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GENERAL INTRODUCTION

E
XTRACTING geometric and topological information from geometric
data, such as 3D point clouds obtained from laser scanners, is a
requirement for many geometry processing and data analysis algo-

rithms. The need for robust estimation of geometric invariants have been
recognized long times ago in geometry processing, and such invariants have
found applications in fields as different as shape matching, registration,
symmetry detection in 3D models or more generally structure discovery, re-
construction, meshing to name just a few. More recently, it has been apparent
that such geometric and topological quantities could also be used to analyze
more general data sets coming from computational structural biology, large
image databases, etc. For instance, methods from computational topology
have been used to estimate the number of connected components of such
sets which is a useful input for many clustering algorithms. Data sets that
have a real geometric content are often concentrated around manifolds (or
more general sets) of very low dimension, sometimes several order of mag-
nitude smaller than the ambient dimension. Examples of this situation
arise when considering configurations of a mechanical system: because of
constraints, the dimension of the space of transformations is usually much
larger than the space of realizable configurations. Another example: the set
of n-by-n 2D pictures of a given 3D scene, taken from different viewpoints.
This data set is naturally embedded into R

n×n; however, its real underlying
dimension is probably much lower (close to the dimension of the group of
isometries of the Euclidean 3-space). The goal of non-linear dimensionality
reduction techniques, also known as “manifold learning” is to provide auto-
matic parametrizations of such point clouds with few parameters; again, they
could benefit from a preliminary reliable estimation of the intrinsic dimension.
These applications motivates the extension of geometric estimation to point
clouds embedded in spaces of dimension larger than 3. The lack of visual
feedback, the presence of outliers, and what is referred to as the “curse of
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dimensionality” are among the difficulties that are raised by this extension.

A lot of work has been done to estimate geometric quantities from a
noiseless sampling of a physical object in 3D, and this question is quite well
understood. If the surface of the object is a smooth compact manifold, not
only is it possible to estimate geometric quantities such as those mentioned
above, but also to obtain a full reconstruction of the underlying surface.
Reconstructing a surface from a point cloud consists in building a mesh or
an implicit surface that lie close to a given point cloud. Without any further
assumption, surface reconstruction is not a very well-posed problem. If the
surface is smooth and well behaved, and the point cloud is sampled densely
enough on S, a reconstruction can be obtained through a subcomplex of its
Delaunay triangulation. The obtained mesh then is isotopic to the underlying
surface, and the deviation of the normals can be kept low. Subsequent work
shows that this reconstruction with good normals can be used to estimate the
curvature, volume, etc. of the underlying surface correctly. Reconstructing
more complex objects, sampled with noise, or in higher-dimensional ambient
space is far from being well understood. As a matter of fact, even for a
piecewise smooth surface in R

3 sampled densely with moderate noise, there
is no known reconstruction algorithm that guarantees the correct topology
and low normal deviation.

The goal of geometric inference is in some sense more modest than ob-
taining a full-fledged reconstruction of an unknown underlying shape. The
main question is: we are given a (perhaps noisy) discrete approximation
of an object embedded in the Euclidean space ; under what conditions is it
possible to reliably recover geometric and topological informations about the
underlying object knowing only the approximation ? Our personal view of the
subject is that geometric inference is a “symmetric” problem: if a point cloud
is an approximation of a compact set, then the compact set is also certainly
an approximation of the point cloud! Said otherwise, we prefer to make no
difference between the input data and the unknown underlying set. This
motivates us to only consider those geometric quantities that are defined
for every compact subsets of the Euclidean d-space. This viewpoint is quite
unusual, mostly because almost no “classical” geometric quantity such as
curvature or dimension are defined regardless of any regularity assumption.

The most important requirement to be able to infer a quantity F(K) that
depends on a compact subset K of an Euclidean space is its Hausdorff-stability.
This means that if K and K ′ are close in the Hausdorff sense, then the quan-
tities F(K) and F(K ′) should also be close, in a sense that depends on their
nature. Notice that this requirement already puts a restriction on the space
in which F takes its value: a Hausdorff-stable notion of dimension cannot

be integer-valued. In order to understand the geometric meaning of F(K),
one can then study it for some class of subsets of R

d to see if it coincides or
approximates an already known notion: smooth compact surfaces, polyhedron,
convex sets, etc. Last but not least, because geometric inference is a practical
problem, it should be possible in practice to compute or at least approximate
F(K) when K is a discrete object, such as a point cloud or a mesh.
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A possible way to define geometric quantities as above that are Hausdorff-
stable is through the use of distance functions. In the next paragraph we give
a brief overview of distance-based topological and geometric inference. Before
starting, let us stress that these distance-based approach allow “Hausdorff-
noise” only. This is already an improvement over geometric estimation meth-
ods that require noiseless sampling, but this discards the possibility of outliers
in the point cloud (both in theory and practice).

Distance-based inference

By itself, a point cloud does not carry any geometric or topological information.
At a very large scale, there is no way to tell the difference between the cloud
and a single point; and at a very fine scale, on the other hand, it is nothing
but a bunch of unrelated points. The importance of the scale parameter is not
only for point clouds: at our scale, the surface of a wooden table is smooth;
from the point of view of an ant, it is probably much less clear — not to speak
of the atomic level. The distance function to an object K in the Euclidean
space is a very convenient way to encode these scales in a single way. With
this point of view, the object seen at scale R is simply the R-sublevel set of the
distance function, or equivalently the union of balls of radius R centered at
the points of K. We call this sublevel set the R-offset of K.

It is very well-known (and quite elementary, too) that the distance function
depends continuously on the underlying compact set. As a consequence, if we
are given a point cloud C sampled close to a compact set K, the r-offsets of K
and C are also close to each other — provided that the Hausdorff distance
between K and C is slightly smaller than the offset parameter. All of this needs
of course to be made precise: this is the object of distance-based geometric
and topological inference. There are two almost orthogonal questions. The
first one is to determine what information can be stably extracted from offsets,
with (preferably) quantitative Hausdorff closeness assumptions. The second
one is about the design of efficient algorithms to deal with offsets of point
clouds.

Distance functions and offsets have been used extensively in topological
inference. Under sampling conditions similar to the one used in 3-dimensional
surface reconstruction, it has been shown that appropriate offsets of a point
cloud sampled on a smooth submanifold S of R

d had the same homotopy type
as the underlying submanifold [NSW06]. The condition is satisfied if the
density of the sample points is greater than some constant multiplied by the
inverse of the reach of S. Since the reach vanishes on a sharp feature, even
a mere polyhedron does not admit a finite sample satisfying this condition!
In [CCSL09, CCSL08], the authors introduced a less restrictive sampling
condition under which the topology of the underlying set can be estimated
from the topology of the offsets of the sample points. Very loosely speaking,
a compact set K will admit a finite sample satisfying this condition if the
dihedral angle of its sharp features is bounded from below.

In the last decade, the theory of persistent homology has been developped
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to estimate the topology of sublevel sets of functions in a robust way (see
[EH08] for a survey). This theory can be used to associate to any compact
subset K of R

d and any dimension k a finite subset of the plane, called a
persistence diagram. This diagram encodes the evolution of the Betti numbers
of dimension k of the α-sublevel sets of the distance function to K as α goes
from zero to infinity. The crucial property is that persistence diagrams are
stable under Hausdorff approximation [CSEH07]. This stability result makes
no assumption on the nature of the compact sets (the underlying set and
its discrete approximation), and is one of the first interesting example of
“symmetric geometric inference” as we defined a few paragraphs earlier.

Algorithmically, the homotopy type of the α-offset of a point cloud P can
be obtained through the α-complex of P. The α-shape is subcomplex of the
Delaunay triangulation of P, that can is proven to deformation-retract onto
the offset Pα [Ede95]. Computing the alpha-shape of a data set P requires
computing the whole Delaunay triangulation of P, and is impractical in high
dimension. On the other hand, approximate persistent homology compu-
tations can be done using the so-called Vietoris-Rips complex [CO08], thus
avoiding the exponential growth of α-shape or Čech complexes with the ambi-
ent dimension.

Contributions

As described above, substantial progress has been made for inferring topolog-
ical invariants of possibly non-smooth sampled objects embedded in arbitrary
dimensional spaces. However, very little is known on how to infer more ge-
ometric invariants, such as curvature, dimension or singularities, for such
objects. Chapters I–III are devoted to distance-based geometric inference to
estimate differential properties, while Chapter IV is devoted to the extension
of distance-based geometric inference to handle point clouds that have been
corrupted by outliers. Before we give a brief overview of the organization of
the thesis, let us highlight what we believe are the three main contributions
of this work in a very broad sense.

The semiconcavity of the distance function to a compact set can very well
be considered as a guiding thread in our thesis. Semiconcavity is a smoothness
property that ensures that the distance function is not only practically C1, as
implied by the Lipschitz property, but also practically C2. Semiconcavity of the
distance function has been remarked and used for a long time in some area
of analysis and geometry1, but it is only quite recently that it started being
(implicitely) used in geometric inference. The identification of its central role
in existing distance-based geometric inference results probably counts as one
of our contribution to the topic. We use it to obtain fine bounds on the (d− 1)-
volume of some refinements the medial axis of K in Chapter I. It is also used
to prove L1 stability results for first-order derivatives of the distance function
such as the projection function on the compact set K, which maps a point to
its closest neighbor in K (Chapter II–III). Finally, the 1-semiconcavity is the

1more precisely, in Hamilton-Jacobi theory and in the study of Alexandrov spaces
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main requirement for a distance-like function, a notion that we introduce and
use in Chapter IV to extend “classical” distance-based inference to a more
general setting.

The goal of most existing work on estimating differential quantities such
as normals and curvature in geometry processing is to obtain pointwise
estimates. For instance, a normal field is often thought of as a function from
the surface to the space of directions. There are several problems with this
approach. First, when the underlying shape S is not smooth, there is not
necessarily a single normal to a point, but rather a convex cone of normals
which is reffered to as the normal cone. This correspond to an “infinite
concentration” of normals, which isn’t allowed by a mere function. Second,
even normal cones are not pointwise stable under Hausdorff approximation —
if only because the domain of the function can change. Finally the possibility
to add high frequency noise even when the approximation is restricted to
manifolds makes it necessary to introduce a notion of scale. A contribution of
this work is the definition of measures in the sense of Lebesgue which encode
the information provided by the distribution of normal cones at a certain scale
(Chapters II–III). The stability theorems under Hausdorff approximation
need to take into account these three phenomena. In this context, the use of
distances on the space of measures related to optimal transportation — such
as the bounded-Lipschitz distance or Wasserstein distances — proved very
helpful.

All geometric inference results based on distance functions (such as those
of Chapter II–III) do not work at all if the input data cloud is corrupted with
outliers. The reason is that the addition of even a single outlier changes
the distance function dramatically. Outliers are not easy to deal with in
practice; they are also not easy to define from a theoretical viewpoint. The
main reason is that by accepting outliers, one leaves the world of purely
geometric approximation for some other place where the amount of sample
points is of importance. Indeed, it is possible to deal with outliers only if
there are much less of them than actual data points. Our proposition to deal
with this, and define what “much less” means, is to consider the input point
cloud no more as a geometric object, but as a probability measure, to which
one attaches geometry. The underlying object is no longer a surface (or a
more complex compact set), but eg. the uniform measure on this surface. The
Hausdorff condition is then replaced by a meaningful distance on probability
measures: the (exponent 2) Wasserstein distance. Under this metric, the
uniform measure µ on a point cloud C, and the uniform measure µ̃ on the
same point cloud corrupted with a few outliers are close. In Chapter IV we
show how this “classical” distance-based geometric inference can be carried
out in this new setting.

CHAPTER I

The medial axis of a compact set K is a very common object in shape
recognition, reconstruction, shape segmentation. In this chapter, we survey
results on its local regularity and dimension, which complements the survey
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on the stability and computations of medial axes by Attali, Boissonnat and
Edelsbrunner. These results are obtained by using the convexity – or more
precisely semiconcavity – properties of the distance function. In a second part
of the chapter, we give an optimal bound on the (d−1)-volume of a refinement
of the medial axes, that will be used later in the thesis.

CHAPTER II

In this chapter, we exploit the geometric information contained in the
growth of the volume of a compact set K in the d-dimensional Euclidean
space in order to retrieve information about the geometry of K. The tube
formula states that for positive reach compact sets (a class that includes
convex subsets and smooth compact submanifolds of R

d), this volume is a
degree d polynomial in r provided that r is small enough. The coefficients
of this polynomial encode important geometric information about K, such as
dimension, curvatures, angles of sharp features, or even Euler characteristic.
Federer introduced the notion of curvature measures of K, which loosely
speaking details the contribution of each part of K to the intrinsic volumes,
and hence gives local information about curvatures, dimensions, and sharp
features angles.

Our main result is a stability result for curvature measures of K under
Hausdorff approximation by C. This result does not make any assumption on
the smoothness of C, which is in contrast with most Hausdorff stability results
under upper curvature bounds and lower bounds on the injectivity radius —
including Federer’s own stability theorem for curvature measures. Finally,
boundary measures and curvature measure can be computed in practice using
a very simple Monte-Carlo algorithm, which makes them good candidate for
geometric inference.

In an appendix, we ask whether the existence of an (approximate) tube
formula can be used for estimating the reach of a compact set, a quantity that
measures the “extrinsic smoothness” of the compact set, and is widely used in
provable reconstruction algorithms. In particular, we obtain a simpler proof
of a result by Hug, Heveling and Last.

CHAPTER III

Robustly detecting sharp features in meshes is quite well understood;
for point clouds on the other hand, existing methods are very heuristic and
experimental – in particular the analysis of the convergence (ie. the sampling
conditions) is never given, and very often uniform sampling is an implicit
requirement. This chapter is devoted to an anisotropic version of boundary
measures (called Voronoi covariance measure, or VCM) that can be used for
detecting sharp features and estimate sharp feature directions. Under a
condition similar to positive reach, the VCM of a polyhedron P can be used
to detect sharp edges in P. Thanks to the Hausdorff stability of VCM, that
follows from the same arguments developped in Chapter II, the VCM of a
point cloud which is also Hausdorff-close to P will retain the information on
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sharp edges. We explain how to implement approximate computations of the
VCM in an efficient way in 3D, and study the methods experimentally by
applying them on various point cloud models under noise and strong sampling
bias.

CHAPTER IV

We introduce a notion of distance function to a probability measure, that is
stable under Wasserstein approximation. This distance-to-measure function
naturally associates a geometry and a topology to every probability measures
on R

d, through the sublevel sets of the function. We show that the distance-
to-measure functions shares all features of the usual distance functions (such
as semiconcavity) which are used in the proof of many geometric inference
results. This allows to extend, sometimes almost verbatim, these results to the
new setting. Finally, this new setting raises some interesting computational
issues, which we discuss.
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F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Boundary measures for geo-
metric inference. To appear in Journal on the Foundation of Computational

Mathematics

F. Chazal, D. Cohen-Steiner and Q. Mérigot. Geometric inference for measures.
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Chapter I

REGULARITY AND SIZE OF THE

MEDIAL AXIS

Abstract

In this short chapter, we introduce some of the objects that will be used
throughout the thesis: the distance functions, projection functions and medial

axes. We survey some known result concerning the local regularity of medial
axis (eg. Hausdorff dimension, rectifiability), a few of which come from the
semi-concavity of the distance function. The compilation of these results
complements the survey on the stability and computation of medial axes by
Attali, Boissonnat and Edelsbrunner.

In the second part of the chapter, we study the (d − 1)-volume and the
covering numbers of the medial axis of a compact set. In general, this volume
is infinite; however, the (d − 1)-volume and covering numbers of a filtered
medial axis (the µ-medial axis) that is at distance greater than ε from the
compact set will be explicitely bounded. The behaviour of the bound we obtain
with respect to µ, ε and the covering numbers of K is optimal. Let us stress
that bounding the covering numbers is much stronger than bounding the
(d− 1)-volume, since we cannot disregard the lower-dimensional parts of the
medial axis. This result will be used in the next chapter to give a first stability
statement for projection functions.

Contents
I.1 Regularity of distance functions and medial axes . . . . . 10

I.1.1 Negligibility of the medial axis. . . . . . . . . . . . . . . . 12

I.1.2 Hausdorff dimension and rectifiability . . . . . . . . . . . 14

I.1.3 Dimension and smoothness of the medial axis . . . . . . 16

I.2 Size and volume of the µ-medial axis . . . . . . . . . . . . . 18

I.2.1 Volume of the boundary of the offsets of a compact set . . 20

I.2.2 Covering numbers of the µ-medial axis . . . . . . . . . . 22
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General notations. The canonical scalar product between two vectors
v,w ∈ R

d is denoted by 〈v|w〉 =
∑d
i=1 viwi; and the Euclidean norm of a

vector v ∈ R
d is ‖v‖ :=

√

〈v|v〉. The open ball of radius r centered at x is
denoted by B(x, r) while the closed ball is denoted by B(x, r). Finally, the
Lebesgue measure of a Borel set B ⊆ R

d is denoted by Hd(B).

I.1 REGULARITY OF DISTANCE FUNCTIONS AND ME-
DIAL AXES

In this §, we review several well-known (and less well-known) properties of the
distance function to a compact set K, as well as some results on the dimension
and regularity of the medial axes. We also take this as an opportunity to
introduce mathematical tools and notions that will be used throughout the
thesis.

Estimating medial axes in a stable way has many applications. In image
analysis and shape recognition, the skeleton of a shape is often used as an
idealized version of the shape [SHB99], that is known to have the same
homotopy type as the original shape [Lie04]. In the reconstruction of curves
and surfaces from point cloud approximations, the distance to the medial
axis provides a estimation of the size of the local features that can be used
to give sampling conditions for provably correct reconstruction [AB99]. The
flow associated with the distance function dK, that flows point away from K

toward local maxima of dK (that belong to the medial axis of K) can be used for
shape segmentation [DGG03, CGOS09]. The reader that is interested by the
computation and stability of the medial axis, with some of these applications
in mind can refer to the survey [ABE07].

Distance function, offsets, Hausdorff distance. The set of compact sub-
sets of a metric space X is denoted by K(X). If X is equipped with a metric d,
one can associate to any compact subset K of X a function dK : X→ R

+, called
the distance function to K; dK(x) is the minimum distance between x and any
point in K, ie. dK(x) = miny∈K d(x, y). The distance function is then used to
define a metric on K(X) called the the Hausdorff distance:

dH(K,K ′) := ‖dK − dK ′‖∞ = sup
x∈X

∣

∣dK(x) − d ′
K(x)

∣

∣

Equivalently, the Hausdorff distance can be defined in term of offsets. The
r-offset of K is the set of points at distance at most r of K; we denote it by
Kr = d−1

K (r). With this notation, dH(K,K ′) is the minimum non-negative ε
such that both K ⊆ K ′ε and K ′ ⊆ Kε. A useful fact about the Hausdorff
topology is Blaschke selection theorem: if a metric space X is locally compact,
then so is the set of compact subsets of X endowed with the Hausdorff metric.

Projection, Voronoi diagram. Throughout this work, Kwill always denote
a compact set in the Euclidean d-space R

d, with no additional regularity
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Figure I.1 – Medial axis of a curve C in the plane, and Voronoi diagram of a
point cloud P sampled on the curve. Notice that while P and C are
Hausdorff close, their respective medial axes are very different.

assumption unless specified otherwise. A point p of K that realizes the
minimum in the definition of dK(x) is called an orthogonal projection of x on
K, or a closest (or nearest) neighbor of x in K. The set of orthogonal projections
of x on K is denoted by projK(x). The locus of the points x ∈ R

d which have
more than one projection on K is called the medial axis of K, and denoted
by Med(K). For every point x ∈ R

d \ Med(K), we let pK(x) be its unique
orthogonal projection on K, thus defining a map pK : R

d \ Med(K)→ R
d. This

map will be referred to as the projection function on the compact set K.

EXAMPLE (Voronoi diagram). The above definitions are related to the notion
of Voronoi diagram of a finite set of points C = {p1, . . . , pn} ⊆ R

d. The algo-
rithmic construction and complexity analysis of Voronoi diagrams and the
dual Delaunay triangulations is a standard topic in computational geometry.
From a geometric point of view, the Voronoi diagram of C is a decomposi-
tion of the space in n cells, one for each input point, which will be denoted
VorC(p1), . . . ,VorC(pn). These cells are defined by the property

VorC(pi) = {p ∈ R
d ; ∀j ∈ {1, . . . , n}, d(x, pi) 6 d(x, pj)}

The medial axis of the point cloud C is the union of boundaries of Voronoi
cells: Med(C) = ∪p∈C∂VorC(p). The projection function is defined on the
union of the interior of Voronoi cells, and maps a point x to the center of its
Voronoi cell.

Medial axis, cut locus, nerve. The medial axis defined above is also known
as ambiguous locus in Riemannian geometry and geometry of Banach spaces
[Ste63, Zam04]. A related notion is the cut locus of Riemannian geometry: a
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point x ∈M belongs to the cut locus of a compact set K ⊆M iff there exists a
distance-minimizing geodesic from K to x that lose the minimizing property
when extended beyond x. This is the case, for instance, if there exists two
distinct distance-minimizing geodesics from x to K even if they have the same

endpoints.
In the Euclidean space, the cut locus of a compact set (which has been

also been studied under the name nerve of K, cf. [Riv01]) is the set of centers
of open balls contained in the complement of K that are maximal for the
inclusion. One has the sequence of inclusions:

Med(K) ⊆ Cut(K) ⊆Med(K) (I.1)

where Med(K) is the closure of the medial axis. All of these inclusions can be
strict even in the Euclidean space.

I.1.1 — Negligibility of the medial axis.

As we will see, the medial axis is always negligible both according to Baire
and Lebesgue. Despite this, the medial axis of a generic compact set is dense
in R

d.

Negligibility and Genericity. Given a compact or complete metric space X, a
subset A ⊆ X is called Baire-negligible if it is a countable union of closed sets
with empty interior, and Baire-generic if its complement is Baire-negligible.
The Baire Theorem asserts that any Baire-negligible set has empty interior,
while any Baire-generic subset is dense in X.

PROPOSITION I.1. Let E be a Banach space and K a compact subset of E. Then

Med(K) is Baire-negligible.

This proposition also holds for any closed subset provided that the space E
is complete and uniformly convex (this result is known as Stečkin’s Theorem
[Ste63]). The proof in the case we consider is simplified due to compactness,
and by the use of the λ-medial axis:

Proof. Let z ∈Med(K) and x be any projection of z on K. Then, for any point
zt in the interior of the segment [z, x], the closed ball B(zt,d(zt, K)) \ {x} is
included in the open ball B(z,d(z, K)) and hence cannot intersect K. This
proves that zt is not in the medial axis of K. Hence, z cannot be an interior
point of Med(K).

Let Medλ(K) be the set of points in x ∈Med(K) such that diam(projK(x)) >

λ. This set has obviously empty interior. Let (xi) be a sequence of points of
Medλ(K) converging to x ∈ E. By definition of Medλ(K), for every i there exists
two points p1i and p2i in projK(xi) with

∥

∥p1i − p2i
∥

∥ > λ. By compactness of K
we can make the assumption that the sequences (p1i ) and (p2i ) both converge
to p1 and p2. Then, p1 and p2 both belong to projK(x), and

∥

∥p1 − p2
∥

∥ > λ.
This means that x belongs to the λ-medial axis Medλ(K), which is then closed.

One concludes the proof by remarking that Med(K) is the countable union
of the 1/n-medial axes Med1/n(K), with n ranging from one to infinity.
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Following the same kind of ideas, one can prove that the medial axis of a
compact set K is generically dense. A similar statement for compact sets in
Alexandrov spaces has been obtained in [Zam04]. The proof in the Euclidean
space is very simple, and follows from a weak stability theorem for medial
axes.

PROPOSITION I.2. Let K(F) denote the set of compact subsets of R
d that are

contained in a closed set F. Then, generically, the medial axis Med(K) of a

compact set K ∈ K(F) is dense in R
d \ F.

A particular consequence of this proposition is that the compact subsets
with dense medial axis are dense within the compact subsets of R

d endowed
with the Hausdorff metric. In order to prove this statement, we need the
following lemma, which can be deduced from eg. [CL05, Theorem 3]:

LEMMA I.3. For any point x in Med(K) and ε > 0, there exists an η > 0 such

that the medial axis of any compact set K ′ with dH(K,K ′) 6 η intersects the

ball B(x, ε).

Proof of Proposition I.2. Let Ω be an open set in R
d, and demote by A(Ω) the

set of compact subsets of R
d whose medial axis intersect Ω. Using Lemma

I.3, one can prove that A(Ω) is open in K(Rd).
Let us now prove that A(Ω) is dense in K(Rd). Let K be any compact set in

R
d; we will distinguish two cases. First, if K contains Ω, we denote by Kε the

set K \ B(x, ε) (x ∈ Ω). This set is compact for ε small enough by assumption,
and x belongs to its medial axis, which proves that K is adherent to A(Ω). If
however K doesn’t contain Ω, there exists a point x ∈ Ω with dK(x) > 0. For
any ε > 0, let yε be a point on the sphere S(x,dK(x)), at distance at most ε of
K. Then Kε = K ∪ {yε} is Hausdorff-close to K and x belongs to its medial axis.

Now, let (Ωn)n∈N be a countable family of open sets generating the topol-
ogy of R

d. The set of compact subsets whose medial axis is dense is then
exactly ∪nA(Ωn). This proves that the property of having a dense medial
axis is generic.

Despite being generically dense, the medial axis is always Lebesgue-
negligible, ie. Hd(Med(K)) = 0 (this is a stronger statement than Proposition
I.1). This fact can be deduced from the following proposition:

PROPOSITION I.4. If p is an orthogonal projection of x ∈ R
d on K, then

d2K(x+ h) 6 d2K(x) + 2〈x− p|h〉+ ‖h‖2

In particular, if the distance function dK is differentiable at x, then ∇xd2K = 2p.

In fact, one has:

Med(K) = {x ∈ R
d \ K ; dK is not differentiable at x}

Proof. Let us first remark that for any point p in K,

d2K(x+ h) 6 ‖x+ h− p‖2 = ‖x− p‖2 + 2〈x− p|h〉+ ‖h‖2 . (I.2)
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If moreover p be an orthogonal projection of x on K, then ‖x− p‖ = dK(x),
thus proving the inequality. If dK is differentiable at x, then so is d2K. Hence,
there exists a vector v ∈ R

d s.t

d2K(x+ h) = d2K(x) + 〈v|h〉+ o(h) 6 d2K(x) + 〈2p|h〉+ o(h) (I.3)

This inequality is possible if and only if v = 2p. The lemma follows.

THEOREM (Rademacher differentiability theorem). Any Lipschitz function

f : R
d → R

d ′
is differentiable Hd-almost everywhere.

COROLLARY I.5. The medial axis of any compact set K ⊆ R
d has zero Lebesgue

measure.

Proof. Rademacher’s differentiability theorem applied to the 1-Lipschitz func-
tion dK shows that the set of non-differentiability points of the distance
function has zero Lebesgue measure. One concludes using the lemma.

I.1.2 — Hausdorff dimension and rectifiability

In the next paragraph, we recall the definition and main properties of the
Hausdorff dimension and Lebesgue covering numbers. The reader already
acquainted with these two notions can safely skip it.

Hausdorff measure and Hausdorff dimension. If M is an n-
dimensional smooth submanifold of R

d, the n-volume of M can be defined
either by Riemannian geometry, or more simply by tesselating M in domains
that can be parametrized by open sets in R

d and using the change-of-variable
formula to compute the volume of each of these domains.

The Hausdorff measures allow to give a more synthetic definition to the
α-volume of a compact set K, that also has two additional advantages: it is
defined for any (even non-integer) positive dimension α, and it does not rely
on any smooth structure on K.

There are some subtleties in the definition of the Hausdorff measure of a
set. The notion we consider is sometimes called spherical Hausdorff measure.
However, for our purpose — measuring the volumes of rectifiable sets (see Def.
I.5) — all definitions agree. A detailed study of the properties of Hausdorff
measures can be found in most textbooks on geometric measure theory, such
as [Mat95], [Mor88] or [Fed69].

DEFINITION I.1. Let A be a subset of a metric space X. For any ε > 0, we
define the premeasure Hαε (K) = infC

∑
B(x,r)∈C(2r)α, where the infimum is

taken over all coverings of the set A by closed balls of diameter at most ε.
The α-Hausdorff measure of A, denoted by Hα(A) is then by definition

the limit of Hαε (A) as the parameter ε goes to zero. With this definition, the
d-dimensional Hausdorff measure of a (Borel) subset of R

d coincides with its
Lebesgue measure.
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DEFINITION I.2. Let A be a subset of a metric space X. For any ε > 0, the
ε-Lebesgue covering number of A, denoted by N(A, ε) is the minimum number
of closed balls of radius ε needed to cover A.

There is of course a relation between the covering number and the Haus-
dorff measure of a given set A: Hαε (K) is always smaller than (2ε)αN(A, ε),
which means in particular that

Hα(A) 6 lim inf
ε→0

N(A, ε)(2ε)α (I.4)

One should not expect any reverse inequality to hold in general. Indeed
if A is a compact subset of R

d with finite α-Hausdorff measure (α > 0), and
X = (xi) is a countable, dense family of points in R

d, the covering number
N(A ∪ X, ε) is infinite for any positive ε, while Hα(A ∪ X) = Hα(A) < +∞.

DEFINITION I.3. Given a subset A of X, the function that maps α ∈ [0,+∞[

to Hα(A) is decreasing; in fact, there exists a unique number α0 such that
for α < α0, the Hausdorff measure Hα(A) is +∞, and for all α > α0, the
Hausdorff measure Hα(A) vanishes. This number is called the Hausdorff
dimension of A, and denoted by dimHA.

The previous remark shows that if the ε-Lebesgue covering number of a
set A behaves as O(ε−α), then the Hausdorff dimension of A is at most α.

Behaviour under Lipschitz mapping and Hausdorff approximation.
The Hausdorff measure and Lebesgue covering number behave well un-
der Lipschitz mappings. Recall that a map f : X → Y between two metric
spaces (X, d) and (Y, d ′) is called L-Lipschitz if for any pair (x, x ′) ∈ X2,
d ′(f(x), f(x ′)) 6 Ld(x, x ′).

PROPOSITION I.6. For any compact subset K of a metric space X, and f : X→ Y

any L-Lipschitz function, one can bound the Hausdorff measures and Lebesgue

covering numbers of f(K) from those of K:

∀ε > 0, N(f(K), ε) 6 N(K, ε/L)

∀α > 0, Hα(f(K)) 6 LαHα(K)

The following very simple result shows that the covering numbers of a set
A can be estimated from the covering numbers of a Hausdorff-close set B.

LEMMA I.7. Let A,B be two subsets of a metric space X. Suppose moreover

that their Hausdorff distance dH(A,B) is bounded from above by a positive ε.

Then, for any r > ε,

N(A, r+ ε) 6 N(B, r) 6 N(A, r− ε)

There is no such result for Hausdorff measures. In fact, even there is
not even a lower or upper semicontinuity for Hausdorff measures under
Hausdorff approximation in general. Indeed, if K = [0, 1] × {0} ⊆ R

d and
Kε = [0, 1]×[−ε, ε]. Then, H1(Kε) is infinite for any positive ε, while H1(K) = 1.
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Conversely, let Kn = {k/n ; 0 6 k 6 n} ⊆ R and K = [0, 1]. Then Kn Hausdorff
converges to K, while the Hausdorff measures H1(Kn) = 0 does not converge
to H1(K) = 1.

I.1.3 — Dimension and smoothness of the medial axis

Hausdorff dimension of the medial axis. The following proposition is
due to P. Erdös (in [Erd46]). A consequence of this proposition is that the
Hausdorff dimension on Med(K) is at most d − 1, which is already a big
improvement over Proposition I.5.

THEOREM I.8. For a given compact set K ⊆ R
d, let Medk(K) denote the set

of points of R
d such that the affine space spanned by projB(x, dK(x)) has

dimension at least k+1. Then, Medk(K) has σ-finite (d−k)-Hausdorff measure,

ie. it is a countable union of subsets with finite (d− k)-Hausdorff measure.

Another consequence of this result is that Hd−1-almost every point of the
medial axis has only two projections on K.

Note that thanks to Proposition I.2, the Hausdorff dimension of the closure
of the medial axis Med(K) is d for most compact sets. In [Riv01], Rivière
produced a family of counter-examples concerning the dimension of the set of
points of the cut-locus that are not in the medial axis:

THEOREM I.9 (Rivière). For any d > 2 and s ∈ [0, d], there exists an open

bounded convex set Ω ⊆ R
d such that the Hausdorff dimension of Cut(∂Ω) \

Med(∂Ω) ∩Ω is s.

Semiconcavity of the distance functions. In this paragraph, we review
the semiconcavity properties of the distance function and the squared distance
function, which will play an important role in Chapter II and IV. Then, we
recall some consequences of the semiconcavity on the local regularity of the
medial axis, that can be obtained as particular cases of theorems on the set
non-differentiability points of a convex function.

DEFINITION I.4. Let Ω be a connected open subset of R
d. Recall that a

function ϕ : Ω → R is called convex if for any segment [a, b] included in
Ω, the restriction of ϕ to [a, b] is convex in the usual sense, ie. ϕ(ta + (1 −

t)b) 6 tϕ(a) + (1 − t)ϕ(b). The function ϕ is called λ-convex if the function
x 7→ ϕ(x) + λ ‖x‖2 is convex on Ω.

As expected, a function ψ : Ω → R will be called λ-concave if −ϕ is
λ-convex.

The first remark to be done about λ-convexity is that if the function is C2,
it is λ-convex iff the second derivative is bounded from below: D2ϕ > −λid.
Another interesting characterization for λ-convexity is the following:

PROPOSITION I.10. A function ϕ : Ω→ R
d is λ-convex iff for any point x in Ω,

there exists a vector v such that:

ϕ(x+ h) 6 ϕ(x) + 〈h|v〉− λ ‖h‖2
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General references on semi-concavity are [CS04] and [Pet07] for semi-
concave functions on Alexandrov spaces. Proposition I.4 of the previous
section can be rephrased:

PROPOSITION I.11. The squared distance function to a compact set K ⊆ R
d is

1-semiconcave (or, said otherwise, the function vK : x 7→ ‖x‖2−d2K(x) is convex).

This proposition seems to have been discovered many times; it is attributed
to P.-L. Lions in J.H.G. Fu’s paper on tubular neighborhood [Fu85]. It is a
recurrent example in [CS04] and [Pet07], and is underlying the techniques of
[Lie04]. As a consequence of Proposition I.11, one also has:

PROPOSITION I.12. For any ρ > 0 and any compact set K ⊆ R
d, the distance

function dK is 1/ρ semiconcave on the complement of the ρ-offset of K, R
d \ Kρ.

Rectifiability of the medial axis. In order to give more precise results
on the regularity of the medial axis, we need to introduce the notion of
rectifiability:

DEFINITION I.5. A subset S of R
d is called k-rectifiable if there exists a

countable family of Lipschitz maps fi : R
k → R

d such that the union of the
fi(R

k) cover S up to a Hk-negligible set, ie. Hk(S \ ∪ifi(Rk)) = 0.

Although it might seem surprising at first glance, it is equivalent to
require that the set S can be written as a countable union of k-dimensional C1

submanifolds of R
d, up to a Hk-negligible set. A set is called Cm k-rectifiable

if it can be written as a countable union of k-dimensional Cm submanifolds of
R
d up to a Hk-negligible set.

DEFINITION I.6. Given a function ϕ : R
d → R, the subdifferential at a

point x ∈ R
d, denoted by ∂ϕ(x), is the set of vectors v such that ϕ(x + h) >

ϕ(x) + 〈v|h〉 for every h ∈ R
d. Notice that ∂ϕ(x) is a convex set; its dimension

is by definition the dimension of the affine subspace that it spans.
When ϕ is a convex function, we will denote by Σk(ϕ) the set of points

x ∈ R
d where the dimension of the subdifferential ∂ϕ(x) is at least k. In

particular, the set of non-differentiability point of ϕ is Σ1(ϕ).

The following theorem is due to Alberti, Ambrosio and Cannarsa, cf.

[AAC92, Alb94]:

THEOREM I.13. If ϕ : R
d → R is a λ-convex function, then the singular set

Σk(ϕ) is (d− k)-rectifiable of class C2.

The medial axis of a compact set K ⊆ R
d is equal to the set of non-

differentiability points of the function vK, ie. Σ1(vK), while the set of points
with three or more closest neighbors is equal to Σ2(vK). As a consequence of
Theorem I.13, one gets the following improvement over Theorem I.8:

COROLLARY I.14. For any compact subset K of R
d:

(i) the medial axis Med(K) K is C2 (d− 1)-rectifiable;

(ii) the set of point of Med(K) with three or more closest points in K is C2

(d− 2)-rectifiable.
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I.2 SIZE AND VOLUME OF THE µ-MEDIAL AXIS

The goal of this part is to bound the Hd−1–measure of a refinement of the
medial axis of a compact set K called the µ–medial axis (0 < µ < 1), that is
ε away from K. As we will see in Chapter II, this result can be used to give
quantitative continuity results for the map p : K ∈ K(Rd) 7→ pK|E ∈ L1(E).

µ-Medial axis of a compact set. Given a compact set K ⊆ R
d, a point

x ∈ R
d will be called a µ-critical point of the distance function to K, or simply

µ-critical (with µ ∈ [0, 1[), if the inequalityϕ2(x+h) 6 ϕ2(x)+µ ‖h‖ϕ(x)+‖h‖2
holds for all h ∈ R

d.
The µ-medial axis Medµ(K) of a compact set K ⊆ R

d is the set of µ-critical
points of the distance function. The µ-medial axis Medµ(K) is a compact
subset of the medial axis, with the property that Med(K) is the union of every
µ-medial axes of K (with µ < 1). This notion was introduced by F. Chazal,
D. Cohen-Steiner and A. Lieutier in [CCSL09], where the authors proved in
particular that the map K ∈ K(Rd) 7→Medµ(K) ∈ K(Rd) is continuous (under
some hypothesis). Another useful characterisation of the norm ‖∇xdK‖ is the
following. Given a point m ∈Med(K), denote by γK(m) the center and rK(m)

the radius of the smallest ball enclosing the set the set of projections of m on
K.

LEMMA I.15. The norm of the gradient of the distance function at a point

m ∈Med(K) is given by:

‖∇mdK‖2 = 1−
rK(m)2

d2K(m)
= cos2(θ)

where θ is the (half) angle of the isotropic cone joining m to the smallest

enclosing ball B(γK(m), rK(m)).

Because of its compactness, one could expect that the µ-medial axis of a
well-behaved compact set will have finite Hd−1-measure. This is not the case
in general: if one considers a “comb”, ie. an infinite union of parallel segments
of fixed length in R

2, such as C = ∪i∈N∗ [0, 1]× {2−i} ⊆ R
2 (see Figure I.2), the

set of critical points of the distance function to C contains an imbricate comb.
Hence Hd−1(Medµ(C)) is infinite for any µ > 0.

However, for any positive ε, the set of points of the µ-medial axis of C that
are ε-away from C (that is Medµ(C) ∩ R

d \ Cε) only contains a finite union of
segments, and has finite Hd−1-measure. The goal of this section is to prove
(quantitatively) that this remains true for any compact set. Precisely, we
have:

THEOREM I.16. For any compact set K ⊆ R
d, ε 6 diam(K), and η small

enough,

N
(

Medµ(K) ∩ (Rd \ Kε), η
)

6 N(∂K, ε/2) O

(

[

diam(K)

η
√
1− µ

]d−1
)
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Figure I.2 – The “comb” and a part of its medial axis (dotted)

In particular, one can bound the (d− 1)-volume of the µ-medial axis

Hd−1
(

Medµ(K) ∩ (Rd \ Kε)
)

6 N(∂K, ε/2) O

(

[

diam(K)√
1− µ

]d−1
)

REMARKS. — The main technical ingredient of the proof is a (local) Lipschitz
regularity result for the normal distance to the medial axis τK, introduced
below, on a part of the level set ∂Kr. When K is a compact submanifold
of class C2,1, it is already known that this function is globally Lipschitz
[IT01, LN05] on any r-level set, when r is small enough. When K is the
analytic boundary of a bounded domain Ω of R

2, the normal distance to
the medial axis of ∂Ω is 2/3-Hölder on Ω [CCG07].
The Lipschitz regularity of the map τK on ∂Kr was used in [IT01] to prove
that the whole cut locus of a smooth compact submanifold of a compact
Riemannian d-manifold has finite volume (d − 1)-volume. The spirit of
their proof is very similar to ours; however, different technical difficulties
arise (because of the Riemannian setting), and simplifications occur due
to the smoothness assumption.

— (Sharpness of the bound) Let x, y be two points at distance D in R
d and

K = {x, y}. Then, Med(K) is simply the medial hyperplane between x and
y. A point m in Med(K) belongs to Medµ(K) iff the cosine of the angle
θ = 1

2
∠(x−m,y−m) is at most µ.

cos2(θ) = 1−
‖x− y‖2
d2K(m)

= 1−
diam(K)2

4d2K(m)
(I.5)

Hence, cos(θ) > µ iff dK(m) 6 1
2

diam(K)/
√

1− µ2. Let z denote the
midpoint between x and y; then dK(m)2 = ‖z−m‖2 + diam(K)2/4. Then,
Medµ(K) is simply the intersection of the ball centered at z and of radius
diam(K)

√

µ2/(1− µ2) with the medial hyperplane. Hence,

Hd−1(Medµ(K)) = Ω





[

diam(K)µ2
√

1− µ2

]d−1


 (I.6)

This shows that the behaviour in diam(K) and µ of the theorem is sharp
as µ converges to 1.
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Outline of the proof. In order to prove Theorem I.16, we obtain the 2ε-
away µ-medial axis Medµ(K) ∩ (Rd \ K2ε) as the image of a part of the level
set ∂Kε under the normal projection on the medial axis ℓ : R

d \ K→Med(K).
There are two main difficulties. First, one need to obtain a bound on

the (d− 1)-volume (or Lebesgue covering numbers) of the hypersurface ∂Kε;
this is achieved in §I.2.1. Second, one needs to obtain a Lipschitz regularity
statement for the restriction of the map ℓ to ∂Kε. There is no such statement
for the whole surface ∂Kε, unless eg. K is a smooth submanifold. However, we
are able to introduce a subset Sεµ ⊆ ∂Kε whose image under ℓ cover the ε-away
µ-medial axis, and such that the restriction of ℓ to Sεµ is Lipschitz. This is
enough to conclude, thanks to Proposition I.6.

I.2.1 — Volume of the boundary of the offsets of a compact set

The next proposition gives a bound for the measure of the r-level set of a
compact set depending only on its covering number. A similar result with a
different bound has been previously obtained in [OP85]. As always, Kr is the
set of points of R

d at distance less than r of K, and ∂Kr is the boundary of this
set, ie. the r-level set of the distance function dK.

Volume of spheres and balls. We will denote by ωd−1 (resp. ωd−1(r)) the
(d − 1)-volume the (d − 1)-dimensional unit (resp. radius r) sphere in R

d.
Similarly, βd and βd(r) will denote the d-volume of d-balls.

PROPOSITION I.17. If K is a compact set in R
d, for every positive r, ∂Kr is

rectifiable and

Hd−1(∂Kr) 6 N(∂K, r)×ωd−1(2r) (I.7)

N(∂Kr, ε) 6 N(∂K, r)N(Sd−1, ε/2r) (I.8)

This proposition will also be used in the next chapter, §II.1.2. Before
proving it, let us make a few comments on this result:

— The bound in the theorem is tight, as one can check by considering K to be
the ball B(0, r) (ie. Kr = B(0, 2r)).

— There exists a constant C(d) such that the Lebesgue number N(B(0, 1), r)

of the unit ball in R
d is bounded by 1+C(d)r−d. From this and Proposition

I.17 it follows that

Hd−1(∂Kr) 6 N(∂K, r)×ωd−1(2r)

6 N(B(0,diam(K)/2), r)×ωd−1(2r)

6 (1+ C(d)× (diam(K)/r)d)ωd−1(2r)

6 C ′(d)×
(

1+
diam(K)d

r

)

for some universal constant C ′(d) depending only on the ambient dimen-
sion d. This last inequality was the one actually proved in [OP85].
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— A corollary of Proposition I.17 is that if K is a compact subset of R
d of

metric codimension k, ie.N(K, ε) 6 Cεk−d, then Hd−1(∂Kε) 6 2d−1ωd−1×
Cεd−1. Of course, no such inequality can be expected if we only assume a
bound on the Hausdorff dimension of K.

We first prove Proposition I.17 in the special case of r-flowers. A r-flower
F is the boundary of the r-offset of a compact set contained in a ball B(x, r),
ie. F = ∂Kr where K is contained in some ball B(x, r). The difference with
the general case is that when K is contained in a ball B(x, r), the offset Kr

is star-shaped with respect to x. This allows us to define a ray-shooting
application sK : Sd−1 → ∂Kr which maps any v ∈ Sd−1 to the intersection of
the ray emanating from x with direction v with the hypersurface ∂Kr.

LEMMA I.18. If K is a compact set contained in a ball B(x, r), the ray-shooting

application sK defined above is 2r-Lipschitz, so that Hd−1(∂Kr) 6 ωd−1(2r).

Proof. Since ∂Kr = sK(B(0, 1)), assuming that sK is 2r-Lipschitz, we will
indeed have: Hd−1(Kr) 6 (2r)d−1Hd−1(B(0, 1)) = ωd−1(2r). Let us now
compute the Lipschitz constant of the ray-shooting map sK.

If we let tK(v) be the distance between x and sK(v), we have tK(v) =

supe∈K te(v). Since tK is the supremum of all the te, in order to prove that sK
is 2r-Lipschitz, we only need to prove that each se is 2r-Lipschitz. Solving the
equation ‖x+ tv− e‖ = r with t > 0 gives

te(v) =

√

〈x− e|v〉2 + r2 − ‖x− e‖2 − 〈x− e|v〉

dvte(w) =
〈x− e|v〉〈x− e|w〉

√

〈x− e|v〉2 + r2 − ‖x− e‖2
− 〈x− e|w〉

Since se(v) = x+ te(v)v,

dvse(w) = ‖se(v) − x‖w+ dvte(w)v

= 〈se(v) − x|v〉w+

(〈x− e|v〉〈x− e|w〉
〈se(v) − e|v〉 − 〈x− e|w〉

)

v

= 〈se(v) − x|v〉〈se(v) − e|v〉w− 〈x− e|w〉v
〈se(v) − e|v〉

If w is orthogonal to x− e, then ‖dvse(w)‖ 6 ‖se(v) − x‖ ‖w‖ 6 2r ‖w‖ and
we are done. We now suppose that w is contained in the plane spanned by
x − e and v. Since w is tangent to the sphere at v, it is also orthogonal v.
Hence, 〈se(v) − x|w〉 = 0, and 〈x− e|w〉 = 〈se(v) − e|w〉.

dvse(w) = ‖se(v) − x‖2 〈se(v) − e|v〉w− 〈se(v) − e|w〉v
〈se(v) − e|se(v) − x〉

If we suppose that both v and w are unit vectors, 〈se(v) − e|v〉w − 〈se(v) −

e|w〉v is the rotation of se(v) − e by an angle of π/4. By linearity we get
‖〈se(v) − e|v〉w− 〈se(v) − e|w〉v‖ = ‖w‖ ‖se(v) − e‖ (we still have ‖v‖ = 1).



22 I. REGULARITY AND SIZE OF THE MEDIAL AXIS

Now let us remark that

‖se(v) − e‖ ‖se(v) − x‖ |cos(θ)| = |〈se(v) − e|se(v) − x〉|

=
1

2
(‖x− se(v)‖2 + ‖se(v) − e‖2 − ‖x− e‖2)

>
1

2
‖x− se(v)‖2

Using this we deduce:

‖dvse(w)‖ 6 ‖se(v) − x‖2 ‖w‖ ‖se(v) − e‖
1
2
‖x− se(v)‖2

= 2 ‖se(v) − e‖ ‖w‖ 6 2r ‖w‖

We have just proved that for any w tangent to v, ‖dvse(w)‖ 6 2r ‖w‖, from
which we can conclude that se is 2r-Lipschitz.

Proof of Proposition I.17. By definition of the covering number, there exist
a finite family of points x1, . . . , xn, with n = N(∂K, r), such that union of
the open balls B(xi) covers ∂K. If one denotes by Ki the intersection of ∂K
with B(xi, r), the boundary ∂Kr is contained in the union ∪i∂Kri . Hence its
Hausdorff measure does not exceed the sum

∑
iH

d−1(∂Kri). Since for each i,
∂Kri is a flower, one concludes by applying the preceding lemma.

The second inequality is proven likewise, using Proposition I.6 to bound
the Lebesgue covering number of the image of a metric space by a Lipschitz
map.

I.2.2 — Covering numbers of the µ-medial axis

We now proceed to the proof of Theorem I.16.

DEFINITION I.7. For any point x ∈ R
d, we let τK(x) ∈ R ∪∞ be the normal

distance to the medial axis that is τK(x) = inf{t > 0 ; x+ t∇xdK ∈Med(K)}. By
convention, we will define τK(x) to be zero at any point in K or in the medial
axis Med(K).

For any time t smaller than τ(x), we denote by ΨtK(x) the point ΨtK(x) =

x + t∇xdK. Finally, for any x 6∈ K, we let ℓK(x) be the first intersection of
the half-ray starting at x with direction ∇xdK with the medial axis. More
precisely, we set ℓK(x) = Ψ

τ(x)

K (x) ∈Med(K).

LEMMA I.19. Let m be a point of the medial axis Med(K) with d(x, K) > ε, and

x be a projection of m on ∂Kε. Then ℓ(x) = m.

Proof. By definition of Kε, d(m,K) = d(m,Kε) + ε, so that the projection
p of x on K must also be a projection of m on K. Hence, m,x and p must
be aligned. Since the open ball B(m,d(m,p)) does not intersect K, for any
point y ∈]p,m[ the ball B(y, d(y, p)) intersects K only at p. In particular, by
definition of the gradient, ∇xdK must be the unit vector directing ]p,m[, ie.

∇xdK = (m−x)/d(m,x). Moreover, since [x, p[ is contained in the complement
of the medial axis, τ(x) must be equal to d(x,m). Finally one gets Ψτ(x)(x) =

x+ d(x,m)∇xdK = m.



I.2. SIZE AND VOLUME OF THE µ-MEDIAL AXIS 23

This first statement means in particular that 2ε-away medial axis,
Med(K) ∩ (Rd \ Kε) is contained in the image of the piece of hypersurface
∂Kε ∩ {τK > ε} by the map ℓ.

Recall that the radius of a set K ⊆ R
d is the radius of the smallest ball

enclosing K, while the diameter of K is the maximum distance between two
points in K. Jung’s theorem [Jun10], is the following inequality between the
radius and the diameter:

THEOREM I.20 (Jung). If K is a subset of R
d, then radius(K)

√

2(1+ 1/d) 6

diam(K).

LEMMA I.21. For any point m in the µ-medial axis Medµ(K), there exists

two projections x, y ∈ projK(m) of m on K such that the cosine of the angle

1
2
∠(x−m,y−m) is smaller than

(

1+µ2

2

)1/2

.

Proof. We use the characterization of Lemma I.15: let B(γK(m), rK(m)) ⊇
projK(m) be smallest enclosing ball, such that µ2 = 1− r2K(m)/d2K(m).

By Jung’s theorem, there exists two points x, y in projK(m) whose distance
r ′ is larger than

√
2rK(m). The cosine of the angle ∠(x −m,y −m) is then:

1− r ′2

d2K(m)
, which can be bounded by (1+ µ2)/2.

LEMMA I.22. The maximum distance from a point in Medµ(K) to K is bounded

by 1

2
√
2

diam(K)/
(

1− µ2
)1/2

Proof. Let x, y be two projections of m ∈Medµ(K) as defined in the previous
lemma. Then, if θ = ∠(x−m,y−m), one has

cos2(θ) = 1−
‖x− y‖2 /4

d2K(m)
6
1+ µ2

2

Hence, d2K(m) 6 1
8
(1− µ2)−1 ‖x− y‖2, which proves the result.

Let us denote by Sεµ the set of points x of the hypersurface ∂Kε that satisfies
the three conditions below:

(i) the normal distance to the medial axis is bounded below: τ(x) > ε ;

(ii) the image of x by ℓ is in the µ-medial axis of K: ℓ(x) ∈Medµ(K);

(iii) there exists another projection y of m = ℓ(x) on ∂Kε with

cos
(

1

2
∠(p−m,q−m)

)

6

√

1+ µ2

2

A consequence of Lemmas I.21 and I.19 is that the image of Sεµ by the map
ℓ covers the whole 2ε-away µ-medial axis:

ℓ(Sεµ) = Medµ(K) ∩ (Rd \ K2ε) (I.9)
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Lipschitz estimations for the map ℓ. In this paragraph, we bound the
Lipschitz constants of the restriction of the maps ∇dK, τ and (finally) ℓ to the
subset Sεµ ⊆ ∂Kε.

First, let ∂Kε,t be the set of points x in ∂Kε where the distance function is
differentiable, and such that τ(x) is bounded from below by t. In particular,
notice that Sεµ is contained in ∂Kε,ε. The following Lemma proves that the
functions Ψt and ∇xdK are Lipschitz on ∂Kε,t:

LEMMA I.23. (i) The restriction of Ψt to ∂Kε,t is (1+ t/ε)-Lipschitz.

(ii) The gradient of the distance function, x 7→ ∇xdK, is 3/ε-Lipschitz on ∂Kε,ε.

Proof. Let x and x ′ be two points of ∂Kε with τ(x), τ(x ′) > t, p and p ′ their
projections on K and y and y ′ their image by Ψt. We let u = 1 + t/ε be the
scale factor between x− p and y− p, ie. :

(∗) y ′ − y = u(x ′ − x) + (1− u)(p ′ − p)

Using the fact that y projects to p, and the definition of u, we have:

‖y− p‖2 6
∥

∥y− p ′∥
∥

2
= ‖y− p‖2 +

∥

∥p− p ′∥
∥

2
+ 2〈y− p|p− p ′〉

ie. 0 6
∥

∥p− p ′∥
∥

2
+ 2u〈x− p|p− p ′〉

ie. 〈p− x|p− p ′〉 6
1

2
u−1

∥

∥p− p ′∥
∥

2

Summing this last inequality, the same inequality with primes and the equal-
ity 〈p ′ − p|p− p ′〉 = − ‖p ′ − p‖2 gives

(∗∗) 〈x ′ − x|p ′ − p〉 6
(

1− u−1
) ∥

∥p ′ − p
∥

∥

2

Using (∗) and (∗∗) we get the desired Lipschitz inequality

∥

∥y− y ′∥
∥

2
= u2

∥

∥x− x ′
∥

∥

2
+ (1− u)2

∥

∥p ′ − p
∥

∥

2
+ 2u(1− u)〈x ′ − x|p ′ − p〉

6 u2
∥

∥x− x ′
∥

∥

2
− (1− u)2

∥

∥p ′ − p
∥

∥

2
6 (1+ t/ε)

2
∥

∥x− x ′
∥

∥

2

The second step is to prove that the restriction of τ to the set Sεµ is also Lip-
schitz. The technical core of the proof is contained in the following geometric
lemma:

LEMMA I.24. Let t0 denote the intersection time of the ray x0 + tv0 with the

medial hyperplane Hx0,y0 between x0 and another point y0, and t(x, v) the

intersection time between the ray x+ tv and Hxy0 . Then, assuming:

α ‖x0 − y0‖ 6 〈v0|x0 − y0〉, (I.10)

‖x− y0‖ 6 D, (I.11)

‖v− v0‖ 6 λ ‖x− x0‖ , (I.12)

ε 6 t(x0, y0) (I.13)



I.2. SIZE AND VOLUME OF THE µ-MEDIAL AXIS 25

one obtains the following bound:

t(x, v) 6 t(x0, v0) +
6

α2
(1+ λD) ‖x− x0‖

as soon as ‖x− x0‖ is small enough (namely, smaller than εα2(1+ 3λD)−1).

Proof. We search the time t such that ‖x+ tv− x‖2 = ‖x+ tv− y0‖2, ie.

t2 ‖v‖2 = ‖x− y0‖2 + 2t〈x− y0|v〉+ t2 ‖v‖2

Hence, the intersection time is t(x, v) = ‖x− y0‖2 /2〈y0 − x|v〉. The lower
bound on t(x0, y0) translates as

ε 6
1

2

‖x0 − y0‖2
〈x0 − y0|v0〉

6
1

2α
‖x0 − y0‖

If ∇xt and ∇vt denote the gradients of this function in the direction of v
and x, one has:

∇vt(x, v) =
1

2

‖x− y0‖2 (x− y0)

〈y0 − x|v〉2

∇xt(x, v) =
1

2

‖x− y0‖2 v+ 2〈y0 − x|v〉(x− y0)

〈y0 − x|v〉2

Now, we bound the denominator of this expression:

〈x− y0|v〉 = 〈x− y0|v− v0〉+ 〈x− x0|v0〉+ 〈x0 − y0|v0〉
> α ‖x0 − y0‖− (1+ λ ‖x− y0‖) ‖x− x0‖
> α ‖x− y0‖− (2+ λD) ‖x− x0‖

The scalar product 〈x − y0|v〉 will be larger than (say) α
2
‖x− y0‖ provided

that
(2+ λD) ‖x− x0‖ 6

α

2
‖x− y0‖

or, bounding from below ‖x− y0‖ by ‖x0 − y0‖ − ‖x0 − x‖ > 2αε − ‖x0 − x‖,
provided that:

(3+ λD) ‖x− x0‖ 6 α2ε

This is the case in particular if ‖x− x0‖ 6 α2ε(3+λD)−1. Under that assump-
tion, we have the following bound on the norm of the gradient, from which
the Lipschitz inequality follows:

‖∇xt(x, v)‖ 6 6/α2 and ‖∇vt(x, v)‖ 6 4D/α2

Using this Lemma, we are able to show that the function ℓ is locally
Lipschitz on the subset Sεµ ⊆ ∂Kε:
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PROPOSITION I.25. The restriction of τ to Sεµ is locally L-Lipschitz, in the sense

that if (x, y) ∈ Sεµ are such that ‖x− y‖ = δ0, then ‖ℓ(x) − ℓ(y)‖ 6 L ‖x− y‖
with

L = O
(

1+ diam(K)/ε

(1− µ)1/2

)

and δ0 = O(ε/L)

Proof. 1. We start the proof by evaluating the Lipschitz constant of the
restriction of τ to Sεµ, using Lemma I.24.

Thanks to Lemma I.21, for any x in Sεµ, there exists another projection y
of m = ℓ(x) on ∂Kε such that the cosine of the angle θ = ∠(x−m,y−m) is
at most

√

(1+ µ2)/2. Let us denote by v = ∇xdK the unit vector from x to m.
The angle between −→yx and v is π/2− θ. Then,

cos(π/2− θ) = sin(θ) =

√

1− cos2(θ) > α :=

(

1− µ2

2

)1/2

As a consequence, with the α introduced above, one has α ‖x− y‖ 6

α |〈v|x− y〉|. Moreover, ‖x− y‖ is smaller than D = diam(Kε) 6 diam(K) + ε.
For any other point x ′ in Sεµ, and v ′ = ∇x ′dK, one has ‖v− v ′‖ 6 λ ‖x− x ′‖
with λ = 3/ε (thanks to Lemma I.23).

These remarks allow us to apply Lemma I.24. Using the notations of this
lemma, one sees that t(x, v) is simply τ(x) while t(x ′, v ′) is an upper bound
for τ(x ′). This gives us:

τ(x ′) 6 τ(x) +
6

α2
(1+ λD)

∥

∥x− x ′
∥

∥

6 τ(x) +M
∥

∥x− x ′
∥

∥

with M = O

(

1+ diam(K)/ε
√

1− µ2

)

as soon as x ′ is close enough to x – from the statement of Lemma I.24, one sees
that ‖x− x ′‖ 6 δ0 with δ0 = O(ε/M) is enough. Exchanging the role of x and
x ′, one proves that |τ(x) − τ(x ′)| 6 M ‖x− x ′‖, provided that ‖x− x ′‖ 6 δ0.

2. We can use the following decomposition of the difference ℓ(x) − ℓ(x ′):

ℓ(x) − ℓ(x ′) = (x ′ − x) + (τ(x) − τ(x ′))∇xdK + τ(x ′)(∇xdK −∇x ′dK)

in order to bound the (local) Lipschitz constant of the restriction of ℓ to Sεµ
from those computed earlier: Lip ℓ 6 1 + Lip τ + ‖τ‖∞ Lip∇dK. Thanks to
Lemma I.22, one has |τ(x)| = O(diam(K)/(1 − µ)1/2); and Lip∇dK 6 2/ε by
Lemma I.23 again.

Proof of Theorem I.16. Let L = O(diam(K)/(ε
√
1− µ)), and δ0 = O(ε/L) as in

Proposition I.25. Then, thanks to Prop. I.6, we get that for any η smaller
than δ0,

N
(

Medµ(K) ∩ (Rd \ Kε), η
)

6 N(∂Kε/2, η/L).

Using the bound on the covering number of the boundary of the offset given
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in Proposition I.17, we are able to bound the second term:

N(∂Kε/2, η/L) 6 N(∂K, ε/2)N
(

Sd−1,
η

Lε

)

(I.14)

We conclude by using the estimation N(Sd−1, ρ) ∼ ωd−1ρ
d−1.





Chapter II

BOUNDARY AND CURVATURE

MEASURES

Figure II.1 – Boundary measure for a sampled mechanical part. As expected,
the relevant features of the shape are visually highlighted.

Abstract

In this chapter, we introduce and study the boundary measures of compact
subsets of the d-dimensional Euclidean space, which are closely related to
Federer’s curvature measures. Both boundary and curvature measures can
be computed efficiently for point clouds, through a Monte-Carlo algorithm.

The main contribution of this work is the proof of a quantitative stability
theorem for boundary measures, under Hausdorff approximation. Hausdorff
stability makes boundary measures a useful tool for geometric inference. As
a corollary we obtain a stability result for Federer’s curvature measures of a
compact set, showing that they can be reliably estimated from point-cloud
approximations.

These stability results follow from bounds for the L1 norm between the
projection functions pK and pK ′ on a bounded open set E as a function of the
Hausdorff distance between K and K ′. A first bound is obtained using the
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results of the previous chapter on the µ-medial axis. A better bound, with
optimal exponents, is obtained using tools from convex analysis and geometric
measure theory.

In the appendix, we discuss how the existence of approximate curvature
measure might be used for estimating the reach of a compact set, a quantity
that plays an important role in most reconstruction approaches.
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INTRODUCTION

This chapter (as well as the next chapter) deals with approximate extrinsic
geometry, and more precisely, with the geometric information given by normal
cones. We are especially interested in the “size” of the normal cones, which
give precious informations concerning the smoothness of the considered shape.

Loosely speaking, the normal cone to a compact set K ⊆ R
d at a point p

is the set of normals to K at p. The definition can be made precise in terme
of the projection function: a vector −→n ∈ Sd−1 is normal to K at p if there
is a point x ∈ R

d whose projection in K is p, and such that the vector −→px is
(positively) collinear to −→n . Of course, the normal cone at a point x in K is
a Hausdorff-unstable piece of information, for at least two reasons. First,
because there is no notion of scale attached to a normal cone (Fig. II.(a)), and
second because a stable notion of this kind cannot be pointwise (Fig. II.(b))

In order to account for these two phenomena, we define the boundary

measure of K at a scale r as a mass distribution (rather than as a function)
µK,Kr concentrated on K. The amount of mass contained in a region B ⊂ K,
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K K ′

x x∅

(a) Normal cones don’t have scale.

xL L′ x

(b) Normal cones are pointwise un-
stable.

Figure II.2 – Unstability of normal cones. In Fig. (a), the normal cone to K
at x is a circle arc while the normal cone to K ′ at x is empty. In
Fig. (b), the normal cone to L at x is the same circle arc, while
the normal to L ′ at the same point x is a singleton (because L ′

is smooth at x).

denoted by µK,Kr(B), measures the volume of the set of points in the offset Kr

whose projection on K lies in B. When K is convex or smooth (or more generally
has positive reach) the dependence of the boundary measure on the scale
parameter r is related to generalized notions of curvature, as proven by the
tube formulas from various author (Steiner, Minkowski, Weyl and Federer).
In particular, these generalized curvatures can be retrieved knowing only the
boundary measures at several scales.

Stability and computability. The usability of boundary measures for ge-
ometric inference depends on two questions. First, is this notion Hausdorff
stable? ie. if C is a good approximation of K (dense enough and without too
much noise), does the boundary measure µC,Cr carry approximately the same
geometric information as µK,Kr? Second, is it practically feasible to compute,
or approximate the boundary measure of a point cloud C ⊆ R

d ?
The answer to the second question is given in section 5 in the form of a

very simple to implement Monte-Carlo algorithm allowing to compute the
boundary measure of a point cloud C embedded in the space R

d. Standard
arguments show that if C has n points, a ε-approximation of µC,Cr can be
obtained with high probability (eg. 99%) in time O(dn2 ln(1/ε)/ε2) without
using any sophisticated data structure. A more careful analysis shows that
the n2 behavior can be replaced by n times an appropriate covering number
of C, which indicates that the cost is linear both in n and d for low entropy
point clouds. Hence this algorithm is practical at least for moderate size point
clouds in high dimension.

The study of the Hausdorff-stability of boundary and curvature measures
is the main contribution of this chapter. We prove a stability theorem for
boundary measures, showing that the dependence on K is 1/2-Hölder — this
exponent being optimal. This theorem can be stated as follows, endowing the
set of compact subsets of R

d with the Hausdorff distance dH, and the set of
mass distributions on R

d with the so-called bounded-Lipschitz distance dbL

(see below for definitions):

THEOREM. For every compact set K ⊆ R
d, there exists some constant C(K)
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such that

dbL(µK,Kr , µC,Cr) 6 C(K)dH(C,K)1/2

In the sequel we will make this statement more precise by giving explicit
constants. A similar stability result for a generalization of curvature measures
is deduced from this theorem. At the heart of these two stability results is a
L1 stability property for (closest point) projections on compact sets. The proof
of the projection stability theorem involves a apparently new inequality in
convex analysis, which may also be interesting in its own:

THEOREM. Let E be an open subset of R
d with (d − 1)–rectifiable boundary,

and f, g be two convex functions such that diam(∇f(E) ∪ ∇g(E)) 6 k. Then

there exists a constant C(d, E, k) such that for ‖f− g‖∞ small enough,

‖∇f−∇g‖L1(E) 6 C(d, E, k) ‖f− g‖1/2∞

Outline. In §II.1, we recall the geometric background on tube formulas and
curvature measures. We especially insist on Federer’s contribution to the
theory, namely the definition of sets with positive reach, and the introduction
of curvature measures for these sets (an alternative proof of existence of which
is given in Appendix §II.A.1). In §II.2, we state and prove our Hausdorff-
stability results for boundary and curvature measures. In §II.2.2, we give
a first stability results that uses the bound on the covering numbers of the
µ-medial axis of the previous chapter, while in §II.2.3, we prove the bound
with optimal exponent stated above. The Hausdorff-stability of curvature
measures is deduced in §II.2.5. In §II.3, we introduce and study a Monte-
Carlo scheme for approximating boundary measures. We also discuss some
of the possibilities for extracting information (eg.on the location of features)
from these measures.

Appendix §II.A is dedicated to the relation between local Steiner (ie. tube)
formula and reach. We give an alternative proof of existence of tube formula
for compact set with positive reach, as well as a partial reverse statement
(barely stronger than the one given in [HHL04]), using some of the tools
introduced in the previous chapter. We then discuss the question of reach
estimation.

II.1 CURVATURE MEASURES AND REACH OF A COM-
PACT SET

In this section, we review some aspects of the theory of tube formulas. We
start with the global tube formulas of Steiner, Minkowski and Weyl, before
turning to the more quantitative and localized tube formulas by Federer, that
he used to define the curvature measures of a compact set with positive reach
in the Euclidean space.
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r

K

Kr

αi

ℓj

Figure II.3 – Offset of a polygon in the Euclidean plane

II.1.1 — Tube formulas: from Steiner to Weyl

Steiner-Minkowski formula. A tube formula for a compact set K in Eu-
clidean space is a formula for the (Lebesgue) volume of the tubular neigh-
borhoods Kr as a function of r. The offset Hd(Kr) grows as O(rd) as r goes
to infinity. Steiner was the first to remark that, when K is a convex polygon
in the Euclidean plane, the function r 7→ Hd(Kr) is in fact a polynomial of
degree two. Namely,

Hd(Kr) = H2(K) + rH1(∂K) + πr2

The proof of this fact is (almost) contained in Figure II.1.1: every vertex with
exterior angle αi contributes a volume of αir2 to Kr, while every segment
contributes r× ℓj. Summing these up on every segment and vertex yields the
2D Steiner formula.

Minkowski proved a similar polynomial behaviour for the volume of the
offsets of any convex compact set in R

d. Actually, he even proved that if K
and L are two compact convex sets, and λK⊕ µL denotes the Minkowski sum
{λp+µq ; p ∈ K, q ∈ L}, the volume Hd(λK⊕µL) is a homogeneous polynomial
of degree d in the two variables (λ, µ) ∈ R

+ ×R
+. Notice that if L is the unit

ball, and λ = 1, we get the desired tube formula.

Weyl tube formula. Weyl [Wey39] proved that the polynomial behavior for
r 7→ Hd(Kr) shown above is also true for small values of r when K is a compact
and smooth submanifold of R

d. Moreover he also proved that the coefficients
of this polynomial can be computed from the second fundamental form of K.
The following proposition is an example of such a result in the case of an
hypersurface bounding a domain:

PROPOSITION II.1. Let K be a bounded d-dimensional domain with smooth
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boundary M. Then, for sufficiently small values of r > 0,

Hd(Kr) = Hd(K) +

d−1∑

k=1

const(d, k)rk+1

∫

M





∑

i1<···<ik
κi1 . . . κik(p)



dp (II.1)

where κ1(p), . . . , κd(p) are the principal curvatures at point p of ∂K = M.

Proof. Let n be an oriented normal field on M. The map Φ : M × R →
R
d, (p, t) 7→ p+ tn is locally injective; by compactness ofM, it is also injective

on M × [0, r] for r small enough. One has d(p,t)Φ = idTpM + tdpn + n, ie.
∣

∣det(d(p,t)Φ)
∣

∣ = |det(id + tdpn)|. For t = 0, det(d(p,t)Φ) = 1 > 0 at any point
p ∈M; as a consequence, and by compactness of M again, this determinant
remains positive for small enough values of t.

All of this allows us to apply the following change-of-variable formula for
small valus of r:

Hd(Kr) = Hd(K) +

∫

Kr\K

1dx

= Hd(K) +

∫

M

∫r

0

det(id + tdpn)dtdn
(II.2)

The eigenvalues of the map dpn are the d principal curvatures of M at p,
which means:

det(id + tdpn) =

d−1∏

i=1

(1+ tκi(p)) =

d∑

k=1

tk





∑

i1<···<ik
κi1(p) . . . κik(p)



 (II.3)

We conclude the proof by putting Equation II.3 in Equation II.2.

II.1.2 — Federer curvature measures

The contribution of Federer in [Fed59] to this theory is twofolds. First, he
defines the notion of reach of a compact set, denoted by reach(K), and proves
that r 7→ Hr(K) is polynomial in r for r smaller than the reach of K. The
class of compact with positive reach includes both convex sets and smooth
submanifolds. More importantly, he gives a local version of the tube formula,
which takes into account the origin of every point of the offset (ie. where it
projects on K). Using this formula, he is able to associate to any compact set
K with positive reach (d+ 1) curvature measures Φ0(K), . . . , Φd(K).

The reach of a compact set. The reach of a compact set K, denoted by
reach(K) is the minimum distance between K and its medial axis, see Figure
II.4. Similar notion has been introduced and used under a couple of other
names.

The local feature size of a compact K at a point x ∈ K, denoted by lfsK(x),
was defined by Amenta and Bern [AB99]. It is the distance between x and the
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medial axis of K. With this definition, the reach of K is equal to the minimum

local feature size minx∈K lfsK(x).
Sets with positive reach in R

d or in a Riemannian manifold are also said to
have the unique footpoint property (UFP) [Kle80, Ban82] or to be proximally

smooth [CS04, p. 75].

EXAMPLES. — It is well known that the projection to a closed convex set
K ⊆ R

d is defined on the whole space, from what one deduces that the
reach(K) = +∞. The reciprocal of this theorem (if reach(K) = +∞, then K
is convex) is known as Motzkin theorem.

— From the proof of Proposition II.1, one sees that the reach of a smooth
hypersurface is always positive. In fact, a smooth compact submanifold of
R
d always has positive reach (this follows, for instance, from the tubular

neighborhood theorem).

— The reach of submanifold M is always upper-bounded by the minimum
radius of curvature of M; there is however no lower bound depending on
this minimum radius of curvature. Indeed, consider two spheres of radius
R at distance ε; then the reach of the union of those two sphere is ε

2
while

the minimum curvature radius remains constant and equal to R. Similar
examples can be constructed for connected manifolds.

Measures. Recall that a (nonnegative) measure µ associates to any (Borel)
subset B of R

d a nonnegative number µ(B). It should also enjoy the following
additivity property: if (Bi) is a countable family of disjoint subsets, then
µ(∪Bi) =

∑
i µ(Bi). A measure on R

d can be thought of as a mass distribution
on R

d, which one can probe using Borel sets: µ(B) is the mass of µ contained
in B.

The restriction of a measure µ to a subset C ∈ R
d is the measure µ|C

defined by µ|C(B) = µ(B ∩ C). The simplest examples of measures are Dirac
masses which, given a point x ∈ R

d, are defined by δx(B) = 1 if and only
if x is in B. In what follows, we will also use the k-dimensional Hausdorff

measures Hk whose definition has been recalled in chapter 1: if S ⊂ R
d

is a k-dimensional submanifold, Hk
|S

models a mass distribution uniformly
distributed on S.

Curvature measures. The second contribution of Federer is to consider
local Steiner formulas (or local tube Formula) instead of global ones. The
global tube formula considers the volume of the offset Kr; for the local one, a
Borel set B in K is fixed, and one considers the volume of the set of points in
the offset Kr whose projection on K lie in B (ie. p−1

K (B) ∩ Kr). This defines a
measure on K:

DEFINITION II.1. If E is a subset of R
d one introduces the measure µK,E

defined as follows: for any subset B ⊆ R
d, µK,E(B) is the d-volume of the set

of points of E whose projection on K is in B, ie. µK,E(B) = Hd(p−1
K (B) ∩ E).

In other words, µK,E is the pushforward of the restriction of the Lebesgue
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x

Kr

K

B

pK(x)

p−1

K (B)

M(K)

Figure II.4 – Boundary measure of K ⊂ R
d. The medial axis Med(K) of K is

the dashed line. Remark that the boundary of the offset ∂Kr

is smooth everywhere but at its point of intersection with the
medial axis.

measure to E by the projection pK, which can be written more concisely as
µK,E = pK# Hd

∣

∣

E
.

We will be particulary interested in the case where E is an offset of K,
E = Kr (Figure II.4). While the above definition makes sense for any compact
K ⊆ R

d, boundary measures have been mostly studied in the convex case and
in the smooth case. Let us first give two examples in the convex case:

EXAMPLES. — Let S be a unit-length segment in the plane with endpoints
a and b. The set Sr is the union of a rectangle of dimension 1× 2r whose
points project on the segment and two half-disks of radius r whose points
are projected on a and b. It follows that

µS,Sr = 2r H1
∣

∣

S
+
π

2
r2δa +

π

2
r2δb

— If P is a convex solid polyhedron of R
3, F its faces, E its edges and V its

vertices, then one can see that:

µP,Pr = H3
∣

∣

P
+ r

∑

f∈F
H2
∣

∣

f
+ r2

∑

e∈E
K(e) H1

∣

∣

e
+ r3

∑

v∈V
K(v)δv

where K(e) the angle between the normals of the faces adjacent to the edge
e and K(v) the solid angle formed by the normals of the faces adjacent to
v. As shown by Steiner and Minkowski, for general convex polyhedra the
measure µK,Kr can be written as a sum of weighted Hausdorff measures
supported on the i-skeleton of K, and whose local density is the local
external dihedral angle.

Federer showed that this polynomial behaviour for µK,Kr holds for any
compact set K ⊂ R

d with reach at least R:

THEOREM II.2. For any compact set K ⊆ R
d with reach greater than R, there

exists d + 1 (signed) measures Φ0K, . . . ,ΦdK such that for any r 6 R, µK,Kr =
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∑d
i=0ωd−iΦK,ir

i (as usual, ωk is the volume of the k unit sphere). These

measures are uniquely defined and are called the curvature measures of K.

The name curvature measures is motivated by the construction of Federer.
Federer first proves that if reach(K) > R, then for any r ∈ ]0, R[ the boundary
of the offset Kr is a C1,1 hypersurface — that is a C1 hypersurface with a
Lipschitz normal field. He then extends Proposition II.1 to this less smooth
setting; this allows him to define the curvature measures ΦKr(i) of Kr for
any r ∈]0, R[. Finally, the existence of curvature measures for K, as well
as the polynomial behaviour for the volume of the offsets is obtained by
approximation, by letting r go to zero.

In §II.A.1 we give a direct proof of existence of curvature measures without
using such an approximation argument (this prove has the disadvantage of
hiding why curvature measures are related to curvature, though).

THEOREM. Given any compact set K with positive reach, Φ0K(K) is equal to the

Euler-Poincaré characteristic of K.

II.2 STABILITY OF BOUNDARY MEASURES

In this section, we suppose that E is a fixed open set with rectifiable boundary,
and we obtain a quantitative stability theorem for the map K 7→ µK,E. What
we mean by stable is that if two compact sets K and K ′ are close, then the
measures µK,E and µK ′,E are also close. In order to be able to formulate a
precise statement we need to choose a notion of distance on the space of
compact subsets of R

d and on the set of measures on R
d.

To measure the distance between two compact subsets K and K ′ of R
d,

we will use the Hausdorff distance: dH(K,K ′) is by definition the smallest
positive constant η such that both K ′ ⊆ Kη and K ⊆ K ′η. It is also the
uniform distance between the two distance functions dK and dK ′ : dH(K,K ′) =

supx∈Rd |dK(x) − dK ′(x)|. The next paragraph describes the distance we use
to compare measures.

Wasserstein distance. The Wasserstein distance (of exponent 1) between
two measures µ and ν on R

d having the same total mass µ(Rd) = ν(Rd) is a
nonnegative number which quantifies the cost of the optimal transportation
from the mass distribution defined by µ to the mass distribution defined by ν
(cf. [Vil03]). It is denoted by W1(µ, ν). More precisely, it is defined as

W1(µ, ν) = inf
X,Y

E[d(X, Y)]

where the infimum is taken on all pairs of R
d-valued random variables X and

Y whose law are µ and ν respectively. This distance is also known as the earth-
mover distance, and has been used in vision [PWR89] and image retrieval
[RTG00]. One of the interesting properties of the Wasserstein distance is the
Kantorovich-Rubinstein duality theorem. Recall that a function f : R

d → R is
1-Lipschitz if for every choice of x and y, |f(x) − f(y)| 6 ‖x− y‖.
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THEOREM (Kantorovich-Rubinstein). If µ and ν are two probability measures

on R
d, then

W1(µ, ν) = sup
f

∣

∣

∣

∣

∫

fdµ−

∫

fdν
∣

∣

∣

∣

where the supremum is taken on all 1-Lipschitz function in R
d.

The Lipschitz function f in the theorem can be thought as a way of probing
the measure µ. For example, if f is a tent function, e.g. f(y) = (1− ||x− y||)+,
then

∫
fdµ gives an information about the local density of µ near x. The

Kantorovich-Rubinstein theorem asserts that if two measures µ and ν are
Wasserstein-close, then one can control the probing error between µ and ν by
Lipschitz functions.

NOTATIONS. If E is a (measurable) subset of R
d, we will denote by ‖f‖L1(E)

the L1 norm of the restriction of any integrable function f : R
d → R to E.

Likewise, ‖g‖∞,E will denote the supremum of |g(x)|, where x ranges in the
set E.

The following proposition reduces the stability result of the map K 7→ µK,E
with respect to the Wasserstein distance to a stability result for the map
K 7→ pK|E ∈ L1(E).

PROPOSITION II.3. If E is a subset of R
d, and K and K ′ two compact sets, then

W1(µK,E, µK ′,E) 6 ‖pK(x) − pK ′(x)‖L1(E)

Proof. Let Z be a random variable whose law is Hd
∣

∣

E
. Then, X = pK ◦ Z

and Y = pK ′ ◦ Z have law µK,E and µK ′,E respectively. Hence by definition,
W1(µK,E, µK ′,E) 6 E(d(pK ◦ Z,pK ◦ Z)), which is the desired bound.

II.2.1 — Federer’s stability theorem

The question of whether projection maps are stable already drawn attention
in the past. In particular, Federer proved the following result in [Fed59]:

THEOREM. Let R be a positive number, Kn ⊆ R
d be a sequence of compact sets

whose reach is greater than R, which Hausdorff-converges to some compact

K ⊆ R
d with reach(K) > R. Then pKn converges to pK uniformly on KR as n

grows to infinity.

A drawback of this theorem is that it does not give any information about
the speed of convergence. More importantly, the very strong assumptions
that all compact sets in the sequence have their reach bounded from below
makes it completely unusable in the setting of geometric inference:

LEMMA II.4. If a sequence of point clouds (Kn)n∈N Hausdorff-converges to an

infinite compact set K ⊆ R
d, then the reach of Kn converges to zero as n goes to

infinity.

Proof. The reach of a point cloud is the minimum distance between any two
of its points. Since K is infinite, it has an adherence point p; this means that
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there exists a sequence pi of points of K converging to p. For any ε > 0, there
exists an i such that ‖pi − p‖ 6 ε; then for n large enough, there are two
points xn, yn in Kn such that ‖xn − p‖ 6 ε/3 and ‖yn − pi‖ 6 ε < 3. Hence,
reach(Kn) 6 ε/3, which concludes the proof.

The conclusion of the lemma still hold if the point clouds are replaced by
embedded simplicial complexes, and K is eg.a smooth submanifold of R

d.
In fact, if K is the union of two distinct points x and y, and Kn = {x+ 1

n
(x−

y), y}, pKn does not converge uniformly to pK near the medial hyperplane of x
and y. Hence, it is hopeless to expect uniform convergence of pKn to pK on an
arbitrary open set E without assumption on both K and the Kn.

II.2.2 — A first attempt at a quantitative result

Thanks to the stability theorem of the gradient of the distance function (see
[CCSL09]), one can expect that the projections pK(x) and pK ′(x) can differ
dramatically only if x is close to the medial axis of K. This makes it reasonable
to expect a L1 convergence property of the projections, ie. if Kn converges
to K, then limn ‖pKn(x) − pK(x)‖L1(E) = 0. However, Proposition I.2 shows
that the medial axis of a compact set is generically dense. As a consequence,
translating the above intuition into a quantitative statement isn’t completely
straightforward. We need to make use of the µ-medial axis. We will make use
of the critical point stability theorem from [CCSL09]:

THEOREM II.5. (critical point stability) Let K,K ′ be two compact sets with

dH(K,K ′) 6 ε. For any point x in the µ-medial axis of K, there exists a point y

in the µ ′-medial axis of K ′ with µ ′ = µ+ 2
√

ε/dK(x) and ‖x− y‖ 6 2
√

εdK(x).

NOTATIONS. For any L > 0, and two compact sets K and K ′, denote by
∆L(K,K

′) the set of points x of R
n which are not in K nor in K ′, have unique

projections on K and on K ′ and such that ‖pK(x) − pK ′(x)‖ is at least L.

A consequence of the critical point stability theorem is that ∆L(K,K ′) lie
close to the µ-medial axis of K for a certain value of µ (this Lemma is similar
to [CCSL08, Theorem 3.1]):

LEMMA II.6. Let L > 0 and K,K ′ be two compact sets and δ 6 L/2 their

Hausdorff distance. Then for any positive R, one has

∆L(K,K
′) ∩ KR ⊆Medµ(K)2

√
Rδ

with µ =
(

1+ [(L− δ)/4R]
2
)−1/2

+ 4
√

δ/L.

Proof. Let x be a point in ∆L(K,K ′) with dK(x) 6 R, and denote by p and p ′

its projections on K and K ′ respectively. By assumption, ‖p− p ′‖ is at least
L. We let q be the projection of p ′ on the sphere S(x,dK(x)), and let K0 be
the union of K and q. Since |‖x− p‖− ‖x− p ′‖| 6 dH(K,K ′) = δ, the distance
between p ′ and q is at most δ. Hence, dH(K,K0) is at most 2δ.
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Now, the point x has two projections on K0, and belongs to the µ-medial
axis of K0 for some value of µ. Letting m be the midpoint of the segment [p, q],
we can compute µ:

‖∇xdK0‖2 6 cos
(

1

2
∠(p− x, q− x)

)2

= ‖x−m‖2 / ‖x− p‖2

Using ‖x− p‖2 = ‖x−m‖2+ 1
4
‖p− q‖2, ‖x−m‖ 6 R and ‖p− q‖ > L− δ, we

get

µ0 = ‖∇xdK0‖ 6

(

1+
‖p− q‖2

4 ‖x−m‖2

)−1/2

6

[

1+

(

L− δ

2R

)2
]−1/2

Applying the critical point stability theorem to the compact sets K and K0
gives us: d(x,Medµ(K)) 6 2

√
Rδ with µ = µ0 + 4

√

δ/L.

Using this Lemma, one is able to prove the following non-quantitative
convergence result for projections:

PROPOSITION II.7. If (Kn) Hausdorff converges to a compact K ⊆ R
d, then for

any bounded open set E,

lim
n→+∞

‖pKn − pK‖L1(E) = 0

Proof. Fix L > 0, and suppose K and K ′ are given. One can decompose the
set E between the set of points where the projections differ by at least L (ie.
∆L(K,K

′) ∩ E) and the remaining points. This gives the bound:

‖pK ′ − pK‖L1(E) 6 LHd(E) + Hd(∆L(K,K
′) ∩ E) diam(K ∪ K ′)

Now, take R = supE ‖dK‖, so that E is contained in the offset KR, and fix
L = ε/Hd(E). Then, for δ = dH(K,K ′) small enough, the µ defined in Lemma
II.6 is smaller than 1. Assume that δ is bounded by some δ0 for which the
corresponding µ0 is smaller than 1. Then

‖pK ′ − pK‖L1(E) 6 ε+ Hd(Medµ0(K)2
√
Rδ) diam(K ∪ K ′)

By compactness, Medµ0(K) is the intersection of its offsets. The outer-
regularity of the Lebesgue measure then gives: limδ→0Hd(Medµ0(K)2

√
Rδ) =

Hd(Medµ0(K)) = 0. This concludes the proof.

Using Theorem I.16, one can give a more quantitative result. Notice that
the meaning of locally in the next statement could also be made quantitative
using the same proof.

PROPOSITION II.8. The map K 7→ pK ∈ L1(E) is locally h-Hölder for any

exponent h < 1
2(2d−1)

.
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Proof. Remark first that if dK(x) 6 1
2
L − dH(K,K ′), then dK ′(x) 6 1

2
L, which

proves that the projections of x on K and K ′ are at distance at most L, in
other words, ∆L(K,K ′) is contained in R

d \ KL−δ, with δ = dH(K,K ′). As in
the previous proof, we let R = ‖dK‖E,∞.

We now assume that L can be written as δh (with h > 0), and see for which
values of h we get a converging bound. For h < 1/2, we have the following
inclusions:

∆L(K,K
′) ∩ KR ⊆

(

Medµ(K) ∩ (Rd \ K
1
2 (L−δ)−2

√
Rδ)
)2

√
Rδ

⊆
(

Medµ(K) ∩ (Rd \ KL/3)
)2

√
Rδ

as soon as δ is small enough. The µ above can then be bounded (the constant
in the “big O” are always positive in what follows):

µ 6 (1+ [L/8R]2)−1/2 + 4
√

δ/L = 1+ O(−δ2h + δ1/2−h/2)

The term will be asymptotically smaller than 1 provided that 2h < 1/2− h ie.

h < 1/5, in which case µ = 1− O(δ2h). By definition of the covering number,
one has:

Hd(∆L(K,K
′) ∩ KR) 6 Hd

[

(

Medµ(K) ∩
(

R
d \ KL/3

))2
√
Rδ
]

6 C(d)N
(

Medµ(K) ∩
(

R
d \ KL/3

)

, 2
√
Rδ
)

× [Rδ]d/2

(II.4)

The covering numbers of the intersection Medµ(K) ∩
(

R
d \ KL/3

)

can be
bounded using Theorem I.16 from the previous chapter:

N(Medµ(K) ∩
(

R
d \ KL/2

)

, 2
√
Rδ)

= N(∂K, L/2) O





[

diam(K)/
√
Rδ

√

1− µ2

]d−1




= N(∂K, L/2) diam(K)d−1O
(

(Rδ)−(d−1)/2δ(d−1)h
)

(II.5)

Combining equations (II.4) and (II.5), and using the (very crude) estimation
N(∂K, δh/2) = O

(

[

diam(K)/δh
]d
)

,

Hd(∆L(K,K
′) ∩ KR) 6

√
Rdiam(K)d−1N(∂K, δh/2)δ1/2−h(d−1)

6
√
Rdiam(K)2d−1O

(

δ1/2−h(2d−1)
)

Hence, following the proof of Proposition II.7,

‖pK ′ − pK‖L1(E) 6 LHd(E) + Hd(∆L(K,K
′) ∩ E) diam(K ∪ K ′)

= O(δ1/2 + δ1/2−h(2d−1)) = O(δ1/2−h(2d−1))
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E Sℓ

Figure II.5 – Optimality of the stability theorem. The compact set K — the
dashed disk in the first figure and the dashed segment on the
second one — is approximatex by a sequence of compact sets
(resp. Sℓ and Pℓ) with sharp vertices. A constant fraction of the
mass in E projects onto those vertices.

The second term converges to zero with δ if h < 1
2(2d−1)

, which concludes the
proof.

II.2.3 — An optimal projection stability theorem

In this paragraph we give a second upper bound for the L1-distance between
the restriction of two projection functions pK and p ′

K to a subset E ⊂ R
d,

with an optimal Hölder exponent (which is also much better than the one of
Proposition II.8). The actual proof of the projection stability theorem relies
on a new theorem in convex analysis, and is postponed to the next section.

THEOREM II.9 (Projection Stability). Let E be an open set in R
d with rectifiable

boundary, K and K ′ be two compact subsets of R
d and RK = ‖dK‖∞,E. Then,

there is a constant C1(d) such that

‖pK − pK ′‖L1(E) 6 C1(d)[H
d(E) + diam(K)Hd−1(∂E)]×

√

RKdH(K,K ′)

assuming dH(K,K ′) 6 min(RK,diam(K),diam(K)2/RK).

Optimality of the projection stability theorem. Let us now comment
on the optimality of this projection stability theorem. First, the speed of
convergence of µK ′,E to µK,E cannot be (in general) faster than O(dH(K,K ′)1/2).
Indeed, if D is the closed unit disk in the plane, and Pℓ is a regular polygon
inscribed in D with sidelength ℓ (see Fig. II.5), then dH(D,Pℓ) ≃ ℓ2. Now we
let E be the disk of radius 1+R. Then, a constant fraction of the mass of E will
be projected onto the vertices of Pℓ by the projection pPℓ (lightly shaded area in
Figure II.5). The cost of spreading out the mass concentrated on these vertices
to get a uniform measure on the circle is proportional to the distance between
consecutive vertices, so W1(µD,E, µPℓ,E) = Ω(ℓ). Hence, by Proposition II.3,
‖pD − pPℓ‖L1(E) = Ω(ℓ) = Ω(dH(D,Pℓ)

1/2). Note that this O(dH(K,K ′)1/2)
behavior does not come from the curvature of the disk, since one can also find
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an example of a family of compacts Sℓ made of small circle arcs converging to
the unit segment S such that ‖pS − pSℓ‖L1(E) = Ω(dH(S, Sℓ)

1/2) (see Fig. II.5).
The second remark concerning the optimality of the theorem is that the

second term of the bound involving Hd−1(∂E) cannot be avoided. Indeed, let
us suppose that a bound ‖pK − pK ′‖L1(E) 6 C(K)Hd(E)

√
ε were true around

K, where ε is the Hausdorff distance between K and K ′. Now let K be the
union of two parallel hyperplanes at distance R intersected with a big sphere
centered at a point x of their medial hyperplane M. Let Eε be a ball of radius
ε/2 tangent to M at x and Kε be the translate by ε of K along the common
normal of the hyperplanes such that the ball Eε lies in the slab bounded by
the medial hyperplanes of K and Kε. Then, ‖pK − pK ′‖L1(Eε) ≃ R ×Hd(Eε),
which exceeds the assumed bound for a small enough ε.

Proof of the projection stability theorem. The projection stability theo-
rem will follow from a more general theorem on the L1 norm of the difference
between the gradients of two convex functions defined on some open set E
with rectifiable boundary. The connection between projections and convex
analysis is that the projection function pK derives from a convex potential vK:

LEMMA II.10. The function vK : R
d → R defined by vK(x) = ‖x‖2 − dK(x)2 is

convex with gradient ∇vK = 2pK almost everywhere.

Proof. By definition, vK(x) = supy∈K ‖x‖2 − ‖x− y‖2 = supy∈K vK,y(x) with
vK,y(x) = 2〈x|y〉−‖y‖2. Hence vK is convex as a supremum of affine functions,
and is differentiable almost everywhere. Then, ∇vK(x) = 2dK(x)∇xdK − 2x.
The equality ∇dK(x) = (pK(x) − x)/dK(x), valid when x is not in the medial
axis, concludes the proof.

Hence if K, K ′ are two compact subsets of R
d, the L1 distance between

the two projections can be written in term of the L1 distance between ∇vK
and ∇vK ′ : ‖pK − pK ′‖L1(E) = 1/2 ‖∇vK −∇vK ′‖L1(E). Moreover, denoting by
RK = ‖dK‖∞,E, the two following properties for the functions vK and vK ′ can
be deduced from a simple calculation:

LEMMA II.11. If dH(K,K ′) 6 min(RK,diam(K)), then

∥

∥d2K − d2K ′
∥

∥

∞,E
6 3dH(K,K ′)RK

diam(∇vK(E) ∪∇vK ′(E)) 6 3diam(K)

Let us now state the stability result for gradients of convex functions:

THEOREM II.12. Let E be an open subset of R
d with rectifiable boundary, and

f, g be two locally convex functions on E such that diam(∇f(E) ∪ ∇g(E)) 6 k.

Then,

‖∇f−∇g‖L1(E) 6 C2(n)×
(

Hd(E) + (k+ ‖f− g‖1/2∞,E)Hd−1(∂E)
)

‖f− g‖1/2∞,E
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From this theorem and the two previous lemmas one easily deduces the
projection stability theorem.

II.2.4 — A L1 stability theorem for gradient of convex functions

We now turn to the proof of the Theorem II.12, which is organized as follows.
In Proposition II.13, we give a proof of the 1-dimensional case. The general
case will follow using an argument of integral geometry – ie. we will integrate
the 1-dimensional inequality over the set of lines of R

d and use the Cauchy-
Crofton formulas to get the d-dimensional inequality.

Cauchy-Crofton formulas. The following formulas, usually called
Cauchy-Crofton formulas, gives a way to compute the volume of a set E
in terms of the expectation of the length of E ∩ ℓ where ℓ is a random line in
R
d. More precisely, if one denotes by Ld the set of oriented lines of R

d, and by
dLd the properly normalized rigid motion invariant measure on Ld, we have

Hd(E) =
1

ωd−1

∫

ℓ∈Ld
length(ℓ ∩ E)dLd (II.6)

where ωd−1 is the (d− 1)-volume of the unit sphere in R
d. If S is a rectifiable

hypersurface of R
d, then

Hd−1(S) =
1

2βd−1

∫

ℓ∈Ld
#(ℓ ∩ S)dLd (II.7)

where βd−1 is the (d− 1)-volume of the unit ball in R
d−1.

PROPOSITION II.13. If I is an interval, and ϕ : I → R and ψ : I → R are

two convex functions such that diam(ϕ ′(I) ∪ ψ ′(I)) 6 k, then letting δ =

‖ϕ−ψ‖L∞(I),

∫

I

∣

∣ϕ ′ −ψ ′∣
∣ 6 8π(length(I) + k+ δ1/2)δ1/2

Proof. Since ϕ and ψ are convex, their derivatives are non-decreasing. Let
V be the closure of the set of points (x, y) in I × R such that y is in the
segment [ϕ ′(x), ψ ′(x)] (or [ψ ′(x), ϕ ′(x)] if ϕ ′(x) > ψ ′(x)). By definition of V,
∫

I
|ϕ ′ −ψ ′| = H2(V).
If D is a disk included in V and [x0, x1] ⊂ I is the projection of D on the

x-axis , then the sign of the derivative of the difference κ = ϕ − ψ does not
change on [x0, x1]. Assuming w.l.o.g. that κ is non decreasing on [x0, x1], we
have |κ(x0) − κ(x1)| =

∫x1
x0

|κ ′| > H2(D)

But since ‖κ‖∞ = δ, the area of D cannot be greater than δ. Thus, if p
is any point of V, for any δ ′ > δ the disk B(p,

√

2δ ′/π) necessarily intersects

the boundary ∂V. This proves that V is contained in the offset (∂V)
√
2δ/π. It

follows that: ∫

I

∣

∣ϕ ′ −ψ ′∣
∣ 6 H2

(

(∂V)
√
2δ/π

)

(II.8)
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length(I)

k

graph(φ′)

graph(ψ′)

B(x,
√

2δ′/π)

V

Figure II.6 – Proof of the 1-dimensional inequality.

Now, ∂V can be written as the union of two xy-monotone curves Φ and
Ψ joining the lower left corner of V and the upper right corner of V so that
(∂V)r ⊆ Φr ∪ Ψr.

We now find a bound for H2(Φr) (the same bound will of course apply to
Ψ). Since the curve Φ is xy-monotone, we have length(Φ) 6 length(I) + k.
Thus, for any r > 0 there exists a subset X ⊆ Φ of N = ⌈(length(I) + k)/r⌉
points such that Φ ⊆ Xr, implying

H2(Φr) 6 H2(X2r) 6 4πr2N 6 4πr(length(I) + k+ r) (II.9)

Using equations (II.8) and (II.9), and
√

2δ/π 6
√
δ, one finally obtains:

∫

I

∣

∣ϕ ′ −ψ ′∣
∣ 6 H2

(

Φ
√
2δ/π ∪ Ψ

√
2δ/π

)

6 8π(length(I) + k+
√
δ)
√
δ

Proof of Theorem II.12. The 1-dimensional case follows directly from propo-
sition II.13: in this case, E is a countable union of intervals on which f and g
satisfy the hypothesis of the proposition. Summing the inequalities gives the
result with C2(1) = 8π.

We now turn to the general case. Given any L1 vector-field X one has
∫

E

‖X‖dx =
d

2ωd−2

∫

ℓ∈Ld

∫

y∈ℓ∩E
|〈X(y)|u(ℓ)〉| dydℓ

where u(ℓ) is a unit directing vector for ℓ (see Lemma III.4 in [CCSM07] for
a proof of this formula). Letting X = ∇f−∇g, fℓ = f|ℓ∩E and gℓ = g|ℓ∩E, one
gets, with D(d) = d/(2ωd−2),

∫

E

‖∇f−∇g‖ = D(d)

∫

ℓ∈Ld

∫

y∈ℓ∩E
|〈∇f−∇g|u(ℓ)〉| dydℓ

= D(d)

∫

ℓ∈Ld

∫

y∈ℓ∩E

∣

∣f ′ℓ − g ′
ℓ

∣

∣dydℓ

The functions fℓ and gℓ satisfy the hypothesis of the one-dimensional case,
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so that for each choice of ℓ, and with δ = ‖f− g‖L∞(E),

∫

y∈ℓ∩E

∣

∣f ′ℓ − g ′
ℓ

∣

∣dy 6 8πδ1/2 × (H1(E ∩ ℓ) + (k+ δ1/2)H0(∂E ∩ ℓ))

It follows by integration on Ld that
∫

E

‖∇f−∇g‖ 6 8πD(d)δ1/2

×
(∫

Ld
H1(E ∩ ℓ)dLd + (k+ δ1/2)

∫

Ld
H0(∂E ∩ ℓ)dLd

)

The formula (II.6) and (II.7) show that the first integral in the second term
is equal (up to a constant) to the volume of E and the second one to the
(d− 1)-measure of ∂E. This proves the theorem with C2(d) = 8πD(d)(ωd−1 +

2βd−1).

II.2.5 — Stability of curvature measures

The definition of Wasserstein distance assumes that both measures are pos-
itive and have the same mass. While this is true for µK,E and µK ′,E (whose
mass is the volume of E), this is not the case anymore when considering µK,Kr
and µK ′,K ′r whose mass are respectively Hd(Kr) and Hd(K ′r). We thus need
to introduce another distance on the space of (signed) measures.

DEFINITION II.2. The Kantorovich-Rubinstein theorem makes it natural to
introduce the bounded-Lipschitz distance between two measures µ and ν as
follows:

dbL(µ, ν) = sup
f∈BL1(Rd)

∣

∣

∣

∣

∫

fdµ−

∫

fdν
∣

∣

∣

∣

the supremum being taken on the space of 1-Lipschitz functions f on R
d such

that supRd |f| 6 1.

PROPOSITION II.14. If K,K ′ are compact subsets of R
d,

dbL(µK,Kr , µK ′,K ′r) 6

∫

Kr∩K ′r
‖pK(x) − pK ′(x)‖dx+ Hd(Kr∆K ′r)

Proof. Let ϕ is a 1-Lipschitz function on R
d bounded by 1. Using the change-

of-variable formula one has:
∣

∣

∣

∣

∫

ϕ(x)dµK,Kr −

∫

ϕ(x)dµK ′,K ′r

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Kr
ϕ ◦ pK(x)dx−

∫

K ′r
ϕ ◦ pK ′(x)dx

∣

∣

∣

∣

6

∫

K ′r∩Kr
|ϕ ◦ pK(x) −ϕ ◦ pK ′(x)| dx+

∫

K∆K ′
|ϕ(x)| dx

By the Lipschitz condition, |ϕ ◦ pK(x) −ϕ ◦ pK ′(x)| 6
∣

∣pK(x) − p ′
K(x)

∣

∣, thus
giving the desired inequality.
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The new term appearing in this proposition involves the volume of the
symmetric difference Kr∆K ′r. In order to get a result similar to the projection
stability theorem but for the map K 7→ µK,Kr , we need to study how fast this
symmetric difference vanishes as K ′ converges to K. It is not hard to see
that if dH(K,K ′) is smaller than ε, then Kr∆K ′r is contained in Kr+ε \ Kr−ε.
Assuming that dH(K,K ′) < ε, using the coarea formula (see [Mor88]), we can
bound the volume of this annulus around K as follows:

Hd(Kr∆K ′r) 6

∫r+ε

r−ε

Hd−1(∂Ks)ds

From the bound on the Hd−1-volume of ∂Kr proved in the previous chapter
(proposition I.17) we easily get:

COROLLARY II.15. For any compact sets K,K ′ ⊆ R
d, with dH(K,K ′) 6 r/2,

Hd(Kr∆K ′r) 6 2N(K, r/2)ωd−1(3r)× dH(K,K ′) = O(dH(K,K ′))

Stability of approximate curvature measures. Combining Proposition
II.14, Corollary II.15 and the projection stability theorem, one easily obtains
the following stability result for boundary measures µK,Kr :

THEOREM II.16. If K and K ′ are two compact sets of R
d,

dbL(µK,Kr , µK ′,K ′r) 6 C3(d)N(K, r/2)rd[r+ diam(K)]

√

dH(K,K ′)
r

provided that dH(K,K ′) 6 min(diamK, r/2, r2/diamK).

To define the approximate curvature measures, let us fix a sequence (ri)

of d+ 1 distinct numbers 0 < r0 < ... < rd. For any compact set K and Borel
subset B ⊂ K, we let

[

Φ
(r)

K,i(B)
]

i
be the solutions of the linear system

∀i s.t 0 6 i 6 d,

d∑

j=0

ωd−jΦ
(r)

K,j(B)r
d−j
i = µK,Kri (B)

We call Φ(r)

K,j the (r)-approximate curvature measure. Since this is a linear

system, the functions Φ(r)

K,i also are additive. Hence the (r)-approximate

curvature measures Φ(r)

K,i are signed measures on R
d. We also note that if K

has a reach greater than rd, then the measures Φ(r)

K,i coincide with Federer’s
curvature measures of K, as introduced in §II.1.2. Thanks to these remarks
and to theorem II.16, we have:

COROLLARY II.17. Suppose (ri)i∈{0,...,d} is given as above. For each com-

pact set K whose reach is greater than rd, there exist a constant C(K, (r), d)

depending on K, (ri) and d such that for any K ′ ⊆ R
d close enough to K,

dbL

(

Φ
(r)

K ′,i, Φ
i
K

)

6 C(K, (r), d)dH(K,K ′)1/2
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This corollary gives a way to approximate the curvature measures of
a compact set K with positive reach from the (r)-approximate curvature
measures of any point cloud close to K.

Stability of the pushforward of a measure by a projection. The bound-
ary measure defined above are a special case of pushforward of a measure
by a function. The pushforward of a measure µ on R

d by the projection pK
is another measure, denoted by pK#µ, concentrated on K and defined by the
formula: pK#µ(B) = µ(p−1

K (B)).

The stability results for the boundary measures K 7→ µK,E can be gen-
eralized to prove the stability of the map K 7→ pK#µ where µ has a density
u : R

d → R
+, which means that µ(B) =

∫

B u(x)dx. We need the measure µ to
be finite, which is the same as asking that the function u belongs to the space
L1(Rd) of integrable functions.

We also need the function u ∈ L1(Rd) to have bounded variation. We recall
the following basic facts of the theory of functions with bounded variation,
taken from [AFP00]. If u is an integrable function on R

d, the total variation

of u is

var(u) = sup
{∫

Rd

udivϕ;ϕ ∈ C1c(R
d), ‖ϕ‖∞ 6 1

}

A function u ∈ L1(Rd) has bounded variation if var(u) < +∞. The set of
functions of bounded variation on Ω is denoted by BV(Rd). We also mention
that if u is Lipschitz, then var(u) = ‖∇u‖L1(Rd).

THEOREM II.18. Let µ be a measure with density u ∈ BV(Rd) with respect to

the Lebesgue measure, and K be a compact subset of R
d. We suppose that the

support of u is contained in the offset KR. Then, if dH(K,K ′) is small enough,

dbL(pK#µ,pK ′#µ) 6 C(d)
(

‖u‖L1(KR) + diam(K) var (u)
)

×
√
RdH(K,K ′)1/2

Proof. We begin with the additional assumption that u has class C∞. The
function u can be written as an integral over t ∈ R of the characteristic
functions of its superlevel sets Et = {u > t}, ie. u(x) =

∫∞

0 χEt(x)dt. Fubini’s
theorem then ensures that for any 1-Lipschitz function f defined on R

d with
‖f‖∞ 6 1,

pK ′#µ(f) =

∫

Rd

f ◦ pK ′(x)u(x)dx

=

∫

R

∫

Rd

f ◦ pK ′(x)χ{u>t}(x)dxdt

By Sard’s theorem, for almost any t, ∂Et = u−1(t) is a (n− 1)-rectifiable
subset of R

d. Thus, for those t the previous corollary implies, for ε =
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dH(K,K ′) 6 ε0 = min(R,diam(K),diam(K)2/RK),
∫

Et

|f ◦ pK(x) − f ◦ pK ′(x)| dx 6 ‖pK − pK ′‖L1(Et)

6 C(d)[Hd(Et) + diam(K)Hd−1(∂Et)]
√
Rε

Putting this inequality into the last equality gives

|pK#µ(f) − pK ′#µ(f)| 6 C(d)

(∫

R

Hd(Et) + diam(K)Hd−1(∂Et)dt
)√

Rε

Using Fubini’s theorem again and the coarea formula one finally gets that

|pK#µ(f) − pK ′#µ(f)| 6 C(d)
(

‖u‖L1(KR) + diam(K) var(u)
)√

Rε.

This proves the theorem in the case of a C∞ function u. To conclude the
proof in the general case, one has to approximate the bounded variation
function u by a sequence of C∞ functions (un) such that both ‖u− un‖L1(KR)

and |var(u) − var(un)| converge to zero, which is possible thanks to Theorem
3.9 in [AFP00].

REMARK. Taking u = χE where E is a suitable open set shows that conversely,
Theorem II.9 can also be recovered from Theorem II.18.

II.3 COMPUTING (WITH) BOUNDARY MEASURES

If C = {pi; 1 6 i 6 n} is a point cloud, that is a finite set of points of R
d,

then µC,Cr is a sum of weighted Dirac measures: letting VorC(pi) denote the
Voronoi cell of pi, we have:

µC,Cr =

n∑

i=1

Hd(VorC(pi) ∩ Cr)δpi

Hence, computing boundary measures amounts to find the volume of
intersections of Voronoi cells with balls. This method is practical in dimension
3 (and we will detail it in Chap. III) but in higher dimensions it becomes
prohibitive due to the exponential cost of Voronoi diagrams computations. We
instead compute approximations of boundary measures using a Monte-Carlo
method. Let us first recall some standard facts about this family of methods.

II.3.1 — Monte-Carlo approximation of boundary measures

Convergence of empirical measures. If µ is a probability measure on
R
d, one can define another measure as follows: let X1, . . . , XN be a family of

independent random vectors in R
d whose law is µ, and let µN be the sum of

Dirac 1
N

∑
i δXi . Convergence results of the empirical measure µN to µ are

known as uniform law of large numbers. Using standard arguments based
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on Hoeffding’s inequality, covering numbers of spaces of Lipschitz functions
and the union bound, it can be shown that if µ supported in K ⊆ R

d, then the
following estimate on the bounded-Lipschitz distance between the empirical
and the real measure holds:

PROPOSITION II.19. Let µ be measure on R
d whose support is contained in a

compact set K. Then µN converges to µ with high probability:

P [dbL (µN, µ) > ε] 6 2 exp
(

ln(16/ε)N(K, ε/16) −Nε2/2
)

In order to prove this proposition, we make use of the following inequality
known as Hoeffding’s inequality:

THEOREM II.20. If (Yi) is a sequence of independent [0, 1]-valued random

variables whose common law ν has a mean m ∈ R, and YN = (1/N)
∑
i6N Yi

then

P(
∣

∣YN −m
∣

∣ > ε) 6 2 exp(−2Nε2)

Proof of Proposition II.19. Let us consider a family (Xi) of independent ran-
dom variables distributed according to the law µ. Then, for any 1-Lipschitz
function f : R

d → R with ‖f‖∞ 6 1, one can apply Hoeffding’s inequality to
the family of random variables Yi = f(Xi) :

P

[∣

∣

∣

∣

∣

1

N

N∑

i=1

f(Xi) −

∫

fdµ

∣

∣

∣

∣

∣

> ε

]

6 2 exp(−2Nε2)

We now let BL1(K) be the set of Lipschitz functions f on K whose Lipschitz
constant Lip f is at most 1 and ‖f‖∞ 6 1. We let N(BL1(C), ‖.‖∞ , ε) be cov-
ering number of BL1(C) with respect to the norm of uniform convergence.
Lemma II.21 below gives a bound for this number. It follows from the defi-
nition of the bounded-Lipschitz distance (see Def. II.2) and from the union
bound that

P [dbL (pC#µN,pC#µ) > ε] 6 2N(BL1(C), ‖.‖∞ , ε/4) exp(−Nε2/2)

LEMMA II.21. For any compact metric space K,

N(BL1(K), ‖.‖∞ , ε) 6

(

4

ε

)N(K,ε/4)

Proof. Let X = {xi} be an ε/4-dense family of points of K with #X = N(K, ε/4).
It is easily seen that for every 1-Lipschitz functions f, g on K, ‖f− g‖∞ 6

‖(f− g)‖∞,X + ε/2. Then, one concludes using that N(BL1(X), ‖.‖∞ , ε/2) 6

(4/ε)#X.

In particular, if µ is supported on a point cloud C, with #C = n,
then N(C, ε/16) 6 n. This shows that computing an ε-approximation of
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the measure µ with high probability (eg. 99%) can always be done with
N = O(n ln(1/ε)/ε2). However, if C is sampled near a k-dimensional object,
then for ε in an appropriate range we have N(C, ε/16) 6 const(C)ε−k, in
which case N is of the order of − ln(ε)εk+2.

Application to boundary measures. Let C = {p1, . . . , pn} be a point
cloud. Applying the ideas of the previous paragraph to the probability mea-
sure βC,Cr =

µC,Cr

Hd(Cr)
, we get a Monte-Carlo approximation (Algorithm 1).

To simulate the uniform measure on Cr in step I of the algorithm one
cannot simply generate points in a bounding box of Cr, keeping only those
that are actually in Cr since the probability of finding a point in Cr decreases
exponentially with the ambient dimension.

Luckily there is a simple way to generate points according to this law
which relies on picking a random point xi in the cloud C and then a point X
in B(xi, r) — taking into account the overlap of the balls B(x, r) where x ∈ C
(Algorithm 2).

Instead of completely rejecting a point if it lies in k balls with probability
1/k, one can instead modify Algorithm 1 to attribute a weight 1/k to the Dirac
mass added at this point. Step III. requires an estimate of Hd(Cr). Using the
same empirical measure convergence argument, one can prove that if TL is
the total number of times the loop of Algorithm 2 was run, and TN is the total
number of points generated, then TN/TL× nHd(B(0, r)) converges to Hd(Cr).

II.3.2 — Approximation of curvature measures

In the case the underlying compact set has positive reach, we can also try to
estimate its curvature measures from a point cloud sampling. The straight-
forward way is to estimate the boundary measures for several choice of
parameters, and then perform polynomial fitting. The difficulty with this
approach is that one needs to compute the real boundary measures µC,Cr and
not merely the normalized versions βC,Cr .

There is, however, a modification of the previous Monte-Carlo algorithm
that allows to compute the curvature measures in a single pass. For each
point p ∈ C, one keeps track of the points X that are selected in Algorithm
1, and lie in the Voronoi cell of p; denote them by x1(p), . . . , xk(p)(p). Denote
by vp(s) (s ∈ [0, r]) the number of points at distance at most s of p among the
xi(p):

vp : s ∈ [0, r] 7→ #{i 6 k(p); ‖xi(p) − p‖ 6 s}

N

vp(s) approximates (up to a constant factor) the volume of the intersection
VorC(p) ∩ B(p, s). Performing polynomial fitting on this function allows to de-
termine (up to a constant factor again) the weights of the curvature measures
at p.
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Algorithm 1 Monte-Carlo algorithm to approximate µC,Cr
Input: a point cloud C, a scalar r, a number N
Output: an approximation of µC,Cr in the form 1

N

∑
n(pi)δpi

while k 6 N do
[I.] Choose a random point X with probability distribution 1

Hd(Cr)
Hd
∣

∣

Cr

[II.] Finds its closest point pi in the cloud C, add 1 to n(pi)

end while
[III.] Multiply each n(pi) by Hd(Cr).

Algorithm 2 Simulating the uniform measure in Cr

Input: a point cloud C = {pi}, a scalar r
Output: a random point in Cr whose law is Hd

∣

∣

Kr

repeat
Pick a random point pi in the point cloud C
Pick a random point X in the ball B(pi, r)

Count the number k of points pj ∈ C at distance at most r from X

Pick a random integer d between 1 and k
until d = 1

return X.

(a) Fandisk R = 0.05diamC, r =
0.02diamC

(b) Sharp sphere, R = 0.1diamC, r =
0.03diamC

Figure II.7 – Convolved boundary measures of 100k point clouds sampled
from the Fandisk and Sharp sphere models. 50k points are
drawn uniformy, while the 50k remaining points are (over) sam-
pled on randomly chosen edge path on the two models.
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II.3.3 — Exploiting boundary measures

Visualizing boundary measures. There is no obvious convenient way to
visualize a sum of Dirac masses. The most straightforward idea is to display
a sphere at each point whose radius is related to the weight at that point (eg.
the d-th root of this weight is the point cloud is embedded in R

d). But since
the radii of these sphere do not add up, a highly concentrated area can be
“invisible” if the mass is split among a lot of points.

Convolved measure. A consequence of Kantorovich-Rubinstein theorem is
that if two probability measures µ and ν are close in the Wasserstein sense,
then given 1-Lipschitz function χ : R

d → R, the convolution of µ and ν by χ
are uniformly close. Precisely, ‖µ ∗ χ− ν ∗ χ‖∞ 6 Lip(χ) W1(µ, ν).

Thus, a way to display significant (ie. Hausdorff-stable) information from
the boundary measure of a point cloud C is to chose a convolution kernel
χ, and consider the function µC,Cr ∗ χ. In the Fig. II.7, we display the
convolved boundary measures of point clouds extracted from two models
of the AIM@SHAPE repository. The offset radius R is given as a fraction
of the diameter of the point cloud, and the convolution function is χr : x 7→
max(1−‖x‖ /r, 0). We display the function µC,Cr ∗χr by putting a black sphere
of radius µC,Cr ∗ χr(p) for each point p in the point cloud.

Feature extraction and support estimation. Extracting the set of sharp
features of a compact sets known through a finite point cloud sampling is of
interest in many geometry processing applications. Fig. II.7 (and intuition)
suggests that the sharp corners carry more mass than the points on the sharp
edges, which again carry more mass than the smooth points. We will give
more precise statements on this topic in the Chapter III.

As for now, we can take it as a definition: a feature point is a point that
carries more mass than a smooth point. Or, more precisely (for the same
reasons as in the previous paragraph), where the values of the function
µK,KR ∗ χr are higher than some threshold T . If the point x is on a flat area,
the set of points that projects onto a r-ball around x is a cylinder of radius r
and height 2R. Hence one can choose T to be a constant T0 times 2R× πr2 if
the point clouds is embedded in R

3 (the constant is to allow some amount of
curvature). An example of the result of such a thresholding is given in Fig.
II.8

In the next chapter, we introduce an anisotropic version of the boundary
measures, that allow to classify feature point based on the estimated feature
angle, and not on such an arbitrary threshold.

II.A STEINER FORMULA AND REACH ESTIMATION

II.A.1 — Existence of Steiner tuber formula revisited

In this section, we give a proof of the existence and uniqueness of curvature
measures for a compact set with positive reach, which is shorter than Federer’s
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Figure II.8 – Feature points extracted from a point cloud sampling of a CSG
model by thresholding low values of the convolved boundary
measure (T0 = 3).

original proof [Fed59] based on approximation arguments. We make use of
the notations of Definition I.7; τ denotes the normal distance to the medial
axis of the considered compact set.

We begin with a few classical definitions from geometric measure theory
(see [Mat95] or [Fed69] for more details). Actually, we are using approximate
differentiability only through propositions and lemmas of those books: the
definition below can be safely skipped and considered as a “black box”.

DEFINITION II.3. If x ∈ ∂Kr is such that τ(x) > τ0, then for any 0 < t < τ0,
the distance function to K is differentiable at Ψt(x), which means that the
hypersurface ∂Kr+t has a tangent hyperplane TΨt(x)∂K

r+t at Ψt(x).
For B ⊆ ∂Kr, with infx∈B τ(x) > τ0 and t < τ, we say that the map

Ψt : B → Kr is approximately differentiable at x ∈ B if there exists a linear
map ϕ : R

d → TΨt(x)∂K
r+t that vanishes on the normal space {Tx∂Kr}⊥, and

such that for any positive ε the set

{y ∈ B ;
∥

∥Ψt(y) − Ψt(x) −ϕ(y− x)
∥

∥ > ε ‖x− y‖}

has zero (d − 1)-Hausdorff density at x. The restriction of ϕ to the tangent
space Tx∂Kr is called the approximate differential of Ψt at x, and denoted by
ap dxΨt. The determinant of ap dxΨt is called the approximate Jacobian of
Ψt at x.

LEMMA II.22. Let B be a Borel set in ∂Kr such that infB τK > τ0. Then Ψt is

approximately differentiable at Hd−1–almost every point of B in the sense of

Definition II.3.

Proof. The set B is (d − 1)-rectifiable, as a subset of the rectifiable set ∂Kr.
The function Ψt : B→ R

d is Lipschitz on B, by Lemma I.23. Hence, Corollary
3.2.20 in [Fed69] (which is analogous to the Rademacher theorem) proves
that Ψt is approximately differentiable at Hd−1–almost every point of B.
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PROPOSITION II.23. Let K be a compact set, and B a Borel subset of ∂Kt0 such

that for any point x in B, τK(x) > τ0. Then the map

t 7→ Hd−1({x ∈ ∂Kt0+t ; pKt0 (x) ∈ B})

is a polynomial in t on [0, τ0] whose degree is at most d.

In order to prove this proposition, we need the following adaptation of
Lemma 5.1 of [Fed59]:

LEMMA II.24. Let r > 0 be such that ∂Kr contains Hd−1-almost no point of the

medial axis, let B be a Borel set contained in ∂Kr, such that infB τK > τ0 > 0,

and let 0 < t < τ0. Then, for Hd−1–almost any point x of B, Ψt is differentiable

at x and ker ap dxΨt = {0}. In particular JxΨt 6= 0.

Proof. Lemmas I.23 and II.22 show that Ψt is differentiable at Hd−1–almost
every x ∈ B. Let us prove the second assertion by contradiction. Suppose
there exist a unit tangent vector u ∈ TxB = Tx∂Kr such that ap dxΨt(u) = 0.
Let (xn) be a sequence of points of B such that (xn − x)/ ‖xn − x‖ converges
to u. For any positive ε, there exist N such that for n > N,

∥

∥Ψt(xn) − Ψt(x)
∥

∥

‖xn − x‖ 6 ε

In order to obtain a contradiction, we will prove that the the reciprocal map
(Ψt)−1 : Ψt(B) → B is Lipschitz. Indeed, since for any y ∈ B, τK(Ψt(y)) is

greater than τ0− t, we can apply the Lemma I.23 to Ψt(B) : Ψ
τ0−t

2 is Lipschitz
on Ψt(B). Hence, remarking that for every y in B,

(Ψt)−1(y) = y− 2t
Ψ
τ0−t

2 (y) − y

τ0 − t

we see that (Ψt)−1 is Lipschitz. This yields the desired contradiction, thus
proving our statement.

Proof of Proposition II.23. Applying the area formula of Corollary 3.2.20 in
[Fed69] and the one-to-one property of the mapping Ψt on B (for t < τ0), we
get

Hd−1(Ψt(B)) =

∫

B

∣

∣ap JxΨt
∣

∣dHd−1(x)

For t = 0, Ψt coincides with the identity and JxΨ0 = 1. The map ap JxΨt =

ap Jx(id + tap∇xdK) is a polynomial in the variable t; hence t 7→
∣

∣JxΨt
∣

∣ is
continuous and never vanishes (by Lemma II.24). Hence, the sign of ap JxΨt

must be constant and positive. Thus we get

Hd−1(Ψt(B)) =

∫

B

ap JxΨtdHd−1(x)

One concludes as in Proposition II.1.
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COROLLARY II.25. If the reach of K is greater than R, then K admits a local

Steiner formula on [0, R].

Proof. Let B be a Borel set, and ε > 0. Applying the previous theorem to
Bε = p−1

K (B) ∩ ∂Kε, shows that

Hd({x ∈ Kε+t ; pKε(x) ∈ Bε) = Hd({x ∈ Kε+t \ Kε ; pK(x) ∈ B)

= µK,Kε+t(B) − Hd(Kε)

is polynomial in t on [0, R − ε], of degree at most d. Since it is true for any
positive ε, this proves that µK,t(B) is also a degree d polynomial on [0, R].

II.A.2 — Does a local Steiner formula imply positive reach ?

In a recent paper [HHL04], Heveling, Hug and Last asked whether polyno-
mial parallel volume should imply convexity. They answered positively in
the case of the plane but exhibited a counter-example in higher dimension.
Using the notion of support measure [HLW04], they were able to prove that if
a compact set admits a strong version of a local Steiner formula on [0, r] then
its reach should be at least r.

DEFINITION II.4. (i) A compact subset K admits a strong local Steiner for-

mula on [0, R] if for any measurable, compactly supported and bounded
function f : R

d×Sd−1 → R there exists constants c0(f), . . . , cd(f) such that

∀r ∈ [0, R],

∫

Kr\K

f

(

pK(x),
x− pK(x)

d(x, K)

)

=

d∑

i=0

ci(f)r
i (II.10)

(ii) Following the definition of §II.1.2, we say that K admits a local Steiner

formula on [0, R] if for any Borel set B ⊆ R
d, there exists constants

c0(B), . . . , cd(B) such that

∀r ∈ [0, R], Hd({x ∈ Kr ; pK(x) ∈ B}) =

d∑

i=0

ci(B)ri (II.11)

It is equivalent to require that there exists d signed Borel measures
Φ0, . . . , Φd such that µK,Kr =

∑d
i=1Φir

i for r ∈ [0, R].

THEOREM II.26 (cf. [HHL04]). If K admits a strong local Steiner formula on

[0, R], then the the reach of K is at least R.

A strong local Steiner formula for K is, as its name suggests, stronger than
the usual local Steiner formula for K. In fact it implies that all the offsets Kr

of K (with r < R) admit a local Steiner formula:

PROPOSITION II.27. Let K ⊆ R
d be a compact set that admits a strong local

Steiner formula on [0, R] (cf. eq. II.10). Then, for any r < R, the offset Kr admit

a (usual) local Steiner formula on [0, R− r].
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Proof. Indeed, if B is a Borel subset of Kr, let fB : R
d × Sd−1 → R be defined

by fB(p, u) = 1 iff there is an x in B such that (pK(x),∇xdK) = (p, u). Then,
∫

Kr+t\K

f(pK(x),∇xdK)dx = cst + µKr,Kr+t(B)

By hypothesis, the first side of the equation is a degree d polynomial in
t ∈ [0, R− r]. This shows Kr admits a local Steiner formula on [0, R− r].

The following statement is barely stronger than Hevelin, Hug and Last’s
result; however, the proof is completely elementary and doesn’t rely on on the
notion of support measure that was used in their original proof.

THEOREM II.28. A compact set K ⊆ R
d for which one of the following property

is true has a reach greater than R :

(i) for every r < R, the offset Kr admits a local Steiner formula on [0, R− r] ;

(ii) K has a strong local Steiner formula on [0, R].

Before proving the theorem, we need to prove the two following lemmas.
The normal distance of x ∈ R

d \ K to the medial axis of K as introduced in
Definition I.7, will be denoted by τK(x).

LEMMA II.29. If a Borel set B ⊆ ∂Kr is such that ∀x ∈ B, τK(x) 6 τmax, then

t 7→ µKr,Kr+t(B) is constant for t > τmax.

Proof. Let y be a point of R
d that is not in the medial axis of K, and x = pK(y).

Then, by Lemma I.19, ‖x− y‖ 6 τK(x). The statement follows.

LEMMA II.30. Let K be a compact set, r > 0 such that for almost any x ∈ Kr,
τK(x) > r− dK(x). Then reach(K) > r.

Proof. Let x ∈ Kr \K, p a projection of x on K and u the unit vector from p to x.
We want to show that p is the only projection of x on K, ie. the ball B(x,dK(x))

intersects K only at x.
By hypothesis, there exist a sequence of points xi ∈ Kr \ K converging

to x, such that τK(xi) > r − dK(xi) and pi = pK(xi) converges to p. Now by
hypothesis on the xi, for any r ′ < r, the interior of the ball B(pi + r ′∇xidK, r ′)
does not contain any point of K. Hence, the interior of the ball B(p+ r ′u, r ′)
does not contain any point of K either. For r ′ > dK(x), this also shows that the
(closed) ball B(x,dK(x)) can intersect K only at p.

Proof of Theorem II.28. By Proposition II.27, we can suppose that condition
(i) is realized. By Lemma II.30 we only have to prove that for almost any
point x in KR, τK(x) > r − dK(x). In order to to that, it suffices to show that
the set Bε of points of KR such that τK(x) 6 R− dK(x) − ε is negligible for any
positive ε. Since Med(K) has zero Hd–volume, we can remove the points of
the medial axis from Bε.

For any r > 0, by the condition (i), there exists constants c0, . . . , cn such
that

µKr,t(B
ε ∩ ∂Kr) =

d∑

i=0

c0t
i (II.12)
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Now lemma II.29 and the assumption on Bε tells us that this polynomial
is constant between R − r − ε and R − r. Since its value at t = 0 is zero,
µKr,t(B

ε ∩ ∂Kr) is identically null. Since

{x ∈ R
d \ Med(K) ; pKr(x) ∈ Bε ∩ ∂Kr} = Bε \ Kr

Eq. II.12 gives us Hd(Bε) = supr>0Hd(Bε \Kr) = 0 thus proving the theorem.

II.A.3 — Estimating the reach of a compact set

Estimating the reach of a compact set is an interesting theoretical question,
but it would also be a very useful piece of information in applications such as
surface reconstruction. There are a few heuristics for estimating it (such as
the distance to the nearest pole, see §III.1.3), but they often break badly in
the presence of noise.

Even the precise meaning of estimating the reach is not so clear. There
are two possible and natural questions that one would want to address:

— Given a compact subset K ⊆ R
d, and a parameter ε > 0. What is the

maximum reach of a compact subset at Hausdorff distance less than ε of
K ?

— Given K and a parameter R > 0, what is the minimum Hausdorff distance
between K and a compact set with reach at least R ? If one denotes by
ReachR(Rd) the compact subsets of R

d with reach bounded from below by
R, this amounts to computing d(K,ReachR(Rd)).

The goal is of course to be able to come up with an algorithm that computes,
or approximates these two quantities given a point cloud C ⊆ R

d. It is not so
hard to come up with one-sided bounds, at least theoretically:

— If there exists a segment of length R0 joining two points in the cloud, and
whose circumsphere does not enclose any other points of C (such a segment
is called a Gabriel edge), then for any compact set K close enough to C,
reach(K) 6 1

2
R0 − dH(K,C).

Notice that this works because the midpoint of the Gabriel edge is a critical
point for the distance function. Similar bounds based on other kind of
critical points can also be given.

— If C is close to a compact set K with reach at least R, then the measure-
valued function r ∈ [0, R] 7→ µK,Kr is close to a degree d polynomial r[0, R] 7→
∑d
i=1ϕir

i where ϕi are finite signed Borel measures supported on K.
If one denotes by PolydR(Rd) the set of such measure-valued polynomials,
then the stability result of the previous section proves that

inf{ sup
r∈[0,R]

dbL(µ(r), µC,Cr) ; µ ∈ PolydR(Rd)} 6 C(C)d(C,ReachR(Rd))1/2

(II.13)

Notice that original (unmatched) goal of the previous section was to show
that the reach of a compact set K is at least R iff the measure-valued function
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r 7→ µK,Kr is polynomial. A natural extension of this question would be the
following:

QUESTION. Is there a reverse inequality to Ineq. (II.13) ? Or, said otherwise:
If the function r 7→ µK,Kr associated to a compact subset K of R

d is close1

to being polynomial of degree d on [0, R], is this compact subset close to a
compact set with reach bounded from below by Ω(R)?

1close in a meaning to be precisely defined, eg. in the uniform sense, as in Eq. (II.13)





Chapter III

VORONOI-BASED FEATURE

ESTIMATION

Abstract

Many algorithms for shape analysis and shape processing rely on accurate
estimates of differential information such as normals and curvature. In most
settings, however, care must be taken around non-smooth areas of the shape
where these quantities are not easily defined. This problem is particularly
prominent with point-cloud data, which are discontinuous everywhere. In
this chapter we present an efficient and robust method for extracting normal
directions sharp features and curvature information of a piecewise smooth
surface from a point cloud sampling. Our method is integral in nature and
uses convolved covariance matrices of Voronoi cells of the point cloud which
makes it provably robust in the presence of noise. Using the same analysis
we provide theoretical guarantees for a modification of a previously proposed
normal estimation technique. We illustrate experimentally the correctness of
both principal curvature estimation and feature extraction in the presence of
varying levels of noise and sampling density on a variety of models.

This whole chapter derives from an article written with Maks Ovsjanikov

Figure III.1 – Features (in red) computed by our algorithm from a point cloud
sampling of the surface in yellow.
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and Leonidas Guibas, accepted for publication in the Proceedings of the 2009

SIAM/ACM Joint Conference on Geometric and Physical Modeling [MOG09].
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INTRODUCTION

Estimating surface normals, principal curvatures and sharp edges from
a noisy point cloud sampling, has many applications in computer graph-
ics, geometry processing and reverse engineering. Principal curvatures are
rotation-invariant local descriptors, which together with principal curvature
directions have proven useful in detecting structural regularity [PMW+08],
global matching [AMCO08], modeling and rendering of point-based surfaces
[GTE+06], and anisotropic smoothing [LP05] to name just a few. In these ap-
plications, finding exact curvature informations (such as principal curvature
directions) is not as important as to find robust local descriptors that encode
second order variations of the surface. The location of sharp edges and highly
curved areas of the surface is a precious piece of information in settings that
include feature-aware reconstruction [JWS08], non photorealistic rendering
[PKG03], and industrial metrology.

In practice, it is often interested to recover these information when the
input is an unstructured collection of point coordinates, obtained by a range
scanner, before any reconstruction step (besides registration). These point
clouds can be noisy, and can exhibit strong sampling bias. The ability to reli-
ably estimate surface normals, principal curvatures, and curvature directions
as well as sharp features directly on such point clouds can be used in both
geometry processing algorithms and in surface reconstruction to improve the
quality of the resulting mesh.

Devising robust local descriptors, which can handle both non-uniform
noise, sampling bias and sharp edges is a challenging task. This is mainly
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because we are trying to estimate differential quantities which by nature are
very sensitive to local perturbations. The lack of a natural parametrization
of point cloud data introduces another challenge by making it difficult to
estimate angles and areas on the surface. Finally, devising a method with
theoretical guarantees on the approximation quality is not easy in the ab-
sence on a unified framework that would incorporate both point clouds and
piecewise-smooth surfaces.

In this chapter, we address some of these challenges by presenting a
method for robustly estimating principal curvatures and curvature directions,
as well as sharp edges of the underlying surface from point cloud data. We
provide theoretical guarantees on the robustness of the results, by deriving
a bound on the quality of the estimation based on the Hausdorff distance
between the point cloud and the underlying surface. We also address a certain
class of outliers.

Prior work on curvature and feature estimation

Estimating curvature information of the underlying surface from a discrete
approximation has been studied extensively over the past several decades
(see e.g. [MD02] for a survey dating 2002 and [MSR07] for an extensive com-
parison of methods to estimate Gaussian and mean curvatures). Nearly all
existing methods for reliably estimating principal curvatures and curvature
directions, however, rely on meshes. These methods are difficult to extend to
the point cloud setting, because the mesh defines a discrete parametrization
of the surface making angle and area computations easier.

Curvature estimation using point with normals. Only recently several
methods have been proposed for computing curvature information directly on
point clouds. All of the following algorithms start by estimating normals to
the surface, or assume that they are given. Any error made in this estimation
is aggravated in the computation of principal curvatures.

Yang and Qian [YQ07] derive analytic expressions for computing principal
curvatures based on the implicit definition of the moving least squares (MLS)
surface by Amenta and Kil [AK04]. Another class of methods work by sam-
pling curves on the surface passing by a given point p0, and use their normal
curvature to estimate the normal curvatures of the surface (by Meusnier
theorem). Using several of these curves, they are then able to estimate the
principal curvature directions: [Tan05, LP05, HM02, TT05]. A third kind
of mehods rely on computing covariance matrices. Given a point p0 on the
surface, one projects all the normals of neighbouring points on the estimated
tangent plane to p0. The covariance of this set of vectors is used to estimate
the shape operator [BC94].

Computer graphics approaches to feature estimation. Although ex-
tracting sharp edges and corners is closely related to curvature estimation,
research in these areas has been relatively independent. Fleishman et al.
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[FCOS05] detect sharp edges and corners by segmenting neighborhoods of
points into regions corresponding to the same part of the surface. They
achieve robustness by using a forward search technique which finds reference
planes, corresponding to each segment. This work is extended by Daniels
et al. [IOHS08] to extract feature-curves, by locally projecting onto feature
points, and growing smooth polylines through the projected cloud. Lipman
and colleagues [LCOL07] extract sharp edges within the MLS projection
framework by defining a Singularity Indicator Field (SIF) based on the error
of the MLS surface approximation. Jenke et al. [JWS08] detect sharp features
by robustly fitting local surface patches and computing intersections of nearby
patches with dissimilar normals. In a similar spirit, Oztireli et al. [OGG09]
define a feature-preserving MLS projection operator by noting that angles
between normal vectors, rather than point coordinates can be used to discard
points from unrelated parts of a piecewise-smooth surface.

Provably correct curvature and feature estimation. Very few of the
curvature and feature estimation methods come with theoretical guarantees
on the convergence to the real principal curvature directions as the point
cloud converges (in the Hausdorff or distribution sense) to the surface. Even
fewer come with quantitative convergence results. The most notable results
include:

Local fitting of polynomials. The most commonly used methods for computing
curvatures on point clouds in practice, rely on least-square polynomial fitting
(see eg. Cazals and Pouget [CP05] and references therein). Let p0 be a point
of the surface, p1, . . . , pk some of its neighbors, and n0 a (not necessarily
good) estimation of the normal at p0. Denote by p ′

1, . . . , p
′
k the projections

of the points on the affine plane P = p0 + {n0}⊥, and h1, . . . , hk the heights
hi = 〈pi − p ′

i|n0〉. The height function of the surface is then estimated by
the two-variable polynomial h : P → R that best fits the couples (p ′

i, hi) in
the least-square sense, and the curvature tensor of the unknown surface is
estimated by the curvature tensor of the surface (p ′, h(p ′)) at p0.

Least-square fitting is very fast in practive, and its convergence properties
are well understood. Given a function f : D ⊆ R

d → R, let us denote by P0 the
solution of the polynomial least-square fitting for a domain D in R

d, and PX
the solution for a finite subset X ⊆ D:

P0 = arg min
{

‖P − f‖L2(D) ;P ∈ R
d[X],deg(P) 6 k

}

PX = arg min

{
∑

x∈X
‖P(x) − f(x)‖2 ;P ∈ R

d[X],deg(P) 6 k

}

Given a sequence of point clouds Xn ⊆ D, the polynomial PXn converges to
P0 provided that uniform measure on the point cloud Xn converges to the
uniform measure on the domain Ω in the L2-sense.

This means that the requirement for convergence is not geometric (Haus-
dorff) but measure-theoretic. In particular, curvature estimation methods
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based on least-square fitting are sensitive to sampling. This can be a problem
for some point clouds such as laser scans which often exhibit oversampled
clusters of points along horizontal lines.

Normal cycle and second fundamental measure. Cohen-Steiner and Morvan
[CSM03] use the normal cycle from geometric measure in order to define a
notion of second fundamental measure of a geometric set. They prove that if
K approximates S for some notion of closeness stronger than Hausdorff, then
the normal cycles (and hence the second fundamental measure) of K and S
are close. This theorem applies to a Delaunay mesh reconstructed from an
ε-sampling of S, for instance, allowing to compute very reliable curvature
informations on this kind of meshes.

Second fundamental measures can be applied in a meshless setting by
considering the offsets of the compact set [CCSLT09]. If a point cloud C is
close enough to an unknown compact set K with positive µ-reach, the second
fundamental measures of Cr and Kr are close, when the Hausdorff distance
dH(C,K) is close enough. To the best of our knowledge, there is no known way
to pull-back these curvature measures to the original point cloud.

Integral methods (Connolly-like). These methods estimate the principal cur-
vature directions and sharp features of a surface S bounding a domain D, by
considering the volume or covariance matrices of intersection of small balls
B(x, r) (x ∈ S) with the domain D. A nice feature of these methods is that the
estimation error made by replacing a domain D by another domain D ′ only
depends only on the volume of the symmetric difference D∆D ′, and not of any
higher order approximation properties between ∂D ′ and ∂D.

The drawback, however, is the need for an approximation of not only the
surface S (or of a point-cloud approximation of it), but also of the interior
domain D. For the original applications in computational structural biology
[Con86, CCL03], this requirement is perfectly fine, since the domain is simply
a union of balls. But for applications in geometry processing, this means that
D has to be meshed, and the method doesn’t apply to point clouds. Since
these integral methods are close in spirit to our approach, we give more detail
about them in §III.1.2.

Contributions

The main contribution presented in this chapter is a framework for estimating
curvature and feature information of the underlying surface from a point

cloud C, based on integral quantities. We rely on covariance matrices of
Voronoi cells (as in the method of Alliez and colleagues [ACSTD07]); but
instead of intersecting them with a large bounding box of the point cloud,
we intersect them with an offset CR. Intersecting with an offset gives us
more local information about the variation in shape and size of the Voronoi
cell, which is crucial for curvature estimation. We present two algorithms for
computing covariance matrices of this intersection: a Monte Carlo method,
and a method based on tessellating the intersection with tetrahedra.

The theoretical results are twofold: first, for any compact set K, we define
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its Voronoi covariance measure (VCM), through the projection function on K.
This allows us to study the discrete case of point clouds and the underlying
continuous piecewise-smooth surfaces in a single framework. With this notion
at hand, we prove that if K is a piecewise-smooth submanifold of R

d, then
the eigenvalues and eigenvectors of its convolved VCM provide information
on the normal directions, principal curvatures and directions, directions of
sharp features, and dihedral angles between its smooth parts. In the second
part, we prove that if the point cloud C is a good Hausdorff approximation of
K, then convolved versions of the VCM of C and K are uniformly close.

Outline. In §III.1, we start with a review some background material on
normal, curvature and feature estimation (§§III.1.2,III.1.3). We then give
the formal definition of the Voronoi-covariance measure (VCM). In §III.2, we
study the theoretical properties of the VCM for feature (§III.2.2) estimation,
and discuss the possible relation with curvature estimation (§III.2.1), before
giving a stability result for VCM (§III.2.3). We finish by an experimental part
(§III.3): after giving a possible algorithmic implementation in §III.3.1, we
study the results obtained in practice under varying sampling, noise levels
and for piecewise smooth surfaces with small dihedral angles between smooth
parts.

III.1 VORONOI COVARIANCE MEASURE

Before introducing the main character in this chapter, the Voronoi covariance

measure of a compact set in R
d, we will review some geometric estimation

approaches, which share some features with this work:
— integral-based approaches for estimating curvature and sharp features on

a mesh, using the volume or covariance matrices of the intersection of this
mesh with small balls.

— normal estimation techniques, from principal component analysis normal
estimation to integral Voronoi-based normal estimation.

III.1.1 — Covariance matrices, stability of their eigenspaces

Throughought this chapter, we will make use of the following definition and
results on covariance matrices of a domain E ⊆ R

d.

DEFINITION III.1 (Covariance matrix). If E ⊆ R
d has finite volume, its covari-

ance matrix is a 2-tensor whose eigenvectors capture the principal axes of E
with respect to a base point p:

cov(E, p) =

∫

E

(x− p)⊗ (x− p)dx

where v⊗w denotes the n× n matrix defined by [v⊗w]i,j = wivj.

A nice feature of the eigenanalysis of covariance matrices (and more gener-
ally symmetric matrices) is that eigenvalues and eigenspaces are stable under
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perturbation, in a sense to be made precise. As a very simple application,
consider two domains E and E ′ that are close in the sense that the symmetric
difference E ′∆E has small volume. Then, it is easy to see that the covariance
matrices cov(E, p) and cov(E ′, p) (p ∈ R

d) are also close:

∥

∥cov(E, p) − cov(E ′, p)
∥

∥

op 6 Hd(E∆E ′) sup
x∈E∪E ′

‖x− p‖2

The stability result mentioned above can be use to quantify the difference
between the eigenvalues and eigenspaces of the two covariance matrices.
These stability results also explain why the standard principal-component
analysis techniques work.

All the following results are standard stability results from matrix pertur-
bation theory. A good reference for this theory can be found in [SS90]. The
set of eigenvalues of M is denoted by Spec(M) ⊆ R. An eigenpair of M is a
pair (λ, v) made of an eigenvalue of M and a corresponding unit eigenvector v,
ie. Mv = λv and ‖v‖ = 1. The norm we use is the operator norm:

‖M‖op = sup
v∈Sd−1

‖Mv‖ .

A first very classical stability result for eigenvalues is due to Weyl:

THEOREM III.1 (Weyl). Let M and M ′ be two symmetric matrices and λ1 >

. . . > λn and λ ′1 > . . . > λ ′n be their ordered eigenvalues. Let m− and m+

denote the smallest and largest eigenvalues of M ′ −M. Then,

∀i, λi +m− 6 λ ′i 6 λi +m+

As a weaker consequence, one obtains that the Hausdorff distance between the

spectra of M and M ′ is at most ‖M−M ′‖op.

Recall that the (global) eigengap of a diagonalizable matrix is the mini-
mum distance between two eigenvalues — in particular, it vanishes if some
eigenvalue of the matrix has multiplicity greater than one. The local eigengap
at λ ∈ Spec(M), denoted by δλ(M) is the minimum distance between λ and
any distinct eigenvalue of M. The following theorem is a simplified version of
Davis-Kahan sin(Θ) theorem.

THEOREM III.2 (Davis-Kahan). Let M and M ′ be two symmetric matrices, λ

an eigenvalue of M and δ = δλ(M) be the eigengap of M at λ. Then for every

eigenpair (λ, v) of M, there exists an eigenpair (λ ′, v ′) of M ′ such that

∣

∣λ− λ ′
∣

∣ 6
√
2
∥

∥M−M ′∥
∥

op and
∥

∥v− v ′
∥

∥ 6
2 ‖M−M ′‖op

δ

provided that ‖M−M ′‖op < δ
√
2.

III.1.2 — Integral-based curvature and feature estimation
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Connolly function and curvature. A prominent line of work to estimate
some curvature properties of a surface S which bounds a domain D make use
of the intersection a Euclidean ball B(x, r) (or sphere S(x, r)) with D, where
x ∈ S. The function r 7→ H2(S(x, r)∩D) was introduces by Connolly in [Con86]
in the context of molecular shape analysis. Its precise relation with the mean

curvature H(x) of the surface S at x is as follows (cf. for instance [CCL03] or
[HT03]),

H3(B(x, r) ∩D) =
2π

3
r3 −

πH(x)

4
r4 + O(r5)

H2(S(x, r) ∩D) = 2πr2 − πH(x)r3 + O(r4)

(III.1)

Application to feature detection. In [CRT04], the authors use similar
integral techniques for detecting sharp edges of a piecewise smooth manifold.
They consider the centroid M0

r(x) of the intersection B(x, r) ∩D, ie.

M0
r(x) =

1

Hd(B(x, r) ∩D)

∫

B(x,r)∩D
ydy

They prove that the distance from x to the M0
r(x) is quadratic (ie. O(r2)) if

x is a smooth point of the surface:

PROPOSITION III.3. If S = ∂D is locally smooth around a point x ∈ S, then

M0
r(x) = x+ C(d)r2H(x)nS(x) + o(r2)

where nS(x) is the (outward-pointing) normal to S at x, H(x) is the mean

curvature, and C(d) is a constant depending on the ambient dimension.

On the contrary,
∥

∥x−M0
r(x)

∥

∥ is linear (ie. Ω(r)) in r if x belongs to a sharp
edge. In this case, the eigenanalysis of the covariance matrix of B(x, r) ∩D
(with respect to the centroid) can be used to get the direction of the sharp
edge. Following this work, Pottmann and coauthors [PWHY09] used principal
component analysis of the intersections B(x, r) ∩ D to estimate principal
curvature directions of ∂D at a smooth point x.

An important drawback of this kind of asymptotic analysis is that eg. “lo-
cally smooth” is not a quantitative statement. If the point x in the proposition
is very close to a feature point (let’s say at distance r0 ≪ 1), the behaviour
of the function r 7→

∥

∥M0
r(x) − x

∥

∥ will be linear as long as r > Ω(r0), at which
point only it will start being quadratic. This is of course unavoidable, but it
seems nonetheless important to be able to quantify this, through notions such
as reach, local feature size, etc.

Hausdorff-stability. Given a scale r and a point x in R
d, most of the quan-

tities defined above (at least the Connolly function function and M0
r(x)) are

Hausdorff-stable — though this question has not really been considered.
The reason of the stability is easy to grasp. Computing the volume (or any

other integral quantity) of the intersection B(x, r) ∩D only depends on the
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measure H3
∣

∣

D
, and not at all on the smoothness of the boundary. Hence, if

one replacesD with another domainD ′ such that the volume of the symmetric
differenceD ′∆D is small, the volumes H3(D∩B(x, r)) and H3(D ′∩B(x, r)) will
also be close. This is true, regardless of any higher order closeness properties
for ∂D and ∂D ′.

III.1.3 — Normal estimation: from PCA to Voronoi-PCA

In all the methods presented below, the assumption is that the point cloud C
is drawn from a compact smooth surface S in R

3 (often with assumptions on
the reach of S). Only unoriented normals are estimated.

Principal component analysis estimation. A commonly used method for
estimating normals is based on local principal component analysis. Given
a point cloud C and p ∈ C, the normal at p is estimated by determining
the plane that best approximates the k nearest neighbors to p in the least-
square sense (cf. Algorithm 3). A commonly cited reference for this method is
[HdRT+92].

Algorithm 3 local PCA-based normal estimation
1. select the k closest neighbors p1, . . . , pk to p in C;
2. compute the affine hyperplane Hp that solves the least-square problem

Hp := arg min
H

k∑

i=1

d(pi, H)2

3. choose the unit normal in the orthogonal {Hp}
⊥.

There seems to have been no formal study of the convergence properties
of this algorithm; however there are at least two requirements:

— The sampling should be rather uniform. When the sampling is not per-
fectly uniform, the k nearest neighbor can be replaced by all the neighbors
in a ball of given radius r. However, this method cannot (easily) be made
resilient to stronger sampling bias under structural noise, because the
least-square fitting step will be biased toward oversampled areas.

— The intuitive geometric condition for the algorithm to work is that given
a point p ∈ S, the patch of surface B(p, r) ∩ S should be close to the
affine tangent plane p+ TpS. A necessary condition is that the (sectional)
curvature is low. But this isn’s sufficient: the ball B(p, r) also shouldn’t
contain points from farther parts of the surface. This will be true, provided
that the reach of S is high.

Since the algorithm tries to approximate the tangent space rather than
the normal space to S, it does not take full advantage of having “large” normal
cones. This explains why the method is not very robust to noise — unless the
parameter r is chosen big enough, which leads to oversmoothing. Moreover,
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this normal estimation methods behaves very poorly if the underlying object
has sharp edges.

Voronoi-based normal estimation. These techniques have been pio-
neered by Amenta and Bern [AB99]; they rely on the fact that given a densely
sampled point cloud C on a surface S ⊆ R

3, the Voronoi cell of any point
p ∈ C is elongated in the direction of the normal to S at p. Such Voronoi cells
are often called pencil-shaped in the litterature. Amenta and Bern calls the
farthest Voronoi vertex to p in VorS(p) the positive pole v+ of VorC(p). The
normal nC(p) is estimated by the direction of the vector v+p.

The geometric intuition behind this method lies in the following simple
fact. If p is a point on the hypersurface S, and B is an open ball whose closure
contains p, and that does not contain any other point in S — we call such a
ball an empty ball at p —, then the vector joining the center v of B and p must
belong to the normal space to S at p.

Amenta and Bern’s result quantify the (potential) deviation of p+v to the
normal nS(p) under approximation. In order to give a precise statement, we
need to introduce the notion of ε-sample:

DEFINITION III.2. The local feature size at a point p ∈ S is the distance from
x to the medial axis: lfsS(p) = d(p,Med(S)). A (finite) subset C ⊆ S is called
an ε-sample iff every ball B(p, lfsS(p)) (p ∈ S) contains a point of C.

The following proposition proves that pole-based normal estimation is
consistent ([AB99]):

PROPOSITION III.4. Let C be an ε-sample on a smooth closed hypersurface S;

then:

1. For any point p ∈ C, there exists a point v in VorC(p) such that ‖p− v‖ >

lfsS(p).
2. If v ∈ VorC(p) is such that ‖v− p‖ > ν lfsS(p), then the angle between

the vector pv and the normal nS(p) oriented in the same direction is at

most

arcsin(ε/ν(1− ε)) + arcsin(ε/(1− ε)) ∼ε→0 (1+ 1/ν)ε

In the noisy case, the Voronoi cells are deformed, which can affect the
orientation of the normal. More importantly, the Voronoi cells can be clamped,
and become isotropic (see Fig. III.1.3) – this phenomenom completely breaks
Amenta and Bern’s method. A modification of this method by Dey and Sun
[DS05] tries to recover from this situation this by looking for a large cell
among the nearby Voronoi cells. The sampling conditions are a bit more
intricate; however, it should be noticed that the deviation bounds for the
estimated normals proven in Dey and Sun’s paper degrades from O(ε) to
O(
√
ε).

Alliez and colleagues [ACSTD07] have a different approach. They compute
the covariance matrix of every Voronoi cell; in the pencil case, the eigenvector
corresponding to the largest eigenvalue will be aligned along the normal. In
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Figure III.2 – Voronoi-based normal estimation. In the second picture, one
can see the angle defect in the normals estimated unsing the
pole method, even if the points have been only moderately
perturbed. The third picture shows clamped Voronoi cells
under stronger noise. (courtesy of P. Alliez et al. )

order to accomodate noise, given a point p ∈ C, they first compute the average
of the covariance matrices of the Voronoi cells of the k nearest neighbor. The
largest eigenvector of this averaged covariance matrix is then considered as
an approximation of the normal at p (see Fig. III.1.3).

As we will see, these covariance matrices appear naturally as convolved
anisotropic boundary measures. They provide information one the normal
cones, even in the non-smooth setting, which makes them useful for feature
detection.

III.1.4 — Definition of the Voronoi covariance measure

Infinitesimal Voronoi cells. The projection function maps a point in R
d \

Med(K) to its only closest point pK(x) in K ⊆ R
d. Recall that thanks to

Corollary I.5, this function is defined almost everywhere; being only interested
in integral quantities defined from pK, we will do as though pK was defined
on the whole space R

d.
If K = {p1, . . . , pn} is a point cloud, and VorK(pi) denote the Voronoi cell of

pi, the projection on K simply maps a point x ∈ R
d to the center of its Voronoi

cell. By analogy to this case, we will refer to the set p−1
K (B) as the Voronoi cell

of the set B ⊆ K, and to p−1
K ({x}) as the infinitesimal Voronoi cell of the point

x ∈ K.

DEFINITION III.3. The Voronoi covariance measure (or VCM) is defined for
any compact set K of R

d. This can be a finite point cloud, a (piecewise) smooth
manifold, or an even wilder object. We also need a scale parameter R, which
will be used to define an offset KR of K.
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C

p−1

C (B ∩ C) ∩ CR

B

pi

Vor(pi) ∩ CR

p−1

S (B ∩ S) ∩ SR

B

S
x

pS(x)

Figure III.3 – Voronoi covariance measures VC,R(B) of a 2D point cloud C and
of the underlying curve S, with respect to the same probing set
B.

The Voronoi covariance measure of K with respect to KR is a tensor-valued
measure denoted by VK,R. Being tensor-valued means that unlike a usual
measure µ in the sense of Lebesgue, which maps every (Borel) subset B of
R
d to a non-negative number µ(B), the Voronoi covariance measure maps

every such B ⊆ R
d to a non-negative definite covariance matrix VK,R(B). This

covariance matrix is defined as follows:

VK,R(B) =

∫

KR∩p−1
K (B∩K)

(x− pK(x))⊗ (x− pK(x))dx

Figure III.3 illutrates the domain of integration in the definition of VK,R(B)

when K is a point cloud or a curve. Intuitively, the VCM VK,R(B) is the
covariance matrix of the “Voronoi cell” p−1

K (B ∩ K) ∩ KR, but with a varying
base point: one can think of it as the integral over all p ∈ B ∩ K of the
covariance matrices of the infinitesimal Voronoi cell p−1

K ({p}) ∩ E, with base
point p.

DEFINITION III.4. Given a compact set K ⊆ R
d, the normal cone NpK at a

point p ∈ S is the positive cone generated by all the vectors x− p, where x is
any point that projects onto S. That is: NpK = {λ(x− p) ; λ > 0 and pS(x) = p}.

We will call normal set to K at p at scale R, and denote by Np,RK the
intersection of the infinitesimal Voronoi cell p−1

K (p) translated at the origin
with the ball B(0, R) : Np,RK = {x− p; pK(x) = p and x ∈ KR}. Notice that for
any positive R, the normal cone is the positive cone generated by Np,R.

The normals in the cone NpK are often called proximal normals to K at
p ([CS04, p. 75]); the normal cone NpK also coincides with the definition of
Clarke ([Cla83, p. 10]). The normal set Np,RK (which is not a cone!) bears
some resemblance with the approximate normal cones defined in [CCSL08].
Note that while NpK is always convex, this is not necessarily the case for the
set Np,R (R > 0).

EXAMPLE. If K is smooth and R < reach(K) then Np,RK is the segment
[−Rn(p), Rn(p)] (Figure III.3). On the other hand, if K ⊆ R

3 is a convex
polyhedron, Np,RK corresponds to the is the intersection of the normal cone



III.1. VORONOI COVARIANCE MEASURE 73

at p with the ball B(p, R). It is a 2-dimensional subset of R
3 when p lies on an

edge and 3-dimensional when p is a vertex (cf. Figure III.4).

If B is a small neighborhood of a point p ∈ K, the covariance matrix
VK,R(B) captures the variation of the normal cone of K around p, which is
related to the curvature at p when K is locally smooth. This intuition is made
more precise in §III.2.1.

DEFINITION III.5. The tensor-valued measure VK,R can be convolved by any
continuous and integrable function χ : R

d → R. This turns it into a (tensor-
valued) density function VK,R ∗ χ : R

d → Sym(Rd), defined by

VK,R ∗ χ(p) :=

∫

KR
(x− pK(x))⊗ (x− pK(x))χ(pK(x) − p)dx

Let χr : R
d → R be the indicator function of the ball B(0, r), defined by

χr(p) = 1 if x ∈ B(0, r) and χr(p) = 0 otherwise. Note that in this case the
convolved VCM has a particularly simple expression:

VK,R ∗ χr(p) = VK,R(B(p, r)) (III.2)

In this work, the convolution kernel is always chosen to be a Lipschitz
approximation of such an indicator function, like the “hat function” χ(p) =

max(0, r− ‖p‖2), for which we can prove that VK ′,R ∗ χ converges to VK,R ∗ χ
as K ′ converges to K (see §III.2.3). We also often use the indicator function
itself for which we get good results even though the theoretical guarantees of
convergence do not apply directly.

VCM of a point cloud. In this paragraph, we derive a simple formula for
the VCM of a point cloud C = {p1, . . . , pn} in R

d. Given a set B ⊆ R
d, the

inverse image p−1
C (B) is the union of Voronoi cells whose center lie in B; hence:

VC,R(B) =

∫

CR∩p−1
C (B)

(x− pC(x))⊗ (x− pC(x))

=
∑

pi∈B

∫

CR∩VorC(pi)

(x− pi)⊗ (x− pi)

=
∑

pi∈B
cov (Vor(pi) ∩ B(pi, R), pi)

(III.3)

The last equality holds because the intersection VorC(pi) ∩ CR is equal to the
intersectionVorC(pi) ∩B(pi, R). Notice the resemblance with the covariance
matrices used in [ACSTD07]: the main differences is that in their definition,
the Voronoi cells are intersected with an enlarged bounding box of the point
cloud instead of the balls B(pi, R).

Convolved VCM of a point cloud. Using equation III.2, and choosing the
convolution kernel to be the indicator function of a ball with radius r, we
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obtain the following expression:

VC,R ∗ χr(p) =
∑

pi∈B(p,r)∩C
cov (Vor(pi) ∩ B(pi, R), pi)

We describe practical algorithms to compute the convolved VCM of a point
cloud in §III.3.1.

III.2 THEORETICAL PROPERTIES OF THE VCM

The analysis of the geometric inference using the Voronoi covariance measure
is organized as follows:
— First, we study the “asymptotic case”, ie. we try to understand what

information is contained in VS,R when S is the underlying object. In
§III.2.1, we study the VCM of a smooth surface S, and its relation with
normals and curvature. In §III.2.2, we show that the Voronoi covariance
measure of a polyhedron P in R

3 contains information about its sharp
edges — under a lower bound on the 1-sided reach (a condition that forbids
concave corners).

— In a second step, we study the stability of the VCM under Hausdorff
approximation (in §III.2.3). We also show that the VCM is resilient to a
certain class of outliers.

These stability results and the study of the asymptotic case can be combined
to show that VCM of a point cloud sampled close to a smooth or piecewise-
smooth surface can be used to infer geometric properties such as normals or
sharp feature directions of that surface.

III.2.1 — Voronoi covariance of a smooth hypersurface

Let S be a compact smooth hypersurface embedded in R
d, n an oriented

normal vector field on S and RS the reach of S. As before, SR denotes the
R-offset of S.

Let us recall a few facts about the curvature of embedded hypersurfaces.
The map x ∈ S 7→ n(x) is called the Gauss map of S, while its derivative
dn is called the shape operator of S. If κ1(x), . . . , κd−1(x) denote the (d − 1)

principal curvatures at x and P1(x), . . . , Pd−1(x) is a set of vectors in the
tangent plane spanning the principal curvature directions, with ‖Pi(x)‖ = 1,
one has: ∀v ∈ TxS, dn(x)(v) =

∑d−1
i=1 κi(x)〈Pi(x)|v〉Pi(x).

In the following, we show that the Voronoi Covariance Measure VS,R
evaluated on a subset B ⊆ S can be described in terms of the covariance
matrix of the normal vectors n(x), x ∈ B:

THEOREM III.5. If R < RS, the reach of S, then for every B ⊆ S one has

VS,R(B) =

⌊(d−1)/2⌋∑

k=0

R2k+3

k+ 3
2

∫

p∈B∩S
σ2k(p)[n(p)⊗ n(p)] dp
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Proof. This computation is almost the same than in the proof of Prop. II.1. If
R is smaller than the reach of S, the mapϕ : S×[−R, R]→ SR, (p, t) 7→ p+tn(p),
where SR is the R-neighborhood of S, is a diffeomorphism. Thus, the change-
of-variable formula yields:

VS,R(B) =

∫

SR∩p−1
S (B∩S)

(x− pS(x))⊗ (x− pS(x))dx

=

∫

p∈B∩S

∫R

−R

n(p)⊗ n(p) t2 Jϕ(p, t) dt dp

where |Jϕ(p, t)| is the Jacobian determinant of ϕ at (p, t) ∈ S × [−R, R]. In
the local frame of the tangent space given by the d − 1 principal curvature
directions P1(p), . . . , Pd−1(p), the derivative of ϕ is the diagonal matrix with
components 1+ tκ1(p), . . . , 1+ tκd−1(p), 1. From this, we are able to compute
the Jacobian determinant:

|Jϕ(p, t)| =

d−1∏

i=1

(1+ tκi(p)) =

d−1∑

i=0

tiσi(p)

In this expression, σi(p) =
∑
j1<...<ji

κj1(p) . . . κji(p) is the ith symmetric
polynomial of the principal curvatures at p. Since all terms with odd powers
of t vanish when we integrate from −R to R, we get the desired polynomial
expansion for the VCM.

As a consequence, the eigenvector corresponding to the largest eigenvalue
of VS,R(B(p0, r)) converges to the normal to S at p0 as r goes to zero:

COROLLARY III.6. If R < RS, the reach of S, then for every p0 ∈ S and r > 0

small enough, one has

VS,R(B(p0, r)) = const(S, R, p0) (n(p0)⊗ n(p0) + O(r/RS))

where

const(S, R, p0) =

⌊(d−1)/2⌋∑

k=0

[

R2k+3

k+ 3
2

∫

p∈B(p0,r)∩S
σ2k(p) dp

]

Proof. The map p ∈ S 7→ n(p) is locally 1/RS Lipschitz for the induced metric
on S (because the principal curvatures are at most 1/RS). One concludes using
dS(p0, p) > ‖p− p0‖.

Voronoi-covariance and curvature. Analysing the relationship between
Voronoi covariance measure of S and the curvature of the surface in a way
that allows to give precise sampling conditions that allow to recover (approx-
imately) the principal curvature directions from a point cloud sampling is
quite difficult.

Moreover, in practice, the radii R and r will have to be chosen big enough
in order to compensate for noise, and such conditions would seldom be met. As
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we mentioned in the introduction, the most important feature of a local signa-
ture like VS,R(B(p0, r)) is the stability of the VCM with respect to Hausdorff
approximation; which is proven for VCM in §III.2.3.

Let us still mention the following lemma, which together with Theorem
III.5 indicate a strong link between VS,R(B(p0, r)) and the local second-order
behaviour of S. In the experimental section, we will see that under good
sampling conditions, the two eigenvectors corresponding to the two small-
est eigenvalues of VS,R(B(p0, r)) indeed align with the principal curvature
directions.

LEMMA III.7. Let p0 ∈ S, and note MS(p0, r) be the matrix defined by

∫

B(0,r)

n(expp0(v))⊗ n(expp0(v))dv

Then,

MS(p0, r) = ωd−1r
d−1n(p0)⊗ n(p0) + O(rd+1)

Moreover, the restriction of MS(p0, r) to the tangent plane Tp0S satisfies:

MS(p0, r)|Tp0S
= ωd−1r

d−1n(p0)⊗ n(p0)

+ const(d)rd+1
d−1∑

i=1

κ2i (p0)[Pi(p0)⊗ Pi(p0)] + O(rd+2)

Proof. First, write the Taylor expansion formula for normals:

n(expp0(v)) = n(p0) + dp0n(v) + O(‖v‖2)

Now, since
∫

B(0,r) dp0n(v) = 0, the first order terms (in ‖v‖) in n(expp0(v))⊗
n(expp0(v)) vanish when integrated on the ball B(0, r). This gives the first
formula. Moreover, when w is in the tangent plane to S at p0, the scalar
product 〈n(p0)|w〉 vanishes. This means that the term O(‖v‖2)⊗ n(p0) (and
the symmetric term) don’t contribute.

Let Pi(p0) be the ith principal curvature direction. Then,
∫

B(0,r)

[dp0n(v)⊗ dp0n(v)](Pi(p0), Pi(p0))dv

=

∫

B(0,r)

κ2i (p0)〈v|Pi(p0)〉2dv

= 2κ2i (p0)

∫r

0

s2βd−2

(
√

r2 − s2
)

ds

Using a proper change of variable, this last integral is equal to

βd−2r
d+1

∫1

0

u2
(

1− u2
)(d−1)/2

ds = const(d)rd+1

The second formula follows.
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Figure III.4 – The infinitesimal Voronoi cell p−1
C (x) of a point x on a cube is

pencil, triangle or cone-shaped depending on the dimension of
the normal cone.

III.2.2 — Voronoi covariance and sharp features

The dimension of the Voronoi cell of a point, and more precisely the number
of “small” eigenvalues s of its covariance matrices, can help to distinguish
between a smooth point (s = 2), an edge point (s = 1) and a vertex (s = 0) on a
polyhedron (cf. Figure III.4). In this paragraph, we use this intuition to make
a precise link between between the eigenanalysis of the convolved VCM of a
polyhedron of R

3 with positive 1-reach (this notion is defined below) and the
location and angle of its sharp edges.

DEFINITION III.6 (Edge, vertex, dihedral angle). Let S be a (not necessarily
smoothly) embedded compact close surface in R

3. We distinguish three type
of points depending on the dimension of the normal cone:
— If the normal cone NpS at a point p ⊆ S contains two opposite vectors,

then S admit a tangent plane at p — because the surface is stuck between
two balls tangent to each other at p. Such a point is a smooth point of S.

— The points where the dimension of NpS is either 3 or 0 are called vertices

of S and denoted by Vert(S). Vertices with dim NpS = 3 are concave, while
those with dim NpS = 0 are convex.

— The remaining points, ie. those where dim(Np0S) = 2 are called edge

points; their locus is denoted by Edg(S). If p0 is a point in Edg(S), the
normal cone Np0S is a two-dimensional convex cone. We will denote by
e(p0) the feature direction at p0, ie. a unit vector orthogonal to this normal
cone. Also denote by u±(p0) the leftmost and rightmost unit vectors in
the circle arc corresponding to the intersection of the normal cone with
the unit sphere. The positive angle between these two vectors is denoted
by α(p0) and called dihedral angle.

DEFINITION III.7 (One-sided local feature size). In general, if the local feature
size of S at a point p is greater than R, then the infinitesimal Voronoi cell can
be simply written in term of normal cone: p−1

K ({p}) ∩ B(p, R) = p + (NpS ∩
B(0, R)). In those cases, the VCM VS,SR at that point is fully described by the
normal cone.
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Because the lfs vanishes at any non-smooth point, we have to introduce
a weaker notion of feature size. The 1-sided local feature size, or lfs1S(p), of
a point p is defined the supremum of all radii R > 0 such that for all unit
normal vector n in NpS the projection on S of either p + Rn or p − Rn is at
p. The 1-reach of S, denoted by reach1(S) is the infimum of lfs1S(p) among all
p ∈ S. (Although the notation can be a bit misleading, this notion of reach has
nothing to do with the µ-reach defined in [CCSL09] with µ = 1.)

p

Figure III.5 – The corner at the point p is concave, meaning that the normal
cone at p only contains the zero vector.

REMARKS. — For any edge point p0, let Q(u±(p0)) be the cone at the origin
positively generated by the vectors u±(p0), ie. Q(u±(p0)) = {λu+(p0) +

νu−(p0); λ > 0, ν > 0}. If S has positive 1-reach, the infinitesimal Voronoi
cell at such a point p0 is equal to the intersection of the cone Q(u±(p0))

and the ball B(0, R). This intersection is a circular slice with radius R and
angle α(p0).

— Unlike the local feature size, which is known to be Lipschitz, the 1-sided
lfs is not even necessarily continuous. Indeed, lfs1S(p) can get arbitrarily
close to zero as p moves along an edge to one of its extremities p0, even
though lfs1S(p0) > 0.

— According to this definition, the one-sided lfs at a concave corner — ie.

a corner p ∈ S whose normal cone only contains the zero vector — is
always infinite. However, such corners are discarded by the positive 1-
reach assumption, as a consequence of Lemma III.8. Indeed, it suffices to
remark that any point in S can be written as a limit of points pn ∈ S such
that dim NpnS > 0; the limit point will then automatically have a non-null
normal.

LEMMA III.8. Let S ⊆ R
d be a compact set with reach1(S) > R > 0, (pn) be a

sequence of points in S converging to a point p ∈ S, and (nn) a sequence of unit

normals to pn converging to a unit vector n. Then n belongs to the normal

cone at p.

Proof of Lemma III.8. For each n, choose a point xn that projects onto pn,
with ‖pn − xn‖ > R and such that (pn−xn) is collinear to nn. By compactness
of SR, we can suppose that the sequence xn converges to some point x. Then,
‖x− p‖ = R, and p is among the (possibly) multiple projections of x. Then for
any r < R, the point p+ r

R
(x− p) projects onto p, proving the lemma.
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LEMMA III.9. If γ : ]−ε, ε[ → S is a curve, differentiable at 0 and such that

p0 = γ(0) belongs to Edg(S), then e(p0) is collinear to γ ′(0).

Proof. Consider any point x ∈ R
d with pS(x) = p0. By definition of the

projection, the open ball B(x,d(x, p0)) does not contain any point in S and in
particular points of the curve γ. Hence, it must be tangent to γ at p0. This
proves that Np0S = {e(p0)}

⊥ ⊆ {γ ′(0)}⊥, from which one concludes.

There seems to be no simple way to define a notion of piecewise-smooth
surface that allows to give quantitative statements on the combinatorics, total
length, geometry etc. of Edg(S). In the remaining of this §, we will suppose
that S is a polyhedron with positive 1-reach. Most of these results also apply
to more general objects.

In that case, the notion of external dihedral angle defined above coincide
with the usual notion for closed polyhedron: if p0 is on an edge, u±(p0) are
the projections of the normals to the two faces adjacent to this edge on the
plane {e(p0)}

⊥.

LEMMA III.10. Let u,v be two unit vectors in the Euclidean plane, and V be

the intersection of the cone Q(u,v) with the disk B(0, R). The eigenpairs of the

covariance matrix cov(V, 0) are:

λ1 =
R4

8
(α− sin(α)) , e1 = u − v and λ2 =

R4

8
(α+ sin(α)) , e2 = u + v

where cos(α) = 〈u|v〉.

Proof. Consider the covariance in some fixed unit direction d which is at
angle β from v. Then, with M = cov(V, 0),

dTMd =

∫α

θ=0

∫R

r=0

r2 cos2(θ− β)rdrdθ =
R4

4

∫α

0

cos(2(θ− β)) + 1

2
dθ

=
R4

8

(

sin(2(α− β)) + sin(2β)

2
+ α

)

(III.4)

By symmetry of the cone, an obvious eigenvalue is the vector e1 making
an angle angle 1

2
α with v. The second one is orthogonal to e2 and thus makes

an angle of 1
2
(α−π) with v. To compute the eigenvalues associated with these

eigenvectors, we plug these two angles into (III.4).

For any point p in the closed polyhedron S, define R(p) as the smallest
(Euclidean) distance between p and any non-adjacent face in S.

PROPOSITION III.11. Let S ⊆ R
3 be a closed polyhedron with reach1(S) > R.

One then has the following characterization of points on sharp edges vs points

on smooth 2-face:

(i) For any point p0 on a 2-face with normal n0, and r < R(p):

VS,SR(B(p0, r)) = λ(p0, r, R)πr2
R3

3
[n0 ⊗ n0]
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with 8 > λ(p0, r, R) > 1.

(ii) For any point p0 on an edge e ⊆ Edg(S), and r < R(p0),

VS,R(B(p0, r)) =
R4r

4
[ (α(p0) − sin(α(p0))) e1(p0)⊗ e1(p0)

+ (α(p0) + sin(α(p0))) e2(p0)⊗ e2(p0)]

+πr2
R3

3
ε(p0, R, r)

where e1(p0) =
u+(p0)−u−(p0)

‖u+(p0)−u−(p0)‖ , e2(p0) =
u+(p0)+u−(p0)

u+(p0)+u−(p0)
,

‖ε(p0, R, r)‖op 6 1.

Proof. (i) The intersection of B(p0, r) with S only contains point from the same
facet as p0 (ie. with the same normal). By the 1-reach assumption, for each
p ∈ B(p0, r) ∩ S, the length ℓ(p) = bp − ap of p−1

S (p) is at least R, and at most
2R. Hence,

VS,R(B(p0, r) ∩ S) =

∫bp

ap

∫

p∈S
t2[n0 ⊗ n0]dpdt

=

(∫

p∈B(p0,r)∩S

ℓ(p)3

3
dp
)

[n0 ⊗ n0].

The bound on the scalar factor follows.
(ii) The intersection S∩B(p0, r) can be written as S∩ (e∪ S1 ∪ S2) where e

is the edge and S1 and S2 are the two adjacent faces (minus their boundaries).
The term in R4r

4
comes from VS,SR(B(p0, r) ∩ e) and Lemma III.10. The

bound of the error term follows, by the previous computation, and using
H2(B(p0, r) ∩ (S1 ∪ S2)) = πr2.

III.2.3 — Robustness of Voronoi covariance measure

This section is devoted to the proof of robustness of the VCM. By robustness
we mean that if two compact sets K and K ′ are very close in the Hausdorff
sense, then their VCM are also close. In applications, K will be a sampled
surface, and K ′ will be a point cloud; however the theorem does not make any
assumption on the nature of these compact sets.

The distance between two functions f, g : R
d → Sym(Rd) is given by the

norm of uniform convergence, two symmetric matrices being compared by the
operator norm:

‖f− g‖∞ := sup
p∈Rd

‖f(p) − g(p)‖op

The Hausdorff-robustness of the convolved VCMs when the convolution
kernel χ : R

d → R is Lipschitz and bounded follows from the projection
stability theorem presented in Chapter II. Actually, there is nothing special
about convolved VCMs: one could as well define a notion of bounded-Lipschitz
distance for tensor-valued measures, and prove convergence of VKn,R to VK,R
in the bounded-Lipschitz sense as Kn Hausdorff-converges to K.
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THEOREM III.12. If χ : R
d → R is a k-Lipschitz function with ‖χ‖∞ 6 1, then

for every compact set K ⊆ R
d and R > 0, there is a constant C ′(d, K, R) such

that

‖VK,R ∗ χ− VK ′,R ∗ χ‖∞ 6 C(d, k, K, R)dH(K,K ′)1/2

as soon as K ′ is close enough to K,

Proof. We let E be the intersection of KR and K ′R. By Corollary II.15, we know
that the volume KR \ E is in O(dH(K,K ′)). Hence, letting δ(x) = x− pK(x), we
only need to compare

∫

E

δ(x)⊗ δ(x)χ(pK(x) − p)dx

and the same quantity defined for K ′, ie. we want to bound the operator norm
of the difference: M =

∫

E P(x) − P ′(x)dx, where P (resp. P ′) is defined by
P(x) = δ(x)⊗ δ(x)χ(pK(x) − p). Then,

P(x) − P ′(x) = χ(pK(x) − p)
(

δ(x)⊗ δ(x) − δ ′(x)⊗ δ ′(x)
)

+ (χ(pK(x) − p) − χ(pK ′(x) − p)) δ ′(x)⊗ δ ′(x)

The first term can be written as:

χ(pK(x) − p) [((pK(x) − x)⊗ (pK(x) − pK ′(x)) + (pK ′(x) − pK(x))⊗ (x− pK ′(x))]

Now since χ is bounded by 1, ‖pK(x)−x‖ < R, and using the triangle inequality,
the operator norm of this expression is bounded by 2R ‖pK ′(x) − pK(x)‖ . By
the k-Lipschitz property of χ, the norm of the second term can be bounded by

|χ(pK(x) − p) − χ(pK ′(x) − p)|R2 6 kR2 ‖pK(x) − pK ′(x)‖

Hence,
∥

∥P(x) − P ′(x)
∥

∥

op 6 (2R+ kR2) ‖pK(x) − pK ′(x)‖
Integrating and using Theorem II.9 yields the bound

‖M‖op 6 C(d, K, E)[2R+ kR2]dH(K,K ′)1/2

If S is a piecewise smooth surface, p a point of S and Cn a sequence of point
clouds converging to S in the Hausdorff sense, the stability theorem says that
VCn,R ∗ χr(p) converges to VS,R ∗ χr(p) w.r.t the operator norm, where χr is a
Lipschitz approximation of the characteristic function of the ball B(0, r).

Robustness to some outliers. One limitation of the Hausdorff distance in
the bound above, is its sensitivity to outliers. Indeed, even under controlled
noise, outliers can contaminate the point cloud, and influence the shapes
of the Voronoi cells. Nevertheless, as pointed out earlier, intersecting the
Voronoi cells with an offset allows us to obtain local information which is
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unaffected by of outliers that are sufficiently far away from the point cloud
sampling of the surface:

LEMMA III.13. Let C be a point cloud and O a set of outliers with d(o,C) > 2R

for any o in O. Then the convolved VCM VC,R ∗ χ(p) and VC ′,R ∗ χ(p) (where

C ′ = C ∪O) agree on C provided that the support of χ is contained in a ball of

radius smaller than R.

Proof. For any point p ∈ C, the interection between its Voronoi cell and a ball
of radius R remains unchanged after introducing points from O: indeed, the
bissecting plane formed between p and any point p ′ ∈ O is at least R away
from p, since by assumption ‖p− p ′‖ > 2R. This implies that for all p ∈ C,
VC,R({p}) = VC ′,R({p}). The result on convolved VCMs follows by.

VC ′,R ∗ χ(p) =
∑

pi∈B(p,r)

cov
(

Vor(pi) ∩ C ′R, pi
)

and ‖p− p ′‖ > r there will be no outliers in the ball B(p, r), and the desired
equality follows.

Stability of eigenvalues and eigenvectors. As a consequence of Davis-
Kahan theorem, one obtains the convergence of the eigenvalues (with multi-
plicites) and eigenspaces of VCn,R ∗ χr(p) to those of VS,R ∗ χr(p). Below, we
give a example of such an analysis. The same analysis can be carried out for
sharp features, giving the same speed of convergence once r has been fixed.

Let p0 ∈ S, and χr : R
d → R

+ be the function that decreases linearly
from 1 at the origin to 0 on ∂B(x, r), and is null outsize of this ball. It can be
proven exactly as in Corollary III.6 that for some constant C1,

‖VS,R ∗ χr(p0) − C1n(p0)⊗ n(p0)‖op = O(r)

Moreover, for any point cloud C Hausdorff-close enough to S, one has:

‖VC,R ∗ χr(p0) − VS,R ∗ χr(p0)‖op 6 O(1+ r−1)dH(C, S)1/2

where r−1 is the Lipschitz constant of χr. Hence,

‖VC,R ∗ χr(p0) − C1n(p0)⊗ n(p0)‖op 6 O(1+ r−1)dH(C, S)1/2 + O(r)

Apply Davis-Kahan theorem to the two matrices inside the operator norm,
and to the eigenvector n(p0) of the second one. Denoting by n(VC,R ∗ χr(p0))
the eigenvector corresponding to the largest eigenvalue of VC,R ∗ χr(p0), this
gives

‖n(VC,R ∗ χr(p0)) − n(p0)‖ 6 O(1+ r−1)dH(C, S)1/2 + O(r)

In this equation, one sees that once r has been fixed, it is impossible to go
below a O(r) error threshold. With this scale fixed, the speed of convergence
is in the square root of the Hausdorff distance.
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REMARK. — Very similar arguments prove the convergence and correctness
of the normal estimation technique of Alliez et al. [ACSTD07], with the
same convergence speed.

— This 1/2-Hölder convergence speed is the same as in the modification of
Amenta and Bern’s pole-based normal estimation to the noisy case by Dey
and Sun [DS05]. It is interesting that this 1/2 exponent almost always
appear in geometric estimation results from point clouds, as soon as the
point cloud is allowed to have noise.

III.3 EXPERIMENTAL RESULTS

III.3.1 — Approximate computation by tesselation

In this section, we describe two practical algorithms for computing the VCM of
a point cloud. The first method has the advantage of being easy to implement
and to be applicable in any ambient dimension. The second algorithm is
much faster, and is the one we used for all of our results. We then describe a
straightforward way to convolve the VCM.

As remarked earlier, the VCM at a scale R of a point cloud C =

{p1, . . . , pn} ⊆ R
3 is the tensor-valued measure VC,R concentrated on the

point cloud C and such that VC,R({pi}) is the covariance matrix of the inter-
section Bi = B(pi, R) ∩ Vor(pi), where Vor(pi) is the Voronoi cell of pi.

No simple closed-form expression seems to exist for the covariance ma-
trix of Bi. As remarked in [ABI88], in order to compute the volume of the
intersection of a Voronoi cell with a ball, one can use the inclusion-exclusion
formula to reduce to the case of the intersection of two and three half-planes
with the same ball. The same formula can be used to compute the covariance
matrix of Bi, reducing it to integrals of the elementary quadratic polyno-
mials Pi,j(x1, x2, x3) = xixj over these two type of intersections. However,
whereas the integral of the constant function P(x1, x2, x3) = 1 admits a (pretty
intricate) closed form, there seems to be no such form for the Pi,j.

Monte-Carlo approximation. The Monte-Carlo algorithm for computing
the boundary measures introduced in Chapter II can be easily adapted to
compute the VCM of a point cloud (Algorithm 4).

The convergence of the output of this algorithm to a good approximation
of the VCM with high probability follows from the same arguments presented.
This algorithm has the advantage of being easy to implement, but is too slow
in practice for computing the VCM of point clouds with hundreds of thousands
of points. In the following, we describe a deterministic approach that can be
used to improve the computation speed in low dimensions.

Approximation by tesselation in 3D. We base our second method on the
fact that the covariance matrix of a tetrahedron can be computed analytically
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Algorithm 4 Monte-Carlo algorithm for VCM
Input: a point cloud C, a scalar R, a number N
Output: an approximation of VC,R

vold(CR)
≃ 1
N

∑
pi∈CCiδpi

loop {N times}
[1.] Choose a random pi uniformly in C ;
[2.] Choose a random point X uniformly in B(pi, R) ;
[3.] Compute k = #(B(X, R) ∩ C) ;
[4.] Find the closest point pj of X in C:

Cj ← Cj + 1
k
(X− pj)⊗ (X− pj)

end loop

[ACSTD07]. Therefore, using the additivity of the integral, in order to com-
pute the covariance matrix of the intersection of a Voronoi cell with a ball,
it is sufficient to approximate it with tetrahedra. For this, we triangulate
the boundary of this intersection and build tetrahedra by connecting each of
these triangles to the center of the Voronoi cell. This can be done because the
intersection is star-shaped with respect to the center of the cell.

We start with an arbitrary triangulation of the boundary of the Voronoi
cell ∂(Vor(pi)). Our goal is subdivide each triangle so that its projection
onto the ball B(pi, R) is a sufficiently good approximation of the correspond-
ing spherical triangle. For this, we process each triangle t in the original
triangulation according to three simple rules (see Algorithm 5).

The output of this algorithm yields a tetrahedralization of the intersection
of the Voronoi cell with a ball of a given radius, centered at the same point. We
then use the closed-form formulas of [ACSTD07] to compute the covariance
matrix of this intersection.

Convolution of the VCM. Convolving the VCM of a point cloud using a
kernel function χ supported on a ball of radius r can be done by computing for
each point pi ∈ C the intersection B(pi, r) ∩ C, and then summing:

VC,R ∗ χ(pi) =
∑

pj∈B(pi,r)∩C
χ(pj − pi)VC,R({pj})

The points belonging to B(pi, r) ∩ C are the k nearest neighbor to pi in C for
the suitable value of k, which can be determined by a binary search, using
a structure adapted to k-NN queries (such as a kD-tree). As mentioned in
§III.5, we mostly use χ = 1B(0,r).

Implementation. We implemented the two algorithms described above.
The tessellation of the Voronoi cells was done using the 3D Delaunay Trian-
gulation package of CGAL [PT06]. Running this algorithm for the Voronoi
cell at the origin and 15 random points on the unit sphere, with R = 1, yields
an average of 120 triangles for tesselating the boundary of Vor(pi) ∩ B(pi, R),
for a target approximation error of 1%. The running times of this algorithm
on more complex point clouds are reported in Table III.1.
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Table III.1 – Computation times for VCM of range-scan models (in seconds,
on a 3GHz Dual Core CPU)
Model Delaunay Tessellation Total

Blade (195k) 23.73 90.82 114.55
Bimba (502k) 79.04 305.42 384.46
Nicolò (947k) 95.08 465.53 560.61

Algorithm 5 Tessellation of the intersection of a Voronoi cell with a ball
Input: tesselation T of ∂Vor(p), a scalar R
Output: an approximate tesselation T of ∂(Vor(p) ∩ B(p, R))

for all triangle t ∈ T do
if t is completely outside the ball B(p, R) then

1. Recursively subdivide t into a family of smaller triangles {tk},
tk = (ak, bk, ck), until the family of triangles t ′k = (π(ak), π(bk), π(ck))

(π being the projection on the ball B(p, R)) is a precise enough tessella-
tion of the underlying spherical patch. Then add each t ′k to the final
triangulation T ′

else if t is completely inside the ball B(p, R) then
2. Add t to the final triangulation T ′.

else {t crosses the sphere ∂B(p, R)}
Subdivide t by adding points along the circular arc of intersection, and
apply 1. or 2. to the constructed triangles depending on whether they
are inside or outside of the ball.

end if
end for

Figure III.6 – The tessellated intersection of a Voronoi cell with a ball.
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The convolution step is implemented using the ANN library [AMN+98],
which includes a query for finding the set of points of a point cloud contained
in a given ball. The time of the convolution step depends on the radius of
convolution, but stays within 10 seconds for most models.

Note also that both the tessellation and the convolution steps can be
easily parallelized once the Delaunay triangulation and kD-tree have been
constructed, since the computations for a given point of the cloud do not
involve access to any shared data structures.

III.3.2 — Evaluation on parametric surfaces

In order to understand the relationship between the eigenvectors of the
VCM and principal curvature directions, we tested our method on parametric
surfaces for which principal curvatures and principal curvature directions
can be computed exactly.

We sampled two functions z = sin(3x) + cos(y), where 0 6 x, y 6 1 and
z = exp(−x2) + exp(−y2), where −1

2
6 x, y 6 1

2
. In both examples we used

100,000 points that were chosen uniformly at random within the domain.
Figure III.7 shows these two surfaces with the exact and computed principal
curvature directions, using R = 1 and r = 0.055. As expected, away from the
boundary the computed and the exact directions match very closely, except
possibly at umbilical points (tip of the second surface). Near the boundary of
the domain, the principal directions computed using our method follow the
edges of the surface, which forms the basis of our feature detection method.

To measure the dependence of our method on the offset and convolution
radii, we computed the average deviation (in degrees) of principal directions
from exact ones. To minimize the effect of the points close to the boundary,
where the directions are not expected to match, we only considered 90 percent
of the data-set that is farthest from the boundary of the domain. Figure III.8
shows the average deviation for these two parametric surfaces. As can be
seen, the results are quite stable for different choices of the parameters.

III.3.3 — Comparison with polynomial fitting

Sampling Conditions. As mentioned in the introduction, the most common
method of estimating principal curvatures and principal curvature directions
on point clouds is to locally fit a polynomial of a given degree, and to analyti-
cally compute principal curvatures of this fitted polynomial [CP05].

Although these methods work well on noiseless and regularly sampled
surfaces, polynomial fitting performs poorly if the data has strong noise
and sampling bias. Our method, however, is oblivious to the sampling, as a
consequence of Hausdorff-robustness proved in Section III.2.3. To illustrate
this, we added 50,000 points in a small band along the diagonal (in the
parameter space) to the sampling of the surface shown in Figure III.7(a). The
results obtained with our method and with the state of the art polynomial
jet-fitting algorithm implemented in CGAL [CP05] are reported in Figure
III.9. We used second order polynomial fitting with different neighborhood

http://www.cs.umd.edu/~mount/ANN/
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(a) z = sin(3x) + cos(x) (b) z = exp(−x2) + exp(−y2)

Figure III.7 – Parametric surfaces with exact (in blue) and computed (in red)
principal curvature directions. At the boundary, the computed
directions follow the edges of the surface. Note that the tip of
the second surface is an umbilical point, and thus the principal
curvature directions are not uniquely defined.

(a) z = sin(3x) + cos(x) (b) z = exp(−x2) + exp(−y2)

Figure III.8 – Average deviation (in degrees) of computed principal curvature
directions from exact ones for different values of parameters R
and r.
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sizes k, which gave satisfactory results for the original sampling. As can be
seen, the extra points do not affect the accuracy of our method. The results
obtained with jet-fitting, however, become unreliable and strongly biased in
the direction of the oversampling.

Robustness. Other areas that are challenging for polynomial fitting algo-
rithms include parts of the shape with high curvature, and regions where
separate parts of the shape come in close contact, thus adversely influencing
the quality of the fit. While the first problem can be addressed by fitting
higher order polynomials, both of these settings are severely aggravated
in the presence of noise. To illustrate this, we sampled a surface made by
smoothly joining a small cylinder lying parallel to the z axis, with two planes
on either side of the x axis. We used 0.1 as the radius of the cylinder, so
the curvature at points along the z axis equals 10. Figure III.10 shows the
principal curvature directions obtained on this model with varying levels of
noise, using our method and using jet-fitting with 200 nearest neighbors and
second order polynomial fitting. Note that when points from different parts of
the shape mix, even the robust low order polynomial fitting fails, while our
method preserves robustness

III.3.4 — Detection of sharp edges

We evaluated the sharp edge estimation method and its resilience to noise on
a unit icosahedron. We sampled 100k points randomly on it, ran the computa-
tions with R = 20 and various convolution parameters r. We consider a point
as a feature if the ratio of the second smallest to the smallest eigenvalue is
greater than some threshold parameter. This ratio measures the thickness of
the infinitesimal Voronoi cell, as described in Section III.2.2 and on Figure
III.4. The results do not seem to be sensitive to this threshold parameter, if it
is within the range 10–40; for all the experiments below, we set it to 20.

Resilience to noise. In order to test the resilience of our method to noise,
we perturbed the original 100k point cloud on the icosahedron by adding to
each point a random vector uniformly chosen in a ball of given radius (the
radius of the noise). Figure III.11 shows the estimated feature directions on
the icosahedron, for different noise and convolution radii.

We quantify the quality of the approximation using the three following
distance measurements between two oriented point clouds C1 = (p1i , d

1
i ) and

C2 = (p2i , d
2
i ):

1. the maximum distance δ∞ between a point p2i in C2 and its nearest
neighbor in C1 (this is the half-Hausdorff distance);

2. the average distance δavg between a point p2i in C2 and its nearest
neighbor in C1;

3. the average angular deviation (in degrees) αavg between the direction
d2i of a point p2i in C2 and the direction of its nearest neighbor in C1.
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(a) Our method (b) Fit with k=100 (c) Fit with k=200

Figure III.9 – Principal curvature directions on a biased dataset. Jet fit-
ting (b-c) produces unreliable directions (in green) following
oversampled areas.

Noise r δ∞ δavg αavg δ ′∞ δ ′avg α ′
avg

0.0 0.05 0.35 0.037 3.25 0.076 0.011 1.42
0.0 0.1 0.118 0.051 0.33 0.124 0.016 1.34

0.02 0.1 0.226 0.049 1.65 0.139 0.020 3.46
0.05 0.1 0.220 0.050 2.82 0.155 0.025 5.45
0.1 0.15 0.271 0.069 3.12 0.178 0.036 7.94

Table III.2 – Distances between the estimated features and real features
of an icosahedron, with varying noise radius and convolution
radius
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(a) r = 0 (b) r = 0.01 (c) r = 0.04 (d) r = 0.08

Figure III.10 – Principal curvature directions computed with our method (in
red) are stable under noise. Directions computed by jet-fitting
(in blue), are unreliable, especially when points from separate
parts of the shape begin to mix (d).

(a) no noise, r = 0.05 (b) noise 0.02, r = 0.1

(c) noise 0.05, r = 0.1 (d) noise 0.1, r = 0.15

Figure III.11 – Estimated feature directions on an icosahedron of radius 1,
with various convolution radii r and noise values.
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We also consider the symmetric quantities between C2 and C1. Table
III.2 shows the values of these quantities between the real oriented features
C1 of the icosahedron and the estimated ones C2, for various noise and
convolution radii. The first line of each experiment in the table corresponds
to the distances from C1 to C2 (as above), while the second line corresponds
to the distances from C2 to C1.

On the first line of each experiment, δ∞ measures the presence of isolated
outliers, while δavg measures the spread of the estimated features. One can
see that increasing the convolution radius removes isolated outliers, but
increases the spread of feature (in fact it seems that δavg ≃ r/2).

On the second line, δ∞ and δavg both evaluate how far every point on an
edge of the icosahedron is to an estimated feature. Most of the error here
comes from the corners: since we select feature points based on the ratio
between the second and third eigenvalues, points nearby corner – at which
these two eigenvalues are small – are discarded (see Fig. III.4 and III.11).

Sharp edges with low external angle. In order to understand the effect
of sharpness of the edge on the quality of the feature detection, we sampled
a surface made of two planar rectangular patches joined by a common edge
and whose normals differ by an angle of 2α. As shown in Figure III.12, the
feature estimation method described above is able to reliably detect sharp
edges whose external dihedral angle is as small as 2◦. All the results were
produced using the same convolution radius and threshold.

(a) α = 45◦ (b) α = 13◦ (c) α = 1.8◦

Figure III.12 – Estimated feature directions on a folded rectangle, for differ-
ent values of the external angle α.

Results on more complex point clouds. In order to further illustrate
the robustness of the feature estimation method, we tested it on a 300k
point cloud sampled on the standard fandisk model. We then perturbed it by
uniform noise of radius 0.01δ, where δ is the radius of the model. The features
and feature directions produced by our algorithm are shown in Fig. III.14.
While the features are diffused with very strong noise, the feature directions
are quite stable and closely follow the edges of the model.

On larger range scan point clouds, we were able to decrease both the
offset and the convolution radii while keeping the detected features almost
noiseless. This enables the algorithm to capture very small and non-sharp
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features, like the hair of Caesar or the braiding of Bimba, as shown in Fig.
III.15 and III.14.

(a) Bimba (b) Bimba

Figure III.13 – Detected features in the Bimba model
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(a) Fandisk (b) Fandisk, 0.01 noise

Figure III.14 – Result of the feature detection on the fandisk point cloud with
no and 0.01diam(C) noise, where diam(C) is the diameter of
the point cloud.

(a) Caesar (b) Nicolo da Uzano

Figure III.15 – Results of the feature detection algorithm on the Julius Cae-
sar (a) and Nicolo du Uzano models





Chapter IV

GEOMETRIC INFERENCE FOR

MEASURES

Abstract

Data often comes in the form of a point cloud sampled from an unknown
compact subset of Euclidean space. The general goal of geometric inference
is then to recover geometric and topological features (eg. Betti numbers,
normals) of this subset from the approximating point cloud data. In recent
years, it appeared that the study of distance functions allows to address many
of these questions successfully. However, one of the main limitations of this
framework is that it does not cope well with outliers nor with background
noise. In this chapter, we show how to extend the framework of distance
functions to overcome this problem. Replacing compact subsets by measures,
we introduce a notion of distance function to a probability distribution in
R
n. These functions share many properties with classical distance functions,

which makes them suitable for inference purposes. In particular, by con-
sidering appropriate level sets of these distance functions, it is possible to
associate in a robust way topological and geometric features to a probabil-
ity measure. We also discuss connections between our approach and non
parametric density estimation as well as mean-shift clustering.
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INTRODUCTION

As we have seen, many geometric inference methods extract information
not from the point cloud itself, but from one or several of its offsets, or
more generally from its distance function. Stability theoremss then assert
that if one takes K and a point cloud C, the information extracted from the
distance function to C is close to the one extracted from the distance function
to K, provided that the Hausdorff distance between K and C is small. The
assumption of Hausdorff closeness is often not met in practice, in particular if
C is contaminated with outliers, that is points that are far for the underlying
set. Such points badly affect the distance function and all of these stability
results break badly, both in theory and practice.

It turns out that most of these inference results rely only on three specific
properties of distance functions, two of which are related to the regularity of
dK for a given K:

HAUSDORFF STABILITY: The most important property of the distance func-
tion for geometric inference is its Hausdorff stability: ‖dK − dK ′‖∞ =

supx∈Rd |dK(x) − dK ′ | 6 dH(K,K ′). This means that if K ′ is a good Hausdorff
approximation of K, then the distance function dK ′ is close to dK.
LIPSCHITZ REGULARITY: The distance function is 1-Lipschitz. A conse-
quence of Lipschitz regularity is that the distance function is differentiable
almost everywhere (thanks to Rademacher theorem). This means that the
set of non-differentiability points of dK, which is known to coincide with the
medial axis of K has zero d-volume.
SEMICONCAVITY: The squared distance function d2K is 1-semiconcave. This
condition is equivalent to the convexity of the map x ∈ R

d 7→ ‖x‖2 − d2K(x).
In particular this means, by Alexandrov’s theorem [Ale39], that the distance
function dK is not only almost C1, but also twice differentiable almost every-
where. This semiconcavity property is central for the proof of existence of the
flow of the distance function in [Pet07], [Lie04, Lemma 5.1]. This flow is one
of the main technical tools used in [CCSL09, CCSL08] to prove the stability
results. Semiconcavity of the distance function also plays a crucial role in all
of the results of Chapters I–III.

A non-negative function ϕ with the last two properties, and which is
proper (meaning that lim‖x‖7→+∞ |ϕ(x)| = +∞) is called distance-like. Many
Hausdorff-stability results such as those of Chapters II and III can be trans-
lated into stability results for uniformly-close distance-like functions.
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Dealing with outliers

Unfortunately, offset-based methods do not work well at all in the presence of
outliers, since eg. the number of connected components will be overestimated
if one adds just a single data point far from the original point cloud. The
problem here is that while the distance function is only slightly perturbed
under Hausdorff noise, adding even a single outlier can change it dramatically.

In order to solve this problem, we have to replace the usual distance
function to a set K by another notion of distance function that is robust to
the addition of a certain amount of outliers. A way to define what is this
certain amount, is to change the way point clouds are interpreted: they are no
more purely geometric objects, but also carry a notion of mass. Formally, we
replace compact subsets of R

d by finite measures on the space: a k-manifold
will be replaced by the uniform k-dimensional measure on it, a point cloud
by a finite sum of Dirac masses, etc. In this setting, the Hausdorff distance
is not meaningful any more. The distance between two measures will be
measured using the notion of Wasserstein distance, which quantifies the cost
of optimally transporting one measure to the other. We refer to §IV.A for more
detail. In particular, if S a submanifold of the ambient space, and C is a point
cloud uniformly distributed on S, with some noise and a few outliers, then
the uniform measure on S and the uniform measure on C are close in the
Wasserstein-sense.

Contributions. In order to implement distance-based inference in this set-
ting, we introduce a notion of distance function to a probability measure on
the Euclidean space. These distance functions are distance-like as defined
above; they retain the three properties of the usual distance functions to a
compact set that were used in the purely geometric setting. The stability
property should of course be understood with respect to Wasserstein distance.

Thanks to this notion of distance function, some of the offset-based infer-
ence results mentioned above can be extended to the case where data may
be corrupted by outliers. As a proof-of-concept, we generalize the sampling

theory for compact sets from [CCSL09] to distance-like functions. Using this,
we will be able to compare the topology of a compact submanifold of R

d with
the sublevel sets of the distance-to-measure function defined from a finite
sample drawn uniformly from S, with some noise and outliers. We also discuss
the connections between this distance-based approach and non parametric
density estimation as well as mean-shift clustering.

Finally, we study the algorithmic aspects of computing with distance
function to measures when the underlying measure is the uniform measure
on a finite point cloud. Computing the distance of a given point to such a
measure amounts to a k-nearest neighbor query in the original point cloud,
for which plenty of algorithms already exist. However, this does not really
help to compute more global properties, such as the topology of the sublevel
sets of this distance function. In order to deal with this issue, we approximate
the distance function by a power distance to a suitable set of weighted points.
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Figure IV.1 – The pseudo-distance δµ,m to a measure µ. δµ,m(x) is the infi-
mum volume of a ball centered ad x that contains at least a
certain amount of mass m.

We propose two methods for selecting these weighted points. Approximating
by a power distance has a big advantage: it very well-known how to work
with such a function in a global way, using tools such as weighted Voronoi
cells or weighted alpha complexes.

IV.1 DISTANCE FUNCTION TO A PROBABILITY MEA-
SURE

For the convenience of the reader, a two-page crash course on measure theory

and Wasserstein distances is provided in Appendix IV.A.

IV.1.1 — General definition

The distance function to a compact set K at x ∈ R
d is by definition the

minimum distance between x and a point of K. Said otherwise, dK(x) is
the minimum radius of a ball centered at x which contains a point in K:
dK(x) = min{r > 0; B(x, r) ∩ K 6= ∅}. A possible idea when trying to define the
distance function to a given probability measure µ on R

d is to mimick the
definition above:

δµ,m : x ∈ R
d 7→ inf{r > 0 ; µ(B(x, r)) > m}

given a parameter 0 < m < 1. For instance for m = 0, the definition would
coincide with the (usual) distance function to the support of the measure µ.
For higher values of m, the function δµ,m retains some of the features of a
distance function (for instance, it is 1-Lipschitz).

However this pseudo-distance is a poor generalization of the usual distance
function to a compact. The first reason is that its square δ2µ,m is not semi-
concave. The second reason, which is more fundamental is that the application
that maps a probability measure µ to the function δµ,m is not continuous in
any reasonable sense:

EXAMPLE. Let δx denote the unit Dirac mass at x and µε = (1
2
−ε)δ0+(1

2
+ε)δ1.

Then, as soon as ε > 0, δµε,1/2(t) = |1− t| for t < 0, while δµ0,1/2(t) = |t|

for t < 0. Hence, the function δµε,1/2 does not converge to δµ0,1/2 for any
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reasonable topology, although the measure µε converges to µ0 for the weak
topology on measures.

DEFINITION IV.1. Let µ be a (positive) measure on the Euclidean space, and
m0 be a positive mass parameter m0 > 0 smaller than the total mass of µ. We
call distance function to µ with parameter m0 the function defined by :

d2µ,m0
: R
n → R

+, x 7→ 1

m0

∫m0

0

δµ,m(x)2dm

EXAMPLE. Let C ⊆ R
d be a point cloud, and µC be the uniform measure on C.

Then, the pseudo-distance function δµ,m with m = k/n evaluated at x ∈ R
d

is simply equal to the distance between x and its kth nearest neighbor in C.
Let S ⊆ C be a subset of k points of C. The kth order Voronoi cell of S in S,

denoted by VorC(S), is the set of points in R
d whose k-nearest neighbors in

C are exactly the points in S. Said otherwise, a point x ∈ R
d belongs to the

Voronoi cell VorC(S) iff for every point p in C \ S, ‖x− p‖ > dS(x). On such a
cell, the squared distance function to µC is quadratic:

∀x ∈ VorC(S), d2
µC,

k
n

(x) =
n

k

∑

p∈S
‖x− p‖2

In this case, the pointwise evaluation of d2
µC,k/n

(x) reduces to a k-nearest
neighbor query in C.

IV.1.2 — Distance to a measure vs. distance to its support

Let µ be a probability measure with compact support S. In this paragraph,
we compare the distance functions dµ,m0

to the measure µ and the distance
function to its support S, and study the convergence properties as the mass
parameter m0 converges to zero.

A first obvious remark is that the pseudo-distance δµ,m0
is always larger

than the regular distance function dS. As a consequence, to obtain a conver-
gence result of dµ,m0

to dS as m0 goes to zero, it is sufficient to bound dµ,m0

from above by dS + o(m0).

LEMMA IV.1. Suppose that given m0 > 0, there exists a positive ε such that

the µ-volume of ε-balls whose center is a point of S is uniformly bounded from

below by m0, ie. ∀p ∈ S, µ(B(p, ε)) > m0. Then, ‖dµ,m0
− dS‖∞ is at most ε.

Proof. Let x be a point in R
d, p a projection of x on S. By the assumption,

µ(B(x,dS(x) + ε)) > µ(B(p, ε)) > m0. Hence, δµ,m0
(x) 6 dS(x) + ε. The

function m 7→ δµ,m(x) being non-decreasing, we get:

m0d2S(x) 6

∫m0

0

δ2µ,m(x)dm 6 m0(dS(x) + ε)2

Taking the square root of this expression gives us the lemma.

More generally, suppose there exists a non-decreasing positive function
f : R

+ → R
+ which uniformly bounds from below the µ-volume of balls whose



100 IV. GEOMETRIC INFERENCE FOR MEASURES

center is in the support of µ :

∀p ∈ S, µ(B(p, ε)) > f(ε)

Using the previous lemma, we get ‖dµ,m0
− dS‖∞ 6 ε provided that m0 is at

most f(ε). Hence, limm0→0 ‖dµ,m0
− dS‖∞ = 0.

LEMMA IV.2. If µ is a compactly-supported measure, then dS is the uniform

limit of dµ,m0
as m0 converges to 0.

Proof. Let x1, . . . , xn be a finite ε/2-sample of S – ie. S ⊆ ∪iB(xi, ε/2), and
xi is in S. By definition of the support of a measure, η = mini µ(B(xi, ε/2))

is positive. Now, for any point x ∈ S, there is a xi such that ‖x− xi‖ 6 ε/2.
Hence, B(xi, ε/2) ⊆ B(x, ε), which means that µ(B(x, ε)) > 0.

This result, while proving the convergence of dµ,m0
to dS in a very general

setting, is not very helpful since it does not give any quantitative bounds on
the speed of convergence. The convergence speed of dµ,m0

to dS depends on
the way the mass of µ contained within a ball B(x, r) (x ∈ S) decreases with
r. If the measure µ has dimension at most k > 0, i.e. if there exists some
constant C such that µ(B(x, ε)) > Cεk as soon as ε is small enough, then

‖dµ,m0
− dS‖ = O(m

1/k

0 ) (IV.1)

When µ is the uniform probability measure on a k-dimensional compact
submanifold S without boundary it has dimension at most k. In fact, we
can give even more quantitative convergence speed estimates by using the
Günter-Bishop theorem, which bounds the volume of intrinsic balls on S from
below provided that its sectional curvature is upper bounded.

THEOREM IV.3 (Günther-Bishop, [GHL90, section 3.101]). If the sectional

curvatures of a Riemannian manifold M do not exceed δ, then for every x ∈M,

Hk(BM(x, r)) > βk,δ(r)

where βk,δ(r) is the volume of a ball of radius r in the simply connected

k-dimensional manifold with constant sectional curvature δ, provided that

r 6 min(injrad(M), π/
√
δ).

If R denote the minimum curvature radius of S, the sectional curvature
above is bounded from above by 1/R2, and we can apply the previous result.

PROPOSITION IV.4. If S is a smooth k-dimensional submanifold of R
d whose

curvature radius is at least R, and µ the uniform probability measure on S,

then

µ(B(x, ε)) >
βk,1/R2(ε)

Hk(S)

as soon as ε is smaller than the injectivity radius of S and πR. In particular,

the dimension of µ is at most k.
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Proof. Since the intrinsic ball BS(x, ε) is always included in the Euclidean
ball B(x, ε)∩S, the mass µ(B(x, ε)) is always greater than Hk(BS(x, ε))/Hk(S).
Using the Günter-Bishop inequality we get the desired lower bound.

Notice in particular that the convergence speed of dµ,m0
to dS depends

only on the intrinsic dimension k of the submanifold S, and not on the ambient
dimension d.

IV.1.3 — Regularity properties for the distance to a measure

In this section we will need a few definitions from measure theory:

1. The cumulative function Fν : R
+ → R of a measure ν on R

+ is defined by
Fν(t) = ν([0, t[). The cumulative function is increating, but is generally
not injective nor surjective: eg. it is constant on any interval with empty
measure, and jumps at Diract points. However, one can define a notion
of generalized inverse for Fν, which is still denoted by F−1

ν . It is defined
by:

F−1
ν : m 7→ inf{t ∈ R ; Fν(t) > m}

2. If µ, ν are two measures on R
d, we will say that µ is a submeasure of ν,

and write µ 6 ν iff for all Borel subset B ⊆ R
d, µ(B) 6 ν(B). Notice that

if µ, ν are two measures on R
+, then ν is a submeasure of µ if and only

iff Fν(t) 6 Fµ(t) for all t > 0.

Equivalent formulation. We start by giving an integral formulation of our
distance function. Let Rµ,m0

(x) be the set of submeasures µ̃x,m0
of µ whose

total mass is m0 and is contained in the closed ball B(x, δµ,m(x)), and whose
restriction to the open ball B(x, δµ,m(x)) coincides with µ.

PROPOSITION IV.5. (i) The distance dµ,m0
evaluated at a point x ∈ R

d is

the minimal cost of the following transportation problem:

dµ,m0
(x) = min

µ̃

{

W2

(

δx,
1

m0
µ̃

)

; µ̃(Rd) = m0 and µ̃ 6 µ

}

where µ̃ is any measure of total mass m0 such that µ̃ 6 µ.

(ii) The set of minimizers in the above expression is Rµ,m0
(x). In particular,

for any measure µ̃x,m0
in Rµ,m0

(x),

d2µ,m0
(x) =

1

m0

∫

h∈Rd

‖h− x‖2 dµ̃x,m0
= W2

2

(

δx,
1

m0
µ̃x,m0

)

Proof. (i) Let first remark that if µ̃ is any measure of total mass m0, there is
only one transport plan between µ̃ and m0δx: namely, the one which maps
any point of R

d to x. Hence,

W2
2

(

δx,
1

m0
µ̃

)

=

∫

Rd

‖h− x‖2 dµ̃(h)
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Let µ̃x denote the pushforward of µ̃ by the distance function to x. Using the
property of the cumulative function gives us:

∫

Rd

‖h− x‖2 dµ̃(h) =

∫

R+

t2dµ̃x(t) =

∫m0

0

F−1
µ̃x

(m)2dm

The assumption that µ̃ 6 µ can be rewritten as Fµ̃x(t) 6 Fµx(t) for all t > 0,
from which one deduces that F−1

µ̃x
(m) > F−1

µx
(m). This gives us

∫

Rd

‖h− x‖2 dµ̃(h) >

∫m0

0

F−1
µx

(m)2dm

Since by definition Fµx(t) = µ(B(x, t)), it follows that F−1
µx

(m) = δµ,m(x), thus
proving ∫

Rd

‖h− x‖2 dµ̃(x) >

∫m0

0

δµ,m(x)2dm = m0d2µ,m0
(x)

(ii) The above inequality is an equality iff F−1
µ̃x

(m) = F−1
µx

(m) for almost every
m 6 m0. Since these function are increasing and left-continuous, equal-
ity must in fact hold for every such m. In particular, one deduces that
µ̃(B(x, δµ,m0

(x))) = m0, which means that all the mass of µ̃ is in the closed
ball B(x, δµ,m0

(x)) and µ̃(B(x, δµ,m0
(x))) = µ(B(x, δµ,m0

(x))). These property
together with the inequality µ̃ 6 µ proves that µ̃ is a minimizer iff it belongs
to Rµ,m0

(x).

To finish the proof of (i), we should remark that the set of minimizer
Rµ,m0

(x) is never empty, ie. contains a measure µx,m0
. In the case where

µ(B(x, δµ,m(x))) = m, we simply let µx,m0
be the restriction of µ to the closed

ball B(x, δµ,m0
(x)). When however the boundary of the ball carries too much

mass, we uniformly rescale the mass contained in the bounding sphere so
that the measure µx,m0

has total mass m0. More precisely, we let:

µx,m0
= µ|B(x,δµ,m0(x)) + (m0 − µ(B(x, δµ,m0

(x))
µ|∂B(x,δµ,m0(x))

µ(∂B(x, δµ,m0
(x)))

Semiconcavity of the squared distance. We remind the reader with a
few properties of semiconcave functions. Recall that a function f : R

d → R is
L-semiconcave if the function x 7→ L ‖x‖2 − f(x) is convex. The subdifferential
of a function f : Ω ⊆ R

d → R at a point x, is the set of vectors v of R
d, denoted

by ∂xf, such that for all h ∈ R
d small enough, f(x+ h) > f(x) + 〈h|v〉.

With these definitions, the function f is (locally) convex iff for any point x
in Ω, the subdifferential ∂xf is not empty. If it is convex, f admits a derivative
at x iff the subdifferential ∂xf is a singleton, in which case the gradient of f
at x is the unique element of the subdifferential.

PROPOSITION IV.6. For any x ∈ R
d the subdifferential of the function vµ,m0

:
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x ∈ R
d 7→ ‖x‖2 − d2µ,m0

at a point x ∈ R
d is

{

2x−
2

m0

∫

h∈Rd

(x− h) dµ̃x,m0
(h) ; µ̃x,m0

∈ Rµ,m0
(x)

}

⊆ ∂xvµ,m0

As a consequence:

(i) vµ,m0
is convex, and d2µ,m0

is semiconcave ;

(ii) d2µ,m0
is differentiable at a point x ∈ R

d iff the support of the restriction

of µ to the sphere ∂B(x, δµ,m0
(x)) contains at most 1 point;

(iii) d2µ,m0
is differentiable almost everywhere in R

d, with gradient defined

by

∇xd2µ,m0
=

2

m0

∫

h∈Rd

[x− h] dµx,m0
(h)

(iv) the function x ∈ R
d 7→ dµ,m0

(x) is 1-Lipschitz.

Proof. (i) For any two points x and y of R
d, µ̃x,m0

and µ̃y,m0
in Rµ,m0

(x)

and Rµ,m0
(y) respectively, we can use proposition IV.5 to get the following

sequence of equalities and inequalities:

d2µ,m0
(y) =

1

m0

∫

h∈Rd

‖y− h‖2 dµ̃y,m0
(h)

6
1

m0

∫

h∈Rd

‖y− h‖2 dµ̃x,m0
(h)

=
1

m0

∫

h∈Rd

‖x− h‖2 + 2〈x− h|y− x〉+ ‖y− x‖2 dµ̃x,m0
(h)

= d2µ,m0
(x) + ‖y− x‖2 + 〈V |y− x〉

with V = 2
m0

∫

h∈Rd
[x− h] dµ̃x,m0

(h). We rewrite this as:

(‖y‖2 − d2µ,m0
(y)) − (‖x‖2 − d2µ,m0

(x)) > 〈2x− V |x− y〉

This inequality proves that the vector (2x− V) is in the subdifferential of v at
x. hence the function v : x 7→ ‖x‖2 − d2µ,m0

is convex, as announced. We now
turn to the proof of the converse inclusion. The two sets ∂xvµ,m0

and

Dµ,m0
(x) :=

{

2x−
2

m0

∫

h∈Rd

(x− h) dµ̃x,m0
(h) ; µ̃x,m0

∈ Rµ,m0
(x)

}

are both convex, and we have Dµ,m0
⊆ ∂xvµ,m0

. By a well-known property
of subdifferentials ([Cla83, Theorem 2.5.1]), the subdifferential ∂xvµ,m0

is
the convex envelope of the set of limits limxn→x∇xnvµ,m0

, where (xn) is a
sequence of points converging to x at which vµ,m0

is differentiable. We only
need to prove that every such limit also belong to Dµ,m0

(x). Let (xn) be a
sequence of points at which vµ,m0

is differentiable, and let µn be the unique
element in Rµ,m0

(xn). Necessarily, the gradient of vµ,m0
at xn is defined by

∇xnvµ,m0
= 2xn − 2/m0

∫

h(xn − h)dµn(h). Using Prokhorov theorem, we
can extract a subsequence of n such that µn weakly converges to a measure
µ∞. This measure belong to Rµ,m0

(x), and if one sets D = 2x − 2/m0
∫

h(x −
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h)dµ∞(h), by weak convergence of µn to µ∞, one sees that∇xnvµ,m0
converges

to D ∈ Dµ,m0
(x). This concludes the proof of this inclusion.

(ii) It is enough to remark that Rµ,m(x) is a singleton iff the support of
µ|∂B(x,δµ,m0(x)) is at most a single point.

(iii) From the two convex analysis facts reminded above, we know that
d2µ,m0

(y) is differentiable at almost every point of x ∈ R
d with gradient the

only element of the subdifferential at that point.
(iv) The gradient of the distance function dµ,m0

can be written as:

∇xdµ,m0
=
∇xd2µ,m0

2dµ,m0

=
1√
m0

∫

h∈Rd
[x− h] dµx,m0

(h)

(
∫

h∈Rd
‖x− h‖2 dµx,m0

(h))1/2

Using the Cauchy-Schwartz inequality we find the bound ‖∇xdµ,m0
‖ 6 1

which proves the statement.

Distance-like functions. We call distance-like a non-negative function ϕ :

R
d → R

+ which is 1-Lipschitz, whose square is 1-semiconcave, and which
is proper in the sense that lim‖x‖→+∞ϕ(x) = +∞. Recall that a function
ϕ : R

d → R
d is called 1-semiconcave or 1-concave iff ‖x‖2 −ϕ(x) is convex.

PROPOSITION IV.7. Let ϕ : R
d → R be a function whose square is 1-

semiconcave. Then, there exists a closed set K ⊆ R
d+1 = R

d × R such that

ϕ2(x) = d2K(x), where x is identified with the point (x, 0) in R
d+1.

Proof. Let x ∈ R
d and v be a subgradient to ϕ2 at x, and v ′ = v/2. By

1-semiconcavity,

ψv : y 7→ ϕ2(x) −
∥

∥v ′
∥

∥

2
+
∥

∥x− v ′ − y
∥

∥

2
> ϕ2(y)

The function ϕ2 is the lower envelope of all the ψv as defined above. Letting
y = x − v ′, we see that ϕ2(x) − ‖v ′‖2 > 0. This means that if we set z =

(x − v ′, (ϕ2(x) − ‖v ′‖2)1/2) ∈ R
d+1, ψv(x) is equal to the squared Euclidean

distance between (x, 0) and z in R
d+1. Hence, ϕ is the squared distance to

the set K ⊆ R
d+1 made of all such points z.

This proposition proves in particular that a function ϕ : R
d → R whose

square is 1-semiconcave and proper is automatically distance-like: the Lips-
chitz assumption comes with 1-semiconcavity. From the proof one also sees
that distance-like functions are simply generalized power distances, with
non-positive weights.

IV.1.4 — Stability of the distance function to a measure

Lipschitz stability of the map µ 7→ dµ,m0
. The goal of this section is to

prove that the map µ→ dµ,m0
is m−1/2

0 –Lipschitz, where the space of mea-
sures is endowed with the Wasserstein distance of exponent 2 and the space
of distance functions with the uniform norm ‖.‖∞. We will use the fact that



IV.1. DISTANCE FUNCTION TO A PROBABILITY MEASURE 105

on the real line optimal transport planes are nothing but monotone rear-
rangements [Vil03, Theorem 2.18]. This implies in particular the following
result:

THEOREM IV.8. If µ and ν are two measures with equal mass on R, and Fµ
and Fν are their respective cumulative functions, then

W2(µ, ν) =
∥

∥F−1
µ − F−1

ν

∥

∥

L2([0,1])

LEMMA IV.9. If µ and ν are two compactly supported probability measures on

R
+, then

∣

∣

∣

∣

∫m0

0

δ2µ,m(0)dm−

∫m0

0

δ2ν,m(0)dm
∣

∣

∣

∣

6 W2(µ, ν)

Proof. Let us first remark that, since µ has no mass on R
−
∗ ,

δµ,m(0) = inf{t ; µ(] − t, t[) > m}

= inf{t ; µ(] − ∞, t[) > m} = F−1
µ (m)

(IV.2)

Using this equation and the previous theorem,
∣

∣

∣
‖δµ,.(0)‖L2(0,m0)

− ‖δν,.(0)‖L2(0,m0)

∣

∣

∣ 6 ‖δµ,.(0) − δν,.(0)‖L2(0,m0)

6 ‖δµ,.(0) − δν,.(0)‖L2(0,1)
=
∥

∥F−1
µ − F−1

ν

∥

∥

L2(0,1)

= W2(µ, ν)

THEOREM IV.10 (distance function stability theorem). If µ and ν are two prob-

ability measures on R
d and m0 > 0, then ‖dµ,m0

− dν,m0
‖

∞
6 1√

m0
W2(µ, ν).

Proof. For any point x in R
d, we denote by dx the distance function to x. We

denote by µx the push forward of a measure µ by dx. First remark that any
transport plan π between µ and ν can also be pushed to obtain a transport
plan πx := (dx,dx)#π between µx and νx. Using the triangle inequality we
get:

∫

(t,t ′)∈R×R

∣

∣t− t ′
∣

∣

2 dπx(t, t ′) =

∫

(g,h)∈Rd×Rd

|dx(g) − dx(h)|
2 dπ(g, h)

6

∫

(g,h)∈Rd×Rd

‖g− h‖2 dπ(g, h)

This proves that W2(µ
x, νx) 6 W2(µ, ν). We let µx,m0

and νx,m0
be as in Prop

IV.5.(2), ie. d2µ,m0
(x) = 1

m0

∫

R+ t
2dµxx,m0

(t). Using the previous lemma, we
get:

|dµ,m0
(x) − dν,m0

(x)| 6
1√
m0

W2(µ
x, νx)
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Distance functions to two measures with different masses. For sim-
plicity, and also because the empirical measure is always a probability mea-
sure (we cannot estimate the mass from a set of samples), we have always
supposed that the two measures have the same mass. In this paragraph we
show how to obtain one-sided Lipschitz inequalities when one of the measure
has a smaller mass than the other.

First remark that the distance function can be defined for any measure
without change, whatever its mass (as soon as m0 is smaller than this mass).
One easily checks that the distance function decreases under the addition of
another positive measure, ie. dµ+δ,m0

6 dµ,m0
.

COROLLARY IV.11. Let µ be a measure, and ν another measure with mass(ν) 6

mass(µ). We suppose that there exists a transport plan π defined on R
d × R

d

such that p1#π = ν and p2#π 6 µ and with

(∫

Rd×Rd

‖x− y‖2 dπ(x, y)

)1/2

6 ε

Then,

dµ,m0
6 dν,m0

+m
−1/2

0 ε

Proof. In this case, µ ′ = p2#π has the same mass as ν and is Wasserstein-
close to ν. Moreover, µ−µ ′ is a positive measure and µ = µ ′ +(µ−µ ′). Hence,
by the remark, dµ,m0

6 dµ ′,m0
. Using the previous theorem, we get:

dµ,m0
6 dν,m0

+m
−1/2

0 W2(ν, µ
′) 6 dν,m0

+m
−1/2

0 ε

IV.2 APPLICATIONS TO GEOMETRIC INFERENCE

IV.2.1 — Reconstruction of offsets

Reconstruction from point clouds with outliers was one of the motivation for
introducing the distance function to a measure. In this section, we will adapt
the reconstruction theorem of [CCSL09] to our setting. The original version
of the theorem says that given a good enough approximation of a compact
set K with positive α-reach (this term will be explained later) by another
compact set C, then for a suitable choice of r, the offsets Cr and Kη have
the same homotopy type for any positve η. Having positive µ-reach is much
weaker than having positive reach; in particular, this assumption doesn’t
forbid polyhedron, as soon as the angles between the faces are not too sharp
(this depends on µ).

As we will see, these results can be very easily generalized to compare
the sub-level sets of two uniformly-close distance-like functions. It is also
possible to adapt most of the topological and geometric inference results of
[CCSL09, CCSL08, CCSLT09] in a similar way.
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Niyogi, Smale and Weinberger [NSW08] recently proved a related but
different reconstruction result for point clouds sampled around a smooth
manifold according to a distribution allowing some specific non local noise.
Their approach consists in eliminating the outliers to obtain a subsample
which is close to the smooth manifold for the Hausdorff distance so that the
“classical” reconstruction results can be applied. The main difference with
our results is that their approach require a very specific noise model. They
start from a probability measure P on the normal bundle NM to a manifold
M, which satisfies a “strong variance condition”:
(i) the pushforward of P on M by the map (x,−→n ) 7→ x should admit a density

(w.r.t the Lebesgue measure on M), which takes value in [c−1, c] (c > 0);

(ii) the conditional probability P(−→n |x) should be normally distributed, with
covariance matrix σ2id.

The point cloud C they consider is assumed to be drawn according to the
pushforward of P by the natural map (x,−→n ) ∈ NM 7→ x+−→n ∈ R

d. Theorem
2.1 of [NSW08] then provides a correct construction of the homology of M
from C, if the variance σ in the “strong variance condition” above is smaller
than the reach of M (multiplied by a certain constant), and as soon that the
point cloud C contains enough sample points.

The reconstruction result provided in Corollary IV.17 is different in two
ways. First, we only assume that the measure from which the point cloud
is drawn is close enough to the uniform measure on M in the Wasserstein
sense. This includes as a special case the convolution of the uniform measure
on M by a Gaussian distribution with low variance (NB: this is not the case
considered by Niyogi, Smale and Weinberger). Moreover, the assumption that
M is a manifold is not necessary for our analysis; we only need a lower bound
on its µ-reach, which allows non-smooth underlying objects.

Extending the sampling theory for compact sets. In this paragraph
we extend the sampling theory of [CCSL09] for compact sets to distance-like
functions. We don’t include all of the results of the paper, but only those that
are needed to the reconstruction theorem (Th. IV.16). We refer the interested
reader to the original paper for more details.

Let ϕ : R
d → R be a distance-like function. The semi-concavity of ϕ allows

to define a notion of gradient vector field ∇xϕ for ϕ, defined everywhere.
Although not continuous, the vector field ∇ϕ is sufficiently regular to be
integrated in a continuous locally Lipschitz flow [Pet07] Φt : R

d → R
d. The

flow Φt integrates the gradient ∇ϕ in the sense that for every x ∈ R
d, the

curve γ : t 7→ Φt(x) is right-differentiable, and for every t > 0, dγ
dε

∣

∣

∣

t+
=

∇γ(t)ϕ . Moreover, for any integral curve γ : [a, b] → R
d parametrized by

arc-length, one has:

ϕ(γ(b)) = ϕ(γ(a)) +

∫b

a

∥

∥∇γ(t)ϕ
∥

∥dt.

DEFINITIONS IV.2. Let ϕ be a distance-like function. Following the notation
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Figure IV.2 – On the left, a point cloud sampled on a mechanical part (blade)
to which 10% of outliers have been added — the outliers are
uniformly distributed in a box enclosing the original point cloud.
On the right, the reconstruction of an isosurface of the distance
function dµC,m0

to the uniform probability measure on this
point cloud (obtained by using the CGAL Surface Mesher).

for offset of compact sets, we will denote by ϕr the r sublevel set of ϕ, ie.

ϕr := {x ∈ R
d ; ϕ(x) 6 r}.

(i) A point x ∈ R
d will be called α-critical (with α ∈ [0, 1]) if the inequality

ϕ2(x+h) 6 ϕ2(x)+2α ‖h‖ϕ(x)+‖h‖2 is true for all h ∈ R
d. A 0-critical

point is simply called a critical point. The norm of the gradient ‖∇xϕ‖
is the infimum of the α > 0 such that x is α-critical.

(ii) The critical function of ϕ, denoted by χϕ : R
+ → R encodes the “critical-

ity” of the level sets of ϕ. It is defined by χϕ(r) = minx∈∂ϕr ‖∇xϕ‖.
(iii) The weak feature size of ϕ at r is the minimum r ′ > 0 such that ϕ doesn’t

have any critical value between r and r+ r ′. We denote it by wfsϕ(r).
(iv) For any 0 < α < 1, the α-reach of ϕ is the maximum r such that the

offset ϕr doesn’t contain any α-critical point. Obviously, the α-reach is
always a lower bound for the weak-feature size at r = 0.

The proof of the Reconstruction Theorem in [CCSL09] relies on two impor-
tant observations. The first one is a consequence of a distance-like version
of Grove’s isotopy lemma [Gro93, Prop. 1.8], which asserts that the topology
of the sublevel sets of ϕ can only change when one passes critical values.
As in [CL07, Theorem 3], one deduces that the offset of two uniformly close
distance-like functions with large weak feature size have the same homotopy
type:

PROPOSITION IV.12 (Isotopy lemma). Let ϕ be a distance-like function and

r1 < r2 be two positive numbers such that ϕ has no critical points in the subset



IV.2. APPLICATIONS TO GEOMETRIC INFERENCE 109

ϕ−1([r1, r2]). Then all the sublevel sets ϕ−1([0, r]) are isotopic for r ∈ [r1, r2].

PROPOSITION IV.13. Let ϕ and ψ be two distance-like functions, such that

‖ϕ−ψ‖∞ 6 ε. Suppose moreover that wfsϕ(r) > 2ε and wfsψ(r) > 2ε. Then,

for every 0 < η 6 2ε, ϕr+η and ψr+η have the same homotopy type.

The second key observation made in [CCSL09] is that the critical function
of a distance function is stable under small Hausdorff perturbations. This
stability is also true for distance-like perturbations; this relies on the following
version of the critical point stability theorem from the same article:

PROPOSITION IV.14. Let ϕ and ψ be two distance-like functions with

‖ϕ−ψ‖∞ 6 ε. For any α-critical point x of ϕ, there exists a α ′-critical point

x ′ of ψ with ‖x− x ′‖ 6 2
√

εϕ(x) and α ′ 6 α+ 2
√

ε/ϕ(x).

Proof. The proof is almost verbatim from [CCSL09]. It relies on the following
claim: for any α-critical point x of ϕ and ρ > 0, there exists a α ′(ρ)-critical
point x ′ of ψ with α ′(ρ) 6 α+ 2ε

ρ
+ 1
2

ρ
ϕ(x)

.
Let γ be an integral curve of the flow defined by ∇ψ, starting at x and

parametrized by arclength. If γ reaches a critical point of ψ before length
ρ, we are done. Assume this is not the case. Then, with y = γ(ρ), one has
ψ(y) −ψ(x) =

∫ρ
0

∥

∥∇γ(t)ψ
∥

∥dt. As a consequence, there exists a point p(ρ) on
the integral curve such that

∥

∥∇p(ρ)ϕ
∥

∥ 6 1
ρ
(ϕ(y) −ϕ(x)).

Now, by the assumption on the uniform distance between ϕ and ψ, ψ(y) 6

ϕ(y) + ε and ψ(x) > ϕ(x) − ε. Using the fact that x is α-critical, one obtains:

ϕ(y)2 6 ϕ(x)2 + 2α ‖x− y‖ϕ(x) + ‖x− y‖2

ie. ϕ(y) 6 ϕ(x)

(

1+ 2α
‖x− y‖
ϕ(x)

+
‖x− y‖2
ϕ(x)2

)1/2

6 ϕ(x) + α ‖x− y‖+
1

2

‖x− y‖2
ϕ(x)

Putting things together, we get
∥

∥∇p(ρ)ϕ
∥

∥ 6 α+ 2ε
ρ

+ 1
2

ρ
ϕ(x)

. This proves the

claim. The minimum of α ′(ρ) is α+2
√

ε/ϕ(x) and is attained for ρ = 2
√

εϕ(x).
This concludes the proof.

COROLLARY IV.15. Let ϕ and ψ be two ε-close distance-like functions, and

suppose that reachα(ϕ) > R for some α > 0. Then, ψ has no critical value in

the interval
]

4ε/α2, R− 3ε
[

.

Proof. Suppose the contrary. Then, there exists a critical point x of ψ such
that ψ(x) belongs to the range [4ε/α2, R ′]. Then, there would exist an α ′-
critical point y of ϕ at distance at most D of x. By the previous proposition,

α ′ 6 2
√

ε/ψ(x) 6 2

√

ε/(4ε/α2) = α and D 6 2
√
εR ′
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Hence, using the fact that x is a critical point for ψ,

ϕ(y) 6 ψ(y) + ε 6

(

ψ2(x) + ‖x− y‖2
)1/2

+ ε

6 R ′
(

1+D2/R ′2
)1/2

+ ε 6 R ′ + 3ε

This last term is less than R if R ′ < R − 3ε. With these values, one gets the
desired contradiction.

THEOREM IV.16 (Reconstruction). Let ϕ,ψ be two ε-close distance-like func-

tions, with reachαϕ > R for some positive α. Then, for any r ∈ [4ε/α2, R− 3ε],

and any η > 0, the sublevel sets ψr and ϕη are homotopy equivalent, as soon

as

ε 6
R

5+ 4/α2

Proof. By the isotopy lemma, all the sublevel sets ψr have the same homotopy
type, for r in the given range. Hence, we choose r = 3ε/α2. We have:

wfsϕ(r) > R− r and wfsψ(r) > R− 3ε− 4ε/α2

By Proposition IV.13, the sublevel sets ϕr and ψr have the same homo-
topy type as soon as the uniform distance ε between ϕ and ψ is lower than
1
2

wfsϕ(r) and 1
2

wfsψ(r). This is true, provided that 2ε 6 R− ε(3+ 4/α2). The
theorem follows.

It is very likely that a similar statement with isotopy instead of homotopy
can be proved, using the same sketch of proof as in [CCSL08] (the crucial
point is that the gradients ∇xϕ and ∇xψ are never opposite when x belongs
to some slab ϕ−1([r, r ′]) and ψ is close enough to ϕ).

Shape reconstruction from noisy data. The previous results lead to
shape reconstruction theorems from noisy data with outliers. To fit in the
framework of this chapter the shapes we try to reconstruct are supports
of probability measures, as in §IV.1.2. Let µ be a probability measure of
dimension at most k > 0 with compact support K ⊂ R

d and let dK : R
d → R+

be the (Euclidean) distance function to K. If µ ′ is another probability measure,
one has

∥

∥dK − dµ ′,m0

∥

∥

∞
6 ‖dK − dµ,m0

‖∞ + ‖dµ,m0
− dµ ′,m0

‖∞ (IV.3)

6 C(µ)m
1/k

0 +
1√
m0

W2(µ, µ
′) (IV.4)

The first term of this inequality comes follows from §IV.1.2, in which we
compared the distance to a measure to the distance to its support. The second
term involving the Wasserstein distance is a consequence of the stability
theorem for distance-to-measures (Theorem IV.10). As expected, the choice
of m0 is a trade-off: smaller m0 lead to better approximation of the distance
function to the support, while larger m0 make the distance functions to
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measures more stable. Eq. IV.3 leads to the following corollary of Theorem
IV.16:

COROLLARY IV.17. Let µ be a measures, K its support. Suppose that µ has

dimension at most k as above, and that reachα(K) > 0. Let µ ′ be another

measure, and ε be the uniform distance between dK and dµ,m0
. Then, for any

r ∈ [4ε/α2, R− 3ε] and any ε > 0, the r-sublevel of dµ,m0
and Kη are homotopy

equivalent, as soon as:

W2(µ, µ
′) 6

R
√
m0

5+ 4/α2
− C(µ)m

1/k

0

Figure IV.2 illustrates the reconstruction Theorem IV.16 on a sampled
mechanical part with 10% of outliers. In this case µ ′ is the normalized sum of
the dirac measures centered on the data points and the (unknown) measure
µ is the uniform measure on the mechanical part.

IV.2.2 — Non-parametric density estimation

Nearest-neighbor estimators are a family of non-parametric density estima-
tors, that has been extensively used in nonparametric discrimination, pattern
recognition and spatial analysis problems. If C is a point cloud whose points
are drawn with respect to a given probability measure with density, the
density is estimated by

f(x) =
k/ |C|

βd(δC,k(x))

where βd(r) is the volume of the d-ball of radius r, and δC,k denotes the
distance to the kth nearest neighbor in C.

For some of the applications where density estimators are used (eg. mean
shift, see below), distance functions could also be used as well. The ad-
vantages of the distance function dµ,m0

over kNN density estimators are
multiple. First of all, this distance is well defined even when the underly-
ing probability measure does not have a density, eg. if it is concentrated
on a lower-dimensional subset. Second, the distance is always stable with
respect to Wasserstein perturbations of the data. Third, the distance function
dµ,m0

, being 1-semiconcave, is much more regular than the distance δµ,m0
,

as illustrated by Figure IV.2.2.
As a consequence of this regularity, it is possible to prove higher order

convergence properties of dµn,m0
to dµ,m0

as µn converges to µ. For example,
it can be shown that∇dµn,m0

converges to∇dµ,m0
as locally integrable vector

fields. Pointwise convergence results can also be obtained at points where
∇dµ,m0

is bounded away from 0.

Mean-shift methods using distance functions. Mean-shift clustering
[CM02] is a non-parametric clustering method that works on point cloud
drawn from an unknown probability measure with density. Specifically,
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Figure IV.3 – The distance functions to the measure µ = 1
600

∑600
i=1 δpi

asso-
ciated to a 600 points 2D data set P = {p1, · · ·p600} sampled
according two gaussians (top figure). The four bottom figures
represent the distance functions dµ,1/30 (top) and δµ,1/30 (bot-
tom). The right figures representing the details of some level
sets of dµ,1/30 (top) and δµ,1/30 (bottom) illustrate the difference
of regularity between the two distance functions.
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one is given a point cloud C ⊆ R
d and a radial kernel K. The underlying

probability density is estimated by: f(x) = 1
hd|C|

∑
p∈C K

(

p−x
h

)

, where h is
a given bandwidth parameter. Starting from a point x in the space, one
iteratively constructs a sequence of points (xi):

x0 = x and xi+1 =

∑
p∈C K

(

p−x
h

)

p
∑
p∈C K

(

p−x
h

)

The clustering method works as follows: for each point x0 in the point cloud,
one iterates the sequence xi until convergence. This defines a mapping from
C to the set of critical points of the kernel-based density estimate. A cluster of
C is simply the set of points of C which correspond to the same critical point
under this mapping.

Distance-based mean-shift. We propose a method similar to mean shift, but
where the distance function replaces the estimated density. Our iterative
scheme is a simple gradient descent for the squared distance function:

x0 = x and xi+1 = xi −
1

2
∇xid2µ,m0

Figure IV.4 – Distance-based mean-shift followed by k-Means (k = 15) clus-
tering on the point cloud made of LUV colors of the pixels of
the picture on the right.

In practice, µ is the uniform probability measure on a point cloud C and
m0 = k0/ |C|. In this context, xi+1 is simply the isobarycenter of the k0
nearest neighbor of xi in C:

xi+1 = xi −
1

k

k0∑

k=1

(xi − pkC(xi)) =
1

k

k0∑

k=1

pkC(xi) (IV.5)

PROPOSITION IV.18. Let x be a point in R
d and xt = x− t

2
∇xid2µ,m0

. Then,

(i) dµ,m0
(xt) 6 dµ,m0

(x)

(ii) 〈∇xtd2µ,m0
|∇x0d2µ,m0

〉 > 0

Proof. The first inequality is a simple application of Prop. IV.5. To get the
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second inequality, we start by using the 1-semi-concavity of d2µ,m0
:

〈x− y|∇xd2µ,m0
(x) −∇xd2µ,m0

(y)〉 > 2 ‖x− y‖2

Now, set y = xt in the equation above,

〈x− y|∇xd2µ,m0
−∇yd2µ,m0

〉 = 〈x− y|∇xd2µ,m0
〉− 〈x− y|∇yd2µ,m0

〉

=
2

t
‖x− y‖2 −

t

2
〈∇xd2µ,m0

|∇yd2µ,m0
〉

This proves that 〈∇xd2µ,m0
|∇xtd2µ,m0

〉 > 4
t

(

1
t

− 1
)

‖x− y‖2.

Both properties indicate good convergence properties for the iterative
scheme (IV.5). The first inequality prevents any infinite loop, and has been
proved for classical mean-shift, when the kernel K has convex and mono-
tonically decreasing profile [CM02, Theorem 1]. The second one shows that
trajectories are not too wiggly — more precisely, consecutive edges never
make an acute angle. It is also true for mean shift when K is Gaussian
[CM02, Theorem 2] (in which case it is not convex). We are not aware of any
choice of kernel such that the resulting mean-shift scheme satisfies these two
properties simultaneously.

IV.3 COMPUTING WITH DISTANCE FUNCTIONS

In this §, we are interested with the practical computations using the distance
function to the uniform measure on a point cloud P. For simplicity, we will
suppose that the parameterm0 can be written as k/ |P|. We will call k-distance
to P the distance function dµP,m0

to the uniform measure on P, with m0 = k
|P|

.
Equivalently, it is defined by

d2P,k(x) =
1

k
min

c⊆P,#c=k
‖x− c‖2 =

1

k

∑

p∈NNkP(x)

‖x− p‖2 .

Here, NNkP(x) ⊆ P denote the k nearest neighbors in P of a point x ∈ R
d. Note

that this set is well defined everywhere but on the boundary of the order k
Voronoi cells of the point cloud P. If the point x belongs to the boundary of
such a cell, then the choice of the nearest neighbors is ambiguous; however
the distance function so defined is not.

DEFINITION IV.3. The squared power distance to a weighted point (u,wu) ∈
R
d × R is defined by Pow2u(x) = ‖x− u‖2 −wu. The squared power distance

to a set of weighted points U is defined by Pow2U(x) = infu∈U Pow2u(x). In our
case, the weights will always be non-positive.

NOTATIONS. The set of barycenters of k points in P will be denoted by
Baryk(P). A barycenter of k points in P is called supporting if the correspond-
ing order-k Voronoi cell is not empty. The set of supporting k-barycenters is
denoted by Baryks (P).
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As we already remarked in §IV.1.1, the (squared) k-distance to a point
cloud P is piecewise quadratic on each cell of the kth-order Voronoi diagram.
For any subset c of k points in P, define a function δc : R

d → R by δ2c(x) =
1
k

∑
p∈c ‖x− p‖2. Denoting by c the barycenter of points in c, we have:

δ2c(x) =
1

k

∑

p∈c
‖x− p‖2 =

1

k

∑

p∈c
‖(x− c) + (c− p)‖2

= ‖x− c‖2 + 2〈x− c|(c−
1

k

k∑

p∈c
p)〉+ 1

k

∑

p∈c
‖c− p‖2

= ‖x− c‖2 −wc

where the weight wc is negative, and given by −1
k

∑
p∈c ‖c− p‖2. From the

definition of the k-distance, we are now able to rewrite:

d2P,k(x) = min
c⊆P,|c|=k

δ2c(x) = min
c∈Baryk(P)

‖x− c‖2 −wc (IV.6)

In other words, the k-distance function to P coincides exactly with the power
distance to Baryk(P) with the weights defined above. This calculation shows
that the order k Voronoi diagram of the original point set is exactly the
same as the power diagram of the weighted barycenters. In fact, it is clear
that not all of the barycenters actually play a role in the minimum of (IV.6).
Equation (IV.6) remains true when replacing the set of barycenters by the set
of supporting barycenters.

Approximation of the k-distance. The k-distance to a point cloud P can
be interpreted as a power distance to the set of supporting k barycenters. The
number of centers involved in this definition is equal to the number of order-k
Voronoi cells defined by P. This figure, while considerably smaller than the
number of barycenters of any family of k points in the point cloud is still too
large for any practical purpose.

However, thanks to the regularity results proved earlier, the geometric
properties estimated from a distance function or from a good uniform approx-
imation do not differ much. Likewise, the stability theorem for persistence
diagrams [CSEH07] asserts that the persistence diagrams of a function can be
reliably estimated from its uniform approximation. These two results mean
that it makes sense from both geometric and topological inference viewpoint
to try to approximate the k-distance function by a combinatorially simpler
function. The challenge is to be able select a small fraction S ⊆ Baryk(P) of
the supporting barycenters with the property that the power distance to S is
a good approximation of the original k-distance function.

Consequences on topology computation. The fact that the k-distance is
a power distance makes it possible to compute topological reconstruction of
its sublevel sets using weighted alpha-shapes or equivalently Čech complexes.
Computing those when the ambient dimension is greater than 3 is impractical.
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However, one can use the usual tools defined in computational topology such
as Rips complexes or witness complexes in order to achieve approximate
computations.

DEFINITION IV.4. The nerve of a family of compact convex sets Ω1, . . . ,ΩN ⊆
R
d is an abstract simplicial complex, which contains one vertex for each of

the subsets, and contains a k-simplex based on the vertices xi1 , . . . , xik iff the
subsets Ωi1 , . . . ,Ωik have a common point. The nerve theorem asserts that
the union of the ΩN has the same homotopy type as this simplicial complex.

From Eq. IV.6, it follows that the sublevels of the k-distance can be
obtained as a finite union of balls:

{x ∈ R
d ; dP,k(x) 6 ρ} =

⋃

c∈Bary(P)

B
(

c,
√

ρ2 +wc

)

(IV.7)

Taking the nerve of this collection of balls gives the notion of k-distance Čech

complex:

Čech
k

P(ρ) = Nerve
c∈Bary(P)

{B(c,
√

ρ2 +wc)}

≃ Nerve
c∈Barys(P)

{B(c,
√

ρ2 +wc)},

where the first definition contains a large redundant subcomplex. By the
nerve lemma, both definitions of the k-distance Čech complex are homotopy
equivalent to the sublevel sets of dP,k. Similarly, if we clip the balls by
their power cells Vor(c) (recall that these are the order k Voronoi cells of the
original point set), we get a k-distance alpha-shape, which is a particular case
of weighted alpha-shape [Ede92]:

ASkP(ρ) = Nerve
c∈c∈Baryw(P)

{B
(

c,
√

ρ2 −wc

)

∩ Vor(c)}.

Once again, from the Nerve Lemma it follows that ASkP(ρ) is homotopy equiv-
alent to the ρ-sublevel set of the distance function dP,k. The definition of the
k-distance Čech complex immediately gives rise to the k-distance Vietoris-Rips
complex RipskP(ρ) which is the “Vietoris-Rips closure” (or the clique complex)

of the 1-skeleton of Čech
k

P(ρ). Since all the higher dimensional complexes of
the Vietoris-Rips complex are defined implicitely from the Rips graph, the
complexity (in memory) of the Vietoris-Rips complex is at most |Barys(P)|

2.
This is a big advantage over Čech or alpha-shape complexes for practical com-
putations. The Rips complex RipskP(ρ) is generally not homotopy-equivalent
to the sublevel set d−1

P,k(ρ), but can be used to estimate the homology of the
sublevel sets, as in [CO08].

IV.3.1 — Complexity of a distance-like function

NOTATIONS. Denote by DL(Rd) the space of distance-like functions on R
d,

ie. positive functions whose square is 1-semiconcave. Among these functions,
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DLN(Rd) will be the space of functions that can be written as power distances
of N points, ie. ϕ is in DLN(Rd) iff there exists points p1, . . . , pN ∈ R

d and
positive weights wi, . . . , wN ∈ R

+ s. t. ϕ2(x) = mini∈{1,...,N} ‖x− pi‖2 +wi

DEFINITION IV.5. The complexity at a scale ε of a distance-like function ϕ ∈
DL(Rd), is the minimum numbers of weighted points needed to define a power

distance that is ε-away to it: Comp(ϕ, ε) = min
{

N; d(ϕ,DLN(Rd)) 6 ε
}

.

REMARKS. — The complexity Comp(ϕ, ε) depends continuous on the func-
tion ϕ. More precisely, if ϕ and ψ are two distance-like functions, with
‖ϕ−ψ‖∞ 6 η, then for any ε > η,

Comp(ϕ, ε− η) 6 Comp(ψ, ε) 6 Comp(ϕ, ε+ η)

— Suppose that the function ϕ in the definition above is the distance function
dK to a compact set K. Since the Hausdorff distance between the compact
set K and a point cloud C is equal to ‖dK − dC‖, the complexity Comp(ϕ, ε)

is less than the minimum cardinal of a point cloud C which is ε-Hausdorff
close to C. Hence,

Comp(dK, ε) 6 N(K, ε)

Relation with convex approximation. There is a nice relation between
the complexity of a distance-like function ϕ : R

d → R and the complexity of a
convex set in R

d+1 that can be defined from it.

DEFINITION IV.6. A weighted point (u,wu) ∈ R
d × R can be lifted to R

d+1,
defining a point û = (u, ‖u‖2−wu). In our setting, the weights wu are always
negative, and û lies above the paraboloid {(x, ‖x‖2); x ∈ R

d}. We denote the
lifting of a set U of weighted points by Û. The inverse of this lifting map is
denoted by ρ : R

d+1 → R
d × R.

Denote by ch(Û) the convex hull of a set of lifted points. The extended

convex hull of Û, denoted by ech(Û), is the set of points that are above ch(Û),
ie. that can be written as (u, h+α) where (u, h) is in the convex hull of Û and
α is any non-negative number. Geometrically, ech(Û) is the Minkowski sum
of the convex hull ch(Û) with the half line {(0, α) ∈ R

d+1;α > 0}.

The power distance and the extended convex hull are connected by the
following two properties:

PROPOSITION IV.19. The power distance does not change under extended

convex hull of the lifted points. This means that if U is a set of weighted points,

and V = ρ(ech(Û)), then PowU = PowV .

Proof. If a and b are two weighted points, and ĉ is any point on the segment
[â, b̂] in R

d+1, then Powρ(ĉ)(x) is larger than Pow{(a,wa),(b,wb)}(x) for any
point x ∈ R

d. This means that the power distance to the projection of the
segment [â, b̂] ⊆ R

d+1 onto the set of weighted points is equal to the power
distance to {(a,wa), (b,wb)}. By induction, and using the definition of the
convex hull, one deduces that the power distance PowU to the point cloud U
coincides with the power distance Powρ(ch(Û)) to ρ(ch(Û)).
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If (u,wu) is a weighted point, and α > 0, then Powu,wu+α > Powu,wu .
This means that adding the weighted point (u,wu + α) to U doesn’t change
anything. This concludes the proof.

COROLLARY IV.20. Let U,U ′ be two sets of weighted point clouds, whose base

points are contained in the ball B(0, R), and such that dH(ech(Û), ech(Û ′)) 6 ε.

Then the power distance they define are uniformly close:

‖PowU− PowU ′‖∞ 6 ε+
√

12(2R+ 1)ε

Proof. Let (u,wu) and (v,wv) be two weighted points. We wish to bound the
distance between Powu and Powv (notice the absence of square):

(‖x− u‖2−wu)1/2−(‖x− v‖2−wv)1/2 =
〈2x− (u+ v)|v− u〉+wv −wu

(‖x− u‖2 −wu)1/2 + (‖x− v‖2 −wv)1/2

Using the Cauchy-Schwarz inequality, and bounding the denominator from
below by ‖x− u‖+ ‖x− v‖, we can bound the first term of the sum by ‖u− v‖.
The second term is bounded in the same way, and we obtain:

‖Powu− Powv‖∞ 6 ‖u− v‖+
∣

∣

√
−wv −

√
−wu

∣

∣

Now, suppose that ‖û− v̂‖ 6 ε. Then, ‖u− v‖ 6 ε and
∣

∣

∣
‖u‖2 −wu + ‖v‖2 −wv

∣

∣

∣ 6 ε. Supposing that u and v are in the ball B(0, R),

the second inequality translates as |wu −wv| 6 (2R+ 1)ε. Two cases need to
be distinguished: if −wu > 2(2R+ 1)ε, then −wv > (2R+ 1)ε, and we have

∣

∣

√
−wv −

√
−wu

∣

∣ =
|wv −wu|

|
√

−wv +
√

−wu|
6

(2R+ 1)ε

2
√

(2R+ 1)ε
= 2
√

(2R+ 1)ε

In the other case, we can bound |
√

−wv −
√

−wu| by

√
−wu +

√
−wv 6

√
22R+ 1ε+

√
32R+ 1ε 6 2

√
3
√

(2R+ 1)ε

COROLLARY IV.21. The complexity Comp(ϕ, ε) of a function ϕ = PowU is

bounded by the minimum cardinal of a set V ⊆ R
d+1 such that the Hausdorff

distance between the extended convex hulls ech(Û) and ech(V), is at most

O(ε2).

IV.3.2 — A random sampling approximation procedure

Following the results of the previous paragraph, we cast the approximation
problem for k-distance to a point cloud as a convex approximation problem.
The simple Monte-Carlo algorithm for selecting the barycenters that we
consider stems from the following observation. In the standard lifting of
weighted points onto a paraboloid, the supporting barycenters are the extreme
points of the convex hull of all the lifted barycenters. Furthermore, for
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any given direction we can find the extreme lifted barycenter by consider
the extreme k points of the lifted original points set. In the rest of this
section, we study the approximation quality given by the algorithm that
draws directions in R

d+1 at random and finds the extreme lifted barycenters
in those directions.

Let U be the set of weighted barycenters of k points in P, and Û be their
lifts in R

d+1. There is an interesting way to interpret the weights that arise in
the power distance version of the k-distance: let C = p1, . . . , pk be k points in
the original noisy point cloud P, and (p̂i) be their liftings onto the paraboloid,
ie. p̂i = (pi, ‖pi‖2). The barycenter ĉ in R

d+1 of these lifted points obviously
projects onto the barycenter c of the original points. A more interesting fact is
that the height (the last coordinate) of ĉ is ‖c‖2 −wc, where wc is the weight
involved in the definition of the k-distance. Geometrically this means that
the lifting of the weighted barycenter of the k original points (pi) coincides
with the barycenter of the k lifted points (p̂i).

Every extreme point of the extended convex hull of the lifted weighted
barycenters ech(Û) as defined above can be obtained as the lift of a supporting
k-barycenter. Thanks to Corollary IV.20 above, we know that only these points
actually play a role in the definition of the k-distance. The same proposition
proves that approximating the k-distance in the uniform sense amounts to
Hausdorff-approximating the extended convex hull of the lifted weighted
barycenters.

Sampling strategy. The main idea behind this sampling strategy is that
the importance of an extreme point of the extended convex hull ech(Û) de-
pends on the sharpness of the convex hull at that point: the bigger the normal
cone, the more important the extreme point. A procedure for randomly se-
lecting extreme points with a probability depending on their normal cone is
given in Algorithm 6. The analysis of the convergence of this procedure is
postponed to the next paragraph.

Given a direction n in R
d+1 whose last coordinate is positive, it is rather

easy to find the extreme point of ech(Û) in that direction. Indeed, any extreme
point û of ech(Û) can be written as a barycenter of k points p̂1, . . . , p̂k of the
lifting P̂ of the original point cloud. In symbols, 〈û|n〉 = 1

k
〈p̂1 + . . .+ p̂k|n〉 =

1
k

∑k
i=1〈p̂i|n〉. The maximum of this scalar product is attained when the

points p̂1 to p̂k are the k most extreme points of the lifted point cloud P̂ in the
direction n.

IV.3.3 — Normal measure and convex approximation

We analyze the above algorithm by observing that the probability of picking a
particular supporting barycenter is equal to the volume of its normal cone.
Viewing the algorithm as a way to draw samples from the corresponding
normal measure, we relate the quality of convex approximation to the quality
of the sample of normal directions.
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Algorithm 6 Random Directions Sampling Algorithm

Input: a point cloud P ⊆ R
d, a number N

Construct the lifted point cloud P̂ in R
d+1.

loop {N times}
Select a random unit vector n whose last coordinate is positive
Select the k extreme points of P̂ in the direction given by n.
Add the weighted barycenter u of these k points to the set of the selected
power centers.

end loop

Support function and normal measure. Let us recall a few definitions
from convex geometry. If K is a convex subset of R

d+1 and x lies on the
boundary of K, a support hyperplane to x is a hyperplane H such that (i) x
is in H, (ii) K is contained entirely in one of the closed half spaces defined
by H. The unit normal to H pointing in the opposite direction is called an
outward normal to K at x. The normal cone NxK to a point x ∈ ∂K is the set of
outward-pointing unit normals to K at x. The normal cone NBK to a subset
B ⊆ K is simply the union of the normal cones NxK, x ∈ B.

K

x B

NBK

NxK

Figure IV.5 – Normal cones of a point x and a subset B of the convex hull K.

The support function hK of the convex set K maps any direction n in the
unit sphere to the distance of the unique support hyperplane of K with normal
n to the origin. It can also be defined by the formula: hK : Sd → R,n 7→
maxx∈K〈x|n〉. It is a well-known fact in convex geometry that the Hausdorff
distance between two convex sets is equal to the uniform distance between
their support functions: dH(K,K ′) = ‖hK − hK ′‖∞.

Using these notions we are able to construct a probability measure νK
concentrated on the boundary ∂Kwhose distribution reflects the concentration
of normal cones on ∂K. Take ν the uniform probability measure on the
unit sphere Sd−1, and let νK be the probability measure on K defined by
νK(B) = ν(NBK). We call this distribution the normal measure on K.

EXAMPLE. If K is a polyhedron, νK is concentrated on the vertices of K and
can thus be written as a sum of Dirac masses. The coefficient of the Dirac
mass corresponding to a vertex x is equal to the normalized solid angle of the
normal cone to K at x.
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We let πK : Sd → R
d+1 be the function that maps a direction n to an

extreme point x ∈ ∂K of K with normal n. Equivalently, πK(n) is defined by
the property that 〈πK(n)|n〉 = hK(n). Notice that if K is not strictly convex,
several points of K can share a given normal direction n: this means that the
function is not uniquely defined everywhere. However, Lemma IV.22 asserts
that in all cases the function πK is uniquely and thus well-defined at almost
every direction n ∈ Sd. This behavior is similar to the nearest-neighbor
function not being defined on the boundary of Voronoi cells but nonetheless
being well defined almost everywhere.

LEMMA IV.22. Let K be a closed convex set contained in the ball B(0, R) ⊆ R
d+1.

Then,

(i) hK is convex, and its subdifferential is ∂nhK = {x ∈ K; 〈x|n〉 = hK(n)};

(ii) hK is 2R-Lipschitz.

As a consequence, hK is differentiable at almost any point n ∈ Sd. At these

points πK is well defined and ∇nhK = πK(n).

Proof. The function hK is convex since it is a supremum of affine functions:
hK(n) = maxx∈K〈x|n〉. The subdifferential at a point x of a supremum of affine
functions is the set of gradients of the affine functions where the maximum is
attained, which proves (i).

The proof of (ii) is straightforward: let n and m be two vectors in the unit
sphere, and x be a point of K where the maximum defining hK(n) is attained.
Then,

hK(m) > 〈x|m〉 = 〈x|m − n〉+ 〈x|n〉 > − ‖x‖ ‖m − n‖+ hK(n)

> −R ‖m − n‖+ hK(n)

The Lipschitz regularity follows. To conclude we use the fact that a convex
function f : Sd−1 → R is differentiable at almost every point of Sd−1, and that
at those points its subdifferential is equal to {∇xf}.

Convex approximation and normal measure sampling. We relate the
quality of the convex approximation given by the convex hull of the iid samples
and the quality of the sampling of the normal measure.

LEMMA IV.23. Let S be a set of samples on the boundary of K. Denoting by KS
the convex hull of S, and dS the distance function to S, one has for any p > 0:

‖hK − hKS‖Lp(ν) 6
(∫

Rd
dS(x)pdνK(x)

)1/p
.

Proof. Let us first remark that for any direction n ∈ Sd, hK(n) > hKS(n) >

hK(n) − dS(πK(n)). The first inequality follows from the inclusion KS ⊆ K.
For the second one, let y ∈ S denote the closest neighbor to πK(n) in S, ie.

dS(y) = ‖y− πK(n)‖. Then,

hKS(n) = max
x∈KS

〈x|n〉 > 〈y|n〉 = 〈y− πK(n)|n〉+ 〈πK(n)|n〉

> hK(n) − ‖y− πK(n)‖
= hK(n) − dS(πK(n))
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These two inequalities together prove that ‖hK(n) − hKS(n)‖ 6 dS(πK(n)).
By integrating this inequality on the sphere Sd one gets:

‖hK − hKS‖pLp(ν)
6

∫

Sd
dpS(πK(n))dν(n)

Using the fact that νK is the pushforward of ν by πK, and the change-of-
variable formula, we have

∫

Sd
dpS(πK(n))dν(n) =

∫

Rd+1 dpS(πK(x))dνK(x). This
proves the lemma.

In the next lemma, we denote by Vk1 (r) the k-volume of a ball of radius r in
the k-dimensional unit sphere, and ωd the volume of the whole unit sphere
in R

d.

LEMMA IV.24. Suppose that K is contained in the ball B(0, R), and let K ′ ⊆ K.

Then, for dH(K,K ′) < π,

dH(K,K ′)p+d 1

2

βd

8dRdωd
6
∥

∥hK − h ′
K

∥

∥

p

Lp(ν)

Proof. Let ε be the Hausdorff distance between hK and hK ′ , ie. ε =

‖hK − hK ′‖∞. Since K is contained in K ′, there is a direction n0 such that
hK(n0) = hK ′(n0) + ε. Both functions hK and hK ′ being 2R-Lipschitz, for
‖n − n0‖ 6 ε

8R
, ‖hK(n) − hK(n0)‖ 6 ε

4
, and likewise for hK ′ .

Hence, hK(n) is bounded from below by hK ′(n) + ε
2

when n belongs to the

ball B(n0, ε/8R). This proves that
∥

∥hK − h ′
K

∥

∥

p

Lp(ν)
> εp

2

Vd1 (ε/8R)

ωd
, from which

one can deduce the lemma using Vd1 (r) > βd(r).

COROLLARY IV.25. Given a convex set K contained in B(0, R) ⊆ R
d and a finite

set of samples S ⊆ ∂K, the Hausdorff distance between K and the convex hull

ch(S) can be bounded in term of the Wassertsein distance between the uniform

measure µS on S and the distribution of normal cones νK:

dH(K, ch(S)) 6 cst(R) · [Wp(νK, µS)]
p
p+d

REMARK. — Alas!, the 1/d exponent is not an artifact of the proof. Consider
the standard unit d-simplex ∆d in R

d+1. Raise its centroid by ε perpendic-
ularly to the hyperplaine containing ∆d, and call this point xε. Finally, let
∆dε be the convex hull of ∆d and xε. For every d, the Hausdorff distance
between ∆d and ∆dε is exactly ε. However, as a consequence of measure
concentration on the sphere, the ν-measure of the normal cone to ∆dε at xε
decreases exponentially fast to zero.

— On the other hand, using the approach that was used to get the projection
stability theorem of Chapter II, one can prove a L1 stability results in K for
the gradient of hK, ie. πK : Sd−1 → K. As a consequence, the application
that maps a convex set K to the distribution of normal cones νK is (locally)
1/2-Hölder. This result is independent of the ambient dimension.
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IV.3.4 — Approximation by witnessed barycenters.

A very natural subset of barycenters that can be chosen to approximate the
k-distance is those barycenters that are witnessed by the original point cloud
P. A barycenter is called witnessed by P if the corresponding k-order Voronoi
cell contains a point of P; call Baryw(P) the set of witnessed barycenters.

We then define the witnessed k-distance dw
P,k as the power distance ob-

tained from considering witnessed barycenters only. It is clearly unlikely that
dw
P,k, will be a good approximation of the k-distance regardless of any property

of P since generically, the set of witnessed barycenters Baryw(P) has the same
cardinality as the point cloud P.

Because we consider fewer barycenters, the witnessed k-distance is always
greater than the real k-distance. There is a general multiplicative reverse
inequality:

LEMMA IV.26. For any point cloud P and 0 < k < |P|,

dP,k 6 dw
P,k 6 (2+

√
2)dP,k

Proof. Let y ∈ R
d be a point, and p the center of (one of) the power cells that

contain y. This translatess that dP,k(y) = dp(y). In particular, ‖p− y‖ 6

dP,k(y) and
√

−wp 6 dP,k(y).
Let us find a witnessed barycenter q that is close to p. We know that p

is the barycenters of k points x1, . . . , xn, and that −wp = 1
k

∑k
i=1 ‖xi − p‖2.

Consequently, there should exist an x ∈ {xi} such that ‖xi − p‖ 6
√

−wp. Let
q be the barycenter witnessed by x. Then,

dw
P,k(y) 6 dq(y)

6 dq(x) + ‖x− y‖
6 dp(x) + ‖x− p‖+ ‖p− y‖

Using dp(x) =
(

‖x− p‖2 −wp

)1/2

6
√
2
√

−wp and ‖x− p‖ 6
√

−wp, we get

dw
P,k(y) 6 (1+

√
2)
√

−wp + ‖p− y‖
6 (2+

√
2)dP,k(y)

This Lemma is general and does not exploit any specific property of the
input point set P. However, even this coarse estimate can already be used to
estimate the Betti numbers of sublevel sets of dP,k, using the same approach
as in [CO08]. The ith singular homology group of a subset S ⊆ R

d is denoted
by Hi(S); the dimension of this group is the ith Betti number of S, and
denoted by βi(S). Also recall that by convention ϕr denotes the r-sublevel of
the function ϕ.

PROPOSITION IV.27. Suppose that the function dP,k has no critical points in
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the range [r, α2r] (where α = 2+
√
2). Then,

βi(drP,k) = rank(Hi([dw
P,k]

αr)→ Hi([dw
P,k]

α2r))

where Hi([dw
P,k]

αr) → Hi([dw
P,k]

α2r) is the map between homology groups in-

duced by the inclusion between the corresponding sublevel sets.

Proof. Using Lemma IV.26, one gets the following sequence of inclusions:

drP,k ⊆ dw
P,k
αr ⊆ dαrP,k ⊆ dw

P,k
α2r ⊆ dα

2r
P,k

Taking the ith singular homology groups of these sublevel sets, we get the
sequence:

0→ Hi(drP,k)→ Hi([dw
P,k]

αr)→ Hi(dαrP,k)→ Hi([dw
P,k]

α2r)→ Hi(dα
2r
P,k )→ 0

If the distance function dP,k doesn’t have any critical point between r and
α2r, then the rank of the map Hi(drP,k)→ Hi(dα

2r
P,k ) induced by the inclusion

is equal to the kth Betti number of Hi(dr
′
P,k), where r ′ ranges in [r, α2r]. In

particular, this rank is equal to the dimension of the homology group Hi(dαrP,k).
Hence, by a standard result of linear algebra, one obtains the result.

Second bound using the “spread” of a measure. Intuitively, it seems
that if P is “concentrated” around a lower dimensional part, the witnessed
k-distance function should better approximate the real k-distance than what
the bound of Lemma IV.26 gives — at least in a sublevel set d−1

P,k([0, R]). In
this paragraph, we prove such a result. The spread at a given scale m0 is a
measure of concentration of a measure µ on R

d. We define it by:

sprµ(m0) =

∫

Rd

dµ,m0
(x)dµ(x).

Using the Bishop-Günther theorem, one can prove as in §IV.1.2 that if
µ is the uniform measure on a k-dimensional compact submanifold of R

d,
then sprµ(m0) = O(m

1/k

0 ). Thus, in this particular case, the spread gives
information on the “dimension” of the underlying measure.

This quantity has two other advantages. First and foremost, it can be
computed practically when µ is concentrated on a point cloud — the spread
is just the sum of k-distance from x to P when x ranges in P. This allows to
bound the error made by using the witnessed k-distance instead of the real k-
distance, using Proposition IV.29 below. Moreover, thanks to the Wasserstein-
stability of the distance to the measure function, the dependence in µ of
spr2µ(m0) is Lipschitz (the Lipschitz constant is (1+m

−1/2

0 )). This means that
if a measure is Wasserstein-close to a measure with low spread, its spread is
also low.

The bound of our first version of Proposition IV.29 involved the quantity
sprµ(m0)

m0
, a quantity doesn’t converge to zero as m0 does. Moreover, there

was a gap between the error measured in practice and the bound we had. In
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order to get a tighter bound, we introduce the notion of local spread of µ. Its
definition depend on a parameter α > 1 (this is explained by Lemma IV.28).
Recall that µx,m denotes the restriction of µ to the ball B(x, δµ,m) where the
mass on the sphere has been rescaled properly so that µx,m(B(x, δµ,m)) = m.
Then, setting m = (1− α−2)m0, one let

loc. sprµ(m0, α) := sup
x∈Rd

[

1

m

∫

Rd

dµ,m0
(y)dµm,x

]

6 (1− α−2)
spr(m0)
m0

The reason for the choice of m in the definition of the local spread is the
following lemma:

LEMMA IV.28. Let α > 0 and m = (1 − α−2)m0. Then, δµ,m(x) 6 αdµ,m0
(x),

or equivalently µ(B(x, αdµ,m0
(x))) > m.

Proof. For any point x in R
d, the Chebyshev inequality applied to y 7→

‖x− y‖2 gives the following bound on m ′ = µ(B(x, αdµ,m0
(x))):

m0d2µ,m0
(x) =

∫

Rd

‖x− y‖2 dµx,m0

>

∫

Rd\B(x,αdµ,m0(x))

α2d2µ,m0
(x)dµx,m0

= (m0 −m ′)α2d2µ,m0
(x)

This means thatm ′ is at leastm0(1−α−2) = m, and proves the statement.

PROPOSITION IV.29. Let P be a point cloud, µ the uniform measure on P, and

m0 = k/ |P|. Then, for any x ∈ R
d and α > 1,

dP,k(x) 6 dw
P,k(x) 6 αdP,k(x) + loc. sprm0,α

(µ) (IV.8)

Moreover, on S := d−1
P,k([0, R[), one has:

‖dP,k − dw
P,k‖∞,S 6 (α− 1)R+ loc. sprm0,α

(µ) (IV.9)

Proof. The first part of this proof works for any probability measure µ on
R
d. Observing that the spread upper bounds the integral of dµ,m0

w.r.t the
measure µx,m, we get:

loc. sprµ(m0, α) >
1

m

∫

Rd

dµ,m0
(y)dµx,m(y)

> min {dµ,m0
(y);y ∈ suppµx,m}

Take the y realizing the above minimum above. It satisfies ‖x− y‖ 6

αdµ,m0
(x) and dµ,m0

(y) 6 loc. sprµ(m0, α).
If µ is the uniform measure on P and m0 = k/ |C|, since y is in the support
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of µ (ie. P), the k-distance and witnessed k-distance agree at y:

dw
P,k(x) 6 dw

P,k(y) + ‖x− y‖ = dP,k(y) + ‖x− y‖

The inequality follows using the given bounds on ‖x− y‖ and dP,k(y).

REMARK. If µ is the uniform measure on a k-dimensional submanifold S of R
d,

loc. sprµ(m0, α) = O
(

m
1/k

0

)

and converges to zero as m0 does — the depen-
dence of this bound in α is being hidden by the uniform convergence of dµ,m0

to zero on S. This makes it reasonable that the bound of Proposition IV.29 is
better than the one given in Lemma IV.26 when the uniform measure on the
point cloud P is Wasserstein-close to the uniform measure on a k-dimensional
submanifold (and the lower the dimension, the better the approximation).

Proposition IV.29 is still probably not the definite answer to the question
of the approximation of the k-distance by the witnessed k-distance. This topic
still needs further investigation, both theoretical and experimental.
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IV.A MEASURES AND WASSERSTEIN DISTANCES

DEFINITION IV.7. A non-negative measure µ on the space R
d is a mass distri-

bution. Mathematically, it is defined as a function that maps every (Borel)
subset B of R

d to a non-negative number µ(B), which is additive in the sense
that µ (∪i∈NBi) =

∑
i µ(Bi) whenever (Bi) is a countable family of Borel sub-

sets of R
d. A measure µ is finite (resp. a probability measure) if µ(Rd) < +∞

(resp. µ(Rd) = 1).

The set of measures on R
d is very wide. However, in most applications all

of the measures we will considered are obtained from a few building blocks
(Hausdorff measures) and a few operations (restriction, multiplication by a
density, convolution and sum) that we describe below.

Hausdorff measures. The simplest example of a probability measure is the
Dirac mass at p, denoted by δp: δp(B) = 1 if p is in B and 0 otherwise. Sim-
ilarly, a point cloud C = {p1, . . . , pn} with non-negative weights µp1 , . . . , µpn
defines a measure µ =

∑n
i=1 µpiδpi defined by µ(B) =

∑
pi∈B µpi . The uni-

form measure on C is defined by δC =
∑
p∈C δp.

Hausdorff measures of dimension k (k = 0, . . . , d) on R
d is used to formalize

the notion of k-volume of a subset of R
d. We refer the reader to [Mor88] for

more details. Loosely speaking, Hk maps any k-dimensional subset of R
d to

its volume, any set of dimension more than k to +∞ and any set of dimension
less than k to zero. The Hausdorff measure H0 coincides with the counting

measure: H0(B) = |B|, and Hd coincides with the usual Lebesgue mesure λd.

Most of the measures we will consider are obtained from Hausdorff mea-
sure, and the following operations:

RESTRICTION: Given a subset K ⊆ R
d and a measure µ, one can define the

restriction µ|K of µ to K by the formula µ|K (B) = µ(K ∩ B). For instance, if C
is a point cloud, H0

∣

∣

C
is the uniform measure on C. If S is a segment in R

d,
Hk
∣

∣

S
is the uniform lineic mass distribution on S.

MEASURES WITH DENSITY: Given a (measurable) function f : R
d → R

+

and a measure µ on R
d, such that

∫

Rd
fdµ < +∞, one can define the measure

fµ by the formula fµ(B) =
∫

B fdµ. If µ is the Lebesgue measure, this gives
the usual definition of a measure with density.
CONVOLUTION: A very simple and common noise model is to assume that
each sample drawn according to the measure is known up to an independant
Gaussian error term. In the measure theoretic setting, this amounts to
convolving the measure µ with a Gaussian. Formally, the convolution of a
measure µ on R

d by a (compactly supported, measurable) function χ : R
d → R

is another measure, denoted by µ ∗ χ and defined for any set B ⊆ R
d by the

formula:

µ ∗ χ(B) =

∫

Rd

(∫

Rd

1B(x+ y) · χ(x)dx
)

dµ(y)

PUSHFORWARD: If p : X→ Y is a measurable function between two measur-
able spaces X and Y, and µ is a measure on X, p#µ is a measure on Y defined
by (p#µ)(B) = µ(p−1(B)).
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EMPIRICAL MEASURE: We are interested in inferring of geometric proper-
ties for a probability measure µ that we know only through finite sampling.
Formally this means that we are given a family of independent identically
distributed random variables X1, . . . XN with common law µ. The uniform
probability measure carried by the point cloud CN = {X1, . . . , Xn} is known
as the empirical measure, and denoted by µN = 1

N

∑N
i=1 δXi . The theorems

concerning the convergence of the empirical measure µN to the underlying
measure ν are known as uniform law of large numbers.

Wasserstein distances

The definition of Wasserstein Wp (p > 1) distance between probability mea-
sures rely on the notion of transport plan between measures. It is related to
the theory of optimal transportation [Vil03]. The Wasserstein distance W1 is
also known as the earth-mover distance, and has been used in vision [PWR89]
and image retrieval [RTG00]. The Wasserstein distance W2 is related to the
problem of optimal least square matching between weighted point clouds
[AHA98].

DEFINITION IV.8 (Transport plan). A transport plan between two probability
measures µ and ν on R

d is a probability measure π on R
d × R

d such that for
every A,B ⊆ R

d π(A×R
d) = µ(A) and π(Rd×B) = ν(B). Intuitively π(A×B)

corresponds to the amount of mass of A that will be transported in B by the
transport plan. Given a real number p > 1, the p-cost of a transport plan π
between µ and ν is

Cp(π) =

(∫

Rd×Rd

‖x− y‖p dπ(x, y)

)1/p

The p-cost of a transport plan π between µ and ν is defined (and finite)
provided that µ and ν both have finite p-moments. Recall that the p-moment
(p > 1) of a measure µ on R

d is the integral
∫

Rd
‖x‖p dµ(x). We will denote by

Pp(R
d) the set of probability measures on R

d with finite p-moment — this set
includes in particular all finite measures with compact support, e.g. empirical
measures.

EXAMPLE. We suppose that both µ and ν are supported on point clouds,
eg.µ =

∑
p∈C µpδp and ν =

∑
q∈D νqδq, where the set of weights µp and

νq both sum to one. A transport plan between µ and ν is a measure π in
R
d × R

d concentrated on the point cloud C × D and can be written as π =
∑

(p,q)∈C×D πp,qδ(p,q) with
∑
q∈D πp,q = µp for all p ∈ C and

∑
p∈C πp,q =

νq for all q ∈ D. The p-cost of this transport plan is given by:

Cp(π) =





∑

p∈C

∑

q∈D
‖p− q‖p πp,q





1/p

DEFINITION IV.9. The Wasserstein distance between two probability measures
µ and ν on R

d with finite p-moment is the minimum p-cost of a transport
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plan between these measures:

Wp(µ, ν) = inf{Cp(π); π transport plan between µ and ν}

EXAMPLES. 1. The question of the convergence of the empirical measure
µN to the underlying measure µ is fundamendal in probability and statis-
tics. If µ is concentrated on a compact set, then µN converges almost
surely to µ in the Wp distance. More quantitative convergence state-
ment under more general assumptions can be given, see eg. [BGV07].

2. If χ : R
d → R

+ has finite p-moment Mp(χ) =
∫

Rd
‖x‖p χ(x)dx, and

∫

Rd
χ(x)dx = 1, then for any probability measure µ, the measure µ ∗ χ is

Wasserstein-close to µ: Wp(µ, µ ∗ χ) 6 Mp(χ)
1/p.

3. Let µ be the uniform probability measure on an hypersurface S em-
bedded in R

d and denote by CN,σ a point cloud of N points drawn
independently on the surface, each of them being perturbed by a Gaus-
sian noise of variance σ. By the previous two results, one can prove
that the uniform probability measure carried by the point cloud CN,σ
converges to µ asN converges to +∞ and σ to zero, with high probability,
in the Wasserstein sense (for all value p).





CONCLUSION

In this thesis, we made some contributions to geometric inference. Instead
of recalling them in detail, let us just state a few messages that are worth
(in our mind) remembering. In a very general way, we observed that the
semi-concavity of the distance function to a compact set can be used to better
understand the local properties of the medial axis, and to prove quantitivative
stability results for its first order derivatives (such as the projection function).
The second message that this thesis tries to convey is that some differen-
tial quantities such as curvature or normal cones are better represented by
measures rather than in a point-wise way. Trying to approximate them point-
wise is at the same time less general, because it forbids sharp features, and
leads to more cumbersome stability results under noisy sampling. Moreover,
taking this measure-theoretic approach allows to use Monte-Carlo methods
for estimation of normal cones, which are very easy to implement (for rapid
prototyping) and scale well to higher ambient dimension.

Chapter IV can almost be considered as a second part of the thesis. There
are essentially two contributions: first the claim that many distance-based
geometry inference results can be applied to compare the geometry of two
distance-like functions (ie. positive, 1-semiconcave and proprer function) that
are uniformly close to each other. Then the construction of a natural notion
of distance to a measure that is distance-like and stable under Wasserstein
approximation. Putting these two together allow to devise (or rather, adapt)
geometric inference methods that are robust to outliers. It is also noticeable
that global computations involving the distance to the uniform measure on a
point cloud raise interesting questions related to convex approximation, and
put us back in the realms of “classical” computational geometry.

There are numerous questions and possible extensions that are left open
by this work. Let us mention a few of them, that are of interest to us.
The question of reach estimation presented at the end of Chapter II is still
completely unsolved. Forgetting the specific approach we suggest, it raises



an interesting question: since claiming that the reach of C is at least R at
scale ε means that there is a compact set with reach at least R at distance ε
of C. Answering this question requires to better understand how to construct
a compact set reach at least R, and more precisely how to construct such a
compact set that is Hausdorff-close to C. This “theoretical reconstruction”
problem seems interesting: it could take inspiration from existing practical
reconstruction methods — especially those that reconstruct an approximating
manifold as the level set of a function that minimizes an energy that balances
smoothness and attach to the data (called variational methods) — while
hopefully shedding a new light on them.

In Chapter II and III, the approximate location of features is extracted
from measures through convolution and thresholding. This is theoretically
sound and works well in practice; however, it would be nice to find a better
way to exploit these measures especially if the goal is to extract an embedded
sharp feature graph. A first embedding of such a graph could be provided by
using sublevel sets of distance-to-measure to the boundary measure. This
raises computability issues. One could then apply techniques similar to active
contours in computer vision in order to improve the embedding of the edges,
both in precision and smoothness.

More generally, working with sum of Dirac masses instead of point clouds
has barely been studied if at all. A problem that would probably benefit
from this approach is shape matching: given two point clouds C and D, find
(one of) the rigid transformation ϕ that minimizes the Hausdorff distance
between ϕ(C) and D. When C is already close to D, the problem is known as
registration, and the standard algorithm known as “iterated closest points”
(ICP) is a simple gradient descent. In practice, it often gets stuck at local
minima, especially at the later stages of the descent. Using local geometric
information such as the one provided by boundary measures could help find
good matchings. The matching problem between two measures µ and ν could
be stated as: find the rigid transformation that minimizes energy E(ϕ) =

W2
2(ϕ#µ, ν). This energy seems to have less critical points, and more generally

be better behaved than ICP energy. Moreover, the gradient descent could
benefit from a hierarchical approach, starting with rough approximations of
the measures µC and µD and refine them as the descent goes on. This might
speed the convergence of the descent, and hopefully find better local minima
of the energy. Understanding this problem and implementing a solution
requires to have quantitative stability results for W2-optimal transportation
as well as being able to compute optimal transportation plans very efficiently.

The last set of questions is related to the computational issues in distance-
to-measure simplification presented in §IV.3. We have a bound on the ap-
proximation error made by replacing the real k-distance to a point cloud
C by the witnessed k-distance, using the “spread” of the uniform measure
on C. This bound seems far from optimal in practice. Improving it requires
to get a better understanding of what it means for a measure to be concen-
trated, in a quantitative way, and how this impacts the complexity of the
k-distance. A more practical question arise when the size of the input data



is huge — 10M points for laser scans is now very common —, in which case
even the witnessed k-distance migh not be a compact enough approximation
of the k-distance. In that case, one could try some heuristics to select fewer
barycenters among the witnessed barycenters, eg. in a greedy way: select the
barycenter that improves the approximation the most (on a given domain).
Another possibility is to start from a set of barycenters that yield a decent
approximation of the k-distance, and then try to optimize their location and
weight in order to improve the approximation.





NOTATIONS

〈v|w〉 canonical scalar product between v and w ∈ R
d . . . . . . . . . . . . . . . . . . . . . . 10

‖v‖ Euclidean norm of the vector v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B(x, r) open ball of radius r centered at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B(x, r) open ball of radius r centered at x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dK distance-function to K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Kr r-offset of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dH Hausdorff distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
projK set of projections on K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
pK projection function on K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VorC(p) Voronoi cell of p in the point cloud C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Med(K) medial axis of K ⊆ R

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Cut(K) cut locus or nerve of K ⊆ R

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
K(F) compact subsets of the metric space F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Hd Lebesgue measure in R

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Hα α-dimensional Hausdorff measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
N(X, ε) Lebesgue covering number of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
dimH Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Medµ(K) µ-medial axis of the set K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ωd−1 (d− 1)-volume of the (d− 1)-dimensional unit sphere . . . . . . . . . . . . . . . 20
ωd−1(r) (d− 1)-volume of the (d− 1)-dimensional sphere of radius r . . . . . . . . . 20
βd d-volume of the d-dimensional unit ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
βd(r) d-volume of the d-dimensional ball of radius r . . . . . . . . . . . . . . . . . . . . . . . 20
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[Ste63] S. B. Stečkin. Approximation properties of sets in normed linear
spaces. Rev. Roumaine Math. Pures Appl, 8(1):5–18, 1963. 11, 12

[Tan05] X. Tang. A sampling framework for accurate curvature estima-
tion in discrete surfaces. IEEE Transactions on Visualization

and Computer Graphics, 11(5):573–583, 2005. 63

[TT05] W.-S. Tong and C.-K. Tang. Robust estimation of adaptive tensors
of curvature by tensor voting. IEEE Trans. Pattern Analysis and

Machine Intelligence, 27(3):434–449, 2005. 63

[Vil03] C. Villani. Topics in Optimal Transportation. American Mathe-
matical Society, 2003. 37, 105, 128

[Wey39] H. Weyl. On the volume of tubes. American Journal of Mathe-

matics, 61(2):461–472, 1939. 33

[YQ07] P. Yang and X. Qian. Direct computing of surface curvatures
for point-set surfaces. In Proceedings of the IEEE/Eurographics

Symposium on Point-based Graphics, 2007. 63

[Zam04] T. Zamfirescu. On the cut locus in Alexandrov spaces and appli-
cations to convex surfaces. Pacific J. Math., 217:375–386, 2004.
11, 13





Détection de structure géométrique
dans les nuages de points

Quentin MÉRIGOT

Résumé

Cette thèse s’inscrit dans la problématique générale de l’inférence géométrique.
Étant donné un objet qu’on ne connaît qu’à travers un échantillon fini, à partir de
quelle qualité d’échantillonage peut-on estimer de manière fiable certaines de ses
propriétés géométriques ou topologique?

L’estimation de la topologie est maintenant un domaine assez mûr. La plupart des
méthodes existantes sont fondées sur la notion de fonction distance. Nous utilisons
cette approche pour estimer certaines notions de courbure dues à Federer, définies
pour une classe assez générale d’objets non lisses. Nous introduisons une version
approchée de ces courbures dont nous étudions la stabilité ainsi que calcul pratique
dans le cas discret. Une version anisotrope de ces mesures de courbure permet en
pratique d’estimer le lieu et la direction des arêtes vives d’une surface lisse par
morceaux échantillonnée par un nuage de point. En chemin nous sommes amenés à
étudier certaines propriétés de régularité de la fonction distance, comme le volume
de l’axe médian.

Un défaut des méthodes qui utilisent la fonction distance est leur extrême sen-
sibilité aux points aberrants. Pour résoudre ce problème, nous sortons du cadre
purement géométrique en remplaçant les compacts par des mesures de probabil-
ité. Nous introduisons une notion de fonction distance à une mesure, robuste aux
perturbations Wasserstein (et donc aux points aberrants) et qui partage certaines
propriétés de régularité et de stabilité avec la fonction distance usuelle. Grâce à ces
propriétés, il est possible d’étendre de nombreux théorèmes d’inférence géométrique
à ce cadre.

Abstract

This thesis deals with the general question of geometric inference. Given an
object that is only known through finite sampling, what conditions are required
on the sampling in order to be able to estimate correctly some of its topological or
geometric properties ?

Topological estimation is by now quite well understood. Most existing approaches
rely on the notion of distance function. We use the distance function in order to
estimate a notion of curvature due to Federer, that is defined for a rather general
class of non-smooth objects. We study the stability of an approximate version of these
measures when the unknown object is replaced by a discrete approximation; we also
deal with the practical computation of these measures in the discrete setting. An
anisotropic notion of these curvature measures can be used to robustly estimate the
locus and the direction of sharp edges of a piecewise smooth surface from a point-
cloud sampling. Theoretical results required to study some regularity properties of
the distance function, such as the volume of the medial axis.

A drawback of distance-based methods is their extreme sensibility to outliers. In
order to overcome this problem we propose to leave the purely geometric setting, and
replace compact sets with measures (as in Lebesgue theory). We introduce a notion
of distance function to a measure, which is robust to Wasserstein perturbations –
hence in particular to the addition of outliers. This distance function shares any
regularity and stability properties with the usual distance function; this allows to
extend many existing geometric inference theorems to this new setting.
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