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Notations

X = 0(X = 0) - positive (no negative) definite matrix,
X < 0(X =<0) - negative (no positive) definite matrix,
I,, - identity matrix € R™*",

Tr(X) - trace of the matrix X,

|| X - induced euclidean norm of the matrix X,

Amaz (X)) and A\ (X) - the maximum and the minimum eigenvalue of the
symmetric matrix X,

¢{X} - spectrum of the matrix X,
X1 - inverse of the non-singular matrix X,

X' - transpose of the matrix X,

X = [ (f), g ] - symmetric matrix X where (x)" means B’,

X is Hurwitz - all the eigenvalues of the matrix X have negative real parts,

X is Schur - all the eigenvalues of the matrix X have modulus smaller than
one,

ix



Notations

e Re{x} - real part of the vector z,

e ||z|| - induced euclidean norm of the vector z,

e O(-) - order of magnitude.



(General introduction

This Ph.D. thesis was conducted as part of a joint research collaboration between
the CRAN and ArcelorMittal RE/D. The objective is to provide a solution to
a certain number of problems arising in practical implementation of regulators
for nonlinear systems [Kha(02|, [FLMR95]: sudden modifications on the system
dynamics, multi time scale phenomena, large discontinuities on the control signal
due to controller switchings, the need of design a limited number of controllers
in spite of a wide variation on the physical parameters. In order to illustrate the
validity of the obtained results, we will resort to a real problem concerning the
steel production framework, the robust steering control of a hot strip finishing
mill.

The interest of the control scientific community for multi time scale systems
dates back to the sixties. Examples of systems operating in different time scales
may be found in the electric power framework, aerospace systems, robotics, chem-
ical and biological systems [KKO86]|, [Nai02]. Last two decades have witnessed
an increase of attention to switched systems, which combine continuous dynam-
ics with discrete logic. This structure allows modeling a large class of systems,
as event driven systems, network control systems, adaptive control or biologic
networks. In order to study their main properties (e.g. stability, controllability,
observability), a wide number of tools have been developed [Lib03], [SWM™T07].
Even though modern control techniques often have to deal with multi time scale
switched systems, there exist very few contributions in this area. Motivated by
the hot strip mill control design, we are interested in studying the behavior of
multi time scale switched systems to establish stability conditions and design a
stabilizing control law when arbitrary switchings arise.

Switching among different controllers implies undesired transient behaviors
due to control signal jumps [Han88], [EP98|. This phenomenon may affect the
system performances and, in the worst case, destabilizes the closed loop system.
Therefore, another purpose of this work is to find a solution to this problem in
the discrete time switched systems framework.

The practical contribution of this thesis, the robust steering control of a hot
strip mill, exploits some of the previous theoretical results. The goal is to guar-
antee asymptotic stability of the system and improve the quality of the strips
treated during the rolling process. The influence of the uncertain parameters,



General introduction

due to the difference among the physical parameters of the rolled products, is
also taken into account. Although all the presented experimental results concern
the Eisenhiittenstadt ArcelorMittal hot strip mill (Germany), this study aims
at obtaining a control design adaptable to any mill. Thus, the last task of this
work is the realization of a dedicated software that implements the algorithms
necessary for extending the robust steering control design to other mills.

Structure
This thesis is organized in five chapters that are structured as follows:

The first chapter is concerned with the switched system modeling of a hot
strip mill system for steering control purposes. Two time scale phenomena and
parametric uncertainties in the polytopic form are considered.

The second chapter presents a LMI (linear matrix inequalities) based solution
for the linear quadratic optimal control design of two time scale systems in discrete
time. This approach is particularly adequate to the case of high dimensional
systems. Fast and slow sampling state feedback control design problems are
studied. An extension to polytopic uncertain systems is also presented.

In chapter 3, stability of two time scale switched systems is investigated.
First, we show that, when no assumption on the minimal dwell time is made,
stability of the fast and slow switched subsystems under an arbitrary switching
rule is not sufficient for assessing stability of the original two time scale switched
system, even if the singular perturbation parameter tends to zero. We propose
LMTI based conditions, independent of the singular perturbation parameter, which
guarantee the asymptotic stability of a two time scale switched linear system, in
the continuous and discrete time frameworks. These conditions express the fact
that the coupling between the fast and slow dynamics has to be considered, when
the switching rule is arbitrary. The proposed conditions are then extended to
state feedback control design.

In chapter 4, a bumpless transfer method for discrete time switched linear sys-
tems is proposed. To this aim, an additional controller is activated at the switch-
ing time for reducing the control signal discontinuities. The bumpless transfer
regulation is based on the finite horizon solution of a linear quadratic optimiza-
tion problem. We resort to dwell time conditions for establishing asymptotical
stability of the closed loop switched system.

In the last chapter, a new robust steering control design of hot strip finishing
mill is presented. The objective is to guarantee asymptotic stability of a hot
strip mill system and minimize the lateral displacement of the strip for the whole
set of treated products. First, a method for reducing the number of uncertain-
ties by exploiting the physical relations among the different products parameters



is introduced. Thus, since the system involves a two time scale dynamics and
the fast dynamics is stable and impossible to control due to the limitation on
the actuators rate, a robust reduced controller is designed for each subsystem
separately. The asymptotic stability of the tail end switched system is verified
through a dwell time criterion. The whole database is partitioned into different
families, with respect to the physical parameters of the products. Improved per-
formances are obtained by designing a specific controller for each family. Finally,
simulations and experimental results concerning the Eisenhiittenstadt hot strip
mill are shown.
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Chapter 1

Switched system modeling of hot
strip mill

1.1 Introduction

In the steel production framework, the steering control denotes the strategies to
guide a metal strip during the rolling process, which consists of crushing a metal
strip between two rolls in inverse rotation to obtain a strip with constant and
desired thickness [Tak01]|, [VFBOO07]|. Moreover, some geometrical, metallurgical
and mechanical characteristics must be given to the rolled product. A hot strip
finishing mill is the association of several stands in a line, where each stand
is comprised of a set of rolls (Fig. 1.1). The lateral movement of the strip

Figure 1.1: A global view of hot strip mill
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with respect to the mill axis, which is called strip off-center (Fig. 1.4), is the
consequence of rolling asymmetries such as differential stand stretching, work
rolls tilting, initial off-center, strip thickness profile or thermal differential profile.
Strip off-center may decrease the quality of the product and damage the rolls,
if the strip crashes against the side guides of the mill. Hence, this displacement
must be reduced to improve process reliability and product quality.

To this aim, several steering control methods have been developed. In general,
the strip off-center of each stand is considered as the differential force image
of the same stand. Different approaches have been proposed to compute the
stand tilt: PID controllers [MNS80], [KT83|, [KT86|, [FET92]|, [SP98] (for a hot
strip reversing mill), optimal regulators [SS92|, state feedback pole assignment
[OH97], and sliding mode techniques [OMAHO05]. Nevertheless, the law linking
the differential force and the strip off-center is nonlinear, and each stand is coupled
to the others by the traction of the strip. Thus, SISO approaches are subject to
significant performance degradation. In order to overcome this problem, [DBI*08§]
proposed a multi variable LQ control design while [CRCF08] suggested a model
predictive control approach. In metallurgy, MIMO strategies have already been
used in the mill loopers regulation, which prevent abrupt tension variations that
could compromise the product quality [BKG02|, [CRF07], [YHFO08], and in the
strip shape control during the cold rolling process [GF82|, [GP98|, [PS08|.

All the above solutions refer to a nominal framework. However, a mill treats
thousands of different products and the design of a specific controller for each
product would be difficult, in a practical application. Despite the robustness
properties of the linear quadratic (L.Q)) control, the average controller presented
by [DBI*08] cannot guarantee the same level of performances for the whole set of
products. The objective of this chapter is to provide a general model of hot strip
mill for robust control purposes. We will start by the nonlinear model established
by ArcelorMittal researchers and tuned during experimental trials [DBIT08|. This
model takes into account the coupling between the stands and the law linking
the differential force and the strip off-center. Since the system is subject to
small deviations around the operating point, a linear model has been drawn up.
Moreover, the system has two time scale dynamics. The fast dynamics is stable
and impossible to control from a practical point of view due to the actuators
limitations. We will resort to the singular perturbation approach to obtain a
reduced order linear model, which will depend on the mill parameters (e.g. roll
radius, roll speed, roll force) and on the products characteristics (e.g. strip width,
thickness, hardness, temperature), and then formulate the control design problem
in the slow manifold [KKO86]. Furthermore, in the last phase of the rolling
process, called tail end phase, the strip leaves the stands one after the other. Each
time the strip leaves a stand, the system dynamics changes. In this phase, the
crashes against the side-guides are more frequent and dangerous because the loss
of traction due to the switchings makes the system unstable. This kind of behavior
may be described recurring to the switched systems theory [Lib03], [SWM™07].
Finally, we obtain a two time scale switched linear model of the system that takes
into account the changes on the system dynamics [MDI"09e¢|, [MDIS09], and the
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1.2. Description of physical system

uncertainties related to the fact that a mill treats many different strips [MDI"ar],
[MDI*09d], [MDI*09¢].

1.2 Description of physical system

A hot strip mill (HSM) is made up of n € {5,6,7} stands. Each stand contains
one set of rolls (composed of two work rolls and two support rolls, Fig. 1.2)
and the strip in the inter-stand on the front. For each stand ¢ € G = {1,...,n},

support roll

work roll
—r Q
— —
=

;“ 0

strip
stand 7|

Figure 1.2: Stand lateral view

the main physical parameters are the strip width w,, the strip thickness Ay, the
back strip tension 7™, the front strip tension 7", the screw interaxis length
[y, the interstand length 12, the work roll length by, the work roll speed s, and
the Young’s modulus E,;. Also the following constants are necessary to com-
pletely define a strip: ¢/, ¢JTem  clTav - coh cglam ool KM KT KL Py and g,.
The main asymmetries are the strip off-center Z,(t¢), the strip thickness profile

(wedge) Ahy(t), the stand tilt AS,(t), the differential stand stretch AK,(¢), the
differential rolling force AP,(t), the upstream differential of strip tension AT (t)
and the downstream differential of strip tension AT¢"(t), for all ¢ > 0.

As long as the strip remains connected to the coilbox, which is the device used
to coil the strips into the finishing train, the HSM model does not change (Fig.
1.3). Otherwise, in the last phase of the rolling process, the tail end phase, the
strip leaves the stands, one after the other. Each time the strip leaves a stand the
system dynamics changes. Hence, the HSM can be modeled as a switched system.
The first subsystem (the strip has not yet left the first stand) is called n-stands
subsystem. The subsystem active after the j** switching, which occurs when the
strip leaves the j** stand, is called (n — j)-stands subsystem. The following main
equations, which are relevant for g > j, govern the system dynamics:
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s o ?
X

coilbox stand 1 stand g stand n

Figure 1.3: HSM lateral view

— The differential rolling force equation:

AP, (t) = I | Ahy_y(t) + " Ahy () + cTom ATE™ (8) + ¢! T AT (8); (1.1)

— The exit stand wedge equation:

Wy 6wy
Ahy(t) = (W + W) (AP(t) +2P)) Z,(t)+
1 w w, P, (1.2)
FAPg(t) + l_ngSg(t) - WAKg(t)Q
9 9 9\

— The angle o, between the strip and the mill axis equation:

gh
C']

. S S c.th

Wy Wy

s C!]T(w s C!]Ta'm (13)
L AT (t) + L —L—<AT™(t);

wy (1 + gy) wy (1+ g4)

— The strip off-center equation:

Zy(t) = 5404(1); (1.4)

Moreover, for g > 7 + 1 we have:

— The upstream differential of strip tension equation:

am wgEy T(?m
AT™(t) =3 ( Wy + w—g) (Zy(t) — Zy—1 (1)) +

w.E lOTam (15)
1% (200(1) — 0y a(0) + 32 a0

— The coupling between two successive stand equations:

AT\ (£) = —=AT™(1); (1.6)



1.2. Description of physical system

For the last two equations, there exists an exception. When the n-stands sub-
system is on, the equations (1.5) and (1.6) hold for any stand g € G. In this
case, the upstream differential of strip tension in the first stand AT{™ can
take two different values. It corresponds to the downstream tension of the coil-
box AT{™(t) = —AT§"(t) when the strip is connected to the coilbox (most of
the time), and to zero after the strip left the coilbox. This last phase with
AT (t) = 0 and ATy™(t) # 0 (the strip left the coilbox but did not leave
the first stand yet) has not been considered in the switched system model be-
cause is very short and its dynamics is similar to the case AT™(t) = —ATE(¢)
and ATy™(t) # 0. When the strip leaves the first stand the system switches to
the (n — 1)-stands subsystem and the equations (1.5) and (1.6) are relevant for
g>7+1

The equation (1.6) represents the main difference between the model (1.1)-
(1.6), introduced by Daafouz et al. [DBIT08], and previous HSM models. The
contributions that can be found in literature are based on the steering growth
model proposed by Nakajima et al. [NKK*80], where the strip off-center is com-
puted stand by stand. In fact, each stand is linked to the other by the differential
of strip tension (see equation (1.6) and Fig. 1.4).

stand g-1 stand g

[ 1  millaxis Idealposition ——
/ of the strip

ATy, = —ATy g
........................................ B A N S
ATG’U

j— L

work roll lo

Figure 1.4: Strip behavior between two stands: top view

According to the previous physical equations, the system is described by the
continuous time switched nonlinear system

2(t) = fO(2,u,d,t)
{y<t> _ g0 (1 D

where
!/
2(t) = [au(t), ..., an(t), Zi(t), ..., Zu(t)] € R (1.8)
is the state vector,

u(t) = AS(t) = [ASi(t), ..., AS, ()] € R" (1.9)

9
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is the control signal, d(t) = Zy(t) € Ris the external perturbation and y(t) € R™
is the measured output signal, for all t > 0. {f' :i € Z = {1,...,N}} is a
family of sufficient regular functions, N represents the number of subsystems
and o0 : Rt — T is a piecewise constant function, called switching rule, which
orchestrates the switchings between the subsystems. There are n cameras to
measure the state variables 71, ..., Z,. Hence, C’Z = [0 I], for any ¢ € 7.

Only one perturbation will be considered: the strip off-center at the input of
the first stand due to the vibrations of the coilbox. There are other perturbations,
but their effects are negligible compared to the strip off-center initial. The model
is easily adaptable to any HSM. However, tuning it requires industrial trials and
a specific database of products. A strip off-center simulator has been developed
under Matlab-Simulink. The tuning for the Eisenhiittenstadt HSM corresponds
well with most of the products. In Fig. 1.5, an example is presented. The solid
line shows the strip off-center measured by a camera while the dashed line shows
the simulated strip off-center provided by our model.

45

:
measured data

— — —simulated data

0 20 40 60 80
t (sec)

Figure 1.5: Comparison between measured and simulated strip off-center at Eisen-
hiittenstadt HSM

1.3 System linearization

The main task of the steering control is to maintain the strip close to the mill axis.
The target may be reached by modifying the differential rolling force AP(t) =
[AP(t), ..., APn(t)]/ in order to drive the strip into the desired trajectory. In

fact, an excessive AP yields a high strip wedge Ah(t) = [Ahy(2), ..., Ahn(t)]/.

10



1.3. System linearization

This means that the strip profile becomes trapezoidal (Fig. 1.6.a and Fig. 1.7),
whereas the ideal strip profile should be rectangular (Ah(t) = 0, for all ¢ > 0).
In general, a final wedge belonging to the interval —10 um < Ah,(t) < 10 um
ensures a good product quality. The rolling force depends on the stand tilt AS.
In order to respect the limits of the wedge value, ArcelorMittal engineers imposed
a constraint on AS, which must be bounded between +0.6 mm for the three first
stands and +0.3 mm for the two last stands (for 5-stands HSM).

—AS, +AS, _—mill axis
! ! . ideal position
support roll \ of the strip
work roll . ]:]
I N # Lo .
| strip
-

a b

Figure 1.6: Stand g description: front view (a) and top view (b)

Ah

w

Figure 1.7: Strip profile

Since we assume that only small deviations are possible around the ideal
operating point, that is ay(t) = Z,(t) = Ahy(t) =0 for any g € G and all ¢t > 0,
for control design purposes we can consider the following linearized switched
model:

{Z(t) = MO 2(t) + N u(t) + NgVd(1) (1.10)

y(t) = CyVz(t).

11



Chapter 1. Switched system modeling of hot strip mill

1.4 Model reduction

The HSM system has two time scale dynamics: the angles o are fast variables
compared to the strips off-center Z [MDITar]. Multi time scale scale systems
may lead to numerical problems due to the stiffness of this kind of structure.
Moreover, the system actuators have a limited rate. This means that the dy-
namics corresponding to the angles cannot be controlled directly. In this case,
the singular perturbation approximation may be used to control design purposes
[KKOS86]. It consists in decomposing the system dynamics into fast and slow
dynamics and in designing a different controller for each of them. Consider the
following subsystem, which corresponds to the mode ¢ € Z of the switched linear
system (1.10):

2(t) = Miz(t) + Niu(t) + Nid(t) (1.11)
y(t) = Cy2(t).
In order to express the model (1.11) in the singular perturbation form, the com-
ponents of the state vector z which belong to the fast and slow dynamics must
be associated to two different state vectors, called x; and x5, respectively. In
the n-stands subsystem, the state vector corresponding to the slow subsystem x5
is composed by the n strip off-center variables. In the tail end subsystems, the
state vector corresponding to the slow subsystem x5 is composed by the strips
off-center variables of the operating stands and the value of the angle correspond-
ing to the first active stand. Hence, the components and the dimension of x; and
15 change at each switching time. A set of matrices {E’ : i € Z}, with pseudo-

inverse £'' = E¥(EE")"! = EV, may be chosen such that the change of basis

7' (t) = E'2(t) (1.12)

yields a system state vector in the form :

with % (t) € R™ and z(t) € R", for any i € Z and for all ¢ > 0. We obtain:

L -1 i i
Mz(g) _ E’LMZEZI — |:€ [nl 0 :| |:M11 M12:| ’

0 In,| | M3 Mg,
Ni— BN — e, 0 NZ,I
COT L0 Ly [Nis)? (1.13)
i v e 'L, 0][N;
Nd:ENd:[ ; IHNZj

ci=ClE"=[0 Ci,],

12



1.4. Model reduction

with the choice ¢ = 0.05. The subsystem corresponding to the i mode of the
switched system (1.11) can be written in the standard singular perturbation form:

ET

1(t) = M} (t) + Miyah(t) + Njju(t) + N, d(t)
h(t) = My ' (t) + Mgt (t) + N yu(t) + Njod(t) (1.14)
y(t) = C yah (1),

where M}, is assumed to be Hurwitz for any i € 7.

Consider the following state matrices, corresponding to the 4-stands subsys-
tem of an average product of the Eisenhiittenstadt HSM database:

0 0 0 0 0 0 0 0 0 0
0 —1.60 —5.87 0 0 0 0.0006 —0.0016 0 0
0 —20.34 —-76.5 —6.155 0 0 0.0069 —-0.017 —0.002 0
0 —-75 =515 —71.18 15 0 0.0026 0.0145 —-0.022 0.004
it — 0 —9.548 —49.2 —-73.93 —-82 0 0.0033 0.0044 0.0132 —-0.02
0 0 0 0 0 0 0 0 0 0
0 4174 0 0 0 0 0 0 0 0
0 0 7466 0 0 0 0 0 0 0
0 0 0 11610 0 0 0 0 0 0
0 0 0 0 15918 0 0 0 0 0 ]
and
[0 0 0 0 0 ]
0 0.076 0 0 0
0 0.15 0.767 0 0
0 0.155 0.595 1.577 0
N 0 0.197 0.757 1.8 3.38
b 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 |
We have:
(001 00 0O0O0 0 O
00010O0O0ODO0OO0OD
000O0O1O0O0OO0OO0OD 0
ot 01 00O0O0O0OO0OO0ODO
000O0O0OO0OT1TQO0O0 Q0|
000O0O0OO0OOT1TUO0ODO
00 0O0OO0OOODOT1OPO
000 0O0O0O0O0O0 1]

13



Chapter 1. Switched system modeling of hot strip mill

4
and then .’13'4 = [i}{|, with .’L‘Lll = [043 Qg Oz5}/, ZL’% = [OZQ Z2 Z3 Z4 Z5]/, and
2

[—3.825 —0.3077 0
M}, = |-2.575 —3.559 0.75 |,
| —2.46 —3.696 —4.1

[—1.017 0.0003 —0.0008 —0.0001 0

M}, = |-0.375 0.0001 0.0007 —0.0011 0.0002 |,
| —0.477 0.0001 0.0002  0.0006 —0.001
[—0.0005 0 0
0 0 0
M, =10* | 0.7466 0 0 |,

0 1.161 0

|0 0 1.5918 (1.15)
[—0.0016 0.0000 —0.0000 0 0
4.174 0 0 00
My, = 10° 0 0 0 0 0f,
0 0 0 0 0
0 0 0 0 0
0.0075 0.0383 0 0 0'%76 8 8 8
N = 0.0(())77 0.0297 0.0788 NL,=| o0 000
0.0098 0.0378 0.09 0.169 0 000
' ' ' ' 0 000

When the 4-stands subsystem is on, the strip has already left the first stand.
Therefore, the state variables a; and Z; do not have any physical meaning and
are set to zero.

According to the practical implementation, the controller must be designed
in discrete-time, with a sampling time of T = 0.05 sec. We have [Nai02]:
3711 (s+1)= gfl’ilx’i(s) + ;11121’22(5) + BQZLIU(S> + Bcimd(s)
rh(s+ 1) = AL 28 (s) + ALl (s) + Bftgu(s) + Bcimd(s) (1.16)
y(s) = Cl i (s),
where zi(s) € R, zi(s) € R", u(s) € R", d(s) € R and y(s) € R™, for any
i € T and for all s € Z*. Moreover, we have:

o [ed Al a [Bi)] a [B
At — 11 12 Bt = ~u,l B! = ~c'l,l ) 1.1
) L*Asl Aaj’ . {Bz,z]’ I {BQ,J (1.17)

Putting ¢ = 0, we obtain the slow model of the subsystem corresponding to 7*"
mode:

&m+n:&w@+%%@+@ﬂ@ (118

ys(s) = é;,sxi(s)v
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1.5. Polytopic uncertainties

Table 1.1: Eigenvalues Comparison

(A" ()} (A

1.0169 1.0211
0.9675 0.9821
0.9179 0.9108
0.8347 0.8831
0.8132 0.8132
0.0314

0.0024 + 0.01861
0.0024 - 0.01861

with z%(s) = zi(s), AL = Al,, BZL = B;z, Bfi’s = Bfm and CN’; = C} ,, for any
i € T and for all s € Z*. In Table 1.1, the spectrum £{A%(¢)} of the state matrix
corresponding to the two time scale system (1.16) and the spectrum &{ A%} of the
state matrix corresponding to the slow subsystem (1.18) are given. Notice that
the time scale separation justifies the use of the only slow subsystem for control

design purposes.

1.5 Polytopic uncertainties

An HSM treats products with very heterogeneous properties. The scheduling of
the rolled products is assumed to be known in real time. Since the controller is
computed off-line, from a control design point of view the only available informa-
tion concerns the minimum and maximum bound of each parameter. Thus, the
physical parameters must be considered as bounded uncertainties and a robust
controller is needed. The uncertain two time scale switched system can be written
in the polytopic form:

{w@(s 1) =270 (5)270)(5) + BL (s)u(s) + B (s)d(s)

y(s) = 527095 (19

where o : ZT — T is the switching rule for all s € Z*. Further, for any i € Z, we
have:

Ny
= N(s)AM(e), B ZAl VB 9B ( ZAl
=1

where [ € £ = {1,..., Ny} denotes the vertices of the convex hull, Ny is the
number of uncertain parameters and \; denotes the uncertainty and belongs to
the unit simplex

{Z)\l ) =1, A\(s) > 0}.
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Chapter 1. Switched system modeling of hot strip mill

1.6 Conclusion

The lateral movement of the strip during the rolling process reduces the product
quality and damages the rolls, if the strip crashes against the mill side guides.
The goal of the HSM steering control consists in limiting this displacement for im-
proving the reliability and the process quality. In order to implement an effective
solution, several phenomena arising on the system should be taken into account
on the control design. First, an HSM can treat products with very heteroge-
neous properties. Thus, the physical products parameters must be considered as
bounded uncertainties and a robust controller is needed. Moreover, the system
has two time scale dynamics and the fast dynamics cannot be controlled because
of the limits on the actuators rate. Further, during the tail end phase, the system
is subject to hard traction losses due to the fact that the strip leaves the stands
one after the other. Hence, sudden modifications of dynamics arise and the state
variables corresponding to the slow and fast manifolds may vary. In particular,
each time the strip leaves a stand the state variables corresponding to the left
stand do not influence any longer the system and the angle between the strip and
the mill axis on the first active stand, which was a state variable belonging to
the fast manifold, becomes a state variable of the slow manifold. Because of the
changes on the system dynamics, different controllers must be designed, one for
each operating point, and a rule orchestrating the controller switchings is needed.
At last, switching among different controllers implies undesired transient behav-
iors due to large discontinuities on the control signal. This phenomenon may
affect the system performances and, in the worst case, destabilize the system.

Despite its importance on the steel production framework, there exist few
studies dealing with steering control of HSM. Further, most of these works do
not consider the uncertainties on the products parameters and the tail end phase
switchings. In this chapter, a two time scale switched model of the HSM system
has been proposed for steering control purposes. Parametric uncertainties in the
polytopic form have also been taken into account. In the next three chapters,
we will provide some theoretical results useful for solving different problems con-
cerned with the steering control of HSM. In Chapter 2, we will present a convex
solution of the LLQ optimization problem of discrete two time scale L'TT systems.
These results will be extended to uncertain systems in the polytopic form, under
the assumption of asymptotically stable fast dynamics. Chapter 3 deals with two
time scale switched systems. First, we will show that asymptotic stability of the
slow and fast switched subsystems under an arbitrary switching rule is not suf-
ficient for assessing asymptotic stability of the original two time scale switched
system. Therefore, we will propose LMI based conditions independent of the
singular perturbation parameter which guarantee asymptotic stability of the two
time scale switched system, in the continuous and discrete-time frameworks. In
Chapter 4, a method for reducing the control signal discontinuities of discrete-
time switched linear systems is proposed. Many of these results will be retrieved
in the last chapter, where a robust steering control design of HSM is presented.
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Chapter 2

A convex solution of the
discrete-time L(Q) control design for
two time scale systems

2.1 Introduction

In practice, many systems involve dynamics operating on different time scales,
such as electric power systems, aerospace systems, robotics, chemical and bi-
ological systems [Nai02]. In this case, standard control techniques lead to ill-
conditioning problems and singular perturbation methods may be used to avoid
such numerical phenomena [KKO86]|, [Nai88|. They consist in decomposing the
system into several subsystems, one for each time scale. Thus, a different con-
troller is designed for each of them. Singular perturbation techniques also allow
to neglect high-frequency dynamics and then reduce the controller order [KS68].
This property can be very useful when the system order is high [And93]. Consider
the two time scale model:

eiy(t) = f(a1(t), 22(t), €, 1) (2.1a)

a(t) = gl (t), 22(t), €, 1) (2.1b)
where f and g are assumed to be continuously differentiable functions of their
arguments x1(t), za(t), e, t, z1(t) € R™ is the state vector corresponding to the
fast dynamics, zo(t) € R™ is the state vector corresponding to the slow dy-
namics, for all t > to, z(to) = [z1(t)’ l’g(to)l], is the initial condition and the
scalar € > 0 represents the singular perturbation parameter. Setting € = 0, the
dimension of the state space of (2.1) is reduced from n; + ny to ny because (2.1a)
degenerates into the algebraic or transcendental equation:

f(jl(t)ajZ(t)a Oat) = Oa (22)

where Z; and Zy denote x; and x5 when ¢ = 0. The model (2.1) is said to be in
the standard form if (2.2) has p > 1 distinct real roots:

Z1(t) = hi(z2(t), 1) (2.3)

17



Chapter 2. A convex solution of the discrete-time L() control design for two time scale systems

for all t > ty, with ¢ = 1,2, ..., p. This ensures the existence of a well-defined ns-
dimension reduced model to each root of (2.3). Substituting (2.3) into (2.1b), we
obtain the i reduced model (also called slow model or quasi-steady-state model):

Fa(t) = g(hi(@(t), 1), Zo(1), 0, 1), (2.4)

with xo(to) —Z2(to) = O(e). We assume that the fast transient, which corresponds
to the difference between the response of the original system (2.1) and the slow
model (2.4), is:

xo(t) — Za(t) = O(e) (2.5)

for any ¢ € [to, tfin] on which Z5(t) exists. Let us study the behavior of the fast
state vector x1. For e = 0, its initial condition Z; (¢y) = h(Z2(to), o) is constrained
and cannot be free to start from x(¢y). Hence, the condition

21(t) — 71(t) = O(e) (2.6)

can be obtained only for t € [t1,¢,], with 1 > 5. The approximation (2.6)
states that during the initial interval [to, t1], called boundary layer interval, the
original variable z; tends to z; and that remains close to z; for [t,tf;,]. To prove
that this assumption holds, let apply the stretching transformation:

d[L‘l . d[L‘l
Tt dr
This yields the fast time variable
t—to
T = ,
£

with 7 = 0 at t = ¢y. Notice that when ¢ — 0, 7 — o0, also for a little amount

of time t — t5. This means that when ¢ — 0, t — ty is “stretched” to an infinity

interval. To describe the behavior of z; in the fast time scale, let us define the

boundary layer correction z; = x; — Z; satisfying the boundary layer system:
dy . _

E = f(.T1<T> +x1(t0),x2(t0),0,t0), (27)

with Zi‘l (0) =T (to) — I (to) Fixed to and I‘Q(to), the solution Zi‘l of (27) may be
used as a boundary layer correction of (2.6) for the following uniform approxima-
tion of xq:

71(t) and z1(7) represent the slow and the fast transient of x;(t), respectively.
The equation (2.8) will quickly converge to (2.6) only if Z;(7) decays to an O(e)
quantity for 7 — oo (which corresponds to a short interval of time in the slow
time scale t). The following theorem gives the stability conditions ensuring the
validity of the approximation (2.5), (2.8) [Tik48], [Vas63].
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Theorem 1 ([KKOS86]) Assume that the equilibrium Z1(7) = 0 of (2.7) is asymp-
totically stable uniformly in ty and x5(to), and that T1(0) = x1(to) — Z1(ty) belongs
to its domain of attraction. Further, assume that the eigenvalues of 88—{1 evaluated
along T1 and Ty for € = 0 have negative real parts. Hence, the approxrimation
(2.5), (2.8) holds for any t € [to,tsin], and there exists t; > to such that (2.6)
holds for any t € [t1,t ).

The first assumption of Theorem 1 implies that lim Z;(7) = 0 uniformly in

to and x5(tp). Thus, x; will be close to Z; at some time t; > t;. The second
assumption ensures that x; stays close to z; for any ¢ € [¢1, tfm].

In the LQ optimal control framework, first contributions to the singular per-
turbation theory were proposed in the continuous-time case by Kokotovic and
Sannuti [KS68], [San68|, [SK69]. Garcia et al. proposed an alternative convex
solution for the continuous-time L.QQ optimal control design of two time scale LTT
systems [PG94], [GDB98|, [GDB02]. However, most of modern control systems
work in discrete time. In this case, there exist two main control design approaches,
depending on the sampling rate. The reason is that since digital controllers crit-
ically depend on the sampling time, different choices of the sampling rate lead
to different control laws. The first approach is based on a fast sampling model
derived by numerical approximations such as the Euler approximation: a hybrid
solution containing a continuous-time slow subsystem and a discrete-time fast
subsystem is obtained [Bla81|, [LK84]. This model allows to design a control
law independently of the stability properties of the fast dynamics. Namely, the
sampling rate is assumed to be fast enough for influencing the transient behavior
of the system. The second method resorts to a slow sampling model based on
a singular perturbed difference equation [RN82|, [KI83]. A control law designed
through this approach cannot influence the fast transient behavior of the sys-
tem. Nevertheless, there are many practical applications having asymptotically
stable fast dynamics and subject to a constraint on the sampling time, due to
the limitation on the actuators rate. An example is given by the hot strip mill
system presented in Chapter 1. In this case, the slow sampling model is often
more appropriate for control purposes. More complex solutions, which are not
investigated in this work, look for a multi-rate control law [KI86].

The aim of this chapter is to extend the results of [GDB02| to discrete-
time singularly perturbed LTT systems, for both fast and slow sampling mod-
els [MDIB09|. Hence, LMI techniques can be directly applied for control design
purposes [BGFB94]. The main advantage of LMI techniques is that there exist
efficient algorithms which provide a solution also for high dimension problems
[NN94|. Furthermore, we will show that the convexity properties of the solution
allows a direct extension of the reduced controller to uncertain systems in the
polytopic form.
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Consider the two time scale LTI system :

{e:’cl(t) = Mz (t) + Mipas(t) + Nyu(t)
(

To(t) = Mayx1(t) + Mogzo(t) + Nau(t), (2.9)

where u(t) € R" is the control signal, for all ¢ > t,. We assume that the problem
is in the standard form, that is equivalent to assume M;; non-singular, in the LTI
systems case. Let us apply the mode-decoupling transformation [Kok75]:

| R e ] o0

0] = [ 26
. Mis — MyyL(2) + e L()(Mas — My L(£)) = 0, (2.11)
Moy — H(e) My + £(May — Moy L())H(2) — e H(e)L(e) Moy = 0. (2.12)

Given a scalar €,,,, > 0, the non-symmetric algebraic Riccati equation (2.11) and
the Sylvester equation (2.12) admit the approximated solution L(e) = M Mys+
O(e), H(e) = My M;;' + O(e), for € € (0, gnas). By discretizing the continuous-
time model (2.9), a different sampling model is obtained depending on the sam-
pling rate [KI86]. The choice of the sampling time as Ty = aye, where ap > 0 is
a scalar, leads to the fast sampling model:

{l‘l(k’ + ].) = AHZL‘l(k’) + Am[L‘Q(k‘) + Blu(k:)

(2.13)
xo(k+ 1) = eAgyz1(k) + (I, + €Ag2)xa(k) + e Bou(k),

where z1(k) € R™, 25(k) € R™ and u(k) € R", for all k € ZT > t,. Neglecting
O(e) errors, we have :

Ay = exp (04an) )

A = (ea:p (oszH) — [m) M' My,

Aoy = My My (exp (ozf]\/[n) — Im) ,

Agy = ayM, + Moy M (ea:p (oszH) — Im) M' My,

By = (exp (ay M) — In,) My;' Ny,

By = ayNy + Moy Myy* (exp (apMyy) — In,) My Ny,

(2.14)

with M, = Myy — Moy M ;" Myy and Ny = Ny — My M* N;.

By choosing the sampling time as T = o,[1/e|TF ~ a,ay, where oy > 0 is a
scalar and [1/¢] is the largest integer < 1/e, we obtain the slow sampling model:

{xl(s +1) = eAnan(s) + Awowa(s) + Bru(s) (2.15)

IL‘Q(S + 1) = EAQlfL‘l(S) + AQQI‘Q(S) + BQU(S),
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where k = s[1/¢], z1(s) € R™, x5(s) € R™ and u(s) € R", for all s € Z* > t,.
Neglecting O(¢) errors, we have:
Ay = M Mysexp (asans) Moy Mt + e texp <%MH) ,
12112 = —MﬁlMlgexp (OésOést) s
Agl = —exp (OésOést) MglMl_ll,
12122 = exp (ozsoszs) ,
By = =My Mo (exp (csap M) — 1,,,) M7 PNy — Mg Ny,

By = (exp (asap M) — 1I,,) M7 'N;.

(2.16)

asay M1y
€

Since exp ( ) ~ O(e) only if the matrix M;; is Hurwitz, the slow sampling

model is valid only if the fast dynamics is asymptotically stable.

2.2 Discrete-time L(Q) optimal problem

2.2.1 Fast sampling control law

Consider the fast sampling model (2.13):
.T1<]€ —+ 1) = AHSL’l(k) -+ Algl’g(/{?) -+ Bl’U(/{?)
I‘Q(k’ + ].) = €A21{L‘1(k3) + (In2 + EAQQ)I‘Q(I{?) + EBQU(IC) (217)
q(k’) = C’lxl(k‘) + CQ[L‘Q(]{?),

where z(k) = [z1(k)’ xz(k)’}/, q(k) € R is the controlled output, for all k£ €
YAl > to, and

Ale) = [ill; (I, 14—1&2?1422)} » Ble) = [8%2} Co=lan Gl (2.18)
Let the fast sampling LQ optimization problem :
min J(e) = 5 > (alk)'a(k) + u(k) Ru(k)) (219)
k=to
: w(k+1) = Ale)x(k) + B(e)u(k) _ [(to)
subject to {q(k) _ Cu(k), x(tg) = Lz(to)}

where R = R’ > 0 is a weighting matrix. Assume that the pair (A(¢), B(g)) is
stabilizable and the pair (C, A(¢)) is detectable in the discrete-time sense, which
means that each eigenvalue of A(¢) which has modulus equal or greater than one
is controllable and observable. Hence, there exists a stabilizing solution S(eg) > 0
for the algebraic Riccati equation:

A(2)'S(e)A(e) — A(e)'S(2) B(e)(R + B(e)'S(e)B(e))

B(e)'S(e)A(e) — S(e) + C'C = 0. (2.20)
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The optimal solution is :
u(k) = K(e)z(k), (2.21)
with
K(e) = —(R+ B(e)'S()B(e)) "' B(e) S(e)Ale)
and optimal cost

T () = ga:(to)'S(&t)x(to).

When ¢ — 0, standard techniques may lead to ill-conditioning controllers.
To avoid such numerical problems, the criterion (2.19) and its associated Riccati
equation (2.20) may be decomposed into two different well-behaved subproblems,
independently of the singular parameter ¢.

Slow subproblem: To derive the slow subsystem of (2.17), we assume that
15(k) = x4(k) and 21 (k) = Z1(k) = (I, — A11) " (Apzs(k) + Byus(k)), during the
steady state. These hypotheses are equivalent to the continuous-time assumption
(2.5) and (2.6). We obtain [Nai02]:

zs(k+1) = (I, +cAs)xs(k) + e Bsus(k),
which can be written in the time scale t{ = ¢k as
zs(ek +¢) — x5(ek) = e Asxs(ek) + e Bsug(ek).

Dividing both sides by ¢, for ¢ — 0 we get the approximated continuous-time
subproblem:

min J, = & / " (@) 0(8) + us(t) Ry (8))

s 2/,
subject to {a’:s(t) = As(t) + Bus(t) o (2.22)
qs(t) = Cs5(t) + Dsus(t),
where the matrix ([, — Aj1) is assumed to be non-singular,
Ay = Ap + Api (I, — An) ' Aw,
By = By + Ay (I, — An) ' By, (2.23)

Cs = Cy+ Ci(I,, — Anp) ' A,
D, =Ci(I,, — An) 7' By,
and Ry = R, = R+ D.D, >~ 0. Notice that x5 corresponds to the state vector
To introduced in (2.2). Assume that the pair (A, B;) is stabilizable and the pair
(Cs, Ay) is detectable in the continuous-time sense, which means that each eigen-
value of A, that is in the right-half complex plane is controllable and observable.
Hence, there exists a stabilizing solution S > 0 for the algebraic Riccati equation:
(As — B,R;'D.C,)'S, + S,(As — B,R;'D.C,)—
S.B,R;'B.S, + C!(I,, — D;R;*D.)C, = 0.
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The optimal solution is:

us(t) = Kqxg(t), (2.24)
with K, = —R;}(B.Ss + D.C;) and optimal cost J; = 229520 The state-
feedback law (2.24) guarantees the condition Re{{(As+ BsKs)} < 0. This implies
the asymptotic stability of the slow subsystem, for a sufficiently small ¢.

Fast subproblem: To derive the fast subsystem of (2.17), we assume that
zs(k + 1) = z4(k) and x7(k) = x1(k) — z1(k) during the fast transient. The
relation z¢(k + 1) = z1(k + 1) — Z;(k + 1) yields the following fast subproblem
[Nai02]:

”57‘ Jy = % > (ar(k)'qp(k) + up(k) Ruy(k))

k=to
(k4 1) = Anzp(k) + Biug(k) o »
g7 (k) = Cury (), 7 = 21(to) — Z1(to)

with 7; (to) = (Inl — A11)71A12l‘2(t0). If the pair (AH, Bl) is stabilizable and the
pair (C4, Aqp) is detectable in the discrete-time sense, there exists a stabilizing
solution Sy > 0 for the algebraic Riccati equation:

subject to {

A1y SpAn — Ay SpBi(R + BiSyB1) ™ B{SAn — Sy + C1C1 = 0.
The optimal solution is:
up(k) = Kyay(k), (2.25)
with K; = —(R+ B{SyB1)"'B{S;A11 and optimal cost J; = 129'S;29.

Composite control: The control laws (2.24) and (2.25) are designed using
independent gains K and K. Since (2.24) has been designed in the continuous-
time framework while (2.25) has been designed in the discrete-time one, we obtain
a hybrid control law. Setting us(t) = us(k) = Ksxs(k) constant for ke < t <
(k + 1)e, we have the composite control law :

(F)

with K = [K; K, — K¢(I,, — A1) (A2 + B1K,)]. When ¢ — 0, (2.26) is
close to the optimal solution (2.21).

(k) = (k) + us (k) = K {ﬁ;(z)} | (2.26)

2.2.2 Slow sampling control law

Consider the slow sampling model (2.15):

IL‘l(S + 1) = EAHZL‘l(S) + Algl‘Q(S) + Blu(s)
ro(s+1) = 612121:51(5) + ;1223:2(3) + BQu(s) (2.27)
q(s) = Chz1(s) + Coza(s),
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where z(s) = [z(s)’ 1’2(8)/],, q(s) € R is the controlled output, for all s €
7+ > to, and

i 512111 12112 5 Bl
Ale) = | "~ S, B=~, C=|C, Cyf. 2.28

(E) {51421 A22} {32 [ ! 2} ( )
A model discretized using a slow sampling time cannot take into account the fast
transient. Hence, we consider C; = 0. Let the slow sampling L.Q)Q optimization

problem :

min J(e) = 5 3 (as)a(s) + uls) Ru(s)) (2.29)
s o fals ) =A@ + Buls) o [a(ta)
bject {q(s) = Cuz(s) (to) L@(to)}'

If the pair (A(e), B) is stabilizable and the pair (C, A(c)) is detectable, there
exists a stabilizing solution S(e¢) > 0 for the algebraic Riccati equation:

A(e)'S(e)A(e) — A(e)'S(e)B(R + B'S(e)B) ' B'S()A(e) — S(e) + C'C = 0.
(2.30)
The optimal solution is :

u(s) = K(e)x(s), (2.31)
with

and optimal cost

As in the fast sampling case, the criterion (2.29) and its associate Riccati
equation (2.30) may be decomposed into two different well-behaved subproblems,
independently of the singular parameter ¢.

Slow subproblem: Setting € = 0, we obtain the following slow subproblem:

oo

3 1 / /
man Js = 5 Zt(q8(5> qs(s) + us(s) Rus(s))
o 3 3 (2.32)
subject to {xs(s * 1)~: Aszs(s) + Baus(s) 7% = 15(to)
qs 5) = U\ S),
with z4(s) = z5(s) and
1213 = AQQ, Bs — B2, és — CQ. (233)
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2.8. LMI based solution

If the pair (/L, BS) is stabilizable and the pair (C’S, fls) is detectable, there exists
a stabilizing solution Ss > 0 for the algebraic Riccati equation:
AL S, A, — ALS,B,(R+ B.S,B,) *B.S,A, — S, + C'C, = 0.
The optimal solution is:
us(s) = Kyxs(s), (2.34)
with K, = —(R + B.S,B,)"'B'S, A, and optimal cost J* = 120'S,29.

=3 s

Clearly, a controller designed using a slow sampling time 7, cannot influence
the fast transient. Hence, for ¢ — 0 we have Ky = 0 and

u(s) = K l‘”l(s)} , (2.35)

To(s)

with K = [O KS]. Since My, was assumed to be Hurwitz, the closed loop system
(2.27) will be asymptotically stable, for an ¢ small enough.

2.3 LMI based solution

In this section, we present an alternative LMI based solution to the discrete-time
LQ optimal problem for two time scale linear systems. In general, LMI tools are
considered more effective than Riccati equation solutions in front of the increase
of dimensions [BGFB94].

2.3.1 Fast sampling control law

The fast sampling LQ optimization problem (2.19) may be formulated in a convex
form [GDB02|, [MDIBO09]. Let define the sets

P. = {P(s) — Eg g@l} =0, P(e) = 0 } (2.36)

0. — P(e) € P.: A(e)P(e)A(e) + A(e)Z(e)'B(e) + B(e)Z(e)A(e) +
| B(e)Z(e)P(e) ' Z(e)'B(e) — P(e) + x(t)x(ty) <0
(2.37)

An alternative LMI based solution to the problem (2.19) is obtained solving
the problem [PG94]:

Jmin J(&) = <Tr ({C(')C %} P(e)) . (2.38)

Furthermore, if P*(¢) is optimal, it can be written as:

5 | Pe) Z(e)| _ | P*(e) P*(e)K(e)
P(e) = [z*(z) U*(ge)} = [K(s)PE*(e) K(s)]f*(e)li(e)’}’
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where K(¢) = Z*(¢)P*(¢)~! is the optimal gain and

limK(e)=K=2Z*P* " (2.39)

e—0

Hence, (2.38) may be reformulated as:

P@%%J(g):g”({cég OH ) zepe >D (240)
Z(e)A(e

Ae)P(e)Ale) + A(e)Z(e)'B(e)' + B(e) Z(e) Ale)'+
B(e)Z(e)P(e)"'Z(e)' B(e)' — P(e) + a(to)x(to) < 0.

When ¢ is small, numerical difficulties to minimize the criterion J(¢) arise.
This problem is due to the ill-conditioning of the constraint (2.37). As in the

LQ classical solution, we can decompose the original problem (2.40) into two
well-behaved subproblems :

subject to

e elnd wg)

weas e 18 3] 5]

J(e)=¢Tr

P+ 0(e) P,+O(e)

PO =P =[50 He) = o0 Rio|m0 e

Z(e) =[Zi(e) Zo(e)] ="' [Z14+0(e) Zy+O(e)] . (2.42)
Given F(g) = Pi(g) — P2(e)P3(¢) ' Py(g)’, we obtain:
J(e) =Js(e) + Jp(e) =

[C1 Cy+ C1Ps(e P3(8>_1} {F(()g) P3(25) [*] /) i

( )
et (R1216) - 2oper ey 220 |7 p L] 1))
with

Js(e) = eTr((Ca + C1Py(e) Ps(e) ") Pa(e) x
(Cy+ C1Py(e) P3(e) ") 4+ RZy(e) P3(e) ' Zy(e)'),

Jp(e) = eTr((Ci(Pi(e) — Pa(e) Py(e) ™' Pale)) O + R(Zi(e) — Za(e) Py(e) ™' x
Py(e))(Pi(e) — Pa() P3(e) T Pa(e)) T (Zi(e) — Za(2) P3(e) " Pale)')').
Let us define
Py = (I,, — A1) (A1 Ps + B Z5), (2.43)
P, =P;, Z,= 7, (2.44)
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2.8. LMI based solution

Py =P, — PP P, Zp = Z) — ZoP; ' P, (2.45)
Hence:
Lim (Cy + C1Py(e) P3(e) ™) =
Cy + Ci(In, — An) ' A + Cy(In, — An) ' BiZ,P, ' = Cs+ D Z, P

lim J,(e) = J, =Tr(C,P,C" + C,Z' D, + D, Z,C" + D, Z,P;* Z'D’. + RZ,P; ' Z),

e—0

lim Jf(é?) = Jf :T’T’<Clpri + RZfP]:IZ})

e—0

The last two equations can be written in the form:

C;Cs CQDS Ps Zg
JS_TTQDQCS D;DS+R} [ZS Zspslzj)a (2.46)
B e, 0[P 7
e ( N ) ew
with
J=Jt (2.48)

In terms of variables, J; depends on P, and Z, while J; depends on Py and
Zs. Thus, two independent optimization subproblems can be defined:

Slow subproblem.:

. ClLCy C! Dy _
IQS”LGZQSTT ({D;CS DD, + R} PS) , (2.49)
with
_ P, Z
Ps—{Ps_ [Zs Vs] =0 }
and

Q, = {P, € Py : AP+ P+ ByZ, + ZiBl + %% < 0}

S

Fast subproblem:

) c'Cc; 0] =
T 1 P 2.50
pey ([0 77 250
with
_ P 7
p:{p:{f f]»o }
f f Zf Vf
and

Qs ={ Py € Py: AnPrAy + AnZ; By + B1Z; A\ + B1 ZgP; ' Z;B] — Py < 0}
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Chapter 2. A convex solution of the discrete-time L() control design for two time scale systems

which, using the Schur complement [BGFB94|, becomes

a-{ner[fh 73540 )

The following theorem gives a suboptimal solution of the problem (2.38).

Theorem 2 Assume that the problems (2.49) and (2.50) admit, respectively, the
solutions

s Pz 5 _ [P Z;
S I

Hence, there exists a positive scalar €,,q, such that the solution P(g) of the problem
(2.58) exists Ve € (0, Emaz| and

| cc ol[p 7
ﬁll’éj(ff)_‘]_‘]ﬁ‘]f_ﬂ([ 0 R] [Z ZP—lz’D’

with L
. Pf‘FPQP;PZ P2
P = [ Py Ps:| (2.51)
and
Z=\Zy+ Z,P]'P}) Zj]. (2.52)

Moreover, the composite controller gain (2.39), which guarantees the asymptotic
stability of the system (2.17)Ve € (0, emazl, 18:

K = [prf—l Z, Pt — prf—l(fm — An) HAp + B Z,PY) ].
Proof. See Appendix B.1. =

Remark 1 An evaluation of the upper bound €,,4, is obtained solving the follow-
ing optimization problem:
Emax = max € >0 (2.53)

A(e)P(e)A(e) + A(e)Z(e)'B(e) + B(e)Z(e)A(e)'+
B(e)Z(e)P(e) ' Z(e)'B(e) — P(e) + x(to)x(to) < 0,

where A(e), B(e), P(e) and Z(g) are defined in (2.18) and (2.41)-(2.45), respec-
tively. The values of Py, Zy, Py and Z, can be computed by Theorem 2.

subject to P(eg) =0,

Remark 2 The conditions of Theorem 2 with Z; = 0 lead to the reduced control
law:

u(k) =0 K] {25’8] , (2.54)

where Ky = Z,P; ' is the optimal controller gain of the slow subsystem. Notice
that, in this case, the fast subproblem (2.50) has a solution only if A1y is Schur.
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2.8. LMI based solution

2.3.2 Slow sampling control law

The slow sampling L.Q optimization problem (2.29) may be formulated in a convex
form using a similar procedure to the fast sampling control design illustrated in
the previous section. Let define the sets

P. = {P(a) - Eg g((‘?)/} =0, P(e) = 0 } (2.55)
and
o P(e) € P.: A(e)P(e)A(e) + A(e)Z(e) B' + BZ(e)Ale) + (2.56)
: BZ(e)P(e)1Z(e)'B' — P(e) + x(to)x(ty) < 0 '
From
. cC'C 0] 5
ngETLQEJ(E) =Tr ({ 0 R] P(z—:)) , (2.57)
sy _ | PTE) Z7(e)| _ | Pr(e) P(e)K(g)
Pie) = [z*(z) U*(i:)} = [K(e)PE*(e) K(e)]f*(e)li(e)’}’
where K () = Z*(e)P*(e)~! is the optimal gain and
lim K(¢) = K = VAN (2.58)
We obtain:
| (e 0] [PE) Z(e)
P &) =T ([ 0 R] [Z(a) Z(a)P(s)‘lZ(e)’D (2:59)
Dot 1 e)P(e)A(e) + A(e)Z () B' + BZ(e) A(e)
ST BV Py 2(e) B — P(e) + x(to)a(to) < 0
Decomposing the criterion
0 Pi(e) P(e)
Je) =T {CJ o e L%(ff)' P * )
- Pi(e) Bye)] " [Zile)
R [Zl(g) ZZ(E)} [P (5)/ P3<§):| l22<i)l]
with
,_ | Pi(e)  Pae) P R+ 0(e)
P =rer =[50 B0l = reon miog| 0 @®
and
Z(e) =[Zi(e) Za(e)] = [0O(e) Zo+O(e)], (2.61)
and definin
° Py =P, P,=Py, Z,= 7, (2.62)
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we have: L
liné J(e) = J,=Tr(C,P,C. + RZ,P ' Z!) =
o ([CLC0 0] [R 2 (2.63)
0 R||Z, Z,P'Z|)"
The slow subproblem is:
. CiCy 0] 5
T A P, 2.64
par ([0 1) .
with /
- P, Z!
pe{n=lz )
and ~ ~
B P, A,P,+ B,Z, 2°
Qs: PSGPS: (*)/ Ps 0 0
(x)' (*)’ L,

The following theorem gives a suboptimal solution of the problem (2.57).
Theorem 3 Assume that the problem (2.64) admits the solution

- P, Z,

r=lr 0]

Hence, there exists a positive scalar €,,q, such that the solution P(g) of the problem
(2.57) exists Ve € (0, maz| and

. o, cc, ol [p Z
lfl’é‘]@_‘]s—ﬂ({ 0 R} lZs Zspslz;D'

Moreover, the composite controller gain (2.58), which guarantees the asymptotic
stability of the closed loop system (2.27) Ve € (0,&pmq), is K = [0 Z,P!].

Proof. From (2.60), we have:

=[G 0
Substituting (2.28), (2.33), (2.60), (2.61), (2.62) and (2.65) in (2.56), we obtain:

[5_1X1 (6) Xu(e)

X (e Xg(E):| <0, (2.66)

with
Xl(E) = 8(1412 -+ BlZsPS’l)Ps(fhg -+ BIZngl)I + 81’(1]37(1)/ — Pf + 0(82),
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2.8. LMI based solution

X2(€) :AHPSA; + AmZéBé -+ BlZSA; + BlZSPS_lZ;B; + l‘(l)ZL'gl — P2 + O(E),
Xs(e) = A,P A, + A, Z'B, + B, Z, A + B, Z,P' Z' B! 4+ 2%2% — P, + O(e).

When ¢ — 0, we get:
X, =—-P; <0, (2.67)

Xy = ApPAL + ApZ' B, + B Z,A, + Bi Z,P, 7 B, + 1%% — P, (2.68)

Xs = A,P,A. + A, Z'B' 4+ B,Z,A. + B,Z,P,' Z' B, + 2%% — P, < 0.  (2.69)
Using the Schur complement, the condition (2.69) represents the constraint of

slow the subproblem (2.64). Hence, it is satisfied by assumption, with P, > 0.

Replacing (2.67)-(2.69) in (2.66), we obtain:
e (X1 4+ 0(e) X2+ 0(e)
X! X5+ 0(e) =< 0. (2.70)

The condition X; < 0 implies that there exist matrices Py > 0, P, and a scalar
g1 > 0 such that the inequality

X1 — e(Xa(Xs5 + 0(e)) ' X5 + 0(€)) + O(e) < 0
holds Ve € (0,e1]. Hence, using the Schur complement, also (2.70) holds Ve €
(0,&1]. Moreover, there exists a scalar €5 > 0 such that the inequality
Py — ePy(P, + O(e)) ' Py + O(e?) = 0

holds, Ve € (0,eq]. Hence, using the Schur complement, P() = 0 Ve € (0, &q].
Thus, there exist matrices Ps, Z; and Py and a scalar €,,,, = min{e;, es} that
verify the constraints (2.55)-(2.56) of the problem (2.57), Ve € (0, €/naz)-

When ¢ — 0, from (2.61) and (2.65) we have
K=2Z(E)P) " =0 2z,
which concludes the proof. m

Remark 3 An evaluation of the upper bound €,,q, s obtained solving the follow-
ing optimization problem:
Emazr = max € > 0 (2.71)
Py
A(e)P(e)A(e) + A(e)Z(e)'B' + BZ(e) A(e) +
BZ(e)P(e) ' Z(e)' B' = P(e) + a(to)x(ty) <0,

where A(e), B, P(e) and Z(¢) are defined in (2.28) and (2.60)-(2.62), respec-
tively. The values of Py and Zs are given by Theorem 3. Since a control law
based on the slow sampling model cannot influence the fast transient, Theorem 3
does not provide a solution for the fast subproblem. Hence, the value of Py can

be chosen in order to maximize the value of €4, under the constraints of the
problem 2.71.

subject to P(eg) = 0,
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2.3.3 Numerical example

Consider the state matrices (1.15), introduced in Chapter 1. They correspond
to the 4-stands subsystem of an average product of the Eisenhiittenstadt HSM
database, with ¢ = 0.05. Let us assume, in a first moment, that there exist no
bounds on the rate actuators. In this case, we could resort to the fast sampling
model (2.13) in order to control both slow and fast dynamics. Choosing oy = 0.1,
we have Ty = 0.005 sec. Using formulae (2.14), we get the following discrete-time
state matrices:

[ 0.6849 —0.0212 —0.0008
A = |—0.1837 0.6938  0.0509 |,
| —0.1325 —0.2486  0.6543
[—0.0841 0.0000 —0.0000 —0.0000 —0.0000
Ajp = [—0.0223 0.0000 0.0000 —0.0000 0.0000 |,
| —0.0252  0.0000  0.0000  0.0000 —0.0000
[—0.0004 0.0000 0.0000
0 0 0
Ay =10° | 0.6211  —0.009 —0.0002] ,
—0.1198 0.974  0.0338
|—0.1318 —0.227 1.3
[—0.0013 0.0000 —0.0000 0.0000  0.0000
4.1744 0 0 0 0
Agy =10% | —0.3345 0.0001 —0.0002 —0.0000 —0.0000]
—0.1565 0.0000 0.0004 —0.0005 0.0000
| —0.2525 0.0000 0.0001  0.0005 —0.0007
[0.0006 0.0031 —0.0000 —0.0000
By, = [0.0006 0.0022 0.0069 0.0004 |,
10.0006 0.0023 0.0062  0.0138
[0.0093 0.0095 —0.0045 —0.002]
0 0 0 0
By, = |-2224 —12.113 5.74 2.59 |,
2.108 16.784 —46.07 —31.82
| 2526 4.011 73.13  —35.17]
1 0 0 10000
010 01000
Ci=100 1|,C,=10 0100
000 00010
0 0 0 00001
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Let the weighting matrix R = 100/5. Theorem 2 leads to the following controller
gain:

01 0 0 —97.883 —0.1052 —-0.0034 0.0034 —0.0038
0 -01 0 —221287 —0.0076 0.0551 —0.0434 -—0.0158
0 0 —01 9.5851 0.01 —0.014  0.0115 —0.0366
0 0 0 —15.3011 -0.004 0.0392  0.0741  0.0112

Now, let consider the real scenario of Eisenhiittenstadt HSM, where the lower
bound on the sampling time is fixed to 7;,, = 0.04 sec, due to the limitations on
the actuators rate. Hence the fast dynamics, which is open loop stable, cannot be
controlled. In this case, it is quite natural to design a reduced control law using
the slow sampling model (2.15). Let choose a; = 0.5. We obtain T = 0.05 sec.
Using formulae (2.16), we obtain the following discrete-time state matrices:

0.5 0.75
t (sec)

0.5 0.75
t (sec)

0.5 0.75
t (sec)

Figure 2.1: Closed loop response of x} using the fast sampling controller (solid
line, Ty = 0.005) and the slow sampling controller (dotted-line, T = 0.05)

[ 0.5549 —0.127 —0.0467
A = |—0.3236 —0.407 0.1387 |,
| 04222 041  —0.6266

[ —0.23  0.0000 —0.0002 —0.0000 —0.0000
A= | 0.038 —0.0000 0.0002 —0.0001 0.0000 |,
| —0.0008  0.0000 —0.0000 0.0002 —0.0002
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150

0.5
t (sec)

100

0.5
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Figure 2.2: Closed loop response of x3 using the fast sampling controller (solid
line, Ty = 0.005) and the slow sampling controller (dotted-line, T = 0.05)

12121 == 103

12122 — 102
34

[—0.0016
—0.3417
2.0446
—1.6887

| —0.5125

[ 0.01
2.087
—0.937
0.353

0111

0.0001  0.0000
0.0254  0.0046

—0.1558 —0.0289
2.52 0.469
—2.0625  2.812
0.0000  —0.0000
0.01 —0.0000
0.0003  0.0091
—0.0001 0.0018
0.0000  —0.0005

)

0.0000
0.0000
—0.0000
0.0087
0.0024

0.0000
0.0000
—0.0000
0.0000
0.0082

)



2.4. An extension to uncertain systems in the polytopic form

[0.0009 0.0097 —0.002 —0.0006
B; = 10.0012 0.0024 0.02 0.0068 |,
10.0004 0.0016 0.0057 0.03

[0.0032 —0.0029 0.0006 0.0002
0.3386 —0.304 0.06 0.019
B, = 05154 3.666 —0.73 —0.24],
0.627 1.166  12.93  4.226
0.3476  1.36 2.98  25.6

0
0
C, = , Oy = 0
0
1

O OO oo
O OO oo
O OO oo
SO OO
[Nl )
OO = OO
o= OO O

Theorem 3 yields the following controller gain:

0 00 —=73.898 —0.0857 —0.0151 0.0016 —0.0004
K — 0 0 0 61.091 0.0013 —-0.0481 —-0.0007 —0.0012
0 0 0 —2.1477 0.0007 —0.0297 —0.0408 0.0054
0 0 0 —1.1542 —-0.0005 0.006 —0.0226 —0.0271

Consider the initial conditions
240) = [+1(0) 23(0y]"=[10 10 10 1 1 1 1 1],

where 1 = [ag Uy oz5}l is the state vector corresponding to the fast dynamics

and 3 = [ag Zo L3 Zy Z5]/ is the state vector corresponding to the slow
dynamics. Fig. 2.1 shows the closed loop response corresponding to z] using
the fast sampling controller (solid line) and the slow sampling controller (dotted-
line). Fig. 2.2 shows the closed loop response corresponding to zj using the fast

sampling controller (solid line) and the slow sampling controller (dotted-line).

2.4 An extension to uncertain systems in the poly-
topic form

2.4.1 Slow sampling control law

This section aims at extending the results of Theorem 3 to uncertain two time
scale systems in the polytopic form and designing a H, robust controller for this
class of systems. Consider the slow sampling two time scale system:

(2.72)

{x(s + 1) =A(s)x(s) + Bu(s)u(s) + Ba(s)d(s)
q(s) = Cx(s) + Du(s),
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where d(s) € R" is the external perturbation, for all s € Z* > t, and

s) =Y M(s)A(e), B ZA, )BL, By(s Z)\l s)B.,

with [ € L. \; denotes the uncertainty and belongs to the unit simplex

ZAl ) =1, A(s) > 0}.
The matrices A'(e), B., B} and C are defined as:
- Al A B! - [B
Ale) = lgﬂ ﬂ}, Bl = { “71}, B, = [ﬂvl}, C=[0 ], (273
) ey Al 4 Bil,2 [ 2} ( )
for any [ € L. The two time scale linear system corresponding to each vertex [
of (2.72) may be written in the form:
w1(s + 1) = eAfya () + Apra(s) + By yuls) + B yd(s)
Ta(s + 1) = eAbyz1(s) + Apra(s) + B yu(s) + Byod(s),
q(s) = Caza(s) + Du(s).

Its slow subsystem is:

{ms +1) = Alzy(s) + Bl us(s) + Bl yd(s)
Q(S) = ésxS(S) + DSUS(S)a

where AL = Al,, Bfl = B

u,2?

Bfm = éfj,z, Cy, = Cy and Dy, = D. The pair
(AL, B ,) is assumed to be controlable, for any I € £. For simplicity reasons, we

assume that the weighting matrices C, and D, respect the orthogonality hypoth-
esis C'D; =0, D.D; > 0. Consider the state-feedback control law

us(s) = Ksxs(s),
the transfer matrix between ¢ and d is
Hy, (<) = (Cs + D,K,)(sIn, — A, = B, K,) "' By,
and its Hs norm is

o / "L (o) HY () o (2.74)

1 Hg |15 =

with ¢ = e/, for any [ € L. The following theorem designs a suboptimal
state-feedback control law
u(s) = Kz(s) (2.75)

which asymptotically stabilizes the polytopic two time scale system (2.72) and
minimizes the Hy norm of its slow dynamics, with K = [0 K.
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2.4. An extension to uncertain systems in the polytopic form

Theorem 4 Assume that there exist matrices Wy =W/, =0, P, = P, > 0, Zs of
appropriate dimensions, and a scalar p > 0 such that LMIs

Tr (W) < p (2.76)
W, C.P,+ D,Z,
() P, - 0, (2.77)
and ~ ~ ~
p, AlP,+B.,Z, B,
(%) P, 0|=0 (2.78)
(%) (x)' I,

are verified V1 € L. Hence, there exists a positive scalar €,,q, such that the state-
feedback controller gain K = [0 K|, with K, = Z,P; ', stabilizes asymptotically
the closed loop system (2.72), Ve € (0, Emaz|- Moreover, the controller gain Kj
solution of the problem:

WTan, (2.79)

subject to (2.76)-(2.78)

minimizes the Hy norm (2.74).

Proof. A well-known sufficient condition for asymptotic stability of the closed
loop system (2.72) is to find a set of Lyapunov matrices

e P, Pl+0(e)

Pl(e) = Pl(e) = Pl +0() P,+0()

>~ 0, (2.80)

and a matrix

Z()=1[0 Z;+O(e)] (2.81)
such that the inequality
Al(e)PY(e)Ale) + AY(e) Z () BY + B! Z(e)Al(e) +
BLZ(e)P'(e)™' Z(e)'BY — P(e) + B'B} < 0

u

(2.82)

holds, V1 € L. Decomposing the inequality (2.82) as in the LTI case, we find:

e HXL+0(e)) XL+ 0(e)

X X1 o) <0 (2.83)

with
X{=-P; <0, (2.84)

XY =2, P AL + 2,205, + By, 24U + B, 2P 2B, + BB, - P
(2.85)
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Chapter 2. A convex solution of the discrete-time L() control design for two time scale systems

xX,=APA +AZB +B. ,ZA + B, ,ZP ' Z.B, , + B, By, — P, < 0.
(2.86)
Using the Schur complement, the condition (2.86) corresponds to (2.78). Hence,
it is satisfied by assumption, with P, > 0. This means that there exist matrices
P}lc > 0 and a scalar ¢; > 0 such that the inequality

X! — o(XYXE+0()) ' XY + 0(e)) + O(e) < 0

holds, VI € £ and Ve € (0,e1]. Thus, using the Schur complement, (2.83) holds
Ve € (0,21]. Moreover, there exists a scalar €5 > 0 such that the inequality

P} —ePy(P,+0())'PY + O(e?) = 0

holds, VI € £ and Ve € (0,e;]. Hence, using the Schur complement, P!(¢) = 0,
Vi € L and Ve € (0,e5). Thus, there exist matrices P, Z,, P}, Py and a
scalar €,,,, = min{ey, s} which verify the constraint (2.80)-(2.82), VI € £ and
Ve € (0, Emas]. Further, when & — 0, we have K = Z(e)Pl(e) " = [l

To prove that the controller X' minimizes the Hy norm (2.74), VI € £ and
Ve € (0, maz), consider the performance index

c.c, o0 ][p, Z!
=1 ([ ) |7 2.2)

Applying the Schur complement to (2.77), we obtain :
W, » C,P,C, + D, Z,P ' Z,/D..
Thus: . . . .
Tr(W,) = Tr( C,P.C, + D, Z, P, Z. D) = J..

Under the choice B}, = 2%, minimizing J; corresponds to minimize the H,

s 7

norm (2.74) [PG94|. Hence, ||H} |3 < p1, V1 € L, which concludes the proof. m

Remark 4 An evaluation of the upper bound €,,4, is obtained solving the follow-
ing optimization problem:

Emaz = MAT {e>0, le L} (2.87)
P
7

Al(e)P(e)Al(e) + Al(e)Z(e)' B, + BLZ(e) Al () +
BLZ(e)P'(e)~'Z(e)'BY — P'(e) + BB} <0
where Al(e), B., BY, P'(c) and Z(c) are defined in (2.73) and (2.80)-(2.81),

respectively. The values of Py and Zg can be computed by Theorem 4, for any
le L.

subject to P'(g) =0,

Remark 5 The extension of the full-order controller designed in Theorem 2 to
uncertain systems in the polytopic form cannot be directly done because P} depends
on the state matrices AL, ALy and B, for anyl € L.
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2.5. Conclusion

2.4.2 Numerical example

Consider the slow sampling time scale system in the polytopic form (2.72), which
can represent a subsystem i € Z of the switched system (1.19) corresponding to
the model of the uncertain HSM system. Assume that the HSM system is subject
to four parametric uncertainties: the width of the strip w, the output thickness of
the strip in the last stand h,,, the hardness of the strip in the first and in the last
stand o and o0, respectively. Consider the following variation of the uncertain
parameters:
w € [800 — 1200] mm
hn, € [1.9 — 3] mm
0¥ € [22 — 56] K N/mm?
o € [30 — 72) KN/mm?.

(2.88)

Here, the aim is to design a robust control law in the form (2.75) that asymp-
totically stabilizes the 4-stands subsystem of the HSM system for all products
belonging to the uncertain set (2.88), which is represented by a convex hull with

Ny = 16 vertices. Using Theorem 4 with C, = Is and D, = Os x4 , we find:
O4x5 1014

000 =795 —=0.072 0.0064 —0.0072  0.01
K — 00 0 318 0.0175 —0.0634 —0.0006 —0.0013

0 0 0 —0.0075 0.0038 —0.0011 -0.0273 0.0074

0 0 0 051 0.0005 0.0049 —0.0055 —0.0247

In Fig. 2.3, we show the closed loop evolution of the state variables as and Z5 for
the products corresponding to the convex hull vertices for the initial conditions
z(0) = [O 0 0 001 111 1]’. The external perturbation is shown in Fig.
2.4.

2.5 Conclusion

In this chapter, a LMI based solution for the LQ control design of singularly
perturbed systems in the discrete-time case has been proposed. In general, LMI
tools are considered more effective than Riccati equation solutions, when the
dimension of the problem is high. In order to design the control law, a model
representing the sampling of singularly perturbed continuous-time systems was
used. Thus, results can be applied to continuous-time systems controlled by
digital devices. Fast sampling and slow sampling state-feedback control designs
were investigated.

An extension of the slow sampling controller to uncertain systems in the poly-
topic form has also been presented. We will resort to this result on the robust
steering control design of HSM presented in Chapter 5.
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Figure 2.3: Closed loop response
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Figure 2.4: External perturbation
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Chapter 3

Stability of two time scale switched
systems

3.1 Introduction

During last years, switched systems have been the subject of a big interest by
the scientific community. The main reason is that many physical systems can be
modeled using such a framework. Examples of switched systems can be found
in event driven systems, robots guidance, network control systems, adaptive con-
trol or biologic networks [SWM™07]. An autonomous continuous-time switched
system consists of a set of differential equations

i(t) = [0 (x(t), 1), (3.1)

where {f* : i € T = {1,..,N}} is a family of sufficiently regular functions,
o :RT — 7 is a piecewise constant function, called switching rule, and z(t) € R™
is the state vector, which is assumed to be continuous, for all ¢ > 0. The switching
rule determines which mode ¢ is active at each instant and may depend on the
time t, on the system state x or on the evolution of some system parameters. An
autonomous discrete-time switched system consists of a set of difference equations

z(k+1)= f"(k)(:p(k:), k), (3.2)

where o : ZT — 7 and xz(k) € R", for all k € Z*. Three basic problems con-
cerning stability of switched systems may be formulated [Lib03]:

— Problem A: Find conditions that guarantee the asymptotic stability of
the switched system (3.1) (or (3.2)) under arbitrary switchings [LHM99],
[DRI02], [SNO2].

— Problem B: Identify classes of switching rules for which the switched system
(3.1) (or (3.2)) is asymptotically stable [Mor96], [LM99], [ZHYMO1].
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Chapter 3. Stability of two time scale switched systems

— Problem C: Construct a switching rule that makes the switched system (3.1)
(or (3.2)) asymptotically stable [SESP99], [SCGBO06|, [LA07].

In particular, we are interested in studying the stability of switched linear
systems [LAO9]. In this case, all the subsystems are linear and we have:

i(t) = M°Dx(t), (3.3)
for the continuous-time case, and:
z(k+1) = A"Wa(k), (3.4)

for the discrete-time case. {M® : i € Z} and {A’ : ¢ € I} are two families of
matrices. We first recall three results (Theorems 5, 6 and 7) giving sufficient
conditions for stability of switched systems.

In order to verify stability of a continuous-time switched system under arbi-
trary switchings (Problem A), sufficient LMI based conditions for the existence

of a common quadratic Lyapunov function V(x(t)) = z(t) Px(t) may be used
[BGFBY4.

Theorem 5 Consider the system (3.3). If there exists a matriz P = P’ = 0 of
appropriate dimension such that the LMI

M'P+ PM' <0 (3.5)

holds Vi € T, the quadratic function V (x(t)) = x(t)' Pxz(t) is a Lyapunov function
for the system (3.3), i.e. the origin x = 0 is globally exponentially stable.

When V' (z(t)) = z(t)' Pz(t) exists, the system is said to be quadratically sta-
ble. This implies that there exists a scalar § > 0 such that V' (z(t)) < —d||z]|.

Different sufficient conditions for the existence of a common Lyapunov func-
tion related to Lie algebra and simultaneous triangulation have been proposed by
[MK97], [LHM99] and [Lib03]. The restriction of all these methods is the conser-
vatism, that may be too high [DM99|. In order to reduce this problem, several
necessary and sufficient conditions for the existence of a common Lyapunov func-
tion have been investigated. For instance, Shorten and Narendra provided a
solution for stable second order linear systems and for a pair of stable linear sys-
tems whose system matrices are in companion form [SN02|, [SN03]. However,
all the necessary and sufficient conditions for the existence of a common Lya-
punov function present in the literature address particular cases. To overcome
the conservatism problem in a general framework, multiple Lyapunov functions
V(z(t)) = x(t)P(o(t),z(t))z(t) have been introduced. In this case, the Lya-
punov matrix may depend on the switching law or on the state vector [MP89],
[OIGH93|, [PD91], [Bra9s]|, [DRI02|, [BMSO07].
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3.1. Introduction

A different approach for assessing stability of a switched system consists of
assuming a minimal interval of time between two successive switchings (Problem
B). Consider the continuous-time switched system (3.3) and the switching in-
stants tq, to, ..., 15, with t; —t;_; > A. Obviously, if the matrix M? is Hurwitz
for any ¢ € 7 and the dwell time A is large enough to allow each subsystem 1
to reach the steady-state, the system (3.3) is exponentially stable. The following
theorem yields an evaluation of the minimum dwell time A between two consecu-
tive switching instants ensuring exponential stability of the switched system (3.3).

Theorem 6 (/Mor96], [LM99]) Consider the switched system (3.3) and assume
that the matriz M is Hurwitz for any i € Z. If the inequality

In(p) — vty —teg—1) <0, k=1,2,.. (3.6)
P
holds, then the origin of (3.3) is exponentially stable, where p = )\S’;‘”, NP =

maz{Amaz(PY), i € T}, AP = min{\pin(P?), i € I}, and P* = P" = 0 is a

man

matrix satisfying the Lyapunov equation
M'P'+ P'M! = —@Q', (3.7)
with Q' = Q = 0. Further, v and ¢ are two constants such that 0 < v < A,

c Vi(z(t)) . . , 9 :
_ N N7 7 < _nt .
P and ar(t) Miz(t) < =c||z(t)|| <0, for anyi € T

max

where \' =

Condition (3.6) may be written as

l
Aty —tp =M gy

and has been generalized by Hespanha and Morse through the concept of average
dwell time Agyy [HM99]. The idea is that the switched system (3.3) is exponen-
tially stable if the switching intervals are in average greater than A,,,. Zhai et al.
extended the results of Theorem 6 to switched systems with stable and unstable
subsystems [ZHYMO1]. In [GCO06a] and [GCO6b|, Geromel and Colaneri exploit
the dwell time knowledge for finding LMI base stability conditions for continuous
and discrete-time switched systems, respectively. The following theorem recalls
the discrete-time case.

Theorem 7 ([GC06b]) Consider the switched system (3.4). If there exist matri-
ces Pt =P = 0 of appropriate dimensions such that LMIs

A'PIAT— PP <0, VieT,
(ANAPI(ANA — PP <0,V (i,j i) €T XT

hold, then the origin of (3.4) is globally asymptotically stable for a dwell time
equal or greater than A >1 € Z+.
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Chapter 3. Stability of two time scale switched systems

Notice that the choice A =1 leads to the conditions proposed by [DRI02].

Multi time scale switched systems are of practical interest in many applica-
tions. An example is given by the last phase of the rolling process in a hot strip
mill, which has been introduced in Chapter 1. However, these dynamical systems
have been the subject of few investigations. To our knowledge, the only work ad-
dressing two time scale switched systems is [ALIO8|, where dwell time approach

is extended to singularly perturbed continuous-time switched systems with time
delay [LSZ03|.

In this chapter, we will first recall some results to show that, under dwell
time constraints, stability of the slow and fast switched subsystems is sufficient
for stability of the original two time scale switched system and then may be
evaluated separately, as in the linear systems case. Therefore, we will show that,
if no assumption on the minimal dwell is made, this important property is not
verified anymore [MDI09a|, [MDIO9b]|. This means that stability of the slow and
fast switched subsystems does not guarantee stability of the original two time scale
switched system, when the switching rule is arbitrary. In this case, an additional
constraint taking into account the coupling between slow and fast subsystems has
to be considered. Therefore, we will propose LMI based conditions, independently
of the singular parameter ¢, for stability analysis and feedback control design
of continuous and discrete-time singularly perturbed switched linear systems.
These conditions express the fact that a coupling constraint has to be satisfied, in
addition to stability of the slow and fast switched subsystems, as far as arbitrary
switchings may arise. An interpretation of this constraint in terms of the degree of
time scale separation will be given. To our knowledge, this is the first work which
points out explicitly the fact that asymptotic stability of slow and fast switched
subsystems is not sufficient for asymptotic stability of a two time scale switched
system, under an arbitrary switching rule, and which provides a stabilizing control
law for this kind of systems.

3.2 Motivation for a new stability condition

Recall that for an autonomous continuous-time LTT system in the singular per-
turbation form

(1) = M(e)z(t), (3.8)
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3.2.  Motivation for a new stability condition

with M, non-singular matrix, the fast and slow dynamics may be separated using
the transformation (2.10), which leads to the following decoupled system:

eip(t) = (M + O(e))ws (1)

iy(t) = (M, + 0(e)), (1),
Hence, there exists a scalar ¢,,,, > 0 such that asymptotic stability of the slow
and fast subsystems (i.e. matrices My = Msy — leMﬁle and M;; are Hur-

witz) implies asymptotic stability of the two time scale system (3.8), for any
e € (0, emaz] [KKOS6].

3.2.1 A dwell-time condition for two time scale switched
systems

Consider the autonomous continuous two time scale switched linear system

i(t) = M7V (e)a(t), (3.9)
with ) , ,
. e~ [ 0 MZ MZ

ai(e) = | I h ﬂ , 3.10

( ) [ 0 [n2:| [MQI M22 ( )

and the matrix M}, is assumed to be non-singular, for any ¢ € Z. The subsystem
corresponding to each mode ¢ € 7 can be written in the form:

{ex‘ (t) = Miya1(t) + Mipws(t) (3.11)

1
o(t) = My (t) + Miyzs(t),

where z1(t) € R™ and z3(t) € R" are the state vectors corresponding to
the fast and slow dynamics, respectively, for all ¢ > 0. The following theorem
yields an extension of the dwell time approach [Mor96]| for singularly perturbed
switched systems. The two time scale switched system (3.9) is considered as an
interconnected system where the terms Mi,zo and M: x; are perturbations that
are assumed to be bounded.

Theorem 8 ([ALI08]) Consider the switched system (3.9). Assume that the
matrices My, and M, are Hurwitz, the principal minors of

Q iagi —Llagi agi iagi —Llagi i i A —Llari
B ()‘mfn - EmaﬂﬁHPfMll My M) ||PfM11 Miy(Myy — My Mty Mi,)||
Mi — Emaac)\ifax )\ism
- i i s ingi agi —Llagi
|25 My, |l (A = IPIME, M, M)
ACs Ao

man

are negative and Apag(M* + M"Y < N, with APs = maz{\mee(P?), i € I},
AL

P = min{Amin(P1), i € T}, Ataw = maz{\mae (PY), i € T}, A = min{Amin (P,

man
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Chapter 3. Stability of two time scale switched systems

i€ T A% = min{Amn(Q)), i € T}, A%

i )

~ Cs s i i i -1 (i :
mm{)\PS XV boch = Amin(Qy) and ¢ = )\mm()fm}an); Vi € Z. Further,

Pl = Psil = 0 and Pi = P}, > 0 are matrices satisfying the Lyapunov equations
MiLP} + P = Q)

M3, P} + PiM;, = —Q,

S

with Q) = Q7 = 0, Q= Q}/ =0, Vi € Z. If the inequality
In(2u) —v(ty —txy—1) <0, k=1,2,...

holds, then there erists €mq, such that the origin of (3.9) is exponentially stable
P

57?@]) )\mfax

)\Ps ) Pf

man min

Ve € (0,emaz|, where pp = max{ } and v is a constant such that 0 <

v < A
Consider the switched system (3.9), with Z = {1,2} and

M) = RERECE (3.12)
TTlo YT s '
Applying Theorem 8, we find

Pl =P =Q.=Q} =1,

and
PP=P;=Q}=Q}=1,

with £,,4, = 0.076. Hence, = 1, \! =1 and A\? = 1. Finally, choosing v = 0.99,

In
we get the minimal dwell time A = () = 0.7001. An example of stabilizing

v

2 1 1 1Ty

51
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Figure 3.1: Stabilizing switching rule o(t)

switching rule for the switched system (3.9)-(3.12) with € = €,,,4, is given in Fig.
3.1, where the system switches between the subsystems 1 and 2 each A* = A sec.
Fig. 3.2 shows the convergence of the state trajectories to zero for the initial
condition z(0) = [1 1}/.
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Figure 3.2: State trajectories: Stable behavior

3.2.2 Two time scale switched systems under arbitrary switch-
ing rules

Consider the two time scale switched system (3.9)-(3.12). Matrices M'(g) and
M? () are Hurwitz for any value of ¢ > 0. Moreover, since M{; = M} = —1, the
fast switched subsystem

ey (t) = M7y p(1) (3.13)

is asymptotically stable for any switching rule. Also, since M! = M2 = —1, the
slow switched subsystem
Zy(t) = M7Wa (1) (3.14)

is asymptotically stable for any switching rule, with
i i i aqi “Lai
Mg = My — My My, My, (3-15)

for any ¢ € Z. However, when the switching rule is arbitrary, the two time
scale switched system (3.9)-(3.12) can be unstable for any small value of £ > 0,
even if the slow and fast switched subsystems are asymptotically stable. The
interpretation of this phenomenon is that for any fixed ¢ € (0, £,,42, a switching
rule with a sufficiently high switching frequency which destabilizes the two time
scale switched system may be exhibited. For instance, let switching between the
subsystems 1 and 2 each A* = ¢ sec. We obtain a periodic dynamical system
characterized by the matrix

D(&') _ eMl(a)A*eMQ(e)A*.
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Chapter 3. Stability of two time scale switched systems

Since the computation of the spectral radius of D(e) yields
p(D(g)) = 14 9.5529¢ — 28.7211* + O(£%) > 1

for every period 2A* and any ¢ € (0, €4, the proposed switching rule destabi-
lizes the two time scale switched systems (3.9)-(3.12) for any ¢ € (0, €42/, even if
the slow and fast switched subsystems are asymptotically stable. A simple exam-
ple of destabilizing switching rule is given in Fig. 3.3, where the system switches

between the subsystems 1 and 2 each A* = — = 0.35sec and € = ¢,,,4, = 0.076.

In this case, the state trajectories diverge, as shown in Fig. 3.4 for the initial
condition z(0) = [1 1]".

51
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Figure 3.3: Destabilizing switching rule o(t)
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Figure 3.4: State trajectories: Unstable behavior
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3.3. Stability conditions: Continuous-time case

In the next sections, we will provide LMI based conditions guaranteeing the
asymptotic stability of a switched systems in the singular perturbation form under
an arbitrary switching rule and independently of the value of e. We will show that
this corresponds to assess the asymptotic stability of the slow and fast switched
subsystems and verifying an additional constraint which takes into account the
coupling between the fast and slow dynamics when a switching occurs.

3.3 Stability conditions: Continuous-time case

3.3.1 Stability analysis

Consider the autonomous two time scale switched system
i(t) = M°D(e)x(t), (3.16)

defined in (3.9). The existence of a common quadratic Lyapunov function V' (z(t),e) =
z(t) P(e)z(t) such that V(x(t),e) > 0 and V(z(t),e) < 0 for all t > 0 is a well-
known sufficient condition for asymptotic stability of the system (3.16). This is
equivalent to the existence of matrices P(¢) = P(¢)’ > 0 and Q'(¢) = Q'(¢) = 0

of appropriate dimensions such that the LMI

M (£)P(e) + P(e)Mi(s) + Q'(e) < 0 (3.17)

holds for any ¢« € Z. The following theorem gives LMI based conditions guaran-
teeing the stability of the switched system (3.16) independently of € and for any
switching rule.

Theorem 9 Assume that there exist matrices Py = Py > 0, Q} = Q}/ > 0,
P,=P'~0,Q = le = 0 of appropriate dimensions such that the LMIs

M; Py + PeMi + Q) = 0, (3.18)
M!P,+ P,M" + Q' <0, (3.19)
Qif _(Mflyi + PfMZil/)
. o S 3.20
(o Q- Mgy -y Y 20
are verified Vi € I, with Y* = — S MR MMNP,. Hence, there exists a pos-

h=1,h#i
itive scalar €pmq, such that the switched system (3.16) is asymptotically stable
Ve € (0, emaz] and for any switching rule.
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Chapter 3. Stability of two time scale switched systems

Proof. Let us assume

P(e) = :5218, 1;28] - 0, (3.21)
iy _ [Qi(e) Qy(e)
Q'(e) = Q3 Qé(@] =0, (3.22)

with

N
Pi(e) = Py +eP,P'Py, Pylc) =ePy = —5ZM{L171M{12P8, Ps(e) = eP;s
h=1

(3.23)
Qzl(e) = 5_1Q§% QZQ(’S) = —Mlei+PfM;1,, QE(E) = 5(@2 _M2i1yi _Yi/M2i1,)
(3.24)
and
N
Yi=— 3 My MyP. (3.25)
h=1,hi
Substituting (3.10) and (3.21)-(3.22) in (3.17), we have:
Xi(e) X5(e)
6 xi@) <0 (3:20)
with

Xi(e) = e (M{y Pi(e) + Pi(e) M, + MiyPa(e) + Pole) Miy + Qi(e)),

Xi(e) = e M\ Pa(e) + e\ Miy Py(e) + Pi(e) My + Pale) Miy + Qi(e),
Xi(e) = MiyPy(e) + Py(e)Miy + Mj, Po(e) + Po(e) My, + Qs(e).

Replacing the values of P(g), Q'(¢) and the equations (3.15), (3.23)-(3.25), we
obtain:

Xi(e) = e (M{y Py + PyMj) + Q + O(e)) = (X} + O(e)),

X;(e) = e(PMg, + O(e)) = e(X5 + O(e)),
Xi(e) =e(MiP, + MY + Q% + O(e)) = e(X! + O(e)).
The inequality (3.26) can be written as

e (X34 0(e)) e(X5+0(e))

(+) (X +0@)] =Y

Satisfying the conditions (3.18) and (3.19) implies that X; < 0 and X! < 0.
This means that there exists a scalar £,,,, > 0 such that X! + O(e) < 0 and
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3.3. Stability conditions: Continuous-time case

Xt~ 2X4XIT' XY + 0(e) < 0, Vi € T and Ve € (0,14,]. Hence, using the
Schur complement, the LMI (3.17) holds [BGFB94|. Since P; > 0 and P, > 0,
(3.21) holds. Furthermore, (3.22) can be written as

; eI, 0 i (MLY' 4 PrME I, 0
Q(g):{ 01 } {Qf’ (—z\141 Yi—xf/i’z@i)’ 0 <l,) "
na] (%) Qf 21 51 ) Elny

which is non negative definite because of (3.20). This concludes the proof. m

Remark 6 Theorem 9 provides two separate LMI based conditions for assessing
the asymptotic stability of the fast and slow subsystems (3.18) and (3.19), respec-
tively. Moreover, the coupling condition (3.20) is given. This allows to conclude
that there exists €mq: such that the classical stability condition (3.17) holds for
any € € (0, Emaz]. P(e) and Q'(g) are defined in (3.21)-(3.25), for any i € L.

Remark 7 An evaluation of the upper bound €,,4, is obtained solving the follow-
ing optimization problem:
Emazr = max € > 0 (3.27)

subject to M'(e)P(e) + P(e)Mi(e) + Q'(e) <0, i €T,

where matrices M'(e), P(e), and Q'(g) are defined in (3.10) and (3.21)-(3.25),
respectively. Moreover, the values of Py, Q}, P, and Q' can be computed by
Theorem 9, for any 1 € T.

3.3.2 Estimation of the degree of time scale separation

In addition to the stability conditions of the fast and slow switched subsystems,
Theorem 9 gives the coupling condition that must be satisfied in order to assess
the asymptotic stability of the two time scale switched linear system (3.16). The
meaning of this condition can be illustrated through the extension of the notion
of time scale separation degree given in [Yur04| for LTT systems. In this classical
case, the degree of time scale separation of the LTI two time scale systems (3.8)
may be expressed as a ratio between the dynamical matrices eigenvalues [Yur04]:

)\min(g_lMll)
)\ma:v(Ms)

*_

’[’]_

For two time scale switched systems, such a quantity cannot be obtained using
the eigenvalues evaluation. The following proposition provides the notion of time
scale separation degree for switched linear systems in the singular perturbation
form (3.16).

Proposition 1 Assume that there exist matrices Py = Py = 0, Q} = Qé/ >~ 0,
P,=P/ =0, Q.= Qi, = 0, i € Z, such that the stability conditions of Theorem
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Chapter 3. Stability of two time scale switched systems

9 hold. Hence, an estimation of the degree of time scale separation between the
slow and fast dynamics is given by the ratio:

 Ehmaz (Pr)mar{\ e (QL), i € T}

Proof. See Appendix B.2. =

In order to understand the role played by the condition (3.20), consider the
switched system (3.16), with

—1 —1 —1

M'(e) = [ o } L M2(e) = l - _01} . (3.28)
We have M}, = M? = —1 and M! = M2 = —1. Although the fast and slow
switched subsystems are asymptotically stable for any value of the parameter «
and for any switching rule o(t), the switched system (3.16) may be unstable under
an arbitrary switching rule, as shown in section 3.2 for the case a = 5. Using
Theorem 9, the system has been found asymptotically stable for —1 < a < 1,
under arbitrary switchings. As the conditions (3.18) and (3.19) are independent
of a, the coupling between the fast and slow dynamics is taken into account by
the condition (3.20). This means that the Lyapunov matrices assessing stability
of the fast and slow switched subsystems must satisfy the coupling condition,
which involves the terms M}, = ae™! and M2 = a. Hence, the degree of time
scale separation between the slow and fast dynamics n depends on the value of
a. For several values of —1 < a < 1, we solved the conditions of Theorem 9 and
computed the corresponding value of the degree of time scale separation 7. The
result is shown in Fig. 3.5.

On the proposed example, the relation between 7 and « is direct: a bigger
value of |« yields a smaller value of 7 and viceversa. In particular, for @ = 0 we
have a linear system (M*'(g) = M?(e)) and the degree of time scale separation is
maximum. However, in a general framework, the evolution of n with respect to
Mi, and Mj,, i € Z, is difficult to analyze.

3.3.3 Control design

Consider the two time scale switched system
i(t) = MO (e)z(t) + N°D(e)u(t), (3.29)

where u(t) € R” is the control signal, for all ¢ > 0,
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Figure 3.5: Estimation of the time scale separation degree for ¢ = 1073

and the matrix M7}, is assumed to be non-singular, for any ¢ € Z. The subsystem
corresponding to each mode ¢ € Z can be written in the form:

cia(t) = Miya(t) + Mg (t) + Niu(t) a.31)
o(t) = Mgy a1 (t) + Myya(t) + Nyult),
Its slow subsystem is :
iy(t) = Mlzy(t) + Niug(t) (3.32)
with
i i i aqi ~Llagi i i i Agi LAz
Mg = My — My My, My, Ny = Ny — My My, Ny, (3-33)
while its fast subsystem is:
eip(t) = My s(t) + Njug(t). (3.34)

The pairs (M?, N?) and (M},, N{) are assumed to be stabilizable in the continuous-
time setting, for any ¢ € 7.

The aim of this section is to design a state-feedback control law
u(t) = K7W (e)x(t) (3.35)

asymptotically stabilizing the closed loop system (3.29) for any switching rule.
A classical LMI based condition for state-feedback control design of switched
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Chapter 3. Stability of two time scale switched systems

systems consists of checking the existence of matrices P(e) = P(g)' = 0, Q'(¢) =
Qi(e)l = 0 and Z'(¢) of appropriate dimensions such that LMI

Mi(e)P(e) + P(e)Mi(e) 4+ N'(e) Z'(e) + Z' () N(e) + Qi(¢) < 0 (3.36)

holds for any i € Z. The state-feedback control law (3.35), which asymptotically

stabilizes the continuous-time switched system (3.29), is characterized by the gain
matrices K'(e) = Z'(e)P(e)™!, 1 € T.

Likewise to the stability analysis case, when ¢ is small numerical difficulties to
find the gains K*(¢) arise. This problem is due to the ill-conditioning of the con-
straint (3.36) and can be avoided decomposing the two time scale system into two
well-behaved subsystems, the slow and fast subsystems. The following theorem
gives LMI based conditions guaranteeing the asymptotic stability of the system
(3.29) independently of ¢, for any switching rule.

Theorem 10 Assume that there exist matrices Py = Py’ = 0, Q} = Qic, >~ 0,
Z;, Py=P/ =0, Q. = QY = 0 and Z' of appropriate dimensions such that the
LMIs

M Py + PeMiy + NiZi + ZNi' + Q% < 0, (3.37)
M!P,+ P.M! + N'Zi + Z'NV + Q! <0, (3.38)

Qp —(MLY'+ PPMy+ Z)Ny) NiZp 0

/ i Agiovi vl A i ir7i i
EX Qsﬂ%éyYA% i J%%fy =0 (3.39)

f
(%)’ (%)’ (x)' Py
N
are verified Vi € I, with Y = — S M~ (MLP, + N'Z"). Hence, there
h=1,h£i

exists a positive scalar €,,q, such that the state-feedback controller gains
K=K} K+ KM (M + NiE) (3.40)
with Kj = ZJ’}Pf_1 and K! = Z'P7', stabilize asymptotically the closed loop
switched system (3.29), Ve € (0, emaz] and for any switching rule.
Proof. See Appendix B.3. =
Remark 8 The conditions of Theorem 10 with Z} =0, €Z, lead to the reduced

control law: 0
u) = [0 k2" Bé@)}’

which asymptotically stabilizes the switched system (3.29) for any € € (0, €maz]
and any switching rule o. Notice that in this case (3.37) assumes that the fast
subsystem is asymptotically stable in open loop.
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3.4. Stability conditions: Discrete-time case

3.4 Stability conditions: Discrete-time case

3.4.1 Stability analysis

Consider the autonomous two time scale switched system in the fast sampling
model (2.13):

z(k+1) = AW () (k), (3.41)

where ‘ ,

Ay Aty

Ae) = |:5A§1 (In, +A3) (842

and the matrix (I,,, — A%,) is assumed to be non-singular, for any ¢« € Z. The
subsystem corresponding to each mode 7 may be written in the form:

wi(k +1) = Ay (k) + Alpwa(k) (3.43)
ok + 1) = cAs 1 (k) + (I, + eA5)xa(k).
Its slow subsystem is:
vo(k+1) = (I, + A"z (k) (3.44)
with A A A A
Ay =An+ A (Ln, — Azu)_lAlma (3-45)
while its fast subsystem is:

The fast sampling singular perturbation model presents two main advantages,
with respect to the other discrete time models of two time scale systems (see
[Nai02] for an overview). First, it allows to describe both discretized continuous
two time scale systems and pure difference equations. Second, due to the choice
of the sampling time as Ty = ¢, this model assumes that the sampling rate is fast
enough to influence the transient behavior of the system for control purposes,
when it represents discretized continuous two time scale systems.

A standard stability condition ensuring the existence of a switched quadratic
Lyapunov function Vo) (2(k), &) = z(k)'S°®) (¢)x(k) such that V®) (z(k), &) > 0
and Vo) (z(k + 1),e) — VW) (2(k),e) < 0 for k € Z*, which is a sufficient
condition for the asymptotic stability of the switched system (3.41), consists in
checking the existence of matrices Pi(e) = Pi(e) = Si(e)”' = 0 and Q¥(c) =
QY ()" > 0 such that the LMI

Al(e)P'(e)A'(e) — P(e) + Q" () < 0 (3.47)

holds for any (i,j) € Z x Z [DRI02].
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Chapter 3. Stability of two time scale switched systems

When ¢ is small the computation of Pi(¢) is complicated due to the ill-
conditioning of the constraint (3.47). As in the continuous-time case, the de-
coupling of the two time scale system into two well-behaved subsystems can solve
this problem. Also in this case, it may exist a switching rule destabilizing the
two time scale switched system, even if the slow and fast switched subsystems
are asymptotically stable. Hence, a coupling condition must be considered. The
following theorem gives LMI based conditions guaranteeing the asymptotic sta-
bility of the switched system (3.41) independently of e, for any switching rule.

Theorem 11 Assume that there exist matrices Py = P}, =0, Q% = Qic, = 0,
P,=P/ =0, Q) = Q! =0 of appropriate dimensions such that the LMIs

Pj— i Al pi
[ f<*>,Qf 113; f] =0, (3.48)
AP, + PAY + QL <0, (3.49)
Q, Pj—Pj —A’nP}Aél']
4 Aty = 0 3.50
L*)/ Qi — A} Pj Ay, (3:50)

are verified ¥ (i,7) € T X T, with Py = (I,,, — A%,) YA}, P,. Hence, there exists a
positive scalar €mq, such that the switched system (3.41) is asymptotically stable
Ve € (0, emar] and for any switching rule.

Proof. Let us assume

Pi(e) = [Pf(a) p;@)] -~ 0, (3.51)

ii(z) — QZ1 sz(e)
Q7 () [@;%e)' a<e>} -0 (3.52)

with

Pi(e) = P;‘ +ePiP7PY, Pi(e) =ePi=e(l,, — A ) tALP,, Ps(e) = <P,

(3.53)
Qﬁ = Q;a ;j(€> = 5<P2j - P2i - AZﬁP;Agl/)a Qé(g) = 52(@2 - AélpjﬁAg(l/)- )
3.54
Substituting (3.42), (3.51)-(3.52) in (3.47), we have:
X7 (e) X3(e)
O o)< (8.55)
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3.4. Stability conditions: Discrete-time case

with:
X{(e) = Alﬁpli(g)Alﬁl + A§2P§(5)'A§1/ + A’ilP;(g)Ai12l+
A32P3(5)A32/ — P{() + Q1,
Xzij (5) :Aglpli<€)Aél/€ + AziQPzi(g)lAél/g + A31P2i(5)([n2 + 5A§2)I+
Al P3(e)(In, +eAy)" — Pi(e) + Q3 (¢),
Xé(&?) = 5A51P1i(5)‘4§1/5 + 5A51P2i(5)<[n2 + 514%2)/ + (In, + 5A§2)P§I(6)A§1/5+
(Iny + £Aly) Ps(€) (I, + €A%)" — Ps(e) + Qs(e).

Replacing the values of P(g), Q¥(¢), and the equations (3.45), (3.53)-(3.54), we
obtain:

X(e) =APjAY = P+ Q) +0(2) = X{ + 0(e),
X2ij(5) = 52(A§2P2i/14§1, + Ai1P2iA§2, +0(e)) = (X, + 0(e)),
Xi(e) =e*(ALP, + PoAY + QL+ O(e)) = £*(Xj + O(e)).
The inequality (3.55) can be written as

XV +0(e) e(Xi+0(e)) <0

) X+ 0()]
Satisfying the conditions (3.48) and (3.49) implies that X/ < 0 and X} < 0.
This means that there exists a scalar €,,,, > 0 such that Xi + O(e) < 0 and
X7 _2XiXi7 X8 + O(e) < 0,V(i,j) € T x T and Ve € (0, £pmag]. Hence, using
the Schur complement, the LMI (3.47) holds. Since Py > 0 and P, > 0, (3.51)
holds. Furthermore, (3.52) can be written as

. I, 071[Q: P]—P —A PiAL (L, 0
1 — ni f 2 ) 2 ) 11 f 21 ni
ORI I hemione ' vl | R

which is non negative definite because of (3.50). This concludes the proof. m

Remark 9 An evaluation of the upper bound €,,4, s obtained solving the follow-
ing optimization problem:
Emazr = max € > 0 (3.56)
subject to A'(e)P'(e)A'(e) — Pl(e) + QY() < 0, (i,j) €T x T,

where matrices A'(e), Pi(e), and QY (e) are defined in (3.42) and (3.51)-( 3.54),
respectively. Moreover, the values of P}, Q%, P, and Q. can be computed by
Theorem 9, for any (i,j) € T x Z.
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Chapter 3. Stability of two time scale switched systems

3.4.2 Control design

Consider the two time scale switched system in the fast sampling model (2.13):
ok +1) = AW () (k) + B°® (e)u(k), (3.57)

where u(k) € R is the control signal, for all k € Z¥,

oo [A A T g [B
6=, P 7O =[5 (339

and (I,, — A%,) is assumed to be a non-singular matrix, for any i € Z. The
subsystem corresponding to each mode i may be written in the form:

w1k + 1) = A1 (k) + Alya(k) + Biu(k) 5.59)
2ok +1) = Ay 21 (k) + (Iny + eA5)xa(k) + eByu(k). '
Its slow subsystem is:
2ok +1) = (I, + cA)zy(k) + e Blug(k) (3.60)

with
Ai = A§2 + Aél(jm - Alﬁ)_lAilza Bé - B; + A%l(Inl - Azh)_lBia (3-61)
while its fast subsystem is:
zp(k+1)= A’il:pf(k:) + Biuf(k). (3.62)

The pair (A%, BY) is assumed to be stabilizable in the continuous-time setting,
and the pair (A%, Bi) is assumed to be stabilizable in the discrete-time setting,
for any ¢ € 7.

The aim of this section is to design a state-feedback control law
u(k) = K7W (e)x(k) (3.63)

asymptotically stabilizing the closed loop system (3.57) for any switching rule.
The extension of condition (3.47) to state feedback-design leads to check the
existence of matrices P'() = Pi(e) = 0, Q¥(c) = Q(¢) = 0 and Z'(e) of
appropriate dimensions such that the inequality

Al(e)Pi(e) Al () + Ai(s)Zi(e)/Bi(e)' + B'(e)Z'(e) Al(e)'+ (3.64)
Bi()Zi(e)Pi(e) 1 Z!(e) Bi(e) — Pi(e) + Q¥(2) < 0 '

holds for any (i,j) € Z x Z. The state-feedback control law (3.63), with K’(g) =
Zi(e)Pi(e) ™", stabilizes asymptotically the discrete-time switched system (3.57).
The following theorem gives LMI based design conditions independent of ¢ in
order to avoid the numerical problems due to the ill-conditioning of (3.64).
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3.5. Numerical example

Theorem 12 Assume that there exist matrices P} = Pf}/ =0, Q% = Q;/ > 0,
Z}, P,=P/' =0, Q. = Q’s/ = 0 and Z¢ of appropriate dimensions such that the
LMIs

PJ_Q@' Al Py Bigi
f<*), foom s T -, (3.65)
f
AP, + PAY + BiZi+ Z'B" + Q' <0, (3.66)

Q; P{—Pj AP+ BZ;
(%) Q. Ay Pr+ ByZy| =0 (3.67)
) ) Pj
are verified V(i,7) € T x I, with Pi = (I,,, — A},) (A, P, + BiZ!). Hence, there
exists a positive scalar €4, such that the state-feedback controller gains

K'=[K} Ki—Kj(I, — Al,) " (Aly + BiKD)] (3.68)

with K; = Z}P}fl and K! = ZiP7, stabilize asymptotically the closed loop

st s 7

switched system (3.57), Ve € (0, €maz] and for any switching rule.

Proof. See Appendix B.4. m

Remark 10 The conditions of Theorem 12 with Z} =0, ¢ € Z, lead to the
reduced control law:

u(k) = [0 Kﬁ(k)} {ng (3.69)

which asymptotically stabilizes the switched system (3.57) for any € € (0, €maz]
and any switching rule o. Notice that in this case (3.65) assumes that the fast
switched subsystem is asymptotically stable in open loop.

3.5 Numerical example

Consider the continuous-time switched system (3.29), with Z = {1,2}, e = 0.005
and

0 1 0 0 0 0 0 1
Miy = {—1 —2] Mz = {1.5 0] Moy = [—0.6 —0.5} My = [2.1 0] ’
=[5 =i

0 1 0 0 0 0 0 0.7
- [9] - )
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a(t)

0 1 2 3 4 5 6
t (sec)

Figure 3.6: Switching rule o(t)

The subsystem 1 is open loop unstable while the subsystem 2 is characterized
by a state-space matrix with zero eigenvalues. Obviously, this system is unsta-
ble under arbitrary switching rules and existing results in the literature do not
help in designing a stabilizing switching rule. Theorem 10 leads to the following
stabilizing controller gains:

K'=[0.4040 0.1511 —65.3601 —60.3074],
K? =[-0.4110 —0.5931 —147.6057 —137.0206] .

For this example, the fast switched system was found asymptotically stable in
open loop. Hence, using Remark 8, a reduced control law may also be proposed:

K'=1[0 0 —99.0779 —88.5710],
KZ=1[0 0 —347.0992 —310.4213].

Consider the switching rule given in Fig. 3.6 and the initial condition z(0) =
[0 0 1 O]I, Fig. 3.7 shows the state trajectories, with

o(t) = [2#,(1) 2ha(t) 2h(t) ah(h)]'.

The solid line shows the state trajectories using the full state-feedback controller
gains K' and K? while the dotted line shows the state trajectories using the
reduced state-feedback controller gains K! and K?. Fig. 3.8 shows the control
signal evolution. Let the corresponding discretized switched system in the
singular perturbation form (3.57), with sampling time 7 = 0.005 and

i 0.7358 0.3679 AL _ 0.3964 0
1 1-0.3679 0.0000| " “*2 " 10.5518 0|’

- 0 0 1 0 1
A = {—0.4057 —0.3425 A = 1.8085 0f~

. [-02642] o, [ 0
By = {—0.3679 B = 101043
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Figure 3.7: Closed loop response in the continuous-time with full state-feedback
controller (solid line) and reduced state-feedback controller (dotted line)

—0.4031 —0.0801 0 0

. [ 0 0 , [0 07
An = {—0.1628 —0.0677}  An = {0 0

B2 - [—0.1361] B { 0 ] .

0.5916 0.1344 00
A%1:|: :|7A%2:|: ]7

—0.1344 0.0457

From Theorem 12, we find the controller gains:

K'=[0.8565 0.6941 —19.7259 —9.8473],
K? = [1.5333 0.3934 —52.0573 —24.3528].

Using Remark 10, we obtain the reduced controller gains:
K'=[0 0 —10.0899 —5.4331], K?=[0 0 —34.9751 —16.4975].

In Fig. 3.9, the state trajectories are shown for the full state-feedback controller
case (solid line) and the reduced state-feedback controller case (dotted line). In
Fig. 3.10, the control signal evolution is shown.
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Panans —.,
-20
-25
-30
_35 1 1 1
0 1 2 3 4
t (sec)

Figure 3.8: Control signal evolution in the continuous-time with full state-
feedback controller (solid line) and reduced state-feedback controller (dotted line)

3.6 Conclusion

It is well known that some fundamental properties of linear systems can be lost
by switchings. This is the case of stability, observability, controllability, flatness,
and so on. In this chapter, we showed that stability of the slow and fast switched
subsystems under arbitrary switching rules does not imply the stability of the
corresponding two time scale switched system in the singular perturbation form.
A coupling constraint, which may be interpreted as a certain level of the degree
of time scale separation, has also to be satisfied. This constraint was expressed
in terms of LMI based conditions for stability analysis of singularly perturbed
switched systems independently of the value of the singular parameter ¢ and un-
der an arbitrary switching rule, for both continuous and fast sampling discrete
time cases. Composite and reduced state-feedback control design problems were
investigated in the same framework. As pointed out in Chapter 2, the discrete
time model that we utilized, called fast sampling model, presents two main ad-
vantages, with respect to the other discrete time models of two time scale systems
given in literature. First, it allows to describe both discretized continuous two
time scale systems and pure difference equations. Second, due to the choice of
the sampling time as T = ¢, this model assumes that the sampling rate is fast
enough to influence the transient behavior of the system for control purposes,
when it represents discretized continuous two time scale systems. Thus, from a
theoretical point of view, has a larger interest.
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Figure 3.9: Closed loop response in the discrete-time (T = 0.005) with full state-
feedback controller (solid line) and reduced state-feedback controller (dotted line)

1 2 3 s 5
t (sec)
Figure 3.10: Control signal evolution in the discrete-time (T = 0.005) with full

state-feedback controller (solid line) and reduced state-feedback controller (dotted
line)
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Chapter 4

Bumpless transfer for switched
systems

4.1 Introduction

In practical control of nonlinear plants, often a set of discrete-time LTI controllers

{:pc(k +1) = AW, (k) + BIWy (k)

u(k) = CZ™ (k) + DI®y (k) (4.1)

is used, where x.(k) € RP? is the controller state, u(k) € R" is the control signal,
y(k) € R™ is the plant measured output, {(A’, B:,C!, D) :i € T = {1,...,N}}
is a family of matrices and o : Z* — T is the switching rule, which handles the
scheduling among the controllers and is assumed to be available in real-time, for
any 1 € Z and for all k € Z*. Each time the operating point of the system
changes, the adequate controller is activated by a supervisor. However, switching
among different controllers implies undesired transient behaviors due to possible
large variations of the control signal. This phenomenon may affect the system
performances and, in the worst case, destabilize the closed loop system. The
solution of this problem, which has been largely studied in the last few decades,
is called bumpless transfer.

A description of most popular strategies for bumpless transfer can been found
in [Han88|, [KCMN94|, [GA96] and [EP98|. One of the first schemes is proposed
by Hanus for nonlinear plants [HKH87|. The idea consists in pre-setting the off-
line controller state for reducing the transient behavior at the switching time.

Turner and Walker generalize the results of Hanus for controllers which are not
bi-proper [TW99|, [TW00]. Let define the signal

Ze(k) = o' (k) — e(k),

e

which represents the difference between the i off-line controller input ai(k) €
R™ and the on-line controller input e(k) = r(k) — y(k), where r(k) € R™ is the
reference; and the signal

z,(k) = u' (k) — u(k),

u
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which represents the difference between the i’ off-line controller output (k) and
the on-line controller output u(k), for any i € Z and for all k£ € Z*. The idea in
[TWO00] is to minimize the following LQ criterion :
Tj-1
T _ Tioiy L N N
J' = ¢ (Tf) + 5 Z [Zu (k)WuZu(k) + 2, (k)Weze(k)]7
k=t;
where ]
F(T}) = 32 (THXA(T),
Wi =W/ > 0and W) = W} > 0 are weighting matrices, t; is the switching
time to the subsystem corresponding to the mode i € Z, T} is the terminal time
and X’ = X¥ > 0 is a terminal weighting matrix, for any ¢ € Z. Since reference
signals are not known a priori, practical implementation requires an extension to
an infinite horizon. This approximation yields a constant feedback matrix Q¢ that
preconditions the i off-line controller (4.1) for obtaining the desired transient
behavior at the switching time (Fig. 4.1).
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1
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rﬂk ?—ek ¥ troll uj
................ e controller; k >
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N ‘ Yk
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______________ F controller, >
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oy QQ

N

Figure 4.1: Closed loop system with Z = {1, 2}

In particular, we have:

with
(DEW,C + BIITAY)
Q' = (I, —-T"BIII'BY)~'T" | —(DIW} + BI (I, — M")"'UY |,
—(We+ BI(L, = M) EY)
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where
' (D{DL )
A’ = AL+ BII'DIW.CL,
B'= BI'B!,
M= A'(I, - B,
U' = M'I'BI'DIW,, + CYW,(I, + D' DEW;),
E' = M'II'BT'W! + C'WiDIT'W!,
and II’ is the stabilizing solution to the discrete-time Riccati equation

AN, = T'BY) ' A" = TI' + CL Wi(I, + D' DEW,)Cl = 0,

for any 7 € Z. LLQQ bumpless transfer has been one of most celebrated bumpless
transfer methods on industrial MIMO applications [TABT06], [ZLBT06], [ZB09].
This success is due to different factors: the existence of several reliable numerical
solvers for Riccati equations, the excellent convergence properties of LQ based
feedback controllers, and the fact that no plant knowledge is needed. Neverthe-
less, the extension to an infinite horizon assumes that the tracking error e and the
control signal u are constant. This approximation is effective only if these signals
vary slowly enough, with reference to the system dynamics. Another drawback
is concerned with the fact that this strategy guarantees the closed loop stability
only around a specific operating point. In general, it is assumed that the closed
loop stability of the whole process is maintained, if both on-line and off-line con-
trol loops are stable. This assumption is justified only if the operating point is
subject to “slow” variations.

In [CS08], the discontinuity of the controller output is reduced by resetting
the fast dynamics of the controller at the switching time. In [ZT05], the desired
transient behavior, called target response, is defined as the ideal closed loop
behavior after the controller switching. Hence, the anti bumpless purpose is
reached by recovering the target response in a Ly sense [TK97|. Unlike the
previous solutions, this method guarantees the asymptotic stability of the closed
loop system for arbitrary switchings of the controller. Nevertheless, these results
are limited to the linear plant case.

Although the bumpless transfer problem has been widely studied in literature,
only few articles address the switched systems framework. In [AW96], a bumpless
transfer solution for continuous-time switched systems is given when the order
of the controller is smaller than the order of the plant. The idea is to force the
output of the activated controller to be equal to the plant input at the switching
time. An analogous strategy is proposed in [DWO06] for continuous-time linear
parameter varying systems. However, as pointed out by Zaccarian and Teel, a
constraint on the only controller output does not imply better performances on
the plant output [ZT02], [ZT05].

In this chapter, a bumpless transfer control design for discrete-time switched
systems is presented [MHD'08], [MHD"09]. The solution is based on the LQ
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optimization theory, which has been introduced on the bumpless transfer frame-
work by Turner and Walker. This method does not guarantee stability of the
closed loop switched system as it is well-known that switchings can destabilize
the closed loop system, even if all the subsystems are stable [Lib03]. To solve
this problem, we propose a L.Q bumpless transfer controller which is activated
at each switching time. The controller and the plant output are forced to follow
a desired profile for a given period of time. A finite horizon approach can be
directly applied, which means that no approximation on the tracking error and
on the control signal are needed. Asymptotic stability of the closed loop system
is verified through dwell time conditions [GCOGD].

4.2 Preliminaries

Consider the discrete-time switched system

y(k) = C"®a(k) (42)

{ﬂh+U:AW%@y+HMM@)
where z(k) € R™is the state vector, which is assumed to be available for feedback,
for all k € Z*. Moreover, {(A’, B,C") : i € I} is a family of matrices and the
pair (A%, B') is assumed to be controllable for any i € Z. Let the state-feedback
control law

u(k) = K°Wa(k), (4.3)

which stabilizes the closed loop system (4.2)-(4.3) for any switching law. Further,
let us define the minimal interval of time A’ € Z* the system remains in the sub-
system corresponding to the mode 7 until it switches to another subsystem. A’
is assumed to be known for any ¢ € Z.

Switching among controllers usually introduces large jumps in the control
signal. In order to reduce the amplitude of these jumps, different strategies are
possible. In this work, we propose a bumpless transfer controller that is activated
at the instant ¢;, which represents a switching instant to the i** mode, for a period
of time 7™ < A’. Therefore, for each mode i € Z, we have:

() = {fo(k) U (k) if Sk <tk 44
K'z(k) otherwise,

where u®“(k) € R" is the bumpless transfer controller output, for all k € [t;, t; +
M), The closed loop system (4.2)-(4.4) is shown in Fig. 4.2.

The bumpless transfer controller will be designed in the next section. It will
depend on the profile of the desired transient behavior and on the state matrices.
For simplicity reasons, a straight line is chosen as desired profile. Let ¢; be a
switching instant from the mode j to the mode i, for all (j,i) € Z x Z. We can
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supervisor

A

\

Tk Yk
> (9 [—

Figure 4.2: Closed loop system with 7 = {1, 2}

define the desired control signal of the subsystem corresponding to the i mode
as:

: a0 (k) + (k—t; + D)p'(k) if t;<k<t;+7M
ﬁ/l(k'): U ( )+( Z+ )p( ) Zf Z_. < Z+TZ (45)
0 otherwise,
where ' .
(k) = K'x(t; — 1) (4.6)

is the control signal value at the instant before the switching and p’ determines
the slope of the desired profile, i. e.

P() = =7 (Ka(ts) — Kalt; — 1)), (4.7)

i

We obtain a value of p’ that depends on the control signal discontinuity. An
illustrative example is given in Fig. 4.3.

4.3 Bumpless transfer control design

In this section, we present the bumpless transfer control design, which is based
on the minimization of a LQ) criterion. In the bumpless transfer framework, this
solution was proposed by [TWO00|, where the difference between the on-line and
the off-line controller input and output are minimized before each switching. This
is equivalent to initialize the controller state for reducing the transient behavior
on the plant output. Since this method consists in pre-setting the state of the
off-line controller before the switching, it does not address control systems with-
out memory, such as state-feedback control laws. Furthermore, the controller
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Uu

A

h -
-

Figure 4.3: Control signal evolution with bumpless transfer controller switched
on (solid line) and switched off (dotted line)

input and output cannot be known a priori. Hence, the practical implementation
requires an extension to the infinite horizon case. At last, asymptotic stability of
the closed loop system is not guaranteed. In general, it is assumed that the closed
loop stability of the whole process is maintained, if both on-line and off-line con-
trol loops are asymptotically stable. This assumption is justified if we consider
that the operating point is subject to slow variations, which is not necessarily the
case for switched systems. In this case, switchings can destabilize the closed loop
system, even if all the subsystems are asymptotically stable [Lib03].

In order to solve these problems, we propose a bumpless transfer controller
which is activated at each switching time t;. Asymptotic stability conditions for
the closed loop system (4.2)-(4.4) are presented in the next section. For each
mode ¢ € Z, the bumpless transfer control law is based on the minimization of
the following quadratic cost function:

ti+mM -1
Ji= o't + M) + B ; [ (k) Wiz" (k) + 27 (k) Wiz (k)] (4.8)
with
2 (k) = u(k) — @' (k), (4.9)
(k) = y(k) — 7' (k), (4.10)
and |
(bZ(tl + TZM) = §Zu’i, (tl + TiM)XiZu’i<ti + TZM). (411)

Wy =0, W, = 0and X’ > are weighting matrices. The desired control signal '
was defined in (4.5) while the desired output signal is set to §° = 0 for simplicity
reasons. The following theorem yields the signal u"* that minimizes the cost
function J¢, for any i € Z.
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4.3. Bumpless transfer control design

Theorem 13 Given the switched system (4.2)-(4.4), the initial time t; and the
terminal time t; + M, the bumpless transfer control law that minimizes the
quadratic cost function (4.8) is

| | (k)
u(k) = Q'(k) | a@'(k) |, (4.12)
g'(k+1)
with . )
(N“(k + DIT(k + 1)A" — K
Q' (k)= | (I, + N(k + DIT(k + 1)BYY (4.13)
~N"(k+1)
and ) A )
Ni(k+1)=-W:"'B'(I, - I'(k + 1) B") ", (4.14)
Vi € I. The values of II and g are provided by the equations
I (k) = A" (I, — II'(k 4+ 1) B) ' (k + 1) A* 4 C° (4.15)
and
g'(k) = A"(L, — TI'(k + 1) B) " (g'(k + 1) — IT(k + 1) B'a'(k)), (4.16)
with . .
B' = -B'W. 'B", ¢' = C"Wic". (4.17)
The bound conditions are:
Mt + M) =0, ¢'(t; + M) =0. (4.18)
Proof. Consider
t¢+TiN[71
Jo= @) S (k) + u (k) — @ (k) Wix
’ 2 “ (4.19)
(K'z(k) + u™ (k) — @'(k)) + C"a(k)W;C'x(k)).
Introducing a Lagrange multiplier A\'(k) € R™, we have:
trl»TZAIfl
i i M 1 i i
J= 't + ) + 5 > H (k) = N (k+ Dk + 1)), (4.20)
k=t;
where H? is the Hamiltonian, defined by
H' (k) = S[(K (k) +u"™ (k) — @' (k) W, (K" (k) + u™ (k) — @ (k) + (4.21)

C"x(k)WC'x(k)] + X' (k + D)[(A" + B'K")x(k) + B'u"(k)].
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First order necessary conditions are:

__OH(k)
w(k+1) = CES) (4.22)
N(k) = 801;[ (g‘;) (4.23)
OH'(k) _
Nt + M) = 06 (i + 77" (4.25)

Oty + M)
Since the cost function J* is convex for any i € Z, the conditions (4.22)-(4.25)
are also sufficient for optimality. Substituting (4.22)-(4.24), we obtain:
OH' (k)
OXN(k+1)

8Hi(k3)_ i RANAY i A7 T _
(k) =A"+B'K")YXN(k+1)+ K"'W,K'x(k) (4.27)

K'Wii' (k) + K* Wi (k) + C"WiCx(k)

= (A" + B'KYa(k) + Biub™ (k) (4.26)

OH' (k)

_1isi, b i i il i i~
Setting the last equation equal to zero, we have:
Wi(k) = —Kiz(k) — Wi BN (k + 1) + @ (k). (4.29)

Hence, substituting u®“(k) in (4.26) and (4.27), we obtain the following non
homogeneous difference equation:

{:p(k: +1) = Alz(k) + BN (k + 1) + Bia (k)

Ni(k) = Claw(k) + A" X (k +1). (4.30)

In order to find the solution, we resort to the method of sweep [BH75|, where A’
is given by the equation:

N(k+1) =Tk + Da(k+1) — g"(k + 1), (4.31)
with II and ¢° defined in equations (4.15) and (4.16), respectively. Combining
the equations (4.30) and (4.31), we have:

N(k+1) =(I, — II'(k + 1) B) " x
[T (k 4 1) A'2(k) + T (k + 1) B'a' (k) — g'(k + 1)] (4.32)
I (k)x(k) — g'(k) = Ca(k) + A" N (k + 1).
Solving (4.15) and (4.16) implies that (4.32) has a solution on the finite horizon

[t;;t; + 74;). The bound condition (4.18) is given by (4.25) and (4.29). Finally,
(4.12) is obtained from (4.29) and (4.32). m
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Remark 11 In the finite horizon case, the knowledge of all the future values of
a® is required in order to solve (4.16) backward in time. Hence, in general this
method cannot be applied to solve practical problems [TW00]. On the other hand,
notice that in our case, from equations (4.5)-(4.7), only the knowledge of x(t; —1)
and x(t;) is needed to compute the values of ' on the finite horizon [t;, t; + Ti,).
Since this information is available at each switching time t;, the method can be
applied in real problems. Notice that the structure of the desired profile (4.5),
composed by the initial offset (4.6) and the slope of the desired profile (4.7), may
be easily modified in order to obtain a different desired profile. For instance, the
choice
@+ (k= t; + 1)*yp, if <k <t
0 otherwise

yields a parabolic profile, with v* € (0,1].

4.4 Stability analysis

In the previous sections, we assumed that the bumpless transfer controller is
switched on for 7 instants. As the original controller (4.3) has been designed
without taking into account this fact, , asymptotic stability of the switched system
(4.2) is not guaranteed anymore. This section aims at establishing asymptotic
stability conditions for the closed loop system (4.2)-(4.4). To this purpose, let
us define the additional time variable 7{ = k — t; + 1 that is reset to zero at the
instant ¢;, which represents a generic switching time from the mode j to the mode
i, for any (i,j) € Z x Z. Therefore, for each mode i € Z, the closed loop system

(4.2)-(4.4) can be written as:
v(k +1) = Y'(5, )v(k), (4.33)

where the construction of the time variant state matrix Y is detailed in Appendix
B.5,

is the augmented state vector and signals @*° and p’ are defined in section 4.2.
We distinguish two phases on the interval between two switchings:

— The bumpless transfer phase: the bumpless transfer controller is on. We
have:

Hi(ri+1) L1 +1) Onxr Onxs

n Oan

il g I On T On r
V0= o, K O O, (4.34)
T}MKZ _T}VIK]' Or><7" Or><7"
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and
AT +1) Opxn Ui +1) Piri+1)
i i Iﬁ On n On T 0" T
ViUl =1 o0 o A 0 (4:35)
0r><n 0r><n OT‘XT’ [T'

In this phase, the state matrices of the system (4.33) may have eigenvalues
outside the unit circle.

— The recuperation phase: the bumpless transfer controller is off. We have:

' A"+ B'K"  Onx(n+2r)
e = YS = I Onx(nt2r) | » (4.36)
O2rxn OQTX(n+2ﬂ-

Yi(j,70)

where the matrix Y, is Schur and constant for any ¢ € Z. Equations (4.34)-
(4.36) are detailed in Appendix B.5.

bumpless transfer

phase \\\

recuperation
phase

=Y

Al
t—t;

Figure 4.4: Lyapunov function evolution

Assume that for k € [t;, ;) the i mode is active and, when a switching occurs
(k = t;), the system jumps to the /" mode. Moreover, assume that the condition
ty —t; > A" > 1, with A’ defined in section 4.2, holds for any (i,1) € Z x Z.
The following theorem gives LMI based conditions to check asymptotic stability
of the closed loop switched system (4.33).
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Theorem 14 Assume that there ezist matrices P* = P" = 0 of appropriate
dimensions and scalars 0 < M < A such that the LMIs

Y/ PV — P <0, (4.37)

™M . ! M ) '
(HYi(j, d)KZ’(Al_T?JQ P! (HYi(j, d)}g@'(N‘TiM)) ~ P <0 (4.38)
d=1 d=1

hold ¥ (j # i,1,i) € T x I X Z. Hence, the switched system (4.33) is asymptoti-
cally stable for t; —t; > A" > 1.

Proof. This proof is based on Theorem 1 of [GCO6b|. First, notice that the

M

matrix H Y'(j,d) represents the evolution of the switched system (4.33) for k €
d=1

[t;,t; + 7) and the matrix Y;Qﬁti#% represents the evolution of the switched
system (4.33) for k € [t;+7M,t;). From (4.38), with [ = i, the Lyapunov function
V(v(k)) = v(k) P'v(k) satisfies the inequality

V(v(t; + AY) < V(v(ty)). (4.39)
From (4.37), we have:

V(o(k +1)) < V(u(k)), (4.40)

Vk € [t; + A t;) and Vi € Z. Hence, there exist scalars o € (0,1) and 3 > 0
such that
[ < BoFV (u(t:), (4.41)

k € [t;,t;). Moreover, still from (4.38), we obtain:

V(v(t) =v(t;) Plu(ty)

/
o
=u(t:) (Hw, dm““‘“‘””) Pix
d=1
M . (4.42)
(H Y3, d)}@l(“—tz—%) v(t;)
d=1
<ol VT Py e
<w(t;)'Po(t;) = V(v(t)).

The non strict inequality holds because t; —t; — A’ > 0 and Y is Schur by
assumption, V ¢ € Z. Hence, given the initial condition of (4.33) v(0) = vy, there
exists 6 € (0,1) such that, after the ¢'* switching, we have:

V(v(t)) < 69V (vy), ¥ q € N. (4.43)

Finally, (4.41) and (4.43) imply that the switched system (4.33) is asymptot-
ically stable. m
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Remark 12 An evaluation of the mazimum value of ™ that guarantees the
asymptotic stability of the closed loop system (4.33) is given by following algo-
rithm:

™M T =0;
for h=1:mazx{A", ieT}
fori=1:N

if (tM < A') and (LMIs (4.37)-(4.38) hold)
TiM :TiM + 1’.
end
end
end

4.4.1 Numerical example

In this section, we present a bumpless transfer control design to a specific product
of the Eisenhiittenstadt HSM. In order to reduce the bumps on the control signal
u, the modified control signal (4.4) may be applied to the plant for a period
of time 7, for i € {2,3,4}. Since the system never switches back to the first
subsystem, no bumpless transfer controller is designed for i = 1. The signal u*’
is computed by Theorem 13. Equations (4.13) and (4.15) can be solved off-line
whereas equation (4.16) must be solved at the switching time ¢;, when the value
of z(t; —1) is known. The output signal y corresponds to the strip off-center, that
must be minimized. Hence, we choose y = 0. Given the weighting matrices W,
and W, the 7 values allowing to verify the conditions of Theorem 14 can be
found by applying the algorithm proposed in Remark 12. Results are summarized
in Table 4.1. In Fig. 4.5, we propose a zoom of the control signal u for the last

Table .4 1: BT controller data
‘I 2] 3 4

Al [l 64 38 | 30
™3| 15 | 6
Wi | I, | 1001, | 101,
Wil | L | L

stand. The dotted line shows the control signal computed by the control law (4.3),
when the bumpless transfer controller is off. One can notice the big bump due to
the switching at the instant £ = 1392 and the corresponding transient behavior.
Since the actuators of the hot strip mill system are subject to amplitude and slope
saturation, the applied control signal corresponds to the saturated signal (solid
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stand 5
0.025
~~~~~ BT controller off (pre—saturation signal)
BT controller off (saturated signal)
0.021 = = = BT controller on
0.015+

0.011
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—-0.005
-0.01f
-0.015 : : : : :
1390 1395 1400 1405 1410 1415
k
Figure 4.5: Control signal u
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20k BT controller off
= = = BT controller on
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O |-
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_50 . . . . . . . .
1350 1360 1370 1380 1390 1400 1410 1420 1430
k

Figure 4.6: Measured output y

line), for which stability is not guaranteed anymore. Finally, the dashed line
shows the control signal computed by the control law (4.4), that is the bumpless
transfer controller is on. In this case, no saturation occurs. Further, the closed
loop asymptotic stability is guaranteed by the conditions of Theorem 14. In
Fig. 4.6, we propose a zoom of the measured output y in the last stand, which
corresponds to the displacement of the strip with respect to the axis of the mill in
the exit of the system. The solid line shows the control signal without bumpless
transfer control while the dashed line shows the control signal when the bumpless
transfer controller is on. As expected, the displacement of the strip was reduced.
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4.5 Conclusion

In this chapter, a bumpless transfer method for switched systems has been pre-
sented. The bumpless transfer controller was designed using a finite horizon
approach based on the L(Q optimization framework. The idea is to force the
controller output and the plant output to follow a desired profile. Dwell time
conditions for assessing the asymptotic stability of the closed loop switched sys-
tem were also established. Simulation results concerning the Eisenhiittenstadt
HSM system were shown.
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Chapter 5

Robust steering control of hot strip
mill

5.1 Introduction

In this chapter, a robust steering control design of HSM based on the uncertain
switched linear model given in chapter 1 is proposed. The aim is to guarantee
the stability of an HSM system and minimize the strip off-center for the whole
set of treated products [MDI*ar|, [MDIT09d], [MDI"09¢|, [MDI*09e], [MDIS09].

In an HSM with 5 stands, there are 70 uncertain parameters, which become
110 for HSMs with 7 stands. For a problem of this dimension, LMI techniques
suffer from a well-known drawback concerning numerical problems. Therefore, in
the first part of this chapter, a method for reducing the number of uncertainties
by exploiting the physical relations among the different product parameters will
be introduced. Once the simplified polytopic model is obtained, the convex hull
corresponding to the whole database may be partitioned into several small convex
hulls. The division of the database with respect to the physical parameters of the
products, allowing to design a different controller for each family, yields better
performances.

The system involves a two time scale dynamics. Since fast dynamics is stable
and impossible to control from a practical point of view due to actuators limi-
tations, a robust reduced controller will be designed resorting to the results of
Chapter 2.

When the n-stands subsystem is active, the strip is connected to all the stands,
and it is subject to a strong perturbation due to the coilbox vibrations. Hence, the
main control task is to guarantee a good quality of the rolled product, minimizing
the external perturbation. This phase takes the 90% — 95% of the whole rolling
process duration and the system reaches the steady state before the switchings
occur. In the tail end phase, traction is lost every time the strip leaves a stand.
This increases the difficulties to guide the strip, which becomes free to move in
all directions. The result is that the crashes of the strip against the mill side-
guides are more frequent. Thus, during the tail end phase the priority of the
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control design is the system safety. Moreover, in this phase switchings are very
fast and the stability of all subsystems does not guarantee the stability of the
whole system. It is also necessary to verify that switchings do not destabilize the
system [Mor96], [GCO6b].

To our knowledge, the only condition to design a control law which asymp-
totically stabilizes a two time scale switched systems was proposed in Chapter
3. This condition needs a state vector with constant components and dimension.
Nevertheless, in an HSM system, the components and dimension of the state
vector change at each switching time. A possible solution consists in designing
a robust control law stabilizing each subsystem ¢ separately through the method
proposed in Chapter 2. The stability of the tail end switched system will be
verified a posteriori. In fact, the switching time depends on the rolled strip and
must be estimated on-line. Hence, the switched system stability condition has
also to take into account an uncertainty in the switching time.

Finally, simulation and experimental results of the robust steering control
design at Eisenhiittenstadt HSM will be presented.

5.2 Polytopic modeling

An HSM can treat products with very heterogeneous properties. Each product
is characterized by its physical parameters and by a specific system setup. The
scheduling of the rolled products is assumed to be known in real time. Since the
controller is computed off-line, from a control design point of view the only avail-
able information concerns the minimum and maximum bound of each parameter.
Thus, the physical parameters must be considered as bounded uncertainties and
a robust controller is needed.

The main objective of this section is to describe the uncertainties of the HSM
system as a convex set. LMI techniques can then be applied to design the control
law. Two fundamental points are discussed:

— The reduction of the number of convex hull vertices.

— The determination of the convex hull vertices such that the associated phys-
ical parameters would reflect a given product.

Once the polytopic model is obtained for the whole database, partitioning it into
several small convex hulls can be done quite easily. We only have to choose the
number of partitions and compute the vertices of each partition as was done for
the original convex set.

Consider the HSM system in the polytopic form (1.19):

270 (5 4 1) = A7) (5)270) (5) + B (s)u(s) + B (s)d(s)
q(s) = Cg(s)x"(s)(s) + Dgﬁs)u(s) (5.1)
y(s) = g0 (s),
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where o : Z* — T = {1,..., N} is the switching rule, '(s) = [2(s)’ xé(s)/}l €
R?" is the state vector, u(s) € R" is the control signal, d(s) € R is the external
perturbation, ¢(s) € R" is the controlled output and y(s) € R™ is the measured
output, for any ¢ € Z and for all s € Z*. Moreover, we have:

N
s):iA,(s)AiJ(e), Z)\l (s)Bh, 9B( le (s)BY,
=1

where | € L = {1, ..., Ny} denotes the vertices of the convex hull, and \; denotes
the uncertainty and belongs to the unit simplex

{Z)\l ) =1, A\(s) > 0}.

Hence, for each subsystem ¢ € Z, we have a different convex hull described by
Ny vertices. Each vertex (i,1) € Z x £ may be characterized by its corresponding
two time scale linear state-space model

(s + 1) = A (e)a(s) + Bjlu(s) + By'd(s)

q(s) = ( ) + Dju(s) (5.2)
y(s) = Cya'(s),
with
_ Al fid _ B B Bl
Al’l(é‘) = |:E Nlll ~2‘12:| ) Bjjl = |:~1;71:| ) Bl’l = "Cil’l )
51427{ A2’é le,lz I Bd’,lz

Co=1[Ci1 Cials Cy=1[Ci1 Cyal.

5.2.1 Reduction of the convex hull space dimension

Let U be the set of uncertain parameters. The space dimension of the convex
hull coincides with the number of uncertainties D = card(U). Hence, Ny = 27.

In an HSM with 5 stands D = 70 (110 for an HSM with 7 stands). For a
problem of this dimension, LMI techniques suffer from a well-known drawback
concerning numerical problems. Nevertheless, such numerical problems can be
avoided by exploiting the physical relations among the different product parame-
ters for reducing the dimension of the space dimension. Based on the knowledge
of the engineers, we chose to use only four main parameters in order to classify
the products: the set of independent parameters U™ = {w, h,, 0¥, 0%} C U,
where w is the strip width, h,, is the output thickness of the strip in the last
stand and o) and o0 are the hardness of the strip in the first and in the last
stand, respectively.

The remaining set of parameters U* = {U \ U™} depends on ™. This means
that two products with the same U™ set have nearly the same U® set and thus
the same dynamics. To explain this fact, notice that &/° can be broken down into
two subsets U° = {U;,,Us,.}:
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— The first subset U, concerns the parameters set by the operator, such as roll
characteristics. Operators must prevent incidents on the mill and restore
eventual damages. Therefore, they look for an HSM setup that guarantees
safe and standard system behavior. Their choices are mainly based on past
experience, hence, they usually provide a similar {;, set for products with
similar characteristics (and then with a similar U™ set).

— The last subset Uy, depends, analytically, on Y™ and U,

Fig. 5.1 shows the evolution of the open loop eigenvalues for 10 products with
the following U™ set:
w € [1150 — 1180] mm
h, € [2—2.2]mm
o € [50 — 52] KN/mm?
o € [35 — 37) KN/mm?.
Each eigenvalue moves inside a very limited zone. This fact confirms that two

products with the same U™ set have nearly the same U® set and so, nearly the
same dynamics. Hence, the space dimension of the convex hull can be reduced
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Figure 5.1: Open loop eigenvalues variation

to D = cardU™) = 4.

5.2.2 Construction of the convex hull

Each product p € P = {1, ..., Np} is characterized by its U™ (p) set and can then
be represented as a point in a 4-dimensional space. Consider the Eisenhiitten-
stadt HSM database, which contains Np = 10000 products. Fig. 5.2 shows the

82



5.2, Polytopic modeling

projections of the database on the six possible planes. Each point represents a
different product. The variation of the independent parameters in the database

is:
w € [810 — 1670] mm

hn, € [1.9 = 6.2 mm (5.3)
o € [22 — 65| KN/mm? '
o € [30 — 90] K N/mm?.

Since the combinations among the parameters that belong to U™ are infinite, the
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Figure 5.2: ArcelorMittal Eisenhiittenstadt HSM database (2D projection)

products corresponding to the convex hull vertices are not necessarily included
in the database. In this case, given the set U™ (l), the subset U, (I) must be
estimated for all the products [ € L. To this aim, the subset U (I) can be
arbitrarily set to be equal to the subset Z/lgsp(pl) of the product p! € P “closest”
to the vertex [. Therefore, for each vertex [ € £, p' may be found solving the

following minimization problem:

Doin(1,p") = min{D(l,p), p € P}, (5.4)

with
D(l,p) = [(w(l) — w(p))® + (hu(l) — ha(p))*+
(02(1) — o(p))? + (a2(1) — o°(p))?] 2.
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D(l, p) represents the distance, with reference to the set ™, between the vertex
[ and the product p, for any (I,p) € £ x P. The computation of (5.4) assumes
that all the parameters are normalized beforehand into the interval [—1,1]. An
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Figure 5.3: D,,;, computation: A two dimensional example

illustrative two dimensional example is proposed in Fig. 5.3. Consider a vertex [
and three different products p!, p* and p3. It is easy to see that

Dinin(l,p') = D(1,p*) = [(w(l) = w(p?))* + (ha(l) = ha(p?))’]

NI

The convex hull including the whole set of rolled products bounded by (5.3) may
be divided into smaller Ny convex hulls for improving the system performances.

For each family of products f € F = {1, ..., Np}, a minimization problem in the
form of (5.4) is solved to get the convex hull vertices of this family.

5.3 Robust steering control design

To our knowledge, all the conditions to design a control law stabilizing a two
time scale switched system need a state vector with constant components and
dimension. Nevertheless, in the HSM system, the components and dimension
of the state vector change at each switching time, as explained in section 1.4.
A possible solution consists in designing a robust control law stabilizing each
subsystem i € Z of the HSM system (5.1) separately. In this first phase, the

effect of the switchings is not taken into account and the ¢ index is omitted.
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5.4. Stability analysis of the tail end switched system

The stability of the tail end switched system is verified a posteriori. Therefore,
consider the subsystem corresponding to the mode i € Z of (5.1):

A(s)x(s) + Bu(s)u(s) + Ba(s)d(s)
x(8) + Dgyu(s) (5.5)
().

Due to actuators rate limits, the fast manifold, which is asymptotically stable in
open loop, cannot be controlled. Hence, a slow sampling robust control law is
able to stabilize asymptotically the uncertain two time scale system (5.5). The
slow sampling model corresponding to each vertex [ € £ of (5.5) is:

+1) =
(5) = Cyz
y(s) = Cya

1) = eAlya(s) + 1‘:1112@(8) + f:?i,1u(8) + f:?éﬂ(s)
) 21$1( )+ A122$2(3) + Bllt72u(8) + Bfmd(s)
Coz ( ) + Cy2z2(k) + Dgyu(s)

Cyaz1(s) + Cyaxa(s),

x1(s
2(5
q(s)
()

Yy(s

8
+ +

where z1(s) € R™, x5(s) € R™, ¢ = 0.05, Ty = asay = 0.05, C;,; = 0 and
Cy1 =0, for all s € Z*. Its corresponding slow subsystem is:

{ms 1) = Al (s) + B us(s) + Bl d(s)
a(s) = Cuz,y(s) + Dyuy(s),

where AL = Aby, BL, = Bl, and Bl,, = Bly. Co = Cya = [
OngXT

Dy,
C'D, =0, D'D, > 0. The pair (A, éfw) is assumed to be controlable. Since the
HSM system is subject to a strong external perturbation d, we decided to design

the robust steering control law in a H, framework. Therefore, Theorem 4 may
be applied to design a reduced state-feedback control law

u(s) = Kuz(s) (5.6)

such that the controller gain K = [0 K] stabilizes asymptotically the uncertain
two time scale system (5.5) and minimizes the Hy norm of its slow dynamics.

]ﬁQ ]7 ZjSZZZIDQu::

0r><n2

} are two weighting matrices which respect the orthogonality hypothesis

5.4 Stability analysis of the tail end switched sys-
tem

The goal of this section is to verify the asymptotic stability of the tail end switched
system, for any (i,1) € Z x L. The switching time depends on the rolled strip
and must be estimated on-line. Hence, the stability condition has also to take
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into account an uncertainty in the switching time.
Consider the set of matrices { E* : i € Z} introduced in Chapter 1. The change

of basis
2(s) = EV'2(s)

yields the same state vector z(s) € R?" for each subsystem ¢ € Z and for all
s € ZT. Hence, we can write the closed loop switched system in the polytopic
form:

2(s41) = T7)(s)2(s) (5.7)
with N
Ti(s) = Z)\i,z(S)Tz,l,

and \;;(s) € Q). The closed loop matrix Tj; = E (A" + Bi K*) E' is Schur, where
K corresponds to the controller gain of the state-feedback control law (5.6), for
any (i,l) € Z x L.

In order to prove the asymptotic stability of the closed loop system (5.7),
we provide a dwell time condition [GCO6b]| taking into account the uncertain
parameters [ € £ and an uncertainty 7° € W' = {—N_i,..., N} in the switching
time. To this aim, consider three successive switching times ¢,_;, ¢, and tqH.
For s € [t;—1,t,) the system is in the subsystem corresponding to (z_, [, 7)€
I x LXW:, for s € [ty t,+1) the system is in the subsystem corresponding to
(i,1,7") € T x L x W' and, for s = t,.1, the system jumps to the subsystem
corresponding to (iy,ly, 7)) € T x LX WH. t, 1, t, and t,q satisfy t, — t,—1 =
Ay > A > 1 b —t, = A > AP > 1, for any ¢ € N, where A is
the dwell time of the subsystem i. We assume N.. + N.+ < A’. Hence, the
subsystem i is controlled by the wrong gain K- for a time t € (sT}, (s + 7°)T})
if 7 > 0, with 7,_; = E“(A" + B%K*)E'. Furthermore, the subsystem i is
controlled by the wrong gain K for a time t € (sTy, (s —7)T,) if 7+ < 0, with
Ti 1= E'(A" + BiKi+)E (see Fig. 5.4).

Let the transition matrix Qﬂ,Ag , which represents the system evolution for
S € [ty,tqr1)- Its value depends on the sign of 7 and 7%+

if i < 0, T+ >0 QW,N <Tz7l) (ZZ

if ™>0,7%2>0: Qray=(T)" (T

. i i . T T A“rT“r (58)
if <07 <0 Qpas = (Tiy )7 (L)

’Lf Tt > 0, T <0: QW,A' <_z+,l) m <_l,l> -7 +71+ (CZWZ l)Tlu

with 7 = 4,i_ # 4,ip # i, 01,7, 7% € I =T xIT XTI xL XL xW x Wk,
The following theorem gives a generalization of Theorem 7 for uncertain switched
systems with an uncertainty in the switching time.
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Figure 5.4: Controller switchings

Theorem 15 Consider the uncertain switched system (5.7) and an uncertainty
in the switching time ™ € W', If there exist matrices P = Pif = 0 of appropri-
ate dimensions such that the LMIs

T, PuTi— Py <0,V (i,l) €T x L, (5.9)

Q;7Ai-Pi+,l+Q7r,Ai — Pz‘,l =< O, Vrell (510)

hold, then the switched system (5.7) is asymptotically stable for Afl > AU > 1,
V(i,l,7) € T x L x W

Proof. Let the parameter dependent quadratic Lyapunov function
N Ny
22 il Nials) Piaz(s)
i=1 =1

where Py = P/, = 0, pi(s) : N — {0, 1}, Z%( )= 1land \;(s) >0, Z)\”( )=
1, for any (i,1) € Z x L and for all s € Z+ The system (5.7) is asyrnptotlcally
stable if the difference L(s) = V(s + 1) — V(s) satisfies the inequality

L(s) = 2(s) (70 (s) B4 ()T7) (5) — P(s))2(s) < 0

where
N Ny

‘3:0(8 Z‘IZ ZZ@Z z ’L 17

=1 [=1
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N Ny
E E SOZ z zla
i=1 [=1
N Ny N Ny
- E E Zl S+ 1 ’Ll - E E 901_,_ Z+ l+ )P’i+,l+
=1 =1 Z+ 1l+ 1

for any (i,1) € Z x £ and for any (iy,l) € Z x £ [HDI0O6]. From (5.9), for any
€ [tq,t4+1) the Lyapunov function v(z(s)) = z(s)'P;;z(s) satisfies

v(z(s+ 1)) <v(z(s)).

Hence, there exist scalars a € (0,1) and 3 > 0 such that

l2(s)]I* < B (2(ty)), (5.11)

€ [ty ty+1). Moreover, from (5.8), when 7° > 0 and 7+ < 0, we have Qrai =

(T, ) (T;) %™+ (T;_,)™". Hence, using (5.10) we obtain:
v(2(tgr1)) = 2(tg1) Fiy gy 2(tg4)
= =(t) (T T T ) P T T I )

<z tQ)/(Tii,l Ti,lq Ziii,z)/Pqul Ti,lq Tz‘:lz(tq)
<a(ty) (T7 7 ) Py 7 2 (ty)
= Z(tq)IPLlZ(tq) = v(2(ty)).
) (5.12)
The non-strict inequality holds because A} — A’ > 0 and T;, is Schur. Hence
—Al 7.' A Az __7_1-/ =i
(Tz,l )T P lT lTHq Tz‘_,l R‘JTi_,la

for any (i,1) € Z x L. The relation v(z(t,41)) < v(z(t,)) is verified also for the
other cases of (5.8). In order to see it, it is sufficient to substitute the right value
of Qr a; in (5.12). Hence, given the initial condition of (5.7) 2(0) = 2, there
exists 0 € (0,1) such that

v(z(ty)) < 6%(z),Vq € N. (5.13)

Finally, (5.11) and (5.13) imply that the system (5.7) is asymptotically stable.
]

Remark 13 In order to verify the LMIs (5.9)-(5.10) of Theorem 15, NNy +
N(N —1)2NZ (N, + 1)? possible combinations have to be considered, in the gen-
eral case. Nevertheless, in the HSM system case, only n — 1 switchings oc-
cur. Moreover, since the uncertain parameters are constant for each product,

switchings are possible only between subsystems with the same [. Hence, only
NNy + (n — 1)Ny (N, +1)* LMIs have to be verified.
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Table 5.1: Families bounds
Famly | )| ) | ot () | o (33)
810 —1200 | 1.9-3 22 — 65 30 — 95
810 — 1200 | 3—4.5 22 — 65 30— 95
810 — 1200 | 45—-6.2 | 22—65 30 —95
4a, 1200 — 1400 | 1.9-—3 22 — 65 30 —95
4b 1400 — 1670 | 1.9 -3 22 — 65 30 —95
1200 — 1670 | 3 —4.5 22 — 65 30 — 95
1200 — 1670 | 4.5 —-6.2 | 22—65 30 — 95

5.5 Robust steering control implementation

In order to obtain a simple and systematic procedure so as to extend the steering
control to different factories, a user-friendly interface, called Robust Steering Con-
trol Toolboz (RSCT) [MBST08|, has been developed under Matlab. The software
implements the following functions:

— Given the desired family bounds, it computes the U™ (I, f) set, which con-
tains the information concerning the convex hulls vertices, for any (I, f) €
L x F. Hence, the minimization problem (5.4) is solved in order to estimate
the U*(l, f) set, for any (I, f) € L x F.

— The knowledge of the U(l, f)={U™ (I, f).U*(l, f)} set allows to compute the
linear model of the HSM system, for any (i,1, f) € Z x L x F.

— Therefore, the robust controller gains K%/ are computed solving the LMI
based conditions of Theorem 4 for any (i, f) € ZxF. To this aim, RSCT ex-
ploits the LMI solver SeDuMi [Stu99] and the MATLAB toolbox YALMIP
[L04].

— Finally, the asymptotic stability of the closed loop switched system (5.7)
may be verified using Theorem 15.

The main features of RSCT features are presented in Appendix C. In the
next sections, we present simulation and experimental results at Eisenhiittenstadt
HSM. After experimental trials, the whole database was divided into Np = 7 fam-
ilies, with reference to the U™ set. The families bounds are summarized in Table
5.1. This choice improves system performances, compared to the performances
obtained using a single controller for all the products. The number of families has
been limited in order to handle the data in the factory more easily. The weighting
matrices D’/ have been tuned to fulfill the constraints on the stand tilting AS
described in section 1.3, for any ¢ € 7.
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5.6 Simulation results

5.6.1 n-stands subsystem

In this section, simulation results are shown for a product p with U™ = {967, 2.02,
27.9, 40.1}. From Table 5.1, p belongs to the first family. Fig. 5.5 shows the
evolution of the strip off-center Z in the last stand. The solid line represents
the Z evolution using with the H, controller gain K™!. The dash-dotted line
shows the Z evolution using a classic LQ controller gain, designed for an average
product of family 1. The dashed line shows the Z evolution using the classic
LQ controller gain, given in [DBIT08], designed for an average product of the
whole database. As expected, the division of the whole database into several

50
H, control
45 2
----- average LQ control (f=1)
| — — — average LQ control
40 open loop
35r
30r
E ol
£ 25
N
20

t (sec)

Figure 5.5: Exit strip off-center evolution

families improves system performances. Moreover, the H, robust controller takes
into account the uncertain parameters and minimizes the effects of the external
perturbation, which is due to the coilbox vibrations. The last line, the dotted one,
shows the Z evolution without any control. Notice that in this case a saturation
occurs: this means that the strip is crashing against the HSM side guides.

5.6.2 Tail end switched system

In this section, we present the simulation results concerned with the tail end
phase. Given the controller gains and the dwell time A, Theorem 15 provides a
sufficient condition for the stability of the switched system (5.7) for any ¢ € W
We found a solution for N, < 4, for any ¢ € Z. Since T, = 0.05 sec, the stability of
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5.6. Simulation results

the system is guaranteed for a maximum uncertainty of 4+ 0.2 sec in the switching
time. From practical experience, this constraint can be respected.
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Figure 5.6: Strip off-center evolution: comparison

In Fig. 5.6, the evolution of the strip off-center Z at the exit of each stand
is shown. Notice that, when the strip leaves the ¢g' stand, the value of Z, has
not a physical meaning anymore and is set to zero. In this first simulation, no
delay in the control signal has been considered. The solid line represents the Z
evolution when the system is controlled by the robust controller gain computed
using Theorem 4 for each subsystem. The dashed line shows the Z evolution
when the system is controlled by the LQ controller gain designed using average
state matrices. The dotted line corresponds to the Z evolution when the system
works in open loop. We can see that the robust controller is able to keep the
Z value close to zero during all the rolling process. Otherwise, the average L.Q
controller limits the Z value for the first four stands but induces an oscillatory
behavior on the strip. Hence, when the strip leaves stand 4, the Z value increases
very quickly. This situation can be very dangerous for the system safety. In the
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Figure 5.7: Strip off-center evolution with delay in the Hs robust controller switch-
ings

open loop case, the Z value begins to increase when the strip leaves the first
stand (s = 1613). Notice that a saturation occurs in stands 4 and 5. This means
that the strip is crashing against the side guides. The result is a decrease of the
product quality and, in the worst case, the damage of the rolls.

In Fig. 5.7, we introduce an uncertainty in the switching signal when the
system is controlled by the Hy robust control law. In the Eisenhiittenstadt case,
the switching time can be estimated online, with an error that has the same
sign for any ¢ € Z. Here, the case 7% > 0 is presented. This means that the
controller switches to the i-stands subsystem 7! instants after the strip left the
stand. Three different cases are shown: (1 = 74 = 73 = 72 = 4) (solid line),
(1 = 7 = 13 = 72 = 8) (dashed line), (1 = 7 = 7 = 72 = 12) (dotted
line). Although theoretically the system is stable only for 7 < 4, notice that until
7 = 8 the Z value is kept near to zero. Nevertheless, when 7 = 12 the controller
performances decrease and the strip almost crashes against the side guides. In
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Figure 5.8: Strip off-center evolution with delay in the average L.QQ controller
switchings

this case, the Z value increases in the opposite side of the open loop case.

In Fig. 5.8, we consider the same delay using the average L() controller. We
can see that this kind of controller does not accept uncertainties on the switching
time. The system is unstable and the strip crashes against the side guides in each
case.

5.7 Industrial system description

The steering control system includes five cameras measuring the strip off-center,
the main computer SC and the data connection devices (see Fig. 5.9). The
cameras, which are DAC00/ delivered by Fife, are protected by a water-cooled
housing (the strip can reach 1000°C') and mounted on dedicated vibration ab-
sorbers to avoid high accelerations. A Profibus connects each camera to the main
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Figure 5.9: Global process information at Eisenhiittenstadt HSM

computer, which is linked to the PLC stand by Profibus as well. The main com-
puter consists of a 8 GHz Intel-P/j standard personal computer with an integrated
Profibus interface. The control system is developed in the C++ language and
works under the operating system Windows XP. A TCP/IP using an Ethernet
connection communicates the rolling parameters to the Level 2 system. Filtering,
active pixel selection and edge detection are carried out by FPGA devices, which
are directly located on the cameras. This architecture reduces the amount of
data that must be transmitted to the main computer. An edge detection algo-
rithm based on gradient analysis is used to obtain clear information concerning
the strip off-center values Z. During the operating phase of the control system,
the applied stand tilt is u(s) = K%/ 2(s), with K*/ the gain computed off-line
by the RSCT software, for any (i, f) € Z x F. In order to avoid large values of
the control signal u, due to measurement errors, a saturation function is applied
before sending the stand tilt signal to the PLC.

5.8 Experimental results

In Fig. 5.10, we show the exit strip off-center evolution of a product with U™ =
{895, 2.42, 30.4, 37.4} (family 1). When the product enters the HSM the steering
control is on (Fig. 5.10.b) and the strip off-center value is kept close to zero (Fig.
5.10.a). At the instant s = 1050, the steering control system is switched off and
the signal u is set to a constant value by the operator. As expected, the Z value
increases quickly (from 10 to 30 mm). In Fig. 5.11, we show the exit Z evolu-
tion of two consecutive products with the same set U™ ={1510, 2.02, 59.1, 72.5}
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Figure 5.10: Exit strip off-center and control signal evolution

(family 4). The solid line corresponds to the Z evolution with robust steering
control whereas the dotted line corresponds to the open loop Z evolution. The
performance improvement is demonstrated.

In Fig. 5.12, the standard deviation of the strip off-center values o,(Z) ob-
tained by applying the Hs control system are compared with the standard devi-
ation of the strip off-center values obtained in open loop. The statistics concern
100 controlled strips and 200 strips in open loop of all the families. Performance
improvement is substantial. When the Hy steering control is switched off, the
strip off-center standard deviation increases more than 125%. The bounds on the
stand tilt AS maximum values have always been respected and the wedge Ah
has always been kept between +10 ym. In Fig. 5.13, the standard deviation of
the strip off-center values 0,(Z) obtained using the H, control system are com-
pared with the standard deviation of the strip off-center values obtained using
the average LQ control system proposed by [DBIT08|. The statistics concern 44
strips from all the families. In order to guarantee the same rolling conditions (e.g.
strip parameters, roll characteristics, external temperature, system asymmetries)
and then obtain coherent results, only identical and consecutive strips have been
compared. We observe performance improvement using the Hy control system
(about 35%). Also the standard deviation of the wedge value o,(Ah,), which
gives a measure of the quality of the rolled product, has been improved from
7.82 um (LQ control system) to 5.56 um (Hs control system).
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5.9 Conclusion

In this chapter, a robust steering control design has been proposed in order to
guarantee the asymptotical stability of the HSM uncertain switched system pre-
sented in Chapter 1 and improve its performance. The aim has been achieved
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minimizing the strip movement during the rolling process. Since an HSM treats
a set of very heterogeneous products, an extensive database was created and di-
vided into seven families of products. A method for reducing the complexity of
the problem exploiting the relations among the different products parameters has
also been presented. This method yields a convex formulation of the stabilization
problem. Hence, for each family, a different LMI based robust controller was
designed. A dwell-time condition verifying the asymptotical stability of the tail
end switched system has also been provided. This condition takes into account
the uncertainties on the physical parameters and on the controllers switching
instants.

Simulations (for both the n-stands subsystem and the tail end subsystem) and
experimental results (for the n-stands subsystem) concerning the ArcelorMittal
HSM of Eisenhiittenstadt proved the effectiveness of the presented method. The
strip off-center was significantly reduced, with respect to the results obtained in
open loop and using the old control system.

Steering control is an important framework in steel production. In order to
adapt the described method to other mills, a dedicated Matlab toolbox, RSCT,
was developed. Only the model tuning and a specific database of products, which
each plant can provide, are required.
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(zeneral conclusion

This Ph.D. thesis deals with a certain number of problems arising in practical
implementation of control systems: multi time scale phenomena, sudden mod-
ifications on the system dynamics, discontinuities on the control signal due to
controller switchings, the need of design a limited number of controllers in spite
of a wide variation on the physical parameters. In order to illustrate the valid-
ity of the obtained results, we resorted to a real problem concerning the steel
production framework, the robust steering control of hot strip finishing mill.

First, a convex solution of the linear quadratic control design for discrete
two time scale linear systems has been proposed. Fast and slow sampling state
feedback control designs were investigated. An extension of the slow sampling
controller to uncertain systems in the polytopic form has also been presented.
Hence, we addressed the stability problem of two time scale switched systems.
We showed that asymptotical stability of the slow and fast switched subsystems
under arbitrary switching rules does not imply asymptotical stability of the cor-
responding two time scale switched system in the singular perturbation form. A
coupling constraint, expressed in terms of LMIs independent of the value of the
singular perturbation parameter, must also be satisfied. A stabilizing state feed-
back control law was also designed, for the continuous and fast sampling discrete
time frameworks. We also introduced a bumpless transfer method for discrete
time switched systems, based on a linear quadratic optimization approach, for
reducing the control signal discontinuities due to the switchings. Dwell time con-
ditions assessing asymptotical stability of the closed loop switched system were
established.

The practical contribution of this thesis, the robust steering control of a hot
strip mill, exploits some of the previous theoretical results. The aim is to guar-
antee asymptotic stability of a hot strip mill system and improve the quality of
the rolled products. This purpose was achieved minimizing the strip movement
during the rolling process. Since a hot strip mill treats a set of very heterogeneous
products, an extensive database was created and divided into seven families of
products. A method for reducing the complexity of the problem by exploiting
the relations among the different products parameters has also been presented.
This method yields a convex formulation of the stabilization problem. Therefore,
a different robust controller was designed for each family. A dwell time condition,
which verifies asymptotic stability of the tail end switched system, has also been
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presented. This condition takes into account the uncertainties on the physical
parameters and on the switching instants. In order to adapt this method to other
mills, a dedicated Matlab toolbox, called RSCT, was developed. Simulations and
experimental results at Eisenhiittenstadt mill proved the effectiveness of the pro-
posed solution. The lateral movement of the strip was significantly reduced, with
respect to the results obtained in open loop and using the old control system.

Multi time scale switched systems offer several future research topics. In this
work, we pointed out the fact that classical stability properties of linear systems
in the singular perturbation form do not hold, when arbitrary switchings arise.
Therefore, we presented sufficient conditions to analyze asymptotic stability and
design a stabilizing state feedback control law of two time scale switched linear
systems. The extension of these conditions to more general classes of switched
systems should be investigated. Further, practical implementation usually re-
quires more complex control techniques, as output feedback, and performance
constraints. In physical systems, the time scale of the state variables correspond-
ing to the state space model of the system may change after a switching. An
example of this phenomenon is observed during the tail end phase of the rolling
process in a hot strip mill. Even if the angles between the strip and the mill axis
of each stand are usually “fast” state variables, each time the strip leaves a stand
the angle between the strip and the mill axis on the first stand active becomes
a “slow” state variable. This behavior was modeled through a two time scale
switched system for which the state vectors corresponding to the slow and fast
subsystems vary at each switching time. To our knowledge, the stabilization prob-
lem of two time scale switched systems with variable state vectors has never been
addressed before this work. We avoided the problem by designing an independent
control law for each subsystem and verifying the stability of the tail end switched
system a posteriori, through a dwell time condition. This approach yields a set
of well-behaved controllers and, in the hot strip mill case, guarantees the closed
loop asymptotic stability. However, in a general context it presents a drawback.
Since the controllers do not take into account the switchings effects, the closed
loop stability of the whole switched system is evaluated through a condition that
depends on the singular perturbation parameter. Therefore, numerical problems
may arise due to ill-conditioning constraints.

In the robust steering control framework, the next step concerns the industrial
implementation of the tail end phase regulation at Eisenhiittenstadt plant. The
installation of the proposed control system to other mills is also planned.
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Appendix A

Formulae

A.1 Schur complement

The LMI [(f), g} = 0, where A = A" and D = D', is equivalent to LMIs

D=0, A—BD'B'"=0,and to LMIs A= 0, D — B'’A~'B = 0.
A.2 Inverse of a block matrix

Consider an invertible block matrix [ } . Its inverse is

C D

A B]7' [A'4+ A'B(D—CA'B)"'CA™! —A"'B(D—CA'B)"!
C D| —(D—CA'B)"lCA™! (D — CA=1B)™!

A.3 Searle’s identity

(I+AB)™ =1— A(I+ AB)"'B.
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Appendix B

Proofs
B.1 Proof of Theorem 2
From (2.41), let us denote
Ple)™ = {}VY(S), 58} - 0, (B.1)
with
Wi(e) = (P (g) — Pa(e) Ps(e) ' Po(e)) 1,
Y(e)=-Wi(e )Pz( )Ps(e)7t, (B.2)
Qe) = Ps(f:‘) + P3(e) ' Pa(e)' W (e) Pa(e) Pa(e) .

Hence, substituting (2.18), (2.41), (2.42) and (B.1) in (2.37), we obtain:

e 1 X1(e) e 1Xy(e)

X)) Xs(e) =<0, (B.3)

with

Xi(e) = e(AnPi(e) Ay + AnPa(e) Al + AnPa(e) Al + Ara Ps(e) Ajp+
A Z1(e) By + A19Z5(e)' By + B1Z1(e) Al + B1Z2(e) A+
Bi(Z1(e)W(e)Zi(e) + Za(e)Y (€)' Z1(e) + Z1(e)Y (e) Z2(e)'+
Z5(€)Q(e) Za(e)') By — Pi(e) + aiay),

Xo(e) = (A Pi(e) Ay e + A1aPa(e) Abye + A1 Po(e) (I, + An) +
Ao P3(e) (I, + €A9) + A1 Z1(e)' Bhe + A2 Z5(g) Bhe+
BiZ\(e)e Ay + B1Z5(e)(In, + €A) + Bi(Z1()W (e) Z1(e)'+
Zs(e)Y (€)' Z1(e) + Z1(e)Y (2) Za(e) + Z2(e)Q(e) Za(e)') Bye—
Py(e) + 2323,
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X3(e) = eAg1 Pi(e) Ay e + eAo1 Po(e) (I, + €A90) + (I, + Asn) X
Py(e)AY e + (L, + €Ax)P3(e) (I, + €An) + Ao Z1(e) Bye+
(Iny + €A22) Z5(e) Bye + e BaZi () Ay + eBaZo(e) (Lny + £ A2)’
+eBo(Z1(e)W (e) Z1(e)' + Zo(e)Y () Z1(e) + Z1(e)Y (€) Zo(e) +
Z5(£)Q(e) Zs(e)') Bye — Ps(e) + w52y
When € — 0, using (B.2) we have :
X1 =AnPAY + ApP A + AP A, + A PsAl, + A Z B+

ApZyB, + B Z, Al + B ZyAyy + B1Z1 (P, — PPy ' Py) ' Z Bl —

B1ZyP3s 'Py(Py — PyPy ' Py) ' Z1 B, — By Zy(P, — PPy 'Py) ' x (B.4)

PPy ' ZU B + B ZyPy 2B + By Zo Py Py(Py — PyPy ' Py) T x

PP, ' 2B — P, < 0.

Xo=A1Py+ A1sPs+ B1Zy — P, =0, (B.5)

Xy =PyAby + Ay Py + APy + Py Ay, + Z3By + BaZy + a9z < 0. (B.6)

Equation (2.43) verifies (B.5). Furthermore, substituting (2.43) and (2.45) in
(B.4), we obtain:

Xy =AnPpAy + AnZyBy + B Zp Ay + B Zp Py 2By — Pyt
AP Py Y (PAL + PsAly + Z5B)) + By Zo Py Y (P AL+

B.7
Pyl + Z4B) + An(Py sy + Py + Z4B)) — PPy P = )
AnPpAy + AnZy Bl + BiZg ALy + BiZy Py Z; B — P < 0,
and, substituting (2.23), (2.43) and (2.44) in (B.6), we get:
X3 = AP, + P,A. + B, Z, + Z'B. + %2 < 0. (B.8)

(B.7) and (B.8) represent the constraints of the problems (2.50) and (2.49), re-
spectively. Hence, they are satisfied by assumption. Replacing in (B.3) the
unknown values of Py(e), Py(¢), Ps(e), Zi(e), Za(e) with Py, Ps, P3, Zy, Zs, we

obtain: .
o X1 X4
X Xs+0(e) =<0, (B.9)
with
Xy =An P A, + A12P2/A,21 + A Py AL, 4+ Ap P AL, + A11Z1/B§ + A12Z2IB§+
B1Z Ay + B1Zo Ay + By (Z\W Zy + Z,Y'Z) + Z\Y 7)) + Z.Q75) By+

0,.0/
1Ty .

W, Y and @ are obtained replacing Py (¢), Pa(¢), Ps(¢), Zi(e), Za(e) in (B.2).
The conditions X; < 0 and X3 < 0 imply that there exists a scalar £; > 0 such
that the inequality

X, —eX4(X54+0(e) ' X} <0
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holds Ve € (0,e1]. Hence, using the Schur complement, also (B.9) holds Ve €
(0,&1]. Moreover, there exists a scalar €5 > 0 such that the inequality

- Pf‘|‘P2P871P2/ P2

eP(e) = Py P, +0() =0

holds, Ve € (0,e5]. Thus, there exist matrices Ps, Z;, Py, Z; and a scalar
Emaz = min{ey, eo} which verify the constraints (2.36)-(2.37) of the problem

(2.38), Ve € (0, €mau)-

Consider
ug(k) = Koog(k) = ZP (k)

s

and
up(k) = Kpay(k) = Zg Py ag(k).
The composite controller is
u(k) = us(k) +us(k) = Ksxg(k) + Kyayp(k).
Assume z4(k) = xo(k) and z¢(k) = z1(k) — (1,,, — Ap) N Apzs (k) + Brug(k)) =
x1(k) — (I, — A1) Y (As + B1K,)xs(k). Hence, we have:
u(k) = Z; P tay (k) + Zo P wo (k) — ZpPrtx

(Inl — All)_l(Am + BlZSPS_l)l‘Q(k’) = K {i;gzg} s

which corresponds to (2.26). Applying the formula of the inverse of block matrix
to (2.51), we find:

—1 —1 -1
[ B —P;'RP; } |

—P'PyP;t P74 PP P PP
Thus, we get:
K=2P'=[ZP;" Z,P7" = ZP (I, — An) (A + BiZ.PY) ]

)

which concludes the proof. B

B.2 Proof of Proposition 1

The proof is an extension of [Yur04| to the switched systems case. First, notice
that if the stability conditions of Theorem 9 hold, there exists a common quadratic
Lyapunov function V (x(t)) = z,(t)' Pra(t) > 0 and matrices Q% > 0, i € Z, such
that V(zs(t) = @y (1) (7 MY Py + e PAMT)ars (1) < —ap(8) e QF ey (1),
Let us define A%/ = min{ Amin(Q%), 7 € T} and A3, = maz{Ame(Q2), i € T},

for all t > ty. Consider the inequalities

Amin(Pp)llzs (O < V(@ s(8)) < Amaa(Pyp)ll ()] (B.10)
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and
Qr
Vi) < =N a0 € 522 Vie©). (B

Integrating (B.11), we obtain

V(1) (Vi)Y o A
[ et~ (vetoy) < e

and then:

Qr
Vi) = Virtoern (- 2ube 1)

Using (B.10), we get an upper bound for the norm of the state variables corre-
sponding to the fast dynamics:

3 Qr
o0 < (3255 ) Nertollens (—52m ). B2

A similar procedure yields a lower bound for the norm of the state variables
corresponding to the slow dynamics:

)\min(Ps) % )\Qs
L) > [ Lmindts) J(t ___fmaz 4| B.13
(0= (£ ) otolean (5258 r) . By
Finally, the ratio of the exponents in (B.12) and (B.13) is

)\mln<Ps))\Qf

min

EAmax (Pf)AgLZm '

’[’]:

B.3 Proof Theorem 10

Let us assume

P(e) = {g(f)) 28} - 0, (B.14)
Z'e) = [Zi(e) Zi(e)], (B.15)
Q'(e) = { ;((;) ?228] 0, (B.16)
with
Pi(e) = P; +eP, P ' Py,
Py(e) =Py = —ey My (M}yP, + NI'Z"), (B.17)
h=1
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Zi(e) = Zy +eZiP]' Py, Zy(e) = e(Zi+ Z; P YY), (B.18)
i —1yi i i ir7i p— i i/ N
Qi(e)=¢" Iz @Q5(e) = —((M7; + N1 Z; Py DY+ PrMy + Z; N, ), (B.19)
i i i ir7i p— i i ! —1r7i! ari! )
Q3(e) = e(Q — (M3, + Ny Zy Py DY —Y( My, + Py 1Zf N3)),
and
N
Yi=— 3" Ml (MbP + NPZD). (B.20)
h=1,h#i
Substituting (3.30) and (B.14)-(B.16) in (3.36), we have:
Xi(e) X%(*S)}
; : <0 B.21
G (521

with
Xi(e) = e (Mj, Pi(e) + Pi(e) Mjy + MjyPy(e)'+

Py(e)Miy' + NiZi(e) + Zi(e)'Ni' + Qi(e)),
Xj(e) = & " M;, Po(e) + £ Mi, Py(e) + Pi(e) My, '+
Py(e)' My, + e ' NiZy(e) + Zi(e)' Ny + Qb(e),
Xi(e) = MsyPs(e) + P3(5)M2iz/ + My, Py(e) + P2(5)/M2il/+
N3 Zi(e) + Za(e) Ny + Q).

Replacing the values of P(e), Z'(¢), Q'(¢) and the equations (3.33), (B.17)-(B.20),
we obtain:

Xi(e) = e MM\ Py + PeMjy + NiZj + ZUNi' + Q) + O(e)) = e (Xi + O(e)),
Xi(e) = e(PaMs, + O(e)) = e(X3+ O(e)),
Xi(e) = e(MIP,+ P.MY + N'Z! + Z'N' + QL + O(¢)) = (X! + O(e)).

The inequality (B.21) can be written as

e (X} +0(e) e(X3+0(e))

(%)’ e(X;+0(¢))

Satisfying the conditions (3.37) and (3.38) implies that X7 < 0 and X! < 0.

This means that there exists a scalar €,,4, > 0 such that X’ 4+ O(g) < 0 and

Xt~ 2X5XIT' XY + 0(e) < 0, Vi € T and Ve € (0,14,]. Hence, using the

Schur complement, the LMI (3.36) is verified. Since P; > 0 and P, > 0, (B.14)
holds. Furthermore, substituting (B.19) in (B.16), we obtain

< 0.

i -Eiljnl 0 :|
g) = X
@) 0 I,
Q) —((Mj, + NiZiP, )Y + PIfMg'l’/ + Z;;’N;’z ,
) 7 ir7i p—1 7 7 7 —1 7 i
(%) Q5 — (My + NoZy P )Y =Y (Myy + P Zy Ny )
T
0 efm] =0
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which, using the Schur complement, holds if and only if

Qf + NiZyP'Zy' Ny H Nz o0
(x)/ L' Y" NiZi+Y?
>~ 0, (B.22)
(x)' () Py 0
() ()" Py

with H' = —(M{Y' + P;M3," + Zi'NY) and L' = Q1 — My,Y' — YV M3, +
N3ZiP ' ZY NS + YU P,y (3.39) is non negative definite. This implies that
the constraint (B.22) holds Vi € 7.

In order to find K*, consider us(t) = Klzs(t) = Z!P7'ay(t) and up(t) =
Kjxp(t) = ZjP;'xs(t). The composite controller is given by u.(t) = u(t) +
usp(t) = Kizg(t) + Kiay(t). Letting x,(t) = w2(t) and xp(t) = x(t) + Mi,
(Miyas(t) + Niug(t)) = a1 (t) + Mi, " (Mi, + NiKD)z,(t), we have:

uo(t) = Z2 P Yaa(t) + ZoP; (1) + Z5 Py My, (Miy + NiZEP, Vs (1),
(B.23)
When & — 0, substituting (B.14) and (B.15) in K?(¢) = Z(¢)P(¢) " and applying
the formula of the inverse of block matrix given in Appendix A.2 we find (B.23),
which concludes the proof. l

B.4 Proof Theorem 12

Let us assume

o= [ 58]
Zi(e) = [Z{(é?) Z;(&?)} , (B.25)
st =P = |55 S -0 (B.27)
with

Pi(e) = P} + PP ' Py,

Pi(e) = P = e(l,, — Aiy) (A}, P, + BiZ), (B.28)
Pg(E) = €PS,

Zi(e) = Zy +eZIP7PY . Zi(e) = ZL, (B.29)
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Qy=Q% Qi) =e(P{ — Py — (AP} + B1Zy) Py (Ay Py + By Z%)'),
i i i pi izi\ piTLl i pi irzi
Q54(e) = £%(Q% — (A5 P; + ByZ3) P (A Py + By Z3)'),

(B.30)
Si(e) = (Pi(e) — Pi(e)Ps(e) ' Pi(e)) ™", Si(e) = —Si(e)Ps(e) Ps(e) ™", (B.31)
Si(e) = Ps(e) ™" + P3(e) ' Pi(e)'Si(e) Pi(e) Ps(e) ™"
Substituting (3.58), (B.24)-(B.27) in (3.64), we have:
XY (e) X3(e)
G o) (B:32)
with:
Xij( ) AZnPZ(E) 11 +Allﬂm( )/AZﬁ/JFAinPZ( )AZ12 +A Ps(e )Alm
AL Zi(e) By + AL, Z3(e) By + BiZi(e) A}y + BiZj(e) A}, +
Bi(Z1(e)S1(e) Zi(e) + Z3(e)S5(e) Z3 () + Zi(2)S5(e) Z3(e) +

Z3(€)Si(e) Z()) B — Pl () + Q4
X5 (e) :Ailpf@)Aél/E + AL P (e) Al21 e+ AL Py(e)(In, + €Asy) + AlpP3(e) %
(In +eAy)' + ALy Zi(e) By e + Ay Zy(e) By e + BiZj(e)e Ay, +
By Zy(e)(In, + eAsy) + B1(Z1(€)S1() Z1(e)' + Z5(2) Sh(e) Z1 () +
Zi(e)S3(e) Z3(e)' + Z3(2) Si(e) Z3(e) ) By e — Pi(e) + Q3 (e),

Xé(&?) :514%1]31@'(5)14%1’5 + e Ay Py(e)(In, + e Aby) + (In, + 5A§2)P§I(6)A§1/5+
(Lny + € Ap) Pa() Ly + €A3)' + €A Zi(e) By'e + (L, + eA3) %
Zy(e) By e + e By Zi () Aby'e + e ByZs () (I, + £ Aby)' + £ B5(Zi () %
S1(€)Z1(e) + Z3() (€)' Zi(e) + Zi(e)S3(e) Z3(e) +
7Z3(€)S5(€) Zi(2)) By'e — Pa(e) + Qo).

Replacing the values of Pi(g), Z%(g), Q¥ (¢), S*(¢) and the equations (3.61), (B.28)-
(B.31), we obtain:
X{(e) =AL PIAL + AL ZVBY + BiZiAL +
i pi—li! i j i ij
BiZiP}y Zy'Bi — Pl + Q) + O(c) = XY + O(e),

X;j(g) :52<A§2P2i/14§1l + A§1P5A;2I + AzizZi/Bél + BiZ§A321+

Bi(-ZiP VPP 2y - 2P PPz + Z1P7 2By 4 0(e) =

(X5 + 0(e)),

Xj(e) =(ALP, + PAY + BiZ, + ZBY + Q. + 0(c)) = £*(Xj + O(e)).
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The inequality (B.32) can be written as

X7 1+ 0(e)
(%)’

Satisfying the conditions (3.65) and (3.66) implies that X/ < 0 and X} < 0.
This means that there exists a scalar €,,,, > 0 such that Xi + O(e) < 0 and
X7 _2XiXiT X8 4 O(e) < 0,V(i,§) € T x T and Ve € (0, €nag). Hence, using
the Schur complement, the inequality (3.64) is verified. Since P} = 0 and P, >~ 0,
(B.24) holds. Furthermore, substituting (B.30) in (B.26), we obtain:

=l 0% o Ut B s sy
0 el |(x)  Q.L—(AyP;+ ByZ;) Py (A5 Pp+ By Zy)

I, O
[0 elnj =0

which, using the Schur complement, holds if and only if

Qf + (A}, Pj + BiZ))Pj (A, Pi+ BiZi) P{—Pj Ay,Pj+BZ
(%) Q- A5 Py + By Zy | = 0.
(%)’ (%)’ P
(B.33)
(3.67) is non negative definite. This implies that the constraint (B.33) holds
V(i,5) €I xT.

In order to find K", consider us(k) = Klxg(k) = Z!P;'zy(k) and uy(k) =
Kiay(k) = Z}P}_le(k). The composite controller is given by u.(k) = us(k) +
us(k) = Klxy(k) + Kfap(k). Letting z,(k) = zo(k) and xz(k) = 21(k) — (In, —
A1) (Algas (k) + Biug(k)) = 1(k) — (In, — A}y) 7 (AL + BIK2(k), we have

we(k) = ZLP o (k) + Z4PE (k) —

ST 8

i il 1 i (B.34)
ZfPf (Iny — AYy) " (Alg + BIZ P )za(k)

When e — 0, substituting (B.24) and (B.25) in K'(e) = Zi(¢)P'(c)" and ap-
plying the formula of the inverse of block matrix given in Appendix A.2 we find
(B.34), which concludes the proof. B

B.5 Construction of the augmented state matrix

From Theorem 13, when the bumpless transfer controller is on we have:
a (k) = Qi k) | (k) (B.35)
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where
ai(k>:{ﬂi’0(k})+(k}—t+1) pik) if ti<k<t;+M (B.36)
0 otherwise,
with
a°(k) = K'x(t; — 1) (B.37)
and .
p'(k) = —M(KZ x(t;) — Kx(t; — 1)). (B.38)

’L

Let 77 = k —t; + 1. The evolution of the signal ¢* in (B.35) is given by (4.16),
which can be rewritten as

9'(1i) = GV () a (1) + G (i)' (1) (B.39)

where

ZM Tk M+1 -n . . .

G (rh) [T M(Q) | i +1-n)B"
n=0 C—Tk+1
o Tk (M1 . o .
GP(r)=— ) ( I MZ(O) (rp +1—n)B'(r" —n)
n=0 (=7 +1

and

Mi(sf) = A”(1 — T (7)) B)

with IT" and B’ defined in equations (4.15) and (4.17), respectively. The closed
form (B.39) allows to express equation (4.16) as a function of 4*° and p’. Hence,
for t; <k < t; + M, the closed loop system (4.2)-(4.4) becomes:

w(k +1) =A'(r + Da(k) + (B' (1 + 1) = B'N'(r, + )G (7 + 1))@ (i) +
(B (1 + 1) = B'N' (7 + )G (7 + 1))p' (7).
with _. . P .
A(7}) = (I, + B'N'(t{)IT' (1)) A"
B'(1;) = Bi(f + N(m)I'(7) BY)
)

and N’ defined in equation (4.14). @°(7}) and p’(r{) are initialized as function
of z(k) and z(k — 1) at the switching time (k = t;, 77 = 1). Using (B.37) and
(B.38), we find

Hi(ri+1) L¥(1i +1) Opsr Opxr
In Oan

A . 0 0
i/ i ) . i nxr nxr
Vi =1 o, K5 O Ope
1 i 1 j
7_.Ml(Z _TMK] 07"><r Or><7"
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with ]
H'(r) = A7) + —7 (B'(m) — B'NY(7,) G (7)) K

)

and

—_

() = (B(r)) = BN G ()K= —7(B' () = BN (1) G (7)) IS,

T

=

@*°(7}) and p'(7{) remain constant for 2 < 7f < 7M. We have

AT +1) Opun U7+ 1) Pi(ri+1)

'y i [n On n On r On T
Y (]>%)|2§T;§TZM - O OT:n Ij OT:T
Or><n 0r><n OTXT‘ [T‘
with o o RS A
U'(r,) = B'(7,) — B'N*(1,)G""(7,)
and

Pi(rl) = 7B () ~ B ()G (=)
When the bumpless transfer controller is off (k) = 0, then we get:

) ) ) Al + B'K’ 0n><(n+2r)
Yl(jv TZ))|T]2>TZ~1VI =Y, = I 0n><(n+2r) )
02r><n 027"><(n+2r)

which is constant for any (i,7) € Z xZ. &
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Appendix C

Robust Steering Control Toolbox

The objective of this appendix is to present RSCT (Robust Steering Control Tool-
boz), a MATLAB toolbox which implements the algorithms necessary to the HSM
robust steering control design [MDITar|, [MDI*09e]. RSCT has been written in
MATLAB R14SP1 (Release 14 with Service Pack 1) and tested on Windows
XP and Windows VISTA Operating Systems. A GUI (Graphical User Interface)
is provided. A LMI solver is required to compute the controllers. To interface
MATLAB to the most popular solvers, the free MATLAB toolbox YALMIP is
used [L04]. We tested two solvers: SeDuMi, that is available free of charge under
GNU/GPL open source license [Stu99|, and LMILAB, that can be found in the
MATLAB-Robust Control Toolbox [GNLC95].

To install RSCT, remove any old version, unzip the file RSCT.rar and add
the directory “\RSCT\software_ RSCT” to your MATLAB paths. This oper-
ation may be directly done by the main MATLAB toolbar choosing File— Set
Path...— Add with Subfolders.... SeDuMi and YALMIP may be installed follow-
ing a similar procedure.

To run RSCT, tape “RSCT” on the MATLAB Command Window. The Main
GUI shown in Fig. C.1 will appear.

C.1 Main GUI

The Main GUI allows to compute the controllers, export the results to files,
check the stability of the closed loop system and reach the other GUIs from
the File toolbar (Create a new family GUI, HSM simulator GUI, A3S GUI).
First, the number of stands n € {5,6,7} must be set using the corresponding
checkboxes. Thus a database of products must be loaded in order to compute
a new controller. To this aim, go to File toolbar— Load Database. Choose the
.tzt file which contains the desired database bounds, and then the path of the
products database. The .txt file, called database bounds.txt, may be created
using the specific GUI described in section C.2. Each product of the database
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/ Robust Steering Control Toolbox RSCT V1 E|EE]
=M Help »
Load Database
Creake a new Family
H5M simulator
AZS
Exit
. [¥] 6 stands
Compute contraller L abservers [l estands
[17 stands
Export results
1 Fo body 1 Ro d-stands .
i} Ro &-sfands 1 Ro Ssfands
Check stability 0 | Ho&stnds 1 Fof-stnds
ArcelorMittal

Figure C.1: Main GUI

is represented by a .mat file containing its characteristics and the corresponding
HSM setting. The database may be created through the A3S GUI described in
section C.4, or provided by the plants.

The tuning of the default control system weighting matrices is done by mod-
ifying the Ry boxes of the GUI. We obtain R = RyD,Dg,, where D,, is the
weighting matrix given in chapter 5.Hence, the bottom Compute controller calls
the method which computes a different observer based state-feedback H, robust
controller for each subsystem. If the checkbox LPV observers is active, a specific
observer is designed for each vertex product, in addition to the average observer
designed by default. These observers may be used to implement a linear param-
eter varying (LPV) strategy in order to take into account the different physical
parameters of the rolled products during the observation of the state variables. If
the LMI solver does not find a solution, RSCT shows a warning, as in Fig. C.2.
The bottom FEzxport results saves the controller information on the path:
\RSCT\controller data\Matrices n_stands database bounds RxRo\,
where n is the number of stands, database bounds corresponds to the name of
the database_bounds.txt file and Ry is the numerical value of the Ry body box.
3(n — 1) + 2 *tut files are generated (5(n — 1) + 2 if the checkbox LPV ob-
servers is active). The syntax is coherent with the controller files used on the
Eisenhiittenstadt plant.

Once loaded a database of products and a controller, the bottom Check sta-
bility yields the results of the posteriori stability test for each subsystem and for
the full tail end switched system [MDIT09e|. If the LMI solver does not find a
solution, RSCT shows a warning.

114



C.2. Create a new family GUI

LMl solver Warning

Murnerical problem s on the H2 controller design (d-stands

subsystern

3

Figure C.2: Warning : LMI not feasible

C.2 Create a new family GUI

This GUI allows to compute the convex hull vertices of a new family of products.
First, the name and the convex hull bounds of the family must be set on the spe-
cific boxes (Fig. C.3). The bounds concern the set U™ = {w, h, 04, Oout }, Where
w is the strip width, A is the output thickness of the strip in the last stand and o;,
and o, are the hardness of the strip in the first and in the last stand, respectively.
Hence, a database of products (represented by a *.mat file) must be loaded from

Create a new family RSCT V1 EL "EJ
5= Help »
Load Database r
Show Database (200
Show Database (300
Exit
; new_-dah;b-ase Family name
w h sin s qut
oo | 19 | | 22000 | 30000 | Minimum value
T [ o [ 4000 ] foom | sk e

Figure C.3: New family GUI

the File toolbar. As in the Main GUI, it suffices to indicate the database path. Fi-
nally, the coordinates of the 16 convex hull vertices must be set. This operation
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is semi-manual because of the extremely various shapes that the database can
have. To start, push the bottom Load vertices. A 2D projection of the database
will appear (Fig. C.4). The four cartesian coordinates of the convex hull vertices
corresponding to the given projection can be set using the left bottom of the
mouse. Thus, push Enter to change projection, for a total of three projections.
The coordinates of the vertices on the last three 2D projections are computed
automatically and then the file \ RSCT\database bound\new family name.txt
is created. Two first rows contain the family bounds set by the GUI This file
is composed by a matrix € R'®*4. Last 16 rows represent the coordinates of the
convex hull vertices corresponding to the family.

) «} Create a new family

W
§ o
> *
7. E A &=
%
v I
65 A T
: B - i . ;o 4
= e 5
% R $ o 2 2.5 '.’gc 1]
A . ] -
= i S il :.
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DDE 5-_ ‘ .i“! = .:. .r ..“ . ¥ ]
- -~ * s g PR -
46 . T o ST i 285 ]
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80 00 340 1000 1050 1100 1150 1200
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Figure C.4: Vertices setting: An example

2D and 3D projections of the convex hull are available by the File toolbar.
The red z represent the convex hull vertices and the blue points represent the
database products which belong to the family. An example is shown in Fig. C.5
and C.6.

C.3 HSM Simulator GUI

This GUI allows to simulate the open and closed loop system behavior through
the MATLAB-Stmulink nonlinear system model presented in chapter 1. First,
a product must be loaded from the File toolbar. Each product is described by a
.mat file, available by the database, and by a .tzt file, which contains the IBA
Analyzer output (the coilbox perturbation and the tail end switching instants).

116



C.3. HSM Simulator GUI

File Edit Yiew Insert Tools Desktop Window Help

bedE h RQAOW|(E 08 =0

— 3 48 i % 4 &E
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Figure C.5: 2D database projections: An example

File Edit View Insett Tools Desktop ‘Window Help

Ded&E k|RQAN® € 0B 50

Figure C.6: 3D database projections: An example

Hence, a controller must be loaded by the File toolbar. It suffices to indicate
the controller path. If the syntax of the .txt controller files is not the same of
the output generated by the command FExport results of the Main GUI, an error
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3

Error

Aowrong file was loaded

Figure C.7: Error : A wrong file was loaded

HSM simulator RSCT V1 |:| =l 3
Help
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Load controller
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| 19 || s

|F:J“152| El E2 EA oo

| 1ss | | 239 | | @79t |  7ims |  supconiraler bounds
|Ee e

Figure C.8: HSM simulator GUI

G

ArcelorMittal

message will be show (Fig. C.7).

The main physical parameters concerning the product and the controller are
summarized on the GUI boxes (Fig. C.8). The closed loop system may be
simulated using two different kind of controllers (H, or average L()) and observers
(LPV or average L(Q). A checkbox consents to add a delay on the controller
switchings.

C4 A3S GUI

A3S is a software developed by ArcelorMittal researchers in a Visual Basic am-
biance. It computes the *.mat files representing the products through a manual
procedure stand by stand. To integrate this functionality in RSCT, we rewrote
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C.5. Options setting

the A3S numerical algorithms in MATLAB code and we implemented an auto-
matic procedure to create m consecutive products. The new A3S GUI is shown
in Fig. C.9. The A3S input is represented by a .tzt file which contains the phys-

Assymetric Strip & Stand Stretch Model rscTv1 [2 ][0
F=H Help o
load 1 product
load m products g _
Exit 1 1 min 1000 e
60 | sen | smo | oseo g0 | @O 0 Lo
2900 | intervis 07 MEAR
| 2o | Le 1 beta
912 | DTos 05 gadap
i} S0C 0002 precision
ArcelorMittal

Figure C.9: A3S GUI

ical characteristics of a product (DT, DS, ET, ES, Fwo, Fwum, Fmes, LARTOL,
epe, eps, Temp, VITCYL, TRACTE, TRACTS). These data must be provided
by the plants.

From the GUI boxes, the setup of the HSM parameters (L0, intervis, Lc
DTos, SOC) and of the numerical algorithm (mbar, beta, gadap, precision) can
be modified. From the File toolbar, we can load a single product, or m consec-
utive products. The boxes m,,;, and m,,., allow to choose the serial number
of the first and the last product that will be load. If we load m products, the
input *.¢zt files must respect the syntax: “optional_text 1, serial_number, op-
tional_text 2, .txt”, where th strings “optional text 1" and “optional text 27
cannot contain numerical characters.

Notice that a convergence problem arises for about the 1% of the products.
In this case, the algorithm of A3S cannot reach the stop criterion and loops
infinitely. For obtain a solution with this kind of products, you must stop the
routine (CTRL+C'), modify the strip width LARTOL of some millimeters in the
input file, and load once more the file.

C.5 Options setting

Only the sampling time, the LMI solver flags and the tuning parameters of the
HSM simulator, which are different for each plant, must be set from the file
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\RSCT\software_ RSCT\default_setting n_stands.m, where n is the num-
ber of stands. All the other parameters may be directly set by the GUIs.
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Résumé : Dans cette thése, on s’est attaché a résoudre un certain nombre de
problémes qui apparaissent lorsqu’on traite des problémes concrets de controle:
phénomeénes a plusieurs échelles de temps, discontinuités de la commande lors du
basculement d’un correcteur a un autre, nécessité de concevoir un nombre limité
de correcteurs différents malgré une gamme trés importante des produits traités.
Pour illustrer concrétement les résultats obtenus, nous nous sommes appuyés sur
un exemple industriel concret, le controle de guidage de bande durant le processus
de laminage dans un laminoir & chaud. D’abord, nous proposons une solution con-
vexe au probléme de commande optimale linéaire quadratique pour les systémes
linéaires a deux échelles de temps en temps discret. Ensuite, nous établissons des
conditions suffisantes, formulées sous la forme d’inégalités matricielles linéaires,
qui permettent de vérifier la stabilité d’un systéme & commutation & deux échelles
de temps et de synthétiser des correcteurs stabilisants. Nous proposons aussi dans
ce travail une méthode pour minimiser les discontinuités sur la commande dans
le cadre des systémes & commutation. Dans le contexte du controle de guidage
de bande pour un laminoir & chaud, nous ne pouvons pas négliger I'influence des
paramétres incertains, qui sont dus principalement au fait que ce genre de systéme
traite une gamme de produits trés large. Donc, dans la synthése du correcteur,
nous prenons en compte ces variations en divisant ’ensemble des produits en
plusieurs familles et en synthétisant un correcteur différent pour chaque famille.

Mots-clés : Controle de guidage de bande, Laminoir a chaud, Systémes a com-
mutation, Perturbations singuliéres, Robustesse.
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Abstract: This Ph.D. thesis deals with a certain number of problems aris-
ing in practical implementation of control systems: multi time scale phenomena,
sudden modifications on the system dynamics, discontinuities on the control sig-
nal due to controller switchings, the need of design a limited number of controllers
in spite of a wide variation on the physical parameters. In order to illustrate the
validity of the obtained results, we resort to a real problem concerning the steel
production framework, the robust steering control of a hot strip finishing mill.
First, a convex solution of the linear quadratic control design for discrete two
time scale systems is proposed. Hence, we address the stability problem of two
time scale switched systems. We show that stability of the slow and fast switched
subsystems under arbitrary switching rules does not imply the stability of the
corresponding two time scale switched system in the singular perturbation form.
An additional constraint, independent of the value of the singular parameter and
of the switching rule, is provided in terms of linear matrix inequalities. We also in-
troduce a bumpless transfer method for switched systems aiming at reducing the
discontinuities on the control signal. Dwell time conditions assessing the asymp-
totic stability of the closed loop switched system are established. The practical
contribution of this thesis, the robust steering control design, exploits most of
previous results. The objective is to guarantee the stability of the hot strip mill
system and improve the quality of the rolled products.

Keywords: Steering control, Hot strip mill, Switched systems, Singular pertur-
bation, Robustness.
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