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École doctorale IAEM Lorraine

DFD Automatique et Production Automatisée

Institut National Polytechnique de Lorraine

Two time scale switched systems: An

application to steering control in hot strip mills

THÈSE
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Jean Lévine Prof., École de Mines de Paris

Examinateurs : Jamal Daafouz Prof., INPL, Nancy Université (directeur de thèse)
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Christian Moretto Ingénieur, ArcelorMittal R&D, Maizières-lès-Metz

Centre de Recherche en Automatique de Nancy

UMR 7039 Nancy-Université – CNRS
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Notations� X ≻ 0 (X � 0) - positive (no negative) de�nite matrix,� X ≺ 0 (X � 0) - negative (no positive) de�nite matrix,� In - identity matrix ∈ R
n×n,� Tr(X) - tra
e of the matrix X,� ‖X‖ - indu
ed eu
lidean norm of the matrix X,� λmax (X) and λmin (X) - the maximum and the minimum eigenvalue of thesymmetri
 matrix X,� ξ{X} - spe
trum of the matrix X,� X−1 - inverse of the non-singular matrix X,� X ′ - transpose of the matrix X,� X =

[

A B
(⋆)′ C

] - symmetri
 matrix X where (⋆)′ means B′,� X is Hurwitz - all the eigenvalues of the matrix X have negative real parts,� X is S
hur - all the eigenvalues of the matrix X have modulus smaller thanone, ix



Notations� Re{x} - real part of the ve
tor x,� ‖x‖ - indu
ed eu
lidean norm of the ve
tor x,� O(·) - order of magnitude.
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General introdu
tionThis Ph.D. thesis was 
ondu
ted as part of a joint resear
h 
ollaboration betweenthe CRAN and Ar
elorMittal R&D. The obje
tive is to provide a solution toa 
ertain number of problems arising in pra
ti
al implementation of regulatorsfor nonlinear systems [Kha02℄, [FLMR95℄: sudden modi�
ations on the systemdynami
s, multi time s
ale phenomena, large dis
ontinuities on the 
ontrol signaldue to 
ontroller swit
hings, the need of design a limited number of 
ontrollersin spite of a wide variation on the physi
al parameters. In order to illustrate thevalidity of the obtained results, we will resort to a real problem 
on
erning thesteel produ
tion framework, the robust steering 
ontrol of a hot strip �nishingmill.The interest of the 
ontrol s
ienti�
 
ommunity for multi time s
ale systemsdates ba
k to the sixties. Examples of systems operating in di�erent time s
alesmay be found in the ele
tri
 power framework, aerospa
e systems, roboti
s, 
hem-i
al and biologi
al systems [KKO86℄, [Nai02℄. Last two de
ades have witnessedan in
rease of attention to swit
hed systems, whi
h 
ombine 
ontinuous dynam-i
s with dis
rete logi
. This stru
ture allows modeling a large 
lass of systems,as event driven systems, network 
ontrol systems, adaptive 
ontrol or biologi
networks. In order to study their main properties (e.g. stability, 
ontrollability,observability), a wide number of tools have been developed [Lib03℄, [SWM+07℄.Even though modern 
ontrol te
hniques often have to deal with multi time s
aleswit
hed systems, there exist very few 
ontributions in this area. Motivated bythe hot strip mill 
ontrol design, we are interested in studying the behavior ofmulti time s
ale swit
hed systems to establish stability 
onditions and design astabilizing 
ontrol law when arbitrary swit
hings arise.Swit
hing among di�erent 
ontrollers implies undesired transient behaviorsdue to 
ontrol signal jumps [Han88℄, [EP98℄. This phenomenon may a�e
t thesystem performan
es and, in the worst 
ase, destabilizes the 
losed loop system.Therefore, another purpose of this work is to �nd a solution to this problem inthe dis
rete time swit
hed systems framework.The pra
ti
al 
ontribution of this thesis, the robust steering 
ontrol of a hotstrip mill, exploits some of the previous theoreti
al results. The goal is to guar-antee asymptoti
 stability of the system and improve the quality of the stripstreated during the rolling pro
ess. The in�uen
e of the un
ertain parameters,1



General introdu
tiondue to the di�eren
e among the physi
al parameters of the rolled produ
ts, isalso taken into a

ount. Although all the presented experimental results 
on
ernthe Eisenhüttenstadt Ar
elorMittal hot strip mill (Germany), this study aimsat obtaining a 
ontrol design adaptable to any mill. Thus, the last task of thiswork is the realization of a dedi
ated software that implements the algorithmsne
essary for extending the robust steering 
ontrol design to other mills.Stru
tureThis thesis is organized in �ve 
hapters that are stru
tured as follows:The �rst 
hapter is 
on
erned with the swit
hed system modeling of a hotstrip mill system for steering 
ontrol purposes. Two time s
ale phenomena andparametri
 un
ertainties in the polytopi
 form are 
onsidered.The se
ond 
hapter presents a LMI (linear matrix inequalities) based solutionfor the linear quadrati
 optimal 
ontrol design of two time s
ale systems in dis
retetime. This approa
h is parti
ularly adequate to the 
ase of high dimensionalsystems. Fast and slow sampling state feedba
k 
ontrol design problems arestudied. An extension to polytopi
 un
ertain systems is also presented.In 
hapter 3, stability of two time s
ale swit
hed systems is investigated.First, we show that, when no assumption on the minimal dwell time is made,stability of the fast and slow swit
hed subsystems under an arbitrary swit
hingrule is not su�
ient for assessing stability of the original two time s
ale swit
hedsystem, even if the singular perturbation parameter tends to zero. We proposeLMI based 
onditions, independent of the singular perturbation parameter, whi
hguarantee the asymptoti
 stability of a two time s
ale swit
hed linear system, inthe 
ontinuous and dis
rete time frameworks. These 
onditions express the fa
tthat the 
oupling between the fast and slow dynami
s has to be 
onsidered, whenthe swit
hing rule is arbitrary. The proposed 
onditions are then extended tostate feedba
k 
ontrol design.In 
hapter 4, a bumpless transfer method for dis
rete time swit
hed linear sys-tems is proposed. To this aim, an additional 
ontroller is a
tivated at the swit
h-ing time for redu
ing the 
ontrol signal dis
ontinuities. The bumpless transferregulation is based on the �nite horizon solution of a linear quadrati
 optimiza-tion problem. We resort to dwell time 
onditions for establishing asymptoti
alstability of the 
losed loop swit
hed system.In the last 
hapter, a new robust steering 
ontrol design of hot strip �nishingmill is presented. The obje
tive is to guarantee asymptoti
 stability of a hotstrip mill system and minimize the lateral displa
ement of the strip for the wholeset of treated produ
ts. First, a method for redu
ing the number of un
ertain-ties by exploiting the physi
al relations among the di�erent produ
ts parameters2



is introdu
ed. Thus, sin
e the system involves a two time s
ale dynami
s andthe fast dynami
s is stable and impossible to 
ontrol due to the limitation onthe a
tuators rate, a robust redu
ed 
ontroller is designed for ea
h subsystemseparately. The asymptoti
 stability of the tail end swit
hed system is veri�edthrough a dwell time 
riterion. The whole database is partitioned into di�erentfamilies, with respe
t to the physi
al parameters of the produ
ts. Improved per-forman
es are obtained by designing a spe
i�
 
ontroller for ea
h family. Finally,simulations and experimental results 
on
erning the Eisenhüttenstadt hot stripmill are shown.Personal publi
ationsThe resear
h exposed in this thesis 
an be found in the following publi
ations:International Journals1. I.Mallo
i, J.Daafouz, C. Iung, R.Bonidal, P. Sz
zepanski, Swit
hedsystem modeling and robust steering 
ontrol of the tail end phase in a hotstrip mill, Nonlinear Analysis: Hybrid Systems, 3(3):239-250, 2009.2. I. Mallo
i, J. Daafouz, C. Iung, R. Bonidal, P. Sz
zepanski, Ro-bust steering 
ontrol of hot strip mill, IEEE Transa
tions on Control Sys-tems Te
hnology, Digital Obje
t Identi�er 10.1109/TCST.2009.2031146.3. I. Mallo
i, J. Daafouz, C. Iung, Stability and stabilization of two-time s
ale swit
hed linear systems in dis
rete time, IEEE Transa
tions onAutomati
 Control, In revision.4. I. Mallo
i, L. Hetel, J. Daafouz, C. Iung, P. Sz
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rete-time swit
hed systems, Systems & Control Letters,In revision.International Conferen
es5. I. Mallo
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Chapter 1Swit
hed system modeling of hotstrip mill
1.1 Introdu
tionIn the steel produ
tion framework, the steering 
ontrol denotes the strategies toguide a metal strip during the rolling pro
ess, whi
h 
onsists of 
rushing a metalstrip between two rolls in inverse rotation to obtain a strip with 
onstant anddesired thi
kness [Tak01℄, [VFBO07℄. Moreover, some geometri
al, metallurgi
aland me
hani
al 
hara
teristi
s must be given to the rolled produ
t. A hot strip�nishing mill is the asso
iation of several stands in a line, where ea
h standis 
omprised of a set of rolls (Fig. 1.1). The lateral movement of the strip

Figure 1.1: A global view of hot strip mill5



Chapter 1. Swit
hed system modeling of hot strip millwith respe
t to the mill axis, whi
h is 
alled strip o�-
enter (Fig. 1.4), is the
onsequen
e of rolling asymmetries su
h as di�erential stand stret
hing, workrolls tilting, initial o�-
enter, strip thi
kness pro�le or thermal di�erential pro�le.Strip o�-
enter may de
rease the quality of the produ
t and damage the rolls,if the strip 
rashes against the side guides of the mill. Hen
e, this displa
ementmust be redu
ed to improve pro
ess reliability and produ
t quality.To this aim, several steering 
ontrol methods have been developed. In general,the strip o�-
enter of ea
h stand is 
onsidered as the di�erential for
e imageof the same stand. Di�erent approa
hes have been proposed to 
ompute thestand tilt: PID 
ontrollers [MN80℄, [KT83℄, [KT86℄, [FFT92℄, [SP98℄ (for a hotstrip reversing mill), optimal regulators [SS92℄, state feedba
k pole assignment[OH97℄, and sliding mode te
hniques [OMAH05℄. Nevertheless, the law linkingthe di�erential for
e and the strip o�-
enter is nonlinear, and ea
h stand is 
oupledto the others by the tra
tion of the strip. Thus, SISO approa
hes are subje
t tosigni�
ant performan
e degradation. In order to over
ome this problem, [DBI+08℄proposed a multi variable LQ 
ontrol design while [CRCF08℄ suggested a modelpredi
tive 
ontrol approa
h. In metallurgy, MIMO strategies have already beenused in the mill loopers regulation, whi
h prevent abrupt tension variations that
ould 
ompromise the produ
t quality [BKG02℄, [CRF07℄, [YHF08℄, and in thestrip shape 
ontrol during the 
old rolling pro
ess [GF82℄, [GP98℄, [PS08℄.All the above solutions refer to a nominal framework. However, a mill treatsthousands of di�erent produ
ts and the design of a spe
i�
 
ontroller for ea
hprodu
t would be di�
ult, in a pra
ti
al appli
ation. Despite the robustnessproperties of the linear quadrati
 (LQ) 
ontrol, the average 
ontroller presentedby [DBI+08℄ 
annot guarantee the same level of performan
es for the whole set ofprodu
ts. The obje
tive of this 
hapter is to provide a general model of hot stripmill for robust 
ontrol purposes. We will start by the nonlinear model establishedby Ar
elorMittal resear
hers and tuned during experimental trials [DBI+08℄. Thismodel takes into a

ount the 
oupling between the stands and the law linkingthe di�erential for
e and the strip o�-
enter. Sin
e the system is subje
t tosmall deviations around the operating point, a linear model has been drawn up.Moreover, the system has two time s
ale dynami
s. The fast dynami
s is stableand impossible to 
ontrol from a pra
ti
al point of view due to the a
tuatorslimitations. We will resort to the singular perturbation approa
h to obtain aredu
ed order linear model, whi
h will depend on the mill parameters (e.g. rollradius, roll speed, roll for
e) and on the produ
ts 
hara
teristi
s (e.g. strip width,thi
kness, hardness, temperature), and then formulate the 
ontrol design problemin the slow manifold [KKO86℄. Furthermore, in the last phase of the rollingpro
ess, 
alled tail end phase, the strip leaves the stands one after the other. Ea
htime the strip leaves a stand, the system dynami
s 
hanges. In this phase, the
rashes against the side-guides are more frequent and dangerous be
ause the lossof tra
tion due to the swit
hings makes the system unstable. This kind of behaviormay be des
ribed re
urring to the swit
hed systems theory [Lib03℄, [SWM+07℄.Finally, we obtain a two time s
ale swit
hed linear model of the system that takesinto a

ount the 
hanges on the system dynami
s [MDI+09e℄, [MDIS09℄, and the6



1.2. Des
ription of physi
al systemun
ertainties related to the fa
t that a mill treats many di�erent strips [MDI+ar℄,[MDI+09d℄, [MDI+09
℄.1.2 Des
ription of physi
al systemA hot strip mill (HSM) is made up of n ∈ {5, 6, 7} stands. Ea
h stand 
ontainsone set of rolls (
omposed of two work rolls and two support rolls, Fig. 1.2)and the strip in the inter-stand on the front. For ea
h stand g ∈ G = {1, ..., n},
work roll

support roll

strip

standFigure 1.2: Stand lateral viewthe main physi
al parameters are the strip width wg, the strip thi
kness hg, theba
k strip tension T am
g , the front strip tension T av

g , the s
rew interaxis length
lvg , the interstand length l0g, the work roll length bg, the work roll speed sg andthe Young's modulus Eg. Also the following 
onstants are ne
essary to 
om-pletely de�ne a strip: cfh

g , cfTam
g , cfTav

g , cgh
g , cgTam

g , cgTav
g , Kh

g , Kf
g , K l

g, Pg and gg.The main asymmetries are the strip o�-
enter Zg(t), the strip thi
kness pro�le(wedge) ∆hg(t), the stand tilt ∆Sg(t), the di�erential stand stret
h ∆Kg(t), thedi�erential rolling for
e ∆Pg(t), the upstream di�erential of strip tension ∆T am
g (t)and the downstream di�erential of strip tension ∆T av

g (t), for all t ≥ 0.As long as the strip remains 
onne
ted to the 
oilbox, whi
h is the devi
e usedto 
oil the strips into the �nishing train, the HSM model does not 
hange (Fig.1.3). Otherwise, in the last phase of the rolling pro
ess, the tail end phase, thestrip leaves the stands, one after the other. Ea
h time the strip leaves a stand thesystem dynami
s 
hanges. Hen
e, the HSM 
an be modeled as a swit
hed system.The �rst subsystem (the strip has not yet left the �rst stand) is 
alled n-standssubsystem. The subsystem a
tive after the jth swit
hing, whi
h o

urs when thestrip leaves the jth stand, is 
alled (n− j)-stands subsystem. The following mainequations, whi
h are relevant for g > j, govern the system dynami
s: 7
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oilbox stand 1 stand g stand nFigure 1.3: HSM lateral view� The di�erential rolling for
e equation:
∆Pg(t) = cfh

g−1∆hg−1(t) + cfh
g ∆hg(t) + cfTam

g ∆T am
g (t) + cfTav

g ∆T av
g (t); (1.1)� The exit stand wedge equation:

∆hg(t) =
(

wg

(lvg)2Kh
g

+ 6wg

b2gK
f
g

)

(

∆Pg(t) + 2Pg

)

Zg(t)+

1

K l
g

∆Pg(t) +
wg

lvg
∆Sg(t) −

wgPg

lvg(K
h
g )2

∆Kg(t);
(1.2)� The angle αg between the strip and the mill axis equation:

α̇g(t) =
sg

wg

(

c
gh
g

1+gg
+ 1

hg

)

∆hg(t) +
sg

wg

(

c
gh
g−1

1+gg
− 1

hg−1

)

∆hg−1(t)+

sg

wg

cgTav
g

(1 + gg)
∆T av

g (t) +
sg

wg

cgTam
g

(1 + gg)
∆T am

g (t);

(1.3)� The strip o�-
enter equation:
Żg(t) = sg αg(t); (1.4)Moreover, for g > j + 1 we have:� The upstream di�erential of strip tension equation:

∆T am
g (t) =3

(

wgEg

(l0g)2
+

T am
g

wg

)

(

Zg(t) − Zg−1(t)
)

+

wgEg

l0g

(

2αg(t) − αg−1(t)
)

+ 3
l0gT

am
g

wg

αg(t);
(1.5)� The 
oupling between two su

essive stand equations:

∆T av
g−1(t) = −∆T am

g (t); (1.6)8



1.2. Des
ription of physi
al systemFor the last two equations, there exists an ex
eption. When the n-stands sub-system is on, the equations (1.5) and (1.6) hold for any stand g ∈ G. In this
ase, the upstream di�erential of strip tension in the �rst stand ∆T am
1 
antake two di�erent values. It 
orresponds to the downstream tension of the 
oil-box ∆T am

1 (t) = −∆T av
0 (t) when the strip is 
onne
ted to the 
oilbox (most ofthe time), and to zero after the strip left the 
oilbox. This last phase with

∆T am
1 (t) = 0 and ∆T am

2 (t) 6= 0 (the strip left the 
oilbox but did not leavethe �rst stand yet) has not been 
onsidered in the swit
hed system model be-
ause is very short and its dynami
s is similar to the 
ase ∆T am
1 (t) = −∆T av

0 (t)and ∆T am
2 (t) 6= 0. When the strip leaves the �rst stand the system swit
hes tothe (n − 1)-stands subsystem and the equations (1.5) and (1.6) are relevant for

g > j + 1.The equation (1.6) represents the main di�eren
e between the model (1.1)-(1.6), introdu
ed by Daafouz et al. [DBI+08℄, and previous HSM models. The
ontributions that 
an be found in literature are based on the steering growthmodel proposed by Nakajima et al. [NKK+80℄, where the strip o�-
enter is 
om-puted stand by stand. In fa
t, ea
h stand is linked to the other by the di�erentialof strip tension (see equation (1.6) and Fig. 1.4).
mill axis ideal position

of the strip

strip

stand g−1 stand g

work roll

PSfrag repla
ements
Zg−1

∆T av
g−1 = −∆T am

g

∆T av
g

l0g−1

bg

Zg

Figure 1.4: Strip behavior between two stands: top viewA

ording to the previous physi
al equations, the system is des
ribed by the
ontinuous time swit
hed nonlinear system
{

ż(t) = fσ(t)(z, u, d, t)

y(t) = C̄
σ(t)
y z(t)

(1.7)where
z(t) =

[

α1(t), . . . , αn(t), Z1(t), . . . , Zn(t)
]′

∈ R
2n (1.8)is the state ve
tor,

u(t) = ∆S(t) =
[

∆S1(t), . . . , ∆Sn(t)
]′

∈ R
r (1.9)9



Chapter 1. Swit
hed system modeling of hot strip millis the 
ontrol signal, d(t) = Z0(t) ∈ R is the external perturbation and y(t) ∈ R
mis the measured output signal, for all t ≥ 0. {f i : i ∈ I = {1, ..., N}} is afamily of su�
ient regular fun
tions, N represents the number of subsystemsand σ : R

+ → I is a pie
ewise 
onstant fun
tion, 
alled swit
hing rule, whi
hor
hestrates the swit
hings between the subsystems. There are n 
ameras tomeasure the state variables Z1, . . . , Zn. Hen
e, C̄i
y =

[

0 I
], for any i ∈ I.Only one perturbation will be 
onsidered: the strip o�-
enter at the input ofthe �rst stand due to the vibrations of the 
oilbox. There are other perturbations,but their e�e
ts are negligible 
ompared to the strip o�-
enter initial. The modelis easily adaptable to any HSM. However, tuning it requires industrial trials anda spe
i�
 database of produ
ts. A strip o�-
enter simulator has been developedunder Matlab-Simulink. The tuning for the Eisenhüttenstadt HSM 
orrespondswell with most of the produ
ts. In Fig. 1.5, an example is presented. The solidline shows the strip o�-
enter measured by a 
amera while the dashed line showsthe simulated strip o�-
enter provided by our model.
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Figure 1.5: Comparison between measured and simulated strip o�-
enter at Eisen-hüttenstadt HSM1.3 System linearizationThe main task of the steering 
ontrol is to maintain the strip 
lose to the mill axis.The target may be rea
hed by modifying the di�erential rolling for
e ∆P (t) =
[

∆P1(t), . . . , ∆Pn(t)
]′ in order to drive the strip into the desired traje
tory. Infa
t, an ex
essive ∆P yields a high strip wedge ∆h(t) =

[

∆h1(t), . . . , ∆hn(t)
]′.10



1.3. System linearizationThis means that the strip pro�le be
omes trapezoidal (Fig. 1.6.a and Fig. 1.7),whereas the ideal strip pro�le should be re
tangular (∆h(t) = 0, for all t ≥ 0).In general, a �nal wedge belonging to the interval −10 µm < ∆hn(t) < 10 µmensures a good produ
t quality. The rolling for
e depends on the stand tilt ∆S.In order to respe
t the limits of the wedge value, Ar
elorMittal engineers imposeda 
onstraint on ∆S, whi
h must be bounded between ±0.6 mm for the three �rststands and ±0.3 mm for the two last stands (for 5-stands HSM).

a b

mill axis

support roll

work roll

strip

ideal position

of the strip

PSfrag repla
ements
−∆Sg +∆Sg

αgZg

Figure 1.6: Stand g des
ription: front view (a) and top view (b)
PSfrag repla
ements ∆h

h

wFigure 1.7: Strip pro�leSin
e we assume that only small deviations are possible around the idealoperating point, that is αg(t) = Zg(t) = ∆hg(t) = 0 for any g ∈ G and all t ≥ 0,for 
ontrol design purposes we 
an 
onsider the following linearized swit
hedmodel:
{

ż(t) = M̄σ(t)z(t) + N̄
σ(t)
u u(t) + N̄

σ(t)
d d(t)

y(t) = C̄
σ(t)
y z(t).

(1.10)11



Chapter 1. Swit
hed system modeling of hot strip mill1.4 Model redu
tionThe HSM system has two time s
ale dynami
s: the angles α are fast variables
ompared to the strips o�-
enter Z [MDI+ar℄. Multi time s
ale s
ale systemsmay lead to numeri
al problems due to the sti�ness of this kind of stru
ture.Moreover, the system a
tuators have a limited rate. This means that the dy-nami
s 
orresponding to the angles 
annot be 
ontrolled dire
tly. In this 
ase,the singular perturbation approximation may be used to 
ontrol design purposes[KKO86℄. It 
onsists in de
omposing the system dynami
s into fast and slowdynami
s and in designing a di�erent 
ontroller for ea
h of them. Consider thefollowing subsystem, whi
h 
orresponds to the mode i ∈ I of the swit
hed linearsystem (1.10):
{

ż(t) = M̄ iz(t) + N̄ i
uu(t) + N̄ i

dd(t)

y(t) = C̄i
yz(t).

(1.11)In order to express the model (1.11) in the singular perturbation form, the 
om-ponents of the state ve
tor z whi
h belong to the fast and slow dynami
s mustbe asso
iated to two di�erent state ve
tors, 
alled x1 and x2, respe
tively. Inthe n-stands subsystem, the state ve
tor 
orresponding to the slow subsystem x2is 
omposed by the n strip o�-
enter variables. In the tail end subsystems, thestate ve
tor 
orresponding to the slow subsystem x2 is 
omposed by the stripso�-
enter variables of the operating stands and the value of the angle 
orrespond-ing to the �rst a
tive stand. Hen
e, the 
omponents and the dimension of x1 and
x2 
hange at ea
h swit
hing time. A set of matri
es {Ei : i ∈ I}, with pseudo-inverse Ei† = Ei′(EiEi′)−1 = Ei′, may be 
hosen su
h that the 
hange of basis

xi(t) = Eiz(t) (1.12)yields a system state ve
tor in the form :
xi(t) =

[

xi
1(t)

xi
2(t)

]

,with xi
1(t) ∈ R

ni
1 and xi

2(t) ∈ R
ni

2, for any i ∈ I and for all t ≥ 0. We obtain:
M i(ε) = EiM̄ iEi′ =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

,

N i
u = EiN̄ i

u =

[

ε−1In1
0

0 In2

] [

N i
u,1

N i
u,2

]

,

N i
d = EiN̄ i

d =

[

ε−1In1
0

0 In2

] [

N i
d,1

N i
d,2

]

,

Ci
y = C̄i

yE
i′ =

[

0 Ci
y,2

]

,

(1.13)
12



1.4. Model redu
tionwith the 
hoi
e ε = 0.05. The subsystem 
orresponding to the ith mode of theswit
hed system (1.11) 
an be written in the standard singular perturbation form:










εẋi
1(t) = M i

11x
i
1(t) + M i

12x
i
2(t) + N i

u,1u(t) + N i
d,1d(t)

ẋi
2(t) = M i

21x
i
1(t) + M i

22x
i
2(t) + N i

u,2u(t) + N i
d,2d(t)

y(t) = Ci
y,2x

i
2(t),

(1.14)where M i
11 is assumed to be Hurwitz for any i ∈ I.Consider the following state matri
es, 
orresponding to the 4-stands subsys-tem of an average produ
t of the Eisenhüttenstadt HSM database:

M̄4 =

































0 0 0 0 0 0 0 0 0 0
0 −1.60 −5.87 0 0 0 0.0006 −0.0016 0 0
0 −20.34 −76.5 −6.155 0 0 0.0069 −0.017 −0.002 0
0 −7.5 −51.5 −71.18 15 0 0.0026 0.0145 −0.022 0.004
0 −9.548 −49.2 −73.93 −82 0 0.0033 0.0044 0.0132 −0.02
0 0 0 0 0 0 0 0 0 0
0 4174 0 0 0 0 0 0 0 0
0 0 7466 0 0 0 0 0 0 0
0 0 0 11610 0 0 0 0 0 0
0 0 0 0 15918 0 0 0 0 0































and
N̄4

u =

































0 0 0 0 0
0 0.076 0 0 0
0 0.15 0.767 0 0
0 0.155 0.595 1.577 0
0 0.197 0.757 1.8 3.38
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

































.

We have:
E4 =

























0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

























,
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Chapter 1. Swit
hed system modeling of hot strip milland then x4 =

[

x4
1

x4
2

], with x4
1 =

[

α3 α4 α5

]′, x4
2 =

[

α2 Z2 Z3 Z4 Z5

]′, and
M4

11 =





−3.825 −0.3077 0
−2.575 −3.559 0.75
−2.46 −3.696 −4.1



 ,

M4
12 =





−1.017 0.0003 −0.0008 −0.0001 0
−0.375 0.0001 0.0007 −0.0011 0.0002
−0.477 0.0001 0.0002 0.0006 −0.001



 ,

M4
21 = 104













−0.0005 0 0
0 0 0

0.7466 0 0
0 1.161 0
0 0 1.5918













,

M4
22 = 103













−0.0016 0.0000 −0.0000 0 0
4.174 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

N4
u,1 =









0.0075 0.0383 0 0
0.0077 0.0297 0.0788

0
0.0098 0.0378 0.09 0.169









, N4
u,2 =













0.076 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0













.

(1.15)

When the 4-stands subsystem is on, the strip has already left the �rst stand.Therefore, the state variables α1 and Z1 do not have any physi
al meaning andare set to zero.A

ording to the pra
ti
al implementation, the 
ontroller must be designedin dis
rete-time, with a sampling time of Ts = 0.05 sec. We have [Nai02℄:










xi
1(s + 1) = εÃi

11x
i
1(s) + Ãi

12x
i
2(s) + B̃i

u,1u(s) + B̃i
d,1d(s)

xi
2(s + 1) = εÃi

21x
i
1(s) + Ãi

22x
i
2(s) + B̃i

u,2u(s) + B̃i
d,2d(s)

y(s) = Ci
y,2x

i
2(s),

(1.16)where xi
1(s) ∈ R

ni
1 , xi

2(s) ∈ R
ni

2, u(s) ∈ R
r, d(s) ∈ R and y(s) ∈ R

m, for any
i ∈ I and for all s ∈ Z

+. Moreover, we have:
Ãi(ε) =

[

εÃi
11 Ãi

12

εÃi
21 Ãi

22

]

, B̃i
u =

[

B̃i
u,1

B̃i
u,2

]

, B̃i
d =

[

B̃i
d,1

B̃i
d,2

]

. (1.17)Putting ε = 0, we obtain the slow model of the subsystem 
orresponding to ithmode:
{

xi
s(s + 1) = Ãi

sx
i
s(s) + B̃i

u,sus(s) + B̃i
d,sd(s)

ys(s) = C̃i
y,sx

i
s(s),

(1.18)14



1.5. Polytopi
 un
ertaintiesTable 1.1: Eigenvalues Comparison
ξ{Ã4(ε)} ξ{Ã4

s}1.0169 1.02110.9675 0.98210.9179 0.91080.8347 0.88310.8132 0.81320.03140.0024 + 0.0186i0.0024 - 0.0186iwith xi
s(s) = xi

2(s), Ãi
s = Ãi

22, B̃i
u,s = B̃i

u,2, B̃i
d,s = B̃i

d,2 and C̃i
y,s = Ci

y,2, for any
i ∈ I and for all s ∈ Z

+. In Table 1.1, the spe
trum ξ{Ã4(ε)} of the state matrix
orresponding to the two time s
ale system (1.16) and the spe
trum ξ{Ã4
s} of thestate matrix 
orresponding to the slow subsystem (1.18) are given. Noti
e thatthe time s
ale separation justi�es the use of the only slow subsystem for 
ontroldesign purposes.1.5 Polytopi
 un
ertaintiesAn HSM treats produ
ts with very heterogeneous properties. The s
heduling ofthe rolled produ
ts is assumed to be known in real time. Sin
e the 
ontroller is
omputed o�-line, from a 
ontrol design point of view the only available informa-tion 
on
erns the minimum and maximum bound of ea
h parameter. Thus, thephysi
al parameters must be 
onsidered as bounded un
ertainties and a robust
ontroller is needed. The un
ertain two time s
ale swit
hed system 
an be writtenin the polytopi
 form:

{

xσ(s)(s + 1) = Aσ(s)(s)xσ(s)(s) + B
σ(s)
u (s)u(s) + B

σ(s)
d (s)d(s)

y(s) = C
σ(s)
y xσ(s)(s)

(1.19)where σ : Z
+ → I is the swit
hing rule for all s ∈ Z

+. Further, for any i ∈ I, wehave:
Ai(s) =

NV
∑

l=1

λl(s)Ã
i,l(ε), Bi

u(s) =

NV
∑

l=1

λl(s)B̃
i,l
u , Bi

d(s) =

NV
∑

l=1

λl(s)B̃
i,l
d ,where l ∈ L = {1, ..., NV } denotes the verti
es of the 
onvex hull, NV is thenumber of un
ertain parameters and λl denotes the un
ertainty and belongs tothe unit simplex

Y(s) = {

NV
∑

l=1

λl(s) = 1, λl(s) ≥ 0}. 15



Chapter 1. Swit
hed system modeling of hot strip mill1.6 Con
lusionThe lateral movement of the strip during the rolling pro
ess redu
es the produ
tquality and damages the rolls, if the strip 
rashes against the mill side guides.The goal of the HSM steering 
ontrol 
onsists in limiting this displa
ement for im-proving the reliability and the pro
ess quality. In order to implement an e�e
tivesolution, several phenomena arising on the system should be taken into a

ounton the 
ontrol design. First, an HSM 
an treat produ
ts with very heteroge-neous properties. Thus, the physi
al produ
ts parameters must be 
onsidered asbounded un
ertainties and a robust 
ontroller is needed. Moreover, the systemhas two time s
ale dynami
s and the fast dynami
s 
annot be 
ontrolled be
auseof the limits on the a
tuators rate. Further, during the tail end phase, the systemis subje
t to hard tra
tion losses due to the fa
t that the strip leaves the standsone after the other. Hen
e, sudden modi�
ations of dynami
s arise and the statevariables 
orresponding to the slow and fast manifolds may vary. In parti
ular,ea
h time the strip leaves a stand the state variables 
orresponding to the leftstand do not in�uen
e any longer the system and the angle between the strip andthe mill axis on the �rst a
tive stand, whi
h was a state variable belonging tothe fast manifold, be
omes a state variable of the slow manifold. Be
ause of the
hanges on the system dynami
s, di�erent 
ontrollers must be designed, one forea
h operating point, and a rule or
hestrating the 
ontroller swit
hings is needed.At last, swit
hing among di�erent 
ontrollers implies undesired transient behav-iors due to large dis
ontinuities on the 
ontrol signal. This phenomenon maya�e
t the system performan
es and, in the worst 
ase, destabilize the system.Despite its importan
e on the steel produ
tion framework, there exist fewstudies dealing with steering 
ontrol of HSM. Further, most of these works donot 
onsider the un
ertainties on the produ
ts parameters and the tail end phaseswit
hings. In this 
hapter, a two time s
ale swit
hed model of the HSM systemhas been proposed for steering 
ontrol purposes. Parametri
 un
ertainties in thepolytopi
 form have also been taken into a

ount. In the next three 
hapters,we will provide some theoreti
al results useful for solving di�erent problems 
on-
erned with the steering 
ontrol of HSM. In Chapter 2, we will present a 
onvexsolution of the LQ optimization problem of dis
rete two time s
ale LTI systems.These results will be extended to un
ertain systems in the polytopi
 form, underthe assumption of asymptoti
ally stable fast dynami
s. Chapter 3 deals with twotime s
ale swit
hed systems. First, we will show that asymptoti
 stability of theslow and fast swit
hed subsystems under an arbitrary swit
hing rule is not suf-�
ient for assessing asymptoti
 stability of the original two time s
ale swit
hedsystem. Therefore, we will propose LMI based 
onditions independent of thesingular perturbation parameter whi
h guarantee asymptoti
 stability of the twotime s
ale swit
hed system, in the 
ontinuous and dis
rete-time frameworks. InChapter 4, a method for redu
ing the 
ontrol signal dis
ontinuities of dis
rete-time swit
hed linear systems is proposed. Many of these results will be retrievedin the last 
hapter, where a robust steering 
ontrol design of HSM is presented.16



Chapter 2A 
onvex solution of thedis
rete-time LQ 
ontrol design fortwo time s
ale systems
2.1 Introdu
tionIn pra
ti
e, many systems involve dynami
s operating on di�erent time s
ales,su
h as ele
tri
 power systems, aerospa
e systems, roboti
s, 
hemi
al and bi-ologi
al systems [Nai02℄. In this 
ase, standard 
ontrol te
hniques lead to ill-
onditioning problems and singular perturbation methods may be used to avoidsu
h numeri
al phenomena [KKO86℄, [Nai88℄. They 
onsist in de
omposing thesystem into several subsystems, one for ea
h time s
ale. Thus, a di�erent 
on-troller is designed for ea
h of them. Singular perturbation te
hniques also allowto negle
t high-frequen
y dynami
s and then redu
e the 
ontroller order [KS68℄.This property 
an be very useful when the system order is high [And93℄. Considerthe two time s
ale model:

εẋ1(t) = f(x1(t), x2(t), ε, t) (2.1a)
ẋ2(t) = g(x1(t), x2(t), ε, t) (2.1b)where f and g are assumed to be 
ontinuously di�erentiable fun
tions of theirarguments x1(t), x2(t), ε, t, x1(t) ∈ R

n1 is the state ve
tor 
orresponding to thefast dynami
s, x2(t) ∈ R
n2 is the state ve
tor 
orresponding to the slow dy-nami
s, for all t ≥ t0, x(t0) =

[

x1(t0)
′ x2(t0)

′
]′ is the initial 
ondition and thes
alar ε > 0 represents the singular perturbation parameter. Setting ε = 0, thedimension of the state spa
e of (2.1) is redu
ed from n1 +n2 to n2 be
ause (2.1a)degenerates into the algebrai
 or trans
endental equation:

f(x̄1(t), x̄2(t), 0, t) = 0, (2.2)where x̄1 and x̄2 denote x1 and x2 when ε = 0. The model (2.1) is said to be inthe standard form if (2.2) has p ≥ 1 distin
t real roots:
x̄1(t) = hi(x̄2(t), t) (2.3)17



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemsfor all t ≥ t0, with i = 1, 2, ..., p. This ensures the existen
e of a well-de�ned n2-dimension redu
ed model to ea
h root of (2.3). Substituting (2.3) into (2.1b), weobtain the ith redu
ed model (also 
alled slow model or quasi-steady-state model):
˙̄x2(t) = g(hi(x̄2(t), t), x̄2(t), 0, t), (2.4)with x2(t0)−x̄2(t0) = O(ε). We assume that the fast transient, whi
h 
orrespondsto the di�eren
e between the response of the original system (2.1) and the slowmodel (2.4), is:

x2(t) − x̄2(t) = O(ε) (2.5)for any t ∈ [t0, tfin] on whi
h x̄2(t) exists. Let us study the behavior of the faststate ve
tor x1. For ε = 0, its initial 
ondition x̄1(t0) = h(x̄2(t0), t0) is 
onstrainedand 
annot be free to start from x1(t0). Hen
e, the 
ondition
x1(t) − x̄1(t) = O(ε) (2.6)
an be obtained only for t ∈ [t1, tfin], with t1 > t0. The approximation (2.6)states that during the initial interval [t0, t1], 
alled boundary layer interval, theoriginal variable x1 tends to x̄1 and that remains 
lose to x̄1 for [t1, tfin]. To provethat this assumption holds, let apply the stret
hing transformation:

ε
dx1

dt
=

dx1

dτ
.This yields the fast time variable

τ =
t − t0

ε
,with τ = 0 at t = t0. Noti
e that when ε → 0, τ → ∞, also for a little amountof time t − t0. This means that when ε → 0, t − t0 is �stret
hed� to an in�nityinterval. To des
ribe the behavior of x1 in the fast time s
ale, let us de�ne theboundary layer 
orre
tion x̂1 = x1 − x̄1 satisfying the boundary layer system:

dx̂1

dτ
= f(x̂1(τ) + x̄1(t0), x2(t0), 0, t0), (2.7)with x̂1(0) = x1(t0)− x̄1(t0). Fixed t0 and x2(t0), the solution x̂1 of (2.7) may beused as a boundary layer 
orre
tion of (2.6) for the following uniform approxima-tion of x1:
x1(t) = x̄1(t) + x̂1(τ) + O(ε). (2.8)

x̄1(t) and x̂1(τ) represent the slow and the fast transient of x1(t), respe
tively.The equation (2.8) will qui
kly 
onverge to (2.6) only if x̂1(τ) de
ays to an O(ε)quantity for τ → ∞ (whi
h 
orresponds to a short interval of time in the slowtime s
ale t). The following theorem gives the stability 
onditions ensuring thevalidity of the approximation (2.5), (2.8) [Tik48℄, [Vas63℄.18



2.1. Introdu
tionTheorem 1 ([KKO86℄) Assume that the equilibrium x̂1(τ) = 0 of (2.7) is asymp-toti
ally stable uniformly in t0 and x2(t0), and that x̂1(0) = x1(t0)− x̄1(t0) belongsto its domain of attra
tion. Further, assume that the eigenvalues of ∂f

∂x1
evaluatedalong x̄1 and x̄2 for ε = 0 have negative real parts. Hen
e, the approximation(2.5), (2.8) holds for any t ∈ [t0, tfin], and there exists t1 > t0 su
h that (2.6)holds for any t ∈ [t1, tfin].The �rst assumption of Theorem 1 implies that lim

τ→∞
x̂1(τ) = 0 uniformly in

t0 and x2(t0). Thus, x1 will be 
lose to x̄1 at some time t1 > t0. The se
ondassumption ensures that x1 stays 
lose to x̄1 for any t ∈ [t1, tfin].In the LQ optimal 
ontrol framework, �rst 
ontributions to the singular per-turbation theory were proposed in the 
ontinuous-time 
ase by Kokotovi
 andSannuti [KS68℄, [San68℄, [SK69℄. Gar
ia et al. proposed an alternative 
onvexsolution for the 
ontinuous-time LQ optimal 
ontrol design of two time s
ale LTIsystems [PG94℄, [GDB98℄, [GDB02℄. However, most of modern 
ontrol systemswork in dis
rete time. In this 
ase, there exist two main 
ontrol design approa
hes,depending on the sampling rate. The reason is that sin
e digital 
ontrollers 
rit-i
ally depend on the sampling time, di�erent 
hoi
es of the sampling rate leadto di�erent 
ontrol laws. The �rst approa
h is based on a fast sampling modelderived by numeri
al approximations su
h as the Euler approximation: a hybridsolution 
ontaining a 
ontinuous-time slow subsystem and a dis
rete-time fastsubsystem is obtained [Bla81℄, [LK84℄. This model allows to design a 
ontrollaw independently of the stability properties of the fast dynami
s. Namely, thesampling rate is assumed to be fast enough for in�uen
ing the transient behaviorof the system. The se
ond method resorts to a slow sampling model based ona singular perturbed di�eren
e equation [RN82℄, [KI83℄. A 
ontrol law designedthrough this approa
h 
annot in�uen
e the fast transient behavior of the sys-tem. Nevertheless, there are many pra
ti
al appli
ations having asymptoti
allystable fast dynami
s and subje
t to a 
onstraint on the sampling time, due tothe limitation on the a
tuators rate. An example is given by the hot strip millsystem presented in Chapter 1. In this 
ase, the slow sampling model is oftenmore appropriate for 
ontrol purposes. More 
omplex solutions, whi
h are notinvestigated in this work, look for a multi-rate 
ontrol law [KI86℄.The aim of this 
hapter is to extend the results of [GDB02℄ to dis
rete-time singularly perturbed LTI systems, for both fast and slow sampling mod-els [MDIB09℄. Hen
e, LMI te
hniques 
an be dire
tly applied for 
ontrol designpurposes [BGFB94℄. The main advantage of LMI te
hniques is that there existe�
ient algorithms whi
h provide a solution also for high dimension problems[NN94℄. Furthermore, we will show that the 
onvexity properties of the solutionallows a dire
t extension of the redu
ed 
ontroller to un
ertain systems in thepolytopi
 form. 19



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemsConsider the two time s
ale LTI system :
{

εẋ1(t) = M11x1(t) + M12x2(t) + N1u(t)

ẋ2(t) = M21x1(t) + M22x2(t) + N2u(t),
(2.9)where u(t) ∈ R

r is the 
ontrol signal, for all t ≥ t0. We assume that the problemis in the standard form, that is equivalent to assume M11 non-singular, in the LTIsystems 
ase. Let us apply the mode-de
oupling transformation [Kok75℄:
[

xf (t)
xs(t)

]

=

[

In1
L(ε)

−εH(ε) In2
− εH(ε)L(ε)

] [

x1(t)
x2(t)

]

,

[

x1(t)
x2(t)

]

=

[

In1
− εL(ε)H(ε) −L(ε)

εH(ε) In2

] [

xf (t)
xs(t)

]

,

(2.10)with
M12 − M11L(ε) + εL(ε)(M22 − M21L(ε)) = 0, (2.11)

M21 − H(ε)M11 + ε(M22 − M21L(ε))H(ε) − εH(ε)L(ε)M21 = 0. (2.12)Given a s
alar εmax > 0, the non-symmetri
 algebrai
 Ri

ati equation (2.11) andthe Sylvester equation (2.12) admit the approximated solution L(ε) = M−1
11 M12 +

O(ε), H(ε) = M21M
−1
11 + O(ε), for ε ∈ (0, εmax]. By dis
retizing the 
ontinuous-time model (2.9), a di�erent sampling model is obtained depending on the sam-pling rate [KI86℄. The 
hoi
e of the sampling time as Tf = αfε, where αf > 0 isa s
alar, leads to the fast sampling model :

{

x1(k + 1) = A11x1(k) + A12x2(k) + B1u(k)

x2(k + 1) = εA21x1(k) + (In2
+ εA22)x2(k) + εB2u(k),

(2.13)where x1(k) ∈ R
n1 , x2(k) ∈ R

n2 and u(k) ∈ R
r, for all k ∈ Z

+ ≥ t0. Negle
ting
O(ε) errors, we have :

A11 = exp
(

αfM11

)

,

A12 =
(

exp
(

αfM11

)

− In1

)

M−1
11 M12,

A21 = M21M
−1
11

(

exp
(

αfM11

)

− In1

)

,

A22 = αfMs + M21M
−1
11

(

exp
(

αfM11

)

− In1

)

M−1
11 M12,

B1 =
(

exp
(

αfM11

)

− In1

)

M−1
11 N1,

B2 = αfNs + M21M
−1
11

(

exp
(

αfM11

)

− In1

)

M−1
11 N1,

(2.14)
with Ms = M22 − M21M

−1
11 M12 and Ns = N2 − M21M

−1
11 N1.By 
hoosing the sampling time as Ts = αs[1/ε]Tf ≈ αsαf , where αs > 0 is as
alar and [1/ε] is the largest integer ≤ 1/ε, we obtain the slow sampling model :

{

x1(s + 1) = εÃ11x1(s) + Ã12x2(s) + B̃1u(s)

x2(s + 1) = εÃ21x1(s) + Ã22x2(s) + B̃2u(s),
(2.15)20



2.2. Dis
rete-time LQ optimal problemwhere k = s[1/ε], x1(s) ∈ R
n1 , x2(s) ∈ R

n2 and u(s) ∈ R
r, for all s ∈ Z

+ ≥ t0.Negle
ting O(ε) errors, we have:
Ã11 = M−1

11 M12exp
(

αsαfMs

)

M21M
−1
11 + ε−1exp

(

αsαf M11

ε

)

,

Ã12 = −M−1
11 M12exp

(

αsαfMs

)

,

Ã21 = −exp
(

αsαfMs

)

M21M
−1
11 ,

Ã22 = exp
(

αsαfMs

)

,

B̃1 = −M−1
11 M12

(

exp
(

αsαfMs

)

− In2

)

M−1
s Ns − M−1

11 N1,

B̃2 =
(

exp
(

αsαfMs

)

− In2

)

M−1
s Ns.

(2.16)
Sin
e exp

(

αsαf M11

ε

)

≈ O(ε) only if the matrix M11 is Hurwitz, the slow samplingmodel is valid only if the fast dynami
s is asymptoti
ally stable.2.2 Dis
rete-time LQ optimal problem2.2.1 Fast sampling 
ontrol lawConsider the fast sampling model (2.13):










x1(k + 1) = A11x1(k) + A12x2(k) + B1u(k)

x2(k + 1) = εA21x1(k) + (In2
+ εA22)x2(k) + εB2u(k)

q(k) = C1x1(k) + C2x2(k),

(2.17)where x(k) =
[

x1(k)′ x2(k)′
]′, q(k) ∈ R

w is the 
ontrolled output, for all k ∈
Z

+ ≥ t0, and
A(ε) =

[

A11 A12

εA21 (In2
+ εA22)

]

, B(ε) =

[

B1

εB2

]

, C =
[

C1 C2

]

. (2.18)Let the fast sampling LQ optimization problem :
min

u
J(ε) =

ε

2

∞
∑

k=t0

(q(k)′q(k) + u(k)′Ru(k)) (2.19)
subject to

{

x(k + 1) = A(ε)x(k) + B(ε)u(k)

q(k) = Cx(k),
x(t0) =

[

x1(t0)
x2(t0)

]where R = R′ ≻ 0 is a weighting matrix. Assume that the pair (A(ε), B(ε)) isstabilizable and the pair (C, A(ε)) is dete
table in the dis
rete-time sense, whi
hmeans that ea
h eigenvalue of A(ε) whi
h has modulus equal or greater than oneis 
ontrollable and observable. Hen
e, there exists a stabilizing solution S(ε) ≻ 0for the algebrai
 Ri

ati equation:
A(ε)′S(ε)A(ε) − A(ε)′S(ε)B(ε)(R + B(ε)′S(ε)B(ε))−1

B(ε)′S(ε)A(ε) − S(ε) + C ′C = 0.
(2.20)21



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemsThe optimal solution is :
u(k) = K(ε)x(k), (2.21)with

K(ε) = −(R + B(ε)′S(ε)B(ε))−1B(ε)′S(ε)A(ε)and optimal 
ost
J∗(ε) =

ε

2
x(t0)

′S(ε)x(t0).When ε → 0, standard te
hniques may lead to ill-
onditioning 
ontrollers.To avoid su
h numeri
al problems, the 
riterion (2.19) and its asso
iated Ri

atiequation (2.20) may be de
omposed into two di�erent well-behaved subproblems,independently of the singular parameter ε.Slow subproblem: To derive the slow subsystem of (2.17), we assume that
x2(k) = xs(k) and x1(k) = x̄1(k) = (In1

−A11)
−1(A12xs(k)+B1us(k)), during thesteady state. These hypotheses are equivalent to the 
ontinuous-time assumption(2.5) and (2.6). We obtain [Nai02℄:

xs(k + 1) = (In2
+ εAs)xs(k) + εBsus(k),whi
h 
an be written in the time s
ale t = εk as

xs(εk + ε) − xs(εk) = εAsxs(εk) + εBsus(εk).Dividing both sides by ε, for ε → 0 we get the approximated 
ontinuous-timesubproblem:
min

us

Js =
1

2

∫ ∞

t0

(

qs(t)
′qs(t) + us(t)

′Rsus(t)
)

dt

subject to

{

ẋs(t) = Asxs(t) + Bsus(t)

qs(t) = Csxs(t) + Dsus(t),
x0

s = x2(t0)

(2.22)where the matrix (In1
− A11) is assumed to be non-singular,

As = A22 + A21(In1
− A11)

−1A12,

Bs = B2 + A21(In1
− A11)

−1B1,

Cs = C2 + C1(In1
− A11)

−1A12,

Ds = C1(In1
− A11)

−1B1,

(2.23)and Rs = R′
s = R + D′

sDs ≻ 0. Noti
e that xs 
orresponds to the state ve
tor
x̄2 introdu
ed in (2.2). Assume that the pair (As, Bs) is stabilizable and the pair
(Cs, As) is dete
table in the 
ontinuous-time sense, whi
h means that ea
h eigen-value of As that is in the right-half 
omplex plane is 
ontrollable and observable.Hen
e, there exists a stabilizing solution Ss ≻ 0 for the algebrai
 Ri

ati equation:

(As − BsR
−1
s D′

sCs)
′Ss + Ss(As − BsR

−1
s D′

sCs)−

SsBsR
−1
s B′

sSs + C ′
s(In1

− DsR
−1
s D′

s)Cs = 0.22



2.2. Dis
rete-time LQ optimal problemThe optimal solution is:
us(t) = Ksxs(t), (2.24)with Ks = −R−1

s (B′
sSs + D′

sCs) and optimal 
ost J∗
s = 1

2
x0

s
′
Ssx

0
s. The state-feedba
k law (2.24) guarantees the 
ondition Re{ξ(As+BsKs)} < 0. This impliesthe asymptoti
 stability of the slow subsystem, for a su�
iently small ε.Fast subproblem: To derive the fast subsystem of (2.17), we assume that

xs(k + 1) = xs(k) and xf (k) = x1(k) − x̄1(k) during the fast transient. Therelation xf(k + 1) = x1(k + 1) − x̄1(k + 1) yields the following fast subproblem[Nai02℄:
min

uf

Jf =
1

2

∞
∑

k=t0

(qf(k)′qf(k) + uf(k)′Ruf(k))

subject to

{

xf (k + 1) = A11xf(k) + B1uf(k)

qf (k) = C1xf (k),
x0

f = x1(t0) − x̄1(t0)with x̄1(t0) = (In1
−A11)

−1A12x2(t0). If the pair (A11, B1) is stabilizable and thepair (C1, A11) is dete
table in the dis
rete-time sense, there exists a stabilizingsolution Sf ≻ 0 for the algebrai
 Ri

ati equation:
A′

11SfA11 − A′
11SfB1(R + B′

1SfB1)
−1B′

1SfA11 − Sf + C ′
1C1 = 0.The optimal solution is:

uf(k) = Kfxf (k), (2.25)with Kf = −(R + B′
1SfB1)

−1B′
1SfA11 and optimal 
ost J∗

f = 1
2
x0

f

′
Sfx

0
f .Composite 
ontrol : The 
ontrol laws (2.24) and (2.25) are designed usingindependent gains Ks and Kf . Sin
e (2.24) has been designed in the 
ontinuous-time framework while (2.25) has been designed in the dis
rete-time one, we obtaina hybrid 
ontrol law. Setting us(t) = us(k) = Ksxs(k) 
onstant for kε ≤ t <

(k + 1)ε, we have the 
omposite 
ontrol law :
u(k) = us(k) + uf(k) = K

[

x1(k)
x2(k)

]

, (2.26)with K =
[

Kf Ks − Kf (In1
− A11)

−1(A12 + B1Ks)
]. When ε → 0, (2.26) is
lose to the optimal solution (2.21).2.2.2 Slow sampling 
ontrol lawConsider the slow sampling model (2.15):











x1(s + 1) = εÃ11x1(s) + Ã12x2(s) + B̃1u(s)

x2(s + 1) = εÃ21x1(s) + Ã22x2(s) + B̃2u(s)

q(s) = C1x1(s) + C2x2(s),

(2.27)23



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemswhere x(s) =
[

x1(s)
′ x2(s)

′
]′, q(s) ∈ R

w is the 
ontrolled output, for all s ∈
Z

+ ≥ t0, and
Ã(ε) =

[

εÃ11 Ã12

εÃ21 Ã22

]

, B̃ =

[

B̃1

B̃2

]

, C =
[

C1 C2

]

. (2.28)A model dis
retized using a slow sampling time 
annot take into a

ount the fasttransient. Hen
e, we 
onsider C1 = 0. Let the slow sampling LQ optimizationproblem :
min

u
J(ε) =

1

2

∞
∑

s=t0

(q(s)′q(s) + u(s)′Ru(s)) (2.29)
subject to

{

x(s + 1) = Ã(ε)x(s) + B̃u(s)

q(s) = Cx(s)
x(t0) =

[

x1(t0)
x2(t0)

]

.If the pair (Ã(ε), B̃) is stabilizable and the pair (C, Ã(ε)) is dete
table, thereexists a stabilizing solution S(ε) ≻ 0 for the algebrai
 Ri

ati equation:
Ã(ε)′S(ε)Ã(ε) − Ã(ε)′S(ε)B̃(R + B̃′S(ε)B̃)−1B̃′S(ε)Ã(ε) − S(ε) + C ′C = 0.(2.30)The optimal solution is :

u(s) = K(ε)x(s), (2.31)with
K(ε) = −(R + B̃′S(ε)B̃)−1B̃′S(ε)Ã(ε)and optimal 
ost

J∗(ε) =
1

2
x(t0)

′S(ε)x(t0).As in the fast sampling 
ase, the 
riterion (2.29) and its asso
iate Ri

atiequation (2.30) may be de
omposed into two di�erent well-behaved subproblems,independently of the singular parameter ε.Slow subproblem: Setting ε = 0, we obtain the following slow subproblem:
min

us

Js =
1

2

∞
∑

s=t0

(qs(s)
′qs(s) + us(s)

′Rus(s))

subject to

{

xs(s + 1) = Ãsxs(s) + B̃sus(s)

qs(s) = C̃sxs(s),
x0

s = x2(t0)

(2.32)with xs(s) = x2(s) and
Ãs = Ã22, B̃s = B̃2, C̃s = C2. (2.33)24



2.3. LMI based solutionIf the pair (Ãs, B̃s) is stabilizable and the pair (C̃s, Ãs) is dete
table, there existsa stabilizing solution Ss ≻ 0 for the algebrai
 Ri

ati equation:
Ã′

sSsÃs − Ã′
sSsB̃s(R + B̃′

sSsB̃s)
−1B̃′

sSsÃs − Ss + C̃ ′
sC̃s = 0.The optimal solution is:

us(s) = Ksxs(s), (2.34)with Ks = −(R + B̃′
sSsB̃s)

−1B̃′
sSsÃs and optimal 
ost J∗

s = 1
2
x0

s

′
Ssx

0
s.Clearly, a 
ontroller designed using a slow sampling time Ts 
annot in�uen
ethe fast transient. Hen
e, for ε → 0 we have Kf = 0 and

u(s) = K

[

x1(s)
x2(s)

]

, (2.35)with K =
[

0 Ks

]. Sin
e M11 was assumed to be Hurwitz, the 
losed loop system(2.27) will be asymptoti
ally stable, for an ε small enough.2.3 LMI based solutionIn this se
tion, we present an alternative LMI based solution to the dis
rete-timeLQ optimal problem for two time s
ale linear systems. In general, LMI tools are
onsidered more e�e
tive than Ri

ati equation solutions in front of the in
reaseof dimensions [BGFB94℄.2.3.1 Fast sampling 
ontrol lawThe fast sampling LQ optimization problem (2.19) may be formulated in a 
onvexform [GDB02℄, [MDIB09℄. Let de�ne the sets
Pε =

{

P̄ (ε) =

[

P (ε) Z(ε)′

Z(ε) U(ε)

]

� 0, P (ε) ≻ 0

} (2.36)and
Qε =

{

P̄ (ε) ∈ Pε : A(ε)P (ε)A(ε)′ + A(ε)Z(ε)′B(ε)′ + B(ε)Z(ε)A(ε)′+

B(ε)Z(ε)P (ε)−1Z(ε)′B(ε)′ − P (ε) + x(t0)x(t0)
′ ≺ 0

}

.(2.37)An alternative LMI based solution to the problem (2.19) is obtained solvingthe problem [PG94℄:
min

P̄ (ε)∈Qε

J(ε) = εTr

([

C ′C 0
0 R

]

P̄ (ε)

)

. (2.38)Furthermore, if P̄ ∗(ε) is optimal, it 
an be written as:
P̄ ∗(ε) =

[

P ∗(ε) Z∗(ε)′

Z∗(ε) U∗(ε)

]

=

[

P ∗(ε) P ∗(ε)K(ε)′

K(ε)P ∗(ε) K(ε)P ∗(ε)K(ε)′

]

, 25



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemswhere K(ε) = Z∗(ε)P ∗(ε)−1 is the optimal gain and
lim
ε→0

K(ε) = K = Z∗P ∗−1. (2.39)Hen
e, (2.38) may be reformulated as:
min

P (ε)≻0,Z(ε)
J(ε) = εTr

([

C ′C 0
0 R

] [

P (ε) Z(ε)′

Z(ε) Z(ε)P (ε)−1Z(ε)′

]) (2.40)
subject to

A(ε)P (ε)A(ε)′ + A(ε)Z(ε)′B(ε)′ + B(ε)Z(ε)A(ε)′+

B(ε)Z(ε)P (ε)−1Z(ε)′B(ε)′ − P (ε) + x(t0)x(t0)
′ ≺ 0.When ε is small, numeri
al di�
ulties to minimize the 
riterion J(ε) arise.This problem is due to the ill-
onditioning of the 
onstraint (2.37). As in theLQ 
lassi
al solution, we 
an de
ompose the original problem (2.40) into twowell-behaved subproblems :

J(ε) = εTr









[

C ′
1

C ′
2

]

[

C1 C2

]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

+

R
[

Z1(ε) Z2(ε)
]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]−1 [
Z1(ε)

′

Z2(ε)
′

]









,where
P (ε) = P (ε)′ =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

= ε−1

[

P1 + O(ε) P2 + O(ε)
P ′

2 + O(ε) P3 + O(ε)

]

≻ 0 (2.41)and
Z(ε) =

[

Z1(ε) Z2(ε)
]

= ε−1
[

Z1 + O(ε) Z2 + O(ε)
]

. (2.42)Given F (ε) = P1(ε) − P2(ε)P3(ε)
−1P2(ε)

′, we obtain:
J(ε) =Js(ε) + Jf(ε) =

εTr

(

[

C1 C2 + C1P2(ε)P3(ε)
−1
]

[

F (ε) 0
0 P3(ε)

]

[

⋆
]′

)

+

εTr

(

R
[

Z1(ε) − Z2(ε)P3(ε)
−1P2(ε)

′ Z2(ε)
]

[

F (ε)−1 0
0 P3(ε)

−1

]

[

⋆
]′

)with
Js(ε) = εTr((C2 + C1P2(ε)

′P3(ε)
−1)P3(ε)×

(C2 + C1P2(ε)
′P3(ε)

−1)′ + RZ2(ε)P3(ε)
−1Z2(ε)

′),

Jf(ε) = εTr((C1(P1(ε) − P2(ε)P3(ε)
−1P2(ε)

′)C ′
1 + R(Z1(ε) − Z2(ε)P3(ε)

−1×

P2(ε)
′)(P1(ε) − P2(ε)P3(ε)

−1P2(ε)
′)−1(Z1(ε) − Z2(ε)P3(ε)

−1P2(ε)
′)′).Let us de�ne

P2 = (In1
− A11)

−1(A12P3 + B1Z2), (2.43)
Ps = P3, Zs = Z2, (2.44)26



2.3. LMI based solution
Pf = P1 − P2P

−1
3 P ′

2, Zf = Z1 − Z2P
−1
3 P ′

2. (2.45)Hen
e:
lim
ε→0

(C2 + C1P2(ε)P3(ε)
−1) =

C2 + C1(In1
− A11)

−1A12 + C1(In1
− A11)

−1B1ZsP
−1
s = Cs + DsZsP

−1
s ,

lim
ε→0

Js(ε) = Js =Tr(CsPsC
′
s + CsZ

′
sD

′
s + DsZsC

′
s + DsZsP

−1
s Z ′

sD
′
s + RZsP

−1
s Z ′

s),

lim
ε→0

Jf(ε) = Jf = Tr(C1PfC
′
1 + RZfP

−1
f Z ′

f).The last two equations 
an be written in the form:
Js = Tr

([

C ′
sCs C ′

sDs

D′
sCs D′

sDs + R

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

, (2.46)
Jf = Tr

([

C ′
1C1 0
0 R

] [

Pf Z ′
f

Zf ZfP
−1
f Z ′

f

])

, (2.47)with
J = Js + Jf . (2.48)In terms of variables, Js depends on Ps and Zs while Jf depends on Pf and

Zf . Thus, two independent optimization subproblems 
an be de�ned:Slow subproblem:
min
P̄s∈Qs

Tr

([

C ′
sCs C ′

sDs

D′
sCs D′

sDs + R

]

P̄s

)

, (2.49)with
Ps =

{

P̄s =

[

Ps Z ′
s

Zs Vs

]

≻ 0

}and
Qs =

{

P̄s ∈ Ps : AsPs + PsA
′
s + BsZs + Z ′

sB
′
s + x0

sx
0
s
′
≺ 0
}

.Fast subproblem:
min

P̄f∈Qf

Tr

([

C ′
1C1 0
0 R

]

P̄f

)

, (2.50)with
Pf =

{

P̄f =

[

Pf Z ′
f

Zf Vf

]

≻ 0

}and
Qf =

{

P̄f ∈ Pf : A11PfA
′
11 + A11Z

′
fB

′
1 + B1ZfA

′
11 + B1ZfP

−1
f Z ′

fB
′
1 − Pf ≺ 0

}27



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemswhi
h, using the S
hur 
omplement [BGFB94℄, be
omes
Qf =

{

P̄f ∈ Pf :

[

Pf A11Pf + B1Zf

(⋆)′ Pf

]

≻ 0

}

.The following theorem gives a suboptimal solution of the problem (2.38).Theorem 2 Assume that the problems (2.49) and (2.50) admit, respe
tively, thesolutions
P̄s =

[

Ps Z
′

s

Zs Vs

]

, P̄f =

[

Pf Z
′

f

Zf Vf

]

.Hen
e, there exists a positive s
alar εmax su
h that the solution P̄ (ε) of the problem(2.38) exists ∀ ε ∈ ( 0, εmax] and
lim
ε→0

J(ε) = J = Js + Jf = Tr

([

C ′C 0
0 R

] [

P Z ′

Z ZP−1Z ′

])

,with
P =

[

Pf + P2P
−1
s P ′

2 P2

P ′
2 Ps

] (2.51)and
Z =

[

Zf + ZsP
−1
s P ′

2 Zs

]

. (2.52)Moreover, the 
omposite 
ontroller gain (2.39), whi
h guarantees the asymptoti
stability of the system (2.17) ∀ ε ∈ ( 0, εmax], is:
K =

[

ZfP
−1
f ZsP

−1
s − ZfP

−1
f (In1

− A11)
−1(A12 + B1ZsP

−1
s )

]

.Proof. See Appendix B.1.Remark 1 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max ε > 0 (2.53)

subject to P (ε) ≻ 0,
A(ε)P (ε)A(ε)′ + A(ε)Z(ε)′B(ε)′ + B(ε)Z(ε)A(ε)′+

B(ε)Z(ε)P (ε)−1Z(ε)′B(ε)′ − P (ε) + x(t0)x(t0)
′ ≺ 0,where A(ε), B(ε), P (ε) and Z(ε) are de�ned in (2.18) and (2.41)-(2.45), respe
-tively. The values of Pf , Zf , Ps and Zs 
an be 
omputed by Theorem 2.Remark 2 The 
onditions of Theorem 2 with Zf = 0 lead to the redu
ed 
ontrollaw:

u(k) =
[

0 Ks

]

[

x1(k)
x2(k)

]

, (2.54)where Ks = ZsP
−1
s is the optimal 
ontroller gain of the slow subsystem. Noti
ethat, in this 
ase, the fast subproblem (2.50) has a solution only if A11 is S
hur.28



2.3. LMI based solution2.3.2 Slow sampling 
ontrol lawThe slow sampling LQ optimization problem (2.29) may be formulated in a 
onvexform using a similar pro
edure to the fast sampling 
ontrol design illustrated inthe previous se
tion. Let de�ne the sets
Pε =

{

P̄ (ε) =

[

P (ε) Z(ε)′

Z(ε) U(ε)

]

� 0, P (ε) ≻ 0

} (2.55)and
Qε =

{

P̄ (ε) ∈ Pε : Ã(ε)P (ε)Ã(ε)′ + Ã(ε)Z(ε)′B̃′ + B̃Z(ε)Ã(ε)′+

B̃Z(ε)P (ε)−1Z(ε)′B̃′ − P (ε) + x(t0)x(t0)
′ ≺ 0

}

. (2.56)From
min

P̄ (ε)∈Qε

J(ε) = Tr

([

C ′C 0
0 R

]

P̄ (ε)

)

, (2.57)
P̄ ∗(ε) =

[

P ∗(ε) Z∗(ε)′

Z∗(ε) U∗(ε)

]

=

[

P ∗(ε) P ∗(ε)K(ε)′

K(ε)P ∗(ε) K(ε)P ∗(ε)K(ε)′

]

,where K(ε) = Z∗(ε)P ∗(ε)−1 is the optimal gain and
lim
ε→0

K(ε) = K = Z∗P ∗−1. (2.58)We obtain:
min

P (ε)≻0,Z(ε)
J(ε) = Tr

([

C ′C 0
0 R

] [

P (ε) Z(ε)′

Z(ε) Z(ε)P (ε)−1Z(ε)′

]) (2.59)
subject to

Ã(ε)P (ε)Ã(ε)′ + Ã(ε)Z(ε)′B̃′ + B̃Z(ε)Ã(ε)′+

B̃Z(ε)P (ε)−1Z(ε)′B̃′ − P (ε) + x(t0)x(t0)
′ ≺ 0.De
omposing the 
riterion

J(ε) = Tr









[

0
C ′

2

]

[

0 C2

]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

+

R
[

Z1(ε) Z2(ε)
]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]−1 [
Z1(ε)

′

Z2(ε)
′

]









,with
P (ε) = P (ε)′ =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

=

[

ε−1P1 P2 + O(ε)
P ′

2 + O(ε) P3 + O(ε)

]

≻ 0 (2.60)and
Z(ε) =

[

Z1(ε) Z2(ε)
]

=
[

O(ε) Z2 + O(ε)
]

, (2.61)and de�ning
Pf = P1, Ps = P3, Zs = Z2, (2.62)29



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemswe have:
lim
ε→0

J(ε) = Js = Tr(C̃sPsC̃
′
s + RZsP

−1
s Z ′

s) =

Tr

([

C̃ ′
sC̃s 0
0 R

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

.
(2.63)The slow subproblem is:

min
P̄s∈Qs

Tr

([

C̃ ′
sC̃s 0
0 R

]

P̄s

)

, (2.64)with
Ps =

{

P̄s =

[

Ps Z ′
s

Zs Vs

]

≻ 0

}and
Qs =







P̄s ∈ Ps :





Ps ÃsPs + B̃sZs x0
s

(⋆)′ Ps 0
(⋆)′ (⋆)′ In2



 ≻ 0







.The following theorem gives a suboptimal solution of the problem (2.57).Theorem 3 Assume that the problem (2.64) admits the solution
P̄s =

[

Ps Z
′

s

Zs Vs

]

.Hen
e, there exists a positive s
alar εmax su
h that the solution P̄ (ε) of the problem(2.57) exists ∀ ε ∈ ( 0, εmax] and
lim
ε→0

J(ε) = Js = Tr

([

C̃ ′
sC̃s 0
0 R

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

.Moreover, the 
omposite 
ontroller gain (2.58), whi
h guarantees the asymptoti
stability of the 
losed loop system (2.27) ∀ ε ∈ ( 0, εmax], is K =
[

0 ZsP
−1
s

].Proof. From (2.60), we have:
P (ε)−1 =

[

ε(P1 + O(ε))−1 −ε(P1 + O(ε))−1P2(ε)P3(ε)
−1

(⋆)′ P3(ε)
−1 + O(ε)

]

≻ 0. (2.65)Substituting (2.28), (2.33), (2.60), (2.61), (2.62) and (2.65) in (2.56), we obtain:
[

ε−1X1(ε) X2(ε)
X2(ε)

′ X3(ε)

]

≺ 0, (2.66)with
X1(ε) = ε(Ã12 + B̃1ZsP

−1
s )Ps(Ã12 + B̃1ZsP

−1
s )′ + εx0

1x
0
1
′
− Pf + O(ε2),30



2.3. LMI based solution
X2(ε) =Ã12PsÃ

′
s + Ã12Z

′
sB̃

′
s + B̃1ZsÃ

′
s + B̃1ZsP

−1
s Z ′

sB̃
′
s + x0

1x
0
s

′
− P2 + O(ε),

X3(ε) = ÃsPsÃ
′
s + ÃsZ

′
sB̃

′
s + B̃sZsÃ

′
s + B̃sZsP

−1
s Z ′

sB̃
′
s + x0

sx
0
s

′
− Ps + O(ε).When ε → 0, we get:

X1 = −Pf ≺ 0, (2.67)
X2 = Ã12PsÃ

′
s + Ã12Z

′
sB̃

′
s + B̃1ZsÃ

′
s + B̃1ZsP

−1
s Z ′

sB̃
′
s + x0

1x
0
s

′
− P2, (2.68)

X3 = ÃsPsÃ
′
s + ÃsZ

′
sB̃

′
s + B̃sZsÃ

′
s + B̃sZsP

−1
s Z ′

sB̃
′
s + x0

sx
0
s

′
− Ps ≺ 0. (2.69)Using the S
hur 
omplement, the 
ondition (2.69) represents the 
onstraint ofslow the subproblem (2.64). Hen
e, it is satis�ed by assumption, with Ps ≻ 0.Repla
ing (2.67)-(2.69) in (2.66), we obtain:

[

ε−1(X1 + O(ε)) X2 + O(ε)
X ′

2 X3 + O(ε)

]

≺ 0. (2.70)The 
ondition X1 ≺ 0 implies that there exist matri
es Pf ≻ 0, P2 and a s
alar
ε1 > 0 su
h that the inequality

X1 − ε(X2(X3 + O(ε))−1X ′
2 + O(ε)) + O(ε) ≺ 0holds ∀ ε ∈ (0, ε1]. Hen
e, using the S
hur 
omplement, also (2.70) holds ∀ ε ∈

(0, ε1]. Moreover, there exists a s
alar ε2 > 0 su
h that the inequality
Pf − εP2(Ps + O(ε))−1P ′

2 + O(ε2) ≻ 0holds, ∀ ε ∈ (0, ε2]. Hen
e, using the S
hur 
omplement, P (ε) ≻ 0 ∀ ε ∈ (0, ε2].Thus, there exist matri
es Ps, Zs and Pf and a s
alar εmax = min{ε1, ε2} thatverify the 
onstraints (2.55)-(2.56) of the problem (2.57), ∀ ε ∈ (0, εmax].When ε → 0, from (2.61) and (2.65) we have
K = Z(ε)P (ε)−1 =

[

0 ZsP
−1
s

]

,whi
h 
on
ludes the proof.Remark 3 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max

Pf

ε > 0 (2.71)
subject to P (ε) ≻ 0,

Ã(ε)P (ε)Ã(ε)′ + Ã(ε)Z(ε)′B̃′ + B̃Z(ε)Ã(ε)′+

B̃Z(ε)P (ε)−1Z(ε)′B̃′ − P (ε) + x(t0)x(t0)
′ ≺ 0,where Ã(ε), B̃, P (ε) and Z(ε) are de�ned in (2.28) and (2.60)-(2.62), respe
-tively. The values of Ps and Zs are given by Theorem 3. Sin
e a 
ontrol lawbased on the slow sampling model 
annot in�uen
e the fast transient, Theorem 3does not provide a solution for the fast subproblem. Hen
e, the value of Pf 
anbe 
hosen in order to maximize the value of εmax, under the 
onstraints of theproblem 2.71. 31



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systems2.3.3 Numeri
al exampleConsider the state matri
es (1.15), introdu
ed in Chapter 1. They 
orrespondto the 4-stands subsystem of an average produ
t of the Eisenhüttenstadt HSMdatabase, with ε = 0.05. Let us assume, in a �rst moment, that there exist nobounds on the rate a
tuators. In this 
ase, we 
ould resort to the fast samplingmodel (2.13) in order to 
ontrol both slow and fast dynami
s. Choosing αf = 0.1,we have Tf = 0.005 sec. Using formulae (2.14), we get the following dis
rete-timestate matri
es:
A11 =





0.6849 −0.0212 −0.0008
−0.1837 0.6938 0.0509
−0.1325 −0.2486 0.6543



 ,

A12 =





−0.0841 0.0000 −0.0000 −0.0000 −0.0000
−0.0223 0.0000 0.0000 −0.0000 0.0000
−0.0252 0.0000 0.0000 0.0000 −0.0000



 ,

A21 = 103













−0.0004 0.0000 0.0000
0 0 0

0.6211 −0.009 −0.0002
−0.1198 0.974 0.0338
−0.1318 −0.227 1.3













,

A22 = 102













−0.0013 0.0000 −0.0000 0.0000 0.0000
4.1744 0 0 0 0
−0.3345 0.0001 −0.0002 −0.0000 −0.0000
−0.1565 0.0000 0.0004 −0.0005 0.0000
−0.2525 0.0000 0.0001 0.0005 −0.0007













,

B1 =





0.0006 0.0031 −0.0000 −0.0000
0.0006 0.0022 0.0069 0.0004
0.0006 0.0023 0.0062 0.0138



 ,

B2 =













0.0093 0.0095 −0.0045 −0.002
0 0 0 0

−2.224 −12.113 5.74 2.59
2.108 16.784 −46.07 −31.82
2.526 4.011 73.13 −35.17













,

C1 =













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0













, C2 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.32



2.3. LMI based solutionLet the weighting matrix R = 100I5. Theorem 2 leads to the following 
ontrollergain:
K =









−0.1 0 0 −97.883 −0.1052 −0.0034 0.0034 −0.0038
0 −0.1 0 −22.1287 −0.0076 0.0551 −0.0434 −0.0158
0 0 −0.1 9.5851 0.01 −0.014 0.0115 −0.0366
0 0 0 −15.3011 −0.004 0.0392 0.0741 0.0112









.Now, let 
onsider the real s
enario of Eisenhüttenstadt HSM, where the lowerbound on the sampling time is �xed to Tlow = 0.04 sec, due to the limitations onthe a
tuators rate. Hen
e the fast dynami
s, whi
h is open loop stable, 
annot be
ontrolled. In this 
ase, it is quite natural to design a redu
ed 
ontrol law usingthe slow sampling model (2.15). Let 
hoose αs = 0.5. We obtain Ts = 0.05 sec.Using formulae (2.16), we obtain the following dis
rete-time state matri
es:
0  0.25 0.5 0.75

0

5

10

t (sec)

α 3

0  0.25 0.5 0.75

0

5

10
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Figure 2.1: Closed loop response of x4
1 using the fast sampling 
ontroller (solidline, Tf = 0.005) and the slow sampling 
ontroller (dotted-line, Ts = 0.05)

Ã11 =





0.5549 −0.127 −0.0467
−0.3236 −0.407 0.1387
0.4222 0.41 −0.6266



 ,

Ã12 =





−0.23 0.0000 −0.0002 −0.0000 −0.0000
0.038 −0.0000 0.0002 −0.0001 0.0000

−0.0008 0.0000 −0.0000 0.0002 −0.0002



 , 33
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ontrol design for two time s
ale systems
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Figure 2.2: Closed loop response of x4
2 using the fast sampling 
ontroller (solidline, Tf = 0.005) and the slow sampling 
ontroller (dotted-line, Ts = 0.05)

Ã21 = 103













−0.0016 0.0001 0.0000
−0.3417 0.0254 0.0046
2.0446 −0.1558 −0.0289
−1.6887 2.52 0.469
−0.5125 −2.0625 2.812













,

Ã22 = 102













0.01 0.0000 −0.0000 0.0000 0.0000
2.087 0.01 −0.0000 0.0000 0.0000
−0.937 0.0003 0.0091 −0.0000 −0.0000
0.353 −0.0001 0.0018 0.0087 0.0000
−0.111 0.0000 −0.0005 0.0024 0.0082













,34



2.4. An extension to un
ertain systems in the polytopi
 form
B̃1 =





0.0009 0.0097 −0.002 −0.0006
0.0012 0.0024 0.02 0.0068
0.0004 0.0016 0.0057 0.03



 ,

B̃2 =













0.0032 −0.0029 0.0006 0.0002
0.3386 −0.304 0.06 0.019
0.5154 3.666 −0.73 −0.24
0.627 1.166 12.93 4.226
0.3476 1.36 2.98 25.6













,

C1 =













0 0 0
0 0 0
0 0 0
0 0 0
0 0 0













, C2 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.Theorem 3 yields the following 
ontroller gain:
K =









0 0 0 −73.898 −0.0857 −0.0151 0.0016 −0.0004
0 0 0 61.091 0.0013 −0.0481 −0.0007 −0.0012
0 0 0 −2.1477 0.0007 −0.0297 −0.0408 0.0054
0 0 0 −1.1542 −0.0005 0.006 −0.0226 −0.0271









.Consider the initial 
onditions
x4(0) =

[

x4
1(0)′ x4

2(0)′
]′

=
[

10 10 10 1 1 1 1 1
]′

,where x4
1 =

[

α3 α4 α5

]′ is the state ve
tor 
orresponding to the fast dynami
sand x4
2 =

[

α2 Z2 Z3 Z4 Z5

]′ is the state ve
tor 
orresponding to the slowdynami
s. Fig. 2.1 shows the 
losed loop response 
orresponding to x4
1 usingthe fast sampling 
ontroller (solid line) and the slow sampling 
ontroller (dotted-line). Fig. 2.2 shows the 
losed loop response 
orresponding to x4

2 using the fastsampling 
ontroller (solid line) and the slow sampling 
ontroller (dotted-line).2.4 An extension to un
ertain systems in the poly-topi
 form2.4.1 Slow sampling 
ontrol lawThis se
tion aims at extending the results of Theorem 3 to un
ertain two times
ale systems in the polytopi
 form and designing a H2 robust 
ontroller for this
lass of systems. Consider the slow sampling two time s
ale system:
{

x(s + 1) = A(s)x(s) + Bu(s)u(s) + Bd(s)d(s)

q(s) = Cx(s) + Du(s),
(2.72)35



Chapter 2. A 
onvex solution of the dis
rete-time LQ 
ontrol design for two time s
ale systemswhere d(s) ∈ R
h is the external perturbation, for all s ∈ Z

+ ≥ t0, and
A(s) =

NV
∑

l=1

λl(s)Ã
l(ε), Bu(s) =

NV
∑

l=1

λl(s)B̃
l
u, Bd(s) =

NV
∑

l=1

λl(s)B̃
l
d,with l ∈ L. λl denotes the un
ertainty and belongs to the unit simplex

Y(s) = {

NV
∑

l=1

λl(s) = 1, λl(s) ≥ 0}.The matri
es Ãl(ε), B̃l
u, B̃l

d and C are de�ned as:
Ãl(ε) =

[

εÃl
11 Ãl

12

εÃl
21 Ãl

22

]

, B̃l
u =

[

B̃l
u,1

B̃l
u,2

]

, B̃l
d =

[

B̃l
d,1

B̃l
d,2

]

, C =
[

0 C2

]

, (2.73)for any l ∈ L. The two time s
ale linear system 
orresponding to ea
h vertex lof (2.72) may be written in the form:










x1(s + 1) = εÃl
11x1(s) + Ãl

12x2(s) + B̃l
u,1u(s) + B̃l

d,1d(s)

x2(s + 1) = εÃl
21x1(s) + Ãl

22x2(s) + B̃l
u,2u(s) + B̃l

d,2d(s),

q(s) = C2x2(s) + Du(s).Its slow subsystem is:
{

xs(s + 1) = Ãl
sxs(s) + B̃l

u,sus(s) + B̃l
d,sd(s)

q(s) = C̃sxs(s) + D̃sus(s),where Ãl
s = Ãl

22, B̃l
u,s = B̃l

u,2, B̃l
d,s = B̃l

d,2, C̃s = C2 and D̃s = D. The pair
(Ãl

s, B̃
l
u,s) is assumed to be 
ontrolable, for any l ∈ L. For simpli
ity reasons, weassume that the weighting matri
es C̃s and D̃s respe
t the orthogonality hypoth-esis C̃ ′
sD̃s = 0, D̃′

sD̃s ≻ 0. Consider the state-feedba
k 
ontrol law
us(s) = Ksxs(s),the transfer matrix between q and d is

H l
dq(ς) = (C̃s + D̃sKs)(ςIn2

− Ãl
s − B̃l

u,sKs)
−1B̃l

d,sand its H2 norm is
‖H l

dq‖
2
2 =

1

2π

∫ π

−π

Tr{H l
dq(ς)

∗H l
dq(ς)}dω (2.74)with ς = ejω, for any l ∈ L. The following theorem designs a suboptimalstate-feedba
k 
ontrol law

u(s) = Kx(s) (2.75)whi
h asymptoti
ally stabilizes the polytopi
 two time s
ale system (2.72) andminimizes the H2 norm of its slow dynami
s, with K = [0 Ks].36



2.4. An extension to un
ertain systems in the polytopi
 formTheorem 4 Assume that there exist matri
es Ws = W ′
s ≻ 0, Ps = P ′

s ≻ 0, Zs ofappropriate dimensions, and a s
alar µ > 0 su
h that LMIs
Tr
(

Ws

)

< µ (2.76)
[

Ws C̃sPs + D̃sZs

(⋆)′ Ps

]

≻ 0, (2.77)and




Ps Ãl
sPs + B̃l

u,sZs B̃l
d,s

(⋆)′ Ps 0
(⋆)′ (⋆)′ In2



 ≻ 0 (2.78)are veri�ed ∀ l ∈ L. Hen
e, there exists a positive s
alar εmax su
h that the state-feedba
k 
ontroller gain K = [0 Ks], with Ks = ZsP
−1
s , stabilizes asymptoti
allythe 
losed loop system (2.72), ∀ ε ∈ (0, εmax]. Moreover, the 
ontroller gain Kssolution of the problem:

min
Ws,Zs,Ps

µ (2.79)subje
t to (2.76)-(2.78)minimizes the H2 norm (2.74).Proof. A well-known su�
ient 
ondition for asymptoti
 stability of the 
losedloop system (2.72) is to �nd a set of Lyapunov matri
es
P l(ε) = P l(ε)′ =

[

ε−1P l
f P l

2 + O(ε)

P l′

2 + O(ε) Ps + O(ε)

]

≻ 0, (2.80)and a matrix
Z(ε) =

[

0 Zs + O(ε)
] (2.81)su
h that the inequality

Ãl(ε)P l(ε)Ãl(ε)′ + Ãl(ε)Z(ε)′B̃l′

u + B̃l
uZ(ε)Ãl(ε)′+

B̃l
uZ(ε)P l(ε)−1Z(ε)′B̃l′

u − P l(ε) + B̃l
dB̃

l′

d ≺ 0
(2.82)holds, ∀ l ∈ L. De
omposing the inequality (2.82) as in the LTI 
ase, we �nd:

[

ε−1(X l
1 + O(ε)) X l

2 + O(ε)
X l′

2 X l
3 + O(ε)

]

≺ 0, (2.83)with
X l

1 = −P l
f ≺ 0, (2.84)

X l
2 =Ãl

12PsÃ
l′

s + Ãl
12Z

′
sB̃

l′

d,s + B̃l
d,1ZsÃ

l′

s + B̃l
u,1ZsP

−1
s Z ′

sB̃
l′

u,s + B̃l
u,1B̃

l′

u,s − P l
2,(2.85)37
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ale systems
X l

3 = Ãl
sPsÃ

l′

s + Ãl
sZ

′
sB̃

l′

u,s + B̃l
u,sZsÃ

l′

s + B̃l
u,sZsP

−1
s Z ′

sB̃
l′

u,s + B̃l
d,sB̃

l′

d,s − Ps ≺ 0.(2.86)Using the S
hur 
omplement, the 
ondition (2.86) 
orresponds to (2.78). Hen
e,it is satis�ed by assumption, with Ps ≻ 0. This means that there exist matri
es
P l

f ≻ 0 and a s
alar ε1 > 0 su
h that the inequality
X l

1 − ε(X l
2(X

l
3 + O(ε))

−1
X l′

2 + O(ε)) + O(ε) ≺ 0holds, ∀ l ∈ L and ∀ ε ∈ (0, ε1]. Thus, using the S
hur 
omplement, (2.83) holds
∀ ε ∈ (0, ε1]. Moreover, there exists a s
alar ε2 > 0 su
h that the inequality

P l
f − εP l

2(Ps + O(ε))−1P l′

2 + O(ε2) ≻ 0holds, ∀ l ∈ L and ∀ ε ∈ (0, ε2]. Hen
e, using the S
hur 
omplement, P l(ε) ≻ 0,
∀ l ∈ L and ∀ ε ∈ (0, ε2]. Thus, there exist matri
es Ps, Zs, P l

f , P l
2 and as
alar εmax = min{ε1, ε2} whi
h verify the 
onstraint (2.80)-(2.82), ∀ l ∈ L and

∀ ε ∈ (0, εmax]. Further, when ε → 0, we have K = Z(ε)P l(ε)
−1

=
[

0 ZsP
−1
s

].To prove that the 
ontroller K minimizes the H2 norm (2.74), ∀ l ∈ L and
∀ ε ∈ (0, εmax], 
onsider the performan
e index

Js = Tr

([

C̃
′

sC̃s 0

0 D̃′
sD̃s

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

.Applying the S
hur 
omplement to (2.77), we obtain :
Ws ≻ C̃sPsC̃

′

s + D̃sZsP
−1
s Zs

′D̃′
s.Thus:

Tr(Ws) ≻ Tr( C̃sPsC̃
′

s + D̃sZsP
−1
s Z ′

sD̃
′
s) = Js.Under the 
hoi
e B̃l

d,s = x0,l
s , minimizing Js 
orresponds to minimize the H2norm (2.74) [PG94℄. Hen
e, ‖H l

dq‖
2
2 ≤ µ, ∀ l ∈ L, whi
h 
on
ludes the proof.Remark 4 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:

εmax = max
P l

f

{ε > 0, l ∈ L} (2.87)
subject to P l(ε) ≻ 0,

Ãl(ε)P l(ε)Ãl(ε)′ + Ãl(ε)Z(ε)′B̃l′

u + B̃l
uZ(ε)Ãl(ε)′+

B̃l
uZ(ε)P l(ε)−1Z(ε)′B̃l′

u − P l(ε) + B̃l
dB̃

l′

d ≺ 0where Ãl(ε), B̃l
u, B̃l

d, P l(ε) and Z(ε) are de�ned in (2.73) and (2.80)-(2.81),respe
tively. The values of Ps and Zs 
an be 
omputed by Theorem 4, for any
l ∈ L.Remark 5 The extension of the full-order 
ontroller designed in Theorem 2 toun
ertain systems in the polytopi
 form 
annot be dire
tly done be
ause P l

2 dependson the state matri
es Al
11, Al

12 and Bl
1, for any l ∈ L.38



2.5. Con
lusion2.4.2 Numeri
al exampleConsider the slow sampling time s
ale system in the polytopi
 form (2.72), whi
h
an represent a subsystem i ∈ I of the swit
hed system (1.19) 
orresponding tothe model of the un
ertain HSM system. Assume that the HSM system is subje
tto four parametri
 un
ertainties: the width of the strip w, the output thi
kness ofthe strip in the last stand hn, the hardness of the strip in the �rst and in the laststand σ0
1 and σ0

n, respe
tively. Consider the following variation of the un
ertainparameters:
w ∈ [800 − 1200] mm

hn ∈ [1.9 − 3] mm
σ0

1 ∈ [22 − 56] KN/mm2

σ0
n ∈ [30 − 72] KN/mm2.

(2.88)Here, the aim is to design a robust 
ontrol law in the form (2.75) that asymp-toti
ally stabilizes the 4-stands subsystem of the HSM system for all produ
tsbelonging to the un
ertain set (2.88), whi
h is represented by a 
onvex hull with
NV = 16 verti
es. Using Theorem 4 with C̃s =

[

I5

04×5

] and D̃s =

[

05×4

10I4

], we �nd:
K =









0 0 0 −79.5 −0.072 0.0064 −0.0072 0.01
0 0 0 31.8 0.0175 −0.0634 −0.0006 −0.0013
0 0 0 −0.0075 0.0038 −0.0011 −0.0273 0.0074
0 0 0 0.51 0.0005 0.0049 −0.0055 −0.0247









.In Fig. 2.3, we show the 
losed loop evolution of the state variables α2 and Z2 forthe produ
ts 
orresponding to the 
onvex hull verti
es for the initial 
onditions
x(0) =

[

0 0 0 0.01 1 1 1 1
]′. The external perturbation is shown in Fig.2.4.2.5 Con
lusionIn this 
hapter, a LMI based solution for the LQ 
ontrol design of singularlyperturbed systems in the dis
rete-time 
ase has been proposed. In general, LMItools are 
onsidered more e�e
tive than Ri

ati equation solutions, when thedimension of the problem is high. In order to design the 
ontrol law, a modelrepresenting the sampling of singularly perturbed 
ontinuous-time systems wasused. Thus, results 
an be applied to 
ontinuous-time systems 
ontrolled bydigital devi
es. Fast sampling and slow sampling state-feedba
k 
ontrol designswere investigated.An extension of the slow sampling 
ontroller to un
ertain systems in the poly-topi
 form has also been presented. We will resort to this result on the robuststeering 
ontrol design of HSM presented in Chapter 5.

39
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Chapter 3Stability of two time s
ale swit
hedsystems
3.1 Introdu
tionDuring last years, swit
hed systems have been the subje
t of a big interest bythe s
ienti�
 
ommunity. The main reason is that many physi
al systems 
an bemodeled using su
h a framework. Examples of swit
hed systems 
an be foundin event driven systems, robots guidan
e, network 
ontrol systems, adaptive 
on-trol or biologi
 networks [SWM+07℄. An autonomous 
ontinuous-time swit
hedsystem 
onsists of a set of di�erential equations

ẋ(t) = fσ(t)(x(t), t), (3.1)where {f i : i ∈ I = {1, ..., N}} is a family of su�
iently regular fun
tions,
σ : R

+ → I is a pie
ewise 
onstant fun
tion, 
alled swit
hing rule, and x(t) ∈ R
nis the state ve
tor, whi
h is assumed to be 
ontinuous, for all t ≥ 0. The swit
hingrule determines whi
h mode i is a
tive at ea
h instant and may depend on thetime t, on the system state x or on the evolution of some system parameters. Anautonomous dis
rete-time swit
hed system 
onsists of a set of di�eren
e equations

x(k + 1) = fσ(k)(x(k), k), (3.2)where σ : Z
+ → I and x(k) ∈ R

n, for all k ∈ Z
+. Three basi
 problems 
on-
erning stability of swit
hed systems may be formulated [Lib03℄:� Problem A: Find 
onditions that guarantee the asymptoti
 stability ofthe swit
hed system (3.1) (or (3.2)) under arbitrary swit
hings [LHM99℄,[DRI02℄, [SN02℄.� Problem B: Identify 
lasses of swit
hing rules for whi
h the swit
hed system(3.1) (or (3.2)) is asymptoti
ally stable [Mor96℄, [LM99℄, [ZHYM01℄.41



Chapter 3. Stability of two time s
ale swit
hed systems� Problem C: Constru
t a swit
hing rule that makes the swit
hed system (3.1)(or (3.2)) asymptoti
ally stable [SESP99℄, [SCGB06℄, [LA07℄.In parti
ular, we are interested in studying the stability of swit
hed linearsystems [LA09℄. In this 
ase, all the subsystems are linear and we have:
ẋ(t) = Mσ(t)x(t), (3.3)for the 
ontinuous-time 
ase, and:

x(k + 1) = Aσ(k)x(k), (3.4)for the dis
rete-time 
ase. {M i : i ∈ I} and {Ai : i ∈ I} are two families ofmatri
es. We �rst re
all three results (Theorems 5, 6 and 7) giving su�
ient
onditions for stability of swit
hed systems.In order to verify stability of a 
ontinuous-time swit
hed system under arbi-trary swit
hings (Problem A), su�
ient LMI based 
onditions for the existen
eof a 
ommon quadrati
 Lyapunov fun
tion V (x(t)) = x(t)′Px(t) may be used[BGFB94℄.Theorem 5 Consider the system (3.3). If there exists a matrix P = P ′ ≻ 0 ofappropriate dimension su
h that the LMI
M i′P + PM i ≺ 0 (3.5)holds ∀ i ∈ I, the quadrati
 fun
tion V (x(t)) = x(t)′Px(t) is a Lyapunov fun
tionfor the system (3.3), i.e. the origin x = 0 is globally exponentially stable.When V (x(t)) = x(t)′Px(t) exists, the system is said to be quadrati
ally sta-ble. This implies that there exists a s
alar δ > 0 su
h that V̇ (x(t)) < −δ‖x‖.Di�erent su�
ient 
onditions for the existen
e of a 
ommon Lyapunov fun
-tion related to Lie algebra and simultaneous triangulation have been proposed by[MK97℄, [LHM99℄ and [Lib03℄. The restri
tion of all these methods is the 
onser-vatism, that may be too high [DM99℄. In order to redu
e this problem, severalne
essary and su�
ient 
onditions for the existen
e of a 
ommon Lyapunov fun
-tion have been investigated. For instan
e, Shorten and Narendra provided asolution for stable se
ond order linear systems and for a pair of stable linear sys-tems whose system matri
es are in 
ompanion form [SN02℄, [SN03℄. However,all the ne
essary and su�
ient 
onditions for the existen
e of a 
ommon Lya-punov fun
tion present in the literature address parti
ular 
ases. To over
omethe 
onservatism problem in a general framework, multiple Lyapunov fun
tions

V (x(t)) = x(t)′P (σ(t), x(t))x(t) have been introdu
ed. In this 
ase, the Lya-punov matrix may depend on the swit
hing law or on the state ve
tor [MP89℄,[OIGH93℄, [PD91℄, [Bra98℄, [DRI02℄, [BMS07℄.42



3.1. Introdu
tionA di�erent approa
h for assessing stability of a swit
hed system 
onsists ofassuming a minimal interval of time between two su

essive swit
hings (ProblemB). Consider the 
ontinuous-time swit
hed system (3.3) and the swit
hing in-stants t1, t2, . . . , tk, with ti − ti−1 ≥ ∆. Obviously, if the matrix M i is Hurwitzfor any i ∈ I and the dwell time ∆ is large enough to allow ea
h subsystem ito rea
h the steady-state, the system (3.3) is exponentially stable. The followingtheorem yields an evaluation of the minimum dwell time ∆ between two 
onse
u-tive swit
hing instants ensuring exponential stability of the swit
hed system (3.3).Theorem 6 ([Mor96℄, [LM99℄) Consider the swit
hed system (3.3) and assumethat the matrix M i is Hurwitz for any i ∈ I. If the inequality
ln(µ) − ν(tk − tk−1) ≤ 0, k = 1, 2, ... (3.6)holds, then the origin of (3.3) is exponentially stable, where µ =

λP
max

λP
min

, λP
max =

max{λmax(P
i), i ∈ I}, λP

min = min{λmin(P i), i ∈ I}, and P i = P i′ ≻ 0 is amatrix satisfying the Lyapunov equation
M i′P i + P iM i = −Qi, (3.7)with Qi = Qi′ ≻ 0. Further, ν and ci are two 
onstants su
h that 0 < ν < λi,where λi =

ci

λP
max

, and ∂V i(x(t))

∂x(t)
M ix(t) ≤ −ci‖x(t)‖2 < 0, for any i ∈ I.Condition (3.6) may be written as

∆ = tk − tk−1 =
ln(µ)

ν
, k = 1, 2, . . .and has been generalized by Hespanha and Morse through the 
on
ept of averagedwell time ∆avg [HM99℄. The idea is that the swit
hed system (3.3) is exponen-tially stable if the swit
hing intervals are in average greater than ∆avg. Zhai et al.extended the results of Theorem 6 to swit
hed systems with stable and unstablesubsystems [ZHYM01℄. In [GC06a℄ and [GC06b℄, Geromel and Colaneri exploitthe dwell time knowledge for �nding LMI base stability 
onditions for 
ontinuousand dis
rete-time swit
hed systems, respe
tively. The following theorem re
allsthe dis
rete-time 
ase.Theorem 7 ([GC06b℄) Consider the swit
hed system (3.4). If there exist matri-
es P i = P i′ ≻ 0 of appropriate dimensions su
h that LMIs

Ai′P iAi − P i ≺ 0, ∀ i ∈ I,

(Ai′)∆P j(Ai)∆ − P i ≺ 0, ∀ (i, j 6= i) ∈ I × Ihold, then the origin of (3.4) is globally asymptoti
ally stable for a dwell timeequal or greater than ∆ ≥ 1 ∈ Z
+. 43



Chapter 3. Stability of two time s
ale swit
hed systemsNoti
e that the 
hoi
e ∆ = 1 leads to the 
onditions proposed by [DRI02℄.Multi time s
ale swit
hed systems are of pra
ti
al interest in many appli
a-tions. An example is given by the last phase of the rolling pro
ess in a hot stripmill, whi
h has been introdu
ed in Chapter 1. However, these dynami
al systemshave been the subje
t of few investigations. To our knowledge, the only work ad-dressing two time s
ale swit
hed systems is [ALI08℄, where dwell time approa
his extended to singularly perturbed 
ontinuous-time swit
hed systems with timedelay [LSZ03℄.In this 
hapter, we will �rst re
all some results to show that, under dwelltime 
onstraints, stability of the slow and fast swit
hed subsystems is su�
ientfor stability of the original two time s
ale swit
hed system and then may beevaluated separately, as in the linear systems 
ase. Therefore, we will show that,if no assumption on the minimal dwell is made, this important property is notveri�ed anymore [MDI09a℄, [MDI09b℄. This means that stability of the slow andfast swit
hed subsystems does not guarantee stability of the original two time s
aleswit
hed system, when the swit
hing rule is arbitrary. In this 
ase, an additional
onstraint taking into a

ount the 
oupling between slow and fast subsystems hasto be 
onsidered. Therefore, we will propose LMI based 
onditions, independentlyof the singular parameter ε, for stability analysis and feedba
k 
ontrol designof 
ontinuous and dis
rete-time singularly perturbed swit
hed linear systems.These 
onditions express the fa
t that a 
oupling 
onstraint has to be satis�ed, inaddition to stability of the slow and fast swit
hed subsystems, as far as arbitraryswit
hings may arise. An interpretation of this 
onstraint in terms of the degree oftime s
ale separation will be given. To our knowledge, this is the �rst work whi
hpoints out expli
itly the fa
t that asymptoti
 stability of slow and fast swit
hedsubsystems is not su�
ient for asymptoti
 stability of a two time s
ale swit
hedsystem, under an arbitrary swit
hing rule, and whi
h provides a stabilizing 
ontrollaw for this kind of systems.3.2 Motivation for a new stability 
onditionRe
all that for an autonomous 
ontinuous-time LTI system in the singular per-turbation form
ẋ(t) = M(ε)x(t), (3.8)where ε > 0 is a s
alar parameter and

M(ε) =

[

ε−1In1
0

0 In2

] [

M11 M12

M21 M22

]

,44



3.2. Motivation for a new stability 
onditionwith M11 non-singular matrix, the fast and slow dynami
s may be separated usingthe transformation (2.10), whi
h leads to the following de
oupled system:
{

εẋf(t) = (M11 + O(ε))xf(t)

ẋs(t) = (Ms + O(ε))xs(t).Hen
e, there exists a s
alar εmax > 0 su
h that asymptoti
 stability of the slowand fast subsystems (i.e. matri
es Ms = M22 − M21M
−1
11 M12 and M11 are Hur-witz) implies asymptoti
 stability of the two time s
ale system (3.8), for any

ε ∈ (0, εmax] [KKO86℄.3.2.1 A dwell-time 
ondition for two time s
ale swit
hedsystemsConsider the autonomous 
ontinuous two time s
ale swit
hed linear system
ẋ(t) = Mσ(t)(ε)x(t), (3.9)with

M i(ε) =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

, (3.10)and the matrix M i
11 is assumed to be non-singular, for any i ∈ I. The subsystem
orresponding to ea
h mode i ∈ I 
an be written in the form:

{

εẋ1(t) = M i
11x1(t) + M i

12x2(t)

ẋ2(t) = M i
21x1(t) + M i

22x2(t),
(3.11)where x1(t) ∈ R

n1 and x2(t) ∈ R
n2 are the state ve
tors 
orresponding tothe fast and slow dynami
s, respe
tively, for all t ≥ 0. The following theoremyields an extension of the dwell time approa
h [Mor96℄ for singularly perturbedswit
hed systems. The two time s
ale swit
hed system (3.9) is 
onsidered as aninter
onne
ted system where the terms M i

12x2 and M i
21x1 are perturbations thatare assumed to be bounded.Theorem 8 ([ALI08℄) Consider the swit
hed system (3.9). Assume that thematri
es M i

11 and M i
22 are Hurwitz, the prin
ipal minors of

M̂ i =











−
(λ

Qf

min − εmax‖P
i
fM

i
11

−1
M i

12M
i
21‖)

εmaxλ
Pf
max

‖P i
fM

i
11

−1
M i

12(M
i
22 − M i

21M
i
11

−1
M i

12)‖

λPs

min

‖P i
sM

i
21‖

λ
Pf

min

−
(λQs

min − ‖P i
sM

i
21M

i
11

−1
M i

12‖)

λPs
max









are negative and λmax(M̂
i + M̂ i′) ≤ λi, with λPs

max = max{λmax(P
i
s), i ∈ I},

λPs

min = min{λmin(P i
s), i ∈ I}, λ

Pf
max = max{λmax(P

i
f), i ∈ I}, λ

Pf

min = min{λmin(P i
f),45



Chapter 3. Stability of two time s
ale swit
hed systems
i ∈ I}, λQs

min = min{λmin(Qi
s), i ∈ I}, λ

Qf

min = min{λmin(Qi
f ), i ∈ I}, λi =

min{
ci
s

λPs
max

,
ci
f

λ
Pf
max

}, ci
s = λmin(Qi

s) and ci
f = λmin(ε−1

maxQ
i
f ), ∀ i ∈ I. Further,

P i
s = P i′

s ≻ 0 and P i
f = P i′

f ≻ 0 are matri
es satisfying the Lyapunov equations
M i

11P
i
f + P i

fM
i′

11 = −Qi
f ,

M i
22P

i
s + P i

sM
i′

22 = −Qi
s,with Qi

s = Qi′

s ≻ 0, Qi
f = Qi′

f ≻ 0, ∀ i ∈ I. If the inequality
ln(2µ) − ν(tk − tk−1) ≤ 0, k = 1, 2, ...holds, then there exists εmax su
h that the origin of (3.9) is exponentially stable

∀ ε ∈ (0, εmax], where µ = max{
λPs

max

λPs

min

,
λ

Pf
max

λ
Pf

min

} and ν is a 
onstant su
h that 0 <

ν < λi.Consider the swit
hed system (3.9), with I = {1, 2} and
M1(ε) =

[

−ε−1 5ε−1

0 −1

]

, M2(ε) =

[

−ε−1 0
5 −1

]

. (3.12)Applying Theorem 8, we �nd
P 1

s = P 1
f = Q1

s = Q1
f = 1,and

P 2
s = P 2

f = Q2
s = Q2

f = 1,with εmax = 0.076. Hen
e, µ = 1, λ1 = 1 and λ2 = 1. Finally, 
hoosing ν = 0.99,we get the minimal dwell time ∆ =
ln(µ)

ν
= 0.7001. An example of stabilizing

0   5 10 15 20

1

2

t (sec)

σ(
t)

Figure 3.1: Stabilizing swit
hing rule σ(t)swit
hing rule for the swit
hed system (3.9)-(3.12) with ε = εmax is given in Fig.3.1, where the system swit
hes between the subsystems 1 and 2 ea
h ∆∗ = ∆ sec.Fig. 3.2 shows the 
onvergen
e of the state traje
tories to zero for the initial
ondition x(0) =
[

1 1
]′.46



3.2. Motivation for a new stability 
ondition
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Figure 3.2: State traje
tories: Stable behavior3.2.2 Two time s
ale swit
hed systems under arbitrary swit
h-ing rulesConsider the two time s
ale swit
hed system (3.9)-(3.12). Matri
es M1(ε) and
M2(ε) are Hurwitz for any value of ε > 0. Moreover, sin
e M1

11 = M2
11 = −1, thefast swit
hed subsystem

εẋf (t) = M
σ(t)
11 xf (t) (3.13)is asymptoti
ally stable for any swit
hing rule. Also, sin
e M1

s = M2
s = −1, theslow swit
hed subsystem

ẋs(t) = Mσ(t)
s xs(t) (3.14)is asymptoti
ally stable for any swit
hing rule, with

M i
s = M i

22 − M i
21M

i
11

−1
M i

12 (3.15)for any i ∈ I. However, when the swit
hing rule is arbitrary, the two times
ale swit
hed system (3.9)-(3.12) 
an be unstable for any small value of ε > 0,even if the slow and fast swit
hed subsystems are asymptoti
ally stable. Theinterpretation of this phenomenon is that for any �xed ε ∈ (0, εmax], a swit
hingrule with a su�
iently high swit
hing frequen
y whi
h destabilizes the two times
ale swit
hed system may be exhibited. For instan
e, let swit
hing between thesubsystems 1 and 2 ea
h ∆∗ = ε sec. We obtain a periodi
 dynami
al system
hara
terized by the matrix
D(ε) = eM1(ε)∆∗

eM2(ε)∆∗

. 47



Chapter 3. Stability of two time s
ale swit
hed systemsSin
e the 
omputation of the spe
tral radius of D(ε) yields
ρ(D(ε)) = 1 + 9.5529ε − 28.7211ε2 + O(ε3) > 1for every period 2∆∗ and any ε ∈ (0, εmax], the proposed swit
hing rule destabi-lizes the two time s
ale swit
hed systems (3.9)-(3.12) for any ε ∈ (0, εmax], even ifthe slow and fast swit
hed subsystems are asymptoti
ally stable. A simple exam-ple of destabilizing swit
hing rule is given in Fig. 3.3, where the system swit
hesbetween the subsystems 1 and 2 ea
h ∆∗ =

∆

2
= 0.35 sec and ε = εmax = 0.076.In this 
ase, the state traje
tories diverge, as shown in Fig. 3.4 for the initial
ondition x(0) =

[

1 1
]′.
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t)

Figure 3.3: Destabilizing swit
hing rule σ(t)
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Figure 3.4: State traje
tories: Unstable behavior48



3.3. Stability 
onditions: Continuous-time 
aseIn the next se
tions, we will provide LMI based 
onditions guaranteeing theasymptoti
 stability of a swit
hed systems in the singular perturbation form underan arbitrary swit
hing rule and independently of the value of ε. We will show thatthis 
orresponds to assess the asymptoti
 stability of the slow and fast swit
hedsubsystems and verifying an additional 
onstraint whi
h takes into a

ount the
oupling between the fast and slow dynami
s when a swit
hing o

urs.3.3 Stability 
onditions: Continuous-time 
ase3.3.1 Stability analysisConsider the autonomous two time s
ale swit
hed system
ẋ(t) = Mσ(t)(ε)x(t), (3.16)de�ned in (3.9). The existen
e of a 
ommon quadrati
 Lyapunov fun
tion V (x(t), ε) =

x(t)′P (ε)x(t) su
h that V (x(t), ε) > 0 and V̇ (x(t), ε) < 0 for all t ≥ 0 is a well-known su�
ient 
ondition for asymptoti
 stability of the system (3.16). This isequivalent to the existen
e of matri
es P (ε) = P (ε)′ ≻ 0 and Qi(ε) = Qi(ε)
′
≻ 0of appropriate dimensions su
h that the LMI

M i(ε)P (ε) + P (ε)M i(ε)
′
+ Qi(ε) ≺ 0 (3.17)holds for any i ∈ I. The following theorem gives LMI based 
onditions guaran-teeing the stability of the swit
hed system (3.16) independently of ε and for anyswit
hing rule.Theorem 9 Assume that there exist matri
es Pf = Pf

′ ≻ 0, Qi
f = Qi

f

′
≻ 0,

Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0 of appropriate dimensions su
h that the LMIs

M i
11Pf + PfM

i
11

′
+ Qi

f ≺ 0, (3.18)
M i

sPs + PsM
i
s

′
+ Qi

s ≺ 0, (3.19)
[

Qi
f −(M i

11Y
i + PfM

i
21

′
)

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′

]

≻ 0 (3.20)are veri�ed ∀ i ∈ I, with Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
Mh

12Ps. Hen
e, there exists a pos-itive s
alar εmax su
h that the swit
hed system (3.16) is asymptoti
ally stable
∀ ε ∈ (0, εmax] and for any swit
hing rule. 49



Chapter 3. Stability of two time s
ale swit
hed systemsProof. Let us assume
P (ε) =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

≻ 0, (3.21)
Qi(ε) =

[

Qi
1(ε) Qi

2(ε)
Qi

2(ε)
′ Qi

3(ε)

]

≻ 0, (3.22)with
P1(ε) = Pf + εP2P

−1
s P ′

2, P2(ε) = εP2 = −ε

N
∑

h=1

Mh
11

−1
Mh

12Ps, P3(ε) = εPs(3.23)
Qi

1(ε) = ε−1Qi
f , Qi

2(ε) = −M i
11Y

i +PfM
i
21

′
, Qi

3(ε) = ε(Qi
s −M i

21Y
i−Y i′M i

21

′
)(3.24)and

Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
Mh

12Ps. (3.25)Substituting (3.10) and (3.21)-(3.22) in (3.17), we have:
[

X i
1(ε) X i

2(ε)
X i

2(ε)
′ X i

3(ε)

]

≺ 0 (3.26)with
X i

1(ε) = ε−1(M i
11P1(ε) + P1(ε)M

i
11

′
+ M i

12P2(ε)
′ + P2(ε)M

i
12

′
+ Qi

1(ε)),

X i
2(ε) = ε−1M i

11P2(ε) + ε−1M i
12P3(ε) + P1(ε)M

i
21

′
+ P2(ε)

′M i
22

′
+ Qi

2(ε),

X i
3(ε) = M i

22P3(ε) + P3(ε)M
i
22

′
+ M i

21P2(ε) + P2(ε)
′M i

21

′
+ Q3(ε).Repla
ing the values of P (ε), Qi(ε) and the equations (3.15), (3.23)-(3.25), weobtain:

X i
1(ε) = ε−1(M i

11Pf + PfM
i
11

′
+ Qi

f + O(ε)) = ε−1(X i
f + O(ε)),

X i
2(ε) = ε(P ′

2M
i
22

′
+ O(ε)) = ε(X i

2 + O(ε)),

X i
3(ε) =ε(M i

sPs + PsM
i
s

′
+ Qi

s + O(ε)) = ε(X i
s + O(ε)).The inequality (3.26) 
an be written as

[

ε−1(X i
f + O(ε)) ε(X i

2 + O(ε))
(⋆)′ ε(X i

s + O(ε))

]

≺ 0.Satisfying the 
onditions (3.18) and (3.19) implies that X i
f ≺ 0 and X i

s ≺ 0.This means that there exists a s
alar εmax > 0 su
h that X i
s + O(ε) ≺ 0 and50



3.3. Stability 
onditions: Continuous-time 
ase
X i

f − ε2X i
2X

i
s

−1
X i

2
′
+ O(ε) ≺ 0, ∀ i ∈ I and ∀ ε ∈ (0, εmax]. Hen
e, using theS
hur 
omplement, the LMI (3.17) holds [BGFB94℄. Sin
e Pf ≻ 0 and Ps ≻ 0,(3.21) holds. Furthermore, (3.22) 
an be written as

Qi(ε) =

[

ε−1In1
0

0 In2

] [

Qi
f −(M i

11Y
i + PfM

i
21

′
)

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′
)

] [

In1
0

0 εIn2

]

≻ 0whi
h is non negative de�nite be
ause of (3.20). This 
on
ludes the proof.Remark 6 Theorem 9 provides two separate LMI based 
onditions for assessingthe asymptoti
 stability of the fast and slow subsystems (3.18) and (3.19), respe
-tively. Moreover, the 
oupling 
ondition (3.20) is given. This allows to 
on
ludethat there exists εmax su
h that the 
lassi
al stability 
ondition (3.17) holds forany ε ∈ (0, εmax]. P (ε) and Qi(ε) are de�ned in (3.21)-(3.25), for any i ∈ I.Remark 7 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max ε > 0 (3.27)

subject to M i(ε)P (ε) + P (ε)M i(ε)
′
+ Qi(ε) ≺ 0, i ∈ I,where matri
es M i(ε), P (ε), and Qi(ε) are de�ned in (3.10) and (3.21)-(3.25),respe
tively. Moreover, the values of Pf , Qi

f , Ps and Qi
s 
an be 
omputed byTheorem 9, for any i ∈ I.3.3.2 Estimation of the degree of time s
ale separationIn addition to the stability 
onditions of the fast and slow swit
hed subsystems,Theorem 9 gives the 
oupling 
ondition that must be satis�ed in order to assessthe asymptoti
 stability of the two time s
ale swit
hed linear system (3.16). Themeaning of this 
ondition 
an be illustrated through the extension of the notionof time s
ale separation degree given in [Yur04℄ for LTI systems. In this 
lassi
al
ase, the degree of time s
ale separation of the LTI two time s
ale systems (3.8)may be expressed as a ratio between the dynami
al matri
es eigenvalues [Yur04℄:

η∗ =
λmin(ε−1M11)

λmax(Ms)
.For two time s
ale swit
hed systems, su
h a quantity 
annot be obtained usingthe eigenvalues evaluation. The following proposition provides the notion of times
ale separation degree for swit
hed linear systems in the singular perturbationform (3.16).Proposition 1 Assume that there exist matri
es Pf = Pf

′ ≻ 0, Qi
f = Qi

f

′
≻ 0,

Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0, i ∈ I, su
h that the stability 
onditions of Theorem51



Chapter 3. Stability of two time s
ale swit
hed systems9 hold. Hen
e, an estimation of the degree of time s
ale separation between theslow and fast dynami
s is given by the ratio:
η =

λmin(Ps)min{λmin(Qi
f ), i ∈ I}

ελmax(Pf)max{λmax(Qi
s), i ∈ I}

.Proof. See Appendix B.2.In order to understand the role played by the 
ondition (3.20), 
onsider theswit
hed system (3.16), with
M1(ε) =

[

−ε−1 αε−1

0 −1

]

, M2(ε) =

[

−ε−1 0
α −1

]

. (3.28)We have M1
11 = M2

11 = −1 and M1
s = M2

s = −1. Although the fast and slowswit
hed subsystems are asymptoti
ally stable for any value of the parameter αand for any swit
hing rule σ(t), the swit
hed system (3.16) may be unstable underan arbitrary swit
hing rule, as shown in se
tion 3.2 for the 
ase α = 5. UsingTheorem 9, the system has been found asymptoti
ally stable for −1 < α < 1,under arbitrary swit
hings. As the 
onditions (3.18) and (3.19) are independentof α, the 
oupling between the fast and slow dynami
s is taken into a

ount bythe 
ondition (3.20). This means that the Lyapunov matri
es assessing stabilityof the fast and slow swit
hed subsystems must satisfy the 
oupling 
ondition,whi
h involves the terms M1
12 = αε−1 and M2

21 = α. Hen
e, the degree of times
ale separation between the slow and fast dynami
s η depends on the value of
α. For several values of −1 < α < 1, we solved the 
onditions of Theorem 9 and
omputed the 
orresponding value of the degree of time s
ale separation η. Theresult is shown in Fig. 3.5.On the proposed example, the relation between η and α is dire
t: a biggervalue of |α| yields a smaller value of η and vi
eversa. In parti
ular, for α = 0 wehave a linear system (M1(ε) = M2(ε)) and the degree of time s
ale separation ismaximum. However, in a general framework, the evolution of η with respe
t to
M i

12 and M i
21, i ∈ I, is di�
ult to analyze.3.3.3 Control designConsider the two time s
ale swit
hed system

ẋ(t) = Mσ(t)(ε)x(t) + Nσ(t)(ε)u(t), (3.29)where u(t) ∈ R
r is the 
ontrol signal, for all t ≥ 0,

M i(ε) =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

, N i(ε) =

[

ε−1In1
0

0 In2

] [

N i
1

N i
2

]

, (3.30)52



3.3. Stability 
onditions: Continuous-time 
ase
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Figure 3.5: Estimation of the time s
ale separation degree for ε = 10−3and the matrix M i
11 is assumed to be non-singular, for any i ∈ I. The subsystem
orresponding to ea
h mode i ∈ I 
an be written in the form:
{

εẋ1(t) = M i
11x1(t) + M i

12x2(t) + N i
1u(t)

ẋ2(t) = M i
21x1(t) + M i

22x2(t) + N i
2u(t),

(3.31)Its slow subsystem is :
ẋs(t) = M i

sxs(t) + N i
sus(t) (3.32)with

M i
s = M i

22 − M i
21M

i
11

−1
M i

12, N i
s = N i

2 − M i
21M

i
11

−1
N i

1, (3.33)while its fast subsystem is:
εẋf (t) = M i

11xf (t) + N i
1uf(t). (3.34)The pairs (M i

s, N
i
s) and (M i

11, N
i
1) are assumed to be stabilizable in the 
ontinuous-time setting, for any i ∈ I.The aim of this se
tion is to design a state-feedba
k 
ontrol law
u(t) = Kσ(t)(ε)x(t) (3.35)asymptoti
ally stabilizing the 
losed loop system (3.29) for any swit
hing rule.A 
lassi
al LMI based 
ondition for state-feedba
k 
ontrol design of swit
hed53



Chapter 3. Stability of two time s
ale swit
hed systemssystems 
onsists of 
he
king the existen
e of matri
es P (ε) = P (ε)′ ≻ 0, Qi(ε) =
Qi(ε)

′
≻ 0 and Z i(ε) of appropriate dimensions su
h that LMI

M i(ε)P (ε) + P (ε)M i(ε)
′
+ N i(ε)Z i(ε) + Z i(ε)

′
N i(ε)

′
+ Qi(ε) ≺ 0 (3.36)holds for any i ∈ I. The state-feedba
k 
ontrol law (3.35), whi
h asymptoti
allystabilizes the 
ontinuous-time swit
hed system (3.29), is 
hara
terized by the gainmatri
es Ki(ε) = Z i(ε)P (ε)−1, i ∈ I.Likewise to the stability analysis 
ase, when ε is small numeri
al di�
ulties to�nd the gains Ki(ε) arise. This problem is due to the ill-
onditioning of the 
on-straint (3.36) and 
an be avoided de
omposing the two time s
ale system into twowell-behaved subsystems, the slow and fast subsystems. The following theoremgives LMI based 
onditions guaranteeing the asymptoti
 stability of the system(3.29) independently of ε, for any swit
hing rule.Theorem 10 Assume that there exist matri
es Pf = Pf
′ ≻ 0, Qi

f = Qi
f

′
≻ 0,

Z i
f , Ps = Ps

′ ≻ 0, Qi
s = Qi

s

′
≻ 0 and Z i

s of appropriate dimensions su
h that theLMIs
M i

11Pf + PfM
i
11

′
+ N i

1Z
i
f + Z i

f

′
N i

1
′
+ Qi

f ≺ 0, (3.37)
M i

sPs + PsM
i
s

′
+ N i

sZ
i
s + Z i

s

′
N i

s

′
+ Qi

s ≺ 0, (3.38)








Qi
f −(M i

11Y
i + PfM

i
21

′
+ Z i

f

′
N i

2
′
) N i

1Z
i
f 0

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′

Y i′ N i
2Z

i
f + Y i′

(⋆)′ (⋆)′ Pf 0
(⋆)′ (⋆)′ (⋆)′ Pf









≻ 0 (3.39)are veri�ed ∀ i ∈ I, with Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ). Hen
e, thereexists a positive s
alar εmax su
h that the state-feedba
k 
ontroller gains
Ki =

[

Ki
f Ki

s + Ki
fM

i
11

−1
(M i

12 + N i
1K

i
s)
]

, (3.40)with Ki
f = Z i

fP
−1
f and Ki

s = Z i
sP

−1
s , stabilize asymptoti
ally the 
losed loopswit
hed system (3.29), ∀ ε ∈ (0, εmax] and for any swit
hing rule.Proof. See Appendix B.3.Remark 8 The 
onditions of Theorem 10 with Z i

f = 0, i ∈ I, lead to the redu
ed
ontrol law:
u(t) =

[

0 K
σ(t)
s

]

[

x1(t)
x2(t)

]

,whi
h asymptoti
ally stabilizes the swit
hed system (3.29) for any ε ∈ (0, εmax]and any swit
hing rule σ. Noti
e that in this 
ase (3.37) assumes that the fastsubsystem is asymptoti
ally stable in open loop.54



3.4. Stability 
onditions: Dis
rete-time 
ase3.4 Stability 
onditions: Dis
rete-time 
ase3.4.1 Stability analysisConsider the autonomous two time s
ale swit
hed system in the fast samplingmodel (2.13):
x(k + 1) = Aσ(k)(ε)x(k), (3.41)where

Ai(ε) =

[

Ai
11 Ai

12

εAi
21 (In2

+ εAi
22)

] (3.42)and the matrix (In1
− Ai

11) is assumed to be non-singular, for any i ∈ I. Thesubsystem 
orresponding to ea
h mode i may be written in the form:
{

x1(k + 1) = Ai
11x1(k) + Ai

12x2(k)

x2(k + 1) = εAi
21x1(k) + (In2

+ εAi
22)x2(k).

(3.43)Its slow subsystem is:
xs(k + 1) = (In2

+ εAi
s)xs(k) (3.44)with

Ai
s = Ai

22 + Ai
21(In1

− Ai
11)

−1Ai
12, (3.45)while its fast subsystem is:

xf (k + 1) = Ai
11xf (k). (3.46)The fast sampling singular perturbation model presents two main advantages,with respe
t to the other dis
rete time models of two time s
ale systems (see[Nai02℄ for an overview). First, it allows to des
ribe both dis
retized 
ontinuoustwo time s
ale systems and pure di�eren
e equations. Se
ond, due to the 
hoi
eof the sampling time as Tf = ε, this model assumes that the sampling rate is fastenough to in�uen
e the transient behavior of the system for 
ontrol purposes,when it represents dis
retized 
ontinuous two time s
ale systems.A standard stability 
ondition ensuring the existen
e of a swit
hed quadrati
Lyapunov fun
tion V σ(k)(x(k), ε) = x(k)′Sσ(k)(ε)x(k) su
h that V σ(k)(x(k), ε) > 0and V σ(k)(x(k + 1), ε) − V σ(k)(x(k), ε) < 0 for k ∈ Z

+, whi
h is a su�
ient
ondition for the asymptoti
 stability of the swit
hed system (3.41), 
onsists in
he
king the existen
e of matri
es P i(ε) = P i(ε)
′
= Si(ε)

−1
≻ 0 and Qij(ε) =

Qij(ε)
′
≻ 0 su
h that the LMI

Ai(ε)P i(ε)Ai(ε)′ − P j(ε) + Qij(ε) ≺ 0 (3.47)holds for any (i, j) ∈ I × I [DRI02℄. 55



Chapter 3. Stability of two time s
ale swit
hed systemsWhen ε is small the 
omputation of P i(ε) is 
ompli
ated due to the ill-
onditioning of the 
onstraint (3.47). As in the 
ontinuous-time 
ase, the de-
oupling of the two time s
ale system into two well-behaved subsystems 
an solvethis problem. Also in this 
ase, it may exist a swit
hing rule destabilizing thetwo time s
ale swit
hed system, even if the slow and fast swit
hed subsystemsare asymptoti
ally stable. Hen
e, a 
oupling 
ondition must be 
onsidered. Thefollowing theorem gives LMI based 
onditions guaranteeing the asymptoti
 sta-bility of the swit
hed system (3.41) independently of ε, for any swit
hing rule.Theorem 11 Assume that there exist matri
es P i
f = P i

f

′
≻ 0, Qi

f = Qi
f

′
≻ 0,

Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0 of appropriate dimensions su
h that the LMIs

[

P j
f − Qi

f Ai
11P

i
f

(⋆)′ P i
f

]

≻ 0, (3.48)
Ai

sPs + PsA
i
s

′
+ Qi

s ≺ 0, (3.49)
[

Qi
f P j

2 − P i
2 − Ai

11P
i
fA

i
21

′

(⋆)′ Qi
s − Ai

21P
i
fA

i
21

′

]

≻ 0 (3.50)are veri�ed ∀ (i, j) ∈ I × I, with P i
2 = (In1

− Ai
11)

−1Ai
12Ps. Hen
e, there exists apositive s
alar εmax su
h that the swit
hed system (3.41) is asymptoti
ally stable

∀ ε ∈ (0, εmax] and for any swit
hing rule.Proof. Let us assume
P i(ε) =

[

P i
1(ε) P i

2(ε)

P i
2(ε)

′
P3(ε)

]

≻ 0, (3.51)
Qij(ε) =

[

Qi
1 Qij

2 (ε)

Qij
2 (ε)′ Qi

3(ε)

]

≻ 0, (3.52)with
P i

1(ε) = P i
f + εP i

2P
−1
s P i′

2 , P i
2(ε) = εP i

2 = ε(In1
− Ai

11)
−1Ai

12Ps, P3(ε) = εPs,(3.53)
Qi

1 = Qi
f , Qij

2 (ε) = ε(P j
2 − P i

2 − Ai
11P

i
fA

i
21

′
), Qi

3(ε) = ε2(Qi
s − Ai

21P
i
fA

i
21

′
).(3.54)Substituting (3.42), (3.51)-(3.52) in (3.47), we have:

[

X ij
1 (ε) X ij

2 (ε)

X ij
2 (ε)′ X i

3(ε)

]

≺ 0 (3.55)56



3.4. Stability 
onditions: Dis
rete-time 
asewith:
X ij

1 (ε) = Ai
11P

i
1(ε)A

i
11

′
+ Ai

12P
i
2(ε)

′Ai
11

′
+ Ai

11P
i
2(ε)A

i
12

′
+

Ai
12P3(ε)A

i
12

′
− P j

1 (ε) + Qi
1,

X ij
2 (ε) =Ai

11P
i
1(ε)A

i
21

′
ε + Ai

12P
i
2(ε)

′Ai
21

′
ε + Ai

11P
i
2(ε)(In2

+ εAi
22)

′+

Ai
12P

i
3(ε)(In2

+ εAi
22)

′ − P j
2 (ε) + Qij

2 (ε),

X i
3(ε) = εAi

21P
i
1(ε)A

i
21

′
ε + εAi

21P
i
2(ε)(In2

+ εAi
22)

′ + (In2
+ εAi

22)P
i
2

′
(ε)Ai

21

′
ε+

(In2
+ εAi

22)P3(ε)(In2
+ εAi

22)
′ − P3(ε) + Q3(ε).Repla
ing the values of P i(ε), Qij(ε), and the equations (3.45), (3.53)-(3.54), weobtain:

X ij
1 (ε) =Ai

11P
i
fA

i
11

′
− P j

f + Qi
f + O(ε) = X ij

1 + O(ε),

X ij
2 (ε) = ε2(Ai

12P
i
2
′
Ai

21
′
+ Ai

11P
i
2A

i
22

′
+ O(ε)) = ε2(X i

2 + O(ε)),

X i
3(ε) =ε2(Ai

sPs + PsA
i
s

′
+ Qi

s + O(ε)) = ε2(X i
3 + O(ε)).The inequality (3.55) 
an be written as

[

X ij
1 + O(ε) ε2(X i

2 + O(ε))
(⋆)′ ε2(X i

3 + O(ε))

]

≺ 0.Satisfying the 
onditions (3.48) and (3.49) implies that X ij
1 ≺ 0 and X i

3 ≺ 0.This means that there exists a s
alar εmax > 0 su
h that X i
3 + O(ε) ≺ 0 and

X ij
1 − ε2X i

2X
i
3
−1

X i
2
′
+ O(ε) ≺ 0, ∀(i, j) ∈ I × I and ∀ ε ∈ (0, εmax]. Hen
e, usingthe S
hur 
omplement, the LMI (3.47) holds. Sin
e Pf ≻ 0 and Ps ≻ 0, (3.51)holds. Furthermore, (3.52) 
an be written as

Qij(ε) =

[

In1
0

0 εIn2

] [

Qi
f P j

2 − P i
2 − Ai

11P
i
fA

i
21

′

(⋆)′ Qi
s − Ai

21P
i
fA

i
21

′

] [

In1
0

0 εIn2

]

≻ 0,whi
h is non negative de�nite be
ause of (3.50). This 
on
ludes the proof.Remark 9 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max ε > 0 (3.56)

subject to Ai(ε)P i(ε)Ai(ε)′ − P j(ε) + Qij(ε) ≺ 0, (i, j) ∈ I × I,where matri
es Ai(ε), P i(ε), and Qij(ε) are de�ned in (3.42) and (3.51)-( 3.54),respe
tively. Moreover, the values of P i
f , Qi

f , Ps and Qi
s 
an be 
omputed byTheorem 9, for any (i, j) ∈ I × I. 57



Chapter 3. Stability of two time s
ale swit
hed systems3.4.2 Control designConsider the two time s
ale swit
hed system in the fast sampling model (2.13):
x(k + 1) = Aσ(k)(ε)x(k) + Bσ(k)(ε)u(k), (3.57)where u(k) ∈ R

r is the 
ontrol signal, for all k ∈ Z
+,

Ai(ε) =

[

Ai
11 Ai

12

εAi
21 (In2

+ εAi
22)

]

, Bi(ε) =

[

Bi
1

εBi
2

]

, (3.58)and (In1
− Ai

11) is assumed to be a non-singular matrix, for any i ∈ I. Thesubsystem 
orresponding to ea
h mode i may be written in the form:
{

x1(k + 1) = Ai
11x1(k) + Ai

12x2(k) + Bi
1u(k)

x2(k + 1) = εAi
21x1(k) + (In2

+ εAi
22)x2(k) + εBi

2u(k).
(3.59)Its slow subsystem is:

xs(k + 1) = (In2
+ εAi

s)xs(k) + εBi
sus(k) (3.60)with

Ai
s = Ai

22 + Ai
21(In1

− Ai
11)

−1Ai
12, Bi

s = Bi
2 + Ai

21(In1
− Ai

11)
−1Bi

1, (3.61)while its fast subsystem is:
xf(k + 1) = Ai

11xf (k) + Bi
1uf(k). (3.62)The pair (Ai

s, B
i
s) is assumed to be stabilizable in the 
ontinuous-time setting,and the pair (Ai
11, B

i
1) is assumed to be stabilizable in the dis
rete-time setting,for any i ∈ I.The aim of this se
tion is to design a state-feedba
k 
ontrol law

u(k) = Kσ(k)(ε)x(k) (3.63)asymptoti
ally stabilizing the 
losed loop system (3.57) for any swit
hing rule.The extension of 
ondition (3.47) to state feedba
k-design leads to 
he
k theexisten
e of matri
es P i(ε) = P i(ε)
′
≻ 0, Qij(ε) = Qij(ε)

′
≻ 0 and Z i(ε) ofappropriate dimensions su
h that the inequality

Ai(ε)P i(ε)Ai(ε)′ + Ai(ε)Z i(ε)
′
Bi(ε)′ + Bi(ε)Z i(ε)Ai(ε)′+

Bi(ε)Z i(ε)P i(ε)−1Z i(ε)
′
Bi(ε)′ − P j(ε) + Qij(ε) ≺ 0

(3.64)holds for any (i, j) ∈ I × I. The state-feedba
k 
ontrol law (3.63), with Ki(ε) =

Z i(ε)P i(ε)
−1, stabilizes asymptoti
ally the dis
rete-time swit
hed system (3.57).The following theorem gives LMI based design 
onditions independent of ε inorder to avoid the numeri
al problems due to the ill-
onditioning of (3.64).58



3.5. Numeri
al exampleTheorem 12 Assume that there exist matri
es P i
f = P i

f

′
≻ 0, Qi

f = Qi
f

′
≻ 0,

Z i
f , Ps = Ps

′ ≻ 0, Qi
s = Qi

s

′
≻ 0 and Z i

s of appropriate dimensions su
h that theLMIs
[

P j
f − Qi

f Ai
11P

i
f + Bi

1Z
i
f

(⋆)′ P i
f

]

≻ 0, (3.65)
Ai

sPs + PsA
i
s

′
+ Bi

sZ
i
s + Z i

s

′
Bi

s

′
+ Qi

s ≺ 0, (3.66)




Qi
f P j

2 − P i
2 Ai

11P
i
f + Bi

1Z
i
f

(⋆)′ Qi
s Ai

21P
i
f + Bi

2Z
i
f

(⋆)′ (⋆)′ P i
f



 ≻ 0 (3.67)are veri�ed ∀(i, j) ∈ I ×I, with P i
2 = (In1

−Ai
11)

−1(Ai
12Ps + Bi

1Z
i
s). Hen
e, thereexists a positive s
alar εmax su
h that the state-feedba
k 
ontroller gains

Ki =
[

Ki
f Ki

s − Ki
f(In1

− Ai
11)

−1(Ai
12 + Bi

1K
i
s)
]

, (3.68)with Ki
f = Z i

fP
i
f

−1 and Ki
s = Z i

sP
−1
s , stabilize asymptoti
ally the 
losed loopswit
hed system (3.57), ∀ ε ∈ (0, εmax] and for any swit
hing rule.Proof. See Appendix B.4.Remark 10 The 
onditions of Theorem 12 with Z i

f = 0, i ∈ I, lead to theredu
ed 
ontrol law:
u(k) =

[

0 K
σ(k)
s

]

[

x1(k)
x2(k)

]

, (3.69)whi
h asymptoti
ally stabilizes the swit
hed system (3.57) for any ε ∈ (0, εmax]and any swit
hing rule σ. Noti
e that in this 
ase (3.65) assumes that the fastswit
hed subsystem is asymptoti
ally stable in open loop.3.5 Numeri
al exampleConsider the 
ontinuous-time swit
hed system (3.29), with I = {1, 2}, ε = 0.005and
M1

11 =

[

0 1
−1 −2

]

, M1
12 =

[

0 0
1.5 0

]

, M1
21 =

[

0 0
−0.6 −0.5

]

, M1
22 =

[

0 1
2.1 0

]

,

N1
1 =

[

0
−1

]

, N1
2 =

[

0
0

]

,

M2
11 =

[

0 1
−3 −5

]

, M2
12 =

[

0 0
0 0

]

, M2
21 =

[

0 0
−0.3 −0.2

]

, M2
22 =

[

0 0.7
0 0

]

,

N2
1 =

[

0
−1

]

, N2
2 =

[

0
0

]

. 59



Chapter 3. Stability of two time s
ale swit
hed systems
0   1 2 3 4 5 6

1

2

t (sec)

σ(
t)

Figure 3.6: Swit
hing rule σ(t)The subsystem 1 is open loop unstable while the subsystem 2 is 
hara
terizedby a state-spa
e matrix with zero eigenvalues. Obviously, this system is unsta-ble under arbitrary swit
hing rules and existing results in the literature do nothelp in designing a stabilizing swit
hing rule. Theorem 10 leads to the followingstabilizing 
ontroller gains:
K1 =

[

0.4040 0.1511 −65.3601 −60.3074
]

,

K2 =
[

−0.4110 −0.5931 −147.6057 −137.0206
]

.For this example, the fast swit
hed system was found asymptoti
ally stable inopen loop. Hen
e, using Remark 8, a redu
ed 
ontrol law may also be proposed:
K1

r =
[

0 0 −99.0779 −88.5710
]

,

K2
r =

[

0 0 −347.0992 −310.4213
]

.Consider the swit
hing rule given in Fig. 3.6 and the initial 
ondition x(0) =
[

0 0 1 0
]′, Fig. 3.7 shows the state traje
tories, with

x(t) =
[

x′
11(t) x′

12(t) x′
21(t) x′

22(t)
]′

.The solid line shows the state traje
tories using the full state-feedba
k 
ontrollergains K1 and K2 while the dotted line shows the state traje
tories using theredu
ed state-feedba
k 
ontroller gains K1
r and K2

r . Fig. 3.8 shows the 
ontrolsignal evolution. Let the 
orresponding dis
retized swit
hed system in thesingular perturbation form (3.57), with sampling time Tf = 0.005 and
A1

11 =

[

0.7358 0.3679
−0.3679 0.0000

]

, A1
12 =

[

0.3964 0
0.5518 0

]

,

A1
21 =

[

0 0
−0.4057 −0.3425

]

, A1
22 =

[

0 1
1.8085 0

]

,

B1
1 =

[

−0.2642
−0.3679

]

, B1
2 =

[

0
0.1943

]

,60



3.5. Numeri
al example
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Figure 3.7: Closed loop response in the 
ontinuous-time with full state-feedba
k
ontroller (solid line) and redu
ed state-feedba
k 
ontroller (dotted line)
A2

11 =

[

0.5916 0.1344
−0.4031 −0.0801

]

, A2
12 =

[

0 0
0 0

]

,

A2
21 =

[

0 0
−0.1628 −0.0677

]

, A2
22 =

[

0 0.7
0 0

]

B2
1 =

[

−0.1361
−0.1344

]

, B2
2 =

[

0
0.0457

]

.From Theorem 12, we �nd the 
ontroller gains:
K1 =

[

0.8565 0.6941 −19.7259 −9.8473
]

,

K2 =
[

1.5333 0.3934 −52.0573 −24.3528
]

.Using Remark 10, we obtain the redu
ed 
ontroller gains:
K1

r =
[

0 0 −10.0899 −5.4331
]

, K2
r =

[

0 0 −34.9751 −16.4975
]

.In Fig. 3.9, the state traje
tories are shown for the full state-feedba
k 
ontroller
ase (solid line) and the redu
ed state-feedba
k 
ontroller 
ase (dotted line). InFig. 3.10, the 
ontrol signal evolution is shown. 61



Chapter 3. Stability of two time s
ale swit
hed systems
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Figure 3.8: Control signal evolution in the 
ontinuous-time with full state-feedba
k 
ontroller (solid line) and redu
ed state-feedba
k 
ontroller (dotted line)3.6 Con
lusionIt is well known that some fundamental properties of linear systems 
an be lostby swit
hings. This is the 
ase of stability, observability, 
ontrollability, �atness,and so on. In this 
hapter, we showed that stability of the slow and fast swit
hedsubsystems under arbitrary swit
hing rules does not imply the stability of the
orresponding two time s
ale swit
hed system in the singular perturbation form.A 
oupling 
onstraint, whi
h may be interpreted as a 
ertain level of the degreeof time s
ale separation, has also to be satis�ed. This 
onstraint was expressedin terms of LMI based 
onditions for stability analysis of singularly perturbedswit
hed systems independently of the value of the singular parameter ε and un-der an arbitrary swit
hing rule, for both 
ontinuous and fast sampling dis
retetime 
ases. Composite and redu
ed state-feedba
k 
ontrol design problems wereinvestigated in the same framework. As pointed out in Chapter 2, the dis
retetime model that we utilized, 
alled fast sampling model, presents two main ad-vantages, with respe
t to the other dis
rete time models of two time s
ale systemsgiven in literature. First, it allows to des
ribe both dis
retized 
ontinuous twotime s
ale systems and pure di�eren
e equations. Se
ond, due to the 
hoi
e ofthe sampling time as Tf = ε, this model assumes that the sampling rate is fastenough to in�uen
e the transient behavior of the system for 
ontrol purposes,when it represents dis
retized 
ontinuous two time s
ale systems. Thus, from atheoreti
al point of view, has a larger interest.
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lusion
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Figure 3.9: Closed loop response in the dis
rete-time (Tf = 0.005) with full state-feedba
k 
ontroller (solid line) and redu
ed state-feedba
k 
ontroller (dotted line)
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Figure 3.10: Control signal evolution in the dis
rete-time (Tf = 0.005) with fullstate-feedba
k 
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Chapter 4Bumpless transfer for swit
hedsystems
4.1 Introdu
tionIn pra
ti
al 
ontrol of nonlinear plants, often a set of dis
rete-time LTI 
ontrollers

{

xc(k + 1) = A
σ(k)
c xc(k) + B

σ(k)
c y(k)

u(k) = C
σ(k)
c xc(k) + D

σ(k)
c y(k)

(4.1)is used, where xc(k) ∈ R
p is the 
ontroller state, u(k) ∈ R

r is the 
ontrol signal,
y(k) ∈ R

m is the plant measured output, {(Ai
c, B

i
c, C

i
c, D

i
c) : i ∈ I = {1, ..., N}}is a family of matri
es and σ : Z

+ → I is the swit
hing rule, whi
h handles thes
heduling among the 
ontrollers and is assumed to be available in real-time, forany i ∈ I and for all k ∈ Z
+. Ea
h time the operating point of the system
hanges, the adequate 
ontroller is a
tivated by a supervisor. However, swit
hingamong di�erent 
ontrollers implies undesired transient behaviors due to possiblelarge variations of the 
ontrol signal. This phenomenon may a�e
t the systemperforman
es and, in the worst 
ase, destabilize the 
losed loop system. Thesolution of this problem, whi
h has been largely studied in the last few de
ades,is 
alled bumpless transfer.A des
ription of most popular strategies for bumpless transfer 
an been foundin [Han88℄, [KCMN94℄, [GA96℄ and [EP98℄. One of the �rst s
hemes is proposedby Hanus for nonlinear plants [HKH87℄. The idea 
onsists in pre-setting the o�-line 
ontroller state for redu
ing the transient behavior at the swit
hing time.Turner and Walker generalize the results of Hanus for 
ontrollers whi
h are notbi-proper [TW99℄, [TW00℄. Let de�ne the signal
z̄i

e(k) = αi(k) − e(k),whi
h represents the di�eren
e between the ith o�-line 
ontroller input αi(k) ∈
R

m and the on-line 
ontroller input e(k) = r(k) − y(k), where r(k) ∈ R
m is thereferen
e; and the signal

z̄i
u(k) = ui(k) − u(k),65



Chapter 4. Bumpless transfer for swit
hed systemswhi
h represents the di�eren
e between the ith o�-line 
ontroller output ui(k) andthe on-line 
ontroller output u(k), for any i ∈ I and for all k ∈ Z
+. The idea in[TW00℄ is to minimize the following LQ 
riterion :

J̄ i = φ̄i(T̄ i
f) +

1

2

T̄ i
f
−1
∑

k=ti

[z̄i′

u (k)W̄ i
uz̄

i
u(k) + z̄i′

e (k)W̄ i
e z̄

i
e(k)],where

φ̄i(T̄ i
f ) =

1

2
z̄i′

u (T̄ i
f)X̄

iz̄i
u(T̄

i
f),

W̄ i
e = W̄ i′

e ≻ 0 and W̄ i
u = W̄ i′

u ≻ 0 are weighting matri
es, ti is the swit
hingtime to the subsystem 
orresponding to the mode i ∈ I, T̄ i
f is the terminal timeand X̄ i = X̄ i′ � 0 is a terminal weighting matrix, for any i ∈ I. Sin
e referen
esignals are not known a priori, pra
ti
al implementation requires an extension toan in�nite horizon. This approximation yields a 
onstant feedba
k matrix Q̄i thatpre
onditions the ith o�-line 
ontroller (4.1) for obtaining the desired transientbehavior at the swit
hing time (Fig. 4.1).PSfrag repla
ements
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u1
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x1
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ontroller2
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rk ek
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kFigure 4.1: Closed loop system with I = {1, 2}In parti
ular, we have:

αi(k) = Q̄i





xc(k)
u(k)
e(k)



 ,with
Q̄i = (Im − ΓiBi′

c ΠiBi
c)

−1Γi





(Di′

c W̄ i
uC

i
c + Bi′

c ΠiAi
c)

′

−(Di′

c W̄ i
u + Bi′

c (Ip − M i)−1U i)′

−(W̄ i
e + Bi′

c (Ip − M i)−1Ei)′





′

,66



4.1. Introdu
tionwhere
Γi = −(Di′

c W̄ i
uD

i
c + W̄ i

e)
−1,

Āi = Ai
c + Bi

cΓ
iDi′

c W̄ i
uC

i
c,

B̄i = Bi
cΓ

iBi′

c ,

M i = Āi′(Ip − ΠiB̄i)−1,

U i = M iΠiBi
cΓ

iDi′

c W̄ i
u + Ci′

c W̄ i
u(Ir + Di

cΓ
iDi′

c W̄ i
u),

Ei = M iΠiBi
cΓ

iW̄ i
e + Ci′

c W̄ i
uD

i
cΓ

iW̄ i
e ,and Πi is the stabilizing solution to the dis
rete-time Ri

ati equation

Āi′(In − ΠiB̄i)−1ΠiĀi − Πi + Ci′

c W̄ i
u(Ir + Di

cΓ
iDi′

c W̄ i
u)C

i
c = 0,for any i ∈ I. LQ bumpless transfer has been one of most 
elebrated bumplesstransfer methods on industrial MIMO appli
ations [TAB+06℄, [ZLBT06℄, [ZB09℄.This su

ess is due to di�erent fa
tors: the existen
e of several reliable numeri
alsolvers for Ri

ati equations, the ex
ellent 
onvergen
e properties of LQ basedfeedba
k 
ontrollers, and the fa
t that no plant knowledge is needed. Neverthe-less, the extension to an in�nite horizon assumes that the tra
king error e and the
ontrol signal u are 
onstant. This approximation is e�e
tive only if these signalsvary slowly enough, with referen
e to the system dynami
s. Another drawba
kis 
on
erned with the fa
t that this strategy guarantees the 
losed loop stabilityonly around a spe
i�
 operating point. In general, it is assumed that the 
losedloop stability of the whole pro
ess is maintained, if both on-line and o�-line 
on-trol loops are stable. This assumption is justi�ed only if the operating point issubje
t to �slow� variations.In [CS08℄, the dis
ontinuity of the 
ontroller output is redu
ed by resettingthe fast dynami
s of the 
ontroller at the swit
hing time. In [ZT05℄, the desiredtransient behavior, 
alled target response, is de�ned as the ideal 
losed loopbehavior after the 
ontroller swit
hing. Hen
e, the anti bumpless purpose isrea
hed by re
overing the target response in a L2 sense [TK97℄. Unlike theprevious solutions, this method guarantees the asymptoti
 stability of the 
losedloop system for arbitrary swit
hings of the 
ontroller. Nevertheless, these resultsare limited to the linear plant 
ase.Although the bumpless transfer problem has been widely studied in literature,only few arti
les address the swit
hed systems framework. In [AW96℄, a bumplesstransfer solution for 
ontinuous-time swit
hed systems is given when the orderof the 
ontroller is smaller than the order of the plant. The idea is to for
e theoutput of the a
tivated 
ontroller to be equal to the plant input at the swit
hingtime. An analogous strategy is proposed in [DW06℄ for 
ontinuous-time linearparameter varying systems. However, as pointed out by Za

arian and Teel, a
onstraint on the only 
ontroller output does not imply better performan
es onthe plant output [ZT02℄, [ZT05℄.In this 
hapter, a bumpless transfer 
ontrol design for dis
rete-time swit
hedsystems is presented [MHD+08℄, [MHD+09℄. The solution is based on the LQ67



Chapter 4. Bumpless transfer for swit
hed systemsoptimization theory, whi
h has been introdu
ed on the bumpless transfer frame-work by Turner and Walker. This method does not guarantee stability of the
losed loop swit
hed system as it is well-known that swit
hings 
an destabilizethe 
losed loop system, even if all the subsystems are stable [Lib03℄. To solvethis problem, we propose a LQ bumpless transfer 
ontroller whi
h is a
tivatedat ea
h swit
hing time. The 
ontroller and the plant output are for
ed to followa desired pro�le for a given period of time. A �nite horizon approa
h 
an bedire
tly applied, whi
h means that no approximation on the tra
king error andon the 
ontrol signal are needed. Asymptoti
 stability of the 
losed loop systemis veri�ed through dwell time 
onditions [GC06b℄.4.2 PreliminariesConsider the dis
rete-time swit
hed system
{

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k)

y(k) = Cσ(k)x(k)
(4.2)where x(k) ∈ R

n is the state ve
tor, whi
h is assumed to be available for feedba
k,for all k ∈ Z
+. Moreover, {(Ai, Bi, Ci) : i ∈ I} is a family of matri
es and thepair (Ai, Bi) is assumed to be 
ontrollable for any i ∈ I. Let the state-feedba
k
ontrol law

u(k) = Kσ(k)x(k), (4.3)whi
h stabilizes the 
losed loop system (4.2)-(4.3) for any swit
hing law. Further,let us de�ne the minimal interval of time ∆i ∈ Z
+ the system remains in the sub-system 
orresponding to the mode i until it swit
hes to another subsystem. ∆iis assumed to be known for any i ∈ I.Swit
hing among 
ontrollers usually introdu
es large jumps in the 
ontrolsignal. In order to redu
e the amplitude of these jumps, di�erent strategies arepossible. In this work, we propose a bumpless transfer 
ontroller that is a
tivatedat the instant ti, whi
h represents a swit
hing instant to the ith mode, for a periodof time τM

i < ∆i. Therefore, for ea
h mode i ∈ I, we have:
u(k) =

{

Kix(k) + ubt,i(k) if ti ≤ k < ti + τM
i

Kix(k) otherwise,
(4.4)where ubt,i(k) ∈ R

r is the bumpless transfer 
ontroller output, for all k ∈ [ti, ti +
τM
i ). The 
losed loop system (4.2)-(4.4) is shown in Fig. 4.2.The bumpless transfer 
ontroller will be designed in the next se
tion. It willdepend on the pro�le of the desired transient behavior and on the state matri
es.For simpli
ity reasons, a straight line is 
hosen as desired pro�le. Let ti be aswit
hing instant from the mode j to the mode i, for all (j, i) ∈ I × I. We 
an68



4.3. Bumpless transfer 
ontrol design
+

+
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Figure 4.2: Closed loop system with I = {1, 2}de�ne the desired 
ontrol signal of the subsystem 
orresponding to the ith modeas:
ũi(k) =

{

ũi,0(k) + (k − ti + 1)pi(k) if ti ≤ k < ti + τM
i

0 otherwise,
(4.5)where

ũi,0(k) = Kjx(ti − 1) (4.6)is the 
ontrol signal value at the instant before the swit
hing and pi determinesthe slope of the desired pro�le, i. e.
pi(k) =

1

τM
i

(Kix(ti) − Kjx(ti − 1)). (4.7)We obtain a value of pi that depends on the 
ontrol signal dis
ontinuity. Anillustrative example is given in Fig. 4.3.4.3 Bumpless transfer 
ontrol designIn this se
tion, we present the bumpless transfer 
ontrol design, whi
h is basedon the minimization of a LQ 
riterion. In the bumpless transfer framework, thissolution was proposed by [TW00℄, where the di�eren
e between the on-line andthe o�-line 
ontroller input and output are minimized before ea
h swit
hing. Thisis equivalent to initialize the 
ontroller state for redu
ing the transient behavioron the plant output. Sin
e this method 
onsists in pre-setting the state of theo�-line 
ontroller before the swit
hing, it does not address 
ontrol systems with-out memory, su
h as state-feedba
k 
ontrol laws. Furthermore, the 
ontroller69



Chapter 4. Bumpless transfer for swit
hed systems
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Figure 4.3: Control signal evolution with bumpless transfer 
ontroller swit
hedon (solid line) and swit
hed o� (dotted line)input and output 
annot be known a priori. Hen
e, the pra
ti
al implementationrequires an extension to the in�nite horizon 
ase. At last, asymptoti
 stability ofthe 
losed loop system is not guaranteed. In general, it is assumed that the 
losedloop stability of the whole pro
ess is maintained, if both on-line and o�-line 
on-trol loops are asymptoti
ally stable. This assumption is justi�ed if we 
onsiderthat the operating point is subje
t to slow variations, whi
h is not ne
essarily the
ase for swit
hed systems. In this 
ase, swit
hings 
an destabilize the 
losed loopsystem, even if all the subsystems are asymptoti
ally stable [Lib03℄.In order to solve these problems, we propose a bumpless transfer 
ontrollerwhi
h is a
tivated at ea
h swit
hing time ti. Asymptoti
 stability 
onditions forthe 
losed loop system (4.2)-(4.4) are presented in the next se
tion. For ea
hmode i ∈ I, the bumpless transfer 
ontrol law is based on the minimization ofthe following quadrati
 
ost fun
tion:
J i = φi(ti + τM

i ) +
1

2

ti+τM
i −1
∑

k=ti

[zu,i′(k)W i
uz

u,i(k) + zy,i′(k)W i
yz

y,i(k)], (4.8)with
zu,i(k) = u(k) − ũi(k), (4.9)
zy,i(k) = y(k) − ỹi(k), (4.10)and

φi(ti + τM
i ) =

1

2
zu,i′(ti + τM

i )X izu,i(ti + τM
i ). (4.11)

W i
u ≻ 0, W i

y ≻ 0 and X i � are weighting matri
es. The desired 
ontrol signal ũiwas de�ned in (4.5) while the desired output signal is set to ỹi = 0 for simpli
ityreasons. The following theorem yields the signal ubt,i that minimizes the 
ostfun
tion J i, for any i ∈ I.70



4.3. Bumpless transfer 
ontrol designTheorem 13 Given the swit
hed system (4.2)-(4.4), the initial time ti and theterminal time ti + τM
i , the bumpless transfer 
ontrol law that minimizes thequadrati
 
ost fun
tion (4.8) is

ubt,i(k) = Qi(k)





x(k)
ũi(k)

gi(k + 1)



 , (4.12)with
Qi(k) =





(Ñ i(k + 1)Πi(k + 1)Ai − Ki)′

(Ir + Ñ i(k + 1)Πi(k + 1)Bi)′

−Ñ i′(k + 1)





′ (4.13)and
Ñ i(k + 1) = −W i

u

−1
Bi′(In − Πi(k + 1)B̃i)−1, (4.14)

∀ i ∈ I. The values of Πi and gi are provided by the equations
Πi(k) = Ai′(In − Πi(k + 1)B̃i)−1Πi(k + 1)Ai + C̃i (4.15)and

gi(k) = Ai′(In − Πi(k + 1)B̃i)−1(gi(k + 1) − Πi(k + 1)Biũi(k)), (4.16)with
B̃i = −BiW i

u

−1
Bi′ , C̃i = Ci′W i

yC
i. (4.17)The bound 
onditions are:

Πi(ti + τM
i ) = 0, gi(ti + τM

i ) = 0. (4.18)Proof. Consider
J i =φi(ti + τM

i ) +
1

2

ti+τM
i −1
∑

k=ti

[(Kix(k) + ubt,i(k) − ũi(k))′W i
u×

(Kix(k) + ubt,i(k) − ũi(k)) + Ci′x(k)W i
yC

ix(k)].

(4.19)Introdu
ing a Lagrange multiplier λi(k) ∈ R
n, we have:

J i = φi(ti + τM
i ) +

1

2

ti+τM
i −1
∑

k=ti

[H i(k) − λi′(k + 1)x(k + 1)], (4.20)where H i is the Hamiltonian, de�ned by
H i(k) =

1

2
[(Kix(k) + ubt,i(k) − ũi(k))′W i

u(K
ix(k) + ubt,i(k) − ũi(k))+

Ci′x(k)W i
yC

ix(k)] + λi′(k + 1)[(Ai + BiKi)x(k) + Biubt,i(k)].
(4.21)71



Chapter 4. Bumpless transfer for swit
hed systemsFirst order ne
essary 
onditions are:
x(k + 1) =

∂H i(k)

∂λi(k + 1)
(4.22)

λi(k) =
∂H i(k)

∂x(k)
(4.23)

∂H i(k)

∂ubt,i(k)
= 0 (4.24)

λi(ti + τM
i ) =

∂φi(ti + τM
i )

∂x(ti + τM
i )

. (4.25)Sin
e the 
ost fun
tion J i is 
onvex for any i ∈ I, the 
onditions (4.22)-(4.25)are also su�
ient for optimality. Substituting (4.22)-(4.24), we obtain:
∂H i(k)

∂λi(k + 1)
= (Ai + BiKi)x(k) + Biubt,i(k) (4.26)

∂H i(k)

∂x(k)
= (Ai + BiKi)′λi(k + 1) + Ki′W i

uK
ix(k)−

Ki′W i
uũ

i(k) + Ki′W i
uu

bt,i(k) + Ci′W i
yC

ix(k)

(4.27)
∂H i(k)

∂ubt,i(k)
= W i

uu
bt,i(k) + W i

uK
ix(k) + Bi′λi(k + 1) − W i

uũ
i(k). (4.28)Setting the last equation equal to zero, we have:

ubt,i(k) = −Kix(k) − W i
u

−1
Bi′λi(k + 1) + ũi(k). (4.29)Hen
e, substituting ubt,i(k) in (4.26) and (4.27), we obtain the following nonhomogeneous di�eren
e equation:

{

x(k + 1) = Aix(k) + B̃iλi(k + 1) + Biũi(k)

λi(k) = C̃ix(k) + Ai′λi(k + 1).
(4.30)In order to �nd the solution, we resort to the method of sweep [BH75℄, where λiis given by the equation:

λi(k + 1) = Πi(k + 1)x(k + 1) − gi(k + 1), (4.31)with Πi and gi de�ned in equations (4.15) and (4.16), respe
tively. Combiningthe equations (4.30) and (4.31), we have:










λi(k + 1) =(In − Πi(k + 1)B̃i)−1×

[Πi(k + 1)Aix(k) + Πi(k + 1)Biũi(k) − gi(k + 1)]

Πi(k)x(k) − gi(k) = C̃ix(k) + Ai′λi(k + 1).

(4.32)Solving (4.15) and (4.16) implies that (4.32) has a solution on the �nite horizon
[ti, ti + τ i

M). The bound 
ondition (4.18) is given by (4.25) and (4.29). Finally,(4.12) is obtained from (4.29) and (4.32).72



4.4. Stability analysisRemark 11 In the �nite horizon 
ase, the knowledge of all the future values of
ũi is required in order to solve (4.16) ba
kward in time. Hen
e, in general thismethod 
annot be applied to solve pra
ti
al problems [TW00℄. On the other hand,noti
e that in our 
ase, from equations (4.5)-(4.7), only the knowledge of x(ti−1)and x(ti) is needed to 
ompute the values of ũi on the �nite horizon [ti, ti + τ i

M).Sin
e this information is available at ea
h swit
hing time ti, the method 
an beapplied in real problems. Noti
e that the stru
ture of the desired pro�le (4.5),
omposed by the initial o�set (4.6) and the slope of the desired pro�le (4.7), maybe easily modi�ed in order to obtain a di�erent desired pro�le. For instan
e, the
hoi
e
ũi

k =

{

ũi,0
k + (k − tj + 1)2γipi

k if ti ≤ k < ti + τM
i

0 otherwiseyields a paraboli
 pro�le, with γi ∈ (0, 1].4.4 Stability analysisIn the previous se
tions, we assumed that the bumpless transfer 
ontroller isswit
hed on for τM
i instants. As the original 
ontroller (4.3) has been designedwithout taking into a

ount this fa
t, , asymptoti
 stability of the swit
hed system(4.2) is not guaranteed anymore. This se
tion aims at establishing asymptoti
stability 
onditions for the 
losed loop system (4.2)-(4.4). To this purpose, letus de�ne the additional time variable τ i

k = k − ti + 1 that is reset to zero at theinstant ti, whi
h represents a generi
 swit
hing time from the mode j to the mode
i, for any (i, j) ∈ I × I. Therefore, for ea
h mode i ∈ I, the 
losed loop system(4.2)-(4.4) 
an be written as:

v(k + 1) = Y i(j, τ i
k)v(k), (4.33)where the 
onstru
tion of the time variant state matrix Y i is detailed in AppendixB.5,

v(k) =









x(k)
x(k − 1)
ũi,0(k)
pi(k)







is the augmented state ve
tor and signals ũi,0 and pi are de�ned in se
tion 4.2.We distinguish two phases on the interval between two swit
hings:� The bumpless transfer phase: the bumpless transfer 
ontroller is on. Wehave:
Y i(j, τ i

k)|τ i
k
=1 =









H̄ i(τ i
k + 1) L̄ji(τ i

k + 1) 0n×r 0n×r

In 0n×n 0n×r 0n×r

0r×n Kj 0r×r 0r×r
1

τM
i

Ki − 1
τM
i

Kj 0r×r 0r×r









(4.34)73



Chapter 4. Bumpless transfer for swit
hed systemsand
Y i(j, τ i

k)|2≤τ i
k
≤τM

i
=









Āi(τ i
k + 1) 0n×n Ū i(τ i

k + 1) P̄ i(τ i
k + 1)

In 0n×n 0n×r 0n×r

0r×n 0r×n Ir 0r×r

0r×n 0r×n 0r×r Ir









. (4.35)In this phase, the state matri
es of the system (4.33) may have eigenvaluesoutside the unit 
ir
le.� The re
uperation phase: the bumpless transfer 
ontroller is o�. We have:
Y i(j, τ i

k)|τ i
k
>τM

i
= Y i

s =





Ai + BiKi 0n×(n+2r)

I 0n×(n+2r)

02r×n 02r×(n+2r).



 , (4.36)where the matrix Y i
s is S
hur and 
onstant for any i ∈ I. Equations (4.34)-(4.36) are detailed in Appendix B.5.

bumpless transfer

phase recuperation 

phasePSfrag repla
ements
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tl − tiFigure 4.4: Lyapunov fun
tion evolutionAssume that for k ∈ [ti, tl) the ith mode is a
tive and, when a swit
hing o

urs(k = tl), the system jumps to the lth mode. Moreover, assume that the 
ondition
tl − ti ≥ ∆i ≥ 1, with ∆i de�ned in se
tion 4.2, holds for any (i, l) ∈ I × I.The following theorem gives LMI based 
onditions to 
he
k asymptoti
 stabilityof the 
losed loop swit
hed system (4.33).74



4.4. Stability analysisTheorem 14 Assume that there exist matri
es P i = P i′ ≻ 0 of appropriatedimensions and s
alars 0 ≤ τM
i < ∆i su
h that the LMIs

Y i
s

′
P iY i

s − P i ≺ 0, (4.37)
(

τM
i
∏

d=1

Y i(j, d)Y i
s

(∆i−τM
i )

)′

P l

(

τM
i
∏

d=1

Y i(j, d)Y i
s

(∆i−τM
i )

)

− P i ≺ 0 (4.38)hold ∀ (j 6= i, l, i) ∈ I × I × I. Hen
e, the swit
hed system (4.33) is asymptoti-
ally stable for tl − ti ≥ ∆i ≥ 1.Proof. This proof is based on Theorem 1 of [GC06b℄. First, noti
e that thematrix τM
i
∏

d=1

Y i(j, d) represents the evolution of the swit
hed system (4.33) for k ∈

[ti, ti + τM
i ) and the matrix Y i

s

(tl−ti−τM
i ) represents the evolution of the swit
hedsystem (4.33) for k ∈ [ti +τM

i , tl). From (4.38), with l = i, the Lyapunov fun
tion
V (v(k)) = v(k)′P iv(k) satis�es the inequality

V (v(ti + ∆i)) < V (v(ti)). (4.39)From (4.37), we have:
V (v(k + 1)) < V (v(k)), (4.40)

∀ k ∈ [ti + ∆i, tl) and ∀ i ∈ I. Hen
e, there exist s
alars α ∈ (0, 1) and β > 0su
h that
‖v(k)‖2 ≤ βαk−tiV (v(ti)), (4.41)

k ∈ [ti, tl). Moreover, still from (4.38), we obtain:
V (v(tl)) = v(tl)

′P lv(tl)

= v(ti)
′

(

τM
i
∏

d=1

Y i(j, d)Y i
s

(tl−ti−τM
i )

)′

P l×

(

τM
i
∏

d=1

Y i(j, d)Y i
s

(tl−ti−τM
i )

)

v(ti)

< v(ti)
′Y i

s

(tl−ti−∆i)′
P iY i

s

(tl−ti−∆i)
v(ti)

≤ v(ti)
′P iv(ti) = V (v(ti)).

(4.42)
The non stri
t inequality holds be
ause tl − ti − ∆i ≥ 0 and Y i

s is S
hur byassumption, ∀ i ∈ I. Hen
e, given the initial 
ondition of (4.33) v(0) = v0, thereexists δ ∈ (0, 1) su
h that, after the qth swit
hing, we have:
V (v(ti)) ≤ δqV (v0), ∀ q ∈ N. (4.43)Finally, (4.41) and (4.43) imply that the swit
hed system (4.33) is asymptot-i
ally stable. 75



Chapter 4. Bumpless transfer for swit
hed systemsRemark 12 An evaluation of the maximum value of τM that guarantees theasymptoti
 stability of the 
losed loop system (4.33) is given by following algo-rithm:
τM
1 , ..., τM

N = 0;for h = 1 : max{∆i, i ∈ I}for i = 1 : Nif (τM
i < ∆i) and (LMIs (4.37)-(4.38) hold)
τM
i =τM

i + 1;endendend4.4.1 Numeri
al exampleIn this se
tion, we present a bumpless transfer 
ontrol design to a spe
i�
 produ
tof the Eisenhüttenstadt HSM. In order to redu
e the bumps on the 
ontrol signal
u, the modi�ed 
ontrol signal (4.4) may be applied to the plant for a periodof time τM

i , for i ∈ {2, 3, 4}. Sin
e the system never swit
hes ba
k to the �rstsubsystem, no bumpless transfer 
ontroller is designed for i = 1. The signal ubt,iis 
omputed by Theorem 13. Equations (4.13) and (4.15) 
an be solved o�-linewhereas equation (4.16) must be solved at the swit
hing time ti, when the valueof x(ti−1) is known. The output signal y 
orresponds to the strip o�-
enter, thatmust be minimized. Hen
e, we 
hoose ỹ = 0. Given the weighting matri
es Wuand Wy, the τM
i values allowing to verify the 
onditions of Theorem 14 
an befound by applying the algorithm proposed in Remark 12. Results are summarizedin Table 4.1. In Fig. 4.5, we propose a zoom of the 
ontrol signal u for the lastTable 4.1: BT 
ontroller data

@
@

@

i 2 3 4
∆i 64 38 30
τM
i 30 15 6

W i
u In 100In 10In

W i
y In In Instand. The dotted line shows the 
ontrol signal 
omputed by the 
ontrol law (4.3),when the bumpless transfer 
ontroller is o�. One 
an noti
e the big bump due tothe swit
hing at the instant k = 1392 and the 
orresponding transient behavior.Sin
e the a
tuators of the hot strip mill system are subje
t to amplitude and slopesaturation, the applied 
ontrol signal 
orresponds to the saturated signal (solid76



4.4. Stability analysis
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Figure 4.5: Control signal u
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Figure 4.6: Measured output yline), for whi
h stability is not guaranteed anymore. Finally, the dashed lineshows the 
ontrol signal 
omputed by the 
ontrol law (4.4), that is the bumplesstransfer 
ontroller is on. In this 
ase, no saturation o

urs. Further, the 
losedloop asymptoti
 stability is guaranteed by the 
onditions of Theorem 14. InFig. 4.6, we propose a zoom of the measured output y in the last stand, whi
h
orresponds to the displa
ement of the strip with respe
t to the axis of the mill inthe exit of the system. The solid line shows the 
ontrol signal without bumplesstransfer 
ontrol while the dashed line shows the 
ontrol signal when the bumplesstransfer 
ontroller is on. As expe
ted, the displa
ement of the strip was redu
ed.77



Chapter 4. Bumpless transfer for swit
hed systems4.5 Con
lusionIn this 
hapter, a bumpless transfer method for swit
hed systems has been pre-sented. The bumpless transfer 
ontroller was designed using a �nite horizonapproa
h based on the LQ optimization framework. The idea is to for
e the
ontroller output and the plant output to follow a desired pro�le. Dwell time
onditions for assessing the asymptoti
 stability of the 
losed loop swit
hed sys-tem were also established. Simulation results 
on
erning the EisenhüttenstadtHSM system were shown.
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Chapter 5Robust steering 
ontrol of hot stripmill
5.1 Introdu
tionIn this 
hapter, a robust steering 
ontrol design of HSM based on the un
ertainswit
hed linear model given in 
hapter 1 is proposed. The aim is to guaranteethe stability of an HSM system and minimize the strip o�-
enter for the wholeset of treated produ
ts [MDI+ar℄, [MDI+09d℄, [MDI+09
℄, [MDI+09e℄, [MDIS09℄.In an HSM with 5 stands, there are 70 un
ertain parameters, whi
h be
ome
110 for HSMs with 7 stands. For a problem of this dimension, LMI te
hniquessu�er from a well-known drawba
k 
on
erning numeri
al problems. Therefore, inthe �rst part of this 
hapter, a method for redu
ing the number of un
ertaintiesby exploiting the physi
al relations among the di�erent produ
t parameters willbe introdu
ed. On
e the simpli�ed polytopi
 model is obtained, the 
onvex hull
orresponding to the whole database may be partitioned into several small 
onvexhulls. The division of the database with respe
t to the physi
al parameters of theprodu
ts, allowing to design a di�erent 
ontroller for ea
h family, yields betterperforman
es.The system involves a two time s
ale dynami
s. Sin
e fast dynami
s is stableand impossible to 
ontrol from a pra
ti
al point of view due to a
tuators limi-tations, a robust redu
ed 
ontroller will be designed resorting to the results ofChapter 2.When the n-stands subsystem is a
tive, the strip is 
onne
ted to all the stands,and it is subje
t to a strong perturbation due to the 
oilbox vibrations. Hen
e, themain 
ontrol task is to guarantee a good quality of the rolled produ
t, minimizingthe external perturbation. This phase takes the 90% − 95% of the whole rollingpro
ess duration and the system rea
hes the steady state before the swit
hingso

ur. In the tail end phase, tra
tion is lost every time the strip leaves a stand.This in
reases the di�
ulties to guide the strip, whi
h be
omes free to move inall dire
tions. The result is that the 
rashes of the strip against the mill side-guides are more frequent. Thus, during the tail end phase the priority of the79



Chapter 5. Robust steering 
ontrol of hot strip mill
ontrol design is the system safety. Moreover, in this phase swit
hings are veryfast and the stability of all subsystems does not guarantee the stability of thewhole system. It is also ne
essary to verify that swit
hings do not destabilize thesystem [Mor96℄, [GC06b℄.To our knowledge, the only 
ondition to design a 
ontrol law whi
h asymp-toti
ally stabilizes a two time s
ale swit
hed systems was proposed in Chapter3. This 
ondition needs a state ve
tor with 
onstant 
omponents and dimension.Nevertheless, in an HSM system, the 
omponents and dimension of the stateve
tor 
hange at ea
h swit
hing time. A possible solution 
onsists in designinga robust 
ontrol law stabilizing ea
h subsystem i separately through the methodproposed in Chapter 2. The stability of the tail end swit
hed system will beveri�ed a posteriori. In fa
t, the swit
hing time depends on the rolled strip andmust be estimated on-line. Hen
e, the swit
hed system stability 
ondition hasalso to take into a

ount an un
ertainty in the swit
hing time.Finally, simulation and experimental results of the robust steering 
ontroldesign at Eisenhüttenstadt HSM will be presented.5.2 Polytopi
 modelingAn HSM 
an treat produ
ts with very heterogeneous properties. Ea
h produ
tis 
hara
terized by its physi
al parameters and by a spe
i�
 system setup. Thes
heduling of the rolled produ
ts is assumed to be known in real time. Sin
e the
ontroller is 
omputed o�-line, from a 
ontrol design point of view the only avail-able information 
on
erns the minimum and maximum bound of ea
h parameter.Thus, the physi
al parameters must be 
onsidered as bounded un
ertainties anda robust 
ontroller is needed.The main obje
tive of this se
tion is to des
ribe the un
ertainties of the HSMsystem as a 
onvex set. LMI te
hniques 
an then be applied to design the 
ontrollaw. Two fundamental points are dis
ussed:� The redu
tion of the number of 
onvex hull verti
es.� The determination of the 
onvex hull verti
es su
h that the asso
iated phys-i
al parameters would re�e
t a given produ
t.On
e the polytopi
 model is obtained for the whole database, partitioning it intoseveral small 
onvex hulls 
an be done quite easily. We only have to 
hoose thenumber of partitions and 
ompute the verti
es of ea
h partition as was done forthe original 
onvex set.Consider the HSM system in the polytopi
 form (1.19):










xσ(s)(s + 1) = Aσ(s)(s)xσ(s)(s) + B
σ(s)
u (s)u(s) + B

σ(s)
d (s)d(s)

q(s) = C
σ(s)
q xσ(s)(s) + D

σ(s)
qu u(s)

y(s) = C
σ(s)
y xσ(s)(s),

(5.1)80



5.2. Polytopi
 modelingwhere σ : Z
+ → I = {1, ..., N} is the swit
hing rule, xi(s) =

[

xi
1(s)

′
xi

2(s)
′]′

∈
R

2n is the state ve
tor, u(s) ∈ R
r is the 
ontrol signal, d(s) ∈ R is the externalperturbation, q(s) ∈ R

w is the 
ontrolled output and y(s) ∈ R
m is the measuredoutput, for any i ∈ I and for all s ∈ Z

+. Moreover, we have:
Ai(s) =

NV
∑

l=1

λl(s)Ã
i,l(ε), Bi

u(s) =

NV
∑

l=1

λl(s)B̃
i,l
u , Bi

d(s) =

NV
∑

l=1

λl(s)B̃
i,l
d ,where l ∈ L = {1, ..., NV } denotes the verti
es of the 
onvex hull, and λl denotesthe un
ertainty and belongs to the unit simplex

Y(s) = {

NV
∑

l=1

λl(s) = 1, λl(s) ≥ 0}.Hen
e, for ea
h subsystem i ∈ I, we have a di�erent 
onvex hull des
ribed by
NV verti
es. Ea
h vertex (i, l) ∈ I×L may be 
hara
terized by its 
orrespondingtwo time s
ale linear state-spa
e model











xi(s + 1) = Ãi,l(ε)xi(s) + B̃i,l
u u(s) + B̃i,l

d d(s)

q(s) = Ci
qx

i(s) + Di
quu(s)

y(s) = Ci
yx

i(s),

(5.2)with
Ãi,l(ε) =

[

εÃi,l
11 Ãi,l

12

εÃi,l
21 Ãi,l

22

]

, B̃i,l
u =

[

B̃i,l
u,1

B̃i,l
u,2

]

, B̃i,l
d =

[

B̃i,l
d,1

B̃i,l
d,2

]

,

Ci
q =

[

Ci
q,1 Ci

q,2

]

, Ci
y =

[

Ci
y,1 Ci

y,2

]

.5.2.1 Redu
tion of the 
onvex hull spa
e dimensionLet U be the set of un
ertain parameters. The spa
e dimension of the 
onvexhull 
oin
ides with the number of un
ertainties D = card(U). Hen
e, NV = 2D.In an HSM with 5 stands D = 70 (110 for an HSM with 7 stands). For aproblem of this dimension, LMI te
hniques su�er from a well-known drawba
k
on
erning numeri
al problems. Nevertheless, su
h numeri
al problems 
an beavoided by exploiting the physi
al relations among the di�erent produ
t parame-ters for redu
ing the dimension of the spa
e dimension. Based on the knowledgeof the engineers, we 
hose to use only four main parameters in order to 
lassifythe produ
ts: the set of independent parameters Um = {w, hn, σ0
1 , σ0

n} ⊂ U ,where w is the strip width, hn is the output thi
kness of the strip in the laststand and σ0
1 and σ0

n are the hardness of the strip in the �rst and in the laststand, respe
tively.The remaining set of parameters Us = {U \Um} depends on Um. This meansthat two produ
ts with the same Um set have nearly the same Us set and thusthe same dynami
s. To explain this fa
t, noti
e that Us 
an be broken down intotwo subsets Us = {Us
op,U

s
fnc}: 81



Chapter 5. Robust steering 
ontrol of hot strip mill� The �rst subset Us
op 
on
erns the parameters set by the operator, su
h as roll
hara
teristi
s. Operators must prevent in
idents on the mill and restoreeventual damages. Therefore, they look for an HSM setup that guaranteessafe and standard system behavior. Their 
hoi
es are mainly based on pastexperien
e, hen
e, they usually provide a similar Us

op set for produ
ts withsimilar 
hara
teristi
s (and then with a similar Um set).� The last subset Us
fnc depends, analyti
ally, on Um and Us

op.Fig. 5.1 shows the evolution of the open loop eigenvalues for 10 produ
ts withthe following Um set:
w ∈ [1150 − 1180] mm

hn ∈ [2 − 2.2] mm
σ0

1 ∈ [50 − 52] KN/mm2

σ0
n ∈ [35 − 37] KN/mm2.Ea
h eigenvalue moves inside a very limited zone. This fa
t 
on�rms that twoprodu
ts with the same Um set have nearly the same Us set and so, nearly thesame dynami
s. Hen
e, the spa
e dimension of the 
onvex hull 
an be redu
ed
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Figure 5.1: Open loop eigenvalues variationto D = card(Um) = 4.5.2.2 Constru
tion of the 
onvex hullEa
h produ
t p ∈ P = {1, ..., NP} is 
hara
terized by its Um(p) set and 
an thenbe represented as a point in a 4-dimensional spa
e. Consider the Eisenhütten-stadt HSM database, whi
h 
ontains NP = 10000 produ
ts. Fig. 5.2 shows the82



5.2. Polytopi
 modelingproje
tions of the database on the six possible planes. Ea
h point represents adi�erent produ
t. The variation of the independent parameters in the databaseis:
w ∈ [810 − 1670] mm
hn ∈ [1.9 − 6.2] mm

σ0
1 ∈ [22 − 65] KN/mm2

σ0
n ∈ [30 − 90] KN/mm2.

(5.3)Sin
e the 
ombinations among the parameters that belong to Um are in�nite, the
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Figure 5.2: Ar
elorMittal Eisenhüttenstadt HSM database (2D proje
tion)produ
ts 
orresponding to the 
onvex hull verti
es are not ne
essarily in
ludedin the database. In this 
ase, given the set Um(l), the subset Us
op(l) must beestimated for all the produ
ts l ∈ L. To this aim, the subset Us

op(l) 
an bearbitrarily set to be equal to the subset Us
op(p

l) of the produ
t pl ∈ P �
losest�to the vertex l. Therefore, for ea
h vertex l ∈ L, pl may be found solving thefollowing minimization problem:
Dmin(l, pl) = min{D(l, p), p ∈ P}, (5.4)with

D(l, p) = [(w(l) − w(p))2 + (hn(l) − hn(p))2+

(σ0
1(l) − σ0

1(p))2 + (σ0
n(l) − σ0

n(p))2]
1

2 . 83



Chapter 5. Robust steering 
ontrol of hot strip mill
D(l, p) represents the distan
e, with referen
e to the set Um, between the vertex
l and the produ
t p, for any (l, p) ∈ L × P. The 
omputation of (5.4) assumesthat all the parameters are normalized beforehand into the interval [−1, 1]. An

PSfrag repla
ements

l

p1

p2

p3

hn

wFigure 5.3: Dmin 
omputation: A two dimensional exampleillustrative two dimensional example is proposed in Fig. 5.3. Consider a vertex land three di�erent produ
ts p1, p2 and p3. It is easy to see that
Dmin(l, pl) = D(l, p2) = [(w(l) − w(p2))2 + (hn(l) − hn(p2))2]

1

2 .The 
onvex hull in
luding the whole set of rolled produ
ts bounded by (5.3) maybe divided into smaller NF 
onvex hulls for improving the system performan
es.For ea
h family of produ
ts f ∈ F = {1, ..., NF}, a minimization problem in theform of (5.4) is solved to get the 
onvex hull verti
es of this family.5.3 Robust steering 
ontrol designTo our knowledge, all the 
onditions to design a 
ontrol law stabilizing a twotime s
ale swit
hed system need a state ve
tor with 
onstant 
omponents anddimension. Nevertheless, in the HSM system, the 
omponents and dimensionof the state ve
tor 
hange at ea
h swit
hing time, as explained in se
tion 1.4.A possible solution 
onsists in designing a robust 
ontrol law stabilizing ea
hsubsystem i ∈ I of the HSM system (5.1) separately. In this �rst phase, thee�e
t of the swit
hings is not taken into a

ount and the i index is omitted.84



5.4. Stability analysis of the tail end swit
hed systemThe stability of the tail end swit
hed system is veri�ed a posteriori. Therefore,
onsider the subsystem 
orresponding to the mode i ∈ I of (5.1):










x(s + 1) = A(s)x(s) + Bu(s)u(s) + Bd(s)d(s)

q(s) = Cqx(s) + Dquu(s)

y(s) = Cyx(s).

(5.5)Due to a
tuators rate limits, the fast manifold, whi
h is asymptoti
ally stable inopen loop, 
annot be 
ontrolled. Hen
e, a slow sampling robust 
ontrol law isable to stabilize asymptoti
ally the un
ertain two time s
ale system (5.5). Theslow sampling model 
orresponding to ea
h vertex l ∈ L of (5.5) is:


















x1(s + 1) = εÃl
11x1(s) + Ãl

12x2(s) + B̃l
u,1u(s) + B̃l

d,1d(s)

x2(s + 1) = εÃl
21x1(s) + Ãl

22x2(s) + B̃l
u,2u(s) + B̃l

d,2d(s)

q(s) = Cq,1x1(k) + Cq,2x2(k) + Dquu(s)

y(s) = Cy,1x1(s) + Cy,2x2(s),where x1(s) ∈ R
n1, x2(s) ∈ R

n2, ε = 0.05, Ts = αsαf = 0.05, Cq,1 = 0 and
Cy,1 = 0, for all s ∈ Z

+. Its 
orresponding slow subsystem is:
{

xs(s + 1) = Ãl
sxs(s) + B̃l

u,sus(s) + B̃l
d,sd(s)

q(s) = C̃sxs(s) + D̃sus(s),where Ãl
s = Ãl

22, B̃l
u,s = B̃l

u,2 and B̃l
d,s = B̃l

d,2. C̃s = Cq,2 =

[

In2

0r×n2

], D̃s = Dqu =
[

0n2×r

D0
qu

] are two weighting matri
es whi
h respe
t the orthogonality hypothesis
C̃ ′

sD̃s = 0, D̃′
sD̃s ≻ 0. The pair (Ãl

s, B̃
l
u,s) is assumed to be 
ontrolable. Sin
e theHSM system is subje
t to a strong external perturbation d, we de
ided to designthe robust steering 
ontrol law in a H2 framework. Therefore, Theorem 4 maybe applied to design a redu
ed state-feedba
k 
ontrol law

u(s) = Kx(s) (5.6)su
h that the 
ontroller gain K = [0 Ks] stabilizes asymptoti
ally the un
ertaintwo time s
ale system (5.5) and minimizes the H2 norm of its slow dynami
s.5.4 Stability analysis of the tail end swit
hed sys-temThe goal of this se
tion is to verify the asymptoti
 stability of the tail end swit
hedsystem, for any (i, l) ∈ I × L. The swit
hing time depends on the rolled stripand must be estimated on-line. Hen
e, the stability 
ondition has also to take85



Chapter 5. Robust steering 
ontrol of hot strip millinto a

ount an un
ertainty in the swit
hing time.Consider the set of matri
es {Ei : i ∈ I} introdu
ed in Chapter 1. The 
hangeof basis
z(s) = Ei′xi(s)yields the same state ve
tor z(s) ∈ R

2n for ea
h subsystem i ∈ I and for all
s ∈ Z

+. Hen
e, we 
an write the 
losed loop swit
hed system in the polytopi
form:
z(s + 1) = Tσ(s)(s)z(s) (5.7)with
Ti(s) =

NV
∑

l=1

λi,l(s)T̄i,l,and λi,l(s) ∈ Y. The 
losed loop matrix T̄i,l = Ei′(Ãi,l+B̃i,l
u Ki)Ei is S
hur, where

Ki 
orresponds to the 
ontroller gain of the state-feedba
k 
ontrol law (5.6), forany (i, l) ∈ I × L.In order to prove the asymptoti
 stability of the 
losed loop system (5.7),we provide a dwell time 
ondition [GC06b℄ taking into a

ount the un
ertainparameters l ∈ L and an un
ertainty τ i ∈ W i = {−Nτ i , ..., Nτ i} in the swit
hingtime. To this aim, 
onsider three su

essive swit
hing times tq−1, tq and tq+1.For s ∈ [tq−1, tq) the system is in the subsystem 
orresponding to (i−, l−, τ i−) ∈
I × L ×W i− , for s ∈ [tq, tq+1) the system is in the subsystem 
orresponding to
(i, l, τ i) ∈ I × L × W i and, for s = tq+1, the system jumps to the subsystem
orresponding to (i+, l+, τ i+) ∈ I ×L×W i+ . tq−1, tq and tq+1 satisfy tq − tq−1 =

∆
i−
q−1 ≥ ∆i− ≥ 1, tq+1 − tq = ∆i

q ≥ ∆i ≥ 1, for any q ∈ N, where ∆i isthe dwell time of the subsystem i. We assume Nτ i + Nτ i+ < ∆i. Hen
e, thesubsystem i is 
ontrolled by the wrong gain Ki− for a time t ∈ (sTs, (s + τ i)Ts)if τ i > 0, with T̄i−,l = Ei′(Ãi,l + B̃i,l
u Ki−)Ei. Furthermore, the subsystem i is
ontrolled by the wrong gain Ki+ for a time t ∈ (sTs, (s− τ i+)Ts) if τ i+ < 0, with

T̄i+,l = Ei′(Ãi,l + B̃i,l
u Ki+)Ei (see Fig. 5.4).Let the transition matrix Qπ,∆i

q
, whi
h represents the system evolution for

s ∈ [tq, tq+1). Its value depends on the sign of τ i and τ i+ :






















if τ i ≤ 0, τ i+ ≥ 0 : Qπ,∆i
q

= (T̄i,l)
∆i

q ,

if τ i > 0, τ i+ ≥ 0 : Qπ,∆i
q

= (T̄i,l)
∆i

q−τ i

(T̄i−,l)
τ i

,

if τ i ≤ 0, τ i+ < 0 : Qπ,∆i
q

= (T̄i+,l)
−τ i+

(T̄i,l)
∆i

q+τ i+
,

if τ i > 0, τ i+ < 0 : Qπ,∆i
q

= (T̄i+,l)
−τ i+

(T̄i,l)
∆i

q−τ i+τ i+
(T̄i−,l)

τ i

,

(5.8)with π = i, i− 6= i, i+ 6= i, l, l+, τ i, τ i+ ∈ Π = I × I × I × L × L × W i × W i+ .The following theorem gives a generalization of Theorem 7 for un
ertain swit
hedsystems with an un
ertainty in the swit
hing time.86



5.4. Stability analysis of the tail end swit
hed system
PSfrag repla
ements K

stq−1 tq tq+1

τ i > 0

τ i+ < 0

Ki

Ki−

Ki+

Figure 5.4: Controller swit
hingsTheorem 15 Consider the un
ertain swit
hed system (5.7) and an un
ertaintyin the swit
hing time τ i ∈ W i. If there exist matri
es Pi,l = Pi,l
′ ≻ 0 of appropri-ate dimensions su
h that the LMIs

T̄ ′
i,lPi,lT̄i,l − Pi,l ≺ 0, ∀ (i, l) ∈ I × L, (5.9)

Q′
π,∆iPi+,l+Qπ,∆i − Pi,l ≺ 0, ∀ π ∈ Π (5.10)hold, then the swit
hed system (5.7) is asymptoti
ally stable for ∆i

q ≥ ∆i ≥ 1,
∀ (i, l, τ i) ∈ I × L ×W i.Proof. Let the parameter dependent quadrati
 Lyapunov fun
tion

V (s) = z(s)′
N
∑

i=1

NV
∑

l=1

ϕi(s)λi,l(s)Pi,lz(s)where Pi,l = P ′
i,l ≻ 0, ϕi(s) : N → {0, 1},

N
∑

i=1

ϕi(s) = 1 and λi,l(s) ≥ 0, NV
∑

l=1

λi,l(s) =

1, for any (i, l) ∈ I × L and for all s ∈ Z
+. The system (5.7) is asymptoti
allystable if the di�eren
e L(s) = V (s + 1) − V (s) satis�es the inequality

L(s) = z(s)′(T̂σ(s)(s)′P+(s)T̂σ(s)(s) − P(s))z(s) ≺ 0where
T̂σ(s)(s) =

N
∑

i=1

Ti(s) =

N
∑

i=1

NV
∑

l=1

ϕi(s)λi,l(s)T̄i,l, 87
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P(s) =

N
∑

i=1

NV
∑

l=1

ϕi(s)λi,l(s)Pi,l,

P+(s) =

N
∑

i=1

NV
∑

l=1

ϕi(s + 1)λi,l(s + 1)Pi,l =

N
∑

i+=1

NV
∑

l+=1

ϕi+(s)λi+,l+(s)Pi+,l+for any (i, l) ∈ I × L and for any (i+, l+) ∈ I × L [HDI06℄. From (5.9), for any
s ∈ [tq, tq+1) the Lyapunov fun
tion v(z(s)) = z(s)′Pi,lz(s) satis�es

v(z(s + 1)) < v(z(s)).Hen
e, there exist s
alars α ∈ (0, 1) and β > 0 su
h that
‖z(s)‖2 ≤ βαs−tqv(z(tq)), (5.11)

s ∈ [tq, tq+1). Moreover, from (5.8), when τ i > 0 and τ i+ < 0, we have Qπ,∆i
q

=

(T̄i+,l)
−τ i+

(T̄i,l)
∆i

q−τ i+τ i+
(T̄i−,l)

τ i . Hen
e, using (5.10) we obtain:
v(z(tq+1)) = z(tq+1)

′Pi+,l+z(tq+1)

= z(tq)
′(T̄−τ i+

i+,l T̄
∆i

q−τ i+τ i+

i,l T̄ τ i

i−,l)
′Pi+,l+T̄−τ i+

i+,l T̄
∆i

q−τ i+τ i+

i,l T̄ τ i

i−,lz(tq)

< z(tq)
′(T̄−τ i

i−,l T̄
∆i

q−∆i

i,l T̄ τ i

i−,l)
′Pi,lT̄

−τ i

i−,l T̄
∆i

q−∆i

i,l T̄ τ i

i−,lz(tq)

≤ z(tq)
′(T̄ τ i−τ i

i−,l )′Pi,lT̄
τ i−τ i

i−,l z(tq)

= z(tq)
′Pi,lz(tq) = v(z(tq)). (5.12)The non-stri
t inequality holds be
ause ∆i

q − ∆i ≥ 0 and T̄i,l is S
hur. Hen
e
(T̄

∆i
q−∆i

i,l )′T̄−τ i′

i−,l Pi,lT̄
−τ i

i−,l T̄
∆i

q−∆i

i,l � T̄−τ i′

i−,l Pi,lT̄
−τ i

i−,l ,for any (i, l) ∈ I × L. The relation v(z(tq+1)) < v(z(tq)) is veri�ed also for theother 
ases of (5.8). In order to see it, it is su�
ient to substitute the right valueof Qπ,∆i
q
in (5.12). Hen
e, given the initial 
ondition of (5.7) z(0) = z0, thereexists δ ∈ (0, 1) su
h that

v(z(tq)) ≤ δqv(z0), ∀ q ∈ N. (5.13)Finally, (5.11) and (5.13) imply that the system (5.7) is asymptoti
ally stable.Remark 13 In order to verify the LMIs (5.9)-(5.10) of Theorem 15, NNV +
N(N − 1)2N2

V (Nτ i + 1)2 possible 
ombinations have to be 
onsidered, in the gen-eral 
ase. Nevertheless, in the HSM system 
ase, only n − 1 swit
hings o
-
ur. Moreover, sin
e the un
ertain parameters are 
onstant for ea
h produ
t,swit
hings are possible only between subsystems with the same l. Hen
e, only
NNV + (n − 1)NV (Nτ i + 1)2 LMIs have to be veri�ed.88



5.5. Robust steering 
ontrol implementationTable 5.1: Families boundsPPPPPPPPPFamily Data
w (mm) hn (mm) σ0

1

(

KN
mm2

)

σ0
n

(

KN
mm2

)1 810 − 1200 1.9 − 3 22 − 65 30 − 952 810 − 1200 3 − 4.5 22 − 65 30 − 953 810 − 1200 4.5 − 6.2 22 − 65 30 − 954a 1200 − 1400 1.9 − 3 22 − 65 30 − 954b 1400 − 1670 1.9 − 3 22 − 65 30 − 955 1200 − 1670 3 − 4.5 22 − 65 30 − 956 1200 − 1670 4.5 − 6.2 22 − 65 30 − 955.5 Robust steering 
ontrol implementationIn order to obtain a simple and systemati
 pro
edure so as to extend the steering
ontrol to di�erent fa
tories, a user-friendly interfa
e, 
alled Robust Steering Con-trol Toolbox (RSCT ) [MBS+08℄, has been developed under Matlab. The softwareimplements the following fun
tions:� Given the desired family bounds, it 
omputes the Um(l, f) set, whi
h 
on-tains the information 
on
erning the 
onvex hulls verti
es, for any (l, f) ∈
L×F . Hen
e, the minimization problem (5.4) is solved in order to estimatethe Us(l, f) set, for any (l, f) ∈ L ×F .� The knowledge of the U(l, f)={Um(l, f),Us(l, f)} set allows to 
ompute thelinear model of the HSM system, for any (i, l, f) ∈ I × L × F .� Therefore, the robust 
ontroller gains Ki,f are 
omputed solving the LMIbased 
onditions of Theorem 4 for any (i, f) ∈ I×F . To this aim, RSCT ex-ploits the LMI solver SeDuMi [Stu99℄ and the MATLAB toolbox YALMIP[L�04℄.� Finally, the asymptoti
 stability of the 
losed loop swit
hed system (5.7)may be veri�ed using Theorem 15.The main features of RSCT features are presented in Appendix C. In thenext se
tions, we present simulation and experimental results at EisenhüttenstadtHSM. After experimental trials, the whole database was divided into NF = 7 fam-ilies, with referen
e to the Um set. The families bounds are summarized in Table5.1. This 
hoi
e improves system performan
es, 
ompared to the performan
esobtained using a single 
ontroller for all the produ
ts. The number of families hasbeen limited in order to handle the data in the fa
tory more easily. The weightingmatri
es D̃i,f

s have been tuned to ful�ll the 
onstraints on the stand tilting ∆Sdes
ribed in se
tion 1.3, for any i ∈ I. 89



Chapter 5. Robust steering 
ontrol of hot strip mill5.6 Simulation results5.6.1 n-stands subsystemIn this se
tion, simulation results are shown for a produ
t p with Um = {967, 2.02,
27.9, 40.1}. From Table 5.1, p belongs to the �rst family. Fig. 5.5 shows theevolution of the strip o�-
enter Z in the last stand. The solid line representsthe Z evolution using with the H2 
ontroller gain Kn,1. The dash-dotted lineshows the Z evolution using a 
lassi
 LQ 
ontroller gain, designed for an averageprodu
t of family 1. The dashed line shows the Z evolution using the 
lassi
LQ 
ontroller gain, given in [DBI+08℄, designed for an average produ
t of thewhole database. As expe
ted, the division of the whole database into several
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Figure 5.5: Exit strip o�-
enter evolutionfamilies improves system performan
es. Moreover, the H2 robust 
ontroller takesinto a

ount the un
ertain parameters and minimizes the e�e
ts of the externalperturbation, whi
h is due to the 
oilbox vibrations. The last line, the dotted one,shows the Z evolution without any 
ontrol. Noti
e that in this 
ase a saturationo

urs: this means that the strip is 
rashing against the HSM side guides.5.6.2 Tail end swit
hed systemIn this se
tion, we present the simulation results 
on
erned with the tail endphase. Given the 
ontroller gains and the dwell time ∆i, Theorem 15 provides asu�
ient 
ondition for the stability of the swit
hed system (5.7) for any τ i ∈ W i.We found a solution for Nτ i ≤ 4, for any i ∈ I. Sin
e Ts = 0.05 sec, the stability of90



5.6. Simulation resultsthe system is guaranteed for a maximum un
ertainty of ± 0.2 sec in the swit
hingtime. From pra
ti
al experien
e, this 
onstraint 
an be respe
ted.
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Figure 5.6: Strip o�-
enter evolution: 
omparisonIn Fig. 5.6, the evolution of the strip o�-
enter Z at the exit of ea
h standis shown. Noti
e that, when the strip leaves the gth stand, the value of Zg hasnot a physi
al meaning anymore and is set to zero. In this �rst simulation, nodelay in the 
ontrol signal has been 
onsidered. The solid line represents the Zevolution when the system is 
ontrolled by the robust 
ontroller gain 
omputedusing Theorem 4 for ea
h subsystem. The dashed line shows the Z evolutionwhen the system is 
ontrolled by the LQ 
ontroller gain designed using averagestate matri
es. The dotted line 
orresponds to the Z evolution when the systemworks in open loop. We 
an see that the robust 
ontroller is able to keep the
Z value 
lose to zero during all the rolling pro
ess. Otherwise, the average LQ
ontroller limits the Z value for the �rst four stands but indu
es an os
illatorybehavior on the strip. Hen
e, when the strip leaves stand 4, the Z value in
reasesvery qui
kly. This situation 
an be very dangerous for the system safety. In the91
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Figure 5.7: Strip o�-
enter evolution with delay in the H2 robust 
ontroller swit
h-ingsopen loop 
ase, the Z value begins to in
rease when the strip leaves the �rststand (s = 1613). Noti
e that a saturation o

urs in stands 4 and 5. This meansthat the strip is 
rashing against the side guides. The result is a de
rease of theprodu
t quality and, in the worst 
ase, the damage of the rolls.In Fig. 5.7, we introdu
e an un
ertainty in the swit
hing signal when thesystem is 
ontrolled by the H2 robust 
ontrol law. In the Eisenhüttenstadt 
ase,the swit
hing time 
an be estimated online, with an error that has the samesign for any i ∈ I. Here, the 
ase τ i ≥ 0 is presented. This means that the
ontroller swit
hes to the i-stands subsystem τ i instants after the strip left thestand. Three di�erent 
ases are shown: (τ = τ 4 = τ 3 = τ 2 = 4) (solid line),
(τ = τ 4 = τ 3 = τ 2 = 8) (dashed line), (τ = τ 4 = τ 3 = τ 2 = 12) (dottedline). Although theoreti
ally the system is stable only for τ ≤ 4, noti
e that until
τ = 8 the Z value is kept near to zero. Nevertheless, when τ = 12 the 
ontrollerperforman
es de
rease and the strip almost 
rashes against the side guides. In92



5.7. Industrial system des
ription
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Figure 5.8: Strip o�-
enter evolution with delay in the average LQ 
ontrollerswit
hingsthis 
ase, the Z value in
reases in the opposite side of the open loop 
ase.In Fig. 5.8, we 
onsider the same delay using the average LQ 
ontroller. We
an see that this kind of 
ontroller does not a

ept un
ertainties on the swit
hingtime. The system is unstable and the strip 
rashes against the side guides in ea
h
ase.5.7 Industrial system des
riptionThe steering 
ontrol system in
ludes �ve 
ameras measuring the strip o�-
enter,the main 
omputer SC and the data 
onne
tion devi
es (see Fig. 5.9). The
ameras, whi
h are DAC004 delivered by Fife, are prote
ted by a water-
ooledhousing (the strip 
an rea
h 1000°C) and mounted on dedi
ated vibration ab-sorbers to avoid high a

elerations. A Pro�bus 
onne
ts ea
h 
amera to the main93
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Figure 5.9: Global pro
ess information at Eisenhüttenstadt HSM
omputer, whi
h is linked to the PLC stand by Pro�bus as well. The main 
om-puter 
onsists of a 3 GHz Intel-P4 standard personal 
omputer with an integratedPro�bus interfa
e. The 
ontrol system is developed in the C++ language andworks under the operating system Windows XP. A TCP/IP using an Ethernet
onne
tion 
ommuni
ates the rolling parameters to the Level 2 system. Filtering,a
tive pixel sele
tion and edge dete
tion are 
arried out by FPGA devi
es, whi
hare dire
tly lo
ated on the 
ameras. This ar
hite
ture redu
es the amount ofdata that must be transmitted to the main 
omputer. An edge dete
tion algo-rithm based on gradient analysis is used to obtain 
lear information 
on
erningthe strip o�-
enter values Z. During the operating phase of the 
ontrol system,the applied stand tilt is u(s) = Ki,fz(s), with Ki,f the gain 
omputed o�-lineby the RSCT software, for any (i, f) ∈ I × F . In order to avoid large values ofthe 
ontrol signal u, due to measurement errors, a saturation fun
tion is appliedbefore sending the stand tilt signal to the PLC.5.8 Experimental resultsIn Fig. 5.10, we show the exit strip o�-
enter evolution of a produ
t with Um =
{895, 2.42, 30.4, 37.4} (family 1). When the produ
t enters the HSM the steering
ontrol is on (Fig. 5.10.b) and the strip o�-
enter value is kept 
lose to zero (Fig.5.10.a). At the instant s = 1050, the steering 
ontrol system is swit
hed o� andthe signal u is set to a 
onstant value by the operator. As expe
ted, the Z valuein
reases qui
kly (from 10 to 30 mm). In Fig. 5.11, we show the exit Z evolu-tion of two 
onse
utive produ
ts with the same set Um ={1510, 2.02, 59.1, 72.5}94



5.8. Experimental results
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Figure 5.10: Exit strip o�-
enter and 
ontrol signal evolution
(family 4). The solid line 
orresponds to the Z evolution with robust steering
ontrol whereas the dotted line 
orresponds to the open loop Z evolution. Theperforman
e improvement is demonstrated.In Fig. 5.12, the standard deviation of the strip o�-
enter values σx(Z) ob-tained by applying the H2 
ontrol system are 
ompared with the standard devi-ation of the strip o�-
enter values obtained in open loop. The statisti
s 
on
ern100 
ontrolled strips and 200 strips in open loop of all the families. Performan
eimprovement is substantial. When the H2 steering 
ontrol is swit
hed o�, thestrip o�-
enter standard deviation in
reases more than 125%. The bounds on thestand tilt ∆S maximum values have always been respe
ted and the wedge ∆hhas always been kept between ±10 µm. In Fig. 5.13, the standard deviation ofthe strip o�-
enter values σx(Z) obtained using the H2 
ontrol system are 
om-pared with the standard deviation of the strip o�-
enter values obtained usingthe average LQ 
ontrol system proposed by [DBI+08℄. The statisti
s 
on
ern 44strips from all the families. In order to guarantee the same rolling 
onditions (e.g.strip parameters, roll 
hara
teristi
s, external temperature, system asymmetries)and then obtain 
oherent results, only identi
al and 
onse
utive strips have been
ompared. We observe performan
e improvement using the H2 
ontrol system(about 35%). Also the standard deviation of the wedge value σx(∆hn), whi
hgives a measure of the quality of the rolled produ
t, has been improved from
7.82 µm (LQ 
ontrol system) to 5.56 µm (H2 
ontrol system). 95
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Figure 5.11: Exit strip o�-
enter evolution
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Figure 5.12: σx(Z) 
omparison : H2 steering 
ontrol and open loop systems5.9 Con
lusionIn this 
hapter, a robust steering 
ontrol design has been proposed in order toguarantee the asymptoti
al stability of the HSM un
ertain swit
hed system pre-sented in Chapter 1 and improve its performan
e. The aim has been a
hieved96
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lusion
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Figure 5.13: σx(Z) 
omparison: H2 and average LQ steering 
ontrol systemsminimizing the strip movement during the rolling pro
ess. Sin
e an HSM treatsa set of very heterogeneous produ
ts, an extensive database was 
reated and di-vided into seven families of produ
ts. A method for redu
ing the 
omplexity ofthe problem exploiting the relations among the di�erent produ
ts parameters hasalso been presented. This method yields a 
onvex formulation of the stabilizationproblem. Hen
e, for ea
h family, a di�erent LMI based robust 
ontroller wasdesigned. A dwell-time 
ondition verifying the asymptoti
al stability of the tailend swit
hed system has also been provided. This 
ondition takes into a

ountthe un
ertainties on the physi
al parameters and on the 
ontrollers swit
hinginstants.Simulations (for both the n-stands subsystem and the tail end subsystem) andexperimental results (for the n-stands subsystem) 
on
erning the Ar
elorMittalHSM of Eisenhüttenstadt proved the e�e
tiveness of the presented method. Thestrip o�-
enter was signi�
antly redu
ed, with respe
t to the results obtained inopen loop and using the old 
ontrol system.Steering 
ontrol is an important framework in steel produ
tion. In order toadapt the des
ribed method to other mills, a dedi
ated Matlab toolbox, RSCT,was developed. Only the model tuning and a spe
i�
 database of produ
ts, whi
hea
h plant 
an provide, are required.
97
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General 
on
lusionThis Ph.D. thesis deals with a 
ertain number of problems arising in pra
ti
alimplementation of 
ontrol systems: multi time s
ale phenomena, sudden mod-i�
ations on the system dynami
s, dis
ontinuities on the 
ontrol signal due to
ontroller swit
hings, the need of design a limited number of 
ontrollers in spiteof a wide variation on the physi
al parameters. In order to illustrate the valid-ity of the obtained results, we resorted to a real problem 
on
erning the steelprodu
tion framework, the robust steering 
ontrol of hot strip �nishing mill.First, a 
onvex solution of the linear quadrati
 
ontrol design for dis
retetwo time s
ale linear systems has been proposed. Fast and slow sampling statefeedba
k 
ontrol designs were investigated. An extension of the slow sampling
ontroller to un
ertain systems in the polytopi
 form has also been presented.Hen
e, we addressed the stability problem of two time s
ale swit
hed systems.We showed that asymptoti
al stability of the slow and fast swit
hed subsystemsunder arbitrary swit
hing rules does not imply asymptoti
al stability of the 
or-responding two time s
ale swit
hed system in the singular perturbation form. A
oupling 
onstraint, expressed in terms of LMIs independent of the value of thesingular perturbation parameter, must also be satis�ed. A stabilizing state feed-ba
k 
ontrol law was also designed, for the 
ontinuous and fast sampling dis
retetime frameworks. We also introdu
ed a bumpless transfer method for dis
retetime swit
hed systems, based on a linear quadrati
 optimization approa
h, forredu
ing the 
ontrol signal dis
ontinuities due to the swit
hings. Dwell time 
on-ditions assessing asymptoti
al stability of the 
losed loop swit
hed system wereestablished.The pra
ti
al 
ontribution of this thesis, the robust steering 
ontrol of a hotstrip mill, exploits some of the previous theoreti
al results. The aim is to guar-antee asymptoti
 stability of a hot strip mill system and improve the quality ofthe rolled produ
ts. This purpose was a
hieved minimizing the strip movementduring the rolling pro
ess. Sin
e a hot strip mill treats a set of very heterogeneousprodu
ts, an extensive database was 
reated and divided into seven families ofprodu
ts. A method for redu
ing the 
omplexity of the problem by exploitingthe relations among the di�erent produ
ts parameters has also been presented.This method yields a 
onvex formulation of the stabilization problem. Therefore,a di�erent robust 
ontroller was designed for ea
h family. A dwell time 
ondition,whi
h veri�es asymptoti
 stability of the tail end swit
hed system, has also been99



General 
on
lusionpresented. This 
ondition takes into a

ount the un
ertainties on the physi
alparameters and on the swit
hing instants. In order to adapt this method to othermills, a dedi
ated Matlab toolbox, 
alled RSCT, was developed. Simulations andexperimental results at Eisenhüttenstadt mill proved the e�e
tiveness of the pro-posed solution. The lateral movement of the strip was signi�
antly redu
ed, withrespe
t to the results obtained in open loop and using the old 
ontrol system.Multi time s
ale swit
hed systems o�er several future resear
h topi
s. In thiswork, we pointed out the fa
t that 
lassi
al stability properties of linear systemsin the singular perturbation form do not hold, when arbitrary swit
hings arise.Therefore, we presented su�
ient 
onditions to analyze asymptoti
 stability anddesign a stabilizing state feedba
k 
ontrol law of two time s
ale swit
hed linearsystems. The extension of these 
onditions to more general 
lasses of swit
hedsystems should be investigated. Further, pra
ti
al implementation usually re-quires more 
omplex 
ontrol te
hniques, as output feedba
k, and performan
e
onstraints. In physi
al systems, the time s
ale of the state variables 
orrespond-ing to the state spa
e model of the system may 
hange after a swit
hing. Anexample of this phenomenon is observed during the tail end phase of the rollingpro
ess in a hot strip mill. Even if the angles between the strip and the mill axisof ea
h stand are usually �fast� state variables, ea
h time the strip leaves a standthe angle between the strip and the mill axis on the �rst stand a
tive be
omesa �slow� state variable. This behavior was modeled through a two time s
aleswit
hed system for whi
h the state ve
tors 
orresponding to the slow and fastsubsystems vary at ea
h swit
hing time. To our knowledge, the stabilization prob-lem of two time s
ale swit
hed systems with variable state ve
tors has never beenaddressed before this work. We avoided the problem by designing an independent
ontrol law for ea
h subsystem and verifying the stability of the tail end swit
hedsystem a posteriori, through a dwell time 
ondition. This approa
h yields a setof well-behaved 
ontrollers and, in the hot strip mill 
ase, guarantees the 
losedloop asymptoti
 stability. However, in a general 
ontext it presents a drawba
k.Sin
e the 
ontrollers do not take into a

ount the swit
hings e�e
ts, the 
losedloop stability of the whole swit
hed system is evaluated through a 
ondition thatdepends on the singular perturbation parameter. Therefore, numeri
al problemsmay arise due to ill-
onditioning 
onstraints.In the robust steering 
ontrol framework, the next step 
on
erns the industrialimplementation of the tail end phase regulation at Eisenhüttenstadt plant. Theinstallation of the proposed 
ontrol system to other mills is also planned.
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Appendix AFormulae
A.1 S
hur 
omplementThe LMI [ A B

(⋆)′ D

]

≻ 0, where A = A′ and D = D′, is equivalent to LMIs
D ≻ 0, A − BD−1B′ ≻ 0, and to LMIs A ≻ 0, D − B′A−1B ≻ 0.A.2 Inverse of a blo
k matrixConsider an invertible blo
k matrix [A B

C D

]. Its inverse is
[

A B
C D

]−1

=

[

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

.A.3 Searle's identity
(I + AB)−1 = I − A(I + AB)−1B.
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Appendix BProofs
B.1 Proof of Theorem 2From (2.41), let us denote

P (ε)−1 =

[

W (ε) Y (ε)
Y (ε)′ Q(ε)

]

≻ 0, (B.1)with
W (ε) = (P1(ε) − P2(ε)P3(ε)

−1P2(ε)
′)−1,

Y (ε) = −W (ε)P2(ε)P3(ε)
−1,

Q(ε) = P3(ε)
−1 + P3(ε)

−1P2(ε)
′W (ε)P2(ε)P3(ε)

−1.

(B.2)Hen
e, substituting (2.18), (2.41), (2.42) and (B.1) in (2.37), we obtain:
[

ε−1X1(ε) ε−1X2(ε)
ε−1X2(ε)

′ X3(ε)

]

≺ 0, (B.3)with
X1(ε) = ε(A11P1(ε)A

′
11 + A12P2(ε)

′A′
11 + A11P2(ε)A

′
12 + A12P3(ε)A

′
12+

A11Z1(ε)
′B′

1 + A12Z2(ε)
′B′

1 + B1Z1(ε)A
′
11 + B1Z2(ε)A

′
12+

B1(Z1(ε)W (ε)Z1(ε)
′ + Z2(ε)Y (ε)′Z1(ε)

′ + Z1(ε)Y (ε)Z2(ε)
′+

Z2(ε)Q(ε)Z2(ε)
′)B′

1 − P1(ε) + x0
1x

0
1
′
),

X2(ε) = ε(A11P1(ε)A
′
21ε + A12P2(ε)

′A′
21ε + A11P2(ε)(In2

+ εA22)
′+

A12P3(ε)(In2
+ εA22)

′ + A11Z1(ε)
′B′

2ε + A12Z2(ε)
′B′

2ε+

B1Z1(ε)εA
′
21 + B1Z2(ε)(In2

+ εA22)
′ + B1(Z1(ε)W (ε)Z1(ε)

′+

Z2(ε)Y (ε)′Z1(ε)
′ + Z1(ε)Y (ε)Z2(ε)

′ + Z2(ε)Q(ε)Z2(ε)
′)B′

2ε−

P2(ε) + x0
1x

0
2
′
), 103



Appendix B. Proofs
X3(ε) = εA21P1(ε)A

′
21ε + εA21P2(ε)(In2

+ εA22)
′ + (In2

+ εA22)×

P ′
2(ε)A

′
21ε + (In2

+ εA22)P3(ε)(In2
+ εA22)

′ + εA21Z1(ε)
′B′

2ε+

(In2
+ εA22)Z2(ε)

′B′
2ε + εB2Z1(ε)A

′
21ε + εB2Z2(ε)(In2

+ εA22)
′

+ εB2(Z1(ε)W (ε)Z1(ε)
′ + Z2(ε)Y (ε)′Z1(ε)

′ + Z1(ε)Y (ε)Z2(ε)
′+

Z2(ε)Q(ε)Z2(ε)
′)B′

2ε − P3(ε) + x0
2x

0
2
′
.When ε → 0, using (B.2) we have :

X1 =A11P1A
′
11 + A12P

′
2A

′
11 + A11P2A

′
12 + A12P3A

′
12 + A11Z

′
1B

′
1+

A12Z
′
2B

′
1 + B1Z1A

′
11 + B1Z2A

′
12 + B1Z1(P1 − P2P3

−1P ′
2)

−1Z ′
1B

′
1−

B1Z2P3
−1P ′

2(P1 − P2P3
−1P ′

2)
−1Z ′

1B
′
1 − B1Z1(P1 − P2P3

−1P ′
2)

−1×

P2P3
−1Z ′

2B
′
1 + B1Z2P3

−1Z ′
2B

′
1 + B1Z2P3

−1P ′
2(P1 − P2P3

−1P ′
2)

−1×

P2P3
−1Z ′

2B
′
1 − P1 ≺ 0.

(B.4)
X2 = A11P2 + A12P3 + B1Z2 − P2 = 0, (B.5)

X3 =P ′
2A

′
21 + A21P2 + A22P3 + P3A

′
22 + Z ′

2B
′
2 + B2Z2 + x0

2x
0
2
′
≺ 0. (B.6)Equation (2.43) veri�es (B.5). Furthermore, substituting (2.43) and (2.45) in(B.4), we obtain:

X1 =A11PfA
′
11 + A11Z

′
fB

′
1 + B1ZfA

′
11 + B1ZfP

−1
f Z ′

fB
′
1 − Pf+

A11P2P
−1
3 (P2A

′
11 + P3A

′
12 + Z ′

2B
′
1) + B1Z2P

−1
3 (P2A

′
11+

P3A
′
12 + Z ′

2B
′
1) + A12(P2A

′
11 + P3A

′
12 + Z ′

2B
′
1) − P2P

−1
3 P ′

2 =

A11PfA
′
11 + A11Z

′
fB

′
1 + B1ZfA

′
11 + B1ZfP

−1
f Z ′

fB
′
1 − Pf ≺ 0,

(B.7)and, substituting (2.23), (2.43) and (2.44) in (B.6), we get:
X3 = AsPs + PsA

′
s + BsZs + Z ′

sB
′
s + x0

sx
0
s

′
≺ 0. (B.8)(B.7) and (B.8) represent the 
onstraints of the problems (2.50) and (2.49), re-spe
tively. Hen
e, they are satis�ed by assumption. Repla
ing in (B.3) theunknown values of P1(ε), P2(ε), P3(ε), Z1(ε), Z2(ε) with P1, P2, P3, Z1, Z2, weobtain:

[

ε−1X1 X4

X ′
4 X3 + O(ε)

]

≺ 0, (B.9)with
X4 =A11P1A

′
21 + A12P2

′A′
21 + A11P2A

′
22 + A12P3A

′
22 + A11Z1

′B′
2 + A12Z2

′B′
2+

B1Z1A
′
21 + B1Z2A

′
22 + B1(Z1WZ1

′ + Z2Y
′Z1

′ + Z1Y Z2
′ + Z2QZ2

′)B′
2+

x0
1x

0
2
′
.

W , Y and Q are obtained repla
ing P1(ε), P2(ε), P3(ε), Z1(ε), Z2(ε) in (B.2).The 
onditions X1 ≺ 0 and X3 ≺ 0 imply that there exists a s
alar ε1 > 0 su
hthat the inequality
X1 − εX4(X3 + O(ε))−1X ′

4 ≺ 0104



B.2. Proof of Proposition 1holds ∀ ε ∈ (0, ε1]. Hen
e, using the S
hur 
omplement, also (B.9) holds ∀ ε ∈
(0, ε1]. Moreover, there exists a s
alar ε2 > 0 su
h that the inequality

εP (ε) =

[

Pf + P2P
−1
s P ′

2 P2

P ′
2 Ps

]

+ O(ε) ≻ 0holds, ∀ ε ∈ (0, ε2]. Thus, there exist matri
es Ps, Zs, Pf , Zf and a s
alar
εmax = min{ε1, ε2} whi
h verify the 
onstraints (2.36)-(2.37) of the problem(2.38), ∀ ε ∈ (0, εmax].Consider

us(k) = Ksxs(k) = ZsP
−1
s xs(k)and

uf(k) = Kfxf (k) = ZfP
−1
f xf (k).The 
omposite 
ontroller is

u(k) = us(k) + uf(k) = Ksxs(k) + Kfxf (k).Assume xs(k) = x2(k) and xf(k) = x1(k)− (In1
−A11)

−1(A12xs(k) + B1us(k)) =
x1(k) − (In1

− A11)
−1(A12 + B1Ks)xs(k). Hen
e, we have:

u(k) =ZfP
−1
f x1(k) + ZsP

−1
s x2(k) − ZfP

−1
f ×

(In1
− A11)

−1(A12 + B1ZsP
−1
s )x2(k) = K

[

x1(k)
x2(k)

]

,whi
h 
orresponds to (2.26). Applying the formula of the inverse of blo
k matrixto (2.51), we �nd:
P−1 =

[

P−1
f −P−1

f P2P
−1
s

−P−1
s P ′

2P
−1
f P−1

s + P−1
s P ′

2P
−1
f P2P

−1
s

]

.Thus, we get:
K = ZP−1 =

[

ZfP
−1
f ZsP

−1
s − ZfP

−1
f (In1

− A11)
−1(A12 + B1ZsP

−1
s )

]

,whi
h 
on
ludes the proof. �B.2 Proof of Proposition 1The proof is an extension of [Yur04℄ to the swit
hed systems 
ase. First, noti
ethat if the stability 
onditions of Theorem 9 hold, there exists a 
ommon quadrati
Lyapunov fun
tion V (x(t)) = xf (t)
′Pfxf (t) > 0 and matri
es Qi

f ≻ 0, i ∈ I, su
hthat V̇ (xf (t)) = xf (t)
′(ε−1M

σ(t)′

11 Pf + ε−1PfM
σ(t)
11 )xf (t) ≤ −xf (t)

′ε−1Q
σ(t)
f xf (t).Let us de�ne λ

Qf

min = min{λmin(Qi
f ), i ∈ I} and λQs

max = max{λmax(Q
i
s), i ∈ I},for all t ≥ t0. Consider the inequalities

λmin(Pf)‖xf (t)‖
2 ≤ V (xf(t)) ≤ λmax(Pf)‖xf (t)‖

2 (B.10)105



Appendix B. Proofsand
V̇ (xf(t)) ≤ −ε−1λ

Qf

min‖xf (t)‖
2 ≤ −

λ
Qf

min

ελmax(Pf)
V (xf (t)). (B.11)Integrating (B.11), we obtain

∫ t

t0

dV (xf (t))

V (xf (t))
= ln

(

V (xf (t))

V (xf (t0))

)

≤ −
λ

Qf

min

ελmax(Pf )
t,and then:

V (xf (t)) = V (xf(t0))exp

(

−
λ

Qf

min

ελmax(Pf)
t

)

.Using (B.10), we get an upper bound for the norm of the state variables 
orre-sponding to the fast dynami
s:
‖xf (t)‖ ≤

(

λmax(Pf)

λmin(Pf )

) 1

2

‖xf (t0)‖exp

(

−
λ

Qf

min

2ελmax(Pf)
t

)

. (B.12)A similar pro
edure yields a lower bound for the norm of the state variables
orresponding to the slow dynami
s:
‖xs(t)‖ ≥

(

λmin(Ps)

λmax(Ps)

) 1

2

‖xs(t0)‖exp

(

−
λQs

max

2λmin(Ps)
t

)

. (B.13)Finally, the ratio of the exponents in (B.12) and (B.13) is
η =

λmin(Ps)λ
Qf

min

ελmax(Pf)λ
Qs
max

.

�B.3 Proof Theorem 10Let us assume
P (ε) =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

≻ 0, (B.14)
Z i(ε) =

[

Z i
1(ε) Z i

2(ε)
]

, (B.15)
Qi(ε) =

[

Qi
1(ε) Qi

2(ε)
Qi

2(ε)
′ Qi

3(ε)

]

≻ 0, (B.16)with
P1(ε) = Pf + εP2P

−1
s P ′

2,

P2(ε) = εP2 = −ε
N
∑

h=1

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ),

P3(ε) = εPs,

(B.17)106



B.3. Proof Theorem 10
Z i

1(ε) = Z i
f + εZ i

sP
−1
s P2

′, Z i
2(ε) = ε(Z i

s + Z i
fP

−1
f Y i), (B.18)

Qi
1(ε) = ε−1Qi

f , Qi
2(ε) = −((M i

11 + N i
1Z

i
fP

−1
f )Y i + PfM

i
21

′
+ Z i

f

′
N i

2

′
),

Qi
3(ε) = ε(Qi

s − (M i
21 + N i

2Z
i
fP

−1
f )Y i − Y i′(M i

21
′
+ P−1

f Z i
f

′
N i

2
′
)),

(B.19)and
Y i = −

N
∑

h=1,h 6=i

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ). (B.20)Substituting (3.30) and (B.14)-(B.16) in (3.36), we have:
[

X i
1(ε) X i

2(ε)
X i

2(ε)
′ X i

3(ε)

]

≺ 0 (B.21)with
X i

1(ε) = ε−1(M i
11P1(ε) + P1(ε)M

i
11

′
+ M i

12P2(ε)
′+

P2(ε)M
i
12

′
+ N i

1Z
i
1(ε) + Z i

1(ε)
′N i

1
′
+ Qi

1(ε)),

X i
2(ε) = ε−1M i

11P2(ε) + ε−1M i
12P3(ε) + P1(ε)M

i
21

′
+

P2(ε)
′M i

22

′
+ ε−1N i

1Z
i
2(ε) + Z i

1(ε)
′N i

2

′
+ Qi

2(ε),

X i
3(ε) = M i

22P3(ε) + P3(ε)M
i
22

′
+ M i

21P2(ε) + P2(ε)
′M i

21
′
+

N i
2Z

i
2(ε) + Z i

2(ε)
′N i

2
′
+ Q3(ε).Repla
ing the values of P (ε), Z i(ε), Qi(ε) and the equations (3.33), (B.17)-(B.20),we obtain:

X i
1(ε) = ε−1(M i

11Pf + PfM
i
11

′
+ N i

1Z
i
f + Z i

f

′
N i

1

′
+ Qi

f + O(ε)) = ε−1(X i
f + O(ε)),

X i
2(ε) = ε(P ′

2M
i
22

′
+ O(ε)) = ε(X i

2 + O(ε)),

X i
3(ε) = ε(M i

sPs + PsM
i
s

′
+ N i

sZ
i
s + Z i

s

′
N i

s

′
+ Qi

s + O(ε)) = ε(X i
s + O(ε)).The inequality (B.21) 
an be written as

[

ε−1(X i
f + O(ε)) ε(X i

2 + O(ε))
(⋆)′ ε(X i

s + O(ε))

]

≺ 0.Satisfying the 
onditions (3.37) and (3.38) implies that X i
f ≺ 0 and X i

s ≺ 0.This means that there exists a s
alar εmax > 0 su
h that X i
s + O(ε) ≺ 0 and

X i
f − ε2X i

2X
i
s

−1
X i

2
′
+ O(ε) ≺ 0, ∀ i ∈ I and ∀ ε ∈ (0, εmax]. Hen
e, using theS
hur 
omplement, the LMI (3.36) is veri�ed. Sin
e Pf ≻ 0 and Ps ≻ 0, (B.14)holds. Furthermore, substituting (B.19) in (B.16), we obtain

Qi(ε) =

[

ε−1In1
0

0 In2

]

×

[

Qi
f −((M i

11 + N i
1Z

i
fP

−1
f )Y i + PfM

i
21

′
+ Z i

f

′
N i

2
′
)

(⋆)′ Qi
s − (M i

21 + N i
2Z

i
fP

−1
f )Y i − Y i′(M i

21
′
+ P−1

f Z i
f

′
N i

2
′
)

]

×

[

In1
0

0 εIn2

]

≻ 0 107
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h, using the S
hur 
omplement, holds if and only if








Qi
f + N i

1Z
i
fP

−1
f Z i

f

′
N i

1
′

H i N i
1Z

i
f 0

(⋆)′ Li Y i′ N i
2Z

i
f + Y i′

(⋆)′ (⋆)′ Pf 0
(⋆)′ (⋆)′ (⋆)′ Pf









≻ 0, (B.22)with H i = −(M i
11Y

i + PfM
i
21

′
+ Z i

f

′
N i

2
′
) and Li = Qi

s − M i
21Y

i − Y i′M i
21

′
+

N i
2Z

i
fP

−1
f Z i

f

′
N i

2
′
+ Y i′P−1

f Y i. (3.39) is non negative de�nite. This implies thatthe 
onstraint (B.22) holds ∀ i ∈ I.In order to �nd Ki, 
onsider us(t) = Ki
sxs(t) = Z i

sP
−1
s xs(t) and uf(t) =

Ki
fxf (t) = Z i

fP
−1
f xf (t). The 
omposite 
ontroller is given by uc(t) = us(t) +

uf(t) = Ki
sxs(t) + Ki

fxf (t). Letting xs(t) = x2(t) and xf (t) = x1(t) + M i
11

−1

(M i
12xs(t) + N i

1us(t)) = x1(t) + M i
11

−1
(M i

12 + N i
1K

i
s)xs(t), we have:

uc(t) = Z i
sP

−1
s x2(t) + Z i

fP
−1
f x1(t) + Z i

fP
−1
f M i

11
−1

(M i
12 + N i

1Z
i
sP

−1
s )x2(t).(B.23)When ε → 0, substituting (B.14) and (B.15) inKi(ε) = Z i(ε)P (ε)−1 and applyingthe formula of the inverse of blo
k matrix given in Appendix A.2 we �nd (B.23),whi
h 
on
ludes the proof. �B.4 Proof Theorem 12Let us assume

P i(ε) =

[

P i
1(ε) P i

2(ε)

P i
2(ε)

′
P3(ε)

]

≻ 0, (B.24)
Z i(ε) =

[

Z i
1(ε) Z i

2(ε)
]

, (B.25)
Qij(ε) =

[

Qi
1 Qij

2 (ε)

Qij
2 (ε)′ Qi

3(ε)

]

≻ 0, (B.26)
Si(ε) = P i(ε)

−1
=

[

Si
1(ε) Si

2(ε)
Si

2(ε)
′ Si

3(ε)

]

≻ 0, (B.27)with
P i

1(ε) = P i
f + εP i

2P
−1
s P i′

2 ,

P i
2(ε) = εP i

2 = ε(In1
− Ai

11)
−1(Ai

12Ps + Bi
1Z

i
s),

P3(ε) = εPs,

(B.28)
Z i

1(ε) = Z i
f + εZ i

sP
−1
s P i

2
′
, Z i

2(ε) = εZ i
s, (B.29)108



B.4. Proof Theorem 12
Qi

1 = Qi
f , Qij

2 (ε) = ε(P j
2 − P i

2 − (Ai
11P

i
f + Bi

1Z
i
f )P

i
f

−1
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Appendix B. ProofsThe inequality (B.32) 
an be written as
[

X ij
1 + O(ε) ε2(X i

2 + O(ε))
(⋆)′ ε2(X i

3 + O(ε))

]

≺ 0.Satisfying the 
onditions (3.65) and (3.66) implies that X ij
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3 ≺ 0.This means that there exists a s
alar εmax > 0 su
h that X i
3 + O(ε) ≺ 0 and
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2X
i
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2
′
+ O(ε) ≺ 0, ∀(i, j) ∈ I × I and ∀ ε ∈ (0, εmax]. Hen
e, usingthe S
hur 
omplement, the inequality (3.64) is veri�ed. Sin
e P i

f ≻ 0 and Ps ≻ 0,(B.24) holds. Furthermore, substituting (B.30) in (B.26), we obtain:
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 ≻ 0.(B.33)(3.67) is non negative de�nite. This implies that the 
onstraint (B.33) holds
∀ (i, j) ∈ I × I.In order to �nd Ki, 
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(B.34)When ε → 0, substituting (B.24) and (B.25) in Ki(ε) = Z i(ε)P i(ε)
−1 and ap-plying the formula of the inverse of blo
k matrix given in Appendix A.2 we �nd(B.34), whi
h 
on
ludes the proof. �B.5 Constru
tion of the augmented state matrixFrom Theorem 13, when the bumpless transfer 
ontroller is on we have:

ubt,i(k) = Qi(k)





x(k)
ũi(k)

gi(k + 1)



 (B.35)110



B.5. Constru
tion of the augmented state matrixwhere
ũi(k) =

{

ũi,0(k) + (k − ti + 1)pi(k) if ti ≤ k < ti + τM
i

0 otherwise,
(B.36)with

ũi,0(k) = Kjx(ti − 1) (B.37)and
pi(k) =

1

τM
i

(Kix(ti) − Kjx(ti − 1)). (B.38)Let τ i
k = k − ti + 1. The evolution of the signal gi in (B.35) is given by (4.16),whi
h 
an be rewritten as
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i)−1,with Πi and B̃i de�ned in equations (4.15) and (4.17), respe
tively. The 
losedform (B.39) allows to express equation (4.16) as a fun
tion of ũi,0 and pi. Hen
e,for ti ≤ k < ti + τM

i , the 
losed loop system (4.2)-(4.4) be
omes:
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Appendix B. Proofswith
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k) = Āi(τ i
k) +

1

τM
i

(B̄i(τ i
k) − BiÑ i(τ i
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k) − BiÑ i(τ i

k)G
i,p(τ i

k))K
j.
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ontroller is o� ubt,i(k) = 0, then we get:
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h is 
onstant for any (i, j) ∈ I × I. �
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Appendix CRobust Steering Control ToolboxThe obje
tive of this appendix is to present RSCT (Robust Steering Control Tool-box ), aMATLAB toolbox whi
h implements the algorithms ne
essary to the HSMrobust steering 
ontrol design [MDI+ar℄, [MDI+09e℄. RSCT has been written inMATLAB R14SP1 (Release 14 with Servi
e Pa
k 1 ) and tested on WindowsXP and Windows VISTA Operating Systems. A GUI (Graphi
al User Interfa
e)is provided. A LMI solver is required to 
ompute the 
ontrollers. To interfa
eMATLAB to the most popular solvers, the free MATLAB toolbox YALMIP isused [L�04℄. We tested two solvers: SeDuMi, that is available free of 
harge underGNU/GPL open sour
e li
ense [Stu99℄, and LMILAB, that 
an be found in theMATLAB-Robust Control Toolbox [GNLC95℄.To install RSCT, remove any old version, unzip the �le RSCT.rar and addthe dire
tory �\RSCT\software_RSCT� to your MATLAB paths. This oper-ation may be dire
tly done by the main MATLAB toolbar 
hoosing File→SetPath...→Add with Subfolders.... SeDuMi and YALMIP may be installed follow-ing a similar pro
edure.To run RSCT, tape �RSCT� on the MATLAB Command Window. The MainGUI shown in Fig. C.1 will appear.C.1 Main GUIThe Main GUI allows to 
ompute the 
ontrollers, export the results to �les,
he
k the stability of the 
losed loop system and rea
h the other GUIs fromthe File toolbar (Create a new family GUI, HSM simulator GUI, A3S GUI ).First, the number of stands n ∈ {5, 6, 7} must be set using the 
orresponding
he
kboxes. Thus a database of produ
ts must be loaded in order to 
omputea new 
ontroller. To this aim, go to File toolbar→Load Database. Choose the.txt �le whi
h 
ontains the desired database bounds, and then the path of theprodu
ts database. The .txt �le, 
alled database_bounds.txt, may be 
reatedusing the spe
i�
 GUI des
ribed in se
tion C.2. Ea
h produ
t of the database113



Appendix C. Robust Steering Control Toolbox

Figure C.1: Main GUIis represented by a .mat �le 
ontaining its 
hara
teristi
s and the 
orrespondingHSM setting. The database may be 
reated through the A3S GUI des
ribed inse
tion C.4, or provided by the plants.The tuning of the default 
ontrol system weighting matri
es is done by mod-ifying the R0 boxes of the GUI. We obtain R = R0Dqu′Dqu, where Dqu is theweighting matrix given in 
hapter 5.Hen
e, the bottom Compute 
ontroller 
allsthe method whi
h 
omputes a di�erent observer based state-feedba
k H2 robust
ontroller for ea
h subsystem. If the 
he
kbox LPV observers is a
tive, a spe
i�
observer is designed for ea
h vertex produ
t, in addition to the average observerdesigned by default. These observers may be used to implement a linear param-eter varying (LPV) strategy in order to take into a

ount the di�erent physi
alparameters of the rolled produ
ts during the observation of the state variables. Ifthe LMI solver does not �nd a solution, RSCT shows a warning, as in Fig. C.2.The bottom Export results saves the 
ontroller information on the path:
\RSCT\
ontroller_data\Matri
es_n_stands_database_bounds_RxRo\,where n is the number of stands, database_bounds 
orresponds to the name ofthe database_bounds.txt �le and R0 is the numeri
al value of the R0 body box.
3(n − 1) + 2 *.txt �les are generated (5(n − 1) + 2 if the 
he
kbox LPV ob-servers is a
tive). The syntax is 
oherent with the 
ontroller �les used on theEisenhüttenstadt plant.On
e loaded a database of produ
ts and a 
ontroller, the bottom Che
k sta-bility yields the results of the posteriori stability test for ea
h subsystem and forthe full tail end swit
hed system [MDI+09e℄. If the LMI solver does not �nd asolution, RSCT shows a warning.114



C.2. Create a new family GUI

Figure C.2: Warning : LMI not feasibleC.2 Create a new family GUIThis GUI allows to 
ompute the 
onvex hull verti
es of a new family of produ
ts.First, the name and the 
onvex hull bounds of the family must be set on the spe-
i�
 boxes (Fig. C.3). The bounds 
on
ern the set Um = {w, h, σin, σout}, where
w is the strip width, h is the output thi
kness of the strip in the last stand and σinand σout are the hardness of the strip in the �rst and in the last stand, respe
tively.Hen
e, a database of produ
ts (represented by a *.mat �le) must be loaded from

Figure C.3: New family GUIthe File toolbar. As in the Main GUI, it su�
es to indi
ate the database path. Fi-nally, the 
oordinates of the 16 
onvex hull verti
es must be set. This operation115



Appendix C. Robust Steering Control Toolboxis semi-manual be
ause of the extremely various shapes that the database 
anhave. To start, push the bottom Load verti
es. A 2D proje
tion of the databasewill appear (Fig. C.4). The four 
artesian 
oordinates of the 
onvex hull verti
es
orresponding to the given proje
tion 
an be set using the left bottom of themouse. Thus, push Enter to 
hange proje
tion, for a total of three proje
tions.The 
oordinates of the verti
es on the last three 2D proje
tions are 
omputedautomati
ally and then the �le \RSCT\database_bound\new_family_name.txtis 
reated. Two �rst rows 
ontain the family bounds set by the GUI. This �leis 
omposed by a matrix ∈ R
18×4. Last 16 rows represent the 
oordinates of the
onvex hull verti
es 
orresponding to the family.

Figure C.4: Verti
es setting: An example
2D and 3D proje
tions of the 
onvex hull are available by the File toolbar.The red x represent the 
onvex hull verti
es and the blue points represent thedatabase produ
ts whi
h belong to the family. An example is shown in Fig. C.5and C.6.C.3 HSM Simulator GUIThis GUI allows to simulate the open and 
losed loop system behavior throughthe MATLAB-Simulink nonlinear system model presented in 
hapter 1. First,a produ
t must be loaded from the File toolbar. Ea
h produ
t is des
ribed by a.mat �le, available by the database, and by a .txt �le, whi
h 
ontains the IBAAnalyzer output (the 
oilbox perturbation and the tail end swit
hing instants).116



C.3. HSM Simulator GUI

Figure C.5: 2D database proje
tions: An example

Figure C.6: 3D database proje
tions: An exampleHen
e, a 
ontroller must be loaded by the File toolbar. It su�
es to indi
atethe 
ontroller path. If the syntax of the .txt 
ontroller �les is not the same ofthe output generated by the 
ommand Export results of the Main GUI, an error117
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Figure C.7: Error : A wrong �le was loaded

Figure C.8: HSM simulator GUImessage will be show (Fig. C.7).The main physi
al parameters 
on
erning the produ
t and the 
ontroller aresummarized on the GUI boxes (Fig. C.8). The 
losed loop system may besimulated using two di�erent kind of 
ontrollers (H2 or average LQ) and observers(LPV or average LQ). A 
he
kbox 
onsents to add a delay on the 
ontrollerswit
hings.C.4 A3S GUIA3S is a software developed by Ar
elorMittal resear
hers in a Visual Basi
 am-bian
e. It 
omputes the *.mat �les representing the produ
ts through a manualpro
edure stand by stand. To integrate this fun
tionality in RSCT, we rewrote118



C.5. Options settingthe A3S numeri
al algorithms in MATLAB 
ode and we implemented an auto-mati
 pro
edure to 
reate m 
onse
utive produ
ts. The new A3S GUI is shownin Fig. C.9. The A3S input is represented by a .txt �le whi
h 
ontains the phys-

Figure C.9: A3S GUIi
al 
hara
teristi
s of a produ
t (DT, DS, ET, ES, Fwo, Fwm, Fmes, LARTOL,epe, eps, Temp, VITCYL, TRACTE, TRACTS ). These data must be providedby the plants.From the GUI boxes, the setup of the HSM parameters (L0, intervis, L
DTos, SOC) and of the numeri
al algorithm (mbar, beta, gadap, pre
ision) 
anbe modi�ed. From the File toolbar, we 
an load a single produ
t, or m 
onse
-utive produ
ts. The boxes mmin and mmax allow to 
hoose the serial numberof the �rst and the last produ
t that will be load. If we load m produ
ts, theinput *.txt �les must respe
t the syntax: �optional_text_1, serial_number, op-tional_text_2, .txt�, where th strings �optional_text_1" and �optional_text_2�
annot 
ontain numeri
al 
hara
ters.Noti
e that a 
onvergen
e problem arises for about the 1% of the produ
ts.In this 
ase, the algorithm of A3S 
annot rea
h the stop 
riterion and loopsin�nitely. For obtain a solution with this kind of produ
ts, you must stop theroutine (CTRL+C ), modify the strip width LARTOL of some millimeters in theinput �le, and load on
e more the �le.C.5 Options settingOnly the sampling time, the LMI solver �ags and the tuning parameters of theHSM simulator, whi
h are di�erent for ea
h plant, must be set from the �le 119



Appendix C. Robust Steering Control Toolbox
\RSCT\software_RSCT\default_setting_n_stands.m, where n is the num-ber of stands. All the other parameters may be dire
tly set by the GUIs.
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Résumé : Dans 
ette thèse, on s'est atta
hé à résoudre un 
ertain nombre deproblèmes qui apparaissent lorsqu'on traite des problèmes 
on
rets de 
ontr�le:phénomènes à plusieurs é
helles de temps, dis
ontinuités de la 
ommande lors dubas
ulement d'un 
orre
teur à un autre, né
essité de 
on
evoir un nombre limitéde 
orre
teurs di�érents malgré une gamme très importante des produits traités.Pour illustrer 
on
rètement les résultats obtenus, nous nous sommes appuyés surun exemple industriel 
on
ret, le 
ontr�le de guidage de bande durant le pro
essusde laminage dans un laminoir à 
haud. D'abord, nous proposons une solution 
on-vexe au problème de 
ommande optimale linéaire quadratique pour les systèmeslinéaires à deux é
helles de temps en temps dis
ret. Ensuite, nous établissons des
onditions su�santes, formulées sous la forme d'inégalités matri
ielles linéaires,qui permettent de véri�er la stabilité d'un système à 
ommutation à deux é
hellesde temps et de synthétiser des 
orre
teurs stabilisants. Nous proposons aussi dans
e travail une méthode pour minimiser les dis
ontinuités sur la 
ommande dansle 
adre des systèmes à 
ommutation. Dans le 
ontexte du 
ontr�le de guidagede bande pour un laminoir à 
haud, nous ne pouvons pas négliger l'in�uen
e desparamètres in
ertains, qui sont dus prin
ipalement au fait que 
e genre de systèmetraite une gamme de produits très large. Don
, dans la synthèse du 
orre
teur,nous prenons en 
ompte 
es variations en divisant l'ensemble des produits enplusieurs familles et en synthétisant un 
orre
teur di�érent pour 
haque famille.Mots-
lés : Contr�le de guidage de bande, Laminoir à 
haud, Systèmes à 
om-mutation, Perturbations singulières, Robustesse.
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Abstra
t: This Ph.D. thesis deals with a 
ertain number of problems aris-ing in pra
ti
al implementation of 
ontrol systems: multi time s
ale phenomena,sudden modi�
ations on the system dynami
s, dis
ontinuities on the 
ontrol sig-nal due to 
ontroller swit
hings, the need of design a limited number of 
ontrollersin spite of a wide variation on the physi
al parameters. In order to illustrate thevalidity of the obtained results, we resort to a real problem 
on
erning the steelprodu
tion framework, the robust steering 
ontrol of a hot strip �nishing mill.First, a 
onvex solution of the linear quadrati
 
ontrol design for dis
rete twotime s
ale systems is proposed. Hen
e, we address the stability problem of twotime s
ale swit
hed systems. We show that stability of the slow and fast swit
hedsubsystems under arbitrary swit
hing rules does not imply the stability of the
orresponding two time s
ale swit
hed system in the singular perturbation form.An additional 
onstraint, independent of the value of the singular parameter andof the swit
hing rule, is provided in terms of linear matrix inequalities. We also in-trodu
e a bumpless transfer method for swit
hed systems aiming at redu
ing thedis
ontinuities on the 
ontrol signal. Dwell time 
onditions assessing the asymp-toti
 stability of the 
losed loop swit
hed system are established. The pra
ti
al
ontribution of this thesis, the robust steering 
ontrol design, exploits most ofprevious results. The obje
tive is to guarantee the stability of the hot strip millsystem and improve the quality of the rolled produ
ts.Keywords: Steering 
ontrol, Hot strip mill, Swit
hed systems, Singular pertur-bation, Robustness.
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