types of diagrams for single particle loss (~~) and feeding (~~*) processes,
pair loss («~) and feeding («~~~*) processes and scattering processes () cancel out, since any combination of mixed
diagrams violates particle number conservation, as formally expressed by Eq. (5.30). Evolution terms of the N-body
state relating to single particle, pair and scattering processes are therefore independent. In contrast, all particle
interactions following the same diagrams will coherently interfere below T, leading to enhanced particle feedings
(and losses) of the output channels.

equation, because the term V;, leaves the condensate and non-condensate occupation in the

diagonal state 5MN)(t) invariant, which entails:

Trz, [VO#),6M 1] =0. (5.27)

Since all first order terms vanish, it remains to evaluate second order terms in the interaction term

(VOL in Eq. (5.17) for single particle (~+), pair (~~) and scattering () processes.

5.4 Dynamical separation of two body interaction terms

As shown in Section 5.3.2, first order contributions vanish due to the rapid equilibration in the
non-condensate and particle number conservation. Thus, the evolution Eq. (5.17) reduces to a sum

over second order contributions in Vo, =V, + V.o, + Vi
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t+At t’

A(N I) d+

[ VO[O, o, DINoYNol © (N = No, T
AR (5.28)

with 7, j =+, «~,O. Moreover, any mixed commutator in Eq. (5.28) is zero, meaning that single
particle, pair and scattering events in the gas occur independently. This is shown by either brute
force calculation, or by recognizing that there exists no combination of two mixed (i # j) two body
diagrams (and hermitian conjugates of them) depicted in Fig. 5.1, which conserves the total particle
number N. This is due to the fact that the three types of interaction processes (~-, «~+, ) refer to
different particle number changes ANy = —AN, =0,+1,£2, respectively. Since the density matrix
exhibits no coherences between states with different particle numbers, the trace over these particle
number breaking terms is zero. Only conjugate two body interaction diagrams (i = j) of the same

type in Fig. 5.1 therefore contribute to the master equation.

Single particle, pair and scattering processes consequently occur as dynamically independent:

ROy L0 BYe Gl I/ G 590)
At At At At ’ '
> VS O
where we introduced the abbreviation,
~(N,]) N t+AL I
Ap (t) / dt” 1 / 1 77 A

— ;—Z f dt f oy Tz [ Vi), [ Vi), puNo, DINoXNol @ pu (N = No, D] |,
i No=0% t

(5.30)

with j =~-,«~ and O.

5.5 Lindblad operators and transition rates

Using the decomposition of the different interaction terms fV;.I)(t) in Eq. (5.21) for j =~~, &~ and O,
with corresponding field operators Z(F, t’),(??j*(f), t'y: Fg — Fo and éA"j(f‘, t’),g?(?, t:F, — F,

according to Table 5.1, we further derive the master equation for each coarse-grained evolution term
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in Eq. (5.30), j =~», e, 0, in a rather lengthy calculation which is skipped here. Herefore, we use
that the averages over é%j*(f‘, t’)é%;f(f”,t”) and 50](17‘, t')éA‘}'(F",t") are zero for all different interaction
terms j =~-, «~, 0, because they do not conserve the number of particles:
Bt o o Bto (N=No) _ 1 p s 1\ /o
(lendle ) " =(GRNEE 1)

e

(N-Np)
F. -

0, (5.31)
for j =~»,«w,O. Thus, only the remaining averages of the non-condensate field need to be treated,
i.e. averages over operator products of the form éA"](f‘, t’)é%;f(f”,t”) and é%j*(f“, t’)éAaj(F”,t”). Thereby,
the following two time averages are obtained, called two point correlation functions for the non-
condensate field in normal order,

(N—No)

GOEF NNy, T,0) = (6] @06, 0) (5.32)

o

and, respectively, correlation functions of the non-condensate field in anti-normal order,

(N=No)

GOEF N-No, T,0) = {§& 06/ ,0) ", (5.33)

]

e

where 7 =t/ —t” is the time difference between t' and t”’. The correlation functions depend on
%, and 1, representing the coherent part of the non-condensate time evolution with respect to the

linearized Hamiltonian %, . These coherent parts obey the condition

* —
(gj(i)(?,r_",N— No, T, T)) = 9@ F,N-No, T,7) =4 €', N=No,T,~1).. (5.34)
Changing [20, 77] variables of integration, switching from t and '’ to 7 and t’, leads to
tAE At At

[ar [ar= [ac [ar. (535
t t 0ttt

According to the fact that the non-condensate thermalizes on the time scale 7., due to atomic

interactions [59, 63, 64], the correlation functions of the non-condensate field decay on a time scale
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Teol [59]. To implement this irreversible decay, we add the exponential function exp[-T?72] with
r= ’l'c_oll. As a consequence of At > 7, the time domain of integration over dt can be extended
from At to co. The same is done for the domain of the integral over ' by setting the lower bound

t+ 7 to t, Thereby, each evolution term (for j =~-, «~+, ) in Eq. (5.30) turns into:

Aﬁ(N'I)(t) N e_rsz
R = Y [aS e [ @t g @S = oo, NN N - N, T, )
j No=07p EXE
N X 22
=Y [aS [ arar A o N AN N A 9NN T
No=07 EXE
N X 22
+ f dr—s; f d?df'pN(No,t)|N0><NO|5ﬁ]T(F’,t—r)x(ﬁt)gj(‘)(ﬁf',zv—NO,T,T)
No=07 EXE
N X 22
=Y, [ar [ R A - o NN 0O N - No T )
No=07 EXE
+h.c..

(5.36)

The occuring Lindblad type structure [85] is typical for Markov processes [19, 21], and can be
already identified at this level of the master equation. Different Lindblad superoperators being
related to single particle (~»), pair (~) and scattering (©) events are derived in the following for

each process in the next subsections.

5.5.1 Lindblad evolution term for single particle processes (~-)

In this section, the evolution Eq. (5.36) is worked out for j =~-, yielding the transition rates
associated to the two point correlation functions gB @ ,N - Ny, T,7). Single particle events
have been specified in Section 4.2.3 as two body interaction terms which annihilate, or create, one
particle in the condensate mode [Wy). The interaction term (V(Q(ﬁ t) hence contains the sum of all
diagrams

k* I* m* 0*
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see Fig. 5.1, refering to the field operators S (£1) and &..(E1), as well as to their hermitian

conjugates, . (f,t) and &1, (%) in Eq. (5.36) according to Table 5.1.

The time evolution of the coarse-grained evolution termin Eq. (5.36) due to single particle events,
j =~-, is specified by the normally ordered two point correlation function of the non-condensate
field, (& F’,N - N, T,7) in Eq. (5.32),

(N=No)

GOEF N -No, T,0) = (VL E VL E 0V E0PLE, 0P, 0P.E,0), ", (5:37)
and by the anti-normally ordered counterpart,
g(—) > >/ _ IG5t 2 2 - 7 - (Tl 2t 27 2 —/ (N—No)
D@, N=-No, T,0) = (VL@ W& 0P L& 0P @, 008 (¢, 007 L(,0)) s (5:38)

correspondingly.?

The action of condensate field operators onto an element of the condensate Fock space,
Yo®INg) = VNoWo(®)INg — 1), and ‘ifg(F)le = VNp +1W}(1)INg + 1), respectively, leads to
the Lindblad term for microscopic single particle loss and feeding events, directly from Eq. (5.36).

After multiplying @(g(t) from the left and ©4y(t) from the right, the latter equation turns into:

A(N,I) N
Y RO
U () —2—| o) =1 Y, Pu(No,8)(#INo)Noldo ~ INoXNoldodt) ¢ AT, (N = No, T)
— Np=0
N (5.39)
+43" pn(No, 1) (d0INoXNola} - afaoINo)Nol) t AZ.(N = No, T)
Np=0
+h.c..

The complex valued, time averaged rates A%, (N — Ny, T) € C are given by

3The correlation functions %S)(F, ' N-— Ny, T, 7) are calculated explicitly in Chapter 7.1.
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AL, (N-No, T)= f f dE dF” W (DW(F”) f dr et TPy @ ' NNy, T,7). (5.40)
GCXE

They depend (i) on the number of non-condensate particles N — Ny via the two point correlation
functions E%(f)(f), F',N—NO,T, 7) of non-condensate fields in Eqs. (5.37, 5.38), (ii) on the condensate
wave function and its conjugate, Wy(¥) and \PS(F), and (iii) on wp = po/h, thus on the eigenvalue
of the Gross-Pitaevskii equation (4.4). Furthermore, T labels the final gas temperature and g is the

two particle interaction strength.

The rates A%, (N — Ny, T) in Eq. (5.40) are in general complex numbers: To separate the real
from the complex part of the evolution Eq. (5.39) — the first appears as the real-time evolution,
hence defining real valued single particle exchange rates between condensate and non-condensate,
whereas the latter is associated to a shift of the condensate single particle energy (see Section 7.4)

— the complex valued rate A~ (N — Ny, T) is decomposed into

A% (N=Ny, T)= AE,(N=No, T)+i AX,(N =Ny, T) . (5.41)

The real parts AZ, (N — Ny, T) = Z{AZ,(N — Ny, T)} in Eq. (5.40) are called single particle feeding
and loss rates, given a state with Ny particles populating the condensate mode in the Bose gas
of N particles. The imaginary part, A% (N — Ny, T) = .# {AX, (N — Ny, T)}, characterizes the single
particle energy shift arising from virtual processes (see below).

The real part of evolution Eq. (5.39) for the reduced condensate density matrix p( () originating
from single particle processes is thus determined by the terms in Eq. (5.39) proportional to A%, (N —
Ny, T), after decomposition of the complex valued rates like in Eq. (5.41). Those contributions
can now be described in terms of a superoperator .Z_, acting onto the subspace of the reduced

condensate density matrix:

o) = ZFMﬂ(WWMﬁw—

L0070, 00
Np=0

2
(5.42)

+Zrm,[<WMMWW§ﬂMW<me]
No=0
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where {X, Y}, = XY + YX denotes the anti-commutator of the two operators X and Y. Moreover,
single particle condensate feeding and losses are described by rank one quantum jump operators
fi(No) in Eq. (5.42), defined by

Z+(No) = [No + 1)Nol , (5.43)

for quantum jumps of the condensate particle number Ny — Ny + 1, and by

_(No) = INg — 1XNpg|, (5.44)

for quantum jumps Ny — N — 1. They account for single particle condensate feeding (+) and loss
(—) events, which are induced by the non-condensate environment. The jump operators satisfy the

general relation for Kraus operators [19, 21],

N N
Y, ZiNS Ny = Y| SN (No) = 17y (5.45)
Np=0 Np=0

Equation (5.42) obeys the so called “Lindblad form” [85], which is characteristic for quantum
Markov jump processes [19]. Remarkably, these jumps of particles into and out of the condensate,
respectively, directly reflect the wave character of the interfering particles in spatial representa-
tion. The effective condensate particle feedings and losses are quantified by the transition rates
T (N, T) =2(Ng + 1)A*, (N = No, T) and T'5,(No, T) = 2NgAZ, (N = Np, T) in Eqs. (5.40, 5.41, 5.42).

The imaginary part of the complex rate A, (N — N, T) in Eq. (5.40) generally leads to a coherent

contribution to the Lindblad master equation, here given by

N
—i Y A (N = No, ) [@}0, P (No, BNoXNol| =0, (5.46)
No=0

with A.(No,N = No, T) = AY)(No, N = N, T) + AZ)(No, N = N, T), the net single particle energy

shift*. The coherent evolution term in Eq. (5.46), however, vanishes and does not contribute to

4The energy shift A.(N — Ng,T) can in principle be used to renormalize the condensate chemical potential g, in analogy
to the Lamb shift in quantum optics [86, 87]. However, we verify in Section 7.4 that it is so small in dilute atomic gases (e.g.,
~ (0.0001 — 0.01)7w in a three-dimensional isotropic harmonic trap) that we neglect the renormalization of y for our present
purpose.
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the time evolution of the reduced diagonal condensate density matrix. Consequently, the evolution

term for single particle processes is fully captured by

ApNO@|

Us(t) —5; Ut =2 )" ®)] , (5.47)

with 2. [ ()] defined by Eq. (5.42).

5.5.2 Lindblad evolution term for pair processes (<)

Pair events are specified as processes, where two condensate atoms are effectively created or

annihilated. The diagrammatic representation of all different pair events is

> k* 0* 0*

see Fig. 5.1.

Proceeding in compliance to the calculus for single particle processes, we insert the operators
S s (®,t) and &....(£,1) as well as their hermitian conjugates according to Table 5.1 into Eq. (5.36),
leading to a Lindblad evolution term for pair processes, j=«~+. The normally ordered two point

correlation function gﬁ:ﬂ(?, ' ,N—-Ny,T,7) in Eq. (5.32) for pair events is given by

(N=No)

GEEE,N=-No, T, = (VL E0VLE VL, 0V.E,0), (5.48)

whereas the anti-normally ordered pair correlation %(;)(F, r’, Ny, T,7) function adopts the form

_ a a ~ ~ N-N
YOG No T,7) = (VL GOV E DV E, 00, 0)

P (5.49)
and is obtained correspondingly by using Eq. (5.33).
The coarse-grained rate of variation for j =« turns, after multiplication with (ﬁlg(t) from the left

and with Ty (t) from the right, into
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ApND N
Ap ; A A -
Uy ——|  Us() = { Y pn(No, £) (a8 INo)(Nolao - N0><N0|0¢00é$)}/\jm (N—=No,T)
e NOZO

N . (5.50)
Y oo, 1) (@0lNoXNolah — afaolNoXNol) } AZ..(N = No, T)
Np=0

+h.c.,
with pair annihilation and creation operators [88], &g = dodo and & = afal. The complex valued,

time averaged pair feeding and loss rates are thus given by

(o]

A% (N=Np, T) = f f AR A" Wo(®Wo(H) W} (F)WE (7 f dr e2ieo T g ®) @ 2 N_N, T, 1),

EXE 0
(5.51)

with corresponding normally (and anti-normally) ordered pair two point correlation functions
gii}(ﬁ?',N— Ny, T,7) of the non-condensate field in Eqs. (5.48, 5.49). They define the two
body pair feeding and loss rate AZ_,(N— Ny, T) = Z{AL..(N—Npy, T)}, and the two body pair energy
shift A®), (N =Ny, T) = F{AL_,(N — Ny, T)}, by means of the decomposition

AE (N=No,T)=AE (N-Ny,T)+i AL (N-No,T). (5.52)

The Lindblad superoperator .Z....[p, N )( )] which describes the pair dynamics governed by the real
part of Eq. (5.50) is converted to the following form after the decomposition of pair feeding and

loss rates in Eq. (5.52):

N
2. [p0]= Y ramo D[ 2,0 0 LN - 5 {210 2.0, 10|
NN_ (5.53)
+ Y yaNo. 1) 2- N0 No) - 5 { N - (No), 00, |

with pair quantum jump operators,
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P+(Np) = INg +2)(Nol, (5.54)

for quantum jumps of the condensate particle number Ny — Ng +2, and with

P_(No) = INo —2XNol, (5.55)

for quantum jumps Ny — Ny — 2, induced by the non-condensate environment. The form of
Eq. (5.53) occurs also in two component chemical reactions [19], quantified here by the transi-
tion rates y%,(No, T) = 2 /(No + 1)(No +2)A%.,(N = No, T) and yy,(No, T) = 2 /No(No — 1)AZ_, (N —
No, T), respectively, defined via Egs. (5.51, 5.52, 5.53). Also the pair jump operators &, (Np) and

A

Z_(Ny) satisfy

N N
Y, PiN0) P (No)= ), PLNo)P-(No) = 1.7, - (5.56)
Np=0 Np=0

Finally, the commutation relation [@0,15(5] = 4(&5&0 + 1/2) for pair operators leads to the coherent

contribution of Eq. (5.50),

N
=i ) [Aes OV = No, T)ithtg — 4A%_.(N = No, T)ifa0, p(No, HINo)(Nol| = 0. (5.57)
Np=0

This contribution also vanishes exactly as a result of the diagonal reduced condensate density matrix,
but nevertheless yields an estimate of energy shifts A....(N — Ny, T) induced by pair events. Again,
the symbol A..., = Af_, + AZ, is used to label the net energy shift induced by pair events. Albeit
this energy shift does not contribute to the master equation, it is interesting to estimate its order of

magnitude, see Section 7.4.

The total evolution term for pair events,

LY 1 R
‘ng(t)OA—t Ut =2 [p{V )] (5.58)

is thus fully captured by the Lindblad evolution term in Eq. (5.53).
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5.5.3 Evolution term for scattering processes (0)

Finally, we verify that scattering events described by the interaction diagrams

0* k*

see Fig. 5.1, do not affect the number distribution px(Np,t) of condensate and non-condensate
particles. Inserting the condensate and non-condensate field operators for (E 1) and & (F, 1) and
their hermitian conjugates ,5’%(1?, t) and éA‘g(f‘, t) into the evolution term in Eq. (5.36) according to

Table 5.1 leads to only one two point correlation function of the non-condensate field,

(N=No)

Y&, No, T,7) = (WL E OV, @ 0P (7, 0W.,0) ., (5.59)
7L

see Eq. (5.32).
The evolution equation for the coarse-grained rate of variation for scattering processes hence

turns into

A(NI
Apy (1)

N
N = Z Nopn(No, HINo)NolNo — pn(No, HINoXNoIN3 t Acy(N = Np, T) +h.c. =0,

O No=0
(5.60)

where Np = fg dr ‘i’(‘;(f‘)‘ifo(F) is number operator of condensate particles. Even though Eq. (5.60)
does not contribute to the master equation (leading to dephasing of the off-diagonal elements of
the condensate density matrix), it yields the complex valued time averaged rate A (N — Ny, T) for

atomic scattering processes between condensate and non-condensate particles with AN = 0:

[S¢]

4 2 4 ! 4
Ao(N-No = =5 f f dF 4’ [Wo@)PIWo(F") f dr e PG @ NNy, T, (5.61)
CXEC
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with the corresponding correlation function %(¥, r’,N-Ny,T,7) for scattering events in Eq. (5.59).
The decomposition of A¢)(N — Ny, T) € C into

Aes(N=No, T) = Aey(N =Ny, T) +i Aey(N = No, T) (5.62)

introduces the real valued scattering rate, A¢,(N— Ny, T) = Z{A¢(N — Ny, T)}, and the correspond-
ing imaginary level shift, Acy(N—No, T) = # {Ay(N — No, T)}. Again, also the coherent contribution

of scattering events is zero,

N
~i Y Aey @00, pa(No, HINoXNol| =0, (5.63)
No=0

without any contribution due to scattering events:

2t M0

| Uw=0, (5.64)

The N-body state 5N (t) in Eq. (5.11) therefore evolves in time only with respect to single particle

(~+) and pair («~) processes, described by the Lindblad terms in Egs. (5.42, 5.53).

5.6 Quantum master equation of Lindblad type

The different results of the derivation in Sections 5.1 - 5.5 are now summarized in order to collect
all relevant Lindblad terms for the dynamics of the reduced condensate state ﬁg\])(t). The relation

between the reduced condensate density matrix in the Schrodinger and the interaction picture is

) . SOND)
Apo (t) LTg, A(N) ~ ot Apo (t) ~
T —ﬂ?{o,po (t)]+w0(t)Tw0(t). (5.65)

Equation (5.65) formally contains the coherent evolution of ﬁéN)(t) with respect to the condensate
Hamiltonian %y, and the instantaneous rate of variation of the condensate density matrix in the
interaction picture, 8tﬁ(0N’I)(t). The Lindblad master equation simplifies further, because the Hamil-
tonian time evolution [ﬂo,ﬁg\])(t)] vanishes as a result of the condensate Hamiltonian 7A{0 being

only proportional to the first and second order of the condensate number operator. It therefore
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commutes with the diagonal condensate state ﬁ(ON)( ).

The coarse-grained rate of variation [20], Aﬁ(NI)(t)/At is the instantaneous rate of variation

&tﬁ(ON’I)(t) averaged over the time interval At:

t+At
80| _ gl e+ a0 -ap0"0| 1 f dt’w (5.66)
A | At N o | |
) ! !

All rapid variations on time scales smaller than At are washed out in this average. However, since
the time interval At is still much shorter than the condensate formation time 7, the instantaneous
rate of variation in Eq. (5.65) is well approximated by the coarse-grained evolution AA( )( t)/At in
Eq. (5.29), which entails

LN Qe B I AV O] e O] IYe RO 567
ot At At At At . ’ ’

as explained in Section 5.4. Summarizing the explicit evolution terms for single particle processes

(~+) in Eq. (5.42), pair processes («~+) in Eq. (5.53), and using the fact that scattering processes (0)

in Eq. (5.64) as well as the energy shift terms for single particle, pair and scattering processes in

Eqgs. (5.46, 5.57, 5.63) are zero, finally leads to the condensate quantum master equation of Lindbad
type for a Bose-Einstein condensate of N atoms:

(N)( ) N 1

= Y N0, D|FNo)s 0.7 No) - 5 {71 No). 7N 5 1) |

Ng=0,
=+

(5.68)
' Z 7o D[ 2N 21 No) - 3 {21 N0 2N, 00 |

No=
1+f

Remarkably, the dynamics of spatially coherent matter waves in the Bose gas below T reflects itself
in the Fock number representation as random, stochastic fluctuations of the condensate particle
number described by a quantum Markov master equation of Lindblad type. The quantum jump
operators .. (Ny) for single particle events, and Z2..(Nj) for pair events are defined via Egs. (5.43,
5.44, 5.54, 5.55). We conclude this part of the thesis with the Lindblad master equation in Eq. (5.68).
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Environment-induced dynamics in

Bose-Einstein condensates
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Die Formel druckt also indirekt eine gewisse Hypothese uber die gegenseitige
Beeinflussung der Molekule von vorlaufig ganz ratselhafter Art aus, welche eben die
gleiche statistische Wahrscheinlichkeit der hier als “Komplexionen” definierten Falle
bedingt. ... Man kann ihn auch beim Gase in entsprechender Weise deuten, indem

man dem Gase in passender Weise einen Strahlungsvorgang zuordnet und dessen

Interferenzschwankungen berechnet. . .

Albert Einstein, 8. Januar 1925 [28]
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Chapter 6

Monitoring the Bose-Einstein phase

transition

Bose-Einstein condensates are exquisite tools to study fundamental quantum phenomena on a
micrometer scale. A vast range of different physical situations has been experimentally realized
with ultracold matter in the last decade, confirming the fundamental importance and the broad
applicational scope of Bose-Einstein condensation. However, a complete quantitative understanding
of condensate formation remains one of the most striking theoretical topics of ultracold matter

physics up to date.

So far, the pioneering works [62, 89] were followed by quantitative theories [63, 76, 79],
describing Bose-Einstein condensation in terms of average condensate growth. Hence, up to now,
the dynamical inset of Bose-Einstein condensation is known to express as a spontaneously insetting
exponential growth of the average condensate population after sudden cooling [90] of the gas below
its critical temperature, see Fig. 6.3. The connection between the time evolution of the microscopic
condensate number distribution during the Bose-Einstein phase transition relating the N-body
dynamics in the Bose gas to the observation of an average macroscopic ground state occupation,
however, is so far not well understood. A further step towards the latter aspect is approached
by monitoring the condensate number fluctuations in Fock particle number representation during

Bose-Einstein condensation within our quantum master equation theory.

For this purpose, the master equation for the condensate particle number distribution is ex-
tracted from the Lindblad Eq. (5.68) in Section 6.1. It describes the Markov time evolution of the
entire N-body state of the gas in terms of the quantum mechanical two body transition rates of

Chapter 5. The quantum master equation serves as an ideal toy system to study the dynamics of
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critical number fluctuations during a quantum phase transition, enabling us to numerically study the
full condensate quantum distribution during condensate formation in Section 6.2. The first direct
access to the condensate and non-condensate number fluctuation dynamics during Bose-Einstein
condensation provides a dynamical picture of the condensate growth resulting from the spatial and
thermal averaging over all accessible single states of the gas particles below T,, which manifests ef-
fectively in a randomly fluctuating, non-condensate environment, populating the ground state mode
macroscopically on average. The average condensate growth and the non-condensate depletion
garnished by the fluctuations of the non-condensate gas particles are analyzed in Sections 6.2.3, 6.3
and 6.4. Resulting initiation and formation times for Bose-Einstein condensation are compared
to experimental observations [24, 91] and to previous theoretical predictions of quantum kinetic

theory [17] in Sections 6.3 and 6.4.

6.1 Dynamical equations for Bose-Einstein condensation

Remember that, by Eq. (5.11),

pn(No, ) = (No| T p™) (£)INo) (6.1)

also specifies the total state of N particles in the Bose gas:

N
6™ (t)="Y" pn(No,HINoXNol® p. (N = No, T), (6.2)
Ny=0

see Eq. (5.11).

6.1.1 Master equation of Bose-Einstein condensation

The most general Lindblad quantum master equation (5.68) describes the time evolution of the
reduced diagonal condensate density matrix, po(t) = Tr. 6™(#), during Bose-Einstein condensation
with respect to two body interactions in a gas of N atoms. For practical purposes, it is useful
to extract the master equation for the condensate number distribution in order to study the time
evolution of the N-body state in Eq. (6.2).

To this end, the chemical potential of the condensate g is considered to be energetically

below non-condensate single particle energies, such as in experiments where condensation occurs
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INg + 1){Np + 1|
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Figure 6.1: Probability flow between different condensate number states, expressed by the master equation of Bose-
Einstein condensation in Eq. (6.3). The corresponding transition rates are defined by FK](NO,T) =2(Ng+ DAL, (N -

Ny, T), with A%, (N — Ny, T) given by Eq. (5.40), and by I'y(No, T) = 2NgAZ, (N = No, T), with AZ,(N =Ny, T) given
by Eq. (5.51). In the stationary state, which is reached for long times t — oo, the rates obey the condlition of detailed
balance: FIJ(](NO, T)pn(No, T) =T (No +1, T)pny(No + 1, 7).

on the single particle ground state level [15, 64, 92]. In that case, the Lindblad term for pair
processes («~) is negligible, and single particle processes (~~) dominate the condensation process
(see Section 7.1.2). Projecting the Lindblad master Eq. (5.68) onto the elements of the underlying
condensate Fock-Hilbert space, the time evolution of the N-body state in Eq. (6.2) reduces to one
closed master equation of Bose-Einstein condensation, which describes the condensation process
as a consequence of single particle quantum jumps of the condensate particle number, Ng — Nyp+1,

induced by the non-condensate component of the gas:

PN __ 1 (o T+ N, ) s

+TH(No -1, T)pn(No — 1, 1) (6.3)
+Iy(No+1,T)pn(No +1,1),

with the total condensate growth rate T'{(No, T) = 2(Np + )AL, (N = No, T), with AL, (N — No, T)
defined by Eq. (5.40), and the total condensate loss rate I'\(No,T) = 2NoAZ,(N — Ny, T), with
AZ,(N—=Ny,T) defined by Eq. (5.51). Remember that py(Ny, t) also determines the non-condensate
particle number distribution, because the total particle number Ny + N, = N is conserved, leading

to pn(N — Ny, t) = pn(No, £).
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Figure 6.2: Time evolution of pp;(No, ) with respect to Eq. (6.3) (low (blue) and high (red) intensity regions, indicated
by the color gradient) during the transition of N = 2000 8/Rb atoms into a Bose-Einstein condensate in a harmonic
trap with frequencies wy = wy = 21t x42.0 Hz, w; = 21t x 120.0 Hz. The final temperature of the gas is T = 20.31

nK; the critical temperature is Tc = 33.86 nK. Whereas the wave picture of the particles implies the interference of all
waves below T to a giant matter wave (see Chapter 1), condensate formation translates in the many particle picture
as a rapid growth of the average condensate fraction, garnished with large initial condensate number fluctuations, as
discussed in more detail in Section 6.2.

The master Eq. (6.3) needs to be distinguished from the so called Pauli master equation for the
harmonic oscillator [20, 21] coupled to a heat bath, in which the transition rates are introduced
phenomenologically by the Fermi’s golden rule [20]. In contrast, Eq. (6.3) describes the condensate
subsystem coupled to a non-condensate particle reservoir accounting for (i) the finite spatial phase
coherence time (t.,) between the scattering quantum particles between system and reservoir

. . . . . » _1
leading to a finite resolution in energy I' ~ _ |

(see Chapter 5), as well as (ii) the finite size (particle
number conservation implies N — Ny particles for each condensate population of Ny particles) of
the particles in the non-condensate vapor below T,, which leads to condensate formation. The
steady state condensate quantum distribution is therefore not a thermal Boltzmann distribution over
the eigenenergies of the harmonic oscillator [21, 93] as governed by thermal atoms, but predicts
macroscopic ground state occupation below T.

The resulting probability flow (condensate growth) in particle number representation is sketched
in Fig. 6.1: the net particle flow towards a state |[Ny){No| ® p. (N — Ny, T) is due to the terms
of the positive probability feeding current T;(No — 1, T)pn(No — 1,£) + T (No + 1, T)pn(No + 1, ),
whereas the particle flow from the state [No)(No|® p. (N — Ny, T) is governed by the negative
probability loss current I'\,(No, T)pn(No,t) + T';(No, T)pn(No, t).  As shown in Section 8.1, the
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Figure 6.3: Average condensate fraction oo(t) = (Ng)(t)/N (blue solid line) and non-condensate fraction o1 (t) =
1 —ao(t) (red dashed line) during Bose-Einstein condensation in a gas of N = 2500 87Rb atoms obtained from
Egs. (6.3, 6.4). Trap parameters and final temperature correspond to Fig. (6.2). The critical temperature is Tc = 36.47
nkK.

steady state of the system is thus reached, if, and only if the net probability flux to every number
state |[No)(Np| (implying in particular detailed balanced particle flow, d(Ny) = 0) is zero, i.e.
I (No, T)pn(No, T) = Ty (No + 1, T)pn(No + 1, T) for all Np.

To study the dynamics of condensate formation, we solve the (N + 1) coupled differential
Egs. (6.3) for the condensate particle number distribution pn(Np,t) by numerically exact propa-
gation, using the 2(N + 1) feeding and loss rates A% (N — Ny, T) in Eq. (7.33). They particularly
define the time evolution of the average condensate occupation, (No)(t), see Eq. (6.4). A typical
example of the time evolution for pn(Ny, t) during Bose-Einstein condensation in a gas of N = 2000
87Rb atoms is displayed in Fig. 6.2. In general, our numerical calculations in this parameter regime
require small computation times of 10 — 60 seconds. For increasing total particle numbers, the
scenario in Fig. 6.2 is reproducible for up to N = 10° — 10° atoms within two days of computation

time on a single processor.

6.1.2 Growth equations for average condensate occupation

From Eq. (6.3), any desired moment of pn(Np, ) can be extracted. Taking the average of Ny over

the probability distribution pn(Ny, t) leads to the growth of the average condensate fraction:

N
(NoX(t)= )" Nopn(No, 1) (6.4)
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Figure 6.3 shows the average ground state occupation during Bose-Einstein condensation for the
same same trap parameters as in Fig. 6.2, with N = 2500 8Rb atoms undergoing the Bose-Einstein
phase transition to the final gas temperature T = 20.0 nK. The typical S-shape behavior [59, 18] of
the condensate fraction o () = (No)(t)/N is confirmed by our quantum master equation (6.3), such
as the inverse Z-shape behavior for the non-condensate fraction, o, (t) = 1—(Np)(t)/N, is presented
as a function of time.

Instead of propagating the exact equation (6.4) for calculating the average condensate occupa-
tion, it is possible to deduce a simple growth equation, similar to quantum kinetic theory [76].
Herefore, the quantum master Eq. (6.3) is traced over the number of condensate particles, Ny,
thereby leading to

N
KR 3 2Ny + DI (N = No, TipaNo, B = A= (N = No =1, Tipn(No +1,0] . (6.5

ot o

Rather than completely neglecting quantum fluctuations [76] (the width of px(No,t)), we consider a
sufficiently narrow peaked distribution pn(No, t) around the mean value (Ny), within which the rates
are approximately constant (see Figs. 6.2, 7.6), AZ,(N — Ny, T) = AZ, (N — (Np), T), for Ng = (Np).
This entails the condensate growth equation for the average condensate occupation gas of exactly

N particles:

d(No)(t)
ot

=2[AL(N =(No), T) = AZ,(N = (No), D] (No)(t) + 1) . (6.6)
Equation (6.6) nicely highlights the quantum coherent nature of the condensation process: The net
flux rate A* (N —(Np), T) = A_,(N —(Np), T) per particle towards the condensate mode (the ratio
gives the balance of the number of events in which the particle populates the condensate mode to
the number of events it entered the non-condensate) is stimulated by the factor (N + 1), meaning
that the presence of a condensate enhances the net feeding rate of each individual non-condensate
particle.

Equation (6.6) differs — despite the transition rates which depend on the non-condensate particle
number N — Ny, and are obtained without further approximations than assuming the dilute gas limit
(compare the rates of QKT in Section 2.4) — in the spontaneous emission term 2A* (N—(Ng), T) from
the kinetic growth equation of QKT in Eq. (2.31). The absence of the emission term in Eq. (6.6)

is conceptually important, reflecting consistency with thermodynamics: for d;(Ny) = 0, the net
ptually imp 8 Y y 0
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Figure 6.4: Standard deviation ANy(t) of the condensate particle number distribution pn(Ng, t) during Bose-Einstein
condensation for the same parameters as in Fig. 6.3. Large number fluctuations in the non-condensate thermal vapor
are observed at the initial stage of formation with a maximum spread of the distribution at t ~ 600 ms, reducing at
stationary condensate growth, see Fig. 6.3.

energy flow between condensate and non-condensate is zero on average, 1o = u., which is easily
verified using the balance condition, A, (N —(Np),T) = exp[BAu(N — (No), T)IAZ, (N = (Np), T), in
Eq. (7.20), with Au(N —(No),T) = uL (N — Ny, T) — pio. The condensate growth scenario in Eq. (6.6)
thus implies that pp = p1 (N —(Np),T) on average at stationary particle flow between condensate
and non-condensate. The latter is in particular reached in the steady state of the gas (see Chapter 8)
— in agreement with thermodynamics. According to the validity of the detailed balance condition, an
upper bound for deviations from microscopic energy conservation is ,Bhrc‘c}l < 1 (see Chapter 7). The
modified Eq. (6.6), however, yields only negligibly small quantitative corrections (see Chapter 6.3)

with respect to Eq. (2.31).

6.1.3 Condensate particle number fluctuations

Condensate number fluctuations during Bose-Einstein condensation are characterized by the second

moment of pn(No, t):

2

N N
Var[Nol(t) = (N3) = (NoY* = Y N2pn(No,H) = | Y Nopn(No )| - 6.7)
Np=0 Np=0

From the evolution Eq. (6.3), the variance Var[Ny](t), and thus the standard deviation ANy(t) =
+/Var[No] (t) of the distribution pn (N, t) is extracted as a function of time. The standard deviation
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of the condensate number ANy(t) is displayed in Fig. 6.4 during Bose-Einstein condensation, using

the same parameters as in Fig. 6.3.

6.2 Bose-Einstein condensation in harmonic traps

To analyze the Bose-Einstein phase transition in more detail, we consider here a gas of N interacting
particles (in the perturbative limit, ap!'/3 — 0*, see Chapter 7) prepared in a time-independent
three-dimensional harmonic trapping potential with frequencies wy,wy and w, in an initial mixed

many particle quantum state

N
6™ =Y pn(No,0)INoYNol® P (N =Np,T), (6.8)
No=0

given the initial condensate particle number distribution py (N, 0) = e #10No(1 —e P10 MN+1)y (of a gas
above T;) corresponding to thermal atoms [93]. Now, the relaxation dynamics of this initial state
to the Bose condensed phase is studied, directly reflecting the dynamical onset of non-condensate
quantum fluctuations in terms of the condensate and non-condensate particle number distribution

pn(No, t) as described by Eq. (6.3).

6.2.1 Monitoring of the condensate number distribution

The formation of a Bose-Einstein condensate is studied within our master equation theory by direct
numerical propagation of Eq. (6.3), leading to a system of N +1 coupled differential equations
for each instant of time. Numerical solutions have been reproduced’ for different experimental
parameters and particle numbers up to N =5.0- 10°.

A typical example is displayed in Fig. 6.5: The probability distribution pn(No,t) is shown as a
function of time t and of the condensate particle number Ny, for a gas of N = 200 8Rb atoms which
undergoes the Bose-Einstein phase transition in a three-dimensional harmonic trap with frequencies
wy = wy = 21 X42.0 Hz, w; = 2t x120.0 Hz. The final gas temperature is set to T/T, = 0.40 in order
to model a sudden cooling process [90], given the ideal gas critical temperature T, = 15.72 nK.

The lower panel in Fig. 6.5 shows the x-y projection of the condensate particle number distribution
pn(No, £).

Twith computation times of up to 1—2 days on a serial computer
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Figure 6.5: Condensate particle number distribution pn(No,t) during the transition of a gas of N = 200 87Rb atoms
into a Bose-Einstein condensate in a three-dimensional harmonic trap with trapping frequencies wy = wy = 42.0 Hz,
wz = 120.0 Hz, given a critical temperature T, = 15.72 nK. We model a sudden cooling process by switching the
temperature of the reservoir below the phase transition temperature, T/Tc = 0.4. Note that the non-condensate
particle number distribution, py(N — Ny, t) = pyy(No, t), is simultaneously captured by replacing Nog — (N — Ny) in
the figure. Lower panel shows the x-y projection of pn(Ny, f).
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Figure 6.6: Time dependent width, ANy(t) = [(Ng)(t) - (NO)Z(t‘)]l/2 (left panel), and the evolution of the maximum

oo(t) = (No)(t)/N (right panel), of the distribution py(Ng,t) in Fig. 6.5 during Bose-Einstein condensation. The
inflection point occurs of the with occurs at an approximate condensate fraction of 1/4.

A switch below the critical temperature induces a quench? of the non-condensate density
below the critical density for Bose-Einstein condensation, (N — NO)(kBT)3/h3a)xa)ya)Z > ((3), and
thus leads to a coherent spatial coupling of the atoms in the gas. While the wave picture of
the particles implies an initially large number of coherently interfering matter waves, this wave
dynamics is translated into the microscopic many particle picture as a coupling of many transition
channels for particle exchanges between non-condensate and condensate atoms leading to number
uncertainties. The resulting initially strong number fluctuations during the onset condensate of
the condensate formation process in the gas initiate and trigger the Bose-Einstein phase transition,
as directly monitored in Fig. 6.5: In the exponential step of condensate growth, a large initial
spreading of the condensate particle number distribution pn(No, t) is observed, which is due to the
large number fluctuations in the non-condensate environment being transferred to the condensate
subsystem because of particle number conservation. The corresponding number distributions are
both simultaneously captured by p(Ny,t) = pn(N — No, t). In this first stage, the buildup of a large
condensate fraction sets in, however, with high initial uncertainty in the number occupation.

As the gas evolves in time, the non-condensate density reduces and approaches its equilibrium
value defined by the final temperature T of the gas, the non-condensate atoms increasingly lose
their spatial coherence during condensate growth (in the wave picture), and thus finally stop the

condensation process. In the many particle representation, this is effectively reflected by the

2 Consult Chapter 7 and Section 7.6 for the conditions of the critical density for condensate formation, as well as for the reaching
of a detailed particle balance.
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depopulation of non-condensate single particle occupations, and consequently by the reduction of
the condensate number fluctuations. The reshaping of the condensate particle number distribution
is herein understood as due to the decreasing number of contributing non-condensate single particle
states to the dynamical condensate growth.

In the final steady state, the remaining condensate number fluctuations are induced by thermal
fluctuations of the surrounding non-condensate environment (see Chapter 8).

It will be shown in Chapter 7 that, on average, the reaching of a detailed balanced parti-
cle flow between condensate and non-condensate modes implies a (dilute) equilibrium non-
condensate density, i.e. the stationarity condition g, A3(T) = ((3/2) for a gas in a box, or
(N —No)(kBT)3/h3cuxa)ycuz = ((3) for a three-dimensional harmonic potential (see Section 7.6).
In the steady state, the non-condensate chemical potential is therefore zero (in both cases), mean-
ing that the entropy of the gas is maximized, that the free energy is minimized, and that the
net average energy flow between condensate and non-condensate is zero — according to the
laws of thermodynamics. Obviously, the average ground state occupation (condensate forma-
tion) is enhanced below T, with respect to the initial thermal condensate number distribution
pn(No, T) = e PoNo(1 — e BoN+D)).

6.2.2 Dynamics of the condensate number variance

In Figs. 6.6 and 6.7, the dynamical three-step process of the number distribution pn(Np, t) in Fig. 6.5
is emphasized by extracting the time evolution of the distribution’s maximum,? () = (Np)/N (right
panel), and its width ANy (t)/ VN = [NG(E) - (No)2(5)]"/2/ VN (standard deviation, left panel), as a
function of time: (i) In the exponential stage of condensate growth, the condensate particle number
starts to fluctuate, before (ii) its distribution is reshaped at the inflection point (Ng)/{(N.) ~ 1/3.
After the initial cycle, (iii) the exponential growth stops and the particle number distribution tends
towards its final equilibrium shape of a well-defined width.

The maximum width (inflection point) occurs at f = 47 ms, i.e. at an average condensate fraction
of o9 = 0.25, and reaches the equilibrium width of the particle number distribution px(No, T)
approximately after t ~ 500 ms. The observed inflection point turns out to be universal (at oy ~ 0.25)
in the numerical propagation of Eq. (6.3). This can be understood as due to a direct consequence
of the specific form of the interaction term V.. in Eq. (4.16), because the approximate ratio
of (No)/(N ) =1/3 corresponds to interactions between condensate and non-condensate atoms

getting maximal with regard to single particle processes.

3in units of the total particle number N
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Figure 6.7: Sequences of characteristic dynamical stages of the condensate particle number distribution pp(No,t)
during condensate formation, here after t1 = 50 ms, t; = 100 ms and t3 = 1000 ms, extracted from Fig. 6.5. The
incipiently narrow distribution is largely spread at the stage of exponential condensate growth, and begins to evolve
towards high condensate population in the second stage. Finally, it reshapes while reaching the equilibrium steady
state distribution in the last stage of (linear) condensate growth.

Analysis of the average condensate fraction, oo(t) = (Np)/N in Fig. 6.6, highlights that the
inflection point at the exponential stage of condensate growth is slightly delayed with respect to the
widths’ time evolution, occuring at t = 55 ms. The condensate fraction reaches its equilibrium value
starting around f = 1000 ms, about a factor of 2 later than the width ANy(t). This indicates that the
rapid initial depopulation of the highly excited single particle states reduce the condensate number
fluctuations faster than reaching a steady state particle flow between the energetically low-lying
non-condensate single particle states and the condensate mode, being not yet the case after 500

ms (comparable to Stoof’s prediction explained in Chapter 2.4).

In Fig. 6.7, three different sequences of the distribution pn(No,t) are extracted from Fig. 6.6
at t; =50 ms, tp = 100 ms and t3 = 1000 ms, to highlight the three characteristics steps of the



6.2. BOSE-EINSTEIN CONDENSATION IN HARMONIC TRAPS 121

distribution pn(Np,t) towards the stationary state.

6.2.3 Average condensate growth from the thermal cloud

To study the dynamics of condensate growth and non-condensate depletion in the microscopic
many particle picture, we have used so far the exact numerical propagation of Eq. (6.3), taking into
account the full number distribution (see Chapter 6). Here, we analyze and employ the growth
Eqg. (6.6) in order to study condensate formation on a thermodynamic scale.

Equation (6.6) describes the process of condensate formation from an initially empty condensate
mode, starting to grow proportional to the rate A7"(N —(Np) =0, T), because initially (Np) =0, and
therewith A7"(N—(Np) =0,T)-A7 (N—(Np) =0,T) > 0 (i.e., particle flow towards the condensate,
see Section 7 for explicit calculations of the transition rates). A temperature switch below the critical
temperature thus induces energy flow towards to condensate in terms of particles, Au(N—(Np),T) <
0, which gives rise to an exponential condensate growth. The growth is stimulated by the factor
((No)(t) + 1) after initiation which modifies and redefines the condensate feeding and loss rates
AL, (N—=(Np),T) in time. This “loop” runs until stationarity is reached, where Au(N—(Ny),T) = 0.
In this case, detailed balanced particle flow A7"(N —(Ny),T) = A="(N —(Np), T) and a macroscopic
ground state occupation is reached on average.

It is the equal energy balance condition 1y = u, (N —(Np)), which defines the mean equilibrium
occupations (Np)(co) and (N )(e0) =1 —(Np)(e0) by Eq. (7.8), quantitatively determined by the
final gas temperature T, as well as by the geometry of the trap and the total number of particles
N in the system. Equilibrium occupations (Np)(co) and (N, )(co) are given analytically in the
semiclassical limit of large particle numbers and high temperature via Eq. (7.48): For the three-
dimensional uniform case, the corresponding equilibrium values are (Ny)(c0) = N(1 — T3/2/T§’/2)
with T, = 2mth?0%/3 /(*/3(3/2)mkg, whereas (Ng)(c0) = N(1-T3/T2) with T, = iwoN'/3/C/3(3)kg for
a three-dimensional harmonic trap, where w = (cuxcuya)z)l/3 is the spatially averaged trap frequency
(see Chapter 7). Corrections to the critical temperature (arising from the discrete nature of the
single particle spectrum) are discussed in Chapter 8.

Figure 6.8a displays the dynamics of the average condensate fraction oo(t) = (No)(#)/N and of
the average non-condensate fraction o (t) = (N )(t)/N, correspondingly, as a function of time, for
a condensate formation process with typical experimental parameters [24]. Similarly, N =5-10°
23Na atoms are implemented to study the formation process in a three-dimensional harmonic trap
with frequencies wy = 211x235 Hz, w, = 2nX410 Hz, w, = 21t X745 Hz. The gas is subjected to the
initial conditions ¢¢(0) = 0.0 and ¢, (0) = 1.0, and T = 1.0 uK. The critical temperature is T, = 1.5
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Figure 6.8: a) Average condensate (blue line) and non-condensate (red line) fractions, oo(t) and o1 (t), respectively,
as a function of time for a gas of N = 5-10° 23Na atoms undergoing the Bose-Einstein phase transition in a
three-dimensional harmonic trap with frequencies wy = 21t X 235 Hz, wy = 21t X 410 Hz, w; = 2m X745 Hz. The
final temperature is T = 1.0 uK, and the ideal gas critical temperature is T = 1.5 uK. Parameters correspond to
experiments of Ref. [24], with a gas parameter of ap'/3 ~ 1072, Figures b) and c) show the temporal change of the
average condensate fraction 5 (t) (blue line), and non-condensate fraction ¢ (t) (red line), versus time in figure b),
and versus condensate fraction in figure c), respectively.
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K. According to Ref. [24] the dilute gas parameter is ao'/3 ~ 1072 < 1.

We confirm? the typical “S-shape behavior” of Bose-Einstein condensation [17, 67, 72, 73, 74,
76]: After a short initiation time, the average condensate fraction (depicted as blue line) grows
exponentially fast, before it slowly reaches its equilibrium population. Since the particle number is
conserved, the inverse scenario is observed for the non-condensate fraction (shown as red line),
i.e., after a slow initiation period, the non-condensate starts to exponentially decrease until reaching
the equilibrium steady state. It is evident that the sum o(t) + o (f) = 1 at all times®.

Figures 6.8b and 6.8c show the average flux ¢y (t) of particles from the non-condensate to the
condensate, and vice versa, with ¢ (t) = —d¢(t), as a function of time (Fig. 6.8b), and as a function
of the condensate fraction (Fig. 6.8c), respectively, for the same parameters as in Fig. 6.8a. For the
given parameters the initiation time® is Tin; = 125 ms, and the final saturation time to the equilibrium
population is 79 = 400 ms. The observed time scales for condensate formation hence agree with
the theoretical quantitative analysis presented in Refs. [91] for sudden cooling, and thus with the

experimental observations of Refs. [24], see the following section.

6.3 Comparison of formation times to state-of-the-art

Quantitative comparisons of initiation and condensate formation times predicted by the master
equation theory (based on the unperturbed one-body condensate feeding rates A%, (N — Ny, T) of
Section 7.5) are compared to experimental and theoretical predictions of Refs. [24, 17, 91]. To this
end, we use the kinetic growth equation in Eq. (6.6).

The initiation time Tin; = 125 ms in Fig. 6.8 is in very good agreement with QKT [91], where the
authors found an initiation time 7j,; = 120 — 130 ms, and thus with the experiments in Ref. [24].
However, the condensate formation time 7o ~ 500 ms predicted by our master equation approach
deviates by a factor two from the formation time 7y ~ 250 ms of quantum kinetic theory [91]. Our
condensate formation times match the correct order of magnitude of the experimental setup and
previous theoretical predictions in this case.

Fig. 6.9 presents a further comparison to experimental and theoretical results [17] in case of
sudden cooling. To model these experiments, we consider a cloud of N = 4.4 - 10° bosonic 8Rb

atoms, cooled in an anisotropic harmonic trapping potential with trapping frequencies wy = wy =

“4as being analyzed for large ranges of different experimental parameters

5Indeed, Eq. (6.3) analytically shows that pp;(No, ) remains normalized at all times. In consequence, Ny + N, = N maintains
not only on average but also for each realization, because p(Ny, ) = pn/(IN — Ny, £).

6The initiation time is defined as the point of maximum particle flux to the condensate mode, specified by the condition that

2(Np)(t)/9t% = 0.
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Figure 6.9: Average condensate fraction oo(t) in a), and average particle flux 5o(t) to the condensate in b), for
the experimental parameters [17] corresponding to N = 4.4-10° bosonic 87Rb atoms in an anisotropic harmonic
trapping potential with trapping frequencies wx = wy = 21 X 110 Hz, wz = 21 X 14 Hz, for final gas temperatures
T =200 nK (blue solid line), T = 220 nK (red dashed line) and T = 240 nK (black dashed dotted line). We find
initiation times Tin; = 105 ms for T = 200 nK, Tin; = 243 ms for T = 220 nK, and tin; = 522 ms for T = 240 nK, and
condensate formation times, which range from 7ty = 800 to 79 = 1500 ms. The time scales of Figs. a) and b) match
the experimental ones of Ref. [17] within the experimental accuracy.
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Figure 6.10: Comparison of condensate formation times studied in terms of the average condensate fraction
oo(t) = (Ng)/N in a), and the particle flux to the condensate mode ((t) in b), obtained by the growth equation of
the master equation (solid blue line), Eq. (6.6), versus the growth equation of quantum kinetic theory [76] (dashed
red line), Eq. (2.31). The comparison is done for N = 2000 bosonic 8Rb atoms in an isotropic harmonic trapping
potential with frequencies wx = wy = wz = 2 X100 Hz, cooled to T/T. = 0.48, with an ideal gas critical temperature

T =56.81 nK. Initiation times are Ti,;(QKT) = 46 ms with Eq. (6.6), and tin; = 51 ms with Eq. (2.31), hence differing
by less than 1%.
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21t x 110 Hz, w, =27 X 14 Hz. Since the final temperature of the atomic cloud in the experiment
is T =220 + 20 nK, the condensate formation time is calculated for three different temperatures
T =200 nK, T =220 nK and T = 240 nK, see Fig. 6.9: Initiation times are Tin; = 106 ms, Tin; = 243
ms and Tjn; = 522 ms, strongly dependent on the final gas temperature. Formation times range
from 79 = 800 to 79 = 1500 ms. Initiation times of the experiment [17] are Tj,; ~ 300 ms, while
condensate formation times are of the order of 7o ~ 800 — 900 ms.

A similar quantitative agreement between our master equation theory and the experiment has
been found for further experimental measurements [23].

We conclude that condensate formation times obtained in the perturbative limit, ap'® - 0%,
match realistic experimental time scales for condensate formation [17, 24, 91]. Inclusion of the per-
turbative effects onto the condensate wave function is expected to provide even better quantitative

agreement.

6.4 Modified condensate growth equation

Quantitative corrections arising from the absence of the “spontaneous emission term” proportional
to 217, (leading to consistency with thermodynamics) in the growth Eq. (6.6) are compared to the
kinetic growth equation of QKT [76]. To this end, initiation and condensate formation times are
compared in Fig. 6.10 for a gas of N = 2000 bosonic 8 Rb atoms undergoing the phase transition in
an isotropic harmonic trap. The red dashed curve depicts the calculations of condensate formation
times via the growth Eq. (2.31) of QKT, whereas the blue solid line constitutes Eq. (6.6), confirming
that the initiation times, 7ihj = 46 ms and Tj,; = 51 ms, differ by less than 1% — provided that
the same transition rates (of our quantum master equation theory) are used. Hence, the formation
process is slightly accelerated by the unphysical “spontaneous emission” termin Eq. (2.31), whereas
the condensate formation time 7y ~ 500 ms is equal (on an observable scale) for the present choice

of the trap parameters.



Chapter 7

Transiton rates for Bose-Einstein

condensation

We show here how to evaluate and analyze the corresponding transition rates and energy shifts
formally introduced in Chapter 5 to solve the master equation for the diagonal elements of the
condensate density matrix (6.3) arising from the Lindblad master equation (5.68). Explicit analytical

expressions are given for the transition rates and energy shifts in a three-dimensonal harmonic trap.

7.1 Single particle (~), pair (~~) and scattering (O) rates

In this section, explicit analytical expressions for all two body transition rates for particle flow
between the condensate and non-condensate are derived. These were formally specified as single
particle condensate feeding and loss rates, AX, (N — Ny, T) in Egs. (5.40, 5.41), as pair condensate
feeding and loss rates, A%, (N =Ny, T) in Egs. (5.51, 5.52), and as the scattering rate A¢,(N — Ny, T)
in Egs. (5.61, 5.62).

7.1.1 Single particle feeding and loss rate

Given a number of Ny particles occupying the condensate mode and a final temperature T of
the gas, particle exchanges between condensate and non-condensate which raise and lower the
condensate particle number by one occur with the rates A%, (N — Ny, T) in Egs. (5.40, 5.41).

To calculate the transition rates associated to single particle events, the lower bound of the time

integral in the single particle feeding and loss rates in Eq. (5.40, 5.41) is extended to —oo, using the

property

127
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GO @, N-No, T,0) = |49 @7 ,N-No, T,~1)] (7.1)

of the two point correlation functions gf)(ﬁf',N—No,T,T) for single particle processes in

Egs. (5.37, 5.38). Thereby, the single particle loss and feeding rates turn into

AL, (N =Ny, T) =53 f f dfdr” Wy (®Wo(r f dr et Py® @ ' NNy, T,1). (7.2)
EXE —00

First, attention is drawn to the decomposition of the two point correlation function B &N -
No,T,7). As discussed in Section 4.3, the average of the non-condensate field correlations in
%ﬁf)(f), F',N—NO,T,T) is evaluated with respect to a thermal state of the non-condensate described
by the Hamiltonian F{, in Eq. (4.26) projected onto the subspace of (N — Np) particles. According
to Wick’s theorem [94], which can generally be applied in order to calculate expectation values
of field operators with respect to the linearized non-condensate at thermal equilibrium, the two
point correlation functions %f)(ﬁ r’,N-Noy,T,7) decompose from a product of six non-condensate
fields, see Eq. (5.37, 5.38), into a product of three time ordered two point correlation functions of
two non-condensate fields, as explicitly shown in Egs. (A.9, A.10) of Appendix A.1. This leads to

the expression

3ﬁ2 2
AL, (N=Ny,T) = mha” Z * (k,1,m,N —No, T) 60 (wy + w; — wm — wp) (7.3)
k,1,m=0

for the single particle feeding and loss rates.’

The 6-function in Eq. (7.3),

Herein, we introduced the frequencies wy = €x/h.

oM (Aw) = (7.4)

\/_ ex [_(Aw)z]
Plm T |

-1

originates from energy conservation and assumes a finite energy width ~T' =1
col

according to the

temporal decay of non-condensate phase correlations.

" Note that, Eq. (7.3) contains an infinite sum over all microscopic single particle exchange processes as depicted in the upper
right diagrams in Fig. 5.1, hence relating the feeding rate in number representation to the spatial and to the thermal, coarse-grained
average over all possible spatial configurations of the gas particles.
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Figure 7.1: Stimulated net single particle transition rate Ng x A(N — Ny, T) as a function of Ny, for N = 2500 8"Rb
atoms in a three-dimensional harmonic trap with frequencies wy = wy = 21 X 42.0 Hz, w; = 21 x120.0 Hz, with
AN =Ny, T) = (AL, (N =Ny, T) — A_,(N — Ny, T)). The final temperature of the gas is T = 20.0 nK. The critical
temperature is Tc = 36.47 nK. Formation of an initially empty Bose-Einstein condensate corresponds to a path from
left to the right in the figure until the reaching of equal particle balance A(N — Ny, T) = 0. Exact balance (at the
intersection with the ordinate) is never reached completely (because the net feeding rate decreases to zero while
approaching the intersection), but is approached arbitrarily close after few seconds.

The weight function .77, (k,1,m,N — Ny, T) for single particle feeding processes is given by

FE(k,1,m,N—=No,T) = fi(N—No,T)fi(N = No, T) [ fu(N = No, T) + 1]1G°* , (7.5)

whereas the function .#_, (k,I,m,N — Ny, T) for single particle losses turns into

F 2, (k,1,m,N = No, T) = [f(N = No, T) + 1] [i(N = No, T) + 1] fuu(N — No, DI 2. (7.6)

In Egs. (7.5, 7.6), fx(N—Np,T) denotes the average occupation number of a non-condensate single
particle mode [Wy),
1

SN =No D) = e~ a (N —No, D) =1 7.7
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where 11, (N — Ny, T) is implicitly defined by the normalization condition for the average non-

condensate single particle occupations,

Y fN=No,T)=(N-No), (7.8)
k+#0

according to the fact that N —Nj particles populate non-condensate modes (for a detailed discussion
and derivation of Eqs. (7.7, 7.8), consult Section 7.2 and Appendix A.3). Since the particles are
indistinguishable, each two body process with energy balance ey + €; ~ €, + €9 is weighted by the
corresponding occupation numbers fi(N =Ny, T), fi(N =Ny, T), fu(N —Np)+1 and Ny +1, and vice
versa. The probability amplitudes (C;ﬁo)* = Cgl’” for single particle transitions occuring in the weight
functions .#% (k,I,m,N — Ny, T) in Egs. (7.5, 7.6) take into account the quantum mechanical wave
nature of the particles. The average over the particles” waves functions is carried out in position

space, the transition amplitudes being specified by overlap integrals over single particle states,

CﬁiéﬁwmmeWWﬂ (7.9)

Note that the spatial average over all positions of the quantum matter waves in the gas as well
as the coherent time evolution (on the finite coherence time 7)) of the waves according to the
propagators in Eq. (7.1) is taken into account to calculate single particle transition rates.

Equations (7.9, 7.8, 7.7) are sufficient to quantify the weight functions .#% (k,1,m,N — Ny, T) in
Egs. (7.5, 7.6) and therewith the single particle feeding and loss rates A%, (N — Ny, T) in Eq. (7.3)
numerically for all k,/,m, and for any state of N — Ny particles: after explicit calculation of the
overlap integrals CZ;O and (CZI‘O)* for all k,I,m, p, (N —Np,T) can be solved numerically by the
normalization condition (7.8) for each N — Ny, leading to %% (k,I,m,N — Ny, T) with the single
particle occupations in Eq. (7.7). The single particle energies € are defined by the diagonalization
procedure in Section 4.3. Explicit expressions for all two body transition rates and energy shifts are

given in Section 7.5 for a three-dimensional harmonic trap in the perturbative limit.

7.1.2 Pair feeding and loss rates

The calculation of the pair feeding and loss rates AX_ (N — Ny, T) in Egs. (5.51, 5.52) is performed in
the same spirit. However, it will be shown that — in contrast to single particle rates — the pair rates

lead to a negligible contribution, if the condensate chemical potential 1 lies energetically below
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the energies of single particle non-condensate states (which is the case for three-dimensional trap
geometries in dilute atomic gases [17, 18, 95]).
Pair events describe the simultaneous exchange of two particles between condensate and non-

condensate, quantified by the pair feeding and loss rates

2 (o]
A% (N=Np, T) = 8% f f dRdF’ Wo(B)Wo (@)W} (F)WE (F) f dr e2iw0T I @) (@ 2 N_N, T, 1),

ExE -
(7.10)
where we used that
_ *
GEEF' N =Ny, T,7) = [ & ,N-No, T,-1)| " . (7.11)

Equations (A.11, A.12) of Appendix A.1 yield the explicit analytical expressions for pair feeding and
loss rates,

332 2
2 hzu Z ZE (k1N =No, T)6 (wp + w; — 2wp) , (7.12)
m

k,1#0

AL (N=Noy,T) =

where the weight function for pair feedings is given by

ﬁ;(k,l,N—No,T) = fk(N_NO/T)fl(N_NOIT)|C210|2 ’ (7.13)

and, correspondingly, the weight function for pair losses turns into

F (kLN =No,T) = [fiN = No, T) + 1] [i(N = No, T) + 111G} P, (7.14)

with probability amlitudes C2° = [ dF (W3(®)* Wi(®)¥, ().

Looking at the energy balance of a pair event, Ae.... = €, +€;—2u0, pair processes are obviously
not energy conserving, meaning that Ae..., > hI', considering that the condensate chemical potential
o lies energetically below the energies of the single particle excited states [17, 18, 95]. Hence,
the rates for pair events («~) are negligible as compared to single particle events (~+). This is

in agreement with experimental observations [95], showing that dominant two body interaction
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Figure 7.2: Scattering rate NgA¢ (N — Ny, T) as a function of condensate particle number Ng, for N = 2500
87Rb atoms in a three-dimensional harmonic trap with frequencies wy = wy =21 X42.0 Hz, @z = 2t X 120.0 Hz.

The corresponding critical temperature of the gas is T = 36.47 nK. The scattering rate is calculated for different
temperatures T = 20.0,25.0 and 30.0 nK (from bottom to top). Scattering events erase off-diagonal elements of the
reduced condensate density matrix in Fock number representation with a rate proportional to N(Z]AO(N - Ny, T)

additionally to the thermalization process, and therefore support the N-body Born-Markov ansatz (see Chapter 3).

processes are single particle processes (~) in dilute quantum degenerate atomic gases.

7.1.3 Two body scattering rates

For the sake of completeness, the previous calculus of Sections 7.1.1, 7.1.2 is finally applied for
calculating scattering rates between condensate and non-condensate particles in the Bose gas,
which are formally defined by Eqs. (5.61, 5.62). Although scattering processes do not contribute
to the quantum master equation in Eq. (5.68), it is physically interesting to calculate the order
of magnitude of atomic scattering processes with ANy = AN, =0 in a Bose gas, because they
contribute (additionally to the thermalization process) to decohering off-diagonal elements of the
reduced condensate density matrix in Fock number representation (with a rate proportional to

N%AO(N — Ny, T)). The rate for scattering events reads:

2g? , r y
Ao(N-No ) =25 f f a2 4’ [Wo@PIWo(DP f dr e PG @ N-No, T,).  (7.15)
EXE —00

The decomposition of the correlation function ¥, (¥,t”, N—Ny, T, ) for scattering processes, carried

out in Eq. (A.13) of Appendix A.1, leads to the following explicit analytical expression for the
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scattering rate:

3322
Ao =No,T) = 2N 2, 1,N = No, T)o (- ) (7.16)
m
k10
where
Fo,(k,1,N =No, T) = fi(N = No, T) [fiN = No, T) + 1] I3 2, (7.17)

given the probability amplitudes C,l(% = fcg dr I\IIO(F)Iz‘I/l*(?)\I/k(?). Since scattering events do not
change the particle number in the two subsystems condensate and non-condensate, the corre-
sponding energy balances are Ae;) = € —€; = 0, as evident from the scattering rate in Eq. (7.16).

The scattering rate is shown as a function of the condensate particle number in Fig. 7.2.

7.2 Depletion of the non-condensate

The function p, (N =Ny, T) in Eq. (7.8) occurs naturally in the derivation of average single particle
occupations fi(N — Ny, T) of the non-condensate [10] in Eq. (7.7) (see Appendix A.3 for the deriva-
tion), and normalizes non-condensate single particle occupations to (N — Ny) particles, for each

condensate population of Ny particles:

1
ka(N —No,T) = Z SNy 7 = N No). (7.18)
k#0 k#0

The dependence of non-condensate single particle occupations fi(N — Ny, T) on (N — Njy), needed
for the calculation of two body transition rates during Bose-Einstein condensation, is hence entirely
determined by the normalization condition (7.18). Since each subspace of N — Nj particles is a
thermal mixture projected onto the Fock subspace of N — Nj particles, 11, (N — Ny, T) can also be
interpreted as an ensemble of chemical potentials for the non-condensate [10] in dependence of

(N = Np). Given analytically as

,9InZ, (N - No)

/JJ_(N_NO) =-p (N —No) ’

(7.19)
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the function 1, (N—N)p) is defined by the non-condensate partition function 2, (N—Np) in Eq. (5.15),
and the final temperature § = kT of the gas. Hence, 1, (N — Ny) is proportional to the derivative
of the Boltzmann entropy, and the Helmholtz free energy of the non-condensate part of the gas

(compare chapter 1).

7.3 Detailed particle balance conditions

Emphasis is to be put on the balance conditions between loss and feeding rates for single particle
processes in Eq. (7.3), and for pair processes in Eq. (7.12). As proven in Appendix A.2, the balance

between single particle feeding and loss rates in Eq. (7.3) is

A*.(N = No, T) = exp[BAu(N — No, T)]AZ, (N - Ny, T), (7.20)

valid for finite correlation times between condensate and non-condensate, AI'f < 1. In Eq. (7.20),
Au(N—Np) = p (N=Ny, T)—puo marks the difference between the eigenvalue of the Gross-Pitaevskii
equation, pg in Eq. (4.4), and u, (N — Ny, T), which normalizes the thermal non-condensate single
particle occupations, see Eqs. (7.8, 7.18).

Equation (7.20) explains the modulation of the particle balance between single particle feedings
and losses between the condensate and the non-condensate modes in the gas by the difference
Au, (N =Ny, T). In particle number representation, the condensate mode is dynamically populated
until energy balance g = u (N — Ny, T) between condensate and non-condensate is reached.
As shown later (in Chapter 8), the steady state condition after condensate formation implies that
to = t1 (N—(Np), T) close to the maximum (Njy) of the steady state condensate number distribution,
i.e. energetic equilibrium on average is established in the final equilibrium steady state: The equality
of 1y and 1, means that the net average energy flow between condensate and non-condensate is
zero [10] — in agreement with thermodynamics. At detailed balance, AT, (N —(Np),T) = A_,(N —
(Np), T), the particle exchange between condensate and non-condensate is stationary on average.

Similarly to single particle processes, also pair losses and feedings are not independent, but

obey the balance condition

AT.(N=No,T) = exp[2BAu(N — No)]AZ.(N = No, T), (7.21)

showing that also the net exchange of particle pairs between condensate and non-condensate is
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zero, if ug = p (N —Np,T). In turn, also the reaching of a equal particle balance implies energetic
equilibrium on average. At stationary particle flow, the energy flow is thus also conserved, if pair

processes became resonant (for py > €y).

7.4 Single particle, pair and scattering energy shifts

Single particle, pair and scattering processes only contribute to the Lindblad dynamics if they are
energy conserving. A two body collision event which does not microscopically conserve the energy,
however, can still occur as a virtual process [20] (in conjunction with its conjugate process), if the
time scale of this process is sufficiently fast (i.e., if it occurs on a time scale 7 < Ae/hT?). This
is similar to the Lamb shift in quantum optics [86], where fluctuations of the vacuum photon field
induce a splitting of the angular momentum degenerate eigenenergies in the hydrogen atom.
According to the derivation of the Lindblad master equation in Chapter 5, the energy shift term
describing the net effect of virtual processes is composed of the different principal parts of the

complex valued transition rates:

AN =Ny, T) = hAU(N - Ny, T)Np + hA®(N — N, T)N?Z, (7.22)

where the quantities AUM(N — Np, T) and A@IN(N — N, T) denote energy shifts,> which occur
linearly and nonlinearly in the condensate number operator Ny. Energy shifts AU™(N — Ny, T)
renormalize the single particle term ﬁZ/Zm + Vext(¥) = ﬁZ/Zm + Vext(B) + BAUM | whereas nonlinear
shifts renormalize the interaction energy ¢|Wo(F)]> — g|Wo(¥)> + RAMIM),

This renormalization can be used to add second order backreactions (in g) induced by virtual

processes of the non-condensate field to the finite temperature Gross-Pitaevskii equation [46]:

|

where nnc (%) is the average non-condensate density, and n¢(¥) the average condensate density.

)
Y . .
=+ A + Ve (@) | + 28nnc @) + gnc(®) + NohA<“1m>}%(F> =wWo®,  (7.23)

The renormalization of the eigenvalue o due to hFAT™ and ZA®IM s calculated numerically:

the order of magnitude is about 1% of the single particle ground state energy hw for dilute and

2specified in units of 571
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Figure 7.3: Virtual single particle, pair and scattering processes create a virtual state. Resulting positive energy shifts,
AL,, AT, and AZ} in Egs. (7.26, 7.27, 7.28) (from left to right), are represented by the connection of two conjugate

single particle (~), pair («~) and scattering (O) diagrams. Only positive energy shifts are displayed, negative shifts
are obtained by the conjugate diagrams.

sufficiently small atomic gases, as displayed in Figs. 7.4, 7.5. Energy shifts are thus small in dilute
atomic gases. For completeness, all components of the energy shifts in Eq. (7.23) are calculated
explicitly, originating from virtual processes associated with the different nature of single particle
(~»), pair («~) and scattering processes (O).

First, we note that the total energy shift A™(N — Ny, T), which is linear in the condensate

number operator Ny, is composed of
AN =Ny, T) = A, (N =No, T) + AZ(N = No, T) +4AT. (N =Ny, T) + A°(N =Ny, T) . (7.24)
Besides, the shift A" (N — Ny, T) which occurs nonlinearly in N is given by:
AN =Ny, T) = AT, (N = No, T) + AZ..(N = No, T) + Ary(N = N, T) . (7.25)

Thus, each of the various processes (single particle, pair and scattering) induces positive (+) and neg-
ative (-) energy shifts. The two body processes leading to the energy shifts in Eqgs. (7.24, 7.25) are de-
picted in Fig. 7.3, and are explicitly given by the imaginary parts of the rates in Eqgs. (7.3, 7.12, 7.16).

Single particle (~+) energy shifts hence turn into

+8712a2 h?

AL, (N-Ny,T)= .

Z F* (k,1,m,N - Ny, T) PV{ ! } . (7.26)
. (W) + W — Wk — wp)

where PV {X]} labels the principle part of X [58], whereas energy shifts for pair events («) are
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Figure 7.4: Energy shift Al™) = A7 (N = No, T) + A~ (N — Ng, T) +4A%5™ (N — Ny, T) + AP (N — Ny, T) per particle
in Eq. (7.24), in units of the trapping frequency w = 21t X 600.0 Hz is displayed as a function of temperature T for
N = 1000 87Rb atoms in the trap.

given by
2,252
A:_(N=No,T) = ﬂ Y FE.(LN-No, T) PV B (7.27)
m (a)k +w;— Za)o)
k10
Finally, the quantity
—32ra’h? 1
A(N=No, T) = ———— ) Zo(k,,N—-Ny,T) PV{ —— 7.28
oIN=No )= ——— " Fo 0.7) {@r@& (7.28)

k,1#0

denotes the energy shift induced by scattering processes (O).

7.5 Transition rates and energy shifts in the perturbative limit

The small parameter & = ap!/® < 1 of our theory® can be identified in the transition rates in
Egs. (7.3, 7.12, 7.16), as well as in the energy shifts in Eqs. (7.26, 7.27, 7.28). The previously
presented transition rates and energy shifts are defined via the Gross-Pitaevskii condensate wave
function |[Wy) in Eq. (7.3), being a function of the product gN. The Gross-Pitaevskii state [¥() and
therewith the single particle basis states {|\Wy),k € N} being orthogonal to [Vy) are thus functions
of the parameter ap = £0?/3, provided that the atomic density ¢ is replaced by the peak density

3Realized in many state-of-the-art experiments (see Section 1.4).



138 Chapter 7. TRANSITON RATES FOR BOSE-EINSTEIN CONDENSATION

-0.013%

-0.01 o

- -0.014 o

1000,T)x [10 2]

AM(N
1

o

o

2

B

a2
g0
ﬂnnﬂﬂ“"nuau

005 10 15 20 25 30 35 40

temperature T [nK]

Figure 7.5: Nonlinear energy shift per particle in units of the trapping frequency w = 27 x 600.0 Hz as a function of

temperature T, for N = 1000 87Rb atoms in the trap. The total energy shift A1) modifies the nonlinear term of the
condensate Hamiltonian by a relative (to gl\IJOI2 ~107° = 1073 hw) amount up to 1.0%.

N|W(0)1? at the center of the trap at sufficiently low temperatures.

Since the single particle energies €, in Eq. (4.28) and the corresponding number occupations
fr(N =Ny, T) of non-condensate single particle states in Eq. (7.7) are defined in terms of the basis
states {|W), k € N} (which can be expanded in the small parameter &), all of the two body transition

rates (and the corresponding energy shifts) are composed of:

2 (N—-Ny,T)= Z (a*>,N-Ny, T)+ 0%, (7.29)

where the leading order contribution 2”(a?, N—Nj, T) is proportional to a®. The k' correction to the
transition rates and energy shifts scales as (a0'/3)k — 0* relatively to the leading order contribution
2 (a®,No, T).

Hence, the diluteness of a Bose-Einstein condensate, formally reflected by the dilute gas con-
dition ap!'/3 < 1, enters as a perturbation theory for single particle wave functions into the master
equation formalism: In dilute atomic gases, interactions are sufficiently weak to replace the wave
functions of the interacting particles by the ones of an ideal gas in a master equation governing the
dynamics of two body collisions (proportional to a?). This justifies from first principles the use of
single particle states and single particle energies of a non-interacting gas in the QBE (compare the

transition rates in Eq. (2.17)).

Not least for numerical simplicity, we therefore restrict quantitative predictions to the formal
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limiting case ap'/® — 0* (with a # 0 of o = const.) of weak interactions, taking into account only the
leading order of transition rates, which are still proportional to a>. Note that the rates obtained in
the perturbative limit still contain an infinite series over all two body interaction processes, being
perturbative from the point of view that the disturbance of the single particle wave functions is

omitted.

7.5.1 Leading order of transition rates

The leading order contributions of the two body transition rates /\;*'(N — Ny, T) are calculated for
j =~=,¢~, O for a three-dimensional harmonic trap with spatial extentions L, = \/m, where
Wy,yz = 2T X Vyy 2 (1= x,Y,2) are the trap frequencies.

According to Section 7.5, the leading order contribution of transition rates and energy shifts are

quantified by the Schrodinger equation:

o1
Y (ﬁ+2qu }ka>—eﬁlxk> (7.30)
n=x,y,z

Equation (7.30) can be solved analytically exactly, leading to single particle eigenstates of the

1 n?
HAxo) =N —exp[ ] ky (L) (7.31)

with Hy, (Lyn), the Hermite polynomials [40], and /" = (r3/4 V2R Rtk 1k 1) 71, a normalization

constant. The corresponding quantized single particle eigenenergies are

non-interacting system:

:(kx 1)ha)x (ky )ha)y (kz 1)rm)z, (7.32)

with k = (ky,ky,k2)T. Since Eqs. (7.7, 7.8) fully specify single particle occupations fg(N =No,T)
with respect to the single particle states and single particle energies in Eqs. (7.31, 7.32), the leading
order contributions of the transitions rates A%, (N — Ny, T), AL (N — Ny, T) and AE o (N =Ny, T), as
well as of the energy shifts AZ,(N — Ny, T), AZ,(N — Np,T) and A7 (N — Ny, T) can be calculated

analytically. The leading order feeding and loss rate* associated to single particle processes (~)

4We do not introduce an extra label for brevity.
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turns, after calculation [96] of the overlap integrals in Eq. (7.3), into:

Ai(N_NO,T)ZZ’Z“ @ Z FE (KL, N-No,T) 60 (k+T- 1) &) , (7.33)
TC

with & = (wx,wy,@z), and @ = (wxwyw;)'/3. The weight functions F% (k,1m,N - Ny, T) in

Eq. (7.33) are given by
FE (LM, N =Ny, T) = fo(N = No, T)fN = No, T) [fg(N = No, ) + 1] S (k, L), (7.34)
for single particle feedings. The function Zw(lz,inﬁ) =0, if (ky + I, +my) is odd (n = x,y,2), and

turns into

Zw(lz,f,rﬁ): H F(k’?"'ln"'%)F(mn+kn+%)r(ln+mn+%) 2

lle 1] 1 |
n=x,y,z krllnmn

(7.35)

otherwise, because of the alternating parity of the harmonic oscillator states. In Eq. (7.35), I'(x) is
the Euler Gamma function [40].

The weight function .#_, (lz,f,l?l,N— Ny, T) for single particle loss processes turns into

F (L, N =Ny, T) = [fo(N = No, T) + 1][f{N = No, T) + 1] fz(N = No, T) Z. (k, L i) . (7.36)

The dependence of the single particle loss and feeding rates in Eq. (7.33) on Ny is displayed in
Fig. 7.6. The difference between losses and feedings disappears for a certain value of Ny (marking the
detailed balance particle flow, see Eq. (7.20)), which is determined by thermodynamical constraints
such as temperature, volume of the trap and the total particle number (see Chapter 8).

We find the typical magnitude of the single particle feeding and loss rates to be 0.1...100 Hz,
see Fig. 7.6: For low final temperatures (T = 20.0 nK), single particle feedings are fast (~ 60 Hz)
for weakly occupied condensates, the gas being far from equilibrium. In consequence, the net
feeding rate A*, (N —Ny, T)—AZ, (N—Np, T) remains large and positive up to Ny ~ 2200, and smaller

below (meaning that the bose-condensed state is dynamically stable). At high final temperatures
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Figure 7.6: Single particle feeding A*, (N — N, T) (red solid line) and loss rates A_, (N — N, T) (blue dashed line)
of Eq. (7.33) are presented as a function of the condensate particle number Ny, for two different temperatures,
T = 20.0 and 35.0 nK, for a gas of N = 2500 87Rb atoms in a three-dimensional harmonic trap, with frequencies
wyx = wy =21 X42.0 Hz, w; = 2t x 120.0 Hz. The critical temperature of the gas is Tc = 36.47 nK. For T =20.0 nK,

the particle flow to the condensate is fast, highlighting the high non-equilibrium situation, whereas it is smaller by an
order of magnitude for T = 35.0 nK. There is only one intersection of the feeding and loss rate (unique steady state),
at N(l)s = 2200 for T = 20.0 nK, and at Nas =150 for T = 35.0 nK, which marks the number Ny around which the

two subsystems exhibit detailed balance particle flow. Since A, (N — Ny, T) — AZ,(N = Ny, T) > 0 for Ny < N(i)S and
ATL(N=No,T)— A, (N =Ny, T) <0 for Ny < N(i)s, the steady state of the Bose-Einstein condensate is dynamically
stable. Indeed, for decreasing (different) temperatures (not shown), the intersection point travels from N(i)S =0to
N =N.
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(T = 35.0 nK) feeding rates are larger than loss rates until Ny ~ 150, and smaller below. In both
cases, detailed balance particle flow is obviously reached at the (only) intersection of AZ, (N —Ny, T)
and AZ, (N — Ny, T), which hints already at this stage the approach to a unique and stable stationary

state. The steady state is derived and analyzed in more detail in chapter 8.

The unperturbed pair feeding and loss rates turn into

maza - - - 2
+ _ _ + _ @) &
ALL(N=NoT)= —— Zﬁw(k,l,N No, 1) 60 ((k+1)- &), (7.37)
k,1#0
with
FL (LN =Ny, T) = [fo(N = No, T) + 1] [ (N = No, ) + 1] T () , (7.38)

and similarly for pair losses:

- =

F (kLN =No,T) = fo(N = No, T)fAN = No, T)Z.coe (k. 1) . (7.39)

-

In Egs. (7.38, 7.39), the function zw(ﬁ, ) is given by

r kp+Ip+1 2
Te.h= ] u ) (7.40)

C=X,]/,Z *\lkn'ln'

for even (k; +1;) (n = x,y,2), and it is zero otherwise. Once again, Eq. (7.37) verifies that pair
processes are off-resonant for sufficiently large trapping frequencies because of energy conservation,

and do therefore not contribute to the dynamics of the Bose gas, see Eq. (7.37).

The leading order contribution for scattering rates finally turns into:

Ao (N=No,T)= =— Y FoLN=No,T) 60 ((k+1)- @) , (7.41)
K 1£0

with a weight function .%, (ﬁ,f,N— Ny, T) given by
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lﬂ(kq+;,,+l) 2
FoMLN=No,T) = [fN-No, D) +1] fi(N-No, 1) || | -—==*] - (7.42)

C=X,]/,Z \[kn'ln'

The scattering rate NoA ¢ (No, T) is presented in Fig. 7.2 as a function of the condensate particle num-
ber Ng with the same parameters as in Fig. 7.6, and for different temperatures T = 20.0,25.0,30.0 nK.

For numerical calculations throughout the thesis, these perturbative two body transition rates
for single particle exchanges in Eq. (7.33) are employed from now on, accurately resembling the

condensate formation times of state-of-the-art experiments with & ~ 1071-10"2 < 1 (see chapter 6).

7.5.2 Leading order energy shifts

As discussed in Section 7.4, energy non-conserving processes create intermediate states of short
life time. The net effect comprises the energy shifts in Eqs. (7.24, 7.25), which renormalize the
single particle ground state energy, see Eq. (7.23). Energy shift terms Al and A(M) are quantified
here for a three-dimensional harmonic trap in the perturbative limit ag'/3 — 0*.

First, remember that unperturbed energetic shifts linear in Ny are expressed by
AN =Ny, T) = A*,(N = No, T) + AZ,(N = No, T) +4A%_,(N = No, T) + Acy(N = No, T) , (7.43)

and the shift occuring nonlinearly in Ny consists of

AN = Ny, T) = AT, (N = No, T) + AZ.(N = No, T) + Acy(N = No, T) . (7.44)

Both energy shifts are thus simultaneously defined in terms of the different imaginary counterparts
of the unperturbed rates in Eqs. (7.33, 7.37, 7.41). Starting with unperturbed single particle energy
shifts (~+), they turn into

AE (N =N, T) = + 21070 Y ZEELM,N-N,T) PV{%}. (7.45)
[
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14 () ()

1.0 1.0 )

1.5  m/2~0.886 2.612

2.0 1.0 n2/6 ~ 1.645
25 3+/m/4~1.329 1.341

3.0 2.0 1.202

35 15+/7/8~3.323 1.127

4.0 6.0 74/90 ~ 1.082

Table 7.1: Euler Gamma function T(y), and the Riemann Zeta function ((y), for selected values of y.

The unperturbed energy shifts for pair events («~) are given by

25° Lo 1
AL(N=-No D)= 22 V' 72 (KIN-No,T) PV ——— |, (7.46)
hmt £ (k+1)-@
K120
and finally the expression
—2ma253 P < 1
Aoy(N=No, T) = —— " FZ0,(K, TN - No, T) PV{ ——— (7.47)
ht K-1-&

determines unperturbed energy shifts induced by scattering processes (©). The numerical values

of the energy shifts in Eqs. (7.45, 7.46, 7.47) are shown in Figs. 7.4, 7.5 of Section 7.4.

7.6 Generalized Einstein de Broglie condition

The density of states of an ideal gas (g — 0%) in the semiclassical limit, where kgT > hn,
and N — oo, is given [15] by g(n) = Vm®?2/2'222131/2 for uniform gases, and by g(n) =
nd‘l/(d—l)! H]-:x,y,z hawj for d-dimensional harmonic traps with frequencies w; = 2mxv; (j = x, ,2).
Integrating the number of non-condensate particles over the density of states g(n), the closed, im-

plicit equation for the non-condensate chemical potential 1, (N — Ny, T) in Eq. (7.8) turns into

(N = No)

Bur(N=No)1 —
m,[e = ,
L 1= ety

(7.48)
with I'(y), the Euler Gamma function. The parameter y = 3/2 for uniform gases, and y = 3 for a
harmonic trap. m, [z] = )", 2" /n” is the Bose function [15]. At the Bose-Einstein phase transition,

z =1, and my[z — 1] = ((y) reduces to the Zeta function. Some values for I'(y) and ((y) are
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summarized in Table 7.1. C, in Eq. (7.48) corresponds to a geometry dependent constant, which is
analytically given by Cz, = Vm3/2271/21721;73 for the uniform case; for a d-dimensional harmonic
trap, it follows that C; =1/(d — 1)! [[;=y . 4hw; [15].

The approximate relation (which becomes exact for large particle numbers) in Eq. (7.48), together
with the detailed balance condition in Eq. (7.20), bears an important physical interpretation.

At detailed balance (which is reached on average in the stationary state, see Section 8.1) the
chemical potential of the non-condensate 1, in Eq. (7.48) reaches the single particle ground state
energy 1o. In the perturbative limit of vanishing interactions (see Section 7.5), the single particle
ground state energy can be set to zero, because the dynamics and the statistics of the Bose gas
is invariant under the transformation H — F — noN of the total Hamiltonian, where 1 is the
single particle ground state energy (the easiest check of this statement is to recognize that 6™)(t)
commutes with N at any time t). For uniform gases (y = 3/2), Bose-Einstein hence sets in, if
(N—No)/C3/2F(3/2)(kBT)3/2 in Eq. (7.48) is larger than C(3/2) (uy > 0), defining the condition
(N =Np)/VA3(T) > ((3/2) for Bose-Einstein condensation, stationary particle flow being reached if,
and only if (N — No)/VA3(T) = C(3/2) (uL =0).

Using the above explicit expression for C3/, and identifying o, = (N — Np)/V, Bose-Einstein
condensation consequently manifests itself as a mechanism for the Bose gas to reduce its non-
condensate density, until the ratio of thermal de Broglie volume and mean particle distance in the
non-condensate equals (3/2). For arbitrary temperatures (below T,), we thus recover a condition
for condensate formation (stationarity) similar to the Einstein de Broglie relation (1.3), but for the

non-condensate part of the gas:

0. A3(T) > C(3/2) . (7.49)

On thermodynamic grounds, Eq. (7.49) implies that the entropy of the non-condensate gas is
maximized, and that the free energy is minimized during condensate formation, see Eq. (1.2, 7.19).

From the wave mechanics point of view, Eq. (7.49) can be interpreted as Bose-Einstein conden-
sation to occur as long as the non-condensate gas particles remain spatially coherent. Since the
particle number and the trap volume during condensate formation are conserved, we see that, at
equilibrium, the condensate fraction is that part of the gas particles exhibiting an average atomic

density allowing to find more than one particle in the coherence volume A3(T),

00A%(T) = A3 (T) - L(3/2), (7.50)
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whereas the non-condensate gas particles are spaced on the order of A3(T) on average. > . Note,
that Eqs. (7.49, 7.50) reduce to the usual Einstein de Broglie condition in Eq. (1.3) at the phase
transition temperature, where o, = g.

The dynamics of the Bose-Einstein phase transition after the quench of the non-condensate
density, 0, A3(T) > {(3/2) (or (N — No)h3a)xa)ya)0/(kBT)3 > ((3) for a three-dimensional harmonic
trap, respectively), was shown in Chapter 6, monitoring the behavior of the condensate and the

non-condensate number distributions during condensate formation.

5For a three-dimensional harmonic trap, the situation is qualitatively the same: The condensate thus forms until the right hand
side of Eq. (7.48) equals {(3) at final equilibrium, i.e. for u; = 0 (and is larger before the reaching of the detailed balance condition).
However, it cannot be directly related to the ratio of de Broglie volume and average particle spacing, as the non-condensate density
is not homogeneous because of the external trapping confinement. Also here is the phase transition independent on the choice of
1o, which can hence be set to zero.



Chapter 8

Equilibrium properties of a dilute

Bose-Einstein condensate

Analyzing the steady state solution of the master equation analytically proofs the existence of
a unique steady state for dilute, weakly interacting Bose-Einstein condensates of finite particle
number under the Markov dynamics assumption. In the limiting case of weak interactions, the

latter is given by a Gibbs-Boltzmann thermal state of N indistinguishable, non-interacting particles.

8.1 Equilibrium steady state after Bose-Einstein condensation

The equilibrium steady state of the Bose gas in Eq. (6.2) is entirely defined by the steady state number
distribution pn(No, T) = pn(No, t — o0) of Eq. (6.3). We introduce the abbreviation A¥, (N—-Ny, T) —
A, (No, T) in the following. Due to Eq. (6.5), the net flux of particles between condensate and non-
condensate is zero!, d(Ny)/dt = 0, if the condensate number distribution obeys the recursion

relation:

/\t» (NOI T)

pn(No +1,T) = PN(NO,T)m ,

which leads to the steady state distribution

"This is the case, if the non-condensate particles in the gas reach the critical density, i.e. o1 A3 = {(3/2) for a gas of N particles
in a box.

147
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Figure 8.1: Steady state condensate particle number distribution py(No, T) in Eq. (8.2) for N = 2000 8’Rb atoms
in a three-dimensional harmonic trap with frequencies wy = wy =21 X42.0 Hz, @z = 21 X 120.0 Hz, for different

temperatures T/T. = 0.76,0.66,0.57,0.48,0.38,0.28,0.17, given an ideal gas critical temperature T = 33.86 nK. The
distribution pn(Ng, T) unambiguously describes the non-condensate number distribution by replacing Ng — N —Nj
in the above figure.

AL (z-1T)
pN(No, T) WH AW(Z T (8.2)

with normalization .4 = ZNO -0 HNO At (z—1,T)/AZ,(z,T). Since Eq. (6.3) cannot adopt multiple
steady states, a proof of the uniqueness of the steady state in Eq. (8.2) can be found in Appendix A.4.
Note that the steady state distribution in Eq. (8.2) implies d;(Np) = 0 and therefore energetic
equilibrium and detailed balanced particle flow (on average), i.e. AL, ((No),T) = AZ,({Np),T) and
po = Ui (N =(Np),T) following from Eq. (6.6) — in agreement with thermodynamics. Typical
condensate particle number distributions are shown in Fig. 8.1 for N = 2000 atoms in a three-
dimensional harmonic trap with frequencies wy = w, = 2m X 42.0 Hz, w, = 21 x 120.0 Hz, for

different temperatures.

8.2 On the quantum ergodicity conjecture

Ergodicity is a statistical assumption made originally by Ludwig Boltzmann in 1872 for a classical

gas of non-interacting particles, and means that a gas is supposed to reach a unique equilibrium
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state (a thermal state) after long times, where each available state of the same energy is sampled
equally (in classical phase space) over time. The ergodicity conjecture is often used to simplify
theoretical treatments of interacting many particle quantum systems, using a thermal state ansatz
for the Bose gas below its critical temperature, and neglecting atomic interactions in sufficiently
weakly interacting, dilute atomic gases.

In order to prove this ergodicity conjecture for a weakly interacting Bose-Einstein condensate
(undergoing Markovian dynamics), we are left to show that the unique and stable steady state of
the Bose gas defined by Eqgs. (6.2, 8.2) is a Boltzmann state. Hence, our steady state is compared
in the perturbative limit of weak interactions to a thermal state of N non-interacting particles at
temperature T,

. e PH
ONth = «QNW«QN , (8.3)

with the partition function of N indistinguishable particles represented by Z'(N,T) = Tr{6n ]}
Again, 9Dy is the projector onto the Fock space of N particles. In the absence of interactions,
H = Xy nﬁﬁ:zﬁﬁ in Eq. (8.3) denotes the Hamiltonian of an ideal gas, thus refering to Eq. (3.4) with
g =0. To prove the equality of the state 6 4, and the steady state of the Bose gas in Eqgs. (6.2, 8.2)
arising from the master equation, it is to be shown that the following exact recursion relation (which

was derived from Eq. (8.3) in Section 1.5.2) for the condensate particle number distribution,

puNoT) gy, Z1IN—No,T)
pN,th(N0+1rT) gJ_(N_NO_er) ’

applies for the steady state of the master equation in Eq. (8.2) in the formal limiting case of weak
interactions, ap'/® — 0 with a # 0. In Eq. (8.4), Z.(N — Np) denotes the partition function
of (N — Np) non-condensate particles, see Eq. (5.13), and 1 is the single particle ground state
energy of a non-interacting gas. The analytical proof is figured out straight forwardly, because only
basic elements of the master equation formalism developed in Chapters 3-8 are to be employed.
Approximating AZ,(No, T) ~ AZ,(Ng — 1,T) and therewith neglecting terms of the order of N7,
the steady state solution of the condensate particle number distribution of the master equation,

Eq. (8.2), leads to:

PN(N0/ T) ~ /\; (NO/ T) — eﬁ(qo—‘uJ_(N—NO,T))
pN(N0+1rT) /\t»(NOrT) ’
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Figure 8.2: Comparison of exact condensate particle number distribution of the master equation (red
solid line) vs. the condensate statistics arising from Boltzmann thermal state for an ideal quantum gas
in Eq. (8.3) (blue squares), for N = 2000 atoms in a three-dimensional harmonic trap with frequencies
wy = wy =21 X42.0 Hz and w, = 211X 120.0 Hz. The gas temperature is T = 20.0 nK. Similar agreement
is observed for different temperatures.

where we used (i) the balance condition between condensate feeding and losses rates in Eq. (7.20)
which applies for two body interactions exhibiting finite spatial phase coherence time, il < 1,
and (ii) that g = g in the formal limit of small interactions, a@1/3 — 07" (see Section 7.5). The non-
condensate chemical potential, as defined by the normalization condition in Eq. (7.8) is related [10]
to the non-condensate partition function 2, (N — Ny, T) in Eq. (5.13), due to p, (N — Ny, T) =
—B ' InZ (N =Ny, T)—InZ, (N -Ng—1,T)], see Eq. (7.19) in Section 7.2. Therewith, we arrive
at the recurrence relation in Eq. (8.4).

Hence, the steady state of the entire Bose gas in Eq. (6.2) is given by the thermal state of an ideal
gas projected onto the subspace of N particles in Eq. (8.3), in the formal limit of weak interactions,
ap'/® — 0* (with a # 0). Remembering and comparing again the two figures 3.2 and 1.4, this
is by no means trivial, since the steady state distribution in Eq. (8.2) a priori depends on the
(specific nonlinearity of the) two body interaction term V, according to the feeding and loss rates
A, (N, T), see Egs. (7.3). Nevertheless, the balances of particle flow between the different single
particle eigenmodes of the gas at equilibrium generate the same statistics as a thermal state of an

ideal gas (with a = 0) projected onto the subspace of N particles in Eq. (8.3). In both cases, the
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Figure 8.3: (color online) Average condensate fraction (Np)(t)/N and standard deviation ANy of the
condensate particle number distribution pn(No,T), obtained from the steady state distribution (red
solid line) of the master equation vs. the canonical ensemble prediction (blue squares) of Eq. (8.3),
for trap frequencies of wy = w, = 42.0 Hz and w; = 120.0 Hz, and atom numbers of N = 2000 and
N =10000 atoms. The gases have corresponding critical temperatures of T = 33.86 nK (upper figures),
and T = 57.90 nK (lower figures).

condensate number statistics thus obeys the distribution

D@PJ_(N - NO/T)
ZINT) 7

pN(No, T) = e PoNo
where 2| (N—Nj, T) is the non-condensate partition function in Eq. (5.13), and Z°(N, T) the partition
function of the canonical ensemble in Eq. (1.26). Obviously, the condensate number distribution is
modified with respect to the steady state solution of the master equation for a harmonic oscillator
coupled to a heat bath by the term 2, (N — Ny, T)/ 2 (N, T) below T..

The quantitative support of the (1/N) approximation required for the analytical proof is to
compare the exact numerical calculations of the steady state condensate particle number distribution
to the prediction of the Boltzmann ansatz in Eqgs. (8.3). Figure 8.2 verifies that for N = 2000 atoms
in a three-dimensional harmonic trap with frequencies wy = wy =21 x42.0 Hz and w, = 27t x120.0

Hz, and a gas temperature T = 20.0 nK, the exact numerical calculations (red solid line) agree almost
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perfectly with the Boltzmann thermal state (blue squares).

In Fig. 8.3, the comparison of the average condensate occupations (Np) and the width ANy
of the condensate particle number distributions is displayed as a function of the entire range of
relative temperatures T/T. for N = 2000 and N = 10000 atoms, given the same trap parameters as in
Fig. 8.2. The corresponding critical temperatures are T, = 33.86 nK and T = 57.90 nK. Agreement
is observed between the steady state of the master equation and the Boltzmann ansatz: The shift
of the critical temperature is about 10% with respect to the ideal gas critical temperature T (in
the semiclassical limit) in both cases, and maxima of the standard deviations are ANy = 50.4 at
T =0.90T, for N = 2000 atoms, and ANy = 124.71 at T = 0.96T. for N = 10000. The thermal state
ansatz is hence supported by numerical calculations, which have been reproduced and checked for

different available parameter ranges of state-of-the-art experiments.

8.3 Exact condensate statistics versus semiclassical limit

The condensate statistics obtained in the semiclassical limit is contrasted to the predictions for
gases with discrete spectra. For this purpose, the equilibrium steady state in Eq. (8.2) is appropriate
to compare condensate number fluctuations and average occupations in the Bose gas in a three-

dimensional harmonic trap.

8.3.1 Condensate particle number distribution

The steady state solution of Eq. (6.3) for an interacting Bose gas in a 3-dimensional harmonic trap

with trapping frequencies wy, wy and w; is formally given by

No
pnv(No, T) = N [ [ explpap(N -2)1, (8.7)
z=0

with normalization N = Z%O:O Hi\l__oo exp[BAu(N —z)].
Remember that Eq. (8.7) defines the equilibrium steady state of the full N-body state 6™)(c0),

which - for a three-dimensional harmonic trap — has the explicit form

(N=Np)

6™ (00) = pn(No, TINoXNoI® Y pn(INg], DINIXINGH, (8.8)

{Ng}
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Figure 8.4: Condensate particle number distribution pn(Ny,T) for N = 20000 atoms in a three-dimensional
harmonic trap with frequencies wy = wy = 42.0 Hz, and w; = 120.0 Hz, for different temperatures ranging from

T/T.=0.99,0.94,0.85,0.75,0.65,0.55,0.47,0.38,0.28,0.20 nK (from left to right). The ideal gas critical temperature is
T =72.94 nK. Inset displays the magnification of pn(Ng, T = 0.64T¢).

where the distribution of non-condensate occupations is given by

NN T) = 27 (N =No, 1) | [ e ek (8.9)
K

In Eq. (8.9), Z1 (N — Ny, T) constitutes the partition function of (N — Np) non-condensate particles
in Eq. (5.13), and €;; denotes the single particle energies of non-condensate particles in Eq. (4.29).
Numerically studying the perturbative limit of weakly interacting gases, ap'/3 — 0*, single par-
ticle energies turn into the ones of a non-interacting Bose gas, € — 1, while Au(N -z,T) —
pi(N =z,T) = ng. The non-condensate chemical potential is thus specified by the following nor-

malization condition for the non-condensate particle number,

1
Z‘ eﬁ(’]ﬁ—.ul(N—z,T)) 1 =(N-2), (8.10)

-

k#0

which determines 1, (N —z,T) in a numerically exact way, for any z. For a three-dimensional
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harmonic trap, the invariance of the statistics under the shift of the single particle ground state
energy can be employed, using 1 = (kxhwx + kyhwy + k;hiw) as the single particle energies and
setting 1o = 0. Expanding the exponential function in Eq. (8.10) and using the harmonic series [40]

leads to

S 1
(N-z)= E exp[jpuL(N—zT)] | | — — -1 (8.11)
j=1 E=xy,z 1 exp[ ]ﬁhwé]

Equations (8.7) and (8.11) present an accessible numerical tool in order to exactly calculate the
condensate particle number distribution: Foreachz =0...N, theimplicit Eq. (8.11) for pu, (N-z,T) s
determined numerically, which directly yields the condensate particle number distribution pn(No, T)
in Eq. (8.7). The distribution is shown in Fig. 8.4, for a Bose-Einstein condensate of N = 20000 atoms
in a three-dimensional harmonic trap with frequencies wy = wy, =21t xX42.0 Hz, @, = 2t x120.0 Hz,
for different temperatures T/T,, and an ideal gas critical temperature T, = 72.94 nK.

Now, we pay attention to the semiclassical approximation. The semiclassical limit is useful
to analytically deduce the scaling behavior for the moments of the distribution pn(No, T) (see
Section 8.4). Within this limit, the approximate steady state distribution is obtained [15] by replacing
the summation in Eq. (8.10) by an integration over the density of states, g(1)) = *hw wyw;) .
In that case, the non-condensate chemical potential, and therewith the condensate particle number

distribution in Eq. (8.7) is defined by the implicit equation

h3a)xa)ya)z

maleft- =21 = (N - Z)W ,
B

(8.12)

with m3[z] = Y77, zk /i3, the Bose function for a three-dimensional harmonic trap [15].

Although the replacement of the summation by an integration is often employed in order to
derive analytical predictions, it should be emphasized that it is not exact (because it miscounts the
number of single particle states), which leads to a shift of the critical temperature. Hence this shift
is not induced by the neglect of the zero-point motion [15].2. To explicitly illustrate these deviations
originating from the semiclassical approximation, the exact condensate particle number distribution
in Egs. (8.7, 8.11) (blue dotted curves) is compared to the distribution in the semiclassical limit in

Eqgs. (8.7, 8.12) (red solid lines) in Fig. 8.5. Calculations are performed for a harmonic trap with

2The shift of the critical temperature follows the analytical law given in Eq. (8.13), see Section 8.3.3, which is derived under
the inclusion of the exact single particle spectrum.
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Figure 8.5: Comparison of condensate particle number distributions pp(Np, T) obtained from the exact quantum
calculation in Eq. (8.7, 8.11) (dashed blue line) vs. the semiclassical limit in Eqs. (8.7, 8.12) (solid red line), for the
same trap parameters as in Fig. 8.4, and N = 2000 and N = 20000 particles in the trap. Relative temperatures are
T/T: =0.3,0.5 and 0.7 (from left to right), with corresponding critical temperatures of T. = 33.86 nK for N = 2000,
and T¢ =72.94 for N = 20000 atoms.

frequencies wy = wy = 2m X42.0 Hz, w; = 21 X 120.0 Hz, once for N = 2000 (top), and once for
N = 20000 atoms (bottom) in the trap, with corresponding ideal gas critical temperatures T, = 33.86
nK and T, = 72.94 nK. Three different temperatures, T/T. = 0.3,0.5 and 0.7, are displayed from left
to right.

For N = 2000 particles, the maxima of the condensate particle number distribution px(No, T)
occur at Ny = 1956, Ny = 1793 and Ny = 1430, using the semiclassical limit of Eqs. (8.7, 8.12),
whereas they are located at Ny = 1905, Ny = 1638 and Ny = 1097, within the exact quantum
calculation with Eq. (8.7, 8.11). For N = 20000 particles, the maxima are found at Ny = 19550,
No = 17920 and Ny = 14280 with the distribution in the semiclassical limit in Eqgs. (8.7, 8.12),
whereas the maxima are located at Ny = 19270, Ny = 17000 and Ny = 12180 within the exact
quantum distribution governed by Eqgs. (8.7, 8.11). Hence, even though deviations have a vanishing

trend as compared to the total number of particles N in the trap, the distributions (maxima and
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widths) significantly differ relatively up to 2—30%, even for large total particle numbers of N = 20000

atoms in the trap.

8.3.2 Average condensate occupation and number variance

The resulting shift of the critical temperature is best deduced from the analysis of the condensate
number expectation value, and its standard deviation. In Fig. 8.6, the average condensate occupation
(Np), and corresponding standard deviations AN of the particle number distribution px(Np,T) in
the semiclassical limit (blue diamonds) represented by Eqs. (8.7, 8.12) are compared to the exact
quantum calculation via Eqs. (8.7, 8.11) (red squares). Herefore, we use a continuous range
of relative temperatures T/T. > hw;/kgT, and two different total number of atoms, N = 2000
(left panels) and N = 10000 (right panels), in a three-dimensional harmonic trap with trapping
frequencies wy = w, = 42.0 Hz, w, = 120.0 Hz. The corresponding ideal gas critical temperatures
in the semiclassical limit are T. = 33.86 nK and T. = 57.90 nK.

For a total number of N = 2000 atoms (left panels), the quantum calculation leads to a shift
of the critical temperature of about 10% with respect to the ideal gas critical temperature T in
the semiclassical limit in Eq. (1.21): The maximum width depicts the critical point of the phase
transition. It is ANy = 50.42 occuring at T = 0.90T. for the quantum calculation, whereas we
observe ANy = 38.96 at T = T in the semiclassical limit. For larger total atom numbers, here
N = 10000 (right figures), the critical temperature of the exact calculation is 0.96T still 4-5% less
than T, — even for the case of relatively large particle numbers. Maximum widths are ANy = 124.71
at T = 0.96T for the quantum calculation, whereas ANy = 112.81 at T = T, in the semiclassical

limit.

8.3.3 Shift of the critical temperature

Even though both calculations (exact vs. semiclassical approximation) follow the same qualitative
trend, i.e., condensate particle number fluctuations getting maximal at the critical point and con-
densate occupations following the typical N(1—T3/T?) scaling behavior (see Chapter 1), the critical
temperature of the exact calculation is shifted significantly with respect to the semiclassical ansatz
for mesoscopic Bose gases. These deviations have their origin in the neglect of the degeneracy of the
discrete single particle spectrum [80]. Getting pronounced (~ 10 —30%) for low particle numbers
(N ~10%), as likely to be used in recent experiments [12], deviations still occur for relatively large

atomic samples (N ~ 10%), leading to corrections of 4 — 5% to the ideal gas critical temperature T,
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Figure 8.6: Average condensate occupations and standard deviation of the steady state distribution pn(Ng, T) in the
semiclassical limit of Egs. (8.7, 8.12) (blue diamonds), N — oo and kgT > hw;, vs. exact calculation, using Egs. (8.7,
8.11) (red squares). Trap parameters are wy = wy = 42.0 Hz, w; = 120.0 Hz, with atom numbers N = 2000 and
N =10000, and corresponding critical temperatures T. = 33.86 nK, and T =57.90 nK.

in the semiclassical limit.
An analytical estimate (including the exact single particle spectrum) for the shift of the critical
temperature [80] agreeing with our numerical results is given by
Tgxact c2) Zq:x,y,z Wy

=1-—, 8.13
T. 6CG2PN (8.13)

where T¢ is the critical temperature of an ideal gas in the thermodynamic limit, and w = (wxwy, w,)13
the averaged trap frequency. The shift of the exact critical temperature Tt to the ideal gas value
T is typically of the order of 2 —30% for state-of-the-art experimental parameters, and can only be

neglected if N — oo, where the large number of atoms leading to large single particle occupation
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turns to be equivalent to the approximation of the single particle spectrum to be a continuous one.

8.4 Analytical scaling behaviors in the semiclassical limit

Finally, the moments of the condensate particle number distribution pn(Np,T) are analytically
studied in the semiclassical limit, becoming quantitatively accurate in the limit of large particle

numbers, N — co.

8.4.1 Condensate and non-condensate particle number distribution

In the semiclassical limit, exp[fAu 1 (z, N—z,T)] can be assumed to approach unity in Egs. (8.7, 8.12).
Thus, using the approximate relation mz[exp[fAu.(z, N —z,T)]] = C(3)exp[fAui(z,N —z,T)] in
Eq. (8.12) and employing that T = FPwyw,w-/(kgT)>N in the semiclassical limit, turns Eq. (8.7) to

the normalized condensate and non-condensate number distribution

_, AN=No) N!
(N-No)!T(N+1,A)’

pN(NOrT):pN(N_NOrT)ze (8.14)

valid for T < T, in the semiclassical limit. In Eq. (8.14), A = NT3/Té5 is the mean number of

non-condensate particles, and

NAk

o (8.15)

F(N+1,A)=f dt tNe~f = N1
A k=0

is an incomplete Gamma function [40] related to the finite particle number in the gas. As the particle
number is considered to be large, N — oo, the incomplete Gamma function I'(N +1,1) — 1, and
thus approaches unity.

Equation (8.14) discloses that the non-condensate particle number distribution px(N — Ny, T) is
Poissonian in the number of non-condensate particles, and is thus distributed around the average
non-condensate occupation A. Its width AN, scales as the root of the average non-condensate
particle number AN, = VA. The Poisson distribution of the non-condensate particle number
highlights the statistical independence of the non-condensate particles at final thermal equilibrium.

In contrast, the condensate particle distribution, pn(No, T), is clearly not Poissonian, meaning
that the particle number is distributed around the average condensate occupation (Np) = N-A, and

the width of the condensate particle number distribution is given by ANy = V. This again reflects
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that the condensate statistics is entirely defined by the non-condensate part of the gas, the width
ANy being proportional to the number of thermal non-condensate atoms at equilibrium. Thus, the
smaller the temperature, the higher the number of coherent atoms, and the smaller the variance in

the condensate particle number.

8.4.2 Average condensate occupation and number variance

The average condensate ground state occupation (Np) is studied in the semiclassical limit as a
function of the relative temperature T/T.. The ground state occupation is shown in Fig. 8.7a
for a gas of N = 2500 atoms in a three-dimensional harmonic trap with trapping frequencies
wy = wy = 21 x42.0 Hz, w, = 21t X 120.0 Hz, following the analytical prediction arising from
Eq. (8.14):

(No) :N(l - (Tzc)s) . (8.16)

The scaling behavior of (Np) in Fig. (8.7) is universal for different trapping parameters and particle
numbers. Due to particle number conservation, it follows that the average occupation number of

non-condensate particles is given by

((N=Ng)y=NT3/T2 . (8.17)

The standard deviation AN((T) of the condensate particle number distribution as a function of
relative temperature T/T. predicted by the (semiclassical limit) steady state pn(Np, T) of the master
equation in Egs. (8.7, 8.12) is displayed in Fig. 8.7b (blue squares) for the same parameters as in
Fig. 8.7a: Condensate particle number fluctuations get maximal exactly at the critical point of an
ideal gas in the semiclassical limit, T = T, a universal behavior which doesn’t qualitatively vary
for different trap and gas parameters. The scaling behavior of the condensate and non-condensate
particle number, ANy(T) = AN (T), again follows from Eq. (8.14):

T 3
AN, = ANy = N(—) . (8.18)
Tc

The analytical result of Eq. (8.18) is shown in Fig. 8.7b (red dashed line), resembling the numerical
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Figure 8.7: Scaling behavior in the semiclassical limit. Panel a) compares average condensate occupation (Ng) as a
function of relative temperature T /T of the numerically obtained condensate particle number distribution pn(Ng, T)
in Egs. (8.7, 8.12) (blue squares) to the analytical result (Ng) = N(1 - T3/ Tg’) in Eq. (8.14) (dahes red line), for a gas
of N = 2500 atoms with identical trapping parameters as in Fig. 8.4. The ideal gas critical temperature is Tc = 36.47
nK. Figure b) compares the standard deviation AN obtained numerically from Egs. (8.7, 8.12) (blue squares) to the

analytical prediction ANy =N T3/2 / Tg/ 2 of Eq. (8.14) (dashed red line).
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result obtained from the semiclassical distribution py(No, T) in Egs. (8.7, 8.12) (blue squares). Note
again that the scaling behavior in the semiclassical limit in Eqs. (8.16, 8.17, 8.18) is only valid in
the limit of continuous single particle spectra, or in the limit of large particle numbers N — oo (see

Section 8.3). Indeed, the distribution in Eq. (8.14) applies only for T < T.

8.4.3 Higher order moments of the steady state distribution

The approximately given condensate particle number distribution pn(No, T) in Eq. (8.14) further-
more specifies all central moments of the condensate and the non-condensate particle number
distribution pn(N — No, T) = pn(No, T) analytically. Calculations of these moments are typically
defined by technically involved Bell or Touchard polynomials [27]. Here, they are obtained by
approximating the Poissonian non-condensate particle number distribution in Eq. (8.14) by a Gaus-
sian distribution, which is reasonable for sufficiently large particle numbers. Thereby, we get the
Gaussian non-condensate particle number distribution px(N — Ny, T):

1 ~(N-Ng—A)?
> e 22 , (8.19)
T

pn(No, T) = pn(N =N, T) =

=

with a mean value of N—N, and a variance of the non-condensate particle number ((N—Ny)?), equal
to the average non-condensate particle number A = NT?/T2. The Gaussian ansatz in Eq. (8.19)
yields in particular a Gaussian approximation for the condensate particle number distribution
pn(No, T) by replacing (N — Np) — Ny in Eq. (8.19), as pn(No, T) = pn(N — No, T).
Now, the n™ = (2k) central moment of the non-condensate particle number distribution is
analytically given [40, 27] by
(2k)!

((N=Np-1)%y = WA" , (8.20)

for even 1, and is zero otherwise. Indeed, due to particle number conservation, all central moments
((No—{Np))") of the condensate particle number distribution pn(Ny, T) are also fully specified [27]

by Eq. (8.19), because

{(No = (NoDY = ((N = Ng — )%y = k)15 k)~ Ak . (8.21)
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Figure 8.8: Third- and fourth-order moments of the condensate particle number distribution py(No, T) in Egs. (8.7,
8.11), for a gas of N = 1000 (red solid lines, figures a) and b)), and N = 10000 (blue solid lines, figures c) and
d)) atoms in a three-dimensional trap with identical trap parameters as in Fig. 8.4, and hence critical temperatures
of Tc = 26.87 nK and Tc = 57.90 nK. Dashed lines in figures b) and d) correspond to the analytical prediction

{(Nop — (NO>)4) =3N2T%/ Tg of the Gaussian ansatz in Eq. (8.19), whereas the third central moment of the Gaussian
distribution is zero everywhere.

Comparing the first four central moments according to Eq. (8.19) to numerical calculations via
Egs. (8.7, 8.12) in Figs. 8.7 demonstrates that the mean value and the variance of the Gaussian
ansatz exactly equals A, following the analytical prediction in Eq. (8.14). The numerically obtained
third moment in Figs. 8.8a and Figs. 8.8c, however, exhibits a non-trivial behavior close T = T,
where the distribution gets increasingly asymmetric in the vicinity of the phase transition. In
contrast, the Gaussian third-order moment vanishes for all temperatures. We conclude that the
Gaussian prediction of ((No — (Np))®) = 0 matches the numerically obtained third order moment
for a gas of N = 1000 atoms as shown in Fig. 8.8a for temperatures T. = 0...0.5, whereas for larger

particle numbers, N = 10000 in Fig. 8.8c, an agreement is observed for T/T. =0...0.7.

The fourth order moments in Figs. 8.8b and 8.8d scale comparably to the analytical prediction
of the Gauss approximation {((Ny — (No))*y = N2T6/TC6 up to T/T. = 0.6 for both values of the total
particle number, i.e. for N = 1000 and for N = 10000 atoms.
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The first four moments predicted by the Gaussian ansatz are hence either valid for almost
all temperatures below the critical point, if the particle number is sufficiently large, e.g. up to
T/T. = 0.7 for N ~ 10000, or for sufficiently small temperatures, e.g. up to T/T. = 0.4 for rather

small particle numbers N ~ 1000. We conjecture that the Gaussian ansatz becomes exact in the
limit N — co.
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Chapter 9

Final conclusions

9.1 Master equation of Bose-Einstein condensation

Condensate formation

Our central conceptual result is the Markov master equation of Bose-Einstein condensation in
Eq. (6.3), which explains the time evolution of the full N-body state ™)(t) of the gas undergoing
the Bose-Einstein phase transition. Our equation describes Bose-Einstein condensation in terms
of two body collisions, takes into account the depletion of the non-condensate, avoids a state fac-
torization into a condensate and a non-condensate density matrix and models the non-equilibrium
number statistics during condensate formation. Identifying the small parameter ap'/3 for dilute
atomic gases in the condensate number transition rates, we could numerically monitor the entire
condensate number distribution during Bose-Einstein condensation for the first time. It requires
the calculation of 2(N +1) single particle feeding and loss rates, and a numerical solution procedure
to solve for the (N + 1) coupled differential equations, all together executable on standard serial

computers.

Equilibrium steady state of a Bose-Einstein condensate

We have derived a unique steady state for the N-body state of the Bose gas. Using the limit of
dilute, weakly interacting atomic gases and employing the Markovian dynamics assumption, we
could show that the steady state of a Bose-Einstein condensate is unique and stable. In the limit of
weak interactions, this steady state is in particular given by a Boltzmann thermal state of an ideal

gas, projected onto the subspace of exactly N indistinguishable particles.

165
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Time scales for condensate formation

The condensate formation times predicted by our theory match the correct order of magnitude
of experimentally observed time scales for condensate formation. We were able to estimate the
order of magnitude for intrinsic energy shifts in a Bose-Einstein condensate, confirming the conjec-

ture [17, 18] that they are small for dilute and mesoscopic atomic gases.

9.2 What is Bose-Einstein condensation?

Thermodynamically, we see Bose-Einstein condensation as a relaxation process of the gas below
T¢ until the Boltzmann entropy is maximized and the free energy is minimized, according to the
(generalized) Einstein de Broglie condition.

Quantum mechanically, the Bose-Einstein phase transition is marked as such by strong number
fluctuations which set in when the coherence length A(T) of the non-condensate particles exceeds
their average distance. The time evolution of the condensate number distribution during conden-
sate formation highlights the full N-body quantum dynamics of the particles during condensate
formation, while the wave picture implies that all particles overlap below T,.

Quantum statistically, condensate (and non-condensate) number distributions in the final equi-
librium steady state of a dilute, weakly interacting Bose-Einstein condensate (undergoing Markovian
dynamics) are uniquely captured by a Boltzmann thermal state of an ideal gas, subject to the statistics

of N indistinguishable particles.

9.3 Outlook

Our master equation theory describes in particular the many particle dynamics after sudden defor-
mations of the trap geometry, which remains to be analyzed in detail. In addition, an extension
to study the dynamics induced by an additional external electromagnetic field is possible. We
have reformulated the theory for two-component spinor Bose-Einstein condensates, which is of our
future interest [97, 98].

Possible improvements of the presented master equation consist in taking into account the finite
thermalization time of the non-condensate during Bose-Einstein condensation, in particular using a
microscopic first principles derivation of the decay rate I between condensate and non-condensate
correlations. The inclusion of pair processes for studying condensate formation and for deriving the

steady state of the gas may modify quantitative predictions, if the single particle ground state energy
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exceeds the energies of non-condensate single particle states (e.g. for quasi one-dimensional Bose
gases [99, 100, 101, 102], where in particular the geometry dependence of the scattering amplitude
may lead to physically different scenarios [102]). A detailed numerical comparison of unperturbed
to perturbed transition rates including the time dependence of the condensate mode for single

particle, pair and scattering processes is also planned to be carried out in future works.
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Appendix A

Important proofs and calculations

A.1 Correlation functions of the non-condensate field

The normally and anti-normally ordered two point correlation functions of the non-condensate
field are decomposed for single particle (~~), pair («~+) and scattering () processes, using Wick’s
theorem [94]. We begin with the normally ordered two point correlation function for single particle

processes, gf)(E?,N—NO,T,T) in Eq. (5.32):

(N=No) _

>(N No)jl

GO®E N-No, T,0) = (VL E OV E DV R OVLE,0PLF,0V.F,0)

(V.0 (F,0)

(N=No)
7

2WLE WL F,0) (VLWL F,0)

The anti-normally ordered correlation function for single particle processes, g ®¥,N-No,T,7)

in Eq. (5.33), can be decomposed similarly:

YOG N-No T,0) = (VL@ 0. € 0, G W@, 00LF 0P, F,0) ) = (A2)
2V E0WLE,0) ) (W@ E0) ) (P @0V E ) |

The non-condensate field W, (¥, 7) in the interaction picture with respect to 4, in Eq. (4.26), written

in the single particle basis set {|Wy),k € N} of the non-condensate, turns into

V.60 = U WL G ) = Y W@iesp| -] (A3)
k#0
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Any two point correation function of products of two non-condensate fields in Eqs. (A.1, A.2) can
hence be written as a function of the average occupation of different non-condensate single particle

states |Wy) € .F,:

. o, A(N-N, ., j
(VL@ 0W. ,0))% v Z W BWi(T) fil(N = No, T) exp [—%] , (A.4)
k#0

where

44 \N=No) /.4, \(N=Np) _ B
<{/'lk{/'ll>yl = <akak>yl O = frN—=No, T)oy - (A.5)
The function
D5
N-—-Ny,T)=<d,a No—=——9IN- A.6
i( 0,T) =144k <ZN-N, F. (N —Ng) N No (A.6)

describes the average many particle occupation of a non-condensate single particle state [Wy),
given that (N — Ny) particles are in the non-condensate. An explicit analytical derivation for the

expressions of the occupation numbers fi.(N — Ny, T) is given in Appendix A.3.

Anti-normal products of two point correlation functions of two non-condensate fields in the

interaction picture arising in Egs. (A.1, A.2) can be obtained correspondingly, i.e., they turn into

a s N-N, j
(1.@0v@,0)) 7 =Y OV @OLN-No D+ exp| 0|, a7)
o k#0
given that
.\ (N—No)
<aka;>yl Y= [fk(N—No,T) + 1]6kl . (A.8)

With respect to single particle processes, we hence find for normally and anti-normally ordered two

point correlation functions:
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GOEEN-No, T,1)=2 ) W OWE)W]OW/E )Y OWn(E) [N ~No, T) +1]x
k,1,m#0 (A.9)

X fiN = No, T) fu(N = No, T) exp M] ,

GOEEN-No T =2 ) WEEWE)W @OWE) Y@ (E) filN ~ No, T)x
k,1,m#0

(A.10)
V=N 1)+ 11 o ) 1] x|

—i(ex—€—€m)T
- .

Integration of @H (@ ¥, N-No, T, T)eXp[—Tz/Tgoll over the time interval 7, multiplied by Wo ()W} (¥')exp[+iwo1],
which arises from the backswitch of the condensate fields from the interaction picture, Wy (¥, ) =
Wo(Pexp[+iwpT] using the Gross-Pitaevskii equation (4.4), leads to the single particle loss and
feeding rates in Eq. (7.3).

Through the decomposition of a product of four non-condensate fields into a product of two time-
ordered two point correlation functions of two non-condensate fields in the two point correlation
functions for pair events, giﬁ(ﬁ ¥ ,N — Ny, T,), and applying Eq. (A.7, A.8), the normally ordered

correlation function for pair events turns into:

GOEE N -No, T0) = (VL EOWLE W, @ 0. F 0)) =

o W \ONo) e p e (\(N=Np)
2V E0VLE,0), (VIEOYLE,0), = A1)
ZZW;(ﬂWk \I]* f))‘yl )fk(N =Ny, T) ﬁ(N—No,T)eXp[M].

k,1#0

The anti-normally ordered pair correlation function g @E,N - Ny, T,7) can be decomposed

similarly:
g2 ¥,N-Ny,T,7) = <‘I/L(r O, @)V (@, 000 (& 0)> o
2P E L E0) L (L@ E,0)L " = a12)

2 ) WEEWE) Y OVE) [N = No, D)+ 1[N = No, ) +1] exp[w] ,

k,1#0
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which after multiplication with ‘lf%(f)) (‘lf(’)‘(f"))2 exp[+2iwgT] and integration over 7 turns into the
pair feeding and loss rates in Eq. (7.12).

Finally, the scattering two point correlation function %, (%, ¥,N—-Ny,T,7) is decomposed from
a product of four non-condensate fields into a product of two time ordered two point correlation

functions of two non-condensate fields:

a a a a N—-N,
Go@F N -No, T,0) = (VL @ 0%, @ OWLF 00, (7,0) " =
A& L s (N-Np)
(PL@oViE,0), (A13)
e —e)t
}"—L 7

(N—=No)

e

(PLE0V.(F,0)

2 ) WERWE )W OWIE) SN~ No, T)[fiN = No, T) +1] exp
k120

which, after multiplication with |Wo (@)W (&)? and integration over 7 turns into the scattering rate

in Eq. (7.16).

A.2 Detailed balance conditions

We proof the balance condition

A7 (N = No, T) = exp [BAuN = No, T)] A~ (N = Ny, T) (A.14)

between single particle feedings and losses, where Au(N — Ny, T) = u (N = Ny, T) — up is the
difference between the eigenvalue of the Gross-Pitaevskii equation i in Eq. (4.4), and u, (N—Ny, T)
represents the non-condensate chemical potential in Eq. (A.28). Since the single particle body

feeding and loss rates are given by

3h2 2
AT (N =Np,T) = 2 Y H e lm N=No, SO (@i + 0= wom-wo), (A15)

2
m
k,1,m=0

where the 6-distribution is given by Eq. (7.4), it is sufficient to show that

W (k,1,m,N — Ny, T) = exp [BAUN — No, )] #-7 (k,1,m,N — Ny, T) (A.16)
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under the constraint that wy +w; —w, +@o < A. Since, as a matter of fact, the probability amplitudes
satisfy (CZI‘O)* = Cﬁio, the exact relation [ f(N — Ny, T) + 1] = f(N — Ny, T)exp[p(ex — p (N =Ny, T))]
for the occupation numbers f(N — Ny, T) of non-condensate single particle states in Eq. (A.24)

further enables us to show that

W (k,1,m,N=No,T) = fi(N = No, T) fi(N = No, T) [ fin(N = No, T) + 1]1}:°

= fi(N = No, T)fi((N = No, T) fu(N = No, T)exp [B(em — 1 (N = No, TN}
= fi(N = No, T)fi(N = No, T) fu(N — No, T)explp(ex + € — 1o — L (N = No, T) = RA)ICE 2 (A17)
= [felN = No, T) + 1] [fiN = No, T) + 1] fu(N — No, T)expl(uL (N — No, T) — o)1IC

= exp[BAu(N — No, DI#-" (k,1,m,N—No,T),

with Ay = p (N — Ny, T) — tp. Because of the finite width ~ I of the 6-function in Eq. (A.15), the
balance condition in Eq. (A.14) is valid for BrI' << 1. This is the case in the parameter regime of
dilute gases, where we checked that = exp[—phI'] = 1 for BiI = fh V2T ~ 1073 < 1.

A.3 Occupation numbers of the non-condensate

The state of the non-condensate in Eq. (5.14) allows to determine the average number of particles,
fr = fk(N =Ny, T) in Eq. (A.6), in each particular non-condensate single particle mode |Wy), given
that Ny particles populate the condensate mode and (N — Nj) particles the non-condensate single
particle modes. According to Eq. (A.6), the expectation value of the number operator Ny in a

non-condensate state of (N — Ny) particles is

(N—No)
fN=No, )= 27 (N-No) ) Niexp|-§) eNk] ) (A.18)
{Ny} k+0

where Z| (N — Np) is the partition function of (N — Np) indistinguishable particles in the non-
condenste in Eq. (5.15). In terms of the partial partition sum, fii(k)(N—No) [10], which excludes

the sum over the particular mode [Wy), Eq. (A.24) can be rewritten as
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(N—=No)
filN=No,T) = (N = Ny) Z Ni exp [-BexNi | 2O (N - Ny - Ny) . (A.19)
Np=0

For small enough Nj (it suffices to start at Ny = 1 and to determine ffik) (N = No — Ny) iteratively),

it is possible to expand

log[ 2P (N - No-1)] = log[ 2PN - Np)| - 2N - No, T), (A-20)

with the parameter
dlog| 2 (N - Ny)|

(N =Ny, T) = SN NG (A.21)
From Eq. (A.20), we find the recursion relation
7ON-Ny-1
il ob_ exp[—aﬁ”(N—No,T)] (A.22)

# (N -No)

between the partial partition sums D@i(k)(N — Np) of N—Np, and .,@”L(k)(N —Ng—1)of N-Ny—1

non-condensate particles. Multiple iteration of Eq. (A.22) leads to

k
2N -Ny-Ny)

(k)
=exp|-Nra|"(N—=Ny,T)|, (A.23)
2O (N - Np) [N ]
and Eq. (A.19) turns into
o@j(_k) (N _ NO) (N-No) ®
fk(N—NO,T) = m I\]Z_O NkeXp [— (ﬁek + CYJ_ (N—NO,T))Nk] . (A24)
=

It remains to apply the same procedure to the partition function 2, (N — Np). Using the decompo-

sition in Eq. (A.19), and applying Eq. (A.23), one finds that

(N-Np)
Z(N-No)= ZP(N-No) )" exp[—(Ber+al(N=No, D)Ny] . (A.25)
Ng=0
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Setting Eq. (A.25) into Eq. (A.24), the expectation value of particle number occupations of a particular
non-condensate single particle state [\Vy), given that (N —Nj) particles populate the non-condensate

modes, turns into

1
f(N=No,T) = . (A.26)

exp [Bex+a (N = Np, T)| - 1

Hence, the parameter a® can be interpreted as to describe the change in temperature in the
non-condensate part of the gas during condensate formation. The parameter a(f)(N —No,T) is
approximately independent of the state k [10], i.e. the change in temperature during condensation
is described by one single parameter, a®) ~ &, (N—Np, T). The latter is determined by the constraint

of particle number conservation, as spelled out by the implicit equation

1
;;‘f"(N_NO’T) i ;; explBer +ar(N-No, D=1 O A-27)

As evident from Eq. (A.21), and from the fact that each subspace of (N —N) particles is in a thermal
state (of microscopic occupation number corresponding to different temperatures), the parameter
a1 (N—No,T) can be interpreted as the ratio of the non-condensate chemical potential for a state of
(N —Np) atoms to the thermal energy ﬁ_l [10]. Hence, from the definition in Eq. (A.21), we see that
ai (N =Ny, T) is, upon a constant, nothing more than the derivative of the Helmholtz free energy
F (N —Ng) = —p~'og Z (N — Np) of the (N — Np) particles in the non-condensate, thus given [10]

by

i

OZJ_(N—N(),T) = —ﬁm

=—purL(N—=No,T), (A.28)

introducing the non-condensate chemical potential 11, (N — Ny, T).

A.4 Proof of uniqueness of the Bose gas’ steady state

We proof the uniqueness of the equilibrium steady state of the Bose gas, defined by Egs. (6.2) and
(8.2). To this end, it is to show that
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T Y- dpn(No, t
pNo D =or [ 222D InNo.H) _

, (A.29)
-1 A2eT ot

“=": First, let’s verify that pN(No, T) in Eq. (8.2) is a stationary solution of Eq. (6.3). Assume
pn(No, T) to be given by Eq. (8.2). Equation (6.3) then implies that

AZ,(No)
= S =— A.
pn(No +1) 191\1(1\70))\;(1\]O D) (A.30)
which leads to a vanishing of the terms in Eq. (6.3) proportional to Ny:
Nopn(No = 1, DAY (Ng +1,T) = Nopn(No, T)AZ (No, T) =0 . (A.31)

Moreover, Eq. (A.30) shows that the same applies to the terms in Eq. (6.3) proportional to Ny + 1:

(No + Dpn(No + 1, TIAD (No + 1, T) = (No + Dpn(No, DA (No, T) = 0. (A.32)

Therefore, the distribution pn(Nyg,T) given by Eq. (8.2) is a stationary solution of the evolution
Eq. (6.3):

N A®(z - Ipn(No, T

o, = [ 2B P ) _ (A.33)
1 A2¢mn ot
z=1 ~> 7

“<": Let’s now proof that pn(No, T) in Eq. (A.29) is the unique solution of Eq. (6.3). Suppose
that dipn(No, T) = 0. By induction, it can be proven that the recurrence relation for the steady state
distribution pn(Np, T) arising from Eq. (6.3) equals Eq. (A.30) for all Ny. From Eq. (6.3), it follows
that

(NoAZ(No, T) + (No + 1) A% (No, T)) pa(No, T) = Nopn(No = 1, )AZ (No +1,7)

PN(NO + 1/T) = =)
(NO + 1)/\-> (NO + 1rT)

(A.34)
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Choosing the starting point of induction at Ny = 1 (.4~ may be chosen arbitrarily, hence it was set

to one), it follows from Eq. (A.34) that

pn(1,T)=AT,(0,T)/AZ,(1,T), (A.35)

which conincides with Eq. (A.30), for Ny = 1.
The induction step is No — N + 1: Suppose Eqgs. (A.34) and (A.30) equal for Ny. Let’s write
Eq. (A.34) for arbitrary No + 1:

[N+ 1DAD (N +1, 1)+ (No +2) A (N + 1, T) | pn(No +1,7)

PN(NO + 2/ T) = )
(No+2)A (No +2,7)
(A.36)
~ (No+ 1)AY (No, Tpn(No, T)
(No +2) A0 (Ny +2,T)
which turns into
*)
ADN+1,T
p(No+2,T) = #W(NO +1,T), (A.37)
ANy +2,7)

under the use of the induction assumption in Eq. (A.30) for Np. Equation A.37 equals Eq. (A.30)
for Ng +1 condensate particles, hence proofing our statement that pn(No, T) in Eq. (8.2) is the
unique equilibrium steady distribution of Eq. (6.3). The unique N-body equilibrium steady state is

therefore given by

N
6N (t - c0)= Y pn(No, DINXNol® p.(N—No, T) (A.38)
No=0

after long times with

No=1 5 (+)
A(z-1,T
pn(No, T) = A H oL

= (A.39)
=1 Aw(zT)
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Figure A.1: Probing the rapid non-condensate thermalization in a shock cooling process. For sufficiently smooth
condensate time evolution, the assumption of rapid non-condensate equilibration is well satisfied, since the thermal-
ization in the non-condensate is faster than the change of the condensate fraction: Figure shows the comparison of
the thermal redistribution rate T, [82, 47] (red dashed line) to condensate flux d;(Ny)/N (blue solid line) as a function
of time for N = 2000 8”Rb atoms in the gas with temperature T = 30.0 nK. The critical temperature is T, = 53.07 nK,
for an isotropic trap with frequencies 2mvy = 21 - vy =21 - vz = 600 Hz.

As shown in Chapter 6, this steady state turns into a Gibbs-Boltzmann thermal state of an ideal gas

for sufficiently small interactions captured by the formal limiting case ag!/3 — 0*.

A.5 Non-condensate thermalization

We treat the backgroud gas as a thermalized, depleted thermal gas, which is equivalent to assume
the non-condensate thermalization to be ideally infinitely fast as compared to the condensate
formation time. Despite the fact that this has been explicitly demonstrated in the experiment [64],
and previous theoretical approaches [60, 64, 76, 51], we shall also convince ourselves numerically
that this assumption is well satisfied for harmonic traps. An estimate for the non-condensate

thermalization time in the presence of a condensate is given [82, 47] by:

1 7/5 T 1/2 N 2/5_
Lo e
1 C

where L = (h/mw)'/? is the extension of the harmonic oscillator ground state, @ = (a)xa)ya)z)l/3 is
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the averaged frequency of an anisotropic trap, and T, = (hw/kg)[N /C(3)]M3 the critical temperature
of anideal gas. In Fig. A.1, we show the comparison of the time scales for non-condensate relaxation
T, ~ Teol to typical condensate formation times 7( obtained from Eq. (6.6): The assumption of rapid
non-condensate thermalization is satisfied initially, still holds approximately at the exponential stage
of condensate growth (and is well satisfied, if the condensate growth is smooth), and is very well

satisfied again at the final stage of condensate formation.
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Summary

We directly model the quantum many particle dynamics during the transition of a gas of N indlstin-
guishable bosons into a Bose-Einstein condensate. To this end, we develop a quantitative quantum master
equation theory, which takes into account two body interaction processes, and in particular describes the
particle number fluctuations characteristic for the Bose-Einstein phase transition. Within the Markovian
dynamics assumption, we analytically prove and numerically verify the Boltzmann ergodicity conjecture
for a dilute, weakly interacting Bose-Einstein condensate. The physical bottom line of our theory is the
direct microscopic monitoring of the Bose-Einstein distribution during condensate formation in real-time,
after a sudden quench of the non-condensate atomic density above the critical density for Bose-Einstein

condensation.

Résume

Nous étudions la dynamique quantique a N corps d’un gaz atomique composé de N particules
indiscernables lors de la condensation de Bose-Einstein. Pour cela, nous développons une approche
quantitative, fondée sur une équation pilote prenant en compte les interactions a deux corps. Cela permet
en particulier de décrire les fluctuations de nombre de particules caractéristiques de la condensation. Avec
une hypothése markovienne, nous prouvons analytiquement et numériquement I’hypothése d’ergodicité
de Boltzmann dans le régime de gaz faiblement interagissant. Le point essentiel de notre approche
théorique est qu’elle permet le suivi direct, au niveau microscopique, de la distribution de population du
condensat de Bose-Einstein lors de sa formation, aprés une augmentation rapide de densité au-dela de la

densité critique.

Zusammenfassung

Wir beschreiben die Vielteilchen-Quantendynamik eines Gases von N ununterscheidbaren Teilchen
wahrend des Ubergangs in ein Bose-Einstein Kondensat. Hierfiir entwickeln wir eine quantitative Master-
gleichungstheorie, welche den Phasenubergang des Gases in die kondensierte Phase realistisch beschreibt
— unter Einschluss von Zweiteilchenwechselwirkungen und unter der Berucksichtigung von Teilchen-
fluktuationen. Im Rahmen unseres Ansatzes gelingt ein analytischer Beweis der Boltzmannschen Er-
godizitatshypothese fur schwach wechselwirkende Quantengase unter der Annahme Markovscher Dy-
namik, in Ubereinstimmung mit numerischen Simulationsergebnissen. Das ubergreifende physikalische
Ergebnis unserer Theorie ist die direkte mikrokopische Echtzeitbeschreibung der Bose-Einstein Verteilungs-
funktion wahrend der Kondensation, nach einer instantanen Anderung der atomaren Nichtkondensats-
dichte oberhalb der kritischen Dichte fur die Bose-Einstein Kondensation.



