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INTRODUCTION 

Invented in 1859 by French physicist Gaston Planté, lead acid batteries represent the oldest 
design and are the most commonly used rechargeable batteries today. Despite having modest 
energy-to-weight ratio and energy-to-volume ratio, their ability to supply high surge currents 
means that the cells maintain a relatively large power-to-weight ratio. These features, along 
with their low cost, their high recycling ratio, 97%, and their technological maturity make 
them attractive for several applications. Three main applications of lead acid batteries are: 
starting, lighting and ignition batteries (SLI batteries), motive batteries and stationary 
batteries.  

Increasing attention to the global climate change and the sustainable development open new 
applications for energy storage using lead acid batteries: electric transport, renewable energies 
such as photovoltaic and wind, grid storage, quality and emergency supplies. In some cases, 
new applications need new charge algorithms. One should not forget either, the economic 
factor that requires a deep understanding of phenomena inside the battery in order to improve 
its lifetime. 

This has driven Electricité de France (EDF) in collaboration with Université de Montpellier II 
to do research on lead acid batteries and their applications. It includes the PhD works of H. 
Smimite (on fast charge of valve regulated lead acid batteries for electric car, 1997), of P. Izzo 
(on battery management for photovoltaic applications, 2002) and of G. Dillenseger (on 
methods of maintaining the charge for stationary lead acid batteries, 2004). In continuity of 
these works, this thesis investigates the behaviors of lead acid batteries in extreme conditions 
related to three main topics. The first is accelerated charges of flooded batteries used in 
electric buses, in grid-connected inverter combined with energy storage for production 
optimization. The second is deep discharges with polarity inversion. The last topic is 
maintaining the charge of stationary batteries with imposed low current. First of all, this work 
consists in studying and analyzing the state of the art in this field throughout the existing 
results. Then, new charge methods are investigated. Finally, these new charge methods are 
tested with laboratory tools as well as with commercial chargers.  

This thesis begins with a chapter about the generality of lead acid batteries, especially 
intended to non-electro-chemist colleagues. It introduces how lead acid batteries work as well 
as their behaviors during several conditions that will be detailed in the next chapters. The 
second chapter deals with the charge of lead acid batteries: from the traditional charge to 
accelerated and fast charges. A new charge method for accelerated and fast charges of flooded 
lead acid batteries is developed and tested. The discharge of lead acid batteries is discussed in 
the third chapter, where batteries are subjected to very deep discharge to evaluate capacities of 
both negative and positive electrodes. The polarity inversion phenomenon is discussed here in 
detail through experiments on different types of lead acid batteries. The last chapter deals 
with maintaining the charge of stationary lead acid batteries. A new method of maintaining 
the charge with imposed low currents and periodical charges is tested and compared to the 
case of open circuit (without maintaining the charge) and traditional float charges. This 
method is applied in a new management system for standby lead acid batteries at EDF. The 
thesis ends with a long abstract in French.  
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CHAPTER 1 - LEAD ACID BATTERIES [1-10] 

Introduction  

This chapter has been written especially for my electrical engineer colleagues, who are not 
familiar with electrochemical matters as I was when I began this thesis work. It presents lead 
acid battery as a complex electrochemical system from constitution to functional principle and 
basic laws of thermodynamic and kinetic that govern the whole system in six main parts. The 
first part deals with elements that set up a lead acid battery as well as their technologies and 
application fields. The second part explains the function of a lead acid cell in converting 
chemical energy to electrical energy and vice versa. The third part presents reactions of a lead 
acid cell consisting of main reactions (charge and discharge of active materials) and side 
reactions (water electrolysis, oxygen recombination, corrosion…). The fourth and fifth parts 
describe the thermodynamic and kinetic laws that govern the function of a lead acid cell when 
it is at open circuit as well as when an external current flows. The final party defines 
characteristic parameters of a lead acid cell: capacity, state of charge, state of health. 

1.1 LEAD ACID BATTERY CONSTITUTION, TECHNOLOGIES AND MARKET [1-6] 

A lead acid battery consists of several cells, also called accumulators. The nominal voltage of 
a cell is 2 Volt. These cells are connected in series configuration to obtain the expected 
voltage for applications.  

The 2 Volt cell is the basic unit of a lead acid battery. It consists of an alternately gathered 
group of positive plates (whose active material is PbO2) and negative plates (Pb). The number 
of plates of each polarity and their dimensions are the main parameters, which define the cell 
capacity. In order to avoid short-circuits between the different polarity plates, an insulating 
micro-porous separator is placed between these plates during assembly. Positive plates are put 
together in pack as well as negative plates. The positive and negative packs are then grouped 
together and finally put in a container filled with an electrolyte. All of this, i.e. packs of 
negative and positive plates, electrolyte and container, form a cell (cf. Figure 1). The 
electrolyte is a solution of sulfuric acid and distilled water. The container is generally made of 
polystyrene or ABS1. The container has to keep the acid within the cell and at the same time 
provide mechanical support to the battery. It is designed in a variety of ways to prevent 
leakage and dry-out while allowing accumulated gases to escape. The two terminals made of 
lead metal connected with the pack of each polarity allow the connection to an external 
circuit. 

1.1.1 Positive electrode 

There are two kinds of positive plate: flat plate and tubular plate. 

1.1.1.1 Flat plate 

The “Faure flat plate” consists of a lead grid alloy that assures both the mechanic support of 
the plate and the current collector (cf. Figure 2). This grid is filled with a paste prepared from 
sulfuric acid and a powder consisting of a combination of lead oxide and lead metal. Cells are 
then subjected to the equivalent of a prolonged charge called “formation”. During this 

                                                 
1 Acrylonitrile-Butadiene-Styrene (plastic – ISO 1043) 
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formation phase, the initial mixing of oxide is oxidized to lead dioxide (PbO2) at the positive 
plate. 

Grid 
alloy

Positive 
plate

Microporous 
separateur

Negative
plate

Positive 
plate pack

Negative 
plate pack

Positive 
cell 

connection

Negative 
cell 

connection

Negative 
terminal

 

Figure 1: Schematic representation of a flooded lead acid battery [7] 

The grading of the powder is important because it determines the active material specific 
surface, which is the reactive surface: the pore size is of the order of the micron. For the 
positive plate, the reactive surface is about 2 m2/g. 

The “flat plate” technology is the cheapest (because it contains a minimum of material and its 
manufacturing process is simple), the most fragile and is the technology able to reach the best 
mass performances. It is mainly (100 % in United State) used in SLI batteries (Starting, 
Lighting, Ignition). 

 

Figure 2: Lead acid battery plates: flat plate and tubular plate [8] 
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1.1.1.2 Tubular plate 

The tubular plate consists of lead alloy spines (charge collector) slipped into a porous tube 
that contains the active material in the free space between the spine and the braided tube (cf. 
Figure 2). The positive electrode is thus made up of series of vertical cylindrical tubes one 
next to the other. The cylindrical shape allows the dilatation and the contraction of the active 
material during charge-discharge cycles while keeping almost an excellent cohesion and a 
good electric contact with the central conductor. This is the reason why the electrode life span 
is found to be improved.  

This robust technology is used in applications that require high endurance in cycles and long 
service life: heavy traction, stationary (emergence supply and photovoltaic), submarines.  

1.1.2 Negative electrode 

The negative plate is always designed according to the “flat plate” technologies. As explained 
before for the positive electrode, it consists of a grid filled with active material paste. The 
active material is made of spongy lead, which is prepared from sulfuric acid and a powder 
consisting of a combination of lead oxide and lead metal. During the formation phase, this 
combination is reduced to spongy lead metal (Pb) at the negative plate. In order to make the 
active material porosity deteriorate less rapidly, another products, called expanders, are added 
in a small quantity. Additives that are usually added to negative active material are barium 
sulfate (BaSO4) and carbon (C). The reactive surface of negative material is about 0.2 – 0.4 
m2/g. 

1.1.3 Grid [1, 8] 

The grids (and the spines), fundamental elements of the battery, consist of lead alloys. They 
are used at the same time to collect the current and to mechanically hold the active material. 
Many researches have been done to improve the grid alloy because the grid corrosion is one 
of the most frequent causes that limit the battery life time [9, 10]. Several studies have also 
been done to reduce the high self-discharge rate of the negative electrode in batteries with 
antimony positive grid alloys.  

The choice of metals for the grid remains limited. The lead is almost the only metal that does 
not constitute a poison for the battery while resisting to the corrosive conditions of the 
electrolyte. Since the pure lead is too soft to be directly used, other metals (like tin, antimony, 
calcium, silver) are inserted into the grid composition in order to improve the toughness as 
well as the resistance against corrosion. 

Conventional grid alloys are based on lead / antimony alloys containing up to 8% Sb. The role 
of the Sb is to strengthen and harden the Pb through the formation of a finely dispersed 
eutectic phase at the grain boundaries. The tensile strength, yield strength and creep resistance 
of the alloy all increase with Sb content [11]. In addition, the alloying agent improves 
castability and the adherence of the paste to the plate. Unfortunately, the addition of antimony 
has also some disadvantages. During battery charge, the Sb dissolves (corrodes) progressively 
from the positive grid, diffuses through the electrolyte and deposits on the negative electrode 
where it reduces the overvoltage (cf. 1.5.4.2) for hydrogen evolution. This results in greater 
gassing rates, the water loss as well as the self-discharge rates and in the need for more 
frequent maintenance. This is called “antimony effect”.  
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In order to overcome this problem, a range of low-Sb alloys has been developed. Early 
attempts to use low-Sb alloys led to cracking on casting, but this was overcome by the 
addition of grain refining agents such as As, Cu, Se, S and Te. These enhance the stiffness, 
the tensile strength and the corrosion resistance of the grid alloys. Castability is improved by 
the addition of 0.1 wt.% Sn that increases the fluidity of lead alloys. Low-Sb alloys, as used in 
“low-maintenance” automotive batteries, contain 2 wt.% Sb. 

Many automotive batteries today are of the so-called “maintenance-free” variety in which the 
grids are constructed of Pb/Ca alloy (up to 0.1 wt.% Ca), sometimes with the addition of Sn or 
Sr. On quenching the grids during manufacture, a dispersion of Pb3Ca forms around the pure 
lead grains resulting in precipitation hardening. These alloys exhibit higher hydrogen 
overvoltage than antimony types and water loss during charging is largely eliminated, 
provided that the top-of-charge voltage is controlled. They have improved electrical 
conductivity, but are substantially weaker than their Pb/Sb counterparts. Batteries with Pb/Ca 
grids are normally used in “float” conditions (e.g. automotive or stand-by applications). They 
are unsuited to regular deep discharge as the cycle life under these conditions is strictly 
limited. Explanations advanced for this are complex, involving the build-up and cracking of 
corrosion layers on the Pb/Ca plate and structural changes in the porous active material. 

Table 1: Grid alloys for lead acid batteries, their characteristics and fields of applications [1], 

Kind of alloy Advantage Disadvantage Field of applications 
Standard antimony 

4-11%Sb 
As, Sn, Cu (Ag) 

Strong grids, stability for 
active material in positive 
electrode, improvement of 
cycle performance 

Increase of water 
decomposition rate with 
service life 

Traction 

Low antimony 
0.5 – 3.5% Sb 
Se, Te, S, Cu1, As, Sn, 
(Al) 

Decrease of Sb 
contamination at negative 
electrode 

Stability of capacity during 
float charge, preservation 
of cycle performance 

Low maintenance 
(stationary, traction), SLI 
batteries 

Standard calcium 
0.06 – 0.12% Ca 
0 to 3 % Sn, (Al) 

No Sb contamination at 
negative electrode 

Grid growth, reduced 
stability of capacity 

Stationary, vented and 
VRLA batteries, SLI 
batteries 

Pure lead 
Improvement of deep-
discharge performance 

Softness 
Planté plates, BELL 
system round cell (BELL 
Linage 2000) 

Antimony/cadmium 
1.5%Sb, 1.5 Cd 

Low antimony release Toxicity of cadmium VRLA batteries 

1.1.4 Separator 

In general, the separator must have at least the following properties: 

• Electronic isolation 
• Ionic conduction by providing open pores that are filled with acid. The ionic transfer 

between both electrodes has to be easy so that the internal resistance of the lead acid 
cell is minimized 

• High porosity for a good ionic conductivity but also a low displacement of acid 
• Appreciated mechanic resistance in order to suffer the variation of active material 

volume during discharge-charge cycles  
• Suitable chemical resistance to withstand the strong corrosive electrolyte.  

The separators are usually manufactured in polymer (mainly in polyethylene) or glass fibres. 
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1.1.5 Electrolyte 

According to the types of batteries, the electrolyte can be liquid, gelled or absorbent. Inside 
lead acid accumulator, the electrolyte plays two roles: it assures the electric transport in ionic 
conduction (but not electric conduction as this would cause internal short-circuit) and it 
participates, like a reactant, at discharge-charge reactions. In the electrolyte, the ionic 
movement is due to many phenomena: 

• Migration: electric field effect on charged particles 
• Diffusion: concentration gradient effect 
• Convection: density gradient effect due to, for example, the thermal effects in the 

accumulator 

1.1.5.1 Liquid electrolyte 

The electrolyte is a solution whose solvent is distilled water and the solute is sulfuric acid. 
The composition ratio defines the concentration, which is linked, for a given temperature to 
the electrolyte density. An electrolyte having 33% (in mass) of sulfuric acid has a density of 
about 1.25. 

At liquid state, the water molecule disassociates into ions H3O
+ and OH-. The H+ ion only 

does not exist, it associates always with a water molecule to form an H3O
+ ion. 

In water, the sulfuric acid molecules disassociate by a majority to H+ (which become ions 
H3O

+) and HSO4
-. It is present also in a low proportion the sulfate ions SO4

2-. 

1.1.5.2 Immobilized electrolyte 

The electrolyte is immobilized in order to provide open space for the fast transport of oxygen 
as a gas. Otherwise, the internal oxygen cycle (cf. 1.3.3.2) is hindered by the too slow 
diffusion rate of the dissolved oxygen. In lead acid battery two ways are used for electrolyte 
immobilization: absorption of the sulfuric acid by a glass felt, or gelled acid by addition of 
SiO2.  

One characteristic of both methods of electrolyte immobilization is that, during service, the 
(very small quantity) water loss leads to an increase of the gas channels. The transport of 
oxygen from the positive to the negative electrode is therefore made easier. The result of this 
is a slight increase in float-charge current during the operational life of the batteries due to 
reduced polarization of the negative electrode (cf. 4.1.3.2).  

Absorption of the electrolyte by a glass mat (AGM)  

The electrolyte is absorbed into fine fibres of glass felts (diameters in the µm range) forming a 
pore system. Such glass felts simultaneously fulfill a double function: 

• They act as a conventional separator that insulates the electrodes of different polarities 
from one another and prevents short-circuits between the electrodes, since lead 
dendrites do not grow from the negative to the positive electrode through the fine pore 
system of glass felt. 

• They immobilize the electrolyte by effective absorption that fills most of their pores. 
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(a) 

 

(b) 

Figure 3: (a) Shattered view of a VRLA AGM battery, EnerSys GENESIS. (b) VRLA battery in spiral 
wound design [12] 

In a battery, the dosage of the electrolyte must be kept low enough that the absorbent mat 
separator is not completely saturated with electrolyte, so the required gas channels are formed 
in the felt. Otherwise, the battery acts at least partially, like a vented one, until water loss has 
sufficiently reduced the amount of water. 

Gelled electrolyte by addition of SiO2 

Sulfuric acid, in the concentrations usually applied in batteries, forms a solid gel when about 
6% SiO2 are added. It is a thixotropic gel that can be kept highly liquid by intensive agitation, 
which is an advantage for filling the battery. Shrinkage during solidification squeezes 
electrolyte out of the gel and forms cracks that run through the solid electrolyte and allow fast 
transport of gaseous oxygen. Real pores, as in a felt, cannot be observed in the gelled 
electrolyte. But the gelled sulfuric acid behaves in the same way as in a felt, with a pore 
structure one order of magnitude finer than that of the usual microglass-mat separator.  

Gelled electrolyte cannot fulfill the function of a separator, since it does not suppress 
penetration of lead dendrites.  

The electrolyte volume and its density are defined by manufacturers according to battery 
types and utilizations. It is a trade-off between the wanted capacity, the lifetime, the provided 
current intensity and the expected behavior at low temperatures (the temperature affects the 
viscosity and therefore the electrolyte conductivity).  

1.1.6 Lead acid battery families 

In this thesis work, two principal families of lead acid battery are presented: flooded (vented) 
batteries and VRLA (Valve-Regulated Lead Acid Battery) batteries. They differ from each 
other in the state of their electrolytes: liquid electrolyte for flooded batteries and immobilized 
electrolyte for VRLA batteries.  
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1.1.6.1 Flooded batteries 

The flooded or vented battery is the first used-technology of lead acid battery, created by 
Planté in 1859. The word “flooded” means that the electrodes are immersed in a solution of 
sulfuric acid, and the word “vented” relates to the gas productions almost not recombining 
and venting out of the battery. The combination between hydrogen and ambient air can be 
potentially explosive as soon as wt.4% of hydrogen in volume.  

Some flooded batteries produced actually are considered to be “maintenance free”. This 
associates to the fact that the electrolyte consummation is weak and the initial electrolyte 
reservation is sufficient to assure a good function of the battery during its lifetime service. 
Their grid alloys consist of low-antimony or calcium grids which lead to strong polarizations 
of oxygen and hydrogen 

1.1.6.2 VRLA batteries 

The first VRLA batteries of the SONNENSCHEIN society appeared in the battery market at 
the end of 1950. Different names are in use for this kind of lead acid battery such as “sealed 
lead acid battery”, “sealed maintenance free lead acid battery”, “sealed valve-regulated lead 
acid battery” and “valve-regulated lead acid battery”. The words “sealed” and “valve-
regulated” relate to the fact that in this technology of battery, thanks to the immobilized 
electrolyte, the oxygen can be fast enough transported from positive to negative electrodes 
and reduce into water, the gas production is therefore strongly reduced; a regulated valve is 
sufficient to escape gas. In fact, the term “sealed” is not really exact because the generation of 
hydrogen can never be avoided completely, therefore there is always a small amounts gas 
escaping. Moreover, the term “valve” comprises already the term “sealed” as a valve can 
operate only when the battery itself is sealed. Hence, the term now mostly used is “Valve-
Regulated Lead Acid battery” or its abbreviation “VRLA battery”. Two main characteristics 
of the VRLA battery which differ from the flooded battery are the following: 

• There is not a continuous gas exchange between the interior of the battery and the 
surrounding atmosphere. 

• The battery is not completely sealed but equipped with a valve that opens even during 
normal operation from time to time to let the gas escape  

In VRLA batteries, only antimony free grid alloys, Pb/Ca alloys, are used. 

Table 2: Principal comparisons of two lead acid battery families: flooded and VRLA batteries [6] 

Battery family Flooded (vented) VRLA 
Electrolyte Liquid Gelled or AGM 
Positive grid alloy All kinds of grid alloys Pb/Ca and pure Pb grid alloys 

Advantage 
Longer lifetime 
The cheapest technology 

Maintenance free 
Security (very weak gas escape) 

Disadvantage 
Water consumption 
Specific installation (gas escape) 

Short service life, low reliability  
Temperature effect 

1.1.7 Lead acid battery market [13] 

Lead acid battery market is divided into three major segments:  

• Starting, lighting and ignition lead acid batteries (SLI) 
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• Motive lead acid batteries (MLA) 
• Stationary lead acid batteries (SLA) 

Lead acid batteries

Starting, lighting 
and ignition (SLI)

Motive lead acid 
(MLA)

Stationary lead 
acid (SLA)

Consumer automotive
applications

Marine applications

Other applications

Other automotive
applications

Heavy-duty vehicle
applications

Mining applications

Railroad applications

Other applications

Telecommunication 
applications

Data communication 
applications

Utility applications

Emergency lighting
applications

Security applications

Other applications  

Figure 4:Lead acid battery market: market segmentation (World), 2001. Source: Frost & Sullivan 
[13] 

VRLA batteries

Motive lead acid 
(MLA)

Stationary lead 
acid (SLA)

Standard antimony Low antimony

Flooded batteries

Pure lead grid 

Starting, lighting 
and ignition (SLI)

Standard calcium
Low antimony

Standard calcium

 

Figure 5: Lead acid battery families of flooded and VRLA batteries, their kinds of grid alloys and their 
application fields  

 

Figure 6: Lead acid battery revenue breakdown 
by product type (world), 1998-2008. All figures 
are rounded; the base year is 2001. Source: Frost 
& Sullivan [13] 
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In 2001, the world lead acid battery market generated approximately $29.28 billion, growing 
approximately 2.9 % compounded annually. 

1.2 OPERATION OF LEAD ACID CELL [14] 

Lead acid cell is able to supply electrical energy from chemical energy to a load and is able to 
re-establish its energy reserve thanks to a generator. This section explains how this system 
works.  

1.2.1 Electrochemical cell 

The potential difference between the electrode (Pb or PbO2) and the electrolyte (sulfuric acid 
solution) is called the “electrode potential”. The “absolute electrode potential” is not 
measurable, however the “relative electrode potential” can be measured in associating two 
electrode/electrolyte interfaces. This is also the schema of an electrochemical cell. 

An electrochemical cell consists of two electrode/electrolyte interfaces as shown in Figure 7. 
In the case of two different electrolytes, they are linked together by an electrolytic junction 
(ionic bridge), which allows ions flow.  

Electrode 1

Solution 1 Solution 2

Electrode 2Electrolytic 
junction

Electrode 1

Solution 1 Solution 2

Electrode 2Electrolytic 
junction

 
(a) 

Refence 
electrode: Eref

Working 
electrode: EWE

Solution 

 
(b) 

Figure 7: (a) Presentation of an Electrochemical cell. (b) Electrode Potential measurement by a 
reference electrode. The principle is the same: two electrodes with one electrolyte or with two 
electrolytes linked together by electrolyte bridge.  

1.2.1.1 Relative electrode potential and cell voltage  

As mentioned above, the absolute potential cannot be measured, since a potential difference 
can only be measured between two electronic conductors. Thus the electrode potential has to 
be related to a “reference electrode” having a stable and well-known potential, like the 
Standard Hydrogen Electrode (SHE), which is now universally used (cf. Figure 7).  

The potential difference between the working electrode and the reference electrode is called 
the electrode potential related to the reference: 

EWE/ref = EWE - Eref (1) 

The potential difference between two electrodes of a cell is the “cell voltage”. E is called cell 
voltage at open circuit; another name is “electromotive force” (emf). 

E = E2 – E1 (2) 
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1.2.1.2 Electrode polarity 

The “electrode polarity” is defined according to the sign of the cell voltage. For instance, if 
the cell voltage E is positive, the electrode 2, whose potential is E2, is said to have a positive 
polarity and the electrode 1, E1, a negative polarity and vice versa.  

In addition, when an external current flows through the cell, one of two electrodes becomes 
“anode” (gives electrons) and other becomes “cathode” (receives electrons). There is not a 
relation between the electrode polarity and its role of anode or cathode. In contrast of the 
anode and cathode notions, the electrode polarity is defined even though there is no external 
current flow. 

1.2.2 Galvanic & electrolytic cells: lead acid cell 

When an external current flows though an electrochemical cell, it becomes galvanic or 
electrolytic cell.  

1.2.2.1 Galvanic cell 

When an electrochemical cell whose voltage is V (different zero) is connected to an external 
resistance R (not infinite), a current flow is observed i = V/R. 

Galvanic cell mechanism (Figure 8): a reduction is observed at the side whose potential is 
higher (reduction of the oxidant 2 - Ox2, better oxidant then the oxidant 1 - Ox1) and an 
oxidation is observed at the side whose potential is weaker (oxidation of the reducer 1 - Red1, 
better reductive than the reducer 2 - Red2). In addition, electrode 1 gives away electrons and 
electrode 2 obtains electrons, the circulation between two electrodes is assured by an external 
circuit. Chemical energy is converted to electric energy. 

Conventionally, the electrodes at which take place reduction and oxidation are called cathode 
and anode respectively. In the case of a galvanic cell, the positive electrode plays the role of 
cathode and the negative electrode the role of anode. 

Finally, the closed circuit demands the ion passage through the electrolytic junction in order 
to maintain electro-neutrality in the solution.  

(a) 

Electrode 1

Solution 1 Solution 2

Electrode 2

V

AR

e-e-

ANODE CATHODE

Red1 Ox1 + n1e-Red1 Ox1 + n1e- Ox2 + n1e- Red2

i

 

(b) 

HSO4
-

H3O+

ANODE CATHODE

Pb       Pb2+ + 2e- Pb4+ + 2e- Pb2+

R

PbO2Pb
-- ++

 

Figure 8: Representation of a galvanic cell associated to Ox1/Red1 and Ox2/Red2 couples of electrode 
potentials E1 and E2 respectively with E1 < E2. Representation of lead acid cell as a galvanic cell. 
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1.2.2.2 Electrolytic cell 

In this type of cell, the direction of reactions at electrodes is opposite to the one in the 
galvanic cell. 

Thanks to the external generator, the direction of the electron flow is imposed to enable the 
reduction of the less oxidant (Ox1) and the oxidation of the less reductive (Red2). Electric 
energy is converted to chemical energy. Theoretically, to create electrolysis one needs to 
apply between two terminals of the cell a voltage V higher than the potential difference E 
between two electrodes. Practically, electrode polarizations and Joule loss due to the cell 
internal resistance have to be taken into account (cf. 1.5.4), so V is always higher than E for a 
electrolytic cell (in the same way, for a galvanic cell, V is always smaller than E). 

In this case, the electrodes play the opposite roles compared to the case of the galvanic cell: 
the anode for the positive electrode and the cathode for the negative electrode. 

(a) 

Electrode 1

Solution 1 Solution 2

Electrode 2

V

A

e-e-

CATHODE ANODE

Red2 Ox2 + n2e-Ox1 + n1e- Red1

i

 

(b) 

HSO4
-

H3O+

CATHODE ANODE

Pb2+ + 2e- Pb Pb2+ Pb4+ + 2e-

PbO2Pb
- +

HSO4
-

H3O+

CATHODE ANODE

Pb2+ + 2e- Pb Pb2+ Pb4+ + 2e-

PbO2Pb
-- ++

 

Figure 9: Representation of an electrolytic cell associated to Ox1/Red1 and Ox2/Red2 couples whose 
electrode potentials are E1 and E2 respectively (with E1 < E2). Representation of lead acid cell as an 
electrolytic cell. 

1.2.2.3 Lead acid cell or lead acid accumulator 

A lead acid accumulator (or a lead acid cell) is an electrochemical cell, which can work either 
as a galvanic cell (during discharging) or as an electrolytic cell (during charging). 

It has three redox states Pb0, Pb2+ and Pb4+. Pb0 is spongy metal lead; it constitutes the 
negative active material. Pb2+ is associated to SO4

2- to form insoluble PbSO4, the discharge 
product. Pb4+ is associated to O2- ions to form lead dioxide (PbO2), which is the positive 
active material. These three redox states form two pairs Pb/Pb2+ (or Pb/PbSO4) and Pb2+/Pb4+ 
(or PbSO4/PbO2) for which electronic exchange is reversible. The global operation of the lead 
acid cell can be schematized by the following reaction: 

Pb + Pb4+ 2Pb2+

discharge

charge
Pb + Pb4+ 2Pb2+

discharge

charge  

Reaction 1 
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During discharging, the cell works like a galvanic cell and supply electric energy to the load. 
During charging the cell works like an electrolytic cell to regenerate the active materials Pb 
and PbO2 at each electrode.  

1.3 PRINCIPAL & SECONDARY REACTIONS IN LEAD ACID CELL  

When producing electrical energy or storing chemical energy, chemical and electrochemical 
reactions occur inside the cell. Even when the cell is at open circuit, there are also some 
reactions happening. This section presents the main and the side reactions that can take place 
in the lead acid cell.  

1.3.1 Pourbaix diagram 

Pourbaix diagrams are used to represent the influence of pH (acid or base solutions) on the 
thermodynamic equilibrium state of the system (Nernst equations, cf. 1.4.2.1) where many 
redox pairs take place. Furthermore, it is particularly interesting to anticipate the thermo-
dynamical behaviors of the system whose redox pairs depend in different ways on the pH. In 
the case of lead acid cell, besides the principal redox pairs of Pb/Pb2+ and Pb2+/Pb4+ there are 
also the secondary pairs of H2O/O2 and H2/H2O (H2/H3O

+ and OH-/O2) as the water is always 
present in lead acid cell electrolyte. Moreover, the Pb metal of the grid alloy is not stable in 
the potential zone of the positive electrode. Thanks to Pourbaix diagrams, we will see how 
these redox pairs stay together. The pH of the lead acid cell electrolyte is between –1 and 0.  

In the literatures, it exists the potential/pH diagrams of the Pb/H2O system and of the 
Pb/H2SO4 system [15]. In this thesis, the Pourbaix diagram of the Pb/H2O system (cf. Figure 
10) is used to describe redox pairs of a lead acid cell and not the Pourbaix diagram of the 
Pb/H2SO4 system, as H2SO4 is, in general, not present at the interface of the grid/active 
material during the battery service life (cf. 1.3.3.3). 

The observations of Pourbaix diagrams of the Pb/ H2O system are the following: 

• Potential equilibrium values are about 1.68V and -0.34V (cf. 1.4.2) for the pairs 
Pb2+/Pb4+ and Pb0/Pb2+ respectively. The cell voltage at equilibrium is around 2V. 

• When the cell voltage is under 2V, the reactions take place in the sense to produced 
Pb2+; the cell is discharged. In contrast, when the cell voltage is above 2V, Pb and 
PbO2 are produced; the cell is recharged. 

• Potential equilibrium values are about 1.23 V and 0 V (cf. 1.4.2) for the pairs H2O/O2 
and H2/H2O respectively. Water electrolysis takes place as soon as a voltage is above 
1.23V. Between 0 and 1.23V, recombination of H2 and O2 can occur to reform H2O 
(cf. 1.3.3.2).  

• In the potential zone of positive electrode (around 1.68V) the Pb metal is not stable; it 
will be oxidized to Pb2+ and then to Pb4+. This is the corrosion phenomenon at the grid 
of the positive electrode. 

We keep in mind that in a lead acid cell there are not only the principal reactions of discharge-
charge but also the secondary reactions. They are water electrolysis, water recombination and 
corrosion of positive electrode grid. The secondary reactions take place always in the lead 
acid cell and take place simultaneously with the principal reactions. 
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Figure 10: Pourbaix diagram [16] 

The lines noted 0, -2, -4, -6 correspond to the 
concentration of Pb2+ ions, which equals to 1, 
10-2, 10-4, 10-6 mol/l. 

1.3.2 Main reactions (discharge-charge of active materials) 

1.3.2.1 Discharge 

During discharging, the lead acid cell, which behaves as a galvanic cell, supplies electricity to 
the load; chemical energy is converted to electrical energy. The operation of a cell during 
discharging is shown schematically in Figure 11 (a). When the cell is connected to an external 
load, the electrons flow from the negative electrode (Pb), which is oxidized (become Pb2+), 
through the external load to the positive electrode (PbO2), where they are accepted and the 
positive material reduced (become also Pb2+). The electric circuit is closed in the electrolyte 
by the positive ion flows (H3O

+) from the negative to the positive electrodes. 

(a) 

PbSO4

PbSO4

H3O
+Pb2+

Pb2+HSO4
-

- +idischarge

H2O

PbSO4

PbSO4

H3O
+Pb2+

Pb2+HSO4
-

- +idischarge

H2O

 

(b) 

-

- +

+

H3O
+

HSO4
-

HSO4
-

icharge

H2O

-

- +

+

H3O
+

HSO4
-

HSO4
-

icharge

H2O

 

Figure 11: Products and reactants of a lead acid cell producing during (a) discharging and (b) 
charging.  
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The discharge reactions can be written as follows: 
Negative electrode: +−− ++⇒++ OHe2PbSOOHHSOPb 3424  Reaction 2 

Positive electrode: OH5PbSOOH3e2HSOPbO 24342 +⇒+++ +−−  Reaction 3 

Overall discharge reaction: OH4PbSO2OH2HSO2PbOPb 24342 +⇒+++ +−  Reaction 4 

1.3.2.2 Charge  

During charging, lead acid cell behaves as an electrolytic cell: it receives electricity from the 
DC power supply to reform its active materials; electrical energy is converted to chemical 
energy. Oxidation takes place at the positive electrode and reduction at the negative electrode, 
as shown in Figure 11 (b). 

The charge reactions can be written: 
Negative electrode: OHHSOPbOHe2PbSO 2434 ++⇒++ −+−  Reaction 5 

Positive electrode: +−− +++⇒+ OH3e2HSOPbOOH5PbSO 34224  Reaction 6 

Overall recharge reaction: +− +++⇒+ OH2HSO2PbOPbOH4PbSO2 34224  Reaction 7 

Overall discharge-charge reaction: OH4PbSO2OH2HSO2PbOPb 24342 +⇔+++ +−  Reaction 8 

As a small portion of SO4
2- ions is present in the electrolyte, another overall discharge-charge 

reaction can be written:  
OH6PbSO2OH4SO2PbOPb 243

2
42 +⇔+++ +−  Reaction 9 

1.3.3 Side reactions 

1.3.3.1 Water electrolysis 

According to the Pourbaix diagram of the lead acid cell, the water electrolytic reaction occurs 
always in the lead acid cell, at open circuit as well as during discharging and charging, as the 
cell voltage (around 2 V) exceeds the water redox pair voltage (about 1.23 V).  

Applying the electrolytic cell schema to the redox pairs H2O/O2 (OH-/O2) and H2/H2O 
(H2/H3O

+), water electrolytic reactions at electrodes are the following: 

At negative electrode:  

111 dReenOx →+ − : OH2He2OH2 223 +⇒+ −+  Reaction 10 

At positive electrode:  
−+→ enOxdRe 222 : +− ++⇒ OH2e2O

2

1
OH3 322  Reaction 11 

Overall reaction: 

222 HO
2

1
OH +⇒  

Reaction 12 

1.3.3.2 Internal gas cycle 

Water electrolytic reactions (Reaction 10 and Reaction 11), which generate hydrogen and 
oxygen gas, always take place in lead acid cell and the reversed reactions (water 
recombination) are also possible in favorable conditions. This is called internal gas cycle.  
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Applying the galvanic cell schema for the redox pairs H2O/O2 (OH-/O2) and H2/H2O 
(H2/H3O

+), water recombination reactions at electrodes are the following: 

At positive electrode:  

−+→ enOxdRe 111 : −+ +⇒+ e2OH2OH2H 322  Reaction 13 

At negative electrode:  

222 dReenOx →+ − : OH6e4OH4O 232 ⇒++ −+  Reaction 14 

We have to note that H2 that is generated at the negative electrode has to be consumed at the 
positive electrode whose potential is favorable for the reaction to take place. In fact, Reaction 
13 occurs only when the potential exceeds 0 V (cf. Figure 10) and, at the positive electrode, it 
is around 1.68 V, which satisfies this condition. In the same way, the O2 that is produced at 
the positive electrode recombines at the negative electrode.  

The condition for establishing internal gas cycles is that the rates of Reaction 13 and Reaction 
14 have to be high enough otherwise the gases escape the battery. This is the reason why the 
internal hydrogen cycle is almost negligible due to the fact that the rate of Reaction 13 is too 
low. The internal oxygen cycle is possible because the rate of Reaction 14 is quite high and 
the oxygen can reach the negative electrode fast enough thanks to the immobilized electrolyte. 

1.3.3.3 Corrosion 

Definitions: 

• “Corrosion” means, in chemistry, the breaking down of essential properties of a 
material due to chemical reaction with its surroundings. This means an oxidation, i.e. a 
loss of electrons of a metal reacting with its surroundings [17]. 

• “Corrosion area” is the potential area in a Pourbaix diagram (cf. Figure 12) where ion 
species are stable [14].  

• “Non-corrosion area”: is the potential area where insoluble species are stable. Two 
non-corrosion regions may be distinguished: one region where the solid stable form is 
the metal itself (area of “immunity”, or of “cathodic protection”), and one region 
where the solid stable form is an oxide (area of “passivation”). In the area of 
passivation, the metal tends to become coasted with its oxide, which can, according to 
the circumstances, form on the metal either a nonporous film practically preventing all 
direct contact between the metal itself and the solution (in this case protection is 
perfect), or a porous deposit which only partially prevents this contact (in this case 
protection is imperfect and pitting occurs) [18]. 

Figure 10 showing Pourbaix diagrams for lead acid cell can be simplified as shown in Figure 
12, which describes the theoretical conditions of corrosion, immunity and passivation of lead 
in an aqueous solution.  

We can observe that: 
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Figure 12: Theoretical conditions of corrosion, 
immunity and passivation of lead, at 25°C in 
the absence of substances forming insoluble 
salts 

• At the negative electrode, during 
discharging or at open circuit, lead metal 
of the grid can be corroded to form lead 
oxide. However, it can be re-reduced to 
lead during charging, since the electrode 
potential corresponds to the immunity 
area. In this region, lead remains stable. 

• At the positive electrode, whose 
potential is never less than –0.34V, grid 
corrosion occurs in permanence. During 
discharging and at open circuit (E+ ≤ 
1.68V), lead is oxidized to lead oxide 
(PbO then PbOx). During charging (E+ > 
1.68 V), these oxides will be oxidized to 
PbO2; the oxidation of Pb to PbO and 
PbOx continues.  

As the results of the corrosion phenomenon between the positive grid and the active material 
there are multi corrosion layers of lead oxides as illustrated in Figure 13.  

The process of corrosion occurs in the following way: the metallic lead grid is progressively 
transformed into lead oxide; this oxidation is performed in two steps; each step corresponds to 
a loss of two electrons.  

Pb → Pb2+ + 2e- then Pb2+ → Pb4+ + 2e- 

Grid (Pb)

Porous active 
material PbO2

Dense layer 
PbO2

Interface layers 
PbOx, PbO

Grid (Pb)

Porous active 
material PbO2

Dense layer 
PbO2

Interface layers 
PbOx, PbO  

[1] 

Grid

Multi 
corrosion 

layer

Active 
material

Grid

Multi 
corrosion 

layer

Active 
material

 

(source: EDF) 

Figure 13: Structure of the corrosion layer at the positive grid surface 

These electrons are evacuated by conduction. The remaining positive ions, Pb2+ and Pb4+ have 
to be in equilibrium with other negative species. Two types of anions are available in the heart 
of a positive electrode: O2- and HSO4

-. 

• The O2- ions are present in a solid phase in the lead oxides PbO and PbO2 (i.e. Pb2+ 
and 2O2-). This dioxide is a non-stoichiometric compound1. Its closed composition is 

                                                 
1 Non-stoichiometric compounds are chemical compounds with an elemental composition that cannot be 
represented by a ratio of well-defined natural numbers, and therefore violate the law of definite proportions. 
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PbO1.95. It means, in the middle of crystals there are blanks that enable O2- ions to 
move by jumping. This diffusion in the solid phase creates the intermediate zone 
consisting of PbOx between the initial layer of PbO and the reservoir of O2- ions, 
which is the positive active material. Once the PbO2 active material loose O2- for 
corrosion, it will pick up O2- ions of H2O (i.e. 2H3O

+ and O2-) of the electrolyte to 
neutralize its charge.  

• The HSO4
- ions are available in the electrolyte solution. They can reach the Pb2+ ions 

by following the path created by cracks inside multi-layers of PbO and PbOx and form 
PbSO4. Such anion contribution (diffusion in the liquid phase) provokes then a quicker 
corrosion compared to the solid phase of O2- ions. 

If the battery is frequently at charge, the PbO layer can stay thin as PbO is oxidized to PbO2. 
The dense PbO2 layer plays the role of preventing the contact between PbO and sulfuric acid 
H2SO4 in the solution. Otherwise, when the PbO layer exceeds a certain volume, it causes the 
formation of crevices or cracks at the dense PbO2 layer. H2O can reach the grid faster via 
these cracks and H2SO4 can pass through the PbO2 layer and act with PbO to form lead sulfate 
PbSO4. Excessive formation of PbSO4 can destroy the PbO2 layer and severe grid corrosion 
can thus occur. This is usually the case when the battery stands for prolonged periods without 
any charge.  

The reactions are the following.  

When lead oxides supply the O2- ions: 

−+ +⇒ e2PbPb 2   
−− +⇒+ e2PbOOPb 2  Reaction 15 

When the grid is in contact with the electrolyte: 

−+ +⇒ e2PbPb 2   
−+ ++⇒+ e2H2PbSOSOHPb 442  Reaction 16 

During charging, in addition of Reaction 15 and Reaction 16 above, there is also: 

−+ ++⇒+ e2OH2PbOOH3PbO 322  Reaction 17 

Reaction 17 shows also that corrosion causes water consumption.  

1.3.3.4 Oxido-reduction of unwanted ions  

When the electrolyte contains impurities such as Fe, HCl, As… and when the electrode 
potential values are favorable the oxido-reduction reactions of these impurities can take place 
[19, 20]. Let’s take the case of Fe2+ and Fe3+ ions for example. 

Fe2+ can be oxidized at the anode to give Fe3+ in the electrolyte with the presence of PbO2. 
And then this Fe3+ can diffuse to the negative electrode Pb, where it can react with the latter to 
form Fe2+. At its turn, Fe2+ diffuses to the positive electrode and returns to its initial state of 
                                                                                                                                                         
Often, they are solids that contain crystallographic point defects that result in the excess or deficiency of an 
element [wikipedia]. 
 



CHAPTER 1 – LEAD ACID BATTERIES___________________________________________________________________ 

 

 23

Fe3+ at the contact with PbO2. The role of Fe is to transport electrons from the positive to the 
negative electrode. These parasite reactions can take place indefinitely and cause the 
discharge of the cell.  
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Figure 14: Representation of redox 
reactions of ions Fe2+ and Fe3+ in a lead 
acid cell during charging [20] 

 
OH5Fe2PbSOOH3HSOPbOFe2 2

3
4342

2 ++⇒+++ ++−+  Reaction 18 

++−+ ++⇒+++ OHFe2PbSOOHHSOPbFe2 3
2

424
3  Reaction 19 

1.4 CHARACTERISTIC OF LEAD ACID CELL WHEN NO EXTERNAL CURRENT 
FLOWS  

What is the condition for a charge or a discharge reaction to happen? As explained in the 
section 1.3.1, this condition is met when the voltage is different or shifted from the 
equilibrium value of the cell. What is equilibrium voltage of the lead acid cell and which 
factors influence it? What is the relation between the equilibrium voltage of the cell and its 
ability to supply energy?  

1.4.1 Thermodynamic laws [1] 

A chemical or electrochemical reaction can occur only when the thermodynamic conditions 
are possible and favorable. The thermodynamic laws apply generally to the equilibrium state, 
which means all reactions are balanced. In the electrochemical cell, these data can be 
measured only when there is no current flowing through the cell or its electrodes. On account 
of this balance, the thermodynamic parameters do not depend on the reaction path; they 
consider only on different energy levels between final and initial components (products and 
reactants of the electrochemical reaction). It describes therefore the maximum performance 
that can be expected from the electrochemical system. 

The energy exchange, connected with electrochemical reactions, is described by three 
thermodynamic functions: “enthalpy H”, “free enthalpy G” (or “Gibbs free energy”) and 
“entropy S”.  

Because these thermodynamic functions, concerning an electrochemical reaction, describe the 
energy differences before the reaction started and after it was completed, they are usually 
written with a “∆” and called as follows: 

• Enthalpy of reaction (∆H): the total amount of energy released or absorbed by the 
reaction. 
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• Free enthalpy of reaction or Gibbs free energy change (∆G): the maximum amount of 
chemical energy that can be converted into electrical energy and vice versa during 
reaction (charge or discharge). 

• Entropy of reaction (∆S): describes the energy loss or gain connected with the 
reaction. When there is no current flows through the cell, the “product T∆S”, called 
“reversible heat effect” (Qrev) represents the heat exchange with the surroundings.  

These functions can be negative or positive. In the first case, the system losses energy, in the 
other case, it gains energy. For example, during discharging, the sign of ∆G is negative 
because the electrochemical system delivers energy; when the cell is recharged, it is positive.  

The relations of these three functions are: 

∆G = ∆H – T.∆S or ∆H = ∆G + T.∆S (3) 

T : temperature (K) 

Reversible heat effect T.∆S = Qrev expresses the difference between ∆H and ∆G 

1.4.2 Equilibrium potential notion [21] 

A difference of electrical potential usually forms at a boundary between two phases such as, 
in a lead acid cell, between the active material (Pb or PbO2) and the electrolyte (sulfuric acid 
solution). The development of such an electrochemical potential difference requires the 
transport of electrically charged particles, ions or electrons, in either direction. When the 
equilibrium potential is reached, this reaction apparently ceases macroscopically. However, 
from the kinetic viewpoint, the forward reaction rate does not become zero when the 
equilibrium potential is reached, but is compensated by a reverse reaction of identical rate. 
From the molecules point of view there is a constant exchange of charge in both directions, 
even though the reaction has macroscopically come to a complete standstill at the equilibrium 
potential. In practice, it is supposed that equilibrium potential exists when no external current 
is passing through the phase boundary. 

The equilibrium potential between two electrodes, called difference of potential, can be 
calculated thermodynamically from the Gibbs free energy change ∆G of reaction. During the 
electrochemical cell operation, chemical energy is converted into electrical energy and it is 
mathematically described as the product of the cell difference potential and the electric 
charges, which are transferred through the cell: 

Electrical energy = ∆E0.Q (4) 

∆E0 : potential difference at equilibrium (zero external current) [V] 

Q : integral of current in time [coulombs C]. Q can be calculated as n.F  

n : number of exchanged mole of electrons in the reaction 

F : Faraday constant, which is the electric quantity in one mole of electrons, equivalent 
to 96485 As/mol. 
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The potential difference at zero current is the possible maximum potential. The maximum 
energy obtained from a chemical reaction can be calculated. It is referenced to the electric 
work and described by Eq. (4) where the work is defined to be positive for the system (e.g. 
charge).  

Wmax = Welectric = -nF∆E0 (5) 

As Gibbs free energy change ∆G is defined as the maximum energy delivered by the system 
(cf. 1.4.1), it can be written:  

∆G = -nF∆E0 (6) 

Eq. (6) can be rewritten as follows, which is also known as the formula of the cell equilibrium 
voltage:  

nF

G
E0

∆−=∆  (7) 

One observation is that a positive cell potential leads to a negative change of the free energy. 
It is a simple question of conversion: what is given by the system is what the system looses 
and so is negatively counted.  

Eq. (3) can be written also according to Gibbs-Helmholtz at constant pressure: 

( )
PT

G
TGH 








∂
∆∂−∆=∆  (8) 

Electrochemical function data of different particles and ions are present in [15, 22] 

From Eqs. (3) and (6), we can write: 
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Eq. (9) represents released or absorbed energies of reactions in function of the difference 
potential (E). The first term defines the part of electric energy (-nF∆E) and the second term is 
the heat ( ( )PTEnFT ∂∆∂ ). 

1.4.2.1 Influencing factor on the equilibrium values: electrolyte density – Nernst equation 

The electrode potential at different concentrations is given by the Nernst equation as follow: 

[ ]
[ ]






+=

dRe

Ox
ln

nF

RT
EE dardtans,00  (10) 

E0  : equilibrium electrode potential related to reference electrode.  

E0,standard : standard electrode potential related to reference electrode, it means when all 
activities of oxidant and reducer are equal the unity (equal to 1). 
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R  : molar gas constant, 8.3145 J.mol-1.K-1 

n  : total mole number(s) of exchanged electron 

F  : Faraday constant, which is the electric quantity in one mole of electron, 
equivalent to 96485 As. 

[Ox]  : activity of oxidant 

[Red]  : activity of reducer 

In which, it is known that: activity = activity coefficient x concentration.  

In battery practice, numerical approximation of the dependence of the equilibrium potential 
on the acid concentration can be obtained using the electrolyte density:  

Equilibrium cell voltage = acid density + 0.84 (11) 

 

Figure 15: Equilibrium cell voltage of the lead-acid cell referred to acid density and acid 
concentration in wt.% H2SO4, the dashed line represents the approximate formula of Eq. (11) [1]. 

Applying the data of thermodynamic functions from [15] into Eqs. (3) and (7), the potential 
differences at equilibrium of the discharge-charge reactions are shown in the table following: 

Reaction Equilibrium potentials (V) 
OH5PbSOe2OH3HSOPbO 24342 +⇔+++ −+−   631.1E

24 PbO/PbSO,0 =  

OH6PbSOOH4e2SOPbO 243
2
42 +⇔+++ +−−  690.1E

24 PbO/PbSO,0 =  
−+− ++⇔++ e2OHPbSOOHHSOPb 3424  299.0E

4PbSO/Pb,0 −=  
−− +⇔+ e2PbSOSOPb 4

2
4  359.0E

4PbSO/Pb,0 −=  

Applying the Nernst equation of the equilibrium voltage for lead-acid cell:  
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For Reaction 8: 
OH

HSOH
0

2

4

a

aa
log0592.0931.1E

−+

+=∆  (12) 

For Reaction 9: 
OH

SO
2
H

0

2

2
4

a

aa
log0592.0049.2E

−+

+=∆  (13) 

1.4.2.2 Influencing factor on the equilibrium values: temperature 

The Nernst’s equation shows that the temperature can have an influence on the potential in 
two ways: 

• Directly, via the term RT/F: the influence is however quite week because if the 
ambiance temperature increase to 100°C, this factor is modified just a rate of 373/298 
= 1.25 

• Indirectly, via the equilibrium potential difference: according to Eq. (7), we have 

nF

S

T

)G(

nF

1

T

E0 ∆=
∂
∆∂−=

∂
∆∂  (14) 

Temperature coefficient 
T

E0

∂
∆∂  and equilibrium potential ∆E0 are often listed for the usual 

temperature of 25°C (= 298K) [18]. The temperature coefficient of the equilibrium potential 
of Reaction 8 can be calculated according to Eq. (3) and Eq. (14).  

We have the thermodynamic data below: ∆G = -372.6 kJ.mol-1, ∆H = -359.4kJ.mol-1 so T.∆S 
= 13.2kJ.mol-1. 

Division by temperature gives: ∆S = 45 J.K-1 per multiple of cell reaction (T = 298K) 

Inserting this value into Eq. (14) we have: K/mV23.0
T

E0 =
∂
∆∂  

The equilibrium potential difference at any temperature is: 
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E
)298(E)T(E 0

00 −
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




∂
∆∂+∆=∆  (15) 

1.5 CHARACTERISTICS OF LEAD ACID CELL WHEN EXTERNAL CURRENT 
FLOWS 

In this section, we will see how a current flows inside a lead acid cell and the principal 
phenomena occur due to this current flow: the Faraday phenomenon, the individual steps of 
an overall reaction and the Joule effect. Electrochemical kinetic laws are used to describe the 
rate of an overall reaction by expression of electrode polarization or overvoltage. 

1.5.1 Current conduction in lead acid cell [23]  

As introduced in 1.1.7, the electric circuit of discharge-charge is completed by the charge 
transport (ions) in the electrolyte from negative to positive electrodes and vice versa. This part 
describes the current flow in the volume of different conductive mediums as well as through 
different interfaces of the system. 
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1.5.1.1 Current conduction in the electrolyte volume 

The charge transport in the electrolyte volume occurs usually in three ways: 

Migration: movement of ions under the influence of an electric field. It is generally 
characterized by the concentration of charge carriers.  

Diffusion: movement of ions under the influence of a concentration gradient (or activity 
gradient). Reactants move by diffusion from the most concentrated zone toward the less 
concentrated zone. The diffusion is characterized by the diffusion coefficient of charge 
carriers. 

Convection: movement of the medium, which is a fluid (liquid or gaseous). This movement, 
characterized by a speed (m.s-1), will carry along the specie i, whose concentration is c 
(mol.m-3). It can be the natural convection caused by density gradients, or forced convection 
caused by agitation.  

In different experimental conditions, there are some zones where diffusion phenomenon is 
negligible compared to other phenomena of migration and convection. For instance, the 
Nernst model is adopted for the charge transport phenomena in the electrolyte of lead acid cell 
when a mechanical agitation device is used to homogenize the electrolyte (forced convection).  

 

Diffusion 
+ 

Migration 

Migration 
+ 

Convection 

Diffusion 
+ 

Migration 

  

Pb PbO2 

Bulk electrolyte 

δ1 δ2 

Nernst  
diffusion layer 

Nernst  
diffusion layer 

x 

 

Figure 16: Nernst conduction model in electrolyte of lead acid cell when a mechanical agitation 
device is used or during the gassing phase to homogenize the electrolyte. 

Figure 16 sums up the conduction modes according to the Nernst model in the forced 
convection condition. In the two diffusion layers near the electrodes, the convection 
phenomenon can be negligible, while outside these layers the convection presence allows to 
ignore the diffusion phenomenon.  

1.5.1.2 Phenomena at interface of electrode/electrolyte 

In lead acid cell, the current conduction has to be assured at the interfaces between the solid 
active material (Pb or PbO2) and the solution (H2SO4 and H2O). 

Reactive phenomenon 

The free electrons, which assure the current conduction in the active materials, are not present 
in the electrolyte solution. So there are other mechanisms that allow the current transmission 
to ion carriers. One of them is an electrochemical reaction. As shown in Figure 17, it is the 
electrodeposited reaction of Pb2+ to Pb by reduction at the negative electrode during charging, 
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where the Pb formed stays at the surface. Reactive interfaces are the interfaces, where there is 
at least one chemical reaction. 

 

2e- 

Pb2+ Pb 

NEGATIVE 
ELECTRODE  ELECTROLYTE  

 

Figure 17: Reduction of an ion Pb2+ at the interface of negative electrode (Pb)/electrolyte during 
charging: electrode position of Pb. 

Exchange phenomenon  

When two sides of the interface present the same mobile species but in different states (solid 
and liquid), the exchange between these two phases can take place. It is the case at interface 
of lead acid cell where in Pb2+ reacts with SO4

2- to form PbSO4 crystals. 

 

Pb2+ Pb2+ 

ELECTRODE  ELECTROLYTE  In solution In PbSO4 

 

Figure 18: Exchange schema of Pb2+ ion at the interface electrode/electrolyte during discharging 

Accumulation phenomenon – Electrical double layer 

One of the accumulation phenomena in lead acid cell is the formation of electrical double 
layer at its interfaces. Here, two models of double layers of Helmholtz and Stern are 
presented (cf. Figure 19). 

The first model of the double layer was proposed by Helmholtz in 1850s. In this model, 
Helmholtz suggested that there was no charge transfer and the solution consisted only of 
electrolyte. The interactions between the ions in the solution and the electrode surface take 
place in a way that assures the electrostatic nature (overall charges equals zero). The electrode 
surface has a charge density q m, which is the result of excess or insufficiency of electrons at 
the electrode surface. For the interface to be neutral at charge, the charge presente at the 
electrode surface would be in equilibrium with the redistribution of ions near the electrode 
surface. 

The attracted ions, which come close to the electrode surface forming a layer, are in 
equilibrium with the electrode charge. The overall results are two layers of charge (double 
layer) and a voltage drop in this area called Outer Helmholtz Plane (OHP). This result is 
absolutely similar to an electric capacitor which has two plates separated by a certain distance 
(d) with a linear voltage between these two plates.  
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(1) 

 

(2) 

 

Figure 19: Helmholtz (1) and Stern (2) models of electrical double layer [24] 

Stern proposed another model of double layer, which differs from the Helmholtz model in the 
fact that the ions can move in the solution and that the electrostatic interactions are in 
concurrence with the Brownian motion1. The result is always a charge layer at the vicinity of 
the electrode surface (100x10-10 m) but in this case the voltage drop occurs in a larger area 
called the diffuse layer.  

1.5.2 Faraday phenomenon 

1.5.2.1 Faradic and capacitive current 

In general, the current flow corresponds to the reactive phenomenon, exchange and 
accumulation phenomena. The current has two contributions: 

• The faradic current (because this component verifies the Faraday law), which relates 
to the reactive phenomenon (and eventually the exchange phenomenon) of the 
consumed and produced species.  

• The capacitive current (simple schema of a plate capacitor), which relates to the 
accumulation phenomenon at the double layer capacitance. 

1.5.2.2 Anodic and cathodic current 

A current (faradic part) flowing through a cell is described by both its magnitude I and by its 
direction. When positive current flows from the electrode to the electrolyte, the electrode acts 
as an anode and the current is called anodic. A cathodic current is the one that flows in the 
opposite direction. In this case, the electrode acts as the cathode. Figure 20 shows the 

                                                 
1 Brownian motion (named in honor of the botanist Robert Brown) is the random movement of particles suspended in a 

liquid or gas or the mathematical model used to describe such random movements, often called a particle theory [wikip] 
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direction of the flow of current through the phase boundary. Thus, with a cathodic current, 
positive charges flow from the electrolyte to the electrode, or negative charges pass the phase 
boundary in the opposite direction. An anodic current causes an anodic electrode reaction 
while a cathodic current causes a cathodic one. 

When a current flows in a cell, one electrode becomes the anode and other one the cathode. 
Thus, anodic and cathodic electrode reactions take place simultaneously in the cell. 

By definition, the anodic current (in Ampere) and the anodic current density (in Ampere/cm2) 
are positive while the cathodic current and cathodic current density are negative. 

 

(+) 

(-) 

Electrode Electrolyte  

Anode  

Anodic current 
i > 0 

(+) 

(-) 

Electrode Electrolyte  

Cathode  

Cathodic current 
i < 0 

 

Figure 20: Definition of anodic and 
cathodic currents with indication of 
their sign [21] 

1.5.2.3 Faraday’ Law of Electrolysis 

The part of the current that follows the Faraday’s law corresponds to the reaction rate of 
system evolution compared to the initial state: it characterizes the material quantity that is 
transformed.  

Faraday’s Law [21]: (1) the amount of chemical change produced by electrolysis (any 
reaction that involves the charge transfer across an electrode interface) is proportional to the 
total amount of charge passed through the cell; (2) the amount of chemical change produced 
is proportional to the equivalent weight of the substance undergoing chemical change. In 
other words, the amount of substance consumed or produced at one of the electrodes in an 
electrolytic cell is directly proportional to the amount of electricity that passes through the 
cell.  

If the reaction is at the electrode surface (cf. Figure 17), the amount of chemical change is 
usually expressed as weight of the deposit, and Faraday’s Law may conveniently be 
summarized by the following formula: 

F.n

t.I.M
m =  (16) 

m : weight of the deposit       [g] 

M : atomic weight of the substance, which is being electrodeposited  [g.mol-1] 
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I : current         [A] 

t : elapsed time         [s] 

n : number of charges involved in the reaction 

I.t is thus the total charge passed and M/n is the equivalent weight. 

F : Faraday constant. Inspection of Eq. (16) shows that F must be equal to the charge 
contained in one equivalent weight, F = 96,500 coulombs1/equivalent weight (based on the 
chemical scale of atomic weights2). 

The equation F = NLe0 describes the relationship between the Avogadro number NL, the 
elementary charge e0, and one Faraday. Thus, one faraday is the total charge of “one mole of 
elementary charges” [21]. 

Applying the Faraday’ law, each discharged Ah (equivalent to a quantity of 3600 Coulombs) 
consumes 3.660g of H2SO4, 3.865g of Pb and 4.462g of PbO2 [15]. During charging, it is 
inversed (3.660g of H2SO4 is consumed) except beyond the moment where the charge is 
finished; such a case concerns the overcharge.  

1.5.2.4 Faraday efficiency 

When the Faraday’s law is tested experimentally, apparent deviations are frequently found. 
Faraday efficiency is defined as the percent of the total charge, which is effective in carrying 
out the desired reaction.  

Faraday

real
Faraday m

m
r =  (17) 

rFaraday : faraday efficiency 

mreal : real experimental weight obtained 

mFaraday : calculated weight obtained by Faraday’s law 

A common cause to explain efficiencies less than 100% is the occurrence of side reactions 
during the electrolysis. For instance, in the lead acid cell, as shown in Pourbaix diagram (cf. 
1.3.1), the water electrolysis (which produces oxygen and hydrogen) occurs simultaneously 
with the discharge-charge reaction. 

Other causes that bring to lower efficiencies are the recombination of the product of 
electrolysis, the dissolution of the electrodes and reactions of the primary products of 
electrolysis with the solvent, electrodes, or environment.  

All of these effects tend to lower the amount of the desired product and thus lower the 
efficiency from 100%. In this thesis, we deal only with the occurrence of water electrolysis 
and oxygen recombination. 

                                                 
1 1 Coulombs = 1 A.s 
2 Since 1961, the unified atomic mass unit is equal to one-twelfth of the mass of a carbon-12 atom. 
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The definition of the faradic efficiency related to the weight is difficult to use because the 
weight of the products cannot always be measured. Generally, this definition is rewritten in 
terms of electrical quantities. The electrical efficiency is defined as the ratio between the 
electrical quantity involved in productive reactions (active material charge) (QCH) and the 
total electrical quantity that is supplied (QChsup). 

supCH

CH
Faraday Q

Q
r =  (18) 

In practice, the faraday efficiency of a charge/discharge cycle can be defined as the ratio of 
the electrical quantity given by lead acid cell during a discharge (QDCH) and the electrical 
quantity provided to the cell during a charge (QChsup).  

supCH

DCH
Faraday Q

Q
r =  (19) 

1.5.3 Principal steps of an electrochemical reaction [1, 18] 

Reactions which occur at electrodes includes:  
• The deposition of metals: Pbe2Pb2 →+ −+  

• The evolution of gases: 
−−

−+

+→

→+

e4OO2

He2H2

2
2

2  

• The deposition of solid salts: −− +→+ e2PbSOSOPb 4
2
4  

• Electron transfer reactions: +−+ →+ 24 Pbe2Pb  
• Oxidation-reduction reactions: OH4PbSO2OH2HSO2PbOPb 24342 +⇔+++ +−  

Electrode reactions may take place in a number of steps, which include the follows: 
• Charge transfer 
• Mass transport: diffusion and migration 
• Chemical reaction 
• Crystallization  

1.5.3.1 Charge transfer (Electron transfer) 

At the charge transfer reaction, charge is transferred across the interface (across the electrical 
double layer). 

At a redox electrode (e.g. the negative electrode of lead acid cell), electrons are 
simultaneously accepted and donated by the Pb at the same surface, as illustrated by the 
arrows in Figure 21. The lengths of the arrows represent the magnitude of the charge crossing 
the phase boundary in either direction per unit area and unit time. Hence, the lengths of the 
arrows correspond to the densities of the two currents flowing in opposite directions, i.e. the 
anodic partial current density i+ and the cathodic partial current density i -. Since the anodic 
and cathodic current densities i+ and i- are positive and negative quantities (cf. 1.5.2.2) 
respectively, the total current density through the double layer is:  

i = i + + i - (20) 
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In the charge transfer reaction, taking place on the negative electrode, the reduced Pb species 
is oxidized into Pb2+ species by donating two electrons to the inert electrode metal (Pb → 
Pb2+ + 2e-, anodic direction). Conversely, the charge transfer reaction in a cathodic direction 
involves transfer of two electrons from the metal to the oxidized species Pb2+, which is 
reduced to Pb (Pb2+ +2e- → Pb). 
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i = i+ +‌ i- = 0 

e- 

i < 0 (cathode) 

Pb 
Electrolyte 

e- Pb 

Pb2+ 

Pb2+ + 2e-         Pb  

Charge transfer 
reaction 

i+ 
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Figure 21: 

Charge transfer reactions at 
negative electrode [21] 

The charge transfer reaction is a fundamental importance in electrochemical kinetics, since it 
is the only reaction directly affected by the electrode potential. The effect of other variables 
on the potential is only indirect because these variables can influence the charge transfer 
reaction.  

1.5.3.2 Reactant transport (mass transport): diffusion and migration 

The transport of reactants to and from the interface occurs in two ways: diffusion thanks to 
concentration gradient and migration, which is the movement of ions under the electric field. 
The following equation represents the mass transfer:  

F.z

t.ic
D

F.n

i
N

j

jj
j

j
j +

ξ∂
∂

−==  (21) 

Nj : flux of species j       [mol.cm-2.s-1] 

i j/nF : current equivalent  

∂cj/∂ξ : concentration gradient      [mol.cm-4] 

D : diffusion coefficient      [cm2.s-1] 

tj : transference number 
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zj : valence number (charges par ion j) 

ξ : diffusion direction       [cm]  

In Eq. (21), the first addend 








ξ∂
∂

− j
j

c
D  relates to the reactant transfer by diffusion and the 

second 














F.z

t.i

j

j  by migration.  

Diffusion  

The first law of Fick describes the basic relation for one-dimensional diffusion: 

dt
dx

dc
.f.Ddn −=  (22) 

n : number of moles, which are transferred 

f : section where the reactants pass through by diffusion [cm2] 

dc/dx : concentration gradient      [mole/cm3 par cm] 

dt  : period of time      [s] 

The diffusion depends on the concentration gradient. In the first addend of Eq. (21), the 
diffusion corresponds to an equivalent current and we can write:  

d

cc
D

nF

i o,jj
j

D,j −
=  or ( )o,jj

j
D,j cc

d

nFD
i −=  (23) 

cj-cj,o : (negative) concentration gradient of species j 

d : thickness of the diffusion layer 

Migration  

The second addend in Eq. (21) relates to the movement of ions under the electric field 
influence. This transport corresponds to an electric current, called migration, which creates 
concentration gradients. 

The transference number in Eq. (21) announces the share of the total current that is carried by 
the corresponding ionic species. In a binary electrolyte, dissociated into A+ and B-, the 
transference number are connected by the relation: 

t+ + t-  = 1 (24) 

The transference number depends on the ion concentration and on the temperature. For 
sulfuric acid in diluted solutions as well as electrolytes used in lead acid batteries, the 
transference numbers are:  
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t+ = tH
+ = 0.9 

t- = tHSO4
- = 0.1 

Therefore, in this sulfuric acid solution, 90% of the ionic current is carried by protons (H+) 
and only 10% by negative ions (HSO4

-). 

1.5.3.3 Chemical reactions, forming reactions: nucleation and crystal growth 

Chemical reactions, where the ions of opposite signs get together to form new products, 
precede or follow the charge transfer reaction. They may occur in the bulk of the electrolyte 
or at the interface only.  

The crystal or nucleation reaction is the reaction in which metal atoms, deposited on the 
surface during the course of the charge transfer reaction, are included or released into or from 
the ordered lattice of the solid metal electrode.  

 

Figure 22: Schematic presentation of discharge-charge process in lead acid battery using negative 
electrode as example: charge transfer, mass transport (diffusion), chemical reaction, crystallization 
and dissolution. [2] 

Figure 22 results schematically the electrochemical reaction, diffusion and chemical reaction 
during discharge-charge process of the lead acid negative electrode. 

During discharging, the Pb metal dissolutes and gives two electrons to the grid and becoming 
a Pb2+ ion (dissolution, charge transfer). As the concentration of Pb2+ ions increases gradually 
at the grid surface, they move therefore toward the electrolyte bulk and meet the SO4

2-ions, 
which are at the same time attracted from the electrolyte bulk toward the electrode porous 
volumes where their concentration is weaker (diffusion). These ions of opposites signs react 
to form PbSO4 crystals (chemical reactions, crystallization).  

During charging, the process is the same but in the opposite direction.  
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1.5.4 Electrode kinetics - Polarization, overvoltage notions [21] 

1.5.4.1 Electrode kinetics 

One task of electrode kinetics is to explain the sequence of partial reactions constituting the 
overall electrode reaction, which can be determined by chemical analysis. Another task is to 
determine rates of electrode reaction, which according to Faraday’s law are proportional to 
the current density i. The dependence of the current density, or of the reaction rate on the 
electrode potential E, on the concentrations cj of reactants Sj and on other variables (like the 
temperature) must be determined in order to solve the two foregoing problems. 

Valuable information about partial reactions can be obtained especially from the dependence 
of the total current density I on electrode potential E and concentration cj. The total current 
density i is the sum of the positive anodic partial current density i+ (> 0) and the negative 
cathodic partial current density i- (< 0). Dependence of the current on potential and 
concentration is primarily governed by the coefficient α, the electrochemical reaction orders 
z0,j, zr,j, limiting diffusion current densities id, limiting reaction current densities Ir, the 
stoichiometric factors vj, the electrode reaction valence n, and the transfer valence z. 

In electrode kinetics, as in chemical reaction kinetics, the slowest partial reaction is the rate-
determining of the total reaction. The magnitudes and type of overvoltage is therefore 
governed by the slowest partial reaction.  

1.5.4.2 Polarization and overvoltage notions 

When current flows through an electrode, its potential E(i) assumes a value different from that 
in the absence of current E(0). As introduced in 1.4.2, the zero current potential E(0), will be 
the E0. However, in the case of lead acid electrode, besides the discharge-charge reactions, 
there are always secondary or parasite reactions (cf. 1.3). The zero current potential of lead 
acid electrode does not correspond exactly to the equilibrium potential E0 of only the charge-
discharge reaction, but it is a mixed potential of principal discharge-charge reactions and 
secondary reactions. Therefore, there are two definition of the deviation of the electrode 
potential E(i) from the potential in absence of the current flow (E(0)) 

• The deviation of the electrode potential E(i) at the current i from the equilibrium 
potential of the discharge-charge reaction E0 is called overvoltage 

• The deviation of the electrode potential E(i) at the current i from the zero current 
potential of lead acid electrode, E(0,) is called polarization. 

 
η = E(i) - E0 = overvoltage (25) 

η = E(i) – E(0) = polarization (26) 

Since an overall electrochemical reaction consists of many steps (cf.1.5.3), different types of 
correspondent overvoltage/polarization are defied: charge transfer or activation overvoltage 
ηa for charge transfer reaction, diffusion overvoltage ηd for mass transport by diffusion 
reaction, reaction overvoltage ηr for chemical reaction, crystallization overvoltage ηcr for 
forming reaction. Furthermore the ohm drop causes also an overvoltage, called resistance 
overvoltage ηΩ. 

The overall overvoltage is the sum of all overvoltages above:  
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η = ηa + ηc + ηr + ηcr + ηΩ (27) 

According to the four types of overvoltage (not including resistance overvoltage), there are 
four possible types of rate-control or rate-determining.  

1.5.4.3 Activation overvoltage (or charge transfer overvoltage) ηa 

Hindrance of the charge transfer reaction across the electrical double layer causes the 
formation of charge transfer overvoltage ηa. 

The electrical double layer, which forms on the surface of the electrode, acts somewhat as a 
capacitor, and, before the electrochemical reaction can start, some energy is needed to 
overcome this energy barrier, known as the activation energy ∆GA.  

According to Eq. (6), a change of the electrode potential, E, results in a change of the free 
energy of reaction by nFE per mole of reactants. Thus the free energy of the cathodic reaction 
is changed by αnFE, while that for the anodic reaction is changed by (1-α)nFE, where α is a 
fraction, called transfer coefficient of the cathodic charge. The transfer coefficient α denotes 
how “symmetrically” the reaction and its reversal depend on electrode potential (usually α is 
about 0.5). 

The rate constant of a reaction, k, is proportional to exp(-∆GA/RT) according to Arrhenius 
equation [1] so that: 
The rate constant of anodic reaction is k+ exp(αnFE /RT). 
The rate constant of cathodic reaction is k- exp[-(1-α)nFE /RT]. 

The rate of the reverse reaction is: 








 α−−−






 α=+= −+−+ RT

nFE
)1(expck

RT

nFE
expckiii oxred  (28) 

i, i+, i-  : currents per unit area of the electrode (anodic and cathodic electrodes) 

cred, cox  : concentrations of the reactants at the electrode surface (reducer and oxidant)  

k, k+, k- : rate constants at the potential from which E is measured. 

To avoid the term k that depends on some potential from which E is measured, it is useful to 
use the value of the equilibrium potential E0. Although there is no net reaction (i =0), the 
equilibrium is of course dynamic, the rate of the anodic and cathodic reactions being equal 
(cf.1.4.2). The equal rates are expressed by the exchange current. At equilibrium E = E0, the 
reactant concentrations are equal to those in the bulk of solution, the currents in both 
directions are equal: i+(0) = -i-(0) = i0, so we can write: 







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
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Where i0 is called exchange current density that characterizes the dynamic equilibrium. It is 
an important kinetic parameter. High exchange current density means that the equilibrium 
potential is rather stable, while low exchange current density indicates that the electrode 
potential will be polarized even when a quite small current flows through the electrode. In 
lead acid electrode, the exchange current density of the charge reaction is in the order of 10-5 

A.cm-2, while the exchange current density for hydrogen evolution is in the order of 10-13 
A.cm-2. 

Combining Eq. (29) and Eq. (30), the Butler-Volmer equations are obtained: 
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(31) 

Eq. (31) describes the current/voltage curve (cf. [1], p. 239).  

The voltage deviation from equilibrium E – E0 = ηa is activation overvoltage. 

This double exponential form of the current-voltage reaction Eq. (31) is characteristic of 
simple electrochemical reactions. It has two useful limiting forms: 

• When |i| >> i0 (or |ηa| >> RT/nF), one of the exponential may be neglected depending 
on the sign of the current and the overvoltage is proportional to log|i|. This was 
observed experimentally by Tafel in 1905 and the plot of ηa against log|i| is called 
Tafel line. The following expressions are obtained for the anodic and cathodic current 
densities: 


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RT
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Thus, at high overvoltage, a linear relationship exists between the charge-transfer overvoltage 
and the logarithm of the current density ln|i| or log|i|. Eqs. (32) are known as Tafel equations. 
By extending the Tafel lines to the equilibrium potential ηa = 0, one obtains the exchange 
current density i0. The value of the transfer coefficient α is obtained from the slope of the line, 
which corresponds to the value b in Eqs. (32). 

• When |i| ≤ i0 the exponentials may be expanded and terms is higher than the second 
which is neglected: i = i0nFη/RT. Since the current is now a linear function of the 
overvoltage, the electrode behaves as a simple or “ohm” resistance. 

At constant temperature and current density, the value of the activation overvoltage is small 
for most solid electrode systems, but accounts for the small drop in voltage immediately when 
the current is switched on (coup de fouet phenomenon [25]). 
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1.5.4.4 Diffusion overvoltage ηd 

Diffusion overvoltage appears when the supply of reactants at the electrode or the removal of 
the reaction products is rate-determining of the reaction. The condition for the appearance of 
pure diffusion overvoltage is that all chemical processes, including the crystallization 
processes and also the charge transfer reaction are in equilibrium. It indicates that in this case 
the calculation of the potential of an electrode with a flow of current is possible with the aid 
of the Nernst equation for equilibrium potential. However, the concentrations of the 
components directly at the surface must be used and not those in the interior of the electrolyte.  

Therefore, the diffusion overvoltage ηd is equal to the difference between the equilibrium 
potential E0 in absence of current flow and the equilibrium potential E0(i) which form during 
currant flow as a result of the changed concentration cj of the component Sj directly adjacent 
to the surface, in accordance with the Nernst equation (cf. Eq.(10)). 
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 (33) 

cj
0 : concentration of the component Sj at equilibrium, which is a function of the 

temperature and the concentration of sulfuric acid.  

cj : actual concentration of the component Sj 

Diffusion can limit the reaction rate when the mass transport precedes the charge transfer step. 
Within a very strong current, the concentration cj tends to zero at the electrode surface, 
meaning that all ions and molecules arriving by diffusion are charged or discharged 
immediately and thus loose their charges. Eq. (33) assumes that ηd has to be close to -∞ so 
that the exponential can be neglected. It is thus not possible to increase the current in 
increasing the voltage. As a result, the current cannot exceed a certain value, called limiting 
diffusion current i lim, which is obtained from Eq. (23) at cj = 0. 

0jjo
j

jlim, kcc
d

nFD
i =−=  (34) 

As k is a constant, the limiting diffusion current does not depend on applied voltage and the 
Ohm law does not apply anymore.  

Combining Eq. (23) and Eq. (34) results in: 

00

0

lim c

c
1

c

cc

i

i −=−−=  or 
lim0 i

i
1

c

c −=  (35) 
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 (36) 

Eq. (36) shows that at a given current value, the diffusion polarization can be observed when 
the concentration at equilibrium c0 is weak and it is lower when there is an increase of c0. The 
diffusion polarization can be diminished as well by increasing the constant k = -nFD/d 

( ( )0cc
d

nFD
i −= , cf. Eq. (23)), so decreasing d (vigorous agitation) or by increasing the 

electrode cross-section q (i=I/q). Like the diffusion current, the diffusion polarization does not 
depend on the potential.  

The definition of the diffusion overvoltage is equivalent to that of the concentration 
overvoltage, which relates to all types of concentration changes. Thus the concentration 
overvoltage is the sum of the diffusion and the reaction overvoltage. 

Figure 23 and Figure 24 illustrate schematically how concentration polarization operates 
during the discharge of the lead acid electrode (cf. Reaction 2).  

As soon as the charge transfer reaction starts, the concentration of ions reacting with the 
electrode falls rapidly at a rate dependent on the current in its immediate vicinity and 
decreases less as the distance increases. The electrode potential falls by an amount defined by 
the Nernst equation. Migration and diffusion processes operate to reduce the concentration 
gradients by mass transport of the reactants. 
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Figure 23: Concentration polarization during discharging at negative electrode [26] 

HSO4
- ions are removed at the electrode surface at a rate equal to I/2F moles/s and 

replenished from the bulk electrolyte at It-/F moles/s while protons in form of H3O
+ move into 

the bulk electrolyte at a rate It+/F moles/s (cf. 2e term of Eq. (21): migration). t+  and t- are the 
transport numbers of HSO4

- and H3O
+ ions respectively. 
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Figure 24: Electrode potentials (E0 to E5) with corresponding times (T0 to T5) vs. concentration [26] 

The concentration gradients in the diffusion layer accelerate the diffusion of HSO4
- ions by 

amounts equal to D.dc/dx but retard the diffusion of H3O
+ ions by amounts equal to D’.dc/dx, 

where D and D’ are the diffusion constants and dc/dx is the evolution of the concentration c at 
a distance x from the surface (cf. 1st term of Eq. (21): diffusion). Figure 24 shows how 
changes in the concentration (which occur in the vicinity of the electrode at time T0 to T5 from 
the outset of the discharge) affect the electrode potential, as defined by the expression 

cln
nF

RT
EE 0−= . 

A similar model can be drawn for the PbO2 positive electrode, although this is more complex. 
In this case, the formation of H2O, as indicated by Reaction 3, causes further dilution of the 
electrolyte in the diffusion layer. 

1.5.4.5 Reaction overvoltage ηr 

The reaction overvoltage ηr is a phenomenon resulting from the existence of a slow (rate-
determining) chemical step on the overall electrode reaction. ηr appears separately when the 
other component steps of the overall reaction, such as the charge transfer and diffusion of the 
substances, are not the rate-determining. By definition, this chemical step is a reaction whose 
rate constant does not depend on the electrode potential. 

If only the reaction overvoltage occurs, the charge transfer equilibrium for the transfer of the 
charge carriers through the double layer must remain undisturbed during the flow of current, 
even though an electrochemical reaction takes place. The charge transfer equilibrium remains 
undisturbed during the flow of current only when the exchange current density i0 is infinitely 
high or the external current density i is very small compared to i0 (i<< i0), so the deviations of 
the charge transfer equilibrium are negligibly small (cf. 1.5.4.3). 

According to Vetter [21], from the general definition of overvoltage, the reaction overvoltage 
can be defined by: 
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In which: 

ν : stoichiometric factor of the substance S in the partial electrode reaction, which is 
positive when S is an oxidized component of the partial electrode reaction and negative when 
S is a reduced component of the reaction 

n : electrode reaction valence (mole number of charges involved in the reaction).  

a(i) : activity of the substance S, which is a function of the current density because of the 
slow rate-determining chemical step. 

a0 : activity of the substance S at equilibrium.  

1.5.4.6 Crystallization overvoltage ηcr 

With metal/metal ion electrodes, overvoltage is observed and it is due not only to transport 
and to reaction, but also to crystallization. According to Stranski’s theory of crystal growth, 
each metallic ion deposited must first find its way to a suitable site at the edge of a lattice 
plane before it can be accepted into the lattice. Crystallization overvoltage is caused by a 
hindrance in the inclusion or the release of the “ad-atoms” into and from, respectively, the 
ordered lattice of the solid metal electrode. The ad-atoms on the metal surface in the state of 
metallic bond are metal ions in the state in which they are deposited on the surface during the 
course of cathodic charge transfer reaction. The ad-atoms are the reduced species SM of the 
charge transfer reaction at the surface concentration cM (or activity aM) (cf. 1.5.4.3).  

The crystallization overvoltage is defined so that it occurs alone only when all other 
processes, such as charge transfer, diffusion and chemical reaction in the electrolyte are in 
thermodynamic equilibrium1 even during the current flow. Hence, for the calculation of the 
overvoltage, the Nernst equation can be applied to the activities of the ad-atoms, in the case of 
equilibrium, aM

0, and during the flow of current, aM. In accordance with the general definition 
of overvoltage, the crystallization overvoltage ηcr equals the difference between the two 
potentials:  
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νM : = -1 for ad-atom (SM is a reduced specie)  

n : ion metal valence  

1.5.4.7 Ohm overvoltage or resistance overvoltage ηΩ 

Resistance polarization was studied in detail by Vetter in [21]. In brief, resistance polarization 
or ohm polarization drop consists of three factors: 

• Resistance polarization due to electrolyte resistance 
                                                 
1 The necessary deviation from equilibrium during the flow of current will be assumed to be so small that this influence 

cannot be observed experimentally. 
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• Resistance polarization of surface films 
• Resistance polarization as a result of the current-dependent resistance of the diffusion 

layer. 

Barak [26] explained these phenomena in the galvanic lead acid cell as follows: 

During discharging, the concentration of the electrolyte falls steadily with a corresponding 
increase in electrical resistance. As show in Table 3, this amounts to over 60% for a fall in SG 
from 1.250 to 1.070. The high resistance of PbSO4 puts it almost in the category of a non-
conductor and the combined effect of these two factors adds another vector to the polarization 
of the cell. It is interesting to note that the resistivity of massive PbO2 is ten times higher than 
that of metallic lead, but less than that of storage battery electrolyte by a factor of 104. 

Problems of mass transport, caused by restricted diffusion, are mainly responsible for the low 
coefficients of use of both positive and negative active materials. To limit the polarization, 
these materials are prepared in a highly porous state. The average pore size is, however, small 
and the channels for circulation of the electrolyte are tortuous, presenting additional obstacles 
to diffusion. For this reason, plate thicknesses are kept as low as possible, particularly where 
discharges at high rates are often needed. 

As the discharge proceeds, the particles of active material become isolated from one another 
and also from the current-collecting grids by films of lead sulfate. The molecular volume of 
the PbSO4 is appreciably higher than that of either the PbO2 or the Pb, from which it is 
formed and the porosity of the active material falls steadily during the discharge. There is, 
however, a practical limit to the porosity of the active materials, which must retain electrical 
contact between particles and sufficient mechanical strength to prevent disruption by 
dimensional charges, leading to premature shedding and loss of capacity. 

Table 3: Specific resistivity and density at 20°C [26] 

  Specific resistivity (Ωcm) Density (g/ml) 

PbO2 
Massive 
Porous active material 

2 x 10-4 
74 x 10-4 

9.4 
 

Pb Dense metal 0.2 x 10-4 11.3 

H2SO4 solution 
SG 1.250 or 4.3molar 
1.070 or 1.1 molar 

1.230 
2.000 

1.250 
1.070 

PbSO4 - 0.3 x 1010 6.3 

1.5.5 Voltage at the terminals of an electrochemical cell 

The table below resumes all factors that relate to the voltage at two terminals of an 
electrochemical cell with current flows (during charging or discharging). 
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Table 4: Expression of voltage at two terminals of an electrochemical cell when a current flows [27] 

V = (E+ - E-)eq ± [(η+ - η-) + Ri] 

Dynamic 

factors
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factors

Working energy 
factor of the 

system 

V = (E+ - E-)eq ± [(η+ - η-) + Ri] 
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Working energy 
factor of the 
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Electrode 
equilibrium 
potential 
(At zero current) 
NERNST’s LAW

pH-Voltage 

diagrams
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1.5.6 Current-related heat effects (the Joule effect) [1] 

Current flow through any conducting object generates a heat that is proportional to the voltage 
drop caused by the current itself according to: 

dQJoule/dt = ∆E.i (39) 

In which:  

QJoule  : generated heat (Joule effect)   [J] 

t  : time      [s] 

∆E  : voltage drop caused by the current  [V] 

i  : current as a function of time  [A] 

This heat is called the Joule effect; it always means loss of energy. The negative absolute 
value should be used in Eq. (39) for consistency with the arithmetical sign of the 
thermodynamic parameters (lost energy always has the negative sign). 

In an electrochemical cell, the voltage drop caused by the current consists in the difference 
between the cell voltage under current flows V and the open-circuit cell voltage E. Eq. (39) 
becomes: 
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dQJoule/dt = (V – E).i (40) 

Eq. (40) describes a composite parameter of 

• the “genuine” Joule effect dQ/dt = i2R, which describes the heat generation by the 
current flow i through the ohm resistance R of the conducting elements and the 
electrolyte, and 

• the irreversible heat effect T. ∆Sirreversible, which causes voltage drops between the 
electrode surface and the electrolyte on account of reaction hindrance. This additional 
heat is caused by additional entropy of reaction ∆Sirreversible, which cannot be 
compensated when the reaction is reversed.  

Both effects, however, cannot be separated in the electrochemical cells in normal conditions. 
For this reason, the sum of both is usually called the Joule effect.  

The difference V – E, when measured as cell-voltage deviation, includes the overvoltage and 
ohm drops shown in Table 4. In general: 

Polarization = overvoltage + ohm voltage drops 

The Joule effect can be described as the energy generated per unit of time: 

dQJoule/dt = (V – E).i           [W] (40) 

Or in its integrated form for a period (t in hours) 

( ){ }  dt        i.E-V Q
t

0
 Joule ∫=        [Wh] (41) 

1.6 CAPACITY OF LEAD ACID BATTERY [1, 25] 

1.6.1 Capacity 

The energy that the battery delivers during a discharge is described as the capacity generally 
in Ampere – hour (Ah). The energy output of a battery is defined as follow: 

∫=
t

0

dt)t(IC  
(42) 

When the discharge current is constant (E.g. in laboratory experiment), Eq. (42) can be 
rewritten: 

C= I.∆t (43) 

According to the conditions of discharge or to the discharge parameters (discharge current – 
discharge rate, voltage limit, temperature) by which the capacity is determined, the obtained 
capacity is not the same [1]. 

Nominal capacity is the battery capacity given by the manufacturer. It is determined in 
specific conditions of discharge rate, voltage limit and temperature, which are fixed and 
generalized for each kind of battery application. For instance, the nominal capacity of SLI 
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batteries is generally determined at the discharge rate of C/20. It means that a SLI battery with 
a 100 Ah nominal capacity will supply a 5 A (100/20) current during 20 hours (C/20 rate) of 
discharge until a given voltage limit at 20°C or room temperature. Similarly, the nominal 
capacities of stationary and traction batteries are usually evaluated at discharge rate of C/10 
and C/5.  

Voltage limit is the condition of end-of-discharge to evaluate the capacity. Theoretically, the 
voltage limit is applied to avoid deep discharge, or in other words to prevent the active 
materials from degradation and to prevent polarity inversions (cf. 3.1.2). The voltage limit 
value depends on the discharge rate; the higher is the discharge rate the lower is the voltage 
limit. Practically, voltage limits are also chosen according to battery configuration (single 
cell, series or parallel configurations), battery technologies (flooded or VRLA batteries) as 
well as battery applications (SLI, traction, stationary) [1]. 

Battery capacity evaluation is the process used to determinate the battery capacity: cycles of 
charge-discharges or a discharge test after a full charge. This makes the difference between 
the battery capacity and its measured capacity, which is determined also by a test of discharge 
but without doing a full charge before. In contrast with the nominal capacity of the battery, 
the measured capacity varies with the time and depends on its “electric history”, other words 
on its previous utilization. The measured capacity is also sensitive to degradations after a 
certain number of charge-discharge cycles, overcharge periods or a standby period at a weak 
state of charge [25]. 

1.6.2 State of charge  

The State Of Charge (SOC) of a battery can be defined as the capacity left, which is the 
charge quantity liberated during a discharge achieved in a given condition of current, 
temperature and voltage limit. In the standards, SOC often corresponds to the ratio between 
the capacity left and the nominal capacity: 

DOD1
C

CC

C

C
SOC

alminno

usedalminno

alminno

left −=−==  
(44) 

Cused : the capacity used.  

DOD : Depth Of Discharge, which is the ratio between the capacity used and the nominal 
capacity.  

alminno

used

C

C
DOD =  

(45) 

The SOC varies from 1 (or 100%) at the state of full charge to 0 (or 0%) at the discharged 
state. The state of full charge and discharged state will be defined in detail in the next 
chapters (cf. 2.1.4.1 and 3.1.2). Sometimes, the nominal capacity is not the initial maximal 
capacity of the battery. So, the SOC can be superior to 1. 

1.6.3 State of health 

The State Of Health (SOH) of a battery can be defined as the charge quantity liberated during 
a discharge executed in a given condition of current, temperature and voltage limit after a full 
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charge. In the standards, SOH often corresponds to the ratio between the measured capacity 
and the initial capacity (nominal capacity): 

alminnoC

C
SOH=  

(46) 

The SOH varies also from 1 (or 100%) to 0 (or 0%). However, in practice, the SOH is 
between 1 and 0.8 (or 100% and 80%), as it is considered in general that a battery reaches its 
end-of-life when it liberates less than 80% of it initial capacity (or nominal capacity).  

It is important to notice that Eq. (46) is only true when the measured capacity and the initial 
capacity are measured in the same discharge conditions (discharge current, temperature and 
voltage limit).  

The SOH defined here allows estimating the battery aging regarding to the capacity that it is 
able to liberate. Nevertheless, capacity is not always a significant parameter to define battery 
aging, for instance in SLI and cell telephone application. In this thesis, capacity is used as the 
aging parameter as it concerns only stationary and motive applications. 
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Conclusion of chapter 1  

This chapter assembles the principal information needed to know and understand lead acid 
batteries: technologies, application markets, how does it work, what are its characteristics at 
open circuit as well as at working mode, i.e. with external current flows. 

The lead acid battery technology is regrouped into two major construction types: flooded lead 
acid batteries and valve regulated lead acid batteries - VRLA batteries. One of the primary 
features that distinguish VRLA batteries from flooded lead acid batteries is the internal 
recombination of water dissociated by electrolysis thanks to an immobilized electrolyte.  

The application market of lead acid batteries is divided into three main segments: starting, 
lighting and ignition lead acid batteries - SLI batteries, motive lead acid batteries, essentially 
heavy-duty applications, and stationary lead acid batteries for back-up supply.  

When a lead acid cell is in service, at discharge i.e. to supply electricity to a DC load or in 
charge i.e. to re-establish its chemical energy reserve thanks to a generator, its voltage V is 
different or shifted from the equilibrium value, or its open circuit value E. The equilibrium 
voltage of a cell relates to the maximum energy that can be conversed by its reactions, 
electrical energy into chemical energy and vice versa, called Gibb free energy change ∆G, by 
the relation: ∆G = - nEF. During charge and discharge, the difference of the cell voltage from 
its equilibrium value ∆V = V – E is attributed to ohmic loss and non-ohmic polarizations, 
which result, in fine, in heat evolution.  

Regarding reactions of a lead acid cell, one important remark is that main reactions (charge 
and discharge of active materials) and side reactions (water electrolysis, oxygen 
recombination, corrosion, etc.) occur simultaneously in the cell at open circuit as well as at 
charge and discharge. This situation has a significant influence on lead acid battery behaviors, 
in particular at open circuit and during charge. It has to be taken into account in lead acid 
battery managements. This characteristic of lead acid batteries will be analyzed through this 
thesis: at charge with the electrolyte destratification by gassing (chapter 2), and at maintaining 
the charge of stationary lead acid batteries, where the secondary reactions are responsible at 
the same time of the self-discharge phenomenon and of the principals failure modes - dry-out, 
corrosion of the positive grid, thermal runaway – leading to end of life of these batteries 
(chapter 4). 
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CHAPTER 2 - CHARGE OF LEAD ACID BATTERIES: FROM TRA DITIONAL 

CHARGE TO ACCELERATED CHARGE WITH EARLY DESTRATIFIC ATION 

Introduction  

As mentioned in chapter 1, main reactions and side reactions simultaneously occur in lead 
acid cell. During charging, this co-existence of the side reactions with charge reactions of 
active materials, in one side, can influence, i.e. reduce, the charge efficiency; producing a 
negative effect. But in another side, gassing (i.e. O2 and H2 evolution) can be used to reduce 
the stratification phenomenon of the electrolyte, thus having a positive effect.  

In practice, a charge process has to answer three principal conditions: reasonable or desired 
charge duration, sufficient state of charge and acceptable electrolyte homogeneity.  

In general, charge durations are imposed or demanded according to applications. For instance, 
a 12 to 14-hour charges for charging batteries during night, when batteries are discharged 
during day; a 8-hour charge for 3 shifts/day in industrial batteries (traction batteries). 
Currently, new applications appear needing reduced charge duration: 4-hour charge in the 
case of grid storage due to reduced durations of the slack period during the night (e.g. 1 to 5 
am), in the case of a fast charge of batteries in electric buses, the total charge duration is of the 
order of an hour during noon break-times or waiting times at terminal stops.  

Two conditions of the sufficient SOC and the acceptance electrolyte homogeneity are mainly 
governed by following important factors: charge acceptance and current of gas evolution for 
destratification, called gas current.  

In a typical charge process, which lasts from 8 to 14 hours, in order to make the management 
easier, the destratification is done at the end of the charge when the charge acceptance is 
considered to be negligible and the gas current is assimilated to the applied current.  

Nowadays, the reduction of charge time required by new applications (4 hours, 1 hour or less) 
drives to design and develop new charge processes. 

In this chapter, first of all, the charge acceptance notion, the electrolyte stratification 
phenomenon and the destratification by gassing are presented. Then, variations of charge 
acceptance and gas current during a typical charging process are analyzed. This analysis 
shows difficulties in the control of the destratification phase in the case of accelerated 
charges, i.e. durations less than 8 hours, and thus the demand of a new charge process for 
reduced charge times. This is the reason why, in the next part, we search to control the 
destratification phase by charge acceptance measurement solutions. Finally, a new charge 
method using charge acceptance measurement is implanted. It is tested with a commercial 
charger of IES-Synergy Society.  

2.1 CHARGE OF LEAD ACID BATTERY 

2.1.1 Reminder of reactions during charging 

Negative electrode: 
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OHHSOPbOHe2PbSO 2434 ++⇒++ −+−  Reaction 5 

OH2He2OH2 223 +⇒+ −+  Reaction 10 

Positive electrode:  

+−− +++⇒+ OH3e2HSOPbOOH5PbSO 34224  Reaction 6 

+− ++⇒ OH2e2O
2

1
OH3 322  Reaction 11 

Overall reactions of charge: 

+− +++⇒+ OH2HSO2PbOPbOH4PbSO2 34224  Reaction 7 

Overall reaction of water electrolysis: 

222 HO
2

1
OH +⇒  

Reaction 12 

 

  

Figure 25: Schematic description of the dissolution-transport mechanism within a solution-filled 
cavity of porous Pb (or PbO2) electrode; schematic description of a proposed solid-state charge 
mechanism within the PbO2 electrode [28]. 

Petkova et al. [29] described the mechanism of PbSO4 reduction to Pb comprises following 
elementary processes:  

• Dissolution (chemical reaction) of PbSO4 crystals to Pb2+ and HSO4
- ions. 

• Diffusion (transport) of Pb2+ ions to the active centers where the electrochemical 
reaction of Pb2+ reduction to Pb proceeds (charge-transfer). 

• Surface diffusion of Pb atoms to the sites of Pb nucleation and crystal growth 
(crystallization). 

• Diffusion and migration of HSO4
- ions out of the pores of negative active material. 

This step is very slow as the HSO4
- ions have a very low mobility. Electro-

neutralization of the HSO4
- ions proceeds through diffusion of H3O

+ ions from the 
bulk solution into the pores of the negative active material. As the transference 
number of H3O

+ and HSO4
- ions is 0.9 and 0.1 respectively, the H3O

+ ions have 9 
times higher mobility than HSO4

- ions. The electrochemical reaction continues only at 
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the sites of active material where the HSO4
- ions are electrically neutralized. If the 

negative charges of HSO4
- ions generated by electrochemical reaction are not 

neutralized, the pore volume will be charged negatively and the electrochemical 
reaction will stop at this particular site.  

• The H2SO4 concentration in the pores increases and a concentration gradient is formed 
between H2SO4 in the pores and the bulk of the electrolyte (stratification phenomenon, 
cf. 2.1.3). Under its action, H2SO4 diffuses towards the bulk solution. This is a low 
process.  

Similar processes take place at the positive electrode where PbSO4 is oxidized to PbO2.  

2.1.2 Charge acceptance 

2.1.2.1 Definitions  

Several definitions of the charge acceptance, in term of a current, of a flooded lead acid 
battery can be found in the literature [1, 2, 5, 15, 30, 31].  

Berndt defines the “acceptance” as the share of the current that actually is “accepted” by the 
battery and could be retrieved by subsequent discharge [1]. Indeed, the charge current is 
partly involved in side reactions, mainly gassing. According also to Berndt [1], charge 
acceptance is determined by the balance between the kinetic parameters of the main charge 
current and the gassing current. In other words, it depends on the rate of the main and side 
charge reactions. This definition is difficult to use in practice because this “acceptance” 
cannot be directly measured, but only evaluated, by taking into account the losses through 
side reactions. This definition of the charge acceptance is associated to faradic efficiency 
(rFaraday) as the following: 

CHARGE

ACCEPTANCE
Faraday I

I
r =  (47) 

In which: 

IACCEPTANCE : charge acceptance  

ICHARGE : charge current 

Charge acceptance may also be defined as the maximum current a battery can absorb for its 
main charge reaction. This corresponds to the maximum value that can be reached in the case 
of the first definition. Although this concept is easily understandable, measurement of such a 
charge acceptance is very difficult. 

A very different definition is the total charge current (main and side reactions) under a 
constant charge voltage. The result can widely vary with the chosen voltage value. This 
includes for instance charge currents under float charges (charge with very low rates, cf. 
4.1.2.). 

Gassing becomes noticeable when voltage is above a threshold value, called here gassing 
voltage. The gassing voltage depends on temperature, charge rate, alloy quality, battery age 
and history. Moreover, as “noticeable” is subjective, it depends also on the observer 
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appreciation. The gassing voltage is statistically situated between 2.3 and 2.6 V/cell. In this 
thesis, the charge acceptance of the flooded lead acid battery is assumed to be the charge 
current passing through its electrodes at a gassing voltage. Thele [5] has used a similar 
definition for modeling the charge acceptance of flooded lead acid batteries. 

2.1.2.2 Charge acceptance profile 

As mentioned in 1.5.3, the overall charge reaction consists of four partial steps: charge 
transfer, mass transfer, chemical reaction and crystallization. Corresponding to each step, a 
respective overvoltage appears when this step is the determining-rate of the reaction (cf. 
1.5.4). The charge acceptance profile is in fact an image that describes the charge reaction 
rate, which is limited by one or many partial steps of the charge reaction. In other words, the 
acceptance profile is drawn based on electrochemical kinetic parameters. At their turn, these 
electrochemical kinetic parameters depend on many conditions such as the initial state of the 
battery (depth of discharge), the history, and the rate of charge.  

At the beginning of the charge process, as there are a lot of PbSO4 crystals and initially no 
concentration gradient, the charge-transfer reaction is generally the determining-rate. 
According to Takehara et al. [32], the charge-transfer process and the mass transfer process 
are the rate-determining steps for the oxidation of PbSO4 to PbO2 and for the reduction of 
PbSO4 to Pb respectively. Many authors [2, 5, 29, 32, 33] reveal also that the depletion of 
Pb2+ ions is the limiting process of the overall reaction. 

Charge-transfer as determining-rate 

When the charge-transfer rate is the determining-rate, the hindrance of this reaction causes the 
formation of active overvoltage ηa. (cf. 1.5.4.3). The charge-transfer rate is: 
















 ηα−−−






 ηα= aa0 RT

)1(
exp

RT
expi

nF

i  (31) 

Thus, the exchange current density i0 of the electrode reaction, the transfer coefficient and the 
active overvoltage have important roles in the charge process.  

Diffusion as determining-rate 

The rate of diffusion reaction is given by the first law of Fick (for one dimension):  

d

cc
D

nF

i o,jj
j

D,j −
=  (23) 

Applying it to the lead acid cell gives: 

d

cc
D

nF

i 2
22 Pb

0
PbD,Pb

+
++ −

=  (48) 

In which: 

0
Pb2c +   : concentration of Pb2+ ions at equilibrium 
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+2Pb
c   : concentration of Pb2+ ions at the reactive surfaces, i.e. at Pb and PbO2 

surfaces.  

d  : gap distance between Pb or PbO2 and PbSO4 surfaces, which can be assumed 
as the thickness of diffusion layer [cm] 

Therefore, the rate of the diffusion reaction depends on the diffusion constant D, which is a 
function of the material, the temperature and the concentration of the sulfuric acid. It is also 
inversely proportional to the thickness of the diffusion layer.  

The diffusion rate is also proportional to the difference in concentration of the Pb2+ ions +2Pb
c  

at the reactive surface and their equilibrium concentration 0
Pb2c + .  

During charging, the concentration of the Pb2+ ions in the electrolyte (at the PbSO4 surface as 
well as at the reaction electrode surfaces) is always smaller than the one at equilibrium. The 
Pb2+ ion concentration change, which is given by Sauer, Thele et al. [2, 5], is defined by the 
balance of the absorption rate of Pb2+ ions, q, due to the generation of Pb and PbO2 and the 
dissolution rate of the Pb2+ ions, s, from PbSO4 crystals: 

qs
t

c 2Pb −=
∂

∂ +
 (49) 

In which: 

q = I/nF : consumption rate of Pb2+ ions due to the electrochemical process (charge 
transfer) and therefore directly proportional to the charge current I. The current I is positive 
during the charge.  

s  : dissolution rate of the PbSO4 crystals  [mole.s-1] 

Pb2+ concentration

0
Pb2c +

)dissute(Pb2c +

PbSO4 surface Pb/PbO2 surfaces
Reaction surfaces

Electrolyte 

dissolution

−+ +⇒ 2
4

2
4 SOPbPbSO

+2Pb
c

d (cm)

diffusion

−++ ++⇒+ e2H4PbOOH2Pb 22
2

Pbe2Pb2 ⇒+ −+
Charge transfer

Interfaces 

 

Figure 26: Evolution of Pb2+ ion concentration at the interface area consisting of active material 
surface and PbSO4 crystal surface during charging: 0

Pb2c + concentration at equilibrium, )dissute(c 2Pb +  

concentration at PbSO4 surface, +2Pb
c concentration at reactive surfaces, i.e. Pb and PbO2 surfaces. 
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According to Sauer, Thele et al., the limitation of the PbSO4 dissolution process is assumed to 
be the main cause for depletion of Pb2+ ions. When the depletion of Pb2+ ions is the limiting 
process of the overall reaction, the charge reaction rate is obtained from the PbSO4 dissolution 
rate, which is defined by Sauer in [2] as follows: 

)cc(
r

DV
s 0

PbPb2

PbSO
22

4
++ −=  (50) 

In which: 

VPbSO4 : overall crystal volume of PbSO4   [cm3] 

r : average radius of all PbSO4 crystals  [cm] 

+2Pb
c  : concentration of Pb2+ ions at the PbSO4 surface (i.e. )dissute(c 2Pb +  in Figure 26). 

Therefore, the dissolution rate is proportional to the diffusion constant and to the overall 
crystal volume of PbSO4 but is inversely proportional to the square of the crystal radius. 

Dissolution-precipitation mechanism at positive electrode 

Or according to Takehara [32], the oxidation of the PbSO4 through the dissolution-
precipitation mechanism can be written as follows: 

−+ +⇒ 2
4

2
4 SOPbPbSO  Reaction 20 

−++ ++⇒+ e2H4PbOOH2Pb 22
2   

And then the following equation for the rate of this reaction may be written: 

y
H

x
Pb

ckc)t(A
nF

i
2

−
++=  (51) 

In which: 

A(t)  : interface area, which changes with the proceeding oxidation; 

+2Pb
c , +H

c  : concentration of Pb2+ ion and H3O
+ ion in the sulfuric acid solution, they 

depend on the concentration of sulfuric acid solution; 

x and –y : reaction order of Pb2+ ion and H3O
+ ion respectively for the anodic reaction; 

k  : potential dependence constant. 

As shown in Eq. (51), the charge-transfer reaction rate depends on the concentration of 
sulfuric acid solution and the interface area A(t).  

Diffusion rate at negative electrode 
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Always according to Takehara the rate of charge reaction of the negative electrode depends 
on the rate of diffusion reaction, which can be obtained by: 

)cc(
d

)t(DA

nF

i
22 Pb

0
Pb

D
++ −=  (52) 

In which: 

A(t)  : interface area; 

d  : gap distance between Pb and PbSO4, which can be assumed as the thickness 
of diffusion layer [cm]; 

0
Pb2c +   : concentration of Pb2+ ions at equilibrium (solubility of PbSO4); 

+2Pb
c   : concentration of Pb2+ at the Pb surface.  

In both cases of negative and positive electrode charge, the reaction interface area A(t) plays 
an important role in the charge reaction rate. The charge reaction rate is proportional to A(t).  

Charge acceptance profile 

 

Battery 
SOC

I

IACCEPTANCE

Battery 
SOC

I

IACCEPTANCE

I

IACCEPTANCE

 

Figure 27:  

Charge acceptance as a function of battery 
state of charge (SOC), following an 
asymptotic profile 

 

In brief, apart from the temperature, the battery age, history and the rate of charge, the charge 
reaction rate or the charge acceptance at a fixed charge rate changes depending: 

• the interface area between active materials and PbSO4 crystals, which is related to the 
volume and the crystal radius of PbSO4. During the charge, for both negative and 
positive electrode, the total volume as well as the crystal radius of PbSO4 crystals 
decrease with the state of charge. This results in an increase of the diffusion layer and 
so a decrease of the diffusion rate, cf. Eq. (48). Moreover, according to Eq. (51) and 
(52), the decrease of interface area leads directly to the decrease of reaction rates. So, 
the decrease of interface area with processing charge is one of the reasons explaining 
the falling down of the acceptance with the SOC;  

• the concentration of H2SO4 in the pores of active material, which increases with 
progressing charge and involves the decrease of the diffusion coefficient, as well as of 
the solubility of PbSO4 crystals. For these influences, the increase of the H2SO4 
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concentration is also attributed to the decrease of the charge acceptance with the 
augmentation of the SOC.  

In brief, the charge acceptance decreases with the increase of the battery SOC, following an 
asymptotic profile (cf. Figure 27). 

2.1.3 Electrolyte stratification 

2.1.3.1 Phenomenon 

At room temperature the density of sulfuric acid is 1.834, which is more than 1.8 times the 
density of water. This difference in density can cause problems during recharge, as sulfuric 
acid takes long time to diffuse towards the bulk solution, relatively higher density causes it to 
settle downward relative to the water. This problem can be seen in more detail by examining 
the chemical reactions that occur during charging. 

When the lead acid battery is being charged, the sulfuric acid is produced in the porous 
volume of both electrodes. This porous volume is inferior to 20% of the total volume of the 
electrolyte. During charging, the sulfuric acid concentration in the pores increases 
progressively and becomes higher than the one in the bulk solution. When coming out of 
these pores, the electrolyte has a higher concentration of sulfuric acid near the positive and 
negative electrodes, which corresponds to a higher density. This causes it to pour down along 
the electrodes under effect of gravity and increases the acid concentration at the bottom of the 
cell. This is the process of stratification, in which the electrolyte at the bottom has a higher 
acid concentration than the one on the top of the cell. 

 

Figure 28: Sulfuric acid density at the top and the bottom of electrodes during a 160 days period 
under typical conditions of an autonomous photovoltaic system. The measurement was manually 
carried out on a 200 Ah/2 V flooded lead acid battery [42]. 

The bibliography work of Y. Guo et al. gives a quite full summary of lead acid applications, 
which suffer from the stratification phenomenon [34]. The electrolyte stratification is an 
ubiquitous phenomenon in lead-acid batteries and the severe stratification often occurs in 
large-scale batteries, PV applications, and batteries at a high rate of discharge or charge [35-
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39]. It is known that the degradation of the automotive battery performance often appears in 
the bench-life testing because of the acid stratification. In the application of photovoltaic 
systems [38-43], the discharge current of the batteries is very small and they are seldom 
completely charged due to low limited charge voltage and also to limited amount of sunshine 
per day. The frequent undercharge makes the electrolyte stratification to become increasingly 
serious. These problems also appear in valve-regulated lead-acid batteries with poor 
convection because of their design of starved electrolyte and less overcharge [44-46]. 

2.1.3.2 Consequences  

Battery voltage depends on acid concentration. In a stratified cell, the equilibrium voltage is 
higher at the bottom (cf. 1.4.2.1).  

At charge with voltage restriction, higher polarization is distributed at the top of a stratified 
cell. Consequently, the cell is heterogeneously charged and it can happen that the top portion 
is overcharged while the bottom portion is undercharged.  

At discharge, this same bottom part of the stratified cell, where polarization is higher, is 
preferentially discharged and reaches more rapidly the criterion of end of discharge (cf. 
section 3.1) while it is not met yet at the top part. In this case, the discharge of the cell 
continues, the bottom part thus suffers over-discharge.  

 

Figure 29: Stratification effect on positive and 
negative electrodes: concentration pile that 
discharges the bottom part and charges the top 
part of electrodes [47] 

 

In the case of a stratified cell at open circuit, concentration pile effect can take place as 
illustrated by Ruetschi [47] in the Figure 29. Within the electrolyte stratification, the emf of 
the electrode top part (dilute electrolyte) is lower then the one of the electrode bottom part. 
This results to an equivalence of a concentration pile in short circuit on the electrode itself. A 
current appears inside each electrode where the top part is charged and the bottom part is 
discharged. 

These situations during charging, discharging and open-circuit of the stratified cell bring to an 
excessive sulfating the electrode bottom parts, and thus, to an accelerated aging process of the 
cell (cf. Figure 30). It is known that the lead sulfate takes considerably more volume than the 
active materials at charged state (PbO2). Moreover, it has a completely different morphology 
and crystallographic structure compared to PbO2. If there is an excessive sulfation during 
cycling in the stratified electrolyte condition, the morphological shape-change of the positive 
active mass is accelerated. PbO2 material gradually looses its structure (i.e. loss of coherence 
between particles) and cannot participate any longer in the discharge process. This 
phenomenon is called softening of the mass. The soft mass layer becomes more and more 
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thicker and finally the active material falls down from the plate to the container bottom. This 
is called shedding [47-49]. 

 

Figure 30: Stratification effect on a positive plate: softening and shedding of the active material at the 
bottom of the plate [48]. 

2.1.3.3 Destratification by gassing  

In flooded lead acid batteries, the stratification of electrolyte can be readily recovered by 
agitation such as by gassing. As mentioned in 2.1.2.1, when the applied current exceeds the 
charge acceptance, or in other words when the voltage is prolonged beyond a gassing value, 
the current share that produces gases (called gassing current), becomes noticeable. In a 
traditional charge, an overcharge phase at constant current is added at the end of charge (cf. 
2.1.5) in which gassing is produced to destratify the electrolyte.  

 

Figure 31: Electrolyte density measured at four levels of the cell as the function of the charge 
coefficient evolution during overcharge phases at 0.05C or at 0.2C. Beyond 8% of overcharge, the 
electrolyte is almost homogeneous without depending on the overcharge rate [50].  
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The work of J. Alzieu and J. Robert [50] shows in Figure 31 that for a flooded battery, beyond 
about 8% of overcharge (8% more of the electrical quantity, which equals to the one obtained 
during the previous discharge), the electrolyte is almost homogeneous and independent on the 
overcharge rate. It is clear that, the destratification is more efficient at the beginning of the 
overcharge phase, below 5% of overcharge. 

In practice, as the electrical quantity (Ah) used during the previous discharge is usually 
unknown, a 10 to 20% of the total electrical quantity accepted during the two previous charge 
phases (cf. Figure 32) is applied at the end of the charge process to destratify the electrolyte.  

2.1.4 Charge definitions [51] 

2.1.4.1 Full charge 

As explained in 2.1.2, the charge acceptance decreases following a descending profile during 
the charge. A complete state of charge is an asymptotic state that is never reached. This is the 
reason why what is called a full charge is not a real full charge. It is just a trade-off between a 
desired charge duration and a high enough state of charge.  

According to charge standards, the full charge is considered to be reached when there is no 
charge current or voltage evolution during at least 2 hours. This criterion of full charge is 
evidently vague as the observation of a non-evolution depends on the sensibility of the 
measurement apparatus used. Moreover, at the end of charge, the temperature rise due to 
inevitable losses (cf. 1.5.6), involves a slight decrease of the electrolyte resistance and as 
consequence of the battery voltage. This decrease can mask the increase of the voltage related 
to the effective charge, which becomes lower and lower but never zero. The association of 
these two processes results in the voltage evolution profile as the appearance of a maximum 
level that is almost flat but usually can be detected by a reasonable effort of measurement. A 
similar phenomenon takes place in the electrolyte density evolution: this maximum area is 
then classified, in practice, like a non-evolution period of the observed parameters allowing 
the validation of the full charge criterion. 

Taking also into account the stratification phenomenon during charging, a full charge that can 
be obtained at the end of a lead acid battery charge is in reality the result of a trade-off 
between a reasonable charge duration, a sufficient state of charge and an acceptable 
electrolyte homogeneity.  

2.1.4.2 Normal charges 

The normal charge of lead acid batteries consists in reaching the maximum level of full 
charge while respecting the standards and constraints of the operating fields. 

The initial charge current is limited by the standards at Cnominal(Ah)/5(hours), or written in a 
simple way C/5 or 0.2C (e.g. 20 A for a battery whose the nominal capacity is 100 Ah). Most 
of commercial chargers have an initial current slightly inferior to this limitation, generally 
between 0.15C and 0.18C. After a complete discharge (100 % DOD), this current can be 
maintained during 3 to 5 hours before the charge acceptance becomes inferior to this initial 
value. The current profile at the last phase of charge as well as the criterion of end of charge 
vary according to the charger brands and recommendations of battery manufacturers. They 
can take into account also maximum charge durations dictated by utilization constraints. 
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Therefore, the normal charge is more or less complete in different cases. But, this is not the 
essential criterion. The primary condition that has to be respected during a charge concerns 
the electrical quantity for electrolyte destratification and not the perfect charge of active 
materials. The gassing current is limited by the standard at C/20. A normal charge usually 
lasts from 12 to 14 hours and the last 3 hours are used considered for gassing.   

2.1.4.3 Accelerated and fast charges  

Accelerated charges apply high currents together with reduced charge durations (less than 8 
hours). A charge lasting less than 1 hour (i.e. the charge rate is C/1) is generally called fast 
charge. 

Two fundamental points associated to the accelerated charge of lead acid batteries are: 

The accelerated charge is just a partial charge. Within a reduced charge time, for instance 
1 hour, the battery just approaches in a very relative manner the asymptotic state of full 
charge. The final state of charge depends on the charge rate, the initial depth of discharge, the 
rate of this discharge, the duration of possible standby period between the discharge and the 
charge, the temperature. In practice, after a full discharge, the final maximum state of charge 
that can be reached during 1 hour is between 60 to 85%. 

The destratification step is mandatory. The necessary gas volume for electrolyte 
homogenization is the same as for a normal charge (cf. Figure 31). But, the gas evolution rate 
has to be intense to preserve the characteristic of a fast charge. 

2.1.5 Charge acceptance and gassing current variations during a IUi typical charge 
process of lead acid batteries  

A typical traditional charge of lead acid batteries is composed of three phases, usually called 
I(W)Ui charge (cf. Figure 32).  

The first phase is a constant current phase (or a constant power phase) (A), in which the 
current value (I1) is usually limited by the maximum power of the charger, as initial charge 
acceptance of a discharged battery is high. During this phase, the voltage increases with the 
increase of the SOC up to the gassing value as the internal resistance increases progressively. 
Within this phase, the major part of charge, 60 to 90%, is accomplished. As the voltage 
increases, the gassing current also increases, but it remains insignificant compared to the 
charge current up to a threshold value.  

The second phase (B) is performed at a constant gassing voltage. During this phase, the 
charge current decreases asymptotically to a low value following the charge acceptance 
profile (cf. Figure 27), while gassing current is almost invariable as the voltage is fixed at the 
gassing value.  

The third and last phase is a constant current phase (C), which is called overcharge or 
destratification phase. This provides constant current (I2), called overcharge current, whose 
value is higher than the charge acceptance, thus producing significant gas evolution that 
destratifies the battery electrolyte. 
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Figure 32: IUi charge of lead acid batteries: (A) constant current phase at I1, (B) constant voltage 
phase at gassing value VGAS and (C) overcharge or destratification phase at constant overcharge 
current I2 = C/20.  

Figure 33 illustrates the relationship between the current and the potential of the positive 
electrode during three phases of the charge; the ratio of the active material current iAM+ = 
iPbSO4/PbO2 and of the oxygen current iO2 = iH2O/O2 is just an image to illustrate the principle, 
the contribution of gassing current in the first and second phases being pretty amplified in 
order to be easily observed. 

The characteristic of iAM+  is sensibly straight at the beginning of the charge. With progressing 
charge, it moves towards the abscissa of the potential as the state of charge increases. The 
characteristic of iO2 evaluates following an exponential function with the increase of the 
voltage.  

On the phase A at current constant I1, the voltage increases slightly as the characteristic of 
iAM+  evaluates slightly and the slope of the characteristic of iO2 is sufficiently low that its 
influence is almost negligible   

It is shown that, if the constant current I1 were continued to be applied to the battery without 
the voltage limitation, the potential would increase up to values where the gas evolution 
would be very important and this current would not match any more the battery acceptance 
profile. Therefore, the fixed gassing voltage phase (phase B) plays the role to limit the gassing 
current and enables the battery to be charged at its charge acceptance rate.  

At the end of charge (at the end of phase B), the characteristic of iAM+ is almost en parallel 
with the potential abscissa, the charge acceptance is almost mixed up with the gassing current, 
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the battery is no more charged. The battery is imposed at the current constant I2 for 
destratification (phase C). During this phase, the voltage is fixed at high values by overcharge 
current I2.  

The first and the third phases (phases A and C) are both at constant current, but their effect is 
different: in the first phase, the supplied current contributes most all to the proper charge 
while in the third phase it is essentially dedicated to gassing. 
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Figure 33: Relationship between current and 
potential of the positive electrode during each 
phase of IUi charge.  

Phase (A): the battery is charged with constant 
current I1, the potential E increases up to the 
gassing value.  

Phase (B): the battery is charged at the constant 
potential gassing EGAS (i.e. at its charge 
acceptance). The charge acceptance decreases 
progressively. 

Phase (C): the battery electrolyte is destratified 
by gassing at constant current I2, the potential 
increases. The battery is almost no longer 
charged. 

2.1.5.1 Gassing Voltage 

As defined in 2.1.2.1, beyond the gassing voltage value the gassing current becomes 
noticeable compared to the current of proper charge reactions or in other words with the 
charge acceptance.  

The gassing voltage value can be obviously observed on the voltage profile during charging 
with a constant current. As shown in Figure 33, in the first charge phase of constant current 
(phase A), the voltage variation is almost decided by the profile of the active material charge 
current iAM+ and in the third charge phase of overcharge constant current, it is essentially 
determined by the profile of the gassing current iO2. The moment where the voltage profile 
transfers from the charge to overcharge profile is marked by a transient phase of an abrupt 
jump from one level (low level where the gassing current is sufficiently low and does not 
influence on the battery voltage) to a higher one (high level where the gassing current is 
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important and fixes the voltage at high values). The gassing voltage value is the inflection 
point between these two levels (cf. Figure 34).  

An industrial charger is usually not programmed to detect the inflection point of the voltage 
profile. Thus, an experimental gassing value has to be predicted to limit the charge current 
according to the charge rate and the kinds of positive grid alloys. 
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Figure 34: Voltage variation of the battery as a function of time during a charge followed by an 
overcharge at a constant current: it jumps from a low level to a high level, for instance 2.3 V to 2.6 V. 
The gassing voltage corresponds to the inflection point between two levels.  

Increasing the gassing voltage can be one way to charge more rapidly the battery, but it is 
limited by the increased water electrolysis with the voltage [1]. Berndt shown in his 
experiment that when increasing the gassing voltage the charge current increases as well 
because of the raising of the gassing and the charge acceptance. In this example, it is shown 
that when the voltage reached the gassing value of 2.23 V/cell 79% SOC is reached, and this 
value is 97% in the case of 2.4 V/cell gassing voltage. However, the water decomposition is 
seven times faster in the second case. This is the reason why an increase of gassing voltage is 
only used when a certain level of charge has to be reached within a limited time.  

The transient voltage values depend at the same time on rates of charge reactions and gassing 
reactions, or in other words, on the balance between these two reaction rates. Therefore, 
transient voltage values, like the charge acceptance and the gassing current, vary with many 
parameters such as temperature, rate of charge, alloy quality, battery age and history.  

It is found in experiments that the slope of transient phase decreases with battery age. Indeed, 
an aged battery has a lower gassing voltage than a new one. This change can create problems 
as the gassing voltage of the charger is fixed. A bad situation can happen when the voltage of 
an aged battery is not able to reach the fixed gassing voltage value of the charger, so the 
battery continues to be charged with a constant current and produces undue gas evolutions.  

2.1.6 Control of Destratification phase  

The destratification phase is mandatory for flooded lead acid batteries longevity, but the 
electrical quantity supplied for gassing has to be controlled to prevent shedding of active 
materials from the electrodes, to reduce water loss by electrolysis and corrosion, to reduce 
depletion of the electrolyte, to comply with the recommended venting rate associated to 
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hydrogen high flammability and sometimes to have a quite high faraday efficiency (e.g. in the 
case of photovoltaic applications, to use the most efficiently the available sun power). The 
overcharge electrical quantity control means the control of the gassing current that is injected 
into the battery. C/20 is often considered as a convenient gassing rate. 

The destratification phase is usually performed at the end of charge when the charge 
acceptance is small enough to be negligible. Supplied current is then considered mainly for 
gassing. The destratification phase is thus evaluated and controlled by the control of the 
supplied current. This is the case of charge processes lasting enough long time, typically from 
10 to 14 hours.  

Establishment of the 8-hour shifts (three shifts/day) required the constructors to develop 8-
hour charge programs, sometimes qualified as accelerated charge. This reduced charge time 
can be performed without changing fundamentally the charge methods: at the end of charge 
(e.g. last 3 hours), a constant current of C/20 is applied for destratification. It is important to 
keep in mind that although the charge acceptance is not yet negligible, it is already inferior to 
C/20. As the gassing current is part of this applied current, its value never exceeds the C/20 
rate (cf. Figure 35). 

I

A B C

I1

Battery 
SOC

I2

IACCEPTANCE

IGAS < C/20

C/5

C/20

I

A B C

I1

Battery 
SOC

I2

IACCEPTANCE

IGAS < C/20

C/5

C/20

 

Figure 35: Control of destratification 
phase at an accelerated IUi charge. 
Charge acceptance may not be negligible 
during overcharge phase, overcharge 
rate is set at C/20, gas rate never exceeds 
C/20. 

 

However, reducing the charge time even more, below the 8 hours, presents difficulties, 
especially when the charge acceptance is still superior to C/20. Two bad situations can happen 
in this case (cf. Figure 36): 

• On one hand, if the charge acceptance is higher than C/20 and the constant current for 
destratification phase is fixed at C/20, it is supplied only for the proper charge and not 
for gassing. There is no destratification. (a) 

• On other hand, if the constant current of destratification phase is increased to be 
superior to the charge acceptance (superior to C/20), the destratification control can 
become delicate. In fact, the charge acceptance is not known, neither the current value 
share for destratification (the gassing current). The gassing current, as well as the 
electrical quantity for the destratification, cannot be controlled and can become too 
high and damage the battery. (b) 

The first situation has to be avoided because it retards the charge process and there is no 
destratification. The second situation could be a way to homogenize the electrolyte in 
accelerated and fast charges with the condition that the current share for gassing has to be 
controlled. 
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(b) 

Figure 36: when at phase (C) charge acceptance is still greater than C/20, 2 situations can happen: 
(a) I2 is set at C/20 that involve no IGAS, (b) I2 is set greater than IACCEPTANCE there is current share for 
gassing but it cannot be properly controlled. 

In order to control the gassing current, assuming that during an overcharge phase, the supplied 
current (IOVERCHARGE) is the sum of charge acceptance (IACCEPTANCE) and gassing current 
(IGAS), we have to find a way to measure the charge acceptance during the overcharge phase 
(phase C) so that the gassing current can be calculated as follows: 

IGAS = IOVERCHAGRE - IACCEPTANCE (53) 

2.2 CHARGE ACCEPTANCE MEASUREMENTS 

As defined in 2.1.2.1, the charge acceptance that has to be determined is the charge current 
under a gassing voltage. Thus, in principle, acceptance value can be obtained in provoking a 
transition from overcharge to charge, so the current (the voltage) decreases from overcharge 
value to acceptance value (gassing value) respectively. This action can be operated by 
controlling either the current or the voltage.  

The first method of charge acceptance measurement during the overcharge phase proposed by 
P. Izzo in his thesis work using the current ramps in the charge algorithm for batteries of 
photovoltaic application [48]. The second method tested in this thesis is using voltage 
squares.  

2.2.1 Current ramps 

2.2.1.1 Principle 

The method proposed by Izzo can be applied during the overcharge phase in the following 
way (cf. Figure 37): 

• Linearly decreasing current ramps are periodically imposed on the battery (e.g. the 
period to execute the current ramps is 20 minutes) and the voltage decreases as well.  

• While the current share for gassing is high, the voltage value stays high (high level).  
• While the current share for gassing is almost negligible, the voltage transients toward 

the gassing value (VGAS). The current at this gassing value is the charge acceptance.  



CHAPTER 2 – CHARGE OF LEAD ACID BATTERIES: FROM TRADITIONAL CHARGE TO ACCELERATED CHARGE 

WITH EARLY DESTRATIFICATION______________________________________________________________________ 

 

 67

time

Current

Voltage

VGAS

IACCEPTANCE

Imposed 

current ramps

time

IGAS

OVERCHARGE

20 min.
time

Current

Voltage

VGAS

I

Imposed 

current ramps

time

IGAS

I

High level

Sweep rate

Sweep period

time

Current

Voltage

VGAS

IACCEPTANCE

Imposed 

current ramps

time

IGAS

OVERCHARGE

20 min.
time

Current

Voltage

VGAS

I

Imposed 

current ramps

time

IGAS

I

High level

Sweep rate

Sweep period

 

Figure 37: Principle of current ramp method: at overcharge, periodically, e.g. every 20 minutes, the 
current follows a decreasing ramp. When the gas evolution is almost zero the battery voltage reaches 
a gassing value. At this moment, charge current response is obtained and the current is reestablished 
to the overcharge value [48]. 

2.2.1.2 Experimental  

Laboratory experiments were carried out to answer the two following questions for a given 
battery at charge: 

• What is the gassing voltage value? 
• What is the charge acceptance response of the battery at this gassing value?  

It is known that the presence of a maximum in dV/dI versus current ramps, or in other words 
the appearance of the voltage inflection point, indicates the gassing point (cf. 2.1.5.1). With 
such way, the question of the gassing voltage must to be no longer posed: whatever the alloy 
type, the temperature or the battery age, the crossing of the charge acceptance has to be 
observed by a transient phase between a high voltage, associated to the gas evolution, and a 
low voltage, related to the proper charge. The expected behavior has to consist of an inflection 
point between two voltage levels. The current associated to this inflection point is considered 
to be the charge acceptance of the battery as it marks a limit between the important current of 
gas evolution, which fixes the battery voltage at a high value, and a sufficient low gassing 
current, which does not significantly influence the battery voltage. Determination of this 
inflection point can be achieved by imposing a decreasing or increasing current ramp onto the 
battery. We chose operating both variation directions in order to take into account a potential 
difference.  

Regarding the choice of the applied current ramps, the following remarks should be kept in 
mind: 

• The amplitude of the current ramp is also the desirable one to homogenize the 
electrolyte. This value is usually limited by the standards at C/20. In order to observe 
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the gassing point, the current is swept from C/20 to 0 (A) and vice versa. This is the 
different point compared to Izzo’s principle, where the current ramps decrease linearly 
and stop at the value at which the voltage reaches a determined gassing value. 

• It is desirable that the period at which the current sweep is carried out is long. In 
contrast, the sweep rate is better to be fast. In fact, the final objective of the overcharge 
phase is to destratify the electrolyte by applying to the battery a constant current value. 
The current ramp is just a step to measure and up date the charge acceptance value. 
Therefore, the period to execute this measurement step should be long and the sweep 
rate should be quick to preserve the characteristic of the overcharge phase and the 
characteristic of an accelerated charge. 

• The saw-toothed waveform was chosen instead of half saw-toothed waveform 
illustrated in the principle to verify the gassing point, as the transient phase would 
occur two time, in the ramp-down as well as in the ramp-up direction.   

The charge process is done at the current regulation mode without voltage restriction.  

The tests were operated on the flooded lead acid battery 12V-70Ah, Monobloc Equipa-
Fulmen 070430 A-A, used in photovoltaic applications.  

The battery was subjected to several charge/discharge cycles as follows: 

• Discharge of 3 Ah; current ramp charges in which ramp amplitudes were 2, 4, 10 or 30 
minutes. 

• Discharge of 15, 30 Ah and complete discharge with the voltage limit at 10 V; current 
ramp charges with 10 minute ramp amplitude. 

• Discharge of 15 Ah; normal charge at 3 A constant current with 14.5 V limit voltage.  

The depths of discharge were chosen in such a manner that a discharge-charge cycle could be 
done during a working day shift (less then 8 hours).  

The current ramps were supplied by a bipolar alimentation and amplifier (KEPCO BOP 20-
20M), which is controlled by a function generator (HP 33120A).  

The battery voltage and current and temperatures of the battery and of the ambient are 
recorded using JUMO Logoscreen 500.  

2.2.1.3 Results and discussion 

Figure 38 shows voltage and current profiles during a current ramp charge process as a 
function of time. Looking at the voltage profile, it is clear to distinguish charge and 
overcharge profiles separated with the transient phase. At charge, the current sweep does not 
produce a considerable variation on the voltage profile compared to the one at overcharge. 
This can be easily explained in observing again the Figure 33.  

During the charge phase, the voltage profile is determined by the active material charge 
reaction. The gassing current is almost negligible (cf. Figure 33, b). Therefore, while the 
current is swept from high to low value or vice versa, the voltage is always determined by the 
active material charge current. As the charge acceptance decreases steadily, its value happens 
to reach the maximum current value. This is done in the transient phase. 
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Figure 38: Voltage and current profiles vs. time in a charge with current ramps of 2 minutes (1 minute 
ramp-up + 1 minute ramp-down). The charge phase, the transient phase and the overcharge phase are 
obviously observed at the voltage profile.  

At overcharge (phase C) the maximum value of the current always exceeds the charge 
acceptance of the battery. The voltage profile is determined by the gassing current profile as 
the acceptance current is very low and its profile stays below the gassing profile (cf. Figure 
33, c). While the applied current decreases (ramp-down), the overcharge point would transfer 
to the charge point where the voltage is defined again by the proper charge current. During the 
ramp-up, in contrast, the increase of the applied current involves the transfer of the charge 
point to the overcharge point where the voltage depends on the gassing current. As shown in 
Figure 38, beyond to the transient phase, the voltage increases slightly at the beginning, then 
stays almost stable when the current is at the maximum injected value, 3 A. This confirms the 
fact that the voltage is determined by the gassing current and the charge acceptance is almost 
negligible or the battery is no longer charged. 

So the first conclusion that can be made is that sweeping the current from a low value to 
values beyond to the charge acceptance value can provoke the charge/overcharge transition 
and vice versa. 

The primary objective of the test is to find the gassing voltage point that induces the charge 
acceptance response of the battery. Figure 41 shows an extract of voltage and currents profile 
during the overcharge. In this case, the inflection value is 14.7 V for both ramp-up and ramp-
down directions. However, the two correspondent charge acceptance values are not the same, 
for instance they are 0.3 A and 1 A for ramp-down and ramp-up respectively at 2 hours 33 
minutes of charge.  
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Figure 39: Voltage profile vs. current in a charge with current ramps of 2 minutes (1 minute ramp-up 
+ 1 minute ramp-down): charge phase, transient phase and overcharge phase are obviously observed.  

 

(a) Charge 

 

(b) Transient phase 

Figure 40: Zooms on voltage and current profiles at charge (a): current sweep does not produce a 
considerable variation in the voltage profile, at transient phase (b): voltage begins to increase 
considerably with current sweep.  

Figure 42 represents the charge acceptance response of the battery at the gassing voltage of 
14.7 V during overcharge. At this same value, there were two profiles of charge acceptance 
correspond to the ramps-down and ramp-up. An average difference of 0.6 A is found between 
them, with the charge acceptance profile of ramp-up being higher position. This difference, 
current-voltage hysteresis, can be associated to the process of charge and discharge of the 
double layer capacitance when the current increases and decreases [52, 53]. Another remark is 
that these both current profiles have a normal form of the battery charge acceptance, they 
follow the asymptotic profile to a low value. 
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The same discharge/charge cycles were carried out with lower sweep rates, at 4, 10 and 30 
minutes. Using the same definition of gassing point, the gassing values are equal to 14.5, 
14.0-14.3 and 13.9-14.3 V at 4, 10 and 30-minute ramp charges respectively. Figure 43 
illustrates the correspondent charge acceptance profiles at these gassing points.  

0.3

14.7

0.30.3

14.7

0.3

 

Figure 41: Zooms on voltage and current profiles at overcharge: at inflection points of voltage profile, 
it equals to 14.7 V in this case, charge acceptance response of the battery is obtained. Corresponding 
to ramp-down and ramp-up, there are two different values of charge acceptance.  

0.3

Ramp-down

Ramp-up

0.30.3

Ramp-down

Ramp-up

 

Figure 42: Charge acceptance response of the battery at 14.7 V gassing value. Two different charge 
acceptance profiles were obtained. Charge acceptance profile of the ramp-down is about 0.6 A lower 
than the one of the ramp-up.  

These remarks are obvious: 

• Hysteresis almost does not change in decreasing the sweep rate from 2 to 4 minutes. 
The noticeable decrease of hysteresis is observed at 10 minutes (0.4 A instead of 0.6 
A) at 4 minute ramps. Even at 30 minute ramp, a 0.2 A hysteresis is still present. So it 
can be seen that hysteresis decreases with a decrease of sweep rate. It should be kept 
in mind also that if the sweep rate is decreased several times, the charge acceptance 
response corresponding to the ramp-up and ramps-down could not be the same 
because the charge acceptance varies with charge time.  
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• When decreasing from 2 to 10 and finally to 30 minute, it seems that the charge 
acceptance profiles corresponding to the ramp-down do not change, just the profiles of 
the ramp-up fall more and more toward the ramp-down ones.  

Different cycles with deeper depths of discharge have been carried out with similar results. 
 

 
(a) 2 minute-ramps 

 
(b) 4 minute-ramps 

 
(c) 10 minute-ramps 

 
(d) 30 minute-ramps 

Figure 43: Charge acceptance profile responses of the battery at gassing voltage at different ramp 
tests, 2 – 4 - 10 and 30 minutes, following a 3 Ah discharge. Voltage-current hysteresis always 
appears.  

2.2.1.4 Conclusions of current ramp method 

Using current sweep of ramps can provoke transitions from charge to overcharge and from 
overcharge to charge. Corresponding gassing points and charge acceptance values can be 
obtained. Nevertheless, this requires a considerable long sweep rate to limit hysteresis and to 
have accurate current-voltage information. This is the result why, this method is not suitable 
to use in those applications requiring accelerated charges.  

2.2.2 Voltage squares 

2.2.2.1 Principle 

Two results of the ramp current tests that should be taken into consideration for voltage 
square tests are: 

• Gassing points situate between 13.9 and 14.7 V for a 12 V battery. During charging, it 
could be sufficient to decrease the battery voltage to these values to determine charge 
acceptance.  
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• The ramp form can retard the battery voltage to reach the gassing values. Square form 
can be used instead to avoid this inconvenient. 

Basing upon the charge acceptance definition, the principle of the voltage square method to 
measure the charge acceptance is resumed as follows: during overcharge phase at constant 
current, the voltage is periodically brought back to a chosen gassing value for a very short 
time, called measurement step; at this gassing value, charge acceptance response of the 
battery is measured. This method, differing from the method of current ramp, requires 
knowing the gassing voltage value. This value is predicted according to the charge rate and 
the type of positive grid alloys.  

Voltage 

Current

ISURCHARGE

IACCEPTANCE

High level

T1T2

IGAZ

Destratification steps

Acceptance measurement steps

Duty = T1/(T1 + T2) % 

VGAS

 

Figure 44: Principle of voltage square method: at overcharge, successive steps of destratification at 
overcharge current and of acceptance measurement at gassing voltage are periodically applied.  

Regarding the duty ratio at which the voltage square is carried out, the efficiency of 
destratification phase as well as the characteristic of an accelerated charge should be kept in 
mind as mentioned in the choice of the period and the sweep rate in ramp current method (cf. 
2.2.1.2). It is better that voltage squares are executed with a high duty ratio, or in other words 
with measurement steps as short as possible. 

2.2.2.2 Experimental 

The same equipments of the ramp current tests were used for square voltage tests. 

The duty cycle of square voltage was set at 80% (about 3 minute-measurement for every 15 
minutes). 

Gassing voltage values were chosen taking into account the ramp current test results and even 
more: 13.8 – 15.0 V. 

Different charge rates, 3 – 5 – 10 A, were applied; the results were compared to one another. 

The depth of discharge was fixed at 15-20 Ah.  
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The charge test to measure charge acceptance by voltage squares, called here 
Charge&Destratification charge test (C&D charge test), is carried out as follows: charge the 
battery at constant current (I) until the battery voltage reaches a determined gassing value 
(VGAS); then overcharge steps at constant overcharge current (i) (i can be manually changed 
according to charge acceptance value obtained) and charge measurement steps at constant 
VGAS are successively imposed. At the overcharge step of i current, the limited voltage is set at 
a very high value that the battery will never reach (e.g. 18 V) so that it is alike in the case of 
no voltage restriction. Every overcharge step and measurement step last 15 and 3 minutes 
respectively.  

Our first cycle of tests consists to evaluate the battery charge acceptance response at different 
gassing voltage values (from 13.8 to 15.3 V). To simplify the C&D test program, the 
overcharge current value (i) is set to be equal to the constant current of the first charge phase 
(I). They are both fixed at 3 A.  

Our second cycle of tests consists to compare C&D charge acceptance measurement with the 
one obtained at a charge IU (a classical charge without the overcharge phase, cf. 2.1.5). The 
depth of discharge, the charge rate and the gassing voltage value are the same in both cases 
(15Ah, 10 A and 14.8 V respectively).  

2.2.2.3 Results and discussion 

Evaluate charge acceptance responses of the battery at different gassing voltage values 

The first gassing voltage that we tested was 14.5 V and the results are presented in Figure 45. 

IOVERCHARGE= 3 and 1.4 A 
TOVERCHARGE= 15 min

VGAS = 14.5V 
TMEASUR. = 3 min

 

Figure 45: Voltage and current of the battery are presented as functions of time during a charge test 
with acceptance measurement by voltage square method (C&D test): successive steps of overcharge 
for 15 min at 3 A and 1.4A and of acceptance measurement for 3 min at 14.5V gassing voltage were 
periodically done. Two zooms on the current profile at 14.5 V gassing voltage show transient values, 
sometimes negative, at the beginning of the acceptance current measurement steps. 

It can be observed that while the voltage is brought back to the fixed gassing value at 14.5 V, 
the current at first drops abruptly to a very low value (that can be negative) for a short time 
(around 5 seconds) then it increases to reach stabilized values. As mentioned above, this 
transient phase of current response can be related to the fact that the double-layer capacitance 
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is discharged when the battery voltage falls from a given potential to a lower one [52, 53]. 
According to this hypothesis, the higher the voltage gap between the overcharge value and the 
gassing value, the more deeply the double layer capacitance is discharged and therefore the 
lower the current falls down before stabilizing. This is confirmed by results of C&D tests with 
gassing values of 13.8 V and 14.8 V. 

From the Figure 46, it is clear that at 13.8 V the current falls down to very negative values (-
12 A), and takes about 1 minute 30 seconds to stabilize, while at 14.8 V the current becomes 
stable after some seconds (5 seconds) as shown on Figure 47. 

Zoom

1 min. 30 sec.

 

Figure 46: C&D test with 13.8V gassing value: successive steps of overcharge lasting 15 min at 3 A, 
and of acceptance measurement lasting 3 min at 13.8 V were periodically done. Zoom on the current 
profile under 13.8 V shows very negative transient value at the beginning of acceptance current 
measurement step. 

Zoom
5 sec.

 

Figure 47: C&D test with 14.8V gassing value: successive steps of overcharge for 15 min at 3 A, and 
of acceptance measurement for 3 min at 14.8 V were periodically provided. Zoom of current profile 
under 14.8 V shows that charge acceptance is almost stabilized after 5 seconds. 
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The voltage gap between the overcharge and the gassing value should not be not too high to 
avoid negative transient current values. This voltage gap depends directly on two factors: the 
applied overcharge current, which decides overcharge voltage and the set gassing voltage. As 
mentioned above, overcharge current is controlled in such a manner that share current for 
gassing is limited at C/20. So one way to reduce this voltage gap is to increase the imposed 
gassing value. But, it should be noted that, increasing gassing voltage means increasing gas 
evolution (cf. 2.1.5.1). Anyway, this share current for gassing during charging the acceptance 
measurement step can be estimate and accounted also for electrolyte destratification. 
Moreover, what is accounted is the imposed share current for gassing which is far stronger 
than the gas evolution current under the gassing voltage. 

Comparison of charge acceptance measured in C&D test with the one in IU test. 

It is shown in Figure 48 that the current values measured at 14.8 V in C&D test forms a 
current profile that matches well with the one obtained from IU charge.  

I IU IC&D

UC&D

UIU

I IU

IC&D

IIU IC&D

UIU

UC&D

 

Figure 48: Comparison of the charge acceptance measured by C&D test and the charge acceptance 
obtained from IU charge. Gassing voltage was set at 14.8 V for both tests. Regardless of the transient 
values, charge acceptance measures of C&D test matches well with charge acceptance at a fixed 
gassing voltage of IU charge.  

Now let’s take a closer look in zooming two measurement steps at the beginning and at the 
end of the overcharge phase of the C&D test. As already observed, there is always a transient 
phase at the beginning of measurement steps. Transient values are far lower than the charge 
acceptance values of IU charge. Then the current increases and follows a profile that is almost 
parallel with the charge acceptance profile of the IU charge, but slightly greater. In this case 
of 14.8 V, it takes about 5 seconds to get rid of the influence of this transient phase shown in 
both zooms of Figure 48. So two situations can happen regarding the data obtained: 

• If current data is measured at a transient point (e.g. earlier than 5 seconds) its value 
can be negative and it is a wrong charge acceptance value. 
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• If current data is measured beyond 5 seconds, this value can be a little smaller or 
higher than the one of charge acceptance, but stays close to it.  

The first situation, especially when data measured is negative, should be avoided. The second 
situation can be used despite of a little gap between the two charge acceptance values because 
this difference is just some hundreds mA, it is small compared to C/20 (3.3A for a 70 Ah 
battery) that is the recommended gassing current for destratification. Moreover, it is possible 
to take into account this difference when setting the percent of electrical quantity. 

2.2.2.4 Conclusions of voltage square method 

C&D with voltage square test gives promising results for the charge acceptance measurement, 
which match well with the ones obtained from an IU charge at the same gassing voltage 
value. Nevertheless, set gassing voltage values at which charge acceptance measurement steps 
are carried out and the duration of these steps as well as the moment to get the current data 
have to be set in such a manner to avoid inaccurate voltage-current information. Many 
experimental tests show that gassing values should be between 14.3-14.8 V for a 12 V battery 
and duration of about 5 seconds is convenient to measure and collect the data.  

This method can be used in accelerated charges as well as in fast charges.  

2.3 NEW CHARGE ALGORITHM WITH EARLY DESTRATIFICATION FOR 
ACCELERATED CHARGES 

Nowadays, many applications of lead acid batteries require reduction of the charge duration, 
for instance, a 4 hour-charge for lead acid batteries in grid energy storage or 1 hour-charge for 
lead acid batteries in electric buses. Such reductions of charge time imply the use of a new 
charge process. 

One way to reduce the charge duration is to perform an early destratification step without 
waiting for the end of charge. Early electrolyte destratification by gassing is possible. It can 
start as soon as the power of the charger is available, i.e. as soon as the charge acceptance 
becomes lower than the nominal current of the charger. However, limitation of this gassing is 
not possible using traditional charge methods when charge acceptance is higher than C/20. 
Indeed, not only the current value share for destratification (gassing current) can become too 
high and damage the battery, but also it becomes very difficult to estimate and thus to control 
the electrical quantity supplied for the destratification. 

The new charge method proposed here (Charge&Destratification charge method – C&D) 
focuses on the reduction of the charge time for vented lead acid batteries using early 
destratification, which is performed and controlled using charge acceptance measurements 
during the charge. 

2.3.1 Objectives 

This new charge method aims to reduce the charge time for flooded lead acid batteries in 
controlling the destratification phase as follows: 
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• Starting early the destratification phase, when the charge acceptance is not yet 
negligible. Practically, destratification can start as soon as the charge acceptance 
becomes lower than the charger nominal current. 

• Controlling the total electrical quantity for gassing (or for destratification); for 
instance 7% of the total charged electrical quantity.  

• Maintaining the gassing current at a value not too high. 

2.3.2 Principle 

Figure 49 represents the principle of the C&D charge method with early destratification in 
order to reduce charge time, consisting in the following steps: 

• I step at constant current or constant power during which the voltage increases 
continuously up to the gassing voltage VGAS. This step is similar to the A phase of the 
IUi charge (Figure 32). 

• IIa steps, dedicated to charge acceptance measurement. These steps consist in fixing 
the voltage at VGAS. To get rid of transient effects, a certain latency time is included 
between the voltage fixation and the current measurement. This latency time is a few 
seconds, for instance 3 to10 seconds. 

• IIb steps of overcharge during which an overcharge current IOVERCHARGE is supplied to 
the battery. IOVERCHARGE is determined from the measured charge acceptance 
IACCEPTANCE and a convenient gassing current IGAS: 

IOVERCHARGE = IACCEPTANCE + IGAS (54) 

Battery 
SOC

U

VGAS

I

Battery 
SOC

IACCEPTANCE

IGAS

IOVERCHARGE

= IACCEPTANCE + IGAS

I II bII b

II aII a

Battery 
SOC

U

VGAS

I

Battery 
SOC

IACCEPTANCE

IGAS

IOVERCHARGE

= IACCEPTANCE + IGAS

I II bII b

II aII a  

Figure 49: C&D principle to reduce charge time for flooded lead acid batteries: (I) constant current 
step, (IIa) charge acceptance measurement steps at gassing voltage, (IIb) overcharge steps at 
overcharge current (IOVERCHARGE) which equals to the total sum of charge acceptance (IACCEPTANCE) and 
gassing current (IGAS): IOVERCHARGE = IACCEPTANCE + I GAS. 
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Two ways to determine a convenient gassing current value are considered: 

• For the shortest duration of charge, gassing current IGAS is set at the maximum value 
the battery can afford (e.g. C/20). 

• For applications where the charge duration is set in advance (e.g. 4 hours), gassing 
current IGAS is calculated taking into account the electrical quantity for destratification 
(QDES) and the remaining charge time (Tremain).  

IGAS = QDES / Tremain (55) 

The QDES is calculated as a function of the depth of the preceding discharge. As mentioned 
above, during the first charge step at constant current, i.e. from the beginning of the charge to 
the moment when the battery voltage reaches the gassing value, 60 to 90% charge is 
accomplished. In practice, QDES can be set as a percentage, e.g. 15%, of this electrical quantity 
that has been provided to the battery during the first step of the charge (I step).  

In order to update regularly the charge acceptance value, the IIa and IIb steps are repeated n 
times until QDES is reached.  

2.3.3 Experimental 

In the context of MICROSCOPE project - Grid connected inverter combined with energy 
storage for production optimization – a 4-hour charge algorism of C&D type has been 
developed at EDF R&D in cooperation with Montpellier II University. This algorism is 
integrated to 12 and 48 V commercial chargers of IES-Synergy Society without any 
modification of the charger maximum power. 

Table 5: IES-Synergy charger: electrical characteristics, integrated C&D and IUi charge profiles 

Electrical characteristic of the IES-
Synergy charger 

Max output power: 222 W ± 3% 
Max output current: 15 A ± 2% 
Nominal battery voltage: 12 V 

C&D charge profile (Figure 49) 

VGAS: 14.6 V 
QDS: 11% of total charged Ah during I step 
IGASmax: C/20 
IGAS: QDES/Tremain 
Total charge duration: 4 hours 
Duration of IIa step: 5 seconds 
Duration of IIb step: 60 seconds 

Traditional charge IUi profile 
(Figure 35) 

VGAS: 14.6 V 
I1: 15 A 
I2: 3 A 
Duration of the overcharge phase: until 17% of charged Ah accepted 
during phase A and phase B is obtained 

In this application, batteries are charged by the grid during the night at lack period, i.e. from 1 
to 5 am, and by the photovoltaic panels during the day except during the time when they 
supply energy to the grid. They are usually discharged in average of about 50% DOD.  

The C&D charge and the traditional IUi charge are achieved by IES-Synergy charger using a 
prototype of compressed lead acid battery 140Ah/12V developed at EDF R&D. The battery 
was charged with a IUi profile followed with a 8-hour charge at 14.6 V then discharged at 
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50% DOD before being tested with the IES-Synergy charger. These cycles were operated 
with BITRODE Battery Charge and Test System, Module Type LCN 200A – 12V.  

(1)

(2)

(3)

(4)
 

Figure 50: Montage of the charge of the compressed battery (1) with either IUi or C&D profiles using 
the 12 V commercial charger IES-Synergy (2); voltage and current are at the output of the charger 
recorded by Provista logical via computer (3; electrolyte density is measured by the Battery Coolant 
Checker (4).  

During charging with IES-Synergy charger, the charged electrical quantity, the voltage and 
the current at the output of the charger were recorded by Provista logical via a computer. 
Battery voltage and current were measured by HOBO logical (via a shunt to measure the 
current). The electrolyte density is manually measured at the top of the battery using Atago 
Refractometer BC-2E – Battery Coolant Checker. 

2.3.4 Results and discussion 

Figure 51 shows the battery voltage, battery current and measured density profiles during the 
C&D charge. In the I step of constant current, the measured charge acceptance and the 
gassing current are clearly observed. This means that the duration of the charge acceptance 
measurement at 5 seconds can ensure accurate information of the battery current response. On 
the voltage profile, a slight increase of VGAS is observed which can be explained by the 
contribution of drop voltages on the cables. These drop voltages, depending on the resistance 
of the cable and the current flow, decrease with the decrease of the charge current. 

The I step at 15 A lasts about 3 hours, meaning that 45 Ah is charged. According to the C&D 
algorithm, the IGAS has to be 11% of this value, so 4.95 A. As soon as the battery voltage 
reaches 14.6V, the overcharge step is done to homogenize the electrolyte. At the beginning of 
this step, the IOVERCHARGE is limited at 15 A by the maximum output current of the charger 
then it is equal to about 3 A. It means that during 1 hour of early destratification, the 
overcharged Ah is less than 3 Ah, so 6.7%, which is less than 11% expected. In this case, the 
setting of IGAS at 3 A instead of 4.95 A programmed was due to a calculation error of the 
program integrated in the charger.  
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Nevertheless, an obvious improvement of the electrolyte density stratification can be observed 
when using the early destratification. This result fits with the electrolyte density evolution 
illustrates on Figure 31 showing that most of the stratification is removed with a 5% 
overcharge. During the I step at constant current, the density increases slightly with the 
battery voltage. As soon as the IOVERCHARGE, which is the sum of the measured charge 
acceptance and the calculated gassing current, is applied the density increases with an obvious 
higher rate. This reveals that the early destratification process has effectively started. After 4 
hours of charge, the electrolyte density at the top is around 1.26. It should be noted here that, 
at the end of this C&D charge, the acceptance is still high, 6.5 A. This shows that C&D 
charge is, of course, not a complete charge, but is just a partial charge. This is the second 
reason why the electrolyte density is not higher.  

IACCEPTANCE

IOVERCHARGE
= IACCEPTANCE + IGAS

IGAS

 

Figure 51: Voltage, current and electrolyte density profiles measured during C&D charge. The 
battery had been discharged with 50% DOD. The total charge time was 4 hours. 

A traditional IUi charge was also operated on the same battery (cf. Table 5). Results of this 
charge, battery voltage, current and electrolyte evolutions, are illustrated in the Figure 52. 
Similar to the C&D charge, during the I step at constant current, the density increases slightly. 
When the battery voltage reaches the gassing value, 14.6 V, the density increases faster phase 
after phase. Electric quantity during the 3rd phase is 17% of charged Ah during the first and 
second phases (I1 + U). The electrolyte density reaches 1.275 at the end of charge lasting 7 
hours 15 minutes. 

Compared to C&D charge, at IUi charge without early destratification, after 4 charge hours, 
the electrolyte density is about 1.235, which is lower than in the case with early 
destratification, i.e. 1.26. This confirms again efficiency of the early destratification. It is clear 
that, within 4 hours of C&D charge, the battery is not charged as well as in the case of 8 hours 
of traditional IUi charge regarding the state of charge. But, within half reduced charge 
duration compared to a traditional IUi charge, it can be acceptable in condition that refresh 
charge is periodically achieved to establish a good state of charge, e.g. once a week.  
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Figure 52: Voltage, current and electrolyte density profiles measured during IUi charge. The battery 
had been discharged with 50% DOD. The total charge time was 7 hours 10 minutes.  

2.3.5 Conclusions 

A new charge method is proposed for fast charges and accelerated charges using early 
destratification with charge acceptance measurements. The following conclusions can be 
drawn: 

• The overcharge phase, which begins as soon as the charge acceptance becomes lower 
than the maximum output current of the charger – the early destratification phase, can 
efficiently homogenize the electrolyte.  

• Thanks to the charge acceptance measurement, the overcharge current as well as the 
electrical quantity for destratification can be calculated and controlled. 

• The charge time can be reduced with a factor of two compared to a traditional IUi 
charge with the same charge regime. This factor can be higher if increasing the initial 
charge rate. Accelerated charges should be used only if fresh charges are periodically 
achieved to re-establish a good state of charge of the battery after several accelerated 
charges.  
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Conclusion of chapter 2 

Electrolyte stratification is a common problem of vented lead acid batteries, in which the 
electrolyte on the bottom tends to be more concentrated than at the top. The stratified battery, 
exposed to accelerated aging process, loses its capacity prematurely. One way to homogenize 
the electrolyte is to provoke a sufficient strong gas circulation to mix the electrolyte by a 
forced convection.  

It is known that gas evolutions due to water electrolysis always occur at the same time with 
charge reactions in lead acid batteries. They increase with the increase of the charge voltage 
and become noticeable beyond a gassing point, called gassing voltage. At this gassing 
voltage, charge current contributes mostly to proper charge reactions, or in other words the 
battery is charged with its charge acceptance. The definition of the charge acceptance in this 
thesis is the current response of the battery at a gassing voltage. Therefore, a noticeable gas 
flow can be produced by applying a current superior to the charge acceptance, or by applying 
a voltage that exceeds the gassing value; this is called the destratification phase.  

The destratification by gassing is necessary for battery longevity, but the gas current has to be 
controlled to prevent the shedding of active materials, the depletion of the electrolyte and the 
excessive hydrogen evolution, which increases the flammability risk. In a classical charge 
process, which lasts in general from 8 to 14 hours, the destratification phase is achieved at the 
end where the charge acceptance is sufficiently small to be negligible, so that the current of 
gas evolution (gas current) is roughly assimilated to the applied current. This makes the 
evaluation of gas current easier, as well as the global management of the charge. In practice, 
10 to 15% of overcharge is supplied to the battery for electrolyte destratification. Nowadays, 
many applications of flooded lead acid batteries require reduction of the charge duration, for 
instance, a 4 hour-charge for lead acid batteries used for grid energy storage or 1 hour-charge 
for lead acid batteries in electric buses. These are called accelerated charge and fast charges. 
Such reductions of charge time imply the use of a new charge process. In accelerated charges 
and fast charges, indeed, there is not enough time available for the charge acceptance to 
become negligible to operate electrolyte destratification by gassing.  

In this thesis, we propose to achieve the destratification phase as long as the power of the 
charger is available even though the charge acceptance is still strong. We then talk about an 
early destratification. In this case, in order to control the gas current, it is necessary to know 
the charge acceptance. Two methods of charge acceptance measurement were studied and 
tested. The first method, flowing the suggestions of P. Izzo, consists to impose from a current 
value superior to the chare acceptance decreasing current ramps to detect on the response of 
the battery voltage an inflexion point, which characterizes the gassing voltage. This method, 
supposed to affranchise the influences of the temperatures, compositions of the positive grid 
alloy, etc on the obtained results, turns out to be inapplicable for accelerated charges. It 
appears indeed that the response time of the battery imposes to practice current ramps whose 
slopes are so slow that the resulting measurement duration becomes incompatible with the 
concept of “fast” charge. We then replaced the “Izzo’ ramp” with a new method of charge 
acceptance estimation. This method consists to impose periodically to the battery a voltage 
that equals to the gassing voltage. This gassing value is predicted according to the charge rate 
and the battery characteristics. The current response is characterized with a sudden drop of the 
intensity, which can reach transitorily a negative value, then with a rapid increase. The 
intensity tends then asymptotically towards the acceptance value. Our experimental results 
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show that some seconds are enough to obtain an utilizable image of the charge acceptance for 
the management algorithm of the early destratification phase.  

During the charge algorithm with early destratification, as long as the charger power is 
available, a succession of steps of acceptance measurement at constant voltage and of steps of 
destratification at a constant current superior than the charge acceptance is imposed to the 
battery. This sequence - measurement at imposed voltage then destratification at imposed 
current – is periodically repeated, e.g. every minute.  

The modification of a “12 hours” charger with an algorithm of the early destratification, 
enables the battery to be available for a discharge in duration of the order of 4 to 6 hours. This 
division of the charge duration of a factor two is obtained without increasing the charger 
power. Evolution towards a rapider charge requires increasing the initial charge rate, so using 
more powerful chargers. For a fast charge whose duration is less than one hour, the estimation 
of charge acceptance is no longer sufficient; one has to take into account its derivative. A 
patent of EDF and University Montpellier II has been submitted in November 2008 about this 
subject. 
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CHAPTER 3 - DISCHARGE OF LEAD ACID BATTERY – POLARI TY INVERSION  

Introduction 

Polarity inversion is a frequent phenomenon during deep discharges of lead acid batteries. In 
general, it is better to avoid this phenomenon because of its harmful effects on the battery. In 
this thesis, our initial objective is to measure both negative and positive capacities of a cell. 
As two electrodes have rarely the same capacity, within this operation, the polarity inversion 
of the electrode, whose capacity is lower, is unavoidable, but one does not know if it concerns 
a negative or a positive electrode. Utilization of a reference electrode helps answering this 
question.  

The first part of this chapter presents the theoretical principles and hypothesis of lead acid 
battery polarity inversion. The second part treats this phenomenon in details through results of 
laboratory experiments on different kinds of conventional lead acid batteries. Two kinds of 
reference electrodes manufactured ourselves at the laboratory have been used.   

3.1 THEORY ABOUT THE DISCHARGE OF LEAD ACID BATTERY AND 
POLARITY INVERSIONS  

3.1.1 Reminder of discharge reactions 

At the negative electrode: 

+−− ++⇒++ OHe2PbSOOHHSOPb 3424  Reaction 2 

Correspondent equilibrium potential: 
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At the positive electrode: 

OH5PbSOOH3e2HSOPbO 24342 +⇒+++ +−−  Reaction 3 

Correspondent equilibrium potential: 

( ) ( ) ( )3
HHSOHSO

3
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44
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Overall discharge reaction:  

OH4PbSO2OH2HSO2PbOPb 24342 +⇒+++ +−  Reaction 4 

Correspondent equilibrium voltage: 

( ) ( ) −++=−=
4HSOH424 aalog0592.0931.1PbSO/PbEPbO/PbSOEE  (58) 
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3.1.2 Discharge cell voltage and end-of-discharge criterion 

As described in chapter 2 (cf. 2.1.2.2), during a charge at a constant voltage, the charge 
acceptance of the battery decreases following asymptotic profile. This decreasing of charge 
acceptance can be related to the decrease of the reaction interface area and the increase of the 
acid sulfuric concentration in the pores of the active material. During discharging at a 
constant current, a similar phenomenon takes place, and the battery voltage diminishes 
steadily.  

The cell voltage at a discharge can be described by this formulary: 

RI)(EV crrda −η+η+η+η−=  (59) (cf. Table 4) 

With progressing discharge, the equilibrium voltage gradually decreases because of acid 
dilution. Furthermore, the gradual increase of the internal resistance with progressing 
discharge leads to an increase of the polarization and the ohm voltage drop (cf. 1.5.4). These 
two situations result to the decrease of the cell voltage during discharging.  

In general, the discharge is stopped when the cell voltage reaches a voltage limit, called the 
end-of-discharge voltage, which is specified by the battery manufacturer. This end-of-
discharge is fixed by the battery manufacturer in order to avoid deep discharges and the risk 
of battery polarity inversion, which are critical for both electrodes [1]. During discharging, 
lead Pb and lead dioxide PbO2 are reacted with H2SO4 of the electrolyte and precipitated to a 
new chemical compound, lead sulfate PbSO4, whose structure is very different from these 
original substances. The initial structure of the active material is largely lost when this 
conversion goes carried too far. 

• This is especially critical for the positive electrode, because the conducting bridges 
between the lead dioxide particles are degraded and the particles may partially lose 
contact between themselves and with the grid, which means that they can no longer 
participate in the electrochemical reactions. The mechanical strength of the active 
material is also weakened when the bonds between the particles re-destroyed and the 
tendency to material loss (shedding) is increased. 

• For the negative electrode, deep discharges are critical because of the danger of 
reversal. Expanding additives of the active material may then be lost by oxidation. 

• The danger that lead dendrites grow during the subsequent recharge is increased in 
lead acid batteries by the fact that most of the acid is consumed during deep discharge, 
and the residual electrolyte may become diluted. In such a solution, the solubility of 
lead is increased markedly and therefore so is the tendency to form thin fibers 
(dendrites) that surround the separator and form short-circuit when the battery is 
recharged. As a remedy, often sodium sulfate Na2SO4 is added to the electrolyte to 
reduce the solubility of lead when the battery is discharged.  

In practice, the capacities of negative and positive electrodes are not quite the same. The 
battery capacity is limited by the lowest electrode capacity. This can be caused by several 
factors. In general, for batteries at long open-circuit periods, the self-discharge rate of the 
negative electrode is higher than the one of the positive electrode, especially in the batteries 
with antimony grid alloys (cf. 4.1.1.3). For heavy-duty batteries, the age mechanisms are not 
the same at the negative and the positive electrodes. The positive electrode, which suffering 
for the corrosion phenomenon including the grid growth, formation of electric passivation 
layers and the degradation of the positive material (cf. 4.1.3.1), usually losses more rapidly its 
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capacity. The capacity difference of the negative and positive electrodes can be attributed also 
to designs and manufactures. Some manufactures attempt to over-proportion the negative 
electrode to prevent it from the polarity inversion during discharging, which can cause the 
oxidation of expanding additives meaning the definitive lost of these latter. So, when the 
discharge test is stopped, the capacity obtained is in fact the capacity of either negative or 
positive electrode and not both of them.  

3.1.3 Diffusion of sulfate ions 

At discharge, the sulfate ions HSO4
- consumed at both electrodes, i.e. at reactive interfaces, 

are renewed at the positive electrode by diffusion and at the negative electrode by diffusion 
and migration from the bulk electrolyte (cf. Eq. (21)). The transport of HSO4

- ions is executed 
in majority by diffusion, as the transference number of HSO4

- is very small, 0.1. The ion 
current flow in the electrolyte is ensured essentially by H3O

+ ions.  

The local concentrations diminish with progressing discharge and the lowest concentration is 
normally met at the proximity of the reactive interfaces. The cell voltage drop, which marks 
the end of discharge, can be attributed to the fact that the concentration of sulfate ions tends to 
zero at the proximity of one of interfaces. It means the diffusion cannot bring any more 
necessary sulfate ions to the reactive interface to supply the reaction with the demanded 
discharge rate. This unavailability or too low diffusion of sulfate ions at a demanded 
discharge rate can be explained taking into account the hindrance caused by the sulfate 
crystals, i.e. the discharge product, which fills the pores and prevents the sulfate ions to pass 
through.  
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Figure 53: Evolution of the transport rate of HSO4
- ions by diffusion and migration from the bulk 

electrolyte to the reactive interface as a function of the discharge time. HSO4
- ions are transported 

essentially by diffusion.  

3.1.4 Proposed mechanisms of polarity inversion  

A definition of polarity inversion of a cell is theoretically given by Gory in [54] is that a cell 
is inversed when its positive electrodes become negative and vice versa.  

As described in 1.1, regarding chemical and structural points of view, the two electrodes are 
different. So this definition of polarity inversion as well as the possibility for this 
phenomenon to take place may seem a bit confusing. But it is known that at the end of 
discharge the two electrodes are covered with the same material, i.e. lead sulfate PbSO4. 



CHAPTER 3 – DISCHARGE OF LEAD ACID BATTERY – POLARITY INVERSION_________________________________  

 

 88

Moreover, in the case of lead acid cell, it is known that both two electrodes are, before 
formation, made of lead oxide (PbO). From these features, inversion is supposed to be 
possible. 

At discharge with polarity inversion, oxidation degrees of lead change as illustrated in Figure 
54.  

OXYDATION

REDUCTION

PbO2 (Pb4+ + 2O2-)

PbSO4 (Pb2+ + SO4
2-)

Pb

Polarity inversion 
(deep discharge)

Negative electrode 
at discharge

IV

II

0

Polarity inversion 
(deep discharge)

Positive electrode 
at discharge

Oxidation degree

 

Figure 54: Oxidation degrees of lead; state variations of active materials at discharge with polarity 
inversion [6] 

Proposed mechanism by Izzo [48] 

Regardless of the total polarization (Ση) and the ohm voltage drop (RI) during discharging, 
polarity inversion can be attributed to the sign inversion of the electromotive forces E of a 
cell. This inversion of a cell consists of two successive inversions of each electrode polarity.  

2

-2

0

Equilibrium Voltage (V)

Discharge time

inversion of 
1st electrode

inversion of 
2nd electrode

 

Figure 55: Evaluation of the equilibrium 
voltage of the cell during discharging with 
polarity inversions of two electrodes, one 
after the other [48]. 

 

For instance, the polarity of positive electrode is inversed first. While the concentration of 
sulfate ions tends to zero at the reactive interface of the positive electrode, this leads 
0.0296log[HSO4

-]  tends toward -∞ and E(PbSO4/PbO2) tends to fall toward -∞. As soon as 
E(PbSO4/PbO2) reaches a value which equals or is inferior to E(Pb/ PbSO4), i.e. ≤ -0.2996 V, 
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PbSO4 is converted to Pb. The discharge of the positive electrode becomes the charge of the 
negative electrode. The equilibrium voltage of the cell becomes: 

0)PbSO/Pb(E)PbSO/Pb(E)PbSO/Pb(E)PbSO/PbO(EE 44442INVERMi =−=−=−  (60) 

Then at its turn, the negative electrode polarity is inversed. 0.0296log[HSO4
-]  tends toward 

+∞ and E(Pb/ PbSO4) increases toward +∞. It meets the value of E(PbSO4/PbO2) and PbSO4 

is consumed to produce PbO2.  The discharge of the negative electrode becomes the charge of 
the positive electrode. The equilibrium voltage of the cell becomes: 

−+−−=
−=−=−=

4HSOH

424442INVER

aalog0592.0931.1

E)PbSO/PbO(E)PbSO/Pb(E)PbSO/Pb(E)PbSO/PbO(EE
 (61) 

Taking into account the Joule losses (IR, simplified from the total overvotage and the ohm 
drop, cf. 1.5.6) during discharging, Gory proposed second principle of the polarity inversion 
regarding the total cell voltage during discharging V, which equals to E – RI without 
distinguishing the inversion processes of negative and positive electrodes.  

Proposed mechanism by Gory [54]: 

Figure 57 illustrates the variation of the equilibrium voltage E and the voltage V during an 
inversion as functions of time for a cell in a series configuration with two other cells.  

2V 2V0.6V

3.4V

- --+ ++

1st cell 2nd cell 3rd cell

 

Figure 56: Battery with three cells in series configuration. One cell is inversed, its voltage equals to 
minus 0.6 V [54] 

The equilibrium voltage, which can be measured by cutting off the current rapidly, decreases 
rapidly to zero after the beginning of the voltage decrease corresponding to the normal end-of 
discharge, passing by zero at point A, then it slowly increases in the inversed direction. Point 
A corresponds to the zero equilibrium voltage before the inversion: the pores are filled with 
lead sulfate crystals and the electrolyte cannot any more enter and reach the remaining active 
materials. The current continues to pass through the battery thanks to the equilibrium voltages 
of the other cells (1st and 3rd cells). It is going to decompose the sulfate with the inversed 
reactions. The inversion therefore takes place and an equilibrium voltage, whose sign is 
opposed from the initial one, appears. If EINVER is its absolute value, we have VINVER  = -EINVER 
– IRINVER in keeping always the positive direction of the discharge current. The equilibrium 
voltage and the Joule’s losses have the same sign like in a cell at charge. 

The cell voltage decreases quickly beyond the limit of the normal end-of-discharge, passes by 
zero at the point B, at the moment where the equilibrium does not yet become zero but just 
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compensated with the ohm lost. It increases next, in a manner quantitatively very incomplete 
because of the deep sulfation, towards minus 2 V. When the equilibrium voltage equals to 
zero, the cell voltage equals to the Joule losses.  
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Figure 57: Variation of the equilibrium 
voltage E and the cell voltage V during the 
polarity inversion of the cell without 
distinguishing the two electrodes of the cell 
[54].  

 

In brief, two proposed mechanisms associate the polarity inversion of electrodes to the limited 
diffusion of sulfate ions at the end-of-discharge. This is an initial foundation we take into 
account to explain and discuss the results obtained during ours experiments.  

3.2 EXPERIMENTAL 

3.2.1 Initial objective 

The objective of our experimental work is to determine the capacities of the negative 
electrode and the positive electrode of a cell, so the limited-capacity electrode.  

3.2.2 Tools 

Batteries: flooded batteries 

• 70 Ah/12 V Monobloc Fulmen 070430 A-A: flat-plate, cycled in a photovoltaic post. 
• 140 Ah/12 V Solar Monobloc Fulmen ASSSOLARBLOC140/12: tubular-plate, 

maintained in float charge. 
• 140 Ah/12 V: flat-plate, compress, cycled tests. 
• 110 Ah/12 V heavy-truck SLI Exide D02075W01-A: flat-plate, stored at open circuit. 

Generator: The discharge with limited voltage at minus 2 V/cell was executed by the bipolar 
alimentation and amplifier KEPCO (BOP 20-20M) ± 20 V/20 A.  

Temperature measurement: two thermocouples JUMO, type K are used to measure 
temperatures of ambient and of the battery. 

Density measurement: electrolyte densities are manually measured before and during 
discharging by the portable density meter Densito 30PX. 

Recorder: battery voltage, current, temperature and ambient temperature were recorded with 
Personal Daq 56TM USB Acquisition Systems.  



CHAPTER 3 – DISCHARGE OF LEAD ACID BATTERY – POLARITY INVERSION_________________________________  

 

 91

3.2.3 Electrode potential measurement using reference electrodes 

The principle of electrode potential measurement by using reference electrode is presented in 
the chapter 1 (cf. 1.2.1 electrochemical cell). The working electrode and the reference 
electrode can be in two different solutions, which are related by ionic bridge, or in the same 
solution and they are isolated from each other by a separator. In this thesis, both methods 
were used (cf. Figure 58 and Figure 59).  

-+ - +

Reference cell Working battery – 6 cells

UNEG UPOS

+-

Reference cell

Ionic bridges
(filled with fibre of glass 
and acid sulfuric 1.24)-+ - +

Reference cell Working battery – 6 cells

UNEG UPOS

+-

Reference cell

Ionic bridges
(filled with fibre of glass 
and acid sulfuric 1.24)

 

Figure 58: Schema of electrode potential measurement by using reference cell with ionic bridges. Two 
difference reference cells are used to determine the negative electrode potential of the first cell (UNEG) 
and the positive electrode potential of the sixth cell (UPOS). According to the way to connect the 
measurement channels, the values obtained are UPOS = V+ and UNEG = (-V-). 

- +

Working battery – 6 cells

UNEG

Up1n2 Up2n3
Up3n4 Up4n5

Up5n6

Reference 
electrode

Negative  
electrode

Positive 
electrode 1 2 3 4 5 6

 

Figure 59: Schema of principle for the measurement of the electrode potential and the pseudo cell 
voltage by using reference electrodes. The battery consists of 6 cells in series configuration. The 
negative terminal is negative electrode of the first cell; the positive terminal is the positive electrode of 
the sixth cell. 

In the second case where reference electrode is an extra electrode that is added to the battery 
to measure the potential of the working electrode, these criterions have to be kept in mind: 
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• The potential of the reference electrode has to be constant, i.e. it must not participate 
to reactions of the working electrodes.  

• The material of the reference electrode has to be chemically stable at the contact with 
the battery electrolyte.  

• Input impedance of the recorder has to be sufficient strong to get rid of all current 
circulation via the reference electrode.  

It is clear from Figure 59 that the voltage measured, e.g. Up1n2, is not the one between two 
electrodes of the same cell but between a negative electrode and a positive electrode of two 
successive cells. It is called the voltage of a pseudo cell. 

Reference electrode manufacture and maintaining the charge 

The material chosen to manufacture reference electrode is Pb, which is taken from a lead acid 
negative electrode. The steps of manufacturing reference electrodes are presented below.  

 

 
Empty 

electrolyte   

 

1. Wagging + 
open circuit for 

24 hours 

2. Rinsing with tap 
water 

3. Scissoring and 
taking out cells. 

Taking negative plates 

4. Cutting the negative 
plate into several slices. 

Eliminating most of 
active material 

5. Charge reference electrodes with a current of 10 mA/g for 72 hours with limited voltage at 
2.65V/cell.  

6. Reference electrodes are at open circuit for minimum 24 hours before using.  

7. As Pb is not completely stable in the electrolyte of lead acid battery because of the self-
discharge caused by the secondary reactions (cf. 1.3.2 and 4.1.1), the potential of the 
reference electrodes has to be periodically controlled. When it clearly deviates from the initial 
value, reference electrodes have to be recharged. In our experiments, the reference electrodes 
are systematically recharged after each test of discharge.  

Reference cell manufacture and maintaining the charge 

Reference cells of 2 V were manufactured following the laboratory prototype of EDF R&D. 
States of charge of reference cells are periodically controlled by density measurements. 
Charges at 10 mA/g for 72 hours with limited voltage at 2.65V/cell are performed to establish 
a good state of charge. 
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Figure 60: Experimental measurement schema of electrode potentials and pseudo-cell voltages using 
reference cells with ionic bridges and reference electrodes on a tubular plate battery.  

3.3 POLARITY INVERSION OF FLAT-PLATE BATTERY  

3.3.1 Experimental 

Table 6: Experimental procedures of the 70 Ah/12 V flat-plate battery. Densities before and after 
discharge test: dBDCH, dADCH 

Time Services Remarks 
02/04/2007 Picked up from a photovoltaic station U = 12.69 V 

d = 1.275  
7 days 
2 months 

Charge at 4 A, 14.3 V 
Open circuit 
Discharge at 4 A, limited voltage at– 12 V (1st) 

 
dBDCH1 = 1.28 
dADCH1 = 1.17 

7 days Charge at 4 A, 14.6 V 
Discharge at 4 A, limited voltage at – 12 V (2nd) 

dBDCH2 = 1.22 
dADCH2 = 1.16 

7 days  Charge at 4 A, 14.6 V (1 days) then at 13.8 V (6 days) 
Discharge at 4 A, limited voltage at – 12 V (3rd) 

dBDCH3 = 1.22 
dADCH3 = 1.16 

14 days  Charge at 4 A, 14.6 V 
Discharge at 4 A, limited voltage at – 12 V (4th) 

dBDCH4 = 1.27 
dADCH4 = 1.17 

The tests of discharge are manually stopped. Discharge rate at C/17.5 = 4 A is chosen so that 
the discharge lasts during the night in order to facilitate the supervising and the test stop. 
After discharge tests with polarity inversion, prolonged charges within voltage restriction are 
achieved. 
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3.3.2 Results and discussion 

The following graphics present the results of the 4th discharge.  

Figure 61 shows the potential profiles of the 1st negative electrode and the 6th positive 
electrode related to the reference cells. These results match well with the results measured 
using reference electrodes.  

According to the material of the reference electrode (a Pb electrode) and the way to connect 
the measurement channels (cf. Figure 58), in this graphic we can note that, at the beginning of 
the discharge test, the potential of the positive electrode (V+) is a little higher than 2 V while 
the one of the negative electrode (-V-) is around 0 V giving a cell voltage (U) of:  

U = V+ - (-V-)~ 2 V 

Polarity inversion profiles 

It is clear that polarity inversion of a cell consists of two steps corresponding to two potential 
profiles of the positive and negative electrodes. In this case, the positive electrode first 
reaches the limit of a normal discharge after 6 hours of discharge. Its potential rapidly falls 
down from about 2 V to zero and beyond this moment, it maintains at this zero value. The 
potential of the positive electrode changes from 2 V to 0 V, which is similar to the potential of 
the negative electrode (the reference electrode is a negative electrode). It is said that positive 
electrode is inversed. The absolute potential value of the negative electrode continues to 
slightly decrease toward minus 2 V, but still stays close to 0 V. The cell voltage value is also 
close to 0 V. Then, after 18 hours of discharge, the potential of the negative electrode abruptly 
drops to minus 2 V from the value of the order of 0 V. At its turn, the negative electrode is 
said also inversed. At this moment, polarity inversion of cell appears, the opposite situation 
compared to the one before inversion takes place: potential of the positive electrode (V+) is 
around 0 V and the one of the negative electrode (-V-) is a little inferior of minus 2 V leading 
the cell voltage to U = V+ - (-V-) ~ - 2 V. The polarity of the cell is inversed. These 
observations validate the proposed principles of Izzo and Gory regarding the profile of cell 
voltage.  

Two differences between the potential profiles of positive and negative electrodes during 
inversion are observed. Firstly, the positive electrode takes more time to inverse than the 
negative electrode does. It takes about 2 hours to fall down close to 0 V from 2 V while for 
the negative electrode, it takes just some minutes to drop down from around 0 V to minus 2V. 
Secondly, the inversion of the negative electrode is marked with a variation of the potential 
similar to “coup de fouet” phenomenon, which is not present at the potential profile of the 
positive electrode.  

“Coup de fouet”phenomenon: 

• “Coup de fouet” is a voltage dip followed by a recovery at the start-of-discharge of a 
full-charged battery or is a voltage maximum followed by a recovery at the start-of-
charge of a deep-discharged battery. Main parameters are the trough voltage, in the 
order of 10 to 80 mV/cell, the “plateau” voltage, the trough duration and the plateau 
duration.  

• Delaille [55] revealed that “coup de fouet” always reflects the positive electrode 
behavior. 
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• The commonly accepted interpretations about causes of the “discharge coup de fouet” 
and “charge coup de fouet” are the nucleation of the lead sulfate crystals and the 
nucleation of the lead dioxide respectively [55-59]. In his thesis work, Delaille 
revealed that mass-transport limitations in the pore, probably due to the electrode 
texture, are likely to take a significant part in the origin of the “coupe de fouet” at 
charge as well as at discharge [55].  

Indeed, after inversion, the negative electrode at discharge can behave like a positive 
electrode at charge, i.e. the supplied discharge current decomposes lead sulfate crystals PbSO4 
to lead dioxide PbO2. Moreover, as the discharge is far deeper than a normal discharge, the 
criterion of a deep-discharged state for the “charge coup de fouet” to take place is largely 
fulfilled.  

Coup de fouet

Stop 
discharge

 

Figure 61: 70 Ah/12V battery, 4th discharge with –12V end of discharge. Potential profiles of the first 
cell negative electrode (battery negative terminal, (-V-), and of the sixth cell positive electrode (battery 
positive terminal), V+. Coup de fouet phenomenon at the inversion negative profile. We chose to 
present (-V-) at the place of V- to avoid crossing the profile of the positive electrode V+. 

Voltage scattering phenomenon on cells in a series configuration 

Figure 62 shows voltage profiles of six pseudo cells in a series configuration. They are similar 
one another regarding the shape of the voltage profile which consists of a positive electrode 
inversion followed by a negative electrode inversion which is remarked with a “coup de 
fouet”. However, these inversions do not take place at the same time. This confirms the 
voltage scattering phenomenon on cells in a series configuration. In this case the dispersion of 
voltage is more remarkable at positive electrodes than at negative electrodes. The first 
positive inversion was after 6 hours and 30 minutes of discharge while the last positive 
inversion was after 10 hours. It is well known that, in a normal discharge, the weakest cell 
voltage imposes the stop-discharge, thus limiting the discharged battery capacity.  
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Figure 62: 70 Ah/12V battery, 4th discharge with –12V end of discharge. Potential profiles of pseudo 
cells. Scattering voltage phenomenon on cells in series configuration.  

Polarity Inversion of 
positive electrodes

Polarity Inversion of 
negative electrodes

Coup de fouet

 

Figure 63: 70 Ah/12V battery, 4th discharge with –12V end of discharge at C/17.5 = 4 A. Battery 
voltage profile and calculated slope voltage profile. Six negative inversions and six positive inversions 
can be seen with the slope profile.  
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Distinguishing the positive and negative inversions 

The total voltage between two terminals of the battery during discharging is illustrated in 
Figure 63.  

It is possible to distinguish the positive and negative inversion groups with a 0 V plateau 
voltage between them, but not each inversion. In observing the slope profile of the battery 
voltage, each inversion can be easily detected by an abrupt decrease of the slope value. It is 
clear that, slopes of the positive inversions are smaller than slopes of the negative inversion. 
The appearance of the “coup de fouet” at the negative inversion profile is remarked with a 
small positive value of the slope.  

Heat delivered during polarity inversions 
The temperature of the battery was recorded and presented in Figure 64. Ambient temperature 
was 19 to 22.5°C. It is obvious that, during inversions, the temperature of the battery 
increases. This due to 2 phenomena: reversible heat of the inversed reactions, i.e. charge 
reactions and irreversible heat caused by polarization, including Joule effect, which is very 
strong at polarity inversion condition.  

Battery voltage

Battery temperature

Ambient temperature

 

Figure 64: 70Ah/12 flat-plate battery. Battery voltage and temperature, ambient temperature profiles 
as a function of the charge time. Battery temperature increases strongly when the battery polarity is 
inversed.  

As mentioned in chapter 1 (cf. 1.5.6) regarding the current-related heat effects, heat 
generation is proportional to polarization. When the cell polarity is inversed, overvoltages of 
both electrodes strongly increase.  

 
dQJoule/dt = (V – E).i           [W] (40) 

( ){ }  dt        i.E-V Q
t

0
 Joule ∫=        [Wh] (41) 

It is well known that, when a 2 V cell is short circuited, all of its chemical energy is converted 
into heat. This phenomenon can be explained using the Eq. (40) as showed in Figure 65.  
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Figure 65: Negative and positive electrode potentials and calculation of polarizations during 
discharging, short circuit, negative electrode inversion and cell inversion.  

At short circuit, the cell voltage equals to 0 V and the polarization equals to the cell voltage at 
open circuit, e.g. 2 V. According to the internal resistance of the cell, the battery is strongly 
heated, even burned out. When the cell polarity is inversed, a similar situation is obtained 
regarding the polarization evolution. As revealed in Figure 65, the polarization corresponding 
to the negative inversed electrode reaches already 2 V like in the case of a short circuit. If 
accounting both electrodes, the cell polarization is 4 V, the double compared to the one at 
short circuit. As the discharge current is fixed, the battery should not burned out like in the 
case of a short circuit, though its temperature increases strongly compared to a normal 
discharge. 

Strange 
phenomenon

 

Figure 66: 70 Ah/12V battery, 3rd discharge with –12V end of discharge. Potential profiles of pseudo 
cells. Appearance of a voltage hump after inversing the negative potential.  
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Voltage hump  

In the 3rd discharge, a strange phenomenon of a voltage hump (cf. Figure 66), which is not 
presented in other tests, appears at the end of the procedure. We will return to this 
phenomenon when discussing results obtained with tubular batteries. 

3.4 POLARITY INVERSON OF TUBULAR PLATE BATTERY  

3.4.1 Experimental 

Table 7: Experimental procedures of the 140Ah/12V tubular-plate battery. Several discharge rates are 
tested C/20, C/14 and C/10. 

Time Services Remarks 
15/05/2007 Picked up  U = 12.40 V 

d = 1.2  
14 days 
7 days 

Charge at 4 A, 13.8 V 
Open circuit 
Discharge at 7 A (C/20), limited voltage is – 12 V (1st ) 

 

2 days Charge at 7 A, 14.6 V 
Discharge at 14 A (C/10), limited voltage is – 12 V (2nd) 

 

3 days  
7 hours 

Charge at 14 A, 14.6 V  
Open circuit 
Discharge at 10 A (C/14), limited voltage is – 12 V (3rd) 

 

3.4.2 Results and discussion 

The following graphics present the results of the 1st discharge at C/20.  

Hump

1st part

2nd part

3rd part

 

Figure 67: 140 Ah/12V tubular-plate battery, 1st discharge with –12V end of discharge (C/20). 
Potential profiles of the first cell negative electrode and of the sixth cell positive electrode. Coup de 
fouet phenomenon and voltage hump at the negative profile. Three slopes of the inversed positive 
potential profile. 
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Figure 67 shows that in this battery, it was the negative electrode whose polarity was inversed 
first. The shapes of potential profiles are slightly different than the ones of the 70Ah/12V flat-
plate battery analyzed above for both negative and positive electrodes.  

Negative electrode 

For the negative electrode, a similar “coup de fouet” phenomenon was also observed but the 
trough duration was almost an hour in this case vs. some minutes in the case of the 70Ah/12V 
flat-plate battery. Basing on the proposed interpretation of the causes of the “coup de fouet”, 
this phenomenon can be explained as follows. At the moment where the negative electrode 
polarity is inversed, the electrode had been very deep discharged and was covered with a lot 
of lead sulfate crystals, PbSO4 (cf. Figure 68). At some places on the electrode surface, 
sulfuric acid could not be any more in contact with the remaining active material, Pb. As the 
discharge current was continued to be applied to the battery and the transport of HSO4

- is 
totally hindered, remaining Pb cannot be oxidized into Pb2+ as no more HSO4

- is able to cross 
the PbSO4 barrier. In this case, at the active interface, which is located behind the PbSO4 
barrier, electrons (e-) are no more taken from Pb to form Pb2+ but are taken from Pb2+ to form 
Pb4+, following the reaction: 

−++ +→ e2PbPb 42

+− +→ H4O2OH2 2
2

−− → 2
4

2
4 SOSO

++ H2SOH 42

To bulk electrolyte

To external circuit2PbO

−++ +→ e2PbPb 42

+− +→ H4O2OH2 2
2

−− → 2
4

2
4 SOSO

++ H2SOH 42

To bulk electrolyte

To external circuit2PbO

 

Reaction 21 

Two remarks can be made: 

• As the H2SO4 concentration is low, the sulfate ion in solution is SO4
2- 

• H3O
+ can still cross the barrier while SO4

2- cannot.  

So, PbO2 forms in negative active material behind the PbSO4 barrier, and H2SO4 is released 
into that closed space, near the active interface. Here the normal discharge reaction can then 
take place in parallel with the PbO2 formation: 

−− +→+ e2PbSOSOPb 4
2
4  Reaction 22 

These reactions, Reaction 21 and Reaction 22, result a displacement of PbSO4 on the backside 
of the barrier to inner sites, closer to the active interface. 

PbO2 crystals formed at the negative electrode are thermodynamically stable at the inversed 
potential of the negative electrode. They should not react with Pb to reform PbSO4 because of 
the lack of SO4

2- ions.  

An extra polarization, i.e. crystallization polarization, was demanded to create first lattices of 
PbO2. This polarization made appear the dip voltage at the beginning of the negative 
inversion which is considered to the similar “coup de fouet” phenomenon.  
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Distance (mm)  

Figure 68: Characteristic of lead acid battery on 
discharge: the “U curves”.[60] 

Profiles of S (10% in mass of PbSO4) in the middle of a 
positive electrode according to a cross section at the 
electrode interface: 25% (1), 50% (2) and 100% (3) states 
of discharge.  

During discharging, PbSO4 appears in favor at the area 
close to electrode interfaces. At 100% state of discharge, 
PbSO4 forms a layer that prevents the discharge 
continuing at a fixed rate.  

Always at the negative electrode, after about 2 hours and a half of inversion, a hump voltage, 
which was in the opposite direction of the “coup de fouet” appeared. This phenomenon was 
already observed at the 3rd discharge of the 70 Ah/12 V flat-plate battery. We suggest that as 
the charge reaction consumes PbSO4 crystals on the backside of the barrier layer, it can hole 
the barrier and thus liberate reactive surfaces. Sulfuric acid H2SO4 could enter into the pores 
and meet the remaining active material and the discharge reaction could take place with a 
higher rate. Moreover, as SO4

2- ions are available, PbO2 produced inside the negative 
electrode could short-circuit with Pb remaining active material to form PbSO4. In addition, 
the concentration of the solution at proximity of the reactive surface increases and the 
equilibrium voltage increases as well. These three acts would lead to the increase of the 
negative potential.  
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Figure 69: Processes of discharge and of polarity inversion at the negative electrode. Polarity 
inversion appears when a layer of PbSO4, preventing sufficient acid sulfuric diffusion from the bulk 
electrolyte into the reactive surface, forms at the interfaces of the electrode. The reaction of inversion, 
which is identical to the reaction of the positive electrode on charge, consumes PbSO4 and produces 
PbO2 inside the negative electrode.  
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Figure 70: Formation process of hump voltage: the consumption of PbSO4 of the reaction of inversion 
leads to a breakdown of the PbSO4 layer, the diffusion of acid sulfuric is again sufficient for the 
discharge reaction taking place in advance than the reaction of inversion. Moreover, PbO2 produced 
inside the negative electrode can be short circuit with the Pb, remaining active material, to form 
PbSO4. The voltage increases. PbSO4 invades rapidly the short circuit area. The refilling of PbSO4 
layer corresponds to the return of the voltage to the inversion value.  

The discharge reaction as well as the short circuit reaction reform PbSO4. These PbSO4 
crystals refill rapidly the PbSO4 layer and this layer separates again some reactive surfaces 
from H2SO4. The voltage returns to the inversion value. These decrease and increase of the 
electrode voltage form humps on negative potential profile. According to this interpretation of 
hump phenomenon, it is clear that hump appears only when the reaction of inversion has 
already taken place for a certain time, i.e. polarity electrode is already inversed. 

Positive electrode 

The positive potential profile has also some differences compared to the one of the 70Ah/12V 
flat-plate battery. The shape of the potential profile from the beginning to the end of the 
inversion did not steadily blow down but broke into three different parts with three 
distinguished slopes whose values decrease with time to zero at the end. They reflect the 
decrease of the discharge reaction rate and the increase of the charge reaction rate until both 
rates are equals, when the positive potential reaches 0 V and remains stable. A little trough 
voltage was also observed. 

One remark for both electrodes is that the positive electrode always took more time, about 
five times more, than the negative electrode to completely reach the inversed potential value, 
i.e. counting from the beginning, where the potential begins to abruptly drop, to the end of the 
inversion, where the potential reaches 0 V or minus 2 V for the positive and the negative 
electrodes respectively. 

Pseudo cells 

Figure 71 presents the voltage profiles of six pseudo cells. They well reflect the shape of the 
negative electrode with the presence of the similar “coup de fouet” phenomenon at the 
beginning and of the hump, sometimes two successive humps, at the middle of the inversion. 
Potential humps occur almost at the same time on every negative electrode, i.e. after about 2 
hours and a half counted from the beginning of the inversion. The voltage profiles of pseudo 



CHAPTER 3 – DISCHARGE OF LEAD ACID BATTERY – POLARITY INVERSION_________________________________  

 

 103

cells are also clearly associated to the profile of the positive potential with three different 
slopes during the whole inversion. The little trough voltage observed on the positive potential 
profiles above, opposite to the direction of humps, was reproducible. We remarked once that, 
the trough voltage on the 6th positive electrode potential appears just after the appearance of 
the hump on the 5th negative electrode potential. We suppose that, this trough would be a 
mirror of the hump, as the movement of sulfuric acid to the negative electrode when the 
PbSO4 wall is holed, would cause a drop of acid density at the positive electrode. 
Nevertheless, the inversion takes place inside the electrode and not at the surface faced to the 
bulk electrolyte.  

Humps

 

Figure 71: 140 Ah/12V tubular-plate battery, 1st discharge with –12V end of discharge (C/20). 
Potential profiles of pseudo cells. Appearance of voltage humps after inversing negative potential. 

 

Figure 72: 140Ah/12V tubular-plate battery. Battery voltage and temperature, ambient temperature 
profiles as a function of charge time. Battery temperature increases strongly when the battery polarity 
is inversed. 

Rate of discharge current before and after polarity inversion 
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During discharging with current I, HSO4
- ions are consumed with the rate I/F and are renewed 

from the bulk electrolyte by diffusion to the positive electrode with the rate Ddx/dc and by 
diffusion and migration to the negative electrode with the rate Ddx/dc + It-/F.  

F

It

dx

dc
D

F

I −
+−=  (62) 

At the beginning of the discharge, the ability of the transport rate is greater than the 
consumption rate of discharge current; the battery is discharged with the later rate.  
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Figure 73: Consumption rate of HSO4
- ions or rate of discharge reactions before and after polarity 

inversions. After polarity inversion, the discharge reaction rate is higher or at least equals to the 
inversion reaction rate. 

At the moment when the transport rate is lower than the consumption rate of the discharge 
current, the concentration of sulfate ions tends to zero at some active interfaces and the cell 
voltage drops abruptly, which marks the end of a normal discharge. Beyond this moment, if 
the discharge continues with the same discharge current value, the number of sulfate ions 
reaching the active interface becomes too low for the discharge reaction and the polarity 
inversion happens. At the beginning of polarity inversion, most of the applied current is used 
for discharge reactions with the transport rate of HSO4

- ions. This rate decreases with 
discharge time (cf. Figure 53). The exceed part of the imposed discharge current supplies 
inversed reactions. This current share for the inversion reaction increases with discharge time. 
The inversion reactions produce HSO4

- ions, which are re-consumed by discharge reaction. So 
HSO4

- ions supplied for discharge reactions come from two sources: HSO4
- ions transported 

from bulk electrolyte and HSO4
- ions produced by inversion reactions. If the discharge 

process is prolonged even though polarity inversions have already take place for a long time, 
the transport rate from bulk electrolyte tends to zero, HSO4

- ions are renewed only by 
inversion reactions.  
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If x is the current proportion associated to the discharge reaction, which consumes HSO4
- ions 

diffusing from the bulk electrolyte, the current proportion related to the inversion reaction or 
to the discharge current, which uses HSO4

- ions produced by the inversion reaction is (1-x)/2. 
As the current proportion associated to the discharge reaction, which consumes HSO4

- ions 
diffusing from the bulk electrolyte has to be included between 0 and 100%, x is positive and 
inferior to 1.  

Total current proportion related to the discharge current is: 

5.0
2
x

2
1

2
x1

x 〉+=−+  
(63) 

It is clear that the discharge reaction rate is higher or at least equals to the inversion reaction 
rate if there is no more diffusion of HSO4

- ions from the bulk electrolyte to reactive interfaces 
x = 0).  

Reestablishment of electrode potentials when discharge stop 

Are inversed potentials stable when cutting off the discharge current? From Figure 61 and 
Figure 67, it is clear that, the less prolonged the inversion is, the less difficult to 
reestablishment of electrode potentials. For instance, when the current is cut off, the potential 
of the positive electrode of the 140Ah/12V, having suffered for about 6 hours at the inversed 
potential, increases immediately from its inversed value, 0V, to 1.2V (cf. Figure 67). While, 
the potential of the positive electrode of the 70Ah/12V battery, subjected to the inversed 
potential for about 13 hours, cannot return to its initial value, it stays at the inversed value, 
0V, when the current is turned off (cf. Figure 61).  

It is well known that, the active material utilization ratio is just about 50%. When the 
inversion is not too prolonged, it produces only a certain quantity of the second kind of active 
material, i.e. active material of the opposite polarity. These two kinds of active material, 
carried by metal grid and more or less bathed with electrolyte, form several cells in short 
circuit, which can be rapidly discharged. As the active material of primitive formation is more 
abundant compared to the material formed by inversed reactions, this latter is consumed first. 
In addition, the cell gets back very slowly its initial potential as it is deeply sulfated. In the 
case the electrode is too deeply sulfated and inversed, the inversed potential is stable for so 
long time that a simple stop-current cannot help it to return to the initial state of polarity. A 
prolonged charge with low rate is required.  

3.5 ANALYZING A DEFECTIVE BATTERY BY USING POLARITY INVERSION 
DISCHARGE  

3.5.1 Experimental 

The battery TC5, whose voltage is 11.3 V, was subjected to the test of discharge at C/20, i.e. 
7A, with polarity inversion in order to find out which electrode(s) is (are) defective.  

3.5.2 Results and discussion 

By observing the entire discharge voltage profile of the battery as a function of time, it is clear 
that there were 2 under-charged electrodes, which limit the battery capacity. The initial 
voltage before discharge was 11.3 V. At start-discharge, it dropped rapidly to 10.5 V, about 
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2V less compared to a normal voltage of a 6-cell battery. After 3 hours and 30 minutes of 
discharge, this voltage fell abruptly to 7.9 V, about 4 V less compared to a normal voltage of 
a 6-cell battery. Two possibilities lead to this same result: 

• Two electrodes of the same nature, two negative or two positive could be inversed; 
these other discharge normally. 

• Two electrodes of different natures, one negative and one positive could be inversed; 
these other discharge normally.  

Stop-discharge

11.3 V

7.9 V

 

Figure 74: Battery TC5 total voltage during discharging with polarity inversion. Battery voltage drops 
to 7.9 V after about 3 hours and 30 minutes of discharge at C/20, 4 V less than nominal voltage. Two 
cells should be defective.  

Defective cells

 

Figure 75: TC5 compressed 140 Ah/12V flat-plate battery, discharge with –12V end of discharge at 
C/20, potential profiles of pseudo cells. Two cells, Up6n1 and Up1n2, are defective.  
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Figure 75 illustrates the pseudo cell voltages of the battery. It shows that the pseudo cell 
consisting of 1st positive electrode and of 2nd negative electrode, Up1n2, and the pseudo cell 
consisting of 6th positive electrode and of 1st negative electrode, Up6n1, are affected. These two 
voltages are now presented in the same graphic of the 1st negative electrode potential and the 
6th positive electrode potential (cf. Figure 76). 

Coup de fouet

Humps

Stop 
discharge

Coup de fouet

Humps

Stop 
discharge

 

Figure 76: Potentials of negative and positive electrodes at two terminal cells; voltage profiles of two 
defective cells, Up6n1 and Up1n2.  

For Up6n1, it shows that the negative electrode is affected and inversed after only 3 hours and 
30 minutes of discharge. A “coup de fouet” is also obvious.  

For Up1n2, its voltage is close to 0V at the start-test, meaning that one electrode had already 
been completely discharged and inversed. The remaining electrode is inversed after about 12 
hours 30 minutes of discharge. The shape of this inversion resembles the shape of a negative 
inversion, which is characterized by a very abrupt fall of the potential. Moreover, the 
phenomenon of hump, which appeared on the potential profile of the positive electrode, is not 
present on this profile. We can conclude that the completed discharged electrode of the cell 
Up1n2 from the beginning is a positive electrode. Therefore, two defective electrodes are the 
negative and the positive electrodes of the 1st cell. This can be caused by a short circuit 
between them. The result of another test confirmed that in the electrolyte of this cell, there 
were ions of Fe, which should develop the oxido-reduction “shuttle” phenomenon and should 
discharge the electrodes. 

Regarding hump phenomenon, in this battery, humps appear at the positive potential profile 
and not at the negative one. This confirms that, hump phenomenon can occur at either 
negative or positive potential profile. A surprising inversed hump appeared at the Up1n2 
pseudo cell voltage profile after the discharge current was cut off. 
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3.6 ANALYZING EVOLUTION OF SEPARATED STATES OF CHARGE OF 
NEGATIVE AND POSITIVE ELECTRODES USING POLARITY INVERSION 
DISCHARGE 

3.6.1 Experimental 

Some details on 110 Ah/ 12 V heavy truck SLI batteries used for test are follows: 

• Nine positive electrodes: grids 64g Pb/Sb + 0.111kg of material, out put of active 
material: 118Ah/kg for C/20. Thus, under test of discharge of C/20, the capacity of 
positive electrode must be 9 x 0.111x 118 = 117.9Ah. 

• Eight negative electrodes: grids Pb/Ca 64g + 0.103kg of material, out put of active 
material: 145Ah/kg for C/20. Under test of discharge of C/20, the capacity of 
positive electrode must be 8 x 0.103 x 145 = 119.5Ah. 

• Composition of grids: Pb/Sb = Sb 1,6% ± 0,1 + impurities (As 0,1% ± 0,02 / Se 
0,03% ± 0,0025 / Sn 0,12% ± 0,04); Pb/Ca = Ca 0,12% ± 0,01 / Sn 0,20% ±0,02 / 
Al 0,0175% ± 0,0025. 

• Date of fabrication: 06/09/2006. 

Three batteries 110 Ah/12 V heavy truck SLI Exide of the same manufacture lot on the 6th 
September 2006, B101-103-105, were subjected to different tests of discharge (DCH) and 
charge (CH) as shown in Table 8. The first test on B101 was operated on the 19th September 
2007; the battery was self-discharged for bout 12 months. They were the 17th and 18th October 
2007 for the B103 and B105 respectively, so more than 13 months of self-discharge.  

Table 8: Experimental procedures of 110Ah/12V flat-plate batteries, B101, B103 and B105.  

Battery Test Description 
DCH –12.0V (1) Discharge at 18 A, limit-stop-voltage at –12.0V (18 - 12) 

CH IUi Charge at C/10 (I) and limited voltage at 14.0 V (U) for 11 hours than at 
C/20 (i) without voltage restriction for 3 hours B101 

DCH –12.0V (2) 18 - 12 

DCH –12.0V (1) 18 - 12 
CH 13.6 V Charge at C/10 and limited voltage at 13.6 V for 168 hours 

DCH –12.0V (2) 18 - 12 

CH 13.6 V + C/200 After the charge 13.6 V, continue to charge at C/200 without voltage 
restriction for 168 hours 

B103 

DCH –12.0V (3) 18 - 12 

DCH 10.5 V (1) Discharge at 18 A, limit-stop-voltage at 9 V 
CH 13.6 V 18 - 12 B105 
DCH –12.0V (2) 18 - 12 

Comparison of the following couples of discharge are operated: 

• B101 – DCH(1) with B105 – DCH(1) to show differences between a normal discharge 
and a discharge with polarity inversion  

• B101 – DCH(2) with B103 – DCH(2) to compare the efficiency of CH IUi and 13.6 V 
• B103 – DCH(2) with B103 – DCH(3) to figure out the efficiency of CH C/200 
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3.6.2 Results and discussion 

Before discussing on the results, it should be reminded that the initial capacities of two 
electrodes are almost the same; they are 118 and 119 Ah for the positive and negative 
electrodes respectively.  

Figure 77 shows the discharge potential profiles of a negative and a positive electrode of 
B103, which was at open circuit for thirteen months. It is obvious that, the negative electrode 
finishes its discharge far earlier than the positive electrode. The remaining capacity of the 
negative electrode is just about 50% of the positive one. We remind here that the battery 
tested contains antimony in positive grid alloys. This explains why the negative electrode self-
discharges much faster than the positive electrode.  
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1st negative electrode
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Hump

 

Figure 77: B103, first discharge with –12V end of discharge. Potential profiles of the first cell 
negative electrode (battery negative terminal), and of the sixth cell positive electrode (battery positive 
terminal).  

Familiar shapes of negative and positive potential profiles are observed. The negative 
electrode marks its polarity inversion with an abrupt potential drop to – 2 V and a “coup de 
fouet”. Then, after 1 hour from this beginning, the potential hump appears. When the 
discharge current is switched off, the negative potential reestablishes far more slowly than the 
positive potential, as the negative electrode is inversed far earlier. The positive electrode takes 
more time, about 1 hour, to reach its value of the inversed potential level, 0V. 

3.6.2.1 B105 – DCH(1) with B101 – DCH(1) 

Figure 78 (a) shows that after 2 hour and 15 minutes of discharge, at 9V, a first inversion 
takes place; it is also the criterion to stop discharge in practice. The remaining capacity of the 
B105 battery after 13 months of self-discharge is 40.5 Ah, 36.8% of its nominal capacity.  

Figure 78 (b) shows a complete discharge test where all cells of the B101 battery are inversed. 
Without regarding the potential profiles of negative and positive electrodes, according to the 
shape of the battery voltage, we can conclude that the negative electrode is inversed before 
the positive electrode and limits the battery capacity. We can also obtain complete 
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information about average capacity of six negative and six positive electrodes: 44 % and 86 % 
respectively compared to nominal capacity (110 Ah), with 6 V is the limit-stop-discharge for 
negative electrodes and minus 6 V for positive electrodes.  

 
(a) 

 
(b) 

Figure 78: Discharge voltage profiles of B105 with limit-stop–discharge at 9 V (a) and of B101 at 
minus 12.0 V (b). B101 and B105 had been at open-circuit for 12 and 13 months respectively before 
the tests. 

3.6.2.2 B101 – DCH(2) with B103 – DCH(2) 

Two charge methods, IUi and prolonged IU, were tested on B101 and B103, whose history 
and SOC are almost similar each other. These two charge methods show the same efficiency 
in recovering battery SOC after very deep discharges with polarity inversion. The negative 
electrode reaches 65% of its nominal capacity and it is 90% for the positive electrode. It 
reveals also that, both charge methods are not sufficient to well charge deeply sulfated 
batteries, especially to well charge the negative electrode. 

After IUI charge

After 12 months 
at open-circuit

 
(a) 

After 13.6 V 
charge

After 13 months 
at open-circuit

 
(b) 

Figure 79: Discharge voltage profiles of B101 after 12 months at open-circuit and after an IUi charge 
(a). Discharge voltage profiles of B103 after 13 months at open-circuit and after a 13.6 V charge (b). 
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3.6.2.3 B103 – DCH(2) with B103 – DCH(3) 

After 13.6V + 
C/200 charge

After 13.6V 
charge

After 13 months at 
open-circuit

After 13.6V + 
C/200 charge

After 13.6V 
charge

After 13 months at 
open-circuit

 

Figure 80: Discharge voltage profiles of B103 after 13 months of self-discharge (blue), after a one 
week at 13.6 V charge (black) and after 2 weeks at a 13.6 V + C/200 charge (green). Discharge rate is 
1.8C/10 

It is clear from Figure 80 that a prolonged charge with constant low current is necessary to 
recover battery SOC after a prolonged self-discharge period and polarity inversions. After this 
charge, SOC of the negative and positive electrodes are 90 % and 98 % respectively.  

Table 9: Results of experimental tests subjected to B103. Calculated % of remaining capacity 
compared to nominal capacity Cnominal = 110 Ah 

B103 Charged Ah 
Discharged Ah 

at +6V 
Discharged Ah 

at –6V 
% negative capacity 
compared to Cnominal 

% positive capacity 
compared to Cnominal 

DCH –12V (1) - 47.5 93 43 84.5 
CH 13.6V 160 - - - - 

DCH –12V (2) - 78.9 98.6 71.7 89.6 
CH 13.6V 126.8 - - - - 

C/200 80.6 - - - - 
DCH –12V (3) - 94.9 106 86.3 96.3 

3.7 CONCLUSIONS OF POLARITY INVERSION 

The following conclusions can be drawn from the study presented in this thesis on the polarity 
inversion: 

Mechanism of polarity inversion: 

The principle of polarity inversion relates to the limit diffusion of HSO4
- ions from bulk 

electrolyte to supply discharge reactions. When the transport rate of HSO4
- ions from bulk 

electrolyte is inferior to the imposed rate of discharge reaction, the exceed current will feed 
inversion reactions, i.e. charge reactions of the opposed electrode. Inversion occurs, potential 
value of the negative electrode becomes potential value of the positive electrode and vice 
versa. The HSO4

- ions supplied for the discharge reaction come from two sources: by 
diffusion from the bulk electrolyte and as the produce of charge reactions. The discharge 
reaction rate is always superior or at least equals to the inversion reaction rate.  
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Once the inversion already occurs, the hump voltage, i.e. a quick increase followed by a 
return of the potential to the inversion level potential, can take place on either negative or 
positive electrodes. This phenomenon clarifies more the inversion process, which happens in 
the milieu of the electrode, in the back of the sulfate layer that prevents a sufficient diffusion 
of HSO4

- ions to the remaining active materials. The inversion process consists of consuming 
the sulfate crystals of the latter layer and producing sulfate crystals in the deep of the 
electrode. The sulfate layer tends to move toward the heart of the electrode.  

Distinction of negative and positive electrode inversions – application suggestion: 

The negative electrode inversion marks the difference to the positive electrode inversion with 
a very abrupt drop of potential and a presence of “coup de fouet”. It reaches far more rapidly 
its inversed potential value than the positive electrode does. These features allow recognizing 
an inversion if it is a negative inversion or a positive inversion without using reference 
electrodes.  

This result can influence the surveillance of batteries subjected to charge/discharge cycles. In 
fact, on batteries consisting cells in a series configuration, the inversion of one electrode 
polarity (a voltage drop of 2 V) goes usually unnoticed within the only observation of the total 
voltage of the battery on discharge. From the nominal voltage of 48 V, which constitutes a 
standard current of photovoltaic station or a backup installation, EDF has carried out a 
surveillance system, which detects during discharging the first inversion of electrode polarity. 
The principle is: the intermediate voltages at the medial level (half battery voltage) are 
measured. The comparison of the voltage difference of the half batteries during discharging 
allows detecting the first inversion. Before the inversion, the voltage difference between two 
half batteries does not exceed generally 200 to 300 mV. The first inversion makes this 
difference overrun 1500 mV. For more details, in order to avoid being entrapped with two 
weak cells, which would be distributed to each half battery, in practice, the battery is divided 
into four parts and it is the maximum difference that constitutes the surveillance parameter.  

The result obtained in this thesis would allow distinguishing between a first positive inversion 
and a first negative inversion and using this information to: 

• authorize or not the pursuit of the discharge (if it is a first positive inversion, the 
discharge can continue but not the case of a first negative inversion as the oxidation of 
expanding additives can not be recovered).  

• react on the subsequent management.  

.
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Conclusion of chapter 3  

In this chapter, the polarity inversion phenomenon during very deep discharge has been 
discussed. 

In the case of a full traditional discharge, the current is interrupted when the voltage at the 
terminals of the cell begin to drop. The two electrodes, not having the same capacity, it is the 
weaker that determines the end of discharge and one does not know its concerns the negative 
or the positive electrode. Using a reference electrode help knowing this information but one 
does not have any information about the capacity of the other electrode unless extending the 
discharge until the voltage drop of the second electrode. The first electrode, forced to continue 
the discharge beyond its capacity, is subjected to a polarity inversion process. In other words, 
inside the negative electrode for example appears positive active material, i.e. lead dioxide: 
the potential of the negative electrode becomes then the potential of the positive electrode; 
vice versa for the positive electrode. Such an operation makes electrode tired and so, in a 
general manner, has to be avoided. The inversion of a negative electrode is even particularly 
detrimental in term of destroying by oxidation the lignosulfonates, which is an essential 
additive for its longevity. We consider, however, that in our case, the risk is negligible in the 
even that each tested battery has been subjected to only two or three cycles.  

The tests have been carried out on 12 V batteries, i.e. six cells in a series configuration. In this 
case, only the terminals of the battery are accessible. They correspond to the negative 
electrode of the first cell (negative terminal) and the positive electrode of the sixth cell 
(positive terminal). The potential of these two separated electrodes of the terminals as well as 
the voltages of pseudo cells in a series configuration were analyzed. Two kinds of reference 
electrodes were used, giving the same results.  

First results obtained from discharges of the flat-plate battery gave us not only the capacities 
of each electrode but also the potential profiles of electrodes and of pseudo cells during 
inversion. We obtained different potential profiles for the negative and positive electrodes 
with the presence of “coup de fouet” phenomenon at negative electrodes and not at the 
positive electrodes. These results allow recognizing if an inversion is on the negative or on the 
positive electrode without using reference electrodes. These results encouraged us to continue 
our exploration into this research, as the literature about this phenomenon is scarce.  

Next, we operated deep discharges with polarity inversions on a tubular-plate battery. The 
results obtained clarify several aspect of this process: the mechanism of inversion in which 
the concentration of the sulfuric at the reactive surfaces tends to zero and inversion reactions 
(charge reactions of the opposed electrode) take place to produce PbO2 at the negative 
electrode and Pb at the positive electrode; the rate ratio between these inversion reactions and 
the discharge reactions with progressing inversion; different behaviors of potential profiles 
during inversion and when the discharge is switched off; high polarizations cause important 
heat losses. 

We then applied discharges with polarity inversion to analyze a defective compress lead acid 
battery. The obtained results show that the first cell was short-circuited and lost most of its 
capacity. Another test confirmed these results by revealing that there was Fe in the electrolyte 
of this cell that developed the oxido-reduction “shuttle” phenomenon thus discharged the cell.  
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Discharges with inversion have been used to study state of charge evolutions of negative and 
positive electrodes of SLI heavy struck batteries exposed to different conditions: prolonged 
open circuit, IUi charge, float charge at 13.6 V, equalization charge with imposed low current 
at C/200. The obtained results give the self-discharge rates of both negative and positive 
electrodes as well as effects of different charge processes on deeply sulfated batteries. The 
equalization charge with an imposed low current and long duration is necessary to recover the 
capacity loss of the battery under prolonged open circuit, especially the capacity of the 
negative electrode. These results are used in the fourth chapter.  

This work is a significant discovery for us about polarity inversion in particular and about 
lead acid battery in general.  
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CHAPTER 4 - NEW METHOD OF MAINTAINING THE CHARGE OF  

STATIONARY LEAD ACID BATTERIES  

Introduction 

Backup power supply is one of the main applications of lead acid batteries. Nowadays, VRLA 
batteries subjected to traditional float charges encounter the problem of short service life. This 
drives us to continue the work done at EDF R&D since 2000 on methods of maintaining the 
charge of stationary lead acid batteries. First of all, an overview is taken on stationary lead 
acid batteries concerning the self-discharge phenomenon, traditional float charges and standby 
battery failure modes. Then, a new method of maintaining the charge of standby batteries 
using low currents and periodical charges is studied and tested on different kinds of lead acid 
batteries including lead acid batteries with Sb grid alloys (SLI heavy truck batteries) and Sb 
free lead acid batteries (SLI car batteries and AGM VRLA batteries). Finally, a new 
management system with low current charges is proposed especially for VRLA batteries with 
expected targets of improved reliability and increased battery life span.  

4.1 LEAD ACID BATTERIES IN STATIONARY APPLICATIONS 

Secondary reactions such as corrosion, water decomposition and oxygen recombination are 
the main cause of self-discharge of stationary lead-acid batteries. Maintaining the charge of 
standby batteries is necessary to compensate self-discharge. However, if the maintaining-
charge current is too high, it can accelerate these side reactions, which can thus become the 
cause of several failures of standby batteries. An appreciated method of maintaining the 
charge for stationary lead acid batteries is a trade-off between their state of charge and state of 
heath. 

4.1.1 Secondary reactions as causes of self-discharge 

Apart from electronic short-circuits caused by contact between current-conducting elements 
and by oxido-reduction “shuttle” of impurity ions present in the electrolyte, e.g. Fe2+ and Fe3+ 
(cf. 1.3.3.4), the self-discharge phenomenon in stationary lead-acid batteries is due to the 
simultaneous presence of main reactions, i.e. charge and discharge of active materials and 
unavoidable side reactions such as corrosion, water decomposition and oxygen 
recombination. At open circuit, the battery voltage does not only correspond to the 
equilibrium voltage of principal reactions but depends on the mixed voltage of both main and 
side reactions [1]. Its value is between the equilibrium voltage value of the principal reactions 
and the one of the secondary reactions. Water electrolysis is one of the principal secondary 
reactions and its potential difference is 0.7 to 0.75 V lower than the potential difference of the 
charge-discharge reactions (depending on electrolyte density and temperature). In these 
conditions, at open circuit, secondary reactions are produced at the expense of principal 
reactions; the battery is thus discharged or “self-discharged”. However, the influence of these 
secondary reactions is quite weak as the kinetics of oxygen and hydrogen evolutions are very 
slow. The battery potential difference at open circuit is smaller but very close to the potential 
difference of principal reactions.  

The self-discharge caused by secondary reactions concerns only the positive or the negative 
electrode. The self-discharge of the negative electrode is mainly related to the evolution of 
hydrogen and to the reduction of oxygen, while the self-discharge of the positive electrode is 
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principally associated to the evolution of oxygen and to the corrosion of positive grids. 
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Figure 81: Establishment of a mixed potential Emixed at the positive electrode at open circuit. Its value 
is between the equilibrium voltage value of the principal reactions E0(PbSO4/PbO2) and the one of the 
secondary reaction E0(H2O/O2) which leads to water electrolysis and self-discharge of the positive active 
material. 

4.1.1.1 Self-discharge reactions at the negative electrode 

1. Self-discharge due to hydrogen evolution 
H2 evolution:   OH2He2OH2 223 +→+ −+  

Discharge of Pb:  −+ +→ 2ePbPb 2  
Overall reaction: 4242 PbSOHSOHPb +→+  Reaction 23 

2. Self-discharge due to oxygen reduction  

O2 reduction:  OH3e2OH2O
2

1
232 →++ −+  

Discharge of Pb:  −+ +→ 2ePbPb 2  

Overall reaction: OHPbSOSOHO
2

1
Pb 24422 +→++  Reaction 24 

Thus, in the presence of sulfuric acid, Reaction 23 and Reaction 24 cause self-discharge of the 
negative electrode with lead sulfate PbSO4 as the final product.  

4.1.1.2 Self-discharge reactions at the positive electrode 

1. Self-discharge due to oxygen evolution 

O2 evolution:   −+ ++→ e2OH2O
2

1
OH3 322  

Discharge of PbO2:  OH4PbSOe2OH2SOHPbO 243422 +→+++ −+   

Overall reaction: OHPbSOO
2

1
SOHPbO 242422 ++→+  

Reaction 25 

2. Self-discharge due to corrosion  

When lead oxides supply the O2- ions to neutralize the Pb2+ ions: 
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Grid corrosion: −+ +⇒ e2PbPb 2   

                  −− +⇒+ e2PbOOPb 2  Reaction 15 

Discharge of PbO2: OHOPbSOe2SOHPbO 2
2

4422 ++⇒++ −−  Reaction 26 

Combining Reaction 15 and Reaction 26, we have: 
OHPbSOPbOSOHPbOPb 24422 ++⇒++  

Reaction 27 

When the grid is on contact with the electrolyte: 
Grid corrosion: −+ +⇒ e2PbPb 2   

                  −+ ++⇒++ e2OH2PbSOOH2SOHPb 34242  Reaction 16 

Discharge of PbO2: OH4PbSOe2OH2SOHPbO 243422 +⇒+++ −+  Reaction 28 

Combining Reaction 16 and Reaction 28, we have: 
OH2PbSO2SOH2PbOPb 24422 +⇒++  

Reaction 29 

The formed lead oxide (PbO) in Reaction 27 is converted into lead sulfate according to 
Reaction 30 as soon as it gets in contact with sulfuric acid: 

OHPbSOSOHPbO 2442 +→+  Reaction 30 

And the result is Reaction 29. 

4.1.1.3 Self-discharge rate [1] 

It is clear that side reactions taking place at negative and positive electrodes are independent 
of one another and self-discharge rates are not equal between the positive and the negative 
electrode. 

Self-discharge rates depend on a lot of factors such as temperature, grid alloys and the battery 
state of charge. 

The rates of side reactions depend on temperature as well as the rates of self-discharge. This 
dependence is often described by the Arrhenius equation below: 








−
= RT

E

0

a

ekk  (64) 

In which: 

k  : rate constant of the reaction 

k0  : pre-exponential factor or simply the prefactor, is an empirical relationship 
between the temperature and the rate coefficient k. It is determined experimentally. 

Ea  : activation energy 

R  : molar gas constant (8.3143 J.mol-1.K-1) 

Generally, the approximation holds true that a temperature increase of 10 K (degrees 
Centigrade) the reaction rate doubles. In electrochemical reactions, this means that equivalent 
currents are doubled, e.g. a temperature increase of 20 K means a current increase by a factor 
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of 4; a rise in temperature of 30 K corresponds to a factor of 8 [1]. 

In lead-acid batteries with antimony grid alloys, the self-discharge rate of the negative 
electrode is several times stronger than the self-discharge rate of the positive electrode, 
depending mainly on the battery age and the antimony content in the alloy of the positive 
grid. Indeed, at charge, the Sb metal, whose equilibrium potential is above that of the negative 
electrode, dissolves (corrodes) progressively from the positive grid, diffuses through the 
electrolyte and is precipitated (reduced) at the negative electrode. As this contaminated 
electrode has a lower hydrogen overvoltage, this results in a greater hydrogen gassing rate [1]. 
The more aged battery is, the more serious this “antimony affect” is. Sometime, this greater 
self-discharge rate of the negative electrode is masked by an extra negative active material 
quantity. In antimony-free lead-acid batteries, e.g. VRLA batteries with Pb/Ca grid alloys, the 
self-discharge of the negative electrode is largely reduced. It should be kept in mind that the 
electrode with stronger self-discharge rate limits the capacity of the cell.  

The self-discharge rate depends also on the battery state of charge as it affects gassing 
reactions. It is clear that the self-discharge is easier when more active materials are available, 
or in other words hydrogen H2 and oxygen O2 evolution cannot occur at a surface covered by 
lead sulfate PbSO4.  

4.1.2 Traditional method of maintaining the charge: float charge - a trade-off between 
state of charge and state of heath 

In order to compensate for the self-discharge of lead-acid batteries, a current whose value 
exceeds the self-discharge of the limit-capacity electrode has to be supplied. Traditionally, a 
voltage whose value is slightly higher than the battery open circuit voltage is applied to 
compensate the difference between mixed potentials and equilibrium potentials of the 
principal reactions. This is called “float charge”. 
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Figure 82: Principle schema to illustrate the dependence of mixed voltage (Emixed) on temperature (T) 
and electrode density (d). The movement of Emixed due to temperature or electrolyte change is 
determined here by the movement of either oxygen curve or positive active material curve with time. 

In reality, equilibrium potentials depend on a lot of factors such as temperature, electrolyte 
density, grid alloys [1, 15]. Moreover, as a constant voltage is applied between two terminals 
of a cell, the potential distribution is not properly shared between the negative and the positive 
electrode [61-65]. In batteries with cells in a series configuration, the phenomenon of voltage 
scattering on cells is also present [1, 65-67]. In addition, it should be kept in mind that the 
float polarization increases gas evolution rates at both electrodes. It is very difficult or even 
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impossible to choose a value of float voltage, which can take into account all of these 
phenomena without paying the piper. Convenient practical values for float voltage have been 
empirically determined. To get rid of the risk of under-charge, batteries in float charge are 
permanently overcharged. 

4.1.2.1 Bimodal float voltage distribution between the negative and positive electrodes – 
difference between vented and VRLA batteries.  

The electrode reactions on float charge are described in detail by Berndt and Teutsch [61]. 
During float charge, hydrogen evolution, oxygen evolution and grid corrosion proceed 
certainly as presented in Figure 83. The float current serves to compensate the electrode 
discharge caused by these side reactions in maintaining the voltage above the open-circuit 
value. When this float current is too low, i.e. the positive potential is slightly below its 
equilibrium value, or the negative electrode potential is slightly above its equilibrium value, 
the discharge of the electrodes would occur. Otherwise, the battery is completely charged or 
overcharged. In general, batteries in float charges are permanently overcharged. The float 
current, i.e. overcharged current, feeds electrons to secondary reactions.  

 

Figure 83: Reactions that occur in lead acid batteries dependent on electrode potential. Equilibrium 
potentials of charge-discharge reactions (Pb/PbSO4 and PbSO4/PbO2) are presented in columns, 
because they depend on the acid concentration. Hatched areas mark polarization ranges that are 
shown in Figure 86 [61] 

Berndt and Teutsch presented the model used for float charge describing the single cell 
behaviors at overcharge in [61]. Under normal float conditions as the battery is already 
completely charged, the charge and discharge reactions of the active materials do not occur. 
The equal float current flow through both electrodes can be written: 

At the positive electrode: Ifloat = IO2 ev. + Icorr. 

At the negative electrode: Ifloat = IH2 ev. + IO2 re. 
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The balance reaction: Ifloat = IO2 ev. + Icorr = IH2 ev. + IO2 re. 

 

Figure 84: description of equal float current flows through both electrodes in the normal conditions at 
flooded batteries and VRLA batteries. Supposing that the recombination efficiency at the VRLA battery 
is 100%.  

As shown in 1.5.4.3, in general for electrochemical reaction the current is an exponential 
function of the electrode potential (cf. Eq. (32)). At high overvoltage, current/voltage curve 
forms a straight line, called “Tafel line”.  
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RT
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α
−

α
=η  (32) 

This is applied also for the H2 and O2 gas-evolving reaction in lead acid batteries, since they 
are polarized by more than 0.3 V already at the battery open-circuit voltage. Tafel lines for 
hydrogen and oxygen evolution have been confirmed in literatures. A slope b of about 0.12 V 
per current decade is nearly always found for hydrogen evolution, while the corresponding 
slope for oxygen evolution is between 0.07 and 0.14 V per current decade [1, 15]. Feder and 
Carosella revealed that at float charge of a vented lead acid battery, the negative electrode is 
polarized more than the positive electrode [68]. 

In the case of VRLA batteries, the principal reactions at the negative electrode during floating 
are hydrogen evolution and oxygen reduction. As the rate of H2 evolution rate is low thanks to 
the utility of antimony free grid alloys, essential float current is for the oxygen recombination. 
As mentioned in chapter 1 (cf. 1.3.3.2), the rate of the oxygen reduction reaction is 
determined by the rate of oxygen diffusion from the positive electrode to the negative 
electrode, which does not depend on the electrode potential. If the diffusion of oxygen is 
sufficiently fast, which is the case in VRLA batteries, the recombination oxygen will occur, as 
the potential condition - inferior to 1.23V - is already satisfied at the negative electrode. The 
negative electrode is thus only polarized by the hydrogen evolution reaction. Therefore, in 
VRLA batteries the positive electrode takes essential polarization and the negative electrode 
can be depolarized during float charges.  
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Figure 85: Expected polarization curves of positive and negative electrodes, when measured against 
silver–silver sulfate reference electrodes. This figure demonstrates that the positive electrodes of 
valve-regulated batteries are subjected to much higher potentials than the positive electrodes in 
vented batteries [62] 

(a) 

 

(b) 

 

Figure 86: Mathematical models: currents vs. electrode polarization; at 2.20V/cell float voltage: (a) 
discharge current of the positive electrode of flooded battery and (b) discharge current of the negative 
electrode of VRLA battery [61] 

4.1.2.2 Cells in series configuration – scattering problem 

In general, in order to obtain a desirable voltage value, one battery is composed of several 
cells connected in series configuration. A usual phenomenon observed in these assemblies is 
the voltage scattering between the individual cells [1, 65-67]. One example given by Berndt 
[1] shows that for a mean float voltage of 2.38V per cell, a normal distribution curve with a 
standard deviation of ± 33mV and a difference between the maximum and the minimum 
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values of 170mV are noticed. There are many reasons producing the voltage scattering. Two 
of them are found in industrial installations, despite the rigorous manufacturing process 
control and special industrial conditions [67]. The first reason is due to the difference in the 
characteristics of the cells, even in the same production batch. The second one relates to the 
reality that in industrial installations, it is impossible to control self-discharge condition and 
state of charge characteristics of each cell before using.  

It is revealed above that the polarization is not properly symmetrical for negative and positive 
electrodes. The voltage scattering thus reflects the voltage dispersion of negative electrode in 
flooded batteries [68] and of the positive electrode in VRLA batteries [61, 66]. 

 

Figure 87: Distribution of 113 V on 50 vented 
cells Pb-Ca in series configuration for 9 years of 
float charge. η- and η+ are potentials of the 
negative and positive electrodes. 

Voltage dispersion appears obviously at the 
negative electrodes and its presence is far smaller 
at the positive electrodes [68]. 

4.1.3 Secondary reactions as causes of failure modes 

At float charges, if both electrodes are well polarized, i.e. float potentials exceed the 
equilibrium ones; float currents will serve only to produce side reactions. The higher the float 
current is, the stronger the rates of side reactions are, especially the rates of gas evolution 
reactions. 

Secondary reactions are not only the cause of self-discharge, but also the cause of many 
failure modes of stationary lead acid batteries under constant float voltages. Flooded and 
VRLA technologies can be affected by corrosion, including creeping, and degradation of 
positive electrodes [1, 47, 49, 69-73]. VRLA batteries are moreover subjected to electrolyte 
drying out and thermal runaway [1, 49, 71, 73, 74].  

4.1.3.1 Corrosion  

Corrosion leads to the increase of the oxide multi-layers PbOx (cf. 1.3.3.3) and is the cause of 
different failure modes [47, 49, 75-81]: 
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• The oxides, corrosion products, take more volume than the metallic grid. The result is 
an expansion of the positive grid into three dimensions, in particular into the 
dimension of each bar of the grid. Under such mechanical stresses, the grid bars get 
longer and the grid dimension increases, this is called “grid growth” or “grid 
creeping”. This distortion can provoke internal short-circuits when the grown grid 
comes into contact with the negative top-bar (cf. Figure 88). 

• The formation of an electric passivation layer (barrier layer) at the interface between a 
positive grid and its active material prevents all electrical contact between them. The 
passivation layer is sometimes said to be a closely structured PbSO4 layer (high-
resistance layer) formed at the grid active-material interface, or lower oxides of lead, 
such as PbO, that are generated in a high-pH environment. 

• When the grid growth becomes excessive, apart from the passivation layer other 
causes of gradual loss of contact between the active material and the grid are noticed. 
The first one is the displacement of the active material away from the grid as it is not 
able to follow the grown grid. The second one is the gradual disappearance of the 
metallic grid, i.e. the grid is consumed by corrosion and can no longer take the role of 
electric conductor (cf. Figure 89).  

 
(a) 

 
(b) 

Figure 88: Due to corrosion, short-circuit took place and caused explosion accident in a standby 
tubular battery: (a) positive plate lengths were increased and touched the negative collective bar, (b) 
positive plates were distorted; the positive terminal obviously became more higher than the negative 
terminal; battery was destroyed after explosion (source: EDF).  

VRLA batteries under float charges, along with their grid design and their characteristic of the 
oxygen recombination, seriously suffer the corrosion consequences. Usually, 4% grid growth 
over the battery lifetime is the design limit. In most VRLA batteries, the grid sections are 
smaller; grid growth rates thus should be higher. There is some evidence that designs with 
absorbed and limited amounts of electrolyte are less tolerant to growth and, therefore, suffer 
greater capacity losses [78]. Moreover, in VRLA batteries, in order to lower the self-discharge 
rate, Pb/Sb alloys are replaced by Pb/Ca alloys, where the electric passivation of the positive 
grid alloy, called the “antimony-free effect” occurs [77, 82]. In addition, the operation 
potential of the positive electrode under float charge is higher in VRLA designs (cf. 4.1.2.1). 
For instance, the potential of the positive electrode is likely to be 50 to 100 mV higher than in 
a flooded battery [78]. Different publications have demonstrated that there is a zone of 
positive polarization where the corrosion is minimum (cf. 4.2.1.2). According to Brecht et al. 
[83], the corrosion rate is minimum when the positive polarization is between 30 and 70 mV 
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and increases to almost double at 150 mV. Therefore, the increase of the grid growth due to 
corrosion is further encouraged in VRLA batteries under float charges. 
 

 

Figure 89: Corroded positive plate of a starter 
battery, at the end of 5 years of service life in a 
passenger car [47]. 

 

4.1.3.2 Water loss 

Water electrolysis, i.e. evolutions of hydrogen at the negative electrode and oxygen at the 
positive electrode, as well as positive grid corrosion cause water loss of the electrolyte (cf. 
1.3.3). In VRLA batteries, despite of the recombination of oxygen at the negative electrode, 
water loss always occurs. This is due to the evolution of hydrogen, which cannot be re-
oxidized to water at the positive electrode, at least not at significant rates. Other causes of 
water loss such as container leakages, water evaporation, which are not mentioned in this 
thesis, aggravate the situation.  

Dry-out 

Water loss is not a problem as long as the electrolyte level can be refilled like in the case of 
flooded batteries. However, in the cases where maintenance intervals are not being properly 
respected or float charge rates are too high, water loss can reduce the capacity of the battery 
and finally limit the battery lifetime. Water loss induces a higher acid concentration, which 
results in an increase of the electrode equilibrium potentials. This means that oxygen and 
hydrogen overvoltages at open-circuit increase which lead to the growth of gas evolutions or 
of self-discharge rates. This would require an increase of float currents and of charge currents. 
If this demand is ignored, an insufficient state of charge and sulfation of plates can occur. If 
the electrolyte level is below the plate edges, the part of the plates above the acid level cannot 
be charged properly and this part of the plates will then undergo sulfation as well [47]. A 
dangerous case can happen when there is short-circuit in a non-electrolyte area; ignition of 
hydrogen can take place and provoke explosion (cf. Figure 88).  

In the case of VRLA batteries, as water cannot be refilled, water loss can become a serious 
problem, especially at high temperatures or excessive float voltages. Electrolyte “dry-out” is 
often observed. Apart of the increase of gas evolutions as mentioned above, the electrolyte 
decrease leads also to a decrease in the contraction of separator, when the electrolyte content 
is under 90 % [71]. As separators in actual batteries initially retain about 95% of the 
electrolyte, separators shrinkage is not appreciable. This shrinkage can bring later to poor 
contacts between the plates and the separators, increasing the internal resistance. The increase 
of acid concentration due to water loss can induce also an increase of oxygen recombination 
efficiency [49]. This chemical reaction of oxygen reduction is a strong heat source. Oxygen 
evolution is higher with the increase of acid concentration. Excessive recombination 
efficiency can increase dramatically the temperature of the battery and can lead to a so-called 
thermal runaway.  
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Thermal runaway 

Thermal runaway is a current phenomenon observed at VRLA batteries [1, 84-87]. It is 
defined as an unstable state of operation where heat generation increases faster than heat can 
dissipate [1]. It is also described as the increase at charge or float current that occurs as a 
result of increase in cell temperature from initial applied constant potential. In other words, 
thermal runaway is usually considered to be the result of positive feedback of current and 
temperature when a cell is placed on float charge at constant potential [86]. The initial float 
current flowing through the cell causes an increase in cell temperature that causes an increase 
in current that further increases the temperature until both current and temperature reach high 
values.  

Two main source of heat during charging are the reversible heat effect of the cell reactions 
and the Joule heating caused by the charge current. The internal oxygen cycle represents a 
special form of Joule heating, it is a strong heat source (cf. 1.5.6).  

The important parameters that mainly influence the internal oxygen cycle are the applied float 
voltage, the ambient temperature and the separator dry-out or the electrolyte saturation level 
in the separator pore volume. High floating voltages and high temperatures induce more water 
loss, which in turn reduces the electrolyte saturation in the separator pore volume. The lower 
the saturation is, the more favorable condition for the internal oxygen cycle to take place.  

According to J. Hu et al. [87], when the saturation is low, there is more gas space in the AGM 
separator for oxygen generated from the positive plates to transport to the negative plates, 
where the oxygen recombination occurs. Oxygen reduction shifts the potential of the negative 
electrode to a less negative value. Since the applied voltage was unchanged, the potential of 
the positive electrode shifts more positively, which in turn leads to the generation of more 
oxygen on the positive plates. So the floating current response becomes increasingly high. 
The thermal runaway occurs. In fact, the increased current at a constant float voltage is mainly 
used for oxygen evolution on the positive plates and the oxidation of Pb by O2 on the negative 
plates to produce PbSO4 (cf. reaction of self-discharge by O2 reduction).  

According to B. Culpin [86], at high saturations, oxygen transport by the pressure-assisted 
route gives good recombination efficiencies of the order of 95 ÷ 97%, but only at low float 
currents. At low saturations oxygen transport is mainly by pure diffusion and the 
recombination efficiency is high even at high current. This high recombination current 
generates much more heat than when gassing overvoltage occurs and thermal runway takes 
place.  

These same authors shown that the battery is out of control and thermal runaway occurs at a 
specific saturation of the separator around 80 ÷ 85 % even at low applied float voltages.  

B. Culpin resumed the thermal runaway procedure in three stages: 
• Stage 1: recombination efficiency is low, water loss is high, temperature and current 

rise slowly due to the small and slowly increasing internal resistance and low 
recombination efficiency. 

• Stage 2: the recombination efficiency, even at high currents is high because of the 
change in oxygen transport mechanism through the separator. Heat generation 
increases rapidly because of a combination of increased recombination rate and 
increased internal resistance of the separator.  



CHAPTER 4 – NEW METHOD OF MAINTAINING THE CHARGE OF STATIONARY LEAD ACID BATTERIES___________ 

 

 126

• Stage 3: the current rapidly decreases to zero as a result of the rapid increase in 
separator resistance. In fact, the internal resistance increases rapidly when the 
saturation is below 80 %, e.g. at 40% saturation the separator has a resistance 30 times 
of that in a fully saturated state.  

J. Hu et al. presented some consequences when thermal runaway occurs: 

• The very high temperature and violent oxygen evolution accelerated the corrosion of 
the positive grid. 

• The negative active material after thermal runaway has lost its dendrite lead structure 
and is composed of sand-like poorly crystallized PbSO4 particles. After thermal 
runaway, the contact between the positive active material particles are very poor and 
many big PbSO4 crystals remain even though the battery temperature has risen to a 
very high value and the charge current has exceeded 15 A. Apparently the violent 
oxygen evolution caused many PbSO4 crystals to loose conductivity so that they 
become inactive. The resistance of both positive and negative plates increases about 
20 times.  

4.2 NEW METHOD OF MAINTAINING THE CHARGE - LOW CURRENT METHOD 

4.2.1 New method of maintaining the charge 

The new method of maintaining the charge using low currents and periodical charges was 
invented by J. Alzieu and G. Dillenseger in 2006 [88]. It was tested on Pb-Ca SLI motor car 
batteries and presented in detail on the PhD thesis of G. Dillenseger [6]. The following work 
continues to study this new method and its effect on different kinds of lead acid batteries 
including SLI heavy truck batteries with antimony grid alloys, SLI car batteries antimony free 
and AGM VRLA batteries.  

4.2.1.1 Heritage of intermittent charges 

In order to limit the overcharge problem, instead of continuous charge, periodic charges (ON 
phases) are applied and the rest of the time the battery is kept on open circuit or open-circuit 
voltage (OFF phases) [89]. This is called intermittent floating or charge. This method is 
executed based on the principle that a battery on open-circuit for a given time (from some 
seconds to some weeks) looses a part of its capacity, which can be restored by a charge.  

Table 10: Bibliography summary of characteristics of intermittent charges for VRLA batteries [6]. 

Characteristic Gun et al. [93] Reid, Glasa [89] Yuasa [94] Giess [92] Rossinot et al. 
[90] 

Phase OFF 
Duration  
Fin condition 

Open-circuit  
≈ 15 s 
End-voltage 

2.17V/cell 
- 
- 

Open-circuit 
≈ 2 months 
End-voltage 
2.125 V/cell 

2.15V/cell 
108 h 
- 

Open-circuit 
≈ 1100 s 
End-voltage 
2.16V/cell 

Phase ON 
 
Fin condition 

Constant current 
 
- 

Constant voltage 
2.375 V/cell 
- 

12 Ah 
charged 
 
 

Constant voltage 
2.25V/cell 
- 

Constant current 
23.8 mA/Ah 
End-voltage 
2.34V/cell 

α = duration 
ON/(ON +OFF) 

0.0625 0.5 ≈ 0.1 to 0.03 0.357 0.0054 
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Different researches have shown positive results of intermittent charge vs. floating charge 
concerning reduced average overcharge [90, 91], increased efficiency of charge phases [90] 
and reduced thermal runaway in VRLA batteries [92]. However, if the intermittent charge 
parameters (threshold voltages, charge voltage or current, duration of ON phases and OFF 
phases…) are not optimized, the risk of under charge, especially under charge of the negative 
electrode of VRLA batteries is frequent [91]. Improving intermittent charge parameters is still 
an open subject of research. 

4.2.1.2 Benefit of corrosion minimum  

Different publications about positive electrode corrosion have demonstrated that there is a 
potential zone where corrosion is at a minimum (cf. Table 11). This minimum would be at 
positive polarizations (η+) between zero (at open-circuit) and polarizations at float charges 
(η+ ≈ 100 mV). According to Brecht et al. [95] this minimum zone is situated in the range of 
[30;70] mV. This also shows that neither open-circuit on intermittent charges nor overcharge 
by traditional float charges can place the positive electrode potential in the minimum 
corrosion zone. 

Table 11: Bibliography summary of positive polarization (η+) associated to a corrosion minimum [6]. 

Reference Analysis type Minimum span (mV) η+ min (mV) 

Lander 1956 [96] Grid without active material, few hours 30< η+<200 “flat” 

Ruetschi 1964 [97] Grid without active material, few hours 100< η+<250 180 

Willihnganz 1968 
[81] 

Service life (accelerated), some years 50< η
+<100 No defined 

Brecht et al. 1989 
[83, 95] 

Grid growth (accelerated), some years 30< η
+<70 40 

Berndt 1996 [61] Review of literature 40< η+<80 60 
Ruetschi 2004 [47] Review of literature 20< η

+<80 60 

4.2.1.3 Principle of the new maintaining charge method  

Taking into account this minimum corrosion zone, a new method for maintaining the charge 
of standby lead acid batteries, called Low-current method, has been developed at EDF [6, 88, 
98]. This method is derived from the intermittent charge: open-circuit periods are replaced by 
constant low current periods. These constant currents, whose values are smaller than 
traditional float currents, are intended to compensate, at least partially, self-discharge currents, 
and preferably place the battery in the minimum corrosion zone.  

The choice of piloting the current instead of the voltage to supply low positive polarizations 
relates to the fact that maintaining a voltage with a value very close to the battery open 
voltage is difficult and can accidentally discharge the battery [92]. Moreover, the scattering 
phenomenon when a voltage is applied to the battery consisting of cells in series configuration 
is unavoidable. Monitoring the voltage share for each cell is difficult and expensive while 
applying a current ensures that every cell receives a given current value. 

Although these low currents alone are not supposed to maintain the full state of charge, they 
can compensate most of the self-discharge. They thus enable the intervals between recharge 
phases to be considerably extended so that water losses and corrosion associated to these 
charges would be reduced. 
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Expected results are: (i) a slow down of the corrosion rate of positive grids, (ii) a reduction of 
the need of periodical charges.  
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Figure 90: Low-current method is derived from intermittent charge: open circuit periods are replaced 
by low currents, whose values are smaller than float current (200 to 500 µA). Battery should be in the 
minimum corrosion zone.  

 

Figure 91: Principe of new charge strategy using 
low-current and periodical charges 

 

4.2.2 Experimental 

In backup applications, maintaining the charge of stationary batteries is an opposite situation 
from the accelerated charges studied in chapter 2 in terms of very week charge regimes. This 
leads to a comparable problematic of main and side reactions monitoring, which differs from 
a traditional situation. In fact, in very weak charge regimes, faraday efficiency deteriorates, 
meaning that the proper charge and secondary reactions take place jointly. It should be noted 
also that charge voltages lead to increased rates of side reactions.  

This drives us to the following questions: 

• At a given ambient temperature and given battery, what is the rate of self-discharge? 
• At the same ambient condition and the same battery, beyond which current value, the 

self-discharge is compensated? This is clear that this current is not only equal but has 
to exceed self-discharge current.  

• At this current, how does positive grid corrosion behave?  
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The answers obtained will serve to determine the parameters of the new low current method: 
regimes and durations of low current phases and periodical charge phases.  

Laboratory experiments aim to evaluate the state of charge of batteries subjected (1) to open 
circuit, (2) to float charges and (3) to polarizations whose values are intermediate between 
zero and float polarizations, i.e. low current charges. Several current values below float 
currents have been tested.  

Two methods to evaluate the battery state of charge were used to clarify this question:  

• Measurement of lead sulfate content in the battery active materials by a chemical 
titration. This procedure requires the destruction of the battery 

• Battery capacity measurement by discharge test. 

In order to compare these two methods, evolutions of the lead sulfate content as well as of the 
capacity will be converted to current. At open circuit, increases of sulfate content and losses 
of capacity correspond to self-discharge currents.  

We started different experiments with antimony-free vented SLI batteries, Exide 
L01033C24A, 40 Ah-12V. During the experiments, capacity measurement results of these 
batteries shown a high degree of dispersion, which we attributed to the fact that they are not 
suitable for repetitive charge-discharge cycles. We then continued these experiments with two 
other types of more robust batteries: heavy truck SLI flooded lead-acid batteries, Exide 110 
Ah/12 V D02075W01-A, low antimony grid alloys and EnerSys 400 Ah/2 V VRLA AGM 
batteries. 

Low currents were applied using METRIX power supplies AX 502 2.5A – 30 V. As their 
accuracy does not allow a fine control of currents as low as a few mA, these power supplies 
were used as voltage regulators and the low currents were set using resistors in series. 

Positive polarizations were evaluated using a lead acid battery reference electrode, which was 
first charged and then stabilized at open circuit. A current path between the tested cell and the 
reference electrode was provided by a tube filled with immobilized electrolyte (cf. 3.2.3, 
Figure 58). 

The discharge-charge cycles were performed with BITRODE Battery Charge and Test 
System, Module Type LCN 100A – 5V. 

Voltages, currents, positive polarizations and temperatures were recorded with Personal Daq 
56TM USB Acquisition Systems. 

4.2.2.1 Lead sulfate content measurement [6] 

Batteries used for lead sulfate measurements were antimony-free vented SLI batteries, Exide 
L01033C24A, 40 Ah-12V. The plates were pulled out of the batteries and rinsed with distilled 
water for one week before picking up active material samples. Lead sulfate contents on the 
later samples were measured chemically: the successive formation of complexes is achieved 
using nitric acid, acetic acid, xylenol orange and titriplex III (EDTA). The last complex is 
reached using a titrated solution of EDTA. The final stage of this reaction induces a color 
change: violet to yellow. Sulfate content was calculated from the sample mass and the 
quantity of EDTA used. 
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1. Open circuit  

In order to estimate the rate of self-discharge, we measured the lead sulfate content of the 
batteries 40Ah/12V, which were in open circuit for different durations: 5, 9.5, 20.5, 21.5 
months at ambient temperatures; 177 days at 60°C that we considered to be equivalent to 
2838 days at 20°C according to the Arrhenius law (acceleration factor 24 = 16). 

2. Low-current compared to open circuit  

Four batteries were subjected first to open circuit during 231 days, then to low currents of 25, 
50, 100 and 200 µA/Ah during 356 days at room temperatures (23 ± 4°C) and were finally 
opened to analyze their lead sulfate content. 

4.2.2.2 Capacity measurement by discharge test 

Before beginning the experiments, we had a preliminary remark that the measurements of 
self-discharge, even after several months at open circuit, represent only a weak portion of the 
capacity, e.g. about 10%. The expected results concern differences between reduced rates of 
self-discharge. These results were supposed to be a few percent of the nominal capacity, 
which is less than the natural dispersion we generally observe in capacity measurements (e.g. 
between several batteries taken at random from the same lot of fabrication). 

Two methods are a priori possible: 

• Testing with a big enough number of batteries to obtain precise and meaningful 
statistical averages. We haven't chosen this method because the number of batteries 
required is too big for our test facilities. 

• Comparing the capacity results of every single battery subjected to n months of self-
discharge or floating or low-currents to its own capacity measured after a full charge. 
This is the chosen method.  

Tests of discharge with the limit-stop-discharge voltage at minus 2 V/cell, which provoke the 
polarity inversion of the cell, were used for flooded batteries 110 Ah/12 V to determine the 
capacity of both negative and positive electrodes using reference electrodes (cf. 3.6). 
Although such a deep discharge is detrimental for lead acid batteries, it was decided to 
proceed because only some tests were necessary for the whole experiment. The battery 
capacity was taken as an average of six positive electrodes, whose discharge was measured 
individually. The test of discharge with polarity inversion was operated one time on a VRLA 
battery to determine the limit-capacity electrode. The other tests were executed at the limit-
stop-discharge voltage at 1.8 V/cell.  

1.Exide 110Ah/12V, SLI heavy truck batteries, 1.6%Sb  

As presented in 3.6.1, these batteries were stocked at open-circuit for one year or more before 
subjecting to our tests. In order to estimate the initial state of charge, batteries were 
discharged at 18 A. A “full” IUi charge of one week at 11A (C/10) and 13.6V followed by 
one week at 0.55A (C/200) without voltage restriction were executed to reestablish a good 
state of charge. The same discharge-charge was performed before these batteries were 
subjected to low currents, float charge and open circuit. We called “first reference capacities” 
the capacities we measured during this cycle. After 6 months under this service, the batteries 
were discharged at the same rate (18A), and then they were recharged and discharged (second 
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reference capacities) again one more time. All of these experiments were done at ambient 
temperatures.  

2. EnerSys 400 Ah/2 V, AGM VRLA batteries, new 
These batteries were self-discharged at open-circuit during two months before testing. Fifteen 
discharge-charge cycles were executed in order to stabilize the battery capacity. A refresh 
charge at 2.27 V during one week followed by a discharge test at C/10 (reference capacity), 
then a charge IUi (C/10 – 2.4 V during 5 hours – C/80 during 2 hours) and another charge at 
2.27 V during one week were operated before the batteries were subjected to service at 46°C: 
open circuit, low-current and float charges. After one month, the batteries were discharged to 
determine their final capacities. These experiments were repeated one more time at 50°C. 

3. EnerSys 400 Ah/2 V, AGM VRLA batteries, old 

These batteries were taken from the field and replaced by new ones after six-year service, 
which corresponds to their mid-life (they are designed to last twelve years or more). These 
batteries were first subjectted to fifteen discharge-charge cycles in order to stabilize their 
capacities. The last capacity obtained is the reference capacity. They were then subjected to 
tests at room temperatures (18 ± 3°C): open circuit, low-currents of 29 and 105 µA/Ah and 
float charge at 2.27V (current response is 414 µA/Ah). After six months, these batteries were 
discharged with the same rate (C/10) to determine their final capacities. 

4.2.3 Sulfate content measurement – results & discussion 

4.2.3.1 Lead sulfate content at open-circuit 

The level of lead sulfate of batteries at open circuit at ambient temperature and at 40°C and 
60°C in equivalent days at 20°C is presented in the Figure 92. Equivalence is based on the 
Arrhenius law, i.e. kinetic reaction doubled every 10-Celsius degree. 

 

Figure 92: Lead sulfate levels (% mass) of four batteries at open circuit at ambient temperature (23 ± 
3°C). Level of lead sulfate in equivalent days at 20°C of four batteries at open circuit in a thermal 
enclosure (40°C and 60°C) [6]. 

We have some remarks on the sulfate level results under open circuit in Figure 92: 

• A significant difference is observed between positive and negative electrode self-
discharge kinetics.  
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• Sulfation at the positive plate maintained at 40°C and 60°C matches up well, when 
using the Arrhenius law, with the sulfation at ambient temperature, but it is not the 
case of the negative plate. In this case, the sulfation is less rapid at high temperature 
than what is predicted from ambient by the Arrhenius law.  

The results illustrated in the Figure 92 show that after 231 days at open circuit the level of 
PbSO4 are about 16% and 30% at the negative and positive electrodes respectively. After 600 
days, they are 21% at the negative electrode and 45% at the positive electrode.  

4.2.3.2 Lead sulfate content at low currents 

Table 12: After 231 days at open circuit, four batteries were subjected to low-currents during 356 
days at room temperatures 23 ± 4°C. Contents of lead sulfate were measured at the negative active 
material (NAM) and the positive active material (PAM). Active material samples were taken from the 
middle of the negative and positive plates.  

Obtained 
PbSO4 content 
(% mass) 

Calculated 
PbSO4 content 
(% mol) 

PbSO4 content 
variation during 
service (% mol) Executed service during 356 days 

Applied 
Current 
(µA/Ah) 

NAM PAM NAM PAM NAM PAM 
Initial state (231 days at open circuit) - 16 30 11.5 24.4 - - 
Self-discharge (Open-circuit) 0 21 45 15.4 37.3 3.9 12.9 
Low current 25 16.8 24.0 12.1 19.4 0.6 -5 
Low current 50 11.5 19.1 8.1 15.4 -3.4 -9 
Low current 100 1.9 8.6 1.3 6.8 -10.2 -17.6 
Low current 200 1.4 4.8 1 3.8 -10.5 -20.6 

Table 12 gives the results of PbSO4 contents at initial state (after 231 days on open-circuit), 
and PbSO4 final contents (after 356 more days at open-circuit and at constant low currents 
varying from 25 to 200 µA/Ah). Sulfate content variations during 356 days are the difference 
between final and initial sulfate contents.  

From the % of mass obtained of PbSO4 contents, the % of mol of PbSO4 contents can be 
calculated as follows. 

At the negative electrode we have: 

[ ] )g(Pb)mol(%PbSO1)g(PbSO)mol(%PbSO

)g(PbSO)mol(%PbSO
)mass(%PbSO

444

44
4 ×−+×

×=  (65) 

so: 

[ ])g(Pb)g(PbSO)mass(%PbSO)g(PbSO

)g(Pb)mass(%PbSO
)mol(%PbSO

444

4
4 +×−

×=  (66) 

Calculating the same way at the positive electrode:  

[ ])g(PbO)g(PbSO)mass(%PbSO)g(PbSO

)g(PbO)mass(%PbSO
)mol(%PbSO

2444

24
4 +×−

×=  (67) 

 

From the variations of sulfate content and the duration of the experiments, currents 
equivalents can be calculated using the first Faraday’s law (cf. 1.5.2.3), they are called 
Effective current. 
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Effective current: 
t

nF

M

m
)mol(%contentPbSOI 4Effect ××=  (68) 

 
According to the manufacturer Exide, the masses of active materials of L01033C24A, 40 Ah-
12V battery are 365g of PbO2 and 300g of Pb.  

The Effective current at open circuit (IEffect
0) is the self-discharge current (Iselfdischarge). It will 

be presented with a negative value in Table 13, as the battery is discharging. 

IEffect
0 = Iselfdischarge (69) 

 
Applying Eq. (68) to the battery at open circuit, we have the self-discharge current of the 
negative electrode (IEffect

0-) and of the positive electrode (IEffect
0+): 

Ah/A9A00035.0
360024356

965002

207

300
039.0II eargselfdisch

0
Effect µ==

××
×××== −−  

Ah/A30A0012.0
360024356

965002

239

365
129.0II eargselfdisch

0
Effect µ==

××
×××== ++  

Current Balance is the result theoretically expected when applying a current to the battery. So 
it is the subtraction of the applied low current and the self-discharge current at open-circuit. 

Current Balance: eargselfdischAppliedBalance III −=  (70) 

Table 13: Equivalent currents obtained from the variations of sulfate level and the duration of the 
experiments. Calculated current balances and side reaction rates.  

Effective 
current I Effect 

(µA/Ah) 

Calculated 
Current 
Balance I Balance 

(µA/Ah) 

Calculated rate 
of side reactions 
I Side-reac 
(µA/Ah)  

Executed service during 356 days 

Applied 
Current  
I Applied 

(µA/Ah)  
NAM PAM NAM PAM NAM PAM 

Initial state (231 days at open circuit) - - - - - - - 
Self-discharge (Open-circuit) 0 -9 -30 -9 -30 -9 -30 
Low current 25 -1.4 12 16 -5 -26.4 -13 
idem 50 8 22 41 20 -42 -28 
idem 100 23 42.6 91 70 -77 -57.4 
idem 200 24 50 191 170 -176 -150 

Side reactions are always present inside the lead acid cell at open circuit as well as under low 
currents. At open circuit, the side reaction rate is the self-discharge current. Under low 
currents, side reaction rates can be calculated by subtracting the effective currents to the 
applied current.  

Side reaction rate under low currents: AppliedEffectivereacSide III −=−  (71) 

In Figure 93, Effective Currents (EC) are compared to Current Balances (CB) and Side 
Reaction Rates (SRR) for negative and positive plates. 
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Figure 93: Equivalent currents calculated from the variations of sulfate levels vs. applied currents: (a) 
negative plates, (b) positive plates. Current balance (CB) is the sum of the self-discharge currents and 
the applied low currents. Effective current (EC) is the equivalent currents corresponding to sulfate 
content variations. Side reaction rate is the subtraction of the effective current and the applied 
currents.  

At open-circuit in Figure 93, variations of sulfate content in mole percent are +3.9% for the 
NAM and +12.9% for the PAM [98]. One can calculate from these sulfate content variations 
the self-discharge currents during 356 days of the experiment: -9 µA/Ah and -30 µA/Ah for 
the negative and positive electrodes respectively. The self-discharge rate of the positive 
electrode is more than three times faster than the self-discharge rate of the negative electrode. 

The lowest tested current, 25 µA/Ah, induces a drastic change in the sulfate content evolution 
inside the active materials. The sulfate content in the NAM remains almost constant (0.6 % 
increase) while the sulfate content in the PAM decreases by 5%. So, the positive plate 
behaves worse than the negative plate at open-circuit but it has a better behavior as soon as 
the battery receives the lowest applied current.  

a. Negative plates 

Figure 93 (a) shows the calculated current balances and the effective resulting currents for the 
negative plates.  

According to the lead sulfate content variation at 25 µA/Ah, the effective current for NAM is 
-1.4 µA/Ah. This negative value means that the low current compensates only partially the 
self-discharge. The current balance at 25 µA/Ah is: 25 - 9 = 16 µA/Ah.  

The difference between the current balance and the effective current can be associated to 
losses of the applied current. Another explanation could be an increase of the secondary 
reactions involved in the self-discharge process under the polarization resulting from the 
applied current. These two hypotheses are in fact the same as secondary reactions involved in 
the self-discharge process and loss reactions during charging are identical: mainly hydrogen 
evolution and some oxygen recombination. 

b. Positive plates 
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Figure 93 (b) shows the calculated current balances and the effective resulting currents for the 
positive plates.  

A surprising result is observed for the 25 µA/Ah applied current. The effective current 
(12µA/Ah), is higher than the calculated current balance (-5 µA/Ah). Of course, one cannot 
have an efficiency that is higher than 100%. The low current effect is then not only a 
compensation of the self-discharge process, but a modification and/or a rate reduction of the 
secondary reactions involved in this process. Indeed, one observes a minimum of the side 
reaction rate at 25 µA/Ah (cf. Figure 93). 

Secondary reactions at the positive electrode are the oxygen evolution and the positive grid 
corrosion.  

Oxygen evolution takes place at open-circuit, charge and discharge potentials. This reaction is 
known to increase its rate with positive polarization, so it cannot be the reason of the 
reduction of the self-discharge process observed in this case.  

On the contrary, corrosion can slow down under positive polarization. This phenomenon is 
well known in the field of corrosion of metals as anodic protection, or more generally as 
corrosion passivation.  

In the case of lead acid batteries, it is also well known that corrosion reactions are different at 
open-circuit and during charging. More exactly, corrosion reactions of the positive grid 
consist of two steps: 

−− +→+ e2PbOOPb 2  Reaction 15 

−− +→+ e2PbOOPbO 2
2  Reaction 17 

In which, O2- ions are brought by migration from the active material.  

Only the first step (Reaction 15) operates at open-circuit while these both steps occur during 
charging. 

Indeed, at open-circuit, divalent lead (Pb2+) is the stable state for lead. Only the first step of 
the corrosion reaction occurs but not the second step (Reaction 17) in which Pb2+ would 
oxidize into Pb4+), because Pb4+ is not the thermodynamically stable state for lead. On the 
contrary, as at open-circuit the two electrons of Reaction 15 cannot be evacuated by the 
external circuit, they are used by reduction of Pb4+ into Pb2+ in the discharge reaction of the 
positive active material: 

OH2PbSOe2H2SOHPbO 24422 +→+++ −+  Reaction 28 

The combination of Reaction 15 and Reaction 28 is then: 
OHPbOPbSOSOHPbPbO 24422 ++→++  Reaction 27 

When PbO is not protected with a dense PbO2 layer, it reacts chemically with sulfuric acid to 
form PbSO4 as follows: 
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OHPbSOSOHPbO 2442 +→+  Reaction 30 

The overall corrosion reaction at open-circuit is then: 

OH2PbSO2SOH2PbPbO 24422 +→++  Reaction 29 

When this reaction occurs, usually in prolonged open-circuit conditions, positive grids are no 
more protected. Indeed, the formation of lead sulfate in the corrosion layers leads to 
mechanical stress, causing the formation of cracks and the destruction of the protective layer. 

During charging (under low currents), Reaction 17 takes place. Under positive polarization, 
Pb4+ (in PbO2) is indeed the stable species of lead. PbO2 produced in Reaction 17 is formed in 
the outer part of the corrosion layer. As it is dense, issued from the dense inner layer, and 
stable in sulfuric acid solution, it takes the role of protecting the PbO inner layer and the 
positive grid from the electrolyte [1, 47, 79]. 

Under positive polarization, grid corrosion, which is part of the self-discharge process of the 
positive electrode, is then slowed down by the formation of a protective layer of dense PbO2. 
Therefore, for the positive electrode, this can be the reason why the effective current is 
sensibly higher than the calculated current balance, as long as corrosion is important part of 
the positive self-discharge process. Benefit of 25 µA/Ah low current is then triple: 

(i) Compensation of the self-discharge:  

For intermittent charge, in the prospect of replacing open-circuit periods by low current 
periods, it is obvious that periodical charges would no longer be necessary or at least would 
be required less frequently.  

(ii) Slowing down of the corrosion rate: 

As evoked previously, several authors indicate a minimum corrosion zone. This minimum is 
generally situated at positive polarizations in the [30, 80] mV range. Indeed, at 25 µA/Ah, the 
strong effect observed can be attributed to an important reduction of the corrosion rate. But in 
this case the positive polarization is in the order of 2 mV (cf. Figure 94), much lower than the 
preceding published values. It must be noticed that our results, obtained from long duration 
tests (over 19 months) at room temperatures, differ from these published results, generally 
obtained at accelerated conditions. 

(iii) Reduction of water consumption: 

It concerns water involved in corrosion reactions. In these reactions, the oxygen is taken from 
the positive active material. In turn, the active material takes oxygen from water of the 
electrolyte. The oxygen, finally locked in the corrosion product layers, cannot be recombined 
to reform water. So, the decrease of water consumption due to corrosion is important for the 
battery life span. 
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Figure 94: Positive polarizations and battery voltages vs. currents. Imposed low currents: 26, 48, 100 
and 178 µA/Ah. Tested battery: flooded flat-plate 140 Ah/12 V  

4.2.4 Capacity measurement – results & discussion 

4.2.4.1 Exide 110 Ah/12 V, SLI heavy truck batteries, 1.6%Sb grid alloys 

Figure 95 shows the potential of the negative and positive electrodes versus the reference 
electrode and the voltage of the pseudo cell consisting of these two electrodes. It is clear that 
the negative electrode finishes the discharge far before the positive electrode. This confirms 
that the negative electrode has a smaller state of charge, which could be the result of a higher 
rate of self-discharge, and it was the limit-capacity electrode of the cell (cf. 3.6).  

Positive electrode

Negative electrode

Pseudo cell

 

Figure 95: Profiles of voltages between the negative electrode of the 1st cell (negative terminal)/ the 
positive electrode of the 6th cell (positive terminal) and the reference electrodes; and of the voltage of 
the pseudo cell consisting of these two electrodes during a test of discharge with polarity inversion of 
the battery B104 after six months at open circuit. 

The principle results of negative and positive electrode capacities are presented in the table 
below. 
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Table14: Capacity of the SLI flooded batteries 110 Ah/12 V, which were at open circuit or subjected to 
low-current during six months as well as their capacities before (1st reference) and after (2nd 
reference) this service.  

Reference capacity (Ah) Final Capacity (Ah) 

1st 2nd Batteries 

Negative Positive Negative Positive 

Applied current during 6 
months (µA/Ah) Negative Positive 

101 87.2 108.6 84.2 102.3 (at 13.6V) ~ 364  92.7 111.8 
102 97.9 106.5 86.0 111.8 100 53.0 118.1 
103 94.9 106.0 81.6 107.5 25 58.6 118.4 
104 98.8 112.3 85.3 103.8 0 46.1 100.4 

Figure 96 shows the relative difference between the final capacity of negative and positive 
electrodes after 6 months under service and the first and second reference capacities. For 
instance, the battery B104 looses (100.4 - 112.3)/100.4 = -10.6% of its positive capacity after 
6 months of self-discharge relating to its first reference capacity; and the battery B103 
positive capacity increases by (118.4 - 107.5)/107.5 = +10.1% after 6 months at 25 µA/Ah 
relating to its second reference capacity. 

 

(a) 

 

(b) 

Figure 96: Relative differences (∆C) between the final capacity of (a) the negative electrode and (b) 
the positive electrode of the SLI flooded batteries (Cfin), measured after 6 months during which they 
were at open circuit or subjected to low-current at ambient temperature, and their reference 
capacities (Cref), measured after a “full charge” before service (1st reference) and after service (2nd 
reference).  

It is clear to observe the capacity evolutions of the batteries with antimony grid alloys from 
the Figure 96 that: 

• The self-discharge rate of the negative electrode is far higher than the self-discharge 
rate of the positive electrodes. For B104 at open circuit for 6 months the positive lost 
about 5% its capacity while it is in the order of 50% for the negative electrode, 10 
times greater. 

• For the batteries subjected to low-currents, B102 and B103 at 100 and 25 µA/Ah 
respectively, the state of charge of the positive electrodes is well maintained, even 
improved as soon as the lowest current is applied while it is not the case of the 
negative electrodes. They loose about 30 to 45% their capacities. Low-currents thus 
are not sufficient to compensate the self-discharge of negative electrodes of batteries 
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with antimony grid alloys. 
• For the battery subjected to float charge at 2.27 V/cell with the equivalent float current 

of 364 µA/Ah, the state of charge of both negative and positive electrodes is well 
maintained. 

• At the positive electrode, a surprising maximum appears at the low current of 25 
µA/Ah. 

• The reference line (0%) is not where it is expected, i.e. above the experimental results. 

The reference line (0%) situated under the experimental results can be explained by the fact 
that the batteries were not in a full state of charge before the discharge test to determine 
reference capacity. The reference capacity is supposed to be the maximum capacity the 
battery would able to discharge after a full charge. But what is a full charge? We all know that 
absolute full charge of a lead acid battery does not exist (cf. 2.1.4.1). It is an asymptotic state. 
What we generally call a full charge is in fact the result of a compromise between the search 
of a high state of charge and the time we can spend on this operation. In practice it is 
considered that the end of charge is reached, when there is no charge current or voltage 
evolution during at least two hours. Our charges lasted far more than these two hours. Our full 
charge procedure for SLI heavy truck batteries lasted two weeks: one week at C/10 limited by 
13.6 V followed by one week at C/200 without voltage restriction. Density and voltage 
measurements shown stable values for the last days of charge. Despite all these cares, we 
must consider that our full charge procedures were not sufficient to reach states of charge as 
high as after a few months of float charges or even low current charges (cf Figure 97). 

After 2 weeks at
13.6 V + C/200

After 1 week
at 13.6 V

After 13 months 
at open-circuit

After 6 months at 
25 µA /Ah

 

Figure 97: Discharge voltage profiles of B103 after thirteen months of self-discharge (blue), after a 
one week at 13.6 V charge (black), after two weeks at a 13.6 V + C/200 charge (green) and after six 
months at 25 µA/Ah (red) (cf. 3.6). After six months at 25 µA/Ah, the negative electrode looses 
45% of its capacity while the positive electrode capacity gains 11.7% (cf. Table14). 

From the capacity variation and the test duration, we can calculate the effective current. The 
currents balances and the side reaction rates are calculated as the same way in the section 
4.2.3.2. These equivalent currents of the positive electrode are present in Figure 98. One can 
find here the same phenomenon observed already in the measurement of sulfate levels: the 
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side reaction rate; i.e. the corrosion rate, has reduced and reached a minimum, when the low 
current of 25 µA/Ah is applied on the battery.  
 

CB1

SRR1

EC1

 
(a) 

CB2

SRR2

EC2

 
(b) 

Figure 98: Equivalent currents calculated from the capacity variations and the test duration (6 
months) vs. applied currents for the positive electrode: (a) capacity evaluation calculated from the 1st 
reference capacity, (b) capacity evaluation calculated from the 2nd reference capacity. 

4.2.4.2 EnerSys 400 Ah/2V VRLA AGM batteries, new 

The test of discharge with polarity inversion shown that in this lot of VRLA batteries the 
capacity of the positive electrode was smaller than the capacity of the negative electrode. 
Thus it was the positive electrode that limited the capacity of the cell. Results shown here are 
positive electrode capacities.  

Table15: Capacity of the VRLA batteries before (reference capacity) and after being at open circuit or 
subjected to low-current during 1 month at 46°C and 50°C (final capacity). Current values at 46°C 
and 50°C, equivalent current values at 20°C. 

Batteries 
Reference 
capacity (Ah) 

Applied current during 1 
month at 46°C (µA/Ah) 

Equivalent current values at 20°C 
according to Arrhenius law (µA/Ah) 

Final Capacity 
(Ah) 

B111 436 ~ 500 (at 2.2V) 74  437.8 
B112 434 200 29.6 439.5 
B113 432 50  7.4 412.7 
B114 435 0 0 401.0 

Batteries 
Reference 
capacity (Ah) 

Applied current during 1 
months at 50°C (mA) 

Equivalent current values at 20°C 
(Arrhenius law) 

Final Capacity 
(Ah) 

B111 455.9 ~ 800 (at 2.22V) 100 461.0 
B112 442.1 200  25  434.5 
B113 460.7 100 12.5  449.8 
B114 465.1 0 0 421 

The low-current effect obtained with lead sulfate contents of antimony free batteries is 
confirmed by the capacity evolution. A remarkable reduction of the self-discharge rate is 
observed as soon as a few mA current is provided. In the case of VRLA batteries, self-
discharge rate decreases in a quite homogeneous manner while increasing applied current 
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values, and over 25 µA/Ah no more self-discharge is observed. This is already observed in the 
case of the positive electrode of the SLI batteries, at the smallest current tested (25 µA/Ah). 
No self-discharge is observed as it gives the best capacity result. We have to bear that 
supplying continuously an anodic current can help to maintain or reestablish the protecting 
lead oxide layer at the grid surface.  

 
Figure 99: Relative difference (∆C) between the final capacities of the VRLA batteries (Cfin), measured 
after one month during which they were at open circuit or subjected to low-current at 46 and 50°C, 
and their reference capacities (Cref) measured after a “full charge” before this service. The current 
values are the equivalent values at 20°C according to the Arrhenius law. 

In this case of VRLA batteries, “full charges” were classical IUi charges, followed by one 
week at a constant voltage: 2.27 V/cell. As density measurement cannot be performed, we 
could not verify if the density was stable. Current measurements show stable values for the 
last days of this charge procedure. But as mentioned above, our “full charge” procedures do 
not really give full states of charge; the reference line (0%) was again observed slightly under 
the experimental results. 

4.2.4.3 EnerSys 400 Ah/ 2V AGM VRLA batteries, old 

Table 16 gives the capacities of VRLA batteries before (Cref) and after (Cfin) six months at 
open-circuit, at low currents of 29 and 105 µA/Ah, and at 2.27V float charge. These 
experiments were done at room temperatures (18 ± 3°C). The battery at open-circuit for six 
months lost (264 - 327)/327 = -19.3 % of its capacity compared to its reference capacity; the 
capacity of the battery subjected to 105 µA/Ah increased by (329 - 313)/329 = +5.1%. 

Figure 100 (a) shows the capacity variations given for each battery in percent of their 
reference capacities. These percentages are also the state of charge variations induced by the 
applied currents during the 6 months of experiments. The capacity variations are converted to 
the equivalent currents or as named above the effective currents. These effective currents are 
presented as a function of the applied current in Figure 100 (b). The currents balances and the 
side reaction rates are calculated as the same way in the section 4.2.3.2. At open-circuit, the 
capacity reduction of 63Ah after six months allows calculating the average self-discharge 
current, which is 36 µA/Ah. 
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Table 16: Capacities of the VRLA batteries, which were subjected to open circuit, to 29 and 105 
µA/Ah low-currents and to 2.27 V float charge during six months at room temperature (18 ± 3°C) as 
well as their reference capacities before this service. 

Battery 
Reference Capacity 
Cref (Ah) 

Applied Current during 6 months at 
room temperatures 18 ± 3°C (µA/Ah) 

Final Capacity Cfin 
(Ah) 

Capacity Variation 
(Cfin - Cref)/ Cref (%) 

B115 340.0 ~ 414 (float charge at 2.27V) 379.0 11.8 
B116 313.0 105 329.0 5.1 
B117 318.0 29 308.0 -3.1 
B118 327.0 0 264.0 -19.3 

The capacity variation has a strong increase for the lowest applied current (29 µA/Ah). It 
appears that this low current, whose value is 80 % of the average self-discharge current (36 
µA/Ah), compensates 84 % of the self-discharge. Such a high efficiency (superior to 100%) 
suggests that these VRLA batteries could be positive limited at this mid-life state. Further 
experiments confirmed that these batteries were indeed positive limited. Increases of the state 
of charge at 105 µA/Ah and at float charge (414 µA/Ah) indicate that the charge procedure we 
used does not lead to a real full charge. Charge is then completed slowly at currents beyond 
50 µA/Ah. 
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Figure 100: VRLA Batteries were tested during six months at room temperatures (18 ± 3°C). (a) 
Relative capacity variations (state of charge variations) vs. applied currents. (b) Equivalent currents 
calculated from the variations of sulfate levels vs. applied currents. 

4.2.5 Conclusion  

A new method of maintaining the charge for standby batteries using low-currents and periodic 
charges is proposed. The following conclusions can be drawn from the study presented on the 
influence of low currents on reducing self-discharge: 

• When accelerated by temperature, self-discharge kinetic of positive electrode tends to 
follow the Arrhenius law. Self-discharge kinetic of negative electrode appears to be 
less accelerated by temperature than what is predicted by the Arrhenius law.  

• In antimony-free lead acid batteries, the self-discharge rate of the positive electrode is 
higher than that of the negative electrode. In lead-acid batteries with antimony alloys, 
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the self-discharge rate of the negative electrode is several times stronger than the 
positive one. 

• Low-currents beyond 25 µA/Ah, about 10 times smaller than traditional float currents, 
appear to be able to maintain good states of charge for both positive and negative 
plates of a antimony-free lead acid batteries, while the float charge (about 400 µA/Ah) 
is seem to be necessary for maintaining the charge of lead-acid batteries with 
antimony grid alloys, especially for negative plates.  

• The effect of 25 µA/Ah low current on the positive active material is much higher than 
a simple compensation of the self-discharge but a reduction of the corrosion rate 
which is, with the oxygen evolution, responsible of the self-discharge at open circuit. 
This can be explained by a passivation phenomenon of the positive grid corrosion. In 
other words, it constitutes an anodic protection of the positive grid. 

• The use of low-current periods in place of open-circuit periods in the intermittent 
charge method should increase the life span of VRLA batteries, as it both lowers the 
water consumption and the corrosion rate of positive grids. 

According to experiment results, we supposed that when combined with low currents in the 
order of 25 to 50 µA/Ah, a refresh charge every six months or every single year is sufficient 
to maintain antimony-free batteries in a good state of charge. Higher currents, as traditional 
float currents (10 times higher), are not necessary and not suited, as they would increase 
corrosion and water loss. We consider using a refresh charge only when the battery has been 
subjected to a discharge service.  

4.3 NEW MANAGEMENT SYSTEM FOR ANTIMONY-FREE STANDBY BATTERY  

Valve regulated lead acid batteries - VRLA batteries - have been developed and used for 
about thirty years in standby applications. They have shown several advantages compared to 
flooded lead acid batteries: spill-proof, reduced weight, free from excessive gas evolution or 
acid spillage, reduced maintenance and reduced cost. However, limitations have been also 
observed concerning system reliability and battery service life.  

Several reliability prediction methods have been used such as complete discharge test [99], 
open-circuit voltage measurement [46], conductance testing [100], internal resistance and 
impedance measurements [99, 101-105]. Among these, the complete discharge test is well 
known as the most reliable one but it requires service interruption. This has driven EDF R&D 
to develop the Stationary Multibat system, which consists of a new design of the 
electrochemical storage and an adapted electronic battery management system [106]. This 
system, combining redundancy and automated periodical capacity measurements, increases 
reliability and allows a real time monitoring of the battery state of health. Redundancy not 
only ensures the continuity of service in the case of a cell failure, but also enables complete 
discharges to be periodically performed without service interruption.  

Standby VRLA batteries maintained under a constant float voltage to compensate self-
discharge encounter the problem of short service life, e.g. about 3-4 years compared to the so-
called 20-year design and to the 20-year lifetime of conventional lead acid batteries in similar 
conditions [107]. Indeed, VRLA batteries under float charges are permanently overcharged 
and different failure modes have been observed, such as corrosion of positive grid alloys, 
electrolyte dry-out and thermal runaway [1, 47, 49, 70, 108]. 

A new management system for standby VRLA batteries has been developed at EDF using the 
Stationary Multibat system [106] to ensure system reliability and the Low-current method 
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[98] to improve the battery life span. 

Figure 101 (a) describes a simplified schematic diagram of the Stationary Multibat system. 
Three battery-pack strings in parallel instead of one pack are used in order to improve the 
system reliability. In case of a cell failure such as an open circuit, the system loses only one 
battery-pack string, i.e. one-third of the total capacity. This configuration also allows each 
string to be discharged completely across the test resistance to evaluate its real state of health. 
Each battery string is periodically (e.g. every six months) discharged and charged. 

Figure 101 (b) describes how to integrate and to operate Low-current method of maintaining 
the charge on the Stationary Multibat system: 

• A resistance branch is added to reduce the traditional float current with a factor of 5 to 
10. In standby state, Programmable Logic Controllers (PLC) K1 and K2 are open; the 
battery is maintained at charge with a low current via the resistance R.  

• On backup demand, a voltage drop appears on the DC bus, the battery immediately 
provides electricity to the DC load via the diode D. Then PLC K1 closes; DC load is 
directly supplied by the battery. 

• During the periodical discharge test (e.g. every six months) to evaluate the battery 
state of heath, PLC K2 closes and K1 stays open. The battery-pack string is discharged 
across the test resistance. The low current, still provided to the battery pack string, is a 
parasitic but negligible effect (< 0.1%). Next, the charge is operated via K1. The 
charge current is controlled by a Pulse Wave Modulation (PWM). When the charge 
finishes, K1 re-opens, the battery is re-maintained the charge with a low current via R. 

=
DC loads

Test Resistance

Charger

DC bus

String in test

Battery 
System

Battery Management System

DC bus

Discharge test

K1 K2R
D

 

                                        (a)                                                                (b) 

Figure 101: (a) Simplified schematic diagram of the Stationary Multibat system. (b) Zoom on the 
power electronic components of one of the three battery-pack strings using Low-current method. 

All those operations are done sequentially and automatically so that no intervention is 
required from the maintenance.  

This system is expected to fulfill three targets: 

• Increasing the system reliability by a redundancy in the design of the battery system 
and by an assessment method to control battery states of heath. 
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• Improving battery life spans by the Low-current method, leading to reduced corrosion 
and water loss. 

• Decreasing maintenance costs. 

Combining the Low-current method, battery redundancy and automated periodical capacity 
measurements, VRLA batteries should provide long life spans and high reliability. Several 
management systems of this kind are being experimentally used at EDF. 
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Conclusion of chapter 4 

The self-discharge phenomenon caused by side reactions such as corrosion, water 
decomposition and recombination is unavoidable in lead acid batteries. Self-discharge rates 
depend on several factors such as the state of charge, the temperature, grid alloys, etc. These 
rates are not equal between negative and positive electrodes and are independent of each 
other. In lead-acid batteries with antimony, the self-discharge rate of the negative electrode is 
several times stronger than the self-discharge rate of the positive electrode, depending mainly 
on the battery age and the antimony content in the positive grid alloy.  

In order to compensate for the self-discharge of lead-acid batteries, a current whose value 
exceeds the self-discharge of the negative electrode has to be supplied. This is traditionally 
achieved by applying a constant voltage whose value is slightly higher than the battery open 
circuit voltage. This is called “float charge”. It has to be kept in mind that the float 
polarization increases gas evolution rates at both electrodes.  

In antimony-free lead-acid batteries, e.g. VRLA batteries, the self-discharge rate of the 
negative electrode is largely reduced and is about a half of the self-discharge rate of the 
positive electrode. The question is: are traditional float charges really suited to antimony-free 
lead-acid batteries? Practical situations on field as well as experimental results say no. 
Standby VRLA batteries maintained under a constant float voltage to compensate self-
discharge encounter the problem of short service life, when our results show that traditional 
float charge currents are far over what is needed to maintain the VRLA battery state of 
charge.  

In order to reduce overcharge, intermittent charges (open-circuit and periodical charges) have 
been used instead of float charges and have given positive results in reducing thermal 
runaway and increasing the battery life span. Nevertheless, corrosion of the positive grid is 
also high during open-circuit periods of intermittent charges. Indeed, it is revealed in the 
literature that corrosion is minimum when the positive polarization is between 40 and 80 mV. 

In this chapter, taking into account this minimum corrosion, a new method of maintaining the 
charge of antimony-free lead-acid batteries using low currents and periodic charges is studied. 
This is called Low-current method. This method is derived from the intermittent charge: 
open-circuit periods are replaced by constant low current periods with values are about 5 to 
10 times smaller than traditional float currents.  

This new method was tested on several types of lead acid batteries: SLI car batteries, VRLA 
batteries, SLI heavy truck batteries with antimony grid alloys. It was compared to no charge 
(open circuit) and traditional float charges. The obtained results shown that low currents, 5 to 
10 times smaller then float currents, could maintain good states of charge of antimony free 
lead acid batteries including SLI car batteries and VRLA batteries. Whereas, float charges 
seemed necessary to ensure a good state of charge of batteries with antimony grid alloys, in 
particular, of its negative electrodes. At 25 µA/Ah (more than 10 times smaller than 
traditional float currents), corrosion reduced drastically. The effect of this 25 µA/Ah on the 
positive active material was much higher than a simple compensation of the self-discharge, 
but also a reduction of corrosion by keeping the battery in a corrosion passivation zone. 
However, the positive polarization response of this current was just of the order of 2 mV, 
much lower than the preceding published values. It must be noticed that our results, obtained 
from long duration tests (over 19 months) at room temperatures, differed from these published 
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results, generally obtained at accelerated conditions. Besides reducing corrosion, the Low-
current method would have also the advantages of reducing water loss due to corrosion and 
the need of periodical charges. 

The battery management system of three parallel strings individually controlled (Stationary 
Multibat system), associated to the implementation of the low current method, has been used 
at six electrical substations of EDF. Recently, the Direction of Hydraulic Production has 
decided to adopt this new technology for backup batteries ensuring the security of hydraulic 
power plants. Twenty systems of this kind will be installed by the second semester of 2009.  
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GENERAL CONCLUSION 

Lead acid batteries have been used for more than 150 years. Compared with newer energy 
technologies, such as nickel-metal hydride and lithium-ion batteries with ability to pack a lot 
of energy into a small space and deliver a steady current over a long period, it has to be 
admitted that they look old-fashioned. It is, nevertheless, a mistake to dismiss something just 
because it is old. Another way of looking at it is that lead acid batteries are tried and trusted. 
They may just need to be used in the right ways. And that is what has been happening: three 
PhD theses have been done in the past at EDF and the University Montpellier II. They have 
given promising conclusions for lead acid batteries and their applications. In this thesis, these 
conclusions are confirmed, improved and new possibilities are opened.  

A traditional charge process of lead acid batteries lasts generally from 10 to 14 hours. The 
common use of 3 shifts of 8 hours has driven manufacturers to develop 8-hour charge 
algorithms. These charge algorithms involve an adaptation of classical algorithms without 
radical changes. In both cases, the electrolyte destratification phase, called overcharge phase, 
is achieved at the end of the operation, where the battery charge acceptance is sufficiently 
low. In this way, the current of gas evolutions, called gas current, is almost equal to the total 
current, making the evaluation of the gas current easier and thus facilitating the global 
management of the charge.  
New applications of lead acid batteries require, in general, a reduction of the charge duration; 
we are talking here about accelerated charges. The accelerated charges do not include a final 
phase just for destratification where it is partially controlled. It has to be thus carried out in 
parallel with the proper charge, called here an early destratification. The global charge rate 
during this operation is much higher than the one of classical charges. For instance, a factor of 
4 to 5 is used in the case of grid storage due to reduced durations of the slack period during 
the night or a factor of 10 to 20 is applied in the case of a fast charge of batteries in electric 
buses, where the total charge duration is of the order of an hour.  
In this thesis, a new charge algorithm for accelerated charges and for fast charges is 
developed applying early destratification. Charge acceptance measurements are achieved in 
order to evaluate and control gas currents. This algorithm has been implemented in a 
commercial charger. A flooded lead acid battery charged with this new algorithm has shown a 
good evolution of its electrolyte density within a half reduced charge duration compared to a 
classical charge of the same initial rate.  

Backup supplies are one of the main applications of lead acid batteries. Stationary VRLA 
batteries, maintained under a constant float voltage to compensate for self-discharge, 
encounter the problem of short service life. In this application, almost opposed to the case of 
fast charges because of very low charge rates, at least a part of the problem is similar: within 
these low charge rates, the charge and the side reactions take place jointly. 
The float currents have to exceed side reaction rates to prevent batteries from under-charge. 
Nevertheless, too high float currents cause failures of lead acid batteries because of side 
reactions. In fact, gas evolution increases with the increase of charge polarizations and the 
corrosion rate is demonstrated to increase when the positive polarization is over [40 ÷ 80] 
mV. At a typical float polarization voltage of the order of 120 mV/cell, the float current 
response of the battery is about 10 times stronger than the self-discharge current; batteries are 
overcharged.  
In order to reduce overcharge, intermittent charges (open-circuit and periodical charges) have 
been used instead of float charges and have given positive results in reducing thermal 
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runaway and increasing the battery life span. Nevertheless, corrosion of the positive grid is 
also high during open-circuit periods of intermittent charges.  
In this thesis, a new method of maintaining the charge of antimony-free lead-acid batteries 
using low currents and periodic charges is studied. This is called Low-current method. This 
method is derived from the intermittent charge: open-circuit periods are replaced by constant 
low current periods with values about 5 to 10 times smaller than traditional float currents. The 
low current of 25 µA/Ah (more than 10 times smaller than traditional float currents) can 
maintain good states of charge of antimony free lead acid batteries. The effect of this 25 
µA/Ah on the positive active material is much higher than a simple compensation of the self-
discharge; it is also a radical reduction of corrosion by keeping the battery in a corrosion 
passivation zone. However, the positive polarization response of this current is just of the 
order of 2 mV, much lower than the preceding published values. Besides reducing corrosion, 
the Low-current method has also the advantages of reducing water loss due to corrosion and 
the need of periodical charges. 
This Low-current method combined with battery redundancy and automated periodical 
capacity measurement has been now used in several MV/LV substations and in some 
hydraulic power plants of EDF.  

In order to evaluate the capacities of both negative and positive electrodes of the battery, we 
decided to operate discharges with polarity inversions. Two kinds of reference electrodes are 
used to measure the potentials of each electrode. Several types of flooded lead acid batteries 
including a flat-plate battery, a tubular-plate battery, a compress battery and SLI heavy truck 
batteries were subjected to this test. The obtained results enable us to determine the capacities 
of both electrodes and of all pseudo cells including the limited battery capacity one. They also 
lead us to better understand the polarity inversion phenomenon concerning the mechanism of 
polarity inversion and processes occurred inside electrodes. The discovery of differences 
between the inversed potential profiles of negative and positive electrodes allows recognizing 
them even when reference electrodes are not used.  
This reminds me of another way of looking at research; besides pursuing the initial objective 
it is always a pleasure to make serendipities.  

At this point I would like to talk briefly about the pleasure that I have had during my research 
adventure.  
During my five years of electrical engineering training at Hanoi University of Technologies, I 
became aware of renewable energies and their applications in sustainable development. This 
is the reason why for my graduation dissertation, I chose to work on renewable energies, in 
particular, on small hydraulic plants in remote mountain villages of Thua Thien Hue district, 
my hometown. This was my first experience of the domain, which gave me a good mark and 
also a scholarship to continue my study in France. Taking a long with the desire to learn more 
about renewable energy applications, I did a Master of Science (M.S.) at the South Electronic 
Institute (IES) on electronic, systems and components with the option of photovoltaic and 
wind systems. During my M.S. research placement on lead acid batteries in photovoltaic 
installations under the supervision of Professor Glaize Christian, I encountered Alzieu Jean 
senior engineer at EDF R&D, and my adventure has led to this thesis. Although electronic 
and electrochemistry were not my initial training, I have been very pleased to study and try 
new things. I am carried along with my desire to study about renewable energies and their 
applications and what I have received pleases me very much. I think any oriented work opens 
up new opportunities and perspectives.  

The first outlook of our work concerns the new charge algorithm with early destratification 
using charge acceptance measurements. This innovation has the advantage of destratifying the 
electrolyte whenever the charge power is available. Testing this new algorithm on accelerated 
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charges and fast charges (with high charge rates) should lead to further investigations. 
Besides, it can be used in any charge processes to assure a quite homogenized state of the 
electrolyte in case the charge procedure is accidentally interrupted. Aging tests should be 
performed to evaluate the state of health of batteries on which these new charge procedures 
are applied. 
The discovery of low-current effects opens up the second outlook of this thesis works. As the 
overcharge and especially the corrosion are drastically reduced, we conclude that the battery 
lifespan should be improved. However, as the corrosion is a long process, a test under real 
conditions over a long period should be achieved. Other then back-up supply applications, the 
phase of maintaining the charge with an imposed low-current might be also be used in any 
lead acid battery applications where the battery may be at open circuit for a long time between 
services. This will have the advantages, besides maintaining the state of charge of the battery, 
of keeping it in minimum corrosion.  

The innovation about acceptance measurements during charge, the discoveries on low-current 
effects on corrosion and on self-discharge, as well as the studies about battery behaviors 
during polarity inversions contribute to better understanding and use of lead acid batteries. 
They open the door to new ways of managements, which revolutionize the manner on dealt 
with lead acid batteries. This PhD thesis finally reaches its initial objective of contribution 
towards sustainable development. 
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 I 

RESUME EN FRANÇAIS 

Les trois principaux domaines d’application des batteries au plomb sont le démarrage des 
moteurs thermiques, la traction électrique et les applications stationnaires, incluant les 
systèmes de secours. Les évolutions des marchés, notamment celui de l’énergie, ouvrent de 
nouvelles applications de stockage par accumulateur au plomb : transports électriques, 
énergies renouvelables dont éolien et photovoltaïque, stockage réseau, qualité, secours. Dans 
la plupart des cas, les contraintes de l’application mènent à revoir profondément les 
algorithmes de charge. 

Nous avons mené différentes études sur les batteries au plomb dans des conditions extrêmes : 
1er cas, charge rapide pour batteries ouvertes, c’est-à-dire à des régimes de charge largement 
supérieurs à ceux pratiqués traditionnellement ; 2ème cas, recherche au contraire des plus 
faibles courants permettant de maintenir une batterie à l’état chargé ; enfin, étude du 
comportement de la batterie au plomb en régime de décharge extrême, c’est-à-dire jusqu’à 
inversion complète des polarités d’électrode.  

À partir de ces travaux, un nouvel algorithme de charge rapide avec une phase de 
déstratification précoce a été mis au point. Deux types d’applications en résultent :   
- avec augmentation de la puissance du chargeur : charge rapide ;   
- sans augmentation de la puissance du chargeur : réduction de la durée de charge de l’ordre 
d’un facteur deux.   
Concernant le deuxième volet de l’étude, une nouvelle méthode de maintien en charge par 
faible courant imposé a été testée sur différentes technologies de batteries au plomb. Les 
résultats apparaissent prometteurs, notamment dans le cas des batteries étanches en 
application de type secours. Une augmentation de la durée de vie est dans ce cas attendue, 
associée à une réduction importante de la corrosion des grilles positives et de la perte d’eau 
dans le temps. Enfin, l’analyse des profils de tension de la batterie en décharge profonde, avec 
inversion de polarité, s’est avérée un outil efficace pour mener à bien les mesures d’état de 
charge de chaque polarité d’électrode, nécessaires au développement de la nouvelle méthode, 
précitée, de maintien en charge des batteries de secours. Une industrialisation de ces deux 
nouvelles méthodes de gestion des batteries au plomb est en cours. 
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INTRODUCTION 

Inventée en 1859 par le physicien français Gaston Planté, l'accumulateur au plomb a été le 
premier accumulateur rechargeable. Il représente aujourd’hui le système de stockage de 
l’électricité le plus utilisée dans l’industrie et dans l’équipement des véhicules. Son rapport 
énergie/poids est modeste (35Wh/kg) mais son aptitude à fournir de fortes intensités de 
courant situe son rapport puissance/poids à un niveau honorable. Ces caractéristiques unies 
avec son faible coût, son taux de recyclage élevé (97%) et sa technologie mature, 
maintiennent la batterie au plomb attractive pour de nombreuses applications. 

Les évolutions des marchés, notamment celui de l’énergie, et la demande de développement 
durable ouvrent de nouvelles applications de stockage par accumulateur au plomb : transports 
électriques, énergies renouvelables dont éolien et photovoltaïque, stockage réseau, qualité, 
secours. Dans la plupart des cas, les contraintes de l’application nouvelle mènent à revoir 
profondément les algorithmes de gestion, notamment de charge. Il ne faut pas non plus 
oublier le facteur économique qui oblige à mieux cerner et comprendre les phénomènes 
internes aux accumulateurs afin d'augmenter leur durée de vie. 

Pour ces raisons, l'accumulateur au plomb est depuis une dizaine d’année un sujet d’étude à 
l’Institut Electronique du Sud (IES) en collaboration avec EDF R&D. Trois thèses se sont 
concrétisées sur la batterie au plomb et ses applications. En 1997, H. Smimite a travaillé sur la 
charge rapide, au régime 1 heure, pour la batterie étanche utilisée dans les véhicules 
électriques individuels. En 2002, P. Izzo a consacré son travail de thèse aux batteries pour les 
applications photovoltaïques, la gestion de kits photovoltaïques, c’est-à-dire de petits 
systèmes comportant une simple batterie de démarrage, ainsi que de grands systèmes 
comportant un système de stockage composé de plusieurs batteries associées en série et 
gérées individuellement. En 2004, G. Dillenseger a initié le développement d’une nouvelle 
méthode de maintien en charge pour les batteries stationnaires de secours avec des faibles 
courants imposés. En continuité avec les thèses précédentes, les projets en cours de EDF et de 
l'IES portent sur les mêmes domaines mais avec des nouvelles demandes et des nouveaux 
problèmes. Ils constituent le sujet de cette thèse : la charge rapide d’une durée d’une heure 
pour la batterie ouverte utilisée dans les bus électriques, d’une durée de quatre heures pour la 
batterie d’une installation photovoltaïque raccordée au réseau pour optimiser par le stockage 
la courbe de production électrique; la méthode de maintien en charge avec des faibles 
courants imposés pour différentes technologies de batteries au plomb ; la décharge profonde 
avec inversions de polarité.  

Ce tapuscrit comporte un premier chapitre de généralités sur la batterie au plomb, rédigé à 
l’intention de mes collègues non électro-chimistes. Il présente le fonctionnement des batteries 
au plomb notamment ses comportements dans les différentes conditions expérimentales 
auxquelles elles seront soumises au cours des chapitres suivants. Le deuxième chapitre 
concerne la charge de la batterie au plomb : de la charge traditionnelle à la charge rapide des 
batteries ouvertes. Un nouvel algorithme de charge rapide avec une phase de déstratification 
précoce est développé et mis au point. Il est aujourd’hui intégré dans un chargeur commercial 
de la société IES-Synergy et testé sur une batterie compressée de laboratoire. La décharge de 
la batterie au plomb avec inversions de polarité a été étudiée dans un troisième chapitre à 
travers des travaux expérimentaux sur plusieurs types des batteries : batteries stationnaires 
plaques planes et tubulaires, batteries compressées, batteries de démarrage durcies. Le dernier 
chapitre concerne les méthodes de maintien en charge des batteries au plomb stationnaires. La 
nouvelle méthode de maintien en charge par faibles courants imposés est testée sur les 
batteries ouvertes avec et sans antimoine et sur les batteries étanches AGM. 
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CHAPITRE 1 – BATTERIES AU PLOMB 

Ce chapitre a été rédigé spécialement pour mes collègues ingénieurs électriciens, qui ne sont 
pas familiers avec la terminologie électrochimique. La batterie au plomb y est présentée : de 
sa constitution jusqu’aux principes de fonctionnement en expliquant les lois 
thermodynamiques et cinétiques qui la gouvernent. La première partie parle des éléments qui 
constituent la batterie au plomb, ainsi que des différentes technologies et domaines 
d’applications. La deuxième partie explique le fonctionnement de la batterie au plomb : 
l’énergie chimique est convertie en énergie électrique et vice-versa. La troisième partie 
présente les réactions dans un accumulateur au plomb : les réactions principales (charge et 
décharge de la matière active) et les réactions secondaires (électrolyse de l’eau, 
recombinaison de l’oxygène, corrosion…). Les quatrième et cinquième parties décrivent les 
lois thermodynamiques et cinétiques qui gouvernent l’accumulateur en circuit ouvert et sous 
passage de courant. La dernière partie décrit les paramètres caractéristiques de la batterie au 
plomb, la capacité, l’état de charge et l’état de santé. 

Il y a deux types principaux de technologies de batterie au plomb : batterie ouverte et batterie 
étanche, aussi appelée batterie à recombinaison ou encore batterie à soupape. Cette dernière 
est équivalente à l’appellation anglo-saxonne : VRLA battery pour « Valve Regulated Lead 
Acid battery ». En fait, la principale fonction qui distingue la batterie étanche de la batterie 
ouverte est la recombinaison interne de l’eau dissociée par électrolyse. D’un point de vue 
constitutionnel, la principale caractéristique d’une batterie étanche est l’immobilisation de son 
électrolyte, permettant la constitution de canaux assurant un transit, en phase gazeuse, de 
l’oxygène produit à l’électrode positive qui sera recombiné en eau à l’électrode négative.  

 

Figure 102 : Diagramme de Pourbaix : système 
électro-dynamique d’un accumulateur au plomb 
avec les couples oxydo-réducteurs : Pb/Pb2+et 
Pb2+/Pb4+, H2/H2O et H2O/O2. Les réactions 
secondaires de l’électrolyse de H2O, de la 
recombinaison de O2 et la corrosion de la grille 
positive en Pb ont lieu en même temps que les 
réactions principales de charge ou décharge. 

Les lignes notées 0 à -6 correspondent à des 
concentrations en Pb2+, variant respectivement de 
1 à 10-6 mol/L. 

 

La tension d’équilibre (E) d’un accumulateur est liée à l’énergie maximale qui peut être 
convertie par ses réactions (énergie libre, ∆G) par la relation ∆G = - nFE.  

Pendant la charge ou la décharge, la différence entre la tension de l’accumulateur (V) et sa 
tension d’équilibre (E) est attribuée à des pertes ohmiques et des polarisations non ohmiques 
aux pertes qui se traduisent, in fine, par un dégagement de chaleur. 

Concernant les réactions d’un accumulateur au plomb, une remarque importante est que les 
réactions principales et les réactions secondaires ont lieu en parallèle. Cette situation influence 
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le comportement de la batterie et doit être prise en compte dans sa gestion, notamment dans 
les cas d’utilisations extrêmes que nous avons étudiés. Cette caractéristique est analysée tout 
au long de la thèse : en charge avec la déstratification de l’électrolyte par dégagement gazeux 
(chapitre 2) ; en maintien en charge de batteries stationnaires, où les réactions secondaires 
sont responsables à la fois, du phénomène d’autodécharge et des principaux modes de 
défaillance – assèchement de l’électrolyte, corrosion de la grille positive, emballement 
thermique – menant à la fin de vie de ces batteries (chapitre 4). 

 
CHAPITRE 2 – CHARGE DE BATTERIES AU PLOMB : DE LA CHARGE 
TRADITIONNELLE A LA CHARGE RAPIDE 

En pratique, une procédure de charge doit répondre à trois critères principaux : une durée 
raisonnable, un état final de charge suffisant et une homogénéité acceptable de l’électrolyte. 

La stratification est un phénomène courant qui se développe pendant la charge des batteries au 
plomb : l’électrolyte en bas des éléments est plus concentré que l’électrolyte en haut. Une 
batterie stratifiée souffre d’une fatigue rapide de la partie inférieure de ces électrodes et donc 
vieillit plus vite. La méthode habituelle pour déstratifier l’électrolyte consiste à provoquer une 
circulation de gaz pour brasser l’électrolyte par la convection forcée. Ce gaz peut être de l’air 
injecté par une pompe ou, le plus souvent, de l’oxygène et l’hydrogène produits en fin de 
charge par l’électrolyse de l’eau de l’électrolyte. 

Un dégagement gazeux dû à l’électrolyse de l’eau a toujours lieu dans la batterie au plomb. Il 
augmente avec l’augmentation de la tension de charge et devient appréciable à partir d’une 
valeur de tension nommée tension de dégagement gazeux. Sous tension de dégagement 
gazeux, le régime de charge est proche du régime maximum acceptable par la batterie pour la 
réaction de charge proprement-dite. Ce régime est désigné par « courant d’acceptance » dans 
ce tapuscrit. Un courant supérieur, correspondant à la part excédentaire, entraîne un 
dégagement gazeux qui brasse l’électrolyte et l’homogénéise. On parle ici d’une phase de 
déstratification ou d’une phase de surcharge. 

La déstratification par dégagement gazeux est nécessaire pour la santé de la batterie, mais le 
courant de dégagement gazeux doit être contrôlé pour ne pas atteindre des valeurs excessives 
et protéger ainsi la batterie contre un vieillissement rapide qui en résulterait. S’ajoutent à cette 
raison le souci de ne pas consommer trop d’eau de l’électrolyte ainsi que d’éviter une trop 
forte production d’hydrogène, gaz potentiellement explosif au-delà de 4 % en volume. Au 
cours d’une procédure de charge classique, qui dure en général de 8 à 14 heures, la phase de 
déstratification est effectuée sur la fin, lorsque le courant d’acceptance est suffisamment faible 
pour que le courant de dégagement gazeux soit assimilable au courant total, ce qui facilite son 
évaluation et donc la gestion de la charge. En pratique, 10 à 15% de surcharge sont imposés à 
la batterie pour déstratifier l’électrolyte. 

Aujourd’hui, plusieurs nouvelles applications de batteries au plomb réclament une réduction 
de la durée de la procédure de charge. Par exemple une charge de 4 heures dans le cas d’un 
stockage réseau ou encore une charge méridienne de l’ordre d’une heure pour les batteries 
d’un bus électrique. Dans ces cas on parle de charge rapide. Dans le cas d’une charge rapide, 
l’acceptance de la batterie n’a pas le temps d’attendre une valeur suffisamment basse pour 
être considérée comme négligeable au cours de la phase de déstratification finale. 
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Figure 103 : La charge IUi classique : (A) phase à courant constant traditionnellement inférieur ou 
égale à C/5, (B) phase à tension constante VGAS et phase de déstratification ou de surcharge à courant 
constant C/20 (C). 

On propose ici d’effectuer la phase de déstratification dès le début de la phase (B) (cf. 
Figure 103) d’un profil de charge IUi classique, c’est-à-dire alors que le courant d’acceptance 
est encore élevé. On parle alors d’une phase de déstratification précoce. Dans ce cas, pour 
contrôler le courant de dégagement gazeux il est nécessaire de connaître le courant 
d’acceptance. Deux méthodes de mesure de courant d’acceptance sont étudiées et testées. La 
premier, suivant les préconisations de P. Izzo, consiste à partir d’une valeur de courant 
supérieure à l’acceptance de la batterie, à imposer une rampe de courant décroissante et à 
détecter, dans la réponse en tension de la batterie, un point d’inflexion caractéristique de la 
tension de dégagement gazeux. Cette méthode, censée affranchir le résultat de l’influence de 
paramètres tels que la température ou la composition de l’alliage de grille positive, s’est 
avérée inapplicable pour les charges rapides. Il apparaît en effet que le temps de réponse de la 
batterie impose de pratiquer des rampes de pentes tellement faibles que la durée de la mesure, 
qui en résulte, devient incompatible avec notion de charge « rapide ». Nous avons donc 
substitué à la rampe « Izzo » une nouvelle méthode d’estimation du courant d’acceptance. 
Cette méthode consiste à imposer périodiquement à la batterie une tension égale à la tension 
de dégagement gazeux pré-estimée à partir des caractéristiques de la batterie en charge. La 
réponse en courant se caractérise par une chute brutale de l’intensité (qui peut atteindre 
transitoirement une valeur négative) puis une remontée rapide. L’intensité tend alors 
asymptotiquement vers la valeur recherchée. L’expérience montre que quelques secondes 
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suffisent pour obtenir une image de l’acceptance utilisable par l’algorithme de gestion de la 
déstratification précoce. 

À une étape de mesure d’acceptance à tension constante, succède une étape de 
déstratification, pendant laquelle le chargeur impose à la batterie un courant égal à 
l’acceptance, augmentée d’un complément, destiné à provoquer l’électrolyse de l’eau, et donc 
un dégagement gazeux qui brasse mécaniquement l’électrolyte. 

Cette séquence – mesure à tension imposée puis déstratification à courant imposé – est 
répétée périodiquement, par exemple toutes les minutes (cf. ). Gérée de cette façon, la phase 
de surcharge peut commencer dès le début de la phase B (cf. Figure 104) d’un profil de 
charge IUi classique. Nous qualifions alors cette opération de « déstratification précoce » (cf. 
Figure 105). A son terme, l’état de charge de la batterie est de l’ordre de 90% et une 
utilisation en décharge est possible, l’électrolyte étant déstratifié.  

Batterie 
SOC

Tension

VGAS

Courant

Batterie 
SOC

IACCEPTANCE

IGAS

IOVERCHARGE

= IACCEPTANCE + IGAS

I II bII b

II aII a  

Figure 104 : Principe de la nouvelle méthode de charge rapide : (I) étape à courant constant ou 
puissance constante, (IIa) étape de mesure de courant d’acceptance à tension de dégagement gazeux, 
(IIb) étape de surcharge à courant de surcharge (IOVERCHARGE) égal à la somme du courant 
d’acceptance (IACCEPTANCE) et du courant de dégagement gazeux (IGAS) choisi :  

IOVERCHARGE = IACCEPTANCE + I GAS 

La modification d’un chargeur « 12 heures » avec un algorithme de déstratification précoce, 
permet de rendre disponible la batterie en un temps de l’ordre de 4 à 6 heures. Cette division 
du temps de charge d’un facteur deux est obtenue sans modification de la puissance de 
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chargeur. L’évolution vers des charges plus rapides nécessite d’augmenter le régime initial 
(phase A) et donc d’utiliser des chargeurs plus puissants. Pour une charge d’une durée de 
l’ordre de l’heure, l’estimation de l’acceptance ne suffit plus ; il faut alors prendre en compte 
sa dérivée. Un brevet EDF/Université Montpellier II a été déposé en 2008 sur ce sujet. 

IACCEPTANCE

IOVERCHARGE
= IACCEPTANCE + IGAS

IGAS

 

Figure 105 : Tension, courant et densité de l’électrolyte en haut de la batterie mesurés pendant une 
charge avec destratification précoce, pratiquée avec un chargeur industriel modifié. La durée totale 
de la charge est ici de 4 heures.  

 
CHAPITRE 3 – DECHARGE DE BATTERIES AU PLOMB : INVERSION DE POLARITE 

Afin de mesurer les capacités des électrodes positives et négatives, nous avons effectué la 
décharge de batteries jusqu’à inversion de leur polarité. Deux types d’électrodes de référence, 
fabriqués par nous-même au laboratoire, sont utilisés pour déterminer les potentiels 
d’électrode. Le croisement des résultats a permis de valider les mesures. 

Cette étude de la décharge profonde de la batterie au plomb, jusqu’à inversion complète des 
polarités d’électrode, a été menée pour évaluer les cinétiques d’autodécharge respectives, des 
électrodes positive et négative de différents types d’accumulateurs au plomb.  

Dans le cas d’une décharge complète traditionnelle, le courant est interrompu lorsque la 
tension commence à chuter aux bornes de l’élément. Les deux électrodes n’ayant pas la même 
capacité, c’est la plus faible qui détermine la fin de décharge, et on ne sait généralement pas 
s’il s’agit de la négative ou de la positive. L’utilisation d’une électrode de référence permet de 
lever cette indétermination, mais on n’a alors aucune information sur la capacité de l’autre 
électrode, à moins de prolonger la décharge jusqu’à chute de tension de la deuxième 
électrode. La première électrode, forcée de continuer à se décharger au-delà de sa capacité, est 
alors le siège d’un processus d’inversion de polarité. Autrement dit, au sein d’une électrode 
négative par exemple, apparaît du matériau actif positif, c’est-à-dire du dioxyde de plomb : 
l’électrode négative prend alors le potentiel d’une électrode positive. Et réciproquement pour 
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une électrode positive. Une telle opération fatigue les matériaux d’électrode et doit donc, 
d’une façon générale, être évitée. L’inversion d’une électrode négative est même 
particulièrement préjudiciable, dans la mesure où sont alors détruits, par oxydation, les 
lignosulfonates qui sont un additif essentiel à leur longévité. Nous avons cependant considéré, 
dans notre cas, que le risque était négligeable dans la mesure où la durée de vie requise, pour 
chaque batterie testée, était limitée à deux, voir trois cycles.  
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Figure 106 : Décharge (à 1,14C/20) avec inversions de polarité d’une batterie à plaques planes 
70 Ah/12V. Profils de potentiel des électrodes négative et positive extrêmes associées aux deux bornes 
de la batterie.  
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Figure 107 : Décharge (à 1,14C/20) avec inversions de polarité des douze électrodes d’une batterie à 
plaques planes 70 Ah/12V. Profil de tension de la batterie et représentation de la dérivée de cette 
tension. Les inversions des six positives et des six négatives sont nettement identifiables sur chacune 
de ces deux courbes.  
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Bosse

 

Figure 108 : Décharge (à 1,8C/10) avec inversions de polarité d’une batterie à plaques planes 
110 Ah/12V. Observation d’une bosse sur le profil de potentiel de la 1ère électrode négative après la 
fin de son inversion. 
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Figure 109 : Courant associé à la réaction de décharge avant et pendant une inversion de polarité. 
L’inversion commence lorsque la diffusion des ions HSO4

-, depuis l’électrolyte externe, n’arrive plus à 
suivre le régime de décharge imposé. La réaction d’inversion libère, au sein des électrodes, des ions 
HSO4

- qui sont réutilisés par la réaction de décharge qui se prolonge, parallèlement à la réaction 
d’inversion. 

Certains essais ont été effectués sur des monoblocs 12 V, c’est-à-dire six éléments assemblés 
en série. Dans ce cas, seules les bornes de la batterie sont accessibles. Elles correspondent à la 
négative du premier élément et à la positive du sixième. Pour que nos mesures bénéficient 
d’un poids statistique suffisant, nous souhaitions accéder aux capacités respectives de chacune 
des six négatives et des six positives de la batterie 12 V. L’analyse, au cours d’une inversion 
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de polarité, du potentiel d’électrodes isolées a permis de distinguer des caractéristiques 
permettant de discriminer les deux polarités (cf. Figure 106). En fin d’inversion, par exemple, 
une électrode négative présente un profil de tension de type «coup de fouet », que nous avons 
rapproché de celui habituellement rencontré sur le profil de tension des électrodes positives en 
début de charge. Ou encore, la nette différence de pentes de la tension en fonction du temps 
entre les positives et les négatives. Ces éléments nous ont aussi permis de déterminer les 
capacités des douze électrodes d’une batterie 12 V à partir du seul profil de tension mesuré à 
ses bornes (cf. Figure 107). Au-delà de l’outil qu’a constitué l’analyse de ces profils 
d’inversion, l’observation surprenante de bosses sur les profils de tension d’électrode, 
sensiblement après la fin d’inversion (cf. Figure 108), s’est présentée tout d’abord comme une 
énigme – nous n’imaginions pas autre chose qu’un profil plat – puis comme une aide à la 
compréhension des mécanismes d’inversion (cf. Figure 109). 
 
CHAPITRE 4 - NOUVELLE METHODE DE MAINTIEN EN CHARGE DE BATTERIES 
STATIONNAIRES 

L’alimentation de secours est une des principales applications des batteries au plomb. 
Aujourd’hui, les batteries stationnaires, en particulier les batteries VRLA, soumises aux 
régimes de floating traditionnels, rencontrent des problèmes de fiabilité et de durée de vie 
limitée. Cette situation nous a conduite à poursuivre les travaux sur les méthodes de maintien 
en charge préalablement engagés à EDF.  

L’autodécharge due aux réactions secondaires est inévitable dans la batterie au plomb, que 
celle-ci soit en charge, en circuit ouvert ou en décharge. Le courant d’autodécharge dépend de 
plusieurs facteurs, principalement l’état de charge, la température, le type de l’alliage 
constitutif de la grille positive. Ces régimes d’autodécharge ne sont pas égaux pour l’électrode 
positive et négative. Ils sont indépendants l’un de l’autre. Dans les batteries avec antimoine, le 
courant d’autodécharge de l’électrode négative est plusieurs fois plus important que celui de 
l’électrode positive et dépend surtout de l’âge de la batterie et du taux d’antimoine de la grille 
positive. 

Pour compenser le courant d’autodécharge, on fournit dans ce cas un courant dont la valeur 
est supérieure à celle de l’autodécharge de l’électrode négative. Cette situation est, en général, 
obtenue en appliquant aux bornes de la batterie une tension constante dont la valeur est 
légèrement supérieure à celle du circuit ouvert (de l’ordre de 120 mV par élément). On parle 
de « floating » ou, en français, de « marche flottante ». Bien entendu, la polarisation de 
floating fait augmenter le courant de dégagement gazeux, qui est en partie responsable de 
l’autodécharge. 

Dans les batteries sans antimoine, comme les batteries étanches, le courant d’autodécharge de 
l’électrode négative est réduit. Nous l’avons évalué au tiers de celui de l’électrode positive. 
Un tel changement de comportement entre les accumulateurs avec antimoine et les 
accumulateurs sans antimoine nous a amené à nous interroger sur la pertinence d’appliquer à 
ces derniers les méthodes traditionnelles de charge qui ont été mises au point, depuis des 
décennies, avec les premiers. Une technique de maintien en charge, alternative au floating, a 
été ces dernières années l’objet de recherches et développements : la charge intermittente. Elle 
consiste à alterner des phases de repos en circuit ouvert et des phases de floating ou charge. 
Ces recherches ont été principalement suscitées par l’observation, notamment en ambiance 
chaude, de durées de vie des accumulateurs étanches réduites de façon importante, par 
exemple inférieures à un an. L’issue peut être dramatique, lorsque se produit le phénomène 
d’emballement thermique correspondant au processus suivant : 
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• La batterie étanche, en floating, s’échauffe sous l’effet de la réaction exothermique de 
recombinaison de l’oxygène. 

• Cet échauffement entraîne une diminution de la résistance interne de la batterie, 
essentiellement due à la migration ionique dans l’électrolyte. 

• La diminution de la résistance interne entraîne une augmentation du courant, donc de 
l’électrolyse de l’eau, donc de la recombinaison de l’oxygène, donc de l’échauffement 
et ainsi de suite. 

• Lorsque ce phénomène diverge, la batterie fond, se déforme, peut provoquer court 
circuit, incendie, explosion. La charge intermittente a été conçue pour limiter les 
échauffements. 

Des résultats positifs suivant la mise en œuvre de charges intermittentes ont été annoncés. 
Plusieurs équipes de recherche ont travaillé sur ce sujet, avec des choix de période (repos + 
charge) variées : de quelques minutes à plusieurs semaines. 

Pour notre part, nous avons considéré que la phase en circuit ouvert n’était pas un passage 
obligatoire. Nous lui avons substitué une phase à faible courant imposé. Les raisons de cette 
disposition sont les suivantes : 

• À très faible régime de charge d’une batterie, il est plus facile de contrôler le courant 
que la tension. 

• Le contrôle du courant permet le contrôle de l’échauffement. 
• Un courant d’intensité inférieure à celle correspondant au régime de floating est 

susceptible de compenser, au moins partiellement, l’autodécharge, et réduit le besoin 
de charge périodique. 

• Plusieurs publications font état d’un minimum du régime de corrosion de la grille 
positive, lorsque le potentiel de l’électrode positive est compris entre celui du circuit 
ouvert et ceux de floating. La surtension de l’électrode positive, associée à ce 
minimum, est l’objet de différentes évaluations, généralement situées dans l’intervalle 
30 à 80 mV. 
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Figure 110 : La méthode des faibles courants est dérivée de la méthode de charge intermittente : les 
phases de circuit ouvert sont remplacées par les phases à faibles courants dont les valeurs sont de 5 à 
10 fois moindres que celles des courants de floating (200 to 500 µA/Ah). L’objectif est de positionner 
la batterie dans la zone du minimum de corrosion. 
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Nous avons soumis différents types de batteries au plomb, ouverte ou étanche, avec ou sans 
antimoine, à des périodes de plusieurs mois sous faibles courants imposés. Alors que les 
régimes de floating traditionnels correspondant à des courants de charge de l’ordre de 200 à 
500 µA par Ah de batterie, les faibles courants mis en œuvre dans notre étude ont été choisis 
dans l’intervalle 25 à 100 µA/Ah. Les états de charge initiaux et finaux des électrodes 
négatives et positives ont été mesurés suivant deux méthodes : mesure chimique des taux de 
produit de décharge, c’est-à-dire du sulfate de plomb, au sein des électrodes et mesure de 
capacités de chaque électrode par décharge jusqu’à inversion des polarités. À une variation 
d’état de charge en un temps donné, peut être associé, par calcul, un courant moyen effectif de 
charge ou décharge. Les mesures ont aussi notamment permis de calculer les courants 
d’autodécharge en circuit ouvert, de chaque électrode. 

Les deux méthodes ont livré des résultats concordants. Ceux-ci peuvent être résumés comme 
suit : 

• Batteries avec antimoine. L’antimoine influence le régime d’autodécharge des 
électrodes négatives. Dans les batteries avec antimoine, les électrodes négatives 
s’autodéchargent plus vite que les électrodes positives. Cette situation s’aggrave avec 
le taux d’antimoine et avec l’âge de la batterie. Une méthode de charge intermittente 
avec phase à faible courant est envisageable, mais constat est fait que le floating 
traditionnel est bien adaptée au maintien en charge permanent de la batterie.  

• Batteries sans antimoine. La situation s’inverse : le régime d’autodécharge des 
électrodes négatives est réduit, il est alors de l’ordre du tiers de celui des électrodes 
positives. Le régime de floating apparaît comme excédant largement le besoin de ces 
batteries. 

Dans ce dernier cas, en effet, l’imposition d’un faible courant dont l’intensité est cinq à dix 
fois inférieure à celle des courants de floating traditionnel apparaît suffisante pour maintenir 
l’état de charge de la batterie. Plus précisément (cf. Figure 111) : 
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Figure 111 : Bilans de courant en fonction de faible courant imposé : (a) Électrode négative, 
(b) Électrode positive. (S) : la somme du courant d’autodécharge en circuit ouvert et du faible courant 
imposé. (CR) : le courant résultant calculé à partir de l’évolution des taux de sulfate. (CA) : courant 
de décharge associé aux réactions secondaires responsables de l’autodécharge. Il est égal à la 
différence entre le courant résultant et le courant imposé, CA = CR – faible courant imposé.  
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• L’électrode négative voit son état de charge stabilisé avec un courant dont l’intensité 
est triple de celle de son autodécharge constatée en circuit ouvert. On peut évoquer ici 
un pseudo rendement de l’ordre de 30%. 

• Le cas de l’électrode positive est apparu plus surprenant : 25 µA/Ah de courant de 
charge y compense 31 µA/Ah de courant d’autodécharge et de plus complète la charge 
à un régime de 12 µA/Ah. Le pseudo rendement évoqué ci-dessus apparaît ici 
supérieur à 100%, (31 + 12)/25 = 172%. Autrement dit l’effet observé au-delà d’une 
compensation de l’autodécharge correspond à une diminution du régime des réactions 
secondaires responsables de l’autodécharge. 

La compréhension de ce dernier résultat passe par l’analyse des mécanismes de 
l’autodécharge des électrodes positives. Cette autodécharge est la conséquence de deux 
réactions lentes mais inéluctables, car largement hors de leur potentiel d’équilibre. Il s’agit 
d’une part de la production d’oxygène gazeux par l’électrolyse de l’eau, d’autre part de la 
corrosion de l’alliage de plomb constituant le collecteur – grille – de l’électrode positive. Le 
potentiel de l’électrode positive au repos est supérieur aux potentiels d’équilibre de ces 
réactions respectivement, de plus de 400 mV et de plus de 2 V. La réaction de dégagement 
d’oxygène gazeux, pilotée par l’étape de transfert de charge, ne peut répondre, à une 
augmentation de tension, que par une augmentation de son régime. Elle ne peut donc pas être 
la cause de la diminution de l’autodécharge. 

Il n’en va pas de même pour la réaction de corrosion. En circuit ouvert, en effet, le potentiel 
mixte qui résulte de la coexistence des réactions d’autodécharge et de la réaction principale de 
charge/décharge fait que l’état stable du matériau d’électrode est le sulfate de plomb. Le faible 
courant de charge imposé déplace le potentiel d’équilibre de la réaction principale de 
charge/décharge : l’état stable du matériau d’électrode est alors le dioxyde de plomb. Cette 
différence fait que la couche de monoxyde de plomb présente à l’interface grille/matériaux 
d’électrode est alors stable et protège l’alliage de grille. Il s’agit donc d’un phénomène de 
type passivation, et le faible courant imposé, au-delà d’une fonction de compensation de 
l’autodécharge, assure également une fonction de type protection anodique de la grille. 
L’évaluation de l’effet notable qui en résulte, ainsi que la faible surtension (2 mV) associée, 
nous mènent à confirmer l’existence d’un minimum de corrosion, mais à considérer que la 
surtension positive associée à ce minimum est plus faible que celles précédemment publiées. 

 

Figure 112 : Le principe de la nouvelle 
méthode de maintien en charge avec 
faibles courants imposés et charges 
périodiques. 

 

La nouvelle méthode de maintien en charge que nous avons développé à partir de ces résultats 
consiste à maintenir la batterie sous faible courant imposé et à pratiquer périodiquement, par 
exemple tous les trois mois, une charge de complément ou rattrapage. Cette charge est 
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destinée, dans les cas où les faibles courants ne compensent que partiellement l’autodécharge, 
à ramener périodiquement la batterie à un état de charge maximum. 

Dans le cas des batteries sans antimoine, ces charges périodiques pourraient s’avérer non 
nécessaires. Les batteries à recombinaison, dites batteries étanches, constituent l’essentiel des 
batteries stationnaires sans antimoine. Leur utilisation reste aujourd’hui freinée par leur 
manque de fiabilité et leur durée de vie réduite en floating. Pour s’affranchir des problèmes de 
fiabilité, nous avons combiné la méthode des faibles courants avec une architecture de batterie 
que nous appelons «Multibat Stationnaire», à trois branches parallèles gérées de façon 
individuelle, telle que présente Figure 113. La défaillance d’un élément n’entraîne pas la perte 
de la fonction secours. Seule la branche comportant l’élément défaillant est affectée, soit un 
tiers de la capacité disponible. Par ailleurs, les défaillances sont détectées par mesure de 
capacité périodique (aujourd’hui tous les 6 mois), par décharge complète d’une branche parmi 
les trois. 

La durée de vie des batteries étanches devrait être améliorée de façon notable par la mise en 
œuvre des faibles courants. On sait en effet que corrosion de la grille positive et assèchement 
de l’électrode sont des causes majeures de fin de vie de ces batteries. Au-delà de la réduction 
de la vitesse de corrosion, une réduction de la perte d’eau est également attendue. En effet, on 
sait que l’eau électrolysée par surcharge est recombinée catalytiquement sur l’électrode 
négative, avec une efficacité élevée, de l’ordre de 98%. Par contre, l’eau consommée pour 
fournir l’oxygène de la couche de corrosion est bloquée de façon irréversible. La diminution 
de la vitesse de corrosion doit ainsi entraîner une diminution de la consommation d’eau dans 
le temps et retarder ainsi une éventuelle défaillance par assèchement. 
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Figure 113 : (a) Schéma simplifié de système « Multibat Stationnaire ». (b) Zoom des composants 
électroniques d’une de trois branches de batteries utilisent la méthode de faible courant.  

 
 
 
 
 
 
 
 



 

 XV 

CONCLUSION ET PERPECTIVE INDUSTRIELLES 

Les deux domaines sur lesquels ont porté notre étude peuvent apparaître disjoints, opposés. Il 
s’agissait en effet de gérer, pour la charge rapide, des courants « extrêmement forts », et pour 
le maintien en charge des batteries de secours, des courants « extrêmement faibles ». En fait, 
un fort point commun les lie : il s’agit, dans les deux cas, de gérer un équilibre entre les 
réactions principales de charge/décharge et les réactions secondaires de production 
d’hydrogène et d’oxygène par électrolyse de l’eau.  

Nous avons abordé ce travail de thèse sur l’accumulateur au plomb avec quelques 
interrogations sur l’intérêt d’étudier un système aussi mature et dont le fonctionnement est 
sans doute bien connu. 

Nous avons découvert un domaine complexe, vivant, et nous y sommes immergés avec 
difficulté mais passion. Si nous pensons maintenant en maîtriser quelques aspects, nous 
devons reconnaître que des questions sans réponse à ce jour se sont accumulées tout au long 
de notre étude. Nous espérons cependant avoir contribué modestement, à la connaissance du 
fonctionnement de cette batterie et à la façon de l’utiliser. Nous avons eu la chance de voir 
quelques applications industrielles s’engager à la suite de notre travail. Elles sont 
principalement les suivantes : 

1. Charge rapide avec déstratification précoce 

La charge rapide des batteries au plomb ouvertes mettant en œuvre la technique de 
déstratification précoce a été conçue et réalisée avec, comme premier objectif, la charge de 
batteries de stockage associées aux réseaux de distribution électrique. Il s’agit de stocker, la 
nuit, pendant une période de 4 heures, de l’énergie électrique produit de façon excédentaire et 
donc à faible coût, et de la restituer pendant les pointes de consommation de la journée. Ce 
projet en cours de recherche et développement financé par l’ANR, a initié plusieurs projets 
d’application mettant en oeuvre cette technique. 

Une industrialisation de la technique de déstratification précoce est engagée par IES-Synergy, 
constructeur français de chargeurs industriels. Implanté en option sur un chargeur opérant 
traditionnellement en 12 heures, l’algorithme de gestion de la charge permet de rendre la 
batterie opérationnelle en un temps de 4 à 6 heures. 

Une version plus sophistiquée de l’algorithme, prenant en compte la dérivée de l’acceptance 
de charge, a été conçue pour gérer la charge rapide des batteries au plomb ouvertes à des 
régimes hors normes de l’ordre de l’heure. L’application visée est une charge méridienne, 
permettant d’augmenter l’autonomie quotidienne d’un bus électrique. Des essais sont 
envisagés prochainement dans le cadre d’un projet de transports électriques urbains. 

2. Multibat et faibles courants 

L’architecture de batterie à trois branches parallèles gérées individuellement (Multibat 
Stationnaire) associée à la mise en œuvre de faibles courants imposés, est en cours 
d’expérimentation, en vraie grandeur, dans six postes-sources du réseau EDF. Ces postes sont 
situées dans la région parisienne et le sud de la France. 

Plus récemment, la Direction de la Production Hydraulique a décidé d’adopter cette nouvelle 
technologie pour des batteries de secours assurant la sécurité des ouvrages de production 
hydraulique. Vingt systèmes seront réalisés et installés au cours du deuxième semestre 2009. 



LEAD ACID BATTERIES IN EXTREME CONDITIONS: ACCELERATED CHARGE, MAINTAINING THE CHARGE WITH 

IMPOSED LOW CURRENT, POLARITY INVERSIONS 

INTRODUCING NON-CONVENTIONAL CHARGE METHODS 
 

 

Abstract 
Three main applications of lead acid batteries are starting, lighting and ignition batteries, motive 
batteries and stationary batteries. Increasing attention to the global climate change and the sustainable 
development open new applications for the energy storage using lead acid batteries: electric transport, 
renewable energies such as photovoltaic and wind, grid storage, quality and emergency supplies. In 
some cases, new applications need new charge algorithms. Various studies were conducted with lead 
acid batteries in extreme conditions: accelerated charge for vented batteries, maintaining the charge 
with imposed low current for stationary batteries and deep discharge with polarity inversion. A new 
charge method for accelerated and fast charges of flooded lead acid batteries was developed. A new 
method of maintaining the charge with imposed low currents and periodical charges was tested on 
different technologies of lead acid batteries. It has the advantages of reducing drastically corrosion, of 
limiting water loss due to corrosion and the need of periodical charges. 
 
Keys words  
Lead acid batteries, fast charges, stratification, self-discharge, float charge, intermittent charge, 
corrosion, deep discharge, polarity inversion. 
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ETUDE DU COMPORTEMENT DE BATTERIES AU PLOMB EN CONDITIONS EXTREMES : 

CHARGE RAPIDE, MAINTIEN EN CHARGE PAR FAIBLE COURANT IMPOSE, INVERSIONS DE 

POLARITEINTRODUCTION DE PROCEDES DE CHARGE ATYPIQUES 

 

 

Résumé 
Les trois grands domaines d’application de batteries au plomb sont les batteries de démarrage, les 
batteries de traction et les batteries stationnaires. Les évolutions des marchés, notamment celui de 
l’énergie, ouvrent de nouvelles applications de stockage par accumulateur au plomb: transports 
électriques, énergies renouvelables dont éolien et photovoltaïque, stockage réseau, qualité, secours. 
Dans la plupart des cas, les contraintes de l’application mènent à revoir profondément les algorithmes 
de charge. Nous avons mené différentes études sur les batteries au plomb dans des conditions 
extrêmes: charge rapide pour batteries ouvertes, maintien en charge pour batteries stationnaires, 
décharge profonde avec inversion de polarité. À partir de ces travaux, un nouvel algorithme de charge 
rapide avec une phase de déstratification précoce a été mis au point. De plus, une nouvelle méthode de 
maintien en charge par faible courant imposé a été testée sur différentes technologies de batteries au 
plomb. Elle montre plusieurs avantages en termes de réduction importante de la corrosion, de 
diminution de la perte d’eau due à  la corrosion et de besoin de charges périodiques. 
 
Mots clés 
Batteries au plomb, charges rapides, stratification, auto-décharge, floating, charge intermittente, 
corrosion, décharge profond, inversion de polarité.  
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