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Résumé Général

La Commande Prédictive Non Linéaire

La commande prédictive est une méthodologie avancée de commande qui utilise ex-
plicitement le modèle du système pour prédire les évolutions futures du procédé.
L'idée de base de la commande prédictive consiste à calculer, à chaque instant
d'échantillonnage, une séquence de commande optimale sur un horizon de prédiction
visant à minimiser une certaine fonction coût qui exprime l'objectif de la commande.
Toutefois, seule la première valeur de cette séquence est appliquée au système à
l'instant d'échantillonnage suivant. Ce processus d'optimisation est répété à chaque
instant d'échantillonnage et par conséquent, l'horizon de prédiction est successive-
ment décalé à l'avant. Pour cette raison, la commande prédictive est aussi appelée
de commande à l'horizon fuyant. La �gure 1 illustre la stratégie générale de la
commande prédictive.

Initialement conçue pour répondre aux besoins des procédés dits lents, notamment
l'industrie pétrochimique, la commande prédictive a rapidement trouvé sa place dans
d'autres domaines, plus particulièrement pour les systèmes non linéaires, c-à-d la
Commande Prédictive Non Linéaire (CPNL). La CPNL peut être attractive pour
les raisons suivantes [Mayne et al., 2000]:

• La gestion des contraintes
La prise en compte des contraintes économiques, de sécurité et sur les action-
neurs sont inévitables dans plusieurs domaines d'application. La présence de
ces contraintes fait que la CPNL soit, dans la plupart des cas, la seule option
pour le projet des contrôleurs.

• La prise en compte des non linéarités
Il existe plusieurs situations où les non linéarités ne sont pas négligeables et
les modèles linéaires ne peuvent pas représenter le vrai procédé correctement.
La CPNL est basée sur l'indépendance vis-à-vis de la structure mathématique



2 Résumé Général

du modèle, et par conséquent, elle peut être appliquée à une gamme plus large
des procédés industrielles complexes.

Figure 1: La stratégie de la commande prédictive

Les avantages cités ci-dessus font de la CPNL un outil très puissant pour le projet
des contrôleurs. D'autre part, quelques inconvénients sont à considérer tels que:

• Robustesse
Pour l'instant, en ce qui concerne la commande prédictive, il n'y a pas encore
une réponse satisfaisante pour résoudre ce problème, malgré l'énorme e�ort
de la part de la communauté scienti�que [Magni and R.Scattolini, 2007]. La
di�culté majeure consiste à gérer les incertitudes dans les cas où des grands
horizons de prédiction sont utilisés, et ceci est souvent le cas. Une bonne option
pour attaquer le problème de la robustesse consiste à coupler le contrôleur
prédictif à un correcteur robuste local dans une boucle interne.

• Implémentation temps réel
En e�et, la résolution en ligne de problèmes d'optimisation généralement non
convexes et contraints devient un problème lorsque le temps disponible pour le
calcul n'est qu'une fraction de la période d'échantillonnage. Si la réalisation de
cette tâche est compatible avec les temps caractéristiques des procédés chim-
iques par exemple, elle l'est beaucoup moins pour les systèmes à dynamiques
rapides comme ceux de la robotique ou de la mécatronique. Dans ce cas, la
formulation du problème d'optimisation doit tenir compte explicitement des
contraintes de mise en oeuvre en temps réel. Cette prise de conscience se
cristallise depuis une décennie seulement, et le principe de base est montré
dans la section suivante.
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La CPNL pour les Systèmes Rapides

D'une façon générale, un système peut être considéré comme rapide si le temps de
réponse associé à ce système est plus petit que le temps nécessaire pour résoudre
un problème d'optimisation classique en boucle ouverte. Nous pouvons diviser les
approches dans deux groupes principaux: les méthodes linéaires et non linéaires.
Parmi les approches linéaires, deux méthodes méritent une attention spéciale:

• Approche explicite [Bemporad et al., 2002]
Le principe principal de cette approche s'appuie sur la division de l'espace
d'état en plusieurs régions critiques, dans laquelle le problème d'optimisation
résultant peut être obtenu explicitement. Pour ce faire, l'algorithme tourne
hors-ligne pour dé�nir toutes ces régions. Ceci peut réduire considérablement
le temps de calcul, car la seule tâche temps-réel à exécuter consiste à choisir la
région correspondante selon l'état actuel. D'autre part, ces calculs hors-ligne
peuvent augmenter de façon exponentielle selon la dimension du système, ce
qui peut être très problématique dû aux éventuelles limitations de mémoire et
de stockage.

• Approche basée sur les ensembles actifs [Ferreau et al., 2006]
Cette approche vise à éviter les calculs hors-ligne de la méthode précédente,
à travers un processus temps-réel pour l'obtention de la région critique. Dans
ce cas, la trajectoire de l'état est gérée par un paramètre de continuation
τ ∈ [0, 1], ce qui fait les transitions parmi les di�érentes régions critiques. Ce
principe est utilisé par le logiciel qpOASES [Ferreau, 2007] et a été validé sur
quelques applications pratiques [Ferreau et al., 2007].

Néanmoins, les approches présentées ci-dessus ne concernent que les systèmes linéaires.
En fait, le succès des approches prédictives linéaires est principalement dû au fait
que la solution complète du problème original d'optimisation non linéaire serait, de
toute façon, infaisable, étant donné la limitation du temps de calcul. Cette di�culté,
considérée comme insurmontable pendant longtemps, a inspiré l'idée de distribuer
le processus d'optimisation sur le temps réel du procédé. Quelques contributions
importantes ont été développées et sont brièvement décrites ci-dessous.

• Approche par tirs multiples [Diehl et al., 2005a]
Dans cette approche, le problème d'optimisation à la base de la formulation
prédictive est transformé en un problème non linéaire où la variable de déci-
sion est dé�nie non seulement par la commande, mais aussi par les états et
les multiplicateurs de Lagrange associés aux contraintes. Le principal avan-
tage de cette méthode vient du fait que la technique de tirs multiples permet
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d'éviter les problèmes d'instabilité qui pourraient surgir suite à une mauvaise
initialisation de la trajectoire de commande, ce qui peut être très récurrent
dans les méthodes directes (variables de décision constantes par morceaux).

• Méthode des points intérieurs [Biegler and Zavala, 2009]
Cette méthode a été conçue pour les systèmes industriels à très grande taille,
avec des nombreuses variables d'états et équations di�érentielles. La méth-
ode de points intérieurs est utilisée pour résoudre le problème d'optimisation
non linéaire d'une façon très e�cace [Zavala et al., 2006]. Ainsi que pour
l'approche par tirs multiples, cette méthode utilise aussi l'état comme variable
de décision ce qui augmente considérablement la taille du système à résoudre.
L'algorithme IPOPT [Wächter and Biegler, 2006] est basé sur cette méthode
et a été appliqué avec succès dans quelques procédés industrielles à grande
taille.

• Approche par continuation [Ohtsuka, 2004]
L'approche par continuation, aussi connue par le nom Continuation/Generalized
Minimum RESidual (C/GMRES), utilise comme variable de décision la séquence
de commande et les multiplicateurs de Lagrange associés aux conditions d'optimalité.
Une simple équation di�érentielle dépendante de ces variables est dé�nie, dont
la solution ne passe pas par la solution d'un problème d'optimisation mais par
un retour d'état dynamique. Toutefois, l'approche par continuation reste tou-
jours une méthode directe et donc, présente les mêmes risques d'intégrer une
séquence instable lorsque des mauvaises séquences de commande sont trou-
vées durant le transitoire de la boucle fermée. Ceci incite à utiliser l'approche
par tirs multiples comme une deuxième couche pour essayer de contourner ce
problème. Il existe aussi l'approche présentée par [DeHaan and Guay, 2007]
qui partage aussi la même idée que [Ohtsuka, 2004], à travers un schéma de
mise-à-jour basée sur l'équation di�érentielle. Cependant, les instants de prise
de décision font aussi partis de la variable de décision, ce qui représente la
particularité de cette méthode.

D'autre part, l'approche paramétrique introduite par [Alamir, 2006a] a été utilisée
dans cette thèse. Cette approche possède quelques avantages intéressants, à savoir:

• Tandis que les méthodes classiques utilisent la paramétrisation triviale où toute
la séquence de commande fait partie de la variable de décision (et parfois
même les variables d'état), l'approche paramétrique favorise l'obtention des
problèmes d'optimisation à faible dimension. Ceci est particulièrement vrai
surtout pour les systèmes mécatroniques et robotiques.

• L'approche paramétrique favorise l'obtention de problèmes à faible dimension
et bien posés vis-à-vis le processus d'optimisation. Autrement dit, la solution
sous-optimale d'un problème d'optimisation simple peut être meilleure par
rapport à celle issue d'un problème plus complexe.
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• La simulation en boucle ouverte de séquences temporelles de commandes rel-
ativement simples, utilisées dans le contexte d'horizon fuyant, peuvent mener
à des pro�ls extrêmement riches en boucle fermé.

Ceci dit, il est nécessaire d'introduire quelques formalismes concernant l'approche
paramétrique. Considérons le modèle général d'un système dynamique invariant
dans le temps:

x(t) = X(t, x0,u) x ∈ Rn (1)

où x(t) est l'état du système à l'instant t partant des conditions initiales x(0) = x0

et sous le pro�l de commande u qui est dé�ni sur [0, T ] à valeurs dans l'ensemble
compact admissible U ⊂ Rm. Soit τs > 0 une période d'échantillonnage et T = Nτs.
Toute application Upwc : P × Rn → UN dé�nit sur [0, T ] un pro�l de commande
admissible constant par morceaux à paramètres dans P ⊂ Rnp par:

u(t) = u(k)(p, x) ; t ∈ [tk−1, tk] ; tk = kτs

Upwc(p, x) :=
(
u(1)(p, x) . . . u(N)(p, x)

)
∈ UN

Par abus de notation, l'évolution de l'état sous le pro�l de commande Upwc(p) sera
noté X(t, x0, p). En réalité, à chaque instant d'échantillonnage tj = jτs (j ∈ N),
X(t, x(tj), p) est la valeur de l'état à l'instant tj + t sous le pro�l de commande
Upwc(p, x) dé�ni par le paramètre p. La commande prédictive consiste à résoudre à
chaque instant d'échantillonnage tj, le problème d'optimisation suivant:

p̂(x(tj)) := argmin
p∈P

[
J(p, x(tj))

]
sous C(p, x(tj)) ≤ 0 (2)

et à appliquer la première commande de la séquence optimale Upwc(p̂, x(tj)), à
savoir K := u(1)(p̂(·), ·) durant la période d'échantillonnage [tj, tj+1]. Noter que
J(x, p) représente une fonction coût portant sur l'évolution future sous la com-
mande dé�nie par p alors que C(x, p) représente une contrainte pouvant regrouper
des conditions à satisfaire à tout instant sur l'horizon de prédiction ainsi que des
contraintes ponctuelles (�nales en particulier). A l'instant d'échantillonnage suiv-
ant, le nouveau problème est formulé avec la nouvelle valeur de l'état x(tj+1) et la
nouvelle commande est appliquée durant l'intervalle [tj+1, tj+2] et ainsi de suite. En
�n de compte, la commande prédictive n'est que le retour d'état implicite:

K := u(1)(p̂(·), ·) : Rn → U (3)

qui se traduit simplement par la recherche de la meilleure stratégie (une séquence
d'actions) étant donné l'état actuel du système, commencer l'exécution de la pre-
mière action de la séquence puis reconsidérer systématiquement la situation. Dans
la suite, l'approche paramétrique est utilisée dans deux exemples d'application: le
moteur diesel et le système des pendules jumeaux.
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La CPNL paramétrique pour le Moteur Diesel

Le Moteur Diesel

L'intérêt porté sur le moteur diesel a considérablement augmenté ces dernières an-
nées. En e�et, ce n'est pas par hasard que ce type de moteur attire de plus en
plus l'attention du marché automobile. Le couple élevé à faible vitesse, l'e�cience,
la consommation réduite et la durabilité sont les principaux avantages de ce genre
de moteur. En revanche, les oxydes d'azote (NOx) et les particules issues de la
combustion du diesel représentent sans doute l'inconvénient le plus important. Les
détails du processus de combustion sont montrés dans [Heywood, 1988].

A�n d'attaquer le problème des émissions du moteur diesel, il faut d'abord com-
prendre comment fonctionne le circuit d'air d'un moteur diesel. Le circuit complet
est illustré dans la �gure 2. Le compresseur injecte l'air dans le moteur pour monter
la pression. Le diesel pulvérisé est introduit dans la chambre de combustion et brûlé
avec l'air injecté par le compresseur. Une partie du gaz sortant est réintroduit dans
le moteur par le biais de la vanne de ré-circulation EGR (Exhaust Gas Recircula-
tion), qui est très important pour réduire les NOx. La partie du gaz qui n'est pas
ré-injectée est utilisée pour la vanne VGT (Variable Geometry Turbine), qui absorbe
l'énergie du gaz pour propulser le compresseur et injecter l'air dans le système. Les
vannes EGR et VGT sont donc les variables de commande u.

Figure 2: Le circuit d'air d'un moteur diesel [Wei, 2006].

Il faut souligner que, dans une voiture de série, il n'existe pas de capteur pour
mesurer les émissions. Pour cette raison, le contrôle des émissions se fait à travers la
poursuite des valeurs de la pression à l'entrée du moteur MAP (Manifold Absolute
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Pressure) et le débit d'air MAF (Mass Air Flow), qui sont les sorties y du système.
Par conséquent, la génération de set-points de MAP et MAF doit respecter les
niveaux d'émissions. Cet aspect ne sera pas abordé dans cette thèse, et le lecteur
peut se référencer à [van Nieuwstadt et al., 2000] pour plus de détails à ce sujet. Par
conséquent, l'objectif de la commande est de piloter les vannes EGR et VGT pour
faire la poursuite de MAF et MAP selon les consignes désirés yd. En plus, les deux
entrées doivent respecter les contraintes suivantes:

u ∈ [umin, umax] ; umin ∈ R2 ; umax ∈ R2 (4)

δu ∈ [−δmax,+δmax] ; δmax ∈ R2 (5)

où δu dé�nit l'incrément discret de l'entrée tel que δu(k) = u(k+1)−u(k). Plusieurs
approches ont été développées pour faire face à la poursuite des valeurs de MAF
et MAP du moteur diesel [Jankovic and Kolmanovsky, 1998, Plianos and Stobart,
2007, Chauvin et al., 2006]. Plus récemment, quelques contributions utilisant la
commande prédictive sont aussi apparues pour s'attaquer à ce problème. Dans [Or-
tner and del Re, 2007], l'approche explicite, présentée dans la section précédente, a
été utilisée avec l'inconvénient relatif à la quantité de calculs hors-ligne pour générer
toutes les régions critiques dans l'espace d'état. Pour éviter cela, l'approche basée
sur les ensembles actifs a été utilisée dans [Ferreau et al., 2007] pour améliorer
l'implementabilité temps-réel du contrôleur. En tout cas, il faut rappeler que ces
approches se sont basées sur des modèles linéarisés au tour d'un point de fonction-
nement du moteur, ce qui peut limiter énormément les performances et le champ
d'action du contrôleur, vu que le moteur diesel est un système fortement non linéaire
et contraint. Pour cette raison, la CPNL basée sur l'approche paramétrique est pro-
posée pour réaliser la poursuite des valeurs de MAF et de MAP. L'avantage principal
de cette stratégie est la caractéristique générique de la méthode, qui peut être utilisée
avec n'importe quel type de modèle développé pour moteur diesel. Dans cette thèse,
trois modèles non linéaires ont été utilisés pour montre l'e�cacité de cette méthode.
Le premier est la représentation thermodynamique (6) de 6ieme ordre utilisée dans
[Langthaler, 2007] {

x+ = f(x, u, w) ; x ∈ R6

y = g(x, u, w)
(6)

où w ∈ R2 sont les perturbations mesurées: la vitesse du moteur Ne et l'injection
de carburant wf . Les deux autres modèles ont été développés sur le banc d'essais à
l'université de Linz, en Autriche, dont seulement un (7) est présenté dans ce résumé
pour simpli�er l'analyse, car tous les deux ont la même structure a�ne à l'état. Les
résultats concernant l'autre modèle sont montrés dans [Murilo et al., 2009a].

x+ = [A(u− uc, w − wc)]x+B1[u− uc] +B2[w − wc] ; x ∈ R8

y = [C(u− uc, w − wc)]x+ yc + ε

ε+ = ε

(7)



8 Résumé Général

où ε est l'erreur de prédiction et uc, yc et wc sont les valeurs centrales autour
desquelles le modèle a été identi�é.

L'Observateur à Horizon Glissant

Contrairement au modèle physique (6) où tout le vecteur d'état est disponible pour
les mesures, les modèles empiriques nécessitent d'un observateur pour reconstruire
les états identi�és. Un observateur à horizon glissant MHO (Moving Horizon Ob-
server) a été donc proposé pour ces deux modèles. Le MHO est le concept dual par
rapport à la commande prédictive, et possède essentiellement les mêmes avantages et
inconvénients [Michalska and Q.Mayne, 1995, Alamir, 1999]. Ce genre d'observateur
peut gérer les non linéarités et les contraintes à travers la résolution d'un problème
d'optimisation qui doit être résolu en respectant le temps de calcul disponible. L'idée
de base d'un MHO consiste à estimer l'état actuel du système en utilisant une fenêtre
glissante de taille No qui contient les valeurs passées. Les mesures plus anciennes
sont abandonnées tandis que les plus récentes sont prises en considération. Puis,
ces données sont utilisées pour dé�nir une fonction coût dont la variable de décision
est justement l'état désiré. Si nous considérons k comme l'instant actuel, Ȳk, Ūk
et Ēk les vecteurs contenant des valeurs passées des mesures, entrées et l'erreur de
prédiction respectivement, nous pouvons donc écrire:

Ȳk =

y(k −No + 1)
...

y(k)

 ∈ Rm·No ; Ūk =


u(k −No + 1)
w(k −No + 1)

...
u(k)
w(k)

 ∈ R2m·No ; Ēk =

ε(k −No + 1)
...

ε(k)

 ∈ Rm·No

La valeur de ε est mise-à-jour à chaque période d'échantillonnage selon ε(k) =
ε(k−1)+ki.(y

p(k)−ym(k)), où yp(k) et ym(k) sont respectivement la valeur prédite
partant de l'état estimé à l'instant k − 1 et la sortie à l'instant k, et ε(k − 1) la
valeur précédente de l'erreur de prédiction et ki ∈ Rm le gain d'intégration. Nous
pouvons donc obtenir les relations suivantes:

x(k) =
[
Φ(Ūk)

]
· x(−) +

[
Ψ(Ūk)

]
· Ūk (8)

Ȳk =
[
Ω(Ūk)

]
· x(−) +

[
Γ(Ūk)

]
· Ūk + Ēk (9)

où x(−) est l'état à l'instant k−No + 1. Les matrices Φ(Ūk), Ω(Ūk), Γ(Ūk) et Ψ(Ūk)
sont obtenues après quelques manipulations avec A(·), C(·) et B = [B1 B2]. Les
détails de ces calculs sont montrés dans l'annexe A. Nous pouvons donc écrire les
équations pour x̂(k − 1) et x(−) tel que:

A(u(k − 1), w(k − 1))x̂(k − 1) +B[u(k − 1) w(k − 1)]T =
[
Φ(Ūk)

]
· x(−) +

[
Ψ(Ūk)

]
· Ūk

Ȳk =
[
Ω(Ūk)

]
· x(−) +

[
Γ(Ūk)

]
· Ūk + Ēk
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La première équation est liée à l'équation d'état et la deuxième au vecteur de sortie.
Par conséquent, nous pouvons dé�nir une fonction coût dont la variable de décision
est l'état passé x(−) de la façon suivante:

x̂(−) = argmin
ξ∈Rn

‖G1.ξ − S1‖2
Q1

+ ‖G2.ξ − S2‖2
Q2

où Q1 et Q2 sont les matrices de pondération qui peuvent être prises en tant que
l'inverse des matrices de covariance, exactement comme pour le �ltre de Kalman
étendu, et les autre matrices sont dé�nies comme suit:

G1 = Ω(Ūk) ; G2 = Φ(Ūk) ; S1 = Yk − Γ(Ūk).Ūk − Ēk
S2 = A(u(k − 1), w(k − 1))x̂(k − 1) +B[u(k − 1) w(k − 1)]T −Ψ(Ūk).Ūk

Avec les notations ci-dessus, l'équation de l'observateur peut être écrite de la façon
suivante:

x̂(k) = Φ(Ūk).[(GT
1 .Q1.G1 +GT

2 .Q2.G
T
2 )†(ST

1 .Q1.G1 + ST
2 .Q2.G2)T ]x̂k−1 + Ψ(Ūk).Ūk (10)

La �gure 3 montre l'évolution de l'erreur d'estimation de l'état, avec Q1 et Q2 étant
les identités et ki = [3.5; 3.5]. Un biais constant ε = [−3,−15] a été introduit
à t = 0s et ε = [−10,−5] à t = 100s. Malgré la présence de cette erreur, la
convergence asymptotique de l'estimation de l'erreur est obtenue.
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Figure 3: Résultats de simulation montrant l'erreur d'estimation de l'état. Une
erreur ε est introduite à t = 0s et t = 100s et l'observateur est toujours capable de
reconstruire l'état.



10 Résumé Général

Le Projet du Contrôleur

L'analyse préliminaire pour l'élaboration de la loi de commande a été réalisée avec le
modèle (7). En réalité, malgré le fait que le moteur diesel est un système fortement
non linéaire, sa réponse en boucle ouverte est stable. Ceci dit, le premier pas consiste
à trouver la commande u∗ en régime permanent et l'état x∗ correspondant. Puisque
w et yd sont connus, le régime stationnaire peut être obtenu à travers la solution du
problème d'optimisation suivant:

u∗(w, yd) := arg min
ud∈[umin,umax]

∥∥yc(ud, w)− yd
∥∥2

(11)

yc(ud, w) = C(ud, w)[In − A(ud, w)]−1.[B.ud +G.w] + ε

x∗(u∗, w) = [In − A(u∗, w)]−1.[B.u∗ +G.w] (12)

Une fois la commande u∗ en régime permanent calculée, l'approche paramétrique
consiste à trouver une simple parametrisation temporel de la séquence de comman-
des futures. Tandis que dans les formulations classiques tous les composants de la
commande sont utilisés comme variables de décision, l'approche paramétrique réduit
considérablement le degré de liberté des variables inconnues tout en découpant du
choix de l'horizon de prédiction:

u(iτs + t) = Satumaxumin

(
u∗ + α1.e

−λ.i.τs + α2.e
−q.λ.i.τs

)
for t ∈ [(k − 1)τs, kτs[ (13)

où i ∈ {0, . . . , N−1}, λ > 0, q ∈ N sont les paramètres de réglages, α1, α2 ∈ Rm sont
les coe�cients à déterminer. Les saturations sur les entrées sont structurellement
respectées selon (4) avec l'opérateur Sat. En plus, deux autres contraintes peuvent
être écrites comme suit:

u∗ + α1 + α2 = u(k − 1) (14)

α1.(e
−λ.τs − 1) + α2.(e

−q.λ.τs − 1) = p · δmax ; p ∈ [−1,+1]2 (15)

où p ∈ [−1, 1]2 est le vecteur de paramètres à déterminer. Il faut remarquer que
l'expression (15) montre que la di�érence entre deux valeurs successives de com-
mande ne doit pas dépasser la valeur maximale δmax, selon la contrainte (5). Cela
explique le pourquoi de p ∈ [−1, 1]2. Nous pouvons donc obtenir un système avec 4
équations:
αu11 (p)
αu12 (p)
αu11 (p)
αu22 (p)

 =


1 1 0 0
0 0 1 1

e−λ.τs − 1 e−q.λ.τs − 1 0 0
0 0 e−λ.τs − 1 e−q.λ.τs − 1


−1

u1(k − 1)− u∗1
u2(k − 1)− u∗2

p1δ
1
max

p2δ
2
max


où α1 = [αu11 ;αu11 ] et α2 = [αu12 ;αu12 ] sont les 4 inconnues, solution du système linéaire
ci-dessus. En injectant ces valeurs dans (13), nous obtenons �nalement:
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u(iτs + t, p) = Satumaxumin

(
u∗ + α1(p).e−λ.i.τs + α2(p).e−q.λ.i.τs

)
(16)

L'expression (16) montre clairement que le pro�l de commande dépend des paramètres
p. Le prochain pas consiste à déterminer p à travers la solution d'un problème
d'optimisation. Ceci passe par la dé�nition d'une fonction coût qui pénalise l'erreur
de poursuite y − yd et aussi l'état �nal. Nous pouvons donc dé�nir le problème
d'optimisation suivant:

p̂ := argmin
p∈P

[
ρx.‖X(N, x̂(k), p)− x∗(yd, w)‖+

N−1∑
i=0

‖Y (i, x̂(k), p)− Yf (i, yd, w)‖2Qy

]
(17)

où x̂(k) est l'état estimé à l'instant k, Y (i, x̂(k), p) et X(i, x̂(k), p) sont respective-
ment, la sortie et l'état à l'instant k+ i basé sur le pro�l de la commande en boucle
ouverte dé�ni par p dans [k, k + N − 1] à partir de x̂(k). L'état x∗(yd, w) est l'état
stationnaire calculé selon (12), ρx > 0 est le terme de pondération nécessaire pour
renforcer la contrainte sur l'état �nal (pour des raisons de stabilité) et Yf (i, yd, w)
la séquence de consignes �ltrées pour éviter les dépassements:

Yf (i, y
d, w) = yd + e−3τs.i/tr .[y(k)− yd] (18)

où tr est le temps de réponse désiré du système en boucle fermé et Qy la matrice de
pondération dé�nie comme étant:

Qy =

(ρ1
ȳ1

0

0 ρ2
ȳ2

)
m×m

(19)

où ρ1 et ρ2 sont les termes de pondération sur y1 et y2 respectivement et ȳ1 et ȳ2 les
termes de normalisation sur chaque sortie. La �gure 4 illustre toute cette stratégie
avec aussi la présence du MHO.

Pour l'instant, nous avons considéré que la solution stationnaire est donnée par
la solution d'un problème d'optimisation à part (11). Toutefois, il est possible
d'inclure la commande stationnaire en tant que variable de décision dans l'approche
paramétrique. De cette façon, la nouvelle structure de la séquence de commande
dévient

u(iτs + t, p) = Satumaxumin

(
[p3 p4]T + α1(p).e−λ.i.τs + α2(p).e−q.λ.i.τs

)
(20)

Il faut remarquer que cette fois-ci p est de dimension 4, à savoir, p ∈ R4. Dans ce cas,
l'ensemble de contraintes à respecter sont

(
p1 p2

)T ∈ [−1,+1]2 et
(
p3 p4

)T ∈ R2.
Toutefois, a�n de réduire l'espace de recherche pour p3 et p4, des contraintes bornées
peuvent être utilisées.
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Figure 4: Notions concernant l'approche paramétrique et l'observateur à horizon
glissant. L'instant actuel est k. Ȳk est collecté durant l'intervalle [(k−No+1)τs, kτs]
et les valeurs passées de u et w sont stockées dans Ūk. Puis, l'état x̂(k) est obtenu
à travers (10), qui est ensuite utilisée pour dé�nir la paramétrisation exponentielle.

Une option possible consiste à considerer
(
p3 p4

)T ∈ [umin, umax]
2. Ceci revient à

dire que les paramètres p3 and p4 doivent respecter les contraintes sur les entrées
selon (4), et dans ce cas, ils remplacent la commande stationnaire u∗. Le système
modi�é pour la solution des paramètres α1 and α2 devient:


αu11 (p)
αu12 (p)
αu21 (p)
αu22 (p)

 =


1 1 0 0
0 0 1 1

e−λ.τs − 1 e−q.λ.τs − 1 0 0
0 0 e−λ.τs − 1 e−q.λ.τs − 1


−1

u1(k − 1)− p3

u2(k − 1)− p4

p1δ
1
max

p2δ
2
max


Toutefois, cette formulation nécessite quelques considérations concernant la fonction
coût dé�nie en (17). En réalité, celle ci dépend du calcul de x∗ qui ne peut être
obtenu qu'avec le modèle (7) puisqu'il y a une routine spéci�que pour calculer l'état
stationnaire (12). Cela n'est pas le cas pour le modèle non linéaire (6). Il faut donc
changer la pondération �nale sur l'état en (17), qui dans ce cas peut être dé�nie
comme la norme de la di�erence entre deux états successifs à la �n de l'horizon de
prédiction, a�n d'adresser la stabilité. Une autre possibilité consiste tout simplement
à faire ρx = 0, puisque le système est stable en boucle ouverte. Ce choix semble
être très raisonnable selon les résultats de simulations obtenus. Par conséquent, le
calcul de p ne dépend plus d'une structure particulière du modèle utilisé, et ceci
fait que l'approche paramétrique puisse être appliquée comme une solution du type
black-box pour les moteurs diesel.
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Le dernier point à considérer consiste à choisir une procédure d'optimisation pour le
calcul de p. Nous proposons une méthode basée sur la Programmation Quadratique
Séquentiel (SQP), gradient et région de con�ance. Pour des raisons de simplicité,
nous allons la décrire très brièvement. La première routine, appelée SQP, est une
mise-à-jour de la ieme composante de p à travers une approximation quadratique
scalaire. Le succès ou non de cette recherche augmente ou réduit la région de con-
�ance et conduit à une variation de pi. En plus, ces variations permettent d'avoir
aussi une expression approchée du gradient. Pour cela, une deuxième routine ap-
pelée Gradient est utilisée pour permettre une descente du gradient sur l'ensemble
des composantes de p selon une deuxième région de con�ance. Lorsque le nombre
d'évaluation du critère dépasse la valeur maximale nfe, les itérations s'arrêtent et
la valeur courante de p est passée dans p(tk+1). Malgré sa simplicité, cette méth-
ode s'est montrée assez puissante en obtenant le même niveau de performance par
rapport à d'autres routines classiques du type Powell ou Simplex.

Résultats

Cette section présente quelques résultats obtenus en simulation ainsi que la valida-
tion expérimentale de l'approche paramétrique sur le banc d'essais de l'Université
de Linz 1. Le scenario dans les deux cas est le cycle New European Driving Cycle
(NEDC), qui est censé représenter l'usage typique des voiture en Europe et est aussi
utilisé pour l'analyse des niveaux des émissions des moteurs en général. En plus,
tous les programmes relatifs à la CPNL et MHO ont été développés en langage C
et intégré à l'environnement Matlab à travers les S-functions.

La �gure 5 montre les simulations en utilisant le modèle non linéaire (6). La con�gu-
ration hardware utilisée est un PC Pentium 4, 3GHz. Le système a été échantillonné
à 10 ms, avec N = 100. Les coe�cients λ et q des exponentielles en (16) valent 8 et
1.25 respectivement et le nombre maximum d'évaluation de fonction nfe = 4. Notez
que le NEDC exige une poursuite très rapide des valeurs de MAF et MAP et le
contrôleur arrive bien à suivre les consignes désirées. Il faut aussi noter que, lorsque
les set-points ne sont pas faisables, les vannes sont saturées dans leur position max-
imale. Dans ce cas, il faut trouver un bon compromis entre les variables ou sinon
privilégier une variable par rapport à l'autre en agissant sur les paramètres ρ1 et ρ2.

Chronologiquement, le modèle (7) a été livré par les autrichiens avant le modèle
(6) et pour cette raison, le premier a été utilisé pour la validation expérimentale.
Les résultats sont montrés dans la �gure 6. Ce modèle a été identi�é à 50 ms et
l'horizon de prédiction utilisé cette fois-ci était N = 30. Puisqu'il s'agit du modèle
(7), l'observateur est nécessaire, et l'horizon d'observation No utilisé étant égal à
10. En plus, la pondération sur l'état �nal doit être aussi prise en compte, avec
ρx = 1e3. Notez que les contraintes sur la position des vannes sont respectées et

1Moteur diesel BMW M47TUE
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la poursuite des set-points de MAF et MAP est assez correcte. Les incertitudes du
modèle et l'échantillonnage à 50 ms peuvent expliquer le dépassement à t ≈ 200s.
Pour cette raison, la prochaine étape consiste à valider cette approche en utilisant
le système (6), vu qu'il s'agit d'un modèle plus complet et représentatif.
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Figure 5: Résultats de simulation de l'approche paramétrique avec le NEDC. Modèle
(6).
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Figure 6: Résultats expérimentaux de l'approche paramétrique relative à la partie
haute-vitesse du NEDC. Modèle (7).
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La CPNL Paramétrique pour les Pendules Jumeaux

Le Système des Pendules Jumeaux

Le deuxième exemple d'application concernant l'approche paramétrique est le sys-
tème des pendules jumeaux sur un chariot. Ce système est composé de deux pend-
ules avec des inerties di�érentes, attachés à un chariot. L'objectif de la commande
consiste à amener les deux pendules à la position verticale d'équilibre, à travers le
couple moteur qui agit sur le chariot. La méthode a été validée expérimentalement
sur la plateforme des pendules du département d'automatique de l'Université de
Grenoble.

Le schéma de la plateforme utilisée dans les expériences est montré dans la �gure 7.
Les notationsmi, li, Ii, θi sont, respectivement, les masses, les longueurs par rapport
au centre, moments d'inertie et position angulaire du ieme pendule, r la position du
chariot par rapport à l'origine Oo et rmax la valeur maximale admissible pour r. La
force F appliquée sur le chariot est générée par la commande u, qui représente le
couple livré par le moteur.

rmax 
r

rmax 

m,l,I

m,l,Iθ1 
θ2 

F

u

Oo

Figure 7: Le système des pendules jumeaux (Département d'automatique, Université
de Grenoble).
Le modèle du système est obtenu à travers le développement des équations de La-
grange, ce qui donne les équations suivantes:{

θ̈i = −αiv cos θi + βi sin θi ; αi = mili
mil2i+Ii

; βi = gαi ; i ∈ {1, 2}
r̈ = v

(21)

u = αm0 (θ1, θ2)v + βm0 (ṙ, θ1, θ2, θ̇1, θ̇2) (22)
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où αm0 et βm0 sont les valeurs des inerties équivalentes dépendant des paramètres
physiques du système pendule-moteur, v l'accélération du chariot et u la variable
de commande qui représente le couple moteur. L'objectif de la loi de commande
consiste à stabiliser l'ensemble suivant:

{x ∈ R6|x = (rf 0 0 0 0 0)T ; rf ∈ [−rmax,+rmax]} (23)

tout en respectant les contraintes sur la commande et sur la position du chariot:

u(t) ∈ [umin, umax] ; r(t) ∈ [−rmax,+rmax] (24)

Le Projet du Contrôleur

L'élaboration de l'approche paramétrique passe par la dé�nition du concept de
niveau d'énergie E d'un pendule et sa dérivée Ė. Ces expressions peuvent être
représentées par les relations suivantes:

Ei =
1

2
θ̇1

2
+ βi(cosθi − 1) ; Ėi = −αivθ̇icosθi ; i ∈ {1, 2} (25)

Nous pouvons donc souligner quelques caractéristiques intéressantes concernant le
niveau d'énergie. Premièrement, pendant les instants où v = 0, la valeur de Ėi
vaut 0, c-à-d, les deux pendules possèdent un niveau d'énergie constant. En plus,
si à un instant donné nous obtenons Ei = 0, alors les futures trajectoires sous
v = 0 mènent à l'état θi = θ̇i = 0 ce qui représente la position verticale d'équilibre.
Deuxièmement, dans les cas où θ̇i cos θi 6= 0, E est sensible à v et donc, en agissant
sur v, il est possible d'agir sur la dérivé de E a�n de diminuer le niveau d'énergie
de façon incrémentale. En revanche, si θ̇i cos θi ≈ 0, Ei dévient insensible à v. En
tout cas, il est très rare que (θ̇1 · cos θ1) et (θ̇2 · cos θ2) s'annulent au même moment
dû aux di�érentes caractéristiques physiques des pendules et par conséquent, il est
donc possible d'améliorer le niveau d'énergie d'un pendule si l'autre reste insensible
à v. L'approche paramétrique va donc se baser sur la méthode d'énergie, déjà
invoquée dans [Åstrom and Furuta, 2000]. Pour ce faire, les dé�nitions suivantes
sont proposées:

En
i =

|Ei|
Emax
i

; i ∈ {1, 2} ; E = max
{
En

1 , E
n
2

}
(26)

où En
i représente le niveau d'énergie normalisé et E sa valeur maximale qui corre-

spond au niveau d'énergie total du système. Avant de formaliser la loi de commande,
il faut d'abord adresser le problème des contraintes. En ce qui concerne la contrainte
sur la position, un simple changement de variables est proposé selon:

v(k) = −Ks

(
r(k)− rd(k)

ṙ(k)

)
(27)



Résumé Général 17

où Ks ∈ R1×2 représente le gain stabilisant pour l'asservissement de la position
désirée rd, qui dévient la nouvelle variable de commande. En e�et, rd doit être
choisie tel que rd ∈ [−rmax,+rmax]. En plus, Ks est calculé pour que les transi-
toires respectent la région admissible [−rmax, rmax] et aussi de sorte que les niveaux
d'accélération, et par conséquent le couple moteur, ne dépassent jamais les satura-
tions [umin, umax]. Ceci règle donc les contraintes sur l'actionneur. Nous pouvons
dé�nir un pro�l constant par morceaux pour rd comme suit:

rd(kτs + t) = rd(k) ; t ∈ [0, Tp] (28)

où Tp est l'horizon de prédiction Tp = Nτs. Désormais, nous allons considérer que Tp
est choisi plus grand ou égal au temps de réponse tr du chariot, donné par le choix
de Ks dans l'expression (27). Plus précisément, cette condition assure que à la �n
de l'horizon de prédiction v ≈ 0, ce qui garantit que, lorsque l'horizon de prédiction
est décalé, la valeur �nale de E reste constante (en absence de frottement) si nous
gardons la position actuelle. Ceci dit, nous pouvons dé�nir une fonction coût qui
fait le lien à l'état du système à la �n de l'horizon de prédiction:

J(x(k), p) = E(F (x(k), Tp, p)) (29)

où F (x(k), Tp, p) est la solution de (21) à l'instant Tp, et p le paramètre à opti-
miser dé�ni comme étant p = rd. L'étape suivante consiste à trouver une stratégie
d'optimisation pour le paramètre p. Les routines classiques d'optimisation peuvent
être très lourdes pour l'exécution dans le temps d'échantillonnage. Dans ce cas, l'idée
est de véri�er trois possibilités: rester dans la position actuelle, se déplacer à gauche
ou se déplacer à droite. Ce déplacement, dé�ni comme dr, est calculé en fonction du
niveau d'énergie du système selon une fonction linéaire du type dr(E) = dr0 + δrE.
Cela veut dire que pour E = 1, la valeur maximale pour dr est appliquée et diminue
au fur et mesure que E diminue jusqu'à la valeur minimale permise dr0 . Par con-
séquent, l'ensemble de valeurs admissible pour la variable de décision p est donné
par:

P :=
{

max{−rRHCmax , r − dr} , r, min{+rRHCmax , r + dr}
}

(30)

où rRHCmax est l'arrêt virtuel dé�ni tel que rRHCmax < rmax, utilisé pour éviter que le
transitoire du contrôleur linéaire (qui sera expliqué dans la suite) ne viole pas les
contraintes de position. Pour cette raison, rRHCmax ne concerne que la partie relative
à l'horizon fuyant, à savoir, Receding Horizon Control (RHC). Avec cette dé�ni-
tion, nous pouvons établir le problème d'optimisation à résoudre à chaque période
d'échantillonnage:

p̂(x(k)) = argmin
p∈P

J(x(k), p) (31)
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où p̂ représente la valeur optimale de p. La �gure 8 montre une vision intuitive
du choix de p et la contraction de E. En injectant p̂ dans l'expression (27), nous
obtenons la loi de commande prédictive suivante:

v(k) = KRHC(x(k)) = −Ks

(
r(k)− p̂(x(k))

ṙ(k)

)
(32)
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Figure 8: Schéma intuitif de la contraction de E selon les valeurs optimales p̂.

La prochaine étape consiste à dé�nir la loi de commande au voisinage de la position
d'équilibre local et les conditions nécessaires pour basculer d'un contrôleur à l'autre.
D'abord, écrivons le système linéarisé du système autour de x = 0:

θ̈1 = −α1v + β1θ1

θ̈2 = −α2v + β2θ2

r̈ = v

(33)

ce qui décrit un système linéaire du type ż = Az +Bv, où z est la nouvelle variable
d'état z =

(
ṙ θm1 θ̇1 θm2 θ̇2

)
∈ R5, et θm1 , θ

m
2 ∈ [−π,+π] sont égaux à θ1, θ2,

modulo 2π. Il faut remarquer que la position �nale rf n'est pas imposée. Pour ce
système, un régulateur linéaire classique peut être utilisé pour obtenir un gain KL,
et par conséquent, une loi de commande discrète du type v(k) = −KL · z(k), qui
stabilise les pendules à la position verticale haute d'équilibre. Cependant, cette loi ne
peut être utilisée qu'autour d'un petit voisinage A0 de l'état désiré. Pour bien dé�nir
cette région, il est normal d'utiliser une fonction de Lyapunov telle que A0 = {z ∈
R5|zTSz ≤ ρ0}, où ρ0 = zT0 Sz0 et z0 représente l'état qui dé�nit les frontières autour
de la position verticale où le modèle linéaire semble être plus acceptable. Donc, tant
que le système reste en dehors deA0 le basculement vers le contrôleur linéaire ne peut
pas être réalisé. En plus cette condition n'est pas su�sante, puisque le transitoire
le v(k) peut violer les contraintes de position rmax. Pour essayer de contourner ce
problème, une deuxième condition doit être additionnée a�n de surveiller toutes les
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positions intermédiaires du chariot, sous la présence de v(k). En réalité, la prédiction
de la valeur maximale de ces positions doit être évaluée, à savoir ϕ(x(k)). Donc,
ϕ(x(k)) < rmax est la deuxième condition à respecter pour pouvoir changer la loi de
commande, ce qui nous donne un contrôleur du type hybride. Nous pouvons donc
résumer cette stratégie de la façon suivante:

v(k) =

{
−KLz(k) si zT (k)Sz(k) ≤ ρ0 et ϕ(x(k)) < rmax
KRHC(x(k)) sinon

Un observateur a été aussi développé pour le système de pendules jumeaux, a�n
d'obtenir un estimateur d'état au cas où les mesures de vitesses (chariot et pendules)
ne sont pas disponibles et si les mesures des capteurs d'angles sont biaisées. Un
observateur non linéaire a été proposé pour élaborer une stratégie du type retour de
sortie, où les biais sont correctement estimés, et l'erreur d'estimation converge vers
zéro. Un résultat très important a montré que le système peut être très sensible
lorsque les biais sur les capteurs d'angles varient légèrement à faible amplitude et
fréquence. Le chariot, dans ce cas, dévient très oscillant pour garder le système en
équilibre, ce qui explique le comportement dans la validation expérimentale, vu qu'il
existe beaucoup d'incertitudes dans le modèle nominal. Les détails concernant cet
observateur sont disponibles dans [Murilo and Alamir, 2007].

En ce qui concerne la validation expérimentale, quelques considérations doivent être
faites a�n d'adapter la solution théorique à l'implémentation temps-réel. En réalité,
l'e�et du frottement est très présent sur le vrai système. Pour cela, une identi�cation
en boucle ouverte est proposée à �n d'obtenir les coe�cients de frottement sec et
visqueux qui agissent sur les articulations des pendules. Deuxièmement, le choix
de l'horizon de prédiction doit être le plus petit possible, c'est à dire, Tp = tr a�n
de minimiser l'e�et des incertitudes et le frottement sur le système. Finalement,
plus d'itérations peuvent être réalisées, au lieu de trois, pour essayer de pro�ter au
maximum le temps de calcul disponible pour intégrer le système. En fait, le nombre
d'évaluations de fonction nfe multiplié par le coût d'intégration du système τcomp
doit être inférieur au temps d'échantillonnage τs, c'est à dire, nfe × τcomp ≤ τs.

Résultats

Les résultats obtenus en simulation sont montrés dans la �gure 9, avec Tp = 0.6s,
δmaxr = 0.4m, rRHCmax = 0.6m, rmax = 0.7m, τs = 0.05s, dr0 = 0.1m, α1 = 0.67m−1

et α2 = 1.33m−1. Notez bien la décroissance de E et le pro�l d'acceleration v
du chariot. Pour un temps de réponse tr donné, la contrainte sur la commande
est respectée en agissant sur δmaxr , ou vice-versa. La �gure 10 montre les résultats
expérimentaux obtenus dans la plateforme des pendules jumeaux du département
d'automatique de l'Université de Grenoble, cette fois-ci avec α1 = 2.59m−1, α2 =
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3.51m−1 et avec un temps d'échantillonnage plus petit τs = 0.01s. L'experience
démarre à 5 s. Notez bien que l'approche paramétrique arrive globalement à faire
descendre le niveau d'énergie du système. Notez aussi le comportement oscillant du
chariot lorsque les pendules sont en position verticale. Ceci est principalement dû
au frottement et aux incertitudes du modèle. Comme mentionné précédemment, ce
genre de comportement a déjà été noté lors de simulations réalisées en présence d'un
faible biais variable introduit sur les capteurs d'angles.
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Figure 9: Évolution du système en boucle fermée avec δmaxr = 0.4m.
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Figure 10: Résultats expérimentaux expriment l'e�cience de l'approche paramétrique
pour stabiliser de système des pendules jumeaux.
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Conclusion

Dans cette thèse, deux schémas à faible dimension basés sur l'approche paramétrique
ont été proposés pour deux systèmes non linéaires à dynamiques rapides: le mo-
teur diesel et les pendules jumeaux. Ces solutions ont été validées expérimentale-
ment et ont montré l'e�cacité de la méthode. De plus, dans le cas du moteur
diesel, l'approche paramétrique peut être utilisée comme une solution du type boite
noire, totalement indépendant de la complexité du modèle non linéaire. Ceci peut
être généralisé pour les systèmes qui possèdent des caractéristiques similaires au
comportement du moteur diesel. En ce qui concerne la résolution des problèmes
d'optimisation, un algorithme basé sur SQP/Gradient/Région de con�ance a été
développé et utilisé pour l'application du moteur diesel. Et �nalement, deux obser-
vateurs non linéaires ont été proposés pour les deux systèmes, avec l'implémentation
temps-réel d'un observateur à horizon glissant pour le moteur diesel.
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Chapter 1

Introduction

1.1 General Aspects of Model Predictive Control

Model Predictive Control (MPC) is an advanced control methodology which uses
explicitly the system model to predict the future evolution of the process. The basic
idea of MPC consists in computing an optimal control sequence over a prediction
horizon at each decision instant, by minimizing some given cost function expressing
the control objective. The �rst control signal is scheduled to be applied to the
system during the next sampling period and this optimization process is successively
repeated at each sampling time. The prediction horizon keeps being shifted forward
and for this reason MPC is also called receding horizon control (RHC). Figure 1.1
illustrates a simpli�ed view of MPC.

In the last recent years, the interest of the scienti�c community in MPC has con-
siderably grown as well as the number of successful industrial case studies involving
MPC controllers. Originally conceived to be applied to slow dynamic processes such
as chemical industries or oil re�neries, MPC-like strategies are becoming more and
more present in di�erent industrial sectors. This was made possible thanks to the
advances in computer science and to some extent, the dedicated formulations that
aims at using MPC for systems with fast dynamics. In 2006, the workshop MPC
for Fast Nonlinear Systems prior to the 45th IEEE Conference on Decision and
Control [Findeisen, 2006] showed some interesting data concerning the publications
and applications involving MPC:

• 2120 publications in 2004-2005 (Inspec).

• Adchem 2006, 30 % of submitted control papers are related to MPC.
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Figure 1.1: Schematic view of the MPC strategy. An optimization process returns
the optimal sequence computed in open loop over some prediction horizon. Only
the �rst element of the resulting control pro�le is applied during the next sampling
period τs. Repeating this process at each sampling instant results in a state feedback.

• Several special issues in journals under preparation.

• More than 5800 known implementations spanning a wide range of application
areas: petrochemical industry, food industry, aerospace industry, car industry,
etc.

An excellent survey containing several aspects of MPC is presented in [Mayne et al.,
2000], which highlights its di�erent properties and limitations. Here, the main points
are presented by discussing the advantages and drawbacks of this control design
methodology.

Handling Constraints

The �rst advantage of MPC is the fact that constraints on the inputs and the states
can be explicitly handled in the problem formulation. These constraints such as
control saturation, safety requirement and contractual speci�cations (to cite just
a few examples) are unavoidable in any realistic context. The presence of these
constraints in control problems renders quite often MPC the only available option
for the success of the control task.
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Dealing with Nonlinearities

Although linear MPC theory has reached a high level of maturation, there are sev-
eral situations where nonlinearities are quite strong and real processes can not be
correctly represented by linear models. Moreover, even for linearized systems, im-
provements on the required performance due to a more restrictive and demanding
speci�cations in industry, may considerably change the admissible operational region
where linear assumptions are valid. All these reasons make linear paradigm insuf-
�cient to describe the whole complexity of the process, and nonlinear approaches
become more appropriate. This motivates the use of a more elaborated strategy,
namely nonlinear model predictive control (NMPC).

The main di�erence between MPC and NMPC approaches lies in the use of non-
linear models, which can be empirical (identi�ed input-output or state space based
models), physical (also called �rst principle models) or gray box (intermediate level
between empirical and physical). In recent years, the number of theories based on
NMPC formulations has considerably grown. Obviously, the problem complexity is
much greater comparing to the linear case. Thus, one of the main di�culties of the
NMPC strategy lies in the fact that the convexity of the optimization problem is no
more guaranteed as in the linear case. Nonlinear Programming (NLP) approaches
become a natural candidate to deal with such problems. However, NLP-based so-
lutions may be very di�cult to obtain. This is an important issue for NMPC and
more details about it are widely discussed in the following chapters.

Real-time Implementation

Another important issue in NMPC is the computation time needed to perform the
optimization process that leads to the optimal control sequence. This is a crucial
point for predictive control, especially when fast systems are considered, since the
optimal solution must be calculated within a short sampling period when systems
with fast dynamic are addressed.

The �rst practical applications of MPC were mostly developed for processes where
the dynamics were slow enough to perform all the required computations. This
explains why slow-dynamic processes, such as the one encountered in the petro-
chemical industries, were the �rst real application where MPC could be e�ectively
applied. Since then, several theoretical issues have been developed in order to design
faster and feasible NMPC methods to be applied with higher sampling rates.

Robustness

As in any control design, the issue of robustness against model mismatches and/or
disturbances has to be considered. Until now, there is no satisfactory answer to
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this problem in the MPC context despite the huge e�orts of a part of the scien-
ti�c community [Magni and R.Scattolini, 2007]. It is even suggested in [Alamir,
2006b] that the fact that MPC approaches heavily depends on long terms predic-
tion makes them particularly vulnerable to model mismatches. Coupling MPC to
local analytical controllers in a inner loop may probably be the good option.

1.2 Motivations

This PhD work addresses the challenging problem of applying NMPC to nonlinear
dynamical systems showing fast dynamics. By "fast dynamics", it is meant that
the sampling period that is used to update the control input is su�ciently short
to prevent the complete solution of the underlying optimization problem when the
latter is designed using standard schemes.

More speci�cally, this PhD work promotes the parameterized approach in NMPC
design [Alamir, 2006a] as a candidate solution to this challenging issue. In particular,
the validation of the proposed ideas on concrete experimental facilities is a main
streamline of this work since such a validation is the ultimate step.

In the following section, the outline of the present dissertation is given.

1.3 Outline of the Dissertation

The dissertation is organized in �ve chapters.

Chapter 2 proposes a general literature review on NMPC. First, a historical back-
ground of predictive control is presented. Then, some preliminary notions on NMPC
are introduced and important points such as stability and real-time implementation
are emphasized.

Chapter 3 focuses on the state of the art of NMPC strategies for fast systems. The
main issues, advantages and drawbacks of the main approaches are discussed in
details. Moreover, some important aspects of the parameterized NMPC scheme are
presented and compared with the standard NMPC methods.

Chapter 4 presents the parameterized NMPC scheme for a diesel engine air path.
It is shown that the resulting control scheme not only meets the real-time require-
ments but also handles the constraints and realizes nice tracking performances as
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well. Moreover, the proposed control strategy uses the model as a black-box simu-
lator since no particular structure related feature is used in the development of the
algorithm. This makes the algorithm a candidate solution to be used with more
advanced and precise models of the process. Results from experimental validation
of a real-world diesel engine test bench are shown to emphasize the e�ciency of the
parameterized NMPC scheme. The strategy is completed by designing a moving
horizon observer (MHO) in order to estimate the unmeasured states.

Chapter 5 proposes a second real application of the parameterized NMPC: the swing-
up and stabilization of the twin-pendulum system. This systems consists of two
decoupled pendulums with di�erent inertias �xed on a cart. The control problem
is to stabilize both pendulums in the upward vertical at rest position by acting
on the cart acceleration. A parameterized NMPC scheme is proposed to deal with
nonlinearities, constraints on both the actuators, the state (cart excursion) and
on-line computation requirements.

Finally, a general conclusion of this dissertation is presented and further issues are
discussed for future work.
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Chapter 2

Nonlinear Model Predictive Control

2.1 Introduction

In this chapter, an overview of the main topics concerning the NMPC is presented
together with some mathematical background. During the recent years, the develop-
ment of new NMPC strategies witnessed a considerable progress in several domains.
Here, two of them are more emphasized: the stability problem and the real-time
implementation. For the �rst one, the su�cient conditions to guarantee asymp-
totic stability for nonlinear systems are presented in a condensed form. The second
one introduces some important notions about the NMPC real-time implementation,
which is the main part of this dissertation. Especially for fast dynamic systems,
the real-time aspects of NMPC represent a crucial point to take into account in the
problem formulation.

This chapter is organized as follows. First, in section 2.2, a historical background is
proposed in order to track the evolution of the optimal and predictive control strate-
gies through time. Then, in section 2.3, some preliminary notions about NMPC are
introduced together with the mathematical background in order to go deeper into
the NMPC theory. In section 2.4, the su�cient conditions to guarantee stability for
general NMPC schemes are presented. Section 2.5 addresses the real-time issue and
the stability conditions in such a context are formalized. Finally, section 2.6 gives
the conclusion of this chapter.
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2.2 Historical Background

The �rst steps of predictive control go back to the late 1950's where the Bellman's
principle of optimality was stated [Bellman, 1957]. It is quite important to underline
the link between predictive and optimal control since the basic principle of predictive
control is to solve an optimal control problem at each sampling period. Belleman
introduced an important property for optimal strategies which says that the remain-
ing part of an optimal trajectory remains optimal for the optimal control problem
de�ned on the remaining part of the prediction horizon. Afterwards, some relevant
observations made by Kalman in [Kalman, 1960] for linear systems showed that op-
timality does not imply stability and important concepts such as Control Lyapunov
Functions (CLF) have been introduced to analyze stability of closed-loop systems.
Some years later, in 1967, the �rst guidelines of predictive control were roughly
announced in [Lee and Markus, 1967], which suggested that only the �rst portion
of an optimal sequence must be applied and a new scenario must be re-computed
at each decision instant. In fact, this clearly represents the main idea of predictive
control.

The second important step for the development of predictive control was made in
the seventies, with the advances in the computer science and the development of mi-
croprocessors. The latter has considerably increased the computation speed as well
as the memory storage and provided several improvements on software program-
ming and the possibility to embed mathematical tools. All these advances resulted
in the development of important industrial applications of control design, especially
for predictive control which is highly dependent on the computational resources to
solve optimization problems on line. Actually, industrial processes represent a very
rich �eld of predictive control applications not only because of the several constraints
present in real processes, but also due to the fact that industry constantly needs to
optimize performances.

Therefore, at the end of the seventies, the �rst MPC applications were developed
for the industry, most of them for chemical processes which were slow enough to
ensure feasible computations of optimal solutions. Basically two kinds of algorithms
were proposed. The algorithm IDCOM (Identi�cation and Command), presented in
[Richalet et al., 1978, 1976], and the DMC (Dynamic Matrix Control) [Cutler and
Ramaker, 1980], both based on heuristic methods, also known by Model Predictive
Heuristic Control (MPHC). This �rst generation of algorithms had a great impact in
the industry but they were not able to manage the constraints yet. Such limitations
lead to the development of an important second class of algorithms, headed by the
Quadratic Dynamic Matrix Control (QDMC), for linear systems with quadratic cost
functions [Garcia and Morshedi, 1986]. The main feature of such algorithms was
the introduction of the important concept of Quadratic Programming (QP) to solve



2.3. Problem Formulation 31

constrained problems for linear systems under quadratic cost functions in open loop.
Since then, several kinds of MPC algorithms were developed for the industry. For
more details about these approaches, an excellent survey of a wide range of industrial
applications of MPC can be found in [Qin and Badgwell, 2003].

Initially, linear MPC approaches were used as the simplest way to formulate the
control problem. This is because the identi�cation process of linear models is quite
simple. Moreover, the computation of the quadratic cost function can be easily
obtained, providing convex problems for which the solutions were well studied and
solved using many commercially available products. However, many reasons make
the linear approaches inappropriate to meet the increasing performance requirements
in the industry. Correct handling of strong nonlinearities and non-convex optimiza-
tion problems have become the only issue to correctly address the real problems and
NMPC quickly arose to �ll this important gap in the industry. As a result, in re-
cent years some important softwares such as Interior Point Optimizer (IPOPT) and
Multiple Shooting Code for Optimization (MUSCOD) were developed in order to
address predictive control for constrained nonlinear systems [Wächter and Biegler,
2006, Leineweber, 1996]

Despite the success of NMPC applications in the industrial context, the theoreti-
cal aspects of stability were not explicitly taken into account in such formulations.
The pragmatic point of view of engineers as well as the open-loop stable behavior
of most processes (which is not a su�cient condition for closed-loop stability) may
explain why the stability problem was not explicitly addressed for a while. Then,
in 1988, the contribution of Keerthi and Gilbert proved the asymptotic stability for
NMPC by means of Lyapunov methods for discrete-time systems and under mild
technical conditions [Keerthi and Gilbert, 1988]. Two years later, a similar proof
was provided for the continuous-time case [Mayne and Michalska, 1990]. This was
de�nitely the starting point for the development of several important contributions
on NMPC. Next chapter is speci�cally dedicated to discuss some of these contribu-
tions. Before that, it is quite necessary to introduce some mathematical background
and important de�nitions related to NMPC. This is the aim of the next section.

2.3 Problem Formulation

2.3.1 Some De�nitions and Notation

In this section, the mathematical background is presented in order to formalize some
basic concepts related to NMPC. Let us consider a general state space representation
of a plant described by a discrete-time nonlinear system as follows:
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x(k + 1) = f(x(k), u(k)) (2.1)

where x ∈ Rn is the state vector, u ∈ Rm the control input, both de�ned at the
present instant k, x(k + 1) the state at instant k + 1 and f : Rn × Rm → Rn. For
the sake of simplicity, the system (2.1) can also be represented as xk+1 = f(xk, uk)
or even by the short notation x+ = f(x, u). This representation can be easily
obtained from the di�erential equations of the model, by converting them into a set
of �rst-order equations.

In this presentation, we assume that the control objective is to stabilize the origin
x = 0 and we assume that the pair x = 0, u = 0 is a stationary pair for the dynamic
given by (2.1). In addition, the control input u is constrained according to:

u(k) ∈ U ⊂ Rm (2.2)

where U ⊂ Rm represents a compact and convex set of admissible values of u(k).
Considering that the control input is piece-wise constant. A general control sequence
u composed of N successive input values can be de�ned as follows:

u :=
(
u(k) u(k + 1) · · · u(k +N − 1)

)
∈ UN ⊂ RN ·m

The above representation can also be written in a condensed form:

u = Upwc(·, {u(i)}k+N−1
i=k )

where Upwc represents the classical piece-wise constant (PWC) control pro�le for u,
under the sampling period τs. More formally, this control sequence can be de�ned
as follows:

u(iτs + t) = u(i) for t ∈ [0, τs[ , i ∈ {k, ..., k +N − 1}

Moreover, the admissible subset U is supposed to contain the origin, namely 0 ∈
int(U), which means that the set U contains the asymptotically desired control
value, namely u = 0. The control objective is to �nd a stabilizing control law which
respects the input constraints de�ned in (2.2) and steers the state trajectory to 0,
while respecting the state constraints de�ned by:

x(k) ∈ X ⊂ Rn (2.3)

where X is a closed and convex set. A �nal constraint on the state may be added
in order to force a weighting term on x(k +N), leading to:

x(k +N) ∈ Xf ⊂ X (2.4)

where Xf is a compact subset of X.



2.3. Problem Formulation 33

2.3.2 The Cost Function

In NMPC context, one aims at stabilizing the system at the origin using trajectories
that minimize some cost function that re�ects the control objective. In order to
manipulate such trajectories, let us denote by xu(k) the future state trajectory
when some control pro�le u is applied to the system (2.1), starting from current
state x(k):

xu(k) :=
(
x(k) x(k + 1) · · · x(k +N)

)
∈ RN ·n

Since the dynamic system is supposed to be time invariant, the index k may be
omitted in the further developments and the time base is set to 0. For this reason,
the state value at t = (k + i)τs under the control sequence u is represented by the
short notation x(i) instead of x(k + i).

A general form of a cost function with �nite horizon and terminal constraint can be
expressed as follows:

VN(x,u) = F (x(N)) +
N−1∑
i=0

L(x(i), u(i)) (2.5)

where F (x(N)) is the terminal cost and L(x(i), u(i)) a weighting term called stage
cost, which loosely expresses the desired closed-loop performance. In this case, N
is also called the prediction horizon. The weighting term L is generally chosen such
that the following technical assumption is satis�ed:

L(x, u) ≥ c.

∥∥∥∥(xu
)∥∥∥∥2

with c > 0 (2.6)

Actually, the above condition, de�ned by the euclidian norm, is not that di�cult
to ful�ll since a simple quadratic term can be added to any original formulation to
meet (2.6).

2.3.3 The NMPC State Feedback

The NMPC strategy consists in computing at each sampling period the best fu-
ture control sequence by minimizing the cost function de�ned in (2.5) under the
constraints given by (2.2)-(2.3)-(2.4).

More precisely, at each decision instant k, the solution of the following optimization
problem PN(x(k)) (that depends on the state x) has to be obtained:
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PN(x) : û(x) := argmin
u

[
V (x,u)

]
(2.7)

subject to : u ∈ UN , x(i) ∈ X , x(N) ∈ Xf

where x(i) denotes the state of the system i sampling instants later when the piece-
wise control sequence u is applied to the system.

The optimal solution û(x) is the sequence of future control actions that minimizes
the cost function while meeting the problem's constraints. Note that since the
optimization problem itself depends on the current state x, the optimal solution is
also a function of the current state.

In what follows, the following notation is used to refer to the successive actions in
the optimal sequence:

û(x) = (û(0)(x), . . . , û(N−1)(x)) , û(i)(x) ∈ Rm

According to the de�nition of the predictive control strategy, the �rst control in
the sequence û(x), namely û(0)(x), is applied to the system during the time interval
[k, k + 1[ resulting in the following discrete-time state feedback:

κN(x) = û(0)(x) (2.8)

Moreover, the optimum value V (x, û(x)) of the cost function (2.5) can be represented
by the short notation:

V̂N(x) = V (x, û(x)) (2.9)

This quantity plays a crucial role in the proof of the stability of the closed-loop
system as it is shown in the next section.

2.4 Stability Analysis

In this section, the su�cient conditions that guarantee asymptotic stability of the
closed-loop nonlinear system given by:

x+ = f(x, κN(x))

are shown. This presentation is largely inspired by [Mayne et al., 2000] from which
only the main streamlines are presented since this stability analysis is not the main
point in the present PhD work.
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Let us consider the future state trajectory under the optimal control sequence û,
namely x̂, at the present instant k.

x̂ = {x̂, x̂(1), . . . , x̂(N)}

According to the de�nition of the NMPC control law, the control κN(x) = û(0)(x) is
applied during the sampling period [k, k + 1]. At instant, k + 1, the state x+ = x̂(1)

is reached and the problem to be solved now is precisely PN(x+) which is de�ned
over the prediction horizon [k + 1, k +N + 1].

The idea leading to the su�cient conditions for stability is to take as a candidate
solution for PN(x+) the remaining sequence of controls

{û(1)(x), . . . , û(N−1)(x)} (2.10)

completed by a �nal action such that the resulting sequence is admissible for the
constrained optimization problem PN(x+). This is made possible by the following
assumption:

Assumption 2.1. For all ξ ∈ Xf , there exists a control κf (ξ) ∈ U such that
f(ξ, κf (ξ)) ∈ Xf . In other words, there exists a local control law κf de�ned in Xf

taking values in U with respect to which the terminal set Xf is positively invariant.

Under assumption 2.1, the terminal action to be added at the end of the shifted
sequence (2.10) is precisely given by the value of the feedback κf at the �nal state
xN , namely:

ũ = {û(1)(x), . . . , û(N−1)(x), κf (x̂
(N))}

which leads to the following state trajectory x̃ starting at instant k + 1:

x̃ = {x̂(1), . . . , x̂(N), f(x̂(N), κf (x̂
(N)))}

The sequence ũ is clearly admissible since each one of its actions is clearly in the
admissible control set U, the �nal state is clearly in the admissible set X∩Xf and the
preceding states belong to the admissible set by construction (optimal trajectory of
the preceding problem PN(x)). Therefore, since ũ is an admissible control sequence,
it comes by the very de�nition of optimality that any optimal solution, say û(x+)
to the optimization problem PN(x+) satis�es:

VN(x+, û(x+)) ≤ VN(x+, ũ) (2.11)
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Using the short notations

V̂ +
N = VN(x+, û+) ; Ṽ +

N = VN(x+, ũ)

It comes that de�nition of ũ:

Ṽ +
N = F (f(x̂(N), κf (x̂

(N)))) +
N−1∑
i=1

L(x(i), u(i)) + L(x̂(N), κf (x̂
(N)))

The sum of the stage cost L in the above expression can also be de�ned as:

N−1∑
i=1

L(x(i), u(i)) =
N−1∑
i=0

L(x(i), u(i))− L(x, κN(x))

which leads to the following relation:

Ṽ +
N = V̂N − L(x, κN(x))− F (x̂(N)) + L(x̂(N), κf (x̂

(N))) + F (f(x̂(N), κf (x̂
(N)))) (2.12)

and using the notation,

∆F (x̂(N), κf (x̂
(N))) = F (f(x̂(N), κf (x̂

(N))))− F (x̂(N))

the expression (2.12) becomes:

Ṽ +
N = V̂N − L(x, κN(x)) + ∆F (x̂(N), κf (x̂

(N))) + L(x̂(N), κf (x̂
(N)))

and �nally using the notation ξ = x̂(N) ∈ Xf , the following expression is obtained:

V̂ +
N ≤ Ṽ +

N = V̂N − L(x, κN(x)) + [∆F + L](ξ, κf (ξ)) (2.13)

It becomes then clear that in order to be able to prove the decrease of the positive
function V̂N over the closed-loop trajectory, the following assumption is appropriate:

Assumption 2.2. The terminal cost F , the stage cost L, the �nal subset Xf and the
local control law κf de�ned by the assumption 2.1, satisfy the following inequality:

[∆F + L](ξ, κf (ξ)) ≤ 0

for all ξ ∈ Xf .
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Indeed, if the assumption 2.2 holds, the inequality (2.13) becomes:

V̂ +
N ≤ V̂N − L(x, κN(x))

or by re-using the original notations:

V̂N(x+) ≤ V̂N(x)− L(x, κN(x)) (2.14)

which clearly proves the asymptotic stability of the origin provided that the stage
cost L(x, u) is positive de�nite with respect to x.

It is worth noting that assumption 2.2 simply states that the �nal weighting term F
is a Control Lyapunov Function (CLF) under the local control κf since one clearly
has:

F (f(ξ, κf (ξ)))− F (ξ) ≤ −L(ξ, κf (ξ)) ≤ 0

The following proposition summarizes the su�cient conditions for the asymptotic
stability of the closed-loop system:

Proposition 2.1. If the following conditions are satis�ed:

• The functions f , F and L are continuous

• L satis�es (2.6)

• U is compact (needed for the existence of optimal solution)

• X and Xf ⊂ X are closed

• Xf is positively invariant under κf

• F is a CLF under κf over Xf

• The assumptions 2.1 and 2.2 are satis�ed

Then the predictive controller is well de�ned and the corresponding closed-loop sys-
tem is asymptotically stable. More precisely, the Lyapunov function is precisely the
optimal cost V̂N .

The su�cient conditions invoked in proposition 2.1 are those suggested in the sem-
inal paper [Mayne et al., 2000] where a particularly interesting uni�ed view has
been proposed. Before this uni�cation, there were a quite impressive amount of



38 2. Nonlinear Model Predictive Control

particular works that introduce, each, di�erent set of su�cient conditions. This re-
sulted in a traditional classi�cation of the di�erent approaches according to the kind
of stability-oriented constraints as well as the speci�c treatment of the prediction
horizon.

The only NMPC formulations that do not �t the above framework are those where
the stability arguments are based on the property of contraction [Morari and Oliveira,
2000, Alamir, 2007]. In these formulations, the prediction horizon is a decision vari-
able and is therefore computed together with the optimal control sequence when
solving the underlying optimization problem. The stability proof is therefore slightly
di�erent from the streamline depicted above. The reader can refer to the above cited
references for more details.

2.5 Real-Time Issue

2.5.1 Distributing the Optimization over the System Life-
Time

In the preceding sections, the stability of the closed-loop system has been considered
assuming that the optimization problem can be almost instantaneously solved. By
instantaneously, it is meant that the time needed to solve the optimization problem
can be considered as negligible when compared to the characteristic time of the
system being considered.

In fact, as mentioned in the introduction, this assumption is particulary true for
chemical processes, whose slow dynamics cope perfectly with the real time require-
ments to perform optimization process. For this reason, NMPC was successfully
implemented in that context. Dedicated softwares were able to solve demanding
optimizations problems, with thousands of decision variables and constraints.

Unfortunately, this scenario is no more valid when dealing with dynamical systems
showing fast dynamics. In this case, the sampling period is drastically reduced and
the available computation time may not be su�cient to perform the optimization
task in within the sampling period.

For this reason, real-time optimization has become one of the most challenging
problems concerning NMPC. In this section, some basic concepts are introduced
in order to state the underlying problem in a rather informal way. The existing
solutions to cope with this implementation problem are discussed in the next chapter,
where an extensive literature review on the di�erent NMPC approaches related to
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this issue are provided.

When dealing with nonlinear programming, there is no closed analytical form giving
the optimal sequence that solves the optimization problem. Instead, an iterative
process has to be applied that takes the following form:

û(i) = S(û(i−1), x) (2.15)

where S is some optimizer that di�ers according to the solver being used and i is
the iteration index. The control sequence must be initialized with some initial value
u(0). Theoretically, the optimal solution is given by:

û(x) = lim
i→∞

û(i) (2.16)

However, for real time implementation, the iterations must stop after itermax itera-
tions

û(x) = û(itermax) (2.17)

It is worth noting that the number of iterations that would be needed to achieve the
optimization task depends not only on the current state x but also on the desired
precision. Moreover, the time needed to perform itermax iterations must be lower
than the available sampling time τs.

In order to deal with this problem, the idea of distributing the optimization over
the system life-time has been �rst suggested by [Alamir, 2001] and applied to the
minimum interception time problem. More precisely, it has been shown that by per-
forming only one iteration of a descent algorithm, an NMPC law can be derived that
leads to a remarkably robust behavior under high uncertainties on the aerodynamic
coe�cients.

Since this early proposition, many researchers adopted this simple and intuitive idea
[Ohtsuka, 2004, Alamir, 2006a, Diehl et al., 2005a, DeHaan and Guay, 2007] to cite
only few works. These works are discussed in the next chapter. In the remainder of
this chapter, an intuitive and rather informal set of su�cient conditions for such a
solution to lead to an asymptotically stable closed-loop behavior are discussed.

2.5.2 The Extended System

Note that under the real-time constraint, it is no more possible to practically deal
with the implicitly de�ned quantity û(x) used in section 2.4 since it is no more
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possible to compute this optimal sequence. Instead, one has to deal with the cur-
rent estimation of the optimal sequence that evolves in time according to (2.15).
Assuming that it iterations of the solver can be performed at each sampling period,
one can write the following extended system:{

u+ = S it(u, x)

x+ = f(x, u(0))
(2.18)

in which the state of the system and the sub-optimal control sequence evolves simul-
taneously. Moreover, the control applied to the system is exactly the �rst control in
the sequence û which is no more linked to the state by an implicit static relation.

One is clearly in the presence of an extended state:(
x
u

)
where the control sequence u becomes an internal state. The dynamic of this state
is driven by the iteration of the solver S that still depends on the current state x.

It goes without saying that the analysis of the stability of the extended system
(2.18) is much more involved than the stability analysis in the ideal case. This is
because in the classical proof of stability, the optimality of the sequence û(x) played
a quite crucial role. In the real-time iteration case, it is very di�cult to assess the
quality of an intermediate result u(i) obtained after a �nite number of iterations and
starting from some initial value that may be far from the optimal solution. That is
the reason why the current section suggests some intuitive arguments to highlight
the intuitive conditions under which the whole thing may work.

Proposition 2.2 (Informal).
If the following conditions are satis�ed:

1. The procedure S is su�ciently e�cient,

2. The sampling time is su�ciently small,

3. The original predictive control formulation is stabilizing in the ideal context

4. The system shows no �nite escape time.

Then, the state of the extended system (2.18) converges to a small neighborhood of
the origin.
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An informal proof of this rather intuitive statement is proposed in [Alamir, 2006b].
Roughly speaking: if the �rst two assumptions are satis�ed, the decrease in the
optimal cost, between two sampling instants is stronger than the potential increase
that would result from the change in the state that parameterizes the optimization
problem. This result in a net decrease of the optimal cost. When the optimal cost
reaches a neighborhood of the true minimum, the arguments used in the proof of
stability in the ideal case prevail and the third assumption may be used to conclude.
However, for this whole process to take its time, it is mandatory that the system
state remains bounded during the transient. That is why the fourth assumption is
used.

A formal proof including roughly the same arguments has been used in [Diehl et al.,
2005b] in the particular case where the multiple-shooting based real-time iteration
scheme (see chapter 3) proposed by [Diehl et al., 2005a] is used. The proof is more
technical but the basic arguments are the same.

2.6 Conclusion

This chapter provided a brief survey of some important points related to NMPC.
The stability issue of a NMPC scheme was analyzed in details, and conditions for
stability were also formalized following the guidelines presented in [Mayne et al.,
2000]. Moreover, the real-time aspects were also invoked in the problem formulation
and an informal stability proof of the resulting system was also proposed. This proof
falls in the quite recent idea of distributing the optimization problem over the system
life-time in order to deal with the limitation of the available computation time to
proceed optimization process, which is a critical point when fast dynamic systems
are considered. The next chapter analyzes the main contributions that share this
common idea.
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Chapter 3

NMPC for Fast Systems

3.1 Introduction

In this chapter, the di�erent NMPC formulations which were developed to handle
fast dynamic systems are discussed. Roughly speaking, fast systems are those show-
ing response time smaller than the time needed to solve the underlying open-loop
optimization problem in a standard way. Actually, this situation arises in several
real applications, and it is particulary frequent in robotics and mechatronic systems.

This chapter is divided in two parts. The �rst (section 3.2) provides the state of
the art on the main strategies for the implementation of NMPC schemes for fast
systems, by discussing the advantages and drawbacks of each strategy. The second
(section 3.3), focuses speci�cally on the low-dimensional parameterized NMPC ap-
proach, since it is the strategy adopted in this work. Finally in section 3.4, a general
discussion is proposed.

3.2 Fast NMPC: State of the Art

There are several ways to classify the di�erent NMPC formulations that intend to
tackle the real-time implementation issue. Here, a �rst classi�cation is obtained by
splitting the existing works into two main families: the linear and nonlinear formula-
tions. A brief introduction of each category is proposed, and the most representative
contributions of each one are discussed in the sequel. However, the nonlinear ap-
proaches are more detailed since they represent the target of this dissertation.
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3.2.1 Linear Formulations

Several linear MPC strategies fall in this category such as the explicit o�-line feed-
back computation approach based on the Piece-Wise A�ne (PWA) approximation
[Bemporad et al., 2002] and the recently developed on-line active set approach for
PWA models [Ferreau et al., 2006]. Roughly speaking, as far as nonlinear systems
are concerned, these approaches address the real-time requirement by replacing the
original problem by a new and generally di�erent one which possesses a highly struc-
tured form that lends itself to e�cient computations.

Although these linearization-like approaches attempt to solve a modi�ed problem
that can be quite di�erent from the original one (because of the use of PWA models
that can be quite di�erent from the physical nonlinear model), they encountered
and still have a huge popularity. For this reason, these two important contributions
in this domain are detailed in the following.

3.2.1.1 Explicit approaches

The explicit approach, also called o�-line method, has become a successful MPC de-
sign tool for constrained linear systems. A complete overview of explicit approaches
is well detailed in [Alessio and Bemporad, 2008]. One of the main contributions
in this domain was presented in [Bemporad et al., 2002], which also inspired some
others advances in the explicit MPC [Borrelli et al., 2003, Tøndel et al., 2003]. Many
applications were developed as well as a hybrid toolbox software for predictive con-
trol [Ortner and del Re, 2007, Bemporad, 2004].

The key idea of the proposed strategy is to perform o�-line computations in order
to solve a standard parameterized QP-problem. Thus, the resulting solution can be
explicitly calculated taking into account the constraints on the states and inputs.
It is a fact that having this o�-line preparation reduces considerably the amount of
on-line computation but also shows some drawbacks which are discussed later.

The main point of [Bemporad et al., 2002] is the fact that the state space X can be
subdivided into some polyhedral critical regions (CR), on each of which the optimal
active set is constant, and that the explicit solution of the parametric QP on each
of these critical regions is an a�ne function of x0 [Za�riou, 1990].

Figure 3.1 illustrates a simpli�ed view of a two-dimensional state space partition-
ing. The constraints represented by the inequalities C1 ≤ 0, ..., C5 ≤ 0 are a�ne
functions of the state x and they are used to de�ne the critical region CR0 and
the multiple convex subsets Ri. In fact, CR0 is a polyhedron in the x-space, and
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represents the largest set of x ∈ X such that the combination of active constraints at
the minimizer remains unchanged. Once the critical region CR0 has been de�ned,
the rest of the space CRrest = X−CR0 has to be explored and new critical regions
generated.

The algorithm runs o�-line to cover the region of interest of the state space and
the optimal solution of a multi-parametric (mp) QP is calculated for each subset.
Once the background calculations are �nished, the on-line task consists in �nding
the current subset according to the current state. This reduces substantially the
computation time, since there is no more on-line optimization to be done. This is the
major advantage of the explicit approach as only the critical regions corresponding to
the current value of state must be found. The corresponding pre-computed optimal
gain is then used to compute the control to be applied.

Figure 3.1: Schematic view of the partitioning of the state space in the explicit
approach [Bemporad et al., 2002]. The subsets and the critical regions are calculated
o�-line. The controller must only compute the right subset the current state belongs
to in order to apply the pre-computed optimal solution.

However, the exponential growth of the o�-line computation requirements in the
parameter size, as well as the storage of the partition description, limit considerably
the dimension of the system that can be handled and the number of uncertainties or
additional parameters to take into consideration. Moreover, the number of regions
may be dissuasive and can even make the on-line determination of the current region
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a quite involved task in some cases. In [Pannocchia et al., 2006], a method to reduce
the o�-line complexity of the explicit approach is proposed provided suboptimal
online performance are accepted.

3.2.1.2 Online active set strategy

The potential drawbacks of the explicit solution inspired the development of di�erent
approaches. An online active set strategy was proposed in [Ferreau et al., 2006]. The
main idea of this approach lies in the fact that the active set does not change very
much from one QP to the next one.

In this method, a straight line in the state space links the past value of the state
to the new one. Then, the corresponding QPs on this line can be solved since such
set remains convex. The QP solution depends a�nely on the initial state x0 as long
as the critical region does not change, but it might happen that the boundaries of
the critical regions are crossed. The basic idea of the algorithm, which has been
previously proposed by [Best, 1996], considers the homotopy for parametric QP, as
can be seen in the �rst scenario of �gure 3.2, which shows a simpli�ed view of the
homotopy paths. The �gure illustrates the trajectory of the state, driven by some
continuation parameter τ ∈ [0, 1], through the di�erent critical regions.

One of the main advantages of the proposed method is the fact that one produces
a sequence of optimal solutions for QPs on the homotopy path. This is a very
important feature to ensure real-time feasibility, since it is possible to stop such
sequence after every partial step and re-start a new homotopy path from the current
value towards the next QP. This is illustrated in the second scenario of �gure 3.2.
While in the �rst case there is no limitation related to the changes of the active
sets, for the second one, a maximum active set changes may be imposed per QP,
where only two active set changes are permitted, in order to guarantee real-time
implementation.

This on-line active set algorithm motivated the development of the software qpOASES
[Ferreau, 2007], which was successfully implemented in some practical applications
[Ferreau et al., 2007]. Indeed, this methodology not only avoids the huge o�-line
preparation but also addresses the real-time problem. However, the present solution
keeps the idea that the whole control input vector is taken as a degree of freedom,
which may represent a very strong requirement, especially when fast systems are
considered. Moreover, the active set method, as well as the explicit approach pre-
sented previously, are limited to only linearized model or originally linear systems.
This motivates the study of more intrinsically nonlinear approaches.
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(1)

(2)

Figure 3.2: Schematic view of two scenarios concerning the homotopy paths [Fer-
reau et al., 2006]. The algorithm must solve the QP(xnew0 ) from the initial solution
QP(x0), by moving from x0 to xnew0 according to a normalized continuation param-
eter τ . This may keep the feasibility of the resulting solution for the intermediate
points. The second scenario shows that the number of active set changes was limited
in order to address real-time requirements.

3.2.2 Nonlinear Formulations

The success of the linearization-based controllers for predictive control was princi-
pally due to the fact that the complete solution of the original nonlinear constrained
problem would be anyway unfeasible within the available computation time. This
di�culty, for a long time considered as insuperable, inspired the idea of distribut-
ing the optimization process over the system lifetime [Alamir, 2001]. Later, several
approaches emerged in this direction [Ohtsuka, 2004, Diehl et al., 2005a, Alamir,
2006a, DeHaan and Guay, 2007] that are discussed here.

First, a brief overview of the o�-line standard dynamic optimization is presented.
According to [Cervantes and Biegler, 2009], there are two types of NLP approaches:
the indirect and the direct methods.

• Indirect Methods
Also known as variational approach, these methods are based on the �rst order
necessary condition for optimality, obtained from the Pontryagin's Maximum
Principle [Pontryagin et al., 1962]. Such conditions can be written as a two-
point boundary value problem for problems without inequality constraints and
classical solvers can be used. However, several drawbacks, such as the di�culty
to handle inequality constraints and the often unstable dynamic of the adjoint
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state di�erential equation make indirect methods less appropriate for on-line
NMPC.

• Direct Methods
These methods are based on piecewise constant controls and are widely used
for NMPC. They can be separated into two main groups: sequential (or control
parametrization) and simultaneous strategy

� In the sequential approach, the decision variable is the sequence of con-
trol actions to be applied. The cost function is obtained by integrating
the system equation using the current guess of the control sequence. The
problem formulation is easy to construct using reliable di�erential alge-
braic equations (DAE) solvers as well as NLP solvers. However, repeated
numerical integration of DAE may considerably increase the computation
time especially when inappropriate values of the control sequence are en-
countered during the optimization. Indeed, these sequence may lead to
sti� di�erential systems that may increase the computation time or, even
worse, lead to unstable behavior.

� In the simultaneous approach, both the control input sequence and the
state trajectory are considered as decision variables to be found simulta-
neously. This is the approach adopted in the multiple-shooting algorithm
[Bock and Plitt, 1984] and the collocation method [Biegler, 1984]. The
system equations are transformed into constraints linking the decision
variables and this results in a generally extremely high dimensional NLP
problem that is sparse and dedicated solvers have to be used. The stabil-
ity issue of the direct method is overcome at the price of a larger problem
and a more involved problem formulation. However, the over sophisti-
cated software that are involved in the solution may not be compatible
with on-board facilities and even memory limitation.

The real-time concerned formulations that have been proposed for e�cient imple-
mentation of NMPC can be divided into �ve families:

• Real-Time Iteration with Multiple Shooting

• Continuation/Generalized Minimum Residual (C/GMRES)

• Interior Point-based Methods

• Hybrid-Parameterized Scheme

• Parameterized NMPC approach



3.2. Fast NMPC: State of the Art 49

These approaches deserve a special attention since they cover the main existing
streamline of current research on NMPC schemes dedicated to fast systems. More de-
tails on these strategies are presented in the following section. The low-dimensional
parameterized NMPC scheme is more discussed in section 3.3, since it is the ap-
proach adopted in this PhD work.

3.2.2.1 Real-Time Iteration with Multiple Shooting

In [Diehl et al., 2005a], a real time iteration strategy has been developed in order
to distribute the optimization process over the system life-time. The computation
of the optimal control sequence is based on the multiple shooting method, a simul-
taneous approach which o�ers several advantages in the real-time context.

Figure 3.3: Schematic view of the multiple shooting strategy applied to NLP prob-
lems [Bock and Plitt, 1984, Diehl et al., 2005a]. Multiple shooting is an e�cient
way to initialize optimization problems, to deal with highly nonlinear and unstable
systems, and treat with path constraints.

Multiple shooting strategy, introduced in [Bock and Plitt, 1984], basically considers a
piecewise constant representation of the control pro�le using a temporal grid {ti}Ni=0,
along the prediction horizon. The ordinary di�erential equation (ODE) representing
the system dynamics are solved over each interval [ti, ti+1] numerically, starting
from an arti�cial initial value of the state si, and computing the future trajectories
xi = f(ti+1, si, qi), where qi is the control input. The corresponding stage cost L is
computed and then integrated for each interval. Figure 3.3 illustrates the multiple
shooting strategy. By doing so, the intermediate states si are also part of the decision
variable (degrees of freedom) to be computed in order to solve the optimal control
problem.
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One advantage of this multiple shooting approach lies in the stability of the integra-
tion scheme since transient unfeasible trajectories can be used in the NLP solver.
More precisely, if a bad control sequence is encountered, the system is not integrated
from the initial state until the end of the prediction horizon, only pieces of tra-
jectories are computed starting from the currently adopted values of the state si.
Moreover, constraints can be explicitly imposed on the state over the time interval
without being implicitly depending on the control sequence, at least temporarily.

Only one descent iteration is applied at each sampling period. The computation
of the ingredients needed to compute the descent direction is done in two steps.
During the current sampling period, the part of the problem that does not depend
on the state is computed (preparation phase), then as soon as the new measurement
arrives, the QP problem description is completed and a descent direction can be
performed. The resulting control is applied and the process is repeated during the
next sampling period. As a result, this approach consists in two important phases,
the preparation and the feedback phase, which is shown in �gure 3.4.

  

Figure 3.4: Schematic view of the preparation and the feedback phases present in
the real-time iteration method [Diehl et al., 2005a]. Note the di�erence between the
two phases concerning the computational e�ort.

The decision variable to be updated at each feedback phase is composed of the
control sequence, the state sequence and the adjoint state sequence de�ned over the
prediction horizon, namely

y = (λk, sk, uk, λk+1, sk+1, uk+1, ..., λk+N , uk+N)

where si ∈ Rn is the state values at instant i, λi ∈ Rn the Lagrange multiplier at
instant i and ui ∈ Rm the control input. Moreover, the following constraints are
used to enforce the respect of the initial state and the system model:
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xk − sk = 0

f(si, ui)− si+1 = 0 i ∈ {k, ..., k +N − 1}

The Karush-Kuhn-Trucker (KKT) conditions must be considered in order to handle
the �rst order optimality conditions, leading to the following formulation:

∇yLk = 0

where Lk is the lagrangian at instant k. Normally, the above equation should be
solved at each sampling time. Considering that the new idea consists in distributing
the optimization during the runtime of the process, the new updating law to be
applied has the following structure:

∇yLk + Jk(y).∆y = 0 (3.1)

where Jk(y) is a symmetric matrix approximating the Hessian ∇2
yLk. The feedback

phase starts when the new measurement (or estimation) xk of the state is acquired.
This is done by calculating the control to be applied immediately to the real system
(Fig. 3.4). It is clearly shown that the computational burden in the preparation
phase is much more important than the feedback one. This results in a reduced
delay between the acquisition of the state and the computation of the feedback.

Some interesting points must be emphasized in this real time iteration method. The
matrix Jk(y) is completely independent of the state xk. This allows the computation
of its value (during the preparation phase) before the real acquisition of the new value
of the state. Moreover, the major part of the computation of the lagrangian ∇yLk
can also be done regardless the value of the state xk. In this way, the only task to
be executed between the acquisition and the control input calculation is to solve the
linear system de�ned in (3.1). The particular structure of Jk(y) may facilitate the
resolution of such a system.

It goes without saying however that due to the choice of the decision variable that
include the sequences of control, state and lagrange multipliers, the real-time iter-
ation based on the multiple shooting approach leads to an optimization problem
which is of extremely high dimension. Although the resulting problem is highly
structured and can therefore be solved using sparse matrices related softwares, it re-
mains true that the memory and computational requirements may be incompatible
with the on-board available tools in a real mechatronic system. Another drawback
of this approach is the unavoidable use of derivatives that may be cumbersome to
compute.
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3.2.2.2 Interior Point-based Methods

Despite the fact that high-dimensional models imply a very challenging problem
for NMPC, some optimization strategies have been formulated to address such a
challenging problem [Biegler and Zavala, 2009, Zavala and Biegler, 2009]. In [Biegler
and Zavala, 2009], a very powerful algorithm called IPOPT [Wächter and Biegler,
2006] was successfully applied to large-scale industrial processes, containing more
than 350 state variables and DAEs.

The IPOPT algorithm is based on the simultaneous collocation approach and uses
the interior point method (also called barrier method) to treat NLP in a very e�cient
way. A logarithmic barrier method to inequality constraints in the NLP is used to
de�ne a sequence of constrained optimization problems. Such sequence is de�ned
using a sequence of the coe�cient of some barrier term µ in the cost function.

In the IPOPT method, the KKT conditions combined with the sparse Newton's
method are both used to solve the sequence of problems and to assess stability
conditions. In [Zavala et al., 2006], it is shown that the resulting controller has
many advantages such as low computational cost to compute the exact Hessian and
avoid expensive DAE integrations.

As in the real-time iteration scheme, the proposed strategy splits the optimization
process into two main tasks for on-line dynamic optimization [Biegler and Zavala,
2009]: the background and on-line computation.

• Background computation
In this phase, the expensive computations are performed such as sensitivity,
exact Hessian, decomposition and factorization steps. The dominant calcula-
tion is the repeated factorization of the large sparse matrix obtained from the
KKT conditions together with the Newton's method, as mentioned above.

• On-line computation
This is the fast part of the algorithm, which uses the NLP sensitivity to cal-
culate an estimated solution with perturbed initial conditions, allowing an
immediate control injection. Then, once a measurement is obtained, the on-
line update of the solution vector requires a single backsolve. This is one of
the main part of the strategy, since this on-line procedure may take less than
1% of the dynamic optimization routine.

Therefore, the IPOPT method roughly shows the same advantages and drawbacks
as the multiple shooting real-time iteration.
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3.2.2.3 Continuation/Generalized Minimum Residual (C/GMRES)

The Generalized Minimum RESidual method (GMRES) has been proposed in [Oht-
suka, 2004]. In this method, the decision variable is the sequence of control and KKT
multipliers gathered in a vector U . A di�erential equation is de�ned that must be
met by U in order to enforce the respect of the necessary conditions of optimality.
By doing so, there is no more, properly speaking, an optimization process but rather
a dynamic state feedback in which the internal state is precisely U .

Let H be the Hamiltonian of the optimization problem to be solved:

H(x, λ, µ, u) = L(x, u) + λTf(x, u) + µT c(x, u)

where x is the state, L(x, u) is the stage cost, c(x, u) the equality constraints, µ
the costate and λ the Lagrange multipliers associated with the equality constraint.
The basic idea in the GMRES method is to try to meet the �rst order necessary
conditions of optimality, namely Hu = 0 where U is the decision variable given by:

U = (uT0 , µ
T
0 , ..., u

T
N−1, µ

T
N−1)T

The values of xi and λi for i = {0, ..., N} are obtained by solving respectively the
system equations and the adjoint system equations λ̇ = −Hx given the sequence U
and the initial value x0 of the state. Consequently, writing the �rst order optimality
conditions lead to the following system of nonlinear equations:

F (U, x) = 0 =

 Hu(x0, λ0, µ0, u0)
...

Hu(xN−1, λN−1, µN−1, uN−1)


The idea is to �nd some dynamics for U that results in the convergence of U to the
solution of F (U, x) = 0. This leads to the following stabilizing dynamics:

Ḟ (U, x) = As.F (U, x)

where As is a stable matrix. Therefore, assuming that FU is nonsingular over the
closed-loop system trajectory, the updating law for the decision variable U can be
given by:

U̇ = F−1
U (As.F − Fx.ẋ) (3.2)

Note however that this assumes that one has already good initial guess for the value
of U , otherwise, the problem is identical to the problem of solving high dimensional
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system of nonlinear equations. The idea proposed in [Ohtsuka, 2004] is to �nd such
an initial guess by a sort of continuation method (leading to the so-called C/GMRES
method). The details related to the continuation related aspects are skipped here
for the sake of simplicity.

Since integrating the di�erential system (3.2) involves expensive computations to
evaluate gradient, the forward di�erence (FD) approximation for Jacobians is used
together with the GMRES method [Kelley, 1995]. This results in a combined FD-
GMRES approach. More precisely, the residual term r is de�ned by:

r = FU U̇ + Fx.ẋ− As.F

Therefore, only the products FU U̇ and Fxẋ have to be evaluated. This can be done
using �nite di�erence approximation according to:

FUW + Fxw ≈
F (U + hW, x+ hw)− F (U, x)

h
(3.3)

where h is a positive real number. Expression (3.3) clearly shows that the computa-
tional e�ort to perform the optimization process reduces drastically when compared
to the calculation of FU in (3.2), given the high dimension of the vector U .

Note however that the C/GMRES formulation remains a direct approach and hence
presents the same risk of system integration instability when bad sequences of control
input are encountered during the transient closed-loop trajectory. In order to im-
prove the numerical accuracy and stability, a combination of GMRES and multiple
shooting approach has been investigated [Shimizu et al., 2006].

3.2.2.4 Hybrid-Parameterized Scheme

The approach presented by [DeHaan and Guay, 2007] shares with the last method
the di�erential character of the updating scheme. Indeed, several parameters are
de�ned for the open loop trajectory, then a di�erential system describing the evo-
lution of these parameters is derived in order to enforce the convergence towards
the respect of optimality conditions. One singular feature of the approach proposed
in [DeHaan and Guay, 2007] is that the decision instants are part of the decision
variables vector. This gives the approach a somehow hybrid character.

The main drawback of this approach is that it assumes already known a system
trajectory that meets the �nal constraint on the state needed to guarantee the
feasibility and the stability of the closed-loop system. In some sense, this makes the
proposed solution convenient to improve the performance of an already stabilized
system (by another existing feedback law).
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3.3 The Parameterized NMPC

3.3.1 Motivations

In this section, the low-dimensional parameterized NMPC scheme for fast systems,
introduced in [Alamir, 2006a] is presented. This approach is particularly adapted
to real-world context where the computation time is reduced but also where the on-
board computational facilities and memory may prevent the use of oversophisticated
formulations. The philosophy that underlines the parametrization approach lies in
the following ideas:

1. Open-loop control pro�les showing very simple time structures, when used in
a receding-horizon framework, generally lead to very rich closed-loop control
pro�les that correspond to a small drop in the overall resulting optimality. This
simple fact explains how, in the early years, MPC approaches have solved many
industrial problems using only constant control over the prediction horizon.

2. Although the global optimum of the NMPC cost function corresponding to a
low dimensional parametrization is necessarily higher than that of a classical
trivial piecewise constant parametrization, for a well designed parametriza-
tion however, it is more likely that the former would be easier to achieve than
the latter due to the di�erence in the problem complexity. More clearly, in a
constrained computational context, the suboptimal solution of a simple opti-
mization problem may be better than the suboptimal solution of a far more
complex one. This simple idea is schematically depicted on Figure 3.5.

3. Classical piece-wise constant control parametrization in which all the con-
trol values are degrees of freedom result in unnecessarily high dimensional
optimization problems. This is a fortiori true in the case where even the
state values along the future system's trajectory are taken as degrees of free-
dom. Although these high dimensional problems are highly structured and can
therefore be quite e�ciently handled by dedicated algorithms, they still need
incompressible high demanding preparation steps. Moreover, the dedicated
softwares and memory storage needed for such problems are generally incom-
patible with embedded capacities. This is particularly true in the mechatronic
and robotic applications.

There are many other advantages of the parameterized NMPC approach such as its
ability to explicitly exploit the model structure that is generally strong in electrome-
chanical systems and the possibility to use control parametrization that takes into
account the constraints of the problem at the very de�nition of the parametrization.
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Figure 3.5: Schematic view showing how an approximate but well posed optimiza-
tion problem (red line) may be worth using than an exact but highly accidental
optimization problem. The global minima Jmin2 may be quite di�cult to obtain
and the corresponding control value uopt2 as well. On the other hand, uopt1 can be
easily obtained since Jmin1 is the minimum of a simple and well-posed optimization
problem.

Table 3.1 shows some examples giving the computation time needed to solve the
optimization problem underlying the parameterized NMPC when applied to several
examples of mechatronic systems. These examples are detailed in [Alamir, 2006a]
except for the automated manual transmission example for which the reader can
refer to [Amari et al., 2009, 2008]. The term np denotes the number of parameters
used as degrees of freedom of the decision variable.

3.3.2 De�nitions and Notation

This section introduces some de�nitions and notations related to the parameterized
NMPC approach. First, let us consider a time-invariant dynamic model given in the
following general form:

x(t) = X(t, x0,u) (3.4)

where x(t) is the state x ∈ Rn at instant t ≤ T when initialized at (0, x0) and under
the control pro�le u de�ned on [0, T ]. Let τs > 0 denote some sampling period such
that T = Nτs.
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Problem np Computation Time (ms)

Twin-pendulum system 1 < 5
Diesel engine air path 2 < 10

Automated Manual Transmission 1 < 0.5
Minimum interception time 1 < 20

Stabilization of the chained syst. 1 < 1
Stabilization of PVTOL 2 < 1

Stabilization of de�cient satellite 2 < 10

Table 3.1: Some computation time examples for the successful use of parameterized
NMPC in robotics and mechatronic [Alamir, 2006a, Amari et al., 2009, 2008]

Let us de�ne the set of parameters p such that p ∈ P, where P ∈ Rnp is some
admissible subset of some convenient space. Then, each map Upwc : P × Rn → UN

de�nes on [0, T ] a parameterized piecewise constant (PWC) control pro�le (with
parameters in P× Rn ⊂ Rnp × Rn) such that:

u(t) = u(k)(p, x) ; t ∈ [tk−1, tk] ; tk = kτs

Upwc(p, x) :=
(
u(1)(p, x) . . . u(N)(p, x)

)
∈ UN

The state trajectory under the PWC control pro�le Upwc(p, x0) is denoted hereafter
by X(·, x0, p). More generally, using a straightforward abuse of notation, for each
sampling instant tj = jτs (j ∈ N), the notation X(t, x(tj), p) denotes the state
trajectory of the model at instant tj + t under the PWC control pro�le de�ned
by Upwc(p, x(tj)) over the time interval [tj, tj + T ]. Chapter 2 showed that the
NMPC strategy relies on the solution at each decision instant tj of some optimization
problem. In the parameterized context, one must be rewritten in the following form:

p̂(x(tj)) := argmin
p∈P

[
J(p, x(tj))

]
under C(p, x(tj)) ≤ 0 (3.5)

where J(p, x(tj)) is some cost function de�ned on the system trajectory start-
ing from the initial condition (tj, x(tj)) under the p.w.c control pro�le de�ned by
Upwc(p, x(tj)). The condition C(p, x(tj)) ≤ 0 gathers all the problem constraints
de�ned on the same trajectory including possible �nal constraints on the state.

Classical NMPC formulation states that once a solution p̂(x(tj)) is obtained, the �rst
control in the corresponding optimal sequence Upwc(p, x(tj)), namely K(x(tj)) :=
u(1)(p̂(x(tj)), x(tj)) is applied to the system during the sampling period [tj, tj+1]. As
shown in the previous chapter, this clearly results in the sampled-time state feedback
law de�ned by:
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K := u(1)(p̂(·), ·) : Rn → U (3.6)

When a system with fast dynamic is considered however, only a �nite number it ∈ N
of iterations of some optimization process S can be performed during the sampling
period [tj−1, tj]. This lead to the following extended dynamic closed-loop system:

x(tj+1) = X(τs, x(tj), p(tj)) (3.7)

p(tj+1) = S it
(
p+(tj), x(tj)

)
(3.8)

where S it denotes successive �nite number of iterations it of S starting from the ini-
tial guess p+(tj) which is related to p(tj) to guarantee (if possible) the translatability
property (see [Alamir, 2006a]). This property makes it possible to construct a new
control sequence (after the prediction horizon is shifted) that is built up with the
remaining part of the past control sequence being used completed with a convenient
�nal control.

The stability of the extended system (3.7)-(3.8) heavily depends on the performance
of the optimizer S, the number of iterations it and the quality of the model. The
details about the stability issue can be seen in [Alamir, 2008].

The main drawback of the parameterized approach lies in the fact that there is no
universal parametrization that can be applied to any system. The choice of the
kind of parametrization is rather problem dependent. In a sense, this makes this
approach more a way of thinking rather than a systematic design strategy. In this
PhD work, this strategy is applied to solve two speci�c problems that are quite
challenging from a computational point of view. This is the aim of the forthcoming
chapters.

3.4 Conclusion

This chapter presented the main NMPC strategies developed to deal with fast dy-
namic systems. Some standard techniques, such as Real-Time Iteration scheme or
Interior-Point method for example, have the interesting feature of being general
methods to solve NLP to address the real-time problem of fast systems. On the
other hand, such methods have to deal with sparse and high-dimension matrices.
Moreover, the whole control sequence vector is taken as decision variable, and in
some cases even the state vector, leading to a huge optimization problem. Despite
the fact that the available tools may be used to more e�ciently solve such prob-
lems, real-time implementation may be an issue in the cases where computational
resources and available memory are limited.
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In order to avoid these drawbacks, the parameterized NMPC scheme arises as an in-
teresting alternative for fast systems control design. A well-structured parametriza-
tion scheme may lead to a low-dimensional optimization problem which is a quite
important feature to handle real-time requirements. This is particulary true for a
certain class of systems, such as those encountered in mechatronic and robotics for
example. Since this PhD work focuses on the NMPC control design in such areas,
in the forthcoming chapters, a parameterized NMPC strategy is presented for two
practical applications: the diesel engine air path and the twin-pendulum system.





61

Chapter 4

NMPC for a Diesel Engine Air Path

4.1 Introduction

This chapter presents the formulation of a parameterized NMPC scheme, described
in the previous chapter, to be applied on a diesel engine air path system. Diesel
engines represent an interesting platform for predictive control application since
they are constrained and highly nonlinear systems. One interesting feature of the
proposed controller is that it uses no structural properties of the system model.
Therefore, the proposed NMPC scheme can be applied to any future improved can-
didate model for diesel engines.

This chapter is organized as follows. First, a brief state of the art of the diesel
engine air path control problem is provided in section 4.2. Important aspects con-
cerning diesel engines are addressed such as the description of the process, the control
problem, the existing solutions and the system modeling. Section 4.3 presents the
observer design used for the estimation of the state vector of the model. Section
4.4 describes the parameterized NMPC approach for the control problem and shows
how it can be used as a black-box solution for such processes. In section 4.5, a
new SQP procedure involving a trust region mechanism is described and used to
perform the optimization task. Finally, sections 4.6 and 4.7 present successively the
simulation and experimental results. The latter have been obtained at the Johannes
Kepler University, Austria. The chapter ends with a conclusion that summarizes
the contribution and gives some guidelines for further investigations.
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4.2 Diesel Engine

4.2.1 General Aspects

In the recent years, the automotive industry have witnessed a considerable devel-
opment of the diesel engine passenger cars' production. The interest in this kind of
vehicle does not stop growing thanks to the several advantages that are explained
in this chapter. Figure 4.1 illustrates a BMW Diesel engine.

Figure 4.1: BMW Diesel engine.

In Europe, diesel engine vehicles have attracted the market's attention. According
to the European Automobile Manufacturers Association (ACEA), the market share
of new diesel car registrations in the western Europe quadrupled between 1990 and
2008, as shown in �gure 4.2. The same study showed other impressive numbers for
some countries. In France and Belgium for instance, both started at 33% in 1990
and climbed up to 77% and 79% in 2008, respectively. For Finland, the numbers are
even more impressive. The market share climbed up from 5% to 50% in the same
period.
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Diesel Car Market Share
Western Europe 1990-2009
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Figure 4.2: Diesel car market share in western Europe between 1990 and 2008.

In fact, it was not by chance that diesel engine vehicles have conquered this impor-
tant segment of the automotive market. These engines have important features that
are listed bellow [Heywood, 1988]:

• Torque

When compared to gasoline engines, diesel engines develop more torque and
power at lower speeds. This is in particular due to the combustion process
that takes place in such engines, also called, Compression-Ignition (CI) en-
gines, instead of spark-ignition (SI) engines. In CI-engines, only the air is
compressed to support higher pressures and temperatures, and when fuel is
injected, it ignites automatically and no spark is needed. This means that
diesel engines can work with higher compression ratios than gasoline engines,
making the piston in the diesel engine travel further. Therefore, more torque
can be delivered, since more work is extracted during the piston stroke.

• E�ciency

Actually, the diesel engine is the most e�cient internal combustion engine
yet available. The CI-engines have several interesting features that contribute
directly to the engine's e�ciency. First, a higher mechanical e�ciency is pro-
vided since no throttle in the intake air is needed, eliminating �ow losses in
the intake part. On the other hand, a quite nice fuel conversion e�ciency is
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observed because CI-engines operate always lean so that the ratio of speci�c
heats is higher over the expansion process. And �nally, since there are no
�ow losses at throttle and the fresh charge does not contain any fuel, a higher
volumetric e�ciency can be reached for such engines.

• Durability

Since diesel engines must be designed and manufactured heavier than a gaso-
line engines to withstand the pressure within the engine, it can be expected to
run many hours longer than its gasoline counterpart. Moreover, maintenance
intervals are also generally longer for diesel engines.

As a matter of fact, diesel engines show many advantages over gasoline engines.
Roughly speaking, CI-engines can add up to as much as 20% more e�ciency than
an SI-engine with similar size, with respect to fuel consumption. However, diesel
engines have important drawbacks that must not be ignored. They are described in
the sequel:

• Emissions

The emission problem is one of the main drawbacks of diesel engines [John-
son, 2001]. The pollutants elements consist of unburnt hydrocarbons (uHC),
oxides of nitrogen, NO and NO2, normally referred to as NOx, carbon monox-
ide CO, and particulate matter PM, mainly soot. Comparing to the gasoline
engines process, diesel combustion produces more NOx and PM. On the other
hand, CO emissions are negligible in CI-engines due to lean operation and
emissions of uHC can be handled with oxidation catalysts. For this reason,
the emissions of NOx and PM deserves a special attention when diesel engines
are considered.

• Noise

The noise generated by the combustion process in diesel engines represents
another disadvantage of such engines. This comes from the initial rapid heat
release immediately following the ignition-delay period where a signi�cant
quantity of premixed charge exists. To overcome this problem, a small amount
of fuel prior to the main injection, which smoothes the heat release, must be
injected. This method can be adapted to the more recent and modern injec-
tion systems. Another way to tackle the noise problem is to apply an injection
rate modulation with a modern common rail injection system to achieve lower
combustion noise. This makes the noise generated by diesel engine almost the
same as the gasoline one, once it has warmed up.
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With the drawbacks listed above, the formation of emissions, namely NOx and PM,
must be analyzed in details and they are explained in the sequel.

4.2.2 Formation of Emissions

The major part of NO from the diesel combustion is formed by the oxidation of
atmospheric nitrogen. Actually, the formation of NO is highly dependent on the
temperature since the forward reaction N2+O→ NO+N and the reverse reactions
N+O2 → NO+O and N+OH→ NO+H require a huge activation energy [Heywood,
1988]. Such reactions start at temperatures over than 1900 K and the NO stays
around during cooling, since the reverse reaction is very slow. Therefore, the produc-
tion of NO2 can be obtained from NO through the reaction NO+HO2 →NO2+OH.
However, the formed NO2 is converted back to NO via NO2+O→ NO+O2.

In fact, according to the diesel combustion process, important temperatures in a
region where oxygen is available, make such area the ideal region for the forma-
tion of NOx. In [Flynn et al., 1999], it is shown that two-thirds of the total NOx
emissions are formed in the di�usion �ame while one-third is formed in the hot post-
combustion gas regions. For SI-engines, the ratio NO2/NO can be neglected thanks
to the typical behavior of the �ame temperature of the combustion process. Fig-
ure 4.3 illustrates the typical temperature and chemistry pro�le of the combustion
�ame.

Figure 4.3: Schematic view of the temperature and chemistry of a typical diesel
engine �ame [Flynn et al., 1999].

There is another important pollutant emission, the soot particles refereed as PM,
which is formed in the cylinder in the regions where the combustion are not homo-
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geneous. They heavily contribute to the total mass of particulate matter emitted by
the engine. In order to avoid PM, it is quite interesting to work with high temper-
atures to burn-up the soot at the boundary of the di�usion �ame sheath. On the
other hand, high temperatures may lead to the formation of NOx. This paradox is
also called NOx-PM trade-o�, as shown in �gure 4.4 together with the maximum
admissible values according to the European norms Euro III, IV and V.

Figure 4.4: Schematic view of the trade-o� between NOx and PM for diesel vehicle.

4.2.3 The Control Problem

In order to reduce the diesel engine emissions, it is quite important to understand
the air path process of the engine to formulate the control problem to be solved.
Figure 4.5 shows the complete scheme of the diesel engine air path, equipped with
a turbo charger.

The air path works as follows: The compressor pumps the fresh air into the inlet
manifold of the engine in order to boost the pressure. The fuel is directly sprayed
into the combustion chamber and is burnt with the delivered air coming from the
compressor. A part of the exhaust gas of the exhaust manifold is recirculated into
the inlet manifold by means of the Exhaust Gas Recirculation (EGR) valve, which is
extremely important to reduce the NOx emission. An inter cooler is used to decrease
the fresh air temperature and EGR cooler to reduce the recirculated gas temper-
ature. The remaining gas that is not recirculated goes to the Variable Geometry
Turbine (VGT), which absorbs the heat energy from the exhaust gas and propels
the compressor, which pumps the fresh air and closes the whole cycle.
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Figure 4.5: Schematic view of the complete diesel engine air path [Wei, 2006].

The EGR and VGT valves play a crucial role in the emission and the air path
control [van Nieuwstadt et al., 2000]. The EGR reduces the oxygen fuel ratio during
the combustion process, since it dilutes the incoming fresh air. Therefore, the �ame
temperature gets low in the di�usion �ame and in the premixed burning. As seen
previously, low temperature can attenuate the formation of NOx (but increase the
PM according to the NOx-PM trade-o�). Moreover, the EGR also raises the inlet
manifold gas temperature, since the exhaust gas is much hotter than the one in
the inlet manifold. For this reason, EGR gas must be cooled before it comes back
onto the engine, in order to minimize the inlet charge temperature e�ect. Another
e�ect of the EGR is that it delays the ignition time, but this can be compensated
for by adjusting the injection timing. The details about all e�ects of EGR in the
combustion process can be seen in [Jacobs et al., 2003].

On the other hand, the VGT valve has the important role of increasing the power-
density of the engine, by forcing more air into the cylinder so that more fuel can
be burnt in the same volume without increasing the air fuel ratio. For this reason,
such engines are also called turbo-charged engines. This enables one to deal with
the limitation of the amount of fuel that can be injected into the cylinder.

Once the process is described, the control problem can be formalized. The control
inputs for the diesel engine air path are the positions of the EGR and VGT valves
(u ∈ R2, in %). The engine speed Ne (in RPM), and fuel rate wf (in mg/stroke),
are the external inputs, which can be regarded as measured disturbances w ∈ R2.
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In this PhD work, the fuel injection problem is not considered, but some important
contributions are presented in [Dupraz, 1998, Gauthier, 2007].

It is worth underlying however that the output y ∈ R2 of the system that is used
for the control design is not composed of the emissions, but the mass air �ow rate
MAF into the intake manifold, y1 = Wci (in kg/h), and the intake manifold absolute
pressure MAP, y2 = pi (in kPa). The reason for using MAF and MAP as regulated
outputs is that the engine is equipped with sensors for such signals while there are
no on-board sensors for the emissions in commercial vehicles. The reference values
for these regulated output are optimized in steady-state with respect to emissions
and are mapped over the entire speed and fuel pro�les. Therefore, provided that
such set-points are correctly chosen, a good tracking of these variables may lead to
an acceptable level of emissions. The choice and generation of the set points of MAP
and MAF to cope with emissions is a challenging problem and more details can be
found in [van Nieuwstadt et al., 2000]. In this work, it is assumed that these values
are correctly chosen and hence, the quality of the control is estimated with respect
to this auxiliary problem.

The control task is therefore to adjust the VGT and EGR valves positions to track
the required boost pressure MAP and the air mass �ow rate MAF set-points. More
formally, the control problem is to design a controller that forces y to track some
desired set-point yd, such that:

yd = [yd1 , y
d
2 ]

Moreover, the inputs u must satisfy the following set of constraints:

u ∈ [umin, umax] ; umin ∈ R2 ; umax ∈ R2 (4.1)

δu ∈ [−δmax,+δmax] ; δmin ∈ R2 ; δmax ∈ R2 (4.2)

where the inclusions are to be considered componentwise and where δu are the
increments on the inputs and can be de�ned as δu(k) = u(k) − u(k − 1). The
next section describes some existing solutions that have been proposed to tackle the
above control problem.

4.2.4 Existing Control Strategies

Several control strategies have been proposed to address the above problem. From
a control point of view, the diesel engine is a highly coupled multi-variable system
due to the combined e�ects of VGT and EGR [Nieuwstadt et al., 1998]. Moreover,
the system is quite nonlinear (which is shown in the next section) and constrained.
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Therefore, sophisticated controllers are necessary to correctly address the underly-
ing control problem.

In [Jankovic and Kolmanovsky, 1998], a classical Lyapunov-like approach coupled
with a feedback linearization technique has been used in order to design a nonlinear
robust controller. Other nonlinear-like strategies proposed by [Plianos and Stobart,
2007, Chauvin et al., 2006, 2008] were developed based on the �atness property in-
troduced by [Fliess et al., 1992]. Another family of works is based on linearization
techniques or Linear Parameter Varying (LPV) models in order to use the advanced
tools that are available for such models [Jung, 2003, Wei, 2006].

However, from a conceptual point of view, the presence of constraints on the control
inputs and nonlinearities in the system model make predictive controllers an inter-
esting solution for diesel engines. On the other hand, the most important drawback
in such approaches concerns the real-time implementability. This is because �nding
the optimum solution may require a huge computation e�ort that may be incompat-
ible with the available computation time. Therefore, in this example, one is in the
heart of the context that makes appropriate the real-time dedicated formulations
invoked in the preceding chapters.

Recently, some important contributions emerged that enable real-time implementa-
tion of linear MPC to diesel engines. The �rst important contribution concerning
MPC for diesel engines has been presented in [Ortner and del Re, 2007]. This work
uses the explicit MPC method [Bemporad et al., 2002], mentioned in the previous
chapters, by using the Hybrid Toolbox software [Bemporad, 2004]. In this scenario,
12 linear models were identi�ed, according to di�erent values of injected fuel and
engine speed. The Hybrid Toolbox provides the corresponding look-up table (o�-
line) that enables to associate a control gain to each region in the extended space
represented by the state, set-point and control. Therefore, the only on-line task is
the computation of the current region that is de�ned each by a set of linear a�ne in
the extended state inequalities. However, the active region in this extended space
is computed for the 12 models in parallel. The corresponding computational load
explains the use of a control horizon of 1, with a sampling period of 50 ms. In-
deed, authors mentioned the di�culty to work with longer control horizons given
the available computation time.

The second important contribution involving predictive control has been proposed
in [Ferreau et al., 2007], where the on-line active set strategy [Ferreau et al., 2006]
is used. The main di�erence when compared to the previous approach is that the
problem is solved on-line (using distributed in time optimization) to avoid important
o�-line computations. However, only 2 linear models corresponding to two di�erent
values of the engine speed were used to show the e�ciency of the proposed strategy.
Moreover, the control horizon was set to 5 and authors mentioned that increasing
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this value is useless because this does not lead to an improvement of the tracking
performance due to the modeling uncertainties. Authors also emphasized that more
realistic models are needed in order to improve the performance.

In [Herceg et al., 2006], a third-order nonlinear model is used to design a NMPC
controller in order to improve the transient behavior of a diesel engine. Here, the
quasi-in�nite horizon NMPC approach with guaranteed closed loop stability is used
[Chen and Allgöwer, 1998] and simulations with a sequence of set-points were per-
formed to compare the results with the linear and a nonlinear state feedback con-
troller. However, this NMPC solution does not consider any particular algorithm
to solve the resulting optimization problem in a faster way and hence, the proposed
solution is not real-time implementable.

In this chapter, a parameterized NMPC approach is proposed that can be used even
with nonlinear models. No assumptions on the model structure is needed nor any
kind of linearization technique or multi-model framework. First, the system model
is brie�y described in the next section.

4.2.5 System Modeling

Diesel engine air path is a highly nonlinear system with many discontinuities and
dead zones. In the literature, the Diesel engine behavior is normally represented by
designing mean value models (MVM) for simulation and control design purposes.
The parameters of such representation are derived by the steady state analysis of
several components of the engine. However, the identi�cation methods and a de-
tailed description of the model are not in the scope of this PhD work, but it is
quite evident that such study is one of the most important subjects related to diesel
engines. Some important works concerning modeling and identi�cation of diesel
engines can be found in [Christen et al., 2001, Jung, 2003, Wei, 2006].

For the validation of the parameterized NMPC controller, two kinds of models are
used in the sequel: a physical model and an identi�ed model. The �rst model shows
signi�cant nonlinearities and involves several look-up tables. The second one, two
identi�ed models are proposed. The �rst is a higher order model which is linear up
to an output injection and the second with an input injection. The identi�cation
process of both methods were developed using the BMW diesel engine test bench
available at the the university of Linz1. The parameters of the models are shown in
appendix B and more details are presented in the following sections.

1BMW M47TUE Diesel engine, at Johannes Kepler University Linz
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4.2.5.1 Physical Model

The standard nonlinear model for diesel engines is used to describe the behavior
of the engine. This nonlinear model has been identi�ed directly from the diesel
engine test bench and it is presented in [Langthaler, 2007]. The classical MVM for
identi�cation of all the parameters of the physical model is used. In addition, some
variables such as e�ciencies and some temperatures are modeled as polynomials
with the following notation:

Pi(v1, v2, · · · , vNv)

where Pi represents a second order polynomial identi�ed on the diesel engine test
bench depending on some set of variables (v1, v2, · · · , vNv). This leads to a look-
up table obtained through interpolation. Figure 4.6 illustrates an example of a
polynomial map. The values are not shown due to a con�dential term with the
University of Linz.

Exhaust to Intake Temperature Map

Figure 4.6: Polynomial map Txi = P1(Tx,Wxi).

To better understand how the engine works, the later is split into four main parts,
namely:

• Manifolds

• Exhaust Gas Recirculation

• Cylinder

• Turbocharger
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Each of these parts of the engine has a speci�c model but they are highly coupled
since there are several variables that are shared between them. These models are
successively detailed.

Manifolds

The inlet manifold is directly linked to the combustion through the inlet valves. Here
the compressor, which is driven by the turbine, propels the fresh air into the inlet
manifold and part of the exhaust gas from the exhaust manifold is recirculated back
to the inlet manifold, as already shown in �gure 4.5. After the combustion process,
the burned fuel and gas are pumped into the exhaust manifold. The exhaust gas
has much higher temperature than the gas in the inlet manifold. The inlet manifold
temperature is varying with the pressure and the gas mixture (air and exhaust gas).
It can be obtained from the ideal gas equation:

Ti =
Vi
Rmi

pi

Tx =
Vx
Rmx

px

where R is ideal gas constant, T(·), V(·), m(·) and p(·) are the temperature, volume,
mass and pressure respectively. The index i corresponds to the intake manifold and
x, the exhaust manifold.

The exhaust manifold dynamics directly a�ects the turbine of the turbocharger
system which receives the energy from the exhaust gas and drives the compressor to
supply fresh air to the inlet manifold. The thermodynamic equations of the intake
and exhaust manifold pressures can be expressed as follows:

ṗi =
Rκ

Vi
(WciTe −WieTi +WxiTxif )

ṗx =
Rκ

Vx
((Wie +Wf )Te − (Wxi +Wxt)Tx)

where W(·) is the mass �ow rate and the index ci denotes compressor to intake,
ie intake to engine, ex engine to exhaust, xi exhaust to intake and xt exhaust to
turbine and κ the speci�c heat ratio.

The term Txif represents the �nal value of the temperature from the exhaust to
intake through the inter-cooler. Its dynamics can be represented by a �rst order
�lter as follows:

Ṫxif =
1

τEGR
(−Txif + Txi)
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where τEGR is the constant time of the EGR valve. Moreover, the Txi is a function
of Tx and Wxi that is generally represented by a polynomial expression. This leads
to the following notation:

Txi = P1(Tx,Wxi)

To complete the manifold model, the mass balance in the intake and the exhaust
can be written as follows:

ṁi = Wci −Wie +Wxi

ṁx = Wie +Wf −Wxi −Wxt

Exhaust Gas Recirculation

The EGR connects the exhaust with the intake manifold. Mass accumulation can be
neglected because of the short distance and the direct connection. In the literature,
the �ow rate equation Wxi is given by:

Wxi =


−A(uegr)px√

RTx

√
2pr(1− pr) if px ≥ pi

−A(uegr)pi√
RTi

√
2
pr

(
1− 1

pr

)
if pi < px

where pr = pi/px represents the pressure ratio and A is the e�ective area of EGR
which depends on the valve position uegr. This is the second identi�ed map of the
model, since A is a polynomial function of uegr, such that:

A(uegr) = P2(uegr)

Cylinder

The classical model of the cylinder is given by the equation of the mass �ow rate,
which connects the intake to engine

Wie = ηv
mi

Vi

Ne

2π

Vd
2

where Vd represents the total engine displacement volume and ηv the volumetric
e�ciency that depends basically on two variables: the MAP (intake pressure) and
the engine speed. For this reason, a third identi�ed map for ηv can be written as
follows:

ηv = P3(pin, Ne)
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Another important map to take into account is the engine to exhaust temperature
Tex. This temperature is in�uenced by the mass that �ows into the cylinder and
belonging temperatures, cylinder wall temperature and so on. Here, only the main
variables are considered, namely, the fuel mass wf and the mass �ow rate from the
intake manifold Wie into the cylinder, leading to the following polynomial map:

Tex = P4(wf ,Wie)

Turbocharger Model

For the turbocharger model, it is considered that the pressure and temperature
after the turbine can be assumed to be a constant value and near to the ambient
temperature respectively. Then, three important variables must be considered: the
exhaust to turbine �owWxt, the compressor to intake �owWci and the turbine power
Pt. The Wxt basically depends on the turbocharger position uvgt and the exhaust
pressure px according to:

Wxt = P5(uvgt, px)

Therefore, the turbine power Pt can be determined by:

Pt = WxtcpTx

(
1−

(pa
px

)κ)
where cp represents the speci�c heat at constant pressure and pa the ambient pres-
sure. A dynamic equation corresponding to the power transmitted to the compressor
denoted by Pc, can be easily determined by using the compressor e�ciency ηm and
the time constant τvgt for the opening of VGT. A �rst order system can be written
as follows:

Ṗc =
1

τvgt
(−Pc + ηmPt)

The resulting compressor �owWci to be injected in the intake manifold is a function
of the compressor power Pc and the intake manifold pressure pi, according to:

Wci = P6(Pc, pi)

In the same way, the temperature compressor to intake Tci depends not only on the
above mass �ow rate, but also on the intake pressure:

Tci = P7(Wci, pi)

This ends the set of nonlinear equations of the diesel engine air path process.
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Summarizing the Engine Model

To summarize, the whole behavior of the diesel engine air path can be described by
a sixth-order system, with 5 algebraic equations and 7 look-up tables.

Dynamic Equations

ṗi = Rκ
Vi

(WciTe −WieTi +WxiTxif )

ṗx = Rκ
Vx

((Wie +Wf )Te − (Wxi +Wxt)Tx)

Ṗc = 1
τvgt

(−Pc + ηmPt)

ṁi = Wci −Wie +Wxi

ṁx = Wie +Wf −Wxi +Wxt

Ṫxif = 1
τegr

(−Txif + Txi)

(4.3)

Algebraic Equations



Wxi =


−A(uegr)px√

RTx

√
2pr(1− pr) if px ≥ pi

−A(uegr)pi√
RTi

√
2
pr

(
1− 1

pr

)
if pi < px

Ti = Vi
Rmi

pi

Tx = Vx
Rmx

px

Wie = ηv
mi
Vi

Ne
2π

Vd
2

Pt = WxtcpTx

(
1−

(
pa
px

)κ)
(4.4)

Polynomial Maps / Look-up tables

Txi = P1(Tx,Wxi)

A(uegr) = P2(uegr)

ηv = P3(pin, Ne)

Tex = P4(wf ,Wie)

Wxt = P5(uvgt, px)

Wci = P6(Pc, pi)

Tci = P7(Wci, pi)

(4.5)

It is quite clear that the system of equations (4.3)-(4.4)-(4.5) describing the diesel
engine air path model is a highly nonlinear system. Moreover, recall that the inputs
must respect the set of constraints (4.1)-(4.2).
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4.2.5.2 Empirical Models

In this section, the empirical models that have been developed for the diesel en-
gine test bench of the university of Linz are described. As mentioned previously,
the �rst identi�ed models for predictive control were represented by linearized sys-
tems around some operational point [Ortner and del Re, 2007, Ferreau et al., 2007].
However, since diesel engines show strong nonlinearities and active constraints on
the inputs that have to be correctly handled, standard multi-linear methods may
be insu�cient to cover the whole engine operational range and the use of fully or
appropriate nonlinear models may be an important issue. Control design methods
that can cope with such models become therefore mandatory.

A data based identi�cation process realized in [Ortner and del Re, 2007] using the
test bench of the university of Linz, showed that the MAF and the MAP are basically
in�uenced by the control inputs EGR, VGT, and by two measured disturbances, fuel
injection wf and engine speed Ne.

Figure 4.7 shows a simpli�ed view of the diesel engine, with the de�nition of the
main variables used for control design. In this test bench, the set-points of MAF and
MAP are provided by a linear interpolation according to two-dimensional look-up
table depending on the operational point de�ned by the fuel injection and the engine
speed.

EGRNe

wf

MAP

MAF

VGT

Diesel Engine

Compressor

Figure 4.7: Schematic view of the simpli�ed diesel engine air path and the variables
used for control design.
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Based on these considerations, two nonlinear models were developed and identi�ed
from the test bench: the �rst model is a linear model up to an output injection while
the second is a linear model up to an input injection.

Nonlinear Model Depending on the Outputs

This model that involves a state vector of dimension 14 has been obtained using a
sampling period of 10 ms. It shows the following structure:


x+ = [A(y − yc)]x+B1[u− uc] +B2[w − wc]
y = [C(y − yc)]x+ yc + ε

ε+ = ε

(4.6)

where x ∈ Rn is the state (n = 14), y, u and w the vector of output, control and
measured disturbances respectively. ε is the current estimation of the prediction
error that enables uncertainties and model mismatch to be handled. uc, yc and wc
are the central values of input, output and disturbances respectively at the operation
point used to identify the model. Consequently, the set of central values shifts the
whole system to work around 0. The matrices B1 ∈ R14×2 and B2 ∈ R14×2 are
constant while A(·) ∈ R14×14 and C(·) ∈ R2×14 depend on the output vector y and
were identi�ed at a set of central values yc. This clearly makes the present model
nonlinear. However, the pair [A(·), C(·)] is not observable, and this will be discussed
later.

Note that this class of model is widely used. In this case, instead of considering
a multi-model approach typically found in linearized strategies, a more realistic
viewpoint is adopted by keeping in mind the continuous nature of the dependence
with respect to the variable y.

This model was the �rst one used for testing the NMPC controller and only simu-
lation results were performed, which are presented in section 4.6. The experimental
results were performed with the model dependent on the inputs described in the
next topic.

Nonlinear Model Depending on the Inputs

The second model [Ortner et al., 2009] shows the same structure than before except
that the system matrices depend on the input rather than on the output. The
resulting model involves 8 states and has been obtained using a sampling period of
50 ms. More precisely:
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x+ = [A(u− uc, w − wc)]x+B1[u− uc] +B2[w − wc]
y = [C(u− uc, w − wc)]x+ yc + ε

ε+ = ε

(4.7)

where x ∈ Rn is the state (n=8). The matrices B1 and B2 are constant while A(·)
and C(·) are now dependent on inputs u and w instead of y.

One of the advantages of (4.7) when compared to the output dependent model (4.6)
lies in the fact that the pair [A(·), C(·)] is observable for each value of the control
in the operational region of interest. Moreover, it leads to more accurate results.
For this reason, model (4.7) was chosen by our partners of the university of Linz for
the experimental validation. On the other hand, the model (4.6) corresponds to a
sampling rate of 10 ms compared to 50 ms for the model given by (4.7). This would
have been interesting in order to enable a more reactive controller to be obtained.

4.2.5.3 Some Considerations About the Models

As mentioned above, the outputs, measurement disturbances and the control inputs
were identi�ed around some central values, namely, yc, wc and uc, respectively.
This is only valid for the empirical models (4.6) and (4.7) since the full nonlinear
model (4.3)-(4.5) does not depend on the central values. Nevertheless, some few
considerations must be done concerning these values.

For the sake of simplicity, the variations on y and w will be made around 0 and
hence the notations yc and wc will be omitted hereafter. Indeed, this simpli�cation
is also valid for experimental validation since the central values are managed by an
external loop, and hence the values of yc and wc can be internally set to 0.

However, for the increments on the input vector, the central values uc must be
considered in order to respect the constraints on the inputs, as shown in (4.1). In
fact, for models (4.6) and (4.7), the inputs u must satisfy:

u+ uc ∈ [umin, umax] ; umin ∈ R2 ; umax ∈ R2

Therefore, the above expression correctly de�nes the constraints on the inputs to be
respected for models (4.6) and (4.7). Nevertheless, in order to unify and simplify
notations, for further developments involving the computation of the control input
u, the term uc will be also omitted.

In the forthcoming sections, several approaches and scenarios are shown concerning
the models presented in this topic. In order to clarify and organize this dissertation,
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table 4.1 shows the link between the model and the corresponding sections that are
presented in the sequel.

Table 4.1: Sections where the models are referred

Model Observer Controller Simulations Experiments

Depending on the outputs (4.6) (4.3) (4.4.3.1)-(4.4.4) (4.6.1) -
Depending on the inputs (4.7) (4.3) (4.4.3.2)-(4.4.4) (4.6.2) (4.7)

Full nonlinear (4.3)-(4.5) - (4.4.5) (4.6.3) -

4.3 Observer Design

4.3.1 The Relevance of the Observer

The controller to be implemented needs the states that a�ect the evolution of the
regulated output to be reconstructed. In the physical model presented in (4.3), the
most important component of the state are measured. The only components that
need to be reconstructed are the states of the �rst order �lters for Txif and Pt. This
task is quite easy to implement.

On the other hand, the data-based models (4.6) and (4.7) are not that simple since
many of the identi�ed states have no physical meaning and hence, they can not
be measured. In such cases, designing an observer becomes essential to recover the
state.

The �rst nonlinear model (4.6) depending on the outputs is not observable. Chrono-
logically, this model was the �rst delivered by our partners from the Johannes Kepler
University in order to proceed with a preliminary study of the parameterized NMPC
solution. Due to this lack of observability, standard techniques, such as Extended
Kalman Filter (EKF), for observer design could not be correctly applied. For this
reason, a nonlinear Moving Horizon Observer (MHO) was proposed and it is pre-
sented in this section. Note that rigorously speaking, there is no algorithm that can
be called observer for a non observable system. The term observer here refers to an
algorithm that re-construct the observable part of the state vector.

The second nonlinear model (4.7) with input related non linearities is observable for
any input vector belonging to the set of operational values of interest. This model
was the second one developed by our partners and is used hereafter for the exper-
imental validation. For this reason, the structure of the MHO, initially developed
for the �rst model (4.6), was also adopted to this one, since the a�ne structure is
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the same and at instant k, all the inputs are known. The next topic goes further
into the MHO design.

4.3.2 Moving Horizon Observer Design

The MHO is the dual paradigm of the predictive control and basically have the same
advantages and drawbacks of NMPC [Michalska and Q.Mayne, 1995, Alamir and
Calvillo-Corona, 2002, Alamir, 1999]. These observers can deal with nonlinearities
and constraints in the system but also need on-line optimization to be performed
that can be incompatible with the available computation time.

Basically, the main idea of MHO's is to estimate the current state using a moving
and �xed-size window containing No past measurements. The oldest measurements
are discarded when the newest one become available. Then, the collected data are
used to de�ne a cost function, which is minimized with the earliest state as a decision
variable. As mentioned previously, the observer will be developed using the model
given by (4.7) since this is the model that was used in the real implementation, but
the principle is the same for designing an observer for model (4.6).

Let k be the current instant, Ȳk and Ūk the vectors of past output measurements
and input measurements respectively, de�ned according to:

Ȳk =

y(k −No + 1)
...

y(k)

 ∈ Rm·No ; Ūk =


u(k −No + 1)
w(k −No + 1)

...
u(k)
w(k)

 ∈ R2m·No

Moreover, considering the error ε due to the wrong prediction, the vector Ēk of the
past values of ε becomes:

Ēk =

ε(k −No + 1)
...

ε(k)

 ∈ Rm·No

The value of ε is updated at each sampling instant k according to:

ε(k) = ε(k − 1) + ki.(y
p(k)− ym(k)) (4.8)

where yp(k) and ym(k) are, respectively, the predicted value under the previous
estimated state at instant k− 1 and the measured output at instant k, ε(k− 1) the
previous value of the prediction error and ki ∈ Rm the integrator gain.
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Therefore, straightforward computations lead to:

x(k) =
[
Φ(Ūk)

]
· x(−) +

[
Ψ(Ūk)

]
· Ūk (4.9)

Ȳk =
[
Ω(Ūk)

]
· x(−) +

[
Γ(Ūk)

]
· Ūk + Ēk (4.10)

where k is the current instant, x(−) the state at instant k − No + 1. The matrices
Φ(Ūk), Ω(Ūk), Γ(Ūk) and Ψ(Ūk) are obtained after straightforward computations in
terms of the system matrices A(·), C(·), B = [B1 B2]. The details of all these
calculations are given in the appendix A.

Based on the above expressions, one can argue that if the past estimation x̂k−1 and
the value of x(−) were correct, one should have the following two equalities

A(u(k − 1), w(k − 1))x̂(k − 1) +B[u(k − 1) w(k − 1)]T =
[
Φ(Ūk)

]
· x(−) +

[
Ψ(Ūk)

]
· Ūk

Ȳk =
[
Ω(Ūk)

]
· x(−) +

[
Γ(Ūk)

]
· Ūk + Ēk

Note that these two equations can be used to de�ne conditions on the past value x(−)

that one has to estimate. The �rst requirement is related to the state equation while
the second is related to the measured output. Therefore, a trade-o� similar to the
classical tarde-o� handled in the Kalman-�lter framework by the state/measurement
weighting can be adopted here using the following cost function in the decision
variable x(−):

x̂(−) = argmin
ξ∈Rn

‖G1.ξ − S1‖2
Q1

+ ‖G2.ξ − S2‖2
Q2

where Q1 and Q2 are the weighting matrices and hereafter the notation ‖x‖2
Q =

xTQx is used. These matrices can be taken to be the inverse of the noise covariance
matrices exactly as in the EKF framework, and the other matrices are de�ned by:

G1 = Ω(Ūk)

G2 = Φ(Ūk)

S1 = Yk − Γ(Ūk).Ūk − Ēk
S2 = A(u(k − 1), w(k − 1))x̂(k − 1) +B[u(k − 1) w(k − 1)]T −Ψ(Ūk).Ūk

With the above notations, an updating law x̂(k) for the state estimation can be
de�ned as follows:

x̂(k) = Φ(Ūk).[(G
T
1 .Q1.G1 +GT

2 .Q2.G
T
2 )†

(ST1 .Q1.G1 + ST2 .Q2.G2)T ]x̂k−1 + Ψ(Ūk).Ūk (4.11)

leading to the following implicit form for the observer:
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x̂(k) = Obs(x̂(k − 1), Ȳk, Ūk)

Note that the observer equation (4.11) can be easily adapted in order to take into
account the model (4.6), if Ȳk is used instead of Ūk in the expression of the matrices
Φ(Ȳk), Ω(Ȳk), Γ(Ȳk) and Ψ(Ȳk).

4.3.3 Simulation Results

Some simulation results are presented in �gures 4.8 and 4.9 in order to show the
evolution of the norm of the state estimation error ||x − x̂||2 of the MHO and the
disturbance rejection of the o�set ε given by (4.8) for the model (4.7). The weighting
matrices Q1 and Q2 were set to the identities and the integrator gain ki = [3.5; 3.5]
has been used in (4.8). The o�set error ε = [−3,−15] was introduced at t = 0s and
ε = [−10,−5] at t = 100s, as shown in �gure 4.9. Note that despite the presence of
an o�set error on the outputs, the asymptotic convergence of the estimation error
is obtained.
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Figure 4.8: Simulation results related to the state estimation error. An o�set error
ε is inserted at t = 0s and t = 100s and the observer is still able to recover the state.
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Figure 4.9: Simulation results showing the evolution of the o�set error estimation.
The disturbance ε inserted at t = 0s and t = 100s is quickly determined by the
observation scheme.

Once the observation problem is solved, the next step is to design the output feed-
back. This is done using a parameterized NMPC strategy following the lines de-
veloped in chapter 3. This design of the parameterized NMPC is described in the
following section.

4.4 Control Design

4.4.1 Introduction

In this section, a parameterized NMPC scheme is proposed for the diesel engine
air path control problem. First, some important model features are underlined.
In particular, it is shown that the computation of the stationary steady regime is
quite crucial for the NMPC design. Afterwards, a parameterized NMPC scheme is
proposed that involves the state observer developed in the previous section. Finally,
it is underlined that the proposed parameterized NMPC can be used with more
elaborated and complex models of the diesel engine.
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4.4.2 Some Considerations About the Engine's Behavior

In addition to the model nonlinearities, the engine's behavior has two more im-
portant characteristics that must be taken into account, namely, the non-minimum
phase and the open-loop behavior. These features are investigated hereafter.

4.4.2.1 Non-minimum Phase

The diesel engine is a highly coupled system. To show this, assume that one opens
the EGR valve. This means that more exhaust gas is recirculated into the intake
manifold resulting in a slight increase in MAP. On the other hand, this action implies
that less exhaust gas is going to the turbine, which slows down the turbocharger,
and hence decreasing MAP. Such situations are very common in diesel engines,
introducing a non-minimum phase behavior.

Basically, the non-minimum phase behavior can be observed on the output evolution
as shown in �gure 4.10. Namely, the outputs are forced to go to opposite direction
before going to the right one. For control design, this is explained by the presence of
instable zeros in the system. This generally makes the task of the controller rather
di�cult.
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Figure 4.10: Typical behavior of the mass air �ow showing a non-minimum phase
property.
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The implication of this property on the NMPC design is that the prediction horizon
must be long enough to overcome this opposite response transient. This requirement
makes the real-time issue even harder since too short prediction horizons cannot be
considered and longer prediction horizons are necessarily more demanding in terms
of on-line computation.

4.4.2.2 Open-Loop Behavior

A second important point to emphasize concerns the open-loop behavior of the diesel
engine model. In fact, the system is open-loop stable. Figure 4.11 illustrates the
outputs when a step sequence is used as input. This means that for a given value of
EGR, VGT, speed and fuel injection, the outputs MAF and MAP asymptotically
converge to some steady value that depend on the input values.
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Figure 4.11: Open-loop behavior at Ne=1800 RPM and wf=20 mg/cyl under a step
sequence of EGR and VGT. This simulation was performed with the full nonlinear
model (4.3).

The open-loop stability is an important advantage for the control design, especially
for the parameterized NMPC scheme. Consequently, the next step consists in �nding
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the correct steady solution for a given set-point of MAP and MAF. This is shown
in the next section.

4.4.3 The Steady Solution

Recall that NMPC is based on the prediction of the state evolution under some
control pro�le. The latter depends on a �nite number of parameters to be determined
by on-line optimization. When the system model is open-loop stable, it is interesting
to use the static gain map directly in the parametrization of the control pro�le in
order to guarantee an asymptotically vanishing tracking error. By doing so, the
degrees of freedom of the parametrization are used to improve the transient behavior
of the tracking error. Consequently, computing the nonlinear static gain between
the input and the regulated output is the �rst step in the de�nition of the control
parametrization. In the sequel, the static gains of the two models described above,
namely (4.6) and (4.7), are successively computed.

4.4.3.1 Static Gain of the Model (4.6)

As mentioned previously, the set-points yd are generated by another control loop
that manages the emission level. Assume that a set-point yd is given. In order to
compute the corresponding steady state xd and steady control ud for a given value
of the measured disturbance vector w, one has to solve the following equations:

xd = A(yd)xd +B1ud +B2w (4.12)

yd = C(yd)xd + ε (4.13)

However, it is needless to say that in a constrained environment (in the presence of
saturations on the actuators for instance), there are limitations on the achievable
values yd for which equations (4.12)-(4.13) admit admissible solutions. One must
invoke the set of achievable set-points that is necessarily bounded.

Then, the main idea is to compute the maximum µ∗d over all values of µd ∈ [0, 1]
such that the modi�ed set-point y∗ = µ∗d · yd is achievable, as can be seen in �gure
4.12. This may lead to the following equations in which µd has to be added to the
unknown vector to yield the new unknown vector (xd, ud, µd) that characterizes the
achievable steady state:

xd = A(µd · yd)xd +B1ud +B2w (4.14)

µd · yd = C(µd · yd)xd + ε (4.15)
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However, solving the above optimization problem would be cumbersome since the
unknown µd appear in the arguments of the nonlinear maps A(·) and C(·). That is
why the above optimization problem is replaced by the following one by still using
yd in the matrices A(·) and C(·) and using µd in the l.h.s if (4.15). This amounts to
consider the following equations:

xd = A(yd)xd +B1ud +B2w (4.16)

µd · yd = C(yd)xd + ε (4.17)

which is clearly an approximation of the original task but that leads to a tractable
Linear Programming (LP) problem as it is stated in the following de�nition:

De�nition 4.1. Given a desired steady state yd and a measured disturbance level
w, the modi�ed set-point is de�ned by y∗ = µ∗ · yd where µ∗ is obtained by solving in
the unknown vector (

xTd uTd µd
)T ∈ Rn+m+1

the following Linear Programming problem:

LP (yd, w) : max µd under(
In − A(yd) −B1 0nx1

C(yd) 0 −yd
)
.

 xd
ud
µd

 =

(
B2.w
ε

)
ud ∈ [umin, umax]

µd ∈ [0, 1]

The solution of the above LP is denoted by:

(x∗, u∗, µ∗) (4.18)

A schematic view of the set of achievable set-points yd under w = 0 (those for which
one obtains µ∗ = 1 when solving LP (yd, 0)) is shown in �gure 4.12.

The green region of the �gure 4.12 shows the achievable zones, those for which the
solution of the LP (yd, 0) gives µ∗ = 1. No controller can achieve a pair that is
outside this region. In the red region the set point must be modi�ed to be the
closest one (0 ≤ µ∗ < 1).

4.4.3.2 Static Gain of the Model (4.7)

Contrary to the preceding model, the feasible outputs can not be directly deter-
mined for the model (4.7) since the model does not depend on y anymore. Instead
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Figure 4.12: Schematic view of the feasible set-points, at w = (0, 0).

of solving a simple linear program to obtain the steady control, in this case, a simple
optimization problem must be solved. More precisely, given the measured distur-
bance vector w and the desired value yd, the steady control is computed by solving
the following two-dimensional optimization problem:

u∗(w, yd) := arg min
ud∈[umin,umax]

∥∥yc(ud, w)− yd
∥∥2

(4.19)

yc(ud, w) = C(ud, w)[In − A(ud, w)]−1.[B.ud +G.w] + ε

Moreover, having the steady control u∗, the steady state x∗ can be directly obtained
according to:

x∗(u∗, w) = [In − A(u∗, w)]−1.[B.u∗ +G.w] (4.20)

Figure 4.13 illustrates the computation of u∗, by proceeding 10 iterations. The
optimization routine that is used to solve (4.19) is presented in section 4.5.
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Figure 4.13: Evolution of u∗ as a solution of the optimization problem (4.19), with
10 iterations, according to the variations of w and y.

It is worth mentioning that the particular structure of (4.7) allows to derive an
analytical solution for u∗, and hence for x∗. But, it is worth noting that, the present
formulation represents a general way to �nd the stationary control which is a crucial
point to keep a generic de�nition of the control structure that may be used for general
nonlinear models of the system under study. In the next sections, it is shown how
this steady control is incorporated in the NMPC formulation in order to derive a
real-time compatible output feedback scheme. According to table 4.1, section 4.4.4
presents the parameterized approach for models (4.6) and (4.7) while section 4.4.5
for the model (4.3)-(4.5) where a general framework for diesel engines is presented.

4.4.4 Parametric NMPC Formulation for Diesel Engines

The parametrization of the control sequence involves the stationary control u∗ to-
gether with a simple temporal parametrization of the future control sequence. In
order to do this, at the current instant k, the controller needs the state x(k) or its
estimated value x̂(k) provided by the observer according to (4.11), the actual value
of the control input u(k), already scheduled according to the computation performed
over the sampling period [k−1, k] and the values of the measured disturbances w(k).
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While in standard NMPC formulations, all the components of the control sequence
u are taken as degrees of freedom, here the following parametrization is used in
order to get a decision variable of low dimension which is decoupled from the choice
of the prediction horizon:

u(iτs + t) = Satumaxumin

(
u∗ + α1.e

−λ.i.τs + α2.e
−q.λ.i.τs

)
for t ∈ [(k − 1)τs, kτs[ (4.21)

where i ∈ {0, . . . , N − 1}, τs is the sampling period, λ > 0, q ∈ N are tuning
parameters, α1, α2 ∈ Rm are the coe�cients to be determined and they are more
explained below and Sat is a saturation map Sat : R2 → R2 de�ned as follows:

Sat
uimax
uimin

(ui) =


uimin if ui ≤ uimin
uimax if ui ≥ uimax
ui otherwise

, i ∈ {1, 2} (4.22)

Note that by using the expressions (4.21)-(4.22), the saturation constraints on the
control input are structurally respected. As a matter of fact, at instant k, the
continuity of the control sequence must be guaranteed. Therefore, using i = 0 in
(4.21) leads to the following constraints:

u∗ + α1 + α2 = u(k − 1) (4.23)

Moreover, the constraints on the variation rates of the control (4.2) can be respected
provided that one meets the following constraints:

α1.(e
−λ.τs − 1) + α2.(e

−q.λ.τs − 1) = p · δmax ; p ∈ [−1,+1]2 (4.24)

where p ∈ [−1, 1]2 is parameter vector. Note that the above expression simply
states that the di�erence between two successive controls does not exceed a fraction
p ∈ [−1, 1]2 of the maximal allowable values δmax. Therefore, one can put together
the equations (4.23)-(4.24) to obtain a system of 4 equations in the four unknown
α
uj
i for i = 1, 2 and j = 1, 2 that become now dependent on the parameter vector
p ∈ [−1,+1]2 according to:
αu11 (p)
αu12 (p)
αu11 (p)
αu22 (p)

 =


1 1 0 0
0 0 1 1

e−λ.τs − 1 e−q.λ.τs − 1 0 0
0 0 e−λ.τs − 1 e−q.λ.τs − 1


−1

u1(k − 1)− u∗1
u2(k − 1)− u∗2

p1δ
1
max

p2δ
2
max


where the notation α1 = [αu11 ;αu11 ] and α2 = [αu12 ;αu12 ] is used. Injecting this in the
equation of the control sequence leads to:

u(iτs + t, p) = Satumaxumin

(
u∗ + α1(p).e−λ.i.τs + α2(p).e−q.λ.i.τs

)
(4.25)
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The expression (4.25) clearly shows how the control pro�le depends on the parameter
vector p introduced in (4.24).

As for the cost function, it is reasonable to de�ne a stage cost that penalizes the
error y − yd since the problem to be solved is the tracking of MAF and MAP.
Therefore, given the desired set-point yd, the best set of parameters to be used in
the de�nition of optimal control sequence is provided by solving, during the sampling
period [kτs, (k + 1)τs[, the following optimization problem:

p̂ := argmin
p∈P

[
ρx.‖X(N, x̂(k), p)− x∗(yd, w)‖+

N−1∑
i=0

‖Y (i, x̂(k), p)− Y ∗f (i, yd, w)‖2
Qy

]
(4.26)

where x̂(k) is estimated state at instant k, Y (i, x̂(k), p) and X(i, x̂(k), p) are respec-
tively, the output and state at instant k + i based on the model being used under
the open loop control pro�le de�ned by p over [k, k+N − 1] and starting from x̂(k).
The state x∗(yd, w) is the stationary state computed above according to (4.18) or
(4.20), ρx > 0 is some weighting coe�cient used to enforce the constraint on the
�nal state (for stability purposes), Y ∗f (i, yd, w) is the �ltered version of the set-point
used to avoid overshoot in the system response, namely:

Y ∗f (i, yd, w) = y∗(yd) + e−3τs.i/tr .[y(k)− y∗(yd)] (4.27)

where tr is the desired response time of the closed-loop system, and Qy the square
matrix of dimension m used to di�erently weight the outputs y1 and y2, and has the
following structure

Qy =

(ρ1
ȳ1

0

0 ρ2
ȳ2

)
m×m

(4.28)

where ρ1 and ρ2 are the weighting terms of y1 and y2 respectively and ȳ1 and ȳ2 the
normalization terms of each output.

Figure 4.14 summarizes the whole output feedback strategy, with the MHO repre-
sentation and the parameterized NMPC. The data Ȳk is collected during a moving
and �xed-size window [(k −No + 1)τs, kτs] together with the past measured inputs
Ūk , both are used to estimate the past state x̂(−) at instant k −No + 1 and hence,
the present state x̂(k) (4.11). This value is used in the de�nition of the NMPC
strategy based on open-loop simulations of the saturated exponential p-dependent
parametrization pro�le.

Note that more degrees of freedom can be used in (4.25). The general expression
may be given by:
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Figure 4.14: Notations related to the moving horizon observer and the predictive
control. The present instant is k. Ȳk is collected during the past time interval
[(k−No+1)τs, kτs] and the past values of u and w are stored in Ūk. Then, the state
x̂(k) can be estimated by using (4.11), which is used to de�ne the parameterized
NMPC scheme.

u = Satumaxumin

(
u∗ + α1(p)e−λ.i.τs + α2(p)e−q.λ.i.τs +

df∑
i=1

[p2i+1 p2i+2]T e−q̄i.λ.i.τs
)

where df > 0 is the number of extra degrees of freedom while q̄1, . . . , q̄df are the
tuning parameters for the extended formulation. Note that the dimension of p is
now 2(1 + df ) and the coe�cients α1 and α2 are still dependent on p since the
conditions at t = 0 and derivatives did not change. In this case, the expression
that links the vector p to the parameters α1 and α2 is given by the solution of the
following system:


αu11 (p)
αu12 (p)
αu21 (p)
αu22 (p)

 =


1 1 0 0
0 0 1 1

e−λ.τs − 1 e−q.λ.τs − 1 0 0
0 0 e−λ.τs − 1 e−q.λ.τs − 1


−1

·


u1(k − 1)− u∗1 −

∑df
i=1 p2i+1

u2(k − 1)− u∗2 −
∑df

i=1 p2i+2

p1δ
1
max −

∑df
i=1 p2i+1(e−q̄iλτs − 1)

p2δ
2
max −

∑df
i=1 p2i+2(e−q̄iλτs − 1)

 (4.29)
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Note that in the above formulation, the constraints on the parameters p1, p2 ∈
[−1,+1]2 are still valid, but the vector with the new extra parameters represented by(
p3 p4 . . . p2df+2

)
does not have any condition to impose structural constraints,

as for the input derivatives, and they can be freely chosen. However, increasing df
in order to introduce more dynamics in the system may not be appropriate. This
is because the gain in the closed-loop quality may not be su�cient to justify the
resulting increase of computational complexity.

4.4.5 A Black-Box NMPC Solution for Diesel Engines

The last section presented the parameterized approach using the exponential terms
to build the control sequence u. However, the solution is dependent on the com-
putation of the steady control u∗. This is particulary due to the structure of the
model being used, especially for the model (4.6), where the computation of u∗ was
practically direct, and almost no optimization procedure had to be done.

On the other hand, for the model (4.7), the way to compute the steady control is the
�rst step to obtain a general NMPC procedure for diesel engines. This is because in
(4.19), the u∗ is obtained by solving an optimization problem. But in that speci�c
case, the a�ne structure of the model has been used, and a kind of gray-box solution
was obtained. Here, the aim is to de�ne a formulation that does not rely on any
particular mathematical structure of the model. Considering a general non linear
system represented by:

x+ = f(x, u, w)

y = g(x, u, w)

where f : Rn × R2m → Rn and g : Rn × R2m → Rm. In fact, starting from
the structure of the control pro�le in (4.25), one can consider that u∗ used in the
expression of the control pro�le is no more obtained by external computation but is
a part of the decision variable. Therefore, the new control sequence can be rewritten
as follows:

u(iτs + t, p) = Satumaxumin

(
[p3 p4]T + α1(p).e−λ.i.τs + α2(p).e−q.λ.i.τs

)
(4.30)

Note that the new set of parameters in (4.30) is de�ned such as p ∈ R4 since the
derivative terms remain the same. Then, the resulting parameter vector p must
respect the following set of constraints.(

p1 p2

)T ∈ [−1,+1]2(
p3 p4

)T ∈ R2
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The above expression shows that the parameters p3 and p4 can be freely chosen in R2

since the control sequence u in (4.30) is already saturated between umin and umax.
However, some constraints can be imposed in order to reduce the search space, for
exemple, by introducing the constraints on the inputs (4.1), leading to the following
condition: (

p3 p4

)T ∈ [umin, umax]
2 (4.31)

In this case, p3 and p4 represent the stationary control u∗. Then, the computation
of α1 and α2 can be done by solving the modi�ed system of equations:
αu11 (p)
αu12 (p)
αu21 (p)
αu22 (p)

 =


1 1 0 0
0 0 1 1

e−λ.τs − 1 e−q.λ.τs − 1 0 0
0 0 e−λ.τs − 1 e−q.λ.τs − 1


−1

u1(k − 1)− p3

u2(k − 1)− p4

p1δ
1
max

p2δ
2
max


However, this new formulation requires some few considerations about the cost func-
tion de�ned in (4.26).

It is worth noting that the formulation of the cost function presented in the previous
section (4.26) is valid only for the empirical models (4.6) and (4.7). This is due to
the fact that the weighing term on the terminal state depends on the computation
of x∗ which is provided by the exact value of u∗ obtained in a previous step from
a dedicated steady state calculation. As far as the full nonlinear model (4.3)-(4.5)
is concerned, the stationary state x∗ can not be obtained after u∗, since there is
no more speci�c routine for the computation of the steady control. As a result,
the terminal cost on the state in (4.26) must be changed. Therefore, for a general
class of nonlinear models for diesel engines, the new cost function to be considered
becomes:

p̂ := argmin
p∈P

[
ρx ·

∥∥xf (p)− f(xf (p), u
(N)(p(·)), w)

∥∥2
+

N−1∑
i=0

‖Y (i, x̂(k), p)− Y ∗f (i, yd, w)‖2
Qy

]
(4.32)

where xf (p) = X(N, x̂(k), p). Note that the terminal cost is now de�ned as the
norm of the di�erence of two successive values of the state, at the end of prediction
horizon, under the control pro�le depending on p. In fact, this is the classical way to
address stability in predictive control formulations. However, �rst simulation results
(section 4.6.3) showed that the terminal cost can be dropped by setting ρx to 0 since
in this particulary case the system is open-loop stable.

Therefore, with the above modi�cations, the computation of p does not rely on any
speci�c model structure, making the present solution appropriate to be used as a
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black-box NMPC controller for diesel engines or for any other non linear system
which has similar behavior with this model.

To summarize, a general framework for diesel engines can be formalized as follows:

• General nonlinear system

x+ = f(x, u, w)

y = g(x, u, w)

• Control Law

u(t) = Satumaxumin

(
[p3 p4]T + α1(p)e−λt + α2(p)e−qλt

)
; αi ∈ R2

• Cost Function

p̂ := argmin
p∈P

[
ρx ·

∥∥xf (p)− f(xf , u
(N)(p(·)), w)

∥∥2
+

N−1∑
i=0

‖Y (i, x̂(k), p)− Y ∗f (i, yd, w)‖2
Qy

]
with xf (p) = X(N, x̂(k), p)

• Constraints

(
p1 p2

)T ∈ [−1,+1]2(
p3 p4

)T ∈ R2 or
(
p3 p4

)T ∈ [umin, umax]
2

4.5 Optimization Process

4.5.1 Low Dimensional Optimization

Regardless the choice of the optimization subroutine, the complexity of the opti-
mization task heavily depends on the problem formulation, in particular, the control
parametrization. Some simulations are presented in the sequel in order to better vi-
sualize the resulting optimization problem and the evolution of the parameter vector
p. For instance, let us de�ne the following scenario :
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• The aim is to track the desired reference yd = [60 Kg/h;−25 hPa].

• The model to be used is the one depending on the inputs (4.7). Therefore,
the parameter vector is p ∈ R2 (since the computation of the steady control is
done by (4.19)) and the cost function is represented by (4.26).

• The initial state of the observer has been set to 0.

• The prediction horizon has been set to N = 30 and the tuning parameters λ,
q to 1 and 5 respectively and the weighting term ρx on the state to 0.001. It
is worth noting that the sampling period τs is 50 ms since the model is (4.7).

• This simulation has been performed at w = [448 RPM ; 0.8 mg/st].

• Three particular instants ti, i ∈ {1, 2, 3} have been chosen to illustrate the
shape of the performance index J(·, p, x̂(ti)).

• The condition to stop the optimization routine (which is explained in the next
topic) is the number of function evaluations nfe and in this case it has been
set to 10.

Figures 4.15 and 4.16 show the evolution of the parameters p1 and p2 as well as the
system outputs. Note that, according to the de�nition of the parametrization, the
constraint on the rate of change of the control input is active when p is saturated
(at −1 or 1).

The shape of the cost function J gives a relevant indication on the complexity of
the optimization problem. This can be seen in �gure 4.17, which clearly shows how
the low dimensional control parametrization adopted above leads to a well posed
optimization problem (the cost function seems to be convex). In the next topic,
some details are given concerning the optimization algorithm that has been used in
simulations and also to validate experimentally the proposed parameterized NMPC
formulation.
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Figure 4.15: Simulation results showing the evolution of p1 et p2 to track yd =
[60 Kg/h;−25 hPa] (Fig. 4.16), with nfe = 10. Three particular instants (t1 = 0.1s,
t2 = 2.2s and t3 = 5s) have been used to illustrate the shape of cost function (�gure
4.17). Note that when p is saturated at 1 or −1 the maximum derivatives δmax are
allowed according to (4.24).
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Figure 4.16: Simulation results showing the measured values of MAF and MAP
(deviations from the central values) and desired outputs yd. Vertical lines de�ne the
three instants used to illustrate the shape of the cost function (Figure 4.17).
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Figure 4.17: The shape of the cost function J(·, p, x̂(ti)) for the three particular
instants depicted on Figures 4.15 and 4.16 (t1 = 0.1 s (top), t2 = 2.2 s (middle),
t3 = 5.0 s (bottom)), with nfe = 10. Note the decrease of the cost function and the
e�ciency of the parameterized approach. This e�ciency relies on the convex shape
and the low dimensional underlying optimization problem.
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4.5.2 A New Mixed SQP/Gradient/Trust Region Method

First, it is worth mentioning that it is not in our mind to claim having any contribu-
tion in the domain of optimization algorithms. The well conditioned optimization
problem mentioned above can be solved using any available software. Nevertheless,
the fact that the optimization solver has to be embedded in the experimental fa-
cility incited us to write a self-contained code that does not depend on any sort of
numerical libraries. The resulting optimization code that has then been used exper-
imentally to validate the e�ciency of the control law is presented in this section for
completeness.

  pimax pimin 

piact 

pir 

Cost         Function

dpi 

pil 

Figure 4.18: Schematic view of the preparation phase of the scalar SQP routine for
the component i of the parameter vector p.

The algorithm is based on successive steps of scalar quadratic programming followed
by an attempt to perform a gradient descent step. First, let us introduce the scalar
SQP procedure. For a given value of p, the actual value of the cost function Jact
can be evaluated. A �rst parameter dp ∈ Rnp is introduced in order to describe
the trust region around p. In fact, dp represents the displacement from p, in order
to compute the cost function at the left and at the right to p. Then, the scalar
procedure performs three function evaluations and with these values of the cost
function, a quadratic approximation can be obtained as shown in �gure 4.18. Note
that the values of p must be saturated from pmin and pmax

The minimum of the so obtained scalar quadratic function is computed to de�ne a
candidate value pcandi for the updated component pi. A candidate cost Jcand is then
evaluated leading to two possibilities according to whether Jcand is lower or greater
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than the current value Jact. If Jcand is lower, then the corresponding candidate
parameter vector becomes the current one. Moreover, the value of dpi is increased
since the quadratic approximation leads to a success in the direction i. The increase
in dpi is obtained using a parameter β+ > 1 according to

dpi ← β+ · dpi (4.33)

Figure 4.19 illustrates this possibilities [Jcand < Jact].

  pimax pimin picand

piact 
pil 

pir 

Cost         Function

Jicand

β+ dpi dpi+=

dpi 

Figure 4.19: The SQP scalar algorithm performs successively scalar SQP's on each
component i, each followed by an adaptation of the corresponding trust region. In
this �gure, the test is successful since the candidate cost function is lower than
its current value. Therefore the i-th component of the step size dpi is using the
successful updating parameter β+ > 0.

If the second possibility holds, namely, if the test Jcand < Jact fails, the trust region
must be reduced since the quadratic approximation is bad. The search region is
then reduced by updating dpi according to:

dpi ← max
{
dminp , β− · dpi

}
(4.34)

where β− ∈]0, 1[. The saturation function is used in order to avoid the collapse of
dpi that may prevent future success in the corresponding direction. This procedure
is illustrated in �gure 4.20
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Figure 4.20: Situation when the test Jcand < Jact fails. As a result, the trust region
parameter dpi is decreased using the parameter β−.

This procedure is performed in all the directions i ∈ {1, . . . , np} and all the compo-
nents of the step vector dp are therefore, updated. By doing so, the vector dp may
contain a precious information concerning the descent directions of the cost function.
This suggests that, after each complete cycle of scalar SQP's over the components,
the resulting vector dp ∈ Rnp can be used to construct an approximation of the
gradient along which potentially successful steps can be attempted. Here again, a
trust region along the gradient is de�ned and updated according to the success or
failure of such step.

The gradient step performs only one function evaluation along the direction given
by the αg · dp vector, where αg is the step size associated to the gradient vector. As
for the previous case, αg is multiplied by β+ > 1 if the gradient step is successful,
according to:

αg ← β+ · αg (4.35)

On the other hand, the fail parameter β− < 1 is used if the test is not successful.
As in the previous case, αg is saturated at αgmin to avoid excessively small values:

αg ← max
{
αming , β− · αg

}
(4.36)

This procedure is repeated as long as the cost function decreases (the gradient test is
successful) and stops when the gradient test fails to undertake a new cycle of scalar
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SQP/trust region iterations. If the maximal number of function evaluations nfe is
reached, the optimization problem ends and returns the current set of suboptimal
parameters psopt. This results in the following algorithm:

Algorithm 1 Main Program : Compute a sub-optimal value psopt
Initialization: dp ← d0

p;αg ← α0
g; p← p0

J ← Cost Function(p)
iter ← 1
while iter ≤ nfe do
for i = 1 to np do

[pi, dpi , J, gradi]← Scalar SQP Procedure(p, dpi , J)
iter ← iter + 3
i← i+ 1

end for
SucessGradient ← 1
while SucessGradient = 1 and iter ≤ nfe do

[p, SucessGradient]← Gradient Procedure(p, grad, αG, J)
iter ← iter + 1

end while
end while
psopt ← p
Return(psopt)

Algorithm 2 Scalar SQP Procedure
Jleft ← Cost Function(p− dp)
Jright ← Cost Function(p+ dp)
[a, b, c]← Quadratic Polinomial(Jleft, Jact, Jright, p, dp, pmin, pmax)
pcandidate ← Sat(Min Value(a, b, c), pmin, pmax)
Jcandidate ← Cost Function(pcandidate)
if Jcandidate < Jact then
p← pcandidate
Jact ← Jcandidate
dp ← β+dp
grad← dp

else
dp ←Max(β−dp, dpmin)
grad← 0

end if
Return(p, dp, J, grad)
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Algorithm 3 Gradient Procedure
for i = 1 to np do
pcandidate ← Sat(pi − αg.gradi, pmin, pmax)

end for
Jcandidate ← Cost Function(pcandidate)
if Jcandidate < Jact then
p← pcandidate
Jact ← Jcandidate
αg ← β+αg

else
αg ←Max(β−αg, αgmin)

end if
Return(p, αg, J)

The sub-programs used in these algorithms are described below:

• Cost Function(p): Returns the cost function value at p

• Quadratic Polynomial(J1, J2, J3, p, dp, pmin, pmax): Returns the parabola coe�-
cients given the points (Max(p−dp, pmin), J1), (p, J2) and (Min(p+dp, pmax), J3)

• Min Value(a, b, c): Returns the minimum value −b/2a

• Sat(a,min,max): Returns a or its saturated value min or max if a < min or
a > max respectively.

• Max(a, b): Returns the maximum value between a and b

• Min(a, b): Returns the minimum value between a and b
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4.6 Simulation Results

In this section, some simulation results are proposed in order to evaluate the per-
formance of the proposed NMPC scheme and its real-time implementability. The
programs related to the MHO and the NMPC were developed in C language and
integrated to aMatlab environment via S-functions and MEX-�les. The hardware
con�guration used to perform computations was a Pentium 4, 3GHz. This section
is split into three parts related to the three di�erent nonlinear models presented
previously showing the e�ciency of the controller regardless the model being used.
No extra degree of freedom was used in the simulations (df=0) and the parameters
of the solver presented in the previous section are shown in table 4.2:

Table 4.2: Parameters of the solver used in simulations

Parameter Value Expression

dp 0.1 (4.33)-(4.34)
αg 0.1 (4.35)-(4.36)

[β−, β+] [0.8,1.2] (4.33)-(4.36)

4.6.1 Simulations Using the Model Depending on the Out-
puts

This model was the �rst nonlinear model identi�ed by our colleagues from the Uni-
versity of Johannes Kepler, Linz. The results shown hereafter have been presented
in [Murilo et al., 2009a]. All the simulations were performed with a sampling pe-
riod of 10 ms since the model has been identi�ed with this sampling period. The
parameter values used in the simulations are shown in table 4.3. The weighting
matrices Q1 and Q2 used in the the MHO equation (4.11) have been taken equal
to the identity in their respective spaces and the initial estimated state x̂0 has been
taken uniformly equal to 10 in order to check the convergence of the observer and
the normalization terms ȳ1 and ȳ2 in (4.28) were set to 1.

Figure 4.21 shows a sequence of �ltered steps that are used as reference values for the
MAF and the MAP where no measured disturbances are considered (w = 0). Note
that the constraint on the control input are respected. The bottom right subplot
shows the evolution of the parameters p1 and p2. Note that by the very de�nition
of the parametrization, when p is saturated, the constraint on the rate of change
of the control input is active. The bottom left subplot shows the corresponding
computation time needed to perform the 10 allowed function evaluations for the
NMPC controller as well as the computations related to the observer. It clearly
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Table 4.3: Parameters used in simulations - Model (4.6)

Parameter Value Expression Parameter Value Expression

N 30 (4.26) No 30 (4.11)
λ 1 (4.25) q 2 (4.25)
τs 0.01s (4.6) ρx 1000 (4.26)
ρ1 1 (4.28) ρ2 1 (4.28)
tr 1s (4.27) nfe 10 -

[umin, umax]
2 [0, 100]2% (4.1) [−δmax, δmax]2 [−1, 1]2%/τs (4.2)

indicates that the computation time never exceeds the sampling period of 10 ms
thus assessing the real-time implementability of the proposed framework.

The second scenario shown by �gure 4.22 represents a more realistic behavior for
the set-point reference, which is a variable signal. Note that the controller is able
to track it with a quite nice performance while the constraints on the control input
are always respected.
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Figure 4.21: Evolution of the closed loop system with a sequence of �ltered steps
(Model (4.6)).
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Figure 4.22: Evolution of the closed loop system with a variable signal reference
(Model (4.6)).
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riod to perform the observation task and the nfe = 10 function evaluations of the
optimization procedure (Model (4.6)).
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Figure 4.23 shows histograms of the computation times for the preceding scenarios.
It can be noticed that the computation time rarely exceeds 7 ms and never exceeds
the allowable computation time of 10 ms. The last scenario (Fig. 4.24) shows the
closed-loop behavior in response to step changes in the component of the measured
disturbance vector w.
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Figure 4.24: Evolution of the closed loop system with the introduction of measured
disturbances, engine speed and fuel injection (Model (4.6)).

4.6.2 Simulations Using the Model Depending on the Inputs

When compared to the preceding model, the model used here is of lower order (8
states rather than 14). Moreover, it has been identi�ed using a larger sampling
period of 50 ms. Therefore, it can be expected that the fast NMPC scheme pro-
posed here can be easily used in the present con�guration since it �tted already
the real-time requirement with a higher sampling rate. However, the large sampling
period may decrease the quality of the closed-loop performance as the updating rate
is slower.

Table 4.4 shows the parameters that were used in simulations:
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Table 4.4: Parameters used in simulations - Model (4.7)

Parameter Value Expression Parameter Value Expression

N 30 (4.26) No 10 (4.11)
λ 1 (4.25) q 5 (4.25)
τs 0.05s (4.7) ρx 10−4 (4.26)
ρ1 1 (4.28) ρ2 1 (4.28)
tr 1s (4.27) nfe 30 -

[umin, umax]
2 [0, 100]2% (4.1) [−δmax, δmax]2 [−1, 1]2%/τs (4.2)

The data used for simulations are quite close to those employed in the test bench.
The �rst di�erence w.r.t the previous section lies in the the measurement distur-
bances pro�le w. In the real engine, they are used internally to generate the set
points of MAP and MAF from pre-speci�ed look-up tables. Here, a step sequence
of fuel injection and engine speed is adopted, as shown in �gure 4.25. Remember
that the central values wc are assumed to be 0 according to section (4.2.5.3) which
explains the negative values in the �gure.
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Figure 4.25: Evolution of the measurement disturbances pro�le (w) used to generate
MAF and MAP set-points (y) (Model (4.7)).

Figure 4.26 shows the evolution of the closed loop system under the set-point pro�les
of MAP and MAP generated by the measurement disturbances w depicted on �gure
4.25. It is worth noting that the desired response time of the closed loop tr (4.27)
is set to 1 s, and both, set-points and measurement disturbances are �ltered with
the same response time. This may enable to avoid or at least reduce overshoots.
Moreover, since ρ1 = ρ2 = ȳ1 = ȳ2 = 1, the outputs y1 =MAF and y2 =MAP are
equally weighted. Consequently, MAP has lower overshoot since its magnitude is
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greater than MAF.
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Figure 4.26: Evolution of the closed loop system under the successive steps sequence
on MAF and MAP (Model (4.7)).
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Figure 4.27: Evolution of the set of parameters and the steady control for the
scenario depicted on Figure 4.26 (Model (4.7)).
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Figure 4.27 shows the evolution of the parameters p1 and p2 obtained from (4.26)
and the stationary inputs u∗1 and u

∗
2 calculated from (4.19). Here they are calculated

separately in order to obtain x∗ but for the general framework both are in the same
optimization problem. Note the di�erence between the steady control pro�le (u∗1
and u∗2) and the complete NMPC control strategy with exponential modes shown in
the previous scenario (EGR and VGT in Figure 4.26).

4.6.3 Simulations Using the Full Nonlinear Model

As long as simulation results are concerned, the results presented in this section
are the most important. This is due to the complexity of the nonlinear model
(4.3)-(4.5) that is expected to challenge the real-time implementability of the pro-
posed approach. At the same time, the success of the proposed approach on such
a structure-free model would emphasize our claim on the genericity of the proposed
approach and its complete independence w.r.t any structural assumptions.

This model is quite recent since it has been delivered to us few months before
the beginning of the manuscript writing. This is the reason for which, experimental
validation could not be obtained because of the non availability of the test bench and
the lack of available time. Nevertheless, the simulation results are quite convincing
and incite to push the investigations further.

This model was identi�ed from experimental data on the real diesel engine test
bench available at the Johannes Kepler University, Linz. It was delivered to us as
Matlab/simulink block-scheme. The model was totally converted into C code
at the University of Grenoble in discrete-time setting resulting in a powerful real-
time simulator for diesel engines. Here, the model was sampled at 10 ms using the
standard Euler's method.

It is worth noting that the whole state is supposed to be measured by the test bench
sensors. This means that the observer is no more needed. Moreover, the cost to be
minimized does not take into account x∗ leading to the new cost function de�ned in
(4.32). For these reasons, the parameters No does not exist in this framework and
ρx has been set to 0 as explained in section 4.4.5 . The set of parameters are shown
in table 4.5.
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Table 4.5: Parameters used in simulations - Model (4.3)-(4.5)

Parameter Value Expression Parameter Value Expression

N 100 (4.32) dp [0.1;0.5] (4.33)-(4.34)
λ 8 (4.25) q 1.25 (4.25)
τs 0.01s (4.3) ρx 0 (4.32)
ρ1 1 (4.28) ρ2 100 (4.28)
ȳ1 1 (4.28) ȳ2 1e5 (4.28)
tr 0.1s (4.27) nfe 4 -

[umin, umax]
2 [0, 100]× [50, 100]% (4.1) [−δmax, δmax]2 [−1, 1]2%/τs (4.2)

Note that the VGT never works below 50% because in such cases, the compressor
losses much power, which is, from a practical point of view, unacceptable. For this
reason, the lower bound of 50% is used for the VGT valve position.

The simulation results are divided into two main sets according to the kind of set-
point pro�les: the sequence of step changes and the New European Driving Cycle
(NEDC). The latter is supposed to represent the typical usage of a car in Europe,
and is used, among other standardized requirements, to assess the emission levels of
car engines.

4.6.3.1 Successive Step Sequence

Figure 4.28 illustrates the closed-loop output behavior under the sequence of step
changes on the set-points. Note that this model uses the real values and not their
increments w.r.t. some central values. For this reason, the normalization term
ȳ2 = 1e5 is introduced to fairly penalize both outputs. The tracking performance
is quite nice except during the interval time t ∈ [165; 180] (see MAF) where the
corresponding set-points are unfeasible. In this case, the controller does its best to
follow the closest output.

It is worth mentioning that the overshoots that can be observed on Figure 4.28
are due to excessively short desired response time which has been set to 0.1s (tr in
(4.27)). Reducing the bandwidth of the �lter, the oscillations may reduce consider-
ably. This can be clearly seen in �gure 4.29, where the response time was changed
to 1s.
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Figure 4.28: Evolution of the closed-loop output under a sequence of step changes
and tr = 0.1s. Note that the set-points are unfeasible during t ∈ [165; 180] and hence
the input EGR reaches the saturation in order to �nd the closest output. (Model
(4.3)-(4.5)).
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Figure 4.29: Evolution of the closed-loop output under a sequence of step changes
and tr = 1s (Model (4.3)-(4.5)).
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Figure 4.30 shows the evolution of the estimation of an o�set error on the outputs.
The error dynamics are driven by the equation (4.8), which consists in a simple in-
tegrator. The integrator gain ki was set to 3.5 for both outputs. The bias dynamics
was modeled as a constant and tries to reproduce the prediction error. This rep-
resents the di�erence between the measured value and the output predicted value.
This will be extremely important for real time implementation as shown in the next
section.
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Figure 4.30: Evolution of the o�set error estimation and dynamics error between
the predicted and measured value (Model (4.3)-(4.5)).

Figure 4.31 shows the evolution of the 4 parameters that are solution of the opti-
mization problem (4.32). Contrarily to the preceding approach where the stationary
control was computed separately, here the optimization problem incorporates the
steady control value as a supplementary degree of freedom, according to the new set
of constraints de�ned in (4.31).
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Figure 4.31: Evolution of the 4 parameters used for the optimization problem (4.32),
which considers the stationary inputs as a part of the decision variable (Model (4.3)-
(4.5)).

Figure 4.32 shows the computation time spent to proceed the �xed number of func-
tion evaluations nfe, which in this case, has been set to 4. This represents only 1
SQP iteration according to the algorithm presented in section 4.5.2. Considering
that the model is highly nonlinear and constrained, this is a quite interesting result.
Indeed, one can perform su�cient number of function evaluations to obtain a fairly
good solution in within a sampling period of 10 ms which means that the present
NMPC scheme is real-time implementable.

4.6.3.2 New European Driving Cycle - NEDC

In this section, the reference pro�le to be tracked is the NEDC, which is entirely
simulated. This cycle is quite representative in terms of operational conditions. As
a matter of fact, it represents a challenging problem for control design since the
set-points of MAF and MAP may vary extremely fast and also fall into unfeasible
regions.
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Figure 4.32: Evolution of the computation time of the parameterized NMPC scheme,
with nfe = 4 which corresponds to only 1 SQP iteration. Note that the maximum
allowed value 10 ms is never reached (Model (4.3)-(4.5)).

The NEDC can be divided into two main periods: the urban and extra urban
parts, as shown in �gure 4.33. The �rst one is represented by the interval [0,250]s
and reproduces fast variations on the speed leading to a high-frequency set-point
generation for MAF and MAP. The second which holds on the time interval ranging
from 250s to 500s, is slowest but has important excursions.

Figure 4.33 shows the �rst simulation scenario for the NEDC tracking. The weight-
ing term ρ2 has been set to 1. Note the good tracking performance in both the urban
and extra-urban parts and the constraints on the inputs are correctly handled. Note
that the periods where the valves are saturated means that the set of set-points are
unfeasible, especially for MAP around 0 s, 100 s and 480 s.
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Figure 4.33: Simulation results showing the evolution of MAF and MAP over the
whole NEDC tracking, with ρ2 = 1 (4.28). Note the quality of the tracking, espe-
cially for the fast set-point variations. Note also the points where the controller is
saturated and is not able to handle the output requirements at the same time since
the set-points are not feasible (Model (4.3)-(4.5)).

Figure 4.34 illustrates the simulation results for two values of ρ2. The �rst one,
ρ2 = 100 and the second one ρ2 = 0.01 (4.28). While in the �rst case, the tracking
performance of MAP is quite nice, for the second one, MAF is privileged. This
clearly shows the trade-o� between the tracking quality of the set-points and the
weighting terms that are imposed on the outputs in the de�nition of the cost func-
tion. Then, such penalizing terms can be modi�ed on-line in order to achieve speci�c
performances in di�erent operational points of the engine according to emissions re-
quirements. Otherwise, one can just �nd a good trade-o� as shown in the previous
scenario depicted in �gure 4.33.

The next section shows the experimental results obtained when using the model
(4.7). As explained previously, the experimental validation using the full non linear
model (4.3)-(4.5) was not possible because of the lack of time and availability of the
test bench and will be investigated as soon as possible.
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Figure 4.34: Evolution of MAF and MAP over the NEDC tracking, with ρ2 = 100
(on the top) and ρ2 = 0.01 (on the bottom) (Model (4.3)-(4.5)).
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4.7 Experimental Results

This section shows the experimental results obtained on the real world diesel engine
available at Johannes Kepler University, Linz [Murilo et al., 2009b]. The platform
consists in a BMW M47TUE Diesel engine ful�lling the EU4 emission standard,
controlled by the Engine Control Unit (ECU) equipped with an AVL dynamo-meter
to simulate the load on the engine shaft. A d-Space Autobox was used as a
real-time software and hardware, running at 480 MHz and linked to the Matlab
software. The programs related to the MHO and the NMPC were developed in C
language and transformed into dll �les for d-Space. The sampling time was set to 50
ms since the model (4.7) was used for the experimental validation of the controller.
Table 4.6 shows the parameters used in the experiments. The technical details about
the diesel engine test bench are shown in appendix B.

As in the previous case, two types of experiments are presented hereafter. First,
a manual setting of w pro�le was used, by imposing a step sequence trajectory for
both variables. In the second part, the trajectories were generated by the high-speed
part of NEDC. Figure 4.35 illustrates the pro�les of w used in the experiments. In
both cases, the NMPC closed loop performances are compared to the performance
of the existing controller driven by the ECU.
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Figure 4.35: The pro�les of fuel injection and speed engine used for the set-point
generation. On the top the step sequence and on the bottom the non-urban part of
the NEDC.
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Table 4.6: Parameters used in experiments - Model (4.7)

Parameter Value Expression Parameter Value Expression

N 30 (4.26) No 10 (4.11)
λ 1 (4.25) q 5 (4.25)
τs 0.05s (4.7) ρx 10−3 (4.26)
ρ1 1 (4.28) ρ2 1 (4.28)
tr 3 · τs/q · λ (4.27) nfe 30 -

[umin, umax]
2 [0, 100]2% (4.1) [−δmax, δmax]2 [−1, 1]2%/τs (4.2)

4.7.1 Successive Steps Sequence

The ECU's response for a step sequence is shown in �gure 4.36. The ECU's control
design is based on a feed-forward, only for EGR. For VGT, the controller uses a look-
up table depending on the operational point of the engine. In this case, the MAF
is highly weighted by ECU while the MAP's tracking is considered as a secondary
task.
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Figure 4.36: ECU's response for a step sequence. Note the di�erence in the quality
of the tracking between the MAF and the MAP.

The �rst scenario is shown on �gure 4.37. The constraints on the inputs are handled,
and some overshoots may come from the fact that measured disturbances are not
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�ltered, specially the engine speed. Both variables are equally weighted and the
controller is able to track them correctly. Note the non-minimum phase behavior
which forces the inputs to take one direction before �nding to the right one. O�set
errors are eliminated by means of the integrator term introduced in (4.8) with a
integrator gain of ki = [0.6; 0.01].
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Figure 4.37: Experimental results of the parameterized NMPC scheme on a sequence
of steps on the set-points. The green dashed line shows the trajectories without
integrator. The MAF and the MAP are simultaneously tracked and the integrator
term eliminates the o�set error in the stationary state. This �gure is to be compared
to �gure 4.38 where the weight on the terminal state has been increased.

In order to deal with overshoots and oscillations, the terminal state was strongly
weighted (parameter ρx in (4.26)), as shown in Figure 4.38. However the system's
response time becomes a bit slower. This is the classical trade-o� between these
requirements. Reducing δmax in order to make the controller less aggressive, may
also reduce oscillations. Some other scenarios were performed by changing the pa-
rameters of table 4.6 without signi�cant improvement on the results.
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Figure 4.38: Experimental results of the parameterized NMPC scheme, with ρx =
1000 (4.26). Comparing to the previous scenario, overshoots are reduced by weight-
ing the terminal state at the price of the slower response time.

4.7.2 NEDC Sequence

The second part of the experimental validation consists in testing the present con-
troller under the high-speed part of the NEDC. The top of �gure 4.39 shows the
ECU's tracking performance. The MAF is correctly tracked until the instant where
the engine speed exceeds the 2100 RPM (Fig. 4.35), around t = 210s. The same
deterioration at high speed is also noted on the MAP's tracking performance.

On the other hand, the results of the parameterized approach presented on the bot-
tom of �gure 4.39 clearly shows a more regular quality in the tracking performance
for both variables comparing to the ECU's, except in the last part at low speed and
fuel. Here, model uncertainties become too high to compensate for. Moreover, the
slow dynamics of the engine speed pro�le of the NEDC does not generate abrupt
set-point variations, and naturally �lters oscillations and overshoots. However, the
present solution seems to be quite sensitive to the fast set-point variations. This is
especially due to the fact that the updating rate is not fast enough to compensate
for model uncertainties. By using a faster and more reliable model such as the full
nonlinear one may expect actual performance level to be signi�cantly improved.
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Figure 4.39: Experimental results comparing the ECU and the parameterized NMPC
scheme under the extra-urban part of the NEDC. The ECU has a good tracking
performance in the beginning but the system becomes very sensitive in the high-
speed part. For the NMPC, both variables are correctly tracked, specially in the
high-speed part.



4.8. Conclusion 123

4.8 Conclusion

In this chapter, a parameterized NMPC scheme is presented to tackle the diesel
engine air path control problem. Simulations were performed with three di�erent
nonlinear models, and all of them showed quite nice results. In particular, a highly
nonlinear sixth-order model with seven look-up tables was used to test the controller
and the results were quite promising. This suggests that the present solution can
be used as a sort of black-box NMPC controller for diesel engines, no matter the
complexity and the structure of the model being used.

An experimental validation of the present controller was also proposed in this chap-
ter. The experiments performed in a real-world diesel engine of the University of
Linz con�rmed the e�ciency of the controller. Two main scenarios were tested: a
sequence of steps and the non-urban part of the NEDC. In both cases, the track-
ing performance of the MAF and the MAP were very nice and had better results
when compared with the ECU. Moreover, the controller structurally satis�ed the
constraints on the inputs, derivatives and available time to perform optimization
problem. However, some tracking problems related to the fast set-point variations
were observed. This is mainly due to the model mismatches and the slow sampling
period (50 ms). It is more than likely that having better models may considerably
increase the tracking performance, especially in the regions of high variations of the
set-points.

For this reason, the next step consists in validating experimentally the present con-
troller by means of the full nonlinear model, which is supposed to be much more
accurate than the other ones. This validation was not possible due to a lack of
availability of the test bench, as explained previously, and we hope to proceed some
experiments as soon as the test bench becomes available again.
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Chapter 5

NMPC for a Twin-Pendulum System

5.1 Introduction

In this chapter, a parameterized NMPC scheme is presented for the swing-up and
the stabilization of a twin-pendulum system under control and state constraints.
The basic feature concerns a particular parametrization of the set of candidate con-
trol pro�les leading to a small vector of decision variable. Experimental results are
proposed in order to show the e�ciency and the real-time implementability of the
proposed NMPC strategy. This results enforce the message of this PhD work: Pa-
rameterized NMPC is problem dependent but as long as mechatronic systems are
concerned, there is almost always a way to parameterize the decision variable in
order to end up with numerically tractable optimization problem.

This chapter is organized as follows. In section 5.2, the inverted pendulum problem is
presented. Then, section 5.3 shows the system model and the control problem to be
solved is formalized. Section 5.4 concerns the theoretical formulation of the control
design, namely the basic idea of the NMPC design scheme is introduced. In section
5.5, a nonlinear observer design is presented in order to estimate potential o�set
errors that may a�ect the measurement of the angular positions of the pendulums.
In section 5.6, some real-time issues are investigated concerning the control design
in order to adapt the theoretical formulation to practical application. Section 5.7
presents some experimental results obtained on a twin-pendulum platform available
at the Control Systems Department of the University of Grenoble. Finally, section
5.8 gives the conclusion of this chapter.
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5.2 The Inverted Pendulum Problematic

5.2.1 Background on the Existing Variations of the Problem

The inverted pendulum is probably one of the most studied problems by the au-
tomatic control community, especially for nonlinear control design. Several control
strategies have been developed to tackle the inverted pendulum problematic and
many other variations have been created to enlarge the range of possible solutions.
Figure 5.1 shows a schematic view of the classical single inverted pendulum prob-
lem. The systems is represented by a single pendulum �xed on a cart that moves
horizontally. The control problem consists in steering the pendulum to the upward
at rest position and in keeping it there by acting on the cart's acceleration or force.

Figure 5.1: Classical single inverted pendulum problem [Ogata, 2002].

One of the classical variations derived from the above original problem is the use
of two pendulums, instead of a single one. One possible scenario is shown in �gure
5.2, also called the double pendulum system. It is a coupled system whose control
problem is still the same, to steer to and to keep both pendulums at the upward
vertical position.
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Figure 5.2: Schematic view of a double-pendulum system [Graichen et al., 2007].

Another widely used variation is the rotary inverted pendulum, also known as the
Furuta pendulum shown in �gure 5.3. The main di�erence in this case is the fact
that the base is rotative, and the control input is the angular acceleration or couple.
Moreover, there exist con�gurations with a double-pendulum system as explained
above, but in this case, with a rotative base.

Figure 5.3: Representation of the Furuta rotary inverted pendulum.

Note that if the pendulums are in the neighborhood of the equilibrium point, lin-
ear control design tools may be su�cient. However, considering that the pendulum
starts from a di�erent initial state, the resulting problem becomes much more di�-
cult to solve. In this context, the term swing-up systems is invoked, since a swing-up
phase is needed in order to bring the pendulum to the neighborhood of the upward
vertical at rest position. The main di�culty presents in such con�gurations is the
constraint on the cart's position, for the horizontal case depicted on Figure 5.1. For
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this reason, the swing-up phase for the rotary inverted pendulum is much easier
to realize than in the horizontal case, since there is no constraints on the angular
position of the motor to be respected.

Some relevant works can be found in the literature concerning the global stabilization
of swing-up like systems [Åstrom and Furuta, 2000, Chatterjee et al., Zhong and
Röck, 2001, Graichen et al., 2007]. Nevertheless, the con�guration presented in
this PhD work falls in a more speci�c variation of the inverted pendulum problem,
namely, the twin-pendulum system, which is described in the next section.

5.2.2 The Twin-Pendulum System

The twin-pendulum system is a variant of the con�guration used for two pendulums
presented in �gure 5.2. Actually, the main di�erence with the double-pendulum
system lies in the fact that the pendulums are completely decoupled from each
other, and both are connected to the cart. Figure 5.4 shows the twin-pendulum
platform that was developed in the Control Systems Department, Grenoble, for the
experimental validation of the proposed parameterized NMPC strategy described in
this chapter.

Figure 5.4: Twin-pendulum system of Control Systems Department (University of
Grenoble) used as experimental platform.
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In this case, the two pendulums must have di�erent inertias to make the system
controllable and the constraints on the cart's position must be respected, since the
base of the platform is linear and horizontal. Therefore, the resulting control problem
becomes not only quite nonlinear but also under-actuated and highly constrained.

As a matter of fact, the presence of state constraints that are related to the limited
excursion of the cart makes this problem extremely challenging. This may explain
the relatively limited number of papers found in the literature to deal with such
a system. In [Xin and Kaneda, 2005, Åstrom and Furuta, 2000], an energy based
method is presented in order to make the energy level of the pendulums converge to
the desired value. Moreover, a Lyapunov approach is used together with a stability
analysis based on the concept of invariant sets. However, the constraints on the
cart's position are not considered.

Another control strategy was presented in [Borto�, 1996], but in this case, with
a rotary twin-pendulum con�guration. Figure 5.5 shows a schematic view of this
system. In this approach, a state feedback linearization approach is used and the
stability of the resulting zero dynamics is analyzed. Basically, the strategy consists
in two parts. The �rst part is dedicated to the stabilization of the smallest of the
two pendulums and the second part to stabilize the biggest pendulum by using
local oscillations of the �rst around the upward desired position. The properties
around the vertical upward position was invoked by [Lundberg and Roberge, 2003].
Nevertheless, since it is a rotational system, the constraints on the angular position
of the motor are not present and the control problem is hence much easier to tackle.

Figure 5.5: Rotary twin-pendulum presented in [Borto�, 1996] without constraints
on the angular position of the steering devices.

From the preceding discussion, it comes that NMPC-like solutions may be partic-
ularly adapted to the twin-pendulum problem, not only to deal with the system
nonlinearities but also to handle the constraints. Moreover, since the previous ap-
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proaches tackle the problem in a continuous time setting, this necessarily leads to a
small sampling period, and hence the computation time becomes also an issue. For
this reason, a dedicated parameterized NMPC strategy is proposed here in order to
swing-up and to stabilize the twin-pendulum system at the upward vertical at rest
position under the constraints mentioned above. But �rst, the mathematical model
of the system needs to be presented. This is the aim of the next section.

5.3 System Modeling

The schematic view of the twin-pendulum platform used in our experiments is shown
in �gure 5.6. This system consists in two pendulums with di�erent inertias, com-
pletely decoupled and �xed on a cart. In this �gure the notations mi, li, Ii are used
to refer to masses, lengths and moments of inertia respectively while θi stands for
the angular position of the ith pendulum, r the cart's position measured from the
origin Oo and rmax the maximum admissible value for r. The force F is applied
on the cart generated by the control input u, which is the torque delivered by the
motor.

rmax 
r

rmax 

m1,l1,I1

m2,l2,I2µ1 
µ2 

F

u

Oo

Figure 5.6: Twin-pendulum system (Control Systems Department, Grenoble).

The mathematical model of the system consists basically in two main parts: the
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mechanical model and the DC motor model. Both are naturally linked and they
generate a unique model for the whole system. The description of each one of these
dynamics are detailed in the next section.

5.3.1 The Model of the Cart/Pendulum System

The mechanical model of the cart and the pendulum can be derived using the La-
grange equations:

d

dt

(∂L
∂q̇

)
− ∂L

∂q
= Q (5.1)

where q is the vector of generalized coordinates given by :

q = [ r θ1 θ2 ]T

and Q represents the vector of the generalized forces acting on the system. Recall
that the Lagrangian of the system is given by:

L = T − P (5.2)

where T and P represent respectively the kinetic and potential energies. The kinetic
energy of the system is the sum of the kinetic energy of each of its components,
namely the cart, the �rst and the second pendulum. Denoting these energies by T0,
T1 and T2 respectively, one clearly has:

T0 =
1

2
m0ṙ

2

T1 =
1

2
m1

[
(ṙ + l1θ̇1 cos θ1)2 + (l1θ̇1 sin θ1)2

]
+

1

2
I1θ̇

2
1 (5.3)

T2 =
1

2
m2

[
(ṙ + l2θ̇2 cos θ2)2 + (l2θ̇2 sin θ2)2

]
+

1

2
I2θ̇

2
2

and the potential energies of each component are given by:

P0 = 0 ; P1 = m1gl1 cos θ1 ; P2 = m2gl2 cos θ2 (5.4)

Then, from (5.3) and (5.4), the Lagrangian L can be obtained according to (5.2) as
follows:

L =
1

2
(m0 +m1 +m2)ṙ2 +

1

2
(m1l

2
1 + I1)θ̇2

1 +
1

2
(m2l

2
2 + I2)θ̇2

2 +

m1l1ṙθ̇1 cos θ1 +m2l2ṙθ̇2 cos θ2 −m1gl1 cos θ1 −m2gl2 cos θ2 (5.5)
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In the absence of friction, by developing the equation (5.1) and (5.5), the resulting
system becomes:

F = (m0 +m1 +m2)r̈ +m1l1θ̈1 cos θ1 −m1l1θ̇
2
1 sin θ1 +

+ m2l2θ̈2 cos θ2 −m2l2θ̇
2
2 sin θ2

0 = (m1l
2
1 + I1)θ̈1 +m1l1(cos θ1)r̈ −m1gl1 sin θ1

0 = (m2l
2
2 + I2)θ̈2 +m2l2(cos θ2)r̈ −m2gl2 sin θ2

Or equivalently:

θ̈1 = −α1r̈ cos θ1 + β1 sin θ1 (5.6)

θ̈2 = −α2r̈ cos θ2 + β2 sin θ2 (5.7)

F = α0(θ1, θ2)r̈ + β0(θ1, θ2, θ̇1, θ̇2) (5.8)

where the following notations are used

αi =
mili

mil2i + Ii
; βi = gαi ; i ∈ {1, 2} (5.9)

α0(θ1, θ2) = (m0 +m1 +m2)− α1m1l1 cos2 θ1 − α2m2l2 cos2 θ2 (5.10)

β0(θ1, θ2, θ̇1, θ̇2) = m1l1 sin θ1(β1 cos θ1 − θ̇2
1) +m2l2 sin θ2(β2 cos θ2 − θ̇2

2) (5.11)

Note that in order to complete these equations, one needs to link the force F needed
to move the cart to the torque developed at the motor level. This is introduced in
the following section.

5.3.2 The Model of the DC Motor

For practical implementation, it is necessary to introduce the classical dynamics of
a DC motor which is used to deliver the force F needed to move the cart. In order
to produce the desired force F , the motor has to deliver a torque that is related to
the force F by the following di�erential equation:

(N2
r Jm + Ja)r̈ + (N2

r kvm + kva)ṙ +NrrpCs = Nrrpu− r2
pF (5.12)

where Nr is the reduction ratio, Jm, Ja the moments of inertia of the motor and axis
respectively, kvm and kva the viscous friction coe�cients at the motor and the axis
respectively, rp the radius of the pulley and Cs the resistant dry torque on the shaft
axis. These values are provided by the manufacturer and are shown in appendix C.

Based on the above, the following expression can be obtained by injecting the ex-
pression of F (5.8) in (5.12):
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(N2
r Jm + Ja + r2

pα0)r̈ + (N2
r kvm + kva)ṙ +NrrpCs + r2

pβ0 = Nrrpu

leading to the classical modeling for mechanical systems of the form:

Mer̈ + Ceṙ +Ke = u

where

Me =
N2
r Jm + Ja + r2

pα0(θ1, θ2)

Nrrp

Ce =
N2
r kvm + kva
Nrrp

Ke =
NrrpCs + r2

pβ0(θ1, θ2, θ̇1, θ̇2)

Nrrp

5.3.3 The Complete Model

Putting together the above sub-models, the resulting control input u becomes:

u = αm0 (θ1, θ2)r̈ + βm0 (ṙ, θ1, θ2, θ̇1, θ̇2)

where αm0 = Me and βm0 = Ceṙ+Ke are the modi�ed values of the inertias α0 (5.10)
and β0 (5.11). To summarize, the system equations, derived from (5.6) and (5.7),
becomes: 

θ̈1 = −α1v cos θ1 + β1 sin θ1

θ̈2 = −α2v cos θ2 + β2 sin θ2

r̈ = v

(5.13)

where v is the cart's acceleration. Therefore, the corresponding control input u can
be de�ned as follows:

u = αm0 (θ1, θ2)v + βm0 (ṙ, θ1, θ2, θ̇1, θ̇2) (5.14)

Once the model is de�ned, the next section states the control problem.
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5.3.4 The Control Problem

The aim of the present work is to design a control law that stabilizes the following
set:

{x ∈ R6|x = (rf 0 0 0 0 0)T ; rf ∈ [−rmax,+rmax]} (5.15)

where x is the state. Note in particular that the �nal position of the cart is not
imposed but has to be in the admissible range [−rmax, rmax]. Moreover, this control
law must respect the constraints on the input and position during the closed-loop
evolution. This can be written as follows:

r(t) ∈ [−rmax,+rmax] (5.16)

u(t) ∈ [umin, umax] (5.17)

The control design presented here consists in a hybrid controller which switches
between two distinct phases: the swing-up phase, the most important one for the
purpose of this PhD work since it is driven by the parameterized NMPC scheme,
and the linear phase, where a standard local controller stabilizes the pendulums at
the upward at rest vertical position. The control design is presented in the following
section.

5.4 Parameterized NMPC

5.4.1 Model Analysis

First of all, let us examine some fundamental properties of the model. These prop-
erties concern the concept of energy orbit that has been introduced by [Åstrom and
Furuta, 2000]. This will be quite important in the following development in order
to de�ne the contractive scheme used for the NMPC design.

The energy orbit of a pendulum i can be de�ned by:

Ei =
1

2
θ̇1

2
+ βi(cosθi − 1) ; i ∈ {1, 2} (5.18)

the time derivative of Ei can be easily obtained, taking into account the system
(5.13):

Ėi = −αivθ̇icosθi ; i ∈ {1, 2} (5.19)
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Based on this last expression, the following four important properties can be derived
assuming for the time being that the friction forces are totally absent:

• During time intervals where v = 0, the quantity Ei is constant. The two
pendulums evolve on a constant energy orbit. Moreover, if at some instant,
one has Ei = 0, then the future trajectory under v = 0 leads to the state
θi = θ̇i = 0 which represents the rest desired vertical position.

• As soon as one has θ̇i cos θi 6= 0, there is non zero gain between the control
and E and one can acts on the derivative of E in order to steer incrementally
E to 0 as shown below.

• On the contrary, during time intervals where θ̇i cos θi ≈ 0, Ei is insensitive to
v.

• The intuition behind the proposed solution is that the time periods during
which (θ̇1 ·cos θ1) and (θ̇2 ·cos θ2) are both equal to zero are quite rare (because
the pendulums properties are by assumption di�erent) and therefore, one can
use periods where one pendulum is weakly sensitive to v to improve the energy
orbit level of the other.

Based on the above intuition, a contractive NMPC scheme can be proposed to solve
the control problem during the swing-up phase.

5.4.2 The Control Design

First of all, let us de�ne the following normalized energy orbits according to:

En
i =

|Ei|
Emax
i

; i ∈ {1, 2} (5.20)

where Emax
i = 2βi is the value of Ei when θi = 180◦ and θ̇i = 0, namely, at the

downward vertical at rest position. These two normalized orbit values are then used
to de�ne the overall system's energy orbit according to:

E = max
{
En

1 , E
n
2

}
(5.21)

The aim of the NMPC scheme used during the swing-up phase is to steer the energy
orbit of the overall system, namely E, to 0. Note that by de�nition, when E = 0,
E1 = 0 and E2 = 0 which means that both pendulums evolve on orbits that end at
the vertical upward at rest position.
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In order to formalize the NMPC design, it is necessary to address the constraints,
namely the constraints on the inputs and on the state (position of the cart). In
order to address the constraint on the cart's position, a change of control variable is
adopted. More precisely, the desired position rd is used as a new decision variable
for the NMPC design. The original control input is computed such that the cart
position tracks the desired position rd (the new decision variable). This gives the
following dynamic change in the control variable:

v(k) = −Ks

(
r(k)− rd(k)

ṙ(k)

)
(5.22)

whereKs ∈ R1×2 is a stabilizing feedback gain matrix. By doing so, one can meet the
constraint on the cart position provided that the following conditions are respected:

1. The set-point rd is chosen such that rd ∈ [−rmax,+rmax]

2. The feedback gain is computed such that the transient response starting from
zero velocity and from some initial admissible position never leaves the admis-
sible range [rmin, rmax].

3. The changes in the set-point occurs at instant where ṙ is almost equal to 0.

Note also that under the above conditions, one can always tune the stabilizing gain
Ks such that the resulting control trajectories never exceed the saturation levels. In
fact, there are two ways to satisfy the constraints on the input:

• Monitoring the maximal allowable increment on rd, de�ned hereafter as δmaxr .

• Designing the gain Ks for a given δmaxr , which leads to closed-loop trajectories
on u that do not violate the constraint. To do this, a simple pole placement
of the discrete representation of (5.22) is used, and the desired discrete poles
hi ∈ R2 of the closed-loop can be chosen as follows:

hi = e−5τs/tr , i ∈ {1, 2} (5.23)

where τs is the sampling period and tr the desired settling time of the closed
loop of the cart position associated to the pre-compensator (5.22). Then, for a
given τs, the gain Ks can be tuned by acting on tr. In other words, the tuning
of this pre-compensation loop enables the saturation constraint (5.17) to be
respected provided that the NMPC design uses only sequences of rd involving
increments that are lower than δmaxr .
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Roughly speaking, when tr is increased [resp. when δmaxr is decreased], the maximum
value of the control v, and hence u (5.14), decrease. The simulation results presented
in the forthcoming sections, will clearly show the relationship between tr (and hence
Ks), δmaxr and the saturation levels of the control input.

Let us use some sampling period τs > 0. Denote by x(k) the state of the system at
the sampling instant k. Let us adopt a piecewise constant pro�le for rd namely

rd(kτs + t) = rd(k) ; t ∈ [0, Tp] (5.24)

where Tp is the prediction horizon Tp = Nτs.

Hereafter, it is assumed that the prediction horizon Tp is taken greater than the
response time tr. More precisely, this condition ensures that at the end of the
prediction horizon, one has v ≈ 0 which guarantees (in the absence of friction) that
when the prediction horizon is shifted, the �nal value of the orbit level E can be
kept constant by keeping the same value of the desired position. This is crucial for
the stability of the NMPC scheme. Figure 5.7 illustrates the behavior of E under
the condition Tp ≥ tr, when some step change dr is applied to the set-point rd.
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Figure 5.7: Schematic view of the predicted evolution of E over the prediction
horizon when Tp ≥ tr.
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Let us de�ne the following cost function that is related to the state of the system
at the end of the prediction horizon:

J(x(k), rd) = E(F (x(k), Tp, rd))

where F (x(k), Tp, rd) is the solution of (5.13) at instant Tp, starting from x(k) and
under the control law de�ned by (5.22). Referring to the parameterized NMPC
scheme developed in the preceding section, the parameter to be optimized here in
order to compute the control pro�le over the prediction horizon is precisely given by
the value of p = rd. This leads to the following cost function in the decision variable
p:

J(x(k), p) = E(F (x(k), Tp, p)) (5.25)

Note that the decision variable p has to meet the constraint on the cart position,
namely p ∈ [−rmax,+rmax].

The next step consists in �nding a suitable optimization strategy to provide the
optimal parameter of p. Standard optimization routines may be too heavy to be
executed in a fraction of the sampling time. Here, the properties of the function E
described before are used to formulate the optimization problem in a particularly
e�cient way. The idea is to check three possibilities:

• the one consisting in keeping the present position by taking rd = r,

• the one consisting in taking a step to the left by using:

rd = max{−rmax, r − dr}

where dr is some step size to be discussed later.

• the one consisting in taking a step to the right by using

rd = min{+rmax, r + dr}

Note that the step size dr need to be smaller when the system reaches the desired
orbit since a precise tracking is needed while it can be higher when the system is far
from the orbit. That is the reason why the step size dr is taken as a function of the
orbit level E (see �gure 5.8) according to:

dr(E) = dr0 + δrE (5.26)
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Figure 5.8: De�nition of the allowable increment dr of the cart position as a function
of the energy level E. Note that the maximum value δmaxr occurs at E = 1 in order
to respect the constraints on the inputs. The step dr decreases according to E up
to the minimum value dr0 .

which means that for E = 1 the maximum allowable value for dr is applied, which
means δmaxr , and as long as E decreases, the value of dr decreases until the minimum
value dr0 is reached as shown in �gure 5.8.

Therefore, the admissible set of the decision variable p would be given by the fol-
lowing discrete set:

P :=
{

max{−rmax, r − dr} , r, min{+rmax, r + dr}
}

(5.27)

Note however that by using this admissible set P, it is possible that the swing-up
phase ends with r being equal to an extremal value, namely −rmax or rmax. This
would be quite problematic since the �nal phase (based on a linear controller design
in the neighborhood of the desired state) still need some maneuvers that can be
made impossible starting from that extremal position (see Figure 5.9). That is the
reason why we de�ne a virtual stops by introducing the quantity:

rRHCmax < rmax

that is used as a virtual stops for the Receding-Horizon Control design. Conse-
quently, the admissible set of the decision variable p becomes:

P :=
{

max{−rRHCmax , r − dr} , r, min{+rRHCmax , r + dr}
}

(5.28)

Now, the NMPC design can be de�ned. Namely, at each decision instant, the optimal
parameter p̂ is obtained by solving the following optimization problem:
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Swing-up phase – NMPC controller

Margins for the linear phase – local controller

Figure 5.9: De�nition of the admissible range for the swing-up phase and the margins
for the linear phase. The virtual stops −rRHCmax and rRHCmax are used by the NMPC
controller during the swing-up phase in order to be sure that when the controller
switches to the linear control, there is still room for the corresponding maneuvers
without hitting the real stops.

p̂(x(k)) = argmin
p∈P

J(x(k), p) (5.29)

and since the admissible set P is a discrete set which contains only 3 elements, the
complexity is reduced to the integration of the system equations 3 times, one for
each value of p in P. Figure 5.10 shows an intuitive view illustrating how these 3
choices of p a�ects the behavior of E and the corresponding optimum values of p
that decrease the orbit level.

Injecting the optimal value p̂(x(k)) in the expression of the control law (5.22), one
obtains the expression of the predictive control law:

v(k) = KRHC(x(k)) = −Ks

(
r(k)− p̂(x(k))

ṙ(k)

)
(5.30)

In order to complete the de�nition of the control strategy, the following needs to be
de�ned:

1. A control law to be used in the neighborhood of the desired state,

2. A switching condition that enables to clearly de�ne when to switch between
the two controllers

This is explained in the following section.
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Figure 5.10: Intuitive view showing the contraction of E according to the optimum
values of p̂. Top Figure: The dashed lines indicate the trajectories leading to the
minimum value of E at the end of the prediction horizon. Bottom Figure: The
optimal open loop trajectories of the cart position driven by the parameter p̂. Note
that as long as E decreases, the maximum allowable increment dr decreases too in
accordance with (5.26).

5.4.3 The Hybrid Controller

Here, the linearized model of system (5.13) around x = 0 is considered. The new
system equations become: 

θ̈1 = −α1v + β1θ1

θ̈2 = −α2v + β2θ2

r̈ = v

(5.31)

which clearly describes a linear system such that:

ż = Az +Bv (5.32)

where z is the new state variable z =
(
ṙ θm1 θ̇1 θm2 θ̇2

)
∈ R5, and θm1 , θ

m
2 ∈

[−π,+π] are equal to θ1, θ2, modulo 2π. Note that since the �nal position rf is not
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imposed, only the velocity ṙ is involved in the linear feedback controller design. The
matrices A and B are clearly given by:

A =


0 0 0 0 0
0 0 1 0 0
0 β1 0 0 0
0 0 0 0 1
0 0 0 β2 0

 ; B =


1
0
α1

0
−α2


For the above system, a standard linear control strategy can be used. For instance,
a discrete-time linear quadratic regulator can be designed to derive the feedback
gain matrix KL to be used in the expression:

v(k) = −KL · z(k) (5.33)

The above control law locally asymptotically stabilizes the upward vertical at rest
position. Therefore, it can be used only in a small neighborhood of the �nal desired
state. In order to de�ne the region where this controller can be �red, it is usual to
use the following characterization that is based on the level set of the corresponding
Lyapunov function:

A0 = {z ∈ R5|zTSz ≤ ρ0} (5.34)

where ρ0 is some small value usually de�ned as ρ0 = zT0 Sz0. In this case, z0 repre-
sents the state that de�nes the boundaries around the vertical position where linear
assumptions are more valid. Therefore, the linear controller (5.33) cannot be �red
as long as the state z remains outside A0.

However this condition is not su�cient to switch the controller from the NMPC to
the linear law because of the presence of state constraint on the cart position. This
is because the transient trajectory of the cart during the application of the linear
controller may not satisfy the constraint on the position, as shown in �gure (5.11).

Figure 5.11: The transient of the closed-loop trajectory under the linear controller
(5.33) may not respect the constraint on the cart position.
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For this reason, a second condition must be added to express the fact that all the
positions that would be visited during the transient phase under the linear controller
must be within the admissible range [−rmax,+rmax]. This can be expressed by:

ϕ(z(k)) ≤ rmax (5.35)

where

ϕ(z(k)) := max
i∈(1,...,N)

∣∣∣∣∣∣∣∣∣∣
r(k) + τs(1...1)


(C(Ad −BdKl)

1z(k))
.
.
.

(C(Ad −BdKl)
iz(k))


∣∣∣∣∣∣∣∣∣∣

(5.36)

where C =
(
1 0 . . . 0

)
∈ R5 is the matrix that selects the �rst element of a 5-

dimension vector, which means the cart velocity. Indeed, the term (Ad−BdKl)
1z(k)

represents the state on the closed-loop trajectory of the linearized model at instant
(k+ i)τs and hence C(Ad −BdKl)

1z(k) is the velocity. If such terms are added and
multiplied by the sampling time τs and then added to the current position r(k), the
result may give a precise approximation of the positions that would be visited by
the cart during the transient under the linear controller.

To summarize, the conditions that need to be checked before the linear controller is
�red are given by:

(state close to the target) z(k) ∈ A0 (5.37)

(safe transient) ϕ(z(k)) ≤ rmax (5.38)

The hybrid controller can �nally be de�ned as follows:

v(k) =

{
−KLz(k) if zT (k)Sz(k) ≤ ρ0 and ϕ(x(k)) < rmax
KRHC(x(k)) otherwise

5.4.4 Simulation Results

This section presents some simulation results involving the control design presented
so far. The simulations are divided into two parts. The values used for simulations
of the �rst part are shown in table 5.1. The system starts at the downward position,
which means initial state x0 =

(
0 0 π 0 π 0

)T
. To better visualize the evolu-

tion of θ1 and θ2, the unit was set to π radians, then, the upward vertical position
are represented by the even values in the graphic. The parameter ρ0 is computed
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according to ρ0 = zT0 Sz0 where z0 =
(
0 π/6 0 π/6 0

)T
. To simplify analyzes,

the parameters of the DC motor were not considered and the cart acceleration v
was used as control input.

Table 5.1: Parameters used in the �rst part of simulations

Parameter Value Parameter Value

Tp 1.0 s tr 0.4 s
rRHCmax 0.4 m rmax 0.8 m
τs 0.1 s dr0 0.1 m
α1 0.67 m−1 α2 1.33 m−1

The �rst simulations are depicted on the �gures 5.12 and 5.13. Both illustrate
the two angular positions θ1 and θ2, the cart's position, the energy level, and the
acceleration v. Note that the NMPC strategy successfully steers the orbit level to
0, leading both pendulums around the vertical position, and the linear controller
de�nitely stabilizes the whole system with the cart being in the admissible range
[−rmax,+rmax].

The only di�erence between these two scenarios is the parameter δmaxr . For the
�rst one, δmaxr = 0.4 while for the second one, δmaxr = 0.1. Note the di�erence
between the acceleration levels represented by v = r̈. In fact, when δmaxr increases,
faster achievement of the task may be realized at the price of higher control v.
Therefore, the constraints on the inputs can be handled by tuning the parameter
δmaxr . Moreover, the change in the control variable proposed in (5.22) guarantees
that the constraints on the position are always respected.

In this second part of simulations, the values used for experimental validation were
tested. The set of parameters used in this part are shown in table 5.2.

Table 5.2: Parameters used in the second part of simulations

Parameter Value Parameter Value

Tp 0.6 s δmaxr 0.4 m
rRHCmax 0.6 m rmax 0.7 m
τs 0.05 s dr0 0.1 m
α1 0.67 m−1 α2 1.33 m−1
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Figure 5.12: Evolution of the closed-loop system under δmaxr = 0.4m (Table 5.1).
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Figure 5.13: Evolution of the closed-loop system under δmaxr = 0.1m (Table 5.1).
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The �rst scenario of this part is shown in �gure 5.14. Note that when the cart
position is saturated at −rRHCmax , no improvements can be made in the orbit level,
which remains constant since friction is not considered. Here, the desired response
time is tr = 0.1s, which considerably increases the acceleration level v.

In the second scenario, the response time tr was set to tr = 0.6s. The acceleration
level is drastically reduced when compared to the previous scenario (�gure 5.14).
Moreover, the response time was taken equal to the prediction horizon Tp. As a
matter of fact, this condition tr = Tp is used for real-time implementation and it is
explained in section 5.6. Note that even in this limit case, the controller is still able
to decrease the orbit level and stabilize the pendulums at upward vertical at rest
position.

The last scenario shows the evolution of the closed-loop system starting from a dif-
ferent initial condition x0 =

(
0 0 120 deg 1.5rad/s −100 deg −2rad/s

)
. Note

that the starting value of E is lower than 1 since its maximum value is the downward
vertical at rest position (5.20).

Note that all the developments explained above require the knowledge of the state
vector. Assuming that only the angular positions of the pendulums and the position
of the cart are accessible to measurement. This means that an observer design is
needed for this nonlinear system. The design of such an observer is explained in the
next section.
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Figure 5.14: Evolution of the closed-loop system under tr = 0.1s (Table 5.2).
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Figure 5.15: Evolution of the closed-loop system under tr = Tp = 0.6s (Table 5.2).
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Figure 5.16: Evolution of the closed-loop system starting from the initial state
x0 = [0, 0, 120 deg, 1.5rad/s,−100 deg,−2rad/s] (Table 5.2).
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5.5 Observer Design

5.5.1 Introduction

In the previous section, a parameterized NMPC formulation has been proposed in
order to stabilize the vertical upward at rest position of the twin-pendulum sys-
tem. However, it has been assumed that all the components of the state vector
were available and no disturbances have been considered. This last assumption can
be dangerous since during the design of the experimental facilities, we have been
asked what is the targeted precision on the angular sensors. Simulations have been
conducted in order to investigate this issue and we discovered that small o�sets on
these sensors systematically lead to a drift on the cart position ending with the cart
hitting the mechanical stops. Such a simulation can be observed on Figure 5.17.
This can be explained by the fact that the control law tries to compensate for a
�ctitious error that is due to o�sets on the angular position measurements.
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Figure 5.17: Closed-loop system system behavior with a bias of 1 deg on both
angular sensors. The control law tries to compensate for �ctitious errors on the
angular position leading to a progressive drift on the cart position that ends with
the cart hitting the mechanical stop.

This problem clearly underlines the need of a dedicated estimation scheme that re-
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covers both the values of the unmeasured components of the state vector and such
persistent o�set errors on the measurement of the angular positions. Initially, a sim-
ple linear observer was tested that is �red at the instant where the control switches
from the nonlinear to the linear law near the upward vertical position, but the error
due to the initial state estimation at the switching instant destabilized systemati-
cally the system leading to the switch back from linear to nonlinear controller. This
resulted in a system that can never be stabilized.

For this reason, a uni�ed nonlinear observer that can turn on all the time regardless
the active phase (nonlinear or linear controller) has been developed [Murilo and
Alamir, 2007]. This observer design is explained in the following section.

5.5.2 Nonlinear Observer Design

Assume that only the angular and cart's position are measured, namely θ1, θ2 and
r. Let us also consider that the measurements of the angular positions θi of the
pendulums are a�ected by constant o�sets ε1 and ε2, the output measurement vector
y can be written as follows:

y =

θ1 + ε1

θ2 + ε2

r

 (5.39)

Moreover, it is also assumed that the o�set errors are upper bounded, namely there
is some εmax > 0 such that:

|εi| ≤ εmax ; i ∈ {1, 2} (5.40)

Based on the above notation, a new extended state vector xext can be de�ned by:

xext =
(
r ṙ θ1 θ̇1 θ2 θ̇2 ε1 ε2

)T
(5.41)

which leads to the following extended system, assuming that ε1 and ε2 have a con-
stant behavior:

r̈ = v (5.42)

θ̈i = −αi(cos θi)v + βi sin θi i ∈ {1, 2} (5.43)

ε̇i = 0 i ∈ {1, 2} (5.44)

If the term βθi is added to and retrieved from (5.43), a compact form can be obtained
as follows:
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ẋext = Axext + φ(y, ε, v) (5.45)

y = Cxext (5.46)

where one can easily check that the pair (A,C) is observable while the nonlinear
term φ(y, ε, v) is given by :

φ(y, ε, v) =



0
v
0

−β1(y1 − ε1) + β1 sin(y1 − ε1)− α1v cos(y1 − ε1)
0

−β2(y2 − ε2) + β2 sin(y2 − ε2)− α2v cos(y2 − ε2)
0
0


This suggests to use the following structure for the observer:

˙̂xext = Ax̂ext + φ(y, S(ε̂), v)−Kobs(ŷ − y) (5.47)

in which Kobs is an observer gain that can be computed for the observable pair
(A,C) using classical observer design methods (pole placement, optimal Kalman
�lter theory, etc.) and S(ε̂) is a saturation map S : R2 → R2 de�ned as follows:

Si(ε̂) =


−εmax if ε̂i ≤ −εmax
+εmax if ε̂i ≥ +εmax
ε̂i otherwise

It is worth noting that the output of the observer is not saturated, only ε̂ in the
nonlinear term φ(y, S(ε̂), v) is saturated. This remark is quite important to under-
stand the evolution of ε̂ in the simulation results where it can be noticed that the
estimated ε can temporarily exceed εmax. The use of the saturation in the de�ni-
tion of the observer dynamic amounts to inject in the observer design the speci�c
knowledge on the realistic o�set that can a�ect the angular positions sensors.

In other words, the observer dynamic is built up by copying a saturated version of
the extended system's dynamic together with a correction term that is based on the
observability of the linear part. It is clear that if no o�set error is considered, the
convergence of the observer error is guaranteed since only the measured quantities
y and v a�ect the nonlinear term φ. However, when unknown variables ε1 and
ε2 disturb the output, the stability of the resulting observation scheme must be
analyzed in details. This is discussed in the next section.
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5.5.3 Convergence Analysis

In order to study the convergence of the observer, the dynamic of the estimation
error e = x− x̂ must be analyzed. From (5.45) and (5.47), the following expression
is obtained:

ė = Aobse+ φnl(y, ε, ε̂, v) (5.48)

where Aobs = A−KobsC is assumed to satisfy the following Lyapunov equation:

ATobsP + PAobs = −I ; P > 0 (5.49)

by choosing an appropriate gain matrix Kobs. Then, the nonlinear term φnl is given
by:

φnl(y, ε, ε̂, v) := φ(y, ε, v)− φ(y, S(ε̂), v) (5.50)

We shall prove the following lemma:

Lemma 5.1. There is a positive real µ > 0 and a positive continuous map ψ(θ1, θ2) ≤
µ that vanishes at (0, 0) such that

‖φnl(y, ε, ε̂, v)‖ ≤ ψ(θ1, θ2) · ‖ε− S(ε̂)‖ (5.51)

≤ 2εmax · ψ(θ1, θ2) ≤ 2εmax · µ (5.52)

Proof: Remember that y = θ + ε, the expression φ can be rewritten as follows:

φ(y, ε, v) = φ(θ, 0, v)

Then, inequality (5.51) is a direct consequence of:

‖φ(y, ε, v)− φ(y, ε̂, v)‖ ≤ sup
θ∈[−π,+π]2

v∈[−vmax,vmax]

∥∥∥∥∥∂φ∂θ (θ, 0, v)

∥∥∥∥∥ · ‖ε− S(ε̂)‖

since by de�nition of φ, one has

sup
θ,v

∥∥∥∥∥∂φ∂θ (θ, 0, v)

∥∥∥∥∥ ≤ ψ(θ1, θ2) =

∥∥∥∥∥
(
β1(1− cos θ1) + α1 · vmax · sin θ1

β2(1− cos θ2) + α2 · vmax · sin θ2

)∥∥∥∥∥
which clearly satis�es the requirements of the lemma. As for (5.52), it is a direct
consequence of assumption (5.40).

Therefore, based on lemma 5.1, the following proposition can be obtained:



152 5. NMPC for a Twin-Pendulum System

Proposition 5.1. The following statements hold for the dynamic of the estimation
error e:

1. The evolution of e is globally bounded and tends to a �nal set that collapses to
0 with εmax.

2. If the system parameters and the observer design are such that 2µλ̄(P ) < 1
then the estimation error e globally asymptotically converges to 0 regardless
the maximal value of the bias εmax.

3. There is a su�ciently small θmax > 0 such that all closed-loop evolutions that
keep (θ1, θ2) ∈ [−θmax,+θmax]2 lead to a corresponding estimation error that
asymptotically converges to 0.

Proof:

Proof of (1) Consider the candidate Lyapunov function V = eTPe where P is the
Lyapunov matrix de�ned in (5.49) and λ̄(P ) its highest eigenvalue. If the derivative
of V is computed together with (5.48), the following expression is obtained:

V̇ = −eT e+ φTnlPe+ eTPφnl

which, together with lemma 5.1, clearly gives:

V̇ ≤ −‖e‖2 + 2λ̄(P ) · ψ(θ1, θ2) · ‖ε− S(ε̂)‖ (5.53)

≤ −‖e‖2 + 2µλ̄(P ) · ‖ε− S(ε̂)‖ (5.54)

Since the o�set error is upper bounded according to (5.40), one has by de�nition of
the saturation map:

‖ε− S(ε̂)‖ ≤ 2εmax (5.55)

Moreover, injecting the above inequality in (5.54) leads to the inequality:

V̇ ≤ −‖e‖2 + 4µλ̄(P )εmax (5.56)

which clearly proves the �rst claim of the proposition.

Proof of (2) Using the inequality ‖ε− S(ε̂)‖ ≤ ‖e‖ in (5.53) gives:

V̇ ≤
[
−1 + 2µλ̄(P )

]
· ‖e‖2 (5.57)
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which clearly ends the proof of point (2).

Proof of (3) As a matter of fact, if the inequality ψ(θ1, θ2) ≤ µ is not used in the
derivation of (5.57), the following less pessimistic inequality may be obtained

V̇ ≤
[
−1 + 2ψ(θ1, θ2)λ̄(P )

]
· ‖e‖2

and since ψ is continuous and vanishes at (0, 0), it comes that there is a su�ciently
small θmax such that

max
(θ1,θ2)∈[−θmax,+θmax]2

[
−1 + 2ψ(θ1, θ2)λ̄(P )

]
< 0

This clearly ends the proof of the proposition.

It is worth noting that the simulation results presented in the next section suggest
that the third item of proposition 5.1 holds in many cases. Indeed, very often, one
can observe that the convergence of the estimation error is enforced as soon as small
values of the angular positions are reached.

5.5.4 Simulation Results

In this section, some simulation results are presented in order to show the e�ciency
of the proposed observer. The parameters used in the simulations are the same
as those shown in table 5.2. Moreover, the case tr = Tp is used. The observer
response time was set to 0.005 s to be applied in the discrete version of (5.47) and
Kobs was obtained from the optimal Kalman �lter method. Two scenarios are shown
corresponding to constant and variable bias respectively.

Figure 5.18 shows the evolution of θ1, θ2, the cart's position r and the estimation
of ε1 and ε2, with [εmax1 , εmax2 ] = [6, 4] deg respectively. Note that the observer
converges to the neighborhood of the right values of ε during the swing-up phase,
and converges de�nitely when the linear controller is active, with no discontinuities
in the switch between controllers, which con�rms the third item of proposition 5.1.

In the second scenario shown in �gure 5.19, the variable bias ε1 = 3+0.06sin(t) deg
and ε2 = 5 − 0.06sin(t) deg are introduced. Note that the observer can correctly
retrieve the sinusoidal pro�les. On the other hand, the resulting cart's movement
becomes also oscillatory. This shows that the system is quite sensible to variable
disturbances a�ecting the measurements around the upward vertical position, even
for low amplitude bias values. This kind of behavior is also observed on the exper-
imental results (section 5.7), where several model uncertainties are not considered
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and the system becomes naturally oscillatory around the equilibrium point. Note
that this kind of sensitivity does not occur when a simple pendulum is considered
as our experience showed using the single pendulum system. The related results are
not reported here in order to concentrate on the main topic.
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Figure 5.18: Evolution of θ1, θ2, r, the estimation of the o�set error [ε1, ε2] =
[−2, 3] deg and the norm of the estimation error.

0 50 100 150
-40

-30

-20

-10

0

10

θ
1
,θ

2
 [π rad]

Time (s)
0 50 100 150

-0.5

0

0.5

Position [m]

Time (s)

50 100 150

3

3.5

4

4.5

5

Bias θ
1
,Bias θ

2
 [deg]

Time (s)
0 50 100 150

0

0.5

1

1.5
Estimation Error

Time (s)

Figure 5.19: Evolution of the twin-pendulum system behavior under the presence
of a variable bias [ε1, ε2] = [3 + 0.06sin(t), 2 = 5 − 0.06sin(t)] deg on the angular
sensors.
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The �nal part of this chapter is dedicated to the implementation of the above pre-
sented control design to the experimental facility available at the Control Systems
Department, Grenoble. First, some real-time implementation issues are discussed
(identi�cation, friction handling, etc.) before the experimental results are presented.

5.6 Real-Time Implementation

5.6.1 Identi�cation Process

The identi�cation of the physical parameters of the pendulums is done by performing
open loop experiments with the cart being �xed in order to obtain the classical
behavior as shown in �gure 5.20.
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Figure 5.20: Open-loop experiments: the cart is �xed and the pendulums oscillate
freely around the downward equilibrium.

In the previous scenarios, the simulation results did not considered the friction for the
theoretical formulation. As it can be clearly seen from the open-loop identi�cation
experiments, friction is really present since the uncontrolled oscillations stop after
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almost 10 periods for the �rst pendulum and around 20 periods for the second
pendulum. Here, a typical representation using viscous and dry friction is introduced
according to:

θ̈i = −αiv cos θi + βi sin θi − kviθ̇ − kcisign(θ̇) ; i ∈ {1, 2} (5.58)

where kvi and kci are the viscous and dry friction for pendulum i. When the cart is
�xed, the equations become:

θ̈i = βi sin θi − kviθ̇ − kcisign(θ̇) ; i ∈ {1, 2} (5.59)

It is worth noting that αi and βi are the physical parameters given by (5.9):

αi =
mili

mil2i + Ii
; βi = gαi ; i ∈ {1, 2}

which means that αi is known as soon as βi is known. Using (5.59) together with the
measured data, the parameters αi, βi and the friction coe�cients can be identi�ed.
More speci�cally, identi�cation has been done using the Matlab optimization rou-
tine fmincon. This function minimizes a constrained function of several variables.
Figure 5.21 shows the resulting solution with the identi�ed data.
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Figure 5.21: Real and identi�ed data using the fmincon routine.
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Table 5.3 shows the values of the parameters αi that can be obtained from (5.9)
when injecting the measured weight and length of the pendulums.

Table 5.3: Parameters used in experiments
Pendulum α measured α identi�ed kv kc

1 3.1856 3.2680 0.1537 0.3569
2 3.5129 3.5084 0.2969 0.8579

5.6.2 Dealing with Friction

In the derivation of the NMPC formulation presented in section 5.4, friction has not
been explicitly considered. However, the previous identi�cation experiment clearly
shows that under 0 acceleration (v = 0), the pendulums do not keep the same orbit
due to the presence of the high friction.

Nevertheless, as far as the NMPC design is concerned, the presence of friction does
not change the basic idea of the strategy. However, the friction restricts the do-
main of control law parameters (sampling period, response time of the cart pre-
compensator, etc.) under which successful closed-loop experiment can be obtained.
This issue is discussed in the following four items.

The Choice of the Prediction Horizon

Although we have obtained a good identi�cation results for the parameters of the
friction model for the given open-loop identi�cation scenario, everybody knows that
the modeling of friction is almost impossible and the prediction of the evolution of
systems that involves friction is a risky task. That is the reason why long term
predictions have to be avoided as far as possible. The implication of this is that the
prediction horizon is worth to be taken as short as possible in order to deal with
meaningful prediction of the system behavior. In our case, the choice Tp = tr where
tr is the settling time for the cart pre-compensation loop seemed therefore to be the
best choice. Indeed, remember that the philosophy of the control design imposes
the constraint Tp ≥ tr, the choice Tp = tr represents the shortest admissible value
for Tp in accordance with the above discussion.

Note that another advantage of this choice lies in the fact that the computation of
the cost function needs less time for shorter prediction horizons and this may enable
to reduce the sampling period and hence increase the reactivity of the system. This
increases the possibility for the system to compensate for the e�ect of friction on
the achievement of the control goal.
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Number of Function Evaluations

In the theoretical formulation, only three function evaluations are calculated, which
is enough under free-friction assumption. However, for real-time implementation,
more iterations can be performed, in fact, as much as possible within the sampling
period for control.

More precisely, an enumeration-like optimization is still performed but rather than
three options as before, the number of candidate future set points for the cart
position is now equal to the number of nodes on a uniform grid of possible positions
in the admissible interval [r(k)− dr(E), r(k) + dr(E)] as shown on Figure 5.22. The
number of possible set-points is exactly equal to the number of resulting function
evaluation nfe. This number is constrained according to the following inequality:

nfe × τcomp ≤ τs (5.60)

where τcomp is the maximum time that may be needed to simulate the system equa-
tion over the prediction horizon Tp while τs is the control updating period.

3 function evaluations : no friction assumption

function evaluations
Figure 5.22: The computation of the optimal set-point rd is done by checking the
values of the cost function for nfe uniformly distributed grid points in the interval
[r(k)−dr(E), r(k)+dr(E)]. The number of candidate points and hence, the number
of function evaluations depends on the available computation time according to the
inequality constraint (5.60).

Hysteresis on the Switch

The previous issue deals with the friction problem during the swing-up phase. How-
ever, one of the conditions of switching (5.34) must also be adapted for real-time
implementation. Remember that the condition de�nes a neighborhood around the
equilibrium point where linear assumptions are valid.

A0 = {z ∈ R5|zTSz ≤ ρ0}
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where ρ0 = zT0 Sz0 de�nes the boundary region and z0 the limit state that can be
de�ned as z0 =

(
0 θ0 0 θ0 0

)T
which de�nes a region of attraction for the linear

control law. However, this is a very sensitive and tight region and the switching
action between controllers (NMPC to linear) may instantaneously lead the system
outside of A0. Then, a high-frequency switching may appear around z0, which is a
quite undesirable phenomena for the system. Moreover, this problem appears very
often in real-time implementation since model mismatches and friction introduces
even more uncertainties to correctly de�ne such a region. For this reason, a hysteresis
in z is introduced in order to clearly de�ne two boundaries as follows:

zin =
(
0 0 θin 0 θin 0

)
(5.61)

zout =
(
0 0 θout 0 θout 0

)
(5.62)

where θin is the angle that de�nes the boundary to go inside the region A0 and θout,
to go outside the region. The zin and zout are the corresponding states at these
angles. The condition to avoid this phenomena is to impose θin < θout, which clearly
characterizes a hysteresis on the switch. Figure 5.23 illustrates the role of θin and
θout to avoid the high-frequency switching phenomena.

Figure 5.23: Schematic view of the hysteresis introduced for the switch condition.

The Final Position rf

In all the above developments, the �nal position of the cart rf was not imposed.
In fact, unlike simulations, real-time experiments showed that adding a �nal target
position on the cart during the �nal linearization based control leads to better per-
formance in closed-loop. For this reason, a 6-th order system is considered for the
linear phase. Consequently, the extended state vector ze can be de�ned as

ze =
(
r ṙ θ1 θ̇1 θ2 θ̇2

)
∈ R6 (5.63)

leading to the modi�ed linear system

że = Aze +Bv (5.64)
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where

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 β1 0 0 0
0 0 0 0 0 1
0 0 0 0 β2 0

 ; B =


0
1
0
α1

0
−α2



This results in a 6-dimensional gain vector KL to be used in the expression v(k) =
−KLze(k). Except for this detail, the remaining features of the strategy are kept
identical to the one presented above.

With all theses modi�cations at hand, some experimental results can be presented
in the next section.

5.7 Experimental Results

The experimental validation was performed using the twin-pendulum platform of
the Control Systems Department of the University of Grenoble. The real-time pro-
grams were developed in C, and used as S-functions under the Matlab-Simulink
environment and the xPC-Target was used as a real-time platform for the control
implementation. We used a Pentium 4 running at 3 GHz. A User-Friendly Interface
(GUI) was also developed in order to facilitate the set up of all the parameters con-
cerning the NMPC controller, as shown in �gure 5.24. All the technical details of this
platform as well as the block diagrams used in experiments are shown in appendix
C. Table 5.4 shows the main parameters used for the experimental validation. The
sampling time τs was set to 5 ms.

Table 5.4: Parameters used in experiments

Parameter Value Parameter Value

Tp 0.6 s tr 0.6 s
rRHCmax 0.6 m rmax 0.7 m
δr 0.4 m nfe 10

[α1, α2] [2.59,3.51] m−1 [θin,θout] [20,30] deg
[kc1, kc2] [0.3569,0.8579] [kv1, kv2] [0.1537,0.2969]
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Figure 5.24: Graphical User Interface (GUI) for the twin-pendulum system.

The controller chosen for the linear phase was the Linear Quadratic Regulator
(LQR), where Q and R are the weighting terms on the state and input, respectively.
Here, the diagonal of Q was taken as diag(Q) =

(
10 0 10 0 10 0

)
(weighting

on r, θ1, θ2) and R = 100. The values of r, ṙ, θ1 and θ2 comes directly from the
instruments and θ̇1 and θ̇2 are given by the �ltered derivatives of theirs respective
angular positions. Actually, the precision of the angular position sensors is very nice
since each one is measured by an absolute encoder, which uses the code Gray 13
bits representing 8192 points (0.044 deg/point). This incites us to drop the use of
the observer.

Figure 5.25 illustrates the �rst experimental scenario. The initial condition is x0 =(
0 0 π 0 π 0

)T
which means that both pendulums are in the downward vertical

at rest position, and the cart is at the origin with zero velocity. The controller is
�red at t = 5s, before, the system runs in open-loop. Note that the constraints on
the positions are correctly handled. Note also that due to the presence of model
mismatches, the cart oscillates around the equilibrium point. Actually, this is mainly
due to the friction on the cart, which is quite important and irregular along the
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Figure 5.25: Experimental results showing the e�ciency of the hybrid control strat-
egy based on the parameterized contractive NMPC scheme in stabilizing the twin-
pendulum system.

platform, with di�erent dead-zones and nonlinearities. Some friction compensation
technics were tested with no signi�cant improvement on the results [de Wit et al.,
1995]. Anyway, regardless the model uncertainties, the contractive scheme of the
NMPC manages to decrease the orbit level and the local controller stabilizes the
system at the upward vertical at rest position.

The second scenario is shown in �gure 5.26 starting from a di�erent initial condition.
Here, the initial angular speed of the pendulums are not equal to zero as in the
previous case. Again, the control law is �red at t = 5s. Note that the constraints on
the inputs has been aborted in order to avoid hitting the constraints at r = −rmax.
Moreover, the virtual constraint rRHCmax plays an important role to deal with the
transient of the linear controller at t ∈ [9, 15]s. The orbit level then decreases to a
neighborhood of zero and the system reaches the �nal manifold at almost t ≈ 20 s.
Note here that due to friction, the decrease of the orbit level is not strictly monotonic
but the cumulative e�ect of the transient decrease leads the system to the desired
region around the targeted state.

The last scenario is illustrated on �gure 5.27. The pendulums start at θ̇1 6= 0 and
θ̇2 6= 0. Here, the objective is reached in less than 5 seconds. It is worth noting
that the sampling period is only 5 ms and the computation time needed to perform
iterations is around 3-4 ms, with nfe = 10.



5.7. Experimental Results 163

0 10 20 30
-2

0

2

4

6

8

θ
1
 [π rad]

Time (s)
0 10 20 30

-6

-1

5

11

16

θ
2
 [π rad]

Time (s)

0 10 20 30

-0.5

0

0.5

Position [m]

Time (s)
0 10 20 30

0

0.2

0.4

0.6

0.8

1

Energy Level

Time (s)

Figure 5.26: Second scenario starting from a di�erent initial condition on the angular
positions and speeds. Note the important role of the virtual constraint rRHCmax at
t ∈ [9, 15]s.
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Figure 5.27: Last experiment showing the evolution of the twin-pendulum system
under the parameterized NMPC scheme.
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Figure 5.28: Evolution of the torque of the DC motor for the preceding scenarios.
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Finally, �gure 5.28 shows the behavior of the torque on the DC motor, which is the
real system control input, for the three preceding scenarios. Note that the maximum
displacement of the cart dr was chosen in order to respect the maximum value of the
torque, and hence this constraint is respected by construction, as shown in (5.22).
Moreover, the torque does not converge to zero since the cart, in order to keep the
pendulums at the upward vertical position, must deal with the model uncertainties
and friction.

In order to better see how this system works, the videos of all the previous scenarios
can be visualized in the web site http : //www.lag.ensieg.inpg.fr/murilo/twinpendulum.html,
which shows the experimental validation of the present control strategy.

5.8 Conclusion

This chapter presented a theoretical formulation and experimental validation of
a parameterized NMPC approach for the twin-pendulum system. It was shown
that the resulting control strategy deals with the main challenging tasks of this
platform: the constraints on the state and inputs, nonlinearities and computation
time. For the �rst one, a change of variables was proposed to obtain a new control
input, which are the increments of the cart position. Then, a parameterized scheme
based on such increments was used to minimize the energy level of the pendulums,
resulting in a contractive-like approach. The proposed parametrization leads to a
low-dimensional set of decision variables, since only three function evaluations must
be computed at each sampling time. This reduces considerably the computation
time, which guarantees real-time feasibility.

The experiments performed in the Control Systems Department of the University of
Grenoble provided nice results and emphasized the e�ciency of the parameterized
approach. Despite of the presence of important friction and model uncertainties, the
resulting control law was still able to decrease the energy level during the swing-up
phase and stabilize the pendulums at the upward vertical position. It is worth noting
that the computation time to perform optimization processes is always less than 5ms
thanks to the well-posed parametrization structure. Although the fact that such
dedicated structure characterizes a kind of problem dependency, the parameterized
approach arises as being a powerful tool to deal with fast dynamic systems, such as
mechatronic or robotic devices.
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Conclusion

In this PhD work, a parameterized NMPC strategy was used to deal with fast dy-
namic systems. For such systems, the recent idea of distributing the optimization
problem during the system life-time motivated the development of several important
contributions in this domain. Nevertheless, the approach presented in this disser-
tation holds some important advantages over the classical NMPC methods. The
parameterized approach generally leads to a low-dimensional optimization problem
while classical PWC control parametrization takes all components of control values
(and in certain cases, even the state trajectory) as a degree of freedom, which may
be prohibitive in a constrained computational context. In a sense, the parameterized
approach adopts sub-optimality to tackle real-time requirements. Roughing speak-
ing, solving exactly a simpli�ed sub-optimal formulation may be a more interesting
alternative than solving loosely the original one. On the other hand, the parame-
terized approach normally relies on the structure of the problem to be solved, and
for instance, no general framework can be used to cover a wide-range of nonlinear
applications.

The e�ciency of the parameterized NMPC approach has been shown using two
experimental platforms representing fast dynamics: the diesel engine air path and a
twin-pendulum system.

The �rst real application is the diesel engine air path, where a multi-variable control
based on the parameterized approach was proposed. It was shown that diesel engines
are highly nonlinear and constrained systems. Therefore, the existing controllers for
such systems generally use simpli�ed models since the full nonlinear representation
is quite complex to be used for standard control design. However, in this PhD work,
it was shown that the parameterized NMPC solution developed for the diesel engine
can be completely independent of the structure of the model being used. Therefore,
more elaborated and reliable models can be taken into account by the NMPC con-
troller. In addition, the resulting optimization problem is low-dimensional, reducing
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drastically the computational burden. Simulations with the full nonlinear model
provided quite nice results performing only 1 SQP iteration, which reinforces the
idea of distributing the optimization problem during the system life-time.

Another important point to be highlighted is the fact that the generic feature of the
proposed solution for diesel engines can be extended to any other system which may
have a similar behavior. Here, three di�erent nonlinear models were tested and all
of them presented the same level of success.

The twin-pendulum system was the second application used for theoretical formu-
lation and experimental validation of the parameterized NMPC scheme. Here, a
change in the control variable was proposed in order to deal with the constraints
on the inputs and states. Then, the increments on the cart position became not
only the new control input, but also the parameter to be optimized for the NMPC
strategy. As a result, this parametrization was used together with an energy-based
method to formulate a contractive-like scheme. Again, the resulting optimization
problem is quite simple to be solved which guarantees real-time feasibility. Exper-
imental results performed on a real platform were quite positive and clearly show
the e�ciency of the proposed NMPC method.

The previous example shows that the parameterized NMPC approach may be an
interesting solution for control design when mechatronic systems or similar devices
are concerned. As a matter of fact, in most of the cases, it is possible to �nd a
suitable and low-dimensional parametrization to cope with a particular structure of
such systems.

Finally, some other important results of this PhD work are related to the devel-
opment of two nonlinear observers: the �rst one, a MHO applied to the diesel
engine, and the second one, for the twin-pendulum system. As far as the MHO is
concerned, it is worth mentioned that one was successfully employed in a real ap-
plication together with another predictive-like strategy, the parameterized NMPC
scheme, resulting in a output feedback strategy. This is a quite consistent result,
since one of the main drawbacks of MHOs is the real-time applicability. The second
nonlinear observer designed for the twin-pendulum system also provided important
results concerning the recover of a constant o�set error. Moreover, it was also shown
that the system may be quite sensitive when small variable uncertainties are added
to the system. This system behavior can be clearly seen in real-time implementation.
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Future Work

The solution developed for the diesel engine represents an important step to intro-
duce some generic properties to the parameterized approach. Further works lies on
the improvement of the proposed control scheme, in order to reduce the problem
dependency, which is the main drawback of the method.

Concerning the diesel engine application, the next step of the proposed control
strategy consists in using the full nonlinear model for experimental validation. The
simulation results using such model were quite promising and the experiments will
be hopefully performed once the diesel engine test bench is available.

The new SQP/Gradient/Trust Region algorithm presented in this dissertation has
the important feature to be a generic gradient-free solver for optimization process.
Therefore, the next step consists in developing an open source code and make it
available for free download.

For the twin-pendulum system, as far as NMPC is concerned, there are no more
signi�cant theoretical formulations to be developed. A possible idea is to make the
experimental twin-pendulum platform a benchmark in order to test and compare
di�erent kinds of control strategy.
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Appendix A

Moving Horizon Observer Matrices

This appendix presents the computation of the matrices Φ(Ūk), Ψ(Ūk), Ω(Ūk) and
Γ(Ūk), that are used for the moving horizon observer implemented to recover the
states of the diesel engine model.

Given the following nonlinear system, depending on the inputs as follows:{
x+ = [A(u,w)]x+ [B(u,w)][u w]T

y = [C(u,w)]x
(A.1)

And considering the following notations:

Ak = A(u(k), w(k))

Ak−1 = A(u(k − 1), w(k − 1)).A(u(k), w(k))
...

A(−) =
No∏
i=1

A(u(k −N0 + i), w(k −N0 + i))

Bk = B(u(k), w(k))
Bk−1 = B(u(k − 1), w(k − 1))
... =

...
B(−) = B(u(k −No + 1), w(k −No + 1))

;

Ck = C(u(k), w(k))
Ck−1 = C(u(k − 1), w(k − 1))
... =

...
C(−) = C(u(k −No + 1), w(k −No + 1))

Then, the matrices Φ(Ūk) and Ψ(Ūk) can be obtained as follows:
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Φ(Ūk) = A(−)

Ψ(Ūk) = [A(−).B(−) . . . Ak−1.Bk−1 Bk]

And the matrices Ω(Ūk) and Γ(Ūk) can be calculated by proceeding straightforward
computations :

Ω(Ūk) =


Ck

Ck−1Ak−1

Ck−2Ak−2
...

C(−)A(−)



Γ(Ūk) =


02x2 02x2 02x2 . . . 02x2

Ck.Bk 02x2 02x2 . . . 02x2

Ck−1.Ak−1.Bk−1 Ck.Bk 02x2 . . . 02x2
...

...
. . .

...
...

C(−).A(−).B(−) . . . . . . Ck.Bk 02x2
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Appendix B

Diesel Engine: Technical Data

The experiments were performed in the Institute for Design and Control of Mechatronical
Systems of Department of Mechatronics at Johannes Kepler University of Linz. In this
appendix, the technical data of the diesel engine test bench are shown. In order to respect
the con�dential terms, the test facilities are described according to [Wei, 2006], who worked
in the same test bench, and only the block diagram used for simulations is presented.

B.1 Test Facilities

Diesel Engine

The M47D, 2:0 liter, diesel engine installed in this test cell is a product from BMW. It can
generate torque 280Nm at 1750rpm and its output power at 4000rpm can reach 100KW.
The air path system installs a Variable Geometry Turbocharger system and an Exhaust
Gas Recirculation controlled by a pneumatic valve. The Electronic Control Unit is Type
DDE3 from Bosch company.

Dynamometers

The dynamometer installed in this test cell is APA 100 from AVL which can generate
maximum brake torque 285[Nm] and the highest speed can be 10000rpm. The function
of the dynamometer is to simulate the vehicle load torque. It can act as an actuator to
control the engine speed or some other control purposes. The diesel engine performance
under di�erent operation speed can be tested by controlling the dynamometer output
torque.

Emission Equipment
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MEXA-7000 from HORIBA company: It can be used for measuring raw and CVS-diluted
exhaust gases from all vehicle and engine types for basic R & D, model certi�cation,
quality testing, and durability. It includes several analyzers in a single, compact cabinet to
measure THC, CO, CO2, O2, NO/NOx and HC over a wide dynamic range. The system
is con�gurable for emissions from gasoline, diesel, or alternative fuel engines.

Puma System

The PUMA 2:0 system from AVL is totally independent which can implement many func-
tions such as speed and torque control, vehicle simulations and so on. At the same time it
can cooperate with other systems together to record some important data.

Autobox

In AutoBox all the dSPACE boards, which are listed in the following table, are embedded
that are list in the following table

Table B.1: Board Description

Board Function Speci�cation

DS1005 Processor Board Power PC 750 Processor, 480Hz
DS4302 CAN Interface Board 4 independent CAN channels
DS4002 Timing and Digital I/O Board 8 timing , 32 digital, 2 external inputs
DS2201 Multi-I/O Board 20 A/D and 8 parallel D/A channels
DS2001 High Speed A/D Board 5 A/D channels

Matlab Real Time Workshop and dSPACE

The dSPACE can provide the dynamical monitoring and some manual operation functions
such as to change some parameters, switch the control modal and so on. Matlab Real
Time Workshop acts the function to compile the Simulink control �le to some codes that
can be run in the AutoBox hardware.

INCA Monitoring Software

INCA is a special software that can access the data and variables values in the ECU by
CAN connection.

PUMA Monitoring and Control Software

PUMA system can provide some monitoring functions of diesel engine safety statues, record
some variables and so on.
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B.2 Diesel Engine Parameters

Table B.2: Full Nonlinear Model Parameters (4.3)-(4.5)

Variable Value Unit Description

Vi 5.4 dm3 Intake manifold volume
Vx 0.4 dm3 Exhaust gas manifold volume
R 287.058 J/kg/K Ideal gas constant
κ 1.4 - Speci�c heat ratio
Vd 1.998 dm3 Total engine displacement volume
cp 1.0144 kJ/kg/K Speci�c heat at constant pressure
pa 101.3 kPa Ambient pressure
τEGR 0.50 s Constant time of the EGR valve
τV GT 0.21 s Constant time of the VGT valve
ηm 0.7 - Compressor e�ciency

Table B.3: Empirical Model Parameters (4.6) and (4.7)

Variable Value Unit Description - Central Values

yc [119.12,1183.60] [kg/h, hPa] Output [MAF,MAP]
wc [2248,19.144] [RPM,mg/cyl] Measurement disturbances [N,wf]
uc [30.02,47.94] [%,%] Input [EGR,VGT]
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B.3 Block Diagram
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Figure B.1: Block diagram used for simulation. The moving horizon observer block
is only necessary for models (4.6) and (4.7).
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Appendix C

Twin-Pendulum System: Technical

Data

The experiments were performed in the Control Systems Department of the University
of Grenoble. This appendix presents some important technical data concerning the twin-
pendulum platform.

C.1 Test Facilities

DC Motor

The motor used in the twin-pendulum platform is a DC Motor RS230C from Parvex. The
parameters used for real-time implementation are shown in table C.2 and the complete
description (in French) is presented in �gure C.4.

Dynamo Tachometry

A Dynamo Tachometry (DT) is used to measure the cart speed. The model is a Parvex
TBN203 with the constant kDT = 0.003V/RPM . The block diagram used to convert the
voltage input signal, is shown in �gure C.1.

1
Cart Speed [m/s]

(pi/30)*(0.0127/3)

tpm 2 m/s

1/0.003

V 2 tpm

-2.21

Gain

1

(0.008)^2s  +2*0.008s+12

Filter

1
Tension [V]

Figure C.1: Block diagram for the cart speed signal
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Encoders

The encoders are used to measure the cart position r and the angles θ1 and θ2.

For the cart position, an incremental encoder is used from Tekel, model TK 421, with 500
points/RPM.

For the angles, two absolute encoders are used with the code Gray 13 bits representing
8192 points. Then, the board PCI-DIO48H (table C.1) is used to acquire the digital signals
that need to be converted. Figure C.2 shows the block diagram used to convert the 13-bit
digital signal into the angular position between −π and π.

1
Theta 1 [-pi to pi]

SwitchSum of
Elements

PCI-DIO48H
ComputerBoards

Digital Input
1

PCI-DIO48H 48

PCI-DIO48H
ComputerBoards

Digital Input
2

PCI-DIO48H 47

PCI-DIO48H
ComputerBoards

Digital Input
3

PCI-DIO48H 46

PCI-DIO48H
ComputerBoards
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PCI-DIO48H 45

PCI-DIO48H
ComputerBoards
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Figure C.2: Block diagram for the angular position signal

Interface Boards

The twin-pendulum platform uses three kinds of interface boards, all of them from Mea-
surement Computing, which are listed in table C.1.
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Table C.1: Interface Boards

Board Function Variables

PCI-DAS1200 Analog Input/Output Cart Speed (ṙ), Torque (u)
PCI-DIO48H Digital Input/Output Angle 1(θ1), Angle 2(θ2)
PCI-QUAD04 Incremental Encoder Position (r)

Anti-Aliasing Filter

The analog signal (cart speed) coming from the DT is �ltered by a Butterworth 4th-order
anti-aliasing �lter. The board PCI-DAS1200 is used as shown in table C.1 and �gure C.5
shows the anti-aliasing �lter designed for the twin-pendulum platform.

Matlab Real Time Workshop and xPC Target

Contrarily to the diesel engine, the real-time environment used in this platform is the xPC
Target. The software Matlab has been used for the development of the block diagrams and
all the routines were written in C language. The system architecture is shown in �gure
C.3.

  

TCP / IP

Target PC
Processor: Pentium 4, 3.0 GHz

Real-time environment: XPC Target v.3.2

Sampling period: 5 ms

Data acquisition: Digital/Analog Input/Output

Development PC
Processor: Pentium 4, 3.2 GHz

Software : Matlab, with S-functions

Compiler: C language

Figure C.3: System architecture of the twin-pendulum system.
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S ERVOMOT EURS   A COURANT  CONT INU

RS230C 

  Couple en rotation lente 0.31 N.m M O

  Courant permanent rotation lente 5.6 A I O

  Tension d'alimentation  de définition 24 V U
  Vitesse de définition 3000 tr/mn N
  Tension maximale 40 V Umax
  Vitesse maximale 6600 tr/mn Nmax
  Courant impulsionnel 18 A Imax
  Fem par 1000 tr/mn (25°C) 6 V Ke
  Coefficient de couple électromagnétique 0.057 N.m/A Kt
  Couple de frottement sec 1.35 N.cm Tf
  Coefficient de viscosité par1000tr/mn 0.2 N.cm Kd
  Résistance du bobinage (25°C) 0.67 Ω Rb
  Inductance du bobinage 0.42 mH L
  Inertie rotor 0.000026 kg.m² J
  Constante de temps thermique 7.5 min Tth
  Masse moteur 0.87 kg M

   T outes les données sont en valeurs typiques pour des conditions d'util isation standard

FICHER-001

Création: 14 juil 1987                             Edition: 25/janv/1999 RS230C .f
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Figure C.4: Complete description of the DC motor
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Figure C.5: Anti-aliasing �lter used for the cart speed
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C.2 Twin-Pendulum System Parameters

Table C.2: DC Motor Parameters

Variable Value Unit Description

Nr 3 − Reduction ratio
Jm 3.8e-5 Kg.m2 Moment of inertia of the motor
Ja 0 Kg.m2 Moments of inertia of the axis
kvm 2e-5 Ns/m Motor viscous friction coe�cient
kva 0 Ns/m Axis viscous friction coe�cient
rp 0.0127 m Radius of the pulley
Cs 0.0135 Nm Resistant dry torque

Table C.3: Physical Parameters: Pendulums and Cart

Variable Value Unit Description

α1 2.59 m−1 Alpha of pendulum 1
m1 0.22 Kg Mass of pendulum 1
kv1 0.1537 s−1 Viscous friction of pendulum 1 (identi�ed)
kc1 0.3569 s−2 Dry friction of pendulum 1 (identi�ed)
α2 3.5084 m−1 Alpha of pendulum 2
m2 0.15 Kg Mass of pendulum 2
kv2 0.2969 s−1 Viscous friction of pendulum 2 (identi�ed)
kc2 0.8579 s−2 Dry friction of pendulum 2 (identi�ed)
m0 3.85 Kg Mass of the cart
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Figure C.6: Block diagram used in real-time implementation
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Contributions à la Commande Prédictive Non Linéaire pour les  

Systèmes à Dynamiques Rapides 
 
 
Résumé: 
Cette thèse adresse le problème de la commande prédictive non linéaire (CPNL) appliquée aux 
systèmes à dynamiques rapides. Pour ces systèmes, le temps de calcul disponible peut s'avérer 
insuffisant pour la résolution des problèmes d'optimisation fortement non linéaires et contraints. Dans 
ce contexte, l'approche paramétrique utilisée dans cette thèse peut s'avérer un choix pertinent pour 
résoudre ce type de problèmes. Deux exemples d'application sont présentés pour souligner les 
avantages de la méthode paramétrique: le circuit d'air d'un moteur diesel et le système des pendules 
jumeaux sur un chariot. Une validation expérimentale sur les deux procédés est aussi proposée pour 
montrer l'efficacité des solutions proposées. 
 
Mots Clefs: Commande prédictive non linéaire, systèmes rapides, implémentation temps-réel, 
approche paramétrique, moteur diesel, pendules jumeaux, commande sous contraintes. 
 
 
 
 
 

Contributions on Nonlinear Model Predictive Control for Fast Systems 
 
 
Abstract: 
This thesis addresses the challenging problem of applying nonlinear model predictive control 
(NMPC) to fast dynamical systems. For these systems, the available computational time may be 
insufficient to solve the underlying non convex optimization problems. In this context, the 
parameterized approach may be a potential candidate solution to deal with fast systems. Two practical 
applications are shown to emphasize the advantages of the parameterized approach: the diesel engine 
air path and the twin-pendulum system. Experimental validation results are proposed for the two 
processes in order to show the efficiency of the proposed framework. 
 
Keywords: Nonlinear model predictive control, fast systems, real-time implementation, parameterized 
approach, diesel engine, twin-pendulum, constrained control. 
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