
HAL Id: tel-00439782
https://theses.hal.science/tel-00439782v1

Submitted on 8 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete Complex Analysis
Christian Mercat

To cite this version:
Christian Mercat. Discrete Complex Analysis. Mathematics [math]. Université Montpellier II -
Sciences et Techniques du Languedoc, 2009. �tel-00439782�

https://theses.hal.science/tel-00439782v1
https://hal.archives-ouvertes.fr


Habilitation à Diriger les
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CHAPTER 1

Presentation of scientific activity

1.1. Synthesis of work

In this section, I will summarise my scientific work, going backwards in time,
without going into too many details, the following chapters being more comprehen-
sive.

My present interest is in Discrete Differential Geometry, especially applied to
Computer Graphics, but it stems from Discrete Complex Analysis and Integrable
Models, which has been my main subject of study during the past 6 years. The
intention is to translate the best part of the theory of surfaces and complex analysis
to the era of computers and discrete surfaces. This XIXth century theory, paved
the way to the world of engineering marvels of the XXth century. Its discrete
counterpart would be a real benefit for many different subjects of industrial interest.

I have developped the theory of Discrete Complex Analysis and Discrete Rie-

mann Surfaces as a tool to tackle issues in Exactly Solvable Models in Statistical
Mechanics. The main idea is to try to see, in an exactly solvable model, a Finite
Conformal Field Theory, without having to go to the thermodynamic limit. This
life long project, set by my advisor Daniel Bennequin, was given positive partial
answers in my PhD thesis: criticality in the Ising model can be seen at the finite
level as compatibility with discrete conformality.

1.1.1. Discrete Complex Analysis. This subject is at the heart of my work
and most of my recent papers deal with it [6, 8, 10, 11]. The initial impulse, based
on previous work by Lelong-Ferrand [62] and Duffin [59, 60], was given in
my PhD thesis, summarized in Comm. in Math. Phys. [16, 17].

Analytic functions are everywhere, behind every key of hand-held calculators,
like x 7→ x2, 1/x, tan, exp, log, and the theory of Riemann surfaces that gen-
eralizes them on non flat surfaces has proven to be a highlight of XIXth century
mathematics. Nowadays, Computer Graphics use it to globally parameterize dis-
crete surfaces for a variety of reasons, texture mapping, segmentation, remeshing,
animation...

At the root of Riemann surfaces is the concept of complex differentiability and
line integration of complex valued functions. In order to discretize these notions,
one needs a discrete version of exterior differential calculus, Hodge theory and
Cauchy-Riemann equation.

Points in the Cartesian plane (x, y) ∈ R2 gain in being seen as complex numbers
x + i y ∈ C with the famous “imaginary” number i such that i2 = −1. But the
XVIth century trick, of manipulating the square root of negative numbers, is now
as “real” as the real line of lengths, giving to the complex numbers the structure of
a field, with addition and multiplication, unifying points of the plane and Euclidean
transformations of them: ζ ∈ C is whether a point, a vector acting by translation

9



10 1. PRESENTATION OF SCIENTIFIC ACTIVITY

when added, or a similitude when multiplied. The similitude z 7→ α z + β scales
the whole plane by a factor |α| and turns it by an angle arg(α).

A holomorphic function f is a complex differentiable function, that is a trans-
formation of the plane which is, except at isolated critical points, locally a similitude
and the local similitude factor is called the derivative f ′ of the function:

f(z + z0) = f(z0) + f ′(z0) × z + o(z).

At the zero of the derivative, the function behaves locally like a monomial z 7→
zk. Goursat noticed that simply asking for this local feature of differentiability

Figure 1.1: The pull-back of the picture of a clock paving the complex plane, by a
polynomial (see Sec. 2.1). One can see the branchings at the zeros of the derivative
where the zoom factor diverges.

actually implies that the derivative f ′ is itself a holomorphic function. Compared
to the vast zoo of differentiable real functions, complex differentiation is very rigid.

A natural discretization of these equations takes place on cellular decomposi-
tions of surfaces by quadrilaterals of a given shape, the two dual diagonals locally
playing the role of coordinates. With ♦0, ♦1, ♦2 the vertices, edges and faces of
a quad-decomposition, for each face (x, y, x′, y′) ∈ ♦2 (see Fig. 1.2), prescribe a
certain diagonal ratio ρ on the unoriented edges:

ρ(x, x′) =
1

ρ(y, y′)
= −i Z(y′) − Z(y)

Z(x′) − Z(x)

for any realization Z of the shape of the associated (oriented) quadrilateral in the
complex plane. This ratio is by construction invariant by similitudes. It is real
when diagonals are orthogonal (see Fig. 1.3). A function f on the vertices is said
to be discrete holomorphic if, for each such face, the diagonal ratio of the image is
unchanged:

f(y′) − f(y) = iρ(x, x′)
(

f(x′) − f(x)
)

.

This equation is reminiscent of the Cauchy-Riemann equation when the diago-
nals are orthogonal, mimicking local orthogonal coordinates and the compatibility
between the partial derivatives.
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x

y′

x′

y

Figure 1.2: A quadrilateral (x, y, x′, y′) with a given shape in the complex plane.

ρ = 1
2

ρ = 1ρ = 1 ρ = 2 ρ = 1 + i

Figure 1.3: Different quadrilateral shapes and the associated diagonal ratio.

Although very simple, this definition yields a lot of results similar to the con-
tinuous theories of complex analysis and Riemann surfaces.

As in the continuous, there is a (infinitesimal) contour integration formula for

the differentiation, analogous to f ′(z0) = lim
γ→z0

i
2A(γ)

∮

γ

f(z)dz̄:

f ′(x, y, x′, y′) :=

∮

∂(x,y,x′,y′)

f(z)dz̄,

but it is only in the case of flat rhombi decompositions that the derivative itself
can be integrated into a holomorphic function. A contour integral formula with a
Cauchy kernel holds as well for the value of a holomorphic function at an interior
point given by its boundary values. This kernel is associated with the Green

potential of the discrete Laplace operator, giving a discrete analogous of the
logarithm. Every discrete holomorphic function is harmonic for this Laplacian
and a discrete Hodge decomposition theorem splits forms into exact, co-exact
and harmonic parts, the harmonic themselves in holomorphic and anti-holomorphic
parts. In the flat rhombic case, we recovered in [10], using methods from integrable
models, the result by Kenyon [71] that gives an explicit formula for the discrete
Green function.

The integration of functions is defined through a discrete wedge product that
couples k and ℓ-forms into k + ℓ-forms. This is not trivial since functions, 1-forms
and 2-forms don’t live at the same place, respectively on vertices, edges and faces
but averaging values on incident cells yields a consistent discrete exterior calculus
fulfilling the expected Leibniz rule d (α ∧ β) = dα ∧ β + α ∧ d β. In the flat
rhombic case, this product becomes compatible with holomorphy in the sense that
holomorphic functions can be integrated into holomorphic functions, whereas in
general, even though f is a holomorphic function and dZ a holomorphic 1-form,
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the 1-form f dZ is closed (that’s the discrete Cauchy’s integral theorem) but not
holomorphic.

Other authors investigated similar theories,especially Dynnikov and Novikov [61]
on the triangle lattice, and Kiselman [74] in the framework of monodriffic func-
tions.

1.1.2. Integrable Models. Holomorphy condition can be understood in terms
of dynamical systems; indeed, there exists a Green potential for discrete holomor-
phic functions, the discrete Gauss kernel d z

z−z0
, that allows to solve for a solution

in the interior of a domain, given boundary values.
This is the point of view I took during my postdoctoral stay at the Technical

University in Berlin, in the team of Alexander Bobenko, where many constraints
that define classes of surfaces, such as constant mean curvature surfaces, isothermic
surfaces and so on, are treated in this way [38, 40, 66, 67, 68, 69].

The linear theory of Discrete Complex Analysis appeared to be the ground
level in a hierarchy of discrete integrable models, called the Adler, Bobenko and
Suris hierarchy [20]. The actual first step is the so called Q1 δ = 0 equation of
preservation of cross-ratio and can as well be understood as a model for discrete
complex analysis:

Similarly to the linear case, fixing on each face (x, y, x′, y′) ∈ ♦2, a complex
number q(x, x′) = 1

q(y,y′) allows to define a function f of the vertices to be quadratic

holomorphic if, on each face, the cross-ratio of the four values is the fixed number:

f(y) − f(x)

f(x) − f(y′)

f(y′) − f(x′)

f(x′) − f(y)
= q(x, x′).

Whereas the diagonal ratio of a quadrilateral is invariant under similitudes,
the cross-ratio of its four vertices is invariant under the larger group of Möbius

transformations and while a holomorphic function is to the first order a similitude
(away from zeros of its derivative), it is such a Möbius transformation up to the
second order:

f(z + z0) =
a z + b

c z + d
+ o(z2).

The condition of cross-ratio preservation can actually be unified with the lin-
ear version of diagonal ratio preservation because both can be seen as a discrete
Morera theorem: a function of the vertices is discrete holomorphic whenever

∮

γ

fdZ = 0

on every trivial loop γ. The difference between the linear and the quadratic version
being the wedge product coupling functions to 1-forms; it is the arithmetic mean

for the linear version,
∫

(x,y)

f dZ := f(x)+f(y)
2

∫

(x,y)

dZ, and the geometric mean for

the quadratic one,
∫

(x,y)

f dZ :=
√

f(x) f(y)
∫

(x,y)

dZ.

This is seen after a Hirota change of variables: F is a map with the same
cross-ratio as a map Z if and only if one can find a function f such that, on each
edge (x, y) ∈ ♦1,

(1.1) F (y) − F (x) = f(x) × f(y) ×
(

Z(y) − Z(x)
)

.
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In effect, this transformation is a derivation, dF = f dZ where the derivative (or,
better, its square root, or its real and imaginary parts) f is split onto the two dual
graphs. The cross-ratios of a function F verifying (1.1) is clearly the same as Z
since the contributions of f cancel. The constraint on f is that the associated exact
1-form is actually closed:

∮

∂(x,y,x′,y′)
f dZ = 0.

After this change of variables, the linear theory can be shown to be a lineariza-
tion of this quadratic theory around the trivial solution f ≡ 1.

We will see that circle patterns are special cross-ratio preserving maps where,
the values for the derivative on the primal graph, center of circles, stay real, con-
trolling the homothetic factor of the image circle, and the values on the dual graph
stay unitary, controlling the rotational part of the local similitude. A linear dis-
crete holomorphic function, real on the primal graph and pure imaginary on its
dual, can be seen as an infinitesimal direction in the space of circle patterns. A
geometric condition on circle patterns can be translated into a vector field of linear
holomorphic functions pointing a direction of change. Such a vector field can be
numerically integrated into a flow of circle patterns, converging to the desired circle
pattern; I have done so in an applet using the Oorange development environment.

Both theories are, in some special configurations, discrete integrable, in the
sense that some over-determinate problems have a solution, allowing for the con-
struction of families of solutions and deformations of existing solutions:

The discrete conformal structure, that is to say the ratio ρ or q put on diagonals,
can be defined by quantities that naturally live on the edges of the quadrilaterals, to
be understood as the local directions of the quad-edge for a particular holomorphic
map. We showed in [10] that the system is integrable when these quantities are
constant along the directions attached to train-tracks [11, 72]: two edges belonging
to the same train-track when they are opposite in a quadrilateral, like the two edges
tagged α in Fig. 1.4.

x′

β

β

α
α

y′

y

i ρ(x, x′) = Z(y′)−Z(y)
Z(x′)−Z(x)

= α−β

α+β

q(x, x′) =

(

Z(y′)−Z(x′)
)(

Z(y)−Z(x)
)

(

Z(x′)−Z(y)
)(

Z(x)−Z(y′)
) = β2

α2x

Figure 1.4: In the integrable case, the diagonal-ratio ρ(x, x′) and cross-ratio q(x, x′)
depend on the edges of the quadrilateral.

Geometrically, it means that there exists a holomorphic map such that all faces
are sent to parallelograms.

Integrability means that the system is 3D-consistent [20, 10]:

Proposition 1.1.1. Consider a cube (x, y1, y2, y3, x1, x2, x3, y) with opposite
faces holding the same discrete conformal structure ratios and the system, which
given four values f(x), f(y1), f(y2), f(y3), solves for the four values f(x1), f(x2), f(x3)
and f(y), with f a discrete holomorphic function (in the linear or quadratic frame-
work). The system accepts a non trivial solution for f(y) if and only if the discrete
conformal structure comes from parallelograms.
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x2

x α β
x3

γ
y2

y3
y

x1

y1

Figure 1.5: The four values f(x), f(y1), f(y2), f(y3) determine uniquely
f(x1), f(x2), f(x3) when f is discrete holomorphic, but f(y) is over-determined
unless the weights come from parallelograms.

In this integrable case, the machinery of integrable systems gives us powerful
tools, a zero curvature representation, Darboux-Bäcklund transformations and
isomonodromic solutions.

Our main results in this respect was to unify the linear and quadratic cases in
the same framework, and to recover Kenyon’s result [71] giving the Green func-
tion of the discrete Laplacian in the rhombic case as a linear combination of discrete
exponential functions. We understood this Green function as an isomonodromic
solution and gave interesting properties of the discrete exponential functions [10].

When the diagonal ratios ρ are real numbers, or the cross-ratios q are uni-
tary numbers, it implies that these quadrilaterals are rhombi, where even more
interesting features appear: primitives of holomorphic functions can be defined.

This real integrability condition has been singled out by Duffin [60] in the
context of discrete complex analysis, and by Baxter [30] as Z-invariant Ising

model [24, 25, 42, 95].
In my thesis, I called this configuration critical for this link with exactly solvable

models and Richard Kenyon called it isoradial for its link with circle patterns [71,

55].
Notice that Bazhanov, Mangazeev and Sergeev make a connection be-

tween the Ising model and circle patterns in [32].
The cross-ratio preserving maps are closely related to the circle patterns idea [36,

98, 73, 43]. In this framework, proposed by Thurston, a discrete conformal struc-
ture is defined by a pattern of intersecting circles. A holomorphic function is defined
by another circle pattern of the same combinatorics such that a pair of intersecting
circles is mapped to another pair of circles, intersecting at the same angle. A quadri-
lateral is defined for such a pair, defined by the two centers and the two points of
intersection. The cross-ratio of these four points is given by the intersection angle.
Therefore circle patterns is a special case of cross-ratio preserving maps. Circle
packings are a limit case of circle patterns with tangential adjacencies. In circle
pattern theory, the discrete conformal parameters come from kite quadrilaterals,
with orthogonal diagonals. Integrability meaning parallelism of opposite sides is
then associated with rhombic embedding, that is to say isoradial circle patterns.
This way, a dual isoradial circle pattern emerges from the intersection points of the
primal circle pattern, associated with the inverse cross-ratios.

Another way to view the 3D-consistency condition is to split the cube in two
hexagons, the compatibility conditions are the same in both cases, see Fig. 1.8.
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−→

Figure 1.6: Pairs of patterns of intersecting circles are a discrete conformal map
when the intersection angles are pair-wise preserved.

= e−2ϕ
θ′

ϕ

ϕ
q = e−2(θ+θ′)

x

y

y′

x′θ

Figure 1.7: The cross-ratio of the centers and intersection points of two circles is
given by their intersection angle.

β

x3

y2

y3

x2

y

x3

x

y2

y3

x2

≃γ

α

y1

x1

y1

x1

Figure 1.8: The six values f(x1), f(x2), f(x3), f(y1), f(y2), f(y3) over-determine
the values f(x) and f(y) for f a discrete holomorphic function. The compatibility
conditions on these six values are the same in both cases if and only if the discrete
conformal structure comes from parallelogram sides α, β, γ.

1.1.3. Exactly Solvable Models in Statistical Mechanics. The notion
of integrability has several related meanings depending on the context. In statis-
tical mechanics, its means that a thermodynamic continuous limit can be taken
and it usually comes from a Yang-Baxter equation. A finer notion is criticality
where this continuous limit is special, exhibiting a phase transition. In exactly
solvable models, interesting critical systems, like the Ising model or its A-D-E -
generalizations [47, 86], have a conformal continuous limit, in particular some 2-
point correlation functions decay not exponentially fast with the distance between
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the two points but as a power law (see Langlands, Lewis and St Aubin [76]).
More generally, an observable depends not on the detail of the surface with marked
points but more specifically on its conformal class. It was a goal of my PhD advisor
Daniel Bennequin to find in the discrete setup of critical models what remained
of Belavin, Polyakov and Zamolodchikov conformal blocks.

I made advances in this program for the Ising model: I proved in my the-
sis [16, 17] that the geometric condition of (real) integrability, already singled out
by Baxter as Z-invariant Ising model [31], pinpointed the fact that a special
observable in the Ising model, the fermion ψx,y, became a discrete Dirac spinor,

a discrete holomorphic analog of
√
d z. This is why I named this configuration

critical.
In Australia, in collaboration with Paul A. Pearce, I investigated other statis-

tical models, with the view to try and understand them in the framework of discrete
Riemann surfaces [12, 13, 14, 15]. We identified the integrable conformal twisted
boundary conditions, on surfaces with boundary or as seams inserted in a closed
surface along a loop, in several exactly solvable statistical models. We begun with
the parafermions Zk [15], we investigated the relation between such twisted bound-
ary conditions in conformal field theory [90, 89, 91, 51] and their lattice realization
for A-D-E models [14], and understood it in the framework of the Thermodynamic
Bethe-Ansatz [13]. We entangled in the fusion procedure the contribution of dif-
ferent nodes in the Ocneanu graph [85] and clarified a correspondence between
the nodes of the Ocenanu graphs and our twisted discrete seams [12], ending up
with a discrete version of the Vertex Operator Algebra governing the fusion rules.

Unfortunately, I didn’t succeed in making the connection between chirality,
present in our twisted conformal boundary conditions, and discrete holomorphic/anti-
holomorphic conformal blocks. What I missed was a clearer notion of discrete fiber
bundle, more elaborate than the simple double-cover of spinors that I constructed
by hand. I saw that the parafermion theory would have worked in a similar way but
didn’t pursue in this direction, having enough on my hands with the development
of the theory of discrete Riemann surfaces in the framework of Discrete Differential
Geometry. And what begun as a tool to tackle a problem in statistical mechanics
ended up being my primary object of study.

Other researchers, independently or not, picked up similar ideas and discrete
holomorphic functions theory was applied to statistical mechanics, by Costa-

Santos and McCoy [53, 54] for higher genus Ising and dimer models, by Ra-

jabpour and Cardy [93] for discrete holomorphic parafermions, de Tilière and
Boutillier [41, 42] for the Z-invariant Ising model and dimers, and Smirnov

and Chelkak [102, 103, 48] for conformal invariance of percolation and more
generally in 2D lattice models, making the link with hard-core probability theory
like loop-erased random walks [77].

1.1.4. Topology. Our interest for a discrete version of conformal blocks takes
its root in topology: The Verlinde formula governs the compatibility of the di-
mensions of these blocks under fusion rules. This essentially finite information can
be used to build topological invariants like knots invariants. Daniel Bennequin

idea was that a discrete version of conformal blocks for statistical mechanics would
have saved the trouble to go, from an exactly solvable model, to a conformal theory,
back to the discrete data of its fusion rules [33].
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Figure 1.9: A 1-1-correspondence between edge signed planar graphs and regular
projections of links helps to manipulate and beautifully draw knots.

This interest in low dimensional topology came from my Diploma, conducted
by Daniel Bennequin, in Strasbourg, where I showed the equivalence between
Singer theorem on Heegaard diagrams and Kirby theorem on Dehn surgeries.

This led to a long lasting interest in knot theory and its popularization, with
(non peer reviewed) articles in the press [5, 9, 18, 19], with conferences addressed
to the general public, specialized courses to draw nice knots and a popular web-
site http://entrelacs.net (see Fig. 1.9).

1.2. PhD supervision

I am co-advising the thesis of Frédéric Rieux, together with Pr Christophe
Fiorio. Frédéric is beginning his second year and I am going to summarize the
goals of his thesis and his first promising results.

The main goal is to be able to recognize as set of points in an Rn as a dis-
cretization of a manifold. Our idea is to define a diffusion process and analyze it,
in order to guess the correct dimension by the diffusion speed, and local geometry.
Once this identification is done, we use the local homogeneous coordinates to dis-
cretize usual differential geometry and perform discrete analysis, derivation with
estimation of tangents, of curvature, and so on.

1.2.1. Diffusion processes. Heat kernel or random walks have been widely
used in image processing, for example lately by Sun, Ovsjanikov and Guibas [105]
and Gebal, Bærentzen, Aanæs and Larsen [63] in shape analysis. It is indeed
a very precious tool because two manifolds are isometric if and only if their heat
kernels are the same (in the non degenerate case).

The heat kernel kt of a manifold M maps a couple of points (x, y) ∈M ×M to
a positive real number kt(x, y) which describes the transfer of heat from y to x in
time t. Starting from a (real) temperature T on M , the temperature after a time
t at a point x is given by

Ht f(x) =

∫

M

f(y) kt(x, y) dy.

The distance can be recovered from the heat kernel:

d2
M (x, y) = −4 lim

t→0
t log kt(x, y).

The heat equation drives the diffusion process, the evolution of the temperature
in time is governed by the (spatial) Laplace-Beltrami operator ∆M :

http://entrelacs.net
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∂f(t, x)

∂t
= −∆Mf(t, x).

It implies that if the eigenvalues of the Laplacian are sp(∆M ) = {λi}i∈N,
associated with eigenvector functions φi, then the heat kernel is

kt(x, y) =
∑

i

e−λi tφi(x)φi(y).

1.2.2. Discrete Laplacian. The first issue to use these ideas in the discrete
setup is to define a good discrete Laplacian, or equivalently, a good diffusion process.
This diffusion process should be reasonably robust to noise, to outliers (points which
are added by mistake) and to missing data.

This situation is understood in the realm of polyhedral surfaces and triangula-
tions, and a time appraised discrete Laplacian, based on sound theoretical grounds
is known for a long time, the so-called cotangent weights Laplacian [92], which is
the same as the one we talked about in the framework of discrete Riemann surfaces:

∆f(x) =
∑

(x,xi)∈Γ1

ρ(x, xi)
(

f(xi) − f(x)
)

where ρ(x, xi) =
1

2

(

cotan ̂xixi−1x+ cotan ̂xxi+1xi

)

=
d(yi+1, yi)

d(xi, x)

with the triangle angles, the intrinsic metric computed on the flattened triangles
pair and yi the center of the circumcircle to the triangle (xi, x, xi−1), similarly for
yi+1, as depicted in Fig. 1.10.

xi+1

xi−1
yi

xi

yi+1

x

Figure 1.10: The diagonal ratio d(yi+1,yi)
d(xi,x) is the mean of the cotangents of the angles

at xi−1 and xi+1.

1.2.3. Digital Geometry. But the situation in Digital Geometry is somehow
different, the data that is produced by a 3D-scanner is composed of a set of voxels
(cubes in Z3) that samples the underlying continuous object. How can a good
diffusion process be defined on such a locally rigid geometry?

We first studied a random walk based on the celebrated short-sighted drunk-
ard’s walk, with equiprobability, no memory and no long range decision, the walker
goes from a voxel cube, equiprobably to one of its 2d vertices, and then equiprobably
to one of the available voxel of the object adjacent to it.
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Figure 1.11: 2n walkers on a line in Z2 recover the binomials
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Figure 1.12: There are only four local masks appearing on an 8-connected line in
the first octant.

We begun with a discrete curve in Z2. We showed that for this process on
a discrete line [94], the probability to find the walker at a certain point y, at a
(discrete) time t, having begun at x is equivalent (for large t) to a normal distribu-

tion 1√
2πσ

e−d(x,y)2/2σ2

with the dispersion σ(t) increasing over time (proportional

to
√
t). It is a direct application of the Central Limit Theorem, our process being

ergodic and similar patterns being repeated with a well defined probability. The
same kind of argument will work in any dimension.

Unfortunately this dispersion depends on the slope of the line because 8-
connected pixels act as bottle-necks compared to 4-connected pixels (see Fig.1.13).

1.2.4. Fuzzy set. Conductivity in crystals led me to think about tunnel effect
transition in quantum mechanics, where electrons can leap from a conductor to
another. So we naively tried a fuzzy transition, allowing walkers to wander one step
away from the discrete line, on a thickened line with ghost pixels, in the 4-connected
or 8-connected directions, projecting them back, later on, to the underlying line (see
Fig. 1.14). This fuzzy diffusion is slower than the original one.

We have two parameters to play with, the allowed probabilities associated with
4 and 8 new neighbors. We optimized these probabilities in order to have a minimum
deviation among the deviations for different slopes. This minimum is reached when
4 and 8-connected ghost pixels are both half as probable as the genuine pixels.

So beginning from a set of pixels, we add its 4 and 8-connected neighbors, with
decreased probability, setup our random walk, and read from the weights of this
process the adaptive distances between our points and integrate it into a curvilinear
abscissa on our set.
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Figure 1.13: Deviations of a typical mask on two hundred discrete lines of increasing
slopes in the first octant. The minimum is reached for lines of slope 1 with only
8-connected pixels.

k

t
0

t

Figure 1.14: Fuzzy segment with ghost 4 and 8 - connected pixels, which are pro-
jected onto the underlying line.
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Figure 1.15: Deviations for different lines using the curvilinear abscissa on the thin
line and on the fuzzy line for optimized parameters.

The optimization procedure is there to insure that this process, when done on
discrete lines, end up with what we should expect, that is to say a normal law with
respect to the Euclidean distance in R2. So if the set is modeled on a curve, with
feature size much lower than the size of discretization, a size of averaging mask
large enough but lower than this feature size should recover the local geometry of
the curve.

In order to denoise a function defined on the set, we simply convolve it with
a certain power of the diffusion process. This power can be adaptive: large in flat
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areas and small in tormented areas with small local feature size. The diffusion
could be as well tailored in order to be non symmetric near sharp features to be
preserved.

1.2.5. Discrete derivatives. Once this diffusion mask is defined, we use it
to do numerical analysis on digital curves, computing derivative of functions such
as tangency and curvature.

Consider the connected discretized graph of a function as a discrete curve in
Z2. By applying the previous method, we are able to compute derivatives of this
function by applying discrete derivative masks and convolving with our averaging
kernel with a remarkable accuracy, as illustrated in Fig. 1.16 and 1.17.
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Figure 1.16: Estimation of the discrete adaptive derivative function of x 7→ sin(x)
and the values of the real derivative function x 7→ cos(x), computed according to a
mask of length 15 on a sample of 250 points.
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Figure 1.17: Comparison between the estimation of the second order derivate of
x 7→ sin(x) and the real values, computed with a mask of length 20 and a sample
of 400 points.





CHAPTER 2

Discrete Riemann Surfaces

2.1. Conformal maps

Before discretizing conformal maps, it is good to recall what holomorphic and
analytic functions are in a visual way, helping to build intuitions and pictures of
how the discrete version should behave. This section illustrates this point using
a software tool that I have programmed for pedagogical reasons and with which I
have produced an article in the CNRS Images des mathématiques [3].

Everybody is used to visualizing a function from the plane to the real numbers,
like precipitation maps (see Fig. 2.1): simply color the target space R with colors
and plot each point (x, y) of the domain space R2 by the color f(x, y). Exactly
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Figure 2.1: Precipitation map in France for July 2009. The color indicates a real
value according to the scale. c© Météo France

the same can be done with complex valued functions: choose a picture to cover the
complex plane seen as the target space, and visualize the function f : C → C by
coloring the point z ∈ C with the color f(z).

23
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−→

Figure 2.2: The similitude z 7→ (1 + i) z pictured as the pull-back of the picture of
a clock paving the complex plane.

The complex differentiability is visualized by the fact that the picture in the
domain space, away from singularities, is to the first order around z, a simple
similitude of parameter 1/f ′(z) since locally, the function behave as f(z + z0) =
f(z0) + z × f ′(z0) + o(|z|). In particular, the zeros of the derivative are very easy
to spot since the similitude ratio tends to infinity. There, the function is no longer

conformal, it behaves locally as a monomial, f(z+ z0)− f(z0) = f(k)(z0)
k! zk + o(zk)

and the angles through z0 are divided by k, replicating the features k times.

Figure 2.3: The graph of a polynomial and of the monomial z 7→ z3.

The forward image of a picture by a holomorphic function is much more difficult
to obtain, because such a function is not injective, it has a definite degree k and
every non critical value in C is attained exactly k times (see Fig. 2.4).

Although I do have a notion for polynomials in the integrable case, I don’t have
a good discrete notion for its zeros. The issue is that a zero of high order is difficult
to place inside a polygon: since z 7→ zk folds k times the plane onto itself, the
polygon must have many vertices so that its polygonal image winds k times around
the origin. Since we are mainly concerned with quadrilaterals, it is only possible to
wind once, zero or minus once around a point, allowing for only one degree of zero
and pole, with the extra possibility of degeneracy. Higher degree zeros are seen as
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Figure 2.4: The direct images by the square z 7→ z2 and the cube z 7→ z3 are blurry,
every point is the image of two, resp. three points. They are the pull-back of the
multi-valued functions square and cubic roots.

clusters of simple zeros. Another option would be to supplement the values of a
function at vertices by integer valued tags.

The integrability of the parallelogram case allows for the expansion of discrete
holomorphic functions in series of whether discrete exponentials or discrete poly-
nomials [11].

Together with a student from India, Lalit Sirsikar from the Institute of Tech-
nology, Banaras Hindu University, we programmed a java applet∗ based on my
previous work with the Java Tools for Experimental Mathematics library† devel-
oped by the Technical University Berlin team in which I belonged. This applet lets
the user write an expression for a holomorphic function f(z), shows a picture in
the target space, as a single tile in a window, its pull-back deformed picture in the
domain space in another window. In this domain space, two draggable points, a
red and a blue, drive two complex numbers, z0 and z1. Their images f(z0), f(z1)
by the function f are plotted in the target space, as two points, mapped back to
the fundamental tile. A web-cam version is as well available, where the picture of
the people standing in front of the computer is continuously deformed. I use this
applet during special public events and it is very successful with students.

These two points are linked by a polygonal line corresponding to the sequence
of Taylor polynomials of f at z0,

Sn(z1) = f(z0) + (z1 − z0)f
′(z0) + · · · + (z1 − z0)

n

n!
f (n)(z0)

expressed as a function of z1. When the Taylor series converges, this polygonal
line spirals towards f(z1), when it diverges, the polygonal lines exhibit different
interesting behaviors. A third window shows the pull-back by the last computed
Taylor polynomial and the disk of convergence of the series is in general very
apparent visually as a zone resembling the domain space. This can be probed
by moving the blue point in the domain space and witnessing whether the series
seems to numerically converge or not, the last bluish point of the polygonal line
corresponding to the value of the partial sum in Fig. 2.6. The inversion z 7→ 1/z

∗http://www.math.univ-montp2.fr/SPIP/IMG/jar/ComplexImage.jar
†Java Tools for Experimental Mathematics: http://jtem.de

http://www.math.univ-montp2.fr/SPIP/IMG/jar/ComplexImage.jar
http://jtem.de
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−→

Figure 2.5: The graph of the tangent function z 7→ tan(z), on the left, the red point
z0 and the blue point z1 in the domain space, with the converging polygonal view
of the partial Taylor sums, from f(z0) to f(z1), mapped back to the fundamental
tile in the target space.

Figure 2.6: The graph of the 8th Taylor polynomial of the tangent function
z 7→ tan(z), expanded at the red point z0. The disk of convergence of the series
is already discernible as the zone where the difference with Fig. 2.5 is visually not
significant.

preserves globally the unit circle, sending inside out, especially exchanging the
origin and the infinity. It is a Möbius transformation, sending circles to circles,
except circles through the origin which are exchanged with lines (such as the red
and green axis lines), see Fig. 2.7. Higher order poles z 7→ 1/zk are no longer
Möbius transformations.

Together with polynomials, they form the field of rational fractions. I don’t
have a good notion for localized poles and their discrete counterparts don’t form
a canonical field, neither for the multiplication, nor for the composition, without
making arbitrary choices.
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Figure 2.7: The inversion z 7→ 1/z and a higher degree pole z 7→ 1/z2.

The exponential function is unwrapping centered circles and their rays to ver-
tical and horizontal lines because x + i θ 7→ r exp(iθ) where r = exp(x) is the
radius of the circle, image of the vertical line at real part x. The exponential is
2iπ-periodic. Its reciprocal, the logarithm, is not even a function because it is
multi-valued. Given a determination, one has to adjust the vertical size of the tiles
to divide 2iπ so that the discontinuity of the tiling synchronizes with the jumps
in the determination, giving the illusion of a continuous function, which wraps the
horizontal and vertical lines to centered circles and their rays (see Fig. 2.8), showing
a logarithmic singularity at the origin. Both notions can be discretized, leading to
discrete exponentials and the discrete Green function.

Figure 2.8: The exponential and the logarithm.

The resulting image is invariant under some rotations because the target space
is a lattice whose vertical period divides 2iπ. But the horizontal period λ of the
lattice translates to the invariance by homothecy. One can take as a basis of the
lattice not (λ, 2iπ) but (λ + 2ikπ, 2iπ), linking rotation and homotecy, obtaining
nice spirals like in Fig. 2.9.

Beyond zeros of the derivative, poles and logarithmic singularities, an essential
singularity is an accumulation point of zeros or poles, like in Fig. 2.10.
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Figure 2.9: The complex logarithm z 7→ log(z) × (1 + µ i) for appropriate µ ∈ R.

Figure 2.10: The essential singularity of the function z 7→ exp(1/z) at the origin,
with accumulations of zeros on the negative real side and accumulation of poles on
the positive real side.

2.2. Real discrete conformal structure

We begin our discussion of Discrete Complex Analysis by the case when quadri-
lateral dual diagonals are orthogonal, what I call a real discrete conformal structure.

2.2.1. Graphs and Discrete Conformal Structure. Let ♦ a cellular de-
composition of an oriented surface by quadrilaterals, that is to say a set ♦0 of
vertices, linked by a set ♦1 of edges, themselve belonging to four-sided faces ♦2.
Every edge is attached at most twice to faces. An edge attached only once is a
boundary edge, twice is an interior edge. If the boundary is empty, the surface is
closed.

We suppose that every loop is of even length (it is the case for trivial loops).
Therefore the graph is bipartite and it defines two dual locally planar graphs Γ
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and Γ∗, by their vertices ♦0 = Γ0 ⊔ Γ∗
0, their edges (x, x′) ∈ Γ1 and (y, y′) ∈ Γ∗

1,
diagonals of the quadrilaterals (x, y, x′, y′) ∈ ♦2. In the closed case, this forms faces
Γ2 ≃ Γ∗

0, Γ∗
2 ≃ Γ0. The boundary case can be handled similarly.

y′

y

x′x

Figure 2.11: Dual edges (x, x′) ∈ Γ1 and (y, y′) ∈ Γ∗
1 are diagonals of a quadrilateral

(x, y, x′, y′) ∈ ♦2.

We call the data of a graph Γ, whose unoriented edges are equipped with
a positive real number a discrete conformal structure and for e ∈ Γ1, we note
ρ(e) > 0.

We equip the dual graph of positive numbers in the following fashion: In the
quadrilateral (x, y, x′, y′) ∈ ♦2, we give to the dual edge (y, y′) = (x, x′)∗ ∈ Γ∗

1 the
positive real constant ρ(y, y′) = 1/ρ(x, x′). This number is to be understood later

on as the ratio of dual diagonals lengths ρ(x, x′) = ℓ(y,y′)
ℓ(x,x′) .

For commodity, we define Λ := Γ⊔Γ∗ the double graph. The duality exchanges
Γk and Γ∗

2−k, therefore is a bijection in Λ and ρ is defined on Λ1 such that, for
e ∈ Λ1, ρ(e

∗) = 1/ρ(e).

2.2.2. Complexes. We recall elements of de Rham cohomology: We define
the complex of chains as the vector spaces spanned by vertices, edges and faces, for
each of the above graphs C(G,R) = C0(G,R)⊕C1(G,R)⊕C2(G,R). We identify
change of orientation of cells and negation of coefficient: for e ∈ Λ1 and λ ∈ R,
λ ē = −λ e ∈ C1(Λ,R) is a 1-chain. The 0-chains C0(♦,R) are related to the other
0-chains C0(♦,R) ≃ C0(Λ,R). For 0 ≤ k ≤ 2, Ck(Λ,R) ≃ Ck(Γ,R) ⊕ Ck(Γ∗,R),
with Ck(Γ,R) ≃ C2−k(Γ∗,R) through Poincaré duality.

These complexes are equipped with a boundary operator ∂G : Ck(G) → Ck−1(G),
null on vertices, difference of end-points ∂G(a, b) = b − a on an edge, and sum of
the oriented edges forming the boundary of a face. It fulfills ∂2

G
= 0. The ker-

nel ker ∂G =: Z•(G) of the boundary operator are the closed chains or cycles. Its
image are the exact chains. It provides the dual spaces of forms, called cochains,
Ck(G) := Hom(Ck(G),R) with a coboundary dG : Ck(G) → Ck+1(G) defined by
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Stokes formula:
∫

(x,x′)

dGf := f (∂G(x, x′)) = f(x′) − f(x),

∫∫

F

dGα :=

∮

∂GF

α.

A cocycle is a closed cochain and we note α ∈ Zk(G) when dG α = 0.
We will drop the mention of the graph when there is no possible confusion or

when the difference is not essential; we can indeed identify closed forms on different
graphs under certain conditions:

xx

x1

x2

y2

y1

yd

xd

(2.1) (2.2)

y

y′

x′

Figure 2.12: Notations.

2.2.3. Averaging forms. A form on ♦ can be averaged into a form on Λ:
This map A from C•(♦) to C•(Λ) is the identity for functions of vertices and
defined by the following formulae for 1 and 2-forms:

∫

(x,x′)

A(α♦) :=
1

2







∫

(x,y)

+

∫

(y,x′)

+

∫

(x,y′)

+

∫

(y′,x′)






α♦,(2.1)

∫∫

x∗

A(ω♦) :=
1

2

d
∑

k=1

∫∫

(xk,yk,x,yk−1)

ω♦,(2.2)

where notations are made clear in Fig. 2.12.
The map A is neither injective nor surjective in the non simply-connected case.
Its kernel is Ker (A) = Vect (d♦ε), where ε is the biconstant, yielding +1 on Γ

and −1 on Γ∗.

Proposition 2.2.1. Averaging carries cocycles on ♦ to cocycles on Λ and its
image are the cocycles of Λ verifying that their holonomies along cycles of Λ only
depend on their homology on the combinatorial surface
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2.2.4. Hodge star. The Hodge star, in the continuous theory of surfaces is
defined on 1-forms, in an orthonormal local coordinates (x, y), by ∗(f dx+ g dy) =
−g dx + f dy. In the discrete case the duality transformation plays the role of
rotating the orthogonal (x, y) coordinates and the discrete conformal structure takes
care of the norm, leading to the following definition:

(2.3)

∫

e∗

∗α := ρ(e)

∫

e

α

A 1-form α ∈ C1(Λ) is of type (1, 0) if and only if, for each quadrilateral
(x, y, x′, y′) ∈ ♦2,

∫

(y,y′)
α = iρ(x, x′)

∫

(x,x′)
α, that is to say if ∗α = −iα. We define

similarly forms of type (0, 1) with +i and −i interchanged. A form is holomorphic,
resp. anti-holomorphic, if it is closed and of type (1, 0), resp. of type (0, 1). A
function f : Λ0 → C is holomorphic iff dΛf is. This condition can be rewritten

f is holomorphic ⇐⇒ ∀(x, y, x′, y) ∈ ♦2, f(y′)−f(y) = iρ(x, x′)
(

f(x′)−f(x)
)

.

We note Ω(Λ) the space of holomorphic forms.

2.2.5. Wedge product. We construct a wedge product on ♦ such that d♦ is
a derivation for this product ∧ : Ck(♦) × Cl(♦) → Ck+l(♦). It is defined by the
following formulae, for f, g ∈ C0(♦), α, β ∈ C1(♦) and ω ∈ C2(♦):

(f · g)(x) :=f(x) · g(x) for x ∈ ♦0,
∫

(x,y)

f · α :=
f(x) + f(y)

2

∫

(x, y)α for (x, y) ∈ ♦1,

∫∫

(x1,x2,x3,x4)

α ∧ β :=
1

4

4
∑

k=1

∫

(xk−1,xk)

α

∫

(xk,xk+1)

β −
∫

(xk+1,xk)

α

∫

(xk,xk−1)

β

∫∫

(x1,x2,x3,x4)

f · ω :=
f(x1)+f(x2)+f(x3)+f(x4)

4

∫∫

(x1,x2,x3,x4)

ω

for (x1, x2, x3, x4) ∈ ♦2.

The exterior derivative d♦ is a derivation for the wedge product, for functions f, g
and a 1-form α ∈ C1(♦):

d♦(fg) = f d♦g + g d♦f, d♦(fα) = d♦f ∧ α+ f d♦α.

We define an heterogeneous wedge product for 1-forms living on diagonals Λ1,
as a 2-form living on faces ♦2. The formula is:

∫∫

(x,y,x′,y′)

α ∧ β :=
1

2







∫

(x,x′)

α

∫

(y,y′)

β −
∫

(y,y′)

α

∫

(x,x′)

β






(2.4)

Together with the Hodge star, they give rise, in the compact case, to the usual
scalar product on 1-forms:

(2.5) (α, β) :=

∫∫

♦2

α ∧ ∗β̄ = (∗α, ∗β) = (β, α) = 1
2

∑

e∈Λ1

ρ(e)

∫

e

α

∫

e

β̄
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The adjoint d∗ = − ∗ d ∗ of the coboundary d allows to define the discrete
Laplacian ∆ = d∗ d+ d d∗, whose kernel are the harmonic forms and functions. It
reads, for a function at a vertex x ∈ Λ0 with neighbours x′ ∼ x:

(∆f) (x) =
∑

x′∼x

ρ(x, x′) (f(x) − f(x′)) .

Hodge theorem: The two ±i-eigenspaces of the star decompose the space of
1-forms, especially the space of harmonic forms, into an orthogonal direct sum.

Types are interchanged by conjugation: α ∈ C(1,0)(Λ) ⇐⇒ α ∈ C(0,1)(Λ)
therefore the scalar product decomposes as

(α, β) = (π(1,0)α, π(1,0)β) + (π(0,1)α, π(0,1)β)

where the projections on (1, 0) and (0, 1) spaces are

π(1,0) =
1

2
(Id + i∗), π(0,1) =

1

2
(Id − i∗).

The harmonic forms of type (1, 0) are the holomorphic forms, the harmonic
forms of type (0, 1) are the anti-holomorphic forms.

2.2.6. Energies. The L2 norm of the 1-form df , called the Dirichlet en-
ergy of the function f , is the average of the usual Dirichlet energies on each
independant graph

ED(f) := ‖df‖2 = (df, df) =
1

2

∑

(x,x′)∈Λ1

ρ(x, x′) |f(x′) − f(x)|2(2.6)

=
ED(f |Γ) + ED(f |Γ∗)

2
.

The conformal energy of a map measures its conformality defect, relating these two
harmonic functions. A conformal map fulfills the Cauchy-Riemann equation

(2.7) ∗ df = −i df.

Therefore a quadratic energy whose null functions are the holomorphic ones is

(2.8) EC(f) := 1
2‖df − i ∗ df‖2.

It is related to the Dirichlet energy through the same formula as in the continuous:

EC(f) = 1
2 (df − i ∗ df, df − i ∗ df)

= 1
2‖df‖

2 + 1
2‖−i ∗ df‖

2 + Re(df, −i ∗ df)

= ‖df‖2 + Im

∫∫

♦2

df ∧ df

= ED(f) − 2A(f)(2.9)

where the area of the image of the application f in the complex plane has the same
formula

(2.10) A(f) =
i

2

∫∫

♦2

df ∧ df
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as in the continuous case. For a face (x, y, x′, y′) ∈ ♦2, the algebraic area of the

oriented quadrilateral
(

f(x), f(x′), f(y), f(y′)
)

is given by
∫∫

(x,y,x′,y′)

df ∧ df = i Im
(

(f(x′) − f(x))(f(y′) − f(y))
)

= −2iA
(

f(x), f(x′), f(y), f(y′)
)

.

2.2.7. Quasi-conformal maps. In the continuous case a function, differen-
tiable as a function of local coordinates (x, y), can be written, around a point z0
as

f(z + z0) = f(z0) + z × (∂f)(z0) + z̄ × (∂̄f)(z0) + o(|z|).
The complex derivation operators can be defined as small contour integrals:

(∂f)(z0) = lim
γ→z0

i

2A(γ)

∮

γ

fdz̄, (∂̄f)(z0) = − lim
γ→z0

i

2A(γ)

∮

γ

fdZ,

along a sequence of smaller loops γ around z0.
This leads to the discrete definition, when a holomorphic reference map Z :

Λ0 → C is chosen, and simply writing u instead of the complex number Z(u),

∂ : C0(♦) → C2(♦)

f 7→ ∂f =
[

(x, y, x′, y′) 7→ − i
2A(x,y,x′,y′)

∮

(x,y,x′,y′)

fdZ̄
]

= (f(x′)−f(x))(ȳ′−ȳ)−(x̄′−x̄)(f(y′)−f(y))
(x′−x)(ȳ′−ȳ)−(x̄′−x̄)(y′−y) ,

∂̄ : C0(♦) → C2(♦)

f 7→ ∂̄f =
[

(x, y, x′, y′) 7→ − i
2A(x,y,x′,y′)

∮

(x,y,x′,y′)

fdZ
]

= (f(x′)−f(x))(y′−y)−(x′−x)(f(y′)−f(y))
(x′−x)(ȳ′−ȳ)−(x̄′−x̄)(y′−y) .

A conformal map f fulfills ∂̄f ≡ 0 and

∂f(x, y, x′, y′) =
f(y′) − f(y)

y′ − y
=
f(x′) − f(x)

x′ − x
.

The jacobian J = |∂f |2 − |∂̄f |2 compares the areas:
∫∫

(x,y,x′,y′)

df ∧ df = J

∫∫

(x,y,x′,y′)

dZ ∧ dZ.

An holomorphic (resp. anti-holomorphic) 1-form df is, locally on each pair of
dual diagonals, proportional to dZ, resp. dZ̄, so that the decomposition of the
exterior derivative into holomorphic and anti-holomorphic parts yields df ∧ df =
(

|∂f |2 + |∂̄f |2
)

dZ ∧ dZ̄.
For a discrete function, define the dilatation coefficient

Df :=
|fz| + |fz̄|
|fz| − |fz̄|
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√
µf

7→

i
√

µf

7→

i
√

µf

√
µf

Figure 2.13: Quasi-conformal maps send circles to ellipses, discrete quasi-conformal
maps send polygons to non similar polygons (in the spirit of Fig. 3.8, p. 51).

Df ≥ 1 for |fz̄| ≤ |fz| (quasi-conformal). Written in terms of the complex dilatation:

µf =
fz̄

fz
=

(f(x′) − f(x))(y′ − y) − (x′ − x)(f(y′) − f(y))

(f(x′) − f(x))(ȳ′ − ȳ) − (x̄′ − x̄)(f(y′) − f(y))
.

2.2.8. Abelian forms. On a compact surface a basis of the space Ω1(Λ) of
discrete holomorphic 1-forms can be computed [17, 16], in a very similar way as in
the continuous, using solutions of (discrete) Dirichlet and Neumann problems
for harmonic functions taking values or normal derivative values on some boundary.
These problems, in the discrete setup, are finite linear algebra problems with sparse
matrices and can be implemented efficiently [8]. They lead to discrete versions of
1-forms with pairs of simple poles and abelian differentials [99, 17].

Despite the similarity, the dimension of Ω1(Λ) is twice the genus of the surface,
and one can compute a basis, dual to a normalized homology basis (ak, bk)1≤k≤g of
the underlying genus g surface:

(ζΓ
k )1≤k≤g such that

{
∮

aΓ
k

ζΓ
ℓ = δk,ℓ ,

∮

aΓ∗

k

ζΓ
ℓ = 0 .

and likewise for (ζΓ∗

k )1≤k≤g. The 1-form ζΓ
k is real on Γ and pure imaginary on Γ∗.

This doubling is characteristic of the discretization process and leads to two pe-
riod matrices, ΠΓ,ΠΓ∗

on the primal graph Γ and on its dual Γ∗ of the holomorphic
1-forms ζℓ := ζΓ

ℓ + ζΓ∗

ℓ :
{

ΠΓ
k,ℓ :=

∮

bΓ
k

ζℓ,

ΠΓ∗

k,ℓ :=
∮

bΓ
∗

k

ζℓ.

These period matrices are equal in the genus one critical case but are otherwise
different in general. A challenging issue is that, in that case, a holomorphic 1-form
in Ω1(Λ), which is the bundle of two closed 1-forms on the primal and dual graphs,
can not be unified into a closed 1-form on the quad-graph ♦.

It can be shown and observed numerically [8] (see the following section) that
these two period matrices converge to the genuine period matrix of the under-
lying Riemann surface when computed on finer and finer critical discretizations.
Numerically wise, it is therefore meaningful to solve the linear system defined by
the minimum of the quadratic conformal energy (2.8) for some given monodromy
conditions.

Preferring one of these two period matrices and a base point 0 ∈ Γ0, allows to
define an Abel’s map in the Jacobian JacΓ := Cg/ΛΓ with ΛΓ the period lattice
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associated with the period matrix ΠΓ:

Γ0 −→ JacΓ

x 7−→ (
∫ x

0
ζk)1≤k≤g

2.2.9. Numerics with surfaces tiled by squares. In [1], we performed
numerical computations of period matrices for flat surfaces with conic singularities
and polyhedral surfaces. A number of other methods exist in the literature of
geometry processing for discrete conformal parameterization [104, 64, 70, 56, 35,

106, 57, 73, 107], large teams are working on the subject, to cite a few researchers,
Gu and Yau in Stony-Brook and Harvard, Desbrun and Schröder in CalTech,
Cohen-Steiner and Alliez in INRIA Sophia-Antipolis, Springborn, Pinkall,
Polthier and Bobenko in Berlin, Gotsman and Ben-Chen at the Technion,
and others. In the realm of the Ising model and the dimer model, discrete perido
matrices using discrete conformal structures have been computed by Mc Coy and
Costa-Santos in [53, 54]

But although their results are visually similar to ours, they are usually not based
on a theory of Discrete Complex Analysis as solid and thorough as the present one,
with the notable exception of [104], where the link to our theory is still not com-
pletely clear. While most geometry processing papers are concerned with efficient
algorithms producing beautiful pictures such as [70] and not primarily on the the-
oretical side of the question, it is quite the contrary in this document, and the
following numerics are therefore more a proof of concept and not optimized, the
linear algebra library (JTEM) we used is very basic and we sticked to rough double
precision.

Robert Silhol supplied us with sets of surfaces tiled by squares for which
the period matrices are known [101, 46, 100, 45, 97]. They are translation and
half-translation surfaces, each side is identified with a parallel side. The discrete
conformal parameter is ρ ≡ 1.

The translation surfaces are particularly adapted because the discrete 1-form
read off the picture is already a discrete holomorphic form. Therefore the com-
putations are accurate even for a small number of squares and finer squares only
blur the result with numerical noise. For half-translation surfaces it is not the case,
a continuous limit has to be taken in order to get a better approximation. We
computed the approximation of the discrete period matrix using a refinement of
the given squares.
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Surface & Period Matrix Numerical Analysis

Ω1 = i
3

(

5 −4
−4 5

)

#vertices ‖ΩD − Ω1‖∞
25 1.13 · 10

−8

106 3.38 · 10
−8

430 4.75 · 10
−8

1726 1.42 · 10
−7

6928 1.35 · 10
−6

Ω2 = 1
3

(

−2 +
√

8i 1 −
√

2i

1 −
√

2i −2 +
√

8i

)

#vertices ‖ΩD − Ω2‖∞
14 3.40 · 10

−2

62 9.51 · 10
−3

254 2.44 · 10
−3

1022 6.12 · 10
−4

4096 1.53 · 10
−4

Ω3 = i√
3

(

2 −1
−1 2

)

#vertices ‖ΩD − Ω3‖∞
22 3.40 · 10

−3

94 9.51 · 10
−3

382 2.44 · 10
−4

1534 6.12 · 10
−5

6142 1.53 · 10
−6

Using 15 digits numbers, the theoretical numerical accuracy is limited to 8
digits because our energy is quadratic and our error measure ‖ΩD − Ω‖∞ is lin-
ear therefore half of the digits are lost. Using an arbitrary precision toolbox or
Cholesky decomposition in order to solve the linear system would allow for bet-
ter results but it is not the point here. We see that the convergence is simply of first
order. It was shown in [16] that the convergence speed is governed by 1/ sin θmin

where θmin is the minimum quad-angle. With squares, this is not an issue.

2.2.10. Polyhedral surfaces. Consider a polyhedral surface in R3. It has a
unique Delaunay tesselation, generically a triangulation [39]. That is to say each
face is associated with a circumcircle drawn on the surface and this disk contains
no other vertices than the ones on its boundary. Let’s call Γ the graph of this
cellular decomposition, Γ0 its vertices, Γ1 its edges and complete it into a cellular
decomposition with Γ2 the set of triangles. Each edge (x, x′) = e ∈ Γ1 is adjacent
to a pair of triangles, associated with two circumcenters y, y′. The ratio of the
(intrinsic) distances between the circumcenters and the length of the (orthogonal)
edge e defines a discrete conformal structure ρ(e).

y′

ρ =
|y′ − y|
|x′ − x|

y

x

x′

For a first test of the numerics on a an immersed surface in R3 our choice is
the famous CMC-torus discovered by Wente [108] for which an explicit immersion
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formula exists in terms of theta functions [37]. The modulus of the rhombic Wente

torus can be read from the immersion formula:

τw ≈ 0.41300 . . .+ 0.91073 . . . i ≈ exp(i1.145045 . . . .).

Grid : 10 × 10 Grid : 20 × 20

Grid : 40 × 40 Grid : 80 × 80

Figure 2.14: Regular Delaunay triangulations of the Wente torus

We compute several regular discretization of the Wente torus (Fig. 2.14) and
generate discrete conformal structure. For a sequence of finer discretizations of a
smooth immersion, we compute the modulus which we denote by τd and compare
them with τw from above:
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Grid ‖τd − τw‖
10 × 10 5.69 · 10−3

20 × 20 2.00 · 10−3

40 × 40 5.11 · 10−4

80 × 80 2.41 · 10−4

Finally we applied our method to compute the period matrix of Lawson’s
genus 2 minimal surface in S3 [65]. Konrad Polthier [92] supplied us with several
resolutions. We numerically recognized the period matrix Ω3 of the third example
from Sec. 2.2.9 and verified that the symmetry group of the Lawson genus two
surface yields indeed this period matrix, using [27], leading to an algebraic equation
for the Lawson surface: y2 = x6 − 1, with six branch points at the roots of unity.
The correspondence between the points in the square picture of the surface and the
double sheeted cover of the complex plane is done in Fig. 2.15.

2.2.11. Towards a discrete Riemann-Roch Theorem. In the combinato-
rial case, Bacher, de la Harpe and Nagnibeda [28], then Baker and Norine

in [29] setup the scene and proved a combinatorial Riemann-Roch theorem on
graphs. I would like to adapt this very algebraic and combinatorial setup to Dis-
crete Complex Analysis, but I can present here only basic notions and not even a
definite conjecture relating them. The issues are that I don’t know how to localize
a higher degree zero or pole in the discrete case, and that I only know how to define
the discrete exponential of the trivial map, exp(λ z) and not the exponential of a
function exp

(

f(z)
)

.

We define an order 1 pole for a 1-form α ∈ C1(♦) as a quad-face Q ∈ ♦2 where
α is of type (1, 0) but is not closed. We call the closeness defect its residue at Q:
ResQ(α) := 1

2iπ

∮

∂Q
α. Therefore, on a closed discrete manifold ♦, the sum of all

residues of a meromorphic form is null.
We define a logarithmic singularity for a function f ∈ C0(♦) as a quad-face

where its exterior derivative df has an order one pole. The function f has locally
the features of a Green function, its Laplacian is locally non null but 1.

We call LM(♦) the set of meromorphic forms with poles of order 1 and integer

residues. It is the formal discrete equivalent of forms df
f with f a meromorphic

function on a Riemann surface.
Unfortunately, whereas there exists in the critical case a discrete exponential

exp(αZ) for α ∈ C, there is no discrete equivalent of the exponentiation of an
arbitrary meromorphic function therefore we can not get a discrete meromorphic
function f out of an integer residues 1-form d ln f .

Let’s call the free abelian group spanned by quad-faces the divisor of the quad-
graph: Div(♦) = Z ♦2. An element is written as a linear combination of quad-faces,
D =

∑

Q∈♦2
aQQ, with integer coefficients D(Q) := aQ ∈ Z. Its degree is their sum,

deg(D) =
∑

Q∈♦2
D(Q). We note Divk(♦) the set of divisors of degree k.

Divisors are partially ordered, D ≥ D′ ⇐⇒ ∀Q ∈ ♦2, D(Q) ≥ D′(Q). A
divisor E is called an effective divisor if E ≥ 0. We note Div+(♦) the set of

effective divisors, Divk
+(♦) the effective divisors of degree k. The Principal divisors

are the divisors which are in the image of the discrete Laplacian and are of degree
zero.

The Picard group is the quotient of degree zero divisors by principal divisors,

Pic(G) = Div0(G)
Prin(G) .
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y2 = x6 − 1

Figure 2.15: The Lawson surface is conformally equivalent to a surface made of
squares.
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One question that needs to be answered first is, are the Picard group and
the Jacobian, defined by a basis of holomorphic 1-forms, isomorphic? It is related
to associating a canonical divisor to a holomorphic 1-form. The degree of this
canonical divisor should be related to the genus, deg(K) = 2g − 2.

Does this allow to define an equivalence relations among divisors? Can we
compute dimensions of forms associated with certain classes of divisors?

2.3. Non real conformal structure

Triangulations lead to two dual decompositions (Γ,Γ∗) which, taken together,
define a quad-graph ♦. It is true for any cellular decomposition.

There are situations when the cellular decomposition that is available is not a
triangulation, when there are some faces which have more than three edges. For
example decompositions of a surface by quadrilaterals are more natural in some
contexts. A problem then arises, to find the right dual cellular decomposition:
there is no canonical circumcenter of four points in 3-space. We will not dwell on
this problem and restrict ourselves to the case of quad-meshes, leaving aside the
problem of constructing this quad-graph ♦ from a general cellular decomposition,
mixing faces of different degrees.

Therefore let’s consider as our basic data an oriented quad-graph ♦ in three-
space, that is to say a combinatorial data of vertices, edges and commonly oriented
faces, ♦0,♦1,♦2 and an injective map s : ♦0 → R3. We require, when the surface
is not simply connected, that every closed loop is of even length, so that we can
interpret this graph as coming from a couple of dual graphs Λ = Γ ⊕ Γ∗ whose
edges are the diagonals of the quads.

Then we define non real conformal structure constants, for an edge e ∈ Λ,
ρ(e) ∈ C.

Each positively oriented quad (x, y, x′, y′) ∈ ♦2 defines two dual edges (x, x′) ∈
Γ and (y, y′) ∈ Γ∗, associated with two vectors s(x′) − s(x), s(y′) − s(y) ∈ R3.
Their cross product defines a common normal (s(x′) − s(x))× (s(y′) − s(y)) along
which the four points are projected on the vector space these two vectors span.
This plane is identified with the tangent complex plane up to a direct similarity
and the two vectors correspond to two complex values zx′x and zy′y. The ratio

ρ(x, x′) :=
zy′y

izx′x
∈ C defines the complex discrete conformal structure. The normal

can be given by other means as well [79].

2.3.1. Complex Hodge star.

Definition 2.3.1. The Hodge star ∗ : C1(Λ) → C1(Λ) is defined, on the
dual edges (y, y′) = (x, x′)∗ ∈ Λ1, given the (complex) discrete conformal structure
ρ(x, x′) = reiθ, by

(
∫

(x,x′)
∗α

∫

(y,y′)
∗α

)

=
1

cos θ

(

− sin θ − 1
r

r sin θ

)

(
∫

(x,x′)
α

∫

(y,y′)
α

)

.

Notice that the Hodge star is a real transformation and gives back the usual
formula (2.3) for real conformal structures.

Proposition 2.3.2. The Hodge star fulfills ∗2 = −IdC1(Λ).
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Proof 2.3.2. On the quadrilateral (x, y, x′, y′) ∈ ♦2, with the same notations
as before,

1

cos2 θ

(

− sin θ − 1
r

r sin θ

)2

=
1

cos2 θ

(

sin2 θ − 1 0
0 sin2 θ − 1

)

= −I2.

�

Define its −i, respectively +i orthogonal eigenspaces as the type (1, 0), resp.
type (0, 1), 1-forms.

With α of type (1, 0),
∫

(y,y′)
α = ir(cos θ + i sin θ)

∫

(x,x′)
α, which leads to

∫

(x,x′)
∗α = −i

∫

(x,x′)
α, likewise along (y, y′), and it is an equivalence. The Hodge

star being real, the same result holds for type (0, 1) and +i-eigenspace.
Notice that the scalar product is still positive definite and preserved by ∗ even-

though the last equality in (2.5) is replaced by a mixed sum over the two dual
edges:

(2.11) (α, β) = 1
2

∑

e∈Λ1

∫

e
α

Re (ρ(e))

(

|ρ(e)|2
∫

e

β̄ + Im (ρ(e))

∫

e∗

β̄

)

The Dirichlet energy mixes the two dual graphs as well:
(2.12)

ED(f) := ‖df‖2 =
1

2

∑

e∈Λ1

|f(x′) − f(x)|2
Re (ρ(e))

(

|ρ(e)|2 + Im (ρ(e))
f(y′) − f(y)

f(x′) − f(x)

)

.

and the Laplacian no longer splits on the two independant dual graphs: For
x0 ∈ Λ0, with dual face x∗0 = (y1, y2, . . . , yV ) ∈ Λ2 and neighbours x1, x2, . . . , xV ∈
Λ0, with dual edges (x0, xk)∗ = (yk, yk+1) ∈ Λ1, and yV +1 = y1,
(2.13)

∆(f)(x0) =
V
∑

k=1

1

Re (ρ(e))

(

|ρ(e)|2
(

f(xk) − f(x)
)

+ Im (ρ(e))
(

f(yk+1) − f(yk)
))

2.3.2. Surfel surfaces. An important case when the data is given by such
quadrilaterals is the case of surfel surfaces coming from voxel digital objects:

A discrete object is a set of points in Z3, each center of its Voronoi cell is called
a voxel. A voxel is a cube of unit side, its six faces are called surfels. A digital
surface Σ made of surfels is a connected set of surfels. We will restrict ourselves
to surfaces such that every edge in Σ belongs to at most two surfels [44]. The
edges that belong to only one surfel are called boundary edges. Let us call (the
indices stand for dimensions) (♦0,♦1,♦2) the sets of vertices, edges and surfels of
this cellular decomposition ♦ of the surface Σ.

Note that this cellular decomposition is bipartite, along the surfels diagonals,
their end points form dual black and white diagonals and associated Γ and Γ∗

cellular decompositions.
The data of a normal direction at each surfel is a broadly used feature of

digital surfaces [79, 78, 80]. This normal might come from a digital scanner, or
be computed from the digital surface itself by various means on which we won’t
elaborate. These consistent normals give an orientation to the surface.

This normal is used to project a given surfel comprising the four vertices
(x, y, x′, y′) to the local tangent plane. This projection deforms the square into
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Figure 2.16: A surfel surface

Figure 2.17: The cellular decomposition Γ associated with black vertices

a parallelogram. Its diagonals are sent to segments which are no longer orthogo-
nal in general. We identify the tangent plane with the complex plane, up to the
choice of a similitude. We call Z this local map from the cellular decomposition to
the complex numbers. Each diagonal (x, x′) and (y, y′) is now seen as a complex
number Z(x′) − Z(x), resp. Z(y′) − Z(y).

Figure 2.18: A surfel projected onto the local tangent plane
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For example we can project the standard digital plane of cubes associated with
P0 : x + y + z = 0 onto this (constant tangent) plane P0 and get the following
rhombi pattern.

Figure 2.19: The digital plane x+y+z = 0 projected. Note that Γ is the hexagonal
lattice, Γ∗ its triangular dual.

We then associate to each diagonal (x, x′) ∈ Γ1 the (possibly infinite) complex
ratio i ρ of the dual diagonal by the primal diagonal, as complex numbers.

i ρ(x, x′) :=
Z(y′) − Z(y)

Z(x′) − Z(x)

This discrete conformal parameter clearly does not depend on the choice of identi-
fication between the tangent plane and the field of complex numbers.

In the standard plane case in Fig. 2.19, its value is the constant ρhex = tan(π
6 ) =

1/
√

3 and its inverse ρtri = tan(π
3 ) =

√
3 = 1/ρhex. See Fig.1.3 on p. 11 for quad

shapes and associated ρ.
An interesting feature of the theory is its robustness with respect to local moves.

A discrete holomorphic map defined on a discrete Riemann surface is mapped by
a canonical isomorphism to the space of discrete holomorphic maps defined on
another discrete Riemann surface linked to the original one by a series of flips.
These flips are called in the context of discrete conformal structures electrical moves.
They come in three kinds, the third one being the flip, the others being irrelevant
to our context.

ρ2ρ1 II−→I−→ III−−→ρ1 + ρ2

Figure 2.20: The electrical moves.

The third move corresponds to the flip, it is called the star-triangle transfor-
mation. To three surfels (drawn as dotted lines in Fig. 2.20) arranged in a hexagon,
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whose diagonals form a triangle of conformal parameters ρ1, ρ2 and ρ3, one asso-
ciates a configuration of three other surfels whose diagonals form a three branched
star with conformal parameters ρ′i (on the opposite side of ρi) verifying

(2.14) ρiρ
′
i = ρ1ρ2 + ρ2ρ3 + ρ3ρ1 =

ρ′1 ρ
′
2 ρ

′
3

ρ′1 + ρ′2 + ρ′3
.

The value of a holomorphic function at the center of an hexagon is overdeter-
mined with respect to the six values on the hexagon. These values have to fulfill
a compatibility condition, which are the same for both hexagons, therefore a holo-
morphic function defined on a discrete Riemann surface can be uniquely extended
to another surface differing only by a flip [10].

This means in particular that a discrete holomorphic function defined on the
standard plane in Fig. 2.19 can be followed through all its other parallel defor-
mations and is not sensitive to some added noise (flips deleting or inserting extra
voxels) provided the normal vector is unchanged with respect to the discrete plane
value: the space of holomorphic functions on these parallel or noisy planes are in
one-to-one correspondence. This theoretical robustness has yet to be experimen-
tally observed in practice because the normal vectors are not independent and a
noisy plane will have noisy normal vectors as well. This will be the subject of a
forthcoming article.



CHAPTER 3

Discrete Complex Analysis and Integrability

Consider a cube, each face equipped with discrete conformal ratios, whether
diagonal ratios ρ or cross-ratios q. The four values, at a corner and at its three
neighbors, determine uniquely the three other values of a discrete holomorphic func-
tion, by the conditions on each face adjacent to that corner (see Fig. 3.1). But the
value at the opposite corner of the cube is then determined by any face among the
remaining three. Integrability means a compatibility between the discrete confor-
mal parameters so that the three values coincide.

x2

x α β
x3

γ
y2

y3
y

x1

y1

Figure 3.1: The four values f(x), f(y1), f(y2), f(y3) determine uniquely
f(x1), f(x2), f(x3) when f is discrete holomorphic, but f(y) is over-determined
unless the discrete conformal structure comes from parallelograms.

If we impose that opposite faces in the cube carry the same discrete confor-
mal parameter, then integrability is equivalent to the fact that these parameters
come from parallelograms: They are parameterized by quantities constant on train-
tracks [11, 72]. Two edges opposite in a quadrilateral belong to the same train-
track.

The condition of holomorphicity takes place on each quadrilateral, intersection
of two train-tracks, labeled by two parameters, as an equation for a function of the
four vertices, that the ratio of the values along the diagonals (resp. the cross-ratio),
is given by the parameters (see Fig. 3.2).

Integrability means that these equations are compatible, that there exist non
trivial solutions (the constant are always solutions).

We showed in [10] that this integrability condition is the same in both the diag-
onal ratio preserving maps and the cross-ratio preserving maps cases; geometrically
it simply means that there exists a discrete holomorphic map made of parallelo-
grams. Moreover, real diagonal ratios ρ and unitary cross-ratios q are associated
with rhombi configurations.

45
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x′

y′

β

αx
y

Figure 3.2: Opposite edges in a quadrilateral belong to the same train-track. On the
quadrilateral intersection of train-tracks labeled by α and β, consider the equations
f(y′)−f(y)
f(x′)−f(x) = α−β

α+β for the diagonal ratio preserving maps or f(y)−f(x)
f(x′)−f(y)

f(y′)−f(x′)
f(x)−f(y′) =

β2

α2 for the cross-ratio preserving maps.

3.1. Darboux-Bäcklund transformation

Integrability allows for families of solutions and deformations of existing so-
lutions. Using 3D-consistency, one can deform an existing solution, seen as lying
at the horizontal ground floor, to another floor, at parameter λ ∈ C: Create over
each horizontal edge of the quadrilateral, labeled by a certain parameter, a vertical
quadrilateral whose vertical edges are labeled by λ, and impose on these vertical
faces the same type of equations as for the horizontal faces (see Fig. 3.3).

y′

f(y′
λ
)−f(yλ)

f(x′
λ
)−f(xλ)

= α−β

α+β

f(xλ)−f(y )
f(yλ)−f(x )

= λ−β

λ+β

f(y′ )−f(y )

f(x′ )−f(x )
= α−β

α+β

yλ

x′

y′

λ

y

x′

λ

f(x )−f(y )
f(y )−f(yλ)

f(yλ)−f(xλ)
f(xλ)−f(x )

= β2

λ2

f(x )−f(y )
f(y )−f(x′ )

f(x′ )−f(y′ )

f(y′ )−f(x )
= β2

α2

f(xλ)−f(yλ)
f(yλ)−f(x′

λ
)

f(x′
λ
)−f(y′

λ
)

f(y′
λ
)−f(xλ)

= β2

α2

Cross-ratioDiagonal ratio
xλ

x

α

λ

β

Figure 3.3: Darboux-Bäcklund transformation: The equations on the vertical
quadrilaterals are of the same type as the horizontal ones, whether diagonal ratio
or cross-ratio preserving maps.

The function at the floor λ fulfills the same equation as the one on the ground
floor, that is to say, it is discrete holomorphic. This function, for each parameter
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λ, is uniquely defined when an initial value u is chosen at a given point O. This
transformation is called the Darboux-Bäcklund transformation [81]

B•
• : C2 × Ω0(♦) → Ω0(♦)

(λ, u, f) 7→ Bu
λ(f) : x 7→ f(xλ)

Let us note Bρ,u
λ , respectively Bq,u

λ the two transformations in the realm of the
linear diagonal ration, resp. quadratic cross-ratio preserving maps.

3.2. Zero-curvature representation and isomonodromic solutions

It follows from a result of Kenyon and Schlenker [72] that any surface made
of parallelograms with at most d different train-track parameters, such that no two
train-tracks intersect more than once and no train-track with the same parameter
self-intersect, can be embedded in such a Zd.

The Darboux-Bäcklund transformation allows to define the holomorphic-
ity condition on a much more general set than cellular decomposition by rhombi.
Given d complex numbers (αi)1≤i≤d, define a function f on Zd to be discrete holo-
morphic if, on each quadrilateral parallel to the (i, j) directions, the diagonal ratio,
respectively the cross-ratio, of its four values are given by αi and αj .

(a)
f(xj)−f(xi)

f(xij)−f(x)
=

αj−αi

αj+αi

xi

xij

(b)

(

f(xj)−f(xij)
)(

f(xi)−f(x)
)

(

f(xij)−f(xi)
)(

f(x)−f(xj)
) = αi

2

αj
2

αj

αi

xj

x

Figure 3.4: On each quadrilateral in Zd, impose the linear (a) or quadratic (b)
condition.

Solving for one value in terms of the other three values, the conditions (a) and
(b) in Fig. 3.4 can be seen as the action of a (non autonomous) operator sitting on
directed edges, a priori depending on the values on the two other vertices, mapping
a third value to the third:

(3.1) f(xij) = Lij

(

f(xi), f(x)
)

· f(xj)

where Lij(a, b) ∈ PGL2(C) acts as a Möbius transformation on C. The integra-
bility condition is first that this operator is actually defined on the oriented edge
L(x,xi) and does not depend on a face (x, xi, xij , xj), and second that the discrete
connection is flat, meaning that the composition of these operators along any closed
loop is the identity,

L(x,xi) ◦ L(xi,x) = IdPGL2(C)(3.2)

L(x,xi) ◦ L(xi,xij) ◦ L(xij ,xj) ◦ L(xj ,x) = IdPGL2(C)(3.3)

We give in [10] an explicit zero-curvature representation for both the diagonal
ratio and cross-ratio preserving maps which lifts from PGL2(C) to a one spectral
parameter family of non projective transformations L(x,xi) ∈ GL2(C)[λ]:
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Linear case: Lρ
(x,xi)

(λ) =

(

λ+ αi −2αi

(

f(x) + f(xi)
)

0 λ− αi

)

(3.4)

Quadratic case: Lq
(x,xi)

(λ) =

(

1 f(x) − f(xi)
λα2

i /
(

f(x) − f(xi)
)

1

)

(3.5)

We gave the quadratic version as well in terms of the Hirota variables (see
(1.1) on p. 12).

This discrete connection can be composed from the origin into the moving frame
Ψ(λ; ·) : Zd → GL2(C)[λ] defined by prescribing some Ψ(λ; 0), and extending it
recurrently

(3.6) Ψ(λ;xi) = L(x,xi)(λ)Ψ(λ;x).

The logarithmic derivative of this moving frame with respect to λ

(3.7) A(λ;x) =
∂Ψ(λ;x)

∂λ
Ψ−1(λ;x)

is, for each point x ∈ Zd, a meromorphic matrix with respect to λ. Its possible poles
are given by the choice of Ψ(λ; 0) (or we can choose A(λ; 0)) as well as {±αi}1≤i≤d

in the linear case and {±1/
√
αi}1≤i≤d in the quadratic case.

The definition (3.7) can be rephrased ∂Ψ(λ;x)
∂λ = A(λ;x) Ψ(λ;x), the matrix A

governs the dynamic of the moving frame in the spectral parameter direction.
A discrete holomorphic function f : Zd → C is called isomonodromic, if, for

some choice of A(λ; 0), the positions and orders of the poles of the matrices A(λ;x)
do not depend on x ∈ Zd.

The Green function, the discrete logarithm, is such an isomonodromic solution
(see Sec. 3.3.3).

3.3. Integrability and linear theory

What integrability implies is, first of all, the existence of a discrete holomorphic
parallelogram immersion of the universal cover of the surface that we will call
Z : ♦̃0 → C. We will often identify a vertex z ∈ ♦0 and its complex image Z(z) to
ease the notation.

z =
n
∑

k=1

αkα2
α1

O

Figure 3.5: The point z seen as a sum of parallelogram sides from the origin O.

3.3.1. Exponential. It is a rational fraction in the slopes encountered from

the origin, for z =
n
∑

k=1

αi (see Fig. 3.5):

Exp(λ; z) =

n
∏

k=1

1 + λ
2αk

1 − λ
2αk

.
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It is a generalization of the well known formula where [Oz] is split into n equal
segments z

n :

exp(λ z) =

(

1 +
λ z

n

)n

+O(
z2

n
) =

(

1 + λ
2

z
n

1 − λ
2

z
n

)n

+O(
z3

n2
).

It fulfills the discrete differential equation

(3.8) dExp(λ; z) = λExp(λ; z) dZ.

Derivating it with respect to λ, we define the discrete holomorphic monomials

(3.9) Z :k:(z) :=
∂kExp(λ; z)

∂λk

∣

∣

∣

∣

λ=0

We have Z :1: = Z and Z :2: = Z2 but discrete values diverge from the point-wise
product afterwards. Moreover, apart from the rhombi case (see Sec. 3.3.2), they
don’t fulfill a nice discrete differential equation such as (3.8).

By Taylor’s formula, the discrete exponential function is the sum of its Tay-

lor series, which is absolutely convergent for |λ| < 2
maxi(|αi|) :

(3.10) Exp(λ; z) =

∞
∑

k=0

λk Z :k:(z)

k!
.

We proved in [11, 10] that these discrete exponentials (or discrete polyno-
mials) span the space of discrete holomorphic functions (not growing faster than
exponentially in the non compact case).

Using Krichever construction, Doliwa, Grinevich, Nieszporski and San-

tini [58] generalize the discrete exponentials to more general spectral curves, the
parameter can belong to a Riemann surface with marked points λ ∈ Σ.

This discrete exponential was as well used in the context of discrete integrable
models as the planar waves linear solutions which serve as building blocks of non-
linear discrete integrable models named soliton solutions in the framework of direct
linearization introduced by Nijhoff, Quispel and Capel as early as 1983; this
technique is still producing new results [83, 84, 23].

The exponential can be understood in terms of Darboux-Bäcklund trans-
formations, both linear and quadratic:

Proposition 3.3.1.

Exp(λ; z) = Bρ
2
λ

(0),(3.11)

Exp(λ; z) =
∂

∂v
Bq,v

−λ(G)|v=1(3.12)

In words, the discrete exponential is the linear Darboux-Bäcklund trans-
formed of the zero function and spans the kernel of the differential of a composition
of the cross-ratio preserving Darboux-Bäcklund, composed back at the origin.
The composition of cross-ratio preserving Darboux-Bäcklund transformations is
a group isomorphism at infinitesimal level and not in general, Bq,v

λ ◦Bq,w
µ 6= Bq,v

λ+µ

but nevertheless, the composition Bq,1
−λ ◦Bq,w

λ = Bq,1
0 = Id on functions valued 1 at

the origin like the exponential, allowing for (3.12).
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G = Bu
λ(F )

Bu
µ(F )

Bu
−µ(G)

expu(:λ:F ) := ∂
∂v

Bv
−λ(G)|v=u

Bv
−λ(G)

F = Bu
−λ(G)

Figure 3.6: The tangent space to the manifold of cross-ratio preserving maps related
to an integrable cross-ratio is isomorphic to the space of diagonal ratio preserving
maps. The linear discrete exponential is the differential of the cross-ratio preserving
Darboux-Bäcklund transformations composition.

3.3.2. Integration. It was already the case that, for any discrete holomorphic
function f and 1-form α, the associated 1-form f α was closed. In the integrable
case, when the diagonal ratios are real, that is to say when the parallelograms are
all rhombi something special happens:

Proposition 3.3.2. In the rhombic case, for every discrete holomorphic func-
tion f , the 1-form f dZ is as well discrete holomorphic.

This allows, after the choice of an origin, for the integration of functions on a
simply connected quad-graph. Integrating constants, one gets iteratively monomi-
als Z :k: := k

∫

O
Z :k−1: dZ. Notice that the discrete square is equal to the point-

wise multiplication Z :2: = Z2, polynomials of degree two are simple restrictions of
usual continuous functions, but otherwise, point-wise multiplication doesn’t pre-
serve holomorphicity.

The monomials Z :k: provide a basis of discrete holomorphic functions on a
compact [11] and more generally among functions not growing faster than exponen-
tially [10]. In particular the discrete exponential is written in terms of polynomials
by the usual series (3.10).

Conversely, one can define a derivation operator on holomorphic functions.
Following Duffin [60], we introduce the

Definition 3.3.3. For a holomorphic function f , define on a flat simply con-
nected map U the holomorphic functions f†, the dual of f , and f ′, the derivative
of f , by the following formulae:

(3.13) f†(z) := ε(z) f̄(z),

where f̄ denotes the complex conjugate, ε = ±1 is the biconstant, and

(3.14) f ′(z) :=
4

δ2

(∫ z

O

f†dZ

)†
+ λ ε,

defined up to ε, with δ the common rhombi side length.

We proved in [16] the following
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Proposition 3.3.4. The derivative f ′ fulfills

(3.15) d f = f ′ dZ.

This derivative allows to give a geometric characterization of discrete holomor-
phic functions. One has first to visualize an embedding of both dual graphs at
the same time by simply deflating faces of the graph and of its dual by half. The
corresponding vertices meet at the middle of the quad-edges (see Fig. 3.7).

Figure 3.7: Deflating a face by half allows to show both the primal and the dual
graphs at the same time.

Then, the closeness condition of f ′ dZ translates into the fact that the face x∗

can be scaled and turned by a factor f ′(x), and, when positioned at f(x), still fit
together, kissing its neighboring faces as in Fig. 3.7, themselves distorted by their
respective similarities, given by the derivative ∂f summed up at vertices.

−→

Figure 3.8: The direct image by the cube z 7→ z3 of the triangular/hexagonal
networks as kissing equilateral triangles and regular hexagons.
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3.3.3. Isomonodromic solutions, the Green function. We now give a
construction of a 2d + 1 dimension family of isomonodromic discrete holomorphic
functions in the linear case:

Proposition 3.3.5. Let there be d sequences
(

f
(k)
n

)∞

n=0
, for k = 1, . . . , d,

defined by the first two values f0 and f
(k)
1 and the recurrent relation

(3.16) n(f
(k)
n+1 − f

(k)
n−1) = 1 − (−1)n.

Then the discrete holomorphic function f : (Z+)d → C, defined by the values

f(nek) = f
(k)
n on the coordinate semi-axes, is isomonodromic: at any point z ∈

(Z+)d the associated logarithmic derivative of the moving frame is the following
rational fraction, with simple poles at 0 and {±αi}1≤i≤d,

(3.17) A(λ; z) =
A(0)(z)

λ
+

d
∑

k=1

(B(k)(z)

λ+ αk
+
C(k)(z)

λ− αk

)

,

with, for z = (n1, . . . , nd),

A(0)(z) =





0 (−1)n1+...+nd

0 0



 ,(3.18)

B(k)(z) = nk





1 −(f(z) + f(z − ek))

0 0



 , C(k)(z) = nk





0 f(z + ek) + f(z)

0 1



 .

which fulfills the following isomonodromic constraint [84], for z = n1 e1+. . .+nd ed,

(3.19)

d
∑

k=1

nk

(

f(z + ek) − f(z − ek)
)

= 1 − (−1)n1+...+nd .

Such a solution is a priori defined on the positive quadrant but values along
the other half axis can be given. The values along the axis are simple:

(3.20)

{

f
(

2n ek

)

= f0
∑n

ℓ=1
2

2ℓ−1 does not depend on k and

f
(

(2n+ 1) ek

)

= f
(k)
1 only depends on k.

The discrete Green function G is such an isomonodromic solution, associated

with the values f0 = 0 and f
(k)
1 = logαk. A closed formula for its value at a given

point of the positive quadrant z ∈ Z+
d is [71, 10]

(3.21) G(z) =
1

2iπ

∮

γ

log λ

2λ
Exp(λ; z) dλ

with the proper determination branch for the logarithm and where γ is a loop
around the poles {αi}1≤i≤d of the discrete exponential in this positive quadrant.
This determination can be followed in other quadrants with other loops around
the suitable selection of {±αi}1≤i≤d. These 2d complex numbers are cyclically
ordered by their argument, and we patch together 2d quadrants associated with
this ordering in order to define the subspace in Zd where this discrete logarithm is
well defined, up to a global 2iπ indeterminacy on odd vertices after each full turn
around 0.
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Every orientable surface made of parallelograms of slopes αi can be seen as
embedded in this union of quadrants, and any vertex v can be mapped to the origin
0 ∈ Zd. The restriction of G to this surface provides the inverse of the discrete
Laplacian: ∆G(x) = δx,v, the (multi-valued) function G is discrete holomorphic
hence harmonic, except at the origin v where it has a logarithmic singularity. Of
course, proper definitions take place on branched coverings at the origin as for the
usual logarithm.

In the rhombic case, the slopes are αk = eiθk , leading to real values on the
even sub-graph and pure imaginary values on the odd subgraph. Its restriction to
a rhombic surface is likewise split onto real values on the graph Γ, corresponding to
log |z−v| and pure imaginary values on its dual Γ∗ (or vice-versa), corresponding to
i arg(z − v). The real part is more often referred to as the discrete Green function.

Isomonodromic solutions for the quadratic zero-curvature connection (3.5) can
be given [21, 10], in relation to Painlevé or mKdV equations; they correspond to
the cross-ratio preserving and circle pattern versions of z 7→ zγ . It is easy to see
that its derivative with respect to γ is the linear isomonodromic Green function
just described.





CHAPTER 4

Statistical Mechanics

In my thesis, I proved that criticality in the Z-invariant Ising model is charac-
terized by the fact that the fermion ψ becomes a discrete massless Dirac spinor,
that is to say that ψ

√
dZ is a discrete holomorphic 1-form.

In Australia, with Paul A. Pearce, at the University of Melbourne, I investi-
gated the A-D-E models which generalize the Ising model.

4.1. The critical Ising model

4.1.1. Boltzmann law. The Ising model is defined on a graph Γ, whose
edges are labeled by positive ferromagnetic interaction constant Jx,x′ . A state is
given by a choice of a spin ± at each vertex. The probability of a state σ : Γ0 → ±
is given by the Boltzmann weight

(4.1) P (σ|σ0) =
1

ZR
e
β

P

(x,x′)∈R1

Jx,x′σxσx′

where R is a finite region, σ0 is a fixed boundary condition outside R and

ZR =
∑

σ:R0→±
e
β

P

(x,x′)∈R1

Jx,x′σxσx′

is the partition function such that P is a probability.

It is a model of ferromagnetic spins, they tend to align to their neighbors. The
overall parameter β = 1

kB T plays the role of the temperature. For low temperature,

alignment is much favored (frozen phase), for high temperature, the distribution
tends to equiprobability (gas phase). These two regimes can be exchanged by the
Kramers-Wanier duality [75], exchanging the graph Γ and its dual Γ∗ as well as
high and low temperatures.

In statistical mechanics, one is interested in taking a thermodynamic limit for an
infinite graph Γ, when the window R grows to infinity. A phase, or Gibbs measure
is a measure on the states such that, when conditioned outside finite regions yields
back Boltzmann law (4.1) (see [55] in the dimer model).

The free energy per site f = limN=|R| − β
N logZR is usually analytic in terms

of the temperature, except sometimes at special critical temperature, witnessing a
phase transition between two regimes.

Outside criticality, correlations usually decay exponentially

< σ(x)σ(x′) >=
∑

σ:Γ0→±
P (σ) σ(x)σ(x′) ∼ |x− x′|ηe

|x−x′|
ξ

where ξ is the correlation length. This correlation length tends to infinity at crit-
icality and leaves a power law decay, < σ(x)σ(x′) >TC

∼ |x − x′|− 1
2 for the Ising

model [82]. The critical temperature, in homogeneous situation, is reached at the
self-dual temperature for the Kramers-Wanier duality (KW). Things are more

55



56 4. STATISTICAL MECHANICS

complicated in inhomogeneous or aperiodic models [24, 26], correlations satisfy
difference equations of the Hirota type [88].

It was showed by Baxter [31, 30, 52] that the interaction constant Jx,x′ could
be understood geometrically as coming from a dual/primal length ratio ρ(x, x′) =
sh2βJx,x′ associated with flat rhombi in the critical case. The pair of dual edges
compose a quad-graph ♦.

4.1.2. The fermion ψ. Besides the spin value at a given point, another ob-
servable is very interesting, it is the disorder operator µy, KW-dual of the spin,
attached to a path γ in the dual graph Γ∗

1, coming from a fixed point on the bound-
ary, and ending at a given face y ∈ Γ∗

0. It consists in flipping the interaction sign
along every edge met by the path γ. What is even more fundamental is the corre-
lation of a spin σx and the disorder µy at an incident face [82]. This observable is

µy

σx

Figure 4.1: The fermion ψx,y depends on a vertex x ∈ Γ0 and a path γ ending at
an incident face y ∈ Γ∗

0.

a fermion, they anti-commute and they change sign when one of the two vertices,
x or y, makes a full turn around the other. It is actually well-defined on a non
trivial double-cover of the discrete direction bundle made of the pairs △ = {x, y}
for (x, y) ∈ ♦1.

Figure 4.2: Double covering around faces and vertices.



4.2. THE CRITICAL A-D-E MODELS 57

Such fermions can be coupled by pairs and give rise to 1-forms, defined on
simply covered oriented edges. Flattening the graph in the plane with a discrete
holomorphic function Z provides such a fermion,

√
dZ.

Proposition 4.1.1. When the discrete conformal structure is critical, then ψ
is a discrete Dirac spinor:

ψ
√
dZ is a discrete holomorphic 1-form.

A continuous limit theorem supports the claim to call such a fermion a discrete
massless Dirac spinor.

The conclusion is that criticality does not need a thermodynamic limit to be
identified, it is the point where some statistical mechanics observables become dis-
crete holomorphic.

A massive Dirac spinor, with elliptic deformations of circular functions can be
as well associated with off-criticality.

Dirac spinors appear as well in the realm of the model of dimers, related
to the Ising model and in other situations. Some work has been done recently
along these steps, mainly by de Tilière and Boutillier [41, 42], Cimasoni

and Reshetikhin [49, 50], Chelkak and Smirnov [103, 48], or Pinkall and
Bohle.

A major achievement was done by Smirnov in [102] where he proved the con-
formal invariance of the critical percolation model, following the steps of Lawler,

Schramm and Werner [77] but using ideas from discrete holomorphicity.
A great generalization of the Dirac spinor idea was endeavored by Cardy and

Rajabpour [93] where they prove that criticality in the Zn-parafermion model is

implied by the holomorphicity of the 1-form ψ
(

dZ
)

n−1
n for ψ the parafermion.

4.2. The critical A-D-E models

The critical A-D-E models correspond, for different choices of regimes and/or
fusion level, to unitary minimal models [34], parafermion theories [15] and super-
conformal theories [96].

4.2.1. A-D-E models. A lattice model in the A-D-E series is associated with
a graph of spins G, of A, D or E type. The spins are nodes of the graph G and
neighbouring sites on the spatial quad-graph must be neighbouring nodes of the

graph. The Ising model corresponds to A3 = + ∗ − with a middle frozen
state ∗ at the white (dual) vertices and two extremal ± states at the black (primal)
vertices.

The A-D-E series appear in a variety of contexts. The basic objects are graphs.
A simple graph G is given by its vertices (or nodes) a ∈ G0 and edges (a, b) ∈ G1 ⊂
G0×G0. We are concerned with unoriented ones, (a, b) ∈ G1 =⇒ (b, a) ∈ G1. The
series is presented in Table 4.3, they are the Dynkin diagrams of simply laced Lie
algebras. The number h is the Coxeter number of the graph G and the exponents
Exp(G) are a subset (with multiplicities) of the nodes of the AL graph sharing the
same Coxeter number as G.

A graph G is completely encoded by its adjacency matrix that we denote by the
same letter G. It is a non negative integer square matrix whose rows and columns
are labelled by the vertices of G, defined by Ga b = 1 if and only if a and b are
adjacent.
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Graph G h Exp(G)

AL • • •∗ �
1 2 3 ··· L L+ 1 1, 2, · · · , L

Dℓ+2
��

❅❅
• • •

•

∗ev �ev

1 2 3 ··· ℓ
ℓ+1

ℓ+2∗od

�od
2ℓ+ 2 1, 3, · · · , 2ℓ+ 1, ℓ+ 1

E6 • • • •

•

∗ �
1 2

3

4 5

6

12 1, 4, 5, 7, 8, 11

E7 • • • • • •
1 2 3

4

5 6

7
∗

� 18 1, 5, 7, 9, 11, 13, 17

E8 • • • • • •

•

∗ �
1 2 3 4

5

6 7

8

30 1, 7, 11, 13, 17, 19, 23, 39

Figure 4.3: Dynkin diagrams of the classical A-D-E simply laced Lie algebras. The
choice of the identity and the fundamental are represented by ∗, � respectively.

What is so special about these graphs is that (along with the tadpole∗ series),
they are the only one whose spectrum is in the open interval (−2, 2).

The Perron-Frobenius theorem implies that the largest eigenvalue of these
transfer matrices is non degenerate, real and positive and its eigenvector can be
chosen to have non negative entries. They can be given explictely in terms of q-

deformed integers Sn = [n]q = qn−q−n

q−q−1 with q = exp(iπ
h ), the largest eigenvalue is

S2 = [2]q and the eigenvector ~ψ is

~ψAL
=

(

[k]q
)

, 1≤k≤L

~ψDℓ+2
=

(

[k]q, 1≤k≤ℓ,
[ℓ]q
[2]q

,
[ℓ]q
[2]q

)

~ψE6 =
(

[1]q, [2]q, [3]q, [2]q, [1]q,
[3]q
[2]q

)

(4.2)

~ψE7
=

(

[1]q, [2]q, [3]q, [4]q,
[6]q
[2]q

,
[4]q
[3]q

,
[4]q
[2]q

)

~ψE8
=

(

[1]q, [2]q, [3]q, [4]q, [5]q,
[7]q
[2]q

,
[5]q
[3]q

,
[5]q
[2]q

)

.

The Dynkin diagram G(1) of an affine simply-laced Lie algebra is obtained from
the graph G by adding a vertex, linked to the node 2 in the D case, to the short,
middle, resp. long leg for E6, E7, E8 respectively, and to the first and final nodes
in the A case (closing it into a cycle). In these affine cases, the entries of the
Perron-Frobenius vector are non negative integers which count the dimensions

∗The tadpole graph TL is obtained from the graph AL by adding a loop at the final vertex;
it is not a simple graph.
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of irreducible representations associated with each node. It is one of the reasons
why the q-deformed integers associated with the nodes of the graph are referred
to as quantum dimensions of quantum analogs of irreducible representations of the
quantum-symmetries.

4.2.2. Graph fusion algebra. The integer linear span of the nodes of the
graph can be given a structure of a commutative graph fusion algebra or Pasquier

algebra [87]. We first specify two vertices, the identity vertex ∗ and the fundamental
vertex �. They are pictured on Table 4.3. They are respectively the vertices labelled
1 and 2 in the AL, D2ℓ+2, E6 and E8 cases, known as type I theories, the vertices
ℓ + 1 and ℓ for the D2ℓ+1 case, and the vertices 7, 4 (the short leg and the fork
node) for the E7 case, known as type II theories

The algebra is defined by stating that the edges of the graph G encode the
action of the fundamental element �:

(4.3) a � =
∑

b∼a

b.

The identity gives one row of the algebra table, the previous formula gives
another, commutativity and associativity determine the rest. On the D4 example,
� = 2 and associativity gives

(4 − 3)(� �) = (4 � − 3 �) � = 0

= (4 − 3)(1 + 3 + 4)(4.4)

so that 4 − 3 = 3 3 − 4 4 and � 3 3 = � shows that

{

3 3 = 4

4 4 = 3
and the expansion

of 3 3 3 implies 3 4 = 1.
The structure constants of this algebra are noted N̂ :

(4.5) ab =
∑

c∈G

N̂a b
c c.

The definition of the algebra implies N̂∗ = I and N̂� = G and these matrices
themselves form an algebra for the usual matrix product:

(4.6) N̂a · N̂b =
∑

c∈G

N̂a b
c N̂c.

As it is a commutative algebra containing the adjacency matrix, its common set of
eigenvectors is given by the orthogonal basis of eigenvectors of G, they are labelled
by Coxeter exponents (we have only given the Perron-Frobenius eigenvector
ψ∗) and the decomposition of each matrix onto its eigenvectors give these integers
through a Verlinde-like formula:

(4.7) N̂a b
c =

∑

j∈Exp(G)

ψj
a ψ

j
b

(

ψj
c

)∗

ψj
∗

.

In the case of the graph AL, it reduces to the usual Verlinde formula and the
structure constants are noted Ni j

k and the matrix of eigenvectors, S. Another set
of non negative integer matrices algebra with the same structure constants as AL,
is given, for an A-D-E graph G (of type D or E) with the same Coxeter number
L+ 1, by the fused adjacency matrices ni defined by the sℓ(2) recurence relation

(4.8) n1 = I, n2 = G, ni+1 = n2 ni − ni−1 for 2 < i < L,
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which also verify the Verlinde like property

(4.9) ni a
b =

∑

j∈Exp(G)

Sj
i

Sj
∗
ψj

a

(

ψj
b

)∗

and the algebra structure

(4.10) ni nj =
∑

k∈AL

Ni j
k nk.

These matrices ni are in fact linear combinations of the structure constants N̂ :

(4.11) ni =
∑

a∈G

ni 1
aN̂a.

For b ∈ G, the rectangular AL ×G matrix V b = (ni a
b)i∈AL,a∈G is called an inter-

twiner because it intertwines the fused adjacency matrices:

(4.12) Ni V
b = V b ni, ∀i ∈ AL.

Throughout these graph algebras, the idea is that nodes label bimodules and
edges are homomorphisms between these bimodules. In the case of the graph G,
the edges describe the homomorphisms arising from tensoring with the fundamental
bimodule, the result is isomorphic to the direct sum of the bimodules which are
adjacent to it on the graph. For type I models, one can associate a graph Ga to
each vertex in the same manner, by placing N̂a b

c edges between the vertex b and
the vertex c. For type II models, this construction fails.

The graph fusion algebra that appears in a Pasquier A-D-E statistical me-
chanics models associated with a given graph G is not the graph fusion itself. This
latter graph encodes the fusion lagebra of a Wess-Zumino-Witten theory while
a Pasquier A-D-E model is associated with a minimal model theory whose fusion
algebra is associated with a double graph Ag−2×G where g is the Coxeter number
of G. A vertex of this double graph is of the form (r, a) ∈ Ag−2 ×G and is adjacent
with the vertex (r′, b) whenever whether r and r′, or a and b, are neighbours in
Ag−2 and G respectively. When G = Ag−1, it is customary to denote such a vertex
with the letters (r, s). The graph fusion algebra for this double graph is simply the
tensor product Ag−2 ⊗ G of the two graph fusion algebras. Hence it is generated
by the two WZW models subalgebras 1 ⊗G and Ag−2 ⊗ 1.

4.2.3. Ocneanu algebra. See [51] for a good account on the subject, re-
stricted to WZW models and [91, 90] for a more general point of view. The
Double Triangles Algebra (DTA), or Ocneanu algebra is describing the algebra of
boundary conditions [91, 90] or quantum symmetries of the problem. It is essen-
tially twice a graph algebra, tensoring a left and a right copies over a subalgebra
named the ambichiral algebra. For models of type I, we use the graph algebra itself
but it involves the parent theory algebra and a twist for the models of type II. As
before, the algebra is determined by a graph, the Ocneanu graph, which has two
types of edges (plain and dashed), corresponding to the action of the left and right
copies of the generator.

Consider D4, the nodes 1, 3, 4 form a Z3 subalgebra, the ambichiral algebra T .
One can then construct the algebra

(4.13) D4 ⊗Z3
D4
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where a ⊗ 3 b = a 3 ⊗ b and a ⊗ 4 b = a 4 ⊗ b for all a, b ∈ D4, for example
2 ⊗ 3 = 2 3 ⊗ 1 = 2 ⊗ 1. This algebra has six elements, 1 ⊗ 1, 2 ⊗ 1, 1 ⊗ 2,
1 ⊗ 3 = 3 ⊗ 1, 1 ⊗ 4 = 4 ⊗ 1, 2 ⊗ 1 = 2 ⊗ 3 = 2 ⊗ 4, 1 ⊗ 2 = 3 ⊗ 2 = 4 ⊗ 2 and
2⊗ 2. It clearly has two generators, a left and a right, �L = 2⊗ 1 and �R = 1⊗ 2.
They generate the left and right chiral subalgebras. One would like to encode this
algebra in a graph as previously but there is an obstruction:

(4.14) (2 ⊗ 2)(1 ⊗ 2) = 2 ⊗ (1 + 3 + 4) = 2 ⊗ 1 + 2 ⊗ 1 + 2 ⊗ 1

so while there is only one edge from 2 ⊗ 1 to 2 ⊗ 2 = (2 ⊗ 1)(1 ⊗ 2), there would
be three in the opposite direction. This problem is solved by splitting the node
2⊗ 2 into three different ones, 1′, 3′, 4′, using a non central extension of the algebra
by an algebra of 2 × 2-matrices [51]. The detail of this extension is not needed
to compute twisted partition functions. One then obtains the graph presented in
Table 2 on p. 62.

The same procedure works for D2ℓ, it has a Jℓ+1 sub-algebra generated by
the odd vertices (the extremities are both taken as odd) over which the tensor
square is taken and extended by an algebra of 2-matrices. In the type I exceptional
cases E6 and E8, it is simpler as there is no need to extend the algebra. The
subalgebras in these cases are generated by 1, 5, 6 and 1, 7 respectively. The AL

case is yet simpler as we tensorise over the full algebra, yielding the algebra back
again: AL ⊗AL

AL ≃ AL, all the elements are ambichiral.
In the type II models, D2ℓ+1 and the exceptional E7, the Ocneanu algebra

is defined through the twisted square tensor of the parent theory: In the case of
D2ℓ+1, the parent graph is the A-type graph sharing the same Coxeter number,
A4ℓ−1. It has a non trivial automorphism

(4.15)

ρ : A4ℓ−1 → A4ℓ−1

a 7→
{

4ℓ− a if a ∈ Exp D2ℓ+1,

a otherwise.

The Ocneanu algebra is then defined as A4ℓ−1 ⊗ρ A4ℓ−1 where a⊗ b = aρ(b)⊗ 1 =
1⊗ ρ(a)b. In the E7 case, the parent theory is D10 and the automorphism is given
by interchanging the nodes 3 and 10, so that the Ocneanu algebra is D10⊗T,ρD10

where T is the D10 ambichiral subalgebra (its odd vertices, counting forked vertices
as both odd).

The Ocneanu algebras just described are the WZW ones. The minimal model
Ocneanu algebras are more involved. In particular one can not retrieve in general
the WZW Ocneanu algebra as a subalgebra of the minimal model one.

These algebras allow us to write twisted partition functions in conformal field
theory with boundary conditions, sesquilinear combinations of extended characters
of associated irreducible representations associated to each node (see Table 1).

We identify each of these vertices of the Ocneanu graph, and their incidence
relations, to discrete partition functions of exactly solvable A-D-E models, finding
their correspondance with integrable and conformal boundary conditions made of
fused face operators.

4.2.4. Critical A-D-E models. The A-D-E statistical models are spin mod-
els. Each vertex in the spatial quad-graph ♦ is tagged by a spin chosen in the
A-D-E graph. Each quadrilateral plaquette is tagged by a spectral parameter u.
A state is a spin distribution σ : ♦0 → G0.
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N1 =

(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

, N2 =

(

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

)

, N3 =

(

0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0

)

, N4 =

(

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)

.

1 2 3 4
1 1 2 3 4 Z1 = χ1χ

∗
1 +χ2χ

∗
2 +χ3χ

∗
3 +χ4χ

∗
4,

2 2 1 + 3 2 + 4 3 Z2 = χ2χ
∗
1 +(χ1 + χ3)χ

∗
2 +(χ2 + χ4)χ

∗
3 +χ3χ

∗
4,

3 3 2 + 4 1 + 3 2 Z3 = χ3χ
∗
1 +(χ2 + χ4)χ

∗
2 +(χ1 + χ3)χ

∗
3 +χ2χ

∗
4,

4 4 3 2 1 Z4 = χ4χ
∗
1 +χ3χ

∗
2 +χ2χ

∗
3 +χ1χ

∗
4.

A4 • • •∗ �
1 2 3 4

Table 1: Fusion matrices, graph fusion algebra and twisted partition functions of
A4 in terms of affine sℓ(2) characters χs.

N̂1 =

(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

, N̂2 =

(

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

)

, N̂3 =

(

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

)

, N̂4 =

(

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

)

.

1 2 3 4

1 1 2 3 4 Z1 = χ̂1χ̂
∗
1 +χ̂3χ̂

∗
3 +χ̂4χ̂

∗
4,

2 2 1+3+4 2 2 Z2⊗1 = χ̂2χ̂
∗
1 +χ̂2χ̂

∗
3 +χ̂2χ̂

∗
4 = Z∗

1⊗2,
3 3 2 4 1 Z3 = χ̂3χ̂

∗
1 +χ̂4χ̂

∗
3 +χ̂1χ̂

∗
4 = Z4,

4 4 2 1 3 Z4 = χ̂4χ̂
∗
1 +χ̂1χ̂

∗
3 +χ̂3χ̂

∗
4

Z1′ = Z3′ = Z4′ = χ̂2χ̂
∗
2

χ̂1 = χ1 + χ5, χ̂2 = χ2 + χ4, χ̂3 = χ̂4 = χ3

1 2 3 4 1′ 2′ 3′ 4′

1 1 2 3 4 1′ 2′ 3′ 4′

2 2 1+3+4 2 2 2′ 1′+3′+4′ 2′ 2′

3 3 2 4 1 3′ 2′ 4′ 1′

4 4 2 1 3 4′ 2′ 1′ 3′

1′ 1′ 2′ 4′ 3′ 1 2 4 3

2′ 2′ 1′+3′+4′ 2′ 2′ 2 1+3+4 2 2
3′ 3′ 2′ 1′ 4′ 3 2 1 4

4′ 4′ 2′ 3′ 1′ 4 2 3 1

1

2 2′
3

4

1′

3′

4′D̃4

Table 2: Fusion matrices, graph fusion algebra, twisted partition functions, Oc-

neanu algebra and Ocneanu graph D̃4 of D4. The extended chiral and ambichiral
subalgebras are shown in bold.

The probability distribution of spins is defined by the critical (unfused) Boltz-

mann weight of each plaquette of spins, depending on the spectral parameter u:

(4.16) W 11

(

d c
a b

∣

∣

∣

∣

u

)

= u
ց

a b

cd

= s(λ− u)δac + s(u)

√

ψaψc

ψbψd
δbd
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where g is the Coxeter number of G, λ = π
g , s(u) = sin(u)

sin(λ) and ψa is the entry,

associated with the node a, of the Perron-Frobenius eigenvector of the adjacency
matrix G.

These Boltzmann weights are represented by a local face operator Xj(u) in
the Temperley-Lieb algebra T (N, λ) [34]:

(4.17) Xj(u) = ��

��❅❅

❅❅u

→
.
.
..
.
.
..
.
..
.
.

..

.

.

..

.

.

..

.

.

..

.

.

.

j−1 j j+1

= s(λ− u)I + s(u)ej

where ej = Xj(λ) is a Temperley-Lieb generator and j = 1, . . . , N labels the
position in the lattice.

The algebra is defined by the following identities:

e2j = s(2λ) ej

ej ek ej = ej |j − k| = 1(4.18)

ej ek = ek ej |j − k| > 1

4.2.5. Fusion Projector. In turn, this model gives rise to a hierarchy of fused
models whose Boltzmann weights we are going to describe. They are associated
with blocks of plaquettes where the internal spins are summed over in a particular
way.

We first define recursively the Wenzl fusion operators P r
j , for r ∈ 〈1, g〉 as

follows:

(4.19)

P 1
j = P 2

j = I

P r
j = 1

Sr−1
P r−1

j+1 Xj(−(r−2)λ) P r−1
j+1 , r ≥ 3 ,

where Sk = s(kλ) and j is restricted, resp. periodical in the cylinder, resp. toroidal
case [34]. Thus, P r

j can be expressed as a function of ej , ej+1, . . . , ej+(r−3). In
particular,

(4.20) P 3
j =

1

S2

��

��❅❅

❅❅−λ

→
= I − 1

S2

��

��❅❅

❅❅+λ

→
.

We shall represent the fusion operators diagrammatically as

(4.21) P r
j = ��

��❅❅

❅❅

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

j−1 j j+r−3 j+r−2

.

It is easy to show that this operator is in fact a projector. Moreover,

P r′

j′ P r
j = P r

j P
r′

j′ = P r
j for 0 ≤ j′ − j ≤ r − r′.(4.22)

�
�❅
❅

�
�❅
❅

�
�❅
❅

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

= �
�❅
❅

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.

The +1 eigenvectors of P r(a, b) are indexed by an integer γ ∈
〈

1, nr a
b
〉

ref-

ered to as the bond variable. We denote them ~Ur
γ (a, b), the fusion vectors, also
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called essential paths. In the AL case, there is always at most a unique such linear
combination of paths while in the D and E cases, the branches allow greater mul-
tiplicities, the fused adjacency matrices contains not only 0 and 1 but also some
2. As an example, there are two paths on AL, going from the node 2 to itself in
2 steps, namely (2, 1, 2) and (2, 3, 2). As they both backtrack, the fusion vector

~U3
1 (2, 2) is unique, proportional to their difference ψ

1
2
3 (2, 1, 2) − ψ

1
2
1 (2, 3, 2).

4.2.6. Fused face operators. The fusion projectors allow us to define the
(p, q)-fused face operator whose main feature is the product of q rows of p local face
operators with a shift of the spectral parameter by ±λ from one face to the next:

(4.23)

Xpq
j (u) = �

�
�

��

�
�

�
��

❅
❅

❅

❅
❅

❅
Xpq(u)

→
..
.
.
.
..
.
.
..
.
.
.
.
..
.
.
..
.
.
..

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

j−1 j+q−1

j+p−1

j+p+q−2

= �
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

❅
❅

❅

❅
❅

❅

❅
❅

❅
❅

❅
❅

u

❅❅❘
u+(q−1)λ

❄

u+(q−p)λ

❏
❏❏❪

u−(p−1)λ

❅❅■

�
�
�✒

❅❅■ �
�
�✒

.

.

.
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..

.
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.
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.
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.

..

.

..

.

.

�
�

P q+1
j ��

P p+1
j+q �

�

.

The position of the projectors and spectral parameters can be altered by pushing-
through:
(4.24)

Xpq
j (u) = �
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These properties imply several others, namely the Transposition Symmetry,

(4.25) Xpq
j (u)T = Xqp

j (u+ (q−p)λ),

the Generalized Yang-Baxter Equation (GYBE),
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the Inversion Relation,

Xpq
j (u)Xqp
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

= sp q
1 (u) sp q

1 (−u) P q+1
j P p+1

j+q ,(4.27)

where sp q
i (u) =

∏p−1
j=0

∏q−1
k=0 s(u+ (i−j+k)λ) (we will also use the notation sq

i for

p = 1), and the Abelian Property,

Xpq
j (u+ (p−1)λ)Xqp

j (v + (q−1)λ) = Xpq
j (v + (p−1)λ)Xqp

j (u+ (q−1)λ) .(4.28)

These operators, contracted against the fusion vectors, yield the (p, q)-fused
Boltzmann weights. It depends not only on the spins at its four corners but also
on bond variables on its edges:
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(4.29)

where the function sp q−1
0 (u) eliminates some scalar factors common to all the spin

configurations which appear in the process of fusion. In the AL case, we saw that
the bond variables are trivial.

These fused Boltzmann weights satisfy the following symmetry
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and Crossing Symmetry :
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 .(4.31)

These fused operators, when inserted along a seam, disturb the partition func-
tion and we identified one by one the twisted partition functions: We diagonalized
large but finite size transfer matrices with inserted seams, renormalized the finite
size corrections and recovered the correct list of eigenvalues, associated with char-
acters. The computation of the spectrum for one seam typically took several hours,
ending up in months of computer number crunching. See Fig. 4.4 for a typical
renormalization procedure. This way, we observed numerically the fusion algebra
of the continuous theory.
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Figure 4.4: Example of extrapolated sequences corresponding to the first ten energy
levels of the double row transfer matrix for the A5 parafermion model with (1, 3|1, 3)
boundary conditions, for different number of faces N ; the horizontal axis is 1/N ,
the thermodynamic limit corresponds to the vertical axis. The correct character
Z13|13(q) = q−1/24(1+q1/3+q+2q4/3+2q2+3q7/3+5q3+o(q3)) and its degeneracy
are recovered.
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bourg, France, 1998. under the direction of Daniel Bennequin, Prépublication de l’IRMA,
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(2), 68:152–180, 1944.

[63] Katarzyna Gebal, J. Andreas Bærentzen, Henrik Aanæs, and Rasmus Larsen. Shape Anal-
ysis Using the Auto Diffusion Function. In Alexa et al. [22], pages 1405–1413.

[64] Xianfeng Gu and Shing-Tung Yau. Global conformal surface parameterization. In SGP ’03:
Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry process-
ing, pages 127–137, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[65] Jr. H.B. Lawson. Complete minimal surfaces in s3. Ann. of Math., (92):335–374, 1970.
[66] Udo Hertrich-Jeromin. Transformations of discrete isothermic nets and discrete cmc-1 sur-

faces in hyperbolic space. Manuscripta Math., 102(4):465–486, 2000.
[67] Tim Hoffmann. Discrete cmc surfaces and discrete holomorphic maps. In Discrete integrable

geometry and physics (Vienna, 1996), volume 16 of Oxford Lecture Ser. Math. Appl., pages
97–112. Oxford Univ. Press, New York, 1999.

[68] Tim Hoffmann. Discrete Hashimoto surfaces and a doubly discrete smoke-ring flow. In Dis-
crete differential geometry, volume 38 of Oberwolfach Semin., pages 95–115. Birkhäuser,
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Université Louis Pasteur, Strasbourg, France, 1991.

[95] J.R. Reyes Mart́ınez. Correlation functions for the Z-invariant Ising model. Phys. Lett., A,
227(3-4):203–208, 1997.

[96] Christoph Richard and Paul A. Pearce. Integrable lattice realizations of N = 1 supercon-
formal boundary conditions. Nucl. Phys., B, 631(3):447–470, 2002.
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