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Notations� X ≻ 0 (X � 0) - positive (no negative) de�nite matrix,� X ≺ 0 (X � 0) - negative (no positive) de�nite matrix,� In - identity matrix ∈ R
n×n,� Tr(X) - trae of the matrix X,� ‖X‖ - indued eulidean norm of the matrix X,� λmax (X) and λmin (X) - the maximum and the minimum eigenvalue of thesymmetri matrix X,� ξ{X} - spetrum of the matrix X,� X−1 - inverse of the non-singular matrix X,� X ′ - transpose of the matrix X,� X =

[

A B
(⋆)′ C

] - symmetri matrix X where (⋆)′ means B′,� X is Hurwitz - all the eigenvalues of the matrix X have negative real parts,� X is Shur - all the eigenvalues of the matrix X have modulus smaller thanone, ix



Notations� Re{x} - real part of the vetor x,� ‖x‖ - indued eulidean norm of the vetor x,� O(·) - order of magnitude.
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General introdutionThis Ph.D. thesis was onduted as part of a joint researh ollaboration betweenthe CRAN and ArelorMittal R&D. The objetive is to provide a solution toa ertain number of problems arising in pratial implementation of regulatorsfor nonlinear systems [Kha02℄, [FLMR95℄: sudden modi�ations on the systemdynamis, multi time sale phenomena, large disontinuities on the ontrol signaldue to ontroller swithings, the need of design a limited number of ontrollersin spite of a wide variation on the physial parameters. In order to illustrate thevalidity of the obtained results, we will resort to a real problem onerning thesteel prodution framework, the robust steering ontrol of a hot strip �nishingmill.The interest of the ontrol sienti� ommunity for multi time sale systemsdates bak to the sixties. Examples of systems operating in di�erent time salesmay be found in the eletri power framework, aerospae systems, robotis, hem-ial and biologial systems [KKO86℄, [Nai02℄. Last two deades have witnessedan inrease of attention to swithed systems, whih ombine ontinuous dynam-is with disrete logi. This struture allows modeling a large lass of systems,as event driven systems, network ontrol systems, adaptive ontrol or biologinetworks. In order to study their main properties (e.g. stability, ontrollability,observability), a wide number of tools have been developed [Lib03℄, [SWM+07℄.Even though modern ontrol tehniques often have to deal with multi time saleswithed systems, there exist very few ontributions in this area. Motivated bythe hot strip mill ontrol design, we are interested in studying the behavior ofmulti time sale swithed systems to establish stability onditions and design astabilizing ontrol law when arbitrary swithings arise.Swithing among di�erent ontrollers implies undesired transient behaviorsdue to ontrol signal jumps [Han88℄, [EP98℄. This phenomenon may a�et thesystem performanes and, in the worst ase, destabilizes the losed loop system.Therefore, another purpose of this work is to �nd a solution to this problem inthe disrete time swithed systems framework.The pratial ontribution of this thesis, the robust steering ontrol of a hotstrip mill, exploits some of the previous theoretial results. The goal is to guar-antee asymptoti stability of the system and improve the quality of the stripstreated during the rolling proess. The in�uene of the unertain parameters,1



General introdutiondue to the di�erene among the physial parameters of the rolled produts, isalso taken into aount. Although all the presented experimental results onernthe Eisenhüttenstadt ArelorMittal hot strip mill (Germany), this study aimsat obtaining a ontrol design adaptable to any mill. Thus, the last task of thiswork is the realization of a dediated software that implements the algorithmsneessary for extending the robust steering ontrol design to other mills.StrutureThis thesis is organized in �ve hapters that are strutured as follows:The �rst hapter is onerned with the swithed system modeling of a hotstrip mill system for steering ontrol purposes. Two time sale phenomena andparametri unertainties in the polytopi form are onsidered.The seond hapter presents a LMI (linear matrix inequalities) based solutionfor the linear quadrati optimal ontrol design of two time sale systems in disretetime. This approah is partiularly adequate to the ase of high dimensionalsystems. Fast and slow sampling state feedbak ontrol design problems arestudied. An extension to polytopi unertain systems is also presented.In hapter 3, stability of two time sale swithed systems is investigated.First, we show that, when no assumption on the minimal dwell time is made,stability of the fast and slow swithed subsystems under an arbitrary swithingrule is not su�ient for assessing stability of the original two time sale swithedsystem, even if the singular perturbation parameter tends to zero. We proposeLMI based onditions, independent of the singular perturbation parameter, whihguarantee the asymptoti stability of a two time sale swithed linear system, inthe ontinuous and disrete time frameworks. These onditions express the fatthat the oupling between the fast and slow dynamis has to be onsidered, whenthe swithing rule is arbitrary. The proposed onditions are then extended tostate feedbak ontrol design.In hapter 4, a bumpless transfer method for disrete time swithed linear sys-tems is proposed. To this aim, an additional ontroller is ativated at the swith-ing time for reduing the ontrol signal disontinuities. The bumpless transferregulation is based on the �nite horizon solution of a linear quadrati optimiza-tion problem. We resort to dwell time onditions for establishing asymptotialstability of the losed loop swithed system.In the last hapter, a new robust steering ontrol design of hot strip �nishingmill is presented. The objetive is to guarantee asymptoti stability of a hotstrip mill system and minimize the lateral displaement of the strip for the wholeset of treated produts. First, a method for reduing the number of unertain-ties by exploiting the physial relations among the di�erent produts parameters2



is introdued. Thus, sine the system involves a two time sale dynamis andthe fast dynamis is stable and impossible to ontrol due to the limitation onthe atuators rate, a robust redued ontroller is designed for eah subsystemseparately. The asymptoti stability of the tail end swithed system is veri�edthrough a dwell time riterion. The whole database is partitioned into di�erentfamilies, with respet to the physial parameters of the produts. Improved per-formanes are obtained by designing a spei� ontroller for eah family. Finally,simulations and experimental results onerning the Eisenhüttenstadt hot stripmill are shown.Personal publiationsThe researh exposed in this thesis an be found in the following publiations:International Journals1. I.Malloi, J.Daafouz, C. Iung, R.Bonidal, P. Szzepanski, Swithedsystem modeling and robust steering ontrol of the tail end phase in a hotstrip mill, Nonlinear Analysis: Hybrid Systems, 3(3):239-250, 2009.2. I. Malloi, J. Daafouz, C. Iung, R. Bonidal, P. Szzepanski, Ro-bust steering ontrol of hot strip mill, IEEE Transations on Control Sys-tems Tehnology, Digital Objet Identi�er 10.1109/TCST.2009.2031146.3. I. Malloi, J. Daafouz, C. Iung, Stability and stabilization of two-time sale swithed linear systems in disrete time, IEEE Transations onAutomati Control, In revision.4. I. Malloi, L. Hetel, J. Daafouz, C. Iung, P. Szzepanski, Bump-less transfer for disrete-time swithed systems, Systems & Control Letters,In revision.International Conferenes5. I. Malloi, J. Daafouz, C. Iung, Stabilization of ontinuous-time sin-gularly perturbed swithed systems, IEEE Conferene on Deision andControl, Deember 2009, Shanghai, China.6. I. Malloi, J. Daafouz, C. Iung, P. Szzepanski, Swithed systemmodeling and robust steering ontrol of the tail end phase in a hot strip mill,IFAC Conferene on Analysis and Design of Hybrid Systems, September2009, Zaragoza, Spain. 3
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Chapter 1Swithed system modeling of hotstrip mill
1.1 IntrodutionIn the steel prodution framework, the steering ontrol denotes the strategies toguide a metal strip during the rolling proess, whih onsists of rushing a metalstrip between two rolls in inverse rotation to obtain a strip with onstant anddesired thikness [Tak01℄, [VFBO07℄. Moreover, some geometrial, metallurgialand mehanial harateristis must be given to the rolled produt. A hot strip�nishing mill is the assoiation of several stands in a line, where eah standis omprised of a set of rolls (Fig. 1.1). The lateral movement of the strip

Figure 1.1: A global view of hot strip mill5



Chapter 1. Swithed system modeling of hot strip millwith respet to the mill axis, whih is alled strip o�-enter (Fig. 1.4), is theonsequene of rolling asymmetries suh as di�erential stand strething, workrolls tilting, initial o�-enter, strip thikness pro�le or thermal di�erential pro�le.Strip o�-enter may derease the quality of the produt and damage the rolls,if the strip rashes against the side guides of the mill. Hene, this displaementmust be redued to improve proess reliability and produt quality.To this aim, several steering ontrol methods have been developed. In general,the strip o�-enter of eah stand is onsidered as the di�erential fore imageof the same stand. Di�erent approahes have been proposed to ompute thestand tilt: PID ontrollers [MN80℄, [KT83℄, [KT86℄, [FFT92℄, [SP98℄ (for a hotstrip reversing mill), optimal regulators [SS92℄, state feedbak pole assignment[OH97℄, and sliding mode tehniques [OMAH05℄. Nevertheless, the law linkingthe di�erential fore and the strip o�-enter is nonlinear, and eah stand is oupledto the others by the tration of the strip. Thus, SISO approahes are subjet tosigni�ant performane degradation. In order to overome this problem, [DBI+08℄proposed a multi variable LQ ontrol design while [CRCF08℄ suggested a modelpreditive ontrol approah. In metallurgy, MIMO strategies have already beenused in the mill loopers regulation, whih prevent abrupt tension variations thatould ompromise the produt quality [BKG02℄, [CRF07℄, [YHF08℄, and in thestrip shape ontrol during the old rolling proess [GF82℄, [GP98℄, [PS08℄.All the above solutions refer to a nominal framework. However, a mill treatsthousands of di�erent produts and the design of a spei� ontroller for eahprodut would be di�ult, in a pratial appliation. Despite the robustnessproperties of the linear quadrati (LQ) ontrol, the average ontroller presentedby [DBI+08℄ annot guarantee the same level of performanes for the whole set ofproduts. The objetive of this hapter is to provide a general model of hot stripmill for robust ontrol purposes. We will start by the nonlinear model establishedby ArelorMittal researhers and tuned during experimental trials [DBI+08℄. Thismodel takes into aount the oupling between the stands and the law linkingthe di�erential fore and the strip o�-enter. Sine the system is subjet tosmall deviations around the operating point, a linear model has been drawn up.Moreover, the system has two time sale dynamis. The fast dynamis is stableand impossible to ontrol from a pratial point of view due to the atuatorslimitations. We will resort to the singular perturbation approah to obtain aredued order linear model, whih will depend on the mill parameters (e.g. rollradius, roll speed, roll fore) and on the produts harateristis (e.g. strip width,thikness, hardness, temperature), and then formulate the ontrol design problemin the slow manifold [KKO86℄. Furthermore, in the last phase of the rollingproess, alled tail end phase, the strip leaves the stands one after the other. Eahtime the strip leaves a stand, the system dynamis hanges. In this phase, therashes against the side-guides are more frequent and dangerous beause the lossof tration due to the swithings makes the system unstable. This kind of behaviormay be desribed reurring to the swithed systems theory [Lib03℄, [SWM+07℄.Finally, we obtain a two time sale swithed linear model of the system that takesinto aount the hanges on the system dynamis [MDI+09e℄, [MDIS09℄, and the6



1.2. Desription of physial systemunertainties related to the fat that a mill treats many di�erent strips [MDI+ar℄,[MDI+09d℄, [MDI+09℄.1.2 Desription of physial systemA hot strip mill (HSM) is made up of n ∈ {5, 6, 7} stands. Eah stand ontainsone set of rolls (omposed of two work rolls and two support rolls, Fig. 1.2)and the strip in the inter-stand on the front. For eah stand g ∈ G = {1, ..., n},
work roll

support roll

strip

standFigure 1.2: Stand lateral viewthe main physial parameters are the strip width wg, the strip thikness hg, thebak strip tension T am
g , the front strip tension T av

g , the srew interaxis length
lvg , the interstand length l0g, the work roll length bg, the work roll speed sg andthe Young's modulus Eg. Also the following onstants are neessary to om-pletely de�ne a strip: cfh

g , cfTam
g , cfTav

g , cgh
g , cgTam

g , cgTav
g , Kh

g , Kf
g , K l

g, Pg and gg.The main asymmetries are the strip o�-enter Zg(t), the strip thikness pro�le(wedge) ∆hg(t), the stand tilt ∆Sg(t), the di�erential stand streth ∆Kg(t), thedi�erential rolling fore ∆Pg(t), the upstream di�erential of strip tension ∆T am
g (t)and the downstream di�erential of strip tension ∆T av

g (t), for all t ≥ 0.As long as the strip remains onneted to the oilbox, whih is the devie usedto oil the strips into the �nishing train, the HSM model does not hange (Fig.1.3). Otherwise, in the last phase of the rolling proess, the tail end phase, thestrip leaves the stands, one after the other. Eah time the strip leaves a stand thesystem dynamis hanges. Hene, the HSM an be modeled as a swithed system.The �rst subsystem (the strip has not yet left the �rst stand) is alled n-standssubsystem. The subsystem ative after the jth swithing, whih ours when thestrip leaves the jth stand, is alled (n− j)-stands subsystem. The following mainequations, whih are relevant for g > j, govern the system dynamis: 7



Chapter 1. Swithed system modeling of hot strip mill
PSfrag replaements

oilbox stand 1 stand g stand nFigure 1.3: HSM lateral view� The di�erential rolling fore equation:
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lvg
∆Sg(t) −

wgPg

lvg(K
h
g )2

∆Kg(t);
(1.2)� The angle αg between the strip and the mill axis equation:

α̇g(t) =
sg

wg

(

c
gh
g

1+gg
+ 1

hg

)

∆hg(t) +
sg

wg

(

c
gh
g−1

1+gg
− 1

hg−1

)

∆hg−1(t)+

sg

wg

cgTav
g

(1 + gg)
∆T av

g (t) +
sg

wg

cgTam
g

(1 + gg)
∆T am

g (t);

(1.3)� The strip o�-enter equation:
Żg(t) = sg αg(t); (1.4)Moreover, for g > j + 1 we have:� The upstream di�erential of strip tension equation:

∆T am
g (t) =3

(

wgEg

(l0g)2
+

T am
g

wg

)

(

Zg(t) − Zg−1(t)
)

+

wgEg

l0g

(

2αg(t) − αg−1(t)
)

+ 3
l0gT

am
g

wg

αg(t);
(1.5)� The oupling between two suessive stand equations:

∆T av
g−1(t) = −∆T am

g (t); (1.6)8



1.2. Desription of physial systemFor the last two equations, there exists an exeption. When the n-stands sub-system is on, the equations (1.5) and (1.6) hold for any stand g ∈ G. In thisase, the upstream di�erential of strip tension in the �rst stand ∆T am
1 antake two di�erent values. It orresponds to the downstream tension of the oil-box ∆T am

1 (t) = −∆T av
0 (t) when the strip is onneted to the oilbox (most ofthe time), and to zero after the strip left the oilbox. This last phase with

∆T am
1 (t) = 0 and ∆T am

2 (t) 6= 0 (the strip left the oilbox but did not leavethe �rst stand yet) has not been onsidered in the swithed system model be-ause is very short and its dynamis is similar to the ase ∆T am
1 (t) = −∆T av

0 (t)and ∆T am
2 (t) 6= 0. When the strip leaves the �rst stand the system swithes tothe (n − 1)-stands subsystem and the equations (1.5) and (1.6) are relevant for

g > j + 1.The equation (1.6) represents the main di�erene between the model (1.1)-(1.6), introdued by Daafouz et al. [DBI+08℄, and previous HSM models. Theontributions that an be found in literature are based on the steering growthmodel proposed by Nakajima et al. [NKK+80℄, where the strip o�-enter is om-puted stand by stand. In fat, eah stand is linked to the other by the di�erentialof strip tension (see equation (1.6) and Fig. 1.4).
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Figure 1.4: Strip behavior between two stands: top viewAording to the previous physial equations, the system is desribed by theontinuous time swithed nonlinear system
{

ż(t) = fσ(t)(z, u, d, t)

y(t) = C̄
σ(t)
y z(t)

(1.7)where
z(t) =

[

α1(t), . . . , αn(t), Z1(t), . . . , Zn(t)
]′

∈ R
2n (1.8)is the state vetor,

u(t) = ∆S(t) =
[

∆S1(t), . . . , ∆Sn(t)
]′

∈ R
r (1.9)9



Chapter 1. Swithed system modeling of hot strip millis the ontrol signal, d(t) = Z0(t) ∈ R is the external perturbation and y(t) ∈ R
mis the measured output signal, for all t ≥ 0. {f i : i ∈ I = {1, ..., N}} is afamily of su�ient regular funtions, N represents the number of subsystemsand σ : R

+ → I is a pieewise onstant funtion, alled swithing rule, whihorhestrates the swithings between the subsystems. There are n ameras tomeasure the state variables Z1, . . . , Zn. Hene, C̄i
y =

[

0 I
], for any i ∈ I.Only one perturbation will be onsidered: the strip o�-enter at the input ofthe �rst stand due to the vibrations of the oilbox. There are other perturbations,but their e�ets are negligible ompared to the strip o�-enter initial. The modelis easily adaptable to any HSM. However, tuning it requires industrial trials anda spei� database of produts. A strip o�-enter simulator has been developedunder Matlab-Simulink. The tuning for the Eisenhüttenstadt HSM orrespondswell with most of the produts. In Fig. 1.5, an example is presented. The solidline shows the strip o�-enter measured by a amera while the dashed line showsthe simulated strip o�-enter provided by our model.
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Figure 1.5: Comparison between measured and simulated strip o�-enter at Eisen-hüttenstadt HSM1.3 System linearizationThe main task of the steering ontrol is to maintain the strip lose to the mill axis.The target may be reahed by modifying the di�erential rolling fore ∆P (t) =
[

∆P1(t), . . . , ∆Pn(t)
]′ in order to drive the strip into the desired trajetory. Infat, an exessive ∆P yields a high strip wedge ∆h(t) =

[

∆h1(t), . . . , ∆hn(t)
]′.10



1.3. System linearizationThis means that the strip pro�le beomes trapezoidal (Fig. 1.6.a and Fig. 1.7),whereas the ideal strip pro�le should be retangular (∆h(t) = 0, for all t ≥ 0).In general, a �nal wedge belonging to the interval −10 µm < ∆hn(t) < 10 µmensures a good produt quality. The rolling fore depends on the stand tilt ∆S.In order to respet the limits of the wedge value, ArelorMittal engineers imposeda onstraint on ∆S, whih must be bounded between ±0.6 mm for the three �rststands and ±0.3 mm for the two last stands (for 5-stands HSM).
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wFigure 1.7: Strip pro�leSine we assume that only small deviations are possible around the idealoperating point, that is αg(t) = Zg(t) = ∆hg(t) = 0 for any g ∈ G and all t ≥ 0,for ontrol design purposes we an onsider the following linearized swithedmodel:
{

ż(t) = M̄σ(t)z(t) + N̄
σ(t)
u u(t) + N̄

σ(t)
d d(t)

y(t) = C̄
σ(t)
y z(t).

(1.10)11



Chapter 1. Swithed system modeling of hot strip mill1.4 Model redutionThe HSM system has two time sale dynamis: the angles α are fast variablesompared to the strips o�-enter Z [MDI+ar℄. Multi time sale sale systemsmay lead to numerial problems due to the sti�ness of this kind of struture.Moreover, the system atuators have a limited rate. This means that the dy-namis orresponding to the angles annot be ontrolled diretly. In this ase,the singular perturbation approximation may be used to ontrol design purposes[KKO86℄. It onsists in deomposing the system dynamis into fast and slowdynamis and in designing a di�erent ontroller for eah of them. Consider thefollowing subsystem, whih orresponds to the mode i ∈ I of the swithed linearsystem (1.10):
{

ż(t) = M̄ iz(t) + N̄ i
uu(t) + N̄ i

dd(t)

y(t) = C̄i
yz(t).

(1.11)In order to express the model (1.11) in the singular perturbation form, the om-ponents of the state vetor z whih belong to the fast and slow dynamis mustbe assoiated to two di�erent state vetors, alled x1 and x2, respetively. Inthe n-stands subsystem, the state vetor orresponding to the slow subsystem x2is omposed by the n strip o�-enter variables. In the tail end subsystems, thestate vetor orresponding to the slow subsystem x2 is omposed by the stripso�-enter variables of the operating stands and the value of the angle orrespond-ing to the �rst ative stand. Hene, the omponents and the dimension of x1 and
x2 hange at eah swithing time. A set of matries {Ei : i ∈ I}, with pseudo-inverse Ei† = Ei′(EiEi′)−1 = Ei′, may be hosen suh that the hange of basis

xi(t) = Eiz(t) (1.12)yields a system state vetor in the form :
xi(t) =

[

xi
1(t)

xi
2(t)

]

,with xi
1(t) ∈ R

ni
1 and xi

2(t) ∈ R
ni

2, for any i ∈ I and for all t ≥ 0. We obtain:
M i(ε) = EiM̄ iEi′ =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

,

N i
u = EiN̄ i

u =

[

ε−1In1
0

0 In2

] [

N i
u,1

N i
u,2

]

,

N i
d = EiN̄ i

d =

[

ε−1In1
0

0 In2

] [

N i
d,1

N i
d,2

]

,

Ci
y = C̄i

yE
i′ =

[

0 Ci
y,2

]

,

(1.13)
12



1.4. Model redutionwith the hoie ε = 0.05. The subsystem orresponding to the ith mode of theswithed system (1.11) an be written in the standard singular perturbation form:










εẋi
1(t) = M i

11x
i
1(t) + M i

12x
i
2(t) + N i

u,1u(t) + N i
d,1d(t)

ẋi
2(t) = M i

21x
i
1(t) + M i

22x
i
2(t) + N i

u,2u(t) + N i
d,2d(t)

y(t) = Ci
y,2x

i
2(t),

(1.14)where M i
11 is assumed to be Hurwitz for any i ∈ I.Consider the following state matries, orresponding to the 4-stands subsys-tem of an average produt of the Eisenhüttenstadt HSM database:

M̄4 =

































0 0 0 0 0 0 0 0 0 0
0 −1.60 −5.87 0 0 0 0.0006 −0.0016 0 0
0 −20.34 −76.5 −6.155 0 0 0.0069 −0.017 −0.002 0
0 −7.5 −51.5 −71.18 15 0 0.0026 0.0145 −0.022 0.004
0 −9.548 −49.2 −73.93 −82 0 0.0033 0.0044 0.0132 −0.02
0 0 0 0 0 0 0 0 0 0
0 4174 0 0 0 0 0 0 0 0
0 0 7466 0 0 0 0 0 0 0
0 0 0 11610 0 0 0 0 0 0
0 0 0 0 15918 0 0 0 0 0































and
N̄4

u =

































0 0 0 0 0
0 0.076 0 0 0
0 0.15 0.767 0 0
0 0.155 0.595 1.577 0
0 0.197 0.757 1.8 3.38
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

































.

We have:
E4 =

























0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

























,
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Chapter 1. Swithed system modeling of hot strip milland then x4 =

[

x4
1

x4
2

], with x4
1 =

[

α3 α4 α5

]′, x4
2 =

[

α2 Z2 Z3 Z4 Z5

]′, and
M4

11 =





−3.825 −0.3077 0
−2.575 −3.559 0.75
−2.46 −3.696 −4.1



 ,

M4
12 =





−1.017 0.0003 −0.0008 −0.0001 0
−0.375 0.0001 0.0007 −0.0011 0.0002
−0.477 0.0001 0.0002 0.0006 −0.001



 ,

M4
21 = 104













−0.0005 0 0
0 0 0

0.7466 0 0
0 1.161 0
0 0 1.5918













,

M4
22 = 103













−0.0016 0.0000 −0.0000 0 0
4.174 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

N4
u,1 =









0.0075 0.0383 0 0
0.0077 0.0297 0.0788

0
0.0098 0.0378 0.09 0.169









, N4
u,2 =













0.076 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0













.

(1.15)

When the 4-stands subsystem is on, the strip has already left the �rst stand.Therefore, the state variables α1 and Z1 do not have any physial meaning andare set to zero.Aording to the pratial implementation, the ontroller must be designedin disrete-time, with a sampling time of Ts = 0.05 sec. We have [Nai02℄:










xi
1(s + 1) = εÃi

11x
i
1(s) + Ãi

12x
i
2(s) + B̃i

u,1u(s) + B̃i
d,1d(s)

xi
2(s + 1) = εÃi

21x
i
1(s) + Ãi

22x
i
2(s) + B̃i

u,2u(s) + B̃i
d,2d(s)

y(s) = Ci
y,2x

i
2(s),

(1.16)where xi
1(s) ∈ R

ni
1 , xi

2(s) ∈ R
ni

2, u(s) ∈ R
r, d(s) ∈ R and y(s) ∈ R

m, for any
i ∈ I and for all s ∈ Z

+. Moreover, we have:
Ãi(ε) =

[

εÃi
11 Ãi

12

εÃi
21 Ãi

22

]

, B̃i
u =

[

B̃i
u,1

B̃i
u,2

]

, B̃i
d =

[

B̃i
d,1

B̃i
d,2

]

. (1.17)Putting ε = 0, we obtain the slow model of the subsystem orresponding to ithmode:
{

xi
s(s + 1) = Ãi

sx
i
s(s) + B̃i

u,sus(s) + B̃i
d,sd(s)

ys(s) = C̃i
y,sx

i
s(s),

(1.18)14



1.5. Polytopi unertaintiesTable 1.1: Eigenvalues Comparison
ξ{Ã4(ε)} ξ{Ã4

s}1.0169 1.02110.9675 0.98210.9179 0.91080.8347 0.88310.8132 0.81320.03140.0024 + 0.0186i0.0024 - 0.0186iwith xi
s(s) = xi

2(s), Ãi
s = Ãi

22, B̃i
u,s = B̃i

u,2, B̃i
d,s = B̃i

d,2 and C̃i
y,s = Ci

y,2, for any
i ∈ I and for all s ∈ Z

+. In Table 1.1, the spetrum ξ{Ã4(ε)} of the state matrixorresponding to the two time sale system (1.16) and the spetrum ξ{Ã4
s} of thestate matrix orresponding to the slow subsystem (1.18) are given. Notie thatthe time sale separation justi�es the use of the only slow subsystem for ontroldesign purposes.1.5 Polytopi unertaintiesAn HSM treats produts with very heterogeneous properties. The sheduling ofthe rolled produts is assumed to be known in real time. Sine the ontroller isomputed o�-line, from a ontrol design point of view the only available informa-tion onerns the minimum and maximum bound of eah parameter. Thus, thephysial parameters must be onsidered as bounded unertainties and a robustontroller is needed. The unertain two time sale swithed system an be writtenin the polytopi form:

{

xσ(s)(s + 1) = Aσ(s)(s)xσ(s)(s) + B
σ(s)
u (s)u(s) + B

σ(s)
d (s)d(s)

y(s) = C
σ(s)
y xσ(s)(s)

(1.19)where σ : Z
+ → I is the swithing rule for all s ∈ Z

+. Further, for any i ∈ I, wehave:
Ai(s) =

NV
∑

l=1

λl(s)Ã
i,l(ε), Bi

u(s) =

NV
∑

l=1

λl(s)B̃
i,l
u , Bi

d(s) =

NV
∑

l=1

λl(s)B̃
i,l
d ,where l ∈ L = {1, ..., NV } denotes the verties of the onvex hull, NV is thenumber of unertain parameters and λl denotes the unertainty and belongs tothe unit simplex

Y(s) = {

NV
∑

l=1

λl(s) = 1, λl(s) ≥ 0}. 15



Chapter 1. Swithed system modeling of hot strip mill1.6 ConlusionThe lateral movement of the strip during the rolling proess redues the produtquality and damages the rolls, if the strip rashes against the mill side guides.The goal of the HSM steering ontrol onsists in limiting this displaement for im-proving the reliability and the proess quality. In order to implement an e�etivesolution, several phenomena arising on the system should be taken into aounton the ontrol design. First, an HSM an treat produts with very heteroge-neous properties. Thus, the physial produts parameters must be onsidered asbounded unertainties and a robust ontroller is needed. Moreover, the systemhas two time sale dynamis and the fast dynamis annot be ontrolled beauseof the limits on the atuators rate. Further, during the tail end phase, the systemis subjet to hard tration losses due to the fat that the strip leaves the standsone after the other. Hene, sudden modi�ations of dynamis arise and the statevariables orresponding to the slow and fast manifolds may vary. In partiular,eah time the strip leaves a stand the state variables orresponding to the leftstand do not in�uene any longer the system and the angle between the strip andthe mill axis on the �rst ative stand, whih was a state variable belonging tothe fast manifold, beomes a state variable of the slow manifold. Beause of thehanges on the system dynamis, di�erent ontrollers must be designed, one foreah operating point, and a rule orhestrating the ontroller swithings is needed.At last, swithing among di�erent ontrollers implies undesired transient behav-iors due to large disontinuities on the ontrol signal. This phenomenon maya�et the system performanes and, in the worst ase, destabilize the system.Despite its importane on the steel prodution framework, there exist fewstudies dealing with steering ontrol of HSM. Further, most of these works donot onsider the unertainties on the produts parameters and the tail end phaseswithings. In this hapter, a two time sale swithed model of the HSM systemhas been proposed for steering ontrol purposes. Parametri unertainties in thepolytopi form have also been taken into aount. In the next three hapters,we will provide some theoretial results useful for solving di�erent problems on-erned with the steering ontrol of HSM. In Chapter 2, we will present a onvexsolution of the LQ optimization problem of disrete two time sale LTI systems.These results will be extended to unertain systems in the polytopi form, underthe assumption of asymptotially stable fast dynamis. Chapter 3 deals with twotime sale swithed systems. First, we will show that asymptoti stability of theslow and fast swithed subsystems under an arbitrary swithing rule is not suf-�ient for assessing asymptoti stability of the original two time sale swithedsystem. Therefore, we will propose LMI based onditions independent of thesingular perturbation parameter whih guarantee asymptoti stability of the twotime sale swithed system, in the ontinuous and disrete-time frameworks. InChapter 4, a method for reduing the ontrol signal disontinuities of disrete-time swithed linear systems is proposed. Many of these results will be retrievedin the last hapter, where a robust steering ontrol design of HSM is presented.16



Chapter 2A onvex solution of thedisrete-time LQ ontrol design fortwo time sale systems
2.1 IntrodutionIn pratie, many systems involve dynamis operating on di�erent time sales,suh as eletri power systems, aerospae systems, robotis, hemial and bi-ologial systems [Nai02℄. In this ase, standard ontrol tehniques lead to ill-onditioning problems and singular perturbation methods may be used to avoidsuh numerial phenomena [KKO86℄, [Nai88℄. They onsist in deomposing thesystem into several subsystems, one for eah time sale. Thus, a di�erent on-troller is designed for eah of them. Singular perturbation tehniques also allowto neglet high-frequeny dynamis and then redue the ontroller order [KS68℄.This property an be very useful when the system order is high [And93℄. Considerthe two time sale model:

εẋ1(t) = f(x1(t), x2(t), ε, t) (2.1a)
ẋ2(t) = g(x1(t), x2(t), ε, t) (2.1b)where f and g are assumed to be ontinuously di�erentiable funtions of theirarguments x1(t), x2(t), ε, t, x1(t) ∈ R

n1 is the state vetor orresponding to thefast dynamis, x2(t) ∈ R
n2 is the state vetor orresponding to the slow dy-namis, for all t ≥ t0, x(t0) =

[

x1(t0)
′ x2(t0)

′
]′ is the initial ondition and thesalar ε > 0 represents the singular perturbation parameter. Setting ε = 0, thedimension of the state spae of (2.1) is redued from n1 +n2 to n2 beause (2.1a)degenerates into the algebrai or transendental equation:

f(x̄1(t), x̄2(t), 0, t) = 0, (2.2)where x̄1 and x̄2 denote x1 and x2 when ε = 0. The model (2.1) is said to be inthe standard form if (2.2) has p ≥ 1 distint real roots:
x̄1(t) = hi(x̄2(t), t) (2.3)17



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemsfor all t ≥ t0, with i = 1, 2, ..., p. This ensures the existene of a well-de�ned n2-dimension redued model to eah root of (2.3). Substituting (2.3) into (2.1b), weobtain the ith redued model (also alled slow model or quasi-steady-state model):
˙̄x2(t) = g(hi(x̄2(t), t), x̄2(t), 0, t), (2.4)with x2(t0)−x̄2(t0) = O(ε). We assume that the fast transient, whih orrespondsto the di�erene between the response of the original system (2.1) and the slowmodel (2.4), is:

x2(t) − x̄2(t) = O(ε) (2.5)for any t ∈ [t0, tfin] on whih x̄2(t) exists. Let us study the behavior of the faststate vetor x1. For ε = 0, its initial ondition x̄1(t0) = h(x̄2(t0), t0) is onstrainedand annot be free to start from x1(t0). Hene, the ondition
x1(t) − x̄1(t) = O(ε) (2.6)an be obtained only for t ∈ [t1, tfin], with t1 > t0. The approximation (2.6)states that during the initial interval [t0, t1], alled boundary layer interval, theoriginal variable x1 tends to x̄1 and that remains lose to x̄1 for [t1, tfin]. To provethat this assumption holds, let apply the strething transformation:

ε
dx1

dt
=

dx1

dτ
.This yields the fast time variable

τ =
t − t0

ε
,with τ = 0 at t = t0. Notie that when ε → 0, τ → ∞, also for a little amountof time t − t0. This means that when ε → 0, t − t0 is �strethed� to an in�nityinterval. To desribe the behavior of x1 in the fast time sale, let us de�ne theboundary layer orretion x̂1 = x1 − x̄1 satisfying the boundary layer system:

dx̂1

dτ
= f(x̂1(τ) + x̄1(t0), x2(t0), 0, t0), (2.7)with x̂1(0) = x1(t0)− x̄1(t0). Fixed t0 and x2(t0), the solution x̂1 of (2.7) may beused as a boundary layer orretion of (2.6) for the following uniform approxima-tion of x1:
x1(t) = x̄1(t) + x̂1(τ) + O(ε). (2.8)

x̄1(t) and x̂1(τ) represent the slow and the fast transient of x1(t), respetively.The equation (2.8) will quikly onverge to (2.6) only if x̂1(τ) deays to an O(ε)quantity for τ → ∞ (whih orresponds to a short interval of time in the slowtime sale t). The following theorem gives the stability onditions ensuring thevalidity of the approximation (2.5), (2.8) [Tik48℄, [Vas63℄.18



2.1. IntrodutionTheorem 1 ([KKO86℄) Assume that the equilibrium x̂1(τ) = 0 of (2.7) is asymp-totially stable uniformly in t0 and x2(t0), and that x̂1(0) = x1(t0)− x̄1(t0) belongsto its domain of attration. Further, assume that the eigenvalues of ∂f

∂x1
evaluatedalong x̄1 and x̄2 for ε = 0 have negative real parts. Hene, the approximation(2.5), (2.8) holds for any t ∈ [t0, tfin], and there exists t1 > t0 suh that (2.6)holds for any t ∈ [t1, tfin].The �rst assumption of Theorem 1 implies that lim

τ→∞
x̂1(τ) = 0 uniformly in

t0 and x2(t0). Thus, x1 will be lose to x̄1 at some time t1 > t0. The seondassumption ensures that x1 stays lose to x̄1 for any t ∈ [t1, tfin].In the LQ optimal ontrol framework, �rst ontributions to the singular per-turbation theory were proposed in the ontinuous-time ase by Kokotovi andSannuti [KS68℄, [San68℄, [SK69℄. Garia et al. proposed an alternative onvexsolution for the ontinuous-time LQ optimal ontrol design of two time sale LTIsystems [PG94℄, [GDB98℄, [GDB02℄. However, most of modern ontrol systemswork in disrete time. In this ase, there exist two main ontrol design approahes,depending on the sampling rate. The reason is that sine digital ontrollers rit-ially depend on the sampling time, di�erent hoies of the sampling rate leadto di�erent ontrol laws. The �rst approah is based on a fast sampling modelderived by numerial approximations suh as the Euler approximation: a hybridsolution ontaining a ontinuous-time slow subsystem and a disrete-time fastsubsystem is obtained [Bla81℄, [LK84℄. This model allows to design a ontrollaw independently of the stability properties of the fast dynamis. Namely, thesampling rate is assumed to be fast enough for in�uening the transient behaviorof the system. The seond method resorts to a slow sampling model based ona singular perturbed di�erene equation [RN82℄, [KI83℄. A ontrol law designedthrough this approah annot in�uene the fast transient behavior of the sys-tem. Nevertheless, there are many pratial appliations having asymptotiallystable fast dynamis and subjet to a onstraint on the sampling time, due tothe limitation on the atuators rate. An example is given by the hot strip millsystem presented in Chapter 1. In this ase, the slow sampling model is oftenmore appropriate for ontrol purposes. More omplex solutions, whih are notinvestigated in this work, look for a multi-rate ontrol law [KI86℄.The aim of this hapter is to extend the results of [GDB02℄ to disrete-time singularly perturbed LTI systems, for both fast and slow sampling mod-els [MDIB09℄. Hene, LMI tehniques an be diretly applied for ontrol designpurposes [BGFB94℄. The main advantage of LMI tehniques is that there existe�ient algorithms whih provide a solution also for high dimension problems[NN94℄. Furthermore, we will show that the onvexity properties of the solutionallows a diret extension of the redued ontroller to unertain systems in thepolytopi form. 19



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemsConsider the two time sale LTI system :
{

εẋ1(t) = M11x1(t) + M12x2(t) + N1u(t)

ẋ2(t) = M21x1(t) + M22x2(t) + N2u(t),
(2.9)where u(t) ∈ R

r is the ontrol signal, for all t ≥ t0. We assume that the problemis in the standard form, that is equivalent to assume M11 non-singular, in the LTIsystems ase. Let us apply the mode-deoupling transformation [Kok75℄:
[

xf (t)
xs(t)

]

=

[

In1
L(ε)

−εH(ε) In2
− εH(ε)L(ε)

] [

x1(t)
x2(t)

]

,

[

x1(t)
x2(t)

]

=

[

In1
− εL(ε)H(ε) −L(ε)

εH(ε) In2

] [

xf (t)
xs(t)

]

,

(2.10)with
M12 − M11L(ε) + εL(ε)(M22 − M21L(ε)) = 0, (2.11)

M21 − H(ε)M11 + ε(M22 − M21L(ε))H(ε) − εH(ε)L(ε)M21 = 0. (2.12)Given a salar εmax > 0, the non-symmetri algebrai Riati equation (2.11) andthe Sylvester equation (2.12) admit the approximated solution L(ε) = M−1
11 M12 +

O(ε), H(ε) = M21M
−1
11 + O(ε), for ε ∈ (0, εmax]. By disretizing the ontinuous-time model (2.9), a di�erent sampling model is obtained depending on the sam-pling rate [KI86℄. The hoie of the sampling time as Tf = αfε, where αf > 0 isa salar, leads to the fast sampling model :

{

x1(k + 1) = A11x1(k) + A12x2(k) + B1u(k)

x2(k + 1) = εA21x1(k) + (In2
+ εA22)x2(k) + εB2u(k),

(2.13)where x1(k) ∈ R
n1 , x2(k) ∈ R

n2 and u(k) ∈ R
r, for all k ∈ Z

+ ≥ t0. Negleting
O(ε) errors, we have :

A11 = exp
(

αfM11

)

,

A12 =
(

exp
(

αfM11

)

− In1

)

M−1
11 M12,

A21 = M21M
−1
11

(

exp
(

αfM11

)

− In1

)

,

A22 = αfMs + M21M
−1
11

(

exp
(

αfM11

)

− In1

)

M−1
11 M12,

B1 =
(

exp
(

αfM11

)

− In1

)

M−1
11 N1,

B2 = αfNs + M21M
−1
11

(

exp
(

αfM11

)

− In1

)

M−1
11 N1,

(2.14)
with Ms = M22 − M21M

−1
11 M12 and Ns = N2 − M21M

−1
11 N1.By hoosing the sampling time as Ts = αs[1/ε]Tf ≈ αsαf , where αs > 0 is asalar and [1/ε] is the largest integer ≤ 1/ε, we obtain the slow sampling model :

{

x1(s + 1) = εÃ11x1(s) + Ã12x2(s) + B̃1u(s)

x2(s + 1) = εÃ21x1(s) + Ã22x2(s) + B̃2u(s),
(2.15)20



2.2. Disrete-time LQ optimal problemwhere k = s[1/ε], x1(s) ∈ R
n1 , x2(s) ∈ R

n2 and u(s) ∈ R
r, for all s ∈ Z

+ ≥ t0.Negleting O(ε) errors, we have:
Ã11 = M−1

11 M12exp
(

αsαfMs

)

M21M
−1
11 + ε−1exp

(

αsαf M11

ε

)

,

Ã12 = −M−1
11 M12exp

(

αsαfMs

)

,

Ã21 = −exp
(

αsαfMs

)

M21M
−1
11 ,

Ã22 = exp
(

αsαfMs

)

,

B̃1 = −M−1
11 M12

(

exp
(

αsαfMs

)

− In2

)

M−1
s Ns − M−1

11 N1,

B̃2 =
(

exp
(

αsαfMs

)

− In2

)

M−1
s Ns.

(2.16)
Sine exp

(

αsαf M11

ε

)

≈ O(ε) only if the matrix M11 is Hurwitz, the slow samplingmodel is valid only if the fast dynamis is asymptotially stable.2.2 Disrete-time LQ optimal problem2.2.1 Fast sampling ontrol lawConsider the fast sampling model (2.13):










x1(k + 1) = A11x1(k) + A12x2(k) + B1u(k)

x2(k + 1) = εA21x1(k) + (In2
+ εA22)x2(k) + εB2u(k)

q(k) = C1x1(k) + C2x2(k),

(2.17)where x(k) =
[

x1(k)′ x2(k)′
]′, q(k) ∈ R

w is the ontrolled output, for all k ∈
Z

+ ≥ t0, and
A(ε) =

[

A11 A12

εA21 (In2
+ εA22)

]

, B(ε) =

[

B1

εB2

]

, C =
[

C1 C2

]

. (2.18)Let the fast sampling LQ optimization problem :
min

u
J(ε) =

ε

2

∞
∑

k=t0

(q(k)′q(k) + u(k)′Ru(k)) (2.19)
subject to

{

x(k + 1) = A(ε)x(k) + B(ε)u(k)

q(k) = Cx(k),
x(t0) =

[

x1(t0)
x2(t0)

]where R = R′ ≻ 0 is a weighting matrix. Assume that the pair (A(ε), B(ε)) isstabilizable and the pair (C, A(ε)) is detetable in the disrete-time sense, whihmeans that eah eigenvalue of A(ε) whih has modulus equal or greater than oneis ontrollable and observable. Hene, there exists a stabilizing solution S(ε) ≻ 0for the algebrai Riati equation:
A(ε)′S(ε)A(ε) − A(ε)′S(ε)B(ε)(R + B(ε)′S(ε)B(ε))−1

B(ε)′S(ε)A(ε) − S(ε) + C ′C = 0.
(2.20)21



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemsThe optimal solution is :
u(k) = K(ε)x(k), (2.21)with

K(ε) = −(R + B(ε)′S(ε)B(ε))−1B(ε)′S(ε)A(ε)and optimal ost
J∗(ε) =

ε

2
x(t0)

′S(ε)x(t0).When ε → 0, standard tehniques may lead to ill-onditioning ontrollers.To avoid suh numerial problems, the riterion (2.19) and its assoiated Riatiequation (2.20) may be deomposed into two di�erent well-behaved subproblems,independently of the singular parameter ε.Slow subproblem: To derive the slow subsystem of (2.17), we assume that
x2(k) = xs(k) and x1(k) = x̄1(k) = (In1

−A11)
−1(A12xs(k)+B1us(k)), during thesteady state. These hypotheses are equivalent to the ontinuous-time assumption(2.5) and (2.6). We obtain [Nai02℄:

xs(k + 1) = (In2
+ εAs)xs(k) + εBsus(k),whih an be written in the time sale t = εk as

xs(εk + ε) − xs(εk) = εAsxs(εk) + εBsus(εk).Dividing both sides by ε, for ε → 0 we get the approximated ontinuous-timesubproblem:
min

us

Js =
1

2

∫ ∞

t0

(

qs(t)
′qs(t) + us(t)

′Rsus(t)
)

dt

subject to

{

ẋs(t) = Asxs(t) + Bsus(t)

qs(t) = Csxs(t) + Dsus(t),
x0

s = x2(t0)

(2.22)where the matrix (In1
− A11) is assumed to be non-singular,

As = A22 + A21(In1
− A11)

−1A12,

Bs = B2 + A21(In1
− A11)

−1B1,

Cs = C2 + C1(In1
− A11)

−1A12,

Ds = C1(In1
− A11)

−1B1,

(2.23)and Rs = R′
s = R + D′

sDs ≻ 0. Notie that xs orresponds to the state vetor
x̄2 introdued in (2.2). Assume that the pair (As, Bs) is stabilizable and the pair
(Cs, As) is detetable in the ontinuous-time sense, whih means that eah eigen-value of As that is in the right-half omplex plane is ontrollable and observable.Hene, there exists a stabilizing solution Ss ≻ 0 for the algebrai Riati equation:

(As − BsR
−1
s D′

sCs)
′Ss + Ss(As − BsR

−1
s D′

sCs)−

SsBsR
−1
s B′

sSs + C ′
s(In1

− DsR
−1
s D′

s)Cs = 0.22



2.2. Disrete-time LQ optimal problemThe optimal solution is:
us(t) = Ksxs(t), (2.24)with Ks = −R−1

s (B′
sSs + D′

sCs) and optimal ost J∗
s = 1

2
x0

s
′
Ssx

0
s. The state-feedbak law (2.24) guarantees the ondition Re{ξ(As+BsKs)} < 0. This impliesthe asymptoti stability of the slow subsystem, for a su�iently small ε.Fast subproblem: To derive the fast subsystem of (2.17), we assume that

xs(k + 1) = xs(k) and xf (k) = x1(k) − x̄1(k) during the fast transient. Therelation xf(k + 1) = x1(k + 1) − x̄1(k + 1) yields the following fast subproblem[Nai02℄:
min

uf

Jf =
1

2

∞
∑

k=t0

(qf(k)′qf(k) + uf(k)′Ruf(k))

subject to

{

xf (k + 1) = A11xf(k) + B1uf(k)

qf (k) = C1xf (k),
x0

f = x1(t0) − x̄1(t0)with x̄1(t0) = (In1
−A11)

−1A12x2(t0). If the pair (A11, B1) is stabilizable and thepair (C1, A11) is detetable in the disrete-time sense, there exists a stabilizingsolution Sf ≻ 0 for the algebrai Riati equation:
A′

11SfA11 − A′
11SfB1(R + B′

1SfB1)
−1B′

1SfA11 − Sf + C ′
1C1 = 0.The optimal solution is:

uf(k) = Kfxf (k), (2.25)with Kf = −(R + B′
1SfB1)

−1B′
1SfA11 and optimal ost J∗

f = 1
2
x0

f

′
Sfx

0
f .Composite ontrol : The ontrol laws (2.24) and (2.25) are designed usingindependent gains Ks and Kf . Sine (2.24) has been designed in the ontinuous-time framework while (2.25) has been designed in the disrete-time one, we obtaina hybrid ontrol law. Setting us(t) = us(k) = Ksxs(k) onstant for kε ≤ t <

(k + 1)ε, we have the omposite ontrol law :
u(k) = us(k) + uf(k) = K

[

x1(k)
x2(k)

]

, (2.26)with K =
[

Kf Ks − Kf (In1
− A11)

−1(A12 + B1Ks)
]. When ε → 0, (2.26) islose to the optimal solution (2.21).2.2.2 Slow sampling ontrol lawConsider the slow sampling model (2.15):











x1(s + 1) = εÃ11x1(s) + Ã12x2(s) + B̃1u(s)

x2(s + 1) = εÃ21x1(s) + Ã22x2(s) + B̃2u(s)

q(s) = C1x1(s) + C2x2(s),

(2.27)23



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemswhere x(s) =
[

x1(s)
′ x2(s)

′
]′, q(s) ∈ R

w is the ontrolled output, for all s ∈
Z

+ ≥ t0, and
Ã(ε) =

[

εÃ11 Ã12

εÃ21 Ã22

]

, B̃ =

[

B̃1

B̃2

]

, C =
[

C1 C2

]

. (2.28)A model disretized using a slow sampling time annot take into aount the fasttransient. Hene, we onsider C1 = 0. Let the slow sampling LQ optimizationproblem :
min

u
J(ε) =

1

2

∞
∑

s=t0

(q(s)′q(s) + u(s)′Ru(s)) (2.29)
subject to

{

x(s + 1) = Ã(ε)x(s) + B̃u(s)

q(s) = Cx(s)
x(t0) =

[

x1(t0)
x2(t0)

]

.If the pair (Ã(ε), B̃) is stabilizable and the pair (C, Ã(ε)) is detetable, thereexists a stabilizing solution S(ε) ≻ 0 for the algebrai Riati equation:
Ã(ε)′S(ε)Ã(ε) − Ã(ε)′S(ε)B̃(R + B̃′S(ε)B̃)−1B̃′S(ε)Ã(ε) − S(ε) + C ′C = 0.(2.30)The optimal solution is :

u(s) = K(ε)x(s), (2.31)with
K(ε) = −(R + B̃′S(ε)B̃)−1B̃′S(ε)Ã(ε)and optimal ost

J∗(ε) =
1

2
x(t0)

′S(ε)x(t0).As in the fast sampling ase, the riterion (2.29) and its assoiate Riatiequation (2.30) may be deomposed into two di�erent well-behaved subproblems,independently of the singular parameter ε.Slow subproblem: Setting ε = 0, we obtain the following slow subproblem:
min

us

Js =
1

2

∞
∑

s=t0

(qs(s)
′qs(s) + us(s)

′Rus(s))

subject to

{

xs(s + 1) = Ãsxs(s) + B̃sus(s)

qs(s) = C̃sxs(s),
x0

s = x2(t0)

(2.32)with xs(s) = x2(s) and
Ãs = Ã22, B̃s = B̃2, C̃s = C2. (2.33)24



2.3. LMI based solutionIf the pair (Ãs, B̃s) is stabilizable and the pair (C̃s, Ãs) is detetable, there existsa stabilizing solution Ss ≻ 0 for the algebrai Riati equation:
Ã′

sSsÃs − Ã′
sSsB̃s(R + B̃′

sSsB̃s)
−1B̃′

sSsÃs − Ss + C̃ ′
sC̃s = 0.The optimal solution is:

us(s) = Ksxs(s), (2.34)with Ks = −(R + B̃′
sSsB̃s)

−1B̃′
sSsÃs and optimal ost J∗

s = 1
2
x0

s

′
Ssx

0
s.Clearly, a ontroller designed using a slow sampling time Ts annot in�uenethe fast transient. Hene, for ε → 0 we have Kf = 0 and

u(s) = K

[

x1(s)
x2(s)

]

, (2.35)with K =
[

0 Ks

]. Sine M11 was assumed to be Hurwitz, the losed loop system(2.27) will be asymptotially stable, for an ε small enough.2.3 LMI based solutionIn this setion, we present an alternative LMI based solution to the disrete-timeLQ optimal problem for two time sale linear systems. In general, LMI tools areonsidered more e�etive than Riati equation solutions in front of the inreaseof dimensions [BGFB94℄.2.3.1 Fast sampling ontrol lawThe fast sampling LQ optimization problem (2.19) may be formulated in a onvexform [GDB02℄, [MDIB09℄. Let de�ne the sets
Pε =

{

P̄ (ε) =

[

P (ε) Z(ε)′

Z(ε) U(ε)

]

� 0, P (ε) ≻ 0

} (2.36)and
Qε =

{

P̄ (ε) ∈ Pε : A(ε)P (ε)A(ε)′ + A(ε)Z(ε)′B(ε)′ + B(ε)Z(ε)A(ε)′+

B(ε)Z(ε)P (ε)−1Z(ε)′B(ε)′ − P (ε) + x(t0)x(t0)
′ ≺ 0

}

.(2.37)An alternative LMI based solution to the problem (2.19) is obtained solvingthe problem [PG94℄:
min

P̄ (ε)∈Qε

J(ε) = εTr

([

C ′C 0
0 R

]

P̄ (ε)

)

. (2.38)Furthermore, if P̄ ∗(ε) is optimal, it an be written as:
P̄ ∗(ε) =

[

P ∗(ε) Z∗(ε)′

Z∗(ε) U∗(ε)

]

=

[

P ∗(ε) P ∗(ε)K(ε)′

K(ε)P ∗(ε) K(ε)P ∗(ε)K(ε)′

]

, 25



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemswhere K(ε) = Z∗(ε)P ∗(ε)−1 is the optimal gain and
lim
ε→0

K(ε) = K = Z∗P ∗−1. (2.39)Hene, (2.38) may be reformulated as:
min

P (ε)≻0,Z(ε)
J(ε) = εTr

([

C ′C 0
0 R

] [

P (ε) Z(ε)′

Z(ε) Z(ε)P (ε)−1Z(ε)′

]) (2.40)
subject to

A(ε)P (ε)A(ε)′ + A(ε)Z(ε)′B(ε)′ + B(ε)Z(ε)A(ε)′+

B(ε)Z(ε)P (ε)−1Z(ε)′B(ε)′ − P (ε) + x(t0)x(t0)
′ ≺ 0.When ε is small, numerial di�ulties to minimize the riterion J(ε) arise.This problem is due to the ill-onditioning of the onstraint (2.37). As in theLQ lassial solution, we an deompose the original problem (2.40) into twowell-behaved subproblems :

J(ε) = εTr









[

C ′
1

C ′
2

]

[

C1 C2

]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

+

R
[

Z1(ε) Z2(ε)
]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]−1 [
Z1(ε)

′

Z2(ε)
′

]









,where
P (ε) = P (ε)′ =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

= ε−1

[

P1 + O(ε) P2 + O(ε)
P ′

2 + O(ε) P3 + O(ε)

]

≻ 0 (2.41)and
Z(ε) =

[

Z1(ε) Z2(ε)
]

= ε−1
[

Z1 + O(ε) Z2 + O(ε)
]

. (2.42)Given F (ε) = P1(ε) − P2(ε)P3(ε)
−1P2(ε)

′, we obtain:
J(ε) =Js(ε) + Jf(ε) =

εTr

(

[

C1 C2 + C1P2(ε)P3(ε)
−1
]

[

F (ε) 0
0 P3(ε)

]

[

⋆
]′

)

+

εTr

(

R
[

Z1(ε) − Z2(ε)P3(ε)
−1P2(ε)

′ Z2(ε)
]

[

F (ε)−1 0
0 P3(ε)

−1

]

[

⋆
]′

)with
Js(ε) = εTr((C2 + C1P2(ε)

′P3(ε)
−1)P3(ε)×

(C2 + C1P2(ε)
′P3(ε)

−1)′ + RZ2(ε)P3(ε)
−1Z2(ε)

′),

Jf(ε) = εTr((C1(P1(ε) − P2(ε)P3(ε)
−1P2(ε)

′)C ′
1 + R(Z1(ε) − Z2(ε)P3(ε)

−1×

P2(ε)
′)(P1(ε) − P2(ε)P3(ε)

−1P2(ε)
′)−1(Z1(ε) − Z2(ε)P3(ε)

−1P2(ε)
′)′).Let us de�ne

P2 = (In1
− A11)

−1(A12P3 + B1Z2), (2.43)
Ps = P3, Zs = Z2, (2.44)26



2.3. LMI based solution
Pf = P1 − P2P

−1
3 P ′

2, Zf = Z1 − Z2P
−1
3 P ′

2. (2.45)Hene:
lim
ε→0

(C2 + C1P2(ε)P3(ε)
−1) =

C2 + C1(In1
− A11)

−1A12 + C1(In1
− A11)

−1B1ZsP
−1
s = Cs + DsZsP

−1
s ,

lim
ε→0

Js(ε) = Js =Tr(CsPsC
′
s + CsZ

′
sD

′
s + DsZsC

′
s + DsZsP

−1
s Z ′

sD
′
s + RZsP

−1
s Z ′

s),

lim
ε→0

Jf(ε) = Jf = Tr(C1PfC
′
1 + RZfP

−1
f Z ′

f).The last two equations an be written in the form:
Js = Tr

([

C ′
sCs C ′

sDs

D′
sCs D′

sDs + R

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

, (2.46)
Jf = Tr

([

C ′
1C1 0
0 R

] [

Pf Z ′
f

Zf ZfP
−1
f Z ′

f

])

, (2.47)with
J = Js + Jf . (2.48)In terms of variables, Js depends on Ps and Zs while Jf depends on Pf and

Zf . Thus, two independent optimization subproblems an be de�ned:Slow subproblem:
min
P̄s∈Qs

Tr

([

C ′
sCs C ′

sDs

D′
sCs D′

sDs + R

]

P̄s

)

, (2.49)with
Ps =

{

P̄s =

[

Ps Z ′
s

Zs Vs

]

≻ 0

}and
Qs =

{

P̄s ∈ Ps : AsPs + PsA
′
s + BsZs + Z ′

sB
′
s + x0

sx
0
s
′
≺ 0
}

.Fast subproblem:
min

P̄f∈Qf

Tr

([

C ′
1C1 0
0 R

]

P̄f

)

, (2.50)with
Pf =

{

P̄f =

[

Pf Z ′
f

Zf Vf

]

≻ 0

}and
Qf =

{

P̄f ∈ Pf : A11PfA
′
11 + A11Z

′
fB

′
1 + B1ZfA

′
11 + B1ZfP

−1
f Z ′

fB
′
1 − Pf ≺ 0

}27



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemswhih, using the Shur omplement [BGFB94℄, beomes
Qf =

{

P̄f ∈ Pf :

[

Pf A11Pf + B1Zf

(⋆)′ Pf

]

≻ 0

}

.The following theorem gives a suboptimal solution of the problem (2.38).Theorem 2 Assume that the problems (2.49) and (2.50) admit, respetively, thesolutions
P̄s =

[

Ps Z
′

s

Zs Vs

]

, P̄f =

[

Pf Z
′

f

Zf Vf

]

.Hene, there exists a positive salar εmax suh that the solution P̄ (ε) of the problem(2.38) exists ∀ ε ∈ ( 0, εmax] and
lim
ε→0

J(ε) = J = Js + Jf = Tr

([

C ′C 0
0 R

] [

P Z ′

Z ZP−1Z ′

])

,with
P =

[

Pf + P2P
−1
s P ′

2 P2

P ′
2 Ps

] (2.51)and
Z =

[

Zf + ZsP
−1
s P ′

2 Zs

]

. (2.52)Moreover, the omposite ontroller gain (2.39), whih guarantees the asymptotistability of the system (2.17) ∀ ε ∈ ( 0, εmax], is:
K =

[

ZfP
−1
f ZsP

−1
s − ZfP

−1
f (In1

− A11)
−1(A12 + B1ZsP

−1
s )

]

.Proof. See Appendix B.1.Remark 1 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max ε > 0 (2.53)

subject to P (ε) ≻ 0,
A(ε)P (ε)A(ε)′ + A(ε)Z(ε)′B(ε)′ + B(ε)Z(ε)A(ε)′+

B(ε)Z(ε)P (ε)−1Z(ε)′B(ε)′ − P (ε) + x(t0)x(t0)
′ ≺ 0,where A(ε), B(ε), P (ε) and Z(ε) are de�ned in (2.18) and (2.41)-(2.45), respe-tively. The values of Pf , Zf , Ps and Zs an be omputed by Theorem 2.Remark 2 The onditions of Theorem 2 with Zf = 0 lead to the redued ontrollaw:

u(k) =
[

0 Ks

]

[

x1(k)
x2(k)

]

, (2.54)where Ks = ZsP
−1
s is the optimal ontroller gain of the slow subsystem. Notiethat, in this ase, the fast subproblem (2.50) has a solution only if A11 is Shur.28



2.3. LMI based solution2.3.2 Slow sampling ontrol lawThe slow sampling LQ optimization problem (2.29) may be formulated in a onvexform using a similar proedure to the fast sampling ontrol design illustrated inthe previous setion. Let de�ne the sets
Pε =

{

P̄ (ε) =

[

P (ε) Z(ε)′

Z(ε) U(ε)

]

� 0, P (ε) ≻ 0

} (2.55)and
Qε =

{

P̄ (ε) ∈ Pε : Ã(ε)P (ε)Ã(ε)′ + Ã(ε)Z(ε)′B̃′ + B̃Z(ε)Ã(ε)′+

B̃Z(ε)P (ε)−1Z(ε)′B̃′ − P (ε) + x(t0)x(t0)
′ ≺ 0

}

. (2.56)From
min

P̄ (ε)∈Qε

J(ε) = Tr

([

C ′C 0
0 R

]

P̄ (ε)

)

, (2.57)
P̄ ∗(ε) =

[

P ∗(ε) Z∗(ε)′

Z∗(ε) U∗(ε)

]

=

[

P ∗(ε) P ∗(ε)K(ε)′

K(ε)P ∗(ε) K(ε)P ∗(ε)K(ε)′

]

,where K(ε) = Z∗(ε)P ∗(ε)−1 is the optimal gain and
lim
ε→0

K(ε) = K = Z∗P ∗−1. (2.58)We obtain:
min

P (ε)≻0,Z(ε)
J(ε) = Tr

([

C ′C 0
0 R

] [

P (ε) Z(ε)′

Z(ε) Z(ε)P (ε)−1Z(ε)′

]) (2.59)
subject to

Ã(ε)P (ε)Ã(ε)′ + Ã(ε)Z(ε)′B̃′ + B̃Z(ε)Ã(ε)′+

B̃Z(ε)P (ε)−1Z(ε)′B̃′ − P (ε) + x(t0)x(t0)
′ ≺ 0.Deomposing the riterion

J(ε) = Tr









[

0
C ′

2

]

[

0 C2

]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

+

R
[

Z1(ε) Z2(ε)
]

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]−1 [
Z1(ε)

′

Z2(ε)
′

]









,with
P (ε) = P (ε)′ =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

=

[

ε−1P1 P2 + O(ε)
P ′

2 + O(ε) P3 + O(ε)

]

≻ 0 (2.60)and
Z(ε) =

[

Z1(ε) Z2(ε)
]

=
[

O(ε) Z2 + O(ε)
]

, (2.61)and de�ning
Pf = P1, Ps = P3, Zs = Z2, (2.62)29



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemswe have:
lim
ε→0

J(ε) = Js = Tr(C̃sPsC̃
′
s + RZsP

−1
s Z ′

s) =

Tr

([

C̃ ′
sC̃s 0
0 R

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

.
(2.63)The slow subproblem is:

min
P̄s∈Qs

Tr

([

C̃ ′
sC̃s 0
0 R

]

P̄s

)

, (2.64)with
Ps =

{

P̄s =

[

Ps Z ′
s

Zs Vs

]

≻ 0

}and
Qs =







P̄s ∈ Ps :





Ps ÃsPs + B̃sZs x0
s

(⋆)′ Ps 0
(⋆)′ (⋆)′ In2



 ≻ 0







.The following theorem gives a suboptimal solution of the problem (2.57).Theorem 3 Assume that the problem (2.64) admits the solution
P̄s =

[

Ps Z
′

s

Zs Vs

]

.Hene, there exists a positive salar εmax suh that the solution P̄ (ε) of the problem(2.57) exists ∀ ε ∈ ( 0, εmax] and
lim
ε→0

J(ε) = Js = Tr

([

C̃ ′
sC̃s 0
0 R

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

.Moreover, the omposite ontroller gain (2.58), whih guarantees the asymptotistability of the losed loop system (2.27) ∀ ε ∈ ( 0, εmax], is K =
[

0 ZsP
−1
s

].Proof. From (2.60), we have:
P (ε)−1 =

[

ε(P1 + O(ε))−1 −ε(P1 + O(ε))−1P2(ε)P3(ε)
−1

(⋆)′ P3(ε)
−1 + O(ε)

]

≻ 0. (2.65)Substituting (2.28), (2.33), (2.60), (2.61), (2.62) and (2.65) in (2.56), we obtain:
[

ε−1X1(ε) X2(ε)
X2(ε)

′ X3(ε)

]

≺ 0, (2.66)with
X1(ε) = ε(Ã12 + B̃1ZsP

−1
s )Ps(Ã12 + B̃1ZsP

−1
s )′ + εx0

1x
0
1
′
− Pf + O(ε2),30



2.3. LMI based solution
X2(ε) =Ã12PsÃ

′
s + Ã12Z

′
sB̃

′
s + B̃1ZsÃ

′
s + B̃1ZsP

−1
s Z ′

sB̃
′
s + x0

1x
0
s

′
− P2 + O(ε),

X3(ε) = ÃsPsÃ
′
s + ÃsZ

′
sB̃

′
s + B̃sZsÃ

′
s + B̃sZsP

−1
s Z ′

sB̃
′
s + x0

sx
0
s

′
− Ps + O(ε).When ε → 0, we get:

X1 = −Pf ≺ 0, (2.67)
X2 = Ã12PsÃ

′
s + Ã12Z

′
sB̃

′
s + B̃1ZsÃ

′
s + B̃1ZsP

−1
s Z ′

sB̃
′
s + x0

1x
0
s

′
− P2, (2.68)

X3 = ÃsPsÃ
′
s + ÃsZ

′
sB̃

′
s + B̃sZsÃ

′
s + B̃sZsP

−1
s Z ′

sB̃
′
s + x0

sx
0
s

′
− Ps ≺ 0. (2.69)Using the Shur omplement, the ondition (2.69) represents the onstraint ofslow the subproblem (2.64). Hene, it is satis�ed by assumption, with Ps ≻ 0.Replaing (2.67)-(2.69) in (2.66), we obtain:

[

ε−1(X1 + O(ε)) X2 + O(ε)
X ′

2 X3 + O(ε)

]

≺ 0. (2.70)The ondition X1 ≺ 0 implies that there exist matries Pf ≻ 0, P2 and a salar
ε1 > 0 suh that the inequality

X1 − ε(X2(X3 + O(ε))−1X ′
2 + O(ε)) + O(ε) ≺ 0holds ∀ ε ∈ (0, ε1]. Hene, using the Shur omplement, also (2.70) holds ∀ ε ∈

(0, ε1]. Moreover, there exists a salar ε2 > 0 suh that the inequality
Pf − εP2(Ps + O(ε))−1P ′

2 + O(ε2) ≻ 0holds, ∀ ε ∈ (0, ε2]. Hene, using the Shur omplement, P (ε) ≻ 0 ∀ ε ∈ (0, ε2].Thus, there exist matries Ps, Zs and Pf and a salar εmax = min{ε1, ε2} thatverify the onstraints (2.55)-(2.56) of the problem (2.57), ∀ ε ∈ (0, εmax].When ε → 0, from (2.61) and (2.65) we have
K = Z(ε)P (ε)−1 =

[

0 ZsP
−1
s

]

,whih onludes the proof.Remark 3 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max

Pf

ε > 0 (2.71)
subject to P (ε) ≻ 0,

Ã(ε)P (ε)Ã(ε)′ + Ã(ε)Z(ε)′B̃′ + B̃Z(ε)Ã(ε)′+

B̃Z(ε)P (ε)−1Z(ε)′B̃′ − P (ε) + x(t0)x(t0)
′ ≺ 0,where Ã(ε), B̃, P (ε) and Z(ε) are de�ned in (2.28) and (2.60)-(2.62), respe-tively. The values of Ps and Zs are given by Theorem 3. Sine a ontrol lawbased on the slow sampling model annot in�uene the fast transient, Theorem 3does not provide a solution for the fast subproblem. Hene, the value of Pf anbe hosen in order to maximize the value of εmax, under the onstraints of theproblem 2.71. 31



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systems2.3.3 Numerial exampleConsider the state matries (1.15), introdued in Chapter 1. They orrespondto the 4-stands subsystem of an average produt of the Eisenhüttenstadt HSMdatabase, with ε = 0.05. Let us assume, in a �rst moment, that there exist nobounds on the rate atuators. In this ase, we ould resort to the fast samplingmodel (2.13) in order to ontrol both slow and fast dynamis. Choosing αf = 0.1,we have Tf = 0.005 sec. Using formulae (2.14), we get the following disrete-timestate matries:
A11 =





0.6849 −0.0212 −0.0008
−0.1837 0.6938 0.0509
−0.1325 −0.2486 0.6543



 ,

A12 =





−0.0841 0.0000 −0.0000 −0.0000 −0.0000
−0.0223 0.0000 0.0000 −0.0000 0.0000
−0.0252 0.0000 0.0000 0.0000 −0.0000



 ,

A21 = 103













−0.0004 0.0000 0.0000
0 0 0

0.6211 −0.009 −0.0002
−0.1198 0.974 0.0338
−0.1318 −0.227 1.3













,

A22 = 102













−0.0013 0.0000 −0.0000 0.0000 0.0000
4.1744 0 0 0 0
−0.3345 0.0001 −0.0002 −0.0000 −0.0000
−0.1565 0.0000 0.0004 −0.0005 0.0000
−0.2525 0.0000 0.0001 0.0005 −0.0007













,

B1 =





0.0006 0.0031 −0.0000 −0.0000
0.0006 0.0022 0.0069 0.0004
0.0006 0.0023 0.0062 0.0138



 ,

B2 =













0.0093 0.0095 −0.0045 −0.002
0 0 0 0

−2.224 −12.113 5.74 2.59
2.108 16.784 −46.07 −31.82
2.526 4.011 73.13 −35.17













,

C1 =













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0













, C2 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.32



2.3. LMI based solutionLet the weighting matrix R = 100I5. Theorem 2 leads to the following ontrollergain:
K =









−0.1 0 0 −97.883 −0.1052 −0.0034 0.0034 −0.0038
0 −0.1 0 −22.1287 −0.0076 0.0551 −0.0434 −0.0158
0 0 −0.1 9.5851 0.01 −0.014 0.0115 −0.0366
0 0 0 −15.3011 −0.004 0.0392 0.0741 0.0112









.Now, let onsider the real senario of Eisenhüttenstadt HSM, where the lowerbound on the sampling time is �xed to Tlow = 0.04 sec, due to the limitations onthe atuators rate. Hene the fast dynamis, whih is open loop stable, annot beontrolled. In this ase, it is quite natural to design a redued ontrol law usingthe slow sampling model (2.15). Let hoose αs = 0.5. We obtain Ts = 0.05 sec.Using formulae (2.16), we obtain the following disrete-time state matries:
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Figure 2.1: Closed loop response of x4
1 using the fast sampling ontroller (solidline, Tf = 0.005) and the slow sampling ontroller (dotted-line, Ts = 0.05)

Ã11 =





0.5549 −0.127 −0.0467
−0.3236 −0.407 0.1387
0.4222 0.41 −0.6266



 ,

Ã12 =





−0.23 0.0000 −0.0002 −0.0000 −0.0000
0.038 −0.0000 0.0002 −0.0001 0.0000

−0.0008 0.0000 −0.0000 0.0002 −0.0002



 , 33



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systems
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Figure 2.2: Closed loop response of x4
2 using the fast sampling ontroller (solidline, Tf = 0.005) and the slow sampling ontroller (dotted-line, Ts = 0.05)

Ã21 = 103













−0.0016 0.0001 0.0000
−0.3417 0.0254 0.0046
2.0446 −0.1558 −0.0289
−1.6887 2.52 0.469
−0.5125 −2.0625 2.812













,

Ã22 = 102













0.01 0.0000 −0.0000 0.0000 0.0000
2.087 0.01 −0.0000 0.0000 0.0000
−0.937 0.0003 0.0091 −0.0000 −0.0000
0.353 −0.0001 0.0018 0.0087 0.0000
−0.111 0.0000 −0.0005 0.0024 0.0082













,34



2.4. An extension to unertain systems in the polytopi form
B̃1 =





0.0009 0.0097 −0.002 −0.0006
0.0012 0.0024 0.02 0.0068
0.0004 0.0016 0.0057 0.03



 ,

B̃2 =













0.0032 −0.0029 0.0006 0.0002
0.3386 −0.304 0.06 0.019
0.5154 3.666 −0.73 −0.24
0.627 1.166 12.93 4.226
0.3476 1.36 2.98 25.6













,

C1 =













0 0 0
0 0 0
0 0 0
0 0 0
0 0 0













, C2 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.Theorem 3 yields the following ontroller gain:
K =









0 0 0 −73.898 −0.0857 −0.0151 0.0016 −0.0004
0 0 0 61.091 0.0013 −0.0481 −0.0007 −0.0012
0 0 0 −2.1477 0.0007 −0.0297 −0.0408 0.0054
0 0 0 −1.1542 −0.0005 0.006 −0.0226 −0.0271









.Consider the initial onditions
x4(0) =

[

x4
1(0)′ x4

2(0)′
]′

=
[

10 10 10 1 1 1 1 1
]′

,where x4
1 =

[

α3 α4 α5

]′ is the state vetor orresponding to the fast dynamisand x4
2 =

[

α2 Z2 Z3 Z4 Z5

]′ is the state vetor orresponding to the slowdynamis. Fig. 2.1 shows the losed loop response orresponding to x4
1 usingthe fast sampling ontroller (solid line) and the slow sampling ontroller (dotted-line). Fig. 2.2 shows the losed loop response orresponding to x4

2 using the fastsampling ontroller (solid line) and the slow sampling ontroller (dotted-line).2.4 An extension to unertain systems in the poly-topi form2.4.1 Slow sampling ontrol lawThis setion aims at extending the results of Theorem 3 to unertain two timesale systems in the polytopi form and designing a H2 robust ontroller for thislass of systems. Consider the slow sampling two time sale system:
{

x(s + 1) = A(s)x(s) + Bu(s)u(s) + Bd(s)d(s)

q(s) = Cx(s) + Du(s),
(2.72)35



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systemswhere d(s) ∈ R
h is the external perturbation, for all s ∈ Z

+ ≥ t0, and
A(s) =

NV
∑

l=1

λl(s)Ã
l(ε), Bu(s) =

NV
∑

l=1

λl(s)B̃
l
u, Bd(s) =

NV
∑

l=1

λl(s)B̃
l
d,with l ∈ L. λl denotes the unertainty and belongs to the unit simplex

Y(s) = {

NV
∑

l=1

λl(s) = 1, λl(s) ≥ 0}.The matries Ãl(ε), B̃l
u, B̃l

d and C are de�ned as:
Ãl(ε) =

[

εÃl
11 Ãl

12

εÃl
21 Ãl

22

]

, B̃l
u =

[

B̃l
u,1

B̃l
u,2

]

, B̃l
d =

[

B̃l
d,1

B̃l
d,2

]

, C =
[

0 C2

]

, (2.73)for any l ∈ L. The two time sale linear system orresponding to eah vertex lof (2.72) may be written in the form:










x1(s + 1) = εÃl
11x1(s) + Ãl

12x2(s) + B̃l
u,1u(s) + B̃l

d,1d(s)

x2(s + 1) = εÃl
21x1(s) + Ãl

22x2(s) + B̃l
u,2u(s) + B̃l

d,2d(s),

q(s) = C2x2(s) + Du(s).Its slow subsystem is:
{

xs(s + 1) = Ãl
sxs(s) + B̃l

u,sus(s) + B̃l
d,sd(s)

q(s) = C̃sxs(s) + D̃sus(s),where Ãl
s = Ãl

22, B̃l
u,s = B̃l

u,2, B̃l
d,s = B̃l

d,2, C̃s = C2 and D̃s = D. The pair
(Ãl

s, B̃
l
u,s) is assumed to be ontrolable, for any l ∈ L. For simpliity reasons, weassume that the weighting matries C̃s and D̃s respet the orthogonality hypoth-esis C̃ ′
sD̃s = 0, D̃′

sD̃s ≻ 0. Consider the state-feedbak ontrol law
us(s) = Ksxs(s),the transfer matrix between q and d is

H l
dq(ς) = (C̃s + D̃sKs)(ςIn2

− Ãl
s − B̃l

u,sKs)
−1B̃l

d,sand its H2 norm is
‖H l

dq‖
2
2 =

1

2π

∫ π

−π

Tr{H l
dq(ς)

∗H l
dq(ς)}dω (2.74)with ς = ejω, for any l ∈ L. The following theorem designs a suboptimalstate-feedbak ontrol law

u(s) = Kx(s) (2.75)whih asymptotially stabilizes the polytopi two time sale system (2.72) andminimizes the H2 norm of its slow dynamis, with K = [0 Ks].36



2.4. An extension to unertain systems in the polytopi formTheorem 4 Assume that there exist matries Ws = W ′
s ≻ 0, Ps = P ′

s ≻ 0, Zs ofappropriate dimensions, and a salar µ > 0 suh that LMIs
Tr
(

Ws

)

< µ (2.76)
[

Ws C̃sPs + D̃sZs

(⋆)′ Ps

]

≻ 0, (2.77)and




Ps Ãl
sPs + B̃l

u,sZs B̃l
d,s

(⋆)′ Ps 0
(⋆)′ (⋆)′ In2



 ≻ 0 (2.78)are veri�ed ∀ l ∈ L. Hene, there exists a positive salar εmax suh that the state-feedbak ontroller gain K = [0 Ks], with Ks = ZsP
−1
s , stabilizes asymptotiallythe losed loop system (2.72), ∀ ε ∈ (0, εmax]. Moreover, the ontroller gain Kssolution of the problem:

min
Ws,Zs,Ps

µ (2.79)subjet to (2.76)-(2.78)minimizes the H2 norm (2.74).Proof. A well-known su�ient ondition for asymptoti stability of the losedloop system (2.72) is to �nd a set of Lyapunov matries
P l(ε) = P l(ε)′ =

[

ε−1P l
f P l

2 + O(ε)

P l′

2 + O(ε) Ps + O(ε)

]

≻ 0, (2.80)and a matrix
Z(ε) =

[

0 Zs + O(ε)
] (2.81)suh that the inequality

Ãl(ε)P l(ε)Ãl(ε)′ + Ãl(ε)Z(ε)′B̃l′

u + B̃l
uZ(ε)Ãl(ε)′+

B̃l
uZ(ε)P l(ε)−1Z(ε)′B̃l′

u − P l(ε) + B̃l
dB̃

l′

d ≺ 0
(2.82)holds, ∀ l ∈ L. Deomposing the inequality (2.82) as in the LTI ase, we �nd:

[

ε−1(X l
1 + O(ε)) X l

2 + O(ε)
X l′

2 X l
3 + O(ε)

]

≺ 0, (2.83)with
X l

1 = −P l
f ≺ 0, (2.84)

X l
2 =Ãl

12PsÃ
l′

s + Ãl
12Z

′
sB̃

l′

d,s + B̃l
d,1ZsÃ

l′

s + B̃l
u,1ZsP

−1
s Z ′

sB̃
l′

u,s + B̃l
u,1B̃

l′

u,s − P l
2,(2.85)37



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systems
X l

3 = Ãl
sPsÃ

l′

s + Ãl
sZ

′
sB̃

l′

u,s + B̃l
u,sZsÃ

l′

s + B̃l
u,sZsP

−1
s Z ′

sB̃
l′

u,s + B̃l
d,sB̃

l′

d,s − Ps ≺ 0.(2.86)Using the Shur omplement, the ondition (2.86) orresponds to (2.78). Hene,it is satis�ed by assumption, with Ps ≻ 0. This means that there exist matries
P l

f ≻ 0 and a salar ε1 > 0 suh that the inequality
X l

1 − ε(X l
2(X

l
3 + O(ε))

−1
X l′

2 + O(ε)) + O(ε) ≺ 0holds, ∀ l ∈ L and ∀ ε ∈ (0, ε1]. Thus, using the Shur omplement, (2.83) holds
∀ ε ∈ (0, ε1]. Moreover, there exists a salar ε2 > 0 suh that the inequality

P l
f − εP l

2(Ps + O(ε))−1P l′

2 + O(ε2) ≻ 0holds, ∀ l ∈ L and ∀ ε ∈ (0, ε2]. Hene, using the Shur omplement, P l(ε) ≻ 0,
∀ l ∈ L and ∀ ε ∈ (0, ε2]. Thus, there exist matries Ps, Zs, P l

f , P l
2 and asalar εmax = min{ε1, ε2} whih verify the onstraint (2.80)-(2.82), ∀ l ∈ L and

∀ ε ∈ (0, εmax]. Further, when ε → 0, we have K = Z(ε)P l(ε)
−1

=
[

0 ZsP
−1
s

].To prove that the ontroller K minimizes the H2 norm (2.74), ∀ l ∈ L and
∀ ε ∈ (0, εmax], onsider the performane index

Js = Tr

([

C̃
′

sC̃s 0

0 D̃′
sD̃s

] [

Ps Z ′
s

Zs ZsP
−1
s Z ′

s

])

.Applying the Shur omplement to (2.77), we obtain :
Ws ≻ C̃sPsC̃

′

s + D̃sZsP
−1
s Zs

′D̃′
s.Thus:

Tr(Ws) ≻ Tr( C̃sPsC̃
′

s + D̃sZsP
−1
s Z ′

sD̃
′
s) = Js.Under the hoie B̃l

d,s = x0,l
s , minimizing Js orresponds to minimize the H2norm (2.74) [PG94℄. Hene, ‖H l

dq‖
2
2 ≤ µ, ∀ l ∈ L, whih onludes the proof.Remark 4 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:

εmax = max
P l

f

{ε > 0, l ∈ L} (2.87)
subject to P l(ε) ≻ 0,

Ãl(ε)P l(ε)Ãl(ε)′ + Ãl(ε)Z(ε)′B̃l′

u + B̃l
uZ(ε)Ãl(ε)′+

B̃l
uZ(ε)P l(ε)−1Z(ε)′B̃l′

u − P l(ε) + B̃l
dB̃

l′

d ≺ 0where Ãl(ε), B̃l
u, B̃l

d, P l(ε) and Z(ε) are de�ned in (2.73) and (2.80)-(2.81),respetively. The values of Ps and Zs an be omputed by Theorem 4, for any
l ∈ L.Remark 5 The extension of the full-order ontroller designed in Theorem 2 tounertain systems in the polytopi form annot be diretly done beause P l

2 dependson the state matries Al
11, Al

12 and Bl
1, for any l ∈ L.38



2.5. Conlusion2.4.2 Numerial exampleConsider the slow sampling time sale system in the polytopi form (2.72), whihan represent a subsystem i ∈ I of the swithed system (1.19) orresponding tothe model of the unertain HSM system. Assume that the HSM system is subjetto four parametri unertainties: the width of the strip w, the output thikness ofthe strip in the last stand hn, the hardness of the strip in the �rst and in the laststand σ0
1 and σ0

n, respetively. Consider the following variation of the unertainparameters:
w ∈ [800 − 1200] mm

hn ∈ [1.9 − 3] mm
σ0

1 ∈ [22 − 56] KN/mm2

σ0
n ∈ [30 − 72] KN/mm2.

(2.88)Here, the aim is to design a robust ontrol law in the form (2.75) that asymp-totially stabilizes the 4-stands subsystem of the HSM system for all produtsbelonging to the unertain set (2.88), whih is represented by a onvex hull with
NV = 16 verties. Using Theorem 4 with C̃s =

[

I5

04×5

] and D̃s =

[

05×4

10I4

], we �nd:
K =









0 0 0 −79.5 −0.072 0.0064 −0.0072 0.01
0 0 0 31.8 0.0175 −0.0634 −0.0006 −0.0013
0 0 0 −0.0075 0.0038 −0.0011 −0.0273 0.0074
0 0 0 0.51 0.0005 0.0049 −0.0055 −0.0247









.In Fig. 2.3, we show the losed loop evolution of the state variables α2 and Z2 forthe produts orresponding to the onvex hull verties for the initial onditions
x(0) =

[

0 0 0 0.01 1 1 1 1
]′. The external perturbation is shown in Fig.2.4.2.5 ConlusionIn this hapter, a LMI based solution for the LQ ontrol design of singularlyperturbed systems in the disrete-time ase has been proposed. In general, LMItools are onsidered more e�etive than Riati equation solutions, when thedimension of the problem is high. In order to design the ontrol law, a modelrepresenting the sampling of singularly perturbed ontinuous-time systems wasused. Thus, results an be applied to ontinuous-time systems ontrolled bydigital devies. Fast sampling and slow sampling state-feedbak ontrol designswere investigated.An extension of the slow sampling ontroller to unertain systems in the poly-topi form has also been presented. We will resort to this result on the robuststeering ontrol design of HSM presented in Chapter 5.

39



Chapter 2. A onvex solution of the disrete-time LQ ontrol design for two time sale systems

0  5 10
−5

0

5

10
x 10

−3

t (sec)

α 2

0  5 10
−5

0

5

10

15

t (sec)

Z
2

Figure 2.3: Closed loop response

0  5 10
−4

−3

−2

−1

0

1

2

3

4

5

t (sec)

d

Figure 2.4: External perturbation40



Chapter 3Stability of two time sale swithedsystems
3.1 IntrodutionDuring last years, swithed systems have been the subjet of a big interest bythe sienti� ommunity. The main reason is that many physial systems an bemodeled using suh a framework. Examples of swithed systems an be foundin event driven systems, robots guidane, network ontrol systems, adaptive on-trol or biologi networks [SWM+07℄. An autonomous ontinuous-time swithedsystem onsists of a set of di�erential equations

ẋ(t) = fσ(t)(x(t), t), (3.1)where {f i : i ∈ I = {1, ..., N}} is a family of su�iently regular funtions,
σ : R

+ → I is a pieewise onstant funtion, alled swithing rule, and x(t) ∈ R
nis the state vetor, whih is assumed to be ontinuous, for all t ≥ 0. The swithingrule determines whih mode i is ative at eah instant and may depend on thetime t, on the system state x or on the evolution of some system parameters. Anautonomous disrete-time swithed system onsists of a set of di�erene equations

x(k + 1) = fσ(k)(x(k), k), (3.2)where σ : Z
+ → I and x(k) ∈ R

n, for all k ∈ Z
+. Three basi problems on-erning stability of swithed systems may be formulated [Lib03℄:� Problem A: Find onditions that guarantee the asymptoti stability ofthe swithed system (3.1) (or (3.2)) under arbitrary swithings [LHM99℄,[DRI02℄, [SN02℄.� Problem B: Identify lasses of swithing rules for whih the swithed system(3.1) (or (3.2)) is asymptotially stable [Mor96℄, [LM99℄, [ZHYM01℄.41



Chapter 3. Stability of two time sale swithed systems� Problem C: Construt a swithing rule that makes the swithed system (3.1)(or (3.2)) asymptotially stable [SESP99℄, [SCGB06℄, [LA07℄.In partiular, we are interested in studying the stability of swithed linearsystems [LA09℄. In this ase, all the subsystems are linear and we have:
ẋ(t) = Mσ(t)x(t), (3.3)for the ontinuous-time ase, and:

x(k + 1) = Aσ(k)x(k), (3.4)for the disrete-time ase. {M i : i ∈ I} and {Ai : i ∈ I} are two families ofmatries. We �rst reall three results (Theorems 5, 6 and 7) giving su�ientonditions for stability of swithed systems.In order to verify stability of a ontinuous-time swithed system under arbi-trary swithings (Problem A), su�ient LMI based onditions for the existeneof a ommon quadrati Lyapunov funtion V (x(t)) = x(t)′Px(t) may be used[BGFB94℄.Theorem 5 Consider the system (3.3). If there exists a matrix P = P ′ ≻ 0 ofappropriate dimension suh that the LMI
M i′P + PM i ≺ 0 (3.5)holds ∀ i ∈ I, the quadrati funtion V (x(t)) = x(t)′Px(t) is a Lyapunov funtionfor the system (3.3), i.e. the origin x = 0 is globally exponentially stable.When V (x(t)) = x(t)′Px(t) exists, the system is said to be quadratially sta-ble. This implies that there exists a salar δ > 0 suh that V̇ (x(t)) < −δ‖x‖.Di�erent su�ient onditions for the existene of a ommon Lyapunov fun-tion related to Lie algebra and simultaneous triangulation have been proposed by[MK97℄, [LHM99℄ and [Lib03℄. The restrition of all these methods is the onser-vatism, that may be too high [DM99℄. In order to redue this problem, severalneessary and su�ient onditions for the existene of a ommon Lyapunov fun-tion have been investigated. For instane, Shorten and Narendra provided asolution for stable seond order linear systems and for a pair of stable linear sys-tems whose system matries are in ompanion form [SN02℄, [SN03℄. However,all the neessary and su�ient onditions for the existene of a ommon Lya-punov funtion present in the literature address partiular ases. To overomethe onservatism problem in a general framework, multiple Lyapunov funtions

V (x(t)) = x(t)′P (σ(t), x(t))x(t) have been introdued. In this ase, the Lya-punov matrix may depend on the swithing law or on the state vetor [MP89℄,[OIGH93℄, [PD91℄, [Bra98℄, [DRI02℄, [BMS07℄.42



3.1. IntrodutionA di�erent approah for assessing stability of a swithed system onsists ofassuming a minimal interval of time between two suessive swithings (ProblemB). Consider the ontinuous-time swithed system (3.3) and the swithing in-stants t1, t2, . . . , tk, with ti − ti−1 ≥ ∆. Obviously, if the matrix M i is Hurwitzfor any i ∈ I and the dwell time ∆ is large enough to allow eah subsystem ito reah the steady-state, the system (3.3) is exponentially stable. The followingtheorem yields an evaluation of the minimum dwell time ∆ between two onseu-tive swithing instants ensuring exponential stability of the swithed system (3.3).Theorem 6 ([Mor96℄, [LM99℄) Consider the swithed system (3.3) and assumethat the matrix M i is Hurwitz for any i ∈ I. If the inequality
ln(µ) − ν(tk − tk−1) ≤ 0, k = 1, 2, ... (3.6)holds, then the origin of (3.3) is exponentially stable, where µ =

λP
max

λP
min

, λP
max =

max{λmax(P
i), i ∈ I}, λP

min = min{λmin(P i), i ∈ I}, and P i = P i′ ≻ 0 is amatrix satisfying the Lyapunov equation
M i′P i + P iM i = −Qi, (3.7)with Qi = Qi′ ≻ 0. Further, ν and ci are two onstants suh that 0 < ν < λi,where λi =

ci

λP
max

, and ∂V i(x(t))

∂x(t)
M ix(t) ≤ −ci‖x(t)‖2 < 0, for any i ∈ I.Condition (3.6) may be written as

∆ = tk − tk−1 =
ln(µ)

ν
, k = 1, 2, . . .and has been generalized by Hespanha and Morse through the onept of averagedwell time ∆avg [HM99℄. The idea is that the swithed system (3.3) is exponen-tially stable if the swithing intervals are in average greater than ∆avg. Zhai et al.extended the results of Theorem 6 to swithed systems with stable and unstablesubsystems [ZHYM01℄. In [GC06a℄ and [GC06b℄, Geromel and Colaneri exploitthe dwell time knowledge for �nding LMI base stability onditions for ontinuousand disrete-time swithed systems, respetively. The following theorem reallsthe disrete-time ase.Theorem 7 ([GC06b℄) Consider the swithed system (3.4). If there exist matri-es P i = P i′ ≻ 0 of appropriate dimensions suh that LMIs

Ai′P iAi − P i ≺ 0, ∀ i ∈ I,

(Ai′)∆P j(Ai)∆ − P i ≺ 0, ∀ (i, j 6= i) ∈ I × Ihold, then the origin of (3.4) is globally asymptotially stable for a dwell timeequal or greater than ∆ ≥ 1 ∈ Z
+. 43



Chapter 3. Stability of two time sale swithed systemsNotie that the hoie ∆ = 1 leads to the onditions proposed by [DRI02℄.Multi time sale swithed systems are of pratial interest in many applia-tions. An example is given by the last phase of the rolling proess in a hot stripmill, whih has been introdued in Chapter 1. However, these dynamial systemshave been the subjet of few investigations. To our knowledge, the only work ad-dressing two time sale swithed systems is [ALI08℄, where dwell time approahis extended to singularly perturbed ontinuous-time swithed systems with timedelay [LSZ03℄.In this hapter, we will �rst reall some results to show that, under dwelltime onstraints, stability of the slow and fast swithed subsystems is su�ientfor stability of the original two time sale swithed system and then may beevaluated separately, as in the linear systems ase. Therefore, we will show that,if no assumption on the minimal dwell is made, this important property is notveri�ed anymore [MDI09a℄, [MDI09b℄. This means that stability of the slow andfast swithed subsystems does not guarantee stability of the original two time saleswithed system, when the swithing rule is arbitrary. In this ase, an additionalonstraint taking into aount the oupling between slow and fast subsystems hasto be onsidered. Therefore, we will propose LMI based onditions, independentlyof the singular parameter ε, for stability analysis and feedbak ontrol designof ontinuous and disrete-time singularly perturbed swithed linear systems.These onditions express the fat that a oupling onstraint has to be satis�ed, inaddition to stability of the slow and fast swithed subsystems, as far as arbitraryswithings may arise. An interpretation of this onstraint in terms of the degree oftime sale separation will be given. To our knowledge, this is the �rst work whihpoints out expliitly the fat that asymptoti stability of slow and fast swithedsubsystems is not su�ient for asymptoti stability of a two time sale swithedsystem, under an arbitrary swithing rule, and whih provides a stabilizing ontrollaw for this kind of systems.3.2 Motivation for a new stability onditionReall that for an autonomous ontinuous-time LTI system in the singular per-turbation form
ẋ(t) = M(ε)x(t), (3.8)where ε > 0 is a salar parameter and

M(ε) =

[

ε−1In1
0

0 In2

] [

M11 M12

M21 M22

]

,44



3.2. Motivation for a new stability onditionwith M11 non-singular matrix, the fast and slow dynamis may be separated usingthe transformation (2.10), whih leads to the following deoupled system:
{

εẋf(t) = (M11 + O(ε))xf(t)

ẋs(t) = (Ms + O(ε))xs(t).Hene, there exists a salar εmax > 0 suh that asymptoti stability of the slowand fast subsystems (i.e. matries Ms = M22 − M21M
−1
11 M12 and M11 are Hur-witz) implies asymptoti stability of the two time sale system (3.8), for any

ε ∈ (0, εmax] [KKO86℄.3.2.1 A dwell-time ondition for two time sale swithedsystemsConsider the autonomous ontinuous two time sale swithed linear system
ẋ(t) = Mσ(t)(ε)x(t), (3.9)with

M i(ε) =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

, (3.10)and the matrix M i
11 is assumed to be non-singular, for any i ∈ I. The subsystemorresponding to eah mode i ∈ I an be written in the form:

{

εẋ1(t) = M i
11x1(t) + M i

12x2(t)

ẋ2(t) = M i
21x1(t) + M i

22x2(t),
(3.11)where x1(t) ∈ R

n1 and x2(t) ∈ R
n2 are the state vetors orresponding tothe fast and slow dynamis, respetively, for all t ≥ 0. The following theoremyields an extension of the dwell time approah [Mor96℄ for singularly perturbedswithed systems. The two time sale swithed system (3.9) is onsidered as aninteronneted system where the terms M i

12x2 and M i
21x1 are perturbations thatare assumed to be bounded.Theorem 8 ([ALI08℄) Consider the swithed system (3.9). Assume that thematries M i

11 and M i
22 are Hurwitz, the prinipal minors of

M̂ i =
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are negative and λmax(M̂
i + M̂ i′) ≤ λi, with λPs

max = max{λmax(P
i
s), i ∈ I},

λPs

min = min{λmin(P i
s), i ∈ I}, λ

Pf
max = max{λmax(P

i
f), i ∈ I}, λ

Pf
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Chapter 3. Stability of two time sale swithed systems
i ∈ I}, λQs

min = min{λmin(Qi
s), i ∈ I}, λ

Qf

min = min{λmin(Qi
f ), i ∈ I}, λi =

min{
ci
s

λPs
max

,
ci
f

λ
Pf
max

}, ci
s = λmin(Qi

s) and ci
f = λmin(ε−1

maxQ
i
f ), ∀ i ∈ I. Further,

P i
s = P i′

s ≻ 0 and P i
f = P i′

f ≻ 0 are matries satisfying the Lyapunov equations
M i

11P
i
f + P i

fM
i′

11 = −Qi
f ,

M i
22P

i
s + P i

sM
i′

22 = −Qi
s,with Qi

s = Qi′

s ≻ 0, Qi
f = Qi′

f ≻ 0, ∀ i ∈ I. If the inequality
ln(2µ) − ν(tk − tk−1) ≤ 0, k = 1, 2, ...holds, then there exists εmax suh that the origin of (3.9) is exponentially stable

∀ ε ∈ (0, εmax], where µ = max{
λPs

max

λPs

min

,
λ

Pf
max

λ
Pf

min

} and ν is a onstant suh that 0 <

ν < λi.Consider the swithed system (3.9), with I = {1, 2} and
M1(ε) =

[

−ε−1 5ε−1

0 −1

]

, M2(ε) =

[

−ε−1 0
5 −1

]

. (3.12)Applying Theorem 8, we �nd
P 1

s = P 1
f = Q1

s = Q1
f = 1,and

P 2
s = P 2

f = Q2
s = Q2

f = 1,with εmax = 0.076. Hene, µ = 1, λ1 = 1 and λ2 = 1. Finally, hoosing ν = 0.99,we get the minimal dwell time ∆ =
ln(µ)

ν
= 0.7001. An example of stabilizing
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Figure 3.1: Stabilizing swithing rule σ(t)swithing rule for the swithed system (3.9)-(3.12) with ε = εmax is given in Fig.3.1, where the system swithes between the subsystems 1 and 2 eah ∆∗ = ∆ sec.Fig. 3.2 shows the onvergene of the state trajetories to zero for the initialondition x(0) =
[

1 1
]′.46



3.2. Motivation for a new stability ondition
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Figure 3.2: State trajetories: Stable behavior3.2.2 Two time sale swithed systems under arbitrary swith-ing rulesConsider the two time sale swithed system (3.9)-(3.12). Matries M1(ε) and
M2(ε) are Hurwitz for any value of ε > 0. Moreover, sine M1

11 = M2
11 = −1, thefast swithed subsystem

εẋf (t) = M
σ(t)
11 xf (t) (3.13)is asymptotially stable for any swithing rule. Also, sine M1

s = M2
s = −1, theslow swithed subsystem

ẋs(t) = Mσ(t)
s xs(t) (3.14)is asymptotially stable for any swithing rule, with

M i
s = M i

22 − M i
21M

i
11

−1
M i

12 (3.15)for any i ∈ I. However, when the swithing rule is arbitrary, the two timesale swithed system (3.9)-(3.12) an be unstable for any small value of ε > 0,even if the slow and fast swithed subsystems are asymptotially stable. Theinterpretation of this phenomenon is that for any �xed ε ∈ (0, εmax], a swithingrule with a su�iently high swithing frequeny whih destabilizes the two timesale swithed system may be exhibited. For instane, let swithing between thesubsystems 1 and 2 eah ∆∗ = ε sec. We obtain a periodi dynamial systemharaterized by the matrix
D(ε) = eM1(ε)∆∗

eM2(ε)∆∗

. 47



Chapter 3. Stability of two time sale swithed systemsSine the omputation of the spetral radius of D(ε) yields
ρ(D(ε)) = 1 + 9.5529ε − 28.7211ε2 + O(ε3) > 1for every period 2∆∗ and any ε ∈ (0, εmax], the proposed swithing rule destabi-lizes the two time sale swithed systems (3.9)-(3.12) for any ε ∈ (0, εmax], even ifthe slow and fast swithed subsystems are asymptotially stable. A simple exam-ple of destabilizing swithing rule is given in Fig. 3.3, where the system swithesbetween the subsystems 1 and 2 eah ∆∗ =

∆

2
= 0.35 sec and ε = εmax = 0.076.In this ase, the state trajetories diverge, as shown in Fig. 3.4 for the initialondition x(0) =

[

1 1
]′.
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Figure 3.3: Destabilizing swithing rule σ(t)
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Figure 3.4: State trajetories: Unstable behavior48



3.3. Stability onditions: Continuous-time aseIn the next setions, we will provide LMI based onditions guaranteeing theasymptoti stability of a swithed systems in the singular perturbation form underan arbitrary swithing rule and independently of the value of ε. We will show thatthis orresponds to assess the asymptoti stability of the slow and fast swithedsubsystems and verifying an additional onstraint whih takes into aount theoupling between the fast and slow dynamis when a swithing ours.3.3 Stability onditions: Continuous-time ase3.3.1 Stability analysisConsider the autonomous two time sale swithed system
ẋ(t) = Mσ(t)(ε)x(t), (3.16)de�ned in (3.9). The existene of a ommon quadrati Lyapunov funtion V (x(t), ε) =

x(t)′P (ε)x(t) suh that V (x(t), ε) > 0 and V̇ (x(t), ε) < 0 for all t ≥ 0 is a well-known su�ient ondition for asymptoti stability of the system (3.16). This isequivalent to the existene of matries P (ε) = P (ε)′ ≻ 0 and Qi(ε) = Qi(ε)
′
≻ 0of appropriate dimensions suh that the LMI

M i(ε)P (ε) + P (ε)M i(ε)
′
+ Qi(ε) ≺ 0 (3.17)holds for any i ∈ I. The following theorem gives LMI based onditions guaran-teeing the stability of the swithed system (3.16) independently of ε and for anyswithing rule.Theorem 9 Assume that there exist matries Pf = Pf

′ ≻ 0, Qi
f = Qi

f

′
≻ 0,

Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0 of appropriate dimensions suh that the LMIs

M i
11Pf + PfM

i
11

′
+ Qi

f ≺ 0, (3.18)
M i

sPs + PsM
i
s

′
+ Qi

s ≺ 0, (3.19)
[

Qi
f −(M i

11Y
i + PfM

i
21

′
)

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′

]

≻ 0 (3.20)are veri�ed ∀ i ∈ I, with Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
Mh

12Ps. Hene, there exists a pos-itive salar εmax suh that the swithed system (3.16) is asymptotially stable
∀ ε ∈ (0, εmax] and for any swithing rule. 49



Chapter 3. Stability of two time sale swithed systemsProof. Let us assume
P (ε) =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

≻ 0, (3.21)
Qi(ε) =

[

Qi
1(ε) Qi

2(ε)
Qi

2(ε)
′ Qi

3(ε)

]

≻ 0, (3.22)with
P1(ε) = Pf + εP2P

−1
s P ′

2, P2(ε) = εP2 = −ε

N
∑

h=1

Mh
11

−1
Mh

12Ps, P3(ε) = εPs(3.23)
Qi

1(ε) = ε−1Qi
f , Qi

2(ε) = −M i
11Y

i +PfM
i
21

′
, Qi

3(ε) = ε(Qi
s −M i

21Y
i−Y i′M i

21

′
)(3.24)and

Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
Mh

12Ps. (3.25)Substituting (3.10) and (3.21)-(3.22) in (3.17), we have:
[

X i
1(ε) X i

2(ε)
X i

2(ε)
′ X i

3(ε)

]

≺ 0 (3.26)with
X i

1(ε) = ε−1(M i
11P1(ε) + P1(ε)M

i
11

′
+ M i

12P2(ε)
′ + P2(ε)M

i
12

′
+ Qi

1(ε)),

X i
2(ε) = ε−1M i

11P2(ε) + ε−1M i
12P3(ε) + P1(ε)M

i
21

′
+ P2(ε)

′M i
22

′
+ Qi

2(ε),

X i
3(ε) = M i

22P3(ε) + P3(ε)M
i
22

′
+ M i

21P2(ε) + P2(ε)
′M i

21

′
+ Q3(ε).Replaing the values of P (ε), Qi(ε) and the equations (3.15), (3.23)-(3.25), weobtain:

X i
1(ε) = ε−1(M i

11Pf + PfM
i
11

′
+ Qi

f + O(ε)) = ε−1(X i
f + O(ε)),

X i
2(ε) = ε(P ′

2M
i
22

′
+ O(ε)) = ε(X i

2 + O(ε)),

X i
3(ε) =ε(M i

sPs + PsM
i
s

′
+ Qi

s + O(ε)) = ε(X i
s + O(ε)).The inequality (3.26) an be written as

[

ε−1(X i
f + O(ε)) ε(X i

2 + O(ε))
(⋆)′ ε(X i

s + O(ε))

]

≺ 0.Satisfying the onditions (3.18) and (3.19) implies that X i
f ≺ 0 and X i

s ≺ 0.This means that there exists a salar εmax > 0 suh that X i
s + O(ε) ≺ 0 and50



3.3. Stability onditions: Continuous-time ase
X i

f − ε2X i
2X

i
s

−1
X i

2
′
+ O(ε) ≺ 0, ∀ i ∈ I and ∀ ε ∈ (0, εmax]. Hene, using theShur omplement, the LMI (3.17) holds [BGFB94℄. Sine Pf ≻ 0 and Ps ≻ 0,(3.21) holds. Furthermore, (3.22) an be written as

Qi(ε) =

[

ε−1In1
0

0 In2

] [

Qi
f −(M i

11Y
i + PfM

i
21

′
)

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′
)

] [

In1
0

0 εIn2

]

≻ 0whih is non negative de�nite beause of (3.20). This onludes the proof.Remark 6 Theorem 9 provides two separate LMI based onditions for assessingthe asymptoti stability of the fast and slow subsystems (3.18) and (3.19), respe-tively. Moreover, the oupling ondition (3.20) is given. This allows to onludethat there exists εmax suh that the lassial stability ondition (3.17) holds forany ε ∈ (0, εmax]. P (ε) and Qi(ε) are de�ned in (3.21)-(3.25), for any i ∈ I.Remark 7 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max ε > 0 (3.27)

subject to M i(ε)P (ε) + P (ε)M i(ε)
′
+ Qi(ε) ≺ 0, i ∈ I,where matries M i(ε), P (ε), and Qi(ε) are de�ned in (3.10) and (3.21)-(3.25),respetively. Moreover, the values of Pf , Qi

f , Ps and Qi
s an be omputed byTheorem 9, for any i ∈ I.3.3.2 Estimation of the degree of time sale separationIn addition to the stability onditions of the fast and slow swithed subsystems,Theorem 9 gives the oupling ondition that must be satis�ed in order to assessthe asymptoti stability of the two time sale swithed linear system (3.16). Themeaning of this ondition an be illustrated through the extension of the notionof time sale separation degree given in [Yur04℄ for LTI systems. In this lassialase, the degree of time sale separation of the LTI two time sale systems (3.8)may be expressed as a ratio between the dynamial matries eigenvalues [Yur04℄:

η∗ =
λmin(ε−1M11)

λmax(Ms)
.For two time sale swithed systems, suh a quantity annot be obtained usingthe eigenvalues evaluation. The following proposition provides the notion of timesale separation degree for swithed linear systems in the singular perturbationform (3.16).Proposition 1 Assume that there exist matries Pf = Pf

′ ≻ 0, Qi
f = Qi

f

′
≻ 0,

Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0, i ∈ I, suh that the stability onditions of Theorem51



Chapter 3. Stability of two time sale swithed systems9 hold. Hene, an estimation of the degree of time sale separation between theslow and fast dynamis is given by the ratio:
η =

λmin(Ps)min{λmin(Qi
f ), i ∈ I}

ελmax(Pf)max{λmax(Qi
s), i ∈ I}

.Proof. See Appendix B.2.In order to understand the role played by the ondition (3.20), onsider theswithed system (3.16), with
M1(ε) =

[

−ε−1 αε−1

0 −1

]

, M2(ε) =

[

−ε−1 0
α −1

]

. (3.28)We have M1
11 = M2

11 = −1 and M1
s = M2

s = −1. Although the fast and slowswithed subsystems are asymptotially stable for any value of the parameter αand for any swithing rule σ(t), the swithed system (3.16) may be unstable underan arbitrary swithing rule, as shown in setion 3.2 for the ase α = 5. UsingTheorem 9, the system has been found asymptotially stable for −1 < α < 1,under arbitrary swithings. As the onditions (3.18) and (3.19) are independentof α, the oupling between the fast and slow dynamis is taken into aount bythe ondition (3.20). This means that the Lyapunov matries assessing stabilityof the fast and slow swithed subsystems must satisfy the oupling ondition,whih involves the terms M1
12 = αε−1 and M2

21 = α. Hene, the degree of timesale separation between the slow and fast dynamis η depends on the value of
α. For several values of −1 < α < 1, we solved the onditions of Theorem 9 andomputed the orresponding value of the degree of time sale separation η. Theresult is shown in Fig. 3.5.On the proposed example, the relation between η and α is diret: a biggervalue of |α| yields a smaller value of η and vieversa. In partiular, for α = 0 wehave a linear system (M1(ε) = M2(ε)) and the degree of time sale separation ismaximum. However, in a general framework, the evolution of η with respet to
M i

12 and M i
21, i ∈ I, is di�ult to analyze.3.3.3 Control designConsider the two time sale swithed system

ẋ(t) = Mσ(t)(ε)x(t) + Nσ(t)(ε)u(t), (3.29)where u(t) ∈ R
r is the ontrol signal, for all t ≥ 0,

M i(ε) =

[

ε−1In1
0

0 In2

] [

M i
11 M i

12

M i
21 M i

22

]

, N i(ε) =

[

ε−1In1
0

0 In2

] [

N i
1

N i
2

]

, (3.30)52



3.3. Stability onditions: Continuous-time ase

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

500

550

600

650

700

750

800

850

900

950

1000

α

η

Figure 3.5: Estimation of the time sale separation degree for ε = 10−3and the matrix M i
11 is assumed to be non-singular, for any i ∈ I. The subsystemorresponding to eah mode i ∈ I an be written in the form:
{

εẋ1(t) = M i
11x1(t) + M i

12x2(t) + N i
1u(t)

ẋ2(t) = M i
21x1(t) + M i

22x2(t) + N i
2u(t),

(3.31)Its slow subsystem is :
ẋs(t) = M i

sxs(t) + N i
sus(t) (3.32)with

M i
s = M i

22 − M i
21M

i
11

−1
M i

12, N i
s = N i

2 − M i
21M

i
11

−1
N i

1, (3.33)while its fast subsystem is:
εẋf (t) = M i

11xf (t) + N i
1uf(t). (3.34)The pairs (M i

s, N
i
s) and (M i

11, N
i
1) are assumed to be stabilizable in the ontinuous-time setting, for any i ∈ I.The aim of this setion is to design a state-feedbak ontrol law
u(t) = Kσ(t)(ε)x(t) (3.35)asymptotially stabilizing the losed loop system (3.29) for any swithing rule.A lassial LMI based ondition for state-feedbak ontrol design of swithed53



Chapter 3. Stability of two time sale swithed systemssystems onsists of heking the existene of matries P (ε) = P (ε)′ ≻ 0, Qi(ε) =
Qi(ε)

′
≻ 0 and Z i(ε) of appropriate dimensions suh that LMI

M i(ε)P (ε) + P (ε)M i(ε)
′
+ N i(ε)Z i(ε) + Z i(ε)

′
N i(ε)

′
+ Qi(ε) ≺ 0 (3.36)holds for any i ∈ I. The state-feedbak ontrol law (3.35), whih asymptotiallystabilizes the ontinuous-time swithed system (3.29), is haraterized by the gainmatries Ki(ε) = Z i(ε)P (ε)−1, i ∈ I.Likewise to the stability analysis ase, when ε is small numerial di�ulties to�nd the gains Ki(ε) arise. This problem is due to the ill-onditioning of the on-straint (3.36) and an be avoided deomposing the two time sale system into twowell-behaved subsystems, the slow and fast subsystems. The following theoremgives LMI based onditions guaranteeing the asymptoti stability of the system(3.29) independently of ε, for any swithing rule.Theorem 10 Assume that there exist matries Pf = Pf
′ ≻ 0, Qi

f = Qi
f

′
≻ 0,

Z i
f , Ps = Ps

′ ≻ 0, Qi
s = Qi

s

′
≻ 0 and Z i

s of appropriate dimensions suh that theLMIs
M i

11Pf + PfM
i
11

′
+ N i

1Z
i
f + Z i

f

′
N i

1
′
+ Qi

f ≺ 0, (3.37)
M i

sPs + PsM
i
s

′
+ N i

sZ
i
s + Z i

s

′
N i

s

′
+ Qi

s ≺ 0, (3.38)








Qi
f −(M i

11Y
i + PfM

i
21

′
+ Z i

f

′
N i

2
′
) N i

1Z
i
f 0

(⋆)′ Qi
s − M i

21Y
i − Y i′M i

21
′

Y i′ N i
2Z

i
f + Y i′

(⋆)′ (⋆)′ Pf 0
(⋆)′ (⋆)′ (⋆)′ Pf









≻ 0 (3.39)are veri�ed ∀ i ∈ I, with Y i = −
N
∑

h=1,h 6=i

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ). Hene, thereexists a positive salar εmax suh that the state-feedbak ontroller gains
Ki =

[

Ki
f Ki

s + Ki
fM

i
11

−1
(M i

12 + N i
1K

i
s)
]

, (3.40)with Ki
f = Z i

fP
−1
f and Ki

s = Z i
sP

−1
s , stabilize asymptotially the losed loopswithed system (3.29), ∀ ε ∈ (0, εmax] and for any swithing rule.Proof. See Appendix B.3.Remark 8 The onditions of Theorem 10 with Z i

f = 0, i ∈ I, lead to the reduedontrol law:
u(t) =

[

0 K
σ(t)
s

]

[

x1(t)
x2(t)

]

,whih asymptotially stabilizes the swithed system (3.29) for any ε ∈ (0, εmax]and any swithing rule σ. Notie that in this ase (3.37) assumes that the fastsubsystem is asymptotially stable in open loop.54



3.4. Stability onditions: Disrete-time ase3.4 Stability onditions: Disrete-time ase3.4.1 Stability analysisConsider the autonomous two time sale swithed system in the fast samplingmodel (2.13):
x(k + 1) = Aσ(k)(ε)x(k), (3.41)where

Ai(ε) =

[

Ai
11 Ai

12

εAi
21 (In2

+ εAi
22)

] (3.42)and the matrix (In1
− Ai

11) is assumed to be non-singular, for any i ∈ I. Thesubsystem orresponding to eah mode i may be written in the form:
{

x1(k + 1) = Ai
11x1(k) + Ai

12x2(k)

x2(k + 1) = εAi
21x1(k) + (In2

+ εAi
22)x2(k).

(3.43)Its slow subsystem is:
xs(k + 1) = (In2

+ εAi
s)xs(k) (3.44)with

Ai
s = Ai

22 + Ai
21(In1

− Ai
11)

−1Ai
12, (3.45)while its fast subsystem is:

xf (k + 1) = Ai
11xf (k). (3.46)The fast sampling singular perturbation model presents two main advantages,with respet to the other disrete time models of two time sale systems (see[Nai02℄ for an overview). First, it allows to desribe both disretized ontinuoustwo time sale systems and pure di�erene equations. Seond, due to the hoieof the sampling time as Tf = ε, this model assumes that the sampling rate is fastenough to in�uene the transient behavior of the system for ontrol purposes,when it represents disretized ontinuous two time sale systems.A standard stability ondition ensuring the existene of a swithed quadratiLyapunov funtion V σ(k)(x(k), ε) = x(k)′Sσ(k)(ε)x(k) suh that V σ(k)(x(k), ε) > 0and V σ(k)(x(k + 1), ε) − V σ(k)(x(k), ε) < 0 for k ∈ Z

+, whih is a su�ientondition for the asymptoti stability of the swithed system (3.41), onsists inheking the existene of matries P i(ε) = P i(ε)
′
= Si(ε)

−1
≻ 0 and Qij(ε) =

Qij(ε)
′
≻ 0 suh that the LMI

Ai(ε)P i(ε)Ai(ε)′ − P j(ε) + Qij(ε) ≺ 0 (3.47)holds for any (i, j) ∈ I × I [DRI02℄. 55



Chapter 3. Stability of two time sale swithed systemsWhen ε is small the omputation of P i(ε) is ompliated due to the ill-onditioning of the onstraint (3.47). As in the ontinuous-time ase, the de-oupling of the two time sale system into two well-behaved subsystems an solvethis problem. Also in this ase, it may exist a swithing rule destabilizing thetwo time sale swithed system, even if the slow and fast swithed subsystemsare asymptotially stable. Hene, a oupling ondition must be onsidered. Thefollowing theorem gives LMI based onditions guaranteeing the asymptoti sta-bility of the swithed system (3.41) independently of ε, for any swithing rule.Theorem 11 Assume that there exist matries P i
f = P i

f

′
≻ 0, Qi

f = Qi
f

′
≻ 0,

Ps = Ps
′ ≻ 0, Qi

s = Qi
s

′
≻ 0 of appropriate dimensions suh that the LMIs

[

P j
f − Qi

f Ai
11P

i
f

(⋆)′ P i
f

]

≻ 0, (3.48)
Ai

sPs + PsA
i
s

′
+ Qi

s ≺ 0, (3.49)
[

Qi
f P j

2 − P i
2 − Ai

11P
i
fA

i
21

′

(⋆)′ Qi
s − Ai

21P
i
fA

i
21

′

]

≻ 0 (3.50)are veri�ed ∀ (i, j) ∈ I × I, with P i
2 = (In1

− Ai
11)

−1Ai
12Ps. Hene, there exists apositive salar εmax suh that the swithed system (3.41) is asymptotially stable

∀ ε ∈ (0, εmax] and for any swithing rule.Proof. Let us assume
P i(ε) =

[

P i
1(ε) P i

2(ε)

P i
2(ε)

′
P3(ε)

]

≻ 0, (3.51)
Qij(ε) =

[

Qi
1 Qij

2 (ε)

Qij
2 (ε)′ Qi

3(ε)

]

≻ 0, (3.52)with
P i

1(ε) = P i
f + εP i

2P
−1
s P i′

2 , P i
2(ε) = εP i

2 = ε(In1
− Ai

11)
−1Ai

12Ps, P3(ε) = εPs,(3.53)
Qi

1 = Qi
f , Qij

2 (ε) = ε(P j
2 − P i

2 − Ai
11P

i
fA

i
21

′
), Qi

3(ε) = ε2(Qi
s − Ai

21P
i
fA

i
21

′
).(3.54)Substituting (3.42), (3.51)-(3.52) in (3.47), we have:

[

X ij
1 (ε) X ij

2 (ε)

X ij
2 (ε)′ X i

3(ε)

]

≺ 0 (3.55)56



3.4. Stability onditions: Disrete-time asewith:
X ij

1 (ε) = Ai
11P

i
1(ε)A

i
11

′
+ Ai

12P
i
2(ε)

′Ai
11

′
+ Ai

11P
i
2(ε)A

i
12

′
+

Ai
12P3(ε)A

i
12

′
− P j

1 (ε) + Qi
1,

X ij
2 (ε) =Ai

11P
i
1(ε)A

i
21

′
ε + Ai

12P
i
2(ε)

′Ai
21

′
ε + Ai

11P
i
2(ε)(In2

+ εAi
22)

′+

Ai
12P

i
3(ε)(In2

+ εAi
22)

′ − P j
2 (ε) + Qij

2 (ε),

X i
3(ε) = εAi

21P
i
1(ε)A

i
21

′
ε + εAi

21P
i
2(ε)(In2

+ εAi
22)

′ + (In2
+ εAi

22)P
i
2

′
(ε)Ai

21

′
ε+

(In2
+ εAi

22)P3(ε)(In2
+ εAi

22)
′ − P3(ε) + Q3(ε).Replaing the values of P i(ε), Qij(ε), and the equations (3.45), (3.53)-(3.54), weobtain:

X ij
1 (ε) =Ai

11P
i
fA

i
11

′
− P j

f + Qi
f + O(ε) = X ij

1 + O(ε),

X ij
2 (ε) = ε2(Ai

12P
i
2
′
Ai

21
′
+ Ai

11P
i
2A

i
22

′
+ O(ε)) = ε2(X i

2 + O(ε)),

X i
3(ε) =ε2(Ai

sPs + PsA
i
s

′
+ Qi

s + O(ε)) = ε2(X i
3 + O(ε)).The inequality (3.55) an be written as

[

X ij
1 + O(ε) ε2(X i

2 + O(ε))
(⋆)′ ε2(X i

3 + O(ε))

]

≺ 0.Satisfying the onditions (3.48) and (3.49) implies that X ij
1 ≺ 0 and X i

3 ≺ 0.This means that there exists a salar εmax > 0 suh that X i
3 + O(ε) ≺ 0 and

X ij
1 − ε2X i

2X
i
3
−1

X i
2
′
+ O(ε) ≺ 0, ∀(i, j) ∈ I × I and ∀ ε ∈ (0, εmax]. Hene, usingthe Shur omplement, the LMI (3.47) holds. Sine Pf ≻ 0 and Ps ≻ 0, (3.51)holds. Furthermore, (3.52) an be written as

Qij(ε) =

[

In1
0

0 εIn2

] [

Qi
f P j

2 − P i
2 − Ai

11P
i
fA

i
21

′

(⋆)′ Qi
s − Ai

21P
i
fA

i
21

′

] [

In1
0

0 εIn2

]

≻ 0,whih is non negative de�nite beause of (3.50). This onludes the proof.Remark 9 An evaluation of the upper bound εmax is obtained solving the follow-ing optimization problem:
εmax = max ε > 0 (3.56)

subject to Ai(ε)P i(ε)Ai(ε)′ − P j(ε) + Qij(ε) ≺ 0, (i, j) ∈ I × I,where matries Ai(ε), P i(ε), and Qij(ε) are de�ned in (3.42) and (3.51)-( 3.54),respetively. Moreover, the values of P i
f , Qi

f , Ps and Qi
s an be omputed byTheorem 9, for any (i, j) ∈ I × I. 57



Chapter 3. Stability of two time sale swithed systems3.4.2 Control designConsider the two time sale swithed system in the fast sampling model (2.13):
x(k + 1) = Aσ(k)(ε)x(k) + Bσ(k)(ε)u(k), (3.57)where u(k) ∈ R

r is the ontrol signal, for all k ∈ Z
+,

Ai(ε) =

[

Ai
11 Ai

12

εAi
21 (In2

+ εAi
22)

]

, Bi(ε) =

[

Bi
1

εBi
2

]

, (3.58)and (In1
− Ai

11) is assumed to be a non-singular matrix, for any i ∈ I. Thesubsystem orresponding to eah mode i may be written in the form:
{

x1(k + 1) = Ai
11x1(k) + Ai

12x2(k) + Bi
1u(k)

x2(k + 1) = εAi
21x1(k) + (In2

+ εAi
22)x2(k) + εBi

2u(k).
(3.59)Its slow subsystem is:

xs(k + 1) = (In2
+ εAi

s)xs(k) + εBi
sus(k) (3.60)with

Ai
s = Ai

22 + Ai
21(In1

− Ai
11)

−1Ai
12, Bi

s = Bi
2 + Ai

21(In1
− Ai

11)
−1Bi

1, (3.61)while its fast subsystem is:
xf(k + 1) = Ai

11xf (k) + Bi
1uf(k). (3.62)The pair (Ai

s, B
i
s) is assumed to be stabilizable in the ontinuous-time setting,and the pair (Ai
11, B

i
1) is assumed to be stabilizable in the disrete-time setting,for any i ∈ I.The aim of this setion is to design a state-feedbak ontrol law

u(k) = Kσ(k)(ε)x(k) (3.63)asymptotially stabilizing the losed loop system (3.57) for any swithing rule.The extension of ondition (3.47) to state feedbak-design leads to hek theexistene of matries P i(ε) = P i(ε)
′
≻ 0, Qij(ε) = Qij(ε)

′
≻ 0 and Z i(ε) ofappropriate dimensions suh that the inequality

Ai(ε)P i(ε)Ai(ε)′ + Ai(ε)Z i(ε)
′
Bi(ε)′ + Bi(ε)Z i(ε)Ai(ε)′+

Bi(ε)Z i(ε)P i(ε)−1Z i(ε)
′
Bi(ε)′ − P j(ε) + Qij(ε) ≺ 0

(3.64)holds for any (i, j) ∈ I × I. The state-feedbak ontrol law (3.63), with Ki(ε) =

Z i(ε)P i(ε)
−1, stabilizes asymptotially the disrete-time swithed system (3.57).The following theorem gives LMI based design onditions independent of ε inorder to avoid the numerial problems due to the ill-onditioning of (3.64).58



3.5. Numerial exampleTheorem 12 Assume that there exist matries P i
f = P i

f

′
≻ 0, Qi

f = Qi
f

′
≻ 0,

Z i
f , Ps = Ps

′ ≻ 0, Qi
s = Qi

s

′
≻ 0 and Z i

s of appropriate dimensions suh that theLMIs
[

P j
f − Qi

f Ai
11P

i
f + Bi

1Z
i
f

(⋆)′ P i
f

]

≻ 0, (3.65)
Ai

sPs + PsA
i
s

′
+ Bi

sZ
i
s + Z i

s

′
Bi

s

′
+ Qi

s ≺ 0, (3.66)




Qi
f P j

2 − P i
2 Ai

11P
i
f + Bi

1Z
i
f

(⋆)′ Qi
s Ai

21P
i
f + Bi

2Z
i
f

(⋆)′ (⋆)′ P i
f



 ≻ 0 (3.67)are veri�ed ∀(i, j) ∈ I ×I, with P i
2 = (In1

−Ai
11)

−1(Ai
12Ps + Bi

1Z
i
s). Hene, thereexists a positive salar εmax suh that the state-feedbak ontroller gains

Ki =
[

Ki
f Ki

s − Ki
f(In1

− Ai
11)

−1(Ai
12 + Bi

1K
i
s)
]

, (3.68)with Ki
f = Z i

fP
i
f

−1 and Ki
s = Z i

sP
−1
s , stabilize asymptotially the losed loopswithed system (3.57), ∀ ε ∈ (0, εmax] and for any swithing rule.Proof. See Appendix B.4.Remark 10 The onditions of Theorem 12 with Z i

f = 0, i ∈ I, lead to theredued ontrol law:
u(k) =

[

0 K
σ(k)
s

]

[

x1(k)
x2(k)

]

, (3.69)whih asymptotially stabilizes the swithed system (3.57) for any ε ∈ (0, εmax]and any swithing rule σ. Notie that in this ase (3.65) assumes that the fastswithed subsystem is asymptotially stable in open loop.3.5 Numerial exampleConsider the ontinuous-time swithed system (3.29), with I = {1, 2}, ε = 0.005and
M1

11 =

[

0 1
−1 −2

]

, M1
12 =

[

0 0
1.5 0

]

, M1
21 =

[

0 0
−0.6 −0.5

]

, M1
22 =

[

0 1
2.1 0

]

,

N1
1 =

[

0
−1

]

, N1
2 =

[

0
0

]

,

M2
11 =

[

0 1
−3 −5

]

, M2
12 =

[

0 0
0 0

]

, M2
21 =

[

0 0
−0.3 −0.2

]

, M2
22 =

[

0 0.7
0 0

]

,

N2
1 =

[

0
−1

]

, N2
2 =

[

0
0

]
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Chapter 3. Stability of two time sale swithed systems
0   1 2 3 4 5 6
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t)

Figure 3.6: Swithing rule σ(t)The subsystem 1 is open loop unstable while the subsystem 2 is haraterizedby a state-spae matrix with zero eigenvalues. Obviously, this system is unsta-ble under arbitrary swithing rules and existing results in the literature do nothelp in designing a stabilizing swithing rule. Theorem 10 leads to the followingstabilizing ontroller gains:
K1 =

[

0.4040 0.1511 −65.3601 −60.3074
]

,

K2 =
[

−0.4110 −0.5931 −147.6057 −137.0206
]

.For this example, the fast swithed system was found asymptotially stable inopen loop. Hene, using Remark 8, a redued ontrol law may also be proposed:
K1

r =
[

0 0 −99.0779 −88.5710
]

,

K2
r =

[

0 0 −347.0992 −310.4213
]

.Consider the swithing rule given in Fig. 3.6 and the initial ondition x(0) =
[

0 0 1 0
]′, Fig. 3.7 shows the state trajetories, with

x(t) =
[

x′
11(t) x′

12(t) x′
21(t) x′

22(t)
]′

.The solid line shows the state trajetories using the full state-feedbak ontrollergains K1 and K2 while the dotted line shows the state trajetories using theredued state-feedbak ontroller gains K1
r and K2

r . Fig. 3.8 shows the ontrolsignal evolution. Let the orresponding disretized swithed system in thesingular perturbation form (3.57), with sampling time Tf = 0.005 and
A1

11 =

[

0.7358 0.3679
−0.3679 0.0000

]

, A1
12 =

[

0.3964 0
0.5518 0

]

,

A1
21 =

[

0 0
−0.4057 −0.3425

]

, A1
22 =

[

0 1
1.8085 0

]

,

B1
1 =

[

−0.2642
−0.3679

]

, B1
2 =

[

0
0.1943

]

,60



3.5. Numerial example
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Figure 3.7: Closed loop response in the ontinuous-time with full state-feedbakontroller (solid line) and redued state-feedbak ontroller (dotted line)
A2

11 =

[

0.5916 0.1344
−0.4031 −0.0801

]

, A2
12 =

[

0 0
0 0

]

,

A2
21 =

[

0 0
−0.1628 −0.0677

]

, A2
22 =

[

0 0.7
0 0

]

B2
1 =

[

−0.1361
−0.1344

]

, B2
2 =

[

0
0.0457

]

.From Theorem 12, we �nd the ontroller gains:
K1 =

[

0.8565 0.6941 −19.7259 −9.8473
]

,

K2 =
[

1.5333 0.3934 −52.0573 −24.3528
]

.Using Remark 10, we obtain the redued ontroller gains:
K1

r =
[

0 0 −10.0899 −5.4331
]

, K2
r =

[

0 0 −34.9751 −16.4975
]

.In Fig. 3.9, the state trajetories are shown for the full state-feedbak ontrollerase (solid line) and the redued state-feedbak ontroller ase (dotted line). InFig. 3.10, the ontrol signal evolution is shown. 61



Chapter 3. Stability of two time sale swithed systems

0  1 2 3 4
−35

−30

−25

−20

−15

−10

−5

0

5

t (sec)

u(
t)

Figure 3.8: Control signal evolution in the ontinuous-time with full state-feedbak ontroller (solid line) and redued state-feedbak ontroller (dotted line)3.6 ConlusionIt is well known that some fundamental properties of linear systems an be lostby swithings. This is the ase of stability, observability, ontrollability, �atness,and so on. In this hapter, we showed that stability of the slow and fast swithedsubsystems under arbitrary swithing rules does not imply the stability of theorresponding two time sale swithed system in the singular perturbation form.A oupling onstraint, whih may be interpreted as a ertain level of the degreeof time sale separation, has also to be satis�ed. This onstraint was expressedin terms of LMI based onditions for stability analysis of singularly perturbedswithed systems independently of the value of the singular parameter ε and un-der an arbitrary swithing rule, for both ontinuous and fast sampling disretetime ases. Composite and redued state-feedbak ontrol design problems wereinvestigated in the same framework. As pointed out in Chapter 2, the disretetime model that we utilized, alled fast sampling model, presents two main ad-vantages, with respet to the other disrete time models of two time sale systemsgiven in literature. First, it allows to desribe both disretized ontinuous twotime sale systems and pure di�erene equations. Seond, due to the hoie ofthe sampling time as Tf = ε, this model assumes that the sampling rate is fastenough to in�uene the transient behavior of the system for ontrol purposes,when it represents disretized ontinuous two time sale systems. Thus, from atheoretial point of view, has a larger interest.
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Chapter 4Bumpless transfer for swithedsystems
4.1 IntrodutionIn pratial ontrol of nonlinear plants, often a set of disrete-time LTI ontrollers

{

xc(k + 1) = A
σ(k)
c xc(k) + B

σ(k)
c y(k)

u(k) = C
σ(k)
c xc(k) + D

σ(k)
c y(k)

(4.1)is used, where xc(k) ∈ R
p is the ontroller state, u(k) ∈ R

r is the ontrol signal,
y(k) ∈ R

m is the plant measured output, {(Ai
c, B

i
c, C

i
c, D

i
c) : i ∈ I = {1, ..., N}}is a family of matries and σ : Z

+ → I is the swithing rule, whih handles thesheduling among the ontrollers and is assumed to be available in real-time, forany i ∈ I and for all k ∈ Z
+. Eah time the operating point of the systemhanges, the adequate ontroller is ativated by a supervisor. However, swithingamong di�erent ontrollers implies undesired transient behaviors due to possiblelarge variations of the ontrol signal. This phenomenon may a�et the systemperformanes and, in the worst ase, destabilize the losed loop system. Thesolution of this problem, whih has been largely studied in the last few deades,is alled bumpless transfer.A desription of most popular strategies for bumpless transfer an been foundin [Han88℄, [KCMN94℄, [GA96℄ and [EP98℄. One of the �rst shemes is proposedby Hanus for nonlinear plants [HKH87℄. The idea onsists in pre-setting the o�-line ontroller state for reduing the transient behavior at the swithing time.Turner and Walker generalize the results of Hanus for ontrollers whih are notbi-proper [TW99℄, [TW00℄. Let de�ne the signal
z̄i

e(k) = αi(k) − e(k),whih represents the di�erene between the ith o�-line ontroller input αi(k) ∈
R

m and the on-line ontroller input e(k) = r(k) − y(k), where r(k) ∈ R
m is thereferene; and the signal

z̄i
u(k) = ui(k) − u(k),65



Chapter 4. Bumpless transfer for swithed systemswhih represents the di�erene between the ith o�-line ontroller output ui(k) andthe on-line ontroller output u(k), for any i ∈ I and for all k ∈ Z
+. The idea in[TW00℄ is to minimize the following LQ riterion :

J̄ i = φ̄i(T̄ i
f) +

1

2

T̄ i
f
−1
∑

k=ti

[z̄i′

u (k)W̄ i
uz̄

i
u(k) + z̄i′

e (k)W̄ i
e z̄

i
e(k)],where

φ̄i(T̄ i
f ) =

1

2
z̄i′

u (T̄ i
f)X̄

iz̄i
u(T̄

i
f),

W̄ i
e = W̄ i′

e ≻ 0 and W̄ i
u = W̄ i′

u ≻ 0 are weighting matries, ti is the swithingtime to the subsystem orresponding to the mode i ∈ I, T̄ i
f is the terminal timeand X̄ i = X̄ i′ � 0 is a terminal weighting matrix, for any i ∈ I. Sine referenesignals are not known a priori, pratial implementation requires an extension toan in�nite horizon. This approximation yields a onstant feedbak matrix Q̄i thatpreonditions the ith o�-line ontroller (4.1) for obtaining the desired transientbehavior at the swithing time (Fig. 4.1).PSfrag replaements
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αi(k) = Q̄i





xc(k)
u(k)
e(k)



 ,with
Q̄i = (Im − ΓiBi′

c ΠiBi
c)

−1Γi





(Di′

c W̄ i
uC

i
c + Bi′

c ΠiAi
c)

′

−(Di′

c W̄ i
u + Bi′

c (Ip − M i)−1U i)′

−(W̄ i
e + Bi′

c (Ip − M i)−1Ei)′





′
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4.1. Introdutionwhere
Γi = −(Di′

c W̄ i
uD

i
c + W̄ i

e)
−1,

Āi = Ai
c + Bi

cΓ
iDi′

c W̄ i
uC

i
c,

B̄i = Bi
cΓ

iBi′

c ,

M i = Āi′(Ip − ΠiB̄i)−1,

U i = M iΠiBi
cΓ

iDi′

c W̄ i
u + Ci′

c W̄ i
u(Ir + Di

cΓ
iDi′

c W̄ i
u),

Ei = M iΠiBi
cΓ

iW̄ i
e + Ci′

c W̄ i
uD

i
cΓ

iW̄ i
e ,and Πi is the stabilizing solution to the disrete-time Riati equation

Āi′(In − ΠiB̄i)−1ΠiĀi − Πi + Ci′

c W̄ i
u(Ir + Di

cΓ
iDi′

c W̄ i
u)C

i
c = 0,for any i ∈ I. LQ bumpless transfer has been one of most elebrated bumplesstransfer methods on industrial MIMO appliations [TAB+06℄, [ZLBT06℄, [ZB09℄.This suess is due to di�erent fators: the existene of several reliable numerialsolvers for Riati equations, the exellent onvergene properties of LQ basedfeedbak ontrollers, and the fat that no plant knowledge is needed. Neverthe-less, the extension to an in�nite horizon assumes that the traking error e and theontrol signal u are onstant. This approximation is e�etive only if these signalsvary slowly enough, with referene to the system dynamis. Another drawbakis onerned with the fat that this strategy guarantees the losed loop stabilityonly around a spei� operating point. In general, it is assumed that the losedloop stability of the whole proess is maintained, if both on-line and o�-line on-trol loops are stable. This assumption is justi�ed only if the operating point issubjet to �slow� variations.In [CS08℄, the disontinuity of the ontroller output is redued by resettingthe fast dynamis of the ontroller at the swithing time. In [ZT05℄, the desiredtransient behavior, alled target response, is de�ned as the ideal losed loopbehavior after the ontroller swithing. Hene, the anti bumpless purpose isreahed by reovering the target response in a L2 sense [TK97℄. Unlike theprevious solutions, this method guarantees the asymptoti stability of the losedloop system for arbitrary swithings of the ontroller. Nevertheless, these resultsare limited to the linear plant ase.Although the bumpless transfer problem has been widely studied in literature,only few artiles address the swithed systems framework. In [AW96℄, a bumplesstransfer solution for ontinuous-time swithed systems is given when the orderof the ontroller is smaller than the order of the plant. The idea is to fore theoutput of the ativated ontroller to be equal to the plant input at the swithingtime. An analogous strategy is proposed in [DW06℄ for ontinuous-time linearparameter varying systems. However, as pointed out by Zaarian and Teel, aonstraint on the only ontroller output does not imply better performanes onthe plant output [ZT02℄, [ZT05℄.In this hapter, a bumpless transfer ontrol design for disrete-time swithedsystems is presented [MHD+08℄, [MHD+09℄. The solution is based on the LQ67



Chapter 4. Bumpless transfer for swithed systemsoptimization theory, whih has been introdued on the bumpless transfer frame-work by Turner and Walker. This method does not guarantee stability of thelosed loop swithed system as it is well-known that swithings an destabilizethe losed loop system, even if all the subsystems are stable [Lib03℄. To solvethis problem, we propose a LQ bumpless transfer ontroller whih is ativatedat eah swithing time. The ontroller and the plant output are fored to followa desired pro�le for a given period of time. A �nite horizon approah an bediretly applied, whih means that no approximation on the traking error andon the ontrol signal are needed. Asymptoti stability of the losed loop systemis veri�ed through dwell time onditions [GC06b℄.4.2 PreliminariesConsider the disrete-time swithed system
{

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k)

y(k) = Cσ(k)x(k)
(4.2)where x(k) ∈ R

n is the state vetor, whih is assumed to be available for feedbak,for all k ∈ Z
+. Moreover, {(Ai, Bi, Ci) : i ∈ I} is a family of matries and thepair (Ai, Bi) is assumed to be ontrollable for any i ∈ I. Let the state-feedbakontrol law

u(k) = Kσ(k)x(k), (4.3)whih stabilizes the losed loop system (4.2)-(4.3) for any swithing law. Further,let us de�ne the minimal interval of time ∆i ∈ Z
+ the system remains in the sub-system orresponding to the mode i until it swithes to another subsystem. ∆iis assumed to be known for any i ∈ I.Swithing among ontrollers usually introdues large jumps in the ontrolsignal. In order to redue the amplitude of these jumps, di�erent strategies arepossible. In this work, we propose a bumpless transfer ontroller that is ativatedat the instant ti, whih represents a swithing instant to the ith mode, for a periodof time τM

i < ∆i. Therefore, for eah mode i ∈ I, we have:
u(k) =

{

Kix(k) + ubt,i(k) if ti ≤ k < ti + τM
i

Kix(k) otherwise,
(4.4)where ubt,i(k) ∈ R

r is the bumpless transfer ontroller output, for all k ∈ [ti, ti +
τM
i ). The losed loop system (4.2)-(4.4) is shown in Fig. 4.2.The bumpless transfer ontroller will be designed in the next setion. It willdepend on the pro�le of the desired transient behavior and on the state matries.For simpliity reasons, a straight line is hosen as desired pro�le. Let ti be aswithing instant from the mode j to the mode i, for all (j, i) ∈ I × I. We an68



4.3. Bumpless transfer ontrol design
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Figure 4.2: Closed loop system with I = {1, 2}de�ne the desired ontrol signal of the subsystem orresponding to the ith modeas:
ũi(k) =

{

ũi,0(k) + (k − ti + 1)pi(k) if ti ≤ k < ti + τM
i

0 otherwise,
(4.5)where

ũi,0(k) = Kjx(ti − 1) (4.6)is the ontrol signal value at the instant before the swithing and pi determinesthe slope of the desired pro�le, i. e.
pi(k) =

1

τM
i

(Kix(ti) − Kjx(ti − 1)). (4.7)We obtain a value of pi that depends on the ontrol signal disontinuity. Anillustrative example is given in Fig. 4.3.4.3 Bumpless transfer ontrol designIn this setion, we present the bumpless transfer ontrol design, whih is basedon the minimization of a LQ riterion. In the bumpless transfer framework, thissolution was proposed by [TW00℄, where the di�erene between the on-line andthe o�-line ontroller input and output are minimized before eah swithing. Thisis equivalent to initialize the ontroller state for reduing the transient behavioron the plant output. Sine this method onsists in pre-setting the state of theo�-line ontroller before the swithing, it does not address ontrol systems with-out memory, suh as state-feedbak ontrol laws. Furthermore, the ontroller69



Chapter 4. Bumpless transfer for swithed systems
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Figure 4.3: Control signal evolution with bumpless transfer ontroller swithedon (solid line) and swithed o� (dotted line)input and output annot be known a priori. Hene, the pratial implementationrequires an extension to the in�nite horizon ase. At last, asymptoti stability ofthe losed loop system is not guaranteed. In general, it is assumed that the losedloop stability of the whole proess is maintained, if both on-line and o�-line on-trol loops are asymptotially stable. This assumption is justi�ed if we onsiderthat the operating point is subjet to slow variations, whih is not neessarily thease for swithed systems. In this ase, swithings an destabilize the losed loopsystem, even if all the subsystems are asymptotially stable [Lib03℄.In order to solve these problems, we propose a bumpless transfer ontrollerwhih is ativated at eah swithing time ti. Asymptoti stability onditions forthe losed loop system (4.2)-(4.4) are presented in the next setion. For eahmode i ∈ I, the bumpless transfer ontrol law is based on the minimization ofthe following quadrati ost funtion:
J i = φi(ti + τM

i ) +
1

2

ti+τM
i −1
∑

k=ti

[zu,i′(k)W i
uz

u,i(k) + zy,i′(k)W i
yz

y,i(k)], (4.8)with
zu,i(k) = u(k) − ũi(k), (4.9)
zy,i(k) = y(k) − ỹi(k), (4.10)and

φi(ti + τM
i ) =

1

2
zu,i′(ti + τM

i )X izu,i(ti + τM
i ). (4.11)

W i
u ≻ 0, W i

y ≻ 0 and X i � are weighting matries. The desired ontrol signal ũiwas de�ned in (4.5) while the desired output signal is set to ỹi = 0 for simpliityreasons. The following theorem yields the signal ubt,i that minimizes the ostfuntion J i, for any i ∈ I.70



4.3. Bumpless transfer ontrol designTheorem 13 Given the swithed system (4.2)-(4.4), the initial time ti and theterminal time ti + τM
i , the bumpless transfer ontrol law that minimizes thequadrati ost funtion (4.8) is

ubt,i(k) = Qi(k)





x(k)
ũi(k)

gi(k + 1)



 , (4.12)with
Qi(k) =





(Ñ i(k + 1)Πi(k + 1)Ai − Ki)′

(Ir + Ñ i(k + 1)Πi(k + 1)Bi)′

−Ñ i′(k + 1)





′ (4.13)and
Ñ i(k + 1) = −W i

u

−1
Bi′(In − Πi(k + 1)B̃i)−1, (4.14)

∀ i ∈ I. The values of Πi and gi are provided by the equations
Πi(k) = Ai′(In − Πi(k + 1)B̃i)−1Πi(k + 1)Ai + C̃i (4.15)and

gi(k) = Ai′(In − Πi(k + 1)B̃i)−1(gi(k + 1) − Πi(k + 1)Biũi(k)), (4.16)with
B̃i = −BiW i

u

−1
Bi′ , C̃i = Ci′W i

yC
i. (4.17)The bound onditions are:

Πi(ti + τM
i ) = 0, gi(ti + τM

i ) = 0. (4.18)Proof. Consider
J i =φi(ti + τM

i ) +
1

2

ti+τM
i −1
∑

k=ti

[(Kix(k) + ubt,i(k) − ũi(k))′W i
u×

(Kix(k) + ubt,i(k) − ũi(k)) + Ci′x(k)W i
yC

ix(k)].

(4.19)Introduing a Lagrange multiplier λi(k) ∈ R
n, we have:

J i = φi(ti + τM
i ) +

1

2

ti+τM
i −1
∑

k=ti

[H i(k) − λi′(k + 1)x(k + 1)], (4.20)where H i is the Hamiltonian, de�ned by
H i(k) =

1

2
[(Kix(k) + ubt,i(k) − ũi(k))′W i

u(K
ix(k) + ubt,i(k) − ũi(k))+

Ci′x(k)W i
yC

ix(k)] + λi′(k + 1)[(Ai + BiKi)x(k) + Biubt,i(k)].
(4.21)71



Chapter 4. Bumpless transfer for swithed systemsFirst order neessary onditions are:
x(k + 1) =

∂H i(k)

∂λi(k + 1)
(4.22)

λi(k) =
∂H i(k)

∂x(k)
(4.23)

∂H i(k)

∂ubt,i(k)
= 0 (4.24)

λi(ti + τM
i ) =

∂φi(ti + τM
i )

∂x(ti + τM
i )

. (4.25)Sine the ost funtion J i is onvex for any i ∈ I, the onditions (4.22)-(4.25)are also su�ient for optimality. Substituting (4.22)-(4.24), we obtain:
∂H i(k)

∂λi(k + 1)
= (Ai + BiKi)x(k) + Biubt,i(k) (4.26)

∂H i(k)

∂x(k)
= (Ai + BiKi)′λi(k + 1) + Ki′W i

uK
ix(k)−

Ki′W i
uũ

i(k) + Ki′W i
uu

bt,i(k) + Ci′W i
yC

ix(k)

(4.27)
∂H i(k)

∂ubt,i(k)
= W i

uu
bt,i(k) + W i

uK
ix(k) + Bi′λi(k + 1) − W i

uũ
i(k). (4.28)Setting the last equation equal to zero, we have:

ubt,i(k) = −Kix(k) − W i
u

−1
Bi′λi(k + 1) + ũi(k). (4.29)Hene, substituting ubt,i(k) in (4.26) and (4.27), we obtain the following nonhomogeneous di�erene equation:

{

x(k + 1) = Aix(k) + B̃iλi(k + 1) + Biũi(k)

λi(k) = C̃ix(k) + Ai′λi(k + 1).
(4.30)In order to �nd the solution, we resort to the method of sweep [BH75℄, where λiis given by the equation:

λi(k + 1) = Πi(k + 1)x(k + 1) − gi(k + 1), (4.31)with Πi and gi de�ned in equations (4.15) and (4.16), respetively. Combiningthe equations (4.30) and (4.31), we have:










λi(k + 1) =(In − Πi(k + 1)B̃i)−1×

[Πi(k + 1)Aix(k) + Πi(k + 1)Biũi(k) − gi(k + 1)]

Πi(k)x(k) − gi(k) = C̃ix(k) + Ai′λi(k + 1).

(4.32)Solving (4.15) and (4.16) implies that (4.32) has a solution on the �nite horizon
[ti, ti + τ i

M). The bound ondition (4.18) is given by (4.25) and (4.29). Finally,(4.12) is obtained from (4.29) and (4.32).72



4.4. Stability analysisRemark 11 In the �nite horizon ase, the knowledge of all the future values of
ũi is required in order to solve (4.16) bakward in time. Hene, in general thismethod annot be applied to solve pratial problems [TW00℄. On the other hand,notie that in our ase, from equations (4.5)-(4.7), only the knowledge of x(ti−1)and x(ti) is needed to ompute the values of ũi on the �nite horizon [ti, ti + τ i

M).Sine this information is available at eah swithing time ti, the method an beapplied in real problems. Notie that the struture of the desired pro�le (4.5),omposed by the initial o�set (4.6) and the slope of the desired pro�le (4.7), maybe easily modi�ed in order to obtain a di�erent desired pro�le. For instane, thehoie
ũi

k =

{

ũi,0
k + (k − tj + 1)2γipi

k if ti ≤ k < ti + τM
i

0 otherwiseyields a paraboli pro�le, with γi ∈ (0, 1].4.4 Stability analysisIn the previous setions, we assumed that the bumpless transfer ontroller isswithed on for τM
i instants. As the original ontroller (4.3) has been designedwithout taking into aount this fat, , asymptoti stability of the swithed system(4.2) is not guaranteed anymore. This setion aims at establishing asymptotistability onditions for the losed loop system (4.2)-(4.4). To this purpose, letus de�ne the additional time variable τ i

k = k − ti + 1 that is reset to zero at theinstant ti, whih represents a generi swithing time from the mode j to the mode
i, for any (i, j) ∈ I × I. Therefore, for eah mode i ∈ I, the losed loop system(4.2)-(4.4) an be written as:

v(k + 1) = Y i(j, τ i
k)v(k), (4.33)where the onstrution of the time variant state matrix Y i is detailed in AppendixB.5,

v(k) =









x(k)
x(k − 1)
ũi,0(k)
pi(k)







is the augmented state vetor and signals ũi,0 and pi are de�ned in setion 4.2.We distinguish two phases on the interval between two swithings:� The bumpless transfer phase: the bumpless transfer ontroller is on. Wehave:
Y i(j, τ i

k)|τ i
k
=1 =









H̄ i(τ i
k + 1) L̄ji(τ i

k + 1) 0n×r 0n×r

In 0n×n 0n×r 0n×r

0r×n Kj 0r×r 0r×r
1

τM
i

Ki − 1
τM
i

Kj 0r×r 0r×r









(4.34)73



Chapter 4. Bumpless transfer for swithed systemsand
Y i(j, τ i

k)|2≤τ i
k
≤τM

i
=









Āi(τ i
k + 1) 0n×n Ū i(τ i

k + 1) P̄ i(τ i
k + 1)

In 0n×n 0n×r 0n×r

0r×n 0r×n Ir 0r×r

0r×n 0r×n 0r×r Ir









. (4.35)In this phase, the state matries of the system (4.33) may have eigenvaluesoutside the unit irle.� The reuperation phase: the bumpless transfer ontroller is o�. We have:
Y i(j, τ i

k)|τ i
k
>τM

i
= Y i

s =





Ai + BiKi 0n×(n+2r)

I 0n×(n+2r)

02r×n 02r×(n+2r).



 , (4.36)where the matrix Y i
s is Shur and onstant for any i ∈ I. Equations (4.34)-(4.36) are detailed in Appendix B.5.

bumpless transfer

phase recuperation 

phasePSfrag replaements
V

kti tl

V (v(tl))

V (v(ti))

τM
i

∆i

tl − tiFigure 4.4: Lyapunov funtion evolutionAssume that for k ∈ [ti, tl) the ith mode is ative and, when a swithing ours(k = tl), the system jumps to the lth mode. Moreover, assume that the ondition
tl − ti ≥ ∆i ≥ 1, with ∆i de�ned in setion 4.2, holds for any (i, l) ∈ I × I.The following theorem gives LMI based onditions to hek asymptoti stabilityof the losed loop swithed system (4.33).74



4.4. Stability analysisTheorem 14 Assume that there exist matries P i = P i′ ≻ 0 of appropriatedimensions and salars 0 ≤ τM
i < ∆i suh that the LMIs

Y i
s

′
P iY i

s − P i ≺ 0, (4.37)
(

τM
i
∏

d=1

Y i(j, d)Y i
s

(∆i−τM
i )

)′

P l

(

τM
i
∏

d=1

Y i(j, d)Y i
s

(∆i−τM
i )

)

− P i ≺ 0 (4.38)hold ∀ (j 6= i, l, i) ∈ I × I × I. Hene, the swithed system (4.33) is asymptoti-ally stable for tl − ti ≥ ∆i ≥ 1.Proof. This proof is based on Theorem 1 of [GC06b℄. First, notie that thematrix τM
i
∏

d=1

Y i(j, d) represents the evolution of the swithed system (4.33) for k ∈

[ti, ti + τM
i ) and the matrix Y i

s

(tl−ti−τM
i ) represents the evolution of the swithedsystem (4.33) for k ∈ [ti +τM

i , tl). From (4.38), with l = i, the Lyapunov funtion
V (v(k)) = v(k)′P iv(k) satis�es the inequality

V (v(ti + ∆i)) < V (v(ti)). (4.39)From (4.37), we have:
V (v(k + 1)) < V (v(k)), (4.40)

∀ k ∈ [ti + ∆i, tl) and ∀ i ∈ I. Hene, there exist salars α ∈ (0, 1) and β > 0suh that
‖v(k)‖2 ≤ βαk−tiV (v(ti)), (4.41)

k ∈ [ti, tl). Moreover, still from (4.38), we obtain:
V (v(tl)) = v(tl)

′P lv(tl)

= v(ti)
′

(

τM
i
∏

d=1

Y i(j, d)Y i
s

(tl−ti−τM
i )

)′

P l×

(

τM
i
∏

d=1

Y i(j, d)Y i
s

(tl−ti−τM
i )

)

v(ti)

< v(ti)
′Y i

s

(tl−ti−∆i)′
P iY i

s

(tl−ti−∆i)
v(ti)

≤ v(ti)
′P iv(ti) = V (v(ti)).

(4.42)
The non strit inequality holds beause tl − ti − ∆i ≥ 0 and Y i

s is Shur byassumption, ∀ i ∈ I. Hene, given the initial ondition of (4.33) v(0) = v0, thereexists δ ∈ (0, 1) suh that, after the qth swithing, we have:
V (v(ti)) ≤ δqV (v0), ∀ q ∈ N. (4.43)Finally, (4.41) and (4.43) imply that the swithed system (4.33) is asymptot-ially stable. 75



Chapter 4. Bumpless transfer for swithed systemsRemark 12 An evaluation of the maximum value of τM that guarantees theasymptoti stability of the losed loop system (4.33) is given by following algo-rithm:
τM
1 , ..., τM

N = 0;for h = 1 : max{∆i, i ∈ I}for i = 1 : Nif (τM
i < ∆i) and (LMIs (4.37)-(4.38) hold)
τM
i =τM

i + 1;endendend4.4.1 Numerial exampleIn this setion, we present a bumpless transfer ontrol design to a spei� produtof the Eisenhüttenstadt HSM. In order to redue the bumps on the ontrol signal
u, the modi�ed ontrol signal (4.4) may be applied to the plant for a periodof time τM

i , for i ∈ {2, 3, 4}. Sine the system never swithes bak to the �rstsubsystem, no bumpless transfer ontroller is designed for i = 1. The signal ubt,iis omputed by Theorem 13. Equations (4.13) and (4.15) an be solved o�-linewhereas equation (4.16) must be solved at the swithing time ti, when the valueof x(ti−1) is known. The output signal y orresponds to the strip o�-enter, thatmust be minimized. Hene, we hoose ỹ = 0. Given the weighting matries Wuand Wy, the τM
i values allowing to verify the onditions of Theorem 14 an befound by applying the algorithm proposed in Remark 12. Results are summarizedin Table 4.1. In Fig. 4.5, we propose a zoom of the ontrol signal u for the lastTable 4.1: BT ontroller data

@
@

@

i 2 3 4
∆i 64 38 30
τM
i 30 15 6

W i
u In 100In 10In

W i
y In In Instand. The dotted line shows the ontrol signal omputed by the ontrol law (4.3),when the bumpless transfer ontroller is o�. One an notie the big bump due tothe swithing at the instant k = 1392 and the orresponding transient behavior.Sine the atuators of the hot strip mill system are subjet to amplitude and slopesaturation, the applied ontrol signal orresponds to the saturated signal (solid76



4.4. Stability analysis

1390 1395 1400 1405 1410 1415
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

k

u 

stand 5

BT controller off (pre−saturation signal)
BT controller off (saturated signal)
BT controller on

Figure 4.5: Control signal u

1350 1360 1370 1380 1390 1400 1410 1420 1430
−50

−40

−30

−20

−10

0

10

20

k

y 
(m

m
)

stand 5

BT controller off
BT controller on

Figure 4.6: Measured output yline), for whih stability is not guaranteed anymore. Finally, the dashed lineshows the ontrol signal omputed by the ontrol law (4.4), that is the bumplesstransfer ontroller is on. In this ase, no saturation ours. Further, the losedloop asymptoti stability is guaranteed by the onditions of Theorem 14. InFig. 4.6, we propose a zoom of the measured output y in the last stand, whihorresponds to the displaement of the strip with respet to the axis of the mill inthe exit of the system. The solid line shows the ontrol signal without bumplesstransfer ontrol while the dashed line shows the ontrol signal when the bumplesstransfer ontroller is on. As expeted, the displaement of the strip was redued.77



Chapter 4. Bumpless transfer for swithed systems4.5 ConlusionIn this hapter, a bumpless transfer method for swithed systems has been pre-sented. The bumpless transfer ontroller was designed using a �nite horizonapproah based on the LQ optimization framework. The idea is to fore theontroller output and the plant output to follow a desired pro�le. Dwell timeonditions for assessing the asymptoti stability of the losed loop swithed sys-tem were also established. Simulation results onerning the EisenhüttenstadtHSM system were shown.
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Chapter 5Robust steering ontrol of hot stripmill
5.1 IntrodutionIn this hapter, a robust steering ontrol design of HSM based on the unertainswithed linear model given in hapter 1 is proposed. The aim is to guaranteethe stability of an HSM system and minimize the strip o�-enter for the wholeset of treated produts [MDI+ar℄, [MDI+09d℄, [MDI+09℄, [MDI+09e℄, [MDIS09℄.In an HSM with 5 stands, there are 70 unertain parameters, whih beome
110 for HSMs with 7 stands. For a problem of this dimension, LMI tehniquessu�er from a well-known drawbak onerning numerial problems. Therefore, inthe �rst part of this hapter, a method for reduing the number of unertaintiesby exploiting the physial relations among the di�erent produt parameters willbe introdued. One the simpli�ed polytopi model is obtained, the onvex hullorresponding to the whole database may be partitioned into several small onvexhulls. The division of the database with respet to the physial parameters of theproduts, allowing to design a di�erent ontroller for eah family, yields betterperformanes.The system involves a two time sale dynamis. Sine fast dynamis is stableand impossible to ontrol from a pratial point of view due to atuators limi-tations, a robust redued ontroller will be designed resorting to the results ofChapter 2.When the n-stands subsystem is ative, the strip is onneted to all the stands,and it is subjet to a strong perturbation due to the oilbox vibrations. Hene, themain ontrol task is to guarantee a good quality of the rolled produt, minimizingthe external perturbation. This phase takes the 90% − 95% of the whole rollingproess duration and the system reahes the steady state before the swithingsour. In the tail end phase, tration is lost every time the strip leaves a stand.This inreases the di�ulties to guide the strip, whih beomes free to move inall diretions. The result is that the rashes of the strip against the mill side-guides are more frequent. Thus, during the tail end phase the priority of the79



Chapter 5. Robust steering ontrol of hot strip millontrol design is the system safety. Moreover, in this phase swithings are veryfast and the stability of all subsystems does not guarantee the stability of thewhole system. It is also neessary to verify that swithings do not destabilize thesystem [Mor96℄, [GC06b℄.To our knowledge, the only ondition to design a ontrol law whih asymp-totially stabilizes a two time sale swithed systems was proposed in Chapter3. This ondition needs a state vetor with onstant omponents and dimension.Nevertheless, in an HSM system, the omponents and dimension of the statevetor hange at eah swithing time. A possible solution onsists in designinga robust ontrol law stabilizing eah subsystem i separately through the methodproposed in Chapter 2. The stability of the tail end swithed system will beveri�ed a posteriori. In fat, the swithing time depends on the rolled strip andmust be estimated on-line. Hene, the swithed system stability ondition hasalso to take into aount an unertainty in the swithing time.Finally, simulation and experimental results of the robust steering ontroldesign at Eisenhüttenstadt HSM will be presented.5.2 Polytopi modelingAn HSM an treat produts with very heterogeneous properties. Eah produtis haraterized by its physial parameters and by a spei� system setup. Thesheduling of the rolled produts is assumed to be known in real time. Sine theontroller is omputed o�-line, from a ontrol design point of view the only avail-able information onerns the minimum and maximum bound of eah parameter.Thus, the physial parameters must be onsidered as bounded unertainties anda robust ontroller is needed.The main objetive of this setion is to desribe the unertainties of the HSMsystem as a onvex set. LMI tehniques an then be applied to design the ontrollaw. Two fundamental points are disussed:� The redution of the number of onvex hull verties.� The determination of the onvex hull verties suh that the assoiated phys-ial parameters would re�et a given produt.One the polytopi model is obtained for the whole database, partitioning it intoseveral small onvex hulls an be done quite easily. We only have to hoose thenumber of partitions and ompute the verties of eah partition as was done forthe original onvex set.Consider the HSM system in the polytopi form (1.19):










xσ(s)(s + 1) = Aσ(s)(s)xσ(s)(s) + B
σ(s)
u (s)u(s) + B

σ(s)
d (s)d(s)

q(s) = C
σ(s)
q xσ(s)(s) + D

σ(s)
qu u(s)

y(s) = C
σ(s)
y xσ(s)(s),

(5.1)80



5.2. Polytopi modelingwhere σ : Z
+ → I = {1, ..., N} is the swithing rule, xi(s) =

[

xi
1(s)

′
xi

2(s)
′]′

∈
R

2n is the state vetor, u(s) ∈ R
r is the ontrol signal, d(s) ∈ R is the externalperturbation, q(s) ∈ R

w is the ontrolled output and y(s) ∈ R
m is the measuredoutput, for any i ∈ I and for all s ∈ Z

+. Moreover, we have:
Ai(s) =

NV
∑

l=1

λl(s)Ã
i,l(ε), Bi

u(s) =

NV
∑

l=1

λl(s)B̃
i,l
u , Bi

d(s) =

NV
∑

l=1

λl(s)B̃
i,l
d ,where l ∈ L = {1, ..., NV } denotes the verties of the onvex hull, and λl denotesthe unertainty and belongs to the unit simplex

Y(s) = {

NV
∑

l=1

λl(s) = 1, λl(s) ≥ 0}.Hene, for eah subsystem i ∈ I, we have a di�erent onvex hull desribed by
NV verties. Eah vertex (i, l) ∈ I×L may be haraterized by its orrespondingtwo time sale linear state-spae model











xi(s + 1) = Ãi,l(ε)xi(s) + B̃i,l
u u(s) + B̃i,l

d d(s)

q(s) = Ci
qx

i(s) + Di
quu(s)

y(s) = Ci
yx

i(s),

(5.2)with
Ãi,l(ε) =

[

εÃi,l
11 Ãi,l

12

εÃi,l
21 Ãi,l

22

]

, B̃i,l
u =

[

B̃i,l
u,1

B̃i,l
u,2

]

, B̃i,l
d =

[

B̃i,l
d,1

B̃i,l
d,2

]

,

Ci
q =

[

Ci
q,1 Ci

q,2

]

, Ci
y =

[

Ci
y,1 Ci

y,2

]

.5.2.1 Redution of the onvex hull spae dimensionLet U be the set of unertain parameters. The spae dimension of the onvexhull oinides with the number of unertainties D = card(U). Hene, NV = 2D.In an HSM with 5 stands D = 70 (110 for an HSM with 7 stands). For aproblem of this dimension, LMI tehniques su�er from a well-known drawbakonerning numerial problems. Nevertheless, suh numerial problems an beavoided by exploiting the physial relations among the di�erent produt parame-ters for reduing the dimension of the spae dimension. Based on the knowledgeof the engineers, we hose to use only four main parameters in order to lassifythe produts: the set of independent parameters Um = {w, hn, σ0
1 , σ0

n} ⊂ U ,where w is the strip width, hn is the output thikness of the strip in the laststand and σ0
1 and σ0

n are the hardness of the strip in the �rst and in the laststand, respetively.The remaining set of parameters Us = {U \Um} depends on Um. This meansthat two produts with the same Um set have nearly the same Us set and thusthe same dynamis. To explain this fat, notie that Us an be broken down intotwo subsets Us = {Us
op,U

s
fnc}: 81



Chapter 5. Robust steering ontrol of hot strip mill� The �rst subset Us
op onerns the parameters set by the operator, suh as rollharateristis. Operators must prevent inidents on the mill and restoreeventual damages. Therefore, they look for an HSM setup that guaranteessafe and standard system behavior. Their hoies are mainly based on pastexperiene, hene, they usually provide a similar Us

op set for produts withsimilar harateristis (and then with a similar Um set).� The last subset Us
fnc depends, analytially, on Um and Us

op.Fig. 5.1 shows the evolution of the open loop eigenvalues for 10 produts withthe following Um set:
w ∈ [1150 − 1180] mm

hn ∈ [2 − 2.2] mm
σ0

1 ∈ [50 − 52] KN/mm2

σ0
n ∈ [35 − 37] KN/mm2.Eah eigenvalue moves inside a very limited zone. This fat on�rms that twoproduts with the same Um set have nearly the same Us set and so, nearly thesame dynamis. Hene, the spae dimension of the onvex hull an be redued
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Figure 5.1: Open loop eigenvalues variationto D = card(Um) = 4.5.2.2 Constrution of the onvex hullEah produt p ∈ P = {1, ..., NP} is haraterized by its Um(p) set and an thenbe represented as a point in a 4-dimensional spae. Consider the Eisenhütten-stadt HSM database, whih ontains NP = 10000 produts. Fig. 5.2 shows the82



5.2. Polytopi modelingprojetions of the database on the six possible planes. Eah point represents adi�erent produt. The variation of the independent parameters in the databaseis:
w ∈ [810 − 1670] mm
hn ∈ [1.9 − 6.2] mm

σ0
1 ∈ [22 − 65] KN/mm2

σ0
n ∈ [30 − 90] KN/mm2.

(5.3)Sine the ombinations among the parameters that belong to Um are in�nite, the
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Figure 5.2: ArelorMittal Eisenhüttenstadt HSM database (2D projetion)produts orresponding to the onvex hull verties are not neessarily inludedin the database. In this ase, given the set Um(l), the subset Us
op(l) must beestimated for all the produts l ∈ L. To this aim, the subset Us

op(l) an bearbitrarily set to be equal to the subset Us
op(p

l) of the produt pl ∈ P �losest�to the vertex l. Therefore, for eah vertex l ∈ L, pl may be found solving thefollowing minimization problem:
Dmin(l, pl) = min{D(l, p), p ∈ P}, (5.4)with

D(l, p) = [(w(l) − w(p))2 + (hn(l) − hn(p))2+

(σ0
1(l) − σ0

1(p))2 + (σ0
n(l) − σ0

n(p))2]
1

2 . 83



Chapter 5. Robust steering ontrol of hot strip mill
D(l, p) represents the distane, with referene to the set Um, between the vertex
l and the produt p, for any (l, p) ∈ L × P. The omputation of (5.4) assumesthat all the parameters are normalized beforehand into the interval [−1, 1]. An

PSfrag replaements

l

p1

p2

p3

hn

wFigure 5.3: Dmin omputation: A two dimensional exampleillustrative two dimensional example is proposed in Fig. 5.3. Consider a vertex land three di�erent produts p1, p2 and p3. It is easy to see that
Dmin(l, pl) = D(l, p2) = [(w(l) − w(p2))2 + (hn(l) − hn(p2))2]

1

2 .The onvex hull inluding the whole set of rolled produts bounded by (5.3) maybe divided into smaller NF onvex hulls for improving the system performanes.For eah family of produts f ∈ F = {1, ..., NF}, a minimization problem in theform of (5.4) is solved to get the onvex hull verties of this family.5.3 Robust steering ontrol designTo our knowledge, all the onditions to design a ontrol law stabilizing a twotime sale swithed system need a state vetor with onstant omponents anddimension. Nevertheless, in the HSM system, the omponents and dimensionof the state vetor hange at eah swithing time, as explained in setion 1.4.A possible solution onsists in designing a robust ontrol law stabilizing eahsubsystem i ∈ I of the HSM system (5.1) separately. In this �rst phase, thee�et of the swithings is not taken into aount and the i index is omitted.84



5.4. Stability analysis of the tail end swithed systemThe stability of the tail end swithed system is veri�ed a posteriori. Therefore,onsider the subsystem orresponding to the mode i ∈ I of (5.1):










x(s + 1) = A(s)x(s) + Bu(s)u(s) + Bd(s)d(s)

q(s) = Cqx(s) + Dquu(s)

y(s) = Cyx(s).

(5.5)Due to atuators rate limits, the fast manifold, whih is asymptotially stable inopen loop, annot be ontrolled. Hene, a slow sampling robust ontrol law isable to stabilize asymptotially the unertain two time sale system (5.5). Theslow sampling model orresponding to eah vertex l ∈ L of (5.5) is:


















x1(s + 1) = εÃl
11x1(s) + Ãl

12x2(s) + B̃l
u,1u(s) + B̃l

d,1d(s)

x2(s + 1) = εÃl
21x1(s) + Ãl

22x2(s) + B̃l
u,2u(s) + B̃l

d,2d(s)

q(s) = Cq,1x1(k) + Cq,2x2(k) + Dquu(s)

y(s) = Cy,1x1(s) + Cy,2x2(s),where x1(s) ∈ R
n1, x2(s) ∈ R

n2, ε = 0.05, Ts = αsαf = 0.05, Cq,1 = 0 and
Cy,1 = 0, for all s ∈ Z

+. Its orresponding slow subsystem is:
{

xs(s + 1) = Ãl
sxs(s) + B̃l

u,sus(s) + B̃l
d,sd(s)

q(s) = C̃sxs(s) + D̃sus(s),where Ãl
s = Ãl

22, B̃l
u,s = B̃l

u,2 and B̃l
d,s = B̃l

d,2. C̃s = Cq,2 =

[

In2

0r×n2

], D̃s = Dqu =
[

0n2×r

D0
qu

] are two weighting matries whih respet the orthogonality hypothesis
C̃ ′

sD̃s = 0, D̃′
sD̃s ≻ 0. The pair (Ãl

s, B̃
l
u,s) is assumed to be ontrolable. Sine theHSM system is subjet to a strong external perturbation d, we deided to designthe robust steering ontrol law in a H2 framework. Therefore, Theorem 4 maybe applied to design a redued state-feedbak ontrol law

u(s) = Kx(s) (5.6)suh that the ontroller gain K = [0 Ks] stabilizes asymptotially the unertaintwo time sale system (5.5) and minimizes the H2 norm of its slow dynamis.5.4 Stability analysis of the tail end swithed sys-temThe goal of this setion is to verify the asymptoti stability of the tail end swithedsystem, for any (i, l) ∈ I × L. The swithing time depends on the rolled stripand must be estimated on-line. Hene, the stability ondition has also to take85



Chapter 5. Robust steering ontrol of hot strip millinto aount an unertainty in the swithing time.Consider the set of matries {Ei : i ∈ I} introdued in Chapter 1. The hangeof basis
z(s) = Ei′xi(s)yields the same state vetor z(s) ∈ R

2n for eah subsystem i ∈ I and for all
s ∈ Z

+. Hene, we an write the losed loop swithed system in the polytopiform:
z(s + 1) = Tσ(s)(s)z(s) (5.7)with
Ti(s) =

NV
∑

l=1

λi,l(s)T̄i,l,and λi,l(s) ∈ Y. The losed loop matrix T̄i,l = Ei′(Ãi,l+B̃i,l
u Ki)Ei is Shur, where

Ki orresponds to the ontroller gain of the state-feedbak ontrol law (5.6), forany (i, l) ∈ I × L.In order to prove the asymptoti stability of the losed loop system (5.7),we provide a dwell time ondition [GC06b℄ taking into aount the unertainparameters l ∈ L and an unertainty τ i ∈ W i = {−Nτ i , ..., Nτ i} in the swithingtime. To this aim, onsider three suessive swithing times tq−1, tq and tq+1.For s ∈ [tq−1, tq) the system is in the subsystem orresponding to (i−, l−, τ i−) ∈
I × L ×W i− , for s ∈ [tq, tq+1) the system is in the subsystem orresponding to
(i, l, τ i) ∈ I × L × W i and, for s = tq+1, the system jumps to the subsystemorresponding to (i+, l+, τ i+) ∈ I ×L×W i+ . tq−1, tq and tq+1 satisfy tq − tq−1 =

∆
i−
q−1 ≥ ∆i− ≥ 1, tq+1 − tq = ∆i

q ≥ ∆i ≥ 1, for any q ∈ N, where ∆i isthe dwell time of the subsystem i. We assume Nτ i + Nτ i+ < ∆i. Hene, thesubsystem i is ontrolled by the wrong gain Ki− for a time t ∈ (sTs, (s + τ i)Ts)if τ i > 0, with T̄i−,l = Ei′(Ãi,l + B̃i,l
u Ki−)Ei. Furthermore, the subsystem i isontrolled by the wrong gain Ki+ for a time t ∈ (sTs, (s− τ i+)Ts) if τ i+ < 0, with

T̄i+,l = Ei′(Ãi,l + B̃i,l
u Ki+)Ei (see Fig. 5.4).Let the transition matrix Qπ,∆i

q
, whih represents the system evolution for

s ∈ [tq, tq+1). Its value depends on the sign of τ i and τ i+ :






















if τ i ≤ 0, τ i+ ≥ 0 : Qπ,∆i
q

= (T̄i,l)
∆i

q ,

if τ i > 0, τ i+ ≥ 0 : Qπ,∆i
q

= (T̄i,l)
∆i

q−τ i

(T̄i−,l)
τ i

,

if τ i ≤ 0, τ i+ < 0 : Qπ,∆i
q

= (T̄i+,l)
−τ i+

(T̄i,l)
∆i

q+τ i+
,

if τ i > 0, τ i+ < 0 : Qπ,∆i
q

= (T̄i+,l)
−τ i+

(T̄i,l)
∆i

q−τ i+τ i+
(T̄i−,l)

τ i

,

(5.8)with π = i, i− 6= i, i+ 6= i, l, l+, τ i, τ i+ ∈ Π = I × I × I × L × L × W i × W i+ .The following theorem gives a generalization of Theorem 7 for unertain swithedsystems with an unertainty in the swithing time.86



5.4. Stability analysis of the tail end swithed system
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stq−1 tq tq+1

τ i > 0

τ i+ < 0

Ki

Ki−

Ki+

Figure 5.4: Controller swithingsTheorem 15 Consider the unertain swithed system (5.7) and an unertaintyin the swithing time τ i ∈ W i. If there exist matries Pi,l = Pi,l
′ ≻ 0 of appropri-ate dimensions suh that the LMIs

T̄ ′
i,lPi,lT̄i,l − Pi,l ≺ 0, ∀ (i, l) ∈ I × L, (5.9)

Q′
π,∆iPi+,l+Qπ,∆i − Pi,l ≺ 0, ∀ π ∈ Π (5.10)hold, then the swithed system (5.7) is asymptotially stable for ∆i

q ≥ ∆i ≥ 1,
∀ (i, l, τ i) ∈ I × L ×W i.Proof. Let the parameter dependent quadrati Lyapunov funtion

V (s) = z(s)′
N
∑

i=1

NV
∑

l=1

ϕi(s)λi,l(s)Pi,lz(s)where Pi,l = P ′
i,l ≻ 0, ϕi(s) : N → {0, 1},

N
∑

i=1

ϕi(s) = 1 and λi,l(s) ≥ 0, NV
∑

l=1

λi,l(s) =

1, for any (i, l) ∈ I × L and for all s ∈ Z
+. The system (5.7) is asymptotiallystable if the di�erene L(s) = V (s + 1) − V (s) satis�es the inequality

L(s) = z(s)′(T̂σ(s)(s)′P+(s)T̂σ(s)(s) − P(s))z(s) ≺ 0where
T̂σ(s)(s) =

N
∑

i=1

Ti(s) =

N
∑

i=1

NV
∑

l=1

ϕi(s)λi,l(s)T̄i,l, 87



Chapter 5. Robust steering ontrol of hot strip mill
P(s) =

N
∑

i=1

NV
∑

l=1

ϕi(s)λi,l(s)Pi,l,

P+(s) =

N
∑

i=1

NV
∑

l=1

ϕi(s + 1)λi,l(s + 1)Pi,l =

N
∑

i+=1

NV
∑

l+=1

ϕi+(s)λi+,l+(s)Pi+,l+for any (i, l) ∈ I × L and for any (i+, l+) ∈ I × L [HDI06℄. From (5.9), for any
s ∈ [tq, tq+1) the Lyapunov funtion v(z(s)) = z(s)′Pi,lz(s) satis�es

v(z(s + 1)) < v(z(s)).Hene, there exist salars α ∈ (0, 1) and β > 0 suh that
‖z(s)‖2 ≤ βαs−tqv(z(tq)), (5.11)

s ∈ [tq, tq+1). Moreover, from (5.8), when τ i > 0 and τ i+ < 0, we have Qπ,∆i
q

=

(T̄i+,l)
−τ i+

(T̄i,l)
∆i

q−τ i+τ i+
(T̄i−,l)

τ i . Hene, using (5.10) we obtain:
v(z(tq+1)) = z(tq+1)

′Pi+,l+z(tq+1)

= z(tq)
′(T̄−τ i+

i+,l T̄
∆i

q−τ i+τ i+

i,l T̄ τ i

i−,l)
′Pi+,l+T̄−τ i+

i+,l T̄
∆i

q−τ i+τ i+

i,l T̄ τ i

i−,lz(tq)

< z(tq)
′(T̄−τ i

i−,l T̄
∆i

q−∆i

i,l T̄ τ i

i−,l)
′Pi,lT̄

−τ i

i−,l T̄
∆i

q−∆i

i,l T̄ τ i

i−,lz(tq)

≤ z(tq)
′(T̄ τ i−τ i

i−,l )′Pi,lT̄
τ i−τ i

i−,l z(tq)

= z(tq)
′Pi,lz(tq) = v(z(tq)). (5.12)The non-strit inequality holds beause ∆i

q − ∆i ≥ 0 and T̄i,l is Shur. Hene
(T̄

∆i
q−∆i

i,l )′T̄−τ i′

i−,l Pi,lT̄
−τ i

i−,l T̄
∆i

q−∆i

i,l � T̄−τ i′

i−,l Pi,lT̄
−τ i

i−,l ,for any (i, l) ∈ I × L. The relation v(z(tq+1)) < v(z(tq)) is veri�ed also for theother ases of (5.8). In order to see it, it is su�ient to substitute the right valueof Qπ,∆i
q
in (5.12). Hene, given the initial ondition of (5.7) z(0) = z0, thereexists δ ∈ (0, 1) suh that

v(z(tq)) ≤ δqv(z0), ∀ q ∈ N. (5.13)Finally, (5.11) and (5.13) imply that the system (5.7) is asymptotially stable.Remark 13 In order to verify the LMIs (5.9)-(5.10) of Theorem 15, NNV +
N(N − 1)2N2

V (Nτ i + 1)2 possible ombinations have to be onsidered, in the gen-eral ase. Nevertheless, in the HSM system ase, only n − 1 swithings o-ur. Moreover, sine the unertain parameters are onstant for eah produt,swithings are possible only between subsystems with the same l. Hene, only
NNV + (n − 1)NV (Nτ i + 1)2 LMIs have to be veri�ed.88



5.5. Robust steering ontrol implementationTable 5.1: Families boundsPPPPPPPPPFamily Data
w (mm) hn (mm) σ0

1

(

KN
mm2

)

σ0
n

(

KN
mm2

)1 810 − 1200 1.9 − 3 22 − 65 30 − 952 810 − 1200 3 − 4.5 22 − 65 30 − 953 810 − 1200 4.5 − 6.2 22 − 65 30 − 954a 1200 − 1400 1.9 − 3 22 − 65 30 − 954b 1400 − 1670 1.9 − 3 22 − 65 30 − 955 1200 − 1670 3 − 4.5 22 − 65 30 − 956 1200 − 1670 4.5 − 6.2 22 − 65 30 − 955.5 Robust steering ontrol implementationIn order to obtain a simple and systemati proedure so as to extend the steeringontrol to di�erent fatories, a user-friendly interfae, alled Robust Steering Con-trol Toolbox (RSCT ) [MBS+08℄, has been developed under Matlab. The softwareimplements the following funtions:� Given the desired family bounds, it omputes the Um(l, f) set, whih on-tains the information onerning the onvex hulls verties, for any (l, f) ∈
L×F . Hene, the minimization problem (5.4) is solved in order to estimatethe Us(l, f) set, for any (l, f) ∈ L ×F .� The knowledge of the U(l, f)={Um(l, f),Us(l, f)} set allows to ompute thelinear model of the HSM system, for any (i, l, f) ∈ I × L × F .� Therefore, the robust ontroller gains Ki,f are omputed solving the LMIbased onditions of Theorem 4 for any (i, f) ∈ I×F . To this aim, RSCT ex-ploits the LMI solver SeDuMi [Stu99℄ and the MATLAB toolbox YALMIP[L�04℄.� Finally, the asymptoti stability of the losed loop swithed system (5.7)may be veri�ed using Theorem 15.The main features of RSCT features are presented in Appendix C. In thenext setions, we present simulation and experimental results at EisenhüttenstadtHSM. After experimental trials, the whole database was divided into NF = 7 fam-ilies, with referene to the Um set. The families bounds are summarized in Table5.1. This hoie improves system performanes, ompared to the performanesobtained using a single ontroller for all the produts. The number of families hasbeen limited in order to handle the data in the fatory more easily. The weightingmatries D̃i,f

s have been tuned to ful�ll the onstraints on the stand tilting ∆Sdesribed in setion 1.3, for any i ∈ I. 89



Chapter 5. Robust steering ontrol of hot strip mill5.6 Simulation results5.6.1 n-stands subsystemIn this setion, simulation results are shown for a produt p with Um = {967, 2.02,
27.9, 40.1}. From Table 5.1, p belongs to the �rst family. Fig. 5.5 shows theevolution of the strip o�-enter Z in the last stand. The solid line representsthe Z evolution using with the H2 ontroller gain Kn,1. The dash-dotted lineshows the Z evolution using a lassi LQ ontroller gain, designed for an averageprodut of family 1. The dashed line shows the Z evolution using the lassiLQ ontroller gain, given in [DBI+08℄, designed for an average produt of thewhole database. As expeted, the division of the whole database into several
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Figure 5.5: Exit strip o�-enter evolutionfamilies improves system performanes. Moreover, the H2 robust ontroller takesinto aount the unertain parameters and minimizes the e�ets of the externalperturbation, whih is due to the oilbox vibrations. The last line, the dotted one,shows the Z evolution without any ontrol. Notie that in this ase a saturationours: this means that the strip is rashing against the HSM side guides.5.6.2 Tail end swithed systemIn this setion, we present the simulation results onerned with the tail endphase. Given the ontroller gains and the dwell time ∆i, Theorem 15 provides asu�ient ondition for the stability of the swithed system (5.7) for any τ i ∈ W i.We found a solution for Nτ i ≤ 4, for any i ∈ I. Sine Ts = 0.05 sec, the stability of90



5.6. Simulation resultsthe system is guaranteed for a maximum unertainty of ± 0.2 sec in the swithingtime. From pratial experiene, this onstraint an be respeted.
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Figure 5.6: Strip o�-enter evolution: omparisonIn Fig. 5.6, the evolution of the strip o�-enter Z at the exit of eah standis shown. Notie that, when the strip leaves the gth stand, the value of Zg hasnot a physial meaning anymore and is set to zero. In this �rst simulation, nodelay in the ontrol signal has been onsidered. The solid line represents the Zevolution when the system is ontrolled by the robust ontroller gain omputedusing Theorem 4 for eah subsystem. The dashed line shows the Z evolutionwhen the system is ontrolled by the LQ ontroller gain designed using averagestate matries. The dotted line orresponds to the Z evolution when the systemworks in open loop. We an see that the robust ontroller is able to keep the
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Figure 5.7: Strip o�-enter evolution with delay in the H2 robust ontroller swith-ingsopen loop ase, the Z value begins to inrease when the strip leaves the �rststand (s = 1613). Notie that a saturation ours in stands 4 and 5. This meansthat the strip is rashing against the side guides. The result is a derease of theprodut quality and, in the worst ase, the damage of the rolls.In Fig. 5.7, we introdue an unertainty in the swithing signal when thesystem is ontrolled by the H2 robust ontrol law. In the Eisenhüttenstadt ase,the swithing time an be estimated online, with an error that has the samesign for any i ∈ I. Here, the ase τ i ≥ 0 is presented. This means that theontroller swithes to the i-stands subsystem τ i instants after the strip left thestand. Three di�erent ases are shown: (τ = τ 4 = τ 3 = τ 2 = 4) (solid line),
(τ = τ 4 = τ 3 = τ 2 = 8) (dashed line), (τ = τ 4 = τ 3 = τ 2 = 12) (dottedline). Although theoretially the system is stable only for τ ≤ 4, notie that until
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5.7. Industrial system desription
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Figure 5.8: Strip o�-enter evolution with delay in the average LQ ontrollerswithingsthis ase, the Z value inreases in the opposite side of the open loop ase.In Fig. 5.8, we onsider the same delay using the average LQ ontroller. Wean see that this kind of ontroller does not aept unertainties on the swithingtime. The system is unstable and the strip rashes against the side guides in eahase.5.7 Industrial system desriptionThe steering ontrol system inludes �ve ameras measuring the strip o�-enter,the main omputer SC and the data onnetion devies (see Fig. 5.9). Theameras, whih are DAC004 delivered by Fife, are proteted by a water-ooledhousing (the strip an reah 1000°C) and mounted on dediated vibration ab-sorbers to avoid high aelerations. A Pro�bus onnets eah amera to the main93
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Figure 5.9: Global proess information at Eisenhüttenstadt HSMomputer, whih is linked to the PLC stand by Pro�bus as well. The main om-puter onsists of a 3 GHz Intel-P4 standard personal omputer with an integratedPro�bus interfae. The ontrol system is developed in the C++ language andworks under the operating system Windows XP. A TCP/IP using an Ethernetonnetion ommuniates the rolling parameters to the Level 2 system. Filtering,ative pixel seletion and edge detetion are arried out by FPGA devies, whihare diretly loated on the ameras. This arhiteture redues the amount ofdata that must be transmitted to the main omputer. An edge detetion algo-rithm based on gradient analysis is used to obtain lear information onerningthe strip o�-enter values Z. During the operating phase of the ontrol system,the applied stand tilt is u(s) = Ki,fz(s), with Ki,f the gain omputed o�-lineby the RSCT software, for any (i, f) ∈ I × F . In order to avoid large values ofthe ontrol signal u, due to measurement errors, a saturation funtion is appliedbefore sending the stand tilt signal to the PLC.5.8 Experimental resultsIn Fig. 5.10, we show the exit strip o�-enter evolution of a produt with Um =
{895, 2.42, 30.4, 37.4} (family 1). When the produt enters the HSM the steeringontrol is on (Fig. 5.10.b) and the strip o�-enter value is kept lose to zero (Fig.5.10.a). At the instant s = 1050, the steering ontrol system is swithed o� andthe signal u is set to a onstant value by the operator. As expeted, the Z valueinreases quikly (from 10 to 30 mm). In Fig. 5.11, we show the exit Z evolu-tion of two onseutive produts with the same set Um ={1510, 2.02, 59.1, 72.5}94



5.8. Experimental results
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Figure 5.10: Exit strip o�-enter and ontrol signal evolution
(family 4). The solid line orresponds to the Z evolution with robust steeringontrol whereas the dotted line orresponds to the open loop Z evolution. Theperformane improvement is demonstrated.In Fig. 5.12, the standard deviation of the strip o�-enter values σx(Z) ob-tained by applying the H2 ontrol system are ompared with the standard devi-ation of the strip o�-enter values obtained in open loop. The statistis onern100 ontrolled strips and 200 strips in open loop of all the families. Performaneimprovement is substantial. When the H2 steering ontrol is swithed o�, thestrip o�-enter standard deviation inreases more than 125%. The bounds on thestand tilt ∆S maximum values have always been respeted and the wedge ∆hhas always been kept between ±10 µm. In Fig. 5.13, the standard deviation ofthe strip o�-enter values σx(Z) obtained using the H2 ontrol system are om-pared with the standard deviation of the strip o�-enter values obtained usingthe average LQ ontrol system proposed by [DBI+08℄. The statistis onern 44strips from all the families. In order to guarantee the same rolling onditions (e.g.strip parameters, roll harateristis, external temperature, system asymmetries)and then obtain oherent results, only idential and onseutive strips have beenompared. We observe performane improvement using the H2 ontrol system(about 35%). Also the standard deviation of the wedge value σx(∆hn), whihgives a measure of the quality of the rolled produt, has been improved from
7.82 µm (LQ ontrol system) to 5.56 µm (H2 ontrol system). 95
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Figure 5.11: Exit strip o�-enter evolution
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Figure 5.12: σx(Z) omparison : H2 steering ontrol and open loop systems5.9 ConlusionIn this hapter, a robust steering ontrol design has been proposed in order toguarantee the asymptotial stability of the HSM unertain swithed system pre-sented in Chapter 1 and improve its performane. The aim has been ahieved96



5.9. Conlusion
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Figure 5.13: σx(Z) omparison: H2 and average LQ steering ontrol systemsminimizing the strip movement during the rolling proess. Sine an HSM treatsa set of very heterogeneous produts, an extensive database was reated and di-vided into seven families of produts. A method for reduing the omplexity ofthe problem exploiting the relations among the di�erent produts parameters hasalso been presented. This method yields a onvex formulation of the stabilizationproblem. Hene, for eah family, a di�erent LMI based robust ontroller wasdesigned. A dwell-time ondition verifying the asymptotial stability of the tailend swithed system has also been provided. This ondition takes into aountthe unertainties on the physial parameters and on the ontrollers swithinginstants.Simulations (for both the n-stands subsystem and the tail end subsystem) andexperimental results (for the n-stands subsystem) onerning the ArelorMittalHSM of Eisenhüttenstadt proved the e�etiveness of the presented method. Thestrip o�-enter was signi�antly redued, with respet to the results obtained inopen loop and using the old ontrol system.Steering ontrol is an important framework in steel prodution. In order toadapt the desribed method to other mills, a dediated Matlab toolbox, RSCT,was developed. Only the model tuning and a spei� database of produts, whiheah plant an provide, are required.
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Chapter 5. Robust steering ontrol of hot strip mill
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General onlusionThis Ph.D. thesis deals with a ertain number of problems arising in pratialimplementation of ontrol systems: multi time sale phenomena, sudden mod-i�ations on the system dynamis, disontinuities on the ontrol signal due toontroller swithings, the need of design a limited number of ontrollers in spiteof a wide variation on the physial parameters. In order to illustrate the valid-ity of the obtained results, we resorted to a real problem onerning the steelprodution framework, the robust steering ontrol of hot strip �nishing mill.First, a onvex solution of the linear quadrati ontrol design for disretetwo time sale linear systems has been proposed. Fast and slow sampling statefeedbak ontrol designs were investigated. An extension of the slow samplingontroller to unertain systems in the polytopi form has also been presented.Hene, we addressed the stability problem of two time sale swithed systems.We showed that asymptotial stability of the slow and fast swithed subsystemsunder arbitrary swithing rules does not imply asymptotial stability of the or-responding two time sale swithed system in the singular perturbation form. Aoupling onstraint, expressed in terms of LMIs independent of the value of thesingular perturbation parameter, must also be satis�ed. A stabilizing state feed-bak ontrol law was also designed, for the ontinuous and fast sampling disretetime frameworks. We also introdued a bumpless transfer method for disretetime swithed systems, based on a linear quadrati optimization approah, forreduing the ontrol signal disontinuities due to the swithings. Dwell time on-ditions assessing asymptotial stability of the losed loop swithed system wereestablished.The pratial ontribution of this thesis, the robust steering ontrol of a hotstrip mill, exploits some of the previous theoretial results. The aim is to guar-antee asymptoti stability of a hot strip mill system and improve the quality ofthe rolled produts. This purpose was ahieved minimizing the strip movementduring the rolling proess. Sine a hot strip mill treats a set of very heterogeneousproduts, an extensive database was reated and divided into seven families ofproduts. A method for reduing the omplexity of the problem by exploitingthe relations among the di�erent produts parameters has also been presented.This method yields a onvex formulation of the stabilization problem. Therefore,a di�erent robust ontroller was designed for eah family. A dwell time ondition,whih veri�es asymptoti stability of the tail end swithed system, has also been99



General onlusionpresented. This ondition takes into aount the unertainties on the physialparameters and on the swithing instants. In order to adapt this method to othermills, a dediated Matlab toolbox, alled RSCT, was developed. Simulations andexperimental results at Eisenhüttenstadt mill proved the e�etiveness of the pro-posed solution. The lateral movement of the strip was signi�antly redued, withrespet to the results obtained in open loop and using the old ontrol system.Multi time sale swithed systems o�er several future researh topis. In thiswork, we pointed out the fat that lassial stability properties of linear systemsin the singular perturbation form do not hold, when arbitrary swithings arise.Therefore, we presented su�ient onditions to analyze asymptoti stability anddesign a stabilizing state feedbak ontrol law of two time sale swithed linearsystems. The extension of these onditions to more general lasses of swithedsystems should be investigated. Further, pratial implementation usually re-quires more omplex ontrol tehniques, as output feedbak, and performaneonstraints. In physial systems, the time sale of the state variables orrespond-ing to the state spae model of the system may hange after a swithing. Anexample of this phenomenon is observed during the tail end phase of the rollingproess in a hot strip mill. Even if the angles between the strip and the mill axisof eah stand are usually �fast� state variables, eah time the strip leaves a standthe angle between the strip and the mill axis on the �rst stand ative beomesa �slow� state variable. This behavior was modeled through a two time saleswithed system for whih the state vetors orresponding to the slow and fastsubsystems vary at eah swithing time. To our knowledge, the stabilization prob-lem of two time sale swithed systems with variable state vetors has never beenaddressed before this work. We avoided the problem by designing an independentontrol law for eah subsystem and verifying the stability of the tail end swithedsystem a posteriori, through a dwell time ondition. This approah yields a setof well-behaved ontrollers and, in the hot strip mill ase, guarantees the losedloop asymptoti stability. However, in a general ontext it presents a drawbak.Sine the ontrollers do not take into aount the swithings e�ets, the losedloop stability of the whole swithed system is evaluated through a ondition thatdepends on the singular perturbation parameter. Therefore, numerial problemsmay arise due to ill-onditioning onstraints.In the robust steering ontrol framework, the next step onerns the industrialimplementation of the tail end phase regulation at Eisenhüttenstadt plant. Theinstallation of the proposed ontrol system to other mills is also planned.
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Appendix AFormulae
A.1 Shur omplementThe LMI [ A B

(⋆)′ D

]

≻ 0, where A = A′ and D = D′, is equivalent to LMIs
D ≻ 0, A − BD−1B′ ≻ 0, and to LMIs A ≻ 0, D − B′A−1B ≻ 0.A.2 Inverse of a blok matrixConsider an invertible blok matrix [A B

C D

]. Its inverse is
[

A B
C D

]−1

=

[

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

.A.3 Searle's identity
(I + AB)−1 = I − A(I + AB)−1B.
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Appendix BProofs
B.1 Proof of Theorem 2From (2.41), let us denote

P (ε)−1 =

[

W (ε) Y (ε)
Y (ε)′ Q(ε)

]

≻ 0, (B.1)with
W (ε) = (P1(ε) − P2(ε)P3(ε)

−1P2(ε)
′)−1,

Y (ε) = −W (ε)P2(ε)P3(ε)
−1,

Q(ε) = P3(ε)
−1 + P3(ε)

−1P2(ε)
′W (ε)P2(ε)P3(ε)

−1.

(B.2)Hene, substituting (2.18), (2.41), (2.42) and (B.1) in (2.37), we obtain:
[

ε−1X1(ε) ε−1X2(ε)
ε−1X2(ε)

′ X3(ε)

]

≺ 0, (B.3)with
X1(ε) = ε(A11P1(ε)A

′
11 + A12P2(ε)

′A′
11 + A11P2(ε)A

′
12 + A12P3(ε)A

′
12+

A11Z1(ε)
′B′

1 + A12Z2(ε)
′B′

1 + B1Z1(ε)A
′
11 + B1Z2(ε)A

′
12+

B1(Z1(ε)W (ε)Z1(ε)
′ + Z2(ε)Y (ε)′Z1(ε)

′ + Z1(ε)Y (ε)Z2(ε)
′+

Z2(ε)Q(ε)Z2(ε)
′)B′

1 − P1(ε) + x0
1x

0
1
′
),

X2(ε) = ε(A11P1(ε)A
′
21ε + A12P2(ε)

′A′
21ε + A11P2(ε)(In2

+ εA22)
′+

A12P3(ε)(In2
+ εA22)

′ + A11Z1(ε)
′B′

2ε + A12Z2(ε)
′B′

2ε+

B1Z1(ε)εA
′
21 + B1Z2(ε)(In2

+ εA22)
′ + B1(Z1(ε)W (ε)Z1(ε)

′+

Z2(ε)Y (ε)′Z1(ε)
′ + Z1(ε)Y (ε)Z2(ε)

′ + Z2(ε)Q(ε)Z2(ε)
′)B′

2ε−

P2(ε) + x0
1x

0
2
′
), 103



Appendix B. Proofs
X3(ε) = εA21P1(ε)A

′
21ε + εA21P2(ε)(In2

+ εA22)
′ + (In2

+ εA22)×

P ′
2(ε)A

′
21ε + (In2

+ εA22)P3(ε)(In2
+ εA22)

′ + εA21Z1(ε)
′B′

2ε+

(In2
+ εA22)Z2(ε)

′B′
2ε + εB2Z1(ε)A

′
21ε + εB2Z2(ε)(In2

+ εA22)
′

+ εB2(Z1(ε)W (ε)Z1(ε)
′ + Z2(ε)Y (ε)′Z1(ε)

′ + Z1(ε)Y (ε)Z2(ε)
′+

Z2(ε)Q(ε)Z2(ε)
′)B′

2ε − P3(ε) + x0
2x

0
2
′
.When ε → 0, using (B.2) we have :

X1 =A11P1A
′
11 + A12P

′
2A

′
11 + A11P2A

′
12 + A12P3A

′
12 + A11Z

′
1B

′
1+

A12Z
′
2B

′
1 + B1Z1A

′
11 + B1Z2A

′
12 + B1Z1(P1 − P2P3

−1P ′
2)

−1Z ′
1B

′
1−

B1Z2P3
−1P ′

2(P1 − P2P3
−1P ′

2)
−1Z ′

1B
′
1 − B1Z1(P1 − P2P3

−1P ′
2)

−1×

P2P3
−1Z ′

2B
′
1 + B1Z2P3

−1Z ′
2B

′
1 + B1Z2P3

−1P ′
2(P1 − P2P3

−1P ′
2)

−1×

P2P3
−1Z ′

2B
′
1 − P1 ≺ 0.

(B.4)
X2 = A11P2 + A12P3 + B1Z2 − P2 = 0, (B.5)

X3 =P ′
2A

′
21 + A21P2 + A22P3 + P3A

′
22 + Z ′

2B
′
2 + B2Z2 + x0

2x
0
2
′
≺ 0. (B.6)Equation (2.43) veri�es (B.5). Furthermore, substituting (2.43) and (2.45) in(B.4), we obtain:

X1 =A11PfA
′
11 + A11Z

′
fB

′
1 + B1ZfA

′
11 + B1ZfP

−1
f Z ′

fB
′
1 − Pf+

A11P2P
−1
3 (P2A

′
11 + P3A

′
12 + Z ′

2B
′
1) + B1Z2P

−1
3 (P2A

′
11+

P3A
′
12 + Z ′

2B
′
1) + A12(P2A

′
11 + P3A

′
12 + Z ′

2B
′
1) − P2P

−1
3 P ′

2 =

A11PfA
′
11 + A11Z

′
fB

′
1 + B1ZfA

′
11 + B1ZfP

−1
f Z ′

fB
′
1 − Pf ≺ 0,

(B.7)and, substituting (2.23), (2.43) and (2.44) in (B.6), we get:
X3 = AsPs + PsA

′
s + BsZs + Z ′

sB
′
s + x0

sx
0
s

′
≺ 0. (B.8)(B.7) and (B.8) represent the onstraints of the problems (2.50) and (2.49), re-spetively. Hene, they are satis�ed by assumption. Replaing in (B.3) theunknown values of P1(ε), P2(ε), P3(ε), Z1(ε), Z2(ε) with P1, P2, P3, Z1, Z2, weobtain:

[

ε−1X1 X4

X ′
4 X3 + O(ε)

]

≺ 0, (B.9)with
X4 =A11P1A

′
21 + A12P2

′A′
21 + A11P2A

′
22 + A12P3A

′
22 + A11Z1

′B′
2 + A12Z2

′B′
2+

B1Z1A
′
21 + B1Z2A

′
22 + B1(Z1WZ1

′ + Z2Y
′Z1

′ + Z1Y Z2
′ + Z2QZ2

′)B′
2+

x0
1x

0
2
′
.

W , Y and Q are obtained replaing P1(ε), P2(ε), P3(ε), Z1(ε), Z2(ε) in (B.2).The onditions X1 ≺ 0 and X3 ≺ 0 imply that there exists a salar ε1 > 0 suhthat the inequality
X1 − εX4(X3 + O(ε))−1X ′

4 ≺ 0104



B.2. Proof of Proposition 1holds ∀ ε ∈ (0, ε1]. Hene, using the Shur omplement, also (B.9) holds ∀ ε ∈
(0, ε1]. Moreover, there exists a salar ε2 > 0 suh that the inequality

εP (ε) =

[

Pf + P2P
−1
s P ′

2 P2

P ′
2 Ps

]

+ O(ε) ≻ 0holds, ∀ ε ∈ (0, ε2]. Thus, there exist matries Ps, Zs, Pf , Zf and a salar
εmax = min{ε1, ε2} whih verify the onstraints (2.36)-(2.37) of the problem(2.38), ∀ ε ∈ (0, εmax].Consider

us(k) = Ksxs(k) = ZsP
−1
s xs(k)and

uf(k) = Kfxf (k) = ZfP
−1
f xf (k).The omposite ontroller is

u(k) = us(k) + uf(k) = Ksxs(k) + Kfxf (k).Assume xs(k) = x2(k) and xf(k) = x1(k)− (In1
−A11)

−1(A12xs(k) + B1us(k)) =
x1(k) − (In1

− A11)
−1(A12 + B1Ks)xs(k). Hene, we have:

u(k) =ZfP
−1
f x1(k) + ZsP

−1
s x2(k) − ZfP

−1
f ×

(In1
− A11)

−1(A12 + B1ZsP
−1
s )x2(k) = K

[

x1(k)
x2(k)

]

,whih orresponds to (2.26). Applying the formula of the inverse of blok matrixto (2.51), we �nd:
P−1 =

[

P−1
f −P−1

f P2P
−1
s

−P−1
s P ′

2P
−1
f P−1

s + P−1
s P ′

2P
−1
f P2P

−1
s

]

.Thus, we get:
K = ZP−1 =

[

ZfP
−1
f ZsP

−1
s − ZfP

−1
f (In1

− A11)
−1(A12 + B1ZsP

−1
s )

]

,whih onludes the proof. �B.2 Proof of Proposition 1The proof is an extension of [Yur04℄ to the swithed systems ase. First, notiethat if the stability onditions of Theorem 9 hold, there exists a ommon quadratiLyapunov funtion V (x(t)) = xf (t)
′Pfxf (t) > 0 and matries Qi

f ≻ 0, i ∈ I, suhthat V̇ (xf (t)) = xf (t)
′(ε−1M

σ(t)′

11 Pf + ε−1PfM
σ(t)
11 )xf (t) ≤ −xf (t)

′ε−1Q
σ(t)
f xf (t).Let us de�ne λ

Qf

min = min{λmin(Qi
f ), i ∈ I} and λQs

max = max{λmax(Q
i
s), i ∈ I},for all t ≥ t0. Consider the inequalities

λmin(Pf)‖xf (t)‖
2 ≤ V (xf(t)) ≤ λmax(Pf)‖xf (t)‖

2 (B.10)105



Appendix B. Proofsand
V̇ (xf(t)) ≤ −ε−1λ

Qf

min‖xf (t)‖
2 ≤ −

λ
Qf

min

ελmax(Pf)
V (xf (t)). (B.11)Integrating (B.11), we obtain

∫ t

t0

dV (xf (t))

V (xf (t))
= ln

(

V (xf (t))

V (xf (t0))

)

≤ −
λ

Qf

min

ελmax(Pf )
t,and then:

V (xf (t)) = V (xf(t0))exp

(

−
λ

Qf

min

ελmax(Pf)
t

)

.Using (B.10), we get an upper bound for the norm of the state variables orre-sponding to the fast dynamis:
‖xf (t)‖ ≤

(

λmax(Pf)

λmin(Pf )

) 1

2

‖xf (t0)‖exp

(

−
λ

Qf

min

2ελmax(Pf)
t

)

. (B.12)A similar proedure yields a lower bound for the norm of the state variablesorresponding to the slow dynamis:
‖xs(t)‖ ≥

(

λmin(Ps)

λmax(Ps)

) 1

2

‖xs(t0)‖exp

(

−
λQs

max

2λmin(Ps)
t

)

. (B.13)Finally, the ratio of the exponents in (B.12) and (B.13) is
η =

λmin(Ps)λ
Qf

min

ελmax(Pf)λ
Qs
max

.

�B.3 Proof Theorem 10Let us assume
P (ε) =

[

P1(ε) P2(ε)
P2(ε)

′ P3(ε)

]

≻ 0, (B.14)
Z i(ε) =

[

Z i
1(ε) Z i

2(ε)
]

, (B.15)
Qi(ε) =

[

Qi
1(ε) Qi

2(ε)
Qi

2(ε)
′ Qi

3(ε)

]

≻ 0, (B.16)with
P1(ε) = Pf + εP2P

−1
s P ′

2,

P2(ε) = εP2 = −ε
N
∑

h=1

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ),

P3(ε) = εPs,

(B.17)106



B.3. Proof Theorem 10
Z i

1(ε) = Z i
f + εZ i

sP
−1
s P2

′, Z i
2(ε) = ε(Z i

s + Z i
fP

−1
f Y i), (B.18)

Qi
1(ε) = ε−1Qi

f , Qi
2(ε) = −((M i

11 + N i
1Z

i
fP

−1
f )Y i + PfM

i
21

′
+ Z i

f

′
N i

2

′
),

Qi
3(ε) = ε(Qi

s − (M i
21 + N i

2Z
i
fP

−1
f )Y i − Y i′(M i

21
′
+ P−1

f Z i
f

′
N i

2
′
)),

(B.19)and
Y i = −

N
∑

h=1,h 6=i

Mh
11

−1
(Mh

12Ps + Nh
1 Zh

s ). (B.20)Substituting (3.30) and (B.14)-(B.16) in (3.36), we have:
[

X i
1(ε) X i

2(ε)
X i

2(ε)
′ X i

3(ε)

]

≺ 0 (B.21)with
X i

1(ε) = ε−1(M i
11P1(ε) + P1(ε)M

i
11

′
+ M i

12P2(ε)
′+

P2(ε)M
i
12

′
+ N i

1Z
i
1(ε) + Z i

1(ε)
′N i

1
′
+ Qi

1(ε)),

X i
2(ε) = ε−1M i

11P2(ε) + ε−1M i
12P3(ε) + P1(ε)M

i
21

′
+

P2(ε)
′M i

22

′
+ ε−1N i

1Z
i
2(ε) + Z i

1(ε)
′N i

2

′
+ Qi

2(ε),

X i
3(ε) = M i

22P3(ε) + P3(ε)M
i
22

′
+ M i

21P2(ε) + P2(ε)
′M i

21
′
+

N i
2Z

i
2(ε) + Z i

2(ε)
′N i

2
′
+ Q3(ε).Replaing the values of P (ε), Z i(ε), Qi(ε) and the equations (3.33), (B.17)-(B.20),we obtain:

X i
1(ε) = ε−1(M i

11Pf + PfM
i
11

′
+ N i

1Z
i
f + Z i

f

′
N i

1

′
+ Qi

f + O(ε)) = ε−1(X i
f + O(ε)),

X i
2(ε) = ε(P ′

2M
i
22

′
+ O(ε)) = ε(X i

2 + O(ε)),

X i
3(ε) = ε(M i

sPs + PsM
i
s

′
+ N i

sZ
i
s + Z i

s

′
N i

s

′
+ Qi

s + O(ε)) = ε(X i
s + O(ε)).The inequality (B.21) an be written as

[

ε−1(X i
f + O(ε)) ε(X i

2 + O(ε))
(⋆)′ ε(X i

s + O(ε))

]

≺ 0.Satisfying the onditions (3.37) and (3.38) implies that X i
f ≺ 0 and X i

s ≺ 0.This means that there exists a salar εmax > 0 suh that X i
s + O(ε) ≺ 0 and

X i
f − ε2X i

2X
i
s

−1
X i

2
′
+ O(ε) ≺ 0, ∀ i ∈ I and ∀ ε ∈ (0, εmax]. Hene, using theShur omplement, the LMI (3.36) is veri�ed. Sine Pf ≻ 0 and Ps ≻ 0, (B.14)holds. Furthermore, substituting (B.19) in (B.16), we obtain

Qi(ε) =

[

ε−1In1
0

0 In2

]

×

[

Qi
f −((M i

11 + N i
1Z

i
fP

−1
f )Y i + PfM

i
21

′
+ Z i

f

′
N i

2
′
)

(⋆)′ Qi
s − (M i

21 + N i
2Z

i
fP

−1
f )Y i − Y i′(M i

21
′
+ P−1

f Z i
f

′
N i

2
′
)

]

×

[

In1
0

0 εIn2

]

≻ 0 107



Appendix B. Proofswhih, using the Shur omplement, holds if and only if








Qi
f + N i

1Z
i
fP

−1
f Z i

f

′
N i

1
′

H i N i
1Z

i
f 0

(⋆)′ Li Y i′ N i
2Z

i
f + Y i′

(⋆)′ (⋆)′ Pf 0
(⋆)′ (⋆)′ (⋆)′ Pf









≻ 0, (B.22)with H i = −(M i
11Y

i + PfM
i
21

′
+ Z i

f

′
N i

2
′
) and Li = Qi

s − M i
21Y

i − Y i′M i
21

′
+

N i
2Z

i
fP

−1
f Z i

f

′
N i

2
′
+ Y i′P−1

f Y i. (3.39) is non negative de�nite. This implies thatthe onstraint (B.22) holds ∀ i ∈ I.In order to �nd Ki, onsider us(t) = Ki
sxs(t) = Z i

sP
−1
s xs(t) and uf(t) =

Ki
fxf (t) = Z i

fP
−1
f xf (t). The omposite ontroller is given by uc(t) = us(t) +

uf(t) = Ki
sxs(t) + Ki

fxf (t). Letting xs(t) = x2(t) and xf (t) = x1(t) + M i
11

−1

(M i
12xs(t) + N i

1us(t)) = x1(t) + M i
11

−1
(M i

12 + N i
1K

i
s)xs(t), we have:

uc(t) = Z i
sP

−1
s x2(t) + Z i

fP
−1
f x1(t) + Z i

fP
−1
f M i

11
−1

(M i
12 + N i

1Z
i
sP

−1
s )x2(t).(B.23)When ε → 0, substituting (B.14) and (B.15) inKi(ε) = Z i(ε)P (ε)−1 and applyingthe formula of the inverse of blok matrix given in Appendix A.2 we �nd (B.23),whih onludes the proof. �B.4 Proof Theorem 12Let us assume
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B.4. Proof Theorem 12
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Appendix B. ProofsThe inequality (B.32) an be written as
[
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 ≻ 0.(B.33)(3.67) is non negative de�nite. This implies that the onstraint (B.33) holds
∀ (i, j) ∈ I × I.In order to �nd Ki, onsider us(k) = Ki
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(B.34)When ε → 0, substituting (B.24) and (B.25) in Ki(ε) = Z i(ε)P i(ε)
−1 and ap-plying the formula of the inverse of blok matrix given in Appendix A.2 we �nd(B.34), whih onludes the proof. �B.5 Constrution of the augmented state matrixFrom Theorem 13, when the bumpless transfer ontroller is on we have:

ubt,i(k) = Qi(k)





x(k)
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gi(k + 1)



 (B.35)110



B.5. Constrution of the augmented state matrixwhere
ũi(k) =

{

ũi,0(k) + (k − ti + 1)pi(k) if ti ≤ k < ti + τM
i

0 otherwise,
(B.36)with
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i
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 ,whih is onstant for any (i, j) ∈ I × I. �
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Appendix CRobust Steering Control ToolboxThe objetive of this appendix is to present RSCT (Robust Steering Control Tool-box ), aMATLAB toolbox whih implements the algorithms neessary to the HSMrobust steering ontrol design [MDI+ar℄, [MDI+09e℄. RSCT has been written inMATLAB R14SP1 (Release 14 with Servie Pak 1 ) and tested on WindowsXP and Windows VISTA Operating Systems. A GUI (Graphial User Interfae)is provided. A LMI solver is required to ompute the ontrollers. To interfaeMATLAB to the most popular solvers, the free MATLAB toolbox YALMIP isused [L�04℄. We tested two solvers: SeDuMi, that is available free of harge underGNU/GPL open soure liense [Stu99℄, and LMILAB, that an be found in theMATLAB-Robust Control Toolbox [GNLC95℄.To install RSCT, remove any old version, unzip the �le RSCT.rar and addthe diretory �\RSCT\software_RSCT� to your MATLAB paths. This oper-ation may be diretly done by the main MATLAB toolbar hoosing File→SetPath...→Add with Subfolders.... SeDuMi and YALMIP may be installed follow-ing a similar proedure.To run RSCT, tape �RSCT� on the MATLAB Command Window. The MainGUI shown in Fig. C.1 will appear.C.1 Main GUIThe Main GUI allows to ompute the ontrollers, export the results to �les,hek the stability of the losed loop system and reah the other GUIs fromthe File toolbar (Create a new family GUI, HSM simulator GUI, A3S GUI ).First, the number of stands n ∈ {5, 6, 7} must be set using the orrespondinghekboxes. Thus a database of produts must be loaded in order to omputea new ontroller. To this aim, go to File toolbar→Load Database. Choose the.txt �le whih ontains the desired database bounds, and then the path of theproduts database. The .txt �le, alled database_bounds.txt, may be reatedusing the spei� GUI desribed in setion C.2. Eah produt of the database113



Appendix C. Robust Steering Control Toolbox

Figure C.1: Main GUIis represented by a .mat �le ontaining its harateristis and the orrespondingHSM setting. The database may be reated through the A3S GUI desribed insetion C.4, or provided by the plants.The tuning of the default ontrol system weighting matries is done by mod-ifying the R0 boxes of the GUI. We obtain R = R0Dqu′Dqu, where Dqu is theweighting matrix given in hapter 5.Hene, the bottom Compute ontroller allsthe method whih omputes a di�erent observer based state-feedbak H2 robustontroller for eah subsystem. If the hekbox LPV observers is ative, a spei�observer is designed for eah vertex produt, in addition to the average observerdesigned by default. These observers may be used to implement a linear param-eter varying (LPV) strategy in order to take into aount the di�erent physialparameters of the rolled produts during the observation of the state variables. Ifthe LMI solver does not �nd a solution, RSCT shows a warning, as in Fig. C.2.The bottom Export results saves the ontroller information on the path:
\RSCT\ontroller_data\Matries_n_stands_database_bounds_RxRo\,where n is the number of stands, database_bounds orresponds to the name ofthe database_bounds.txt �le and R0 is the numerial value of the R0 body box.
3(n − 1) + 2 *.txt �les are generated (5(n − 1) + 2 if the hekbox LPV ob-servers is ative). The syntax is oherent with the ontroller �les used on theEisenhüttenstadt plant.One loaded a database of produts and a ontroller, the bottom Chek sta-bility yields the results of the posteriori stability test for eah subsystem and forthe full tail end swithed system [MDI+09e℄. If the LMI solver does not �nd asolution, RSCT shows a warning.114



C.2. Create a new family GUI

Figure C.2: Warning : LMI not feasibleC.2 Create a new family GUIThis GUI allows to ompute the onvex hull verties of a new family of produts.First, the name and the onvex hull bounds of the family must be set on the spe-i� boxes (Fig. C.3). The bounds onern the set Um = {w, h, σin, σout}, where
w is the strip width, h is the output thikness of the strip in the last stand and σinand σout are the hardness of the strip in the �rst and in the last stand, respetively.Hene, a database of produts (represented by a *.mat �le) must be loaded from

Figure C.3: New family GUIthe File toolbar. As in the Main GUI, it su�es to indiate the database path. Fi-nally, the oordinates of the 16 onvex hull verties must be set. This operation115



Appendix C. Robust Steering Control Toolboxis semi-manual beause of the extremely various shapes that the database anhave. To start, push the bottom Load verties. A 2D projetion of the databasewill appear (Fig. C.4). The four artesian oordinates of the onvex hull vertiesorresponding to the given projetion an be set using the left bottom of themouse. Thus, push Enter to hange projetion, for a total of three projetions.The oordinates of the verties on the last three 2D projetions are omputedautomatially and then the �le \RSCT\database_bound\new_family_name.txtis reated. Two �rst rows ontain the family bounds set by the GUI. This �leis omposed by a matrix ∈ R
18×4. Last 16 rows represent the oordinates of theonvex hull verties orresponding to the family.

Figure C.4: Verties setting: An example
2D and 3D projetions of the onvex hull are available by the File toolbar.The red x represent the onvex hull verties and the blue points represent thedatabase produts whih belong to the family. An example is shown in Fig. C.5and C.6.C.3 HSM Simulator GUIThis GUI allows to simulate the open and losed loop system behavior throughthe MATLAB-Simulink nonlinear system model presented in hapter 1. First,a produt must be loaded from the File toolbar. Eah produt is desribed by a.mat �le, available by the database, and by a .txt �le, whih ontains the IBAAnalyzer output (the oilbox perturbation and the tail end swithing instants).116



C.3. HSM Simulator GUI

Figure C.5: 2D database projetions: An example

Figure C.6: 3D database projetions: An exampleHene, a ontroller must be loaded by the File toolbar. It su�es to indiatethe ontroller path. If the syntax of the .txt ontroller �les is not the same ofthe output generated by the ommand Export results of the Main GUI, an error117



Appendix C. Robust Steering Control Toolbox

Figure C.7: Error : A wrong �le was loaded

Figure C.8: HSM simulator GUImessage will be show (Fig. C.7).The main physial parameters onerning the produt and the ontroller aresummarized on the GUI boxes (Fig. C.8). The losed loop system may besimulated using two di�erent kind of ontrollers (H2 or average LQ) and observers(LPV or average LQ). A hekbox onsents to add a delay on the ontrollerswithings.C.4 A3S GUIA3S is a software developed by ArelorMittal researhers in a Visual Basi am-biane. It omputes the *.mat �les representing the produts through a manualproedure stand by stand. To integrate this funtionality in RSCT, we rewrote118



C.5. Options settingthe A3S numerial algorithms in MATLAB ode and we implemented an auto-mati proedure to reate m onseutive produts. The new A3S GUI is shownin Fig. C.9. The A3S input is represented by a .txt �le whih ontains the phys-

Figure C.9: A3S GUIial harateristis of a produt (DT, DS, ET, ES, Fwo, Fwm, Fmes, LARTOL,epe, eps, Temp, VITCYL, TRACTE, TRACTS ). These data must be providedby the plants.From the GUI boxes, the setup of the HSM parameters (L0, intervis, LDTos, SOC) and of the numerial algorithm (mbar, beta, gadap, preision) anbe modi�ed. From the File toolbar, we an load a single produt, or m onse-utive produts. The boxes mmin and mmax allow to hoose the serial numberof the �rst and the last produt that will be load. If we load m produts, theinput *.txt �les must respet the syntax: �optional_text_1, serial_number, op-tional_text_2, .txt�, where th strings �optional_text_1" and �optional_text_2�annot ontain numerial haraters.Notie that a onvergene problem arises for about the 1% of the produts.In this ase, the algorithm of A3S annot reah the stop riterion and loopsin�nitely. For obtain a solution with this kind of produts, you must stop theroutine (CTRL+C ), modify the strip width LARTOL of some millimeters in theinput �le, and load one more the �le.C.5 Options settingOnly the sampling time, the LMI solver �ags and the tuning parameters of theHSM simulator, whih are di�erent for eah plant, must be set from the �le 119



Appendix C. Robust Steering Control Toolbox
\RSCT\software_RSCT\default_setting_n_stands.m, where n is the num-ber of stands. All the other parameters may be diretly set by the GUIs.
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Résumé : Dans ette thèse, on s'est attahé à résoudre un ertain nombre deproblèmes qui apparaissent lorsqu'on traite des problèmes onrets de ontr�le:phénomènes à plusieurs éhelles de temps, disontinuités de la ommande lors dubasulement d'un orreteur à un autre, néessité de onevoir un nombre limitéde orreteurs di�érents malgré une gamme très importante des produits traités.Pour illustrer onrètement les résultats obtenus, nous nous sommes appuyés surun exemple industriel onret, le ontr�le de guidage de bande durant le proessusde laminage dans un laminoir à haud. D'abord, nous proposons une solution on-vexe au problème de ommande optimale linéaire quadratique pour les systèmeslinéaires à deux éhelles de temps en temps disret. Ensuite, nous établissons desonditions su�santes, formulées sous la forme d'inégalités matriielles linéaires,qui permettent de véri�er la stabilité d'un système à ommutation à deux éhellesde temps et de synthétiser des orreteurs stabilisants. Nous proposons aussi danse travail une méthode pour minimiser les disontinuités sur la ommande dansle adre des systèmes à ommutation. Dans le ontexte du ontr�le de guidagede bande pour un laminoir à haud, nous ne pouvons pas négliger l'in�uene desparamètres inertains, qui sont dus prinipalement au fait que e genre de systèmetraite une gamme de produits très large. Don, dans la synthèse du orreteur,nous prenons en ompte es variations en divisant l'ensemble des produits enplusieurs familles et en synthétisant un orreteur di�érent pour haque famille.Mots-lés : Contr�le de guidage de bande, Laminoir à haud, Systèmes à om-mutation, Perturbations singulières, Robustesse.
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Abstrat: This Ph.D. thesis deals with a ertain number of problems aris-ing in pratial implementation of ontrol systems: multi time sale phenomena,sudden modi�ations on the system dynamis, disontinuities on the ontrol sig-nal due to ontroller swithings, the need of design a limited number of ontrollersin spite of a wide variation on the physial parameters. In order to illustrate thevalidity of the obtained results, we resort to a real problem onerning the steelprodution framework, the robust steering ontrol of a hot strip �nishing mill.First, a onvex solution of the linear quadrati ontrol design for disrete twotime sale systems is proposed. Hene, we address the stability problem of twotime sale swithed systems. We show that stability of the slow and fast swithedsubsystems under arbitrary swithing rules does not imply the stability of theorresponding two time sale swithed system in the singular perturbation form.An additional onstraint, independent of the value of the singular parameter andof the swithing rule, is provided in terms of linear matrix inequalities. We also in-trodue a bumpless transfer method for swithed systems aiming at reduing thedisontinuities on the ontrol signal. Dwell time onditions assessing the asymp-toti stability of the losed loop swithed system are established. The pratialontribution of this thesis, the robust steering ontrol design, exploits most ofprevious results. The objetive is to guarantee the stability of the hot strip millsystem and improve the quality of the rolled produts.Keywords: Steering ontrol, Hot strip mill, Swithed systems, Singular pertur-bation, Robustness.

130




	Couverture
	Acknowledgments
	Dédicace
	Contents
	Notations
	General introduction
	Chapter 1 Switched system modeling of hot strip mill
	1.1 Introduction
	1.2 Description of physical system 
	1.3 System linearization
	1.4 Model reduction
	1.5 Polytopic uncertainties
	1.6 Conclusion

	Chapter 2 A convex solution of the discrete-time LQ control design for two time scale systems
	2.1 Introduction
	2.2 Discrete-time LQ optimal problem
	2.2.1 Fast sampling control law
	2.2.2 Slow sampling control law

	2.3 LMI based solution
	2.3.1 Fast sampling control law
	2.3.2 Slow sampling control law
	2.3.3 Numerical example

	2.4 An extension to uncertain systems in the polytopic form
	2.4.1 Slow sampling control law
	2.4.2 Numerical example

	2.5 Conclusion

	Chapter 3 Stability of two time scale switched systems
	3.1 Introduction
	3.2 Motivation for a new stability condition
	3.2.1  A dwell-time condition for two time scale switched systems
	3.2.2 Two time scale switched systems under arbitrary switching rules

	3.3 Stability conditions: Continuous-time case
	3.3.1 Stability analysis
	3.3.2 Estimation of the degree of time scale separation
	3.3.3 Control design

	3.4 Stability conditions: Discrete-time case
	3.4.1 Stability analysis
	3.4.2 Control design

	3.5 Numerical example
	3.6 Conclusion

	Chapter 4 Bumpless transfer for switched systems
	4.1 Introduction
	4.2 Preliminaries
	4.3 Bumpless transfer control design
	4.4 Stability analysis
	4.4.1 Numerical example

	4.5 Conclusion

	Chapter 5 Robust steering control of hot strip mill
	5.1 Introduction
	5.2 Polytopic modeling
	5.2.1 Reduction of the convex hull space dimension
	5.2.2 Construction of the convex hull

	5.3 Robust steering control design
	5.4 Stability analysis of the tail end switched system
	5.5 Robust steering control implementation
	5.6 Simulation results
	5.6.1 n-stands subsystem
	5.6.2 Tail end switched system

	5.7 Industrial system description
	5.8 Experimental results
	5.9 Conclusion

	General conclusion
	Appendix A Formulae
	A.1 Schur complement
	A.2 Inverse of a block matrix
	A.3 Searle's identity

	Appendix B Proofs
	B.1 Proof of Theorem 2 
	B.2 Proof of Proposition 1
	B.3 Proof Theorem 10
	B.4 Proof Theorem 12
	B.5 Construction of the augmented state matrix

	Appendix C Robust Steering Control Toolbox
	C.1 Main GUI
	C.2 Create a new family GUI
	C.3 HSM Simulator GUI
	C.4  A3S GUI
	C.5 Options setting

	Bibliography
	Résumé :
	Abstract:

