

Soutenance de thèse

M. Rovezzi

Introduction Spintronics XAFS

Fe in GaN Incorporations Series

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

Étude de l'ordre locale autour d'impuretés magnétiques dans les semiconducteurs pour l'électronique de spin

Thèse pour obtenir le grade de Docteur en Sciences de l'Université Joseph Fourier - Grenoble I Spécialité Physique de la Matière Condensée et du Rayonnement

Mauro Rovezzi

Directeur de thèse : Francesco d'Acapito

6 Octobre 2009

Soutenance de thèse

M. Rovezzi

Introduction

XAFS

Fe in GaN

Incorporation Series Co-doping

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

Study of the local order around magnetic impurities in semiconductors for spintronics

Mauro Rovezzi1

¹Consiglio Nazionale delle Ricerche - GILDA Collaborating Research Group BM08 c/o ESRF - Grenoble, France

October 6th, 2009

Outline

Soutenance de thèse

M. Rovezz

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series Co-doping
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

The whole work:

- I. Fe in GaN
- II. Mn in Ge
- III. Mn in GaAs
- IV. Mn in GaAs/InAs NanoWires

Additional work:

- A. GIXAS exp. set-up
- B. CARD software
- C. Mn in ZnSe and CdSe

This talk:

- Introduction
 - Semiconductor spintronics
 - XAFS

Pe in GaN

- Incorporations
- Series
- Co-doping
- 3 Mn in Ge
 - Models
 - NCs results
- Mn in GaAs
 - Models
 - Surface study
 - Etch-anneal process
- General conclusions and outlook

Outline

The whole work:

- I. Fe in GaN
- II. Mn in Ge
- III. Mn in GaAs
- IV. Mn in GaAs/InAs

Additional work:

- A. GIXAS exp. set-up
- B. CARD software
- C. Mn in ZnSe and CdSe

This talk:

- Introduction
- Semiconductor spintronics
- XAFS
- Fe in GaN
 - Incorporations
 - Series
 - Co-doping
- Mn in Ge
 - Models
 - NCs results
- Mn in GaAs
 - Models
 - Surface study
 - Etch-anneal process
- General conclusions and outlook

Semiconductor spintronics

Combination of semiconductor technology (charge) with magnetism (spin)

Soutenance de thèse

M. Rovezzi

Introduction Spintronics XAFS

Fe in GaN Incorporations Series Co-doping

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

Spin-polarized field-effect transistor [Datta & Das, Appl. Phys. Lett. (1990)]

- Efficient spin injection
- Long spin diffusion (nm-µm) and efficient spin manipulation
- Reliable spin detection

Magnetic semiconductors (MS)

- Electric spin injection better than optical for real devices
- Injection by ferromagnetic metals is inefficient (conductivity mismatch) ⇒ tunnel juctions or ferromagnetic semiconductors
- Advantage in MS: control electric properties using a magnetic field and vice versa their magnetic properties using an electric field
- Need high Curie temperature (T_C), beyond room temperature

Diluted Magnetic Semicondutors (DMS)

Semiconductor $(A_{1-x}B_x)$ where a fraction x of the cations (few %) is randomly substituted by magnetic elements as transition metals (TMs)

Origin of ferromagnetism \Rightarrow exchange interactions

- TMs introduce localized energy levels (in the band gap for III-V)
- Magnetic order: interplay between spin degree of freedom, Coulomb • interactions and Fermi statistics; not crucial for magnetic order: dipole-dipole and spin-orbit (relativistic effect)
- s(p)-d, and d-d exchage: former direct between band states and TM, latter indirect (mediated by valence/conduction band states)

"low"-T_C FM DMS: electronic nanoscale phase separation

Zener mean field model

 $\mathcal{H} = \mathcal{H}_0 + \sum_{i \in I} J_{pd} S_i \cdot s_i \to T_C \propto J_{pd}^2 x_{eff} p^{1/3}$ increasing p and x_{eff} !

[Dietl et al., Science (2000)]

- Disorder \Rightarrow need to consider defects of compensation (E.g. in III-V):
 - Anti-sites affect the density of carriers
 - Interstitials affect also the density of magnetically active TMs

Non-uniform magnetic semiconductors

gh"-T_C FM: chemical nanoscale phase separation

Soutenance de thèse

M. Rovezzi

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series Co-doping
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

Spinodal decomposition

[Cahn and Hilliard works ('60s)]

- ∂²f/∂c² < 0 ⇒ decompose spontaneously; phase transition small in degree (composition change) but large in extent (size)
- $\partial^2 f/\partial c^2 > 0 \Rightarrow$ nucleation and growth; phase transition large in degree but small in extent

- TM-rich and TM-poor regions with the structure of the host crystal
- TM-rich region is high T_C and accounts for magnetization at RT
- Controlled by Fermi level during growth (Coulomb repulsion)

Magnetism: ab initio approach

No semi-phenomenological ${\cal H}$

- DFT + Monte Carlo
- GaMnN: a,c) high-T_C; b) low-T_C

[Katayama-Yoshida et al. (2007)]

XAFS in the study of (D)MS

Soutenance de thèse

M. Rovezzi

Introduction Spintronics

XAFS

Fe in GaN Incorporations Series

Mn in Ge Models

Mn in GaAs Models Surface study Etch-anneal

Conclusions

- Element-selective (x-ray absorption edges of the elements)
- Local probe (< 10 Å from the absorbing atoms)
- No need long-range order (complementary to XRD)
- $\bullet\,$ Sensitive to impurities (detection limit: $\approx 10^{14} \text{ at/cm}^2)$
- Accurate bond distances (resolution: \approx 1%)
- Charge state (from near-edge region)

Disadvantages

- Average signal (difficult to resolve mixed phases if present in small quantities, limit: ≈ 20%)
- No spatial resolution in the sample (bulk probe)

X-ray Absorption Fine-Structure

Measurements and theory basics

Soutenance de thèse

Absorption coefficient $\mu(E)$ $\mu(E)t = -ln(I/l_0)$, transmission

 $\mu(E) \propto I_f/I_0$, fluorescence

A Neustile, 2004 X-ray Absorption Fine-Structure photo-electron λ-(E-E₀)^{-1/2} XAFS XAFS XAFS XAFS XAFS Absorption Probability

- Absorption through photo-electric effect
- Photo-electron scattering and interference with itself
- Core-hole filled and fluorescent x-ray emitted

- s results in GaAs dels
- Surface study Etch-anneal

Conclusions

X-ray Absorption Fine-Structure

Overview of the quantitative analysis

From "scattering paths" \rightarrow distances, coodination numbers and mean-square disorder around absorber

Soutenance de thèse

M. Rovezz

Introduction Spintronics

XAFS

Fe in GaN

Incorporation: Series Co-doping

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

General purpose Italian beamLine for Diffraction and Absorption

- Source: bending magnet
- Monochromator: double crystal with sagittal focusing (horizontal)
- Mirrors (for harmonics rejection): Pd/Pt with bending (vertical focusing)
- Energy range: 4 80 KeV
- Energy resolution ($\Delta E/E$): 10⁻⁴
- Flux on the sample: 10⁸ 10¹¹ ph/s
- Minimum beam-size (vertical): 30 μm
- Detector for reflectivity and monitoring: ion chambers
- Detector for fluorescence: 13 elements high purity Ge
- Detection modes: transmission, normal fluorescence, total electron yield, grazing-incidence (RefIEXAFS)

	Fe in GaN
Soutenance de thèse M. Rovezzi	
Introduction Spintronics XAFS	In collaboration with
Fe in GaN Incorporations Series Co-doping	
Mn in Ge Models NCs results	
Mn in GaAs Models Surface study Etch-anneal	Part of the present work published in
Conclusions	 A. Bonanni <i>et al.</i>, Phys. Rev. Lett. 101, 135502 (2008) M. Rovezzi <i>et al.</i>, Phys. Rev. B 79, 195209 (2009)

GaN:Fe(Mg,Si) [A. Bonanni *et al.*, Phys. Rev. B 2007]

Soutenance de thèse

- M. Rovezzi
- Introduction Spintronics
- Fe in GaN
- Incorporations Series Co-doping
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

- Metalorganic vapour phase epitaxy (MOVPE)
- *c*-plane Al₂O₃ (sapphire) substrates
- Precursors: TMGa (trimethilgallium), NH₃ (ammonia), Cp₂Fe (ferrocene), Cp₂Mg (bis-cyclopentadienyl-magnesium), SiH₄ (silane)
- In-situ monitoring: ellipsometry, XRD, laser reflectivity

Growth procedure

- Substrate nitridation
- LT (540 °C) GaN nucl. layer
- Annealing/recrystallization
- l μ m HT (1050 °C) GaN
- 0.5 1 μm GaN:Fe(:Mg,Si)
 - $\bullet~800-950\ ^{\circ}C$
 - 50 400 sccm^a Cp₂Fe

^astandard cubic centimeters per minute

Ex-situ characterizations

Random substitutional

Low temp. Curie • paramagnetism from Fe³⁺ (d⁵)

Chemical and crystallographic separation

- Enhanced ferromagnetic response
- Persisting at high temperature

Solubility limit¹ at 200 sccm Cp₂Fe ($\approx 0.4\%$ Fe)

¹ in our growth conditions

EXAFS Measurements

Soutenance de thèse

M. Rovezz

Introduction

Spintron XAFS

Fe in GaN

Incorporation Series

Mn in Ge Models

Mn in GaAs Models Surface study Etch-anneal

Conclusions

GILDA at ESRF

- Bending magnet source
- Linear polarization: out-of-plane (90°)
- Standard geometry
- High-purity 13-elements Ge detector

LUCIA at SLS (now at SOLEIL)

- Insertion device source
- Linear polarization: in-plane (0°) and out-of-plane (90°)
- Grazing incidence geometry
- Silicon drift fluorescence detector

Characterized samples

Overview of the parameters space

Soutenance de thèse

M. Rovezz

Introduction Spintronics XAFS

Incorporati Series Co-doping

Mn in Ge Models

NCs results

Mn in GaA Models Surface stud Etch-anneal

Conclusions

Low Fe content Fega as relaxed by Density Functional Theorem

M. Rovezzi

- Introduction Spintronics XAFS
- Fe In GaN Incorporation Series
- Mn in Ge Models
- Mn in GaAs Models Surface study

Conclusions

- Possible to fit up VI coordination shell with a minimum set of variables (Debye correlated model for σ²) ⇒ low local structural disorder
- Global 1% expansion to respect GaN [$d_{Fe-N} = 1.98(1)$ Å and $d_{Fe-Ga} = 3.19(2)$ Å]
- Experimental results in line with the Fe³⁺_{Ga} DFT relaxed structure (LSDA+U, 72-atoms supercell): $d_{Fe-N} = 1.99(1)$ Å and $d_{Fe-Ga} = 3.22(1)$ Å

High Fe content

Crystallities appea

Soutenance de thèse

M. Rovezzi

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

• $\approx 60(10)\%$ Fe_{Ga}: $d_{Fe-N} = 2.02(1)$ Å $d_{Fe-Ga} = 3.22(4)$ Å • $\approx 40(10)\%$ ϵ -Fe₃N (Bainite): $d_{Fe-Fe} = 2.71(2)$ Å

Polarized measurements

inear dichroism sensitive to simmetry

M. Rovezzi

Fe in Gal

Incorporation Series

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

- Double polarization (changed at the source): in-plane (0°) and out-of-plane (90°)
- $\bullet\,$ Linear dichroism \Rightarrow incorporation in non-cubic site
- $\bullet\,$ Cubic precipitates do not contribute to the dichroic signal $\Rightarrow\,$ additional information by EXAFS

Solubility limit as function of Fe content

Soutenance de thèse

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series Co-doping
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

- TMGa @ 5 sccm \Rightarrow solubility limit at \approx 0.4% Fe (in our growth conds.)
- Fe < 200 sccm \Rightarrow Fe substitutional in wurtzite GaN (Fe_Ga)
- Fe \geq 200 sccm \Rightarrow Fe_{Ga} + ϵ -Fe₃N precipitates

Increasing growth-rate

Soutenance de thèse

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

- Fe_{Ga} for TMGa \ge 8 sccm
- 100(10) % Fe_{Ga} still for 350 sccm Cp₂Fe and TMGa 15 sccm (max!)
- Solubility limit improved from ${\approx}0.4\%$ to ${\approx}1\%$ Fe

Si co-doping

Soutenance de thèse

M. Rovezz

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models
- NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

- 100(10)% Fe_{Ga}
- No additional phases are detectable
- Effect due to Fermi level shift

Fe charge state by XANES Study of pre-edge peaks $(1s \rightarrow 3d \text{ transitions})$

Soutenance de thèse

M. Rovezzi

Introduction Spintronics

Fe in GaN Incorporations Series Co-doping

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

(Gá,Fe)N (Gá,Fe

• I @ 7113.9(1) eV
$$\Rightarrow$$
 Fe³⁺

• I @ 7113.9(1) $eV \Rightarrow Fe^{3+}$ • II @ 7112.8(1) $eV \Rightarrow Fe^{2+}$

By affecting the Fe charge state, the Coulomb repulsion overcompensate the lowering of the free energy due to the nearest-neighbour bonding [Dietl, Nature Mat. (2006)]

Mg co-doping

Soutenance de thèse

M. Rovezzi

Introduction Spintronics XAFS

Fe in GaN Incorporation Series

Mn in Ge Models

Mn in GaAs Models Surface study Etch-anneal

Conclusions

2 3 4 5 6 R (Å) – [without phase correction]

- No charge state change (Fe³⁺)
- Additional d_{Fe-Fe} = 2.57(1) Å increasing in amplitude
- Closer to γ-Fe (fcc) or ζ-Fe₂N (orthorombic) than α-Fe (bcc)
- Precipitates visible by SXRD

Soutenance de thèse

M. Rovezzi

Introduction Spintronics

XAFS

Fe in GaN

Incorporation Series

Mn in Ge

Models NCs result

Mn in GaAs Models Surface study Etch-anneal

Conclusions

In collaboration with

Part of the present work published in

M. Rovezzi et al., Appl. Phys. Lett. 92, 242510 (2008)

$Ge_{1-x}Mn_x$ self-organized Nano-Columns

A. Jamet et al., Nat. Mater. (2006) & T. Devillers and al. Phys. Rev. B (2007)

Soutenance de thèse

M. Rovezzi

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

Sample growth

- LT-MBE, co-dep. of Ge and Mn
- Ge(001) substrate + Ge buffer
- Growth temp.: 80 °C 200 °C
- Mn concentration: 0.1% 20%(Mn solubility in Ge is very low, $\approx 10^{-5}\%$)

2D spinodal decomposition

- High-T_C self-organized nanocolumns (> 400 K)
- Diameter 3 nm, volume fraction 16%

Nano-columns phase diagram

TEM and magnetic (SQUID) characterization

Soutenance de thèse

M. Rovezzi

Introduction Spintronics

Fe in GaN Incorporations Series Co-doping

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

80–120 °C

50 nm Ge substrate

- Fully strained low-T_C NCs
- Narrow size distribution
- Superparamagnetism

120-145 °C

- Columns diameter increase
- Ferromagnetism
- High-T_C NCs around 130 °C
- Large and amorphous columns

145-180 °C

 Major contribution from Ge₃Mn₅

180-200 °C

Ge₃Mn₅ clusters

Structural characterization

A challenging system

M. Rovezz

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series Co-doping
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal

Conclusions

Data analysis

- Comparison with reference samples: Ge₃Mn₅ and GeMn(0.1%)
- Fits using multiple data sets (to compensate the reduced information content in EXAFS)

• Assisted by *ab initio* DFT calculations (in the limit of LSDA approx.)

Model sample: Ge₃Mn₅ Thin film (~10 nm) grown on Ge(111) at 350 °C

Soutenance de thèse

Mn in Ge Models NCs result:

Mn in GaAs Models Surface study Etch-anneal

Conclusions

Distance, R (Å) – [without phase correction]

	N	In ₁	N	1n ₂	Avera	ge
	coord.	dist. (Å)	coord.	dist. (Å)	coord.	dist. (Å)
d2	2 Mn ₁ 6 Ge	2.526 2.538	2 Ge	2.488	4.4 Ge&Mn	2.507
d ₃			1 Ge 2 Ge	2.610 2.768	1.8 Ge	2.715
d ₄	6 Mn ₂	3.065	2 Mn ₂ 4 Mn ₂ 4 Mn ₁	2.983 3.058 3.065	8.4 Mn	3.053
			11 (0			

Mn1 (40% of the sites)

Mn₂ (60% of the sites)

Crystallographic (Ge₃Mn₅) distances

Model sample: Mn "diluted" in Ge

Soutenance de thèse

M. Rovezzi

Mn in Ge

Mn in GaAs Models Surface study

Conclusions

Site				Dista	ance (Å) /	Coordi	nation						
	d ₁		d ₂		d ₃	d ₃		d5		d ₆			
Mns	-	-	2.45	4	-	-	-	-	4.00	12			
MnT	-	-	2.45	4	2.83	6	-	-	-	-			
Mn _H	2.35	6	-	-	-	-	3.67	8	-	-			

Crystallographic (Ge diamond) distances

Elementary defects in Ge

Substitutional, MnS

Tetrahedral interstitial, Mn_S

Hexagonal interstitial, Mn_H

GeMn nanocolumns

Sample	Distance (Å) / Coordination							
	d	2	6	4 ₃	C	4	d	5
T _G = 125 °C:								
GeMn(0.1%)	2.47(1)	4.2(5) ^a	-	-	-	-	3.57(2)	1.2(4) ^a
GeMn(1%)	2.48(1)	4.0(5) ^a	-	-	-	-	3.60(4)	0.8(5) ^a
GeMn(6%)	2.49(1)	4.0(5) ^a	2.82(4)	0.8(4) ^C	3.09(4)	0.8(4) ^C	-	-
GeMn(20%)	2.49(1)	4.0(5) ^a	2.82(2)	1.6(2) ^b	3.10(2)	1.4(3) ^b	-	-
Mn 6 %:								
GeMn(120°C)	2.48(1)	4.2(5) ^a	-	-	-	-	3.57(4)	0.7(3) ^a
GeMn(130°C)	2.49(1)	4.0(5) ^a	2.86(5)	1.2(4) ^C	3.10(5)	1.3(4) ^C	-	-
GeMn(135°C)	2.49(1)	4.0(5) ^a	2.80(2)	1.0(2) ^C	3.07(2)	1.2(2) ^b	-	-
GeMn(140°C)	2.49(1)	4.0(5) ^a	2.80(2)	1.4(2) ^C	3.06(2)	1.1(3) ^b	-	-
GeMn(150°C)	2.49(1)	4.0(5) ^a	2.81(2)	3.7(7) ^b	3.01(2)	2.2(4) ^b	-	-
Reference sample	e on Ge(111):							
Ge ₃ Mn ₅	2.52(1)	5.0(5) ^d	2.70(5)	1.2(4) ^a	3.04(5)	8.4(5) ^b	-	-
2	h (d						

k (Å⁻¹)

Backscatterer: ^a Ge; ^b Mn; ^c Ge or Mn; ^a Ge and Mn.

GeMn nanocolumns

Proposed atomic models

Soutenance de thèse

M. Rovezzi

- Introduction Spintronics XAFS
- Fe in GaN
- Series Co-doping
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

Building block

- Only the Ge-3Mn₂ tetrahedron fits with experimental results
- NCs are precursors of Ge₃Mn₅ ⇒ increase of d₄ coordination number with temp. and conc.

Linking block

[Ahlers, PhD Thesis (2009)]

- Pure ball-and-stick model (not relaxed!) ⇒ links Ge₃Mn₅ to Ge(111) with native defects
- $\bullet~$ 3 $Mn_2~as~Mn_{\rm H}$ on Ge(111) + 2 Mn_1 $\perp~as~Mn_T$ and Mn_S
- Compatible with present results

Mn in GaAs

Soutenance de thèse

M. Rovezzi

Introduction Spintronics

XAFS

Fe in GaN

Incorporation Series

Mn in Ge Models

NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

In collaboration with

NOTRE DAME DEPARTMENT OF PHYSICS

Growth

Soutenance de thèse

- M. Rovezz
- Introduction Spintronics
- XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models
- Mn in GaAs Models Surface study
- Conclusions

- Riber 32 R&D chamber, sources: standard effusion cells
- Growth procedure (monitored by RHEED):
 - GaAs buffer layer on semi-insulating (001) GaAs substrate at 590 °C + cooled to 200–300 °C
 - IT-GaAs (0–100 nm)
 - Ga_{1-x}Mn_xAs at 250 °C (x=6%, 133 nm)
 - LT-GaAs capping layer (0–6 nm)
- Annealing: at \approx 285 °C for 70 min in N_2

Curie temperature

From ${\approx}60$ K in as deposited samples to ${\approx}110$ K with annealing ${\Rightarrow}$ surface migration of $Mn_{\textit{interstitial}}$ defects and neutralization with oxide

[Kirby et al., Phys. Rev. B 2006]

100

RefIEXAFS measurements

1400

- Mn K-edge fluorescence in grazing-incidence mode
- Working around critical angle $\theta_c \approx 0.35^{\circ}$
 - Total reflection (0.80θ_c): probing the surface (< 10 nm)
- High incidence (1.2θ_c): probing the whole doped layer
- Reflectivity monitored during the energy scan

Mn substitutional (Mn_{Ga})

Soutenance de thèse

Spintronics XAFS

Incorporatio Series Co-doping

Mn in Ge Models NCs results

Mn in GaAs Models Surface study Etch-anneal

Conclusions

- First shell expansion: Mn-As @ 2.50(1) Å, typical 2% exp.
- Local structure well fitted up to VI coordination shell
- Model with minimum set of variables and Debye correlated model for $\sigma^{\rm 2}$

M. Rovezz

- Introduction Spintronics XAFS
- Incorporatio Series
- Mn in Ge Models
- Mn in GaAs Models Surface study
- Conclusions

- Model: ΞMn_I+(1-Ξ)Mn_{Ga}
- Fingerprint: 6 Mn-Ga at 2.827 Å (crystallographic)
- First shell \approx 2% exp., \approx 1% upper distances
- 10(5)% $< \Xi <$ 20(5)% in selected samples (χ^2 -tested)
- Oxide contribution by 6 Mn-O at 2.222(1) Å (cryst.)
- MnO detectable only in RefleEXAFS (< 6 nm GaAs CL)

Standard versus grazing-incidence geometry

Soutenance de thèse

M. Rovez:

Introduction Spintronics XAFS Fe in GaN Incorporations Series

Mn in Ge Models NCs results

Min In GaAs Models Surface study Etch-anneal

Conclusions

Standard geometry

RefIEXAFS at HI

- The same parameters for the extraction and the fits
- $\bullet~$ Only Mn_{Ga} is detected in the first case while in the second also Mn_{I} and MnO are visible
- The surface study is crucial in understanding Mn_I mobility and interaction with the thin surface oxide layer

Surface systematic study

As function of annealing and GaAs capping layer

Results

[Olejnik et al., Phys. Rev. B (2008)]

Introduction

Spintronie XAFS

Fe in GaN Incorporations

Series Co-doping

Mn in Ge Models

Mn in GaAs Models Surface study

Conclusions

In situ post-growth etch-anneal procedure

(E)XAFS

Etching

- 30s in 35% HCl
- rinsing in water + blow dry by N₂ gas
- transfer to vacuum chamber

(E)XAFS

Annealing

- 20 min at 200 °C on hotplate under N₂ gas flow
- rapid quench to room temperature under N₂ gas flow
- tranfer to vacuum chamber

(E)XAFS

Etching/Annealing

		N	ΛnΟ	Mn _I		Mn _{Ga}			
	ϕ_W	Θ	RO	Ξ	R _{Ga}	R _{As}	σ^2_{As}	R _{Ga}	σ_{Ga}^2
		(%)	(Å)	(%)	(Å)	(Å)	(Å ²)	(Å)	(Å ²)
		±5	± 0.02	±7	± 0.06	± 0.01	± 0.002	± 0.05	± 0.005
E+	HI	-	-	-	-	2.50	0.007	4.06	0.017
LI.	TR	12	2.14	19	2.94	2.50	0.007	4.02	0.014
Et & An	HI	7	2.14	-	-	2.51	0.006	4.03	0.025
LL.GAIL	TR	12	2.15	14	2.82	2.49	0.004	4.04	0.018

Summary

Soutenance de thèse

- M. Rovezz
- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models
- Mn in GaAs Models Surface study Etch-anneal

Conclusions

- Fe incorporation in GaN can be efficiently controlled by Fe flow, growth rate, and co-doping with Si
- EXAFS well identify the substitutional phase (Fe_{Ga}) and the presence of precipitates (ε-Fe₃N)
- The aggregation of Fe cations can be minimized by increasing the growth rate and by co-doping with Si, shifting the solubility limit towards higher Fe content at given growth conditions
- Detailed informations about Fe charge state are obtained from XANES: from Fe³⁺ (isoelectronic impurity) to partial reduction Fe²⁺ upon Si addition (Fermi level engineering)
- Co-doping with Mg do not introduce charge shift but promotes precipitation (difficult to distinguish by XAFS)
- Exploiting the complementarity of XAFS with XRD and TEM permits a fine structural characterization of this system at the nano-scale

Summary

- Soutenance de thèse
 - M. Rovezzi
- Introduction
- XAFS
- Fe in GaN
- Incorporation Series
- Mn in Ge Models
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

- The high local disorder reduces the information content in the EXAFS spectra (like Mn in Si [A. Wolska *et al.*, Phys. Rev. B 2007])
- Mn-rich NCs present a complex local structure that cannot be described only with a substitutional model
- Additional interatomic distances have to be considered in the EXAFS analysis which are in good qualitative and quantitative agreement with the structure of one of the Ge-3Mn building block tetrahedron found in Ge₃Mn₅ crystal
- Samples grown at low temperature or low Mn content present additional hexagonal interstitial-like defects (≈10 %)

Summary

Soutenance de thèse

M. Rovezzi

Introduction Spintronics

- XAFS
- Fe in GaN Incorporations
- Series Co-doping
- Mn in Ge Models
- Mn in GaAs Models Surface study Etch-anneal

Conclusions

- LT-MBE permits the fabrication of a good DMS system with Mn main incorporation as Mn_{Ga} in a crystalline environment
- Enrichment of Mn_I at the surface: detected in grazing-incidence and not in standard geometry ⇒ GIXAFS/RefIEXAFS is powerful local probe to study surface phenomena
- The effects of post-growth annealing on Mn_I surface migration are investigated but it is not possible to link the observed efficacy of this method to the interaction with the surface oxide
- The presence of the oxide phase reduces the sensitivity to Mn_I, even with the use of a GaAs capping layer of different thickness
- The etch-annealing process is fruitful in removing $Mn_I \Rightarrow$ first direct evidence of the neutralization process induced by this method

General conclusions

Soutenance de thèse

M. Rovezzi

- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge Models NCs results
- Mn in GaAs Models Surface study Etch-anneal

Conclusions

- The present work has permitted to find out the potentialities and limits of XAFS spectroscopy in the study of semiconductor spintronics
 - A wide spectrum of the most promising materials in this field has been examinated (keeping apart semiconductor oxides while Mn-doped II-VI class investigated in the early times)
 - Experimental work: implementation of a new sample holder for measurements in grazing-incidence geometry and a new data analysis method for RefIEXAFS measurements
 - XAFS combined with complementary advanced characterization tools helps in the fine tuning of the deposition parameters and post-growth treatments

- Soutenance de thèse
- M. Rovezzi
- Introduction Spintronics
- Fe in GaN Incorporations Series
- Mn in Ge Models
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

- Fermi level engineering to increase the solubility limit (demostrated here for GaFeN) on GaMnAs [Cho et al., Appl. Phys. Lett. (2008)] and GeMn [Chen et al., Phys. Rev. B (2009)] via *n*-type counter-doping
- Fine tune the temperature parameter and adopt Fe doping in $\delta\text{-fashion}$ to obtain Fe-rich nanocolumns in GaN
- High-level doping with shallow acceptors to reach the metal-insulator transition and have high-T_C ferromagnetism (moving from weak to strong coupling regime) [Dietl, Phys. Rev. B (2008)]

Acknowledgements

Soutenance de thèse

- M. Rovezz
- Introduction Spintronics XAFS
- Fe in GaN Incorporations Series
- Mn in Ge
- NCs results
- Mn in GaAs Models Surface study Etch-anneal
- Conclusions

Mn:GaAs Jacek K. Furdyna¹ and Xinyu Liu¹

- Fe:GaN Alberta Bonanni², Andrea Navarro-Quezada², Tian Li², Bogdan Faina², Tomasz Dietl³, Piotr Bogusławski³, Paweł Jakubas³, Aldo Amore Bonapasta⁴ and Francesco Filippone⁴
 - Mn:Ge Matthieu Jamet⁵, Thibaut Devillers⁵, André Barski⁵, Clément Porret⁵, Vincent Favre-Nicolin⁵, Samuel Tardif⁵, Emmanuel Arras⁵, Pascal Pochet⁵ and Ing-Song Yu⁵
- Mn:NWs Federico Boscherini⁶, Fauzia Jabeen⁷, Silvia Rubini⁷ and Faustino Martelli⁷
 - GILDA Francesco d'Acapito⁸, Chiara Maurizio⁸ and Fabrizio Bardelli⁸

- Department of Physics, University of Notre Dame, Indiana, USA
 Institute for Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche, Rome, Italy

- DRFMC/SP2M, CEA-Grenoble, France
- Department of Physics and CNISM, University of Bologna, Italy
- CNR-INFM-TASC, Trieste, Italy
- CNR-INFM-OGG GILDA CRG c/o ESRF, Grenoble, France

Soutenance de thèse

M. Rovezz

Introduction Spintronics

XAFS

Fe in GaN Incorporations Series Co-doping

Mn in Ge Models

Mn in GaAs Models Surface study Etch-anneal

Conclusions

Further acknowledgements

- Consiglio Nazionale delle Ricerche (financial support)
- Settimio Mobilio (GILDA CRG responsible)
- ESRF (synchrotron radiation and stimulating research infrastructure)

Bibliographic databases

My personal collection (\approx 600 refs.):

http://www.mendeley.com/profiles/mauro-rovezzi Ferromagnetic Semiconductor Spintronics Web Project:

http://unix12.fzu.cz/ms/

Mn in III-V nanowires

Soutenance de thèse

M. Rovezzi

Mn in NWs

Local structure

In collaboration with

Growth of GaAs and InAs NWs

F. Martelli *et al.*, Nano Lett. (2006

Soutenance de thèse

M. Rovezzi

Mn in NWs

- Solid-state molecular beam epitaxy (VLS growth)
- Catalyzed by Mn (5 ML, 1 nm) and Au (10 ML, 2 nm) [+doped with Mn]
- Growth temperature: 535 °C – 620 °C
- Different substrates: GaAs and SiO₂

Electron microscopy

SEM images: (a) Mn-cat GaAs on SiO₂; (b) Mn-cat InAs on SiO₂; (c) Mn-cat GaAs on GaAs; (d) Au-cat GaAs on GaAs(111)

Soutenance de thèse

M. Rovezzi

Mn in NWs

- Mn K-edge in fluorescence mode @ GILDA [standard geometry, low temp.: 10 K]
- All samples etched *in-situ* and transferred to vacuum chamber to avoid oxide formation
- Systematic study varying deposition parameters

Characterized samples

Sample	Wire	Cat.	Temp. (°C)	Time (min)
E650	GaAs	Mn	540	30
E651	GaAs	Mn	580	30
E672	GaAs	Mn	610	30
E652	GaAs	Mn	620	30
E656	GaAs	Au	540	30
E697	GaAs	Au	580	30
E683	InAs	Mn	390	60

Mn-catalyzed

Soutenance de thèse

M. Rovezzi

Mn in NWs Local structure GaAs NWs

- High local disorder
- Mn_{Ga} but Mn-As at 2.58 Å ⇒ MnAs clusters
- Mn-Mn at 2.15 Å (no Mn-O!)

InAs NWs

- Low local disorder
- No Mn substitutional in wz-InAs
- Mn in hexagonal MnAs Mn-Mn at 2.85 Å and 3.72 Å

Au-catalyzed + Mn-doped

Soutenance de thèse

M. Rovezzi

Mn in NWs

- Mn_{Ga} with Mn-As at 2.58 Å
- + cubic MnAu [Mn-Au at 2.79 Å]
- Fingerprint: Mn-Au-Mn collinear scattering path

- Soutenance de thèse
- M. Rovezzi
- Mn in NWs Local structure

- Mn-As bond distance of 2.56–2.58 Å, longer than the expected value for a substitutional site and probably due to the occupation of defect sites ⇒ seeds for the formation of hexagonal MnAs precipitates
- Hexagonal MnAs clearly forms in Mn-cat. InAs NWs (well ordered local structure)
- Mn-Mn dimers at 2.15 Å found in Mn-cat. GaAs NWs (also reported by other groups: Mn-doped InAs at 2.19 Å, Mn-doped Ge at 2.04 Å)
- Mn in Au-catalyzed NWs forms an intermetallic alloy with Au resulting in a well ordered cubic MnAu

