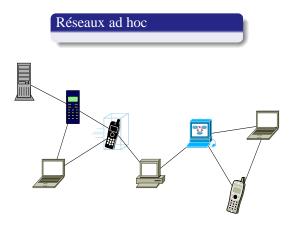
Partionnement et Geocasting dans les Réseaux Mobiles Ad hoc et Collecte des Données dans les Réseaux de Capteurs

Idrissa Sow

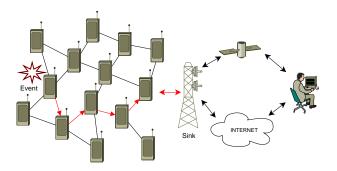
MIS / Université de Picardie Jules Verne

Amiens, 4 juin 2009


- Introduction et Problématique
- 2 Partitionnement
- 3 Geocasting
- 4 Architecture Virtuelle
- 5 Conclusion

- 1 Introduction et Problématique
- 2 Partitionnement
- 3 Geocasting
- 4 Architecture Virtuelle
- 5 Conclusion

Contexte


Introduction

Contexte

Introduction

Réseaux de capteurs

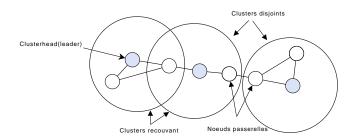
Difficultés communs

- ▶ L'accès au ressources partagées (Couche MAC)
- Le routage
- L'énergie ⇒ durée de vie
- ► L'espace de stockage

Motivations

- ▶ Pourquoi ?
- ► Identifier les problèmes
- Proposer des approches

- 1 Introduction et Problématique
- 2 Partitionnement
- 3 Geocasting
- 4 Architecture Virtuelle
- 5 Conclusion


Présentation du problème

Le partionnement consiste à regrouper les nœuds proches géographiquement et d'en élire un chef selon un processus distribué d'élection de leader.

Présentation du problème

Le partionnement consiste à regrouper les nœuds proches géographiquement et d'en élire un chef selon un processus distribué d'élection de leader.

Présentation du problème

Plusieurs stratégies

- o Choix du leader et politique de maintiens
- Clusters recouvrant ou disjoints ⇒ notion de diamètre
- o Clusters denses ou moins denses ⇒ notion de cardinalité

Ephremides et Baker [1981]

Lowest-ID heuristic

Gerla et Perekh [1987]

Hightest-Degree heuristic

Ephremides et Baker [1981]

Lowest-ID heuristic

Gerla et Perekh [1987]

Hightest-Degree heuristic

Basagni [1999]

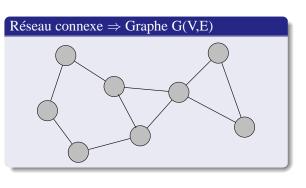
Node Weight heuritic (DCA & DMAC)

Idée de Basagni

- o Deux nœuds ne peuvent pas avoir le même poids
- Exemple de poids = inverse de la vitesse

Idée de Basagni

- Deux nœuds ne peuvent pas avoir le même poids
- Exemple de poids = inverse de la vitesse


Poids plus réaliste

Contribution

Former des clusters

Selon une heuristique de poids plus réaliste ne nécessitant de poids unique par nœud

- Voisinage $\Gamma(u)$
- ∘ Degré d_u

Chaque nœud u

 \mathbf{I} v_i : vitesse entre deux instants t_i et t_j

Chaque nœud u

- \mathbf{I} v_i : vitesse entre deux instants t_i et t_j
- 2 $M_u = \frac{1}{n} \sum_{i=1}^n v_i$: vitesse moyenne

15 / 65

Chaque nœud u

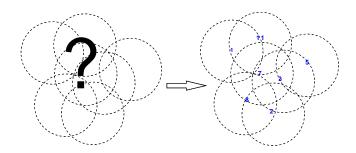
- $\mathbf{1}$ v_i : vitesse entre deux instants t_i et t_j
- $2 M_u = \frac{1}{n} \sum_{i=1}^n v_i : \text{vitesse moyenne}$
- $\omega_u = 1/M_u$: mobilité

Chaque nœud u

- $\mathbf{1}$ v_i : vitesse entre deux instants t_i et t_j
- $2 M_u = \frac{1}{n} \sum_{i=1}^n v_i : \text{vitesse moyenne}$
- $\omega_u = 1/M_u$: mobilité
- 4 E_r et E_s : Enérgies résiduelle et seuil

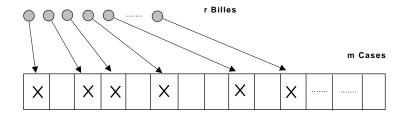
Expression du poids

Poids de u


$$P_u = \{\omega_u, E_r(u), \phi_u, d_u, ID_u\}$$

- o $\phi_u = \delta d_u$: différence de degré (δ une constante positive)
- \circ *ID*_u: identification

¹Stoimenovic et al avaient déjà émis cette idée mais ne l'ont pas mis en œuvre : 🔻 : 🔊 🤉 🧇


Identification : Cas de Réseau anonyme

- ► Réseau anonyme de *n* nœuds
- ► Identification temporaire ⇒ identifiant unique

Identification : Cas de Réseau anonyme

▶ Placer r billes dans m cases [Occupancy Problem]

Quelle sera la valeur minimale de m?

Identification : Cas de Réseau anonyme

Théorème

Preuve Si n est le nombre total des nœuds connus de tous et N une borne supérieure de n alors la probabilité d'octroyer un identifiant unique à chaque nœud selon une distribution uniforme d'intervalle

$$[1 \cdots N^3]$$
 est supérieur à $\exp(-\Theta(\frac{n^2}{N^3}))$.

u est candidat au status de clusterhead

$$\forall z \in \Gamma(u) / P_u > P_z$$

 $ightharpoonup P_u > P_z$

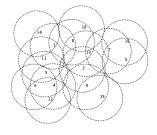
1.
$$(\omega_u > \omega_z) \wedge (E_r(u) > E_r(z)) \wedge (\phi(u) > \phi(z))$$

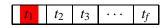
 $ightharpoonup P_u > P_z$

1.
$$(\omega_u > \omega_z) \wedge (E_r(u) > E_r(z)) \wedge (\phi(u) > \phi(z))$$

2.
$$(\omega_u = \omega_z) \wedge (E_r(u) = E_r(z)) \wedge (\phi(u) = \phi(z)) \wedge (ID_u > ID_z)$$

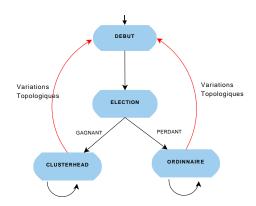
- $ightharpoonup P_u > P_z$
- **1.** $(\omega_u > \omega_z) \wedge (E_r(u) > E_r(z)) \wedge (\phi(u) > \phi(z))$
- **2.** $(\omega_u = \omega_z) \wedge (E_r(u) = E_r(z)) \wedge (\phi(u) = \phi(z)) \wedge (ID_u > ID_z)$

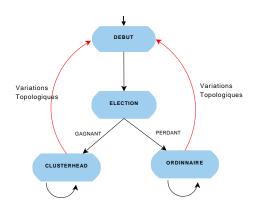

3.
$$(\omega_u \ge \omega_z)$$


$$(E_r(u) \ge E_r(z)) \lor (E_r(u) \ge E_s)$$

$$(\phi(u) \ge \phi(z)) \lor \{(E_r(u) \ge E_s) \lor (E_r(u) \ge E_r(z))\}$$

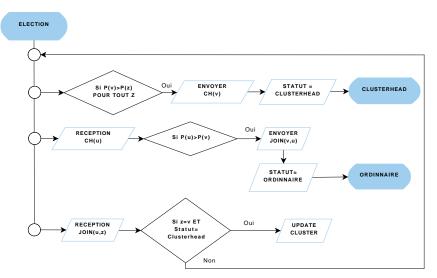
Formation des clusters



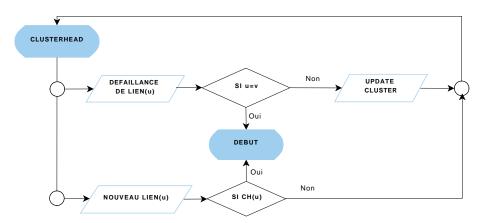

On suppose

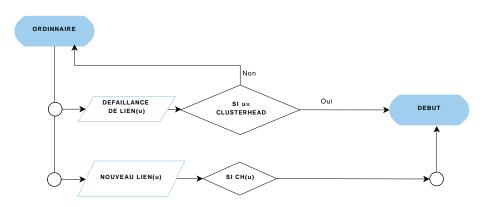
- Suite finie d'instants $\{t_1, t_2, \dots, t_i, \dots t_f\}$
- ▶ Deux primitives
 - o CH(u)
 - o JOIN(v,u)
- ► Tout message est réçu

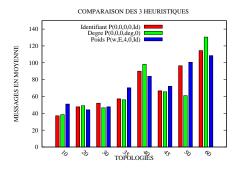
Formation des clusters

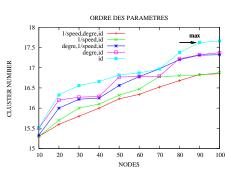


Formation des clusters



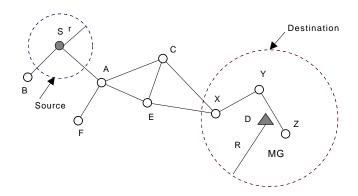

Formation des clusters [nœud v]


Maintenance des clusters [nœud v]



Maintenance des clusters [nœud v]

Quelques résulats de simulations

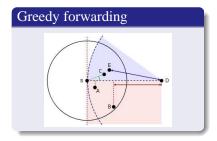


- Voisinage à 1-saut
- Diff de degré $\delta = 4$

- 1 Introduction et Problématique
- 2 Partitionnement
- 3 Geocasting
- 4 Architecture Virtuelle
- 5 Conclusion

Présentation du problème

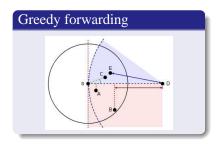
- \triangleright Source : $S(x_s, y_s)$
- ► Destination = $\zeta(D(x_d, y_d), R) \Rightarrow$ Multicast group (MG)
- ▶ $Z \in Destination ssi d(Z, D) \leq R$


Formulation du problème

► Transmission unicast de $S \Rightarrow D$

Formulation du problème

- ► Transmission unicast de $S \Rightarrow D$
- Basée sur deux approches de routage géographique



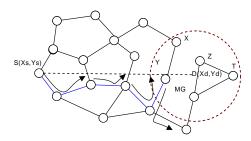
- DIR [Kranakis et al 1999]
- MF [Kleinrock et al 1984]
- NFP [Li et al 1986]



Formulation du problème

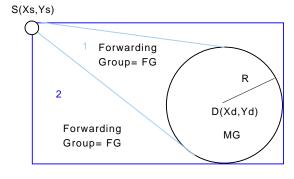
- ► Transmission unicast de $S \Rightarrow D$
- Basée sur deux approches de routage géographique

- DIR [Kranakis et al 1999]
- MF [Kleinrock et al 1984]
- NFP [Li et al 1986]

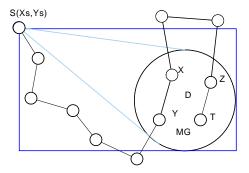

- [Bose et al 1999]

Approches avec garantie de livraison

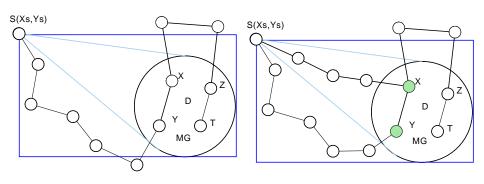
- ▶ Basée sur face routing
 - Greedy-Face Greedy [Bose,Stojmenovic 1999]
 - GPSR [Karp, Kung 2000]


_ ...

► Necéssite un graphe planaire


Approches sans garantie de livraison

- Basagni [1999]
- ▶ Vaidya [1999]
- ► Papavassiliou [2003]


Modèle

Approches sans garantie de livraison

Échec de route

Approches sans garantie de livraison

Livraison partielle

Échec de route

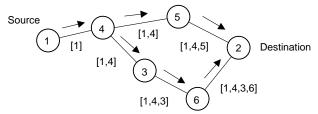
Contribution

Proposer une approche

- o Nécessitant pas de graphe planaire
- o Améliorant progressivement le taux de réussite dans le MG

Contribution

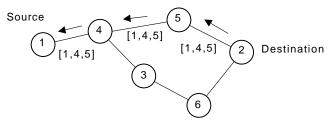
Utiliser DSR


- o De nouveaux messages de contrôle
- o Modifier les procédures de découvertes de route

Philosophie de DSR [Dynamic Source Rounting]

Initiator Id Tai	rget Id List of r	odes
------------------	-------------------	------

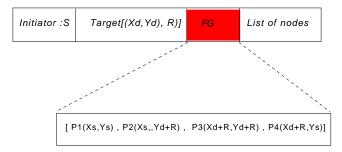
Route Request



Enregistrement du chemin

Philosophie de DSR [Dynamic Source Rounting]

Target Id	Initiator Id	List of nodes
-----------	--------------	---------------


Route Reply

Renvoi du chemin

Procédures de découverte de routes

► Format de paquets Route Request :

► Format de paquets Route Reply : Reste identique [DSR]

Messages de contrôle

► Position_Echange_msg:

- ∘ Collecter des voisins potentiels $\Rightarrow \exists ?u/u \in FG$
- Envoyer Route Request aux voisins potentiels

Messages de contrôle

► Position_Echange_msg :

- Collecter des voisins potentiels $\Rightarrow \exists ?u/u \in FG$
- Envoyer Route Request aux voisins potentiels
- ► Impass_msg:

Emetteur	Destinataire	Status
----------	--------------	--------

Notifier un échec de route (FG?,MG?)

Espace de déploiement de taille : L x l

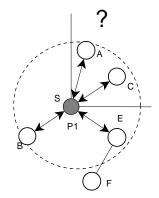
La source S définie

∘ Multicat Group \Rightarrow MG= $\zeta(D(X_d, Y_d), R)$

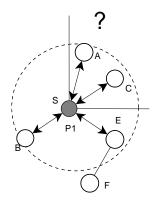
► Espace de déploiement de taille : L x l

La source S définie

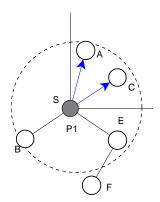
- Multicat Group \Rightarrow MG= $\zeta(D(X_d, Y_d), R)$
- Forwarging Group $\Rightarrow FG = P1\binom{x}{y}, P2\binom{x}{y}, P3\binom{x}{y}, P4\binom{x}{y}$ L' = dist(P1, P4) et l' = dist(P1, P2)

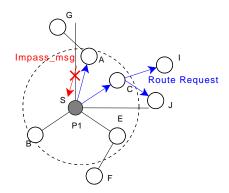


► Espace de déploiement de taille : L x l

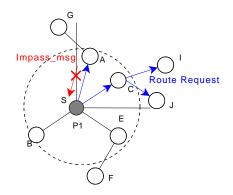

La source S définie

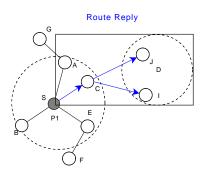
- Multicat Group \Rightarrow MG= $\zeta(D(X_d, Y_d), R)$
- Forwarging Group $\Rightarrow FG = P1\binom{x}{y}, P2\binom{x}{y}, P3\binom{x}{y}, P4\binom{x}{y}$ L' = dist(P1, P4) et l' = dist(P1, P2)
- Deux paramètres de dilatation d_1 et $d_2 \Rightarrow d_1 = \frac{L-L'}{n}$, $d_2 = \frac{l-l'}{n}$

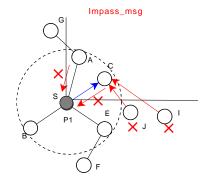

Diffusion Position_Echange_msg

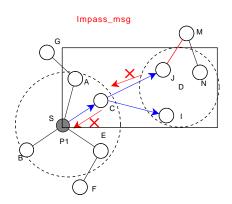


Diffusion Position_Echange_msg




Route Request



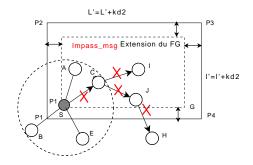


Échec de route en C

Échec de route en C

Échec de route en J

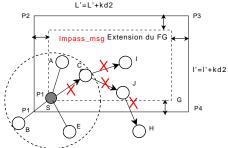
- ► Échec de route à la source :
 - o Ré-adapter le Forwarging Group


$$FG = P1\left(\frac{x - \frac{d_1}{2}}{y - \frac{d_2}{2}}\right), P2\left(\frac{x - \frac{d_1}{2}}{y + \frac{d_2}{2}}\right), P3\left(\frac{x + \frac{d_1}{2}}{y + \frac{d_2}{2}}\right), P4\left(\frac{x + \frac{d_1}{2}}{y - \frac{d_2}{2}}\right)$$

- ► Échec de route à la source :
 - o Ré-adapter le Forwarging Group

$$FG = P1\binom{x - \frac{d_1}{2}}{y - \frac{d_2}{2}}, P2\binom{x - \frac{d_1}{2}}{y + \frac{d_2}{2}}, P3\binom{x + \frac{d_1}{2}}{y + \frac{d_2}{2}}, P4\binom{x + \frac{d_1}{2}}{y - \frac{d_2}{2}}$$

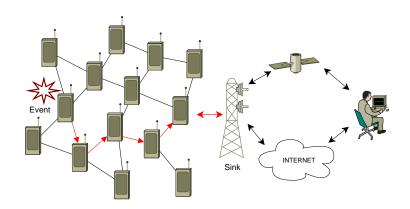
o Relancer la procédure de découverte



- ► Échec de route à la source :
 - o Ré-adapter le Forwarging Group

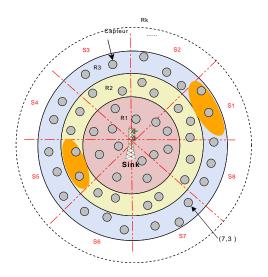
$$FG = P1\binom{x - \frac{d_1}{2}}{y - \frac{d_2}{2}}, P2\binom{x - \frac{d_1}{2}}{y + \frac{d_2}{2}}, P3\binom{x + \frac{d_1}{2}}{y + \frac{d_2}{2}}, P4\binom{x + \frac{d_1}{2}}{y - \frac{d_2}{2}}$$

o Relancer la procédure de découverte



la n^{ime} procédure $(k = n) \Rightarrow$ Flooding

- I Introduction et Problématique
- 2 Partitionnement
- 3 Geocasting
- 4 Architecture Virtuelle
- 5 Conclusion

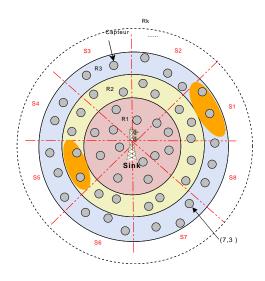

Réseaux de Capteurs

Qu'est que c'est?

Consiste à construire par dessus du réseau une structure virtuelle avec un ensemble de fonctionnalité associées.

- ➤ Structure : Organiser les entités et faciliter leurs interactions
- ▶ Fonctionnalités : Maintenir la structure et faciliter son utilisation

Sink


► T. omnidirectionnelles

$$\circ R_1 < R_2 \ldots < R_k$$

► T. directionnelles

$$\circ S_1(R_k,\alpha)..S_m(R_k,\alpha)$$

- $ightharpoonup R_x \cap S_y \Rightarrow \text{cluster}(x,y)$
- $k = 2^i$ et $m = 2^j$

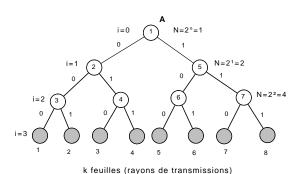
Sink

► T. omnidirectionnelles

$$\circ$$
 $R_1 < R_2 \ldots < R_k$

► T. directionnelles

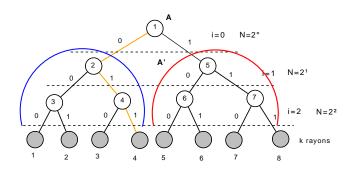
$$\circ$$
 $S_1(R_k,\alpha)..S_m(R_k,\alpha)$


- $ightharpoonup R_x \cap S_y \Rightarrow \text{cluster}(x,y)$
- $k = 2^i$ et $m = 2^j$

Capteur doit lire

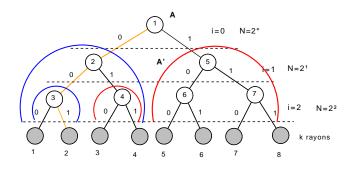
► l'identité (*x*, *y*) de son cluster

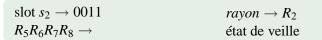
Apprentissage des coordonnées[k=8]


R_{x}	$b_1 b_2 b_3$
R_1	000
R_2	001
R_3	010
R_4	011
R_5	100
R_6	101
R_7	110
R_8	111

Les R_x

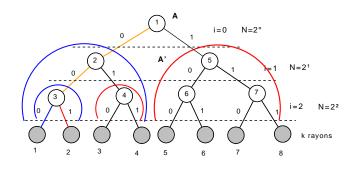
Apprentissage des coordonnées[k=8]

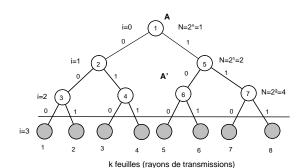

R_{x}	$b_1 b_2 b_3$
R_1	000
R_2	001
R_3	010
R_4	011
R_5	100
R_6	1 01
R_7	1 10
R_8	1 11



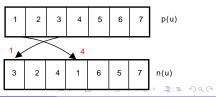
slot $s_1 \rightarrow 00001111$ $rayon \rightarrow R_4$

Apprentissage des coordonnées[k=8]

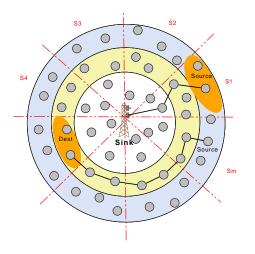

R_{x}	$b_1b_2b_3$
R_1	000
R_2	001
R_3	010
R_4	011
R_5	100
R_6	101
R_7	110
R_8	111


Apprentissage des coordonnées[k=8]

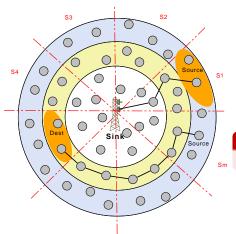
R_{x}	binaire
R_1	000
R_2	001
R_3	010
R_4	011
R_5	100
R_6	101
R_7	110
R_8	111


$$\begin{array}{ccc} \operatorname{slot} s_3 \to 01 & \operatorname{rayon} \to R_1 \\ \operatorname{slot} s_4 \to 01 & \operatorname{rayon} \to R_3 \end{array}$$

Choix des slots coté capteurs


Méthode analytique

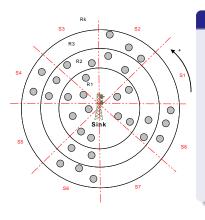
- Soient A et A'
- slot= $1 + \sum_{j=1}^{log(k)} b_j 2^{log(k)-j}$
- \circ $n(slot) \Rightarrow rayon$


numéro

Pour quel but?

- Routage centralisé (dans le secteur)
- Routage distribué (externe)

Pour quel but?


- Routage centralisé (dans le secteur)
- o Routage distribué (externe)

Problème

Clusters vides

Proposer un algorithme permettant au Sink de repérer l'ensemble des clusters vides

Découvertes des clusters vides

Secteurs Rayons \overline{R}_2 R_i $\overline{R_k}$ R_1 0 0 0 0 0 0 0 0 0 0

Table des Clusters

0

0 0

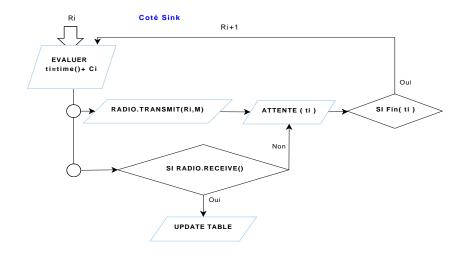
 S_1

 S_2

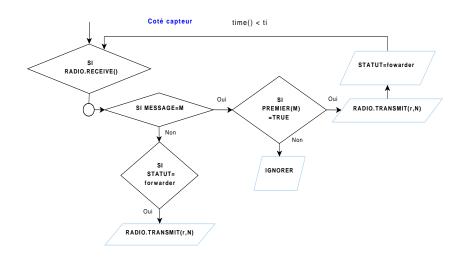
 S_i

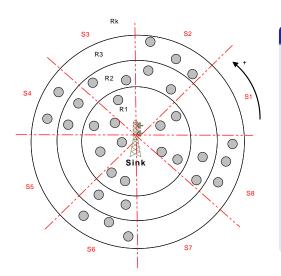
0 0

0


Découvertes des clusters vides

On suppose


- \triangleright Durée t_i suffisamment choisi :
 - pour chaque R_i
 - \circ Sink $\Rightarrow R_i$
 - \circ $R_i \Rightarrow Sink$
 - Forwarder (pour $R_i > R_j$)
- ▶ Primitives :
 - o radio.transmit(r/R, N/M)
 - o radio.receive()


Découverte des clusters vides

Découverte des clusters vides

Découvertes des clusters vides

Table des Clusters

Secteurs	Rayons		
	R_1	R_2	R_3
S_1	1	0	0
S_2	0	1	1
$egin{array}{c} S_2 \ S_3 \ S_4 \ \end{array}$	1	1	0
	1	1	1
S_5 S_6 S_7 S_8	1	0	0
S_6	1	1	1
S_7	0	0	0
S_8	1	1	1

Choix des routes

Table des Clusters

Secteurs	Rayons			
	R_1	R_2	R_3	
S_1	1	0	0	
S_2	0	1	1	
S_3	1	1	0	
S_4	1	1	1	
S_5	1	0	0	
S_6	1	1	1	
S ₃ S ₄ S ₅ S ₆ S ₇ S ₈	0	0	0	
S_8	1	1	1	

- Choisir un cluster pour une rêquete donnée
- Choisir un modèle de communication
 - o centralisé (routage interne)
 - o distribué (routage externe)

Rêquete $r : (Clu(R_3, S_2), \{Clu(R_2, S_2), Clu(R_2, S_3), Clu(R_1, S_3)\})$

- I Introduction et Problématique
- 2 Partitionnement
- 3 Geocasting
- 4 Architecture Virtuelle
- 5 Conclusion

Conclusions

► Clusterisation dans les réseaux mobiles ad hoc basée sur des paramètres qui reflètent l'état du réseau

Conclusions

- ► Clusterisation dans les réseaux mobiles ad hoc basée sur des paramètres qui reflètent l'état du réseau
- ► Geocasting avec garantie de livraison basé sur un algorithme classique de découverte de route sans inonder le réseau de hello paquet

Conclusions

- Clusterisation dans les réseaux mobiles ad hoc basée sur des paramètres qui reflètent l'état du réseau
- ► Geocasting avec garantie de livraison basé sur un algorithme classique de découverte de route sans inonder le réseau de hello paquet
- ▶ Une architure virtuelle qui favorisant l'aide au routage et la fusion des données.

▶ Mesurer les performances de notre algorithme de geocast au sein de la région Geocast (MG)

- ▶ Mesurer les performances de notre algorithme de geocast au sein de la région Geocast (MG)
- Clusterisation appliquée au problème d'initialisation

- ► Mesurer les performances de notre algorithme de geocast au sein de la région Geocast (MG)
- Clusterisation appliquée au problème d'initialisation
- ► Introduction de l'économie d'énergie dans nos protocoles

- ► Mesurer les performances de notre algorithme de geocast au sein de la région Geocast (MG)
- ► Clusterisation appliquée au problème d'initialisation
- ▶ Introduction de l'économie d'énergie dans nos protocoles
- ► Tolérances aux pannes de nos protocoles

Annexe

P.Théorème1

Preuve du Théorème1

$$\begin{aligned} & p = \frac{Card(\psi)}{Card(\varphi)} = \frac{m(m-1)(m-2)\dots m-r+1)}{m^r} \\ & = (1-\frac{1}{m)}(1-\frac{2}{m})\dots(1-\frac{(r-1)}{m}) \\ & = (1-\frac{2}{m}-\frac{1}{m}+\frac{1}{m^2})\dots(1-\frac{(r-1)}{m}) \approx 1-\frac{(1+2+\dots r-1)}{m} \\ & \text{Si r est petit alors } p = 1-\frac{r(r-1)}{2m} \\ & \text{Si r est grand alors } p = \log(p) = \log(1-\frac{r(r-1)}{2m}) \approx \log(-\frac{r(r-1)}{2m}) \\ & \approx \exp(-\frac{r(r-1)}{2m}) > \exp(-\Theta(n^2/N^3)) \text{ en posant } r = n \text{ et } m = N^3 \end{aligned}$$