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de l’habilitation à diriger des recherches.
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Chapter 1

Introduction

Après l’obtention de mon doctorat en juin 1999, j’ai consacré mes travaux de
recherche à l’étude de problèmes mathématiques issus de la physique statis-
tique hors équilibre. Les problèmes traités concernent les propriétés ergodiques
d’équations aux dérivées partielles stochastiques, l’étude de la mesure invari-
ante de dynamiques stochastiques hypoelliptiques non-réversibles et de leur
grandes déviations, la simulation numérique de systèmes étendus de partic-
ules Hamiltoniennes, l’étude de processus de renouvellement Markoviens les
modélisant.

1.1 Ergodicité des équations de Navier-Stokes

stochastiques.

On se trouve encore relativement loin d’une compréhension théorique détaillée
de l’état stationnaire d’un fluide turbulent. Un premier pas dans la description
mathématique des ces états est de considérer les équations de Navier-Stokes
avec un forçage stochastique et de démontrer que le système est décrit par une
mesure invariante unique. Le but ultime serait la compréhension des propriétés
des fonctions de corrélations d’une telle mesure. Dans les articles [16, 17, 18], en
collaboration avec Jean Bricmont et Antti Kupiainen, nous avons considéré les
équations de Navier-Stokes sur un tore bidimensionnel avec une force aléatoire,
de type bruit blanc dans le temps (ou à temps discret) et agissant uniquement
sur de grandes échelles spatiales et pour un nombre de Reynolds (Re) arbi-
traire. Nous avons démontré des estimations probabilistes pour le comporte-
ment asymptotique en temps des solutions. Ces estimations impliquent des
bornes pour l’échelle dissipative et le spectre d’énergie des modes de Fourier
lorsque Re → +∞ [16]. Ensuite, nous avons démontré l’unicité de la mesure
invariante [17, 18].

Plus précisément, on considère l’équation de Navier-Stokes stochastique
pour le champ de vitesses u(t, x) ∈ R

2 défini sur le tore T = (R/2πZ)2:

du+ ((u · ∇)u− ν∇2u+ ∇p)dt = df, (1)

où f(t, x) est un processus de Wiener de covariance

Efα(t, x)fβ(t′, y) = min{t, t′}Cαβ(x− y) (2)
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et Cαβ est une fonction régulière satisfaisant
∑

α ∂αCαβ = 0. L’équation (1)
est complétée par la condition d’incompressibilité ∇ · u = 0 = ∇ · f , et nous
supposons que les moyennes sur le tore s’annulent.

∫
T
u(0, x) = 0 =

∫
T
f(t, x),

ce qui implique que
∫
T
u(t, x) = 0 pour tout t.

Il est commode d’introduire des variables sans dimension, de telle sorte que
ν devient égal à 1. On introduit donc, u(t, x) = νu′(νt, x). Alors u′ satisfait
(1) et (2) où ν est remplacé par 1 et C par

C ′ = ν−3C.

Le paramètre sans dimension de contrôle du système est le taux d’injection
d’énergie 1

2 trC
′(0), que l’on peut écrire comme (Re)3 où Re est le nombre de

Reynolds :
Re = ǫ

1
3 ν−1,

et ǫ = 1
2 trC(0) est le taux d’injection d’énergie dans les unités originales. Ci-

dessous, nous travaillons avec ces variables et abandonnons les primes. En deux
dimensions, on se débarasse de la condition d’incompressibilité en exprimant
le champ de vitesses en termes de la vorticité ω = ∂1u2 − ∂2u1. Tout d’abord,
(1) implique l’équation de transport

dω + ((u · ∇)ω −∇2ω)dt = db, (3)

où b = ∂1f2 − ∂2f1 est de covariance

Eb(t, x)b(t′, y) = min{t, t′}(2π)−1γ(x− y)

avec γ = −2πν−3∆trC.
Ensuite, en utilisant la transformée de Fourier ωk(t) = 1

2π

∫
T
eik·xω(t, x)dx,

k ∈ Z2; on peut exprimer u comme uk = i (−k2,k1)

k2 ωk, et écrire l’équation pour
la vorticité

dω(t) = F (ω(t))dt+ db(t), (4)

où la dérive est donnée par

F (ω)k = −k2ωk +
1

2π

∑

l∈Z2\{0,k}

k1l2−l1k2

|l|2 ωk−lωl (5)

et les {bk} sont des mouvements Brownien tels que b̄k = b−k et

Ebk(t)bl(t
′) = min{t, t′}δk,−l γk.

Le paramètre de contrôle sans dimension pour l’équation de vorticité est à
présent :

R =
∑

k∈Z2

γk = 2πγ(0) (6)

qui est proportionnel au cube du nombre de Reynolds. Pour étudier les sit-
uations turbulentes, on voudrait considérer le cas où on excite seulement un
nombre fini de modes:

γk 6= 0 , k2 ≤ N,
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où N est d’ordre 1. Nous supposons que

N = κR, (7)

où κ est une constante sans dimension. Moyennant cette hypothèse, nous
sommes parvenus à démontrer l’unicité de la mesure invariante et les propriétés
de mélange des équations de Navier-Stokes stochastiques [17, 18]. Nous avons
aussi obtenu des bornes intéressantes sur l’échelle de dissipation et le spectre
d’énergie [16]. L’échelle dissipative est bornée inférieurement par R− 1

2 α et le
spectre d’énergie e(k) est tel que :

e(k) ≡ k−1

∫

S1

dk̂
〈
|ωbkk|2

〉
≤ CReαk−(2r+1)

où k = |k|, et r peut être choisi arbitrairement proche de 1. α̃,α sont eux
strictement plus grand que (mais arbitrairement proches de) 1 + r.

1.2 Dynamique Hamiltonienne sur réseau couplée

à des thermostats stochastiques.

Pour décrire la conduction de la chaleur dans les solides cristallins, on modélise
souvent le solide par un réseau d’atomes dont les extrémités sont couplées à des
bains de chaleur maintenus à des températures différentes. En une dimension,
le système peut être décrit comme ceci : à chaque site i du réseau {1, . . . , N},
on attache une particule de vitesse pi et position qi. La dynamique est Hamil-
tonienne à l’intérieur de la châıne et stochastique aux extrémités à cause du
couplage aux bains de chaleur. L’Hamiltonien est de la forme

H(p, q) =
N∑

i=1

(
1

2
p2

i + V (qi)
)

+
N∑

i=2

U(qi − qi−1) + U(q1) + U(qN ). (8)

Les équations du mouvement sont données par

dqi = pidt, i = 1, . . . , N,

dpi = −∂H
∂qi

(p, q)dt, i = 2, . . . , N − 1, (9)

et

dp1 = −∂H
∂q1

(p, q)dt− γp1dt+
√

2γkTL dwl ,

dpN = − ∂H

∂qN
(p, q)dt− γpNdt+

√
2γkTR dwr . (10)

TL et TR sont les températures du bain de gauche et du bain de droite. Tandis
que wl and wr sont des processus de Wiener indépendants.

Il est facile de vérifier que lorsque TL = TR = T = β−1, la mesure invariante
du système est donnée par sa densité:

ρ(p, q) = Z−1e−βH(p,q). (11)
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Lorsque les températures sont différentes, l’existence, l’unicité et la conver-
gence exponentielle ont été établies sous des hypothèses relativement générales
sur les potentiels U et V [31, 29, 87]. Dans le cas d’interactions harmoniques,
la covariance de l’état stationnaire a été calculée exactement en [77, 90].

Afin de décrire la conduction de la chaleur dans un solide cristallin, on
définit une fonction d’énergie locale,

hi(p, q) =
p2

i

2
+ V (qi) +

1

2
(U(qi+1 − qi) + U(qi − qi−1)) (12)

pour i 6= 1, N tandis que

h1(p, q) =
p2

1

2
+ V (q1) + U(q1) +

1

2
U(q2 − q1), (13)

et hN est défini de manière similaire. Le courant de chaleur est défini par
l’évolution temporelle de l’énergie locale:

dhi

dt
= j+

i − j−i (14)

pour i 6= 1, N et où

j+
i =

1

2
F (qi − qi+1)(pi + pi+1), (15)

j−i =
1

2
F (qi−1 − qi)(pi + pi−1). (16)

F = −U ′ et ji est défini comme étant le courant microscopique d’énergie entre
l’atome i et i+1, c’est à dire le taux de transfert d’énergie par unité de temps
entre ces atomes. On observe que j+

i−1 = j−i et dans la suite nous utiliserons
la notation ji ≡ j+

i .
On utilise aussi la notation 〈.〉 pour indiquer la moyenne par rapport à l’état
stationnaire. On définit la température locale dans la châıne comme étant:

〈
p2

i

〉
≡ Ti. (17)

Le courant moyen est

j ≡ 〈ji〉 =
ω2

2
〈F (qi − qi+1)(pi + pi+1)〉 (18)

qui doit être constant le long de la châıne par conservation de l’énergie, en
vertu de,

〈
dhi

dt

〉
=
〈
j+
i

〉
−
〈
j−i
〉

= 0 , i 6= 1, N (19)

et j+
i−1 = j−i .

La loi de Fourier énonce que

j = κ(Ti)(Ti+1 − Ti) (20)
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où κ est la conductivité du cristal. Le problème fondamental est de comprendre
comment la partie anharmonique rend cette constante finie dans la limite d’un
nombre d’oscillateur tendant vers l’infini. Ensuite, on voudrait être capable
de calculer sa valeur comme fonction des interactions microscopiques et de la
température locale.

Analyse perturbative.

En collaboration avec Alain Schenkel [59], nous avons développé une théorie
de perturbations pour les Hamiltoniens de la forme (8) avec U(x) = ω2 x2

2
et

V (x) = µ2ω2 x2

2
+λx4

4
en prenant comme paramètre perturbatif λ. Nous avons

calculé la correction au premier ordre des fonctions de corrélation de l’état
stationnaire hors équilibre. Nous avons effectué le calcul en démontrant en
premier lieu une formule utile pour analyser la matrice de covariance de l’état
stationnaire. Nous avons développé une méthode pour résoudre des équations
dont les inconnues sont des matrices possédant certaines propriétés de symétrie.
Nous avons d’abord montré que la correction au premier ordre du courant ne
dépend pas de la taille du système. Ensuite, nous avons montré que la première
correction au profil de température est linéaire lorsque la partie harmonique
du potentiel d’accrochage est nulle. Le signe du gradient de température est
opposé au signe de celui de la différence de températures entre les deux bains
de chaleur.

Conduction de la chaleur et collisions entre phonons.

Au cours du siècle passé, de nombreuses méthodes ont été développées
pour permettre un calcul théorique de quantités telles que la conductivité ther-
mique. La plus connue est sans doute celle de la réponse linéaire permettant
de décrire des situations proches de l’équilibre; elle lie la réponse à un forçage
hors équilibre aux fluctuations du même système à l’équilibre thermique. En
revanche, cette méthode n’aborde pas la question de la détermination de l’effet
des nonlinéarités sur les propriétés de transport de la chaleur. Une autre
théorie permettant quant à elle de comprendre dynamiquement l’approche
(ou retour ) à l’équilibre pour des gaz très dilués est basée sur l’équation de
Boltzmann dont la validité repose sur des hypothèses portant sur les condi-
tions initiales du système que l’on souhaite étudier. Cette approche est ce
qu’on appelle la théorie cinétique. Elle peut être envisagée pour toutes sortes
de situations hors équilibre pour des systèmes dont les composantes inter-
agissent faiblement. Elle permet elle aussi de calculer certains coefficients de
réponse. En particulier, pour le système décrit ci-dessus, modélisant les solides
cristallins dont les atomes interagissent entre eux et avec un substrat externe
par l’intermédiaire d’interactions faiblement anharmoniques. C’est l’approche
qu’a initiée Peierls [80] en écrivant une équation correspondant à l’équation de
Boltzmann pour l’évolution des nombres d’occupation des phonons dans un
contexte quantique. On peut reformuler le problème dans un cadre classique
et obtenir une équation analogue pour l’évolution des fonctions de corrélations
correspondant aux modes propres de vibration d’une châıne d’oscillateurs. Les
interactions anharmoniques (faibles) entre les modes propres de la châıne sont
prises en compte sous une forme analogue aux collisions entre atomes d’un
gaz dilué. Pour évaluer concrètement des quantités telles que la conductivité
thermique dans le cadre de la réponse linéaire, il faut alors analyser le noyau
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de collisions entre les modes propres de la châıne. Techniquement, cela se
résume à localiser explicitement certaines résonances entre les phonons. C’est
ce que nous avons réalisé en collaboration avec Alain Schenkel [60]. La va-
lidité de notre calcul théorique de la conductivité thermique a été vérifiée à
deux reprises par des simulations numériques [2, 62]. De manière surprenante
vu l’ancienneté du problème, ce calcul était le premier reliant la conductivité
thermique aux paramètres microscopiques du modèle. Il a également per-
mis de mettre un terme à une certaine confusion entourant l’explication des
mécanismes donnant lieu à une conductivité finie dans les solides cristallins en
termes de processus “Umklapp”.

Grandes déviations et caractérisation variationelle des états hors équilibre.

Une autre approche, plus globale, des phénomènes hors équilibre qui a
connu une activité considérable ces dernières années est l’étude des fluctu-
ations et des grandes déviations dans les systèmes hors équilibre de grande
taille [5, 6, 7, 9]. Cette approche est reliée à une autre ancienne tentative de
caractériser les états hors équilibre par un principe variationnel, c’est à dire le
principe de minimum de production d’entropie [82]. Bien que ses déficiences
loin de l’équilibre soient bien connues, il s’agit là d’une description poten-
tiellement universelle et analogue à la caractérisation des états d’équilibre en
termes d’un principe variationel. Récemment, Maes et Netočný [66] ont ob-
servé que dans les systèmes aléatoires hors équilibre la théorie des grandes
déviations fournit naturellement une caractérisation variationelle des états sta-
tionnaires et que celle-ci est reliée au principe de minimum de production
d’entropie. La théorie des grandes déviations étudie les fluctuations exponen-
tiellement rares de la dynamique. L’objet central décrivant ces fluctuations
est le taux de décroissance exponentielle dans le temps d’une fluctuation de
la dynamique décrite par une statistique différente de l’état stationnaire. Une
formule explicite a été donnée par Donsker et Varadhan [24, 25] pour cette
fonctionnelle de grandes déviations. Lorsque la dynamique aléatoire possède de
bonnes propriétés ergodiques, la mesure minimisant la fonctionelle de grande
déviations est l’état stationnaire du système. D’un point de vue physique,
l’aspect intéressant est que ceci peut être relié au principe du minimum de
production d’entropie. Ceci a été mis en évidence par Maes et Netočný pour
des processus de sauts Markoviens. En collaboration avec Thierry Bodineau
[8], nous avons étudié comment le formalisme de Donsker-Varadhan s’applique
aux réseaux d’oscillateurs hamiltoniens couplés à des thermostats stochas-
tiques. Bien qu’en général ces systèmes soient non réversibles, ils possèdent
certaines propriétés de symmétrie sous renversement du temps. Nous avons
utilisé ces propriétés pour démontrer une formule générale pour la fonctionnelle
de Donsker-Varadhan. Cette formule généralise la formule habituelle pour les
dynamiques réversibles. Nous avons aussi établi précisément la relation qui
existe entre le principe variationnel pour les mesures invariantes fourni par la
fonctionnelle de Donsker-Varadhan et le principe de minimum d’entropie. Nous
avons calculé explicitement la fonctionnelle de grande déviations du courant
dans le cas d’une châıne harmonique couplée à des bains de chaleur.
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1.3 Dynamiques de collisions et leurs descrip-

tion stochastiques.

Dynamiques de collisions.

En collaboration avec Thomas Gilbert, nous avons introduit une classe
de modèles [43] obtenus comme limites de chaines d’oscillateurs lorsque l’on
prend des interactions en un site et entre plus proches voisins de plus en plus
anharmoniques. Typiquement, dans ces modèles, les particules sont confinées
dans des bôıtes disposées sur un réseau régulier et interagissent avec les par-
ticules des boites voisines par des interactions de cœur dur, c’est-à-dire de
manière analogue aux particules d’un gaz ordinaire. Pour fixer les idées, con-
sidérons les modèles d’échange complet sur un réseau unidimensionel ou encore
les modèles “carré-corde” introduits en [43]. Les premiers sont obtenus comme
limites de modèles de chaines d’oscillateurs disposés sur un réseau et décrits
par un Hamiltonien H de la forme,

H(p, q) =

N∑

i=1

p2
i

2
+ V (qi) + U(qi − qi+1) (21)

dans lequel les interactions deviennent de plus en plus anharmoniques, jusqu’à
se transformer en puits de potentiel infini. C’est -à -dire que l’on prend

Vk(x) = fk(
x

b
), Uk(x) = fk(

x

a
), (22)

avec fk(x) = x2k/2k et k tendant vers l’infini. La dynamique consiste alors en
des particules piégées et se mouvant librement dans des bôıtes de taille 2b dis-
posées sur un réseau uni-dimensionel et échangeant leur vitesse avec leur plus
proche voisin lorsque leur distance par rapport à celui-ci devient supérieure à
un certain paramètre a. Dans les modèle “carré-corde”, les particules se meu-
vent dans des bôıtes de forme carrée et interagissent lorsqu’une “corde”reliant
deux particules voisines se tend. La dynamique peut être visualisée aisément
sur les figures suivantes. Lorsque l’on réalise une analyse numérique de ces deux

Figure 1.1: Trajectoires typiques du modèle carré-corde pour deux valeurs de la
longueur maximale de la corde, colorées du bleu au rouge en fonction de leur
énergie. Les petites et grandes flèches indiquent respectivement les vitesses
initiales et finales.

modèles, on observe dans les deux cas que la loi de Fourier est vérifiée et que
la conductivité est finie. Cependant, on observe aussi que l’approche de type
Boltzmann n’est valide que dans le cas des modèles “carré-corde”. La différence
de comportement entre les deux modèles est évidemment intéressante en elle-
même et mériterait une étude plus approfondie. Nous verrons plus bas que
certains modèles stochastiques que nous avons introduit avec Lorenzo Zam-
botti [61] permettent de rendre compte de la différence entre ces modèles.
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D’un point de vue théorique, ces modèles ont l’avantage de posséder à la fois
la structure d’ordre spatial caractérisant les solides et des interactions se faisant
par l’intermédaire de collisions, typiques des gaz. Ceci les rend aussi partic-
ulièrement utiles pour étudier la conduction de la chaleur dans les aérogels, gels
conservant une matrice solide et dont les composants liquides ont été retirés
et remplacés par des atomes de gaz. On peut représenter les atomes comme
des petites boules piégées dans leur cellule (nanopore) et entrant en collision
avec leurs voisines par l’intermédiaire de trous dans la paroi des cellules. Con-
sidérant un régime où les interactions sont rares et le nombre de particules
grand, nous avons appliqué une approche de type Boltzmann pour calculer
théoriquement la conductivité thermique en fonction des paramètres micro-
scopiques du modèle. Nous avons validé cette approche avec une très grande
précision en comparant le résultat prédit théoriquement à la mesure directe de
la conductivité thermique des modèles au moyen de simulations numériques.
Ces modèles sont intéressants à la fois d’un point de vue théorique et en vue
de possibles applications à l’étude des aérogels. Nous allons donner ci-dessous
une description stochastique de ces dynamiques. Afin de justifier l’aléa in-
troduit dans les modèles, il est important de comprendre comment il émerge
dans les modèles déterministes. Les dynamiques décrites par des interactions
régulières et les dynamiques de collisions possèdent des différences qualitatives
et certaines similarités que nous discutons maintenant. Dans les deux cas,
les interactions entre les composants se font exclusivement entre plus proches
vosins sur le réseau et l’évolution de l’énergie locale peut donc s’écrire :

En(t) − En(0) = Jn−1→n([0, t]) − Jn→n+1([0, t]). (23)

Dans le cas de potentiels d’interaction réguliers le courant d’énergie intégré
entre les site n et n + 1 prend la forme

Jn→n+1([0, t]) =

∫ t

0

1

2
(pn(s) + pn+1(s)) · ∇U(qn(s) − qn+1(s))ds

tandis que dans le cas des dynamiques de collisions

Jn→n+1([0, t]) =
1

2

∑

0≤k≤Nt

[
p⊥n (Sk

n)2 − p⊥n+1(S
k
n)2
]
, (24)

où la composante du vecteur pn dans la direction du vecteur unité n̂ =
||qi−qi+1||−1(qi−qi+1) à l’instant de la collision est noté p⊥n = pn ·n̂. Nt compte
le nombre de collision jusqu’au temps t et (Sk

n)k est la suite des temps de col-
lision. Notons que dans les modèles d’échange complet, p⊥n = pn et le courant
intégré entre les deux voisins est simplement la somme de tous les échanges
d’énergie cinétique entre les particules. Supposons à présent qu’un tel système
soit thermalisé à des températures différentes à ses extrémités. Pour compren-
dre le transfert d’énergie d’un bout à l’autre du système, on s’intéresse au com-
portement ergodique du courant et on veut calculer limt→+∞ t−1Jn→n+1([0, t])
qui donne le courant moyen d’énergie dans l’état stationnaire. A cause de
la forme particulière du courant intégré (24), il est naturel de supposer que
l’équilibre local s’instaure et que la limite est donnée par

lim
t→+∞

1

t
Jn→n+1([0, t]) = ν (Tn − Tn+1) (25)
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où ν = limt→∞ t−1Nt est la fréquence de collisions entre les voisins sous des
conditions d’équilibre local. Tn = 1

2 〈p2
n〉 est l’énergie cinétique moyenne. La

conductivité est donc donnée par la fréquence de collisions. Typiquemment,
les collisions se produisent quand les particules sont proches des frontières de
leur cellule et par conséquent la fréquence de collisions est proportionnelle au
nombre moyen de visites aux frontières par unité de temps. La particule se
déplaçant librement dans sa cellule, la fréquence est proportionnelle à

√
Tn.

Une fois cette relation établie, le profil de température peut être calculé parce
que, par conservation de l’énergie, le courant est constant à travers le système:

lim
t→+∞

1

t
J(n−1)→n([0, t]) = lim

t→+∞

1

t
Jn→n+1([0, t]).

Ceci est équivalent à une équation aux différences finies pour l’ensemble des
températures de la distribution d’équilibre local. Les études numériques ont
montré que l’identification de la conductivité à la fréquence de collisions est
valide avec un très haut degré de précision pour une grande classe de dy-
namique de collisions, lorsque les particules entrent en collision rarement. Un
élément important de notre analyse [43] est que cette identification ne dépend
pas des propriétés de chaos local de la dynamique.

Bien qu’il n’y ait pas de manière aussi directe de deviner la conductivité
dans les systèmes faiblement anharmoniques, il existe des similarités entre les
deux types de dynamique lorsqu’on les considère dans un régime d’interaction
faible et qu’on décrit le systèmes dans les coordonnées les mieux adaptées.
Dans les deux cas, une équation de Boltzmann linéarisée décrit correctement
les propriétés thermiques des systèmes. Selon le contexte, chaque mode ou
particule se comporte comme s’il était couplé à un bain de chaleur idéal et
l’intensité du couplage fournit la conductivité thermique. Cette quantité est
aussi identifiée avec la fréquence de collisions entre les composants (phonons
ou particules) à l’équilibre. Plus précisément, dans le cas de dynamique de
collisions, chaque particule se déplace librement dans sa cellule et interagit
avec ses voisines comme si elles faisaient partie d’un bain de chaleur infini.

Traceurs et diffuseurs chauds pour la conduction de la chaleur dans les dy-
namiques de collisions.

Avec Lorenzo Zambotti [61], nous avons introduit et étudié de nouveaux
modèles stochastiques pour la conduction de la chaleur dans les dynamiques
de collisions décrites ci-dessus. Un aspect important des modèles de collisions
est que l’évolution de l’énergie se produit à des temps discrets et consiste en
un échange d’énergie cinétique entre les voisins. La longueur de l’intervalle
de temps entre deux collisions successives dépend de l’énergie cinétique de la
particule, ce qui fixe la dépendance en

√
T de la fréquence de collisions. L’idée

initiale est donc de construire et d’analyser des modèles qui sont stochastiques
au départ et possèdent la structure générale donnée par la description de la
dynamique en termes d’équation de Boltzmann.

Par conséquent, on considère des dynamiques qui consistent en un mélange
de dynamique Hamiltonienne intégrable et de collisions avec des bains de
chaleur stochastiques. Les modèles que nous avons construits sont fait de
diffuseurs décrits comme des bains de chaleur et de traceurs qui transfèrent
de l’énergie entre ces diffuseurs. Chaque traceur se déplace dans un intervalle
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unidimensionnel à l’intérieur duquel les diffuseurs se trouvent situés sur un
réseau. Le mouvement d’un traceur est balisitique sauf quand il rencontre un
diffuseur. A cet instant, sa vitesse est mise à jour aléatoirement selon une loi
qui dépend de la température du diffuseur. La température des diffuseurs est
finalement fixée par la condition qu’en moyenne, dans l’état stationnaire, au-
cune énergie ne soit échangée entre les diffuseurs et les traceurs. Conceptuelle-
ment, cette condition est similaire à celle utilisée dans la châıne d’oscillateurs
“auto-consistants”[10, 13, 14], mais dans notre cas elle peut être interprétée
naturellement comme imposant la condition que le transfert d’énergie par unité
de temps entre les diffuseurs soit constant tout le long du système.

Géométriquement, les systèmes que nous étudions sont analogues à ceux
introduits et étudiés par [33, 34, 76]. Les diffuseurs de nos modèles sont sim-
ilaires aux “energy storing devices” de ces modèles. Cependant, dans notre
cas, la dynamique est stochastique depuis le début et l’action d’un diffuseur
est supposée modéliser l’action d’un très grand système. Comme dans ces
modèles, nous pouvons distinguer deux types de dynamique. Selon que les
particules sont libres ou confinées entre les diffuseurs, nous montrons que le
profil de température des diffuseurs doit être linéaire ou non. Ces deux types
de comportements semblent être universels pour les systèmes décrits par une
dynamique de collision à l’échelle microscopique [33, 34, 76, 42, 43, 83].

En tant que processus stochastiques, nos modèles sont naturellement décrits
comme des processus de renouvellement Markoviens. La dynamique la plus
simple que l’on peut imaginer est celle d’une particule dans une bôıte : la
particule frappe la paroi de la bôıte et sa vitesse est mise à jour selon une
certaine distribution de probabilité. Nous avons d’abord calculé la mesure
invariante de ce processus. Cela a permis de justifier rigoureusement la règle de
mise à jour utilisée dans les simulations numériques [97]. Ensuite, nous avons
calculé la mesure invariante pour les dynamiques décrites ci-dessus et nous
avons démontré que selon que les particules sont libres ou confinées entre les
diffuseurs le profile auto-consistant des températures des diffuseurs est linéaire
ou non. L’identité de la conductivité thermique et de la fréquence de collisions
apparâıt comme une conséquence naturelle du théorème de renouvellement
pour les processus de renouvellement Markoviens. Nous avons aussi étudié la
fonction génératrice des cumulants du courant d’énergie intégré. Nous avons
donné une formule permettant de calculer explicitement les dérivées de tout
ordre de la fonction génératrice. Ceci permet d’établir la formule de Green-
Kubo pour ces modèles. Un aspect frappant de ce modèle que nous avons pu
mettre en évidence est le manque d’analyticité de la fonction génératrice dès
que l’on veut décrire une situation hors équilibre. L’origine de ce phénomène
peut être attribuée à la présence de particules de vitesse arbitrairement petite.

1.4 Organisation du mémoire.

Chaque chapitre de ce mémoire consiste en un résumé cohérent, mis à jour et
contextualisé des résultats obtenus dans un ou plusieurs articles. Les parties
les plus techniques des preuves sont systématiquement omises.

12



Chapter 2

Ergodicity of the stochastic
Navier-Stokes equations in 2D.

I give here some background and summary of the research works I pursued
during my first postdoctoral years. This corresponds to references [16, 17, 18].
In those works, in collaboration with Jean Bricmont and Antti Kupiainen we
showed the ergodicity of the Navier-Stokes equations with a stochastic external
forcing.

2.1 Turbulence.

I give some general background that may be found in [50]. The understanding
and control of turbulence in fluids remains one of the major unsolved problems
of classical physics and it is easy to understand why physicists, mathematicians
and enginneers continue to study it intensively. On the one hand it has enor-
mous practical consequences ranging form airplane and ship design to weather
forecasts. On the other hand, it is believed to be a property of solutions of a
relatively simple partial differential equation, the Navier-Stokes (NS) equation.
The simplicity of the equation stands in contrast with the complexity of the
phenomena. The main problem resides in the mathematical treatment of the
non-linear term in the equations.

Let us consider a fluid (i.e. a gas or a liquid) confined in a region Ω ⊂ R
d

where the spatial dimension d is in applications usually 3 or 2. Denoting the
velocity of the fluid at a point x and at time t by u(t,x) ∈ R

d, the NS equation
is

∂tu + (u · ∇)u − ν∇2u =
1

ρ
(f −∇p) , (1)

where ν is the viscosity of the fluid, ρ its density, f is the external force acting
on the fluid and p is the pressure. We will restrict the discussion to the case
of incompressible fluids wich means that ρ is constant and that u is divergence
free ∇ · u = 0. It follows then by taking the divergence of both sides of (1)
that ∇2p = −∇ · (u · ∇)u so the pressure becomes a function of the velocity
field u.

Eq. (1) is a nonlinear parabolic PDE (actually an integrodifferential equa-
tion due to the pressure term). The ν∇2u term in the NS equation represents
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the effect of friction and tends to smoothen and drive down the motion of the
fluid. The motion is maintained by the external force f , whereas the action
of the nonlinear term is much more complicated and is of course crucial for
the turbulent behaviour of fluids. However difficult to understand might be its
effect on the dynamics, it has the property of conserving the energy (the L2-
norm of the velocity field) in any dimension and the enstrophy (the L2 norm
of the rotational of the velocity field) in 2D.

As we will see below, a series of progresses have been made concerning the
ergodicity of the Navier-Stokes when the external force becomes stochastic.
A important issue to settle is what kind of force is physically relevant to the
problem of turbulence. In experimental situations the forcing may be produced
by boundary conditions like in the case of a flow in a pipe or around an obstacle
(e.g. airplane wing) where the velocity field vanishes at the boundary and
takes a characteristic value far enough away from it (the relative velocity of
the air and the plane or the velocity with which the fluid enters the pipe).
Alternatively, one may use an explicit stirring mechanism : an external force
is then applied on a characteristic lengthscale: L. In the equation (1) we could

e.g. consider f whose Fourier transform in x, f̂(t, ξ) has compact support near
|ξ| = L−1.

It is intuitively clear that the relative sizes of ν and f contribute to the
strength of the nonlinearity: f tends to increase u and ν drive it down. A
more precise formulation of this intuition involves the Reynolds number, a
measure of the strength of the nonlinear effects that takes into account two
symmetries of (1): scale and Galilean invariance.

A scale invariant measure of the relative strength of the forcing vs viscosity
is given by the Reynolds number

Re =
Lδu

ν
, (2)

where δu is a characteristic size of velocity differences produced by the force.
The reason why velocity differences and not absolute velocities matter is that
the NS equation is invariant (modulo boundary conditions) under Galilean
transformation u(t,x) → u(t,x + vt) − v where v is a constant velocity. For
the flow in the pipe or around the wing we may take δu as the difference of
the velocity at the boundary (zero actually) and far away from it.

The basic phenomenological facts about hydrodynamic flows are as follows.
If Re ≪ 1, one encounters regular (“ laminar”) flows. For Re between ∼ 1
and ∼ 102, a series of bifurcations occur leading to ever more complicated
flows (“transition to chaos”). Finally, for Re ≫ 102, a peculiar chaotic state,
turbulence, is reached that seems to exhibit for very large Re (”developed tur-
bulence”) universal features, i.e. features that are independent on the detailed
nature of the forcing. In particular for large Re another length scale η seems
to emerge in the problem in addition to the forcing scale L and the invari-
ant measure seems to possess universal features for scales between η and L.
As Re → ∞ the scale η → 0 and in this limit the so called inertial range
[η, L] extends all the way to zero. The so-called cascade picture of turbulence
describes the system as follows : the stationary state is an energy flux state
where energy is injected to the system at large scales and transported in the
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inertial range by the nonlinearity to small scales where it is dissipated by the
viscous forces. The repartition of the energy among the modes of the system is
described by the so-called Kolmogorov spectrum. It is given by a polynomial
decay with a specific exponent.

2.2 Probabilistic estimates.

In this section we consider the Navier-Stokes equation with a random force,
white noise in time and large scale in space and prove probabilistic estimates
for the long time behaviour of the solutions. These estimates imply that the
solution of the stochastic equation remains analytic for all times and bounds
on the energy spectrum, i.e the repartition of energy per mode. Our analysis
was inspired by a paper of Mattingly and Sinai [75] who gave a simple proof of
the analyticity of the solutions of the 2d Navier-Stokes equation. We extended
their analysis to the random case.

We consider the stochastic Navier-Stokes equation for the velocity field
U(t,x) defined on the torus TL = (R/2πLZ)2:

dU + ((U · ∇)U − ν∇2U + ∇p)dt = dF (3)

where F(t,x) is a Wiener process with covariance

EFα(s,x)Fβ(t,y) = min{s, t}Cαβ(
x−y

L
) (4)

and Cαβ is a smooth function defined on the unit torus and satisfying ∂αCαβ =
0. (4) represents large scale forcing, the scale being the size of the box. (3)
is supplemented with the incompressibility condition ∇ · U = 0 = ∇ · F and
we will also assume the vanishing averages over the torus:

∫
TL

U(0,x) = 0 =∫
TL

F(t,x) which imply that
∫
TL

U(t,x) = 0 for all times t.

(3) implies the transport equation for the vorticity Ω = ∂1U2 − ∂2U1:

dΩ + ((U · ∇)Ω − ν∇2Ω)dt = dG, (5)

where G = ∂1F2 − ∂2F1 has the covariance

EG(t,x)G(s,y) = L−2 min{s, t}Γ(
x−y

L
)

with Γ = −∆trC.
It is convenient to change to dimensionless variables s.t. ν and L become

one. This is achieved by setting

U(t,x) =
ν

L
u(

ν

L2 t,
1

L
x) , Ω(t,x) =

ν

L2 ω(
ν

L2 t,
1

L
x).

Then u and ω live on the unit torus and satisfy (3) and (5) with ν and L
replaced by 1, and C and Γ replaced by

c =
L4

ν3 C , γ =
L4

ν3 Γ .

Going to the Fourier transform ωk(t) = (2π)−2
∫
T1
eik·xω(t,x)dx with k ∈ Z2

we may write the enstrophy equation as

dωk = (−k2ωk +
∑

l∈Z2\{0,k}
(k × l)|l|−2ωk−lωl)dt+ dfk (6)
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where k × l = k1l2 − l1k2 and {fk} are Brownian motions with f̄k = f−k and

Efk(s)fl(t) = min{s, t}δk,−l γk

and we have used the relation uk = i (−k2,k1)

k2 ωk.
The dimensionless control parameter is the ω injection rate,

R =
1

2

∑

k∈Z2

γk =
1

2
γ(0) =

1

2

L4

ν3 Γ(0),

which is proportional to the third power of the Reynolds number Re = L
4
3 ǫ

1
3 ν−1

(ǫ = 1
2 trC(0) is the energy injection rate) in our model. Ultimately, one is in-

terested in the turbulent region R → ∞. We make the following assumption
on the noise covariance:

γk ≤ CRe−|k|. (7)

The coefficient of |k| is arbitrary, but we require exponential decay. The phys-
ically relevant case is the one with γk 6= 0 only for a finite number of k with
|k| of the order of unity.

To state the main result of this section, define the enstrophy

Φ =
1

2

∑

k

|ωk|2 (8)

and fix numbers r > 1, α > 1 + r. Consider, for positive D, the norm

||ω||D = sup
k

|ωk||k|reD−α|k|. (9)

D will vary below, but r and α are fixed.

Theorem. Let ||ω(0)||D0 ≤ Dα
0 < ∞ and Φ(0) = K < ∞. Then, there

exists a random function Dt , Dt < ∞ for all t, such that with probability 1,
||ω(t)||Dt

< Dα
t . For any t > C(logD0 + logK), and for D2 > CR logR,

Prob{||ω(t)||D ≤ Dα & Φ(t) ≤ D2} ≥ 1 − Ce−c D2
R . (10)

Remark. Here and below, C (and c) are sufficiently large (small) constants,
which may vary from place to place but that are uniformly bounded as R→ ∞.
The theorem says that with probability one ω(t,x) is analytic for all times,

the dissipation scale is (up to a logarithm) > R− 1
2 α and the energy spectrum

e(k) ≡ k−1

∫

S1

dk̂E|ωbkk|2 ≤ CReαk−(2r+1)

with k = |k|, where r can be taken arbitrary close to 1 and α̃ arbitrary close
to 1 + r. These bounds hold for any fixed time and also for the average of
these quantities over any fixed time interval. For example, using Jensen’s and
Chebyshev’s inequalities, one derives from (10)

Prob{ 1

T

∫ t+T

t

|ωk(s)|2ds > D2αk−2re−2D−αk} ≤ Ce−c D2
R .

16



(10) also implies that all correlation functions of the type

E
∏

i

∇niω(t, xi)

exist. Such assumptions were used eg. in [36] to to derive some physical
consequences concerning 2d turbulence.
What is the relationship of these results with the standard 2d turbulence
picture [53, 4]? One considers (3) in infinite volume with the forcing as
we do at spatial scale L, but not periodic, rather, for instance, having a
smooth Fourier transform with compact support around L−1. Then it is ex-
pected that a stationary state for Ω emerges for which the energy spectrum

e(k) = k−1
∫

S1 dk̂
∫
dxeikbk·x

EΩ(x)Ω(0) has two scaling regimes

e(k) ∝
{
k−3 η−1 >> k >> L−1

k−
5
3 k << L−1

}
(11)

refered to as the direct (enstrophy) cascade regime and the inverse (energy)
cascade regime respectively. The scale η is the “viscous scale” beyond which
the e(k) decays more rapidly and it scales like ν

1
2 . In particular, the total

energy density
∫∞
0
e(k)dk is infinite in the stationary state. This means that

starting with say vanishing u at time zero, the energy density increases linearly
with time and for the ensuing stationary state only the vorticity remains a well
defined random field. One can also work in finite volume like in this paper by
forcing the system in an intermediate scale η << ℓ << L, provided the energy
is absorbed by friction acting on the |k| ∼ L−1 regime. This indeed is what
one does in experimental approaches, see for instance [78].

In our case the absence of the friction forces the energy to dissipate in the
short scales too and the spectrum should be different from (11). Our bound
above is certainly far from realistic, but one would expect the e(k) to diverge
as R → ∞. It would be very interesting to get hold of the direct and inverse
cascade regimes, but certainly much more sophisticated ideas are needed than
what are used in the present paper.

2.3 Force acting at discrete time.

As we explained above, a convenient mathematical model for the study of
homogenous isotropic turbulence is to consider the Navier-Stokes equation
subject to a random stationary (in space and time) forcing. The turbulent sit-
uation is modelled by a smooth force, i.e. one whose Fourier transform decays
fast for large wave numbers. One is then interested in various properties of the
correlation functions of the velocity field in a stationary state of the ensuing
stochastic process. An obvious first question concerns the large time conver-
gence to such a stationary state starting from an arbitrary initial condition
of the velocity field, i.e. the uniqueness of the stationary state. In this sec-
tion I state the first result that I obtained with J.Bricmont and A. Kupiainen
regarding the existence, uniqueness and exponential mixing of the stationary
state in the case of two dimensional turbulence.
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We consider the Navier-Stokes equation for an incompressible velocity field
u(t,x) defined on the torus T = (R/2πZ)2:

∂tu + (u · ∇)u − ν∆u = f −∇p (12)

supplemented with the incompressibility condition

∇ · u = 0. (13)

The external force f(t,x) consists of random kicks at discrete times

f(t,x) =
∑

k∈Z2

e−2πix·kfk(t) (14)

with

fk(t) =
∑

n∈Z

δ(t− n)fk,n. (15)

The random variables fk,n will be taken Gaussian, with mean zero, f̄k = f−k

and covariance
Efα

k (m)fβ
l (n) = δk,−lδm,nδ

αβ φk.

Furthermore, we will assume φ0 = 0, which implies the vanishing of the average
force over the torus:

∫
T

f(t,x) = 0. Assuming also zero average initial velocity∫
T

u(0,x) = 0 we conclude that
∫
T

u(t,x) = 0 for all times t.
It is convenient to solve the incompressibility condition (13) by expressing

the Navier-Stokes equation (12) in terms of the vorticity ω = ∂1u2−∂2u1 which
satisfies the transport equation

∂tω + (u · ∇)ω − ν∆ω = g, (16)

where g = ∂1f2 − ∂2f1.
Going to the Fourier transform ωk(t) = (2π)−2

∫
T
eik·xω(t,x)dx with k ∈

Z2, we may solve the velocity in terms of the vorticity as

uk = i
(−k2,k1)

k2 ωk

and write the vorticity equation as

∂tωk = −νk2ωk +
∑

l∈Z2\{0,k}
(k × l)|l|−2ωk−lωl +

∑

n∈Z

δ(t− n)gk(n) (17)

where k × l = k1l2 − l1k2 and gk(n) are Gaussian with mean zero, ḡk = g−k

and covariance
Egk(m)gl(n) = δk,−lδm,n γk.

with
γk = k2φk.

We assume

b−1e−κ−1
γ |k| ≤ γk ≤ be−κ−1

γ |k| (18)
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where κγ > 0, and we think of b as being large. We will be interested in the
turbulent region ν → 0; therefore, when it is convenient, we will always assume
below that ν is small enough, although our results hold for all ν.

Before stating our result, we need some definitions. First, we define the
enstrophy as (a multiple of) the square of the L2 norm

Φ =
1

2

∑

k

|ωk|2 =
1

2
||ω||2L2. (19)

Next, we fix a number r > 1 and consider the Banach space

Ω = {ω | ‖ω‖ ≡ sup
k

|ωk||k|r <∞}

as our probability space, with B the product σ-algebra. Note that Ω is a
subspace of L2.

Finally, due to the analyticity (with probability one) of the noise, ω(t)
also will turn out to be analytic with probability one and it will be useful to
introduce norms capturing this property. For any positive number κ, we define
a norm (that we shall call the κ-norm),

||ω||κ = sup
k

|ωk||k|reκ−1|k|. (20)

Functions with ||ω||κ < ∞ are analytic in a κ−1 neighbourhood of the torus.
The factor |k|r is useful technically (and was already used in [75]).

The stochastic equation (17) gives rise to a Markov chain ω(n), n ∈ N
defined by

ω(n+ 1) = F (ω(n)) + g(n+ 1) (21)

where F is the map at time 1 of the Navier-Stokes flow (17) without the forcing.
We denote by P (ω,E) the transition probability of this chain.
Our main result is the

Theorem 1 The Markov chain (21) is defined on (Ω,B) and has a unique
invariant measure µ there. It satisfies

∫
1(||ω||κ≥νκ)µ(dω) ≤ C exp(−cν4κ

2
α ) (22)

for any α > 1 + r, and C, c < ∞, depending on α. Moreover, ∀ω ∈ Ω and
∀E ∈ B, we have,

|P t(ω,E) − µ(E)| ≤ C(ω)e−mt (23)

where m = m(ν) > 0 for all ν, and C(ω) ≤ C(‖ω‖+1
ν

)C .

Remark 2 Since || · ||κ′ < || · ||κ for κ′ > κ, (22) holds for all κ′-norms
with κ′ > κ too, including the norm || · || defining Ω, which corresponds to
κ′ = ∞. Estimate (22) means that with high probability ω is analytic in a
ν2α-neighbourhood of the torus and bounded there by ν1−2α. By taking r close
to 1, α can be taken close to 2.
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Remark 3 Here and below, we denote by C or c a “generic” constant that
can vary from place to place, even in the same equation.

Remark 4 We obtain a lower bound on m in (23) of the form m ≥ exp(−Cν−3(log ν−1)c)
(see Proposition 2 and Lemma 4 below), which means, however, that our esti-
mate on the rate of convergence is unphysically small for ν small.

The proof of Theorem 1 is based on probabilistic estimates and on properties
of the deterministic Navier-Stokes equation, which we discuss now.

2.3.1 Properties of the deterministic flow : analyticity

improving.

In this section we derive some properties of the flow of the deterministic Navier-
Stokes equation, i.e. (17) without the forcing term gk(t). Let us define a family
of subsets of Ω that impose constraints on the size of the L2-norm and of the
κ-norm:

U(κ, φ, A) = {ω|Φ ≤ φ, ||ω||κ ≤ A}. (24)

Then, we introduce a one-parameter subfamily of U(κ, φ, A):

Uκ ≡ U(κ, φ(κ), A(κ)) (25)

where, φ(κ) = ν2ϕκ
2
α and A(κ) = νaκ. This family is useful because, as we

shall see, the flow maps one Uκ in that family into another one with a smaller
κ. The parameter α will be taken to satisfy α > 1 + r and ϕ and a will be
chosen small depending on some “geometric” constants that will appear in the
course of the proof. Thus, if ω ∈ Uκ, then for all k we have

|ωk| ≤ νaκ|k|−re−κ−1|k| (26)

and

Φ ≤ ν2ϕκ
2
α (27)

Let now

κ(t) =
κ

1 + ηνtmin(1, κ)
(28)

where η will be chosen suitably small below, and denote also by ω(t) the
solution of (17) without the forcing term gk(t).

Proposition 5 (a) Let ω(0) ∈ Uκ, then for all 0 ≤ t ≤ 1, ω(t) ∈ Uκ(t).
(b) Suppose ω(0) ∈ Ω with ‖ω(0)‖ ≤ Dν. Then ω(1) ∈ Uκ for κ = C(Dα + 1

ν
).

The point of part (a) of this Proposition is that the domain of analyticity
of the solution of the unforced Navier-Stokes equation increases with time and
its L2 and κ-norms decrease with time. Part (b) says that, even if ω(0) is not
analytic, but belongs to Ω, the solution after time 1 is analytic and its L2 and
κ-norms are bounded in terms of the norm of the initial data in Ω. Our proof
of Proposition 1 is inspired by [75] (see also [16]).
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2.3.2 Confinement of the stochastic dynamics.

We define a region U ≡ Uν−p, where p > 7
2
α, and in which the solution of (17)

is confined with high probability. Let us divide the transition probability into
a likely and unlikely part:

P (ω,E) = Q(ω,E) +R(ω,E) (29)

where

Q(ω,E) = χU(ω)P (ω, U ∩ E). (30)

The following Proposition about the dynamics in U and the unprobability of
excursions outside U will play a central role in the proof of our uniqueness
result1.

Proposition 6 (a) There exist constants c, C < ∞, c′ > 0, such that for all
ω ∈ U , E ∈ B,

|Qt(ω,E) −Qt(0, E)| ≤ 4e−mt (31)

where m ≥ exp(−Cν−3(log ν−1)c) and t ≤ c′m−1ν−q, with q ≡ 2p
α
− 4 > 3.

(b) There exists ζ < 1, c > 0, C < ∞, such that ∀κ ≥ 0, for all ω ∈ Uκ and
for κ′ ≥ ζκ,

P (ω, U c
κ′) ≤ C exp(−cν4κ′

2
α ) (32)

The proof of (31) is based on a standard argument for exponential conver-
gence of Markov chains (given in Doob [26]), and the idea is fairly simple. If
Q was a genuine transition probability, it would be enough, in order to prove
the Proposition, to show that Q has good mixing properties. The precise
properties are stated in the Lemmas below.

First, Lemma 7 says that, for any point in U there is a nonzero probability
to go in a finite time to a smaller region Ū ⊂ U determined by the covariance
of the noise and thus by κγ :

Ū ≡ U2κγ+ρν . (33)

where ρ > 0 will be chosen below (sufficiently small)2. This is an easy con-
sequence of Proposition 5. On each time interval, the solution increases its
domain of analyticity (which is determined by κ, i.e. κ decreases); then, if
the “kicks” of the noise are sufficiently small (but not too small, so that this
event is not too unprobable), the solution reaches Ū in a finite time (of order
ν−1 log ν−1).

1Here and below, the kernel AB(ω, E) is defined in the obvious way by∫
A(ω, dω′)B(ω′, E).
2Similar ideas were used by Kuksin and Shirikyan in [49].
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Secondly, we show in Lemma 8 that, in the region Ū , the stochastic dynam-
ics is sufficiently mixing; this is again due to the fact that the deterministic
Navier-Stokes evolution increases the domain of analyticity of the solution.

Third, the fact that Q is not a bona fide transition probability is what
limits the Proposition to finite times. For longer times, we will need to have
some estimate on the probability of escaping the region U , which follows from
part (b) of the Proposition. Indeed, the latter implies, using (29, 30) and
taking κ = κ′ = ν−p that, for all ω ∈ U ,

P (ω, U c) = R(ω,Ω) ≤ e−cν−q

, (34)

with q = 2p
α
− 4 > 3 (remember that p > 7

2
α and that ν is small).

Lemma 7 There exist constants c, C <∞, such that ∀ω ∈ U ,

P T1(ω, Ū) ≥ exp(−Cν−3(log ν−1)c) (35)

with T1 = Cν−1 log ν−1.

Lemma 8 There exist constants c, C <∞, such that, ∀ω, ω′ ∈ Ū , ∀B ⊂ Ū ,

P (ω,B) + P (ω′, Ū\B) ≥ exp(−Cν−2(log ν−1)c) (36)

Lemmas 7, 8 imply that there exist

δ(ν) ≡ exp(−Cν−3(log ν−1)c)

and
T ≡ T (ν) = Cν−1 log ν−1

with C, c <∞, such that ∀ω, ω′ ∈ U and ∀B ⊂ Ū ,

P T (ω,B) + P T (ω′, Ū\B) ≥ δ(ν) (37)

which implies in turn, since Ū ⊂ U , that ∀ω, ω′ ∈ U and ∀B ⊂ U ,

P T (ω,B) + P T (ω′, U\B) ≥ δ(ν) (38)

This the main inequality that is used in the proof of Proposition 6.

2.4 Force acting up to the dissipative scale.

In this section, I explain how we extended the analysis of previous section to
the case where only finitely many modes are excited, and the forcing is white
noise in time. An essential ingredient in this analysis is the Lyapunov-Schmidt
type reduction introduced in [49], that allows to transform the original Markov
process with infinite dimensional state space to a non-Markovian process with
finite dimensional state space. We apply standard ideas of statistical mechanics
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(high temperature expansions) to this process to deduce mixing properties of
the dynamics.

We consider the stochastic Navier-Stokes equation for the velocity field
u(t, x) ∈ R

2 defined on the torus T = (R/2πZ)2:

du+ ((u · ∇)u− ν∇2u+ ∇p)dt = df (39)

where f(t, x) is a Wiener process with covariance

Efα(t, x)fβ(t′, y) = min{t, t′}Cαβ(x− y) (40)

and Cαβ is a smooth function satisfying
∑

α ∂αCαβ = 0. Equation (39) is
supplemented with the incompressibility condition ∇ · u = 0 = ∇ · f , and we
will also assume that the averages over the torus vanish:

∫
T
u(0, x) = 0 =∫

T
f(t, x), which imply that

∫
T
u(t, x) = 0 for all times t.

It is convenient to change to dimensionless variables so that ν becomes
equal to one. This is achieved by setting u(t, x) = νu′(νt, x). Then u′ satisfies
(39), (40) with ν replaced by 1, and C by

C ′ = ν−3C.

From now on, we work with such variables and drop the primes. The dimen-
sionless control parameter in the problem is the (rescaled) energy injection rate
1
2 trC

′(0) , customarily written as (Re)3 where Re is the Reynolds number:

Re = ǫ
1
3 ν−1,

and ǫ = 1
2 trC(0) is the energy injection rate in the original units (for explana-

tions of the terminology see [39]).
In two dimensions, the incompressibility condition can be conveniently

solved by expressing the velocity field in terms of the vorticity ω = ∂1u2−∂2u1.
First (39) implies the transport equation

dω + ((u · ∇)ω −∇2ω)dt = db, (41)

where b = ∂1f2 − ∂2f1 has the covariance

Eb(t, x)b(t′, y) = min{t, t′}(2π)−1γ(x− y)

with γ = −2πν−3∆trC.
Next, going to the Fourier transform, ωk(t) = 1

2π

∫
T
eik·xω(t, x)dx, with

k ∈ Z2; we may express u as uk = i (−k2,k1)

k2 ωk, and write the vorticity equation
as

dω(t) = F (ω(t))dt+ db(t), (42)

where the drift is given by

F (ω)k = −k2ωk +
1

2π

∑

l∈Z2\{0,k}

k1l2−l1k2

|l|2 ωk−lωl (43)
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and {bk} are Brownian motions with b̄k = b−k and

Ebk(t)bl(t
′) = min{t, t′}δk,−l γk.

The dimensionless control parameter for the vorticity equation is

R =
∑

k∈Z2

γk = 2πγ(0) (44)

which is proportional to the ω injection rate, and also to the third power of
the Reynolds number. We will be interested in the turbulent region R →
∞; therefore, we will always assume below, when it is convenient, that R is
sufficiently large.

As I explained above, one is interested in the properties of stationary state
of the stochastic equation (42) in the case of smooth forcing (see [16] for some
discussion of this issue) and, ideally, one would like to consider the case where
one excites only a finite number of modes,

γk 6= 0 , k2 ≤ N,

with N of order of one. In this paper we assume that N scales as

N = κR, (45)

with κ an absolute constant fixed below. We take all the other γk = 0, al-
though this condition can easily be relaxed. Let us denote the minimum of
the covariance by

ρ = min{|γk| | |k|2 ≤ N}.
Before stating our result, we need some definitions. Let P be the orthogonal

projection in H = L2(T) to the subspace Hs of functions having zero Fourier
components for |k|2 > N . We will write

ω = s+ l

with s = Pω, l = (1 − P )ω (respectively, the small k and large k parts of
ω). Denote also by Hl the complementary subspace (containing the nonzero
components of l). H is our probability space, equipped with B, the Borel
σ-algebra.

The stochastic equation (42) gives rise to a Markov process ω(t) and we
denote by P t(ω,E) the transition probability of this process.

Our main result is the

Theorem. The stochastic Navier-Stokes equation (42) defines a Markov pro-
cess with state space (H,B) and for all R <∞, ρ > 0 it has a unique invariant
measure µ there. Moreover, ∀ω ∈ H, for all Borel sets E ∈ Hs and for all
bounded Hölder continuous functions F on Hl, we have,

|
∫
P t(ω, dω′)1E(s′)F (l′) −

∫
µ(dω′)1E(s′)F (l′))| ≤ C(ω)||F ||αe−mt (46)

where m = m(R, ρ, α) > 0, ||F ||α is the Hölder norm of exponent α, and C(ω)
is a.s. finite.
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We have shown above that, with probability 1, the functions on the support
of such a measure as constructed here are real analytic. In particular all
correlation functions of the form

∫
µ(dω)

∏

i

∇niu(xi)

exist.

We close this section by giving the outline of the proof and explain its
connection to ideas coming from Statistical Mechanics.

Let us start by observing that, if we neglect the nonlinear term in (42-43),

we expect ‖ω‖ to be of order R
1
2 , for typical realizations of the noise (R

1
2 is

the typical size of the noise, and the −k2ωk term will dominate in eq. (6) for
larger values of ‖ω‖). It turns out that similar probabilistic estimates hold for

the full equation (6) as shown in Section 3. Now, if ‖ω‖ is of size R
1
2 , the

−k2ωk term will dominate the nonlinear term (which is roughly of size ‖ω‖2)

in eq. (6), for |k| ≥ κR
1
2 , and one can expect that those modes (corresponding

to l above) will behave somewhat like the solution of the heat equation and,
in particular, that they will converge to a stationary state.

Thus, the first step is to express the l-modes in terms of the s-modes at
previous times. This produces a process for the s-modes that is no longer
Markovian but has an infinite memory. In Statistical Mechanics, this would
correspond to a system of unbounded spins (the s-modes) with infinite range
interactions, with the added complications that, here, the measure is not given
in a Gibbsian form, but only through a Girsanov formula, and that time is
continuous. Hence, one must solve several problems: the possibility that ω
is atypically large, the long range “interactions”, and finally, showing that a
version of the s-process with a suitable cutoff is ergodic and mixing.

The large ω problem is treated using probabilistic estimates developped in
[16], which, in Statistical Mechanics, would be called stability estimates. The
infinite memory problem is treated by methods inspired “high temperature
expansion” in Statistical Mechanics, namely writing the Gibbs measure or,
here, the Girsanov factor, as sum of products of factors having a finite range
memory and which become smaller as that range increases. However, in the
situation considered here, carrying out this expansion requires a careful and
non standard partition of the phase space. The problem is that, even though for
typical noise, hence for typical ω’s, the l-modes depend exponentially weakly on
their past, thus producing, typically, “interactions” that decay exponentially
fast, they may depend sensitively on their past when the noise is large. In the
language of Statistical Mechanices, atypically large noise produces long range
correlations.

This problem of sensitive dependence is coupled to the last problem, that
of the convergence of the s-process with finite memory to a stationary state.
We have to get lower bounds on transition probabilities and we can prove those
only when the s-modes remain for a sufficiently long time in a suitable region
of the phase space; thus, if we did not control the sensitive dependence, we
would not be able to carry out that last step.
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2.5 Brief litterature overview.

There is by now a long history of proofs of the ergodicity of the 2D Navier-
Stokes equation. The first ones treated the cases cases that do not correspond
to the turbulence problem. Either the forcing was taken to decay very slowly
for large |k|, i.e. with a lower bound of the form |k|−p (see [38] and references
therein), or the viscosity is taken large [72]. The first proof of uniqueness in
the case of a force exciting only a finite number of modes was given by Kuksin
and Shirikyan in [49] where the authors consider a model like the one of sec-
tion 1.3, the force is acting at discrete time but with bounded noise (each gk
has compact support). Simultaneously to our paper on the ergodicity and ex-
ponential mixing of the stochastic Navier-Stokes dynamics, E, Mattingly and
Sinai published a paper [27] containing the proof of the uniqueness of the in-
variant measure. Their proof was more probabilistic in nature than ours which
used a statistical mechanics approach. Mattingly then proved the exponential
mixing in time of the dynamics [73]. In all those works, the number of modes
excited by the external force was finite but increasing with the Reynolds num-
ber. A first step in the direction of taking a number of modes independent
of R was taken by E and Mattingly in [28] where they showed that finite di-
mensional Galerkin approximations coupled to a stochastic force exciting only
three modes are hypoelliptic diffusions. The optimal result was finally ob-
tained by Hairer and Mattingly [44] following a first application of Malliavin
calculus to the stochastic Navier-Stokes equations by Mattingly and Pardoux
[74].
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Chapter 3

Invariant measures of
Hamiltonian dynamics out
thermal equilibrium.

In this chapter, I present the results obtained in [59, 60].
A frequently used model to describe the transfer of heat in crystalline solids is
given by coupled Hamiltonian oscillators located on a lattice and whose bound-
aries are thermalized at different temperatures. Namely, in one dimension, the
set-up is as follows. At each site i of a lattice {1, . . . , N} is attached a particle
of momentum pi and position qi. The dynamics is Hamiltonian in the bulk
and stochastic through the Langevin coupling to heat baths at the boundaries.
The Hamiltonian is of the form,

H(p, q) =
N∑

i=1

(
1

2
p2

i + V (qi)
)

+
N∑

i=2

U(qi − qi−1) + U(q1) + U(qN ). (1)

The equations of motions are given by,

dqi = pidt, i = 1, . . . , N,

dpi = −∂H
∂qi

(p, q)dt, i = 2, . . . , N − 1, (2)

and,

dp1 = −∂H
∂q1

(p, q)dt− γp1dt+
√

2γkTL dwl ,

dpN = − ∂H

∂qN
(p, q)dt− γpNdt+

√
2γkTR dwr . (3)

TL and TR stand for the temperature of the left and right reservoirs, respec-
tively, whereas wl and wr are two independent standard Wiener processes.

It is an easy fact to check that when TL = TR = T = β−1, the equilibrium
measure on the configuration space R2N whose density with respect to the
Lebesgue measure is given by

ρ(p, q) = Z−1e−βH(p,q) (4)
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is invariant (stationary) for the stochastic dynamics defined above. In the case
of two different temperatures, existence, uniqueness and exponential conver-
gence to an unique invariant state has been established under fairly general
conditions on the potentials U and V [31, 29, 87]. In the case of harmonic
coupling, the covariance of the stationary state has been exactly computed in
[77, 90].

The Gibbs-Boltzmann distribution allows in principle to analyze all the
macroscopic properties of the system one wishes to study. WHen the temper-
atures on the boundaries are different, there does not exist such an explicit
formula for the stationary state. The system is crossed by a flow of energy go-
ing from the high-temperature region to the low-temperature one. The lack of
knowledge of the invariant measure makes difficult the computation of such a
simple quantityt as the the thermal conductivity of the system. This is defined
as the ratio of the heat flow and local temperature gradient. This quantity
is analogous the equilibrium response functions such as the magnetic suscep-
tibility in ferrmoganets. Over the past century various methods have been
devised to allow theoretical computations of such quantities. One of these is
the linear response theory which relates the response of the system to an small
external constraint out of equilibrium to fluctuations of the system in equilib-
rium. Another theory which allows to understand the approach (or return) to
equilibrium of dilute gases is based on Boltzmann equation. The same type
of analysis maybe applied to different systems out of equilibrium when the
components interact weakly. This kinetic theory approach has been initiated
by Peierls in quantum mechanical context [80]. He established an equation for
the occupation numbers of the phonons analogous to the Boltzmann equation
One may reformulate the problem in classical set-up and obtain an analogous
equation for the evolution of the correlation functions of the stationary waves
of the harmonic oscillators chain perturbed by a small anharmonic term. The
weak anharmonic interactions between the modes are taken into account un-
der a collision term analogous to the one describing the collisions between the
atoms in a dilute gas. To evaluate quantities such as the thermal conductiv-
ity, one must then analyze the collision kernel. Technically, this boils down
to localize resonnances between phonons. That was achieved in a paper writ-
ten in collaboration with Alain Schenkel [60]. The validity of our theoretical
computation has been checked twice in numerical simulations [2, 62]. Maybe
surprisingly, given the fact that the problem is an old one, this computation
was the first to connect the value of the thermal conductivity to the micro-
scopic parameters of the model. It also allowed to clarify some confusion in the
litterature surrounding the mechanism giving rise to a finite conductivity in
solid crystals and the role of what the physicists call the “Umklapp” processes.
Before giving in section 3.3 a Boltzmann analysis outlined above, we explain
the perturbative analysis that we begun for the stationary state of coupled
anharmonic oscillators.

3.1 Perturbative analysis.

The goal of this section is to begin a perturbative analysis of invariant prob-
ability measures arising as stationary states of chains of weakly anharmonic
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oscillators. The dynamics is as in previous section. As a model at hand,
we will consider a hamiltonian chain of N harmonic oscillators interacting
through nearest-neighbour harmonic interactions, coupled at its boundaries
to stochastic heat baths of different temperatures, and that we will perturb
by a small anharmonic (quartic) on-site interaction. The covariance of the
stationary state in the purely harmonic case has been computed in [90, 77].
For other cases, i.e. anharmonic cases, almost nothing is known about the
physical content of the stationary state, except results about the positivity
of entropy production and validity of linear response theory [32]. The main
obstacle to developing a perturbative expansion of SNS’s is that, in contrast
to the equilibrium case, no explicit formula for the invariant density is known.
Moreover, the fact that the relevant models are degenerate in a stochastic sense
makes it laborious to obtain a systematic perturbative expansion starting from
the equations of motion. We circumvent this difficulty by deriving a formula
for the two-point correlation functions of invariant states, which holds under
the assumption of L1-convergence of the finite-time correlation functions to
those of the (unique) invariant measure. We emphasize that the validity of
the formula is not restricted to the concrete problem of the anharmonic chain
considered here. It may prove useful whenever the invariant measure is not
explicitely known, in particular in the context of transport phenomena mod-
elized by hypoelliptic stochastic processes. We also remark that the form of
the formula for the covariance is very similar to, and provides a lower bound
on, the expectation of the Malliavin matrix.

Our main result concerning the heat current is that its first-order correction
remains uniformly bounded as the number of oscillators goes to infinity. In
particular, perturbative analysis does not, at first order, reveal any sign that
Fourier law holds in such anharmonic models as numerical studies suggest.
Furthermore, we find that the first-order correction to the temperature profile
is exponentially decaying in the bulk of the chain, with a decay rate that de-
pends on the strength of the harmonic part of the on-site potential. When this
strength vanishes, the correction to the temperature profile is linear. However,
the sign is “wrong”, in the sense that the linear profile has the lowest tempera-
ture near the hottest bath and the highest temperature near the coldest bath.
This is analogous to the result of [90], where the temperature profile is also
oriented in the “wrong” direction. The main difference is of course that in [90],
the temperature profile is exponentially decaying. It would be interesting to
examine the perturbation theory of the harmonic model with other couplings
to heat baths. The Langevin coupling is probably not the optimal one and it
might be responsible for the awkward orientation of the temperature profile.
Another feature of our solution is that the temperature profile is shifted down-
wards, in the sense that the temperature at the middle point of the chain is
lower than the arithmetic mean of the temperatures of the heat baths.
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3.1.1 The Malliavin matrix and the covariance matrix
of the stationary measure

We consider now a general system of stochastic equations. Denote by xt ∈ Rd

the solution of the stochastic differential equation,

dxt = X0(xt) dt+

n∑

k=1

Xk(xt) dwk(t) (5)

with initial condition x0 = x, where the wk’s are n independent one-dimensional
brownian motions and Xl, l = 0, . . . , n, are C∞ vector fields over Rd satisfying
for any multi-index α,

||∂αXl(x)|| ≤ C(1 + ||x||Kα) (6)

for some Kα > 0. We note that solutions to such equations are in general not
ensured to exist globally. In the sequel, we restrict ourselves to the following
situations.

Hypothesis 9 For all x ∈ R
d, equation (5) has a unique strong solution xt,

t > 0. This solution has finite moments of all order: for all p ≥ 1, T <∞, and
x ∈ R

d, there exists a constant C = C(x, p, T ) <∞ such that for 0 ≤ t ≤ T ,

Ex(||xt||p) ≤ C. (7)

When in need of emphasizing the dependence of the solution to (5) on the
initial condition x and the realization of the d-dimensional Brownian motion
w in the interval [0, t], we shall write it as xt(x, w([0, t])). We denote by P t

the associated semigroup,

P tf(x) = Ex(f(xt)) ≡
∫
f(xt(x, w([0, t])))dP(w([0, t]), (8)

where P is the d-dimensional Wiener measure, by A the generator of the
semigroup, and by L the associated second order differential operator,

L =
d∑

i=1

X i
0 ∂i +

d∑

i,j=1

aij ∂i∂j , (9)

where, with ⊗ denoting the tensor product,

a =
1

2

n∑

k=1

Xk ⊗Xk . (10)

From Assumption 3.1 on the process solution xt and the bounds (6) for the
vector fields Xl, it follows that for each t and w[0, t], the map x 7→ xt(x, w[0, t])
is C∞ on R

d with derivatives of all orders satisfying the stochastic differential
equation obtained from (5) by formal differentation. Furthermore, for all multi-
index α, p ≥ 1, and t ≥ 0,

E(||∂αxt(x, ·)||p) <∞. (11)
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In the sequel, we will denote Ut(x, w[0, t]) = Dxt(x, w[0, t]), where DX denotes
the Jacobian matrix of a vector field X on R

d. The matrix Ut is the linearized
flow and it solves the equation, with initial condition U0 = 1,

dUt = DX0(xt)Ut dt+

n∑

k=1

DXk(xt)Ut dwk(t) . (12)

Below, ExUt denotes
∫
Ut(x, w[0, t])dP(w[0, t]).

Let us now assume the existence of an invariant probability measure µ for
the process solution xt of (5) and consider the covariance matrix at time t,

Ct(x) ≡ Ex(xt ⊗ xt) − Ex xt ⊗ Ex xt. (13)

The following result is the starting point of the perturbative analysis performed
in subsequent sections. It provides an expression for µ(Ct) in terms of the
linearized flow Ut, where µ(f) is a shorthand notation for

∫
Rd f(x) dµ(x).

Proposition 10 Suppose that the bounds (6) and Hypothesis 9 are satisfied.
Suppose in addition that the invariant measure µ for the process solution xt of
(5) is such that the functions x 7→ Ex x

i
s, x 7→ LEx x

i
s, and x 7→ aij(x)Ex U

jl
s ,

belong to L2(Rd, dµ) for all i, j, l, and s ≤ t. Then,

µ(Ct) =

∫ t

0

ds

n∑

k=1

µ(E.UsXk(.) ⊗ E.UsXk(.)) . (14)

Proof. We will show below that the map s 7→ µ(E.xs ⊗ E.xs) is differentiable,
with

d

ds
µ(E.xs ⊗ E.xs) = −

n∑

k=1

µ(E.UsXk(.) ⊗ E.UsXk(.)) . (15)

Identity (14) thus follows from the invariance of the measure µ, since

µ(Ct) = µ(E.(xt ⊗ xt)) − µ(E.xt ⊗ E.xt) (16)

= µ(x⊗ x) − µ(E.xt ⊗ E.xt) (17)

= −
∫ t

0

ds
d

ds
µ(E.xs ⊗ E.xs). (18)

To obtain (15), we first note that (7) implies that any function f ∈ C2(Rd)
with first derivatives of at most polynomial growth is in the domain of the
generator A with Af = Lf . Similarly, one easily checks that for such f , (11)
implies A(Ptf) = L(Ptf). Therefore, Kolmogorov equation yields d

ds
(Ex xs ⊗

Ex xs) = LEx xs ⊗Ex xs + Ex xs ⊗LEx xs, which, by Hölder inequality and our
assumptions, belongs to L1(Rd, dµ). Thus,

d

ds
µ(E.xs ⊗ E.xs) = µ(LE.xs ⊗ E.xs + E.xs ⊗ LE.xs). (19)

Let us next define for f, g ∈ C2(Rd),

Γ(f, g) ≡ L(fg) − fLg − gLf , (20)
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which reads

Γ(f, g) = 2

d∑

i,j=1

aij ∂if ∂jg . (21)

Since it follows from (11) that ∂iExx
j
s = ExU

ji
s , our assumptions imply as

above that Γ(E.x
i
s,E.x

j
s) ∈ L1(Rd, dµ) for all i, j. It follows in particular that

L(E.xs ⊗ E.xs) ∈ L1(Rd, dµ). Because of the invariance of µ (which implies
µ(Lf) = 0), we are thus free to substract from the µ-expectation on the right
hand side of (19) a term L(E.xs ⊗ E.xs), so that

d

ds
µ
(
(E.xs ⊗ E.xs)ij

)
= −µ(Γ(E.x

i
s ,E.x

j
s)). (22)

Formula (15) finally follows from the computation, recalling (10),

Γ(E.x
i
s,E.x

j
s)(x) =

n∑

k=1

(
ExUsXk(x) ⊗ ExUsXk(x)

)

ij
. (23)

This concludes the proof of Proposition 3.2.
Proposition 3.2 immediately implies the

Corollary 11 Suppose that the hypothesis of Proposition 3.2 are satisfied for
all t ≥ 0. Suppose in addition that

lim
t→∞

Ct = µ(x⊗ x) − µ(x) ⊗ µ(x) ≡ Φ , (24)

in L1(Rd, dµ). Then,

Φ =

∫ ∞

0

ds
n∑

k=1

µ(E.UsXk(.) ⊗ E.UsXk(.)). (25)

The expression (25) for the covariance matrix of a stationary state is the
basic formula that we shall use to develop a perturbation expansion in the
next section. Since both sides of (25) involve an averaging with respect to µ,
it is not clear at first sight how informations on µ can be extracted from (25).
We observe, however, that in the case of a linear drift X0 and constant vector
fields Xk, k = 1, . . . , n, all expectations may be dropped and (25) becomes

Φlinear =

∫ ∞

0

dsUs

( n∑

k=1

Xk ⊗Xk

)
UT

s . (26)

One thus recovers the standard formula for the covariance of the stationary
state of a linear stochastic equation with constant diffusion coefficients. As we
shall see in the next section, it is possible to iterate this simple observation in
order to begin a perturbation expansion.

Another feature of formula (14) is to provide a link between the covariance
matrix Ct and the so-called Malliavin matrix. The Malliavin matrix associated
to equation (5) at time t reads, in the normalization of [47],

Mt =

∫ t

0

ds

n∑

k=1

UtVsXk(xs) ⊗ UtVsXk(xs) , (27)

32



where Vs is the inverse matrix of Us. An easy computation reveals that µ(E.Mt)
can be expressed in a form closely related to (14), namely,

µ(E.Mt) =

∫ t

0

ds
n∑

k=1

µ(E.(UsXk(.) ⊗ UsXk(.))). (28)

Indeed, we first observe that for s ≥ 0 fixed, Y t
s ≡ UtVs satisfies Y s

s = 1 and

dY t
s = DX0(xt)Y

t
s dt+

n∑

k=1

DXk(xt)Y
t
s dwk(t) (29)

for t ≥ s. Comparing with (12) yields that Y t
s = Y t

s (xs(x, w[0, s]), w[s, t]) has
the same P-distributions as Ut−s(xs(x, w[0, s]), w̄[s, t]), where w̄(τ) = w(τ) −
w(s) for τ ≥ s. Furthermore, for x fixed the map w 7→ Y t

s (x, w[s, t]) is w[0, s]-
independent. Therefore, since (x, w) 7→ Y t

s (x, w)Xk(x) ⊗ Y t
s (x, w)Xk(x) is

measurable, one may use the Markov property of xt to write,

Ex(Y
t
s (xs)Xk(xs) ⊗ Y t

s (xs)Xk(xs)) = Ex(Ey=xs
(Ut−s(y)Xk(y) ⊗ Ut−s(y)Xk(y))).(30)

Identity (28) then follows by using the invariance of the measure µ and chang-
ing variables in the integral over s in (27). As a consequence, Proposition 3.2
provides a lower bound on the expectation of the Malliavin matrix.1

Corollary 12 One has

µ(Ct) ≤ µ(E.Mt). (31)

Proof. The inequality simply follows from (14), (28), and the matrix

Ex

[(
UsXk(x) − ExUsXk(x)

)
⊗
(
UsXk(x) − ExUsXk(x)

)]
(32)

being positive definite.

3.2 Perturbative analysis of the non-equilibrium

anharmonic chain

We shall analyse the effect of adding an anharmonic perturbation to a modi-
fication of the model treated by Rieder, Lebowitz and Lieb [90]. We consider
the case of a harmonic chain with fixed ends to which one adds an anharmonic
on-site potential, i.e. in (1), we set

U(x) =
1

2
ω2x2 and V =

1

2
ω2κx2 +

1

4
λx4. (33)

The model considered in [90] has κ = 0 but the computation of the covariance
of the stationary state is very similar and the result is given below. We write
the equations of motions (2)-(3) under the matrix form,

(
dq
dp

)
= b

(
q
p

)
dt− λ

(
0

N (q)

)
dt+

(
0

dw

)
(34)

1The order relation is defined in the following way. For two matrices X1, X2, we say that
X1 ≥ X2 whenever X1 − X2 is a positive definite matrix.
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with N (q) and dw the vectors in RN given by Ni(q) = q3
i and dwi =

δ1i

√
2γkT1 dwl + δNi

√
2γkTN dwr, and

b =

(
0 1

−gκ −a

)
(35)

where gκ and a areN×N matrices given by (gκ)ij = ω2((2+κ)δij−δij+1−δij−1)
and aij = γδij(δ1j + δNj). Above, 1 denotes the unit matrix and 0 the zero
matrix or vector, as is clear from the context. We note that the stochastic
terms in (34) are given by constant vector fields, namely, in the notation of
Section 3,

Xk =

(
0
dk

)
where (dk)j = δkj

√
2γkTk , (36)

for k = 1, N . In particular, the coefficients aij involved in the generator L are
constant. They are given by

∑

k=1,N

Xk ⊗Xk =

(
0 0
0 ∆

)
, (37)

where ∆ij = 2γkδij(T1δ1j + TNδNj). Furthermore, the linearized flow Uλ
t of

(34) is given by

dUλ
t = bUλ

t dt− 3λCλ(t)Uλ
t dt , (38)

where

Cλ(t) =

(
0 0

vλ(t) 0

)
, (39)

with vλ
ij(t) = δijq

2
i (t) and qi(t) the qi-component of the solution of (34) at

time t. Finally, we note that the matrix b in (34) has the property that all its
eigenvalues have strictly negative real part. A proof of this fact can be found
in [77] modulo obvious modifications.

In order to study perturbatively the SNS of our chain, we would like to use
the identity (25). However, some of the hypothesis of Corollary 3.3 related to
the invariant measure are not known to hold for equation (34) when λ > 0.
(The case λ = 0 has been covered in [90].) Although from a mathematical
point of view, this is not a mere technical problem, but since the main goal of
this paper is to illustrate the use of formula (25) for perturbative analysis on a
specific example, we will assume that these hypothesis hold, see Assumption 4.1
below and the remark that follows. On the other hand, Assumption 3.1, i.e.,
the existence of strong solutions and their moments, follows from standard
techniques and we briefly discuss it now. We first note that for λ > 0, the
function H̃(q, p) = 2N + H(q, p), with H the Hamiltonian given by (1) and
(33), satisfies

H̃(q, p) ≥ C(1 + ||q||2 + ||p||2), (40)

for some C > 0 and all (q, p) ∈ R
2N . Thus, H̃ is a C2(R2N ) confining function.

Furthermore, one computes

(LH̃)(q, p) = −γ(p2
1 + p2

N) + 2γk(T1 + TN), (41)

34



which implies that LH̃ is uniformly bounded by above. A classical result,
see e.g. [45], Thm 4.1, then ensures for all initial conditions (q, p) ∈ R

2N the
existence of a unique global strong solution to (34). Regarding the bounds (7),
they are an immediate consequence of the following a priori bound. For any
θ ≤ (2kmax{T1, TN})−1, one has

E(q,p)

[
eθH(q

t
,p

t
)
]
≤ e2γkθ(T1+TN )t eθH(q,p) . (42)

Bound (42) can be obtained in a similar way as in the proof of Lemma 3.5
in [88]. However, the existence of a unique invariant measure for (34) is still
an open problem. We thus introduce the following

Assumption 13 The finite time truncated two-point correlation function of
the process defined by (34) converges to the covariance matrix of a unique
stationary measure µλ in L1(R2N , dµλ)-norm. Furthermore, the decay proper-
ties of µλ are such that E(q,p)[(qt

, p
t
)], LE(q,p)[(qt

, p
t
)], and E(q,p)[U

λ
t ] belong to

L2(R2N , dµλ).

Remark. The uniqueness of the invariant measure is proved in [29, 88]
for a large class of anharmonic chains. The invariant measure has a smooth
density with exponential decay and is shown to be mixing 2. An important
restriction is that the potential U must not grow asymptotically slower than
V , and thus equation (34) does not fall into the class covered in [29, 88].
However, as is argued in [88], the fact that the on-site potential grows faster
than the nearest-neighbour interaction should not affect the ergodic properties
of the measure but only the rate of convergence. Although we could consider
a similar anharmonic chain with an additional quartic term in the nearest-
neighbour interaction, the equations that one then needs to solve, see below,
are computionally more involved. Furthermore, restricting to (34) will allow
us to compare our results to the usual λφ4 expansion when the temperatures
of the two baths are equal.

Provided Assumption 4.1 holds, let Φλ denote the covariance matrix of the
unique stationary state of equation (34) and express it according to (25) as

Φλ =

∫ ∞

0

dt
∑

k=1,N

µλ(E.U
λ
t Xk ⊗ E.U

λ
t Xk) . (43)

We first briefely review the harmonic case λ = 0. As mentioned at the end of
the previous section, one obtains from (43)

Φ0 =

∫ ∞

0

dt ebt D eb
Tt , (44)

where

D =
∑

k=1,N

Xk ⊗Xk =

(
0 0
0 ∆

)
, (45)

2In [88], the result is actually stronger. The convergence to the unique invariant measure
is shown to be exponential.
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with ∆ij = 2γkδij(T1δ1j +TNδNj). Since the eigenvalues of b have strictly neg-
ative real part, the integral in (44) is convergent and it follows from integrating
by parts in bΦ0 that Φ0 must satisfy the equation

bΦ0 + Φ0bT = −D . (46)

The unique solution of this equation has been explicitely derived in [90]. It is
given by

Φ0 =

(
Φ0

x Φ0
z

−Φ0
z Φ0

y

)
(47)

where, denoting T = T1+TN

2
, η = T1−TN

2T
, and Gκ = ω−2gκ,

Φ0
x =

kT

ω2
(G−1

κ + ηX0), (48)

Φ0
y = kT (1 + ηY0), (49)

Φ0
z =

kT

γ
ηZ0, (50)

and

X0 =




φ1 φ2 φN−2 φN−1 0
φ2 . .

.
. .

.
. .

.
. .

. −φN−1

φ3 . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

φN−1 . .
.

. .
. −φ2

0 −φN−1 −φ2 −φ1




, (51)

Y0
ij = δij(δi1 − δiN) − νX0

ij , (52)

Z0 =




0 φ1 φ2 φN−2 φN−1

−φ1
. . .

. . .
. . . φN−2

−φ2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . φ2

. . .
. . . φ1

−φN−1 −φ2 −φ1 0




. (53)

Above, ν = ω2

γ2 and the quantities φj, 1 ≤ j ≤ N − 1, satisfy the equation

N−1∑

j=1

(G
(N−1)
ν+κ )ijφj = δ1i , (54)

where G
(k)
ν+κ denotes the k-square matrix given by (G

(k)
ν+κ)ij = (2 + ν + κ)δij −

δi,j+1 − δi,j−1. The solution of (54) is given by

φj =
sinh(N − j)α

sinhNα
, (55)
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with α defined by coshα = 1 + (ν + κ)/2. Hence, one has for large N and
fixed j the asymptotic formula φj = e−αj . In the context of SNS, one usually
defines the temperature to be the average kinetic energy, i.e. in our case,

Ti = (Φ0
y)ii. (56)

It is easy to see that the above solution yields an exponentially flat profile in
the bulk of the chain.

We now turn to the first-order perturbation of the anharmonic chain. We
first introduce our second assumption on the process solution of (34).

Assumption 14 The measure µλ is absolutely continuous with respect to the
Lebesgue measure and as a function of λ its density ρλ(x) is C∞ in a neigh-
bourhood of 0. For all x, all derivatives are bounded in a neighbourhood of 0.

Remark. The proof of this fact should follow from an analysis similar to
the ones developped in [30] or [99] to prove the smoothness of the probability
transitions in a parameter of the related stochastic differential equations.

To derive an expression for Φ1 ≡ d
dλ

Φλ|λ=0, we compute from (43)

Φ1 =
d

dλ
Φλ|λ=0 (57)

= µ1
(∫ ∞

0

dt
∑

i=1,N

E.U
0
t Xi(.) ⊗ E.U

0
t Xi(.)

)

+ µ0
(∫ ∞

0

dt
∑

i=1,N

E.
d

dλ
Uλ

t |λ=0Xi(.) ⊗ E.U
0
t Xi(.)

)
+ tr. , (58)

and observe that the first term vanishes because µ1 ≡ d
dλ
µλ|λ=0 integrates

constants to zero. In order to compute the last terms, we first evaluate Wt ≡
d
dλ
Uλ

t |λ=0 . Deriving with respect to λ on both sides of equation (38), we get

dWt = bWt dt− 3C0(t)U0
t dt, (59)

from which it follows that, since W0 = 0,

Wt = −3

∫ t

0

ds eb(t−s)C0(s) ebs . (60)

Inserting (60) in (58), we obtain, using in addition the invariance of µ0,

Φ1 = −3

∫ ∞

0

dt

∫ t

0

ds
∑

i=1,N

eb(t−s)N ebsXi ⊗ ebtXi + tr. , (61)

= −3

∫ ∞

0

dt

∫ t

0

ds eb(t−s) N ebs D eb
Tt + tr. , (62)

where D is given by (45) and

N = µ0(C0(0)) =

(
0 0

diag(Φ0
x) 0

)
. (63)
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Exchanging the integrations over t and s and changing variables leads to

Φ1 = −3

∫ ∞

0

dt ebtN
(∫ ∞

0

ds ebs D eb
Ts
)
eb

Tt + tr. , (64)

which, with (44), finally yields,

Φ1 = −3

∫ ∞

0

dt ebt(NΦ0 + Φ0NT)eb
Tt . (65)

The method used to derive the above equation will also provide the equa-
tions for the next orders of the perturbative expansion. However, obtaining
them concretely requires some more work and we reserve that part and the
general Feynman rules for a further publication. We note that integrating by
parts in (65) yields the equation for Φ1

bΦ1 + Φ1bT = 3(NΦ0 + Φ0NT). (66)

In Section 6, we will derive an explicit expression for Φ1 and thus for the first
order correction to the heat current and temperature profile. It turns out to
be easier to do so by solving equation (66) rather than by using (65). We write
:

Φ1 =

( 1
ω2 X

1 1
γ
Z1

− 1
γ
Z1 Y1

)
, (67)

Heavy computations involving a systematic way to solve general matrix equa-
tions of the form (66) were developped in [59] and we obtained an exact solution
Φ1 as a function of Φ0. One is mainly interested in the contribution to the
temperature profile given by the diagonal elements of Y1 and the correction
to the current given by the elements of Z1 of the form (Z1)i,i+1, 1 ≤ i ≤ N−1.
We find that the part corresponding to the heat current is uniformly bounded
in N . In particular, a first-order perturbation does not reveal any sign that
Fourier law might hold in such anharmonic models, as numerical studies indi-
cate, see e.g. [46]. Indeed, if Fourier law holds whenever λ is finite, one might
expect the derivatives of the heat current to develop a singularity at λ = 0
when N → ∞.

Regarding the temperature profile, the part of the solution proportional
to η is exponentially decaying in the bulk of the chain whenever κ > 0. The
decay rate is slower than in the purely harmonic case. For κ = 0, the profile
proportional to η is linear in the bulk of the chain and we compute its slope
explicitely. However as explained in the introduction, the sign is “wrong”, in
the sense that the linear profile has the lowest temperature close to the hottest

bath and the highest temperature close to the coldest bath. The same type of
phenomenon is present for κ > 0, see fig. 1. Moreover, we observe that the
part proportional to η2 gives a significant contribution, which results in a shift
of the temperature at the middle point of the chain. The temperature at this
point is no more the arithmetic mean of the baths temperatures. Although
surprising, this is a phenomenon which seems to be observed in numerical
studies of certain anharmonic chains, see [46].

(Y1)ii = − 2ν

(ν + κ)(2 + ν + κ)(4 + ν + κ)

− ν(2 + κ)(ρ1 − ρ0)

(4 + ν + 2κ)

sinh(N + 1 − 2i)ᾱ

sinh(N + 1)ᾱ
+ O(e−2αi). (68)
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for 1 ≤ i < [N/2] + 1. The elements corresponding to [N/2] + 1 ≤ i ≤ N are
determined by symmetry considerations. In the limit N → ∞, it is possible
to compute that for κ = 0, the temperature profile is given by

(Y1)ii = − 2ν

ν(2 + ν)(4 + ν)
+

2ν

(4 + ν)2

( 2i

N + 1
− 1
)
+O(e−2αi). (69)

The temperature profile is linear, but oriented in the “wrong” direction. The
correction to the current only brings about exponential corrections, uniformly
bounded in N .

3.3 Phonons collisions.

3.3.1 Translation-invariant non-equilibrium dynamics.

In contrast to equilibrium states for which the explicit Gibbs formula may
be used, the effective computation of correlation functions of the stationary
states out of equilibrium remains a challenging problem. Conceptually, one
may distinguish two different reasons for that. The first one is common with
the equilibrium situation and has to do with the difficulty of dealing with
nonlinear interactions between the components of the system. The second one
has to do with the lack of translation invariance which is, in a sense built-in
in the non-equilibrium set-up. Those difficulties are especially obvious when
one tries to identify the physical mechanism giving rise to a finite thermal
conductivity in non-linear Hamiltonian systems and compute its dependance
on the microscopic interactions. The conductivity is a local property of the
system that relates local quantities like the current and the local temperature
gradient. In the next chapter we outline a method which, by dealing with
the lack of translation invariance of the system, allows to focus on the effect
of nonlinearities on the non-equilibrium steady states and perform concrete
computations of their correlation functions. In order to study the local non-
equilibrium dynamics, we will consider a spatially homogeneous Hamiltonian
chain of oscillators coupled to a stochastic thermostat at a fixed temperature T
and, in order to recover the time-reversal symmetry breaking induced locally
by the heat baths located at the boundaries, we include an additional non-
Hamiltonian term in the deterministic part of the dynamics. The force is
designed in such way that, locally, the two dynamics satisfy a generalized
detailed balance with respect to the same Hamiltonian and energy current.
The method is a priori independent of any approximation scheme and apply
to any local Hamiltonian lattice system out of equilibrium. For a justification of
the dynamics (70) below, see my paper [58] where it was originally introduced
or the next chapter where I summarize my paper with Thierry Bodineau [8].

3.3.2 Anharmonic oscillators and closure approximation
on the stationary state.

Our goal in this section is to analyze the stationary state of the dynamics
defined by

dqi = pidt (70)
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dpi = −γpidt−
∂H

∂qi
dt− τ

2T
(U ′(qi−1 − qi) + U ′(qi − qi+1))dt+

√
2γTdwi ,

with,

H(q, p) =
N∑

i=1

[
p2

i

2
+ ω2µ2 q

2
i

2
+
λ

4
q4
i +

ω2

2
(qi − qi−1)

2], λ > 0 (71)

and U(x) = ω2

2
x2.

Proposition 15 For all γ, T > 0, there exists a unique invariant measure for
the stochastic process defined by (70,71).

Outline of the Proof. We note that the hypoellipticity of the process defined
(70) may be shown by checking the Hörmander condition on the generator as in
[88]. For this particular system chain, no coupling between nearest-neighbour
is even required because the noise acts on every particle. Hypoellipticity of
the process implies the smoothness of the probability transition and thus that
the stationary state, whenever it exists, is described by a smooth density. Ir-
reducibility properties of the process may be checked by a control argument
and Stroock-Varadhan support theorem [96] as explained in [20, 88]. Hypoel-
lipticity and irreducibility imply together that there is at most one stationary
measure. The existence of a (unique) stationary measure follows from those
two properties and the existence of a Lyapunov function as in [8] in the ap-
pendix (see for instance Theorem 8.7 of [84]).

We first consider the harmonic case λ = 0. We introduce the Fourier coordi-
nates for the periodic linear chain by Qk = 1√

N

∑N
j=1 e

i 2π
N

kjqj ,with −N/2+1 ≤
k ≤ N/2. The Pk coordinates are defined in a similar fashion. We recall for
further purposes that Q∗

k = Q−k and P ∗
k = P−k. In the complex coordinates,

A±
k =

1√
2ωk

(Pk ± iωkQk), (72)

with ω2
k = ω2(µ2 + 4 sin2(πk

N
)), the Hamilton equations for the linear periodic

chain read

dA±
k = ±iωkA

±
k dt. (73)

Those equations give the temporal evolution of the amplitudes of the waves
with wave number k traveling through the chain in the positive or negative
direction. Our (non-equilibrium) model is defined in the linear case by the
system of stochastic equations

dA±
k = ±iωkA

±
k dt−

γ

2
(A+

k + A−
k )dt− iλ

N
Rk

+
τ

T

ω2

√
2ωk

sin(
2πk

N
)(A+

k −A−
k ) + dW±

k (74)

where the Wiener processes W±
k satisfy the relations

d(W s
kW

s′

k′ ) ≡ Is,s′

k,k′dt ≡ 2γT

ωk
δ(k + k′)dt. (75)
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and

Rk =
∑

k1,k2,k3

∑

s1,s2,s3

δ(k − k1 − k2 − k3) s1s2s3 Lkk1k2k3 A
s1
k1
As2

k2
As3

k3
, (76)

and Lkk1k2k3 = (16ωkωk1ωk2ωk3)
−1/2. Here and below, unless otherwise speci-

fied, the sums are over the ki such that −N/2 + 1 ≤ ki ≤ N/2 and si = ±1.
From (74), the equations for the n-point correlation functions in the sta-

tionary state,

(Φ(n))s1,...,sn

k1,...,kn
≡
〈
As1

k1
. . . Asn

kn

〉
, (77)

read

iω̄(n)Φ(n) = γΓ(n)(Φ(n)) + i
λ

N
M (n)(Φ(n+2)) +

τω2

T
F (Φ(n) − 1

2
I(n)(Φ(n−2)), (78)

where ω̄(n) is the combination of frequencies,

(ω̄(n))s1,...,sn

k1,...,kn
=

n∑

i=1

siωki
, (79)

and

(Γ(n)(Φ(n)))s1,...,sn

k1,...,kn
=
n

2
(Φ(n))s1,...,sn

k1,...,kn
+

1

2

n∑

i=1

(Φ(n))s1,...−si,...,sn

k1,...,kn
. (80)

I(n) gathers the effects of the random forcing, the special case I(2) being given
in (75).

F (Φ(n) =
n∑

i=1

∑

si=±1

si sin(2πki

N
)√

2ωki

(Φ(n))s1,...,sn

k1,...,kn
(81)

The explicit expression ofM (n) will be given below in the relevant cases. We are
mainly interested in the contribution to the current of the correlation functions
Φs,s′

k,k′. The total current is given by

J =
ω2

2N

N/2∑

k=−N/2+1

sin (2πk/N)Jk, (82)

where Jk = (Φ+−
k,−k − Φ−+

k,−k). For n = 2 and k1 = −k2 = k, one gets from (78)
the balance equation in the stationary state,

γJk +
iλ

N

[
(M (2)(Φ(4)))+−

k,−k − (M (2)(Φ(4)))−+
k,−k

]
= −2τ

T

ω2

√
2ωk

sin(
2πk

N
)〈|A+

k − A−
k |2〉(83)

where,

(M (2)(Φ(4)))+−
k,−k − (M (2)(Φ(4)))−+

k,−k

= 2i
∑

k1,k2,k3

∑

s1,s2,s3

δ(k + k1 + k2 + k3) s1s2s3 Lkk1k2k3 ℑ[(Φ(4+))+s1s2s3
k,k1,k2,k3

](84)

with

(Φ(n±))s1,...,sn

k1,...,kn
≡ (Φ(n))s1,...,sn

k1,...,kn
± (Φ(n))−s1,...,−sn

k1,...,kn
. (85)
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3.3.3 Closure and Linearization.

The assumption that we use is a Boltzmann-type assumption but at the level
of the correlation functions in the stationary state of the system. Proving
rigorously this assumption is expected to be a very difficult task.

Conjecture 16 Closure assumption.
∃ǫ0 > 0, ∃N0 > ǫ−1

0 such that ∀N > N0 and ∀λ, ω ∈ R
+ satisfying 1

N0
< λ2

ω4 < ǫ0

Φ(2n) = W(2n)(Φ(2)) +O(
λ

ω2
).

W(2n)(Φ(2)) is the Wick formula expressing the 2n-points correlation functions
of Gaussian random variables as a sum of product of 2-points correlation func-
tions.

This assumption allows to obtain a closed system of equation for the Φ(2)

which may be solved. The closed equation is a non-linear one, but one can
show that Φ2 is an analytic function of τ . The case τ = 0 being the equilibrium
case. Linearizing the equation, one obtains an equation for the lowest order
correction proportionnal to τ . The part contributing to the currents per mode
Jk does not contain any equilibrium part and we keep the same notation Jk

for the first-order correction (proportionnal to τ). In particular, one gets, for
large pinning interaction µ, the equation for Jk is (83) with,

(M (2)(Φ(4)))+−
k,−k − (M (2)(Φ(4)))−+

k,−k =

− c T 2

ω6µ6

iλ

N

∑

l,n

(Ωγ)
++−−
k,l,n,k+l+n[Jk + Jl + Jn − Jk+l+n](86)

where,

(Ωγ)
s1s2s3s4

k1,k2,k3,k4
=

2γ

4γ2 + (s1ωk1 + s2ωk2 + s3ωk3 + s4ωk4)
2
.

We will estimate (86) in the limit of large N and for small γ, more precisely,
1 ≫ γ/ω ≫ 1/N . We first observe that the main contributions to the sum will
arise from the resonances in Ωγ , i.e., for lattice points (l, n) near the zeros of
the function fx : [−π

2
, π

2
]2 → R,

fx(y, z) =
√
µ2 + 4 sin2(x) +

√
µ2 + 4 sin2(y)

−
√
µ2 + 4 sin2(z) −

√
µ2 + 4 sin2(x+ y + z). (87)

A careful analysis reveals that for µ2 > 0, the zeros of fx form three smooth
curves. Two of these curves are obvious and given by x+z = 0, and y+z = 0.
These resonances do not contribute to the sum, however, since the combination
of J ’s in (86) vanishes for k + n = 0 or l + n = 0. This corresponds to the
so-called normal processes. The third curve, corresponding to the umklapp

processes, depends on µ and is difficult to localize explicitly. For large µ, it
is given by x + y = π

2
+ O(1/µ2). Performing the sum over l in (86) in the
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above-mentioned parameter regimes thus yields at lowest order in γ and 1/µ
(resonances are at l = −k +N/2),

(M (2)(Φ(4)))+−
k,−k − (M (2)(Φ(4)))−+

k,−k (88)

= −iλ c T
2

ω7µ5

∑

n

J−
k + J−

n

| sin(π(k+n)
N

) cos(π(k−n)
N

)|
, (89)

where we have defined J−
k ≡ 1

2
(Jk − Jk+N/2). Before proceeding to solving

equation (83), we note that any vector J can be decomposed as J = J+ + J−

where J− as above and J+
k ≡ 1

2
(Jk + Jk+N/2) have the symmetry properties

J±
k+N/2 = ±J±

k . It then follows from (89) that J+ does not contribute to Ψ,

and that Ψ = Ψ−.

3.3.4 Solution to the Current Equation.

Recall that J is odd and periodic of period N . We first observe that J+

does not contribute to the average current 〈J〉 given by (82). This follows
from

∑
k sin(2πk/N)J+

k = 0. Since, in addition, J is mapped by (89) into
a vector Ψ with Ψ = Ψ− and since J+ does not contribute to Ψ, we need
only to consider in equation (83) odd forcings α and odd currents J satisfying
α(πk

N
+ π

2
) = −α(πk

N
) and J = J−. We denote by S− the subspace of such

vectors J , in which equation (83) becomes

γJk + c
λ2T 2

ω7µ5
L(J)k = −2τ

T

ω2

√
2ωk

sin(
2πk

N
)〈|A+

k − A−
k |2〉τ=0 , (90)

where L : S− → S− is given by

L(J)k =
1

N

∑

k′

Jk + Jk′

| sin(π(k+k′)
N

) cos(π(k−k′)
N

)|
. (91)

We now proceed to analyze the linear operator L. The subspace S− has
dimension N/4, and a basis for S− is given by J n

k = sin(2π(2n + 1) k
N

), n =
0, . . . , N/4 − 1. We let An ≡ L(J n). An explicit computation shows that
the set of An, n = 0, . . . , N/4 − 1, also forms a basis of S− and that L is
uniformly invertible (in N). This implies that the first term on the LHS of
(90) is negligible for γ small. Furthermore, it follows from

∑
k sin(2πk

N
)J n

k = 0
for n 6= 0 that only J 0

k contribute to the current (82). Therefore, the only
contribution of the noise α to the current is the component of α along A0, say
α0, where

A0
k ≡ L(J 0)k = 2 sign(k)

(1

4
−
∣∣∣sign(k)

k

N
− 1

4

∣∣∣
)
. (92)

One thus finally obtains from (82),

〈J〉 ∼ ω9µ5

λ2T 2
α0 τ , (93)

As mentioned in the introduction, the result of [94] shows that the local
gradient of temperature imposes the choice α(k) ∼ ω−1(k)∇ω(k), that is,
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µ−2 sin(2πk/N) for large µ. It has a non-zero component along A0 and the

corresponding conductivity is thus given by κ ≡ 〈J〉 /τ ∼ ω9µ3

λ2T 2 . Our explicit
treatment of the resonances and the inversion of the linearized Boltzmann
operator allows to justify rigorously the physical picture that these are the
four-body umklapp collisions between phonons which are responsible for a
normal conductivity in pinned anharmonic chains. Indeed, considering a cubic
instead of a quartic interaction in the Hamiltonian would yield an expression
analogous to (87) but with a combination of only three frequencies. The latter
is always non-zero when µ 6= 0, leading to an infinite conductivity. We finally
point out that when the pinning goes to zero, the localization of the resonances
and the inversion of the linearized collision operator are more difficult and there
is no reason for expression (93) to be valid.
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Chapter 4

Large deviations of lattice
Hamiltonian dynamics coupled
to stochastic thermostats.

In this chapter, I present the results obtained in [8].
We discuss the Donsker-Varadhan theory of large deviations in the framework
of Hamiltonian systems thermostated by a Gaussian stochastic coupling. We
derive a general formula for the Donsker-Varadhan large deviation functional
for dynamics which satisfy natural properties under time reversal. Next, we
discuss the characterization of the stationary states as the solution of a varia-
tional principle and its relation to the minimum entropy production principle.
In the recent years, several studies of large systems out of equilibrium through
fluctuation theory have been made [5, 6, 7, 9, 35, 40, 41, 48]. In a recent series
of papers [66, 67, 68, 69, 70], it has been understood that in random systems
driven out of equilibrium, the theory of large deviations provides naturally a
variational characterization of the steady states which is related to the min-
imum entropy production principle. In [8], we pursued this approach in the
framework of thermostated lattices of Hamiltonian oscillators and investigated
in this setting the Donsker-Varadhan large deviation theory [24, 25].

4.1 Models

We will first recall the general framework of Hamiltonian dynamics and define
the relevant physical quantities in this context. In section 4.1.2, the notion of
generalized detailed balance is introduced. It will be an important feature of
the Hamiltonian systems with a stochastic forcing considered in this chapter
(see sections 4.1.3, 4.1.4 and 4.1.5).

4.1.1 Hamiltonian dynamics

We consider a one-dimensional lattice of N particles (q, p) = (qi, pi)1≤i≤N , each
one moving around an equilibrium position, the position of the i-th particle
is denoted by qi and its momentum by pi. The systems we have in mind are
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described by a Hamiltonian, which is the energy function of the set of particles,

H(q, p) =

N∑

i=1

[
p2

i

2
+ V (qi) +

1

2
(U(qi+1 − qi) + U(qi − qi−1))

]
. (1)

We will consider either periodic boundary conditions (with the convention
qN+1 = q1 and q0 = qN) or open systems with the convention q0 = qN+1 = 0.
V is the potential energy corresponding to an interaction with an external
substrate. U describes the potential energy of the interaction between nearest-
neighbours. Precise assumptions on the growth of the potentials will be de-
tailed in Section 4.2.1 along with the mathematical statements.

The positions qi and momenta pi of the particles obey the Hamilton’s equa-
tions,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2)

The generator of the Hamiltonian dynamics is given by

LH =

N∑

i=1

−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi
. (3)

In order to describe the propagation of heat in the lattice, one defines a
local energy function,

hi(p, q) =
p2

i

2
+ V (qi) +

1

2
(U(qi − qi+1) + U(qi−1 − qi)), (4)

such that H =
∑N

i=1 hi. The local energy transfer is identified with the trans-
fer of mechanical energy between nearest-neighbours. The energy current is
therefore defined through the time evolution of the local energy,

dhi

dt
= LHhi = ji − ji−1 (5)

with ji the microscopic current of energy or heat between oscillator i and i+1

ji = −1

2
U ′(qi − qi+1)(pi + pi+1). (6)

In section [8], we have also investigated the large deviations of the spatial
average of the current defined by

J(q, p) =
1

N

N∑

i=1

ji . (7)

When such a Hamiltonian system is in thermal equilibrium at a tempera-
ture T = β−1, its statistical properties are described by the Boltzmann-Gibbs
probability distribution over the phase space R

2N ,

ρ(p, q) =
1

Z
exp

(
− 1

T
H(p, q)

)
. (8)

Remark that with respect to that distribution, 〈p2
i 〉 = T and the averaged

current is null 〈ji〉 = 0. This last identity is straightforward because the
equilibrium distribution is even under the reversal of momenta p → −p while
the current is odd.
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4.1.2 The generalized detailed balance

We now recall the notion of reversibility in the framework of lattices of coupled
oscillators. Then, we introduce the notion of generalized detailed balance which
will apply when the chain of oscillators is forced out of equilibrium by stochastic
heat baths (sections 4.1.3 and 4.1.4) or a driving force (section 4.1.5).

In Hamiltonian dynamics, the variables p basically describe the velocities
of the particles and are therefore odd functions under time reversal. When
isolated, those systems are reversible in the sense that if one lets evolve the
particles from some initial conditions at time 0 up to some time T and then
reverse all momenta, Hamilton’s dynamics will take back the particles through
the same trajectory but with reverse momenta. Thus in the case of Hamil-
tonian dynamics (with possibly a stochastic forcing), the standard notion of
detailed balance has to take into account the reversal of momenta. We denote
by Π the operator which reverses momenta

Π(q, p) = (q,−p) . (9)

Let Pt

(
(q, p), (q′, p′)

)
be the semi-group associated to an Hamiltonian dynam-

ics with a stochastic perturbation (for a precise definition see sections 4.1.3
and 4.1.4) with initial data (q, p) and final data (q′, p′) at time t. We con-
sider a probability measure with density ρ(q, p) symmetric wrt to time reversal
Πρ = ρ. The dynamics is reversible wrt to the density ρ(q, p) if for any time t

ρ
(
q, p
)
Pt

(
(q, p), (q′, p′)

)
= ρ

(
q′, p′

)
Pt

(
Π(q′, p′),Π(q, p)

)
. (10)

Let L be the generator of this dynamics and let L† denote the adjoint with
respect to the Lebesgue measure. The adjoint L∗

ρ of the operator L with respect
to the measure with density ρ(q, p) is defined by

L∗
ρf(q, p) = ρ−1(q, p) L†(ρ(q, p)f(q, p)) (11)

for any regular function f(q, p). Alternatively, L∗
ρ satisfies

〈fLg〉ρ =
〈
gL∗

ρf
〉

ρ
.

L∗
ρ is therefore interpreted as the generator of the time reversed dynamics

sampled with initial data distributed according to ρ. Applying (10) for an in-
finitesimal amount of time, the equivalent form of the detailed balance relation
can be obtained

L∗
ρ = ΠLΠ , (12)

where we used that the density ρ satisfies Πρ = ρ. For stochastic dynamics,
the usual detailed balance relation does not involve the time reversal operator,
however we keep the same terminology for simplicity.

For general Hamiltonian systems coupled to stochastic thermostats, the re-
versibility may not hold and (12) has to be replaced by the generalized detailed
balance relation (see for example [32]) which can be defined as follows
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Definition 17 We consider an evolution with generator L and ρ(q, p) a ref-
erence measure such that Πρ = ρ. If there exists a function σ(q, p) such that

L∗
ρ = ΠLΠ + σ, and Πσ = −σ , (13)

then the triplet (L, ρ, σ) is said to satisfy a generalized detailed balance relation.
By convention in (13), σ acts as a multiplication operator.

This definition will be illustrated in the examples introduced in sections
4.1.3, 4.1.4 and 4.1.5. In equilibrium dynamics (when σ = 0) and when sam-
pled with initial conditions distributed according to the equilibrium measure,
the dynamics is equivalent to its time-reverse, this is the detailed balance
principle. When the system is subject to some non-equilibrium dynamics
forcing a heat current through the system, the stationary state looses its
invariance under time-reversal (σ 6= 0). In Markovian systems, the gener-
alized detailed balance is a central feature of the Gallavotti-Cohen symmetry
[64, 35, 40, 51, 57, 88, 89] for the large deviation functional of the function σ.

Typically σ is a function of the microscopic currents of energy in the lattice
and the reference measure is an equilibrium or a local equilibrium distribution.
A given dynamics may satisfy a generalized detailed balance relation with
respect to different reference measures and different functions σ (see section
4.1.4).

4.1.3 Heat in the bulk

The simplest perturbation of the Hamiltonian dynamics (2) is to couple each
oscillator to a heat bath. The boundary conditions are fixed q0 = qN+1 = 0
and each oscillator i = 1, . . . , N evolves according to

dqi = pidt (14)

dpi = −γipidt−
∂H

∂qi
dt+

√
2γiTidwi ,

where the wi are standard independent Brownian motions, Ti = β−1
i is the

temperature of each heat bath and γi > 0 is the friction. The generator of the
dynamics is given by

L = LS + LH (15)

where the Hamiltonian part LH was introduced in (3) and the symmetric part
is

LS =

N∑

i=1

−γipi
∂

∂pi
+ γiTi

∂2

∂p2
i

. (16)

When the temperatures {Ti}i are not equal, the reversibility is lost and the
invariant measure unknown. The self-consistent chain [11], for which the tem-
peratures {Ti}i are tuned in order to maintain a constant average microscopic
current along the chain, falls in the framework of the dynamics (14).
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We check now that this dynamics satisfies the generalized detailed balance
(see definition 17). Given a collection of inverse temperatures β = (β1, . . . , βN),
we take as a reference measure the following density

ρβ(p, q) =
1

Z
exp

(
−Ĥ(p, q)

)
, with Ĥ(p, q) =

N∑

i=1

βi hi(p, q) , (17)

where hi are the local energies introduced in (4) and β−1
i = Ti is the temper-

ature of the heat bath at site i. We compute now L∗
ρβ

the adjoint of L with

respect to the measure ρβ . Since LS = ΠLSΠ and the stochastic part of the
dynamics is reversible with respect to the measure ρβ , one has for any function
f

LSf(q, p) = ρ−1
β (q, p)L†

S(ρβ(q, p)f(q, p)) . (18)

We turn now to the Hamiltonian part. Thanks to the relation L†
H = −LH , we

get

ρ−1
β L†

Hρβ =

N∑

i=1

βiLHhi . (19)

From (5), one has LHhi = ji − ji−1 with the convention j0 = jN = 0, thus

ρ−1
β L†

Hρβ =
N∑

i=1

βi(ji − ji−1) = −
N−1∑

i=1

(βi+1 − βi)ji . (20)

Since ΠLHΠ = −LH = L†
H , this implies that

L∗
ρβ

= ΠLΠ + σβ , with σβ = −
N−1∑

i=1

(βi+1 − βi)ji . (21)

Thus the triplet (L, ρβ , σβ) satisfies a generalized detailed balance relation and
σβ is a linear combination of the local currents.

4.1.4 Heat at the boundary

If there are no heat baths in the bulk (γi = 0 for i = 2, . . . , N−1), the dynamics
(14) represents a crystal of atoms heated at two different temperatures at its
boundaries. The equations of motion are given by,

dqi = pidt, i = 1, . . . , N, (22)

dpi = −∂H
∂qi

(p, q)dt, i = 2, . . . , N − 1,

and,

dp1 = −∂H
∂q1

(p, q)dt− γp1dt+
√

2γT1 dw1 , (23)

dpN = − ∂H

∂qN
(p, q)dt− γpNdt+

√
2γTN dwN ,
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where T1 and TN stand for the temperature of the left and right reservoirs,
respectively, whereas w1 and wN are two independent standard Wiener pro-
cesses.

When T1 = TN = T = β−1, the Gibbs measure (8) is invariant (stationary)
for the stochastic dynamics defined above. For two different temperatures,
existence, uniqueness and exponential convergence to an unique invariant state
has been established under fairly general conditions on the potentials U and
V [20, 31, 29, 88].

A computation similar to the case of heat baths in the bulk (21) shows that
the dynamics (22) satisfies the generalized detailed balance (see definition 17)
for any reference measure ρβ of the form (17)

L∗
ρβ

= ΠLΠ + σβ, with σβ = −
N−1∑

i=1

(βi+1 − βi)ji , (24)

provided the collection of inverse temperatures β = (β1, . . . , βN) is such that

β−1
1 = T1 and β−1

N = TN . Thus any σβ such that β−1
1 = T1 and β−1

N = TN will
satisfy the Gallavotti-Cohen symmetry relation. This was already observed in
[32, 88].

4.1.5 Asymmetric periodic chain

Building on a previous work [58], we introduce new dynamics by adding a
mechanical force which creates a current through the system. On a periodic
lattice, these dynamics lead to non-equilibrium systems with non-vanishing
currents and in this sense, they are reminiscent of the asymmetric processes in
lattice gas dynamics [93].

We start with an heuristic discussion before giving the definition of the
dynamics. If the heat baths are at different temperatures, the dynamics (22)
is no longer reversible with respect to the Gibbs measure or any “local equi-
librium” measure ρβ . As observed in (24), the function σ which breaks the
reversibility is a linear combination of the local energy currents. We show that
adding an appropriate mechanical force allows to modify at will the coefficients
of this linear combination. In particular, the reversibility may be restored in
(22) by tuning the intensity of the additional mechanical force. From the point
of view of the generalized detailed balance, the action of the mechanical force
is equivalent to the action of the local temperature gradient.

Let us first show that one may choose a (non-Hamiltonian) force which
modifies the coefficients of the combination of local currents of energy in σ.
Take as generator of the dynamics,

L = LS + LH + Lθ , (25)

where LH is the generator of the Hamiltonian dynamics (3), LS the generator
of the two stochastic reservoirs (23)

LS = −γp1
∂

∂p1
+ γT1

∂2

∂p2
1

− γpN
∂

∂pN
+ γTN

∂2

∂p2
N

,
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and the contribution of the mechanical drift is given by the antisymmetric
operator

Lθ = −
N∑

i=1

1

2
Ti(θi−1U

′(qi−1 − qi) + θiU
′(qi − qi+1))

∂

∂pi
, (26)

To study the reversibility (12) properties of this dynamics, we first compute,

ρ−1
β LT

θ ρβ = −
N∑

i=1

1

2
(θi−1U

′(qi−1 − qi) + θiU
′(qi − qi+1))pi

= −
N−1∑

i=1

θi
1

2
(pi + pi+1)U

′(qi − qi+1) =
N−1∑

i=1

θiji .

Since the operator LS +LH satisfies a generalized detailed balance relation wrt
σβ = −∑N−1

i=1 (βi+1−βi)ji (24), we see that the dynamics (25) satisfies now the
generalized detailed balance (see definition 17) for the measure ρβ (17) with
respect to σβ,θ

L∗
ρβ

= ΠLΠ + σβ,θ, with σβ,θ =
N−1∑

i=1

(βi − βi+1 + θi)ji . (27)

When the relation θi 6= (βi+1 − βi) for some i, then the system is driven out
of equilibrium. However, with the choice θ0 = θN = 0 and θi = (βi+1 −
βi) reversibility is restored. This is the key point which allows to identify
the strength of the mechanical force with the action of the local gradient of
temperature.

For θi = (βi+1 − βi) and slowly varying temperatures of the form β−1
i =

Ti = T ( i
N

) where T is a smooth function, the generator Lθ becomes at lowest
order in 1

N
,

Lθ =
N∑

i=1

1

N

∇T ( i
N

)

2T ( i
N

)
(U ′(qi−1 − qi) + U ′(qi − qi+1))

∂

∂pi
. (28)

Note that in the sum over i, the prefactors depending on the temperature and
its gradient are basically constant when i varies over distances much smaller
than N .

The asymmetric periodic chain [58], described below, is a chain with peri-
odic boundary conditions and a dynamics made of three parts. The first one
corresponds to a usual Langevin dynamics for each oscillator, the second one
to the Hamiltonian dynamics on the lattice and the third one is the previous
generator (28) with constant prefactors (but arbitrary values). Namely, it is
defined as

L = LS + LH + Lτ , (29)

with,

LS =
∑

i

−γpi
∂

∂pi
+ γT

∂2

∂p2
i

. (30)
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LH is defined in (3) and the part driving the system out of equilibrium is,

Lτ = − τ

2T

∑

i

(U ′(qi−1 − qi) + U ′(qi − qi+1))
∂

∂pi
. (31)

In terms of equations of motion the dynamics is described as follows,

dqi = pidt (32)

dpi = −γpidt−
∂H

∂qi
dt− τ

2T
(U ′(qi−1 − qi) + U ′(qi − qi+1))dt+

√
2γTdwi ,

where τ ∈ R is the new parameter regulating the strength of the non-equilibrium
forcing and the wi are standard independent Brownian motion i = 1, . . . , N .
Periodic boundary conditions means q0 = qN and qN+1 = q1. Compared to the
dynamics (14), the new term proportional to τ is the non-equilibrium part of
the dynamics. As should be clear from the above argument it is responsible
for the breaking of the time-reversal symmetry of the equilibrium dynamics
(τ = 0). Indeed, for the dynamics (32), taking the Gibbs measure (8) at con-
stant temperature T as the reference measure, the generalized detailed balance
holds with a function σ proportional to the total current (7)

σ =
τ

T 2

N∑

i=1

ji =
τ N

T 2
J. (33)

One can show [8] that when τ 6= 0, τ〈J〉bρ > 0 for a stationary measure ρ̂.
Thus, the dynamics ensures the existence of an average non-vanishing energy
current in the stationary state.

4.2 The large deviation functional

The goal of this section is to rephrase the Donsker-Varadhan theory [24, 25]
in the framework of the Hamiltonian systems coupled to Gaussian stochastic
thermostats and to discuss the relation with entropy production.

4.2.1 The Donsker-Varadhan functional

In order to cover all the examples introduced in sections 4.1.3 and 4.1.5, we
consider the general dynamics defined by

dqi = pidt (34)

dpi = −γipidt−
∂H

∂qi
dt− 1

2
Ti(θi−1U

′(qi − qi−1) + θiU
′(qi+1 − qi))dt+

√
2γiTidwi ,

with γi > 0, Ti > 0 for i = 1, . . . , N . We stress the fact that the noise acts
at each site i. To simplify notation, we restrict to open systems (with the
convention q0 = qN+1 = 0, θ0 = θN = 0), but similar results hold with periodic
boundary conditions (with the convention qN+1 = q1 and q0 = qN ). We denote
by P the probability of the evolution (34) starting from a given initial data
(which will play no role in the large t asymptotic).
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Typically, we shall be interested in the deviations over time of some physical
quantities like the heat current (7). Let the empirical distribution νt be defined
by,

νt(A) =
1

t

∫ t

0

1A((p(s), q(s)))ds ,

where 1A is the indicator function of a set A ⊂ R2N . If the dynamics is ergodic
νt converges to the ergodic invariant measure. We now look at the asymptotic
probability P [νt ≃ µ] that the empirical distribution is close to the distribution
of a given measure µ (in the sense of the weak convergence topology [100]) for
large t. Under suitable hypothesis (see Proposition 18), the dynamics obeys a
large deviation principle with rate function I and asymptotically in t

P [νt ≃ µ] ∼ exp ( − tI(µ)) . (35)

Furthermore, from the Donsker-Varadhan theory [24, 25, 100] the functional
is given by

I(µ) = sup
g

{
−
〈
Lg

g

〉

µ

∣∣∣ g ∈ C∞
b (R2N ; [1,∞[)

}
, (36)

where C∞
b (R2N ; [1,∞[) is the set of bounded infinitely differentiable functions

in R2N taking values larger or equal to 1. We refer to Lemma 6.3.7 of [23] for
the variational expression of I in the case of hypoelliptic diffusions.

The following Proposition justifies the validity of the large deviation prin-
ciple (35).

Proposition 18 Suppose that the potentials V and U of the Hamiltonian (1)
are convex, twice differentiable and satisfy

V ′′(q) ≥ δ and

N∑

i=1

V (qi) +
U(qi − qi+1) + U(qi+1 − qi)

2
≥ δ

N∑

i=1

(U ′(qi − qi+1))
2 ,

(37)

for some constant δ > 0.
The dynamics (34) (with ∀i, γi > 0) obeys a large deviation principle with a

functional I given by the Donsker-Varadhan theory (36) provided maxi |θi| ≤ τ0
and maxi |Ti − Ti+1| ≤ ∆0, where ∆0 and τ0 are two constants depending only
on δ, {γi, Ti}i. Furthermore, the previous assumptions on the potentials (37)
ensure that the current (7) is exponentially integrable: for any λ small enough

lim sup
t→∞

1

t
logP

(
exp

(
λ

∫ t

0

dsJ(p(s), q(s))

))
<∞ . (38)

The proof heavily relies on previous results in the paper [100] and it is
postponed to the Appendix. The assumptions of Proposition 18 on the po-
tentials V and U are not optimal, but they are sufficient to cover a wide class
of physical examples. In particular, similar statements hold also for any local
modifications of the potentials V and U . Remark that when the reservoirs act
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only at the boundary (γi = 0, i ∈ {2, . . . , N−1}), the large deviation principle
for the current has been justified in [89] (for a different class of Hamiltonians).

We are going to rewrite the functional I (36) in a more explicit form.
The generator of the dynamics (34) can be decomposed as L = LS + LA,
with a symmetric part LS (16) due to the noise and an antisymmetric part
LA = 1

2 (L− ΠLΠ). We introduce the notation,

Γ(f, g) = 2
N∑

i=1

γiTi (∂pi
f) (∂pi

g) , (39)

for any smooth functions f, g.

Proposition 19 Let ρ be a measure and σ(q, p) a function such that

L∗
ρ = ΠLΠ + σ . (40)

Let µ be a measure absolutely continuous with respect to the measure ρ, with

f = dµ/dρ ∈ C∞(R2N ;R) such that
〈
‖∇p

√
f‖2

〉
ρ
< ∞. Then the functional

I (36) is given by

I(µ) = −
〈
f

1
2LSf

1
2

〉

ρ
+K(µ) − 1

2
〈σ〉µ , (41)

with

K(µ) = − inf
W

(
1

8
〈Γ(W,W )〉µ +

1

2
〈LAW 〉µ

)
≥ 0 , (42)

where the infimum is taken over the smooth functions W ∈ C∞(R2N ;R) such
that W ∈ L2(µ) and |∇pW | ∈ L2(µ).

From (27), we see that the dynamics (34) satisfies the generalized detailed
balance for the measure ρβ (17), the assumption (40) of Proposition 19 is
satisfied with ρβ and σβ,θ

L∗
ρβ

= ΠLΠ + σβ,θ, with σβ,θ =
N−1∑

i=1

(βi − βi+1 + θi)ji .

Remark that the generalized detailed balance requires symmetry assumptions
on the reference measure and on σ which are not necessary for the Proposition
19 to hold.

One of the important features of the representation (41) for I(µ) is the
presence of K(µ). One can check using Proposition 20 and that it is in general
neither infinite or zero even in the case of dynamics satisfying detailed balance,
i.e for equilibrium dynamics. K(µ) gathers the thermalizing effect of the noise
which is transmitted from the p variables to q variables. It corresponds to the
“traffic” in the terminology of [68]. It is invariant under reversal of the sign
of the momenta (i.e K(µ) = K(Πµ)) and when non-equilibrium forces are in-
cluded it is invariant under a change of sign of the non-equilibrium parameter
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as we shall see in the gaussian systems of the last section. It measures the
dynamical “activity” in the Hamiltonian system irrespective of the sign of the
non-equilibrium parameter. We shall see its role in the variational character-
ization of stationary states in section 4.3. We now compute a more explicit
form for K(µ).

Proposition 20 Let µ be a measure on R2N with smooth density wrt the
Lebesgue measure dµ(p, q) = exp(−Φ)dpdq. If W ∈ L2(µ) is a solution of

N∑

i=1

−γiTi∂
2
pi
W + γiTi ∂pi

Φ∂pi
W = −LAΦ , (43)

with |∇pW | ∈ L2(µ) then

K(µ) =
1

8

〈
Γ(W,W )

〉
µ

= −1

4

〈
LAW

〉
µ
. (44)

Moreover,
〈
Γ(W,W )

〉
µ

is independent from the solution of (43). Finally, K

is symmetric wrt time reversal K(Πµ) = K(µ).

4.3 Entropy production

In this section, we show that the minimum entropy production principle does
not apply for Hamiltonian dynamics and that the large deviation functional
(41) is a natural extension for a variational characterization of the steady state.
Connections between large deviation functionals in stochastic systems and en-
tropy production were initiated in [66]. In order to identify the average entropy
production of a dynamics in a given measure, we proceed as in [93] in the con-
text of interacting particle systems. Namely, we define the entropy production
as the difference between the variation of the Gibbs (Shannon) entropy and
the transfer of heat by unit time due to the action of the thermostats. A sim-
ilar computation was performed in [65] for heat conduction networks and the
identification of the average entropy production with the Dirichlet form of the
process was obtained there and in [32].

We consider the dynamics (34) for which the generator is given by L =
LS + LA with a symmetric part given by

LS = −
N∑

i=1

−γipi
∂

∂pi
+ γiTi

∂2

∂p2
i

.

We first introduce the entropy production. In thermodynamics, the entropy
variation rate, or entropy production is the transfer of energy per unit time
divided by the temperature at which the transfer takes place. Therefore, it is
natural to define the average (with respect to a given measure µ) entropy flux
associated with the exchange of energy with the external heat baths as

σext(µ) =
〈
L̃SH

〉
µ
,
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where

L̃S =
N∑

i=1

γiT
−1
i pi

∂

∂pi

+
N∑

i=1

γi
∂2

∂p2
i

. (45)

We have simply divided the contribution of each bath by its temperature Ti:
when the temperatures are all equal to T then L̃S = 1

T
LS. Computation yields,

L̃SH =
N∑

i=1

γi(1 − p2
i

Ti

) ,

and thus the average entropy flux due to the coupling to the heat baths in the
measure µ is,

σext(µ) =
N∑

i=1

γi

〈
(1 − p2

i

Ti
)

〉

µ

. (46)

The Gibbs (or Shannon) entropy for any measure µ is,

S(µ) = −
∫
dxf log f. (47)

We define the entropy production in the chain as

s(µ) ≡ d

dt
S(µt)|µt=µ − σext(µ) . (48)

We show now that with this definition, the entropy production is always pos-
itive. Note that,

d

dt
S(µt) = −

∫
dxftL log ft .

As L = LS + LA and LA is a first-order differential operator such that L†
A =

−LA, we see that

d

dt
S(µt) = −

∫
dxft(LS + LA) log ft = −

∫
dxftLS log ft,

Comparing the density ft with the reference measure ρβ (see (17))

ρβ =
1

Zβ
exp

(
−

N∑

i=1

βihi

)
, (49)

where βi = T−1
i for every i such that γi 6= 0 (other βi are arbitrary), we get,

d

dt
S(µt) = −

∫
dxftLS log

ft

ρβ
+

∫
dxftLS

(
N∑

i=1

βihi

)

= −
∫
dxftLS log

ft

ρβ
+

N∑

i=1

γi

∫
ft(1 − p2

i

Ti
). (50)
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We recall that Γ(f, g) = 2
∑N

i=1 γiTi ∂pi
f∂pi

g. For the first term, we note the
identity,

LS(log h) = h−1LSh− 1

2
h−2Γ(h, h) .

Combining (46), (50) and using the fact that (LS)†ρβ = 0 (because βi = T−1
i

for every i such that γi 6= 0), with (48), this yields

s(µ) =
1

2

∫
dxρβ(

ρβ

f
)Γ

(
f

ρβ
,
f

ρβ

)
= 2

∫
dxρβΓ

(√
f

ρβ
,

√
f

ρβ

)
, (51)

with f the density of the measure µ. Since Γ(f, f) ≥ 0, it is easy to see that
s(µ) ≥ 0 and that the infimum is reached when f = ρβ. As already observed
in [65], it is also obvious that, as Γ only involves derivatives with respect to
the variables p, one can add any function of q in the exponential defining ρβ .
Therefore, even in the case of an equilibrium dynamics, when Ti = T , ∀i, such
that γi 6= 0 in LS, the minimum entropy production principle does not single
out the equilibrium measure ρβ . This comes from (49) which expresses the fact
that the Gibbs entropy is invariant under the Hamiltonian evolution. Entropy
is produced solely by the action of the thermostats which act only on the p
variables.

As observed in [66], the large deviation functional I provides a natural
variational characterization of the stationary measure, which as we will see
below, generalizes the minimum production entropy principle. As far as the
variational principle is concerned, the key observation is that I(µ) ≥ 0 and
I(µ) = 0 if and only if µ is a stationary measure for the process associated
to the generator L (Theorem 4.2.39 of [23]). We apply now Proposition 19 to
the dynamics (34) which satisfies a generalized detailed balance (27) wrt the
reference measure ρ = ρβ (49) and σβ,θ =

∑N−1
i=1 (βi − βi+1 + θi)ji. Thus (41)

reads

I(µ) =
1

4
s(µ) +K(µ) − 1

2

〈
σβ,θ

〉
µ
, (52)

where we have used the following identity obtained by integration by parts
from (51)

1

4
s(µ) = −

〈
f

1
2LSf

1
2

〉

ρβ

, (53)

for the reference measure ρβ . The first term in (52) is identified with the
entropy production s of the measure µ, and as we have seen in the previ-
ous section, the second one K records the coupling between the positions and
momenta. The last term in (52) is the time-reversal breaking term given by
combination of the microscopic currents. For equilibrium dynamics, by defini-
tion, the term σ is absent, and the presence of K ensures that the minimization
of the sum of the first two terms in (52) yields the stationary measure uni-
vocally. Indeed, as we have explained above, minimizing entropy production
alone is not sufficient to determine the equilibrium distribution.
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Chapter 5

Transfer of heat in lattice
collisional dynamics.

In this chapter, I present the results of [43, 61].

5.1 Boltzmann approach to the transfer of heat

in lattice collisional dynamics.

As a generic model of heat transfer in insulating crystalline solids, one often
considers a lattice of coupled particles with nearest-neighbor interactions whose
motion obeys Hamilton’s equations. Thus consider N particles of unit masses
located on a one-dimensional lattice with positions and momenta (q,p) ≡
{(qi,pi)}1≤i≤N , with qi,pi ∈ R

d. The Hamiltonian H takes the form

H(p,q) =
N∑

i=1

[
p2

i

2
+ V (qi) + U(qi − qi+1)

]
, (1)

where V represents the interaction with the external substrate and U the
nearest-neighbor interactions 1.

After Peierls’ work [80], all attempts to give a satisfactory derivation of
Fourier’s law in mechanical systems have focused on the study of weakly an-
harmonic dynamics. Using the Peierls-Boltzmann equation, recent works have
studied the effects of phonon collisions on the heat conductivity [15, 81, 95, 60,
2]. In this context, the conductivity may be interpreted as a collision frequency
between phonons.

In this letter, we focus on the opposite limit, namely extremely anhar-
monic interactions, and, under minimal assumptions on the chaotic nature of
the dynamics, identify a class of models which display a universal response to
non-equilibrium thermal constraints. The motivation for this study is twofold:
First, the heat conductivity can be computed from first principles and takes
a simple form; Second, as pointed out in [42], such systems of locally confined
particles in interaction find concrete applications in the study of aerogels, ma-
terials in which gas particles are trapped in nano-size pores and rarely interact

1It is understood here that the positions qi are measured with respect to a local referential
at site i.
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among themselves. Assuming the validity of a Boltzmann-like equation to de-
scribe such systems of rarely interacting particles when they become large, we
show that the heat conductivity of such systems is generically equal to the
average frequency of interaction between the systems’ components, i.e. irre-
spective of the detailed geometric properties of the confinement mechanism.
This will be checked in detail by numerical simulations, showing the univer-
sality and power of the Boltzmann approach to analyze the transfer of heat in
the mechanical systems we study.

To be specific, we consider the case of interaction potentials which take
only the values zero inside a region ΩU ⊂ R

d with smooth boundary Λ of
dimension d − 1, and infinity outside. Likewise, the pinning potential V is
assumed to be zero inside a bounded region ΩV and infinity outside, imply-
ing that the motion of a single particle remains confined for all times. The
regions ΩU and ΩV being specified, the dynamics is equivalent to a billiard in
higher dimension. An important quantity in such models is the average rate
of collisions between nearest-neighbors under equilibrium conditions. We will
be specifically concerned with the limit of rare collision events.

The shape of the region ΩV determines the nature of the local dynamics. In
ref. [42], ΩV was chosen to be a semi-dispersive billiard with bounded horizon,
thus ensuring strong chaotic properties of the dynamics. In particular the fast
decay of correlations of the local dynamics was invoked to set up a stochastic
equation describing the energy exchange dynamics. It is our purpose to show
that this assumption can be relaxed: local ergodicity is enough to warrant the
identity between heat conductivity and frequency of energy exchanges. We
regard this as an important result which further validates the analogy between
this class of models and aerogels whose nanopores need not have dispersing
properties.

Examples of the simplest type of billiards we may consider are periodic
arrays of square boxes in two dimensions in each of which a single hard disk
particle moves freely, but can still perform collisions with neighboring disks by
interacting through the confining walls, for instance, provided we let the cells
overlap a bit. The specific nature of the interaction mechanism at play is how-
ever not relevant in our formalism. We will instead consider point particles
moving freely in two-dimensional square boxes of unit sides and interacting
among nearest neighbors when the Euclidean distance between them becomes
equal to a parameter which we denote by a. At that point, they exchange
their longitudinal velocities, i.e. the velocity components in the direction of
their relative motion. We refer to this model as the square-strings model. The
interaction may be depicted by attaching strings of lengths a separating neigh-
boring particles, as shown in Fig. 5.1. In this case, we take ΩV = [−1/2, 1/2]2,
and ΩU = D

2
(−1,0)(a), the disk of radius a with center at (−1, 0) 2. We note

that, in the absence of interactions, the dynamics of the individual particles is
pseudo-integrable; it is ergodic on the configuration space for most values of
the velocity directions, but is known to be non-mixing. We will consider this
model in some details below and provide numerical evidence that the analysis
which follows applies to it.

2The origin of the disk is shifted because the positions of the particles are measured with
respect to the center of the cell ΩV .
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Figure 5.1: Typical trajectories of the square-strings model, displayed for in-
creasing values of a, color-coded from blue to red according to their energies.
Small and large arrows indicate initial and final velocities respectively. For
large a, the system appears to be near-integrable, reflecting the rarity of in-
teractions, but is nevertheless fully chaotic.

This model can be compared to a simpler class of complete exchange models,
specified by square well potentials, obtained from Eq. (1) with d = 1, as a limit
of models with smooth interaction potentials. In this case, ΩV = [−b, b] and
ΩU = [−a, a]. Each particle on the lattice moves freely on a one-dimensional
cell of size 2b, changing directions at the boundaries. The interaction between
a pair of particles acts when the difference between the positions of the two
particles reaches the value a, at which point they exchange their velocities.

In the general d-dimensional set-up, the particles move freely inside their
respective cells, bouncing off the walls elastically, until the vector qi − qi+1

(resp. qi−1 − qi) reaches the boundary Λ. The corresponding particles then
exchange the components of their velocities in the direction normal to the
boundary Λ, i.e. longitudinal to the direction of their relative motion.

The Hamiltonian (1) may be written as a sum of local terms,

hi(p,q) = p2
i /2 + V (qi) + 1/2 [U(qi−1 − qi) + U(qi − qi+1)] .

This allows one to define a function describing the local transfer of energy by
computing the variation in time of the local energy hi along the solutions of
the equations of motion, d

dt
hi(p,q) = ji−1 − ji, where the local energy current

between sites i and i+1 is defined as, ji ≡ 1
2 (pi +pi+1) ·∇U(qi−qi+1), which,

for hard core interactions, becomes

ji = −hfδΛ(qi − qi+1)|p⊥i+1 − p⊥i |+
[
(p⊥i+1)

2 − (p⊥i )2
]
, (2)

where |x|+ = x, if x ≥ 0, and 0 otherwise, p⊥i = pi · n̂ is the component of
the vector pi in the direction of the unit vector n̂, normal to the boundary
Λ, and δΛ denotes the delta function concentrated on this boundary. The
first factor corresponds to the localization of the collisions in configuration
space, the second one gives the rate at which collisions occur and the last one
corresponds to the exchange of longitudinal components of the kinetic energies.

Starting from the Liouville equation for the evolution of probability densi-
ties on phase space, it is straightforward to derive an equation for the evolution
of the probability density of a single particle in a given cell. It involves the
probability distribution of the pairs of particles which consist of the particle
itself and either of its nearest-neighbors on the lattice. The Boltzmann ap-
proximation simply amounts to assuming that this two-particle distribution
factorizes in terms of the one-particle distributions fi at each site. To justify
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this assumption, one needs to show that a version of molecular chaos holds in
our models. Namely, that the dynamical variables involved in the successive
collisions between two neighbors are independent at the times of collisions. For
that purpose, we require two ingredients: First, local correlations are typically
destroyed after a collision between neighboring particles; Second, the number
of particles must be very large, so that in the long run, the whole system
plays the role of a reservoir for the specified pair of nearest neighbors. How
these conditions are realized in the models we consider and, in particular, in
the square-strings model which we test numerically, is not yet fully elucidated.
We interpret the first condition as requiring interactions to be rare compared
to the collisions within a single cell. In the square-strings model, it amounts
to taking the maximal separation close to the length of the diagonal joining
opposite corners of neighboring boxes (≡

√
5), as in the third panel of Fig. 5.1.

We denote by f = {fi(p,q, t)}1≤i≤N , the set of the marginal probability
distributions of each particle in each cell. The Boltzmann equation for this set
of probability densities is

d

dt
fi(p,q, t) = −p · ∇qfi + Lwfi + Lc

i,i+1(f) + Lc
i,i−1(f). (3)

Here Lw accounts for the collisions of the particles with the walls of their
respective cells, and Lc

i,i±1 for the collisions of the i-th particle with the i±1th,
viz.

Lc
i,i±1(f) =

∫
d pad q′δΛ(q − q′)|p⊥ − p⊥a |+ (4)

×[fi±1(pb,q
′)fi(pc,q) − fi(p,q)fi±1(pa,q

′)],

with p⊥b = p⊥, p⊥c = p⊥a , pc − p⊥c n̂ = p− p⊥n̂, and pb − p⊥b n̂ = pa − p⊥a n̂. One
can check that the distribution

µeq ≡
N∏

i=1

fi(pi,qi) = Z−1
N∏

i=1

e−βp2
i /21ΩV

(qi) (5)

is stationary for any inverse temperature β. Applied to this distribution, the
advection term in Eq. (3) is zero except on the cell borders where it cancels
with Lwfi. β may be fixed by imposing identical thermal boundary conditions
at both ends of the lattice.

When the system is set out of equilibrium by imposing different tempera-
tures at its boundaries, we proceed with a standard Chapman-Enskog expan-
sion around a local equilibrium distribution,

µleq ≡
N∏

k=1

fk(pk,qk) = Z−1

N∏

k=1

e−βkp2
k
/21ΩV

(qk), (6)

with βk = β̂(k/N) for some smooth function β̂, taking as a small parameter
the local temperature gradient. Plugging Eq. (6) into (3), we observe that only
terms of second-order in the temperature gradient survive. This is in contrast
with the case of an ordinary gas of colliding particles. This simplification
occurs because the advection term of the Boltzmann equation (3) acts only
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on the position variable within each cell and therefore not as a gradient on
the lattice dependent variables. This means that local averages with respect
to the distribution (6) are identical to local averages with respect to the true
non-equilibrium stationary state, denoted 〈·〉neq, up to 1/N2 corrections.

In particular, one may compute the average current (2) with respect to the
measure (6) and get (with βi = T−1

i ),

〈ji〉neq = −ν(Ti)(Ti+1 − Ti) + O(1/N2), (7)

where, ν(Ti) = 〈δΛ(qi−qi+1)|p⊥i −p⊥i+1|+〉Ti
is readily interpreted as the average

collision frequency between the neighbors i and i+ 1, with respect to a global
equilibrium measure at temperature Ti, Eq. (5). This computation therefore
shows that the conductivity κ(Ti), defined as

κ(Ti) ≡ lim
N→∞

− 〈ji〉neq

Ti+1 − Ti
, (8)

is identical to ν(Ti). Furthermore a simple scaling argument shows that
κ(Ti) = ν(Ti) =

√
Tiν, where ν denotes the collision frequency computed at

unit temperature. Being the result of an equilibrium integration, the frequency
may be computed with arbitrary precision.

In order to get a better picture of the process that is described by the
Boltzmann equation (3), we linearize the equation around the global equilib-
rium solution (5). Doing so, we obtain an equation similar to (3), but with
the collision operators Lc

i,i±1 now replaced by Llin
i ,

d

dt
fi(p,q, t) = −p · ∇qfi + Lwfi + 2Llin

i f, (9)

where the linearized collision operator Llin
i is obtained from Eq. (4) by replacing

fi±1 by equilibrium distributions at common inverse temperature β.
The interpretation of the stochastic process described by the linearized

collision operator is straightforward: when collisions take place, the particles
velocities are updated as though they collided with stochastic thermal walls at
inverse temperature β [56]. At each collision, the new velocities are indepen-
dent from the previous ones.

With this prescription, we now compute the conductivity using the Green-
Kubo formula, which is derived as follows. Integrated over time, the energy
current between sites i and i+ 1 takes the form

Ji([0, t]) =

∫ t

0

ji(s)ds =
1

2

∑

0≤sk
i ≤t

[
p⊥i (sk

i )
2 − p⊥i+1(s

k
i )

2
]
, (10)

where the (sk
i )k∈N are the successive collision times between particles i and

i+ 1. The Green-Kubo formula, reads in our case,

κGK(T ) =
1

2NT 2
lim
t→∞

1

t

N∑

i,k=1

〈
Ji([0, t])Jk([0, t])

〉

T
. (11)
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Using the expression (10), (2), translation-invariance and the independence of
the transfer of energy at each collision, we get, after some calculations,

κGK(T ) = (12)
1

8T 2

〈
δΛ(q0 − q1)|p⊥0 − p⊥1 |+

[
(p⊥0 )2 − (p⊥1 )2

]2〉
T
,

which, after further computations turns out to be equal to the collision fre-
quency, κGK(T ) = ν(T ).

The square-strings model displayed in Fig. 5.1 lends itself to a detailed
study of the dependence of the ratio κ/ν on the parameter values a.

To this end we consider systems of varying sizes N with both ends in con-
tact with stochastic thermal baths at respective temperatures T− = 1/2 and
T+ = 3/2. This gives rise to non-equilibrium stationary states with temper-
ature profiles such as displayed in Fig. 5.2, which, as N increases, approach
the corresponding solution of the heat equation, ∂x[κ(T (x))∂xT (x)] = 0, with
κ(T (x)) ∝

√
T (x). The ratio κ/ν is obtained by linearly extrapolating to

N → ∞ finite N measurements of the spatial averages of κ(Ti)/ν(Ti), with
κ(Ti) defined by Eq. (8) and ν(Ti) the collision frequency at the local temper-
ature, as functions of 1/N .

Figure 5.2: Non-equilibrium temperature profiles of the square-strings model
with a = 2.08, for increasing values of N = 5, 10, . . . , 50. The black curve is the
stationary solution of the heat equation. The inset displays the corresponding
measurements of 〈κ(Ti)/ν(Ti)〉. The infinite N extrapolation, κ/ν = 1.0037,
is the approximate heat conductivity reported in Table 5.1.

These values are reported in Table 5.1. Notice the excellent agreement with
the prediction κ = ν, Eq. (12), as the value of the parameter a gets closer to
its maximal allowed value, the limit of rare collisions, in close agreement with
the results presented in [42] for a class of coupled semi-dispersing billiards. In
particular we underline that the parameter range of validity of our result is very
similar to that observed in [42], which further validates that it is independent
of the detailed nature of the local dynamics.

To summarize, we have showed that the derivation of Fourier’s law in a
large class of locally confined particle systems with hard-core interactions can
be achieved from a Boltzmann-type approach with the main result that, in
the appropriate limits, the heat conductivity is identified with the collision
frequency.

The same identity was derived in [42] in the context of semi-dispersing
billiards. The comparison is interesting since, in contrast, chaos in the square-
strings model results from a defocusing mechanism which takes place after
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√
5 − a κ/ν

√
5 − a κ/ν

√
5 − a κ/ν

1.029 6.000 0.618 1.892 0.322 1.320
0.870 3.159 0.511 1.632 0.236 1.0718
0.736 2.336 0.413 1.452 0.155 1.0037

Table 5.1: Measurements of κ/ν for selected values of a, obtained from data
similar to Fig. 5.2. Our results indicate that κ/ν → 1 as a→

√
5, in agreement

with Eq. (12).

particles interact. The identity between conductivity and collision frequency
therefore proves to be more general as it accounts for the transport properties of
systems lacking the local mixing property. In fact, the only dynamical property
which is a priori necessary in our derivation is ergodicity of the local dynamics,
i.e. in the absence of interactions. This property guarantees that two neighbors
always interact provided the coupling is switched on, and that the fraction of
time during which they interact is proportional to a fixed geometrical factor
which can be adjusted by tuning the systems’ parameters.

The square-strings model is a perfect example of a system which lends
itself with ease to a precise and reliable numerical analysis, while retaining
the molecular chaos property. The square-strings model is actually a kind of
higher dimensional fully chaotic stadium and displays a very rich structure of
dynamical properties.

We regard the proof of the molecular chaos hypothesis upon which our
computation relies as a promising and realistic way to eventually obtain a
clear picture of the different mechanisms responsible for the origin of Fourier’s
law in a large class of mechanical systems.

5.2 Stochastic models for the transfer of heat

in collisional dynamics.

An important feature of the collisional models is that the evolution of en-
ergy occurs at discrete (collision) times and amounts to an exchange of kinetic
energy between neighbors. The length of the interval of time between two suc-
cessive collisions depends itself on the kinetic energy of the particle, which fixes
the

√
T dependance of the collision frequency. Our idea is to build and ana-

lyze models which are stochastic from the start and share the general structure
described by the Boltzmann description sketched above.

Thus, we want to consider dynamics which consists of a mixture of inte-
grable Hamiltonian dynamics and collisions with stochastic heat baths. The
models are made of scatterers described as heat baths and tracer particles
transferring energy between those “hot” scatterers. The tracers move in a
one-dimensional interval in which the scatterers are located on a lattice. The
motion of a tracer is ballistic except when it encounters a scatterer. At that
point its velocity is randomly updated according to a law which depends on
the temperature of the scatterer. The temperature of the scatterers is fixed
by the condition that in the stationary state, no energy is exchanged between
the scatterers and the tracers. In spirit, this is similar to the so-called self-
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consistent chain of (an-)harmonic oscillators [10, 13, 14], but in our case it may
be naturally interpreted as a condition ensuring that the energy transfer per
unit time between scatterers is constant throughout the system.

Geometrically, the systems we study are analogous to the ones introduced
and studied in [33, 34, 76]. The scatterers of our models are similar to the
energy storing devices of those models. However, in our case, the dynamics is
stochastic from the start and the action of the scatterer models the one of a
very large system. As in those models we distinguish two types of dynamics.
Depending on whether the particles are confined or not between the scatterers,
we derive a non-linear or linear profile of temperatures for the scatterers. Those
two types of behaviours described by wandering or confined tracers seem to be
universal in systems described by a collisional dynamics at a microscopic level
[33, 34, 76, 42, 43, 83]. Among the collisional dynamics described above, two
typical examples are given in [83] and [42, 43]. In [83], a detailed numerical
analysis of the complete exchange model is provided. Fourier’s law holds and
the temperature profile is linear. In our framework this may be understood as
an instance of wandering tracer dynamics. Indeed, in the complete exchange
dynamics, it is not only the energy that is exchanged between neighbors but
also the momenta of the particles. Thus, the dynamics is more similar to
the one of particles traveling through the whole system. In [42, 43], models
where the particles are confined and exchange only a fraction of their energy
are considered. They display a temperature profile identical to the ones of the
confined tracers.

As stochastic processes, our models are naturally described by Markov
renewal processes. In section 5.3, we define the tracers and scatterers models
in full generality and provide an explicit formula for the stationary measure out
of equilibrium. In section 5.3.1, we describe and analyze the properties of the
wandering tracer model in its simplest version, i.e. when a tracer encounters
a scatterer it is deterministically transmitted on the other side of the scatter.
We find that when the temperatures are fixed and the temperatures in the bulk
chosen such that the transfer of energy is constant throughout the system, then
the temperature profile of the scatterers is linear. The identity between thermal
conductivity and frequency of collisions between tracers and scatterers appears
as a natural consequence of the renewal theorem for Markov renewal processes.
Next, we study the cumulant generating function of the time-integrated current
of energy. We give a rather explicit formula allowing to compute derivatives
of any order. A striking feature is the lack of analyticity of the the generating
function. The origin of this phenomenon may traced back to the presence of
particles with arbitrarily low speed. Nevertheless, we are able to show the
validity of the Green-Kubo formula for the conductivity. The final section
5.3.3 is devoted to the analysis of the dynamics of confined tracers. In that
case, we find that the condition that there are no exchange of energy between
the scatterers and the particles imposes a non-linear profile of temperature.

5.3 Tracers and hot scatterers

We consider a gas of M non-interacting tracer particles moving through a one-
dimensional lattice of scatterers wn, n = 1, . . . , N . In between the scatterers,
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the tracers move with constant speed in the boxes Ii,

In = [n− 1, n] , n = 1, . . . , N (13)

When a tracer encounters the scatterer n, it is absorbed and re-emitted on ei-
ther side according to a certain probability distribution with a random velocity
p distributed according to the law

φ±
βn

(p) = p± βn e
−βn

p2

2 , (14)

The state space describing the motion of the particle is thus the cartesian
product of the positions space I = [0, N ] and velocity space R

∗ = R\{0},
Ω = I × R

∗. At the extremities of the system the sign of the velocity is
reversed but the particle bounces back with a random velocity distributed
according to the same law with parameter βL and βR. This dynamics defines a
Markov renewal process which we describe now more formally using the same
notations as above.

For notational simplicity, we define the dynamics for a single tracer particle,
the extension to M particles is straightforward. The particle moves in the
interval I := [0, N ], which is split into N subintervals of equal length: In :=
[n − 1, n], n = 1, . . . , N . At time t = 0, the particle starts at position q0 ∈
]0, N [ with speed p0 ∈ R

∗ := R\{0} and we define (n0, σ0) ∈ E as follows:
n0 := ⌊q + (sign(p0) + 1)/2⌋ ∈ {0, 1, . . . , N}, where ⌊·⌋ denotes the integer
part; in other words n0 is such that

{
n0 − 1 < q0 ≤ n0 if sign(p0) = +1,
n0 ≤ q0 < n0 + 1 if sign(p0) = −1.

and denotes the first scatterer the particle hits. We define moreover

σ0 :=

{
sign(p0), if n0 ∈ {1, . . . , N − 1},
−sign(p0), if n0 ∈ {0, N}.

In other words, if the first scatterer the particle hits is at the boundary {0, N}
of the system, then the particle will be reflected at the first hitting.

We suppose that the sequence Xk = (nk, σk) of scatterers visited by the
particle and signs of the velocity is a Markov chain on

E := {(n, σ), n = 1, . . . , N − 1, σ = ±1} ∪ {(0,+1), (N,−1)},

with initial state (n0, σ0) and with an irreducible probability transition matrix
on E such that

q(n,σ),(n′,σ′) =





1 if (n, σ) = (1,−1) and (n′, σ′) = (0,+1)
1 if (n, σ) = (N − 1,+1) and (n′, σ′) = (N,−1)
0 if n ∈ {1, . . . , N − 1} and n′ − n 6= σ′.

The first two conditions mean that the tracer is always reflected at n = 0 and
n = N . The last condition means that the new sign σ′ gives the next scatterer
n′ visited: if σ′ = +1 then n′ = n + 1, if σ′ = −1 then n′ = n − 1. The
irreducibility assumption gives the existence of a unique invariant probability
measure that we call (να)α∈E .
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We now define the time the particle takes between two subsequent visits
to the scatterers. Conditionally on H = σ((Xk)k≥0), the sequence (τk)k≥1 is
independent with distribution defined by

P(τk ∈ dτ | H) = P(τk ∈ dτ |Xk−1) =
βn

τ 3
exp

(
− βn

2τ 2

) 1(τ>0) dτ =: ψn(dτ)

(15)
on the event {Xk−1 = (n, σ)}, where β0, . . . , βN ∈ R+. We consider now
the Markov chain (Xk)k≥0 with initial state X0 = (n, σ) and the associated
sequence (τk)k≥1. The time of the first collision with a wall is

S0 = S0(q0, p0) :=
n0 − q0
p0

> 0,

and the time of the k-th collision with one of the scatterers is

Sk := S0 + τ1 + · · ·+ τk, k ≥ 1.

Before time S0, the particle moves with uniform velocity p. Between time Sk−1

and time Sk, the particle moves with uniform velocity σk

τk
and (Sk)k≥0 is the

sequence of times when qt ∈ {0, . . . , N}. In particular we define the sequence
of incoming velocity vk at time Sk

v0 := p0, vk :=
σk

τk
, k ≥ 1. (16)

We define precisely the stochastic process (qt, pt)t≥0 with values in [0, N ]×R
∗

(qt, pt) :=





(q0 + p0t, p0) if t < S0,

(
nk−1 + σk

τk
(t− Sk−1),

σk

τk

)
if Sk−1 ≤ t < Sk, k ≥ 1,

(17)

and we use the notation Xk = (nk, σk), Xk−1 = (nk−1, σk−1). The invariant
measure of the process is given explicitely in the following proposition.

Proposition 21 The process (qt, pt)t≥0 is Markov and its only invariant mea-
sure on [0, 1] × R

∗ is given by

γ(dq, dp) =
1

ZN

N∑

n=1

1In
(q)

∑

σ=±1

(
ν(n−1,σ) q(n−1,σ),(n,+1) 1(p>0) βn−1 e

−βn−1
p2

2 +(18)

+ ν(n,σ) q(n,σ),(n−1,−1) 1(p<0) βn e
−βn

p2

2

)
dq dp(19)

where ZN =
√

π
2

∑
(n,σ)∈E ν(n,σ)

√
βn.

5.3.1 Wandering tracers

In the first model that we study, when a tracer reaches a scatterer n ∈
{1, . . . , N − 1}, it is absorbed on one side and re-emitted on the other side
with a random velocity distributed according to a law determined by the tem-
perature of the scatterers. The sign of the velocity changes when and only
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when the tracer reaches the scatterers 0 or N . The transition matrix of the
underlying Markov chain is

q(n,σ),(n′,σ′) =






1 if n′ = n+ σ /∈ {0, N} and σ = σ′

1 if (n, σ) = (1,−1) and (n′, σ′) = (0,+1)
1 if (n, σ) = (N − 1,+1) and (n′, σ′) = (N,−1)
0 otherwise.

The associated invariant probability measure given is the uniform distribution
on E. In fact, in this case the Markov chain moves deterministically as follows:
Xk = (nk, σk) where






nk = f (|n0 + σ0k|mod2N) , f(i) := N − |N − i|, i = 0, . . . , 2N

σk = σ0 (−1)⌊(n+σ0(n0−N)+N)/N⌋, k ≥ 1.
(20)

In particular, we have the following periodicity

(Xk)k≥0
d
= (Xk+2N)k≥0 under P(n0,σ0) (21)

where
d
= denotes equality in distribution. Proposition 21 becomes

Proposition 22 The process (qt, pt)t≥0 is Markov and its only invariant mea-
sure on [0, 1] × R

∗ is given by

γ(dq, dp) =
1

ZN

N∑

n=1

1In
(q)

(1(p>0) βn−1 e
−βn−1

p2

2 + 1(p<0) βn e
−βn

p2

2

)
dq dp

(22)

where ZN =
√

π
2

∑N
n=1

(√
βn−1 +

√
βn

)
.

The first useful result is the computation of the asymptotic frequency of colli-
sion of a tracer with a fixed scatterer.

Proposition 23 For n ∈ {0, . . . , N} set φn,0 := inf{ℓ ≥ 0 : nℓ = n},

φn,k+1 := inf{ℓ > φn,k : nℓ = n}, k ≥ 0

and

Nn
t :=

∞∑

k=1

1(Sφn,k
≤t), N̂n

t :=
∞∑

k=1

2 1(Sφn,2k
≤t), t ≥ 0. (23)

Then for any initial condition (q0, p0), P(q0,p0)-a.s.

lim
t→+∞

Nn
t

t
= lim

t→+∞

N̂n
t

t
=

2

ZN

, if n ∈ {1, . . . , N − 1}, (24)

lim
t→+∞

Nn
t

t
=

1

ZN
, if n ∈ {0, N}. (25)
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We next identify the physical quantities of interest. The energy exchanged
between the scatterer n and a particle during a time interval [0, t] is given by

En([0, t]) :=
1

2

∑

k≥0: Sk≤t

(
v2

k+1 − v2
k

)1(nk=n),

recall that, by (16) and (17), vk and vk+1 are respectively the incoming and
the outcoming velocity at time Sk. The total entropy flow due to the exchange
of energy between the scatterers and a particle is given by

Sn([0, t]) := −En([0, t])

Tn
, S([0, t]) :=

N∑

n=0

Sn([0, t]). (26)

The energy exchanged between scatterers n and (n+ 1) during a time interval
[0, t] is

Jn→n+1([0, t]) :=
1

2

∑

k≥1: Sk≤t

v2
k

(1(nk−1=n, σk−1=1) − 1(nk−1=n+1, σk−1=−1)

)
.

We define the energy flow per unit time in the stationary state by

En := lim
t→+∞

1

t
En([0, t]). (27)

Similarly, the entropy flow per unit time is given by

Sn := lim
t→+∞

1

t
Sn([0, t]), S :=

N∑

n=0

Sn (28)

and the current of energy between scatterers wn and wn+1 is given by the
transfer of energy per unit time,

Jn := lim
t→+∞

1

t
Jn→n+1([0, t]). (29)

Proposition 24 The limits in (27), (28) and (29) exist P(q0,p0) a.s. and for
all n = 1, . . . , N − 1,

En =
2Tn − Tn−1 − Tn+1

ZN

and E0 =
T0 − T1

ZN

, EN =
TN − TN−1

ZN

, (30)

Jn =
Tn − Tn+1

ZN
, S =

1

ZN

N−1∑

n=0

(Tn − Tn+1)
2

TnTn+1
≥ 0. (31)

From (30) and (31), we have the obvious result

Proposition 25 (Self-consistency condition) The only collection (Tn)n=0,...,N

such that
En = 0, n = 1, . . . , N − 1

with T0 = TL and TN = TR is

Tn = TL +
n

N
(TR − TL), n = 0, . . . , N. (32)

The entropy flow per unit time S is equal to 0 if and only if TL = TR.
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Note that the condition on the exchange of energy is imposed only for the
scatterers. In contrast, when TL 6= TR the tracer will always exchange energy
with the boundary walls.
Let us consider now MN (to be fixed) non-interacting tracer particles described
by their momenta and positions (p, q) = (pi, qi)1≤i≤MN

and moving through
the array of scatterers. As the motions of the tracers are independent, the
generalization is straightforward. The corresponding stationary measure is
given by

γMN (dq, dp) =

MN∏

i=1

γ(dqi, dpi) (33)

and the total average current between scatterers wn and wn+1 is the sum of
the contribution of each particle in (31)

J MN
n = MN

Tn − Tn+1

ZN
. (34)

The total rate of energy exchanged between the scatterer wn and the tracers
in the stationary state is given by

EMN
n = MN

2Tn − Tn−1 − Tn+1

ZN

. (35)

Thus, if the the self-consistency condition is imposed and the temperatures of
the scatterers is given by (32), then, by (34), one has

J MN
n = − MN

NZN

(TR − TL). (36)

The local conductivity is defined as the ratio of the average current of energy
to the local temperature gradient, namely,

κn ≡ lim
N→∞

J MN
n

Tn − Tn+1

= lim
N→∞

MN

ZN

. (37)

If the temperature profile is given by (32), then one may compute the explicit
asymptotic behavior of ZN in the large N limit

lim
N→∞

ZN

N
=

√
2π

∫ 1

0

dx

(TL + x(TR − TL))
1
2

=
2
√

2π

T
1
2

R + T
1
2

L

. (38)

Thus for a number of tracers MN = o(N), we have κn = 0. This is because
when the number of scatterers increases, the proportion of time that a given
tracer spends carrying energy from scatterer wn to wn+1 goes to zero simply
because the tracer must go back and forth in a larger and larger system.
However, we see that if we take as many tracer particles as scatterers, namely
MN = N , then Fourier’s law holds, i.e the conductivity is finite. Its value is
given by

κn =
T

1
2

R + T
1
2

L

2
√

2π
. (39)

Notice that κn does not depend on n. In particular, if TL = TR = T

κn =

√
T

2π
. (40)
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5.3.2 Cumulant generating function and the Gallavotti-
Cohen symmetry relation

We denote B = (β0, . . . , βN) ∈ R
N+1
+ . We do not need in this section to assume

that Ti := β−1
i satisfy (32). Fix n ∈ {0, . . . , N − 1}. We are going to compute

and study the properties of the cumulant generating function,

fn(λ,B) := lim
t→+∞

1

t
log E (exp (−λJn([0, t]))) , ∀λ ∈ ] − βn, βn+1[. (41)

We define ∆n(α) :=
(1(i=n, σ=1) − 1(i=n+1, σ=−1)

)
for α = (i, σ) ∈ E. For

λ ∈ ] − βn, βn+1[ and ǫ ≥ 0, we define

Cn(α, λ, ǫ) := βi

∫ +∞

0

v e−
ǫ
v
−(βi+λ ∆n(α)) v2

2 dv, α = (i, σ) ∈ E. (42)

and the function Fn, which is crucial in the computation of fn(λ,B),

Fn(λ, ǫ,B) :=
∏

α∈E

Cn(α, λ, ǫ).

Fn will be identified with the spectral radius of some matrix.
We anticipate a striking feature of our model: for βn 6= βn+1, the cumu-

lant generating function fn(·,B) is not analytic around λ = 0. In particular,
fn(·,B) > 0 for λ in a left neighborhood of 0, while fn(·,B) = 0 in a right
neighborhood of 0.

Proposition 26 If βn ≤ βn+1 then ∀λ ∈ ]−βn, 0[∪ ]βn+1−βn, βn+1[, fn(λ,B)
is given by the unique solution ǫ0 > 0 to the equation

Fn(λ, ǫ0,B) = 1.

If λ ∈ [0, βn+1 − βn], then fn(λ,B) = 0. The function fn(·,B) is convex
and continuous over ]− βn, βn+1[ and satisfies the Gallavotti-Cohen symmetry
relation

fn(λ,B) = fn(βn+1 − βn − λ,B). (43)

5.3.3 Confined tracers

In this section, we introduce a model which gives rise to a qualitatively dif-
ferent behavior for the self-consistent temperature profile. The self-consistent
temperature profile of the scatterers in the wandering tracers model was lin-
ear. We will see that in the case of confined tracers, the temperature profile
becomes non-linear. A major difference between the two models is the depen-
dence of the thermal conductivity on the set of temperatures of the scatterers.
For an arbitrary temperature distribution of the scatterers, we have seen that
in the case of wandering tracers, the conductivity was identified with a fre-
quency of collisions of a tracer with two neighboring scatterers. As such and
because the wandering tracer travels through the whole system, it was depen-
dent on the temperature of every scatterer. In the case of confined tracers, the
conductivity is a purely local function of the set of temperatures.
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The general structure of the process is again one of a Markov renewal process,
the notations and proofs are strictly analogous to the case of wandering tracers.
In this model, the disposition of the scatterers is the same but there are exactly
N tracer particles locked in between the scatterers, including the ones on the
boundaries. The n-th particle moves in between the scatterers, in the interval
In = [n − 1, n], being reflected at the scatterers wn−1 and wn with a random
velocity p distributed according to

φ±
βn

(p) = p±βne
−βn

p2

2 . (44)

Because the particle is reflected, the sign in the distribution is the opposite of
the sign of the incoming velocity. Those models are described by N indepen-
dent Markov renewal processes. Each scatterer exchange energy with its two
adjacent tracer particles and in order to express the self-consistency condition,
we must introduce notations to describe the motion of each tracer. We describe
now the process describing the motion of the n-th particle traveling between
scatterers wn and wn+1. The state space of the Markov chain is E = {−1,+1},
with transition probability defined by q1,−1 = q−1,1 = 0.

Let (qn,0, pn,0) the initial data and velocity of the n-th particle. We define
σn,0 = sign(pn,0). We consider now the Markov chain (σn,k)k≥0 in E with
initial state X0 = σn,0. In fact, the Markov chain has a deterministic evolution
σn,k = (−1)kσn,0, k ≥ 0.

For each σ ∈ E, we write σ̂ = 1
2 (σ+ 1). Then the time of the first collision

with a scatterer is

Sn,0 = Sn,0(qn,0, pn,0) :=
n+ σ̂n,0 − qn,0

pn,0

> 0,

We now define the time the particle takes between two subsequent visits to the
scatterers. Conditionally on the σ-algebra generated by (σn,k)k≥0 the sequence
(τn,k)k≥1 is independent with distribution defined by

P(τn,k ∈ dτ | σn,k−1) =
βn+bσn,k−1

τ 3
exp

(
−βn+bσn,k−1

2τ 2

) 1(τ>0) dτ. (45)

The time of the k-th collision with one of the two scatterers wn and wn+1 is

Sn,k := Sn,0 + τn,1 + · · · + τn,k, k ≥ 1.

Before time Sn,0, the particle moves with uniform velocity pn,0. Between
time Sn,k−1 and time Sn,k, the particle moves with uniform velocity

σn,k

τn,k
and

(Sn,k)k≥0 is the sequence of times when qn,t ∈ {n, n + 1}. In particular we
define the sequence of incoming velocities vn,k at time Sn,k

vn,0 := pn,0, vn,k :=
σn,k

τn,k

, k ≥ 1. (46)

We define the stochastic process (qn,t, pn,t)t≥0 with values in [n, n+ 1] × R
∗

(qt, pt) :=






(qn,0 + pn,0t, pn,0) if t < Sn,0,

(
n+ σ̂n,k−1 +

σn,k

τn,k
(t− Sn,k−1),

σn,k

τn,k

)
if Sn,k−1 ≤ t < Sn,k, k ≥ 1,

(47)
Then, we have the result,
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Proposition 27 The process ((qn,t, pn,t)t>0)0≤n≤N−1 is Markov and its only
invariant measure is given by

µ(p, q) =
1

ẐN

N−1∏

n=0

1In
(qn)

[1(pn>0) βn e
−βn

p2
n
2 + 1(pn<0) βn+1 e

−βn+1
p2
n
2

]
(48)

where β0 = βL and βN = βR and ZN is the normalization constant,

ẐN :=

N−1∏

n=0

Zn, Zn :=

(
πβn

2

) 1
2

+

(
πβn+1

2

) 1
2

. (49)

We next identify the physical quantities of interest. The energy exchanged
between the scatterer n and its two neighboring particles during a time interval
[0, t] is given by

En([0, t]) :=
1

2

∑

k≥0: Sn,k≤t

(
v2

n,k+1 − v2
n,k

)1(bσn,k=0)

+
1

2

∑

k≥0: Sn−1,k≤t

(
v2

n−1,k+1 − v2
n−1,k

)1(bσn−1,k=1),

recall that, by (46) and (47), vn,k and vn,k+1 are respectively the incoming and
the outcoming velocity of the n-th particle at time Sn,k. The energy exchanged
between scatterers n and (n + 1) during a time interval [0, t] is given by

Jn→n+1([0, t]) :=
1

2

∑

k≥1: Sn,k≤t

v2
n,k σn,k

The total entropy flow Sn([0, t]) and S([0, t]) due to the exchange of energy
between the scatterers and a particle can be defined as in (26). The energy
flow per unit time En in the stationary state, the entropy flow per unit time
Sn and S, and the average current of energy per unit time Jn between wn and
wn+1, can be defined as in, respectively, (27), (28) and (29).

As in the case of wandering tracers (Proposition 24), we may study the
above limits defining the physical properties of the model. As compared to
Proposition 24, the main difference resides in the expression of the energy
exchanged En with the system. This is the origin of the difference of shapes of
the temperature profiles of the two models.

Proposition 28 For all n = 1, . . . , N − 1,

En =
Tn − Tn−1

Zn−1
+
Tn − Tn+1

Zn
and E0 =

T0 − T1

Z0
, EN =

TN − TN−1

ZN−1
, (50)

Jn =
Tn − Tn+1

Zn

, S =
N−1∑

n=0

(Tn − Tn+1)
2

ZnTnTn+1

≥ 0. (51)

The proof is completely analogous to that of Proposition (24) and we do not
repeat it. The main feature of the proof is again that by using the renewal
theorem, the conductivity

κn =
Jn

Tn − Tn+1
=

1

Zn

appears as a frequency of collision of the tracer with the walls of the box to
which it is confined.
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5.3.4 Self-consistency condition, temperature profile and
Fourier’s law.

We now derive the consequence of the self-consistency condition En = 0, n =
1, . . . , N − 1 on the shape of the temperature profile.
We set

gN(x) :=

N−1∑

i=0

1[ i
N

, i+1
N [(x)N(Ti+1 − Ti)

and

hN(x) := TL +

∫ x

0

gN(t) dt.

Notice that hN (i/N) = Ti and that hN linearly interpolates between these
values.

Proposition 29 (Self-consistency condition) The only collection (Tn)n=0,...,N

such that
En = 0, n = 1, . . . , N − 1

with T0 = TL and TN = TR, is the solution of

(
(Tn − Tn+1)

(Tn)−
1
2 + (Tn+1)

− 1
2

+
(Tn − Tn−1)

(Tn)−
1
2 + (Tn−1)

− 1
2

)
= 0, 1 ≤ n ≤ N − 1. (52)

In this case, when N → +∞, hN converges uniformly to the function

h(x) :=
(
T

3
2

L + x(T
3
2

R − T
3
2

L )
) 2

3

, x ∈ [0, 1], (53)

unique solution of the equation





(
h

1
2 h′
)′

= 0, x ∈]0, 1[,

h(0) = TL, h(1) = TR
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