
HAL Id: tel-00441540
https://theses.hal.science/tel-00441540v1
Submitted on 16 Dec 2009 (v1), last revised 11 Aug 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A General View of Normalisation through Atomic Flows
Tom Gundersen

To cite this version:
Tom Gundersen. A General View of Normalisation through Atomic Flows. Mathematics [math]. The
University of Bath, 2009. English. �NNT : �. �tel-00441540v1�

https://theses.hal.science/tel-00441540v1
https://hal.archives-ouvertes.fr

D
RA

FT
A General View of Normalisation

through Atomic Flows
submitted by

Tom Erik Gundersen
for the degree of Doctor of Philosophy

of the

University of Bath
Department of Computer Science

August 2009

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this
thesis has been supplied on condition that anyone who consults it is understood to recognise
that its copyright rests with the author and they must not copy it or use material from it
except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and may
be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author

Tom Erik Gundersen

D
RA

FT
A General View of Normalisation

through Atomic Flows

Tom Erik Gundersen

i

D
RA

FT

ABSTRACT

Atomic flows are a geometric invariant of classical propositional proofs in deep inference.
In this thesis we use atomic flows to describe new normal forms of proofs, of which the
traditional normal forms are special cases, we also give several normalisation procedures for
obtaining the normal forms. We define, and use to present our results, a new deep-inference
formalism called the functorial calculus, which is more flexible than the traditional calculus
of structures. To our surprise we are able to 1) normalise proofs without looking at their
logical connectives or logical rules; and 2) normalise proofs in less than exponential time.

ii

D
RA

FT

ACKNOWLEDGEMENTS

TODO

iii

D
RA

FT
Contents

1 Introduction 1

I Derivations 6

2 Propositional Classical Logic 7

2.1 The Functorial Calculus . 8

2.2 The Calculus of Structures . 12

2.3 System SKS . 15

II Atomic Flows 22

3 Atomic Flows 23

3.1 Paths and Cycles . 27

3.2 Subflows . 28

4 Atomic Flows and Derivations 30

4.1 Extracting Flows from Derivations . 30

4.2 A Normal Form of Derivation . 36

5 Normal Forms 38

III Normalisation 43

6 Global Reductions 44

iv

D
RA

FT

6.1 Simplifier . 46

6.2 Isolated Subflow Removal . 49

6.3 Path Breaker . 55

6.4 Multiple Isolated Subflows Removal . 62

6.4.1 Threshold Formulae . 68

7 Local Reductions 77

7.1 Soundness . 79

7.2 Termination and Confluence . 81

7.3 Complexity . 82

8 Main Result 84

v

D
RA

FT
Chapter 1

Introduction

TODO Replace this introduction:

Proof theory studies formal representations of mathematical proofs. Formal representa-
tions of proofs are needed in order to, among other things, automatically verify or search for
proofs and prove consistency of mathematical theories.

Furthermore, representations of proofs are interesting mathematical objects in their own
right. In particular, they are related to longstanding open problems: The problem of N P
versus co-N P , from computational complexity theory, and the problem of identity of proofs,
can both be stated in terms of representations of proofs.

The problem of identity of proofs was originally intended by Hilbert to be the 24th prob-
lem of his famous Paris lecture in 1900 [Thi03], and it amounts to answering the question:
When are two proofs the same? This thesis is part of a program which tries to solve the identity
of proofs problem in the setting of propositional logic.

At face value, the representation of a proof is a syntactic object, typically a tree of strings
of symbols. This kind of object is not very good at conveying the ‘essence’, ‘meaning’ or
semantics of the proof it represents. In fact, usually, the representation is extremely verbose
and the underlying proof is almost completely obscured by inessential details.

Bureaucracy is the name we give to ‘inessential details’ in the representations of proofs.
We have an instance of bureaucracy, if morally independent parts of a proof are represented
as if there is a dependency between them. A consequence of bureaucracy is that proofs that
are essentially the same are given seemingly different representations.

In order to solve Hilbert’s problem we need to find a way of extracting the semantics of
a proof from its representation. Furthermore, depending on the context and the purpose
of solving the problem, different notions of semantics might be desirable. An ideal solution
would therefore not be to give one answer, but a to provide a framework for giving different
answers for different purposes.

Two trivial syntactic solutions spring to mind:

1

D
RA

FT

• ‘two proofs are the same if they prove the same statement’. The problem with this
solution is that it would identify proofs of widely different sizes and proofs based on
completely different ideas; and

• ‘two proofs are the same if their representations are the same’. The problem with this
solution is that it would distinguish proofs that are the same modulo bureaucracy.

A third syntactic solution is based on normalisation. Normalisation is the process of ma-
nipulating a proof in order to turn it into a normal form. Traditionally, normalisation means
cut elimination. A cut is an inference rule embodying the concept of modus ponens, or the use
of lemmata in a proof. A proof is in normal form if it does not contain an instance of the cut
rule. Cut elimination is the most important technique in structural proof theory. From the
point of view of computational interpretation of proofs, a cut corresponds to composition
and cut elimination corresponds to β-reduction.

Using normalisation we can say: ‘two proofs are the same if they have the same normal
form’. In terms of cut elimination, this approach has two problems: cut elimination is not
confluent, so the normal form is not unique; and the size of the cut-free form of a proof
might depend exponentially on the size of the original proof, so proofs of widely different
sizes might be identified.

Algebraic solutions to Hilbert’s problem can be given in terms of categorical axiomatisa-
tions of proofs, i.e., by defining equations on the representations of proofs and consider ‘two
proofs to be the same if they belong to the same equivalence class’. The problems with this
approach is that it is not necessarily easy to decide if two proofs are equivalent, and arguing
about the size of the proofs modulo equations is not straightforward.

The approach we are following is a geometric one. We consider proofs to be essentially
geometric objects, and their shape is their semantics. Like the algebraic approach this will
allow us to have a bureaucracy free semantics, and like the syntactic approach this provides
us with concrete representations of proofs whose size we can argue about. Finally, in order
to provide for different notions of semantics, we consider normalisation to manipulate the
shape of proofs under geometric invariants. I will now outline how we intend to obtain the
geometric essence of proofs, and where this thesis fits into the program.

A language for representing proofs is called a formalism, and the rules by which a proof
is constructed are called inference rules. We believe there is strong evidence that bureaucracy
in the representation of proofs is what obscures their meaning, and that eliminating bureau-
cracy is what will allow us to discover their geometric essence. The two sources of bureau-
cracy we try to eliminate are: Bureaucracy caused by the formalism, and bureaucracy caused
by the inference rules. These sources of bureaucracy are closely related as the formalism
dictates what kind of inference rules are allowed.

A proof contains bureaucracy due to deficiencies in the formalism, if inference rules
or sub-proofs can be trivially permuted. This kind of bureaucracy is often a consequence
of a proof being represented as a list or a binary tree, which is traditionally the case, as
opposed to something more general like a graph. The problem can be manifested by two
independent sub-proofs being represented either as the first depending on the second, the

2

D
RA

FT

second depending on the first, or some intermediate ‘interleaving’ of the two. A ‘correct’
representation might be that the two sub-proofs are conducted in parallel (as is possible in
the formalism presented in this thesis), or that one proof is, in a certain sense, conducted
inside the other (as will be possible in the formalism we are developing as the successor of
the one in this thesis).

The kind of bureaucracy stemming from deficiencies in the inference rules is a bit more
subtle. Intuitively, if an inference rule instance ‘does too much at once’, i.e., it can be replaced
by several ‘smaller’ inference rule instances, it might create dependencies between parts of
the proofs which do not morally depend on each other. In order to replace one inference
rule occurrence by several other occurrences, we might need to discover new rules, which in
turn might require a change in the formalism. In other words, recognising and eliminating
this kind of bureaucracy is not necessarily straightforward.

We are influenced by Girard’s linear logic and proof nets [Gir87]. Linear logic is, roughly
speaking, a restriction of classical logic by only allowing linear inference rules, i.e., rules that
do not duplicate or destroy formulae. Proof nets are geometric representations of linear logic
proofs, which identify proofs modulo bureaucracy.

In the same way that linearity gave proof nets in the case of linear logic, we want to
find a geometric representation of classical logic proofs. However, classical logic can not be
represented using only linear rules. Moreover, we are not able to generalise linearity in the
traditional, Gentzen style formalisms in a way that is useful to us.

Deep inference [Gug07] is a methodology which allows for more general formalisms than
Gentzen’s traditional natural deduction and sequent calculus [Gen69]. In particular, deep-
inference formalisms can express classical logic using only local [BT01] inference rules, some-
thing which is impossible in the traditional formalisms [Brü03b].

Locality is a generalisation of linearity. An inference rule is said to be local if the time
needed to verify an instance of the rule is bounded by a constant (under certain mild hypothe-
ses). In addition to linear rules, a second class of local rules are the atomic ones. Atomic rules
are restricted to only apply to atoms. Unlike linear rules, atomic rules can duplicate or de-
stroy formulae, but the size of the formula is bounded. Not all rules are local: In order to
verify an instance of a rule that duplicates a formula of arbitrary size, the two copies of the
formula must be compared. Since the size of the formula is unbounded, the rule is not local.

Intuitively, since local rules can only depend on a limited amount of information, the ‘in-
terdependence’ of instances of local rules is limited. In terms of bureaucracy, by translating
from non-local to local rules we are able to observe that more permutations are possible, and
hence that more sub-proofs are independent. In this sense, we reveal more bureaucracy. The
challenge lies in discovering geometric objects which represent proofs modulo this bureau-
cracy.

In summary, deep inference makes locality possible; locality reveals bureaucracy; elimi-
nating bureaucracy allows us to represent proofs as geometric objects; whose shape we con-
jecture will lead us to a nice semantics. We like to express this using the following slogan:

Locality → Geometry → Semantics .

3

D
RA

FT

As mentioned above, proofs sometimes need to be normalised in order to be compared.
The contribution of this thesis is a geometric language we call atomic flows [GG08], which
provides a general view of normalisation.

As for natural deduction and the sequent calculus, we intend normalisation as cut elimi-
nation. However, deep-inference formalisms have a certain symmetry with respect to the cut
rule, which is not present in the traditional formalisms. In particular, it means that we have
an inference rule (the interaction) that is the proper deMorgan dual of the cut. Furthermore,
cut elimination is only possible in deep inference if this symmetry is broken, in order to
correspond to the asymmetry in the traditional formalisms.

Atomic flows are motivated by wanting to generalise traditional normal forms, based
on the absence of the cut, to a new notion of normal forms based on geometric proper-
ties. Atomic flows are special kinds of labelled directed graphs, defined by discarding from
derivations all but the information about causal relations between creation and destruction
of atoms. Due to deep inference allowing classical logic to be expressed using local inference
rules, all the logical information is contained in the linear rules, which we discard, and all the
structural information is contained in the atomic rules, which we keep.

We claim that atomic flows give a more general view of normalisation because they pro-
vide new normal forms, of which the traditional normal forms are special cases; at the same
time they show that normalisation is a less delicate process than was previously believed.

Since we argue in terms of the geometric properties of atomic flows, we are able to de-
scribe a symmetric notion of cut-freeness, which we call streamlining. Furthermore, in the
special, asymmetric, case where cut elimination makes sense, the notions of streamlining and
cut elimination coincide. We are also able to show that, contrary to expectations, streamlin-
ing can be performed in less than exponential time.

Conventional wisdom teaches us that in order to achieve normalisation, a certain har-
mony between the inference rules is needed. In other words, if we add or exchange inference
rules it is not expected that our normalisation results will trivially continue to work.

However, atomic flows discard all information about logical relations and linear rules, so
we found it surprising that the remaining information is sufficient to design normalisation
procedures. In particular, we have found no difficulties in using our normalisation proce-
dures with different formalisms, different logical connectives and different linear rules, as
long as all the inference rules are local and implicationally complete for propositional classi-
cal logic.

Some of the results in this thesis are, or will be, available in journal articles. One article
has been published, one has been submitted and three are still being written. They are,
respectively:

• atomic flows were introduced and the first normalisation results were shown in Nor-
malisation Control in Deep Inference via Atomic Flows with Alessio Guglielmi, pub-
lished in Logical Methods in Computer Science;

• quasipolynomial cut elimination was shown using atomic flows in Quasipolynomial

4

D
RA

FT

Normalisation in Deep Inference via Atomic Flows and Threshold Formulae, with Paola
Bruscoli, Alessio Guglielmi and Michel Parigot, submitted to Mathematical Structures
in Computer Science;

• we are showing refined and generalised normalisation results in Normalisation Control
in Deep Inference via Atomic Flows II, with Alessio Guglielmi;

• we are showing (among other things) that there is a polynomial relationship between
the size of a derivation and the size of its associated atomic flow in On the Complex-
ity of the Switch and Medial Rules, with Paola Bruscoli, Alessio Guglielmi and Lutz
Straßburger; and

• we are defining two new deep-inference formalisms, for which atomic flows and the
associated normalisation procedures are invariants in Formalism A and Formalism B,
with Alessio Guglielmi and Michel Parigot.

Strictly speaking, our normalisation results could be expressed without the use of atomic
flows. However, the principal advantage of atomic flows is that it allows us to use a graphical
language to describe the gist of our ideas. Once the language is mastered, the most of the
technical details of this thesis can easily be reconstructed based on the illustrations alone.
Furthermore, atomic flows provide an intuition for working with normalisation, without
which we would not have been able to discover our results.

In these three years we could see that many people saw something in our atomic flows. In
particular, I have been working on using atomic flows for implicit computational complexity,
finding computational interpretations, as well as normalisation of intuitionistic, modal and
first-order logics.

At the moment atomic flows are a tool for studying normalisation. However, the most
interesting direction of research on atomic flows for the future is, in my opinion, to define
a new formalism based on atomic flows with the aim of solving the problem of identity of
proofs. Atomic flows are promising in this regard, since they are bureaucracy free, they rep-
resent how proofs behave under different notions of normalisation, and they respect the size
of proofs. However, at least two important open questions remain: how much information
needs to be added to atomic flows before they preserve the validity of proofs; and how can
we efficiently decide if two atomic flows are isomorphic.

The thesis is split in three parts.

• In the first part I introduce the deep-inference formalism we will be using, and a local
system for classical propositional logic.

• In the second part I define atomic flows, show how flows are related to derivations and
define normal forms of derivations in terms of their associated atomic flows.

• Finally, in the last part I define several normalisation procedures based on transforming
atomic flows.

5

D
RA

FTPart I

Derivations

6

D
RA

FT
Chapter 2

Propositional Classical Logic

The traditional formalism in deep inference is the calculus of structures [Gug07].

T: ‘bureaucracy free’ -> ‘less bureaucracy’.

The idea of a new formalism, named formalism A based on the calculus of structures,
but where derivations contain less bureaucracy, was proposed by Guglielmi in [Gug04], and
later Brünnler and Lengrand developed a term calculus around these ideas [BL05].

T: Removed mentioning of ‘bureaucrcacy’:

In this chapter I define a formalism based on the ideas of formalism A and call it (as
suggested by François Lamarche) the functorial calculus. The reason to introduce a new for-
malism is that it greatly simplifies the presentation of some of the more technical results in
this thesis (in particular Section 6.4.1 on page 68).

After presenting the functorial calculus we compare it briefly with the calculus of struc-
tures before we introduce the standard deductive system for classical logic in deep inference
and show some preliminary results.

We now define ‘formulae’ and ‘inference rules’, which are in common between both the
functorial calculus and the calculus of structures. Definitions 2.0.1 to 2.0.4 on pages 7–8 are
based on definitions given in [BG09]. The focus of this thesis is classical propositional logic,
and the following definitions reflect this. However, it is worth noting that the definitions can
be generalised to other units and connectives, if one wants to present other logics.

Definition 2.0.1. We define a set of formulae, denoted by α, β, γ , δ to be:

• atoms, denoted by a, b , c , d and ā, b̄ , c̄ , d̄ ;

• formula variables, denoted by A, B , C , D ;

• units ❢ (false) and t (true); and

• the disjunction and conjunction of formulae α and β, denoted by [α ∨β] and (α ∧β),
respectively.

7

D
RA

FT

A formula is ground if it contains no variables. We usually omit external brackets of formulae,
and sometimes we omit dispensable brackets under associativity. We use ≡ to denote literal
equality of formulae. The size |α| of a formula α is the number of unit, atom and variable
occurrences appearing in it. On the set of atoms there is an involution ·̄, called negation (i.e.,
·̄ is a bijection from the set of atoms to itself such that ¯̄a ≡ a); we require that ā 6≡ a for every
a; when both a and ā appear in a formula, we mean that atom a is mapped to by ā by ·̄. A
context is a formula where one hole { } appears in the place of a subformula; for example,
a ∨ (b ∧ { }) is a context; the generic context is denoted by ξ { }. The hole can be filled with
formulae; for example, if ξ { } ≡ b ∧ [{ } ∨ c], then ξ {a} ≡ b ∧ [a ∨ c], ξ {b} ≡ b ∧ [b ∨ c]
and ξ {a ∧ b} ≡ b ∧ [(a ∧ b) ∨ c]. The size of ξ { } is defined as |ξ { }|= |ξ {a}|− 1.

Definition 2.0.2. A renaming is a map from the set of atoms to itself, and it is denoted by
{a1/b1,a2/b2, . . .}. A renaming of α by {a1/b1,a2/b2, . . .} is indicated by α{a1/b1,a2/b2, . . .}
and is obtained by simultaneously substituting every occurrence of ai in α by bi and ev-

ery occurrence of āi by b̄i ; for example, if α ≡ a ∧ [b ∨ (a ∧ [ā ∨ c])] then α{a/b̄ , b̄/c} ≡

b̄ ∧
�

c̄ ∨
�

b̄ ∧ [b ∨ c]
��

. A substitution is a map from the set of formula variables to the set

of formulae, denoted by {A1/β1,A2/β2, . . .}. An instance of α by {A1/β1,A2/β2, . . .} is in-
dicated by α{A1/β1,A2/β2, . . .} and is obtained by simultaneously substituting every occur-

rence of variable Ai in α by formula βi ; for example if α ≡ A∨ (b ∧ c) then α{A/
�

c ∧ b̄
�

} ≡
�

c ∧ b̄
�

∨ (b ∧ c).

Convention 2.0.3. By the above definition, formula variables will only be used to define
inference rules, and will never appear in derivations. However, when we perform normalisa-
tion we will sometimes single out atom occurrences (by decorating them) and substitute on
them as if they were formula variables.

Definition 2.0.4. An inference rule ρ is an expression
α

ρ−−−
β

, where the formulae α and β

are called premiss and conclusion, respectively. A (deductive) system is a finite set of infer-

ence rules. An inference rule instance
γ

ρ−−−
δ

of
α

ρ−−−
β

is such that γ and δ are ground, and γ ≡

α{a1/b1,a2/b2, . . .}{A1/β1,A2/β2, . . .} andδ ≡β{a1/b1,a2/b2, . . .}{A1/β1,A2/β2, . . .}, for
some renaming {a1/b1,a2/b2, . . .} and substiution {A1/β1,A2/β2, . . .}.

2.1 The Functorial Calculus

We now present the functorial calculus in the context of classical propositional logic and give
some basic results.

The intuition behind derivations in the functorial calculus is that we can compose deriva-
tions by the same connectives we can compose formulae.

Definition 2.1.1. Given a deductive system S , and formulae α andβ; a (functorial calculus)

derivation Ψ in S from α to β, denoted
α
Ψ

S

β
, is defined to be

8

D
RA

FT

1. a formula: Ψ = α≡β;

2. a vertical composition:

Ψ =

α
Φ1

β′
ρ−−−
α′

Φ2

β

,

where
β′

ρ−−−
α′

is an instance of an inference rule from S , and
α

Φ1

S

β′
and

α′

Φ2

S

β
are deriva-

tions; or

3. a horizontal composition:

Ψ =
α1
Φ1

β1

∧

α2
Φ2

β2

or Ψ =
α1
Φ1

β1

∨

α2
Φ2

β2

,

where
α1
Φ1

β1

and
α2
Φ2

β2

are derivations, and α ≡ α1 ∨α2 and β ≡ β1 ∨β2, or α ≡ α1 ∧α2

and β≡β1 ∧β2, respectively.

A derivation with premiss t is, from now on, called a proof.

The size of a derivationΨ, denoted |Ψ|, is defined to be the sum of the size of the formulae
appearing in Ψ.

Convention 2.1.2. Given derivations
α1
Φ1

β1

,
α2
Φ2

β2

and
α3
Φ3

β3

, and inference rule instances
β1

ρ1 −−−
α2

and
β2

ρ2 −−−
α3

we consider



















α1
Φ1

β1
ρ1 −−−−−

α2
Φ2

β2



















ρ2 −−−−−−−−−−−−−
α3
Φ3

β3

and

α1
Φ1

β1
ρ1 −−−−−−−−−−−−−

















α2
Φ2

β2
ρ2 −−−−−

α3
Φ3

β3



















9

D
RA

FT

to be equal, and we denote them both by

α1
Φ1

β1
ρ1 −−−
α2
Φ2

β2
ρ2 −−−
α3
Φ3

β3

.

T: Added the following remark:

Remark 2.1.3. If desireable, Convention 2.1.2 on the previous page could be made redundant
by forcing associativity of horizontal composition in Definition 2.1.1 on page 8. The only
reason we did not do this was for the sake of brevity of the following results.

Lemma 2.1.4. Given a derivation
α
Φ

β
and a context ξ { }, a derivation

ξ {α}
Ψ

ξ {β}
, with size |Φ|+

|ξ { }|, can be constructed.

Proof. We proceed by structural induction on ξ { }. The base case, ξ { } ≡ { }, is trivial. For
the inductive case, let

ξ { } ≡ ξ ′{ } ∧ γ , ξ { } ≡ γ ∧ ξ ′{ } ,

ξ { } ≡ ξ ′{ } ∨ γ or ξ { } ≡ γ ∨ ξ ′{ } .

for some formula γ and a context ξ ′{ }. By the inductive hypothesis we can construct the

derivation
ξ ′{α}
Ψ′

ξ ′{β}
, so the result follows by case (3) of Definition 2.1.1 on page 8.

Notation 2.1.5. Given a derivation
α
Φ

β
and a context ξ { }, the derivation

ξ {α}

ξ {β}
constructed

in the proof of Lemma 2.1.4 is denoted ξ {Φ}.

Lemma 2.1.6. Given two derivations
α

Φ1

β
and

β
Φ2

γ
, a derivation

α
Ψ

γ
, with size |Φ1|+ |Φ2|− |β|,

can be constructed.

Proof. We argue by structural induction on Φ1

1. if Φ1 =β then Ψ=Φ2, with size |Φ1|+ |Φ2| − |β|;

10

D
RA

FT

2. if

Φ1 =

α
Φ′

1

β′
ρ−−−
α′

Φ′′
1

β

,

then, by the inductive hypothesis, we can construct
α′

Ψ′

γ
, with size

�

�

�Φ′′1

�

�

�+ |Φ2|−|β|, we

can then build

Ψ =

α
Φ′

1

β′
ρ−−−
α′

Ψ′

γ

,

with size
�

�

�Φ′1

�

�

�+
�

�Ψ′
�

�=
�

�

�Φ′1

�

�

�+
�

�

�Φ′′1

�

�

�+ |Φ2| − |β|= |Φ1|+ |Φ2| − |β|;

3. if

Φ1 =
α1

Φ1,1

β1

∨

α2
Φ1,2

β2

or Φ1 =
α1

Φ1,1

β1

∧

α2
Φ1,2

β2

we argue by structural induction on Φ2:

(a) if Φ2 is a formula (resp., a vertical composition), the result follow by a symmetric
argument to case 1 (resp., 2) above.

(b) if

Φ2 =
β1

Φ2,1

γ1

∨

β2
Φ2,2

γ2

or Φ2 =
β1

Φ2,1

γ1

∧

β2
Φ2,2

γ2

then, by the first inductive hypothesis, we can construct

α1
Ψ1

γ1

and
α2
Ψ2

γ2

,

with size
�

�

�Φ1,1

�

�

�+
�

�

�Φ2,1

�

�

�−|β1| and
�

�

�Φ1,2

�

�

�+
�

�

�Φ2,2

�

�

�−|β2|, respectively, we can then

build

Ψ =
α1
Ψ1

γ1

∨

α2
Ψ2

γ2

or Ψ =
α1
Ψ1

γ1

∧

α2
Ψ2

γ2

with size |Ψ1|+ |Ψ2|=
�

�

�Φ1,1

�

�

�+
�

�

�Φ1,2

�

�

�+
�

�

�Φ2,1

�

�

�+
�

�

�Φ2,2

�

�

�−(|β1|+ |β2|) = |Φ1|+ |Φ2|−

|β|.

11

D
RA

FT

Notation 2.1.7. Given derivations
α

Φ1

β
and

β
Φ2

γ
, the derivation

α
Ψ

γ
constructed in the proof

of Lemma 2.1.6 on page 10 is denoted:

α
Φ1

β
Φ2

γ

.

2.2 The Calculus of Structures

We now present the calculus of structures and in Theorem 2.2.2 on the following page and
Theorem 2.2.6 on page 14 we show that the functorial calculus and the calculus of structures
polynomially simulate each other.

The intuition behind derivations in the calculus of structures is that we rewrite formulae
by applying inference rules inside a context.

Definition 2.2.1. Given a deductive system S , a set of formulae,F , and α and β fromF ;

a calculus of structures derivation Ψ in S from α to β, denoted
α
Ψ

S

β
, is defined to be

1. a formula: Ψ = α≡β; or

2. a vertical composition:

Ψ =

α
Φ1

ξ {β′}
ρ−−−−−−−−
ξ {α′}
Φ2

β

,

where
β′

ρ−−−
α′

is an instance of an inference rule fromS , and
α

Φ1

S

ξ {β′}
and

ξ {α′}
Φ2

S

β
are calculus

of structures derivations.

The size of a calculus of structures derivation Ψ, denoted |Ψ|, is defined to be the sum of the
size of the formulae appearing in Ψ.

12

D
RA

FT

Theorem 2.2.2. A calculus of structures derivation
α
Φ

β
can be transformed into a functorial

calculus derivation
α
Ψ

β
such that |Ψ|¶ |Φ|.

Proof. We argue by structural induction on Φ. The base case is trivial; Φ = α ≡β = Ψ. For
the inductive case, consider the following calculus of structures derivation:

Φ =

α
Φ1

ξ {β′}
ρ−−−−−−−−
ξ {α′}
Φ2

β

.

By the inductive hypothesis, there are functorial calculus derivations
α

Ψ1

ξ {β′}
and

ξ {α′}
Ψ2

β
, such

that |Ψ1| ¶ |Φ1| and |Ψ2| ¶ |Φ2|. By Lemma 2.1.4 on page 10, there is a functorial calculus

derivation ξ

¨

β′
ρ−−−
α′

«

, with size |ξ { }|+
�

�α′
�

�+
�

�β′
�

�. By Lemma 2.1.6 on page 10, we can

combine the three functorial calculus derivations to create
α
Ψ

β
, with size |Ψ1|+ |Ψ2|+ |ξ { }|+

�

�β′
�

�+
�

�α′
�

�− |ξ { }|−
�

�β′
�

�− |ξ { }|−
�

�α′
�

�= |Ψ1|+ |Ψ2| − |ξ { }|¶ |Φ1|+ |Φ2|= |Φ|.

Example 2.2.3. Figure 4-1 on page 32 has three examples of calculus of structures derivations
transformed into functorial calculus derivations.

Lemma 2.2.4. Given a calculus of structures derivation
α
Φ

β
and a context ξ { }, a calculus of

structures derivation
ξ {α}
Ψ

ξ {β}
can be constructed, such that the number of inference rule instances

inΨ is the same as the number of inference rule instances in Φ, and the size of the largest formula
in Ψ is the sum of the largest formula in Φ and |ξ { }|.

Proof. The statements follows by structural induction on Φ.

Lemma 2.2.5. Given two calculus of structures derivations
α

Φ1

β
and

β
Φ2

γ
, a calculus of structures

derivation
α
Ψ

γ
can be constructed, such that the number of inference rule instances inΨ is the sum

13

D
RA

FT

of the number of inference rule instances in Φ1 and Φ2 combined, and the largest formula in Ψ is
the largest formula of Φ1 or the largest formula of Φ2.

Proof. The statement follows by structural induction on Φ1.

Theorem 2.2.6. A functorial calculus derivation
α
Φ

β
can be transformed into a calculus of struc-

tures derivation
α
Ψ

β
such that the size of Ψ depends at most quadratically on the size of Φ.

Proof. We first show how to construct Ψ: The base cases, when Φ is a formula or a vertical
composition, are trivial. For the inductive case, consider a conjunction of functorial calculus
derivations (the argument for the disjunction is similar):

Φ =
α1
Φ1

β1

∧

α2
Φ2

β2

.

By the inductive hypothesis and Lemma 2.2.4 on the previous page there are calculus of
structures derivations

α1 ∧α1
Ψ1

β1 ∧α1

and
β1 ∧α2
Ψ2

β1 ∧β2

,

and by Lemma 2.2.5 there exists a calculus of structures derivation
α1 ∧α2
Ψ

β1 ∧β2

.

To find an upper bound on the size of Ψ, we observe that it depends at most linearly on
the number of inference rule instances in Ψ multiplied by the size of the largest formula in
Ψ. Furthermore, by the above Lemmata, the number of inference rules in Ψ is the same as
the number of inference rules in Φ and the size of the largest inference rule depends at most
linearly on the size of Φ, so the size of Ψ depends at most quadratically on the size of Φ.

The calculus of structures is now well developed for classical [Brü03a, Brü06a, Brü06d,
BT01, Brü06b], intuitionistic [Tiu06a], linear [Str02, Str03b], modal [Brü06c, GT07, Sto07]
and commutative/non-commutative logics [Gug07, Tiu06b, Str03a, Bru02, DG04, GS01,
GS02, GS09, Kah06, Kah07]. The basic proof complexity properties of the calculus of struc-
tures are known [BG09]. The calculus of structures promoted the discovery of a new class of
proof nets for classical and linear logic [LS05a, LS05b, LS06, SL04] (see also [Gui06]). There
exist implementations in Maude of deep-inference proof systems [Kah08].

14

D
RA

FT

2.3 System SKS

We now define the standard deductive system for classical propositional logic in deep infer-
ence ❙❑❙ [Brü03a, Brü06a, Brü06d, BT01]. For an excellent reference to previous work on
normalisation in ❙❑❙, see [Brü04]. Subsystems of ❙❑❙ are used throughout this thesis.

The results presented in this section, with the exception of Theorem 2.3.14 on page 19,
are standard results which can be found in the literature. We include the proofs for complete-
ness and as means for giving examples of the functorial calculus.

Definition 2.3.1. System ❙❑❙ is defined by the following structural inference rules:

t
❛✐↓ −−−−−

a ∨ ā

❢
❛✇↓ −−−

a

a ∨ a
❛❝↓ −−−−−

a

a ∧ ā
❛✐↑ −−−−−

❢

a
❛✇↑ −−−

t

a
❛❝↑ −−−−−

a ∧ a
,

the logical inference rules:

A∧ [B ∨C]
s−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
♠−−−−−−−−−−−−−−−−−−−−−−
[A∨C] ∧ [B ∨D]

,

and the invertible (logical) rules:

A∨B
=∨❝ −−−−−−

B ∨A

A∧B
=∧❝ −−−−−−

B ∧A

A∨ [B ∨C]
=

❛
↓ −−−−−−−−−−−−−−
[A∨B] ∨C

(A∧B) ∧C
=

❛
↑ −−−−−−−−−−−−−

A∧ (B ∧C)

A
=

❢
↓ −−−−−

A∨ ❢

A
=

t
↓ −−−−−

A∧ t

t ∧A
=

❢
↑ −−−−−

A

❢ ∨A
=

t
↑ −−−−−

A

❢
=

❢∧↓ −−−−
❢ ∧ ❢

t
=

t∨↓ −−−−
t ∨ t

t ∨ t
=

❢∧↑ −−−−
t

❢ ∧ ❢
=

t∨↑ −−−−
❢

.

The calculus of structures and system ❙❑❙ were originally defined in terms of equiva-
lence classes of formulae, called ‘structures’, and without the above invertible logical rules.
However, we find it more convenient to use formulae instead, since it makes it simpler to
‘trace atom occurrences’, which we will see in Section 4.1 on page 30. We now show that the
two approaches are morally the same.

Definition 2.3.2. We define the relation= such that, given formulae α andβ, α=β if there

is a derivation
α
Φ

{=∨❝,=∧❝,=❛
↓,=

❛
↑,=

❢
↓,=

t
↓,=

❢
↑,=

t
↑,=

❢∧↓,=t∨↓,=❢∧↑,=t∨↑}

β
.

Notation 2.3.3. If α=β, we often write
α

=−−−
β

.

15

D
RA

FT

Remark 2.3.4. By Notation 2.3.3 on the preceding page and Lemma 2.1.4 on page 10, for any
formulae α and β and context ξ { } we have that α=β implies ξ {α}= ξ {β}.

Proposition 2.3.5. The relation = defined in Definition 2.3.2 on the preceding page is an equiv-
alence relation.

It turns out that the equivalence class induced by = is the same as the structures used in
[Brü04].

Remark 2.3.6. If α=β, then (as remarked in [BG09]) there exists a derivation

α
Φ

{=∨❝,=∧❝,=❛
↓,=

❛
↑,=

❢
↓,=

t
↓,=

❢
↑,=

t
↑,=

❢∧↓,=t∨↓,=❢∧↑,=t∨↑}

β

whose size depends at most quadratically on the sum of the sizes of α and β.

Notation 2.3.7. When we work in (subsystems of) ❙❑❙, we often omit mentioning the in-
vertible rules. LetS be a subsystem of ❙❑❙, then, unless specified otherwise, when we write
S we mean S ∪ {=∨❝,=∧❝,=❛ ↓,=❛ ↑,=❢↓,=t↓,=❢↑,=t↑,=❢∧↓,=t∨↓,=❢∧↑,=t∨↑}. Further-
more, if ρ ∈ ❙❑❙, and there is a derivation

α
=−−−
α′

ρ−−−
β′

=−−−
β

we sometimes write
α

ρ−−−
β

.

E.g., instead of the derivation
α ∨β

=∨❝ −−−−−−
β ∨α

∧ γ

=∧❝ −−−−−−−−−−−−−−−−
γ ∧ [β ∨α]

s−−−−−−−−−−−−−
(γ ∧β) ∨α

=∨❝ −−−−−−−−−−−−−−−−

α ∨
γ ∧β

=∧❝ −−−−−−
β ∧ γ

,

we write
[α ∨β] ∧ γ

s−−−−−−−−−−−−−
α ∨ (β ∧ γ)

.

See the proofs of Theorems 6.3.2 to 6.4.4 on pages 56–64 for more examples of implicit
equations.

We now give some standard results which will also serve as examples of system ❙❑❙ and
the functorial calculus.

16

D
RA

FT

Lemma 2.3.8. Given a context ξ { } and a formula α there exist derivations
α ∧ ξ {t}

{s}

ξ {α}
and

ξ {α}

{s}

ξ {❢} ∨α
; both of whose size depend at most quadratically on the size of ξ {α}.

T: atoms -> atom occurrences

Proof. We show how to construct the first derivation, the second one can be done symmet-
rically. We argue by induction on the number of atom occurrences in ξ { }. The base case,
ξ { }= { }, is trivial and the inductive cases are:

α ∧
ξ {t}

=−−−−−−−−−−−
ξ ′{t} ∨β

s−−−−−−−−−−−−−−−−−−−−−−−





α ∧ ξ ′{t}
Ψ

{s}

ξ ′{α}
∨ β







=−−−−−−−−−−−−−−−−−−−−−−−
ξ {α}

and

α ∧ ξ {t}
=−−−−−−−−−−−−−−−−−−−−−−−−





α ∧ ξ ′{t}
Ψ′

{s}

ξ ′{α}
∧ β







=−−−−−−−−−−−−−−−−−−−−−−−−
ξ {α}

,

for some ξ ′{ } and β where β is not a unit and Ψ and Ψ′ exist by the inductive hypothesis.

Notation 2.3.9. We often write
α ∧ ξ {t}

ss↑ −−−−−−−−−−
ξ {α}

and
ξ {α}

ss↓ −−−−−−−−−−
ξ {❢} ∨α

, instead of, respectively, the

derivations
α ∧ ξ {t}

{s}

ξ {α}
and

ξ {α}

{s}

ξ {❢} ∨α
, as defined in the proof of Lemma 2.3.8. Instead of the

derivation
ζ {α}

ss↓ −−−−−−−−−−
ζ {❢} ∨α

∧ ξ {t}

s−−−−−−−−−−−−−−−−−−−−−−−

ζ {❢} ∨
α ∧ ξ {t}

ss↑ −−−−−−−−−−
ξ {α}

we write
ζ {α} ∧ ξ {t}

ss−−−−−−−−−−−−−−
ζ {❢} ∨ ξ {α}

.

T: Added Lemma with proof. This was implicitly proven in Theorem 6.4.17 on page 75.

We now show a consequenc of the previous Lemma, which will be very useful in Subsec-
tion 6.4.1 on page 68.

Lemma 2.3.10. Given a formula α and an atom a, there exist derivations
a ∧α{a/t}

{❛❝↑,s}

α
and

α

{❛❝↓,s}

α{a/❢} ∨ a
; both of whose size depend at most quadratically on the size of α.

17

D
RA

FT

Proof. We show how to construct the first derivation, the second one can be done sym-
metrically. The result follows by induction on the number of occurrences of a in α, and
Lemma 2.3.8 on the preceding page. The base case is trivial. Let ξ { } be some context such
that, α= ξ {a}, then the inductive case is:

a
−−−−−
a ∧ a

∧ (ξ {a/t}){t}

{s}

a ∧ (ξ {a/t}){a}

.

T: Added:

For an example of the use of Lemma 2.3.10 on the previous page see Remark 2.3.16 on
page 20.

Lemma 2.3.11. Given a formula α, there exist derivations
❢

{❛✇↓,s}

α
and

α

{❛✇↑,s}

t

; both of whose

size depend at most quadratically on the size of α.

T: atoms -> atom occurrences

Proof. We show how to construct the first derivation, the second one can be done symmetri-
cally. Let a1, . . . , an be the atoms appearing in α, then there exists a derivation

α{a1/❢, . . . ,an/❢}

{❛✇↓}

α
.

Since α{a1/❢, . . . ,an/❢} contains no atom occurrences, there exists a derivation

❢

{=
❢
↓,=

t
↓,=

❢∧↓,=t∨↓}

α{a1/❢, . . . ,an/❢}
or

❢
=−−−−−−−−−−

❢ ∧ [t ∨ ❢]
s−−−−−−−−−−
(❢ ∧ t) ∨ t

=−−−−−−−−−−
t

{=
❢
↓,=

t
↓,=

❢∧↓,=t∨↓}

α{a1/❢, . . . ,an/❢}

.

Lemma 2.3.12. Given a formula α, there exist derivations
α ∨α

{❛❝↓,♠}

α
and

α

{❛❝↑,♠}

α ∧α
; both of

whose size depend at most quadratically on the size of α.

T: number of atoms in α -> size of α; added two base casse

18

D
RA

FT

Proof. We show how to construct the first derivation, the second one can be done symmet-
rically. We argue by induction on the size of α. We have to consider the following three base
cases

t ∨ t
=

❢∧↑ −−−−
t

,
❢ ∨ ❢

=
t
↑ −−−−

❢
and

a ∨ a
−−−−−

a
,

and two inductive cases:

(α ∧β) ∨ (α ∧β)
♠−−−−−−−−−−−−−−−−−−−−−−−−−−−−
α ∨α

{❛❝↓,♠}

α
∧

β ∨β

{❛❝↓,♠}

β

and

[α ∨β] ∨ [α ∨β]
=−−−−−−−−−−−−−−−−−−−−−−−−−−−−
α ∨α

{❛❝↓,♠}

α
∨

β ∨β

{❛❝↓,♠}

β

.

Notation 2.3.13. In the non-atomic version of system ❙❑❙ the derivations shown in the
proofs of Lemma 2.3.11 on the previous page and Lemma 2.3.12 on the preceding page cor-
respond to (co)weakening and (co)contractions, respectively. For this reason we sometimes

write the inference rules
❢

✇↓ −−−
α

,
α

✇↑ −−−
t

,
α ∨α

❝↓ −−−−−−
α

and
α

❝↑ −−−−−−
α ∧α

instead of the derivations
❢

{❛✇↓,s}

α
,

α

{❛✇↑,s}

t

,
α ∨α

{❛❝↓,♠}

α
and

α

{❛❝↑,♠}

α ∧α
, respectively.

To give an example of the notions defined so far, we now show a completeness proof of
system ❙❑❙.

Theorem 2.3.14. System ❙❑❙ is complete for propositional classical logic.

Proof. Consider a tautology α. We show by induction on the number of atoms appearing in
α that there exists a proof of α in ❙❑❙. For the base case, let α consist only of units. Then,
since α is a tautology, we can build

t

{=
❢
↓,=

t
↓,=

❢∧↓,=t∨↓}

α
.

For the inductive case, let α be a tautology containing instances of the atom a. We con-
sider two cases:

• if α does not contain an instance of ā, then α{a/❢} is a tautology, so by the inductive
hypothesis we can build

t

α{a/❢}

{❛✇↓}

α

;

19

D
RA

FT

• otherwise, both α{a/t, ā/❢} and α{a/❢, ā/t} are tautologies, so by the inductive hypoth-
esis we can build

Φ =

t

α{a/t, ā/❢}

{❛✐↓,❛✇↓}

α{a/[a ∨ ā]}

{ss↓}





α ∨

ā ∨ · · · ∨ ā

{❛❝↓}

ā







.

Using Φ and the inductive hypothesis we can build the desired derivation:

t

α{a/❢, ā/t}

{❛✇↓}

α{ā/t}

α{ā/[α ∨ ā]}

{ss↓}

α ∨ · · · ∨α

❝↓

α

.

Remark 2.3.15. Given any formulae α and β and any context ξ { }, then, by a construc-
tion similar to the one in the proof of Lemma 2.3.8 on page 17, we can build a derivation
ξ {α ∨β}

{s,=∨❝,=∧❝,=❛
↓}

ξ {α} ∨β
. If we use this derivation instead of the rule ss ↓ in the proof of Theo-

rem 2.3.14 on the preceding page, it follows that the system

{❛✐↓,❛❝↓,❛✇↓, s,♠,=∨❝,=∧❝,=❛ ↓,=❢↓,=t↓,=❢∧↓,=t∨↓}

is complete for classical logic. This justifies the naming of the invertible rules, as the tradition
is in deep inference to label admissible rules with an ↑.

T: Changed the following remark to illustrate the use of Lemma 2.3.10 on page 17.

Remark 2.3.16. If we do not restrict ourselves to the downfragment of ❙❑❙, we can build a
more compact proof than what we do in Theorem 2.3.14 on the preceding page, by using the

20

D
RA

FT

following as the inductive case:

t









t
−−−−−
a ∨ ā

∧ α{a/t, ā/❢}

s−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧α{a/t, ā/❢}) ∨ ā

∧ α{a/❢, ā/t}









s−−




a ∧

α{a/t, ā/❢}

{❛✇↓}

α{a/t}







{❛❝↑,s}

α

∨






ā ∧

α{a/❢, ā/t}

{❛✇↓}

α{ā/t}







{❛❝↑,s}

α
❝↓ −−

α

,

where we have used the derivations constructed in the proof of Lemma 2.3.10 on page 17.

21

D
RA

FTPart II

Atomic Flows

22

D
RA

FT
Chapter 3

Atomic Flows

T: formalism -> invariant

T: abstract representation

In this chapter we introduce the main tool used in this thesis, a geometric proof invariant
called ‘atomic flows’. The main contribution is the novel uses of atomic flows. An atomic
flow is a directed graph obtained from a derivation by only retaining information about
the creation and destruction of atom occurrences. Atomic flows are, essentially, specialised
Buss flow graphs [Bus91, Car97]. Furthermore, atomic flows are also essentially the same
as the kind of proof nets developed in [Str05,Str09], based on work done in [LS05]. The
only difference is that these proof nets implement (co)associativity of (co)contraction, while
atomic flows do not. For a more detailed comparison see [Str09]. Despite their similarities,
the motivation and use of atomic flows differ from that of proof nets.

Notably, the atomic flow of a derivation completely disregards all the logical relations
and associated inference rule instances; so, an atomic flow is not a derivation.

T: Deleted here all mention of mapping from flows to derivations, as this was missleading in
this context. It will be covered in greater detail later instead.

We can think of atomic flows as composite diagrams that are freely generated from a set
of six elementary diagrams. Technically, atomic flows are special kinds of labelled directed
acyclic graphs, and the properties of their vertices are dictated by their labels, which we
define as follows.

Definition 3.0.1. We call the following six diagrams (atomic-flow) labels:

1 2 1

1 2

3

❛✐↓ or interaction ❛✇↓ or weakening ❛❝↓ or contraction

1 2 1

1 2

3

❛✐↑ or cut ❛✇↑ or coweakening ❛❝↑ or cocontraction

.

23

D
RA

FT

Definition 3.0.2. An (atomic) flow is a tuple (V , E ,η,u p, lo), denoted φ or ψ, such that:

1. V is a finite set of vertices, denoted by ν ;

2. E is a finite set of edges, denoted by ε, ι or small numerals 1, 2, . . . ;

3. η : V →{❛✐↓,❛✐↑,❛✇↓,❛✇↑,❛❝↓,❛❝↑}maps vertices to their labels;

4. u p : E →V ∪{⊤} and lo : E →V ∪{⊥} are, respectively, the upper and lower maps, and
⊤ and ⊥ are special vertices not belonging to V ; we define, for every ν ∈ V ∪ {⊤,⊥},
the set Lν = {ε | u p(ε) = ν } of lower edges of ν , the set Uν = {ε | lo(ε) = ν } of upper
edges of ν , and the set Eν = Lν ∪Uν of edges of ν ;

5. if |S | denotes the cardinality of set S, we have that

if η(ν) = ❛✐↓ then |Lν |= 2 and |Uν |= 0,

if η(ν) = ❛✐↑ then |Lν |= 0 and |Uν |= 2,

if η(ν) = ❛✇↓ then |Lν |= 1 and |Uν |= 0,

if η(ν) = ❛✇↑ then |Lν |= 0 and |Uν |= 1,

if η(ν) = ❛❝↓ then |Lν |= 1 and |Uν |= 2,

if η(ν) = ❛❝↑ then |Lν |= 2 and |Uν |= 1;

6. there is no sequence ε1, . . . , εh of edges of V such that u p(εi) = lo(εi+1 (mod h)), for

1¶ i ¶ h;

7. there is a polarity assignment π : E →{−,+} such that, for every ν ∈V ,

(a) if η(ν) ∈ {❛❝↓,❛❝↑} then π(Eν) = {−} or π(Eν) = {+};

(b) if η(ν) ∈ {❛✐↓,❛✐↑} then π(Eν) = {−,+}.

Given an atomic flow φ, we say that the sets L⊤ = {ε1, . . . ,εh} and U⊥ = {ι1, . . . , ιk} contain,
respectively, the upper and lower edges of φ.

An atomic flow is a directed graph, whose edges are associated to atom occurrences in
derivations, and the direction of the edges corresponds to the up-down direction in a deriva-
tion. Vertices are associated to points in the derivation where atom occurrences are created
or destroyed, and the nature of each vertex is described by its label. Naturally, these graphs
are acyclic (condition 6). The two special vertices⊤ and⊥ represent the top and bottom of a
derivation: we can consider ⊤ the vertex that creates all the atom occurrences in the premiss
and ⊥ the vertex that destroys all atom occurrences in the conclusion.

The polarity assignment condition (7) ensures that atoms in (co)contractions have the
same polarity, and those in interactions and cuts have dual polarities (as happens in deriva-
tions). Every atomic flow has 2n polarity assignments, where n is the number of connected
components in the graph. We should not be worried about the apparent complexity of
the polarity assignment condition: in fact, we could equivalently consider two sorts of

24

D
RA

FT

(co)contraction and (co)weakening labels, the negative and the positive ones, and ask for ver-
tices to be joined by respecting their polarities. This is clearly a locally checkable property,
much simpler than, for example, some global correctness criterion for proof nets.

Notation 3.0.3. Letφ be a flow with upper edges ε= ε1, . . . ,εn and lower edges ι= ι1, . . . , ιm ,
we then represent it as

ε
1 · · ·

ε
n

φ

ι
1 · · ·

ι
m

or

ε

φ

ι

.

We sometimes use flow labels to indicate what kind of vertices a flow might contain. E.g., the
following flows

and ,

do not contain ❛✐↓, ❛✐↑, ❛✇↓, ❛✇↑ vertices, and the flow to the right does not contain ❛❝↑
vertices.

In general, we represent atomic flows as directed-graph diagrams, except that the special
vertices⊤ and⊥ are not shown, and the labels of the vertices are explicitly shown as graphical
elements. When we refer to the vertices of an atomic flow, we do not include ⊤ and ⊥.
Sometimes we identify vertices with their labels.

Example 3.0.4. Consider the flow

A= ({ ν1 , ν2 , ν3 },

{ 1 , 2 , 3 , 4 , 5 },

{ ν1 7→ ❛✐↑ , ν2 7→ ❛❝↑ , ν3 7→ ❛✐↑ },

{ 1 7→ ⊤ , 2 7→ ⊤ , 3 7→ ν2 , 4 7→ ν2 , 5 7→ ⊤ },

{ 1 7→ ν1 , 2 7→ ν2 , 3 7→ ν1 , 4 7→ ν3 , 5 7→ ν3 }) ;

the following are three of its possible representations:

4

21 5

3

,
1 +

3 4

2 − + 5

and 3 4

2 +1 − 5 −

,

in the last two diagrams, we also indicated each of the two possible polarity assignments.
This flow has one cocontraction and two cointeraction vertices; it has three upper edges, 1, 2

and 5, and no lower edges.

Example 3.0.5. The flow

,

is obtained by juxtaposing (i.e., composing by identifying zero edges):

25

D
RA

FT

• three edges,

• a flow obtained by composing a cut vertex with a cocontraction vertex, and

• a flow obtained by composing an identity vertex with a cut vertex.

Note that there are no cycles in the flow, and that we can find 32 different polarity assign-
ments, i.e., two for each of the five connected components of the flow.

Example 3.0.6. The following two diagrams are not atomic flows:

and .

The left one is not a flow because it contains a cycle, and the right one because there is no
possible polarity assignment.

T: Rephrased slightly to avoid overfull.

Definition 3.0.7. Given two flows φ1 = (V1, E1,η1,u p1, lo1) and φ2 = (V2, E2,η2,u p2, lo2),
an (atomic) flow isomorphism between φ1 and φ2 is a pair of functions (fV , fE), such that

• fV is a bijection from V1 to V2; and

• fE is a bijection from E1 to E2,

such that, for every ε in E1,

• for every ν in V1, u p1(ε) = ν (resp., lo1(ε) = ν) if and only if u p2(fE (ε)) = fV (ν) (resp.,
lo2(fE (ε)) = fV (ν)); and

• u p1(ε) =⊤ (resp., lo1(ε) =⊥) if and only if u p2(fE (ε)) =⊤ (resp., lo2(fE (ε)) =⊥).

Notation 3.0.8. We extend the double-line notation to collections of isomorphic flows. For
example, for n ¾ 0; ε= ε1, . . . ,εn ; ε′ = ε′

1
, . . . ,ε′

n
; and ε′′ = ε′′

1
, . . . ,ε′′

n
, the following diagrams

represent the same flow:

ε ε
′

ε
′′

and
ε

1
ε
′

1
ε
′′

1

· · ·

ε
n

ε
′

n
ε
′′

n

.

Notation 3.0.9. Given a flow
ε

φ

ι

,

26

D
RA

FT

and a flow ψ which is isomorphic to φ, whenever we write

ψ =

f (ε)

f (φ)

f (ι)

,

we mean that f is a given flow isomorphism between φ and ψ.

T: Removed convention.

Notation 3.0.10. Given a flow φ and a polarity assignment π for φ, whenever we write

+ φ or − φ ,

respectively, we mean that all the edges in φ have polarity assignment + or −, respectively. If
we label a flow with a polarity assignment it can not contain any interaction or cut vertices
duo to property 7 of Definition 3.0.2 on page 24.

Definition 3.0.11. Given a flow φ and a polarity assignment π for φ, the polarity assign-
ment π̄ for φ is defined to be, for every ε in φ:

π̄(ε) =

(

− if π(ε) = +,

+ otherwise.

3.1 Paths and Cycles

We now define the notions of ‘path’, ‘❛✐-path’ and ‘❛✐-cycle’ in atomic flows. Paths are se-
quences of adjacent edges that only ‘go down’ or only ‘go up’; ❛✐-paths are formed by joining
paths at interaction or cointeraction vertices; ❛✐-cycles are circular ❛✐-paths.

Definition 3.1.1. Given an atomic flow (V , E ,η,u p, lo) and ε1, . . . ,εh ∈ E such that, for
1 ¶ i < h, we have lo(εi) = u p(εi+1), u p(ε1) = ν and lo(εh) = ν

′, we say that ε1, . . . ,εh is a
path from ν to ν ′ and that εh , . . . ,ε1 is a path from ν ′ to ν ; both paths have length h.

An ❛✐-path from ν to ν ′ of length h is either a path from ν to ν ′ of length h or a sequence of
edges ε1, . . . ,εk ,εk+1, . . . ,εh such that εk 6= εk+1 and, for some ν ′′ ∈V with η(ν ′′) ∈ {❛✐↓,❛✐↑},
we have that ε1, . . . ,εk is an ❛✐-path from ν to ν ′′ and εk+1, . . . ,εh is an ❛✐-path from ν ′′ to ν ′.
An ❛✐-path of length h is maximal if no ❛✐-path containing its edges has length greater than
h. An ❛✐-path from (resp., to) ν of length h is a maximal ❛✐-path from (resp., to) ν if no ❛✐-path
from (resp., to) ν containing its edges has length greater than h.

27

D
RA

FT

Example 3.1.2. The flow on the left has the ❛✐-paths on the right, and the paths are marked
with an asterisk:

1

2 3

4

5

1∗

1, 2 2∗ 3∗

1, 2, 4 2, 4∗ 3, 4∗ 4∗

1, 2, 4, 5 2, 4, 5 3, 4, 5 4, 5 5∗

.

In addition, the flow has the paths and ❛✐-paths obtained from the shown ones by inverting
the order of edges, for example 5, 4, 2, 1 is an ❛✐-path. The ❛✐-paths from the interaction vertex
are 1 and 2 and 2, 4 and 2, 4, 5; the ❛✐-paths to the contraction vertex are 1, 2 and 2 and 3 and 4

and 5, 4. The maximal ❛✐-paths are 1, 2, 4, 5 and 3, 4, 5 and their inverses. The maximal ❛✐-paths
from the cointeraction vertex are 4, 2, 1 and 4, 3 and 5; the maximal ❛✐-paths to the contraction
vertex are 1, 2 and 3 and 5, 4.

3.2 Subflows

T: Removed superfluos clause and rephrased slightly to avoid overfull.

Definition 3.2.1. Given two flows φ1 = (V1, E1,η1,u p1, lo1) and φ2 = (V2, E2,η2,u p2, lo2),
we say that φ1 is a subflow of φ2, if

• V1 ⊂V2;

• E1 ⊂ E2;

• η1 = η2|V1
;

• for every ε in E1

u p1(ε) =

(

u p2(ε) if u p2(ε) ∈V1,

⊤ otherwise.
and

lo1(ε) =

(

lo2(ε) if lo2(ε) ∈V1,

⊥ otherwise.
; and

• if ν1 and ν2 are vertices in φ1, and there is a vertex ν ′ in φ2, such that there are paths
from ν1 to ν ′ and from ν ′ to ν2 in φ2, then ν ′ is a vertex in φ1.

T: Renamed a ψ to a φ and added example.

Definition 3.2.2. Given two flows φ and ψ, such that φ is a subflow of ψ, we say that φ is
an isolated subflow of ψ if there is no path in ψ from a vertex in φ to ⊤ or ⊥.

Example 3.2.3. In the following flow, φ is an isolated subflow of ψ:

ψ =
φ .

28

D
RA

FT

For other examples of isolated subflows see Definition 6.2.1 on page 50 and Definition 6.4.1
on page 62.

Definition 3.2.4. Given two flows φ and ψ, such that φ is a subflow of ψ, we say that φ is
a connected component of ψ if, for any two polarity assignments π and π′ for ψ and for any
two edges ε and ε′ in φ, π(ε) =π(ε′) if and only if π′(ε) =π′(ε′).

29

D
RA

FT
Chapter 4

Atomic Flows and Derivations

4.1 Extracting Flows from Derivations

We now define the mapping from derivations to flows. As we said, the idea is that struc-
tural rule instances map to the respective atomic-flow vertices, and the edges trace the atom
occurrences between rule instances. We first state a fact, whose proof is immediate.

T: Rehprased slightly and added “up to isomorphism”.

T: Added sketch of proof.

Proposition 4.1.1. Given a derivation Φ in the system ❙❑❙, there is a unique (up to isomor-
phism) flow φ such that:

1. there is a surjective map between the set of atom occurrences of Φ and the set of edges of φ;

2. there is a bijective map between the set of structural inference rule instances of Φ and the
set of vertices of φ, such that, for each inference rule instance ρ that maps to a vertex ν , the
label of ν are given below, for each possible case of the inference rules:

t
❛✐↓ −−−−−−−−

a1 ∨ ā2
to 1 2 ,

a1 ∧ ā2

❛✐↑ −−−−−−−−
❢

to 1 2 ,

❢
❛✇↓ −−−

a1
to 1 ,

a1

❛✇↑ −−−
t

to 1 ,

a1 ∨ a2

❛❝↓ −−−−−−−−
a3

to
1 2

3

,
a1

❛❝↑ −−−−−−−−
a2 ∧ a3

to
1 2

3

,

and the map between the atom occurrences in the premiss (resp., conclusion) of ρ and the
upper (resp., lower) edges of ν is indicated by small numerals; and

30

D
RA

FT

3. for each inference rule instance of Φ of kind

α ∧ [β ∨ γ]
s−−−−−−−−−−−−−
(α ∧β) ∨ γ

,
(α ∧β) ∨ (γ ∧δ)

♠−−−−−−−−−−−−−−−−−−−−−
[α ∨ γ] ∧ [β ∨δ]

,

α ∨β
=∨❝ −−−−−−
β ∨α

,
α ∧β

=∧❝ −−−−−−
β ∧α

,
α ∨ [β ∨ γ]

=
❛
↓ −−−−−−−−−−−−−
[α ∨β] ∨ γ

,
(α ∧β) ∧ γ

=
❛
↑ −−−−−−−−−−−−−
α ∧ (β ∧ γ)

,

α
=

❢
↓ −−−−−
α ∨ ❢

,
α

=
t
↓ −−−−−
α ∧ t

,
t ∧α

=
❢
↑ −−−−−
α

and
❢ ∨α

=
t
↑ −−−−−
α

all the atom occurrences in α, β, γ and δ in the premiss are respectively mapped to the
same edges of φ as the atom occurrences in α, β, γ and δ in the conclusion.

Proof. We sketch the proof: We proceede by induction on Φ. If Φ is a formula or a horizontal
composition of derivations, the result is immediate. Otherwise, if Φ is a vertical composition
of two derivations by an inference rule, the result follows by induction and a case analysis of
each inference rule of ❙❑❙.

T: I decided not to do this for lack of time (unless you insist of course):

TODO Macro for “mapped from occurrences of”.

Definition 4.1.2. Given a derivation Φ, we say that the flow φ constructed in the proof of
Proposition 4.1.1 on the previous page is the (atomic) flow associated with the derivation Φ.
Sometimes, when an atom occurrence a in Φ is mapped to an edge ε inφ, we decorate a with
the label ε or the label φ.

Example 4.1.3. Figure 4-1 on the following page has three examples of derivations and their
associated flows, where colors are used to indicate the mapping from atom occurrences to
edges.

Definition 4.1.4. Given a derivation Φ with flow φ, and an atom a, the restriction of φ to a
is the largest subflow φa of φ, such that every edge of φa is mapped to from a or ā.

Example 4.1.5. Consider the rightmost derivation and its associated flow in Figure 4-1 on
the next page. The restriction of this flow to a is:

T: Gave the motivation for the following theorem.

We now show that the definition of atomic flows is ‘minimal’, in the sense that, if we
restrict the definition, Proposition 4.1.1 on the preceding page is no longer true.

Theorem 4.1.6. Every atomic flow is associated with some derivation.

31

D
RA

FT
t

❛✐↓ −−−−−
a ∨ ā

=−−−−−−−−−−−−−−−−
(a ∧ t) ∨ (t ∧ ā)

♠−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [t ∨ ā]

=−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [ā ∨ t]

s−−−−−−−−−−−−−−−−−
([a ∨ t] ∧ ā) ∨ t

=−−−−−−−−−−−−−−−−−
(ā ∧ [a ∨ t]) ∨ t

s−−−−−−−−−−−−−−−−−
[(ā ∧ a) ∨ t] ∨ t

=−−−−−−−−−−−−−−−−−
(a ∧ ā) ∨ t

❛✐↑ −−−−−−−−−−−
❢ ∨ t

=−−−−
t

(a ∧ [ā ∨ t]) ∧ ā
❛✐↓ −−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā

=−−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

❛❝↓ −−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ ā) ∨ a] ∧ ā

❛✐↑ −−−−−−−−−−−−−−−−−−
[❢ ∨ a] ∧ ā

=−−−−−−−−−−−
a ∧ ā

❛❝↑ −−−−−−−−−−−
(a ∧ a) ∧ ā

=−−−−−−−−−−−
a ∧ (a ∧ ā)

❛✐↑ −−−−−−−−−−−
a ∧ ❢

[a ∨ b] ∧ a
❛❝↑ −−−−−−−−−−−−−−−−−−
[(a ∧ a) ∨ b] ∧ a

❛❝↑ −−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ a) ∨ (b ∧ b)] ∧ a

❛❝↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)

♠−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t
−−−−−
a ∨ ā

♠−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [t ∨ ā]

s−−−−−−−−−−−−−−−−−−−−−−−−







[a ∨ t] ∧ ā
s−−−−−−−−−−−

a ∧ ā
−−−−−

❢
∨ t

∨ t



























a ∧

�

ā ∨
t
−−−−−
ā ∨ a

�

s−−−−−−−−−−−−−−−−−−−−−

a ∧
ā ∨ ā
−−−−−

ā
−−−−−−−−−−−

❢

∨
a
−−−−−
a ∧ a

∧ ā



















=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a ∧
a ∧ ā
−−−−−

❢

a
−−−−−
a ∧ a

∨
b
−−−−−−
b ∧ b

♠−−−−−−−−−−−−−−−−−−−
[a ∨ b] ∧ [a ∨ b]

∧
a
−−−−−
a ∧ a

Figure 4-1: Examples of derivations in the calculus of structures (top row), their translation
into the functorial calculus (middle row), and the flows associated with the latter (bottom
row).

32

D
RA

FT

Proof. First, we show that, for any atom a and formula contexts ξ { } and ζ { }, there exists
a derivation

(ξ {{t} ∧ ζ {a}) ∨ t

{s,♠}

(ξ {{a} ∧ ζ {❢}) ∨ t

,

in other words we can ‘move’ the atom a from the context ξ { } to the context ζ { } by using
a derivation whose flow contains no vertices:

























ξ {t} ∧ ζ {a}
ss−−−−−−−−−−−−−−
ξ {a} ∨ ζ {❢}

=−−−−−−−−−−−−−−−−−−−−−−−−−
(ξ {a} ∧ t) ∨ (t ∧ ζ {❢})

♠−−−−−−−−−−−−−−−−−−−−−−−−−−
[ξ {a} ∨ t] ∧ [t ∨ ζ {❢}]

=−−−−−−−−−−−−−−−−−−−−−−−−−−
[ξ {a} ∨ t] ∧ [ζ {❢} ∨ t]
s−−−−−−−−−−−−−−−−−−−−−−−−−−
([ξ {a} ∨ t] ∧ ζ {❢}) ∨ t

∨ t

























=−−�

ζ {❢} ∧ [ξ {a} ∨ t]
s−−−−−−−−−−−−−−−−−−−−
(ζ {❢} ∧ ξ {a}) ∨ t

∨ t

�

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(ξ {a} ∧ ζ {❢}) ∨ t

.

This construction can be used repeatedly to build the derivation Ψ, for h ¾ 0:

�

ξ {t} · · · {t} ∧ ζ {a1} · · · {ah}
�

∨ t

Ψ

{s,♠}
�

ξ {a1} · · · {ah} ∧ ζ {❢} · · · {❢}
�

∨ t

.

We can now prove the theorem by induction on the number of vertices of a given flow φ.
The cases where φ only has zero or one vertex are trivial. Let us then suppose that φ has
more than one vertex; then φ can be considered as composed of two flows φ1 and φ2, each
with fewer vertices than φ, as follows:

φ =

φ
1

ε
1 · · ·

ε
h

φ
2

,

where h ¾ 0 (this can possibly be done in many different ways). By the inductive hypothesis,

there exist derivations
γ

Φ1

ζ {aε1

1
} · · · {a

εh

h
}

and
ξ {aε1

1
} · · · {a

εh

h
}

Φ2

δ
whose flows are, respectively, φ1

33

D
RA

FT

and φ2. Using these, we can build












ξ {t} · · · {t} ∧

γ
Φ1

ζ {aε1

1
} · · · {a

εh

h
}






∨ t







Ψ













ξ {aε1

1
} · · · {a

εh

h
}

Φ2

δ
∧ ζ {❢} · · · {❢}






∨ t







,

whose flow is φ.

T: Added example (from paper on quasipolynomial normalisation.

TODO Clean up the following example (cf. AFII).

Example 4.1.7. As we mention at the beginning of this section, atomic flows help in selec-
tively substituting for atom occurrences. In fact, given a derivation and its associated flow, we
can use edges and boxes to individuate atom occurrences in the derivation, and then possibly
substitute for them. For example, let us suppose that we are given the following associated
derivation and flow:

Φ=



















(a ∧ ❢) ∨

�

a ∧
❢
−−−
ā

�

♠−−−−−−−−−−−−−−−−−−−−−
a ∨ a
−−−−−

a
∧

❢ ∨ ā
=−−−−−

ā
−−−−−−−−−−−−−−−

❢

∨ ā



















and
1

.

We can then distinguish between the three occurrences of ā that are mapped to edge 1 and
the one that is not, as in

Φ=



















(a ∧ ❢) ∨

�

a ∧
❢
−−−
ā1

�

♠−−−−−−−−−−−−−−−−−−−−−
a ∨ a
−−−−−

a
∧

❢ ∨ ā1

=−−−−−−
ā1

−−−−−−−−−−−−−−−−
❢

∨ ā



















;

we can also substitute for these occurrences, for example by {ā1/❢}; such a situation occurs
in the proof of Theorem 6.2.3 on page 50. Note that simply substituting ❢ for ā1 would
invalidate this derivation because it would break the cut and weakening instances; however,
the proof of Theorem 6.2.3 specifies how to fix the broken cut instance and Proposition 4.1.8
on the following page specifies how to fix the broken weakening.

We generalise this labelling mechanism to boxes. For example, we can use a different
representation of the flow of Φ to individuate two classes aφ and āφ of atom occurrences, as

34

D
RA

FT

follows:

Φ=





















(a ∧ ❢) ∨

a ∧
❢
−−−
āφ

!

♠−−−−−−−−−−−−−−−−−−−−−−
a ∨ a
−−−−−
aφ
∧

❢ ∨ āφ
=−−−−−−−

āφ
−−−−−−−−−−−−−−−−−

❢

∨ āφ





















and φ

T: Moved the following Proposition, Notation and Remark from the sectoin on Global Re-
ductions.

Proposition 4.1.8. Given a derivation
α
Φ

❙❑❙

β
, let its associated flow have shape

φ ψ ,

such thatφ is a connected component whose edges are each associated with occurrences of the atom
a; then, for any formula γ , there exists a derivation

α{aφ/γ}
Ψ

❙❑❙

β{aφ/γ}

whose associated flow is

f
1
(φ) fn (φ) ψ
· · ·

where n is the number of atom occurrences in γ ; moreover, the size of Ψ depends linearly on the
size of Φ and quadratically on the size of γ .

Proof. We can proceed by structural induction on Φ. For every formula in Φ we substitute
aφ with γ . Since all the edges in φ are mapped to from a (and not ā), we know that all the
vertices in φ are mapped to from instances of ❛❝↓, ❛❝↑, ❛✇↓ and ❛✇↑. We substitute every
instance of ❛❝↓, ❛❝↑, ❛✇↓ and ❛✇↑ where aφ appears, by ❝↓, ❝↑, ✇↓, ✇↑, respectively, with γ in
the place of aφ. The result then follows by Lemma 2.3.11 on page 18 and Lemma 2.3.12 on
page 18.

Notation 4.1.9. The derivation Ψ obtained in the proof of Propostion 4.1.8 is denoted
Φ{aφ/γ}.

Remark 4.1.10. The notion of substitution can be extended to allowφ to contain interaction
and cut vertices, but we shall not need that in this thesis.

35

D
RA

FT

4.2 A Normal Form of Derivation

In this section we introduce the ❛✐-decomposed form of a derivation. The reason for introduc-
ing this normal form is that we will often find it convenient to assume that identity instances
appear at the top and cut instances appear at the bottom of a derivation. The important fea-
tures of this normal form is that a derivation can be transformed into ❛✐-decomposed form
without changing its atomic flow, and without significantly changing its size.

Definition 4.2.1. Given two derivations

α
Φ

β
and Ψ =

�

t
−−−−−−−
a1 ∨ ā1

∧ · · · ∧
t

−−−−−−−−
an ∨ ān

∧ α

�

❙❑❙\{❛✐↓,❛✐↑}


β ∨
bm ∧ b̄m
−−−−−−−−−−

❢
∨ · · · ∨

b1 ∧ b̄1
−−−−−−−−

❢





,

for some atoms a1, . . . ,an , b1, . . . , bm , such that Φ and Ψ have isomorphic flows, we say that
Ψ is an ❛✐-decomposed form of Φ.

Convention 4.2.2. Given a derivation Φ and an ❛✐-decomposed form of Φ:

�

t
−−−−−−−
a1 ∨ ā1

∧ · · · ∧
t

−−−−−−−−
an ∨ ān

∧
t

−−−−−−−
c1 ∨ c̄1

∧ · · · ∧
t

−−−−−−−
ck ∨ c̄k

∧ α

�

❙❑❙\{❛✐↓,❛✐↑}


β ∨
dl ∧ d̄l
−−−−−−−−

❢
∨ · · · ∨

d1 ∧ d̄1
−−−−−−−−

❢
∨

bm ∧ b̄m
−−−−−−−−−−

❢
∨ · · · ∨

b1 ∧ b̄1
−−−−−−−−

❢





,

we sometimes want to single out only some of the interaction or cut instances. We therefore
also call the following, partially sequentialised, derivation an ❛✐-decomposed form of Φ:

�

t
−−−−−−−
a1 ∨ ā1

∧ · · · ∧
t

−−−−−−−−
an ∨ ān

∧ α

�

=−−−�

[a1 ∨ ā1] ∧ · · · ∧
�

an ∨ ān

�

∧
t

−−−−−−−
c1 ∨ c̄1

∧ · · · ∧
t

−−−−−−−
ck ∨ c̄k

∧ α

�

❙❑❙\{❛✐↓,❛✐↑}


β ∨
dl ∧ d̄l
−−−−−−−−

❢
∨ · · · ∨

d1 ∧ d̄1
−−−−−−−−

❢
∨
�

bm ∧ b̄m

�

∨ · · · ∨
�

b1 ∧ b̄1

�





=−−−

β ∨
bm ∧ b̄m
−−−−−−−−−−

❢
∨ · · · ∨

b1 ∧ b̄1
−−−−−−−−

❢





.

Theorem 4.2.3. Given a derivation Φ, an ❛✐-decomposed form of Φ whose size depends at most
cubically on the size of Φ can be constructed.

36

D
RA

FT

Proof. Using Lemma 2.3.8 on page 17 apply, from top-to-bottom and left-to-right, the fol-
lowing transformations to each of the identity and cut instances in Φ:

α
Ψ

ξ

¨

t
−−−−−
a ∨ ā

«

Ψ′

β

→







t
−−−−−
a ∨ ā

∧

α
Ψ

ξ {t}







ss↑ −−−−−−−−−−−−−−−−−−−−−−
ξ [a ∨ ā]
Ψ′

β

and

α
Ψ

ξ

¨

a ∧ ā
−−−−−

❢

«

Ψ′

β

→

α
Ψ

ξ (a ∧ ā)
ss↓ −−−−−−−−−−−−−−−−−−−−−





ξ {❢}
Ψ′

β
∨

a ∧ ā
−−−−−

❢







to obtain an ❛✐-decomposed form of Φ. The size of the ❛✐-decomposed form obtained in this
way depends at most cubically on the size of Φ, since, by Lemma 2.3.8 on page 17, each of
the transformations increase the size of the derivation at most quadratically and the number
of transformations is bound by the size of Φ.

Remark 4.2.4. The only reason to insist on performing the transformations in the proof
of Theorem 4.2.3 on the preceding page in a certain order is to ensure that the resulting
derivation is unique. The uniqueness is useful in the following definition.

Definition 4.2.5. Given a derivation Φ, the ❛✐-decomposed form of Φ obtained as described
in the proof of Theorem 4.2.3 on the previous page is called the (canonical) ❛✐-decomposed
form of Φ.

37

D
RA

FT
Chapter 5

Normal Forms

In this chapter we see the first use of atomic flows, namely to define normal forms of deriva-
tions. Traditionally, in Gentzen-style formalisms, a derivation in normal form is a cut-free
derivation. The notion of cut-freeness is a syntactic notion, which does not translate nicely
to the more general deep-inference formalisms.

In both Gentzen-style formalisms and deep-inference formalisms, the cut can be consid-
ered horizontal composition of two proofs. We make two observations: 1) deep-inference
formalisms are symmetric in the vertical axis, whereas Gentzen-style formalisms are not; and
2) in order for the cut to be admissible from deep-inference derivations the symmetry must
be broken, to correspond to the asymmetry of Gentzen-style formalisms. In particular, the
cut is only admissible from proofs and not derivations.

These observations prompted us to look for a generalisation of cut elimination that work
for all deep-inference derivations. Furthermore, since we are in the business of designing new
formalisms, we wanted normal forms based on geometric notions which would be as syntax
independent as possible.

We defined normal forms based on the causal dependency between structural inference
rule instances. Atomic flows contain (by design) exactly the information needed in order to
define normal forms in this way.

We call our generalisation of cut elimination streamlining and we describe it in terms
of atomic flows. Intuitively, if we consider identities and weakenings to be the ‘creators’ of
atom occurrences, and cuts and coweakening as the ‘destroyers’ of atom occurrences, then
an atomic flow is streamlined if no atom is first created and then destroyed. The shape of a
streamlined atomic flow is given in case (4) of Definition 5.0.1 on the following page.

The most challenging aspect of streamlining is the elimination of paths from interaction
to cut vertices. For this reason, we define the notion of weakly streamlined atomic flows, in
case (3) of Definition 5.0.1. An atomic flow is weakly streamlined if it contains no paths from
interaction to cut vertices. This is the topic of Chapter 6 on page 44.

A path can be eliminated by removing the edges that make up the path. However, we

38

D
RA

FT

might imagine a situation where an edge belongs to two paths, one we want to eliminate
and one we want to keep. An atomic flow is in simple form, if this situation does not occur.
One approach to eliminating paths from a flow is to transform it into simple form and then
eliminating the edges connecting interaction and cut vertices.

Sometimes, the elimination of edges mapped to by an atom a might interfere with the
elimination of edges mapped to from the atom ā. For this reason, we find it convenient
to define special cases of simple form and weakly streamlined, where for every pair of dual
atoms the edges mapped to from one of them are ignored. These are cases (1) and (2) of
Definition 5.0.1.

T: Added one bullet point for each normal form:

In summary, the intuition behind each of the normal forms in Definition 5.0.1 is:

1. a flow is in simple form with respect to a given polarity assignment, if all the edes with
a positive polarity assignment can be partitioned into two classes, the ones that belong
to paths connecting identity and cut vertices (the rightmost box markde with a + in
the below figure) and the ones that do not (the four leftmost boxes marked with + in
the below figure);

2. a flow is weakly streamlined with respect to a given polarity assignment, if there are
no edges with a possitive polarity assignment in paths from interaction cut to vertices;

3. a flow is weakly streamlined if it contains no paths from interaction to cut vertices;

4. a weakly streamlined flow is streamlined if it contains no paths from interaction (resp.,
cut) to coweakening (resp., weakening) vertices, or from weakening to coweakening
vertices;

5. a streamlined flow is super streamlined if it contains no paths from (co)weakening to
(co)contraction vertices; and

6. a super streamlined flow is hyper streamlined if it contains no path whose first edge is
an upper edge of a cocontraction vertex and last edge is the lower edge of a contraction
vertex.

Definition 5.0.1. An atomic flow is

1. in simple form with respect to the polarity assignment π if it can be represented as

+

+

+

+

+ − ;

39

D
RA

FT

2. weakly streamlined with respect to the polarity assignment π if it can be represented as

+

+

+

+

− ;

3. weakly streamlined if it can be represented as

;

4. streamlined if it can be represented as

;

5. super streamlined if it can be represented as

; and

6. hyper streamlined if it can be represented as

.

40

D
RA

FT

Definition 5.0.2. A derivation with associated flow φ is in simple form with respect to (the
atom) a, if π is a polarity assignment for φ, such that the edges in φ mapped to from oc-
currences of a have a positive polarity, and the restriction of φ to a is in simple form with
respect to π.

Definition 5.0.3. A derivation with associated flow φ is weakly streamlined (resp., stream-
lined, super streamlined and hyper streamlined) if φ is weakly streamlined (resp., streamlined,
super streamlined and hyper streamlined). The derivation is weakly streamlined with respect to
(the atom) a, if π is a polarity assignment for φ, such that the edges in φ mapped to from
occurrences of a have a positive polarity, and the restriction of φ to a is weakly streamlined
with respect to π.

Example 5.0.4. The first flow is weakly streamlined, the other two are hyper streamlined:

, and .

We now state some facts whose proofs are immediate from Definition 5.0.1 on page 39.

Proposition 5.0.5. Given a polarity assignment π, a flow that is weakly streamlined with
respect to both π and π̄ is weakly streamlined.

Proposition 5.0.6. A streamlined flow with no pair of upper (resp., lower) edges such that there
is an ❛✐-path between them, contains no cut (resp., axiom) vertices.

T: Removed the use of the name KS, as this was the only place it was used and as it was not
defined.

The following proposition makes the connection between cut elimination and streamlin-
ing. We consider the special case of atomic flows of proofs, i.e., atomic flows without upper
edges, and observe that a streamlined proof is cut free and a hyper streamlined proof is a
proof in the system ❙❑❙ \ {❛✐↑,❛❝↑,❛✇↑}.

Proposition 5.0.7. Given an atomic flow with no upper (resp., lower) edges, it can be represented
as

1.














resp.,















,

if it is streamlined;

41

D
RA

FT

2.














resp.,















,

if it is super streamlined; and

3.














resp.,















,

if it is hyper streamlined.

42

D
RA

FTPart III

Normalisation

43

D
RA

FT
Chapter 6

Global Reductions

In this and the next chapter we see the second use of atomic flows: Controlling normalisation
of derivations. Conventional wisdom teaches us that normalisation is a delicate property, and
that a careful design of inference rules is necessary in order to obtain it. Atomic flows were
designed to describe normal forms, by removing a lot of information about the inference
rules, it is therefore surprising that they contain enough information to design normalisation
procedures.

There are two kinds of flow reductions: global and local ones. Global reductions rewrites
the entire flow: normally, two or more slightly altered copies of a flow are connected together.
Local reductions substitutes a bounded subflow in a flow by another subflow that fits in the
context.

T: Added paragraph:

Alternatively, as suggested by François Lamarche, we could talk about external and in-
ternal instead of global and local reductions. This guides the intuition in the sense that the
global reductions never ‘look inside’ the flows they work on. The size of the flows being
copied is unbounded, however, the alterations to each of the copies are bounded, and it al-
ways happens at the ‘outside’ of the flow.

This chapter is dedicated to the most challenging part of normalisation: obtaining weakly
streamlined derivations through global reductions. The process is non-confluent, and at first
glance it increases the size of derivations exponentially. However, a second surprise was the
fact that we are able to design procedures for weakly streamlining which only grow deriva-
tions quasipolynomially.

We will define several ‘atomic flow reductions’ which can be combined in different ways
in order to obtain normalisation. Since we aim to produce derivations on normal forms,
and not only their atomic flows, we find it convenient to define operators on derivations in
terms of the flow reductions. It is important to note that we could have performed all the
procedures purely in terms of atomic flows. The final results about derivations would follow
from the ‘soundness’ of the flow reductions. We chose to be a bit more explicit and provide
the derivations directly.

44

D
RA

FT

T: Changed from f and g to u and l .

Definition 6.0.1. An (atomic-flow) reduction R is a binary relation on the set of atomic flows,
such that φ Rψ if

1. there is a one-to-one map, u, from the upper edges of φ to the upper edges of ψ;

2. there is a one-to-one map, l , from the lower edges of φ to the lower edges of ψ; and

3. for every polarity assignment π forφ, there is a polarity assignment π′ for ψ such that
π′(u(ε)) =π(ε) and π′(l (ι)) =π(ι), for any upper edge ε and any lower edge ι of φ′.

We call φ a redex and ψ a contractum of R.

Convention 6.0.2. Given a reduction R and two flowsφ andψ, such thatφ Rψ, we indicate
the bijections u and l by labeling the upper (resp., lower) edge u(ε) (resp., l (ε)) of ψ by ε, for
every upper (resp., lower) edge ε of φ.

T: Added explanation:

It is important to notice the difference in notation, between the bijections between edges
belonging to isomorphic flows, and the bijections between upper and lower edges in a re-
dex/contractum pair. For an example of these two conventions being used simultaneously,
see Definition 6.1.1 on the following page.

Definition 6.0.3. A reduction R is sound if, for every φ and ψ, such that φ R ψ, and for
every derivation Φ with flow φ, there is a derivation Ψ with atomic flow ψ such that Φ and
Ψ have the same premiss and conclusion; in this case we write Φ RΨ.

Convention 6.0.4. We provide constructive soundness proofs for every reduction in this
thesis, so from now on, for any reduction R, when we write Φ R Ψ, we mean that Ψ is the
derivation obtained form Φ in the soundness proof of R.

T: Added remark:

Remark 6.0.5. Alternatively, as suggested by François Lamarche, instead of saying that a
reduction is sound, we could say that it is liftable. The constructive soundness proofs which
we will see later on, then becomes liftings.

Convention 6.0.6. To avoid ambiguity in Definition 6.1.1 on the next page, Definition 6.2.1
on page 50, Definition 6.3.1 on page 55 and Definition 6.4.1 on page 62 we have establish
the following convention: Let ε = ε1, . . . ,εn , ι = ι1, . . . , ιm , ε′ = ε′

1
, . . . ,ε′

n
and ι′ = ι′

1
, . . . , ι′

m
,

then, when we write

ε

f
1
(ε) · · · fk (ε)

and

ι

f
1
(ι) · · · fk (ι)

45

D
RA

FT

we mean
ε

1

f
1
(ε

1
) · · · fk (ε1

)

· · ·

εn

f
1
(εn) · · · fk (εn)

and

ε
1

f
1
(ε

1
) · · · fk (ε1

)

· · ·

εn

f
1
(εn) · · · fk (εn)

,

respectively. In other words, edges are not connected in unexpected ways.

6.1 Simplifier

Consider a flow φ′ with polarity assignemnt π, such that φ is the subflow of φ′ containing
all the edges with a positive polarity assignment. We can observe that φ contains four types
of paths: 1) paths from ⊤ to ⊥; 2) paths from an interaction vertex to ⊥; 3) paths from ⊤
to a cut vertex; and 4) paths from an interaction vertex to a cut vertex. We can turn φ′ into
simple form with respect toπ if we can make sure that no edge belongs to both a path of type
1) and a path of type 4). In the following reduction, we acheive this by making four copies of
φ each of which only contains one of the above types of paths.

Definition 6.1.1. We define the reduction→s❢ (where s❢ stands for simple form) as follows,
for any two flows φ and ψ that do not contain any interaction or cut vertices:

ε
1

ε
2

ε
3 ε

4

φ ψ

ι
1

ι
2

ι
3

ι
4

→s❢

ε
1

f
1
(ε

1
) f

1
(ε

2
)

f
1
(φ)

f
1
(ι

1
) f

1
(ι

2
)

ι
1

f
2
(ε

1
) f

2
(ε

2
)

f
2
(φ)

f
2
(ι

1
) f

2
(ι

2
)

f
3
(ε

1
) f

3
(ε

2
)

f
3
(φ)

f
3
(ι

1
) f

3
(ι

2
)

f
4
(ε

1
) f

4
(ε

2
)

f
4
(φ)

f
4
(ι

1
) f

4
(ι

2
)

ε
4

g (ε
4
)g (ε

3
)

g (ψ)

g (ι
3
) g (ι

4
)

ι
4

.

Remark 6.1.2. The reduction→s❢ would still be sound if we removed the restriction on the
flows φ and ψ in Definition 6.1.1. However, such a reduction would no longer correspond
to the intuition described above.

Theorem 6.1.3. Reduction →s❢ is sound; moreover if Φ→s❢ Ψ, then the size of Ψ depends at
most polynomially on the size of Φ.

Proof. Let Φ be a derivation with flow φ′, such that φ′→s❢ ψ
′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 6.1.1.

46

D
RA

FT

Assume all the edges in φ are mapped to from occurrences of the atoms a1, . . . , an , and
let

t
−−−−−−−−−

a
φ
1
∨ ā

ψ
1

∧ · · · ∧
t

−−−−−−−−−

a
φ
n ∨ ā

ψ
n

∧ α

!

Φ′

{❛✐↓,❛✐↑}


β ∨
a
φ
n ∧ ā

ψ
n

−−−−−−−−−
❢

∨ · · · ∨
a
φ
1
∧ ā

ψ
1−−−−−−−−−

❢





,

be the ❛✐-decomposed form of Φ.

We show several intermediate derivations which will be used to build Ψ. To make it
easier to verify the flow of Ψ, we will, through a slight misuse of notation, label the atom oc-
currences of the intermediate derivations to indicate what atomic flow each atom occurrence
will map to, once the derivations are combined to create Ψ.

Consider the substitution

σ = {aφ
1
/([a f1(φ)

1
∨ a

f2(φ)
1
] ∧ [a

f3(φ)
1

∨ a
f4(φ)
1
]), . . . ,aφ

n
/([a f1(φ)

n
∨ a f2(φ)

n
] ∧ [a f3(φ)

n
∨ a f4(φ)

n
])} .

We can then obtain, by Proposition 4.1.8 on page 35, the derivation Φ′σ with flow

f
1
(ε

1
) f

1
(ε

2
)

f
1
(φ)

f
1
(ι

1
) f

1
(ι

2
)

f
2
(ε

1
) f

2
(ε

2
)

f
2
(φ)

f
2
(ι

1
) f

2
(ι

2
)

f
3
(ε

1
) f

3
(ε

2
)

f
3
(φ)

f
3
(ι

1
) f

3
(ι

2
)

f
4
(ε

1
) f

4
(ε

2
)

f
4
(φ)

f
4
(ι

1
) f

4
(ι

2
)

g (ε
3
) g (ε

4
)

g (ψ)

g (ι
3
) g (ι

4
)

.

For every 1¶ i ¶ n, there exist derivations

ai
−−

a
f1(φ)
i

∨
❢
−−−−−−

a
f2(φ)
i



 ∧



a
f3(φ)
i

∨
❢
−−−−−−

a
f4(φ)
i





and
a

f1(φ)
i

∨ a
f2(φ)
i−−−−−−−−−−−−−−−−

ai

∧





a
f3(φ)
i−−−−−−
t
∨

a
f4(φ)
i−−−−−−
t



 ,

which allow us to build
α

Ψ⊤

ασ
and

βσ
Ψ⊥

β
,

with flows

f
1
(ε

1
) f

3
(ε

1
) f

2
(ε

1
) f

4
(ε

1
) g (ε

4
)

and
f
1
(ι

1
) f

2
(ι

1
) f

3
(ι

1
) f

4
(ι

1
) g (ι

4
)

,

47

D
RA

FT

respectively. Furthermore, for every 1¶ i ¶ n, there exist derivations

Ψt,i =

t
−−−−−−−−−−−

a
f2(φ)
i

∨ āi

∧
t

−−−−−−−−−−−

a
f4(φ)
i

∨ āi
s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a
f2(φ)
i

∧ [a
f4(φ)
i

∨ āi]
s−−−−−−−−−−−−−−−−−−−−−−−

(a
f2(φ)
i

∧ a
f4(φ)
i
) ∨ āi

∨ āi

=−− 



❢
−−−−−−

a
f1(φ)
i

∨ a
f2(φ)
i



 ∧





❢
−−−−−−

a
f3(φ)
i

∨ a
f4(φ)
i





!

∨
āi ∨ āi
−−−−−−−

ā
g (ψ)
i

and

Ψ❢,i =

 



a
f1(φ)
i−−−−−−
t
∨

a
f2(φ)
i−−−−−−
t



 ∧ [a
f3(φ)
i

∨ a
f4(φ)
i
]

!

∧
ā

g (ψ)
i−−−−−−−

āi ∧ āi
=−−−h

a
f3(φ)
i

∨ a
f4(φ)
i

i

∧ āi
s−−−−−−−−−−−−−−−−−−−−−−−−−

a
f3(φ)
i

∨

�

a
f4(φ)
i

∧ āi

� ∧ āi

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a
f3(φ)
i

∧ āi
−−−−−−−−−−−

❢
∨

a
f4(φ)
i

∧ āi
−−−−−−−−−−−

❢

,

which allow us to build

Ψt =









t

Ψ
t,1

[a
φ
1
∨ ā

ψ
1
]σ
∧ · · · ∧

t

Ψ
t,n

[a
φ
n ∨ ā

ψ
n]σ









and

Ψ❢ =









(a
φ
n ∧ ā

ψ
n)σ

Ψ
❢,n

❢

∨ · · · ∨
(a
φ
1
∧ ā

ψ
1
)σ

Ψ
❢,1

❢









,

with flows

f
1
(ε

2
) f

2
(ε

2
) g (ε

3
) f

4
(ε

2
) f

3
(ε

2
)

and
f
1
(ι

2
) f

2
(ι

2
) f

4
(ι

2
)g (ι

3
)f

3
(ι

2
)

,

respectively. Combining these derivations we can build

Ψ =

α
Ψ

t
∧Ψ⊤

�h

a
φ
1
∨ ā

φ
1

i

∧ · · · ∧
h

a
φ
n ∨ ā

φ
n

i

∧α
�

σ

Φ′σ

h

β ∨
�

a
φ
n ∧ ā

ψ
n

�

∨ · · · ∨
�

a
φ
1
∧ ā

ψ
1

�i

σ

Ψ⊥∨Ψ❢

β

,

with the desired flow.

48

D
RA

FT

We know that the size of Φ′σ depends at most polynomially on the size of Φ by Theo-
rem 4.2.3 on page 36 and Proposition 4.1.8 on page 35, and it is straightforward to observe
that the sizes of Ψt, Ψ⊤, Ψ❢ and Ψ⊥ depend at most linearly on the size of Φ, so the size of Ψ
depends at most polynomially on the size of Φ.

Definition 6.1.4. The Simplifier, ❙✐, is an operator whose arguments are distinct and pairwise
non-dual atoms a1, . . . , an and a derivation Φ, with flow

φ ψ ,

such that all the edges in φ are mapped to from occurrences of a1, . . . , an and no edges in
ψ are mapped to from occurrences of a1, . . . , an . We then define ❙✐(Φ,a1, . . . ,an) to be such
that Φ →s❢ ❙✐(Φ,a1, . . . ,an), where φ and ψ are the flows, by the same names, shown in
Definition 6.1.1 on page 46.

Proposition 6.1.5. Given distinct and pairwise non-dual atoms a1, . . . , an , and a derivation Φ,

1. ❙✐(Φ,a1, . . . ,an) is in simple form with respect to a1, . . . , an ;

2. for any atom b , if Φ is weakly streamlined with respect to b , then ❙✐(Φ,a1, . . . ,an) is
weakly streamlined with respect to b ; and

3. the size of ❙✐(Φ,a1, . . . ,an) depends at most polynomially on the size of Φ.

Proof. In the following we refer to the figure in Definition 6.1.1 on page 46:

• by case (1) of Definition 5.0.1 on page 39;

• by studying the flows in Definition 6.1.1 we can observe that for every path from an
interaction vertex to a cut vertex in the atomic flow of ❙✐(Φ,a1, . . . ,an)whose edges are
mapped to from occurrences of b , there is a path from an interaction vertex to a cut
vertex in the flow of Φ whose edges are mapped to from occurrences of b ; and

• by Theorem 6.1.3 on page 46.

6.2 Isolated Subflow Removal

Given a derivation Φ in simple form with respect to an atom a, the operator, ■❙❘, defined
in this section produces a derivation with the same premiss and conclusion as Φ, which is
weakly streamlined with respect to a.

T: occurrences of

49

D
RA

FT

We will see later how a derivation containing occurrences of n atoms can be weakly
streamlined by two applications of ❙✐ and n applications of ■❙❘. This is the most basic pro-
cedure for obtaining a weakly streamlined derivation, in particular it only deals with one
atom at a time. In the following sections we will see how we can deal with several atoms in
parallell.

The operator is defined in terms of the following flow reduction.

T: connected flom -> connected component

Definition 6.2.1. We define the reduction→✐s (where ✐s stands for isolated subflow) as follows,
for any flowφ and any connected componentψ that does not contain identity or cut vertices:

ε

φ ψ

ι

→✐s

f
1
(ε) f

2
(ε)

ε

f
1
(φ)

f
2
(φ)

f
1
(ι) f

2
(ι)

ι

,

where we call the evidenced interaction (resp., cut) vertex ν❛✐↓ (resp., ν❛✐↑).

T: Corrected remark (cf. change to Definition 6.3.1 on page 55).

Remark 6.2.2. The condition on the flow ψ in Definition 6.2.1 ensures that all the edges in
ψ are mapped to from occurrences of the same atom. However, the reduction would still be
sound if, at the expense of a slightly more verbose soundness proof, we relaxed the condition
to say that there is a path from ν❛✐↓ to ν❛✐↑.

Theorem 6.2.3. Reduction →✐s is sound; moreover, if Φ →✐s Ψ, then the size of Ψ depends
polynomially on the size of Φ.

Proof. Let Φ be a derivation with flow φ′, such that φ′ →✐s ψ
′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 6.2.1.

Since ψ is connected, we assume, by Convention 4.2.2 on page 36, that the following
derivation is an ❛✐-decomposed form of Φ:

t
−−−−−−−
aψ ∨ ā

∧ α

!

Φ′



β ∨
aψ ∧ ā
−−−−−−−

❢





,

50

D
RA

FT

for some atom a and formulae α and β.

We obtain the two derivations Φt and Φ❢ from Φ′ as follows:

Φt =
[t ∨ ā] ∧α

Φ′{aψ/t}

β ∨ ā
and Φ❢ =

ā ∧α
Φ′{aψ/❢}

β ∨ (❢ ∧ ā)
.

Since ψ is connected and contains no identity or cut vertices, the mapping from all the
occurrences aψ to edges of ψ is surjective. Hence, we know that both derivation Φt and Φ❢

have a flow isomorphic to φ. We combine Φt and Φ❢ to get the desired derivation Ψ with
flow ψ′ and the same premiss and conclusion as Φ:

Ψ =

α
❝↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−��

t ∨
❢
−−−
ā

�

∧ α

�

Φ
t

β ∨ ā

∧ α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

β ∨

ā ∧α
Φ

❢

�

β ∨

�

❢ ∧
ā
−−−
t

��

❝↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
β

.

We know that the size of Φt and the size of Φ❢ depend polynomially on the size of Φ by
Theorem 4.2.3 on page 36 and Proposition 4.1.8 on page 35, and that the size of Ψ depends
at most quadratically on the size of α and β by Lemma 2.3.12 on page 18, so the size of Ψ
depends polynomially on the size of Φ.

T: Added explanation:

We now show the basic properties of →✐s. Namely, that the reduction does not create
any ‘new’ interaction or cut vertices, and that it does not create any ‘new’ paths between
interaction or ⊤ and cut or ⊥ vertices.

T: Exchanged ⊤ and ⊥ in item 2, and clarified statement.

T: Changed from itemize to enumerate to make it a bit clearer.

Lemma 6.2.4. In the following we refer to the names given in Definition 6.2.1 on the previous
page. Given two flows φ and ψ, such that φ→✐s ψ then, given an interaction (resp., cut) vertex
ν in ψ, there is an interaction (resp., cut) vertex ν ′ in φ, such that

1. ν = f1(ν
′) or ν = f2(ν

′);

2. if there is a path from ν to ⊥ (resp., ⊤), then there is a path from ν ′ to ⊥ (resp., ⊤); and

51

D
RA

FT

3. if there is a cut (resp., interaction) vertex ν̂ in ψ, such that there is a path from ν to ν̂ , then
there is a cut (resp., interaction) vertex ν̂ ′ inφ, such that ν̂ = f1(ν̂

′) or ν̂ = f2(ν̂
′), or ν̂ ′ = ν❛✐↑

(resp., ν̂ ′ = ν❛✐↓); and there is a path from ν ′ to ν̂ ′.

Proof. We consider each case separately:

1. by definition;

2. any path from ν to⊥ (resp.,⊤) must contain an edge ε, such that, for some lower (resp.,
upper) edge ε′ of φ, f1(ε

′) = ε or f2(ε
′) = ε. Hence, there is a path from ν ′ to ⊥ (resp.,

⊤); and

3. we have to consider two cases:

• ν = f1(ν
′) and ν̂ = f1(ν̂

′), or ν = f2(ν
′) and ν̂ = f2(ν̂

′), then there is a path from ν ′

to ν̂ ′; or

• ν = f1(ν
′) and ν̂ = f2(ν̂

′) (resp., ν = f2(ν
′) and ν̂ = f1(ν̂

′)),then there is a path from
ν ′ to ν❛✐↑ (resp., ν❛✐↓).

Definition 6.2.5. The Isolated Subflow Remover, ■❙❘, is an operator whose arguments are an
atom a and a derivation Φ that is in simple form with respect to a. If Φ is weakly streamlined
with respect to a, then ■❙❘(Φ,a) = Φ; otherwise, consider the following ❛✐-decomposed form
of Φ:

t
−−−−−−−−
aψ
′
∨ ā
∧ · · · ∧

t
−−−−−−−−
aψ
′
∨ ā
∧ α

!

Φ′



β ∨
aψ
′
∧ ā

−−−−−−−−
❢
∨ · · · ∨

aψ
′
∧ ā

−−−−−−−−
❢





,

with flow
ε

φ′ ψ′

ι

,

where ψ′ is the juxtaposition of all the isolated subflows mapped to from occurrences of a in

52

D
RA

FT

Φ. Consider the derivation

Ψ =













t
−−−−−
a ∨ ā

{❝↑}

[a ∨ ā] ∧ · · · ∧ [a ∨ ā]

∧ α













Φ′













β ∨

(a ∧ ā) ∨ · · · ∨ (a ∧ ā)

{❝↓}

a ∧ ā
−−−−−
❢













,

with flow

ψ′′ =

ε

φ

φ′

ψ

ψ′

ι

.

We then define ■❙❘(Φ,a) to be such thatΨ→✐s ■❙❘(Φ,a), where φ and ψ are the flows, by the
same names, shown in Definition 6.2.1 on page 50.

T: Changed itemize to enumerate.

Proposition 6.2.6. Given an atom a and a derivation Φ that is in simple form with respect to
a,

1. ■❙❘(Φ,a) is weakly streamlined with respect to a;

2. for any atom b ,

(a) if Φ is weakly streamlined with respect to b , then ■❙❘(Φ,a) is weakly streamlined
with respect to b , and

(b) if b is not the dual of a and Φ is in simple form with respect to b , then ■❙❘(Φ,a) is in
simple form with respect to b ; and

3. the size of ■❙❘(Φ,a) depends polynomially on the size of Φ.

T: Fixed typo in second case:

Proof. If Φ is weakly streamlined with respect to a, the result is trivial. Assume Φ is not
weakly streamlined with respect to a, and let φ, ψ, φ′, ψ′ and ψ′′ be the flows given in
Definition 6.2.5 on the previous page, then

53

D
RA

FT

1. by definition there is no path in φ from an interaction to a cut vertex whose edges are
mapped to from instances of a. By Lemma 6.2.4 on page 51, we know that if there
is a path from an interaction to a cut vertex in the flow of ■❙❘(Φ,a) whose edges are
mapped to from instances of a, then there must be a path from an interaction to a cut
vertex in φwhose edges are mapped to from instances a. Hence, the statement follows
by contradiction;

2. (a) if the flow of ■❙❘(Φ,a) contains a path from an interaction vertex to a cut vertex
whose edges are mapped to from instances of b , then, by Lemma 6.2.4 on page 51,
there is a path from an interaction vertex to a cut vertex in φ, so also in φ′,
whose edges are mapped to from instances of b . Hence, the statement follows by
contradiction; and

(b) if there is an interaction (resp., cut) vertex ν and a cut (resp., interaction) vertex
ν̂ in the flow of ■❙❘(Φ,a) such that there is a path from ν to ν̂ and a path from
ν to ⊥ (resp., ⊤), both of whose edges are mapped to from instances of b , then,
by Lemma 6.2.4 on page 51, there is an interaction (resp., cut) vertex ν ′ and a cut
(resp., interaction) vertex ν̂ ′ in φ such that there is a path from ν to ν̂ and a path
from ν to ⊥ (resp., ⊤), both of whose edges are mapped to from instances of b .
Furthermore, since we can assume that b is not a or ā, φ restricted to b equals
φ′ restricted to b . Hence, the statement follows by contradiction.

3. the statement follows by Theorem 6.2.3 on page 50.

T: Added example:

We now give an example of an application of ■❙❘. In particular we want to show its
inherent non-confluency.

Example 6.2.7. Given a derivation Φ where the atoms a1 and a2 occur, such that the flow
associated with Φ is

φ
1

φ′
1

φ
2

φ′
2

ψ ,

and where all the edges in φ1 (resp., φ′
1
) are mapped to from a1 (resp., ā1) and all the edges in

φ2 (resp, φ′
2
) are mapped to from a2 (resp., ā2), and there are no edges in ψ that are mapped

to from a1 or a2, then the flow associated with ■❙❘(■❙❘(Φ,a1),a2) is the following flow (where

54

D
RA

FT

indications of the different isomorphisms are left out):

φ
1

φ
1

φ
1

φ
1

φ
2

φ
2

φ
2

φ
2

ψ ψ ψ ψ .

We marked some edges in red to point out the fundamental difference between the subflow
containing φ1 and the subflow containing φ2. Note that, in order to improve readability, we
have removed a contraction and a cocontraction vertex from the subflow containing φ2, by
using weakening reductions. Weakening reductions are defined in Definition 7.0.8 on page 79.

6.3 Path Breaker

Given a derivation Φ and an atom a, the operator, P❇, defined in this section produces a
derivation with the same premiss and conclusion as Φ, which is weakly streamlined with
respect to both a and ā. This operator is a strict improvement over ■❙❘, since it does not
require the input derivation to be in simple form, and it deals with the dual atoms in parallell.
We will see later how a derivation containing n atoms can be weakly streamlined by n/2
applications of P❇.

The operator is defined in terms of the following flow reduction.

Definition 6.3.1. We define the reduction→♣❜ (where ♣❜ stands for path breaker) as follows,

55

D
RA

FT

for any two flows φ and ψ:

ε ε
′

φ ψ

ι
′

ι

→♣❜

ι ι
′

ε ε
′

f
1
(ε)

f
1
(φ)

f
1
(ι)

g
1
(ε′)

g
1
(ψ)

g
1
(ι′)

f
2
(ε)

f
2
(φ)

f
2
(ι)

g
2
(ε′)

g
2
(ψ)

g
2
(ι′)

f
3
(ε)

f
3
(φ)

f
3
(ι)

g
3
(ε′)

g
3
(ψ)

g
3
(ι′)

,

where we call the evidenced interaction (resp., cut) vertex in the redex ν ′
❛✐↓

(resp., ν ′
❛✐↑

) and the

evidenced interaction (resp., cut) vertex in the contractum ν❛✐↓ (resp., ν❛✐↑); and where there is

a path from ν ′
❛✐↓

to ν ′
❛✐↑

.

Theorem 6.3.2. Reduction →♣❜ is sound; moreover, if Φ →♣❜ Ψ, then the size of Ψ depends
polynomially on the size of Φ.

Proof. Let Φ be a derivation with flow φ′, such that φ′→♣❜ ψ
′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 6.3.1 on the previous page.

Since the evidenced interaction and cut vertices belong to the same connected compo-
nent, we assume, by Convention 4.2.2 on page 36, that the following derivation is an ❛✐-
decomposed form of Φ:

t
−−−−−−−−−
aφ ∨ āψ

∧ α

!

Φ′



β ∨
aφ ∧ āψ
−−−−−−−−−

❢





,

for some atom a and formulae α and β.

We combine three copies of Φ′ to obtain the desired derivation Ψ with flow ψ′ and the
same premiss and conclusion as Φ:

56

D
RA

FT
Ψ =

α
❝↓ −−

t
−−−−−−−−−−−−−−−−
a f1(φ) ∨ ā g1(ψ)

∧ α

!

Φ′



β ∨

a f1(φ)

−−−−−−
t
∧ ā g1(ψ)

!



∧
α

❝↑ −−−−−−
α ∧α

s−−−

















β ∨

 



❢
−−−−−−
a f2(φ)

∨ ā g2(ψ)



 ∧ α

!

Φ′



β ∨

a f2(φ) ∧
ā g2(ψ)

−−−−−−−
t

!





















∧ α

s−−−

β ∨β
❝↓ −−−−−−−

β
∨

 

a f3(φ) ∨
❢

−−−−−−−
ā g3(ψ)



 ∧ α

!

Φ′



β ∨
a f3(φ) ∧ ā g3(ψ)

−−−−−−−−−−−−−−−−
❢





❝↓ −−
β

.

We know that the size of Φ′ depends at most cubically on the size of Φ by
Theorem 4.2.3 on page 36, and that the size of Ψ depends at most quadratically on the size
of α and β by Lemma 2.3.12 on page 18, so Ψ depends polynomially on the size of Φ.

T: Added explanation:

We now show the basic properties of→♣❜. Namely, that the reduction does not create any
‘new’ interaction or cut vertices, that it does not create any ‘new’ paths between interaction
or ⊤ and cut or ⊥ vertices, and that it breaks all the paths between the evidenced interaction
and cut vertices.

T: Changed from itemize to enumerate.

T: Added one case and its proof, which used to be in the later Proposition.

Lemma 6.3.3. In the following we refer to the names given in Definition 6.3.1 on page 55. Given
two flows φ and ψ, such that φ→♣❜ ψ, then, given an interaction (resp., cut) vertex ν in ψ, there
is an interaction (resp., cut) vertex ν ′ in φ, such that

1. for some 1 ¶ i ¶ 3, ν = fi (ν
′) or ν = gi (ν

′), or ν = ν❛✐↓ and ν ′ = ν ′
❛✐↓

(resp., ν = ν❛✐↑ and

ν ′ = ν ′
❛✐↑

);

2. if there is a path from ν to ⊥ (resp., ⊤) in ψ, then there is a path from ν ′ to ⊥ (resp., ⊤) in
φ;

57

D
RA

FT

3. if there is a cut (resp., interaction) vertex ν̂ in ψ, such that there is a path from ν to ν̂ in ψ,
then there is a cut (resp., interaction) vertex ν̂ ′ inφ, such that, for some 1¶ i ¶ 3, ν̂ = fi (ν̂

′)
or ν̂ = gi (ν̂

′), or ν̂ = ν❛✐↑ and ν̂ ′ = ν ′
❛✐↑

(resp., ν̂ = ν❛✐↓ and ν̂ ′ = ν ′
❛✐↓

); and there is a path from

ν ′ to ν̂ ′ in φ; and

4. there is no path from ν❛✐↓ to ν❛✐↑.

Proof. We consider each case separately:

1. by definition;

2. any path from ν to ⊥ (resp., ⊤) in ψmust contain an edge ε, such that, for some lower
(resp., upper) edge ε′ of φ and some 1¶ i ¶ 3, fi (ε

′) = ε or gi (ε
′) = ε. Hence, there is

a path from ν ′ to ⊥ (resp., ⊤) in φ;

3. we have to consider two cases:

(a) for some 1 ¶ i ¶ 3, ν = fi (ν
′) and ν̂ = fi (ν̂

′), or ν = gi (ν
′) and ν̂ = gi (ν̂

′), then
there is a path from ν ′ to ν̂ ′ in φ, or

(b) ν = g1(ν
′) and ν̂ = g2(ν̂

′), or ν = f2(ν
′) and ν̂ = f3(ν̂

′) (resp., ν = g2(ν
′) and

ν̂ = g1(ν̂
′), or ν = f3(ν

′) and ν̂ = f2(ν̂
′)), then there is a path from ν ′ to ν ′

❛✐↑
(resp.,

ν ′
❛✐↓

) in φ; and

4. in Definition 6.3.1 we have colored the edges that might occur in paths from ν❛✐↓ in red

and paths that might occur in path to ν❛✐↑ in green. Since the red and the green edges

never coincide, there can be no paths from ν❛✐↓ to ν❛✐↑.

Definition 6.3.4. The Path Breaker, P❇, is an operator whose arguments are an atom a and
a derivation Φ. If Φ is weakly streamlined with respect to both a and ā, then P❇(Φ,a) = Φ;
otherwise, consider the following ❛✐-decomposed form of Φ:

t
−−−−−−−
aψ ∨ ā

∧ · · · ∧
t

−−−−−−−
aψ ∨ ā

∧ α

!

Φ′



β ∨
aψ ∧ ā
−−−−−−−

❢
∨ · · · ∨

aψ ∧ ā
−−−−−−−

❢





,

with flow

φ′′ =

ε ε
′

φ′ ψ′

ι
′

ι

,

58

D
RA

FT

such that occurrences of a do not appear in an interaction or cut instance in Φ′. Consider the
derivation

Ψ =













t
−−−−−
a ∨ ā

{❝↑}

[a ∨ ā] ∧ · · · ∧ [a ∨ ā]

∧ α













Φ′













β ∨

(a ∧ ā) ∨ · · · ∨ (a ∧ ā)

{❝↓}

a ∧ ā
−−−−−
❢













,

with flow

ψ′′ =

ε ε
′

φ′ ψ′

ι ι
′

φ ψ

.

We then define P❇(Φ,a) to be such thatΨ→♣❜ P❇(Φ,a), where φ and ψ are the flows, by the
same names, shown in Definition 6.3.1 on page 55.

T: Moved some details to the previous lemma.

Proposition 6.3.5. Given an atom a and a derivation Φ,

1. P❇(Φ,a) is weakly streamlined with respect to both a and ā;

2. for any atom b , if Φ is weakly streamlined with respect to b , then P❇(Φ,a) is weakly
streamlined with respect to b ; and

3. the size of P❇(Φ,a) depends polynomially on the size of Φ.

T: Fixed typo in second case:

Proof. If Φ is weakly streamlined with respect to both a and ā, the result is trivial. Assume Φ
is not weakly streamlined with respect to both a and ā, and letφ,ψ,φ′,ψ′,φ′′ andψ′′ be the
flows given in Definition 6.3.4 on the previous page and let ν❛✐↓ (resp., ν❛✐↑) be the evidenced

interaction (resp., cut) vertex in ψ′′, then

1. by Definition 6.3.4 all the paths from an interaction (resp., cut) vertex whose edges are
mapped to from instances of a or ā must start from ν❛✐↓ (resp., ν❛✐↑). The statement

then follows by Lemma 6.3.3 on page 57;

59

D
RA

FT

2. if the flow of P❇(Φ,a) contains a path from an interaction vertex to a cut vertex whose
edges are mapped to from instances of b , then, by Lemma 6.3.3, there is a path from
an interaction to a cut vertex in φ or ψ, so also in φ′ or ψ′, whose edges are mapped
to from instances of b . Hence, the statement follows by contradiction; and

3. the statement follows by Theorem 6.3.2 on page 56.

T: Added informal text:

We now give an example of an application of P❇. In particular we want to show its
inherent non-confluency.

Example 6.3.6. Given a derivation Φ where the atoms a1 and a2 occur, such that the flow
associated with Φ is

φ
1

φ
2

ψ ,

and where all the edges in φ1 are mapped to from a1 and ā1, and all the edges in φ2 are
mapped to from a2 and ā2, and there are no edges in ψ that are mapped to from a1 or a2,
then the flow associated with P❇(P❇(Φ,a1),a2) is the following flow (where indications of

60

D
RA

FT

the different isomorphisms are left out):

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

ψ ψ ψ ψ ψ ψ ψ ψ ψ

.

We marked some edges in red to point out the fundamental difference between the subflows
containing φ1 and the subflows containing φ2.

61

D
RA

FT

6.4 Multiple Isolated Subflows Removal

With the operator ■❙❘ we can produce weakly streamilend derivations with respect to one
atom at a time, with the operator P❇ we can produce weakly streamlined derivations with
respect to two dual atoms in parallell. In this section we see an operator, ▼■❙❘n , for every
n > 0, which is a generalisation of ■❙❘, that can produce a weakly streamlined derivation
with respect to n number of atoms in parallell, as long as they are pairwise non-dual.

We will see later how a derivation containing 2n atoms can be weakly streamlined by
two applications of ❙✐ and two applications of ▼■❙❘n .

T: Added explanation:

The operator is defined in terms of the following flow reduction. Unlike the flow re-
ductions of the preceding sections, we here present a reductions which depends on several
parameters. It is important to note that these parameters are independent of the derivation
to which we later apply the operator. In order to perform streamlining on an arbitrary num-
ber of atoms in parallel, we need find a class of atomic flows, ηk , which are used as a sort
of sharing mechanism. We are at this stage not able to describe the flows ηk without rely-
ing on their corresponding derivations. For this reason, it might help the understanding of
Definition 6.4.1 to refer to the derivation given in the proof of Theorem 6.4.4 on page 64.

In Subsection 6.4.1 on page 68, we present one possible combination of valid parameters,
which yields quasipolynomial streamlining. We conjecture that by finding different parame-
ters we will be able to obtain more efficient versions of this reduction. In particular, we hope
to be able to obtain polynomial streamlining.

Definition 6.4.1. For every n > 0, given

• atoms a1, . . . , an ;

• an N > 0;

• for 0¶ k ¶N , formulae γk ,1, . . . , γk ,n , such that

– γ0,1 = · · ·= γ0,n = t, and

– γN ,1 = · · ·= γN ,n = ❢; and

• for 1¶ k ¶N , a derivation

�k =

�

a1 ∧ γk−1,1

�

∨ · · · ∨
�

an ∧ γk−1,n

�

❙❑❙\{❛✐↓,❛✐↑}
�

a1 ∨ γk ,1

�

∧ · · · ∧
�

an ∨ γk ,n

�

,

let, for 1¶ k ¶N , ηk be the flow of �k , and let

µk =
f1,1(ψ1)

· · ·

f1,l1
(ψ1)
· · ·

fn,1(ψn)
· · ·

fn,ln
(ψn) ,

62

D
RA

FT

where, for 1 ¶ i ¶ n, li is the number of atom occurrences in γk ,i , we define the reduction
→♠✐sn

(where ♠✐s stands for multiple isolated subflows) as follows, for any flow φ and any

connected components ψ1, . . . , ψn that do not contain interaction or cut vertices:

ε

· · ·

φ ψ
1

· · ·

ψ
n

· · ·

ι

→♠✐sn

f
1
(ε)

· · ·

f
1
(φ)

f
1
(ι)

η
1

f
2
(ε)

f
2
(φ)

f
2
(ι)

µ
1

η
2

.

.

.

ηN−1

fN (ε)

fN (φ)

fN (ι)

µN−1

ηN

fN+1
(ε)

fN+1
(φ)

· · ·

fN+1
(ι)

,

where we call the evidenced interaction (resp., cut) vertices ν❛✐↓,1, . . . , ν❛✐↓,n (resp., ν❛✐↑,1, . . . ,
ν❛✐↑,n).

T: Added a missing ‘is’:

Remark 6.4.2. The reduction→♠✐sn
is denoted as if it only depends on n, this is a misuse of

notation, and we will take it for granted that we also have the other parameters whenever we
write→♠✐sn

.

Remark 6.4.3. If N = 1 and �1 =
a1 ∧ t

=−−−−−−
a1 ∨ ❢

, then→♠✐s1
=→✐s.

T: connected flow -> connected component

63

D
RA

FT

Theorem 6.4.4. For every n > 0, reduction→♠✐sn
is sound; moreover, if Φ→♠✐sn

Ψ, then the

size of Ψ depends linearly on N, polynomially on the size of Φ and at most polynomially on
max{|�1|, . . . , |�N |}.

Proof. Let Φ be a derivation with flow φ′, such that φ′→♠✐sn
ψ′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figures in Definition 6.4.1 on page 62.

Since each of ψ1, . . . , ψn is connected, we assume, by Convention 4.2.2 on page 36, that
the following derivation is an ❛✐-decomposed form of Φ:

t
−−−−−−−−−

a1 ∨ ā
ψ1

1

∧
t

−−−−−−−−−−

an ∨ ā
ψn
n

∧ α

Φ′

β ∨
a1 ∧ ā

ψ1

1−−−−−−−−−
❢

∨
an ∧ ā

ψn
n

−−−−−−−−−−
❢

,

for some atoms a1, . . . , an (that, without loss of generality, we assume coincide with the
atoms given in Definition 6.4.1 on page 62) and formulae α and β.

For every 0¶ k ¶N , we obtain the derivation Φk from Φ′ as follows:

Φk =

�

a1 ∨ γk ,1

�

∧ · · · ∧
�

an ∨ γk ,n

�

∧α

Φ′{ā
ψ1
1
/γk ,1,...,ā

ψn
n /γk ,n}

�

β ∨
�

a1 ∧ γk ,1

�

∨ · · · ∨
�

an ∧ γk ,n

��

Since each of ψ1, . . . , ψn is a connected component and contains no interaction or cut ver-

tices, the mapping from occurrences of ā
ψi

i
to edges of ψi is surjective. Hence, we know that

Φk has flow

· · ·

fi (φ) µk−1

· · ·

.

We combine Φ0, . . . , ΦN , �1, . . . , �N to get the desired derivationΨwith flowψ′ and the same

64

D
RA

FT

premiss and conclusion as Φ:

α
❝↑ −−��

❢
−−−
a1

∨ t

�

∧ · · · ∧

�

❢
−−−
an

∨ t

�

∧ α

�

Φ0






β ∨

(a1 ∧ t) ∨ · · · ∨ (an ∧ t)
�1

[a1 ∨ γ1,1] ∧ · · · ∧ [an ∨ γ1,n]







∧
α

❝↑ −−−−−−
α ∧α

s−−













β ∨

[a1 ∨ γ1,1] ∧ · · · ∧ [an ∨ γ1,n] ∧α
Φ1






β ∨

(a1 ∧ γ1,1) ∨ · · · ∨ (an ∧ γ1,n)
�2

[a1 ∨ γ2,1] ∧ · · · ∧ [an ∨ γ2,n]





















∧
α

❝↑ −−−−−−
α ∧α

s−−
...

s−−−













β ∨β
❝↓ −−−−−−−

β
∨

[a1 ∨ γN−1,1] ∧ · · · ∧ [an ∨ γN−1,n] ∧α
ΦN−1






β ∨

(a1 ∧ γN−1,1) ∨ · · · ∨ (an ∧ γN−1,n)
�N

[a1 ∨ ❢] ∧ · · · ∧ [an ∨ ❢]





















∧ α

s−−−

β ∨β
❝↓ −−−−−−−

β
∨

[a1 ∨ ❢] ∧ · · · ∧
�

an ∨ ❢
�

∧α
ΦN

�

β ∨

�

a1
−−−
t
∧ ❢

�

∨ · · · ∨

�

an
−−−
t
∧ ❢

��

❝↓ −−
β

.

Since max{
�

�

�γ0,1

�

�

�, . . . ,
�

�

�γN ,n

�

�

�} is less than or equal to max{|�1|, . . . , |�N |}, we know that the size

of Φ0, . . . , ΦN depend at most cubically on the size of Φ and at most quadratically on the
size of max{|�1|, . . . , |�N |} by Theorem 4.2.3 on page 36 and Proposition 4.1.8 on page 35,
and that the size of Ψ depends at most cubically on the size of α and β by Lemma 2.3.12 on
page 18, so the size of Ψ depends linearly on N , polynomially on the size of Φ and at most
polynomially on the size of max{|�1|, . . . , |�N |}.

T: Added explanation:

We now show the basic properties of→♠✐s. Namely, that the reduction does not create
any ‘new’ interaction or cut vertices, and that it does not create any ‘new’ paths between
interaction or ⊤ and cut or ⊥ vertices.

T: Changed from itemize to enumerate.

T: Exchanged ⊤ and ⊥ in item 2, and clarified statement.

Lemma 6.4.5. In the following we refer to the names given in Definition 6.4.1 on page 62.
Given two flows φ and ψ and an n > 0, such that φ→♠✐sn

ψ then, given an interaction (resp.,

cut) vertex ν in ψ, there is an interaction (resp., cut) vertex ν ′ in φ, such that

65

D
RA

FT

1. for some 1¶ i ¶N + 1, ν = fi (ν
′);

2. if there is a path from ν to ⊥ (resp., ⊤), then there is a path from ν ′ to ⊥ (resp., ⊤); and

3. if there is a cut (resp., interaction) vertex ν̂ in ψ, such that there is a path from ν to ν̂ , then
there is a cut (resp., interaction) vertex ν̂ ′ inφ, such that, for some 1¶ i ¶N+1, ν̂ = fi (ν̂

′),
or, for some 1¶ i ¶ n, ν̂ ′ = ν❛✐↑,i (resp., ν̂ ′ = ν❛✐↓,i); and there is a path from ν ′ to ν̂ ′.

Proof. We consider each case separately:

1. the statement follows by definition;

2. any path from ν to⊥ (resp.,⊤) must contain an edge ε, such that, for some lower (resp.,
upper) edge ε′ of φ and some 1¶ i ¶N + 1, fi (ε

′) = ε. Hence, there is a path from ν ′

to ⊥ (resp., ⊤); and

3. we have to consider two cases:

(a) for some 1¶ i ¶N +1, ν = fi (ν
′) and ν̂ = fi (ν̂

′), then there is a path from ν ′ to ν̂ ′;
or

(b) for some 1 ¶ i < j ¶ N + 1, ν = fi (ν
′) and ν̂ = f j (ν̂

′) (resp., ν = f j (ν
′) and

ν̂ = fi (ν̂
′)), then, for some 1¶ i ¶ n, there is a path from ν ′ to ν❛✐↑,i (resp., ν❛✐↑,i).

Definition 6.4.6. For every n > 0, given the atoms, formulae and derivations described in
Definition 6.4.1 on page 62, the Multiple Isolated Subflow Remover, ▼■❙❘n , is an operator
whose arguments are atoms a1, . . . , an (that, without loss of generality, we assume coin-
cide with the atoms given in Definition 6.4.1), and a derivation Φ that is in simple form
with respect to a1, . . . , an . If n = 1 and Φ is weakly streamlined with respect to a1, then
▼■❙❘1(Φ,a1) = Φ; if n > 1 and, for some 1 ¶ i ¶ n, Φ is weakly streamlined with respect to
ai , then ▼■❙❘n(Φ,a1, . . . ,an) =▼■❙❘n−1(Φ,a1, . . . ,ai−1,ai+1, . . . ,an); otherwise, consider the
following ❛✐-decomposed form of Φ:

t
−−−−−−−−−

a
ψ1

1
∨ ā1

∧ · · · ∧
t

−−−−−−−−−

a
ψ1

1
∨ ā1

∧ · · · ∧
t

−−−−−−−−−−

a
ψn
n ∨ ān

∧ · · · ∧
t

−−−−−−−−−−

a
ψn
n ∨ ān

∧ α

!

Φ′



β ∨
a
ψn
n ∧ ān
−−−−−−−−−−

❢
∨ · · · ∨

a
ψn
n ∧ ān
−−−−−−−−−−

❢
∨ · · · ∨

a
ψ1

1
∧ ā1

−−−−−−−−−
❢

∨ · · · ∨
a
ψ1

1
∧ ā1

−−−−−−−−−
❢





,

with flow
ε

· · ·

φ′ ψ′
1
· · ·

ψ′
n

· · ·

ι

,

66

D
RA

FT

where, for 1 ¶ i ¶ n, ψi is the juxtaposition of all the isolated subflows mapped to from
occurrences of ai in Φ. Consider the derivation

Ψ =













t
−−−−−−−
a1 ∨ ā1

{❝↑}

[a1 ∨ ā1] ∧ · · · ∧ [a1 ∨ ā1]

∧ · · · ∧

t
−−−−−−−−
an ∨ ān

{❝↑}
�

an ∨ ān

�

∧ · · · ∧
�

an ∨ ān

�

∧ α













Φ′













β ∨

�

an ∧ ān

�

∨ · · · ∨
�

an ∧ ān

�

{❝↓}

an ∧ ān
−−−−−−−−

❢

∨ · · · ∨

(a1 ∧ ā1) ∨ · · · ∨ (a1 ∧ ā1)

{❝↓}

a1 ∧ ā1
−−−−−−−

❢













,

with flow

ψ′′ =

ε

· · ·

φ′

· · ·

ψ′
1

· · ·
ψ′

n

ι

φ ψ
1

ψ
n

.

We then define ▼■❙❘n(Φ,a1, . . . ,an) to be such that Ψ →♠✐s ▼■❙❘n(Φ,a1, . . . ,an), where φ,
ψ1, . . . , ψn are the flows, by the same names, shown in Definition 6.4.1 on page 62.

T: Changed itemize to enumerate.

Proposition 6.4.7. Given the atoms, formulae and derivations described in Definition 6.4.1 on
page 62, and atoms a1, . . . , an and a derivation Φ that is in simple form with respect to a1, . . . ,
an ,

1. ▼■❙❘n(Φ,a1, . . . ,an) is weakly streamlined with respect to a1, . . . , an ;

2. for any atom b ,

(a) if Φ is weakly streamlined with respect to b , then ▼■❙❘n(Φ,a1, . . . ,an) is weakly
streamlined with respect to b , and

(b) if b is not the dual of any of a1, . . . , an and Φ is in simple form with respect to b , then
▼■❙❘n(Φ,a1, . . . ,an) is in simple form with respect to b ; and

3. the size of ▼■❙❘n(Φ,a1, . . . ,an) depends linearly on N, polynomially on the size of Φ, and
at most polynomially on max{|�1|, . . . , |�N |}.

T: Fixed typo in second case:

67

D
RA

FT

Proof. If Φ is weakly streamlined with respect to some atom from a1, . . . , an , the result
follows by induction. Assume Φ is not weakly streamlined with respect to any atom from a1,
. . . , an , and let φ, ψ1, . . . , ψn , φ′, ψ′

1
, . . . , ψ′

n
and ψ′′ be the flows given in Definition 6.4.6

on page 66, then

1. by definition there is no path in φ from an interaction to a cut vertex whose edges
are mapped to from instances of one of a1, . . . , an . By Lemma 6.4.5 on page 65,
we know that if there is a path from an interaction to a cut vertex in the flow of
▼■❙❘n(Φ,a1, . . . ,an) whose edges are mapped to from instances of one of a1, . . . , an ,
then there must be a path from an interaction to a cut vertex in φ whose edges are
mapped to from instances of one of a1, . . . , an . Hence, the statement follows by con-
tradiction;

2. (a) if the flow of ▼■❙❘n(Φ,a1, . . . ,an) contains a path from an interaction vertex to a
cut vertex whose edges are mapped to from b , then, by Lemma 6.4.5, there is a
path from an interaction vertex to a cut vertex in φ, so also in φ′, whose edges
are mapped to from b . Hence, the statement follows by contradiction; and

(b) if there is an interaction (reps., cut) vertex ν and a cut (resp., interaction) vertex
ν̂ in the flow of ▼■❙❘n(Φ,a1, . . . ,an) such that there is a path from ν to ν̂ and a
path from ν to ⊥ (resp., ⊤), both of whose edges are mapped to from b , then,
by Lemma 6.4.5, there is an interaction (resp., cut) vertex ν ′ and a cut (resp.,
interaction) vertex ν̂ ′ in φ such that there is a path from ν to ν̂ and a path from ν
to ⊥ (resp., ⊤), both of whose edges are mapped to from b . Furthermore, since
we can assume that b is not any of a1, . . . , an or their duals, φ restricted to b
equals φ′ restricted to b . Hence, the statement follows by contradiction.

3. the statement follows by Theorem 6.4.4 on page 64.

Remark 6.4.8. Given the atoms, formulae and derivations described in Definition 6.4.1 on
page 62, we can prove by induction on k, that, for every 1¶ i ¶ n and every 0¶ k ¶N , the
formula γk ,i is

• true if at least k of the atoms a1, . . . , ai−1, ai+1, . . . , an are true; and

• false if at least N − k of the atoms a1, . . . , ai−1, ai+1, . . . , an are false.

It follows by contradiction that N ¾ n. Furthermore, if N = n, we know that γk ,i is true
if and only if at least k of the atoms a1, . . . , ai−1, ai+1, . . . , an are true. This makes γk ,i a
threshold formula, as we will se in the next section.

6.4.1 Threshold Formulae

Recently, Jeřábek showed that cut-free ❙❑❙ proofs can be constructed in quasipolynomial
time from ❙❑❙ proofs with cut [Jeř09]. This is a very surprising result because received wis-
dom suggests that cut elimination requires exponential-time normalisation, as is the case in

68

D
RA

FT

Gentzen proof systems. Jeřábek obtained his result by relying on a construction over thresh-
old functions by Atserias, Galesi and Pudlák, in the monotone sequent calculus [AGP02].
We note that the monotone sequent calculus specifies a weaker logic than propositional logic
because negation is not freely applicable.

The technique that Jeřábek adopts is indirect because normalisation is performed over
proofs in the sequent calculus, which are, in turn, related to deep-inference ones by polyno-
mial simulations, originally studied in [Brü06b].

In Quasipolynomial Normalisation in Deep Inference via Atomic Flows and Threshold For-
mulae, we demonstrated again Jeřábek’s result, still by adopting, essentially, the Atserias-
Galesi-Pudlák technique, and we improved on that as follows:

1. we significantly simplified the technicalities associated with the use of threshold func-
tions, in particular the formulae and derivations that we adopted were simpler than
those in [AGP02];

2. our cut-elimination procedure was direct, i.e., it is internal to system ❙❑❙.

In this section I generalise those results in the following two ways:

1. they are extended from cut elimination to streamlining;

2. we observe, in Remark 6.4.8 on the previous page, a criterion on the kind of formulae
we need to make the procedure work, which does not necessarily restrict us to thresh-
old formulae.

As Atserias, Galesi and Pudlák argue, there is no apparent reason for this normalisation
problem not to be polynomial. The difficulty in obtaining polynomiality resides in finding
a suitable class of derivations as described in Remark 6.4.8 on the preceding page.

We present here the main construction of this section, i.e., a class of derivations � that
adhere to the condition of Definition 6.4.1 on page 62. The complexity of the � derivations
dominates the complexity of the streamlined proof, and is due to the complexity of certain
threshold formulae, on which the � derivations are based. The � derivations are constructed
in Definition 6.4.16 on page 75; this directly leads to Theorem 6.4.17 on page 75, which states
a crucial property of the � derivations and which is the main result of this section.

Threshold formulae realise boolean threshold functions, which are defined as boolean
functions that are true if and only if at least k of n inputs are true (see [Weg87] for a thorough
reference on threshold functions).

There are several ways of encoding threshold functions into formulae, and the problem
is to find, among them, an encoding that allows us to obtain Theorem 6.4.17 on page 75.
Efficiently obtaining the property stated in Theorem 6.4.17 crucially depends also on the
proof system we adopt.

T: Used to be: In the following, ⌊x⌋ denotes the maximum integer n such that n ¶ x.

69

D
RA

FT

T: Added last sentence after François’ suggestion:

In the following, n (resp., n) denotes the maximum (resp., minimum) integer x such that
x ¶ n/2 (resp., x ¾ n/2). The reason for this notation will become clear in Definition 6.4.9.
We will need to split the n atoms a1, . . . , an into the n atoms a1, . . . , an and the n atoms an+1,

. . . , an . It is important to notice that, for any n, n+ n = n.

The following class of threshold formulae, which we found to work for system ❙❑❙, is a
simplification of the one adopted in [AGP02].

T: Redefined the macro outputting a
n
l

to output (al , . . . ,an). It is no longer a vector of n−l+1

atoms, but it is the inputs to a function of arity n− l + 1.

T: Added explanation:

We now define a class of operators θn
k
, which takes n atoms as arguments and returns a

formula that is true if and only if at least k of the inputs are true.

T: Changed away from using p and q .

T: No longer require the atoms to be distinct, as it the restriction might just as well be put
where it is used (it will then also be clear straight away why it is needed).

T: Changed the definition to make it clear that the the names of the atoms are local variables
(in programming parlance), so we have a wellfounded definition. The old definition was
in terms of global variables (so it could not rely on an implicit renaming). This is the old
definition: Consider n > 0, distinct atoms a1, . . . , an , and let p = ⌊n/2⌋ and q = n− p; for
k ¾ 0, we define the threshold formulae θn

k
(a1, . . . ,an) as follows:

• for any n > 0 let θn
0
(a1, . . . ,an)≡ t;

• for any n > 0 and k > n let θn
k
(a1, . . . ,an)≡ ❢;

• θ1
1
(a1)≡ a1;

• for any n > 1 and 0< k ¶ n let θn
k
(a1, . . . ,an)≡

∨

i+ j=k
0¶i¶p
0¶ j¶q

(θ
p

i
(a1, . . . ,ap).θ

q

j
(ap+1, . . . ,an)).

Definition 6.4.9. For every n > 0 and k ¾ 0, we define the operator θn
k

inductively as

follows:

θ
n
k
(a1, . . . ,an) =































t if k = 0

❢ if k > n

a1 if n = k = 1
∨

i+ j=k
0¶i¶n
0¶ j¶n

�

θ
n

i
(a1, . . . ,an) ∧ θ

n
j
(an+1, . . . ,an)

�

otherwise.

For any n atoms a1, . . . , an , we call θn
k
(a1, . . . ,an) the threshold formula at level k (with respect

to a1, . . . , an).

70

D
RA

FT

See, in Figure 6-1 on the preceding page, some examples of threshold formulae.

The formulae for threshold functions adopted in [AGP02] correspond, for each choice of
k and n, to

∨

i¾k θ
n
i
(a1, . . . ,an). We presume that [AGP02] employs these more complicated

formulae because the formalism adopted there, the sequent calculus, is less flexible than deep
inference, requiring more information in threshold formulae in order to construct suitable
derivations.

The size of the threshold formulae dominates the cost of the normalisation procedure,
so, we evaluate their size. We leave as an exercise the proof of the following proposition.

Proposition 6.4.10. For any n > 0 and k ¾ 0,
�

�

�θ
n
k
(a1, . . . ,an)

�

�

�¶

�

�

�θ
n
n+1
(a1, . . . ,an)

�

�

�.

T: ❖(·) is not defined, but it is very standard, so I leave it undefined.

Lemma 6.4.11. The size of θn
n+1
(a1, . . . ,an) is n❖(log n).

T: Added a bit more explanation to the proof, and changed away from using p and q .

Proof. Observe that
�

�

�θ
n
k
(a1, . . . ,an)

�

�

�¶

�

�

�θ
n+1
k
(a1, . . . ,an+1)

�

�

�. Consider:

�

�

�θ
n
n+1
(a1, . . . ,an)

�

�

�=
∑

i+ j=n+1
0¶i¶n
0¶ j¶n

��

�

�θ
n

i
(a1, . . . ,an)

�

�

�+
�

�

�θ
n
j
(an+1, . . . ,an)

�

�

�

�

¶
∑

i+ j=n+1
0¶i , j¶n

��

�

�θ
n
i
(a1, . . . ,an)

�

�

�+
�

�

�θ
n
j
(a1, . . . ,an)

�

�

�

�

¶ 2(n+ 1)

�

�

�

�

θ
n
(n)+1
(a1, . . . ,an)

�

�

�

�

,

(6.1)

where we use Proposition 6.4.10. Let h = 2/ log 3
2
, then we show that, for any n > 0, we have

�

�

�θ
n
n+1
(a1, . . . ,an)

�

�

�¶ nh log n . We reason by induction on n; the case n = 1 trivially holds. For

n > 1, we have that 2(n+ 1)¶ n2, n ¶ n and n ¶ 2
3

n, so by the inequality (6.1), we have

�

�

�θ
n
n+1
(a1, . . . ,an)

�

�

�¶ 2(n+ 1)nh log n

¶ n2nh log(2
3

n) = nh log n−h log 3
2
+2 = nh log n .

Theorem 6.4.12. For any k ¾ 0 the size of θn
k
(a1, . . . ,an) is n❖(log n).

Proof. It immediately follows from Proposition 6.4.10 and Lemma 6.4.11.

T: Specify that we are considering n distinct atoms and change away from using p and q .

71

D
RA

FT

θ
2
0
(a, b) ≡ t ,

θ
2
1
(a, b) ≡ (θ1

1
(a) ∧ θ1

0
(b)) ∨ (θ1

0
(a) ∧ θ1

1
(b))≡ (a ∧ t) ∨ (t ∧ b)

= a ∨ b ,

θ
2
2
(a, b) ≡ θ

1
1
(a) ∧ θ1

1
(b)

≡ a ∧ b ,

θ
3
0
(a, b , c) ≡ t ,

θ
3
1
(a, b , c) ≡ (θ1

1
(a) ∧ θ2

0
(b , c)) ∨ (θ1

0
(a) ∧ θ2

1
(b , c))≡ (a ∧ t) ∨ (t ∧ [(b ∧ t) ∨ (t ∧ c)])

= a ∨ b ∨ c ,

θ
3
2
(a, b , c) ≡ (θ1

1
(a) ∧ θ2

1
(b , c)) ∨ (θ1

0
(a) ∧ θ2

2
(b , c))

= (a ∧ [b ∨ c]) ∨ (b ∧ c) ,

θ
3
3
(a, b , c) ≡ θ

1
1
(a) ∧ θ2

2
(b , c)≡ (a ∧ (b ∧ c))

= a ∧ b ∧ c ,

θ
5
0
(a, b , c , d , e) ≡ t ,

θ
5
1
(a, b , c , d , e) ≡ (θ2

1
(a, b) ∧ θ3

0
(c , d , e)) ∨ (θ2

0
(a, b) ∧ θ3

1
(c , d , e))

= a ∨ b ∨ c ∨ d ∨ e ,

θ
5
2
(a, b , c , d , e) ≡ (θ2

2
(a, b) ∧ θ3

0
(c , d , e)) ∨ (θ2

1
(a, b) ∧ θ3

1
(c , d , e)) ∨ (θ2

0
(a, b) ∧ θ3

2
(c , d , e))

= (a ∧ b) ∨ ([a ∨ b] ∧ [c ∨ d ∨ e]) ∨ (c ∧ [d ∨ e]) ∨ (d ∧ e) ,

θ
5
3
(a, b , c , d , e) ≡ (θ2

2
(a, b) ∧ θ3

1
(c , d , e)) ∨ (θ2

1
(a, b) ∧ θ3

2
(c , d , e)) ∨ (θ2

0
(a, b) ∧ θ3

3
(c , d , e))

= (a ∧ b ∧ [c ∨ d ∨ e]) ∨ ([a ∨ b] ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨ (c ∧ d ∧ e) ,

θ
5
4
(a, b , c , d , e) ≡ (θ2

2
(a, b) ∧ θ3

2
(c , d , e)) ∨ (θ2

1
(a, b) ∧ θ3

3
(c , d , e))

= (a ∧ b ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨ ([a ∨ b] ∧ c ∧ d ∧ e) ,

θ
5
5
(a, b , c , d , e) ≡ θ

2
2
(a, b) ∧ θ3

3
(c , d , e)

= a ∧ b ∧ c ∧ d ∧ e ,

θ
5
6
(a, b , c , d , e) ≡ ❢ .

Figure 6-1: Examples of threshold formulae.

72

D
RA

FT

Remark 6.4.13. Given n > 1 and distinct atoms a1, . . . , an . For 0¶ k ¶ n and 1¶ l ¶ n, the
following derivation is well defined:

θ
n
n(a1, . . . ,an){al/❢} ∧ θ

n
k
(an+1, . . . ,an)

✇↑ −−−
❢

=
a1 ∧ · · · ∧ al−1 ∧ al+1 ∧ · · · ∧ an ∧ θ

n
k
(an+1, . . . ,an)

✇↑ −−
t

∧ ❢ .

Analogously, for 0¶ k ¶ n and n+ 1¶ l ¶ n, we can define the following derivation:

θ
n

k
(a1, . . . ,an) ∧ θ

n
n
(an+1, . . . ,an){al/❢}

✇↑ −−−
❢

=
θ

n

k
(a1, . . . ,an) ∧ an+1 ∧ · · · ∧ al−1 ∧ al+1 ∧ · · · ∧ an

✇↑ −−
t

∧ ❢ .

Both classes of derivations are used in Definition 6.4.14.

The only reason why we require atoms to be distinct is to avoid certain technical prob-
lems with substitutions. The same situation occurs in Definitions 6.4.14 and 6.4.16 on
page 75.

T: Broke one case into two to avoid overfull.

Definition 6.4.14. Consider n > 0, distinct atoms a1, . . . , an .

• For n > 1 and 1¶ l ¶ n, we define the derivations ✞n
k ,l
(a1, . . . ,an) and ✁n

k ,l
(a1, . . . ,an)

as follows:

✞n
k ,l
(a1, . . . ,an) =



































(θ
n
n(a1, . . . ,an)){al/❢} ∧ θ

n
k−n
(an+1, . . . ,an)

✇↑ −−
❢

if n ¶ k ¶ n and l ¶ n

θ
n

k−n
(a1, . . . ,an) ∧ (θ

n
n
(an+1, . . . ,an)){al/❢}

✇↑ −−
❢

if n ¶ k ¶ n and n < l

❢ otherwise

and

✁n
k ,l
(a1, . . . ,an) =



































❢
✇↓ −−−−−−−−−−−−−−−−−−−−
θn

k
(an+1, . . . ,an)

if 0< k ¶ n and l ¶ n

❢
✇↓ −−−−−−−−−−−−−−−−
θ

n

k
(a1, . . . ,an)

if 0< k ¶ n and n < l

❢ otherwise

.

• For k ¾ 0 and 1¶ l ¶ n, we define the derivations �n
k ,l
(a1, . . . ,an), recursively on n, as

follows:

– �1
0,1
(a1) = t;

– for k > 0, �1
k ,1
(a1) = ❢;

– for k > n, �n
k ,l
(a1, . . . ,an) = ❢;

73

D
RA

FT

– for n > 1, k ¶ n and l ¶ n, let �n
k ,l
(a1, . . . ,an) be

∨

i+ j=k
0¶i<n
0¶ j¶n

�

�
n

i ,l
(a1, . . . ,an) ∧ θ

n
j
(an+1, . . . ,an)

�

∨✞n
k ,l
(a1, . . . ,an) ∨✁

n
k+1,l
(a1, . . . ,an)

– for n > 1, k ¶ n and n < l , let �n
k ,l
(a1, . . . ,an) be

∨

i+ j=k
0¶i¶n
0¶ j<n

�

θ
n

i
(a1, . . . ,an) ∧ �

n
j ,l−n
(an+1, . . . ,an)

�

∨✞n
k ,l
(a1, . . . ,an) ∨✁

n
k+1,l
(a1, . . . ,an) .

T: Removed example of �n
k ,l
(a1, . . . ,an), as it was not very helpful.

Theorem 6.4.15. For any n > 0, k ¾ 0 and 1¶ l ¶ n, the derivation �n
k ,l
(a1, . . . ,an) has shape

θn
k
(a1, . . . ,an){al/❢}

{❛✇↓,❛✇↑}

θn
k+1
(a1, . . . ,an){al/t}

,

and
�

�

��n
k ,l
(a1, . . . ,an)

�

�

� is n❖(log n).

T: Broke the derivation horizontally in a different wayto avoid overfull.

Proof. The shape of �n
k ,l
(a1, . . . ,an) can be verified by inspecting Definition 6.4.14 on the

previous page. For example, this is the case when n > 1 and l ¶ n ¶ k < n:

θn
k
(a1, . . . ,an){al/❢}

�n
k ,l
(a1,...,an)

θn
k+1
(a1, . . . ,an){al/t}

=
∨

i+ j=k
0¶i<p
0¶ j¶q









θ
p

i
(a1, . . . ,ap){al/❢}

�
p

i ,l
(a1,...,ap)

θ
p

i+1
(a1, . . . ,ap){al/t}

∧ θ
q

j
(ap+1, . . . ,an)









∨

∨
(θ

p
p (a1, . . . ,ap)){al/❢} ∧ θ

q

k−p
(ap+1, . . . ,an)

✇↑ −−−
❢

∨
❢

✇↓ −−−−−−−−−−−−−−−−−−−−−−−
θ

q

k+1
(ap+1, . . . ,an)

.

General (co)weakening rule instances can be replaced by atomic ones because of Lemma 2.3.11
on page 18. The size bound on �n

k ,l
(a1, . . . ,an) follows from Proposition 4.1.8 on page 35 and

Theorem 6.4.12 on page 72.

T: Rephrased slightly to avoid overfull

T: Extracted a constructin with superswitches and (co)contractions into its own Lemma.

74

D
RA

FT

Definition 6.4.16. Consider n > 0, distinct atoms a1, . . . , an . For k ¾ 0, we define the
derivation �n

k
(a1, . . . ,an) to be:

























a1 ∧

θn
k
(a1, . . . ,an){a1/❢}

�n
k ,1
(a1,...,an)

θn
k+1
(a1, . . . ,an){a1/t}









{❛❝↑,s}

θn
k+1
(a1, . . . ,an)

∨ · · · ∨









an ∧

θn
k
(a1, . . . ,an){an/❢}

�n
k ,n
(a1,...,an)

θn
k+1
(a1, . . . ,an){an/t}









{❛❝↑,s}

θn
k+1
(a1, . . . ,an)

















{❝↓}

θn
k+1
(a1, . . . ,an)

{❝↑}








θn
k+1
(a1, . . . ,an)

{❛❝↓,s}
�

a1 ∨ θ
n
k+1
(a1, . . . ,an){a1/❢}

�

∧ · · · ∧
θn

k+1
(a1, . . . ,an)

{❛❝↓,s}
�

an ∨ θ
n
k+1
(a1, . . . ,an){an/❢}

�









,

where we use the derivations constructed in the proof of Lemma 2.3.10 on page 17.

Theorem 6.4.17. For any n > 0 and k ¾ 0, the derivation �n
k
(a1, . . . ,an) has shape

�

a1 ∧ θ
n
k
(a1, . . . ,an){a1/❢}

�

∨ · · · ∨
�

an ∧ θ
n
k
(a1, . . . ,an){an/❢}

�

❙❑❙\{❛✐↓,❛✐↑}
�

a1 ∨ θ
n
k+1
(a1, . . . ,an){a1/❢}

�

∧ · · · ∧
�

an ∨ θ
n
k+1
(a1, . . . ,an){an/❢}

�

,

and
�

�

��n
k
(a1, . . . ,an)

�

�

� is n❖(log n).

Definition 6.4.18. For every n > 0, we define

• the reduction→q♠✐sn
(where q♠✐s stands for quasipolynomial multiple isolated subflows);

and

• and the operator the Quasipolynomial Multiple Isolated Subflows Remover, ◗▼■❙❘n ,

to be special cases of→♠✐sn
and ▼■❙❘n , respectively, such that, given atoms (a1, . . . ,an),

• N = n;

• for 0¶ k ¶ n and 1¶ i ¶ n, γk ,i = (θ
n
k
(a1, . . . ,an)){ai/❢}; and

• for 1¶ k ¶ n, �k = �n
k
(a1, . . . ,an).

Theorem 6.4.19. For every n > 0,→q♠✐sn
is sound; moreover, if Φ→q♠✐sn

Ψ, then the size of

Ψ depends polynomially on the size of Φ and quasipolynomially on n.

Proof. The result follows by Theorem 6.4.4 on page 64, Definition 6.4.9 on page 70 and
Theorem 6.4.17.

75

D
RA

FT

T: Changed from itemize to enumerate.

Proposition 6.4.20. Given atoms a1, . . . , an and a derivation Φ that is in simple form with
respect to a1, . . . , an ,

1. ◗▼■❙❘n(Φ,a1, . . . ,an) is weakly streamlined with respect to a1, . . . , an ;

2. for any atom b ,

(a) if Φ is weakly streamlined with respect to b , then ◗▼■❙❘n(Φ,a1, . . . ,an) is weakly
streamlined with respect to b , and

(b) if b is not the dual of any of a1, . . . , an and Φ is in simple form with respect to b , then
◗▼■❙❘n(Φ,a1, . . . ,an) is in simple form with respect to b ; and

3. the size of ◗▼■❙❘n(Φ,a1, . . . ,an) depends polynomially on the size of Φ, and quasipolyno-
mially on n.

Proof. The statements follow by Proposition 6.4.7 on page 67 and Theorem 6.4.17 on the
preceding page.

76

D
RA

FT
Chapter 7

Local Reductions

TODO non-trivial automorphism.

In this chapter, we see local transformations, which are based on reduction rules. It is
convenient to classify reduction rules into those for weakening and those for contraction.
After seeing flow reductions and tying them with derivations, in Section 7.1 on page 79, we
explore some of their basic properties, in the two short Sections 7.2 on page 81 and 7.3 on
page 82.

Definition 7.0.1. In Figure 7-1 on the following page, we define graphical expressions of the
kind r : φ′→ψ′, where r is a name and φ′ and ψ′ are flows.

Example 7.0.2. The ‘reduction’ on the left, when used inside a larger flow, might create a
situation as on the right:

→

+

+ +

+

→

+ ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules for atomic flows as follows.

Definition 7.0.3. An (atomic-flow) reduction rule r from flow φ′ to flow ψ′ is a quadruple
(φ′,ψ′, f , g) such that:

1. f is a one-to-one map from the upper edges of φ′ to the upper edges of ψ′,

2. g is a one-to-one map from the lower edges of φ′ to the lower edges of ψ′,

3. for every polarity assignment π for φ′, there is a polarity assignment π′ for ψ′ such
that π′(f (ε)) =π(ε) and π′(g (ε′)) =π(ε′), for any upper edge ε and any lower edge ε′

of φ′;

77

D
RA

FT

✇↓-❝↓ :
1

2
→ 1,2 ❝↑-✇↑ :

2

1

→ 1,2

✇↓-✐↑ : 1 → 1 ✐↓-✇↑ : 1 → 1

✇↓-✇↑ :
1 2

→
1 2

✇↓-❝↑ :
1 2

→
1 2

❝↓-✇↑ :
1 2

→

1 2

❝↓-✐↑ :
31 2

→

31 2

✐↓-❝↑ :
31 2

→

31 2

❝↓-❝↑ :

1 2

3 4

→

1 2

3 4

Figure 7-1: Atomic-flow reduction rules.

we define reduction rules with graphical expressions r : φ′→ψ′, where f and g are indicated
by labelling edges. For every reduction rule r : φ′ → ψ′, the reduction→r is defined, such
thatφ→r ψ if and only ifφ′ appears as a subflow inφ and we obtain ψ by replacingφ′ with
ψ′ in φ, while respecting the correspondence of edges; we call this operation a reduction by
r .

Remark 7.0.4. The condition on polarity assignments for a reduction rule r guarantees that
the ψ in φ→r ψ is a proper atomic flow, if φ is one.

Remark 7.0.5. Because of the condition on polarity assignments for reduction rules, two
distinct connected components in a flow cannot be connected by a reduction. To see that
this is impossible, consider the following ‘reduction rule’, which violates the condition on
polarity assignments:

→ .

For this ‘reduction rule’ there exist both valid (left) and invalid (right) polarity assignments:

+ − → + − + + → + ? .

It is immediate to check:

Proposition 7.0.6. The graphical expressions in Figure 7-1 are atomic-flow reduction rules.

Definition 7.0.7. A finite set of reduction rules is a flow rewriting system. For every flow
rewriting system F = {r1, . . . , rh} we define→F =→r1

∪· · · ∪→rh
. The reflexive transitive

78

D
RA

FT

closure of→F is denoted by→⋆
F

. Given a set of atomic flows S, we say that a flow rewriting
system F is terminating on S if there is no infinite chain φ1→F φ2→F · · · , for every φ1 ∈ S;
if F is terminating on the set of atomic flows, we say that it is terminating. We say that the
flow φ is normal for flow rewriting system F if there is no flow ψ such that φ→F ψ.

Definition 7.0.8. The following flow rewriting system is called ✇:

{ ✇↓-❝↓ , ❝↑-✇↑ , ✇↓-✐↑ , ✐↓-✇↑ , ✇↓-✇↑ , ✇↓-❝↑ , ❝↓-✇↑ } .

Definition 7.0.9. The following flow rewriting system is called ❝:

{ ❝↓-✐↑ , ✐↓-❝↑ , ❝↓-❝↑ } .

Maximal ❛✐-paths provide for a measure when dealing with the termination of ❝.

Remark 7.0.10. A simple inspection to the reduction rules of ❝ convinces us that reducing by
❝ does not change the number and length of the maximal ❛✐-paths of a flow. The same holds
for the maximal ❛✐-paths to or from vertices that are not involved in a given reduction.

We now state two propositions whose proofs are immediate from the appropriate defini-
tions:

Proposition 7.0.11. Given a weakly-streamlined flow φ, if φ →⋆
✇
ψ and ψ is normal for ✇,

then ψ is super streamlined.

Proposition 7.0.12. Given a super-streamlined flow φ, if φ→⋆
❝
ψ and ψ is normal for ❝, then

ψ is hyper streamlined.

7.1 Soundness

Definition 7.1.1. A reduction rule r is sound if→r is sound.

The proof of the following theorem is essentially contained in Figure 7-2 on the following
page and Figure 7-3 on page 81.

Theorem 7.1.2. The reduction rules ✇↓-❝↓, ✇↓-✐↑, ✇↓-✇↑, ✇↓-❝↑, ❝↓-✐↑, ❝↓-❝↑, ❝↑-✇↑, ✐↓-✇↑, ❝↓-✇↑
and ✐↓-❝↑ are sound.

Proof. For r ∈ {✇↓-❝↓,✇↓-✐↑,✇↓-✇↑,✇↓-❝↑,❝↓-✐↑,❝↓-❝↑} and r : φ′→ψ′ as in the left columns
of Figures 7-2 on the following page and 7-3 on page 81, for every φ and ψ such that φ→r ψ
and for every Φ with flow φ, the right columns of the tables provide reductions Φ →r Ψ,
where Ψ has flow ψ, as follows. If Φ′→r Ψ

′ is the reduction provided by the table, then

Φ=

α
Ψ1

α′

Φ′

β′

Ψ2

β

and Ψ=

α
Ψ1

α′

Ψ′

β′

Ψ2

β

.

79

D
RA

FT
✇↓-❝↓ :

1

2
→ 1,2

ξ

¨

❢
−−−
a3

«

Φ

ζ

¨

a3 ∨ a1

−−−−−−−−
a2

«

→✇↓-❝↓

ξ {❢}
Φ{a3/❢}

ζ

¨

❢ ∨ a1,2

=−−−−−−−−
a1,2

«

✇↓-✐↑ : 1 → 1

ξ

¨

❢
−−−
a2

«

Φ

ζ

¨

a2 ∧ ā1

−−−−−−−−
❢

«

→✇↓-✐↑

ξ {❢}
Φ{a2/❢}

ζ







❢ ∧
ā1

−−−
t

=−−−−−−−
❢







✇↓-✇↑ :
1 2

→
1 2

ξ

¨

❢
−−−
a1

«

Φ

ζ

¨

a1

−−−
t

«

→✇↓-✇↑

ξ {❢}
Φ{a1/❢}

ζ















❢
=−−−−−−−−−−
❢ ∧ [❢ ∨ t]

s−−−−−−−−−−
(❢ ∧ ❢) ∨ t

=−−−−−−−−−−
t















✇↓-❝↑ :
1 2

→
1 2

ξ

¨

❢
−−−
a3

«

Φ

ζ

¨

a3

−−−−−−−−
a1 ∧ a2

«

→✇↓-❝↑

ξ {❢}
Φ{a3/❢}

ζ







❢
=−−−−−−−−−−

❢
−−−
a1
∧

❢
−−−
a2







Figure 7-2: ‘Downwards’ reduction rules for weakening and their soundness.

80

D
RA

FT

❝↓-✐↑ :
31 2

→

31 2

ξ

¨

a1 ∨ a2

−−−−−−−−
a4

«

Φ

ζ

¨

a4 ∧ ā3

−−−−−−−−
❢

«

→❝↓-✐↑

ξ
�

a1 ∨ a2
	

Φ{a4/[a1∨a2]}

ζ



















































�

�

a1 ∨ a2
�

∧
ā3

−−−−−
ā ∧ ā

�

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−













ā ∧
�

a2 ∨ a1
�

s−−−−−−−−−−−−−−−−−−−−�

ā ∧ a2

−−−−−−
❢
∨ a1

�

=−−−−−−−−−−−−−−−−−
a1

∧ ā















−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
❢



















































❝↓-❝↑ :

1 2

3 4

→

1 2

3 4

ξ

¨

a1 ∨ a2

−−−−−−−−
a5

«

Φ

ζ

¨

a5

−−−−−−−−
a3 ∧ a4

«

→❝↓-❝↑

ξ
�

a1 ∨ a2
	

Φ{a5/[a1∨a2]}

ζ















�

a1

−−−−−
a ∧ a

∨
a2

−−−−−
a ∧ a

�

♠−−−−−−−−−−−−−−−−−−−�

a ∨ a
−−−−−
a3
∧

a ∨ a
−−−−−
a4

�















Figure 7-3: ‘Downwards’ reduction rules for contraction and their soundness.

We can deal with the remaining rules by employing dual derivations to the ones shown.

Remark 7.1.3. The previous soundness theorem only depends on the switch and medial rules
for the reductions in Figure 7-3. Any system obtained from ❙❑❙ by replacing s and ♠ with
linear rules that can derive them would support a soundness theorem like the one above,
for the same reduction rules. For example, we could think of replacing s with the rule
[α ∨β] ∧ [γ ∨δ]

s′ −−−−−−−−−−−−−−−−−−−−−
(α ∧ γ) ∨ [β ∨δ]

, from which s is derivable.

7.2 Termination and Confluence

Theorem 7.2.1. Flow rewriting system ✇ is terminating.

Proof. At every reduction, the number of edges decreases.

Remark 7.2.2. Flow rewriting system ❝ is not terminating:

→
 →
 →
 · · · .

81

D
RA

FT

We see that if a contraction vertex belongs to an ❛✐-cycle, reductions by ❝ make it ‘bounce’ in
the ❛✐-cycle and create a trail; while bouncing, the vertex alternates between contraction and
cocontraction.

Theorem 7.2.3. Flow rewriting system ❝ is terminating on the set of cycle-free flows.

Proof. Let φ be a cycle-free flow. We associate to each contraction (resp., cocontraction)
vertex ν its rank rν =

∑

pi∈Iν
hi , where Iν is the set of all maximal ❛✐-paths pi = ε

i
1
, . . . ,εi

hi

from ν , such that εi
1

is the lower (resp., upper) edge of ν (so, the rank of a vertex is the sum
of the lengths of certain maximal ❛✐-paths from it). Note that every (co)contraction vertex
has non-zero rank. We prove that a reduction of φ by ❝ decreases the sum of the ranks of
the (co)contraction vertices of φ. First note that the rank of the vertices not involved in the
reduction step stays the same (see Remark 7.0.10 on page 79). We then need to show that the
sum of the ranks decreases for the vertices involved. There are three cases, depending on the
reduction rule:

❝↓-✐↑: a contraction vertex ν is replaced by a cocontraction vertex ν ′, and rν ′ = rν − n, where
n > 0 is the number of maximal ❛✐-paths from ν whose first edge is the lower edge of ν ;

✐↓-❝↑: this is dual to the previous case;

❝↓-❝↑: a contraction vertex ν and a cocontraction vertex ν ′ are replaced by two contraction
vertices ν1 and ν2 and two cocontraction vertices ν ′

1
and ν ′

2
; we have rν1

+ rν2
= rν − n,

where n > 0 is the number of maximal ❛✐-paths from ν whose first edge is the lower
edge of ν ; analogously, we have rν ′

1
+ rν ′

2
= rν ′ − n′, where n′ > 0 is the number of

maximal ❛✐-paths from ν ′ whose first edge is the upper edge of ν ′.

Theorem 7.2.4. Flow rewriting system ✇∪ ❝ is confluent.

Proof. It is straightforward to verify the statement by checking each critical pair of ✇∪❝.

7.3 Complexity

Proposition 7.3.1. Given a derivation Φ, there exists a derivation Ψ, such that Φ→⋆
✇
Ψ, Ψ is

normal for ✇ and the size of Ψ depends at most linearly on the size of Φ.

Proof. The number of reductions used to arrive at Ψ is bound by the number of edges in the
flow of Φ, so by the size of Φ. Furthermore, each reductions shown in Figure 7-2 on page 80
grows the derivation by at most a constant. Hence, the size ofΨ depends at most linearly on
the size of Φ.

82

D
RA

FT

Remark 7.3.2. Normalising by ❝ can blow the size of flows exponentially, in particular in a
situation like the following (noted by Lutz Straßburger):

.

.

.
→
⋆
 .

.

.

.

.

.

.

.

.

.

.

.
.

In fact, if there are n couples of cocontraction/contraction vertices like the two shown above
on the left, then there are 2n maximal ❛✐-paths, and their number (and length) is conserved
by→⋆

❝
(see Remark 7.0.10 on page 79). Exactly one ❛✐-path passes through each edge in the

middle portion of the flow on the right. It follows that normalising derivations by ❝ can also
blow their size exponentially.

83

D
RA

FT
Chapter 8

Main Result

We now present the main result of this thesis: Three procedures for obtaining weakly stream-
lined derivations. Corollaries of the main results are: cut elimination, super-streamlining and
hyper-streamlining.

Theorem 8.0.1. Given a derivation Φ and distinct and pairwise non-dual atoms a1, . . . , an ,
such that a1, . . . , an and their duals are all the atoms appearing in Φ,

1. let
Φ′ = ■❙❘(. . . ■❙❘(❙✐(Φ,a1, . . . ,an),a1), . . . ,an) and

Φ′′ = ■❙❘(. . . ■❙❘(❙✐(Φ′, ā1, . . . , ān), ā1), . . . , ān) ,

then

(a) Φ′′ is weakly streamlined, and

(b) the size of Φ′′ depends at most exponentially on the size of Φ;

2. let Φ′ = P❇(. . .P❇(Φ,a1), . . . ,an), then

(a) Φ′ is weakly streamlined, and

(b) the size of Φ′ depends at most exponentially on the size of Φ; and

3. let
Φ′ =◗▼■❙❘(❙✐(Φ,a1, . . . ,an),a1, . . . ,an) and

Φ′′ =◗▼■❙❘(❙✐(Φ′, ā1, . . . , ān), ā1, . . . , ān) ,

then

(a) Φ′′ is weakly streamlined, and

(b) the size of Φ′′ depends at most quasipolynomially on the size of Φ.

Proof. The statements follow by Proposition 6.1.5 on page 49, Proposition 6.2.6 on page 53,
Proposition 6.3.5 on page 59 and Proposition 6.4.20 on page 76.

84

D
RA

FT

Corollary 8.0.2. Given a derivation (resp., proof) Φ, there exists a super-streamlined derivation
(resp., cut-free proof)Ψwith the same premiss and conclusion as Φ, such that the size of Ψ depends
at most quasipolynomially on the size of Φ.

Proof. By Theorem 8.0.1 on the preceding page, Proposition 7.0.11 on page 79, Theorem 7.1.2
on page 79 and Proposition 7.3.1 on page 82.

Corollary 8.0.3. Given a derivation Φ, there exists a hyper-streamlined derivation Ψ with the
same premiss and conclusion as Φ.

Proof. By Theorem 8.0.1 on the preceding page, Proposition 7.0.11 on page 79, Proposi-
tion 7.0.12 on page 79, Theorem 7.1.2 on page 79 and Proposition 7.3.1 on page 82.

85

D
RA

FT

Index

❙❑❙, 14
❛✐-decomposed form, 36

canonical, 37
❛✐-path, 27

length, 27
maximal, 27

atomic flow, see flow
atoms

negation, 8
renaming, 8

connected component, 29

derivation
calculus of structures, 12

vertical composition, 12
functorial calculus, 8

horizontal composition, 9
vertical composition, 9

flow, 24
associated with derivation, 31
edges, 24
isomorphism, 26
labels, 23, 24
lower edges, 24
polarity assignment, 24
restriction to atom, 31
upper edges, 24
vertices, 24

flow rewriting system, 78
normal, 79
terminating, 79

formula
context, 8

size, 8
ground, 8

instance, 8
size, 8

formulae, 7

hole, 8

inference rule, 8
conclusion, 8
instance, 8
invertible, 15
logical, 15
premiss, 8
structural, 15

Isolated Subflow Remover
operator, 52
reduction, 50

Multiple Isolated Subflows Remover
operator, 66
reduction, 63

path, 27
length, 27

Path Breaker
operator, 58
reduction, 55

Quasipolynomial Multiple Isolated Subflows
Remover

operator, 75
reduction, 75

reduction, 45
by rule, 78
liftable, 45
rule, 77

sound, 79
sound, 45

86

D
RA

FT

simple form
derivation

with respect to atom, 41
flow, 39

Simplifier, 49
simplifier

reduction, 46
streamlined, 40

derivation, 41
hyper, 40
super, 40
weakly, 40

with respect to atom, 41
with respect to polarity, 40

subflow, 28
isolated, 28

substitution, 8
system, 8

threshold
formulae, 68, 70

87

D
RA

FT
Bibliography

[AGP02] Albert Atserias, Nicola Galesi, and Pavel Pudlák. Monotone simulations of non-monotone
proofs. Journal of Computer and System Sciences, 65(4):626–638, 2002.

[BG09] Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference. ACM
Transactions on Computational Logic, 10(2):1–34, 2009. Article 14. http://cs.bath.ac.
uk/ag/p/PrComplDI.pdf.

[BL05] Kai Brünnler and Stéphane Lengrand. On two forms of bureaucracy in derivations. In
Paola Bruscoli, François Lamarche, and Charles Stewart, editors, Structures and Deduction,
pages 69–80. Technische Universität Dresden, 2005. ICALP Workshop. ISSN 1430-211X.
http://www.iam.unibe.ch/~kai/Papers/sd05.pdf.

[Bru02] Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J. Stuckey,
editor, Logic Programming, 18th International Conference, volume 2401 of Lecture Notes
in Computer Science, pages 302–316. Springer-Verlag, 2002. http://cs.bath.ac.uk/pb/

bvl/bvl.pdf.

[Brü03a] Kai Brünnler. Atomic cut elimination for classical logic. In M. Baaz and J. A. Makowsky,
editors, CSL 2003, volume 2803 of Lecture Notes in Computer Science, pages 86–97. Springer-
Verlag, 2003. http://www.iam.unibe.ch/~kai/Papers/ace.pdf.

[Brü03b] Kai Brünnler. Two restrictions on contraction. Logic Journal of the IGPL, 11(5):525–529,
2003. http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf.

[Brü04] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin, 2004.
http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

[Brü06a] Kai Brünnler. Cut elimination inside a deep inference system for classical predicate logic.
Studia Logica, 82(1):51–71, 2006. http://www.iam.unibe.ch/~kai/Papers/q.pdf.

[Brü06b] Kai Brünnler. Deep inference and its normal form of derivations. In Arnold Beckmann,
Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, Computability in Europe 2006,
volume 3988 of Lecture Notes in Computer Science, pages 65–74. Springer-Verlag, July 2006.
http://www.iam.unibe.ch/~kai/Papers/n.pdf.

[Brü06c] Kai Brünnler. Deep sequent systems for modal logic. In Guido Governatori, Ian Hodkin-
son, and Yde Venema, editors, Advances in Modal Logic, volume 6, pages 107–119. College
Publications, 2006. http://www.aiml.net/volumes/volume6/Bruennler.ps.

[Brü06d] Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic, 47(4):557–
580, 2006. http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwen-
huis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture Notes in Computer Sci-
ence, pages 347–361. Springer-Verlag, 2001. http://www.iam.unibe.ch/~kai/Papers/

lcl-lpar.pdf.

88

http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://www.iam.unibe.ch/~kai/Papers/sd05.pdf
http://cs.bath.ac.uk/pb/bvl/bvl.pdf
http://cs.bath.ac.uk/pb/bvl/bvl.pdf
http://www.iam.unibe.ch/~kai/Papers/ace.pdf
http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf
http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/q.pdf
http://www.iam.unibe.ch/~kai/Papers/n.pdf
http://www.aiml.net/volumes/volume6/Bruennler.ps
http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf

D
RA

FT

[Bus91] Samuel R. Buss. The undecidability of k-provability. Annals of Pure and Applied Logic,
53(1):75–102, 1991.

[Car97] Alessandra Carbone. Interpolants, cut elimination and flow graphs for the propositional
calculus. Annals of Pure and Applied Logic, 83:249–299, 1997.

[DG04] Pietro Di Gianantonio. Structures for multiplicative cyclic linear logic: Deepness vs cyclic-
ity. In J. Marcinkowski and A. Tarlecki, editors, CSL 2004, volume 3210 of Lecture Notes
in Computer Science, pages 130–144. Springer-Verlag, 2004. http://www.dimi.uniud.it/
~pietro/papers/Soft-copy-ps/scll.ps.gz.

[Gen69] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Col-
lected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1969.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via
atomic flows. Logical Methods in Computer Science, 4(1:9):1–36, 2008. http://www.

lmcs-online.org/ojs/viewarticle.php?id=341.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the calculus
of structures. In L. Fribourg, editor, CSL 2001, volume 2142 of Lecture Notes in Computer
Science, pages 54–68. Springer-Verlag, September 2001. http://cs.bath.ac.uk/ag/p/

NoncMELLCoS.pdf.

[GS02] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL. In
M. Baaz and A. Voronkov, editors, LPAR 2002, volume 2514 of Lecture Notes in Computer
Science, pages 231–246. Springer-Verlag, October 2002. http://www.lix.polytechnique.
fr/~lutz/papers/NEL.pdf.

[GS09] Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure V: The
exponentials and splitting. Submitted. http://www.lix.polytechnique.fr/~lutz/

papers/NEL-splitting.pdf, 2009.

[GT07] Rajeev Goré and Alwen Tiu. Classical modal display logic in the calculus of structures and
minimal cut-free deep inference calculi for S5. Journal of Logic and Computation, 17(4):767–
794, 2007. http://users.rsise.anu.edu.au/~tiu/papers/cmdl.pdf.

[Gug04] Alessio Guglielmi. Formalism A. http://cs.bath.ac.uk/ag/p/AG11.pdf, 2004.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computa-
tional Logic, 8(1):1–64, 2007. http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.

[Gui06] Yves Guiraud. The three dimensions of proofs. Annals of Pure and Applied Logic, 141(1-
2):266–295, 2006. http://www.loria.fr/~guiraudy/recherche/cos1.pdf.

[Jeř09] Emil Jeřábek. Proof complexity of the cut-free calculus of structures. Journal of Logic and
Computation, 19(2):323–339, 2009. http://www.math.cas.cz/~jerabek/papers/cos.

pdf.

[Kah06] Ozan Kahramanoğulları. Reducing nondeterminism in the calculus of structures. In
M. Hermann and A. Voronkov, editors, LPAR 2006, volume 4246 of Lecture Notes in Com-
puter Science, pages 272–286. Springer-Verlag, 2006.

[Kah07] Ozan Kahramanoğulları. System BV is NP-complete. Annals of Pure and Applied Logic,
152(1–3):107–121, 2007. http://dx.doi.org/10.1016/j.apal.2007.11.005.

89

http://www.dimi.uniud.it/~pietro/papers/Soft-copy-ps/scll.ps.gz
http://www.dimi.uniud.it/~pietro/papers/Soft-copy-ps/scll.ps.gz
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://cs.bath.ac.uk/ag/p/NoncMELLCoS.pdf
http://cs.bath.ac.uk/ag/p/NoncMELLCoS.pdf
http://www.lix.polytechnique.fr/~lutz/papers/NEL.pdf
http://www.lix.polytechnique.fr/~lutz/papers/NEL.pdf
http://www.lix.polytechnique.fr/~lutz/papers/NEL-splitting.pdf
http://www.lix.polytechnique.fr/~lutz/papers/NEL-splitting.pdf
http://users.rsise.anu.edu.au/~tiu/papers/cmdl.pdf
http://cs.bath.ac.uk/ag/p/AG11.pdf
http://cs.bath.ac.uk/ag/p/SystIntStr.pdf
http://www.loria.fr/~guiraudy/recherche/cos1.pdf
http://www.math.cas.cz/~jerabek/papers/cos.pdf
http://www.math.cas.cz/~jerabek/papers/cos.pdf
http://dx.doi.org/10.1016/j.apal.2007.11.005

D
RA

FT

[Kah08] Ozan Kahramanoğulları. Maude as a platform for designing and implementing deep infer-
ence systems. In J. Visser and V. Winter, editors, Proceedings of the Eighth International
Workshop on Rule Based Programming (RULE 2007), volume 219 of Electronic Notes in
Theoretical Computer Science, pages 35–50. Elsevier, 2008. http://www.doc.ic.ac.uk/

~ozank/Papers/rule07.pdf.

[LS05a] François Lamarche and Lutz Straßburger. Constructing free boolean categories. In Prakash
Panangaden, editor, 20th Annual IEEE Symposium on Logic in Computer Science, pages 209–
218. IEEE, 2005. http://www.lix.polytechnique.fr/~lutz/papers/FreeBool-long.
pdf.

[LS05b] François Lamarche and Lutz Straßburger. Naming proofs in classical propositional logic.
In Paweł Urzyczyn, editor, Typed Lambda Calculi and Applications, volume 3461 of Lec-
ture Notes in Computer Science, pages 246–261. Springer-Verlag, 2005. http://www.lix.

polytechnique.fr/~lutz/papers/namingproofsCL.pdf.

[LS06] François Lamarche and Lutz Straßburger. From proof nets to the free *-autonomous cat-
egory. Logical Methods in Computer Science, 2(4):3:1–44, 2006. http://arxiv.org/pdf/

cs.LO/0605054.

[SL04] Lutz Straßburger and François Lamarche. On proof nets for multiplicative linear logic
with units. In J. Marcinkowski and A. Tarlecki, editors, CSL 2004, volume 3210 of Lec-
ture Notes in Computer Science, pages 145–159. Springer-Verlag, 2004. http://www.lix.

polytechnique.fr/~lutz/papers/multPN.pdf.

[Sto07] Phiniki Stouppa. A deep inference system for the modal logic S5. Studia Logica,
85(2):199–214, 2007. http://www.iam.unibe.ch/til/publications/pubitems/pdfs/
sto07.pdf.

[Str02] Lutz Straßburger. A local system for linear logic. In M. Baaz and A. Voronkov, editors,
LPAR 2002, volume 2514 of Lecture Notes in Computer Science, pages 388–402. Springer-
Verlag, 2002. http://www.lix.polytechnique.fr/~lutz/papers/lls-lpar.pdf.

[Str03a] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Structures. PhD
thesis, Technische Universität Dresden, 2003. http://www.lix.polytechnique.fr/

~lutz/papers/dissvonlutz.pdf.

[Str03b] Lutz Straßburger. MELL in the calculus of structures. Theoretical Computer Science,
309:213–285, 2003. http://www.lix.polytechnique.fr/~lutz/papers/els.pdf.

[Thi03] Rüdiger Thiele. Hilbert’s twenty-fourth problem. American Mathematical Monthly,, 110:1–
24, 2003.

[Tiu06a] Alwen Tiu. A local system for intuitionistic logic. In M. Hermann and A. Voronkov,
editors, LPAR 2006, volume 4246 of Lecture Notes in Computer Science, pages 242–256.
Springer-Verlag, 2006. http://users.rsise.anu.edu.au/~tiu/localint.pdf.

[Tiu06b] Alwen Tiu. A system of interaction and structure II: The need for deep inference. Log-
ical Methods in Computer Science, 2(2:4):1–24, 2006. http://arxiv.org/pdf/cs.LO/

0512036.

[Weg87] Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd and B. G.
Teubner, Stuttgart, 1987.

90

http://www.doc.ic.ac.uk/~ozank/Papers/rule07.pdf
http://www.doc.ic.ac.uk/~ozank/Papers/rule07.pdf
http://www.lix.polytechnique.fr/~lutz/papers/FreeBool-long.pdf
http://www.lix.polytechnique.fr/~lutz/papers/FreeBool-long.pdf
http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf
http://www.lix.polytechnique.fr/~lutz/papers/namingproofsCL.pdf
http://arxiv.org/pdf/cs.LO/0605054
http://arxiv.org/pdf/cs.LO/0605054
http://www.lix.polytechnique.fr/~lutz/papers/multPN.pdf
http://www.lix.polytechnique.fr/~lutz/papers/multPN.pdf
http://www.iam.unibe.ch/til/publications/pubitems/pdfs/sto07.pdf
http://www.iam.unibe.ch/til/publications/pubitems/pdfs/sto07.pdf
http://www.lix.polytechnique.fr/~lutz/papers/lls-lpar.pdf
http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/dissvonlutz.pdf
http://www.lix.polytechnique.fr/~lutz/papers/els.pdf
http://users.rsise.anu.edu.au/~tiu/localint.pdf
http://arxiv.org/pdf/cs.LO/0512036
http://arxiv.org/pdf/cs.LO/0512036

	Introduction
	I Derivations
	Propositional Classical Logic
	The Functorial Calculus
	The Calculus of Structures
	System SKS

	II Atomic Flows
	Atomic Flows
	Paths and Cycles
	Subflows

	Atomic Flows and Derivations
	Extracting Flows from Derivations
	A Normal Form of Derivation

	Normal Forms

	III Normalisation
	Global Reductions
	Simplifier
	Isolated Subflow Removal
	Path Breaker
	Multiple Isolated Subflows Removal
	Threshold Formulae

	Local Reductions
	Soundness
	Termination and Confluence
	Complexity

	Main Result

