N
N

N

HAL

open science

SOLEIL: An Integrated Approach for Designing and
Developing Component-based Real-time Java Systems
Ales Plsek

» To cite this version:

Ales Plsek. SOLEIL: An Integrated Approach for Designing and Developing Component-based Real-
time Java Systems. Software Engineering [cs.SE]. Université des Sciences et Technologie de Lille -
Lille I, 2009. English. NNT: . tel-00439132

HAL Id: tel-00439132
https://theses.hal.science/tel-00439132v1
Submitted on 6 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00439132v1
https://hal.archives-ouvertes.fr

SPI

‘ USTL

Département de formation doctorale en informatique Ecole Doctorale SPI Lille
UFR IEEA

O Ecole Doctorale
LLJ des Sciences

SOLEIL: An Integrated Approach for
Designing and Developing
Component-based Real-time Java Systems

THESE

présentée et soutenue publiquement le 14 September 2009

pour 'obtention du

Doctorat de I'Université des Sciences et Technologies de Lille
(spécialité informatique)

par
Ales PLSEK
Composition du jury :
Président du jury: M. Pierre BOULET, Professeur Université de Lille I
Rapporteurs : M. Frantiek PLASIL, Professeur Charles University
M. Laurent PAUTET, Professeur Telecom ParisTech
Examinateurs : M. Jean-Charles FABRE, Professeur INP Toulouse

M. Frangois TERRIER, Professeur CEA LIST Saclay

Directeurs de théese : M. Lionel SEINTURIER, Professeur Université de Lille I
M. Philippe MERLE, Docteur INRIA Nord Europe

INSTITUT NATIONAL
DE RECHERCHE

INRIA LILLE - NORD EUROPE - Laboratoire d'Informatique Fondamentale de Lille

’ CENTRE NATIONAL
INRIA DE LA RECHERCHE
l SCIENTIFIQUE
ET EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE

Abstract

Over the last decade we witness a steady grow of complexities in real-time systems. Today,
developers have to face real-time constraints in almost every software system, from embedded
software to financial systems, internet services, and computer entertainment industry. To address
this widespread challenge, the Real-Time Specification for Java (RTS]) has been proposed. How-
ever, RTJS itself introduces many nonintuitive rules and restrictions that doom its programming
model to be highly error-prone. Moreover, in contrast to the approaches for mainstream soft-
ware development, the engineering technologies, tools, and frameworks for real-time systems
are nowhere near as groundbreaking.

The vision behind this dissertation is to ultimately close the gap between real-time program-
ming and today’s software technology. Therefore, this dissertation investigates scalable software
engineering techniques for RTS] programming. Our fundamental philosophy is to introduce
high-level abstractions of RTS] concepts in order to leverage development of real-time Java sys-
tems.

As the first contribution of this thesis, we introduce domain components - an approach to uni-
fied expression and manipulation of domain-specific concerns along the software development
lifecycle. We use the domain components to construct high-level abstractions of RTS] specifics
that ultimately allow developers to achieve full separation of functional and RTS]J-specific con-
cerns in the development lifecycle. We thus allow developers to reuse and tailor the systems for
variously constraining real-time requirements.

Second, we propose SOLEIL- a component framework for development of RTS] systems, the
framework introduces a development methodology mitigating the complexities of the RTS]J pro-
gramming model. Furthermore, we introduce the HULOTTE toolset for automatic instantiation of
developed applications. In this process, the functional implementation is separated from RTS]-
specific code which is automatically instantiated. In consequence, the development process is
fully transparent, RTS] complexities are hidden from the developers, and the process itself highly
resembles to the standard Java development. Finally, the domain component concept and the
RTS] rules and restrictions are defined in the Alloy language which allows us to formally verify
that the development process and outcoming software systems are compliant with RTS].

To validate the approach, we conduct several case studies challenging our proposal from dif-
ferent perspectives. First, performed benchmarks show that the overhead of the SOLEIL frame-
work is minimal in comparison to manually written object-oriented applications while providing
more extensive functionality. Second, considering the state-of-the-art RTS] programming meth-
ods, we achieve better separation of functional and RTS] concerns, thus increasing efficiency of
the development process. Finally, we demonstrate universality of the domain component con-
cept by showing its ability to address various domain-specific challenges.

Table of Contents

List of Tables

Chapter 1 Introduction

1.1
1.2
1.3
1.4

Understanding the Problem
Research Goals e
Contributions e

Dissertation Roadmap

Part1 State of the Art

Chapter 2 Real-time Programming in Java

2.1

2.2

2.3
24

Real-time Programming
2.1.1 Real-time System Definition
2.1.2 Developing Real-Time Applications
213 Trendsand Challenges
214 Real-Time Programming Languages
Real-Time SpecificationforJava
221 ThreadTypes.
222 Memory Management
2.2.3 Sweet Factory - A Motivation Scenario
224 Advantages and Disadvantages of RTS]
2.2.5 Real-time Java Virtual Machines
Beyond Real-Time Specification for Java

Summary

Chapter 3 Component-Based Software Engineering

3.1

3.2

Component-based Software Engineering
3.1.1 Component Frameworks
3.1.2 Advanced TechnologiesinCBSE

State-of-the-Art of Component Frameworks

1ii

xi

10
10
11
12
12
13
13
15
17
19
20
21
22

Table of Contents

3.2.1 General Purpose Component Frameworks 27

3.2.2 Domain-Specific Component Frameworks 28

3.2.3 Component Frameworks for RTSJ 31

3.24 Distributed and Embedded Computing in Real-time Java Systems . . . 35

3.3 FRACTAL ComponentModel 35

3.3.1 FAC:FRACTAL AspectModel 37

3.3.2 Formalization of the FRACTAL Component Model 38

3.4 State-of-the-ArtSynthesis L o 39

35 GoalsRevisited L 40

3.6 SUMMATY oo 41

Part I Proposal 43
Chapter 4 SOLEIL: A Component Framework for Java-based Real-Time Embedded

Systems 45

41 A GenericComponentModel, 47

411 CoreConcepts 47

41.2 Functional Components 48

413 Domain Components 50

42 A Real-Time Java Component Metamodel 51

421 ThreadDomain Component 51

422 MemoryArea Component 52

423 Composing RTS] Components 53

424 Binding RTS] Components 54

425 ADLFormalization, 56

43 SOLEIL Framework 56

43.1 Design Methodology, 57

43.2 Implementation Methodology 59

433 SOLEILProfile 61

434 ValidationProcess o 62

4.4 Motivation Scenario Revisited 0. 63

441 Designing the Motivation Scenario 63

442 Implementing the Motivation Scenario 64

45 Summary 66
Chapter 5 HULOTTE: A Framework for the Construction of Domain-Specific Compo-

nent Frameworks 67

51 HULOTTE Framework 68

5.1.1 Generic Component Model Extensions 69

5.1.2 Architecture Refinement of Domain Components. 71

52 Implementing SOLEIL with HULOTTE 74

iv

52.1 Active and Passive Components
5.2.2 ThreadDomain Refinement
523 Immortal Memory
524 Cross-Thread Communication
525 Cross-Scope Communication
52.6 Fractal Control Layer
5.3 HULOTTE Framework Implementation
5.3.1 HULOTTE Architecture
532 Front-end
533 Middle-end
534 Back-end
5.3.5 Soleil - Runtime Platform Instantiation
53.6 HULOTTE as a Meta-Framework
5.4 Motivation Example Revisited 0
55 Summary

Part III Validation

Chapter 6 Case Studies

6.1

6.2

6.3

6.4
6.5
6.6

Sweet Factory e
6.1.1 Description e
6.1.2 Performance Evaluation
6.1.3 RTS] Code Generation Perspective
6.14 Evaluation
Real-time Collision Detector
6.2.1 Description e
6.2.2 Current Approaches and Their Limitations
6.2.3 RCD Implementation in the SOLEIL Framework
624 Evaluation
Distributed and Ambient Programming in SOLEIL and HULOTTE
6.3.1 Distributed Real-Time Programming with SOLEIL
6.3.2 Ambient Programming with HULOTTE.
633 Evaluation
Limitations of our Approach
Related Work Comparison
Summary

Part IV Conclusion and Perspectives

Chapter 7 Conclusion and Perspectives

7.1 Summary of the Dissertation

89

91
93
93
93
95
97
97
97
99
102
104
105
105
109
112
113
114
115

117

119
119

Table of Contents

7.2 Contributions of the Dissertation
7.3 Limitations of the Approach
74 Impactof the Dissertation
741 Collaborations
7.4.2 Research Projects Influenced by the Dissertation
75 Perspectives e
751 Short Term Perspectives
752 Mid Term Perspectives
7.5.3 Long Term Perspectives
7.6 Publications e
7.6.1 International Conferences
7.6.2 International Workshops L.
763 PosterSessions. oo
764 Presentations. o
Bibliography
Appendixes

Appendix A Alloy Formalization of the RTSJ metamodel

Appendix B OCL Constraints for SOLEIL Profile

Appendix C SweetFactory Architecture in FRACTAL-ADL

Index

Vi

139

141

147

149

151

List of Figures

2.1 AReal-Time Application Example. 11
2.2 Proportions of the Source Code with Differently Stringent Real-Time Requirements 13
2.3 New types of threads introduced by RTSJ. 14

2.4 Memory Areas Defined by RTS] : Two scoped memory areas parented in immortal
memory. Heavy arrows represent allowed reference patterns. While any scope
is allowed to refer into the heap, a NoHeapRealtimeThread is not allowed to
read those references. These constraints are implemented by read/write barriers

atruntime. 16
2.5 Sweet Factory lllustration 17
2.6 Sweet Factory Class Diagram 18
2.7 MonitoringSystemImplementation o oL 18
3.1 AADLModel Development 29
3.2 Component-based Application Development process in AdaCCM 30
3.3 A Container Architecture Running the Hybrid Real-Time Component Model . .. 30
3.4 Compadress Memory model : Parent components communicate with their child

components via scoped memory managers (SMMs) 32
3.5 Etienneet. al. ComponentModel 0L 33
3.6 FRACTALConcepts it 36
3.7 Component-based Control Membranes 37
3.8 FAC: Functional and Aspect Components Example 37
3.9 Alloy: Basic Syntax and Semantics o 0 oL 38
3.10 Synthesis of the Technologies Applied in the Dissertation 39
41 A GenericComponentModel o oL 47
4.2 Generic Component Model Formalizationin Alloy 48
43 Interface and Binding Concepts of the Metamodel 49
44 Domain Components Example 50
4.5 The RTSJ-specific Domain Components 51
4.6 ThreadDomain and Memory Area 52
4.7 Composition and Binding Rules for RTS] Domain Components 53
4.8 TheCross-ScopePattern o 54
49 The Multi-Scope Pattern L L 54
410 The Hand-off Pattern 54
411 Shared Scope. 54
4.12 Cross-scope Communication Patterns 55
413 SOLEIL ADL definedin Alloy, 56
414 Functional View 57

vii

List of Figures

viii

4.15
4.16
417
4.18
4.19
4.20
4.21

5.1
52
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
5.22
523
524
5.25
5.26

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Al
A2

Thread Management View 58
Memory Management View L 58
RealTime Component Architecture Design Flow 59
Runtime Platform Generation Flow 60
Sweet Factory: Real-time System Architecture 64
Sweet Factory Architecture: Formalizationin Alloy 64
MonitoringSystem Component Implementationin SOLEIL 65
Component Metamodel and Domain Component 69
Platform Level Concepts Specifiedin Alloy 70
Functional and Control Interfaces 70
Architectural Patterns L o 70
Architectural Patterns L L 73
Active Component Types L 74
ActiveInterceptor Implementation for Periodic Active Component 75
ActivelInterceptor Implementation for Sporadic Active Component 75
Container Architecture of Protected Component 75
ThreadDomain Refinement 75
Immortal Memory Container 76
Immortal Services APL 76
Cross-Thread Communication. 77
WaitFreeQueue and ObjectPool Formalization 77
Active Interceptors Implementations L L L L L 77
Memory Scope Component - Interceptors 78
Memory Scope Interceptor Implementation 78
MultiScope Interceptor Implementation 78
HandOff Pattern Implementation Schema 79
HandOff Interceptor Implementation 79
Shared Scope Component 80
Fractal Control Layer 80
Overview of the Internal HULOTTE Implementation Structure 81
Development Methodologies of Domain-specific Component Application 84
ProductionLine and Monitor Architecture Refinement 85
AuditLog and Console Architecture Refinement 86
Benchmark Results: Execution Time Distribution 94
RCD, Sequence Diagram 98
StateTable Original Implementation 100
StateTable, STARS Project Implementation 101
RCD Architecture o 102
RCD Refined Architecture L 103
IStateTablelInterface 103
MotionCreator Implementation 104
StateTable Implementation 104
SoleilInterceptor Implementation 105
DistributedNode Component Example. 107
DistributedNode and AmbientNode Formal Definitions 107
DistributedNode Refinement 109
AmbientNode Component Example 110
AmbientScenario L L L L 111
Ambient Communication Scenario L L oL 112
Generic Component Model Formalizationin Alloy 142
ThreadDomain and Memory Area 143

A3
A4
A5
A6
A7

C1
C2

Composition and Binding Rules for RTS] Domain Components 143

Cross-scope Communication Patterns 144
Platform Level Concepts Specifiedin Alloy 144
WaitFreeQueue and ObjectPool Formalization 145
SOLEIL ADL definedin Alloy 145
SweetFactory Architecture in FRACTAL-ADL, Part1 149
SweetFactory Architecture in FRACTAL-ADL, Part2 150

ix

List of Figures

List of Tables

3.1

6.1
6.2
6.3

B.1

Recapitulation and Comparison of Component Frameworks for RTSJ 34
Execution Time Medianand Jitter, 95
Memory Footprint o 95
Recapitulation and Comparison of Component Frameworks for RTSJ 114
OCL expressions for implementation constraints 148

Xi

List of Tables

Xii

Chapter

Introduction

Contents

1.1 Understanding the Problem
1.2 ResearchGoals i i i i i i it it e e et e e e e e e e ee e
1.3 Contributions i i i i i e e e e e e e e e e e

1.4 DissertationRoadmap i,

= W WwN

]. The traditional areas of systems with real-time and embedded requirements - e.g. em-

bedded or on-board software, experience exponential grow of software, doubling in size ev-

ery 18-36 months, depending on the industry [,]. However, new areas of software
with various real-time constraints emerge as we speak, developers have to face the challenges of
real-time programming in variety of systems - from financial software [] to computer enter-
tainment industry []. A very near future will bring increased demand for large-scale, dis-
tributed, and reusable real-time systems with pressure on time-to-market and cost, e.g. [1.

While we see this rapid growth of complexities at the level of real-time programming, the de-
velopments at the software engineering level are nowhere near as groundbreaking. There is still a
little interest in real-time from the mainstream software engineering community. Today, real-time
software developers find themselves working with tools (in the broadest sense of the word, in-
cluding analysis and design techniques, middleware, programming languages, etc.) which have
come of age in the era of the real-time embedded computing, not that of the software engineer-
ing for mainstream systems. To give a concrete example, in the world of programming languages
for real-time software, usually assembler, Ada, or C/C++ languages are used, which fall behind
twice to five times more in productivity and effectivity than the language of choice for most en-
terprise IT projects - Java [, ,]. Moreover, a steep learning curve of these
languages makes hard to find and retain experienced developers.

As a result, there is a huge gap between the novel real-time software waiting to be devel-
oped and the software tools available to do so. A testament to this is the launch of a plethora
of research initiatives over the past few years that target "software engineering for real-time pro-
gramming" in one way or another. One of the dominant efforts is the Real-time Specification for
Java (RTS)) [1, where the goal is to use the Java language as an enabling technology to
greatly reduce the efforts associated with developing and maintaining real-time software.

Today we can find the Java programming language in various types of real-time systems,
from industrial control [], audio processing [,], ship-board comput-
ing [], to avionics [], and financial sector []. Real-time Java is becoming
ubiquitous. The progress in real-time Java technologies (real-time garbage collection [,

,], ahead-of-time compilation [], or operating system support [, D
makes development of real-time applications in Java considerably easier.

IN the last decade we have witnessed an enormous boom in the field of real-time systems [,

1

Chapter 1. Introduction

However, despite the fact that RTS] does not define any new language constructs and key-
words the specification still introduces nontrivial concepts that in the end influence the program-
ming style. We therefore believe that an ultimate success in this field can be achieved only by
a framework that provides a unified approach to development of real-time Java-based systems
and that leverages RTS] concepts into higher levels of system design in order to mitigate the
complexities introduced by RTS].

The vision behind our research is therefore to ultimately close the gap between real-time
programming and today’s software technology. Needless to say, this dissertation represents
but a small step towards such an ambitious goal. In particular, we will focus on how to rec-
oncile traditional software abstractions to facilitate development of real-time Java applications.
More concretely, we employ advanced technologies of component-based software engineering
(CBSE) [] and we extend them with new concepts in order to provide sufficient abstractions
for RTS]J concerns. Ultimately, we propose a component framework supporting a full develop-
ment lifecycle of RTS]-based systems. Finally, we extensively explore the effects of our proposal
on development of real-time Java systems, with stress on separation of concerns [], exten-
sive employment of generative programming, while increasing productivity and effectivity of
programming with RTS].

In the remainder of this introductory chapter, we first highlight the problems to be tackled.
Furthermore, we extensively discuss our research goals and formulate the statement of the thesis.
We conclude the chapter with a preliminary overview of this dissertation’s contributions and a
roadmap to assist the reader in browsing the text.

1.1 Understanding the Problem

Despite the demonstrated utility of the Real-time Specification for Java, a number of open prob-
lems have limited its widespread acceptance. Briefly, from a software engineering perspective,
these problems are:

e RTS] Memory Model The memory model introduced by RTS] brings many complexities
to the development process. RTS] defines three memory areas - Immortal, Scoped Memory,
and Heap, each with its rules and restrictions. Therefore, for RTS] programs to be correct,
developers must deal with an added dimension: where a particular datum was allocated.

Although many patterns and idioms were introduced [, , ,], the
memory model makes RTS] programming highly error prone. The controversial nature of
the memory model further confirms the fierce discussions in the community [] where

real-time garbage collection (RTGC) is often considered as a silver bullet. However, RTGC
methods does not achieve performance needed for hard real-time systems. Therefore, we
believe that before the RTGC will be matured enough, an effort should be made to facilitate
RTS] memory management with the methods of software engineering.

e Programming Style and Development Process Similarly as for the memory model, the
RTS] programming style defines additional rules and restrictions. Usually, for the same task
different implementations must be provided depending of the real-time conditions under
which the task will be executed. The specific real-time requirements not only influence
application of particular code constructs but often propagate into the architecture. As a
consequence, reuse of such a code between systems with different real-time requirements
is almost imposable. However, with the growing complexity of real-time applications and
time-to-market pressure we envisage that the reuse and adaptation of real-time applications
will play a crucial role in the development process.

1.2. Research Goals

1.2 Research Goals

A complete process for designing of real-time and embedded applications based on RTS] com-
prises many complexities, specially timing and schedulability analysis, which have to be in-
cluded in a design procedure. The scope of our proposal is placed directly afterwards these
stages, when real-time characteristics of the system are specified but the development process of
such a system lies at its very beginning.

The goal of our work is to develop a component framework alleviating the RTS]J-related con-
cerns during development of RTSJ-based real-time and embedded systems. Our motivation is to
consider RTSJ-specific concerns as clearly identified software entities and clarify their manipula-
tion through all the steps of software life cycle. The challenge is therefore to mitigate complexi-
ties of the RTS] system development and offload the burden from users by providing appropriate
technologies for management of RTS] concerns.

Therefore, the goals of this dissertation are following:

e Solution through Software Engineering Methods — The proposal must be based only on stan-
dard RTS] features and not depend on language extensions or on any special characteristics
of particular VMs.

o High-Level Abstractions — We must introduce a higher level abstractions of RTSJ-concerns
in order to represent them as first-class entities. This will allow developers to manipulate
these concerns independently from the functional logic of the application. Consequently,
we want to achieve full separation of concerns, hide the complexities of RTSJ, and allow
programmers to develop RT applications as if using standard Java as much as possible.
Ultimately, the goal is to provide a programming model easy to understand that facilitates
the development of a majority of RT applications.

o Formalization and Verification — The proposed concerns must be formalized in order to sup-
port their validation. By this, developed applications will be validated to guarantee their
compliance with RTS].

e Component Framework A component framework unifying development of RTSJ-based ap-
plications should be proposed. Furthermore, generative programming methods should be
used to support automatic generation of RTSJ-related code. Finally, a verification process
based on the introduced formalisms should be developed in order to validate conformance
of developed applications to the formalized rules and restrictions.

e Evaluation — Finally, we want to evaluate the framework from both performance and soft-
ware engineer perspectives. The framework should introduce only a minimal overhead,
and a large case study should be conducted to demonstrate easy-of-use and software engi-
neering benefits.

Thesis statement. An effective development process of RTSJ-compliant systems must con-
sider RTS] concerns at early stages of the system design and must provide their high level ab-
stractions as the only way to avoid tedious and error-prone process when implementing them.

1.3 Contributions

It is always difficult to provide an overview of contributions in advance, with the problem state-
ment only vaguely introduced and without the technical foundations required to support them.
However, listing the contributions early on helps to sketch the context and subject domain of the
dissertation. In short, this dissertation makes conceptual and technical contributions in the in-
tersecting domains of real-time programming, component-based software engineering and real-
time Java programming. The main contributions are summarized as follows and have been pub-
lished as shown by the references:

Chapter 1. Introduction

e RTSJ-specific Component Model and Domain Components — We define a component model
to address the specifics of RTS]. The model introduces the concept of Domain Component
that allows developers to represent the RTS] concerns as first-class entities. We are thus
able to easily manipulate with them during all stages of application development. [,

e SOLEIL Framework — We construct a component framework built on top of our RTS] com-
ponent model and we propose a methodology of RTSJ-based application development that
fully separates functional and RTS]J-specific concerns. Furthermore, we formalize the com-
ponent model defined and create the SOLEIL profile - a set of rules and guidelines for de-
velopers using the SOLEIL framework. Finally, we introduce an approach to validate con-
formance of developed applications to the profile.]

e HULOTTE Framework — We propose the HULOTTE framework that provides an approach to
automatic instantiation of runtime platforms supporting execution of SOLEIL applications.
The framework achieves a full separation of concerns and further employs methods of gen-
erative programming in order to take the advantages of CBSE also at runtime. Finally,
different optimization heuristics are employed to reduce overhead of instantiated applica-
tions. []

e Evaluation — We evaluate our approach in several case studies, both from qualitative and
quantitative perspective. First, we measure performance overhead of our approach and
show that although introducing advanced CBSE technologies, we do not introduce any sig-
nificant overhead. Furthermore, the approach is evaluated on a large case study identifying
the potential of the approach to mitigate complexities of the RTSJ-oriented development
process. Finally, we demonstrate framework extendability by applying it in the field of
distributed and ambient computing. [, ,

1.4 Dissertation Roadmap

This dissertation is divided in four main parts. In the first part we conduct a state-of-the-art sur-
vey and precisely identify the goals of this dissertation. The second part presents our proposal.
Consequently, the proposed ideas are validated in the third part and finally, we conclude and
present perspectives in the fourth part. Below, we summarize each subsequent chapter in the
dissertation.

Part I: State of the Art

Chapter 2: Real-Time Specification for Java In this chapter we first introduce Real-time Spec-
ification for Java, its key features and advantages. Furthermore, we present a motivation sce-
nario of a RTS]-based application and using this example we identify the complexities develop-
ers must face when programming with RTS]. This motivation scenario will be revisited several
times through the course of this dissertation to demonstrate various ideas of our proposal.

Chapter 3: Component-Based Software Engineering In this chapter we introduce Component-
based Software Engineering and discuss how it can be applied to address the challenges of real-
time programming. Consequently, we discuss and compare general purpose and RTSJ-dedicated
component frameworks in order to identify their limitations. Furthermore, the FRACTAL compo-
nent model is described in detail and we argue for employing FRACTAL as the enabling technol-
ogy in this dissertation. Finally, we synthesize the facts stated in the state-of-the-art and show
how the selected technologies contribute to meeting the goals of the dissertation, which are re-
fined at the end of this chapter.

4

1.4. Dissertation Roadmap

Part II: Proposal

Chapter 4: SOLEIL: A Framework for Java-based Real-Time Embedded Systems In this chap-
ter we propose a RTS]-specific component model and we also introduce the concept of domain
components. Furthermore, we describe the SOLEIL framework providing methodology and val-
idation for RTS]-oriented development process. Finally, the ideas proposed in the chapter are
demonstrated on the motivation scenario.

Chapter 5: HULOTTE: A Framework for the Construction of Domain-Specific Component
Frameworks We propose the HULOTTE framework and show how it can be applied to leverage
instantiation of applications developed in SOLEIL. Furthermore, we elaborate on implementation
of the HULOTTE framework and show optimization heuristics used to reduce overhead of result-
ing applications. Furthermore, we discuss application of the HULOTTE framework in a more
general case as a tool for instantiation of domain-specific component frameworks. Finally, the
ideas proposed in the chapter are demonstrated on the motivation scenario.

Part III: Validation

Chapter 6: Case Studies This chapter applies the SOLEIL and HULOTTE frameworks in several
case studies spanning different domains and challenges. The case studies serve both as a prove
of concept and further evaluate our approach from various perspectives.

Part IV: Conclusion and Perspectives

Chapter 7: Conclusion and Perspectives In this chapter we summarize the contributions made
in the dissertation. At that point we are able to evaluate the contributions of the dissertation
with hindsight, naturally leading to a discussion on the limitations of this work and on possible
directions for future research.

Chapter 1. Introduction

Part1

State of the Art

Chapter

Real-time Programming in Java

Contents
2.1 Real-time Programming, 10
2.1.1 Real-time System Definition 10
2.1.2 Developing Real-Time Applications 11
213 Trendsand Challenges 12
214 Real-Time Programming Languages 12
2.2 Real-Time SpecificationforJava 13
221 ThreadTypes. 13
222 Memory Management 15
2.2.3 Sweet Factory - A Motivation Scenario 17
224 Advantages and Disadvantagesof RTS] 19
2.2.5 Real-time Java Virtual Machines 20
2.3 Beyond Real-Time Specification forJava. 21
24 SUMIMATY .+ o ¢ v v vt i et e ettt e et et e et e et e et 22

AVA is a mature and widely accepted programming language; while Java has traditionally
been relegated to non-safety-critical software, the acceptance of real-time and safety-critical
Java technologies is increasing steadily. The Real-Time Specification for Java (RTS]) []

troduces the Java language into the world of real-time systems. To achieve this, the RTS] was
shaped by several guiding principles. Foremost among these is the principle to hold predictable
execution as first priority in all tradeoffs. Another principle is that the RTS] introduces no new key-
words or other language constructs. Also, the RTS] provides backward compatibility, meaning
that existing Java programs run on RTS] implementations. Despite this motivation for preserv-
ing all the principles of regular Java, RTS] still introduces programming complexity that makes it
difficult to build non-trivial applications.

In this chapter we provide a fundamental information about real-time systems and the chal-
lenges related to their development. Furthermore, we introduce RTS]J features and discuss their
influence on the programming style. We however do not present the full list of RTS] specifics [
we rather focus on those features that directly influence the programming style, showing on
examples their benefits and flaws. The important motivation for this chapter is to expose the
disadvantages of RTS], and thus explaining the immense difference between theoretical ideas
proposed by RTS] and its real-life experience.

Very soon after the release of RTS], the programmers realized the issues that are coming as
a trade-off for a predictable Java-based program. Their concerns and remarks gave birth to the
first efforts for research in RTS]. Therefore, in the final part of this chapter we summarize almost
a decade of research in RTS], focusing on the various approaches to RTS] programming and

9

1

Chapter 2. Real-time Programming in Java

development. Our goal is to identify the current trends and evaluate their limitations in order to
identify potential space for new contributions.

Contributions

The contributions of this chapter are:

e Challenges in Real-time Programming. We introduce the basic goals and challenges of the
real-time programming domain.

e Real-Time Specification for Java (RTS]J). We introduce the basic principles of RTS]. We
discuss the features of RTS] from the software developer’s perspective and evaluate how
they influence the programming style of developing real-time systems based on Java. Also,
we discuss advantages and disadvantages of RTS] and we highlight the crucial issues that
must be faced when developing RTS]-based systems.

e Motivation Scenario. We describe a SweetFactory case study in order to demonstrate RTS]J
characteristics on a simple scenario. This case study will be revisited through the course of
this dissertation in order to demonstrate various ideas discussed.

e Beyond the Horizon of RTS]J. Finally, we discuss the current research efforts focused on
RTS], highlighting their advantages and limitations.

Structure of the Chapter

The rest of the chapter is organized as follows. In Section 2.1 we introduce basic challenges and
issues of real-time programming. Furthermore, we discuss the programming languages usu-
ally employed for development of real-time applications. We introduce Real-time Specification
for Java in Section 2.2. The section is giving an overview of the key RTS] principles. Also, we
highlight the advantages and disadvantages of RTS]. Furthermore, we continue the discussion in
Section 2.3 where we consider the related research projects with focus in RTS]. Finally, a summary
of this chapter is given in Section 2.4.

2.1 Real-time Programming

In this section we provide an overview of the real-time programming in general.

2.1.1 Real-time System Definition

Real-time system is a system in which its correctness depends not only on the logical result of the
computations it performs but also on time factors []. The real-time requirement can be easily
characterized by the sentence: The right answer delivered too late becomes the wrong answer. More
precisely, the real-time performance requires predictable and efficient end-to-end control over
system resources and imposes multiple quality of services (QoS) - predictability, throughput,
scalability, dependability, security, etc. Meeting the requirements of a real-time end-to-end per-
formance is generally considered as one of the hardest requirements in development of software
systems.

In typical real-time software systems, each critical software part represents different require-
ments and tradeoffs. We distinguish two types of these requirements: hard and soft real-time [
Hard real-time constraints are those for which an action performed at the wrong time will have
zero or possibly negative value. The connotation of hard real-time is that compliance with all tim-
ing constraints is proven using theoretical static analysis techniques prior to deployment. Soft
real-time constraints are those for which an action performed at the wrong time (either too early
or too late) has some positive value even though it would have had greater value if performed

10

2.1. Real-time Programming

at the proper time. The expectation is that soft real-time systems use empirical (statistical) mea-
surements and heuristic enforcement of resource budgets to improve the likelihood that software
complies with timing constraints. Note that the difference between hard real-time and soft real-
time doesn’t depend on the time ranges specified for deadlines or periodic tasks. A soft real-time
system might have a deadline of 100 microsecond, while a hard real-time system’s deadline may
be 3 seconds.

Based on these definitions, we consider software systems as systems that are composed of
parts that are either hard-, soft- or non-real-time.

2.1.2 Developing Real-Time Applications

Due to the real-time nature of developed applications, the development process [] adds
a number of aspects to the standard ones. Rather than developing systems with the stress on
throughput as it is in the standard process, the developers must focus on system’s predictability.
Furthermore, with meeting the functional requirements of the system, the equal emphasis must
be placed on meeting the real-time requirements. Already during the requirements analysis,
the developer must formulate, together with the functional requirements, the description of the
temporal behavior of the system - the real-time requirements.

Based on the real-time requirements established in the specification of the application, the
developer defines the workloads, which are the basis of the schedulability analysis. The analy-
sis allows designers to certify that, in the worst case, the activities scheduled in the application
meet their real-time requirements. Usually, the Rate Monotonic Analysis [] with the pri-
ority assignment process are employed. Based on the analysis, a real-time model is formed. The
real-time model is a timing abstraction that holds all the qualitative and quantitative information
needed to predict/evaluate the timing behavior of an application. It is used by designers to anno-
tate timing requirements in the specification phase, to reason about the prospective architecture
during design phases, and to guarantee its schedulability when the system is to be validated.

In modern systems, the schedulability analysis and the real-time model construction are per-
formed with a tool support, between such tools we can list e.g. TIMES [] and SYMP-
TA/S [], or MAST [1.

A Real-time Scenario

To better illustrate the requirements of a real-time system, we introduce a typical real-time and
embedded application scenario in Fig. 2.1. This example illustrates the basic concepts used to
design a real-time application.

{ external sporadic event ? periodic event
¢ ‘ (period = 20 Hz)
TASK 1 ' TASK 2
[priority=20] \®\ioqu'ri/®/ [priority=30]
N\ <:> 9 release
release Semaphore
. [initialSize=1]
Mailbox . ~
read (2 [timeout=4] write
pend
TASK 3 SHARED
[priority=10] DATA

Figure 2.1: A Real-Time Application Example.
This example is composed of three tasks. The tasks Taskl and Task2 read and write a

shared data which is protected by a binary semaphore. A task pending on the semaphore (via
the acquire service) can not be blocked more than 4 time units (which corresponds to a timeout

11

Chapter 2. Real-time Programming in Java

specified by the semaphore). Task?2 is activated periodically by a timer, while Task1 is activated
in response to an external interrupt event. At the end of its execution cycle, Taskl sends the
content of the read data to the Task3 using a mailbox.

2.1.3 Trends and Challenges

The future of distributed, real-time and embedded systems brings demand for large-scale, hetero-
geneous, dynamically highly adaptive systems with variously stringent QoS demands [1.
Moreover, the number of systems having some real-time requirements is rapidly increasing. As
already showed by the RTS] experience, there is a huge demand for systems composed of hard-,
soft-, and non-realtime parts in the proportion illustrated in Fig. 2.2 []. Such systems how-
ever require programming approaches that both allow development of a predictable code but
also must provide an effective development of a non-real-time code. Here, a unified approach to
development of such systems is crucial, since using different tools and approaches for program-
ming real-time and non-real-time parts of systems is usually not possible due to their incompati-
bility.
Therefore, we summarize the current challenges in developing real-time systems.

e Growing Complexity of RT Systems The real-time systems are becoming pervasive. The
real-time requirements are today present in almost any software, putting additional bur-
dens on developers.

e Market Pressure Growing need for real-time systems has increased economic competition
which has lead to the pressure on time-to-market delivery and cost reduction.

e Development Process Challenges Finally, new methodologies are needed to facilitate de-
sign, implementation and maintenance of real-time systems, while providing means to cap-
italize software development. The key features to achieve are:

— Increased Level of Abstraction. The technologies must foster high-level design and de-
velopment of systems in order to allow developers to easily manipulate even with
advanced concepts which are inherently present in real-time software. This ultimately
leads to software complexity reduction.

— Software Reuse. A support for technologies of a reliable adaptation and software reuse
is crucial since they boost software development and in the context of real-time mission-
critical systems ease certification.

— Verification and Maintenance. To provide a development approach allowing validation
of applications along their development lifecycle. Such technologies allow early error
detection and facilitate development by guiding the developers through the process
while respecting the restrictions and limitations of the particular technology.

2.1.4 Real-Time Programming Languages

Real-time systems have historically been developed in hard-coded manner, e.g. with dedicated
software written for specific types of hardware, using unstructured spaghetti designs and code.
Usually not very productive or error-free programming languages have been used - e.g. assem-
bler, or C/C++ where errors stem often from their memory management. Moreover, a steep
learning curve of the real-time programming languages made hard to find and retain experi-
enced developers, in case of the Ada language. This approach has yielded proprietary solutions
that were tedious, error-prone and costly to develop, validate, and evolve.

To face these obstacles, the Java programming language seems to be a promising choice -
mainly because of its simplicity, safety and for its cheap maintenance cost. The Java programming
language has replaced C++ as the predominant programming language, largely because Java

12

2.2. Real-Time Specification for Java

Hard-Real-time
Code

Soft-Real-time

Code

Non-Real-time
Code [

Figure 2.2: Proportions of the Source Code with Differently Stringent Real-Time Requirements

programmers are approximately twice as productive when developing new code and are five to
10 times as productive during maintenance of existing code [CDM 05, Nil04, Geo99].

However, conventional Java implementations are unsuitable for developing real-time embed-
ded systems, mostly due to the lack of predictability. The main features contributing to a poor
predictability of the Java language are: no scheduling control over threads, unpredictable syn-
chronization delays, run-anytime garbage collection, coarse timer support, no event processing,
and no safe asynchronous transfer of control.

The Real-time Specification for Java (RTS]) [BGBT00], addresses these limitations through
several areas of enhanced semantics. Moreover, it brings a higher-level view into the real-time
and embedded world, which is desperately needed when avoiding accidental complexities and
steep-learning curves.

2.2 Real-Time Specification for Java

In this section we describe the Real-Time Specification for Java [BGB00] (RTS]). However, the
extensive discussion of all the features of RTS] is beyond the scope of this dissertation, we will
therefore focus on features of RTS] that directly influence the programming styles of developers.
For an exhaustive description of RTS] we refer reader to [Dib08, BWO01, Wel04].

RTSJ [BGB00] is a comprehensive specification for development of predictable real-time
Java-based applications. Between many constructs which mainly pose special requirements on
underrunning JVM, two new programming concepts were introduced - real-time threads and
special types of memory areas. These new concepts will be described in Section 2.2.1 and Sec-
tion 2.2.2 respectively. Consequently, Section 2.2.3 introduces a motivation scenario to demon-
strate application of RTSJ and we discuss the complexities related to RTS] programming in Sec-
tion 2.2.4. Finally, we conclude with a list of the most popular RTS] implementations in Sec-
tion 2.2.5.

2.21 Thread Types

In order to avoid critical tasks to lost their deadlines because of the garbage collector (GC), RTS]
makes distinction between three main kinds of tasks: (i) Low-priority tasks are tolerant with GC,
(if) High-priority tasks cannot tolerate unbounded preemption latencies by the GC, and (iii) Critical
tasks cannot tolerate preemption latencies by the GC.

Low-priority tasks, or normal Java threads, are instances of the java.lang.Thread class
and allocates objects within the heap. To implement the high-priority and critical tasks, RTS]
introduces two new types of threads that have precise scheduling semantics - RealTimeThread
and NoHeapRealTimeThread (NHRT). We illustrate the new types of threads in Fig. 2.3. The

13

Chapter 2. Real-time Programming in Java

most important feature of these new threads is that they are scheduled preemptively so that the
highest priority thread is always running.

<interface>
java.lang.Runnable

A

java.lang.Thread

<interface>
Schedulable

o ZaN

1

RealtimeThread AsyncEventHandler

LIL

NoHeapRealtimeThread

Figure 2.3: New types of threads introduced by RTS].

Real-time Thread

High priority tasks are instances of the RealtimeThread class, which extends the Thread class
to support real-time tasks. Real-time threads can allocate objects within the heap, and within
immortal and scoped regions (described in Section 2.2.2). Furthermore, parameters provided to
the constructor of RealtimeThread allow the temporal and processor demands of the thread
to be communicated to the system.

NoHeapRealTimeThread

NoHeapRealTimeThread (NHRT) extends RealtimeThread with the restriction that it is not
allowed to allocate or even reference objects from the Java heap, and can thus safely execute in
preference to the garbage collector. Such threads are the key to supporting hard real-time execu-
tion because they have implicit execution eligibility logically higher than any garbage collector.
Since the NHRT can not access heap memory, it must operate in scoped or immortal memory.

Asynchrony

RTS] defines mechanisms to bind the execution of program logic to the occurrence of internal
and/or external events. In particular, RTS] provides a way to associate an asynchronous event
handler to some application-specific or external events. There are two types of asynchronous
event handlers defined in RTS]:

o The AsyncEventHandler class, with does not have a thread permanently bound to it —nor is it
guaranteed that there will be a separate thread for each AsyncEventHandler. RTS] simply re-
quires that, after an event is fired, the execution of all its associated AsyncEventHandlers
will be dispatched.

e The BoundAsyncEventHandler class, which has a real-time thread associated with it per-
manently. The associated real-time thread is used throughout its lifetime to handle event
firings.

14

2.2. Real-Time Specification for Java

Event handlers can also be specified as no-heap, which means that the thread used to handle
the event must be a NoHeapRealtimeThread.

RTSJ also introduces the concept of Asynchronous Transfer of Control (ATC), which allows a
thread to asynchronously transfer the control from a locus of execution to another.

WaitFree Queues

In order to support communication between real-time and regular Java threads, RTS] provides
WaitFreeQueues. These queues provide a solution for sharing data between different NHRTs
and also between NHRTs and heap-based threads. This strengthens the semantics of Java syn-
chronization for use in real-time systems by mandating priority inversion [] control. The
wait-free queue classes provide protected, concurrent access to data shared between instances of
java.lang.Threadand NoHeapRealtimeThread. Two queues are provided: WaitFreeRead-
Queue and WaitFreeWriteQueue.

WaitFreeReadQueue is a queue that can be non-blocking for consumers and is intended
for single-reader multiple-writer communication, although it may also be used (with care) for
multiple readers. A reader is generally an instance of NoHeapRealtime- Thread, and the
writers are generally regular Java threads or heap-using real-time threads or schedulable objects.
Communication is through a bounded buffer of objects that is managed first-in-first-out.

The WaitFreeWriteQueue class is intended for single-writer multiple-reader communica-
tion, although it may also be used (with care) for multiple writers. A writer is generally an in-
stance of NoHeapRealtimeThread, and the readers are generally regular Java threads or heap-
using real-time threads or schedulable objects. Communication is through a bounded buffer of
objects that is managed first-in-first-out. The principal methods for this class are write and read.

2.2.2 Memory Management

RTS] further distinguishes three memory regions: ScopedMemory, ImmortalMemory, and Heap-
Memory, where the first two are outside the scope of action of the garbage collector to ensure pre-
dictable memory access. Memory management is therefore bounded by a set of rules that govern
access among scopes. RTS] introduces these new types of memory areas, since the standard heap
memory is heavily influenced by the unpredictable garbage collector. The need for scoped mem-
ory areas was argued in []. Readers interested in a discussion are encouraged to consults
the paper []. We also discuss the characteristics and limitations of the real-time garbage
collection at the end of this section.

ImmortalMemory is a single memory area that is shared among all threads. Objects allo-
cated in the immortal memory live until the end of the application. In fact, unlike standard Java
heap objects, immortal objects continue to exist even after there are no other references to them.
Importantly, objects in immortal memory are never subject to garbage collection.

ScopedMemory is an abstract base class for memory areas having limited lifetimes. A scoped
memory area is valid as long as there are real-time threads with access to it. A reference is created
for each accessing thread when either a real-time thread is created with a ScopedMemory object
as its memory area, or when a real-time thread runs the enter () method for the memory area.
When the last reference to the object is removed, by exiting the thread or exiting the enter ()
method, finalizers are run for all objects in the memory area, and the area is emptied. Objects in
scoped memory are never subject to garbage collection.

The RTS] allows references across scopes. But as Java is a safe language it forbids the existence
of dangling references. Therefore, every reference must always be a valid reference to a live object
or null. To maintain safety, two rules are enforced:

e Because scoped memory areas can be shared, a reference counting technique is used to

ensure that the objects in them are only reclaimed after all threads have finished using the
memory area.

15

Chapter 2. Real-time Programming in Java

e Because a scoped memory area could be reclaimed at any time, it is not permitted for a
memory area with a longer lifetime to hold a reference to an object allocated in a memory
area with a shorter lifetime. This means that heap memory and immortal memory cannot
hold references to objects allocated in scoped memory. Nor can one scoped memory area
hold a reference to an object allocated in a lower (more deeply nested) memory area.

Conservatively speaking, these rules require that every memory access be checked to ensure
that it does not violate the rules. Combined with the heap-access restrictions of no heap threads,
this imposes some overhead at run-time.

Scoped memory areas may be nested, producing a scoping structure called a scope stack. Since
multiple memory areas can be entered from an existing memory area, this scope stack can form
a tree-like structure. One key relationship is as follows: if scope B is entered from scope A, then A
is considered the parent of B and B, the child of A.

RTS] introduces strict assignment rules, which can be expressed as follows:

e “An object shall not reference any object whose lifetime could be shorter than its own”, formulated

by [HT05]
e Another important limitation is the single parent rule: "A memory region can have only one
parent, thereby preventing cycles in the scope stack”, formulated by []

The implication is that a single scope cannot have two or more threads from different parent
scopes enter it. An important consequence of this restriction on scoping structure is that a real-
time thread executing in a given region cannot access memory residing in a sibling region and
vice versa.

We give an example of a RTS] memory structure in Fig. 2.4 (inspired by [). It rep-
resents a valid scope structure composed of two memory scopes, immortal memory and heap
memory. Notice the distinction between the instance of the ScopedMemory classes (Java objects)
and the memory they denote. We show the ScopedMemory instance allocated within a parent
scope holding a pointer to the start of the backing store used to allocate objects within that scope.
The location of scoped memory instances is not directly related to their position in the scope
hierarchy.

Immortal Memory Heap Memory

O Legend

ScopedMemory Instance

Scope Parenting Relation

Legal Memory Reference

L/

<) [&]

Scope A Scope B

Scoped Memory Reference

Physical Memory

Memory Object

OLI,O

Figure 2.4: Memory Areas Defined by RTS] : Two scoped memory areas parented in immortal
memory. Heavy arrows represent allowed reference patterns. While any scope is allowed to
refer into the heap, a NoHeapRealtimeThread is not allowed to read those references. These
constraints are implemented by read /write barriers at runtime.

As we can see, the constraints and rules imposed by the memory management of RTS] intro-
duced many complexities into the development process. To resolve this, design patterns for

16

2.2. Real-Time Specification for Java

programming with scoped memory have been investigated by several projects [, ,

,] . Rather than designing patterns, we must however comprehend these as
implementation patterns providing guidelines how to implement different types of cross-scope
communication.

Real-time Garbage Collection

A newly emerging direction in real-time Java programming is based on novel ways of mem-
ory management [, ,]. Specially Real-Time Garbage Collection (RTGC) [,

,] represents a promising approach. The main principle of RTGC is to perform
garbage collection in pauses when the system is not working, this is usually enhanced by schedul-
ing garbage collection predictably. However, RTGC still introduces some overhead, and although
this overhead is bounded, this method is still far from being used in hard-real-time programming.
Here, some applications have latency /throughput real-time requirements that cannot be met by
current real-time garbage collection (GC) technology. Nevertheless, the RTGC is becoming a
very successful technology in real-time systems, for example in the business sector [Jorin
large-scale, heterogeneous, dynamically highly adaptive systems [I

2.2.3 Sweet Factory - A Motivation Scenario

To better illustrate main specifics of RTS], we introduce an example scenario that will be revis-
ited several times through the course of this dissertation. The goal of this motivation scenario,
called Sweet Factory, is to implement an automation system controlling an output statistics from
a production line in a sweet factory and report all anomalies. The example represents a classical
scenario, inspired by [], where both real-time and non-real-time concerns coexist in the
same system.

Sweet Co.

Figure 2.5: Sweet Factory Illustration

The system consists of a production line that periodically generates measurements, and of a
monitoring system that evaluates them. Whenever abnormal values of measurements appear, a
worker console is notified. The last part of the system is an auditing log where all the measure-
ments are stored for auditing purposes. We illustrate the functionality of the system in Fig. 2.5.
Since the production line operates in 10ms intervals and no deadline can be missed, the system
must be designed to face under hard real-time conditions.

In Fig. 2.6 we show a class diagram of the application. Considering application of RTS], we
witness several interesting issues. Although this simplified version of the Sweet Factory contains
only four classes, it already contains many of the key features of RTS]. The MonitoringSystem
is the central class of the application, collecting the measurements produced by the Production-Line
and processing them. Since ProductionLine is producing measurements in 10ms intervals
and the MonitorSystem must proceed these measurements without dropping any of them,

17

Chapter 2. Real-time Programming in Java

MonitoringSystem

I
- NonHeapRealTime Thread | _ ___ _ _ £ — e
- Immortal Memory +startMonitoring() | _<<use>> 1
+stopMonitoring) | T~~~ Console o

\

\ - i
. <<Use>>
\ b4

' +displayMessage()
<<use>>

-
-

» v
ProductionLine AuditLog
______ * - Regular Java Thread
- M
+getMeasurement() +logMeasurement() Heap Memory

Figure 2.6: Sweet Factory Class Diagram

both classes must be therefore executed under strict hard real-time conditions. This leads to ap-
plication of the NonHeapRealTimeThread. The task of the ProductionLine is to produce
the measurements, therefore we will assign it the highest priority in the application. As the
MonitoringSystem is in this sense dependant on the ProductionLine, it runs with the sec-
ond highest priority.

1 public class MonitoringSystemImpl

2 implements MonitoringSystem , Runnable {

3

4 IProducer iProducer; 33 public void startMonitoring () {

5 AuditLog log; 39 Bootstrapper . runlnArea (

6 Console console; 40 ImmortalMemory . instance (), this);
7 41 }

8 private final ScopedMemory scope; 2

9 43 public static void runlnArea(

10 private final ReportRunnable reportRunnable 44 MemoryArea area, Runnable r){
11 = new ReportRunnable(console); 45 RealtimeThread t = new RealtimeThread (new
12 46 PriorityParameters (

13 public void initialization () { 47 PriorityScheduler .MIN_PRIORITY)
14 runlnArea (ImmortalMemory . instance () , 48 null, null, area, null, r);
15 new Runnable () { 49 t.start ();

16 public void run() { 50 try |

17 try { 51 t.join ();

18 console = new Console (); 52 } catch (InterruptedException e) {

19 } 53 throw new RuntimeException (...);

20 catch (IOException e) { 54}

21 throw new RuntimeException (...); 55

22 } 56 public run() {

23 1) 57 while (true) {

24 } 58 Measurement m =

25 | 59 iProducer.getMeasurement ();

26 60 if (m.isWrong()) {

27 class ReportRunnable implements Runnable { 61 reportRunnable.setM{m};

28 Measurement measurement; 62 scope.enter (reportRunnable);

29 Servicelnterface iService; 63 }

30 void setM(Measurement m) { 64 log.write (m);

31 measurement = m.deepCopy (); 65 waitForNextPeriod ();

32 }

33

34 void run() {

35 console.reportError (measurement);

Figure 2.7: MonitoringSystem Implementation

When looking at the remaining two classes - Console and AuditLog, they implement func-
tionality which does not have any special real-time constraints. Therefore, Console class will be
operating in a scoped memory, whereas the AuditLog logic is delegated to a regular Java thread
benefiting from the garbage collected heap.

Continuing with the discussion, the communication between different classes of the system
must be designed. According to RTS]J rules, ProductionLine and MonitoringSystem com-

18

2.2. Real-Time Specification for Java

municate asynchronously since they have different priorities. The same applies for communica-
tion between MonitoringSystem and AuditLog. For both, wait-free queues need to be used,
as specified in RTS].

For illustration, in Fig 2.7 we show implementation of the MonitoringSystem class in RTS].
Although the task of this class is simply to receive a measurement from the ProductionLine,
compare it, report measurement in case of an error, and finally log the measurement, the actual
implementation in RTS] is quite complex. During the initialization, each object must be allocated
in a dedicated memory area, this is illustrated by the initialization method, line 13, that allocates
Console in immortal memory. Furthermore, when starting the computations, a switch to ap-
propriate memory area must be performed, line 38. Finally, the computation starts, line 56, but
the developers have to be still aware in which memory area is the code running and perform an
explicit switch when necessary, as line 62 shows. The resulting code is thus mixed with the RTS]
incidental specifics and the functional logic can be hardly recognized.

2.24 Advantages and Disadvantages of RTS]J

The biggest advantage of RTS] is its ability to support hard-, soft- and non-realtime tasks in the
application at the same time and allowing them to interact between each other. Using RTS] for
hard real-time tasks means that developers can lean over the well known semantics of the Java
world while respecting RTS] defined restrictions. At the same time, the full scale of Java benefits
(e.g. garbage collection, Java libraries) can be used when developing those tasks that do not bring
any real-time constraints.

However, there is no silver bullet when introducing Java into the real-time world. Despite
the effort to preserve semantics form the regular Java, RTS] introduces a new programming style.
This is caused mainly by the new memory model that on one hand achieves predictability, while
on the other hand introduces a non-intuitive programming techniques. As extensively discussed
in the literature, e.g. in [, , p], the Scoped and Immortal memories
introduce a new level of complexities for developers.

To better illustrate the complexities of RTSJ, we discuss them in the context of the motiva-
tion scenario introduced in the previous section. For illustration, in Fig. 2.6 we have highlighted
by annotations the classes with the corresponding RTSJ concepts that help to implement their
functionality. As we can see, real-time and non-realtime concerns are mixed together - whereas
MonitoringSystem and ProductionLine are executed under hard real-time conditions, the
AuditLog is a regular Java class. Therefore, in such system, identification of those parts that
run under different real-time constrains is difficult. Hence the design of communication between
them is clumsy and error-prone. RTS] introduces rules and restrictions, e.g. on application of
wait-free queues, that must be respected. However, reasoning about the implementation is ham-
pered by the complexity of functional and RTS] concepts. As a consequence, the developer has
to face these issues at the implementation level which brings many accidental complexities.

Indeed, solving these issues during the implementation is an error-prone process. Following
RTS] rules is hard due to their non-intuitive nature. This is because for a RTS] program to be cor-
rect, developers must deal with an added dimension: where a particular datum was allocated.
Design patterns and idioms for programming effectively with scoped memory have been pro-
posed [, , ,], but anecdotal evidence suggests that programmers have
a hard time dealing with NoHeapRealtimeThread and that resulting programs are brittle.

Furthermore, respecting the RTS] rules often leads to modification of architectural concepts
- e.g. changing a communication style from a synchronous to asynchronous. Enforced by the
rules of the RTS] thread model, these modification potentially have a deep impact on the logic
of the whole system. Finally, developing RTS]J in this ad-hoc manner fully prevents any reuse
in different real-time conditions, since the RTS]-specific concerns are tangled with the functional
implementation and they even propagate into the system architecture. Consequently, compo-
nents may work just fine when tested independently, but break when put in a particular scoped
memory context.

19

Chapter 2. Real-time Programming in Java

Based on these shortcomings, many approaches to their mitigation have been proposed, we
discuss them in Section 2.3.

2.2.5 Real-time Java Virtual Machines

In order to use RTS]J, a specially designed and implemented Real-time Virtual Machine (RT
VM) is needed. The design and implementation of RTSJ virtual machines have been docu-
mented in several projects focused on different domains: e.g. RT VM development [,

, ,], ahead-of-time compilation [], or memory management imple-
mentation [, , ,]. Furthermore, RT OS enforcing predictability is the
key requirement, experiences on developing such OS have been also reported e.g. in [,

Nowadays, many commercial RT VM are available, we provide the list of the most popular
of them, (sorted by first release date)':

e TimeSys RTS] Reference Implementation Only licensed for non-commercial use. Runs on
X86/Linux. Available at www.timesys.com.

e Java RTS Sun Java SE Real-time (Java RTS). Runs on Sparc/Solaris (Beta for SUSE Linux
Enterprise Realtime 10, and Red Hat Enterprise MRG 1.0.). Available at http://java.
sun.com/javase/technologies/realtime/rts/.

e IBM WebSphere Real Time. IBM WebSphere Real Time V2 for Real Time Linux, running
on main-line real-time Linux distributions (Red Hat MRG and Novell SLERT). However,
there are limitations on the hardware supported. The main reason for the hardware limita-
tion is that the supported models have modified firmware to allow better control over SMI
event prioritization, in order to achieve determinism of the underlying hardware. Available
at www.ibm.com/software/webservers/realtime/.

Furthermore, other real-time, Java-like platforms have been developed, either as commercial or
academic projects. Usually, these VMs are not fully compliant with RTS].

e OVM is an academia research project at Purdue University that implements RT VM. Avail-
ableat http://www.ovmij.org

e JamaicaVM implements RTS] and a deterministic garbage collector. Runs on various plat-
forms. Available at http://www.aicas.com/Jjamaica.html.

¢ jRate (Java Real-Time Extension) is an extension of the GNU GCJ compiler front-end and
runtime system which adds support for most of the features required by the Real-Time
Specification for Java []. Available at http://jrate.sourceforge.net/.

e Aonix PERC is a commercial project targeting many hard real-time, safety critical and em-
bedded systems. The PERC platform is introducing many trade-offs and therefore is not
fully compliant with RTS], however, allows developers to target a broader scope of applica-
tions rather than having strict limitations as it is the case of RTS]. Available at www.aonix.
com/perc.

e aJ100 is a hardware coded JVM. Available at www.ajile.com.

¢ JRockit Real-Time JRockit Enterprise Java Runtime provided by ORACLE is a Java VM
featuring real-time garbage collection suitable for soft real-time systems. Available at www .
oracle.com/jrockit.

e IBM/Apogee Aphelion. Aphelion is comprised of reliable and high performance JREs for
deploying Java applications on devices based on embedded systems. Supports many OS
platforms, further details at http: //www.apogee . com/

IThe provided list of VMs corresponds to the status in June 2009.

20

www.timesys.com
http://java.sun.com/javase/technologies/realtime/rts/
http://java.sun.com/javase/technologies/realtime/rts/
www.ibm.com/software/webservers/realtime/
http://www.ovmj.org
http://www.aicas.com/jamaica.html
http://jrate.sourceforge.net/
www.aonix.com/perc
www.aonix.com/perc
www.ajile.com
www.oracle.com/jrockit
www.oracle.com/jrockit
http://www.apogee.com/

2.3. Beyond Real-Time Specification for Java

During the course of this dissertation, we have been using Java RTS VM provided by SUN,
running on Linux 2.6.24 kernel with RT-Preempt patch []. Furthermore, for debugging and
testing purposes we have been using also the JamaicaVM running on a standard Windows XP
platform. Although this configuration does not provide a sufficient level of predictability, it was
suitable for simple tests and prototyping.

2.3 Beyond Real-Time Specification for Java

The Real-time Java programming language has become a viable platform for real-time systems.
From the earlier experiments with RTS] [,], to its first success - the ScanEagle
Project [] where Real-Time Java performed better than C++ [1, RTS] has gradually
earned its credit. Today we can find RTS] in various types of real-time systems, from indus-
trial control [], shipboard computing [], audio processing [,], to
avionics [], and financial sector [,]. High performance real-time Java virtual
machines are now available from multiple vendors. RTS] has found its place in the world of
real-time programming.

This recent significant increase of interest in real-time Java is reflected by an intensive research
in the area. We notice movement from research of RTS] compliant implementation patterns and
idioms [, ,] to more general approaches to RTS]. However, despite before men-
tioned achievements of RTS], the issues of RTS] discussed in Section 2.2.4 are yet to be addressed
fully.

Nowadays, a significant effort is dedicated to introduction of component-based software en-
gineering (CBSE) into the world of real-time Java []. However, we leave the discussion of
component frameworks for RTS] to Chapter 3 where an exhaustive study of CBSE is conducted.
In this section we discuss other relevant projects with focus in RTS].

Extensions to RTS]J

First, many extensions and modifications of the RTS] memory model [,]
were proposed, these proposals however stay on the theoretical basis since they can not be eval-
uated on standard RTS] implementations where they are not supported. In this dissertation we
therefore do not consider them in order to stay in compliance with original RTS].

Enhancing the RTS] Programming Model

On the other hand, new approaches were proposed to increase safety and enhance manipulation
with the RTS]J code. Nilsen [] proposes a type system that enables programmers to develop
code for which the byte code verifier is able to prove the absence of scoped memory protocol
errors, thereby eliminating the need for run-time assignment checks. Benefits of the type sys-
tem include improved software reliability, easier maintenance and integration of independently
developed real-time software modules, and higher performance.

Similarly, the work introduced in [] investigates fitness criteria of RTS] in model-driven
engineering process that includes automated code generation. The authors identify a basic set of
requirements on code generation process. We further confront our approach with these require-
ments in Chapter 6.

New Programming Models for RTS]

Apart from the efforts towards enhancement of RTSJ code implementation, new programming
models for RTS] have been proposed.

The STARS project [] presents a new programming model for RTS] based on aspect-
oriented approach. Here, the real-time concerns are completely separated from applications base

21

Chapter 2. Real-time Programming in Java

code. Although, as shown in [], aspect- and component-oriented approaches are com-
plementary, the component-oriented approach offers higher-level perspective for system devel-
opment and brings a more transparent way of managing non-functional properties with only
slightly bigger overhead. Since the work has conducted a case study on the same application as
in this project, we state further comparisons in Section 6.2.

Flexible Tasks Graphs [] define a new restricted thread programming model for Java.
As the biggest advantage of the model we see the static safety of memory operations. Runtime
checks of these operations therefore does not have to be performed which brings a very good
performance.

24 Summary

The goal of this chapter was to present the Real-time Specification for Java. First, we have pre-
sented RTS] and its basic concepts. Our motivation was to consider RTS] from a point of view
of an application developer and we have discussed the principles of RTS]J that substantially in-
fluence the programming style used. Therefore, we have summarized the key advantages and
disadvantages of RTS] (Section 2.2.4) and illustrated their impact on RTSJ application in a mo-
tivation scenario (presented in Section 2.2.3). Second, we have considered the afore mentioned
issues from a research perspective, discussing the current trend and technologies in the domain
of real-time Java programming (Section 2.3).

22

Chapter

Component-Based Software
Engineering

Contents
3.1 Component-based Software Engineering 24
3.1.1 Component Frameworks 25
3.1.2 Advanced TechnologiesinCBSE 25
3.2 State-of-the-Art of Component Frameworks 27
321 General Purpose Component Frameworks 27
3.2.2 Domain-Specific Component Frameworks 28
3.2.3 Component Frameworks for RTS] 31
3.2.4 Distributed and Embedded Computing in Real-time Java Systems . 35
3.3 FRACTAL ComponentModel 35
3.3.1 FAC:FRACTAL AspectModel 37
3.3.2 Formalization of the FRACTAL Component Model 38
3.4 State-of-the-ArtSynthesis 39
35 GoalsRevisited 40
36 SUmMmMAary o ittt e e e e e e 41

fundamental principles employed in this dissertation. We introduce Component-based
Software Engineering [] - the key technology that we employ when facing the
challenges of real-time programming. Consequently, we discuss the state-of-the-art component
frameworks focused on RTS], provide their comparison and identify the limitations. Further-
more, we chose the FRACTAL Component model [] as the technological platform for our
research. We elaborate more on the features of the model and we discuss the benefits that con-
vinced us to use this platform.
At the end of this chapter we provide a synthesis of technologies presented in this and in the
previous chapter and discuss how they complement to each other. Based on this discussion we
restate and define more precisely the goals of this dissertation.

THE goal of this chapter is to provide a sufficient background about the technologies and

Contributions
The contributions of this chapter are:

e Component-based Software Engineering. We introduce Component-based Programming
and present its key technologies contributing to effective development and deployment of

23

Chapter 3. Component-Based Software Engineering

software systems. Also, we provide a brief overview of selected component models and
extract their key advantages.

e Component Frameworks for RTS]J. We discuss the cutting edge technologies based on RTS]
and evaluate their limitations. The motivation is to consult the current research trends
in RTS] and evaluate how they address the issues that we have identified as the crucial
disadvantages of RTS]. Notably, we refer on the benefits that are achieved by using CBSE
in the real-time Java domain.

e FRACTAL Component Model. Finally, we chose the FRACTAL Component Model as the
key technological platform in this dissertation and we argue for this decision by presenting
the key advantages of the FRACTAL component model.

o State-of-the-Art Summary. We synthesize the state-of-the-art and highlight the key chal-
lenges to be addressed in this dissertation. Particularly we consider presented technologies
— Real-Time Systems, CBSE, and RTS]J, and show how they can be combined.

e Goals Refinement. Based on the state-of-the-art presented in this sections we refine more
precisely the goals of the dissertation.

Structure of the Chapter

The rest of the chapter is organized as follows. We present Component-based Software Engi-
neering in Section 3.1. Our motivation is to introduce the basic terminology and the key tech-
nologies used when developing component-based applications. Furthermore, in Section 3.2 we
show application of CBSE in practice, conducting a survey of component frameworks from gen-
eral purpose ones to RTS] dedicated ones. In Section 3.3 we focus on the FRACTAL Component
Model and present it in more details, discussing its key features and finally showing some FRAC-
TAL research directions that are related to the goals of this dissertation. Finally, in Section 3.4 we
summarize the presented technologies, based on this, we refine more precisely the goals of this
dissertation in Section 3.5. Finally, a summary of this chapter is given in Section 3.6.

3.1 Component-based Software Engineering

Component-based Software Engineering (CBSE) [] has emerged as a technology for the
rapid assembly of flexible software systems. The success of this technology has been proved by

variety of its applications, from general component frameworks [, ,] to

domain specific component frameworks (DSCF) addressing a wide scale of challenges — embed-

ded [] or real-time constraints [,], dynamic adaptability [,
], distribution support [], and many others.

CBSE is a branch of software engineering that studies the design and construction of soft-
ware systems as explicit compositions of software units (components). Various definitions of
a software component have been proposed in the literature, among the most accepted one, we
quote [I: A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently and is subject to
composition by third parties.

As the main benefits of CBSE we consider:

e Separation of Concerns. CBSE easily achieves full separation of concerns in applications,
since the functionality of the system is implemented in fine-grained component architec-
tures reflecting the functional logic of the system. Furthermore, specific types of compo-
nents can be used to implement non-functional services, achieving separation of functional
and non-functional concerns.

24

3.1. Component-based Software Engineering

e Software Reuse. CBSE fosters software reuse [] since a software component is consid-
ered as an independent entity with exactly specified interfaces and as such can be subject
of reuse.

e Development Process. The development process of component-based systems []is
based on the principles of reuse and separation of concerns that increase product reliability
and stability with shorter development time and reduced cost.

e Static and Runtime Adaptation. CBSE allows component-based systems to achieve a suf-
ficient level of granularity in order to permit modification or update of specific subparts of
the system both statically and dynamically at runtime (using e.g. reflection [D).

3.1.1 Component Frameworks

A component framework is composed of a component model and the tool support which permit
assembling, deploying and executing component-based applications. Component frameworks
simplify development of software systems. A proper component model represents cornerstone
for each component framework, its extensiveness substantially influences the capabilities of a
component model.

Development Roles The component-based development process [] introduces a methodol-
ogy for development of software components and of systems based on software components. We
distinguish two types of development roles involved in this process — application developer and
framework developer. Application developer is responsible for development of functional com-
ponents. The role of the framework developer is to develop the tool support and the runtime
platform that will guarantee instantiation, deployment, and execution of the component applica-
tion.

3.1.2 Advanced Technologies in CBSE

Since the basic principles of CBSE were presented, we can introduce a selection of more advanced
concepts and recent research trends related to this disseratation.

Domain-Specific Services

Component applications often have to meet additional domain-specific services - in the litera-
ture [, , ,] referred to also as non-functional requirements/aspects/ser-
vices/properties/concerns. By these services we mean all the services required for a proper func-
tioning of the component, for example logging, security, transaction support, persistence, or dis-
tributed communication support.

These domain-specific services are orthogonal to the functional logic of the component. There-
fore their implementation tangled with the functional implementation is not desired for several
reasons. Mainly, crosscutting of these services with the implementation hampers reuse of the
component across domains where different domain-specific services can be required.

Therefore, Moreno [] argued that domain-specific services should be placed in a custom
made containers and showed how generative programming technique, in this case using Aspect-
Oriented Programming (AOP), can be employed to generate tailorable containers by composing
different domain-specific features. We further refer to the technology of component containers.

Component Containers

Component-oriented container paradigm [Mic] defines that each component is wrapped by a
controlling environment called container (also called membrane in []). Its task is to relieve
the developer from dealing with various domain-specific services required by the component.

25

Chapter 3. Component-Based Software Engineering

This approach is crucial for achieving the separation of concerns be implementing the func-
tional part in the component while deploying the domain-specific services into the dedicated
container where they are hidden from end users. As a consequence, the functional implemen-
tation is not tangled with domain-specific concerns and thus can be easily reused in a different
domain using an according container.

The container of a component is implemented as an assembly of so-called control components.
Additionally, special control components called interceptors can be deployed on component in-
terfaces to arbitrate communication between the component and its environment, they are also
integrated in the container.

Component Connectors

Apart from components, there is an emerging trend to view also the interaction among compo-
nents as a first-class concept — modeled by an entity called connector | ,]. A connector
is often used in design stage, where it represents an interaction of a set of components (i.e., it
realizes a binding).

During the past few years, connectors found their position even at runtime, actually realizing
inter-component communication []. A connector at runtime is an inherently distributed
entity that is typically responsible also for addressing distribution (by using a middleware) and
for solving minor incompatibilities among components by employing adaptation.

Runtime Platform Construction

The execution machinery deployed at runtime to support execution of an instance of the com-
ponent model is called runtime platform (in the literature also referred as execution infrastructure).
Under this term we therefore refer to all the glue-code introduced by the framework itself to sup-
port instantiation of a component system and to support the system during the runtime. This
therefore includes the instantiation and deployment code, implementations of component con-
tainers and connectors, and other related code. In the broader sense of this definition, we can also
considers middleware as a part of the runtime platform. Such platform thus, apart from instantia-
tion and runtime support, provides other non-functional services - multiple distribution models,
concurrency support, various communication protocols, and many others.

Current trend in developing and implementing the runtime platform emphasizes a genera-
tive programming approach [,]. While this task can be seen only as an engineering
challenge, the runtime platform plays a crucial role in deciding whether the component model
itself will be successful in real-life applications, since characteristics of its implementation have
a direct impact on the performance of a given application. Here, different optimizations, as dis-
cussed in [], should be employed to mitigate notoriously known problem of CBSE systems
— performance overhead (caused e.g. by inter-component communication).

Generative Programming in CBSE

As said, the recent trend in development of component frameworks is the application of genera-
tive methods [,] to achieve a generic approach to their instantiation. Moreover, hav-
ing component containers or connectors also at runtime is feasible only when these entities can be
automatically generated. Otherwise, a developer would be forced to implement each concept in
an application separately, which is in overwhelming majority of cases impossible. The impracti-
cableness of the manual approach is yet further magnified by the fact, that some of the properties
(e.g. for connector configuration) are known only as late as at deployment. Therefore, generative
programming technologies are recently proposed to instantiate the runtime platform support-
ing execution of the application, we can witness several interesting approaches. First, a general
approach to generation of component connectors based on high-level specification [] A
generative approach to automate the instantiation process of a runtime platform for on-board

26

3.2. State-of-the-Art of Component Frameworks

systems is proposed in []. Recently, Bures et al. [] propose a meta-component sys-
tem, which provides a software product line for creating custom component systems. The authors
summarize properties and requirements of current component-based frameworks and propose
a generative method for generating runtime platforms and support tools (e.g. deployment tool,
editors, monitoring tools) according to specified features reflecting demands of a target platform
and a selected component model.

Furthermore, the generative programming approach can be also used when instantiating the
runtime platforms and middleware, addressed e.g. in []. Usually, such approach is used
to instantiate a middleware layer that directly fits the requirements of a particular application.
The benefits of such approach are a complete performance gain and reduced footprint.

Verification of Software Components

The verification of system correctness becomes crucial when developing a distributed embedded
application for mission-critical systems. Here, the ability to support the exhaustive verification
of applications is a considerable attribute.

However, as we have shown in [], the component-oriented approach is beneficial for
formal verification of systems. Usually, complex systems can not be exhaustively verified by the
methods of model checking [] since they generate an immense state space which can not be
fully traversed. However, software components represent a considerably smaller state space. It
is therefore natural to tackle the problem of software component verification.

3.2 State-of-the-Art of Component Frameworks

In this section we discuss the state-of-the-art of component frameworks. First, we focus on gen-
eral purpose frameworks in order to identify how the advanced technologies of CBSE are sup-
ported in practice. Furthermore, we consult component frameworks for distributed, real-time
and embedded systems, arguing on examples for the benefits of employing the CBSE technol-
ogy in this domain. Finally, we discuss and compare component frameworks dedicated to RTS],
evaluating their concepts and revealing their limitations.

3.2.1 General Purpose Component Frameworks

With the boom of component-based technology, a plethora of component models is emerging as
we speak. Each component model has its specifics and particularities that reflect its focus and
the application domain it is intended for. Interested reader can find inspiring discussions and
comparisons of component models in numerous surveys, e.g. in [, ,]. We
however focus more in detail on selected component models to highlight interesting features and
flaws.

Therefore, we first present two selected general purpose component models - FRACTAL and
SOFA component model. Second, in the following section, we draw our attention to domain
specific component models dedicated to distributed, real-time and embedded systems.

FrRACTAL Component Model

FRACTAL [] is a modular and extensible component model that can be used with vari-
ous programming languages to design, implement, deploy and reconfigure various systems and
applications, from operating systems to middleware platforms or graphical user interfaces.

The FRACTAL initiative [] represents almost a decade of both academia and industry
successful projects with many research outcomes and industry applications. The key features
of FRACTAL are its openness and lightweight. FRACTAL provides an open approach to CBSE
allowing developers to introduce various extensions wit minimal restrictions. Last but not least
FRACTAL provides a rich tool support [I

27

Chapter 3. Component-Based Software Engineering

The key governing benefit when using FRACTAL is its stress on separation of concerns. The
provided model is hierarchical, supporting full separation of functional concerns by allowing
developers to design appropriate components. Furthermore, separation of functional and non-
functional concerns is achieved through a controlling layer that implements domain-specific ser-
vices thus preventing them to crosscut the functional implementation.

Additionally, the research presented in [] focuses on reliable reconfiguration of FRAC-
TAL applications. Although not directly solving reconfiguration of real-time systems, the work
justifies the ability of FRACTAL to extensively support reliable ways of reconfiguration.

We describe the FRACTAL component model in more details in Section 3.3.

SOFA
SOFA [] is a distributed component model, the result of several years of experience in
working on both SOFA and FRACTAL component models. In [], the main limitations of

SOFA are identified as: (i) having a limited support for dynamic reconfigurations, (ii) lacking of a
structure for the control part of a component, (iii) and having an unbalanced support for multiple
communication styles.

SOFA 2.0 supports dynamic reconfiguration (i.e., adding and removing components at run-
time, passing references to components, etc.). It proposes some reconfiguration patterns in order
to avoid uncontrolled reconfigurations which lead to runtime errors. For structuring the control
part of a component, SOFA 2.0 introduces microcomponents and control interfaces. Microcom-
ponents are minimalist components: they are flat (there are no nested microcomponents); do not
have any connectors; are not distributed. The parallel to FRACTAL would be FRACTAL ’s con-
trollers. Control interfaces are orthogonal to business interfaces in the sense that they focus on
non-functional features of components. These interfaces are in direct relation to the control in-
terfaces found in FRACTAL. In SOFA 2.0, multiple communication styles are supported thanks
to classes of connectors. Additionally, an approach to automatic specialization of connectors to
match the runtime properties is also supported.

3.2.2 Domain-Specific Component Frameworks

Typically, a domain-specific component framework (DSCF) is composed similarly as a general
purpose component framework. In addition, it defines relevant concepts, called domain-specific
concepts, according to the requirements of the targeted application domain (e.g. to address the
distribution support or real-time constraints). In this section we focus on the domain of dis-
tributed, real-time and embedded Systems (DRE) [] where many component models can
be found, e.g. [, ; , , , , 1. We
focus on the general characteristics of these component models and we present the discussion of
component frameworks specific to RTS] in the next section.

AADL

AADL [] is a textual and graphical language used to design and analyze both software and
hardware architectures of real-time systems and their performance-critical characteristics. AADL
permits engineers to represent embedded systems as component-based system architecture and
model component interactions as flows, service calls, and shared access. Furthermore, it allows
engineers to model task execution and communication with precise timing semantics.

AADL is part of a model-based engineering enterprise solution and, as shown in Fig. 3.1,
AADL model development can be used in parallel with the software system’s development.
Then, the analysis views generated through AADL modeling can be compared to testing results
during system implementation.

28

3.2. State-of-the-Art of Component Frameworks

Figure 3.1: AADL Model Development

SOFA HI

SOFA HI [MWP"08] is a SOFA profile for high-integrity embedded systems based on the SOFA
component model. The project was initialized by SciSys UK - an ESA ? contractor. Currently,
there is an effort to extend the SOFA HI towards the challenges of real-time systems [V " 09].

This profile originates from the DiSCo project [’I'°08], which addressed space missions where
key challenges are hard real-time constraints for applications running in embedded environ-
ments, partitioning between applications having different levels of criticality, and distributed
computing. The DiSCo Space-Oriented Middleware introduced a component model where each
component provides a wide set of component controllers - a feature inspired by the FRACTAL com-
ponent model.

SOFA HI provides a state-of-the-art hierarchical component model supporting expensively
component containers and connectors. Furthermore, the model is supporting also more ad-
vanced technologies e.g. dynamic reconfiguration and formal verification. It also provides a
development methodology providing an "activity" view that allows reasoning about activities
(composed of tasks and mapped to chains of component operations), synchronization, execution
times, deadlines, etc.

Ada-CCM

Ada-CCM [PMPLOS] proposes a technology for the development of distributed real-time component-
based applications, which takes advantage of the features that Ada language [TDB " 07] offers for
the development of applications with predictable temporal behavior.

The development process proposed by Ada-CCM is illustrated in Fig. 3.2. As we can see, it
starts with description of real-time and functional requirements, the MAST modeler [HGGMO1]
is used to construct the real-time situation model, and generative programming techniques are
extensively employed to facilitate the development. Furthermore, the approach adopts the com-
ponent container technology in order to manage real-time properties of the component (e.g.
scheduling parameters configuration).

2European Space Agency, wiww.esa.int/

29

www.esa.int/

Chapter 3. Component-Based Software Engineering

----- % Assembler i Planner
-7 L, N, RS e e e e]

- v 0 emessssmssmsmma——

b 1
I Rea\—T\me‘\l E E AnplicationMAS T odeler = o i Schleduling . !
requirements: 1 Bl % Real-time {o) i analysis repo !
‘\\ / 1 [Workioad description] § @-o SItus‘tlm Ir\glndel | |
4
S — E {wdl x| file) E Dac -t {.mcllxml files) MAST tonist [Seheatiing i
_____ \@\ ! H & Deplmyment Plan ! Configuration param, i
A = 1| Dac Component |43 | (edpomifie) ‘ e RBRCEEEEEEE !
4 Functional L 1 hasembly description } =
requirementsi :_____E_aziz{_m_lﬂl_en_“: AgplicationGenerator> E\Asx\r; E”rgsc;adure oo =EEEin
B . 9 000 [I
i - = 000 0

Appllcatanauncher :' ap I:l
Execufor

Figure 3.2: Component-based Application Development process in AdaCCM

Platform
description &model
(.pdm xml files)

Installed compone
packages

Rohlik et al. -Reusable and Verifiable Software Components

Rohlik et. al. [RPV " 06] propose a component framework for real-time applications. The notable
feature of the approach is the separation of the treatment of functional and domain-specific (e.g.
timing) requirements. These requirements are defined and modeled separately from each other
and are only merged when the models are translated into code. The methodology proposed in the
framework provides two views on the architecture: the functional view defining the framework
from a functional point of view and the timing view defining hard real-time characteristics of
the system. An approach to automatic instantiation of the runtime platform for this component
model is described in [CCPS03].

OSGi-based framework for Real-time Systems

A recent popularity of the OSGi model [All09] is reflected also in the domain of real-time sys-
tems. To name at least on project, a hybrid real-time component model is proposed in [GDFSBOS].
The authors propose a framework where real-time and non-real-time task coexist in symbiosis,
whereas the non-real-time system is managed by the OSGi framework, the real-time part is im-
plemented using RTAI [MDP].

OQutput : / b

variablcs i) : Real-time
- Realime - non-realtime Management Nictsdamitie
i (I: interface I Desc. & Conf. |
; | N ___"1
= | . =
Tnput —]]
variables & & % A'()S(" S
Real-time 2 2 | 0SGiBundle o r’;g”“
Task 2 =
=] 8
g 5 O
= = Bundle specitic
(e & interfaces

Framework

Digital /0 module [—
: (" Java Virtual Machine

General Linux Kerenl

RTAi Real-Time Kernel

Hardware platform

Figure 3.3: A Container Architecture Running the Hybrid Real-Time Component Model

30

3.2. State-of-the-Art of Component Frameworks

We present the architecture of the solution in Fig. 3.3, the interesting aspect of this approach is
support for cooperation between the real-time and non-realtime parts to the system. The respon-
sibility of the non-realtime tasks is to provide component adaptation and management functions
for the real-time tasks.

3.2.3 Component Frameworks for RTS]J

Already Dvorak et. al. [] have argued for a component framework focused on Real-time
Java. The authors distinguish two kinds of choices that have to be made during an application
developed — incidental and essential choices. They claim that rather than solving incidental choices
—e.g. language specific issues, the development process must focus on essential choices — meaning
choices that reveal underlying requirements of the system - e.g. functional and real-time proper-
ties. Furthermore, a successful framework should allow developers to specify the essentials and
let the tools automatically generate the platform-specific incidentals.

Moreover, with increasing complexity of RT Java systems, there is a pressure to incorporate
CBSE as part of the strategy for reducing the total costs of developing and maintaining these
systems by systematically enabling software reuse [I

Therefore, in this section we discuss component frameworks specifically created to address
the challenges of RTS]. We use the following characteristics of the frameworks as the evaluation
criterions:

e CBSE criterions

— Component Model The maturity of the component model is important to allow devel-
opers to achieve separation of concerns.

— Communication Model The communication model must be rich enough to allow var-
ious interactions between components. This is important since RTS] enforces both
synchronous and asynchronous types of communication.

— Development Methodology The framework must propose a development methodology
guiding users through the development process in order to mitigate the complexities
of RTS]J.

— Adaptation Support Overall support for static and dynamic adaptation of developed
applications.

e RTS] criterions

— Memory Model We evaluate framework’s support for RTS] memory model. We evalu-
ate weather a sufficient support for handling cross-scope communication is provided.
This concerns not only communication patterns and idioms, but a higher level ap-
proach allowing to face these obstacles already at design time.

— Thread Model Supporting the notion of different types of schedulable entities is im-
portant in order to design communication between them, we therefore evaluate this
aspect.

— Formalization and Validation Support Finally, a formal approach embracing the frame-
work should be proposed in order to support validation of developed applications.

Compadres Framework

Compadres [,] proposes a component framework for distributed real-time embed-
ded systems. The component model is hierarchical and supports solely event-oriented interac-
tions between components. The complexities of the RTS] threading model are not reflected by the
framework. On the other hand, Compadres pays more attention to the RTS] memory manage-
ment. It defines that each component is allocated and executing either in a scoped or immortal
memory. This restriction allows the framework to clearly address the challenge of cross-scope

31

Chapter 3. Component-Based Software Engineering

Component D Component E

Scoped Memory
Manager (SMM)

()

Component A

Figure 3.4: Compadress Memory model : Parent components communicate with their child com-
ponents via scoped memory managers (SMMs)

communication. Compadres uses a set of communication patterns defined in [] and fur-
ther proposes scoped memory managers to provide communication between sibling components,
as illustrated in Fig. 3.4.

However, in this approach, components can be allocated only in scoped or immortal mem-
ories, therefore communication with regular non-real-time parts of applications can not be ex-
pressed. And since the coexistence of real-time and non-real-time elements of an application is
often considered as one of the biggest advantages of RTS], we believe that it should be addressed
also by its component model and therefore we consider this memory model as too restrictive.

Compadres also proposes some notion of development methodology of real-time application
development in order to separate development of functional and RTSJ concerns. However, a
solution introducing systematically the real-time concerns into the functional architecture is not
proposed, thus the complexities of designing real-time systems are not mitigated fully.

Etienne et al. - A Component Framework for RTS]J

Work introduced in [] defines a hierarchical component model for Real-Time Java. The
classical concept of component model is here extended by introducing active and passive compo-
nents. Whereas a passive component represents only e.g. libraries or shared entities, an active
component is having its own thread of control and represents a real-time task. Additionally,
properties describing periodicity, deadline and priority can be specified in order to express non-
functional parameters of the active component. We consider this approach as highly appropriate
for RTS]J systems since it allows developers to deal with the complexities of RTSJ thread model.

The model is also allowing to hierarchically design components into compositions, thus achiev-
ing a much coarse-grained architecture. Moreover, the developer can specify component con-
tracts, which provide information about the structural, behavioral and temporal properties of the
component. These contracts are verified during the assembly phase in order to check confor-
mance of components employed in the system. The proposed component model is illustrated in
Fig. 3.5.

The model employs a simple memory management model. Each component is allocated
within a distinct scoped memory. This allocation policy gives advantages of controlling the life-
time of each component individually and an efficient mean of managing the memory footprint

32

3.2. State-of-the-Art of Component Frameworks

<<Interface>> Composite
|Composite {abstract}
getScopeSubComponent(String cmp) : int #MA : LTMemory][]
initSubComponents() #e: Edgef]
spaceForComponents(int mems, ir!t clients, Q ””” #LC : LaunchComponent
Class Edggl mpl, long memsize) # getScopeSubComponent(Sring cmp) : int
getNextEdge() : int # initSubComponents()
spaceForComponents(int mems, int clients,
Class Edgelmpl, long memsize)
getNextEdge() : int
+ terminate()
<<Interface>> Component
|Component [, {abstract}
init() #we : WaitExit
terminate() +init() : void
+ terminate() : void
<<Interface>> ActiveComponent
|ActiveComponent || {abstract}
start() #rt : RealtimeThread
#It: LTMemory
stop : boolean
+ start()
+ terminate()
+ setScope(long s)
+ getScope() : MemoryArea
+ setRTThread(RealtimeThread rt)

Figure 3.5: Etienne et. al. Component Model

of the application. The high execution cost of the scoped memory can be expected when the con-
figuration of components spans over several hierarchy levels. Here, each service call performed
by a client component requires one or more memory traversals, thus decreasing the performance
of the system. To cope with this, subcomponents of a component can be allocated in a collective
scoped memory and thus preventing from hierarchical traversals of memory. However, such a
solution is limiting the flexibility of the system and can cause a memory leakage within the scope
(old instances of subcomponents are remaining in the scope for the lifetime composite). The bot-
tom line is that the developer has to find an exact balance between flexibility and performance of
the system.

However, in the model, the real-time memory management concerns can not be expressed
independently of the functional architecture, systems are thus developed already with real-time
concerns. This not only puts additional burdens on designers but also hinders later reuse and
modification. When designing the scoped memory structure, the model allows to assign one
scope memory to more components, however this fact can not be expressed at the architectural
level of applications. Moreover, only the deep-copy pattern is proposed to solve cross-scope
communication. To summarize, we still see some space for improvement when considering the
development of RTS] applications in this framework.

Golden Gate Project

The project Golden Gate [,] evaluates suitability of RTS] to be used in develop-
ment of control software for onboard system. One of the milestones of the project was to design
control loops for driving and steering a 6-wheel experimental Mars rover.

Driven by the specific requirements, the project introduced real-time components that encap-
sulate the functional code to support the RTS] memory management. The main focus was laid
on the memory management aspects of RTS], the usage of real-time threads together with their
limitations is not addressed. However, the considerable results were achieved in benchmarking
RTSJ [], the authors conclude, as we have already mentioned, rather than facing language
specific issues - the incidentals, the development process must focus on essential choices. The es-
sentials are for example: data structures for inputs and outputs, pure functions that perform state

33

Chapter 3. Component-Based Software Engineering

transformations, and required properties of sequencing, timing, concurrency, etc. These concepts
relate directly to the problem domain and are neutral with respect to language, software architec-
ture, and hardware architecture. Consequently, they leave options open late in the development
and testing cycle, rather than making early (and sometimes regrettable) commitments that can
only be changed at great cost.

As one of the outcomes of the project, we therefore consider a specification of a successful
framework for RTS] — such a framework should allow developers to specify the essentials and
let the tools automatically generate the platform-specific incidentals that will satisfy the require-
ments.

Synthesis

We summarize and compare the characteristics of presented frameworks in the Table 3.1. Except
from the frameworks presented above, the table also includes the SOFA HI component model,
this servers as a comparisons in order to evaluate maturity of the presented frameworks.

Considering the CBSE criterions, SOFA HI offers the most of the features available in the do-
main of CBSE, from component containers supporting separation of concerns, to software con-
nectors that provide a wide set of communication types. Development methodology and system
reconfiguration are also addressed by this component model. Comparing with the component
frameworks for RTS], we witness that these component models are still immature.

Considering the RTS]J criterions, the complexities of the RTS] thread model are usually ad-
dressed by introducing active and passive components. To mitigate the problems of memory
management, usually a restricted set of patterns [CS04, BNO3, PFHV04] is defined. However,
these technologies are not applied consistently and various frameworks provide support for
them only to some limited extent. Furthermore, no high-level abstractions are employed to allow
developers to face these obstacles before actually starting the implementation process. Finally,
none of the presented frameworks stands on a formally defined ground, thus failing to achieve a
demanded support for validation of developed applications.

\ | Compadres | Etienne etal. | SOFA HI | Golden Gate |

CBSE Criterions

Component
Model
Communication
Model
Development
Methodology
Adaptation

RTS] Criterions

Thread
Model Support
Memory
Model Support
Formalization and
Validation

Low Support High Support

Table 3.1: Recapitulation and Comparison of Component Frameworks for RTS]

34

3.3. FRACTAL Component Model

3.2.4 Distributed and Embedded Computing in Real-time Java Systems

The area of distributed programming in the scope of real-time Java includes several research
directions. The leading initiative is represented by an integration of Remote Method Invoca-
tion (RMI) into the RTSJ [] and solving the task related issues such as handling real-time
properties [,] or memory allocation [,]. The results of these
projects are reflected in a status report of JSR 50 [] which tries to cover all aspects of distribu-
tion (real-time properties handing, failure semantics, distributed threads and their scheduling).
A similar approach proposes a profile for distributed hard real-time programming [1.
However, a framework addressing comprehensively the challenge of developing such a complex
system still has not been proposed.

Another research area covers the Real-time CORBA specification [] which can serve as a
particular base for a requirements analysis of real-time distributed systems. Its main implemen-
tor in the RTS] world is RTZen []. Although it is a middleware implementing almost all
parts of the Real-time CORBA specification within the scope of RTS], it only focuses on a core of
communication and does not provide any abstraction of RTS].

To summarize, all these projects focus only on low-level communication issues and their in-
tegration into the scope of RTS]. They do not address any higher abstraction of the real-time
communication. It could however be beneficial to reflect distribution in different stages of the
application lifecycle (design, implementation, runtime).

3.3 FRACTAL Component Model

The FRACTAL component model [] is a light weight component model, focused on pro-
gramming language concepts. In contrast to other component models, such as EJB, .Net or CCM,
it does not require the extra-machinery supporting its functionality. The model is built as a high
level model and stresses on modularity and extensibility. Moreover it allows the definition, con-
figuration, dynamic reconfiguration, and clear separation of functional and non-functional con-
cerns.

The FRACTAL model is somewhat inspired from biological cells, where exchanges between
the content of a cell and the environment are controlled by the membrane. By analogy, a FRAC-
TAL component is a runtime entity, which offers server and client functional interfaces, as well
as non-functional interfaces implemented as controller objects in the membrane. All interactions
with the component are interactions with the membrane of the component, and this allows inter-
ception and intercession using interception objects positioned within the membrane. Moreover,
all non-functional aspects are dealt within the membrane of a component, thus enforcing separa-
tion of concerns between functional and non-functional features.

The FRACTAL model is an open component model, and in that sense it allows for arbitrary
classes of controllers and interceptor objects, including user-defined ones. FRACTAL is meant to
be extensible; in this sense it leaves unspecified how communication takes place between com-
ponents, how components are specified, and what its implementation is; even bindings can be
components. Non-functional features of the component can also be customized.

In Fig. 3.6 we present an illustration example of a FRACTAL application architecture. Here, all
the key concepts of the FRACTAL component model are presented, we further clarify them.

e Composite Component is a component composed of subcomponents

e Primitive Component is a component that does not have any subcomponents and is di-
rectly implemented in some programming language.

e Shared Component is a component that has more than one super-components.

e Content is one of the two parts of a component, the other one being its membrane. The
content is an abstract entity controlled by a membrane. The content of a component is
(recursively) made of sub components and bindings.

35

Chapter 3. Component-Based Software Engineering

[Control Interface | [Membrane | [Content_]
| Functional Interface | _— e .
(. v | Composite Component |
b pelir) e 4 -
4 -
o e I’ r N r
External Interface | | - - -
“Ht- - - -
i u ¥ i
! l [Primitive Component |
Internal Interface] d [
TS
Client Interface Shared Component

Figure 3.6: FRACTAL Concepts

e Membrane is one of the two parts of a component, the other one being its content. The
membrane is an abstract entity that embodies the control behavior associated with a partic-

ular component. The membrane is composed by controllers.

o Controller exercises an arbitrary control over the content of the component it is part of

(intercept incoming and outgoing operation invocations for instance).

o Interface is defined by a name, a role (client or server), a cardinality (singleton or collection),
a contingency (mandatory or optional) and a signature (in Java, the fully qualified name of
a Java interface). In the type system proposed by FRACTAL, the set of functional interfaces
defines the type of a component. This can be further extended to take into account the non-
functional interfaces as well. Moreover, there are external and internal interfaces. How

these two relate is undefined in FRACTAL. This leaves freedom to define interceptors.

— Server Interface is a component interface that receives invocations

— Client Interface is a component interface that emits invocations

- Functional Interface corresponds to a provided or required functionality of a com-
ponent, as opposed to a control interface. In Fig. 3.6 they are depicted horizontally,

directed towards left and right for server and client interfaces respectively.

— Control Interface: is a component interface that manages non-functional properties
of a component, such as introspection, configuration or reconfiguration, and so on.
These are also called control interfaces. In Fig. 3.6 they are depicted vertically, directed

towards top and down for server and client interfaces respectively.

e Component Binding represents a communication path between different interfaces. It can

be realized by software connectors.

Component-based Control Membranes

The abilities of the FRACTAL component model are even more extended by a new feature in-
troducing the component-based architecture for the control environment surrounding compo-
]. Similar to E]JB’s containers, the FRACTAL component model features
a controlling environment, called membrane. This supports before mentioned domain-specific
properties of components. However, in contrast with fixed structures of EJB containers, the con-
trol membrane of a component is implemented as an assembly of so-called control components

nents [,

and can dynamically evolve. The whole idea is depicted in Fig. 3.7.

36

3.3. FRACTAL Component Model

Membrane " ~——"" " —=="7 Control
; Level

% Application
Level

Figure 3.7: Component-based Control Membranes

Not only does this approach brings effective development in the sense of reusability and
transparentness, but the main benefits lay in the ability to introspect and dynamically reconfig-
ure the architecture of the control layers of each component. Moreover, the membranes can be
designed individually thus precisely fitting the needs of specific components. This leads to a re-
flective component model, where both the functional layer and the control layer are implemented
using components.

FRACTAL Implementations and Tool Support

There exist many implementations of the FRACTAL component model in various implementation
languages, available at []. Furthermore, apart from the research inspired by the FRACTAL
initiative, many related projects have emerged around FRACTAL in order to leverage develop-
ment of FRACTAL based systems. Between the most significant we list FRACTAL-ADL [|
— ADL specification, FRACLET [] - annotation framework, F4E [] —an Eclipse plug-in,
and FDF [] — a deployment framework.

3.3.1 FAC: FRACTAL Aspect Model

The goal of the FRACTAL Aspect Model project (FAC) []is to allow developers to leverage
the technique of aspect-oriented programming to the application design layer. The motivation
is to provide an approach to manipulate the aspects as first-class entities at design time and at
runtime.

T R e a

| I
Il I service
aspect I _w| policy 1
| binding I reguiar
indir
| -~ o g

Aspect !

c
1. aspect
b binding > [CWI‘DU"EIII] :
| I — v
a | —_— aspect \T'egual
binding
E i |
I
I
4

binding
~a| semice
policy 2

L— base architeclure .._.l b crosscutling concem: transaction e

— - aspectdomain = 4 = = = — — —

Figure 3.8: FAC: Functional and Aspect Components Example

To achieve this, a new type of a component is proposed - aspect component, which propose a
general and symmetrical model for components and aspects. FAC decomposes a software system
into regular components and aspect components which embody crosscutting concerns.

In Fig. 3.8 we illustrate the key idea of the solution. In the picture, the AspectComponent
represents a certain aspect applied to components C,D and E. This relation is represented by the
aspect binding connecting the standard components with the aspect component. Furthermore,
the aspect domain is the reification of the components picked out by an aspect component. The
goal of an aspect domain is to keep an overview of all the components affected by an aspect.

37

Chapter 3. Component-Based Software Engineering

We highlight this project since it leverages domain-specific services, represented and imple-
mented by AOP, to the application design layer. This allows developers to achieve full separation
of functional and non-functional concerns along the whole development lifecycle.

3.3.2 Formalization of the FRACTAL Component Model

Recently, one of the research trends in CBSE is focused on formalization of component models.
The key motivation is to formalize different component models and their semantics in order to
evaluate and compare them. One of the popular languages used for this task is Alloy []. In
[] authors evaluate application of Alloy in defining semantics of new modeling languages
and state that such an approach yields a formally defined semantics of a language while con-
siderably reducing invested effort. A formalization of a component model in Alloy was already
conducted in [JSO0] resulting in simplification and improved clarify of the model itself.

A formal specification of the FRACTAL component in the Alloy specification language is pro-
vided []. The specification develops a view of a FRACTAL component as a coalgebra, or,
equivalently, as a form of generalized state machine. Although elementary, the specification
identifies and removes certain ambiguities in the informal FRACTAL specification, generalizes
it in places, and improves the programming-language-independent character of the component
model specification.

Alloy Modeling Language

Alloy [] is a formal language to express software abstractions precisely and succinctly. A
system is modeled in Alloy using a set of types called signatures. Each signature may have a
number of fields. Constraints may be added as facts to a system to express additional proper-
ties. In terms of rigor Alloy rivals traditional formal methods. It represents an approach for the
definition of the abstract syntax, the static semantics and the dynamic semantics of a system -
a component model in our case. Alloy Analyzer [] allows a fully automatic analysis of a
specified system; it can expose flaws early and thus encourages incremental design.

1 sig Interface{

name : one String
boundTo: one Binding
owner : one Component

2
1 sig Component { 3
interfaces: set Interface 4
} 5}
6
7 fact WellFormedContainment {
8 mno ¢ : Component | ¢ in c.”subComponents

2

3

4

5 sig Primitive extends Component{
6 content : one Class
7
8
9
0
1

} 9}

sig Composite extend Component { 11 fact InterfaceHasOwner {
1 subComponent : set Component 12 all i: Interface |
1} 13 one c: Component |
14 i in c.interfaces && ¢ in i.owner

Figure 3.9: Alloy: Basic Syntax and Semantics

We illustrate the application of Alloy by defining a simple component. The resulting Alloy
model, given in Fig. 3.9, expresses both abstract syntax and static semantics of the metamodel.
Each of the entities in the metamodel has a corresponding signature (denoted as sig) with a
similar name in the Alloy model. Associations in the metamodel are usually represented by
fields of a signature: thus the field interface in Component corresponds to the aggregation
from the Component to the Interface in the metamodel. For each field, multiplicity markings
can be present, specifying constraints on the field. The markings that we use are one, lone
standing for "0 or 1", and set.

To express constraints over the model users can use facts - denoted as fact, which express
the rules in the first order logic. For example, the WellFormedContainment —line 7, states that

38

3.4. State-of-the-Art Synthesis

there is no component that is a subcomponent of itself - expressed by "c in c.” subComponents"
where ~ is a transitive closure. The InterfaceHasOwner fact - line 11, states that for every in-
terface exists one component that contains it.

Note that we have chosen a single Alloy model to express both the abstract syntax and static
semantics of the metamodel since both structural properties and well-formedness rules are ex-
pressed by constraints in the Alloy model and there is no natural separation between the two. We
also note that the Alloy Analyzer allows the graphical presentation of the meta-model specified
by an Alloy model.

3.4 State-of-the-Art Synthesis

Our research lies within the intersection of three research domains: real-time system develop-
ment, component-based software engineering (CBSE), and real-time Java programming (RTSJ),
which were extensively described in Chapter 2 and Chapter 3. We employ these three technolo-
gies as cornerstones of the solution that we propose in this dissertation. In this section we there-
fore argue for synthesizing these domains by showing how the outcoming technology addresses
the stated challenges.

A CBSE

enables

Component Verification

fosters facilitates
~ —p Component Adaptation
|
| enables
r — —» Component Reuse y

L

facilitates

|
~———p Separation of Concerns

mitigates
. » Higher Abstraction Layer - v
\ RT Systems
mitigated by ° o o »
: S L
Simale, G o))’0} Q (%/' %o S
easy-to-use o —— < ©, e, S % %, %,
%, L% bl T, %
Hard-, soft-, non 90 %’b %z, S, ,% ®¢ Q,
real-time development v %, s, Y o Gy
a% f'?. fo o, ©
mitigates % % @//j@
% o2

RTSJ complexities

RTSJ

Figure 3.10: Synthesis of the Technologies Applied in the Dissertation

In order to synthesize the stated facts and propose an appropriate solution strategy, we illus-
trate these three technological domains in a diagram depicted in Fig 3.10. Each domain is rep-
resented by an axis - RT Systems, CBSE, and RTS]. Along these axes, the essential characteristics
of each technology are given. Furthermore, relations between the characteristics from different
axes are presented in order to highlight how the aspects across these domains do supplement or
influence each other.

For the domain of real-time systems — RT Systems, the predominant aspect is their grow-
ing complexity which puts further demands on development process. These issues lead to in-
creased market demands, requiring better software reuse and employment of the state-of-the-art
approaches for system verification and maintenance.

39

Chapter 3. Component-Based Software Engineering

The second axis represents the real-time Java programming — RTS], as the key principle of
RTS] we highlight its simplicity, cheap adoption and easy accessibility. Furthermore, the most
appreciated feature of RTS] follows - the ability to implement applications embracing hard-, soft-
and non real-time requirements. Finally, the benefits of RTS] are counterbalanced by the complex-
ities of the development process, specially when considering its memory model. We highlight it
as the third characteristic in this axis.

The final axis represents the domain of component-oriented engineering - CBSE. As the key
feature we consider the ability of CBSE to leverage the development process in the higher ab-
straction layers followed by the separation of concerns. These characteristics contribute to wide
support of CBSE for component reuse and foster adaptation of software systems. Finally, we also
mention ability of CBSE to support software verification.

The relations across different axes represent our fundamental applications in these domains
towards our goal —a component framework for real-time Java systems. Starting with RTS] axis,
real-time Java mitigates complexities of RT systems, but, however, brings the challenge of mem-
ory management and other issues. By combining the features of the CBSE axis we mitigate the
RTS] complexities through the separation of concerns and introduction of high-level abstractions
for RTSJ semantics. Continuing with addressing of the challenges in the RT System axis, we em-
ploy CBSE methods. Software reuse and development process are inherently addressed since
CBSE fosters component reuse and adaptation through the separation of concerns. Similarly for
the challenge of verification and maintenance.

3.5 Goals Revisited

In this section we refine more precisely the general goals of the dissertation based on the facts
identified in the state-of-the-art survey.

Scope of the Dissertation

The process of developing a real-time system brings many challenges, specially constructing a
real-time model that describes timing behavior of the system is a difficult task. Here, timing
and schedulability analysis must be performed in order to create a model that reflects the real-
time requirements of the system. The scope of our proposal is placed directly afterwards this
stage, the timing behavior and tasks in the system are exactly specified (as seen in the illustration
real-time scenario in Section 2.1.2) but the development of the system lies at its very beginning.
Particularly, our motivation is to combine the state-of-the-art software engineering methods with
RTS] while still producing predictable software applications. Therefore, in this dissertation we
focus solely on the specifics of RTS].

Refining the Goals

Based on the discussion conducted in this Chapter, we refine the goals of this dissertation as
follows®:

e G1 RTSJ-specific Component Model. As the first goal, a component model designed towards
the specifics of RTS] must be proposed. The model must provide:

- G1.1 RTS]J Abstractions. To propose an appropriate abstractions of RTS] semantics in
order to allow developers to manipulate with the RTS]-related features as first-class
entities.

— G1.2 Separation of Concerns. To clearly separate functional and RTS]-specific concerns
along the whole application lifecycle. To achieve this, the component model should
support the component containers technology.

3We have label the goals and subgoals as G1-G3 and in the remainder of this dissertation we will refer to them using
these labels.

40

3.6. Summary

— G1.3 Formalization and Validation Support. To fully formalize the component model
and its extensions towards RTS]J in order to support validation of applications during
their development lifecycle. Provide an approach to validation of both design and
implementation of applications in order to guarantee coherence with RTS].

o G2 RTS]-specific Framework. Based on the component model proposed as the goal G1, the
dissertation must propose a full-fledged framework for development of RTSJ applications
that will address following points:

- G2.1 Development Methodology. To employ the proposed features of the component
model in order to improve and clarify development process of RTSJ applications.

— G2.2 Runtime Platform Instantiation. To provide transparent implementation of systems
with comprehensive separation of concerns and extensive support of non-functional
properties at design, implementation, and run-time. Furthermore, we must exten-
sively employ methods of generative programming to automatically instantiate run-
time platforms. Thus we will mitigate the complexities of developing the error-prone
RTS] code by hand.

e G3 Evaluation. The final goal is to evaluate the framework from both performance and
software engineer perspectives. In terms of quantitative evaluation, the framework must:

— G3.1 Predictability. Not introduce unpredictability.

— G3.2 Performance. Not add significantly more overhead than that associated to the
equivalent application developed by other means (e.g. hand-coding from scratch).

Since the potential of the system to avoid tedious and error-prone development is one of
the key features when discussing its effectiveness and useability, in terms of qualitative
evaluation the framework must:

— G3.3 Effectivity. Facilitate development of RTSJ applications as if using standard Java
as much as possible.

- G3.4 Simplicity. Be easy to understand. The framework must maintain compliance
with original RTS] specification and do not introduce any RTS] extensions that are not
adopted by the RTS] standard.

3.6 Summary

In this chapter we introduced CBSE and the technologies employed nowadays to leverage the
development process of component-based systems. Furthermore, we have discussed its general
benefits and argued for applying it in the field of RTSJ, by showing RTS]-specific component
frameworks and comparing their advantages.

More specifically, already in the previous chapter we have noticed movement from research of
RTS] compliant implementation patterns [, ,] to research of frameworks alle-
viating the RTS] complexities [, ,]. Therefore, in this chapter we present
several component-based frameworks addressing the challenges of RTS] programming and eval-
uate them focusing on following aspects — richness of their component model, support for thread
and memory models defined by RTS], the development methodology they provide for RTSJ, and
their potential for automatic validation. As a result, we have identified that these frameworks ad-
dress the RTS] issues only partially, usually mitigating small and isolated problems without any
unified strategy. Furthermore, these frameworks do not alleviate the RTS] concepts into higher
level of system development which prevents full mitigation of the accidental complexities caused
by RTS] issues.

As demonstrated, there is much to be done in the field of component based frameworks for
RTS]. The current solutions are still rigid, and mainly do not allow to express both real-time

41

Chapter 3. Component-Based Software Engineering

and non-real-time concerns at a higher abstraction level. To meet all the challenges, an adequate
component model allowing to fully describe RTS] concerns independently of the functional logic
needs to be proposed. Furthermore, there is a still a long road from technical solutions proposed
and a development methodology that could embrace all the benefits of these specific approaches.
A process leading developers systematically through design and development of RTSJ-based
system while mitigating RTS] complexities is therefore highly desired. Motivated by these obser-
vations, we restate more precisely the goals of this dissertation, Section 3.5.

Finally, after carrying out a survey of current component models both in academia and in-
dustry, we have decided to adopt the existing FRACTAL component model as the technological
background for this dissertation. Based on the introduction of FRACTAL in Section 3.3, the justi-
fication for this decision is as follows:

e FRACTAL provides a state-of-the-art, open, and extensible component model, offering most
of the features available in the domain of component-oriented software architectures.

e We specially appreciate the fact that FRACTAL preserves the component architecture entities
during the whole system life cycle, also at runtime, with minimal performance overhead.

e FRACTAL represents almost a decade of CBSE experience and evolved significantly towards
a realistic design and runtime platform, being a result of tens of man-years of research and
numerous publications. Furthermore, FRACTAL has been implemented in different lan-
guages for various platforms, is being used in industry and provides an extensive tool
support. All of these characteristics prove maturity of this component model.

In the following chapter we present SOLEIL framework — the first contribution of our disser-
tation.

42

Part 11

Proposal

43

Chapter

SOLEIL: A Component Framework for
Java-based Real-Time Embedded
Systems

Contents
41 A GenericComponentModel 47
411 CoreConcepts 47
412 Functional Components 48
413 DomainComponents 50
4.2 A Real-Time Java Component Metamodel 51
421 ThreadDomain Component 51
422 MemoryArea Component 52
423 Composing RTS] Components 53
424 Binding RTS] Components 54
425 ADL Formalization 56
43 SOLEILFramework 56
43.1 Design Methodology 57
43.2 Implementation Methodology 59
433 SOLEILProfile 61
434 ValidationProcess o . 62
4.4 Motivation Scenario Revisited 63
441 Designing the Motivation Scenario 63
442 Implementing the Motivation Scenario 64
45 Summary e e e e e e e e e 66

Java-based systems called SOLEIL. As the key philosophy for this framework we adopt the
thesis statement — an effective development process of RTS]-compliant systems needs to consider
RTSJ concerns at early stages of their design. Following this philosophy, our goal is to leverage
the concepts of RTSJ and mitigate complexities related to their implementation. Furthermore, by
proposing a development methodology we want to provide a continuum between the design and
implementation process where RTS] concerns are manipulated in a consistent and transparent
manner.
The important aspect of our approach is the motivation to provide appropriate abstractions of
the RTS] concepts in order to allow their manipulation in the development lifecycle. By following

IN this chapter we introduce our component-based framework for development of real-time

45

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

this approach we want to achieve an effective development process of RTSJ-compliant systems
that considers RTS] concerns already at the design time. On the other hand, while looking for the
appropriate level of abstraction, the separation of functional and RTS]-specific concerns must be
preserved in order to keep the complexity of the programming model at a reasonable level.

Therefore, as the cornerstone of our approach, we introduce the concept of domain component
that allows developers to express RTS] concerns - e.g. real-time threads or memory areas, as
special software components in the system. By abstracting RTS] we thus permit to manipulate
with its concerns as first-class entities along the whole development lifecycle. This approach ul-
timately provides a full separation of functional and RTS]J-specific concerns. Furthermore, we
propose a component model that embraces the concept of domain component. The component
metamodel itself however is not sufficient to model RTS] applications without formally speci-
fied semantics. Defining such semantics is important for reasoning about modeled entities, their
composition, inter communication, and last but not least for providing tool support. Therefore,
to formalize the model we use the Alloy language [], described in Section 3.3.2.

In the terms of the refined goals, presented in Section 3.5, in this chapter we first address
the goal G1 - proposing a RTS] specific component model that introduces appropriate RTS]J ab-
stractions (G1.2), respects the separation of functional and real-time concerns (G1.2), and is fully
formalized to facilitate validation of developed instances(G1.3). Furthermore, in this chapter we
partially address also the goal G2 by proposing a framework based on the component model. In
this framework we define a development methodology that fully benefits from the features of the
component model (G2.1). Finally, the framework also extensively employs generative program-
ming in order to automatically instantiate runtime platforms that implement framework glue
code and RTS]J-specific code (G2.2). However, in this chapter we describe the runtime platform
instantiation process from a user perspective and we address the issues related to its implemen-
tation in Chapter 5.

Contributions

The contributions of this chapter are:

e A RTS]J-specific Component Model and Domain Components. We propose Domain Com-
ponents — a unified approach to specification of domain-specific requirements presented in
custom containers. This allows application developers to easily manipulate domain spe-
cific requirements since they are represented as first-class entities and are separated from
the functional concerns. Furthermore, we employ this concept to construct a RTS]-specific
component model allowing developers to manipulate with RTS] concerns.

e SOLEIL Profile and Verification All the introduced concepts are formalized, using the Alloy
language, in order to clarify exactly their semantics. Further, we define the SOLEIL profile
- a set of rules and restrictions that must be respected by application developers to achieve
RTS]J conformance.

e SOLEIL Framework Based on the component model and its formalization we construct a
framework clarifying development methodology of RTSJ-based systems. The framework
provides a continuum between the design and implementation process. The goal is to
mitigate complexities of RTS]-development by automatically generating runtime platforms
where real-time concerns are transparently managed.

Structure of the Chapter

The remainder of this chapter is organized as follows. In Section 4.1 we define a core metamodel
which serves as the cornerstone for further extensions towards RTS]. In this core metamodel
we introduce the key concept of our proposal — Domain Component. Section 4.2 we extend the
metamodel towards the specifics of RTS], therefore, we introduce new domain components rep-
resenting the RTS] concepts and we demonstrate how to manipulate them. In Section 4.3 we

46

4.1. A Generic Component Model

present SOLEIL framework. Here, a design process incorporating the model and its formaliza-
tion are introduced - in Section 4.3.1. As an outcome of this process we obtain a real-time system
architecture that can be used for implementation of the system. We benefit from separation of
functional and non-functional concerns and design an implementation process that addresses
these concepts separately - whereas functional concerns are developed manually by users, the
code managing non-functional concerns is generated automatically. We elaborate on this im-
plementation methodology in Section 4.3.2. In Section 4.4 we revisit our motivation scenario to
illustrate applications of the concepts proposed in this chapter. Finally, a summary of this chapter
is given in Section 6.6.

Throughout the chapter we present code snippets illustrating the formalization process in
Alloy, the whole code is available in Appendix A.

4.1 A Generic Component Model

The cornerstone of our framework represents a component model that is specially designed in
order to allow us to fully separate functional and non-functional concerns in all steps of system
development. We define the core of the model in Section 4.1.1 — inspired by the FRACTAL compo-
nent model [] and enriched by the concepts of Domain Component and Functional
Component. Consequently, we introduce these concepts in more details in Section 4.1.2 and
Section 4.1.3.

4.1.1 Core Concepts

We present our component metamodel in Fig. 4.1. The metamodel is also formally defined in
Fig. 4.2 in Alloy. Therefore, the UML diagram serves here as a graphical illustration since its
semantics does not allow to fully express all the relations between the entities of the metamodel.

subComponent
Component
| * superComponent
Primitive Composite
Component Component
IN
OR —
Content
Functional Domain
Component Component
Active Passive
Component Component

Figure 4.1: A Generic Component Model

The key element of the metamodel is the abstract entity Component, in Fig. 4.2 line 1, which
is further extended by Primitive Component and Composite Component entities, lines 31-
36. We thus introduce the notion of hierarchy into the model. Whereas the primitive component
implements directly some functionality, expressed by the Content entity —line 36, the composite

47

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

component encapsulates a set of subcomponents, line 31. Furthermore, a notion of supercompo-
nent enhances the metamodel with the concept of sharing - one component can be contained in
more than one supercomponent, line 3. Finally, we define that each component in the system is
either composite or primitive, line 40.

The other two key entities of the metamodel are Functional Component and Domain
Component. The are introduced to enforce separation of functional and domain-specific con-
cerns. We describe them in more details in Section 4.1.2 and Section 4.1.3.

-

abstract sig Component{

externallnterfaces set Interface,

N}

3 superComponents 50 sig FunctionalComponent extends Component{}
set Composite 51

4} 52 abstract sig DomainComponent

5 53 extends Composite {} {

6 sig Interface { 54 no internallnterface

7 owner one Component, 55 no externallnterface

8 boundTo lone Interface, 56 }

9 type one Type, 57

10 binding one Binding 58 fact NoDomainAsSubcomponentOfFunctional {

11} 59 no d:DomainComponent |

12 boundTo != this 60 some c:FunctionalComponent |

13} 61 d in c.subComponents

14 62 }

15 sig Attribute {} 63

16 64 sig Active extends FunctionalComponent{

17 sig Binding { 65 periodicity int

18 client : one Interface, 66 |

19 server : one Interface, 67

20 communicationType : one CommunicationType, 6 sig Passive extends FunctionalComponent { }

21 attributes : set Attribute 69 isProtected one Boolean

2} }

23 70 }

2 sig CommunicationType, Type {} 71

25 72 sig Periodic, Sporadic extends Active {}

26 one sig Asynchronous, Synchronous 73

27 extends CommunicationType {} 74

28 75 fact periodicANDsporadic {

29 one sig Client, Server extends Type {} 76 all a:Active |

30 77 a in Periodic or a in Sporadic

31 sig Composite in Component { 78 if a in Periodic

32 internallnterfaces set Interface, 79 #a.getServerInterfaces == 0

33 subComponents set Component, so if a in Sporadic

34} 81 all i:Interface |

35 82 if i in a.getServerInterfaces {

3 sig Primitive in Component { 83 i.interfaceType = ASYNCHR

37 content : lone PrimitiveObject 84 }

38 } 85 }

39 86

40 fact ComponentIsCompositeOrPrimitive { 87 pred getServerInterfaces[a: Component]

21 all c:Component | 88 set Interface {

42 (¢ in Composite or ¢ in Primitive) 89 all i: Interface | {

43 and (90 i in a.externallnterfaces

44 ¢ in Composite implies 91 and

45 ¢ not in Primitive) 92 i.type == Server

46 and (

47 c in Primitive implies

48 ¢ not in Composite)

Figure 4.2: Generic Component Model Formalization in Alloy

4.1.2 Functional Components

Functional components are basic building units of our model, representing functional concerns
in the system. The motivation for the introduction of functional components is to exactly separate
functional and domain-specific concerns of the applications in all steps of the software develop-
ment lifecycle. In Fig. 4.2 we define Functional Component as an extension of Component,
but we also specify that each functional component is either primitive or composite, line 40. This

48

4.1. A Generic Component Model

! 1

Component @—— > Interface &

client server
subComponent

superComponent Binding V1

Composite « N " Type
Component

1

Communication

Type Client Server

Synchronous Asynchronous
Binding Binding

Figure 4.3: Interface and Binding Concepts of the Metamodel

can not be expressed in the UML language and we therefore only indicate this in the Fig. 4.1 by
the slashed arrows. We distinguish two types of functional components - Active and Passive
components.

Active Component

Active components contain their own threads of execution and properties regarding its periodic-
ity, deadline, and priority. We can thus characterize the active component types by setting their
attributes, to define e.g. a periodic/sporadic execution or event-based execution. By this way we
will further define execution modes coherent with the RTSJ, see Section 4.2.1.

In Fig. 4.2 lines 64-68 we formalize the active and passive components. We further distinguish
the active components as periodic and sporadic. Periodic can not have a provided interface,
sporadic can but only with asynchronous communication. We define these restrictions in Fig. 4.2
line 75.

Passive Component

Passive component, in opposition to its active counterpart, is a standard component-oriented
unit providing and requiring services. When being called upon, its execution is carried out in the
context of the active component demanding its services. If a passive component is used in a con-
current environment, many strategies can be applied to guarantee coherence of its internal state,
e.g. a mutual exclusion mechanisms. We call such a component a protected component, in
Fig. 4.2 line 69. However, implementation of these strategies is in the competence of a framework
developer, whereas the application developer only specifies the type of the applied strategy. We
further refer to this in Section 5.2.

Binding and Composing Functional Components

In Fig. 4.3 we enrich the metamodel with the concepts of Interface and Binding, which
are also formally defined in Fig. 4.2. These well-known concepts introduce notions of client
and server interface. Furthermore, we define different types of Bindings: Synchronous and
Asynchronous. This is motivated by the specific requirements on communication between Ac-
tive and Passive components. We formalize this communication in Fig. 4.2 line 75.

49

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

4.1.3 Domain Components

A brand new concept that we introduce is Domain Component, inspired by []. The
main purpose of domain components is to model domain-specific requirements in a unified way.

A domain component is a composite component that encapsulates functional components
and by this relation we express that these functional components support the domain-specific
requirements defined by the domain component. Therefore, a domain component represents a
more general application of the concept of aspect component, presented in Section 3.3.1.

By deploying functional components into a certain domain component, the developer speci-
fies that these subcomponents support the domain-specific property represented by the domain
component. Moreover, a domain component contains a set of attributes parameterizing its se-
mantics. The sharing paradigm allows developers to fully exploit this concept. A functional
component is a part of a functional architecture of the application but at the same time can be
contained in different domain components, which thus express domain-specific requirements of
this component. We are thus able to express both functional and domain-specific concerns simul-
taneously in the architecture.

Legend

B Functional Component

h)
I | Domain Component

D Client Interface
- Server Interface

— Component Binding

—
|
|
|
|
|
|
[
[
|
|
|
[
|
[
|

LD(:3:Memory Domain]

Figure 4.4: Domain Components Example

Therefore, a set of super components of a given component directly defines its functional and
also its domain-specific roles in the system, the given component thus takes part both in the func-
tional and domain-specific architecture of the system. Moreover, the domain-specific concerns
are now represented as first-class entities and can be manipulated at all stages of component-
software development lifecycle.

We illustrate the DomainComponent concept in Fig. 44. Components Writer, Readers,
MailBox, Library and their bindings represent a business logic of the application. The domain
component DC1 encapsulates MailBox and Library, thus defining a domain-specific service
(e.g. logging of every interface method invocation) provided by these two components. At the
same time, component DC2 represents a different service (e.g. runtime reconfiguration) and de-
fines that this service will be supported by components Writer and Readers.

Within our model, domain components are reified as composite components. In Fig. 4.2
lines 50-68, we formalize the concept of Domain Component, we define domain components
as exclusively composite, since they do not implement a functional behavior. Furthermore, we
forbid nesting of domain components. Only functional components can be subcomponents of
a domain component because domain components specify domain-specific properties that are
shared by their sub-components.

The approach of modeling domain-specific aspects as components brings advantages com-
monly known in the component-based engineering world such as reusability, traceability of se-
lected decisions or documentability of the solution itself. Also, by preserving a notion of a com-
ponent, it is possible to reuse already invented methods (e.g. model verification) and tools (e.g.

50

4.2. A Real-Time Java Component Metamodel

graphical modeling tools) which were originally focused on functional components. If we go fur-
ther and retain domain components at runtime then it is possible to reconfigure domain-specific
properties represented by domain components on-the-fly.

4.2 A Real-Time Java Component Metamodel

When designing a component model for RTS], a sufficient level of abstraction from RTS] com-
plexities has to be provided. This will allow RTS] concepts to be considered at early stages of the
architecture design to achieve effective development process that mitigates all the complexities.
Therefore, while keeping an appropriate level of abstraction, our goal is to define a proper rep-
resentation of RTSJ concepts in the model. To achieve this, we extend the core model defined in
Section 4.1.1 using the concept of domain component.

Domain
Component

A
Thread Memory
Domain Area
; i
NHRT Realtime Regular Immortal Scoped Heap
Thread Thread Memory Memory Memory

Figure 4.5: The RTS]-specific Domain Components

In Fig. 4.5 we define a set of RTS] compliant domain components. Their goal is to express
RTS] concerns as components and allow manipulation of these concerns as such. Two basic
entities representing RTS] concerns are defined: ThreadDomain and MemoryArea. This brings us
the advantage of creating the most fitting architecture according to real-time requirements of the
system. They are further described in Section 4.2.1 and 4.2.2. However, to be fully compliant
with RTS], a set of composition and binding rules needs to be respected during the design of a
real-time component system, we further elaborate on this in Sections 4.2.3 and 4.2.4.

421 ThreadDomain Component

ThreadDomain component represents RealTimeThread, NoHeapRealTimeThread, and Regular-
Thread defined by RTS] (see Section 2.2.1). Therefore, the model presented in Fig. 4.5 refines each
thread type as a corresponding domain component. The goal of the ThreadDomain component is

to manage threads that have the same properties (type, priority, etc.). Since in our model, each
execution thread is dedicated to one active component, we deploy every active component as a
subcomponent of an instance of the Thread Domain. Consequently, the properties of the ThreadDo-
main are inherited by the active component precisely determining the execution characteristics of

its thread of control. Therefore, each ThreadDomain component encapsulates all the active com-
ponents containing threads of control with the same properties (thread-type, priority, etc.).

We precisely formalize the semantic of the ThreadDomain component in Fig. 4.6. ThreadDomain
can not be arbitrarily nested, no RT-Thread can be defined as a descendant of another RT-Thread,
line 6. Furthermore, an active component must always be nested in a unique ThreadDomain,
line 12.

51

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

30 ct EveryComponentHasMemoryArea {

1 sig ThrgadDomalr} ('extends DomainComponent { s all fc: FunctionalComponent |
2 priority :int
X 32 one ma: MemoryArea |
3 memoryArea : one MemoryArea . A
) 33 fc in ma.”subComponents
5 34}
. . 35
6 fact NoTh.readDomalnInDoma1nComp { % fact ScopedMemoryParent |
7 all t:ThreadDomain |)
K . 37 // all scopes are subcomponents
8 no c¢: DomainComponent |) | X
. s // of the ImmortalMemory
9 ¢ in t.superComponents ey ;
39 all c:ScopedMemory |
10 }
n 40 one t:ImmortalMemory |
1 A
12 fact EveryActivelsInThreadDomain { 4 ¢ in t. subCompf)nents .
. . 2 // only Immortal and Scoped memory
B3 all a:Active | 3 // ‘can be a parent)
14 one tDom : ThreadDomain | !
. 4 all c:ScopedMemory |
15 a in tDom.subComponents
1} 45 no f: (Component —
1 46 ImmortalMemory — ScopedMemory) |
18 sig RegularThread, RTThread, NHRT & ¢ 11‘!‘f‘subC0mponents
; 48 // scope is non—empty
19 extends ThreadDomain {} . :
49 all c:ScopedMemory |
20 .
ie M A 50 some k:(Component — DomainComponent) |
21 sig MemoryArea .
51 in c.subComponents

2 extends DomainComponent {
23 size: int
24 }

52 }

54 fact SingleParentRule {

26 one sig HeapMemory, ImmortalMemory s all sc : ScopedMemory |

5 :
. extends MemoryArea |} 6 some parent ScopedMemory |
% 57 sc in parent.subComponents or
58 sc in ImortalMemory .subComponents

29 sig ScopedMemory extends MemoryArea {}

Figure 4.6: ThreadDomain and Memory Area

Benefits of the ThreadDomain Component

The impact of the thread domain is three fold. First, a centralized management of active threads
with the same properties is provided. Second, since communication between different scheduling
entities in RTSJ is a crucial issue, we consider beneficial that thread domains allow designers
to detect cross-thread communication. Based on this detection, corresponding patterns for its
implementation can be applied, see Section 4.2.4. Finally, by introducing this entity, we are thus
able to explicitly define those parts of a system that will be executed under real-time conditions.
Therefore we exactly know which components have to be RTSJ-aware and we are able to enforce
corresponding RTS]J rules. Moreover, communication between the system parts that are executed
under different real-time or non-realtime conditions can be expressed at the architectural level.
This brings an advantage of creating the most fitting architecture according to real-time concerns
of the system.

4.2.2 MemoryArea Component

MemoryArea domain components represent the memory areas distinguished by RTSJ: Immortal-
Memory, ScopedMemory, and HeapMemory. MemoryArea component thus encapsulates all
functional subcomponents which have the same allocation context. By the allocation context we
mean a memory that will be used to allocate data when executing a given component. Such
specification of allocation context at the architectural level allows developers to detect communi-
cation between different memory areas (also known as cross-scope communication) and apply rules
corresponding to RTS]. Moreover, in combination with the ThreadDomain entity we can entirely
model communication between different real-time and non-real-time parts of the system.

Although MemoryArea components can be nested, RTS] specification defines several con-
straints to their application. We formalize these constraints in Fig. 4.6. First, we define that each
functional component is deployed in a memory area, thus defining its allocation context, line 30.
Furthermore, RTS] defines a hierarchical memory model for memory areas. The immortal mem-
ory is defined as a parenting scope of all memory scopes, line 36.

52

4.2. A Real-Time Java Component Metamodel

Additionally, nested memory scopes can be easily modeled as subcomponents. However,
dealing with Memory Scopes, the single parent rule - see Section 2.2.2, has to be respected. In the
context of our hierarchical component model, parenting scope of each memory area can be eas-
ily identified, which considerably facilitates the scope management. This constraint is therefore
formally specified in the model, the SingleParentRule line 54.

Instantiation Context

Apart from the allocation context, we distinguish the instantiation context. This context is used
during the instantiation of the functional component and defines in which memory this alloca-
tion will be performed. In compliance with RTS], the instantiation memory must be parenting
to the runtime allocation memory. Therefore, by default, we use the immortal memory as the
instantiation context for every functional component.

4.2.3 Composing RTSJ Components

The restrictions introduced by RTS] impose several rules on the composition process. These
restrictions must be formally specified in order to construct component systems that adhere to
the RTSJ. Moreover, the RTSJ-specific concerns are not only related to functional components,
but also influence each other, these restrictions and dependencies has to be also formalized. We
provide an excerpt of this formalization in Fig. A.3.

21 fact cross—thread—communication {
2 all al,a2:Active |
23 all t1,t2:ThreadDomain {
24 al in t1.subComponents
1 fact ThreadHasMemory { 25 a2 in t2:subComponents
2 all th:ThreadDomain | all a:Active | 26 }
3 if a in th.subComponents { 27 implies {
4 th . memoryArea = getMemoryArea[a] 28 assertOnlyAsynchrComm {al, a2}
5 } 29 }
6 } 30 }
7 31
8 pred Component.getMemoryArea[a : Component] 32 pred assertOnlyAsynchrComm
9 : one MemoryArea { 33 [al,a2:ActiveComponent] {
10 one m : MemoryArea | 34 all i1,i2: Interface |{
1 a in m.~subComponents 35 il in al.externallnterfaces
12 } 36 i2 in a2.externallnterfaces
13 37 i2 in il .boundTo
14 fact NHRTnotInHeap { 38
15 mno c:FunctionalComponent | 39 al in t1.subComponents
16 some 1 :NHRT | 40 a2 in t2.subComponents
17 some h:HeapMemory | a |
18 ¢ in r.~subComponents 2 implies {
19 and ¢ in h.~subComponents 3 il.binding.communicationType
0 44 = Asynchronous
45 i2 .binding.communicationType
46 = Asynchronous

Figure 4.7: Composition and Binding Rules for RTS] Domain Components

First, a MemoryArea component has to be assigned to each ThreadDomain component, thus
defining allocation context of each schedulable entity, according to RTS]. However, in our model,
for each active component we define a ThreadDomain — Fig. 4.6 line 12, and also, each active com-
ponent has a MemoryArea — Fig. 4.6 line 30. We therefore implicitly specify a memory area for
each Thread Domain. To make this explicit, we derive a new rule - Fig. A.3 line 1. An another ex-
ample of RTS] constraints between thread and memory model represents the NoHeapRealTime-
Thread which is not allowed to be executed in the context of the Java heap memory. Within our
design space, this constraint is translated by a NHRTThreadDomain which should not encapsu-

53

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

late any component encapsulated also by the HeapMemoryArea, see NHRTNot InHeap rule in
Fig. A.3, line 14.

4.2.4 Binding RTSJ Components

Since components in our model are designed to represent RTS] concepts, a special attention needs
to be paid to their bindings. In our model, two types of bindings that cross real-time component
boundaries can be found: cross-thread communication and cross-scope communication. We discuss
them further.

Cross-Thread Communication

A communication between two threads of different priorities could introduce priority inver-
sion [] problem and therefore, according to RTS], must be properly managed. In our
solution, such situation can be easily identified since it corresponds to a binding between ac-
tive components residing in different thread domains. In Fig 4.7 we formalize the semantics of
cross-thread communication and define exactly cases when it needs to be implemented, line 21.
Line 32 further defines that cross-thread communications must be asynchronous.

Since adherence to RTS] rules can be verified at the architectural level, the designer is able
to decide which types of bindings can be used. This mitigates unnecessary complexities of the
implementation phase where only the implementation of chosen binding concepts has to be per-
formed.

Cross-Scope Communication

Our model additionally allows to clearly express cross-scope communication as a binding be-
tween two functional components both residing in different memory scopes. Here, many pat-
terns introduced in [, ,] can be used depending on designer’s choice and a
specific situation.

MemoryArea : ScopedMemory 1 MemoryArea : ScopedMemory 1
_.‘
MemoryArea : MemoryArea :
ScopedMemory2 ScopedMemory 2
Figure 4.8: The Cross-Scope Pattern Figure 4.9: The Multi-Scope Pattern

Therefore, first we formalize the cases when a communication pattern needs to be used and
derive which kind of pattern is suitable for each particular case. Moreover, we have selected the
most used and widely known patterns [], they are precisely formalized in this section,
while their implementation is addressed in Section 5.2.5.

MemoryArea : ScopedMemory 1

MemoryArea : ScopedMemory 1 Component B
- -
R ~ | >
Component C

MemoryArea : MemoryArea :

ScopedMemory 2 ScopedMemory 3
MemoryArea : ScopedMemory 2,
Shared Scope

Figure 4.10: The Hand-off Pattern
Figure 4.11: Shared Scope

54

4.2. A Real-Time Java Component Metamodel

1 fact cross—scope—pattern {

2 all c¢1,c2 : Component |

3 all scl,sc2: Component {

4 cl in scl.subComponents

5 and c2 in sc2.subComponents
6

7

8

9

36 pred isClientTo[cl,c2] {
37 // returns True if c2 provides a server
38 // interface to cl

sc2 in scl.subComponents

isClientTo[cl,c2] 41 pred areSiblings[scl,sc2] {

i}m lies 2 // returns true if exist a sc3
P 43 // that is a parent to scl and also to sc2
10 applyCrossScopePattern{cl, c2})
1} 5
g fact multi—scope—pattern { 4 one sig CROSS_SCOPE PATTERN,
47 MULTI_SCOPE_PATTERN,

u o all cl,c2 : Component | s HANDOFF_PATTERN in Attributes
15 all scl,sc2: Component { 1 -
16 cl in sclssubComponents 50 fact applyCrossScopePattern {
17 and c2 in sc2.subComponents 51 one b: Binding | |
12 is;?él;:nts;;iilzlb(cjﬁnponents 52 b.c in a.externallnterfaces
2 | ! 53 b.s in b.externallnterfaces
o’ implies 54 b.type = Asynchronous
» applyMultiScopedPattern {cl , c2} 55 CROSS_SCOPE_PATTERN in b.atributes

56 }

57 }

58

50 pred ApplyMultiScopePattern[cl,c2] {
60 .

23}

25 fact hand—off—pattern |{
26 all c1,c2 : Component |

T e s & MULTI SCOPE_PATTERN in b.atributes
29 angl c? in sc2.subComponents Z '

2? Z;ggig}iggz {z;l,éSiz] : pred ApplyHandOffPattern[cl,c2] {

z i}mplies 66 P.IA.NDOFF_PATIERN in b.atributes

34 applyHandOffPattern{cl, c2}

Figure 4.12: Cross-scope Communication Patterns

The cross-scope pattern, illustrated in Fig 4.8, represents the basic communication pattern used
when implementing communication between two scopes in a parent-child relation. The exact
formalization of this patter is in Fig 4.12, line 1. This pattern implements entering a child scope
from a parent scope and leaving the scope while deep-copying the resulted computation from a
child scope to a parent scope.

The multi-scope pattern, in Fig. 4.9, represents a situation when we send some data from a
child scope to a parent scope with the intention to store these computed data and keep them
available after the child scope is reclaimed. The formalization of the rules defining when this
pattern should be used is given in Fig. 4.12 line 13.

The handoff pattern, illustrated in Fig 4.10, is a more general application of the multi-scope
pattern. This pattern is required for many real-time tasks which deal with filtering large amounts
of data. Such tasks continuously process the data while retaining a small part of this data in a
different scope, the main data area is reclaimed at the end of each computation. In this situation
we therefore send data from one scope to another, while these scopes are not in a child-parent
relation. Typically, we apply this pattern to a sibling scopes communication. The formalization
of the rules defining when this pattern should be used is given in Fig. 4.12 line 13.

The shared-scope pattern, in Fig 4.11, corresponds to a shared scope concept defined by RTS].
However, this pattern is rarely used in practice since it brings a high complexity into the imple-
mented code. Developed code is hardly analyzable since the memory is reclaimed only when all
the execution threads leave the scope.

In Fig. 4.12 lines 4667 therefore show modification of the properties of the binding that is go-
ing to implement appropriate communication patterns. To achieve this, we however use concepts
defined in Chapter 5, we refer reader to Section 5.2.5 for more details.

55

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

4.2.5 ADL Formalization

Although we are using a graphical notation to illustrate a real-time system architecture, we have
also developed an Architecture Description Language (ADL) to precisely express system’s archi-
tectures. The ADL is based on the FRACTAL-ADL |], is extended towards the specifics
of the SOLEIL metamodel and is defined in Alloy.

This allows us to easily express system’s architecture and apply formalized rules and restric-
tions defined for our component model. In Fig. 4.13 we show a snippet of our ADL defined in
Alloy. The set of predicates and functions is proposed to construct a system’s architecture and
also to define RTS]J-specific characteristics into the architecture, e.g. component — line 1, interface
— line 5, binding — line 15 and many other properties — lines 12-31. Furthermore, such architec-
ture description can be easily translated into XML format, allowing its further processing by third
party tools.

15 pred binding[clien : Interface
1 pred Component.component [n : String] { 1 Ze?VBI cllpterflace] {
2 ¢ : this.subComponents | c.name = n 7 onls i m_m%.
3) 18 .client = clien
19 b.server = serv
4 . b.communicationType = Synchronous
5 pred Component.interface [n: Name, r : Type] { 2(1) | yp y
one i : Interface | { |
i in c.externallnterfaces z
and i.name = n and i.role = r 24 pred bindingAsynchronous[clien : Interface
25 serv : Interface] f{
26 one b : Binding |
27 b.client = clien
28 b.server = serv
29 b.communicationType = Asynchronous
30 }

Figure 4.13: SOLEIL ADL defined in Alloy

4.3 SOLEIL Framework

Based on the RTS] model defined in Section 4.2 we construct a framework supporting devel-
opment of component based RTSJ-oriented systems - SOLEIL [], addressing goal G2. The
framework embraces both design and implementation methodologies for RTS] applications. Our
motivation when proposing these methodologies is to fully benefit from the concepts introduced
in our RTS] metamodel.

The SOLEIL framework substantially influence the procedures of designing and implementing
RTS]-based applications. At the design time, we employ separation of concerns to design both
functional and RTS]J-related architectures, consequently, we exploit the formalization of the meta-
model to verify consistence of produced architectures. At the implementation time, we define
implementation tasks for application developers while generating automatically the framework
glue code and RTS]J-related glue code. Furthermore, we specify a SOLEIL profile defining a set
of rules that must be respected during the implementation of functional components in order to
achieve RTS] compliant implementations. To validate conformance of implemented components
to the profile, we translate the profile into the OCL [] and propose the validation process
based on this technology.

In the remainder of this section we therefore describe the SOLEIL framework. First, in Sec-
tion 4.3.1 we introduce the design methodology based on our RTS] component model. Second, in
Section 4.3.2 we introduce the development methodology guiding the users through the process
of developing functional components and automatically generating the nonfunctional concerns.
The framework is described from the application developer perspective, whereas leaving the dis-
cussion about its implementation in Chapter 5. Finally, in Section 4.3.3 we present SOLEIL profile

56

4.3. SOLEIL Framework

- a set of rules and restrictions for development of RTS]-compliant applications, and we present
an approach to validation of this conformance in Section 4.3.4.

4.3.1 Design Methodology

The elevation of RTSJ concepts to the architectural level may hinder our task for an appropriate
level of abstraction, since we are combining functional and real-time concerns. However, when
developing real-time applications these concerns need to be considered at early stages of develop-
ment, since they can influence the architecture of the whole system. Therefore, to avoid increased
complexity of the design phase we propose a new design methodology with motivation to fully
exploit the advantages of our component model at the design time.

The abstractions introduced in our model allow designers to gradually integrate RTS] con-
cerns into the architecture. Therefore, in the methodology we decouple the design process into
several steps where each step focuses on different concepts of RTS]J. To clarify these steps, three
design views are proposed: Functional View, Thread Management View, and Memory Management
View. Whereas the functional view considers only functional aspects of the system, the two oth-
ers stress on different aspects of RTS] programming. Consequently, the views together with the
RTS] abstractions provided in our model allow developers to focuss on different concerns in the
architecture and to design these aspects independently of the functional architecture.

In the rest of this section we describe these design views and their application in the design
methodology.

Functional View

Console

Active
Component Component
A

synchronous asynchronous

0—a

Passive J

Production Monitoring
Line System
A A

Audit Log

A

Figure 4.14: Functional View

The functional view deals only with the composition of functional — active/passive compo-
nents. This helps developers to focus exclusively on designing functional aspects of the system.
To illustrate the idea, we revisit our SweetFactory scenario presented in Section 2.2.3. The func-
tional architecture of the system is constructed in Fig. 4.14, as we can see, we define each task in
the SweetFactory as a self standing component and we clarify the communication between them,
focusing solely on the business logic of the system.

Thread Management View

The thread management view considers only instances of ThreadDomain entities and active com-
ponents. This allows designers to naturally filter out the passive components and the designer
can focus on inter-thread communication represented by bindings between different active com-
ponents.

At this point, reasoning about appropriate types of bindings between active components is
simple, since bindings that cross boundaries of ThreadDomain components are clearly expressed.

57

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

ThreadDomain: NHRT1 ThreadDomain: NHRT2

Production Monitoring Audit Log

Line System
A A

ThreadDomain: Regular

Figure 4.15: Thread Management View

We can thus easily architect the system in conformance to inter-thread communication restric-
tions introduced in Section 4.2.4. Additionally, we can smoothly change the execution charac-
teristics of the system by designing several different compositions of ThreadDomain and Active
components, which is beneficial when tailoring the system for different real-time conditions.

Looking at our scenario example depicted, using the thread management view, in Fig. 4.15,
the ProductionLine and MonitoringSystem are deployed in the NHRT domain, since they must be
executed in a highly predictable manner in order to meet the 10ms deadlines. Furthermore, both
of them are in different instances of NHRT because they run with different priorities. Unlike the
other components, the AuditL.og component is not timing-critical, thus we can design it for use
under regular Java.

Memory Management View

The memory management view allows developers to focus on managing different memory re-
gions of the application. Active and passive components are deployed into instances of the Mem-
oryArea, thus defining in which scope they are operating. Additionally, the bindings crossing
different memory regions can be easily identified. This facilitates to appropriately deploy a glue
code managing the cross-scope communication, introduced in Section 4.2.4. Similarly to the
thread management view, different assemblies of components into memory regions tailored to
fit various real-time conditions can be delivered.

MemoryArea: Scope

Console

MemoryArea : Immortal P

Production | Monitoring
Line System
A

- Audit Log
A

\L___MemoryArea: Heap

Figure 4.16: Memory Management View

Considering our motivation scenario, we deploy the memory management as follows. Since
both threads executing ProductionLine and Monitoring System components run through the life-
time of the application, they can be allocated in the ImmortalMemory region. On the other hand,
the Console component is accessed by the NHRT thread irregularly and therefore a ScopedMemory
region is sufficient here. The AuditLog executed by a regular thread is allocated in a HeapMemory
region. The final composition of the memory management can be seen in Fig. 4.16.

58

4.3. SOLEIL Framework

Applying the Design Methodology

The architecture design flow of our methodology is depicted in Fig. 4.17. First, we analyze system
requirements which are divided into functional and real-time requirements. From the functional
requirements, describing functional tasks of the system, we design interfaces, components, and
consequently the functional architecture, in Fig. 4.17. So far, we follow the well-known concept of
component-architecture design [] and the functional view can be employed.

Functional Requirements

Real-time Requirements

g

| " Memory
| Component Functional
Interfaces Components i TTreacy Managem_e -
View
RT Memory
Functional Management
Architecture
Functional View &
Checking Composition
and Binding Rules
- Checking
e T I Composition and
Functional Binding Rules
Architecture
Thread Management View H
v

Full Real-Time
Architecture

Figure 4.17: RealTime Component Architecture Design Flow

The real-time requirements describe real-time properties of the system, here we have to de-
termine parts of the system that will be executed under real-time conditions — using the Thread
Management View. Consequently, we deploy different parts of a functional system into various
real-time and non-real-time components to obtain the real-time functional Architecture, as depicted
in the figure. This can be easily achieved since our component model allows us to abstract dif-
ferent real-time units through Threadbomain components. Then we extend the Real-Time Func-
tional Architecture by an appropriate memory management — using the Memory Management View,
thus achieving a complete and RTS] compliant architecture of a real-time system.

We implement this design methodology in Alloy, by using the ADL defined in Alloy we
are able to gradually design the application in the Alloy language and by using Alloy Ana-
lyzer [] we immediately verify its conformance to the metamodel — thus implementing the
Checking Composition and Binding Rules process defined in our methodology. We provide more
details to this validation process later in this section.

4.3.2 Implementation Methodology

The design analysis described in the previous section yields in a real-time system architecture which
is both RTS] compliant and fully specifies the system together with its RTS] related characteristics.
Hence, it can be used as input for an implementation process where a high percentage of tasks

59

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

is accomplished automatically. Therefore, we adopt a generative-programming approach []
where the non-functional code (e.g. the RTSJ-specific code) is generated automatically.

This approach allows developers to fully focus on implementation of functional properties
of systems and entrust the management of non-functional concepts into the competence of the
framework. Thus we eliminate accidental complexities of the implementation process. The
separation of concerns is also adopted at the implementation level where functional and non-
functional aspects are kept in clearly identified software entities - components.

We therefore introduce a new implementation methodology incorporating code generation
technique, depicted in Fig. 4.18. The process guides the developers through the implementation
phase, specifying the order of implementation of functional and RTSJ-specific concerns.

RealTime Java
Application
Source Code

Functional |:> Functional
. Component [I >
cficaidy Implementation
RTSJ Glue Code

Real-Time e
System [:> Gengraiion |:> Component Framework
Architecture Glue Code

Figure 4.18: Runtime Platform Generation Flow

Implementing Functional Concerns of Applications

As the first step of the implementation flow, see Fig. 4.18 step 1, functional logic of the system
is developed. Since we further follow component-oriented approach, the concept of separation
on functional and non-functional code is preserved. The development process thus follows the
classical approach where developers implement only component content classes. For illustration
example see Section 4.4.2.

Infrastructure Generation Process

We further alleviate the implementation phase by employing the methods of generative program-
ming to instantiation of the runtime platform. To fully exploit the advantages of the framework,
we pose the following requirements on the generation process: (i) the functional and real-time
concerns have to be deployed into clearly identified software entities; (ii) the generation process
needs to be independent on the functional code. By meeting these requirements, we achieve
transparency of the system implementation.

This instantiation of the runtime platform is the second step of our development process, in
Fig. 4.18 step 2. In this step, we exploit the already designed real-time system architecture, created
using the design methodology specified in the previous section, and we generate a glue code
managing RTSJ-specific and domain-specific properties of the system. The generation process
implements several tasks, we list them below.

e RTSJ-related Glue Code

— Realtime Threads and MemoryArea management Real-time thread and memory areas man-
agement is the primary task of the generated code. Automatic initialization and man-
agement of these aspects in conformance to RTS] substantially alleviates the imple-
mentation process for the developers.

— Cross-Scope Communication Since the RT system architecture already specifies which
cross-scope communication patterns will be used, their implementation can be moved
under the responsibility of the code generation process.

60

4.3. SOLEIL Framework

— Initialization Procedures The generated code has to be responsible also for bootstrapping
procedures which will be triggered during the launch of the system. This is important
since RTS] itself introduces a high level of complexity into this process.

e Framework Glue Code

— Active Component Management For active components, the framework manages their
lifecycle - generating code that activates their functionality.

— Communication Concepts Automatic support for synchronous/asynchronous commu-
nication mechanisms is important aspect offloading many burdens from developers.

— Additional Domain-Specific Support Additionally, many other domain-specific proper-
ties can be injected by the framework: e.g. a support for introspection and reconfigu-
ration of the system, lifecycle management, or component properties management.

The glue code is deployed into containers - encapsulating units of functional components. How-
ever, as already said, in this chapter we have described the challenges of the runtime platform
generation process and we further address these challenges in Chapter 5.

Final Composition Process

Finally, by composing results of the functional component implementation and the infrastructure
generation process we achieve a comprehensive and RTSJ-compliant source code of the system,
in Fig. 4.18 step 3. Here, each functional component is wrapped by a layer managing its execu-
tion under real-time conditions. This approach respects our motivation for clear separation of
functional and real-time concerns.

4.3.3 SOLEIL Profile

The methodology that we have introduced in the SOLEIL framework guides the developer through
the development process while mitigating many complexities introduced by RTS]. However, to
effectively profit from the benefits of the framework, developers must follow the guidelines de-
fined by the methodology. To clarify clearly all the constraints that must be respected, we intro-
duce the SOLEIL profile. The profile summarizes the guidelines introduced either by the SOLEIL
framework or by the SOLEIL component model into a consistent set of restrictions and rules.

When constructing the profile we have identified two kinds of constraints that developers
must respect: (i) architectural level constraints are imposed over the architecture of applications
and were extracted from the SOLEIL component model, and (ii) implementation level constraints
are imposed on the implementation of the functional components and were extracted from the
SOLEIL implementation methodology. We describe these two kinds of constraints in the remain-
der of this section.

Moreover, the profile is consequently used by the framework to implement a verification
process that guarantees that developed architecture and implementation are coherent with the
profile. Our motivation is to further enhance the development process by a verification approach
that provides an immediate feedback, in order to facilitate effective development of applications.

Architectural Level Constraints

The architectural level constraints are based on the SOLEIL component model introduced in Sec-
tion 4.1 and Section 4.2. These constraints have been specified as Alloy rules defining relations
between entities of the metamodel. Since the SOLEIL methodology proposes to design applica-
tion architectures using our ADL defined in Alloy, we reuse also the Alloy facts to define all the
constraints at the architectural level.

61

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

Implementation Level Constraints

SOLEIL provides a set of high-level tools, methods and patterns allowing developers to generate
runtime platforms in a generic way according to the designed architectural artifacts. The goal is to
spare the application developer from dealing with the RTS] related concerns at implementation
level. However, to allow the automatically generated code and functional components to fit
into each other, the application developers must not use RTS] concepts at the level of functional
components. We further list these restrictions.

e Functional Component
- must not instantiate new threads, since the thread management is in competence of
the SOLEIL framework
— Active Component

o Periodic Active Component must implement a unique task entry point which will be
periodically called by the runtime platform (such as the Java Runnable interface).

— Passive Component

o for every protected component, a synchronization logic must be specified.

o since the protected component services are executed as a critical section, the imple-
mentations of these services must not be based on internal synchronization mech-
anisms (such as the synchronize Java keyword) to avoid deadlocks.

e Immortal Memory, all the functional components contained in the Immortal Memory do-
main must:

— not call the new statement outside of the instantiation section,
— use only RTSJ compliant libraries specified in advance, e.g. Javolution []. Any
use of non-authorized classes or libraries will be reported.

¢ Asynchronous Communication

- amethod used to implement a provided asynchronous service must have void as the
return type.

e Cross-Scope Communication

— the methods specified within interfaces involved in a cross-scope communication must
have parameters and return values of serializable types to ease their marshaling, and
must not declare checked exceptions.

4.3.4 Validation Process

During the development process we implement verification of developed systems in order to
guarantee RTS] conformance. We verify the applications under development in two steps — at
the design time to validate correctness of instances of our RTS] component model, and at the
implementation time - to validate conformance of functional component” implementations with
the SOLEIL Profile.

Design Time Validation

The compliance of the application architecture with RTS] is enforced during the design process.
This is possible since the component model and its composition rules are fully formalized in Al-
loy. We are thus able to formally verify conformance of a designed architecture to our model and
to the RTS]J rules. Therefore, the formally defined semantics of the model, specified in Section 4.1

62

4.4. Motivation Scenario Revisited

and in Section 4.2, are verified by the Alloy Analyzer [] and thus we can immediately ob-
serve impact of rules not only on the model but also on its instances.

The verification proves to be beneficial when functional and thread domain components are
specified, since the memory domain components are proposed automatically by the tool in ac-
cordance to the model. This is facilitating the whole design process since the designer can choose
from proposed instances of the model the one which suits his needs. Furthermore, such ap-
proach provides an immediate feedback and the designer can appropriately modify an architec-
ture whenever it violates RTS]. Moreover, the verification process of the architecture identifies
the points where a glue code handling RTSJ concerns needs to be deployed, which substantially
alleviates complexities of the implementation phase.

Also, this gives designers an opportunity to experiment with different configurations of thread
and memory domains at the design time, while still being compatible with RTS]. The execution
characteristics of systems can be smoothly changed by designing several different assemblies of
components into ThreadDomains and MemoryAreas. This is beneficial when tailoring the same
functional system for different real-time conditions.

Implementation Time Validation

To ensure correctness of the application implementation, the implementations of functional com-
ponents must follow the rules specified in the SOLEIL Profile. However, these rules can not be
expressed by Alloy, since they specify constraints upon the implementation of functional compo-
nents. Therefore, we specify the SOLEIL profile in OCL [], which consequently allows us to
check implementation of functional components.

In order to perform checking, we use an approach [] inspired by the HULOTTE frame-
work proposed in Chapter 5. In this approach, we first translate our metamodel into its EMF [
version. Consequently, we use Spoon [] tool suit that provides an EMF metamodel for a
Java source code. We therefore obtain both our metamodel and functional component implemen-
tation as model instances in EMFE. Finally, confront these metamodels with the OCL rules of the
SOLEIL profile. The full approach is documented in [] and for illustration we provide an
extract of the OCL rules in Appendix B.

4.4 Motivation Scenario Revisited

At this place we revisit our SweetFactory motivation scenario introduced in Section 2.2.3, we
illustrate the basic ideas presented and highlight some benefits of the SOLEIL framework.

4.41 Designing the Motivation Scenario

We have already demonstrated application of our design methodology on the SweetFactory in
Section 4.3.1, here we therefore only shortly recapitulate the process and highlight interesting
details.

We first use the functional view to obtain functional architecture and we can gradually inte-
grate real-time concerns. After deploying all components into corresponding ThreadDo- main
components, the composition and binding rules verification is conducted by the Alloy Analyzer.
As a result, the bindings between components will be identified as a RTS] violation — they express
communication between threads of different types, according to the rules defined in Fig. 4.7.
Consequently, possible solutions will be proposed, according to the binding rules specified in
our model (Section 4.2.4). The final architecture of the system is shown in Fig. 5.26.

We further apply the formalization of our model to validate the application architecture.
We have incrementally designed the system architecture using our formalized ADL from Sec-
tion 4.3.1. We show an excerpt of the resulting specification in Fig. 4.20, moreover, we present the
whole ADL specification also in XML format in Appendix C. Consequently, this final architecture
is analyzed by the Alloy Analyzer in order to validate its conformance to the model.

63

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

MemoryArea: Scope

Active Passive
Component Component
A

MemoryArea : Immortal Console

ThreadDomain: NHRT1 ThreadDomain: NHRT2 Py P

synchronous asynchronous

Production
Line

Monitoring
System

T Audit Log

s

A ThreadDomain
ThreadDomain: Regular
L___MemoryArea: Heap |
Figure 4.19: Sweet Factory: Real-time System Architecture

1 one sig SweetFactory
2 extends Composite {}{ 32 one sig AuditLog extends Passive{} {
3 component[ProductionLine] 33 primitive
4 component[MonitoringSystem | 34 interface[auditLogln, Server]
5 component[AuditLog] 35}
6 component[Console] 36
7 37 one sig NHRT1 extends NHRT {} {
8 bindingAsynchronous[producerOut, 38 priority = 37
9 monitorIn] 39 component[ProductionLine]
10 binding[consoleOut, consoleln] 40 }
11 bindingAsynchronous[auditLogOut, 41
12 auditLogIn] 42 one sig NHRI2 extends NHRT {}{
13} 43 priority = 36
14 44 component [MonitoringSystem]
15 45 |
16 one sig ProductionLine extends Active {} { 46
17 primitive 47 one sig Scope extends ScopeMemory {
18 interface[producerOut, Client] 48 component[Console]
19 } 19 }
20 50
21 one sig MonitoringSystem extends Active {} { 51
2 primitive 52 fact RegularThreadsSpecification {
23 interface[monitorln, Server] 53 AuditLog in RegularThread.subComponents
24 interface[consoleOut, Client] 54 AuditLog in Heap
25 interface[auditLogOut, Server] 55 }
2 } 56
27 57 fact MemoryAllocations {
28 one sig Console extends Active {} { 58 ProductionLine, MonitoringSystem
29 Console. primitive 59 in ImmortalMemory
30 interface[consoleln, Server]

Figure 4.20: Sweet Factory Architecture: Formalization in Alloy

4.4.2 Implementing the Motivation Scenario

The process of implementing applications in our framework is largely influenced by the moti-
vation to generate automatically the most of the source code and by the intention to mitigate
complexities of RTS].

Functional Component Implementation

To illustrate the implementation process in the SOLEIL framework, we present source-code of
the MonitoringSystem component. Since its implementation in plain RTS] have been given in
Section 2.7, we can easily compare benefits of both approaches.

The source code snippet of the MonitoringSystem component is presented in Fig. 4.21,
line 5. The structure and conventions for the code are inspired by the Fractal implementation
process introduced in [OW209b]. The MonitoringSystem class implements IProducer inter-
face, defined on line 1, which corresponds to the provided interface of the component. Further,

64

4.4. Motivation Scenario Revisited

the fields auditlog and console, lines 6- 7, represent required interfaces of the component.
Since all of this information is given already at the architectural level, this source code can be
automatically generated. We can therefore draw our attention to the processMeasurement
method, line 9, which implements functional logic of the component. As we can see, the method
implementation is straightforwardly following its logic and is not tangled with RTS]-related code.

Focusing on the communication with the AuditLog and Console component, both residing
in memory areas different than MonitoringSystem, developers does not have to face the com-
plexities of memory context switching. The provided interfaces of the AuditLog and Console
can be accessed transparently from the component’s implementation, SOLEIL framework will
guarantee correct switching of memory allocation contexts. Furthermore, although the binding
with TAuditLog interface is implemented as asynchronous, using a WaitFreeQueue, this is
transparent for the developers which can directly call its methods, the appropriate code handling
the invocation will be automatically injected.

Furthermore, the developers does not have to deal with instantiation of the component, since
these are automatically generated. Already at the architectural level we know in which allocation
context the component will be instantiated and operating, therefore, component’s instantiation
process can be performed automatically. Similarly, initialization of the component’s fields is per-
formed automatically when instantiating AuditLog and Console components.

1 interface IConsumer ({
public void processMeasurement(Measurement m){

}

class MonitoringSystemImpl implements IConsumer {
IConsole iConsole;
IAuditLog iAuditLog;

® N o O W N

9 public void processMeasurement(Measurement m) {

10 if (m.isWrong())
11 iConsole.reportError (m);
12 iAuditLog.log(m);

Figure 4.21: MonitoringSystem Component Implementation in SOLEIL

Implementing the Real-Time Concerns

The implementation of the RTS] concerns is substantially alleviated, since the verification pro-
cess verifies the architecture and determines injection of the appropriate glue-code. Moreover, as
demonstrated in Fig 4.20, the system’s architecture that we obtain provides the whole informa-
tion needed to implement the runtime plaftorm described in Section 4.3.2, for example:

e the functional component ProductionLine is defined as a periodic active component,

e the binding between MonitoringSystemand AuditLog active components specifies an
asynchronous communication.

e the non-functional components specify RTS]-related attributes, such as a memory type and
size of a MemoryArea, a thread type and a priority for a ThreadDomain.

As we have already said, Chapter 5 is dedicated to the process of designing and implementing
the RTS] concerns and therefore we provide full description of the RTS]J-glue code implementa-

tion process in this chapter.

65

Chapter 4. SOLEIL: A Component Framework for Java-based Real-Time Embedded Systems

4.5 Summary

In this chapter we present a component framework designed for development of real-time and
embedded systems with the Real-Time Specification for Java (RTS]). Our goal is to alleviate the
development process by providing means to manipulate real-time concerns in a disciplined way
during the development and execution life cycle of the system. Furthermore, we shield the devel-
opers from the complexities of the RTS]J-specific code implementation by separation of concerns
and automatical generation of the runtime platform.

As the cornerstone of our approach we propose the Domain Component concept - a unified
approach to model domain-specific concerns as first class entities (G1.1). This concept allows
developers to manipulate these concerns easily during the full application development lifecycle.

Based on this concept, we define a component model tailored directly to the specifics of RTS]
(G1). Our contributions include separation of RTSJ-specific and functional concerns(G1.2), and
the ability to express these concerns at the architectural level. Therefore, the model allows us
to clearly define real-time concepts as software entities and to manipulate them through all the
steps of the system development. Furthermore, we have formalized the metamodel semantics
and RTS]J-related restrictions using the Alloy language (G1.3).

Consequently, we propose SOLEIL- a component model embracing the introduced concepts
(G.2). As a part of the framework, we define a methodology for design and implementation of
RTS] applications (G2.1). The methodology clarifies manipulation of functional and RTS]J related
concepts at design and implementation time, while still respecting full separation of these con-
cerns. Moreover, using the formalized component model we can design applications and verify
their conformance to RTS] already at the design time. Finally, we alleviate the implementation
phase by providing a process generating automatically RTSJ-related code and framework glue
code based on a formalized real-time system architecture.

Our example scenario demonstrates that the presented solution allows to simultaneously de-
sign real-time and non-real-time parts of applications. This is important when trying to mitigate
complexities of the RTS] implementation phase. The model allows designers to easily introduce
new assemblies of real-time components thus adapting the system for different real-time condi-
tions.

The bottom line is that we are able to express different real-time concerns, and to integrate
them seamlessly into the system’s architecture. Moreover, by gradual integration of RTSJ aspects
we mitigate the complexities of RTS] development. Considering the implementation of each
component, the designed architecture substantially simplifies this task. Functional and real-time
concerns are strictly separated and a guidance for possible implementations of those interfaces
that cross different concerns is proposed.

In the following chapter we address the process of implementing domain components and
further we describe the approach towards automatic instantiation of the runtime platform (G2.2).

66

Chapter

HULOTTE: A Framework for the
Construction of Domain-Specific
Component Frameworks

Contents

5.1

5.2

5.3

5.4
5.5

HULOTTEFramework ittt it i i v e 68
51.1 Generic Component Model Extensions 69
512 Architecture Refinement of Domain Components 71
Implementing SOLEIL with HULOTTE 74
52.1 Active and Passive Components 74
5.2.2 ThreadDomain Refinement 76
523 ImmortalMemory 76
524 Cross-Thread Communication 76
525 Cross-Scope Communication 78
52.6 FractalControl Layer 80
HULOTTE Framework Implementation. 80
5.3.1 HULOTTE Architecture 81
532 Front-end 81
533 Middle-end 82
534 Back-end 82
5.3.5 Soleil - Runtime Platform Instantiation 82
53.6 HULOTTE as a Meta-Framework 83
Motivation Example Revisited 85
Summary e e e e e e e e 87

specific concerns already at the architectural level. Furthermore, we have applied this con-

IN Chapter 4 we have introduce domain components - a concept to expression of domain-

text to the challenges of RTSJ and showed how they mitigate complexities of RTS] program-
ming and simplify application architectures through a consistent separation of concerns. Finally,
we have incorporated this concept into the SOLEIL framework - a proposal solution to a fully
fledged framework for development of real-time Java applications. The concept of domain com-
ponents was described with the emphasis on their application and benefits, however, the chal-

lenge of domain component implementation was not addressed.

67

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

In this chapter, we focus specifically on domain components and propose an approach to
their design and implementation. We have chosen a model-driven approach of step-wise refine-
ment [,] to gradually refine domain component architectures. To facilitate this, we
identify a three general architectural patterns used during the refinement process. Furthermore,
we introduce the HULOTTE framework - a set of tools that implements the refinement process.
The framework allows to process architectures specified by application developers and execute
the refinement process of domain components in order to provide their implementation. As the
outcome of this process, a runtime platform providing support for execution of developed appli-
cations is instantiated. During the instantiation process we also introduce various heuristics to
optimize applications’ performance and memory footprint.

In the terms of the refined goals, presented in Section 3.5, we address the goal G2.2 - HULOTTE
framework provides a unified approach to instantiation of runtime platforms, automatically gen-
erating both framework glue code and RTS]J-specific code.

Contributions

The contributions of this chapter are:

e HULOTTE Framework and Architecture Refinement Process. The first contribution of this
chapter is the HULOTTE framework which introduced concepts that are used to design and
implement semantics of domain components. Consequently, we identify common patterns
that are employed by developers when implementing semantics of domain components.
Based on this, we introduce the architecture refinement process that specifies how to use ar-
chitectural patterns to refine domain components, thus allowing their implementation.

e Applying HULOTTE to SOLEIL. Based on the architectural refinement proposed by the
HULOTTE framework we refine and implement SOLEIL domain components.

e HULOTTE Implementation. We present the technology applied to implement the HULOTTE
framework. We show how HULOTTE implements an approach to automatical refinement
of domain components and generation of the SOLEIL glue-code. Furthermore, we discuss
how this approach can be used in a more general perspective to leverage development of
domain-specific component frameworks.

Structure of the Chapter

To remainder of this chapter is structured as follows. In Section 5.1 we extend the Real-time Com-
ponent model from Chapter 4 and we introduce new concepts intended to refine semantics of do-
main components. Consequently, we propose architectural patterns defining how to implement
these semantics. Section 5.2 shows application of the newly introduced concepts and patterns to
implement the domain components of the SOLEIL framework proposed in the previous chapter.
In Section 5.3 we describe our prototype implementation of the HULOTTE framework. In Sec-
tion 5.4 we revisit our motivation scenario to illustrate applications of the concepts proposed in
this chapter. Finally, a summary of this chapter is given in Section 5.5.

5.1 HULOTTE Framework

The goal of this section is to extend the real-time component model from chapter 4 to provide suf-
ficient concepts to design and implementation of domain components. Therefore, in Sect. 5.1.1
we propose extensions to our model intended to refine semantics of domain components. The
enriched model is divided into two levels: whereas the core level represents concepts addressed
in the previous chapter, the platform level is dedicated to domain components and introduce con-
cepts that will be used to their refinement. The key motivation when refining the model is to

68

5.1. HULOTTE Framework

provide sufficient abstractions while keeping simplicity of the concepts manipulated by func-
tional component developers.

Second, in Section 5.1.2 we introduce the architecture refinement process. We define architectural
patterns that are specifically defined to describe manipulation and application of the platform-
level concepts. Consequently, the architecture refinement process defines how framework develop-
ers refines the application architecture through these architectural patterns.

5.1.1 Generic Component Model Extensions

We show the extended metamodel in Fig. 5.1. The metamodel is divided into two levels. The
core level corresponds to the metamodel introduced in the SOLEIL chapter (Fig. 4.1), however,
only the concepts relevant for this discussion are preserved. The platform level introduces the
concepts which are used to refine domain components. The important aspect to highlight is
that these concepts are hidden from functional component developers and final users of domain
components. We further describe the concepts of the platform level in more details.

Component
1 « Interface
wraps 4 ﬁ& Core
boundTo Level
Primitive Composite
\ Component Component Binding
Application™ A
Developer \“--—._, Domain
Component
isWrapped | Platform
Container L
: evel
contains |_‘—1’ Non-Functional
Framework 1 Component
Controller
Developer P contains | *
Interceptor
Chain 01—): Interceptor

Figure 5.1: Component Metamodel and Domain Component

Component-Oriented Container

The container paradigm, introduced in Section 3.1.2, is the key concept used at the platform
level. A container is a composite component wrapping every component in the application and is
composed of a set of controllers and interceptors, it implements domain-specific services required
by components. In Fig. 5.2, we first define Container, line 1, and assign one to every component,
line 13.

We consequently develop our own set of containers for functional components which are
specially designed to manage and implement domain-specific concerns in the application.

Functional and Control Interfaces

Furthermore, we distinguish functional and control interfaces, as depicted in Fig 5.3 and defined
in Fig 5.2, line 38. Whereas functional interfaces are external access points to components, control
interfaces are in charge of some domain-specific properties of the component, for instance its life-
cycle management, or the management of its bindings with other components. Control-interfaces
thus provide access points to container functionality that is hidden at the functional level to avoid
confusion with the functional implementation.

69

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

1 sig Container extends‘Composne ! 24 sig InterceptorChain extends Composite {

2 content : one Component
. . 25 owner : one Component
3 chains : set InterceptorChain - .
26 inInterface : one Functionallnterface
4 controllers : set Controller .
27 outlnterface : one Functionallnterface
5 controllnterface : set Controllnterface
61 1 28 trapInterface : one Controllnterface
. 29
7 controllnterfaces in Externallnterface . .
; 30 subComponents in Interceptor
8 content, chains, X
. . 31 inInterface , outInterface, traplInterface
9 controllers in this.subComponents . .
32 in this.externallnterfaces

10 } 5 |
12 sig Component {

. . 35 sig Controllnterface, Functionallnterface
13 container : one Container

36 extends Interface {}

5 38 fact Interfaces f{

16 39 Interface = Functionallnterface
17 sig Controller extends Composite { -

40 + Controllnterface
18 controllnterfaces : set Controllnterface al
19 content : lone PrimitiveObject »
20 owner : one Container

43 sig Interceptor extends Component {
» 44 owner : one InterceptorChain
}

23 sig Non—FunctionalComponent extends Composite {} ©

Figure 5.2: Platform Level Concepts Specified in Alloy

Interface
. (0 Domain
Container Binding Component
refines & 1% 1.7 & refines 1 rI refines
isRefinedBy ¥ 1 1 Y isRefinedBy 1 VY isRefinedBy

Control Functional Container |g@— Interceptor Non-Functional
Interface Interface Composite [{ 4 * Chain Component

Figure 5.4: Architectural Patterns

Figure 5.3: Functional and Control In-
terfaces

Component Controller

Controllers are, together with interceptors, basic building units of containers, they implement
domain-specific concerns and can be accessed by control interfaces. The control components
incorporated in container can be divided into two groups. First, the controllers which are specific
to the domain-specific needs of the component - e.g. asynchronous communication controller
or RTS]-related controllers. These components have to be present in the membrane since they
implement non-functional logic directly influencing components” execution. The second group
of controllers represent units which are optional and are not directly required by the component’s
functional code, e.g. Binding or Lifecycle controllers.

InterceptorChain

The InterceptorChain, in Fig 5.2 line 24, concept is defined in order to develop more ad-
vanced intercepting logic in interceptors while still achieving separation of concerns. Therefore,
InterceptorChainis an element managing a chain of interceptors deployed on a specific func-
tional interface. Each interceptor in the chain symbolizes one domain-specific concern which
reflects communication in situ (e.g. monitoring) or modifies communication (e.g. adaptation of
method call parameters). The presence and position of the interceptor in the chain is influenced
by properties of the modeled binding and also by a presence of other interceptors.

This representation allows us to build bindings easily with different functionalities — by se-
lecting relevant interceptors and their order in according to specified properties. The proper-

70

5.1. HULOTTE Framework

ties, according to which is the InterceptorChain component constructed, are the properties of the
Binding entity, defined in the SOLEIL metamodel in Fig. 4.2. Furthermore, the division of the
InterceptorChain architecture into separated interceptors permits handling real-time specific
properties separately in dedicated interceptors.

Following this motivation, also each interceptor can be either primitive or composite.
Furthermore, interceptor components can be interconnected by dedicated control interfaces called
TRAP, thus allowing centralized management of strategies for interception mechanisms.

Development Roles

We have divided our model into two levels in order to clearly distinguish the defined concepts.
Consequently, we also distinguish development roles that manipulate these concepts: application
developer and framework developer.

The role of the application developer is to create and implement functional components and to
specify domain-specific requirements by deploying functional components into domain compo-
nents. While the application developer is aware of the semantics behind domain components,
he does not provide their implementation and therefore can fully focus on functional concerns
of the application. To give an example, a domain specific component ThreadDomain can spec-
ify execution context (an executing thread and its properties) of an active functional component,
however, the application developer does not need to know how these properties are enforced at
runtime.

The role of the framework developer is to define and implement semantics of domain compo-
nents. First, his responsibility is to define domain components according to the needs of appli-
cation developers and to define the rules constraining application of domain components at the
functional level. Afterwards, the framework developer designs and implements semantics of do-
main components using the platform-level concepts — see Fig. 5.1, and the architectural patterns
that we introduce in Sect. 5.1.2.

In the remainder of this chapter we focus on the tasks performed by the framework developer,
while the role of the application developer was specified in the SOLEIL framework (Section 4.3).

5.1.2 Architecture Refinement of Domain Components

The key role of the framework developer is therefore to design and implement semantics of
domain-specific components. When considering domain components and the functionality they
express, they impact three core architectural concepts: Functional Component, Binding, and Do-
main Component. Meaning that architecture and consequent implementation need to be refined
in order to implement corresponding domain-specific semantics. However, we want to achieve
this while still off-loading complexities from application developers. Therefore, to implement
domain components, we introduce a process where each domain component is refined by cor-
responding platform concepts. These architectural changes are transparent for the application
developer. We further refer to this phenomenon as architectural refinement of core-level concepts
through the platform-level concepts.

The main objectives of the architectural refinement process are: (i) to fully-evolve the high-level
concepts of domain components into artifacts that will represent these concerns at the architec-
tural level; (i) to consequently compose these artifacts with the functional concepts into a fully-
evolved view of the system called platform architecture which is suitable to be transformed into a
desired target implementation (e.g. RTS]).

Therefore, we distinguish the following three types of the architectural refinement process:

e Functional Component Refinement. The target of the refinement process is a functional
component. To implement the domain-specific concerns according to domain component
that encapsulate the functional one, we are obliged to modify the container architecture
of this component. Usually, we introduce a set of controllers and interceptors that will
implement these domain-specific concerns.

71

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

¢ Binding Refinement. The target of the refinement is the binding between functional com-
ponents. This corresponds to a case when a domain-specific concern introduces special
requirements on this binding (e.g. logging, broadcast communication management). To
guarantee them, we refine the binding with container interceptors presented either at client,
server, or on both sides of the binding.

e Domain Component Refinement. The domain component itself is refined to be present
also in the refined architecture. This case is different from the previous two where do-
main components are represented in the containers of functional components. Here we use
platform concepts to represent the domain component as a composite component in the re-
fined architecture - Non-FunctionalComponent. A specific composite component with
a dedicated container architecture is deployed to enforce domain-specific concerns over its
subcomponents.

In the following section we therefore define three architectural patterns that address the chal-
lenge of the architectural refinement and allow framework developers to properly develop im-
plementations of domain-specific concepts.

Architectural Patterns

The key purpose of the architectural patterns is to allow framework developers to implement
semantics of domain components and thus to refine the application architecture in a systematic
and programmatic way. The patterns are designed to implement any type of a domain-specific
service that can potentially be reflected by a container. They therefore define architecture invari-
ants, design and composition rules for the platform-level. Fig. 5.4 presents three architectural
patterns: ChainComposite, ContainerComposite, and Non-FunctionalComposite, and
we further clarify them.

ChainComposite Pattern is defined as a composite component, the subcomponents of such
a composite are interceptors. Within the ChainComposite pattern, the interceptor components
are bounded via their incoming and outgoing interfaces in an acyclic list, as depicted in Fig. 5.5a.
Here, the IN and OUT interface signatures of the interceptors are not necessarily identical; this
allows developers to identify interceptors as adaptors of the intercepted execution flow. The inter-
ceptor itself could be a composite component allowing framework developer to implement com-
plex intercepting mechanisms. The ChainComposite component at the platform level refines
a binding specified at the functional level, thus the pattern is similar to the concept of connec-
tor [].

ContainerComposite Pattern, initially introduced in [], is also specified as a compos-
ite component and reifies a container of a functional component. As defined in Fig. 5.2, it is com-
posed of ChainComposite components and Controller components. The ContainerCompo-
site patternis applied on a primitive (see example in Fig. 5.5b) or composite functional compo-
nent as follows:

o A set of Controller components implementing various domain-specific services influencing
the whole component (e.g. lifecycle management, reconfiguration management) is com-
posed in the container. Moreover, the control interfaces are provided to allow an access to
these services from outside of the component.

e For each interface of the functional componenta ChainComposite patternisused. Chain-
Composite components can be interconnected by TRAP interfaces with the controllers,
thus allowing centralized management of strategies for interception mechanisms.

Non-functional Composite Pattern is the final construct for manipulation of domain-specific
concerns at the implementation layer. As illustrated in Fig. 5.4, the pattern is used to refine a do-
main component itself. By using this pattern, we deploy a composite component corresponding
to the domain component defined at design time. Consequently, a container of such compo-
nent contains controllers and interceptors, which superimpose domain-specific concerns over

72

5.1. HULOTTE Framework

n "L'[

== TRAP interface

S ——— ChalnComposite
Interceptor I I ln.(‘erceptorll .[Inlerceptor pouT
1 2 n

(a) ChainComposite Pattern.

Legend
-r T " D . External Interfaces
. _{ -— f-¥- == k4 Internal Interfaces
..... |\ Controller H -b'-: Controller
v 7

—
|

- *h\ Composite

Control Interfaces

g -

T
o,
Al \ Chain D Component
s Content b Compocnaiiit J Content
Compaonent 3

LT Component
¥ Container

I A Component
1 { Controller

Execution
Flow

——

(b) ContainerComposite Pattern
b et

T

7 \
' |||I Chain *’J
- Sub -7 - L _ Composizit
_ Component

-t

" Controller W 'PI': Controller |
o - & -

- iy G,

(c) Non-functionalComposite Pattern

Figure 5.5: Architectural Patterns

the subcomponents of this component. Thus we manage domain-specific concerns of a group of

functional components.

Therefore, the domain-specific services are not deployed into containers of functional com-
ponents but we group them in a container of a special composite component present at runtime.
We illustrate this idea in Fig. 5.5b.

Architectural Refinement Process

Once we specify the functional architecture containing domain components and also correspond-
ing architectural patterns we employ the architecture refinement process — a process where the core-
level architecture specified by the application developer is refined into an architecture where both
functional architecture and runtime platform architecture are designed using the platform-level
concepts. As a result of this process we obtain a platform architecture where both functional and
domain-specific concerns are represented. The crucial point of the refinement process is therefore
the propagation of domain-specific concerns into the architecture.

The important feature of the architecture refinement process is its variability and extensibility
to allow employing different refinement strategies as well as support for new domain-specific
components, validation and optimizations. All properties stated above are reflected in the imple-
mentation of the architecture refinement process called HULOTTE, described in Sect. 5.3.

73

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

5.2 Implementing SOLEIL with HULOTTE

In this section we apply the architecture refinement process to implement the basic concepts of the
SOLEIL framework. Our motivation remains the same: While the functional code is implemented
in the content part of the component, the real-time concerns are represented by the platform-level
concepts in the containers.

For each component type of the SOLEIL framework we use the appropriate architectural pat-
terns to design its container. Furthermore, we re-factor RTSJ-code and RTSJ-compliant patterns
and we implement them in the controllers and interceptors of containers.

In this section we thus employ architectural patterns and formalizations in Alloy and show
how we benefit from these technologies in the architectural refinement process. On the concrete
examples of refining the SOLEIL framework concepts we show how we mitigate complexities of
real-time Java development while still respecting the separation of concerns.

5.2.1 Active and Passive Components

Based on the definition of active component, Section 4.1.2, active component contains a thread of
execution. Therefore, the goal of the container of the active component is to manage this thread.
In Fig. 5.6 variant a, we present an architecture of such a container. The ActivityController
is used to manage the thread of execution and instructs the ActivityInterceptor to enter
the functional part of the component through the Runnable interface. Active Interceptors im-
plements a run-to-completion execution model* for each incoming invocation from their server
interfaces and are configured by the properties defined by the enclosing ThreadDomain compo-
nent.

- ——

g B Activity \
Container Y i 1" Activi

1 Container y

_Cfmr ‘1”?' @ '\ Controller)

i 1 (1
—) 1 £]
1 \ 1
! Acllwty \ Producer | “activit ty | \ pmduoe,
1 l+ {
| \ mercepror ¥t Y L__l_”if’;ei_”g’__ T
p; =

(b) Sporadic Active Component

(a) Periodic Active Component

Figure 5.6: Active Component Types

Note that although the Runnable interface is provided by the content part of the component,
it is not exposed as an external interface. Its role is to provide an exact separation between func-
tional execution of the component done in the content, and management of the execution context
in the container.

Furthermore, we distinguish periodic component — Fig. 5.6 variant a, and sporadic compo-
nent — Fig. 5.6 variant b. Whereas the management logic of periodic component is strictly given
and implemented in the ActivityController, execution of the sporadic component is de-
pendant upon external events or other activity components. Therefore, sporadic component can
provide an interface, as illustrated in the figure. However, only asynchronous communication is
provided, we discuss specifics of implementing asynchronous communication in Section 5.2.4.

In Fig. 5.7 we present a simple implementation of the ActiveInterceptor for a periodic
component, as we can see, the Runnable interface is used here to provide a unique entry point
for the component (as specified by the SOLEIL profile, in Section 4.3.3).

In Fig. 5.8 we present an implementation of the Act iveInterceptor for a sporadic compo-
nent. In this case, an event is absorbed on the incoming interface IService of the interceptor, the
active interceptor switches the execution context into the context of its own thread, line 9), and
calls the IService interface provided by the implementation of the component. In the example,

4This execution model precludes preemption for active components.

74

5.2. Implementing SOLEIL with HULOTTE

1 public class Activelnterceptor
2 implements IService {
3 Service iService
4
5 void service(Data d) {
1 public class Activelnterceptor { (; :ﬁ?;aflzi:itt??Fa(d);
2 Runnable iActiveRunnable; s | : .
s void .execute() { 9 Thread thread = new Thread (..., runnable);
4 while (true) { "
5 1Ac_t1veRunnab1g.start OF 11 Runnable runnable = new Runnable {
6 waitForNextPeriod ();
12 Data d;
7 } .
| 13 void run() {
8 14 iService.service (m);
o} 15 }
16 void setData(Data data) {
17 d = data;
Figure 5.7: ActiveInterceptor Imple-
mentation for Periodic Active Component

Figure 5.8: ActiveInterceptor Imple-
mentation for Sporadic Active Component

the interceptor’s thread is a regular Thread for illustration, in a general case the interceptor can
be generated with the type of the thread that is required.

Protected Component

In general, to implement passive components, no architectural patterns are required. However,
we distinguish a specific type of a passive component - Protected Component. Such com-
ponent provides concurrently more interfaces and guarantees that concurrent requests on these
interfaces will be proceeded in accordance to a pre-defined synchronization logic.

' Synchronization : Container
Controller
onimici]
e T !
F=1
i
sl il LT a—" - ’ ThreadDomain |
1 == ST \ _ Controller _ _!
'H __+ Synchronization '+ | e
& \ Interceptor e
| _ooooEEERee) - 2> ~
1 Producer
rtert } Active Active Active
e \ Component Component || Component
Bt — 1
i * :' Synchronization Yy | .,
| \ Interceptor \. J
R e e)

Fi .10: Th D in Refi
Figure 5.9: Container Architecture of Protected igure 5.10: ThreadDomain Refinement

Component

To meet this requirement, we introduce SynchronizationController and Synchro-
nizationInterceptor depicted in Fig. 5.9. Their role is to implement the synchronization
logic specified by the application developers. At runtime, each incoming call is intercepted and
reported through the TRAP interface to the controller. Depending on the implemented logic,
the call will be either authorized to continue with its execution in the content part or will be
blocked until the controller decides otherwise. Therefore, many strategies and synchronization
approaches can be implemented in the controller depending on users’ requirements. However,
when using this concept, no synchronization block statement can be used inside the content of
the component since this could lead to a deadlock, as restricted in Section 4.3.3.

The introduction of the ProtectedComponent is motivated by the implementation of the Shared

75

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Scope pattern that we describe in Section 5.2.5.

5.2.2 ThreadDomain Refinement

We refine the ThreadDomain component as a non-functional composite component (using the
Non-functional Composite pattern) in order to manage running threads in the system during the
runtime. We illustrate this idea in Fig. 5.10, the dedicated container contains a ThreadDomain-
Controller thatis connected through a control interface to every Act iveController of each
active component that is a subcomponent of the ThreadDomain component.

Furthermore, instances of the ThreadDomain component take responsibility for bootstrap-
ping of all threads in the system. We centralize the management of the bootstrapping procedures
since this process is nontrivial in the RTS] applications. The complexities of bootstrapping pro-
cess bring the task of initializing threads with various types and execution contexts, moreover,
the allocation context of each thread has to be also respected during its instantiation. However,
thanks to the domain components in the architecture we can exactly identify all the properties
needed to bootstrap a thread and implement them without cross-cutting the functional code

5.2.3 Immortal Memory

We refine the immortal memory as a composite component ImmortalMemory. As a conse-
quence, we are able to refine the services provided by an immortal memory as control com-
ponents which are accessible through provided interfaces. We illustrate the architecture of its
component container in Fig. 5.11. The two services provided by the immortal memory are
ObjectPool and WaitFree Queues, we further address their implementation in more details.

1 public interface ObjectPoollnterface {
ImmortalMemory Component 2 Object get(int poollD, Object obj);
3 void put(int poollID, Object obj);
4 } int createObjectPool (...);
5
ObjectPool Queue 6
’mer’al':f_ ’merfaf 7 public interface Queuelnterface {
______________ 8 Object get();
I’ Object Pool | I'WafrFreeQueuel 9 void put(Object obj);
i | i 1
\ g Serviceny h g Sorvce R 0 Queue createQueue (...)
1}

Figure 5.11: Immortal Memory Container

Figure 5.12: Immortal Services API

Since the resources of the immortal memory are limited, the only solution how to effectively
use them is to reuse objects. This approach is indeed present in many RTSJ-based systems|[1.
To provide an easy-of-use and safe access to shared objects, we refine shared objects as a service
ObjectPool provided by the ImmortalMemory component. The ObjectPool service imple-
mented in the container is depicted in Fig. 5.11. A simple API for the ObjectPool service is defined
in Fig. 5.12 line 1.

The second service provided by the ImmortalMemory component is WaitFreeQueue. The goal
is to maintain and manage WaitFree Queues, which are then used to implement asynchronous
communication between real-time threads of different types and priorities. The service pro-
vides an access to WaitFreeWriteQueue and WaitFreeReadQueue, as defined in Section 2.2.1. The
WaitFreeQueue service is implemented in the container and is depicted in Fig. 5.11. API for the
WaitFreeQueue service is defined in Fig. 5.12 line 7.

5.2.4 Cross-Thread Communication

When modeling a RTS] compliant binding between active components from different Thread Do-
main components, queue communication and Scope Sharing concepts can be used, as restricted by

76

5.2. Implementing SOLEIL with HULOTTE

IService interface

& 3 '
\
pasns 1
] e B
gy Active | | Active I|-\ 3
" swb 1| |1 seleton | .
~q-- gl L
. T
T
L _ l.getObject) 1_ _ _ _ _ "= 1 14. returnObject()
! 2. writeObject() 1 3. readObject() |
L ———————————— T ————————— -
i ObjectPool Interface x. Queue Interface
;' = Object Pool 1 llr ‘WaitFreeQueue |
\ . Sevice ! _ Service !

Figure 5.13: Cross-Thread Communication

1 fact WaitFreeQueues_ApplicationRules {
all a,b : Active {
if isAsynchronousBinding(a,b) {
if getThreadType(a) == getThreadType(b){
if getPriority (a) > getPriority(b)
setWriteFreeQueue (a,b)
if getPriority(a) < getPriority(b)
setReadFreeQueue(a,b)
if getPriority(a) == getPriority (b)
// can mnot happen here

2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18

}
if isBiggerType(a,b)
setWriteFreeQueue(a,b)
if isBiggerType(b,a)
setReadFreeQueue(a,b)
}

}
}

// from a to b
pred isAsynchronousBinding

22 (a,b: ActiveComponent) {

23 one b: Binding | {

24 b.client in a.externallnterfaces
25 b.server in b.externallnterfaces
26 b.type = Asynchronous

27}

28 }

29 fact DefiningPoolPatternApplication {
30 all a,b : Active {
31 if isAsynchronousBinding(a,b) {

32 if a,b in ImmortalMemory.”subComponents
33 useObjectPoolPattern[a,b]

34 if getMemoryArea(a) != getMemoryArea(b)
35 useDeepCopy (a,b)

36 }

37}

38 }

pred useDeepCopy[a,b : ActiveComponent] {

one b: Binding | {

42 b.client in a.externallnterfaces
43 b.server in b.externallnterfaces
44 b.type = Asynchronous

45 DEEP_COPY in b.atributes

46 }

47 }

48

19 // see Appendinx A for
the remaining predicates

50 //

Figure 5.14: WaitFreeQueue and ObjectPool Formalization

1 class ActiveSkeleton implements IService {
Queue queue = ImmortalMemory . getQueue (ID);
boolean run = true;

class ActiveStub implements IService {
Queue queue = ImmortalMemory.getQueue(ID);
public void service(Object data) {
queue. write (data);

}

}

IService iService;
public void service ()
while (run) ({
queue. waitForData ();
Object data = queue.read();

{

2
3
4
5
6
7
8
9

iService.service (data);

Figure 5.15: Active Interceptors Implementations

RTS] and specified in Fig 4.7. In this section we will focus on queue communication and we will
address the scope-sharing concept in the next section.

77

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

In Fig. 5.13 we illustrate the container architectures of two active components having non-
equal types and priorities. We have already defined that such communication must by asyn-
chronous, in Fig. 4.7. Furthermore, in Fig. 5.14 we formalize how to implement this communica-
tion according to the RTS] rules defined in Section 2.2.1. Depending on the properties of each
active component we define if the WaitFreeWriteQueue or WaitFreeReadQueue will be used, line 1.
Consequently, as the queues are going to pass objects between the active components, we have to
formalize this communication since it could violate RTS]J rules in case that we are crossing mem-
ory scopes, line 29. Therefore, when communicating withing the immortal memory, the object
pool should be used, line 33, otherwise we recommend the deep-copy pattern, line 35.

To use the communication queues properly and to shield developers of functional compo-
nents from dealing with the WaitFreeQueues, we hide the appropriate implementation in the
containers of each active component. We deploy special stubs and skeletons implemented in
container interceptors. From these interceptors we connect to the WaitFreeQueue service to obtain
references to each side of the communication queue. We demonstrate implementation of these
interceptors in Fig. 5.15.

5.2.5 Cross-Scope Communication

In this section we implement the cross-scope communication rules introduced in Section 4.2.4.
Our simple goal is to leave the functional code unmodified and to implement the specific cross-
scope patterns in the interceptors. These interceptors are deployed on the bindings that cross
different memory scopes, their implementation depends on the design procedure choosing one
of many RTSJ] memory patterns [, ,].

Container

Figure 5.16: Memory Scope Component - Interceptors

1 class InterceptorRunnable implements Runnable {

2 Data input, result; 1 class MultiObject implements Runnable {
3 IService iService; 2 Data input;

4 void setData(Data data) { 3 IService iService;

5 input = data.deepCopy (); 4 void run() {

6) 5 input = input.deepCopy ();

7 6 iService.service (input);

8 void run() { 7}

9 result = iService.service (input); 8}

10 } 9

1 10 class MultiScopelnterceptor implements
12 Data getData() { 11 IService {

13 return result; 12 ScopeMemory parentScope;

14 } 13 Data input;

15 } 14

16 15 MultiObject multiObject;

17 class MemoryScopelnterceptor 16

18 implements IService { 17 public MultiScopelnterceptor () {
19 ScopeMemory scope; 18

20 InterceptorRunnable intRunnable; 19}

21 public Result service(Data input) { 20

2 intRunnable . setData (input); 21 public void service(Data input) {
23 scope.enter (intRunnable); 22 parentScope . execInArea (

24 return intRunnable.getResult (); 23 multiObject.setData (input));

Figure 5.18: MultiScope Interceptor Imple-
mentation

Figure 5.17: Memory Scope Interceptor Im-
plementation

78

5.2. Implementing SOLEIL with HULOTTE

—

Container

T T L _ _

§ 3
\ —— o . 1
1 \
Component bll\ HandOff |
! e 4
L e i

Figure 5.19: HandOff Pattern Implementation Schema

1 class HandOff implements Runnable { 17 class HandoffInterceptor implements
2 IService iService; 18 IService {

3 Data input; 19 ScopeMemory parentScope;

4 MemoryScope mem_b; 20 Bridge bridge;

5 void run() { 21 Handoff handoff;

6 iService.service (input) 22 Servicelnterface iService;

7 } 23

8} 22 public HandOffInterceptor () {

9 25

10 class Bridge implements Runnable { 2%)

11 MemoryScope mem_b; 27

12 HandOff handOff_; 28 public void service(Data input) {
13 void run() { 29 handOff.setData (input);

14 memb_b. enter (handOff_) 30 parentScope.executeInArea (bridge);
5) a1}

16 } 32 }

Figure 5.20: HandOff Interceptor Implementation

The cross-scope pattern is the basic pattern for a cross-scope communication. This pattern
targets cases when a communication from a parent to a child scope is needed. To implement
this pattern, we introduce MemoryScopeInterceptor (see Fig. 5.16) that is deployed on every
binding crossing different memory areas and is contained at the server side. A code snippet from
Fig. 5.17 shows implementation of the interceptor — line 17, that manages entering and leaving
of the memory scope and uses a simple deep-copy pattern for returning results from the scope,
line 13.

The goal of the multiscope pattern is to guarantee a transition of the data from a child scope to a
parent scope, therefore a correct switch of the execution context between two scopes is the crucial
task. In Fig. 5.18 line 10 we therefore show implementation of the pattern in our approach. The
implementation shows that flow of the intercepted call is first changed to a corresponding par-
enting scope - line 22, and then from a proper scope we call the functional i Service.service
method - line 6.

The handoff pattern — a more sophisticated solution of cross-scope communication handling
is demonstrated by the Handoff Interceptor from Fig. 5.19. We employ the handOff pat-
tern [] to store data in a scope while still operating in the original one. Fig. 5.20 shows a
code snippet of the HandOffInterceptor implementation. A direct communication between
two sibling nodes a and b is not possible because of the single parent rule. The hand-off algo-
rithm therefore switches first from the scope a into the parent scope - line 30, and from this scope
enters the scope b - executing in class Bridge, line 14. Finally, having the allocation context of
the scope b, we performe a deep copy of the data and run the requested method in the class
Handoff, line 6.

Scope Sharing

Scope sharing can be applied only in the RTS] compliant cases. A shared scope must not violate
the single parent rule, therefore the communicating components need to be allocated in the same
scoped memory. Thanks to the RTS] concepts in the component model, this condition can be
easily verified from the architectural model of the system.

Such sharing is illustrated in Fig. 4.11. Here, we are able to verify at design-time whether this
sharing is compliant with RTS]. Furthermore, we show a container design of a component in the

79

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Container | Synchronization :
\ Controller]

(T T T T T T L T]
.~ | e e ,—--:l'-,-_--‘ ! Component :r\
“H | Memory Scope H Synchronization ._' | c I"\.. ,-"
\"h Interceptor “H Interceptor "I-I'JI =

Figure 5.21: Shared Scope Component

shared scope, Fig. 5.21. To implement it, we use the cross-scope pattern designed previously and
also we need to use the concept of protected component.

5.2.6 Fractal Control Layer

T] T T
o “*ﬂ , -*_‘ _¥_
|Lc¢:":scr|—>h00mp~|-l , nel scl
et (B = = T s WEEE o L
'-_gn_'__"u -C-;:---—I
= e - | ain G
'HJ,‘ _Cgrrlpgsi_te_/' ! Composite ’f'-

Figure 5.22: Fractal Control Layer

Apart from the controllers and interceptors presented above, we introduce a basic set of con-
trollers that is provided for every functional component in the system. These components are
inspired by the Fractal component model []: five controllers are provided, for manag-
ing the lifecycle - LifecycleController (LC), the bindings - BindingController (BC), the
component name - NameController (NC), the super components - SuperController (SC)
and the component - ComponentController (Comp).

5.3 HULOTTE Framework Implementation

This section is divided into two parts. First we describe implementation of the HULOTTE frame-
work [, ,] — an extensible tool-set that we have developed to implement
the architecture refinement process. However, rather than to implement the whole process in a
single transformation step that can be error-prone and hard to extend, we employ a step-wise
refinement process [] in order to refine the high-level concepts in our architecture gradu-
ally in several stages. This technology allows framework developers to easily modify and extend
this process with new domain-component definitions and semantics. Consequently, we employ
methods of generative programming to compose functional code implemented by the application
developer with the runtime platform implementation.

Second, in Section 5.3.6, we discuss the framework in a more general perspective envisaging
its application as a metaframework used to develop domain-specific component frameworks.

80

5.3. HULOTTE Framework Implementation

5.3.1 HULOTTE Architecture

To develop the framework, we have applied the technology for development of extensible tool-
sets introduced in []. HULOTTE is thus developed purely using CBSE paradigm allowing
framework developers seamless extensions towards different refinement strategies. The HU-
LOTTE framework, depicted in Fig. 5.23, consists of three main units — front-end processing a
description of a functional architecture stored in ADL, middle-end responsible for a step-by-step

architecture refinement, and backend which serves as a target domain specific implementation
generator.

4 Refinement Stages D 5 Particular Refinement Transformation >
‘(@ XML files § -
1 Component Implementation Interface
5 I Translation Translation Translation
T u Translator
>._§< Domain Domain
A Component DC2 Component DC1
a em f ~\ Translator Component Translation Translation)
' Platform Builder | %
-
E&h‘:'JF moﬁms 5 (Architectural Patterns Initialization Process)
ava files | o
: £ Validat Interceptor Component Bquers
™ alidator
> 45 | (deraur 39 De1 pcz)
= !
JAVA Optimizer |} | { MainBuilder Controller Gomponent Bunlders
o N 1 1
— 1 |\ Dispatcher (default Bé DCH DC2)
j l: T \
[/ e ©| Deployment \ Components Content Generatars
] X i
[.T‘:'.\ files E code generator ,.l (default B@ DC1
. I 1
G A | Architectural Patterns Finalization F’rocess
FS: Executables ‘ «

Generic Hulotte Domain-Specific
Process Component Process Component

Figure 5.23: Overview of the Internal HULOTTE Implementation Structure

The motivation for decomposition of the process into three independent units is to sepa-
rate responsibilities and concerns between the transformation steps. The front-end allows us

to process architectures represented by different notations (e.g. FRACTAL-ADL [

], UML
ACME |

]) and to transform them into an independent internal representation. Conse-
quently, the middle-end, executing the architecture refinement process, is independent from the
architecture description format. Finally, the back-end permits generation of different types of
target implementations according to deployment requirements (in a more general sense this ap-
proach is not limited to RTSJ, but can be applied for e.g. C for embedded devices or Java for

enterprise applications). In the remainder of this section we highlight interesting issues of each
part of the HULOTTE framework.

5.3.2 Front-end

Front-end implements the translation layer that proceeds an architecture description — in our

case given in an extended FRACTAL-ADL (we illustrate such architecture in Appendix C), and
transforms it into an internal EMF-model [] based representation.

The translation process gradually proceeds ADL artifacts (component, interface, domain com-
ponent, binding) and for each applies a dedicated translation component responsible for extract-
ing the information and building an appropriate representation in the internal model. The trans-

81

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

lation process can be extended by appending a new translator component. The new translator
typically reflects a domain-specific extension of ADL (e.g. in Sect. 4.2.5).

5.3.3 Middle-end

Middle-end is the central part of the HULOTTE framework and implements the refinement pro-
cess. Its task is to process the architecture description in the form of the EMF model produced by
the front-end, apply defined architecture refinements — creating, connecting, or merging model
elements according to employed transformations. Internally, the middle-end is composed of
three processing units —PlatformBuilder, Validator, and Optimizator.

PlatformBuilder is responsible for the model refinement and consists of a chain of component
builders (for implementations of interceptors, controllers, and components), illustrated on the
right side of the Fig. 5.23. where each chain participates in the refinement process. From the
builders the runtime platform components are instantiated either by loading definitions from
an off-the-shelf component library or programmatically, via the high-level API provided by the
framework. The selection and execution order of chains is controlled by MainBuilder Dispatcher
that recursively explores the platform architecture and applies appropriate builder chains. More-
over, refining the internal structure as a chain of ComponentBuilders encourages extensibility of
the whole process, since a new domain-specific builder can be easily introduced. As we can see
in Fig. 5.23, except the default builders we can define e.g. DC1, DC2 builders that correspond to
specific domain components.

Validator verifies that resulting platform architectures are in conformance to the architectural
constraints and invariants of domain components. The task is not only to verify whether the
architectural patterns were applied correctly but also to assert that domain components were
specified with respect to their constraints (e.g. to arbitrarily apply two different domain compo-
nents over the same functional component is sometimes not meaningful, see the Limitations of
the Approach in Section 6.4).

Optimizator introduces optimization heuristics in order to mitigate the common overhead of
component-based applications. The heuristics focus on reducing interceptions in inter-component
communication which usually causes performance overhead, and on merging architecture ele-
ments in order to decrease memory footprint. Moreover, since a complete architecture of the
system is available at this stage, additional architecture optimizations, identified in [], can
be introduced while still being independent from the target domain.

5.3.4 Back-end

Back-end part of the framework is also highly configurable in order to reflect current target do-
main and chosen implementation language. In the case of our implementation of HULOTTE, the
back-end is a collection of Java code generators generating Java classes from particular model
elements. As well as the rest of our approach, the back-end is also extensible to employ specific
code optimizations.

Taking into account all the constraints for real-time and embedded systems, we can conclude
that there are several reasons to perform optimizations at development time rather than run-
time []: This allows composition tools to e.g. generate a monolithic firmware for the device
from the component-based design and by this achieve better performance and better predictabil-
ity of the system behavior. It also enables global optimizations: e.g., in a static component com-
position known at design time, connections between components could be translated into direct
function calls instead of using dynamic event notifications. Finally, verification and prediction of
system requirements can be done statically from the given component properties.

5.3.5 Soleil - Runtime Platform Instantiation

We further apply the HULOTTE approach to the SOLEIL framework in order to generate runtime
platform corresponding to the real-time architecture specified by the designer and refined by the

82

5.3. HULOTTE Framework Implementation

architecture refinement process. The goal of this back-end process is to generate Java source code
including container source code, a framework glue code, and a bootstrapping code.

Moreover, our tool offers different generation modes corresponding to various levels of func-
tionality, optimization, and code compactness:

1. SOLEIL This default mode generates a full componentization of the runtime platform. The
RTS] interceptors and the reconfigurability management code are therefore implemented as
controllers and interceptors, within the containers. The structure of the latter is also reified
at runtime, as well as the ThreadDomain and MemoryArea composite components. This
generation mode provides a complete introspection and reconfiguration capabilities of the
component framework at the functional and at the membrane level.

2. MERGE-ALL In this generation mode the implementation of functional component code
and its associated membrane are merged into a single Java class. Therefore, it generates
one class per each functional component defined by the developer. Since the number of
Java objects in the resulting infrastructure is considerably decreased, this mode achieves
also memory footprint reduction. In comparison with the SOLEIL mode, it corresponds
to a first optimization level where several indirections introduced by the container archi-
tecture are replaced by direct method calls. As component container structures are not
preserved at the runtime, the MERGE-ALL mode does not provide reconfiguration capabil-
ities of the container level. However, these capabilities are still provided at the functional
level. The source-to-source optimizations performed by the generation process are based
on Spoon [], a Java program processor, which allows fine-grained source code trans-
formations.

3. ULTRA-MERGE The most optimized mode achieves that the whole resulting source code fits
into one unique class. Moreover, the generated code does not preserve the reconfiguration
capabilities anymore. The resulting infrastructure is therefore purely static. It exclusively
embeds the functional implementations merged to the code which takes into account the
component activations, the asynchronous communications, and the RTSJ dedicated code.

5.3.6 HULOTTE as a Meta-Framework

In this section, we discuss application of the framework in a more general perspective envisaging
the framework as a meta-framework used to develop Domain-Specific Component Frameworks.
Domain specific component framework (DSCF) is composed of a domain-specific compo-
nent model and the tool support which permit assembling, deploying and executing demanded
applications []. The main goal is to allow developers to address domain-specific chal-
lenges by using appropriate abstractions available already at the component-model level. To
achieve separation of concerns, domain-specific services required by the target application do-
main (such as dedicated memory ares, tasks parameters, security, distribution support or real-
time constraints), in the literature [] referred to also as non-functional requirements, are
usually deployed in the runtime platform composed of a set of custom made containers (used
e.g. in [, ,]). Today, a plethora of DSCFs emerges, addressing a wide scale
of challenges — embedded [] or real-time constraints [,], dynamic
adaptability [,], distribution support [,], and many others.

One of the main benefits expected in using the component paradigm is reuse []. How-
ever, it has been argued [] that the vast, and increasing number of proposals to address
these domain-specific requirements does not encourage reuse, while sharing common concepts
and tooling support. Although the current trend emphasizes generative programming methods []
as cornerstone of software development, generative methods are usually tailored to specific do-
mains and applied in a costly, ad-hoc fashion. This prevents from any reuse or amelioration of
solutions to a framework construction. We however believe that DSCFs share the same concepts
and patterns to their construction and application.

83

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Application Developer Framework Developer
Domain-specific framework

f . A FE
Domain-Specific -‘4
Component =] Runtime Platform Generation
Model

o — > e Process

B\C
Component A
Implementation
& Runtime
Platform

(a) Current Methodology: Using Domain-Specific Frameworks

Generic
Component Model

— D
Component A
Generic framework tool support Implementation
Runtime Platform Generation & Runtime

Process Platform

:ponem A
| Modelwith =“\
|| Domain-Specific _/

Extensions

(b) Our Proposal: Using a Generic Framework

Figure 5.24: Development Methodologies of Domain-specific Component Application

Based on this observation, we envisage a new contribution for the proposed HULOTTE frame-
work — a prototype framework for specification and implementation of arbitrary domain-specific
concerns in a unified way, which can be easily extended towards different application domains.

Domain-Specific Component Frameworks and their Application

Typically, DSCF defines the relevant architectural concepts, called domain-specific concepts , ac-
cording to the requirements of the targeted application domain (e.g. to address the distribution
support or real-time constraints). A recognized methodology of developing DSCF [] is com-
posed of several steps as it is illustrated on Fig. 5.24a. In this case, each component model (step
1) is used to develop functional concerns of the application — functional components. Typically,
functional components encapsulate a business logic of an application.

Afterwards, the framework tool-support is employed to create a runtime platform, in Fig. 5.24a
step 2. The runtime platform is composed of a set of containers [] that encapsulate func-
tional components, and its goal is to relieve the developer from dealing with domain-specific re-
quirements and to implement the execution support. Current trend in developing the runtime
platform emphasizes a generative programming approach. Here, different optimizations should
be employed to mitigate notoriously known problem of CBSE system — performance overhead
(caused e.g. by intercomponent communication). Finally, functional components and the run-
time platform are assembled together to form the resulting application, Fig. 5.24a step 3.

Similarly as in the HULOTTE framework, we distinguish two types of development roles in-
volved in this process — application developer and framework developer. Application developer
is responsible for development of functional components and specification of domain-specific
requirements — in Fig. 5.24a step 1. The role of the framework developer is to design and imple-
ment the runtime platform generation process, and the domain-specific requirements defined by
the application developer — in Fig. 5.24a step 2 and 3.

Developing Domain-Specific Component Frameworks with HULOTTE

Considering the presented process, we can notice that for each domain, a different process is
used. However, the steps 2 and 3 share many similar concepts. Moreover, they are usually
implemented in an ad-hoc manner without any reuse. We therefore propose a new development
process presented in Fig. 5.24b.

As the cornerstone we use a generic component model that is easily extendable towards dif-
ferent application domains, in Fig. 5.24b step 1. Consequently, since all domain specific models

84

5.4. Motivation Example Revisited

share the same concept, a unified approach to runtime platform generation can be employed in
steps 2 and 3. These steps correspond to the Front-, Middle-, and Back-end parts of the Hulotte
framework implementation presented in Section 5.3.1.

Therefore, the Hulotte framework can be also comprehended as a framework, in the literature
also refereed as meta-framework |], composed of high-level tools, methods, and patterns al-
lowing framework developers to generate runtime platforms in a generic way according to concerns
captured by Domain Components. Within our approach, the platform is built using component
assemblies and is based on our generic component model. Moreover, since we are able to reason
about the whole system (functional and platform concerns) using common concepts (compo-
nents, assemblies), various architecture optimizations independent from the target domains can
be introduced, which contributes to better performance of resulting applications.

5.4 Motivation Example Revisited

To illustrate the ideas presented in this chapter, we revisit the SweetFactory motivation scenario
introduced in Section 2.2.3. In Chapter 4 we have discussed this scenario from the perspective
of the application developer, showing how to develop application architecture and implement
functional components. In this section we will continue with this example by addressing the re-
sponsibilities of the framework developer in the HULOTTE framework - implementing semantics
of domain components and automatic generation of the framework glue code.

Therefore, we apply the architecture refinement process to refine the artifacts of the architec-
ture with the platform level concepts. Based on the architecture defined in Section 4.4, we will
focus on functional components and refine architectures of their containers according to domain
components encapsulating them, using the domain component semantics defined in Section 5.2.

ProductionLine and MonitoringSystem Components

As the first step we will refine components ProductionLine and MonitoringSystem, they
are both active components communicating together and the immortal memory is their allocation
context. The complete architecture is illustrated in Fig. 5.25. In the picture we can see active com-
ponents ProductionLine and MonitoringSystem encapsulated by their containers, these
compositions are then deployed in the non-functional components NHRT1, NHRT2, instances of a
ThreadDomain entity representing a NoHeapRealtimeThreads with different parameters.

________ Thread Domain: NHRT1 o Thread Domain:

: ThreadDomain Yy _ _ : ThreadDomain]|'|-- NHRT2
_ Controller _ Controller

= =g

| gl Activity !
% _Controfler P +: Controller ,'

- “p—— "
| Active Y Production [, . Active | e

| Skeleton ! Line 1 S | Active L
---- H '-1.— | Skeleton

1. getObject() L

i_- ObjectPool Interface i Queue Interface
Object Pool \
L A __Service _ I L Service § Immortal Memwy‘

Figure 5.25: ProductionLine and Monitor Architecture Refinement

85

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

Inside the ProductionLine and MonitoringSystem containers, various controllers and
interceptors are present. ActivityController and Activitylnterceptor implement execution model of
an active component. Both of them represent non-functional concepts specific to the Monitoring-
System component. The NHRT1 and NHRT2 components contain both a ThreadDomain con-
troller that implements logic for management of NoHeapRealtimeThread subcomponents.
Furthermore, since the allocation context of these components is the immortal memory, both
of these components are deployed also into an instance of the ImmortalMemory component - a
non-functional component providing various services.

Consequently, we need to refine an asynchronous communication between these two compo-
nents. According to the rules defined in Fig. 5.14, the asynchronous communication will be im-
plemented using a WaitFreeQueue provided by the ImmortalMemory component. However, the
components are operating in immortal memory and therefore there is no need for deep-copying
the objects, we follow the rule from Fig. 5.14 line 29 defining when to use object pools to ef-
fectively recycle the memory. This situation is illustrated in Fig. 5.25 where the ActiveStub and
ActiveSkeleton are both connected to the WaitFreeQueue and ObjectPool services, and implemented
as shown in Fig. 5.15.

Finally, the NHRT1 and NHRT2 components contain both a ThreadDomain controller that
implements logic for management of NoHeapRealtimeThread subcomponents.

Console and AuditLog Components

As the second step we will focus on architectural refinement of the remaining two components
- Console and AuditLog. Since they communicate extensively with the MonitoringSystem
component, we also need to design this communication.

N

i
Scope -
4
’_;cgv; -hl.}_
l ”
| Skeleton | AuditLog
s

i g i
Activity !

| \ Controller ,

s
| Active WY ;
| Skeleton I' Monitor "

! WaitFreeQueue |

‘-l" Activity !
1 Controller ,

ThreadDomain \I Regular

Controller | Thread
Immortal Memory L Service U | @20 ‘-—-——-—--—- -

e

Figure 5.26: AuditLog and Console Architecture Refinement

Considering the Console component, its refinement is simple since it is a passive component
residing in a scoped memory, according to defined rules, we will refine its structure by deploying
a Scopelnterceptor, described in Section 5.2.5, into its container.

The AuditLog component is an active component executed by a regular thread residing on
a heap, however, it communicates with the MonitoringSystem. Therefore, applying the rules
from Figure 5.14 we derive that the asynchronous communication will use WriteFreeQueue with
the deep-copy pattern. Therefore, the resulting architecture can be seen in Fig. 5.26.

86

5.5. Summary

5.5 Summary

In this chapter we propose our approach to implementation of domain components and we fur-
ther employ it in the HULOTTE framework - a toolset for automatic instantiation of runtime exe-
cution platforms (G2.2).

First, we extend the SOLEIL component metamodel with the platform-level concepts that pro-
vide a set of entities used to refine architectures of domain components. Consequently, we iden-
tified architectural patterns that facilitate refinement of these components. Second, we apply the
architectural patterns and the platform-level concepts in order to design and implement RTS]-
specific domain components proposed by the SOLEIL framework.

Furthermore, we develop HULOTTE— a generic framework that uses generative program-
ming methods to instantiate RTS] applications together with their runtime platform. The whole
approach is highly transparent since it is fully based on component-oriented principles, which
allows developers to easily extend the framework with additional domain components.

Finally, we have applied the concepts introduced by this chapter on our motivation scenario.

In the following chapter, we use the SOLEIL and HULOTTE frameworks in three different

case studies, showing the benefits of our approach and evaluating it from different perspectives,
addressing the goal G3.

87

Chapter 5. HULOTTE: A Framework for the Construction of Domain-Specific Component Frameworks

88

Part 111

Validation

89

Chapter

Case Studies

Contents
6.1 SweetFactory i 93
6.1.1 Description L 93
6.1.2 Performance Evaluation 93
6.1.3 RTS] Code Generation Perspective 95
6.1.4 Evaluation 97
6.2 Real-time Collision Detector. 97
621 Description L 97
6.2.2 Current Approaches and Their Limitations 99
6.2.3 RCD Implementation in the SOLEIL Framework 102
6.24 BEvaluation o 104
6.3 Distributed and Ambient Programming in SOLEIL and HULOTTE 105
6.3.1 Distributed Real-Time Programming with SOLEIL 105
6.3.2 Ambient Programming with HULOTTE 109
6.3.3 Evaluation o o 112
6.4 Limitationsofour Approach. 113
6.5 Related Work Comparison« v v v vt v vttt v v vt v n oo 114
6.6 SUMMATIY . . . v v v vttt it et it e ettt et it et it e 115

spanning different domains and challenges. The case studies® will serve both as examples
and validation of the proposed concepts.

The first case study, SweetFactory, is based on the motivation scenario that we have introduced
in Section 2.2.3. The goal of the case study is to validate our approach from the quantitative
point of view. First, we summarize the implementation of the SweetFactory example as it was
conducted through the course of this dissertation, and consequently, we evaluate performance
issues of our framework from various perspectives. Finally, we validate our framework based on
the RTS] metrics [] for code generation. Therefore, this case study confronts our approach
with goals G3.1 and G3.2.

The second case study, Real-time Collision Detector, presents a large real-time Java application
that is well known as a validation case study of many RTS] projects. The goal is to demonstrate
application of the SOLEIL framework in a real-life scenario and thus confront our approach with
goals G3.3 and G3.4.

The third and final case study - Distributed and Ambient Programming in HULOTTE , evaluates
the potential of the SOLEIL and HULOTTE frameworks to be extended towards different domains.

IN THIS CHAPTER we apply the SOLEIL and HULOTTE frameworks in several case studies

5The source codes of the case studies are available at ttp: //adam.lille.inria.fr/soleil/

91

ttp://adam.lille.inria.fr/soleil/

Chapter 6. Case Studies

Therefore, we describe challenges of distributed Real-time Java programming and Ambient Pro-
gramming, consequently we propose a new domain components and show their implementation.
Finally, we demonstrate contributions of our approach on examples.

At the end of this chapter, we discuss specific shortcomings of our solution and compare our
framework with the frameworks presented in Section 3.2.

Contributions

The major contribution of this chapter is the evaluation of the framework from several different
perspectives:

e Performance. As the first contribution, we evaluate performance of our solution. We mea-
sure overhead of our framework comparing to manually implemented object-oriented ap-
plication and consequently, we measure the impact of optimization heuristics that we have
introduced in the framework.

¢ Generic-Programming Evaluation. Since our framework extensively employs code gen-
eration techniques, we evaluate that the generated code and manually implemented func-
tional components form programs that can be easily maintained and are transparent for
application developers. The evaluation is conducted based on the metrics published in

[.

e Real-time Collision Detector. We evaluate our approach on a large-scale application that
is widely accepted in the Real-time Java community. In the case study we show how our
approach mitigates RTS] development complexities by bringing benefits even in large ap-
plications.

o Extendability of the Framework. Finally, we evaluate the ability of the HULOTTE frame-
work to extend towards different application domains. We present challenges of two do-
mains - distributed real-time programming and ambient programming, and show how the
HULOTTE framework can be extended to meet their requirements.

Structure of the Chapter

This chapter is divided into three parts, each dedicated to a case study. Each of the case stud-
ies starts by giving its overview and highlights the key challenges. Afterwards, we apply our
framework and show its benefits. Finally the case study closes with an evaluation. Therefore,
Section 6.1 presents the SweetFactory case study that is focused on illustration of general frame-
work contributions, consequently evaluates both performance and memory overhead introduced
by the SOLEIL framework and finally evaluates the framework from the RTSJ-code generation
perspective.

Section 6.2 describes the Real-time Collision Detector case study. First, we introduce the case
study and consequently show the state-of-the-art approaches used to its implementation. After-
wards, we present solution in the SOLEIL framework and finally compare the benefits of con-
cerned approaches. The case study is therefore focused on implementation of a large system,
evaluating benefits of our approach from the software engineer perspective.

Section 6.3 is dedicated to the final case study - Distributed and Ambient Programming in
HULOTTE. First, it presents Distributed- and Ambient- Programming and their challenges. Con-
sequently, we define according domain components and show how they can be implemented in
the HULOTTE framework. Finally, we evaluate this approach on simple examples to demonstrate
the ability of HULOTTE to extends towards different domains.

After the case studies, we discuss the limitations or the approach identified in the case studies
in Section 6.4. In Section 6.5 we compare the SOLEIL framework with the state-of-the-art RTS]
frameworks. The chapter is summarized in Section 6.6.

92

6.1. Sweet Factory

6.1 Sweet Factory

The Sweet Factory application is based on the motivation scenario presented in Section 2.2.3.
The goal of this case study is to illustrate development of RT Java applications in the SOLEIL
framework, measure the performance of applications implemented in our framework, and fi-
nally validate the applications developed in our framework from an code generation perspective
(using metrics from [D.

6.1.1 Description

The SweetFactory case study [] consists of a production line that periodically generates
measurements, and of a monitoring system that evaluates them. The goal is to notify a worker
console whenever abnormal values of measurements appear. The last part of the system is an
auditing log where all the measurements are stored for auditing purposes. The production line
operates in 10ms intervals, the system must be designed to operate under hard real-time con-
ditions. However, the console and logging part does not superimpose any additional real-time
constraints. Therefore, system is thus composed of parts that must meet hard real-time deadlines
(the production line and monitoring system) and parts that are non real-time (console). Such a
case study represents the best candidate for applying real-time Java technology, since it embraces
real-time and non-real-time demands in one application.

Despite relative simplicity of the case study, it brings many challenges and contains the most
significant challenges in real-time Java programming: hard real-time threads operating with dif-
ferent priorities (production line and monitoring system), a passive service suitable for scoped
memory application (logging), non-real-time part (console), and both synchronous and asyn-
chronous ways of communication. This case study was also used as a running example in this
dissertation. We have described designing of the application in Section 4.4. Consequently, imple-
mentation of the example was discussed in Section 5.4.

6.1.2 Performance Evaluation

The goal of this benchmark is to show that our framework does not introduce any non-determinism
and to measure the performance and memory overhead of the framework. As one of the means
of evaluation, we compare differently optimized applications developed in our framework with
a manually written object-oriented application.

The performance of the component-based software systems is a well known issue []. The
platform infrastructure presented in Chapter 5 is based on the container composition paradigm.
This introduces several indirections in the functional execution flow initially described at the de-
sign time by the developer. These indirections allow developers to superimpose domain-specific
functionalities around functional components, however, they also introduce additional overhead
caused by the traversal of the incoming invocation through the container structure. Our primary
goal when evaluating the framework is thus to measure its overhead in terms of execution time
and memory footprint. Moreover, since the RTS] specifications have been defined to reduce the
unpredictability introduced by the dynamic memory management within the Java Virtual Ma-
chine, we also use the jitter as a measure of the system’s predictability.

In order to employ a standardized and well known form of performance evaluation, the
benchmark is inspired by the evaluation case study presented in the Compadres project [1.

Benchmark Scenario

We measure the execution time of a complete iteration starting from the ProductionLine com-
ponent. Its execution behavior consists of a production of a state message that is sent to the
MonitoringSystem component using an asynchronous communication. The latter is a sporadic
active component that is triggered by an arrival notification of the message from its incoming server
interface. The scenario of this transaction finally ends after invocation of a synchronous method

93

Chapter 6. Case Studies

provided by the passive Console component and an asynchronous message transmission to the
active AuditLog component.

Evaluation Platform

The testing environment consists of a Pentium 4 mono-processor (512KB Cache) at 2.66 GHz with
1GB of SDRAM, with the Sun 2.1 Real-Time Java Virtual Machine (a J2SE 5.0 platform compliant
with RTSJ), and running the Linux 2.6.24 kernel patched by RT-PREEMPT. The latter converts the
kernel into a fully preemptive one with high resolution clock support, which brings hard realtime
capabilities, see [1.

Measurement Collection

The measurements are based on steady state observations - in order to eliminate the transitory
effects of cold starts we collect measurements after the system has started and renders a steady
execution. For each test, we perform 10 000 observations from which we compute performance
results.

Our first goal is to show that the framework does not introduce any non-determinism into
the developed systems, we therefore evaluate a "worst-case" execution time and an average jitter.
Afterwards, we evaluate the overhead of the framework by performance comparison between an
application developed in the framework (impacting the generated code) and an implementation
developed manually through object-oriented approach. Therefore, in the results presented be-
low, we compare four different implementations of the evaluation scenario. First, denoted as 00,
is the manually developed object-oriented application. Then, denoted as SOLEIL, MERGE_ALL,
and ULTRA_MERGE are applications developed in our framework constructed with different lev-
els of optimization heuristics. We refer the reader to Section 5.3.5 for detail description of the
optimization levels.

Results Discussion

The results of the benchmarks are presented in Fig. 6.1. It presents the execution time distribution
of the 10,000 observations processed. Table. 6.1 sums up these results and gives the median of ob-
served times - the range of observations between the minimum and the maximum execution time
observed, as well as the corresponding jitter. Fig. 6.2 presents the memory footprints observed at
runtime.

70 F T T T -

65 -

55 |- _
50 | .
a5 | -
a0 |- 7

B L*‘—-— e 1335
I =] 311

Execution time [microseconds]

| | | |
[s]0] Soleil Merge_All Ultra_merge

Figure 6.1: Benchmark Results: Execution Time Distribution

94

6.1. Sweet Factory

In Fig. 6.1 we show performance results of different variants of SweetFactory application -
00, SOLEIL, MERGE_ALL and ULTRA_MERGE respectively. For each implementation we show a
performance graph showing distribution of the results on a time scale, where each point of the
graph represents the number of measured iterations that finished in a given time. Consequently,
the peak of each graph represents the most frequent time length of the iteration.

: : [KBytes] 100 200 300 400 500
Median | Jitter i : : : : :

(us) (us) 00 576.8 | 280 o
00 31,9 0,457

SOLEIL 33,5 0,453
MERGE_ALL 33,3 0,387 Merge_All 281,5 | -
ULTRA_MERGE 31,1 0,384 Ultra_Merge [2262] |

Soleil S57.7 n

Table 6.1: Execution Time Median and

Jitter Table 6.2: Memory Footprint

Non-Determinism As the first result, we can see that our approach does not introduce any
non-determinism in comparison to the object-oriented one, as the execution time curves of OO
and SOLEIL are similar. Moreover, the jitter is very subtle for all tests. This is caused by the
execution platform which ensures that real-time threads are not preempted by GC, and provides
a low latency support for full-preemption mechanisms within the kernel.

Performance Time The median execution time for the SOLEIL test is 4.7% higher than for
the OO one. This corresponds to the overhead induced by our approach based on component-
oriented containers. However, the performance of the ULTRA_MERGE is comparable to the
manually implemented OO - it is even slightly better since ULTRA_MERGE implementation is
more compact since it removes indirections between objects.

Memory Footprint Considering the memory footprint, SOLEIL consumes 50% (280KB) more
memory than OO. The price paid for generated containers providing RTS] interception mech-
anism. MERGE_ALL, a test introducing the first level of optimizations, gives a more precise
idea of the injected code which provides these non-functional capabilities at runtime: 4.7KB. The
memory overhead purely corresponds to the algorithms and data structures used by our compo-
nent framework. Finally, the ULTRA_MERGE is the most lightweight - even in comparison to
OO, here, the whole applicative code and RTS] interceptors are instantiated within a unique Java
object.

6.1.3 RTSJ Code Generation Perspective

The work introduced in [] investigate fitness criteria of RTS] in model-driven engineering
process that includes automated code generation. The authors identify a basic set of requirements
on code generation process. We further confront our approach and the generation process that
we integrate with this set of code generation requirements.

Therefore, we consult the requirements, give their descriptions and than we discuss how they
are met in the HULOTTE framework. The key generation requirements can be divided into two
groups.

e The Code Generator Validation. In order to be able to place trust on generated code, it is
necessary to validate the generation process. Achieving a code generator easy to validate
follows from meeting three more concrete requirements.

— The Generated Code Should be Compact Usually, the compactness of the generated
code is a good indication of the complexity of the code generator. One of the ap-
proaches how to achieve compactness of the generated code is to create a shared li-
brary of patterns upon which the generator can lean. Considering HULOTTE and its

95

Chapter 6. Case Studies

generation process, we implement a library of platform-level components (contain-
ers, controller, interceptors, etc.) that are frequently used during the generation, in
Section 5.2.

— Direct Model-to-Code Traceability Since our approach is model-based, model-to-
code traceability is a central factor. Moreover, the most stringent development stan-
dards (such as DO-178 []) require full traceability across the different abstraction
levels, the model-to-code traceability becomes a necessary asset to trust the code gen-
eration.

However, when looking at our approach, both the core-level to platform-level model
transformation and the platform-level model to code transformation are clearly de-
fined and a clear and direct model-to-model and model-to-code semantics mappings
can be found. This is guaranteed by the fact that CBSE principles are used as basic
concepts at both model and code level, where resulting application implementation
is implemented in component-based programming. Therefore the component-based
concept represents the same functionality in the model and also in the resulting code.

— Code Generator Development Tools Should Allow Easy Model Navigation Finally,

the generator development tools massively influence the development complexity, it
is therefore important to provide an extensive tool support.
In our approach, we employ several tools at different stages of the development pro-
cess to mitigate its complexities. First, during the design of the application we employ
the Alloy Analyzer [] and Alloy for Eclipse plugin [] to validate model in-
stances. Second, during the implementation of both functional and platform-level con-
cepts, different tools based on the FRACTAL project can be used. Notably F4E []
- an Eclipse plug-in for FRACTAL, and FRACTAL-ADL [1.

e Separation of Concerns. The separation of concerns in our approach is implicitly met since
already at the model level we define clear entities that represent domain-specific concerns
- Domain Components. Looking at the separation of concerns more in details, it can be
applied at multiple levels, in particular:

— The Separation of Generated from Manually-Written Code Distinguishing generated

code from manually-written code is important for two main reasons. First, the gener-
ated code is expected to be correct, meaning that it should correctly map the semantics
expressed at the model level. Second, the generated code needs not to be verified, on
the ground that the originating model has been checked extensively.
We achieve the separation of generated from manually-written code through the fol-
lowing features of the HULOTTE framework. First, the clear separation is already
achieved at the model level, where functional concerns are represented by the concepts
of the core-level of the model and the domain-specific concerns are represented by the
concepts defined in the platform-level of our model, as defined in Section 5.1. Conse-
quently, when generating the implementation of platform-level concepts, we deploy
generated code into clearly defined component entities, as described in Section 5.3.

— The Separation between Functional and Non-functional Semantics The separation
functional and non-functional semantics brings several advantages. To name one, it
foster reuse, since it allows one to reuse functional and non-functional components in-
dependently of each other. Furthermore, the separation of concerns increases simplic-
ity of the application implementation since the functional design and implementation
is not tangled with the non-functional concerns.

This requirement, similarly as the previous one, is implicitly met since we represent
both functional and non-functional concerns as clearly identified software components
— either functional or domain components (defined in Section 4.1).

Based on the discussion above, we conclude that SOLEIL and HULOTTE frameworks are meet-
ing the most important criteria from the code generation perspective. Mainly, the concept of

96

6.2. Real-time Collision Detector

domain components proves to be highly beneficial since it allowes us to achieve separation of
concerns along the whole development lifecycle.

6.1.4 Evaluation

The following aspects of the above evaluation are noteworthy:

Performance Perspective

The bottom line is that our approach does not introduce any non-determinism. Moreover, the
overhead of the framework is minimal when considering MERGE_ALL, but with the same func-
tionality as our non-optimized code. Finally, we demonstrate a fitness for embedded platforms
by achieving a memory footprint reduction (ULTRA_MERGE) that provides better results than
the OO-approach.

Code-Generation Perspective

We have evaluated the HULOTTE framework from the code generation perspective by confronting
it with code generation requirements from []. Evaluation showed that the HULOTTE frame-
work is meeting this criteria and that particularly the separation of concerns is achieved by using
the domain component concept proposed in the SOLEIL framework.

6.2 Real-time Collision Detector

The purpose of the second case study is to validate our approach on a real-life application. The
key motivation is to employ the domain component concept and the HULOTTE framework in
order to achieve a better separation of concerns in RTS] systems and to mitigate complexities of
the RTS]-based development process.

Furthermore, this case study was conducted to evaluate the SOLEIL framework and its ben-
efits from a software engineering point of view. The software system used in this experiment is

modeling a real-time collision detector (RCD), described in []. The collision detector algo-
rithm consists 241 classes (around 30 KLOC) and was originally written with RTS], and since then
it was used in several research projects as evaluation case study [, , I

Therefore, first, we describe the RCD case study in Section 6.2.1. Consequently, in order
to illustrate properly challenges of RCD implementation, we discuss prior implementations of
this case study, published in [,], in Section 6.2.2. We present implementation of
RCD in the SOLEIL framework in Section 6.2.3. Finally, we discuss relative benefits achieved in
Section 6.2.4.

6.2.1 Description

The RCD case study represents a real-time safety-critical application developed to monitor air
traffic. RCD must proceed positions of each aircraft and compute trajectories of aircraft in order
to detect possible collisions. By the nature of the task, the application has to meet hard real-time
constraints, since the positions of aircraft are periodically updated in very short intervals. Fur-
thermore, the application must proceed all the data received in every interval. Dropping arriving
information in order to increase throughput can not be tolerated in any case, since a missed dead-
line could potentially lead to an aircraft collision resulting in material and also people casualties.

The detection algorithm [,] implemented by RCD is a single threaded hard
real-time task which periodically receives a stream of aircraft positions and must determine if
any of these aircraft are on a collision course. In RTS], the task is implemented as 10Hz No-
HeapRealtimeThread. In every loop it creates a list of motions representing movements of aircraft

97

Chapter 6. Case Studies

from their previous states and computes a list of collision courses. A list of recent aircraft posi-
tions, called StateTable, is being updated and kept between each loop of the algorithm. Since
the computation logic requires allocation of temporary memory to store intermediate results, a
scoped memory region is used.

Manager Detector Receiver Motion State Collision Frame Frame
: 3 : Creator Table Collector Pool Simulator
computeCollisions i i 1 i : h putFrame]
; i i i getFrame E

D 4

getFrame

,,

updatePositions

'
| _computeCollisions

ListOfCollisions
PR

1] . v | H
|] : ' ' '
|] : ' | |
|] | ' ' '
!] I ' | |
!] i \ | |
'] I 1 | H
!] I 1 | H
I !] I 1 | |
i i] 1 i I
! | B ' ' ' ' putFrame
] i i D ﬂ
' i | ' | H
| i '] | ' | i
1] I ' | H
'] I ' | H
!] i | H
!] i | H
!] i | H

=i 1
computeCollisions |
1 %

|

Figure 6.2: RCD, Sequence Diagram

In order to better illustrate the algorithm, we present its sequence diagram in Fig. 6.2. The
computation starts with the Frame Simulator thatis responsible for simulating a real air traffic
by creating a list of aircraft positions. Frame Simulator generates the aircraft positions in 10Hz
intervals, the data are stored in an instance of the Frame object. Since Frame Simulator isa
hard real-time task, its interaction with the system is isolated, therefore, it only stores every frame
in an FramePool from where they can be further processed by the collision detector algorithm.

The collision detector algorithm is then launched by the Manager that is activated in every
iteration to compute collision courses for given positions of aircraft. Therefore, for every iteration
it instructs the Detector to start computations. Detector first contacts Receiver to receive a
stream of aircraft positions stored in a Frame. Receiver retrieves the first available Frame from
the FramePool and returns it to the Detector.

Consequently, motions of aircraft needs to be computed. These motions are computed from
the current positions of aircraft received from the Receiver and the last known positions of
aircraft stored in the StateTable. This is performed by the Mot ionCreator that contacts the
StateTable and computes a list of motions. Finally, the list of motions is delegated to the
CollisionDetector that computes possible collision courses.

Since the system is operating under hard real-time deadlines and must operate in very strict
time conditions, a regular Java can not be used. Instead, non-heap real-time thread (NHRT) must
be used, restricting the developers to use immortal and scoped memories. Thanks to the char-
acteristic of the algorithm, each of its iteration can be performed in a scoped memory - applying
for Detector, Receiver, MotionCreator and CollisionDetector. In order to keep posi-
tions of aircraft between each iteration, the StateTable must be placed outside of the scoped
memory allocation context to prevent its collection after each iteration.

However, implementation of the StateTable is a good example of the intricacy of RTS]
programming. An extract of computed data from a child scope must be stored in a parenting

98

6.2. Real-time Collision Detector

scope while the computation in the child scope continues. Developers must constantly switch
between different allocation contexts and perform deep copying of selected data, making the
programming process highly error-prone.

In the following section we will therefore demonstrate how prior research is dealing with
challenges of RCD development. Although the sequence diagram explains clearly the RCD al-
gorithm, its implementation in presented approaches is usually hampered with the concepts of
RTS]. The code must be tangled at many places and additional trade-offs are introduced, modi-
fying the algorithm and the system architecture itself. We will therefore show these proprietary
solutions in order to finally present solution in the SOLEIL framework and thus highlighting its
contributions.

6.2.2 Current Approaches and Their Limitations

In order to properly illustrate the challenges of RCD implementation, we will discuss prior im-
plementations of this case study published in [, I

Original RCD Implementation

In the original RCD implementation [,] the functional code was monolithic and
highly tangled with the RTS]-related code, making the implementation hard to understand, de-
bug, or potentially update.

Furthermore, the non-intuitive form of memory management prevents developers to exactly
determine in which scope area a given method is being executed. A drawback that is particularly
tricky when allocating data that needs to be preserved across the lifespan of memory scopes.
Specifically, this situation occurs when updating the data in the StateTable. We show a code-
snippet in Fig. 6.3, which is implemented using a multiscope pattern [] - an instance of
class allocated in one scope but with some of its methods executing in a child scope.

Looking at the StateTable, the method createMotions () is executed in the child scope
and computes motions of aircraft. At lines 14 to 15, the new and old position of the aircraft is
computed. Afterwards, if the o1d_pos is null then we have detected a new aircraft and we
need to add it into the list of aircraft - lines 18-23. Otherwise — lines 24-28, a position of already
detected aircraft is updated.

However, to ensure that these changes will be permanent, we need to switch from a child
scope to a parent scope — lines 24-28, and then using the classes Putter or Putter2 we distin-
guish whether a new aircraft will be added - line 37, or a position of an old one will be updated
—line 44.

Bottom Line To summarize, the RTS] and functional code are highly tangled. Moreover, the
multi-scoped object pattern does not distinguish clearly when a scoped-memory switch should
be performed, this is however putting a lot of burden on developers who must reason about
the current allocation context and if necessary, switch it. As already shown in [], manual
scoped memory control and switching performed by developers is a highly error prone practice.
Finally, when looking at the RCD sequence diagram, the responsibilities of Mot ionCreator and
StateTable were merged into the StateTable class, which does not influence functionality,
but, however, mixes different functional concerns.

STARS Project

The issues of the original implementation were partially mitigated in the STARS project []
using AOP. The project proposes a novel approach for programming real-time systems in order
to shield developers from many accidental complexities that have proven to be problematic in
practice. One of the goals is to mitigate complexities of memory switches, by making them im-
plicit. The approach uses a program’s package hierarchy to represent the structure of its memory
use, making clear where objects are allocated and thus where they are accessible. This means that

99

Chapter 6. Case Studies

1

2
3
4
5
6
7
8
9

public class StateTable {
HashMap prev = new HashMap ();
Putter putter = new Putter ();

public List createMotions (RawFrame f) {
final List result = new LinkedList();

for (...) {
x = f.decodeX (...);
y = f.decodeY (...);

z f.decodeZ (...);
cs = f.getAircraftCallSign (...);
Aircraft craft = new Aircraft(cs);

Vector3d new_pos = new Vector3d(x, y, z);
Vector3d old_pos = prev.get(craft);

Vector3d old = (Vector3d) prev.get(craft);
if (old_pos == null) {
putter.c = craft;
putter.v = new_pos;
MemoryArea current = MemoryArea.getMemoryArea(this);
current.executelnArea (putter);

}

else {
putter2.c = craft;
putter2.v = new_pos;

MemoryArea c