
HAL Id: tel-00438778
https://theses.hal.science/tel-00438778

Submitted on 4 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measurement and synthesis of motion of plants
Julien Diener

To cite this version:
Julien Diener. Measurement and synthesis of motion of plants. Modeling and Simulation. Institut
National Polytechnique de Grenoble - INPG, 2009. English. �NNT : �. �tel-00438778�

https://theses.hal.science/tel-00438778
https://hal.archives-ouvertes.fr

INSTITUT POLYTECHNIQUE DE GRENOBLE

N◦ attribué par la bibliothèque

THESE

pour obtenir le grade de

DOCTEUR DE L’INSTITUT POLYTECHNIQUE DE GRENOBLE

Spécialité Mathématiques - Informatique

Préparée au Laboratoire Jean Kuntzmann,

dans le cadre de l’École Doctorale “Mathématiques, Sciences et Technologies de
l’Information, Informatique”

Présenté et soutenu publiquement

par

Julien Diener

le ... juillet 2009

Acquisition et generation du mouvement de plantes

Directeur de thèse : Fabrice Neyret
Co-directeur : Lionel Reveret

JURY

J.M. Chassery Directeur de Recherche - CNRS , Président
M. Wimmer Associate Professor - Technische Universitat Wien , Rapporteur
C. Godin Directeur de Recherche - INRIA , Rapporteur
E. Galin Professeur des Universités - Université Lumière Lyon 2 , Examinateur
F. Neyret Directeur de Recherche - CNRS , Directeur de thèse
L. Reveret Chargé de Recherche - INRIA , Co-directeur de thèse

2

texte juste pour faire un page blanche

Contents

1 Introduction 7
1.1 Rationale . 7

1.1.1 Trees . 7
1.1.2 Tree Animation in Computer Graphics 10

1.2 Contribution . 11
1.3 Thesis Outline . 13

I Acquisition and Reproduction
of Real Motion 15

2 Acquisition of Plants Motion 17
2.1 Introduction . 18
2.2 Motion Capture . 18

2.2.1 Origin of Motion Capture . 18
2.2.2 Assisted Motion Capture . 20
2.2.3 Markerless Motion Tracking . 22

2.3 Data Acquisition . 23
2.3.1 Experimental Setup . 23
2.3.2 Cameras Calibration . 24
2.3.3 Recorded Data and First Results . 27

2.4 Extracting Motion from Videos . 29
2.4.1 Comparison of Region . 31
2.4.2 Statistical Descriptors . 31
2.4.3 Differential Methods . 33
2.4.4 Optical Flow and Particles Tracking . 36

2.5 Algorithm Development . 38
2.5.1 Pyramidal Box Matching Tracking . 38
2.5.2 Robust Tracking . 39
2.5.3 Tracking Particles with Limited Life Span 42

3 User Oriented Application for Video Tracking 45
3.1 Introduction . 46
3.2 Visualization of Motion Flow . 47

4 CONTENTS

3.3 User Interface to Control Time . 49
3.4 Manual Input . 51

3.4.1 Key-Frame Approach . 51
3.4.2 Sketching Motion . 53

3.5 User Interface for Correction . 55
3.5.1 Correction in Space . 56
3.5.2 Time Correction . 57

3.6 Conclusion . 58

4 Extraction of Plant Structure and Retargetting of Motion Data 59
4.1 Introduction . 60
4.2 Related Works . 61

4.2.1 Structure from Video Motion . 61
4.2.2 Animation from Video Motion . 62

4.3 Building a Hierarchy of Branches from a Single Video View 63
4.3.1 Clustering Metric . 64
4.3.2 Selection of a Hierarchy of Branches using Clustering 65

4.4 Creating 3D Shape and Motion . 69
4.4.1 Creating Motion of the Terminal Groups 69
4.4.2 Propagating Motion to Intermediate Groups 69
4.4.3 Extending Groups to 3D Shape and Motion 70

4.5 Controlling the Animation of Complex 3D Plant Models 72
4.5.1 3D Animation of a Plant by Skinning 72
4.5.2 Interactive 3D Modeling . 73

4.6 Discussions on our Approach . 74
4.7 Conclusion . 75

II Mechanical Simulation 77

5 Real-Time Animation of Trees using Simulation 79
5.1 Introduction . 80

5.1.1 General Principles . 80
5.1.2 Outline of the Chapter . 82

5.2 Wind Models . 82
5.2.1 Physical Simulation . 83
5.2.2 Procedural and Phenomenological . 84
5.2.3 Stochastic Wind . 86

5.3 Modeling the Structural Elements . 87
5.3.1 Undeformable Segments with Angular Spring 87
5.3.2 Uniform Beam . 88
5.3.3 Cosserat Rod . 90

5.4 Structural Modeling . 92

CONTENTS 5

5.4.1 Dynamics Formalism . 92
5.4.2 Independent Elements . 94
5.4.3 Articulated Structures . 94
5.4.4 Finite Element Method . 95

5.5 Time Integration . 96
5.5.1 Static Equilibrium . 96
5.5.2 Explicit and Implicit Method . 97
5.5.3 Spectral Method . 99

5.6 Summary . 101

6 Modal Animation 103
6.1 Introduction . 104
6.2 Modal Analysis and Modal Animation Framework 105

6.2.1 Finite Element Method . 105
6.2.2 Modal Analysis . 108
6.2.3 Animation using the Modes of Deformation 109

6.3 Wind Projection Basis . 110
6.4 Implementation Issues . 112

6.4.1 GPU Implementation . 113
6.4.2 Error Correction . 113
6.4.3 Configuration . 115

6.5 Results . 116
6.6 Limitations and Future Work . 117
6.7 Conclusion . 118

7 Conclusion 119

List of figures 125

Bibliography 133

6 CONTENTS

c h a p t e r 1
I n t r o d u c t i o n

1.1 Rationale

Vegetation is present all around us and we are accustomed to see trees and other plants everyday.
Its accurate representation is thus an essential part of the realistic depiction of natural scenes in
a virtual environment. Due to the complexity of both vegetation and its reaction to wind load,
such representation are still being unresolved issues of research in computer graphics. In a first
step to the development of suitable models of animated plants, it is thus essential to understand
as much as possible all the phenomena which produce the observable motion of trees.

1.1.1 Trees

Structural Complexity

One of the main characteristics of trees is their diversity. Compare to most other natural or man-
made physical objects, trees and shrubs have a rather complex architecture. A first structural
representation can be extracted by looking at the biological organization of branches and trunk
(see figure 1.1).

At a cellular level, a plant can be described by the organization of its growth. This is done by two
distinct types of cells: the primary and the secondary meristem. The first is responsible for the
increase in length and provide a natural segmentation of the branches. The second causes them
to grow laterally to become more robust.

Plant growth evolves in function of many factors of the environment and can produce a wide
diversity of structures. Considering a larger scale, the architectures of plants can be very differ-
ent depending on the species and the environment. However complex they may be, we can see
that patterns emerge. Francis Hallé [Hal05] provided a classification of the possible hierarchical
structure of trees (see figure 1.2).

8 chapter 1. Introduction

apical
meristem
(primary)

intercalary
meristem
(primary)

secondary
meristem

(a) (b)

Figure 1.1: Biological structure of trunk and branches.

Figure 1.2: Classification of possible hierarchical structure of trees. The four more common
structures are mark with an asterisk. (Image taken from [Hal05])

In the end, one of the main difficulty for studies concerning plants is the number of elements
(branches, leaves,...) that have to be taken into account and their spatial organization. Even for a
little shrub, the structure can be composed of hundreds or more branches.

1.1 Rationale 9

Interaction with the Wind

An other important factor is that plants evolve in a dynamical environment. In particular its in-
teraction with the surrounding air flow, which interest us most in this thesis, has many complex
consequences. For example, results have emphasize the reaction of plant growth to external wind
load, a phenomena called thigmomorphogenesis (see figure 1.3). A primary explanation is that
under mechanical strain plants change from having a principal growth in height (of the primary
meristem) to an increase of the branches diameters (secondary meristem) in order to become
more robust.

Figure 1.3: Experiment showing how important a factor the wind is to the growth in height of
crop. A patch of a crop field has its lateral motion (due to wind) restricted. It results in a growth
much higher of the crop. (Image and experiment presented in [MC06])

An other example is the critical consequences that can arise which concern agronomic and eco-
logical risk. It is obvious that under strong enough wind, plant eventually breaks. However
contrary to what it might be believed, the wind speed is not the only cause. The strong inter-
action between the wind fluctuation and the branches, or trunk, oscillation can provide a better
explaination for some observed phenomena. Figure 1.4(a) shows a case of plant lodging where
the crop have bend too much to raise again. In the same manner, in figure 1.4(b) a destructed part
of a forest is presented. In both cases, the area is localized in middle of the field and the forest
respectively while the wind has been of similar speed over a wider area.

10 chapter 1. Introduction

(a) Field lodging (b) forest after the Lothar and Martin windstorms
(1999)

Figure 1.4: Breaking of plants at different scales due to wind action. Studies describe the phe-
nomena as a consequence of a locking mechanism between the wind frequency and the plants
oscillation.

These examples aim to emphasize the complexity of the interaction between plants and air flow.
Trees are not growing in order to withstand statically the wind load but rather to respond coordi-
nately. This observation indicates the difficulty of developing a realistic animation methods for
computer graphics.

1.1.2 Tree Animation in Computer Graphics

Since the beginning of computer graphics, researches related to the representation of plants have
primarily focused on their modeling and rendering. While it has produced impressive results, an-
imation techniques remain of visually poor quality. Obviously the logical process of research had
first to develop suitable techniques to create and render natural looking 3D models and in some
cases reproduce real (static) trees in a virtual environment. With the development of computer
technology, virtual scenes containing complex vegetation has now become ordinary. Realistic
animation should thus be provided for these models as static vegetation cannot fulfill desired
perception of realism.

The main difficulty of this task is the complexity of the plants structure, their diversity in shape
and mechanical property and their complex interaction with the environment. Current computer
performance now allows applying general off-line simulation techniques to compute the dynam-
ics of thousands of branches interacting with fluids such as the wind.

However this technological development has also led for real-time applications to render natural
scenes with high quality and complex geometry. This increase in model complexity has then
generated the need for suitable (i.e., low cost) animation techniques. As the existing accurate
simulation methods are still too computationally expensive, developers usually resort to ad-hoc
techniques. Such methods typically apply pseudo-random oscillation to the branches. If they

1.2 Contribution 11

can be satisfying for models with simple structures such as grass or palm trees, they fail to pro-
vide realistic animation of complex branches hierarchy. There are thus open research areas on
real-time animation of plants.

1.2 Contribution

The primary goal of my Ph.D. is to develop innovative animation techniques that provide use-
ful alternatives for real-time application. To this end, two main approaches have been explored.
First I focused on reproducing the real motion of plants. Then, in a second part, I worked on the
design of a new computer simulation suitable for real-time animation.

Led by the first approach requirements, a large part of my work has been to search of suitable
ways of recording and processing the observable movement of plants. One of the main scientific
contribution of my Ph.D. has been to record and gather many video sequences on the real motion
of shrubs and trees. In most cases, a single camera fixed on a tripod was used as the recording
device, often without setting up a calibration process (i.e., the procedure to estimate the posi-
tion and the projection matrix of the video camera). In these cases, the sequences were mostly
gathered as case studies for the extraction of motion from videos.

I have also been involved in a set of experiments to extract more detailed data on real motion of
a tree. The main goal was to collect as much information as possible for several sequences of
the motion of one tree stressed by the wind and by manual load. For these experiments, the tree
was first digitalized in order to know its structure. Then for each sequence we have recorded the
wind speed, the tree foliage motion (filmed in stereo using two cameras), and the movement of a
few specific branches using a magnetic tracking device. An important issue has been to setup a
protocol which allows the calibration of stereo recording suitable for this experimental setting.

For my Ph.D., we made the choice to focus on the use of video camera as main input device and
work on methods to extract the 2D motion present in video sequences to obtain data. The main
reason of using this approach is that video cameras provide a much simpler experimental setup
compared to traditional motion capture systems. Moreover the use of such input has not been
studied previously for the case of plants. As a tradeoff however, it requires to extract reliable
motion data from the video sequences obtained. This is a difficult task that has been one of the
main challenges throughout my research.

Several well known vision algorithm were tested to estimate the foliage motion. However most
typical (and necessary) assumptions made by these methods are not adapted to videos of an-
imated foliage which presents many hard impediments. To cope with this difficulties, I have
first developed some algorithms to increase the speed and robustness of vision tracking. But
all-automatic methods have limitations that cannot always be overcome. I have thus focus on
designing a user interface mixing the automatic tracking techniques with user actions in order to
quickly extract reliable motion data that can be used for further studies.

The concluding step of my work based on the use of videos, in the point of view of the presented
Ph.D., is the reproduction of observed animation on virtual models of trees. This is also quite

12 chapter 1. Introduction

a complex issue that was not studied previously. Traditional techniques were developed mostly
for articulated subject such as human and animals and cannot be used for plants. On the contrary
of models of known (and simpler) structures, the organization of branches is an unknown when
extracting the plant motion. An important result of my work is an innovative method to estimate
a valid hierarchical structure of plants present in a video only using a statistical study of the
estimated video motion. We use a clustering algorithms to extract a hierarchical classification
of a set of features tracked in the video. An important contribution is the metric employed. It
allows the obtained classification to be topologically similar to the real plant structure. Geomet-
rical constraints are then used to model a hierarchy of virtual branches animated according to the
video motion. Finally, using a traditional animation technique we have shown that the obtained
structure can be used to retarget the observed branches movement on a wide range of virtual plant
models. The results of this work has been published in the Symposium on Computer Animation
2006 [DRF06].

An other part of my work has been to study mechanics and computer simulation in order to de-
velop a new real-time animation technique for virtual plant models. We obtained a method to
compute the dynamical response with respect to wind flow that can be controlled interactively.
The proposed approach is based on vibration analysis of elastic structures and their aerodynamic
interaction with fluids, such as air. Due to the complexity of plant structures, realistic simulation
methods are very time consuming in particular because the interaction between the wind flow
and each branch has to be considered.

A significant contribution of my work has been to show that, using simple approximation of
the wind load model, the run-time computations could be reduced drastically for a simulation
method based on the modes of vibration of the structures. To this end, we introduce the precom-
puted modal projection basis which allows to compute the tree modal stress at run-time with a
simple projection of the wind speed onto this basis. Moreover, the obtained simulation method
can take full advantage of the parallel processing capabilities of computer graphics cards which
allows the animation of thousands of trees in real-time. This method has been published at the
Eurographics conference on computer graphics 2009 [DRBR09].

During the second half of my Ph.D., I have been involved with the ANR project Chêne-Roseau
[CHE]. This research project, founded by the Agence National pour la Recherche (ANR), is a
interdisciplinary collaboration focused on the interaction of trees with the wind. This project is
composed of four research teams: LadHyX of Ecole Polytechnique which study fluid mechanics
and fluid-structure interaction; Piaf of Institut National de la Recherche Agronomique (INRA) at
Clermont-Ferrand, working on the biomechanics of plants; Ephyse of INRA Bordeaux special-
ized on numerical simulation of larger scale interaction between the atmosphere and vegetation;
and Evasion of the computer graphics community mostly focused on virtual representation of
natural scenes.

It has been a great opportunity for my Ph.D.. The collaborations have brought me more acute
knowledge in the phenomena I studied and led me to be involved with researches of wide scope.
My participation has been in particular on data acquisition of real plants motion and, through-

1.3 Thesis Outline 13

out my collaboration with Mathieu Rodriguez (LadHyX / Piaf), on the development of the new
real-time simulation method.

1.3 Thesis Outline

This thesis is organized in two parts. The first is on the acquisition and the reproduction of the
motion of real plants and contains three chapters. The second is on mechanical simulation of
plants dynamics and is divided in two chapters.

In the first part, chapter 2 describes experimental work I have done and participated to within
the Chene-Roseau project and shows the obtained data on plants response to natural wind load
and manual excitation. We also discuss how features observable in a video can be automatically
tracked along the sequence and presents some methods I have developed.

These algorithms have been put in a software I developed that also focus on user interaction to
compensate for the limitation of automatic techniques. An explanation is given in chapter 3 of
how manual input can be used to extract reliable motion data from video.

At the end of the first part, chapter 4 presents our results on structure extraction from 2D motion
data (previously extracted from a video) and its retargeting. The statistical study of 2D motion
data I have developed is discussed. We show how it can be used to extract a valid hierarchical
branches structure that holds the plants motion and how it is used to reproduce the observed
motion on a virtual model.

In the second part, simulation method of tree response to wind load is discussed. In chapter 5,
a state of the art of existing real-time animation technique is given. We introduce several con-
cept of mechanics and simulation of elastic structure dynamics in order to compare all described
methods.

Finally chapter 6 presents the methods developed in collaboration with Mathieu Rodriguez on
the real-time simulation of thousands of trees in response to interactive wind.

14 chapter 1. Introduction

Part I

Acquisition and Reproduction
of Real Motion

c h a p t e r 2
A c q u i s i t i o n o f P l a n t s M o t i o n

Contents

2.1 Introduction . 18

2.2 Motion Capture . 18

2.2.1 Origin of Motion Capture . 18

2.2.2 Assisted Motion Capture . 20

2.2.3 Markerless Motion Tracking . 22

2.3 Data Acquisition . 23

2.3.1 Experimental Setup . 23

2.3.2 Cameras Calibration . 24

2.3.3 Recorded Data and First Results . 27

2.4 Extracting Motion from Videos . 29

2.4.1 Comparison of Region . 31

2.4.2 Statistical Descriptors . 31

2.4.3 Differential Methods . 33

2.4.4 Optical Flow and Particles Tracking 36

2.5 Algorithm Development . 38

2.5.1 Pyramidal Box Matching Tracking 38

2.5.2 Robust Tracking . 39

2.5.3 Tracking Particles with Limited Life Span 42

18 chapter 2. Acquisition of Plants Motion

2.1 Introduction

Whether the goal is the reproduction of real motion of trees on virtual models or for mechanical
studies of plants dynamics, reliable techniques to record and extract plants motion are neces-
sary. Methods to record real motion data, called motion capture (mocap), are frequently used for
many types of subjects and applications. However, in comparison to traditional subject such as
humans and animals, the capture of the plants motion is a particularly difficult task due to the
relative complexity of their structures. As a consequence very few data exist on plant motion.
This chapter is divided in two parts that represent the two main issues of motion capture: suitable
experimental setups to record data and methods to process them.

The first part discuss one of the main scientific contribution of the works presented in this thesis
which has been to record and gather data on real motion of plants. In section 2.2 we first give an
overview of existing motion capture techniques. Then a description is given in section 2.3 of the
experiments protocol we have developed to record tree motion and the data obtained.

During my Ph.D. we have focused on the use of video cameras as main input device to the ex-
traction of real motion of plants. It represents a very challenging task to provide a suitable mocap
method based only on video sequences that has not been done previously. The second part of
this chapter discuss this issues. In section 2.4 we first describe the basis of computer vision,
i.e., methods to extract motion from videos. Then in section 2.5 we provide some contributions
developed to increase the quality of motion estimation in videos of animated foliage.

2.2 Motion Capture

There exist a lot of different acquisition techniques using multiple types of hardware. Their
experimental suitability depends on many factors. For example, specific methods are available
for each type of motion to be captured such as the displacement of articulated rigid bodies or
the motion of fluids. Another important criterion is the ratio between financial cost and desired
precision. Finally for many cases such as motion capture of wild animals or outdoor trees, the
required hardware should be usable in the specific environment. In this section we review only a
short sample of existing methods in order to give a global description of the possible acquisition
systems.

2.2.1 Origin of Motion Capture

Early works started in the mid-nineteenth century at the same time as the invention of photog-
raphy. Two of the first representative examples can be seen in the works of the French scientist
Étienne-Jules Marey and American Edward James Muybridge.

Marey participated to the fundamental innovation in physiology called the graphical method. He
developed many methods using ingenious devices to record precisely the motion of humans and

2.2 Motion Capture 19

animals (see figure 2.1). This graphical method meant essentially to carry scientific experiments
that record, and study, precise measures of motion data (in particular for complex biological
system). Many of these methods are now considered the first motion capture techniques.

(a) Device 1 (b) Device 2 (c) Setup on horse
Figure 2.1: (a) and (b) Devices to record contacts of a horse hoof with the ground. (c) Setup to
record all the contacts of the hooves of a horse during locomotion using device 1 or 2.

On the other hand, Muybridge was originally a photographer and his work was more artistic than
scientific. However, he and Marey have strongly influenced each other’s work. It first occurred
when Muybridge came across Marey’s work on horse locomotion. Marey produced experimen-
tal data showing that for a brief moment a galloping horse had all four hooves off the ground.
However it did not convince the equestrian community. Muybridge made then an experiment
and recorded a horse gallop with a set of cameras launched one after the other when the horse
passed. The resulting image sequence, the horse in motion, provided a visual proof of Marey’s
theory (see figure 2.2).

This experiment has then brought Marey to use serial pictures as a method of studying the me-
chanics of locomotion (see figure 2.3). The complex setting of Muybridge’s method (setting
multiple independent cameras next to each other) did not allow easy recording of many animals
motion such as birds flying. Marey then developed many devices to record more image se-
quences in different environment, such as the chronophotographic gun (see figure 2.4) that lead
to the invention of cinematography.

Since then, techniques and applications of motion capture have quickly expanded as new hard-
ware appeared. Nowadays motion capture is a primarily tool used for physiological study of
locomotion and general mechanical study of biological system. It is one of the main animation
techniques of virtual models in the film and computer game industry, and it is also used as an
input method for human interaction in augmented reality environment.

20 chapter 2. Acquisition of Plants Motion

Figure 2.2: Excerpt from two of the Muybridge sequences. Top: excerpt from sequence Ani-
mals and Movements, Horses, Gallop; thoroughbred bay mare, Annie G. The first image proves
Marey’s theory that all hooves of horses leave the ground at some point during gallop. Bottom:
excerpt from sequence Movements, Female, Jumping: running straight high jump.

(a) Landing of a cat

(b) Landing of a pelican
Figure 2.3: Two sequences from Marey’s results.

2.2.2 Assisted Motion Capture

Most motion capture techniques uses specialized hardware attached onto the subject such as
markers or sensors. These markers can be of many types for which the acquisition system records
the appropriate data such as position or orientation.

2.2 Motion Capture 21

Figure 2.4: The chronophotographic gun design by Marey. A camera is mounted on a modified
traditional gun where a photographic film is stored in the chamber. It allowed capturing up to
twelve pictures by second.

To track the displacement or deformation of an object, one possibility is to record the change of
orientation of its parts relatively to each others. Inertial sensors such as gyroscopes or exoskele-
tons can be used to record the orientation of the elements of the subjects. This approach is used
by Kenneth James [Jam03, JHA06] to measure to displacement of the trunk of trees.

By using multiple markers one can reconstruct the overall shape of an articulated body. The
main advantage is that each marker is independent and can be easily attached on the subject. On
the other hand, for objects that exhibit non-rigid deformations or complex structures, the recon-
struction may not be precise enough. For example the displacement of the tip of long branches
obtained using the change of rotation angles at joints between all the parent branches propa-
gate inaccuracy of the measures. Moreover, depending on the technology used the weight of the
sensors may influence the dynamics of the lighter branches.

Another possibility is to track the spatial positions at specific parts of the subject. Vlasic et al.
[VAV+07] used a combination of ultrasonic and inertial sensors to extract the motion of a human.
The ultrasonic system works by estimating the time of flight of sounds from emitters with known
positions to the sensors (receivers) and use triangulation to reconstruct 3D position. This is a
cost effective solution for tracking but requires an a priori model of the subject (in this case a
human skeleton). Magnetic systems provide a more expensive but more precise option. An emit-
ter creates a particular magnetic field such that the sensors can record their position and their
orientations. However, typical hardware can track only a few markers in real-time. We describe
in section 2.3 how such a system is used in our experimental protocol.

The most common approaches are optical systems. Two main types exist: recording either nat-
ural or infrared light using the suitable cameras. Both usually use passive markers that reflect
light. They are attached to the subject who is filmed by one or several cameras. Then the markers
are located in video sequences and 3D reconstruction algorithms are used to compute their 3D
positions. Infrared optical systems have become the most common methods for motion capture
of human (see figure 2.5). The advantage over optical systems using traditional cameras is that
they can be used in natural lighting conditions. However they need a more complex setup, with
suitable infrared projectors and cameras.

22 chapter 2. Acquisition of Plants Motion

Figure 2.5: Tracking a human in motion using an infrared optical system. The subject has
retroreflective markers set at specific parts if her body. A projector (red light at the top of the
image) emits infrared light reflected by the markers. It is then detected in video sequences that
film the subject.

2.2.3 Markerless Motion Tracking

With the increase of computer processing power and the development of computer vision algo-
rithm, more and more motion capture techniques are developed to be used without marker but
only with video sequences of the subject in motion.

For this type of mocap methods, multiple cameras can be used together with an algorithm for
3D reconstruction. However the setup necessary for these approaches would make the use of
markers comparatively simple. The main advantage of markerless methods comes when only
one camera suffices to extract 3D motion. However, theoritical representations provide only
underconstrianed problems when the data are recorded from a single view point.

Many models have been developed for human face and body (see [Gav99], [FAI+05] or [Smi07]
for state-of-the-art reports). These techniques resort to use prior knowledge of human topological
structure, such as segmenting the human body in a set of rigid parts (head, body, arms, legs) or
the relative position of the eyes, nose and mouth for human faces. Even then, many ambiguities
make these mocap problems very challenging.

Very few works have been done on markerless mocap for other subjects than humans. Meth-
ods have been designed to track animals’ motion such as the approaches developed by Bregler
et al. [BMP04] or by Favreau et al. [FRDC04] which use the optical flow to animate a virtual
model of quadrupeds. But it exists no model for plants for which the topological structure is
unknown (only its hierarchical nature can be considered). Moreover computer vision techniques
often fail on video sequences of foliage animated by wind because of the highly fluctuating mo-
tion of leaves and the branches occlusion. They thus cannot guaranty to have a precise motion
extraction.

2.3 Data Acquisition 23

2.3 Data Acquisition

During this thesis, many video sequences of shrubs and trees motion were recorded. In most
cases, a camera fixed on a tripod was used as the recording device often without setting up a
calibration process (see section 2.3.2). These sequences were mostly gathered as case studies for
the extraction of motion from videos.

As part of the Chene-Roseau project [CHE], we have been involved in a set of experiments to
extract more detailed data on real motion of a tree. The experiments took place at the Institut
National de la Recherche Agronomique (INRA) in the city of Clermont-Ferrand. The main goal
was to collect as much information as possible for several sequences of a tree motion stressed by
the wind. These data have then been stored and will be made available to the research community
through the Chene-Roseau project.

2.3.1 Experimental Setup

All the experiments were done with one tree that has grown at the INRA. Before the experiments
took place, it has been entirely digitalized by the people of the INRA using their expertise in this
field (same process as described in [SRG97]). The first piece of data obtained is then the full
structure of the tree in its resting position.

(a) Magnetic tracking devices (b) One magnetic marker
Figure 2.6: The magnetic tracking system is composed of a main unit (box in the middle of
image (a)) and of a transmitter that generates a magnetic field (sphere on the right of image (a)).
Up to four magnetic receivers can be connected to the main unit and tracked in real time. A
software developed at the INRA controls all this system.

For all the sequences, three types of data were recorded: videos, wind speed and 3D magnetic
tracking of a few selected branches. The wind speed is recorded using a sonic anemometer in-
stalled as close as possible to the tree such that it does not disturb the magnetic system. The 3D
tracking system (see figure 2.6) is composed of a magnetic transmitter that emits a magnetic field

24 chapter 2. Acquisition of Plants Motion

and of small receivers, i.e., the markers for which the positions (and orientations) are recorded
in real-time (≥ 25Hz). They were placed on four different branches for which the 3D motion
trajectories were then recorded (see figure 2.7). Then, for all sequences two cameras provided
video recording of the tree.

(a)

camera 1 camera 2

Tree

magnetic
tracker

Top view

sonic
anemometer

(b) (c)
Figure 2.7: (a) Tree used for experimentation. (b) Experimental layout: Two cameras film the
tree from one side, four magnetic markers are attached to representative branches and a sonic
anemometer records the wind speed next to the tree. (c) An image taken by camera 2. The
positions of the magnetic markers are indicated by red arrows, and the LED device used for
synchronization is indicated by a black arrow.

All the data extracted during the experiments have to be calibrated both in time and space. First
all recording have to be synchronized, i.e., such that all data (images of the two cameras, reading
of the four magnetic markers and wind speed from the anemometer) are coordinated temporally.
The magnetic markers position and the wind speed are recorded together by the same software,
thus already coordinated. However the two cameras need temporal reference with this system.
To this end we designed a device made of a grid of LED (visible from both cameras) that are en-
lightened when recording the magnetic markers position (see figure 2.7). Second, the magnetic
tracking system records all markers positions in the same reference frame, defined relatively to
the magnetic transmitter. However, for videos the projection matrices of both camera and their
relative positions have to be estimated.

2.3.2 Cameras Calibration

There are multiple ways to calibrate cameras. For any method, a real object with known shape,
called the calibration rig, is filmed such that specific features can be detected in the video image.

2.3 Data Acquisition 25

Then the projection matrix of the camera is computed in order for the theoretical projection of
this object to match the observed projection in the video image (see figure 2.8).

Figure 2.8: Representation of the pinhole camera. On the right, the calibration rig for which
we know the shape, i.e., the 3D positions Qi (in the reference frame of the calibration rig). The
projection matrix of the camera is calibrated such that it projects them onto their observed pro-
jections in the image plane, i.e., the 2D positions qi.

Mathematical formulation

Let Qi = (xi,yi,zi,1)T be a set of n points of the calibration rig and qk
i = (uk

i ,v
k
i ,1)T their observed

projection in the image k, both formulated in homogeneous coordinates. The pinhole camera
model has the form:

qk
i ∝ A [Rk tk]Qi (2.1)

with A =

 α σ cx
0 β cy
0 0 1

26 chapter 2. Acquisition of Plants Motion

The extrinsic parameters are contained in the 3× 4 matrix [Rk tk]. It is composed of a 3× 3
rotation matrix Rk and a 3×1 translation vector tk which relates the frame of the calibration rig
(considered as the world reference frame) to the camera coordinate system for each image k;
A is called the camera intrinsic matrix, where (cx,cy) are the coordinates of the principal point
(usually the center of the image plane), α and β the scale factors of the x and y axes of the image,
and σ the parameter describing the skewness between the two axes of the image plane.

A simple calibration algorithm directly solves equation (2.1) by finding the coefficients of the
3×4 projection matrix Pk = A [Rk tk] independently for each image k. However to obtain a good
calibration, this approach requires not only to provide enough point correspondences, but also
needs a three-dimensional calibration rig to obtain uniqueness of the solution. Moreover for the
calibration to be well estimated the calibration rig should cover (i.e., span) as much as possible
the volume that is filmed to reduce the influence of the measurement noise. Thus this is not a
suitable solution for our purpose. The size of the tree volume would require a very big calibration
rig.

Practical calibration rig

Instead we use the technique introduced by Zhang [Zha99] that only requires several views of
a planar calibration rig. The idea is to estimate, first the intrinsic parameters (matrix A) using
several views of the calibration rig, and in a second step to estimate the extrinsic parameters
(matrix [Rk tk]) for each views k. Such algorithms have become common and we use the version
included in the computer vision library OpenCV.

This approach is often used with a calibration rig made of a flat cardboard on which a checkboard
pattern has been drawn. Then during the calibration process, this cardboard is filmed while it is
moved all around the filmed volume (to provide the best estimate of the intrinsic parameters).
Due to the size of the tree used during experiment (between five and six meters tall), this setup
would require a cardboard of more than one meter width and it should be displaced at several
meters high.

To simplify the calibration process, we designed a calibration rig made of a main bar of five me-
ters length to which a smaller bar (one meter) is attached perpendicularly (see figure 2.9). Then
six targets, easily detectable in an image, are fixed on the bars: three along the first, two on the
second and one at their junction.

During the experiments, the first step is to position and configure the cameras (zoom, focus,
shutter speed, etc...) such as the tree foliage fills most of the image. Then the internal clocks
of the two cameras are synchronized (the camera we employed provided the suitable synchro-
nization tool). In this way, all the video sequences obtained afterwards can be fitted in time to
the sequence of the other camera and pairs of images taken at the same time are easily selected.
Moreover, a LED device visible by both camera (see figure ??) that is launched and stoped by the
magnetic tracking system (which also records the wind speed) allows temporal synchronization
of all recordings.

2.3 Data Acquisition 27

1m

0.5m

0.5m

0.5m0.5m
5m

(a) (b)
Figure 2.9: The calibration rig we designed.

Finally the video sequence is done where the calibration rig is displaced all around the tree.
Each time a camera is moved or some of their intrinsic parameters are changed, this calibration
sequence has to be made again. From this sequence a set of images is selected such that the
calibration rig appears all around the tree and with different exposure angles (see figure 2.10).

2.3.3 Recorded Data and First Results

Three recording sessions have been done. The first two were at the beginning and end of summer
and the third during winter (i.e., without leaves). In each case, the tree response for two types
of external forces have been recorded: natural wind and localized impulse obtained by pulling
selected branches manually using a rope. For each recorded sequence, the 3D positions of four
markers and two videos from two different views were recorded. Moreover the markers were
placed inside colored balls to be easily tracked in the videos. This has enabled to test the quality
of the video calibration. The four markers were tracked in both videos then their 3D positions
were reconstructed to be compared with the 3D magnetic tracking.

3D Reconstruction from Videos

Let Q be one of the 3D markers position in one frame of the sequence. Let P1 and P2 be the 3×4
projection matrix of the first and second camera respectively. And let q1 and q2 be the positions
of the markers in the respective frames of both videos:

q1 ∝ P1 Q
q2 ∝ P2 Q

28 chapter 2. Acquisition of Plants Motion

(a) (b) (c)

(d) (e) (f)
Figure 2.10: Subset images of a sequence used for calibration.

Now let pk
i be the kth row of the projection matrix Pi, such that:

Pi =

 p1
i

p2
i

p3
i

 ∀i

Then, expressed in standard coordinates, we have:

ui =

p1
i Q

p3
i Q

vi =
p2

i Q

p3
i Q

with qi =

(
ui
vi

)
∀i

⇔

p1
i Q − ui p3

i Q = 0
p2

i Q − vi p3
i Q = 0

∀i

2.4 Extracting Motion from Videos 29

⇔

p1

1 − u1 p3
1

p2
1 − v1 p3

1
p1

2 − u2 p3
2

p2
2 − v2 p3

2

 Q = 0 (2.2)

Because of noise, this system usually has no exact solution but the trivial zero vector. Least
square minimization algorithm is then used to find the best non-trivial solution for equation
(2.2).

Results

The 3D position of the four markers were reconstructed then compared with the motion curve
obtained using magnetic tracking. Figure 2.11 shows the 3D trajectories and theirs spectrum.
Table 2.1 shows the average errors.

marker 1 marker 2 marker 3 marker 4

X 1,56 (1.15 ± 1.06) 1,66 (1.37 ± 0.93) 2,05 (1.68 ± 1.18) 2,11 (1.77 ± 1.15)
Y 2,18 (1.70 ± 1.37) 1,44 (1.14 ± 0.88) 2,53 (2.09 ± 1.44) 1,85 (1.47 ± 1.12)
Z 6,43 (4.70 ± 4.39) 2,80 (2.12 ± 1.83) 3,02 (2.57 ± 1.59) 2,21 (1.70 ± 1.41)

Table 2.1: Root Mean Square (RMS) of the distance between the estimated position obtained
by the two types of tracking, given for each coordinate and marker. In bracket: the average and
standard deviation of the distance. Values are given in centimeters.

2.4 Extracting Motion from Videos

Once video recordings has been obtained, suitable methods are required to extract the observed
tree motion. The optical flow of a video sequence is the pattern of motion of the pixels in the
images. Simply put, it is a vector field defined over all the pixels (and for each image) that rep-
resents the projection of the motion of the scene in the image plane of the camera. Methods to
estimate a correct optical flow are a very power full tool to an optical motion capture system.

However, it is far from being a solved issue of computer graphics. A huge amount of optical flow
techniques exist. Moreover many methods use such an initial optical flow algorithm and try to
increase the quality of the estimated motion using some post-processing methods. Considering

30 chapter 2. Acquisition of Plants Motion

(a) Marker 1 (b) Marker 2

(c) Marker 3 (d) Marker 4
Figure 2.11: 3D reconstruction of the four markers position from videos. For each subfigure:
The columns are for the x, y and z coordinates respectively; The top row graphs show the tra-
jectories of the markers extracted from magnetic tracking (red) and from 3D reconstruction from
video (blue); The second row shows their spectrum obtained using discrete Fourier transform.
Data are given in centimeters.

the initial optical flow techniques, most can be classified in three types: comparison of region,
comparison of statistical descriptors, and differential methods. In this section we describe each
of these approaches. Then in the next section methods that we developed are presented.

2.4 Extracting Motion from Videos 31

2.4.1 Comparison of Region

This is the algorithmically simplest type of motion extraction of video sequence. An example of
these is the box matching algorithm. Let R be a region of interest in an initial image It at time t,
we want to know the displacement d∗ of this region to the next image It+1 at time t + 1, then the
box matching algorithm returns the solution:

d∗ = argmin
d

∑
p∈R

‖It(p)− It+1(p + d)‖2 (2.3)

So basically, it is the displacement that minimizes the difference of pixels color of the image
region R. Note that the process to find the minimum is not optimized it-self but instead the
algorithm systematically computes the difference for all possible displacements d. To obtain
the motion flow over the whole image, this approach simply divides the original image in a set
of square regions, possibly overlapping, and repeated the minimization for all regions indepen-
dently.

Another example is to maximize instead the cross-correlation of the region of interest:

d∗ = argmax
d

∑
p∈R(It(p) · It+1(p + d))√∑

p∈R It(p)2 ·
√∑

p∈R It+1(p + d)2

This technique is employed in Particle image velocimetry, typically used by the physicist com-
munity to track motion of particles in fluids. The initial formulation indicates that the correlation
method has similar computational cost than the matching approach. However typical application
formulates it in the spectral domain, using Fourier Transform, which greatly reduces the required
computations in trade with algorithmic complexity and stability. In some situations, the corre-
lation method obtains better results. However practical experience shows that the size of the
region R can have a strong influence on the quality of the results. It thus enforces careful manual
configurations to reach an optimal quality which is usually done by trial and error.

2.4.2 Statistical Descriptors

The main idea of these methods is to use some statistical descriptor of the neighborhood of the
pixels to be tracked (such as histogram of colors) instead of just the color. They are usually more
interesting for region of bigger size and, depending on the algorithm, they address more complex
motions than just translation without additional cost.

Mean Shift Tracking

In this technique [CRM00] the motion of a particular region of an original image is estimated
by comparing histograms of colors using the original mean shift algorithm. Let an image region

32 chapter 2. Acquisition of Plants Motion

have n pixels and a partition of all possible colors in k bins Bi. A color histogram is described by
a k-dimensional vector, say h, that contains the percentage of color following the partition:

hi =
number of pixel of color inBi

n

To track a particular region of an initial image, having a color histogram p, the mean shift track-
ing looks for a region in the new image having an histogram q that maximizes the Bhattacharyya
coefficient ρ:

ρ =
∑

i

√
pi ·qi

The algorithm uses mean shift to compute an optimization over this coefficient (see section 2.5.2
for details on mean shift optimization). As mean shift tracking is using color histograms, it
enables tracking of object with complex transformations and image noise. However for some
types of image textures, such as foliage where any parts have very similar color histograms, this
scheme is not efficient.

SIFT

Lowe [Low99] proposed the Scale Invariant Feature Transform (SIFT) and developed further
this idea of statistical descriptor. The algorithm proceeds first by detecting a set of robust de-
scriptors in two images and maps most similar pairs. This algorithm was initially developed for
object recognition: An object is represented by a set of precomputed descriptors, and often only
a few are necessary to detect the object in any images. However if the chosen pair of images
are those where the motion flow has to be estimated from, then the set of mapped descriptors
represents a robust subset of the overall motion flow between these images.

This method has three main parts. First the set of representative features are detected in the im-
ages, then a statistical descriptor is computed for each of these features and finally they can be
matched together. To detect interesting features in an image I, it first computes a set of images
L(σ) for various values of σ:

L(σ) = (G(σ)−G(k ·σ))⊗ I k > 1

where G(s) is the zero-centered Gaussian with standard deviation s (see figure 2.12) and where
⊗ is the convolution operator. The features are then chosen at the local maximum and minimum
of these L(σ) images. A second step consists in removing detected descriptors with low contrast
(strongly subjected to the influence of noise) and those found on edges (for similar reasons as for
the KLT tracker described in section 2.4.3).

A descriptor is defined for each detected feature as a vector containing the histogram of the im-
age gradients found in its neighborhood. The main goal of SIFT is to be invariant to scaling,

2.4 Extracting Motion from Videos 33

Figure 2.12: Difference of Gaussians (G((σ)−G(k ·σ)).

rotation and change of illumination (as well as robust to other minor affine transformations). To
this end, all data stored by the descriptors are taken from the scale it has been detected from. If
a feature represented by one descriptor in an image, appears in an other image but with a differ-
ent scaling, a descriptor containing the same data should be detected at the corresponding scale.
The matching of both descriptors can thus be done independantly of their scaling. Moreover
all gradients are stored with their direction relative to the strongest gradient direction, achieving
rotation invariance. Finally these gradients are normalized to achieve invariance to change of
illumination.

Once all the descriptors for a pair of images are computed, they are matched together using
some scheme to avoid computing comparisons of all possible pairs. The main advantage of this
technique is the invariance to many image transformations and lighting. However during my
Ph.D., quick experiments on videos of animated foliage have been done and did not produce
very satisfying results. As for most video tracking method, the quality of motion estimates in
difficult parts of the image sequences was not higher than for other tested methods and took
longer computation time. On the other hand, improvements of the initial approach have been
produced since the experiments. In particular, the matching process could probably be improved
to suit more adequately the goal of video motion estimation. A more careful investigation could
exhibit interesting possibilities.

2.4.3 Differential Methods

To compute the optical flow between two images, a common assumption is the conservation of
pixel intensity. Some techniques have provided possible algorithms that are not assuming this
hypothesis but it usually strongly reduces efficiency. However, by using it one may derive a
mathematical formulation of the optical flow problem that has the form of a simple differential
equation. Let I be the video volume such that I(x,y, t) is the pixel at coordinate (x,y) in image at
time t. The conservation of intensity means that:

I(x,y, t) = I(x + dx,y + dy, t + dt) (2.4)

34 chapter 2. Acquisition of Plants Motion

for pixel motion (dx,dy) between the image at time t and t + dt. Computing the optical flow that
reduces to find the suitable displacement (u,v) = (dx/dt,dy/dt) for each pixel. The differential
methods are algorithms that propose a solution using the Taylor expansion to the first order of
equation (2.4):

I(x + dx,y + dy, t + dt) ≈ I(x,y, t) +
dI
dx

dx +
dI
dy

dy +
dI
dt

dt (2.5)

from equation (2.4), this reduce to:

dI
dx

dx +
dI
dy

dy +
dI
dt

dt = 0

dI
dx

dx
dt

+
dI
dy

dy
dt

+
dI
dt

dt
dt

= 0

dI
dx

u +
dI
dy

v +
dI
dt

= 0

Ix u + Iy v + It = 0 (2.6)

We are left with one equation and two unknowns u and v. This underconstrained problem is
called the aperture problem. Many algorithms have proposed a solution using hypothesis on
the neighborhood. The two best known are from Horn and Schunk [HS80] and from Lucas and
Kanade [LK81].

Horn and Schunk

This algorithm proposes to solve equation (2.6) using iterative scheme that minimizes:

f =

∫ ∫
(Ixu + Iyv + It)2 +G(u,v)2 dxdy (2.7)

G(u,v) = α

(du
dx

)2

+

(
du
dy

)2

+

(
dv
dx

)2

+

(
dv
dy

)2 (2.8)

where G(u,v) is a regularization term that basically enforces a smoothness of the motion flow
and propagates information to solve the aperture problem. α is a parameter of this method that is
basically proportional to the expected smoothness of the optical flow.

The main limitation of this algorithm is that it is necessary to compute the motion flow for the
full image to get the solution for one pixel.

2.4 Extracting Motion from Videos 35

KLT tracker

Another solution has been proposed by Lucas and Kanade. Let us first rewrite equation (2.6) as:

(Ix, Iy) · (u,v) = −It

In this method, to solve the aperture problem the motion flow is simply considered constant in a
neighborhood. Thus, for each pixel of the image we have:

I1
x I1

y
I2
x I2

y
...

...
In
x In

y

 · (u,v) =

−I1

t
−I2

t
...
−In

t

 (2.9)

where the indices indicate the n neighbors of the pixels. We have now an overconstrained set of
equations that can be solved using least-square. As it is, this technique has the advantage to be
very quick and every pixel motion can be computed independently. But it has also the disadvan-
tage that if the gradient information in the neighborhood is redundant then the solution becomes
unstable. Let A be the matrix:

A =

I1
x I1

y
I2
x I2

y
...

...
In
x In

y

Then A needs to be well conditioned to provide a stable solution by least square. Typically if
the gradient is null for all the pixels of the neighborhood (i.e., uniform color, AT A has no strong
eigenvalue) or if all of them have the same gradient (i.e., unidirectional blend of colors, AT A
has only one strong eigenvalue) then equation (2.9) cannot provide satisfying results (see figure
2.13).

The consequences is that it is useless to solve equation (2.9) for the pixels that are not corners.
Shi and Tomasi [ST94] have defined a simple criterion to select the correct pixels to track. In
short they compute the lower eigenvalue of the matrix AT A for each pixel of the original im-
age, and select the local maximums of these as the features to track. Both techniques [LK81]
and [ST94] are often used together. This process is called the KLT features tracker (for Kanade
Lucas and Tomasi).

Iterative and pyramidal KLT tracker

Bouguet [Bou00] developed the initial Lucas and Kanade optical flow estimator to provide a
more useful tracking algorithm. The first limitation of the KLT tracker is coming from the initial

36 chapter 2. Acquisition of Plants Motion

0

0

0
1
1
1
1
1 1 1 12

Figure 2.13: A simple image where the numbers of non-zero eigenvalue of AT A are indicated.
Over the black or white area, the gradient is null. In equation (2.9), the matrix A contains only
zeros and the eigenvalues of AT A are both null. For each edge (horizontal or vertical) all the pix-
els have the same gradient, thus the rows of A are equal and AT A has one non-zero eigenvalue.
Finally at the corner between both edges, some pixels of the neighborhood (the rows of A) have
a strong vertical component and some have a strong horizontal component. Then AT A is well
conditioned and has two strong eigenvalues.

linear approximation given in equation (2.5). Compared to an optimization algorithm to mini-
mize a function (equation (2.4) in our case), using linear approximation is quite common. For
example the gradient descent method used it to compute the update at each optimization step.
Similarly Bouguet proposes to use iteratively the KLT tracker to provide a better estimate of the
optical flow.

The other important improvement is the use of KLT tracking to several level of resolution of the
images. Because of the linear approximation the original algorithm is very sensitive to high fre-
quencies of the images intensity (see figure 2.14). In [LK81], the authors indicated already that
smoothing the images can increase the quality of the tracking. In [Bou00] the KLT tracking is
first applied on a lower resolution of the images, thus high frequency are not interfering with the
tracking and a coarse estimation of the motion is obtained quickly. Then it is refined successively
in the higher resolution until reaching the initial images resolution.

2.4.4 Optical Flow and Particles Tracking

Depending on the application, one may prefer to track specific features over several images in-
stead of only extracting the motion flow between pairs of images (see figure 2.15).

Using any optical flow, one may derive the estimated object motion by simply letting the feature
follow the flow. However, it is not necessary to compute the motion of pixels that are not part
of the tracked object. Methods such as Horn and Schunk then require more computations than
strictly needed as it is necessary to compute the flow over the whole image.

However for particles tracking, two important limitations may produce erroneous data. First be-
cause of noise each motion estimate is not exact and the deviations from the correct motion often

2.4 Extracting Motion from Videos 37

(a) smooth curve (b) local high frequencies
Figure 2.14: Graph picturing the Lucas-Kanade method in the one-dimensional case (thus, with-
out the aperture problem). The estimate u∗ of the displacement u of pixel p is obtained using
equation (2.6), i.e., in 1D Ixu∗− It = 0. For both graphics (a) and (b), the black curve represents
the intensity of the original one-dimensional image at time t and the red curve is the same image
at time t + 1 that moved to the right. (a) The image is smooth, and the estimate u∗ of u at p is
good (but too long). An iterative process should converge. (b) A deformation of high frequency
with low amplitude has been added at p. As a consequence the estimate u∗ is in the opposite
direction of the real displacement. A divergence of iterative estimation is most probable.

time

image

(a) Optical flow

time

image

(b) Particles tracking
Figure 2.15: Case of a sequence of one-dimensional images. Each vertical line (red) represents
one image. In (a) for each pixel of each image, an estimation of the motion is computed. In (b)
particles are initiated in the first image then tracked recursively along the image sequence.

accumulate along the video. The motion path then diverges. Second, when a tracked object in
the scene is partially or fully occluded then a correct solution cannot be found using direct esti-
mation of the pixels motion. All the particles following the hidden object are then set on another

38 chapter 2. Acquisition of Plants Motion

element of the scene (typically on top of what hides the object). Then they follow this element
afterwards for the rest of the video sequence. Moreover, this change of aim also occurs because
of the accumulated errors (motion path divergence), especially in complex video such as those
of animated foliage.

2.5 Algorithm Development

During my Ph.D., we aimed at using videos as main acquisition device because of the ease of
deployment during experimental process. The main difficulty of such an input system is that
motion of foliage in a video is particularly hard to track. Differential motion estimators require
the pixels displacement to be short enough in relation to the main frequencies of the images lu-
minosity. However foliage are made of leaves that appear tiny on the image while there are the
main features that motion can be estimated from. Furthermore, any part of the foliage tends to
have very similar appearance. Statistical descriptors are then difficult to define such that they
can differentiate patches of leaves from one another. The quality of a direct color comparison of
such patches is also restricted by their similarity. Finally many other factors interfere with the
tracking algorithm such as change of lighting and occlusion.

From experience, it is possible to find some vision algorithms that give better results depending
on the video and its subject. But there is no specific approach that provides a better quality of the
estimated optical flow for all videos of any types of animated foliage. Thus, in a practical point
of view, several algorithms should be available when extracting tree motion from any video.

An important part of the software development done during my Ph.D. was aiming at providing
a sufficiently large set of vision algorithms. In particular algorithms running at interactive frame
rate were explored. The implementation framework was based on the QT library [QT] for the
development of the user interfaces and the OpenCV library (for Open Computer Vision) [OPE]
to implement the vision algorithm.

First the Horn and Schunk and the Lucas and Kanade optical flow were implemented. Due to the
poor quality of the motion flow obtained for the videos we intended to use, the ameliorated KLT
tracker provided by Bouguet became for a time the main technique employed.

A few additional methods to this first set of algorithms were developed. For practical constraints,
object tracking algorithms should be robust yet running at interactive frame rate.

2.5.1 Pyramidal Box Matching Tracking

In a general manner, the box matching approach (see section 2.4.1) provides the best initial es-
timate as it looks for the image region that fits best a tracked area. This method should then be
available in a video motion extraction framework. However as mentioned above, the main lim-
itation is the computation time required because of the necessary comparison of image regions

2.5 Algorithm Development 39

with all possible displacement. To achieve quick tracking a pyramidal implementation of the
basic box matching algorithm was developed.

Let R0 be the region in the first image we want to track and RX the region in the next image at
position X = (x,y). These textures can be represented by a n×m matrix, and for any region R,
R(i, j) is the pixel at position (i, j) in R. The box matching algorithm does the minimization:

X∗ = argmin
X
‖R0−RX‖ (2.10)

with ‖R‖ =

n∑
i=0

m∑
j=0

|R(i, j)|2

This minimization itself is not optimized. The selection of the best solution is done after com-
puting all possibilities. If the search window (i.e., the set of possible X) is p× q pixels large
then the computation cost of the algorithm is n×m× p× q. The algorithmic complexity is then
Θ(n ·m · p · q). For example, if R0 is 20 pixels square and the search window is 30 then 360000
pixel comparisons are necessary for each tracked region of each image of the video sequence.

To accelerate this algorithm, we can use pyramidal images (see figure 2.16). It means a set of
images computed from the original ones that have a lower resolution (the smaller is the resolu-
tion, the higher the image is in the pyramid). Typically, the image of a level of the pyramid Ik+1

has its dimensions equal to half of those of the image at previous level of the pyramid Ik. Usually
one pixel of image Ik+1 has a value computed as an average of the corresponding pixels in Ik,
such as:

Ik+1(i, j) =
1
4
· (Ik(2i,2 j) + Ik(2i + 1,2 j) + Ik(2i,2 j + 1) + Ik(2i + 1,2 j + 1))

In the image of level k of the pyramid, both the search window and the size of the target re-
gion are divided by 2k. The complexity of the box matching algorithm is thus reduced to
Θ((2−4kn ·m · p · q). The value of k is chosen according to the size of the target region. From
the solution of equations (2.10) at level k, the solution at the level k + 1 can be obtained by
repeating the minimization only for the four corresponding positions.

However, because of the loss of information due to reduction of resolution, keeping only the
position with minimum color difference at some level may not always lead to the best solution at
the lower pyramid level. The best matching region at the lower level should still match well the
region R0 at lower resolution. Thus keeping the set of pixels with least color difference, such as
the best 5 percent, is enough.

2.5.2 Robust Tracking

As mentioned above, videos of animated foliage are particularly difficult cases for optical flow
algorithm. The main limitation of differential approaches is the noise present in the extracted

40 chapter 2. Acquisition of Plants Motion

Figure 2.16: Pyramids of images used to accelerate the box matching method. L0, L1 and L2 are
levels of the pyramids (of depth three) from 0 for the full resolution to 2 for the lower resolution.
P1 is the pyramid of the region to be tracked in the first image (R0 is marked with an × in its
initial resolution). P2 is the pyramid of the search window in the second image. Once the box
matching algorithm as been computed for all the positions in P2 at level L2, the best displace-
ments (ex: the 5% with minimum image difference) are projected in the level L1 (represented
by the striped region). At the lower level, the box matching is done over these pixels only, and
best displacements are further projected. At level L0 the displacement with minimum image
difference is taken as solution (the red region marked with a red ×).

speed. Typically this noise has not a homogeneous repartition. It is either small for correct es-
timations or produces strong outliers. Extracted motion cannot be considered trustworthy at all
pixels. However for a particular region to track, the estimated displacements of all the pixels
can represent a set of stochastic draws of the probability density function (PDF) of the region
motion. A statistical approach can then be used to extract a more valid estimation of the motion.
We now describe a robust estimation technique of an image region motion using such a method
that rejects outliers and maximizes expectation.

We use the iterative and pyramidal KLT tracker to get a first estimation of the motion of the
pixels of the region of interest. This algorithm has the advantage to provide a good results sam-
ple containing mostly correct motion estimations. However any method is suitable, as long as a
set of n displacement vectors xi are obtained. We use the multivariate kernel density estimators
introduced by Parzen [Par62] as an estimation of the continuous PDF of the region motion. Let
k be a kernel function. For two-dimensional variables the density estimator with kernel k and
radius h is of the form:

f̃k(x) =
1

nh2

n∑
i=1

k(
(xi− x)

h
)

As Fukunaga and Hostetler [FH75], we use the mean shift algorithm to perform a gradient ascent
and find the displacement x that maximize f̃k(x). This is a tracking algorithm similar to the one
developed by Comaniciu et al. [CRM00], however we are not comparing color histogram so the

2.5 Algorithm Development 41

Bhattacharyya distance is not appropriate. Instead we use the Mahalanobis distance that is often
used for outlier detection in noisy data. Let µ be the sample mean and Σ the sample covariance
matrix, the Mahalanobis distance from any point x to µ is defined by:

‖x−µ‖Mahalanobis =
(
(x−µ)T Σ−1(x−µ)

) 1
2

For the kernel we take a radius parameter h = 1 for simplification but its influence is compensated
by the use of the Mahalanobis distance as it is shown further. Let then k(x) denote the kernel
function:

k(xi− x) = exp
(
−

1
2
‖xi− x‖2Mahalanobis

)
= exp

(
−

1
2

(xi− x)T Σ−1(xi− x)
)

Mean shift iteratively estimates the gradient of k(x) to find x that maximize k using a gradient
ascent algorithm. The idea is to consider the estimate of the PDF gradient as the gradient of the
estimated density function:

∇̃ f ≡ ∇ f̃k

∇ f̃k =
1
n

n∑
i=1

∇k(xi− x)

= −
1
2n

n∑
i=1

k(xi− x) · (xi− x)T Σ−1

= −
1
2n

 n∑
i=1

(k(xi− x) · xi)−
n∑

i=1

(k(xi− x) · x)

T

Σ−1

= −
1
2n

n∑
i=1

k(xi− x)
[∑n

i=1 k(xi− x) · xi∑n
i=1 k(xi− x)

− x
]T

Σ−1

=
1
2

f̃k(x) Mk(x)

with Mk(x) = −

[∑n
i=1 k(xi− x) · xi∑n

i=1 k(xi− x)
− x

]T

Σ−1

Then the mean shift procedure is defined recursively by computing the mean shift vector Mk(x)
and translating x by Mk(x). At start we initialize x0 as the mean of all the xi and compute the
correlation matrix Σ0 such that:

42 chapter 2. Acquisition of Plants Motion

x0 =
1
n

n∑
i=1

xi

Σ0 =
(X0)T (X0)

n−1

with X0 =
(

xT
1 . . . xT

n

)T

Then, at each iteration of the procedure, we use the unbiased weighted sample covariance to
narrow the radius of influence of the kernel:

xk+1 = xk + Mk(xk)

Σk+1 = (Xk)T Wk(Xk)

where Wk =

w1 0 . . . 0

0 w2
...

...
. . .

...
0 wn

with wi =

w∗i
(
∑n

i=1 w∗i)2−
∑n

i=1(w∗i)2

and w∗i =
k(xi− x)∑n

i=1 k(xi− x)

This algorithm has the advantage to cancel outliers influence while it does not smooth out the
extracted motion as a simple average of the xi would. However it uses results from a first tracking
algorithm. If this original motion estimation is of too poor quality then any approach of this type
cannot provide satisfying results.

2.5.3 Tracking Particles with Limited Life Span

To track an object moving in a video sequence, a set a initial features defined over this object in
the first image can be tracked iteratively from image to image. Then the target object trajectory
can be defined by the motion of these features. The main limitation is that, what ever the vision
algorithm chosen for the features tracking, errors accumulate along the video and divergence
from the correct motion path often occurs.

On the other hand, errors are usually uncorrelated with the correct motion. A feature which has a
similar estimated motion over several frames has then a higher probability to be tracked correctly.

From these two observations, a tracking system has been developed to estimate the motion flow
of the video with a set of particles having limited life span. Then for any particle at any image

2.5 Algorithm Development 43

estimated motion can be compared over a few frames checked for sufficient correlation. In com-
parison to the previously described techniques that discard motions uncorrelated in space, here
we want to reduce influence of motions uncorrelated in time. A simple approach is to weight the
influence of particles by a function proportional to inverse of the difference in speeds between
several frames. If s1 and s2 are the speeds of a particle starting at the first and second image
respectively, then we can use the function:

wi = exp(−‖s1− s2‖2)

Our method starts by defining particles covering the first image, for example using KLT features
detector. Then these features are tracked until they are considered lost. Then at each frame, new
particles are added to replace deleted ones. However it is important to obtain a motion flow that
covers the entire video. The density of particles in each image has thus to be maintained. Instead
of using a complex dynamic distribution algorithm such as proposed by Vanderhaeghe et al.
[VBTS07], we simply select the starting position of the new features using the Shi and Tomasi
method [ST94] (see KLT tracker in section 2.4.3). However this technique is only applied over
areas of the image that are distant enough from the features that are still tracked.

44 chapter 2. Acquisition of Plants Motion

c h a p t e r 3
U s e r O r i e n t e d A p p l i c a t i o n f o r V i d e o

T r a c k i n g

Contents

3.1 Introduction . 46

3.2 Visualization of Motion Flow . 47

3.3 User Interface to Control Time . 49

3.4 Manual Input . 51

3.4.1 Key-Frame Approach . 51

3.4.2 Sketching Motion . 53

3.5 User Interface for Correction . 55

3.5.1 Correction in Space . 56

3.5.2 Time Correction . 57

3.6 Conclusion . 58

46 chapter 3. User Oriented Application for Video Tracking

3.1 Introduction

However complex a vision algorithm may be, it will not work everywhere and the estimated
motion flow cannot be considered always reliable. For some type of application, such as surveil-
lance system, automatic techniques are required. But for our problem we need instead as much
confidence in the extracted motion as possible. To this end, human interaction is required to
at least inspect the result and most probably correct it. Moreover, for situations where tracking
algorithms fail, manual methods is necessary to easily input the whole motion data.

Figure 3.1: Software to extract motion in video using both automatic tracking and user interac-
tion. The circles drawn on top of the video image are the features to track.

The work presented in this thesis do not aim at using optical flow (i.e., the motion vector field
for each image of the video as defined in the previous chapter). Instead we are interested in the
extraction of the motion path of specific features, such as a piece of the foliage that is moving as
a whole. To this end, we developed interaction schemes that use automatic tracking algorithms,
but also focus on intuitive user interface to correct extracted motion paths, and allow manual
inputs of a target trajectory (see figure 3.1).

In figure (3.2) a chart is given that described the typical user workflow to extract motion of target
objects in a video. The element indicated by (*) in the chart is the starting step. It requires user
visual evaluation to select a feature to track. This task is done after a brief overview of the video.

3.2 Visualization of Motion Flow 47

select feature
to track

run automatic tracking

evalutate qualitymanual
input

failed manual
correction

good

exact

(*)

Figure 3.2: Flowchart describing the organization of user’s work using our application for the
task of motion extraction of selected targets of the video.

In section 3.2 we describe a visualization tool used to help this selection procedure. Then the
first action is to run some automatic vision algorithm such as the techniques described in the
previous chapter. Once again user evaluation is necessary to assess to quality of the tracking.
According to this quality, the user has three choices. If the tracking is good enough then the user
can start a new feature tracking, thus come back to the first step of the workflow (*). If the qual-
ity is mostly correct but the extracted path contains some errors, then manual corrections have
to be applied. A description of the tools provided for this correction step is given in section 3.5.
Finally, if automatic tracking totally fails, or if it requires too many corrections, then the initial
input should be done manually. Section 3.4 describes the interface for manual input of motion
trajectory available in the presented application.

3.2 Visualization of Motion Flow

A specific problem in working with videos of animated foliage is the difficulty of the visual
recognition of the motion structure in still images. Most often, it is almost impossible to see
where are the underlying branches when the foliage is not moving. A tool showing information
that emphasizes motion structure is thus very useful.

Motion flow is usually displayed in one of two ways.

• The first possibility is to draw a little arrow for each motion feature. But when too many
of these arrows are drawn visual perception of structure become complex, especially if the
motion estimations are noisy.

• The second common method is to render motion with a color where the speed in the x
and y axis are mapped to two of the three color channels of an image: red, green or blue.

48 chapter 3. User Oriented Application for Video Tracking

Once again this mapping is not perceptually suitable for structure recognition as the color
domain is too restricted, i.e., not spanning enough the color spectrum.

Similarly to the second approach, we propose a method where the motion is displayed by a color
representation. However instead of using only two color channel of an RGB color space, the
motion is mapped onto the HSL color space (which stands for Hue, Saturation, Lightness, see
figure 3.3) which has a topology well adapted to the represention of speed information.

Figure 3.3: The conical representation of the HSL color space. The hue coordinate (H) is the
radial position around the cone, the saturation (S) is the radius to the axis of the cone and the
lightness is the height of the cone.

The mapping we use is defined from the polar representation of the speed vector to the outer sur-
face of the HSL conical space, i.e., saturation is always one. Slow motion are displayed in black,
and high speed are strong, not saturated colors. Then the radial coordinate in polar representation
of speed is directly used as the hue coordinate.

An other important factor can be taken into account: the information on motion structure is
mostly contained in fast movements. As this interface for visualization is drawn on top of the
video images, the lightness (i.e., the speed) is also mapped to the alpha channel of the displayed
colors. Thus the features in the video appear as changing color when they are moving, and struc-
tures with similar motion reveal themselves (see figure 3.4). Let θ and ρ be the direction and
norm of the speed vector, then the displayed color with coordinates H, S , L and α (respectively
for hue, saturation, lightness and opacity) are:

H = θ

S = 2
L = min(cρ,1)
α = L

where c is a user controllable parameter.

3.3 User Interface to Control Time 49

(a) (b)
Figure 3.4: Superposition of motion information using speed to HSL mapping. (a) Original
image from a video sequence. Structure is invisible. (b) With the motion information, the red
circle indicates an emphasized structure.

When most of the scene in the video is in motion, the described visualization tool then shows
a colorful image containing finally too much information to easily perceive the organization of
motion. To help extract specific structures, controllable parameters are provided to let the user
restrict the display of motion information to a specific direction θ∗, and range δθ from this direc-
tion. Then the only speed vector to be display must respect the rule:

∥∥∥θ− θ∗∥∥∥ ≤ δθ
where the norm ‖·‖ is the euclidean distance in the circular space of angles. Combined with the
parameter c defined above, the interface allows to easily emphasize structures in the video (see
figure 3.5).

3.3 User Interface to Control Time

An important part of the user interface is the video player which should be made of a simple,
yet precise, set of controls (see figure 3.6). For fast inspection, correction and manual edition of
motion information, a user needs first to be able to shift back and forth along the video easily.

For the development of a user interface, controls have to be designed to take into account the
possible input hardware. Using a typical computer, these are the mouse and the keyboard. In the
case of an application suitable for the extraction of video motion using manual interaction, the
mouse should mainly be used for the editing process. The user should then be able to control the
time index of the video with the keyboard only.

50 chapter 3. User Oriented Application for Video Tracking

(a) (b)
Figure 3.5: Using direction clamping on displayed color. (a) With everything displayed. (b) The
display is restricted to features with a specific motion direction. One structure is pointed out (red
circle).

Figure 3.6: Graphical interface of the video player. On the right, the user can configure the two
frame-rates (quick and slow) at which the video can be played.

Looking at a traditional video player, only few controls over the displayed frame are provided:
the play/pause button and the stop button (i.e., return to the first frame of the sequence) and often
a cursor indicating the current image that can be displaced manually. But only the button can
be directly replaced by keyboard interaction. In our application we kept these but also designed
more refined controls. The idea is to provide three different speeds for the video to be played
both forward and backward in time. The first speed is the set composed of the simple next and
previous image button, then the two others are controled by the play/pause button for which the
frame rate can be configured (initially real-time and half this speed). All these buttons can be
activated using the keyboard, letting the mouse free for data editing (see figure 3.7). These in-
terface become quickly natural to the user, and let his attention entirely focus on its main goal:
extracting correct motion trajectories of target objects in the video.

3.4 Manual Input 51

Shift

ctrl

1

z x

a s

q w

Forward

Backward

Go to first
frame

Time correction
mode (a)

Select curve
bounds (b)

Time correction
mode (a)

Play quick

Play slow

Previous / next frame

Play on / off

Figure 3.7: Keyboard shortcuts used by our application. The layout of the control buttons allows
simple and efficient user interaction. (a) Used by the time correction tool described in 3.5.2. (b)
Used by the space correction tool described in 3.5.1.

3.4 Manual Input

When automatic vision algorithms fail, the user needs to manually input the whole motion of the
target object. Considering user interface issues, the logical workflow is to first input an initial
path that can then be enhanced. To provide simple and quick alternatives to automatic tracking,
we propose here two input schemes. The first one follows the traditional key-frame approach
used in many commercial software. The second proposes an innovative method to the specific
problem of manually tracking animated foliage.

3.4.1 Key-Frame Approach

For this type of interaction, the user input several key-frame positions along the video, then the
shape of the motion curve between these positions is defined by interpolation. We use cubic
Hermite spline for this task. Let p0, p1, s0 and s1 be respectively the position and speed of two
key-frames at time t0 and t1. Then the interpolated position at time t ∈ [t0, t1] is:

p(t) = h00(t)p0 + h10(t)s0 + h01(t)p1 + h11(t)s1

using the following Hermite basis functions (see figure 3.8):

52 chapter 3. User Oriented Application for Video Tracking

h00(t) = (1−2τ)(1−τ)2

h10(t) = τ(1−τ)2 · (t1− t0)
h01(t) = τ2(3−2τ)
h11(t) = τ2(t−τ) · (t1− t0)

with τ =
t− t0
t1− t0

1

1

Figure 3.8: The four Hermite basis functions used for cubic interpolation.

The user can easily indicate the positions p0 and p1 of the key-frame, but it is more difficult to
indicate the speed. To define the speed sk at a key-frame at time k, we first look for the previous
and next key-frames at time k0 and k1 respectively. Let the function p(t) be the recorded position
at time t and let the average speed vectors s0 s1 be defined by:

s0 =
p(k)−p(k0)

k− k0

s1 =
p(k1)−p(k)

k1− k

Then the speed sk at time k is given by (see figure 3.9):

sk = α · s0 + (1−α) · s1

where α =
k1− k
k1− k0

As the motion of foliage results from the underlying branches structure dynamics, it is usually
smooth and does not require many key-frame in order to be well estimated. Moreover, when us-
ing this approach all user action are done using the mouse. Coupled with the keyboard controls
of the video player as described above, it provides a very quick input method for the extraction
of target motion path in a video.

3.4 Manual Input 53

Figure 3.9: An example of the speed estimation for a key-frame at time k. In this example, even
if p(k) is almost spatially equidistant to p(k0) and p(k1) in the image space, the ratio between
time interval is (k1− k) = 2(k− k0), so α ≈ 0.667: s0 has twice more influence than s1.

3.4.2 Sketching Motion

In section 3.2, a perceptive limitation has been described: the difficulty for the user to discern
visually the underlying structure of the branches in still image of foliage. This structure is how-
ever important as it holds the observed foliage motion. For the key-frame input approach, it
often leads to a strange visual phenomena when the video stops playing: In a very short time,
the knowledge a user has of the exact location of a target (i.e., part of the foliage) is lost. It then
becomes a very complex task to set the key-frame positions exactly.

The perceptive ability of human visual system to extract structure from motion has been exten-
sively studied. A famous experiment, made by Gunnar Johansson [G.06], shows that displaying
only a few isolated bright points that were recorded when attached to a walking human, are
enough for a viewer to recognized human motion. In our case, the issue is not to recognize the
motion but the ability to very quickly infer structure information, and to overcome the perceptive
limitation due to the restricted time for such information to be remembered. The interface of the
video player (described in section 3.3) can help as it lets the user easily shift the video back and
forth in time to maintain perceptive information of motion. However it slows down the overall
input process.

This facts leads us to design an interface for manual input while the video is playing. The idea is
simple, as the player is easily controlled and does not require much attention, the user can draw
the target motion while it moves.

In computer graphics, research in sketching interface have proposed interesting manual devices.
These works have mostly focus on tools for the modeling of 3D virtual objects [ZHH96, IMT99,
SS08]. Some research have also be done on sketch-based interaction as an input device for the
control of 3D animation. However these approaches usually aim at fitting motion generated with
dynamics simulation to the user’s input [Coh92, PSE03, TBvdP07].

54 chapter 3. User Oriented Application for Video Tracking

On the other hand, the human-computer interaction community has made researches that pro-
vides interesting results that are more related to our problem. Historically, a first model defined
by Fitts [Fit54] helps predict the time T required to rapidly move to a target of radius W and at
distance D (see figure 3.10(a)):

T = a + b ln(
D
W

) (3.1)

where a and b are two constants depending on the user and the experimental setup. Since this
model, several developments have been propose for more complex task. The steering law apply
to the task of following a specified trajectory of width W [AZ97]:

T = a + b
∫
P

ds
W(s)

(3.2)

where a and b are two constants similar to those in equation (3.1) and where P is the path to
follow (see figure 3.10(b)). For both Fitts law and steering law, the main point is to describe
the complexity of the task as a function of the distance D (for Fitts law) and the width of the
target or of the path. For example, in the case of the Fitts law, the task of reaching a target is of
logarithmic complexity with respect to distance and inverse of the target width.

mouse

targetA

W

(a) Fitts law (b) Steering law (figure taken from [AZ97])
Figure 3.10: Typical tasks to which Fitts law and steering law apply.

In our case, we are interested by the task of pursuit tracking of a moving target. The user plays
the video at a selected speed, typically using the slow frame-rate described in 3.3. This is done
by one hand, then using the mouse with the other he follows the target.

Some researches has been done in order to model the human tracking as a function of a target
trajectory. First, Hoffmann has developed the Fitts model for targets having a constant speed
[Hof91]. Then other models have been set for the task of pursuit of moving targets with speed
changes unpredictable by the user [AMM90, ES00]. However these researches meant to provide
prediction models of the trajectory, represented the user’s sketch, from a known trajectory of the

3.5 User Interface for Correction 55

target. Most of the parameters of these models are very dependent of the experiment and the
user.

A set of experiments have been done using this manual tracking interface. The main results
shows that each user has a different approach. Trying to invert the models by finding good
default parameters does not provide good results in all cases. Automatically improving the pre-
cision of manual tracking is thus a difficult problem that may not have solution. We still extract
and use one of the parameters from [ES00]. The time delay in human response is estimated
around 115ms. So each recorded position of a user stroke is shifted in time by this amount.

Finally, this sketching interface is used as the automatic tracking to record a first motion curve
that usually requires some corrections. It is actually a difficult tool in case of fast motion with
sudden changes. However branches motion in trees strained by natural wind are almost always
smooth and the motion path is fairly predictable. Unlike the automatic tracking the goal is more
to get a curve that has a correct trajectory in space than to have the correct timing. Indeed the
main difficulty of manual tracking is to respect the exact speed of the tracked feature. In section
3.5.2, we discuss the method we propose that allows to correct the timing afterward.

3.5 User Interface for Correction

The motion path of a target is defined by a set of positions, one for each image of the video. It
can be thought of as a 3D trajectory through the video volume (i.e., where the x and y axis are
the images coordinate and the z-axis is the time). For editing, instead of displaying only a feature
position and its speed at each frame, the motion curve is projected in the image plane to provide
more visual information on the features dynamics (see figure 3.11). However only the path over
a few neighboring frames are shown as displaying more would be confusing.

Figure 3.11: Displaying the motion curve of a selected target. The red dots are key-frames.

56 chapter 3. User Oriented Application for Video Tracking

For the task of tracking target objects, the user naturally segments the work and input the motion
curve over one subset of the whole video at a time. For a key-frame initial input, the final curve
is a set of key-frame position and interpolated values in-between. For automatic tracking and
for manual tracking the user works step-wise. A key-frame separates each input sequence and
correction can be required for the in-between frames.

All the corrections are done by the displacement of the position of the motion curve at one frame
which then becomes a key-frame. We now describe how this displacement made by the user at
one frame is propagated along the motion curve.

3.5.1 Correction in Space

Using the key-frame approach, one can refine the motion curve simply by adding more key-
frames where needed, or by displacing one in the case of a previous user error. For both actions,
the motion curve only needs to be updated around the new (or displaced) key-frame.

However, to correct curves obtained through automatic or manual tracking, an other approach is
necessary. A method was designed to provide the correction that is usually expected. The idea
is to use the Hermite spline as defined before to compute the displacement of the motion curve
between the next and the previous key-frames if they exist.

The typical error that occurs in automatic tracking algorithms, when it does not fail entirely, is
when an estimated feature’s motion has diverged slowly from the correct path. On the other hand,
for manual tracking, usually the input curve has approximately the correct shape. But it is often
shifted locally from the correct trajectory. For both cases, the positional error at two neighboring
frames are almost the same. Thus for a correction applied to one frame the neighboring part of
the curve should be corrected similarly.

We provide an interpolation process that propagate the correction along the curve. It is thus
necessary to know how far this propagation should go. At maximum, the previous and the next
key-frame are the bounds, as they should be already correct. If the user want to restrict a curve
correction to a shorter segment then he can set as key-frame the last and/or next correct position.
To simplify this task, we provide a user tool that shows the part of the curve that is affected by a
user correction at the current frame (see button (a) in figure 3.7). Then the user can set any posi-
tion of the displayed curve as key-frame directly which removes the need of time displacement
along the video.

Once the section of the curve to be corrected is selected, a displacement of the feature current
position can be interpolated. The most simple propagation scheme is a linear interpolation. How-
ever, most often it does not produce satisfying results. In the correction algorithm we provide, the
displacement of the motion path is obtained by computing the displacement of a virtual spline.

Let p(t) be the initial motion curve for t ∈ [t0; t1], i.e., between the the closest key-frame in one of
the direction and the position to be corrected. We define a virtual spline s(t) as defined in section
3.4.1 but instead of using the same speed vectors, the speed of the target at these frames (i.e.,
ṗ(t0) and ṗ(t1)) are taken. Then from the displacement made by the user (either at t0 or t1), we

3.5 User Interface for Correction 57

compute again the spline s∗(t) still using the initial speed vectors. Finally, the corrected curve
p∗(t) is obtained by applying the applying the spline discplacement:

p∗(t) = p(t) +
(
s∗(t)− s(t)

)
∀t ∈ [t0, t1]

Figure 3.12: Spatial correction. The user corrects the position at one frame, and it is propagated
along the motion curve. In light brown is the curve segment (initial curve) that is affected. The
user has previously indicated the bound of this segment on one side. The other bound is the next
key-frame (red dot). In light red curve with white points is the corrected motion curve, the points
are the frames positions.

3.5.2 Time Correction

For smooth motion, it is easier when using manual tracking to input a motion curve that is
spatially correct than temporally. Thus the speed along the curve may not be accurate. The
correction tool described just above is not suitable since the shape of motion path is deformed.
Moreover, for the task of manual tracking, experiments have shown that the user has more con-
fidence and provide a better initial target’s trajectory if it does not try to respect timing. But then
a suitable tool that provides quick corrections of such errors is necessary.

First, using a keyboard shortcut, the user can switch to a time correction mode. Then its action
are restricted: the possible correction can only be done by displacement along the curve, i.e., a
selected target’s position at one frame can only be shifted in time. All the points of the motion
curve are then moved according to a linear interpolation of the time-shift. After a manual input
of an initial motion path, the suitable correction procedure is to go back and locally correct the
timing (see figure 3.13).

58 chapter 3. User Oriented Application for Video Tracking

(a) Backward in time (b) Forward in time
Figure 3.13: Correction of the motion curve only in time. The user can move the features only
along the curve. The white dots are the new positions at all frames.

3.6 Conclusion

The application described in this section provides the necessary blend of automatic vision algo-
rithm and user interface to allow motion extraction out of videos with any level of complexity.
When computer vision techniques provide good results, then the motion of features in the video
can be quickly estimated. The more complex the video is for these techniques the more the user
has to contribute. In most cases, only simple corrections are necessary, but even in the worst
scenario motion extraction is still available as it can be done entirely by hand. Furthermore the
user interface described in this chapter enables efficient inputs. It reduces greatly the user’s effort
which is a considerable advantage as the task of video motion extraction can become long and
complex.

c h a p t e r 4
E x t r a c t i o n o f P l a n t S t r u c t u r e a n d

R e t a r g e t t i n g o f M o t i o n D a t a

Contents

4.1 Introduction . 60

4.2 Related Works . 61

4.2.1 Structure from Video Motion . 61

4.2.2 Animation from Video Motion . 62

4.3 Building a Hierarchy of Branches from a Single Video View 63

4.3.1 Clustering Metric . 64

4.3.2 Selection of a Hierarchy of Branches using Clustering 65

4.4 Creating 3D Shape and Motion . 69

4.4.1 Creating Motion of the Terminal Groups 69

4.4.2 Propagating Motion to Intermediate Groups 69

4.4.3 Extending Groups to 3D Shape and Motion 70

4.5 Controlling the Animation of Complex 3D Plant Models 72

4.5.1 3D Animation of a Plant by Skinning 72

4.5.2 Interactive 3D Modeling . 73

4.6 Discussions on our Approach . 74

4.7 Conclusion . 75

60 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

4.1 Introduction

The two previous chapters describe methods to extract reliable information on the visible motion
of animated trees in video sequences. Here we discuss our work on statistical study of such two-
dimensional motion data in order to estimate information on the structure of the animated plants.
We show results on four video sequences, two of shrubs and two of trees.

Video motion does not contain all information on the trees dynamics: at best it is the projection
of the real movement of the trees onto the video plane. First the depth information in the view
frame of the video camera is unknown. But more importantly, only the motion of the visible
parts of the tree can be extracted from the video. This restriction is especially important for trees
with foliage as the leaves hide most or all the branches.

These facts indicate a need for insightful method to extract information of higher order from the
motion observed in video. The inherent 2D projection of data recorded in video sequences is a
loss of information on the plants dynamics. But the visible parts of the plants in videos are the
most external element of the structures. Their movement is thus influenced by the motion of all
the underlying branches. Suitable statistical methods can be developed in order to extract useful
data on the hidden parts of the plants. In this chapter we describe such a method that estimate
topological information on a plant structure using clustering algorithm applied on the 2D video
motion.

First feature tracking, such as described in the previous chapters, is applied on the video footage,
allowing the 2D position and velocity of several features to be extracted. These features should
cover as much as possible the entire foliage. Then we use statistical clustering to obtain a hier-
archical organization of these features. An interesting contribution of our method is the metric
employed by the classification algorithm: the distance of movement (see section 4.3.1).

A set of branches is then estimated such that each cluster is a groups of leaves (i.e., the tracked
features) that all descend from the same branch. However this structure is only topological. Only
the position of the terminal leaves are known, not the position of the branches. Using these
leaves motion in the video plane, more precise knowledge of the spatial organization of branches
structures is then defined from geometrical constraint.

The hierarchy obtained through clustering is used to synthesize a 2D hierarchical geometric
structure of branches that terminates according to the cut-off threshold of the classification al-
gorithm. This step extracts both the shape and the motion of a hierarchy of features groups
identified as geometrical branches. A simple heuristic allows next to extend the 2D hierarchy to
three dimensions by estimating 3D spatial distribution of the features from their 2D positions.

A key contribution of this approach is that the 3D hierarchical structure can be efficiently used as
a motion controller to animate any complex 3D model of similar but non-identical plants using a
standard skinning algorithm (i.e., mapping of a structure motion to another geometrical model).
Thus, a single video source of a moving plant becomes an input device for a large class of virtual
plants. To our best knowledge, this is the first markerless motion capture technique that allows
the reproduction of real plants motion onto virtual models.

4.2 Related Works 61

Our method is based on the observation of nature and provides visually convincing results with-
out requiring the simulation of the exact motion of every branch and leaf. Physical phenomena
such as wind forces, structural elasticity, or inter-collision of the branches are statistically mod-
eled from video, rather than explicitly simulated physically.

After reviewing related works in section 4.2, section 4.3 presents the algorithm to extract a topo-
logical hierarchy of animated branches using statistical clustering. This step provides a set of
results embedded in the video image plane. Section 4.4 describes how these structures can be
projected into three dimensions and animate a synthetic 3D replicas of the images found on the
input 2D video. We then show in section 4.5 how our method can be used to animate similar, but
non-identical, complex 3D models of shrubs.

4.2 Related Works

4.2.1 Structure from Video Motion

The goal of extracting structural information from a single monocular view has been extensively
studied in the Computer Vision literature. In particular many works have been done on topics
such as segmentation of distinct objects in videos [Zha06] and depth estimation.

In the domain of shape from motion, factorization methods have proven that rank constrains al-
low to extract shape and motion of a collection of 3D rigid bodies [CK98] or of a 3D deformable
body [TYAB01]. These approaches require to estimate in advance the rank constraint, which is
related to the number of rigid groups in the case of multiple rigid bodies or the number of linear
degrees of freedom in the case of deformable body. In the case of moving trees and other plants,
motion of branches is not as rigid as motion of different part of an articulated body such as hu-
mans and animals. This makes these rank methods not adapted to our case. Moreover our goal
here is not to recover the exact 3D shape and motion of the original plant, but rather to investigate
how standard video sequences can be used as motion controller for complex 3D model of plants.

Py et al. [PdLMH05, PdLM06] uses bi-orthogonal decomposition (BOD) to extract from a video,
waves of coherent motion called honami that can be seen on a field canopy. BOD is a statistical
method similar to Principal component analysis (PCA) that decomposes a set of vectors evolv-
ing with time in two types of components: a set of chronos µk and a set of topos Ψk (see figure
4.1). The input is the vector field representing the estimated motion of a canopy in each pixel of
each image of the sequence v(x,y, t). The bi-orthogonal decomposition then compute K principal
components (the sets {α,µ,Ψ}k) such that:

v(x,y, t) =

K∑
k=1

αk µk(t) ·Ψk(x,y) (4.1)

Moreover as for PCA, BOD sorts the chronos and topos by order of influence (decreasing αk).
This method allows to detect coherent oscillatory evolution of the optical flow. In the case of

62 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

canopies animated by directional wind the honami can be found in the first components of the
decomposition.

(a) (b) (c)
Figure 4.1: (a) and (b) are the two first topos and (c) their associated chronos obtained using
BOD on the optical flow of a video of a canopy animated by the wind. In (a) and (b) iso-contours
of the topos magnitude are drawn. (images taken from [PdLM06])

There are a few flaws to the use of BOD for the extraction of structural information on a hi-
erarchical branches system. First for each extracted component, the topos is defined over the
entire image. Most of them have a localized influence, but BOD does not guarantee a precise
segmentation in space. Moreover spatial correlation of wind waves has strong impact on the
decomposition. In the case of [PdLM06] this is a quality as the goal is to detect honami. In
contrast the extraction of animation structures should more emphasize on the statistical indepen-
dence amongst different area of the foliage. An other limitation of BOD to our problem is that
the localization in the image of the topos are fixed along the video. But motion of branches (and
their descending leaves) can have a bigger amplitude in the image plane than the displacement
of the field crop as studied in [PdLM06].

4.2.2 Animation from Video Motion

Video-based animation has been mostly explored for character animation. Forsyth et al. provide
a thorough study of this issue in [FAI+05]. There are many different types of approaches. How-
ever all are based on a priori model of human or animal structure. For example, Bregler et al.
in [BM98] and [BMP04] propose a tracking model, called twist and exponential maps, to extract
the pose of a kinematic chain of rigid bodies that can be used to track humans or animals. This
model is obtained from the hypothesis of conservation of light intensity (as described in section
2.4.3) applied to the projection of an articulated structure onto the projective plane of the video.

4.3 Building a Hierarchy of Branches from a Single Video View 63

The gait of animal locomotion from live video documents has also been put in focus by Favreau
et al. [FRDC04] to provide a new animation method for virtual animal model. In this approach
the cyclic nature of animal locomation is extracted from the two first components obtained from
PCA applied on the video where the subject is segmented from the background. These serves
then as a basis to map video motion data to the pose of the virtual model. Instead of using a
priori knowledge on the specific 3D structure of the subject, this approach requires periodicity of
the observed motion.

Concerning plants, Sun et al. propose the use of video-input driven animation (VIDA), a system
to estimate the wind velocity from videos of animated trees or other oscillating systems [SJF03].
They invert the equations of motion of a mechanical model of an oscillating beam (that represent
the trunk of a tree) to infer a representative wind field that would account for that motion. It al-
lows the introduction of additional effects onto the original video, such as synthetic snow, leaves
or dust, as well as new trees, all of which would be coherently controlled through interactions
with the estimated wind field. In the method described in this chapter, a video of a plant is ana-
lyzed to directly build a model of its branches structure. The extracted model can then be used
to animate a 3D synthesized plant without estimating explicitly the wind force.

4.3 Building a Hierarchy of Branches from a Single Video
View

In this section, we describe how the structure and motion of a hierarchy of branches can be auto-
matically estimated from feature positions tracked in a video sequence. Using the software and
tracking methods described in the two previous chapters, a set of N features of the foliage and
visible branches are tracked along the video. Let T be the number of images in the sequence, we
have N discrete curves pi such that:

pi(t) = (xi(t),yi(t)) wheret ∈ [0,T]

The velocity vi(t) of feature i is computed in 2D image co-ordinates as the difference between
the positions at two consecutive frames:

vi(t) = (ui(t),vi(t))
= pi(t + 1)−pi(t) wheret ∈ [0,T −1]

The number of features N needed by our methods depends mainly of the size and number of vis-
ible branches of the filmed plants. For example, using automatic tracking the ficus model used
for illustration along this chapter requires around 200 features, while around 1000 to 2000 are
used for the trees shown in the section 4.6.

64 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

4.3.1 Clustering Metric

The first part of our method consist in grouping features that are descending of a same branch.
To this end we use clustering analysis, i.e., statistical techniques that produce a partition of a
given set, here containing the tracked features, with respect to the relative distances between its
elements.

The results obtained from clustering is thus directly related to the metric (i.e., the distance func-
tion) employed. A simplistic approach would be to use euclidean distance between features
position. This would obviously lead to incorrect clustering in the sense that the features from
different branches can be grouped together. A logical hypothesis is that branches and leaves mo-
tion are most often similar when they are close in the hierarchical structure of the plant. We have
then tried using the euclidean distance between the speeds vi of the features. However better
results were obtained when using a distance between the direction of these displacement vectors.
Considering the visualization tool described in section 3.2, we typically want to group together
features that appears with same color. This led us to use the distance of movement dmvt that is
defined for any speed v1(t) and v2(t) at any time t by:

dmvt(v1(t),v2(t)) = arccos
(

v1(t) ·v2(t)
|v1(t)| |v2(t)|

)
(4.2)

Figure 4.2 compares a ground truth clustering made manually and the results of an automatic
clustering based on feature positions and speed direction.

(a) Ground truth obtained
from manual clustering

(b) Automatic clustering
based on feature positions
only

(c) Automatic clustering
based on speed direction

Figure 4.2: Comparison between a manual clustering that shows an expected classification of
the features in seven groups, results from clustering using euclidean distance in the image and
using the distance of movement.

The clustering obtained using distance of movement produce correct results concerning motion.
However it is quite different from a human made classification which is based on visual percep-
tion. In figure 4.3.1 many little groups are generated on the left side of the shrub while only
one on the right containing half of the visible foliage. This happens because the motion present
in the original video is created by strong wind impulses coming from the left side. Thus the
complexity of the plants movement is mostly localized on this side. From a perceptive point of
view however, the overall motion should be decomposed in regions of similar size.

4.3 Building a Hierarchy of Branches from a Single Video View 65

To obtain a result more satisfying perceptively, we consider a composite distance for the clus-
tering which integrates both the position and the velocity of the features. In our method, we use
the sum of the euclidean distance between positions and the angular distance between velocities
where both are normalized by their respective standard deviation observed over all the features
along the whole sequence. However the resulting dissimilarity function is not a correct metric
from a mathematical point of view as the distance of movement does not respect identity of indis-
cernible (d(x,y) = 0⇔ x = y) and the triangle inequality (d(x,y)≤ d(x,z)+d(z,y)). The advantage
is that it avoids the needs to configure the relative influence of both distances and produces good
results (see section 4.5.1 and 4.6).

As one might expect, our experiments showed that a per frame approach introduces instabilities,
because incoherence between class composition occurs from frame to frame. To reduce this ef-
fect, a criterion is computed for each frame to evaluate its relevance to coherent motion. In a
statistical point of view, we need to reject outlier frames which reduce the quality of the cluster-
ing. Such frames occur for two reasons: one because of unstructured motion such as case (a) of
Figure 4.3 due, for example, to low motion of branches that brings out the influence of tracking
noise; one because of overall dominant motion, such as case (b) of Figure 4.3, which gives too
much weight to the distances of positions as it is not representative of a per branch movement
structure.

Figure 4.3: (a) Unstructured motion, (b) Strong wind inducing a single overall motion.

To characterize these two cases, we firstly compute the average of distances between all pairs of
points for each frame. Secondly, we compute the mean and standard deviation of this per frame
value over the whole sequence. Frames with a value above or below two times the standard devi-
ation with respect to the mean value are considered as outliers. Finally, the distances used by the
features clustering is the average of composite distances between pairs of features computed over
the selected inlier frames. Figure 4.4 shows the result on the ficus sequence using this automatic
classification method.

4.3.2 Selection of a Hierarchy of Branches using Clustering

We now discuss details of the clustering algorithm and how it automatically generates a hierar-
chy of branches. Most classification approaches fall into three main categories [Cor71], [Gor87],
[HTF01]:

66 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

(a) Ground truth obtained
from manual clustering

(b) Automatic clustering
based on distance combining
feature position and velocity

Figure 4.4: Comparison of the ground truth classification with the results obtained with our
automatic method.

• Partition, where all individuals are clustered around representative data points (typically
using k-means methods),

• Division, where an explicit ordering criterion iteratively splits individuals into hierarchical
classes (leading to a hierarchical description of the data set–typically kd-tree methods),

• Aggregation, where individuals are iteratively compared and combined by closest pairs
(leading also to a hierarchical representation).

Because we want to find a hierarchy, and because we have no inherent, explicit ordering criterion,
we adopted the third choice with an aggregative method. Initially, this approach start with a list
of all the features and compute the distances between all possible pairs. We use the dissimilarity
function described in the previous section.

Choice of a clustering criterion

The aggregative method iteratively merge the closest pair. Each time two elements of the list are
combined, they are removed from the list and a new cluster containing both is added. It is thus
necessary to choose a suitable criterion that defined the distances between two elements that are
already groups of features.

A possible criterion is to use the average distance. Given three elements x, y, z, where x and y are
already merged into an aggregate group H, z is compared to the group H by evaluating a distance
d(H,z). Several choices are possible for this distance.

d(H,z) =
d(x,z) + d(y,z)

2
(4.3)

where d(x,z) is the features dissimilarity function described in the previous section.

By extension, H contains the subgroups Qi and Q j and not just individual elements, the equiva-
lent distance of z to the group H is given by

4.3 Building a Hierarchy of Branches from a Single Video View 67

d(H,z) =
nid(Qi,z) + n jd(Q j,z)

ni + n j
(4.4)

where ni and n j are the number of elements contained by the subgroups Qi and Q j respectively.

Finally, when all individuals are already clustered into a group, further aggregation requires to
evaluate the distance between groups. The following formula is thus used:

d(Qi,Q j) =
1

ni ·n j

∑
x∈Qi

∑
y∈Q j

d(x,y) (4.5)

where X and Y are groups containing respectively nX and nY individual elements.

This average distance criterion provides a simple approach for aggregative clustering. However,
it turned from our experiments that this approach lacked of robustness to changes of initial con-
ditions and provided unbalanced groups. To overcome this limitation, we have used a refined
approach which considers the concept of inertia, known as the Ward criterion. The inertia I(S)
of a set S of nS features is:

I(S) =
1

nS

∑
x∈S

d2(x,gS) (4.6)

with gS =
1

nS

∑
x∈S

x is the center of gravity of S (4.7)

If Ω is the set of all features and of size N, the equation (4.6) of a classification of Ω in k groups
Qi can be simplified to (using the theorem of Huygens):

I(Ω) = Iinter + Iintra =
1
N

 k∑
i=1

nid2(gi,gΩ) +

k∑
i=1

I(Qi)

 (4.8)

The value of I, the total inertia of the system, is constant as it is independent of the clustering.
At the initial stage all groups Qi contain only one feature, and thus the intra-group inertia, Iintra,
is null. Then, at each stage of the clustering process, the inertia of the system will be transferred
from the inter-group inertia, Iinter, to the intra-group inertia by an increment ∆I depending on
which elements will be aggregated together. The principle of the Ward criterion is to aggre-
gate, at each stage, the pair of elements which will minimize the increment ∆I . If we develop
the increase of intra-group inertia for a combination of two cluster Qi and Q j, and after some
rewriting, this increment can be computed by:

∆I(Qi,Q j) =
ni ·n j

ni + n j
d2(gi,g j) (4.9)

68 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

In our case, it is not possible to define the center of gravity of a group that would account for
the features distance function described in the previous section. The solution is to use directly
the increment of inertia ∆I as the new distances and maintain a list of them for all pairs currently
in the list of elements. Each time a new cluster is created, the increment of inertia that would
arise by combining this new group with any other element of the list can be computed from the
previously known ∆I . Let Qk the new cluster made by merging two elements Qi and Q j, then for
any other element Qm we have:

∆I(Qk,Qm) =
1

nk + nm

[
(ni + nm)∆I(Qi,Qm) + (n j + nm)∆I(Q j,Qm)−nm∆I(Qi,Q j)

]
(4.10)

It should be noted that the equations (4.9) and (4.10) is obtained by considering an euclidean
metric. We still use this criterion mostly for the improvement of the final results which basically
induce questions on the meaning of inertia in our case. In particular, it can be seen by com-
paring equation (4.9) with equation (4.5) that the difference between the weighting parameters
(depending on ni and n j) shows that the ward criterion tends to cluster little groups first.

Branches structure

Aggregative methods induce a hierarchical representation known as dendrogram. Given a re-
quired number of classes, the final clustering is obtained by adjusting a cut-off line on the den-
drogram representation as illustrated in Figure 4.5.

Figure 4.5: Hierarchical clustering and cut-off line for the determination of the number of classes
identified as terminal groups.

From Figure 4.5, once a number of classes is set, all the features below the cut-off are grouped as
terminal groups. Groups above the cut-off line automatically provides a hierarchical structure of
the shrub with intermediate groups, “up” to the base trunk. A branch is identified as joining two
groups. By changing the location of the cut-off line, a different choice of branches is coherently
selected. This approach automatically produces a levels of detail selection mechanism based on
the statistical distribution of data only.

4.4 Creating 3D Shape and Motion 69

4.4 Creating 3D Shape and Motion

The algorithm of the previous section yields a topological hierarchy of branches that is valid over
the entire video sequence. This section presents a method to automatically deduce 3D shape and
motion from this structure. The shape and motion of the branches (terminal and intermediate
groups) are first defined in the 2D video image plane and then converted to 3D.

4.4.1 Creating Motion of the Terminal Groups

For each frame of the video sequence, we consider the distribution of the features within a ter-
minal group to deduce the 2D parameters of an ellipse. This ellipse corresponds to the 95%
isocurve of a Gaussian distribution defined through the covariance matrix of the data set. A third
axis is created perpendicular to the image view plane, with a length equal to the shortest axis of
the 2D ellipse. This generates 3D ellipsoids for each frame and each terminal group. The center
of each ellipsoid provides the position of the group in the image plane co-ordinate system.

This approach is inspired by methods for inflating 3D shape from 2D structure, typically illus-
trated by the “Teddy” system [IMT99], where 2D contours drawn by hand are automatically
converted into 3D volumes. In our case, we do not create complete continuous polygonal sur-
faces, but instead we project the features away from the image plane onto the ellipse to give a
different depth to each one.

4.4.2 Propagating Motion to Intermediate Groups

The terminal groups are now geometrically positioned. For each frame, the position of an inter-
mediate group is firstly computed as the average of its two child groups (each group has exactly
two children, recalling Figure 4.5). This initialization process starts with the terminal groups as
their location is already known from the previous section. Spatial locations are propagated down
to the root node, providing the position of the intermediate group in the image-plane co-ordinate
system. An additional node is then added at the base of the trunk for visualization only.

This first step results in unrealistic T-junctions for branches (see figure 4.6(b)). To create more
realistic tree shapes, intermediate groups initially at T-junction are shifted toward their parent
group. It is realistic to expect that branch lengths do not change over the duration of the anima-
tion. This fact provides geometric constraints that we use to improve the shape of the extracted
structure.

For each intermediate node, a shifting coefficient α is estimated by minimizing the standard de-
viation of the length of the neighboring branches over the whole video sequence. Let pi be the
node to update, p∗i its initial position between the two child nodes pn and pm and po the position
of the parent node (see Figure 4.6):

70 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

α = argmin
[
σ(‖ pi(α)− pn ‖) +σ(‖ pi(α)− pm ‖)

]
(4.11)

with pi(α) = po +α(p∗i − po) (4.12)

To keep a coherent shape, this optimization process is started from the root node and propagated
toward the terminal groups. To obtain best result the position of the first node of the hierarchy is
manually placed to its real location. Intuitively, the algorithm propagates this manual displace-
ment to the successive nodes using equation (4.11) and following the hierarchical order of the
structure.

(a) Optimization of interme-
diate node locations

(b) Extracted structure before opti-
mization

(c) Extracted structure after opti-
mization

Figure 4.6: (a) The position of a node pi is initiated as the average (p∗i) of its children node pn
and pm. Then it is optimized to minimize equation (4.11). (b) and (c) Extracted structure before
and after the optimization.

The position of every group (intermediate and terminal) is then transformed from the global co-
ordinate system of the image plane to a set of local co-ordinate systems along the branch using
the topology of the hierarchy. Group positions are converted into local polar co-ordinates. The
length of each branch is fixed at its mean to keep fixed-length branches. The motion of each
branch is expressed as a rotational animation curve in the 2D image plane. The clustering and
2D geometrical hierarchy is illustrated in Figure 4.7.

4.4.3 Extending Groups to 3D Shape and Motion

So far, the shape and motion of the branch structure is embedded in the 2D image plane (only
the projected features considered as leaves are shaped in 3D as described in section 4.4.1). We
propose two methods to finally extend them to 3D: one method relies on user interaction, the
other one is fully automatic.

The first method keeps the geometrical hierarchy obtained from the previous section as is and
is presented to the user to manually edit the tree structure. To make this process intuitive in 3D,
for each branch node, axes are oriented so that:

4.4 Creating 3D Shape and Motion 71

Figure 4.7: Final geometrical hierarchy of groups.

• the branch joining the parent to child group corresponds to the x-axis,

• the z-axis is perpendicular to the image plane,

• the y-axis is obtained by cross-product of the x and z axes.

Motion of the branch is assumed to be mainly contained in the image plane, which is orthogo-
nal to the z axis, resulting in a 2D rotational motion oriented around the z axis for the branch.
An animation curve as a rotation around this z axis is kept as the whole motion of the branch.
The motion is thus embedded into the image plane. To create a non-planar 3D distribution of
branches, while keeping the motion of the branch in a plane, it is proposed to the user to simply
rotate this plane by changing the y-axis only. By changing only one degree of freedom, a wide
variety of orientations can be intuitively created. This method was used to implement the render-
ing where each leaf is assigned a small texture (Figure 4.8). This shape editing has to be done
for a single frame only, the animation staying in a predefined plane. Note that by grouping all
the leaves of the same terminal group into a display list, real-time rendering is easily achieved in
this case. Intermediate groups are animated as a standard hierarchy of rigid co-ordinate systems.

Figure 4.8: 3D geometrical structure with texture sprites for leaves.

The second method provides 3D location and motion of groups automatically. The algorithm in
section 4.4.1 is slightly modified: for each frame, the distribution of the leaves is now estimated
over the entire plant data set, and not on a per-group basis any more. This creates a global 3D
ellipsoid for the plant. The location of the center of the terminal groups is therefore estimated
in 3D by projecting their 2D positions perpendicularly from the image plane onto the ellipsoid.

72 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

It thus provides a depth value to each terminal group. The algorithm described in section 4.4.2
remains valid in 3D and is applied to propagate motion to the intermediate group and compute
the shifting coefficient α. Now that the terminal groups are initially distributed in 3D, so too are
the intermediate groups. 3D positions are also converted into local co-ordinates of the hierarchy.
Motion is now converted into spherical co-ordinates, instead of polar co-ordinates as above. Note
that depth is inflated into one direction only. To cover the other half part of 3D space, the results
are simply mirrored with respect to the image plane. This method provides denser 3D space
coverage of the branches and was used in the animation method described in the next section and
illustrated by Figures 4.10 and 4.11.

4.5 Controlling the Animation of Complex 3D Plant Models

The previous section gave a method to extract an animated 3D hierarchical structure, and renders
in real-time a 3D replica of the input video footage. In this section, we present an interesting re-
sult in which a similar but different structure of a more complex 3D plant model can be animated
using the same extracted 3D tree structure.

4.5.1 3D Animation of a Plant by Skinning

The leaves attached to a terminal group only contribute to the rendering and can be removed
without altering the tree structure. The key idea is to use this tree structure as a control skeleton
for animating a 3D model using skinning algorithms, just as it is currently done for character
animation. The complex 3D model of a shrub is bound to the control skeleton using the stan-
dard algorithm for smooth skinning implemented in the Maya software. As the branches of the
skeleton move, so do those of the shrub (Figure 4.9).

Figure 4.9: 3D geometrical tree structure used as a control skeleton for animation by skinning.

Although the geometrical structure of the control skeleton does not exactly reflect the structure
of the target 3D model, the results are surprisingly convincing. We believe that such results are

4.5 Controlling the Animation of Complex 3D Plant Models 73

achieved due to the fact that the 3D model used as a target has been generated by a computer
program, and as such, it has a rather isotropic branches and leaves density.

Figure 4.10: Video footage controlling 3D animation of the ficus model (motion blur corresponds
to a 1/50s shutter speed).

Figure 4.11: Original footage of the xmas model and synthesis target for animation of a complex
3D model of shrub

4.5.2 Interactive 3D Modeling

The isotropic assumption may be too strong to be respected in some cases, such as the one on
the shrub displayed on Figure 4.10. Indeed, the structure of this shrub is quite unbalanced. As
in the previous case, the skeleton structure is first scaled to match the target 3D model. The
user then assembles 3D branches with foliage to construct a final tree, guided by the location
and orientation of the control skeleton. Based on the 3D hierarchical structure provided by the
video analysis, this modeling process could be automated. Figure 4.12 illustrates an example of
this interactive modeling. In this case, six branches are copied from an existing 3D model and
composed together in a new configuration.

Figure 4.12: Three main steps of the interactive modeling of shrubs that fit the control skeleton.

74 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

4.6 Discussions on our Approach

For the work presented in this chapter, the main goal has been to provide a new motion capture
method to animate virtual plant models using video only. We have thus mostly focus on the
use of automatic tracking techniques as an input process for our method to require minimal user
work. However as described in the previous chapter such tracking techniques have limitations
that induce quality issues of the input data. The motion of the terminal groups begin the mean
of the features displacement, our method is robust to noise, but coherences in the tracking error
cause some visually unrealistic movement.

Typically we obtain better results when the foliage is sparse and the leaves rigid as for the ficus
model (see figure 4.10). For the xmas and clermont sequences (figures 4.11 and 4.13(b)), the
reduction of the quality of the input motion mostly due to the leaves fluctuating deformation.
Finally, occlusion of branches induced some motion irregularities in the salon sequence (figure
4.13(a)). However the structure extracted by our method still maintain consistency.

(a) Extracted structure for the salon
sequence

(b) Extracted structure for the cler-
mont sequence

Figure 4.13: Result obtained on video sequences of two full grown tree.

A specific aspect of our approach is that it is based on single-view video footage. Although our
method generates 3D structure, working with a single view naturally implies that all the relevant
motion of the plant is extracted from a single viewing plane. To take maximal advantage of this
configuration, our methodology has been to film the plants so that the wind flow is parallel to the
view plane. It turned out that most visually pertinent motion was observed using this approach.
Using multiple cameras to effect stereoscopic reconstruction could allow to extract full 3D plant
motion. However, this would raise other problems such as feature correspondence.

Furthermore, using a video sequence as the only input to create motion restricts the animation to
motion observed in this sequence. However, motion synthesis methods could be adapted to our
case to compose longer sequences. An interesting development of our method would be to esti-
mate the wind (for example by adapting the method presented in [SJF03]) and use it as a control
parameter for the generation of 3D animation. The resulting model would provide a method to
control realistic plant motion from intuitive wind parameters.

Finally, the flickering appearance of rapid motion of leaves are natural part of a realistic aspect
of a tree under the influence of wing. This point is not addressed by our method. The goal is to

4.7 Conclusion 75

provide a final result which can be easily integrated into a standard computer animation pipeline,
based on an animated hierarchy of textured rigid objects. In general we have not addressed any
geometrical rendering issues. This can obviously be improved. Specifically, due to the difficulty
to obtain virtual plant model containing structural information (i.e., which polygones are leaves
and to which branches they are attached to) the skinning method has been applied not only on the
branches but also on the leaves vertices, resulting in sometimes visible unnatural deformation.

4.7 Conclusion

We have demonstrated that subtle and complex plant motion can be visually modeled and mapped
onto an animated 3D model with motion extracted from a single-view video. The coupling of
video analysis and hierarchical clustering offers an appealing alternative to physical simulation,
which is known to be difficult to control. An unusual application of skinning combined with our
method indicated that a wide range of complex 3D models may also be animated.

The main contributions of the work presented in this chapter are twofold. First we show that
statistical clustering using a suitable dissimilarity function provides consistent information on
the structure of motion of plants extracted from a video and on the structure of the plant it-
self. Second we provide a first motion capture method for the animation of virtual plant (to our
knowledge) which only requires a single video sequence.

76 chapter 4. Extraction of Plant Structure and Retargetting of Motion Data

Part II

Mechanical Simulation

c h a p t e r 5
R e a l - T i m e A n i m a t i o n o f T r e e s u s i n g

S i m u l a t i o n

Contents

5.1 Introduction . 80

5.1.1 General Principles . 80

5.1.2 Outline of the Chapter . 82

5.2 Wind Models . 82

5.2.1 Physical Simulation . 83

5.2.2 Procedural and Phenomenological 84

5.2.3 Stochastic Wind . 86

5.3 Modeling the Structural Elements . 87

5.3.1 Undeformable Segments with Angular Spring 87

5.3.2 Uniform Beam . 88

5.3.3 Cosserat Rod . 90

5.4 Structural Modeling . 92

5.4.1 Dynamics Formalism . 92

5.4.2 Independent Elements . 94

5.4.3 Articulated Structures . 94

5.4.4 Finite Element Method . 95

5.5 Time Integration . 96

5.5.1 Static Equilibrium . 96

5.5.2 Explicit and Implicit Method . 97

5.5.3 Spectral Method . 99

5.6 Summary . 101

80 chapter 5. Real-Time Animation of Trees using Simulation

5.1 Introduction

In the first part of this dissertation, the acquisition and reproduction of motion from real plants has
been discussed. However in computer graphics and in most mechanical study of plants dynam-
ics, existing methods generate plants motion using computer simulation. As for any deformable
structure, a large range of methods can be used for this task. These can be very different and
their suitability should be evaluated with respect to the application there are dedicated to.

In this chapter we give an overview of such simulation methods. We mostly focus on existing
real-time animation techniques that are specifically developed for 3D plant models. In particular,
special interest is given to simulation methods that model plants response to external wind load.
Different approaches can be found in other literatures that could be used to animate plants. But
the specificities of real-time application containing animated trees usually restrict their usability.

Moreover for graphics purpose, the quality of a simulation is based on the perception of realism
which is difficult evaluate. For example, compared to a more traditional assessment of simulation
results, one can consider the relative importance of precision on spatial position and on oscilla-
tory behaviour. The complex geometry of trees actually hides most deformation artifacts while
an animation with unnatural spectral description, both in space and time, is quickly perceived as
unrealistic.

5.1.1 General Principles

Reducing Dimensionality

In general, the complexity of an animation structure involves a tradeoff between simplicity and
accuracy of the model. In the first chapter of this thesis, a short biological description of the
diversity and complexity of plants has been given. In its most complex representation, each bi-
ological part of a plant can be modeled as a volume with a specific topology made of a specific
material. However in the context discussed here, we want to model the dynamical deformation
of this structure with respect to external forces in such a way that it can be simulated in real-time.
At the physical scale we are interested in, i.e., from a shrub to a whole tree, a cellular representa-
tion is not suitable. A few simplifications are thus necessary, and commonly accepted, such that
the plants structures are defined to allow significant reduction of the computational simulation
cost.

For branches structures, instead of the more common volumic model employed for many me-
chanical simulation of other types of objects, tree are usually model using a lineic representa-
tion. Lineic basically means that the structures can be expressed as connected curves. Typically
a branch can be modeled by a line passing through its center and any deformation of a point
of this line represents a displacement of the branch cross section linked to this point. Existing
methods do not always refer to this representation explicitly. However, to our knowledge every
animation structures effectively used for real-time animation of trees can be expressed this way.

5.1 Introduction 81

Deformation and Parametrization

Even considering lineic representation, the branches deformation remains volumic. A local de-
formation can be categorized in a set of possible types shown in figure 5.1. Typically for trees,
one expect to keep only bending and possibly torsion. In particular the length should be preserved
as much as possible.

(a) At rest (b) Shrink (c) Stretch (d) Bending (e) Torsion
Figure 5.1: The typical deformations of branch segment.

An important criteria to differentiate modeling approaches is the parametrization that can be used
to express the structure deformation. We can identify two classes, namely cartesian and gener-
alized. Generalized coordinates methods directly model the degrees of freedom (d.o.f.) as the
animation parameters: the bending and torsion of the branches. It has two main advantages: the
mechanical modeling is easier and the length implicitly kept constant. On the other side, the use
of cartesian coordinates has the advantage of being more suitable for rendering the geometry:
Due to the number of elements necessary to model a realistic tree, avoiding the computation of
the spatial transformation at run time represents a substantial benefit. However this approach
makes it usually difficult to keep branches length unchanging. Simulation methods exist to en-
force this as a mathematical constraint. But for real-time animation techniques, approaches using
cartesian parametrization usually apply a simple correction process before rendering the geome-
try.

Discretization

To further simplify the mechanical model, a discretization of the structure is necessary. The main
purpose of this step is to reduce the simulation of a tree dynamics involving a theorically infinite
number of d.o.f. to a problem dependent on a small number of d.o.f.. A plant is thus represented
by a finite set of segments which are attached by punctual nodes from the lineic representation.
These nodes can also be called the control points or the joints of the structures. The mechan-
ical properties of the segments depend on their shape (e.g., cylinders of adequate radius). And
any deformation of the structure is described by the dynamical state at the nodes. In a complex

82 chapter 5. Real-Time Animation of Trees using Simulation

representation, the animation structure can be made of hundreds of thousands elements to match
as closely as possible the initial shape and mechanical characteristic even for a simple plants.
However considering dynamics for real-time animation, such a structure is not necessary. One
usually restrict the number of elements to be directly proportional to the d.o.f. expected to have
an influence for the animation (see section 5.3 for the description of possible types of d.o.f.).

It should be noted that the discretization does not necessarily lead to a discontinuity of the defor-
mation. First, approaches such as the Finite Elements Method (F.E.M), often model the smooth
deformation of the structure as an interpolation between the nodes (see section 5.4.4). Second,
the mechanical representation of a plant can be quite different from the geometry used for ren-
dering. Such as described in chapter 4 a much more complex geometric model can be attached
to the (discretized and lineic) mechanical model. The animation structure is then referenced as
the skeleton and the animation of the geometric model according to the motion of the skeleton is
done using a skinning algorithm.

5.1.2 Outline of the Chapter

Due to the still important theorical diversity of the presented approaches, a full comparative
description is a quite difficult task. Moreover animating trees (possibly hundreds or more) in
real-time is a chalenging task that requires simplifications. And actually, many existing methods
for tree animation are not very rigorous in a mechanical point of view. Thus it would not provide
much interest to provide a state of the art based on a classification of these approaches only.
We have instead chosen to describe all concepts relevant to a real-time animation framework
dedicated to the simulation of plant motion. Then in each section, related works are cited and
compared.

Before addressing the main issues of elastic structure simulation, section 5.2 gives a quick
overview of possible methods to generate wind. Then section 5.3 presents how the elementary
parts obtained from the structure discretization can be modeled. Section 5.4 describes how the
mechanical modeling of the whole plants can be done from these initial element representations.
Possible numerical integration approaches to compute the evolution in time of the dynamics are
then explained in section 5.5. Finally, to summarize the chapter, section 5.6 provides a table that
classifies all the presented animation methods with respect to the discussed concepts.

5.2 Wind Models

Before addressing the possible mechanical modeling and simulation approaches in more details,
we want in this section to provide an overview on the types of external forces which can be used
to produce the animation. In particular we focus here on different ways to describe wind forces.
However many animation methods do not depend on a specific formulation of external forces. In
many cases, only the information about the wind field at any time (i.e., wind(x,y,z, t)) is required.

5.2 Wind Models 83

Concerning more general interaction (e.g., contacts), suitable mechanical simulation techniques
can be found that are more appropriate than existing simulation methods developed for trees. For
example, Hadap in [Had06] proposes a scheme to simulate hierarchical articulated structures and
their collisions. Such approaches aim for accuracy and robustness, but are more costly and more
difficult to implement. In this section, and in the chapter more generally, we focus on suitable
methods for real-time animation of large vegetable scene with respect to the wind load. For this
reason we do not discuss other types of interaction such as collision which are usually omitted to
increase computational speed. It should be noted however that it is often possible to still simulate
collisions in real-time under simplifying assumptions. Methods such as Weber [Web08] approx-
imate the response to such interactions by carefully choosing the forces applied on the tree with
respect to the detected intersections between branches and with other objects of the scene.

Concerning wind, we identify three main types of formulation: simulation of fluid dynamics,
procedural methods, and stochastic wind. We now explain these and briefly discuss their advan-
tages and limitations.

5.2.1 Physical Simulation

A direct approach to generate wind is to use fluid simulation. This topic has been widely studied
by the computer graphics community during the last few years. Most works aim to provide real-
istic motion flow of complex phenomena. Modeling an accurate representation of the interaction
of wind and trees is actually a very difficult task. But for the need of real-time animation, the
computation cost of the wind generation should stay low. On the other hand, part of developed
fluid simulation techniques have focussed on increasing computational speed. Moreover it is
often sufficient to model a 2D fluid flow when simulating forest trees in an outdoor landscape.
As a consequence this can be considered as a usable wind generation method to drive a real-time
tree animation framework.

Fluid dynamics is commonly described using the Navier-Stokes equations. Most often the as-
sumption of incompressible flow with constant density ρ is made. If u is the speed of the flow at
any point in space, simulation methods then solves the systems of equations:

du
dt

= −u · ∇u + ν∇2u + f −
1
ρ
∇p (5.1)

∇ ·u = 0 (5.2)

where ∇ is the del operator (indicating the spatial gradient), p is the pressure (in Pa), ν is the
viscosity coefficient of the fluid (in Pa · s), f is the external force (in N ·kg−1) and ρ is the volumic
masse of the fluid (in kg ·m−3). Variables p, f and u are function of space and time.

Stam [Sta99] was the first to provide a technique using these equations to compute fluid flow
in real-time. He made it possible by using an implicit formulation for the time integration (see
section 5.5). Harris [Har04] has later developed this technique to be computed on G.P.U. In short

84 chapter 5. Real-Time Animation of Trees using Simulation

to update a flow field from one time step to the next, these methods proceed through a set of steps
were the flow u is iteratively updated to include each of the three first terms of the right side of
equation (5.1). Then using a suitable projection operator (defined from the obtained flow field)
the state of the fluid flow at the next time step can be derived such that it respects equation (5.1)
with constraint (5.2).

Akagi et al. [AK06] are the only ones that have used fluid simulation for real-time animation of
trees. Their goal is to compute both the action of wind on the tree and reversely how the air flow
changes in function of the presence of plants in the scene. The influence of trees on wind is rep-
resented by the right external forces f in equation (5.1) (the effect of wind on trees is discussed
in the following sections).

Literature on fluid simulation provides a great deal of methods for fluid-solid interaction. How-
ever, the main difficulty for this task is to model correctly the interaction at the interface between
the fluid and the rigid object. To make such methods usable one needs to increase the resolution
of the grid such that the cells are thiner than the smallest parts of the trees. That would be clearly
intractable, especially for thin branches and leaves. For the purpose of real-time animation, Ak-
agi et al. propose to define the external forces applied on the wind to be proportional to the
mass of branches and leaves present in each grid cells. This simple scheme allows then to reduce
arbitrarily the resolution of the grid which can then be chosen relatively to the desired simulation
speed and precision (see figure 5.2).

Figure 5.2: Tradeoff between precision and simulation complexity of the method of Akagi et al.
[AK06]. The grid can be defined with any resolution (from the lower (a) to the higher (c)). Then
the forces that the tree apply on the wind is proportional to wind speed multiplied by the quantity
of wood and leaves in each grid cell.

5.2.2 Procedural and Phenomenological

Fluid simulation provides realistic wind but is most often too computationally costly for real-
time applications where the computational ressources allocated for the animation of vegetation

5.2 Wind Models 85

is low. The direct opposite approach to physical simulation is procedural representation of the
wind flow. However simple, this is still the most commonly used approach in computer game
industry [Sou07] where the only goal is usually just to add simple but not necessarily realistic
motion to vegetation. Zioma [Zio07] describes such an approach. The wind is simply formu-
lated as a sum of sinusoidal functions dependent on time. The obvious advantage is the small
cost but the main limitation is that realism can only be obtained by careful and tedious manual
configuration of the parameters.

An other important limitation is that it is not controlable. To allow objects in the scene to react to
punctual or interactive events, phenomenoligical representation of wind flow are more appropri-
ate. These are basically localized elements around which a procedurally formulated wind flow
with limited scope is generated (see figure 5.3). It was first introduced by Wejchert and Hau-
mann [WH91]. They define flow primitives that are individual solutions of the Navier-Stokes
equation. A few additional constraints on the fluid flow are used to simplify the system of equa-
tions (5.1) and (5.2) to a system of linear differential equations. The sum of any wind primitives
that matches the equation is thus also a valid solution. Finally the wind speed at any position in
the scene is obtained by summing all speeds produced by the wind primitives.

This approach has later been used directly without the constraint to respect the Navier-Stokes
equation. Perbet and Cani [PC01] defined 2D masks of wind to animate prairies. For trees
and forests, Giacomo et al. [GCF01] use circular wind fields as sinusoidal functions of space
and time, and Sousa [Sou07] does the same with omni-directional wind sources (with optional
attenuation, similarly to a point light source)

(a) Uniform (b) Sink (c) source (d) vortex

(e) Sum
Figure 5.3: (a)-(d) 2D wind flow primitives. (d) Example of the sum of two primitives, a uni-
form and a vortex wind flow. Their sum is still solution of the simplified Navier-Stokes equation
presented by Wejchert and Haumann [WH91].

86 chapter 5. Real-Time Animation of Trees using Simulation

5.2.3 Stochastic Wind

The third and last approach consists in on statistical description of wind flow. Its use for trees
animation originates from civil engineering, applied mechanics and other related fields. The idea
is to express the response of deformable objects in function of the statistical description of the
fluctuation of the fluid flow (e.g., wind or river). In particular it has a great importance for risk
prevention as it helps to detect frequential coupling of a designed building and its environment.

For computer simulation, it has provided an interesting type of wind model based on the frequen-
tial description of natural wind coupled with a random generator from stochastic process. Many
tree animation technique [SF92, Ono97, Sta97, OTF+04, ZST+06, HKW09] have used this type
of wind model but with different approaches.

A wind field can be seen as a spatio-temporal vector field where the time variations are modeled
as stationary stochastic processes. Usually we can extract the mean speed of the wind and focus
on the modeling of the turbulence only. The natural caracteristics of wind is then defined by a
spectral model of its fluctuations. Considering time only, one approach is the use of perlin noise
as Ono [Ono97] but most of the methods discussed here [SF92, OTF+04, ZST+06, HKW09] are
using models of the wind w(f) which can all be synthetized in the form:

w(f) =
a

(1 + b f)β
(5.3)

where f is the frequency, a and b are values possibly depending on the wind mean speed and
β is a parameter (often taken as 5/3). These models are based on specialized literature in wind
engineering. Note that in the case of [OTF+04] and [HKW09] the technique called 1/ f β noise
generator is used as described in [PS88]. There are several ways to generate one stochastic draw
following a specific spectral model that we do not detail here. However, a simple approach con-
sists in applying an inverse discrete fourier transform (with suitable normalization) on a complex
signal whose norm matches the desired spectral model and a random argument (i.e., the phase of
the signal).

Ota et al. omit spatial constraint and compute an independent wind for each element of the tree
as Habel et al. [HKW09] do it for the branches only. An obvious consequence is that some in-
coherence in the relative motion of neighboring part of the tree structure sometimes occur. Stam
[Sta97] proposes to filter the spectral wind function of each tree element. Let w∗i (f) be the initial
spectral representation for the ith component of a tree, then the final wind force applied on this
element is computed as the weighted sum:

wi(f) =
∑
∀ j

hi, j(f) ·w∗j(f) (5.4)

where hi, j(f) is a filter that converges to zero as the distance between element i and j increases
and which also depends on the frequency f in such a way that it enforces some spectral correla-
tion of the wind flow (typically, h is high for low frequencies).

5.3 Modeling the Structural Elements 87

When the wind flow is computed on a grid an other, more complex, solution has been used by
Shinya and Fournier [SF92] and by Zhang et al. [ZST+06]. It consists in defining analytically
the spectral representation of the wind field such that it respects specific spatial cross-correlation
models (also called cross power spectrum). While equation (5.3) gives a description of a natural
wind flow at one position in space, this method provides a model of a spatial (3D) spectral repre-
sentation of the wind that is used to generate the stochastic wind (For example using the method
described above).

A last issue to address here is the problem of the size of the data. The wind flow obtained from
stochastic methods require in theory to be computed on a 4D array. For some cases, this can be
reduced to 3D if the height is omitted. This can be further reduced by considering the Taylor’s
hypothesis of frozen flow as done in [SF92] and [Ono97] as well as for the leaves in [HKW09].
Let a 2D turbulent wind array w(x,y, t∗) be defined for a specific time t∗. The hypothesis is that
the turbulences are contant (frozen) relatively to the mean speed µ of the flow, that for simplicity
we consider to be on the x-axis only. Then at any time t the wind array can be expressed as:

w(x,y, t) = w(x−µt,y, t∗) (5.5)

5.3 Modeling the Structural Elements

As described in the first section, a tree structure is discretized in a set of segments. However
there exists several models to represent these elements which define the d.o.f. of the structure.
The dynamics model of the whole structure is then constructed in function of these. Considering
tree animation methods, we can distinguish three types that we describe here. For the sake of
comparison we give the expression of potential and kinetic energy for each of these models in
function of the d.o.f..

5.3.1 Undeformable Segments with Angular Spring

A simple approach to represent the structure elements is to use undeformable bodies which are
attached with each others in a hierarchical articulated structure. For tree animation, in partic-
ular for real-time approaches, most methods [Ono97, SO99, GCF01, EMF03, BK04, OTF+04,
AK06, WWG06, ZST+06, Zio07, Web08] use this representation and thus do not consider in-
ternal dynamics of branches segments. It has the advantage to simplify the dynamical model to
a hierarchical articulated structure. On the other side the deformation of the whole structure is
done only through rotations at the joints (see figure 5.4). It thus requires a discretization with a
higher number of elements to obtain smooth enough deformations.

For each segment we consider the joint at its base (which connects the segment with its par-
ent). Its d.o.f. are rotations usually modeled as angular springs with stiffness proportional to the
square of the segment radius. The existing tree animation methods have used diverse approaches
to model the dynamics. It is thus difficult to provide an global description. A mechanical correct

88 chapter 5. Real-Time Animation of Trees using Simulation

(a) Structure at
rest

(b) Structure
bended

(c) A single segment is modeled by a point
mass angular springs

Figure 5.4: (a) and (b) Articulated structure made of a set of rigid segments. (c) Model of
one element of the structure. F0 and F1 are the reference frame before and after the element
respectively. F1 is obtained after a rotation and translation of F0.

representation would be a rigid body with constant density (as used by Featherstone to model
robotic articulated structures [Fea83]). However tree animation methods usually model each
couple made of a joint and the following segment as a point mass angular springs. From this
representation, the potential and kinetic energy, ν and τ respectively, of a set (joint,segment) can
be defined. For a two dimensional element, let θ be the angle from the resting position, m its
mass, L the length of the segment and k the stiffness of the spring, then:

ν =
1
2

k · θ2

τ =
1
2

I · θ̇2

with I = m ·L

where I is the moment of inertia and where the overdot indicates the time derivative.

5.3.2 Uniform Beam

Other approaches to represent the elementary parts of the animation structure are based on de-
formable elements. Each segment of the tree is then modeled such that its mechanics can be
defined analytically under some deformation constraints and with respect to its boundary condi-
tions. The whole plant deformation can then be described by attaching these elements together
and applying suitable boundary conditions.

The most common segment model with smooth deformation is the elastic beam with uniform
density. The lineic deformation of the beam is defined in cartesian coordinates. The volumic
deformation of a beam is modeled by the continuous displacement of the cross section following
the center line (see figure 5.5).

5.3 Modeling the Structural Elements 89

Figure 5.5: Euler-Bernoulli beam model. The bending and torsion are defined with respect to
the spatial derivatives of the displacement expressed in cartesian coordinates (here w). F0 and
F1 are the reference frames before and after the element respectively. The transformation from
F0 to F1 is only a translation equal to the displacement of the end of the beam.

The dynamics of the beam can then be described using the potential energy ν (strain) and kinetic
energy τ. For example, take the two dimensional beam with its main direction along the x-axis
and its width along the y-axis. The deformation of the beam is defined by the displacements u
and w along the x and y-axis respectively. Using the most common Euler-Bernoulli beam model,
i.e., where the cross section stays perpendicular to the center line, and considering only lineic
displacement along the y-axis, then the strain energy is given by [GR94, HBW99]:

ν =
1
2

∫
A(x)

L∫
0

Ey2
(
δ2w
δx2

)2

dxdA (5.6)

=
1
2

L∫
0

EI
(
δ2w
δx2

)2

dx (5.7)

using the geometric moment of inertia I defined by:

I =

∫
A(x)

y2dA (5.8)

where L is the length and A(x) the cross section of the beam at x, E is the Young modulus. The
geometric moment of inertia I represents the influence of the shape of the cross section (usually
considered as a circle). Following the same model, the kinetic energy is:

τ =
1
2

L∫
0

∫
A(x)

ρẇ(x)2dAdx (5.9)

=
1
2

L∫
0

m(x) ẇ(x)2dx (5.10)

90 chapter 5. Real-Time Animation of Trees using Simulation

where we define the lineic mass m such that:

m(x) =

∫
A(x)

ρdA (5.11)

This deformable beam model has been widely studied by the physician community and is often
employed in mechanics engineering. Developments have been proposed such as the Rayleigh
beam model that also considers the kinetic energy of the cross section u̇ (see figure 5.5) or the
Timoshenko model that allows the cross section not to stay perpendicular to the center line (see
[HBW99] for a complete comparison).

However, regarding plant animation, only the Euler-Bernoulli model has been used. Shinya and
Fournier [SF92] were first to represent independent branches with this model. As for Habel
et al. [HKW09] the dynamics is described through an analytical formulation of the whole beam
deformation with respect to external load. In the case of Shinya and Fournier, the modal decom-
position in vibration modes (i.e., modal analysis, see next chapter) is used as a basis to solve
the branches dynamics. And in the case of Habel a quadratic function approximates the static
response of the beam to a uniform wind load. The Euler-Bernoulli beam model is also employed
by Stam [Sta97] with the F.E.M to represent the whole tree structure. More details on modal
decomposition, F.E.M and static response are given in section 5.4, section 5.5.1 and chapter 6.

The main benefit of using deformable beams as opposed to articulated bodies is that this way
complex dynamics can be represented using less elements. Typically to allow real-time anima-
tion to take advantage of the high parallelism of Graphics Processing Unit (G.P.U) it is necessary
that the position of the control points can be computed independently from each other at run-
time. Because of the hierarchical topology of trees the updates of these positions are usually
dependent of the lower elements of the structure. Habel et al. and Zioma [Zio07] by-pass this
limitation by simply computing for each node the displacement of all the parent branches.

5.3.3 Cosserat Rod

Deformable beam has the advantage to be easy to use. However its cartesian parametrization
comes with a few limitations. Some types of large deformations are difficult to model and the
constancy of segments length is difficult to enforce. A generalized parametrization can then be
preferred. Such a model has been provided by the Cosserat brothers [CC09]. For comparison
with other models we provide here a brief introduction. For a clear yet thorough description
of this model and its application in computer graphics, we recommend the Ph.D dissertation of
Bertails [Ber06].

The shape of a Cosserat rod is given by two elements: a parametrized curve r(s), s ∈ [0,L] which
corresponds to the center line of the rod, and an orthonormal basis (u1(s),u2(s),u3(s)) attached to
this curve (see figure 5.6). The first two vector of the basis u1 and u2 define the plane of the cross
section of the curve at s. For our cases, i.e., mechanical representation of trees, the Kirchhoff

hypothesis is followed: the rod is inextensible and without shear. Thus as for the Euler-Bernoulli

5.3 Modeling the Structural Elements 91

beam, the cross section is always perpendicular to the center line, so the third component of the
basis u3 is tangent to r(s).

Figure 5.6: Cosserat rod model. The lineic displacement is defined with respect to the deforma-
tion of the rod, i.e., bending and torsion (only bending k is represented here). F0 and F1 are the
reference frame before and after the element respectively. The transformation from F0 to F1 is
the integral of the deformation along the rod.

The deformation of such a rod is defined using the Darboux vector Ω(s) = (k1(s) ·u1(s),k2(s) ·
u2(s),k3(s) ·u3(s)). The first two components are the bending of the rod and the third its torsion.
Finally we can express the shape of the rod at any position s of the control curve by:

∂ui

∂s
(s) =Ω(s)×ui(s) (5.12)

For a two dimensional Cosserat rod, i.e., the deformation is defined by only one bending k(s),
the potential and kinetic energy (under the Kirchhoff hypothesis) is then given by:

ν =
1
2

L∫
0

EI k2ds

τ =
1
2

L∫
0

m ṙ(s)2ds

Overall we can see that the potential energy ν has a simpler formulation than for the beam model
as it is directly function of the d.o.f.. However the kinetic energy τ can be quite difficult to com-
pute in the most general cases. This model was first used by Wu et al. [WCYF99] to model
branches. They directly followed the results of Raboud et al. [RFL96] on the static simulation
of a Cosserat rod with uniform curvature and torsion (at any time step, Ω(s) is constant over s).
Bertails et al. developed a more general model first for hair animation [BAC+06] and later for
hierachical structure such as trees [Ber09]. In their approach they use the Super-Helices model:
F.E.M based on Cosserat rods with uniform bendings and torsion (which in fact are helices).
The two approaches are still very different in how the whole structure is modeled and animated.
These issues are discussed in section 5.4 and 5.5.

92 chapter 5. Real-Time Animation of Trees using Simulation

5.4 Structural Modeling

Using the elementary parts of the structure, the dynamics of the whole tree can then be modeled.
The goal is to design an algorithm that simulate this dynamics. To this end, one first need to
mathematically model the mechanical dependencies between all the elements.

5.4.1 Dynamics Formalism

Before describing the three main approaches used by tree animation methods for mechanical
modeling, we first introduce the possible formalism that can be used for the task of modeling the
equations of motion that drive a mechanical system.

Newtonian

The most well known and most commonly used is the Newtonian formalism. For each element
of the structure the dynamics is modeled by the Newton’s second law of motion:

f = m ẍ (5.13)

where f is the sum of all forces applied on the element. These are the external forces (wind) and
the internal forces, i.e., the forces acting between the neighboring elements of the tree. The set
of these differential equations defined for all elements of the structure, can be viewed as a system
of equations that has to be solved at each time step of the simulation.

The Newtonian formalisme is intuitive, and seems easy to use. In many situations however, it
leads to errors in the modeling of the dynamical equations. More precisely, it initially requires
the expression of Newton’s second law in cartesian space. It has often been used to model the
mechanics of trees where the deformations are represented by rotations and torsions. But these
modeling approaches are usually failing to model important parts of the dynamics.

Lagrangian

As an alternative the Lagrangian formalism can be used. One of its main advantages is that it is
based only on the expression of the mechanical energy of the system with respect to any types of
d.o.f. (so-called generalized coordinates).

For a system with only conservatives forces, the principle of stationary action (Hamilton’s princi-
ple) states that the actionS (defined by equation 5.14) of a system is extremum. If the generalized
coordinates are represented by the vector q, then we have:

5.4 Structural Modeling 93

S =

∫
L(q, q̇, t) dt (5.14)

L = T −U

where L is a functional called the Lagrangian of the system and where T andU are respectively
the kinetic and potential energies of this system. Hamilton’s principle leads to a set of differential
equations (one for each d.o.f.), called Euler-Lagrange equations, of the form:

d
dt
∂L

∂q̇i
−
∂L

∂qi
= 0 (5.15)

that needs to be solved during simulation (note that the signe ∂ indicates the derivative of a
functional). In the case of non conservatives forces, equation (5.15) becomes:

d
dt
∂L

∂q̇i
−
∂L

∂qi
= fi (5.16)

where fi are the generalised forces (named after the generalised coordinates) which define how
the external forces fext influence each d.o.f.. Let Ω be the tree structure, r(p) the cartesian posi-
tion of a point p ∈Ω, then:

fi =

∫
Ω

fext ·
∂r
∂qi

dΩ (5.17)

This concept of generalized forces is very important when the d.o.f. are not only the cartesian
position of the nodes of the trees. The generalized forces are basically the sum of the external
forces projected on the displacement along the structure induced by each d.o.f..

Finally, as the potential energy is independent of the speed of the system q̇, the simulation of a
tree under wind load (and other non-conservatives external forces) is expressed with respect to
U and T by:

d
dt
∂T

∂q̇i
−
∂T

∂qi
+
∂U

∂qi
=

∫
Ω

fext ·
∂r
∂qi

dΩ (5.18)

Example for a Single 2D Point Mass Angular Spring

Newton’s second law for an angular oscillator of stiffness k is given by:

‖fext × r‖− k · θ = I · θ̈ (5.19)

where r is the axe of the branch segment (of length L), and fext is the external force applied on
the segment. In this 2D case, the rotation is done around a single axis. The torque, i.e., first term

94 chapter 5. Real-Time Animation of Trees using Simulation

of left hand side of equation 5.19, can then be directly expressed as a scalar. The second term
represents the restoring force of the oscillator.

Using the lagrangian formalism, we obtain the same equations based on the derivatives of the
potential energy ν and kinetic energy τ (see section 5.3.1). Equation (5.18) becomes:

d
dt
∂τ

∂θ̇
−

∂τ

∂θ
−

∂ν

∂θ
= fext ·

∂r
∂θ

I · θ̈ − 0 + k · θ = ‖fext × r‖

5.4.2 Independent Elements

The goal of section 5.4 is to give an overview of the methods to model the equation of the dy-
namics of the whole tree structure with respect to the d.o.f.. However most existing methods of
tree animation [Ono97, WCYF99, OTF+04, BK04, AK06, ZST+06, Zio07, HKW09] actually do
not consider global dynamics. Instead the d.o.f. of each element are computed independently.
The advantages are reduced computation time and more accessible implementation. On the other
hand it usually implies a tradeoff between realism and configuration complexity to choose suit-
able mechanical parameters.

For all these methods, the deformation of the tree follows its hierarchical structure: when one
element is displaced all the succeding branches in the hierarchy moves accordingly. Regardless
of the parametrization (e.g., cartesian or rotational) the consequence of omitting this in the dy-
namics model may have critical consequences. In particular, the kinetic energy related to each
d.o.f. (thus the inertia of the system which depends on it) suffers most of such a simplification.
An other important loss is the physical influence of the external forces as it can be seen from the
definition of the generalized forces described above.

To reduce the effect on the inertia, manual setting of the elements mass can be used. Instead Ono
[Ono97] models each element as point mass angular spring using the approximation he calls ef-
fective mass, i.e., the sum of the masses of all the succeding branches. Habel et al. [HKW09]
also uses such a summed mass but only to compute the spectral response of a branch to a stochas-
tic wind (see section on spectral method 5.5.3). In a similar way Ono [Ono97], as well as Akagi
and Kitajima [AK06] consider the external forces applied on each element as being the sum of
the external forces on all the child branches. This can be viewed as an approximation of the gen-
eralized forces (defined above) where the projection on the displacements induced by the d.o.f.
is omitted.

5.4.3 Articulated Structures

As described in section 5.3.1, trees can be represented as a set of rigid (undeformable) segments
attached by joint acting as angular springs. To simulate articulated bodies, general methods
that are not specific to elastic structure were developed. Such techniques as the Featerstone’s

5.4 Structural Modeling 95

algorithm [Fea83] or the Lagrange multiplier approach [Bar96] could be adapted to articulated
structure with angular spring joints.

However concerning tree animation, existing methods that use articulated structures propose
their own specific models. Di Giacomo et al. [GCF01] and Weber [Web08] follow the new-
tonian formalism to model the equation of the dynamics for each segment with respect to the
relative forces exchanged between neighboring elements (internal forces). The obtained set of
equations can then be represented by one matrix equation. In the case of Weber [Web08], it is
solved at each time step. However such an approach requires suitable numerical solver of large
systems differential equation. To reduce computational cost, at each time step, Di Giacomo et al.
update each equation individually with respect to the dynamical state of the adjacent segments
at the previous time step. The limitation of such an approach can be seen in the number of steps
necessary for an external impulse applied on one segment to propagate through the structure.

To obtain a linear complexity in term of the number of segment, Sakagushi and Ohya [SO99],
Beaudoin and Keyser [BK04] as well as Wu et al. [WWG06] propose simulation methods based
only on a top-down propagation of the forces but process it entirely at each time step. The idea
is that most of the tree-wind interaction happens at the leaves. Then the algorithm updates the
dynamical state of the tree parts for the branches tips to the tree root, and transfer some of the
forces from the child to the parent segments. The advantage is that it is simple to implement
and can provide animation of good quality. However all these methods lack in a mechanical
justification of their simplified models.

5.4.4 Finite Element Method

Articulated models restrict the whole deformation of the tree to a set of rotations around a finite
number of points. To represent continuous deformation of the structure, Finite Elements Method
(F.E.M) should be used. The principle is to reduce the possible deformations to a finite number
of d.o.f. while keeping smooth deformation (i.e., of C1 continuity or more). There are many dif-
ferent types of representation. Regarding lineic model and more specifically those used for tree
animation, we can identify two types: one based on Euler-Bernoulli beams and one on Cosserat
rods. These have been used by Stam [Sta97] and by Bertails [Ber09] respectively.

In the first case, the lineic structure is discretized as a set of beams separated by nodes. The d.o.f.
of the system are the cartesian coordinates of these nodes and the possible deformations are the
continuous interpolation between them. The interpolation is defined using the shape function,
i.e., an interpolation matrix. The potential energy and kinetic energy of each beam can then be
modeled as a function of the displacement of the their neighboring nodes using this shape func-
tion. A thorough description of this mechanical modeling approach is given in the next chapter.

For Cosserat rods, the F.E.M employed in [Ber09] was first proposed by Bertails et al. in
[BAC+06] and called Super-Helices to simulate hair strands. It has then be updated initially
to reduce computational complexity and incidentally became suitable to model elastic hierarchi-
cal bodies such as trees. The segments of the structures are modeled by Cosserat rods (under
Kirchhoff hypothesis), each with constant bending and torsion. The d.o.f. are then the set of

96 chapter 5. Real-Time Animation of Trees using Simulation

these parameters for all the elements of the structure. The bending and torsion are defined as
derivatives with respect to the material frame of the rod, i.e., an orthogonal basis attached to the
center line such that two axis are in the plane of the cross section. By enforcing continuity of this
material frame between neighboring rods, the whole tree deformation has C1 continuity.

For both F.E.M approaches the total potential energy and kinetic energy and their derivatives
with respect of the d.o.f., can be defined analytically. And the system of equations that models
the dynamics of the structure follows directly from the Lagrangian formalism.

5.5 Time Integration

In the previous section we have given an overview of the possible approaches to model the
equations that represent the dynamics of the tree structure. These are differential equations that
describe the evolution of the d.o.f. with respect to time and external forces. In the present section
we identify three general approaches to handle the temporal integration of tree simulation.

5.5.1 Static Equilibrium

Many times along this chapter simplification methods have been described. They are typically
used to cope with plants complexity for the purpose of real-time animation. These were done for
mechanical modeling issues. Similarly several methods [WCYF99, OTF+04, AK06, ZST+06,
HKW09] reduce the dynamics equation to the case of the static equilibrium.

By extension, we define here the static state (or equilibrium state) of the mechanical structure
as the rest state of both the structure and the external forces. In the context of wind interaction,
it represents the constant deformation of the structure, expressed through its d.o.f., with respect
to a constant wind. Mathematically, for an elastic body interacting with fluids of constant speed,
the equation of equilibrium can be modeled by omitting the kinetic energy of the system (i.e.,
its inertia). One can consider the equilibrium as the deformation to which a tree converges if a
constant wind is applied for a long enough time. The speed of the tree is then null and so is its
kinetic energy. The whole dynamics can then be expressed in the form of the following matrix
equation:

K ·q = f (5.20)

where q is the vector containing all the structure d.o.f., K is a matrix representing the stiffness of
the system and f is a vector containing the generalized forces (with respect to the d.o.f.).

It is used as a simplification by considering the system as always being in the equilibrium state
even when submitted to a variable wind. It leads to significant reduction of both the dynamics
and the algorithmic complexity. Regarding the latter, we can see how simple this approach is by

5.5 Time Integration 97

comparison with more realistic methods described in the rest of this section. Basically the deriva-
tives with respect to time are not taken into account and the dynamical state can be computed
from the external forces independently at any time.

However concerning dynamics approximation, it may be difficult to perceive the exact mean-
ing and consequences of such an approach. In practical terms, for elements that converge very
quickly to their equilibrium (with respect to the time between two simulation steps) this sim-
plification is acceptable as it does not induce visual artifacts. Leaves and tiny branches can be
considered as such. However for bigger branches (more specifically for d.o.f. affecting a high
amount of mass) it then induces lack of realism. The wind also has to be considered. If its fluctu-
ations does not contain strong high frequencies, i.e., if its variations are sufficiently smooth, this
simplification is less perceptible.

5.5.2 Explicit and Implicit Method

In the most general case, the mechanical modeling discussed previously in this chapter leads to
a system of equations that can be formulated by:

Mq̈(t) + Kq(t) = f(t) (5.21)

where q and q̈ are the vector of the d.o.f. and its second derivative with respect to time, M and K
are matrices that represent the inertia and stiffness of the system, and f contains the generalized
forces. The matrices M and K are function of the dynamical state (q and its time derivatives) and
thus depend on time. For simplicity, we do not take this into account for the rest of the section. It
should however be understood that these matrices should be reevaluated at each time step. Note
also that we do not model damping in equation (5.21) in order to clarify the rest of this section.
It is can be included using an additional term depending on the first time derivative of q (i.e.,
Dq̇(t)). However the following discussions could be developed to cope with the inclusion of this
damping terms.

Its has been described how the spatial representation of the tree is discretized in order to model
the equation (5.21). Similarly to solve this equation which is continuous in time, temporal dis-
cretization has to be done. For this issue however the problem is to estimate the state of the
system at some time knowing only the dynamical state at a previous time step.

Solutions to this problem, called numerical integration, can be categorized in two main ap-
proaches, namely explicit and implicit methods. We give in this section a quick overview of
these and illustrate them by the forward and backward Euler methods respectively. First the
principle is exposed for the example of an ordinary differential equation of the first order and a
generalisation to our case (second order) is given later. Suppose we have an equation of the form:

q̇(t) = F(t,q(t)) (5.22)

where the function F is defined analytically. Using Taylor expension of q(t) at the first order we
obtain the following linear approximation:

98 chapter 5. Real-Time Animation of Trees using Simulation

q̇(t) ≈
q(t +∆t)−q(t)

∆t
(5.23)

where ∆t is typically the length of one time step. For discrete time, the forward and backward
methods are then based on the respective formulas:

Forward (explicit): q̇t =
qt+∆t −qt

∆t
(5.24)

Backward (implicit): q̇t+∆t =
qt+∆t −qt

∆t
(5.25)

where time dependency is now written with subscript to indicate discretization. We want to find
qt+∆t, or equivalently ∆q = qt+∆t−qt. From equation (5.22), equation 5.24 and 5.25 then become:

Forward: ∆q = ∆t · q̇t = ∆t ·F(t,qt) (5.26)
Backward: ∆q = ∆t · q̇t+∆t = ∆t ·F(t +∆t,qt+∆t) (5.27)

This two equations are very similar. However in equation (5.27) we can see that to compute the
evolution of the system d.o.f. (∆q) it is necessary to evaluate the function F at time t +∆t, which
is unknown at time t. This is the main difficulty of implicit methods which comes as a tradeoff

for increase precision and stability.

Concerning the equation of motion (5.21), it is necessary to cope with the second order derivative
of q. To this end, the variable v is defined such that:

vt = q̇t (5.28)

Numerical integration computes ∆v which is then used to update vt+∆t and ∆q using:

vt+∆t = vt +∆v (5.29)
∆q = ∆t ·vt+∆t (5.30)

The forward method is then fairly simple:

∆v = ∆tF(qt,vt) (5.31)

So for equation (5.21), it is enough to compute:

∆v = ∆tM−1(ft −Kqt) (5.32)

Existing tree animation methods have often used this approach [SF92, Ono97, SO99, GCF01,
BK04, WWG06] as it is usually sufficient. However, depending on the mechanical modeling

5.5 Time Integration 99

employed, instabilities in the numerical integration may occur. In such a case the dynamics
equation is said to be stiff and requires to reduce the length of the simulation time steps. On the
other hand the use of implicit methods can considered. Applying equation (5.26) to the case of
equation of motion (5.21), the following needs to be solved:

∆v = ∆t F(t +∆t,qt+∆t,vt+∆t) (5.33)

= ∆t M−1(ft+∆t −Kqt+∆t) (5.34)

In equation (5.34), we can see many parameters depending on the next time steps. Each of them
can be seen as an unkown variable that needs to be solved. In particular the external forces ft+∆t
might be very difficult to take into account as it can depend on many other parameters. Moreover
as stated above, the mass and stiffness matrix (M and K) may also depend on time. In func-
tion of the specific (analytic) equation, this can be solved. However most often one resort to
semi-implicit methods (such as [Ber09]) that basically still keep the evaluation of some of these
parameters at time t.

In [BW97] Baraff proposes to approximate the function F by its first order Taylor series expan-
sion and rewrite equation (5.33) by:

∆v = ∆t F(t +∆t,qt+∆t,vt+∆t)
= ∆t F(t +∆t,qt +∆q,vt +∆v)

≈ ∆t
(
F0 +

∂F0

∂t
∆t

)
+
∂F0

∂q
∆q +

∂F0

∂v
∆v

where F0 = F(t,qt,vt)

Weber in [Web08] uses this approach but omit the time derivative of F and add instead a external
parameter specific for collision.

5.5.3 Spectral Method

Concerning computer graphics, spectral approaches can be used to solve the dynamics of tree un-
der influence of wind. They provide an interesting type of temporal integration methods whose
use can be very suitable for tree animation but rather specific to wind interaction. In particular
the main advantage of spectral methods comes from its use with stochastic methods for wind
generation (described in section 5.2.3).

For the general case of equation (5.21), the spectral method propose to solve this differential
equation in the spectral domain. Let F denote the Fourier transform, we define:

100 chapter 5. Real-Time Animation of Trees using Simulation

f̃(ξ) = F (f(t)) (5.35)
q̃(ξ) = F (q(t)) (5.36)

From the definition of Fourier transform, we have:

F (q̈(t)) = (2πiξ)2F (q(t))

= −(2πξ)2 q̃(ξ) (5.37)

In the spectral domain, equation (5.21) then becomes:

− (2πξ)2Mq̃(ξ) + Kq̃(ξ) = f̃(ξ) (5.38)

We can then define the spectral response of the structure as the function G(ξ) and obtain the
solution for q̃:

G(ξ) =
(
K − (2πξ)2M

)−1
(5.39)

q̃(ξ) = G(ξ) · f̃(ξ) (5.40)

This method takes full advantage when the wind forces are initially defined in the spectral do-
main. For the general case, it reduces the dynamics problem to an equation of the form A · x = B
(to be solved for vector x) for each frequency ξ. Then as for spectral wind an inverse Fourier
transform is applied, only here it is directly on the d.o.f..

A further simplification is possible. As in [Sta97], this approach can be combined with modal
analysis. It is a typical method in mechanical vibration analysis to compute the modes of vi-
brations of the structures. The set of these reduced d.o.f. represents an alternative basis of the
possible deformations of the structure. The advantages of this method is that all the modes are
mechanically independant, i.e., the mass and stiffness matrix become diagonal in this basis. Thus
the dynamics of each d.o.f. can be seen as an independent one-dimensional oscillator (see next
chapter for more details on modal analysis). For each d.o.f. qi (i.e., any element of q) we can
define the natural frequency ξi of the modes such that ki = (2π)2miξ

2
i where mi and ki are the i-th

diagonal elements of matrices M and K respectively. Equation 5.39 and 5.40 then simplify to:

gi(ξ) =
(
mi(2π)2 · (ξ2− ξ2

i)
)−1

q̃i(ξ) = gi(ξ) · f̃i(ξ)

Habel et al. [HKW09] also use spectral methods. As stated above, they consider each branch
as mechanically independent and simplify the equation of dynamics by modeling their deforma-
tion as always being in the equilibrium state even for dynamical winds. On the other hand in

5.6 Summary 101

their method, the equilibrium equation is rather considered as a generalised d.o.f. that relates the
wind force with the amplitude of deformation. Then each of these is modeled as an oscillator,
with a natural frequency obtained from empirical studies, that can be animated using the spectral
method. Moreover Habel et al. also propose the use of 2d motion texture that allows to produce
infinite sequences of animation. Basically it consists in pre-computing a 2D texture of noise that
has a suitable spectrum (i.e., gi(ξ) · f̃i(ξ)) for both dimensions. Then for any direction a line in
this texture can be seen as a stochastic draw usable for any d.o.f..

Finally, the spectral animation approach has the advantage to simplify the computation of the
dynamics. In particular it is well suited to independent d.o.f. as the final cost is reduced to com-
putation of of a suitable noise function. The main limitation is that the spectrum representation
must be fixed. Changing the type of fluctuation and, further more, the mean speed of the wind is
not mechanically correct.

5.6 Summary

In this chapter, all the existing approaches (to our knowledge) proposed for tree animation are
compared. Table 5.6 summarizes the classification of the paper following the issues addressed
by each section of this chapter.

102 chapter 5. Real-Time Animation of Trees using Simulation

Authors Wind branch structural time
representation modeling integration

Shinya and Fournier
stochastic

beam
none explicit (*)

[SF92] (modal analysis)
Ono

stochastic articulated
independent

explicit
[Ono97] (effective mass)

Stam
stochastic beam

Lagrangian
spectral

[Sta97] (F.E.M, modal analysis)
Sakaguchi and Ohya

any articulated
Newtonian

explicit (*)
[SO99] (top-down)

Enhua Wu et al.
procedural Cosserat rod independent static

[WCYF99]
Giacomo et al.

procedural articulated
Newtonian

explicit
[GCF01] (iterative)
Ota et al.

stochastic articulated independent static
[OTF+04]

Beaudoin and Keyser
any articulated

Newtonian
explicit

[BK04] (top-down)
Akagi and Kitajima

simulation articulated
independent

static
[AK06] (effective mass)

Guo Wu et al.
any articulated

Newtonian
explicit

[WWG06] (top-down)
Zhang et al.

stochastic articulated independent (*) static
[ZST+06]

Sousa
procedural heuristic none static

[Sou07]
Zioma

procedural articulated independent static
[Zio07]
Weber

any articulated Newtonian semi-implicite
[Web08]
Bertails

any Cosserat rod
Lagrangian

semi-implicite
[Ber09] (F.E.M)

Habel et al.
stochastic beam independent spectral

[HKW09]

Table 5.1: List of all methods presented in this chapter. The (*) indicates that not enough infor-
mation are given, even implicitely, to know which approach has been used. In each case, we have
choosen the only method that can be directly develop from the content found in the respective
paper.

c h a p t e r 6
M o d a l A n i m a t i o n

Contents

6.1 Introduction . 104

6.2 Modal Analysis and Modal Animation Framework 105

6.2.1 Finite Element Method . 105

6.2.2 Modal Analysis . 108

6.2.3 Animation using the Modes of Deformation 109

6.3 Wind Projection Basis . 110

6.4 Implementation Issues . 112

6.4.1 GPU Implementation . 113

6.4.2 Error Correction . 113

6.4.3 Configuration . 115

6.5 Results . 116

6.6 Limitations and Future Work . 117

6.7 Conclusion . 118

104 chapter 6. Modal Animation

6.1 Introduction

In this chapter we describe our work on mechanical simulation of trees dynamics under wind
load which have led to a publication at Eurographics 2009 [DRBR09]. Most of this research
was initiated and developed through a interdisciplinary collaboration within the research project
Chene-Roseau [CHE]. In particular we worked with Ph.D. student Mathieu Rodriguez special-
ized in the mechanical studies of biological structure and Ph.D. student Lionel Baboud whose
work focus on suitable representations of virtual model for real-time application. The goal was
twofold: first to provide a software to visualize results of physical simulations and second to
develop a new animation technique for real-time applications. To this end we put together com-
puter graphics expertise in real-time animation and rendering of virtual models and knowledge
in the mechanics of oscillating structures.

The result we obtained is a real-time method to animate complex scenes of thousands of trees
under a user-controllable wind load. We use modal analysis to extract the main modes of de-
formation which act as a set of reduced degrees of freedom (d.o.f.) of the mechanical model
of a 3D tree. The animation of the model at run time is entirely described using this deforma-
tion basis. The main limitation of such an approach for real-time applications is that the modal
forces, i.e., the forces that are used to compute the dynamics of each of these modes, require an
integration of the wind load over the whole tree at each time step of the simulation which can be
very computationally expensive.

The main contribution of the work presented in this chapter is a new precomputed basis of the
modal stress of the tree under wind load. At runtime, this basis allows to replace the modal pro-
jection of the external forces induced by any directional wind by a simple mapping. Moreover,
this approach is suitable for implementation on graphics hardware which increases by far the
efficiency of the simulation. Finally, the dynamics of the modes is simulated using low compu-
tation cost independent of the plant complexity. Displaying a model only requires the minimal
computation depending on the level of detail of the rendered geometry. Our method can thus
provide real-time animation even for large scenes containing thousands of trees.

Figure 6.1: A single tree and a forest animated with the presented method.

6.2 Modal Analysis and Modal Animation Framework 105

In section 6.2 an overview is given on the mechanical modeling employed and how modal anal-
ysis can be used in a animation framework of virtual plants. We then show in section 6.3 how
it is possible to pre-compute a projection basis to reduce the cost of the modal integration of the
wind load. Using this basis, we can define a direct mapping from the wind parameters (i.e., its
direction and speed) to the modal forces.

6.2 Modal Analysis and Modal Animation Framework

In this section, we describe the mechanical model used to compute the dynamics of a tree. We
introduce modal analysis and explain how it can be used in a real-time animation framework.

Mechanical modeling and modal analysis have been thoroughly studied. The main goal of the
section is to provide a specialized description of the specific model we use for trees. We advise
the reader interested in more general mechanical models and more details on modal analysis to
refer to specialized literature such as [GR94].

6.2.1 Finite Element Method

Numerical simulation consists in solving the dynamics of a mechanical system over time. In our
method, we compute the simulation on a discretized model obtained using the Finite Elements
Method (F.E.M). The principle is to decompose the mechanical system in a set of elements sep-
arated by nodes. Typically, nodes are first defined at branches junction then, depending on their
length, more may be added along each obtained segment. The continuous system’s deformation
is then defined as a specific interpolation between the nodes displacement. The software Cast3m
2000 software [CAS] was used to compute finite elements modeling.

In our case as in [Sta97], the system domain Ω is the lineic representation of the tree. Then the
FEM discretizes Ω as a set of segments Ωe (see fig. 6.2).

Continuous
interpolation of

the displacement

Figure 6.2: Finite element discretization.

In the F.E.M representation of the tree, each element is initially defined in its local frame where
the x-axis is in the direction of the segment at rest. This local frame maps to the global frame

106 chapter 6. Modal Animation

according to a rotation matrix Re. The deformation of an element is then assessed through inter-
polation of its border nodes displacements: linear for the main axis and Hermitian for the y and
z axis.

Figure 6.3: The six degrees of freedom of a node.

A node has thus six degrees of freedom (see fig. 6.3): the three spatial displacements (ux, uy, uz),
the torsion around the main axis (ψx) and the derivatives ψy and ψz as defined by [GR94]:

ψy = −
duz

dx
(6.1)

ψz =
duy

dx
(6.2)

Mathematically, the interpolation of an element deformation is modeled such that, at time t, the
displacement u(p, t) of any point p ∈Ωe is:

u(p, t) = Ne(p)ue(t) (6.3)

where ue(t) is the 12-dimensional vector containing the displacements of the two element border
nodes, and Ne(p) is the shape function matrix that defines the interpolation between these nodes:

Ne(p) =

l1 l2
. h1 . . . h2 . h3 . . . h4
. . h1 . h2 . . . h3 . h4 .
. . . l1 l2 . .

 (6.4)

where the dots represent zeros and the li and hi are function of p. If L is the length of the element,
the li represent a linear interpolation and the hi are the cubic Hermite basis functions:

6.2 Modal Analysis and Modal Animation Framework 107

let π =
p
L

then, l1 = π

l2 = (1−π)
h1 = 1−π2 +π3

h2 = Lπ(1−π)2

h3 = π2(3−π)
h4 = π2(π−1)

In accordance with most models of trees, branches are modeled as cylindrical beams [SFL06].
The local stiffness Ke and mass Me matrices of an element e of length L are defined according
to the potential energy νe and kinetic energy τe, with respect to the displacements of the border
nodes ue, by the following relations [GR94]:

νe =
1
2

L∫
0

EA(δux)2 + EI((δ2uy)2 + (δ2uz)2) +GJ(δψx)2dx (6.5)

=
1
2

ueT Keue (6.6)

(6.7)

τe =
1
2

L∫
0

ρA
(
u̇2

x + u̇2
y + u̇2

z

)
+ρJ ψ̇2

xdx (6.8)

=
1
2

u̇eT Meu̇e (6.9)

Here the dot notation refers to time derivatives and δ = d
dx . In our implementation, we use the

following values:

E = 1010Pa,
G = 2.6E,
ρ = 103kg.m−3,

I = πr4/16,
J =

√
2I,

A = πr2

108 chapter 6. Modal Animation

where r is the average radius of the element.

The next step consists in constructing the global mass and stiffness matrices, M and K respec-
tively, of the whole structure from these local matrices. First, each of the local matrices are
transformed such that the energies are defined with respect to the nodes displacement expressed
in the global frame of the tree. These changes of orientation are done using the rotation matrices
Re (see [Sta97] or [GR94] for a full description of this procedure).

Let u(t) be the 6× n vector containing the displacements of all the n nodes of the structure, at
time t. The local matrices (of size 12×12) are all added at the suitable locations inside the global
matrices M and K (of size 6n×6n) to correspond to the positions insides u(t) of the d.o.f. of their
respective border nodes.

Using the Lagrangian formulation (see section 5.4.1), we obtain the equation of motion describ-
ing the dynamics of the whole tree:

Mü(t) +Cu̇(t) + Ku(t) = f(t) (6.10)

where f(t) is the external force (see section 6.3). The middle term of the left hand side of equation
6.10 represents dissipative forces of the system. Based on the Rayleigh hypothesis, the damping
matrix C is taken as a linear combination of M and K using the user defined coefficients α and β:

C = αM +βK (6.11)

6.2.2 Modal Analysis

Modal analysis is the decomposition of the deformations of a mechanical system into a set of
special deformations called vibration modes. These modes are the solutions u(t) of the free
vibration equations:

Mü(t) + Ku(t) = 0 (6.12)
such that u(t) = λi(t) ·ϕi (6.13)

where the ϕi are constant vectors called the modal deformations, and the λi(t) are scalar functions
of time. Substituting (6.13) in (6.12) gives:

M−1Kϕi = µiϕi with µi = −
λ̈i(t)
λi(t)

(6.14)

As K, M and ϕi are constants, µi are constant scalars.

Finally, the eigenvectors and eigenvalues of M−1K are the solutions of equation (6.14). Let Φ

be the matrix containing all the modal deformations ϕi, and q(t) the expression of vector u(t) in
eigenspace:

Φq(t) = u(t) (6.15)

6.2 Modal Analysis and Modal Animation Framework 109

Substituting (6.15) in equation (6.10) and multiplying on the left by ΦT , we get:

M q̈(t) +C q̇(t) + K q(t) = ΦT f(t) (6.16)

where M = ΦT MΦ, C = ΦTCΦ and K = ΦT KΦ. A classical result of modal analysis is that these
matrices are diagonal [GR94]. We can then rewrite equation (6.16) as 6n independent equations
such that, for each element qi of vector q:

q̈i(t) +γiq̇i(t) +ω2
i qi(t) =

1
mi

fi(t) (6.17)

with

ω
2
i =

ki

mi
γi = α+β∗ω2

i

(6.18)

where fi(t) is the modal force induced by the wind (see section 6.3), ωi the natural frequency, γi
the damping coefficient of mode i, mi and ki the modal mass and stiffness respectively (i.e., the
diagonal elements of M and K) and α and β come from equation (6.11).

6.2.3 Animation using the Modes of Deformation

Modal analysis is well suited to our purpose because it extracts the most representative compo-
nents of the structure deformations. For the case of plants, the vibration modes associated with
low frequencies (ωi) have the most significant (and largely distributed) influence on the final mo-
tion [RdLM08]. Typically the first modes (of lower frequencies) are large deformations of the
whole tree. Then as the modal frequencies increase, the deformation becomes more and more
confined on the last tiny branches (see figure 6.5). Hence only a small subset of the mode matrix
Φ needs to be kept in order to model most of the motion complexity.

Equation (6.17) means that each mode behaves as a one-dimensional harmonic oscillator (see
figure 6.4). Each vibration mode can be seen as a deformation of the whole structure oscillating
independently from the others.

At each time step, the simulation of modal animation consists in the following procedure:

1. Compute fi(t), the modal projection of the wind.

2. Update the dynamics of the modes using the explicit Euler method:

q̈t+δt
i ← fi(t)/mi−γiq̇t

i −ω
2
i qt

i (6.19)

q̇t+δt
i ← q̇t

i +δt q̈t+δt
i (6.20)

qt+δt
i ← qt

i +δt q̇t+δt
i (6.21)

110 chapter 6. Modal Animation

Figure 6.4: A vibration mode is a deformation of the whole tree behaving as a harmonic oscil-
lator.

Figure 6.5: The modes of deformation of the walnut model. During animation the final displace-
ment of a tree is a combination of its modal deformation. The modes are sorted in ascending order
of their natural frequencies.

3. Compute the updated displacement:

ut+δt =
∑
∀i

qt+δt
i ϕi (6.22)

Finally, only the evaluation of the modal forces fi(t) requires costly computations. This is the
main difficulty that our technique proposes to resolve. To this end we now describe a basis that
can be computed off-line and avoids costly computations at runtime.

6.3 Wind Projection Basis

Integrating a general wind load over the whole tree requires a sum over all the elements (branches)
at each time step of the animation (as done by [Sta97]). Doing so prevents real-time animation
of sufficiently complex trees. By making the assumption that the wind load is uniform over the
whole tree, a projection basis can be precomputed that allows to animate the tree in real-time
under the load of any directional wind.

Note that the wind is considered uniform only over each tree but can vary between distinct in-
stances. The speed and direction of the wind are left unconstrained and can be freely controlled
at runtime.

6.3 Wind Projection Basis 111

We start by modeling the drag load induced by the contact of wind on a rigid structure. As in
[SFL06, dL08], we model the wind load on any point p ∈Ω at time t by:

f(p, t) =
1
2
ρCDD(p)‖v(p, t)− ṗ‖ (v(p, t)− ṗ) (6.23)

Where v(p, t) is the wind speed vector and D(p) is the diameter of the branch at point p. The air
density ρ and the drag coefficient CD, depending on the shape of the branches, are constant. We
merge them as one scalar factor C.

From this local definition, one can derive the modal wind load for each mode i by modal projec-
tion [GR94]:

fi =

∫
Ω

f(p) ·ϕi(p)dp (6.24)

where we omit the time parameter for clarity, and where ϕi(p) is the vector containing the ith

modal deformation at p.

To simplify computations, we do not take into account the direction of branches in equation
(6.23) for the drag coefficient. This simplification is reasonable because the modes with low
frequency are mostly perpendicular to the branches. The influence of the branches parallel to the
modal forces is then essentially negligible.

In the case of a freely defined finite element discretization, equation (6.24) is computed as the
sum of the elements contribution:

fi =
∑

e

∫
Ωe

f(p) ·ReNe(p)ϕe
i dp (6.25)

where Re is the rotation matrix mapping the local frame of the element e to the global frame. ϕe
i

is the vector containing the ith modal deformation of both element’s border nodes (in the local
frame) and Ne(p) is the shape function matrix defining the interpolation between these nodes
(see appendix).

To compute the modal forces, equation (6.24) can be discretized over the nodes of the FEM (in
the frequency domain) as in [Sta97]:

f̂i =
∑
n∈Ω

f̂ (n) ·ϕi(n) (6.26)

For simple structure it is a suitable approach but for complex trees such a modal projection
would be prohibitive. Using a simplified structure is not a solution as it would result in a poor
approximation of the effective modal stress.

112 chapter 6. Modal Animation

In our method, to reduce the cost of the modal projection of the wind forces at run time, we
focus on extracting the time dependent parameters out of the integral. The remaining part is then
precomputed.

The first simplification is to consider Re as a constant: the wind load is computed on the tree in
its rest position. The orientation changes of the branches is not significant as they remain small
for natural trees motion. Compensatory models were tested but did not add noticeable improve-
ment. With this approximation, the modal deformation term is constant and only the wind force
depends on time. To extract runtime parameters, we assume a wind model such that:

1. From the wind force, we only keep the mean aerodynamic stress:

f(p) = C D(p)‖v(p, t)‖v(p, t)

The remaining part of the external force, called the aerodynamic damping, can be com-
pensated by an increase of the damping coefficients α and β from equation (6.11).

2. We define the wind with a variable direction and mean speed, but we assume it to have an
uniform value v(t) over the tree.

Using these simplifications, equation (6.24) becomes:

fi =

∫
Ω

C D(p)‖v(t)‖v(t).φi(p)dp (6.27)

= C‖v(t)‖v(t).
∫
Ω

D(p)φi(p)dp (6.28)

It results that if we pre-compute the wind projection vectors pi defined as:

pi = C
∫
Ω

D(p)φi(p)dp (6.29)

then the modal wind load can be easily computed at runtime using:

fi = ‖v(t)‖v(t).pi (6.30)

6.4 Implementation Issues

The mechanical modeling, modal analysis and the pre-computation of the projection basis re-
quire the use of complex algorithms that must be performed using specialized tools. We used the
software Cast3m 2000 [CAS] specialized in the study of mechanical structures using the finite
element method.

6.4 Implementation Issues 113

6.4.1 GPU Implementation

A powerful aspect of the modal representation is that most computations are completely inde-
pendent. It thus allows to take full advantage of the massive parallel computing power offered
by present graphics hardware (GPU). This enables us to animate large forest scenes in real time
(see section 6.5).

The two main parameters of our tree model are the number of nodes of the skeleton and the
number of modes kept for animation.

1. As can be seen in equation (6.22), the updated position of each node can be computed
independently from the others using only the dynamic modal state (qi). Thus the nodes
positions can be stored in a texture in GPU memory (matrixU of figure 6.6) and updated
using a fragment program and an offscreen buffer. Animating the tree mesh can then be
done by reading this texture in a dedicated vertex program. Any level-of-detail rendering
model using a (possibly time-varying) subset of the animation nodes can be used, without
the need to update the remaining unused nodes.

2. Adjusting the number of modes used for the computation of updated nodes positions gives
a handful tradeoff between animation quality and frame-rate. For distant views of forests
only the first few modes needs to be kept, while adding more modes at close range adds
detail to the animation. As for the nodes, each modal state (qi, q̇i) can be updated inde-
pendently from the others, they are stored in a texture in GPU memory (matrix Q of figure
6.6), and updated by a dedicated fragment shader.

The overall animation process can be summarized in three main steps (see figure 6.6):

1. Update of the modal state for each mode of each tree (item 1 and 2 of section 6.2.3). It
requires to compute the local wind speed for each tree instance.

2. Deformation of the skeletons from the rest position (item 3 of section 6.2.3)

3. Rendering each tree with deformed geometry using skinning on the animated skeleton.

6.4.2 Error Correction

Modal deformation being a linear approximation of the displacement of the branches nodes, it is
mostly adapted for low amplitude motion. Notably, branches lengths are not kept constant when
submitted to strong wind. We cannot rely on using rotating branches (like Habel et al. [HKW09]
and Zioma [Zio07]) as it would break parallelism between nodes computations and does not ex-
tend to complex structures. This classical issue of modal analysis could be addressed by modal
warping [CK05]. In our specific case of tree animation we observed that when a single mode i
is selected, the corrected displacement of each node n lies on a smooth trajectory (see figure 6.7)

114 chapter 6. Modal Animation

Figure 6.6: Computation steps of the animation framework. K is the number of tree instances, M
the number of modes used for the animation and N the number of control points of the skeleton.
The colored rectangles represent textures stored in GPU memory. The input matrices T , P, Φ

are constant while the matrices Q, U store the dynamic variables. T contains the tree instance
data (position, orientation); P contains the modal parameters used to compute the dynamics;
Φ contains the modal deformations of the skeleton control points; Q contains the modal states
(qi, q̇i); U contains the skeleton’s node displacements. Several representations can be used for
the wind such as a procedural equation or a flow array.

which can be faithfully approximated by a quadratic curve u after a non linear reparametrization
s:

u(q) = s ·v + s2 ·w (6.31)
with s = aarctan(b ·q) (6.32)

(6.33)

Our error correction consists then in replacing equation (6.22) by:

un =
∑

i

si,n ·vi,n + (si,n)2 ·wi,n (6.34)

with si,n = ai,n arctan(bi,n ·qi) (6.35)

where vectors vi,n, wi,n and scalars ai,n, bi,n are stored in matrix Φ in figure 6.6, instead of
the displacement vectors (roughly doubling the memory size). They are optimized using sam-
pled corrected deformations, corrected by pulling each node towards its parent to match initial
branches lengths, in a depth-first fashion. The results show that this approach yields a sufficiently
good correction for branches lengths to allow the application of a strong wind load.

6.4 Implementation Issues 115

Figure 6.7: Correct trajectories obtained by selecting each mode successively (each color cor-
responds to one mode). These trajectories can be faithfully approximated by second degree
polynomial curves.

6.4.3 Configuration

Instead of looking for an all-automatic framework, we believe that meaningful controls are im-
portant. We now present few parameters that can be derived from the modal decomposition and
provide useful configuration possibilities.

The modes are computed only from the branch structure. The insertion of tiny elements such
as leafs in the modal analysis procedure is not well defined and may bring numerical instabili-
ties. For now, we consider the leafs solely as a geometric outfit, but their omission has still an
influence on the overall dynamics. Two main characteristics are missing: their mass (i.e., their
inertia), and their aerodynamic damping.

The first two controls are the damping coefficients α and β from equation (6.11). As we can see
from equation (6.18), they can be selected outside modal decomposition. In theory, they repre-
sent the internal damping of the branches. Here however they can be used to compensate for the
aerodynamic damping.

The last control enables to change the modal inertia and has thus a great impact on simulated
dynamics. Let us imagine we want to change the mass matrix of equation (6.10), by:

M′ = m∗M (6.36)

With some scalar m. Then the modal mass mi in equation (6.16) will also be multiplied by m.
From equation (6.18), modal frequencies and damping are also affected:

116 chapter 6. Modal Animation

ω′i = m−
1
2 ∗ωi (6.37)

γ′i = m∗α+β∗ω′i (6.38)

Finally, setting m with a high value will act as the tree is heavier, i.e., with more inertia, which
can compensate for the leaves weight, or simulate a tree of bigger scale. Inversely, a value less
than one enables the use of the same structure to represent a lighter plant.

The important point is that all of these parameters can be changed at run time without additional
computations.

6.5 Results

We have tested the presented method on various models on an Intel Xeon 3.2 GHz with a GeForce
8800GTS. The following results were obtained on a Walnut tree digitized from precise measure-
ments (from [SRG97], see figure 6.9) and a virtual model generated using the method of Runions
et al. [RLP] (see figure 6.8).

Figure 6.8: The oak tree model.

Using our implementation we use a level of details system (LOD). When activated, we are able
to animate and render over 4000 trees while maintaining real-time frame-rates (30 Hz mini-
mum). For the walnut tree with 3437 nodes, the undecimated version of the mesh is made of
approximately 120000 vertices while the most decimated level of details only uses 300 vertices.
However our LOD implementation is unsophisticated and could be much more optimized. The
only significant data stored in GPU memory is the nodes displacements texture (arrayU in figure
5) whose size is K ×N (e.g. 10 Mb for 1000 trees with 3000 control points each).

Tables 6.1 and 6.2 show that it is always possible to reach high frame-rates by making a tradeoff

between the number of trees and the animation level of detail (i.e., the number of nodes and the
number of modes).

6.6 Limitations and Future Work 117

Figure 6.9: Digitalized walnut tree.

HH
HHHHK

N
20 100 500 1000 2000 8000

100 712 385 103
1000 690 169 87 43 11
8000 426 102 21 11

Table 6.1: Influence of the number of trees (K) and the number of nodes (N) on animation
frame-rates (in Hz), with 25 modes and rendering deactivated.

HHH
HHHM

K
500 1000 2000 4000

5 73 39 19 10
15 57 29 14 7
25 43 22 11 6

Table 6.2: Influence of the number of modes (M) and the number of trees (K) on the frame-rate
(in Hz). The model has 3437 nodes and approximately twice as much vertices, and the LOD
system is deactivated to ease interpretation (i.e., every node is always updated).

6.6 Limitations and Future Work

As explained in section 6.2.3, the omission of the vibration modes with highest frequencies
strongly reduces the computational cost of simulation but also removes the highly fluctuating
motion of tiny branches and leaves. However this can be replaced by using techniques such as
[OTF+04] for close view and animated textures further away. In our implementation, the leaves

118 chapter 6. Modal Animation

rigidly follow the nodes they are attached to. But the complexity of branches animation already
provides very convincing motion.

Mathematically, the main limitation of our method is the assumption of spatial uniformity of the
wind over each tree. In particular the attenuation of the wind by the tree is not taken into account
(i.e., the branches in the ’back’ of the tree should receive less wind). It does not lower visual
realism as the modal dynamics keeps natural oscillatory behaviors. However pre-computing a
more expressive basis would allow to increase animation precision.

Finally the parallelism of the method coupled with efficient GPU programming enables the ani-
mation of thousands of trees. It would require a more aggressive level-of-detail scheme to allow
real-time rendering of even larger forest scenes.

6.7 Conclusion

We showed a new approach to compute the modal projection of the wind load allowing a drastic
reduction of computations at runtime. To this end, we introduce a precomputed basis for the
projections of interactive directional wind in a modal animation framework.

Our implementation of the method shows that it is possible to efficiently animate and render thou-
sands of trees. We think the presented technique is perfectly adapted to real-time applications
such as computer games or simulators.

c h a p t e r 7
C o n c l u s i o n

My work during this Ph.D. has addressed many theoretical issues related to the acquisition and
the creation of plants motion.

First an experimental protocol has been developed for the video recording of real animated trees
which has allowed the acquisition of quality data on tree motion.

We have also proposed two new computer vision methods for the extraction of 2D motion out of
such videos. One aims at increasing the speed of the exhaustive comparison of images areas in a
region matching approach. The other increases the robustness of differential tracking methods.

As all automatic tracking techniques do not always produce reliable motion data, particularly for
the case of video of animated foliage, we have then studied how a suitable user interface can
help obtaining better results. First, efficient approaches for the quick correction of such data has
been developed and second, we have designed an alternative method to manually input the whole
trajectory of moving features in a video.

My main contributions has been to develop two new animation methods for virtual plants:

• One is the first markerless motion capture techniques that reproduces the plant motion ob-
served in a video onto virtual models. We have shown that careful statistical studies of
the extracted foliage motion allows the estimation of a branches structure that hold this
motion.

• The second animation method is on computer simulation of tree dynamics in response to
interactive wind. We introduced the pre-computed wind projection basis that allows the
real-time animation of forest containing thousands trees.

For both method, I obtained a publication in well-known international conferences: the first
has been published in the Symposium on Computer Animation 2006 [DRF06] and the second
[DRBR09] has been accepted at Eurographics 2009.

Finally, the interdisciplinary collaboration within the research project Chene-Roseau has allowed
me to participate to longer term researches with influences outside of the computer graphics field.

120 chapter 7. Conclusion

In particular, my participation has concerned the development and use of the video recording
protocol and the acquisition of complex sets of real data on trees dynamics. In addition, my
collaboration with Ph.D. student Mathieu Rodriguez has led to the development of the real-time
computer simulation method for the animation of trees.

My work concerning the use of videos of animated foliage and the expertize I develop on this
particular issue is still brought to the Chene-Roseau project. It will continue in the future through
a post-doctorate position at the LadHyX laboratory.

List of Figures

1.1 Biological structure of trunk and branches. 8
1.2 Classification of possible hierarchical structure of trees. The four more common

structures are mark with an asterisk. (Image taken from [Hal05]) 8
1.3 Experiment showing how important a factor the wind is to the growth in height

of crop. A patch of a crop field has its lateral motion (due to wind) restricted. It
results in a growth much higher of the crop. (Image and experiment presented in
[MC06]) . 9

1.4 Breaking of plants at different scales due to wind action. Studies describe the
phenomena as a consequence of a locking mechanism between the wind fre-
quency and the plants oscillation. 10

2.1 (a) and (b) Devices to record contacts of a horse hoof with the ground. (c) Setup
to record all the contacts of the hooves of a horse during locomotion using device
1 or 2. 19

2.2 Excerpt from two of the Muybridge sequences. Top: excerpt from sequence An-
imals and Movements, Horses, Gallop; thoroughbred bay mare, Annie G. The
first image proves Marey’s theory that all hooves of horses leave the ground at
some point during gallop. Bottom: excerpt from sequence Movements, Female,
Jumping: running straight high jump. 20

2.3 Two sequences from Marey’s results. 20
2.4 The chronophotographic gun design by Marey. A camera is mounted on a modi-

fied traditional gun where a photographic film is stored in the chamber. It allowed
capturing up to twelve pictures by second. 21

2.5 Tracking a human in motion using an infrared optical system. The subject has
retroreflective markers set at specific parts if her body. A projector (red light
at the top of the image) emits infrared light reflected by the markers. It is then
detected in video sequences that film the subject. 22

2.6 The magnetic tracking system is composed of a main unit (box in the middle
of image (a)) and of a transmitter that generates a magnetic field (sphere on the
right of image (a)). Up to four magnetic receivers can be connected to the main
unit and tracked in real time. A software developed at the INRA controls all this
system. 23

122 LIST OF FIGURES

2.7 (a) Tree used for experimentation. (b) Experimental layout: Two cameras film the
tree from one side, four magnetic markers are attached to representative branches
and a sonic anemometer records the wind speed next to the tree. (c) An image
taken by camera 2. The positions of the magnetic markers are indicated by red ar-
rows, and the LED device used for synchronization is indicated by a black arrow.
. 24

2.8 Representation of the pinhole camera. On the right, the calibration rig for which
we know the shape, i.e., the 3D positions Qi (in the reference frame of the cali-
bration rig). The projection matrix of the camera is calibrated such that it projects
them onto their observed projections in the image plane, i.e., the 2D positions qi. 25

2.9 The calibration rig we designed. 27
2.10 Subset images of a sequence used for calibration. 28
2.11 3D reconstruction of the four markers position from videos. For each subfigure:

The columns are for the x, y and z coordinates respectively; The top row graphs
show the trajectories of the markers extracted from magnetic tracking (red) and
from 3D reconstruction from video (blue); The second row shows their spectrum
obtained using discrete Fourier transform. Data are given in centimeters. 30

2.12 Difference of Gaussians (G((σ)−G(k ·σ)). 33
2.13 A simple image where the numbers of non-zero eigenvalue of AT A are indicated.

Over the black or white area, the gradient is null. In equation (2.9), the matrix
A contains only zeros and the eigenvalues of AT A are both null. For each edge
(horizontal or vertical) all the pixels have the same gradient, thus the rows of A
are equal and AT A has one non-zero eigenvalue. Finally at the corner between
both edges, some pixels of the neighborhood (the rows of A) have a strong verti-
cal component and some have a strong horizontal component. Then AT A is well
conditioned and has two strong eigenvalues. 36

2.14 Graph picturing the Lucas-Kanade method in the one-dimensional case (thus,
without the aperture problem). The estimate u∗ of the displacement u of pixel p
is obtained using equation (2.6), i.e., in 1D Ixu∗ − It = 0. For both graphics (a)
and (b), the black curve represents the intensity of the original one-dimensional
image at time t and the red curve is the same image at time t + 1 that moved to
the right. (a) The image is smooth, and the estimate u∗ of u at p is good (but
too long). An iterative process should converge. (b) A deformation of high fre-
quency with low amplitude has been added at p. As a consequence the estimate
u∗ is in the opposite direction of the real displacement. A divergence of iterative
estimation is most probable. 37

2.15 Case of a sequence of one-dimensional images. Each vertical line (red) repre-
sents one image. In (a) for each pixel of each image, an estimation of the motion
is computed. In (b) particles are initiated in the first image then tracked recur-
sively along the image sequence. 37

LIST OF FIGURES 123

2.16 Pyramids of images used to accelerate the box matching method. L0, L1 and L2
are levels of the pyramids (of depth three) from 0 for the full resolution to 2 for
the lower resolution. P1 is the pyramid of the region to be tracked in the first
image (R0 is marked with an × in its initial resolution). P2 is the pyramid of the
search window in the second image. Once the box matching algorithm as been
computed for all the positions in P2 at level L2, the best displacements (ex: the
5% with minimum image difference) are projected in the level L1 (represented by
the striped region). At the lower level, the box matching is done over these pixels
only, and best displacements are further projected. At level L0 the displacement
with minimum image difference is taken as solution (the red region marked with
a red ×). 40

3.1 Software to extract motion in video using both automatic tracking and user in-
teraction. The circles drawn on top of the video image are the features to track.
. 46

3.2 Flowchart describing the organization of user’s work using our application for
the task of motion extraction of selected targets of the video. 47

3.3 The conical representation of the HSL color space. The hue coordinate (H) is the
radial position around the cone, the saturation (S) is the radius to the axis of the
cone and the lightness is the height of the cone. 48

3.4 Superposition of motion information using speed to HSL mapping. (a) Origi-
nal image from a video sequence. Structure is invisible. (b) With the motion
information, the red circle indicates an emphasized structure. 49

3.5 Using direction clamping on displayed color. (a) With everything displayed. (b)
The display is restricted to features with a specific motion direction. One struc-
ture is pointed out (red circle). 50

3.6 Graphical interface of the video player. On the right, the user can configure the
two frame-rates (quick and slow) at which the video can be played. 50

3.7 Keyboard shortcuts used by our application. The layout of the control buttons
allows simple and efficient user interaction. (a) Used by the time correction tool
described in 3.5.2. (b) Used by the space correction tool described in 3.5.1. . . . 51

3.8 The four Hermite basis functions used for cubic interpolation. 52
3.9 An example of the speed estimation for a key-frame at time k. In this example,

even if p(k) is almost spatially equidistant to p(k0) and p(k1) in the image space,
the ratio between time interval is (k1− k) = 2(k− k0), so α ≈ 0.667: s0 has twice
more influence than s1. 53

3.10 Typical tasks to which Fitts law and steering law apply. 54
3.11 Displaying the motion curve of a selected target. The red dots are key-frames. . . 55
3.12 Spatial correction. The user corrects the position at one frame, and it is propa-

gated along the motion curve. In light brown is the curve segment (initial curve)
that is affected. The user has previously indicated the bound of this segment on
one side. The other bound is the next key-frame (red dot). In light red curve with
white points is the corrected motion curve, the points are the frames positions. . . 57

124 LIST OF FIGURES

3.13 Correction of the motion curve only in time. The user can move the features only
along the curve. The white dots are the new positions at all frames. 58

4.1 (a) and (b) are the two first topos and (c) their associated chronos obtained us-
ing BOD on the optical flow of a video of a canopy animated by the wind. In
(a) and (b) iso-contours of the topos magnitude are drawn. (images taken from
[PdLM06]) . 62

4.2 Comparison between a manual clustering that shows an expected classification
of the features in seven groups, results from clustering using euclidean distance
in the image and using the distance of movement. 64

4.3 (a) Unstructured motion, (b) Strong wind inducing a single overall motion. 65
4.4 Comparison of the ground truth classification with the results obtained with our

automatic method. 66
4.5 Hierarchical clustering and cut-off line for the determination of the number of

classes identified as terminal groups. 68
4.6 (a) The position of a node pi is initiated as the average (p∗i) of its children node pn

and pm. Then it is optimized to minimize equation (4.11). (b) and (c) Extracted
structure before and after the optimization. 70

4.7 Final geometrical hierarchy of groups. 71
4.8 3D geometrical structure with texture sprites for leaves. 71
4.9 3D geometrical tree structure used as a control skeleton for animation by skinning. 72
4.10 Video footage controlling 3D animation of the ficus model (motion blur corre-

sponds to a 1/50s shutter speed). 73
4.11 Original footage of the xmas model and synthesis target for animation of a com-

plex 3D model of shrub . 73
4.12 Three main steps of the interactive modeling of shrubs that fit the control skeleton. 73
4.13 Result obtained on video sequences of two full grown tree. 74

5.1 The typical deformations of branch segment. 81
5.2 Tradeoff between precision and simulation complexity of the method of Akagi

et al. [AK06]. The grid can be defined with any resolution (from the lower (a) to
the higher (c)). Then the forces that the tree apply on the wind is proportional to
wind speed multiplied by the quantity of wood and leaves in each grid cell. 84

5.3 (a)-(d) 2D wind flow primitives. (d) Example of the sum of two primitives, a
uniform and a vortex wind flow. Their sum is still solution of the simplified
Navier-Stokes equation presented by Wejchert and Haumann [WH91]. 85

5.4 (a) and (b) Articulated structure made of a set of rigid segments. (c) Model of
one element of the structure. F0 and F1 are the reference frame before and after
the element respectively. F1 is obtained after a rotation and translation of F0. . . 88

LIST OF FIGURES 125

5.5 Euler-Bernoulli beam model. The bending and torsion are defined with respect
to the spatial derivatives of the displacement expressed in cartesian coordinates
(here w). F0 and F1 are the reference frames before and after the element re-
spectively. The transformation from F0 to F1 is only a translation equal to the
displacement of the end of the beam. 89

5.6 Cosserat rod model. The lineic displacement is defined with respect to the defor-
mation of the rod, i.e., bending and torsion (only bending k is represented here).
F0 and F1 are the reference frame before and after the element respectively. The
transformation from F0 to F1 is the integral of the deformation along the rod. . . 91

6.1 A single tree and a forest animated with the presented method. 104
6.2 Finite element discretization. 105
6.3 The six degrees of freedom of a node. 106
6.4 A vibration mode is a deformation of the whole tree behaving as a harmonic

oscillator. 110
6.5 The modes of deformation of the walnut model. During animation the final dis-

placement of a tree is a combination of its modal deformation. The modes are
sorted in ascending order of their natural frequencies. 110

6.6 Computation steps of the animation framework. K is the number of tree in-
stances, M the number of modes used for the animation and N the number of
control points of the skeleton. The colored rectangles represent textures stored
in GPU memory. The input matrices T , P, Φ are constant while the matrices
Q, U store the dynamic variables. T contains the tree instance data (position,
orientation); P contains the modal parameters used to compute the dynamics; Φ

contains the modal deformations of the skeleton control points; Q contains the
modal states (qi, q̇i);U contains the skeleton’s node displacements. Several rep-
resentations can be used for the wind such as a procedural equation or a flow
array. 114

6.7 Correct trajectories obtained by selecting each mode successively (each color
corresponds to one mode). These trajectories can be faithfully approximated by
second degree polynomial curves. 115

6.8 The oak tree model. 116
6.9 Digitalized walnut tree. 117

126 LIST OF FIGURES

B i b l i o g r a p h y

[AK06] Yasuhiro Akagi and Katsuhiro Kitajima. Computer animation of swaying trees
based on physical simulation. Computers & Graphics, 30(4):529–539, 2006. 5.2.1,
5.2, 5.3.1, 5.4.2, 5.5.1, 5.6, 7

[AMM90] A. Abdel-Malek and V. Marmarelis. A model of human operator behavior during
pursuit manual tracking-what does it reveal? Systems, Man and Cybernetics, 1990.
Conference Proceedings., IEEE International Conference on, pages 674–676, Nov
1990. 3.4.2

[AZ97] Johnny Accot and Shumin Zhai. Beyond fitts’ law: models for trajectory-based hci
tasks. In CHI ’97: CHI ’97 extended abstracts on Human factors in computing
systems, pages 250–250, 1997. 3.4.2, 3.10(b)

[BAC+06] Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric
Leroy, and Jean-Luc Lévêque. Super-helices for predicting the dynamics of natural
hair. In ACM Transactions on Graphics (Proceedings of the SIGGRAPH confer-
ence), August 2006. accepted to Siggraph’06. 5.3.3, 5.4.4

[Bar96] David Baraff. Linear-time dynamics using lagrange multipliers. In SIGGRAPH
’96: Proceedings of the 23rd annual conference on Computer graphics and inter-
active techniques, pages 137–146, 1996. 5.4.3

[Ber06] Florence Bertails. Simulation de Chevelures Virtuelles. PhD thesis, Institut Na-
tional Polytechnique de Grenoble, 2006. 5.3.3

[Ber09] F. Bertails. Linear time super helices. Computer Graphics Forum (proceedings of
Eurographics’08), 2009. 5.3.3, 5.4.4, 5.5.2, 5.6

[BK04] Jacob Beaudoin and John Keyser. Simulation levels of detail for plant motion. In
SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 297–304, 2004. 5.3.1, 5.4.2, 5.4.3, 5.5.2, 5.6

[BM98] C. Bregler and J. Malik. Tracking people with twists and exponential maps. In
Conference on Computer Vision and Pattern Recognition (CVPR ’98), pages 8–15,
1998. 4.2.2

128 BIBLIOGRAPHY

[BMP04] Christoph Bregler, Jitendra Malik, and Katherine Pullen. Twist based acquisition
and tracking of animal and human kinematics. International Journal of Computer
Vision, 56(3):179–194, 2004. 2.2.3, 4.2.2

[Bou00] Jean-Yves Bouguet. Pyramidal implementation of the Lucas-Kanade feature
tracker. Intel Corporation, Microprocessor Research Labs report, 2000. 2.4.3

[BW97] David Baraff and Andrew Witkin. Implicit methods for differential equations (in
physically based modeling: Principles and practice). In SIGGRAPH ’97: ACM
SIGGRAPH 1997 courses, 1997. 5.5.2

[CAS] Cast3m 2000. http://www-cast3m.cea.fr/. 6.2.1, 6.4

[CC09] Eugène Cosserat and François Cosserat. Théorie des corps dédormables. Hermann,
1909. 5.3.3

[CHE] Chene-roseau. http://www.ladhyx.polytechnique.fr/public_cr/index.
html. Mechanism of dynamic interactions between wind and flexible plants,
project granted by the National Research Agency (ANR), France. 1.2, 2.3, 6.1

[CK98] J.P. Costeira and T. Kanade. A multibody factorization method for independently
moving objects. IJCV, 29(3):159–179, 1998. 4.2.1

[CK05] Min Gyu Choi and Hyeong-Seok Ko. Modal warping: Real-time simulation of
large rotational deformation and manipulation. IEEE Transactions on Visualiza-
tion and Computer Graphics, 11(1):91–101, 2005. 6.4.2

[Coh92] Michael F. Cohen. Interactive spacetime control for animation. SIGGRAPH Com-
puter Graphics, 26(2):293–302, 1992. 3.4.2

[Cor71] R.M. Cormack. A review of classification. J. of the Royal Statistical Society, Series
A, 134(3):321–367, 1971. 4.3.2

[CRM00] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects
using mean shift. Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference on, 2:142–149, 2000. 2.4.2, 2.5.2

[dL08] Emmanuel de Langre. Effects of wind on plants. Annual Review of Fluid Mechan-
ics, 40:141–168, 2008. 6.3

[DRBR09] Julien Diener, Mathieu Rodriguez, Lionel Baboud, and Lionel Reveret. Wind pro-
jection basis for real-time animation of trees. Computer Graphics Forum (Proceed-
ings of Eurographics 2009), 28(2), mar 2009. 1.2, 6.1, 7

[DRF06] Julien Diener, Lionel Reveret, and Eugene Fiume. Hierarchical retargetting of 2d
motion fields to the animation of 3d plant models. In ACM-SIGGRAPH/EG Sym-
posium on Computer Animation (SCA). ACM-Siggraph/Eurographics, 2006. 1.2,
7

http://www-cast3m.cea.fr/
http://www.ladhyx.polytechnique.fr/public_cr/index.html
http://www.ladhyx.polytechnique.fr/public_cr/index.html

BIBLIOGRAPHY 129

[EMF03] Luis Carlos Yano Endo, Carlos Hitoshi Morimoto, and Antonio Elias Fabris. Real-
time animation of underbrushes. In WSCG ’03: Proceedings of the 11th interna-
tional conference in central europe on computer graphics, visualization and com-
puter vision, 2003. 5.3.1

[ES00] Kevin C. Engel and John F. Soechting. Manual tracking in two dimensions. J
Neurophysiol, 83(6):3483–3496, 2000. 3.4.2

[FAI+05] David A. Forsyth, Okan Arikan, Leslie Ikemoto, James O’Brien, and Deva Ra-
manan. Computational studies of human motion: part 1, tracking and motion syn-
thesis. Foundations and Trends in Computer Graphics and Vision, 1(2-3):77–254,
2005. 2.2.3, 4.2.2

[Fea83] R. Featherstone. The calculation of robot dynamics using articulated-body inertias.
International Journal of Robotics Research, 2:13–30, 1983. 5.3.1, 5.4.3

[FH75] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function,
with applications in pattern recognition. Information Theory, IEEE Transactions
on, 21(1):32–40, 1975. 2.5.2

[Fit54] Paul M. Fitts. The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Experimental Psychology, 47(6):381–391,
1954. 3.4.2

[FRDC04] Laurent Favreau, Lionel Reveret, Christine Depraz, and Marie-Paule Cani. Ani-
mal gaits from video. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA) 2004, 2004. 2.2.3, 4.2.2

[G.06] Johansson G. Visual perception of biological motion and a model for its analysis.
Am. J. Bot., 93(10):1522–1530, 2006. 3.4.2

[Gav99] D. M. Gavrila. The visual analysis of human movement: a survey. Computer Vision
and Image Understanding, 73(1):82–98, 1999. 2.2.3

[GCF01] Thomas Di Giacomo, Stéphane Capo, and François Faure. An interactive forest. In
Eurographics Workshop on Computer Animation and Simulation (EGCAS), pages
65–74. Springer, 2001. 5.2.2, 5.3.1, 5.4.3, 5.5.2, 5.6

[Gor87] A.D. Gordon. A review of hierarchical classification. J. of the Royal Statistical
Society, Series A, 150:119–137, 1987. 4.3.2

[GR94] M. Géradin and D. Rixen. Mechanical Vibrations: Theory and Application to
Structural Dynamics. 1994. 5.3.2, 6.2, 6.2.1, 6.2.1, 6.2.1, 6.2.2, 6.3

[Had06] S. Hadap. Oriented strands: dynamics of stiff multi-body system. In SCA ’06:
Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 91–100. Eurographics Association, 2006. 5.2

130 BIBLIOGRAPHY

[Hal05] Francis Hallé. Plaidoyer pour l’arbre. Actes Sud, 2005. 1.1.1, 1.2, 7

[Har04] M.J. Harris. Fast fluid dynamics simulation on the gpu. In GPU Gems: Pro-
gramming Techniques, Tips, and Tricks for Real-Time Graphics, pages 637–665.
Addison-Wesley, 2004. 5.2.1

[HBW99] Seon M. Han, Haym Benaroya, and Timothy Wei. Dynamics of transversely vi-
brating beams using four engineering theories. Journal of Sound and Vibration,
225(5):935 – 988, 1999. 5.3.2, 5.3.2

[HKW09] Ralf Habel, Alexander Kusternig, and Michael Wimmer. Physically guided anima-
tion of trees. Computer Graphics Forum (proceedings of Eurographics’08), 2009.
5.2.3, 5.2.3, 5.2.3, 5.3.2, 5.4.2, 5.5.1, 5.5.3, 5.6, 6.4.2

[Hof91] E. R. Hoffmann. Capture of moving targets: A modification of fitts’ law. Er-
gonomics, 34(2):211–220, 1991. 3.4.2

[HS80] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Technical
report, 1980. 2.4.3

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001. 4.3.2

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching in-
terface for 3d freeform design. In Proc. of ACM SIGGRAPH’99, pages 409–416,
1999. 3.4.2, 4.4.1

[Jam03] Kenneth R. James. Dynamic loading of trees. Journal of arboriculture, 29:165–
171, November 2003. 2.2.2

[JHA06] Kenneth R. James, Nicholas Haritos, and Peter K. Ades. Mechanical stability of
trees under dynamic loads. Am. J. Bot., 93(10):1522–1530, 2006. 2.2.2

[LK81] B. Lucas and T. Kanade. Iterative image registration technique with an applica-
tion to stereo vision. In Proc. of 7th International Joint Conference on Artificial
Intelligence (IJCAI), pages 674–679, 1981. 2.4.3, 2.4.3, 2.4.3

[Low99] D.G. Lowe. Object recognition from local scale-invariant features. Computer Vi-
sion, 1999. The Proceedings of the Seventh IEEE International Conference on,
2:1150–1157, 1999. 2.4.2

[MC06] Bruno Moulia and Catherine Coutand. Thigmomorphogenetic acclimation of
plants to moderate winds as a major factor controlling height growth and biomass
distribution in crops, as demonstrated in alfalfa (medicago sativa l.). In Proceeding
of the 5th Plant Biomechenics Conference, 2006. 1.3, 7

BIBLIOGRAPHY 131

[Ono97] Hiromi Ono. Practical experience in the physical animation and destruction of
trees. In Eurographics Workshop on Computer Animation and Simulation, EGCAS
1997, pages 53–64. Springer, 1997. 5.2.3, 5.2.3, 5.3.1, 5.4.2, 5.5.2, 5.6

[OPE] Opencv. http://sourceforge.net/projects/opencv/. Intel Corporation.
2.5

[OTF+04] Shin Ota, Machiko Tamura, Tadahiro Fujimoto, Kazunobu Muraoka, and Norishige
Chiba. A hybrid method for real-time animation of trees swaying in wind fields.
The Visual Computer, 20:613–623(11), 2004. 5.2.3, 5.2.3, 5.3.1, 5.4.2, 5.5.1, 5.6,
6.6

[Par62] E. Parzen. On estimation of a probability density function and mode. Annals of
mathematical statistics, 33:1065–1076, 1962. 2.5.2

[PC01] Frank Perbet and Maric-Paule Cani. Animating prairies in real-time. In I3D ’01:
Proceedings of the 2001 symposium on interactive 3D graphics, pages 103–110,
2001. 5.2.2

[PdLM06] Charlotte Py, Emmanuel de Langre, and Bruno Moulia. A frequency lock-in mech-
anism in the interaction between wind and crop canopies. Journal of Fluid Me-
chanics, 568:425–449, 2006. 4.2.1, 4.1, 4.2.1, 7

[PdLMH05] Charlotte Py, Emmanuel de Langre, Bruno Moulia, and Pascal Hemon. Measure-
ment of wind-induced motion of crop canopies from digital video images. Agricul-
tural and Forest Meteorology, 130:223–236, 2005. 4.2.1

[PS88] Heinz-Otto Peitgen and Dietmar Saupe, editors. The Science of Fractal Images.
Springer-Verlag New York, Inc., New York, NY, USA, 1988. 5.2.3

[PSE03] Jovan Popovic, Steven Seitz, and Michael Erdmann. Motion sketching for con-
trol of rigid-body simulations. ACM Transactions on Graphics, 22(4):1034–1054,
October 2003. 3.4.2

[QT] Qt cross-platform application framework. http://trolltech.com/products/
qt/. Developed by Trolltech. 2.5

[RdLM08] Mathieu Rodriguez, Emmanuel de Langre, and Bruno Moulia. Effects of archi-
tecture and allometry on tree vibration modes. Submitted to American Journal of
Botany, 2008. 6.2.3

[RFL96] D. Raboud, M. G. Faulkner, and A. W. Lipsett. A segmental approach for large
three-dimensional rod deformations. International Journal of Solids and Struc-
tures, 33(8):1137 – 1156, 1996. 5.3.3

[RLP] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. Modeling trees
with a space colonization algorithm. 6.5

http://sourceforge.net/projects/opencv/
http://trolltech.com/products/qt/
http://trolltech.com/products/qt/

132 BIBLIOGRAPHY

[SF92] Mikio Shinya and Alain Fournier. Stochastic motion-motion under the influence of
wind. Computer Graphics Forum, 11(3):119–128, 1992. 5.2.3, 5.2.3, 5.3.2, 5.5.2,
5.6

[SFL06] Damien Sellier, Thierry Fourcaud, and Patrick Lac. A finite element model for
investigating effects of aerial architecture on tree oscillations. Tree Physiology,
26:799–806, 2006. 6.2.1, 6.3

[SJF03] M. Sun, A. Jepson, and E. Fiume. Video input driven animation (vida). In Interna-
tional Conference on Computer Vision (ICCV) 2003, 2003. 4.2.2, 4.6

[Smi07] C. Sminchisescu. Learning and Inference Algorithms for Monocular Perception.
Applications to Visual Object Detection, Localization and Time Series Models for
3D Human Motion Understanding, 2007. University of Bonn, Faculty of Mathe-
matics and Natural Sciences. Habilitation Thesis. 2.2.3

[SO99] Tatsumi Sakaguchi and Jun Ohya. Modeling and animation of botanical trees for
interactive virtual environments. In Proceedings of the ACM symposium on Virtual
reality software and technology (VRST ’99), pages 139–146, 1999. 5.3.1, 5.4.3,
5.5.2, 5.6

[Sou07] Tiago Sousa. Gpu gems 3, chapter Vegetation Procedural Animation and Shading
in Crysis (chapter 16). Addison-Wesley Professional, 2007. (Crytek). 5.2.2, 5.6

[SRG97] H. Sinoquet, P. Rivet, and C. Godin. Assessment of the three-dimensional archi-
tecture of walnut trees using digitising. Silva Fennica, 31:265–273, 1997. 2.3.1,
6.5

[SS08] Ryan Schmidt and Karan Singh. Sketch-based procedural surface modeling and
compositing using Surface Trees. volume 27, pages 321–330, 2008. Proceedings
of Eurographics 2008. 3.4.2

[ST94] Jianbo Shi and Carlo Tomasi. Good features to track. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 593–600, 1994. 2.4.3,
2.5.3

[Sta97] Jos Stam. Stochastic dynamics: Simulating the effects of turbulence on flexible
structures. Compututer Graphics Forum, 16(3):159–164, 1997. 5.2.3, 5.2.3, 5.3.2,
5.4.4, 5.5.3, 5.6, 6.2.1, 6.2.1, 6.3, 6.3

[Sta99] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, pages 121–128, 1999.
5.2.1

[TBvdP07] Matthew Thorne, David Burke, and Michiel van de Panne. Motion doodles: an
interface for sketching character motion. In SIGGRAPH ’07: ACM SIGGRAPH
2007 courses, page 24, 2007. 3.4.2

BIBLIOGRAPHY 133

[TYAB01] Lorenzo Torresani, Danny Yang, Gene Alexander, and Christoph Bregler. Tracking
and modelling non-rigid objects with rank constraints. In Proc. IEEE CVPR 2001,
2001. 4.2.1

[VAV+07] Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell, Markus H.
Gross, Wojciech Matusik, and Jovan Popovic. Practical motion capture in everyday
surroundings. ACM Transaction on Graphics, Proceedings of the 2007 SIGGRAPH
conference, 26(3):35, 2007. 2.2.2

[VBTS07] David Vanderhaeghe, Pascal Barla, Joëlle Thollot, and François Sillion. Dynamic
point distribution for stroke-based rendering. In Rendering Techniques 2007 (Pro-
ceedings of the Eurographics Symposium on Rendering), pages 139–146, 2007.
2.5.3

[WCYF99] Enhua Wu, Yanyun Chen, Tao Yan, and Jinhui Feng. Reconstruction and
physically-based animation of trees from static images. In Eurographics Workshop
on Computer Animation and Simulation (EGCAS). Springer, 1999. 5.3.3, 5.4.2,
5.5.1, 5.6

[Web08] Jason P. Weber. Fast simulation of realistic trees. IEEE Computer Graphics and
Applications, 28(3):67–75, 2008. 5.2, 5.3.1, 5.4.3, 5.5.2, 5.6

[WH91] Jakub Wejchert and David Haumann. Animation aerodynamics. In SIGGRAPH
’91: Proceedings of the 18th annual conference on Computer graphics and inter-
active tehniques, 1991. 5.2.2, 5.3, 7

[WWG06] Guo Wu, Li WenHui, and Feng Guanghui. Physically based animation of broad-
leaf plant. International Journal of Computer Science and Network Security (IJC-
SNS 2006), 06:198–204, 2006. 5.3.1, 5.4.3, 5.5.2, 5.6

[Zha99] Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown
orientations. Proceedings of the Seventh International Conference on Computer
Vision (ICCV’99), 01:666–673, 1999. 2.3.2

[Zha06] Yu-Jin Zhang. Advances in Image and Video Segmentation. Idea Group Inc (IGI),
2006. 4.2.1

[ZHH96] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. Sketch: An interface
for sketching 3d scenes. pages 163–170, 1996. 3.4.2

[Zio07] Renaldas Zioma. Gpu gems 3, chapter Gpu-generated procedural wind animations
for trees (chapter 6). Addison-Wesley Professional, 2007. 5.2.2, 5.3.1, 5.3.2, 5.4.2,
5.6, 6.4.2

[ZST+06] Long Zhang, Chengfang Song, Qifeng Tan, Wei Chen, and Qunsheng Peng. Quasi-
physical simulation of large-scale dynamic forest scenes. In Computer Graphics
International, pages 735–742, 2006. 5.2.3, 5.2.3, 5.3.1, 5.4.2, 5.5.1, 5.6

	Table of Contents
	1 Introduction
	1.1 Rationale
	1.1.1 Trees
	1.1.2 Tree Animation in Computer Graphics

	1.2 Contribution
	1.3 Thesis Outline

	I Acquisition and Reproduction of Real Motion
	2 Acquisition of Plants Motion
	2.1 Introduction
	2.2 Motion Capture
	2.2.1 Origin of Motion Capture
	2.2.2 Assisted Motion Capture
	2.2.3 Markerless Motion Tracking

	2.3 Data Acquisition
	2.3.1 Experimental Setup
	2.3.2 Cameras Calibration
	2.3.3 Recorded Data and First Results

	2.4 Extracting Motion from Videos
	2.4.1 Comparison of Region
	2.4.2 Statistical Descriptors
	2.4.3 Differential Methods
	2.4.4 Optical Flow and Particles Tracking

	2.5 Algorithm Development
	2.5.1 Pyramidal Box Matching Tracking
	2.5.2 Robust Tracking
	2.5.3 Tracking Particles with Limited Life Span

	3 User Oriented Application for Video Tracking
	3.1 Introduction
	3.2 Visualization of Motion Flow
	3.3 User Interface to Control Time
	3.4 Manual Input
	3.4.1 Key-Frame Approach
	3.4.2 Sketching Motion

	3.5 User Interface for Correction
	3.5.1 Correction in Space
	3.5.2 Time Correction

	3.6 Conclusion

	4 Extraction of Plant Structure and Retargetting of Motion Data
	4.1 Introduction
	4.2 Related Works
	4.2.1 Structure from Video Motion
	4.2.2 Animation from Video Motion

	4.3 Building a Hierarchy of Branches from a Single Video View
	4.3.1 Clustering Metric
	4.3.2 Selection of a Hierarchy of Branches using Clustering

	4.4 Creating 3D Shape and Motion
	4.4.1 Creating Motion of the Terminal Groups
	4.4.2 Propagating Motion to Intermediate Groups
	4.4.3 Extending Groups to 3D Shape and Motion

	4.5 Controlling the Animation of Complex 3D Plant Models
	4.5.1 3D Animation of a Plant by Skinning
	4.5.2 Interactive 3D Modeling

	4.6 Discussions on our Approach
	4.7 Conclusion

	II Mechanical Simulation
	5 Real-Time Animation of Trees using Simulation
	5.1 Introduction
	5.1.1 General Principles
	5.1.2 Outline of the Chapter

	5.2 Wind Models
	5.2.1 Physical Simulation
	5.2.2 Procedural and Phenomenological
	5.2.3 Stochastic Wind

	5.3 Modeling the Structural Elements
	5.3.1 Undeformable Segments with Angular Spring
	5.3.2 Uniform Beam
	5.3.3 Cosserat Rod

	5.4 Structural Modeling
	5.4.1 Dynamics Formalism
	5.4.2 Independent Elements
	5.4.3 Articulated Structures
	5.4.4 Finite Element Method

	5.5 Time Integration
	5.5.1 Static Equilibrium
	5.5.2 Explicit and Implicit Method
	5.5.3 Spectral Method

	5.6 Summary

	6 Modal Animation
	6.1 Introduction
	6.2 Modal Analysis and Modal Animation Framework
	6.2.1 Finite Element Method
	6.2.2 Modal Analysis
	6.2.3 Animation using the Modes of Deformation

	6.3 Wind Projection Basis
	6.4 Implementation Issues
	6.4.1 GPU Implementation
	6.4.2 Error Correction
	6.4.3 Configuration

	6.5 Results
	6.6 Limitations and Future Work
	6.7 Conclusion

	7 Conclusion
	List of figures
	Bibliography

