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Synthèse Pour une Logique Temps-Réel FaibleDans ette thèse, nous nous intéressons à la spéi�ation et à la synthèse de ontr�leurs dessystèmes temps-réels. Les modèles pour es systèmes sont des Event-reording Automata. Noussupposons que les ontr�leurs observent tous les évènements se produisant dans le système etqu'ils peuvent interdirent uniquement des évènements ontr�lables. Tous les évènements nesont pas néessairement ontr�lables.Une première étude est faite sur la logique Event-reording Logi (ERL). Nous proposonsdes nouveaux algorithmes pour les problèmes de véri�ation et de satisfaisabilité. Ces algo-rithmes présentent les similitudes entre les problèmes de déision ités i-dessus et les prob-lèmes de déision similaires étudiés dans le adre du µ-alul. Nos algorithmes orrigent aussides algorithmes présents dans la litérature. Les similitudes relevées nous permettent de prouverl'équivalene entre les formules de ERL et les formules de ERL en forme normale disjontive.La logique ERL n'étant pas su�samment expressive pour dérire ertaines propriétés dessystèmes, en partiulier des propriétés des ontr�leurs, nous introduisons une nouvelle logiqueWTµ. La logique WTµ est une extension temps-réel faible du µ-alul. Nous proposons desalgorithmes pour la véri�ation des systèmes lorsque les propriétés sont érites en WTµ. Nousidenti�ons un fragment de WTµ appelé WTµ pour le ontr�le (C-WTµ). Nous proposons unalgorithme qui permet de véri�er si une formule de C-WTµ possède un modèle. Cet algorithmen'a pas besoin de onnaître les ressoures (horloges et onstante maximale omparée ave leshorloges) des modèles.En utilisant C-WTµ omme langage de spéi�ation des systèmes, nous proposons desalgorithmes de déision pour le ontr�le entralisé et le ∆-ontr�le entralisé. Ces algorithmespermettent aussi de onstruire des modèles de ontr�leurs.Mots-lés : Systèmes temps-réel, Event-Reording automata, logique temps-réel, satisfais-abilité, Event-Reording Logi, méthodes formelles, véri�ation, synthèse de ontr�leurs.Disipline : Informatique.LaBRI,Université Bordeaux 1,351, ours de la Libération,33405 Talene-Cedex (FRANCE).



Synthesis For a Weak Real-Time LogiIn this dissertation, we onsider the spei�ation and the ontroller synthesis problem forreal-time systems. Our models for systems are kinds of Event-reording automata. We assumethat ontrollers observe all the events ourring in the system and an prevent ourrenes ofontrollable events.We study Event-reording Logi (ERL). We propose new algorithms for the model-hekingand the satis�ability problems of that logi. Our algorithms are similar to some algorithmsproposed for the same problems in the setting of the standard µ-alulus. They also orretearlier proposed algorithms. We de�ne disjuntive normal form formulas and we show thatevery formula is equivalent to a formula in disjuntive normal form.Unfortunately, ERL is rather weak and an not desribe some interesting real-time prop-erties, in partiular some important properties for ontrollers. We de�ne a new logi that weall WTµ. The logi WTµ is a weak real-time extension of the standard µ-alulus. We presentan algorithm for the model-heking problem of WTµ. We onsider a fragment of WTµ alledWTµ for ontrol (C-WTµ). We show that the satis�ability of C-WTµ is deidable. The algo-rithm that we propose for deiding whether a formula of C-WTµ, has a model does not needto know the maximal onstant used in models and it enables the onstrution of a witnessmodel.Using C-WTµ, we present algorithms for a entralised ontroller synthesis problem and aentralised ∆-ontroller synthesis problems. The onstrution of witness ontrollers is e�etive.Keywords: Real-time systems, Event-Reording automata, formal methods, real-time logi,
µ-alulus, Event-Reording Logi, satis�ability, model-heking, ontroller synthesis.Disipline: Computer Siene.LaBRI,Université Bordeaux 1,351, ours de la Libération,33405 Talene-Cedex (FRANCE).
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IntrodutionA system is a set of interating objets. We onsider omputerised systems, that are systemsembedding omputational devies. The role of omputational devies is to exeute programs.Computerised systems inlude transformational systems (lassial systems whose inputs areavailable at the beginning of the exeution, and whih deliver their outputs when terminating:for instane ompiler and bath systems), and reative systems that reat ontinuously totheir environment, at the speed determined by the latter [HP85℄. Reative systems maintainan ongoing interation with their environment while transformational systems do not. In theirturn, reative systems inlude interative systems (for instane: World wide web browsers)and real-time systems (for instane ontrol systems). While deadlines of omputations, tasksor events an be oasionally missed in interative systems, they should not be missed inreal-time systems. Thus, the orretness of a real-time system not only depends on logialinterations that happen in it, but also on the time at whih interations (reeption of inputsor outomes of outputs) our.Beause the size of omputational devies have shrank, they are embedded in physialobjets that they ontrol. Control operations are often triggered by internal or external signalsand the results of omputations are used to introdue motion in physial objets of systems.In pratie, the ommuniation between omputational devies and the rest of the systemis realised using sensors that interpret physial input and atuators that introdue motionsin the objets using results of omputations. Compat disk players, mobiles phones, ars,washing mahines and planes are examples of systems. For example there is around 30 programinstrutions in a washing mahine and around one billion program instrutions in a mobilephone.Aording to the arhiteture of systems, it is usual to onsider entralised systems anddeentralised systems. Centralised systems embed a single omputational devie with a singleprogram, while deentralised systems embed more than one omputational devie or programneeding to ommuniate to ahieve tasks inluding the ontrol of physial devies.The design of programs and systems should be a rigorous task and programs need to bevalidated. The validation approah that is widely onsidered onsist to test the system withsome test ases. The test ases are often generated manually by the developers. This validationapproah is not reliable. Indeed, test ases ould not over all the aspets of the systems. Forexample, the test ases approah had not been e�ient to disovered bugs in the phone swithCCS7 at Manathan(1990), in the phone ommuniation network at Paris(1998), in the Arianeroket(1999) [Fle02℄. Just imagine a ritial bug in the program that ommands the exit ofthe wheels of an airplane or in systems embedded in automated ars.On the other side, assume that one is able to detet bugs in a system and that one wants1



2to orret them. A solution may onsist to orret erroneous parts of the system; if one is notable to orret the system, a solution may onsist to start again the implementation of thesystem. Another solution may onsist to ombine the erroneous system with a new one in suha way that the resulting system does not longer ontain bugs.In this thesis we onsider the orretion problem for systems. The above motivates the useof formal methods presented below.Formal MethodsIt is often the ase that requirements for systems are desribed in a natural language by us-tomers, and implementation is performed by a team of engineers. It should be lear that, if therequirements are omplex, so will also be the system. But, the simpliity of the requirementsis not a guarantee for the simpliity and the orretness of the systems, as natural languagesare often ambiguous. It is important to have �exat� languages to desribe properties, �exat�methods to design systems, �exat� methods to validate or orret systems. These are the goalsof Formal methods that inlude:
• Test generation aims at providing methods for asserting that a system is orret. Itamounts to generation of a olletion of test sequenes from a formal spei�ation anda property to be tested.
• Proving orretness amounts to providing a formal proof on the orretness of a systemwith respet to a property desribed in a formal language. This method is semi-automatias it is often the ase that prover needs human interation (introdution of new axioms)to terminates.
• Model-heking is an automati method that allows to hek whether a system satis�esa given property.
• Satis�ability/realisability provides tehniques to hek whether a given property an beful�lled by at least one system. It also provide tehniques to onstrut a system thatsatis�es a given property.
• Controller synthesis designs ontrollers for a main system (alled the plant) so that theontrolled system satis�es a given property. It an be applied if the supervision of thesystem an be done by disabling in the plant some ations at the origin of the bugs.All the lasses above are somehow related. For example ontroller synthesis methods anbe useful when a given system does not satisfy a property (test, proof, model-heking) andwhen the ontrollers an be onstruted automatially (satis�ability).We will onsider the ontroller synthesis method for the orretion of real-time systemswhen the properties are desribed with a �weak� real-time formal language. But, let us disusssome hallenges onerning the de�nition of models for systems and the de�nition of formallanguages to desribe properties for systems.



3The Design of models and Deision ProeduresThe main goal of formal models is to provide formal representations for interesting �real-life�situations as we are not always interested in all the aspets of systems [HP85, Sif01℄.The design of models for systems and properties depends on interesting aspets of systemsand the nature of the properties for systems. Are we interested in the time at whih a variationours in systems (if so, models may expliitly mention information on the time)? Are weinterested only in the logial ourrene of events? Are we interested in a ommuniationprotool (if so, a model may have a queue for message) or in reative systems (if so, no queueis needed in the model). The design of models is based on the abstration realised on interestingaspets of systems.We are most often interested in the representation of behavioural aspets of systems.It is natural to think of behavioural aspets of systems as suessive observable variationsourring in systems. Eah variation may have a ause. Models for systems are abstrationof the variations and the auses of the variations. An abstration of a variation ontains: anabstration of starting ontrol point of the variation, an abstration of the ending ontrolpoint of the variation and, an abstration of the ause of the variation. Abstrat variationsare often alled transitions, abstrat ontrol points are often alled states and abstrat ausesof variations are often alled events.To desribe properties of systems, one an use natural languages; beause they are am-biguous, they are negleted in favor of formal languages having exat semantis. The design ofmodels for properties depends on the models for systems and the nature of properties for themodels. Properties for models will ombine properties on states and properties on transitionsleading from a state (future-based properties) or on transitions leading to a state (past-basedproperties). The standard types of properties for systems inlude reahability properties (somesituation an happen), safety properties (some situation will never happen), liveliness proper-ties (some situation is unavoidable) fairness properties (some situation will happen in�nitelyoften) deadlok-free properties (the system never stop).Whatever is the nature and aspets of a system and the properties, it is obvious that theirrepresentations are useful in pratie only if we are able to provide deision proedures forthe validation and the orretion problems inluding the model-heking, and the ontrollersynthesis. The models of systems and the languages to desribe properties are in this way, theresult of an arbitration between the expressive power (that is lass of systems and propertiesthey an represent) , their suintness enabling the representation of a big system with amodel of small size, and their simpliity that makes their use easy and enables problems tobeome deidable (existene of deision proedures).For pratial issues, deision proedures need to be e�ient and their implementationshould be easy. For theoretial issues, it ould happen that we are interested in the under-standing of models and their theoretial properties. Then, we may not be interested in thee�ieny of proedures, but only in relations with others deision proedures.Abstration of systems into models is the soure of some problems inluding a non de-terminism of the models, the (behavioral) equivalene of models and the formalisation of thenotion of ombination of systems. A non determinism ours in a model when two outgoingtransitions from a state an be triggered by the same event; this an happen if an event isan abstration of two di�erent auses of variations from the same ontrol point. Having two



4models for the same system, knowing whether they are equivalent an redue the omplex-ity of deision proedures when a model is more tratable (for deision proedures) than theothers. Models of systems an be ombined in synhronous mode or asynhronous mode. Insynhronous mode, a transition ours in the ombined system when from the respetive ur-rent state of eah omponent of the ombination, it is possible to take a transition aused bya same event. In asynhronous model it is not required that the event happens at the sametime in all the omponents. Reative systems are often ombined in synhronous mode.Providing new languages for properties of systems raises fundamental problems of thelanguage theory inluding emptiness heking (does a property have a model?), inlusionheking (is a set of models of a property inluded in a set of models of another property), theexpressive power of languages (what properties an be desribed with a given language?) andlosure properties under operations on languages (union, intersetion, omplementation). Forexample, for the losure under omplementation, it ould be useful and pratial that the setof systems that do not satisfy a property an be desribed with another property written inthe same language; for the losure under intersetion, it ould be useful that the onjuntionof two properties an be desribed with a single property of the language.Formal Models for Reative SystemsA low level model for systems is untimed transition system that is just a olletion of transi-tions. In that model, a transition s a
−→ s′ indiates that in the state s, the proess an moveto the state s′ when the event a ours. No expliit information on the time of the our-rene of the events are mentioned. Untimed transition systems have been extended by addinga tripping ondition on the transitions. For probabilisti transition systems [PZ93℄, trippingonditions are just probabilisti laws. For timed transition systems (TTS) [HMP92℄, trippingonditions are information on the time at whih the event an our. In timed transitionsystems, transitions are labelled either with a delay or by an event. Delay an range over adisrete domain (natural numbers for example) for disrete time transition system or over adense domain (real numbers for example) for dense time transition system.The problem with the low level models above is that they are not tratable for automation.They an not be represented using a �nite struture as the set of states and the set of transitionsin a model an be in�nite. High level models that an be represented in a �nite way have beendeveloped.There are two theoretial approahes for high-level modelling of systems. The algebraiapproah [vG97℄ and the �nite state transition systems based approah. The semantis ofhigh level models is often desribed using low-levels models. Algebrai-based models an oftenbe translated into transition systems. Thus, they will not be onsidered here. We desribebelow development that have been done for high-level models in the transition systems basedapproah.Kripke struture or �nite state automata [CCG00℄ are transition systems with �nitelymany states. Behaviours of the systems are a sequene of transitions.Durational Kripke struture (DKS) [Lar05℄ are somehow a generalisation of ideas behindmodeling systems with TTS or many other real-time models [EMSS91, CCG00, GHKK05℄.
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aa(d) Continuous with delayFigure 1: Example of a DKS and its semantis.They are kinds of �nite state automata having tripping onditions on transitions. There on-dition are integer interval. For example, a transition s
[2,3],a
−→ s′ asserts that the system anmove from s to s′ when if the event a ours at 2, or 3 time units after the system enter thestate s. Then it is fundamental to wonder about the states of the system 1, 2, or 3 times unitsafter it enter the state s′ or the state of the system between 1 and 2 times units. Three disretesemantis had been onsidered (see Figure 1 for illustration):1. the the jump semantis. In this semantis the system move from a state s to s′ withouttaking any intermediary state. Thus, the states of a system at the times d+1, d+2, . . .,

d+ t− 1 are not expliitly represented when moving from s in the time d to the state s′in the time d+ t. Here time progresses but in a disrete way.2. the ontinuous semantis with intermediary states. Here, moving from s to s′ takes ttime units and the system moves through intermediary states between s and s′. All therossed intermediary states have the same properties as s. This semantis is not timedeterministi but time elapse ontinuously. Then next reahable state is hosen veryearly in the time.3. the ontinuous semantis with delay. The system lets the time elapse in its urrent statebefore moving to another state. This semantis is time deterministi and time elapsesontinuously. Moreover after an ourrene of an event, the next reahable state is hosenlate in the time.Timed automata [AD94℄ has been provided as powerful model to desribe real-time sys-tems. In timed automata, lok variables are used to handle the elapse of the time. All the



6lok variables grow with the same rate (the one of the universal time). Timed automata arealso a kind of timed extension of �nite state automata. A transition s
g,a,X
−→ s′ is equippedwith a tripping onstraint g and a set of lok X to be reset when the transition is taken.The tripping onstraint ompares lok variables with rational onstants. There is two typesof omparisons: the omparison between a single lok and a rational alled diagonal free on-straint and the omparison of a di�erene between two loks and a rational alled diagonalonstraint. Cloks are evaluated in the dense-time domain (set of positive real number). Theontinuous semantis of a high level transition s

g,a,X
−→ s′ is a set of low level transitions ofthe forms (s, v)

t
−→ (s, v + t) or (s, v)

a
−→ (s, v[X := 0]) (v represents a valuation of theloks, t represent a delay, v + t returns the value of the loks after the delay and v[X := 0]return the values of the loks after the reset of all the lok in X). A low level transition

(s, v)
a
−→ (s, v[X := 0]) ours only if the value of the loks represented by v satis�es theondition g. We remark that sine their introdution by Alur and Dill, timed automata havebeen extended to interesting models suh as hybrid automata [Hen96℄, updatable timed au-tomata [BDFP04℄.Event-reording automata [AFH99℄ model has been introdued as a restrited form of timedautomata. The main di�erene between Event-Reording automata and timed automata isthat eah lok is assoiated to a unique event and the unique lok to be reset when atransition is taken is the lok assoiated to the event on that transition.Formal Desription of PropertiesLow level models are widely used to represent the semantis of high level models. Lan-guages to desribed properties must be interpreted on transition systems models. Formallanguages [Koy90, AH94, HR04℄ enable exat desription of linear-time properties (that areproperties on the possible exeutions) and/or branhing-time properties (that are propertieson states whih may have several possible futures). They also desribe either properties onuntimed systems or properties on timed systems.As it is disussed in [EH83℄, the use of linear or branhing time spei�ation languagesdepends on the underlying nature of time. The use of linear time language is based on thehypothesis that eah moment (present time) has a unique future time while, when usingbranhing time languages, we impliitly assume that the future of a present time ould bedivided into alternative future times. Alternation an be observed in non deterministi mod-els as an event an be the soure of two alternative transitions. Branhing-time languagesallow to haraterize interesting behavioral relations between systems suh as simulation andbisimulation [Par81℄; they are sometimes preferred to linear-time languages.The development of formal languages to desribe properties has been done in two maindiretions: The logial diretion that provides logial languages and the automata-based di-retion. We present here some relevant languages for untimed systems followed with somerelevant languages for real-time (timed) systems.The automata approah Automata, that are Kripke strutures equipped with a set of a-epting sequenes of transitions, an be used to desribe a system and its properties. A Kripkestruture, desribes the dynamis of a system. Behaviours (sequenes of events or states) are



7delared �good� or �bad� aording to whether they belong to an aeptane ondition (Rabin,Parity, et...). Thus, automata [Tho90℄ are kinds of devies reognising set of words, set oftrees, or set of transition systems. Automata on words are used to desribe linear-time prop-erties and automata on trees, in partiular alternating automata on trees, are often used todesribe branhing-time properties.Usual methods for emptiness heking and universality heking for automata-basedlanguages onsist to hek whether some states are reahable. Forward or Bakward stateexploration algorithms are often used. The losure under boolean operations usually involvesthe onstrution of new automata.We reall some results onerning some important problems on automata-based languages.Finite state automata on words and event-reording automata on timed words are losed underall boolean operations and the language inlusion testing problem is deidable. The languageinlusion testing problem for these automata is also deidable. Timed automata on words arenot losed under omplementation and language inlusion testing problem is undeidable. Thelanguage emptiness testing problem for all the aforementioned automata on words is deidable.Alternating automata on trees (or transition systems) are losed under boolean operations,their emptiness and their inlusion testing problem is also deidable.The logial approah Here are some important languages that have been developed.Linear-temporal Logi (LTL) is a linear-time temporal logi introdued by Pnueli [Pnu77,LPZ85℄ for untimed systems. LTL enables the desription of properties on a single exeutionof the system or sequene of transitions. But it is not possible to desribe a property of theform �on all the exeutions of a system it is always true that there exists an exeution thatsatis�es a property�.The Computational Tree Logi (CTL [CE82℄, CTL∗ [EH83℄) are branhing-time logis foruntimed systems. They allow quanti�ation (existential or universal) on transitions outgoingfrom states of models. Formulas of CTL∗ and CTL are not interpreted over independent set ofexeutions (sequene of transitions) but over a tree-like struture representing a dependenebetween exeutions.The Hennessy-Milner logi was introdued by Hennessy and Milner [HM80℄ for untimedsystems (initially represented with the CCS algebrai representation). This logi inlude twoimportant modal operators 〈a〉 and [a]. A state s of a system satis�es 〈a〉ϕ when there isat least one outgoing transition s
a
−→ s′ suh that the target s′ satis�es the property ϕ. Astate s of a system satis�es [a]ϕ when for all outgoing transitions s a

−→ s′, the target state s′satis�es the property ϕ. A weakness of the Hennessy-Milner logi is that it an not be usedto desribed fairness or liveliness properties.The µ-alulus introdued by Kozen [Koz82, AN01℄ is an expressive logi whih extendsthe Hennessy-Milner Logi [HM80℄ by onsidering the greatest (ν) and least (µ) �xpoint op-erators. Fixpoint operators are useful to desribe reahability, fairness or liveliness properties.The µ-alulus is more expressive than CTL and CTL∗. Formulas of the µ-alulus inludesarbitrary nested �xpoints. The power of nested �xpoint had been demonstrated [Bra98, BL05℄;in partiular they are used to desribe properties suh as: �an event ours in�nitely often� or�an event ours almost all the time�. The model-heking and the satis�ability problems of



8the µ-alulus are deidable. The µ-alulus is as expressive as alternating automata on trees.The metri temporal logi (MTL) [Koy90℄ is a timed linear-time temporal logi whihextends LTL with timing onstraints. For instane, with MTL, it is possible to write a formulaexpressing that a request p is always followed one time unit later by a response q. There aretratable fragments of MTL that had been onsidered like Safety-MTL [OW06b℄ whih imposebound on the modality on the future andMITL [AFH96℄ whih disallows puntual onstraintssome modality of the future.Timed Computational Tree Logi (TCTL) [ACD93℄ is an extension of CTL that expliitlymentions the information on the time.Timed Modal Logi(TML) and Extended Timed Modal Logi (ETML) are timed logiproposed by Larsen et al. [HLY91℄ to desribe properties of proesses expressed in the real-time proess alulus TCCS of Wang [Yi90℄. Among properties that an be handled withthese logi an important property for real-time proesses is the neessity modal operator ontime delays that enables to desribe a property like �After a oin has been inserted, o�eewill be ontinuously available for 30 seonds. TML is an extension of the Hennessy-MilnerLogi [HM80℄ whih onsiders modalities of the form 〈a〉∃Iϕ, 〈a〉∀Iϕ, [a]∃Iϕ, and [a]∀Iϕ wherethe semantis of I is a delay interval, a is an ation and ϕ a formula and . A formula 〈a〉∀Iϕspei�es a property whih holds invariably for all time-delays in I; a system that satis�es thisformula is suh that any state reahed after a time-delay within I must have a a-suessorsatisfying ϕ. A formula 〈a〉∃Iϕ speify a property whih holds eventually for some time-delayin I. Operator of the form [a]∃Iϕ and [a]∀Iϕ are de�ned by duality. Then, Larsen et al. haveshown that if I is de�ned with a �rst-order assertion, then the model-heking of TML isdeidable. ETML is a fragment of TML in whih time intervals are not spei�ed. In [HLY91℄the model-heking and the satis�ability of ETML is left open.The logi Ltµ has been introdued by Sokolsky et al. [SS95℄. The logi Ltµ is a timedextension of the µ-alulus; it enables the desription of safety and liveliness properties of real-time systems. The model-heking of Ltµ is shown deidable in [SS95℄. The logi Ltµ supports alloriginal operators of the µ-alulus as well as two new time modalities (neessity/universalityand possibility/eventuality of time suessors) also used in [HLY91℄. But Lµt formulas arealternation free as the fragment of the µ-alulus studied in [SS94, BC96℄, whih means thatin every Ltµ formula the �level� of mutually reursive greatest and least �xpoint operatorsis one (arbitrary nested �xpoint is not authorized). The loal model-heking algorithm for
Ltµ [SS95℄ uses quotients of loks values as de�ned by Alur and Dill [AD94℄. As this model-heking algorithm is loal, the whole state spae need not be explored and re�nements ofthe quotient are arried only when neessary to satisfy lok onstraints in the formula or thetimed automaton used to represent the system under investigation.The logi Lν [LLW95℄ has been onsidered by Laroussinie et al.. It is a fragment of thelogi Tν [TXJS92℄ introdued by Henzinger et al.; it allows to desribe properties on timedautomata. Formulas of Lν use also ombined modalities on events of the lassial µ-aluluswith modalities on time-delays. The logi Lν onsiders the greatest �xpoint operator; it doesnot onsider the least �xpoint operator. The logi Lν is su�iently expressive for harateris-ing timed automata (behavioral haraterisation) [Cer93, SI94, IPPA00℄. For a given timedautomata, it is possible to onstrut a Lν harateristi formula. The satis�ability problem of
Lν have been left open in [BCL05℄.Event-Clok Logi (EventClokTL) has been proposed by Raskin and Shobbens [RS99℄.



9EventClokTL is an extension of LTL with event-reording and event-prediting operators.The satis�ability problem of EventClokTL have been shown deidable.Event-reording Logi (ERL) is a timed extension of the µ-alulus introdued bySorea [Sor02℄ and it is used to desribe properties on systems modelled with event-reordingautomata. ERL is more expressive than the event-reording part of EventClokTL sine it in-ludes arbitrary nested �xpoints. The extension onsist in adding timing onstraints in modaloperators obtaining modal operator of the form 〈g, a〉 and [g, a]. For example, a formula of theform 〈hb < 3, a〉 expresses the fat that the event a must our at most 3 time units after thelok hb has been reset (reall that the lok hb is reset only after an ourrene of the event
b). A deision proedure for the satis�ability problem of ERL is provided in [Sor02℄.Let us omment some tehniques used to solve some problems on logial languages. Thelosure properties are often a onsequene of their de�nitions. Indeed most of the logiallanguages use boolean operators (logial "and" operator (∧) for the losure under intersetion,logial "or" operator (∨) for the losure under union, and logial "negation" operator (¬) forthe omplementation). Duality is often a fundamental priniple of logial languages.The emptiness testing of logial languages is also alled the satis�ability problem. A widelyused method for temporal logi is the tableau method. Tableau systems were �rst developedby Gentzen as syntatial devies for modal logis [Gen34℄. Tableau systems bene�t from thestruture of the properties to deompose their satis�ability heking into the satis�abilityheking of smaller properties. It has been shown that there exists an intimate relationshipbetween tableaux and automata over trees [Eme85℄.Whatever is their forms (automata or logi), languages on the same models need to beompared. To ompare two languages, it is ommon to provide example of properties that anbe desribed with only one of the two languages and it is ommon to show how propertieswritten in one of the two languages an be rewritten in the other language.Methods and Algorithms for the Model-hekingTehniques for the model-heking of systems have been developed depending on models andthe spei�ations. Most of these tehniques work on low level models.There are two basi strategies when designing a model-heking algorithm: �Global� algo-rithms that are reursive on the struture of the spei�ation and evaluate eah of part of thespei�ation over the states of the transition system. �Loal� algorithms, in ontrast, exploreonly parts of the states spae of the system, but hek all parts of the spei�ation. The hoieof loal or global algorithm does not a�et the worst-ase omplexity of model-heking al-gorithms. Model-heking algorithms are often presented in the form of tableau [Eme85℄ andthey use results on two player games.In order to provide e�ient model-heking algorithm, some tehniques to redue the sizeof models have been developed [Mer01℄ inluding, symboli tehniques and abstration basedtehniques. Symboli tehniques onsist in enoding set of states using ompat objets suhas logial formulas or e�ient data strutures [GV08℄ suh as Binary Deision Diagrams,Di�erene Bound Matries, Clok Di�erene Diagrams.Let us reall some algorithms for the model-heking in some settings:
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• The setting of Kripke Strutures. The model-heking of systems modeled with Kripkestrutures has been widely investigated for linear-time properties (LTL [Var07℄) andBranhing-time Properties (CTL and CTL∗ [LS01℄, the µ-alulus [SE89℄). The teh-niques aforementioned have been used and implemented in tools suh as SMV [CCG+02℄,MEC 5 [GV04℄, Lustre [CPHP87℄ and SPIN [Hol97℄.
• The setting of timed automata. Abstration based tehniques have been provided for thereahability of timed automata. These tehniques inlude region abstration and zone-based abstration. They onsist in partitioning the in�nite set of states of the semantisinto �nite sets of abstration lasses. Region and zone-abstration based tehniqueshave also been deployed for other types of properties. This tehniques have been usedfor the model-heking of TCTL [TXJS92℄, the model-heking of MTL and its frag-ments [OW05, OW06a, AH93, OW06b, AFH96℄, the model-heking of TML [HLY91℄,ETML [HLY91℄, Ltµ [SS95℄, Lν [LLW95℄ and Event-Reording Logi [Sor01, Sor02℄.Tools implementing model-heking algorithms for real-time systems inlude Kro-nos [BDM+98℄, Uppaal [BLL+96℄, Hyteh [HHWT97℄, Cm [LL98℄, Tempo [Sor01℄ andPHAVer [Fre05, Fre08℄.Methods and Algorithms for the Controller SynthesisWe reall that the supervisory ontrol problem, as introdued by Ramadge and Won-ham [RW89℄, asks whether a given system alled a plant an be ontrolled with anothersystem alled a ontroller in suh a way that the resulting system alled the ontrolled systemsatis�es the given ontrol objetive. The synthesis problem asks whether a witness ontrolleran be e�etively omputed.The ontroller synthesis (ontrol + synthesis) problem is studied depending on theoretialassumption made on the systems. These assumptions onern the nature of the events insystems, the arhiteture of systems and the nature of properties.The notions of ontrollability , observability , distinguishability are often onsidered. Thenotion of ontrollability is based on the assumption that some events of the systems an bedisable (ontrollable event) and the others an not. The notion of observability is based on theassumption that ontroller an not observe all the events that happen in the systems. Thisnotion onsiders observable events and unobservable events. The notion of distinguishabilityrelies on the fat that a ontroller may not abstrat a ause of a variation in the same manneras the system; then, it ould happen that ourrenes of some events in the systems an notbe distinguished by the ontrollers. Relying on the arhiteture of the systems, the entralisedsupervisory ontrol is opposed to the deentralised (distributed) ontrol . The entralised super-visory ontrol of a system is ahieved by a unique ontroller while in the deentralised ases,more than one ontroller an be ombined with the plant to meet the ontrol objetives. Itis usual to distinguish internal ontrol objetives from external ontrol objetives. Internalontrol objetives refer to state properties while external ontrol objetives refer to propertieson sequenes of events.Let us reall some previous works on the ontroller synthesis for disrete event systemsand dense-time systems.Ramadge and Wonham [RW89℄ onsider the supervisory ontrol problem of disrete event



11systems. In their setting, a plant and ontrollers are deterministi �nite state automata;the notion of ontrollability is also onsidered. The external ontrol objetive is either areahability or a safety property. Many authors [PR05, BK06, AVW03, AW07℄ have onsid-ered the supervisory ontrol of disrete event systems modeled with �nite state automatawhen the ontrol objetives are desribed with a µ-alulus formula. These extensions ofthe works of Ramadge and Wonham use the expressive power of the µ-alulus to desribemore general properties for supervised systems and ontrollers. They onsider the notionof ontrollability, observability, and distinguishability and the entralised and deentralisedsupervisory ontrol problems. They use a so-alled quotient based method that providepowerful quotient operation for the division of properties by systems and the division ofproperties by properties. In the works of Arnold et al. [AVW03, ABPV05, AW07℄, thedivision operation works for disjuntive normal form formulas and the omputation ofwitness ontrollers is e�etive (winning strategy in two player parity game) for some lassesof deidable supervisory ontrol problems. In partiular, Arnold et al. [AW07℄ have shownthat the supervisory ontrol problem is deidable under the three following onditions: atmost one ontroller is non deterministi; all but one spei�ation of ontrollers are simple (asimple spei�ation does not desribe observability and distinguishability onditions); andthe spei�ation of the non deterministi ontroller is simple.The entralised dense-time version of the supervisory ontrol has been investigated andsolved in [AMP95℄. In that investigation, Maler et al. onsider timed automata models, un-timed ontrol objetives and the notion of ontrollability. They provide an algorithm to deidewhether a disrete ontroller exists, and show that if the answer is positive, a witness ontrolleran be e�etively omputed. The ontrol objetive is a reahability or a safety property.D'Souza and Madhusudan [DM02℄ have also onsidered the entralised dense-time supervi-sory ontrol for timed automata when the external ontrol objetive is desribed with a timedautomaton. They also onsider the notion of ontrollability. For deidable ases of ontrol,D'Souza and Madhusudan synthesise ontrollers with a priory limit on their resoures (num-ber of loks, power of the ontrollers to observe loks). Madhusudan et al. [BDMP03℄ hadextended the frameworks of D'Souza and Madhusudan by onsidering the notion of partialobservability.Bouyer et al. [BBC06℄ have investigated entralised dense-time supervisory ontrol of timedautomata when the external ontrol objetive is desribed with the logi MTL. They onsidernotions of ontrollability and they provide deidability results when there is a limit on the re-soures of ontrollers. Controllers are just winning strategies in some two player parity games.Laroussinie et al. [BCL05℄ have onsidered the entralised supervisory ontrol problem fortimed automata models with Lν when the set of events is partitioned into a set of ontrollableevents and a set of unontrollable events. They present how to deide the existene of on-troller for some deterministi fragment of Lν , but the proedure does not say how to onstruta witness ontroller.Contributions of this ThesisWe onsider ontroller synthesis for real-time systems that an be ombined in synhronousmode; the ontrol objetives are timed branhing-time properties.



12 The framework of Arnold et al. [AVW03, ABPV05, AW07℄, based on �nite state automataand the µ-alulus, is a powerful framework for the ontroller synthesis of untimed systems.This work proposes methods to deide the existene of ontrollers and methods to synthesizeontrollers. For timed systems, Laroussinie et al. [BCL05℄ have provided an extension to theframework of Arnold et al. as they have onsidered timed automata models for systems and thelogi Lν to desribe ontrol objetives. The method in the Laroussinie et al. framework onlydeides the existene of a ontroller and does not provide a method to synthesise ontrollers.Our goal in this thesis is to �nd a lass of timed models �weaker� than the lass of timedautomata, to use a �weak� real-time extension of the µ-alulus for providing a powerfulframework for the ontroller synthesis of real-time systems. We also hope to reuse tehniquesof the framework of Arnold et al.We start our investigation with event-reording automata as models for systems and Event-Reording Logi (ERL) as language to desribe properties. We present new deision proeduresfor the model-heking and the satis�ability of ERL. We also present a disjuntive normal formtheorem for ERL. We show that ERL is not expressible enough to desribe useful propertiesof timed proesses, espeially some interesting properties for ontrollers. For instane, withthe modalities of ERL we are not able to desribe a property of the form � an event an beompleted at any moment that satis�es a timing onstraint�.Then, we introdue a new logi that we all WTµ whih is also a �weak� real-time extensionof the µ-alulus. We show that WTµ is more expressive that ERL. We onsider fundamentalproblems on WTµ namely: the model-heking and the satis�ability problems. We show thatthe model-heking problem of WTµ is deidable. For the satis�ability, we onsider a frag-ment of WTµ alled C-WTµ (WTµ for the ontrol). We provide a deision proedure for asatis�ability problem of C-WTµ formulas. That proedure works without any information onthe maximal onstant of the models. It also shows how to onstrut a witness model for asatis�able formula.We present deision proedures for the entralised and the ∆-dense-time entralised on-troller synthesis problems when the ontrol objetives are desribed with C-WTµ formulas.Organisation of this ThesisIn Chapter 1 we present basi notions that we use later in the thesis. These notions inludealternating automata on trees, two player parity games, the µ-alulus, the logi Lµ and someframeworks to the ontroller synthesis.In Chapter 2, we present models for real-time systems and some fundamental problemsabout these models. Our model, that we all timed proess is nothing else but event-reordingautomata (without an aeptane ondition). We present the reahability analysis in thatmodel using well know region abstration tehniques and zone abstration tehnique. Wepresent how to remove diagonal onstraints in the model without hanging their behaviouralproperties.In Chapter 3, we present Event-Reording Logi (ERL for short). We onsider funda-mental problems about that logi: the model-heking problem, the satis�ability problem,the disjuntive normal form problem. The �rst two problems have been onsidered earlier bySorea [Sor02℄. Our algorithms for these problems enable a better understanding of the models;



13they also enable to reuse some algorithms for the same problems for the standard µ-alulus.We provide a disjuntive normal form theorem for ERL formulas. We show that the algo-rithm of Sorea [Sor02℄ for the satis�ability heking is ambiguous and is not orret in ase ofdiagonal onstraints.The Chapter 4 introdues the new logi WTµ. There, we de�ne WTµ and we show thatWTµ is more expressive than ERL as any formula of ERL an be translated into equivalentformula of WTµ and some formulas of WTµ an not be translated into formulas of ERL. WTµenables a desription of some interesting properties in partiular some properties of ontrollers.Then we onsider the model-heking and the satis�ability problems for WTµ. We show thatthe model-heking of WTµ is deidable. We introdue C-WTµ as a deidable fragment ofWTµ. Our deision proedure for the satis�ability of C-WTµ shows how to onstrut modelsfor satis�able formulas.The entralised and the ∆-dense time entralised ontroller synthesis problems are onsid-ered in Chapter 5. Formulas are di�ult to handle beause they use �xpoint operators. Weintrodue modal automata that are a kind of alternating automata. Modal automata are inter-preted over timed proesses. We de�ne the quotient of modal automata over timed proesses.Then, we onsider a sublass of modal automata that we all modal automata for ontrol (C-MA). We show that a C-MA automaton an be translated into an equivalent C-WTµ formulaand reiproally a C-WTµ formula an be translated into an equivalent C-MA automaton. Atthe end of this hapter, we show that the two aforementioned ontroller synthesis problemsare deidable; moreover we show how to onstrut ontrollers.
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Chapter 1PreliminariesThis hapter presents some frameworks for the supervisory ontrol problem of disrete systemsand dense-time systems.First of all, we reall some de�nitions and results onerning transition systems, automataon words, the standard µ-alulus and automata on transition systems. Then, we present theframeworks of Ramadage and Wonham [RW89℄, Arnold et al. [AVW03, ABPV05, AW07℄,D'Souza and Madhusudan [DM02℄ and Laroussinie et al. [BCL05℄.1.1 Automata on WordsIn this setion we present basi notions that inlude labelled transition systems, bisimulationrelation, (Bühi, Rabin and Parity) aeptane onditions and automata on words.De�nition 1 A word over an alphabet Σ is a sequene w = w0.w1 . . . of symbols in Σ. Σ∗ isthe set of �nite words over Σ, and Σω is the set of in�nite words over Σ.For a word w, the number of ourrenes of the letter a in w is denoted by |w|a. Given
w ∈ Σω, we onsider the set

Inf(w) = {a ∈ Σ | ∀i∃j > iwj = a}of symbols in Σ ourring in�nitely often in w.De�nition 2 A labelled transition system over an alphabet Σ (or a Σ-labelled transition sys-tem for short) is a tuple S = 〈S,Σ, s0,∆S〉 where S is a set of states, s0 ∈ S is the initial stateand ∆S ⊆ S × Σ × S is a transition relation. A Σ-labelled transition system is deterministiif ∆S is a partial funtion ∆S : S × Σ→ S.We often write s a
−→ s′ instead of simply the transition (s, a, s′) ∈ ∆S .A �nite labelled transition system is a system with �nitely many states.De�nition 3 A produt of two Σ-labelled transition systems P = 〈P ,Σ, p0,∆P 〉 and S =

〈S,Σ, s0,∆S〉 is the Σ-labelled transition system P × S = 〈P × S,Σ, (p0, s0),∆P×S〉 where
(p, s)

a
−→ (p′, s′) if and only if p

a
−→ p′ and s a

−→ s′.15



16 Chapter 1. PreliminariesWe de�ne two behavioral relations between label transition systems. These relations, alledsimulation and bisimulation, have been introdued by Park [Par81℄. Let S1 = 〈S1,Σ, s
0
1,∆S1〉and S2 = 〈S2,Σ, s

0
2,∆S2〉 be two labelled transition systems.De�nition 4 A simulation between S1 and S2 is a relation R ⊆ S1 × S2 suh that whenever

s1Rs2 and a ∈ Σ, then:
• If s1 a

−→ s′1 then there exists s′2 ∈ S2 suh that s2 a
−→ s′2 and s′1Rs′2.De�nition 5 A bisimulation between S1 and S2 is a relation R ⊆ S1×S2 suh that whenever

s1Rs2 and a ∈ Σ, then:
• If s1 a

−→ s′1 then there exists s′2 ∈ S2 suh that s2 a
−→ s′2 and s′1Rs′2.

• If s2 a
−→ s′2 then there exists s′1 ∈ S1 suh that s1 a

−→ s′1 and s′1Rs′2.We write s1 ⊑ s2 (resp. s1 ∼ s2) if and only if there exists a simulation (resp. a bisimula-tion) R with s1Rs2.De�nition 6 S2 simulate S1 (resp. S1 and S2 are bisimilar) whenever there exists a simu-lation (resp. a bisimulation) R between S1 and S2 suh that the pair (s01, s
0
2) of their initialstates belongs to the relation R, and then we write S1 ⊑ S2 (resp. S1 ∼ S2).De�nition 7 An ω-automaton on words over Σ is a tuple A = 〈S,Acc〉 where S =

〈S,Σ, s0,∆S〉 is a �nite Σ-labelled transition system and Acc is the aeptane ondition.De�nition 8 Let A = 〈S,Acc〉 be an ω-automaton over Σ-words as above de�ned. A run ρof A on a word w = w0w1 · · · ∈ Σω is a sequene of states ρ = s0s1 . . . suh that the followingonditions hold:1. s0 = s02. si is suh that si−1
wi−→ si ∈ ∆SWhether a run of an automaton is aepting depends on the nature of the aeptaneondition of the automaton. There are several aeptane onditions:1. The Bühi aeptane ondition [B�62℄ is given by a set F ⊆ Q: ρ is aepting when

Inf(ρ) ∩ F 6= ∅2. The Rabin aeptane ondition [Rab69℄ is given by a set Ω = {(Ei, Fi)}i=1..n with
Ei, Fi ⊆ Q: ρ is aepting when

∃(E,F ) ∈ Ω s.t (Inf(ρ) ∩ E = ∅) ∧ (Inf(ρ) ∩ F 6= ∅)



1.2. Two Player Parity Games and Multi-Parity Games 173. The parity ondition [Mos85℄ is given by a funtion rank : Q→ {1, . . . , k} (where k isa natural number) that assigns a parity index to states of the automaton: ρ is aeptingwhen
max{rank(q) | q ∈ Inf(ρ)}is even. This ondition is also alled the max-parity ondition.Depending of the nature of the aeptane ondition, automata are alled Bühi automata,Rabin automata, or Parity automata.De�nition 9 The language of an automaton A denoted by L(A) is the set of words on whih

A has an aepting run.Let us reall some interesting well known results on automata. Non deterministi Bühiautomata, Rabin automata and Parity automata aept the same set of languages. This set oflanguages is losed under intersetion, union, and omplementation (see [Tho97℄). The empti-ness heking for a Rabin automata with m states and n pairs is deidable in O(mn)3n. Everynon deterministi Rabin automaton an be translated into an equivalent parity automaton andreiproally (see [L�99℄). Moreover, every non deterministi parity automaton an be translatedinto a deterministi parity automaton.1.2 Two Player Parity Games and Multi-Parity GamesWe present a omplexity result for heking a winning strategy in a two player games withparity ondition. We also present the notion of two multi-parity game.De�nition 10 A two player parity game(see [Zie98℄) is a tuple G = 〈NE , NA, T ⊆ N
2,AccG〉where 〈N,T 〉 is a graph with the nodes (or positions) N = NA ∪NE partitioned into NE and

NA. NE denotes the set of nodes of the player Eve and NA denotes the set of nodes of theplayer Adam. The winning ondition AccG ⊆ Nω, is a parity ondition on the nodes. Thegame is �nite if N is �nite.A play between Eve and Adam from some node n ∈ N proeeds as follows: if n ∈ NE then
Eve makes a hoie of a suessor otherwise Adam hooses a suessor; from this suessorthe same rule applies and the play goes on forever unless one of the parties annot make amove. A play is �nite if a player annot make a move and then he loose the play. In the asethat the play is an in�nite path π = n0n1n2 · · · , Eve wins if π ∈ AccG . Otherwise Adamis the winner. Among winning onditions introdued in the literature, we onsider the parityondition. A strategy σ for Eve is a funtion assigning to every sequene of nodes ~n ending ina node n from NE a vertex σ(~n) whih is a suessor of n.A play from n onsistent with σ is a �nite or in�nite sequene n0n1n2 · · · suh that
ni+1 = σ(ni) for all i with ni ∈ NE. The strategy σ is winning for Eve from the node n if andonly if all the plays starting in n and onsistent with σ are winning. The strategies for Adamis are de�ned similarly. A node is winning if there exists a strategy winning from it. A gameis determined if every node is winning for one of the player. A strategy is positional if it doesnot depend on the sequenes of nodes that were played till now, but only on the present node.



18 Chapter 1. PreliminariesSo suh a strategy for Eve an be represented as a funtion σ : NE → N and identi�ed witha hoie of edges in the graph of the game.Now we state the following results on two player games (see [GH82, EJ91, Jur00, VJ00℄).Theorem 11 Every parity game is determined. In a two player parity game one of the playershas a winning positional strategy from eah of his winning nodes. There is an e�etive proedurethat deides who is a winner from a given node in a �nite game, and that proedure works intime
O

(

|T | ×

(

2× |N |

d

)⌈d/2⌉
)where, d is the maximal parity index.1.3 The µ-CalulusThe µ-alulus introdued by Kozen [Koz82℄ (see also [AN01℄) is an expressive temporal logithat extends modal logi with the greatest (ν) and least (µ) �xpoint operators. We present thesyntax and the semantis of the µ-alulus. Then we state some well known results that inludethe omplexity of the model-heking problem, the omplexity of the satis�ability problem anda disjuntive normal form theorem. The omplexity result for the model-heking is obtainedby redution to heking if there is a winning strategy in a two player parity game.1.3.1 De�nitions and SemantisDe�nition 12 The syntax of the µ-alulus is de�ned over a set Var = {X,Y, . . .} of vari-ables, a set Σ of events. It is given by the following grammar:

ϕ ::= tt |� |X |ϕ ∨ ψ |ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ |µX.ϕ(X) | νX.ϕ(X)In the above, X ∈ Var , a ∈ Σ; and tt and � denote the formula that are always �true� and�false� respetively; 〈a〉 and [a] denote the existential and the universal modalities indexed withthe event a; they represent �exists a-suessor and �all a-suessor� modalities respetively. Theformulas µX.ϕ(X) and νX.ϕ(X) represent respetively the least and the greatest �xpointformula.For a formula ϕ, the losure [Koz82℄ of ϕ, sub(ϕ) is de�ned as follows:De�nition 13 The losure sub(ϕ) of ϕ is the smallest set of formulas suh that:
• ϕ ∈ sub(ϕ)

• if ψ1 ∨ ψ2 ∈ sub(ϕ) the both ψ1, ψ2 ∈ sub(ϕ)

• if ψ1 ∧ ψ2 ∈ sub(ϕ) the both ψ1, ψ2 ∈ sub(ϕ)

• if 〈a〉ψ ∈ sub(ϕ) then ψ ∈ sub(ϕ)

• if [a]ψ ∈ sub(ϕ) then ψ ∈ sub(ϕ)
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• if σX.ψ(X) ∈ sub(ϕ) then ψ(X) ∈ sub(ϕ), where σ ∈ {ν, µ}The formulas in sub(ϕ) are alled the sub formulas of ϕ. For a formula ϕ, sub(ϕ) is �niteand, by de�nition, it is not larger that the number of symbols used in ϕ.De�nition 14 The set free(ϕ) of free variable of a µ-alulus formula ϕ is de�ned indutivelyas follows:
• free(tt) = free(�) = ∅

• free(X) = {X}

• free(ϕ ∨ ψ) = free(ϕ ∧ ψ) = free(ϕ) ∪ free(ψ)

• free([a]ϕ) = free(〈a〉ϕ) = free(ϕ)

• free(µX.ϕ(X)) = free(νX.ϕ(X)) = free(ϕ) \ {X}A variable X is free in a formula ϕ if X ∈ free(ϕ).De�nition 15 A variable X is bound in a formula ϕ if there is a sub formula σX.ψ(X) of ϕwith σ ∈ {µ, ν}.We remark that, a variable an be bound and free at the same time. For example, in theformula ϕ = µX(〈a〉X ∨ 〈b〉Y ) ∧ νY.〈c〉Y , the variable Y is bound and free. An ourrene of
Y in ϕ an be replaed with a new variable to get an equivalent formula variables of whihare either free or bound.De�nition 16 (Well named) We all a formula well named if the expression µX.ϕ(X) (or
νX.ϕ(X)) ours at most one for eah variable X.By renaming some ourrenes of variables if neessary, every formula an be translatedinto an equivalent well named formula. In what follows, without loss of generality, we assumethat formulas are well named.De�nition 17 (Binding) The binding de�nition of a bound variable X in a well namedformula ϕ, Dϕ(X) is the unique sub formula of ϕ of the form σX.ψ(X). We will omit subsript
ϕ when it auses no ambiguity. We all X a µ-variable when σ = µ, otherwise we all X a
ν-variable. The funtion Dϕ assigning to every bound variable its binding de�nition in ϕ willbe alled the binding funtion assoiated with ϕ.De�nition 18 A sentene is a well named formula without free variables.De�nition 19 The dependeny order ≤ϕ over the bound variables of a formula ϕ, is theleast partial order suh that if X ours in Dϕ(Y ) and Dϕ(Y ) is a sub formula of Dϕ(X) then
X ≤ϕ Y . When X ≤ϕ Y , it is also said that Y depends on X or X is older than Y .



20 Chapter 1. PreliminariesLet us illustrate the three de�nitions just above with an example. Consider again the formula
ϕ = µX(〈a〉X ∨ 〈b〉Y ) ∧ νY.〈c〉Y . It should be lear that ϕ is not a sentene as there isa free ourrene of the variable Y in ϕ. We have that Dϕ(X) = µX(〈a〉X ∨ 〈b〉Y ) and
Dϕ(Y ) = νY.〈c〉Y . The variables X and Y an not be ompared with the dependeny orderrelation ≤ϕ.De�nition 20 (Expansion) Given a formula ϕ, its binding funtion Dϕ, and a sub formula
ψ of ϕ, the expansion 〈[ψ]〉Dϕ

of ψ with respet to Dϕ is de�ned by
〈[ψ]〉Dϕ

= ψ[Dϕ(Xn)/Xn] · · · [Dϕ(X1)/X1]where X1 ≤ϕ X2 ≤ϕ · · · ≤ϕ Xn is a hain of bound variables of ϕ with respet to ≤ϕ.De�nition 21 Variable X in µX.ϕ(X) is guarded if every ourrene of X in ϕ(X) is in thesope of some modality operator 〈〉 or []. We say that a formula is guarded if every boundvariable in the formula is guarded.Alternation depth desribes the number of alternations between least and greatest �xpointoperators.De�nition 22 The alternation depth of a formula denoted by alt(ϕ) is the number of nestingbetween µ and ν in ϕ; it is reursively de�ned as follows:
• alt(tt) = alt(�) = alt(X) = 0

• alt(ϕ ∧ ψ) = alt(ϕ ∨ ψ) = max(alt(ϕ), alt(ψ))

• alt(〈a〉ϕ) = alt([a]ϕ) = alt(ϕ)

• alt(µX.ϕ(X)) = max({1, alt(ϕ(X)} ∪ {1 + alt(νY.ψ(Y )) | νY.ψ(Y ) ∈ sub(ϕ);X ≤ϕ Y })

• alt(νX.ϕ(X)) = max({1, alt(ϕ(X)} ∪ {1 + alt(µY.ψ(Y )) |µY.ψ(Y ) ∈ sub(ϕ);X ≤ϕ Y })Formulas of the µ-alulus are interpreted over Σ-labelled transition systems. The se-mantis of a µ-alulus formula ϕ is a set of states of a Σ-labelled transition system S =
〈S,Σ, s0,∆S〉 where the formula holds under a given valuation of variables Val : Var → 2S ,and it is denoted by [[ϕ]]SVal . Given a valuation of variables Val and a set of states T ⊆ S,the valuation Val [X/T ] is the valuation Val with the substitution that assoiates the statesof T with the variable X. Formally, for Y ∈ Var , Val [X/T ](Y ) = T if Y = X and Val(Y )otherwise. We de�ne the relation � between a state s of a transition system S, a valuation
Val and a formula ϕ. We write S, s,Val � ϕ when the formula ϕ holds in s or equivalently ssatis�es ϕ. The relation � is de�ned as follows:
• S, s,Val � X if s ∈ Val(X)

• S, s,Val � ϕ1 ∨ ϕ2 if S, s,Val � ϕ1 or S, s,Val � ϕ2

• S, s,Val � ϕ1 ∧ ϕ2 if S, s,Val � ϕ1 and S, s,Val � ϕ2

• S, s,Val � 〈a〉ϕ if there is s a
−→ s′ suh that S, s′,Val � ϕ



1.3. The µ-Calulus 21
• S, s,Val � [a]ϕ if for all s a

−→ s′ we have S, s′,Val � ϕ

• S, s,Val � µX.ϕ(X) if s ∈ ⋂{T ⊆ S | [[ϕ(X)]]SVal [X/T ] ⊆ T}.
• S, s,Val � νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ [[ϕ(X)]]SVal [X/T ]}Then we de�ne [[ϕ]]SVal = {s ∈ S | S, s,Val � ϕ}. It is said that a Σ-labelled transitionsystem S is a model of a formula ϕ when s0 ∈ [[ϕ]]SVal ; in this ase we write S,Val � ϕ. Thevaluation Val is omitted if the formula does not ontains free variables.It is known (see [Eme90℄ for a survey) that properties expressed in temporal logis LTL,CTL, and CTL∗ an be enoded as µ-alulus formulas and that there are formulas of the

µ-alulus (for instane νX.〈a〉〈a〉X) that an not be written in CTL∗.Given two formulas ϕ1 and ϕ2, we often use the notation ϕ1 ≡ ϕ2 to say that ϕ1 isequivalent to ϕ2, meaning that for every labelled transition system S and valuation Val ,
[[ϕ1]]

S
Val = [[ϕ2]]

S
Val .It is standard to onsider the negation operator (¬) on µ-alulus sentenes. Given aformula ϕ and a Σ-labelled transition system S and a valuation Val , this operator is de�nedby: [[¬ϕ]]S = S \ [[ϕ]]S .The following proposition is standard.Proposition 23 The following equivalenes are true:

• ¬tt ≡ �
• ¬� ≡ tt

• ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

• ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

• ¬〈a〉ϕ ≡ [a]¬ϕ

• ¬[a]ϕ ≡ 〈a〉¬ϕ

• ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)

• ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)Thanks to the proposition just above, the negation operator an not appear in µ-alulussentenes.Let us present some results on the µ-alulus.Proposition 24 ([Koz82℄) Every formula of the µ-alulus is equivalent to some guardedformula of the µ-alulus.



22 Chapter 1. Preliminaries1.3.2 Model-Cheking and Satis�ability ResultsInformally, the task of heking whether a �nite state transition system, S = 〈S,Σ, s0,∆S〉 isa model of a sentene ϕ an be seen as two player parity game whose nodes are set of tuples ofthe form (s, ψ) where s ∈ S and ψ is a sub formula of ϕ. Positions of the player Eve ontainsub formulas of one of the forms tt , ϕ1 ∨ ϕ2, 〈a〉ψ. The other positions belong to the player
Adam. The initial position of the game is (s0, ϕ). The set of moves of the games are suh that:
• There is no move from either (s, tt) or (s,�).
• From (s, ϕ ∧ ψ) as well as from (s, ϕ ∨ ψ) there are moves to (s, ϕ) and to (s, ψ).
• From (s, [a]ϕ) and from (s, 〈a〉ϕ) there are moves to (s′, ϕ, for every s′ suh that s a

−→ s′.
• There is a move from (s, σX.ϕ(X)) to (s, ϕ(X))

• There is a move from X to (s, ϕ(X)) where D(X) = σX.ϕ(X)The aeptane ondition is given by the parity funtion rank : Q→ N de�ned by:
rank(ψ) =







0 if ψ is not a variable
2× alt(D(X)) where ϕ = X and X is a ν-variable
2× alt(D(X)) + 1 where ϕ = X and X is a µ-variableOne an show that S is a model of a formula if player Eve has a winning strategy in thethe game. This gives an intuitive idea behind the following results.Theorem 25 ([EJ91, Tho97, Jur00℄) Let S = 〈S,Σ, s0,∆S〉 be a Σ-labelled transition sys-tem and let ϕ be a µ-alulus formula. The model-heking problem for ϕ and S is solvable intime

O

(

|∆S | × |sub(ϕ)| ×

(

|S| × |sub(ϕ)|

⌊alt(ϕ)/2⌋

⌈alt(ϕ)/2⌉
))Theorem 26 ([Cas87, AD89, Sti96℄) Let S1 and S2 two bisimilar labelled transition sys-tems. For every µ-alulus formula ϕ, S1 is a model of ϕ is and only if S2 is a model of

ϕ.Theorem 27 ([EJ91℄) The satis�ability problem for µ-alulus formulas is solvable in expo-nential time. The onstrution of witness models is e�etive.In [EJ91, NW96℄, two player parity games are de�ned for the satis�ability problem of the
µ-alulus. The authors shown that a µ-alulus formula is satis�able if and only if there isa winning strategy for one of the two players in the game. A witness model for a formula ispresented as a winning strategy. We reall that two player parity games are determined andstrategies are positional. It follows that witness models for formulas are �nite state automata.



1.4. Alternating Tree Automata 231.3.3 Disjuntive Normal FormDisjuntive normal form formulas are speial kinds of formulas. One restrition in disjuntivenormal form formulas is that onjuntions of the form 〈a〉ϕ ∧ 〈a〉ψ are not allowed. Theseonjuntions are in some sense deterministi as for example, there is not need to hek whethera state of a transition system satis�es two formulas after the ourrene of an event; and amodel for a formula ϕ an be �easily� merged with a model of a formula ψ in order to build amodel for 〈a〉ϕ ∧ 〈b〉ψ. The other restritions are presented in De�nition 29.Let us present a modal operator [JW95℄ that extends the syntax of the µ-alulus.De�nition 28 Let Γ be a set of formula. The operator (a)→Γ is de�ned by
(a)→Γ =

∧

ϕ∈Γ

〈a〉ϕ ∧ [a]
∨

ϕ∈Γ

ϕA formula of the form 〈a〉ϕ is equivalent to (a)→{tt , ϕ} and a formula of the form [a]ϕ isequivalent to (a)→∅∨ (a)→{ϕ}. This means that every µ-alulus formulas an be rewrittenusing the operator (a)→Γ.De�nition 29 The set of disjuntive formulas, dFµ is the smallest set de�ned by the followinglauses:
• tt , �, X belongs to dFµ.
• If ϕ,ψ ∈ dFµ then ϕ ∨ ψ ∈ dFµ; if moreover X does not our in a sub formula of ϕ ofthe form X ∧ γ, then µX.ϕ(X), νX.ϕ(X) ∈ dFµ.
• Formula ϕ1 ∧ϕ2 ∧ . . .∧ϕn ∈ dFµ provided that every ϕi is in {tt ,�} or a formula of theform ϕi = (ai)→Θi with Θi ⊆ dFµ. It is required that for any event a there an be atmost one onjunt of the form (a)→Γ among ϕ1, ϕ2, . . . , ϕn.Theorem 30 ([JW95℄) For every formula ϕ, there exists an equivalent disjuntive formula

ψ.1.4 Alternating Tree AutomataWe present alternating tree automata [MS87℄ and non deterministi tree automata. Alter-nating tree automata reognize labelled transition systems. They are a main tehnial toolfor proofs and, in understanding of the µ-alulus. Alternating tree automata have the sameexpressive power as the µ-alulus in the sense that every µ-alulus formula an be translatedinto an equivalent alternating tree automaton and reiproally. The de�nition of alternatingtree automata presented in this setion is di�erent from the one in [MS87℄. In the de�nitionpresented below, we use modal operators (〈〉, []) of the µ-alulus in transition relations.De�nition 31 An alternating tree automaton is the struture A = 〈Q,Σ, q0,∆,Acc〉 where
Q is a �nite set of states, Σ is an alphabet, q0 is the initial state, ∆ : Q → TF (Q,Σ) isa transition relation whih assigns a transition formula to eah state of the automaton, and
Acc is the parity ondition given by a funtion ΩA : Q → {0, . . . , k}. The set TF (Q,Σ) oftransition formulas is de�ned as follows:
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• tt and � are transition formulas.
• For every q ∈ Q, 〈a〉q, [a]q are transition formulas.
• for every q1, q2 ∈ Q, q1 ∧ q2 and q1 ∨ q2 are transition formulasAn alternating tree automaton as above aepts labelled transition systems. The meaningof alternating tree automata an be de�ned using the game approah. To deide whether atransition system is aepted by an alternating tree automaton, one an onsider a two playerparity game. Let S = 〈S,Σ, s0,∆S〉 be a Σ-labelled transition system. The aeptane gameof A over S is the tuple G(A, S) = 〈N,NE , NA, T,AccG〉 where:
• NE = S×FE and FE ⊆ TF (Q,Σ) is the set of transition formulas of the form �, ϕ∨ψ,
〈a〉ϕ with ϕ,ψ ∈ TF (Q,Σ).

• NA = S × TF (Q,Σ) \NE

• There is no move from (s, tt) nor from (s,�), for every s ∈ Q.
• From (s, ϕ ∧ ψ) as well as from (s, ϕ ∨ ψ) there are moves to (s, ϕ) and to (s, ψ).
• From (s, [a]ϕ) and from (s, 〈a〉ϕ) there are moves to (s′, ϕ) for every s′ suh that s a

−→ s′.
• There is a move from (s, q) to (s,∆(q)).
• AccG is the max-parity ondition haraterised by the funtion ΩG : N → N de�ned by

ΩG(s, ϕ) =

{

0 if ϕ is not a state
ΩA(q) if ϕ = q is a stateWe say that A aepts S (or S models A), and we write S ∈ L(A) or S � A, if there is awinning strategy for the player Eve in G(S,A).Theorem 32 ([Niw88, EJ91, Wil01℄) For every µ-alulus formula ϕ there is an alternat-ing tree automaton Aϕ suh that for every Σ-labelled transition system S:

S � ϕ if and only if S ∈ L(Aϕ).Conversely, for every alternating tree automaton A there is a µ-alulus formula ϕA suh thatevery Σ-labelled transition system P:
S ∈ L(A) if and only if S � ϕA.1.5 Frameworks for Disrete-Time ControlWe present the Ramadge et al. approah and the Arnold et al. approah to the disrete-timeontrol problem. We reall that in disrete-time ontrol, timing information are not expliitin models of systems and spei�ations. In the Ramadge et al. Approah spei�ations arelinear-time properties desribed with an automaton on words. The Arnold et al. approahonsiders branhing-time properties desribed with µ-alulus formula.



1.5. Frameworks for Disrete-Time Control 251.5.1 The Ramadge et al. ApproahThe ontroller synthesis problem onsidered by Ramadge and Wonham [RW89℄ onsists toprovide ontroller for a system (alled the plant). The main goal is that the system resultingfrom the ombination of the plant with ontroller, the ontrolled system, satis�es the givenrequirement. In [RW89℄, Ramadge and Wonham onsider entralised and deentralised on-troller synthesis problems with full and partial observability hypothesis on events. We onlypresent their framework for the entralised ontroller synthesis with total observation.In that framework, plants and ontrollers are deterministi �nite state automata over a setof events Σ partitioned into a set of ontrollable event Σc and a set of unontrollable events
Σu. Requirements ontrolled systems are given with regular languages (on words). Controllersnever forbid an ourrene of unontrollable event. The synthesis of a ontroller is e�etiveand polynomial in the size of the plant and the requirement. .Sine the works in [RW89℄, the ontrol problem has been studied in more powerful settings.Some of these studies are presented in the following.1.5.2 The Arnold et al. ApproahThe framework of Arnold et al. [AVW03, ABPV05, AW07℄ for the supervisory ontrol onsidertransition system models and ontrol objetive desribed with alternating tree automata ontransition systems, or equivalently µ-alulus formulas. There, the notions of ontrollability,observability and distinguishability are onsidered for entralised and deentralised ontrollersynthesis problems. We will just present the framework for the entralised ontroller synthesiswhen the set of events Σ, ourring in the plants are partitioned into a set Σc of ontrollableevents and a set Σu of unontrollable events.Plants and ontrollers are �nite state labelled transition systems (not neessarily deter-ministi). A ontroller has to satisfy the untimed ontrol ondition (UCC) that requires thatit an not forbid any ourrene of an unontrollable event. This property for ontrollers anbe desribed with an alternating tree automaton (see below).The entralised ontroller synthesis problem is:given a plant P and two µ-alulus formulas ϕ and ψ, does there exists a ontroller Rsatisfying the ondition (UCC) suh that P ×R satis�es ϕ and R satis�es ψ?The solution to the entralised ontroller synthesis uses a notion of quotient of a ontrolobjetive ϕ with a plant P. Beause a µ-alulus formula an be translated into an equivalentalternating tree automaton on transition systems (see Theorem 32), Arnold et al. assumethat the ontrol objetive ϕ is desribed with an equivalent alternating tree automaton Aϕ.Then they provide a quotient operator Aϕ/P of Aϕ with a plant P. The quotient operationis de�ned in suh a way that it satis�es the property presented in Proposition 33 just below.Proposition 33 ([AVW03, AW07℄) Given an alternating tree automaton A, two �nitestate transition systems P and R, there is an alternating tree automaton A/P suh that:

R � A/P if and only if P ×R � A



26 Chapter 1. PreliminariesTo ensure R in the proposition above to be a ontroller, R should additionally satis�es theuntimed ontroller onditions (UCC). Arnold et al. [ABPV05℄ have shown that the ontrolondition (UCC) an be desribed with a µ-alulus formula
νX.

∧

a∈Σu

〈a〉X ∧
∧

a∈Σc

[a]Xthat is equivalent to the one state alternating tree automaton B de�ned as follows:
B = 〈{q0},Σ, q0,∆,Acc〉 where
∆(q0) =

∧

a∈Σu

〈a〉q0 ∧
∧

a∈Σc

[a]q0.where Acc is the parity ondition given by a funtion rank that assigns the value 0 to thestate q0.Let us omment the transition formula of the one state modal automaton B. The formulahas two parts. The �rst part is the onjuntion ∧a∈Σu
〈a〉q0. A state in whih this part istrue should (beause of the existential modality) have, for every unontrollable event from

Σu, an outgoing transition to a state in whih ∆(q0) is true again. The seond part is theonjuntion ∧a∈Σc
[a]q0; it requires every suessor of a state (satisfying the formula), witha ontrollable event, to satisfy ∆(q0); it does not requires its models to have transitionslabelled with ontrollable events from Σc. The parity index of q0 is even and it is equal to 0.In onsequene every in�nite path in the aeptane game is aepted.As alternating tree automata are losed under intersetion, a ontroller for a plant Punder a spei�ation Aϕ should satisfy Aϕ/P ∩ Aψ ∩ B. This provides a hint of a proof forthe deidability of the entralised ontroller synthesis problem.Theorem 34 ([AVW03, AW07℄) Given a plant P and two µ-alulus formulas ϕ and ψ,the problem of heking whether there exists a ontroller R satisfying the ondition (UCC) suhthat P ×R � ϕ and R � ψ is deidable. Moreover, the omputation of a witness ontroller ise�etive.1.6 Frameworks for Dense-Time Supervisory ControlWe present the approah of Madhusudan et al. [DM02℄ and the approah of Laroussinie etal. [BCL05℄ to the ontroller synthesis of dense-time systems. These approahes onsider timedautomata model [AD94℄ that we present in the next subsetion.1.6.1 The Timed Automata ModelLetH be a set of loks. A lok onstraint is a omparison of a lok, or the di�erene betweentwo loks, with a onstant. Let GdsH be a set of lok onstraints. Cloks are real-valuedvariables. If v represents a valuation, v(h) represents the value of the lok h, (v+ t)(h) givesthe value of the lok h after a delay of t time units, and v[H := 0] resets every lok in H.



1.6. Frameworks for Dense-Time Supervisory Control 27De�nition 35 A timed automaton over (H,Σ) is a struture P = 〈P ,H,Σ, p0,∆P ,Acc〉where P is a �nite set of states, Σ is an alphabet, p0 is the initial state, ∆P ⊆ P ×GdsH ×
Σ× 2H × P is the transition relation and Acc is the aeptane ondition.A timed automaton is deterministi if there are no two distint transitions of the form p

g′,a,H′

−→

p′ and p
g′′,a,H′′

−→ p′′ suh that g′′ and g′ an be satis�ed by the same valuation of the loks.A timed automaton P as de�ned above represents a transition system whose states arepairs of the form (p, v) made of a state of the timed automaton and a valuation. Transitionsin the transition system are of the form (p, v)
t
−→ (p, v + t) or (p, v)

a
−→ (p′, v[H := 0]). Atransition (p, v)

t
−→ (p, v+ t) represents a delay (of amount t ∈ R+) that ours in the timedtransition system when it is in state p and the values of the loks are given by v. A transition

(p, v)
a
−→ (p, v[H := 0]) indiates that the system moves from the state p to the state p′ whenthe event a ours; and then it immediately resets all the loks in H. The latter transition ispossible if the timed transition system has a transition p

g,a,H
−→ p′ and the values of the loks,given by v, satisfy the onstraint g.A timed automaton aepts timed words. A timed word over an alphabet Σ is sequene

w = (ai, ti)i=1.. suh that i < j implies ti ≤ tj.A run ρ, of a timed automaton over a timed word (ai, ti)i=1.. is a sequene of the form
ρ = (p0, v0)

a0,t0
−→ (p1, v1)

a1,t1
−→ . . .

ai,ti−→ (pi+1, vi+1) . . .with pi ∈ P , vi is a valuation of the loks, for all i ≥ 0, satisfying the following requirements:
• p0 = p0 is the initial state of the automaton.
• v0(h) = 0 for all h ∈ H.
• for all i ≥ 0, there is a transition pi

gi,ai,Hi−→ pi+1 suh that vi + ti − ti−1 satis�es gi and
vi+1 equals vi + ti − ti−1[Hi := 0].A run is aepting if and only if its projetion on the states (P) of the timed automatonbelongs the aeptane ondition (Acc) of the automaton. A timed word, w is aepted by atimed automaton if and only if there is an aepting run of the automaton over w.The language of a timed automaton, L(A) is the set of timed words over whih there isan aepting run. Formally,

L(A) = {w |w is a timed word and A aepts w}The following theorem presents some fundamental results on languages of timed automata.Automata in that theorem are timed automata with the Bühi aeptane ondition. Theseresults are useful for understanding the results presented in the next subsetion.Theorem 36 ( [AD94℄) Emptiness testing is deidable for non deterministi timed au-tomata. Timed automata are losed under union and intersetion. Non deterministi timedautomata are not losed under omplementation but deterministi timed automata are losedunder omplementation. The inlusion testing between non deterministi timed automata isundeidable but, it is deidable to hek whether a timed automata is inluded in a determin-isti timed automata.



28 Chapter 1. Preliminaries1.6.2 The Madhusudan et al. Approah for Automata Spei�ationMadhusudan et al. [DM02℄ onsider the ontroller synthesis for timed spei�ations. A plant Pis a deterministi timed automaton over (HP ,Σ) where, HP denotes the set of loks used bythe plant and the set of events Σ = Σu ∪Σc is partitioned into a set Σc of ontrollable eventsand a set Σu of unontrollable events. A ontroller S is a deterministi timed automaton over(HP ∪HS ,Σ) where, HS is a set of loks disjoint from HP . A ontroller is ombined with theplant for satisfying a ontrol objetive.The notion of produt between timed automata formalises the ombination between sys-tems (the plant and the ontroller). This notion is de�ned as follows:De�nition 37 The produt of a timed automaton P = 〈P ,H1,Σ, p
0,∆P ,Acc1〉 with a timedautomaton S = 〈S,H2,Σ, s

0,∆S ,Acc2〉 is the timed automaton P × S = 〈P × S,H1 ∪

H2,Σ, (p
0, s0),∆,Acc〉 where, and ∆ is given by (p, s)

g,a,X∪Y
−→ (p′, s′) ∈ ∆ if and only if

p
g1,a,X
−→ p′, and s g2,a,Y−→ s′ with g representing the onjuntion of g1 and g2.A ontroller satis�es the following timed ontrol onditions (TCC):(TCC) (C1) S has resets only in HS (i.e, if s g,a,H−→ s′, then H ⊆ HS).(C2) S does not restrit unontrollable events (non restriting): whenever we have w ∈

L(P × S) and (w.(a, t)) ∈ L(P) with a ∈ Σu, then w.(a, t) ∈ L(P × S).(C3) S is non-bloking : whenever we have w ∈ L(P × S) and (w.(b, t)) ∈ L(P), thereexists c ∈ Σ and t′ ∈ R+ suh that (w.(c, t′)) ∈ L(P × S).A ontrol objetive is desribed by a timed automaton with Bühi aeptane ondition. Itan desribe a set of undesired behaviours or a set of desired behaviours. The timed automataan be deterministi or not.The ontroller synthesis against undesired behaviours is: given a plant P and a timedautomaton A, does there exists a ontroller S for P suh that L(P × S) ∩ L(A) = ∅? Theontrol synthesis against desired behaviours is: given a plant P and a timed automaton A,does there exists a ontroller S for P suh that L(P × S) ⊆ L(A)?In Table 1, we present deidability results [DM02℄ for the ontroller synthesis problemagainst undesired behaviours and the ontroller synthesis problem for desired behaviours; fordeidable ases, a �nite-state ontroller an be synthesized.Limited resoures Unlimited resouresDet. Cont. Obj Nondet. Cont. Obj. Det. Cont. Obj Nondet. Cont. Obj.Desired Undesired Desired UndesiredDeidable Undeidable Deidable Deidable Undeidable UndeidableTable 1: Controller Synthesis results for Madhusudan et al..Theses results do not only depend on whether the spei�ation is deterministi or not; butthey also depend on some hypothesis made on the number of loks and the onstants that



1.6. Frameworks for Dense-Time Supervisory Control 29appear in the ontroller; these latter parameters are alled the resoures of the ontrollers.In the ase of limited resoures, a maximal onstant in the ontroller is spei�ed and the set
HS is also spei�ed.1.6.3 The Laroussinie et al. Approah for Lν Spei�ationLaroussinie et al. [BCL05℄ use the framework of timed automata to desribe plants and thetimed branhing-time logi Lν to desribe internal ontrol objetives.Syntax and Semantis of LνDe�nition 38 The logi Lν over the �nite set of loks H, the set of identi�ers Var , and theset of events Σ is de�ned as the set of formulas generated by the following grammar:

ϕ ::= tt |� |ϕ ∨ ϕ |ϕ ∧ ϕ |h in ϕ |h ⊲⊳ c | 〈a〉ϕ | [a]ϕ | 〈δ〉ϕ | [δ]ϕ |Xwhere, a ∈ Σ is an event, h ∈ H is a lok variable, c ∈ Q≥0 is a onstant, X is a variable,
⊲⊳∈ {≤,≥, <,>}.The logi Lν allows for the reursive de�nition of formulas by inluding a set Var ofvariables. The formula assoiated with eah of the identi�ers is spei�ed by a delaration D;In other words, the delaration D assigns a Lν formula to eah identi�er. For an identi�er X,we write Xdef

= ϕ if D(X) = ϕ. Intuitively X stands for the largest solution of the equation
X
def
= ϕ.A formula is interpreted over the semantis of timed automaton. From what has preeded,we use the notion P �D ϕ to say that the timed automaton P is a model of ϕ with respet tothe delaration D. Let us take a timed automaton P, whose set of loks K is disjoint fromthe set of loks H ourring in formulas. Formulas are interpreted over extended states of theform (p, v) where, p is a state of P, v is a valuation of all loks in K ∪ H. The satisfationrelation �D is the largest relation satisfying the following impliations:
• it is true that P, (p, v) �D tt .
• it is false that P, (p, v) �D �.
• if P, (p, v) �D ϕ ∨ ψ then P, (p, v) �D ϕ or P, (p, v) �D ψ

• if P, (p, v) �D ϕ ∧ ψ then P, (p, v) �D ϕ and P, (p, v) �D ψ

• if P, (p, v) �D h ⊲⊳ c then v(h) ⊲⊳ c.
• if P, (p, v) �D [a]ϕ then for all p

g,a,H
−→ p′ suh that v satis�es g we have P, (p′, v[H :=

0]) �D ϕ.
• if P, (p, v) �D 〈a〉ϕ then there is p

g,a,H
−→ p′ suh that v satis�es g and P, (p′, v[H :=

0]) �D ϕ.
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• if P, (p, v) �D [δ]ϕ then for all t ∈ R+ P, (p, v + t) �D ϕ.
• if P, (p, v) �D 〈δ〉ϕ then there is t ∈ R+ suh that P, (p, v + t) �D ϕ.
• if P, (p, v) �D h inϕ then P, (p, v[{h} := 0]) �D ϕ

• if P, (p, v) �D X then P, (p, v) �D D(X)Any relation satisfying the above impliations is referred to as a satis�ability relation. Therelation �D is the union of all satis�ability relations.The ontrol problemEvents are ontrollable or non ontrollable. A plant P is a timed automaton that is determin-isti with respet to ontrollable events. At any time and in any state, the time elapses or anevent ours. The plant does not ontrol the ourrenes of unontrollable events.The ontrol objetive is a formula ϕ of Ldetν (Ldetν is a deterministi fragment of Lν). Thefragment Ldetν ensures that the onjuntions of Ldetν formulas are in some sense deterministiand thus, they an be merged safely. By this way, a ontroller against a ontrol objetive ϕ∧ψwill �easily� ombine a ontroller against ϕ and a ontroller against ψ.A ontroller for a plant is a funtion f that during the exeution of the system onstantlygives information about what should be done in order to ensure the ontrol objetive. A on-troller an not prevent unontrollable events from ourring; but it an disable a ontrollableevent at any time. We write f(P) for the ontrolled system.The ontrol problem onsidered by Laroussinie et al. is the following.Given a timed automaton P, the plant, and a Ldetν formula ϕ, a (deterministi) ontrolobjetive, is there a ontroller f suh that f(P) � ϕ?The main result of Laroussinie et al. is that the ontrol problem an be redued to thestandard model-heking problem. For that purpose, from a Ldetν ontrol objetive ϕ, theformula ϕ =
∨

e∈Σc∪{λ}
ϕe is de�ned. For a ontrollable event ac the formula ϕac will hold whenthere is a ontroller whih ensures ϕ and whih starts by enforing the event ac. The formula

ϕλ that will hold when there is a ontroller whih ensures ϕ and whih starts by delaying.The onstrution of these new formulas involves the introdution a new modal operator [δ〉that an not be desribed using a Lν formula and whose semantis is the following.
P, (p, v) �D ϕ[δ〉ψ if and only if either ∀t ∈ R+, P, (p, v + t) �D ϕ or, ∃t ∈ R+ suh that

P, (p, v + t) �D ψ and ∀0 ≤ t′ < t, P, (p, v + t) �D ϕ.The resulting logi (Lν augmented with [δ〉), Lcontν enables to express dense-time ontrolrequirement: some property is true for a subset of the states of the plant that are reahableby time elapsing before a ontrollable ation leading to good states is possible. Thus, hekingthe existene of a ontroller for a timed automaton against a Ldetν ontrol objetive is reduedto heking whether the timed automaton satis�es a dense-time ontrol requirement whih isitself desribed with a Lcontν formula.



1.6. Frameworks for Dense-Time Supervisory Control 31Theorem 39 ([BCL05℄) For all ϕ ∈ Ldetν and a timed automaton P, there exists a ontroller
f suh that f(P) �D ϕ if and only if P �D ϕ.The deidability of the ontrol problem (the onstrution of a witness ontroller is note�etive) omes from the following theorem.Theorem 40 ([BCL05℄) Given ψ ∈ Lcontν , and a timed automaton P, it is EXPTIME-omplete to deide whether P is a model of ψ.
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Chapter 2Timed ProessesIn reative real-time systems, the orretness of the tasks they perform depends not only uponlogial orretness, but also upon the times at whih the tasks are performed. For reordingthe duration of a task, we an use an event that is triggered at the beginning of the task andanother event that is triggered when the task ends; then the duration of the task will be thedi�erene between the time at whih the termination event happens and the time at whihthe beginning event happens. If there are several tasks in the system, we ould imagine thatthere are as many start-events as tasks. The dynamis of a real-time system an be desribedthrough the variation of its tasks. A variation an be onstrained with the ourrene of eventsand/or timing information.In this hapter, we onsider models for a lass of real-time systems and models for repre-senting their behaviours. We alled our models timed proesses. Timed proesses have loalloks eah assoiated to an event and suh a lok gathers the time elapsed sine the lastourrene of the orresponding event. A timed proess is a �nite state labelled transitionsystem whose transitions are labelled with onstraints on loks and events. A onstraint onloks is just a onjuntion of omparisons of values of a lok or the di�erene between twolok values, with an integer onstant. The latter is are alled diagonal onstraint.Clok are interpreted over real numbers. The value of eah lok grows ontinuously andwith the same rate as the time unless it is reset. A timed proess is a �nite representation ofall the behaviours of a real-time system. A behaviour of a real-time system is a suession ofstates of its timed proess paired with the values of loks. When the system is in some state,the time elapses ontinuously (the values of the loks too) until an event ours. Then, theproess instantaneously selets a transition labelled with that event and heks whether theonstraint on the hosen transition is satis�ed by the values of loks before it resets the lokassoiated to the event and moves to the target state of the transition. If the onstraint is notsatis�ed, the proess does not hange the state.We will use transition systems to represent the semantis (set of behaviours) of timedproesses. A transition in the semantis of a timed proess will be labelled with an event ora valuation of loks; a state will be a pair made of a state of the timed proess and thevalues of the loks. As loks values are real-numbers, semantis are in�nite state labelledtransition systems, and eah state has in�nitely many outgoing transitions. Beause in�nite33



34 Chapter 2. Timed Proessesmodels are di�ult to handle, we introdue two representations for semantis alled the M -ation representation and the M -region representation.The M -ation representation will be obtained from the semantis by replaing eah tran-sition labelled with a valuation by a transition labelled with anonial and atomi onstraintssatis�ed in that valuation. We will require onstraints to use onstants lower thanM . As therewill be �nitely many anonial and atomi onstraints, eah state will have �nitely many out-going transitions, but there will still be in�nitely many states in M -ation representations.Then, we introdueM -region representation a state of whih is a state of the underlying timedproess paired with a M -region. A region is just a set of �equivalent� valuations. There are�nitely many regions and then,M -region representations are �nite strutures suitable suitablefor veri�ation purposes. As we will show, using bisimulation relation, M -region representa-tions preserve behavioral properties of the semantis.We will onsider that systems ommuniate in a synhronous mode. For ommuniatingsystems in synhronous mode, an event must happen at the same time in all the systems inorder to be onsidered. We will assume that the ommuniating devies will be 0-delay. Wewill formalise the ommuniation by de�ning a produt operation between timed proesses.We will show that the semantis of the produt of two timed proesses is �the same� as theprodut of the semantis of that proesses.A natural and fundamental problem that arises when de�ning models for systems is thereahability problem. The reahability problem requires to hek if a target state ould bereahed from a soure state when a system exeutes. There are two approahes to this problem:the forward analysis, and the bakward analysis. We will present an algorithm based on theM -region representation that is orret for the bakward and the forward approahes whateveris the nature or the onstraint (general or diagonal free). But onsidering the zone-basedrepresentation of the timing ontext (a zone is just a set of valuations satisfying a onstraint),we show the inorretness of the forward analysis algorithm when diagonal onstraints areauthorised in the timed proesses.Related Results: All results presented in this setion are known. Timed proessesare nothing else but event-reording automata [AFH99℄ without an aeptane onditionthese in turn are a sublass of timed automata [AD94℄. The reahability problem for timedautomata has been onsidered using region abstration [ACD+92, LY97℄ and zone abstra-tion [LPY97, BY04℄ and algorithms for the reahability problem have been implemented inveri�ation tools like Uppaal [LPY97, BLL+96, BDL04℄ or Kronos [BTY97, Yov98℄. Bouyerhas shown [Bou03℄ (see also [BLR05℄) the inorretness of a zone-approah for the reahabilityproblem of timed automata with diagonal onstraints.This hapter is organised as follows. In the next setion we onsider loks, onstraints, wealso present deomposition of onstraints into atomi onstraints. In Setion 2.2 we presentregions and their properties. Zones and their operations are presented in Setion 2.3. In Se-tion 2.4, we de�ne timed proesses, their semantis and representations of semantis. We usesome properties of regions to show that M -region representation an be used instead of thesemantis. We present the the produt of timed proesses in Setion 2.5, and in Setion 2.6we onsider the reahability analysis.



2.1. Clok, Valuation, Constraints 352.1 Clok, Valuation, ConstraintsWe de�ne loks that are real numbers valued variables. We also de�ne lok onstraints andwe present their deomposition into atomi lok onstraints.2.1.1 Cloks and ValuationsCloks are variables evaluated over real numbers. There are two operations on time, the timeelapse operation that gives the value of the lok after a delay and the reset operation thatsets the value of a loks to 0.Let R+ be the set of non negative real numbers. We onsider H = {h1, h2, . . . } a set ofloks variables (or loks for simpliity).De�nition 41 A valuation on a set of lok H is a total funtion v : H → R+.The symbol V represents the set of valuations. Given a valuation v ∈ V, and a lok h ∈ H,the valuation v+ t is de�ned by [v+ t](h) = v(h)+ t and, the valuation v[h := 0] is de�ned by
v[h := 0](h′) = 0 if h = h′ else v[h := 0](h′) = v(h′). We say that a valuation v is a suessorof a valuation v′ if v = v′ + t for some t ∈ R+.Example: Let H = {h1, h2} be a set of two loks. In Table 2, we present some valuationson h are some valuation on H.
{

v0(h1) = 0
v0(h2) = 0

{

v1(h1) = 0.35
v1(h2) = 0.35

{

v2(h1) = 0.35
v2(h2) = 0

{

v3(h1) = 0.85
v3(h2) = 0.50

{

v4(h1) = 0
v4(h2) = 0.50

{

v5(h1) = 0.35
v5(h2) = 0.85Table 2: Examples of valuations.These valuations are suh that v1 = v0 + 0.35, v2 = v1[h2 := 0], v3 = v2 + 0.50, v4 =

v3[h1 := 0], v5 = v4 + 0.35 and v2 = v5[h2 := 0]. In Figure 2 we give another representationsof these valuations in Cartesian referene.
�2.1.2 ConstraintsConstraints are onjuntions of simple onstraints; and a simple onstraint is a omparisonof a lok with an integer (diagonal free simple onstraint) or a omparison of the di�erenebetween two loks with and integer. Diagonal free onstraints use only diagonal free simpleonstraints. Constraints are interpreted over valuations. The semantis of a onstraint is the setof valuations satisfying it. We will also onsider two types of atomi onstraints : retangularonstraints and triangular onstraints.
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Figure 2: Representation of valuations in Cartesian referene.De�nition 42 A simple onstraint de�ned on a set of loks H is an equation of the form
h− h′ ⊲⊳ n or h ⊲⊳ n where n ∈ N, ⊲⊳ is one of {<,≤,≥, >} and h, h′ ∈ H.A diagonal free simple onstraint is a simple onstraint of the form h ⊲⊳ n.De�nition 43 A lok onstraint over a set of loks H is a onjuntion of simple onstraints.
ΦH , denotes the set of lok onstraints over H. A diagonal-free lok onstraint is a lokonstraint that uses only diagonal free simple onstraints. GdsH denotes the set of diagonal-free lok onstraints over H.We will often write h = n or h − h′ = n as an abbreviation of h ≤ n ∧ h ≥ n. We alsowrite h− h′ = n to represent the onstraint h− h′ ≤ n ∧ h− h′ ≥ n.Later we onsider two speial lok onstraints tt and � de�ned by: tt =

∧

h∈H h ≥ 0 and� =
∧

h∈H h < 0.The notion of a onstraint satis�ed in a given valuation denoted v � g is de�ned indutivelyas follows:
• v � h ⊲⊳ n if and only if v(h) ⊲⊳ n
• v � h− h′ ⊲⊳ n if and only if v(h)− v(h′) ⊲⊳ n
• v � g1 ∧ g2 if and only if v � g1 and v � g2The meaning of a onstraint g, denoted [[g]], is the set of valuations in whih it is satis�ed.Clearly, [[g]] = {v : v � g}. It beomes obvious that [[tt ]] = H → R+ and [[�]] = ∅.De�nition 44 A onstraint g is inonsistent if [[g]] = ∅.De�nition 45 The bound of a onstraint g, denoted by Mg, is the maximal onstant thatappears in it. The bound of a set of onstraints is the maximal value among the bounds ofonstraint it ontains. A set of onstraints isM -bounded if every onstant in it is smaller than

M .



2.1. Clok, Valuation, Constraints 37Now we onsider atomi onstraints and we show how to deompose a onstraint into an�equivalent� set of atomi onstraints.De�nition 46 For a integer M ∈ N, a M -retangular onstraint is a onjuntion of the form
∧

h∈H gh where gh is a onstraint of the form c < h < c + 1 or h = c or h > M with
c ∈ N ∩ [0..M [.The set of all M -retangular onstraints is denoted by AgdsH(M) . The symbol AgdsHwill denote the set ⋃M∈N

AgdsH(M)De�nition 47 A M -triangular onstraint is a onjuntion of the form ∧

h∈H gh ∧
∧

(h,h′)∈H2 gh,h′ where gh,h′ is a onstraint of the forms c < h − h′ < c + 1 or h − h′ = cor h− h′ > M and gh is of the form c < h < c+ 1 or h = c or h > M with c ∈ N ∩ [0..M [.The symbol TgdsH(M) denotes the set of all of M -triangular onstraints. The symbol
TgdsH denotes the set ⋃M∈N

TgdsH(M).Notation: We often use the symbol ĝ to denote a onstraint in AgdsH(M) or TgdsH(M)for some M . Later the terms atomi onstraints will often be used in plae of retangularonstraints or triangular onstraints.Let us �rst reall the following fat resulting from de�nitions of atomi onstraints.Fat 48 (atomiity) Let M ∈ N be a onstant.
• ∀ĝ, ĝ′ ∈ TgdsH(M), if [[ĝ]] 6= [[ĝ′]] then [[ĝ]] ∩ [[ĝ′]] = ∅

• ∀ĝ, ĝ′ ∈ AgdsH(M), if [[ĝ]] 6= [[ĝ′]] then [[ĝ]] ∩ [[ĝ′]] = ∅

• ∀(ĝ, ĝ′) ∈ AgdsH(M)× TgdsH(M), either [[ĝ′]] ∩ [[ĝ]] = ∅ or [[ĝ′]] ⊆ [[ĝ]]The �rst two items state that either the semantis of two atomi onstraints of the samenature are equal, or they are disjoint. The last item of the above fat states that the semantisof a triangular onstraint is either inluded in the semantis of a retangular onstraints, orthe two semantis are disjoint.Example: In Figure 3,we illustrate the onepts of onstraints and diagonal free onstraints.The onstraints g1 and g3 are general onstraints while the onstraint g2 is diagonal free.Moreover [[g3]] = [[g1]] ∧ [[g2]]. The onstraint g2 is a retangular onstraint in AgdsH(2) andthe onstraint g3 is a triangular onstraint. �Normalization and Retangularisation Until the end of this subsetion we onsider thedeomposition of diagonal free onstraint into set of retangular onstraints. We will need toonsider onstraints that do not involve onstants greater than a �xed bound. For that purpose,we present the normalisation operation normN that we use later to deompose onstraints.De�nition 49 Given N ∈ N, the N -normalization of a simple onstraint C is the onstraint
normN(C) de�ned by :
• normN (h ⊲⊳ n) = tt if ⊲⊳∈ {<,≤} and n > N .
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g1 = 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2 ∧−1 ≤ ha − hb ≤ 1

g2 = 1 < ha < 2 ∧ 0 < hb < 1

g3 = 1 < ha < 2 ∧ 0 < hb ≤ 1 ∧−1 ≤ ha − hb ≤ 1

Figure 3: Illustration of onstraints and diagonal free onstraints.
• normN (h− h′ ⊲⊳ n) = tt if ⊲⊳∈ {<,≤} and n > N .
• normN (h ⊲⊳ n) = h > N if ⊲⊳∈ {>,≥} and n > N .
• normN (h− h′ ⊲⊳ n) = h− h′ > N if ⊲⊳∈ {>,≥} and n > N .
• In the other ases normN does not modify the onstraint.Given a onstraint g and an integer N , the N -normalization of g, normN (g) is obtainedby normalizing eah simple onstraint ourring in g.Lemma 50 Let C, a diagonal-free simple onstraint, there is a onstant M suh that:
• for every N ≥M , [[normM(C)]] = [[normN(C)]] = [[C]]

• for every N < M , [[normM(C)]] ( [[normN(C)]]Proof1. When C has the form h ⊲⊳ n with ⊲⊳∈ {<,≤} and onsider M = n,(a) Let N ≥ M , normN(h ⊲⊳ n) is equal to normM(h ⊲⊳ n) and they are equal to
h ⊲⊳ n and we get the result that [[normM (C)]] = [[normN (C)]] = [[C]].(b) Let N < M , normN(h ⊲⊳ n) = h ≥ 0. Clearly [[normM (C)]] ( [[normN (C)]].2. When C has the form h ⊲⊳ n with ⊲⊳∈ {>,≥} and onsider M = n,(a) Let N ≥ M , normN(h ⊲⊳ n) is equal to normM(h ⊲⊳ n) and they are equal to
h ⊲⊳ n and we get the result that [[normM (C)]] = [[normN (C)]] = [[C]].(b) Let N < M , then normN(h ⊲⊳ n) = h ⊲⊳ N and [[normM (C)]] = h ⊲⊳ M . Clearly,
[[normM (C)]] ( [[normN (C)]].
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�Let us reall that for a onstraint g, Mg denotes the maximal onstant ourring in g.We use the lemma above to show that the M -normalisation of a onstraint does modify itssemantis when M is greater or equal to Mg.Proposition 51 Let g ∈ GdsH,

• for every M ≥Mg, [[normM(g)]] = [[normN (g)]] = [[g]]

• for every M < Mg, [[normM(g)]] ( [[normN (g)]]ProofBy de�nitions g =
∧

i=1..nCi and, [[normM(g)]] =
⋂

i=1..n [[NormM(Ci)]]. As Mg is greaterthat the onstant used in every Ci, we get, using 50 that for M ≥ Mg, [[normM(g)]] =
[[normN (g)]] = [[g]]and for M < Mg, [[normM(g)]] ( [[normN(g)]] �Example: Considering the onstraint g = 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2 , we present in Table 3the results of M -normalisation operations depending on the value of M . It is easy to see thatM normM(g)0 tt1 tt2 0 ≤ hb ≤ 23 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2Table 3: Illustration of the normalisation operation.for every M < 2, [[g]] ⊆ [[normM (g)]] and for every M ≥ 2, [[g]] = [[normM (g)]] �To obtain the deomposition of diagonal onstraints, we �rstly deompose diagonal freeonstraints into a set (possibly in�nite) of unbounded retangular onstraints. Then, we usethe normalisation proedure above on eah atomi onstraint in that set to have a �nite setof bounded retangular onstraints. The deomposition of diagonal free onstraints into a setof unbounded retangular onstraints is performed in two steps: in Lemma 52 we deomposesimple diagonal free onstraints and we use that deomposition in Proposition 53 to deomposediagonal free onstraints.Lemma 52 For every diagonal free simple onstraint C, there is a set Rect(C) of atomidiagonal free simple onstraints suh that [[C]] =

⋃

C′∈Rect(C) [[C ′]].ProofLet C be a diagonal free onstraint C. We onstrut a set Rect(C) depending on the form of
C; and we show that for every v ∈ V, v � C if and only if there is C ′ ∈ Rect(C) suh that
v � C ′.1. if C is of the form h < n then set Rect(C) = {i < h < i+ 1, h = i | i = 0..n− 1}2. if C is of the form h ≤ n then set Rect(C) = {i < h < i+1, h = i | i = 0..n−1}∪{h = n}3. if C is of the form h > n then set Rect(C) = {i < h < i+ 1, h = i+ 1 | i = n..∞}



40 Chapter 2. Timed Proesses4. if C is of the form h ≥ n then set Rect(C) = {i < h < i+1, h = i+1 | i = n..∞}∪{h = n}The proof that in eah ase, [[C]] = ∪C′∈Rect(C)[[C
′]], is obvious. �We observe that simple onstraints of the form h > n to h ≥ n are deomposed into in�niteset of onstraints.Proposition 53 For every diagonal-free onstraint g, there is a set Rect(g) of retangularonstraints suh that [[g]] =

⋃

ĝ∈Rect(g) [[ĝ]].ProofThe result is a onsequene of the Lemma 52 above as a onstraints is a onjuntion of simpleonstraints. �We say that Rect(g) is the unbounded retangular deomposition of g.Now that we have deomposed diagonal free onstraints into sets (possibly in�nite) ofunbounded retangular onstraints, we will apply the normalisation operation on eah retan-gular onstraint in these sets; the result of the appliation of the normalisation operation withrespet to a onstant M will be �nite set of M -retangular onstraints. But we need to showthat the semantis of the onstraint resulting from the appliation of the M -normalisationoperation on a simple diagonal free onstraint is the same as the union of the semantis ofretangular onstraints in its unbounded retangular deomposition.Lemma 54 For every diagonal free simple onstraint C of the form h ≤ n or h ≥ n, for every
M ∈ N, [[normM(C)]] = ∪C′∈Rect(C)[[normM(C ′)]].ProofIf C is of the form:
• h ≤ n,� If M ≥ n then normM(C) = C and for every C ′ ∈ Rect(C), normM(C ′) = C ′.Then we get the result.� If M < n then normM(C) = tt . Let C ′ be h = n. From Lemma 52, we get that

C ′ ∈ Rect(C) and normM(C ′) = tt ; then we get that ⋃C′∈Rect(C) [[normM(C ′)]] =

tt and [[normM (C)]] = ∪C′∈Rect(C)[[normM(C ′)]].
• h ≥ n,� The ase when M ≥ n is obvious beause every onstraint in Rect(C)∪ {C} is notmodi�ed by normM .� The ase when M < n is also obvious beause norm(C) = h > M and

normM(C ′) = h > M for every C ′ ∈ Rect(C)

�Now we an easily extend results in the lemma above to diagonal free onstraints.



2.2. Regions 41Proposition 55 For every diagonal-free onstraint g, for every M ∈ N, [[normM(g)]] =
⋃

ĝ∈Rect(g) [[normM (ĝ)]].ProofIt is a onsequene of Lemma 54 above and Proposition 53 �De�nition 56 Given g ∈ GdsH and an integer M ∈ N, we de�ne the set
RectM (g) = {normM (ĝ) | ĝ ∈ Rect(g)}From Proposition 51, we get that every diagonal-free onstraint using onstant smallerthan an integer M an be deomposed into a �nite set of M -retangular onstraints.Proposition 57 For every onstraint g ∈ GdsH, for every M ∈ N suh that M ≥ Mg wehave that: [[g]] =

⋃

ĝ∈RectM (g) [[ĝ]].ProofFrom Proposition 55 [[normM (g)]] =
⋃

ĝ∈Rect(g) [[normM(ĝ)]] or equivalently [[normM(g)]] =
⋃

ĝ∈RectM (g) [[ĝ]]. From Proposition 51 for M ≥ Mg, [[g]] = [[normM(g)]] and we get the result.
�Remark: The same kind of property an be established for general onstraints and triangularonstraints. The semantis of every retangular onstraint is equal to the union of semantisof some triangular onstraints. Then, every M -bounded diagonal free atomi onstraint anbe deomposed into an equivalent set of M -bounded triangular onstraints.From the remark above we have the following proposition that we leave without proof.Proposition 58 Every onstraint or diagonal free onstraint an be deomposed into a �niteequivalent set of triangular onstraints.2.2 RegionsWe present a partitioning of the valuations into a �nite number of equivalene lasses alledregions. Valuations in the same region must satisfy the same lok onstraints, their timesuessors must also satisfy the same lok onstraints, and they must satisfy the same lokonstraints after a lok is reset. Depending on the nature of the loks onstraints, region arede�ned di�erently but they agree on a same set of properties.Given a valuation v, [v] denotes the equivalene lass (region) of v. We also use the letter rto represent a region. Given a region r, we de�ne r+ t = {[v+ t] | v ∈ r}, r↑= {r+ t | t ∈ R≥0}and r[h := 0] = {[v[h := 0]] : v ∈ r}.The operation r + t returns the set of regions that an be reahed from valuations in rafter t time units. The operation r↑ gives the set of regions that an be reahed when thetime elapses in r. The operation r[h := 0] gives the unique region after the lok h is reset inevery valuation of r. We write r ⊆ g for r ⊆ [[g]].



42 Chapter 2. Timed ProessesGiven a set G of onstraints, we will present onstrutions for di�erent types of sets ofregions Reg that satisfy the following properties:P1 ∀g ∈ G, r ∈ Reg, either r ⊆ [[g]] or [[g]] ∩ r = ∅.P2 ∀r, r′ ∈ Reg, if there exists some v ∈ r and t ∈ R≥0 suh that v + t ∈ r′, then for every
v′ ∈ r there is some t′ ∈ R≥0 suh that v′ + t′ ∈ r′.P3 ∀r, r′ ∈ Reg,∀h ∈ H, if r[h := 0] ∩ r′ 6= ∅, then r[h := 0] ⊆ r′.Now we will present de�nitions of regions for diagonal-free onstraints and general (diag-onal) onstraint.2.2.1 Regions for Diagonal Free ConstraintsThe de�nition of a region we present here has been introdued by Alur and Dill [AD94℄for analysing timed automata using only diagonal -free onstraints. The equivalene relationbetween valuations is de�ned with respet to some integer M representing the maximal valueused in onstraints. The de�nition of that relation is somehow related to the de�nition ofatomi onstraints as atomi onstraints an not be deomposed into smaller onstraints.Thus, two equivalent valuations agree on the integral part of eah lok whose values aresmaller than M and they also agree on the order on the frational part of the values of theloks.For a real number n let ⌊n⌋ denote the integral part of n and {n} denote the frationalpart of n.Let M be a natural number. Consider the parametrised binary relation ∼M⊆ VH × VHover valuations de�ned by, v ∼M v′ if:1. v(h) > M if and only if v′(h) > M for eah h ∈ H;2. if v(h) ≤M , then ⌊v(h)⌋ = ⌊v′(h)⌋ for every h ∈ H;3. if v(h) ≤M , then {v(h)} = 0 if and only if {v′(h)} = 0 for every h ∈ H, and;4. if v(h) ≤M and v(h′) ≤M , then {v(h)} ≤ {v(h′)} if and only if {v′(h)} ≤ {v′(h′)} forevery h, h′ ∈ H.Proposition 59 ([AD94℄) The relation ∼M is an equivalene relation over the set of valu-ations with at most 23|H|−1 × |H|!× (M + 1)|H| equivalene lasses.ProofThe relation ∼M is de�ned as a onjuntion of four properties. Eah property de�nes anequivalene relation; let us denote them by ∼M1 , . . . ,∼M4 , respetively. For eah of these fourrelations we will give an upper bound on the number of its equivalene lasses. The produtof these bounds will give an upper bound on ∼M as the later is the intersetion of the fourequivalene relations.The relation de�ned by the �rst ondition has 2|H| equivalene lasses, as the only thingthat ounts is whether the value of a lok is bigger thanM or not. Similarly the third relation



2.2. Regions 43has 2|H| equivalene lasses. The number of lasses of the seond relation is (M+1)|H| as thereareM+1 possible integer values of interest. Finally, the number of lasses of the fourth relationis bounded by the number of permutations of the set of loks multiplied by 2|H|−1 as for everytwo loks onseutive in a permutation we need to deide if they are equal or if the seond isstritly bigger than the �rst.Summarizing, we get 23|H|−1|H!|(M + 1)|H|.
�We useReg(M) (or Reg for short) to represent the set of equivalene lasses of the relation

∼M .De�nition 60 A region [AD94℄ is an equivalene lass of the relation ∼M⊆ VH×VH de�nedabove.In Figure 4 we illustrate region for diagonal free onstraints for the maximal onstant
M = 2. In Figure 4 valuations earlier presented in Table 2 are not equivalent. A region inthe �gure is either a orner point (for example (0, 2)), an open line segment (for example
0 < h1 = h2 < 1) or an open box (for example 0 < h1 < h2 < 1).
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Figure 4: Region illustration.From the de�nition of ∼M , it omes that an equivalene lass an be represented using atriangular onstraint in g. Aording to the de�nition of ∼M , two valuations that belong tothe same equivalene lass satisfy onstraint of the form:
• h = ih or ih < h < ih + 1 for eah h ∈ H where ih ∈ {0, 1, . . . ,M} and we assume
M + 1 =∞. This is a onsequene of ∼M1 , ∼M2 , ∼M3 .

• h − h′ = ihh′ or ihh′ < h − h′ < ihh′ + 1 for eah ouple (h, h′) ∈ H2 suh that h ⊲⊳ Mand h′ ⊲⊳ M with ⊲⊳∈ {=, <}. This is a onsequene of ∼M4 .



44 Chapter 2. Timed ProessesProposition 61 Let G be a set ofM -bounded onstraints then Reg(M) satis�es the P1, P2,P3 mentioned above.ProofWe show P1 in the �rst item, P2 in the seond item and P3 in the last item.1. Let g ∈ G, from Proposition 57 let [[g]] =
⋃

gi∈RectM (g) [[ĝi]]. Eah ĝi is a retangularonstraint. [[g]]∩ r =
⋃

gi∈RectM (g) [[ĝi]]∩ r). From Fat 48 there is at most one i suh that
r intersets ĝi. It follows that r intersets a onstraint ĝi of RectM (g) if and only if ĝiontains r. We have that if v � r then v � g.2. Let v, v′ ∈ r, adding t to v may modify the integer part of the value (with respet to v)of some loks or may modify the order on the frational part of the value (with respetto v) of loks. We aim at �nd a time t′ suh that:- The integer part of the value of eah lok with respet to v′ + t′ is equal to the integerpart of the value of eah lok with respet to v + t- The order of the frational parts of loks in v′ + t′ is the same in v + t.- The set of loks with zero frational part in v + t is the same in v′ + t′.Let |H| = n and assume a permutation π of {1, . . . , n} suh that:

{v(hπ1
)} ⊲⊳1 {v(hπ2

)} ⊲⊳2, . . . , ⊲⊳n−1 {v(hπn)}(∗)with ⊲⊳i∈ {<,=}.Let t ∈ R≥0. It is lear that {v(h) + t} = {v(h) + {t}}. Only the frational part of tmay a�et the order in (∗).There may be a largest index j suh that:
{v(hπj

) + {t}} = {v(hπj
)}+ {t}. In ase, no suh j exists, take j = n.Clearly, {v(hπj

) + {t}} ≥ {v(hπj
)} and; ∀k > j we have:

{v(hπk
) + {t}} < {v(hπk

)} and {v(hπk
) + {t}} < {v(hπj

) + {t}}.We get that:
{v(hπj+1

) + {t}} ⊲⊳j . . . . . . ⊲⊳n−1 {v(hπn) + {t}} < {v(hπj
) + {t}}Similarly, we establish that

{v(hπj
) + {t}} < {v(hπj−1

) + {t}}⊲⊳j−2 . . . ⊲⊳1{v(hπ1
) + {t}}where ⊲⊳k => if ⊲⊳j∈ {<} otherwise ⊲⊳j∈ {=}, ∀k ≤ j

• If {v′(hπj+1
) + {t′}} 6= 0, in order to have

{v′(hπj+1
{t′}} ⊲⊳j . . . ⊲⊳n−1< {v

′(hπn{t
′}} < {v′(hπj

) + {t′}} and
{v′(hπj+1

) + {t′}} ⊲⊳j< {v
′(hπj−1

) + {t′}}⊲⊳j−2 . . . ⊲⊳1{v
′(hπ1

) + {t′}}We take {t′} ∈ [0, 1 − {v′(hπj
)}[∩[1− {v′(hπj+1

)}, 1[.
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• If {v′(hπj+1

) + {t′}} = 0 then {t} = 1 − {v(hπj+1
)}; and we take {t′} = 1 −

{v′(hπj+1
)}.It omes that ⌊{v′(hπi

)}+ {t′}⌋ = ⌊{v(hπi
)}+ {t}⌋.To ensure that ⌊{v′(hπi

)}+ t′⌋ = ⌊{v(hπi
)}+ t⌋ we must take ⌊t⌋ = ⌊t′⌋.3. Let v1, v2 ∈ r, then v1 and v2 satisfy all the onditions in the de�nition of an equivalenelass. Its obvious that v1[h := 0] and v2[h := 0] also satisfy those three onditions andthen v1[h := 0] and v2[h := 0] belong to r[h := 0].If v ∈ r[h := 0]∩ r′ then every v′ ∈ r′ is equivalent to v whih is also equivalent to every

v′′ ∈ r[h := 0]. Thus v ∈ r[h := 0] if and only if v ∈ r[h := 0].
�2.2.2 Regions for General ConstraintsFor general onstraints, the ones in ΦH, we need to slightly modify the equivalene relationde�ned above. Considering a set G of lok onstraints, we onsider the equivalene relation

∼G de�ned in [Yov98℄ by v ∼G v′ if the following three onditions hold:1. v(h) > M implies v′(h) > M where M is the maximal onstant that ours in G2. if v(h) ≤M then(a) ⌊v(h)⌋ = ⌊v′(h)⌋ and(b) {v(h)} = 0 implies {v′(h)} = 03. For every lok onstraints in G of the form h − h′ ∼ c, v � h − h′ ∼ c implies v′ �

h− h′ ∼ c.The set of regions for a set of lok onstraints G is the set of equivalene lasses of therelation ∼G. Using similar argumentation as in the previous subsetion, we an show that thenumber of equivalene lasses is �nite and the set of regions satis�es the properties P1, P2,P3 mentioned above.2.3 Zones and Di�erene Bounded Matries2.3.1 Zone and RepresentationWe de�ne zones that we use later for symboli analysis. Zones have been onsidered by severalauthors [Dil90, HNSY94, YL97℄ for analysing timed systems. They enable a �nite partitioningof valuations.De�nition 62 A zone is the set of valuations satisfying a onstraint. A k-bounded zone is azone de�ned by a k-bounded lok onstraint.



46 Chapter 2. Timed ProessesFor a zone Z represented by the onstraint g, we de�ne the approximation operator
normM(Z) = normM(g)Given a zone Z, the set of k-bounded zones ontaining Z is �nite and not empty. Theintersetion of theses k-bounded zones is a k-bounded zone ontaining Z, and is the smallestone having this property.Sine it is obvious that several onstraints represent the same zone, among the set of on-straints with the same semantis we are interested in the so-alled unique anonial onstraint ,the one that we an not strengthen any simple onstraint it ontains without modifying of thesemantis of the onstraint.A zone an be represented with a di�erene bounded matrix [Dil90℄ de�ned below.De�nition 63 A di�erene bounded matrix (DBM) for n loks is an (n+1)× (n+1) squarematrix of pairs

(c; ⊲⊳) ∈ (Z× {<,≤}) ∪ {(∞;<)}A DBM D = (ci,j , ⊲⊳i,j)i,j=1..n de�nes the following subset of valuations (the lok h0 issupposed to be always equal to zero, that is, for eah valuation v, v(h0) = 0):
{v : {h1, h2, . . . , hn} → R+ | ∀0 < i, j < n, v(hi)− v(hj) ⊲⊳i,j ci,j}We will write v ∈ D if the valuation v belong to the set that de�ne D.It is obvious that a DBM D an be translated into a onstraint. That onstraint is justthe onjuntion of simple onstraints of the form hi − hj ⊲⊳i,j ci,j. A DBM is anonial if theonstraint assoiated to it is anonial.2.3.2 Computation of some Operations on DBMsWe reall operations on DBMs that are useful for the reahability analysis. These operationshave been niely desribed in [BY04, CGP99℄. Some of these operations use the followingorder relation and the sum (+) operation between elements of DBMs. In Subsetion 2.6.2,these operations are used to ompute some DBMs (presented there in a simple form).Given (c; ⊲⊳) and (c′; ⊲⊳′) two possible elements of a DBMs, we de�ne the order≤e⊆ ((Z×{<

,≤}) ∪ {(∞;<})2 by
(c; ⊲⊳) ≤e (c′; ⊲⊳′) =⇒







c < c′

or
c = c′ and either ⊲⊳=⊲⊳′ or ⊲⊳′=≤We de�ne (c; ⊲⊳) + (c′; ⊲⊳′) = (c′′; ⊲⊳′′) where c′′ = c+ c′ and ⊲⊳′′ is ≤ if both ⊲⊳ and ⊲⊳′ are

≤ and ⊲⊳′′ is < otherwise.Canonial Dbms: The omputation of anonial Dbms derives tightest simple diagonalonstraints, one for eah simple diagonal onstraint in Dbms. A given Dbm is transformedinto a weighted graph where loks are nodes and the simple onstraints are edges labeledwith bounds. A onstraints of the form h− h′ ⊲⊳ n (with ⊲⊳∈ {<,≤}) will be onverted to an



2.3. Zones and Differene Bounded Matries 47edge from node h′ to h labeled with (⊲⊳, n), namely the distane from h′ to h is bounded by n.Thus, deriving the tightest simple onstraint on a pair of loks in a Dbm, is equivalent to �ndthe shortest path between their nodes in the weighted graph onstruted from the Dbm. TheFloyd-Warshall algorithm [Flo62℄ an be used to �nd shortest paths between nodes. There isa simple onstraint h − h′ ⊲⊳ n′ in the resulting anonial Dbm if the weight of the shortestpath from h′ to h is equal to (⊲⊳, n′).Intersetion: Let D = (ci,j ; ⊲⊳i,j)i,j=1,...,n and D′ = (c′i,j ; ⊲⊳
′
i,j)i,j=1,...,n be two DBMs. Con-sider the DBM D′′ = (c′′i,j ; ⊲⊳

′′
i,j)i,j=1,...,n de�ned by:

(c′′i,j ; ⊲⊳
′′
i,j) = min((ci,j ; ⊲⊳i,j), (c

′
i,j ; ⊲⊳

′
i,j))for all indexes i, j = 1 . . . nwhere min(x, y) denotes the minimum of x and y aording to the relation ≤e de�ned above.It has been established that v ∈ D′′ if and only if v ∈ D and v ∈ D′Future: This operation omputes the set of valuations that are reahable from a DBM whentime elapses. Given D = (ci,j ; ⊲⊳i,j)i,j=1,...,n in normal form, the DBM D′ = (c′i,j ; ⊲⊳

′
i,j)i,j=1,...,nde�ned by :

{

(c′i,j ; ⊲⊳
′
i,j) = (ci,j; ⊲⊳i,j) if j 6= 0

(c′i,j ; ⊲⊳
′
i,j) = (∞;<)is suh that v′ ∈ D′ if and only if there is t ∈ R+, v ∈ D suh that v′ = v + t.Past: This operation omputes the set of valuations from whih a valuation in a DBMan be reahed when time elapses. Given D = (ci,j ; ⊲⊳i,j)i,j=1,...,n in normal form, the DBM

D′ = (c′i,j ; ⊲⊳
′
i,j)i,j=1,...,n de�ned by :

{

(c′i,j ; ⊲⊳
′
i,j) = (ci,j ; ⊲⊳i,j) if i 6= 0

(c′i,j ; ⊲⊳
′
i,j) = (0;≤) if i = 0is suh that v′ ∈ D′ if and only if there is t ∈ R+, v ∈ D suh that v = v′ + t.Image by resets: Assume thatD = (ci,j ; ⊲⊳i,j)i,j=1,...,n is a DBM in anonial form. Considerthe DBM Dhk:=0 = (c′i,j ; ⊲⊳

′
i,j)i,j=1,...,n de�ned by:















(c′i,j ; ⊲⊳
′
i,j) = (ci,j ; ⊲⊳i,j) if i, j 6= k

(c′k,k; ⊲⊳
′
i,j) = (c′k,0; ⊲⊳

′
k,0) = c′0,k; ⊲⊳

′
0,k) = (0;≤)

(c′i,k; ⊲⊳
′
i,k) = (ci,0; ⊲⊳i,0) if i 6= k

(c′k,i; ⊲⊳
′
k,i) = (c0,i; ⊲⊳0,i) if i 6= kWe have that v′ ∈ Dhk:=0 if and only if there is v ∈ D suh that v′ = v[hk := 0].

k-approximation: The k- approximation of a DBM D = (ci,j ; ⊲⊳i,j)i,j=1,...,n in anonialform is the DBM Dk = (c′i,j ; ⊲⊳
′
i,j)i,j=1,...,n de�ned by:







(c′i,j ; ⊲⊳
′
i,j) = (ci,j ; ⊲⊳i,j) if −k ≤ ci,j ≤ k

(c′i,j ; ⊲⊳
′
i,j) = (∞;<) if ci,j > k

(c′i,j ; ⊲⊳
′
i,j) = (−k;<) if ci,j ≤ −kIf Z is the zone assoiated to D then, the zone of Dk is equal to Normk(Z)



48 Chapter 2. Timed ProessesEmptiness testing: A DBM D = (ci,j ; ⊲⊳i,j)i,j=1,...,n is empty if and only if there ex-ists a negative yle in D, that means that there exists a sequene of distint indexes
(i1, i2, . . . , il−1, il = i1) suh that

l−1
∑

j=1

(cij ,ij+1
, ⊲⊳ij ,ij+1

) < (0;≤)Equality testing D = (ci,j ; ⊲⊳i,j)i,j=1,...,n and D′ = (c′i,j; ⊲⊳
′
i,j)i,j=1,...,n be two DBMs as-sumed to be in anonial form. D is equal to D′ if and only if (ci,j ; ⊲⊳i,j) ≤e (c′i,j ; ⊲⊳

′
i,j) and

(c′i,j ; ⊲⊳
′
i,j) ≤ (ci,j ; ⊲⊳i,j)2.4 Models for Timed Proesses2.4.1 De�nitionsWe present models for timed proesses, their semantis and two alternative representa-tions for the semantis. Models for timed proess are nothing else but event-reordingautomata [AFH99℄ without an aeptane ondition. The semantis of timed proesses aretransition systems. States of semantis are ouple of the form (p, v) where p is a (ontrol)state of a timed proess and the valuation v gives the timing ontext of the exeution ofthe timed proess. Transitions of semantis are of two sorts: delay transitions that representthe elapse of the time and disrete transitions that represent the ourrene of an event.Our presentation for Delay transition is not standard. Instead of labeling delay transitionwith real number t as it is ommonly done in [AD94, AFH99, DM02, BCL05℄ to representthe elapse of time from the on�guration (p, v), we hoose to label delay transitions withthe timing ontext v + t from (p, v) after t time units. The two representations for thesemantis suessively replae valuations on transitions with atomi onstraints and valuationin on�guration with regions.Let Σ = {a1, a2 . . . } be a set of events . We onsider HΣ = {h1, h2, . . . } the set of loks.The lok hi is the unique lok assoiated to the event ai. When there is no onfusion, a willdenote an event and ha will denote the unique lok assoiated to a. There are as many loksas events. The symbol GdsΣ will denote the set of onstraints de�ned over HΣ, the symbol

AgdsΣ will denote the set of retangular onstraints over HΣ, and the symbol VΣ will denotethe set of valuations over HΣ.De�nition 64 A timed proess , or proess for short, is a tuple
P = 〈P ,Σ, p0,∆P 〉where,

• P is a �nite set of states,
• p0 ∈ P is the initial state,
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• ∆P ⊆ P ×GdsΣ × Σ× P is a transition relation.Sometimes, we shortly write p

g,a
−→ p′ for a transition (p, g, a, p′) in ∆P . The bound of a timedproess is the maximal onstant that ours in its guards. For a timed proess P, MP denotesits bound. Given a onstant M , we say a timed proess is M -bounded if its bound is smallerthan M .De�nition 65 A timed proess is deterministi if whenever there are two transitions p

g1,a
−→ p1and p

g2,a
−→ p2 with p1 6= p2, the onstraint g1 ∧ g2 is inonsistent.Figure 5,Figure 6 and Figure 7 present three timed proesses. The timed proess in Figure 6and Figure 7 are deterministi and timed proess in Figure 5 is not deterministi.

p3 p1 p0 p2

0 < ha < 2, a

0 < hb < 2, b

0 < ha < 2, a

0 < hb < 2, b

tt , cFigure 5: A non deterministi timed proess:P0.The timed proess in Figure 5 is not deterministi as the onjuntion of the guards in thetwo transitions outgoing from p0 is onsistent while their events are the same. In Figure 6, theonjuntion of the guards is inonsistent and, in Figure 7 the transitions outgoing from p0 arenot labelled with the same event.
p3 p1 p0 p2

0 < ha < 1, a

0 < hb < 2, b

1 ≤ ha < 2, a

0 < hb < 2, b

tt , cFigure 6: A deterministi timed proess:P1.
p3 p1 p0 p2

0 < ha < 2, a

0 < hb < 2, b

0 < hb < 2, b

0 < ha < 2, a

tt , cFigure 7: A deterministi timed proess:P2.



50 Chapter 2. Timed Proesses2.4.2 SemantisThe semantis of a timed proess is a transition system that represents all possible behavioursof the timed proess. The idea is that eah lok ha reords the amount of time elapsedsine the last ourrene of the orresponding event a. The time elapses ontinuously at astate. Whenever an ation a is exeuted, the lok ha is automatially reset. No other lokassignments are permitted.
p0; v0(ha) = 0

v0(hb) = 0
v0(hc) = 0

{v0 + t : v0 + t � 0 < ha < 2}

p1; v1(ha) = 0
v1(hb) = 0.4
v1(hc) = 0.4

p2; v1(ha) = 0
v1(hb) = 0.4
v1(hc) = 0.4

t = 0.4

a a

{v1 + t : v0 + t � tt}

p3; v2(ha) = 2
v2(hb) = 2.4
v2(hc) = 0

c

t = 2

Figure 8: A part of the semantis of P0.De�nition 66 The semantis of a timed proess P as above is the transition system
[[P]] = 〈P × VΣ,Σ ∪ VΣ, (p

0, v0),→〉where →⊆ (P × VΣ)× (Σ ∪ VΣ)× (P × VΣ) is de�ned by:- (p, v)
v+t
−→ (p, v + t) for every t ≥ 0.- (p, v)
a
−→ (p′, v[ha := 0]) if there is (p, g, a, p′) ∈ ∆P suh that v ∈ [[g]].Delay transitions are transitions labelled with valuations and disrete transitions are tran-sitions labelled with events.Remark: When presenting the semantis of timed automata [AD94, DM02, BCL05℄ andevent-reording automata [AFH99℄, it is usual to label delay transitions with non negativereal numbers. In the semantis presented above, delay transition are labelled with valuations.We remark that these two presentations are equivalent. The hoie of the presentation abovewill be justi�ed in the next hapters when the semantis of formulas will be de�ned.Notation: Later we use the notation s

v,a
−→ s′ if there exists s′′ suh that s v

−→ s′′ and
s′′

a
−→ s′.



2.4. Models for Timed Proesses 51Let us use the following example to illustrate the notion of semantis of timed proesses.We onsider proess in Figure 5 and Figure 6 and transitions from p0 to p1 and p2. In Figure 8,we present the beginning of the semantis of the proess in Figure 5. As that proess is notdeterministi, at the same time ( for example t = 0.4), it is possible to trigger the event a andeither move to p1 or p2. From p1 it is possible to do immediately c while it is not the asefrom p2.2.4.3 Representations for Timed ProessesThe above semantis is not very onvenient as both the set of states and the set of labelsourring in transitions are unountable. We will onsider two more abstrat semantis ofproesses. The �rst will abstrat from valuations in the labels of transitions. The seond willreplae valuations in states by regions. In order for the abstrations to be �nite, they will beparametrized by a bound M on the lok values.De�nition 67 TheM -ation abstration of a timed proess P is the (Σ∪AgdsΣ(M))-labeledtransition system
〈[P]〉M = 〈P × VΣ,Σ ∪AgdsΣ(M), (s0, v0),∆v〉,where ∆v ⊆ (P × VΣ)× (Σ ∪AgdsΣ(M))× (P × VΣ) is de�ned by:- (p, v)

ĝ
−→ (p, v + t) for any t ∈ R+ suh that v + t � ĝ and- (p, v)
a
−→ (p′, v[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with v � g.We observe that the M -ation representation is obtained from the semantis by replaingvaluations on delay-transitions with M -retangular onstraints they satisfy. Then for everytimed proess P and every natural onstant M , there is an isomorphism between [[P]] and

〈[P]〉M .De�nition 68 TheM -region abstration of a timed proess P is the (Σ∪AgdsΣ(M))-labeledtransition system
〈[P]〉Mreg = 〈P ×Reg(M),Σ ∪Agds(M), (p0, r0),∆r〉,where v0 ∈ r0, ∆r ⊆ (P ×Reg(M)) × (Σ ∪AgdsΣ(M))× (P ×Reg(M)) is de�ned by:- (p, r)

ĝ
−→ (p, r′) with r′ ⊆ r↑ and r′ ⊆ ĝ.- (p, r)
a
−→ (p′, r[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with r ⊆ g.Notation: Later and partiularly in the next Chapter, given a (GdsΣ ∪ Σ)-LTS, we usethe notation s g,a

−→ s′ if there exists s′′ suh that s g
−→ s′′ and s′′ a

−→ s′.Proposition 69 For every timed proess P, and everyM ≥MP : 〈[P]〉M is bisimilar to 〈[P]〉Mreg.



52 Chapter 2. Timed ProessesProofWe onsider a relation ∼⊆ (P × VΣ) × (P ×RegΣ(M)) de�ned by (p, v) ∼ (p, [v]) for every
p ∈ P , v ∈ VΣ. We show that it is a bisimulation.
• First, we onsider delay transitions. Assume that (p, v) ∼ (p, [v]). If (p, v)

ĝ
−→ (p, v′),then there is t ∈ R+ suh that v + t ∈ [[ĝ]]. Aording to Proposition 61, [v + t] ⊆ ĝ andobviously [v+t] ⊆ [v]↑. Then, we get that (p, [v])

ĝ
−→ (p, [v+t]) and (p, v+t) ∼ (p, [v+t]).Reiproally, if (p, r)

ĝ
−→ (p, r′), then r′ ⊆ ĝ and r′ ⊆ r ↑. Let v ∈ r aording toProposition 61, there is t ∈ R+ suh that v+ t ∈ r′. Sine r′ ⊆ ĝ, we get v+ t ∈ [[ĝ]] andthen (p, v)

ĝ
−→ (p, v′).

• Next, we onsider disrete transitions. Assume that (p, v) ∼ (p, [v]). If (p, v)
a
−→ (p′, v′),then v′ = v[ha := 0] and there is p

g,a
−→ p′ suh that v ∈ [[g]]. Let ĝ ∈ Agds(M) be anatomi guard suh that v ∈ [[ĝ]]. Then we get (p, [v])

a
−→ (p′, [v′]) and (p, v′) ∼ (p, [v′]).Reiproally, if (p, r)

a
−→ (p′, r′), then r′ = r[ha := 0] and there is p

g,a
−→ p′ suh that

r ∈ [[g]]. Let v ∈ r, obviously v ∈ [[g]], and v[ha := 0] ∈ r′. It follows that (p, v)
a
−→

(p′, v[ha := 0]) and (p, v[ha := 0]) ∼ (p, r′).
�2.5 Produt of Timed ProessesDe�nition 70 The produt of a timed proess P = 〈P ,Σ, p0,∆P 〉 with a timed proess

R = 〈S,Σ, s0,∆R〉 is the timed proess denoted by P × R and de�ned by the tuple P ×
R = 〈P × S,Σ, (p0, s0),∆〉 where ((p, s), g, a, (p′ , s′)) ∈ ∆ if there is (p, g′, a, p′) ∈ ∆P ,
(s, g′′, a, s′) ∈ ∆R with g = g′ ∧ g′′.Example: The produt of the timed proess in Figure 6 with the timed proess in Figure 9is depited in Figure 10

p3 p1 p0 p0

0 < ha < 2, a

1 ≤ hb < 3, b

0 < hb ≤ 1, b

hd ≤ 7, dFigure 9: A non deterministi timed proess:P4.
�Now we show that the semantis of the produt of two timed proesses is the produt oftheir semantis.Lemma 71 Let P1 and P2 be two timed proesses, then [[P1 × P2]] is bisimilar to [[P1]]× [[P2]].
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p3 p1 p0

0 < ha < 1, a

1 ≤ hb < 2, b

0 < hb ≤ 1, bFigure 10: A non deterministi timed proess:P5.ProofLet P1 = 〈P1,Σ, p
0
1 ,∆P 1〉 and P2 = 〈P2,Σ, p

0
2 ,∆P 2〉 and onsider the relation

R ⊆ (P1 × P2 × VΣ)× ((P1 × VΣ)× (P2 × VΣ))de�ned by (p1, p2, v)R((p1, v), (p2, v)). Now we show that R is a bisimulation between
[[P1 × P2]] and [[P1]]× [[P2]].
• It is obvious that (p1, p2, v)

v′
−→ (p′

1, p
′
2, v

′) is and only if ((p1, v), (p2, v))
v′
−→

((p′
1, v

′), (p′
2, v

′))

• Let us onsider disrete transitions. Assume that (p1, p2, v)R((p1, v), (p2, v)). If
(p1, p2, v)

a
−→ (p′

1, p
′
2, v

′) then v′ = v[ha := 0] and there is (p1, p2)
g,a
−→ (p′

1, p
′
2)suh that v ∈ [[g]]. But (p1, p2)

g,a
−→ (p′

1, p
′
2) implies there is p1

g1,a
−→ p′

1 in P1 and
p2

g2,a
−→ p′

2 in P2 suh that [[g]] = [[g1]] ∩ [[g2]]. As v ∈ [[g]], we get that v ∈ [[g1]]and v ∈ [[g2]] implying that (p1, v)
a
−→ (p′

1, v
′) and (p2, v)

a
−→ (p′

2, v
′) and then,we get that ((p1, v), (p2, v))

a
−→ ((p′

1, v
′), (p′

2, v
′)). Reiproally if ((p1, v), (p2, v))

a
−→

((p′
1, v

′), (p′
2, v

′)), then (p1, v)
a
−→ (p′

1, v
′) and (p2, v)

a
−→ (p′

2, v
′) with v = v[ha := 0].But (pi, v)

a
−→ (p′

i, v
′) for every i ∈ {1, 2} implies that there exists pi

gi,a−→ p′
i in Piwith v ∈ [[gi]] for every i ∈ {1, 2}. It is obvious that (p1, p2)

g1∧g2,a
−→ (p′

1, p
′
2) and beause

v ∈ [[g1 ∧ g2]] we get that (p1, p2, v)
a
−→ (p′

1, p
′
2, v

′).
�We remark that the relation R in the proof above is a bijetive appliation between statesof [[P1 × P2]] and [[P1]]× [[P2]]. We get that [[P1 ×P2]] is isomorphi to [[P1]]× [[P2]].2.6 Reahability AnalysisFor veri�ation purposes, the most fundamental properties that we should be able to verifyare reahability properties. We onsider the reahability analysis of timed proesses. Thereahability analysis requires to hek whether a system has an exeution from a given start(or soure) state to a given end (or target) state. There are two main algorithms for thereahability analysis: the forward algorithm and the bakward algorithm.The forward analysis starts in a soure state with loks initialized with some set of values.Then, it omputes states reahable within 1 steps, 2 steps, et... until the target state is



54 Chapter 2. Timed Proessesreahed or until the omputation terminates. The bakward algorithm starts in a target statewith loks initialized with some set of values and it omputes states from whih we anreah target states within 1 steps, 2 steps, et... until soure states are reahed or until theomputation terminates. As timing information needs to be onsidered for taking transitionsin a timed proess, simple algorithm may onsider semantis of timed proesses. Beause ofsemantis of timed proess are in�nite state transitions systems where eah state ould havein�nitely many suessors and predeessors, an algorithm like depth in �rst searh (DFS) maynot terminate. Then, we need a �nite representation for semantis that preserves reahabilityproperties. States in that �nite representation are pairs of a state of the timed proess and arepresentable (in�nite) set of set of valuations (that may be a singleton).The forward algorithms are based on the omputation of the representable set of valuations
Post(V, tr) of time suessors of a representable set of valuations V with respet to a transition
tr = p

g,a
−→ p′.

Post(V, tr) = {v + t[ha := 0], | v ∈ V ∃t ∈ R+ suh that v + t ∈ [[g]]}Having Post(V, tr), the forward analysis onsists in omputing the following symboli states
Srci with i ≥ 0. Src0 is the symboli start state made of a start state from the timed proessand a set V 0 of initial valuations.

Src0 = {(p, V 0)|p is the start state and V 0 is an initial set of valuations}and iteratively
Srci+1 = {(p′, V ′)|∃tr = p

g,a
−→ p′∃(p, V ) ∈ Srci suh that V ′ = Post(V, tr)}The bakward algorithms are based on the omputation of the representable set of valua-tions Pre(V, tr) of time predeessors of a representable set of valuations V with respet to atransition tr = p

g,a
−→ p′.

Pre(Z, tr) = {v| ∃t ∈ R+ suh that v + t ∈ [[g]] and v + t[ha := 0] ∈ Z}Then the bakward analysis onsists in omputing the following symboli states:
Tgt0 = {(p, V 0)|p is the target state and V 0 is an initial set of valuations}and iteratively

Tgti+1 = {(p′, V ′)|∃tr = p
g,a
−→ p′∃(p, V ) ∈ Tgti suh that V ′ = Pre(V, tr)}We will present algorithms that use regions and zones as representable set of valuations.2.6.1 Region-based AlgorithmsRegion based algorithms have been introdued by Alur et Dill [AD94℄ for reahability analysisof timed automata. In region-based reahability algorithms, regions are used for representingsets of valuations. In this ase, reahability algorithms work on M -region representations asin that representation states of timed proesses are already paired with regions.We explain here how one an use the M -region representation for reahability analysis oftimed proesses.



2.6. Reahability Analysis 55Lemma 72 For every M , a state is reahable in [[P]] if and only if it is reahable in 〈[P]〉M .ProofIt is enough to remark that 〈[P]〉M is obtained from [[P]] by renaming the labels of transitions.
� As AgdsΣ(M) and Σ are �nite, labels of transitions in 〈[P]〉M range over a �nite set, buta state may also have in�nitely many suessors or predeessors. Then the following lemmaomes as a orollary of Proposition 69. Let us reall that MP is the maximal onstant thatours in the onstraints of the timed proess P.Lemma 73 For every M ≥ MP , a state (p, v) is reahable in [[P]] if and only if (p, [v]) isreahable in 〈[P]〉MregProofBy Lemma 72 a state (p, v) is reahable in [[P]] if and only if it is reahable in 〈[P]〉M . Thenwe an use the bisimilarity result in Proposition 69 to onlude. �In pratie the region onstrution is not used to hek reahability properties as the num-ber of regions is too high. Algorithms for �minimizing� the region graph have been proposedfor example in [ACD+92, ACH+92, TY01℄ and other tehniques for �minimizing� reahabilitygraph have been proposed for example in [YL97, KL96℄. However in pratie on-the-�y teh-niques are preferred sine the reahability graph need not be entirely onstruted before theanalysis.2.6.2 Zone-based AlgorithmsThe zone abstration [LPY97℄ is a symboli approah in whih zones are used for representinga timing ontext.Bakward reahability algorithmFor a given tr = p

g,a
−→ p′ and a zone Z, the Pre operator de�ned above is speialised for zoneas follows:

Pre(Z, tr) = {v| ∃t ∈ R+ suh that v + t ∈ [[g]] and v + t[ha := 0] ∈ Z}We reall the following result onerning the termination and the orretness of the algorithmthat establishes that if a state is delared reahable by the omputation, then it is reallyreahable. This result is just a orollary of a similar result on timed automata presentedin [Bou03℄.Proposition 74 The bakward analysis algorithm terminates and is orret with respet toreahability.



56 Chapter 2. Timed ProessesForward reahability algorithmFor a given tr = p
g,a
−→ p′ and a zone Z, the Post operator de�ned above is speialised forzones as follows:

Post(Z, tr) = {v + t[ha := 0], | v ∈ Z∃t ∈ R+ suh that v + t ∈ [[g]]}But iterative omputations of the Srci will not terminates as Post(Z, tr) may introdue newzones. For ensuring termination, approximation of zones has been proposed leading to thefollowing algorithm.Algorithm The following forward algorithm omes from [BY04, Bou03℄ and has been imple-mented in several tools like Kronos [BTY97, Yov98℄, and Uppaal [BLL+96, LPY97, BDL04℄.Algorithm 1 Forward Analysis Algorithm for Timed proessesRequire: P = 〈P ,Σ, p0,∆P 〉Require: Target ⊆ P // the set of reahable stateEnsure: YES or NO a state of Target is reahable.
V isited← ∅;
Waiting ← {p0, Normk(Z0)};repeatGet and Remove (p, Z) from Waiting;if p ∈ Target thenRETURN �Y ES, p is reahable�;elseif there is no (q, Z ′) ∈ V isited suh that Z ⊆ Z ′ then

V isited← V isited ∪ {(p, Z)};
Successor ← {(p′, Normk(Post(Z, e) | e transition from p to p′};
Waiting ←Waiting ∪ Successor;end ifend ifuntil Waiting = ∅RETURN NO;Corretness Bouyer [Bou03℄(see also [BLR05℄) has shown that the reahability algorithmis orret for timed automata that use only diagonal free onstraints; but is not orret fortimed automata that use general lass of onstraints. We show that the same is true for timedproesses (that are speial kinds of timed automata). For that purpose, we onsider the timedproess (we reall that only the lok assoiated to the event of a transition is reset when thetransition is rossed) in Figure 11. This example is a very minor modi�ation of the examplefrom [Bou03℄.
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p0 p1 p2 p3 p4

p8 p7 p6 p5

hb ≤ 3, c ha ≤ 3, a hb = 3, b

ha = 2, a

hb = 2, b
ha = 2, a

hb = 2, bha = 3, ahb − ha < 2 ∧ hd − hc > 2, dFigure 11: A timed proessWe onsider a path from p0 to p7 in the timed proess in Figure 11. If α is the date thetransition from p0 to p1 is taken, β is the date the transition from p1 to p2 is taken and γ isthe the number of loops taken along the run, the valuation v of the loks when arriving in
p7 is de�ned by:

v(ha) = 0 v(hc) = 2γ + 5 + (β − α)

v(hb) = β v(hd) = 2γ + 5 + βClearly, v(hd)− v(hc) ≤ v(hb)− v(ha) as β ≥ α.If we onsider the forward algorithm for reahability that uses zones and that starts in p0with all the loks set to 0, the set of valuation that an be reahed in p7 when loop is taken
γ times, is the following:































































ha = 0
hb ≥ 1
hc ≥ 2γ + 5
hd ≥ 2γ + 6
2γ + 6 ≤ ha − hd ≤ 2γ + 8
1 ≤ hb − ha ≤ 3
2γ + 5 ≤ hc − ha ≤ 2γ + 8
2γ + 2 ≤ hc − hb ≤ 2γ + 5
hd − hb = 2γ + 5
0 ≤ hd − hc ≤ 3Consider the onstraint hb − ha < 2 ∧ hd − hc > 2. If we require that hb − ha < 2 then,

hd − hc = (hd − hb) + (hb − ha) + (ha − hc)

≤ −2γ − 5 + 2 + 2γ + 5

≤ 2This means that the transition from p7 to p8 an not be triggered from the zone above.



58 Chapter 2. Timed ProessesIf we �x a maximal onstant k and we use the approximation operator Normk, then fora number of loops γ su�iently large and suh that k < 2γ + 2, the approximated zone weobtain is the following:






























































ha = 0
hb ≥ 1
hc > k
hd > k
ha − hd > k
1 ≤ hb − ha ≤ 3
hc − ha > k
hc − hb > k
hd − hb > k
0 ≤ hd − hc ≤ 3This zone is onsistent with the onstraint hb − ha < 2 ∧ hd − hc > 2 and then the state p8 isdelared reahable from p0.2.7 Diagonal Constraints Can Be Safely RemovedWe will show that simple diagonal onstraints an be removed from timed proesses with-out reduing their behavioral properties. The proof of this result follows ideas in [BDGP98℄and uses indution on the number of onstraints to be removed. It onsists of keeping theinformation on the truth of diagonal onstraints in the states of the timed proesses. Suh atransformation indues an exponential blowup in the size of the initial timed proess [BC05℄.We will �rst mark states of the semantis of timed proesses with a tuple of boolean val-ues representing the truth of simple diagonal onstraints with respet to the valuation in thestates.Assume that P is a timed proess and the unique simple diagonal onstraint ourring in

P is the simple onstraint C = (h− h′ ⊲⊳ c), with h, h′ ∈ HΣ, ⊲⊳∈ {≤, <,≥, >}. Then to eahstate (p, v) of [[P]], we assign the truth value of v ∈ [[C]]. The resulting transition system, thatwe all the marked semantis of P does not modify the behavioral properties of P.Observation 74.1 The marked semantis of P and the semantis of P are isomorphi.Now, from P and C, we build a new timed proessR(P, C) = 〈P×{0, 1},Σ, (p0, tv0)),∆R〉where,
• tv0 is the truth value of v0 ∈ [[C]]. We reall that v0 is the valuation that assigns theonstant 0 to every lok in HΣ

• ∆R is a transition relation de�ned aording to ∆P as follows: Let (p, tv) be a state of Rand let p
g,a
−→ p′ be a transition in ∆P . Then there are three ases for de�ning transitionfrom (p, tv) depending on p

g,a
−→ p′ and C:1. if h 6= ha and h′ 6= ha, then we add the transition (p, tv)

g,a
−→ (p′, tv) in ∆R.2. if h′ = ha then the following transitions are added in ∆R



2.7. Diagonal Constraints Can Be Safely Removed 59(a) (p, tv)
g∧h⊲⊳c,a
−→ (p′, 1)(b) (p, tv)

g∧¬(h⊲⊳c),a
−→ (p′, 0)3. The last ase when h = ha is dual to the ase just above.To end the onstrution of R(P, C), we remove in it every transition of the form (p, 0)

g,a
−→

(p′, tv) where C ours in g and we delete every ourrene of C in the remaining transitions.We remark that by onstrution R(P, C) does not ontain any ourrene of the simplediagonal onstraint C and we show that [[R(P, C)]] is bisimilar to the marked semantis of P.Lemma 75 Let P be a timed proess and C be a simple diagonal onstraint ourring in P.The marked semantis of P and [[R(P, C)]] are bisimilar.ProofConsider the relation R de�ned by (p, v)R((p, tv), v) if tv is the truth value of v ∈ [[C]]. Weshow that R is a bisimulation. As the ases of delay transitions are obvious we onsider theases of disrete transitions. Assume that (p, v)R((p, tv), v) .1. if tv = 0 then v 6∈ [[C]].
=⇒ Now assume that (p, v)

a
−→ (p′, v′), then v′ = v[ha := 0] and there is p

g,a
−→ p′ suhthat v ∈ [[g]] and C does not ours in g as v 6∈ [[C]].(a) if h 6= ha and h′ 6= ha, then the transition (p, 0)

g,a
−→ (p′, 0) exist in ∆R andbeause v ∈ [[g]] we get that ((p, 0), v)

a
−→ ((p′, 0), v′). As neither h nor h′ havebeen modi�ed, v′ 6∈ [[C]] and then (p′, v′)R((p′, 0), v′).(b) if h′ = ha then, the transitions (p, 0)
g∧h⊲⊳c,a
−→ (p′, 1) and (p, 0)

g∧¬(h⊲⊳c),a
−→ (p′, 0)exits in ∆R. But either v ∈ [[h ⊲⊳ c]] or v ∈ [[¬(h ⊲⊳ c)]].i. If v ∈ [[h ⊲⊳ c]] then v′ ∈ [[h− ha ⊲⊳ c]] as the lok ha is reset after the tran-sitions. Then we get that ((p, 0), v)

a
−→ ((p′, 1), v′) and (p′, v′)R((p′, 1), v′)ii. If v ∈ [[¬(h ⊲⊳ c)]] then v′ 6∈ [[h− ha ⊲⊳ c]] as the lok ha is reset af-ter the transitions. Then we get that ((p, 0), v)

a
−→ ((p′, 0), v′) and

(p′, v′)R((p′, 0), v′)() the last ase when h = ha is dual to the ase just above.
⇐= Now assume that ((p, 0), v)

a
−→ ((p′, tv′), v′). Then, there is (p, 0)

g,a
−→ (p′, tv′) suhthat v ∈ [[g]] and C does not our in g as tv = 0.(a) if h 6= ha and h′ 6= ha, then tv′ = tv = 0 and v′ 6∈ [[h− h′ ⊲⊳ c]] and there isa transition p

g,a
−→ p′ in ∆P . As v ∈ [[g]] we get that (p, v)

a
−→ (p′, v′) and

(p′, v′)R((p′, 0), v′).(b) if h′ = ha then g = g′ ∧ g′′ where g′′ = h ⊲⊳ c or g′′ = ¬(h ⊲⊳ c) and thereis a transition p
g′,a
−→ p′ in ∆P . As v ∈ [[g]] we get that (p, v)

a
−→ (p′, v′) and

(p′, v′)R((p′, tv′), v′) where tv′ = 1 if g′′ = h ⊲⊳ c otherwise tv′ = 0.() the last ase when h = ha is dual to the ase just above.2. The ase when tv = 1 is similar to the ase when tv = 0.



60 Chapter 2. Timed Proesses
�Let P be a timed proess, and let C1, C2, . . . , Cn be all the simple diagonal onstraintsin P. From the lemma above we an reursively remove eah onstraint obtaining a timedproess without a diagonal onstraint that preserves the behavioral properties. We get thefollowing proposition.Proposition 76 For every timed proess P that uses diagonal onstraints in its transitionrelation, there is a timed proess P ′ that does not uses diagonal onstraints in its transitionrelation suh that [[P]] is bisimilar to [[P ′]].2.8 Conluding RemarksWe have presented timed proesses as models for real-time systems that use the time infor-mation on the ourrenes of events for exeuting orretly.We have realled that regions provide a good abstration for theoretial analysis of timedproesses using diagonal free or general onstraints. We have also presented the reahabilityanalysis through zone-based abstration and we have shown that when timed proesses arede�ned using general onstraints the zone-based approah ombined with the approximationoperator that we have onsidered leads to inorret results. Then, we wondered if we oulddisard diagonal onstraints from timed proess without reduing their expressive power. Theanswer is yes and we have shown how to transform (with exponential ost) timed proesses withdiagonal onstraint into equivalent behavioral timed proesses with diagonal-free onstraintsonly. As we will not be interested in e�ient proedures, but in understanding models andtheir properties, in the following we will onsider timed proesses with diagonal-free onstraintsonly.



Chapter 3Results on Event-Reording LogiThe design of models for systems, and real-time systems in partiular, is arried by require-ments. Requirements desribe desired or undesired properties of systems enompassing behav-ioral properties suh as reahability, liveliness, deadlok and safety properties. For real-timesystems, requirements must onsider timing information. For example, a requirement must notonly de�ne the logial moment at whih events (tasks) must our (terminate), but must alsodesribe the quantitative time information on ourrenes of events (termination of tasks).Given a requirement, it is useful to hek whether a given real-time system meets that re-quirement (model-heking), or to hek whether we an onstrut a real-time system thatmeets the requirement (satis�ability heking).We onsider the logi Event-Reording Logi(ERL) as a formal language for desribingproperties on timed proesses. Event-Reording Logi has been introdued by Sorea [Sor02℄as a timed extension of the µ-alulus [Koz82℄. In this logi, modalities are indexed both withan event and a onstraint. We onsider the basi problems about this logi suh as the model-heking problem, the satis�ability heking problem and the equivalene between formulasand formulas in disjuntive normal form.To solve the model-heking problem, we transform formulas into equivalent retangularformulas. Retangular formulas use only retangular onstraints. The later formulas are usedby the model-heking proedure. We show that heking if a timed proess is a model ofa formula is equivalent to hek if the M -region representation of that timed proess is amodel of the orresponding retangular formula. Then, our model-heking proedure worksas a model-heking proedure of the standard µ-alulus. Intuitively, in that proedure, forheking if ϕ ∨ ψ is satis�ed in some state, it is enough to hek if ϕ is satis�ed in that stateor ψ is satis�ed in that state; suh a step is a non deterministi step. For heking if a �xpointformula σX.ϕ(X) is satis�ed in some state, we hek if ϕ(σX.ϕ(X)) (regeneration step) issatis�ed in that state. For heking is a onjunt ϕ ∧ ψ is satis�ed in some state, we hekwhether ϕ is satis�ed in that state and whether ψ is also satis�ed in that state. For hekingif 〈g, a〉ϕ is satis�ed in some state, we hek that there is an outgoing transition from thatstate labelled with (g, a) that leads to a state satisfying ϕ. For heking if [g, a]ϕ is satis�ed insome state, we hek that every outgoing transition from that state labelled with the ouple
(g, a) leads to some state that satis�es ϕ. 61



62 Chapter 3. Results on Event-Reording LogiFrom the intuitive idea for the model-heking proedure of ERL, we provide a tableau-based deision proedure for the satis�ability heking problem of ERL formulas. For thatpurpose, we de�ne a tableau system of rules eah rule of whih is made of a onlusion andpremise. Conlusions and premises are set of timed sequents. Eah timed sequent is a tuplemade of a set of a formulas and a timing ontext represented by a region. The use of a set offormulas in timed sequent is a onsequene of the fat that to hek if a formula of the ϕ ∧ ψis satis�ed in some state, we must hek that the state satis�es ϕ and ψ. We de�ne the notionof a tableau and we show that a formula is satis�able if and only if it ontains a partiular�good� sub-tableau. The �goodness� of a sub tableau is de�ned as the �goodness� of all thepaths it ontains and the �goodness� of a path is de�ned aording to traes and the numberof times �xpoint formulas are regenerated. Traes are links between formulas in premises andformulas in onlusions; they are useful as they also keep trak of the regeneration of a �xpointformula. As timed sequent may ontain many �xpoint formulas, signature (tuple of ordinals)will be ombined with traes to keep trak of the number of time eah �xpoint formula will beregenerated along a path. We also ompare our satis�ability deision proedure with an earlierone proposed by Sorea [Sor02℄. We get that the tableau system of rules of Sorea is somehowambiguous as a partiular rule may have two interpretations. Moreover the system of Sorea isinorret due to the use of zones for representing timing ontext in the tableau for formulasthat use diagonal onstraints.As timed sequents are labelled with set of formulas and we need to deompose a pathinto traes to deide if they are �good�, the satis�ability proedure is expensive (exponentialon the size of the formula) and di�ult. Then we wondered if all these artifats an beavoided and the answer is yes. An intuitive idea is to onsider only onjuntions that do notrequire the use of sets of formulas in timed sequents. An example for suh a onjuntion is aonjuntion of the form 〈g1, a1〉ϕ∧ 〈g2, a2〉ψ where g1 ∧ g2 is inonsistent or a1 6= a2. Anotheridea onsists, given a formula 〈g1, a〉ϕ ∧ 〈g2, a〉ψ where g1 ∧ g2 is onsistent, to assume thatthe models will have two outgoing transitions, one for eah member of the onjuntion. Then,we introdue the notion of disjuntive normal form for formulas. We show that every formulahas an equivalent disjuntive normal form formula. From a given general ERL formula, weonstrut an equivalent ERL formula in disjuntive normal form. The satis�ability heking fordisjuntive normal form formulas is easier than the satis�ability proedure of general formulas.Related results: The standard (untimed) µ-alulus has been introdued byKozen [Koz82℄. Model-heking and satis�ability of the µ-alulus have been shown to havee�ient (tableau-based) proedures [SE89, Eme97, GV08℄ and to have relations with othertheoretial objets suh as game [EJ91, NW96℄ and automata [Tho90, JW95℄. For the laterrelation, a disjuntive normal form of formulas has been provided [JW95℄ to show the equiva-lene between alternating automata on trees and non-deterministi automata on trees [MS95℄.The use of suh kind of transformation has been presented in [AVW03, AW07, BCL05℄ forontroller synthesis of systems. As ERL extends the µ-alulus, we have wondered if someof the results on the µ-alulus ould be extended to ERL. Sorea [Sor02℄ has onsidered thetableau tehnique, early used in the setting of the (untimed) µ-alulus [JW95℄, to prove thedeidability of the model-heking and satis�ability problems on ERL. The di�ulty with theproedure of Sorea is that it is based on zones and rule that redues modalities indexed witha onstraint and an event is not easy to understand. We have proposed new rules and we havetried to reuse as muh as possible standard results on the µ-alulus.In the next setion, we present ERL and its semantis. In Setion 3.2, we onsider the



3.1. Event-Reording Logi 63model-heking problem of ERL formulas that we redue to the model-heking problem of
µ-alulus formulas modalities of whih are indexed in a partiular alphabet. The satis�abilityproblem for ERL formulas is addressed in Setion 3.3. In that setion we provide a new tableausystem that uses regions for representing the timing ontext. From our tableau system weprovide disjuntive normal form theorem in Setion 3.5.3.1 Event-Reording Logi3.1.1 De�nitionsEvent-Reording Logi [Sor02℄ is an extension of the µ-alulus; it has been introdued to de-sribe properties on timed proesses. The extension is made on modal operators by onsideringmodal operators of the form 〈g, a〉 and [g, a].De�nition 77 Let Σ be a set of events, Var a set of variables. The set of formulas of Event-Reording Logi (ERL) denoted by Ferl is the set of formulas given by the following grammar:

ϕ ::= tt | � | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈g, a〉ϕ | [g, a]ϕ | µX.ϕ | νX.ϕwhere,
• a is an event from Σ,
• g is a onstraint from GdsΣ,
• X is a variable from Var ,The bound of a formula is the maximal onstant that ours in its onstraints. For a formula

ϕ, Mϕ denotes its bound. Given a onstant M , we say that a formula is M -bounded if itsbound is smaller than M . The notions of sub formula, free variable, binding , dependenyorder , expansion, sentene, guarded formula , positive formula for the setting of ERL areobvious from the de�nitions of similar notions for the setting of the µ-alulus in Setion 1.3.3.1.2 SemantisOur goal is to interpret a formula ϕ of Ferl over timed proesses. Beause the meaning of atimed proess is a (VΣ ∪Σ)-labelled transition system, we give the interpretation of a formulaover suh type of transition systems.Notation: We will write s v,a
−→ s′ when there is s′′ suh that s v

−→ s′′ and s′′ a
−→ s′.As a formula may ontain free variables we will need a valuation of suh variables. Givena valuation of variables Val : Var → P(S) and a set of states T ⊆ S, the valuation Val [X/T ]is the valuation Val with the substitution that assoiates the set of states T with the variable

X. Formally, for Y ∈ Var , Val [X/T ](Y ) = T if Y = X and Val(Y ) otherwise. We write
S, s,Val �t ϕ when the formula ϕ holds in s or equivalently s satis�es ϕ.



64 Chapter 3. Results on Event-Reording LogiDe�nition 78 (Meaning of a formula over (VΣ ∪ Σ)-labelled transition systems)For a given (VΣ ∪ Σ)-labelled transition system S, a given formula ϕ and an assignment
Val : Var → P(S), we de�ne the satisfation relation �t and the set [[ϕ]]SVal indutively asfollows:
• S, s,Val �t tt .
• S, s,Val �t X if s ∈ Val(X).
• S, s,Val �t ϕ1 ∨ ϕ2 if S, s,Val �t ϕ1 or S, s,Val �t ϕ2.
• S, s,Val �t ϕ1 ∧ ϕ2 if S, s,Val �t ϕ1 and S, s,Val �t ϕ2.
• S, s,Val �t [g, a]ψ if for every s v,a

−→ s′ ∈ ∆S suh that v ∈ [[g]] we have S, s′,Val �t ψ.
• S, s,Val �t 〈g, a〉ψ if there exists s v,a

−→ s′ ∈ ∆S suh that v ∈ [[g]] and S, s′,Val �t ψ.
• S, s,Val �t µX.ϕ(X) if s ∈ ⋂{T ⊆ S | [[ϕ(X)]]SVal[X/T ] ⊆ T}.
• S, s,Val �t νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ [[ϕ(X)]]SVal[X/T ]}.
• [[ϕ]]SVal = {s | S, s,Val �t ϕ}.We will sometimes write s ∈ [[ϕ]]SVal instead of S, s,Val �t ϕ. If ϕ is a sentene, i.e., doesnot have free variables, then its meaning does not depend on a valuation and we an writejust S, s �t ϕ. Finally, we will write S �t ϕ for S, s0 �t ϕ to say that S is a model of ϕ.Let us onsider ϕ a formula and P a timed proess. We say that ϕ is satis�ed in a state

p, a valuation v : H → R+ and a valuation Val : Var → P(P ×VΣ) of propositional variablesand we write P, (p, v),Val � ϕ when [[P]], (p, v),Val �t ϕ.De�nition 79 (Meaning of a formula over timed proesses) The meaning [[ϕ]]PVal ⊆ P×(H →
R+) of a formula over a timed proess P is de�ned by :

[[ϕ]]PVal = [[ϕ]]
[[P]]
ValWe will write P � ϕ if [[P]] is a model of ϕ and we say that P is a model of ϕ.Given two formulas ϕ1 and ϕ2, we often use the notation ϕ1 ≡ ϕ2 to say that ϕ1 isequivalent to ϕ2, meaning that for every timed proess P, [[ϕ1]]

P
Val = [[ϕ2]]

P
Val .Remark: The presentation of the semantis above is di�erent (but it is equivalent) from theone in [Sor02℄. In partiular, the presentation of the semantis of modal operators indexedwith a onstraint and an event seems simpler as it bene�ts from that delay transitions in thesemantis of timed proesses (see De�nition 66) are labelled with valuations.Given the sentene ϕ, and a (V∪Σ)-labelled transition system S, we introdue the negationoperator ¬ de�ned by: [[¬ϕ]]S = S \ [[ϕ]]S .Proposition 80 The following equivalenes are true:

• ¬tt ≡ �
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• ¬� ≡ tt

• ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

• ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

• ¬〈g, a〉ϕ ≡ [g, a]¬ϕ

• ¬[g, a]ϕ ≡ 〈g, a〉¬ϕ

• ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)

• ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)ProofLet a sentene ϕ, a (V ∪ Σ)-labelled transition system S and let s be a state of S. The proofuses strutural indution. All the ases but for modalities are standard.
• If s ∈ [[¬〈g, a〉ϕ]]S then s 6∈ [[〈g, a〉ϕ]]SVal . By de�nition it means that for every v′ ∈ [[g]],
s
v′,a
−→ s′ in S we have s′ 6∈ [[ϕ]]SVal . One again by de�nition s ∈ [[[g, a]¬ϕ]]SVal .

• The ase of ¬[g, a]ϕ uses a dual argumentation.
�We an assume that the grammar of the syntax of ERL is augmented with the negationoperator in the following way: if ϕ is an ERL sentene, so is ¬(ϕ).Proposition 81 Let g, g1, g2, . . . , gn ∈ GdsΣ be suh that [[g]] =

⋃

i=1..n [[gi]] then,1. 〈g, a〉ϕ ≡ ∨i=1..n〈gi, a〉ϕ2. [g, a]ϕ ≡
∧

i=1..n[gi, a]ϕProofLet S, s a on�guration of s, and Val a valuation of propositional variables.1. S, s,Val �t 〈g, a〉ϕ if and only if there is v ∈ [[g]] suh that s v,a
−→ s′ and S, s′,Val �t

ϕ. Equivalently, S, s,Val �t 〈gi, a〉ϕ for some i ∈ {1, 2, . . . , n} suh that v ∈ gi andequivalently S, s,Val �t
∨

i=1,...,n〈gi, a〉ϕ.2. From proposition 80 [[[g, a]ϕ]] = [[¬(〈g, a〉¬ϕ)]]. Then, use the �rst item to onlude.
�



66 Chapter 3. Results on Event-Reording Logi3.2 Model-ChekingIn this setion we address the model-heking problem that is to hek if a given a systemis a model of a given spei�ation. In the literature (see [CGP99, Mer01, BBF+01, GV08℄),this problem is known as the model-heking problem and it has been widely studied forseveral temporal logis [Var96, LP85, KVW00, Sh03, Ong02, LMS04℄ and partiularly the
µ-alulus [SE89, NW96, Eme97℄.Here, we present an algorithm for the model-heking problem where, the system, P is atimed proess and the spei�ation, ϕ is a formula of ERL. That algorithm is based on theone for the µ-alulus. Indeed, we show that heking if a timed proess is a model of an ERLformula an be redued to heking whether an untimed transition system is a model of apartiular µ-alulus formula.Let S = 〈S,VΣ ∪ Σ, s,∆S〉 be a (VΣ ∪ Σ)-labelled transition system, ϕ an ERL formula.Informally, to hek whether S is a model of ϕ, we work in the following way. First we assignthe initial on�guration s0 to ϕ meaning that we are heking if s0 �t ϕ. Now, assume that aon�guration s has been assigned to a sub formula ψ of ϕ. Depending of the the struture of
ψ, we must hek if some (or all) suessors of s in S satisfy some sub formula of ψ.When ϕ is a sentene and does not ontain free variables, the proedure works as follows:
• if ψ = tt the answer if �yes�;
• if ψ = � the answer is �no�;
• to verify that ϕ1∧ϕ2 is satis�ed at s, we hek that ϕ1 is satis�ed at s and ϕ2 is satis�edat s;
• to verify that ϕ1 ∨ ϕ2 is satis�ed at s, we hek if ϕ1 is satis�ed at s or if ϕ2 is satis�edat s;
• to verify that 〈g, a〉ψ is satis�ed at s, we hek that s′ satis�es ψ where s′ is a hosenon�guration suh that s v′,a

−→ s′ in S and v′ ∈ [[g]] ;
• to verify that [g, a]ψ is satis�ed at s, we hek that s′ satis�es ψ for every s′ suh that
s
v′,a
−→ s′ in S and v′ ∈ [[g]];

• to verify that σX.ψ(X) is satis�ed at s, we hek ψ(X) is satis�ed at s;
• to verify that X is satis�ed at s, we hek that ψ(X) is satis�ed at s; assuming that Xis bound and Dϕ(X) = σX.ψ(X).When ϕ is not a sentene, we need a valuation of free variables over the set of states S.To hek whether a timed proess P is a model of a formula ϕ, means to hek whether

[[P]] is a model of ϕ. One ould wonder about the termination of suh a proedure sine thestate spae of [[P]] is in�nite and there ould exists in�nitely many outgoing transitions fromon�gurations of [[P]].We intend to operate on a �nite struture and try to use deision proedures for themodel-heking problem of the µ-alulus. We onsider abstration on models that preservetheir semantis.



3.2. Model-Cheking 671. We onsider �good abstrations� for timed proesses. These abstrations will be �nitelabelled transition systems.2. We onsider �good abstration� for formulas. These abstrations will be formulas of �nitelength.3. We de�ne a �good abstrat� satisfation relation between a �good abstration� of a timedproess and �good abstration� of a formula. This �good abstrat� satisfation relationmust be de�ned in suh a way that a timed proess satis�es a formula if and only if theabstration of the timed proess satis�es the abstration of the formula.3.2.1 Abstrat Semantis for FormulasWe propose in De�nition 82 the symboli relation, denoted by �g, of satisfation between atimed proess and a formula. This relation will serve as a �good abstrat� satisfation relationwe have disussed before. We immediately remark that for any timed proess P: 〈[P]〉M and
〈[P]〉Mreg are (AgdsΣ(M) ∪ Σ)-LTS. 〈[P]〉M has in�nitely many states while 〈[P]〉Mreg has �nitelymany states. Our objetive will be to redue the model heking over [[P]] to the model hekingover 〈[P]〉Mreg for suitable M .Notation: We will write s g,a

−→ s′ when there is s′′ suh that s g
−→ s′′ and s′′ a

−→ s′.De�nition 82 [Abstrat meaning of a formula over a (GdsΣ ∪Σ)-LTS)℄ Let ϕ be a formula,
S = 〈S,GdsΣ ∪ Σ, s0,∆S〉 be a (GdsΣ ∪ Σ)-LTS. For a on�guration s of S, a valuation
Val : Var → P(S) of propositional variables, we de�ne the symboli relation of satisfation
�g and the set g[[ϕ]]SVal as follows:
• S, s,Val �g tt .
• S, s,Val �g X if s ∈ Val(X).
• S, s,Val �g ϕ1 ∨ ϕ2 if S, s,Val �g ϕ1 or S, s,Val �g ϕ2.
• S, s,Val �g ϕ1 ∧ ϕ2 if S, s,Val �g ϕ1 and S, s,Val �g ϕ2.
• S, s,Val �g [g, a]ψ if for every s g,a

−→ s′ ∈ ∆S , we have S, s′,Val �g ψ.
• S, s,Val �g 〈g, a〉ψ if there exist s g,a

−→ s′ ∈ ∆S and S, s′,Val �g ψ.
• S, s,Val �g µX.ϕ(X) if s ∈ ⋂{T ⊆ S | g[[ϕ(X)]]SVal [X/T ] ⊆ T}.
• S, s,Val �g νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆g [[ϕ(X)]]SVal [X/T ]}.
• g[[ϕ]]SVal = {s : S, s,Val �g ϕ}If ϕ is a sentene, i.e., does not have free variables, then its meaning does not depend ona valuation and we an write just S, s �g ϕ. Finally, we will write S �g ϕ for S, s0 �g ϕ.



68 Chapter 3. Results on Event-Reording LogiWe propose the symboli deision proedure for the model heking of a proess P againsta formula φ. This proedure is similar to the real-time deision proedure de�ned above. Thedi�erene ours when we hek if a state satis�es a sub formula of the form 〈g, a〉ψ and
[g, a]ψ. In these ases, the proedure works as follows:
• to verify that 〈g, a〉ψ is satis�ed at s, we hek that s′ satis�es ψ where s′ is a hosenon�guration suh that s g,a

−→ s′ in S
• to verify that [g, a]ψ is satis�ed at s, we hek that s′ satis�es ψ for every s′ suh that
s

g,a
−→ s′ in SIt should be quite lear that for timed proesses, we an not just substitute the symbolideision proedure for the real-time deision proedure.We expet to apply the symboli deision proedure on representations of timed proessesand formulas that use onstraints in a same �nite set. Then, we will onsider bounded on-straints, and we will ensure that any onstraint in that set an not be split into onstraintsthat use smaller onstants. Aording to Fat 48, retangular onstraints are appropriate forthis objetive.De�nition 83 An M -retangular formula is a formula using onstraints in AgdsΣ(M).Given a formula ϕ, and a bound M , we de�ne the M -retangular formula RectM (ϕ) as theformula obtained from ϕ by replaing eah onstraint g that ours in ϕ by the disjuntionof atomi M -retangular onstraints ontained in g. From Proposition 81, this de�nition issound and RectM (ϕ) is a formula of Ferl.De�nition 84 The M -retangular ERL formula assoiated to an ERL formula ϕ, RectM (ϕ)is the formula de�ned indutively as follows:

• RectM (�) = �
• RectM (tt) = tt

• RectM (X) = X

• RectM (ϕ1 ∧ ϕ2) = RectM (ϕ1) ∧RectM (ϕ2)

• RectM (ϕ1 ∨ ϕ2) = RectM (ϕ1) ∨RectM (ϕ2)

• RectM (〈g, a〉ϕ) =
∨

ĝ∈RectM (g)〈ĝ, a〉RectM (ϕ)

• RectM ([g, a]ϕ) =
∧

ĝ∈RectM (g)[ĝ, a]RectM (ϕ)

• RectM (σX.ϕ(X)) = σX.RectM (ϕ(X)) where σ is one of {µ, ν}We remark that the size of RectM (ϕ) ould be exponential in the size of ϕ.We show in the following proposition that for M ≥Mϕ (Mϕ is the maximal onstant thatours in ϕ) formulas and their M -retangular forms are equivalent over transition systemsthat represents the semantis of timed proesses.



3.2. Model-Cheking 69Proposition 85 Let ϕ be a formula and S be a (VΣ∪Σ)-LTS. For everyM ≥Mϕ, S, s,Val �t

ϕ if and only if S, s,Val �t RectM (ϕ).ProofWe use strutural indution. Let M ≥Mϕ.
• The basi ases of �, tt , X are obvious.
• The ases of ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 are also obvious.
• The ase when ϕ = 〈g, a〉ψ. RectM (ϕ) =

∨

ĝ∈RectM (g)〈ĝ, a〉ϕ. From Proposition 57,
[[g]] =

∨

ĝ∈RectM (g) [[ĝ]]. We use Proposition 81 to onlude.
• The ase when ϕ = [g, a]ψ. RectM (ϕ) =

∧

ĝ∈RectM (g)[ĝ, a]ϕ. We use Proposition 57 andProposition 81 to onlude.
• When ϕ = σX.ψ(X). RectM (ϕ) = σX.RectM (ψ(X)). By indution hypothesis ψ(X) ≡
RectM (ψ(X)), then we get the result.

�The �good abstration� for formulas that we use later for the model-heking algorithm isthe retangular form.3.2.2 Fixpoint ApproximationNow we introdue the notion of omputation of a �xpoint by suessive steps that gives us apowerful tool to understand the semantis of formulas. Let S be a (GdsΣ ∪Σ)-LTS.De�nition 86 For every ordinal λ, we de�ne onstrutions for the �xpoints µλX.ϕ(X) and
νλX.ϕ(X) the semantis of whih is indutively de�ned as follows:
• g[[µ0X.ϕ(X)]]

S
Val = ∅, and g[[ν0X.ϕ(X)]]

S
Val = g[[tt ]]SVal .

• g[[σλ+1X.ϕ(X)]]
S
Val = g[[ϕ(X)]]S

Val[ g[[σλX.ϕ(X)]]SVal/X]

• When β is a limit ordinal,� g[[µβX.ϕ(X)]]
S
Val =

⋃

λ<β
g[[µλX.ϕ(X)]]

S
Val ,� g[[νβX.ϕ(X)]]

S
Val =

⋂

λ<β
g[[νλX.ϕ(X)]]

S
Val .We reall the Knaster-Tarski theorem [Tar55℄ showing how to approximate �xpoint byiterative omputations.Theorem 87 ([Tar55℄)

• S, s,Val �g µX.ϕ(X) if and only if s ∈ ⋃β
g[[µβX.ϕ(X)]]

S
Val .

• S, s,Val �g νX.ϕ(X) if and only if s ∈ ⋂β
g[[νβX.ϕ(X)]]

S
Val .A de�nition and a theorem analogous to De�nition 86 and Theorem 87 is made onsidering

(VΣ ∪ Σ)-LTS, �t and [[ϕ]] instead of (GdsΣ ∪ Σ)-LTS, �g and g[[ϕ]].



70 Chapter 3. Results on Event-Reording Logi3.2.3 Model-Cheking ResultsThe next step in our abstration is to show that the real-time algorithm for the model-hekingproblem, de�ned above, an be replaed by a symboli algorithm. In order words, we makea relation between �t and �g. Given a timed proess P and an Mϕ-retangular formula ϕ,we show that the result of the �real-time� deision proedure for [[P]] �t ϕ is the same asthe result of the symboli deision proedure for 〈[P]〉M �g ϕ with M ≥ Mϕ. Reall that inaforementioned real-time algorithm as in the symboli algorithm, the veri�ation task onsistsin moving from a veri�ation goal into another and the verdit depends on the number oftimes partiular variables are regenerated. If we show that a suession of moves in the real-time proedure an be mimiked in the symboli proedure in suh a way that formulas andthe loations in the veri�ation goal are preserved then the verdit of the two proedures willalways be the same. That is what we show in Lemma 88 below.Lemma 88 For every MP -bounded proess P, for every Mϕ retangular formula, for every
M ≥Mϕ, [[P]], (p, v),Val �t ϕ if and only if 〈[P]〉M , (p, v),Val �g ϕ.ProofThe proof uses strutural indution. Let M ≥Mϕ.
• The basis ases when ϕ is of the form tt , �, X are obvious.
• The ases of ϕ1 ∧ ϕ2, or ϕ1 ∨ ϕ2 are also obvious.
• Assume that ϕ = 〈g, a〉ψ,

(=>) If [[P]], (p, v),Val �t 〈g, a〉ψ then there is v′ ∈ [[g]] suh that (p, v)
v′,a
−→ (p′, v′[ha :=

0]), and [[P]], (p′, v′[ha := 0]),Val �t ψ. By indution hypothesis 〈[P]〉M , (p′, v′[ha :=

0]),Val �g ψ. But, v′ � g implies that (p, v)
g,a
−→ (p′, v′[ha := 0]) and then

〈[P]〉M , (p, v),Val �g 〈g, a〉ψ.
(<=) If 〈[P]〉M , (p, v),Val �g 〈g, a〉ψ, then there is v′ ∈ [[g]], (p, v)

g,a
−→ (p′, v′[ha :=

0]) in 〈[P]〉M suh that 〈[P]〉M , (p′, v′[ha := 0]) �g ψ. By indution hypothesis
[[P]], (p′, v′[ha := 0]),Val �t ψ. But, if (p, v)

g,a
−→ (p′, v′[ha := 0]) in 〈[P]〉M , thenthere is (p, v)

v′,a
−→ (p′, v′[ha := 0]) in [[P]]. This implies that [[P]], (p, v),Val �t

〈g, a〉ψ.
• The ase when ϕ = [g, a]ψ uses a dual argument to the ase when ϕ = 〈g, a〉ψ.
• Sine intersetion and union of set preserves monotoniity, the ases of �xpoint formulaome as a onsequene of the above ones

�As 〈[P ]〉M has in�nitely many states, the real-time model-heking proedure may notterminate. By the following proposition, we an onsider the M -region representation that is�nite to ensure termination. The following orollary is just an extension of Theorem 26 totimed proessed and ERL formulas.



3.2. Model-Cheking 71Corollary 89 Let S and S ′ be two bisimilar timed proesses and let ϕ be a formula. S �g ϕif and only if S �g ϕProposition 90 For any timed proess P, any formula ϕ, for every M ≥ max(Mϕ,MP ),
[[P]], (p, v),Val �t ϕ if and only if 〈[P]〉Mreg, (p, [v]M ),Val �g RectM (ϕ)ProofBy Proposition 85, [[P]], (p, v),Val �t ϕ if and only if [[P]], (p, v),Val �t RectM ′(ϕ) for every
M ′ ≥ Mϕ. From Lemma 88, this is equivalent to 〈[P]〉M , (p, v),Val �g RectM ′(ϕ) for every
M ′ ≥Mϕ. From Proposition 69, 〈[P]〉M is bisimilar to 〈[P]〉Mreg then using Corollary 89, we get
〈[P]〉M , (p, v),Val �g RectM ′(ϕ) if and only if 〈[P]〉Mreg, (p, [v]M ),Val �g RectM (ϕ) �We get the following theorem.Theorem 91 There is an e�etive proedure that heks whether a timed proess P is anmodel of a formula ϕ assuming an initial valuation v0.ProofBy Proposition 90, we get that to hek if P satis�es ϕ is equivalent to hek that 〈[P]〉Mreg �g

RectM (ϕ) for M su�iently big. But the relation �g between 〈[P]〉Mreg and RectM (ϕ) is thesame (modulo the labels on transition of the models and the index in the modalities) as therelation � between a labelled transition system and a µ-alulus formula. Then it omes thatthe model-heking proedure for the µ-alulus an be used for the model-heking of ERL.
�3.2.4 ComplexityThe omplexity for our model-heking algorithm is immediate from the omplexity of themodel-heking problem for the µ-alulus. In Theorem 25, the omplexity of the model-heking for the µ-alulus depends on the size of the models, the alternation depth and the size(number of sub formulas) of the formulas. For the model-heking algorithm of ERL, modelsare M -region representations and formulas are M -retangular. Let M be an integer, thereare at most (2×M + 1)|HΣ| retangular onstraints. For a timed proess P = 〈P ,Σ, p0,∆P 〉,the M -region region representation 〈[P]〉Mreg has at most |P | × |Reg(M)| states and at most
|∆P | × |Agds(M)| transitions. The M -retangular formula RectM (ϕ) for a given formula ϕhas at most |sub(ϕ)| × |Agds(M)| sub formulas and is of the same alternation depth as ϕ.The we get the following orollary.Corollary 92 Let ϕ be a formula, and P = 〈P ,Σ, p0,∆P 〉 be a timed proess. Our model-heking problem proedure proedure works in
O

(

|∆P | × |Agds(M)|2 × |sub(ϕ)| ×

(

2× |P | × |Reg(M)| × |sub(ϕ)| × |Agds(M)|

alt(ϕ)

)⌈alt(ϕ)/2⌉
)We reall that alt(ϕ) is the alternation depth of the formula ϕ.



72 Chapter 3. Results on Event-Reording LogiFrom orollary 92, we get that our model-heking algorithm is exponential time in the size ofthe timed proess and the length of the binary enoding of the largest onstant in the formulaand in the timed proess.We remark that a standard zone-based model-heking algorithm for WTµ will remain inEXPTIME; but it may be an interesting alternative in pratie.3.3 Satis�abilityThe satis�ability problem for ERL is: given a sentene of Event-Reording Logi ϕ, hekwhether there exists a timed proess P that is a model of ϕ with respet the initial valuation v0.By Propositions 56 and 81 we an assume that the formula uses only retangular onstraints.We onsider this problem and we propose a tableau-based deision proedure. We proposea new tableau system of rules that we use to onstrut tableaux. From tableaux we hek theexistene of �good� fragments to deide if formulas are satis�able. In our tableau system ofrules, timing ontexts are represented by regions while the tableau system of rules proposedby Sorea [Sor02℄ for the satis�ability of ERL uses zones. Later in Setion 3.4 we make someobservations on the interpretations of some rules of Sorea and we show that it is inorret forthe satis�ability of a formula that uses general (diagonal) onstraints as originally onsideredby Sorea.Let us �rst extend the syntax of Event-reording logi formula by onsidering the newmodal operator (g, a)→ that extends the operator (a)→ for the µ-alulus and that has thesame expressive power that the former ones that is 〈g, a〉 and [g, a].De�nition 93 Let Γ be a set of formulas. We de�ne the modal operator (g, a)→Γ by:
(g, a)→Γ ≡

∧

ϕ∈Γ

〈g, a〉ϕ ∧ [g, a]
∨

ϕ∈Γ

ϕReall that the onjuntion of an empty set is equal to tt and the disjuntion of an empty setis equal to �; So (g, a)→∅ ≡ [a, a]�.We immediately remark that:
[g, a]ϕ ≡ (g, a)→{ϕ} ∨ (g, a) →∅

〈g, a〉ϕ ≡ (g, a)→{ϕ, tt}In onsequene, every formula of event-reording logi is equivalent to a formula using only thenew modal operator. Later we onsider retangular formulas that only use the new modalityoperator in addition to the boolean and �xpoints operators.3.3.1 TableauAs heking if P is a model of ϕ onsists to hek if [[P]] �t ϕ, we desribe the set of formulas,that we alled the satis�ability objetive, assigned to on�gurations (or state) of a (V∪Σ)-LTSthat models a formula ϕ. This assignment proedure will give intuitions for the rules of the



3.3. Satisfiability 73tableau. Assignments map satis�ability objetives to states from whih there is at least onetransition labelled with a valuation.Initially, {ϕ} is assigned to the initial state s0. The tuple (s,Γ) of a state s and its satis-�ability objetive Γ is a veri�ation objetive. We write {ϕ,Γ} as a shortut for {ϕ} ∪ Γ.Assuming that the urrent veri�ation objetive is (s, {ϕ,Γ}), and depending on the stru-ture of ϕ, we use the veri�ation proedure desribed in the previous setion to generate thenext satis�ability objetives. We �rst onsider the ases when only the satis�ability objetivehanges. Aording to the veri�ation proedure the hange is done by the following rules:
• if ϕ = ϕ1 ∧ϕ2, then the next satis�ability objetive is {ϕ1, ϕ2,Γ} sine we would like toverify that s satis�es ϕ1 and s satis�es ϕ2;
• if ϕ = ϕ1 ∨ϕ2, then the next satis�ability objetive is {ϕ1,Γ} or {ϕ2,Γ} sine we wouldlike to verify that s satis�es ϕ1 or s satis�es ϕ2;
• if σX.ψ(X), then the next satis�ability objetive is {ψ(σX.ψ(X)),Γ}. This is a regen-eration step.From a veri�ation objetive (s,Γ), if we apply the rules above, we do not hange the urrentstate in the transition system, but, we end up in a veri�ation objetive (s,Γ) where Γ issuh that every formula in it is in one of the form tt , �, or (g, a)→Θ. Then, we onsider thefollowing ases:
• if Γ ontains the formula �, then Γ is not satis�ed in s;
• if tt is the unique formula in then Γ is satis�ed in s;
• else, Γ ontains at least one formula of the form (g, a) →Θ then:� for every (g, a)→Θ ∈ Γ, and ψ ∈ Θ, we must reate a veri�ation objetive

(s′, {ψ} ∪ {
∨

Θ′ | (g′, a)→Θ′ ∈ Γ and v ∈ [[g′]]}) for some s′ and v ∈ [[g]] with
s

v,a
−→ s′,� for every (v, a) and every s′ suh that s v,a

−→ s′, we must �nd a formula (g′, a)→Θ ∈
Γ with v ∈ [[g′]] and ψ ∈ Θ; and we reate the veri�ation objetive (s′, {ψ} ∪
{
∨

Θ′ | (g′′, a)→Θ′ ∈ Γ and v ∈ [[g′]]}).As a onsequene of Lemma 88, onsidering [[P]] and 〈[P]〉M withM ≥Mϕ, we get that theset of veri�ation objetives in the real-time veri�ation proedure is the same as the set ofveri�ation objetives in the symboli veri�ation proedure. Moreover real-time rules an bemimiked by symboli rules. Of ourse while heking for satis�ability, we do not have statesof a system. So we will use the proedure as above with �imaginary� states. For this to workwe will need to keep the timing information in a form of regions.Now we formalise the rules and the proedure above by de�ning the tableau system of rulesfor Event-Reording Logi following the one introdued for the µ-alulus [Koz82, Wal95℄ andother temporal logis [GM96, Gor99, LS01℄. We laim that our tableau system of rules isdi�erent and simpler than the one proposed by Sorea [Sor02℄.



74 Chapter 3. Results on Event-Reording LogiA tableau system of rules is a olletion of rules. A rule is of the form
T1 T2 . . . Tn

Twhere T and Ti for every i = 1..n are tuples made of a set of formulas (satis�ability objetives)and a region (timing ontext). The tuples over the lines of a rules (Ti for every i = 1..n) arealled the premises of the rules and the tuple T below the line of a rule is alled onlusion ofthe rule. A rule as above is interpreted as follows: verifying whether the satis�ability objetivesin the onlusion are satis�able from the timing ontext is redued to heking if all (some)satis�ability objetives in the hypothesis are satis�able in their orresponding timing ontext.De�nition 94 (The System of Tableau Rules) The system of tableau rules Sϕparametrised by a formula ϕ (or rather its binding funtion Dϕ) and the set of regions RegMis de�ned by:
{�};�
{ϕ,Γ};� (�r)

{ϕ1,Γ}; r {ϕ2,Γ}; r

{ϕ1 ∨ ϕ2,Γ}; r
(∨)

{ϕ1, ϕ2,Γ}; r

{ϕ1 ∧ ϕ2,Γ}; r
(∧)

{ϕ(X),Γ}; r

{µX.ϕ(X),Γ}; r
(µ)

{ϕ(X),Γ}; r

{νX.ϕ(X),Γ}; r
(ν)

{ϕ(X),Γ}; r

{X,Γ}; r
(reg) Dϕ(X) = σX.ϕ(X)

ϕ ∪ {
∨

Θj | (g, a)→ Θj ∈ Γ, Θj 6= Θi}; (g ∧ r↑)[ha := 0]for every{ (g, a)→ Θi ∈ Γ,
ϕ ∈ Θi

Γ; r
(mod)We remark that if g is retangular then (g ∧ r↑) is a region (or is inonsistent). Thus, if westart with a retangular formula then all time-ontexts obtained by appliations of the ruleswill be regions.We give the intuitive idea behind the rule (mod). The onlusion Γ; r of the rule (mod)is suh that every formula in Γ is of the form (g, a)→Θ where Θ is a set of formulas. Reallthat (g, a)→Θ ≡

∧

ϕ∈Θ〈g, a〉ϕ ∧ [g, a]
∨

ϕ∈Θ ϕ. Then the presene of existential modalityrequires that when the time elapses, the onstraint ourring in a formula (g, a)→Θi of Γshould be satis�ed (when Θi 6= ∅) and then every ϕ ∈ Θi should also be satis�ed. We needsomething more though as Γ may ontain a olletion of formulas of the form (g, a)→Θj , forthe same guarded-event (g, a). In this ase we need when to hek if ϕ ∈ Θi together with thedisjuntions ∨Θj are satis�ed.De�nition 95 (Tableau) A tableau for a retangular formula ϕ from a region r0 is a pair
τϕ
r0

= 〈T ,L〉, where T = 〈N,E〉 is a tree, and L is a labeling funtion suh that:



3.3. Satisfiability 751. The root n0 of τϕ
r0

is labeled by {ϕ}; r02. The sons of any node n are reated and labeled aording to the rules of system Sϕ. Itis required the rule (mod) is applied only when no other rule is appliable.Example: Let us present a fragment of the tableau for a formula
ϕ = (0 < ha < 1, a)→{ϕ1, ϕ2} ∧ (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}where, r0 is the region satisfying the onstraint ha = 0∧hb = 0, r1 is the region satisfying theonstraint ha = 0∧0 < hb < 1 and, r2 is the region satisfying the onstraint 0 < ha < 1∧hb = 0

{ϕ1, ϕ3}; r1 {ϕ2, ϕ3}; r1 {ϕ3, ϕ1 ∨ ϕ2}; r1 {ϕ4}; r2
{(0 < ha < 1, a)→{ϕ1, ϕ2}, (0 < ha < 1, a)→{ϕ3}, (0 < ha < 1, b)→{ϕ4}}; r0
{(0 < ha < 1, a)→{ϕ1, ϕ2}, (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}}; r0
{(0 < ha < 1, a)→{ϕ1, ϕ2} ∧ (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}}; r0

� If n is a node of the tableau and L(n) = Γ; r, then LERL(n) = Γ and Lρ(n) = r denotethe formula part and the timing part of L(n).We remark that the appliation of a rule at some node n depends both on some formula
ϕ ∈ LERL(n) and the time ontext Lρ(n). We say that the rule is direted by the tuple
ϕ;Lρ(n).We remark that the tableau of a formula ϕ is a �nite branhing tree nodes of whih arelabeled on the �nite alphabet 2sub(ϕ) ×Reg.De�nition 96 A modal node is a node in whih the rule (mod) is applied; A disjuntive(resp.onjuntive) node is a node in whih the rule ∨ (resp ∧) is applied. Sine a modal nodemay has several suessors, a (g, a)-son of a modal node is the son obtained by onsideringthe guarded event (g, a) for some ϕ ∈ Θi with (g, a)→ Θi ∈ Γ.Example: In the example just above, the node labelled with

{(0 < ha < 1, a)→{ϕ1, ϕ2} ∧ (0 < ha < 1, a)→{ϕ3} ∧ (0 < ha < 1, b)→{ϕ4}}; r0is a onjuntive node. The node labelled with
{(0 < ha < 1, a)→{ϕ1, ϕ2}, (0 < ha < 1, a)→{ϕ3}, (0 < ha < 1, b)→{ϕ4}}; r0is a modal node whih has three (0 < ha < 1, a)-sons and one (0 < ha < 1, b)-son. �De�nition 97 (Choie node, near to) A hoie node is a root node or a son of a modalnode. A node m is near to a node n if and only if there is a path from n to m in a tableauwithout an appliation of the rule (mod) in-between.We remark that the root of a tableau an be a hoie node and a modal node. A leaf node, amodal node, or a disjuntive node, or a onjuntive node an also be a hoie node.



76 Chapter 3. Results on Event-Reording Logi3.3.2 Semantis of TableauA path in a tableau represents of partial task in the satis�ability heking of a set of formulas.Given Γ1; r1 and Γ2; r2 two onseutive nodes of the tableau, suh that Γ2; r2 derived from
Γ1; r1, there is a formula ϕ1 ∈ Γ1 that has been redued aording to an appropriate rule andthere is a formula ϕ2 ∈ Γ2 whih is one of the results of the redution of ϕ1. Suh a relationbetween formulas in the premises and formulas in the onlusion keeps trak of deompositionof eah formula. We follow [JW95, NW96℄ and we formalise this relation by de�ning traes.De�nition 98 (Trae) Given a path π of τϕ

r0
= 〈T ,L〉, a trae on π will be a funtion Fwhih assigns a tuple made of a formula and a region to eah node in some initial segment of

π, aording to the rules applied for the onstrution of π. FERL and Fρ denote the formulapart and the timing part of F(n). We require that F satis�es the following ondition: let n bethe suessor of m on π then1. if the rule applied m is not (mod) and it is not direted by F(m) then F(m) = F(n);2. if the rule applied at the node m is not (mod) but it is direted by F(m) then Fρ(n) =
Fρ(m) and FERL(n) is one of the results of the appliation the rule in m.3. if the rule (mod) is applied at m and the son n ∈ π of m is labeled by ϕ ∪ {∨Θj :
(g, a) → Θj ∈ Γ, Θj 6= Θi}; r↑∧g[ha := 0] for some (g, a) → Θi ∈ LERL(m) and ϕ ∈ Θithen F(n) = ϕ; r↑∧g[ha := 0] if F(m) = (g, a) → Θi; r and F(n) =

∨

Θj; r↑∧g[ha := 0]if F(m) = (g, a)→ Θj; r.In order to establish whether a formula is satis�able are not, we distinguish �good trae�from �bad trae�. Intuitively, a �bad trae� is something that annot appear in a orretexeution of the veri�ation proedure skethed on page 73. We also onsider �good path�and �bad path�. Again a �bad path� is a path that annot our during orret exeution ofthe veri�ation proedure. To haraterise �good� and �bad� paths we need to onsider �niteand in�nite paths.A �nite trae is �good� if it ends in a tuple the formula part of whih is tt or (g, a) →∅.Otherwise it is �bad�.If a trae is in�nite, there is are �xpoint variables that are in�nitely often regenerated.Following [Koz82, JW95℄, we give the de�nition of variable regeneration.De�nition 99 A variable X is regenerated on a trae F of some path if and only if for some
m and its son n on the path FERL(m) = X and FERL(n) = ψ(X) with Dϕ(X) = σX.ψ(X).As stated later in Theorem 87, the �goodness� of a trae may depend on the nature ofvariables that are in�nitely often regenerated. As introdued in the above examples, �good�and �bad� traes depends on the order between variables and the nature of the oldest variablethat is in�nitely often regenerated.We formalise the notion of �good� and �bad� traes by de�ning µ-traes.De�nition 100 (µ-trae) A µ-trae is an in�nite trae on whih the oldest variable regen-erated in�nitely often is a µ-variable; or a �nite trae, ending with a tuple the formula partof whih ontains �.



3.3. Satisfiability 77So a �bad� trae is a µ-trae and a �good� is a trae that is not �bad�. It follows that a�bad� path is a path that ontains a µ-trae. We all suh a path a µ-path. A �good� path isa path that does not ontains a µ-trae.Now that we have formally de�ned �good� paths and �bad� paths, we look for a distributionof �good� paths in the tableau in order to deide whether a set of formulas is satis�able or not.De�nition 101 (Pre-model) A pre-model PM is a fragment of a tableau τϕ
r0

satisfying thefollowing onditions:
• The root of τϕ

r0
belongs to PM.

• If a disjuntive node belongs to PM, then only one of its sons belongs to PM.
• If a modal node belongs to PM, then all its sons belong to PM.
• There is no path with a µ-trae in PM.De�nition 102 (refutation) A refutation RF is a fragment of a tableau τϕ

r0
satisfying thefollowing onditions:

• The root of τϕ
r0

belongs to RF .
• If a disjuntive node belongs to RF , then all its sons belongs to RF .
• If a modal node belongs to RF , then at most one of its sons belong to RF .
• There is a µ-trae on every path of RF .In the next setion we show the following theorem.Theorem 103 A guarded retangular formula ϕ is satis�able if and only if there exists apre-model for ϕ.3.3.3 Satis�ability ResultsIn this setion, we present a proof of Theorem 103. As remarked before we an restrain toretangular formulas.As formulas may ontain many �xpoint operators, then we need a struture to handle thevariation of ordinals assoiated to eah �xpoint operator after a omputation step. For thatpurpose, we onsider the notion of signature (also see [Wal95℄).De�nition 104 (Signature, µ-signature, ν-signature) A signature sig =

(α1, α2, . . . , αn) is a sequene of ordinals value of whih depends on a state. We distin-guish µ-signature from ν-signature that we simply all signature when it is lear from theontext.Let a formula ψ without free variables, if S, s � 〈[ψ]〉Dϕ
then, ψ has the µ-signature

µsig(ψ, s) = (α1, . . . αdµ) in s if µsig(s, ψ) is the least (in lexiographial order) sequene of



78 Chapter 3. Results on Event-Reording Logiordinals suh that S, s � 〈[ψ]〉D′
ϕ
where D′

ϕ is obtained from the binding funtion Dϕ by hang-ing de�nitions of Xi (for i = 1, . . . , dµ) from Dϕ(Xi) = νXi.ϕi(Xi) to D′
ϕ(Xi) = ναiXi.ϕi(Xi).If S, s 6� 〈[ψ]〉Dϕ

then, ψ has the ν-signature νsig(ψ, s) = (α1, . . . αdν ) in s if νsig(s, ψ) isthe least (in lexiographial order) sequene of ordinals suh that S, s 6� 〈[ψ]〉D′
ϕ
where D′

ϕ isobtained from the binding funtion Dϕ by hanging de�nitions of Yi (for i = 1, . . . , dν) from
Dϕ(Yi) = µYi.ϕi(Yi) to D′

ϕ(Yi) = µαiYi.ϕi(Yi).In the de�nition of the notions of µ-signature and ν-signature just above S is either a
(Σ ∪ ValΣ)-labelled transition system representing the semantis of a timed proess, and inthis ase � is the relation �t; or a (Σ ∪ Gds)-labelled transition system representing thesemantis of a timed proess, and in this ase � is the relation �g.Lemma 105 (µ-Signature) Let µsig(ϕ, s) the signature of ϕ at s, it is true that:
• µsig(ϕ1 ∧ ϕ2, s) = max{µsig(ϕ1, s),

µ sig(ϕ2, s)}

• µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ1, s) or µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ2, s)

• for all ϕ ∈ Θ, there is s′ suh that s ĝ,a
−→ s′ and µsig(ϕ, s′) ≤ µsig((ĝ, a) → Θ, s);and for every s′ suh that there is a transition from s

ĝ,a
−→ s′, we have µsig(

∨

Θ, s′) ≤µ

sig((ĝ, a)→ Θ, s)

• if Xi is the i − th variable of Dϕ and Dϕ(Xi) = µXiϕ(Xi), then the pre�xes of length
i− 1 of µsig(µXi.ϕ(Xi), s) and µsig(ϕ(X), s) are equal
• µsig(νX.ϕ(X), s) = µsig(ϕ(X), s) where Dϕ(X) = νX.ϕ(X)

• if Dϕ(Y ) = µY.ϕ(Y ), then µsig(Y, s) > µsig(ϕ(Y ), s)

• if Dϕ(Y ) = νY.ϕ(Y ), then µsig(Y, s) = µsig(ϕ(Y ), s)ProofThe ase of (ĝ, a)→Θ is a generalisation of the ases of ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2 whih themselvesare immediate.Considering the last ases, we suppose that S, s � 〈[Xi]〉Dϕ
with Dϕ(Xi) = µXi.ψi(Xi).

Xj ours in ψi(Xi) implies that Xi ≤ϕ Xj and Xj is free ψi(Xi). Let µsig(Xi, s) =
(α1, α2, . . . , αn) and D′ obtained from Dϕ by hanging de�nitions of Xi (for i = 1, . . . , dµ)from Dϕ(Xi) = µXi.ψi(Xi) to D′

ϕ(Xi) = µαiXi.ψi(Xi).It follows from the de�nition of the signature that S, s �g µαiXi.ψ(Xi). This impliesthat αi is a suessor ordinal. It follows that S, s �g ψ(µαi−1X.ψ(Xi)). This means that thesignature of ψ(µαi−1Xi.ψ(Xi)) at s is (α1, . . . , αi−1, αi− 1, α′
i+1, . . . , α

′
dµ) and is smaller than

sig(Wi, s). The di�erene ours at the position i. �Lemma 106 (ν-Signature) Let νsig(ϕ, s) the signature of ϕ at s, the following assertionshold:
• νsig(ϕ1 ∨ ϕ2, s) = max{νsig(ϕ1, s),

ν sig(ϕ2, s)}
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• νsig(ϕ1 ∧ ϕ2, s) = νsig(ϕ1, s) or νsig(ϕ1 ∧ ϕ2, s) = νsig(ϕ2, s)

• Either exists ϕ ∈ Θ suh that for all s′, if s ĝ,a
−→ s′ for some ĝ, then we have νsig(ϕ, s′) ≤ν

sig((ĝ, a) → Θ, s); or there is s′ suh that s ĝ,a
−→ s′, and νsig(

∨

Θ, s′) ≤ν sig((g, a) →
Θ, s).
• If Xi is the i− th variable of Dϕ and Dϕ(Xi) = µXiϕ(Xi), then the pre�x of length i−1of νsig(µXi.ϕ(Xi), s) and νsig(ϕ(X), s) are equal.
• νsig(νX.ϕ(X), s) = νsig(ϕ(X), s) where Dϕ(X) = νX.ϕ(X)

• If Dϕ(Y ) = µY.ϕ(Y ), then νsig(Y, s) = νsig(ϕ(Y ), s)

• If Dϕ(Y ) = νY.ϕ(Y ), then νsig(Y, s) > νsig(ϕ(Y ), s)ProofDual to Lemma 105. �Proposition 107 Any tableau for a formula ϕ ontains either a pre-model or a refutation.Proof(Sketh) The proof of this result is the same as the proof of a similar result in the setting of thefor µ-alulus [Wal95℄. The proof uses some results on two player parity games. One de�nes atwo player parity game and shows that a player has a winning strategy if and only if there isa pre-model for ϕ and its adversary has a winning strategy if and only if there is a refutationfor ϕ. The onlusion omes from the fat that two player parity games are determined (seeTheorem 11). �Proposition 108 Any tableau of a satis�able retangular guarded formula ϕ ontains a pre-model for ϕ.ProofThe proof follows the ones in [Koz82, Wal95℄.Suppose that there is timed proess P suh that 〈[P]〉M , s0 �g ϕ.Let τϕ
r0

a tableau for ϕ. We aim at onstruting a pre-model PM for ϕ whih is in fat asub tree of τϕ
r0
. It means to hoose the nodes of τϕ

r0
that we will inlude in PM. Of ourse,the root of τϕ

r0
will be inluded in PM. We assign to eah node n that has been inluded in

PM, a state sn ∈ S suh that 〈[P]〉Mreg, sn �g 〈[ψ]〉Dϕ
for every ψ ∈ LERL(n). This assignmentwill be done through the so-alled marking relation M : N → S. So we will have(1) if sn = M(n) then 〈[P]〉M , sn �g 〈[ψ]〉Dϕ

for every ψ ∈ LERL(n).We set s0 = M(n0) where n0 is the root of τϕ
r0
.This satis�es (1).Now, assume that a node n has been inluded in PM with sn = M(n). We use the rulesfor the tableau to selet the next nodes that we inlude in PM. The seletion works as follows:

• The only son of some node n, marked with sn, on whih an unary rule (�r,∧, reg, µ, or
ν) was applied is inluded in PM; this son is marked with sn.
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• If n is a disjuntive node, then sn is put into the marking of the son for whih it has theleast signature. Suh a son exists by Lemma 105.
• If n is a modal node, then we add all the sons of n in PM. Eah son n′ of n is the resultof the redution of a formula (ĝ, a) → Θ ∈ LERL(n) with respet to some ψ ∈ Θ. Set
M(n′) = sn′ where sn′ is suh that sn ĝ,a

−→ sn′ , and µsig((ĝ, a)→ Θ, sn) ≥
µ sig(ψ, sn′).Suh a on�guration exists by Lemma 105.By Property (1) above, it is obvious that no leaf of PM ontains �. It remains to showthat the tree we have onstruted does not have an in�nite path with a µ-trae.Now, assume that there is an in�nite path π that has a µ-trae on it. Then, there is theoldest µ-variable Xi in�nitely often regenerated along the trae. Aording to Lemma 105,from the point when no variable older that Xi is regenerated, µ-signatures of formulas on thattrae never inrease on positions 1, . . . , i−1. Then maximal signature of formulas on the traeonsidered up to position i never inreases and dereases every time Xi is regenerated. Thisis a ontradition beause sequenes of ordinals of bounded length are well-ordered. �From the de�nition of the system of tableau rules, applying a rule di�erent from (mod)and ∨ to a node of a tableau generates a unique suessor. In a pre-model we hoose only oneson of a disjuntive node and all the sons of a modal node. It follows that in a pre-model, anode with more that one suessor is a modal node. Given a node n of PM we denote des(n)the losest desendant of n or n itself in that is either a modal node or a leaf.De�nition 109 (sharply guarded model for a pre-model) Given a pre-model PM = 〈K,L〉,the sharply guarded model based on PM is the timed proess S = 〈S,Σ, s0,∆S〉 suh that:1. S onsists of all nodes of PM that are either leaves, or modal nodes.2. (s, ĝ, a, s′) ∈ ∆S if there is in PM a son n of s with des(n) = s′, suh that the label of

n was obtained from the label of s by reduing a formula of the form (ĝ, a)→ Θ.We remark that the maximal onstant that ours in the sharply guarded model is smaller orequal to the maximal onstant that ours in the formula.Proposition 110 Formula ϕ is satis�able in the sharply guarded model assoiated to a pre-model of ϕ.ProofThe proof is dual to the one of Proposition 108. We will assume that PM is a pre-model for
ϕ and ϕ is not satis�able in the sharply-guarded model P assoiated to PM. Then, we obtaina ontradition.If ϕ is not satis�able in P then 〈[P]〉Mreg, s

0 6�g ϕ. Reall that states of 〈[P]〉Mreg are the leavesor the modal nodes of PM. Using the assumption that 〈[P]〉Mreg, s
0 6�g ϕ, we show that PMontains a path π with a µ-trae F = {ϕn; rn}n∈π. The expeted path π and the µ-trae areonstruted as follows:
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• π starts at n0 and ϕn0 = ϕ. By the hypothesis, 〈[P]〉Mreg, des(n

0) 6�g ϕ sine n0 is the nodeof PM assoiated to the initial on�guration of 〈[P]〉Mreg.
• Now assuming that we have onstruted F up to the node ϕm; r ∈ LERL(m) × Lρ(m)suh that 〈[P]〉Mreg, des(m) 6�g 〈[ϕm]〉Dϕ

. The formula of the next tuple (the timing part isobvious) is seleted as follows:1. If m is not a modal node, then the only son m′ of m is suh that� ϕm′ = ϕm if ϕm was not redued by the rule.� ϕm′ = ϕ1 if ϕm = ϕ1 ∧ ϕ2 and νsig(ϕm, desm) ≥ νsig(ϕ1, desm);� ϕm′ = ϕ2 if ϕm = ϕ1 ∧ ϕ2 and not above;� ϕm′ is the formula that ours in LERL(m′) if ϕm = ϕ1 ∨ϕ2. Observe that thehoie is direted by PM.� In the other sub ases: �r, ν, µ, reg, just take the resulting formula as the nextelement of the trae.2. If m is a modal node and ϕm = (ĝ, a)→Θ then� either there is ψ ∈ Θ, suh that for every son m′ of m and s
ĝ,a
−→

s′ with des(m′) = s′ we have 〈[P]〉Mreg, s
′ 6�g 〈[ψ]〉Dϕ

and νsig(ψ, s′) ≤
νsig((ĝ, a)→Θ, s). In this ase, just take ϕm′ = ψ;� or, there is a sonm′ ofm with des(m) = s′, and s ĝ,a

−→ s′ suh that 〈[P]〉Mreg, s
′ 6�g

∨

Θ and ν sig(
∨

Θ, s′) ≤ν sig((ĝ, a)→ Θ, s). In this ase onsider m′ and set
ϕm′ =

∨

Θ or γ ∈ Θ depending on whih one appears in L(m′).There are two ases:1. The above trae is �nite. If the last element is �, there is a ontradition with that thesharply guarded model orrespond to the pre-model; and a pre-model does not ontain a
µ-trae, in partiular it does not ontain a trae that ends with a tuple the formula partof whih is �. If the last tuple does not ontain the formula �, it ontains a formula ψof the form (ĝ, a)→ ∅ or tt ; from the de�nition of the sharply guarded model, it followsthat 〈[P]〉Mreg, des(m) �g 〈[ψ]〉Dϕ

, this is in ontradition with the third item of Lemma106, beause we assumed that 〈[P]〉Mreg, des(m) is not satis�ed the formula assigned to m.In fat, if the last tuple ours in the node m and ontains the formula:
• tt , then 〈[P]〉Mreg, des(m) �g tt and we get a ontradition with the hypothesis.
• (ĝ, a)→∅, then m is either a modal node or a leaf. In both ases, m does nothave a son n obtained from it by reduing a formula (ĝ, a)→Θ with respet tosome Θ and ϕc ∈ Θ as otherwise the that ould not end with (ĝ, a)→∅. As

(ĝ, a)→∅ ≡ [ĝ, a]�, by de�nition of �g we get the ontradition with the hypothesisthat 〈[P]〉Mreg, des(m) 6�g (ĝ, a)→∅.2. If the trae is in�nite, the only way to have an in�nite trae is to have a regeneration ofa �xpoint variable. It annot be a µ-variable as we are in a pre-model. Hene it must bea ν-variable. As by Lemma 106 the ν-signature dereases along the onstruted trae,this is impossible.
�



82 Chapter 3. Results on Event-Reording Logi3.3.4 Complexity IssuesWe have redued the satis�ability of a formula to the existene of a pre-model in its tableau.Then the omplexity for the satis�ability of a formula is the same as the omplexity of hekingthe existene of a pre-model in its tableau. The proedure for heking the existene of a pre-model in the tableau is the same as the proedure for heking the existene of a pre-model inthe tableau for µ-alulus formula whih is exponential in the size of the formula. In the aseof ERL, our algorithm is also exponential in the size of the formula.3.4 Comparison With Earlier WorksIn the setion we ompare results in previous setions with Sorea's results on ERL. In [Sor02℄Sorea proposed deision proedures for the model-heking and satis�ability of ERL formulas.These proedures were supposed to work even for general onstraints (diagonal onstraintswere allowed). The Sorea [Sor02℄ proedure for the satis�ability problem of ERL is based on atableau system of rules. Sequents in rules are ouples, made of a set of formulas and a timingontext. Timing ontext are represented by zones. In that tableau system, one partiularrule ould be interpreted in two ways. One way is wrong as it forbids the �division� of thetime satisfying a onstraint in the existential modality. The seond interpretation is orretas it enables the �division� of the time. Nevertheless, the proedure for the satis�ability isnot orret. Reall that the satis�ability proedure requires to hek the existene of a �good�fragment in the tableaux. Indeed, the appliation of a rule in some node of the tableau dependson the onsistene of the zone in that node and the rule uses the time elapse operation on zones.Normally, labelling of nodes will range over an in�nite set and the satis�ability proedure maynot terminate. To ensure �nite set of labels for the nodes of a tableau, Sorea has proposedto approximate zones. As diagonal onstraints were allowed, the proedure of Sorea delaressome fragments of tableaux �good� while in reality they are not.3.4.1 Sorea's Semantis for Timed Proess and ERL FormulasLet us brie�y omment the Sorea' semantis for timed proess and the relation with thesemantis in De�nition 66. Sorea's semantis for timed proesses is standard. They Sorea'ssemantis of a timed proess is a (R+ × Σ)-LTS where there is transition (p, v)
t,a
−→ (p′, v +

t[ha := 0]) whenever there is a transition p
g,a
−→ p′ and a delay t ∈ R+ suh that v+t ∈ [[g]]. Thatrepresentation for Sorea's semantis for timed proesses is isomorphi to the representation inwhih delays on transitions are replaed with valuations and de�ned in suh a way that thereis transition (p, v)

v+t,a
−→ (p′, v+ t[ha := 0]) whenever there is a transition p

g,a
−→ p′ and a delay

t ∈ R+ suh that v + t ∈ [[g]]. This latter representation is a (ValΣ × Σ)-LTS.Semantis in De�nition 66 is a (ValΣ∪Σ)-LTS. Using the notation just after De�nition 66, onean observe that, there is a transition (p, v)
v+t,a
−→ (p′, v + t[ha := 0]) in the Sorea's semantisfor a timed proess P if and only if there is a transition (p, v)

v+t,a
−→ (p′, v + t[ha := 0]) in

[[P]]. The same remark holds for representations that label transitions with onstraints. Dueto the relation between Sorea's semantis and our semantis for timed proesses, the Sorea'sinterpretation of an ERL formula over a timed proess is exatly the same as our interpretationof the formula over the timed proess.



3.4. Comparison With Earlier Works 833.4.2 Sorea's Tableau System of RulesLet us �rst reall the tableau system of rules of Sorea [Sor02℄. Let ϕ = 〈g, a〉ψ be an ERLformula, and Γ be a set of formulas, suh that eah formula in Γ is a variable X, or a formulaof the form 〈g′, a′〉ψ′ or [g′, a′]ψ′ for some onstraint g′, and event a′. Let the set tob(g, a,Γ)be de�ned by:
tob(g, a,Γ) = {[g′, a]ψ ∈ Γ | [[g ∧ g′]] 6= ∅}The tableau system of rules proposed by Sorea [Sor02℄ is presented below. A rule is made ofsome number of premises and a onlusion. The timing ontext is represented with a zone.

{�};�
{ϕ,Γ};� (�Z)

{ϕ1,Γ};Z {ϕ2,Γ};Z

{ϕ1 ∨ ϕ2,Γ};Z
(∨)

{ϕ1, ϕ2,Γ};Z

{ϕ1 ∧ ϕ2,Γ};Z
(∧)

{ϕ(X),Γ};Z

{µX.ϕ(X),Γ};Z
(µ)

{ϕ(X),Γ};Z

{νX.ϕ(X),Γ};Z
(ν)

{ϕ(X),Γ};Z

{X,Γ};Z
(reg) Dϕ(X) = σX.ϕ(X)

{{Γg′ ;Z
′
g′ | g

′ ∈ Gg} | 〈g, a〉ϕ ∈ Γ}

Γ;Z
(mod)where

Gg =
⋃

J⊆tob(g,a,Γ)

{g ∧
∧

g′∈J

g′ ∧
∧

g′ 6∈J

¬g′}denotes a set of all onstraints inluded in g, and Γg′ ;Z
′
g′ is de�ned by:

Γg′ ;Z
′
g′ =

{

{ϕ}; (Z↑∧g′)[ha := 0]) if Γ = ∅ or tob(g, a,Γ) = ∅
{ϕ} ∪ Φg′ ; (Z↑∧g

′))[ha := 0] if tob(g, a,Γ 6= ∅with Φg′ = {ψ | [g′′, a]ψ ∈ tob(g, a,Γ) 6= ∅ and g′ ⊆ g′′}.3.4.3 Existential Modality May Cause Constraint DivisionIn the tableau system of rules above, it is not lear what happens in the rule (mod). For agiven formula 〈g, a〉ϕ in the onlusion of the rule (mod), we onsider a set of onstraints Ggwhih is suh that the intersetion of every onstraint in it with g is onsistent. As no preisionis done in [Sor02℄ on the use of this rule when heking the satis�ability of a formula, thereare two possible interpretations:1. The �rst interpretation may onsist to onsider all the timed sequents in the set
{Γg′ ;Z

′
g′ | g

′ ∈ Gg}.



84 Chapter 3. Results on Event-Reording Logi2. The seond may onsist to onsider only one sequent in that set.The �rst interpretation gives inorret result as it may be enough to onsider only onetimed sequent to ensure the satis�ability of the formula. For instane onsider the examplebelow.Example: Let the formula ϕ0 = 〈1 ≤ ha < 2, a〉tt ∧ [ha = 1, a]� ∧ 〈ha = 1, b〉tt . Consider thefollowing sets of sub formulas of ϕ0:
Γ0 = {〈1 ≤ ha < 2, a〉tt ∧ [ha = 1, a]� ∧ 〈ha = 1, b〉tt}

Γ1 = {〈1 ≤ ha < 2, a〉tt , [ha = 1, a]� ∧ 〈ha = 1, b〉tt}

Γ2 = {〈1 ≤ ha < 2, a〉tt , [ha = 1, a]�, 〈ha = 1, b〉tt}

Γ3 = {tt ,�}
Γ4 = {tt}The formula ϕ0 has two existential modal operators and one universal modal operator. A-ording to the tableau system of rules, we should onsider the sets tob(1 ≤ ha < 2, a,Γ2) =

{ha = 1}, tob(ha = 1, a,Γ2) = {ha = 1}, and the sets G1≤ha<2 = {ha = 1, 1 < ha < 2}.
Gha=1 = {ha = 1},Then the tableau for ϕ0 starting from the Z0 in whih the value of ha = 1 is depited inFigure 12.

Γ1;ha = 0 ∧ hb = 0

Γ1;ha = 0 ∧ hb = 0

Γ2;ha = 0 ∧ hb = 0

Γ3;ha = 0 ∧ hb = 1 Γ4;ha = 1 ∧ hb = 0 Γ4;ha = 0 ∧ 1 < hb < 2

∧

∧

(mod), ha = 1, a (mod), ha = 1, b (mod), 1 < ha < 2, a

Figure 12: The beginning part of the symboli tableau.The tableau does not ontain a disjuntive node. As Γ3 ontains � and is inluded in thepre-model, the proedure of Sorea will assert that ϕ0 does not have a model. This is not truesine the timed proess in Figure 13 is a model of ϕ0.
�
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p1

p0 p2

1 < ha < 2, a

ha = 1, bFigure 13: A timed proess.But, even the seond interpretation gives inorret result. As we show in the next subse-tion, the use of the approximation operation on zones to ensure �nite set of labels of nodes ofthe tableau and then to ensure the termination of the satis�ability proedure, will make somepaths �good� while they are not.3.4.4 Zone Approah Is Not CorretConsider the formula ϕ de�ned by ϕ = 〈hb ≤ 3, c〉ϕ1 where,
ϕ1 = 〈ha ≤ 3, a〉ϕ2

ϕ2 = 〈hb = 3, b〉ϕ3

ϕ3 = µX.ϕ4

ϕ4 = ϕ5 ∨ ϕ6

ϕ5 = 〈ha = 3, a〉ϕ7

ϕ6 = 〈ha = 2, a〉ϕ8

ϕ7 = 〈ha = 2, a〉ϕ9

ϕ8 = 〈hb = 2, b〉X

ϕ9 = 〈hb = 2, b〉ϕ11

ϕ11 = 〈ha = 3, b〉ϕ12

ϕ12 = 〈hb − ha < 2 ∧ hd − hc > 2〉ttObserve that ϕ has been inspired by the timed proess in Figure 11 (Page 57) and eahsub formula ϕi intends to desribe the property of some state of that timed proess.A tableau for ϕ that uses the of rules of Sorea presented in Subsetion 3.4.2 is presentedin Figure 14. In this tableau every set of formulas in eah timed sequent is a singleton. Ev-ery modal node has a single suessor. There are disjuntive nodes {ϕ4};Z
i
4 where i is andinteger. From a disjuntive node {ϕ4};Z

i
4 we an take the path {ϕ4};Z

i
4 → {ϕ6};Z

i
6 →

{ϕ8};Z
i
8 → {X};Z

i
10 → {ϕ4};Z

i+1
4 or take the path from {ϕ4};Z

i
4 to {tt};Zi12. To hekthat ϕ is satis�able, we must hek that there is a pre-model in the tableau. As X is thesingle µ variable in ϕ, it must be regenerated only �nitely times in a trae of the pre-model. As every node exept disjuntive nodes has a single suessor, the unique trae ofthe pre-model is of the form {ϕ};Z0 → {ϕ1};Z1 → {ϕ2};Z2 → {ϕ4};Z

0
4 → {ϕ6};Z

0
6 →

{ϕ8};Z
0
8 → {X};Z

0
10 → {ϕ4};Z

1
4 → · · · → {ϕ4};Z

k
4 → {ϕ6};Z

k
6 → {ϕ8};Z

k
8 → {X};Z

k
10 →

{ϕ4};Z
k+1
4 → {ϕ5};Z

k+1
5 → {ϕ7};Z

k+1
7 → {ϕ9};Z

k+1
9 → {ϕ11};Z

k+1
11 where k is the numberof times the variable X is regenerated.
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{ϕ};Z0

{ϕ1};Z1

{ϕ2};Z2

{ϕ3};Z3

{ϕ4};Z
k
4

{ϕ4};Z
k+1
4

{ϕ5};Z
k
5

{ϕ6};Z
k
6

{ϕ7};Z
k
7

{ϕ8};Z
k
8

{tt};Zk9

{X};Zk10

{ϕ11};Z
k
11

{tt};Zk12

(mod), 〈hb ≤ 3, c〉

(mod), 〈ha ≤ 3, a〉

(mod), 〈hb = 3, b〉

(µ.)

(∨)

(mod), 〈ha = 2, a〉(mod), 〈hb = 2, b〉

(mod), 〈ha = 3, a〉

(mod)〈hb − ha < 2 ∧ hd − hc > 2, d〉

(mod), 〈ha = 2, a〉

(mod), 〈hb = 2, b〉

(reg)

Figure 14: A tableau for ϕ.It is not di�ult to see that satis�ability of ϕ is redued to the reahability problem of
{tt};Zk+1

12 . This problem has been disussed in Subsetion 2.6.2 where we present an automa-ton that has the same struture as our tableau.Following remarks we have done in Subsetion 2.6.2, The zone Zk+1
11 is the following































































ha = 0
hb ≥ 1
hc ≥ 2γ + 5
hd ≥ 2γ + 6
2γ + 6 ≤ ha − hd ≤ 2γ + 8
1 ≤ hb − ha ≤ 3
2γ + 5 ≤ hc − ha ≤ 2γ + 8
2γ + 2 ≤ hc − hb ≤ 2γ + 5
hd − hb = 2γ + 5
0 ≤ hd − hc ≤ 3



3.5. Disjuntive Normal Form 87and Zk+1
11 ↑ the zone obtained from Zk+1

11 by replaing the onstraint ha = 0 with 0 < ha.We remark that the bounds of diagonal onstraints are not modi�ed. It is lear that Zk+1
11 ↑

∧hb − ha < 2 ∧ hd − hc > 2 is inonsistent as taking hb − ha < 2 implies (using onstraints in
Zk+1

11 ↑) that hd − hc ≤ 2. Then the appliation of the rule (mod) in {ϕ11};Z
k+1
11 may produethe timed sequent {�};�. That is enough to onlude that ϕ is not satis�able.In [Sor02℄, Sorea uses the normalisation (approximation) operator NormM on zone thatours in the tableau to ensure the termination of its tableau-based deision proedure for thesatis�ability of formulas. When applying the normalisation operator at eah node, Zk+1

11 willbeome the zone de�ned by the following onstraints:






























































ha = 0
hb ≥ 1
hc > k
hd > k
ha − hd > k
1 ≤ hb − ha ≤ 3
hc − ha > k
hc − hb > k
hd − hb > k
0 ≤ hd − hc ≤ 3For a su�iently big k, Zk+1

11 ↑∧hb − ha < 2 ∧ hd − hc > 2 is onsistent and {tt};Zk+1
12 is thelast node of the path. As the unique trae is �nite and ends with a tuple formula part of whihis tt . We will get that ϕ is satis�able, whih is not orret.3.5 Disjuntive Normal FormThe use of onjuntions in formulas and the alternation of �xpoint operators has required theuse of set of formulas in timed sequent of the tableau leading to exponential algorithm for thesatis�ability. Are there some kind of formulas for whih sets of formulas do not need to beonsidered in timed sequents? If so, what is the expressive power of this kind of formulas? Aswe will see the answer to the �rst problem is yes for disjuntive normal form formulas thathave the same expressive power as formulas in general form. In this setion we onsider thetransformation of general ERL formulas into equivalent formulas in disjuntive normal formand we onsider the satis�ability of later formulas. For that purpose we onstrut disjuntiveformulas from tableau and we use the equivalene between tableaux of the disjuntive formulaand the initial formula to show their equivalene.3.5.1 De�nition and Satis�ability ResultsLet us �rst de�ne disjuntive normal form for formulas.De�nition 111 (Disjuntive normal form) The set Fd of formulas in disjuntive normal form,is the smallest set de�ned by the following lauses:1. Every variable is a disjuntive formula.



88 Chapter 3. Results on Event-Reording Logi2. If ϕ,ψ ∈ Fd then ϕ∨ψ ∈ Fd; If moreover X does not our in a sub formula of ϕ of theform X ∧ γ, then µX.ϕ(X), νX.ϕ(X) ∈ Fd.3. Formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn ∈ Fd provided that every ϕi is in {tt ,�} or a formula of theform ϕi = (ĝi, ai)→Θi with Θi ⊆ Fd. We require that for any pair of guarded-events
(ĝi, ai) and (ĝj , aj), ai = aj implies that ĝi 6= ĝj.We remark that modulo the order of appliation of the rule (and), disjuntive formulashave unique tableaux. Moreover on any in�nite path there is one and only one in�nite trae.The proof of the following theorem uses similar argument to the proof of a similar resulton the standard µ-alulus [JW95℄.Theorem 112 A losed disjuntive formula ϕ is satis�able if and only if the formula ψ ob-tained from ϕ by replaing all ourrenes of µ-variables by � and all ourrenes of ν-variablesby tt is satis�able.ProofLet τϕ
r0

and τψ
r0

be the tableaux for ϕ and ψ. The tableau τψ
r0

is a �nite tree while the tableau
τϕ
r0

is not neessarily a �nite tree. But observe that τϕ
r0

an be seen as an unfolding of agraph obtained from τψ
r0

by adding bak edges from every node labelled with tt or � to theunique node formula part of whih ontains the de�nition of the orresponding variable; thatde�nition should be a µ-formula for all the nodes labelled with {�} with � orresponding tothe substitution of a µ-variable, and it should be a ν-formula for all the nodes labelled with
{tt} with tt orresponding to the substitution of a ν-variable. So, we an assume the existeneof a surjetive funtion f : τϕ

r0
→ τψ

r0
that assigns to a node of τϕ

r0
a unique orrespondingnode in τψ

r0
.It is easy to show, using strutural indution, that if ϕ is satis�able, so is ψ.Conversely, assuming that ψ is satis�able, then ψ has a model. Let P be a model for ψ. From

P, we an build a pre-model PMψ for ψ and from PMψ we build a sub tree PMϕ of τϕ
r0ontaining any node n of τϕ

r0
suh that f(n) belongs to PMψ. It is easy to show that theresulting sub tree is a pre-model of τϕ

r0
meaning that ϕ is satis�able. �In what follows, we will prove the equivalene between ERL formulas and ERL formulasin disjuntive normal form.Theorem 113 (disjuntive normal form) For every formula ϕ, there exists an equivalentdisjuntive formula ϕ̆ suh that for any timed proess P, P � ϕ if and only if P � ϕ̆.3.5.2 Tableau Equivalene and Tableau With Bak EdgesFor the proof of Theorem 113, we will de�ne the notion of equivalene between tableaux. Wewill show that the equivalene between tableaux of two formulas implies the equivalene ofthe meaning of formulas. We will introdue the notion of tableau with bak edges whih area kind of graphs obtained from tableaux by utting su�xes of some in�nite paths and byadding onveniently bak edges from the root of the su�xes that have been ut to one of theiranestors. Then given a formula, we will build from one of its tableau, a tableau with bakedges. From that tableau with bak edges, we will onstrut a formula in disjuntive formhaving a tableau equivalent to the tableau of the given formula.



3.5. Disjuntive Normal Form 89Tableau equivaleneDe�nition 114 (tableau equivalene) Let τ1 and τ2 be two tableaux. The tableaux τ1 and
τ2 are equivalent if and only if there is a bijetive mapping E between hoie nodes, modalnodes and leaf nodes of τ1 and τ2 suh that :1. E(n) = m implies that n is root of τ1 and m is root of τ2, or n and m are both disjuntivenodes or both modal nodes.2. If n1 is a desendant of n then E(n1) is a desendant of E(n). Moreover if n1 is a (ĝ, a)-sonof n, then E(n1) is a (ĝ, a)-son of n.3. The set of literals in LERL(n) is equal to the set of literals of LERL(E(n)).4. There is a µ-trae on a path π of τ1 if and only if there is a µ-trae on the image of πunder E in τ2Observation 114.1 If E : τϕ

r0
→ τψ

r0
is a funtion showing the equivalene of τϕ

r0
and τψ

r0
then

E−1 : τψ
r0
→ τϕ

r0
is also a funtion showing the equivalene of τψ

r0
and τϕ

r0
.Proposition 115 If two guarded formulas have equivalent tableaux then, they admit thesame set of modelsProofLet ϕ and ψ two M -retangular formulas. Let τϕ

r0
and τψ

r0
be the tableaux for ϕ and ψ thatare equivalent. Then, there is a bijetive mapping E : τϕ

r0
→ τψ

r0
showing the equivalene. Wewill show that for any M -retangular timed proess P, state p and valuation Val , we havethat P, p0,Val � ϕ if and only if P, p0,Val � ψ.If P, p0,Val � ϕ then, by Proposition 88 [[P]]M , (p0, v0),Val �g ϕ. Under this assumption,we will exhibit a pre-model in τϕ

r0
. We use onstrutions similar to the ones in the proof ofProposition 108. We onsider a marking M : N → P × VΣ that satis�es: if (pn, vn) ∈ M(n)then 〈[P]〉Mreg, (pn, vn) �g LERL(n). We onstrut a pre-model PM of τϕ

r0
. Now onsider theimage E(PM) whih maps a node n of PM to the node E(n) in τψ

r0
. Beause τϕ

r0
is equivalentto τψ

r0
, the literals in every node n of PM and in LERL(E(n)) are the same. There is abijetive funtion between the (g, a) sons of n and the (g, a)-sons of E(n) implying that aon�guration (p, v) appears inM(n′) where n′ is a son of n if and only it appears inM(E(n′)).Finally E maps the root of τϕ

r0
with the root of τψ

r0
and E(PM) does not ontain a µ-traeas PM does not ontain a µ-trae. Beause E(PM) is a pre-model of τψ

r0
, the formula ψ issatis�able. Next, by using a ontradition argument, we show that P is also a model of ψ.Assume that P is not a model of ψ, then [[P]]M , (p0, v0),Val 6�g ϕ. Then, using onstrutionssimilar to the ones in the proof of Proposition 110 we an show that E(PM) ontains apath π ontaining a µ-trae and we immediately get a ontradition as we have shown that

E(PM) is a pre-model and a pre-model does not ontain a µ-trae.If P, p0,Val � ψ then P, p0,Val � ϕ as E−1 is also tableaux equivalene. �



90 Chapter 3. Results on Event-Reording LogiThe onverse of that proposition is not true; take for example the formulas (ĝ, a)→{tt} ∧
(ĝ, a)→{tt} and (ĝ, a)→{tt}.Tableau with bak edges Reall that nodes of a tableau have �nitely many di�erent labels.Then, an in�nite path in a tableau has node labels that in�nitely often our in that path.For �good� paths, the ones that do not ontain a µ-trae, we will ut a su�x starting at somenode label of whih our in�nitely often and we will add a bak edge to some anestor ofthat node equipped with the same label. We do the same for �bad� paths, the ones having a
µ-trae. When adding a bak edge, we will are that eah path, among all the paths obtainedby taking the bak edge, orresponds to a path of the tableau with the same nature (�good�or �bad�).Let us take a tableau τϕ

r0
= 〈T ,L〉 of a formula ϕ with respet to some region r0.Proposition 116 There is an automaton that distinguishes µ-traes from ν-traes in atableau for ϕ.ProofReall that a formula is of �nite length and therefore uses a �nite number of variables. Theautomaton is a Rabin automaton whose states are variables, and who is always in the stateorresponding to the last variable read. Aeptane ondition is a set of pairs of subsets ofstates suh that a right member of a pair ontains a µ-variable X; the left member ontainsall the ν-variables that are older than X. This automaton aepts a trae if and only if it is a

µ-trae. �Corollary 117 There is a deterministi parity ω-regular automaton whih deides if a pathontains a µ-trae.ProofIn every node, a transition of the automaton is the disjuntion of transitions of the automatonof Proposition 116 on eah formula in that node. Suh an automaton is a non-deterministiRabin automaton whih an be translated into an equivalent deterministi parity automaton.
� Form a tableau, we show how to build a tableau with bak edges that preserves the natureof the path of the tableau.Lemma 118 (bak edge tableau) Given τϕ

r0
= 〈T ,L〉 a tableau of a formula ϕ, it is possi-ble to onstrut a �nite tree with bak edges τ = 〈T ,L〉 satisfying the following onditions:1. τ unwinds τ ,2. Every node to whih a bak edge points an be assigned olor red or green in suh a waythat for any in�nite path from the unwinding of τ we have : there is a µ-trae on thepath if and only if the highest node of τ through whih the path goes in�nitely often isolored red.



3.5. Disjuntive Normal Form 91ProofConsider a tableau τ for ϕ, learly τ is �nite branhing and labelled over a �nite alphabet. Apath π of τ that ontains a µ-trae is suh that there is a highest node n in π from whih a
µ-variable is regenerated in�nitely often in the same time-ontext. There is a deterministi ω-regular automaton with parity ondition that separates paths that ontain µ-trae from pathsthat do not. That automaton assigns a state to eah node of τ . Formally, let S = 〈S, s0, δ,Acc〉be that deterministi automaton, where Acc is a parity ondition using a funtion c : S → N.The �nite tree with bak edges τ = 〈T ,L〉, where L ⊆ 2sub(ϕ) ×Reg × S, is onstruted from
τ as follows:
• if m is a root of τ , L(m) = {ϕ}; r, and δ(s0, ({ϕ}; r)) = s then m added to nodes of τand set L(m) = L(m)× {s}.
• if m is a node of τ with L(m) = (Γ; r, s), and n is a son of the unique orrespondent of min τ , then n is added in τ as a son of m and, L(n) = L(n)×{s′} with s′ = δ(s,L(n)). Anexeption to this ours when there is an anestor n′ of m in τ with L(n′) = L(n) and
c(LS(n)) = max{c(m′) |m′ ours between n′ and m}. In this ase, a bak edge from
m to n′ is added in τ . If c(LS(n′)) is even, then assign the olor red to n′, else assignthe olor green.By onstrution, τ unwinds to τ . Consider an in�nite path π = n1, n2, n3, . . . of the un-winding of τ ; this path has a unique orrespondent in τ and therefore it ontains either a

µ-trae or a ν-trae. Moreover, there is i and j suh that ni = nj and ni is the highest nodefrom whih the type of the path is deided. By onstrution we get that ni is of olor red ifand only if the path π ontains a µ-trae. �End of the proof of Theorem 113 Here, we end the proof of Theorem 113 and weonstrut the equivalent disjuntive normal form formula to a given formula. The idea is touse the tableau with bak edges de�ned above to get the formula in the desired form. Forthat purpose, a formula will be assigned to eah node of tableau with bak edges dependingon the rule applied in the node. This should be lear for all nodes, exept nodes with a bakedge and nodes at whih the rule (mod) is applied. Let us go into the proof that shows theonstrution of an equivalent disjuntive normal form formula.Reall that a tableau with bak edges does not have an in�nite path. A leaf of suh atableau ontains either tt ,� or formulas of the form (ĝ, a)→∅. We start the onstrution ofthe disjuntive normal form formula from the leaf of the tableau with bak edge and we moveto its root by assigning a disjuntive formula ϕ̆n to eah node of the tableau with bak edgein the following way:1. If n is a leaf then ϕ̆n is the onjuntion of all the literals and formulas of the form
(ĝ, a)→∅ in LERL(n).2. In the ase that there are outgoing edges from n, we assume that every son of n hasassigned some disjuntive formula. We also assume that a formula assigned to a son isassigned to an edge leading from n to this son. We assign the variable Xm to a bak edge,if this bak edge leads to an anestor m. An auxiliary formula γn is assigned to eahinternal node n aording to the rule applied in n. This assignment works as follows:



92 Chapter 3. Results on Event-Reording Logi
• if one of the rules (∧), (reg), (ν), or (µ) was applied in n, and γ′ is the formula onthe unique edge leading from n, then an auxiliary formula γn = γ′ is assigned to n.
• if the rule (∨) was applied in n, then the auxiliary formula γn = ϕ̆n1

∨ ϕ̆n2
isassigned to n where ϕ̆n1

and ϕ̆n2
are the disjuntive formulas assigned to eah edgeleading from n;

• if the rule (mod) was applied in n then let Γĝ,a be the set of all the formulas assignedto edges leading from n to some node labeled by a result of redution of the guardedevent (ĝ, a). We let γn be the onjuntion of all the literals and formulas of the form
(ĝ, a)→∅ appearing in L(n) together with all the formulas of the form (ĝ, a)→Γĝ,a.In the ase that there is no bak edge leading to n, then ϕ̆n = γn. Otherwise ϕ̆n = µXn.γnif n is olored red and, ϕ̆n = νXn.γn is olored green.To end the proof of the theorem 113, we laim that, using the onstrution of ϕ̆, is easy toonstrut a tableau τ ϕ̆

r0
for ϕ̆ and a funtion E : τ ϕ̆

r0
→ τϕ

r0
that de�nes an equivalene between

τ ϕ̆
r0

and τϕ
r0
. In onsequene ϕ̆ and ϕ are equivalent.3.6 Conluding RemarksWe have onsidered Event-Reording Logi as a language for desribing properties of timedproesses. We have presented an algorithm for the model-heking problem of ERL formulas.The algorithm uses theM -region representation of timed proesses and that is similar to a wellknown algorithm for the model-heking problem of the standard µ-alulus. We wondered,if other results in the setting of the standard µ-alulus ould be transferred to the settingof Event-Reording Logi. We have shown that the answer is yes for the satis�ability, andthe disjuntive normal form property. From the model-heking algorithm, we have provideda new tableau system for the satis�ability heking problem of Event-Reording Logi. Ourtableau system of rules is di�erent and simpler than the tableau system proposed earlier bySorea. Then we have pointed out some ambiguities when using tableau system of Sorea andsome inorretness aused by the use of approximation operation on zones. The simpliity ofour tableau system of rules has enabled us to provide a disjuntive normal form theorem forERL formulas.



Chapter 4The Logi WTµAn important modality over ourrenes of an event in a real-time system is the the neessitymodality on the time periods at whih the event an our. The neessity modality allowsto desribe general properties like �An event an be ompleted at every time instane when aondition on the time is satis�ed�. Examples of suh kinds of properties are: �After a oin isinserted, o�ee is ontinuously available for 30 seonds� or �the brake system of a ar operatesat any time within the 10 time units�. We laim that the modalities of ERL an not be usedto handle suh important kinds of properties.In this hapter, we introdue a new logi that we all WTµ. The logi WTµ is a weak timedextension of the standard µ-alulus. Formulas of WTµ are interpreted over timed proesses.Its modalities are indexed with either onstraints or events, while modalities of ERL areindexed with pairs made of a onstraint and an event. We show that WTµ is more expressivethan ERL as every formula of ERL an be translated into an equivalent WTµ formula; andthere are some formulas of WTµ that an not be translated into formulas of ERL. Modalitiesof WTµ are of the form 〈g〉 and [g] in addition to the lassial modalities of the µ-alulusindexed with event (〈a〉 and [a]). Intuitively, a state of a timed proess p satis�es 〈g〉ϕ froma given time-ontext with a valuation v if by letting the time elapse in it, it is possible toreah a moment when the values of the loks satisfy g and in that moment, the formula ϕ issatis�ed. A state p of a timed proess satis�es [g]ϕ from a time-ontext v if whenever startingfrom v we let the time pass and reah a moment when g is satis�ed then ϕ is satis�ed in thatmoment. We onsider the model-heking and the satis�ability problems for WTµ as they anbe then used for the ontroller synthesis.For the model-heking problem, we use our approah to the model-heking of ERL, sowe redue the model-heking problem of WTµ to the model-heking problem of the standard
µ-alulus.For the satis�ability, we will onsider fragments of WTµ as the satis�ability of WTµ itselfis di�ult. We onsider a �rst fragment that we all WG-WTµ (for Well Guarded WTµ)and a seond fragment that we all C-WTµ (for WTµ for ontroller synthesis). Roughlyspeaking, Formulas WG-WTµ are formulas of WTµ suh that every modality indexed witha onstraint is immediately followed by a boolean ombination of formulas all starting witha modality indexed with an event; and a modality indexed with an event is preeded bya modality indexed with a onstraint. Formulas of C-WTµ disallow an existential modality93



94 Chapter 4. The Logi WTµindexed with a onstraint (〈g〉) to be followed with a ombination of formulas ontaining aformula starting with a universal modality indexed with an event ([a]) exept [a]tt . C-WTµ isa fragment of WG-WTµ. We provide a tableau system of rules for C-WTµ and we show, byusing tehniques similar to the ones in the previous hapter, that the satis�ability problem for
C-WTµ is deidable. Then, we wonder whether we ould use our tableau system of rules fordeiding whether a C-WTµ formula has a deterministi model. We show that this problem isnot easy as it ould involve the use of new integer onstants in the models.Related results: Logis (TML [HLY91℄, Ltµ [SS95℄ Lν [LLW95℄) that enable to de-sribe the the neessity modal operator has been onsidered for desribing properties oftimed automata but the deidability of the satis�ability problem has not been established.Laroussinie et al. [LLW95℄ have introdued the logi Lν as a more powerful logi than the onein [HLY91, SS95℄ but its satis�ability problem is still open and no disjuntive normal form hasbeen provided [BCL05℄. The logis Lν and WTµ are inomparable as they are not interpretedover the same model and Lν does not allow the least �xpoint operator. But, if we restrit theinterpretation of Lν to timed proesses, we get that 〈g〉ϕ has the same meaning as the Lνformula 〈δ〉(g ∧ ϕ), [g]ϕ has the same meaning as the Lν formula [δ](g → ϕ), 〈a〉ϕ has thesame meaning as 〈a〉(xa in ϕ) and [a]ϕ has the same meaning as [a](xa in ϕ).This hapter is organised as follows: We de�ne WTµ, WG-WTµ and C-WTµ in the nextsetion. In Setion 4.2 we onsider the model-heking of WTµ and we present the relationbetween WTµ and ERL. In Setion 4.3 we use tableau-based tehnique to show the deidabilityof the satis�ability problem for C-WTµ.4.1 Syntax and SemantisWe de�ne the syntax of WTµ,WG-WTµ and C-WTµ formulas. WTµ formulas have modalitiesindexed with onstraints and modalities indexed with events. We de�ne retangular formulasthat use only retangular onstraints and we show that every formula an be transformed intoan M -equivalent retangular formula. Then we show that modalities of ERL an be simulatedby ombinations of modalities of WTµ, meaning that ERL is a fragment of WTµ.4.1.1 De�nitionsThe logi WTµ is a variant of the µ-alulus and ERL. The formulas of WTµ desribe prop-erties on timed proesses. Apart from the usual events modalities of the standard µ-alulus,it has also modalities indexed by onstraints. Modalities of WTµ an also be seen as an adap-tation of modalities of Lν for timed proesses.De�nition 119 Let X,Y range over the set of variables denoted Var . A formula ϕ of WTµis generated using the following grammar:

ϕ ::= tt | � | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕwhere a ∈ Σ is an event and g ∈ GdsΣ is a onstraint.The bound of a formula is the maximal onstant that ours in its onstraints. For aformula ϕ, Mϕ denotes its bound. Given a onstant M , we say that a formula is M -boundedif its bound is smaller than M .



4.1. Syntax and Semantis 95Notion of bound variables, sentenes, sub formulas, well named formula, ν-variable, µ-variable, dependeny order, alternation depth, guarded formulas, expansion, and binding fun-tion are analogous to the de�nitions of similar notions for the setting of the µ-alulus inSetion 1.3.4.1.2 Semantis of WTµA formula is interpreted over timed proesses, or rather their semantis. Intuitively, we saythat a state (p, v) satis�es a formula [g]ϕ, if whenever starting from v we let the time pass andreah a valuation v′ � g then (p, v′) �t ϕ. Similarly, a formula 〈g〉ϕ is satis�ed if by lettingthe time pass it is possible to go from valuation v to a valuation v′ � g with (p, v′) �t ϕ. Themeaning for the modalities [a] and 〈a〉 is lassial.We will be mainly interested in desribing timed proesses, but atually the formulas ofWTµ an be evaluated in any (VΣ ∪ Σ)- labelled transition system. Let us �x suh a system
S = 〈S,Σ ∪ VΣ, s

0,∆S〉. The semantis of a formula ϕ, denoted [[ϕ]]SVal , de�ned with respetto an assignment Val : Var → 2S is the set of states of S whih satisfy ϕ.We write S, s,Val �t ϕ to say that the state s satis�es ϕ with respet to the valuation
Val .De�nition 120 For a given (VΣ ∪Σ)-labelled transition system S, a given formula ϕ and anassignment Val : Var → P(S), we de�ne the satisfation relation �t and the semantis [[ϕ]]SValindutively as follows:
• [[ϕ]]SVal = {s | S, s,Val �t ϕ}

• S, s,Val �t tt .
• S, s,Val �t X if s ∈ Val(X).
• S, s,Val �t ϕ1 ∨ ϕ2 if S, s,Val �t ϕ1 or S, s,Val �t ϕ2.
• S, s,Val �t ϕ1 ∧ ϕ2 if S, s,Val �t ϕ1 and S, s,Val �t ϕ2.
• S, s,Val �t 〈a〉ϕ if there is s a

−→ s′ suh that S, s′,Val �t ϕ.
• S, s,Val �t 〈g〉ψ if there is s v

−→ s′ suh that v ∈ [[g]] and S, s′,Val �t ψ.
• S, s,Val �t [a]ϕ if for all s a

−→ s′ we have S, s′,Val �t ϕ.
• S, s,Val �t [g]ψ if for all s v

−→ s′ with v ∈ [[g]], we have S, s′,Val �t ψ.
• S, s,Val �t µX.ϕ(X) if s ∈ ⋂{T ⊆ S | [[ϕ(X)]]SVal[X/T ] ⊆ T}.
• S, s,Val �t νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ [[ϕ(X)]]SVal[X/T ]}.We will write S �t ϕ for S, s0 �t ϕ to say that S is a model of the sentene ϕ.To ensure the existene of �xpoints, we need to show that modal operators indexed withonstraints and modal operators indexed with events are monotone.



96 Chapter 4. The Logi WTµProposition 121 The operators 〈α〉 and [α] are monotone for every α ∈ GdsΣ ∪ Σ.ProofThe ases for operators other than 〈g〉 and [g] are standard. We show that modal operatorsindexed with onstraints are monotoni. Assume that we have ϕ1 and ϕ2 and a transitionsystem S suh that [[ϕ1]]
S
Val ⊆ [[ϕ2]]

S
Val

• If s ∈ [[〈g〉ϕ1]]
S
Val then there is s v

−→ s′ with v ∈ [[g]] suh that s′ ∈ [[ϕ1]]
S
Val and then

s ∈ [[ϕ2]]
S
Val as [[ϕ1]]

S
Val ⊆ [[ϕ2]]

S
Val . Then s ∈ [[〈g〉ϕ2]]

S
Val

• If s ∈ [[[g]ϕ1]]
S
Val and s 6∈ [[[g]ϕ2]]

S
Val then there is s v

−→ s′ with v ∈ [[g]] suh that
s′ 6∈ [[ϕ2]]

S
Val . As s′ 6∈ [[ϕ2]]

S
Val and [[ϕ1]]

S
Val ⊆ [[ϕ2]]

S
Val we get that s′ 6∈ [[ϕ1]]

S
Val . Then thereis s v

−→ s′ with v ∈ [[g]] suh that s′ 6∈ [[ϕ1]]
S
Val . So s 6∈ [[[g]ϕ1]]

S
Val , a ontradition.

�We write ϕ1 ≡ ϕ2 when the formulas ϕ1 and ϕ2 are equivalent.We introdue the negation operator ¬. Given a sentene ϕ, a (V × Σ)-labelled transitionsystem S, and a valuation Val , we de�ne [[¬ϕ]]SVal = S \ [[ϕ]]SValProposition 122 We have the following equivalenes.1. ¬tt ≡ �2. ¬� ≡ tt3. ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ24. ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ25. ¬〈α〉ϕ ≡ [α]¬ϕ for α ∈ Σ ∪Gds6. ¬[α]ϕ ≡ 〈α〉¬ϕ for α ∈ Σ ∪Gds7. ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)8. ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)ProofLet S be a (Σ ∪ VΣ)-labelled transition system and let s be a state of S. As the ases foroperators other than 〈g〉 and [g] are standard, we onsider the following:
• If s ∈ [[¬〈g〉ϕ]] then s 6∈ [[〈g〉ϕ]]. It is equivalent to say that for every v ∈ [[g]], for every
s

v
−→ s′, we have that s′ 6∈ [[ϕ]] meaning by de�nition that s′ ∈ [[[g]¬ϕ]].

• The ase of ¬[g]ϕ ≡ 〈g〉¬ϕ is obvious from the previous ase.
�Proposition 123 Let g, g1, g2, . . . , gn suh that [[g]] =

⋃

i=1..n [[gi]] then,



4.1. Syntax and Semantis 971. 〈g〉ϕ ≡ ∨i=1..n〈gi〉ϕ2. [g]ϕ ≡
∧

i=1..n[gi]ϕProofWe will onsider the �rst ase sine the proof of the seond ase is easy by using Proposi-tion 122. Let S be a (Σ ∪ VΣ)-labelled transition system and s be a state of S(=⇒) If S, s �t 〈g〉ϕ then there is s v
−→ s′ with v ∈ [[g]] suh that S, s′ �t ϕ. As [[g]] =

⋃

i=1..n [[gi]], there is i ∈ [1..n] suh that v ∈ [[gi]]. Then, s v
−→ s′ with v ∈ [[gi]] and

S, s′ �t ϕ, meaning that S, s �t 〈gi〉ϕ hene S, s �t
∨

i=1..n〈gi〉ϕ.(⇐=) If S, s �t
∨

i=1..n〈gi〉ϕ then S, s �t 〈gi〉ϕ for some i ∈ [1..n] meaning that, there is s v
−→ s′with v ∈ [[gi]] suh that S, s′ �t ϕ. But v ∈ [[gi]] implies v ∈ [[g]] as [[g]] =

⋃

i=1..n [[gi]].Then we get that S, s �t 〈g〉ϕ.
�Meaning of a formula over a timed proess Consider ϕ a formula, and P a timedproess. We say that ϕ is satis�ed in a state p, a valuation of loks v : H → R, and avaluation Val : Var → P(P × VΣ) of propositional variables and we write P, (p, v),Val � ϕwhen [[P]], (p, v),Val �t ϕ.The meaning [[ϕ]]PVal ⊆ P × VΣ of a formula over a timed proess P is de�ned by

[[ϕ]]PVal = [[ϕ]]
[[P]]
ValWe will write P � ϕ if [[P]] is a model of ϕ and we say that P is a model of ϕ.4.1.3 Restrited Logis: WG-WTµ and C-WTµWe will onsider fragments of WTµ. The �rst fragment of WTµ we will onsider isWG-WTµand the seond one is WTµ for the ontrol (C-WTµ). C-WTµ is itself a fragment ofWG-WTµ.De�nition 124 The set of WG-WTµ formulas is de�ned by the following rules:

• tt , � and X are formulas of WG-WTµ.
• 〈g〉ϕ and [g]ϕ are formulas of WG-WTµ provided that ϕ is a boolean ombination offormulas of the form 〈a〉ψ or [a]ψ where ψ is a formula of WG-WTµ
• ϕ ∧ ψ and ϕ ∨ ψ are formulas of WG-WTµ provided that ϕ and ψ are formulas of
WG-WTµ.
• µX.ϕ and νX.ϕ are formulas of WG-WTµ provided that ϕ is a formula of WG-WTµ.



98 Chapter 4. The Logi WTµWe remark that a formula of WG-WTµ is also a formula of WTµ. Formulas of WG-WTµare suh that if we look at a formula as a tree, then the modalities indexed with onstraintsand with events must alternate on eah path.We also remark that 〈g〉� is equivalent to 〈g〉∨a∈Σ〈a〉� and 〈g〉tt is equivalent to
〈g〉
∧

a∈Σ[a]tt . By the duality priniple, [g]� is equivalent to [g]
∨

a∈Σ〈a〉� and [g]tt is equiv-alent to [g]
∧

a∈Σ〈a〉tt . Then we an allow modalities indexed with onstraints to be followedby tt and � without hanging the de�nition of WG-WTµ syntax.De�nition 125 The set of C-WTµ formulas are de�ned by the following rules:
• tt , � and X are formulas of C-WTµ.
• 〈g〉ϕ is a formula of C-WTµ provided that ϕ is a positive boolean ombination of formulasof the form 〈a〉ψ where ψ is a formula of C-WTµ.
• [g]ϕ are formulas of C-WTµ provided that ϕ is a boolean ombination of formulas ofthe forms 〈a〉ψ or [a]ψ where ψ is a formula of C-WTµ.
• ϕ∧ψ and ϕ∨ψ are formulas of C-WTµ provided that ϕ and ψ are formulas of C-WTµ.
• µX.ϕ and νX.ϕ are formulas of C-WTµ provided that ϕ is a formula of C-WTµ.By de�nition C-WTµ is a fragment of WG-WTµ. Indeed, in formulas of C-WTµ a formulaof the form [a]ϕ is not allowed after an existential delay modality. We remark that sine

tt ≡ [a]tt , we an allow formulas of the form [a]tt to our in the set of formulas partiipating inthe boolean ombination that follows an existential delay modality indexed with a onstraint;this does not hange the expressive power of C-WTµ.Example: In the WG-WTµ formula ϕ = 〈0 < ha < 1〉((〈b〉tt ∧ [a]�) ∨ 〈c〉tt ) events a, b and
c are in the sope of the modality 〈0 < ha < 1〉. The formula ϕ says that there is a time atwhih 0 < ha < 1 is satis�ed and at that time, the event c an be ompleted or the event ban be ompleted and the event a an not be ompleted. We observe that ϕ is not a formulaof C-WTµ. �4.1.4 Retangular FormulasWe introdue retangular form for WTµ formulas and we show the equivalene between aformula and its retangular form.De�nition 126 A retangular formula is a formula de�ned using retangular onstraints.Reall that RectM (g) was presented in De�nition 56. The M -retangular formula assoi-ated to the formula ϕ is the formula RectM (ϕ) indutively de�ned by:
• RectM (�) = �
• RectM (tt) = tt

• RectM (X) = X
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• RectM (ϕ1 ∧ ϕ2) = RectM (ϕ1) ∧RectM (ϕ2)

• RectM (ϕ1 ∨ ϕ2) = RectM (ϕ1) ∨RectM (ϕ2)

• RectM (〈g〉ϕ) =
∨

ĝ∈RectM (g)〈ĝ〉ϕ

• RectM ([g]ϕ) =
∧

ĝ∈RectM (g)[ĝ]ϕ

• RectM (〈a〉ϕ) = 〈a〉RectM (ϕ)

• RectM ([a]ϕ) = [a]RectM (ϕ)

• RectM (σX.ϕ(X)) = σX.RectM (ϕ(X)) where σ is one of {µ, ν}We an state the following proposition.Proposition 127 For every M ≥Mϕ, S, s,Val �t ϕ if and only if S, s,Val �t RectM (ϕ)ProofThe proof uses strutural indution.
• The ases of �, tt , X are standard.
• The ases of formulas of the form ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 are also standard.
• If S, s,Val �t 〈a〉ϕ, then there is s a

−→ s′ with v′ = v[ha := 0] suh that S, s′ �t ϕ. Byindution hypothesis, S, s′ �t RectM (ϕ). It follows that S, s,Val �t RectM (〈a〉ϕ). Theother way of the proof uses similar argumentation.
• The ase of [a]ϕ uses dual argumentation.
• The ase when ϕ = 〈g〉ϕ. RectM (ϕ) =

∨

ĝ∈RectM (g)〈ĝ〉ϕ. From Proposition 57, [[g]] =
⋃

ĝ∈RectM (g) [[ĝ]]. We use Proposition 123 to onlude.
• Argumentation for the ase when ϕ = [g]ϕ is similar to the ase when ϕ = 〈g〉ϕ.
• The ases of �xpoint formulas are standard.

�4.1.5 Relation between ERL and WTµWe show that ERL is a fragment of WTµ. With an example, we show that modal operators wehave introdued are useful for desribing some relevant real-time properties on timed proessesin partiular the neessity modal property on time delay.Proposition 128 Consider a property that an be written using a WTµ formula ϕ or anERL formula ψ, then for every timed proess P, state p of P and valuation v ∈ VΣ,
• P, (p, v),Val �t 〈g〉〈a〉ϕ if and only if P, (p, v),Val �t 〈g, a〉ψ.
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• P, (p, v),Val �t [g][a]ϕ if and only if P, (p, v),Val �t [g, a]ψ.Lemma 129 There is a property that an be desribed with a WTµ formula and that annot be desribed with an ERL formula.ProofConsider the property �in the time interval (0, 1) there is a time instane when no ation a ispossible�.. This property an be expressed by WTµ formula:

ϕ = 〈0 ≤ ha < 1〉[a]ffObserve that we use the lok assoiated to ation a, but we ould use any other lok aswe assume that initial valuation of all loks is 0. Of ourse ϕ is satis�able, moreover it isonsistent with the formula
ϕ′ = 〈0 ≤ ha < 1〉〈a〉ttsaying that there is a time instane when a is possible. We show that ϕ is not equivalentto a ERL formula. We laim that any ERL formula onsistent with ϕ′ is not equivalent to

ϕ. Indeed, every ERL formula an be transformed into a boolean ombination of formulasstarting with modalities 〈g, b〉 or [g, b]. It is easy to verify that every suh formula that isonsistent with ϕ′ has a model where ation a is possible at every time instane between 0and 1. �In onsequene of Lemma 129 and Proposition 128 we get the following.Theorem 130 WTµ is stritly more expressive than ERLExample: Assume that we aim at heking the following property of timed proess in Fig-ure 15.
p2 p3

p0 p1

p7 p6

tt , d

hd ≤ 5, d

hb ≤ 10, b

hb > 10, s

7 < hd ≤ 10, d hb ≤ 10, b

hb > 10, sFigure 15: A toy-ar model.The system operates at any time within the 10 time units after the �rst d signal by sendinga seond d signal; it should send signal s at least 10 time units after the seond d or reeivesignal b at most 10 time units after the seond d.This property is desribed with the following WTµ formula:
ϕ ::= [tt ][d][hd ≤ 10]〈d〉(〈hb ≤ 10〉〈b〉tt ∨ 〈hd > 10〉〈s〉tt)



4.2. Model-heking 101The system modeled in Figure 15 is not a model of ϕ. For example, if the seond �dangersignal� ours 6 time units after the �rst �danger signal� the system will never ompute thefollowing �brake signal� unless another �danger signal� ours 2 time units after the seond.So there is a risk that the ar goes into ollision. �4.2 Model-hekingWe onsider the model-heking of WTµ. We de�ne the abstrat semantis of formulas inwhih formulas are interpreted over (GdsΣ ∪Σ)-labelled transition systems. In that semantisonstraints in transitions are diretly ompared (identity test) with the onstraints in formulas.Then we use that semantis for the model-heking by showing that heking if a timed proessis a model of a formula is the same as heking if theM -region semantis of that timed proessis an abstrat model (with respet to the abstrat semantis) of the M -retangular formula ofthe formula for M su�iently big.4.2.1 Abstrat Semantis for FormulasWe would also like to evaluate our formulas in models of the form 〈[P]〉 or 〈[P]〉Mreg. Moregenerally, we an de�ne a semantis of WTµ in any (GdsΣ ∪ Σ)-labelled transition system
S = 〈S,GdsΣ ∪ Σ, s0,→〉 as follows:De�nition 131 The symboli relation of satisfation, S, s,Val �g, and symboli meaning ofa formula g[[ϕ]]SVal are de�ned for a symboli representation S, a valuation of variables Val anda formula ϕ indutively as follows:
• S, s,Val �g tt

• S, s,Val �g X when s ∈ Val(X)

• S, s,Val �g ϕ1 ∨ ϕ2 when S, s,Val �g ϕ1 or S, s,Val �g ϕ2.
• S, s,Val �g ϕ1 ∧ ϕ2 when S, s,Val �g ϕ1 and S, s,Val �g ϕ2.
• S, s,Val �g 〈a〉ψ if there is s a

−→ s′ suh that S, s′,Val �g ψ

• S, s,Val �g 〈g〉ψ if there is s g
−→ s′ suh that S, s′,Val �g ψ

• S, s,Val �g [a]ψ if for all s a
−→ s′ we have S, s′,Val �g ψ

• S, s,Val �g [g]ψ if for all s g
−→ s′ we have S, s′,Val �g ψ

• S, s,Val �g µX.ϕ(X) if s ∈ ⋂{T ⊆ S | 〈[ϕ(X)]〉SVal[X/T ] ⊆ T}

• S, s,Val �g νX.ϕ(X) if s ∈ ⋃{T ⊆ S |T ⊆ 〈[ϕ(X)]〉SVal [X/T ]}

• g[[ϕ]]SVal = {s | S, s,Val �g ϕ}



102 Chapter 4. The Logi WTµWe will write S �g ϕ for S, s0 �g ϕ to say that S is an abstrat model of the sentene ϕ.Observe that this is nothing else, but the semantis of the standard µ-alulus. We usethis observation in the next subsetion for the model-heking deision proedure. Results wepresent in that subsetion use the framework of Subsetion 3.2.3. Construts for approximating�xpoints in WTµ formulas are analogous to the ones in Subsetion 3.2.2.4.2.2 Model-Cheking ResultsLet us now onsider the model-heking of WTµ. From Proposition 127, we an onsiderretangular formula as �good� abstration of formula and for su�iently big M , we will usethe M -region representation of timed proess P, to hek whether it is a model of a givenformula.Proposition 132 For every proess P, for every Mϕ-retangular formula ϕ, for every M ≥
Mϕ: [[P]], (p, v),Val �t ϕ if and only if 〈[P]〉M , (p, v),Val �g ϕ.ProofThe proof is by indution on the struture of the formula. The ases of �, tt , ϕ∨ϕ, ϕ∧ϕ and
σX.ϕ(X) are immediate. We onsider the ases of 〈g〉ϕ, [g]ϕ, 〈a〉ϕ and [a]ϕ.
• Assume that the formula has the form 〈g〉ϕ where, g ∈ Agds(M).
⇒ if [[P]], (p, v),Val �t 〈g〉ϕ, then there is (p, v)

v′
−→ (p, v′) suh that v′ ∈ [[g]] and

[[P]], (p, v′),Val �t ϕ. By the indution hypothesis, 〈[P]〉M , (p, v′),Val �g ϕ. But,
(p, v)

v′
−→ (p, v′), v′ ∈ [[g]] and g ∈ Agds(M) involve that (p, v)

g
−→ (p, v′) is atransition in 〈[P]〉M . It follows that 〈[P]〉M , (p, v),Val �g 〈g〉ϕ.

⇐ 〈[P]〉M , (p, v),Val �g 〈g〉ϕ, then there is (p, v)
g
−→ (p, v′) suh that [[P]], (p, v′),Val �g

ϕ. By the indution hypothesis, [[P]], (p, v′),Val �t ϕ. But if (p, v)
g
−→ (p, v′) is atransition in 〈[P]〉M then v′ ∈ [[g]] and there is t ∈ R+ suh that v′ = v+ t. It followsthat, the transition (p, v)

v′
−→ (p, v′) belong to [[P]] and then [[P]], (p, v),Val �t 〈g〉ϕ.

• In the ase of [g]ϕ, we use a dual argumentation.
• Assume that the formula has the form 〈a〉ϕ,
⇒ if [[P]], (p, v),Val �t 〈a〉ϕ, then there is (p, v)

a
−→ (p′, v′) suh that [[P]], (p, v′),Val �t

ϕ with v′ = v[ha := 0]. By the indution hypothesis, 〈[P]〉M , (p′, v′),Val �g ϕ. Butif (p, v)
a
−→ (p′, v′) is a transition of [[P]] then, there is a transition p

g,a
−→ p′ in Pfor whih v ∈ [[g]]. Aording to the de�nition of 〈[P]〉M , there is also the transition

(p, v)
a
−→ (p′, v′) in 〈[P]〉M . It follows that 〈[P]〉M , (p, v),Val �g 〈a〉ϕ.

⇐ if 〈[P]〉M , (p, v),Val �g 〈a〉ϕ then there is (p, v)
a
−→ (p′, v′) suh that

[[P]], (p, v′),Val �g ϕ with v′ = v[ha := 0]. By the indution hypothesis,
[[P]], (p′, v′),Val �t ϕ. Beause (p, v)

a
−→ (p′, v′) belong to [[P]], we get that

[[P]], (p, v),Val �t 〈g〉ϕ.
• A dual argumentation holds in the ase of [a]ϕ.



4.3. Satisfiability of the C-WTµ Fragment 103
�Using bisimilarity between 〈[P]〉Mreg and 〈[P]〉M , for su�iently bigM , and that every formulais equivalent to some retangular formula (see Proposition 127) we get the following lemma.Lemma 133 For every proess P, for every formula ϕ, for every M ≥ max(Mϕ,MP ):

[[P]], (p, v),Val �t ϕ if and only if 〈[P]〉Mreg, (p, [v]M ),Val �g RectM (ϕ).Theorem 134 is nothing else but a onsequene of Lemma 133 and Theorem 25 as ourmodel-heking proedure is just the one of the µ-alulus over (AgdsΣ(M) ∪ Σ)-labelledtransition systems.Theorem 134 There is an exponential time proedure that heks whether a proess is a modelof a formula.4.3 Satis�ability of the C-WTµ FragmentIn this setion we onsider the satis�ability problem for C-WTµ formulas. We will show thatit is deidable whether a C-WTµ formula has a model. We reall that formulas of the form
〈g〉[a]ϕ or more generally, 〈g〉ϕ where, ϕ is a boolean ombination of formulas ontaininga formula of the form [a]ψ (with ψ 6= tt), are not admitted as C-WTµ formulas. We usetableau-based method.4.3.1 TableauxWe present the tableau system of rules for C-WTµ. We will assume that formulas are M -retangular. We also de�ne the notions of traes, µ-traes and pre-model.Let us introdue a notation. Given a set of formulas Γ and a region r, we de�ne the set
Γr = {(g)ϕ | r ⊆ g}.De�nition 135 (Tableau system of rules) Let a ϕ be a C-WTµ formula and let Dϕ beits binding funtion. We de�ne the system of tableau rules Sϕc parametrised by ϕ, its bindingfuntion and the set of regions RegM :

{�};�
{ϕ,Γ};� (�r) {�};�

{〈g〉ϕ,Γ}; r s.t [[g]] ∩ r↑= ∅
(fte)

{Γ}; r

{[g]ϕ,Γ}; r s.t [[g]] ∩ r↑= ∅
(wtt)

{ϕ1,Γ}; r {ϕ2,Γ}; r

{ϕ1 ∨ ϕ2,Γ}; r
(∨)

{ϕ1, ϕ2,Γ}; r

{ϕ1 ∧ ϕ2,Γ}; r
(∧)

{ϕ(X),Γ}; r

{µX.ϕ(X),Γ}; r
(µ)

{ϕ(X),Γ}; r

{νX.ϕ(X),Γ}; r
(ν)

{ϕ(X),Γ}; r

{X,Γ}; r
(reg) Dϕ(X) = σX.ϕ(X)

{ϕ | (g)ϕ ∈ Γri}; ri ∀ri ∈ r↑∩RegM
Γ; r

(delay)
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ϕ ∪ {ψ | [a]ψ ∈ Γ}; r[ha := 0] for eah 〈a〉ϕ ∈ Γ

Γ; r
(mod)When applying the rule (delay) we require that every formula in the onlusion should be inone of the forms �, tt , 〈g〉ψ or [g]ψ and when applying the rule (mod) we require that everyformula in the onlusion should be in one of the forms �, tt , 〈a〉ψ or [a]ψ.De�nition 136 (Tableau) A tableau for a formula ϕ from a region r0 is a pair τϕ

r0
= 〈T ,L〉,where T = 〈N,E〉 is a tree, and L is a labeling funtion suh that:1. The root n0 of τϕ

r0
is labeled by {ϕ}; r02. The sons of any node n are reated and labeled aording to the rules of systems Sϕ. Itis required the rules (mod) and (delay) are applied only when no other rule is appliable.Given a node n suh that L(n) = Γ; r, LF (n) = Γ and Lρ(n) = r denote the formula part andthe timing part of L(n).If we onstrut a tableau for a C-WTµ formula, a onlusion never ontains at the sametime a formula starting with a modality indexed with a guard and a formula starting with amodality indexed with an event. So, in a tableau, the formula part of timed sequents on whihno rule is appliable never ontain formulas of the forms 〈a〉ψ, 〈g〉ψ and [g]ψ.De�nition 137 (Trae) Given a path π of τϕ

r0
= 〈T ,L〉, a trae on π is a funtion F thatassigns a tuple made of a formula and a region to eah node in some initial segment of π,aording to the rules applied for the onstrution of π. FF and Fρ denotes the formula partand the timing part of F(n). F satis�es the following onditions:1. if F(n) is de�ned then FF(n) ∈ LF (n) and Fρ(n) = Lρ(n);2. if the rule applied at the node m is not direted by F(m) then the son n ∈ π of m issuh that F(m) = F(n);3. if the rule is direted by F(m) but it is not (mod), then the tuple F(n) for the son n ∈ πof m is one of the results of the appliation appliation of the rule;4. if the rule (delay) is applied at the node m and the son n ∈ π of m is labeled by

{ϕ | (g)ϕ ∈ Γri}; ri then:
• F(n) is equal to ϕ; ri if F(m) = (g)ϕ; r;
• otherwise F(n) is unde�ned;5. if the rule (mod) is applied at m and the son n ∈ π of m is labeled by ϕ ∪ {ψ | [a]ϕ ∈

Γ}; r[ha := 0] for some 〈a〉ϕ ∈ Γ then:
• F(n) = ϕ; r[ha := 0] if F(m) = 〈a〉ϕ; r;
• F(n) = ψ; r[ha := 0] if F(m) = [a]ψ; r;
• otherwise F(n) is unde�ned and F(m) is the last element of the trae.



4.3. Satisfiability of the C-WTµ Fragment 105A variable X is regenerated on a trae F of some path if and only if for some m and itsson n on the path FF (m) = X and FF (n) = ψ(X) with Dϕ(X) = σX.ψ(X).A µ-trae is a in�nite trae on whih the oldest variable regenerated in�nitely often is a
µ-variable; or a maximal �nite trae, ending with a tuple the formula part of whih ontains�. An pre-model PM is a fragment of a tableau τϕ

r0
satisfying the following onditions:

• the root of τϕ
r0

belongs to PM;
• if a disjuntive node belongs to PM, then only one of its sons belongs to PM;
• for all other kinds of nodes, if a node belongs to PM then all its suessors too;
• there is no path with a µ-trae in PM.The notions of signature, µ-signature, and ν-signature are de�ned as in Chapter 3, De�ni-tion 104. The proof of the following lemma is the same as the analogous lemma (Lemma 105)in Chapter 3.Lemma 138 (µ-Signature) Let µsig(ϕ, s) the signature of ϕ at s, it is true that:
• µsig(ϕ1 ∧ ϕ2, s) = max{µsig(ϕ1, s),

µ sig(ϕ2, s)}

• µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ1, s) or µsig(ϕ1 ∨ ϕ2, s) = µsig(ϕ2, s)

• µsig(〈a〉ϕ, s) = µsig(ϕ, s′) for some s′ suh that s a
−→ s′

• µsig([a]ϕ, s) = max{µsig(ϕ, s′) for all s' suh that s a
−→ s′}

• µsig(〈g〉ϕ, s) = µsig(ϕ, s′) some s′ suh that s g
−→ s′

• µsig([g]ϕ, s) = max{µsig(ϕ, s′) for all s′ suh that s g
−→ s′}

• If Xi is the i− th variable of Dϕ and Dϕ(Xi) = µXiϕ(Xi), then the pre�x of length i−1of µsig(µXi.ϕ(Xi), s) and µsig(ϕ(X), s) are equal
• µsig(νX.ϕ(X), s) = µsig(ϕ(X), s) where Dϕ(X) = νX.ϕ(X)

• If Dϕ(Y ) = µY.ϕ(Y ), then µsig(Y, s) > µsig(ϕ(Y ), s)

• If Dϕ(Y ) = νY.ϕ(Y ), then µsig(Y, s) = µsig(ϕ(Y ), s)Properties for the ν-signature νsig(ϕ, s) an be de�ned in a dual way. An analogous lemmato Lemma 138 onsiders (VΣ ∪ Σ)-LTS and �t instead of (GdsΣ ∪Σ)-LTS and �g.



106 Chapter 4. The Logi WTµ4.3.2 Satis�ability ResultsWe show in Theorem 139 that a formula is satis�able if and only if its tableau ontains apre-model. In Proposition 142 we show that a formula has a model if there is a pre-modelin its tableau and in Proposition 140 we show that if a formula has a model then there isa pre-model in its tableau. The omplexity of the satis�ability heking is the same as theomplexity of heking the existene of a pre-model in a tableau.Theorem 139 There is an exponential time proedure in the size of the formula that heksif a formula ϕ is satis�able.The proof is a onsequene of the two following propositions.Proposition 140 If ϕ is satis�able then there is a pre-model in τϕ
r0
.ProofIf ϕ is satis�able, then there exists a proess P suh that P �t ϕ. Without the loss of generalitywe an assume that ϕ is retangular. By Lemma 133, for every M ≥ max(MP ,Mϕ), we havethat 〈[P]〉Mreg �g ϕ.Consider τϕ

r0
the tableau for ϕ; then we hoose the nodes of τϕ

r0
that we inlude in thepre-model PM aordingly to a marking relation M : N → 2S . It will be de�ned in suh away that s ∈ M(n) implies 〈[P]〉Mreg, s,Val �g 〈[ψ]〉Dϕ

for every ϕ ∈ LF (n). First, we put s0 in
M(n0) with n0 being the root of τϕ. This is onsistent as 〈[P]〉Mreg �g ϕ.Then, if we assume that the node n has been inluded in the pre-model PM with sn ∈
M(n), we hoose the next node to inlude in the tableau using the following rules:
• The only son n′ of some node n, marked with sn, on whih an unary rule (wtt,∧, reg, µ,or ν) was applied is inluded in PM and we set sn ∈M(n′).
• If n is a disjuntive node, then sn is put into the marking of the son for whih it has theleast µ-signature. By Lemma 138, suh a son exists.
• If n is a delay node, then we add all the sons of n in PM. Eah son n′ of n is the resultof the redution of a set of formulas of the form 〈g〉ψ or [g]ψ with respet to a region ri.Then, we set sn′ ∈M(n′) where sn′ is the unique state suh that sn g

−→ sn′ .
• If n is a modal node, then we add all the sons of n in PM. Eah son n′ of n is the resultof the redution of a formula of the form 〈a〉ψ. Then, we set sn′ ∈ M(n′) where sn′ isa state suh that sn a

−→ sn′ and µsig(〈a〉ϕ, sn) ≥
µ sig(ϕ, sn′). By Lemma 138, suh ason exists.Using similar argumentation desribed at the end of the proof of Proposition 108 we an showthat every path in the above pre-model does not ontain a µ-trae. �From the de�nition of the tableau rules, applying a rule di�erent from (mod), (delay) and

(∨) to a node of a tableau generates a unique suessor. In a symboli pre-model we hooseonly one son of a disjuntive node and all the sons of a modal or a delay node. It follows thatin a symboli pre-model, the nodes with more that one suessor are modal or delay nodes.



4.3. Satisfiability of the C-WTµ Fragment 107Given a node n of PM we denote desα(n) the losest desendant of n or n itself in PMthat is either a delay node, a modal node, or a leaf. Observe that, if n is the root of PMor n is a suessor of a modal node of PM, then desα(n) is a delay node or a leaf; if n is asuessor of a delay node of PM, then desα(n) is a modal node.De�nition 141 (model for a pre-model) Given a pre-model PM for a formula ϕ, themodel based on PM is the timed proess P = 〈P ,Σ, p0,∆P 〉 suh that:1. p0 = desα(n0) where n0 is the root of PM.2. P onsists of all the leaves and delay nodes of PM.3. (p, g, a, desα(n′)) ∈ ∆P if there is in PM a suessor n of p obtained by reduing aregion ri ⊆ g with g ∈ Agds(Mϕ) and a suessor n′ of desα(n) obtained by reduingan ation a.Remark: From the de�nition above, the maximal onstant that ours in the model P on-struted from a pre-model PM is the same as maximal onstant that ours in the formula.Moreover, the onstraints in the model are retangular.Proposition 142 Given a formula ϕ, if there is a pre-model in τϕ
r0
, then ϕ is satis�able.ProofAssume that ϕ has a pre-model PM and ϕ is not satis�able. Let M = Mϕ. Consider P, themodel based on PM. From the remark above,MP = Mϕ. If P 6� ϕ, then by Lemma 133 we getthat, 〈[P]〉Mreg 6�g ϕ. If so, we show that PM ontains a path π with a µ-trae F = {ϕm; rm}m∈π.The path π and the trae F are built in the following way:

• π starts at m0 and ϕm0
= ϕ.

• Assume that, we built F up to the tuple ϕm; rm with, ϕm ∈ LF (m) and rm = Lρ(m),suh that 〈[P]〉Mreg, (des
α(m), rm) 6�g 〈[ϕm]〉Dϕ

. The formula of the next tuple (the timingpart is obvious) is seleted as follows:1. If m is not a delay nor a modal node, then the only son m′ of m is suh that� Lρ(m) = Lρ(m
′) and there are equal to rm.� if ϕm was not redued by the rule then ϕm′ = ϕm.� if ϕm = ϕ1 ∧ ϕ2 is redued then ϕm′ = ϕ1 if νsig(ϕm, (des

α(m), r)) ≥ν

sig(ϕ1, (des
α(m), r)), otherwise ϕm′ = ϕ2.� if ϕm = ϕ1 ∨ϕ2 is redued then ϕm′ is the formula that ours in LF (m′). Weremark that, the hoie in this ase is direted by PM.� In the other sub ases (i.e �, f te, wtt, µ, ν,, or reg), we just take the resultingformula as the one for the next tuple of the trae.2. If m is a delay node and ϕm is of the form 〈g〉ψ or [g]ψ and there is a son m′ of mthe formula part of whih ontains ψ, then we take ϕm′ = ψ.3. If m is a modal node, it is neessarily the losest desendant of a suessor n′ (withrespet to some region rm) of some delay node n; then,



108 Chapter 4. The Logi WTµ� if ϕm = 〈a〉ψ, there is a son m′ of m the formula part of whih was obtained byreduing ϕm, and the timing part of whih is rm[ha := 0]. We take ϕm′ = ψ.� if ϕm = [a]ψ, then beause (desα(m), rm) 6�g 〈[ϕm]〉Dϕ
, there exists a state

p′, a onstraint g suh that desα(n)
g,a
−→ p′ is a transition in P and

νsig([a]ψ, (desα(n), rm)) =ν sig(ψ, (p′, rm[ha := 0]) with rm ⊆ g and g ∈
Agds(Mϕ). We take ϕm′ = ψ and rm′ = rm[ha := 0].We remark that F is a valid trae of PM and we distinguish two ases:1. The trae is �nite;

• If the trae ends with the formula �, then we get a ontradition with that Pderived from PM; Indeed a trae of PM never ends with �.
• If the trae ends at the node m with the formula ϕm = tt , then m is a leaf or adelay node and obviously, 〈[P]〉Mreg, (des

α(m), rm) �g tt , leading to a ontraditionwith the hypothesis.
• If the trae ends with a formula of form [g]ϕ, then the region at node m ould neverreah g meaning that [g]ϕ is satis�ed at m. We also get a ontradition with ourhypothesis.
• Assume that the trae ends at the node m with a formula of the form [a]ϕc. Thereis the losest anestor n of node m whih is a delay node. The seleted formula atthe node n that ours in the trae has the form [g]ψ or 〈g〉ψ and ψ is a booleanombination of formulas ontaining [a]ϕc.Let p be the state in P that orresponds to the node n. Suh a state exits be-ause n is a delay node. Let r be the region at the node m and r′ be region atthe node n. Beause m is a son of n, we have that r ∈ r′↑. Additionally, by hy-pothesis, 〈[P]〉Mreg, (p, r

′) 6�g 〈[(g)ψ]〉Dϕ
. Beause the trae is maximal, there is notransition from p labelled with (g, a) for the unique onstraint g ∈ Agds(M)suh that r ⊆ g. It follows that in 〈[P]〉Mreg there a unique outgoing transition

(p, r′)
g
−→ (p, r) and there is no outgoing transition from (p, r) labelled with

a. This implies 〈[P]〉Mreg, (p, r) �g 〈[[a]ϕc]〉Dϕ
. Contradition with that in the trae

νsig((g)ψ, (p, r′)) = νsig([a]ϕ, (p, r)). Indeed, reall that the trae has been builtby hoosing at every node, the formula and the on�guration with the least ν-signature.2. If the trae is in�nite, then beause the ν-signature dereases along the trae and theformula is of �nite length, there is neessarily a µ-variable X that is in�nitely oftenregenerated and no older variable than X is in�nitely often regenerated. This is a on-tradition with that PM does not ontain a µ-trae.
�Proposition 140 and Proposition 142 ends the proof of Theorem 139.4.3.3 Existene of Deterministi Models for FormulasWe may wonder if a formula has a deterministi model. The solution to that question is di�ultas deterministi models may need onstants that are stritly greater than the maximal onstant



4.4. Conluding Remarks 109ourring in formulas. This is the ase with the following formula. Let ϕ be the formula de�nedby:
ϕ = (〈ha > 1〉〈a〉〈0 < ha < 1〉〈c〉tt) ∧ (〈ha > 1〉〈a〉[0 < ha < 1][c]�).Observe that ϕ an be rewritten using the syntax of ERL; so, the same problem appears forERL. The formula ϕ says that there are two time instants satisfying ha > 1 at whih event

a must our. In one of these time instants the event c must our when 0 < ha < 1 issatis�ed and for the other time instant the event c never ours in time instants satisfying
0 < ha < 1. Using our proedure for the satis�ability, the resulting model will be of the formof the timed proess in Figure 16 with g1 and g2 are instantiated to ha > 1. Model in Figure 16is deterministi if onjuntion of g1 and g2 is inonsistent. For example, g1 and g2 ould berespetively instantiated to 1 < ha < 3 and 4 < ha.

p1

p0 p2 p3

g1, a

g2, a 0 < ha < 1, cFigure 16: A Timed proess.We an also onsider a situation when we impose a maximal onstant with whih the loksan be ompared in the models. Suh a onstant an be greater than the maximal onstantourring in the formula. Under suh an assumption, heking the existene of a deterministimodels forWG-WTµ formulas (not only C-WTµ formulas) is done by replaing the rule (mod)of the tableau by the following rule:
{ψ | (a)ψ ∈ Γ}; r[ha := 0] for eah a s.t 〈a〉ϕ ∈ Γ

Γ; r
(moddet)We remark that our tableau system of rules for theM -bounded satis�ability heking problemof WG-WTµ is the same as the tableau system of rules for the satis�ability of C-WTµ; onlythe nature of the formulas in the timed sequents hanges.If we onsider the formula ϕ presented just above and we exeute our satis�ability proe-dure for heking whether ϕ has a deterministi model of bound M = 1, it will result that

ϕ does not have a deterministi M -bounded model. This is beause in our models loks areompared with integer. But, if we hek for models of bound M = 2, our satis�ability deisionproedure will return that ϕ has a deterministi model.4.4 Conluding RemarksWe have de�ned a new logi alled WTµ that is interpreted over timed proesses. The logiWTµ is a �weak� real-time extension of the µ-alulus. The logi WTµ is expressive enough tohandle the neessity modal operator on time delay and an be used to desribe properties like�An event an be ompleted at every time a ondition on the time is satis�ed�. We have usedthe region abstration to show that it is deidable whether a timed proess satis�es a formula.Our tehnique leads to an exponential algorithm that requires the onstrution of M -region



110 Chapter 4. The Logi WTµrepresentations of timed proesses. Also based on the region representation, we have shownthat it is deidable whether there exists a timed proess that satis�es a formula of C-WTµ. Wehave shown that heking the existene of deterministi model for a formula may require theuse of onstants greater than the ones used in the formula. This problem an be avoided if weassume that there is a maximal value with whih the loks an be ompared. These resultsare fundamental for the ontroller synthesis problems that we onsider in the next hapter.



Chapter 5Centralised Controller Synthesis usingC-WTµ Spei�ation
It ould happen that behaviours of a real-time system (alled a plant) do not satisfy a property,beause for example, either that property is the result of a modi�ation of an initial propertyor, there are bugs in the real-time system; then we would like to provide a new system thatsatis�es the property. To takle this problem two approahes an be onsidered: either wedestroy the old system and we design (when it is possible) a new one, or we design (when itis possible) another system (alled a ontroller) that we ombine with the plant in suh a waythat the resulting system (alled the ontrolled or supervised system) satis�es the expetedproperty. The �rst approah is expensive for big systems or for systems that only need smallmodi�ations that an be done by another system. The seond approah is heap if the plantan be ontrolled by disabling some events and the ontroller is small ompared to the on-trolled system. In this hapter we onsider the seond approah. Given a plant and a property,the ontroller synthesis problem an be understood as the searh for a omponent, alled theontroller suh that the the ontrolled system satis�es the property. Systems are reative andevolve in some environment. We make some onvenient and pratial assumptions on events.We distinguish unontrollable events (for example, the ones that ome from the environment)from ontrollable events (for example the ones that ome from the system). We assume that,ontrollers an never prevent unontrollable events to happen whatever is the time they our.In our framework, plants and ontrollers are modelled with timed proesses. Propertiesare desribed with C-WTµ formulas. The ombination between a plant and a ontroller isthe produt of their models (timed proesses). We de�ne modal automata whih are, roughlyspeaking, another way for presenting WTµ formulas. Modal automata are interpreted overtimed proesses. We show that modal automata are losed under intersetion. We translateWTµ formulas into equivalent modal automata and reiproally we translate modal automatainto an equivalent WTµ formulas. As formulas use �xpoint operators that are di�ult to han-dle; then we use modal automata to desribe properties of systems. We onsider sublasses ofmodal automata that we alled well guarded modal automata (WG-MA) and modal automatafor ontrol (C-MA). The lass of WG-MA is equivalent to lass of WG-WTµ formulas, andthe lass C-MA is equivalent to the lass of C-WTµ formulas. In onsequene, the empti-ness heking problem for C-MA is the same as the satis�ability heking problem of C-WTµ111



112 Chapter 5. Centralised Controller Synthesis using C-WTµ Speifiationformulas. Both problems are deidable.We onsider two ontroller synthesis problems: the entralised ontroller synthesis problemand the ∆-dense-time ontrol.The entralised ontroller synthesis problem (CCP) is the following:(CCP) Given the model of a plant P and a property desribed with a C-MA A, does there exitsa ontroller R suh that P × R � A and satisfying also the following ontrol ondition(CC):Control ondition(CC) R does not restrit environment events.Our solution to CCP onsist to de�ne the quotient of automata by the plants. The result ofthat operation is a modal automaton that the ontroller must satisfy in addition to the ontrolondition. The ontrol ondition will be desribed with a modal automaton. Then, a ontrollerwill be the model resulting from the satis�ability heking proedure of an automaton whihis semantially equivalent to the intersetion of the quotient automaton with an automatonthat desribes the ontrol ondition.The ∆-dense-time ontrol amounts to �nding a ontroller (also alled a ∆-ontroller) for asystem suh that at least ∆ ≥ 0 time units elapse between two onseutive ontrollable events.We will show that this problem is deidable and it is a orollary to (CCP) as properties on a
∆-ontroller an be desribed in a C-MA. We will be able to onstrut a witness ∆-ontroller.Related results: The ontroller synthesis problems have been introdued by Ramadgeand Wonham [RW89℄ and sine then, they have been onsidered by many authors in thesettings of untimed systems [PR05, BK06, AW07℄ and timed systems [Sav01, DM02, BDMP03,BCL05℄. The framework of Arnold et al. [AVW03, AW07℄ is a onsiderable extension of theframework of Ramadge et al. as it onsiders branhing-time properties and the µ-alulus isexpressible enough for desribing the ontrol ondition. Arnold et al. [AVW03, AW07℄ also usemodal automata instead of formulas for desribing spei�ations. These modal automata aresome kind of alternating automata [Tho97℄ over labelled trees. The Madhusudan et al. [DM02,BDMP03℄ framework for the ontroller synthesis is an extension of the framework of Ramadgeand Wonham [RW89℄ and Pnueli et al. [AMP95℄ to real-time systems modeled with timedautomata and it does not onsider more general timed branhing-time properties. In theframework of Laroussinie et al. [BCL05℄ the logi Lν is used for the entralised ontrollersynthesis and the ∆-dense-time ontrol of timed automata. The solution provided in [BCL05℄gives an answer to the existene of a ontroller; it does not show how to build ontrollers. Thisis beause the satis�ability problem of Lν are still open. Our ontributions plae themselvesbetween the framework of Arnold et al. and the framework of Laroussinie et al. as our modelis a sublass of timed automata and we use the tehniques of Arnold et al.The hapter is organized as follows: In the next setion, we de�ne modal automata, theirsemantis; we show that they are losed under intersetion and we present an algorithm forthe model-heking of modal automata. The translation between modal automata and WTµformulas is presented in Setion 5.2. In Setion 5.3, we de�ne well guarded modal automata(WG-MA) and modal automata for ontrol (C-MA). We de�ne the quotient of WG-MA bytimed proesses that we use in Setion 5.4 for ontroller synthesis.



5.1. Modal Automata and Modal Automata for Controller Synthesis 1135.1 Modal Automata and Modal Automata for Controller Syn-thesisWe de�ne modal automata that are interpreted over timed proesses. The interpretation of amodal automaton is presented as a two player parity game and aeptane is de�ned in termsof winning strategy for a player in that game. We show that modal automata are losed underintersetion and we onsider the model-heking problem for modal automata. This problemis redued to heking the existene of a winning strategy in the aeptane game. We willalso de�ne sublasses of modal automata. The �rst one is the sublass of well guarded modalautomata (WG-MA) and the seond sublass is the one modal automata for ontrol (C-MA).5.1.1 De�nition and SemantisModal automata are nothing else but WTµ formulas written in the automata syntax; theyare kinds of timed alternating automata with parity aeptane ondition. They use modalformulas in their transition relations.De�nition 143 The set of modal formulas over Σ and Q, denotedMF(Σ, Q) is the smallestset losed under the following rules:
• tt , �, q are modal formulas, where q ∈ Q.
• ϕ ∨ ψ, ϕ ∧ ψ are modal formulas for all ϕ,ψ ∈MF(Σ, Q).
• 〈g〉ψ, 〈a〉ψ, [g]ψ, [a]ψ are modal formulas for all ψ ∈MF(Σ, Q) where g ∈ GdsΣ.De�nition 144 A modal automaton (MA for short) over Σ is a tuple

A = 〈Q,Σ, q0,∆A : Q→MF(Σ, Q),AccA ⊆ Q
ω〉where:

• Q is a �nite set of states.
• q0 ∈ Q is the initial state.
• ∆A is a transition relation.
• AccA is the max-parity ondition given by the parity funtion rank : Q→ N.Modal automata aept timed proesses and their semantis is de�ned using aeptanegames.We de�ne the real-time aeptane game of a timed proess P = 〈P ,Σ, p0,∆P 〉 and a modalautomaton A. Let F be the set of formulas ontaining all the formulas appearing as values oftransition funtion ∆A and losed under sub formulas. The game G(P,A) is 〈NE , NA, T,AccG〉where:
• NE = P × FA

E × V and FA
E ⊆ F is a the set of modal formulas of the form �, ϕ ∨ ψ,

〈g〉ϕ, 〈a〉ϕ .
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• NA = (P ×F × V) \NE.
• There is no move from either (p, tt , v) or (p,�, v) for every v ∈ V.
• From (p, ϕ∧ψ, v) as well as from (p, ϕ∨ψ, v) there are moves to (p, ϕ, v) and to (p, ψ, v).
• From (p, [g]ϕ, v) and from (p, 〈g〉ϕ, v) there are moves to (p, ϕ, v + t) for every t suhthat v + t ∈ [[g]].
• From (p, [a]ϕ, v) and from (p, 〈a〉ϕ, v) there are moves to (p′, ϕ, v[ha := 0]) for every p′suh that p

g,a
−→ p′ and v ∈ [[g]].

• There is a move from (p, q, v) to (p,∆(q), v).
• AccG is the set of in�nite sequenes projetion of whih on Q is in Acc.We say that A aepts P (or P is a model of A) and we write P ∈ L(A) or P � A if andonly if there is a winning strategy for the player Eve from the position (p0, q0, v0) in G(P,A).We de�ne the language of an automaton A denoted by L(A), as the set of proesses it aepts.Formally

L(A) = {P |P � A}We show that modal automata are losed under intersetion. Let us de�ne an intersetionoperation between modal automata.De�nition 145 Let
A1 = 〈Q1,Σ, q

0
1 ,∆1 : Q1 → F(Σ, Q1),Acc1 ⊆ Q

ω
1 〉and

A2 = 〈Q2,Σ, q
0
2 ,∆2 : Q2 → F(Σ, Q1),Acc2 ⊆ Q

ω
2 〉be two modal automata. Consider the automaton

A1 ∧ A2 = 〈Q,Σ, q0,∆ : Q→ F(Σ, Q),Acc ⊆ Qω〉where
• Q = Q1 ∪Q2 ∪ {q

0}

• q0 is the initial state.
• ∆ is de�ned by:

∆(q) =







∆1(q) if q ∈ Q1

∆2(q) if q ∈ Q2

∆1(q
0
1) ∧∆2(q

0
2) if q = q0

• Acc = Acc1 ∪ Acc2Proposition 146 Given two automata A1 and A2, for every timed proess P, P ∈ L(A1) ∩
L(A2) if and only if P ∈ L(A1 ∧A2).



5.1. Modal Automata and Modal Automata for Controller Synthesis 115ProofIf P ∈ L(A1 ∧A2), then Eve has a winning strategy in G(P,A1 ∧A2), meaning that Eve winsevery play starting from (p0, q0, v0) and onsistent with that strategy. From (p0, q0, v0) thereis a move to n0 = (p0,∆1(q
0
1)∧∆2(q

0
2), v

0). There are moves from n0 to n1 = (p0,∆1(q
0
1), v

0)and n2 = (p0,∆2(q
0
2), v

0) and Eve has a winning strategy from n1 and a winning strategyfrom n2. These strategies are also winning for Eve in G(P,A1) and G(P,A2).Conversely, from winning strategies in G(P,A1) and G(P,A2), the winning strategy in
G(P,A1 ∧ A2) mimis either the winning strategy in G(P,A1) or the winning strategy in
G(P,A2), depending on the �st move of Eve. �5.1.2 Model- ChekingWe address the model-heking problem of modal automata whih is to hek if an automatonaepts a given timed proess. For this question we use similar tehnique to the model-hekingproblem of WTµ formulas in Setion 4.2. As real-time aeptane game arena is in�nite, weneed to abstrat that game in suh a way that the arena of the resulting game is �nite.Symboli aeptane game of a timed proess Let P = 〈P ,Σ, p0,∆P 〉 be a timed pro-ess and A a modal automaton as above. Let, as before, F be the set of formulas ontaining allthe formulas that are the values of ∆A and all their sub formulas. The M -symboli aeptanegame of P and A is the struture Ĝ(P,A,M) = 〈NE , NA, T,Acc〉 where
• NE = P ×FA

E ×Reg(M) and FA
E ⊆ F is the set of modal formulas of the form �, ϕ∨ψ,

〈g〉ϕ, 〈a〉ϕ .
• NA = P ×F \NE.
• There is no move from (p, tt , r), nor (p,�, r) for every r ∈ Reg(M).
• From (p, ϕ∧ψ, r) as well as from (p, ϕ∨ψ, r) there are moves to (p, ϕ, r) and to (p, ψ, r).
• From (p, [g]ϕ, r) and from (p, 〈g〉ϕ, r) there are moves to (p, ϕ, r′) for every r′ ∈ r↑ suhthat r′ ⊆ g.
• From (p, [a]ϕ, r) and from (p, 〈a〉ϕ, r) there are moves to (p′, ϕ, r[ha := 0]) for every p′suh that p

g,a
−→ p′ and r ⊆ g.

• There is a move from (p, q, r) to (p,∆(q), r).
• AccĜ is the set of in�nite sequenes projetion of whih on Q is in Acc.We say that P is an M -symboli model of A and we write P �M A if and only if there is awinning strategy for the player Eve in Ĝ(P,A,M).Proposition 147 For every automaton A, for every timed proess P, for every M ≥

max(MA,MP ), Eve has a winning strategy in G(P,A) if and only if Eve has a winningstrategy in Ĝ(P,A,M).



116 Chapter 5. Centralised Controller Synthesis using C-WTµ SpeifiationProofThe hoie ofM ≥ max(MA,MP ) follows from a similar argument as in the ase of Lemma 133In the setting of modal automata, aeptane is de�ned in terms of a parity game. We showthat if Eve player has a winning strategy in G(P,A) then she also has a winning strategy in
Ĝ(P,A,M) and reiproally. For this, we show how a move of a player from a position (p, ϕ, v)to some position (p′, ϕ′, v′) an be mimiked by moves of the same player from (p, ϕ, [v]M ) to
(p′, ϕ′, [v′]M ) and reiproally.We note that a play in G(P,A) starts in (p0, q0, v0) and a play in Ĝ(P,A,M) starts in
(p0, q0, r0) with r0 = [v0]M .Assume that the urrent position in G(P,A) is n = (p, ϕ, v), and the urrent position in
Ĝ(P,A,M) is n = (p, ϕ, r) with r = [v]M .
• If ϕ = tt or ϕ = � then there is no move neither from n nor n.
• If ϕ = q then there is a move from n to (p,∆(q), v) and there is a move from n to

(p,∆(q), r).
• If ϕ = ϕ1∨ϕ2, and the player Eve moves to (p, ϕi, v), then in Ĝ(P,A,M), she an moveto (p, ϕi, r) with i ∈ {1, 2} and onversely.
• If ϕ = ϕ1 ∧ ϕ2, and the player Adam moves to (p, ϕi, v) with i ∈ {1, 2}, then in
Ĝ(P,A,M), he an move to (p, ϕi, r) and onversely.

• Assume that ϕ = 〈g〉ψ.� Assume that the player Eve moves to (p, ψ, v′), for some v′ ∈ v ↑ ∩[[g]]. Let
r′ = [v′]M . From Proposition 61, we get that if M ≥ MA ≥ Mg, then r′ ⊆ g andby de�nition r′ ∈ r↑. Eve an move to (p, ψ, r′).� Reiproally, if Eve moves to (p, ψ, r′), then r′ ⊆ g. Let v ∈ r, aording toProposition 61, there is v′ ∈ v↑∩r′. Sine r′ ⊆ g, then v′ ∈ [[g]] and the player Evean move to (p, ψ, v′).

• The ase when ϕ = [g]ψ is obvious from the previous one.
• Assume that ϕ = 〈a〉ψ,� Assume that Eve moves to (p′, ψ, v′), then v′ = v[ha := 0] and there is p

g,a
−→ p′with v ∈ [[g]]. Let r = [v]M . From Proposition 61, we get that if M ≥ MP ≥ Mg,then r ⊆ g. Eve an move to (p′, ψ, r[ha := 0]).� Conversely, if Eve moves to (p′, ψ, r′), then r′ = r[ha := 0] and there is p
g,a
−→ p′suh that r ⊆ g. Let v ∈ r, then v ∈ [[g]] and Eve an move to (p′, ψ, v′) with

v′ = v[ha := 0]. By Proposition 61, v′ ∈ r′.
• The ase when ϕ = [a]ψ beomes obvious.

�



5.1. Modal Automata and Modal Automata for Controller Synthesis 117From Proposition 147, if we want to hek whether a timed proess is aepted by a modalautomaton, we hek the existene of a winning strategy in the symboli game with the suitable
M parameter.In onsequene of Proposition 147 and Theorem 11, we an state the following result.Theorem 148 It is deidable whether a modal automaton A aepts a timed proess P.5.1.3 Restrited Modal Automata: WG-MA and C-MAWe de�ne two sublasses of modal automata that intend to be equivalent to WG-WTµ for-mulas, and C-WTµ formulas (see Subsetion 4.1.3). We all these automata well guardedautomata (WG-MA for short) and modal automata for ontrol (C-MA for short). These au-tomata use well guarded modal formulas and modal formulas for ontrol in their transitionrelations. The de�nition of modal formulas and well guarded modal formulas use disretemodal formulas.De�nition 149 Let S be a set. The set of disrete modal formulas over (Σ,S) is de�ned bythe following rules:
• 〈a〉s and [a]s are disrete modal formulas provided that a ∈ Σ and s ∈ S.
• ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 is a disrete modal formulas provided that ϕ1 and ϕ2 are disretemodal formulas.De�nition 150 Let S be a set. The set of well guarded modal formulas over (Σ, S),

MFwg(Σ, S) is de�ned by the following reursive set of rules:
• tt , � and s are well guarded modal formulas where s ∈ S.
• 〈g〉ϕe and [g]ϕe are well guarded modal formulas provided that ϕe is a disrete modalformula over (Σ,MFwg(Σ, S)) and g ∈ GdsΣ.
• ϕ1∧ϕ2 and ϕ1∨ϕ2 are well guarded modal formulas provided that ϕ1, ϕ2 ∈MFwg(Σ, S).De�nition 151 A well guarded modal automaton (WG-MA) is a modal automaton transitionrelation of whih uses formulas ofMFwg(Σ, Q) where Q is the set of states of the automaton.De�nition 152 The set MF c(Σ, S) of modal formulas for ontrol over a set S is de�nedlike MFwg(Σ, S), but we require that for every formula of the form 〈g〉ϕ, the formula ϕ is aboolean ombination of formulas of the form 〈a〉ψ, with ψ ∈MF c(Σ, S).De�nition 153 A modal automaton for ontrol(C-MA) is a modal automaton transitionrelation of whih uses formulas ofMFc(Σ, Q) where Q is the set of states of the automaton.



118 Chapter 5. Centralised Controller Synthesis using C-WTµ Speifiation5.2 Automata and LogiNow, we onsider the relation between modal automata and WTµ formulas. We show howto translate formulas of WTµ into equivalent modal automata and vie versa. Suh kind oftransformation has been onsidered earlier for temporal [Var96, Var07℄ and modal logis [SE89,Wal95℄. The proof of the translation is similar to the proof of a similar result [Wal01℄ in thesetting of the µ-alulus. Assuming that ξ is one of {WG,C}, at the end of this setion, weshow that ξ-WTµ formulas an be translated into an equivalent ξ-MA and, onversely. As wehave proved that the satis�ability problem of C-WTµ is deidable, so will be the emptinessproblem of C-MA.5.2.1 From Formulas to Modal AutomataNow we give the onstrution of a modal automaton Aϕ whose language is the set of timedproesses satisfying the formula ϕ. W.l.o.g, we assume that ϕ does not ontain sub formulasof one of the forms tt , � (indeed, the ourrene of suh kinds of formulas in ϕ an be easilyreplaed with �xpoint formulas without hanging the meaning of ϕ).A state in Aϕ orresponds to a sub formula of ϕ that we aim at verifying in a urrent stateof a (VΣ ∪ Σ) labelled-transition system. The following lauses present how to redue a loalveri�ation of a formula into loal veri�ations of its sub formulas:
• To verify that ϕ1 ∧ ϕ2 in sub(ϕ), we hek ϕ1 and ϕ2 in the urrent state.
• To verify that ϕ1 ∨ ϕ2 in sub(ϕ), we hek in a non deterministi way ϕ1 or ϕ2 in theurrent state.
• To verify that 〈g〉ψ in sub(ϕ), we hek the existene of a suessor of the urrentvaluation of the loks whih satis�es g, then we hek ψ in the urrent state of thetransition system with respet to the new values of the loks.
• To verify that [g]ψ in sub(ϕ), we hek the existene of an eventual suessor of theurrent valuation of the loks (time elapse) whih satis�es g, then we hek ψ in theurrent state of the transition system with respet to the new values of the loks.
• To verify that 〈a〉ψ in sub(ϕ), we hek the existene of an a-suessor of the urrentstate of the transition system. Then we hek ψ on that suessor whih beame theurrent state.
• To verify that [a]ψ in sub(ϕ), we hek the existene of an eventual a-suessor of theurrent state of the transition system. Then we hek ψ on that suessor, whih beomesthe urrent state.
• To verify that σX.ϕ(X) in sub(ϕ), we hek ϕ(X) in the urrent state with respet tothe urrent valuation.
• To verify that X in sub(ϕ), we hek ϕ(X) in the urrent state, where D(X) = σX.ϕ(X).



5.2. Automata and Logi 119Finally, in the onstrution of the automaton we must ensure onstraints on �xpoints.That is, every µ-variable Y is in�nitely often regenerated only when there ν-variable X thatis greater that Y and in�nitely often regenerated.We will now give the transformation from a formula into an equivalent automaton. Firstwe de�ne a funtion tr that transform a WTµ formula into a modal formula. The symbol
V ar(ϕ) denotes the set of variables that our in ϕ.De�nition 154 Given a WTµ formula ϕ, the transition relation assoiated to ϕ is the modalformula tr(ϕ) ∈MF(Σ, V ar(ϕ)) de�ned indutively as follows:
• tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

• tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2)

• tr(〈g〉ψ) = 〈g〉tr(ψ)

• tr([g]ψ) = [g]tr(ψ)

• tr(〈a〉ψ) = 〈a〉tr(ψ)

• tr([a]ψ) = [a]tr(ψ)

• tr(σX.ψ(X)) = X

• tr(X) = XRemark: By onstrution, it is not di�ult to remark that, if ϕ is a formula of WG-WTµ,then tr(ϕ) is a modal formula of MFwg(Σ, V ar(ϕ)); and if ϕ is a formula of C-WTµ, then
tr(ϕ) is a modal formula ofMFc(Σ, V ar(ϕ))The transformation of a formula into an equivalent automaton is the following.De�nition 155 For a formula ϕ, onsider the automaton

Aϕ = 〈Q,Σ, q0,∆A : Q→MF(Σ, Q),Acc ⊆ Qω〉where,
• Q = V ar(ϕ) ∪ {q0},
• q0 is the initial state of the automaton.
• The transition relation ∆ : Q→MF(Σ, Q) is de�ned by:� ∆(q0) = tr(ϕ)� if q = X then ∆(q) = tr(ψ(X)) where Dϕ(X) = σX.ψ(X),
• The aeptane ondition is the parity ondition that uses the parity funtion rank :
Q→ N de�ned by:

rank(q) =







0 if q = q0

2× alt(Dϕ(X)) where q = X and X is a ν-variable
2× alt(Dϕ(X)) + 1 where q = X and X is a µ-variable



120 Chapter 5. Centralised Controller Synthesis using C-WTµ SpeifiationThe alternation depth alt(ϕ) of a WTµ formula is de�ned like the alternation depth of µ-alulus formulas (see De�nition 22). We also remark that the initial state q0 never ours inthe transition relations of the states.Lemma 156 Let ϕ be a formula and let Aϕ be the automaton obtained from ϕ using thetransformation above. If ϕ is a formula of of WG-WTµ (resp. C-WTµ) then Aϕ is a WG-MA(resp. C-MA).ProofIf q = q0 then ∆(q) = tr(ϕ). Aording to the remark above, if ϕ is a formula of WG-WTµ(resp. C-WTµ) then tr(ϕ) ∈MFwg(Σ, Q) (resp. tr(ϕ) ∈MFc(Σ, Q).If q = X is a variable, then ∆(q) = ∆(ψ(X)) where, Dϕ(X) = ψ(X). If ϕ is a formula of WG-WTµ (resp. C-WTµ) then, by de�nition, ψ(X) is also a formula of WG-WTµ (resp. C-WTµ).We use the remark above to onlude. �Theorem 157 Given a formula ϕ, for every timed proess P,
P � ϕ if and only if P ∈ L(Aϕ)Proof(=⇒) We show that if P � ϕ, then P ∈ L(Aϕ). For this we show the existene of a winningstrategy for the player Eve in G(P,Aϕ). Reall that in G(P,Aϕ), the player Eve makesa hoie in positions of the form (p, ϕ1 ∨ϕ2, v) or (p, 〈g〉ψ, v) or (p, 〈a〉ψ, v). The hoieshould be done as follows:� In a position (p, ϕ1 ∨ ϕ2, v) he should hoose (p, ϕi, v) with i ∈ {1, 2} and

µsig((p, v), ϕ1 ∨ ϕ2) = µsig((p, v), ϕi).� In a position (p, 〈g〉ψ, v) he should hoose the (p, ψ, v′) with v′ ∈ v↑, v′ ∈ [[g]] and
µsig((p, v), 〈g〉ψ) = µsig((p, v′), ψ).� In a position (p, 〈a〉ψ, v) he should hoose the (p, ψ, v′) with µsig((p, v), 〈a〉ψ) =
µsig((p, v′), ψ) v′ = v[ha := 0], and p′ is suh that there is p

g,a
−→ p′ and v ∈ [[g]].We show that suh a strategy is winning for the player Eve. Indeed, assume that thereis a play (p1, ϕ1, v1)(p2, ϕ2, v2) . . . onsistent with the above strategy on whih some oddpriority p is the greatest priority appearing in�nitely often. This means that on this playwe in�nitely often meet the µ-variable Xl where l = (p − 1)/2. Let m be a step of theplay after whih no priority greater than p appears. In partiular it means that after

m there are no variables with indexes greater than l. By the signature derease lemma(see Lemma 138), the signatures of positions of the play after m never inrease on the�rst l positions. They derease every time we meet Xl. But this is impossible as thelexiographi order on l-tuples of ordinals is well ordering. Hene, suh a play an notexist, and the strategy we have de�ned is winning for player Adam.(⇐=) In this diretion of the proof, we show that if P ∈ L(Aϕ), then P � ϕ. We assumethat P ∈ L(Aϕ) and P 6� ϕ, then we exhibit a winning strategy for the player Adam in
G(P,Aϕ). If P 6� ϕ, the strategy for the player Adam is dual to the one of the player
Eve stated in the previous diretion. It works as follows:



5.2. Automata and Logi 121� In a position (p, ϕ1 ∧ ϕ2, v) he should hoose (p, ϕi, v) with i ∈ {1, 2} and
νsig((p, v), ϕ1 ∧ ϕ2) = νsig((p, v), ϕi).� In a position (p, [g]ψ, v) he should hoose the (p, ψ, v′) with v′ ∈ v↑, v′ ∈ [[g]] and
νsig((p, v), [g]ψ) = νsig((p, v′), ψ).� In a position (p, [a]ψ, v) he should hoose the (p, ψ, v′) with νsig((p, v), [a]ψ) =
νsig((p, v′), ψ) v′ = v[ha := 0], and p′ is suh that there is p

g,a
−→ p′ and v ∈ [[g]].Using a similar argument as in the diretion (=⇒), we show that there is not a µ-variablewhih is in�nitely often regenerated in the game. Then, we get a ontradition with that

P ∈ L(Aϕ).
�5.2.2 From Modal Automata to FormulasThis transformation is similar to the transformation in [Wal01℄ for the ase of the µ-alulusand it uses vetorial formulas (see [Bek84, AN01℄).De�nition 158 A system of equations of WTµ is a system:

X1
σ1= ϕ1(X1, · · · ,Xn)

X2
σ2= ϕ2(X1, · · · ,Xn)...

Xn
σn= ϕn(X1, · · · ,Xn)where for every i ∈ {1, · · · , n}, σi is a �xpoint operator and ϕi is an WTµ formula that doesnot have a �xpoint sub formula.The solution of a system of n equations is a vetor of n formulas of WTµ de�ned byindution on n as follows:

• The solution of a system made of a unique equation X1
σ1=ϕ1(X1) is the formula

σ1X.ϕ1(X1)

• The solution of a system of n equations:
X1

σ1= ϕ1(X1, · · · ,Xn−1,Xn)

X2
σ2= ϕ2(X1, · · · ,Xn−1,Xn)...

Xn
σn= ϕn(X1, · · · ,Xn−1,Xn)is the vetor (ψ1, · · · , ψn−1, σnXn.ϕn(ψ1, · · · , ψn−1,Xn)) where (ψ1, · · · , ψn−1) is thesolution of the system of n − 1 equations obtained by replaing Xn with the formula

σnXn.ϕn(X1, · · · ,Xn−1,Xn):
X1

σ1= ϕ1(X1, · · · ,Xn−1, σnXn.ϕn(X1, · · · ,Xn−1,Xn))

X2
σ2= ϕ2(X1, · · · ,Xn−1, σnXn.ϕn(X1, · · · ,Xn−1,Xn))...

Xn−1
σn−1
= ϕn−1(X1, · · · ,Xn−1, σnXn.ϕn(X1, · · · ,Xn−1,Xn))



122 Chapter 5. Centralised Controller Synthesis using C-WTµ SpeifiationThe use of system of equations do not add the expressive power of WTµ; indeed, everyformula ϕ of WTµ an be de�ned as the �rst omponent of the solution of the system ofequations in whih eah equation X σ
=ψ(X) orresponds to a sub formula σX.ψ(X) of ϕ andthe order on the equations depends on the dependeny order between variables in ϕ.In what follows, we give the transformation of an automaton into an equivalent formula.The resulting formula is the omponent of a system of equations suh that eah equationorresponds to a unique state of the modal automaton. We use the parity indexes to de�nethe order between two equations.De�nition 159 Take an automaton

A = 〈Q,Σ, q0,∆A : Q→ F(Σ, Q),Acc ⊆ Qω〉and q1, · · · , qn an order over the states of A suh that for i < j, we have rank(qi) ≥
rank(qj). If the initial state of A is qk aording to the order above, we de�ne the formula ϕAas the kth omponent of the solution of the following system of equations:

X1
σ1= ϕ1(X1, · · · ,Xn−1,Xn)

X2
σ2= ϕ2(X1, · · · ,Xn−1,Xn)...

Xn
σn= ϕn(X1, · · · ,Xn−1,Xn)

Xi is the variable assoiated to qi and ϕi(X1, · · · ,Xn−1,Xn) is obtained from ∆(qi) by re-plaing eah state by the orresponding variable. We put σi = µ if rank(qi) is odd and σi = νif rank(qi) is even.The proof of the following theorem is similar to the proof of Theorem 157; it also usessignature derease lemma (see Lemma 138).Theorem 160 Given an automaton A, for every timed proess P,
P ∈ L(A) if and only if P � ϕAThe following orollary is a onsequene of Lemma 156, Theorem 157 and, Theorem 160.Corollary 161 Every WG-WTµ formula an be translated into an equivalent WG-MA andonversely. Every C-WTµ formula an be translated into an equivalent C-MA and onversely.In onsequene of Corollary 161 and the result in Theorem 160, we get the deidabilityof the emptiness problem of C-MA whih is to hek whether there exists a timed proessproess P that satis�es a given C-MA.Theorem 162 There is deision proedure that heks whether a C-MA is empty. Moreover,if a C-MA is not empty, we an onstrut one of its models.



5.3. Quotient for Automata 1235.3 Quotient for AutomataWe onsider WG-MA and we de�ne the quotient A/P of a WG-MA A over a timed proess
P that satis�es the following property:

R×P � A if and only if R � A/P.We show that the quotient of a C-MA over a timed proess is still a C-MA. Later inSetion 5.4, we use this quotient to provide a solution to ontroller synthesis problems.De�nition 163 Given a WG-MA
A = 〈Q,Σ, q0,∆ : Q→MF(Σ, Q),Acc ⊆ Qω〉and a timed proess

P = 〈P ,Σ, p0,∆P 〉we onstrut the WG-MA A/P.Firstly, we propose the division ϕ/p of a formula ϕ ∈ MFwg(Σ, Q) by a state p ∈ P . Let
M be the biggest onstant used in P. We assume that ϕ is M -retangular. The result of thedivision is a well guarded modal formula fromMFwg(Σ, Q× P) as stated below:

tt/p = tt�/p = �
q/p = (q, p)

(ϕ ∨ ψ)/p = (ϕ/p) ∨ (ψ/p)

(ϕ ∧ ψ)/p = (ϕ/p) ∧ (ψ/p)

([g]ϕ)/p = [g](ϕ/(p, g))

(〈g〉ϕ)/p = 〈g〉(ϕ/(p, g))

(〈a〉ϕ)/(p, g) = 〈a〉







∨

p
g,a
−→p′

(ϕ/p′)







([a]ϕ)/(p, g) = [a]







∧

p
g,a
−→p′

(ϕ/p′)





Given two disrete modal formulas ϕ and ψ, we de�ne (ϕ∨ψ)/(p, g) = ϕ/(p, g)∨ψ/(p, g)and (ϕ ∧ ψ)/(p, g) = ϕ/(p, g) ∧ ψ/(p, g).By onvention, a disjuntion over an empty set is false, and a onjuntion over an emptyset is true.Finally, we de�ne the quotient,
A/P = 〈Q× P ,Σ, (q0, p0),∆/ : Q× P →MF(Σ, Q),Acc ⊆ Qω〉where ∆/(q, p) = ∆(q)/p.



124 Chapter 5. Centralised Controller Synthesis using C-WTµ SpeifiationLemma 164 Let ϕ ∈ MF c(Σ, S) and let p ∈ P be a state of a timed proess. The quotient
ϕ/p is a formula ofMFc(Σ, S).ProofThe proof uses the indution priniple, on the size of the formula. All the ases but when ϕ isin one of the forms [g]ψ or 〈g〉ψ are obvious.
• if ϕ = 〈g〉ψ, then ψ is a boolean ombination of the form 〈a1〉ψ1 ⊲⊳1 . . . ⊲⊳n−1 〈an〉ψnwhere ⊲⊳i∈ {∨,∧} and all ψi are inMFc(Σ, Q).Now we show that ϕ/p belongs to MFc(Σ, Q × P). Obviously, ϕ/p = 〈g〉((〈a1〉ψ1 ⊲⊳1

. . . ⊲⊳n−1 〈an〉ψn)/(p, g)) whih is equal to 〈g〉((〈a1〉ψ1)/(p, g) ⊲⊳1 . . . ⊲⊳n−1

(〈an〉ψn)/(p, g)). We show that eah member of the ombination has the appro-priate form. By de�nition (〈ai〉ψi)/(p, g) = 〈ai〉(
∨

p
g,a
−→p′

(ψi/p
′)). We remark that

(〈ai〉ψi)/(p, g) may be equal to 〈ai〉� if there is no p′ suh that p
g,a
−→ p′.As by indution hypothesis ψi/p

′ ∈ MF c(Σ, S), it follows that ϕ/p belongs to
MF c(Σ, Q × P) as eah formula partiipating in the boolean ombination after 〈g〉is the of form 〈a〉ψ.

• if ϕ = [g]ψ, then ψ is a boolean ombination of the form 〈a1〉ψ1 ⊲⊳1 . . . ⊲⊳n−1 〈an〉ψn ⊲⊳
[an+1]ψn+1 ⊲⊳n+1 . . . ⊲⊳n+m−1 [an+m]ψn+m where ⊲⊳i∈ {∨,∧} and ψi is in MF c(Σ, Q)with (i = 1..n +m).Now we show that ϕ/p belongs to MFc(Σ, Q × P). Obviously, ϕ/p =
[g]((〈a1〉ψ1)/(p, g) ⊲⊳1 . . . ⊲⊳n−1 (〈an〉ψn)/(p, g) ⊲⊳n ([an+1]ψn+1)/(p, g) ⊲⊳n+1

. . . ⊲⊳n+m−1 ([an+m]ψn+m)/(p, g)). We need to show that eah member of the om-bination has the appropriate form. We onsider the following two ases:� By de�nition (〈ai〉ψi)/(p, g) = 〈ai〉(
∨

p
g,a
−→p′

(ψi/p
′)). We remark that (〈ai〉ψi)/(p, g)may be equal to 〈ai〉� if there is no p′ suh that p

g,a
−→ p′.� By de�nition ([ai]ψi)/(p, g) = [ai](

∧

p
g,a
−→p′

(ψi/p
′)). We remark that ([ai]ψi)/(p, g)may be equal to [ai]tt if there is no p′ suh that p

g,a
−→ p′.As by indution hypothesis ψi/p′ ∈MFc(Σ, S), it follows from the two ases just abovethat ϕ/p belongs toMF c(Σ, Q× P).

�In onsequene of Lemma 164, we get the following orollary.Corollary 165 The quotient of a C-MA by a timed proess is a C-MA.Now, we show the main property of the quotient operator.Theorem 166 Let P be a timed proess and A be a modal automaton, both over an alphabet
Σ. The modal automaton A/P is suh that for every timed proess R over Σ :

P ×R � A if and only if R � A/P



5.3. Quotient for Automata 125ProofWe will onsider G(R × P,A) = 〈NE , NA, T,Acc〉 and G(R,A/P) = 〈NE ,NA, T ,Acc ′〉. Wesay that a position n = ((s, p), ϕ, v) of the game G(R × P,A) is relevant if ϕ ∈ MF(Σ, Q).We write n→∗ n
′ if n and n′ are positions and there is a path from n to n′.Let us de�ne the map f from the positions of G(R×P,A) to those of G(R,A/P). To a po-sition ((s, p), ϕ, v) we assoiate (s, ϕ/p, v) with one exeption when ϕ starts with modality 〈a〉or [a], for some ation a. In this later ase we assoiate to ((s, p), ϕ, v) the node (s, ϕ/(p, g), v)where g is the unique atomi onstraint suh that v � g.Let us take a pair of positions n and f(n). We will show how a move of a player from n tosome n′ an be mimiked by moves of the same player from f(n) to f(n′). Similarly, we willshow that a sequene of moves from f(n) to some f(n′) an be mimiked by a move from nto n′.The proof is easy for all but positions with formulas starting with an ation modality. Letus onsider several ases:

• Suppose n = ((s, p), 〈a〉ϕ, v). Then f(n) = (s, (〈a〉ϕ)/(p, g), v) where g is the uniqueatomi onstraint suh that v � g. From n Eve an go to a position ((s′, p′), ϕ, v[ha := 0]);where s gs,a
−→ s′ and p gp ,a

−→ p′ with v � gs and v � gp. Observe that gp = g as gp is anatomi onstraint. By de�nition
(〈a〉ϕ)/(p, g) = 〈a〉







∨

p
g,a
−→p1

(ϕ/p1)





This means that from f(n) Eve an go to (s′,
∨

p
g,a
−→p′

(ϕ/p′), v[ha := 0]). By hoosingthe disjunt with p′ she an get to f(n′) = (s′, ϕ/p′, v[ha := 0]).
• Let us take n and n′ as above and show that every hoie of Eve from f(n) an bemimiked from n. By this we mean that after making two moves from f(n) Eve has tohit a position of the form f(n′) for some n′ and we will show that Eve an reah n′ from
n.As f(n) = (s, (〈a〉ϕ)/(p, g), v), Eve an move to






s′,

∨

p
g,a
−→p1

(ϕ/p1), v[ha := 0]





where s
gs,a
−→ s′ and v � gs. Then Eve an hose one of the disjunts and get to

(s′, ϕ/p′, v[ha := 0]). Clearly this node is of the form f(n′) for n′ = ((s′, p′), ϕ, v[ha := 0]).Sine v � g we have that from n = ((s, p), 〈a〉ϕ, v) Eve an get to n′ = ((s′, p′, ϕ, v[ha :=
0]) as required.We remark that the ase when n = ((s, p), [a]ϕ, v) is dual to the ase above. We have shownthat a move in G(P × R,A) an be mimiked by a unique sequene of moves in G(R,A/P)and reiproally. We have also shown that the set of states of A ourring in a move of

G(R × P,A) is the same as the set of states of A ourring in G(R,A/P). As the winning



126 Chapter 5. Centralised Controller Synthesis using C-WTµ Speifiationondition in G(R × P,A) and G(R,A/P) depends on states of A enountered along a play,we get that there a play is winning for some in G(P ×R,A) if and only if the mimiked playis winning for the same player in G(R,A/P). Then we get that A aepts R×P if and onlyif A/P aepts R. �5.4 Centralised Controller Synthesis for C-WTµWe use the quotient operation for two ontroller synthesis problems. In Theorem 162, we haveestablished the deidability of the emptiness of C-MA. Moreover we are able to onstrutmodels for a non empty C-MA. We use that result to provide solutions to the entralisedontroller synthesis problem and ∆-dense-time ontrol problem. Controllers will be modelsof quotients of spei�ations over plants. Controllers will also satisfy additional properties.An additional property is for example a ontrol ondition (hypothesis) that we desribe with
C-MA.5.4.1 Centralised Controller SynthesisWe assume that Σ, the set of events is partitioned into the set Σu of unontrollable eventsand, the set Σc of ontrollable events; in the other words Σ = Σu ∪Σc with Σu ∩ Σc = ∅.The entralized ontrol problem(CCP) we onsider is the following:CCP: Given Σ = Σu ∪Σc, a timed proess P and a C-MA over Σ, does there exists a timedproess R over Σ, satisfying the ontrol ondition (CC), suh that P ×R � A.Control ondition (CC): R does not forbid ourrenes of unontrollable events.The ondition (CC) needs some attention and a onstrution. We need to desribe aproperty that prevents R from restriting the ourrene of an unontrollable event at anymoment of time; we also need to desribe a property that makes it possible for R to forbidthe ourrene of a ontrollable event in some time instanes.We laim that these two properties for R an be desribed with the C-modal automaton Bde�ned as follows:

B = 〈{q0},Σ, q0,∆B : Q→MFc(Σ, Q),Acc = (q0)ω〉where,
∆B(q0) =

(

∧

a∈Σu

[tt ]〈a〉q0

)

∧

(

∧

a∈Σc

[tt ][a]q0

)Proposition 167 R � B if and only if R satis�es the ontrol ondition (CC) above.ProofLet R = 〈S,Σ, s0,∆R〉 be a timed proess suh that R � B; then there is a winning strategyfor the player Eve in the aeptane game G(R,B). We will show that in every state of R any



5.4. Centralised Controller Synthesis for C-WTµ 127unontrollable event an happen at any time and some ontrollable events may not happenat some time instane.A play in G(R,B) starts in (s0, q0, v0) whih is a position for Adam, but a winning positionfor Eve. Assume that a play is in a winning position (s, q0, v). There is two ases:1. Adam moves to (s,
∧

a∈Σu
([tt ]〈a〉q0), v) whih is position for Adam, then he an moveto (s, [tt ]〈a〉q0, v) for any a ∈ Σu and then move to (s, 〈a〉q0, v + t) for any t ∈ R+ as

v+ t ∈ [[tt ]]. The later position is a position for Eve. As there is a winning strategy fromthat later position, the player Eve an move to (s′, q0, v+t[ha := 0]) meaning that, thereis a transition s g,a
−→ s′ with v + t ∈ [[g]]. Obviously, R does not prevent the ourreneof the event a at the time v+ t for any time t ∈ R+ and any event a ∈ Au. The position

(s′, q0, v + t[ha := 0]) is a position for Adam but also a winning position for Eve fromwhih we an repeat the argument.2. Adam moves to (s,
∧

a∈Σc
([tt ][a]q0), v) whih is a position of Adam, then he an moveto (s, [tt ][a]q0, v) for any a ∈ Σu and then moves to (s, [a]q0, v + t) for any t ∈ R+ as

v + t ∈ [[tt ]]. The later position is a position for Adam and there are two ases:(a) There is no move from that later position meaning that there is not transition
s

g,a
−→ s′ with v + t ∈ [[g]]. Obviously, the ontroller prevents the ourrene of theevent a at the time v + t.(b) There is a move from that later position to some position (s′, q0, v + t[ha := 0]),meaning that R does not prevent the event a at the time ontext v+t. The position

(s′, q0, v + t[ha := 0]) is a position for Adam but also a winning position for Evefrom whih we an apply a similar argument.We have shown that a state s of R that ours in a winning position in the aeptane gamesatis�es the ondition (CC). Beause from a winning position we always move to anotherwinning position ontaining s or a suessor of s, we get that every state of R satis�es theondition (CC). �A solution the the ontroller synthesis problem is given by the following resultTheorem 168
R � (A/P) ∧ B if and only if { P ×R � A

R � BProof
P × R � A if and only if (see Theorem 166) R � A/P. From Proposition 146, R � B and
R � A/P if and only if R � (A/P) ∧ B �Corollary 169 The CCP problem is deidable.5.4.2 The ∆-Dense-Time Control ProblemThe entralised ∆-dense-time ontrol amounts to �nding a ontroller (also alled a ∆-ontroller) for a system suh that at least ∆ ≥ 0 time units elapse between two onseutiveontrollable events. The ∆-ontrol ondition is the following.
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∆ ontrol ondition (∆-CC) The intervals between any two ontrollable events are greateror equal to ∆.Our solution to the entralised ∆-dense-time ontrol is to build an automaton, alled the
∆-automata. A ∆-ontroller should also satisfy the ontrol ondition (CC) above.Let B∆ be the C-MA de�ned as follows:

B∆ = 〈Q,Σ, q0, δ∆ : Q→MFc(Σ, Q),Acc ⊆ Qω〉where
• Q = {q0}∪

⋃

a∈Σc
{qa} is the set of states. The state qa is the one assoiated to the event

a.
• q0 is the initial state and it is not assoiated to any event.
• The transition relation is de�ned by:

δ∆(q0) = [tt ]
∧

u∈Σu

〈u〉q0 ∧ [tt ]
∧

a∈Σc

[a]qaand for every a the transition from the orresponding state qa is de�ned by:
δ∆(qa) = [tt ]

∧

u∈Σu

〈u〉qa ∧





(

[ha < ∆]
∧

b∈Σc

[b]�) ∨ ([ha ≥ ∆]
∧

b∈Σc

[b]qb
)





• Acc is the parity ondition de�ned with a funtion rank whih assigns the value 0 toevery state in Q.Let us omment the modal automaton B∆. The automaton B∆ has |Σc| + 1 states. Theinitial state q0 desribes what happens in the ontroller when no ontrollable event has o-urred. At this step, any unontrollable event may happen whatever is the time instane andany ontrollable event may happen at any time ontext; this is beause no ontrollable eventhas ourred. The other states, one per ontrollable event, enable to save the information onthe last ontrollable event that has ourred. At a state qa, we assume that a is the last eventthat has ourred. At qa, an ourrene of an unontrollable event, u an not be preventedwhatever is the timing ontext. Additionally, a ontrollable event b may our if the amountof time elapsed sine the ourrene of a (reall that a is the last event that has ourred),measured with the lok ha, is greater or equal to ∆.We state that a timed proess satisfying B∆ also satis�es the ondition ∆−(CC). Theproof of this proposition is similar to the proof of Proposition 167.Proposition 170 For any timed proessR,R ∈ L(B∆) if and only ifR satis�es the ondition
∆−(CC).In orollary to Theorem 168, we get the deidability of the ∆-dense-time ontrol.Corollary 171 The ∆-dense-time ontrol is deidable; moreover, we an build a ∆-ontroller.



5.5. Conlusion 1295.5 ConlusionIn this hapter we have onsidered two ontroller synthesis problems for plants desribed bytimed proesses and spei�ations desribed by C-WTµ: the entralised ontroller synthesisproblem and the ∆-dense-time ontrol problem. As a plant is a reative system, we haveassumed that events an be ontrollable (event ompleted by the plant) or not (events om-pleted by the environment of the plant) and, only the ourrenes of ontrollable events anbe disabled by ontrollers.We have shown that these two problems are deidable and, ontroller an be onstruted whenplants are ontrollable.
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Conlusion and PerspetivesThe main goal of this thesis was to provide methods to synthesise ontrollers for a lass of real-time systems and real-time ontrol objetives. In reent years a framework for the supervisoryontrol of untimed reative systems have been developed, in partiular the framework that usesKripke struture models with the standard µ-alulus. We wanted to use a lass of real-timemodels for systems that ould provide a framework for the supervisory ontrol of real-timesystems and if possible, reuse tehniques proposed for the setting of untimed reative systems.Relying on some theoretial results on event-reording automata inluding losure underboolean operations and losure under omplementation, we have hosen to work with thesemodels. To desribe real-time ontrol objetives, we have hosen Event-Reording Logi (ERL)beause it is a deidable timed extension of the µ-alulus and there are signi�ant results forthe ontrol of untimed reative systems with the µ-alulus.Following our intuitions, we were interested in the similarities between untimed models andour models. These similarities onern some basi problems inluding the reahability analysis,the model-heking, the satis�ability, the disjuntive normal form theorem, the existene ofdeterministi models for spei�ations. These basi problems have been fundamental for thesolution to the supervisory ontrol of untimed systems.ERL is too weak Our intuitions were good as, we had provided new deision proeduresfor the model-heking and the satis�ability problems of ERL. These proedures are newand interesting in the way that they reuse deision proedures for the model-heking inthe setting of the µ-alulus with Kripke strutures. A great bene�t of the similarity of thetwo aforementioned problems, is that they have allowed us to provide a disjuntive normalform theorem for ERL. We had at that time, some useful theoretial ingredients to apply themethods Arnold et al. [AVW03, ABPV05, AW07℄ for the supervisory ontrol. Unfortunately,we have disovered that ERL is not expressive enough to desribe interesting properties forthe ontrollers like �An unontrollable event an be ompleted at every time�.Overome the weakness of ERL: the new logi WTµ We have introdued a new lan-guage that we have alled WTµ. The logi WTµ is a weak real-time extension of the standard
µ-alulus. Compared to ERL, WTµ onsiders modality indexed with timing onstraints andmodalities indexed with events. We have shown that WTµ is stritly more expressive thanERL. We have hoped that the modi�ation of the ontents of modalities will be without ad-verse onsequenes. For the model-heking problem of WTµ, we have provided a deisionproedure similar to a proedure for the model-heking problem of the (untimed) µ-alulus.We have presented a fragment for WTµ alled WTµ for ontrol (C-WTµ). We have provided131



132 Conlusion and Perspetivesa deision proedure for the satis�ability problem of C-WTµ; this proedure does not assumea limit on the onstants of the models, and it shows how to onstrut a witness model for asatis�able formula.Centralised Control Result Relying on satis�ability results on C-WTµ, we have proposeda quotient-based approah to a entralised ontroller synthesis problem and a entralised ∆-dense time ontroller synthesis problem for the lass of real-time systems we have onsidered.PerspetivesThis thesis makes a progress in the domain of the ontroller synthesis of real-time systems.Presented results do not over the lass of real-time systems that an be modelled with timedautomata, but they an be useful for the lass of systems that we have onsidered. We thinkthat our ontribution an be useful for some parts of automated ars systems 1 and protools(for instane Philips audio protool). The approah that has been proposed in this thesisshould be followed to provide more general results inluding the deidability of the existeneof deterministi models for C-WTµ, the deidability of the satis�ability problem of WTµ, andthe deentralised ontroller synthesis with WTµ. We think that, if one assumes a bound onthe onstants used by the ontrollers, it will not be very di�ult to provide a solution to thedeentralised ontroller synthesis with WTµ (and WG-WTµ). Works in that diretion mayfollow some results for the setting of the µ-alulus [AW07℄. We also hope that works in theaforementioned diretions an enable a better understanding of real-time models inludingtimed automata models, and the logi Lν [BCL05℄.

1See for example the European Projet CityMobil at http://www.itymobil-projet.eu
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