
HAL Id: tel-00439132
https://theses.hal.science/tel-00439132v1

Submitted on 6 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOLEIL: An Integrated Approach for Designing and
Developing Component-based Real-time Java Systems

Ales Plsek

To cite this version:
Ales Plsek. SOLEIL: An Integrated Approach for Designing and Developing Component-based Real-
time Java Systems. Software Engineering [cs.SE]. Université des Sciences et Technologie de Lille -
Lille I, 2009. English. �NNT : �. �tel-00439132�

https://theses.hal.science/tel-00439132v1
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École Doctorale SPI Lille
UFR IEEA

SOLEIL: An Integrated Approach for
Designing and Developing

Component-based Real-time Java Systems

THÈSE
présentée et soutenue publiquement le 14 September 2009

pour l’obtention du

Doctorat de l’Université des Sciences et Technologies de Lille
(spécialité informatique)

par

Aleš PLŠEK

Composition du jury :
Président du jury : M. Pierre BOULET, Professeur Université de Lille I

Rapporteurs : M. František PLÁŠIL, Professeur Charles University
M. Laurent PAUTET, Professeur Telecom ParisTech

Examinateurs : M. Jean-Charles FABRE, Professeur INP Toulouse
M. François TERRIER, Professeur CEA LIST Saclay

Directeurs de thèse : M. Lionel SEINTURIER, Professeur Université de Lille I
M. Philippe MERLE, Docteur INRIA Nord Europe

INRIA LILLE - NORD EUROPE - Laboratoire d’Informatique Fondamentale de Lille

Abstract

Over the last decade we witness a steady grow of complexities in real-time systems. Today,
developers have to face real-time constraints in almost every software system, from embedded
software to financial systems, internet services, and computer entertainment industry. To address
this widespread challenge, the Real-Time Specification for Java (RTSJ) has been proposed. How-
ever, RTJS itself introduces many nonintuitive rules and restrictions that doom its programming
model to be highly error-prone. Moreover, in contrast to the approaches for mainstream soft-
ware development, the engineering technologies, tools, and frameworks for real-time systems
are nowhere near as groundbreaking.

The vision behind this dissertation is to ultimately close the gap between real-time program-
ming and today’s software technology. Therefore, this dissertation investigates scalable software
engineering techniques for RTSJ programming. Our fundamental philosophy is to introduce
high-level abstractions of RTSJ concepts in order to leverage development of real-time Java sys-
tems.

As the first contribution of this thesis, we introduce domain components - an approach to uni-
fied expression and manipulation of domain-specific concerns along the software development
lifecycle. We use the domain components to construct high-level abstractions of RTSJ specifics
that ultimately allow developers to achieve full separation of functional and RTSJ-specific con-
cerns in the development lifecycle. We thus allow developers to reuse and tailor the systems for
variously constraining real-time requirements.

Second, we propose SOLEIL- a component framework for development of RTSJ systems, the
framework introduces a development methodology mitigating the complexities of the RTSJ pro-
gramming model. Furthermore, we introduce the HULOTTE toolset for automatic instantiation of
developed applications. In this process, the functional implementation is separated from RTSJ-
specific code which is automatically instantiated. In consequence, the development process is
fully transparent, RTSJ complexities are hidden from the developers, and the process itself highly
resembles to the standard Java development. Finally, the domain component concept and the
RTSJ rules and restrictions are defined in the Alloy language which allows us to formally verify
that the development process and outcoming software systems are compliant with RTSJ.

To validate the approach, we conduct several case studies challenging our proposal from dif-
ferent perspectives. First, performed benchmarks show that the overhead of the SOLEIL frame-
work is minimal in comparison to manually written object-oriented applications while providing
more extensive functionality. Second, considering the state-of-the-art RTSJ programming meth-
ods, we achieve better separation of functional and RTSJ concerns, thus increasing efficiency of
the development process. Finally, we demonstrate universality of the domain component con-
cept by showing its ability to address various domain-specific challenges.

Table of Contents

List of Tables xi

Chapter 1 Introduction 1

1.1 Understanding the Problem . 2

1.2 Research Goals . 3

1.3 Contributions . 3

1.4 Dissertation Roadmap . 4

Part I State of the Art 7

Chapter 2 Real-time Programming in Java 9

2.1 Real-time Programming . 10

2.1.1 Real-time System Definition . 10

2.1.2 Developing Real-Time Applications . 11

2.1.3 Trends and Challenges . 12

2.1.4 Real-Time Programming Languages . 12

2.2 Real-Time Specification for Java . 13

2.2.1 Thread Types . 13

2.2.2 Memory Management . 15

2.2.3 Sweet Factory - A Motivation Scenario 17

2.2.4 Advantages and Disadvantages of RTSJ 19

2.2.5 Real-time Java Virtual Machines . 20

2.3 Beyond Real-Time Specification for Java . 21

2.4 Summary . 22

Chapter 3 Component-Based Software Engineering 23

3.1 Component-based Software Engineering . 24

3.1.1 Component Frameworks . 25

3.1.2 Advanced Technologies in CBSE . 25

3.2 State-of-the-Art of Component Frameworks . 27

iii

Table of Contents

3.2.1 General Purpose Component Frameworks 27

3.2.2 Domain-Specific Component Frameworks 28

3.2.3 Component Frameworks for RTSJ . 31

3.2.4 Distributed and Embedded Computing in Real-time Java Systems . . . 35

3.3 FRACTAL Component Model . 35

3.3.1 FAC: FRACTAL Aspect Model . 37

3.3.2 Formalization of the FRACTAL Component Model 38

3.4 State-of-the-Art Synthesis . 39

3.5 Goals Revisited . 40

3.6 Summary . 41

Part II Proposal 43

Chapter 4 SOLEIL: A Component Framework for Java-based Real-Time Embedded

Systems 45

4.1 A Generic Component Model . 47

4.1.1 Core Concepts . 47

4.1.2 Functional Components . 48

4.1.3 Domain Components . 50

4.2 A Real-Time Java Component Metamodel . 51

4.2.1 ThreadDomain Component . 51

4.2.2 MemoryArea Component . 52

4.2.3 Composing RTSJ Components . 53

4.2.4 Binding RTSJ Components . 54

4.2.5 ADL Formalization . 56

4.3 SOLEIL Framework . 56

4.3.1 Design Methodology . 57

4.3.2 Implementation Methodology . 59

4.3.3 SOLEIL Profile . 61

4.3.4 Validation Process . 62

4.4 Motivation Scenario Revisited . 63

4.4.1 Designing the Motivation Scenario . 63

4.4.2 Implementing the Motivation Scenario 64

4.5 Summary . 66

Chapter 5 HULOTTE: A Framework for the Construction of Domain-Specific Compo-

nent Frameworks 67

5.1 HULOTTE Framework . 68

5.1.1 Generic Component Model Extensions 69

5.1.2 Architecture Refinement of Domain Components 71

5.2 Implementing SOLEIL with HULOTTE . 74

iv

5.2.1 Active and Passive Components . 74

5.2.2 ThreadDomain Refinement . 76

5.2.3 Immortal Memory . 76

5.2.4 Cross-Thread Communication . 76

5.2.5 Cross-Scope Communication . 78

5.2.6 Fractal Control Layer . 80

5.3 HULOTTE Framework Implementation . 80

5.3.1 HULOTTE Architecture . 81

5.3.2 Front-end . 81

5.3.3 Middle-end . 82

5.3.4 Back-end . 82

5.3.5 Soleil - Runtime Platform Instantiation 82

5.3.6 HULOTTE as a Meta-Framework . 83

5.4 Motivation Example Revisited . 85

5.5 Summary . 87

Part III Validation 89

Chapter 6 Case Studies 91

6.1 Sweet Factory . 93

6.1.1 Description . 93

6.1.2 Performance Evaluation . 93

6.1.3 RTSJ Code Generation Perspective . 95

6.1.4 Evaluation . 97

6.2 Real-time Collision Detector . 97

6.2.1 Description . 97

6.2.2 Current Approaches and Their Limitations 99

6.2.3 RCD Implementation in the SOLEIL Framework 102

6.2.4 Evaluation . 104

6.3 Distributed and Ambient Programming in SOLEIL and HULOTTE 105

6.3.1 Distributed Real-Time Programming with SOLEIL 105

6.3.2 Ambient Programming with HULOTTE 109

6.3.3 Evaluation . 112

6.4 Limitations of our Approach . 113

6.5 Related Work Comparison . 114

6.6 Summary . 115

Part IV Conclusion and Perspectives 117

Chapter 7 Conclusion and Perspectives 119

7.1 Summary of the Dissertation . 119

v

Table of Contents

7.2 Contributions of the Dissertation . 120

7.3 Limitations of the Approach . 121

7.4 Impact of the Dissertation . 122

7.4.1 Collaborations . 122

7.4.2 Research Projects Influenced by the Dissertation 122

7.5 Perspectives . 123

7.5.1 Short Term Perspectives . 123

7.5.2 Mid Term Perspectives . 124

7.5.3 Long Term Perspectives . 124

7.6 Publications . 124

7.6.1 International Conferences . 124

7.6.2 International Workshops . 125

7.6.3 Poster Sessions . 125

7.6.4 Presentations . 125

Bibliography 127

Appendixes 139

Appendix A Alloy Formalization of the RTSJ metamodel 141

Appendix B OCL Constraints for SOLEIL Profile 147

Appendix C SweetFactory Architecture in FRACTAL-ADL 149

Index 151

vi

List of Figures

2.1 A Real-Time Application Example. 11
2.2 Proportions of the Source Code with Differently Stringent Real-Time Requirements 13
2.3 New types of threads introduced by RTSJ. 14
2.4 Memory Areas Defined by RTSJ : Two scoped memory areas parented in immortal

memory. Heavy arrows represent allowed reference patterns. While any scope
is allowed to refer into the heap, a NoHeapRealtimeThread is not allowed to
read those references. These constraints are implemented by read/write barriers
at runtime. 16

2.5 Sweet Factory Illustration . 17
2.6 Sweet Factory Class Diagram . 18
2.7 MonitoringSystem Implementation . 18

3.1 AADL Model Development . 29
3.2 Component-based Application Development process in AdaCCM 30
3.3 A Container Architecture Running the Hybrid Real-Time Component Model . . . 30
3.4 Compadress Memory model : Parent components communicate with their child

components via scoped memory managers (SMMs) 32
3.5 Etienne et. al. Component Model . 33
3.6 FRACTAL Concepts . 36
3.7 Component-based Control Membranes . 37
3.8 FAC: Functional and Aspect Components Example 37
3.9 Alloy: Basic Syntax and Semantics . 38
3.10 Synthesis of the Technologies Applied in the Dissertation 39

4.1 A Generic Component Model . 47
4.2 Generic Component Model Formalization in Alloy 48
4.3 Interface and Binding Concepts of the Metamodel 49
4.4 Domain Components Example . 50
4.5 The RTSJ-specific Domain Components . 51
4.6 ThreadDomain and Memory Area . 52
4.7 Composition and Binding Rules for RTSJ Domain Components 53
4.8 The Cross-Scope Pattern . 54
4.9 The Multi-Scope Pattern . 54
4.10 The Hand-off Pattern . 54
4.11 Shared Scope . 54
4.12 Cross-scope Communication Patterns . 55
4.13 SOLEIL ADL defined in Alloy . 56
4.14 Functional View . 57

vii

List of Figures

4.15 Thread Management View . 58
4.16 Memory Management View . 58
4.17 RealTime Component Architecture Design Flow . 59
4.18 Runtime Platform Generation Flow . 60
4.19 Sweet Factory: Real-time System Architecture . 64
4.20 Sweet Factory Architecture: Formalization in Alloy 64
4.21 MonitoringSystem Component Implementation in SOLEIL 65

5.1 Component Metamodel and Domain Component 69
5.2 Platform Level Concepts Specified in Alloy . 70
5.3 Functional and Control Interfaces . 70
5.4 Architectural Patterns . 70
5.5 Architectural Patterns . 73
5.6 Active Component Types . 74
5.7 ActiveInterceptor Implementation for Periodic Active Component 75
5.8 ActiveInterceptor Implementation for Sporadic Active Component 75
5.9 Container Architecture of Protected Component . 75
5.10 ThreadDomain Refinement . 75
5.11 Immortal Memory Container . 76
5.12 Immortal Services API . 76
5.13 Cross-Thread Communication . 77
5.14 WaitFreeQueue and ObjectPool Formalization . 77
5.15 Active Interceptors Implementations . 77
5.16 Memory Scope Component - Interceptors . 78
5.17 Memory Scope Interceptor Implementation . 78
5.18 MultiScope Interceptor Implementation . 78
5.19 HandOff Pattern Implementation Schema . 79
5.20 HandOff Interceptor Implementation . 79
5.21 Shared Scope Component . 80
5.22 Fractal Control Layer . 80
5.23 Overview of the Internal HULOTTE Implementation Structure 81
5.24 Development Methodologies of Domain-specific Component Application 84
5.25 ProductionLine and Monitor Architecture Refinement 85
5.26 AuditLog and Console Architecture Refinement 86

6.1 Benchmark Results: Execution Time Distribution . 94
6.2 RCD, Sequence Diagram . 98
6.3 StateTable Original Implementation . 100
6.4 StateTable, STARS Project Implementation . 101
6.5 RCD Architecture . 102
6.6 RCD Refined Architecture . 103
6.7 IStateTable Interface . 103
6.8 MotionCreator Implementation . 104
6.9 StateTable Implementation . 104
6.10 SoleilInterceptor Implementation . 105
6.11 DistributedNode Component Example . 107
6.12 DistributedNode and AmbientNode Formal Definitions 107
6.13 DistributedNode Refinement . 109
6.14 AmbientNode Component Example . 110
6.15 Ambient Scenario . 111
6.16 Ambient Communication Scenario . 112

A.1 Generic Component Model Formalization in Alloy 142
A.2 ThreadDomain and Memory Area . 143

viii

A.3 Composition and Binding Rules for RTSJ Domain Components 143
A.4 Cross-scope Communication Patterns . 144
A.5 Platform Level Concepts Specified in Alloy . 144
A.6 WaitFreeQueue and ObjectPool Formalization . 145
A.7 SOLEIL ADL defined in Alloy . 145

C.1 SweetFactory Architecture in FRACTAL-ADL, Part 1 149
C.2 SweetFactory Architecture in FRACTAL-ADL, Part 2 150

ix

List of Figures

x

List of Tables

3.1 Recapitulation and Comparison of Component Frameworks for RTSJ 34

6.1 Execution Time Median and Jitter . 95
6.2 Memory Footprint . 95
6.3 Recapitulation and Comparison of Component Frameworks for RTSJ 114

B.1 OCL expressions for implementation constraints . 148

xi

List of Tables

xii

Chapter 1
Introduction

Contents
1.1 Understanding the Problem . 2
1.2 Research Goals . 3
1.3 Contributions . 3
1.4 Dissertation Roadmap . 4

IN the last decade we have witnessed an enormous boom in the field of real-time systems [IH92,
Jen07]. The traditional areas of systems with real-time and embedded requirements - e.g. em-
bedded or on-board software, experience exponential grow of software, doubling in size ev-

ery 18-36 months, depending on the industry [McM04, Bou95]. However, new areas of software
with various real-time constraints emerge as we speak, developers have to face the challenges of
real-time programming in variety of systems - from financial software [SR08] to computer enter-
tainment industry [RFP08]. A very near future will bring increased demand for large-scale, dis-
tributed, and reusable real-time systems with pressure on time-to-market and cost, e.g. [IBM07].

While we see this rapid growth of complexities at the level of real-time programming, the de-
velopments at the software engineering level are nowhere near as groundbreaking. There is still a
little interest in real-time from the mainstream software engineering community. Today, real-time
software developers find themselves working with tools (in the broadest sense of the word, in-
cluding analysis and design techniques, middleware, programming languages, etc.) which have
come of age in the era of the real-time embedded computing, not that of the software engineer-
ing for mainstream systems. To give a concrete example, in the world of programming languages
for real-time software, usually assembler, Ada, or C/C++ languages are used, which fall behind
twice to five times more in productivity and effectivity than the language of choice for most en-
terprise IT projects - Java [CDM+05, Nil04, Geo99]. Moreover, a steep learning curve of these
languages makes hard to find and retain experienced developers.

As a result, there is a huge gap between the novel real-time software waiting to be devel-
oped and the software tools available to do so. A testament to this is the launch of a plethora
of research initiatives over the past few years that target "software engineering for real-time pro-
gramming" in one way or another. One of the dominant efforts is the Real-time Specification for
Java (RTSJ) [BGB+00], where the goal is to use the Java language as an enabling technology to
greatly reduce the efforts associated with developing and maintaining real-time software.

Today we can find the Java programming language in various types of real-time systems,
from industrial control [RHN+07], audio processing [ABB+07b, JASB07], ship-board comput-
ing [IBM07], to avionics [ABC+07], and financial sector [BEA06]. Real-time Java is becoming
ubiquitous. The progress in real-time Java technologies (real-time garbage collection [Daw08,
Sie99, SUN08], ahead-of-time compilation [FS07], or operating system support [ABB+07a, MG07])
makes development of real-time applications in Java considerably easier.

1

Chapter 1. Introduction

However, despite the fact that RTSJ does not define any new language constructs and key-
words the specification still introduces nontrivial concepts that in the end influence the program-
ming style. We therefore believe that an ultimate success in this field can be achieved only by
a framework that provides a unified approach to development of real-time Java-based systems
and that leverages RTSJ concepts into higher levels of system design in order to mitigate the
complexities introduced by RTSJ.

The vision behind our research is therefore to ultimately close the gap between real-time
programming and today’s software technology. Needless to say, this dissertation represents
but a small step towards such an ambitious goal. In particular, we will focus on how to rec-
oncile traditional software abstractions to facilitate development of real-time Java applications.
More concretely, we employ advanced technologies of component-based software engineering
(CBSE) [Cle02] and we extend them with new concepts in order to provide sufficient abstractions
for RTSJ concerns. Ultimately, we propose a component framework supporting a full develop-
ment lifecycle of RTSJ-based systems. Finally, we extensively explore the effects of our proposal
on development of real-time Java systems, with stress on separation of concerns [Par72], exten-
sive employment of generative programming, while increasing productivity and effectivity of
programming with RTSJ.

In the remainder of this introductory chapter, we first highlight the problems to be tackled.
Furthermore, we extensively discuss our research goals and formulate the statement of the thesis.
We conclude the chapter with a preliminary overview of this dissertation’s contributions and a
roadmap to assist the reader in browsing the text.

1.1 Understanding the Problem

Despite the demonstrated utility of the Real-time Specification for Java, a number of open prob-
lems have limited its widespread acceptance. Briefly, from a software engineering perspective,
these problems are:

• RTSJ Memory Model The memory model introduced by RTSJ brings many complexities
to the development process. RTSJ defines three memory areas - Immortal, Scoped Memory,
and Heap, each with its rules and restrictions. Therefore, for RTSJ programs to be correct,
developers must deal with an added dimension: where a particular datum was allocated.
Although many patterns and idioms were introduced [A. 05, BN03, PFHV04, BCC+03], the
memory model makes RTSJ programming highly error prone. The controversial nature of
the memory model further confirms the fierce discussions in the community [Lam05] where
real-time garbage collection (RTGC) is often considered as a silver bullet. However, RTGC
methods does not achieve performance needed for hard real-time systems. Therefore, we
believe that before the RTGC will be matured enough, an effort should be made to facilitate
RTSJ memory management with the methods of software engineering.

• Programming Style and Development Process Similarly as for the memory model, the
RTSJ programming style defines additional rules and restrictions. Usually, for the same task
different implementations must be provided depending of the real-time conditions under
which the task will be executed. The specific real-time requirements not only influence
application of particular code constructs but often propagate into the architecture. As a
consequence, reuse of such a code between systems with different real-time requirements
is almost imposable. However, with the growing complexity of real-time applications and
time-to-market pressure we envisage that the reuse and adaptation of real-time applications
will play a crucial role in the development process.

2

1.2. Research Goals

1.2 Research Goals

A complete process for designing of real-time and embedded applications based on RTSJ com-
prises many complexities, specially timing and schedulability analysis, which have to be in-
cluded in a design procedure. The scope of our proposal is placed directly afterwards these
stages, when real-time characteristics of the system are specified but the development process of
such a system lies at its very beginning.

The goal of our work is to develop a component framework alleviating the RTSJ-related con-
cerns during development of RTSJ-based real-time and embedded systems. Our motivation is to
consider RTSJ-specific concerns as clearly identified software entities and clarify their manipula-
tion through all the steps of software life cycle. The challenge is therefore to mitigate complexi-
ties of the RTSJ system development and offload the burden from users by providing appropriate
technologies for management of RTSJ concerns.

Therefore, the goals of this dissertation are following:

• Solution through Software Engineering Methods – The proposal must be based only on stan-
dard RTSJ features and not depend on language extensions or on any special characteristics
of particular VMs.

• High-Level Abstractions – We must introduce a higher level abstractions of RTSJ-concerns
in order to represent them as first-class entities. This will allow developers to manipulate
these concerns independently from the functional logic of the application. Consequently,
we want to achieve full separation of concerns, hide the complexities of RTSJ, and allow
programmers to develop RT applications as if using standard Java as much as possible.
Ultimately, the goal is to provide a programming model easy to understand that facilitates
the development of a majority of RT applications.

• Formalization and Verification – The proposed concerns must be formalized in order to sup-
port their validation. By this, developed applications will be validated to guarantee their
compliance with RTSJ.

• Component Framework A component framework unifying development of RTSJ-based ap-
plications should be proposed. Furthermore, generative programming methods should be
used to support automatic generation of RTSJ-related code. Finally, a verification process
based on the introduced formalisms should be developed in order to validate conformance
of developed applications to the formalized rules and restrictions.

• Evaluation – Finally, we want to evaluate the framework from both performance and soft-
ware engineer perspectives. The framework should introduce only a minimal overhead,
and a large case study should be conducted to demonstrate easy-of-use and software engi-
neering benefits.

Thesis statement. An effective development process of RTSJ-compliant systems must con-
sider RTSJ concerns at early stages of the system design and must provide their high level ab-
stractions as the only way to avoid tedious and error-prone process when implementing them.

1.3 Contributions

It is always difficult to provide an overview of contributions in advance, with the problem state-
ment only vaguely introduced and without the technical foundations required to support them.
However, listing the contributions early on helps to sketch the context and subject domain of the
dissertation. In short, this dissertation makes conceptual and technical contributions in the in-
tersecting domains of real-time programming, component-based software engineering and real-
time Java programming. The main contributions are summarized as follows and have been pub-
lished as shown by the references:

3

Chapter 1. Introduction

• RTSJ-specific Component Model and Domain Components – We define a component model
to address the specifics of RTSJ. The model introduces the concept of Domain Component
that allows developers to represent the RTSJ concerns as first-class entities. We are thus
able to easily manipulate with them during all stages of application development. [PMS08,
PLMS08]

• SOLEIL Framework – We construct a component framework built on top of our RTSJ com-
ponent model and we propose a methodology of RTSJ-based application development that
fully separates functional and RTSJ-specific concerns. Furthermore, we formalize the com-
ponent model defined and create the SOLEIL profile - a set of rules and guidelines for de-
velopers using the SOLEIL framework. Finally, we introduce an approach to validate con-
formance of developed applications to the profile. [PLMS08]

• HULOTTE Framework – We propose the HULOTTE framework that provides an approach to
automatic instantiation of runtime platforms supporting execution of SOLEIL applications.
The framework achieves a full separation of concerns and further employs methods of gen-
erative programming in order to take the advantages of CBSE also at runtime. Finally,
different optimization heuristics are employed to reduce overhead of instantiated applica-
tions. [LMP+09]

• Evaluation – We evaluate our approach in several case studies, both from qualitative and
quantitative perspective. First, we measure performance overhead of our approach and
show that although introducing advanced CBSE technologies, we do not introduce any sig-
nificant overhead. Furthermore, the approach is evaluated on a large case study identifying
the potential of the approach to mitigate complexities of the RTSJ-oriented development
process. Finally, we demonstrate framework extendability by applying it in the field of
distributed and ambient computing. [PLMS08, PMS07, MPL+08]

1.4 Dissertation Roadmap

This dissertation is divided in four main parts. In the first part we conduct a state-of-the-art sur-
vey and precisely identify the goals of this dissertation. The second part presents our proposal.
Consequently, the proposed ideas are validated in the third part and finally, we conclude and
present perspectives in the fourth part. Below, we summarize each subsequent chapter in the
dissertation.

Part I: State of the Art

Chapter 2: Real-Time Specification for Java In this chapter we first introduce Real-time Spec-
ification for Java, its key features and advantages. Furthermore, we present a motivation sce-
nario of a RTSJ-based application and using this example we identify the complexities develop-
ers must face when programming with RTSJ. This motivation scenario will be revisited several
times through the course of this dissertation to demonstrate various ideas of our proposal.

Chapter 3: Component-Based Software Engineering In this chapter we introduce Component-
based Software Engineering and discuss how it can be applied to address the challenges of real-
time programming. Consequently, we discuss and compare general purpose and RTSJ-dedicated
component frameworks in order to identify their limitations. Furthermore, the FRACTAL compo-
nent model is described in detail and we argue for employing FRACTAL as the enabling technol-
ogy in this dissertation. Finally, we synthesize the facts stated in the state-of-the-art and show
how the selected technologies contribute to meeting the goals of the dissertation, which are re-
fined at the end of this chapter.

4

1.4. Dissertation Roadmap

Part II: Proposal

Chapter 4: SOLEIL: A Framework for Java-based Real-Time Embedded Systems In this chap-
ter we propose a RTSJ-specific component model and we also introduce the concept of domain
components. Furthermore, we describe the SOLEIL framework providing methodology and val-
idation for RTSJ-oriented development process. Finally, the ideas proposed in the chapter are
demonstrated on the motivation scenario.

Chapter 5: HULOTTE: A Framework for the Construction of Domain-Specific Component
Frameworks We propose the HULOTTE framework and show how it can be applied to leverage
instantiation of applications developed in SOLEIL. Furthermore, we elaborate on implementation
of the HULOTTE framework and show optimization heuristics used to reduce overhead of result-
ing applications. Furthermore, we discuss application of the HULOTTE framework in a more
general case as a tool for instantiation of domain-specific component frameworks. Finally, the
ideas proposed in the chapter are demonstrated on the motivation scenario.

Part III: Validation

Chapter 6: Case Studies This chapter applies the SOLEIL and HULOTTE frameworks in several
case studies spanning different domains and challenges. The case studies serve both as a prove
of concept and further evaluate our approach from various perspectives.

Part IV: Conclusion and Perspectives

Chapter 7: Conclusion and Perspectives In this chapter we summarize the contributions made
in the dissertation. At that point we are able to evaluate the contributions of the dissertation
with hindsight, naturally leading to a discussion on the limitations of this work and on possible
directions for future research.

5

Chapter 1. Introduction

6

Part I

State of the Art

7

Chapter 2
Real-time Programming in Java

Contents
2.1 Real-time Programming . 10

2.1.1 Real-time System Definition . 10
2.1.2 Developing Real-Time Applications 11
2.1.3 Trends and Challenges . 12
2.1.4 Real-Time Programming Languages 12

2.2 Real-Time Specification for Java . 13
2.2.1 Thread Types . 13
2.2.2 Memory Management . 15
2.2.3 Sweet Factory - A Motivation Scenario 17
2.2.4 Advantages and Disadvantages of RTSJ 19
2.2.5 Real-time Java Virtual Machines . 20

2.3 Beyond Real-Time Specification for Java . 21
2.4 Summary . 22

JAVA is a mature and widely accepted programming language; while Java has traditionally
been relegated to non-safety-critical software, the acceptance of real-time and safety-critical
Java technologies is increasing steadily. The Real-Time Specification for Java (RTSJ) [BGB+00]

introduces the Java language into the world of real-time systems. To achieve this, the RTSJ was
shaped by several guiding principles. Foremost among these is the principle to hold predictable
execution as first priority in all tradeoffs. Another principle is that the RTSJ introduces no new key-
words or other language constructs. Also, the RTSJ provides backward compatibility, meaning
that existing Java programs run on RTSJ implementations. Despite this motivation for preserv-
ing all the principles of regular Java, RTSJ still introduces programming complexity that makes it
difficult to build non-trivial applications.

In this chapter we provide a fundamental information about real-time systems and the chal-
lenges related to their development. Furthermore, we introduce RTSJ features and discuss their
influence on the programming style. We however do not present the full list of RTSJ specifics [Dib08],
we rather focus on those features that directly influence the programming style, showing on
examples their benefits and flaws. The important motivation for this chapter is to expose the
disadvantages of RTSJ, and thus explaining the immense difference between theoretical ideas
proposed by RTSJ and its real-life experience.

Very soon after the release of RTSJ, the programmers realized the issues that are coming as
a trade-off for a predictable Java-based program. Their concerns and remarks gave birth to the
first efforts for research in RTSJ. Therefore, in the final part of this chapter we summarize almost
a decade of research in RTSJ, focusing on the various approaches to RTSJ programming and

9

Chapter 2. Real-time Programming in Java

development. Our goal is to identify the current trends and evaluate their limitations in order to
identify potential space for new contributions.

Contributions

The contributions of this chapter are:

• Challenges in Real-time Programming. We introduce the basic goals and challenges of the
real-time programming domain.

• Real-Time Specification for Java (RTSJ). We introduce the basic principles of RTSJ. We
discuss the features of RTSJ from the software developer’s perspective and evaluate how
they influence the programming style of developing real-time systems based on Java. Also,
we discuss advantages and disadvantages of RTSJ and we highlight the crucial issues that
must be faced when developing RTSJ-based systems.

• Motivation Scenario. We describe a SweetFactory case study in order to demonstrate RTSJ
characteristics on a simple scenario. This case study will be revisited through the course of
this dissertation in order to demonstrate various ideas discussed.

• Beyond the Horizon of RTSJ. Finally, we discuss the current research efforts focused on
RTSJ, highlighting their advantages and limitations.

Structure of the Chapter

The rest of the chapter is organized as follows. In Section 2.1 we introduce basic challenges and
issues of real-time programming. Furthermore, we discuss the programming languages usu-
ally employed for development of real-time applications. We introduce Real-time Specification
for Java in Section 2.2. The section is giving an overview of the key RTSJ principles. Also, we
highlight the advantages and disadvantages of RTSJ. Furthermore, we continue the discussion in
Section 2.3 where we consider the related research projects with focus in RTSJ. Finally, a summary
of this chapter is given in Section 2.4.

2.1 Real-time Programming

In this section we provide an overview of the real-time programming in general.

2.1.1 Real-time System Definition

Real-time system is a system in which its correctness depends not only on the logical result of the
computations it performs but also on time factors [SR98]. The real-time requirement can be easily
characterized by the sentence: The right answer delivered too late becomes the wrong answer. More
precisely, the real-time performance requires predictable and efficient end-to-end control over
system resources and imposes multiple quality of services (QoS) - predictability, throughput,
scalability, dependability, security, etc. Meeting the requirements of a real-time end-to-end per-
formance is generally considered as one of the hardest requirements in development of software
systems.

In typical real-time software systems, each critical software part represents different require-
ments and tradeoffs. We distinguish two types of these requirements: hard and soft real-time [Jen07].
Hard real-time constraints are those for which an action performed at the wrong time will have
zero or possibly negative value. The connotation of hard real-time is that compliance with all tim-
ing constraints is proven using theoretical static analysis techniques prior to deployment. Soft
real-time constraints are those for which an action performed at the wrong time (either too early
or too late) has some positive value even though it would have had greater value if performed

10

2.1. Real-time Programming

at the proper time. The expectation is that soft real-time systems use empirical (statistical) mea-
surements and heuristic enforcement of resource budgets to improve the likelihood that software
complies with timing constraints. Note that the difference between hard real-time and soft real-
time doesn’t depend on the time ranges specified for deadlines or periodic tasks. A soft real-time
system might have a deadline of 100 microsecond, while a hard real-time system’s deadline may
be 3 seconds.

Based on these definitions, we consider software systems as systems that are composed of
parts that are either hard-, soft- or non-real-time.

2.1.2 Developing Real-Time Applications

Due to the real-time nature of developed applications, the development process [But05] adds
a number of aspects to the standard ones. Rather than developing systems with the stress on
throughput as it is in the standard process, the developers must focus on system’s predictability.
Furthermore, with meeting the functional requirements of the system, the equal emphasis must
be placed on meeting the real-time requirements. Already during the requirements analysis,
the developer must formulate, together with the functional requirements, the description of the
temporal behavior of the system - the real-time requirements.

Based on the real-time requirements established in the specification of the application, the
developer defines the workloads, which are the basis of the schedulability analysis. The analy-
sis allows designers to certify that, in the worst case, the activities scheduled in the application
meet their real-time requirements. Usually, the Rate Monotonic Analysis [KRP+93] with the pri-
ority assignment process are employed. Based on the analysis, a real-time model is formed. The
real-time model is a timing abstraction that holds all the qualitative and quantitative information
needed to predict/evaluate the timing behavior of an application. It is used by designers to anno-
tate timing requirements in the specification phase, to reason about the prospective architecture
during design phases, and to guarantee its schedulability when the system is to be validated.

In modern systems, the schedulability analysis and the real-time model construction are per-
formed with a tool support, between such tools we can list e.g. TIMES [AFM+02] and SYMP-
TA/S [HHJ+05], or MAST [HGGM01].

A Real-time Scenario

To better illustrate the requirements of a real-time system, we introduce a typical real-time and
embedded application scenario in Fig. 2.1. This example illustrates the basic concepts used to
design a real-time application.

Figure 2.1: A Real-Time Application Example.

This example is composed of three tasks. The tasks Task1 and Task2 read and write a
shared data which is protected by a binary semaphore. A task pending on the semaphore (via
the acquire service) can not be blocked more than 4 time units (which corresponds to a timeout

11

Chapter 2. Real-time Programming in Java

specified by the semaphore). Task2 is activated periodically by a timer, while Task1 is activated
in response to an external interrupt event. At the end of its execution cycle, Task1 sends the
content of the read data to the Task3 using a mailbox.

2.1.3 Trends and Challenges

The future of distributed, real-time and embedded systems brings demand for large-scale, hetero-
geneous, dynamically highly adaptive systems with variously stringent QoS demands [BKT+06].
Moreover, the number of systems having some real-time requirements is rapidly increasing. As
already showed by the RTSJ experience, there is a huge demand for systems composed of hard-,
soft-, and non-realtime parts in the proportion illustrated in Fig. 2.2 [Vit08]. Such systems how-
ever require programming approaches that both allow development of a predictable code but
also must provide an effective development of a non-real-time code. Here, a unified approach to
development of such systems is crucial, since using different tools and approaches for program-
ming real-time and non-real-time parts of systems is usually not possible due to their incompati-
bility.

Therefore, we summarize the current challenges in developing real-time systems.

• Growing Complexity of RT Systems The real-time systems are becoming pervasive. The
real-time requirements are today present in almost any software, putting additional bur-
dens on developers.

• Market Pressure Growing need for real-time systems has increased economic competition
which has lead to the pressure on time-to-market delivery and cost reduction.

• Development Process Challenges Finally, new methodologies are needed to facilitate de-
sign, implementation and maintenance of real-time systems, while providing means to cap-
italize software development. The key features to achieve are:

– Increased Level of Abstraction. The technologies must foster high-level design and de-
velopment of systems in order to allow developers to easily manipulate even with
advanced concepts which are inherently present in real-time software. This ultimately
leads to software complexity reduction.

– Software Reuse. A support for technologies of a reliable adaptation and software reuse
is crucial since they boost software development and in the context of real-time mission-
critical systems ease certification.

– Verification and Maintenance. To provide a development approach allowing validation
of applications along their development lifecycle. Such technologies allow early error
detection and facilitate development by guiding the developers through the process
while respecting the restrictions and limitations of the particular technology.

2.1.4 Real-Time Programming Languages

Real-time systems have historically been developed in hard-coded manner, e.g. with dedicated
software written for specific types of hardware, using unstructured spaghetti designs and code.
Usually not very productive or error-free programming languages have been used - e.g. assem-
bler, or C/C++ where errors stem often from their memory management. Moreover, a steep
learning curve of the real-time programming languages made hard to find and retain experi-
enced developers, in case of the Ada language. This approach has yielded proprietary solutions
that were tedious, error-prone and costly to develop, validate, and evolve.

To face these obstacles, the Java programming language seems to be a promising choice -
mainly because of its simplicity, safety and for its cheap maintenance cost. The Java programming
language has replaced C++ as the predominant programming language, largely because Java

12

2.2. Real-Time Specification for Java

Figure 2.2: Proportions of the Source Code with Differently Stringent Real-Time Requirements

programmers are approximately twice as productive when developing new code and are five to
10 times as productive during maintenance of existing code [CDM+05, Nil04, Geo99].

However, conventional Java implementations are unsuitable for developing real-time embed-
ded systems, mostly due to the lack of predictability. The main features contributing to a poor
predictability of the Java language are: no scheduling control over threads, unpredictable syn-
chronization delays, run-anytime garbage collection, coarse timer support, no event processing,
and no safe asynchronous transfer of control.

The Real-time Specification for Java (RTSJ) [BGB+00], addresses these limitations through
several areas of enhanced semantics. Moreover, it brings a higher-level view into the real-time
and embedded world, which is desperately needed when avoiding accidental complexities and
steep-learning curves.

2.2 Real-Time Specification for Java

In this section we describe the Real-Time Specification for Java [BGB+00] (RTSJ). However, the
extensive discussion of all the features of RTSJ is beyond the scope of this dissertation, we will
therefore focus on features of RTSJ that directly influence the programming styles of developers.
For an exhaustive description of RTSJ we refer reader to [Dib08, BW01, Wel04].

RTSJ [BGB+00] is a comprehensive specification for development of predictable real-time
Java-based applications. Between many constructs which mainly pose special requirements on
underrunning JVM, two new programming concepts were introduced - real-time threads and
special types of memory areas. These new concepts will be described in Section 2.2.1 and Sec-
tion 2.2.2 respectively. Consequently, Section 2.2.3 introduces a motivation scenario to demon-
strate application of RTSJ and we discuss the complexities related to RTSJ programming in Sec-
tion 2.2.4. Finally, we conclude with a list of the most popular RTSJ implementations in Sec-
tion 2.2.5.

2.2.1 Thread Types

In order to avoid critical tasks to lost their deadlines because of the garbage collector (GC), RTSJ
makes distinction between three main kinds of tasks: (i) Low-priority tasks are tolerant with GC,
(ii) High-priority tasks cannot tolerate unbounded preemption latencies by the GC, and (iii) Critical
tasks cannot tolerate preemption latencies by the GC.

Low-priority tasks, or normal Java threads, are instances of the java.lang.Thread class
and allocates objects within the heap. To implement the high-priority and critical tasks, RTSJ
introduces two new types of threads that have precise scheduling semantics – RealTimeThread
and NoHeapRealTimeThread (NHRT). We illustrate the new types of threads in Fig. 2.3. The

13

Chapter 2. Real-time Programming in Java

most important feature of these new threads is that they are scheduled preemptively so that the
highest priority thread is always running.

Figure 2.3: New types of threads introduced by RTSJ.

Real-time Thread

High priority tasks are instances of the RealtimeThread class, which extends the Thread class
to support real-time tasks. Real-time threads can allocate objects within the heap, and within
immortal and scoped regions (described in Section 2.2.2). Furthermore, parameters provided to
the constructor of RealtimeThread allow the temporal and processor demands of the thread
to be communicated to the system.

NoHeapRealTimeThread

NoHeapRealTimeThread (NHRT) extends RealtimeThread with the restriction that it is not
allowed to allocate or even reference objects from the Java heap, and can thus safely execute in
preference to the garbage collector. Such threads are the key to supporting hard real-time execu-
tion because they have implicit execution eligibility logically higher than any garbage collector.
Since the NHRT can not access heap memory, it must operate in scoped or immortal memory.

Asynchrony

RTSJ defines mechanisms to bind the execution of program logic to the occurrence of internal
and/or external events. In particular, RTSJ provides a way to associate an asynchronous event
handler to some application-specific or external events. There are two types of asynchronous
event handlers defined in RTSJ:

• The AsyncEventHandler class, with does not have a thread permanently bound to it – nor is it
guaranteed that there will be a separate thread for each AsyncEventHandler. RTSJ simply re-
quires that, after an event is fired, the execution of all its associated AsyncEventHandlers
will be dispatched.

• The BoundAsyncEventHandler class, which has a real-time thread associated with it per-
manently. The associated real-time thread is used throughout its lifetime to handle event
firings.

14

2.2. Real-Time Specification for Java

Event handlers can also be specified as no-heap, which means that the thread used to handle
the event must be a NoHeapRealtimeThread.

RTSJ also introduces the concept of Asynchronous Transfer of Control (ATC), which allows a
thread to asynchronously transfer the control from a locus of execution to another.

WaitFree Queues

In order to support communication between real-time and regular Java threads, RTSJ provides
WaitFreeQueues. These queues provide a solution for sharing data between different NHRTs
and also between NHRTs and heap-based threads. This strengthens the semantics of Java syn-
chronization for use in real-time systems by mandating priority inversion [WHJ04] control. The
wait-free queue classes provide protected, concurrent access to data shared between instances of
java.lang.Thread and NoHeapRealtimeThread. Two queues are provided: WaitFreeRead-
Queue and WaitFreeWriteQueue.

WaitFreeReadQueue is a queue that can be non-blocking for consumers and is intended
for single-reader multiple-writer communication, although it may also be used (with care) for
multiple readers. A reader is generally an instance of NoHeapRealtime- Thread, and the
writers are generally regular Java threads or heap-using real-time threads or schedulable objects.
Communication is through a bounded buffer of objects that is managed first-in-first-out.

The WaitFreeWriteQueue class is intended for single-writer multiple-reader communica-
tion, although it may also be used (with care) for multiple writers. A writer is generally an in-
stance of NoHeapRealtimeThread, and the readers are generally regular Java threads or heap-
using real-time threads or schedulable objects. Communication is through a bounded buffer of
objects that is managed first-in-first-out. The principal methods for this class are write and read.

2.2.2 Memory Management

RTSJ further distinguishes three memory regions: ScopedMemory, ImmortalMemory, and Heap-
Memory, where the first two are outside the scope of action of the garbage collector to ensure pre-
dictable memory access. Memory management is therefore bounded by a set of rules that govern
access among scopes. RTSJ introduces these new types of memory areas, since the standard heap
memory is heavily influenced by the unpredictable garbage collector. The need for scoped mem-
ory areas was argued in [BR02]. Readers interested in a discussion are encouraged to consults
the paper [WP03]. We also discuss the characteristics and limitations of the real-time garbage
collection at the end of this section.

ImmortalMemory is a single memory area that is shared among all threads. Objects allo-
cated in the immortal memory live until the end of the application. In fact, unlike standard Java
heap objects, immortal objects continue to exist even after there are no other references to them.
Importantly, objects in immortal memory are never subject to garbage collection.

ScopedMemory is an abstract base class for memory areas having limited lifetimes. A scoped
memory area is valid as long as there are real-time threads with access to it. A reference is created
for each accessing thread when either a real-time thread is created with a ScopedMemory object
as its memory area, or when a real-time thread runs the enter() method for the memory area.
When the last reference to the object is removed, by exiting the thread or exiting the enter()
method, finalizers are run for all objects in the memory area, and the area is emptied. Objects in
scoped memory are never subject to garbage collection.

The RTSJ allows references across scopes. But as Java is a safe language it forbids the existence
of dangling references. Therefore, every reference must always be a valid reference to a live object
or null. To maintain safety, two rules are enforced:

• Because scoped memory areas can be shared, a reference counting technique is used to
ensure that the objects in them are only reclaimed after all threads have finished using the
memory area.

15

Chapter 2. Real-time Programming in Java

• Because a scoped memory area could be reclaimed at any time, it is not permitted for a
memory area with a longer lifetime to hold a reference to an object allocated in a memory
area with a shorter lifetime. This means that heap memory and immortal memory cannot
hold references to objects allocated in scoped memory. Nor can one scoped memory area
hold a reference to an object allocated in a lower (more deeply nested) memory area.

Conservatively speaking, these rules require that every memory access be checked to ensure
that it does not violate the rules. Combined with the heap-access restrictions of no heap threads,
this imposes some overhead at run-time.

Scoped memory areas may be nested, producing a scoping structure called a scope stack. Since
multiple memory areas can be entered from an existing memory area, this scope stack can form
a tree-like structure. One key relationship is as follows: if scope B is entered from scope A, then A
is considered the parent of B and B, the child of A.

RTSJ introduces strict assignment rules, which can be expressed as follows:

• “An object shall not reference any object whose lifetime could be shorter than its own“, formulated
by [HT08]

• Another important limitation is the single parent rule: "A memory region can have only one
parent, thereby preventing cycles in the scope stack", formulated by [Wel04]

The implication is that a single scope cannot have two or more threads from different parent
scopes enter it. An important consequence of this restriction on scoping structure is that a real-
time thread executing in a given region cannot access memory residing in a sibling region and
vice versa.

We give an example of a RTSJ memory structure in Fig. 2.4 (inspired by [PFHV04]). It rep-
resents a valid scope structure composed of two memory scopes, immortal memory and heap
memory. Notice the distinction between the instance of the ScopedMemory classes (Java objects)
and the memory they denote. We show the ScopedMemory instance allocated within a parent
scope holding a pointer to the start of the backing store used to allocate objects within that scope.
The location of scoped memory instances is not directly related to their position in the scope
hierarchy.

Figure 2.4: Memory Areas Defined by RTSJ : Two scoped memory areas parented in immortal
memory. Heavy arrows represent allowed reference patterns. While any scope is allowed to
refer into the heap, a NoHeapRealtimeThread is not allowed to read those references. These
constraints are implemented by read/write barriers at runtime.

As we can see, the constraints and rules imposed by the memory management of RTSJ intro-
duced many complexities into the development process. To resolve this, design patterns for

16

2.2. Real-Time Specification for Java

programming with scoped memory have been investigated by several projects [A. 05, BN03,
PFHV04, BCC+03] . Rather than designing patterns, we must however comprehend these as
implementation patterns providing guidelines how to implement different types of cross-scope
communication.

Real-time Garbage Collection

A newly emerging direction in real-time Java programming is based on novel ways of mem-
ory management [PV08, PV06, Sie04]. Specially Real-Time Garbage Collection (RTGC) [Daw08,
Sie99, SUN08] represents a promising approach. The main principle of RTGC is to perform
garbage collection in pauses when the system is not working, this is usually enhanced by schedul-
ing garbage collection predictably. However, RTGC still introduces some overhead, and although
this overhead is bounded, this method is still far from being used in hard-real-time programming.
Here, some applications have latency/throughput real-time requirements that cannot be met by
current real-time garbage collection (GC) technology. Nevertheless, the RTGC is becoming a
very successful technology in real-time systems, for example in the business sector [BEA06] or in
large-scale, heterogeneous, dynamically highly adaptive systems [IBM07].

2.2.3 Sweet Factory - A Motivation Scenario

To better illustrate main specifics of RTSJ, we introduce an example scenario that will be revis-
ited several times through the course of this dissertation. The goal of this motivation scenario,
called Sweet Factory, is to implement an automation system controlling an output statistics from
a production line in a sweet factory and report all anomalies. The example represents a classical
scenario, inspired by [GHMS07], where both real-time and non-real-time concerns coexist in the
same system.

Figure 2.5: Sweet Factory Illustration

The system consists of a production line that periodically generates measurements, and of a
monitoring system that evaluates them. Whenever abnormal values of measurements appear, a
worker console is notified. The last part of the system is an auditing log where all the measure-
ments are stored for auditing purposes. We illustrate the functionality of the system in Fig. 2.5.
Since the production line operates in 10ms intervals and no deadline can be missed, the system
must be designed to face under hard real-time conditions.

In Fig. 2.6 we show a class diagram of the application. Considering application of RTSJ, we
witness several interesting issues. Although this simplified version of the Sweet Factory contains
only four classes, it already contains many of the key features of RTSJ. The MonitoringSystem
is the central class of the application, collecting the measurements produced by the Production-Line
and processing them. Since ProductionLine is producing measurements in 10ms intervals
and the MonitorSystem must proceed these measurements without dropping any of them,

17

Chapter 2. Real-time Programming in Java

Figure 2.6: Sweet Factory Class Diagram

both classes must be therefore executed under strict hard real-time conditions. This leads to ap-
plication of the NonHeapRealTimeThread. The task of the ProductionLine is to produce
the measurements, therefore we will assign it the highest priority in the application. As the
MonitoringSystem is in this sense dependant on the ProductionLine, it runs with the sec-
ond highest priority.

1 public c l a s s MonitoringSystemImpl
2 implements MonitoringSystem , Runnable {
3

4 IProducer iProducer ;
5 AuditLog log ;
6 Console console ;
7

8 private f i n a l ScopedMemory scope ;
9

10 private f i n a l ReportRunnable reportRunnable
11 = new ReportRunnable (console) ;
12

13 public void i n i t i a l i z a t i o n () {
14 runInArea (ImmortalMemory . i n s t a n c e () ,
15 new Runnable () {
16 public void run () {
17 t r y {
18 console = new Console () ;
19 }
20 catch (IOException e) {
21 throw new RuntimeException (. . .) ;
22 }
23 }) ;
24 }
25 }
26

27 c l a s s ReportRunnable implements Runnable {
28 Measurement measurement ;
29 S e r v i c e I n t e r f a c e i S e r v i c e ;
30 void setM (Measurement m) {
31 measurement = m. deepCopy () ;
32 }
33

34 void run () {
35 console . r e p o r t E r r o r (measurement) ;
36 }
37 }

38 public void s tar tMoni tor ing () {
39 Bootstrapper . runInArea (
40 ImmortalMemory . i n s t a n c e () , t h i s) ;
41 }
42

43 public s t a t i c void runInArea (
44 MemoryArea area , Runnable r) {
45 RealtimeThread t = new RealtimeThread (new
46 P r i o r i t y P a r a m e t e r s (
47 P r i o r i t y S c h e d u l e r . MIN_PRIORITY)
48 null , null , area , null , r) ;
49 t . s t a r t () ;
50 t r y {
51 t . j o i n () ;
52 } catch (InterruptedExcept ion e) {
53 throw new RuntimeException (. . .) ;
54 }
55

56 public run () {
57 while (t rue) {
58 Measurement m =
59 iProducer . getMeasurement () ;
60 i f (m. isWrong ()) {
61 reportRunnable . setM {m} ;
62 scope . enter (reportRunnable) ;
63 }
64 log . wri te (m) ;
65 waitForNextPeriod () ;
66 }
67 }
68 }

Figure 2.7: MonitoringSystem Implementation

When looking at the remaining two classes - Console and AuditLog, they implement func-
tionality which does not have any special real-time constraints. Therefore, Console class will be
operating in a scoped memory, whereas the AuditLog logic is delegated to a regular Java thread
benefiting from the garbage collected heap.

Continuing with the discussion, the communication between different classes of the system
must be designed. According to RTSJ rules, ProductionLine and MonitoringSystem com-

18

2.2. Real-Time Specification for Java

municate asynchronously since they have different priorities. The same applies for communica-
tion between MonitoringSystem and AuditLog. For both, wait-free queues need to be used,
as specified in RTSJ.

For illustration, in Fig 2.7 we show implementation of the MonitoringSystem class in RTSJ.
Although the task of this class is simply to receive a measurement from the ProductionLine,
compare it, report measurement in case of an error, and finally log the measurement, the actual
implementation in RTSJ is quite complex. During the initialization, each object must be allocated
in a dedicated memory area, this is illustrated by the initialization method, line 13, that allocates
Console in immortal memory. Furthermore, when starting the computations, a switch to ap-
propriate memory area must be performed, line 38. Finally, the computation starts, line 56, but
the developers have to be still aware in which memory area is the code running and perform an
explicit switch when necessary, as line 62 shows. The resulting code is thus mixed with the RTSJ
incidental specifics and the functional logic can be hardly recognized.

2.2.4 Advantages and Disadvantages of RTSJ

The biggest advantage of RTSJ is its ability to support hard-, soft- and non-realtime tasks in the
application at the same time and allowing them to interact between each other. Using RTSJ for
hard real-time tasks means that developers can lean over the well known semantics of the Java
world while respecting RTSJ defined restrictions. At the same time, the full scale of Java benefits
(e.g. garbage collection, Java libraries) can be used when developing those tasks that do not bring
any real-time constraints.

However, there is no silver bullet when introducing Java into the real-time world. Despite
the effort to preserve semantics form the regular Java, RTSJ introduces a new programming style.
This is caused mainly by the new memory model that on one hand achieves predictability, while
on the other hand introduces a non-intuitive programming techniques. As extensively discussed
in the literature, e.g. in [PV06, Nil06, ACG+07, ABG+08], the Scoped and Immortal memories
introduce a new level of complexities for developers.

To better illustrate the complexities of RTSJ, we discuss them in the context of the motiva-
tion scenario introduced in the previous section. For illustration, in Fig. 2.6 we have highlighted
by annotations the classes with the corresponding RTSJ concepts that help to implement their
functionality. As we can see, real-time and non-realtime concerns are mixed together - whereas
MonitoringSystem and ProductionLine are executed under hard real-time conditions, the
AuditLog is a regular Java class. Therefore, in such system, identification of those parts that
run under different real-time constrains is difficult. Hence the design of communication between
them is clumsy and error-prone. RTSJ introduces rules and restrictions, e.g. on application of
wait-free queues, that must be respected. However, reasoning about the implementation is ham-
pered by the complexity of functional and RTSJ concepts. As a consequence, the developer has
to face these issues at the implementation level which brings many accidental complexities.

Indeed, solving these issues during the implementation is an error-prone process. Following
RTSJ rules is hard due to their non-intuitive nature. This is because for a RTSJ program to be cor-
rect, developers must deal with an added dimension: where a particular datum was allocated.
Design patterns and idioms for programming effectively with scoped memory have been pro-
posed [A. 05, BN03, PFHV04, BCC+03], but anecdotal evidence suggests that programmers have
a hard time dealing with NoHeapRealtimeThread and that resulting programs are brittle.

Furthermore, respecting the RTSJ rules often leads to modification of architectural concepts
- e.g. changing a communication style from a synchronous to asynchronous. Enforced by the
rules of the RTSJ thread model, these modification potentially have a deep impact on the logic
of the whole system. Finally, developing RTSJ in this ad-hoc manner fully prevents any reuse
in different real-time conditions, since the RTSJ-specific concerns are tangled with the functional
implementation and they even propagate into the system architecture. Consequently, compo-
nents may work just fine when tested independently, but break when put in a particular scoped
memory context.

19

Chapter 2. Real-time Programming in Java

Based on these shortcomings, many approaches to their mitigation have been proposed, we
discuss them in Section 2.3.

2.2.5 Real-time Java Virtual Machines

In order to use RTSJ, a specially designed and implemented Real-time Virtual Machine (RT
VM) is needed. The design and implementation of RTSJ virtual machines have been docu-
mented in several projects focused on different domains: e.g. RT VM development [Gre05,
BCF+06, ABC+07, Ang02], ahead-of-time compilation [FS07], or memory management imple-
mentation [CC03, WSBR01, PV03, ZNV04]. Furthermore, RT OS enforcing predictability is the
key requirement, experiences on developing such OS have been also reported e.g. in [ABB+07a,
MG07].

Nowadays, many commercial RT VM are available, we provide the list of the most popular
of them, (sorted by first release date)1:

• TimeSys RTSJ Reference Implementation Only licensed for non-commercial use. Runs on
X86/Linux. Available at www.timesys.com.

• Java RTS Sun Java SE Real-time (Java RTS). Runs on Sparc/Solaris (Beta for SUSE Linux
Enterprise Realtime 10, and Red Hat Enterprise MRG 1.0.). Available at http://java.
sun.com/javase/technologies/realtime/rts/.

• IBM WebSphere Real Time. IBM WebSphere Real Time V2 for Real Time Linux, running
on main-line real-time Linux distributions (Red Hat MRG and Novell SLERT). However,
there are limitations on the hardware supported. The main reason for the hardware limita-
tion is that the supported models have modified firmware to allow better control over SMI
event prioritization, in order to achieve determinism of the underlying hardware. Available
at www.ibm.com/software/webservers/realtime/.

Furthermore, other real-time, Java-like platforms have been developed, either as commercial or
academic projects. Usually, these VMs are not fully compliant with RTSJ.

• OVM is an academia research project at Purdue University that implements RT VM. Avail-
able at http://www.ovmj.org

• JamaicaVM implements RTSJ and a deterministic garbage collector. Runs on various plat-
forms. Available at http://www.aicas.com/jamaica.html.

• jRate (Java Real-Time Extension) is an extension of the GNU GCJ compiler front-end and
runtime system which adds support for most of the features required by the Real-Time
Specification for Java [Ang02]. Available at http://jrate.sourceforge.net/.

• Aonix PERC is a commercial project targeting many hard real-time, safety critical and em-
bedded systems. The PERC platform is introducing many trade-offs and therefore is not
fully compliant with RTSJ, however, allows developers to target a broader scope of applica-
tions rather than having strict limitations as it is the case of RTSJ. Available at www.aonix.
com/perc.

• aJ100 is a hardware coded JVM. Available at www.ajile.com.

• JRockit Real-Time JRockit Enterprise Java Runtime provided by ORACLE is a Java VM
featuring real-time garbage collection suitable for soft real-time systems. Available at www.
oracle.com/jrockit.

• IBM/Apogee Aphelion. Aphelion is comprised of reliable and high performance JREs for
deploying Java applications on devices based on embedded systems. Supports many OS
platforms, further details at http://www.apogee.com/

1The provided list of VMs corresponds to the status in June 2009.

20

www.timesys.com
http://java.sun.com/javase/technologies/realtime/rts/
http://java.sun.com/javase/technologies/realtime/rts/
www.ibm.com/software/webservers/realtime/
http://www.ovmj.org
http://www.aicas.com/jamaica.html
http://jrate.sourceforge.net/
www.aonix.com/perc
www.aonix.com/perc
www.ajile.com
www.oracle.com/jrockit
www.oracle.com/jrockit
http://www.apogee.com/

2.3. Beyond Real-Time Specification for Java

During the course of this dissertation, we have been using Java RTS VM provided by SUN,
running on Linux 2.6.24 kernel with RT-Preempt patch [MG07]. Furthermore, for debugging and
testing purposes we have been using also the JamaicaVM running on a standard Windows XP
platform. Although this configuration does not provide a sufficient level of predictability, it was
suitable for simple tests and prototyping.

2.3 Beyond Real-Time Specification for Java

The Real-time Java programming language has become a viable platform for real-time systems.
From the earlier experiments with RTSJ [BCC+03, NB03], to its first success - the ScanEagle
Project [Boe05] where Real-Time Java performed better than C++ [ABC+07], RTSJ has gradually
earned its credit. Today we can find RTSJ in various types of real-time systems, from indus-
trial control [RHN+07], shipboard computing [IBM07], audio processing [ABB+07b, JASB07], to
avionics [ABC+07], and financial sector [SR08, BEA06]. High performance real-time Java virtual
machines are now available from multiple vendors. RTSJ has found its place in the world of
real-time programming.

This recent significant increase of interest in real-time Java is reflected by an intensive research
in the area. We notice movement from research of RTSJ compliant implementation patterns and
idioms [A. 05, BN03, PFHV04] to more general approaches to RTSJ. However, despite before men-
tioned achievements of RTSJ, the issues of RTSJ discussed in Section 2.2.4 are yet to be addressed
fully.

Nowadays, a significant effort is dedicated to introduction of component-based software en-
gineering (CBSE) into the world of real-time Java [Nil07]. However, we leave the discussion of
component frameworks for RTSJ to Chapter 3 where an exhaustive study of CBSE is conducted.
In this section we discuss other relevant projects with focus in RTSJ.

Extensions to RTSJ

First, many extensions and modifications of the RTSJ memory model [HT08, BVGVEADK06]
were proposed, these proposals however stay on the theoretical basis since they can not be eval-
uated on standard RTSJ implementations where they are not supported. In this dissertation we
therefore do not consider them in order to stay in compliance with original RTSJ.

Enhancing the RTSJ Programming Model

On the other hand, new approaches were proposed to increase safety and enhance manipulation
with the RTSJ code. Nilsen [Nil06] proposes a type system that enables programmers to develop
code for which the byte code verifier is able to prove the absence of scoped memory protocol
errors, thereby eliminating the need for run-time assignment checks. Benefits of the type sys-
tem include improved software reliability, easier maintenance and integration of independently
developed real-time software modules, and higher performance.

Similarly, the work introduced in [BV07] investigates fitness criteria of RTSJ in model-driven
engineering process that includes automated code generation. The authors identify a basic set of
requirements on code generation process. We further confront our approach with these require-
ments in Chapter 6.

New Programming Models for RTSJ

Apart from the efforts towards enhancement of RTSJ code implementation, new programming
models for RTSJ have been proposed.

The STARS project [ACG+07] presents a new programming model for RTSJ based on aspect-
oriented approach. Here, the real-time concerns are completely separated from applications base

21

Chapter 2. Real-time Programming in Java

code. Although, as shown in [SPDC06], aspect- and component-oriented approaches are com-
plementary, the component-oriented approach offers higher-level perspective for system devel-
opment and brings a more transparent way of managing non-functional properties with only
slightly bigger overhead. Since the work has conducted a case study on the same application as
in this project, we state further comparisons in Section 6.2.

Flexible Tasks Graphs [ABG+08] define a new restricted thread programming model for Java.
As the biggest advantage of the model we see the static safety of memory operations. Runtime
checks of these operations therefore does not have to be performed which brings a very good
performance.

2.4 Summary

The goal of this chapter was to present the Real-time Specification for Java. First, we have pre-
sented RTSJ and its basic concepts. Our motivation was to consider RTSJ from a point of view
of an application developer and we have discussed the principles of RTSJ that substantially in-
fluence the programming style used. Therefore, we have summarized the key advantages and
disadvantages of RTSJ (Section 2.2.4) and illustrated their impact on RTSJ application in a mo-
tivation scenario (presented in Section 2.2.3). Second, we have considered the afore mentioned
issues from a research perspective, discussing the current trend and technologies in the domain
of real-time Java programming (Section 2.3).

22

Chapter 3
Component-Based Software
Engineering

Contents
3.1 Component-based Software Engineering 24

3.1.1 Component Frameworks . 25
3.1.2 Advanced Technologies in CBSE . 25

3.2 State-of-the-Art of Component Frameworks 27
3.2.1 General Purpose Component Frameworks 27
3.2.2 Domain-Specific Component Frameworks 28
3.2.3 Component Frameworks for RTSJ . 31
3.2.4 Distributed and Embedded Computing in Real-time Java Systems . 35

3.3 FRACTAL Component Model . 35
3.3.1 FAC: FRACTAL Aspect Model . 37
3.3.2 Formalization of the FRACTAL Component Model 38

3.4 State-of-the-Art Synthesis . 39
3.5 Goals Revisited . 40
3.6 Summary . 41

THE goal of this chapter is to provide a sufficient background about the technologies and
fundamental principles employed in this dissertation. We introduce Component-based
Software Engineering [CCL06] - the key technology that we employ when facing the

challenges of real-time programming. Consequently, we discuss the state-of-the-art component
frameworks focused on RTSJ, provide their comparison and identify the limitations. Further-
more, we chose the FRACTAL Component model [BCL+06] as the technological platform for our
research. We elaborate more on the features of the model and we discuss the benefits that con-
vinced us to use this platform.

At the end of this chapter we provide a synthesis of technologies presented in this and in the
previous chapter and discuss how they complement to each other. Based on this discussion we
restate and define more precisely the goals of this dissertation.

Contributions

The contributions of this chapter are:

• Component-based Software Engineering. We introduce Component-based Programming
and present its key technologies contributing to effective development and deployment of

23

Chapter 3. Component-Based Software Engineering

software systems. Also, we provide a brief overview of selected component models and
extract their key advantages.

• Component Frameworks for RTSJ. We discuss the cutting edge technologies based on RTSJ
and evaluate their limitations. The motivation is to consult the current research trends
in RTSJ and evaluate how they address the issues that we have identified as the crucial
disadvantages of RTSJ. Notably, we refer on the benefits that are achieved by using CBSE
in the real-time Java domain.

• FRACTAL Component Model. Finally, we chose the FRACTAL Component Model as the
key technological platform in this dissertation and we argue for this decision by presenting
the key advantages of the FRACTAL component model.

• State-of-the-Art Summary. We synthesize the state-of-the-art and highlight the key chal-
lenges to be addressed in this dissertation. Particularly we consider presented technologies
– Real-Time Systems, CBSE, and RTSJ, and show how they can be combined.

• Goals Refinement. Based on the state-of-the-art presented in this sections we refine more
precisely the goals of the dissertation.

Structure of the Chapter

The rest of the chapter is organized as follows. We present Component-based Software Engi-
neering in Section 3.1. Our motivation is to introduce the basic terminology and the key tech-
nologies used when developing component-based applications. Furthermore, in Section 3.2 we
show application of CBSE in practice, conducting a survey of component frameworks from gen-
eral purpose ones to RTSJ dedicated ones. In Section 3.3 we focus on the FRACTAL Component
Model and present it in more details, discussing its key features and finally showing some FRAC-
TAL research directions that are related to the goals of this dissertation. Finally, in Section 3.4 we
summarize the presented technologies, based on this, we refine more precisely the goals of this
dissertation in Section 3.5. Finally, a summary of this chapter is given in Section 3.6.

3.1 Component-based Software Engineering

Component-based Software Engineering (CBSE) [Cle02] has emerged as a technology for the
rapid assembly of flexible software systems. The success of this technology has been proved by
variety of its applications, from general component frameworks [BCL+06, BHP06, CBG+08] to
domain specific component frameworks (DSCF) addressing a wide scale of challenges — embed-
ded [vOvdLKM00] or real-time constraints [PLMS08, HACT04], dynamic adaptability [FSSC08,
GER08], distribution support [SVB+08], and many others.

CBSE is a branch of software engineering that studies the design and construction of soft-
ware systems as explicit compositions of software units (components). Various definitions of
a software component have been proposed in the literature, among the most accepted one, we
quote [Cle02]: A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently and is subject to
composition by third parties.

As the main benefits of CBSE we consider:

• Separation of Concerns. CBSE easily achieves full separation of concerns in applications,
since the functionality of the system is implemented in fine-grained component architec-
tures reflecting the functional logic of the system. Furthermore, specific types of compo-
nents can be used to implement non-functional services, achieving separation of functional
and non-functional concerns.

24

3.1. Component-based Software Engineering

• Software Reuse. CBSE fosters software reuse [Sch99] since a software component is consid-
ered as an independent entity with exactly specified interfaces and as such can be subject
of reuse.

• Development Process. The development process of component-based systems [CCL06] is
based on the principles of reuse and separation of concerns that increase product reliability
and stability with shorter development time and reduced cost.

• Static and Runtime Adaptation. CBSE allows component-based systems to achieve a suf-
ficient level of granularity in order to permit modification or update of specific subparts of
the system both statically and dynamically at runtime (using e.g. reflection [LLC07]).

3.1.1 Component Frameworks

A component framework is composed of a component model and the tool support which permit
assembling, deploying and executing component-based applications. Component frameworks
simplify development of software systems. A proper component model represents cornerstone
for each component framework, its extensiveness substantially influences the capabilities of a
component model.

Development Roles The component-based development process [CCL06] introduces a methodol-
ogy for development of software components and of systems based on software components. We
distinguish two types of development roles involved in this process — application developer and
framework developer. Application developer is responsible for development of functional com-
ponents. The role of the framework developer is to develop the tool support and the runtime
platform that will guarantee instantiation, deployment, and execution of the component applica-
tion.

3.1.2 Advanced Technologies in CBSE

Since the basic principles of CBSE were presented, we can introduce a selection of more advanced
concepts and recent research trends related to this disseratation.

Domain-Specific Services

Component applications often have to meet additional domain-specific services - in the litera-
ture [Mor06, DEM02, APPZ04, EPFD01] referred to also as non-functional requirements/aspects/ser-
vices/properties/concerns. By these services we mean all the services required for a proper func-
tioning of the component, for example logging, security, transaction support, persistence, or dis-
tributed communication support.

These domain-specific services are orthogonal to the functional logic of the component. There-
fore their implementation tangled with the functional implementation is not desired for several
reasons. Mainly, crosscutting of these services with the implementation hampers reuse of the
component across domains where different domain-specific services can be required.

Therefore, Moreno [Mor06] argued that domain-specific services should be placed in a custom
made containers and showed how generative programming technique, in this case using Aspect-
Oriented Programming (AOP), can be employed to generate tailorable containers by composing
different domain-specific features. We further refer to the technology of component containers.

Component Containers

Component-oriented container paradigm [Mic] defines that each component is wrapped by a
controlling environment called container (also called membrane in [SPDC06]). Its task is to relieve
the developer from dealing with various domain-specific services required by the component.

25

Chapter 3. Component-Based Software Engineering

This approach is crucial for achieving the separation of concerns be implementing the func-
tional part in the component while deploying the domain-specific services into the dedicated
container where they are hidden from end users. As a consequence, the functional implemen-
tation is not tangled with domain-specific concerns and thus can be easily reused in a different
domain using an according container.

The container of a component is implemented as an assembly of so-called control components.
Additionally, special control components called interceptors can be deployed on component in-
terfaces to arbitrate communication between the component and its environment, they are also
integrated in the container.

Component Connectors

Apart from components, there is an emerging trend to view also the interaction among compo-
nents as a first-class concept – modeled by an entity called connector [MDT03, BP04]. A connector
is often used in design stage, where it represents an interaction of a set of components (i.e., it
realizes a binding).

During the past few years, connectors found their position even at runtime, actually realizing
inter-component communication [MDT03]. A connector at runtime is an inherently distributed
entity that is typically responsible also for addressing distribution (by using a middleware) and
for solving minor incompatibilities among components by employing adaptation.

Runtime Platform Construction

The execution machinery deployed at runtime to support execution of an instance of the com-
ponent model is called runtime platform (in the literature also referred as execution infrastructure).
Under this term we therefore refer to all the glue-code introduced by the framework itself to sup-
port instantiation of a component system and to support the system during the runtime. This
therefore includes the instantiation and deployment code, implementations of component con-
tainers and connectors, and other related code. In the broader sense of this definition, we can also
considers middleware as a part of the runtime platform. Such platform thus, apart from instantia-
tion and runtime support, provides other non-functional services - multiple distribution models,
concurrency support, various communication protocols, and many others.

Current trend in developing and implementing the runtime platform emphasizes a genera-
tive programming approach [CE00, ZPH08]. While this task can be seen only as an engineering
challenge, the runtime platform plays a crucial role in deciding whether the component model
itself will be successful in real-life applications, since characteristics of its implementation have
a direct impact on the performance of a given application. Here, different optimizations, as dis-
cussed in [LP08], should be employed to mitigate notoriously known problem of CBSE systems
— performance overhead (caused e.g. by inter-component communication).

Generative Programming in CBSE

As said, the recent trend in development of component frameworks is the application of genera-
tive methods [CE00, JKSS04] to achieve a generic approach to their instantiation. Moreover, hav-
ing component containers or connectors also at runtime is feasible only when these entities can be
automatically generated. Otherwise, a developer would be forced to implement each concept in
an application separately, which is in overwhelming majority of cases impossible. The impracti-
cableness of the manual approach is yet further magnified by the fact, that some of the properties
(e.g. for connector configuration) are known only as late as at deployment. Therefore, generative
programming technologies are recently proposed to instantiate the runtime platform support-
ing execution of the application, we can witness several interesting approaches. First, a general
approach to generation of component connectors based on high-level specification [Bur06]. A
generative approach to automate the instantiation process of a runtime platform for on-board

26

3.2. State-of-the-Art of Component Frameworks

systems is proposed in [CCPS03]. Recently, Bures et al. [BHM09] propose a meta-component sys-
tem, which provides a software product line for creating custom component systems. The authors
summarize properties and requirements of current component-based frameworks and propose
a generative method for generating runtime platforms and support tools (e.g. deployment tool,
editors, monitoring tools) according to specified features reflecting demands of a target platform
and a selected component model.

Furthermore, the generative programming approach can be also used when instantiating the
runtime platforms and middleware, addressed e.g. in [ZPH08]. Usually, such approach is used
to instantiate a middleware layer that directly fits the requirements of a particular application.
The benefits of such approach are a complete performance gain and reduced footprint.

Verification of Software Components

The verification of system correctness becomes crucial when developing a distributed embedded
application for mission-critical systems. Here, the ability to support the exhaustive verification
of applications is a considerable attribute.

However, as we have shown in [PA08], the component-oriented approach is beneficial for
formal verification of systems. Usually, complex systems can not be exhaustively verified by the
methods of model checking [E. 00] since they generate an immense state space which can not be
fully traversed. However, software components represent a considerably smaller state space. It
is therefore natural to tackle the problem of software component verification.

3.2 State-of-the-Art of Component Frameworks

In this section we discuss the state-of-the-art of component frameworks. First, we focus on gen-
eral purpose frameworks in order to identify how the advanced technologies of CBSE are sup-
ported in practice. Furthermore, we consult component frameworks for distributed, real-time
and embedded systems, arguing on examples for the benefits of employing the CBSE technol-
ogy in this domain. Finally, we discuss and compare component frameworks dedicated to RTSJ,
evaluating their concepts and revealing their limitations.

3.2.1 General Purpose Component Frameworks

With the boom of component-based technology, a plethora of component models is emerging as
we speak. Each component model has its specifics and particularities that reflect its focus and
the application domain it is intended for. Interested reader can find inspiring discussions and
comparisons of component models in numerous surveys, e.g. in [BHM09, CBG+08, LW07]. We
however focus more in detail on selected component models to highlight interesting features and
flaws.

Therefore, we first present two selected general purpose component models - FRACTAL and
SOFA component model. Second, in the following section, we draw our attention to domain
specific component models dedicated to distributed, real-time and embedded systems.

FRACTAL Component Model

FRACTAL [BCL+06] is a modular and extensible component model that can be used with vari-
ous programming languages to design, implement, deploy and reconfigure various systems and
applications, from operating systems to middleware platforms or graphical user interfaces.

The FRACTAL initiative [BCS09] represents almost a decade of both academia and industry
successful projects with many research outcomes and industry applications. The key features
of FRACTAL are its openness and lightweight. FRACTAL provides an open approach to CBSE
allowing developers to introduce various extensions wit minimal restrictions. Last but not least
FRACTAL provides a rich tool support [OW209a].

27

Chapter 3. Component-Based Software Engineering

The key governing benefit when using FRACTAL is its stress on separation of concerns. The
provided model is hierarchical, supporting full separation of functional concerns by allowing
developers to design appropriate components. Furthermore, separation of functional and non-
functional concerns is achieved through a controlling layer that implements domain-specific ser-
vices thus preventing them to crosscut the functional implementation.

Additionally, the research presented in [LLC07] focuses on reliable reconfiguration of FRAC-
TAL applications. Although not directly solving reconfiguration of real-time systems, the work
justifies the ability of FRACTAL to extensively support reliable ways of reconfiguration.

We describe the FRACTAL component model in more details in Section 3.3.

SOFA

SOFA [BHP06] is a distributed component model, the result of several years of experience in
working on both SOFA and FRACTAL component models. In [BHP06], the main limitations of
SOFA are identified as: (i) having a limited support for dynamic reconfigurations, (ii) lacking of a
structure for the control part of a component, (iii) and having an unbalanced support for multiple
communication styles.

SOFA 2.0 supports dynamic reconfiguration (i.e., adding and removing components at run-
time, passing references to components, etc.). It proposes some reconfiguration patterns in order
to avoid uncontrolled reconfigurations which lead to runtime errors. For structuring the control
part of a component, SOFA 2.0 introduces microcomponents and control interfaces. Microcom-
ponents are minimalist components: they are flat (there are no nested microcomponents); do not
have any connectors; are not distributed. The parallel to FRACTAL would be FRACTAL ’s con-
trollers. Control interfaces are orthogonal to business interfaces in the sense that they focus on
non-functional features of components. These interfaces are in direct relation to the control in-
terfaces found in FRACTAL. In SOFA 2.0, multiple communication styles are supported thanks
to classes of connectors. Additionally, an approach to automatic specialization of connectors to
match the runtime properties is also supported.

3.2.2 Domain-Specific Component Frameworks

Typically, a domain-specific component framework (DSCF) is composed similarly as a general
purpose component framework. In addition, it defines relevant concepts, called domain-specific
concepts, according to the requirements of the targeted application domain (e.g. to address the
distribution support or real-time constraints). In this section we focus on the domain of dis-
tributed, real-time and embedded Systems (DRE) [CL02] where many component models can
be found, e.g. [SVB+08, vOvdLKM00, WRM+05a, PMPL08, dNBR06, RPV+06, WRM+05b]. We
focus on the general characteristics of these component models and we present the discussion of
component frameworks specific to RTSJ in the next section.

AADL

AADL [FLV06] is a textual and graphical language used to design and analyze both software and
hardware architectures of real-time systems and their performance-critical characteristics. AADL
permits engineers to represent embedded systems as component-based system architecture and
model component interactions as flows, service calls, and shared access. Furthermore, it allows
engineers to model task execution and communication with precise timing semantics.

AADL is part of a model-based engineering enterprise solution and, as shown in Fig. 3.1,
AADL model development can be used in parallel with the software system’s development.
Then, the analysis views generated through AADL modeling can be compared to testing results
during system implementation.

28

3.2. State-of-the-Art of Component Frameworks

Figure 3.1: AADL Model Development

SOFA HI

SOFA HI [MWP+08] is a SOFA profile for high-integrity embedded systems based on the SOFA
component model. The project was initialized by SciSys UK - an ESA 2 contractor. Currently,
there is an effort to extend the SOFA HI towards the challenges of real-time systems [KPV+09].

This profile originates from the DiSCo project [PFP08], which addressed space missions where
key challenges are hard real-time constraints for applications running in embedded environ-
ments, partitioning between applications having different levels of criticality, and distributed
computing. The DiSCo Space-Oriented Middleware introduced a component model where each
component provides a wide set of component controllers - a feature inspired by the FRACTAL com-
ponent model.

SOFA HI provides a state-of-the-art hierarchical component model supporting expensively
component containers and connectors. Furthermore, the model is supporting also more ad-
vanced technologies e.g. dynamic reconfiguration and formal verification. It also provides a
development methodology providing an "activity" view that allows reasoning about activities
(composed of tasks and mapped to chains of component operations), synchronization, execution
times, deadlines, etc.

Ada-CCM

Ada-CCM [PMPL08] proposes a technology for the development of distributed real-time component-
based applications, which takes advantage of the features that Ada language [TDB+07] offers for
the development of applications with predictable temporal behavior.

The development process proposed by Ada-CCM is illustrated in Fig. 3.2. As we can see, it
starts with description of real-time and functional requirements, the MAST modeler [HGGM01]
is used to construct the real-time situation model, and generative programming techniques are
extensively employed to facilitate the development. Furthermore, the approach adopts the com-
ponent container technology in order to manage real-time properties of the component (e.g.
scheduling parameters configuration).

2European Space Agency, www.esa.int/

29

www.esa.int/

Chapter 3. Component-Based Software Engineering

Figure 3.2: Component-based Application Development process in AdaCCM

Rohlik et al. –Reusable and Verifiable Software Components

Rohlik et. al. [RPV+06] propose a component framework for real-time applications. The notable
feature of the approach is the separation of the treatment of functional and domain-specific (e.g.
timing) requirements. These requirements are defined and modeled separately from each other
and are only merged when the models are translated into code. The methodology proposed in the
framework provides two views on the architecture: the functional view defining the framework
from a functional point of view and the timing view defining hard real-time characteristics of
the system. An approach to automatic instantiation of the runtime platform for this component
model is described in [CCPS03].

OSGi-based framework for Real-time Systems

A recent popularity of the OSGi model [All09] is reflected also in the domain of real-time sys-
tems. To name at least on project, a hybrid real-time component model is proposed in [GDFSB08].
The authors propose a framework where real-time and non-real-time task coexist in symbiosis,
whereas the non-real-time system is managed by the OSGi framework, the real-time part is im-
plemented using RTAI [MDP].

Figure 3.3: A Container Architecture Running the Hybrid Real-Time Component Model

30

3.2. State-of-the-Art of Component Frameworks

We present the architecture of the solution in Fig. 3.3, the interesting aspect of this approach is
support for cooperation between the real-time and non-realtime parts to the system. The respon-
sibility of the non-realtime tasks is to provide component adaptation and management functions
for the real-time tasks.

3.2.3 Component Frameworks for RTSJ

Already Dvorak et. al. [DR04] have argued for a component framework focused on Real-time
Java. The authors distinguish two kinds of choices that have to be made during an application
developed – incidental and essential choices. They claim that rather than solving incidental choices
– e.g. language specific issues, the development process must focus on essential choices – meaning
choices that reveal underlying requirements of the system - e.g. functional and real-time proper-
ties. Furthermore, a successful framework should allow developers to specify the essentials and
let the tools automatically generate the platform-specific incidentals.

Moreover, with increasing complexity of RT Java systems, there is a pressure to incorporate
CBSE as part of the strategy for reducing the total costs of developing and maintaining these
systems by systematically enabling software reuse [Nil07].

Therefore, in this section we discuss component frameworks specifically created to address
the challenges of RTSJ. We use the following characteristics of the frameworks as the evaluation
criterions:

• CBSE criterions

– Component Model The maturity of the component model is important to allow devel-
opers to achieve separation of concerns.

– Communication Model The communication model must be rich enough to allow var-
ious interactions between components. This is important since RTSJ enforces both
synchronous and asynchronous types of communication.

– Development Methodology The framework must propose a development methodology
guiding users through the development process in order to mitigate the complexities
of RTSJ.

– Adaptation Support Overall support for static and dynamic adaptation of developed
applications.

• RTSJ criterions

– Memory Model We evaluate framework’s support for RTSJ memory model. We evalu-
ate weather a sufficient support for handling cross-scope communication is provided.
This concerns not only communication patterns and idioms, but a higher level ap-
proach allowing to face these obstacles already at design time.

– Thread Model Supporting the notion of different types of schedulable entities is im-
portant in order to design communication between them, we therefore evaluate this
aspect.

– Formalization and Validation Support Finally, a formal approach embracing the frame-
work should be proposed in order to support validation of developed applications.

Compadres Framework

Compadres [HGCK07, J. 06] proposes a component framework for distributed real-time embed-
ded systems. The component model is hierarchical and supports solely event-oriented interac-
tions between components. The complexities of the RTSJ threading model are not reflected by the
framework. On the other hand, Compadres pays more attention to the RTSJ memory manage-
ment. It defines that each component is allocated and executing either in a scoped or immortal
memory. This restriction allows the framework to clearly address the challenge of cross-scope

31

Chapter 3. Component-Based Software Engineering

50 J. Hu et al.

a depth greater than that of the parent component. Therefore, scoped memory
components that are triggered by other components and have shorter lifetime
should be instantiated as their children.

One method to detect scoped memory regions for allocating objects from Java
programs is to generate a directed acyclic graph based on object lifetimes and ref-
erences and assign RTSJ memory scopes based on the depth of the object in the
graph [6]. We use a similar approach, but at the level of components, rather than
objects. As the lifetimes of scoped components are different, the scoped mem-
ory areas are not bound to components at compile-time, but at runtime. This
memory can be reused after the scoped component is reclaimed. The Compadres
component framework allows component instantiation at application runtime.
Components are created in LTScopedMemory. Further optimization of compo-
nent instantiation can be achieved by creating pools of scoped memory areas in
immortal memory and reusing these areas at runtime. The size and number of
scopes in the pools can be assigned in the CCL file under the RTSJAttributes
tag (Listing 1.2).

Component A

Scoped Memory
Manager (SMM)

Component B
Component B Component C

Manager

Component C

SMM

Component D Component E

Fig. 4. Parent components communicate with their child components via scoped mem-
ory managers (SMMs)

Component Communication via Scoped Memory Managers: References
to objects in different components are constrained by the RTSJ memory access
rules described previously, but directly exchanging messages across ports may
violate these restrictions. We solve this problem by using a Scoped Memory Man-
ager (SMM), illustrated in Fig. 4. The SMM is used to connect an internal port
of a component to the external port of its child component. In our framework,
each parent component needs only one SMM to communicate with all its chil-
dren. Each SMM of a parent component maintains a virtual proxy for every

Figure 3.4: Compadress Memory model : Parent components communicate with their child com-
ponents via scoped memory managers (SMMs)

communication. Compadres uses a set of communication patterns defined in [PFHV04] and fur-
ther proposes scoped memory managers to provide communication between sibling components,
as illustrated in Fig. 3.4.

However, in this approach, components can be allocated only in scoped or immortal mem-
ories, therefore communication with regular non-real-time parts of applications can not be ex-
pressed. And since the coexistence of real-time and non-real-time elements of an application is
often considered as one of the biggest advantages of RTSJ, we believe that it should be addressed
also by its component model and therefore we consider this memory model as too restrictive.

Compadres also proposes some notion of development methodology of real-time application
development in order to separate development of functional and RTSJ concerns. However, a
solution introducing systematically the real-time concerns into the functional architecture is not
proposed, thus the complexities of designing real-time systems are not mitigated fully.

Etienne et al. – A Component Framework for RTSJ

Work introduced in [ECB06] defines a hierarchical component model for Real-Time Java. The
classical concept of component model is here extended by introducing active and passive compo-
nents. Whereas a passive component represents only e.g. libraries or shared entities, an active
component is having its own thread of control and represents a real-time task. Additionally,
properties describing periodicity, deadline and priority can be specified in order to express non-
functional parameters of the active component. We consider this approach as highly appropriate
for RTSJ systems since it allows developers to deal with the complexities of RTSJ thread model.

The model is also allowing to hierarchically design components into compositions, thus achiev-
ing a much coarse-grained architecture. Moreover, the developer can specify component con-
tracts, which provide information about the structural, behavioral and temporal properties of the
component. These contracts are verified during the assembly phase in order to check confor-
mance of components employed in the system. The proposed component model is illustrated in
Fig. 3.5.

The model employs a simple memory management model. Each component is allocated
within a distinct scoped memory. This allocation policy gives advantages of controlling the life-
time of each component individually and an efficient mean of managing the memory footprint

32

3.2. State-of-the-Art of Component Frameworks

into a composite to facilitate reuse of the enhanced configu-
ration.

3.2 Specification
In our architecture, a component is equipped with a set of
well-defined specifications in order to get precise description
of what functionalities it offers and requires, thus facilitating
its reuse. As explained in [4] [5], these specifications, called
contracts, provide information about the structural, behav-
ioral and temporal properties of the component. During the
assembly phase, components undergo contract negotiations
to ensure conformance of their operational requirements. In
[4] [5], we also shown how compatibility is established based
on each type of contract used.

In our model, the contract specifications also make it pos-
sible to carry out verification of safety-liveness properties
as well as schedulability analysis. In both cases, analysis is
performed using Timed automata.

4. FRAMEWORK MEMORY STRUCTURE
In our framework, we adopt a memory structure that is
patterned after our component model hierarchy, whereby
each component is allocated within a distinct scoped mem-
ory. This allocation policy allows us to control the lifetime
of each component individually while providing an efficient
mean to manage the memory footprint of an application. A
scoped memory remains occupied while the component allo-
cated within it is active. Once the component is terminated,
the memory area becomes available again for reallocation.
Thus, this memory structuring allows us to change the con-
figuration of an application at run-time while ensuring mem-
ory availability. Such concern is particularly important for
highly available real-time systems, whereby undergoing an
offline phase to perform software adaptation may lead to
fatal failures. However, adopting such a memory structure
raises an important issue, which is how to perform compo-
nent interface bindings without violating RTSJ’s memory
reference, assignment and single-parent rules [9] [10]. This
problem is addressed by incorporating within composite en-
tities glue codes, based on RTSJ’s design patterns [1] [9]
[8], to ensure seamless component accessibility. As we will
see in section 6.3, the configuration of the composite enti-
ties will vary depending on the client or server nature of its
sub-components.

5. RTSJ COMPONENT STRUCTURE
As shown in figure 1, the RTSJ component framework is
composed basically of three abstract classes, corresponding
to the active, passive and composite structures respectively.
The Component abstract class implements the IComponent

interface, which provides methods for initializing and termi-
nating the component. It incorporates a Wedge Thread
[8] whose function is to keep alive the ScopedMemory within
which the component object has been instantiated and ini-
tialized (via the init method). As explained in [8], the
Wedge Thread is just a sleeping thread and as such will
not perform any processing during the lifetime of the com-
ponent until being called, via the terminate method, to free
the ScopedMemory. The ActiveComponent abstract class ex-
tends the Component class and implements the IActiveComp-
onent interface, which provides a method to start its Realti-

<<Interface>>
IActiveComponent

start()

Component
{abstract}

we : WaitExit

+ terminate() : void
+ init() : void

IComponent
<<Interface>>

terminate()
init()

IComposite
<<Interface>>

getScopeSubComponent(String cmp) : int
initSubComponents()

getNextEdge() : int
Class EdgeImpl, long memsize)

spaceForComponents(int mems, int clients,
e : Edge[]
LC : LaunchComponent

initSubComponents()
getScopeSubComponent(String cmp) : int

+ terminate()
getNextEdge() : int

spaceForComponents(int mems, int clients,
Class EdgeImpl, long memsize)

Composite
{abstract}

MA : LTMemory[]

{abstract}

+ getScope() : MemoryArea
+ setRTThread(RealtimeThread rt)

lt : LTMemory
stop : boolean

rt : RealtimeThread

+ start()
+ terminate()
+ setScope(long s)

ActiveComponent

Figure 1: RTSJ Component framework

meThread. It also includes a ScopedMemory used as a tem-
porary execution space for the RealtimeThread. Moreover,
the ActiveComponent abstract class overrides the terminate
method of the Component abstract class to include the nec-
essary codes for stopping the RealtimeThread and provides
additional methods for setting the RealtimeThread to be
used, as well as the memory area space within which the
RealtimeThread will execute.

In general, implementing a passive or active component con-
sists in implementing a class that extends the corresponding
abstract class. The writing of the component’s inner logic
does not require any concern about RTSJ’s memory man-
agement. The necessary codes to handle these are generated
at the composite level. However, as explained in [1], special
care needs to be taken concerning the use of standard Java
libraries. The developer has to ensure that these libraries
do not cause memory leakage within the allocation context
of the component.

5.1 Dependency injection
In our framework, component dependencies are made ex-
plicit through the Dependency Injection pattern [6]. This
mechanism allows a component class to be loosely coupled
by inverting how it obtains external component references.
This is achieved through the use of private interfaces. The
concrete component references are provided externally. In
particular, we use a form of dependency injection called In-
terface Injection. As shown in program 1, any compo-
nent depending on one or more external components needs
to implement the IBindController interface to provide the
methods required to enable binding of its private interfaces
with concrete component references.

6. RTSJ COMPOSITE STRUCTURE
The composite entity is much more of interest as regards
to RTSJ constructs. In our model, the composite is a mere
structuring entity which allows component reuse at a coarser

Figure 3.5: Etienne et. al. Component Model

of the application. The high execution cost of the scoped memory can be expected when the con-
figuration of components spans over several hierarchy levels. Here, each service call performed
by a client component requires one or more memory traversals, thus decreasing the performance
of the system. To cope with this, subcomponents of a component can be allocated in a collective
scoped memory and thus preventing from hierarchical traversals of memory. However, such a
solution is limiting the flexibility of the system and can cause a memory leakage within the scope
(old instances of subcomponents are remaining in the scope for the lifetime composite). The bot-
tom line is that the developer has to find an exact balance between flexibility and performance of
the system.

However, in the model, the real-time memory management concerns can not be expressed
independently of the functional architecture, systems are thus developed already with real-time
concerns. This not only puts additional burdens on designers but also hinders later reuse and
modification. When designing the scoped memory structure, the model allows to assign one
scope memory to more components, however this fact can not be expressed at the architectural
level of applications. Moreover, only the deep-copy pattern is proposed to solve cross-scope
communication. To summarize, we still see some space for improvement when considering the
development of RTSJ applications in this framework.

Golden Gate Project

The project Golden Gate [DBC+04, BCC+03] evaluates suitability of RTSJ to be used in develop-
ment of control software for onboard system. One of the milestones of the project was to design
control loops for driving and steering a 6-wheel experimental Mars rover.

Driven by the specific requirements, the project introduced real-time components that encap-
sulate the functional code to support the RTSJ memory management. The main focus was laid
on the memory management aspects of RTSJ, the usage of real-time threads together with their
limitations is not addressed. However, the considerable results were achieved in benchmarking
RTSJ [DR04], the authors conclude, as we have already mentioned, rather than facing language
specific issues - the incidentals, the development process must focus on essential choices. The es-
sentials are for example: data structures for inputs and outputs, pure functions that perform state

33

Chapter 3. Component-Based Software Engineering

transformations, and required properties of sequencing, timing, concurrency, etc. These concepts
relate directly to the problem domain and are neutral with respect to language, software architec-
ture, and hardware architecture. Consequently, they leave options open late in the development
and testing cycle, rather than making early (and sometimes regrettable) commitments that can
only be changed at great cost.

As one of the outcomes of the project, we therefore consider a specification of a successful
framework for RTSJ – such a framework should allow developers to specify the essentials and
let the tools automatically generate the platform-specific incidentals that will satisfy the require-
ments.

Synthesis

We summarize and compare the characteristics of presented frameworks in the Table 3.1. Except
from the frameworks presented above, the table also includes the SOFA HI component model,
this servers as a comparisons in order to evaluate maturity of the presented frameworks.

Considering the CBSE criterions, SOFA HI offers the most of the features available in the do-
main of CBSE, from component containers supporting separation of concerns, to software con-
nectors that provide a wide set of communication types. Development methodology and system
reconfiguration are also addressed by this component model. Comparing with the component
frameworks for RTSJ, we witness that these component models are still immature.

Considering the RTSJ criterions, the complexities of the RTSJ thread model are usually ad-
dressed by introducing active and passive components. To mitigate the problems of memory
management, usually a restricted set of patterns [CS04, BN03, PFHV04] is defined. However,
these technologies are not applied consistently and various frameworks provide support for
them only to some limited extent. Furthermore, no high-level abstractions are employed to allow
developers to face these obstacles before actually starting the implementation process. Finally,
none of the presented frameworks stands on a formally defined ground, thus failing to achieve a
demanded support for validation of developed applications.

Compadres Etienne et al. SOFA HI Golden Gate

CBSE Criterions
Component

Model
Communication

Model
Development
Methodology
Adaptation

RTSJ Criterions
Thread

Model Support
Memory

Model Support
Formalization and

Validation
Legend

Low Support High Support

Table 3.1: Recapitulation and Comparison of Component Frameworks for RTSJ

34

3.3. FRACTAL Component Model

3.2.4 Distributed and Embedded Computing in Real-time Java Systems

The area of distributed programming in the scope of real-time Java includes several research
directions. The leading initiative is represented by an integration of Remote Method Invoca-
tion (RMI) into the RTSJ [WCJW02] and solving the task related issues such as handling real-time
properties [BW03, WCJW02] or memory allocation [BVGVEA05, BW03]. The results of these
projects are reflected in a status report of JSR 50 [AJ06] which tries to cover all aspects of distribu-
tion (real-time properties handing, failure semantics, distributed threads and their scheduling).
A similar approach proposes a profile for distributed hard real-time programming [TAdM07].
However, a framework addressing comprehensively the challenge of developing such a complex
system still has not been proposed.

Another research area covers the Real-time CORBA specification [OMG] which can serve as a
particular base for a requirements analysis of real-time distributed systems. Its main implemen-
tor in the RTSJ world is RTZen [RZP+05]. Although it is a middleware implementing almost all
parts of the Real-time CORBA specification within the scope of RTSJ, it only focuses on a core of
communication and does not provide any abstraction of RTSJ.

To summarize, all these projects focus only on low-level communication issues and their in-
tegration into the scope of RTSJ. They do not address any higher abstraction of the real-time
communication. It could however be beneficial to reflect distribution in different stages of the
application lifecycle (design, implementation, runtime).

3.3 FRACTAL Component Model

The FRACTAL component model [BCL+06] is a light weight component model, focused on pro-
gramming language concepts. In contrast to other component models, such as EJB, .Net or CCM,
it does not require the extra-machinery supporting its functionality. The model is built as a high
level model and stresses on modularity and extensibility. Moreover it allows the definition, con-
figuration, dynamic reconfiguration, and clear separation of functional and non-functional con-
cerns.

The FRACTAL model is somewhat inspired from biological cells, where exchanges between
the content of a cell and the environment are controlled by the membrane. By analogy, a FRAC-
TAL component is a runtime entity, which offers server and client functional interfaces, as well
as non-functional interfaces implemented as controller objects in the membrane. All interactions
with the component are interactions with the membrane of the component, and this allows inter-
ception and intercession using interception objects positioned within the membrane. Moreover,
all non-functional aspects are dealt within the membrane of a component, thus enforcing separa-
tion of concerns between functional and non-functional features.

The FRACTAL model is an open component model, and in that sense it allows for arbitrary
classes of controllers and interceptor objects, including user-defined ones. FRACTAL is meant to
be extensible; in this sense it leaves unspecified how communication takes place between com-
ponents, how components are specified, and what its implementation is; even bindings can be
components. Non-functional features of the component can also be customized.

In Fig. 3.6 we present an illustration example of a FRACTAL application architecture. Here, all
the key concepts of the FRACTAL component model are presented, we further clarify them.

• Composite Component is a component composed of subcomponents

• Primitive Component is a component that does not have any subcomponents and is di-
rectly implemented in some programming language.

• Shared Component is a component that has more than one super-components.

• Content is one of the two parts of a component, the other one being its membrane. The
content is an abstract entity controlled by a membrane. The content of a component is
(recursively) made of sub components and bindings.

35

Chapter 3. Component-Based Software Engineering

Figure 3.6: FRACTAL Concepts

• Membrane is one of the two parts of a component, the other one being its content. The
membrane is an abstract entity that embodies the control behavior associated with a partic-
ular component. The membrane is composed by controllers.

• Controller exercises an arbitrary control over the content of the component it is part of
(intercept incoming and outgoing operation invocations for instance).

• Interface is defined by a name, a role (client or server), a cardinality (singleton or collection),
a contingency (mandatory or optional) and a signature (in Java, the fully qualified name of
a Java interface). In the type system proposed by FRACTAL, the set of functional interfaces
defines the type of a component. This can be further extended to take into account the non-
functional interfaces as well. Moreover, there are external and internal interfaces. How
these two relate is undefined in FRACTAL. This leaves freedom to define interceptors.

– Server Interface is a component interface that receives invocations

– Client Interface is a component interface that emits invocations

– Functional Interface corresponds to a provided or required functionality of a com-
ponent, as opposed to a control interface. In Fig. 3.6 they are depicted horizontally,
directed towards left and right for server and client interfaces respectively.

– Control Interface: is a component interface that manages non-functional properties
of a component, such as introspection, configuration or reconfiguration, and so on.
These are also called control interfaces. In Fig. 3.6 they are depicted vertically, directed
towards top and down for server and client interfaces respectively.

• Component Binding represents a communication path between different interfaces. It can
be realized by software connectors.

Component-based Control Membranes

The abilities of the FRACTAL component model are even more extended by a new feature in-
troducing the component-based architecture for the control environment surrounding compo-
nents [SPDC06, PMS07]. Similar to EJB’s containers, the FRACTAL component model features
a controlling environment, called membrane. This supports before mentioned domain-specific
properties of components. However, in contrast with fixed structures of EJB containers, the con-
trol membrane of a component is implemented as an assembly of so-called control components
and can dynamically evolve. The whole idea is depicted in Fig. 3.7.

36

3.3. FRACTAL Component Model

Figure 3.7: Component-based Control Membranes

Not only does this approach brings effective development in the sense of reusability and
transparentness, but the main benefits lay in the ability to introspect and dynamically reconfig-
ure the architecture of the control layers of each component. Moreover, the membranes can be
designed individually thus precisely fitting the needs of specific components. This leads to a re-
flective component model, where both the functional layer and the control layer are implemented
using components.

FRACTAL Implementations and Tool Support

There exist many implementations of the FRACTAL component model in various implementation
languages, available at [OW209b]. Furthermore, apart from the research inspired by the FRACTAL
initiative, many related projects have emerged around FRACTAL in order to leverage develop-
ment of FRACTAL based systems. Between the most significant we list FRACTAL-ADL [LOQS07]
– ADL specification, FRACLET [RM09] – annotation framework, F4E [Dav08] – an Eclipse plug-in,
and FDF [FDDM08] – a deployment framework.

3.3.1 FAC: FRACTAL Aspect Model

The goal of the FRACTAL Aspect Model project (FAC) [NLLT08] is to allow developers to leverage
the technique of aspect-oriented programming to the application design layer. The motivation
is to provide an approach to manipulate the aspects as first-class entities at design time and at
runtime.

Figure 3.8: FAC: Functional and Aspect Components Example

To achieve this, a new type of a component is proposed - aspect component, which propose a
general and symmetrical model for components and aspects. FAC decomposes a software system
into regular components and aspect components which embody crosscutting concerns.

In Fig. 3.8 we illustrate the key idea of the solution. In the picture, the AspectComponent
represents a certain aspect applied to components C,D and E. This relation is represented by the
aspect binding connecting the standard components with the aspect component. Furthermore,
the aspect domain is the reification of the components picked out by an aspect component. The
goal of an aspect domain is to keep an overview of all the components affected by an aspect.

37

Chapter 3. Component-Based Software Engineering

We highlight this project since it leverages domain-specific services, represented and imple-
mented by AOP, to the application design layer. This allows developers to achieve full separation
of functional and non-functional concerns along the whole development lifecycle.

3.3.2 Formalization of the FRACTAL Component Model

Recently, one of the research trends in CBSE is focused on formalization of component models.
The key motivation is to formalize different component models and their semantics in order to
evaluate and compare them. One of the popular languages used for this task is Alloy [Jac06]. In
[KM08] authors evaluate application of Alloy in defining semantics of new modeling languages
and state that such an approach yields a formally defined semantics of a language while con-
siderably reducing invested effort. A formalization of a component model in Alloy was already
conducted in [JS00] resulting in simplification and improved clarify of the model itself.

A formal specification of the FRACTAL component in the Alloy specification language is pro-
vided [MS08]. The specification develops a view of a FRACTAL component as a coalgebra, or,
equivalently, as a form of generalized state machine. Although elementary, the specification
identifies and removes certain ambiguities in the informal FRACTAL specification, generalizes
it in places, and improves the programming-language-independent character of the component
model specification.

Alloy Modeling Language

Alloy [Jac06] is a formal language to express software abstractions precisely and succinctly. A
system is modeled in Alloy using a set of types called signatures. Each signature may have a
number of fields. Constraints may be added as facts to a system to express additional proper-
ties. In terms of rigor Alloy rivals traditional formal methods. It represents an approach for the
definition of the abstract syntax, the static semantics and the dynamic semantics of a system -
a component model in our case. Alloy Analyzer [BB08] allows a fully automatic analysis of a
specified system; it can expose flaws early and thus encourages incremental design.

1 s ig Component {
2 i n t e r f a c e s : s e t I n t e r f a c e
3 }
4

5 s ig P r i m i t i v e extends Component {
6 content : one Class
7 }
8

9 s ig Composite extend Component {
10 subComponent : s e t Component
11 }

1 s ig I n t e r f a c e {
2 name : one String
3 boundTo : one Binding
4 owner : one Component
5 }
6

7 f a c t WellFormedContainment {
8 no c : Component | c in c .^ subComponents
9 }

10

11 f a c t InterfaceHasOwner {
12 a l l i : I n t e r f a c e |
13 one c : Component |
14 i in c . i n t e r f a c e s && c in i . owner
15 }

Figure 3.9: Alloy: Basic Syntax and Semantics

We illustrate the application of Alloy by defining a simple component. The resulting Alloy
model, given in Fig. 3.9, expresses both abstract syntax and static semantics of the metamodel.
Each of the entities in the metamodel has a corresponding signature (denoted as sig) with a
similar name in the Alloy model. Associations in the metamodel are usually represented by
fields of a signature: thus the field interface in Component corresponds to the aggregation
from the Component to the Interface in the metamodel. For each field, multiplicity markings
can be present, specifying constraints on the field. The markings that we use are one, lone
standing for "0 or 1", and set.

To express constraints over the model users can use facts - denoted as fact, which express
the rules in the first order logic. For example, the WellFormedContainment – line 7, states that

38

3.4. State-of-the-Art Synthesis

there is no component that is a subcomponent of itself - expressed by "c in c.ˆ subComponents"
where ˆ is a transitive closure. The InterfaceHasOwner fact - line 11, states that for every in-
terface exists one component that contains it.

Note that we have chosen a single Alloy model to express both the abstract syntax and static
semantics of the metamodel since both structural properties and well-formedness rules are ex-
pressed by constraints in the Alloy model and there is no natural separation between the two. We
also note that the Alloy Analyzer allows the graphical presentation of the meta-model specified
by an Alloy model.

3.4 State-of-the-Art Synthesis

Our research lies within the intersection of three research domains: real-time system develop-
ment, component-based software engineering (CBSE), and real-time Java programming (RTSJ),
which were extensively described in Chapter 2 and Chapter 3. We employ these three technolo-
gies as cornerstones of the solution that we propose in this dissertation. In this section we there-
fore argue for synthesizing these domains by showing how the outcoming technology addresses
the stated challenges.

Figure 3.10: Synthesis of the Technologies Applied in the Dissertation

In order to synthesize the stated facts and propose an appropriate solution strategy, we illus-
trate these three technological domains in a diagram depicted in Fig 3.10. Each domain is rep-
resented by an axis - RT Systems, CBSE, and RTSJ. Along these axes, the essential characteristics
of each technology are given. Furthermore, relations between the characteristics from different
axes are presented in order to highlight how the aspects across these domains do supplement or
influence each other.

For the domain of real-time systems – RT Systems, the predominant aspect is their grow-
ing complexity which puts further demands on development process. These issues lead to in-
creased market demands, requiring better software reuse and employment of the state-of-the-art
approaches for system verification and maintenance.

39

Chapter 3. Component-Based Software Engineering

The second axis represents the real-time Java programming – RTSJ, as the key principle of
RTSJ we highlight its simplicity, cheap adoption and easy accessibility. Furthermore, the most
appreciated feature of RTSJ follows - the ability to implement applications embracing hard-, soft-
and non real-time requirements. Finally, the benefits of RTSJ are counterbalanced by the complex-
ities of the development process, specially when considering its memory model. We highlight it
as the third characteristic in this axis.

The final axis represents the domain of component-oriented engineering - CBSE. As the key
feature we consider the ability of CBSE to leverage the development process in the higher ab-
straction layers followed by the separation of concerns. These characteristics contribute to wide
support of CBSE for component reuse and foster adaptation of software systems. Finally, we also
mention ability of CBSE to support software verification.

The relations across different axes represent our fundamental applications in these domains
towards our goal – a component framework for real-time Java systems. Starting with RTSJ axis,
real-time Java mitigates complexities of RT systems, but, however, brings the challenge of mem-
ory management and other issues. By combining the features of the CBSE axis we mitigate the
RTSJ complexities through the separation of concerns and introduction of high-level abstractions
for RTSJ semantics. Continuing with addressing of the challenges in the RT System axis, we em-
ploy CBSE methods. Software reuse and development process are inherently addressed since
CBSE fosters component reuse and adaptation through the separation of concerns. Similarly for
the challenge of verification and maintenance.

3.5 Goals Revisited

In this section we refine more precisely the general goals of the dissertation based on the facts
identified in the state-of-the-art survey.

Scope of the Dissertation

The process of developing a real-time system brings many challenges, specially constructing a
real-time model that describes timing behavior of the system is a difficult task. Here, timing
and schedulability analysis must be performed in order to create a model that reflects the real-
time requirements of the system. The scope of our proposal is placed directly afterwards this
stage, the timing behavior and tasks in the system are exactly specified (as seen in the illustration
real-time scenario in Section 2.1.2) but the development of the system lies at its very beginning.
Particularly, our motivation is to combine the state-of-the-art software engineering methods with
RTSJ while still producing predictable software applications. Therefore, in this dissertation we
focus solely on the specifics of RTSJ.

Refining the Goals

Based on the discussion conducted in this Chapter, we refine the goals of this dissertation as
follows3:

• G1 RTSJ-specific Component Model. As the first goal, a component model designed towards
the specifics of RTSJ must be proposed. The model must provide:

– G1.1 RTSJ Abstractions. To propose an appropriate abstractions of RTSJ semantics in
order to allow developers to manipulate with the RTSJ-related features as first-class
entities.

– G1.2 Separation of Concerns. To clearly separate functional and RTSJ-specific concerns
along the whole application lifecycle. To achieve this, the component model should
support the component containers technology.

3We have label the goals and subgoals as G1-G3 and in the remainder of this dissertation we will refer to them using
these labels.

40

3.6. Summary

– G1.3 Formalization and Validation Support. To fully formalize the component model
and its extensions towards RTSJ in order to support validation of applications during
their development lifecycle. Provide an approach to validation of both design and
implementation of applications in order to guarantee coherence with RTSJ.

• G2 RTSJ-specific Framework. Based on the component model proposed as the goal G1, the
dissertation must propose a full-fledged framework for development of RTSJ applications
that will address following points:

– G2.1 Development Methodology. To employ the proposed features of the component
model in order to improve and clarify development process of RTSJ applications.

– G2.2 Runtime Platform Instantiation. To provide transparent implementation of systems
with comprehensive separation of concerns and extensive support of non-functional
properties at design, implementation, and run-time. Furthermore, we must exten-
sively employ methods of generative programming to automatically instantiate run-
time platforms. Thus we will mitigate the complexities of developing the error-prone
RTSJ code by hand.

• G3 Evaluation. The final goal is to evaluate the framework from both performance and
software engineer perspectives. In terms of quantitative evaluation, the framework must:

– G3.1 Predictability. Not introduce unpredictability.

– G3.2 Performance. Not add significantly more overhead than that associated to the
equivalent application developed by other means (e.g. hand-coding from scratch).

Since the potential of the system to avoid tedious and error-prone development is one of
the key features when discussing its effectiveness and useability, in terms of qualitative
evaluation the framework must:

– G3.3 Effectivity. Facilitate development of RTSJ applications as if using standard Java
as much as possible.

– G3.4 Simplicity. Be easy to understand. The framework must maintain compliance
with original RTSJ specification and do not introduce any RTSJ extensions that are not
adopted by the RTSJ standard.

3.6 Summary

In this chapter we introduced CBSE and the technologies employed nowadays to leverage the
development process of component-based systems. Furthermore, we have discussed its general
benefits and argued for applying it in the field of RTSJ, by showing RTSJ-specific component
frameworks and comparing their advantages.

More specifically, already in the previous chapter we have noticed movement from research of
RTSJ compliant implementation patterns [A. 05, BN03, PFHV04] to research of frameworks alle-
viating the RTSJ complexities [DBC+04, ECB06, HGCK07]. Therefore, in this chapter we present
several component-based frameworks addressing the challenges of RTSJ programming and eval-
uate them focusing on following aspects – richness of their component model, support for thread
and memory models defined by RTSJ, the development methodology they provide for RTSJ, and
their potential for automatic validation. As a result, we have identified that these frameworks ad-
dress the RTSJ issues only partially, usually mitigating small and isolated problems without any
unified strategy. Furthermore, these frameworks do not alleviate the RTSJ concepts into higher
level of system development which prevents full mitigation of the accidental complexities caused
by RTSJ issues.

As demonstrated, there is much to be done in the field of component based frameworks for
RTSJ. The current solutions are still rigid, and mainly do not allow to express both real-time

41

Chapter 3. Component-Based Software Engineering

and non-real-time concerns at a higher abstraction level. To meet all the challenges, an adequate
component model allowing to fully describe RTSJ concerns independently of the functional logic
needs to be proposed. Furthermore, there is a still a long road from technical solutions proposed
and a development methodology that could embrace all the benefits of these specific approaches.
A process leading developers systematically through design and development of RTSJ-based
system while mitigating RTSJ complexities is therefore highly desired. Motivated by these obser-
vations, we restate more precisely the goals of this dissertation, Section 3.5.

Finally, after carrying out a survey of current component models both in academia and in-
dustry, we have decided to adopt the existing FRACTAL component model as the technological
background for this dissertation. Based on the introduction of FRACTAL in Section 3.3, the justi-
fication for this decision is as follows:

• FRACTAL provides a state-of-the-art, open, and extensible component model, offering most
of the features available in the domain of component-oriented software architectures.

• We specially appreciate the fact that FRACTAL preserves the component architecture entities
during the whole system life cycle, also at runtime, with minimal performance overhead.

• FRACTAL represents almost a decade of CBSE experience and evolved significantly towards
a realistic design and runtime platform, being a result of tens of man-years of research and
numerous publications. Furthermore, FRACTAL has been implemented in different lan-
guages for various platforms, is being used in industry and provides an extensive tool
support. All of these characteristics prove maturity of this component model.

In the following chapter we present SOLEIL framework – the first contribution of our disser-
tation.

42

Part II

Proposal

43

Chapter 4
SOLEIL: A Component Framework for
Java-based Real-Time Embedded
Systems

Contents
4.1 A Generic Component Model . 47

4.1.1 Core Concepts . 47
4.1.2 Functional Components . 48
4.1.3 Domain Components . 50

4.2 A Real-Time Java Component Metamodel 51
4.2.1 ThreadDomain Component . 51
4.2.2 MemoryArea Component . 52
4.2.3 Composing RTSJ Components . 53
4.2.4 Binding RTSJ Components . 54
4.2.5 ADL Formalization . 56

4.3 SOLEIL Framework . 56
4.3.1 Design Methodology . 57
4.3.2 Implementation Methodology . 59
4.3.3 SOLEIL Profile . 61
4.3.4 Validation Process . 62

4.4 Motivation Scenario Revisited . 63
4.4.1 Designing the Motivation Scenario 63
4.4.2 Implementing the Motivation Scenario 64

4.5 Summary . 66

IN this chapter we introduce our component-based framework for development of real-time
Java-based systems called SOLEIL. As the key philosophy for this framework we adopt the
thesis statement – an effective development process of RTSJ-compliant systems needs to consider

RTSJ concerns at early stages of their design. Following this philosophy, our goal is to leverage
the concepts of RTSJ and mitigate complexities related to their implementation. Furthermore, by
proposing a development methodology we want to provide a continuum between the design and
implementation process where RTSJ concerns are manipulated in a consistent and transparent
manner.

The important aspect of our approach is the motivation to provide appropriate abstractions of
the RTSJ concepts in order to allow their manipulation in the development lifecycle. By following

45

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

this approach we want to achieve an effective development process of RTSJ-compliant systems
that considers RTSJ concerns already at the design time. On the other hand, while looking for the
appropriate level of abstraction, the separation of functional and RTSJ-specific concerns must be
preserved in order to keep the complexity of the programming model at a reasonable level.

Therefore, as the cornerstone of our approach, we introduce the concept of domain component
that allows developers to express RTSJ concerns - e.g. real-time threads or memory areas, as
special software components in the system. By abstracting RTSJ we thus permit to manipulate
with its concerns as first-class entities along the whole development lifecycle. This approach ul-
timately provides a full separation of functional and RTSJ-specific concerns. Furthermore, we
propose a component model that embraces the concept of domain component. The component
metamodel itself however is not sufficient to model RTSJ applications without formally speci-
fied semantics. Defining such semantics is important for reasoning about modeled entities, their
composition, inter communication, and last but not least for providing tool support. Therefore,
to formalize the model we use the Alloy language [Jac06], described in Section 3.3.2.

In the terms of the refined goals, presented in Section 3.5, in this chapter we first address
the goal G1 – proposing a RTSJ specific component model that introduces appropriate RTSJ ab-
stractions (G1.2), respects the separation of functional and real-time concerns (G1.2), and is fully
formalized to facilitate validation of developed instances(G1.3). Furthermore, in this chapter we
partially address also the goal G2 by proposing a framework based on the component model. In
this framework we define a development methodology that fully benefits from the features of the
component model (G2.1). Finally, the framework also extensively employs generative program-
ming in order to automatically instantiate runtime platforms that implement framework glue
code and RTSJ-specific code (G2.2). However, in this chapter we describe the runtime platform
instantiation process from a user perspective and we address the issues related to its implemen-
tation in Chapter 5.

Contributions

The contributions of this chapter are:

• A RTSJ-specific Component Model and Domain Components. We propose Domain Com-
ponents — a unified approach to specification of domain-specific requirements presented in
custom containers. This allows application developers to easily manipulate domain spe-
cific requirements since they are represented as first-class entities and are separated from
the functional concerns. Furthermore, we employ this concept to construct a RTSJ-specific
component model allowing developers to manipulate with RTSJ concerns.

• SOLEIL Profile and Verification All the introduced concepts are formalized, using the Alloy
language, in order to clarify exactly their semantics. Further, we define the SOLEIL profile
- a set of rules and restrictions that must be respected by application developers to achieve
RTSJ conformance.

• SOLEIL Framework Based on the component model and its formalization we construct a
framework clarifying development methodology of RTSJ-based systems. The framework
provides a continuum between the design and implementation process. The goal is to
mitigate complexities of RTSJ-development by automatically generating runtime platforms
where real-time concerns are transparently managed.

Structure of the Chapter

The remainder of this chapter is organized as follows. In Section 4.1 we define a core metamodel
which serves as the cornerstone for further extensions towards RTSJ. In this core metamodel
we introduce the key concept of our proposal — Domain Component. Section 4.2 we extend the
metamodel towards the specifics of RTSJ, therefore, we introduce new domain components rep-
resenting the RTSJ concepts and we demonstrate how to manipulate them. In Section 4.3 we

46

4.1. A Generic Component Model

present SOLEIL framework. Here, a design process incorporating the model and its formaliza-
tion are introduced - in Section 4.3.1. As an outcome of this process we obtain a real-time system
architecture that can be used for implementation of the system. We benefit from separation of
functional and non-functional concerns and design an implementation process that addresses
these concepts separately - whereas functional concerns are developed manually by users, the
code managing non-functional concerns is generated automatically. We elaborate on this im-
plementation methodology in Section 4.3.2. In Section 4.4 we revisit our motivation scenario to
illustrate applications of the concepts proposed in this chapter. Finally, a summary of this chapter
is given in Section 6.6.

Throughout the chapter we present code snippets illustrating the formalization process in
Alloy, the whole code is available in Appendix A.

4.1 A Generic Component Model

The cornerstone of our framework represents a component model that is specially designed in
order to allow us to fully separate functional and non-functional concerns in all steps of system
development. We define the core of the model in Section 4.1.1 – inspired by the FRACTAL compo-
nent model [BCL+06] and enriched by the concepts of Domain Component and Functional
Component. Consequently, we introduce these concepts in more details in Section 4.1.2 and
Section 4.1.3.

4.1.1 Core Concepts

We present our component metamodel in Fig. 4.1. The metamodel is also formally defined in
Fig. 4.2 in Alloy. Therefore, the UML diagram serves here as a graphical illustration since its
semantics does not allow to fully express all the relations between the entities of the metamodel.

Figure 4.1: A Generic Component Model

The key element of the metamodel is the abstract entity Component, in Fig. 4.2 line 1, which
is further extended by Primitive Component and Composite Component entities, lines 31-
36. We thus introduce the notion of hierarchy into the model. Whereas the primitive component
implements directly some functionality, expressed by the Content entity – line 36, the composite

47

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

component encapsulates a set of subcomponents, line 31. Furthermore, a notion of supercompo-
nent enhances the metamodel with the concept of sharing - one component can be contained in
more than one supercomponent, line 3. Finally, we define that each component in the system is
either composite or primitive, line 40.

The other two key entities of the metamodel are Functional Component and Domain
Component. The are introduced to enforce separation of functional and domain-specific con-
cerns. We describe them in more details in Section 4.1.2 and Section 4.1.3.

1 a b s t r a c t s ig Component {
2 e x t e r n a l I n t e r f a c e s : s e t I n t e r f a c e ,
3 superComponents

: s e t Composite
4 }
5

6 s ig I n t e r f a c e {
7 owner : one Component ,
8 boundTo : lone I n t e r f a c e ,
9 type : one Type ,

10 binding : one Binding
11 } {
12 boundTo != t h i s
13 }
14

15 s ig A t t r i b u t e { }
16

17 s ig Binding {
18 c l i e n t : one I n t e r f a c e ,
19 server : one I n t e r f a c e ,
20 communicationType : one CommunicationType ,
21 a t t r i b u t e s : s e t A t t r i b u t e
22 }
23

24 s ig CommunicationType , Type { }
25

26 one sig Asynchronous , Synchronous
27 extends CommunicationType { }
28

29 one sig Client , Server extends Type { }
30

31 s ig Composite in Component {
32 i n t e r n a l I n t e r f a c e s : s e t I n t e r f a c e ,
33 subComponents : s e t Component ,
34 }
35

36 s ig P r i m i t i v e in Component {
37 content : lone P r i m i t i v e O b j e c t
38 }
39

40 f a c t ComponentIsCompositeOrPrimitive {
41 a l l c : Component |
42 (c in Composite or c in P r i m i t i v e)
43 and (
44 c in Composite implies
45 c not in P r i m i t i v e)
46 and (
47 c in P r i m i t i v e implies
48 c not in Composite)
49 }

50 s ig FunctionalComponent extends Component { }
51

52 a b s t r a c t s ig DomainComponent
53 extends Composite { } {
54 no i n t e r n a l I n t e r f a c e
55 no e x t e r n a l I n t e r f a c e
56 }
57

58 f a c t NoDomainAsSubcomponentOfFunctional {
59 no d : DomainComponent |
60 some c : FunctionalComponent |
61 d in c . subComponents
62 }
63

64 s ig Active extends FunctionalComponent {
65 p e r i o d i c i t y : i n t
66 }
67

68 s ig Pass ive extends FunctionalComponent { }
69 i s P r o t e c t e d : one Boolean

}
70 }
71

72 s ig Per iodic , Sporadic extends Active { }
73

74

75 f a c t periodicANDsporadic {
76 a l l a : Active |
77 a in P e r i o d i c or a in Sporadic
78 i f a in P e r i o d i c
79 #a . g e t S e r v e r I n t e r f a c e s == 0
80 i f a in Sporadic
81 a l l i : I n t e r f a c e |
82 i f i in a . g e t S e r v e r I n t e r f a c e s {
83 i . in ter faceType = ASYNCHR
84 }
85 }
86

87 pred g e t S e r v e r I n t e r f a c e s [a : Component]
88 : s e t I n t e r f a c e {
89 a l l i : I n t e r f a c e | {
90 i in a . e x t e r n a l I n t e r f a c e s
91 and
92 i . type == Server
93 }
94 }

Figure 4.2: Generic Component Model Formalization in Alloy

4.1.2 Functional Components

Functional components are basic building units of our model, representing functional concerns
in the system. The motivation for the introduction of functional components is to exactly separate
functional and domain-specific concerns of the applications in all steps of the software develop-
ment lifecycle. In Fig. 4.2 we define Functional Component as an extension of Component,
but we also specify that each functional component is either primitive or composite, line 40. This

48

4.1. A Generic Component Model

Figure 4.3: Interface and Binding Concepts of the Metamodel

can not be expressed in the UML language and we therefore only indicate this in the Fig. 4.1 by
the slashed arrows. We distinguish two types of functional components - Active and Passive
components.

Active Component

Active components contain their own threads of execution and properties regarding its periodic-
ity, deadline, and priority. We can thus characterize the active component types by setting their
attributes, to define e.g. a periodic/sporadic execution or event-based execution. By this way we
will further define execution modes coherent with the RTSJ, see Section 4.2.1.

In Fig. 4.2 lines 64-68 we formalize the active and passive components. We further distinguish
the active components as periodic and sporadic. Periodic can not have a provided interface,
sporadic can but only with asynchronous communication. We define these restrictions in Fig. 4.2
line 75.

Passive Component

Passive component, in opposition to its active counterpart, is a standard component-oriented
unit providing and requiring services. When being called upon, its execution is carried out in the
context of the active component demanding its services. If a passive component is used in a con-
current environment, many strategies can be applied to guarantee coherence of its internal state,
e.g. a mutual exclusion mechanisms. We call such a component a protected component, in
Fig. 4.2 line 69. However, implementation of these strategies is in the competence of a framework
developer, whereas the application developer only specifies the type of the applied strategy. We
further refer to this in Section 5.2.

Binding and Composing Functional Components

In Fig. 4.3 we enrich the metamodel with the concepts of Interface and Binding, which
are also formally defined in Fig. 4.2. These well-known concepts introduce notions of client
and server interface. Furthermore, we define different types of Bindings: Synchronous and
Asynchronous. This is motivated by the specific requirements on communication between Ac-
tive and Passive components. We formalize this communication in Fig. 4.2 line 75.

49

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

4.1.3 Domain Components

A brand new concept that we introduce is Domain Component, inspired by [NLLT08]. The
main purpose of domain components is to model domain-specific requirements in a unified way.

A domain component is a composite component that encapsulates functional components
and by this relation we express that these functional components support the domain-specific
requirements defined by the domain component. Therefore, a domain component represents a
more general application of the concept of aspect component, presented in Section 3.3.1.

By deploying functional components into a certain domain component, the developer speci-
fies that these subcomponents support the domain-specific property represented by the domain
component. Moreover, a domain component contains a set of attributes parameterizing its se-
mantics. The sharing paradigm allows developers to fully exploit this concept. A functional
component is a part of a functional architecture of the application but at the same time can be
contained in different domain components, which thus express domain-specific requirements of
this component. We are thus able to express both functional and domain-specific concerns simul-
taneously in the architecture.

Figure 4.4: Domain Components Example

Therefore, a set of super components of a given component directly defines its functional and
also its domain-specific roles in the system, the given component thus takes part both in the func-
tional and domain-specific architecture of the system. Moreover, the domain-specific concerns
are now represented as first-class entities and can be manipulated at all stages of component-
software development lifecycle.

We illustrate the DomainComponent concept in Fig. 4.4. Components Writer, Readers,
MailBox, Library and their bindings represent a business logic of the application. The domain
component DC1 encapsulates MailBox and Library, thus defining a domain-specific service
(e.g. logging of every interface method invocation) provided by these two components. At the
same time, component DC2 represents a different service (e.g. runtime reconfiguration) and de-
fines that this service will be supported by components Writer and Readers.

Within our model, domain components are reified as composite components. In Fig. 4.2
lines 50-68, we formalize the concept of Domain Component, we define domain components
as exclusively composite, since they do not implement a functional behavior. Furthermore, we
forbid nesting of domain components. Only functional components can be subcomponents of
a domain component because domain components specify domain-specific properties that are
shared by their sub-components.

The approach of modeling domain-specific aspects as components brings advantages com-
monly known in the component-based engineering world such as reusability, traceability of se-
lected decisions or documentability of the solution itself. Also, by preserving a notion of a com-
ponent, it is possible to reuse already invented methods (e.g. model verification) and tools (e.g.

50

4.2. A Real-Time Java Component Metamodel

graphical modeling tools) which were originally focused on functional components. If we go fur-
ther and retain domain components at runtime then it is possible to reconfigure domain-specific
properties represented by domain components on-the-fly.

4.2 A Real-Time Java Component Metamodel

When designing a component model for RTSJ, a sufficient level of abstraction from RTSJ com-
plexities has to be provided. This will allow RTSJ concepts to be considered at early stages of the
architecture design to achieve effective development process that mitigates all the complexities.
Therefore, while keeping an appropriate level of abstraction, our goal is to define a proper rep-
resentation of RTSJ concepts in the model. To achieve this, we extend the core model defined in
Section 4.1.1 using the concept of domain component.

Figure 4.5: The RTSJ-specific Domain Components

In Fig. 4.5 we define a set of RTSJ compliant domain components. Their goal is to express
RTSJ concerns as components and allow manipulation of these concerns as such. Two basic
entities representing RTSJ concerns are defined: ThreadDomain and MemoryArea. This brings us
the advantage of creating the most fitting architecture according to real-time requirements of the
system. They are further described in Section 4.2.1 and 4.2.2. However, to be fully compliant
with RTSJ, a set of composition and binding rules needs to be respected during the design of a
real-time component system, we further elaborate on this in Sections 4.2.3 and 4.2.4.

4.2.1 ThreadDomain Component

ThreadDomain component represents RealTimeThread, NoHeapRealTimeThread, and Regular-
Thread defined by RTSJ (see Section 2.2.1). Therefore, the model presented in Fig. 4.5 refines each
thread type as a corresponding domain component. The goal of the ThreadDomain component is
to manage threads that have the same properties (type, priority, etc.). Since in our model, each
execution thread is dedicated to one active component, we deploy every active component as a
subcomponent of an instance of the ThreadDomain. Consequently, the properties of the ThreadDo-
main are inherited by the active component precisely determining the execution characteristics of
its thread of control. Therefore, each ThreadDomain component encapsulates all the active com-
ponents containing threads of control with the same properties (thread-type, priority, etc.).

We precisely formalize the semantic of the ThreadDomain component in Fig. 4.6. ThreadDomain
can not be arbitrarily nested, no RT-Thread can be defined as a descendant of another RT-Thread,
line 6. Furthermore, an active component must always be nested in a unique ThreadDomain,
line 12.

51

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

1 s ig ThreadDomain extends DomainComponent {
2 p r i o r i t y : i n t
3 memoryArea : one MemoryArea
4 }
5

6 f a c t NoThreadDomainInDomainComp {
7 a l l t : ThreadDomain |
8 no c : DomainComponent |
9 c in t . superComponents

10 }
11

12 f a c t EveryActiveIsInThreadDomain {
13 a l l a : Active |
14 one tDom : ThreadDomain |
15 a in tDom . subComponents
16 }
17

18 s ig RegularThread , RTThread , NHRT
19 extends ThreadDomain { }
20

21 s ig MemoryArea
22 extends DomainComponent {
23 s i z e : i n t
24 }
25

26 one sig HeapMemory , ImmortalMemory
27 extends MemoryArea { }
28

29 s ig ScopedMemory extends MemoryArea { }

30 c t EveryComponentHasMemoryArea {
31 a l l f c : FunctionalComponent |
32 one ma: MemoryArea |
33 f c in ma.^ subComponents
34 }
35

36 f a c t ScopedMemoryParent {
37 / / a l l s c o p e s a r e subcomponents
38 / / o f t h e ImmortalMemory
39 a l l c : ScopedMemory |
40 one t : ImmortalMemory |
41 c in t .^ subComponents
42 / / on ly Immorta l and Scoped memory
43 / / can be a p a r e n t
44 a l l c : ScopedMemory |
45 no f : (Component −
46 ImmortalMemory − ScopedMemory) |
47 c in f . subComponents
48 / / s c o p e i s non−empty
49 a l l c : ScopedMemory |
50 some k : (Component − DomainComponent)|
51 k in c . subComponents
52 }
53

54 f a c t SingleParentRule {
55 a l l sc : ScopedMemory |
56 some parent : ScopedMemory |
57 sc in parent . subComponents or
58 sc in ImortalMemory . subComponents
59 }

Figure 4.6: ThreadDomain and Memory Area

Benefits of the ThreadDomain Component

The impact of the thread domain is three fold. First, a centralized management of active threads
with the same properties is provided. Second, since communication between different scheduling
entities in RTSJ is a crucial issue, we consider beneficial that thread domains allow designers
to detect cross-thread communication. Based on this detection, corresponding patterns for its
implementation can be applied, see Section 4.2.4. Finally, by introducing this entity, we are thus
able to explicitly define those parts of a system that will be executed under real-time conditions.
Therefore we exactly know which components have to be RTSJ-aware and we are able to enforce
corresponding RTSJ rules. Moreover, communication between the system parts that are executed
under different real-time or non-realtime conditions can be expressed at the architectural level.
This brings an advantage of creating the most fitting architecture according to real-time concerns
of the system.

4.2.2 MemoryArea Component

MemoryArea domain components represent the memory areas distinguished by RTSJ: Immortal-
Memory, ScopedMemory, and HeapMemory. MemoryArea component thus encapsulates all
functional subcomponents which have the same allocation context. By the allocation context we
mean a memory that will be used to allocate data when executing a given component. Such
specification of allocation context at the architectural level allows developers to detect communi-
cation between different memory areas (also known as cross-scope communication) and apply rules
corresponding to RTSJ. Moreover, in combination with the ThreadDomain entity we can entirely
model communication between different real-time and non-real-time parts of the system.

Although MemoryArea components can be nested, RTSJ specification defines several con-
straints to their application. We formalize these constraints in Fig. 4.6. First, we define that each
functional component is deployed in a memory area, thus defining its allocation context, line 30.
Furthermore, RTSJ defines a hierarchical memory model for memory areas. The immortal mem-
ory is defined as a parenting scope of all memory scopes, line 36.

52

4.2. A Real-Time Java Component Metamodel

Additionally, nested memory scopes can be easily modeled as subcomponents. However,
dealing with Memory Scopes, the single parent rule - see Section 2.2.2, has to be respected. In the
context of our hierarchical component model, parenting scope of each memory area can be eas-
ily identified, which considerably facilitates the scope management. This constraint is therefore
formally specified in the model, the SingleParentRule line 54.

Instantiation Context

Apart from the allocation context, we distinguish the instantiation context. This context is used
during the instantiation of the functional component and defines in which memory this alloca-
tion will be performed. In compliance with RTSJ, the instantiation memory must be parenting
to the runtime allocation memory. Therefore, by default, we use the immortal memory as the
instantiation context for every functional component.

4.2.3 Composing RTSJ Components

The restrictions introduced by RTSJ impose several rules on the composition process. These
restrictions must be formally specified in order to construct component systems that adhere to
the RTSJ. Moreover, the RTSJ-specific concerns are not only related to functional components,
but also influence each other, these restrictions and dependencies has to be also formalized. We
provide an excerpt of this formalization in Fig. A.3.

1 f a c t ThreadHasMemory {
2 a l l th : ThreadDomain | a l l a : Active |
3 i f a in th . subComponents {
4 th . memoryArea = getMemoryArea [a]
5 }
6 }
7

8 pred Component . getMemoryArea [a : Component]
9 : one MemoryArea {

10 one m : MemoryArea |
11 a in m.^ subComponents
12 }
13

14 f a c t NHRTnotInHeap {
15 no c : FunctionalComponent |
16 some r :NHRT |
17 some h : HeapMemory |
18 c in r .^ subComponents
19 and c in h.^ subComponents
20 }

21 f a c t cross−thread−communication {
22 a l l a1 , a2 : Active |
23 a l l t1 , t 2 : ThreadDomain {
24 a1 in t 1 . subComponents
25 a2 in t 2 : subComponents
26 }
27 implies {
28 assertOnlyAsynchrComm { a1 , a2 }
29 }
30 }
31

32 pred assertOnlyAsynchrComm
33 [a1 , a2 : ActiveComponent] {
34 a l l i1 , i 2 : I n t e r f a c e {
35 i 1 in a1 . e x t e r n a l I n t e r f a c e s
36 i 2 in a2 . e x t e r n a l I n t e r f a c e s
37 i 2 in i 1 . boundTo
38

39 a1 in t 1 . subComponents
40 a2 in t 2 . subComponents
41 }
42 implies {
43 i 1 . binding . communicationType
44 = Asynchronous
45 i 2 . binding . communicationType
46 = Asynchronous
47 }
48 }

Figure 4.7: Composition and Binding Rules for RTSJ Domain Components

First, a MemoryArea component has to be assigned to each ThreadDomain component, thus
defining allocation context of each schedulable entity, according to RTSJ. However, in our model,
for each active component we define a ThreadDomain – Fig. 4.6 line 12, and also, each active com-
ponent has a MemoryArea – Fig. 4.6 line 30. We therefore implicitly specify a memory area for
each Thread Domain. To make this explicit, we derive a new rule - Fig. A.3 line 1. An another ex-
ample of RTSJ constraints between thread and memory model represents the NoHeapRealTime-
Thread which is not allowed to be executed in the context of the Java heap memory. Within our
design space, this constraint is translated by a NHRTThreadDomain which should not encapsu-

53

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

late any component encapsulated also by the HeapMemoryArea, see NHRTNotInHeap rule in
Fig. A.3, line 14.

4.2.4 Binding RTSJ Components

Since components in our model are designed to represent RTSJ concepts, a special attention needs
to be paid to their bindings. In our model, two types of bindings that cross real-time component
boundaries can be found: cross-thread communication and cross-scope communication. We discuss
them further.

Cross-Thread Communication

A communication between two threads of different priorities could introduce priority inver-
sion [WHJ04] problem and therefore, according to RTSJ, must be properly managed. In our
solution, such situation can be easily identified since it corresponds to a binding between ac-
tive components residing in different thread domains. In Fig 4.7 we formalize the semantics of
cross-thread communication and define exactly cases when it needs to be implemented, line 21.
Line 32 further defines that cross-thread communications must be asynchronous.

Since adherence to RTSJ rules can be verified at the architectural level, the designer is able
to decide which types of bindings can be used. This mitigates unnecessary complexities of the
implementation phase where only the implementation of chosen binding concepts has to be per-
formed.

Cross-Scope Communication

Our model additionally allows to clearly express cross-scope communication as a binding be-
tween two functional components both residing in different memory scopes. Here, many pat-
terns introduced in [A. 05, BN03, PFHV04] can be used depending on designer’s choice and a
specific situation.

Figure 4.8: The Cross-Scope Pattern Figure 4.9: The Multi-Scope Pattern

Therefore, first we formalize the cases when a communication pattern needs to be used and
derive which kind of pattern is suitable for each particular case. Moreover, we have selected the
most used and widely known patterns [PFHV04], they are precisely formalized in this section,
while their implementation is addressed in Section 5.2.5.

Figure 4.10: The Hand-off Pattern

Figure 4.11: Shared Scope

54

4.2. A Real-Time Java Component Metamodel

1 f a c t cross−scope−pat te rn {
2 a l l c1 , c2 : Component |
3 a l l sc1 , sc2 : Component {
4 c1 in sc1 . subComponents
5 and c2 in sc2 . subComponents
6 sc2 in sc1 . subComponents
7 i s C l i e n t T o [c1 , c2]
8 }
9 implies

10 applyCrossScopePattern { c1 , c2 }
11 }
12

13 f a c t multi−scope−pat tern {
14 a l l c1 , c2 : Component |
15 a l l sc1 , sc2 : Component {
16 c1 in sc1 . subComponents
17 and c2 in sc2 . subComponents
18 sc2 in sc1 . subComponents
19 i s C l i e n t T o [c2 , c1]
20 }
21 implies
22 applyMultiScopedPattern { c1 , c2 }
23 }
24

25 f a c t hand−of f−pat tern {
26 a l l c1 , c2 : Component |
27 a l l sc1 , sc2 : Component {
28 c1 in sc1 . subComponents
29 and c2 in sc2 . subComponents
30 a r e S i b l i n g s [sc1 , sc2]
31 a r e S i b l i n g s [c1 , c2]
32 }
33 implies
34 applyHandOffPattern { c1 , c2 }
35 }

36 pred i s C l i e n t T o [c1 , c2] {
37 / / r e t u r n s True i f c2 p r o v i d e s a s e r v e r
38 / / i n t e r f a c e t o c1
39 }
40

41 pred a r e S i b l i n g s [sc1 , sc2] {
42 / / r e t u r n s t r u e i f e x i s t a s c 3
43 / / t h a t i s a p a r e n t t o s c 1 and a l s o t o s c 2
44 }
45

46 one sig CROSS_SCOPE_PATTERN,
47 MULTI_SCOPE_PATTERN,
48 HANDOFF_PATTERN in A t t r i b u t e s
49

50 f a c t applyCrossScopePattern {
51 one b : Binding | {
52 b . c in a . e x t e r n a l I n t e r f a c e s
53 b . s in b . e x t e r n a l I n t e r f a c e s
54 b . type = Asynchronous
55 CROSS_SCOPE_PATTERN in b . a t r i b u t e s
56 }
57 }
58

59 pred ApplyMultiScopePattern [c1 , c2] {
60 . . .
61 MULTI_SCOPE_PATTERN in b . a t r i b u t e s
62 }
63

64 pred ApplyHandOffPattern [c1 , c2] {
65 . . .
66 HANDOFF_PATTERN in b . a t r i b u t e s
67 }

Figure 4.12: Cross-scope Communication Patterns

The cross-scope pattern, illustrated in Fig 4.8, represents the basic communication pattern used
when implementing communication between two scopes in a parent-child relation. The exact
formalization of this patter is in Fig 4.12, line 1. This pattern implements entering a child scope
from a parent scope and leaving the scope while deep-copying the resulted computation from a
child scope to a parent scope.

The multi-scope pattern, in Fig. 4.9, represents a situation when we send some data from a
child scope to a parent scope with the intention to store these computed data and keep them
available after the child scope is reclaimed. The formalization of the rules defining when this
pattern should be used is given in Fig. 4.12 line 13.

The handoff pattern, illustrated in Fig 4.10, is a more general application of the multi-scope
pattern. This pattern is required for many real-time tasks which deal with filtering large amounts
of data. Such tasks continuously process the data while retaining a small part of this data in a
different scope, the main data area is reclaimed at the end of each computation. In this situation
we therefore send data from one scope to another, while these scopes are not in a child-parent
relation. Typically, we apply this pattern to a sibling scopes communication. The formalization
of the rules defining when this pattern should be used is given in Fig. 4.12 line 13.

The shared-scope pattern, in Fig 4.11, corresponds to a shared scope concept defined by RTSJ.
However, this pattern is rarely used in practice since it brings a high complexity into the imple-
mented code. Developed code is hardly analyzable since the memory is reclaimed only when all
the execution threads leave the scope.

In Fig. 4.12 lines 46–67 therefore show modification of the properties of the binding that is go-
ing to implement appropriate communication patterns. To achieve this, we however use concepts
defined in Chapter 5, we refer reader to Section 5.2.5 for more details.

55

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

4.2.5 ADL Formalization

Although we are using a graphical notation to illustrate a real-time system architecture, we have
also developed an Architecture Description Language (ADL) to precisely express system’s archi-
tectures. The ADL is based on the FRACTAL-ADL [LOQS07], is extended towards the specifics
of the SOLEIL metamodel and is defined in Alloy.

This allows us to easily express system’s architecture and apply formalized rules and restric-
tions defined for our component model. In Fig. 4.13 we show a snippet of our ADL defined in
Alloy. The set of predicates and functions is proposed to construct a system’s architecture and
also to define RTSJ-specific characteristics into the architecture, e.g. component – line 1, interface
– line 5, binding – line 15 and many other properties – lines 12-31. Furthermore, such architec-
ture description can be easily translated into XML format, allowing its further processing by third
party tools.

1 pred Component . component [n : String] {
2 c : t h i s . subComponents | c . name = n
3 }
4

5 pred Component . i n t e r f a c e [n : Name, r : Type] {
6 one i : I n t e r f a c e | {
7 i in c . e x t e r n a l I n t e r f a c e s
8 and i . name = n and i . r o l e = r
9 }

10 }
11

12 pred Component . p r i m i t i v e {
13 t h i s in P r i m i t i v e
14 }

15 pred binding [c l i e n : I n t e r f a c e
16 serv : I n t e r f a c e] {
17 one b : Binding |
18 b . c l i e n t = c l i e n
19 b . server = serv
20 b . communicationType = Synchronous
21 }
22 }
23

24 pred bindingAsynchronous [c l i e n : I n t e r f a c e
25 serv : I n t e r f a c e] {
26 one b : Binding |
27 b . c l i e n t = c l i e n
28 b . server = serv
29 b . communicationType = Asynchronous
30 }
31 }

Figure 4.13: SOLEIL ADL defined in Alloy

4.3 SOLEIL Framework

Based on the RTSJ model defined in Section 4.2 we construct a framework supporting devel-
opment of component based RTSJ-oriented systems - SOLEIL [Ale09], addressing goal G2. The
framework embraces both design and implementation methodologies for RTSJ applications. Our
motivation when proposing these methodologies is to fully benefit from the concepts introduced
in our RTSJ metamodel.

The SOLEIL framework substantially influence the procedures of designing and implementing
RTSJ-based applications. At the design time, we employ separation of concerns to design both
functional and RTSJ-related architectures, consequently, we exploit the formalization of the meta-
model to verify consistence of produced architectures. At the implementation time, we define
implementation tasks for application developers while generating automatically the framework
glue code and RTSJ-related glue code. Furthermore, we specify a SOLEIL profile defining a set
of rules that must be respected during the implementation of functional components in order to
achieve RTSJ compliant implementations. To validate conformance of implemented components
to the profile, we translate the profile into the OCL [RG02] and propose the validation process
based on this technology.

In the remainder of this section we therefore describe the SOLEIL framework. First, in Sec-
tion 4.3.1 we introduce the design methodology based on our RTSJ component model. Second, in
Section 4.3.2 we introduce the development methodology guiding the users through the process
of developing functional components and automatically generating the nonfunctional concerns.
The framework is described from the application developer perspective, whereas leaving the dis-
cussion about its implementation in Chapter 5. Finally, in Section 4.3.3 we present SOLEIL profile

56

4.3. SOLEIL Framework

- a set of rules and restrictions for development of RTSJ-compliant applications, and we present
an approach to validation of this conformance in Section 4.3.4.

4.3.1 Design Methodology

The elevation of RTSJ concepts to the architectural level may hinder our task for an appropriate
level of abstraction, since we are combining functional and real-time concerns. However, when
developing real-time applications these concerns need to be considered at early stages of develop-
ment, since they can influence the architecture of the whole system. Therefore, to avoid increased
complexity of the design phase we propose a new design methodology with motivation to fully
exploit the advantages of our component model at the design time.

The abstractions introduced in our model allow designers to gradually integrate RTSJ con-
cerns into the architecture. Therefore, in the methodology we decouple the design process into
several steps where each step focuses on different concepts of RTSJ. To clarify these steps, three
design views are proposed: Functional View, Thread Management View, and Memory Management
View. Whereas the functional view considers only functional aspects of the system, the two oth-
ers stress on different aspects of RTSJ programming. Consequently, the views together with the
RTSJ abstractions provided in our model allow developers to focuss on different concerns in the
architecture and to design these aspects independently of the functional architecture.

In the rest of this section we describe these design views and their application in the design
methodology.

Functional View

Figure 4.14: Functional View

The functional view deals only with the composition of functional – active/passive compo-
nents. This helps developers to focus exclusively on designing functional aspects of the system.
To illustrate the idea, we revisit our SweetFactory scenario presented in Section 2.2.3. The func-
tional architecture of the system is constructed in Fig. 4.14, as we can see, we define each task in
the SweetFactory as a self standing component and we clarify the communication between them,
focusing solely on the business logic of the system.

Thread Management View

The thread management view considers only instances of ThreadDomain entities and active com-
ponents. This allows designers to naturally filter out the passive components and the designer
can focus on inter-thread communication represented by bindings between different active com-
ponents.

At this point, reasoning about appropriate types of bindings between active components is
simple, since bindings that cross boundaries of ThreadDomain components are clearly expressed.

57

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

Figure 4.15: Thread Management View

We can thus easily architect the system in conformance to inter-thread communication restric-
tions introduced in Section 4.2.4. Additionally, we can smoothly change the execution charac-
teristics of the system by designing several different compositions of ThreadDomain and Active
components, which is beneficial when tailoring the system for different real-time conditions.

Looking at our scenario example depicted, using the thread management view, in Fig. 4.15,
the ProductionLine and MonitoringSystem are deployed in the NHRT domain, since they must be
executed in a highly predictable manner in order to meet the 10ms deadlines. Furthermore, both
of them are in different instances of NHRT because they run with different priorities. Unlike the
other components, the AuditLog component is not timing-critical, thus we can design it for use
under regular Java.

Memory Management View

The memory management view allows developers to focus on managing different memory re-
gions of the application. Active and passive components are deployed into instances of the Mem-
oryArea, thus defining in which scope they are operating. Additionally, the bindings crossing
different memory regions can be easily identified. This facilitates to appropriately deploy a glue
code managing the cross-scope communication, introduced in Section 4.2.4. Similarly to the
thread management view, different assemblies of components into memory regions tailored to
fit various real-time conditions can be delivered.

Figure 4.16: Memory Management View

Considering our motivation scenario, we deploy the memory management as follows. Since
both threads executing ProductionLine and Monitoring System components run through the life-
time of the application, they can be allocated in the ImmortalMemory region. On the other hand,
the Console component is accessed by the NHRT thread irregularly and therefore a ScopedMemory
region is sufficient here. The AuditLog executed by a regular thread is allocated in a HeapMemory
region. The final composition of the memory management can be seen in Fig. 4.16.

58

4.3. SOLEIL Framework

Applying the Design Methodology

The architecture design flow of our methodology is depicted in Fig. 4.17. First, we analyze system
requirements which are divided into functional and real-time requirements. From the functional
requirements, describing functional tasks of the system, we design interfaces, components, and
consequently the functional architecture, in Fig. 4.17. So far, we follow the well-known concept of
component-architecture design [CCL06] and the functional view can be employed.

Figure 4.17: RealTime Component Architecture Design Flow

The real-time requirements describe real-time properties of the system, here we have to de-
termine parts of the system that will be executed under real-time conditions – using the Thread
Management View. Consequently, we deploy different parts of a functional system into various
real-time and non-real-time components to obtain the real-time functional Architecture, as depicted
in the figure. This can be easily achieved since our component model allows us to abstract dif-
ferent real-time units through ThreadDomain components. Then we extend the Real-Time Func-
tional Architecture by an appropriate memory management – using the Memory Management View,
thus achieving a complete and RTSJ compliant architecture of a real-time system.

We implement this design methodology in Alloy, by using the ADL defined in Alloy we
are able to gradually design the application in the Alloy language and by using Alloy Ana-
lyzer [KM08] we immediately verify its conformance to the metamodel – thus implementing the
Checking Composition and Binding Rules process defined in our methodology. We provide more
details to this validation process later in this section.

4.3.2 Implementation Methodology

The design analysis described in the previous section yields in a real-time system architecture which
is both RTSJ compliant and fully specifies the system together with its RTSJ related characteristics.
Hence, it can be used as input for an implementation process where a high percentage of tasks

59

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

is accomplished automatically. Therefore, we adopt a generative-programming approach [CE00]
where the non-functional code (e.g. the RTSJ-specific code) is generated automatically.

This approach allows developers to fully focus on implementation of functional properties
of systems and entrust the management of non-functional concepts into the competence of the
framework. Thus we eliminate accidental complexities of the implementation process. The
separation of concerns is also adopted at the implementation level where functional and non-
functional aspects are kept in clearly identified software entities - components.

We therefore introduce a new implementation methodology incorporating code generation
technique, depicted in Fig. 4.18. The process guides the developers through the implementation
phase, specifying the order of implementation of functional and RTSJ-specific concerns.

Figure 4.18: Runtime Platform Generation Flow

Implementing Functional Concerns of Applications

As the first step of the implementation flow, see Fig. 4.18 step 1, functional logic of the system
is developed. Since we further follow component-oriented approach, the concept of separation
on functional and non-functional code is preserved. The development process thus follows the
classical approach where developers implement only component content classes. For illustration
example see Section 4.4.2.

Infrastructure Generation Process

We further alleviate the implementation phase by employing the methods of generative program-
ming to instantiation of the runtime platform. To fully exploit the advantages of the framework,
we pose the following requirements on the generation process: (i) the functional and real-time
concerns have to be deployed into clearly identified software entities; (ii) the generation process
needs to be independent on the functional code. By meeting these requirements, we achieve
transparency of the system implementation.

This instantiation of the runtime platform is the second step of our development process, in
Fig. 4.18 step 2. In this step, we exploit the already designed real-time system architecture, created
using the design methodology specified in the previous section, and we generate a glue code
managing RTSJ-specific and domain-specific properties of the system. The generation process
implements several tasks, we list them below.

• RTSJ-related Glue Code

– Realtime Threads and MemoryArea management Real-time thread and memory areas man-
agement is the primary task of the generated code. Automatic initialization and man-
agement of these aspects in conformance to RTSJ substantially alleviates the imple-
mentation process for the developers.

– Cross-Scope Communication Since the RT system architecture already specifies which
cross-scope communication patterns will be used, their implementation can be moved
under the responsibility of the code generation process.

60

4.3. SOLEIL Framework

– Initialization Procedures The generated code has to be responsible also for bootstrapping
procedures which will be triggered during the launch of the system. This is important
since RTSJ itself introduces a high level of complexity into this process.

• Framework Glue Code

– Active Component Management For active components, the framework manages their
lifecycle - generating code that activates their functionality.

– Communication Concepts Automatic support for synchronous/asynchronous commu-
nication mechanisms is important aspect offloading many burdens from developers.

– Additional Domain-Specific Support Additionally, many other domain-specific proper-
ties can be injected by the framework: e.g. a support for introspection and reconfigu-
ration of the system, lifecycle management, or component properties management.

The glue code is deployed into containers - encapsulating units of functional components. How-
ever, as already said, in this chapter we have described the challenges of the runtime platform
generation process and we further address these challenges in Chapter 5.

Final Composition Process

Finally, by composing results of the functional component implementation and the infrastructure
generation process we achieve a comprehensive and RTSJ-compliant source code of the system,
in Fig. 4.18 step 3. Here, each functional component is wrapped by a layer managing its execu-
tion under real-time conditions. This approach respects our motivation for clear separation of
functional and real-time concerns.

4.3.3 SOLEIL Profile

The methodology that we have introduced in the SOLEIL framework guides the developer through
the development process while mitigating many complexities introduced by RTSJ. However, to
effectively profit from the benefits of the framework, developers must follow the guidelines de-
fined by the methodology. To clarify clearly all the constraints that must be respected, we intro-
duce the SOLEIL profile. The profile summarizes the guidelines introduced either by the SOLEIL
framework or by the SOLEIL component model into a consistent set of restrictions and rules.

When constructing the profile we have identified two kinds of constraints that developers
must respect: (i) architectural level constraints are imposed over the architecture of applications
and were extracted from the SOLEIL component model, and (ii) implementation level constraints
are imposed on the implementation of the functional components and were extracted from the
SOLEIL implementation methodology. We describe these two kinds of constraints in the remain-
der of this section.

Moreover, the profile is consequently used by the framework to implement a verification
process that guarantees that developed architecture and implementation are coherent with the
profile. Our motivation is to further enhance the development process by a verification approach
that provides an immediate feedback, in order to facilitate effective development of applications.

Architectural Level Constraints

The architectural level constraints are based on the SOLEIL component model introduced in Sec-
tion 4.1 and Section 4.2. These constraints have been specified as Alloy rules defining relations
between entities of the metamodel. Since the SOLEIL methodology proposes to design applica-
tion architectures using our ADL defined in Alloy, we reuse also the Alloy facts to define all the
constraints at the architectural level.

61

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

Implementation Level Constraints

SOLEIL provides a set of high-level tools, methods and patterns allowing developers to generate
runtime platforms in a generic way according to the designed architectural artifacts. The goal is to
spare the application developer from dealing with the RTSJ related concerns at implementation
level. However, to allow the automatically generated code and functional components to fit
into each other, the application developers must not use RTSJ concepts at the level of functional
components. We further list these restrictions.

• Functional Component

– must not instantiate new threads, since the thread management is in competence of
the SOLEIL framework

– Active Component

� Periodic Active Component must implement a unique task entry point which will be
periodically called by the runtime platform (such as the Java Runnable interface).

– Passive Component

� for every protected component, a synchronization logic must be specified.
� since the protected component services are executed as a critical section, the imple-

mentations of these services must not be based on internal synchronization mech-
anisms (such as the synchronize Java keyword) to avoid deadlocks.

• Immortal Memory, all the functional components contained in the Immortal Memory do-
main must:

– not call the new statement outside of the instantiation section,

– use only RTSJ compliant libraries specified in advance, e.g. Javolution [Dau07]. Any
use of non-authorized classes or libraries will be reported.

• Asynchronous Communication

– a method used to implement a provided asynchronous service must have void as the
return type.

• Cross-Scope Communication

– the methods specified within interfaces involved in a cross-scope communication must
have parameters and return values of serializable types to ease their marshaling, and
must not declare checked exceptions.

4.3.4 Validation Process

During the development process we implement verification of developed systems in order to
guarantee RTSJ conformance. We verify the applications under development in two steps – at
the design time to validate correctness of instances of our RTSJ component model, and at the
implementation time - to validate conformance of functional component’ implementations with
the SOLEIL Profile.

Design Time Validation

The compliance of the application architecture with RTSJ is enforced during the design process.
This is possible since the component model and its composition rules are fully formalized in Al-
loy. We are thus able to formally verify conformance of a designed architecture to our model and
to the RTSJ rules. Therefore, the formally defined semantics of the model, specified in Section 4.1

62

4.4. Motivation Scenario Revisited

and in Section 4.2, are verified by the Alloy Analyzer [KM08] and thus we can immediately ob-
serve impact of rules not only on the model but also on its instances.

The verification proves to be beneficial when functional and thread domain components are
specified, since the memory domain components are proposed automatically by the tool in ac-
cordance to the model. This is facilitating the whole design process since the designer can choose
from proposed instances of the model the one which suits his needs. Furthermore, such ap-
proach provides an immediate feedback and the designer can appropriately modify an architec-
ture whenever it violates RTSJ. Moreover, the verification process of the architecture identifies
the points where a glue code handling RTSJ concerns needs to be deployed, which substantially
alleviates complexities of the implementation phase.

Also, this gives designers an opportunity to experiment with different configurations of thread
and memory domains at the design time, while still being compatible with RTSJ. The execution
characteristics of systems can be smoothly changed by designing several different assemblies of
components into ThreadDomains and MemoryAreas. This is beneficial when tailoring the same
functional system for different real-time conditions.

Implementation Time Validation

To ensure correctness of the application implementation, the implementations of functional com-
ponents must follow the rules specified in the SOLEIL Profile. However, these rules can not be
expressed by Alloy, since they specify constraints upon the implementation of functional compo-
nents. Therefore, we specify the SOLEIL profile in OCL [RG02], which consequently allows us to
check implementation of functional components.

In order to perform checking, we use an approach [NL09] inspired by the HULOTTE frame-
work proposed in Chapter 5. In this approach, we first translate our metamodel into its EMF [BSE+04]
version. Consequently, we use Spoon [Paw06] tool suit that provides an EMF metamodel for a
Java source code. We therefore obtain both our metamodel and functional component implemen-
tation as model instances in EMF. Finally, confront these metamodels with the OCL rules of the
SOLEIL profile. The full approach is documented in [NL09] and for illustration we provide an
extract of the OCL rules in Appendix B.

4.4 Motivation Scenario Revisited

At this place we revisit our SweetFactory motivation scenario introduced in Section 2.2.3, we
illustrate the basic ideas presented and highlight some benefits of the SOLEIL framework.

4.4.1 Designing the Motivation Scenario

We have already demonstrated application of our design methodology on the SweetFactory in
Section 4.3.1, here we therefore only shortly recapitulate the process and highlight interesting
details.

We first use the functional view to obtain functional architecture and we can gradually inte-
grate real-time concerns. After deploying all components into corresponding ThreadDo- main
components, the composition and binding rules verification is conducted by the Alloy Analyzer.
As a result, the bindings between components will be identified as a RTSJ violation – they express
communication between threads of different types, according to the rules defined in Fig. 4.7.
Consequently, possible solutions will be proposed, according to the binding rules specified in
our model (Section 4.2.4). The final architecture of the system is shown in Fig. 5.26.

We further apply the formalization of our model to validate the application architecture.
We have incrementally designed the system architecture using our formalized ADL from Sec-
tion 4.3.1. We show an excerpt of the resulting specification in Fig. 4.20, moreover, we present the
whole ADL specification also in XML format in Appendix C. Consequently, this final architecture
is analyzed by the Alloy Analyzer in order to validate its conformance to the model.

63

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

Figure 4.19: Sweet Factory: Real-time System Architecture
1 one sig SweetFactory
2 extends Composite { } {
3 component [ProductionLine]
4 component [MonitoringSystem]
5 component [AuditLog]
6 component [Console]
7

8 bindingAsynchronous [producerOut ,
9 monitorIn]

10 binding [consoleOut , console In]
11 bindingAsynchronous [auditLogOut ,
12 auditLogIn]
13 }
14

15

16 one sig ProductionLine extends Active { } {
17 p r i m i t i v e
18 i n t e r f a c e [producerOut , C l i e n t]
19 }
20

21 one sig MonitoringSystem extends Active { } {
22 p r i m i t i v e
23 i n t e r f a c e [monitorIn , Server]
24 i n t e r f a c e [consoleOut , C l i e n t]
25 i n t e r f a c e [auditLogOut , Server]
26 }
27

28 one sig Console extends Active { } {
29 Console . p r i m i t i v e
30 i n t e r f a c e [consoleIn , Server]
31 }

32 one sig AuditLog extends Pass ive { } {
33 p r i m i t i v e
34 i n t e r f a c e [auditLogIn , Server]
35 }
36

37 one sig NHRT1 extends NHRT { } {
38 p r i o r i t y = 37
39 component [ProductionLine]
40 }
41

42 one sig NHRT2 extends NHRT { } {
43 p r i o r i t y = 36
44 component [MonitoringSystem]
45 }
46

47 one sig Scope extends ScopeMemory {
48 component [Console]
49 }
50

51

52 f a c t RegularThreadsSpec i f i ca t ion {
53 AuditLog in RegularThread . subComponents
54 AuditLog in Heap
55 }
56

57 f a c t MemoryAllocations {
58 ProductionLine , MonitoringSystem
59 in ImmortalMemory
60 }

Figure 4.20: Sweet Factory Architecture: Formalization in Alloy

4.4.2 Implementing the Motivation Scenario

The process of implementing applications in our framework is largely influenced by the moti-
vation to generate automatically the most of the source code and by the intention to mitigate
complexities of RTSJ.

Functional Component Implementation

To illustrate the implementation process in the SOLEIL framework, we present source-code of
the MonitoringSystem component. Since its implementation in plain RTSJ have been given in
Section 2.7, we can easily compare benefits of both approaches.

The source code snippet of the MonitoringSystem component is presented in Fig. 4.21,
line 5. The structure and conventions for the code are inspired by the Fractal implementation
process introduced in [OW209b]. The MonitoringSystem class implements IProducer inter-
face, defined on line 1, which corresponds to the provided interface of the component. Further,

64

4.4. Motivation Scenario Revisited

the fields auditlog and console, lines 6– 7, represent required interfaces of the component.
Since all of this information is given already at the architectural level, this source code can be
automatically generated. We can therefore draw our attention to the processMeasurement
method, line 9, which implements functional logic of the component. As we can see, the method
implementation is straightforwardly following its logic and is not tangled with RTSJ-related code.

Focusing on the communication with the AuditLog and Console component, both residing
in memory areas different than MonitoringSystem, developers does not have to face the com-
plexities of memory context switching. The provided interfaces of the AuditLog and Console
can be accessed transparently from the component’s implementation, SOLEIL framework will
guarantee correct switching of memory allocation contexts. Furthermore, although the binding
with IAuditLog interface is implemented as asynchronous, using a WaitFreeQueue, this is
transparent for the developers which can directly call its methods, the appropriate code handling
the invocation will be automatically injected.

Furthermore, the developers does not have to deal with instantiation of the component, since
these are automatically generated. Already at the architectural level we know in which allocation
context the component will be instantiated and operating, therefore, component’s instantiation
process can be performed automatically. Similarly, initialization of the component’s fields is per-
formed automatically when instantiating AuditLog and Console components.

1 i n t e r f a c e IConsumer {
2 public void processMeasurement (Measurement m) {
3 }
4

5 c l a s s MonitoringSystemImpl implements IConsumer {
6 IConsole iConsole ;
7 IAuditLog iAuditLog ;
8

9 public void processMeasurement (Measurement m) {
10 i f (m. isWrong ())
11 iConsole . r e p o r t E r r o r (m) ;
12 iAuditLog . log (m) ;
13 }
14 }

Figure 4.21: MonitoringSystem Component Implementation in SOLEIL

Implementing the Real-Time Concerns

The implementation of the RTSJ concerns is substantially alleviated, since the verification pro-
cess verifies the architecture and determines injection of the appropriate glue-code. Moreover, as
demonstrated in Fig 4.20, the system’s architecture that we obtain provides the whole informa-
tion needed to implement the runtime plaftorm described in Section 4.3.2, for example:

• the functional component ProductionLine is defined as a periodic active component,

• the binding between MonitoringSystem and AuditLog active components specifies an
asynchronous communication.

• the non-functional components specify RTSJ-related attributes, such as a memory type and
size of a MemoryArea, a thread type and a priority for a ThreadDomain.

As we have already said, Chapter 5 is dedicated to the process of designing and implementing
the RTSJ concerns and therefore we provide full description of the RTSJ-glue code implementa-
tion process in this chapter.

65

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

4.5 Summary

In this chapter we present a component framework designed for development of real-time and
embedded systems with the Real-Time Specification for Java (RTSJ). Our goal is to alleviate the
development process by providing means to manipulate real-time concerns in a disciplined way
during the development and execution life cycle of the system. Furthermore, we shield the devel-
opers from the complexities of the RTSJ-specific code implementation by separation of concerns
and automatical generation of the runtime platform.

As the cornerstone of our approach we propose the Domain Component concept - a unified
approach to model domain-specific concerns as first class entities (G1.1). This concept allows
developers to manipulate these concerns easily during the full application development lifecycle.

Based on this concept, we define a component model tailored directly to the specifics of RTSJ
(G1). Our contributions include separation of RTSJ-specific and functional concerns(G1.2), and
the ability to express these concerns at the architectural level. Therefore, the model allows us
to clearly define real-time concepts as software entities and to manipulate them through all the
steps of the system development. Furthermore, we have formalized the metamodel semantics
and RTSJ-related restrictions using the Alloy language (G1.3).

Consequently, we propose SOLEIL- a component model embracing the introduced concepts
(G.2). As a part of the framework, we define a methodology for design and implementation of
RTSJ applications (G2.1). The methodology clarifies manipulation of functional and RTSJ related
concepts at design and implementation time, while still respecting full separation of these con-
cerns. Moreover, using the formalized component model we can design applications and verify
their conformance to RTSJ already at the design time. Finally, we alleviate the implementation
phase by providing a process generating automatically RTSJ-related code and framework glue
code based on a formalized real-time system architecture.

Our example scenario demonstrates that the presented solution allows to simultaneously de-
sign real-time and non-real-time parts of applications. This is important when trying to mitigate
complexities of the RTSJ implementation phase. The model allows designers to easily introduce
new assemblies of real-time components thus adapting the system for different real-time condi-
tions.

The bottom line is that we are able to express different real-time concerns, and to integrate
them seamlessly into the system’s architecture. Moreover, by gradual integration of RTSJ aspects
we mitigate the complexities of RTSJ development. Considering the implementation of each
component, the designed architecture substantially simplifies this task. Functional and real-time
concerns are strictly separated and a guidance for possible implementations of those interfaces
that cross different concerns is proposed.

In the following chapter we address the process of implementing domain components and
further we describe the approach towards automatic instantiation of the runtime platform (G2.2).

66

Chapter 5
HULOTTE: A Framework for the
Construction of Domain-Specific
Component Frameworks

Contents
5.1 HULOTTE Framework . 68

5.1.1 Generic Component Model Extensions 69
5.1.2 Architecture Refinement of Domain Components 71

5.2 Implementing SOLEIL with HULOTTE . 74
5.2.1 Active and Passive Components . 74
5.2.2 ThreadDomain Refinement . 76
5.2.3 Immortal Memory . 76
5.2.4 Cross-Thread Communication . 76
5.2.5 Cross-Scope Communication . 78
5.2.6 Fractal Control Layer . 80

5.3 HULOTTE Framework Implementation . 80
5.3.1 HULOTTE Architecture . 81
5.3.2 Front-end . 81
5.3.3 Middle-end . 82
5.3.4 Back-end . 82
5.3.5 Soleil - Runtime Platform Instantiation 82
5.3.6 HULOTTE as a Meta-Framework . 83

5.4 Motivation Example Revisited . 85
5.5 Summary . 87

IN Chapter 4 we have introduce domain components - a concept to expression of domain-
specific concerns already at the architectural level. Furthermore, we have applied this con-
text to the challenges of RTSJ and showed how they mitigate complexities of RTSJ program-

ming and simplify application architectures through a consistent separation of concerns. Finally,
we have incorporated this concept into the SOLEIL framework - a proposal solution to a fully
fledged framework for development of real-time Java applications. The concept of domain com-
ponents was described with the emphasis on their application and benefits, however, the chal-
lenge of domain component implementation was not addressed.

67

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

In this chapter, we focus specifically on domain components and propose an approach to
their design and implementation. We have chosen a model-driven approach of step-wise refine-
ment [BSR03, EM08] to gradually refine domain component architectures. To facilitate this, we
identify a three general architectural patterns used during the refinement process. Furthermore,
we introduce the HULOTTE framework - a set of tools that implements the refinement process.
The framework allows to process architectures specified by application developers and execute
the refinement process of domain components in order to provide their implementation. As the
outcome of this process, a runtime platform providing support for execution of developed appli-
cations is instantiated. During the instantiation process we also introduce various heuristics to
optimize applications’ performance and memory footprint.

In the terms of the refined goals, presented in Section 3.5, we address the goal G2.2 – HULOTTE
framework provides a unified approach to instantiation of runtime platforms, automatically gen-
erating both framework glue code and RTSJ-specific code.

Contributions

The contributions of this chapter are:

• HULOTTE Framework and Architecture Refinement Process. The first contribution of this
chapter is the HULOTTE framework which introduced concepts that are used to design and
implement semantics of domain components. Consequently, we identify common patterns
that are employed by developers when implementing semantics of domain components.
Based on this, we introduce the architecture refinement process that specifies how to use ar-
chitectural patterns to refine domain components, thus allowing their implementation.

• Applying HULOTTE to SOLEIL. Based on the architectural refinement proposed by the
HULOTTE framework we refine and implement SOLEIL domain components.

• HULOTTE Implementation. We present the technology applied to implement the HULOTTE
framework. We show how HULOTTE implements an approach to automatical refinement
of domain components and generation of the SOLEIL glue-code. Furthermore, we discuss
how this approach can be used in a more general perspective to leverage development of
domain-specific component frameworks.

Structure of the Chapter

To remainder of this chapter is structured as follows. In Section 5.1 we extend the Real-time Com-
ponent model from Chapter 4 and we introduce new concepts intended to refine semantics of do-
main components. Consequently, we propose architectural patterns defining how to implement
these semantics. Section 5.2 shows application of the newly introduced concepts and patterns to
implement the domain components of the SOLEIL framework proposed in the previous chapter.
In Section 5.3 we describe our prototype implementation of the HULOTTE framework. In Sec-
tion 5.4 we revisit our motivation scenario to illustrate applications of the concepts proposed in
this chapter. Finally, a summary of this chapter is given in Section 5.5.

5.1 HULOTTE Framework

The goal of this section is to extend the real-time component model from chapter 4 to provide suf-
ficient concepts to design and implementation of domain components. Therefore, in Sect. 5.1.1
we propose extensions to our model intended to refine semantics of domain components. The
enriched model is divided into two levels: whereas the core level represents concepts addressed
in the previous chapter, the platform level is dedicated to domain components and introduce con-
cepts that will be used to their refinement. The key motivation when refining the model is to

68

5.1. HULOTTE Framework

provide sufficient abstractions while keeping simplicity of the concepts manipulated by func-
tional component developers.

Second, in Section 5.1.2 we introduce the architecture refinement process. We define architectural
patterns that are specifically defined to describe manipulation and application of the platform-
level concepts. Consequently, the architecture refinement process defines how framework develop-
ers refines the application architecture through these architectural patterns.

5.1.1 Generic Component Model Extensions

We show the extended metamodel in Fig. 5.1. The metamodel is divided into two levels. The
core level corresponds to the metamodel introduced in the SOLEIL chapter (Fig. 4.1), however,
only the concepts relevant for this discussion are preserved. The platform level introduces the
concepts which are used to refine domain components. The important aspect to highlight is
that these concepts are hidden from functional component developers and final users of domain
components. We further describe the concepts of the platform level in more details.

Figure 5.1: Component Metamodel and Domain Component

Component-Oriented Container

The container paradigm, introduced in Section 3.1.2, is the key concept used at the platform
level. A container is a composite component wrapping every component in the application and is
composed of a set of controllers and interceptors, it implements domain-specific services required
by components. In Fig. 5.2, we first define Container, line 1, and assign one to every component,
line 13.

We consequently develop our own set of containers for functional components which are
specially designed to manage and implement domain-specific concerns in the application.

Functional and Control Interfaces

Furthermore, we distinguish functional and control interfaces, as depicted in Fig 5.3 and defined
in Fig 5.2, line 38. Whereas functional interfaces are external access points to components, control
interfaces are in charge of some domain-specific properties of the component, for instance its life-
cycle management, or the management of its bindings with other components. Control-interfaces
thus provide access points to container functionality that is hidden at the functional level to avoid
confusion with the functional implementation.

69

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

1 s ig Container extends Composite {
2 content : one Component
3 chains : s e t In terceptorChain
4 c o n t r o l l e r s : s e t C o n t r o l l e r
5 c o n t r o l I n t e r f a c e : s e t C o n t r o l I n t e r f a c e
6 } {
7 c o n t r o l I n t e r f a c e s in E x t e r n a l I n t e r f a c e
8 content , chains ,
9 c o n t r o l l e r s in t h i s . subComponents

10 }
11

12 s ig Component {
13 co nt a i n er : one Container
14 . . .
15 }
16

17 s ig C o n t r o l l e r extends Composite {
18 c o n t r o l I n t e r f a c e s : s e t C o n t r o l I n t e r f a c e
19 content : lone P r i m i t i v e O b j e c t
20 owner : one Container
21 }
22

23 s ig Non−FunctionalComponent extends Composite { }

24 s ig In terceptorChain extends Composite {
25 owner : one Component
26 i n I n t e r f a c e : one F u n c t i o n a l I n t e r f a c e
27 o u t I n t e r f a c e : one F u n c t i o n a l I n t e r f a c e
28 t r a p I n t e r f a c e : one C o n t r o l I n t e r f a c e
29 } {
30 subComponents in I n t e r c e p t o r
31 i n I n t e r f a c e , o u t I n t e r f a c e , t r a p I n t e r f a c e
32 in t h i s . e x t e r n a l I n t e r f a c e s
33 }
34

35 s ig C o n t r o l I n t e r f a c e , F u n c t i o n a l I n t e r f a c e
36 extends I n t e r f a c e { }
37

38 f a c t I n t e r f a c e s {
39 I n t e r f a c e = F u n c t i o n a l I n t e r f a c e
40 + C o n t r o l I n t e r f a c e
41 }
42

43 s ig I n t e r c e p t o r extends Component {
44 owner : one In terceptorChain
45 }

Figure 5.2: Platform Level Concepts Specified in Alloy

Figure 5.3: Functional and Control In-
terfaces

Figure 5.4: Architectural Patterns

Component Controller

Controllers are, together with interceptors, basic building units of containers, they implement
domain-specific concerns and can be accessed by control interfaces. The control components
incorporated in container can be divided into two groups. First, the controllers which are specific
to the domain-specific needs of the component - e.g. asynchronous communication controller
or RTSJ-related controllers. These components have to be present in the membrane since they
implement non-functional logic directly influencing components’ execution. The second group
of controllers represent units which are optional and are not directly required by the component’s
functional code, e.g. Binding or Lifecycle controllers.

InterceptorChain

The InterceptorChain, in Fig 5.2 line 24, concept is defined in order to develop more ad-
vanced intercepting logic in interceptors while still achieving separation of concerns. Therefore,
InterceptorChain is an element managing a chain of interceptors deployed on a specific func-
tional interface. Each interceptor in the chain symbolizes one domain-specific concern which
reflects communication in situ (e.g. monitoring) or modifies communication (e.g. adaptation of
method call parameters). The presence and position of the interceptor in the chain is influenced
by properties of the modeled binding and also by a presence of other interceptors.

This representation allows us to build bindings easily with different functionalities — by se-
lecting relevant interceptors and their order in according to specified properties. The proper-

70

5.1. HULOTTE Framework

ties, according to which is the InterceptorChain component constructed, are the properties of the
Binding entity, defined in the SOLEIL metamodel in Fig. 4.2. Furthermore, the division of the
InterceptorChain architecture into separated interceptors permits handling real-time specific
properties separately in dedicated interceptors.

Following this motivation, also each interceptor can be either primitive or composite.
Furthermore, interceptor components can be interconnected by dedicated control interfaces called
TRAP, thus allowing centralized management of strategies for interception mechanisms.

Development Roles

We have divided our model into two levels in order to clearly distinguish the defined concepts.
Consequently, we also distinguish development roles that manipulate these concepts: application
developer and framework developer.

The role of the application developer is to create and implement functional components and to
specify domain-specific requirements by deploying functional components into domain compo-
nents. While the application developer is aware of the semantics behind domain components,
he does not provide their implementation and therefore can fully focus on functional concerns
of the application. To give an example, a domain specific component ThreadDomain can spec-
ify execution context (an executing thread and its properties) of an active functional component,
however, the application developer does not need to know how these properties are enforced at
runtime.

The role of the framework developer is to define and implement semantics of domain compo-
nents. First, his responsibility is to define domain components according to the needs of appli-
cation developers and to define the rules constraining application of domain components at the
functional level. Afterwards, the framework developer designs and implements semantics of do-
main components using the platform-level concepts — see Fig. 5.1, and the architectural patterns
that we introduce in Sect. 5.1.2.

In the remainder of this chapter we focus on the tasks performed by the framework developer,
while the role of the application developer was specified in the SOLEIL framework (Section 4.3).

5.1.2 Architecture Refinement of Domain Components

The key role of the framework developer is therefore to design and implement semantics of
domain-specific components. When considering domain components and the functionality they
express, they impact three core architectural concepts: Functional Component, Binding, and Do-
main Component. Meaning that architecture and consequent implementation need to be refined
in order to implement corresponding domain-specific semantics. However, we want to achieve
this while still off-loading complexities from application developers. Therefore, to implement
domain components, we introduce a process where each domain component is refined by cor-
responding platform concepts. These architectural changes are transparent for the application
developer. We further refer to this phenomenon as architectural refinement of core-level concepts
through the platform-level concepts.

The main objectives of the architectural refinement process are: (i) to fully-evolve the high-level
concepts of domain components into artifacts that will represent these concerns at the architec-
tural level; (ii) to consequently compose these artifacts with the functional concepts into a fully-
evolved view of the system called platform architecture which is suitable to be transformed into a
desired target implementation (e.g. RTSJ).

Therefore, we distinguish the following three types of the architectural refinement process:

• Functional Component Refinement. The target of the refinement process is a functional
component. To implement the domain-specific concerns according to domain component
that encapsulate the functional one, we are obliged to modify the container architecture
of this component. Usually, we introduce a set of controllers and interceptors that will
implement these domain-specific concerns.

71

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

• Binding Refinement. The target of the refinement is the binding between functional com-
ponents. This corresponds to a case when a domain-specific concern introduces special
requirements on this binding (e.g. logging, broadcast communication management). To
guarantee them, we refine the binding with container interceptors presented either at client,
server, or on both sides of the binding.

• Domain Component Refinement. The domain component itself is refined to be present
also in the refined architecture. This case is different from the previous two where do-
main components are represented in the containers of functional components. Here we use
platform concepts to represent the domain component as a composite component in the re-
fined architecture - Non-FunctionalComponent. A specific composite component with
a dedicated container architecture is deployed to enforce domain-specific concerns over its
subcomponents.

In the following section we therefore define three architectural patterns that address the chal-
lenge of the architectural refinement and allow framework developers to properly develop im-
plementations of domain-specific concepts.

Architectural Patterns

The key purpose of the architectural patterns is to allow framework developers to implement
semantics of domain components and thus to refine the application architecture in a systematic
and programmatic way. The patterns are designed to implement any type of a domain-specific
service that can potentially be reflected by a container. They therefore define architecture invari-
ants, design and composition rules for the platform-level. Fig. 5.4 presents three architectural
patterns: ChainComposite, ContainerComposite, and Non-FunctionalComposite, and
we further clarify them.

ChainComposite Pattern is defined as a composite component, the subcomponents of such
a composite are interceptors. Within the ChainComposite pattern, the interceptor components
are bounded via their incoming and outgoing interfaces in an acyclic list, as depicted in Fig. 5.5a.
Here, the IN and OUT interface signatures of the interceptors are not necessarily identical; this
allows developers to identify interceptors as adaptors of the intercepted execution flow. The inter-
ceptor itself could be a composite component allowing framework developer to implement com-
plex intercepting mechanisms. The ChainComposite component at the platform level refines
a binding specified at the functional level, thus the pattern is similar to the concept of connec-
tor [MDT03].

ContainerComposite Pattern, initially introduced in [SPDC06], is also specified as a compos-
ite component and reifies a container of a functional component. As defined in Fig. 5.2, it is com-
posed of ChainComposite components and Controller components. The ContainerCompo-
site pattern is applied on a primitive (see example in Fig. 5.5b) or composite functional compo-
nent as follows:

• A set of Controller components implementing various domain-specific services influencing
the whole component (e.g. lifecycle management, reconfiguration management) is com-
posed in the container. Moreover, the control interfaces are provided to allow an access to
these services from outside of the component.

• For each interface of the functional component a ChainComposite pattern is used. Chain-
Composite components can be interconnected by TRAP interfaces with the controllers,
thus allowing centralized management of strategies for interception mechanisms.

Non-functionalComposite Pattern is the final construct for manipulation of domain-specific
concerns at the implementation layer. As illustrated in Fig. 5.4, the pattern is used to refine a do-
main component itself. By using this pattern, we deploy a composite component corresponding
to the domain component defined at design time. Consequently, a container of such compo-
nent contains controllers and interceptors, which superimpose domain-specific concerns over

72

5.1. HULOTTE Framework

(a) ChainComposite Pattern.

(b) ContainerComposite Pattern

(c) Non-functionalComposite Pattern

Figure 5.5: Architectural Patterns

the subcomponents of this component. Thus we manage domain-specific concerns of a group of
functional components.

Therefore, the domain-specific services are not deployed into containers of functional com-
ponents but we group them in a container of a special composite component present at runtime.
We illustrate this idea in Fig. 5.5b.

Architectural Refinement Process

Once we specify the functional architecture containing domain components and also correspond-
ing architectural patterns we employ the architecture refinement process – a process where the core-
level architecture specified by the application developer is refined into an architecture where both
functional architecture and runtime platform architecture are designed using the platform-level
concepts. As a result of this process we obtain a platform architecture where both functional and
domain-specific concerns are represented. The crucial point of the refinement process is therefore
the propagation of domain-specific concerns into the architecture.

The important feature of the architecture refinement process is its variability and extensibility
to allow employing different refinement strategies as well as support for new domain-specific
components, validation and optimizations. All properties stated above are reflected in the imple-
mentation of the architecture refinement process called HULOTTE, described in Sect. 5.3.

73

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

5.2 Implementing SOLEIL with HULOTTE

In this section we apply the architecture refinement process to implement the basic concepts of the
SOLEIL framework. Our motivation remains the same: While the functional code is implemented
in the content part of the component, the real-time concerns are represented by the platform-level
concepts in the containers.

For each component type of the SOLEIL framework we use the appropriate architectural pat-
terns to design its container. Furthermore, we re-factor RTSJ-code and RTSJ-compliant patterns
and we implement them in the controllers and interceptors of containers.

In this section we thus employ architectural patterns and formalizations in Alloy and show
how we benefit from these technologies in the architectural refinement process. On the concrete
examples of refining the SOLEIL framework concepts we show how we mitigate complexities of
real-time Java development while still respecting the separation of concerns.

5.2.1 Active and Passive Components

Based on the definition of active component, Section 4.1.2, active component contains a thread of
execution. Therefore, the goal of the container of the active component is to manage this thread.
In Fig. 5.6 variant a, we present an architecture of such a container. The ActivityController
is used to manage the thread of execution and instructs the ActivityInterceptor to enter
the functional part of the component through the Runnable interface. Active Interceptors im-
plements a run-to-completion execution model4 for each incoming invocation from their server
interfaces and are configured by the properties defined by the enclosing ThreadDomain compo-
nent.

(a) Periodic Active Component (b) Sporadic Active Component

Figure 5.6: Active Component Types

Note that although the Runnable interface is provided by the content part of the component,
it is not exposed as an external interface. Its role is to provide an exact separation between func-
tional execution of the component done in the content, and management of the execution context
in the container.

Furthermore, we distinguish periodic component – Fig. 5.6 variant a, and sporadic compo-
nent – Fig. 5.6 variant b. Whereas the management logic of periodic component is strictly given
and implemented in the ActivityController, execution of the sporadic component is de-
pendant upon external events or other activity components. Therefore, sporadic component can
provide an interface, as illustrated in the figure. However, only asynchronous communication is
provided, we discuss specifics of implementing asynchronous communication in Section 5.2.4.

In Fig. 5.7 we present a simple implementation of the ActiveInterceptor for a periodic
component, as we can see, the Runnable interface is used here to provide a unique entry point
for the component (as specified by the SOLEIL profile, in Section 4.3.3).

In Fig. 5.8 we present an implementation of the ActiveInterceptor for a sporadic compo-
nent. In this case, an event is absorbed on the incoming interface IService of the interceptor, the
active interceptor switches the execution context into the context of its own thread, line 9), and
calls the IService interface provided by the implementation of the component. In the example,

4This execution model precludes preemption for active components.

74

5.2. Implementing SOLEIL with HULOTTE

1 public c l a s s A c t i v e I n t e r c e p t o r {
2 Runnable iActiveRunnable ;
3 void execute () {
4 while (t rue) {
5 iActiveRunnable . s t a r t () ;
6 waitForNextPeriod () ;
7 }
8 }
9 }

Figure 5.7: ActiveInterceptor Imple-
mentation for Periodic Active Component

1 public c l a s s A c t i v e I n t e r c e p t o r
2 implements I S e r v i c e {
3 S e r v i c e i S e r v i c e
4

5 void s e r v i c e (Data d) {
6 runnable . setData (d) ;
7 thread . s t a r t () ;
8 }
9 Thread thread = new Thread (. . . , runnable) ;

10

11 Runnable runnable = new Runnable {
12 Data d ;
13 void run () {
14 i S e r v i c e . s e r v i c e (m) ;
15 }
16 void setData (Data data) {
17 d = data ;
18 }
19 }
20 }

Figure 5.8: ActiveInterceptor Imple-
mentation for Sporadic Active Component

the interceptor’s thread is a regular Thread for illustration, in a general case the interceptor can
be generated with the type of the thread that is required.

Protected Component

In general, to implement passive components, no architectural patterns are required. However,
we distinguish a specific type of a passive component - Protected Component. Such com-
ponent provides concurrently more interfaces and guarantees that concurrent requests on these
interfaces will be proceeded in accordance to a pre-defined synchronization logic.

Figure 5.9: Container Architecture of Protected
Component

Figure 5.10: ThreadDomain Refinement

To meet this requirement, we introduce SynchronizationController and Synchro-
nizationInterceptor depicted in Fig. 5.9. Their role is to implement the synchronization
logic specified by the application developers. At runtime, each incoming call is intercepted and
reported through the TRAP interface to the controller. Depending on the implemented logic,
the call will be either authorized to continue with its execution in the content part or will be
blocked until the controller decides otherwise. Therefore, many strategies and synchronization
approaches can be implemented in the controller depending on users’ requirements. However,
when using this concept, no synchronization block statement can be used inside the content of
the component since this could lead to a deadlock, as restricted in Section 4.3.3.

The introduction of the ProtectedComponent is motivated by the implementation of the Shared

75

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Scope pattern that we describe in Section 5.2.5.

5.2.2 ThreadDomain Refinement

We refine the ThreadDomain component as a non-functional composite component (using the
Non-functional Composite pattern) in order to manage running threads in the system during the
runtime. We illustrate this idea in Fig. 5.10, the dedicated container contains a ThreadDomain-
Controller that is connected through a control interface to every ActiveController of each
active component that is a subcomponent of the ThreadDomain component.

Furthermore, instances of the ThreadDomain component take responsibility for bootstrap-
ping of all threads in the system. We centralize the management of the bootstrapping procedures
since this process is nontrivial in the RTSJ applications. The complexities of bootstrapping pro-
cess bring the task of initializing threads with various types and execution contexts, moreover,
the allocation context of each thread has to be also respected during its instantiation. However,
thanks to the domain components in the architecture we can exactly identify all the properties
needed to bootstrap a thread and implement them without cross-cutting the functional code

5.2.3 Immortal Memory

We refine the immortal memory as a composite component ImmortalMemory. As a conse-
quence, we are able to refine the services provided by an immortal memory as control com-
ponents which are accessible through provided interfaces. We illustrate the architecture of its
component container in Fig. 5.11. The two services provided by the immortal memory are
ObjectPool and WaitFree Queues, we further address their implementation in more details.

Figure 5.11: Immortal Memory Container

1 public i n t e r f a c e O b j e c t P o o l I n t e r f a c e {
2 Object get (i n t poolID , Object ob j) ;
3 void put (i n t poolID , Object ob j) ;
4 i n t c r e a t e O b j e c t P o o l (. . .) ;
5 }
6

7 public i n t e r f a c e QueueInterface {
8 Object get () ;
9 void put (Object ob j) ;

10 Queue createQueue (. . .)
11 }

Figure 5.12: Immortal Services API

Since the resources of the immortal memory are limited, the only solution how to effectively
use them is to reuse objects. This approach is indeed present in many RTSJ-based systems[BCC+03].
To provide an easy-of-use and safe access to shared objects, we refine shared objects as a service
ObjectPool provided by the ImmortalMemory component. The ObjectPool service imple-
mented in the container is depicted in Fig. 5.11. A simple API for the ObjectPool service is defined
in Fig. 5.12 line 1.

The second service provided by the ImmortalMemory component is WaitFreeQueue. The goal
is to maintain and manage WaitFree Queues, which are then used to implement asynchronous
communication between real-time threads of different types and priorities. The service pro-
vides an access to WaitFreeWriteQueue and WaitFreeReadQueue, as defined in Section 2.2.1. The
WaitFreeQueue service is implemented in the container and is depicted in Fig. 5.11. API for the
WaitFreeQueue service is defined in Fig. 5.12 line 7.

5.2.4 Cross-Thread Communication

When modeling a RTSJ compliant binding between active components from different ThreadDo-
main components, queue communication and Scope Sharing concepts can be used, as restricted by

76

5.2. Implementing SOLEIL with HULOTTE

Figure 5.13: Cross-Thread Communication

1 f a c t WaitFreeQueues_ApplicationRules {
2 a l l a , b : Active {
3 i f isAsynchronousBinding (a , b) {
4 i f getThreadType (a) == getThreadType (b) {
5 i f g e t P r i o r i t y (a) > g e t P r i o r i t y (b)
6 setWriteFreeQueue (a , b)
7 i f g e t P r i o r i t y (a) < g e t P r i o r i t y (b)
8 setReadFreeQueue (a , b)
9 i f g e t P r i o r i t y (a) == g e t P r i o r i t y (b)

10 / / can not happen h e r e
11 }
12 i f isBiggerType (a , b)
13 setWriteFreeQueue (a , b)
14 i f isBiggerType (b , a)
15 setReadFreeQueue (a , b)
16 }
17 }
18 }
19

20 / / f rom a t o b
21 pred isAsynchronousBinding
22 (a , b : ActiveComponent) {
23 one b : Binding | {
24 b . c l i e n t in a . e x t e r n a l I n t e r f a c e s
25 b . server in b . e x t e r n a l I n t e r f a c e s
26 b . type = Asynchronous
27 }
28 }

29 f a c t Def in ingPoolPat ternAppl ica t ion {
30 a l l a , b : Active {
31 i f isAsynchronousBinding (a , b) {
32 i f a , b in ImmortalMemory .^ subComponents
33 useObjec tPoolPat tern [a , b]
34 i f getMemoryArea (a) != getMemoryArea (b)
35 useDeepCopy (a , b)
36 }
37 }
38 }
39

40 pred useDeepCopy [a , b : ActiveComponent] {
41 one b : Binding | {
42 b . c l i e n t in a . e x t e r n a l I n t e r f a c e s
43 b . server in b . e x t e r n a l I n t e r f a c e s
44 b . type = Asynchronous
45 DEEP_COPY in b . a t r i b u t e s
46 }
47 }
48

49 / / s e e Appendinx A f o r
50 / / t h e r ema in ing p r e d i c a t e s

Figure 5.14: WaitFreeQueue and ObjectPool Formalization

1 c l a s s ActiveStub implements I S e r v i c e {
2 Queue queue = ImmortalMemory . getQueue (ID) ;
3 public void s e r v i c e (Object data) {
4 queue . wri te (data) ;
5 }
6 }

1 c l a s s Act iveSkele ton implements I S e r v i c e {
2 Queue queue = ImmortalMemory . getQueue (ID) ;
3 boolean run = t rue ;
4 I S e r v i c e i S e r v i c e ;
5 public void s e r v i c e () {
6 while (run) {
7 queue . waitForData () ;
8 Object data = queue . read () ;
9 i S e r v i c e . s e r v i c e (data) ;

10 }
11 }
12 }

Figure 5.15: Active Interceptors Implementations

RTSJ and specified in Fig 4.7. In this section we will focus on queue communication and we will
address the scope-sharing concept in the next section.

77

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

In Fig. 5.13 we illustrate the container architectures of two active components having non-
equal types and priorities. We have already defined that such communication must by asyn-
chronous, in Fig. 4.7. Furthermore, in Fig. 5.14 we formalize how to implement this communica-
tion according to the RTSJ rules defined in Section 2.2.1. Depending on the properties of each
active component we define if the WaitFreeWriteQueue or WaitFreeReadQueue will be used, line 1.
Consequently, as the queues are going to pass objects between the active components, we have to
formalize this communication since it could violate RTSJ rules in case that we are crossing mem-
ory scopes, line 29. Therefore, when communicating withing the immortal memory, the object
pool should be used, line 33, otherwise we recommend the deep-copy pattern, line 35.

To use the communication queues properly and to shield developers of functional compo-
nents from dealing with the WaitFreeQueues, we hide the appropriate implementation in the
containers of each active component. We deploy special stubs and skeletons implemented in
container interceptors. From these interceptors we connect to the WaitFreeQueue service to obtain
references to each side of the communication queue. We demonstrate implementation of these
interceptors in Fig. 5.15.

5.2.5 Cross-Scope Communication

In this section we implement the cross-scope communication rules introduced in Section 4.2.4.
Our simple goal is to leave the functional code unmodified and to implement the specific cross-
scope patterns in the interceptors. These interceptors are deployed on the bindings that cross
different memory scopes, their implementation depends on the design procedure choosing one
of many RTSJ memory patterns [CS04, BN03, PFHV04].

Figure 5.16: Memory Scope Component - Interceptors
1 c l a s s InterceptorRunnable implements Runnable {
2 Data input , r e s u l t ;
3 I S e r v i c e i S e r v i c e ;
4 void setData (Data data) {
5 input = data . deepCopy () ;
6 }
7

8 void run () {
9 r e s u l t = i S e r v i c e . s e r v i c e (input) ;

10 }
11

12 Data getData () {
13 return r e s u l t ;
14 }
15 }
16

17 c l a s s MemoryScopeInterceptor
18 implements I S e r v i c e {
19 ScopeMemory scope ;
20 InterceptorRunnable intRunnable ;
21 public Resul t s e r v i c e (Data input) {
22 intRunnable . setData (input) ;
23 scope . enter (intRunnable) ;
24 return intRunnable . ge tResu l t () ;
25 }
26
27 }

Figure 5.17: Memory Scope Interceptor Im-
plementation

1 c l a s s Mult iObject implements Runnable {
2 Data input ;
3 I S e r v i c e i S e r v i c e ;
4 void run () {
5 input = input . deepCopy () ;
6 i S e r v i c e . s e r v i c e (input) ;
7 }
8 }
9

10 c l a s s Mult iScopeInterceptor implements
11 I S e r v i c e {
12 ScopeMemory parentScope ;
13 Data input ;
14

15 Mult iObject mult iObjec t ;
16

17 public Mult iScopeInterceptor () {
18 . . .
19 }
20

21 public void s e r v i c e (Data input) {
22 parentScope . execInArea (
23 mult iObject . setData (input)) ;
24 }
25 }

Figure 5.18: MultiScope Interceptor Imple-
mentation

78

5.2. Implementing SOLEIL with HULOTTE

Figure 5.19: HandOff Pattern Implementation Schema
1 c l a s s HandOff implements Runnable {
2 I S e r v i c e i S e r v i c e ;
3 Data input ;
4 MemoryScope mem_b;
5 void run () {
6 i S e r v i c e . s e r v i c e (input)
7 }
8 }
9

10 c l a s s Bridge implements Runnable {
11 MemoryScope mem_b;
12 HandOff handOff_ ;
13 void run () {
14 memb_b . enter (handOff_)
15 }
16 }

17 c l a s s Handoff Interceptor implements
18 I S e r v i c e {
19 ScopeMemory parentScope ;
20 Bridge bridge ;
21 Handoff handoff ;
22 S e r v i c e I n t e r f a c e i S e r v i c e ;
23

24 public HandOffInterceptor () {
25 . . .
26 }
27

28 public void s e r v i c e (Data input) {
29 handOff . setData (input) ;
30 parentScope . executeInArea (bridge) ;
31 }
32 }

Figure 5.20: HandOff Interceptor Implementation

The cross-scope pattern is the basic pattern for a cross-scope communication. This pattern
targets cases when a communication from a parent to a child scope is needed. To implement
this pattern, we introduce MemoryScopeInterceptor (see Fig. 5.16) that is deployed on every
binding crossing different memory areas and is contained at the server side. A code snippet from
Fig. 5.17 shows implementation of the interceptor – line 17, that manages entering and leaving
of the memory scope and uses a simple deep-copy pattern for returning results from the scope,
line 13.

The goal of the multiscope pattern is to guarantee a transition of the data from a child scope to a
parent scope, therefore a correct switch of the execution context between two scopes is the crucial
task. In Fig. 5.18 line 10 we therefore show implementation of the pattern in our approach. The
implementation shows that flow of the intercepted call is first changed to a corresponding par-
enting scope - line 22, and then from a proper scope we call the functional iService.service
method - line 6.

The handoff pattern – a more sophisticated solution of cross-scope communication handling
is demonstrated by the Handoff Interceptor from Fig. 5.19. We employ the handOff pat-
tern [PFHV04] to store data in a scope while still operating in the original one. Fig. 5.20 shows a
code snippet of the HandOffInterceptor implementation. A direct communication between
two sibling nodes a and b is not possible because of the single parent rule. The hand-off algo-
rithm therefore switches first from the scope a into the parent scope - line 30, and from this scope
enters the scope b - executing in class Bridge, line 14. Finally, having the allocation context of
the scope b, we performe a deep copy of the data and run the requested method in the class
Handoff, line 6.

Scope Sharing

Scope sharing can be applied only in the RTSJ compliant cases. A shared scope must not violate
the single parent rule, therefore the communicating components need to be allocated in the same
scoped memory. Thanks to the RTSJ concepts in the component model, this condition can be
easily verified from the architectural model of the system.

Such sharing is illustrated in Fig. 4.11. Here, we are able to verify at design-time whether this
sharing is compliant with RTSJ. Furthermore, we show a container design of a component in the

79

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Figure 5.21: Shared Scope Component

shared scope, Fig. 5.21. To implement it, we use the cross-scope pattern designed previously and
also we need to use the concept of protected component.

5.2.6 Fractal Control Layer

Figure 5.22: Fractal Control Layer

Apart from the controllers and interceptors presented above, we introduce a basic set of con-
trollers that is provided for every functional component in the system. These components are
inspired by the Fractal component model [BCL+06]: five controllers are provided, for manag-
ing the lifecycle - LifecycleController (LC), the bindings - BindingController (BC), the
component name - NameController (NC), the super components - SuperController (SC)
and the component - ComponentController (Comp).

5.3 HULOTTE Framework Implementation

This section is divided into two parts. First we describe implementation of the HULOTTE frame-
work [Ale09, LMP+09, NL09] — an extensible tool-set that we have developed to implement
the architecture refinement process. However, rather than to implement the whole process in a
single transformation step that can be error-prone and hard to extend, we employ a step-wise
refinement process [BSR03] in order to refine the high-level concepts in our architecture gradu-
ally in several stages. This technology allows framework developers to easily modify and extend
this process with new domain-component definitions and semantics. Consequently, we employ
methods of generative programming to compose functional code implemented by the application
developer with the runtime platform implementation.

Second, in Section 5.3.6, we discuss the framework in a more general perspective envisaging
its application as a metaframework used to develop domain-specific component frameworks.

80

5.3. HULOTTE Framework Implementation

5.3.1 HULOTTE Architecture

To develop the framework, we have applied the technology for development of extensible tool-
sets introduced in [LOQS07]. HULOTTE is thus developed purely using CBSE paradigm allowing
framework developers seamless extensions towards different refinement strategies. The HU-
LOTTE framework, depicted in Fig. 5.23, consists of three main units — front-end processing a
description of a functional architecture stored in ADL, middle-end responsible for a step-by-step
architecture refinement, and backend which serves as a target domain specific implementation
generator.

Figure 5.23: Overview of the Internal HULOTTE Implementation Structure

The motivation for decomposition of the process into three independent units is to sepa-
rate responsibilities and concerns between the transformation steps. The front-end allows us
to process architectures represented by different notations (e.g. FRACTAL-ADL [LOQS07], UML,
ACME [GMW97]) and to transform them into an independent internal representation. Conse-
quently, the middle-end, executing the architecture refinement process, is independent from the
architecture description format. Finally, the back-end permits generation of different types of
target implementations according to deployment requirements (in a more general sense this ap-
proach is not limited to RTSJ, but can be applied for e.g. C for embedded devices or Java for
enterprise applications). In the remainder of this section we highlight interesting issues of each
part of the HULOTTE framework.

5.3.2 Front-end

Front-end implements the translation layer that proceeds an architecture description — in our
case given in an extended FRACTAL-ADL (we illustrate such architecture in Appendix C), and
transforms it into an internal EMF-model [BSE+04] based representation.

The translation process gradually proceeds ADL artifacts (component, interface, domain com-
ponent, binding) and for each applies a dedicated translation component responsible for extract-
ing the information and building an appropriate representation in the internal model. The trans-

81

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

lation process can be extended by appending a new translator component. The new translator
typically reflects a domain-specific extension of ADL (e.g. in Sect. 4.2.5).

5.3.3 Middle-end

Middle-end is the central part of the HULOTTE framework and implements the refinement pro-
cess. Its task is to process the architecture description in the form of the EMF model produced by
the front-end, apply defined architecture refinements — creating, connecting, or merging model
elements according to employed transformations. Internally, the middle-end is composed of
three processing units —PlatformBuilder, Validator, and Optimizator.

PlatformBuilder is responsible for the model refinement and consists of a chain of component
builders (for implementations of interceptors, controllers, and components), illustrated on the
right side of the Fig. 5.23. where each chain participates in the refinement process. From the
builders the runtime platform components are instantiated either by loading definitions from
an off-the-shelf component library or programmatically, via the high-level API provided by the
framework. The selection and execution order of chains is controlled by MainBuilder Dispatcher
that recursively explores the platform architecture and applies appropriate builder chains. More-
over, refining the internal structure as a chain of ComponentBuilders encourages extensibility of
the whole process, since a new domain-specific builder can be easily introduced. As we can see
in Fig. 5.23, except the default builders we can define e.g. DC1, DC2 builders that correspond to
specific domain components.

Validator verifies that resulting platform architectures are in conformance to the architectural
constraints and invariants of domain components. The task is not only to verify whether the
architectural patterns were applied correctly but also to assert that domain components were
specified with respect to their constraints (e.g. to arbitrarily apply two different domain compo-
nents over the same functional component is sometimes not meaningful, see the Limitations of
the Approach in Section 6.4).

Optimizator introduces optimization heuristics in order to mitigate the common overhead of
component-based applications. The heuristics focus on reducing interceptions in inter-component
communication which usually causes performance overhead, and on merging architecture ele-
ments in order to decrease memory footprint. Moreover, since a complete architecture of the
system is available at this stage, additional architecture optimizations, identified in [LP08], can
be introduced while still being independent from the target domain.

5.3.4 Back-end

Back-end part of the framework is also highly configurable in order to reflect current target do-
main and chosen implementation language. In the case of our implementation of HULOTTE, the
back-end is a collection of Java code generators generating Java classes from particular model
elements. As well as the rest of our approach, the back-end is also extensible to employ specific
code optimizations.

Taking into account all the constraints for real-time and embedded systems, we can conclude
that there are several reasons to perform optimizations at development time rather than run-
time [CL02]: This allows composition tools to e.g. generate a monolithic firmware for the device
from the component-based design and by this achieve better performance and better predictabil-
ity of the system behavior. It also enables global optimizations: e.g., in a static component com-
position known at design time, connections between components could be translated into direct
function calls instead of using dynamic event notifications. Finally, verification and prediction of
system requirements can be done statically from the given component properties.

5.3.5 Soleil - Runtime Platform Instantiation

We further apply the HULOTTE approach to the SOLEIL framework in order to generate runtime
platform corresponding to the real-time architecture specified by the designer and refined by the

82

5.3. HULOTTE Framework Implementation

architecture refinement process. The goal of this back-end process is to generate Java source code
including container source code, a framework glue code, and a bootstrapping code.

Moreover, our tool offers different generation modes corresponding to various levels of func-
tionality, optimization, and code compactness:

1. SOLEIL This default mode generates a full componentization of the runtime platform. The
RTSJ interceptors and the reconfigurability management code are therefore implemented as
controllers and interceptors, within the containers. The structure of the latter is also reified
at runtime, as well as the ThreadDomain and MemoryArea composite components. This
generation mode provides a complete introspection and reconfiguration capabilities of the
component framework at the functional and at the membrane level.

2. MERGE-ALL In this generation mode the implementation of functional component code
and its associated membrane are merged into a single Java class. Therefore, it generates
one class per each functional component defined by the developer. Since the number of
Java objects in the resulting infrastructure is considerably decreased, this mode achieves
also memory footprint reduction. In comparison with the SOLEIL mode, it corresponds
to a first optimization level where several indirections introduced by the container archi-
tecture are replaced by direct method calls. As component container structures are not
preserved at the runtime, the MERGE-ALL mode does not provide reconfiguration capabil-
ities of the container level. However, these capabilities are still provided at the functional
level. The source-to-source optimizations performed by the generation process are based
on Spoon [Paw06], a Java program processor, which allows fine-grained source code trans-
formations.

3. ULTRA-MERGE The most optimized mode achieves that the whole resulting source code fits
into one unique class. Moreover, the generated code does not preserve the reconfiguration
capabilities anymore. The resulting infrastructure is therefore purely static. It exclusively
embeds the functional implementations merged to the code which takes into account the
component activations, the asynchronous communications, and the RTSJ dedicated code.

5.3.6 HULOTTE as a Meta-Framework

In this section, we discuss application of the framework in a more general perspective envisaging
the framework as a meta-framework used to develop Domain-Specific Component Frameworks.

Domain specific component framework (DSCF) is composed of a domain-specific compo-
nent model and the tool support which permit assembling, deploying and executing demanded
applications [BHM09]. The main goal is to allow developers to address domain-specific chal-
lenges by using appropriate abstractions available already at the component-model level. To
achieve separation of concerns, domain-specific services required by the target application do-
main (such as dedicated memory ares, tasks parameters, security, distribution support or real-
time constraints), in the literature [DEM02] referred to also as non-functional requirements, are
usually deployed in the runtime platform composed of a set of custom made containers (used
e.g. in [Mor06, Mic, JHA+05]). Today, a plethora of DSCFs emerges, addressing a wide scale
of challenges — embedded [vOvdLKM00] or real-time constraints [PLMS08, HACT04], dynamic
adaptability [FSSC08, GER08], distribution support [SVB+08, MPL+08], and many others.

One of the main benefits expected in using the component paradigm is reuse [Cle02]. How-
ever, it has been argued [DHT01] that the vast, and increasing number of proposals to address
these domain-specific requirements does not encourage reuse, while sharing common concepts
and tooling support. Although the current trend emphasizes generative programming methods [CE00]
as cornerstone of software development, generative methods are usually tailored to specific do-
mains and applied in a costly, ad-hoc fashion. This prevents from any reuse or amelioration of
solutions to a framework construction. We however believe that DSCFs share the same concepts
and patterns to their construction and application.

83

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

(a) Current Methodology: Using Domain-Specific Frameworks

(b) Our Proposal: Using a Generic Framework

Figure 5.24: Development Methodologies of Domain-specific Component Application

Based on this observation, we envisage a new contribution for the proposed HULOTTE frame-
work – a prototype framework for specification and implementation of arbitrary domain-specific
concerns in a unified way, which can be easily extended towards different application domains.

Domain-Specific Component Frameworks and their Application

Typically, DSCF defines the relevant architectural concepts, called domain-specific concepts , ac-
cording to the requirements of the targeted application domain (e.g. to address the distribution
support or real-time constraints). A recognized methodology of developing DSCF [CL02] is com-
posed of several steps as it is illustrated on Fig. 5.24a. In this case, each component model (step
1) is used to develop functional concerns of the application — functional components. Typically,
functional components encapsulate a business logic of an application.

Afterwards, the framework tool-support is employed to create a runtime platform, in Fig. 5.24a
step 2. The runtime platform is composed of a set of containers [Mor06] that encapsulate func-
tional components, and its goal is to relieve the developer from dealing with domain-specific re-
quirements and to implement the execution support. Current trend in developing the runtime
platform emphasizes a generative programming approach. Here, different optimizations should
be employed to mitigate notoriously known problem of CBSE system — performance overhead
(caused e.g. by intercomponent communication). Finally, functional components and the run-
time platform are assembled together to form the resulting application, Fig. 5.24a step 3.

Similarly as in the HULOTTE framework, we distinguish two types of development roles in-
volved in this process — application developer and framework developer. Application developer
is responsible for development of functional components and specification of domain-specific
requirements — in Fig. 5.24a step 1. The role of the framework developer is to design and imple-
ment the runtime platform generation process, and the domain-specific requirements defined by
the application developer — in Fig. 5.24a step 2 and 3.

Developing Domain-Specific Component Frameworks with HULOTTE

Considering the presented process, we can notice that for each domain, a different process is
used. However, the steps 2 and 3 share many similar concepts. Moreover, they are usually
implemented in an ad-hoc manner without any reuse. We therefore propose a new development
process presented in Fig. 5.24b.

As the cornerstone we use a generic component model that is easily extendable towards dif-
ferent application domains, in Fig. 5.24b step 1. Consequently, since all domain specific models

84

5.4. Motivation Example Revisited

share the same concept, a unified approach to runtime platform generation can be employed in
steps 2 and 3. These steps correspond to the Front-, Middle-, and Back-end parts of the Hulotte
framework implementation presented in Section 5.3.1.

Therefore, the Hulotte framework can be also comprehended as a framework, in the literature
also refereed as meta-framework [BHM09], composed of high-level tools, methods, and patterns al-
lowing framework developers to generate runtime platforms in a generic way according to concerns
captured by Domain Components. Within our approach, the platform is built using component
assemblies and is based on our generic component model. Moreover, since we are able to reason
about the whole system (functional and platform concerns) using common concepts (compo-
nents, assemblies), various architecture optimizations independent from the target domains can
be introduced, which contributes to better performance of resulting applications.

5.4 Motivation Example Revisited

To illustrate the ideas presented in this chapter, we revisit the SweetFactory motivation scenario
introduced in Section 2.2.3. In Chapter 4 we have discussed this scenario from the perspective
of the application developer, showing how to develop application architecture and implement
functional components. In this section we will continue with this example by addressing the re-
sponsibilities of the framework developer in the HULOTTE framework - implementing semantics
of domain components and automatic generation of the framework glue code.

Therefore, we apply the architecture refinement process to refine the artifacts of the architec-
ture with the platform level concepts. Based on the architecture defined in Section 4.4, we will
focus on functional components and refine architectures of their containers according to domain
components encapsulating them, using the domain component semantics defined in Section 5.2.

ProductionLine and MonitoringSystem Components

As the first step we will refine components ProductionLine and MonitoringSystem, they
are both active components communicating together and the immortal memory is their allocation
context. The complete architecture is illustrated in Fig. 5.25. In the picture we can see active com-
ponents ProductionLine and MonitoringSystem encapsulated by their containers, these
compositions are then deployed in the non-functional components NHRT1,NHRT2, instances of a
ThreadDomain entity representing a NoHeapRealtimeThreads with different parameters.

Figure 5.25: ProductionLine and Monitor Architecture Refinement

85

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Inside the ProductionLine and MonitoringSystem containers, various controllers and
interceptors are present. ActivityController and ActivityInterceptor implement execution model of
an active component. Both of them represent non-functional concepts specific to the Monitoring-
System component. The NHRT1 and NHRT2 components contain both a ThreadDomain con-
troller that implements logic for management of NoHeapRealtimeThread subcomponents.
Furthermore, since the allocation context of these components is the immortal memory, both
of these components are deployed also into an instance of the ImmortalMemory component - a
non-functional component providing various services.

Consequently, we need to refine an asynchronous communication between these two compo-
nents. According to the rules defined in Fig. 5.14, the asynchronous communication will be im-
plemented using a WaitFreeQueue provided by the ImmortalMemory component. However, the
components are operating in immortal memory and therefore there is no need for deep-copying
the objects, we follow the rule from Fig. 5.14 line 29 defining when to use object pools to ef-
fectively recycle the memory. This situation is illustrated in Fig. 5.25 where the ActiveStub and
ActiveSkeleton are both connected to the WaitFreeQueue and ObjectPool services, and implemented
as shown in Fig. 5.15.

Finally, the NHRT1 and NHRT2 components contain both a ThreadDomain controller that
implements logic for management of NoHeapRealtimeThread subcomponents.

Console and AuditLog Components

As the second step we will focus on architectural refinement of the remaining two components
- Console and AuditLog. Since they communicate extensively with the MonitoringSystem
component, we also need to design this communication.

Figure 5.26: AuditLog and Console Architecture Refinement

Considering the Console component, its refinement is simple since it is a passive component
residing in a scoped memory, according to defined rules, we will refine its structure by deploying
a ScopeInterceptor, described in Section 5.2.5, into its container.

The AuditLog component is an active component executed by a regular thread residing on
a heap, however, it communicates with the MonitoringSystem. Therefore, applying the rules
from Figure 5.14 we derive that the asynchronous communication will use WriteFreeQueue with
the deep-copy pattern. Therefore, the resulting architecture can be seen in Fig. 5.26.

86

5.5. Summary

5.5 Summary

In this chapter we propose our approach to implementation of domain components and we fur-
ther employ it in the HULOTTE framework - a toolset for automatic instantiation of runtime exe-
cution platforms (G2.2).

First, we extend the SOLEIL component metamodel with the platform-level concepts that pro-
vide a set of entities used to refine architectures of domain components. Consequently, we iden-
tified architectural patterns that facilitate refinement of these components. Second, we apply the
architectural patterns and the platform-level concepts in order to design and implement RTSJ-
specific domain components proposed by the SOLEIL framework.

Furthermore, we develop HULOTTE— a generic framework that uses generative program-
ming methods to instantiate RTSJ applications together with their runtime platform. The whole
approach is highly transparent since it is fully based on component-oriented principles, which
allows developers to easily extend the framework with additional domain components.

Finally, we have applied the concepts introduced by this chapter on our motivation scenario.

In the following chapter, we use the SOLEIL and HULOTTE frameworks in three different
case studies, showing the benefits of our approach and evaluating it from different perspectives,
addressing the goal G3.

87

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

88

Part III

Validation

89

Chapter 6
Case Studies

Contents
6.1 Sweet Factory . 93

6.1.1 Description . 93
6.1.2 Performance Evaluation . 93
6.1.3 RTSJ Code Generation Perspective 95
6.1.4 Evaluation . 97

6.2 Real-time Collision Detector . 97
6.2.1 Description . 97
6.2.2 Current Approaches and Their Limitations 99
6.2.3 RCD Implementation in the SOLEIL Framework 102
6.2.4 Evaluation . 104

6.3 Distributed and Ambient Programming in SOLEIL and HULOTTE 105
6.3.1 Distributed Real-Time Programming with SOLEIL 105
6.3.2 Ambient Programming with HULOTTE 109
6.3.3 Evaluation . 112

6.4 Limitations of our Approach . 113
6.5 Related Work Comparison . 114
6.6 Summary . 115

IN THIS CHAPTER we apply the SOLEIL and HULOTTE frameworks in several case studies
spanning different domains and challenges. The case studies5 will serve both as examples
and validation of the proposed concepts.

The first case study, SweetFactory, is based on the motivation scenario that we have introduced
in Section 2.2.3. The goal of the case study is to validate our approach from the quantitative
point of view. First, we summarize the implementation of the SweetFactory example as it was
conducted through the course of this dissertation, and consequently, we evaluate performance
issues of our framework from various perspectives. Finally, we validate our framework based on
the RTSJ metrics [BV07] for code generation. Therefore, this case study confronts our approach
with goals G3.1 and G3.2.

The second case study, Real-time Collision Detector, presents a large real-time Java application
that is well known as a validation case study of many RTSJ projects. The goal is to demonstrate
application of the SOLEIL framework in a real-life scenario and thus confront our approach with
goals G3.3 and G3.4.

The third and final case study - Distributed and Ambient Programming in HULOTTE , evaluates
the potential of the SOLEIL and HULOTTE frameworks to be extended towards different domains.

5The source codes of the case studies are available at ttp://adam.lille.inria.fr/soleil/

91

ttp://adam.lille.inria.fr/soleil/

Chapter 6. Case Studies

Therefore, we describe challenges of distributed Real-time Java programming and Ambient Pro-
gramming, consequently we propose a new domain components and show their implementation.
Finally, we demonstrate contributions of our approach on examples.

At the end of this chapter, we discuss specific shortcomings of our solution and compare our
framework with the frameworks presented in Section 3.2.

Contributions

The major contribution of this chapter is the evaluation of the framework from several different
perspectives:

• Performance. As the first contribution, we evaluate performance of our solution. We mea-
sure overhead of our framework comparing to manually implemented object-oriented ap-
plication and consequently, we measure the impact of optimization heuristics that we have
introduced in the framework.

• Generic-Programming Evaluation. Since our framework extensively employs code gen-
eration techniques, we evaluate that the generated code and manually implemented func-
tional components form programs that can be easily maintained and are transparent for
application developers. The evaluation is conducted based on the metrics published in
[BV07].

• Real-time Collision Detector. We evaluate our approach on a large-scale application that
is widely accepted in the Real-time Java community. In the case study we show how our
approach mitigates RTSJ development complexities by bringing benefits even in large ap-
plications.

• Extendability of the Framework. Finally, we evaluate the ability of the HULOTTE frame-
work to extend towards different application domains. We present challenges of two do-
mains - distributed real-time programming and ambient programming, and show how the
HULOTTE framework can be extended to meet their requirements.

Structure of the Chapter

This chapter is divided into three parts, each dedicated to a case study. Each of the case stud-
ies starts by giving its overview and highlights the key challenges. Afterwards, we apply our
framework and show its benefits. Finally the case study closes with an evaluation. Therefore,
Section 6.1 presents the SweetFactory case study that is focused on illustration of general frame-
work contributions, consequently evaluates both performance and memory overhead introduced
by the SOLEIL framework and finally evaluates the framework from the RTSJ-code generation
perspective.

Section 6.2 describes the Real-time Collision Detector case study. First, we introduce the case
study and consequently show the state-of-the-art approaches used to its implementation. After-
wards, we present solution in the SOLEIL framework and finally compare the benefits of con-
cerned approaches. The case study is therefore focused on implementation of a large system,
evaluating benefits of our approach from the software engineer perspective.

Section 6.3 is dedicated to the final case study - Distributed and Ambient Programming in
HULOTTE. First, it presents Distributed- and Ambient- Programming and their challenges. Con-
sequently, we define according domain components and show how they can be implemented in
the HULOTTE framework. Finally, we evaluate this approach on simple examples to demonstrate
the ability of HULOTTE to extends towards different domains.

After the case studies, we discuss the limitations or the approach identified in the case studies
in Section 6.4. In Section 6.5 we compare the SOLEIL framework with the state-of-the-art RTSJ
frameworks. The chapter is summarized in Section 6.6.

92

6.1. Sweet Factory

6.1 Sweet Factory

The Sweet Factory application is based on the motivation scenario presented in Section 2.2.3.
The goal of this case study is to illustrate development of RT Java applications in the SOLEIL
framework, measure the performance of applications implemented in our framework, and fi-
nally validate the applications developed in our framework from an code generation perspective
(using metrics from [BV07]).

6.1.1 Description

The SweetFactory case study [GHMS07] consists of a production line that periodically generates
measurements, and of a monitoring system that evaluates them. The goal is to notify a worker
console whenever abnormal values of measurements appear. The last part of the system is an
auditing log where all the measurements are stored for auditing purposes. The production line
operates in 10ms intervals, the system must be designed to operate under hard real-time con-
ditions. However, the console and logging part does not superimpose any additional real-time
constraints. Therefore, system is thus composed of parts that must meet hard real-time deadlines
(the production line and monitoring system) and parts that are non real-time (console). Such a
case study represents the best candidate for applying real-time Java technology, since it embraces
real-time and non-real-time demands in one application.

Despite relative simplicity of the case study, it brings many challenges and contains the most
significant challenges in real-time Java programming: hard real-time threads operating with dif-
ferent priorities (production line and monitoring system), a passive service suitable for scoped
memory application (logging), non-real-time part (console), and both synchronous and asyn-
chronous ways of communication. This case study was also used as a running example in this
dissertation. We have described designing of the application in Section 4.4. Consequently, imple-
mentation of the example was discussed in Section 5.4.

6.1.2 Performance Evaluation

The goal of this benchmark is to show that our framework does not introduce any non-determinism
and to measure the performance and memory overhead of the framework. As one of the means
of evaluation, we compare differently optimized applications developed in our framework with
a manually written object-oriented application.

The performance of the component-based software systems is a well known issue [LP08]. The
platform infrastructure presented in Chapter 5 is based on the container composition paradigm.
This introduces several indirections in the functional execution flow initially described at the de-
sign time by the developer. These indirections allow developers to superimpose domain-specific
functionalities around functional components, however, they also introduce additional overhead
caused by the traversal of the incoming invocation through the container structure. Our primary
goal when evaluating the framework is thus to measure its overhead in terms of execution time
and memory footprint. Moreover, since the RTSJ specifications have been defined to reduce the
unpredictability introduced by the dynamic memory management within the Java Virtual Ma-
chine, we also use the jitter as a measure of the system’s predictability.

In order to employ a standardized and well known form of performance evaluation, the
benchmark is inspired by the evaluation case study presented in the Compadres project [HGCK07].

Benchmark Scenario

We measure the execution time of a complete iteration starting from the ProductionLine com-
ponent. Its execution behavior consists of a production of a state message that is sent to the
MonitoringSystem component using an asynchronous communication. The latter is a sporadic
active component that is triggered by an arrival notification of the message from its incoming server
interface. The scenario of this transaction finally ends after invocation of a synchronous method

93

Chapter 6. Case Studies

provided by the passive Console component and an asynchronous message transmission to the
active AuditLog component.

Evaluation Platform

The testing environment consists of a Pentium 4 mono-processor (512KB Cache) at 2.66 GHz with
1GB of SDRAM, with the Sun 2.1 Real-Time Java Virtual Machine (a J2SE 5.0 platform compliant
with RTSJ), and running the Linux 2.6.24 kernel patched by RT-PREEMPT. The latter converts the
kernel into a fully preemptive one with high resolution clock support, which brings hard realtime
capabilities, see [MG07].

Measurement Collection

The measurements are based on steady state observations - in order to eliminate the transitory
effects of cold starts we collect measurements after the system has started and renders a steady
execution. For each test, we perform 10 000 observations from which we compute performance
results.

Our first goal is to show that the framework does not introduce any non-determinism into
the developed systems, we therefore evaluate a "worst-case" execution time and an average jitter.
Afterwards, we evaluate the overhead of the framework by performance comparison between an
application developed in the framework (impacting the generated code) and an implementation
developed manually through object-oriented approach. Therefore, in the results presented be-
low, we compare four different implementations of the evaluation scenario. First, denoted as OO,
is the manually developed object-oriented application. Then, denoted as SOLEIL, MERGE_ALL,
and ULTRA_MERGE are applications developed in our framework constructed with different lev-
els of optimization heuristics. We refer the reader to Section 5.3.5 for detail description of the
optimization levels.

Results Discussion

The results of the benchmarks are presented in Fig. 6.1. It presents the execution time distribution
of the 10,000 observations processed. Table. 6.1 sums up these results and gives the median of ob-
served times - the range of observations between the minimum and the maximum execution time
observed, as well as the corresponding jitter. Fig. 6.2 presents the memory footprints observed at
runtime.

Figure 6.1: Benchmark Results: Execution Time Distribution

94

6.1. Sweet Factory

In Fig. 6.1 we show performance results of different variants of SweetFactory application -
OO, SOLEIL, MERGE_ALL and ULTRA_MERGE respectively. For each implementation we show a
performance graph showing distribution of the results on a time scale, where each point of the
graph represents the number of measured iterations that finished in a given time. Consequently,
the peak of each graph represents the most frequent time length of the iteration.

Median Jitter
(µs) (µs)

OO 31,9 0,457
SOLEIL 33,5 0,453

MERGE_ALL 33,3 0,387
ULTRA_MERGE 31,1 0,384

Table 6.1: Execution Time Median and
Jitter Table 6.2: Memory Footprint

Non-Determinism As the first result, we can see that our approach does not introduce any
non-determinism in comparison to the object-oriented one, as the execution time curves of OO
and SOLEIL are similar. Moreover, the jitter is very subtle for all tests. This is caused by the
execution platform which ensures that real-time threads are not preempted by GC, and provides
a low latency support for full-preemption mechanisms within the kernel.

Performance Time The median execution time for the SOLEIL test is 4.7% higher than for
the OO one. This corresponds to the overhead induced by our approach based on component-
oriented containers. However, the performance of the ULTRA_MERGE is comparable to the
manually implemented OO - it is even slightly better since ULTRA_MERGE implementation is
more compact since it removes indirections between objects.

Memory Footprint Considering the memory footprint, SOLEIL consumes 50% (280KB) more
memory than OO. The price paid for generated containers providing RTSJ interception mech-
anism. MERGE_ALL, a test introducing the first level of optimizations, gives a more precise
idea of the injected code which provides these non-functional capabilities at runtime: 4.7KB. The
memory overhead purely corresponds to the algorithms and data structures used by our compo-
nent framework. Finally, the ULTRA_MERGE is the most lightweight - even in comparison to
OO, here, the whole applicative code and RTSJ interceptors are instantiated within a unique Java
object.

6.1.3 RTSJ Code Generation Perspective

The work introduced in [BV07] investigate fitness criteria of RTSJ in model-driven engineering
process that includes automated code generation. The authors identify a basic set of requirements
on code generation process. We further confront our approach and the generation process that
we integrate with this set of code generation requirements.

Therefore, we consult the requirements, give their descriptions and than we discuss how they
are met in the HULOTTE framework. The key generation requirements can be divided into two
groups.

• The Code Generator Validation. In order to be able to place trust on generated code, it is
necessary to validate the generation process. Achieving a code generator easy to validate
follows from meeting three more concrete requirements.

– The Generated Code Should be Compact Usually, the compactness of the generated
code is a good indication of the complexity of the code generator. One of the ap-
proaches how to achieve compactness of the generated code is to create a shared li-
brary of patterns upon which the generator can lean. Considering HULOTTE and its

95

Chapter 6. Case Studies

generation process, we implement a library of platform-level components (contain-
ers, controller, interceptors, etc.) that are frequently used during the generation, in
Section 5.2.

– Direct Model-to-Code Traceability Since our approach is model-based, model-to-
code traceability is a central factor. Moreover, the most stringent development stan-
dards (such as DO-178 [IH92]) require full traceability across the different abstraction
levels, the model-to-code traceability becomes a necessary asset to trust the code gen-
eration.
However, when looking at our approach, both the core-level to platform-level model
transformation and the platform-level model to code transformation are clearly de-
fined and a clear and direct model-to-model and model-to-code semantics mappings
can be found. This is guaranteed by the fact that CBSE principles are used as basic
concepts at both model and code level, where resulting application implementation
is implemented in component-based programming. Therefore the component-based
concept represents the same functionality in the model and also in the resulting code.

– Code Generator Development Tools Should Allow Easy Model Navigation Finally,
the generator development tools massively influence the development complexity, it
is therefore important to provide an extensive tool support.
In our approach, we employ several tools at different stages of the development pro-
cess to mitigate its complexities. First, during the design of the application we employ
the Alloy Analyzer [KM08] and Alloy for Eclipse plugin [BB08] to validate model in-
stances. Second, during the implementation of both functional and platform-level con-
cepts, different tools based on the FRACTAL project can be used. Notably F4E [Dav08]
- an Eclipse plug-in for FRACTAL, and FRACTAL-ADL [LOQS07].

• Separation of Concerns. The separation of concerns in our approach is implicitly met since
already at the model level we define clear entities that represent domain-specific concerns
- Domain Components. Looking at the separation of concerns more in details, it can be
applied at multiple levels, in particular:

– The Separation of Generated from Manually-Written Code Distinguishing generated
code from manually-written code is important for two main reasons. First, the gener-
ated code is expected to be correct, meaning that it should correctly map the semantics
expressed at the model level. Second, the generated code needs not to be verified, on
the ground that the originating model has been checked extensively.
We achieve the separation of generated from manually-written code through the fol-
lowing features of the HULOTTE framework. First, the clear separation is already
achieved at the model level, where functional concerns are represented by the concepts
of the core-level of the model and the domain-specific concerns are represented by the
concepts defined in the platform-level of our model, as defined in Section 5.1. Conse-
quently, when generating the implementation of platform-level concepts, we deploy
generated code into clearly defined component entities, as described in Section 5.3.

– The Separation between Functional and Non-functional Semantics The separation
functional and non-functional semantics brings several advantages. To name one, it
foster reuse, since it allows one to reuse functional and non-functional components in-
dependently of each other. Furthermore, the separation of concerns increases simplic-
ity of the application implementation since the functional design and implementation
is not tangled with the non-functional concerns.
This requirement, similarly as the previous one, is implicitly met since we represent
both functional and non-functional concerns as clearly identified software components
– either functional or domain components (defined in Section 4.1).

Based on the discussion above, we conclude that SOLEIL and HULOTTE frameworks are meet-
ing the most important criteria from the code generation perspective. Mainly, the concept of

96

6.2. Real-time Collision Detector

domain components proves to be highly beneficial since it allowes us to achieve separation of
concerns along the whole development lifecycle.

6.1.4 Evaluation

The following aspects of the above evaluation are noteworthy:

Performance Perspective

The bottom line is that our approach does not introduce any non-determinism. Moreover, the
overhead of the framework is minimal when considering MERGE_ALL, but with the same func-
tionality as our non-optimized code. Finally, we demonstrate a fitness for embedded platforms
by achieving a memory footprint reduction (ULTRA_MERGE) that provides better results than
the OO-approach.

Code-Generation Perspective

We have evaluated the HULOTTE framework from the code generation perspective by confronting
it with code generation requirements from [BV07]. Evaluation showed that the HULOTTE frame-
work is meeting this criteria and that particularly the separation of concerns is achieved by using
the domain component concept proposed in the SOLEIL framework.

6.2 Real-time Collision Detector

The purpose of the second case study is to validate our approach on a real-life application. The
key motivation is to employ the domain component concept and the HULOTTE framework in
order to achieve a better separation of concerns in RTSJ systems and to mitigate complexities of
the RTSJ-based development process.

Furthermore, this case study was conducted to evaluate the SOLEIL framework and its ben-
efits from a software engineering point of view. The software system used in this experiment is
modeling a real-time collision detector (RCD), described in [ZNV04]. The collision detector algo-
rithm consists 241 classes (around 30 KLOC) and was originally written with RTSJ, and since then
it was used in several research projects as evaluation case study [PFHV04, ACG+07, ABG+08].

Therefore, first, we describe the RCD case study in Section 6.2.1. Consequently, in order
to illustrate properly challenges of RCD implementation, we discuss prior implementations of
this case study, published in [ZNV04, PFHV04], in Section 6.2.2. We present implementation of
RCD in the SOLEIL framework in Section 6.2.3. Finally, we discuss relative benefits achieved in
Section 6.2.4.

6.2.1 Description

The RCD case study represents a real-time safety-critical application developed to monitor air
traffic. RCD must proceed positions of each aircraft and compute trajectories of aircraft in order
to detect possible collisions. By the nature of the task, the application has to meet hard real-time
constraints, since the positions of aircraft are periodically updated in very short intervals. Fur-
thermore, the application must proceed all the data received in every interval. Dropping arriving
information in order to increase throughput can not be tolerated in any case, since a missed dead-
line could potentially lead to an aircraft collision resulting in material and also people casualties.

The detection algorithm [ZNV04, PFHV04] implemented by RCD is a single threaded hard
real-time task which periodically receives a stream of aircraft positions and must determine if
any of these aircraft are on a collision course. In RTSJ, the task is implemented as 10Hz No-
HeapRealtimeThread. In every loop it creates a list of motions representing movements of aircraft

97

Chapter 6. Case Studies

from their previous states and computes a list of collision courses. A list of recent aircraft posi-
tions, called StateTable, is being updated and kept between each loop of the algorithm. Since
the computation logic requires allocation of temporary memory to store intermediate results, a
scoped memory region is used.

Figure 6.2: RCD, Sequence Diagram

In order to better illustrate the algorithm, we present its sequence diagram in Fig. 6.2. The
computation starts with the Frame Simulator that is responsible for simulating a real air traffic
by creating a list of aircraft positions. Frame Simulator generates the aircraft positions in 10Hz
intervals, the data are stored in an instance of the Frame object. Since Frame Simulator is a
hard real-time task, its interaction with the system is isolated, therefore, it only stores every frame
in an FramePool from where they can be further processed by the collision detector algorithm.

The collision detector algorithm is then launched by the Manager that is activated in every
iteration to compute collision courses for given positions of aircraft. Therefore, for every iteration
it instructs the Detector to start computations. Detector first contacts Receiver to receive a
stream of aircraft positions stored in a Frame. Receiver retrieves the first available Frame from
the FramePool and returns it to the Detector.

Consequently, motions of aircraft needs to be computed. These motions are computed from
the current positions of aircraft received from the Receiver and the last known positions of
aircraft stored in the StateTable. This is performed by the MotionCreator that contacts the
StateTable and computes a list of motions. Finally, the list of motions is delegated to the
CollisionDetector that computes possible collision courses.

Since the system is operating under hard real-time deadlines and must operate in very strict
time conditions, a regular Java can not be used. Instead, non-heap real-time thread (NHRT) must
be used, restricting the developers to use immortal and scoped memories. Thanks to the char-
acteristic of the algorithm, each of its iteration can be performed in a scoped memory - applying
for Detector, Receiver, MotionCreator and CollisionDetector. In order to keep posi-
tions of aircraft between each iteration, the StateTable must be placed outside of the scoped
memory allocation context to prevent its collection after each iteration.

However, implementation of the StateTable is a good example of the intricacy of RTSJ
programming. An extract of computed data from a child scope must be stored in a parenting

98

6.2. Real-time Collision Detector

scope while the computation in the child scope continues. Developers must constantly switch
between different allocation contexts and perform deep copying of selected data, making the
programming process highly error-prone.

In the following section we will therefore demonstrate how prior research is dealing with
challenges of RCD development. Although the sequence diagram explains clearly the RCD al-
gorithm, its implementation in presented approaches is usually hampered with the concepts of
RTSJ. The code must be tangled at many places and additional trade-offs are introduced, modi-
fying the algorithm and the system architecture itself. We will therefore show these proprietary
solutions in order to finally present solution in the SOLEIL framework and thus highlighting its
contributions.

6.2.2 Current Approaches and Their Limitations

In order to properly illustrate the challenges of RCD implementation, we will discuss prior im-
plementations of this case study published in [ZNV04, ACG+07].

Original RCD Implementation

In the original RCD implementation [ZNV04, PFHV04] the functional code was monolithic and
highly tangled with the RTSJ-related code, making the implementation hard to understand, de-
bug, or potentially update.

Furthermore, the non-intuitive form of memory management prevents developers to exactly
determine in which scope area a given method is being executed. A drawback that is particularly
tricky when allocating data that needs to be preserved across the lifespan of memory scopes.
Specifically, this situation occurs when updating the data in the StateTable. We show a code-
snippet in Fig. 6.3, which is implemented using a multiscope pattern [PFHV04] - an instance of
class allocated in one scope but with some of its methods executing in a child scope.

Looking at the StateTable, the method createMotions() is executed in the child scope
and computes motions of aircraft. At lines 14 to 15, the new and old position of the aircraft is
computed. Afterwards, if the old_pos is null then we have detected a new aircraft and we
need to add it into the list of aircraft - lines 18–23. Otherwise – lines 24-28, a position of already
detected aircraft is updated.

However, to ensure that these changes will be permanent, we need to switch from a child
scope to a parent scope – lines 24-28, and then using the classes Putter or Putter2 we distin-
guish whether a new aircraft will be added - line 37, or a position of an old one will be updated
– line 44.

Bottom Line To summarize, the RTSJ and functional code are highly tangled. Moreover, the
multi-scoped object pattern does not distinguish clearly when a scoped-memory switch should
be performed, this is however putting a lot of burden on developers who must reason about
the current allocation context and if necessary, switch it. As already shown in [Nil04], manual
scoped memory control and switching performed by developers is a highly error prone practice.
Finally, when looking at the RCD sequence diagram, the responsibilities of MotionCreator and
StateTable were merged into the StateTable class, which does not influence functionality,
but, however, mixes different functional concerns.

STARS Project

The issues of the original implementation were partially mitigated in the STARS project [ACG+07]
using AOP. The project proposes a novel approach for programming real-time systems in order
to shield developers from many accidental complexities that have proven to be problematic in
practice. One of the goals is to mitigate complexities of memory switches, by making them im-
plicit. The approach uses a program’s package hierarchy to represent the structure of its memory
use, making clear where objects are allocated and thus where they are accessible. This means that

99

Chapter 6. Case Studies

1 public c l a s s S t a t e T a b l e {
2 HashMap prev = new HashMap () ;
3 Put ter put te r = new Put ter () ;
4

5 public L i s t createMotions (RawFrame f) {
6 f i n a l L i s t r e s u l t = new LinkedList () ;
7 for (. . .) {
8 x = f . decodeX (. . .) ;
9 y = f . decodeY (. . .) ;

10 z = f . decodeZ (. . .) ;
11 cs = f . g e t A i r c r a f t C a l l S i g n (. . .) ;
12 A i r c r a f t c r a f t = new A i r c r a f t (cs) ;
13

14 Vector3d new_pos = new Vector3d (x , y , z) ;
15 Vector3d old_pos = prev . get (c r a f t) ;
16

17 Vector3d old = (Vector3d) prev . get (c r a f t) ;
18 i f (old_pos == null) {
19 put ter . c = c r a f t ;
20 put ter . v = new_pos ;
21 MemoryArea current = MemoryArea . getMemoryArea (t h i s) ;
22 current . executeInArea (put te r) ;
23 }
24 e lse {
25 put ter2 . c = c r a f t ;
26 put ter2 . v = new_pos ;
27 MemoryArea current = MemoryArea . getMemoryArea (t h i s) ;
28 current . executeInArea (put ter2) ;
29 }
30 }
31 return r e s u l t ;
32 }
33 public c l a s s Put ter implements Runnable {
34 A i r c r a f t c ;
35 Vector3d v ;
36 public void run () {
37 prev . putNewAirCraft (c , new Vector3d (v)) ;
38 }
39 }
40 public c l a s s Put ter2 implements Runnable {
41 A i r c r a f t c ;
42 Vector3d v ;
43 public void run () {
44 prev . updateOldAircraft (c , new Vector3d (v)) ;
45 }
46 }
47 }

Figure 6.3: StateTable Original Implementation

developers define an exact memory scope for every program’s package thus defining an alloca-
tion context for each class contained in the specific package. Real-time Aspects, defined by the
approach, then weave in allocation policies and implementation-dependent code — separating
real-time concerns further from the functional implementation.

To demonstrate this approach, we again show a code snippet of the MotionCreator and
StateTable communication in Fig. 6.4. In order to define allocation contexts, the classes imple-
menting the algorithm are scattered across different packages. The package imm.runner gathers
classes with the allocation context of the parent scope, therefore, the StateTable class, keeping
the aircraft positions between each iteration, is defined here. Furthermore, a class Vector3d is
defined here to store an aircraft position.

The classes executing in the child scope are defined in the package imm.runner.detector.
Therefore, the class StateTable2 responsible for computation of motions (thus correspond-
ing to MotionCreator class in the sequence diagram) is defined here. Furthermore, another
class Vector3d is defined to store an aircraft position in this allocation context. As we can see,
StateTable and Vector3d are defined in two variants, each in a different package.

The algorithm starts in the method createMotions in StateTable2 – line 19. We compute
a new aircraft position - line 28, and store in the childscope Vector3d. Afterwards, we retrieve

100

6.2. Real-time Collision Detector

1 package imm. runner ;
2

3 public c l a s s Vector3d { . . . }
4

5 public c l a s s S t a t e T a b l e {
6 HashMap prev = new HashMap () ;
7 public void put (. . .) {
8 . . .
9 }

10 }
11

12 package imm. runner . d e t e c t o r ;
13

14 c l a s s Vector3d { . . . }
15

16 c l a s s Sta teTab le_2 {
17 S t a t e T a b l e t a b l e ;
18

19 public L i s t createMotions (RawFrame f) {
20 f i n a l L i s t r e s u l t = new LinkedList () ;
21 for (. . .) {
22 x = f . decodeX (. . .) ;
23 y = f . decodeY (. . .) ;
24 z = f . decodeZ (. . .) ;
25 cs = f . g e t A i r c r a f t C a l l S i g n (. . .) ;
26 A i r c r a f t c r a f t = new A i r c r a f t (cs) ;
27

28 new_pos = new Vector3d (x , y , z) ;
29 f i n a l imm. runner . Vector3d old_pos = (imm. runner . Vector3d) t a b l e . p r e v i o u s _ s t a t e . get (c r a f t) ;
30

31 i f (old_pos == null) {
32 t a b l e . put (c r a f t . g e t C a l l s i g n ()) , new_pos . x , new_pos . y , new_pos . z) ;
33 } e lse {
34 f i n a l Vector3d save_old_pos i t ion = new Vector3d (old_pos . x , old_pos . y , old_pos . z) ;
35 old_pos . s e t (new_pos . x , new_pos . y , new_pos . z) ;
36 . . .
37 }
38 . . .
39 }
40 return r e s u l t ;
41 }
42 }

Figure 6.4: StateTable, STARS Project Implementation

an old position and store it in the parent scope imm.runner.Vector3d - line 29. In order to add
a new aircraft to the StateTable, we call table.put() - line 32. Note, that the StateTable2
stores a reference to the StateTable class from the parent scope - line 17. However, updating
an old aircraft position is tricky. Instead of calling an updatePosition method, we allocate a
new Vector3d in the parent scope holding the new position of the aircraft - line 34, and update
the old_position class explicitly - line 35. The Real-time Aspect Weaver then assures that ap-
propriate context switching code will be weaved in the functional code during the compilation
time.

Bottom Line When looking at this solution, we can see that although resulting code is more com-
pact and context switching is performed implicitly on the basis of packages, the implementation
is not very intuitive since even now developers are not sure where are the allocated objects stored
- e.g. looking at the Vector3d class at the line 34. Moreover, the approach forces developers to
define the same classes redundantly in different packages, making potential modification of the
code extremely difficult.

Additionally, the RTSJ code is weaved into the functional during the development process and
thus, the final functional implementation is still polluted by the RTSJ-related concepts. To allow
the weaver to inject the RTSJ code the application has to be designed and deployed into different
packages. However, these packages does not represent the functional logic of the application but
obey the RTSJ restrictions. E.g. the StateTable logic divided into two packages.

On the other hand, an interesting coherence can be found between STARS and SOLEIL. STARS

101

Chapter 6. Case Studies

defines a memory area per package, while SOLEIL can achieve a more fine-grained specification
– a memory area per component (using domain components). Therefore, we comprehend the
STARS approach for explicit memory area definition as an effort in a correct direction, which is
however pursued more fundamentally in the SOLEIL achieving better results, as will be demon-
strated in the next section.

6.2.3 RCD Implementation in the SOLEIL Framework

Finally, we have developed RCD in the SOLEIL framework. Therefore, we will focus on design
and implementation of this case study.

Design of RCD

The architecture of RCD developed in our framework is depicted in Fig. 6.5. The original object-
oriented RCD application was very easily re-engineered into a component-oriented one, more-
over, the components implement only the functional logic of the application. Our approach al-
lows us to design the application intuitively in correspondence with the logic of the algorithm
(described in Fig. 6.2). Manager is periodically starting the computations, which are proceeded
in every iteration by the Detector. Detector first asks FrameReceiver for new aircraft posi-
tions, creates motions in MotionCreator, and collisions are computed by the CollisionCo-
-llector component. Moreover, the MotionCreator updates the current aircraft positions
which are stored between each iteration in the StateTable component. The FrameReceiver
revives frames from the FrameSimulator that simulates aircraft movements. The designed ar-
chitecture is very clear and easily understandable, thus the developers are able to reason about
the system without being limited by the RTSJ-related issues. Consequently, domain components
are applied to determine the allocation and execution context of each component.

Figure 6.5: RCD Architecture

Implementation of RCD

After designing RCD architecture, we refine it with the platform-level concepts, fully evolved
view on the architecture is presented in Fig. 6.6. Since the design performed by the user specified
different domain components, we can perform reasoning about the compositional and binding
rules that we have specified in the SOLEIL and HULOTTE frameworks. As a result, we can see

102

6.2. Real-time Collision Detector

that several interfaces and controllers were deployed into the refined architecture in order to rep-
resent RTSJ concerns. Notably, a HandOff Interceptor was deployed in the binding between
MotionCreator and StateTable, and ScopeInterceptor deployed between Manager and
Detector.

Since we have already defined the allocation contexts (represented by the memory area do-
main components) at design time, together with other RTSJ-specific concerns, we can focus only
on implementation of functional components at implementation time. In Fig. 6.8 we are showing
the SOLEIL implementation of the StateTable logic. Thanks to the separation of concerns, we
can implement the logic in the same way as described in the RCD sequence diagram in Fig. 6.2.
Looking at the MotionCreator, we can see that it is connected with the StateTable com-
ponent through the IStateTable interface - line 3, that is defined in Fig. 6.7. Therefore, the
communication with the StateTable component is performed through this interface. We can
further observed that no RTSJ-related code is present.

Figure 6.6: RCD Refined Architecture

1 i n t e r f a c e I S t a t e T a b l e {
2 Vector3d g e t A i r c r a f t P o s i t i o n (Cal lS ign cs) ;
3 Cal lS ign c r e a t e C a l l S i g n (Cal lS ign cs) ;
4 void putNewPosition (Cal lS ign cs , Vector3d v) ;
5 void updatePosi t ion (Cal lS ign cs , Vector3d v) ;
6 }

Figure 6.7: IStateTable Interface

Again, the flow of the algorithm is starting in the createMotionsmethod in the MotionCreator
– line 5, we first proceed the new and old positions of an aircraft – lines 14-15. Afterwards, we
determine whether the old_pos is null and either insert a position of a new aircraft – line 14,

103

Chapter 6. Case Studies

or update a position of an already known aircraft – line 22.

1 public c l a s s MotionCreator implements
2 IMotionCreator {
3 I S t a t e T a b l e i S t a t e T a b l e ;
4

5 public L i s t createMotions (RawFrame f) {
6 . . .
7 for (. . .) {
8 x = f . decodeX (. . .) ;
9 y = f . decodeY (. . .) ;

10 z = f . decodeZ (. . .) ;
11 cs = f . g e t A i r c r a f t C a l l S i g n (. . .) ;
12 A i r c r a f t c r a f t = new A i r c r a f t (cs) ;
13

14 Vector3d new_pos = new Vector3d (. . .) ;
15 Vector3d old_pos = i S t a t e T a b l e . g e t A i r c r a f t P o s i t i o n (c r a f t) ;
16 i f (old_pos == null) {
17 Cal lS ign cs2 = i S t a t e T a b l e . c r e a t e C a l l S i g n (cs) ;
18 i S t a t e T a b l e . putNewPosition (cs2 , new_pos) ;
19 . . .
20 }
21 e lse {
22 i S t a t e T a b l e . updatePosi t ion (cs , new_pos) ;
23 . . .
24 }
25 }
26 . . .
27 }

Figure 6.8: MotionCreator Implementation

Bottom Line Finally, the implementation of the StateTable is very intuitive, as we can see in
Fig. 6.9, only functional code is present. Moreover, the code is clear and reflecting the needs of
the application without any constrains imposed by the real-time properties.

1 public c l a s s S t a t e T a b l e implements I S t a t e T a b l e {
2 HashMap prev = new HashMap () ;
3 public A i r c r a f t g e t A i r c r a f t P o s i t i o n (. . .) {
4 . . .
5 return a i r c r a f t ;
6 }
7 Cal lS ign c r e a t e C a l l S i g n (Cal lS ign cs) {
8 return new Cal lS ign (cs) ;
9 }

10 . . .
11 }

Figure 6.9: StateTable Implementation

The RTSJ related concerns are expressed by the domain components, depicted in Fig. 6.5,
here the memory components play a key role since the communication between different scopes
is needed. This is therefore beneficial for the functional implementation since the functional and
RTSJ-related concerns are separated, as shown above.

Furthermore, the code arbitrating the cross-scope communication between MotionCreator
and StateTable components can be automatically generated and deployed in the interceptors
hidden in the containers. We demonstrate such a code example in Fig. 6.10 where a HandOff-
Interceptor arbitrating the communication between the MotionCreator and StateTable
is shown. Here, a simple cross-scope pattern, defined in Section 4.2.4, is used.

6.2.4 Evaluation

The following aspects of the RCD implementation in the SOLEIL framework are noteworthy.

104

6.3. Distributed and Ambient Programming in SOLEIL and HULOTTE

1 public c l a s s HandOffInterceptor
2 implements I S t a t e T a b l e {
3 I S t a t e T a b l e i S t a t e T a b l e ;
4 ScopedMemory scope ;
5 public void putNewPosition (. . .) {
6 . . .
7 scope . executeInArea (put te r) ;
8 }
9 }

1 public c l a s s Put ter
2 implements Runnable {
3 public void run () {
4 . . .
5 }
6 }

Figure 6.10: SoleilInterceptor Implementation

The domain components simplified expression of RTSJ specific properties, since these prop-
erties are present in the architecture as first-class entities. A full separation of functional and
real-time concerns is achieved, therefore, the functional code is more readable — reflecting the
functional needs of the application without any constrains imposed by the real-time properties.
As the second benefit of our approach we consider application of the HULOTTE tool-chain for
automatic generation of the runtime platform implementing RTSJ-related code, which is highly
error-prone when implementing by hand.

Comparing to other projects implementing RCD, we achieve better separation of concerns, re-
sulting implementation is not tangled by RTSJ-specific code and we are able to follow the original
logic of the RCD algorithm without proprietary trade-offs enforced by the RTSJ limitations.

6.3 Distributed and Ambient Programming in SOLEIL and HU-
LOTTE

The goal of our final case study is to evaluate the SOLEIL and HULOTTE frameworks in a more
general view without focusing solely on RTSJ. The challenge is to evaluate the concept of do-
main components and its support in SOLEIL and HULOTTE frameworks towards various domain-
specific challenges. We have conducted two case studies: the Distributed Real-time Programming
with SOLEIL case study [MPL+08] and the Ambient-programming with Hulotte case study [PMS07],
in this section we revisit them in the context of this dissertation.

6.3.1 Distributed Real-Time Programming with SOLEIL

The aspect of distribution in RTSJ systems still represents a challenge and brings many open is-
sues. The state-of-the-art of distributed and real-time Java lies at its very beginning. A few initial
studies introducing specifications, profiles or frameworks [AJ06, WCJW02, TAdM07] have been
conducted, however, there is still a need of a comprehensive solution proposing a full-fledged
approach that would mitigate complexities of real-time programming in distributed systems.

We further envisage that supporting development of distributed real-time systems is a highly
desired feature, therefore as one of the key contributions of this case study we focus on exten-
sions of our framework towards distribution support. Following the philosophy of the SOLEIL
framework, our goals are twofold.

• Employ SOLEIL framework in order to propose appropriate abstractions in the form of do-
main components that clarify specification of model artifacts and properties that will cover
distributed real-time requirements. Thus create an abstract layer which will hide low-level
distribution concerns from component designers.

• Use the HULOTTE framework to implement semantics of such components and manage
transparent deployment and execution of distribution support inside the platform layer.

105

Chapter 6. Case Studies

Requirements and Challenges

Integration of distribution into the SOLEIL component framework is a challenge involving an
analysis of requirements dedicated to real-time systems as well as requirements coming from
RTSJ. All these requirements affect not only a way of specifying model artifacts (components,
bindings and their properties) but also its runtime structure and the process of its initialization.
We therefore determine a scope of requirements which have to be reflected by a distributed sys-
tem within a real-time environment at all stages of the application lifecycle.
Real-time Properties. Since real-time programming introduces specific requirements on dis-
tributed systems (e.g. priorities of running tasks, computational deadlines), they play a sub-
stantial role during the development. These properties influence remote connections and super-
impose new constraints over them. Some real-time properties have to be propagated between
remote parts of applications (e.g. priority of a client thread) and others have to be reflected dur-
ing creation of the connection (e.g. end-to-end time).
RTSJ Requirements. Moreover, employing RTSJ in development of distributed Real-Time Java-
based systems is also affected by the particularities of its specification. However, the specification
silences about distribution aspects and therefore these complexities need to be resolved by the
developers.
Integration level. Furthermore, the integration of distribution into a component framework
yields a decision at which level of abstraction the distribution will be incorporated into the frame-
work and how a component-application developer will manipulate with real-time properties.
Whether to hide the manipulation from the developer or not. These questions were discussed in
the scope of RMI integration into RTSJ presented in [WCJW02]. It distinguishes three basic levels
of RMI integration (denoted as L0, L1 and L2) from different views.6 L0 is the minimal level of
the integration with no support for real-time properties from underlying technology. The level
L1 requires a transparent manipulation with scheduling parameters or timing constraints and
finally L2 declares semantics for the distributed thread concept [AJ06] which represents a fully
transparent real-time programming model.

We partially adopt this idea of integration levels in our approach. The primary objective is
an integration of distribution into the RTSJ-based component system at a level corresponding
to L1. We however generalize the idea of the level L1, originally tightly coupled with RMI,
to address the full span of possible communication middlewares (RMI, CORBA) in distributed
environments. We therefore address the following contributions to meet this generic goal:

(i) Scheduling Parameters. To handle transparently scheduling parameters which are associ-
ated to component threads. The task involves a transportation of parameters from a client to a
server where it is required, configuration of an underlying middleware (e.g. in case of CORBA,
creating priority lanes), pre-reservation of connections for selected priorities, etc.;

(ii) Determinism. To ensure that the generated runtime infrastructure does not affect deter-
minism and timely delivery assured by a used underlying middleware;

(iii) RTSJ Rules and Restrictions. To handle memory and thread differences between compo-
nents and a used middleware. This also covers handling of a memory allocation of call parame-
ters (e.g. CORBA parameter holders) and auxiliary artifacts (e.g. adaptors, call serializers),

(iv) Communication Styles To provide different communication styles [Bur06, MMP00] which
are common in the real-time and embedded systems world (synchronous and asynchronous
method call, asynchronous messaging).

DistributedNode Domain Component

The purpose of this case study is therefore to introduce a notion of distribution simply by defining
a new domain component – DistributedNode (DN). Each DN represents a distributed node of

6Programming model (identification of remote objects), development tools and implementation model (real-time properties
transport mechanism). In our case, the first two models are realized by the SOLEIL framework, therefore the following
text is interested in the third one.

106

6.3. Distributed and Ambient Programming in SOLEIL and HULOTTE

the application, a functional component in DN will be thus deployed on the corresponding node
together with its runtime support extended towards the specifics of distributed communication.

We illustrate an example of DN in Fig. 6.11. As we can see, Client and Server are both
deployed in different DNs. This means that each of them will be deployed in a distributed envi-
ronment on a dedicated node. Moreover, every communication crossing different DNs must be
implemented as a distributed communication based on the properties of each DN. In Fig. 6.12 we
show formal definition of the DistributedNode component.

Figure 6.11: DistributedNode Component Example

1 s ig DistributedNode extends DomainComponent ()
2

3 f a c t EveryComponentHasOnlyOneDistributedNode {
4 a l l c : Component |
5 one d : DistributedNode |
6 c in d.^ subComponents
7 }
8

9 s ig AmbientNode extends DistributedNode { }

Figure 6.12: DistributedNode and AmbientNode Formal Definitions

Moreover, the HULOTTE framework is responsible for implementing semantics of DN, mean-
ing that the framework generates each DN component as a self-standing application allowing
deployment of the components into the corresponding nodes. Furthermore, each distributed
binding must be implemented as a distributed communication. We present this in the following
section.

DistributedNode Implementation

The basic idea of our approach is inspired by a solution in which components communicate
through architecture-level software connectors that are implemented using a middleware [MDT03].
This approach preserves the properties of the architecture-level connectors while leveraging the
beneficial capabilities of the underlying middleware. This approach is integrated into the HU-
LOTTE framework and represented by the ChainComposite pattern.

The role of the framework developer is therefore to apply the ChainComposite pattern on
each distributed binding, corresponding stubs and skeletons will be refined as subcomponents
of the ChainComposite. The HULOTTE framework provides the platform-level generator that
generates a system’s infrastructure on the basis of a given architecture. Thus we automatically
obtain container implementations, consequently mitigating complexities of the system develop-
ment. Additionally, the process of designing and implementing containers addresses the real-
time challenges identified in the previous section.

From the high-level point of view, we adopt a general approach to a generation of component
connectors presented in [Bur06], we however focus on more lightweight and especially RTSJ
tightly coupled solution.

107

Chapter 6. Case Studies

Architecture Refinement Process of Distributed Connections. At design time we perceive
ChainComposite Interceptors as representations of bindings between functional components.
A binding has attached non-functional properties such as benchmarking, enforcement of a ded-
icated connection or prescribed utilization of a given middleware. Furthermore, the binding
connects components which also have associated properties (e.g. call deadlines for interface op-
erations) or they receive derived properties from non-functional components in which they are
placed (e.g. memory allocation context, thread priorities). All these properties are reflected in the
ChainComposite Interceptor architecture representing the binding.

The chosen architecture also brings advantages in dealing with issues triggered by using RTSJ
such as memory scopes crossing or copying between memory areas.

Generation Process. The connector generation process includes:
(i) Chain Structure Selection. Which involves selecting interceptors and their order in ac-

cording to binding properties (specified and derived) and also to RTSJ requirements, e.g. select-
ing memory allocation areas and adapting memory or thread differences;

(ii) Interceptor Code Generation. The task involves generation of interceptors and of a se-
lected middleware specific code (e.g. initialization of middleware, setting connection parame-
ters).

Furthermore, different optimizations in the chain or in its selected parts are possible, similarly
as proposed in Section 5.3.5.

Runtime. The preservation of the container architecture at the runtime level permits modifica-
tion of interceptor attributes. Either simple attribute modifications affecting only one interceptor
are possible (e.g. modification of middleware threads priority) or even more advanced adapta-
tions of the whole ChainComposite Interceptor structures can be performed (e.g. update of
interceptors in a chain, change of the interceptors order). Moreover, the framework generates
each DN component as a self-standing application allowing deployment of the components into
the corresponding nodes.

Example Scenario

The proposed concept was applied in an implementation of the motivation scenario presented in
Section 2.2.3. Concretely, we model a real-time communication between two active components
- ProductLine and MonitoringSystem allocated in a non-heap memory. Both components have
associated properties defining components’ thread priorities. The binding between these com-
ponents is modeled as a remote binding with two associated non-functional properties — the
first one enforces utilization of a distribution enabling technology and the second one identifies
asynchronous method call. In our case we use RTZen middleware [RZP+05] as the distributed en-
abling technology, however, different middleware technologies can be used, depending on user’s
choice. Furthermore, the HULOTTE framework could be extended by a process for automatic in-
stantiation or the middleware layer, e.g. introduced in [ZPH08], which would implement only
the services required by the application, achieving performance gain and footprint reduction.

These simple properties involve several tasks which have to be covered by the generated
interceptors and its chain architecture: (i) implementation of core distribution with help of RTZen.
This also involves generation of low-level CORBA interfaces, helpers, value holders in according
to a specified IDL; (ii) configuration of underlying middleware - adjustment of CORBA policies
to reflect components’ thread properties; (iii) asynchronous method calls in case the underlying
middleware does not support them; and (iv) adaptation between memory areas; (v) adaptation
between functional and internally generated interfaces.

These requirements are reflected by a selected chain of interceptors at the client as well as
at the server side (see Fig. 6.13). The core of the distribution implementation is generated in
interceptors called RTZenStub and RTZenSkeleton which mediate the communication with help of
the RTZen middleware.

108

6.3. Distributed and Ambient Programming in SOLEIL and HULOTTE

Figure 6.13: DistributedNode Refinement

At the server side, RTZenSkeleton registers itself as a remote object in RTZen and serves like a
proxy which delegates calls to a following interceptor which adapts an internally generated inter-
face to the server component’s functional interface. The RTZenSkeleton interceptor also configures
a priority with which remote calls will be handled. The delegation needs a simple interface adap-
tation (interceptor Interface adaptor) to bridge differences between the server functional interface
and interface required by RTZen.

At the client side, RTZenStub obtains, via calling the encapsulated RTZen middleware, a ref-
erence to the remote object and delegates all incoming calls to it. However this reference imple-
ments the internally generated interface, therefore it has to be adapted to the functional interface
by another interceptor called Adaptor. Finally, the Serializer interceptor arranges asynchronous
semantics for method calls - each call on its provided interface is stored in a local queue and then
served by a thread associated with the queue.

6.3.2 Ambient Programming with HULOTTE

Ambient-Oriented Programming (AmOP) [JCS+05] as a new trend in software development
comprises a suite of challenges which are yet to be addressed fully. So far, only a few solu-
tions facing the obstacles of ambient programming have been developed. In this case study we
focus on AmbientTalk [JCS+05] since in our opinion it represents one of the most sophisticated
solutions. Although AmbientTalk conceptually proposes a way to implement applications for the
ambient environment, this is achieved by defining a new programming language. Consequently,
AmbientTalk potentially introduces a steep learning curve for the developers. From this point of
view, it is reasonable to search for an approach which uses well-known techniques and is pow-
erful enough to face the obstacles of ambient programming. We believe that these requirements
can be met by the using the technology provided by the HULOTTE framework.

This case study is based on our prior research [PMS07] and its goal is to provide a support
for ambient-oriented programming in component-based systems. The key idea of the solution
is to use the concept of domain components to describe ambient concerns in the system and by
employing the HULOTTE framework we strive to manage ambient software components trans-
parently for users, mitigating the complexities of the ambient world.

Besides, considering the challenges of ambient programming in the context of real-time Java is
reasonable, since the ambient-oriented software usually encompasses some real-time constraints
and RT Java represents a promising choice for this technology, as discussed in [AMPN+06].

109

Chapter 6. Case Studies

Challenges and Requirements

Ambient Intelligence [Gro03] represents a new trend of computing where technology is grace-
fully integrated into the everyday life of its users. This new field in distributed computing com-
prises wireless devices which spontaneously communicate with each other.

The specific character of a highly dynamical mobile environment however imposes special
constraints (facing the connection volatility, the ambient nature of resources, etc.). These chal-
lenges form a new group of programming techniques – Ambient-Oriented Programming. Al-
though the main stress here is laid on facing the so-called Hardware Phenomenon [JCS+05], we
believe that software engineering aspects supporting more effective development of ambient ori-
ented applications should be more emphasized.
AmbientTalk is a programming language that explicitly incorporates potential constraints of the
distributed mobile environment in the very heart of their basic computational steps, thus ad-
dressing directly the obstacles of application development for mobile devices. To deal with the
ambient environment characteristics, AmbientTalk implements several features. For this discus-
sion we focus on two keystone concepts: Ambient Reference and Non-blocking Futures.

The Ambient Reference concept represents a powerful solution to referencing objects in am-
bient environment. Ambient reference operates in two states - unbound and bound. When an
ambient reference is unbound, it acts as a discovery channel looking for remote service objects
in the environment to bind to. Once such a suitable object is found, the ambient reference be-
comes bound. Once bound, an ambient reference is a true remote object reference to the remote
service. When the service object to which an ambient reference is bound moves out of communi-
cation range, the ambient reference can become unbound again. Then it acts as a peer discovery
mechanism again and tries to rebind to the same or another matching service.

Since the concept represents an asynchronous way of communication, it is necessary to face
the challenge of returning the result of a client’s request. To provide this, the Non-blocking Fu-
tures concept is introduced. It allows to associate a block of code which will be triggered on the
client once its request is resolved – the returning value from the server is thus processed. The
main motivation for employing this feature is to manage the returning value processing without
the introduction of callback methods.

Other solutions to the ambient environment challenges exist, we refer interested reader to [GK03].

AmbientNode Domain Component

In order to define ambient concerns in the system, we employ the concept of domain components.
We define a new domain component - AmbientNode, in Fig. 6.14, in order to represent those
software components that are extended towards specifics of the ambient world.

Figure 6.14: AmbientNode Component Example

The AmbientNode component, as defined in Fig. 6.12, is an extension of the DistributedNode
component, and represents a node that exists in an ambient environment. Furthermore, each
binding connecting different AmbientNode components is an ambient binding - a component-
based variant of the ambient reference.

110

6.3. Distributed and Ambient Programming in SOLEIL and HULOTTE

In order to implement the concept of non-blocking futures, we associate to every ambient
binding a call-back binding that is transparently managed by the container of the AmbientNode,
see the next section for further details.

AmbientNode Implementation

The adaptability of the container, supported by the HULOTTE framework, is the key feature we
want to employ during the implementation of our solution. As already said, each component
container can be extended individually thus perfectly fitting the specific needs of particular com-
ponent. Applied to our experiment, we extend membranes of components implementing the
communication between both actors with the ambient functionality. Thus the functionality is
deployed only on specific components, they are extended with following units:

• Ambient Controller The ambient controller is a new managing unit introduced into the
component membrane architecture. The task of the controller lays in managing the ambient
functionality of the component. Particularly, the key responsibilities of this unit are the
control of the ambient references and the deployment of ambient interceptors.

• Ambient Interceptor The interceptors deployed on every component interface allow to
trace the component communication and to adjust the communication towards the specific
needs of the ambient environment. E.g. either forward the messages to the recipient or
buffer them when the recipient is unavailable.

• Discovery Service The solution is supported by the discovery service which manages the
list of available services in the communication domain and notifies actors whenever a re-
quired resource appears or disappears from the domain. The motivation for introducing
the centralized unit into the experiment is to allow to focuss only on implementation of
ambient references and concepts.

Example Scenario

To demonstrate the potential abilities of our proposed solution, we have conducted an experi-
ment that implements a middleware layer supporting the Ambient Reference and Non-blocking
Future concepts - the fundamental features of AmbientTalk.

Figure 6.15: Ambient Scenario

The experimental implementation involves two actors : a server that provides a given service
and a client that is searching for the service and that spontaneously enters and leaves the com-
munication range of the server. The task is to use Ambient Reference and Non-blocking Futures
concepts and thus hide the ambient character of the environment. To focus only on the imple-
mentation of these two concepts, we have extended this system by a third actor - a discovery
service, which manages the service provisions and requirements in the environment. The discov-
ery service operates at the middleware layer, communicating only with ambient-aware parts of
actors. The whole scenario is depicted in Fig. 6.15.

Through the container adaptation we are able to achieve the ambient functionality, obtain-
ing an ambient component. The functional code is not affected thus putting no extra burden on

111

Chapter 6. Case Studies

the developer. Moreover, ambient-awareness extensions are transparent and can co-exist with
the remaining unmodified components – achieving that potentially every component systems
developed in HULOTTE can be extended.

When applying the approach to our experiment, the containers of components participating
in the ambient communication are extended by the ambient controllers. An ambient binding, a
component-oriented variant of the Ambient Reference concept, is instantiated once the discovery
service announces that a client’s desired service becomes available. Then, the AmbientController
creates the binding between ambient components and deploys the AmbientInterceptor on
the interface of the client component. Once the ambient binding is instantiated, the Ambient-
Controller keeps this reference updated and notifies the interceptor every time the discovery
service announces that an ambient resource is unavailable. The role of the interceptor is to either
transmit messages to the server interface or to buffer them when the ambient service is currently
unavailable.

Figure 6.16: Ambient Communication Scenario

To implement the Future concept, the callback technique is used even though the original
implementation of the concept in AmbientTalk avoids a callback. Every communication of the
component with its environment has to be provided through an interface, it is therefore necessary
to define a method for resolving a returning value and to expose this method in an interface
definition. However, the callback binding is created automatically with the creation of an ambient
reference. Both bindings are managed by the AmbientController and thus no special burden
is laid on the shoulders of the developer.

The architecture of the ambient component is depicted in Fig. 6.16, where we can see container
extensions - AmbientController and AmbientInterceptor, the ambient binding, and the
Future callback binding which is created simultaneously and is managed in cooperation of am-
bient controllers on both client and server components.

6.3.3 Evaluation

The following aspects of the above implementation are noteworthy:

Distributed Real-Time Programming with SOLEIL

Distribution support in RTSJ-based component systems is a highly demanded property which
is however neglected in the state-of-the-art solutions. Our case study proposed an approach
to introduction of distribution support into the SOLEIL framework. Therefore, we have pro-
posed and implemented a new domain component - DistributedNode. The application of
the DistributedNode component was illustrated in a scenario introducing distribution using
the RTZen middleware [RZP+05]. We have shown that our approach allows developers to hide
the distribution support in container implementations which are automatically generated by our

112

6.4. Limitations of our Approach

framework tool – HULOTTE. When comparing our approach with the component connector tech-
nology [MDT03], we notice that the ChainComposite pattern allows framework developers to
express any form of a component connector, while still using the general concept defined by our
approach. Moreover, automatic generation of the runtime platform and separation of generated
files according to distribution nodes mitigates complexities of distributed programming.

Ambient Programming with HULOTTE

In this second case study focused on evaluation of extendability of our approach we have been
addressing challenges of ambient programming. Similarly as in the previous case, we have pro-
posed a new domain component - AmbientNode, and we have demonstrated its implementation
in the HULOTTE framework. The conducted experiment showed that HULOTTE provides suffi-
cient extendability to develop ambient-oriented components. Furthermore, it indicates that the
proposed solution potentially represents an equivalent alternative to AmbientTalk.

6.4 Limitations of our Approach

In this section we discuss specific technical shortcomings of our solution that were identified
when conducting presented case studies.

Domain Component Dependencies and Policies

In this dissertation we focus on definition of domain components and their integration in the
HULOTTE framework. However, an open research issue still remains specification of policies and
constraints that regulate application of domain components at the functional level. Since some
domain-specific services are non-orthogonal - competing or dependent on each other, their appli-
cation must be exactly delimited in a form of policies that will manage non-trivial combinations
of domain-specific services. A taxonomy of domain components should be proposed to clarify
relations between specific domain components.

Furthermore, also at the runtime platform level, a consistent and symmetric approach to con-
struction of containers needs to be specified in a form of policies that will manage non-trivial
combinations of domain-specific services.

Development Process

Considering an implementation of each component, the designed architecture considerably sim-
plifies this task. Functional and real-time concerns are strictly separated and a guidance for pos-
sible implementations of those interfaces that cross different concerns is proposed. However, the
application developers have to fully follow the development methodology and the SOLEIL pro-
file we propose, be aware of the restrictions imposed by RTSJ, and must not deliberately tangle
the functional code with RTSJ concerns.

Separation of Concerns

Although we strive to achieve separation of concerns, we do not fully separate all the RTSJ con-
cerns from the functional ones. This is particularly the case when representing Immortal mem-
ory as a component which provides the ObjectPool service. The functional logic of a compo-
nent must be aware of this service and in special cases is forced to directly communicate with it
through an interface. Furthermore, as already discussed in [BCC+03], this introduces a burden on
developers since a strict discipline within the component is required to recycle object references
in an organized manner.

On the other hand, the authors of SOFA 2.0 [BHP06] claim that the code implementing the
functional component should be aware of the control part; moreover, they state that the func-
tional code should have access to the control part of the component. Although this could be seen

113

Chapter 6. Case Studies

as a cross cutting concern that hopefully should be avoided according to the Fractal community,
in the case of ObjectPools provided by the Immortal Memory it is necessary.

6.5 Related Work Comparison

In this section we confront the SOLEIL framework with the component frameworks presented
in Section 3.2.3. In Table 6.3 we therefore repeat the characteristics of these frameworks and we
compare them with SOLEIL.

Compadres Etienne et al. SOFA HI Golden Gate SOLEIL

CBSE Criterions
Component

Model
Communication

Model
Development
Methodology
Adaptation

RTSJ Criterions
Thread

Model Support
Memory

Model Support
Formalization and

Validation

Legend
Low Support High Support

Table 6.3: Recapitulation and Comparison of Component Frameworks for RTSJ

The SOLEIL framework, summarized in the last column, represents a matured component
model that is comparable to the state-of-the-art general-purpose component frameworks - e.g.
SOFA or FRACTAL. Similarly, the communication model supports a wide range of communica-
tion types, others may be easily added. Furthermore, the framework proposes a development
methodology, with both meets the requirements of general purpose methodologies but also pro-
vides solutions specific to RTSJ. However, only adaptation of non-real-time parts of applications
is supported.

From the RTSJ perspective, the framework provides a support for RTSJ thread model. The
concept of active and passive components is provided together with a higher level approach
using the domain components (the ThreadDomain component). The framework further em-
ploys the domain components when addressing the memory model complexities, the solution
is fostered by a wide set of supported patterns and idioms at the implementation level. Finally,
since the component model is formalized in the Alloy language and we specify the SOLEIL pro-
file, an approach to validation of component model instances and their implementations can be
proposed.

114

6.6. Summary

6.6 Summary

In this chapter we have evaluated the SOLEIL and HULOTTE frameworks from several different
perspectives. These evaluations were divided into three independent case studies, each focusing
on different aspects of our proposal.

SweetFactory The main purpose of this case study was to illustrate basic challenges of RTSJ
programming and also to illustrate the main ideas of our proposal along the course of the dis-
sertation. Furthermore, we have also used the implementation of the SweetFactory to evaluate
performance characteristics of our framework. Finally, as a part of the evaluation case study we
have evaluated the code generation process implemented in the HULOTTE framework.

As the result of this case study, we have effectively demonstrated the basic ideas proposed by
the SOLEIL framework. Also, performance benchmarks showed that the framework is not intro-
ducing any overhead comparing to manually implemented variant of the SweetFactory. Finally,
from the code generation perspective we have discussed that the HULOTTE framework is meet-
ing the set of requirements posed on code generators for RTSJ systems, notably we have achieved
a full separation of concerns.

Real-time Collision Detector The purpose of the RCD case study was to evaluate the SOLEIL
framework from a software engineering point of view, showing the benefits the software engi-
neers will exploit when using the SOLEIL framework. As one of the means of evaluation, we have
compared prior implementations of RCD with the application implemented in SOLEIL, showing
better scalability of the solution, separation of concerns in practice, and mitigation of RTSJ pro-
gramming complexities.

Distributed and Ambient Programming The purpose of this final case study was to evaluate
extendability of the framework. We have chosen two domain specific challenges - distributed
real-time computing and ambient computing. For both we have proposed new domain compo-
nents, implemented their semantics, and demonstrated the benefits of the HULOTTE framework
on simple illustration scenarios. The case studies showed how easily and intuitively the frame-
works can be extended, evaluating their potential in more general scenarios.

In the next chapter, we will present perspectives and conclude.

115

Chapter 6. Case Studies

116

Part IV

Conclusion and Perspectives

117

Chapter 7
Conclusion and Perspectives

Contents
7.1 Summary of the Dissertation . 119
7.2 Contributions of the Dissertation . 120
7.3 Limitations of the Approach . 121
7.4 Impact of the Dissertation . 122

7.4.1 Collaborations . 122
7.4.2 Research Projects Influenced by the Dissertation 122

7.5 Perspectives . 123
7.5.1 Short Term Perspectives . 123
7.5.2 Mid Term Perspectives . 124
7.5.3 Long Term Perspectives . 124

7.6 Publications . 124
7.6.1 International Conferences . 124
7.6.2 International Workshops . 125
7.6.3 Poster Sessions . 125
7.6.4 Presentations . 125

IN THIS concluding chapter, we revisit our research goals as stated in the introduction with
hindsight and highlight the contributions of this dissertation once more. We discuss the
rough edges to our proposal and outline those aspects of the proposal which may lead to

interesting avenues of future research. We also point out other research which has been – to some
extent – influenced by the work described in this dissertation.

7.1 Summary of the Dissertation

The vision behind this dissertation is to ultimately close the gap between real-time programming
and today’s software technology. Therefore, this dissertation investigates scalable software engi-
neering techniques for RTSJ [BGB+00] programming. The fundamental philosophy that we adopt
is to introduce high-level abstractions of RTSJ concepts in order to leverage development of real-
time Java systems. The work in this dissertation lies within the intersection of three technological
domains: real-time systems development, component-based software engineering (CBSE), and
Real-time Specification for Java (RTSJ). Our basic goal is to reconcile traditional component-based
software engineering abstractions in the context of RTSJ. Following this goal, the appropriate ab-
stractions of RTSJ concerns should mitigate complexities related to the RTSJ programming model.

119

Chapter 7. Conclusion and Perspectives

As the cornerstone of our approach, we introduce the concept of domain component that al-
lows developers to express RTSJ concerns - e.g. real-time threads or memory areas, as special
software components in the system. By abstracting RTSJ we thus permit to manipulate with its
concerns as first-class entities along the whole development lifecycle. This approach ultimately
provides a full separation of functional and RTSJ-specific concerns. The resulting applications
are more transparent and can be easily tailored to various real-time conditions without modify-
ing the functional implementation.

Furthermore, we embrace the concept of domain components in SOLEIL– a full fledged com-
ponent framework for development of RTSJ-based applications. The framework proposes a de-
velopment methodology providing a continuum between the design and implementation pro-
cess where RTSJ concerns are transparently managed. The framework further mitigates the com-
plexities of real-time programming by automatically generating the RTSJ-specific code, thus we
achieve a development process that highly resembles the standard Java one. Additionally, we
formalize the concept of domain components and the rules and restrictions introduced by RTSJ
using the Alloy [Jac06] language into the SOLEIL profile. Based on the profile, we propose an
approach to validate that developed architectures and implementations are in conformance to
RTSJ.

Finally, we extend the SOLEIL framework with the HULOTTE tool set that provides a component-
based approach to automatic instantiation of runtime execution platforms for applications devel-
oped in SOLEIL. The toolset can be easily extended with new domain components and their
semantics in order to address various domain specific challenges, without the restriction only
to RTSJ. Additionally, various optimization levels are provided to balance between functionality
and performance of instantiated applications.

To validate the approach, we have conducted three case studies, each challenging our pro-
posal from different perspectives. In the SweetFactory case study we have evaluated performance
characteristics of our approach, showing that we introduce only a slight overhead in comparison
to manually written object-oriented applications while providing more functionality. The Real-
time Collision Detector case study evaluated the benefits of the approach for software engineers,
we have showed that in comparison to different RTSJ programming models we bring better sep-
aration of concerns and significantly facilitate development of RTSJ programs. The Distributed
and Ambient programming case study demonstrated ability of the domain component concept to
be extended towards various domain-specific challenges. Furthermore, we have compared the
SOLEIL framework with the state-of-the-art RTSJ frameworks and we have justify why SOLEIL
surpasses them.

7.2 Contributions of the Dissertation

We further summarize the main contributions of our work and put them into the context of the
goals stated in Section 3.5:

• Domain Components We have proposed this new kind of components that represents
domain-specific concerns in systems. In this way we present these concerns as first-class
entities and developers can manipulate with them along the whole development lifecycle.
Domain components are used in our proposal to represent RTSJ features and thus provide
an appropriate level of abstractions – meeting the G1.1. We thus achieve better separation
of functional and non-functional concerns (represented as domain components) – G1.2.

• RTSJ Component Model Based on the concept of domain components we propose a com-
ponent model embracing RTSJ concepts - G1. ThreadDomain and MemoryArea compo-
nents are designed to alleviate the complexities of thread and memory models of RTSJ. Fur-
thermore, we formalize the component model in Alloy in order to provide a background
for validation methods – G1.3.

120

7.3. Limitations of the Approach

• SOLEIL Framework The SOLEIL framework further extends our contributions by introduc-
ing a development methodology - G2.1. The methodology provides a guiding principles
to facilitate development of RTSJ systems. Furthermore, the SOLEIL profile defines rules
that must be obeyed by developers in order to develop RTSJ compliant applications. Fur-
thermore, based on the profile and on the formalization of the component framework we
propose a validation process validating correctness of developed applications - G1.3.

• HULOTTE Framework The HULOTTE framework provides a unified approach to instanti-
ation of runtime platforms for applications developed with the SOLEIL framework. The
framework respects the separation of concerns by keeping the software components also
at runtime. Furthermore, runtime platforms are instantiated through the methods of gen-
erative programming – G2.2. The functional code is fully separated from an automatically
generated RTSJ-related one, both at development time and also at runtime. The HULOTTE
framework also introduces optimization heuristics in order to mitigate the performance
overhead caused by the componentization of applications – G3.2.

• Evaluation Our performance evaluations show that we deliver predictable applications
– G3.1 and the overhead of the framework is considerably reduced by the optimizations
heuristics we implement – G3.2. Additionally, the presented case studies showed that de-
velopment of RTSJ applications is substantially alleviated by separating the functional and
RTSJ code, which is furthermore automatically generated – G3.3 and G3.4.

7.3 Limitations of the Approach

We already highlighted specific technical shortcomings of our proposal in Section 6.4. Important
as they may be, we will not repeat them here, but rather focus on the limitations of the concept
of the SOLEIL and HULOTTE frameworks as a whole.

Activity View

As discussed in the previous section, the SOLEIL framework provides an effective approach to de-
velopment of RTSJ-compliant applications. The complexities of the development process are mit-
igated and RTSJ-related code automatically generated, however, the framework does not guar-
antee that such applications will finally meet the requirements of their real-time model. RTSJ
itself guarantees solely predictable execution of Java code, the SOLEIL framework is proposed to
maximize the electivity of this process.

Analyzing real-time applications is fully in competence of real-time model construction tools
(e.g. TIMES [AFM+02] and SYMPTA/S [HHJ+05], MAST [HGGM01], or MARTE [MTdS07]).
SOLEIL however does not provide any support for such tools. Although, this was not stated as a
goal for this dissertation, it can be considered as a limitation of the approach. We further address
it in the perspectives of this dissertation, Section 7.5.

Runtime Adaptation

Our proposal is developed with a motivation to address the issues of adaptation of real-time
systems. To achieve this, we can extensively benefit from the FRACTAL component framework
that supports reliable ways of runtime reconfiguration [LLC07]. Our framework follows this ap-
proach by allowing developers to design containers supporting such way of reliable adaptation.

However, we meet the ultimate goal of adaptable real-time components only partially. As
discussed in [WRM+05a, CL02], when addressing adaptability of real-time component systems,
the runtime changes in the system must not jeopardize the end-to-end timing constraints. Fur-
thermore, the reconfiguration operations must be deterministic [FSSC08]. Our approach does not
support adaptation up to this extend.

121

Chapter 7. Conclusion and Perspectives

Additionally, RTSJ characteristics further hamper adaptation of applications, since for exam-
ple performing adaptation in the allocation context of an immortal memory could eventually
lead to its exhaustion. To resolve this issue, the SOLEIL framework should be extended with
formalisms defining precisely when the adaptation is possible with respect to the RTSJ restric-
tions. Possibly, a new domain component expressing which software component can be adapted
should be proposed. Finally, to provide a support of adaptation of components residing in im-
mortal and scoped memories, e.g. a wedge thread pattern [PFHV04] could be used to control life
span of components.

7.4 Impact of the Dissertation

The impact of the dissertation can be put in two different perspectives: collaborations with other
universities/research labs and new research topics inspired or influenced by the dissertation.

7.4.1 Collaborations

During the course of the dissertation, we have collaborated within several research projects.

Distributed Programming in Real-time Java

Within an INRIA internship funding, a visiting PhD student Michal Malohlava from DSRG7 has
been supervised. The goal of the internship was to provide a distributed programming support
for Real-time Java. The work resulted in two publications [MPL+08, LMP+09], and is still con-
tinuing as a collaboration in the HULOTTE project. We further present the outcomes of this work
as a case study in Section 6.3.1.

Ambient Programming in FRACTAL

In early stages of this dissertation a case-study oriented on challenges of ambient and ubiquitous
programming has been conducted. The work was done in collaboration with Dr. Tom Van Cut-
sem from PROG8. As the result of the work, we have published a workshop paper [PMS07], fur-
thermore, the outcomes were also presented as a case study in Section 6.3.2. Interested reader can
find more information about the concept proposed by this work - the ambient bindings, in [Van08].

Carmen Project – Model Checking of Software Components

Furthermore, we have carried out the Carmen project [Pls06] - a software component model
checker. In this project we have proposed a new approach to model checking of isolated software
components [PA08]. This work was conducted in collaboration with Dr. Jiří Adámek and Dr.
Pavel Parizek from DSRG, currently we prepare a journal publication on this topic.

7.4.2 Research Projects Influenced by the Dissertation

In this section, we highlight recent projects influenced by the work put forward in this disserta-
tion.

Annotation Framework for Domain-Specific Component Applications

Inspired by the concept of domain components and by the HULOTTE framework, this research
proposes an extension to the HULOTTE component framework that allows the definition and
checking of domain-specific concerns. In this approach, from the components’ architecture to

7Distributed Systems Research Group, Charles University, Prague, Czech Republic, http://dsrg.mff.cuni.cz/
8The Programming Technology Lab, VUB, Brussels, Belgium http://prog.vub.ac.be/doku.php

122

http://dsrg.mff.cuni.cz/
http://prog.vub.ac.be/doku.php

7.5. Perspectives

their implementation, concerns are defined and checked in an homogeneous manner. An inter-
esting reminiscence of the concept of domains component is present here, instead of expressing
the domain-specific requirements as components, they are represented by domain-specific anno-
tations supported by an extensive annotation framework [ND08].

The work is conducted in collaboration between Dr. Frédéric Loiret from INRIA ADAM team
and Dr. Carlos Nogura from SSEL9 lab and have been published in [NL09]. Furthermore, we
have applied the preliminary outcomes of this research in the SOLEIL framework to implement
validation of software applications developed in our framework, see Section 4.3.4.

Real-time Java in Space

An ongoing research [KPV+09], supported by grants from ESA, is being carried out on the topics
of using Real-time Java in onboard software for space missions. The research is conducted by
the R&D lab at SciSys10, DSRG, and the real-time Java research group from Purdue University11.
During the course of this dissertation we have collaborated with or provided external consulta-
tions to some of these research groups.

7.5 Perspectives

In this section, we discuss how our research could be extended or studied in a different context
without the emphasis on addressing limitations, as was the case in the Section 7.3.

7.5.1 Short Term Perspectives

Domain Components Taxonomy

In this dissertation we have introduced only a small set of domain components, moreover, these
components were specifically targeted on RTSJ. We can however use this concept in a more sense
and propose various types of domain components.

The growing family of domain components brings a demand for a taxonomy which will
describe these components and will clarify their relations. As we have already discussed in
Section 6.4, dependencies between different domain components exist and must be considered
when applying these components. Taxonomy of domain components can however be easily con-
structed, since we can extend our component model with new domain components and clarify
precisely their constraints in the Alloy language. As we have shown for the DistributedNode
and AmbientNode domain components in Section 6.3.

Asynchronous Transfer of Control

Asynchronous transfer of control (ATC) is a mechanism that lets one thread throw an exception
into another thread. The ATC was invented because some real-time programmers find this type
of function crucial, other find it repulsive [Dib08]. ATC is considered as one of the most contro-
versial element of RTSJ. Since RTSJ does not force programmers to learn to use ATC in order to
use its other features, we have not covered this feature in our proposal.

ATC is usually used to terminate a thread or abort one iteration of a loop, however, since we
manage the threads through the ActivityController presented in the container, we could
implement the ATC mechanisms in this controller. However, to investigate potential impact of
this feature to other parts of the system, we consider this problem as a future work.

9The System and Software Engineering lab, VUB, Brussels, Belgium http://ssel.vub.ac.be/ssel/
10http://www.scisys.co.uk/
11http://www.cs.purdue.edu/homes/jv/

123

http://ssel.vub.ac.be/ssel/
http://www.scisys.co.uk/
http://www.cs.purdue.edu/homes/jv/

Chapter 7. Conclusion and Perspectives

7.5.2 Mid Term Perspectives

Runtime Adaptation of RTSJ-based Systems

A new collaboration emerging from our publication [PLMS08] is focused on runtime adaptation
of RTSJ-based system. The project is based on the SOLEIL framework [PLMS08] and inspired by
[FSSC08, FC08]. The goal is to provide a support for bounded adaptation of software components
at runtime.

While the SOLEIL framework provides potentially a strong support for runtime adaptation of
software components, inherited already from the FRACTAL component model, there is no sup-
port for an adaptation with regards to the real-time requirements of the system. This limitation
was discussed in Section 7.3 and currently is being addressed by the research conducted in col-
laboration with Serena Fritsch12.

7.5.3 Long Term Perspectives

Tinap

The Tinap project [LSSD09] has shown that component-oriented design facilitates extraction
of activity diagrams that allow developers to reason about activities (composed of tasks and
mapped to chains of component operations), synchronization, execution times, deadlines, etc.
Based on the activity diagram, external validation tools can be used to ensure that developed
applications are dead-lock free or they could provide performance and scheduling analysis.

Therefore, by extending the SOLEIL framework with Tinap, we could bridge the gap between
effective development of RTSJ-compliant applications, provided by SOLEIL, and development of
real-time applications that are schedulable and in conformance to their real-time model.

Model Checking of RTSJ-Components

Work is currently in progress to exploit the idea of formal verification of real-time Java software
components. Here, the goal is to develop approach to model checking of applications imple-
mented in Real-time Java. The research is inspired by the initial study published [G. 05] and the
goal is to exploit the results of the Carmen project - our previous research [PA08]. We plan to
extend the SOLEIL framework with Behavior protocols [F. 02] using their new version [KPS08]
to specify the contracts between components and we consequently model check these proper-
ties by the Java PathFinder model checker extended towards RTSJ. Work is conducted jointly in
collaboration with Dr. Pavel Parizek from DSRJ and Dr. Tomáš Kalibera from Purdue University.

7.6 Publications

The outcomes of this dissertation appear in the following publications.

7.6.1 International Conferences

1 Frédéric Loiret, Michal Malohlava, Aleš Plšek, Philippe Merle, Lionel Seinturier. Construct-
ing Domain-Specific Component Frameworks through Architecture Refinement. In Proceedings of
Euromicro SEAA 2009, August 2009, Patras, Greece. (To appear.) [LMP+09]

2 Aleš Plšek, Frédéric Loiret, Philippe Merle, Lionel Seinturier. A Component Framework for Java-
based Real-time Embedded Systems. In Proceedings of ACM/IFIP/USENIX 9th International
Middleware Conference, volume 5346/2008, pages 124–143, Leuven, Belgium, December 2008.
IEEE Computer Society; Rank A conference, Acceptance rate: 18% [PLMS08]

12Distributed Systems Group, Trinity College, Dublin, Ireland, http://www.dsg.cs.tcd.ie/

124

http://www.dsg.cs.tcd.ie/

7.6. Publications

3 Aleš Plšek, Jirí Adámek. Carmen: Software Component Model Checker. In Proceedings of Fourth
International Conference on the Quality of Software-Architectures (QoSA’08), October 2008,
Karlsruhe, Germany; Rank A conference, Acceptance rate: 33% [PA08]

4 Aleš Plšek, Philippe Merle, Lionel Seinturier. A Real-Time Java Component Model. In Proceed-
ings of the 11th International Symposium on Object/Component/Service-oriented Real-Time
Distributed Computing (ISORC’08), pages 281–288, Orlando, Florida, USA, May 2008. IEEE
Computer Society; Acceptance rate: 33% [PMS08]

7.6.2 International Workshops

5 Michal Malohlava, Aleš Plšek, Frédéric Loiret, Philippe Merle and Lionel Seinturier. Introduc-
ing Distribution into a RTSJ-based Component Framework. In RNTS 2008: 2nd Junior Researcher
Workshop on Real-Time Computing (JRWRTC’08), October 2008, Rennes France. [MPL+08]

6 Aleš Plšek, Philippe Merle, Lionel Seinturier. Ambient-Oriented Programming in FRACTAL . In
ECOOP 2007: 3rd Workshop on Object Technology for Ambient Intelligence, July 2007, Berlin,
Germany. [PMS07]

7.6.3 Poster Sessions

7 Aleš Plšek, Frédéric Loiret, Michal Malohlava, Philippe Merle, Lionel Seinturier. Soleil: A Com-
ponent Framework for Java-based Real-time Embedded Systems. OW2 Annual Conference 2009:
FRACTAL Poster Session, Paris, France, April 2009.

8 Aleš Plšek, Frédéric Loiret, Michal Malohlava, Philippe Merle, Lionel Seinturier. Soleil: A Com-
ponent Framework for Java-based Real-time Embedded Systems. GDR-GPL 2009, Toulouse, France,
January 2009.

7.6.4 Presentations

Besides the publications above, the results of the thesis have been presented in the following
invited talks.

9 Aleš Plšek Real-time Programming in Java. Invited talk at Czech Java User Group, November
2008, Prague, Czech Republic.

10 Aleš Plšek, Frédéric Loiret, Michal Malohlava, Philippe Merle, Lionel Seinturier. Soleil: A
Component Framework for Java-based Real-time Embedded Systems. Distributed Systems Research
Group, Charles University, November 2008, Prague, Czech Republic.

11 Aleš Plšek, Frederic Loiret, Michal Malohlava, Philippe Merle, Lionel Seinturier. Applying
Component- based Software Engineering in On-board Software. Invited talk at SciSys, October 2008,
Bristol, UK.

12 Aleš Plšek, Philippe Merle, Lionel Seinturier. A Real-Time Java Component Model. Invited talk at
Cinvestav, I.P.N., May 2008, Mexico City, Mexico.

13 Aleš Plšek, Philippe Merle, Lionel Seinturier. Evolvable Middleware Container Architectures for
Distributed Embedded Systems. RUNES Summer School, July 2007, London, UK.

14 Aleš Plšek, Philippe Merle, Lionel Seinturier. Evolvable Middleware Container Architectures for
Distributed Embedded Systems. Junior Seminar, CALA Days, February 19-20, 2007, Vrije Univer-
siteit Brussel (VUB), Belgium.

125

Chapter 7. Conclusion and Perspectives

126

Bibliography

[A. 05] A. Corsaro, C. Santoro. The Analysis and Evaluation of Design Patterns for Dis-
tributed Real-Time Java Software. 16th IEEE International Conference on Emerg-
ing Technologies and Factory Automation, 2005. 2, 17, 19, 21, 41, 54

[ABB+07a] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael Dawson,
Mike Fulton, David Grove, Darren Hart, and Mark Stoodley. Design and imple-
mentation of a comprehensive real-time java virtual machine. In EMSOFT ’07:
Proceedings of the 7th ACM & IEEE international conference on Embedded software,
pages 249–258, New York, NY, USA, 2007. ACM. 1, 20

[ABB+07b] Joshua Auerbach, David F. Bacon, Florian B¨omers, , and Perry Cheng. Real-
time Music Synthesis in Java Using the Metronome Garbage Collector. In Pro-
ceedings of the International Computer Music Conference, August 2007. 1, 21

[ABC+07] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David
Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A real-time
Java virtual machine with applications in avionics. Trans. on Embedded Comput-
ing Sys., 7(1):1–49, 2007. 1, 20, 21

[ABG+08] Joshua Auerbach, David F. Bacon, Rachid Guerraoui, Jesper Honig Spring,
and Jan Vitek. Flexible Task Graphs: a unified restricted thread programming
model for Java. In LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-SIGBED
conference on Languages, compilers, and tools for embedded systems, pages 1–11,
New York, NY, USA, 2008. ACM. 19, 22, 97

[ACG+07] Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian
Zhao. Scoped Types and Aspects for Real-time Java Memory Management.
Real-Time Syst., 37(1):1–44, 2007. 19, 21, 97, 99

[AFM+02] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. Times - a tool for modelling and implementation of embedded systems.
In Springer-Verlag, editor, 8th International Conference, TACAS 2002, part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002, pages
460–464, Grenoble, France, April 2002. Lecture Notes in Computer Science,
Vol.2280. 11, 121

[AJ06] Jonathan S. Anderson and E. Douglas Jensen. Distributed Real-Time Specifi-
cation for Java: a Status Report (digest). In Proceedings of the 4th International
Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES ’06),
pages 3–9, New York, NY, USA, 2006. ACM. 35, 105, 106

127

Bibliography

[Ale09] Aleš Plšek. Soleil and Hulotte Project Web Page, 2009. http://adam.lille.
inria.fr/soleil/ as of June 2009. 56, 80, 141

[All09] OSGi Alliance. OSGi Service Platform Release 4. as of June 2009. http://
www.osgi.org/. 30

[AMPN+06] Alonso Alejandro, Bianconi Maria-Paola, Francois Nicolas, Cortese Giovanni,
and Yu Erik. Flexible Java Real-Time Profile for Business-Critical Systems. In
JTRES ’06: Proceedings of the 4th international workshop on Java technologies for
real-time and embedded systems, pages 135–143, New York, NY, USA, 2006. ACM.
109

[Ang02] Angelo Corsaro and Doug Schmidt. The design and performance of the jRate
Real-Time Java implementation. 2002. 20

[APPZ04] R. Aigner, C. Pohl, M. Pohlack, and S. Zschaler. ailor-made containers: Mod-
eling non-functional middleware service. In In Workshop on Models for Non-
functional Aspects of Component-Based Software (NfC’04) at UML conference, 2004.
25

[BB08] Antoine Bourre and Francois Blarel. Alloy4Eclipse Plug-In. 2008. http://
code.google.com/p/alloy4eclipse/. 38, 96

[BCC+03] Greg Bollella, Tim Canham, Vanessa Carson, Virgil Champlin, Daniel Dvorak,
Brian Giovannoni, Mark Indictor, Kenny Meyer, Alex Murray, and Kirk Rein-
holtz. Programming with non-heap memory in the real time specification for
java. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 361–369,
New York, NY, USA, 2003. ACM. 2, 17, 19, 21, 33, 76, 113

[BCF+06] J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Prochazka, J. Vitek, Austin Armbruster,
Edward Pla, and David Holmes. A Real-time Java Virtual Machine for Avion-
ics - An Experience Report. 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’06), 2006. 20

[BCL+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B. Stefani. The Fractal
Component Model and its Support in Java. Software: Practice and Experience,
36:1257 – 1284, 2006. 23, 24, 27, 35, 47, 80

[BCS09] Gordon S. Blair, Thierry Coupaye, and Jean-Bernard Stefani. Component-based
Architecture: the Fractal Initiative. Annales des Télécommunications, 64(1-2):1–4,
2009. 27

[BEA06] BEA. Weblogic Real-Time. www.bea.com. 2006. 1, 17, 21

[BGB+00] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull. The Real-
Time Specification for Java. Addison-Wesley, 2000. 1, 9, 13, 119

[BHM09] Tomas Bures, Petr Hnetynka, and Michal Malohlava. Using a Product Line
for Creating Component Systems. In Proceedings of ACM SAC 2009, Honolulu,
Hawaii, U.S.A., Mar 2009, March 2009. 27, 83, 85

[BHP06] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2.0: Balancing Ad-
vanced Features in a Hierarchical Component Model. In SERA ’06: Proc. of
the 4th International Conference on Software Engineering Research, Management and
Applications, pages 40–48, USA, 2006. IEEE Computer Society. 24, 28, 113

128

http://adam.lille.inria.fr/soleil/
http://adam.lille.inria.fr/soleil/
http://www.osgi.org/
http://www.osgi.org/
http://code.google.com/p/alloy4eclipse/
http://code.google.com/p/alloy4eclipse/
www.bea.com

[BKT+06] Krishnakumar Balasubramanian, Arvind S. Krishna, Emre Turkay, Jaiganesh
Balasubramanian, Jeff Parsons, Aniruddha S. Gokhale, and Douglas C.
Schmidt. Applying model-driven development to distributed real-time and
embedded avionics systems. IJES, 2(3/4):142–155, 2006. 12

[BN03] E. G. Benowitz and A. F. Niessner. A Patterns Catalog for RTSJ Software De-
signs. Lecture notes in Computer Science, 2003. 2, 17, 19, 21, 34, 41, 54, 78

[Boe05] Boeing and Insitu. ScanEagle, 2005. http://www.insitu.com/scaneagle
as of June 2009. 21

[Bou95] R Bourgonjon. The evolution of embedded software in consumer products.
International Conference on Engineering of Complex Computer Systems, 1995. 1

[BP04] Tomas Bures and Frantisek Plasil. Communication Style Driven Connector Config-
urations, pages 102–116. 2004. 26

[BR02] Greg Bollella and Krik Reinholtz. A Real-Time RMI Framework for the RTSJ.
In In Proceedings of the Fifth International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC02), 2002. 15

[BSE+04] F. Budinsky, D. Steinberg, R. Ellersick, E. Merks, S.A. Brodsky, and T.J. Grose.
Eclipse Modeling Framework. Addison-Wesley, 2004. 63, 81

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-wise Re-
finement. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 187–197, Washington, DC, USA, 2003. IEEE Computer Soci-
ety. 68, 80

[Bur06] Tomas Bures. Generating Connectors for Homogeneous and Heterogeneous Deploy-
ment. PhD thesis, Department of Sofware Engineering, Mathematical and Phys-
ical Faculty, Charles University, Prague, 2006. 26, 106, 107

[But05] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Springer, 2nd Edition,
2005. 11

[BV07] Matteo Bordin and Tullio Vardanega. Real-time Java from an Automated Code
Generation Perspective. In JTRES ’07: Proceedings of the 5th international work-
shop on Java technologies for real-time and embedded systems, pages 63–72, New
York, NY, USA, 2007. ACM. 21, 91, 92, 93, 95, 97

[BVGVEA05] P. Basanta-Val, M. Garcia-Valls, and I. Estevez-Ayres. Towards the Integra-
tion of Scoped Memory in Distributed Real-Time Java. In Proceedings of the
8th IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC ’05), pages 382–389, 2005. 35

[BVGVEADK06] Pablo Basanta-Val, Marisol García-Valls, Iria Estevez-Ayres, and Carlos
Delgado-Kloos. Extended portal: violating the assignment rule and enforcing
the single parent rule. In JTRES ’06: Proceedings of the 4th international workshop
on Java technologies for real-time and embedded systems, pages 30–37, New York,
NY, USA, 2006. ACM. 21

[BW01] Alan Burns and Andrew J. Wellings. Real-Time Systems and Programming Lan-
guages: ADA 95, Real-Time Java, and Real-Time POSIX. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001. 13

[BW03] A. Borg and A. Wellings. A Real-Time RMI Framework for the RTSJ. In Proceed-
ings of the 15th Euromicro Conference on Real-Time Systems., pages 238–246, July
2003. 35

129

http://www.insitu.com/scaneagle

Bibliography

[CBG+08] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia, Kevin
Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan. A Generic Component
Model for Building Systems Software. ACM Trans. Comput. Syst., 26(1):1–42,
2008. 24, 27

[CC03] Angelo Corsaro and Ron K. Cytron. Efficient Memory Reference Checks for
Real-Time Java. In In Proceedings of Languages, Compilers, and Tools for Embedded
Systems (LCTES’03), 2003. 20

[CCL06] Ivica Crnkovic, Michel R. V. Chaudron, and Stig Larsson. Component-Based
Development Process and Component Lifecycle. In ICSEA, page 44, 2006. 23,
25, 59

[CCPS03] V. Cechticky, P. Chevalley, A. Pasetti, and W. Schaufelberger. A Generative
Approach to Framework Instantiation. Proceedings of GPCE, pages 267–286,
September 2003. 27, 30

[CDM+05] Yaofei Chen, Rose Dios, Ali Mili, Lan Wu, and Kefei Wang. An empirical study
of programming language trends. IEEE Softw., 22(3):72–78, 2005. 1, 13

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000. 26, 60, 83

[CL02] I. Crnkovic and S. Larsson. Building Reliable Component-based Systems. Addison-
Wesley Professional, Boston, 2002. 28, 82, 84, 121

[Cle02] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming,
2nd ed. Addison-Wesley Professional, Boston, 2002. 2, 24, 83

[CS04] A. Corsaro and C. Santoro. Design Patterns for RTSJ Application Development.
On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops, 2004. 34,
78

[Dau07] Jean-Marie Dautelle. Fully Time Deterministic Java. In AIAA Space 2007, 2007.
http://www.osgi.org/. 62

[Dav08] Yann Davin. F4E: FRACTAL plug-in for Eclipse. 2008. http://fractal.
ow2.org/f4e/index.html as of June 2009. 37, 96

[Daw08] Michael H. Dawson. Challenges in Implementing the Real-Time Specifica-
tion for Java (RTSJ) in a Commercial Real-Time Java Virtual Machine. Object-
Oriented Real-Time Distributed Computing, IEEE International Symposium on,
0:241–247, 2008. 1, 17

[DBC+04] D. Dvorak, G. Bollella, T. Canham, V. Carson, V. Champlin, B. Giovannoni,
M. Indictor, K. Meyer, A. Murray, and K. Reinholtz. Project Golden Gate: To-
wards Real-Time Java in Space Missions. In ISORC, pages 15–22, 2004. 33,
41

[DEM02] Frédéric Duclos, Jacky Estublier, and Philippe Morat. Describing and using non
functional aspects in component based applications. In AOSD ’02: Proceedings
of the 1st international conference on Aspect-oriented software development, pages
65–75, New York, NY, USA, 2002. ACM. 25, 83

[DHT01] Eric M. Dashofy, André Van der Hoek, and Richard N. Taylor. A highly-
extensible, xml-based architecture description language. In WICSA ’01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software Architecture, page 103,
Washington, DC, USA, 2001. IEEE Computer Society. 83

130

http://www.osgi.org/
http://fractal.ow2.org/f4e/index.html
http://fractal.ow2.org/f4e/index.html

[Dib08] Dr. Peter C Dibble. Real-Time Java Platform Programming: Second Edition. Book-
Surge Publishing, 2008. 9, 13, 123

[dNBR06] Dionisio de Niz, Gaurav Bhatia, and Raj Rajkumar. Model-Based Development
of Embedded Systems: The SysWeaver Approach. In RTAS ’06: Proceedings of
the 12th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 231–242, Washington, DC, USA, 2006. IEEE Computer Society. 28

[DR04] Daniel L. Dvorak and William K. Reinholtz. Hard Real-time: C++ versus RTSJ.
In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, pages 268–274,
New York, NY, USA, 2004. ACM. 31, 33

[E. 00] E. Clarke, O.Grumberg, and D.Peled. Model Checking. MIT Press, Jan 2000. 27

[ECB06] J.P. Etienne, J. Cordry, and S. Bouzefrane. Applying the CBSE Paradigm in the
Real-Time Specification for Java. In JTRES ’06: Proceedings of the 4th international
workshop on Java technologies for real-time and embedded systems, pages 218–226,
USA, 2006. ACM. 32, 41

[EM08] George Edwards and Nenad Medvidovic. A methodology and framework for
creating domain-specific development infrastructures. In ASE, pages 168–177.
IEEE, 2008. 68

[EPFD01] Denis Conan Erik, Erik Putrycz, Nicolas Farcet, and Miguel Demiguel. Inte-
gration of non-functional properties in containers. In In Proceedings of the 6th
International Workshop on Component-Oriented Programming (WCOP, 2001. 25

[F. 02] F. Plasil, S. Visnovsky. Behavior Protocols for Software components. IEEE
Transactions on Software Engineering, 28, no. 11, Nov 2002. 124

[FC08] Serena Fritsch and Siobhán Clarke. Timeadapt: timely execution of dynamic
software reconfigurations. In MDS ’08: Proceedings of the 5th Middleware doctoral
symposium, pages 13–18, New York, NY, USA, 2008. ACM. 124

[FDDM08] Areski Flissi, Jérémy Dubus, Nicolas Dolet, and Philippe Merle. Deploying on
the Grid with DeployWare. In Proceedings of the 8th International Symposium on
Cluster Computing and the Grid (CCGRID’08), pages 177–184, Lyon, France, may
2008. IEEE. 37

[FLV06] Peter H. Feiler, Bruce A. Lewis, and Steve Vestal. The SAE Architecture Anal-
ysis and Design Language (AADL) a standard for engineering performance
critical systems. pages 1206–1211, 2006. 28

[FS07] Mike Fulton and Mark Stoodley. Compilation techniques for real-time java pro-
grams. In CGO ’07: Proceedings of the International Symposium on Code Generation
and Optimization, pages 221–231, Washington, DC, USA, 2007. IEEE Computer
Society. 1, 20

[FSSC08] Serena Fritsch, Aline Senart, Douglas C. Schmidt, and Siobhán Clarke. Time-
bounded Adaptation for Automotive System Software. In ICSE ’08: Proceedings
of the 30th international conference on Software engineering, pages 571–580, New
York, NY, USA, 2008. ACM. 24, 83, 121, 124

[G. 05] G. Lindstrom, P. Mehlitz and W. Visser. Model Checking Real Time Java Using
JavaPathfinder. Proceedings of the Third International Symposium on Automated
Technology for Verification and Analysis (ATVA), October 2005. 124

131

Bibliography

[GDFSB08] Ning Gui, Vincenzo De Flori, Hong Sun, and Chris Blondia. A framework
for adaptive real-time applications: the declarative real-time osgi component
model. In ARM ’08: Proceedings of the 7th workshop on Reflective and adaptive
middleware, pages 35–40, New York, NY, USA, 2008. ACM. 30

[Geo99] Phipps Geoffrey. Comparing observed bug and productivity rates for Java and
C++. Softw. Pract. Exper., 29(4):345–358, 1999. 1, 13

[GER08] Eli Gjørven, Frank Eliassen, and Romain Rouvoy. Experiences from Devel-
oping a Component Technology Agnostic Adaptation Framework. In CBSE,
pages 230–245, 2008. 24, 83

[GHMS07] C. Gough, A. Hall, H. Masters, and A. Stevens. Real-Time Java: Writing
and Deploying Real-Time Java Applications, 2007. http://www.ibm.com/
developerworks/java/library/j-rtj5/. 17, 93

[GK03] A. Gaddah and T. Kunz. A Survey of Middleware Paradigms for Mobile Com-
puting. Carleton University Systems and Computing Engineering Technical Report
SCE-03-13, 2003. 110

[GMW97] David Garlan, Robert T. Monroe, and David Wile. Acme: An architecture de-
scription interchange language. In Proceedings of CASCON’97, pages 169–183,
Toronto, Ontario, November 1997. 81

[Gre05] Gregory Bollella, Bertrand Delsart, Romain Guider, Christophe Lizzi, and
Fr´ed´eric Parain. Mackinac: Making Hotspot real-time. 2005. 20

[Gro03] IST Advisory Group. Ambient Intelligence: From Vision to Reality. 2003. 110

[HACT04] Hans Hansson, Mikael Akerholm, Ivica Crnkovic, and Martin Torngren.
SaveCCM - A Component Model for Safety-Critical Real-Time Systems. In EU-
ROMICRO ’04: Proceedings of the 30th EUROMICRO Conference, pages 627–635,
Washington, DC, USA, 2004. IEEE Computer Society. 24, 83

[HGCK07] J. Hu, S. Gorappa, J. A. Colmenares, and R. Klefstad. Compadres: A
Lightweight Component Middleware Framework for Composing Distributed,
Real-Time, Embedded Systems with Real-Time Java. In Proc. ACM/I-
FIP/USENIX 8th Int’l Middleware Conference (Middleware 2007), Vol. 4834:41–59,
2007. 31, 41, 93

[HGGM01] M. González Harbour, J.J. Gutiérrez García, J.C. Palencia Gutiérrez, and
J.M. Drake Moyano. Mast: Modeling and analysis suite for real time appli-
cations. Real-Time Systems, Euromicro Conference on, 0:0125, 2001. 11, 29, 121

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System
level performance analysis - the symta/s approach. In Computers and Digital
Techniques, IEE Proceedings, volume 152, Issue 2, pages 148–166, Mar 2005. 11,
121

[HT08] M. Teresa Higuera-Toledano. Making stronger and Flexible the Single Parent
Rule in the Real-Time Specification of Java. In JTRES ’08: Proceedings of the
6th international workshop on Java technologies for real-time and embedded systems,
pages 19–28, New York, NY, USA, 2008. ACM. 16, 21

[IBM07] IBM. DDG 1000 Next Generation Navy Destroyers, http://www-03.ibm.
com/press/us/en/pressrelease/21033.wss. 2007. 1, 17, 21

132

http://www.ibm.com/developerworks/java/library/j-rtj5/
http://www.ibm.com/developerworks/java/library/j-rtj5/
http://www-03.ibm.com/press/us/en/pressrelease/21033.wss
http://www-03.ibm.com/press/us/en/pressrelease/21033.wss

[IH92] Jesús A. Izaguirre and Scott S. Hampton. Software considerations in air-
borne systems and equipment certification, do-178-b/ed-12-b, requirements
and technical concepts for aviation/european organisation for civil aviation
equipment. Journal of Computational Physics, 200:581–604, 1992. 1, 96

[J. 06] J. A. Colmenares, S. Gorappa, M. Panahi, and R. Klefstad. A Component
Framework for Real-time Java. 12th IEEE Real-time and Embedded Technology
and Applications Symposium, Work-In-Progress session, 2006. 31

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006. 38, 46, 120

[JASB07] Nicolas Juillerat, Stefan Müller Arisona, and Simon Schubiger-Banz. Real-time,
low latency audio processing in Java. In Proceedings of the International Computer
Music Conference, August 2007. 1, 21

[JCS+05] J.Dedecker, T. Van Cutsem, S.Mostinckx, T. D’Hondt, and W. De Meuter.
Ambient-Oriented Programming. In “OOPSLA ‘05: Companion of the 20th an-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications", 2005. 109, 110

[Jen07] E. Douglas Jensen’s. Overview of Fundamental Real-Time Concepts and Terms.
http://www.real-time.org/realtimeoverview.htm, 19 Feb 2007. 1, 10

[JHA+05] Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg, and Dmitriy
Kopylenko. Professional Java Development with the Spring Framework. Wrox Press
Ltd., Birmingham, UK, UK, 2005. 83

[JKSS04] Greenfield Jack, Short Keith, Cook Steve, and Kent Stuart. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley, Au-
gust 2004. 26

[JS00] Daniel Jackson and Kevin Sullivan. COM revisited: Tool-Assisted Modelling of
an Architectural Framework. SIGSOFT Softw. Eng. Notes, 25(6):149–158, 2000.
38

[KM08] Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal
semantics of a modeling language. In MoDELS 2008, LNCS 5301, pages 690–
704, 2008. 38, 59, 63, 96

[KPS08] Jan Kofron, Tomas Poch, and Ondrej Sery. TBP: Code-Oriented Component Be-
havior Specification. In 32nd Annual IEEE Software Engineering Workshop, 2008.
124

[KPV+09] Tomas Kalibera, Filip Pizlo, Jan Vitek, Marek Prochazka, M. Zulianello, and
Martin Decky. Real-Time Java in Space: Potential Benefits and Open Chal-
lenges. In Proceedings of Data Systems in Aerospace (DASIA 2009), Jan 2009. 29,
123

[KRP+93] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael González
Harbour. A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-time Systems. Kluwer Academic Publishers, Norwell, MA,
USA, 1993. 11

[Lam05] David Lammers. Programming Tools: IBM sets real-time tempo for Java
code with Metronome, http://www.eetimes.com/showArticle.
jhtml?articleID=170701426&printable=true&printable=truev.
EETimes.com, 2005. 2

133

http://www.eetimes.com/showArticle.jhtml?articleID=170701426&printable=true&printable=truev
http://www.eetimes.com/showArticle.jhtml?articleID=170701426&printable=true&printable=truev

Bibliography

[LLC07] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable Dynamic Recon-
figurations in the Fractal Component Model. In In Proc. 6th Workshop on Adap-
tive and Reflective Middleware (ARM2007) at Middleware. ACM Digital Library,
November 2007. 25, 28, 121

[LMP+09] Frederic Loiret, Michal Malohlava, Ales Plsek, Philippe Merle, and Lionel Sein-
turier. Constructing Domain-Specific Component Frameworks through Archi-
tecture Refinement. In Euromicro SEAA 2009, 2009. 4, 80, 122, 124

[LOQS07] Matthieu Leclercq, Ali Erdem Ozcan, Vivien Quema, and Jean-Bernard Stefani.
Supporting Heterogeneous Architecture Descriptions in an Extensible Toolset.
In ICSE ’07: Proceedings of the 29th international conference on Software Engineer-
ing, pages 209–219, Washington, DC, USA, 2007. IEEE Computer Society. 37,
56, 81, 96

[LP08] Olivier Lobry and Juraj Polakovic. Controlling the Performance Overhead of
Component-Based Systems. In Software Composition, pages 149–156, 2008. 26,
82, 93

[LSSD09] Frédéric Loiret, Lionel Seinturier, David Servat, and Laurence Duchien. Tinap:
A Component Design Framework for Multitasking Applications. In Submitted
for ISORC’09, 2009. 124

[LW07] Kung-Kiu Lau and Zheng Wang. Software component models. IEEE Trans.
Softw. Eng., 33(10):709–724, 2007. 27

[McM04] Robert McMillan. GM CTO Sees More Code on Future Cars.”, 2004. http:
//www.infoworld.com/ as of June 2009. 1

[MDP] P. Mantegazza, E. L. Dozio, and S. Papacharalambous. Rtai: Real time applica-
tion interface. Linux J., page 10. 30

[MDT03] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. The Role of Mid-
dleware in Architecture-Based Software Development. International Journal of
Software Engineering and Knowledge Engineering, 13(4):367–393, 2003. 26, 72, 107,
113

[MG07] Ingo Molnar and Thomas Gleixner. The RT-PREEMPT patch set for Linux,
available at http://www.kernel.org/pub/linux/kernel/projects/
rt/. 2007. 1, 20, 21, 94

[Mic] SUN Microsystems. Enterprise JavaBeans. http://java.sun.com/ejb. 25, 83

[MMP00] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a Taxon-
omy of Software Connectors. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE ’00), pages 178–187, New York, NY, USA, 2000.
ACM. 106

[Mor06] Gabriel A. Moreno. Creating custom containers with generative techniques. In
GPCE ’06: Proceedings of the 5th international conference on Generative program-
ming and component engineering, pages 29–38, New York, NY, USA, 2006. ACM.
25, 83, 84

[MPL+08] Michal Malohlava, Aleš Plšek, Frédéric Loiret, Philippe Merle, and Lionel Sein-
turier. Introducing Distribution into a RTSJ-based Component Framework.
In In RNTS 2008: 2nd Junior Researcher Workshop on Real-Time Computing (JR-
WRTC’08), Rennes, France, October 2008. 4, 83, 105, 122, 125

134

http://www.infoworld.com/
http://www.infoworld.com/
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.kernel.org/pub/linux/kernel/projects/rt/

[MS08] Philippe Merle and Jean-Bernard Stefani. A formal specification of the Fractal
component model in Alloy. In INRIA technical report, inria-00338987, version 1,
November 2008. 38

[MTdS07] Faugere Madeleine, Bourbeau Thimothee, Simone Robert de, and Gerard Se-
bastien. Marte: Also an uml profile for modeling aadl applications. In ICECCS
’07: Proceedings of the 12th IEEE International Conference on Engineering Complex
Computer Systems, pages 359–364, Washington, DC, USA, 2007. IEEE Computer
Society. 121

[MWP+08] Prochazka M., R. Ward, Tuma P., Hnetynka P., and Adamek J. A Component-
Oriented Framework for Spacecraft On-Board Software. In DASIA 2008, DAta
Systems In Aerospace, European Space Agency Report Nr. SP-665, ISBN 978-92-
9221-229-2, Palma de Mallorca, Spain, May 2008. 29

[NB03] Albert F. Niessner and Edward G. Benowitz. RTSJ Memory Areas and Their
Affects on the Performance of a Flight-like Attitude Control System. In In Pro-
ceedings of the International workshop on Java technologies for real-time and embedded
systems (JTRES), pages 508–519, 2003. 21

[ND08] Carlos Noguera and Laurence Duchien. Annotation framework validation
using domain models. In Ina Schieferdecker and Alan Hartman, editors,
ECMDA-FA, volume 5095 of Lecture Notes in Computer Science, pages 48–62.
Springer, 2008. 123

[Nil04] Kelvin Nilsen. Quantitative Analysis of Developer Productivity in C vs. Real-
Time Java. Defense Advanced Research Projects Agency Workshop on Real-Time Java,
2004. 1, 13, 99

[Nil06] Kelvin Nilsen. A type system to assure scope safety within safety-critical java
modules. In JTRES ’06: Proceedings of the 4th international workshop on Java tech-
nologies for real-time and embedded systems, pages 97–106, New York, NY, USA,
2006. ACM. 19, 21

[Nil07] Kelvin Nilsen. Applying COTS Java Benefits to Mission-Critical Real-Time
Software. Crosstalk The Journal of Defense Software Engineering, pages 19–24, June
2007. 21, 31

[NL09] Carlos Noguera and Frederic Loiret. Checking Architectural and Implementa-
tions Constraints for Domain-Specific Component Frameworks using Models.
In In Proceedings of Euromicro SEAA 2009, August 2009. 63, 80, 123, 147

[NLLT08] Pessemier Nicolas, Seinturier Lionel, Duchien Laurence, and Coupaye Thierry.
A Component-based and Aspect-Oriented Model for Software Evolution. Int.
Journal of Computer Applications in Technology, 31(1/2):94–105, 2008. 37, 50

[OMG] OMG. Real-time CORBA. http://www.omg.org/technology/
documents/formal/real-time_CORBA.htm. 35

[OW209a] OW2. Fractal Specification. In http://http://fractal.ow2.org/, 2009.
27

[OW209b] OW2. Fractal Specification. In http://http://fractal.ow2.org/
specification/, 2009. 37, 64

[PA08] Aleš Plšek and Jiří Adámek. Carmen: Software component model checker. In
QoSA ’08: Proceedings of the 4th International Conference on Quality of Software-
Architectures, pages 71–85, Berlin, Heidelberg, 2008. Springer-Verlag. 27, 122,
124, 125

135

http://www.omg.org/technology/documents/formal/real-time_CORBA.htm
http://www.omg.org/technology/documents/formal/real-time_CORBA.htm
http://http://fractal.ow2.org/
http://http://fractal.ow2.org/specification/
http://http://fractal.ow2.org/specification/

Bibliography

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15:1053–1058, 1972. 2

[Paw06] Renaud Pawlak. Spoon: Compile-time Annotation Processing for Middleware.
IEEE Distributed Systems Online, 7(11), 2006. 63, 83

[PFHV04] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek. Real-Time Java Scoped Memory:
Design Patterns and Semantics. In Proceedings of the 7th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing (ISORC’04), pages
101–110, 2004. 2, 16, 17, 19, 21, 32, 34, 41, 54, 78, 79, 97, 99, 122

[PFP08] M. Prochazka, S. Fowell, and L. Planche. DisCo Space-Oriented Middleware:
Architecture of a Distributed Runtime Environment for Complex Spacecraft
On-Board Applications. In 4th European Congress on Embedded Real-Time Soft-
ware (ERTS 2008), Toulouse, France, 2008. 29

[PLMS08] Aleš Plšek, Frédéric Loiret, Philippe Merle, and Lionel Seinturier. A Compo-
nent Framework for Java-based Real-time Embedded Systems. In Proceedings of
ACM/IFIP/USENIX 9th International Middleware Conference, volume 5346/2008,
pages 124–143, Leuven, Belgium, December 2008. IEEE Computer Society. 4,
24, 83, 124

[Pls06] A. Plsek. Extending Java PathFinder with Behavior Protocols, August 2006.
Master Thesis, available at
http://www.lifl.fr/~plsek/Projects/Carmen/Download/
Documents/masterThesis.pdf. 122

[PMPL08] Lopez Martinez Patricia, Drake Jose M., Pacheco Pablo, and Medina Julio L.
Ada-ccm: Component-based technology for distributed real-time systems. In
CBSE ’08: Proceedings of the 11th International Symposium on Component-Based
Software Engineering, pages 334–350, Berlin, Heidelberg, 2008. Springer-Verlag.
28, 29

[PMS07] Aleš Plšek, Philippe Merle, and Lionel Seinturier. Ambient-Oriented Program-
ming in Fractal. In Proceedings of the 3rd Workshop on Object Technology for Ambi-
ent Intelligence at ECOOP, July 2007. 4, 36, 105, 109, 122, 125

[PMS08] Aleš Plšek, Philippe Merle, and Lionel Seinturier. A Real-Time Java
Component Model. In Proceedings of the 11th International Symposium on
Object/Component/Service-oriented Real-Time Distributed Computing (ISORC’08),
pages 281–288, Orlando, Florida, USA, May 2008. IEEE Computer Society. 4,
125

[PV03] Krzysztof Palacz and Jan Vitek. Java Subtype Tests in Real-Time. In In Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP), pages
378–404, July 2003. 20

[PV06] Filip Pizlo and Jan Vitek. An empirical evaluation of memory management al-
ternatives for Real-time Java. In In Proceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS), pages 248–254, December 2006. 17, 19

[PV08] Filip Pizlo and Jan Vitek. Memory Management for Real-Time Java: State of
the Art. In 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), pages 248–254, Orlando, Florida, 2008. 17

[RFP08] Marco Roccetti, Stefano Ferretti, and Claudio E. Palazzi. The brave new world
of multiplayer online games: Synchronization issues with smart solutions. In

136

http://www.lifl.fr/~plsek/Projects/Carmen/Download/Documents/masterThesis.pdf
http://www.lifl.fr/~plsek/Projects/Carmen/Download/Documents/masterThesis.pdf

ISORC ’08: Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing, pages 587–592, Washington, DC, USA, 2008. IEEE
Computer Society. 1

[RG02] Mark Richters and Martin Gogolla. OCL: Syntax, Semantics, and Tools. pages
447–450. 2002. 56, 63

[RHN+07] Sven Gestegård Robertz, Roger Henriksson, Klas Nilsson, Anders Blomdell,
and Ivan Tarasov. Using real-time java for industrial robot control. In JTRES
’07: Proceedings of the 5th international workshop on Java technologies for real-time
and embedded systems, pages 104–110, New York, NY, USA, 2007. ACM. 1, 21

[RM09] Romain Rouvoy and Philippe Merle. Leveraging component-based software
engineering with fraclet. Annales des Télécommunications, 64(1-2):65–79, 2009.
37, 147

[RPV+06] O. Rohlik, A. Pasetti, T. Vardanega, V. Cechticky, and M. Egli. A UML2 Profile
for Reusable and Verifiable Software Components for Real-Time Applications.
In International Conference on Software Reuse, Torino, Italy, June 2006. 28, 30

[RZP+05] Krishna Raman, Yue Zhang, Mark Panahi, Juan A. Colmenares, Raymond Klef-
stad, and Trevor Harmon. RTZen: Highly Predictable, Real-Time Java Mid-
dleware for Distributed and Embedded Systems. In Middleware 2005, pages
225–248, December 2005. 35, 108, 112

[Sch99] Douglas C. Schmidt. Why Software Reuse has Failed and How to Make It Work
for You. C++ Report magazine, 1999. 25

[Sie99] F. Siebert. Real-time garbage collection in multi-threaded systems on a single
processor. In RTSS ’99: Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium, page 277, Washington, DC, USA, 1999. IEEE Computer Society. 1, 17

[Sie04] Fridtjof Siebert. The impact of realtime garbage collection on realtime Java
programming. In In Seventh IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’04), pages 33–40, 2004. 17

[SPDC06] Lionel Seinturier, Nicolas Pessemier, Laurence Duchien, and Thierry Coupaye.
A Component Model Engineered with Components and Aspects. In Proceed-
ings of the 9th International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE’06), volume 4063 of Lecture Notes in Computer Science, pages
139–153, Vasteras, Sweden, Jun 2006. Springer. 22, 25, 36, 72

[SR98] John A. Stankovic and K. Ramamritham, editors. Tutorial on Hard Real-Time
Systems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1998. 10

[SR08] SUN and Returs. Thomson Reuters Market Data Platform, 2008.
http://www.sun.com/solutions/landing/industry/financial_
services.xml as of June 2009. 1, 21

[SUN08] SUN. Sun Java Real-time System, 2008. http://java.sun.com/javase/
technologies/realtime/ as of June 2009. 1, 17

[SVB+08] Séverine Sentilles, Aneta Vulgarakis, Tomás Bures, Jan Carlson, and Ivica
Crnkovic. A Component Model for Control-Intensive Distributed Embedded
Systems. In CBSE, pages 310–317, 2008. 24, 28, 83

[TAdM07] Daniel Tejera, Alejandro Alonso, and Miguel A. de Miguel. RMI-HRT: Remote
Method Invocation - Hard Real Time. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-Time and Embedded Systems (JTRES ’07), pages
113–120, New York, NY, USA, 2007. ACM. 35, 105

137

http://www.sun.com/solutions/landing/industry/financial_services.xml
http://www.sun.com/solutions/landing/industry/financial_services.xml
http://java.sun.com/javase/technologies/realtime/
http://java.sun.com/javase/technologies/realtime/

Bibliography

[TDB+07] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, Erhard Ploedereder, and
Pascal Leroy. Ada 2005 Reference Manual. Language and Standard Libraries: Inter-
national Standard ISO/IEC 8652/1995(E) with Technical Corrigendum 1 and Amend-
ment 1 (Lecture Notes in Computer Science). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2007. 29

[Van08] Tom Van Cutsem. Ambient References: Object Designation in Mobile Ad Hoc Net-
works. PhD thesis, Vrije Universiteit Brussel, Faculty of Sciences, Programming
Technology Lab, May 2008. 122

[Vit08] Jan Vitek. Programming models for concurrency and real-time. In TiC’08: Sec-
ond International School on Trends in Concurrency, 2008. 12

[vOvdLKM00] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Computer,
33(3):78–85, 2000. 24, 28, 83

[WCJW02] A. Wellings, R. Clark, D. Jensen, and D. Wells. A Framework for Integrating
the Real-Time Specification for Java and Java’s Remote Method Invocation. In
Proceedings of the 5th International Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC ’02)., pages 13–22, 2002. 35, 105, 106

[Wel04] Andrew Wellings. Concurrent and Real-Time Programming in Java. 2004. 13,
16

[WHJ04] Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Preemption-based
avoidance of priority inversion for java. In ICPP ’04: Proceedings of the 2004
International Conference on Parallel Processing, pages 529–538, Washington, DC,
USA, 2004. IEEE Computer Society. 15, 54

[WP03] Andy Wellings and Peter Puschner. Evaluating the expressive power of the
Real-Time Specification for Java. Real-Time Systems, 24(3):319—-359, 2003. 15

[WRM+05a] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao. Real-Time Component-based
Systems. in Proc. IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), March 2005. 28, 121

[WRM+05b] Shengquan Wang, Sangig Rho, Zhibin Mai, Riccardo Bettati, and Wei Zhao.
Real-time component-based systems. In RTAS ’05: Proceedings of the 11th IEEE
Real Time on Embedded Technology and Applications Symposium, pages 428–437,
Washington, DC, USA, 2005. IEEE Computer Society. 28

[WSBR01] Jr. William S. Beebee and Martin Rinard. An implementation of scoped mem-
ory for Real-Time Java. In In Embedded Software Implementation Tools for Fully
Programmable Application Specific Systems (EMSOFT), pages 289–305, 2001. 20

[ZNV04] Tian Zhao, James Noble, and Jan Vitek. Scoped Types for Real-Time Java. In
RTSS ’04: Proceedings of the 25th IEEE International Real-Time Systems Symposium,
pages 241–251, Washington, DC, USA, 2004. IEEE Computer Society. 20, 97, 99

[ZPH08] Bechir Zalila, Laurent Pautet, and Jérôme Hugues. Towards automatic mid-
dleware generation. In ISORC ’08: Proceedings of the 2008 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing, pages 221–228, Washington,
DC, USA, 2008. IEEE Computer Society. 26, 27, 108

138

Appendixes

139

Appendix A
Alloy Formalization of the RTSJ
metamodel

The full Alloy specification of SOLEIL component model can be downloaded from [Ale09]. In
total we have defined around 400 signatures, facts, and predicates in 4.5KLoC in order to fully
specify the component model together with its composition and RTSJ-related rules.

141

Appendix A. Alloy Formalization of the RTSJ metamodel

1 a b s t r a c t s ig Component {
2 e x t e r n a l I n t e r f a c e s : s e t I n t e r f a c e ,
3 superComponents : s e t Composite
4 }
5

6 s ig I n t e r f a c e {
7 owner : one Component ,
8 boundTo : lone I n t e r f a c e ,
9 type : one Type ,

10 binding : one Binding
11 } {
12 boundTo != t h i s
13 }
14

15 s ig A t t r i b u t e { }
16

17 s ig Binding {
18 c l i e n t : one I n t e r f a c e ,
19 server : one I n t e r f a c e ,
20 communicationType : one CommunicationType ,
21 a t t r i b u t e s : s e t A t t r i b u t e
22 }
23

24 s ig CommunicationType , Type { }
25

26 one sig Asynchronous , Synchronous
27 extends CommunicationType { }
28

29 one sig Client , Server extends Type { }
30

31 s ig Composite in Component {
32 i n t e r n a l I n t e r f a c e s : s e t I n t e r f a c e ,
33 subComponents : s e t Component ,
34 }
35

36 s ig P r i m i t i v e in Component {
37 content : lone P r i m i t i v e O b j e c t
38 }
39

40 f a c t ComponentIsCompositeOrPrimitive {
41 a l l c : Component |
42 (c in Composite or c in P r i m i t i v e)
43 and (
44 c in Composite implies
45 c not in P r i m i t i v e)
46 and (
47 c in P r i m i t i v e implies
48 c not in Composite)
49 }

50 s ig FunctionalComponent extends Component { }
51

52 a b s t r a c t s ig DomainComponent
53 extends Composite { } {
54 no i n t e r n a l I n t e r f a c e
55 no e x t e r n a l I n t e r f a c e
56 }
57

58 f a c t NoDomainAsSubcomponentOfFunctional {
59 no d : DomainComponent |
60 some c : FunctionalComponent |
61 d in c . subComponents
62 }
63

64 s ig Active extends FunctionalComponent {
65 p e r i o d i c i t y : i n t
66 }
67

68 s ig Pass ive extends FunctionalComponent { }
69

70 s ig Per iodic , Sporadic extends Active { }
71

72

73 f a c t periodicANDsporadic {
74 a l l a : Active |
75 a in P e r i o d i c or a in Sporadic
76 i f a in P e r i o d i c
77 #a . g e t S e r v e r I n t e r f a c e s == 0
78 i f a in Sporadic
79 a l l i : I n t e r f a c e |
80 i f i in a . g e t S e r v e r I n t e r f a c e s {
81 i . in ter faceType = ASYNCHR
82 }
83 }
84

85 pred g e t S e r v e r I n t e r f a c e s [a : Component]
86 : s e t I n t e r f a c e {
87 a l l i : I n t e r f a c e | {
88 i in a . e x t e r n a l I n t e r f a c e s
89 and
90 i . type == Server
91 }
92 }

Figure A.1: Generic Component Model Formalization in Alloy

142

1 s ig ThreadDomain extends DomainComponent {
2 p r i o r i t y : i n t
3 memoryArea : one MemoryArea
4 }
5

6 f a c t NoThreadDomainInDomainComp {
7 a l l t : ThreadDomain |
8 no c : DomainComponent |
9 c in t . superComponents

10 }
11

12 f a c t EveryActiveIsInThreadDomain {
13 a l l a : Active |
14 one tDom : ThreadDomain |
15 a in tDom . subComponents
16 }
17

18 s ig RegularThread , RTThread , NHRT
19 extends ThreadDomain { }
20

21 s ig MemoryArea
22 extends DomainComponent {
23 s i z e : i n t
24 }
25

26 one sig HeapMemory , ImmortalMemory
27 extends MemoryArea { }
28

29 s ig ScopedMemory extends MemoryArea { }

30 c t EveryComponentHasMemoryArea {
31 a l l f c : FunctionalComponent |
32 one ma: MemoryArea |
33 f c in ma.^ subComponents
34 }
35

36 f a c t ScopedMemoryParent {
37 / / a l l s c o p e s a r e subcomponents
38 / / o f t h e ImmortalMemory
39 a l l c : ScopedMemory |
40 one t : ImmortalMemory |
41 c in t .^ subComponents
42 / / on ly Immorta l and Scoped memory
43 / / can be a p a r e n t
44 a l l c : ScopedMemory |
45 no f : (Component −
46 ImmortalMemory − ScopedMemory) |
47 c in f . subComponents
48 / / s c o p e i s non−empty
49 a l l c : ScopedMemory |
50 some k : (Component − DomainComponent)|
51 k in c . subComponents
52 }
53

54 f a c t SingleParentRule {
55 a l l sc : ScopedMemory |
56 some parent : ScopedMemory |
57 sc in parent . subComponents or
58 sc in ImortalMemory . subComponents
59 }

Figure A.2: ThreadDomain and Memory Area

1 f a c t ThreadHasMemory {
2 a l l th : ThreadDomain | a l l a : Active |
3 i f a in th . subComponents {
4 th . memoryArea = getMemoryArea [a]
5 }
6 }
7

8 pred Component . getMemoryArea [a : Component]
9 : one MemoryArea {

10 one m : MemoryArea |
11 a in m.^ subComponents
12 }
13

14 f a c t NHRTnotInHeap {
15 no c : FunctionalComponent |
16 some r :NHRT |
17 some h : HeapMemory |
18 c in r .^ subComponents
19 and c in h.^ subComponents
20 }

21 f a c t cross−thread−communication {
22 a l l a1 , a2 : Active |
23 a l l t1 , t 2 : ThreadDomain {
24 a1 in t 1 . subComponents
25 a2 in t 2 : subComponents
26 }
27 implies {
28 assertOnlyAsynchrComm { a1 , a2 }
29 }
30 }
31

32 pred assertOnlyAsynchrComm
33 [a1 , a2 : ActiveComponent] {
34 a l l i1 , i 2 : I n t e r f a c e {
35 i 1 in a1 . e x t e r n a l I n t e r f a c e s
36 i 2 in a2 . e x t e r n a l I n t e r f a c e s
37 i 2 in i 1 . boundTo
38

39 a1 in t 1 . subComponents
40 a2 in t 2 . subComponents
41 }
42 implies {
43 i 1 . binding . communicationType
44 = Asynchronous
45 i 2 . binding . communicationType
46 = Asynchronous
47 }
48 }

Figure A.3: Composition and Binding Rules for RTSJ Domain Components

143

Appendix A. Alloy Formalization of the RTSJ metamodel

1 f a c t cross−scope−pat te rn {
2 a l l c1 , c2 : Component |
3 a l l sc1 , sc2 : Component {
4 c1 in sc1 . subComponents
5 and c2 in sc2 . subComponents
6 sc2 in sc1 . subComponents
7 i s C l i e n t T o [c1 , c2]
8 }
9 implies

10 applyCrossScopePattern { c1 , c2 }
11 }
12

13 f a c t multi−scope−pat tern {
14 a l l c1 , c2 : Component |
15 a l l sc1 , sc2 : Component {
16 c1 in sc1 . subComponents
17 and c2 in sc2 . subComponents
18 sc2 in sc1 . subComponents
19 i s C l i e n t T o [c2 , c1]
20 }
21 implies
22 applyMultiScopedPattern { c1 , c2 }
23 }
24

25 f a c t hand−of f−pat tern {
26 a l l c1 , c2 : Component |
27 a l l sc1 , sc2 : Component {
28 c1 in sc1 . subComponents
29 and c2 in sc2 . subComponents
30 a r e S i b l i n g s [sc1 , sc2]
31 a r e S i b l i n g s [c1 , c2]
32 }
33 implies
34 applyHandOffPattern { c1 , c2 }
35 }

36 pred i s C l i e n t T o [c1 , c2] {
37 / / r e t u r n s True i f c2 p r o v i d e s a s e r v e r
38 / / i n t e r f a c e t o c1
39 }
40

41 pred a r e S i b l i n g s [sc1 , sc2] {
42 / / r e t u r n s t r u e i f e x i s t a s c 3
43 / / t h a t i s a p a r e n t t o s c 1 and a l s o t o s c 2
44 }
45

46 one sig CROSS_SCOPE_PATTERN,
47 MULTI_SCOPE_PATTERN,
48 HANDOFF_PATTERN in A t t r i b u t e s
49

50 f a c t applyCrossScopePattern {
51 one b : Binding | {
52 b . c in a . e x t e r n a l I n t e r f a c e s
53 b . s in b . e x t e r n a l I n t e r f a c e s
54 b . type = Asynchronous
55 CROSS_SCOPE_PATTERN in b . a t r i b u t e s
56 }
57 }
58

59 pred ApplyMultiScopePattern [c1 , c2] {
60 . . .
61 MULTI_SCOPE_PATTERN in b . a t r i b u t e s
62 }
63

64 pred ApplyHandOffPattern [c1 , c2] {
65 . . .
66 HANDOFF_PATTERN in b . a t r i b u t e s
67 }

Figure A.4: Cross-scope Communication Patterns

1 s ig Container extends Composite {
2 content : one Component
3 chains : s e t In terceptorChain
4 c o n t r o l l e r s : s e t C o n t r o l l e r
5 c o n t r o l I n t e r f a c e : s e t C o n t r o l I n t e r f a c e
6 } {
7 c o n t r o l I n t e r f a c e s in E x t e r n a l I n t e r f a c e
8 content , chains ,
9 c o n t r o l l e r s in t h i s . subComponents

10 }
11

12 s ig Component {
13 co nt a i n er : one Container
14 . . .
15 }
16

17 s ig C o n t r o l l e r extends Composite {
18 c o n t r o l I n t e r f a c e s : s e t C o n t r o l I n t e r f a c e
19 content : lone P r i m i t i v e O b j e c t
20 owner : one Container
21 }
22

23 s ig Non−FunctionalComponent extends Composite { }

46 s ig In terceptorChain extends Composite {
47 owner : one Component
48 i n I n t e r f a c e : one F u n c t i o n a l I n t e r f a c e
49 o u t I n t e r f a c e : one F u n c t i o n a l I n t e r f a c e
50 t r a p I n t e r f a c e : one C o n t r o l I n t e r f a c e
51 } {
52 subComponents in I n t e r c e p t o r
53 i n I n t e r f a c e , o u t I n t e r f a c e , t r a p I n t e r f a c e
54 in t h i s . e x t e r n a l I n t e r f a c e s
55 }
56

57 s ig C o n t r o l I n t e r f a c e , F u n c t i o n a l I n t e r f a c e
58 extends I n t e r f a c e { }
59

60 f a c t I n t e r f a c e s {
61 I n t e r f a c e = F u n c t i o n a l I n t e r f a c e
62 + C o n t r o l I n t e r f a c e
63 }
64

65 s ig I n t e r c e p t o r extends Component {
66 owner : one In terceptorChain
67 }

Figure A.5: Platform Level Concepts Specified in Alloy

144

1 f a c t WaitFreeQueues_ApplicationRules {
2 a l l a , b : Active {
3 i f isAsynchronousBinding (a , b) {
4 i f getThreadType (a) == getThreadType (b) {
5 i f g e t P r i o r i t y (a) > g e t P r i o r i t y (b)
6 setWriteFreeQueue (a , b)
7 i f g e t P r i o r i t y (a) < g e t P r i o r i t y (b)
8 setReadFreeQueue (a , b)
9 i f g e t P r i o r i t y (a) == g e t P r i o r i t y (b)

10 / / can not happen h e r e
11 }
12 i f isBiggerType (a , b)
13 setWriteFreeQueue (a , b)
14 i f isBiggerType (b , a)
15 setReadFreeQueue (a , b)
16 }
17 }
18 }
19

20 / / f rom a t o b
21 pred isAsynchronousBinding
22 (a , b : ActiveComponent) {
23 one b : Binding | {
24 b . c l i e n t in a . e x t e r n a l I n t e r f a c e s
25 b . server in b . e x t e r n a l I n t e r f a c e s
26 b . type = Asynchronous
27 }
28 }

29 f a c t Def in ingPoolPat ternAppl ica t ion {
30 a l l a , b : Active {
31 i f isAsynchronousBinding (a , b) {
32 i f a , b in ImmortalMemory .^ subComponents
33 useObjec tPoolPat tern [a , b]
34 i f getMemoryArea (a) != getMemoryArea (b)
35 useDeepCopy (a , b)
36 }
37 }
38 }
39

40 pred useDeepCopy [a , b : ActiveComponent] {
41 one b : Binding | {
42 b . c l i e n t in a . e x t e r n a l I n t e r f a c e s
43 b . server in b . e x t e r n a l I n t e r f a c e s
44 b . type = Asynchronous
45 DEEP_COPY in b . a t r i b u t e s
46 }
47 }
48

49

50 pred useObjec tPoolPat tern
51 [a , b : ActiveComponent] {
52 / / . . . same s e useDeepCopy
53 OBJECT_POOL in b . a t r i b u t e s
54 }
55

56 pred setReadFreeQueue
57 [a , b : ActiveComponent] {
58 / / . . . same s e useDeepCopy
59 WAITFREE_READ_QUEUE in b . a t r i b u t e s
60 }
61

62 pred setWriteFreeQueue
63 [a , b : ActiveComponent] {
64 / / . . . same s e useDeepCopy
65 WAITFREE_WRITE_QUEUE in b . a t r i b u t e s
66 }
67

68 one sig DEEP_COPY, OBJECT_POOL,
69 WAITFREE_WRITE_QUEUE,
70 WAITFREE_READ_QUEUE in Atr ibutes { }

Figure A.6: WaitFreeQueue and ObjectPool Formalization

1 pred Component . component [n : String] {
2 c : t h i s . subComponents | c . name = n
3 }
4

5 pred Component . i n t e r f a c e [n : Name, r : Type] {
6 one i : I n t e r f a c e | {
7 i in c . e x t e r n a l I n t e r f a c e s
8 and i . name = n and i . r o l e = r
9 }

10 }
11

12 pred Component . p r i m i t i v e {
13 t h i s in P r i m i t i v e
14 }

15 pred binding [c l i e n : I n t e r f a c e
16 serv : I n t e r f a c e] {
17 one b : Binding |
18 b . c l i e n t = c l i e n
19 b . server = serv
20 b . communicationType = Synchronous
21 }
22 }
23

24 pred bindingAsynchronous [c l i e n : I n t e r f a c e
25 serv : I n t e r f a c e] {
26 one b : Binding |
27 b . c l i e n t = c l i e n
28 b . server = serv
29 b . communicationType = Asynchronous
30 }
31 }

Figure A.7: SOLEIL ADL defined in Alloy

145

Appendix A. Alloy Formalization of the RTSJ metamodel

146

Appendix B
OCL Constraints for SOLEIL Profile

The Table B.1 provides several SOLEIL profile rules specified in OCL for illustration. The whole
specification and validation process is described in [NL09].

Looking at the table, for the definition of the constraints that domain-specific components
(DSC) impose on implementation, we employ the link between the HULOTTE and Java models
that is provided by the Fraclet-metamodel [RM09]. All of the constraints defined in table B.1
use this link through a helper class called SpoonUTIL. The first constraint checks that methods
in distributed bindings define parameters with primitive types. The SpoonUTIL helper class is
used to get the Java interfaces (and methods) that implement given distributed components. The
second constraint is implemented in a similar manner, and represents the constraint that states
that asynchronous bindings must define methods with no return type. Constraints three and five
check that certain statements are not present in the body of methods implementing the DSCs:
synchronized statements in protected components, and instantiation of threads in active compo-
nents. Finally, constraint number four checks that classes that implement periodic components
extend Java’s Runnable interface.

147

Appendix B. OCL Constraints for SOLEIL Profile

1
C
o
n
t
e
x
t
:
D
i
s
t
r
i
b
u
t
e
d
N
o
d
e

i
n
v
:
s
e
l
f
.
a
n
n
o
t
a
t
e
s
S
e
t
-
>
f
o
r
A
l
l
(

c
|

c
.
b
i
n
d
i
n
g
s
-
>
f
o
r
A
l
l
(

e
b

|
S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
l
e
t
I
n
t
e
r
f
a
c
e
(
e
b
.
s
o
u
r
c
e
)
.
t
a
r
g
e
t
.
M
e
t
h
o
d
s
.
P
a
r
a
m
e
t
e
r
s

u
n
i
o
n

S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
l
e
t
I
n
t
e
r
f
a
c
e
(
e
b
.
d
e
s
t
)
.
t
a
r
g
e
t
.
M
e
t
h
o
d
s
.
P
a
r
a
m
e
t
e
r
s
-
>

f
l
a
t
t
e
n
(
)
-
>
f
o
r
A
l
l
(
p

|
p
.
T
y
p
e
.
i
s
P
r
i
m
i
t
i
v
e
(
)

)
)
)

2
C
o
n
t
e
x
t
:
A
s
y
n
c
h
r
o
n
o
u
s

i
n
v
:
s
e
l
f
.
a
n
n
o
t
a
t
e
s
S
e
t
-
>
f
o
r
A
l
l
(

b
|

S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
t
a
l
I
n
t
e
r
f
a
c
e
(
b
.
s
o
u
r
c
e
)
.

t
a
r
g
e
t
.
M
e
t
h
o
d
s
.
T
y
p
e
.
S
i
m
p
l
e
N
a
m
e

=
’
v
o
i
d
’

a
n
d

S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
t
a
l
I
n
t
e
r
f
a
c
e
(
b
.
d
e
s
t
.
t
a
r
g
e
t
.
M
e
t
h
o
d
s
.
T
y
p
e
.
S
i
m
p
l
e
N
a
m
e

=
’
v
o
i
d
’
)

3
C
o
n
t
e
x
t
:
P
r
o
t
e
c
t
e
d

i
n
v
:
s
e
l
f
.
a
n
n
o
t
a
t
e
s
S
e
t
-
>
f
o
r
A
l
l
(

c
|

S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
l
e
t
C
o
m
p
o
n
e
n
t
(
c
)
.
t
a
r
g
e
t
.
M
e
t
h
o
d
s
-
>

f
o
r
A
l
l
(
m

|
m
.
b
o
d
y
.
s
t
a
t
e
m
e
n
t
s
-
>
f
l
a
t
t
e
n
(
)
-
>

s
e
l
e
c
t
(

s
|

s
.
o
c
l
I
s
K
i
n
d
O
f
(
C
t
S
y
n
c
h
r
o
n
i
z
e
d
)
)
-
>
i
s
E
m
p
t
y
(
)
)
)

4
C
o
n
t
e
x
t
:
P
e
r
i
o
d
i
c

i
n
v
:
s
e
l
f
.
a
n
n
o
t
a
t
e
s
S
e
t
-
>
f
o
r
A
l
l
(

c
|

S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
l
e
t
C
o
m
p
o
n
e
n
t
(
c
)
.
t
a
r
g
e
t
.
S
u
p
e
r
I
n
t
e
r
f
a
c
e
s
-
>
s
e
l
e
c
t
(

s
|

s
.
Q
u
a
l
i
f
i
e
d
N
a
m
e

=
’
j
a
v
a
.
l
a
n
g
.
R
u
n
n
a
b
l
e
’
)
-
>
n
o
t
E
m
p
t
y
(
)
)

5
C
o
n
t
e
x
t
:
A
c
t
i
v
e

i
n
v
:
s
e
l
f
.
a
n
n
o
t
a
t
e
s
S
e
t
-
>
f
o
r
A
l
l
(

c
|

S
p
o
o
n
U
T
I
L
.
g
e
t
F
r
a
c
l
e
t
C
o
m
p
o
n
e
n
t
(
c
)
.
t
a
r
g
e
t
.
M
e
t
h
o
d
s
-
>

f
o
r
A
l
l
(
m

|
m
.
b
o
d
y
.
s
t
a
t
e
m
e
n
t
s
-
>
f
l
a
t
t
e
n
(
)
-
>
s
e
l
e
c
t
(

s
|

s
.
o
c
l
I
s
K
i
n
d
O
f
(

C
t
N
e
w
C
l
a
s
s
)

i
m
p
l
i
e
s

s
.
a
s
O
c
l
T
y
p
e
(
C
t
N
e
w
C
l
a
s
s
)
.
T
y
p
e
.
Q
u
a
l
i
f
i
e
d
N
a
m
e

=
’
j
a
v
a
.
l
a
n
g
.
T
h
r
e
a
d
’
)
-
>
i
s
E
m
p
t
y
(
)
)
)

Ta
bl

e
B.

1:
O

C
L

ex
pr

es
si

on
s

fo
r

im
pl

em
en

ta
ti

on
co

ns
tr

ai
nt

s

148

Appendix C
SweetFactory Architecture in
FRACTAL-ADL

In Fig. C.2 we show architecture of the SweetFactory scenario expressed in the FRACTAL-ADL
notation. The architecture corresponds to the same architecture expressed in the Alloy ADL in
Fig. 4.20.

1 < !−− F u n c t i o n a l Components −−>

3 <ActiveComponent name=" ProductionLine "
4 type=" p e r i o d i c " p e r i o d i c i t y =" 10ms">
5 < i n t e r f a c e name=" iMonitor "
6 r o l e =" c l i e n t "
7 s ignature=" IMonitor " />
8 <content c l a s s =" ProductionLineImpl "/>
9 </ActiveComponent> <ActiveComponent name=" MonitoringSystem "

10 type=" sporadic ">
11 < i n t e r f a c e name=" iMonitor "
12 r o l e =" server "
13 s ignature=" IMonitor " />
14 . . .
15 </ActiveComponent>

17 <PassiveComponent name=" Console ">
18 . . .
19 </PassiveComponent> <ActiveComponent name=" Audit "
20 type=" sporadic " />
21 . . .
22 </ActiveComponent>

24 < !−− B i nd i n g s −−> <Binding>
25 < c l i e n t cname=" ProductionLine "
26 iname=" iMonitor " />
27 <server cname=" MonitoringSystem "
28 iname=" iMonitor " />
29 <BindDesc protoco l=" asynchronous "
30 b u f f e r S i z e =" 10 " />
31 </Binding>

Figure C.1: SweetFactory Architecture in FRACTAL-ADL, Part 1

149

Appendix C. SweetFactory Architecture in FRACTAL-ADL

1 <!−− Non−Funct ional Components −−>
2

3 <MemoryArea name="Imm1">
4 <ThreadDomain name="NHRT1">
5 <ActiveComp
6 name=" ProductionLine "/>
7 <DomainDesc type="NHRT"
8 p r i o r i t y =" 30 " />
9 </ThreadDomain>

10 <ThreadDomain name="NHRT2">
11 <ActiveComp
12 name=" MonitoringSystem "/>
13 <DomainDesc type="NHRT"
14 p r i o r i t y =" 25 " />
15 </ThreadDomain>
16

17 <AreaDesc type=" immortal "
18 s i z e =" 600KB" />
19 </MemoryArea>
20

21 <MemoryArea name=" S1 ">
22 <PassiveComp name=" Console "/>
23 <AreaDesc type=" scope "
24 name=" cscope " s i z e =" 28KB" />
25 </MemoryArea>
26

27 <MemoryArea name="H1">
28 <ThreadDomain name=" reg1 ">
29 <ActiveComp
30 name=" Audit "/>
31 <DomainDesc type=" Regular " />
32 </ThreadDomain>
33 <AreaDesc type=" heap " />
34 </MemoryArea>

Figure C.2: SweetFactory Architecture in FRACTAL-ADL, Part 2

150

Index

ADL, 37, 56
allocation context, 52
Alloy, 38
Ambient-Oriented Programming, 109
ambient-reference, 110
AmbientTalk, 110
application developer, 25, 84
application development lifecycle, 66
architectural pattern, 72

chainComposite pattern, 72
containerComposite pattern, 72
non-functionalComposite pattern, 72

architectural refinement process, 73
architecture refinement

binding refinement, 72
architecture refinement, 71

functional component refinement, 71
non-functional component refinement, 72

asynchronous transfer of control, 15

binding, 36

communication pattern
cross-scope pattern, 55, 79
handoff pattern, 55, 79
multiscope pattern, 55, 79
shared scope, 79

communication type
asynchronous communication, 78

component
component content, 35, 48
composite, 48
primitive, 48
shared component, 35, 48
subcomponent, 48
supercomponent, 48
composite component, 35
domain component, 50

AmbientNode, 110
DistributedNode, 106
MemoryArea component, 52
ThreadDomain component, 51

functional component, 48
active component, 49, 74
passive component, 49, 74
protected component, 75

primitive component, 35
component controller, 70
component framework, 25
component-based development process, 25
connector, 26
container, 25, 61, 84
control component, 26
control interface, 69
controller, 26, 36
core level, 69

design view
functional view, 57
memory management view, 58
thread-management view, 57

development role, 71
application developer, 71
framework developer, 71

domain-specific concepts, 84
domain-specific requirement, 25
domain-specific service, 83
DSCF, 24, 83

EMF, 63
execution infrastructure, 26

FAC, 37
Fractal ADL, 37
Fractal Component Model, 35
Fractoy, 38
framework developer, 25, 84
functional interface, 69
functional requirement, 11

generative programming, 83
global optimization, 82

Hulotte, 80

151

Index

back-end, 82
front-end, 81
middle-end, 82
Hulotte architecture, 81

Hulotte Framework, 67
Hulotte Metamodel, 69

instantiation context, 53
interceptorChain, 70
interface, 36

client interface, 36
control interface, 36
functional interface, 36
server interface, 36
TRAP interface, 71, 72

membrane, 25, 36
membrane composition paradigm, 93
memory management

immortal memory, 76
meta-framework, 85
methodology

design methodology, 59
implementation methodology, 60

middleware, 26
motivation scenario, 63

non-blocking futures, 110
non-functional requirement, 25, 83

OCL, 63
optimization heuristics, 82
optimizations, 82

performance overhead, 26
platform level, 69
priority inversion, 54
protected component, 49

RCD, 97
real-time

hard real-time, 10
non real-time, 10
soft real-time, 10

Real-time Garbage Collection, 17
real-time Java virtual Machine, 20
real-time model, 11
real-time requirement, 10, 11
real-time system, 10
RT VM, 20
RTGC, 17
RTSJ, 13

cross-scope communication, 17, 52, 54, 78
cross-thread communication, 54, 76
RTSJ metamodel, 51

RTSJ Memory Management, 15
Heap Memory, 15
Immortal Memory, 15
Scoped Memory, 15

RTSJ scheduling entity
NHRT, 14
Real-time Thread, 14
Regular Thread, 13

runtime platform, 26, 60, 65, 80, 82, 84

schedulability analysis, 11
scope stack, 16
separation of concerns, 60
single parent rule, 16, 79
Soleil Framework, 56

Design Methodology, 57
Implementation Methodology, 59
MERGE-ALL, 83
SOLEIL, 83
Soleil Metamodel, 47
Soleil Profile, 61
ULTRA-MERGE, 83

step-wise refinement process, 80
SweetFactory scenario, 17, 93

validation process, 62
design time validation, 62
implementation time validation, 63

WaitFreeQueue, 15
WaitFreeReadQueue, 15
WaitFreeWriteQueue, 15

152

	preface.pdf
	blank
	Abstract
	Table of Contents
	List of Tables
	Chapter 1 Introduction
	1.1 Understanding the Problem
	1.2 Research Goals
	1.3 Contributions
	1.4 Dissertation Roadmap

	Part I State of the Art
	Chapter 2 Real-time Programming in Java
	2.1 Real-time Programming
	2.1.1 Real-time System Definition
	2.1.2 Developing Real-Time Applications
	2.1.3 Trends and Challenges
	2.1.4 Real-Time Programming Languages

	2.2 Real-Time Specification for Java
	2.2.1 Thread Types
	2.2.2 Memory Management
	2.2.3 Sweet Factory - A Motivation Scenario
	2.2.4 Advantages and Disadvantages of RTSJ
	2.2.5 Real-time Java Virtual Machines

	2.3 Beyond Real-Time Specification for Java
	2.4 Summary

	Chapter 3 Component-Based Software Engineering
	3.1 Component-based Software Engineering
	3.1.1 Component Frameworks
	3.1.2 Advanced Technologies in CBSE

	3.2 State-of-the-Art of Component Frameworks
	3.2.1 General Purpose Component Frameworks
	3.2.2 Domain-Specific Component Frameworks
	3.2.3 Component Frameworks for RTSJ
	3.2.4 Distributed and Embedded Computing in Real-time Java Systems

	3.3 Fractal Component Model
	3.3.1 FAC: Fractal Aspect Model
	3.3.2 Formalization of the Fractal Component Model

	3.4 State-of-the-Art Synthesis
	3.5 Goals Revisited
	3.6 Summary

	Part II Proposal
	Chapter 4 Soleil: A Component Framework for Java-based Real-Time Embedded Systems
	4.1 A Generic Component Model
	4.1.1 Core Concepts
	4.1.2 Functional Components
	4.1.3 Domain Components

	4.2 A Real-Time Java Component Metamodel
	4.2.1 ThreadDomain Component
	4.2.2 MemoryArea Component
	4.2.3 Composing RTSJ Components
	4.2.4 Binding RTSJ Components
	4.2.5 ADL Formalization

	4.3 Soleil Framework
	4.3.1 Design Methodology
	4.3.2 Implementation Methodology
	4.3.3 Soleil Profile
	4.3.4 Validation Process

	4.4 Motivation Scenario Revisited
	4.4.1 Designing the Motivation Scenario
	4.4.2 Implementing the Motivation Scenario

	4.5 Summary

	Chapter 5 Hulotte: A Framework for the Construction of Domain-Specific Component Frameworks
	5.1 Hulotte Framework
	5.1.1 Generic Component Model Extensions
	5.1.2 Architecture Refinement of Domain Components

	5.2 Implementing Soleil with Hulotte
	5.2.1 Active and Passive Components
	5.2.2 ThreadDomain Refinement
	5.2.3 Immortal Memory
	5.2.4 Cross-Thread Communication
	5.2.5 Cross-Scope Communication
	5.2.6 Fractal Control Layer

	5.3 Hulotte Framework Implementation
	5.3.1 Hulotte Architecture
	5.3.2 Front-end
	5.3.3 Middle-end
	5.3.4 Back-end
	5.3.5 Soleil - Runtime Platform Instantiation
	5.3.6 Hulotte as a Meta-Framework

	5.4 Motivation Example Revisited
	5.5 Summary

	Part III Validation
	Chapter 6 Case Studies
	6.1 Sweet Factory
	6.1.1 Description
	6.1.2 Performance Evaluation
	6.1.3 RTSJ Code Generation Perspective
	6.1.4 Evaluation

	6.2 Real-time Collision Detector
	6.2.1 Description
	6.2.2 Current Approaches and Their Limitations
	6.2.3 RCD Implementation in the Soleil Framework
	6.2.4 Evaluation

	6.3 Distributed and Ambient Programming in Soleil and Hulotte
	6.3.1 Distributed Real-Time Programming with Soleil
	6.3.2 Ambient Programming with Hulotte
	6.3.3 Evaluation

	6.4 Limitations of our Approach
	6.5 Related Work Comparison
	6.6 Summary

	Part IV Conclusion and Perspectives
	Chapter 7 Conclusion and Perspectives
	7.1 Summary of the Dissertation
	7.2 Contributions of the Dissertation
	7.3 Limitations of the Approach
	7.4 Impact of the Dissertation
	7.4.1 Collaborations
	7.4.2 Research Projects Influenced by the Dissertation

	7.5 Perspectives
	7.5.1 Short Term Perspectives
	7.5.2 Mid Term Perspectives
	7.5.3 Long Term Perspectives

	7.6 Publications
	7.6.1 International Conferences
	7.6.2 International Workshops
	7.6.3 Poster Sessions
	7.6.4 Presentations

	Bibliography
	Appendixes
	Appendix A Alloy Formalization of the RTSJ metamodel
	Appendix B OCL Constraints for Soleil Profile
	Appendix C SweetFactory Architecture in Fractal-ADL

	Index

	abstract
	Abstract
	Table of Contents
	List of Tables
	Chapter 1 Introduction
	1.1 Understanding the Problem
	1.2 Research Goals
	1.3 Contributions
	1.4 Dissertation Roadmap

	Part I State of the Art
	Chapter 2 Real-time Programming in Java
	2.1 Real-time Programming
	2.1.1 Real-time System Definition
	2.1.2 Developing Real-Time Applications
	2.1.3 Trends and Challenges
	2.1.4 Real-Time Programming Languages

	2.2 Real-Time Specification for Java
	2.2.1 Thread Types
	2.2.2 Memory Management
	2.2.3 Sweet Factory - A Motivation Scenario
	2.2.4 Advantages and Disadvantages of RTSJ
	2.2.5 Real-time Java Virtual Machines

	2.3 Beyond Real-Time Specification for Java
	2.4 Summary

	Chapter 3 Component-Based Software Engineering
	3.1 Component-based Software Engineering
	3.1.1 Component Frameworks
	3.1.2 Advanced Technologies in CBSE

	3.2 State-of-the-Art of Component Frameworks
	3.2.1 General Purpose Component Frameworks
	3.2.2 Domain-Specific Component Frameworks
	3.2.3 Component Frameworks for RTSJ
	3.2.4 Distributed and Embedded Computing in Real-time Java Systems

	3.3 Fractal Component Model
	3.3.1 FAC: Fractal Aspect Model
	3.3.2 Formalization of the Fractal Component Model

	3.4 State-of-the-Art Synthesis
	3.5 Goals Revisited
	3.6 Summary

	Part II Proposal
	Chapter 4 Soleil: A Component Framework for Java-based Real-Time Embedded Systems
	4.1 A Generic Component Model
	4.1.1 Core Concepts
	4.1.2 Functional Components
	4.1.3 Domain Components

	4.2 A Real-Time Java Component Metamodel
	4.2.1 ThreadDomain Component
	4.2.2 MemoryArea Component
	4.2.3 Composing RTSJ Components
	4.2.4 Binding RTSJ Components
	4.2.5 ADL Formalization

	4.3 Soleil Framework
	4.3.1 Design Methodology
	4.3.2 Implementation Methodology
	4.3.3 Soleil Profile
	4.3.4 Validation Process

	4.4 Motivation Scenario Revisited
	4.4.1 Designing the Motivation Scenario
	4.4.2 Implementing the Motivation Scenario

	4.5 Summary

	Chapter 5 Hulotte: A Framework for the Construction of Domain-Specific Component Frameworks
	5.1 Hulotte Framework
	5.1.1 Generic Component Model Extensions
	5.1.2 Architecture Refinement of Domain Components

	5.2 Implementing Soleil with Hulotte
	5.2.1 Active and Passive Components
	5.2.2 ThreadDomain Refinement
	5.2.3 Immortal Memory
	5.2.4 Cross-Thread Communication
	5.2.5 Cross-Scope Communication
	5.2.6 Fractal Control Layer

	5.3 Hulotte Framework Implementation
	5.3.1 Hulotte Architecture
	5.3.2 Front-end
	5.3.3 Middle-end
	5.3.4 Back-end
	5.3.5 Soleil - Runtime Platform Instantiation
	5.3.6 Hulotte as a Meta-Framework

	5.4 Motivation Example Revisited
	5.5 Summary

	Part III Validation
	Chapter 6 Case Studies
	6.1 Sweet Factory
	6.1.1 Description
	6.1.2 Performance Evaluation
	6.1.3 RTSJ Code Generation Perspective
	6.1.4 Evaluation

	6.2 Real-time Collision Detector
	6.2.1 Description
	6.2.2 Current Approaches and Their Limitations
	6.2.3 RCD Implementation in the Soleil Framework
	6.2.4 Evaluation

	6.3 Distributed and Ambient Programming in Soleil and Hulotte
	6.3.1 Distributed Real-Time Programming with Soleil
	6.3.2 Ambient Programming with Hulotte
	6.3.3 Evaluation

	6.4 Limitations of our Approach
	6.5 Related Work Comparison
	6.6 Summary

	Part IV Conclusion and Perspectives
	Chapter 7 Conclusion and Perspectives
	7.1 Summary of the Dissertation
	7.2 Contributions of the Dissertation
	7.3 Limitations of the Approach
	7.4 Impact of the Dissertation
	7.4.1 Collaborations
	7.4.2 Research Projects Influenced by the Dissertation

	7.5 Perspectives
	7.5.1 Short Term Perspectives
	7.5.2 Mid Term Perspectives
	7.5.3 Long Term Perspectives

	7.6 Publications
	7.6.1 International Conferences
	7.6.2 International Workshops
	7.6.3 Poster Sessions
	7.6.4 Presentations

	Bibliography
	Appendixes
	Appendix A Alloy Formalization of the RTSJ metamodel
	Appendix B OCL Constraints for Soleil Profile
	Appendix C SweetFactory Architecture in Fractal-ADL

	Index

	blank
	Abstract
	Table of Contents
	List of Tables
	Chapter 1 Introduction
	1.1 Understanding the Problem
	1.2 Research Goals
	1.3 Contributions
	1.4 Dissertation Roadmap

	Part I State of the Art
	Chapter 2 Real-time Programming in Java
	2.1 Real-time Programming
	2.1.1 Real-time System Definition
	2.1.2 Developing Real-Time Applications
	2.1.3 Trends and Challenges
	2.1.4 Real-Time Programming Languages

	2.2 Real-Time Specification for Java
	2.2.1 Thread Types
	2.2.2 Memory Management
	2.2.3 Sweet Factory - A Motivation Scenario
	2.2.4 Advantages and Disadvantages of RTSJ
	2.2.5 Real-time Java Virtual Machines

	2.3 Beyond Real-Time Specification for Java
	2.4 Summary

	Chapter 3 Component-Based Software Engineering
	3.1 Component-based Software Engineering
	3.1.1 Component Frameworks
	3.1.2 Advanced Technologies in CBSE

	3.2 State-of-the-Art of Component Frameworks
	3.2.1 General Purpose Component Frameworks
	3.2.2 Domain-Specific Component Frameworks
	3.2.3 Component Frameworks for RTSJ
	3.2.4 Distributed and Embedded Computing in Real-time Java Systems

	3.3 Fractal Component Model
	3.3.1 FAC: Fractal Aspect Model
	3.3.2 Formalization of the Fractal Component Model

	3.4 State-of-the-Art Synthesis
	3.5 Goals Revisited
	3.6 Summary

	Part II Proposal
	Chapter 4 Soleil: A Component Framework for Java-based Real-Time Embedded Systems
	4.1 A Generic Component Model
	4.1.1 Core Concepts
	4.1.2 Functional Components
	4.1.3 Domain Components

	4.2 A Real-Time Java Component Metamodel
	4.2.1 ThreadDomain Component
	4.2.2 MemoryArea Component
	4.2.3 Composing RTSJ Components
	4.2.4 Binding RTSJ Components
	4.2.5 ADL Formalization

	4.3 Soleil Framework
	4.3.1 Design Methodology
	4.3.2 Implementation Methodology
	4.3.3 Soleil Profile
	4.3.4 Validation Process

	4.4 Motivation Scenario Revisited
	4.4.1 Designing the Motivation Scenario
	4.4.2 Implementing the Motivation Scenario

	4.5 Summary

	Chapter 5 Hulotte: A Framework for the Construction of Domain-Specific Component Frameworks
	5.1 Hulotte Framework
	5.1.1 Generic Component Model Extensions
	5.1.2 Architecture Refinement of Domain Components

	5.2 Implementing Soleil with Hulotte
	5.2.1 Active and Passive Components
	5.2.2 ThreadDomain Refinement
	5.2.3 Immortal Memory
	5.2.4 Cross-Thread Communication
	5.2.5 Cross-Scope Communication
	5.2.6 Fractal Control Layer

	5.3 Hulotte Framework Implementation
	5.3.1 Hulotte Architecture
	5.3.2 Front-end
	5.3.3 Middle-end
	5.3.4 Back-end
	5.3.5 Soleil - Runtime Platform Instantiation
	5.3.6 Hulotte as a Meta-Framework

	5.4 Motivation Example Revisited
	5.5 Summary

	Part III Validation
	Chapter 6 Case Studies
	6.1 Sweet Factory
	6.1.1 Description
	6.1.2 Performance Evaluation
	6.1.3 RTSJ Code Generation Perspective
	6.1.4 Evaluation

	6.2 Real-time Collision Detector
	6.2.1 Description
	6.2.2 Current Approaches and Their Limitations
	6.2.3 RCD Implementation in the Soleil Framework
	6.2.4 Evaluation

	6.3 Distributed and Ambient Programming in Soleil and Hulotte
	6.3.1 Distributed Real-Time Programming with Soleil
	6.3.2 Ambient Programming with Hulotte
	6.3.3 Evaluation

	6.4 Limitations of our Approach
	6.5 Related Work Comparison
	6.6 Summary

	Part IV Conclusion and Perspectives
	Chapter 7 Conclusion and Perspectives
	7.1 Summary of the Dissertation
	7.2 Contributions of the Dissertation
	7.3 Limitations of the Approach
	7.4 Impact of the Dissertation
	7.4.1 Collaborations
	7.4.2 Research Projects Influenced by the Dissertation

	7.5 Perspectives
	7.5.1 Short Term Perspectives
	7.5.2 Mid Term Perspectives
	7.5.3 Long Term Perspectives

	7.6 Publications
	7.6.1 International Conferences
	7.6.2 International Workshops
	7.6.3 Poster Sessions
	7.6.4 Presentations

	Bibliography
	Appendixes
	Appendix A Alloy Formalization of the RTSJ metamodel
	Appendix B OCL Constraints for Soleil Profile
	Appendix C SweetFactory Architecture in Fractal-ADL

	Index

	thesis-full
	Abstract
	Table of Contents
	List of Tables
	Chapter 1 Introduction
	1.1 Understanding the Problem
	1.2 Research Goals
	1.3 Contributions
	1.4 Dissertation Roadmap

	Part I State of the Art
	Chapter 2 Real-time Programming in Java
	2.1 Real-time Programming
	2.1.1 Real-time System Definition
	2.1.2 Developing Real-Time Applications
	2.1.3 Trends and Challenges
	2.1.4 Real-Time Programming Languages

	2.2 Real-Time Specification for Java
	2.2.1 Thread Types
	2.2.2 Memory Management
	2.2.3 Sweet Factory - A Motivation Scenario
	2.2.4 Advantages and Disadvantages of RTSJ
	2.2.5 Real-time Java Virtual Machines

	2.3 Beyond Real-Time Specification for Java
	2.4 Summary

	Chapter 3 Component-Based Software Engineering
	3.1 Component-based Software Engineering
	3.1.1 Component Frameworks
	3.1.2 Advanced Technologies in CBSE

	3.2 State-of-the-Art of Component Frameworks
	3.2.1 General Purpose Component Frameworks
	3.2.2 Domain-Specific Component Frameworks
	3.2.3 Component Frameworks for RTSJ
	3.2.4 Distributed and Embedded Computing in Real-time Java Systems

	3.3 Fractal Component Model
	3.3.1 FAC: Fractal Aspect Model
	3.3.2 Formalization of the Fractal Component Model

	3.4 State-of-the-Art Synthesis
	3.5 Goals Revisited
	3.6 Summary

	Part II Proposal
	Chapter 4 Soleil: A Component Framework for Java-based Real-Time Embedded Systems
	4.1 A Generic Component Model
	4.1.1 Core Concepts
	4.1.2 Functional Components
	4.1.3 Domain Components

	4.2 A Real-Time Java Component Metamodel
	4.2.1 ThreadDomain Component
	4.2.2 MemoryArea Component
	4.2.3 Composing RTSJ Components
	4.2.4 Binding RTSJ Components
	4.2.5 ADL Formalization

	4.3 Soleil Framework
	4.3.1 Design Methodology
	4.3.2 Implementation Methodology
	4.3.3 Soleil Profile
	4.3.4 Validation Process

	4.4 Motivation Scenario Revisited
	4.4.1 Designing the Motivation Scenario
	4.4.2 Implementing the Motivation Scenario

	4.5 Summary

	Chapter 5 Hulotte: A Framework for the Construction of Domain-Specific Component Frameworks
	5.1 Hulotte Framework
	5.1.1 Generic Component Model Extensions
	5.1.2 Architecture Refinement of Domain Components

	5.2 Implementing Soleil with Hulotte
	5.2.1 Active and Passive Components
	5.2.2 ThreadDomain Refinement
	5.2.3 Immortal Memory
	5.2.4 Cross-Thread Communication
	5.2.5 Cross-Scope Communication
	5.2.6 Fractal Control Layer

	5.3 Hulotte Framework Implementation
	5.3.1 Hulotte Architecture
	5.3.2 Front-end
	5.3.3 Middle-end
	5.3.4 Back-end
	5.3.5 Soleil - Runtime Platform Instantiation
	5.3.6 Hulotte as a Meta-Framework

	5.4 Motivation Example Revisited
	5.5 Summary

	Part III Validation
	Chapter 6 Case Studies
	6.1 Sweet Factory
	6.1.1 Description
	6.1.2 Performance Evaluation
	6.1.3 RTSJ Code Generation Perspective
	6.1.4 Evaluation

	6.2 Real-time Collision Detector
	6.2.1 Description
	6.2.2 Current Approaches and Their Limitations
	6.2.3 RCD Implementation in the Soleil Framework
	6.2.4 Evaluation

	6.3 Distributed and Ambient Programming in Soleil and Hulotte
	6.3.1 Distributed Real-Time Programming with Soleil
	6.3.2 Ambient Programming with Hulotte
	6.3.3 Evaluation

	6.4 Limitations of our Approach
	6.5 Related Work Comparison
	6.6 Summary

	Part IV Conclusion and Perspectives
	Chapter 7 Conclusion and Perspectives
	7.1 Summary of the Dissertation
	7.2 Contributions of the Dissertation
	7.3 Limitations of the Approach
	7.4 Impact of the Dissertation
	7.4.1 Collaborations
	7.4.2 Research Projects Influenced by the Dissertation

	7.5 Perspectives
	7.5.1 Short Term Perspectives
	7.5.2 Mid Term Perspectives
	7.5.3 Long Term Perspectives

	7.6 Publications
	7.6.1 International Conferences
	7.6.2 International Workshops
	7.6.3 Poster Sessions
	7.6.4 Presentations

	Bibliography
	Appendixes
	Appendix A Alloy Formalization of the RTSJ metamodel
	Appendix B OCL Constraints for Soleil Profile
	Appendix C SweetFactory Architecture in Fractal-ADL

	Index

