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Rémy MOSSERI Examinateur

Nicolas PAVLOFF Rapporteur

Pascal VIOT Président

Oliver WALDMANN Examinateur



Associates of the german party :

Dekan : Kay Königsmann (ALU)

Betreuer der Arbeit : Andreas Buchleitner (ALU)

Referent : Andreas Buchleitner (ALU)

Koreferent : Nicolas Pavloff (UPS, LPTMS)

Oral Examinor (theoretical) : Andreas Buchleitner (ALU)

Oral Examinor (experimental) : Oliver Waldmann (ALU)

Oral Examinor (external theoretical) : Rémy Mosseri (UPMC, LPTMC)
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Examinateur 1 : Rémy Mosseri (UPMC, LPTMC)

Examinateur 2 : Oliver Waldmann (ALU)

Tag der Verkündigung des
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Summary

We directly model the quantum many particle dynamics during the transition of a gas of N indistin

guishable bosons into a BoseEinstein condensate. To this end, we develop a quantitative quantummaster

equation theory, which takes into account two body interaction processes, and in particular describes the

particle number fluctuations characteristic for the BoseEinstein phase transition. Within the Markovian

dynamics assumption, we analytically prove and numerically verify the Boltzmann ergodicity conjecture

for a dilute, weakly interacting BoseEinstein condensate. The physical bottom line of our theory is the

direct microscopic monitoring of the BoseEinstein distribution during condensate formation in realtime,

after a sudden quench of the noncondensate atomic density above the critical density for BoseEinstein

condensation.

Résumé

Nous étudions la dynamique quantique à N corps d’un gaz atomique composé de N particules

indiscernables lors de la condensation de BoseEinstein. Pour cela, nous développons une approche

quantitative, fondée sur une équation pilote prenant en compte les interactions à deux corps. Cela permet

en particulier de décrire les fluctuations de nombre de particules caractéristiques de la condensation. Avec

une hypothèse markovienne, nous prouvons analytiquement et numériquement l’hypothèse d’ergodicité

de Boltzmann dans le régime de gaz faiblement interagissant. Le point essentiel de notre approche

théorique est qu’elle permet le suivi direct, au niveau microscopique, de la distribution de population du

condensat de BoseEinstein lors de sa formation, après une augmentation rapide de densité audelà de la

densité critique.

Zusammenfassung

Wir beschreiben die VielteilchenQuantendynamik eines Gases von N ununterscheidbaren Teilchen

während des Übergangs in ein BoseEinstein Kondensat. Hierfür entwickeln wir eine quantitative Master

gleichungstheorie, welche den Phasenübergang des Gases in die kondensierte Phase realistisch beschreibt

– unter Einschluss von Zweiteilchenwechselwirkungen und unter der Berücksichtigung von Teilchen

fluktuationen. Im Rahmen unseres Ansatzes gelingt ein analytischer Beweis der Boltzmannschen Er

godizitätshypothese für schwach wechselwirkende Quantengase unter der Annahme Markovscher Dy

namik, in Übereinstimmung mit numerischen Simulationsergebnissen. Das übergreifende physikalische

Ergebnis unserer Theorie ist die direkte mikrokopische Echtzeitbeschreibung der BoseEinstein Verteilungs

funktion während der Kondensation, nach einer instantanen Änderung der atomaren Nichtkondensats

dichte oberhalb der kritischen Dichte für die BoseEinstein Kondensation.
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Introduction

Motivation of this thesis

BoseEinstein condensates open the path for the in situ investigation of several interesting many

particle effects in atomic gases such as superfluidity [1, 2], or quantized vortices [3, 4, 5]. Due to

the coherent wave nature of ultracold quantum matter, BoseEinstein condensates are in particular

perfectly suited to study a vast range of quantum phenomena based on quantum coherence – like

Anderson localization [6, 7, 8], or Josephson oscillations [9] – on the micrometer scale. Latter

scenarios are usually known from other fields of physics, such as the theory of quantum optics, or

the realm of solid state theory.

Besides these wonderful examples how to manipulate and employ BoseEinstein condensates

with high precision in order to access these different physical branches in present days’ exper

iments, there remains a fundamental theoretical question concerning the condensate formation

process: How can we describe the quantum dynamics of the BoseEinstein phase transition beyond

the evolution of the average macroscopic ground state occupation, connecting the experimen

tal observations of average macroscopic occupation with a dynamical, microscopic many particle

picture?

Another motivation of the present work arises from the applicational point of view. The param

eter regime of typical state of the art experiments does in principle not match the validity range in

which fundamental thermodynamical postulates [10], leading to the thermal state ansatz for the

equilibrium state of the quantum gas, can be taken for granted. Since the theory of thermodynamics

is supposed to be valid only for total particle numbers of the order of Avogadro’s number, N ∼ 1023,

fundamental assumptions [11] like equipartition of energy (ergodicity) and the existence of a unique

and stable equilibrium state are strictly justified only in the thermodynamic limit, under the neglect

of number and energy uncertainties.

These assumptions may not be realistic for BoseEinstein condensates in the quantum degenerate

1



2 CONTENTS

limit, because they consist of a few thousands of atoms [12] – thus being far from the thermodynamic

limit. Moreover, the atoms in a BoseEinstein condensate interact via (species) specific collision

processes, the occupation numbers of the different energy modes fluctuate, and the particles

exhibit strong phase coherences due to their indisputably quantum mechanical nature at low

temperatures.1 How is it possible, as conjectured by thermodynamics, that a quantum gas will

always relax into a Boltzmann thermal state of noninteracting particles in the limit of weak (but

nonzero) interactions, independently of their type, i.e. into an equilibrium state lacking any

hysteresis on the condensate formation process? We are hence led to ask how quantum effects

such as phase coherence affect the equilibrium steady state of a Bose gas below Tc, and why the

specific type of interactions is not supposed to play a role for the statistics of mesoscopic, weakly

interacting BoseEinstein condensates – as they obviously do for the microscopic dynamics of Bose

Einstein condensation? These reflections demonstrate that the so called “Boltzmann ergodicity

conjecture” [13, 14], originating from classical, statistical mechanics, is nontrivial, especially for

weakly interacting quantum systems of finite size.

Under which conditions does a BoseEinstein condensate exhibit a unique and stable equilibrium

steady state – and, how can we characterize such state in analytical terms? Is the statistics and

the dynamics of a BoseEinstein condensate well described by an ideal gas, if the atomic sample is

sufficiently dilute? And how does the finite particle number of a BoseEinstein condensate influence

the equilibrium state of the gas?

In summary, we address two essential points in the present thesis:

⋄ Our dynamical, microscopic understanding of the BoseEinstein phase transition, in particular

concerning the interplay of particle number fluctuations below the critical temperature for

BoseEinstein condensation, Tc, and the creation of this new state of matter – the Bose

Einstein condensate – is so far incomplete. How can we link and model the coherent,

microscopic many particle dynamics during the BoseEinstein phase transition to the buildup

of a macroscopically occupied ground state mode? Which role plays the particlewave duality,

and what is the impact of interactions and spatial quantum coherences of the bosonic atoms

onto the process of BoseEinstein condensation?

⋄ The answer to the question [11] whether a dilute, weakly interacting BoseEinstein condensate

exhibits a unique and stable equilibrium steady state. How close and under which assumptions

1where the wave length of the particles is of the order of their average distance
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does a BoseEinstein condensate consisting of a finite number of weakly interacting atoms

– as given in realistic stateoftheart experiments [12] – evolve towards a GibbsBoltzmann

thermal state of an ideal gas? To which extent are finite size effects, quantum fluctuations and

interactions essential for the condensate equilibrium statistics?

How to model BoseEinstein condensation microscopically?

Answers to these questions require a direct way of modeling the quantum many particle dynamics

of the Bose gas, i.e., a theory beyond the mean field ansatz mostly studied in the literature [15, 16].

We generally consider the derivation of a master equation [17, 18, 19, 20, 21] as one of the

most efficient and powerful tools to study BoseEinstein condensation. To this end, we use the

separation of time scales between the rapid noncondensate thermalization dynamics from the

comparably slow condensate formation time, considering the condensate as a system part which

evolves in time under the dynamically depleted thermal noncondensate environment. Deriving the

master equation, we hence (i) account for all two body particleparticle interactions, (ii) circumvent

a factorization of the Nbody state of the gas into a condensate and noncondensate density matrix,

(iii) assume particle number conservation, and (iv) take into account the depletion of the non

condensate thermal component during condensate formation.

Employing these experimental conditions for a quantum gas in our master equation formalism

leads to a fundamentally new master equation ansatz which provides in particular experimentally

desired condensate formation rates, through the first dynamical monitoring of the condensate and

noncondensate particle number distributions during condensate formation. Arising condensate

number fluctuations garnish the onset of the condensate formation process below Tc, until they

reduce after the approach towards a steady state.

The master equation’s stationary solution defines this equilibrium steady state for the Nbody

state of the gas under the inclusion of the wave nature of the quantum particles below Tc, number

fluctuations and weak two body interactions. This enables the comparison of a microscopically

derived equilibrium steady state of a dilute, weakly interacting BoseEinstein condensate with a

GibbsBoltzmann thermal state of exactly N noninteracting, indistinguishable particles.

The physical bottom line of our theory is the first direct monitoring of condensate and non

condensate particle number distributions during condensate formation. This is based upon the

connection of two fundamental properties, particle number conservation and rapid noncondensate

thermalization, to extent the conventional BornMarkov ansatz to the Nbody state of the gas of
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fixed particle number. This Nbody BornMarkov ansatz together with the capitalization of the

dilute gas condition a̺1/3≪ 1 reduce the complex dynamics of the BoseEinstein phase transition

to a numerically accessible quantum master equation.

Outline of the thesis

In Part I of the thesis, the most important stateoftheart concepts for treating BoseEinstein

condensates are summarized.

Starting from Einstein’s original prediction of BoseEinstein condensation for noninteracting, uni

form gases in Chapter I, theoretical extensions to the case of external confinements are discussed.

We explain how BoseEinstein condensates are currently created in stateoftheart experiments,

and deduce a perturbative parameter for our theory, characterizing the dilute gas regime. Care is

taken to point out discrepancies between the grand canonical and canonical ensemble for conden

sate statistics of indistinguishable particles below the critical temperature, which persist even in the

thermodynamic limit.

In Chapter II, the swave scattering approximation relating to two body interactions in dilute

atomic gases is explained, and the concept of second quantized bosonic fields is introduced. We

sketch the derivation of the GrossPitaevskii equation for the condensate wave function in terms of

the Hartree ansatz, and summarize the existing theories for the study of average condensate growth.

Part II is dedicated to the development of a Lindblad quantum master equation theory of

BoseEinstein condensation.

The conceptual ingredients of the quantum master equation theory are summarized in Chapter

III, focussing on the Markovian dynamics assumption, on two body interactions, on the constraint

of particle number conservation and on the description of the noncondensate depletion during

condensate formation, required for the derivation of the master equation in Chapter IV. We explain

the validity range of the quantum master equation theory, which applies to dilute atomic gases.

In Chapter IV, we start with the microscopic description for the Bose gas in second quantiza

tion, through the definition of the condensate and the noncondensate. This naturally provides a

decomposition of the many particle Hamiltonian for dilute atomic gases, which allows us to derive

a Lindblad quantum master equation for the condensate degree of freedom under the Markov

dynamics assumption, with the nontrivial part of the dynamics induced by two body interaction

processes. To do so, there is particular need to analyze the underlying single particle Hilbert space
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of wave functions, and the many particle FockHilbert space structure.

In Chapter V, the Lindblad master equation for the time evolution of the reduced condensate

density matrix is derived, describing the time evolution of the entire state of the Bose gas. The Lind

blad master equation yields formal expressions for all transition rates and energy shifts associated

with two body collision processes between condensate and noncondensate atoms.

In Part III, we employ the Lindblad quantum master equation to understand the quantum me

chanical characteristics of the BoseEinstein phase transition numerically and analytically. Evolution

equations describing BoseEinstein condensation are extracted, yielding in particular time scales for

condensate formation. The equilibrium steady state of the gas of N bosonic particles is harvested

from the Lindblad quantum master equation.

We hence first extract the master equation for the diagonal elements of the condensate density

matrix from the Lindblad master equation for practical purposes in Chapter VII. This allows us to

numerically study the time evolution of condensate and noncondensate occupation numbers during

condensate formation, and to extract the dynamical behavior of quantum matter fluctuations during

BoseEinstein condensation. We compare condensate formation times to previous theoretical

predictions and to experimental observations.

In Chapter VI, we show how the formally defined transition rates and associated energy shifts

are evaluated within a perturbative approach for the condensate wave function, valid for dilute and

weakly interacting gases. Explicit analytical expressions for transition rates and energy shifts in

a threedimensional harmonic trap are obtained. We derive balance conditions for the transition

rates, and deduce a generalized Einstein de Broglie condition for BoseEinstein condensation.

Finally in Chapter VIII, it is proven that the steady state solution of the master equation defines

a unique and stable equilibrium steady state of the Bose gas. We proof analytically and verify

numerically that this steady state is a GibbsBoltzmann thermal state of an ideal gas within the

Markovian dynamics assumption and in the limit of weak interactions. We oppose the steady state

to predictions in the semiclassical limit, and deduce the shift of the critical temperature. Explicit

analytical expressions for all moments of the condensate particle number distribution valid in the

limit of large atomic gases complete the analysis of the present thesis.

Chapter IX concludes the conceptual and physical results of the present work and formulates

some open questions and perspectives.
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CONCEPTS OF ULTRACOLD MATTER

THEORY
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“Not everything that counts can be counted, and not everything that can be counted

counts.”

Albert Einstein
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CODATA 2006 [22]

Physical constant Symbol Numerical value Unit

Speed of light c 2.99792458× 108 s−1

2.99792458× 1010 cm s−1

Planck constant h 6.62606896(33)× 10−34 J s
6.62606896(33)× 10−27 erg s

hc 1.239841875(31)× 10−6 eV m

Planck constant/2π ~ 1.054571628(53)× 10−34 J s
1.054571628(53)× 10−27 erg s

Elementary charge e 1.602176487(40)× 10−19 C

Electron mass me 9.10938215(45)× 10−31 kg
9.10938215(45)× 10−28 kg

mec
2 0.510998910(13) Me V

Proton mass mp 1.672621637(83)× 10−27 kg
mpc2 938.272013(23) Me V

Atomic mass unit m(C12)/12 1.660538782(83)× 10−27 kg
muc2 31.494028(23) MeV

Boltzmann constant kB 1.3806504(24)× 10−23 J K−1

1.3806504(24)× 10−16 erg K−1

8.617343(15)× 10−5 eV K−1

kB/h 2.0836644(36)× 1010 Hz K−1

20.836644(36) Hz nK−1

Fine structure constant α−1
f

137.035999679(94)

Bohr radius aB 5.2917720859(36)× 10−11 m

Classical electron radius e2

4πǫ~0mec2 2.8179402894(58)× 10−15 m

Atomic unit of energy e2

4πǫ~0a0
27.21138386(68) eV



13

NOTATION GUIDE

Latin Letters

âk, â
†
k

particle annihilation and creation operators Eq. (4.5)

a swave scattering length Eq. (2.6)
F FockHilbert space Eq. (4.37)
F0 condensate FockHilbert space Eq. (4.37)
F⊥ noncondensate FockHilbert space Eq. (4.37)
F (N) FockHilbert space of N particles Eq. (4.40)
F (N−N0) noncondensate FockHilbert space Eq. (4.39)

of (N−N0) noncondensate particles

G
(±)
 (~r,~r′,N−N0,T,τ) normal (+) and antinormal () correlation Eqs. (5.32, 5.33)

function for single particle processes 

G
(±)
!(~r,~r′,N−N0,T,τ) normal (+) and antinormal () correlation Eqs. (5.48, 5.49)

function for pair processes (!)
G�(~r,~r′,N−N0,T,τ) correlation function for scattering processes (�) Eq. (5.59)
h1 first quantized single particle Hamiltonian Eq. (1.13)

Ĥ second quantized Hamiltonian of the gas Eq. (4.7)

Ĥ0 second quantized condensate Hamiltonian Eq. (4.8)

Ĥ⊥ second quantized noncondensate Hamiltonian Eq. (4.9)
Hlx ,Hly

,Hlz hermite polynomials Eq. (7.31)

H single particle Hilbert space Eq. (4.35)
H0 condensate single particle Hilbert space Eq. (4.35)
H⊥ noncondensate single particle Hilbert space Eq. (4.35)
g = 4πa~2/m two body interaction strength Eq. (2.6)
L Lindblad superoperator for single particle Eq. (5.42)

events ( )
L! Lindblad superoperator for pair events (!) Eq. (5.53)
Lx,Ly,Lz harmonic oscillator lengths in x, y and z direction Eq. (1.14)
mα[z] Bose function Eq. (7.48)
fk(N−N0,T) average single particle occupation numbers Eq. (7.7)

of the noncondensate with (N−N0) particles

P̂±(N0) pair quantum jump operators Eq. (5.44)
pN(N0,T) condensate particle number distribution Eq. (5.11)

of master equation
pN(N−N0,T) noncondensate particle number distribution Eq. (5.11)

of master equation

Ŝ ±(N0) single particle quantum jump operators Eq. (5.43)
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Latin Letters

Tc critical temperature of the Bose gas Eq. (1.5)

Û(t) time evolution operator with respect to Ĥ Eq. (5.6)

Û0(t) time evolution operator with respect to Ĥ0 Eq. (5.6)

Û⊥(t) time evolution operator with respect to Ĥ⊥ Eq. (5.6)

V̂0⊥ condensate and noncondensate interactions Eq. (4.10)

V̂ single particle interactions ( ) Eq. (4.16)

V̂! pair interactions (!) Eq. (4.14)

V̂	 scattering interactions (�) Eq. (4.15)
z fugacity Eq. (1.18)
ZGC(µ,T) grand canonical partition sum Eq. (1.17)
ZC(N,T) canonical partition sum Eq. (1.26)

Greek Letters, Labels

 single particle events ∆N0 = −∆N⊥ = ±1 Eq. (4.10)
! pair events ∆N0 = −∆N⊥ = ±2 Eq. (4.10)
	 scattering events ∆N0 = ∆N⊥ = 0 Eq. (4.10)
γ̂k, γ̂

†
k

particle operators associated to the modes |Θk〉 Eq. (4.20)

∆
(±)
 (N−N0,T) energy shift for single particle events ( ) Eq. (5.41)

∆
(±)
!(N−N0,T) energy shift for pair events ( ) Eq. (5.52)

∆
(±)
�

(N−N0,T) energy shift for scattering events ( ) Eq. (5.62)

ǫk eigenenergies of noncondensate Eq. (4.29)
single particle states |Ψk〉←→ǫ kk′ energy tensor for single particle Eq. (4.27)
noncondensate states

ζAB
CD

overlap integral of single particle Eq. (4.11)

wave functions ΨA,ΨB,ΨC andΨD

ηk unperturbed single particle energies of |χk〉 Eq. (1.15)
|Θk〉 complete orthonormal noncondensate Eq. (4.22)

single particle basis

Λ
(±)
 (N−N0,T) complex valued transition rate ( ) Eq. (5.40)

for single particle exchange events

Λ
(±)
!(N−N0,T) complex valued transition rate Eq. (5.51)

for pair exchange events (!)
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NOTATION GUIDE

Greek Letters

Λ
(±)
�

(N−N0,T) complex valued transition Eq. (5.61)

rate for scattering events (�)

λ(±)
 (N−N0,T) real valued transition rate for single particle Eq. (5.41)

exchange processes ( )

λ(±)
!(N−N0,T) real valued transition rate for Eq. (5.52)

pair exchanges processes (!)

λ(±)
�

(N−N0,T) real valued transition rate for Eq. (5.62)

scattering processes (�)
λ(T) thermal de Broglie wave length Eq. (1.4)
µ0 eigenvalue of the GrossPitaevskii Eq. (4.4)

equation for N particles
µ⊥(N−N0) noncondensate chemical potential Eq. (7.18)

for (N−N0) particles at temperature T

ξ = a̺1/3 perturbation parameter of the theory Eq. (3.12)
̺ atomic gas density Eq. (1.3)
̺0 atomic condensate density Eq. (7.49)
̺⊥ atomic noncondensate density Eq. (7.49)
ρ̂GC(µ,T) thermal state of the grand canonical ensemble Eq. (1.16)
ρ̂C(T) thermal state of the canonical ensemble Eq. (5.16)
ρ1(t) single particle density matrix Eq. (1.28)

ρ̂(N)
0

(t) reduced condensate density matrix Eq. (5.16)

ρ̂(N)
⊥ (t) reduced noncondensate density matrix Eq. (5.12)

σ̂(N)(t) Nbody density matrix Eq. (3.8)
σ0(t) = 〈N0〉(t)/N condensate fraction Eq. (6.4)
σ⊥(t) = 〈N⊥〉(t)/N noncondensate fraction Eq. (6.4)
τ0 time scale of condensate evolution Eq. (3.1)
τcol average time scale for two body collisions Eq. (3.1)
|Φk〉 eigenbasis of single particle density matrix Eq. (1.28)
|χk〉 single particle eigenbasis of the noninteracting gas Eq. (1.14)
|Ψ0〉 GrossPitaevskii wave function Eq. (4.4)
|Ψk〉 wave functions of noncondensate particles Eq. (4.22)

Ψ̂ second quantized bosonic field Eq. (4.5)

Ψ̂0 second quantized bosonic condensate field Eq. (4.5)

Ψ̂⊥ second quantized bosonic noncondensate field Eq. (4.5)
ΨN(r1, ...,rN, t) Nbody wave function Eq. (2.12)
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Chapter 1

BoseEinstein condensation in ideal

Bose gases

We recall the technical terms “BoseEinstein condensation”, and “quantum ergodicity”, before the

reader is introduced into the experimental stateoftheart. Einstein’s original prediction of Bose

Einstein condensation is summarized in a short fashion to demonstrate the link of the Einstein

de Broglie condition1 to the first experimental observations of condensate formation [23, 24, 25].

Thereupon, the canonical and the grand canonical statistical ensembles are implemented as stateof

theart theoretical techniques to access the condensate particle number statistics of noninteracting

bosonic gases below the critical temperature Tc for BoseEinstein condensation.

1.1 What is a BoseEinstein condensate?

Encyclopic definition: “When a gas of bosonic particles is cooled below a critical temperature Tc,

it condenses into a BoseEinstein condensate. The condensate consists of a macroscopic number

of particles, which are all in the ground state of the system. BoseEinstein condensation (BEC) is a

phase transition, which does not depend on the specific interactions between particles. It is based

on the indistinguishability and wave nature of particles, both of which are at the heart of quantum

mechanics [26].”

We shall recall here that the purpose of the present thesis is to directly model the microscopic

condensate number distribution during the BoseEinstein phase transition under inclusion of both

1The Einstein de Broglie condition results from the definition of a critical temperature in the original theory of BoseEinstein
condensation (see Section 1.3), and means that the average distance of the particles in the gas must be smaller than their de
Broglie wavelength in order to observe condensate formation.

17
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the wave nature and the indistinguishability of the quantum particles. Within our theory, we will

theoretically proof that the equilibrium steady state indeed depends on the specific (nonlinear) form

of the interactions, nevertheless recovering the statistics of a thermal state for an ideal gas!

1.2 What is quantum ergodicity?

The expression “ergodicity” refers to a concept of classical statistical mechanics. Introduced by

Ludwig Boltzmann in the nineteenth century [13, 14], a system which behaves ergodically is ment

to sample each point in phase space equally over time, so that each state with the same energy

has equal probability to be populated. Boltzmann showed that his conjecture applies for a gas

of noninteracting, classical particles, subject to the condition of fixed energy and fixed particle

number, evolving to a maximum entropy thermal state under the assumption of molecular chaos.

However, some examples from classical statistical mechanics are known to be nonergodic (e.g.

strictly integrable systems) and do not relax into a thermal state, even after infinitely long times,

such as a chain of coupled, onedimensional harmonic oscillators [11]. Even less is known about

the accuracy of the thermal state ansatz for quantum systems with finite particle number (where

the density matrix does not necessarily factorize into different partitions such as condensate and

noncondensate), especially for weakly interacting, quantum degenerate bosonic gases. So far, the

ergodicity conjecture has been proven [27] only for ideal quantum gases coupled to an external heat

reservoir. For an ideal gas, it is intuitive that the steady state of the noninteracting particles being

in contact with a heat reservoir is a thermal state – independent of the condensate noncondensate

interaction strength – since entirely the coupling to the external heat reservoir (which itself is in

a thermal state) thermalizes the system. In contrast, the equilibrium steady state of a weakly

interacting Bose gas which undergoes condensation because of atomic collisions as predicted by

our master equation theory still depends on the specific nonlinearity of the atomic interactions: A

question to be answered in the present thesis is hence whether a weakly interacting gas of finite

particle number below Tc really relaxes towards a thermal Boltzmann state of an ideal quantum

gas [27], in the limit of very weak interactions, as presumed by the theory of thermodynamics?

1.3 Original prediction of BoseEinstein condensation

In the 20’s of the twentieth century, Einstein predicted [28, 29] what we call today “BoseEinstein

condensation”: a macroscopic number expectation value of a single particle quantum state, in a



1.3. ORIGINAL PREDICTION OF BOSEEINSTEIN CONDENSATION 19

gas of N indistinguishable, noninteracting bosonic particles.

The heart of Bose’s contribution [30, 31] to BoseEinstein condensation was to treat a photon

gas as an ensemble of indistinguishable bosonic particles, inspiring Einstein to apply [28, 29] Bose’s

statistics [30, 31] equivalently to ideal monoatomic gases enclosed in a volume V. This led him to

the BoseEinstein distribution function

N~l =
1

exp[α+ βη~l]− 1
. (1.1)

Equation (1.1) refers to the average occupation number N~l of a single particle state with energy

η~l = ~2|~l|2/2m, where ~l = (lx, ly, lz) is a particle’s wave vector in each spatial direction x, y, and

z, β = (kBT)−1 the inverse thermal energy of the gas, and α a Lagrangian multiplier. For a gas at

thermal equilibrium, α can be interpreted [10] as the product of the inverse thermal energy β and

the chemical potential µ of the gas, defined by

µ = −β−1 ∂lnZ (N,T)

∂N
. (1.2)

In Eq. (1.2), Z (N,T) denotes the partition function of N indistinguishable, noninteracting bosonic

atoms at temperature T, i.e. the number of different available microstates to the system, see

Eqs. (1.7, 1.9). In thermodynamic terms, µ is the change of the Helmholtz free energy F =

−β−1lnZ (N,T) with the particle number, being proportional to the change in Boltzmann’s entropy

S = kBlnZ (N,T).

Einstein speculated that the equilibrium state of a Bose gas – which is the state of maximum

entropy and minimum free energy according to the postulates of thermodynamics [10] – reveals

that all particles in the gas “condense” into the same quantum state, if the number of particles in the

gas tends to infinity. Indeed, in the limit N→∞ at fixed temperature, we notice that the number

of available microstates Z (N,T) in the gas does (intuitively) no longer change significantly with the

particle number, so that the chemical potential in Eq. (1.2) approaches the single particle ground

state energy of the gas, being zero for a noninteracting gas in a box.

According to Eq. (1.1), Einstein recognized that macroscopic average ground state occupation

should especially occur for high particle densities2 at fixed temperature. This can be retraced by

imposing that the number of particles in the gas be constant, and by summing Eq. (1.1) over all

2E.g. achieved by lowering the volume at fixed particle number, or by adding particles at constant volume
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possible values of ~l except the condensate single particle mode, ~l = (0,0,0) ≡ 0. Replacing the

summation by an integration over the density of states g(η) =Vm3/2/21/2π2
~

3η1/2 (see Section 7.3)

and taking the limit µ→ 0− (reflecting the behavior of µ in Eq. (1.2) in the limit N→∞), the ground

state occupation number in Eq. (1.1) diverges, if we match the Einstein de Broglie relation:

̺λ3(Tc) = ζ(3/2) = 2.612 . (1.3)

Equation (1.3) arises from the requirement that the integral over all noncondensate single particle

occupations in Eq. (1.1) equals the total number of particles, N, at the critical point of the phase

transition. Here, ζ(γ) =
∑∞

k=1 k−γ is the Riemann Zeta function, see Table 7.1, ̺ = N/V the

(homogeneous) atomic density of the gas, and λ(T) is the de Broglie wavelength of the particles:

λ(T) =

(

2π~2

mkBT

)1/2

. (1.4)

Equation (1.3) indicates in particular that BoseEinstein condensation occurs, if the wavelength λ(T)

of the quantum particles in the gas becomes larger than their mean inter particle distance.

By default, this condition is interpreted as the wave length of the atoms in the gas getting

infinitely large such that all particles are supposed to overlap and to form a giant matter wave, the

condensate. The first monitoring of the microscopic quantum dynamics in this thesis (see part III)

reflects that the reaching of the Einstein de Broglie condition leads to fulminating noncondensate

number fluctuations and an average macroscopic ground state occupation. Our microscopic, many

particle picture thus partially reproduces the idealized, intuitive picture of the condensate to consist

of one giant matter wave, however, reflecting the actual balancing process of particle flow towards

and out of the condensate mode, garnished by large quantum fluctuations characteristic for the

BoseEinstein phase transition.

Note that the BoseEinstein phase transition is in particular defined in the thermodynamic limit,

N→∞,V →∞, with ̺ = const., meaning that the particle number and the quantization volume

simultaneously tend to infinity, such as to keep the atomic density ̺ and the critical temperature Tc

fixed. In this limit, the result obtained in Eq. (1.3) becomes exact (recompensating the approximation

for the density of states g(η) to be continuous, see Chapter 8), defining analytically the transition

temperature Tc for BoseEinstein condensation in a uniform,3 noninteracting Bose gas:

3uniform ≡ noninterating gas in a box of volume V
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Tc =
2π~2̺2/3

kBζ(3/2)2/3m
. (1.5)

How was Einstein led to Eq. (1.1)? Having a look to the original predictions of BoseEinstein

condensation [28, 29], we recognize that the major underlying assumption is the indistinguishability

of particles: The number of quantum cells (in phase space) with energies between η~l and η~l+∆η is

z~l =
2πV

h3
(2m)3/2η1/2

~l
∆η . (1.6)

According to Bose’s previous analysis, Einstein infered [28] that the number of possibilities to

distribute N~l indistinguishable particles over z~l cells within the infinitesimal energy interval ∆η is

given by

Z~l
=

(N~l + z~l − 1)!

N~l!(z~l − 1)!
. (1.7)

This can be understood as follows [27]: Consider N~l particles (drawn as a onedimensional sequence

of dots), and z~l lines which represent the different cells (as vertical lines creating a certain partition

of the onedimensional row). The number of positions carrying a label in this onedimensional row

is N~l + z~l − 1, so that the number of different configurations having N~l dots in N~l + z~l − 1 labels

equals the number of different microstates, which is exactly the binomial coefficient in Eq. (1.7).

Taking into account all different energies η~l, the total number of microstates is Z (N,T) =
∏

~l
Z~l

,

assuming that the state of the gas factorizes. Then, Einstein adopts the definition [10] of Boltzmann’s

entropy, S = kBlnZ (N,T), where kB is the Boltzmann constant, which (with the above partition

function) leads to the entropy [10]

S = kB

∑

~l

[

N~l ln

(

1+
z~l
N~l

)

+ z~l ln

(

N~l
z~l
+ 1

)]

. (1.8)

Equation (1.1) is subsequently derived from maximizing S (by setting the first order variation of

S to zero), under the constraint that
∑

~l
N~l =N and

∑

~l
N~lη~l = E. Hence, Einstein derived Eq. (1.1)

by assuming a unique maximum entropy equilibrium state which can be factorized, treating the

particles in the gas as indistinguishable, and neglecting number and energy fluctuations.
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What does hence happen, Einstein asked, if the particles are considered as distinguishable? In

that case, the number of possibilities to distribute N~l on z~l cells is simply

Z~l
= (z~l)

N~l , (1.9)

that means, each of the N~l particles has the same probability of occupying any cell z~l, irrespectively of

a single particle state’s occupation with energy η~l, and~l , ~k. Again, taking into account all energies

as in Eq. (1.8), care has to be taken that a microstate with {N~l1
,N~l2
, . . .} particles occupying the cells

{z~l1
,z~l2
, . . .} can be realized in N!/

∏

~l
N~l! different ways, considering for a moment the particles as

distinguishable. Hence, the total number of states is given by Z (N,T) =
∏

~l
Z~l
= N!

∏

~l
(z~l)

N~l/N~l!,

which yields the Boltzmann entropy

S = kB



















N ln N+
∑

~l

[

N~l ln

(

z~l
N~l

)

+N~l

]



















(1.10)

by taking the natural logarithm. Equation (1.10) indicates that the resulting entropy cannot be

correct, i.e., the number of possible microstates is overcounted. This is because the first term

in Eq. (1.10) is proportional to N ln N – contradicting the extensivity property [10] of the ther

modynamic entropy, S (λN1 +µN2) = λS (N1)+µS (N2). Moreover, modeling the limit of zero

temperature by setting N0 → N, and N~l → 0+, for all ~l , (0,0,0), the expression in Eq. (1.8) for

indistinguishable particles gives the correct limit S → 0+ (as imposed by the 3rd law of thermody

namics [10]), whereas Eq. (1.10) for distinguishable particles leads to kBN ln N.

The main assertion of Bose and Einstein in a nutshell was thus that radiation can be treated as a

photon gas, with the same specific combinatoric results induced by indistinguishability.

1.4 Experimental stateoftheart

As reported in Section 1.3, Einstein’s original prediction refered to a gas of noninteracting particles

in the thermodynamic limit N → ∞,V → ∞, with ̺ = const. Thus, his prediction could not be

taken for granted to work also for finite, interacting Bose gases in harmonic, typically anisotropic

traps.4 The solidification of almost all materials at typical densities required at usual (e.g. room)

temperatures for the reaching of Einstein’s condition in Eq. (1.3) is the major problem of realizing

4See Section 1.5 for the quantum statistics of noninteracting gases in harmonic traps.
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physical parameter JILA [87Rb] MIT [23Na] SI unit

atomic density ̺ 2.6× 1012 1.0× 1014 cm−3

swave scattering length a 5.7× 10−9 4.9× 10−9 m

gas parameter ̺a3 5.0× 10−7 1.2× 10−5

trap frequencies νx,νy,νz 42.0, 42.0, 120.0 235.0, 410.0, 745.0 s−1

total particle number N 2000 5 · 105

critical temperature Tc ∼ 32 ∼ 2000 nK

typical formation time τ0 ∼ 2.0− 4.0 ∼ 0.5− 1.0 sec

Table 1.1: Typical parameters of the early experiments at JILA [23] and MIT [32], used for numerical calculations
throughout the thesis. The meaning of the swave scattering length as given in the table is explained in Section 2.1.

BoseEinstein condensation experimentally [33].

To achieve BoseEinstein condensation in the laboratory, the atomic ensemble is therefore

brought to extremly low atomic densities by laser cooling [34] and is rapidly cooled hereupon to

very low temperatures by evaporative cooling techniques [35, 36]. By this means, the gas has no

time to solidify, whereas Einstein’s condition in Eq. (1.3) can still be matched. Typical densities and

temperature ranges required to achieve BoseEinstein condensation are [15, 23, 24, 32]:

̺ ∼ 1012 − 1015cm−3 and T ∼ 20 nK − 1 µK . (1.11)

First observations of BoseEinstein condensation in the laboratory were reported in 1995, for

the alkali species 87Rb [23] in the group of Eric Cornell and Carl Wieman, at the Joint Institute for

Laboratory Astrophysics [23], for 23Na [24] in the group of Wolfgang Ketterle, at the Massachusetts

Institute of Technologies [32], and for 7Li [37] at RICE university. Up to date, BoseEinstein

condensation has been experimentally proven to exist in 1H, 7Li, 23Na, 39K, 52Cr, 85Rb, 133Cs,

170Yb and 4He [15].

Except for the species 4He [38, 39], which obeys – contrarily to all other summarized candidates

– very strong interactions between its atomic constituents in the Bose condensed phase, the typical

atomic density of a BoseEinstein condensate is surprisingly dilute: At the center of the trap, where

the highest atomic density (the condensate) is located, it is of the order of ̺ ∼ 1012−1015 cm−3. In

comparison, the density of air molecules at room temperature and atmospheric pressure is about

four to seven orders of magnitudes larger [15]. A direct quantitative measure for the diluteness of

a Bose gas is the gas parameter ξ = a̺1/3 (where a is the swave scattering length, see Section 2.1),
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typically of the order

ξ = a̺1/3 ∼ 10−2≪ 1 , (1.12)

for a dilute BoseEinstein condensate. Thus, the experimental path of producing BoseEinstein

condensates becomes theoretically noticeable as a small parameter in our master equation ansatz

in Part II of the thesis: The dilute gas parameter ξ = a̺1/3 will be identified in the derived transition

rates for particle exchange between the noncondensate and the condensate, and is employed to

quantify condensate formation times in a perturbative approach for the condensate wave function.

The same applies for the condensate and noncondensate steady state number distributions.

In the remainder of the thesis, stateoftheart experimental parameters such as those of the

early experiments on BoseEinstein condensation [23, 24, 32] are used for quantitative calculations

of condensate formation times and particle number distributions during and after condensate

formation. A recollection of relevant experimental parameters is shown in Table 1.1.

1.5 BoseEinstein condensation in harmonic traps

In order to describe the statistics of a bosonic gas in an external confinement, the original analysis

of BoseEinstein statistics for uniform gases needs to be extended to harmonic traps. This is

realized within the quantum version of the canonical and the grand canonical ensemble, which are

conventually used to describe the statistics of noninteracting bosonic gases [10].

In classical thermodynamics, the two ensembles are equivalent in the thermodynamic limit of

large particle numbers. Note, however, that an unsolved problem in the theory of quantum degen

erate gases below the critical temperature is that the canonical and the grand canonical ensemble

lead to different predictions for the condensate statistics, even in the thermodynamic limit [27].

Therefore, the results on condensate statistics below Tc obtained from the grand canonical and the

canonical ensemble shall be contrasted: Although both ensembles predict the same expectation

value of the condensate particle number in the thermodynamic limit (and similar occupation for

finite particle numbers), the grand canonical ensemble features the so called “fluctuation catastro

phe” (divergence of the condensate particle number variance in the thermodynamic limit) below Tc.

Hence, it is the canonical ensemble which is in accordance with experimentally observed scenarios

for condensate particle number expectation values and condensate number variances below the
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critical temperature.5

1.5.1 Grand canonical ensemble

We consider a gas of noninteracting atoms in a harmonic trapping potential, described by the first

quantized Hamiltonian

h1(~r) =
1

2m

(

p2
x + p2

y + p2
z

)

+
1

2
m(ω2

xx2
+ω2

yy2
+ω2

zz2)− 1

2
(~ωx + ~ωy + ~ωz) , (1.13)

with trapping frequencies ~ω = (ωx,ωy,ωz), momenta ~p = (px,py,pz) of the atoms in the three

different spatial directions ~r = (x, y,z) of Euklidian space R
3. In Eq. (1.13), the zero point energy

is substracted for convenience. The eigenvectors vectors |χ~l〉 of h1(~r) are labeled by the three

component vector ~l = (lx, ly, lz), with li ∈ N0. For noninteracting systems, the single particle

eigenstates 〈~r|χ~l〉 in position representation are given by

〈~r|χ~l〉 =
∏

ξ=x,y,z

1
√

2lξ lξ!















L2
ξ

π















1/4

e−
L2
ξ
ξ2

2 Hlξ(Lξξ) , (1.14)

where Lξ =
√

mωξ/~ is the width of the harmonic oscillator ground state, and the Hlξ(Lξξ) denote

Hermite polynomials [40]. The corresponding single particle eigenenergies η~l read

η~l = lx~ωx + ly~ωy + lz~ωz . (1.15)

Since the particles do not interact by assumption, particle exchange between atoms occupying

the different single particle eigenmodes |χ~l〉 is a consequence of coupling the gas to an external

heat reservoir. In addition to the energy exchange, the grand canonical ensemble assumes particle

exchange with the external reservoir to account for fluctuations of the total number of particles as

sketched in Fig. 1.1.

5This indicates that a physical description of the Bose gas should keep the number of particles fixed. This is due to the separation
of time scales in the BoseEinstein condensate, leaving classical number correlations of condensate and noncondensate because of
particle number conservation: Since the thermalization dynamics in the noncondensate is much faster than condensate formation,
the calculation of any observable 〈X̂〉 for fluctuating total particle numbers should consist in calculating its average first for a fixed
particle number N, taking the ensemble average of the N −N0 noncondensate thermal particles for each state of N0 = 0 . . .N
condensate particles. Once the expectation value of the observable 〈X̂〉N for a fixed N is known, the average of 〈X̂〉N over
ensembles refering to different total particle numbers N is to be carried out. Not least for this purpose, we keep the number of
atoms in the Bose gas fixed to N for deriving the equilibrium steady state of a BoseEinstein condensate in Part II of the thesis.
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EXTERNAL HEAT & PARTICLE

RESERVOIR

energyenergy

condensate
non-condensate

particles particles

Figure 1.1: Schematics of the grand canonical ensemble. Condensate and noncondensate are independently
coupled to an external heat and particle reservoir. Particle flow between condensate and noncondensate is induced
by equilibration of each subsystem (condensate and noncondensate) with the external reservoir. In the limit of
vanishing atomic interactions, the thermodynamical steady state of maximum entropy under the constraint of fixed
average energy and average particle number can still be reached, being a thermal state [10] independent of the
interactions between the atoms, see Eq. (1.16).

Assuming quantum ergodicity (equal occupation probability for all states with the same energy,

see Section 1.2), and neglecting quantum mechanical number and energy fluctuations in the ther

modynamic limit, the thermodynamical state [10] of the Bose gas at equilibrium is given by the

thermal state

σ̂GC(µ,T) =
1

ZGC(µ,T)
exp

[

−β
(

Ĥ −µN̂
)]

, (1.16)

where Ĥ =∑∞
~l=0
η~l N̂~l is the second quantized Hamiltonian of a noninteracting gas, µ the corre

sponding chemical potential, i.e. the change of the gas’ free energy with the total particle number,

and N̂ the number operator of atoms in the trap. Moreover,

ZGC(µ,T) =

∞
∑

~l=0

∞
∑

N~l=0

〈{N~l}|exp
[

−β
(

Ĥ −µN̂
)]

|{N~l}〉 =
∞
∏

~l=0

1

exp[β(η~l −µ)]− 1
(1.17)
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is the grand canonical partition function for indistinguishable particles,6 accounting for normaliza

tion. Equation (1.17) is obtained by tracing exp
[

−β
(

Ĥ −µN̂
)]

over all possible values of single

particle occupations, N~l = 0 . . .∞, ∀~l, and imposing particle number conservation onto the chemical

potential µ [10].

The mean occupation number 〈N̂~l〉 of a single particle mode of energy η~l in the grand canonical

ensemble is given by

〈N~l〉 =
1

exp[β(η~l −µ)]− 1
=

∏

j=x,y,z

[

1

z
exp[β~ω j − 1]

]−1

, (1.18)

where the fugacity z = exp[βµ] is introduced with a range of variation 0 < z < 1 (according to

the chemical potential µ in Eq. (1.2), ranging from µ = −∞ to 0). The fugacity is a measure of

the quantum degeneracy in the Bose gas: The classical limit (low concentration, i.e., low particle

numbers and high temperatures, meaning that lnZ (N,T) changes rapidly with N) exhibiting a large

number of different possible states available to the system is formally accounted for by the limit

z→ 0+, meaning that µ→−∞ according to the definition of the chemical potential µ in Eq. (1.2).

Here, Boltzmann occupation numbers 〈N~l〉 = exp[−βη~l] in Eq. (1.1) are recovered.

The quantum degenerate regime (low temperatures and high particle numbers), where the

number of states changes only slightly with the particle number is reflected by the limit µ→ 0−.

This implies z→ 1− and thus predicts BoseEinstein condensation, i.e. a divergence of the average

ground state occupation number, 〈N0〉 →∞. To evaluate the ground state occupation analytically

in the quantum degenerate limit, first all average occupation numbers of excited (noncondensate)

single particle states are counted,

〈N⊥〉 =
∑

~l,0

〈N~l〉 ≃
(

kBT

~ω

)3

ζ(3) , (1.19)

with ω = (ωx,ωy,ωz)1/3 the averaged trap frequency. To derive the right hand side of Eq. (1.19), the

sum
∑

~l
is replaced by an integral

∫

dηg(η), given the density of states g(η) = η22−1(~3ωxωyωz)1/3 [15]

for a threedimensional harmonic trap. This ansatz for the density of states is strictly valid only

for large particle numbers, where the approximation of the noncondensate single particle spec

trum being quasicontinuous is recompensated by assuming a very large Bose gas (N ∼ 1023) thus

6Distinguishable particles would imply a factor of N!/
∏

~k
N~k

! in each summand in Eq. (1.17), as explained in the derivation of

Eq. (1.10).
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Figure 1.2: Average condensate fraction 〈N0〉/N predicted by the grand canonical result in Eq. (1.20) (red dashed
line) vs. exact numerical calculations within the canonical ensemble using Eq. (1.27) (blue solid line). Calculations
are performed for a gas of N = 2500 particles in a threedimensional harmonic trap with trapping frequencies
ωx =ωy = 42.0 Hz, ωz = 120.0 Hz. The ideal gas critical temperature Tc = 36.47 nK is defined by Eq. (1.3).

formally using the thermodynamic limit (see Chapter 8).

Imposing particle number conservation (after the calculation), 〈N0〉 + 〈N⊥〉 = N, the result in

Eq. (1.19) is rewritten in order to find the ground state occupation as a function of temperature in

the grand canonical ensemble:

〈N0〉
N
=

[

1−
(

T

Tc

)3
]

, (1.20)

with a critical temperature Tc for a noninteracting Bose gas in a harmonic trap, given by

Tc =
~ωN1/3

kBζ(3)1/3
. (1.21)

The scaling behavior of the average condensate occupation number 〈N0〉 with T/Tc in a three

dimensional harmonic trap differs from the scaling behavior for a homogenous gas in Eq. (1.5),

i.e., the scaling is (T/Tc)3 instead of (T/Tc)3/2. This is due to the external confinement which

induces higher condensate occupations, measuring the temperature in units of the ideal gas critical

temperature Tc. Thus, the external trap confines the particles in the trap stronger, which leads

to a larger condensate fraction as compared to the uniform case for the same gas temperature at
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Figure 1.3: Standard deviation ∆N0 = (〈N2
0
〉 − 〈N0〉2)1/2 of the condensate number occupation, predicted by the

grand canonical ensemble result in Eq. (1.22) (red dashed line) vs. exact numerical calculations within the canonical
ensemble (blue solid line) using Eq. (1.25, 1.27), as a function of relative temperature T/Tc, for the same experimental
parameters as in Fig. 1.2: The grand canonical ensemble predicts condensate number variances ∆2N0 as large as N2

below Tc.

equilibrium. In turn, a lower temperature is needed for the case of no external confinement in order

to observe the same condensate fraction.

The average condensate occupation number 〈N0〉 versus T/Tc predicted by the grand canonical

ensemble result in Eq. (1.20) is illustrated in Fig. 1.2 (red dashed line), and compared with the

exact calculation of Section 1.5.2 (canonical ensemble) in a harmonic trap using the condensate

number distribution in Eq. (1.27). Whereas the grand canonical calculation of 〈N0〉 shows a cusp

at the transition temperature Tc of BoseEinstein condensation, the canonical ensemble predicts

condensate occupations only for temperatures below the ideal gas critical temperature Tc (at

∼ 0.95Tc), and a smooth transition. These deviations originate from the replacement of the discrete

sum by an integration to derive Eq. (1.20) under the assumption of a quasicontinuous spectrum.

This results effectively in a shift of Tc, which is smaller than 5% starting at N ∼ 10000, and ranges

from 5 − 30% for smaller total particle numbers, starting from the percent level at T = 0.2Tc to

approx. 20% at T = 0.95Tc in Fig. 1.2. This shift can be incorporated in Eq. (1.20) by replacing

Tc→ Tc× (1−0.7275/N1/3), or by respecting the discreteness of the single particle spectrum via an

exact numerical treatment as we do in Fig. (1.2), blue line (see also Chapter 8).

Albeit the average condensate occupation in Eq. (1.20) is correctly described in the grand

canonical ensemble, it was soon recognized [41] that a grand canonical description of the gas
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cannot be correct below the critical temperature. This is because of the so called “grand canonical

fluctuation catastrophe”, which has been discussed by generations of physicists [42]. In short

terms, the problem of the grand canonical ensemble below the critical temperature is that the

variance of the condensate particle number, given analytically as

∆
2N0 = 〈N0〉 (〈N0〉+ 1) , (1.22)

where 〈N0〉 is given by Eq. (1.20), becomes comparable to the total particle number and there

fore diverges in the limit 〈N0〉 → N. These large fluctuations (
√

∆2N0 ∼ N) are contradictory

to experimental observations, where the condensate number variance has been experimentally

measured [43] to be in the Poisson to subPoisson range (hence
√

∆2N0 ∼
√

N).

Nowadays, the most reliable and numerically accessible stateoftheart thermodynamic pre

diction for the condensate number variance is thus governed by the canonical ensemble for non

interacting gases below Tc, where the grand canonical and canonical ensemble cease to be equiv

alent [27]. The standard deviation of the condensate particle number
√

∆N2
0

obtained within the

grand canonical ensemble is shown in Fig. 1.3 as a function of T/Tc (red dashed line), in comparison

to our numerical prediction within the canonical ensemble discussed in the next section.

1.5.2 The canonical ensemble

The equilibrium state of the Bose gas in the canonical ensemble is derived under the constraint of

a fixed total average energy 〈E〉 and a fixed constant particle number N in the system, as sketched

in Fig. 1.4. Within the ergodic assumption (see Section 1.2), and under the neglect of energy

fluctuations in the thermodynamic limit, the (maximum entropy) equilibrium state of the gas is a

thermal one [10, 27],

σ̂(N)
C

(T) = Q̂N

exp
[

−βĤ
]

Z (N,T)
Q̂N , (1.23)

where Ĥ = ∑

~k
η~kN̂~k is the many particle Hamiltonian of the ideal gas, Q̂N a projector onto the

Fock space of N particles, and Z (N,T) the partition function of N indistinguishable particles in the

canonical ensemble:
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Figure 1.4: Schematics of the canonical ensemble. Condensate and noncondensate are independently coupled to
an external heat reservoir. Particle flow between condensate and noncondensate is induced by the energy exchange
of either one subsystem (condensate and noncondensate) with the external heat reservoir. In the limit of vanishing
interparticle interactions, the maximum entropy equilibrium state of the Bose gas can therefore still be reached, and
is independent of the interacting strength, see Eq. (1.23).

Z (N,T) = Tr
{

Q̂Nexp
[

−βĤ
]

Q̂N

}

=

(N)
∑

{N~l}
〈{N~l}|exp

[

−βĤ
]

|{N~l}〉 . (1.24)

The symbol
∑(N)
{N~l}

labels a partial sum over all tuples {N~l,~l ∈ N
3
0
} which satisfy

∑∞
~l=0

N~l =N. Clearly,

this partition function differs from the standard ones for distinguishable particles by the missing

prefactor N!/
∏

~l
N~l!. This factor needs to be included for distinguishable particles in order to

realize that a Fock state |{N~l}〉 has N!/
∏

~l
N~l! different microscopic realizations, if we considered

the particles as individuals. As we have seen in Section 1.3, however, this is not correct in the

quantum degenerate limit, so that the partition function of indistinguishable particles in Eq. (1.26)

has to be applied.

To access the condensate statistics, we deduce the condensate number distribution pN(N0,T)

from the diagonal element of the reduced density matrix in Eq. (1.23), where the trace is taken over
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Figure 1.5: Condensate particle number distribution within the canonical ensemble for a 3dimensional harmonic

trap with ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz, and N = 2500 87Rb atoms, obtained from pN(N0,T) in
Eq. (1.27), for the same parameters as in Fig. 1.2, and for three different temperatures T = 30.0,20.0,10.0 nK (from
left to right).

all number states of the noncondensate which conserve the total number of particles:

pN(N0,T) = 〈N0|Tr⊥σ̂
(N)
C
|N0〉 = e−βη0N0

Z⊥(N−N0,T)

Z (N,T)
, (1.25)

where Z⊥(N−N0,T) is the partition function of the noncondensate, containing (N−N0) particles:

Z⊥(N−N0,T) =

(N−N0)
∑

{N~l}~l,0

〈{N~l}|exp
[

−βĤ⊥
]

|{N~l}〉 , (1.26)

with Ĥ⊥ =
∑

~k,0
η~kN̂~k. Finally, using Eq. (1.25), we can derive an exact recurrence relation for

pN(N0,T):

pN(N0,T)

pN(N0 + 1,T)
= eβη0

Z⊥(N−N0,T)

Z⊥(N−N0 − 1,T)
. (1.27)

Some examples of the condensate particle number distribution pN(N0,T) in Eq. (1.27) are shown

in Fig. 1.5. As mentioned above, the average condensate occupations and the standard deviations

of the condensate particle number as obtained from Eq. (1.27) are displayed in Figs. 1.2 and 1.3,
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respectively, comparing the grand canonical prediction (red dashed lines) to the canonical prediction

(blue solid lines).

1.6 BoseEinstein condensation in position space

In order to theoretically verify that BoseEinstein condensation, i.e. a macroscopic condensate

number expectation value of the single particle ground state mode can be related to the experimen

tally observed occurrence of a high condensate density at the center of the trap below the critical

temperature [23, 32], it is possible to apply the concept of the reduced onebody density operator

as follows.

The bosonic gas of N particles, whether interacting or not, is fully described by the many particle

Nbody state σ̂(N)(t). The onebody density matrix, ρ̂1 [44], is the statistical operator of one particle

in the quantum gas, averaged over all permutations of the (N− 1) remaining particles. It is defined

by the quantum mechanical average

ρ̂(1)(t) =N

∫

C

d3~r2 . . .d
3~rN 〈~r2 . . .~rN|σ̂(N)(t)|~r2 . . .~rN〉 , (1.28)

where C denotes the volume of nonvanishing atomic density in the external trapping confinement.

The diagonal elements of the onebody density matrix in position representation, 〈~r|ρ̂1|~r〉, provide

the average particle density in the trap. Offdiagonal elements, 〈~r|ρ̂1|~r ′〉, characterize spatial

correlations in the Bose gas. The onebody density matrix is conveniently normalized to N.

We now take a closer look on ideal gases in a harmonic potential. In this case, the diagonal

elements of the onebody density operator in spatial representation turn into

〈~r|ρ̂(1)|~r〉 =
∑

~l

〈N~l〉χ
⋆
~l

(~r)χ~l(~r) , (1.29)

with the harmonic oscillator statesχ~l(~r) = 〈~r|χ~l〉 in Eq. (1.14), and average single particle occupations

〈N~l〉 given by Eq. (1.18). Assuming thermal equilibrium, we can write the onebody density matrix

as

ρ̂(1)
=

1

z−1exp(βh1)− 1
, (1.30)
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using the spectral decomposition of the first quantized Hamiltonian h1 in Eq. (1.13), and the

definition of the fugacity z in Eq. (1.18).

To calculate the representation in position space |~r〉, we assume for simplicity an isotropic

trapping potential, and use the expansion ρ̂(1)
=

∑∞
m=1 zme−βmh1 to arrive at [45]:

〈~r|ρ̂(1)|~r〉 =
(

mω

π~

)3/2 ∞∑

k=1

zk

(1− e−2βk~ω)3/2
exp

[

−mω|~r|2
~

tanh

(

βk~ω

2

)]

. (1.31)

Equation (1.31) highlights the occurrence of the condensate part of the gas at the center of the

trap, as the fugacity tends to unity below the transition temperature for BoseEinstein condensation,

z→ 1−: Large summation indices k in the sum entail a contribution close to one, i.e., the term

(1− e−2βk~ω)−3/2→ 1, and moreover, the term tanh
(

βk~ω/2
)→ 1. Around the center of the trap,

|~r| → 0+, the sum in Eq. (1.31), and consequently the atomic density diverges in the limit z→ 1−,

whereas it tends to zero for distances larger than the harmonic oscillator length, |~r| ≫
√
~/mω.

Condensation onto the single particle ground state mode χ0(~r), i.e., an expectation value of 〈N0〉 ∼
N, hence manifests itself as enhanced atomic density at the center of the trap in harmonic trapping

potentials.

It is evident that the situation is modified in the interacting case, which exhibits nevertheless a

smooth transition [45] into the noninteracting case for sufficiently weak interactions (a/LN ≪ 1,

where L is the extension of the harmonic oscillator ground state). In this case, single particle wave

functions of the interacting system do not significantly differ from the harmonic oscillator states in

Eq. (1.14).



Chapter 2

Interacting BoseEinstein condensates

In this Chapter, important concepts for treating interacting BoseEinstein condensates are sum

marized. Under the restriction to two body interactions, justified for dilute atomic gases, the

microscopic derivation of an effective interaction strength g for atomic interactions in the Bose gas

is sketched in Section 2.1. The Hamiltonian of an interacting Bose gas in second quantization is

specified in Section 2.2. The GrossPitaevskii equation [15] constitutes a closed equation for the

condensate mode in dilute atomic gases [46, 47, 48, 49]. It will be derived in Section 2.3 within

the Hartree ansatz for the Nbody state of the system. Section 2.4 finally summarizes theories for

the study of the average condensate growth to establish the relation and contribution of the master

equation theory of this thesis.

2.1 Swave scattering approximation

In dilute atomic gases, it is possible to neglect threebody and higher order interactions [50], since

atomic collisions are captured by successive two body interactions between the atoms in the Bose

gas [16, 51]. These are described [52] by the first quantized Hamiltonian

h12 =
~p2

2M
+V12(~r) , (2.1)

where ~r = ~r1 −~r2 is the relative coordinate, and ~p = ~p1 − ~p2 is the relative momentum of the

two identical colliding particles, while M = m/2 is their reduced mass, and V12(~r) the two body

interaction potential. From standard scattering theory [45, 52], we know that scattering states with

positive energy E = ~
2k2/2M obey the differential equation

35
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(

∆~r + k2
)

Ψ(~r) =
2M

~2
V12(~r)Ψ(~r) , (2.2)

with the Laplacian operator ∆~r, and k = |~p1 − ~p2|/~, the absolute value of the relative wave vector

between the two identical particles. Equation (2.2) has the formal solution:

Ψ(~r) =Ψ(in)(~r)− 2M

4π~2

∫

d~r ′
eik|~r−~r ′|

|~r−~r ′|
V12(~r ′)Ψ(~r ′) , (2.3)

whereΨ(in)(~r) is the unperturbed wave function of the incoming particle, satisfying the differential

equation ∆~rΨ
(in)(~r) = −k2

in
Ψ

(in)(~r), with k2
in

as the wave vector of the incoming wave (|~kin| =
kin). For sufficiently weak interactions, we employ the first order (in the interaction V12) Born

approximation [52], which effectively consists in replacing Ψ(~r ′) → Ψ(in)(~r ′) on the right hand

side of Eq. (2.3). This approximation is valid for sufficiently weak interactions, as discussed below.

There are two main ingredients used to derive an effective interaction strength for two body

collisions:

First, assuming a sufficiently short, finite range interaction potential between the atoms, with

an effective radius R, the asymptotic behavior of the scattering state for large distances r ≡ |~r| ≫ R

between the two atoms turns into

Ψ(~r) =Ψ(in)(~r)− eikr

r
f (~n) , (2.4)

where ~n =~r/r is the direction of scattering, and where

f (~n) = − 2M

4π~2

∫

C

d~r ′ eik~n~r ′V12(~r ′)Ψ(in)(~r ′) (2.5)

represents the scattering amplitude for the given scattering process. This amplitude does not

depend on the relative distance r between the atoms in the asympotic scattering region r≫ R.

Second, the limiting case of low energy collisions with a kinetic energy ~2k2/2M of the atoms

of the order of the thermal energy kBT (with T ≤ 1.0 . . .2.0 µK) is much smaller than the typical

centrifugal barrier energy around T = 1 mK to scatter into higher angular momentum states than

l = 0 [53]. In this case, the scattering amplitude does not depend on the direction ~n of scattering,
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and is set constant f (~n)→−a = const. The scattered part of the wave is thus rotationally symmetric,

see Eq. (2.4), and a is called “swave scattering length” as the strength of the interaction does not

depend on the angle between the two scattered identical particles to lowest order, since only

scattering states with angular momentum l = 0 are supposed.

Since abinitio calculations of the swave scattering amplitude a for realistic interatomic interac

tion potentials V12(~r′) are difficult tasks on their own [45, 53], we use a pseudopotential [54],

V12(~r1 −~r2) = gδ(~r1 −~r2) , (2.6)

with g = 4π~2a/m, in order to satisfy the same properties as the derived swave scattering amplitude

f (~n) = −a, in the asympotic limit of large distances r≫ R and low kinetic energies kR≪ 1. The

actual value of the swave scattering length a is taken as an experimentally determined parameter,

according to Table 1.1.

Using the swave scattering pseudo potential in Eq. (2.6) to describe two body collisions is

justified [45], if ξ = a̺1/3 ≪ 1, called “dilute gas condition”. As noticed before, the dilute gas

condition is satisfied in most stateoftheart experiments for alkali atoms (see Section 1.4).

2.2 Hamiltonian for two body interactions

Given the effective description of two body interactions in Section 2.1 in terms of the swave

scattering length, the formalism of second quantized bosonic fields can be introduced to describe

the interacting Bose gas. Let’s consider a gas of bosonic particles, each of which may be in a

particular state of an orthonormal and complete set of single particle wave functions {|νk〉,k ∈ N0}.
Corresponding to the basis states |νk〉, we introduce annihilation/creation operators, ĉk and ĉ†

k
,

respectively, which satisfy bosonic commutation relations,
[

ĉk, ĉ
†
l

]

= δkl. The operators ĉk and ĉ†
k

create particle states such as plane waves, or the harmonic oscillator states |νk〉 → |χ~k〉 in Eq. (1.14),

depending on the choice of the basis.

The operators Ψ̂(~r) and Ψ̂†(~r) are called “bosonic field operators” [55], which describe the

quantized field of the gas, and satisfy the commutation relations

[

Ψ̂(~r),Ψ̂(~r ′)
]

=

[

Ψ̂
†(~r),Ψ̂†(~r ′)

]

= 0 and
[

Ψ̂(~r),Ψ̂†(~r ′)
]

= δ(~r−~r ′) . (2.7)
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The interpretation of the fields Ψ̂(~r) and Ψ̂†(~r) is that they annihilate and create, respectively, a

bosonic particle at position ~r. Expanding the state |~r〉 of a particle at position ~r in the orthonormal,

complete basis {|νk〉,k ∈ N0}, the ket |~r〉 =∑

k |νk〉〈νk |~r〉 translates in particle number representation

into

|~r〉 = Ψ̂†(~r)|0〉 =
∑

k

〈νk |~r〉 ĉ†k |0〉 . (2.8)

Hence, the two bosonic fields Ψ̂(~r) and Ψ̂†(~r) are defined1 by

Ψ̂
†(~r) =

∑

k

ν⋆
k

(~r)ĉ†k and Ψ̂(~r) =
∑

k

νk(~r)ĉk . (2.9)

This definition entails the bosonic commutation relations for the fields Ψ̂(~r) and Ψ̂†(~r) in Eq. (2.7),

given that the creation and annihilation operators ĉ†
k

and ĉk satisfy bosonic commutation relations.

The Hamiltonian of a gas of bosonic particles, including two body interactions, is specified [55]

in terms of the quantized fields Ψ̂(~r) and Ψ̂†(~r) as

Ĥ =
∫

C

d~r Ψ̂†(~r)















−~2~∇
2

2m
+Vext(~r)















Ψ̂(~r)+
g

2

∫

C

d~r Ψ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r) . (2.10)

In Eq. (2.10), such as in the sequel of this thesis, the effective two body swave scattering interaction

potential V12(~r−~r ′) = gδ(~r−~r ′) of Eq. (2.6) is adapted. The region of nonvanishing spatial atomic

density is denoted by C .

2.3 GrossPitaevskii equation from the Hartree ansatz

Here, the GrossPitaevskii equation [15, 16] is introduced, constituting a closed equation for the

macroscopically occupied single particle mode Ψ0(~r, t) below Tc, called the “condensate wave

function”. Assuming N particles in the Bose gas to share the same, in general time dependent

single particle mode Ψ0(~r, t), the Hartree ansatz [15] can be used to derive the GrossPitaevskii

equation. The first quantized Nparticle Hamiltonian HN for N atoms interacting via two body

1Note that the second quantized field represents a particle and a wave simultaneously. The first can be associated to the

particle operators ĉk and ĉ†
k
, whereas the wave nature is typified by the basis of wave functions {νk(~r)}, in which we expand the

field Ψ̂†(~r). The choice of this basis is in general arbitrary.
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collisions in the Bose gas is given by

HN =

N
∑

k=1













~p2
k

2m
+Vext(~rk)













+
g

2

∑

k,l

δ(~rk −~rl) , (2.11)

where Vext is the external trapping potential, and the factor 1/2 ensures that each pair of particles

contributes only once (independent of the order of k, l) in Eq. (2.11). Assuming that all particles

share the same quantum state at T = 0, the HartreeFock ansatz is employed for the Nbody ket of

the Bose gas:

ΨN(~r1, . . . ,~rN, t) =
N
∏

k=1

Ψ0(~rk, t) . (2.12)

Now, we can calculate the expectation value of the Nparticle Hamiltonian in Eq. (2.11) with

respect to the Nbody ket |ΨN〉. According to Eqs. (2.11, 2.12), the latter is given as a functional

EN = EN(Ψ0,Ψ
⋆
0

) of the condensate wave function Ψ0, and its conjugate Ψ⋆
0

:

EN(Ψ0,Ψ
⋆
0 ) =N

∫

C

d~r

[

~2

2m
|~∇Ψ0(~r, t)|2 +Vext(~r)|Ψ0(~r, t)|2 + g(N− 1)

2
|Ψ0(~r, t)|4

]

. (2.13)

In Eq. (2.13), the term N(N − 1)/2|Ψ0(~r, t)|4 describes the two body interactions between the

particles, thus proportional to the number of N(N − 1)/2 ways to pair the bosons, times the

corresponding single particle densities |Ψ0(~r, t)|2 of each boson contributing to a two body collision

process. To derive an evolution equation for the condensate wave function Ψ0(~r, t), one uses

Hamiltonian’s principle of least action [15, 56] (in analogy to the derivation of the Schrödinger

equation), with the Lagrangian

L (Ψ0,Ψ
⋆
0 ) =

∫

C

d~r
i~

2

(

Ψ
⋆
0

∂Ψ0

∂t
−Ψ0

∂Ψ0

∂t

)

−EN(Ψ0,Ψ
⋆
0 ) . (2.14)

Demanding the action
∫ t2

t1
L dt to get extremal, thus insisting that δ

∫ t2

t1
L dt = 0, and imposing

vanishing variations δΨ0 and δΨ⋆
0

at the temporal boundaries t = t1 and t = t2 and at the spatial

boundaries of the region C of nonvanishing gas density leads to the time dependent GrossPitaevskii

equation
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i~
∂Ψ0(~r, t)

∂t
=















−~2~∇
2

2m
+V(~r)+ gN|Ψ0(~r, t)|2















Ψ0(~r, t) . (2.15)

Equation (2.15) quantitatively determines the macroscopically occupied mode Ψ0(~r, t) of the gas

below Tc, termed the “condensate mode”.

For a static condensate mode, with N particles of the gas occupying this mode, the Gross

Pitaevskii wave function Ψ0(~r, t) in Eq. (2.15) will evolve in time only with respect to a trivial phase

factor, Ψ0(~r, t) = Ψ0(~r) eiµ0t/~, µ0 being defined as the eigenvalue of the static GrossPitaevskii

equation:















−~2~∇
2

2m
+Vext(~r)+ gN|Ψ0(~r)|2 −µ0















Ψ0(~r) = 0 . (2.16)

In view of the quantum master equation theory of BoseEinstein condensation in Part II of this

thesis, we adapt one issue which arises from the above mean field theory:2 The linear part of

the GrossPitaevskii equation is identical to the wellknown Schrödinger equation, whereas the

nonlinear part reflects the presence of (N− 1) – here, (N − 1) is replaced by N for convenience in

Eq. (2.15) – other particles with which a condensate particle interacts. From Eq. (2.15), it follows

that the condensate mode Ψ0(~r, t) is a function of the product gN. Hence, the condensate wave

function |Ψ0〉 has a welldefined limit to the Schrödinger wave function |χ0〉 of a particle in an ideal

gas in the formal limiting case of weak interactions, a→ 0+ [45].

2.4 Theories of condensate growth

There exist different quantum kinetic theories to describe the time evolution of the average con

densate fraction during BoseEinstein condensation. Summarizing their relevant results in a short

fashion, we demonstrate that – to our knowledge – none of the theories could so far address

the dynamics of the full condensate number distribution during BoseEinstein condensation which

2Mean field theories are often termed as such because they treat the dynamics of the GrossPitaevskii wave function Ψ0 for a
given average number of condensate particles, N→ 〈N0〉 in Eq. (2.15), representing the mean value of condensate particles which
populate the average condensate mode Ψ0. Since this mode depends itself on the number of condensate particles, the product
√

〈N0〉Ψ0 is often called mean field, or order parameter, depending on the community. Note that, within the quantum master
equation, the Hartree ansatz is used to quantify the condensate mode assuming all particles to share the same (nonaveraged)
single particle quantum mode Ψ0. Indeed, we will see that this is an accurate assumption since any term proportional to g in

Eq. (2.15) will enter the dynamics and statistics of ultracold quantum gases only negligibly small, if only a̺1/3 ≪ 1 (see Part II and
Part III).
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highlights the condensate formation process of the atoms in the gas below Tc. This is because

either the full quantum problem is in most cases impossible to solve numerically, the total particle

number is not conserved, or/and condensate formation is studied in terms of the quantum Boltz

mann equation. Moreover, we notice that there exists no quantitative master equation theory for

closed and interacting dilute Bose gases below Tc imposing particle number conservation onto the

state of the system.

2.4.1 Condensate growth from quantum Boltzmann equation

Many works focus on BoseEinstein condensation in terms of the quantum Boltzmann equation

(QBE) which describes the kinetics of a quantum gas in terms of time dependent particle number

occupations f~k(t). More explicitly, the QBE is given by

∂ f~k
∂t
=

∑

~l, ~m,~n

C (~k,~l, ~m,~n)
[

f~m f~n( f~l + 1)( f~k + 1)− f~k f~l( f~m + 1)( f~n + 1)
] δη~k+η~l−η~m−η~n

∆η
, (2.17)

where f~k = f~k(t) denotes the average particle number occupation of a single particle state with

energy η~k. The Kronecker delta in Eq. (2.17) ensures energy conservation, the choice of the typical

spectral energy spacing ∆η depending on the external trapping geometry. The transition rate

C (~k,~l, ~m,~n) appearing in Eq. (2.17) is given by

C (~k,~l, ~m,~n) ∼ 2πg2

~

∣

∣

∣

∣

∣

∫

d~r χ⋆
~k

(~r)χ⋆
~l

(~r)χ~m(~r)χ~n(~r)

∣

∣

∣

∣

∣

2

, (2.18)

with χ~k(~r), the single particle eigenfunctions of a noninteracting gas, and g the two body interaction

strength.

The QBE is controversially discussed [57] with regard to its character as a good approximation

to the true Hamiltonian dynamics, or, as a defining theory on its own right. From the Hamiltonian

point of view, one way to decompose the total Hamiltonian for an interacting gas is Ĥ = Ĥideal+V̂,

with

Ĥideal =

∑

~k

η~kâ†
~k

â~k and V̂ = g

2

∑

~k,~l, ~m,~n

ζ~m~n
~k~l

â†
~k

â†
~l

â~mâ~n , (2.19)

where ζ~m
~0
~k~l
=

∫

d~r χ⋆
~k

(~r)χ⋆
~l

(~r)χ~m(~r)χ~n(~r). The interaction term V̂ commutes with Ĥ0 only if the
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energy is balanced, i.e. η~k + η~l = η~m + η~n. In this case, the time evolution of the gas is governed

by the unitary time propagator Û(t) = exp[−iĤidealt/~]exp[−iV̂t/~]. Calculating all different

nonvanishing transition rates proportional to |〈{N~k}|Û(t)|{N~l}〉|
2 between the eigenstates |{N~k}〉 of

Ĥideal with respect to the interaction term V̂ to second order (in g) with the Fermi golden rule [58],

and imposing energy conservation by adding a delta function δ(η~k + η~l − η~m − η~n) to the coupled

evolution equations for f~k(t) ≡ 〈â†
~k

â~k〉(t) subsequently leads to Eq. (2.17).

The problems with the above derivation are:

(i) The eigenvectors of Ĥideal are not the same as the eigenvectors of Ĥ . So, interpreting

the expectation value of Ĥ as the true energy, the time evolution governed by Û(t) cannot lead

to any transition between the eigenstates of the Hamiltonian Ĥ for the interacting gas. Thus,

the time evolution governed by the QBE (2.17) may therefore not represent the real dynamics of

the interacting system, since it assumes transitions and energy conservation with respect to the

eigenstates of a noninteracting gas as described by the Hamiltonian Ĥideal.

(ii) The use of Fermi’s golden rule causes a problem, considering that Ĥ0 commutes with

V̂. Expanding the time propagator Û(t) = exp[−iĤidealt/~]
[1̂− iV̂t/~+O(g2)

]

, and taking the

short time limit t→ 0+, the offdiagonal (transition) matrix elements 〈{N~k}|Û(t)|{N~l}〉 tend to zero,

meaning that the instantaneous rates of the collision processes vanish (quantum Zeno effect [57]).

For these reasons, the QBE is often regarded as a phenomenological ansatz rather than being

justified from the microscopic point of view. In Chapters 57, we will show that – under the

inclusion of all two body interactions and accounting for the finite phase coherence time τcol

between two colliding particles (avoiding the Zeno paradox) – the derived condensate growth

equation (6.5) resembles the QBE in Eq. (2.17) for ~k = 0 refering to the ground state mode, and

assuming a finite with of the δfunction. Our quantum approach does not impose the assumption

of microscopic energy conservation, following naturally in the derivation of the master equation.

Support to the validity of the QBE is given by the master equation as concerns the use of single

particle wave function for noninteracting atoms: we will show that corrections of the atomic single

wave functions with respect to atomic interactions (neglected in the microscopic derivation of the

QBE) occur indeed as O(g3)terms in the time evolution of single particle occupations, scaling as

a̺1/3≪ 1 relatively to the leading order contribution (governed by the QBE). Under the restriction

to two body collisions and therefore to contributions proportional to g2 in the limit a̺1/3 ≪ 1,

the QBE (2.17) is thus perfectly justified from the microscopic point of view, despite the lack of

the finite Γ width of the δfunction arising from the finite spatial phase coherences between the

quantum particles – which has to be included (see Chapter 7).
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Since the product of the different occupation numbers on the right hand side of Eq. (2.17)

describes the equilibration of the atoms in the gas due to atomic two body collisions, Bose

Einstein condensation is studied within the QKB by regarding the population of the ground state

mode ~k = (0,0,0) in Eq. (2.17). A practical problem for simulating the QBE, however, is that the

degeneracy of states increases rapidly with increasing energy. For example, the choice kBT = 10~ω

in an isotropic harmonic trap already limits significantly the numerical speed [59]. Nevertheless,

the QBE can be simulated numerically for small total particle numbers (N ∼ 100− 1000) assuming

that each occupation number f~k with arbitrary ~k refering to the same energy depends only on the

energy of the state3 (see Section 2.4.4). The advantage of the condensate growth equation (6.6) is

that it can be applied in a large desired range of particle numbers (we probed the range N = 200 to

N = 106).

2.4.2 Pioneering works of Levich and Yakhot

First investigations on BoseEinstein condensation have been performed by Levich and Yakhot [60]

using the QBE in order to study the dynamics of a gas in a box coupled to a bath of fermionic

particles below the critical temperature. In this first study, the authors made the important assertion

that there exist two macroscopically distinct stages of condensate formation, the first being a fast

equilibration of the gas’ high energetic part within a few two body collision times (thermalization),

τcol ∼ 50− 100 ms, and the second stage, the actual formation of the condensate4 – highlighting a

clear separation of the time scale τcol for thermal equilibration of the noncondensate part of the

gas from the time scale τ0 for BoseEinstein condensation.

2.4.3 Predictions of Kagan, Svistunov and Shlyapnikov

First considerations on BoseEinstein condensation by Svistunov [61] were also conducted for

the simplified case of a Bose gas in a box, replacing the terms ( f~l + 1) by 1, and thus assuming

f~l ≪ 1 in Eq. (2.17). Within this approximation, Svistunov was led to an analytical solution for the

distribution function f0(E, t) being a function of energy E. According to Svistunov, the distribution

f0(E, t) propagates from high energies to the ground state energy within a time scale τcol after it

returns to the initial energy region. The predictions of Svistunov correspond to our observation that

particles are transported from the noncondensate modes towards the condensate mode (with net

3so that each state with the same energy has the same occupation number/probability, what represents the ergodic dynamics
assumption

4In accordance with the separation of time scales found by Holland, Walser and Cooper [59] (see Section 2.4.4).
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positive current towards the condensate mode below Tc), until a slow (linear) convergence5 into a

detailed balance particle flow (compare Chapters 6, 8).

Subsequently [61, 62], Kagan, Svistunov and Shlyapnikov studied the dynamics of condensate

growth in more detail again showing that there exist two distinct stages of condensate formation:

Initially, the nonequilibrium state of the gas rapidly equilibrates and implies the transport of high

energetic particles to the lowenergy region, occuring on the average time scale τcol of two body

collisions in the gas, which is equivalent to the observations of Levich and Yakhot [61, 62] (see

Section 2.4.2) and the results of Holland, Walser and Cooper [59, 63] (see Section 2.4.4). Our

theory will show that this separation of time scales – theoretically found by Levich et al., Walser

et al., and experimentally confirmed by Miesner et al. [64] – enables and justifies the derivation

of a Markov quantum master equation. The second step comprises the experimentally observable

condensate formation process, where average macroscopic occupation of the ground state mode

occurs within a time scale τ0, which is much longer than the time scale of two body collisions, τcol.

Kagan, Svistunov and Shlyapnikov cannot give a number for the time scale τ0, however providing

a qualitative understanding of BoseEinstein condensation. In contrast to τ0, the time scale τcol ∼
50− 100 ms can be theoretically estimated for a thermal gas (see Chapter 3). A direct monitoring

of the full quantum distribution during the second stage of BoseEinstein condensation in realtime

is displayed in Chapter 6.

2.4.4 Kinetic evolution obtained from Holland, Williams and Cooper

In an early work of Holland, Williams and Cooper [59], the kinetics of condensation formation are

studied in a harmonic trap using a simulation procedure of the QBE within the ergodic assumption.

Therein, the authors find the characteristic dynamical behavior of exponential condensate growth,

f0(t) = f0(∞)
[

1− e−t/τ0
]

, (2.20)

where f0(∞) is the equilibrium condensate occupation (which depends on specific parameters such

as temperature, trap frequencies, etc.), and τ0 ∼ 1 . . .4 s, the characteristic time scale of condensate

formation, being extracted from the condensate growth curves obtained from the exact numerical

propagation of the QBE. The times scales are in agreement with our results in Chapters 6, and

Eq. (2.20) qualitatively resembles the condensate growth Eq. (6.6) for the average condensate

5The slope of the linear growth is time dependent and tends to zero while reaching the equilibrium state.
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population as predicted by our master equation theory of BoseEinstein condensation.

The exact numerical propagation of Eq. (2.17) is possible to be carried out for small particle

numbers of the order of N = 102−103, entailing the dynamics of the expectation value of the average

condensate occupation, f0(t). As evident from Eq. (2.17), the full quantum state of the Bose gas

cannot be reproduced from the QBE. The equilibrium occupations of noncondensate single particle

modes f~k(∞) are found [59] to be in accordance with BoseEinstein statistics (including the discrete

nature of single particle levels (see Chapter 1)), and hence with the results of our quantum master

equation theory (see Chapter 8). Again, the important implication of the QBE for our quantum

master equation of BoseEinstein condensation is the separation of time scales between the thermal

equilibration in the gas from the condensate formation time. The time scale for equilibration in the

noncondensate, i.e. the highenergetic part of the gas, is [59, 63, 65] of the order of the average

time scale for two body collisions, τcol ∼ 50−100 ms, whereas condensation formation is predicted

to last a few seconds.

2.4.5 Stoof’s contribution

Stoof [66, 67] adopts the distinct stages of condensation formation in a Keldysh formalism for the

condensate mean field. The central result of this theory is that the initial condensate population

(nucleation) is due to particle transport from energetically low lying states towards the condensate

mode, within a time scale τcol, the relevant time scale for the first equilibration stage of condensation

– as in the theory of Kagan, Svistunov and Shlyapnikov (see Section 2.4.3). In addition [68], Stoof

presented a FokkerPlanck equation for the distribution function of the condensate mean field, which

could highlight the coherent nature of bosonic particles. A numerical solution of this complicated

equation, however, has not yet been published (to the best of our present knowledge). Stoof’s

main assertion concerning the (nonequilibrium) dynamics of the gas is thus that population of the

condensate mode occurs at the expense of the energetically lowlying states, a fact that agrees with

the condensate formation rates of the present thesis (see Chapters 6, 7). The main contribution to

condensate feeding therein is due to the overlap of weakly excited single particle states with the

condensate wave function after the initiation of the condensate formation process.

2.4.6 Quantum kinetic theory

Quantum kinetic theory (QKT) [17, 18, 69, 70, 71, 72, 73, 74, 75, 76] is the closest nonequilibrium

approach to our quantum master equation theory. The results of quantum kinetic theory are
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summarized for threedimensional, trapped Bose gases [17, 18], being close to experimental setups

and to the case typically considered numerically in Chapters 6 and 8 of this thesis. We point out

important conceptual improvements of our theory.

In QKT, single particle states of the Bose gas are devided into a condensate band, R0, and a non

condensate band, R⊥ (we adopt our nomenclature 0 and ⊥ for condensate and noncondensate,

respectively), the first containing all single particle states of which the spectrum is significantly

shifted (with respect to the unperturbed one) by the presence of a large average condensate

fraction, and the latter consist of all states, where this shift can be neglected. Since the temperature

in the experiment is sufficiently large, implying a large noncondensate particle number, the state

of the noncondensate is approximated by an undepleted thermal mixture,

ρ̂⊥(T) =Z
−1exp

[

−β
(

Ĥ⊥ −µ⊥N⊥
)]

, (2.21)

where Ĥ⊥ is the Hamiltonian of the noncondensate, acting on number states associated with

R⊥ only, N⊥ is the (constant) equilibrium particle population in R⊥, µ⊥ is the time independent

(assuming no depletion of the noncondensate) chemical potential of the noncondensate, and

β = (kBT)−1 is the inverse temperature (of the bath and the locally thermalized noncondensate part

of the gas). Hence, the Bose gas in QKT represents an open system, meaning that particles are

exchanged with an external reservoir (because N⊥ is fixed and N0 grows), and detailed balance

particle flow at equilibrium is particularly reached with the (virtual) external, particle reservoir.

In contrast, we assume the particle number to be conserved and respect the depletion of the

noncondensate during condensate formation (serving as a finite size thermal environment).

Within QKT, the total state σ̂(t) of the Bose gas is supposed to be a product state of the reduced

condensate density matrix, ρ̂0(t) = Tr⊥σ̂(t), and the time independent thermal state ρ̂⊥(T) describing

the noncondensate, i.e.

σ̂(t) = ρ̂0(t)⊗ ρ̂⊥(T) , (2.22)

even in the presence of particle exchange between condensate and noncondensate. As we will

see in Chapter 5, this is in general not true for a closed gas containing a finite particle number.

The derivation of the master equation for various different two body interaction terms follows

the standard quantum optical procedure [58, 77]. Two body interactions are distinguished by
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interactions terms which lead to transport of particles between the bands R0 and R⊥, and those,

which leave the occupations in R0 and R⊥ unchanged.

For sufficiently low temperatures and large condensate occupation [17, 18], the condensate

band reduces to only one single particle mode,Ψ0(~r). The bosonic field operator Ψ̂(~r) hence splits

into a condensate part, Ψ̂0(~r), which is (to accuracy 1/N) determined by the timeindependent

solution of the GrossPitaesvkii equation with N particles occupying the single particle ground state

mode Ψ0(~r) (see Eq. (2.15) of Chapter 3) and by the noncondensate field Ψ̂⊥(~r), expanded in the

momentum basis, which spans the single particle subspace orthogonal to the condensate mode.

As mentioned before, the noncondensate is treated as an undepleted thermal mixture of non

condensate particles, see Eqs. (2.21, 2.22), with a linearized noncondensate Hamiltonian using a

Bogoliubov transformation [17, 18]. An equation for condensate growth is obtained by evaluating

the different terms for two body interaction processes (see also Chapter 4), and by neglecting terms

which act within R0 and R⊥ only, as well as terms which account for pair processes, i.e., processes

which create and annihilate two condensate particles simultaneously. Those processes are found

to change the condensate dynamics only slightly, confirmed in Chapter 7 of this thesis, showing

that they occur as offresonant (not energy conserving) in the dynamical evolution of the gas.

All together, this leads to the following equation for the diagonal elements p(N0, t) = 〈N0|ρ̂0(t)|N0〉
of the reduced condensate density matrix [17, 18]:

∂p(N0, t)

∂t
= 2N0λ

+(N0 − 1,T)− 2(N0+ 1)λ+(N0,T)p(N0, t)

+ 2(N0 + 1)λ−(N0 + 1,T)p(N0+ 1)− 2N0λ
−(N0,T)p(N0, t) .

(2.23)

The essential physics of BoseEinstein condensation lies in the condensate feeding and loss rates,

λ+(N0,T) and λ−(N0,T). Within quantum kinetic theory, they are given by

λ±(N0,T) =
~

2a2

2m2π3

∫

d~r

∫ ∫ ∫ ∫

d~k d~l d~m d~nF ±(~r,~l, ~m,~n)δ(∆ω(~r)−ω)δ(~k+~l−~m−~n) , (2.24)

where

F +(~r,~k,~l, ~m,~n) = f~l(~r) f~m(~r)[1+ f~n(~r)]
1

(2π)3

∫

d~v Ψ0(~r+
~v

2
)Ψ0(~r− ~v

2
)ei~k·~v , (2.25)
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for feeding processes, and

F −(~r,~k,~l, ~m,~n) = [ f~l(~r)+ 1][ f~m(~r)+ 1] f~n(~r)
1

(2π)3

∫

d~v Ψ⋆0 (~r+
~v

2
)Ψ0(~r− ~v

2
)e−i~k·~v , (2.26)

for losses of condensate particles. Here, f~k(~r) are occupation numbers of noncondensate particles

with momentum ~k at position ~r, Ψ0(~r) is the condensate wave function, ω = ω~k(~r) = ~~k
2
/2m +

Vext(~r)/~, given the external confinement of the threedimensional harmonic trapping potential,

Vext(~r) = m/2(ωxx2
+ωyy2

+ ωzz2). ∆ω(~r) = ω~l(~r) + ω~m(~r) −ω~n(~r) is the energy difference of a

particular two body collision process, respectively, and the δ symbol is a Kronecker delta, which

doesn’t account for the finite spatial coherence time of the interacting particles. As the non

condensate is described as an undepleted thermal mixture at temperature T, the average non

condensate particle number occupations f~k(~r) are given by

f~k(~r,~k) =
1

eβ[~ω(~r,~k)−µ⊥] − 1
, (2.27)

depending on the coordinate ~r and the momentum ~k. It is evident from the explicit expressions of

the transition rates in Eq. (2.24) that evolution Eq. (2.23) is highly complex to solve numerically,

because of the extensive momentum and spatial integrals, leading to an exponential growth of the

internal degrees of freedom. Hence, the master Eq. (2.23) was not solved in a numerically exact

way [17, 18]. Within our theory, we find the formally equivalent equation (6.3), the master equation

of BoseEinstein condensation, which is numerically accessible – due to the choice of our single

particle basis and a perturbation theory for single particle wave functions in the small parameter

a̺1/3≪ 1 (see Chapters 7 and 6).

To obtain condensate formation rates approximately, it is firstly assumed in QKT that the ground

state condensate wave function Ψ0(~r) is sharply peaked at the center of the trap (an assumption

which becomes accurate, if the interactions are weak and the temperature is low), so that the

spatial dependence of the occupation numbers f (~r,~k) are ignored and replaced by the value f (0,~k)

at the center of the trap. The latter are approximated/replaced by the MaxwellBoltzmann form

f (0,~k)→ f (~k) ≈ e−β(~ω(~k)−µ⊥), being assumed to be negligible as compared to unity, f (~k)+1 ≃ 1 (an

approximation which looses its validity in the highly quantum degenerate limit of low temperatures).

The condensate feeding rate is finally evaluated [17, 18] to be
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λ+(N0,T) ≈ 4ma2

π~3β2
e2βµ⊥ [

βµ0(N0)K1
(

βµ0(N0)
)]

, (2.28)

where K1 is a Bessel function [40]. The loss rate is acquired from a balance condition [17, 18],

λ+(N0,T) = eβ(µ⊥−µ0(N0))λ−(N0,T) . (2.29)

To obtain the feeding rate in Eq. (2.28), the condensate wave function and the corresponding

chemical potential is obtained by neglecting the Laplacian term of the GrossPitaevskii equation [16],

see Eq. (2.15), with respect to the interaction energy, called “ThomasFermi approximation”, valid

for strongly interacting gases. From our point of view, this varies with the second order Born

approximation needed to derive the master equation [17, 18, 77] and to the previous assumptions

for approximating Ψ0(~r) ≃Ψ0(0).

In contrast, the quantum master equation of this thesis employs the diluteness of BoseEinstein

condensates to derive the time scales for condensate formation neglecting terms of the order

a̺1/3 ≪ 1 (see Chapter 6) in accordance with the second order iteration of the quantum master

equation. Notably, the condensate feeding and loss rates of QKT are independent of the total

number of particles in the system, and the noncondensate chemical potential is constant. One of

the purposes of this thesis is to show that the essential dynamics of BoseEinstein condensation is

due to the change of this chemical potential accounting for the dynamics of the noncondensate

environment. The arising noncondensate number fluctuations in number representation are deeply

related to the spatial quantum coherence of the gas particles. The circumvention of the above

approximations for the transition rates is hence conceptually important, and finally leads to a

direct monitoring of the full condensate and noncondensate quantum distribution functions during

condensate formation, spelling out the interplay of spatial quantum coherences and quantum

number fluctuations (see Chapters 78).

The eigenvalue of the GrossPitaevskii equation µ0(N0) in QKT is evaluated within the Thomas

Fermi approximation, given [16] by

µ0(N0) =
(

15aωxωyωzm1/2
~

2/25/2N0

)2/5
. (2.30)

As the Bessel function K1 is close to unity [17, 18] in Eq. (2.28), the rates are approximately
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independent (or only slightly dependent) on the condensate particle number (which is assumed to

be of the order of the total particle number N).

To study condensate formation within QKT in a quantitative manner, a “simple growth equation”

was derived from the master Eq. (2.23) under the neglect of particle number fluctuations, i.e. the

finite width of the condensate number distribution p(N0, t) [17, 18, 19], leading to

∂N0(t)

∂t
= 2λ+(N0,T)

[(

1− eβ(µ0(N0)−µ⊥)
)

N0(t)+ 1
]

, (2.31)

with the condensate feeding rate λ+(N0,T) in Eq. (2.28). This equation was simulated to study

condensate growth [17, 73], typically leading to a Sshaped condensate growth curve, as shown in

Fig. 6.3, complying with approximately the same final saturation behavior as the exponential law

in Eq. (2.20). The relation of the growth Eq. (6.6) arising from the master equation to the growth

Eq. (2.31) is discussed in detail in Chapter 6.

Since the gas is not closed and the state is assumed to factorize, QKT can evidently not yield an

equilibrium steady state of a closed gas of exactly N number of particles.

Survey: Which current aspects can we adopt to monitor the many

body dynamics during BoseEinstein condensation?

In essence, we can learn from, and keep the following aspects from the short introduction in the

previous two chapters:

(i) Fundamental aspects: BoseEinstein condensation occurs, if the thermal de Broglie wave

length of the bosonic atoms is larger than their mean average distance. In this quantum degenerate

regime, particles have to be treated as indistinguishable (see Section 1.3), in order to observe

BoseEinstein condensation.

(ii) Statistical aspects: The grand canonical and the canonical ensemble are no longer equivalent

below the critical temperature, even in the thermodynamic limit (see Section 1.5). Comparison

of predictions for condensate number expectation values and variances indicate that the most

reasonable statistical predictions are governed by the equilibrium (thermal) state of the canonical

ensemble – i.e., assuming a fixed total particle number in the gas. We will hence consider a

conserved total number of particles in the Bose gas for the derivation of the quantum master
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equation.

(iii) Condensate mode: We use the GrossPitaesvkii equation to define a condensate mode

(see Section 2.3). We will see in Part II of this thesis that the terms in the GrossPitaevskii equation

proportional to g enter the many body dynamics of dilute atomic gases only with negligible terms

of the order a̺1/3≪ 1. An important implication from stateofthe art experiments on BoseEinstein

condensation (see Section 1.4) is the existence of this naturally small parameter, a̺1/3, in most of the

available BoseEinstein condensates. This parameter can be used to expand the condensate wave

function perturbatively, leading to a numerically efficient and quantitatively accurate monitoring of

BoseEinstein condensation (in Part III).

(iv) Separation of time scales: Concerning theories for average condensate growth (see Sec

tion 2.4), we use the clear separation of the time scale for rapid noncondensate thermalization

from the time scale for condensate formation. This is the fundamental background for a quantum

master equation ansatz for the condensate part which undergoes its time evolution in the presence

of the noncondensate environment. As already mentioned, the separation of time scales has also

been confirmed experimentally (see Section 2.4.3).

(v) Condensate formation: An evolution equation for condensate growth is meant to predict

a typical Sshape behavior and condensate formation times of the order of a few seconds (see

Section 2.4). In order to monitor the full quantum distributions of the Bose gas and to deduce

reliable predictions for condensate formation times, we have to well include the wave nature of the

particles, i.e. the spatial variations of the single particle wave functions, as well as the finite spatial

phase coherence time between the interacting particles (leading to a finite energy uncertainty).
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Part II

QUANTUM MASTER EQUATION OF

BOSEEINSTEIN CONDENSATION
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Reality is what we can calculate. An experimentalist would probably replace the word

“calculate”, by “measure”.

David Gross, Nobel Lecture December 8, 2004



56



Chapter 3

Concepts, basic assumptions and

validity range

This chapter briefly summarizes the novel conceptual parts of the quantum master equation theory

of BoseEinstein condensation developed throughout Chapters 48.

The separation of time scales between condensate formation and noncondensate thermalization

in dilute atomic gases is discussed in Section 3.1, enabling the derivation of a Markov quantum mas

ter equation for the reduced condensate state in the presence of the noncondensate environment.

In Section 3.2, we collect considerations on two body interactions, particle number conservation,

rapid noncondensate thermalization and the depletion of the noncondensate thermal environ

ment during condensate formation, required in order to conceptually improve the existing theories

of condensate growth summarized in Section 2.4. The Nbody BornMarkov ansatz for a dilute

BoseEinstein condensate motivated by the separation of time scales is explained in Section 3.3.

The validity range of the master equation theory of BoseEinstein condensation is justified for

the case of sufficiently dilute atomic gases, a̺1/3≪ 1, as argued in Section 3.4.

3.1 Motivation for master equation: Separation of time scales

The fundamental property behind the derivation of the master equation is the separation of time

scales between noncondensate thermalization and condensate formation. A sketch of the physical

situation to be modeled is displayed in Fig. 3.1: As the Bose gas is cooled below the critical point

with an evaporative cooling cycle, a condensate appears at the center of the trap, arising from the

residual gas of noncondensate particles [78].

57
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Figure 3.1: Evaporative cooling cycles to achieve BoseEinstein condensation [78]. The noncondensate, corre
sponding to the lowintensity fraction (green area – distributed around the center of the atomic cloud), surrounds
and interacts with the condensate, which is shown as the highintensity part (yellowred area – center of the atomic
cloud) of the backscattered light. Our goal is to model one evaporative cooling step (three different steps are dis
played in sequences from left to right in the figure), where the gas forms a BoseEinstein condensate due to atomic
collisions [60, 64] within a typical formation time of τ0 ∼ 1000− 4000 ms [64, 76].

Considering one such evaporative cooling step (one sequence in Fig. 3.1), the typical time scale

of condensate formation is given by τ0 ∼ 1000−4000 ms [17, 18, 59, 64, 76]. On the other hand, one

observes that equilibration within the gas of noncondensate particles occurs on a much time scale,

τcol ≈ 10− 100 ms [47, 51, 59, 64] (see also Appendix A.5). Thus, there exists a clear separation of

the time scale for condensate formation from the equilibration time within the noncondensate,

τcol≪ τ0 . (3.1)

Conceptually, this physical separation of time scales allows us to trace out the noncondensate, and

thereby to derive a master equation for the reduced condensate density matrix. More specifically,

the separation of time scales is expressed in two different formal assumptions required for the

derivation of the master equation: (i) we describe the noncondensate as a diagonal thermal state

for each given number occupation of the condensate and noncondensate subsystem employing

particle number conservation (Nbody Born ansatz, see Section 3.3.2), and (ii) we suppose that

spatial phase coherences between the condensate and the noncondensate particles decay rapidly

within the time scale τcol (Markov assumption in a BoseEinstein condensate, see Section 3.3.3)

faster than the finite time resolution ∆t (coarsegrained rate of variation [20]) – yielding the Born
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Markov ansatz for a BoseEinstein condensate of N particles. This “Nbody BornMarkov ansatz”

is discussed in more detail in Section 3.3 leading to a closed, time local quantum master equation

of Lindblad type for the reduced condensate density matrix.

Since the time scale τ0 for the overall process of interest – BoseEinstein condensation – is much

larger than ∆t, a coarsegrained description for the time evolution is appropriate to describe also

the instantaneous rate of condensate formation with a quantum master equation.

In the following, the most important concepts to describe the many particle dynamics in the

gas are summarized, before the Nbody BornMarkov ansatz for a BoseEinstein condensate is

explained and justified.

3.2 Modeling of many particle dynamics

In this section, we summarize the strategy for modeling the Nbody dynamics during BoseEinstein

condensation. For technical details, consult chapters 48.

3.2.1 Two body interactions in dilute gases

In sufficiently dilute atomic gases, it is justified to account only for two body interaction pro

cesses [79] in the Bose gas. This amounts to replace the exact interaction potential Vint(~r1, . . . ,~rN)

by the contact potential V(~ri −~r j) = gδ(~ri −~r j) introduced in Section 2.1,

Vint(~r1, . . . ,~rN)→ 1

2

∑

i, j

V(~ri −~r j)+O(V(3)) . (3.2)

All two body interactions are described by one effective interaction strength, g = 4π~2a/m,

given [16] in terms of the swave scattering length a:

V(~ri −~r j) =
4π~2a

m
δ(~ri −~r j) . (3.3)

Using the formalism of second quantization, the Nbody Hamiltonian is given by

Ĥ =
∫

C

d~r Ψ̂†(~r)















−~
2~∇

2

2m
+Vext(~r)















Ψ̂(~r)+
g

2

∫

C

d~r Ψ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r) , (3.4)
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where Ψ̂(~r) denotes the second quantized bosonic field, and C ⊂ R
3 the volume of the trap (see

Section 2.2). Higher order corrections to the swave scattering approximation are negligibly small,

if the gas is dilute, a̺1/3≪ 1 (see Section 2.1).

3.2.2 Condensate and noncondensate subsystems

Motivated by the separation of time scales (see Section 3.1), we split the Nparticle Bose gas into

a condensate and a noncondensate subsystem. For this purpose, the second quantized field is

decomposed into

Ψ̂(~r) =Ψ0(~r)â0 + Ψ̂⊥(~r) . (3.5)

Here, Ψ0(~r) denotes the condensate wave function, which we quantify by the GrossPitaevskii

equation (see Eq. (2.16) of Chapter 2.3). The operator â0 annihilates a particle in the condensate

mode. On the other hand, Ψ̂⊥(~r) =
∑

k,0Ψk(~r)âk denotes the noncondensate field operator, with

annihilation operators âk of the single particle modes Ψk(~r), which are by definition orthogonal to

the condensate mode Ψ0(~r) (see Section 3.2.3 and Chapter 4).

Corresponding to the splitting of the second quantized field in Eq. (3.5), the Hamiltonian in

Eq. (3.4), including two body interactions, falls into

Ĥ = Ĥ0 + Ĥ⊥ + V̂0⊥ , (3.6)

where Ĥ0 and Ĥ⊥ denote the condensate and the noncondensate Hamiltonian1, respectively,

and V̂0⊥ the various two body interaction processes between condensate and noncondensate.

The latter can be classified as single particle events (∆N0 = −∆N⊥ = ±1, labeled by  ), pair

events (∆N0 = −∆N⊥ = ±2, labeled by!) and scattering events (∆N0 = ∆N⊥ = 0, labeled by �),

according to the net exchange of condensate particles ∆N0 per two body interaction process.

3.2.3 Thermalization in the noncondensate

To model the thermalization process arising from selfinteractions in the noncondensate during

condensate formation, we introduce the following approximation: we replace the noncondensate

1The Hamiltonian parts Ĥ0 and Ĥ⊥ are time independent.
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condensate

non-condensate

HEAT

Figure 3.2: Representation of microsopic many particle dynamics. The total number of atoms in the Bose gas is
fixed to N and conserved during condensate formation. Atomic collisions within the noncondensate are modeled
by coupling the noncondensate part of the gas to a heat reservoir, which has a fixed temperature T. The condensate
part is initially not in detailed particle balance with the noncondensed fraction, and both systems undergo a net
exchange of particles, induced by atomic two body collisions between condensate and noncondensate atoms, which
are fully taken into account in the derivation of the master equation. Finally, an equilibrium steady state of the gas is
reached corresponding to the appearance of the condensate after one evaporative step in Fig. 3.1 below Tc, exhibiting
detailed balance particle flow between condensate and noncondensate.

Hamiltonian Ĥ⊥ by its linearized version, and account for thermalization within the noncondensate

by coupling the noncondensate to an external heat reservoir of fixed temperature T. Thereby, we

arrive at the picture given in Fig. 3.2, demonstrating the modeling of the microscopic many particle

dynamics and the subdivision of the Bose gas into the subsystems condensate and noncondensate.

It is important to note that only energy, but no particles are exchanged with the thermal

environment, since any two body interaction event in the Bose gas leaves the total particle number

invariant. Hence, the particle number N of the Bose gas remains conserved (after the completion

of the evaporative shock cooling cycle) throughout the whole condensation process.

Furthermore, we note that only the noncondensate but not the condensate subsystem is directly

coupled to the environment (because of the separation of time scales), see Fig. 3.2. Thus, the

condensate subsystem is only coupled to the noncondensate via the interaction Hamiltonian V̂0⊥

– even in the limit of very weak interactions, a→ 0+, i.e. the steady state depend on V̂0⊥. In

contrast, the standard thermodynamical approach in the canonical ensemble (compare Section 1.5)

assumes the coupling of the whole system (condensate and noncondensate) to the thermal heat

bath, see Fig. 1.4. The corresponding thermal equilibrium state is independent of V̂0⊥ in the limit

a→ 0+, where it reduces to the thermal equilibrium state of an ideal gas. These considerations

indicate that there is, apriori, no guaranty that, according to the model shown in Fig. 3.2, the Bose
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gas approaches finally a thermal equilibrium state. We therefore compare the steady state of the

quantum master equation to the canonical Boltzmann thermal state of an ideal quantum gas in

Eq. (1.23) (see Chapter 8), showing that this steady state is a thermal Boltzmann state under the

Markov dynamics assumption (which applies, if the interacting particles exhibit a finite spatial phase

coherence time, ~τ−1
col
β≪ 1).

3.3 Nbody BornMarkov ansatz

Here, we explain the BornMarkov ansatz for a BoseEinstein condensate of exactly N particles

under the inclusion of two body interactions, arising from the coupling of the noncondensate to a

thermal bath (see chapter 3.2.3) and the separation of time scales discussed in Section 3.1.

3.3.1 General BornMarkov ansatz

The basic, general assumption for the derivation of a quantum Markov master equation [19] is the

neglect of memory effects of the system’s past onto its present time evolution, due to the rapid

decay of memory effects in the external environment. In other words, the total state of the system

plus environment at any time t is considered to be approximately characterized in terms of the

reduced state of the system at the same time t, independent on its previous history.

Typically, one therefore assumes initially a product state between system and environment, the

latter being in (local) thermal equilibrium, ρ̂(0) = ρ̂S(0)⊗ ρ̂E(T). Furthermore, the environment is

supposed to remain in the same thermal state also during the subsequent time evolution, i.e., the

total state is ρ̂(t) = ρ̂S(t)⊗ρ̂E(T)+δρ̂(t) with negligible deviation δρ̂(t) from a product state of system

and environment.

In the present case of the condensate as a system and the noncondensate as an environment

part, however, the total N−body state σ̂(N)(t) of the gas is actually not a product state between a

condensate and noncondensate density matrix,

σ̂(N)(t) , ρ̂S(t)⊗ ρ̂E(T) . (3.7)

This is due to correlations originating from particle number conservation: obviously, if there are

N0 populating the condensate mode, this determines the number of noncondensate particles as

(N −N0). However, it turns out that this is not excluding the derivation of a Markov quantum
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master equation, as long as the total state σ̂(N)(t) is completely determined by the reduced state of

the condensate, ρ̂0(t) = Tr⊥σ̂(N)(t), such as in Eq. (3.8).

3.3.2 Born ansatz for gases of fixed particle number

For this purpose, the constraint of particle number conservation has to be employed when ap

proximating the noncondensate by a thermal state. Indeed, since the particle exchange with the

environment is not allowed, thermal equilibration can only occur within subspaces of fixed parti

cle number. Assuming, in addition, that any coherences between subspaces of different particle

number are destroyed by the thermalization process leads us to the following ansatz for the total

Nbody state of the gas:

σ̂(N)(t) ≃
N
∑

N0=0

pN(N0, t)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T) , (3.8)

where |N0〉〈N0| denotes a state of N0 particles populating the condensate mode Ψ0(~r) (see Sec

tion 3.2.2), weighted with the positive probability distribution pN(N0, t). The states ρ̂⊥(N −N0,T)

in Eq. (3.8) represent thermal mixtures of (N−N0) noncondensate particles,

ρ̂⊥(N−N0,T) = Q̂N−N0

e−βĤ⊥

Z (N−N0)
Q̂N−N0

, (3.9)

leading to noncondensate single particle occupations (see Appendix A.3):

fk(N−N0,T) ≡ Tr⊥{â†k âkρ̂⊥(N−N0,T)} = 1

eβ(ǫk−µ⊥(N−N0,T)) − 1
. (3.10)

The temporal change of single particle occupations while reaching the Bose condensed phase can

thus be described in terms of the function µ⊥(N−N0,T), which normalizes noncondensate single

particle occupations to (N −N0) particles, given that N0 particles populate the condensate mode.

Due to particle number conservation, µ⊥(N−N0,T) obeys the closed equation:

∑

k,0

1

eβ(ǫk−µ⊥(N−N0,T)) − 1
= (N−N0) . (3.11)

The Nbody Born ansatz in Eq. (3.8) furthermore allows us to express the entire state of the Bose
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gas as a function of the reduced condensate state defined by the condensate number distribution

pN(N0, t), thereby enabling the derivation of a closed evolution equation for the latter under the

inclusion of all two body interaction processes between the condensate and the noncondensate

particles. This equation, however, may still contain memory effects. In order to get a time local

Markov quantum master equation of Lindblad type, the rapid decay of spatial phase coherences

(Markov assumption) has to be adopted.

3.3.3 Markov approximation for a BoseEinstein condensate

Any collision event of two particles in a quantum gas produces spatial phase coherences (coherent

coupling of single particle wave functions in position space) between them. The thermalization

process of the noncondensate environment erases these coherences, thus providing the rapid decay

of correlations between system and environment required for the Markov dynamics assumption in

a BoseEinstein condensate. The corresponding decay rate can be estimated [47, 51, 59, 64] to be

τcol = (̺a2v)−1 ∼ ms, with v =
√

3kBT/m ∼ cm/s (see also Section 2.4 for a detailed discussion),

and implemented in our theory by assuming an irreversible Gaussian decay of the noncondensate

correlation functions within the time scale τcol.

Microscopically, this decay process can be understood as due to the fact that a noncondensate

particle with which a condensate particle obeys phase coherence has a higher probability to collide

(randomly) with many other noncondensate particles than subsequently colliding with a condensate

particle again. Hence, spatial phase coherences between condensate and noncondensate particles

are rapidly destroyed by noncondensate thermalization.

3.4 Limiting cases and validity range

Now, the dilute gas limit, the perturbative limit of very weakly interacting gases and the thermody

namic limit are differentiated and discussed [10].

3.4.1 Dilute gas condition

The dilute gas condition is defined by the requirement that the gas parameter a̺1/3 ≪ 1, where

̺ is the atomic density and a is the swave scattering length. As a matter of fact, this condition

theoretically arises from the Born approximation and therefore from the use of an swave scattering

length a (see Section 2.1) to describe two body interactions. This reduces the validity range of the
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master equation theory to

ξ = a̺1/3≪ 1 . (3.12)

Since the condition a̺1/3 ≪ 1 implies a3̺≪ 1 (but not vice versa), it justifies as well the neglect

of three body and higher order atomic collisions [59]. Hence, ξ is considered to be the small

parameter of our theory, which is indeed the case for many experiments treating dilute atomic

gases where typically ξ ∼ 10−2 [15, 23, 24, 32, 64] (see Section 1.4).

3.4.2 Perturbative limit

For numerical simplicity, quantitative numerical calculations throughout the thesis are restricted to

the weakly interacting case, formally indicated by the limit ξ→ 0+ with ̺ = const and a , 0. Within

this limit, a perturbation theory for single particle wave functions shows that the transition rates

between condensate and noncondensate to the lowest nonvanishing order are still proportional

to a2, however being fully quantified by the Schrödinger equation (see Chapter 7).

The perturbative limit yields equilibrium distributions for weakly interacting gases given by the

ratio of the leading order terms for two body transition rates. However, these do still contain the

specific nonlinearity of two body collisions which lead to condensate formation, in contrast to a

thermal state of an ideal gas. The steady state distributions of the master equation are therefore

compared to the thermodynamic prediction of the canonical ensemble (in Section 1.5.2) for non

interacting gases.

3.4.3 Thermodynamic limit

It is important to distinguish the dilute gas limit from the thermodynamic limit [10], which is

specified by the condition that

N→∞ with Tc = const , (3.13)

being in general different from the dilute gas limit in Eq. (3.12). The thermodynamic limit accounts

for the asymptotic of large particle numbers and large traps at constant density, independent of the

actual value of the interaction strength g and the atomic density ̺. In contrast, the dilute gas and
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the perturbative limit employ that the effective interaction range of the particles is much smaller

than the average distance between them.

3.4.4 Semiclassical limit

The semiclassical limit assumes the single particle spectrum to be quasi continuous (see chapter 1),

replacing the sums over states by an integral to calculate thermodynamic properties (such as the

noncondensate number occupation), smearing out the details (in particular the degeneracy of

single particle states) of the single particle spectrum. This limit results in a (positive) shift of the

critical temperature for BoseEinstein condensation with respect to the prediction for Tc including

the discreteness of the single particle energies (see Chapters 1 and 8). We will see in Chapter 8

that the shift of the critical temperature does not originate from the neglect of the single particle

ground state energy (zeropoint motion [15]), but is a result of the quasi continuum approximation.

3.4.5 Physical realization of limiting cases

The semiclassical and the thermodynamic limits are difficult to realize exactly [15, 80], being likely

to reflect the physics of bosonic gases with particle numbers of the order of Avogadro’s number,

N ∼ 1023, a fact that motivates the development of quantitatively accurate theories for mesoscopic

quantum gases.

The situation is different for the perturbative and the dilute gas limit valid in particular for small

atomic gases, which are used throughout the thesis: For a threedimensional (isotropic) harmonic

trap, the formal perturbative limit, ξ→ 0+ with ̺ = const. and a , 0, is well realized, if the single

particle energy (~ω) exceeds the condensate interaction energy (gN0/L3), with L =
√
~/mω as the

unit length of the harmonic oscillator (see Section 1.5). In this case, a/LN0≪ 1 is a leading condition

for the applicability of perturbative transition rates, being realized with small atomic samples of the

order of a few hundred of atoms (or using Feshbach resonances to reduce the atomic interaction

strength [15]). Quantitative predictions of the perturbative limit may as well apply in the dilute gas

regime as indicated by the comparisons to experimental condensate formation times in Chapter 6.

This statement, however, cannot be proven analytically.

The dilute gas limit – the validity range of the master equation theory of BoseEinstein condensa

tion – is satisfied in most experiments with currently available alkali species [15] (see Section 1.4).

A leading condition for its applicability is therefore a̺1/3≪ 1.



Chapter 4

Quantized fields, two body

interactions and Hilbert space

The physical separation of time scales between noncondensate thermalization and condensate

growth (see Section 3.3.1) motivates a formal decomposition of the gas into a condensate “system”

part and a noncondensate “environment” part.

In this chapter, we establish the algebraic background for the derivation of the master equation.

To this end, the condensate mode is defined in Section 4.1. In Section 4.2, this definition is used to

separate the second quantized condensate field from the noncondensate field. Correspondingly,

the interaction term of the Nbody Hamiltonian in Eq. (3.4) yields formally nontrivial two body

interactions between condensate and noncondensate besides the Hamiltonian parts describing the

coherent time evolution in the master equation later on. Interactions in a BoseEinstein condensate

fall into three different physically motivated classes of two body vertices: single particle, pair and

scattering events. Finally, diagonalization of the Bose gas’ noncondensate Hamiltonian leads to a

single particle basis in Section 4.3, defining the underlying single particle Hilbert space as well as

the many particle FockHilbert space for a gas of N indistinguishable particles. Those are analyzed

in Section 4.4.

4.1 Definition of the condensate

For a gas of N interacting bosonic particles in an arbitrary external trapping potential, the condensate

and the noncondensed part can be defined [81] with the help of the single particle density matrix

of Eq. (1.28),

67
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ρ̂(1)(t) =NTr2,...,Nσ̂
(N)(t) , (4.1)

where σ̂(N)(t) is the exact Nbody state of the interacting system at time t, and ρ̂(1)(t) is normalized

to N. Taking the trace in Eq. (4.1) in coordinate space, like in Eq. (1.28), immediately shows that

ρ̂(1)(t) is hermitian [2, 48, 49] and hence diagonalizable. The eigenvectors {|Φk〉,k ∈ N} of ρ̂(1)(t)

yield an orthonormal basis for one particle in the interacting system,

ρ̂(1)(t)|Φk(t)〉 = fk(t)|Φk(t)〉 . (4.2)

The eigenvalues of Eq. (4.2) denote average occupation numbers fk(t) of the single particle states

{|Φk〉} in the gas of N interacting atoms.

In order to determine a condensate mode, we consider macroscopic occupation of only one

mode in the long time limit t→∞:

〈N0〉(∞) = sup
{

fk(∞),k ∈ N} ∼O(N) , (4.3)

meaning that σ0(∞) ≡ 〈N0〉(∞)/N = const. in the thermodynamic limit, whereas all other modes

remain weakly occupied, fk(∞) ∼ O(1), for k , 0. BoseEinstein condensation is now supposed to

occur into the single particle mode |Φ0〉 ≡ |Φ0(∞)〉.
The replacement of the time dependent condensate mode by the equilibrium one becomes

quantitatively accurate in either one of the following cases: For weak interactions ξ≪ 1, where the

condensate state is approximately the ground state of the external trapping potential |Φ0(t)〉 ≈ |χ0〉
at all times, or, for initial states close to equilibrium, such that the condensate ket vector |Φ0〉 does

not significantly change in time.

In order to quantify the condensate mode, we adopt [48, 49, 82] that, for dilute atomic gases at

temperatures below Tc, |Φ0〉 is determined to terms O(N−1) by the GrossPitaevskii equation with

all N particles occupying the condensate mode:
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Ψ0(~r) = 0 , (4.4)
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For this reason, the approximate wave function |Ψ0〉 in Eq. (4.4) is employed from now on, instead

of the exact, but quantitatively unknown condensate mode |Φ0〉.

4.2 Interactions between condensate and noncondensate

In Section 4.1, we have defined the condensate mode |Ψ0〉 in an interacting Bose gas. Here, a

decomposition procedure for the full two body Hamiltonian in Eq. (3.4) is proposed, particularly

for the nonlinear interaction term. The latter separates into three different types of two body

interaction processes between condensate and noncondensate fields: single particle, pair and

scattering events, which will be taken into account in the quantum master equation.

4.2.1 Separation of the second quantized field

The total bosonic field Ψ̂ is expanded in the basis1 {|Ψk〉,k ∈ N0}, where |Ψ0〉 is the GrossPitaevskii

ket in Eq. (4.4), and {|Ψk〉,k ∈ N} an arbitrary orthonormal, complete basis in the subspace of

noncondensate particle wave functions. It thus separates into

Ψ̂ = |Ψ0〉â0 +

∑

k,0

|Ψk〉âk ≡ Ψ̂0 + Ψ̂⊥ . (4.5)

In Eq. (4.5), âk and â†
k

are creation and annihilation operators, respectively, which satisfy usual

bosonic commutation relations
[

âk, â
†
l

]

= δkl and [âk, âl] =
[

â†
k
, â†

l

]

= 0. The corresponding Fock

states on which these operators act are denoted by |N0, {Nk}〉; the interpretation of a many particle

Fock state is hence to find N0 particles in the condensate mode |Ψ0〉, and {Nk} = {N1,N2, . . .} in the

noncondensate single particle modes {|Ψ1〉, |Ψ2〉, . . .}.

4.2.2 Decomposition of the Hamiltonian

The following decomposition of the Hamiltonian only requires the validity of the GrossPitaevskii

equation for the condensate field, Ψ̂0(~r), and the orthogonality of the two fields Ψ̂†
0

and Ψ̂⊥,

meaning that

∫

C

d~r Ψ̂†0(~r)Ψ̂⊥(~r) = 0 . (4.6)

1The choice of the basis states {|Ψk〉,k ∈ N} is arbitrary at this point, despite that the basis states have to be chosen pairwise
orthogonal to |Ψ0〉. Later in Chapter 4.3, we will choose the basis states {|Ψk〉,k ∈ N} such that they diagonalize the linearized
noncondensate Hamiltonian.
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The Hamiltonian Ĥ in second quantization, including two body interactions, is given by Eq. (3.4).

The decomposition in Eq. (4.5) splits the Hamiltonian Ĥ into three basic contributions

Ĥ = Ĥ0 + Ĥ⊥ + V̂0⊥ , (4.7)

where Ĥ0 and Ĥ⊥ describe a pure condensate and noncondensate, respectively.

The condensate Hamiltonian Ĥ0 contains the single particle contribution linear in the field Ψ̂0,

as well as the nonlinear, selfinteracting two body interaction term, and is given by

Ĥ0 =

∫

C

d~r Ψ̂†0(~r)















−~
2~∇

2

2m
+Vext(~r)















Ψ̂0(~r)+
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∫

C

d~r Ψ̂†0(~r)Ψ̂†0(~r)Ψ̂0(~r)Ψ̂0(~r) . (4.8)

The Hamiltonian of the background gas Ĥ⊥ includes only noncondensate field modes:

Ĥ⊥ =
∫

C

d~r Ψ̂†⊥(~r)
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∫

C

d~r Ψ̂†⊥(~r)Ψ̂†⊥(~r)Ψ̂⊥(~r)Ψ̂⊥(~r) . (4.9)

The decomposition of the field in Eq. (4.5) furthermore induces different interaction terms between

condensate and noncondensate fields, as evident from the Hamiltonian in Eq. (3.4), which are

summarized by the term V̂0⊥. It includes all possible two body interaction processes which will

be separated and specified in the following section.

4.2.3 Two body interaction processes

The term V̂0⊥ includes all possible two body interactions which can naturally be decomposed

into three distinct kinds, according to the different net exchange of condensate particles, ∆N0, per

interaction process. We call these different interaction events single particle (∆N0 = −∆N⊥ = ±1,

labeled by X = ), pair (∆N0 = −∆N⊥ = ±2, labeled by X =!) and scattering (∆N0 = ∆N⊥ = 0,

labeled by X =�) processes. Moreover, we distinguish condensate feeding and loss processes,

corresponding to an effective annihilation (X), or creation (X⋆) of a condensate atom.

In the following, it will be verified that all two body interactions can be split and identified as

V̂⊥0 = V̂ + V̂! + V̂� . (4.10)
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Figure 4.1: Diagrammatic representation of all microscopic two body loss processes in Eq. (4.10). Upper two
diagrams represent single particle losses ( ), where one noncondensate particle is effectively created and one
condensate atom is annihilated. The collection of all first order terms in the noncondensed field, O(Ψ̂⊥) (upper
left diagrams), vanish in combination with crossed single particle terms, as a consequence of the GrossPitaevskii
Eq. (4.4) and the orthogonality condition in Eq. (4.6). Lower diagrams display pair losses (!, lower left) and
scattering processes (�, lower right). Conjugate processes (not shown), related to condensate feeding, are obtained
by exchanging the corresponding labels with respect to the diagram center.

The different interaction terms are illustrated by a diagrammatic representation of the Hamilto

nian’s matrix elements [20, 45], meaning that a diagram

X
C

A⋆

D

B⋆

≡ g

Z
ζAB

CDâ†Aâ†BâCâD (4.11)

refers to an interaction process in which two particles C and D populating the single particle modes

ΨC andΨD are annihilated, resulting in a creation of two particles, A and B, occupying subsequently
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the single particle modesΨA and ΨB. Each diagram is associated with a probability amplitude,

ζAB
CD =

∫

C

d~r Ψ⋆A(~r)Ψ⋆B (~r)ΨC(~r)ΨD(~r) , (4.12)

multiplied with the interaction strength g/Z, which gives the interaction energy of the different

two body vertices, where Z = 1 for single particle (X = ), Z = 2 for pair (X =!) and Z = 1/2

for scattering (X =�) processes. The factor Z is hence related to the multiple occurrences of

condensate and noncondensate fields in the interaction term V̂0⊥ in Eq. (4.10).

The different types of two body diagrams – only including loss events, whereas feeding processes

are formally obtained by exchanging the (time) arrows in the diagram – are depicted in Fig. 4.1:

The nonlinear part of first order diagrams (O(Ψ̂⊥), upper left in Fig. 4.1) cancel out with mixed,

single particle contributions between condensate and noncondensate fields in the Hamiltonian in

Eq. (3.4). This is a consequence of the orthogonality of the two fields Ψ̂†
0
(~r) and Ψ̂⊥(~r), and of the fact

thatΨ0(~r) is the solution of the GrossPitaevskii equation in Eq. (4.4). Indeed, combining the upper

left diagrams in Fig. 4.1 and their hermitian conjugates with mixed single particle contributions in

Eq. (3.4), entails the term

∫

C

d~r Ψ̂†⊥(~r)
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2m
+Vext(~r)+ Ψ̂†0(~r)Ψ̂0(~r)















Ψ̂0(~r)+h.c. ≃ µ0

∫

C

d~r Ψ̂†⊥(~r)Ψ̂0(~r)+h.c. = 0 , (4.13)

which vanishes for sufficiently weak interactions,2 because of Eqs. (4.4, 4.6).

All remaining diagrams contribute to interactions between condensate and noncondensate, and

are grouped into single particle (according to ∆N0 = ±1 and ∆N⊥ = ∓1  upper right diagram in

Fig. 4.1), pair (∆N0 = ±2 and ∆N⊥ = ∓2  lower left diagram in Fig. 4.1) and scattering (∆N0 = 0

and ∆N⊥ = 0  lower right diagram in Fig. 4.1) events.

Generally, a pair event (O(Ψ̂2
⊥), lower left diagram in Fig. 4.1) effectively creates (annihilates)

two condensate particles and annihilates (creates) two noncondensate particles. Pair loss events

(see bottom  left diagram) destroy two condensate and create two noncondensate particles by

selfinteraction in the condensate. Vice versa, a pair feeding event is an interaction of two non

condensed atoms, creating two condensate particles (bottom  right diagram). These processes can

2since in this case,Ψ0(~r) is still an approximate solution of the GrossPitaevskii equation (4.4) for arbitrary N0 with eigenvalue
µ0
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consequently be summarized by all diagrams of the type

!

0

k⋆

0

l⋆

!⋆

l

0⋆

k

0⋆

which represent the interaction term

V̂! = g

∫

C

d~r Ψ̂†⊥(~r)Ψ̂†⊥(~r)Ψ̂0(~r)Ψ̂0(~r)+ g

∫

C

d~r Ψ̂†0(~r)Ψ̂†0(~r)Ψ̂⊥(~r)Ψ̂⊥(~r) . (4.14)

Scattering events (O(Ψ̂2
⊥), lower right diagram in Fig. 4.1) leave the condensate and noncondensate

particle number unchanged, ∆N0 = ∆N⊥ = 0:

�

l

0⋆

0

k⋆

V̂� = 2g

∫

C

d~r Ψ̂†⊥(~r)Ψ̂†0(~r)Ψ̂⊥(~r)Ψ̂0(~r) . (4.15)

Finally, the last and most important type of two body contributions during the process of Bose

Einstein condensation are single particle events (O(Ψ̂3
⊥), upper right in Fig. 4.1). Single particle

losses originate from interactions between one noncondensate and one condensate particle, which

lead to an annihilation of the condensate and creation of one noncondensate particle (bottom –

left diagram). Here, a single particle feeding process is a creation of a condensate particle, which

originates from selfinteraction in the background gas (bottom – right diagram). The sum of all

these events are all diagrams of the type

 

0

k⋆

m

l⋆

 ⋆

l

m⋆

k

0⋆

which correspond to the interaction term
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V̂ =
g

2

∫

C

d~r Ψ̂†⊥(~r)Ψ̂†⊥(~r)Ψ̂⊥(~r)Ψ̂0(~r)+
g

2

∫

C

d~r Ψ̂†0(~r)Ψ̂†⊥(~r)Ψ̂⊥(~r)Ψ̂⊥(~r) . (4.16)

We subsequently get the exact decomposition of the total Hamiltonian Ĥ into

Ĥ = Ĥ0 + Ĥ⊥ + V̂ + V̂! + V̂� , (4.17)

where the different interaction terms, V̂ in Eq. (4.16), V̂! in Eq. (4.14) and V̂� in Eq. (4.15),

describe single particle ( ), pair (!) and scattering (�) processes between condensate and non

condensate atoms.

4.3 Hamiltonian of the noncondensate background gas

The noncondensed cloud is a rapidly decorrelating and thermalizing gas of particles. We describe

this thermalization process by the coupling of the noncondensate to a heat reservoir, thus using

the Nbody BornMarkov ansatz for the state of the gas (see Chapter 3), adding the irreversible

decay of noncondensate correlations arising from the thermalization process [59, 63, 64] by the

transformation:

〈

Ê
†(~r, τ)Ê (~r ′,0)

〉

→ exp[−Γ2τ2]
〈

Ê
†(~r, τ)Ê (~r ′,0)

〉

Born−Markov
, (4.18)

with Γ = τ−1
col

the thermalization rate, Ê , Ê † : F⊥ →F⊥ arbitrary noncondensate field operators

(see Chapter 5), and where the right hand side of Eq. (4.18) indicates the ensemble average over

the Bose gas’ state σ̂(N)(t) in Eq. (3.8) in Nbody BornMarkov approximation. Omitting negli

gible O(g3)contributions (arising from the nonlinear self interaction term of the noncondensate

Hamiltonian Ĥ⊥) from the master equation describing the dynamics of two body collisions (∼ g2),

only the linearized part of the noncondensate Hamiltonian Ĥ⊥ is needed to describe the thermal

ized noncondensate state occuring in the correlation functions of the type like in Eq. (4.18). The

noncondensate Hamiltonian is thus replaced according to

Ĥ⊥ ≃
∫

C

d~r Ψ̂†⊥(~r)
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Ψ̂⊥(~r)+O(g) . (4.19)
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We will see in Chapter 5 in more detail that the thermalization process occuring on a time scale τcol

justifies the BornMarkov dynamics assumption for a dilute BoseEinstein condensate [59, 63, 64].

4.3.1 Diagonalization of the noncondensate Hamiltonian

So far, the noncondensate single particle wave functions |Ψk〉 have been chosen arbitrarily (pairwise

orthogonal to |Ψ0〉). They are now quantified by the constraint of diagonalizing the noncondensate

Hamiltonian in Eq. (4.19).

To this end, we introduce arbitrary unitary matricesT and T † = T −1, and an arbitrary orthonor

mal complete basis3 {|Θk〉,k ∈ N} spanning the single particle subspace orthogonal to |Ψ0〉. Let’s

denote the corresponding bosonic creation/annihilation operators by γ̂k and γ̂†
k
. Expanding the total

bosonic field according to Eq. (4.5) in the basis |Θk〉, and transforming the particle operators γ̂k and

γ̂†
k

according to

γ̂k =

∑

l,0

T klâl and γ̂†k =
∑

l,0

T ⋆klâ
†
l , (4.20)

respectively, for k , 0, leads to the representation of the second quantized field in a new basis set:

Ψ̂ = Ψ̂0 +

∑

l,0

|Ψl〉âl , (4.21)

where the states |Ψl〉 are superpositions of the single particle states |Θk〉:

|Ψl〉 =
∑

k,0

T kl |Θk〉 . (4.22)

The basis {|Ψk〉,k ∈ N} has the same properties as {|Θk〉,k ∈ N}: It is orthonormal, 〈Ψk|Ψl〉 = δkl, it

is complete in the subspace of noncondensate single particle wave functions,

∑

k,0

|Ψk〉〈Ψk | =
∑

k,0

|Θk〉〈Θk| = 1̂− |Ψ0〉〈Ψ0| , (4.23)

as well as each |Ψk〉 is orthogonal to |Ψ0〉. Since T is just a unitary transformation, it is easy to

3The basis {|Θk〉,k ∈ N} can always be constructed out of the single particle states |χk〉 of the noninteracting system by the
GramSchmidt procedure, which, however, does not necessarily diagonalize the noncondensate Hamiltonian in Eq. (4.19). Since
each ket |Θk〉 is orthogonal to |Ψ0〉, it is evident that |Θk〉 , |χk〉 in general.
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verify that the operators â†
k

and âk satisfy usual bosonic commutations relations:

[

âk, â
†
l

]

=

∑

j, j′,0

[

γ̂ j, γ̂
†
j′
]

T ⋆kjT l j′ =
∑

j,0

T ⋆kjT l j = δkl . (4.24)

The basis change in Eqs. (4.20, 4.22) conserves the total number of particles due to the invariance

of the number operator N̂ =
∫

C
d~r Ψ†(~r)Ψ̂(~r) under the transformation T .

By introducing infinite dimensional vectors ~a = (â1, â2, ...) and ~γ = (γ̂1, γ̂2, ...), Eq. (4.20) turns

into

~γ = T ~a and ~γ† = ~a†T † . (4.25)

To show that the basis {|Ψk〉,k ∈ N} diagonalizes Ĥ⊥ for the correct choice of the matrices T and

T †, the Hamiltonian in Eq. (4.19) is rewritten into a general bilinear form

Ĥ⊥ = ~a†T †ǫT ~a , (4.26)

defining the nondiagonal energy tensor ǫ:

ǫkk′ =
∑

l

〈Θk|χl〉〈χl|Θk′〉ηl , (4.27)

where |χk〉 are the eigenstates of the first quantized Hamiltonian h1 = [~p2/2m+Vext(~r)] for non

interacting particles, and ηk the corresponding unperturbed eigenenergies.

Since the tensor ǫ is hermitian, ǫ itself and hence Ĥ⊥ are diagonalizable by a unitary matrixM,

which is defined by the equation

ǫ =M ·





























ǫ1 0 0

0 ǫ2 0

0 0
. . .





























·M† . (4.28)

Here, the ǫk mark the single particle energies of noncondensate single particle states |Ψk〉.
The relation between the matrices M and T is now obvious from Eq. (4.26), i.e., the choice
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T =M
† diagonalizes Ĥ⊥ in the basis {|Ψk〉,k ∈ N}:

Ĥ⊥ =
∑

k,0

ǫkâ†k âk =

∑

k,0

ǫkN̂k . (4.29)

Single particle states |Ψk〉 are hence interpreted as noncondensate particles,4 being uniquely

quantified by Eqs. (4.22, 4.27, 4.28).

4.3.2 Perturbative spectrum of noncondensate particles

For completeness, the relation between the perturbative expansion of the single particle states |Ψk〉
in terms of the small parameter ξ = a̺1/3 and the perturbative spectrum of noncondensate particles

in Eq. (4.29) is presented here.

The condensate wave function |Ψ0〉 in Eq. (4.4) can be considered as a function of the parameter

a̺ = ξ̺2/3, given the fact that the atomic density ̺ can be replaced by the peak density N|Ψ0(0)|2 at

the center of the trap. Note that the dimensionless parameter ξ = a̺1/3≪ 1 is the small parameter

of our theory. It is thus possible to expand the GrossPitaevskii state |Ψ0〉 around ξ = 0, the formal

limit of unperturbed eigenstates:

|Ψ0〉 = |χ0〉+
∑

m,0

ξm|Ψ(m)
0
〉 , (4.30)

where the expansion coefficients |Ψ(m)
0
〉 are independent of ξ:

|Ψ(m)
0
〉 = 1

m!

∂m|Ψ0〉
∂mξ

∣

∣

∣

∣

∣

ξ=0
. (4.31)

In Eq. (4.30), the unperturbed state |χ0〉 is the solution of the Schrödinger equation, obtained by

formally setting a = 0 in Eq. (4.4). Noncondensate single particle basis states |Ψk〉 in the interacting

system can obviously be expanded as well in an infinite series of the parameter ξ. They also turn

into the eigenstates of a noninteracting gas |χk〉 for all k ∈ N0 in the formal limiting case ξ→ 0+ at

constant density ̺.

The physical interpretation of the above analysis is that interactions between the atoms exchange

not only particles between the different single particle modes due to atomic scattering, but moreover

4The kets |Ψk〉 are of course in general not equal to the single particle states |χk〉 of the noninteracting system for a finite
interaction strength g , 0.
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perturb the shape of the particles’ quantum mechanical wave functions.

Expansion of the states |Ψk〉 in terms of the parameter ξ like in Eq. (4.31) entails the following

expansion of the energy tensor ǫ in Eq. (4.27):

ǫkl = ηkδkl +

∑

m,0

ξmǫ
(m)
kl
. (4.32)

Hence, the expansion in Eq. (4.32) guides us to an energy tensor ǫ, which is diagonal in the 0th

order in ξ, with unperturbed single particle energies ηk. Corrections scale as ξk with weighting

coefficients ǫ
(m)
kk′ given by

ǫ
(m)

kk′ =
1

m!























〈Ψ(m)

k
|χl〉ηl + 〈Ψ(m)

l
|χk〉⋆ηk +

∑

l
0<z<m

[

〈Ψ(z)

k
|χl〉〈Ψ(m−z)

k′ |χl〉⋆
]

(1− δm1)























. (4.33)

This yields the spectrum for noncondensate single particle states

ǫk = ηk +

∑

m,0

ξm
[

M† · ǫ(m) ·M
]

kk
, (4.34)

reflecting that single particle energies ǫk of noncondensate states are shifted by the interaction in

the Bose gas. Indeed, they turn into single particle energies ηk of the noninteracting system, as

well as |Ψk〉 → |χk〉 in the formal perturbative limit ξ→ 0+.

4.4 Hilbert spaces

We finally analyze the underlying Hilbert space of single particle wave functions, H , and the many

particle FockHilbert space F of the Bose gas. For the latter case, we distinguish the FockHilbert

space F (N) containing all Fock states of a fixed particle number N from the general (extended)

FockHilbert space F spanned by the set of all possible linear combinations of multimode Fock

states |{Nk}〉.

4.4.1 Single particle Hilbert space

An eigenbasis for one particle in the interacting system is defined by the single particle basis

{|Ψk〉,k ∈ N0}, which spans the complete Hilbert space of single particle states, see Eq. (4.23). The
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Hilbert space of single particle wave functions is consequently defined by

H = span {|Ψ0〉, |Ψ1〉, |Ψ2〉, . . .} ≡ H0 ⊕H⊥ , (4.35)

with H0 = span {|Ψ0〉}, the space of condensate wave functions, and H⊥ = span {|Ψk〉,k ∈ N}, the

space of noncondensate single particle wave functions, which are constructed pairwise orthogonal

to the condensate wave function |Ψ0〉.

4.4.2 FockHilbert space

Here, we aim at emphasizing the tensor structure of the underlying FockHilbert space F =F0⊗F⊥

with Fock basis elements |{Nk}〉, which applies even for finite particle numbers. The Fock number

states refer to particle occupations of the underlying single particle wave functions {|Ψk〉,k ∈ N},
defining the functional space H in Section 4.4.1. Our FockHilbert space F is spanned by an

infinite countable set of vectors [83, 84]

|N0〉 ⊗ |{Nk}〉 = |N0,N1, ...〉 , (4.36)

where N0 and {Nk} = N1,N2, . . . are arbitrary sequences of integer numbers (Nk = 0,1,2, ...). In

our treatment, the basis state |N0〉 ⊗ |{Nk}〉 thus refers to a state with N0 particles occupying the

condensate mode |Ψ0〉, and {Nk} particles the noncondensate modes {|Ψk〉,k ∈ N}. The total

FockHilbert space is thus simply a product space,

F =F0 ⊗F⊥ , (4.37)

with the condensate FockHilbert space F0 = span {|N0〉 : N0 ∈N}, and the noncondensate Fock

Hilbert space F⊥ = span{|N1,N2, ...〉 : Nk ∈ N}. In the following, the partial traces over the two

subsystems condensate and noncondensate are thus taken with respect to the basis elements of

the two Hilbert spaces F0 and F⊥ in Eq. (4.37).

4.4.3 FockHilbert space of states with fixed particle number

All Fock states of a fixed particle number in the Bose gas of N atoms are elements of a reduced

Hilbert space, F (N), including the linear combination of all states |N0, {Nk}〉 with
∑

k Nk = N. The
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latter can be related to the total FockHilbert space F in Section 4.4.2. Consider a given state with

N0 particles in the condensate, and consequently (N −N0) particles in the noncondensate. The

corresponding space F (N)(N0) is a subset of F =F0 ⊗F⊥,

F
(N)(N0) = span {|N0〉} ⊗F⊥(N−N0) ⊂F0 ⊗F⊥ , (4.38)

where F⊥(N−N0) is the set of all possible noncondensate Fock states with (N−N0) particles:

F⊥(N−N0) = span















|{Nk}〉 :
∑

k,0

Nk = (N−N0)















. (4.39)

The entire Hilbert space F (N) of states with fixed particle number N is the direct sum of the

subspaces F (N0):

F (N) =

N
⊕

N0=0

F
(N)(N0) = span



















N
⊕

N0=0

|N0〉 ⊗F⊥(N−N0)



















. (4.40)

Therefore, the reduced FockHilbert space F (N) is in general different from the total FockHilbert

space F in Eq. (4.37).

The constraint of particle number conservation, however, need not be imposed onto the Fock

spaces, but can be imposed onto the state of the system, thus simplifying and disentangling the

two FockHilbert spaces of condensate and noncondensate, as in Eq. (4.37). This way formally

allows all occupations to vary from Nk = 0 . . .∞, and thus the total number of atoms N to vary from

N = 0 . . .∞ in the partial traces of a general operator average.

Particle number conservation is thus accounted for by defining the (in general mixed) Nbody

state of fixed particle number N as a map σ̂(N)(t) : F → F (N) in order to ensure that any state

|N0, {Nk}〉with
∑

k Nk ,N, in a gas of N atoms, has zero probability to occur and therefore does not

contribute to an operator average taken over F . The state σ̂(N)(t) of the Bose gas is hence formally

defined by the constraint that it maps any number state |Ψ〉 with total particle number different

from N to zero, i.e.

σ̂(N) : F →F (N) with Ker
{

σ̂(N)
}

=















|{Nk}〉 :
∑

k

Nk ,N















. (4.41)
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An example of such a state is given by the Nbody Born ansatz, see Eq. (3.8), which we will use in

the derivation of the master equation in Chapter 5.
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Chapter 5

Lindblad master equation for a

BoseEinstein condensate

In this chapter, the Lindblad quantum master equation for the BoseEinstein phase transition in a

Bose gas of N atoms is derived under the constraint of particle number conservation and within

the Markovian dynamics assumption. This quantum master equation describes the time evolution

of the condensate and noncondensate particle number distribution during the relaxation of the full

Nbody state σ̂(N)(t) of the gas to the Bosecondensed phase. We give analytical expressions for the

transition rates and energy shifts corresponding to the various two particle interaction processes

specified in Chapter 4.

5.1 Evolution equation of the total density matrix

In analogy to the standard quantum optical derivation [20, 21, 77], we start with the vonNeumann

equation for the many particle state σ̂(N)(t) : F 7−→ F (N) of fixed particle number N (see Sec

tion 4.4.3), defined on the FockHilbert space F =F0 ⊗F⊥ in Eq. (4.37):

∂σ̂(N)(t)

∂t
= − i

~

[

Ĥ , σ̂(N)(t)
]

, (5.1)

where Ĥ is the total many particle Hamiltonian including two body interactions in Eq. (3.4). Since

the Nbody state includes only Fock states of fixed particle number according to its definition in

Eq. (4.41), it commutes initially with the total number of atoms,
[

σ̂(N)(0), N̂
]

= 0. As the number

of atoms is conserved during the further time evolution,
[

Ĥ , N̂
]

= 0, the state doesn’t change its

83
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particle number, so that

[

σ̂(N)(t), N̂
]

= 0 (5.2)

for any time. The Hamiltonian Ĥ has been shown to split in the standard (quantum optical) fashion

into

Ĥ = Ĥ0 + Ĥ⊥ + V̂0⊥ , (5.3)

where Ĥ0 is the condensate Hamiltonian in Eq. (4.8), Ĥ⊥ the noncondensate Hamiltonian in

Eq. (4.19), and V̂0⊥ the two body interaction term in Eq. (4.10). As discussed in Section 4.3, the

thermalization process due to interactions within the noncondensate is modeled by coupling the

noncondensate to a thermal bath (see Section 5.2.1).

With the decomposition of Ĥ in Eq. (5.3), the vonNeumann equation turns into

∂σ̂(N)(t)

∂t
= − i

~

[

Ĥ0, σ̂
(N)(t)

]

− i

~

[

Ĥ⊥, σ̂(N)(t)
]

− i

~

[

V̂0⊥, σ̂
(N)(t)

]

. (5.4)

Now, all operators, i.e., the condensate and the noncondensate field, Ψ̂0(~r) and Ψ̂⊥(~r), as well as

the density matrix σ̂(N)(t) are transformed into the interaction picture (denoted by the label I) with

respect to the Hamiltonian parts Ĥ0 and Ĥ⊥. Consequently, the different operators undergo the

following transformation (consult Appendix A.1 for a detailed evaluation of Ψ̂
(I)
0

(~r, t) and Ψ̂
(I)
⊥ (~r, t)):

X̂(t)→ X̂(I)(t) = Û(t)X̂Û†(t) , (5.5)

where the time evolution operator Û(t) is given by

Û(t) = exp
[

i

~

(

Ĥ0 + Ĥ⊥
)

t
]

= exp
[

i

~
Ĥ0t

]

exp
[

i

~
Ĥ⊥t

]

≡ Û0(t)Û⊥(t) , (5.6)

since
[

Ĥ0,Ĥ⊥
]

≡ 0. The time evolution operator Û(t) leads to â0(t) = â0e−iµ0t/~ and âk(t) = âke−iǫkt/~

(see Appendix A.1), leading to the time dependent condensate and noncondensate fields in the in

teraction picture, Ψ̂0(~r)→ Ψ̂(I)
0

(~r, t) = â0e−iµ0t/~
Ψ0(~r) and Ψ̂⊥(~r)→ Ψ̂(I)

⊥ (~r, t) =
∑

k,0 âke−iǫkt/~
Ψk(~r).
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The time evolution of the full density operator σ̂(N,I)(t) in the interaction picture is consequently

determined by the interaction between condensate and noncondensate particles, according to:

∂σ̂(N,I)(t)

∂t
= − i

~
[V̂(I)

0⊥(t), σ̂(N,I)(t)] . (5.7)

Considering sufficiently dilute Bose gases, a̺1/3≪ 1, and thus only two body interactions, Eq. (5.7)

can be solved in the second order1 iteration [20] in V̂(I)
0⊥(t). To this end, Eq. (5.7) is integrated

between the time interval t and t+∆t, where τcol < ∆t≪ τ0 according to the separation of time

scales2 in a Bose gas:

σ̂(N,I)(t+∆t) = σ̂(N,I)(t)− i

~

t+∆t
∫

t

dt′
[

V̂(I)
0⊥(t′), σ̂(N,I)(t′)

]

. (5.8)

Iteration up to second order in the interaction term V̂(I)
0⊥(t) – containing interaction terms up to

order g2 – finally leads to

∆σ̂(N,I)(t) = − i

~

t+∆t
∫

t

dt′
[

V̂(I)
0⊥(t′), σ̂(N,I)(t)

]

−
t+∆t
∫

t

dt′
t′

∫

t

dt′′

~2

[

V̂(I)
0⊥(t′),

[

V̂(I)
0⊥(t′′), σ̂(N,I)(t)

]]

, (5.9)

where ∆σ̂(N,I)(t) = σ̂(N,I)(t + ∆t) − σ̂(N,I)(t). Note that the time integral over t′′ is replaced by t,

setting σ̂(N,I)(t′′)→ σ̂(N,I)(t) on the right hand side of Eq. (5.9), which corresponds to the Markov

dynamics assumption (see below). Breaking the iteration procedure in V̂0⊥ in the second order

suffices to model the dynamics of two body interactions in dilute atomic gases, a̺1/3 ≪ 1, since

they are described by the terms proportional to g2 within the time scale ∆t of the temporal iteration

of Eq. (5.9).

5.2 Time evolution of the reduced condensate density matrix

In order to access the time evolution of the reduced condensate subsystem in the presence of the

noncondensate gas, the partial trace over F⊥ in Eq. (5.9) needs to be taken. Here, we explain

the Nbody Born ansatz which leads to a time local quantum master equation for the reduced

1This second order iteration is necessary, because the first order iteration vanishes (see Section 5.3).
2Remember that, in the present case, the time scale for ∆t is to be chosen slightly larger than the average time of two body

collisions according to the separation of time scales in a BoseEinstein condensate (see Section 3.1).
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condensate density matrix.

5.2.1 Nbody Born ansatz

The standard quantum optical ansatz [17, 18, 19, 20, 21] to derive a Markov quantum master

equation of Lindblad type considers the noncondensate as a large (undepleted) thermal bath and

separates its dynamics from the condensate subsystem. In the present case, however, this is not

possible because the noncondensate exchanges particles with the condensate, so that

σ̂(N)(t) , ρ̂0(t)⊗ ρ̂(T) . (5.10)

The circumvention of this ansatz is conceptually essential for the dynamics of a Bose gas of exactly

N particles. However, the standard Born ansatz in Eq. (5.10) can be generalized by describing the

noncondensate as a series of thermal states with different particle numbers (N−N0), given that N0

particles occupy the condensate mode. This ansatz is physically justified, since the noncondensate

thermalizes rapidly [51, 64], therefore decohering all offdiagonal elements between subspaces of

different noncondensate particle numbers.

This rapid noncondensate thermalization is formally taken into account by the map D obeying

the following properties: (i) It does not change the particle number in the gas, and (ii) it erases co

herences between states of different particle numbers (N−N0) and (N−M0) in the noncondensate,

and (iii) it turns each noncondensate state of (N−N0) particles into a thermal state of correspond

ing particle number occupation. From (i)(iii), it follows that the Nbody state of the Bose gas is

diagonal in particle number representation:

σ̂(N)(t) ≈D
(

σ̂(N)(t)
)

≡
N
∑

N0=0

pN(N0,0)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T) , (5.11)

where each condensate state of N0 particles necessarily implies a condensate state of (N −N0)

particles, and vice versa, due to particle number conservation – in agreement with Eq. (5.2). Each

noncondensate state ρ̂⊥(N −N0,T) of (N −N0) particles is a thermal mixture projected onto the

subspace of (N−N0) particles,

ρ̂⊥(N−N0,T) =
Q̂N−N0

e−βĤ⊥Q̂N−N0

Z⊥(N−N0)
, (5.12)
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where Q̂N−N0
denotes the projector onto the noncondensate subspace F⊥(N −N0) (see Sec

tion 4.4). The normalization factor Z⊥(N − N0) corresponds to the partition function [10] of

(N−N0) indistinguishable noncondensate particles, given by

Z⊥(N−N0) = TrF⊥

{

Q̂N−N0
e−βĤ⊥Q̂N−N0

}

. (5.13)

The noncondensate Hamiltonian Ĥ⊥ is diagonalized according to Section 4.3, by expanding the

noncondensate field in the basis {|Ψk〉,k ∈ N}. Hence the spectral decomposition of Ĥ⊥ leads to

the statistical mixture:

ρ̂⊥(N−N0,T) = Q̂N−N0

⊗

k,0

∑∞
Nk=0 pk(Nk,T)|Nk〉〈Nk|
Z⊥(N−N0)

Q̂N−N0
. (5.14)

In Eq. (5.14), Nk are occupation numbers of noncondensate single particle states |Ψk〉 and

pk(Nk,T) = exp[−βǫkNk] are Boltzmann probability factors for indistinguishable particles. The

corresponding partition function Z⊥(N−N0) of (N−N0) particles turns into:

Z⊥(N−N0) =

(N−N0)
∑

{Nk}
exp















−β
∑

k,0

ǫkNk















. (5.15)

In Eq. (5.15), we have introduced the partial sum
∑(N−N0)

{Nk} , which denotes a summation over all

partitions N1 = 0 . . .∞,N2 = 0 . . .∞, . . . : ∑k,0 Nk = (N−N0).

5.2.2 Evolution equation for the condensate

The partial trace of σ̂(N)(t) over the noncondensate subspace F⊥ defines the reduced condensate

density matrix ρ̂(N)
0

(t) of the state of N particles,

ρ̂(N)
0

(t) = TrF⊥

{

σ̂(N)(t)
}

=

N
∑

N0=0

pN(N0, t)|N0〉〈N0| , (5.16)

with TrF0
ρ̂0(t) = 1. As already mentioned, also the total Nbody state is completely described in

terms of the condensate particle number distribution pN(N0, t), see Eq. (5.11), under the assumption

of rapid thermalization in the noncondensate. This allows us to derive a closed evolution equation



88 Chapter 5. LINDBLAD MASTER EQUATION FOR A BOSEEINSTEIN CONDENSATE

for the reduced condensate density matrix, ρ̂0(t), within the Markov dynamics assumption by

inserting the thermalized state, Eq. (5.11), into the Nbody evolution Eq. (5.9). Finally, taking the

partial trace over the noncondensate leads to:

∆ρ̂(N,I)
0

(t) = − i

~

N
∑

N0=0

t+∆t
∫

t

dt′ TrF⊥

[

V̂0⊥(t′),pN(N0, t)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T)
]

−
N
∑

N0=0

t+∆t
∫

t

dt′
t′

∫

t

dt′′

~2
TrF⊥

[

V̂0⊥(t′),
[

V̂0⊥(t′′),pN(N0, t)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T)
]]

.

(5.17)

At this stage, we can verify that, according to Eq. (5.17), the time evolution of the Nbody state

σ̂(N)(∆t) is completely determined by ρ̂(N)
0

(∆t), such that the thermalization ansatz in Eq. (5.11) is

valid for any iterative step ∆t, and therefore in fact for all times during the condensate formation

process, reflecting the BornMarkov dynamics assumption for a dilute BoseEinstein condensate.

5.3 Contribution of first order interaction terms

In Eq. (5.17), the contribution of the individual interaction terms for single particle ( ), pair (!)

and scattering (�) processes are taken into account by the interaction term V̂ = V̂ +V̂!+V̂�.

First, we will verify that all contributions linear in the interaction operator V̂0⊥ vanish, before the

evolution equations for the second order terms in g are derived from Eq. (5.17).

5.3.1 General operator averages in the Bose state

First, we introduce a useful identity for operator averages, frequently applied in the derivation of

the condensate quantum master equation. For the Nbody state σ̂(N)(t) in Eq. (5.11), the partial

trace of an operator of the form Ŝ ⊗ Ê : F0⊗F⊥→F0⊗F⊥, where Ŝ : F0→F0 acts solely on

the condensate Fock space, and Ê : F⊥ →F⊥ solely on the noncondensate Fock space, adopts

the form

TrF⊥

{(

Ŝ ⊗ Ê
)

σ̂(N,I)(t)
}

=

N
∑

N0=0

pN(N0, t)
(

Ŝ |N0〉〈N0|
)

TrF⊥

{

Ê ρ̂⊥(N−N0,T)
}

. (5.18)

Moreover, the abbreviation
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j Ŝ j(~r, t) Ŝ †
j

(~r, t) Ê j(~r, t) Ê †
j

(~r, t)

 gΨ̂0(~r, t) gΨ̂†
0
(~r, t) Ψ̂†⊥(~r, t)Ψ̂⊥(~r, t)Ψ̂⊥(~r, t) Ψ̂†⊥(~r, t)Ψ̂†⊥(~r, t)Ψ̂⊥(~r, t)

! gΨ̂0(~r, t)Ψ̂0(~r, t) gΨ̂†
0
(~r, t)Ψ̂†

0
(~r, t) Ψ̂†⊥(~r, t)Ψ̂†⊥(~r, t) Ψ̂⊥(~r, t)Ψ̂⊥(~r, t)

� gΨ̂†
0
(~r, t)Ψ̂0(~r, t) gΨ̂†

0
(~r, t)Ψ̂0(~r, t) Ψ̂

†
⊥(~r, t)Ψ̂⊥(~r, t) Ψ̂

†
⊥(~r, t)Ψ̂⊥(~r, t)

Table 5.1: The formal structure of each interaction term V̂ j is identical for single particle (j =  ), pair (j =!)

and scattering (j = �) processes. The operators Ŝ j(~r, t), Ŝ †
j

(~r, t), Ê j(~r, t) and Ê †
j

(~r, t), have thus to be substituted in

Eq. (5.21) for each process according to the table.

〈

Ê
〉(N−N0)

F⊥
≡ TrF⊥

{

Ê ρ̂⊥(N−N0,T)
}

=Z
−1
⊥ (N−N0)TrF⊥(N−N0)

{

Ê e−βĤ⊥
}

, (5.19)

denotes the average of an operator Ê : F⊥ → F⊥ over the noncondensate subspace F⊥ with

respect to the thermal noncondensate state ρ̂⊥(N−N0,T) of (N−N0) particles, see Eq. (5.14).

5.3.2 Vanishing of linear interaction terms

Linear and nonlinear contributions in g in Eq. (5.17) need to be determined separately. With the

decomposition of the interaction term V̂(I)
0⊥(t′) = V̂(I)

 (t′)+ V̂(I)
!(t′)+ V̂(I)

�
(t′), first order terms in

Eq. (5.17) can be rewritten as

TrF⊥

[

V̂(I)
0⊥(t′), σ̂(N,I)(t)

]

=

∑

j

TrF⊥

[

V̂(I)
j

(t′), σ̂(N,I)(t)
]

, (5.20)

where j = ,!,�. Furthermore, each of the different interaction terms V̂(I)
 (t),V̂(I)

!(t) and V̂(I)
�

(t)

can be formally decomposed as

V̂(I)
j

(t′) =
∫

C

d~r
[

Ŝ
†
j (~r, t′)⊗ Ê j(~r, t

′)+ Ŝ j(~r, t
′)⊗ Ê

†
j (~r, t′)

]

, (5.21)

where the operators Ŝ j(~r, t
′) : F0 → F0 and Ê j(~r, t

′) : F⊥ → F⊥ represent the different field

operators in the interaction picture, see Table 5.1, with j = ,! and �, acting on the condensate
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and noncondensate subspaces F0 and F⊥ separately.

For any V̂(I)
j

(t) in Eq. (5.21) the operator average in Eq. (5.18) yields

TrF⊥

[

V̂ j(t
′), σ̂(N,I)(t)

]

=

∫

C

d~r
N
∑

N0=0

[

Ŝ
†
j (~r, t′),pN(N0, t)|N0〉〈N0|

]〈

Ê j(~r, t
′)
〉(N−N0)

F⊥

+

∫

C

d~r
N
∑

N0=0

[

Ŝ j(~r, t
′),pN(N0, t)|N0〉〈N0|

] 〈

Ê
†
j (~r, t′)

〉(N−N0)

F⊥
.

(5.22)

For single particle interaction processes described by V̂(I)
 (t′), i.e., j = in Eq. (5.21), first order

contributions vanish as a result of particle number conservation,

TrF⊥

[

V̂(I)
 (t′), σ̂(N,I)(t)

]

= 0 , (5.23)

which can be directly checked by setting the corresponding single particle interaction terms of

Table 5.1 for the operators Ŝ (~r, t′) and Ê (~r, t′), respectively, as well as their hermitian conjugates,

into Eq. (5.22). This is a direct consequence of the fact that V̂ changes the number of non

condensate particles from initially (N−N0) to (N−N0 ± 1), and hence:

〈

Ψ̂
†
⊥(~r, t′)Ψ̂⊥(~r, t′)Ψ̂⊥(~r, t′)

〉(N−N0)

F⊥
=

〈

Ψ̂
†
⊥(~r, t′)Ψ̂†⊥(~r, t′)Ψ̂⊥(~r, t′)

〉(N−N0)

F⊥
= 0 . (5.24)

The same argument applies also to the first order contributions for pair events described by V̂(I)
!(t′),

i.e., j =! in Eq. (5.21). They too do not contribute to the master equation,

TrF⊥

[

V̂(I)
!(t′), σ̂(N,I)(t)

]

= 0 , (5.25)

because again, due to the changing number of noncondensate particles,

〈

Ψ̂
†
⊥(~r, t′)Ψ̂†⊥(~r, t′)

〉(N−N0)

F⊥
=

〈

Ψ̂⊥(~r, t′)Ψ̂⊥(~r, t′)
〉(N−N0)

F⊥
= 0 . (5.26)

In contrast, scattering terms V̂(I)
�

(t′) lead to nonvanishing noncondensate expectation values from

first order terms,
〈

Ψ̂
†
⊥(~r, t′)Ψ̂⊥(~r, t′)

〉(N−N0)

F⊥
, 0. Nevertheless, they neither arise in the master
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Figure 5.1: Correlations between different types of diagrams for single particle loss ( ) and feeding ( ⋆) processes,
pair loss (!) and feeding (!⋆) processes and scattering processes (�) cancel out, since any combination of mixed
diagrams violates particle number conservation, as formally expressed by Eq. (5.30). Evolution terms of the Nbody
state relating to single particle, pair and scattering processes are therefore independent. In contrast, all particle
interactions following the same diagrams will coherently interfere below Tc, leading to enhanced particle feedings
(and losses) of the output channels.

equation, because the term V̂� leaves the condensate and noncondensate occupation in the

diagonal state σ̂(N)(t) invariant, which entails:

TrF⊥

[

V̂(I)
�

(t′), σ̂(N,I)(t)
]

= 0 . (5.27)

Since all first order terms vanish, it remains to evaluate second order terms in the interaction term

V̂0⊥ in Eq. (5.17) for single particle ( ), pair (!) and scattering (�) processes.

5.4 Dynamical separation of two body interaction terms

As shown in Section 5.3.2, first order contributions vanish due to the rapid equilibration in the

noncondensate and particle number conservation. Thus, the evolution Eq. (5.17) reduces to a sum

over second order contributions in V̂0⊥ = V̂ + V̂! + V̂�:
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∆ρ̂(N,I)
0

(t) = −
N
∑

N0=0

∑

i, j

t+∆t
∫

t

dt′
t′

∫

t

dt′′

~2
TrF⊥

[

V̂(I)
i

(t′),
[

V̂(I)
j

(t′′),pN(N0, t)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T)
]]

,

(5.28)

with i, j = ,!,�. Moreover, any mixed commutator in Eq. (5.28) is zero, meaning that single

particle, pair and scattering events in the gas occur independently. This is shown by either brute

force calculation, or by recognizing that there exists no combination of two mixed (i , j) two body

diagrams (and hermitian conjugates of them) depicted in Fig. 5.1, which conserves the total particle

number N. This is due to the fact that the three types of interaction processes ( ,!,�) refer to

different particle number changes ∆N0 = −∆N⊥ = 0,±1,±2, respectively. Since the density matrix

exhibits no coherences between states with different particle numbers, the trace over these particle

number breaking terms is zero. Only conjugate two body interaction diagrams (i = j) of the same

type in Fig. 5.1 therefore contribute to the master equation.

Single particle, pair and scattering processes consequently occur as dynamically independent:

∆ρ̂(N,I)
0

(t)

∆t
=

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

 

+

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

!

+

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

�

, (5.29)

where we introduced the abbreviation,

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

j

≡ −
N
∑

N0=0

t+∆t
∫

t

dt′
t′

∫

t

dt′′

~2∆t
TrF⊥

[

V̂ j(t
′),

[

V̂ j(t
′′),pN(N0, t)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T)

]]

,

(5.30)

with j = ,! and �.

5.5 Lindblad operators and transition rates

Using the decomposition of the different interaction terms V̂(I)
j

(t) in Eq. (5.21) for j = ,! and �,

with corresponding field operators Ŝ j(~r, t
′),Ŝ †

j
(~r, t′) : F0 →F0 and Ê j(~r, t

′), Ê †
j

(~r, t′) : F⊥ →F⊥

according to Table 5.1, we further derive the master equation for each coarsegrained evolution term
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in Eq. (5.30), j = ,!,�, in a rather lengthy calculation which is skipped here. Herefore, we use

that the averages over Ê †
j

(~r, t′)Ê †
j

(~r ′, t′′) and Ê j(~r, t
′)Ê j(~r

′, t′′) are zero for all different interaction

terms j = ,!,�, because they do not conserve the number of particles:

〈

Ê
†
j (~r, t′)Ê †j (~r ′, t′′)

〉(N−N0)

F⊥
=

〈

Ê j(~r, t
′)Ê j(~r

′, t′′)
〉(N−N0)

F⊥
= 0 , (5.31)

for j = ,!,�. Thus, only the remaining averages of the noncondensate field need to be treated,

i.e. averages over operator products of the form Ê j(~r, t
′)Ê †

j
(~r ′, t′′) and Ê †

j
(~r, t′)Ê j(~r

′, t′′). Thereby,

the following two time averages are obtained, called two point correlation functions for the non

condensate field in normal order,

G
(+)
j

(~r, ~r ′,N−N0,T, τ) =
〈

Ê
†
j (~r, τ)Ê j(~r

′,0)
〉(N−N0)

F⊥
, (5.32)

and, respectively, correlation functions of the noncondensate field in antinormal order,

G
(−)
j

(~r, ~r ′,N−N0,T, τ) =
〈

Ê j(~r, τ)Ê
†
j (~r ′,0)

〉(N−N0)

F⊥
, (5.33)

where τ = t′ − t′′ is the time difference between t′ and t′′. The correlation functions depend on

~r, ~r ′ and τ, representing the coherent part of the noncondensate time evolution with respect to the

linearized Hamiltonian Ĥ⊥. These coherent parts obey the condition

(

G
(±)
j

(~r, ~r ′,N−N0,T, τ)
)⋆
= G

(∓)
j

(~r, ~r ′,N−N0,T, τ) = G
(±)
j

(~r, ~r ′,N−N0,T,−τ) . (5.34)

Changing [20, 77] variables of integration, switching from t′ and t′′ to τ and t′, leads to

t+∆t
∫

t

dt′
t′

∫

t

dt′′ =

∆t
∫

0

dτ

t+∆t
∫

t+τ

dt′ . (5.35)

According to the fact that the noncondensate thermalizes on the time scale τcol due to atomic

interactions [59, 63, 64], the correlation functions of the noncondensate field decay on a time scale
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τcol [59]. To implement this irreversible decay, we add the exponential function exp[−Γ2τ2] with

Γ = τ−1
col

. As a consequence of ∆t > τcol, the time domain of integration over dτ can be extended

from ∆t to ∞. The same is done for the domain of the integral over t′ by setting the lower bound

t+ τ to t, Thereby, each evolution term (for j = ,!,�) in Eq. (5.30) turns into:

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

j

=

N
∑

N0=0

∞
∫

0

dτ
e−Γ

2τ2

~2

∫

C×C

d~r d~r ′Ŝ j(~r, t)Ŝ
†
j (~r ′, t− τ)pN(N0, t)|N0〉〈N0|G (+)

j
(~r, ~r ′,N−N0,T, τ)

−
N
∑

N0=0

∞
∫

0

dτ
e−Γ

2τ2

~2

∫

C×C

d~r d~r ′Ŝ †
j (~r, t)pN(N0, t)|N0〉〈N0|Ŝ j(~r

′, t− τ)G (+)
j

(~r, ~r ′,N−N0,T, τ)

+

N
∑

N0=0

∞
∫

0

dτ
e−Γ

2τ2

~2

∫

C×C

d~r d~r ′pN(N0, t)|N0〉〈N0|Ŝ †
j (~r ′, t− τ)Ŝ j(~r, t)G

(−)
j

(~r, ~r ′,N−N0,T, τ)

−
N
∑

N0=0

∞
∫

0

dτ
e−Γ

2τ2

~2

∫

C×C

d~r d~r ′Ŝ j(~r
′, t− τ)pN(N0, t)|N0〉〈N0|Ŝ †

j (~r, t)G (−)
j

(~r, ~r ′,N−N0,T, τ)

+h.c. .

(5.36)

The occuring Lindblad type structure [85] is typical for Markov processes [19, 21], and can be

already identified at this level of the master equation. Different Lindblad superoperators being

related to single particle ( ), pair (!) and scattering (�) events are derived in the following for

each process in the next subsections.

5.5.1 Lindblad evolution term for single particle processes ( )

In this section, the evolution Eq. (5.36) is worked out for j = , yielding the transition rates

associated to the two point correlation functions G
(±)
 (~r, ~r ′,N −N0,T, τ). Single particle events

have been specified in Section 4.2.3 as two body interaction terms which annihilate, or create, one

particle in the condensate mode |Ψ0〉. The interaction term V̂(I)
 (~r, t) hence contains the sum of all

diagrams

 ⋆

0

k⋆

m

l⋆

 

l

m⋆

k

0⋆

,
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see Fig. 5.1, refering to the field operators Ŝ (~r, t) and Ê (~r, t), as well as to their hermitian

conjugates, Ŝ †
 (~r, t) and Ê † (~r, t) in Eq. (5.36) according to Table 5.1.

The time evolution of the coarsegrained evolution term in Eq. (5.36) due to single particle events,

j = , is specified by the normally ordered two point correlation function of the noncondensate

field, G
(+)
 (~r, ~r ′,N−N0,T, τ) in Eq. (5.32),

G
(+)
 (~r, ~r ′,N−N0,T, τ) =

〈

Ψ̂
†
⊥(~r, τ)Ψ̂†⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r ′,0)Ψ̂⊥(~r ′,0)Ψ̂⊥(~r ′,0)

〉(N−N0)

F⊥
, (5.37)

and by the antinormally ordered counterpart,

G
(−)
 (~r, ~r ′,N−N0,T, τ) =

〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r ′,0)Ψ̂†⊥(~r ′,0)Ψ̂⊥(~r ′,0)

〉(N−N0)

F⊥
, (5.38)

correspondingly.3

The action of condensate field operators onto an element of the condensate Fock space,

Ψ̂0(~r)|N0〉 =
√

N0Ψ0(~r)|N0 − 1〉, and Ψ̂†
0
(~r)|N0〉 =

√
N0 + 1Ψ⋆

0
(~r)|N0 + 1〉, respectively, leads to

the Lindblad term for microscopic single particle loss and feeding events, directly from Eq. (5.36).

After multiplying Û†
0
(t) from the left and Û0(t) from the right, the latter equation turns into:

Û†0 (t)
∆ρ̂(N,I)

0
(t)

∆t

∣

∣

∣

∣

∣

∣

∣

 

Û0(t) =



















N
∑

N0=0

pN(N0, t)
(

â†0|N0〉〈N0|â0 − |N0〉〈N0|â0â†0
)



















Λ
+

 (N−N0,T)

+



















N
∑

N0=0

pN(N0, t)
(

â0|N0〉〈N0|â†0 − â†0â0|N0〉〈N0|
)



















Λ
−
 (N−N0,T)

+h.c. .

(5.39)

The complex valued, time averaged rates Λ± (N−N0,T) ∈ C are given by

3The correlation functions G
(±)
 (~r, ~r ′,N−N0,T,τ) are calculated explicitly in Chapter 7.1.
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Λ
±
 (N−N0,T) =

g2

~2

"

C×C

d~r d~r ′ Ψ⋆0 (~r)Ψ0(~r ′)

∞
∫

0

dτ e±iω0τ−Γ2τ2
G

(±)
 (~r, ~r ′,N−N0,T, τ) . (5.40)

They depend (i) on the number of noncondensate particles N −N0 via the two point correlation

functions G
(±)
 (~r, ~r ′,N−N0,T, τ) of noncondensate fields in Eqs. (5.37, 5.38), (ii) on the condensate

wave function and its conjugate, Ψ0(~r) and Ψ⋆
0

(~r), and (iii) on ω0 = µ0/~, thus on the eigenvalue

of the GrossPitaevskii equation (4.4). Furthermore, T labels the final gas temperature and g is the

two particle interaction strength.

The rates Λ± (N −N0,T) in Eq. (5.40) are in general complex numbers: To separate the real

from the complex part of the evolution Eq. (5.39) – the first appears as the realtime evolution,

hence defining real valued single particle exchange rates between condensate and noncondensate,

whereas the latter is associated to a shift of the condensate single particle energy (see Section 7.4)

– the complex valued rate Λ± (N−N0,T) is decomposed into

Λ
±
 (N−N0,T) ≡ λ± (N−N0,T)+ i ∆± (N−N0,T) . (5.41)

The real parts λ± (N −N0,T) = R
{

Λ± (N−N0,T)
}

in Eq. (5.40) are called single particle feeding

and loss rates, given a state with N0 particles populating the condensate mode in the Bose gas

of N particles. The imaginary part, ∆± (N −N0,T) = I
{

Λ
±
 (N−N0,T)

}

, characterizes the single

particle energy shift arising from virtual processes (see below).

The real part of evolution Eq. (5.39) for the reduced condensate density matrix ρ̂(N)
0

(t) originating

from single particle processes is thus determined by the terms in Eq. (5.39) proportional to λ± (N−
N0,T), after decomposition of the complex valued rates like in Eq. (5.41). Those contributions

can now be described in terms of a superoperator L acting onto the subspace of the reduced

condensate density matrix:

L 

[

ρ̂(N)
0

(t)
]

=

N
∑

N0=0

Γ
+

N(N0,T)
[

Ŝ+(N0)ρ̂(N)
0

(t)Ŝ †
+ (N0)− 1

2

{

Ŝ
†
+ (N0)Ŝ+(N0), ρ̂(N)

0
(t)

}

+

]

+

N
∑

N0=0

Γ
−
N(N0,T)

[

Ŝ−(N0)ρ̂(N)
0

(t)Ŝ †
− (N0)− 1

2

{

Ŝ
†
− (N0)Ŝ−(N0), ρ̂(N)

0
(t)

}

+

]

,

(5.42)
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where {X̂,Y}+ ≡ X̂Ŷ+ ŶX̂ denotes the anticommutator of the two operators X̂ and Ŷ. Moreover,

single particle condensate feeding and losses are described by rank one quantum jump operators

Ŝ±(N0) in Eq. (5.42), defined by

Ŝ+(N0) ≡ |N0 + 1〉〈N0| , (5.43)

for quantum jumps of the condensate particle number N0→N0 + 1, and by

Ŝ−(N0) ≡ |N0 − 1〉〈N0| , (5.44)

for quantum jumps N0→N0 − 1. They account for single particle condensate feeding (+) and loss

(−) events, which are induced by the noncondensate environment. The jump operators satisfy the

general relation for Kraus operators [19, 21],

N
∑

N0=0

Ŝ
†
+ (N0)Ŝ+(N0) =

N
∑

N0=0

Ŝ
†
− (N0)Ŝ−(N0) = 1̂F0

. (5.45)

Equation (5.42) obeys the so called “Lindblad form” [85], which is characteristic for quantum

Markov jump processes [19]. Remarkably, these jumps of particles into and out of the condensate,

respectively, directly reflect the wave character of the interfering particles in spatial representa

tion. The effective condensate particle feedings and losses are quantified by the transition rates

Γ
+

N
(N0,T) = 2(N0 + 1)λ+ (N−N0,T) and Γ−

N
(N0,T) = 2N0λ

−
 (N−N0,T) in Eqs. (5.40, 5.41, 5.42).

The imaginary part of the complex rateΛ± (N−N0,T) in Eq. (5.40) generally leads to a coherent

contribution to the Lindblad master equation, here given by

−i

N
∑

N0=0

∆ (N−N0,T)
[

â†0â0,pN0
(N0, t)|N0〉〈N0|

]

= 0 , (5.46)

with ∆ (N0,N −N0,T) = ∆
(+)
 (N0,N −N0,T)+∆

(−)
 (N0,N −N0,T), the net single particle energy

shift4. The coherent evolution term in Eq. (5.46), however, vanishes and does not contribute to

4The energy shift ∆ (N −N0,T) can in principle be used to renormalize the condensate chemical potential µ0, in analogy
to the Lamb shift in quantum optics [86, 87]. However, we verify in Section 7.4 that it is so small in dilute atomic gases (e.g.,
∼ (0.0001 − 0.01)~ω in a threedimensional isotropic harmonic trap) that we neglect the renormalization of µ0 for our present
purpose.
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the time evolution of the reduced diagonal condensate density matrix. Consequently, the evolution

term for single particle processes is fully captured by

Û†0 (t)
∆ρ̂(N,I)

0
(t)

∆t

∣

∣

∣

∣

∣

∣

∣

 

Û0(t) =L 

[

ρ̂(N)
0

(t)
]

, (5.47)

with L 

[

ρ̂(N)
0

(t)
]

defined by Eq. (5.42).

5.5.2 Lindblad evolution term for pair processes (!)

Pair events are specified as processes, where two condensate atoms are effectively created or

annihilated. The diagrammatic representation of all different pair events is

!⋆

0

l⋆

0

k⋆

!

l

0⋆

k

0⋆

,

see Fig. 5.1.

Proceeding in compliance to the calculus for single particle processes, we insert the operators

Ŝ!(~r, t) and Ê!(~r, t) as well as their hermitian conjugates according to Table 5.1 into Eq. (5.36),

leading to a Lindblad evolution term for pair processes, j=!. The normally ordered two point

correlation function G
(+)
!(~r, ~r ′,N−N0,T, τ) in Eq. (5.32) for pair events is given by

G
(+)
!(~r, ~r ′,N−N0,T, τ) =

〈

Ψ̂
†
⊥(~r, τ)Ψ̂†⊥(~r, τ)Ψ̂⊥(~r ′,0)Ψ̂⊥(~r ′,0)

〉(N−N0)

F⊥
, (5.48)

whereas the antinormally ordered pair correlation G
(−)
!(~r, ~r ′,N0,T, τ) function adopts the form

G
(−)
!(~r, ~r ′,N0,T, τ) =

〈

Ψ̂⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r ′,0)Ψ̂†⊥(~r ′,0)
〉(N−N0)

F⊥
, (5.49)

and is obtained correspondingly by using Eq. (5.33).

The coarsegrained rate of variation for j =! turns, after multiplication with Û†
0
(t) from the left

and with Û0(t) from the right, into
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Û†0(t)
∆ρ̂(N,I)

0

∆t

∣

∣

∣

∣

∣

∣

∣

!

Û0(t) =



















N
∑

N0=0

pN(N0, t)
(

α̂†0|N0〉〈N0|α̂0 − |N0〉〈N0|α̂0α̂
†
0

)



















Λ
+

!(N−N0,T)

+



















N
∑

N0=0

pN(N0, t)
(

α̂0|N0〉〈N0|α̂†0 − α̂†0α̂0|N0〉〈N0|
)



















Λ
−
!(N−N0,T)

+h.c. ,

(5.50)

with pair annihilation and creation operators [88], α̂0 = â0â0 and α̂†
0
= â†

0
â†

0
. The complex valued,

time averaged pair feeding and loss rates are thus given by

Λ
±
!(N−N0,T) =

g2

4~2

"

C×C

d~r d~r ′Ψ0(~r)Ψ0(~r)Ψ⋆0 (~r ′)Ψ⋆0 (~r ′)

∞
∫

0

dτ e±2iω0τ−Γ2τ2
G

(±)
!(~r, ~r ′,N−N0,T, τ) ,

(5.51)

with corresponding normally (and antinormally) ordered pair two point correlation functions

G
(±)
!(~r, ~r ′,N − N0,T, τ) of the noncondensate field in Eqs. (5.48, 5.49). They define the two

body pair feeding and loss rate λ±!(N−N0,T) =R{Λ±!(N−N0,T)}, and the two body pair energy

shift ∆
(±)
!(N−N0,T) =I {Λ±!(N−N0,T)}, by means of the decomposition

Λ
±
!(N−N0,T) ≡ λ±!(N−N0,T)+ i ∆±!(N−N0,T) . (5.52)

The Lindblad superoperator L![ρ̂(N)
0

(t)] which describes the pair dynamics governed by the real

part of Eq. (5.50) is converted to the following form after the decomposition of pair feeding and

loss rates in Eq. (5.52):

L!

[

ρ̂(N)
0

(t)
]

=

N
∑

N0=0

γ−N(N0,T)
[

P̂+(N0)ρ̂(N)
0

(t)P̂†
+(N0)− 1

2

{

P̂
†
+(N0)P̂+(N0), ρ̂(N)

0
(t)

}

+

]

+

N
∑

N0=0

γ−N(N0,T)
[

P̂−(N0)ρ̂(N)
0

(t)P̂†
−(N0)− 1

2

{

P̂
†
−(N0)P̂−(N0), ρ̂(N)

0
(t)

}

+

]

,

(5.53)

with pair quantum jump operators,
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P̂+(N0) ≡ |N0 + 2〉〈N0| , (5.54)

for quantum jumps of the condensate particle number N0→N0 + 2, and with

P̂−(N0) ≡ |N0 − 2〉〈N0| , (5.55)

for quantum jumps N0 → N0 − 2, induced by the noncondensate environment. The form of

Eq. (5.53) occurs also in two component chemical reactions [19], quantified here by the transi

tion rates γ+
N

(N0,T) = 2
√

(N0 + 1)(N0 + 2)λ+!(N−N0,T) and γ−
N

(N0,T) = 2
√

N0(N0 − 1)λ−!(N−
N0,T), respectively, defined via Eqs. (5.51, 5.52, 5.53). Also the pair jump operators P̂+(N0) and

P̂−(N0) satisfy

N
∑

N0=0

P̂
†
+(N0)P̂+(N0) =

N
∑

N0=0

P̂
†
−(N0)P̂−(N0) = 1̂F0

. (5.56)

Finally, the commutation relation
[

α̂0, α̂†0
]

= 4(â†
0
â0 + 1̂/2) for pair operators leads to the coherent

contribution of Eq. (5.50),

−i

N
∑

N0=0

[

∆!(N−N0,T)α̂†0α̂0 − 4∆+!(N−N0,T)â†0â0,pN(N0, t)|N0〉〈N0|
]

= 0 . (5.57)

This contribution also vanishes exactly as a result of the diagonal reduced condensate density matrix,

but nevertheless yields an estimate of energy shifts ∆!(N−N0,T) induced by pair events. Again,

the symbol ∆! = ∆+! +∆
−
! is used to label the net energy shift induced by pair events. Albeit

this energy shift does not contribute to the master equation, it is interesting to estimate its order of

magnitude, see Section 7.4.

The total evolution term for pair events,

Û†0(t)
∆ρ̂(N,I)

0
(t)

∆t

∣

∣

∣

∣

∣

∣

∣

!

Û0(t) =L!

[

ρ̂(N)
0

(t)
]

, (5.58)

is thus fully captured by the Lindblad evolution term in Eq. (5.53).
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5.5.3 Evolution term for scattering processes (�)

Finally, we verify that scattering events described by the interaction diagrams

�

l

0⋆

0

k⋆

see Fig. 5.1, do not affect the number distribution pN(N0, t) of condensate and noncondensate

particles. Inserting the condensate and noncondensate field operators for Ŝ�(~r, t) and Ê�(~r, t) and

their hermitian conjugates Ŝ †
�

(~r, t) and Ê †
�

(~r, t) into the evolution term in Eq. (5.36) according to

Table 5.1 leads to only one two point correlation function of the noncondensate field,

G�(~r, ~r ′,N0,T, τ) =
〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r ′,0)Ψ̂⊥(~r ′,0)

〉(N−N0)

F⊥
, (5.59)

see Eq. (5.32).

The evolution equation for the coarsegrained rate of variation for scattering processes hence

turns into

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

�

=



















N
∑

N0=0

N̂0pN(N0, t)|N0〉〈N0|N̂0 − pN(N0, t)|N0〉〈N0|N̂2
0



















Λ�(N−N0,T)+h.c. ≡ 0 ,

(5.60)

where N̂0 =
∫

C
d~r Ψ̂†

0
(~r)Ψ̂0(~r) is number operator of condensate particles. Even though Eq. (5.60)

does not contribute to the master equation (leading to dephasing of the offdiagonal elements of

the condensate density matrix), it yields the complex valued time averaged rate Λ�(N −N0,T) for

atomic scattering processes between condensate and noncondensate particles with ∆N0 = 0:

Λ�(N−N0,T) =
4g2

~2

"

C×C

d~r d~r ′ |Ψ0(~r)|2|Ψ0(~r ′)|2
∞

∫

0

dτ e−Γ
2τ2

G�(~r, ~r ′,N−N0,T, τ) , (5.61)
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with the corresponding correlation function G�(~r, ~r ′,N−N0,T, τ) for scattering events in Eq. (5.59).

The decomposition of Λ�(N−N0,T) ∈ C into

Λ�(N−N0,T) ≡ λ�(N−N0,T)+ i ∆�(N−N0,T) (5.62)

introduces the real valued scattering rate, λ�(N−N0,T) =R
{

Λ�(N−N0,T)
}

, and the correspond

ing imaginary level shift, ∆�(N−N0,T) =I
{

Λ�(N−N0,T)
}

. Again, also the coherent contribution

of scattering events is zero,

−i

N
∑

N0=0

∆�

[

â†0â0â†0â0,pN(N0, t)|N0〉〈N0|
]

= 0 , (5.63)

without any contribution due to scattering events:

Û†(t)
∆ρ̂(N,I)

0
(t)

∆t

∣

∣

∣

∣

∣

∣

∣

�

Û(t) = 0 , (5.64)

The Nbody state σ̂(N,I)(t) in Eq. (5.11) therefore evolves in time only with respect to single particle

( ) and pair (!) processes, described by the Lindblad terms in Eqs. (5.42, 5.53).

5.6 Quantum master equation of Lindblad type

The different results of the derivation in Sections 5.1  5.5 are now summarized in order to collect

all relevant Lindblad terms for the dynamics of the reduced condensate state ρ̂(N)
0

(t). The relation

between the reduced condensate density matrix in the Schrödinger and the interaction picture is

∆ρ̂(N)
0

(t)

∆t
= − i

~

[

Ĥ0, ρ̂
(N)
0

(t)
]

+ Û†0(t)
∆ρ̂(N,I)

0
(t)

∆t
Û0(t) . (5.65)

Equation (5.65) formally contains the coherent evolution of ρ̂(N)
0

(t) with respect to the condensate

Hamiltonian Ĥ0, and the instantaneous rate of variation of the condensate density matrix in the

interaction picture, ∂tρ̂
(N,I)
0

(t). The Lindblad master equation simplifies further, because the Hamil

tonian time evolution [Ĥ0, ρ̂
(N)
0

(t)] vanishes as a result of the condensate Hamiltonian Ĥ0 being

only proportional to the first and second order of the condensate number operator. It therefore
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commutes with the diagonal condensate state ρ̂(N)
0

(t).

The coarsegrained rate of variation [20], ∆ρ̂(N,I)
0

(t)/∆t, is the instantaneous rate of variation

∂tρ̂
(N,I)
0

(t) averaged over the time interval ∆t:

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

j

=

∆ρ̂(N,I)
0

(t+∆t)−∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

j

=
1

∆t

t+∆t
∫

t

dt′
∂ρ̂(N,I)

0
(t′)

∂t′

∣

∣

∣

∣

∣

∣

∣

∣

∣

j

. (5.66)

All rapid variations on time scales smaller than ∆t are washed out in this average. However, since

the time interval ∆t is still much shorter than the condensate formation time τ0, the instantaneous

rate of variation in Eq. (5.65) is well approximated by the coarsegrained evolution ∆ρ̂(N)
0

(t)/∆t in

Eq. (5.29), which entails

∂ρ̂(N,I)
0

(t)

∂t
≈
∆ρ̂(N,I)

0
(t)

∆t
=















∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

 

+

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

!

+

∆ρ̂(N,I)
0

(t)

∆t

∣

∣

∣

∣

∣

∣

∣

�















, (5.67)

as explained in Section 5.4. Summarizing the explicit evolution terms for single particle processes

( ) in Eq. (5.42), pair processes (!) in Eq. (5.53), and using the fact that scattering processes (�)

in Eq. (5.64) as well as the energy shift terms for single particle, pair and scattering processes in

Eqs. (5.46, 5.57, 5.63) are zero, finally leads to the condensate quantum master equation of Lindbad

type for a BoseEinstein condensate of N atoms:

∂ρ̂(N)
0

(t)

∂t
=

N
∑

N0=0,
j=+,−

Γ
j

N
(N0,T)

[

Ŝ j(N0)ρ̂(N)
0

(t)Ŝ †
j (N0)− 1

2

{

Ŝ
†
j (N0)Ŝ j(N0), ρ̂(N)

0
(t)

}

+

]

+

N
∑

N0=0,
j=+,−

γ
j

N
(N0,T)

[

P̂ j(N0)ρ̂(N)
0

(t)P̂†
j (N0)− 1

2

{

P̂
†
j (N0)P̂ j(N0), ρ̂(N)

0
(t)

}

+

]

.

(5.68)

Remarkably, the dynamics of spatially coherent matter waves in the Bose gas below Tc reflects itself

in the Fock number representation as random, stochastic fluctuations of the condensate particle

number described by a quantum Markov master equation of Lindblad type. The quantum jump

operators Ŝ±(N0) for single particle events, and P̂±(N0) for pair events are defined via Eqs. (5.43,

5.44, 5.54, 5.55). We conclude this part of the thesis with the Lindblad master equation in Eq. (5.68).
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Part III

Environmentinduced dynamics in

BoseEinstein condensates
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Die Formel drückt also indirekt eine gewisse Hypothese über die gegenseitige

Beeinflussung der Moleküle von vorläufig ganz rätselhafter Art aus, welche eben die

gleiche statistische Wahrscheinlichkeit der hier als “Komplexionen” definierten Fälle

bedingt. . . . Man kann ihn auch beim Gase in entsprechender Weise deuten, indem

man dem Gase in passender Weise einen Strahlungsvorgang zuordnet und dessen

Interferenzschwankungen berechnet. . .

Albert Einstein, 8. Januar 1925 [28]
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Chapter 6

Monitoring the BoseEinstein phase

transition

BoseEinstein condensates are exquisite tools to study fundamental quantum phenomena on a

micrometer scale. A vast range of different physical situations has been experimentally realized

with ultracold matter in the last decade, confirming the fundamental importance and the broad

applicational scope of BoseEinstein condensation. However, a complete quantitative understanding

of condensate formation remains one of the most striking theoretical topics of ultracold matter

physics up to date.

So far, the pioneering works [62, 89] were followed by quantitative theories [63, 76, 79],

describing BoseEinstein condensation in terms of average condensate growth. Hence, up to now,

the dynamical inset of BoseEinstein condensation is known to express as a spontaneously insetting

exponential growth of the average condensate population after sudden cooling [90] of the gas below

its critical temperature, see Fig. 6.3. The connection between the time evolution of the microscopic

condensate number distribution during the BoseEinstein phase transition relating the Nbody

dynamics in the Bose gas to the observation of an average macroscopic ground state occupation,

however, is so far not well understood. A further step towards the latter aspect is approached

by monitoring the condensate number fluctuations in Fock particle number representation during

BoseEinstein condensation within our quantum master equation theory.

For this purpose, the master equation for the condensate particle number distribution is ex

tracted from the Lindblad Eq. (5.68) in Section 6.1. It describes the Markov time evolution of the

entire Nbody state of the gas in terms of the quantum mechanical two body transition rates of

Chapter 5. The quantum master equation serves as an ideal toy system to study the dynamics of

109
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critical number fluctuations during a quantum phase transition, enabling us to numerically study the

full condensate quantum distribution during condensate formation in Section 6.2. The first direct

access to the condensate and noncondensate number fluctuation dynamics during BoseEinstein

condensation provides a dynamical picture of the condensate growth resulting from the spatial and

thermal averaging over all accessible single states of the gas particles below Tc, which manifests ef

fectively in a randomly fluctuating, noncondensate environment, populating the ground state mode

macroscopically on average. The average condensate growth and the noncondensate depletion

garnished by the fluctuations of the noncondensate gas particles are analyzed in Sections 6.2.3, 6.3

and 6.4. Resulting initiation and formation times for BoseEinstein condensation are compared

to experimental observations [24, 91] and to previous theoretical predictions of quantum kinetic

theory [17] in Sections 6.3 and 6.4.

6.1 Dynamical equations for BoseEinstein condensation

Remember that, by Eq. (5.11),

pN(N0, t) = 〈N0|Tr⊥ρ̂(N)(t)|N0〉 (6.1)

also specifies the total state of N particles in the Bose gas:

σ̂(N)(t) =

N
∑

N0=0

pN(N0, t)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T) , (6.2)

see Eq. (5.11).

6.1.1 Master equation of BoseEinstein condensation

The most general Lindblad quantum master equation (5.68) describes the time evolution of the

reduced diagonal condensate density matrix, ρ̂0(t) = Tr⊥σ̂(N)(t), during BoseEinstein condensation

with respect to two body interactions in a gas of N atoms. For practical purposes, it is useful

to extract the master equation for the condensate number distribution in order to study the time

evolution of the Nbody state in Eq. (6.2).

To this end, the chemical potential of the condensate µ0 is considered to be energetically

below noncondensate single particle energies, such as in experiments where condensation occurs
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−Γ+
N

(N0,T)pN(N0, t)

+Γ
+

N
(N0 − 1,T)pN(N0 − 1, t)

+Γ
−

N
(N0 + 1,T)pN(N0 + 1, t)

−Γ−
N

(N0,T)pN(N0, t)

|N0 + 1〉〈N0 + 1|

|N0〉〈N0|

|N0 − 1〉〈N0 − 1|

feeding loss

Figure 6.1: Probability flow between different condensate number states, expressed by the master equation of Bose
Einstein condensation in Eq. (6.3). The corresponding transition rates are defined by Γ+

N
(N0,T) = 2(N0 + 1)λ+ (N−

N0,T), with λ+ (N−N0,T) given by Eq. (5.40), and by Γ−
N

(N0,T) = 2N0λ
−
 (N−N0,T), with λ− (N−N0,T) given

by Eq. (5.51). In the stationary state, which is reached for long times t→∞, the rates obey the condition of detailed
balance: Γ+

N
(N0,T)pN(N0,T) = Γ−

N
(N0 + 1,T)pN(N0 + 1,T).

on the single particle ground state level [15, 64, 92]. In that case, the Lindblad term for pair

processes (!) is negligible, and single particle processes ( ) dominate the condensation process

(see Section 7.1.2). Projecting the Lindblad master Eq. (5.68) onto the elements of the underlying

condensate FockHilbert space, the time evolution of the Nbody state in Eq. (6.2) reduces to one

closed master equation of BoseEinstein condensation, which describes the condensation process

as a consequence of single particle quantum jumps of the condensate particle number, N0→N0±1,

induced by the noncondensate component of the gas:

∂pN(N0, t)

∂t
=−

[

Γ
+

N (N0,T)+ Γ−N(N0,T)
]

pN(N0, t)

+ Γ
+

N(N0 − 1,T)pN(N0 − 1, t)

+ Γ
−
N(N0 + 1,T)pN(N0 + 1, t) ,

(6.3)

with the total condensate growth rate Γ+
N

(N0,T) = 2(N0 + 1)λ+ (N −N0,T), with λ+ (N −N0,T)

defined by Eq. (5.40), and the total condensate loss rate Γ−
N

(N0,T) = 2N0λ− (N − N0,T), with

λ− (N−N0,T) defined by Eq. (5.51). Remember that pN(N0, t) also determines the noncondensate

particle number distribution, because the total particle number N0 +N⊥ =N is conserved, leading

to pN(N−N0, t) = pN(N0, t).
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Figure 6.2: Time evolution of pN(N0, t) with respect to Eq. (6.3) (low (blue) and high (red) intensity regions, indicated

by the color gradient) during the transition of N = 2000 87Rb atoms into a BoseEinstein condensate in a harmonic
trap with frequencies ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz. The final temperature of the gas is T = 20.31

nK; the critical temperature is Tc = 33.86 nK. Whereas the wave picture of the particles implies the interference of all
waves below Tc to a giant matter wave (see Chapter 1), condensate formation translates in the many particle picture
as a rapid growth of the average condensate fraction, garnished with large initial condensate number fluctuations, as
discussed in more detail in Section 6.2.

The master Eq. (6.3) needs to be distinguished from the so called Pauli master equation for the

harmonic oscillator [20, 21] coupled to a heat bath, in which the transition rates are introduced

phenomenologically by the Fermi’s golden rule [20]. In contrast, Eq. (6.3) describes the condensate

subsystem coupled to a noncondensate particle reservoir accounting for (i) the finite spatial phase

coherence time (τcol) between the scattering quantum particles between system and reservoir

leading to a finite resolution in energy Γ ∼ τ−1
col

(see Chapter 5), as well as (ii) the finite size (particle

number conservation implies N −N0 particles for each condensate population of N0 particles) of

the particles in the noncondensate vapor below Tc, which leads to condensate formation. The

steady state condensate quantum distribution is therefore not a thermal Boltzmann distribution over

the eigenenergies of the harmonic oscillator [21, 93] as governed by thermal atoms, but predicts

macroscopic ground state occupation below Tc.

The resulting probability flow (condensate growth) in particle number representation is sketched

in Fig. 6.1: the net particle flow towards a state |N0〉〈N0| ⊗ ρ̂⊥(N − N0,T) is due to the terms

of the positive probability feeding current Γ+
N

(N0 − 1,T)pN(N0 − 1, t)+ Γ−
N

(N0 + 1,T)pN(N0 + 1, t),

whereas the particle flow from the state |N0〉〈N0| ⊗ ρ̂⊥(N − N0,T) is governed by the negative

probability loss current Γ+
N

(N0,T)pN(N0, t) + Γ
−
N

(N0,T)pN(N0, t). As shown in Section 8.1, the
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Figure 6.3: Average condensate fraction σ0(t) = 〈N0〉(t)/N (blue solid line) and noncondensate fraction σ⊥(t) =

1 − σ0(t) (red dashed line) during BoseEinstein condensation in a gas of N = 2500 87Rb atoms obtained from
Eqs. (6.3, 6.4). Trap parameters and final temperature correspond to Fig. (6.2). The critical temperature is Tc = 36.47
nK.

steady state of the system is thus reached, if, and only if the net probability flux to every number

state |N0〉〈N0| (implying in particular detailed balanced particle flow, ∂t〈N0〉 = 0) is zero, i.e.

Γ
+

N
(N0,T)pN(N0,T) = Γ−

N
(N0 + 1,T)pN(N0 + 1,T) for all N0.

To study the dynamics of condensate formation, we solve the (N + 1) coupled differential

Eqs. (6.3) for the condensate particle number distribution pN(N0, t) by numerically exact propa

gation, using the 2(N + 1) feeding and loss rates λ± (N −N0,T) in Eq. (7.33). They particularly

define the time evolution of the average condensate occupation, 〈N0〉(t), see Eq. (6.4). A typical

example of the time evolution for pN(N0, t) during BoseEinstein condensation in a gas of N = 2000

87Rb atoms is displayed in Fig. 6.2. In general, our numerical calculations in this parameter regime

require small computation times of 10 − 60 seconds. For increasing total particle numbers, the

scenario in Fig. 6.2 is reproducible for up to N = 105 − 106 atoms within two days of computation

time on a single processor.

6.1.2 Growth equations for average condensate occupation

From Eq. (6.3), any desired moment of pN(N0, t) can be extracted. Taking the average of N0 over

the probability distribution pN(N0, t) leads to the growth of the average condensate fraction:

〈N0〉(t) ≡
N
∑

N0=0

N0pN(N0, t) . (6.4)



114 Chapter 6. MONITORING THE BOSEEINSTEIN PHASE TRANSITION

Figure 6.3 shows the average ground state occupation during BoseEinstein condensation for the

same same trap parameters as in Fig. 6.2, with N = 2500 87Rb atoms undergoing the BoseEinstein

phase transition to the final gas temperature T = 20.0 nK. The typical Sshape behavior [59, 18] of

the condensate fraction σ0(t) = 〈N0〉(t)/N is confirmed by our quantum master equation (6.3), such

as the inverse Zshape behavior for the noncondensate fraction, σ⊥(t) = 1−〈N0〉(t)/N, is presented

as a function of time.

Instead of propagating the exact equation (6.4) for calculating the average condensate occupa

tion, it is possible to deduce a simple growth equation, similar to quantum kinetic theory [76].

Herefore, the quantum master Eq. (6.3) is traced over the number of condensate particles, N0,

thereby leading to

∂〈N0〉(t)
∂t

=

N
∑

N0=0

2(N0 + 1)
[

λ+ (N−N0,T)pN(N0, t)−λ− (N−N0 − 1,T)pN(N0 + 1, t)
]

. (6.5)

Rather than completely neglecting quantum fluctuations [76] (the width of pN(N0, t)), we consider a

sufficiently narrow peaked distribution pN(N0, t) around the mean value 〈N0〉, within which the rates

are approximately constant (see Figs. 6.2, 7.6), λ± (N −N0,T) ≈ λ± (N − 〈N0〉,T), for N0 ≃ 〈N0〉.
This entails the condensate growth equation for the average condensate occupation gas of exactly

N particles:

∂〈N0〉(t)
∂t

= 2
[

λ+ (N− 〈N0〉,T)−λ− (N− 〈N0〉,T)
]

(〈N0〉(t)+ 1) . (6.6)

Equation (6.6) nicely highlights the quantum coherent nature of the condensation process: The net

flux rate λ+ (N − 〈N0〉,T)− λ− (N − 〈N0〉,T) per particle towards the condensate mode (the ratio

gives the balance of the number of events in which the particle populates the condensate mode to

the number of events it entered the noncondensate) is stimulated by the factor (N0 + 1), meaning

that the presence of a condensate enhances the net feeding rate of each individual noncondensate

particle.

Equation (6.6) differs – despite the transition rates which depend on the noncondensate particle

number N−N0, and are obtained without further approximations than assuming the dilute gas limit

(compare the rates of QKT in Section 2.4) – in the spontaneous emission term 2λ+ (N−〈N0〉,T) from

the kinetic growth equation of QKT in Eq. (2.31). The absence of the emission term in Eq. (6.6)

is conceptually important, reflecting consistency with thermodynamics: for ∂t〈N0〉 = 0, the net
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Figure 6.4: Standard deviation ∆N0(t) of the condensate particle number distribution pN(N0, t) during BoseEinstein
condensation for the same parameters as in Fig. 6.3. Large number fluctuations in the noncondensate thermal vapor
are observed at the initial stage of formation with a maximum spread of the distribution at t ≈ 600 ms, reducing at
stationary condensate growth, see Fig. 6.3.

energy flow between condensate and noncondensate is zero on average, µ0 = µ⊥, which is easily

verified using the balance condition, λ+ (N−〈N0〉,T) = exp[β∆µ(N− 〈N0〉,T)]λ− (N− 〈N0〉,T), in

Eq. (7.20), with ∆µ(N−〈N0〉,T) = µ⊥(N−N0,T)−µ0. The condensate growth scenario in Eq. (6.6)

thus implies that µ0 = µ⊥(N − 〈N0〉,T) on average at stationary particle flow between condensate

and noncondensate. The latter is in particular reached in the steady state of the gas (see Chapter 8)

– in agreement with thermodynamics. According to the validity of the detailed balance condition, an

upper bound for deviations from microscopic energy conservation is β~τ−1
col
≪ 1 (see Chapter 7). The

modified Eq. (6.6), however, yields only negligibly small quantitative corrections (see Chapter 6.3)

with respect to Eq. (2.31).

6.1.3 Condensate particle number fluctuations

Condensate number fluctuations during BoseEinstein condensation are characterized by the second

moment of pN(N0, t):

Var[N0](t) = 〈N2
0〉 − 〈N0〉2 =

N
∑

N0=0

N2
0pN(N0, t)−

















N
∑

N0=0

N0pN(N0, t)

















2

. (6.7)

From the evolution Eq. (6.3), the variance Var[N0] (t), and thus the standard deviation ∆N0(t) =
√

Var[N0] (t) of the distribution pN(N0, t) is extracted as a function of time. The standard deviation
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of the condensate number ∆N0(t) is displayed in Fig. 6.4 during BoseEinstein condensation, using

the same parameters as in Fig. 6.3.

6.2 BoseEinstein condensation in harmonic traps

To analyze the BoseEinstein phase transition in more detail, we consider here a gas of N interacting

particles (in the perturbative limit, a̺1/3 → 0+, see Chapter 7) prepared in a timeindependent

threedimensional harmonic trapping potential with frequencies ωx,ωy and ωz, in an initial mixed

many particle quantum state

σ̂(N)(0) =

N
∑

N0=0

pN(N0,0)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T) , (6.8)

given the initial condensate particle number distribution pN(N0,0) = e−βη0N0(1−e−βη0(N+1)) (of a gas

above Tc) corresponding to thermal atoms [93]. Now, the relaxation dynamics of this initial state

to the Bose condensed phase is studied, directly reflecting the dynamical onset of noncondensate

quantum fluctuations in terms of the condensate and noncondensate particle number distribution

pN(N0, t) as described by Eq. (6.3).

6.2.1 Monitoring of the condensate number distribution

The formation of a BoseEinstein condensate is studied within our master equation theory by direct

numerical propagation of Eq. (6.3), leading to a system of N + 1 coupled differential equations

for each instant of time. Numerical solutions have been reproduced1 for different experimental

parameters and particle numbers up to N = 5.0 · 105.

A typical example is displayed in Fig. 6.5: The probability distribution pN(N0, t) is shown as a

function of time t and of the condensate particle number N0, for a gas of N = 200 87Rb atoms which

undergoes the BoseEinstein phase transition in a threedimensional harmonic trap with frequencies

ωx = ωy = 2π×42.0 Hz, ωz = 2π×120.0 Hz. The final gas temperature is set to T/Tc = 0.40 in order

to model a sudden cooling process [90], given the ideal gas critical temperature Tc = 15.72 nK.

The lower panel in Fig. 6.5 shows the xy projection of the condensate particle number distribution

pN(N0, t).

1with computation times of up to 1− 2 days on a serial computer
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Figure 6.5: Condensate particle number distribution pN(N0, t) during the transition of a gas of N = 200 87Rb atoms
into a BoseEinstein condensate in a threedimensional harmonic trap with trapping frequencies ωx = ωy = 42.0 Hz,

ωz = 120.0 Hz, given a critical temperature Tc = 15.72 nK. We model a sudden cooling process by switching the
temperature of the reservoir below the phase transition temperature, T/Tc = 0.4. Note that the noncondensate
particle number distribution, pN(N −N0, t) = pN(N0, t), is simultaneously captured by replacing N0 → (N −N0) in
the figure. Lower panel shows the xy projection of pN(N0, t).
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Figure 6.6: Time dependent width, ∆N0(t) = [〈N2
0
〉(t)−〈N0〉2(t)]1/2 (left panel), and the evolution of the maximum

σ0(t) = 〈N0〉(t)/N (right panel), of the distribution pN(N0, t) in Fig. 6.5 during BoseEinstein condensation. The
inflection point occurs of the with occurs at an approximate condensate fraction of 1/4.

A switch below the critical temperature induces a quench2 of the noncondensate density

below the critical density for BoseEinstein condensation, (N −N0)(kBT)3/~3ωxωyωz > ζ(3), and

thus leads to a coherent spatial coupling of the atoms in the gas. While the wave picture of

the particles implies an initially large number of coherently interfering matter waves, this wave

dynamics is translated into the microscopic many particle picture as a coupling of many transition

channels for particle exchanges between noncondensate and condensate atoms leading to number

uncertainties. The resulting initially strong number fluctuations during the onset condensate of

the condensate formation process in the gas initiate and trigger the BoseEinstein phase transition,

as directly monitored in Fig. 6.5: In the exponential step of condensate growth, a large initial

spreading of the condensate particle number distribution pN(N0, t) is observed, which is due to the

large number fluctuations in the noncondensate environment being transferred to the condensate

subsystem because of particle number conservation. The corresponding number distributions are

both simultaneously captured by p(N0, t) = pN(N −N0, t). In this first stage, the buildup of a large

condensate fraction sets in, however, with high initial uncertainty in the number occupation.

As the gas evolves in time, the noncondensate density reduces and approaches its equilibrium

value defined by the final temperature T of the gas, the noncondensate atoms increasingly lose

their spatial coherence during condensate growth (in the wave picture), and thus finally stop the

condensation process. In the many particle representation, this is effectively reflected by the

2Consult Chapter 7 and Section 7.6 for the conditions of the critical density for condensate formation, as well as for the reaching
of a detailed particle balance.
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depopulation of noncondensate single particle occupations, and consequently by the reduction of

the condensate number fluctuations. The reshaping of the condensate particle number distribution

is herein understood as due to the decreasing number of contributing noncondensate single particle

states to the dynamical condensate growth.

In the final steady state, the remaining condensate number fluctuations are induced by thermal

fluctuations of the surrounding noncondensate environment (see Chapter 8).

It will be shown in Chapter 7 that, on average, the reaching of a detailed balanced parti

cle flow between condensate and noncondensate modes implies a (dilute) equilibrium non

condensate density, i.e. the stationarity condition ̺⊥λ3(T) = ζ(3/2) for a gas in a box, or

(N −N0)(kBT)3/~3ωxωyωz = ζ(3) for a threedimensional harmonic potential (see Section 7.6).

In the steady state, the noncondensate chemical potential is therefore zero (in both cases), mean

ing that the entropy of the gas is maximized, that the free energy is minimized, and that the

net average energy flow between condensate and noncondensate is zero – according to the

laws of thermodynamics. Obviously, the average ground state occupation (condensate forma

tion) is enhanced below Tc with respect to the initial thermal condensate number distribution

pN(N0,T) = e−βη0N0(1− e−βη0(N+1)).

6.2.2 Dynamics of the condensate number variance

In Figs. 6.6 and 6.7, the dynamical threestep process of the number distribution pN(N0, t) in Fig. 6.5

is emphasized by extracting the time evolution of the distribution’s maximum,3 σ0(t) = 〈N0〉/N (right

panel), and its width ∆N0(t)/
√

N = [〈N2
0
〉(t)−〈N0〉2(t)]1/2/

√
N (standard deviation, left panel), as a

function of time: (i) In the exponential stage of condensate growth, the condensate particle number

starts to fluctuate, before (ii) its distribution is reshaped at the inflection point 〈N0〉/〈N⊥〉 ∼ 1/3.

After the initial cycle, (iii) the exponential growth stops and the particle number distribution tends

towards its final equilibrium shape of a welldefined width.

The maximum width (inflection point) occurs at t = 47 ms, i.e. at an average condensate fraction

of σ0 = 0.25, and reaches the equilibrium width of the particle number distribution pN(N0,T)

approximately after t ∼ 500 ms. The observed inflection point turns out to be universal (at σ0 ∼ 0.25)

in the numerical propagation of Eq. (6.3). This can be understood as due to a direct consequence

of the specific form of the interaction term V̂ in Eq. (4.16), because the approximate ratio

of 〈N0〉/〈N⊥〉 = 1/3 corresponds to interactions between condensate and noncondensate atoms

getting maximal with regard to single particle processes.

3in units of the total particle number N



120 Chapter 6. MONITORING THE BOSEEINSTEIN PHASE TRANSITION

Figure 6.7: Sequences of characteristic dynamical stages of the condensate particle number distribution pN(N0, t)
during condensate formation, here after t1 = 50 ms, t2 = 100 ms and t3 = 1000 ms, extracted from Fig. 6.5. The
incipiently narrow distribution is largely spread at the stage of exponential condensate growth, and begins to evolve
towards high condensate population in the second stage. Finally, it reshapes while reaching the equilibrium steady
state distribution in the last stage of (linear) condensate growth.

Analysis of the average condensate fraction, σ0(t) = 〈N0〉/N in Fig. 6.6, highlights that the

inflection point at the exponential stage of condensate growth is slightly delayed with respect to the

widths’ time evolution, occuring at t = 55 ms. The condensate fraction reaches its equilibrium value

starting around t = 1000 ms, about a factor of 2 later than the width ∆N0(t). This indicates that the

rapid initial depopulation of the highly excited single particle states reduce the condensate number

fluctuations faster than reaching a steady state particle flow between the energetically lowlying

noncondensate single particle states and the condensate mode, being not yet the case after 500

ms (comparable to Stoof’s prediction explained in Chapter 2.4).

In Fig. 6.7, three different sequences of the distribution pN(N0, t) are extracted from Fig. 6.6

at t1 = 50 ms, t2 = 100 ms and t3 = 1000 ms, to highlight the three characteristics steps of the
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distribution pN(N0, t) towards the stationary state.

6.2.3 Average condensate growth from the thermal cloud

To study the dynamics of condensate growth and noncondensate depletion in the microscopic

many particle picture, we have used so far the exact numerical propagation of Eq. (6.3), taking into

account the full number distribution (see Chapter 6). Here, we analyze and employ the growth

Eq. (6.6) in order to study condensate formation on a thermodynamic scale.

Equation (6.6) describes the process of condensate formation from an initially empty condensate

mode, starting to grow proportional to the rate λ 
+

(N−〈N0〉 = 0,T), because initially 〈N0〉 = 0, and

therewith λ 
+

(N−〈N0〉 = 0,T)−λ 
+

(N−〈N0〉 = 0,T) > 0 (i.e., particle flow towards the condensate,

see Section 7 for explicit calculations of the transition rates). A temperature switch below the critical

temperature thus induces energy flow towards to condensate in terms of particles,∆µ(N−〈N0〉,T) <

0, which gives rise to an exponential condensate growth. The growth is stimulated by the factor

(〈N0〉(t) + 1) after initiation which modifies and redefines the condensate feeding and loss rates

λ± (N−〈N0〉,T) in time. This “loop” runs until stationarity is reached, where∆µ(N−〈N0〉,T)→ 0−.

In this case, detailed balanced particle flow λ 
+

(N−〈N0〉,T) = λ − (N−〈N0〉,T) and a macroscopic

ground state occupation is reached on average.

It is the equal energy balance condition µ0 = µ⊥(N−〈N0〉), which defines the mean equilibrium

occupations 〈N0〉(∞) and 〈N⊥〉(∞) = 1− 〈N0〉(∞) by Eq. (7.8), quantitatively determined by the

final gas temperature T, as well as by the geometry of the trap and the total number of particles

N in the system. Equilibrium occupations 〈N0〉(∞) and 〈N⊥〉(∞) are given analytically in the

semiclassical limit of large particle numbers and high temperature via Eq. (7.48): For the three

dimensional uniform case, the corresponding equilibrium values are 〈N0〉(∞) = N(1− T3/2/T3/2
c )

with Tc = 2π~2̺2/3/ζ2/3(3/2)mkB, whereas 〈N0〉(∞) =N(1−T3/T3
c ) with Tc = ~ωN1/3/ζ1/3(3)kB for

a threedimensional harmonic trap, where ω = (ωxωyωz)1/3 is the spatially averaged trap frequency

(see Chapter 7). Corrections to the critical temperature (arising from the discrete nature of the

single particle spectrum) are discussed in Chapter 8.

Figure 6.8a displays the dynamics of the average condensate fraction σ0(t) = 〈N0〉(t)/N and of

the average noncondensate fraction σ⊥(t) = 〈N⊥〉(t)/N, correspondingly, as a function of time, for

a condensate formation process with typical experimental parameters [24]. Similarly, N = 5 · 105

23Na atoms are implemented to study the formation process in a threedimensional harmonic trap

with frequencies ωx = 2π×235 Hz, ωy = 2π×410 Hz, ωz = 2π×745 Hz. The gas is subjected to the

initial conditions σ0(0) = 0.0 and σ⊥(0) = 1.0, and T = 1.0 µK. The critical temperature is Tc = 1.5
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Figure 6.8: a) Average condensate (blue line) and noncondensate (red line) fractions, σ0(t) and σ⊥(t), respectively,

as a function of time for a gas of N = 5 · 105 23Na atoms undergoing the BoseEinstein phase transition in a
threedimensional harmonic trap with frequencies ωx = 2π × 235 Hz, ωy = 2π × 410 Hz, ωz = 2π × 745 Hz. The

final temperature is T = 1.0 µK, and the ideal gas critical temperature is Tc = 1.5 µK. Parameters correspond to

experiments of Ref. [24], with a gas parameter of a̺1/3 ∼ 10−2. Figures b) and c) show the temporal change of the
average condensate fraction σ̇0(t) (blue line), and noncondensate fraction σ̇⊥(t) (red line), versus time in figure b),
and versus condensate fraction in figure c), respectively.
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µK. According to Ref. [24] the dilute gas parameter is a̺1/3 ∼ 10−2≪ 1.

We confirm4 the typical “Sshape behavior” of BoseEinstein condensation [17, 67, 72, 73, 74,

76]: After a short initiation time, the average condensate fraction (depicted as blue line) grows

exponentially fast, before it slowly reaches its equilibrium population. Since the particle number is

conserved, the inverse scenario is observed for the noncondensate fraction (shown as red line),

i.e., after a slow initiation period, the noncondensate starts to exponentially decrease until reaching

the equilibrium steady state. It is evident that the sum σ0(t)+ σ⊥(t) = 1 at all times5.

Figures 6.8b and 6.8c show the average flux σ̇0(t) of particles from the noncondensate to the

condensate, and vice versa, with σ̇⊥(t) = −σ̇0(t), as a function of time (Fig. 6.8b), and as a function

of the condensate fraction (Fig. 6.8c), respectively, for the same parameters as in Fig. 6.8a. For the

given parameters the initiation time6 is τini = 125 ms, and the final saturation time to the equilibrium

population is τ0 = 400 ms. The observed time scales for condensate formation hence agree with

the theoretical quantitative analysis presented in Refs. [91] for sudden cooling, and thus with the

experimental observations of Refs. [24], see the following section.

6.3 Comparison of formation times to stateoftheart

Quantitative comparisons of initiation and condensate formation times predicted by the master

equation theory (based on the unperturbed onebody condensate feeding rates λ± (N −N0,T) of

Section 7.5) are compared to experimental and theoretical predictions of Refs. [24, 17, 91]. To this

end, we use the kinetic growth equation in Eq. (6.6).

The initiation time τini = 125 ms in Fig. 6.8 is in very good agreement with QKT [91], where the

authors found an initiation time τini = 120− 130 ms, and thus with the experiments in Ref. [24].

However, the condensate formation time τ0 ∼ 500 ms predicted by our master equation approach

deviates by a factor two from the formation time τ0 ∼ 250 ms of quantum kinetic theory [91]. Our

condensate formation times match the correct order of magnitude of the experimental setup and

previous theoretical predictions in this case.

Fig. 6.9 presents a further comparison to experimental and theoretical results [17] in case of

sudden cooling. To model these experiments, we consider a cloud of N = 4.4 · 106 bosonic 87Rb

atoms, cooled in an anisotropic harmonic trapping potential with trapping frequencies ωx = ωy =

4as being analyzed for large ranges of different experimental parameters
5Indeed, Eq. (6.3) analytically shows that pN(N0, t) remains normalized at all times. In consequence, N0 + N⊥ = N maintains

not only on average but also for each realization, because p(N0, t) ≡ pN(N−N0, t).
6The initiation time is defined as the point of maximum particle flux to the condensate mode, specified by the condition that

∂2〈N0〉(t)/∂t2
= 0.
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Figure 6.9: Average condensate fraction σ0(t) in a), and average particle flux σ̇0(t) to the condensate in b), for

the experimental parameters [17] corresponding to N = 4.4 · 106 bosonic 87Rb atoms in an anisotropic harmonic
trapping potential with trapping frequencies ωx = ωy = 2π × 110 Hz, ωz = 2π × 14 Hz, for final gas temperatures

T = 200 nK (blue solid line), T = 220 nK (red dashed line) and T = 240 nK (black dashed dotted line). We find
initiation times τini = 105 ms for T = 200 nK, τini = 243 ms for T = 220 nK, and τini = 522 ms for T = 240 nK, and
condensate formation times, which range from τ0 = 800 to τ0 = 1500 ms. The time scales of Figs. a) and b) match
the experimental ones of Ref. [17] within the experimental accuracy.
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Figure 6.10: Comparison of condensate formation times studied in terms of the average condensate fraction
σ0(t) = 〈N0〉/N in a), and the particle flux to the condensate mode σ̇0(t) in b), obtained by the growth equation of
the master equation (solid blue line), Eq. (6.6), versus the growth equation of quantum kinetic theory [76] (dashed
red line), Eq. (2.31). The comparison is done for N = 2000 bosonic 87Rb atoms in an isotropic harmonic trapping
potential with frequencies ωx =ωy = ωz = 2π×100 Hz, cooled to T/Tc = 0.48, with an ideal gas critical temperature
Tc = 56.81 nK. Initiation times are τini(QKT) = 46 ms with Eq. (6.6), and τini = 51 ms with Eq. (2.31), hence differing
by less than 1%.
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2π× 110 Hz, ωz = 2π× 14 Hz. Since the final temperature of the atomic cloud in the experiment

is T = 220± 20 nK, the condensate formation time is calculated for three different temperatures

T = 200 nK, T = 220 nK and T = 240 nK, see Fig. 6.9: Initiation times are τini = 106 ms, τini = 243

ms and τini = 522 ms, strongly dependent on the final gas temperature. Formation times range

from τ0 = 800 to τ0 = 1500 ms. Initiation times of the experiment [17] are τini ∼ 300 ms, while

condensate formation times are of the order of τ0 ∼ 800− 900 ms.

A similar quantitative agreement between our master equation theory and the experiment has

been found for further experimental measurements [23].

We conclude that condensate formation times obtained in the perturbative limit, a̺1/3 → 0+,

match realistic experimental time scales for condensate formation [17, 24, 91]. Inclusion of the per

turbative effects onto the condensate wave function is expected to provide even better quantitative

agreement.

6.4 Modified condensate growth equation

Quantitative corrections arising from the absence of the “spontaneous emission term” proportional

to 2λ+ (leading to consistency with thermodynamics) in the growth Eq. (6.6) are compared to the

kinetic growth equation of QKT [76]. To this end, initiation and condensate formation times are

compared in Fig. 6.10 for a gas of N = 2000 bosonic 87Rb atoms undergoing the phase transition in

an isotropic harmonic trap. The red dashed curve depicts the calculations of condensate formation

times via the growth Eq. (2.31) of QKT, whereas the blue solid line constitutes Eq. (6.6), confirming

that the initiation times, τini = 46 ms and τini = 51 ms, differ by less than 1% – provided that

the same transition rates (of our quantum master equation theory) are used. Hence, the formation

process is slightly accelerated by the unphysical “spontaneous emission” term in Eq. (2.31), whereas

the condensate formation time τ0 ∼ 500 ms is equal (on an observable scale) for the present choice

of the trap parameters.



Chapter 7

Transiton rates for BoseEinstein

condensation

We show here how to evaluate and analyze the corresponding transition rates and energy shifts

formally introduced in Chapter 5 to solve the master equation for the diagonal elements of the

condensate density matrix (6.3) arising from the Lindblad master equation (5.68). Explicit analytical

expressions are given for the transition rates and energy shifts in a threedimensonal harmonic trap.

7.1 Single particle ( ), pair (!) and scattering (�) rates

In this section, explicit analytical expressions for all two body transition rates for particle flow

between the condensate and noncondensate are derived. These were formally specified as single

particle condensate feeding and loss rates, λ± (N −N0,T) in Eqs. (5.40, 5.41), as pair condensate

feeding and loss rates, λ±!(N−N0,T) in Eqs. (5.51, 5.52), and as the scattering rate λ�(N−N0,T)

in Eqs. (5.61, 5.62).

7.1.1 Single particle feeding and loss rate

Given a number of N0 particles occupying the condensate mode and a final temperature T of

the gas, particle exchanges between condensate and noncondensate which raise and lower the

condensate particle number by one occur with the rates λ± (N−N0,T) in Eqs. (5.40, 5.41).

To calculate the transition rates associated to single particle events, the lower bound of the time

integral in the single particle feeding and loss rates in Eq. (5.40, 5.41) is extended to −∞, using the

property

127
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G
(±)
 (~r, ~r ′,N−N0,T, τ) =

[

G
(±)
 (~r, ~r ′,N−N0,T,−τ)

]⋆
(7.1)

of the two point correlation functions G
(±)
 (~r, ~r ′,N − N0,T, τ) for single particle processes in

Eqs. (5.37, 5.38). Thereby, the single particle loss and feeding rates turn into

λ± (N−N0,T) =
g2

2~2

"

C×C

d~r d~r ′ Ψ⋆0 (~r)Ψ0(~r ′)

∞
∫

−∞

dτ e±iω0τ−Γ2τ2
G

(±)
 (~r, ~r ′,N−N0,T, τ) . (7.2)

First, attention is drawn to the decomposition of the two point correlation function G
(±)
 (~r, ~r ′,N−

N0,T, τ). As discussed in Section 4.3, the average of the noncondensate field correlations in

G
(±)
 (~r, ~r ′,N−N0,T, τ) is evaluated with respect to a thermal state of the noncondensate described

by the Hamiltonian Ĥ⊥ in Eq. (4.26) projected onto the subspace of (N−N0) particles. According

to Wick’s theorem [94], which can generally be applied in order to calculate expectation values

of field operators with respect to the linearized noncondensate at thermal equilibrium, the two

point correlation functions G
(±)
 (~r, ~r ′,N−N0,T, τ) decompose from a product of six noncondensate

fields, see Eq. (5.37, 5.38), into a product of three time ordered two point correlation functions of

two noncondensate fields, as explicitly shown in Eqs. (A.9, A.10) of Appendix A.1. This leads to

the expression

λ± (N−N0,T) =
8π3~2a2

m2

∑

k,l,m,0

F
±
 (k, l,m,N−N0,T) δ(Γ) (ωk +ωl −ωm −ω0) (7.3)

for the single particle feeding and loss rates.1 Herein, we introduced the frequencies ωk ≡ ǫk/~.

The δfunction in Eq. (7.3),

δ(Γ)(∆ω) =

√
π

Γ
exp

[

− (∆ω)2

4Γ2

]

, (7.4)

originates from energy conservation and assumes a finite energy width ∼ Γ = τ−1
col

according to the

temporal decay of noncondensate phase correlations.

1Note that, Eq. (7.3) contains an infinite sum over all microscopic single particle exchange processes as depicted in the upper
right diagrams in Fig. 5.1, hence relating the feeding rate in number representation to the spatial and to the thermal, coarsegrained
average over all possible spatial configurations of the gas particles.
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Figure 7.1: Stimulated net single particle transition rate N0 ×Λ(N−N0,T) as a function of N0, for N = 2500 87Rb
atoms in a threedimensional harmonic trap with frequencies ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz, with

Λ(N −N0,T) = (λ+ (N −N0,T) − λ− (N −N0,T)). The final temperature of the gas is T = 20.0 nK. The critical
temperature is Tc = 36.47 nK. Formation of an initially empty BoseEinstein condensate corresponds to a path from
left to the right in the figure until the reaching of equal particle balance Λ(N −N0,T) = 0. Exact balance (at the
intersection with the ordinate) is never reached completely (because the net feeding rate decreases to zero while
approaching the intersection), but is approached arbitrarily close after few seconds.

The weight function F+
 (k, l,m,N−N0,T) for single particle feeding processes is given by

F
+
 (k, l,m,N−N0,T) = fk(N−N0,T) fl(N−N0,T)

[

fm(N−N0,T)+ 1
] |ζm0

kl
|2 , (7.5)

whereas the function F−
 (k, l,m,N−N0,T) for single particle losses turns into

F
−
 (k, l,m,N−N0,T) =

[

fk(N−N0,T)+ 1
] [

fl(N−N0,T)+ 1
]

fm(N−N0,T)|ζlk
m0|

2 . (7.6)

In Eqs. (7.5, 7.6), fk(N−N0,T) denotes the average occupation number of a noncondensate single

particle mode |Ψk〉,

fk(N−N0,T) =
1

exp
[

β(ǫk −µ⊥(N−N0,T))
]− 1

, (7.7)
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where µ⊥(N − N0,T) is implicitly defined by the normalization condition for the average non

condensate single particle occupations,

∑

k,0

fk(N−N0,T) = (N−N0) , (7.8)

according to the fact that N−N0 particles populate noncondensate modes (for a detailed discussion

and derivation of Eqs. (7.7, 7.8), consult Section 7.2 and Appendix A.3). Since the particles are

indistinguishable, each two body process with energy balance ǫk + ǫl ≃ ǫm + ǫ0 is weighted by the

corresponding occupation numbers fk(N−N0,T), fl(N−N0,T), fm(N−N0)+1 and N0+1, and vice

versa. The probability amplitudes (ζlk
m0

)⋆ = ζ0m
kl

for single particle transitions occuring in the weight

functions F±
 (k, l,m,N−N0,T) in Eqs. (7.5, 7.6) take into account the quantum mechanical wave

nature of the particles. The average over the particles’ waves functions is carried out in position

space, the transition amplitudes being specified by overlap integrals over single particle states,

ζm0
kl
=

∫

C

d~r Ψ⋆0 (~r)Ψ⋆m(~r)Ψk(~r)Ψl(~r) . (7.9)

Note that the spatial average over all positions of the quantum matter waves in the gas as well

as the coherent time evolution (on the finite coherence time τcol) of the waves according to the

propagators in Eq. (7.1) is taken into account to calculate single particle transition rates.

Equations (7.9, 7.8, 7.7) are sufficient to quantify the weight functions F±
 (k, l,m,N−N0,T) in

Eqs. (7.5, 7.6) and therewith the single particle feeding and loss rates λ± (N −N0,T) in Eq. (7.3)

numerically for all k, l,m, and for any state of N −N0 particles: after explicit calculation of the

overlap integrals ζm0
kl

and (ζm0
kl

)⋆ for all k, l,m, µ⊥(N −N0,T) can be solved numerically by the

normalization condition (7.8) for each N −N0, leading to F±
 (k, l,m,N −N0,T) with the single

particle occupations in Eq. (7.7). The single particle energies ǫk are defined by the diagonalization

procedure in Section 4.3. Explicit expressions for all two body transition rates and energy shifts are

given in Section 7.5 for a threedimensional harmonic trap in the perturbative limit.

7.1.2 Pair feeding and loss rates

The calculation of the pair feeding and loss rates λ±!(N−N0,T) in Eqs. (5.51, 5.52) is performed in

the same spirit. However, it will be shown that – in contrast to single particle rates – the pair rates

lead to a negligible contribution, if the condensate chemical potential µ0 lies energetically below
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the energies of single particle noncondensate states (which is the case for threedimensional trap

geometries in dilute atomic gases [17, 18, 95]).

Pair events describe the simultaneous exchange of two particles between condensate and non

condensate, quantified by the pair feeding and loss rates

λ±!(N−N0,T) =
g2

8~2

"

C×C

d~r d~r ′Ψ0(~r)Ψ0(~r)Ψ⋆0 (~r ′)Ψ⋆0 (~r ′)

∞
∫

−∞

dτ e±2iω0τ−Γ2τ2
G

(±)
!(~r, ~r ′,N−N0,T, τ) ,

(7.10)

where we used that

G
(±)
!(~r, ~r ′,N−N0,T, τ) =

[

G
(∓)
!(~r, ~r ′,N−N0,T,−τ)

]⋆
. (7.11)

Equations (A.11, A.12) of Appendix A.1 yield the explicit analytical expressions for pair feeding and

loss rates,

λ±!(N−N0,T) =
2π3

~
2a2

m2

∑

k,l,0

F
±
!(k, l,N−N0,T)δ(Γ) (ωk +ωl − 2ω0) , (7.12)

where the weight function for pair feedings is given by

F
+

!(k, l,N−N0,T) = fk(N−N0,T) fl(N−N0,T)|ζ00
kl
|2 , (7.13)

and, correspondingly, the weight function for pair losses turns into

F
−
!(k, l,N−N0,T) =

[

fk(N−N0,T)+ 1
] [

fl(N−N0,T)+ 1
] |ζ00

kl
|2 , (7.14)

with probability amlitudes ζ00
kl
=

∫

d~r (Ψ2
0
(~r))⋆Ψk(~r)Ψl(~r).

Looking at the energy balance of a pair event, ∆ǫ! = ǫk+ǫl−2µ0, pair processes are obviously

not energy conserving, meaning that∆ǫ! > ~Γ, considering that the condensate chemical potential

µ0 lies energetically below the energies of the single particle excited states [17, 18, 95]. Hence,

the rates for pair events (!) are negligible as compared to single particle events ( ). This is

in agreement with experimental observations [95], showing that dominant two body interaction
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Figure 7.2: Scattering rate N0λ�(N − N0,T) as a function of condensate particle number N0, for N = 2500
87Rb atoms in a threedimensional harmonic trap with frequencies ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz.

The corresponding critical temperature of the gas is Tc = 36.47 nK. The scattering rate is calculated for different
temperatures T = 20.0,25.0 and 30.0 nK (from bottom to top). Scattering events erase offdiagonal elements of the
reduced condensate density matrix in Fock number representation with a rate proportional to N2

0
λ�(N −N0,T)

additionally to the thermalization process, and therefore support the Nbody BornMarkov ansatz (see Chapter 3).

processes are single particle processes ( ) in dilute quantum degenerate atomic gases.

7.1.3 Two body scattering rates

For the sake of completeness, the previous calculus of Sections 7.1.1, 7.1.2 is finally applied for

calculating scattering rates between condensate and noncondensate particles in the Bose gas,

which are formally defined by Eqs. (5.61, 5.62). Although scattering processes do not contribute

to the quantum master equation in Eq. (5.68), it is physically interesting to calculate the order

of magnitude of atomic scattering processes with ∆N0 = ∆N⊥ = 0 in a Bose gas, because they

contribute (additionally to the thermalization process) to decohering offdiagonal elements of the

reduced condensate density matrix in Fock number representation (with a rate proportional to

N2
0
λ�(N−N0,T)). The rate for scattering events reads:

λ�(N−N0,T) =
2g2

~2

"

C×C

d~r d~r ′ |Ψ0(~r)|2|Ψ0(~r)|2
∞

∫

−∞

dτ e−Γ
2τ2

G�(~r, ~r ′,N−N0,T, τ) . (7.15)

The decomposition of the correlation function G�(~r, ~r ′,N−N0,T, τ) for scattering processes, carried

out in Eq. (A.13) of Appendix A.1, leads to the following explicit analytical expression for the



7.2. DEPLETION OF THE NONCONDENSATE 133

scattering rate:

λ�(N−N0,T) =
32π3~2a2

m2

∑

k,l,0

F�(k, l,N−N0,T)δ(Γ) (ωk −ωl) , (7.16)

where

F�(k, l,N−N0,T) = fk(N−N0,T)
[

fl(N−N0,T)+ 1
] |ζl0

k0
|2 , (7.17)

given the probability amplitudes ζl0
k0
=

∫

C
d~r |Ψ0(~r)|2Ψ⋆

l
(~r)Ψk(~r). Since scattering events do not

change the particle number in the two subsystems condensate and noncondensate, the corre

sponding energy balances are ∆ǫ� = ǫk − ǫl = 0, as evident from the scattering rate in Eq. (7.16).

The scattering rate is shown as a function of the condensate particle number in Fig. 7.2.

7.2 Depletion of the noncondensate

The function µ⊥(N −N0,T) in Eq. (7.8) occurs naturally in the derivation of average single particle

occupations fk(N−N0,T) of the noncondensate [10] in Eq. (7.7) (see Appendix A.3 for the deriva

tion), and normalizes noncondensate single particle occupations to (N −N0) particles, for each

condensate population of N0 particles:

∑

k,0

fk(N−N0,T) =
∑

k,0

1

eβ(ǫk−µ⊥(N−N0,T)) − 1
= (N−N0) . (7.18)

The dependence of noncondensate single particle occupations fk(N−N0,T) on (N−N0), needed

for the calculation of two body transition rates during BoseEinstein condensation, is hence entirely

determined by the normalization condition (7.18). Since each subspace of N −N0 particles is a

thermal mixture projected onto the Fock subspace of N −N0 particles, µ⊥(N −N0,T) can also be

interpreted as an ensemble of chemical potentials for the noncondensate [10] in dependence of

(N−N0). Given analytically as

µ⊥(N−N0) = −β−1 ∂lnZ⊥(N−N0)

∂(N−N0)
, (7.19)
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the function µ⊥(N−N0) is defined by the noncondensate partition function Z⊥(N−N0) in Eq. (5.15),

and the final temperature β = kBT of the gas. Hence, µ⊥(N −N0) is proportional to the derivative

of the Boltzmann entropy, and the Helmholtz free energy of the noncondensate part of the gas

(compare chapter 1).

7.3 Detailed particle balance conditions

Emphasis is to be put on the balance conditions between loss and feeding rates for single particle

processes in Eq. (7.3), and for pair processes in Eq. (7.12). As proven in Appendix A.2, the balance

between single particle feeding and loss rates in Eq. (7.3) is

λ+ (N−N0,T) = exp[β∆µ(N−N0,T)]λ− (N−N0,T) , (7.20)

valid for finite correlation times between condensate and noncondensate, ~Γβ≪ 1. In Eq. (7.20),

∆µ(N−N0) ≡ µ⊥(N−N0,T)−µ0 marks the difference between the eigenvalue of the GrossPitaevskii

equation, µ0 in Eq. (4.4), and µ⊥(N−N0,T), which normalizes the thermal noncondensate single

particle occupations, see Eqs. (7.8, 7.18).

Equation (7.20) explains the modulation of the particle balance between single particle feedings

and losses between the condensate and the noncondensate modes in the gas by the difference

∆µ⊥(N−N0,T). In particle number representation, the condensate mode is dynamically populated

until energy balance µ0 = µ⊥(N − N0,T) between condensate and noncondensate is reached.

As shown later (in Chapter 8), the steady state condition after condensate formation implies that

µ0 = µ⊥(N−〈N0〉,T) close to the maximum 〈N0〉 of the steady state condensate number distribution,

i.e. energetic equilibrium on average is established in the final equilibrium steady state: The equality

of µ0 and µ⊥ means that the net average energy flow between condensate and noncondensate is

zero [10] – in agreement with thermodynamics. At detailed balance, λ+ (N − 〈N0〉,T) = λ− (N −
〈N0〉,T), the particle exchange between condensate and noncondensate is stationary on average.

Similarly to single particle processes, also pair losses and feedings are not independent, but

obey the balance condition

λ+!(N−N0,T) = exp[2β∆µ(N−N0)]λ−!(N−N0,T) , (7.21)

showing that also the net exchange of particle pairs between condensate and noncondensate is
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zero, if µ0 = µ⊥(N−N0,T). In turn, also the reaching of a equal particle balance implies energetic

equilibrium on average. At stationary particle flow, the energy flow is thus also conserved, if pair

processes became resonant (for µ0 > ǫk).

7.4 Single particle, pair and scattering energy shifts

Single particle, pair and scattering processes only contribute to the Lindblad dynamics if they are

energy conserving. A two body collision event which does not microscopically conserve the energy,

however, can still occur as a virtual process [20] (in conjunction with its conjugate process), if the

time scale of this process is sufficiently fast (i.e., if it occurs on a time scale τ ≪ ∆ǫ/~Γ2). This

is similar to the Lamb shift in quantum optics [86], where fluctuations of the vacuum photon field

induce a splitting of the angular momentum degenerate eigenenergies in the hydrogen atom.

According to the derivation of the Lindblad master equation in Chapter 5, the energy shift term

describing the net effect of virtual processes is composed of the different principal parts of the

complex valued transition rates:

∆̂(N−N0,T) = ~∆
(lin)(N−N0,T)N̂0 + ~∆

(nlin)(N−N0,T)N̂2
0 , (7.22)

where the quantities ∆(lin)(N −N0,T) and ∆(nlin)(N −N0,T) denote energy shifts,2 which occur

linearly and nonlinearly in the condensate number operator N̂0. Energy shifts ∆(lin)(N −N0,T)

renormalize the single particle term ~p2/2m+Vext(~r)→ ~p2/2m+Vext(~r)+~∆(lin), whereas nonlinear

shifts renormalize the interaction energy g|Ψ0(~r)|2→ g|Ψ0(~r)|2 + ~∆(nlin).

This renormalization can be used to add second order backreactions (in g) induced by virtual

processes of the noncondensate field to the finite temperature GrossPitaevskii equation [46]:





























−~
2~∇

2

2m
+ ~∆

(lin)
+Vext(~r)















+ 2gnNC(~r)+ gnC(~r)+N0~∆
(nlin)















Ψ0(~r) = µ0Ψ0(~r) , (7.23)

where nNC(~r) is the average noncondensate density, and nC(~r) the average condensate density.

The renormalization of the eigenvalue µ0 due to ~∆
(lin) and ~∆

(nlin) is calculated numerically:

the order of magnitude is about 1% of the single particle ground state energy ~ω for dilute and

2Specified in units of s−1
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Figure 7.3: Virtual single particle, pair and scattering processes create a virtual state. Resulting positive energy shifts,
∆+ , ∆

+
! and ∆+

�
in Eqs. (7.26, 7.27, 7.28) (from left to right), are represented by the connection of two conjugate

single particle ( ), pair (!) and scattering (�) diagrams. Only positive energy shifts are displayed, negative shifts
are obtained by the conjugate diagrams.

sufficiently small atomic gases, as displayed in Figs. 7.4, 7.5. Energy shifts are thus small in dilute

atomic gases. For completeness, all components of the energy shifts in Eq. (7.23) are calculated

explicitly, originating from virtual processes associated with the different nature of single particle

( ), pair (!) and scattering processes (�).

First, we note that the total energy shift ∆(lin)(N −N0,T), which is linear in the condensate

number operator N̂0, is composed of

∆
(lin)(N−N0,T) = ∆+ (N−N0,T)+∆− (N−N0,T)+ 4∆+!(N−N0,T)+∆�(N−N0,T) . (7.24)

Besides, the shift ∆(nlin)(N−N0,T) which occurs nonlinearly in N̂0 is given by:

∆
(nlin)(N−N0,T) = ∆+!(N−N0,T)+∆−!(N−N0,T)+∆�(N−N0,T) . (7.25)

Thus, each of the various processes (single particle, pair and scattering) induces positive (+) and neg

ative () energy shifts. The two body processes leading to the energy shifts in Eqs. (7.24, 7.25) are de

picted in Fig. 7.3, and are explicitly given by the imaginary parts of the rates in Eqs. (7.3, 7.12, 7.16).

Single particle ( ) energy shifts hence turn into

∆
±
 (N−N0,T) =

±8π2a2
~

2

m2

∑

k,l,m,0

F
±
 (k, l,m,N−N0,T) PV

{

1

(ωl +ωm −ωk −ω0)

}

, (7.26)

where PV {X} labels the principle part of X [58], whereas energy shifts for pair events (!) are
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Figure 7.4: Energy shift ∆(lin)
= ∆
 
+

(N−N0,T)+∆ − (N−N0,T)+ 4∆!
+

(N−N0,T)+∆�(N−N0,T) per particle

in Eq. (7.24), in units of the trapping frequency ω = 2π× 600.0 Hz is displayed as a function of temperature T for
N = 1000 87Rb atoms in the trap.

given by

∆
±
!(N−N0,T) =

±π2a2~2

m2

∑

k,l,0

F
±
!(k, l,N−N0,T) PV

{

1

(ωk +ωl − 2ω0)

}

. (7.27)

Finally, the quantity

∆�(N−N0,T) =
−32π2a2

~
2

m2

∑

k,l,0

F�(k, l,N−N0,T) PV

{

1

(ωk −ωl)

}

(7.28)

denotes the energy shift induced by scattering processes (�).

7.5 Transition rates and energy shifts in the perturbative limit

The small parameter ξ = a̺1/3 ≪ 1 of our theory3 can be identified in the transition rates in

Eqs. (7.3, 7.12, 7.16), as well as in the energy shifts in Eqs. (7.26, 7.27, 7.28). The previously

presented transition rates and energy shifts are defined via the GrossPitaevskii condensate wave

function |Ψ0〉 in Eq. (7.3), being a function of the product gN. The GrossPitaevskii state |Ψ0〉 and

therewith the single particle basis states {|Ψk〉,k ∈ N} being orthogonal to |Ψ0〉 are thus functions

of the parameter a̺ = ξ̺2/3, provided that the atomic density ̺ is replaced by the peak density

3Realized in many stateoftheart experiments (see Section 1.4).



138 Chapter 7. TRANSITON RATES FOR BOSEEINSTEIN CONDENSATION

0 5 10 15 20 25 30 35 40
−0.0155

−0.015

−0.0145

−0.014

−0.0135

temperature T [nK]

∆
n

l (N
=

1
0

0
0

,T
) ×

 [
1

0−
5
ω

]

Figure 7.5: Nonlinear energy shift per particle in units of the trapping frequency ω = 2π× 600.0 Hz as a function of

temperature T, for N = 1000 87Rb atoms in the trap. The total energy shift ∆(nlin) modifies the nonlinear term of the
condensate Hamiltonian by a relative (to g|Ψ0|2 ∼ 10−5 − 10−3~ω) amount up to 1.0%.

N|Ψ0(0)|2 at the center of the trap at sufficiently low temperatures.

Since the single particle energies ǫk in Eq. (4.28) and the corresponding number occupations

fk(N −N0,T) of noncondensate single particle states in Eq. (7.7) are defined in terms of the basis

states {|Ψk〉,k ∈N} (which can be expanded in the small parameter ξ), all of the two body transition

rates (and the corresponding energy shifts) are composed of:

X (N−N0,T) =X (a2,N−N0,T)+O(a3) , (7.29)

where the leading order contribution X (a2,N−N0,T) is proportional to a2. The kth correction to the

transition rates and energy shifts scales as (a̺1/3)k→ 0+ relatively to the leading order contribution

X (a2,N0,T).

Hence, the diluteness of a BoseEinstein condensate, formally reflected by the dilute gas con

dition a̺1/3≪ 1, enters as a perturbation theory for single particle wave functions into the master

equation formalism: In dilute atomic gases, interactions are sufficiently weak to replace the wave

functions of the interacting particles by the ones of an ideal gas in a master equation governing the

dynamics of two body collisions (proportional to a2). This justifies from first principles the use of

single particle states and single particle energies of a noninteracting gas in the QBE (compare the

transition rates in Eq. (2.17)).

Not least for numerical simplicity, we therefore restrict quantitative predictions to the formal
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limiting case a̺1/3→ 0+ (with a , 0 of ̺ = const.) of weak interactions, taking into account only the

leading order of transition rates, which are still proportional to a2. Note that the rates obtained in

the perturbative limit still contain an infinite series over all two body interaction processes, being

perturbative from the point of view that the disturbance of the single particle wave functions is

omitted.

7.5.1 Leading order of transition rates

The leading order contributions of the two body transition rates λ±
j
(N −N0,T) are calculated for

j = ,!,� for a threedimensional harmonic trap with spatial extentions Lη =
√

~/mωη, where

ωx,y,z = 2π× νx,y,z (η = x, y,z) are the trap frequencies.

According to Section 7.5, the leading order contribution of transition rates and energy shifts are

quantified by the Schrödinger equation:

∑

η=x,y,z













p̂2
η

2m
+

1

2
ωηη̂

2













|χ~k〉 = ǫ~k|χ~k〉 . (7.30)

Equation (7.30) can be solved analytically exactly, leading to single particle eigenstates of the

noninteracting system:

〈~r|χ~k〉 =N

∏

η=x,y,z

√

1

Lη
exp













− η
2

2L2
η













Hkη (Lηη) , (7.31)

with Hkη (Lηη), the Hermite polynomials [40], and N = (π3/4
√

2kx+ky+kz kx!ky!kz!)−1, a normalization

constant. The corresponding quantized single particle eigenenergies are

ǫ~k =
(

kx +
1

2

)

~ωx +

(

ky +
1

2

)

~ωy +

(

kz +
1

2

)

~ωz , (7.32)

with ~k = (kx,ky,kz)T. Since Eqs. (7.7, 7.8) fully specify single particle occupations f~k(N −N0,T)

with respect to the single particle states and single particle energies in Eqs. (7.31, 7.32), the leading

order contributions of the transitions rates λ± (N −N0,T), λ±!(N −N0,T) and λ±
�

(N −N0,T), as

well as of the energy shifts ∆± (N −N0,T), ∆±!(N −N0,T) and ∆±
�

(N −N0,T) can be calculated

analytically. The leading order feeding and loss rate4 associated to single particle processes ( )

4We do not introduce an extra label for brevity.
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turns, after calculation [96] of the overlap integrals in Eq. (7.3), into:

λ± (N−N0,T) =
2ma2ω

~π9

∑

~k,~l, ~m,0

F
±
 (~k,~l, ~m,N−N0,T) δ(Γ)

(

(~k+~l− ~m) · ~ω
)

, (7.33)

with ~ω = (ωx,ωy,ωz), and ω = (ωxωyωz)1/3. The weight functions F±
 (~k,~l, ~m,N − N0,T) in

Eq. (7.33) are given by

F
+
 (~k,~l, ~m,N−N0,T) = f~k(N−N0,T) f~l(N−N0,T)

[

f~m(N−N0,T)+ 1
]

Σ (~k,~l, ~m) , (7.34)

for single particle feedings. The function Σ (~k,~l, ~m) = 0, if (kη + lη +mη) is odd (η = x, y,z), and

turns into

Σ (~k,~l, ~m) =
∏

η=x,y,z

















Γ

(

kη + lη +
1
2

)

Γ

(

mη + kη +
1
2

)

Γ

(

lη +mη +
1
2

)

√

kη!lη!mη!

















2

(7.35)

otherwise, because of the alternating parity of the harmonic oscillator states. In Eq. (7.35), Γ(x) is

the Euler Gamma function [40].

The weight function F−
 (~k,~l, ~m,N−N0,T) for single particle loss processes turns into

F
−
 (~k,~l, ~m,N−N0,T) = [ f~k(N−N0,T)+ 1][ f~l(N−N0,T)+ 1] f~m(N−N0,T)Σ (~k,~l, ~m) . (7.36)

The dependence of the single particle loss and feeding rates in Eq. (7.33) on N0 is displayed in

Fig. 7.6. The difference between losses and feedings disappears for a certain value of N0 (marking the

detailed balance particle flow, see Eq. (7.20)), which is determined by thermodynamical constraints

such as temperature, volume of the trap and the total particle number (see Chapter 8).

We find the typical magnitude of the single particle feeding and loss rates to be 0.1 . . .100 Hz,

see Fig. 7.6: For low final temperatures (T = 20.0 nK), single particle feedings are fast (∼ 60 Hz)

for weakly occupied condensates, the gas being far from equilibrium. In consequence, the net

feeding rate λ+ (N−N0,T)−λ− (N−N0,T) remains large and positive up to N0 ∼ 2200, and smaller

below (meaning that the bosecondensed state is dynamically stable). At high final temperatures
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Figure 7.6: Single particle feeding λ+ (N−N0,T) (red solid line) and loss rates λ− (N−N0,T) (blue dashed line)
of Eq. (7.33) are presented as a function of the condensate particle number N0, for two different temperatures,
T = 20.0 and 35.0 nK, for a gas of N = 2500 87Rb atoms in a threedimensional harmonic trap, with frequencies
ωx = ωy = 2π× 42.0 Hz, ωz = 2π× 120.0 Hz. The critical temperature of the gas is Tc = 36.47 nK. For T = 20.0 nK,

the particle flow to the condensate is fast, highlighting the high nonequilibrium situation, whereas it is smaller by an
order of magnitude for T = 35.0 nK. There is only one intersection of the feeding and loss rate (unique steady state),
at Nis

0
= 2200 for T = 20.0 nK, and at Nis

0
= 150 for T = 35.0 nK, which marks the number N0 around which the

two subsystems exhibit detailed balance particle flow. Since λ+ (N −N0,T)−λ− (N−N0,T) > 0 for N0 < Nis
0
and

λ+ (N −N0,T)− λ− (N −N0,T) < 0 for N0 < Nis
0
, the steady state of the BoseEinstein condensate is dynamically

stable. Indeed, for decreasing (different) temperatures (not shown), the intersection point travels from Nis
0
= 0 to

Nis
0
=N.
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(T = 35.0 nK) feeding rates are larger than loss rates until N0 ∼ 150, and smaller below. In both

cases, detailed balance particle flow is obviously reached at the (only) intersection of λ+ (N−N0,T)

and λ− (N−N0,T), which hints already at this stage the approach to a unique and stable stationary

state. The steady state is derived and analyzed in more detail in chapter 8.

The unperturbed pair feeding and loss rates turn into

λ±!(N−N0,T) =
ma2ω

~π3

∑

~k,~l,0

F
±
!(~k,~l,N−N0,T) δ(Γ)

(

(~k+~l) · ~ω
)

, (7.37)

with

F
+
!(~k,~l,N−N0,T) =

[

f~k(N−N0,T)+ 1
][

f~l(N−N0,T)+ 1
]

Σ!(~k,~l) , (7.38)

and similarly for pair losses:

F
−
!(~k,~l,N−N0,T) = f~k(N−N0,T) f~l(N−N0,T)Σ!(~k,~l) . (7.39)

In Eqs. (7.38, 7.39), the function Σ!(~k,~l) is given by

Σ!(~k,~l) =
∏

ζ=x,y,z























Γ

(

kη+lη+1

2

)

√

kη!lη!























2

, (7.40)

for even (kη + lη) (η = x, y,z), and it is zero otherwise. Once again, Eq. (7.37) verifies that pair

processes are offresonant for sufficiently large trapping frequencies because of energy conservation,

and do therefore not contribute to the dynamics of the Bose gas, see Eq. (7.37).

The leading order contribution for scattering rates finally turns into:

λ�(N−N0,T) =
2ma2ω

~π3

∑

~k,~l,0

F�(~k,~l,N−N0,T) δ(Γ)
(

(~k+~l) · ~ω
)

, (7.41)

with a weight function F�(~k,~l,N−N0,T) given by
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F�(~k,~l,N−N0,T) =
[

f~k(N−N0,T)+ 1
]

f~l(N−N0,T)
∏

ζ=x,y,z























Γ

(

kη+lη+1

2

)

√

kη!lη!























2

. (7.42)

The scattering rate N0λ�(N0,T) is presented in Fig. 7.2 as a function of the condensate particle num

ber N0 with the same parameters as in Fig. 7.6, and for different temperatures T = 20.0,25.0,30.0nK.

For numerical calculations throughout the thesis, these perturbative two body transition rates

for single particle exchanges in Eq. (7.33) are employed from now on, accurately resembling the

condensate formation times of stateoftheart experiments with ξ ∼ 10−1−10−2≪ 1 (see chapter 6).

7.5.2 Leading order energy shifts

As discussed in Section 7.4, energy nonconserving processes create intermediate states of short

life time. The net effect comprises the energy shifts in Eqs. (7.24, 7.25), which renormalize the

single particle ground state energy, see Eq. (7.23). Energy shift terms ∆(lin) and ∆(nlin) are quantified

here for a threedimensional harmonic trap in the perturbative limit a̺1/3→ 0+.

First, remember that unperturbed energetic shifts linear in N0 are expressed by

∆
(lin)(N−N0,T) = ∆+ (N−N0,T)+∆− (N−N0,T)+ 4∆+!(N−N0,T)+∆�(N−N0,T) , (7.43)

and the shift occuring nonlinearly in N0 consists of

∆
(nlin)(N−N0,T) = ∆+!(N−N0,T)+∆−!(N−N0,T)+∆�(N−N0,T) . (7.44)

Both energy shifts are thus simultaneously defined in terms of the different imaginary counterparts

of the unperturbed rates in Eqs. (7.33, 7.37, 7.41). Starting with unperturbed single particle energy

shifts ( ), they turn into

∆
±
 (N−N0,T) = ±2ma2ω3

~π10

∑

~k,~l, ~m,0

F
±
 (~k,~l, ~m,N−N0,T) PV















1

(~l+ ~m− ~k) · ~ω















. (7.45)
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γ Γ(γ) ζ(γ)

1.0 1.0 ∞
1.5

√
π/2 ≈ 0.886 2.612

2.0 1.0 π2/6 ≈ 1.645
2.5 3

√
π/4 ≈ 1.329 1.341

3.0 2.0 1.202
3.5 15

√
π/8 ≈ 3.323 1.127

4.0 6.0 π4/90 ≈ 1.082

Table 7.1: Euler Gamma function Γ(γ), and the Riemann Zeta function ζ(γ), for selected values of γ.

The unperturbed energy shifts for pair events (!) are given by

∆
±
!(N−N0,T) =

±ma2ω3

~π10

∑

~k,~l,0

F
±
!(~k,~l,N−N0,T) PV















1

(~k+~l) · ~ω















, (7.46)

and finally the expression

∆�(N−N0,T) =
−2ma2ω3

~π4

∑

~k,~l,0

F�(~k,~l,N−N0,T) PV















1

(~k−~l) · ~ω















(7.47)

determines unperturbed energy shifts induced by scattering processes (�). The numerical values

of the energy shifts in Eqs. (7.45, 7.46, 7.47) are shown in Figs. 7.4, 7.5 of Section 7.4.

7.6 Generalized Einstein de Broglie condition

The density of states of an ideal gas (g → 0+) in the semiclassical limit, where kBT ≫ ~η0,

and N → ∞, is given [15] by g(η) = Vm3/2/21/2π2
~

3η1/2 for uniform gases, and by g(η) =

ηd−1/(d−1)!
∏

j=x,y,z~ω j for ddimensional harmonic traps with frequencies ω j = 2π×ν j ( j = x, y,z).

Integrating the number of noncondensate particles over the density of states g(η), the closed, im

plicit equation for the noncondensate chemical potential µ⊥(N−N0,T) in Eq. (7.8) turns into

mγ[e
βµ⊥(N−N0)] =

(N−N0)

CγΓ(γ)(kBT)γ
, (7.48)

with Γ(γ), the Euler Gamma function. The parameter γ = 3/2 for uniform gases, and γ = 3 for a

harmonic trap. mγ[z] =
∑∞

n=1 zn/nγ is the Bose function [15]. At the BoseEinstein phase transition,

z = 1, and mγ[z → 1] = ζ(γ) reduces to the Zeta function. Some values for Γ(γ) and ζ(γ) are
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summarized in Table 7.1. Cγ in Eq. (7.48) corresponds to a geometry dependent constant, which is

analytically given by C3/2 = Vm3/22−1/2π−2
~
−3 for the uniform case; for a ddimensional harmonic

trap, it follows that Cd = 1/(d− 1)!
∏

i=1,...,d~ωi [15].

The approximate relation (which becomes exact for large particle numbers) in Eq. (7.48), together

with the detailed balance condition in Eq. (7.20), bears an important physical interpretation.

At detailed balance (which is reached on average in the stationary state, see Section 8.1) the

chemical potential of the noncondensate µ⊥ in Eq. (7.48) reaches the single particle ground state

energy η0. In the perturbative limit of vanishing interactions (see Section 7.5), the single particle

ground state energy can be set to zero, because the dynamics and the statistics of the Bose gas

is invariant under the transformation Ĥ → Ĥ − η0N̂ of the total Hamiltonian, where η0 is the

single particle ground state energy (the easiest check of this statement is to recognize that σ̂(N)(t)

commutes with N̂ at any time t). For uniform gases (γ = 3/2), BoseEinstein hence sets in, if

(N −N0)/C3/2Γ(3/2)(kBT)3/2 in Eq. (7.48) is larger than ζ(3/2) (µ⊥ > 0), defining the condition

(N−N0)/Vλ3(T) > ζ(3/2) for BoseEinstein condensation, stationary particle flow being reached if,

and only if (N−N0)/Vλ3(T) = ζ(3/2) (µ⊥ = 0).

Using the above explicit expression for C3/2, and identifying ̺⊥ = (N −N0)/V, BoseEinstein

condensation consequently manifests itself as a mechanism for the Bose gas to reduce its non

condensate density, until the ratio of thermal de Broglie volume and mean particle distance in the

noncondensate equals ζ(3/2). For arbitrary temperatures (below Tc), we thus recover a condition

for condensate formation (stationarity) similar to the Einstein de Broglie relation (1.3), but for the

noncondensate part of the gas:

̺⊥λ3(T) ≥ ζ(3/2) . (7.49)

On thermodynamic grounds, Eq. (7.49) implies that the entropy of the noncondensate gas is

maximized, and that the free energy is minimized during condensate formation, see Eq. (1.2, 7.19).

From the wave mechanics point of view, Eq. (7.49) can be interpreted as BoseEinstein conden

sation to occur as long as the noncondensate gas particles remain spatially coherent. Since the

particle number and the trap volume during condensate formation are conserved, we see that, at

equilibrium, the condensate fraction is that part of the gas particles exhibiting an average atomic

density allowing to find more than one particle in the coherence volume λ3(T),

̺0λ
3(T) = ̺λ3(T)− ζ(3/2) , (7.50)
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whereas the noncondensate gas particles are spaced on the order of λ3(T) on average. 5 . Note,

that Eqs. (7.49, 7.50) reduce to the usual Einstein de Broglie condition in Eq. (1.3) at the phase

transition temperature, where ̺⊥ = ̺.

The dynamics of the BoseEinstein phase transition after the quench of the noncondensate

density, ̺⊥λ3(T) > ζ(3/2) (or (N −N0)~3ωxωyω0/(kBT)3 > ζ(3) for a threedimensional harmonic

trap, respectively), was shown in Chapter 6, monitoring the behavior of the condensate and the

noncondensate number distributions during condensate formation.

5For a threedimensional harmonic trap, the situation is qualitatively the same: The condensate thus forms until the right hand
side of Eq. (7.48) equals ζ(3) at final equilibrium, i.e. for µ⊥ = 0 (and is larger before the reaching of the detailed balance condition).
However, it cannot be directly related to the ratio of de Broglie volume and average particle spacing, as the noncondensate density
is not homogeneous because of the external trapping confinement. Also here is the phase transition independent on the choice of
η0, which can hence be set to zero.



Chapter 8

Equilibrium properties of a dilute

BoseEinstein condensate

Analyzing the steady state solution of the master equation analytically proofs the existence of

a unique steady state for dilute, weakly interacting BoseEinstein condensates of finite particle

number under the Markov dynamics assumption. In the limiting case of weak interactions, the

latter is given by a GibbsBoltzmann thermal state of N indistinguishable, noninteracting particles.

8.1 Equilibrium steady state after BoseEinstein condensation

The equilibrium steady state of the Bose gas in Eq. (6.2) is entirely defined by the steady state number

distribution pN(N0,T) ≡ pN(N0, t→∞) of Eq. (6.3). We introduce the abbreviationλ+ (N−N0,T)→
λ+ (N0,T) in the following. Due to Eq. (6.5), the net flux of particles between condensate and non

condensate is zero1, ∂〈N0〉/∂t = 0, if the condensate number distribution obeys the recursion

relation:

pN(N0 + 1,T) = pN(N0,T)
λ+ (N0,T)

λ− (N0 + 1,T)
, (8.1)

which leads to the steady state distribution

1This is the case, if the noncondensate particles in the gas reach the critical density, i.e. ̺⊥λ3
= ζ(3/2) for a gas of N particles

in a box.

147
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Figure 8.1: Steady state condensate particle number distribution pN(N0,T) in Eq. (8.2) for N = 2000 87Rb atoms
in a threedimensional harmonic trap with frequencies ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz, for different

temperatures T/Tc = 0.76,0.66,0.57,0.48,0.38,0.28,0.17, given an ideal gas critical temperature Tc = 33.86 nK. The
distribution pN(N0,T) unambiguously describes the noncondensate number distribution by replacing N0→N−N0
in the above figure.

pN(N0,T) =N

N0−1
∏

z=1

λ+ (z− 1,T)

λ− (z,T)
, (8.2)

with normalization N =
∑N

N0=0

∏N0

z=1
λ+ (z− 1,T)/λ− (z,T). Since Eq. (6.3) cannot adopt multiple

steady states, a proof of the uniqueness of the steady state in Eq. (8.2) can be found in Appendix A.4.

Note that the steady state distribution in Eq. (8.2) implies ∂t〈N0〉 = 0 and therefore energetic

equilibrium and detailed balanced particle flow (on average), i.e. λ+ (〈N0〉,T) = λ− (〈N0〉,T) and

µ0 = µ⊥(N − 〈N0〉,T) following from Eq. (6.6) – in agreement with thermodynamics. Typical

condensate particle number distributions are shown in Fig. 8.1 for N = 2000 atoms in a three

dimensional harmonic trap with frequencies ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz, for

different temperatures.

8.2 On the quantum ergodicity conjecture

Ergodicity is a statistical assumption made originally by Ludwig Boltzmann in 1872 for a classical

gas of noninteracting particles, and means that a gas is supposed to reach a unique equilibrium
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state (a thermal state) after long times, where each available state of the same energy is sampled

equally (in classical phase space) over time. The ergodicity conjecture is often used to simplify

theoretical treatments of interacting many particle quantum systems, using a thermal state ansatz

for the Bose gas below its critical temperature, and neglecting atomic interactions in sufficiently

weakly interacting, dilute atomic gases.

In order to prove this ergodicity conjecture for a weakly interacting BoseEinstein condensate

(undergoing Markovian dynamics), we are left to show that the unique and stable steady state of

the Bose gas defined by Eqs. (6.2, 8.2) is a Boltzmann state. Hence, our steady state is compared

in the perturbative limit of weak interactions to a thermal state of N noninteracting particles at

temperature T,

σ̂N,th = Q̂N
e−βĤ

Z (N,T)
Q̂N , (8.3)

with the partition function of N indistinguishable particles represented by Z (N,T) = Tr{σ̂N,th}.
Again, Q̂N is the projector onto the Fock space of N particles. In the absence of interactions,

Ĥ =∑

~k
η~kâ†
~k

â~k in Eq. (8.3) denotes the Hamiltonian of an ideal gas, thus refering to Eq. (3.4) with

g ≡ 0. To prove the equality of the state σ̂N,th and the steady state of the Bose gas in Eqs. (6.2, 8.2)

arising from the master equation, it is to be shown that the following exact recursion relation (which

was derived from Eq. (8.3) in Section 1.5.2) for the condensate particle number distribution,

pN,th(N0,T)

pN,th(N0 + 1,T)
= eβη0

Z⊥(N−N0,T)

Z⊥(N−N0 − 1,T)
, (8.4)

applies for the steady state of the master equation in Eq. (8.2) in the formal limiting case of weak

interactions, a̺1/3 → 0+ with a , 0. In Eq. (8.4), Z⊥(N − N0) denotes the partition function

of (N −N0) noncondensate particles, see Eq. (5.13), and η0 is the single particle ground state

energy of a noninteracting gas. The analytical proof is figured out straight forwardly, because only

basic elements of the master equation formalism developed in Chapters 38 are to be employed.

Approximating λ− (N0,T) ≈ λ− (N0 − 1,T) and therewith neglecting terms of the order of N−1,

the steady state solution of the condensate particle number distribution of the master equation,

Eq. (8.2), leads to:

pN(N0,T)

pN(N0 + 1,T)
≃ λ

−
 (N0,T)

λ+ (N0,T)
= eβ(η0−µ⊥(N−N0,T)) , (8.5)
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Figure 8.2: Comparison of exact condensate particle number distribution of the master equation (red
solid line) vs. the condensate statistics arising from Boltzmann thermal state for an ideal quantum gas
in Eq. (8.3) (blue squares), for N = 2000 atoms in a threedimensional harmonic trap with frequencies
ωx = ωy = 2π× 42.0 Hz and ωz = 2π× 120.0 Hz. The gas temperature is T = 20.0 nK. Similar agreement
is observed for different temperatures.

where we used (i) the balance condition between condensate feeding and losses rates in Eq. (7.20)

which applies for two body interactions exhibiting finite spatial phase coherence time, β~Γ ≪ 1,

and (ii) that η0 = µ0 in the formal limit of small interactions, a̺1/3→ 0+ (see Section 7.5). The non

condensate chemical potential, as defined by the normalization condition in Eq. (7.8) is related [10]

to the noncondensate partition function Z⊥(N − N0,T) in Eq. (5.13), due to µ⊥(N − N0,T) =

−β−1 [lnZ⊥(N−N0,T)− lnZ⊥(N−N0 − 1,T)], see Eq. (7.19) in Section 7.2. Therewith, we arrive

at the recurrence relation in Eq. (8.4).

Hence, the steady state of the entire Bose gas in Eq. (6.2) is given by the thermal state of an ideal

gas projected onto the subspace of N particles in Eq. (8.3), in the formal limit of weak interactions,

a̺1/3 → 0+ (with a , 0). Remembering and comparing again the two figures 3.2 and 1.4, this

is by no means trivial, since the steady state distribution in Eq. (8.2) a priori depends on the

(specific nonlinearity of the) two body interaction term V̂0⊥ according to the feeding and loss rates

λ± (N0,T), see Eqs. (7.3). Nevertheless, the balances of particle flow between the different single

particle eigenmodes of the gas at equilibrium generate the same statistics as a thermal state of an

ideal gas (with a ≡ 0) projected onto the subspace of N particles in Eq. (8.3). In both cases, the
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Figure 8.3: (color online) Average condensate fraction 〈N0〉(t)/N and standard deviation ∆N0 of the
condensate particle number distribution pN(N0,T), obtained from the steady state distribution (red
solid line) of the master equation vs. the canonical ensemble prediction (blue squares) of Eq. (8.3),
for trap frequencies of ωx = ωy = 42.0 Hz and ωz = 120.0 Hz, and atom numbers of N = 2000 and
N = 10000 atoms. The gases have corresponding critical temperatures of Tc = 33.86 nK (upper figures),
and Tc = 57.90 nK (lower figures).

condensate number statistics thus obeys the distribution

pN(N0,T) = e−βη0N0
Z⊥(N−N0,T)

Z (N,T)
, (8.6)

where Z⊥(N−N0,T) is the noncondensate partition function in Eq. (5.13), and Z (N,T) the partition

function of the canonical ensemble in Eq. (1.26). Obviously, the condensate number distribution is

modified with respect to the steady state solution of the master equation for a harmonic oscillator

coupled to a heat bath by the term Z⊥(N−N0,T)/Z (N,T) below Tc.

The quantitative support of the (1/N) approximation required for the analytical proof is to

compare the exact numerical calculations of the steady state condensate particle number distribution

to the prediction of the Boltzmann ansatz in Eqs. (8.3). Figure 8.2 verifies that for N = 2000 atoms

in a threedimensional harmonic trap with frequencies ωx = ωy = 2π×42.0 Hz and ωz = 2π×120.0

Hz, and a gas temperature T = 20.0 nK, the exact numerical calculations (red solid line) agree almost
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perfectly with the Boltzmann thermal state (blue squares).

In Fig. 8.3, the comparison of the average condensate occupations 〈N0〉 and the width ∆N0

of the condensate particle number distributions is displayed as a function of the entire range of

relative temperatures T/Tc for N = 2000 and N = 10000 atoms, given the same trap parameters as in

Fig. 8.2. The corresponding critical temperatures are Tc = 33.86 nK and Tc = 57.90 nK. Agreement

is observed between the steady state of the master equation and the Boltzmann ansatz: The shift

of the critical temperature is about 10% with respect to the ideal gas critical temperature Tc (in

the semiclassical limit) in both cases, and maxima of the standard deviations are ∆N0 = 50.4 at

T = 0.90Tc for N = 2000 atoms, and ∆N0 = 124.71 at T = 0.96Tc for N = 10000. The thermal state

ansatz is hence supported by numerical calculations, which have been reproduced and checked for

different available parameter ranges of stateoftheart experiments.

8.3 Exact condensate statistics versus semiclassical limit

The condensate statistics obtained in the semiclassical limit is contrasted to the predictions for

gases with discrete spectra. For this purpose, the equilibrium steady state in Eq. (8.2) is appropriate

to compare condensate number fluctuations and average occupations in the Bose gas in a three

dimensional harmonic trap.

8.3.1 Condensate particle number distribution

The steady state solution of Eq. (6.3) for an interacting Bose gas in a 3dimensional harmonic trap

with trapping frequencies ωx,ωy and ωz is formally given by

pN(N0,T) =N
N0
∏

z=0

exp[β∆µ(N− z)] , (8.7)

with normalization N =∑N
N0=0

∏N0
z=0

exp[β∆µ(N− z)].

Remember that Eq. (8.7) defines the equilibrium steady state of the full Nbody state σ̂(N)(∞),

which – for a threedimensional harmonic trap – has the explicit form

σ̂(N)(∞) = pN(N0,T)|N0〉〈N0| ⊗
(N−N0)
∑

{N~k}
pN({N~k},T)|{N~k}〉〈{N~k}| , (8.8)
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Figure 8.4: Condensate particle number distribution pN(N0,T) for N = 20000 atoms in a threedimensional
harmonic trap with frequencies ωx = ωy = 42.0 Hz, and ωz = 120.0 Hz, for different temperatures ranging from

T/Tc = 0.99,0.94,0.85,0.75,0.65,0.55,0.47,0.38,0.28,0.20 nK (from left to right). The ideal gas critical temperature is
Tc = 72.94 nK. Inset displays the magnification of pN(N0,T = 0.64Tc).

where the distribution of noncondensate occupations is given by

pN({N~k},T) =Z
−1
⊥ (N−N0,T)

∏

~k

e−βN~kǫ~k . (8.9)

In Eq. (8.9), Z⊥(N−N0,T) constitutes the partition function of (N−N0) noncondensate particles

in Eq. (5.13), and ǫ~k denotes the single particle energies of noncondensate particles in Eq. (4.29).

Numerically studying the perturbative limit of weakly interacting gases, a̺1/3→ 0+, single par

ticle energies turn into the ones of a noninteracting Bose gas, ǫ~k → η~k, while ∆µ(N − z,T) →
µ⊥(N − z,T)− η~0. The noncondensate chemical potential is thus specified by the following nor

malization condition for the noncondensate particle number,

∑

~k,~0

1

eβ(η~k−µ⊥(N−z,T)) − 1
= (N− z) , (8.10)

which determines µ⊥(N − z,T) in a numerically exact way, for any z. For a threedimensional
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harmonic trap, the invariance of the statistics under the shift of the single particle ground state

energy can be employed, using η~k = (kx~ωx + ky~ωy + kz~ωz) as the single particle energies and

setting η0 = 0. Expanding the exponential function in Eq. (8.10) and using the harmonic series [40]

leads to

(N− z) =

∞
∑

j=1

exp[ jβµ⊥(N− z,T)]

















∏

ξ=x,y,z

1

1− exp[− jβ~ωξ]
− 1

















. (8.11)

Equations (8.7) and (8.11) present an accessible numerical tool in order to exactly calculate the

condensate particle number distribution: For each z = 0 . . .N, the implicit Eq. (8.11) forµ⊥(N−z,T) is

determined numerically, which directly yields the condensate particle number distribution pN(N0,T)

in Eq. (8.7). The distribution is shown in Fig. 8.4, for a BoseEinstein condensate of N = 20000 atoms

in a threedimensional harmonic trap with frequencies ωx =ωy = 2π×42.0 Hz, ωz = 2π×120.0 Hz,

for different temperatures T/Tc, and an ideal gas critical temperature Tc = 72.94 nK.

Now, we pay attention to the semiclassical approximation. The semiclassical limit is useful

to analytically deduce the scaling behavior for the moments of the distribution pN(N0,T) (see

Section 8.4). Within this limit, the approximate steady state distribution is obtained [15] by replacing

the summation in Eq. (8.10) by an integration over the density of states, g(η) = η2(2~ωxωyωz)−1.

In that case, the noncondensate chemical potential, and therewith the condensate particle number

distribution in Eq. (8.7) is defined by the implicit equation

m3[eβµ⊥(N−z,T)] = (N− z)
~

3ωxωyωz

(kBT)3
, (8.12)

with m3[z] =
∑∞

k=1 zk/k3, the Bose function for a threedimensional harmonic trap [15].

Although the replacement of the summation by an integration is often employed in order to

derive analytical predictions, it should be emphasized that it is not exact (because it miscounts the

number of single particle states), which leads to a shift of the critical temperature. Hence this shift

is not induced by the neglect of the zeropoint motion [15].2. To explicitly illustrate these deviations

originating from the semiclassical approximation, the exact condensate particle number distribution

in Eqs. (8.7, 8.11) (blue dotted curves) is compared to the distribution in the semiclassical limit in

Eqs. (8.7, 8.12) (red solid lines) in Fig. 8.5. Calculations are performed for a harmonic trap with

2The shift of the critical temperature follows the analytical law given in Eq. (8.13), see Section 8.3.3, which is derived under
the inclusion of the exact single particle spectrum.
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Figure 8.5: Comparison of condensate particle number distributions pN(N0,T) obtained from the exact quantum
calculation in Eq. (8.7, 8.11) (dashed blue line) vs. the semiclassical limit in Eqs. (8.7, 8.12) (solid red line), for the
same trap parameters as in Fig. 8.4, and N = 2000 and N = 20000 particles in the trap. Relative temperatures are
T/Tc = 0.3,0.5 and 0.7 (from left to right), with corresponding critical temperatures of Tc = 33.86 nK for N = 2000,
and Tc = 72.94 for N = 20000 atoms.

frequencies ωx = ωy = 2π× 42.0 Hz, ωz = 2π× 120.0 Hz, once for N = 2000 (top), and once for

N = 20000 atoms (bottom) in the trap, with corresponding ideal gas critical temperatures Tc = 33.86

nK and Tc = 72.94 nK. Three different temperatures, T/Tc = 0.3,0.5 and 0.7, are displayed from left

to right.

For N = 2000 particles, the maxima of the condensate particle number distribution pN(N0,T)

occur at N0 = 1956, N0 = 1793 and N0 = 1430, using the semiclassical limit of Eqs. (8.7, 8.12),

whereas they are located at N0 = 1905, N0 = 1638 and N0 = 1097, within the exact quantum

calculation with Eq. (8.7, 8.11). For N = 20000 particles, the maxima are found at N0 = 19550,

N0 = 17920 and N0 = 14280 with the distribution in the semiclassical limit in Eqs. (8.7, 8.12),

whereas the maxima are located at N0 = 19270, N0 = 17000 and N0 = 12180 within the exact

quantum distribution governed by Eqs. (8.7, 8.11). Hence, even though deviations have a vanishing

trend as compared to the total number of particles N in the trap, the distributions (maxima and
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widths) significantly differ relatively up to 2−30%, even for large total particle numbers of N = 20000

atoms in the trap.

8.3.2 Average condensate occupation and number variance

The resulting shift of the critical temperature is best deduced from the analysis of the condensate

number expectation value, and its standard deviation. In Fig. 8.6, the average condensate occupation

〈N0〉, and corresponding standard deviations ∆N0 of the particle number distribution pN(N0,T) in

the semiclassical limit (blue diamonds) represented by Eqs. (8.7, 8.12) are compared to the exact

quantum calculation via Eqs. (8.7, 8.11) (red squares). Herefore, we use a continuous range

of relative temperatures T/Tc > ~ωi/kBTc, and two different total number of atoms, N = 2000

(left panels) and N = 10000 (right panels), in a threedimensional harmonic trap with trapping

frequencies ωx = ωy = 42.0 Hz, ωz = 120.0 Hz. The corresponding ideal gas critical temperatures

in the semiclassical limit are Tc = 33.86 nK and Tc = 57.90 nK.

For a total number of N = 2000 atoms (left panels), the quantum calculation leads to a shift

of the critical temperature of about 10% with respect to the ideal gas critical temperature Tc in

the semiclassical limit in Eq. (1.21): The maximum width depicts the critical point of the phase

transition. It is ∆N0 = 50.42 occuring at T = 0.90Tc for the quantum calculation, whereas we

observe ∆N0 = 38.96 at T = Tc in the semiclassical limit. For larger total atom numbers, here

N = 10000 (right figures), the critical temperature of the exact calculation is 0.96Tc still 45% less

than Tc – even for the case of relatively large particle numbers. Maximum widths are ∆N0 = 124.71

at T = 0.96Tc for the quantum calculation, whereas ∆N0 = 112.81 at T = Tc in the semiclassical

limit.

8.3.3 Shift of the critical temperature

Even though both calculations (exact vs. semiclassical approximation) follow the same qualitative

trend, i.e., condensate particle number fluctuations getting maximal at the critical point and con

densate occupations following the typical N(1−T3/T3
c ) scaling behavior (see Chapter 1), the critical

temperature of the exact calculation is shifted significantly with respect to the semiclassical ansatz

for mesoscopic Bose gases. These deviations have their origin in the neglect of the degeneracy of the

discrete single particle spectrum [80]. Getting pronounced (∼ 10− 30%) for low particle numbers

(N ∼ 103), as likely to be used in recent experiments [12], deviations still occur for relatively large

atomic samples (N ∼ 104), leading to corrections of 4− 5% to the ideal gas critical temperature Tc
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Figure 8.6: Average condensate occupations and standard deviation of the steady state distribution pN(N0,T) in the
semiclassical limit of Eqs. (8.7, 8.12) (blue diamonds), N→∞ and kBT≫ ~ωi, vs. exact calculation, using Eqs. (8.7,
8.11) (red squares). Trap parameters are ωx = ωy = 42.0 Hz, ωz = 120.0 Hz, with atom numbers N = 2000 and

N = 10000, and corresponding critical temperatures Tc = 33.86 nK, and Tc = 57.90 nK.

in the semiclassical limit.

An analytical estimate (including the exact single particle spectrum) for the shift of the critical

temperature [80] agreeing with our numerical results is given by

Texact
c

Tc
= 1−

ζ(2)
∑

η=x,y,zωη

6ζ(3)2/3N1/3ω
, (8.13)

where Tc is the critical temperature of an ideal gas in the thermodynamic limit, andω = (ωxωy,ωz)1/3

the averaged trap frequency. The shift of the exact critical temperature Texact
c to the ideal gas value

T is typically of the order of 2− 30% for stateoftheart experimental parameters, and can only be

neglected if N→∞, where the large number of atoms leading to large single particle occupation
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turns to be equivalent to the approximation of the single particle spectrum to be a continuous one.

8.4 Analytical scaling behaviors in the semiclassical limit

Finally, the moments of the condensate particle number distribution pN(N0,T) are analytically

studied in the semiclassical limit, becoming quantitatively accurate in the limit of large particle

numbers, N→∞.

8.4.1 Condensate and noncondensate particle number distribution

In the semiclassical limit, exp[β∆µ⊥(z,N−z,T)] can be assumed to approach unity in Eqs. (8.7, 8.12).

Thus, using the approximate relation m3[exp[β∆µ⊥(z,N − z,T)]] ≃ ζ(3)exp[β∆µ⊥(z,N − z,T)] in

Eq. (8.12) and employing that T3
c = ~

3ωxωyωz/(kBT)3N in the semiclassical limit, turns Eq. (8.7) to

the normalized condensate and noncondensate number distribution

pN(N0,T) = pN(N−N0,T) ≈ e−λ
λ(N−N0)

(N−N0)!

N!

Γ(N+ 1,λ)
, (8.14)

valid for T < Tc in the semiclassical limit. In Eq. (8.14), λ = NT3/T3
c is the mean number of

noncondensate particles, and

Γ(N+ 1,λ) =

∫ ∞

λ
dt tNe−t

=N! eλ
N
∑

k=0

λk

k!
(8.15)

is an incomplete Gamma function [40] related to the finite particle number in the gas. As the particle

number is considered to be large, N→∞, the incomplete Gamma function Γ(N + 1,λ)→ 1, and

thus approaches unity.

Equation (8.14) discloses that the noncondensate particle number distribution pN(N−N0,T) is

Poissonian in the number of noncondensate particles, and is thus distributed around the average

noncondensate occupation λ. Its width ∆N⊥ scales as the root of the average noncondensate

particle number ∆N⊥ =
√
λ. The Poisson distribution of the noncondensate particle number

highlights the statistical independence of the noncondensate particles at final thermal equilibrium.

In contrast, the condensate particle distribution, pN(N0,T), is clearly not Poissonian, meaning

that the particle number is distributed around the average condensate occupation 〈N0〉 =N−λ, and

the width of the condensate particle number distribution is given by ∆N0 =
√
λ. This again reflects
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that the condensate statistics is entirely defined by the noncondensate part of the gas, the width

∆N0 being proportional to the number of thermal noncondensate atoms at equilibrium. Thus, the

smaller the temperature, the higher the number of coherent atoms, and the smaller the variance in

the condensate particle number.

8.4.2 Average condensate occupation and number variance

The average condensate ground state occupation 〈N0〉 is studied in the semiclassical limit as a

function of the relative temperature T/Tc. The ground state occupation is shown in Fig. 8.7a

for a gas of N = 2500 atoms in a threedimensional harmonic trap with trapping frequencies

ωx = ωy = 2π × 42.0 Hz, ωz = 2π × 120.0 Hz, following the analytical prediction arising from

Eq. (8.14):

〈N0〉 =N

(

1−
(

T

Tc

)3
)

. (8.16)

The scaling behavior of 〈N0〉 in Fig. (8.7) is universal for different trapping parameters and particle

numbers. Due to particle number conservation, it follows that the average occupation number of

noncondensate particles is given by

〈(N−N0)〉 =NT3/T3
c . (8.17)

The standard deviation ∆N0(T) of the condensate particle number distribution as a function of

relative temperature T/Tc predicted by the (semiclassical limit) steady state pN(N0,T) of the master

equation in Eqs. (8.7, 8.12) is displayed in Fig. 8.7b (blue squares) for the same parameters as in

Fig. 8.7a: Condensate particle number fluctuations get maximal exactly at the critical point of an

ideal gas in the semiclassical limit, T = Tc, a universal behavior which doesn’t qualitatively vary

for different trap and gas parameters. The scaling behavior of the condensate and noncondensate

particle number, ∆N0(T) = ∆N⊥(T), again follows from Eq. (8.14):

∆N⊥ = ∆N0 =

√

N
(

T

Tc

)3

. (8.18)

The analytical result of Eq. (8.18) is shown in Fig. 8.7b (red dashed line), resembling the numerical
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Figure 8.7: Scaling behavior in the semiclassical limit. Panel a) compares average condensate occupation 〈N0〉 as a
function of relative temperature T/Tc of the numerically obtained condensate particle number distribution pN(N0,T)

in Eqs. (8.7, 8.12) (blue squares) to the analytical result 〈N0〉 =N(1−T3/T3
c ) in Eq. (8.14) (dahes red line), for a gas

of N = 2500 atoms with identical trapping parameters as in Fig. 8.4. The ideal gas critical temperature is Tc = 36.47
nK. Figure b) compares the standard deviation ∆N0 obtained numerically from Eqs. (8.7, 8.12) (blue squares) to the

analytical prediction ∆N0 =NT3/2/T3/2
c of Eq. (8.14) (dashed red line).
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result obtained from the semiclassical distribution pN(N0,T) in Eqs. (8.7, 8.12) (blue squares). Note

again that the scaling behavior in the semiclassical limit in Eqs. (8.16, 8.17, 8.18) is only valid in

the limit of continuous single particle spectra, or in the limit of large particle numbers N→∞ (see

Section 8.3). Indeed, the distribution in Eq. (8.14) applies only for T < Tc.

8.4.3 Higher order moments of the steady state distribution

The approximately given condensate particle number distribution pN(N0,T) in Eq. (8.14) further

more specifies all central moments of the condensate and the noncondensate particle number

distribution pN(N −N0,T) = pN(N0,T) analytically. Calculations of these moments are typically

defined by technically involved Bell or Touchard polynomials [27]. Here, they are obtained by

approximating the Poissonian noncondensate particle number distribution in Eq. (8.14) by a Gaus

sian distribution, which is reasonable for sufficiently large particle numbers. Thereby, we get the

Gaussian noncondensate particle number distribution pN(N−N0,T):

pN(N0,T) = pN(N−N0,T) ≈ 1√
2πλ

e
−(N−N0−λ)2

2λ , (8.19)

with a mean value of N−N0, and a variance of the noncondensate particle number 〈(N−N0)2〉, equal

to the average noncondensate particle number λ = NT3/T3
c . The Gaussian ansatz in Eq. (8.19)

yields in particular a Gaussian approximation for the condensate particle number distribution

pN(N0,T) by replacing (N−N0)→N0 in Eq. (8.19), as pN(N0,T) = pN(N−N0,T).

Now, the nth
= (2k)th central moment of the noncondensate particle number distribution is

analytically given [40, 27] by

〈(N−N0 −λ)2k〉 = (2k)!

2kk!
λk , (8.20)

for even n, and is zero otherwise. Indeed, due to particle number conservation, all central moments

〈(N0−〈N0〉)n〉 of the condensate particle number distribution pN(N0,T) are also fully specified [27]

by Eq. (8.19), because

〈(N0 − 〈N0〉)2k〉 = 〈(N−N0 −λ)2k〉 ≡ (2k)!(2kk!)−1λk . (8.21)
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Figure 8.8: Third and fourthorder moments of the condensate particle number distribution pN(N0,T) in Eqs. (8.7,
8.11), for a gas of N = 1000 (red solid lines, figures a) and b)), and N = 10000 (blue solid lines, figures c) and
d)) atoms in a threedimensional trap with identical trap parameters as in Fig. 8.4, and hence critical temperatures
of Tc = 26.87 nK and Tc = 57.90 nK. Dashed lines in figures b) and d) correspond to the analytical prediction

〈(N0 − 〈N0〉)4〉 = 3N2T6/T6
c of the Gaussian ansatz in Eq. (8.19), whereas the third central moment of the Gaussian

distribution is zero everywhere.

Comparing the first four central moments according to Eq. (8.19) to numerical calculations via

Eqs. (8.7, 8.12) in Figs. 8.7 demonstrates that the mean value and the variance of the Gaussian

ansatz exactly equals λ, following the analytical prediction in Eq. (8.14). The numerically obtained

third moment in Figs. 8.8a and Figs. 8.8c, however, exhibits a nontrivial behavior close T = Tc,

where the distribution gets increasingly asymmetric in the vicinity of the phase transition. In

contrast, the Gaussian thirdorder moment vanishes for all temperatures. We conclude that the

Gaussian prediction of 〈(N0 − 〈N0〉)3〉 = 0 matches the numerically obtained third order moment

for a gas of N = 1000 atoms as shown in Fig. 8.8a for temperatures Tc = 0 . . .0.5, whereas for larger

particle numbers, N = 10000 in Fig. 8.8c, an agreement is observed for T/Tc = 0 . . .0.7.

The fourth order moments in Figs. 8.8b and 8.8d scale comparably to the analytical prediction

of the Gauss approximation 〈(N0 −〈N0〉)4〉 =N2T6/T6
c up to T/Tc = 0.6 for both values of the total

particle number, i.e. for N = 1000 and for N = 10000 atoms.
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The first four moments predicted by the Gaussian ansatz are hence either valid for almost

all temperatures below the critical point, if the particle number is sufficiently large, e.g. up to

T/Tc = 0.7 for N ∼ 10000, or for sufficiently small temperatures, e.g. up to T/Tc = 0.4 for rather

small particle numbers N ∼ 1000. We conjecture that the Gaussian ansatz becomes exact in the

limit N→∞.
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Chapter 9

Final conclusions

9.1 Master equation of BoseEinstein condensation

Condensate formation

Our central conceptual result is the Markov master equation of BoseEinstein condensation in

Eq. (6.3), which explains the time evolution of the full Nbody state σ̂(N)(t) of the gas undergoing

the BoseEinstein phase transition. Our equation describes BoseEinstein condensation in terms

of two body collisions, takes into account the depletion of the noncondensate, avoids a state fac

torization into a condensate and a noncondensate density matrix and models the nonequilibrium

number statistics during condensate formation. Identifying the small parameter a̺1/3 for dilute

atomic gases in the condensate number transition rates, we could numerically monitor the entire

condensate number distribution during BoseEinstein condensation for the first time. It requires

the calculation of 2(N+1) single particle feeding and loss rates, and a numerical solution procedure

to solve for the (N + 1) coupled differential equations, all together executable on standard serial

computers.

Equilibrium steady state of a BoseEinstein condensate

We have derived a unique steady state for the Nbody state of the Bose gas. Using the limit of

dilute, weakly interacting atomic gases and employing the Markovian dynamics assumption, we

could show that the steady state of a BoseEinstein condensate is unique and stable. In the limit of

weak interactions, this steady state is in particular given by a Boltzmann thermal state of an ideal

gas, projected onto the subspace of exactly N indistinguishable particles.
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Time scales for condensate formation

The condensate formation times predicted by our theory match the correct order of magnitude

of experimentally observed time scales for condensate formation. We were able to estimate the

order of magnitude for intrinsic energy shifts in a BoseEinstein condensate, confirming the conjec

ture [17, 18] that they are small for dilute and mesoscopic atomic gases.

9.2 What is BoseEinstein condensation?

Thermodynamically, we see BoseEinstein condensation as a relaxation process of the gas below

Tc until the Boltzmann entropy is maximized and the free energy is minimized, according to the

(generalized) Einstein de Broglie condition.

Quantum mechanically, the BoseEinstein phase transition is marked as such by strong number

fluctuations which set in when the coherence length λ(T) of the noncondensate particles exceeds

their average distance. The time evolution of the condensate number distribution during conden

sate formation highlights the full Nbody quantum dynamics of the particles during condensate

formation, while the wave picture implies that all particles overlap below Tc.

Quantum statistically, condensate (and noncondensate) number distributions in the final equi

librium steady state of a dilute, weakly interacting BoseEinstein condensate (undergoing Markovian

dynamics) are uniquely captured by a Boltzmann thermal state of an ideal gas, subject to the statistics

of N indistinguishable particles.

9.3 Outlook

Our master equation theory describes in particular the many particle dynamics after sudden defor

mations of the trap geometry, which remains to be analyzed in detail. In addition, an extension

to study the dynamics induced by an additional external electromagnetic field is possible. We

have reformulated the theory for twocomponent spinor BoseEinstein condensates, which is of our

future interest [97, 98].

Possible improvements of the presented master equation consist in taking into account the finite

thermalization time of the noncondensate during BoseEinstein condensation, in particular using a

microscopic first principles derivation of the decay rate Γ between condensate and noncondensate

correlations. The inclusion of pair processes for studying condensate formation and for deriving the

steady state of the gas may modify quantitative predictions, if the single particle ground state energy
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exceeds the energies of noncondensate single particle states (e.g. for quasi onedimensional Bose

gases [99, 100, 101, 102], where in particular the geometry dependence of the scattering amplitude

may lead to physically different scenarios [102]). A detailed numerical comparison of unperturbed

to perturbed transition rates including the time dependence of the condensate mode for single

particle, pair and scattering processes is also planned to be carried out in future works.
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Appendix A

Important proofs and calculations

A.1 Correlation functions of the noncondensate field

The normally and antinormally ordered two point correlation functions of the noncondensate

field are decomposed for single particle ( ), pair (!) and scattering (�) processes, using Wick’s

theorem [94]. We begin with the normally ordered two point correlation function for single particle

processes, G
(+)
 (~r,~r′,N−N0,T, τ) in Eq. (5.32):

G
(+)
 (~r,~r′,N−N0,T, τ) =

〈

Ψ̂
†
⊥(~r, τ)Ψ̂†⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)Ψ̂⊥(~r′,0)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥
=

2
〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥

〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥

〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥
.

(A.1)

The antinormally ordered correlation function for single particle processes, G
(−)
 (~r,~r′,N−N0,T, τ)

in Eq. (5.33), can be decomposed similarly:

G
(−)
 (~r,~r′,N−N0,T, τ) =

〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)Ψ̂†⊥(~r′,0)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥
=

2
〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥

〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥

〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥
.

(A.2)

The noncondensate field Ψ̂⊥(~r, τ) in the interaction picture with respect to Ĥ⊥ in Eq. (4.26), written

in the single particle basis set {|Ψk〉,k ∈N} of the noncondensate, turns into

Ψ̂⊥(~r, τ) = Û⊥(τ)Ψ̂⊥(~r)Û†⊥(τ) =
∑

k,0

Ψk(~r)âkexp
[

− iǫkτ

~

]

. (A.3)
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Any two point correation function of products of two noncondensate fields in Eqs. (A.1, A.2) can

hence be written as a function of the average occupation of different noncondensate single particle

states |Ψk〉 ∈F⊥:

〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥
=

∑

k,0

Ψ
⋆
k (~r)Ψk(~r′) fk(N−N0,T) exp

[

− iǫkτ

~

]

, (A.4)

where

〈

â†k âl

〉(N−N0)

F⊥
=

〈

â†k âk

〉(N−N0)

F⊥
δkl ≡ fk(N−N0,T)δkl . (A.5)

The function

fk(N−N0,T) =















â†
k
âkQ̂N−N0

e−βĤ⊥

Z⊥(N−N0)
Q̂N−N0















(A.6)

describes the average many particle occupation of a noncondensate single particle state |Ψk〉,
given that (N −N0) particles are in the noncondensate. An explicit analytical derivation for the

expressions of the occupation numbers fk(N−N0,T) is given in Appendix A.3.

Antinormal products of two point correlation functions of two noncondensate fields in the

interaction picture arising in Eqs. (A.1, A.2) can be obtained correspondingly, i.e., they turn into

〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥
=

∑

k,0

Ψk(~r)Ψ⋆
k

(~r′)
[

fk(N−N0,T)+ 1
]

exp
[

iǫkτ

~

]

, (A.7)

given that

〈

âkâ†l
〉(N−N0)

F⊥
=

[

fk(N−N0,T)+ 1
]

δkl . (A.8)

With respect to single particle processes, we hence find for normally and antinormally ordered two

point correlation functions:
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G
(+)
 (~r,~r′,N−N0,T, τ) = 2

∑

k,l,m,0

Ψ
⋆
k

(~r)Ψk(~r′)Ψ⋆
l

(~r)Ψl(~r
′
)Ψ⋆m(~r)Ψm(~r′)

[

fk(N−N0,T)+ 1
]×

× fl(N−N0,T) fm(N−N0,T) exp

[

i (ǫk − ǫl − ǫm)τ

~

]

,

(A.9)

G
(−)
 (~r,~r′,N−N0,T, τ) = 2

∑

k,l,m,0

Ψ
⋆
k

(~r)Ψk(~r′)Ψ⋆
l

(~r)Ψl(~r
′
)Ψ⋆m(~r)Ψm(~r′) fk(N−N0,T)×

× [

fl(N−N0,T)+ 1
][

fm(N−N0,T)+ 1
]

exp

[

−i (ǫk − ǫl − ǫm)τ

~

]

.

(A.10)

Integration of G
(±)
 (~r,~r′,N−N0,T, τ)exp[−τ2/τ2

col
] over the time interval τ, multiplied byΨ0(~r)Ψ⋆

0
(~r′)exp[±iω0τ],

which arises from the backswitch of the condensate fields from the interaction picture, Ψ̂0(~r, τ) ≃
Ψ̂0(~r)exp[±iω0τ] using the GrossPitaevskii equation (4.4), leads to the single particle loss and

feeding rates in Eq. (7.3).

Through the decomposition of a product of four noncondensate fields into a product of two time

ordered two point correlation functions of two noncondensate fields in the two point correlation

functions for pair events, G
(±)
!(~r,~r′,N−N0,T, τ), and applying Eq. (A.7, A.8), the normally ordered

correlation function for pair events turns into:

G
(+)
!(~r,~r′,N−N0,T, τ) =

〈

Ψ̂
†
⊥(~r, τ)Ψ̂†⊥(~r, τ)Ψ̂⊥(~r′,0)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥
=

2
〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥

〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥
=

2
∑

k,l,0

Ψ
⋆
k

(~r)Ψk(~r′)Ψ⋆
l

(~r)Ψl(~r
′) fk(N−N0,T) fl(N−N0,T) exp

[

−i (ǫk + ǫl)τ

~

]

.

(A.11)

The antinormally ordered pair correlation function G
(−)
!(~r,~r′,N − N0,T, τ) can be decomposed

similarly:

G
(−)
!(~r,~r′,N−N0,T, τ) =

〈

Ψ̂⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥
=

2
〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥

〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥
=

2
∑

k,l,0

Ψ
⋆
k (~r)Ψk(~r′)Ψ⋆l (~r)Ψl(~r

′
)
[

fk(N−N0,T)+ 1
][

fl(N−N0,T)+ 1
]

exp

[

−i (ǫk + ǫl)τ

~

]

,

(A.12)
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which after multiplication with Ψ2
0
(~r)

(

Ψ⋆
0

(~r′)
)2

exp[±2iω0τ] and integration over τ turns into the

pair feeding and loss rates in Eq. (7.12).

Finally, the scattering two point correlation function G�(~r,~r′,N−N0,T, τ) is decomposed from

a product of four noncondensate fields into a product of two time ordered two point correlation

functions of two noncondensate fields:

G�(~r,~r′,N−N0,T, τ) =
〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥
=

〈

Ψ̂
†
⊥(~r, τ)Ψ̂⊥(~r′,0)

〉(N−N0)

F⊥

〈

Ψ̂⊥(~r, τ)Ψ̂†⊥(~r′,0)
〉(N−N0)

F⊥

2
∑

k,l,0

Ψ
⋆
k (~r)Ψk(~r′)Ψ⋆l (~r)Ψl(~r

′
) fk(N−N0,T)

[

fl(N−N0,T)+ 1
]

exp

[

i (ǫk − ǫl)τ
~

]

,

(A.13)

which, after multiplication with |Ψ0(~r)|2|Ψ0(~r′)|2 and integration over τ turns into the scattering rate

in Eq. (7.16).

A.2 Detailed balance conditions

We proof the balance condition

λ + (N−N0,T) = exp
[

β∆µ(N−N0,T)
]

λ − (N−N0,T) (A.14)

between single particle feedings and losses, where ∆µ(N − N0,T) = µ⊥(N − N0,T) − µ0 is the

difference between the eigenvalue of the GrossPitaevskii equation µ0 in Eq. (4.4), and µ⊥(N−N0,T)

represents the noncondensate chemical potential in Eq. (A.28). Since the single particle body

feeding and loss rates are given by

λ ± (N−N0,T) =
8π3~2a2

m2

∑

k,l,m,0

W
 
± (k, l,m,N−N0,T)δ(Γ)(ωk +ωl −ωm −ω0) , (A.15)

where the δdistribution is given by Eq. (7.4), it is sufficient to show that

W
 
+ (k, l,m,N−N0,T) = exp

[

β∆µ(N−N0,T)
]

W
 
− (k, l,m,N−N0,T) (A.16)
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under the constraint thatωk+ωl−ωm+ω0 ≤ ∆. Since, as a matter of fact, the probability amplitudes

satisfy (ζm0
kl

)⋆ = ζkl
m0

, the exact relation [ fk(N−N0,T)+1] = fk(N−N0,T)exp[β(ǫk−µ⊥(N−N0,T))]

for the occupation numbers fk(N −N0,T) of noncondensate single particle states in Eq. (A.24)

further enables us to show that

W
 
+ (k, l,m,N−N0,T) = fk(N−N0,T) fl(N−N0,T)

[

fm(N−N0,T)+ 1
] |ζm0

kl
|2

= fk(N−N0,T) fl(N−N0,T) fm(N−N0,T)exp
[

β(ǫm−µ⊥(N−N0,T))
] |ζm0

kl
|2

= fk(N−N0,T) fl(N−N0,T) fm(N−N0,T)exp[β(ǫk + ǫl −µ0 −µ⊥(N−N0,T)− ~∆)]|ζkl
m0|2

=
[

fk(N−N0,T)+ 1
] [

fl(N−N0,T)+ 1
]

fm(N−N0,T)exp[β(µ⊥(N−N0,T)−µ0)]|ζkl
m0|

2

= exp[β∆µ(N−N0,T)]W  − (k, l,m,N−N0,T) ,

(A.17)

with ∆µ = µ⊥(N −N0,T)−µ0. Because of the finite width ∼ Γ of the δfunction in Eq. (A.15), the

balance condition in Eq. (A.14) is valid for β~Γ≪ 1. This is the case in the parameter regime of

dilute gases, where we checked that ≡ exp[−β~Γ] ≃ 1 for β~Γ = β~
√

2/τcol ∼ 10−3≪ 1.

A.3 Occupation numbers of the noncondensate

The state of the noncondensate in Eq. (5.14) allows to determine the average number of particles,

fk = fk(N −N0,T) in Eq. (A.6), in each particular noncondensate single particle mode |Ψk〉, given

that N0 particles populate the condensate mode and (N−N0) particles the noncondensate single

particle modes. According to Eq. (A.6), the expectation value of the number operator N̂k in a

noncondensate state of (N−N0) particles is

fk(N−N0,T) =Z
−1
⊥ (N−N0)

(N−N0)
∑

{Nk}
Nkexp















−β
∑

k,0

ǫNk















, (A.18)

where Z⊥(N − N0) is the partition function of (N − N0) indistinguishable particles in the non

condenste in Eq. (5.15). In terms of the partial partition sum, Z
(k)
⊥ (N −N0) [10], which excludes

the sum over the particular mode |Ψk〉, Eq. (A.24) can be rewritten as
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fk(N−N0,T) =Z
−1
⊥ (N−N0)

(N−N0)
∑

Nk=0

Nk exp
[−βǫkNk

]

Z
(k)
⊥ (N−N0 −Nk) . (A.19)

For small enough Nk (it suffices to start at Nk = 1 and to determine Z
(k)
⊥ (N−N0 −Nk) iteratively),

it is possible to expand

log
[

Z
(k)
⊥ (N−N0 − 1)

]

≃ log
[

Z
(k)
⊥ (N−N0)

]

−α(k)
⊥ (N−N0,T) , (A.20)

with the parameter

α(k)
⊥ (N−N0,T) =

∂log
[

Z
(k)
⊥ (N−N0)

]

∂(N−N0)
. (A.21)

From Eq. (A.20), we find the recursion relation

Z
(k)
⊥ (N−N0 − 1)

Z
(k)
⊥ (N−N0)

= exp
[

−α(k)
⊥ (N−N0,T)

]

(A.22)

between the partial partition sums Z
(k)
⊥ (N −N0) of N −N0, and Z

(k)
⊥ (N −N0 − 1) of N −N0 − 1

noncondensate particles. Multiple iteration of Eq. (A.22) leads to

Z
(k)
⊥ (N−N0 −Nk)

Z
(k)
⊥ (N−N0)

= exp
[

−Nkα
(k)
⊥ (N−N0,T)

]

, (A.23)

and Eq. (A.19) turns into

fk(N−N0,T) =
Z

(k)
⊥ (N−N0)

Z⊥(N−N0)

(N−N0)
∑

Nk=0

Nkexp
[

−
(

βǫk +α
(k)
⊥ (N−N0,T)

)

Nk

]

. (A.24)

It remains to apply the same procedure to the partition function Z⊥(N−N0). Using the decompo

sition in Eq. (A.19), and applying Eq. (A.23), one finds that

Z⊥(N−N0) =Z
(k)
⊥ (N−N0)

(N−N0)
∑

Nk=0

exp
[

−
(

βǫk +α
(k)
⊥ (N−N0,T)

)

Nk

]

. (A.25)
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Setting Eq. (A.25) into Eq. (A.24), the expectation value of particle number occupations of a particular

noncondensate single particle state |Ψk〉, given that (N−N0) particles populate the noncondensate

modes, turns into

fk(N−N0,T) =
1

exp
[

βǫk +α
(k)
⊥ (N−N0,T)

]

− 1
. (A.26)

Hence, the parameter α(k) can be interpreted as to describe the change in temperature in the

noncondensate part of the gas during condensate formation. The parameter α(k)
⊥ (N −N0,T) is

approximately independent of the state k [10], i.e. the change in temperature during condensation

is described by one single parameter,α(k) ≃ α⊥(N−N0,T). The latter is determined by the constraint

of particle number conservation, as spelled out by the implicit equation

∑

k,0

fk(N−N0,T) =
∑

k,0

1

exp[βǫk +α⊥(N−N0,T)]− 1
= (N−N0) . (A.27)

As evident from Eq. (A.21), and from the fact that each subspace of (N−N0) particles is in a thermal

state (of microscopic occupation number corresponding to different temperatures), the parameter

α⊥(N−N0,T) can be interpreted as the ratio of the noncondensate chemical potential for a state of

(N−N0) atoms to the thermal energy β−1 [10]. Hence, from the definition in Eq. (A.21), we see that

α⊥(N −N0,T) is, upon a constant, nothing more than the derivative of the Helmholtz free energy

F (N−N0) = −β−1logZ⊥(N−N0) of the (N−N0) particles in the noncondensate, thus given [10]

by

α⊥(N−N0,T) = −β ∂F
∂(N−N0)

= −βµ⊥(N−N0,T) , (A.28)

introducing the noncondensate chemical potential µ⊥(N−N0,T).

A.4 Proof of uniqueness of the Bose gas’ steady state

We proof the uniqueness of the equilibrium steady state of the Bose gas, defined by Eqs. (6.2) and

(8.2). To this end, it is to show that
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pN(N0,T) =N

N0−1
∏

z=1

λ(+)
 (z− 1,T)

λ(−)
 (z,T)

⇔ ∂pN(N0, t)

∂t
= 0 , (A.29)

“⇒”: First, let’s verify that pN(N0,T) in Eq. (8.2) is a stationary solution of Eq. (6.3). Assume

pN(N0,T) to be given by Eq. (8.2). Equation (6.3) then implies that

pN(N0 + 1) = pN(N0)
λ+ (N0)

λ− (N0 + 1,T)
, (A.30)

which leads to a vanishing of the terms in Eq. (6.3) proportional to N0:

N0pN(N0 − 1,T)λ(+)
 (N0 + 1,T)−N0pN(N0,T)λ(−)

 (N0,T) = 0 . (A.31)

Moreover, Eq. (A.30) shows that the same applies to the terms in Eq. (6.3) proportional to N0 + 1:

(N0 + 1)pN(N0 + 1,T)λ(−)
 (N0 + 1,T)− (N0+ 1)pN(N0,T)λ(+)

 (N0,T) = 0 . (A.32)

Therefore, the distribution pN(N0,T) given by Eq. (8.2) is a stationary solution of the evolution

Eq. (6.3):

pN(N0,T) =N

N0−1
∏

z=1

λ(+)
 (z− 1,T)

λ(−)
 (z,T)

⇒ ∂pN(N0,T)

∂t
= 0 . (A.33)

“⇐": Let’s now proof that pN(N0,T) in Eq. (A.29) is the unique solution of Eq. (6.3). Suppose

that ∂tpN(N0,T) = 0. By induction, it can be proven that the recurrence relation for the steady state

distribution pN(N0,T) arising from Eq. (6.3) equals Eq. (A.30) for all N0. From Eq. (6.3), it follows

that

pN(N0 + 1,T) =

(

N0λ
(−)
 (N0,T)+ (N0 + 1)λ(+)

 (N0,T)
)

pN(N0,T)−N0pN(N0 − 1,T))λ(+)
 (N0 + 1,T)

(N0 + 1)λ(−)
 (N0 + 1,T)

.

(A.34)
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Choosing the starting point of induction at N0 = 1 (N may be chosen arbitrarily, hence it was set

to one), it follows from Eq. (A.34) that

pN(1,T) = λ+ (0,T)/λ− (1,T) , (A.35)

which conincides with Eq. (A.30), for N0 = 1.

The induction step is N0 → N0 + 1: Suppose Eqs. (A.34) and (A.30) equal for N0. Let’s write

Eq. (A.34) for arbitrary N0 + 1:

pN(N0 + 2,T) =

[

(N0 + 1)λ(−)
 (N0 + 1,T)+ (N0 + 2)λ(+)

 (N0 + 1,T)
]

pN(N0 + 1,T)

(N0 + 2)λ(−)
 (N0 + 2,T)

−
(N0 + 1)λ(+)

 (N0,T)pN(N0,T)

(N0 + 2)λ(−)
 (N0 + 2,T)

(A.36)

which turns into

p(N0 + 2,T) =
λ(+)
 (N0 + 1,T)

λ(−)
 (N0 + 2,T)

pN(N0 + 1,T) , (A.37)

under the use of the induction assumption in Eq. (A.30) for N0. Equation A.37 equals Eq. (A.30)

for N0 + 1 condensate particles, hence proofing our statement that pN(N0,T) in Eq. (8.2) is the

unique equilibrium steady distribution of Eq. (6.3). The unique Nbody equilibrium steady state is

therefore given by

σ̂(N)(t→∞) =

N
∑

N0=0

pN(N0,T)|N0〉〈N0| ⊗ ρ̂⊥(N−N0,T) (A.38)

after long times with

pN(N0,T) =N

N0−1
∏

z=1

λ(+)
 (z− 1,T)

λ(−)
 (z,T)

. (A.39)
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Figure A.1: Probing the rapid noncondensate thermalization in a shock cooling process. For sufficiently smooth
condensate time evolution, the assumption of rapid noncondensate equilibration is well satisfied, since the thermal
ization in the noncondensate is faster than the change of the condensate fraction: Figure shows the comparison of
the thermal redistribution rate τ⊥ [82, 47] (red dashed line) to condensate flux ∂t〈N0〉/N (blue solid line) as a function
of time for N = 2000 87Rb atoms in the gas with temperature T = 30.0 nK. The critical temperature is Tc = 53.07 nK,
for an isotropic trap with frequencies 2πυx = 2π · υy = 2π · υz = 600 Hz.

As shown in Chapter 6, this steady state turns into a GibbsBoltzmann thermal state of an ideal gas

for sufficiently small interactions captured by the formal limiting case a̺1/3→ 0+.

A.5 Noncondensate thermalization

We treat the backgroud gas as a thermalized, depleted thermal gas, which is equivalent to assume

the noncondensate thermalization to be ideally infinitely fast as compared to the condensate

formation time. Despite the fact that this has been explicitly demonstrated in the experiment [64],

and previous theoretical approaches [60, 64, 76, 51], we shall also convince ourselves numerically

that this assumption is well satisfied for harmonic traps. An estimate for the noncondensate

thermalization time in the presence of a condensate is given [82, 47] by:

1

τ⊥
= 6.47 ∗

(

a

L

)7/5
N17/30

(

T

Tc

)1/2 (N0

N

)2/5

ω, (A.40)

where L = (~/mω)1/2 is the extension of the harmonic oscillator ground state, ω = (ωxωyωz)1/3 is
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the averaged frequency of an anisotropic trap, and Tc = (~ω/kB)[N/ζ(3)]1/3 the critical temperature

of an ideal gas. In Fig. A.1, we show the comparison of the time scales for noncondensate relaxation

τ⊥ ∼ τcol to typical condensate formation times τ0 obtained from Eq. (6.6): The assumption of rapid

noncondensate thermalization is satisfied initially, still holds approximately at the exponential stage

of condensate growth (and is well satisfied, if the condensate growth is smooth), and is very well

satisfied again at the final stage of condensate formation.
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Summary

We directly model the quantum many particle dynamics during the transition of a gas of N indistin

guishable bosons into a BoseEinstein condensate. To this end, we develop a quantitative quantummaster

equation theory, which takes into account two body interaction processes, and in particular describes the

particle number fluctuations characteristic for the BoseEinstein phase transition. Within the Markovian

dynamics assumption, we analytically prove and numerically verify the Boltzmann ergodicity conjecture

for a dilute, weakly interacting BoseEinstein condensate. The physical bottom line of our theory is the

direct microscopic monitoring of the BoseEinstein distribution during condensate formation in realtime,

after a sudden quench of the noncondensate atomic density above the critical density for BoseEinstein

condensation.

Résumé

Nous étudions la dynamique quantique à N corps d’un gaz atomique composé de N particules

indiscernables lors de la condensation de BoseEinstein. Pour cela, nous développons une approche

quantitative, fondée sur une équation pilote prenant en compte les interactions à deux corps. Cela permet

en particulier de décrire les fluctuations de nombre de particules caractéristiques de la condensation. Avec

une hypothèse markovienne, nous prouvons analytiquement et numériquement l’hypothèse d’ergodicité

de Boltzmann dans le régime de gaz faiblement interagissant. Le point essentiel de notre approche

théorique est qu’elle permet le suivi direct, au niveau microscopique, de la distribution de population du

condensat de BoseEinstein lors de sa formation, après une augmentation rapide de densité audelà de la

densité critique.

Zusammenfassung

Wir beschreiben die VielteilchenQuantendynamik eines Gases von N ununterscheidbaren Teilchen

während des Übergangs in ein BoseEinstein Kondensat. Hierfür entwickeln wir eine quantitative Master

gleichungstheorie, welche den Phasenübergang des Gases in die kondensierte Phase realistisch beschreibt

– unter Einschluss von Zweiteilchenwechselwirkungen und unter der Berücksichtigung von Teilchen

fluktuationen. Im Rahmen unseres Ansatzes gelingt ein analytischer Beweis der Boltzmannschen Er

godizitätshypothese für schwach wechselwirkende Quantengase unter der Annahme Markovscher Dy

namik, in Übereinstimmung mit numerischen Simulationsergebnissen. Das übergreifende physikalische

Ergebnis unserer Theorie ist die direkte mikrokopische Echtzeitbeschreibung der BoseEinstein Verteilungs

funktion während der Kondensation, nach einer instantanen Änderung der atomaren Nichtkondensats

dichte oberhalb der kritischen Dichte für die BoseEinstein Kondensation.


