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1.1 Standard Model and Higgs

The Standard Model is the most accurate theory that describe the fundamental structure
of mater and interactions. In this model, the fundamental constituents of mater are quarks
and leptons, and the interaction are linked to carrier particles called bosons. Quarks and
leptons are fermions of spin 1

2
while interaction particles are of integer spin. Under the
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present knowledge, all of them are point like particles. No experimental evidence of finer
structure was found. These leptons and quarks are divided into three generations, each
generation has four members, each member of same generation has different charge and
mass. For these leptons and quarks, there are corresponding anti-particles. These anti-
particles have same masses, but opposite sign of all other quantum numbers compared to
the corresponding particles [1, 2]. There are upper, charm and top quarks, whose charges
are (−2

3
). There are also down, strange and bottom quarks, whose charges are (−1

3
).

Leptons are of two kinds. One set of them like electron, muon and tau particles, with
a charge (−1), while the other set of them are neutral neutrinos, corresponding to each
type of lepton. Figure 1.1 is the schematic plots of the fundamental particle classification.
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Figure 1.1: Categories of fundamental particles

There are four different interactions in nature: Strong force, Electromagnetism,
Weak force and Gravity. The propagators of these interactions are the names of force
carrier particles. They are Gluon for strong force, photon for electromagnetism, W±, Z0

for weak force and graviton for gravity. The first three kinds of force carriers all have
spin one bosons and have been found experimentally, while the fourth has not been found
until now and the theoretical prediction is spin two. The unique particle, Higgs, which
give masses to these fundamental particles, does not belong to any category of particles
described above. The properties of the four force carriers are listed in table 1.1.
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electromagnetism weak interaction strong interaction gravity
Sources charge weak charge color mass

Intensity e2

~c
' 1

137
(

mpc

~ )2 G
~c
∼ 10−5 g2

~c
' 10

Gm2
p

~c
∼ 10−38

Force range Long range short range short range long range
(m) ∞ ∼ 10−18 10−15 ∞

photon W±, Z0 Gluon Graviton(in theory)
propagator

γ W±,Z0 g G

JP 1− 1? 1− 2+

MW± = 80.4
Mass(GeV) Mγ = 0

MZ0 = 91.2
Mg = 0 MG = 0

Electro-Weak Dynamics Quantum Chromodynamics Geometric Dynamics
Theories

(EW) (QCD) (General relativity)

Table 1.1: Properties of four interactions

Since the last 70 years, physicists are trying to unify these four interactions. Varies
attempts have been tried in different directions. But the most successful ones belong to
Gauge Theory. Electro-Weak theory is SU(2)L×U(1)Y Gauge Theory. Quantum Chromo
Dynamics is SUc(3) Gauge Theory. These two theories constitute the Standard Model,
which is a SUc(3) × SU(2)L × U(1)Y Gauge Theory. Higgs particle is a scalar which
gives masses to gauge bosons through the Higgs mechanism and gives mass to fermions
by Yukawa Coupling [3].

1.1.1 Symmetry in particle physics

The phenomena of symmetry have existed since time begins. Such as day after day, year
after year. Also phenomena of symmetry are very common in our lives. Such as sun in
the sky, Si He Yuan in Beijing, the rolling wheel. Symmetry picture is popular. Such as
most people prefer symmetrical plots, symmetrical face. So, in our lives, people are likely
using symmetry approach to describe things.

Although the symmetry is beautiful, the symmetry breaking makes people more
profound understand the nature of things. Like the symmetry of sunrise, let people believe
that the earth is the center of the universe, because it is in people’s love of symmetry, but
those strange tracks and movements of planets and stars destroy the symmetry of Earth
as the center, so that people come to the awareness of sun as the center, and now the
knowledge of galaxies and even the knowledge of the entire universe.

In particle physics, symmetry and symmetry breaking are also ubiquitous. Field
theories are used to describe the dynamics of particle physics. According to Noether’s
theorem, any differentiable symmetry of the action of a physical system has a corre-
sponding conservation law. The action of a physical system is an integral of a so-called
Lagrangian function, from which the system’s behavior can be determined by the principle
of least action. Thus, the invariance of time-space transformation accounts for energy and
linear momentum conservation of this system. The invariance of Lorentz transformation
accounts for angular conservation. Gauge transformation invariance is one of the basic
transformations of field.

Gauge Transformation: Under the rotation of internal space, if the field compo-
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nent of φσ(x) with the transformation of:

φσ(x) → φ′σ(x) = exp[−iθαTα
σρ]φρ(x) . (1.1)

of which Tα matrices are the generators of gauge group G. There is one conserved current
for every generator. This group is non Abelian. Their commutation relations are:

[Tα, T β] = ifαβγT γ (1.2)

Where fαβγ are the group structure constants of SU(3). The transformation satisfy
the form described above is called gauge transformation. If the Group Parameters θα is
time-space independent constant, it is a global gauge transformation. If θα is time-space
dependent function of θα(x), it is a local gauge transformation.

Gauge Field: Unfortunately, the transformations of normal Lagrangian can not
pass the derivatives of gauge invariance if θα(x) is time-space dependent. In order to get
a local gauge invariant symmetry, the gauge transformation Lagrangian density can be
written as:

L = −1

4
Fα

µ,νF
µ,ν,α . (1.3)

Of witch Fα
µ,ν is the strength of gauge field, and it is defined as:

Fα
µ,ν = ∂µA

α
ν − ∂νA

α
µ + gfαβγAβ

µAγ
ν , (1.4)

This Lagrangian describes particles of spin 1, such as photon, intermediate bosons,
gluons. And g is the coupling constant - a quantity defining the strength of an interaction.
However, If mass term of 1

2
M2

AAµA
µ added in this Lagrangian, it is not invariant with

the gauge transformation of equation 1.1. Since there is no way to add the square term
of field Aα

µ(x), it means that all the gauge bosons that described by this Lagrangian are
massless. While in fact, W±, Z0 intermediate bosons have masses ∼ 80− 90GeV . So, the
Higgs mechanism described in the following section was introduced to solve this problem.

1.1.2 Higgs mechanism

Due to the constraint of gauge invariance, the Lagrangian of gauge field can not contain
square term of the field. It results that gauge particles are massless in this theory. Therefor
this Gauge Theory is not the exact description of intermediate bosons since they have
masses. To solve this problem, the Higgs mechanism has been introduced.

1.1.2.1 Spontaneous symmetry breaking and Goldstone particles

Consider a simple real scaler field φ(x) with a usual Lagrangian:

L =
1

2
∂µφ∂µφ− V (φ), V (φ) =

1

2
µ2φ2 +

1

4
λφ4 , (1.5)

It is invariant under the internal space reflection transformation of φ(x) → −φ(x)
since there is no odd power item of this Lagrangian. If the coefficient of mass term µ2 < 0,
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it is the the Higgs field. Due to the potential bound condition, the self coupling coefficient
λ must be greater than zero. So, the potential V (φ) is symmetrical of its internal space.
But the minimum V (φ) is not any more at φ(x)=0(see figure 1.2).

Figure 1.2: The potential V of the Higgs field φ

The vacuum expectation value (vev) of φ2 is defined as < 0|φ2|0 >≡ φ2
0 = −µ2

λ
≡ v2.

In order to interpret correctly the theory, we expand the Lagrangian around one of the
minimal v by a translation transformation of φ(x):

φ(x) = φ′(x) + v , (1.6)

Then, the Lagrangian of Higgs field becomes:

Lφ′ =
1

2
∂µφ′∂µφ′+ µ2φ′2 − λvφ′3 − 1

4
φ′4 , (1.7)

This is a scalar field with a real mass of
√
−2µ2 instead of virtual mass i

√
−µ2

before transformation. And it has cubic and fourth order self coupling terms. So, this
Lagrangian is not invariant under the reflection transformation of its internal space. Gold-
stone theorem indicates that: for each generator of the symmetry that is broken, there
is one massless(light if the symmetry was not exact) scalar particle - called a Goldstone
boson. For O(N) rotation group, there are 1

2
n(n− 1) generators, of which 1

2
(n− 1)(n− 2)

generators are vacuum invariant transformations, and (n− 1) generators of the symmetry
that is broken. So, there exist (n− 1) massless Goldstone particles. In gauge theory, the
Goldstone bosons are ”eaten” by the gauge bosons. The latter become massive and their
new, longitudinal polarization is provided by the Goldstone boson.
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1.1.2.2 Higgs mechanism

In Electro-Weak theory, the Lagrangian of free boson can be written as:

Lboson = −1

4
Wα

µνW
µν
α − 1

4
BµνB

µν , (1.8)

of which:

Wα
µ,ν = ∂µW

α
ν − ∂νW

α
µ + gfαβγW β

µ W γ
ν , (1.9)

Bµ,ν = ∂µBν − ∂νBµ , (1.10)

W α
µ,ν ,α = 1, 2, 3 are the field strength of SU(2)L vector bosons. Bµ,ν is the field

strength of U(1)Y vector boson. Together with the Lagrangian of Higgs scalar:

LS = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2 , (1.11)

of which

Dµ = ∂µ − ig2
τα

2
Wα

µ − ig1
1

2
Bµ , (1.12)

It already includes the interaction term between Higgs field and SU(2)L,U(1)Y vector
field. Expand Higgs field according to its four compartments, after the vev calculation
and local gauge transformation, we define:

W± =
1√
2
(W 1 ∓ iW 2) (1.13)

Zµ =
g2W

3
µ − g1Bµ√
g2
1 + g2

2

(1.14)

Aµ =
g2W

3
µ + g1Bµ√
g2
1 + g2

2

(1.15)

After these calculation of Lboson +LS, and from the square terms of W±, Z, A fields,
one can obtain the mass term for each particle as:

M±
W =

1

2
vg2, MZ =

1

2
v
√

g2
1 + g2

2, MA = 0 , (1.16)

Now, in SU(2)L + U(1)Y → U(1)Q spontaneous symmetry breaking gauge theory,
the Goldstone bosons are ”eaten” by the gauge bosons W± and Z. The gauge bosons
longitudinal polarization is provided by the Goldstone bosons, corresponding to the bro-
ken generators, which gives the gauge bosons masses and the associated necessary third
polarization degree of freedom. Since U(1)Q does not break its symmetry, photon remains
massless and has only transverse components.
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1.1.3 Yukawa Coupling of top quark and Higgs

Under the framework of Standard Model, fermions obtain masses from Yukawa Coupling
with Higgs. The Lagrangian of fermions can be written as:

LFermion = −
∑
F,σ

gF,σ√
2

(
ψL

F φψR
F,σ + ψR

F,σφψL
f

)
(1.17)

of which g is the Yukawa Coupling constant. L and R denote left hand and right
hand Dirac wave function respectively. F denotes the generations of fermions and σ
denotes the spin. After similar transformations and simplifications as section 1.1.2.2, one
gets:

LY ukawa = −(1 +
h

v
)
∑

F

(
mF ψF ψF

)
(1.18)

So, the mass term of fermions are:

mF =
vgF√

2
(1.19)

of which, gF is the corresponding fermion to Higgs Yukawa Coupling constant. v is
the Higgs field vacuum expectation value, which is about 246 GeV. Equation 1.19 shows
that gF is independent of Higgs mass, and proportional to the mass of its corresponding
fermion. In Standard Model. The heaviest quark is top, with a mass about 172 GeV.
Which means that top Yukawa Coupling constant is the largest one, about one, and
therefor will be most probably the first Yukawa Coupling constant that could be measured
experimentally.

1.1.4 Quantum Chromo Dynamics(QCD)

Quantum Chromo Dynamics is a non-abelian gauge field theory of the strong interaction
compartment of SU(3) × SU(2) × U(1) Standard Model. It describes the dynamics of
colored quarks and gluons. A quark of special flavor has three different color states, while
gluons have 8 possible color states. Hadrons are colorless combination of quarks, anti-
quarks and gluons. The dynamics of the quarks and gluons are controlled by the quantum
chromo dynamics Lagrangian. The gauge invariant QCD Lagrangian can be written up
to the gauge fixing terms as:

LQCD = −1

4
F (a)

µν F(a)µν + i
∑

q

ψ̄i
qγ

µ(Dµ)ijψ
j
q −

∑
q

mqψ̄
i
qψqi , (1.20)

F (a)
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν , (1.21)

(Dµ)ij = δij∂µ + igs

∑
a

λa
i,j

2
Aa

µ , (1.22)
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where gs is the QCD coupling constant, fabc are the structure constants of SU(3),
The ψi

q(x) are the 4-component Dirac spinors of each quarks of color i and flavor q. And
Aa

µ(x) are the Yang-Mills gluon fields. QCD has two peculiar properties:

� Asymptotic freedom: which means that in very high-energy reactions, quarks
and gluons interact very weakly. This prediction of QCD was first discovered in the
early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work
they were awarded the 2004 Nobel Prize in Physics.

� Confinement: which means that the force between quarks does not diminish as
they are separated. Because of this, it would take an infinite amount of energy to
separate two quarks; they are forever bound into hadrons such as the proton and
the neutron. Although analytically unproven, confinement is widely believed to be
true because it explains the consistent failure of free quark searches, and it is easy
to demonstrate in lattice QCD.

There are several methods in QCD calculations, one of them is Perturbative QCD,
which is based on the Asymptotic freedom and could be accurate at very high energies.
This can be tested with a certain accuracy at TeV energy scale.

1.1.5 Challenge of the Standard Model

The Standard Model is based on quark model and gauge theory. It successes in describing
strong interactions, weak interactions and electromagnetism, which provides an internally
consistent theory describing interactions between all experimentally observed particles,
only the predicted Higgs particle has not yet been found experimentally. SM is one of the
greatest achievements of physics in 20th century, and proved to be correct in the recent
30 years of precision experimental tests:

� In 1973, neutral current was predicted and confirmed shortly thereafter, in a neutrino
experiment in the Gargamelle bubble chamber at CERN.

� In 1974, the fourth quark -Charm quark- was discovered by Ting and Richter. Which
was highlighted by the rapid changes in high-energy physics at that time.

� In 1975, tau lepton was discovered by Perl, which extend leptons to be three gener-
ations.

� In 1979, three-jet events were observed at the electron-positron collider at DESY by
X.L. Wu and Ting. Which gives the evidence of gluons.

� In 1983, W± and Z0 were discovered by Rubbia at SPS, which are the intermediate
bosons that carrying weak forces.

� In 1995, Top quark was discovered at Fermi lab. It is the heaviest quark ever found.
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� During 1990 to 2000, LEP experiments performed precision tests on Standard Model,
including the running αs coupling constant, which proves the asymptotic freedom
predicted by the Standard Model.

Although the Standard Model gives answers to many questions raised in particle
physics, and predicts many particles confirmed by experiment. It is still not a complete
theory of fundamental interactions and still raised unanswered questions.

� The Standard Model can not be a complete theory, primarily because of its lack of
inclusion of the gravity, the fourth known fundamental interaction, but also because
of the eighteen numerical parameters (such as masses and coupling constants) that
must be put ”by experimental measurement” into the theory rather than being
derived from first principles. Of these 18 parameters, a small fraction of them
comes from gauge theory, relevant to the symmetry of physics. It needs deeper
understanding of these possible symmetries. Other free parameters come from the
Higgs field and breaking of symmetry, also need more studies. Higgs particles has
not yet been found experimentally, Higgs searching is one of the direct tests of
Standard Model.

� Similar as the periodic table of the chemical elements, leptons and quarks have some
properties in common. They may have more fundamental bases and structures. High
energy physics are approaching a finer structure of mater: the structure of quarks
and leptons. Also, the possible structure of force carriers are important research
area.

� How to understand the properties of leptons, quarks, force carriers of photon, inter-
mediate bosons, gluons, graviton, Higgs and the interactions between them, How to
develop a fundamental theory, which can unifies the experimental results and take
the Standard Model as proximation. These questions still need a long way to be
answered.

� Three generations of leptons and quarks have different properties, but they also
have same quantum numbers such as hyper charge and isospin. How to understand
the ”generations”, why there are 2 generations of unstable particles. Is there new
generations other than these three? All these need further experimental evidence
and studies.

� the asymmetry of mater and anti-mater in universe. Scientists predicts that about
14 billion years ago, when universe was born, the mater and anti-mater were gen-
erated equally. But now, the observed universe are mostly composed of mater, the
missing anti-mater need more studies.

There are great efforts of both theoretical and experimental researches exploring
whether the Standard Model could be extended into a complete theory of everything, at
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grand energy range. This area of research is often described by the term ”Beyond the
Standard Model”. Maybe one day, there will be a ”super standard model” that could
solve all these problems of Standard Model, from first principles.

1.2 Physics at TeV proton-proton collision

The Large Hadron Collider (LHC) is a particle accelerator located at CERN. It is a proton
proton collider at the designed center of mass energy of 14 TeV. The designed luminosity
is 1034cm−2s−1. The total reaction cross section at LHC is about 100mb, and the inelastic
reaction is about 109 per second [4]. Under such extreme hard environment, the Higgs
signal that we are most interested in only has about 10−10 of the total production cross
section. At this new experimental energy scale, there are many interesting physics that
can be studied.

1.2.1 QCD processes

QCD processes have the largest production cross section at LHC. There are two main goals
of QCD processes studies. One is precision measurement and tests of QCD predictions.
Additional constraints to be established by these tests. Such as parton density function in
the proton, or the running strong coupling constant αs tested at various energy scales. The
other main goal is that since QCD processes represent a major part of the backgrounds
to all other Standard Model processes or new physics, they need to be known precisely to
verify the deviations from QCD expectations.

1.2.2 Physics of electroweak gauge bosons

There will be abundant gauge bosons and gauge-boson pairs produced at LHC. Thanks to
the high statistics and center of mass energy, we can perform several precision measure-
ments at LHC, which will significantly improve the precision achieved at present machines.
Such as the W± bosons masses, and the measurement of Triple Gauge Couplings (TGCs).
Meanwhile, the measurement of these gauge boson production will be important to un-
derstand the underlying physics and the background prediction in new physics analysis.
In addition, these gauge bosons processes also be used to calibrate detector, such as using
Z → ee for the in situ calibration of the detector mass scale.

1.2.3 B physics

Under the energy scale of LHC, B quark pairs have a production cross section about
1% of the total reaction. B physics are focused on Standard Model precision testing by
measuring B-hadron decays, CKM matrix elements measurement(CP violation in B-meson
decays) and giving indirect evidence for new physics. There are many studies that can be
made of B-hadron production, such as b-jet differential cross-sections, differential cross-
sections of single particles in b-jets, production asymmetries, production polarisation,
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b-b correlations, bbg final states, doubly-heavy-flavoured hadrons, double b-quark-pair
production, and prompt J/Psi production.

1.2.4 Heavy quarks and leptons

The production cross section of top at LHC is about 833 pb [5]. Study of the top quark may
provide an excellent probe of the sector of electroweak symmetry breaking (EWSB), and
new physics hunting in either its production or decay. A large variety of top physics studies
will be possible once large statistics of top samples is accumulated: top mass precision
measurement, which will provide constraint on Higgs mass; top-antitop resonance; tt̄
spin correlations; the W → jj decay in top quark events provides an important in situ
calibration source for calorimetry at the LHC, and the b quark in top pair events provides
a possible b-jets ID and calibration source. Since top quark events will be the dominant
background in many searches for new physics at the TeV scale, precision understanding
its production rates and properties will be essential in new physics searching.

Searches for fourth generation of heavy quarks and leptons are also important at
LHC. The fourth generation of up and down quarks may appear in bound states produced
and decay similarly to top quarks.

1.2.5 Higgs Physics

One of the primary goals of LHC is Higgs particle hunting. And its properties mea-
surement once the Higgs was found. At LHC proton-proton collision, There are four
production mechanisms of Higgs:

� Associate production with W/Z: qq̄ → V + H

� Vector boson fusion: qq → V ∗V ∗ → qq + H

� Gluon-gluon fusion: gg → H

� Associated production with heavy quarks: gg, qq̄ → QQ̄ + H

Figure 1.2.5 shows the Feymann diagrams of the four Higgs production mechanisms.

The theoretical decay models of Higgs are H → γγ, H → bb̄, H → WW,H →
4leptons,H → tt̄. These channels could be discovery channels at different Higgs mass
range. From 100 GeV to 1 TeV, at early integral luminosity. Once Higgs is found, LHC
will perform Higgs properties measurements, such as the mass, width, Yukawa Couplings.
tt̄H, H → WW (∗) is one of the possible best channels that can measure top quark Yukawa
Coupling during the intermediate Higgs mass range between 120 and 200 GeV.
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Figure 1.3: Higgs production Feyman diagrams at hadron collider

1.2.6 SUSY and Physics beyond Standard Model

Supersymmetry(SUSY) is one of the best extensions of the Standard Model, and SUSY
particles hunting is one of the primary physics goals of LHC. SUSY is a theory that
introduce the symmetry between bosons and fermions, it predicts that for every particle,
there is a particle of same properties except the spin is 1/2 different, which is called
its super partner(Nevertheless, SUSY cannot be an exact symmetry since there are no
fundamental scalar particles having the same mass as the known fermions). That means
for each bosons, there exist a corresponding fermion, and vice-versa. SUSY solves several
puzzles compared to Standard Model, such as the calculation of radiative corrections to
the SM Higgs boson mass encounters divergences, which are quadratic in the cut-off scale
Λ at which the theory stops to be valid and New Physics should appear. It is the so-called
hierarchy problem. The Minimal Supersymmetric Standard Model(MSSM) predicts two
doublets of Higgs fields, which leads to five Higgs particles. Two CP-even h,H bosons, a
pseudoscalar A boson and two charged H± bosons. Of which the lightest Higgs mass is
less than MZ [6].

Other theories predictions beyond standard model, such as Technicolor theory, can
be discovered at LHC. It predicts that the high mass of top quark, partly due to kinematics
reason, which could be checked by direct measurement of the Yukawa Coupling between
top quark and Higgs in channel tt̄H, H → WW (∗) [7].

1.3 Motivations of thesis

1.3.1 Research background

Standard Model has been tested and proved to be correct in the recent decades. While
the most important particle -Higgs- that predicted in SM has not yet been found ex-
perimentally. Higgs searching and Higgs properties measurements are the physics goals
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of recent experiments. LEP experiments performed the precision tests of SM electro-
weak parameters(Figure 1.4), and gave the constrains on Higgs mass(Figure 1.5 shows
the constraints on Higgs mass of effective weak mixing angle sin2 θlep

eff and MW ). All
these constraints come to a upper limit of Higgs mass less than 207 GeV. Meanwhile,
the direct searching at LEP gives the Higgs mass lower limit is 114.4 GeV [8]. Further
more, due to triviality bound and the vacuum stability bound, Higgs mass constraints
dependent on the new physics energy scale Λc. If Λc ∼TeV, then, Higgs mass should be
in the range of 50GeV ≤ MH ≤ 800GeV . If Λc ∼ ΛGUT , Higgs mass is constrained to
130GeV ≤ MH ≤ 180GeV (figure 1.7). So, a Higgs of intermediate mass is favored.

No Higgs signal has been found in all the experiments until now. The primary goal
of LHC is Higgs searching and precision tests of electro-weak theory. It allows Higgs
searching from the energy range of ∼100 GeV to 1 TeV(Figure 1.8). LHC will take data
in summer of 2008. Once Higgs is discovered at LHC, the properties measurement will
became an important goal of experiment. As one of the fundamental properties of Higgs,
Yukawa Coupling can give the information of fermions mass origin. In the framework
of Standard Model, from equation 1.19, one can get that gt ≈ 1, It is the biggest one of
fermion Higgs Yukawa Coupling constants. And it is likely to be the first Yukawa Coupling
that could be measured experimentally. Further more, gt is an important parameters that
can distinguish SM Higgs and Multi-Higgs bosons of other model. The TechniColor theory
predicts that high top quark mass is partly due to dynamics. Direct measurement of Higgs
to Top quark Yukawa Coupling will give important information to distinguish this.

1.3.2 Historical status of the study

As early as 2000, in a Higgs Working Group Summary Report, D. Zeppenfeld et al stud-
ied the feasibilities of measuring Higgs Yukawa Couplings at LHC. They proposed the
method of combining the results of different Higgs decay channels to measure Higgs to
top quark Yukawa Coupling [10, 11, 12, 13, 14]. After that, studies of parton level and
fast simulation were performed, focusing on the feasibility of measuring gt through the
channel of tt̄H [15, 16]. In the work of J. Leveque et al in 2002, based on ATLAS detector
fast simulation(Atlfast), tt̄H, H → WW channel is studied in the Higgs mass between 120
and 200 GeV, and an accuracy of gt that can reach a maximum of 13% for mH = 160GeV .
However, the fast simulation base on random sampling quantifies is a very crude simula-
tion of the ATLAS detector that can not be used for refined analysis. It did not include
trigger and pileup effects, and isolation effects are not accurately accounted which re-
sults in the underestimation of tt̄ background. Moreover, all these studies did not include
systematics.

The ATLAS full simulation software has recently provide with an accurate descrip-
tion of the real detector behavior. A study of gt measurement based on full simulation was
needed before data taking in 2008 with tt̄H, H → WW channel. This thesis work based
on Computing System Commissioning(CSC) full simulation Monte Calor data, fulfill this
need. It includes full trigger, pileup and systematics uncertainties studies. However, these
studies especially the systematics are relevant to the performance of real detector. The
study presented in chapter 5 of 2004 ATLAS detector Combined Test Beam data pro-
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Figure 1.4: Summary of electroweak precision measurements at LEP1, LEP2, SLC and
the Tevatron; The SM fit results, which have been derived including all radiative correc-
tions, and the standard deviations are also shown [9]
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Figure 1.5: The measurement [vertical band] and the theoretical prediction [the hatched

bands] for sin2 θlep
eff and MW as a function of the Higgs boson mass [9]

vides a unique window to understand the real detector performance with a real detector
configuration.

1.3.3 Motivation of the study

Once Higgs is found, the properties measurements of Higgs will become important. gt is
one of Higgs most important properties, which can tell whether it is a SM like Higgs or not.
tt̄H is the best physics channel of gt measurement. According to SM. At the intermediate
Higgs mass range of 120 and 200 GeV, Higgs mainly decays to WW,ZZ, ττ, γγ, bb̄. And
the branching ratio of Higgs decays is dominated by H → WW [17]. So, ttH, H → WW
is the most promising channel for gt measurement. In the Higgs mass range of 130 to 200
GeV, ttH, H → WW will gives an accuracy of ∼25% for gt measurement(see Chapter 3).
For Higgs mass less than 130 GeV, ttH, H → WW combined with ttH, H → bb̄ studies,
give an accurate gt measurement. Furthermore, ttH, H → WW results can be combined
with other channels like H → γγ. It can give the ratios of different Higgs decay model
partial width, which are important input for Higgs properties study and new physics
searching.

Systematics uncertainties are the dominant error in gt measurement at tt̄H, H →
WW . These systematics uncertainties concerning to calorimeter, such as jet energy scale,
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Figure 1.7: The triviality (upper) bound and the vacuum stability (lower) bound on the
Higgs boson mass as a function of the New Physics or cut off scale Λc for a top quark
mass mt = 175±6 GeV and αs(MZ) = 0.118±0.002; the allowed region lies between the
bands and the colored/shaded bands illustrate the impact of various uncertainties [3]

electron identification efficiency, are important systematics uncertainties sources. The
knowledge about the performance of calorimeter, especially the electromagnetic calorime-
ter, are essential in this analysis. In the second half of this thesis, analysis of Combined
test beam very low energy electron is presented, to understand the energy reconstruction
and linearity of electron.

This thesis is the first study using ATLAS full simulation MC data, of the tt̄H, H →
WW (∗) with two leptons and three leptons final states. A special Cone isolation is pro-
posed and developed to suppress background. This analysis on tt̄H, H → WW (∗) also
includes a detailed studies on systematics uncertainties.

Toward a better understanding of the detector performance and to compare them to
full simulation, 2004 ATLAS detector Combined Test Beam data have been analyzed. The
chapter 5 present the full analysis of the linearity of VLE electrons using Beam Chamber
information and the default calculation. Then, a 5×5 multiple seeding clustering method
is studied, and given the calibration constants obtained to simulated data. It show that
this calibration method may improve the energy linearity in the reconstruction of electrons.
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Figure 1.8: ATLAS discovery potential for a Higgs mass range in [100, 1000]GeV [7]

1.3.4 Structure of this thesis

This thesis include the work of my doctoral studies of 2005 to 2008. The contents of each
chapter is:

� Chapter one: Introduction of the Higgs searching and gt measurements in particle
physics. Including theoretical motivations and historical status.

� Chapter two: Introduction of Large Hadron Collider and ATLAS detector equip-
ments.

� Chapter three: The studies of ttH, H → WW .

� Chapter four: Introduction of ATLAS Combined Test Beam.
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� Chapter five: Very Low Energy(VLE) electron linearity studies by using beam cham-
ber at single electron level and one possible improvement of the calibration proce-
dure.

� Chapter six: Summary and prospects.
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Chapter 2

Introduction of LHC and ATLAS
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2.1 The Large Hardron Collider(LHC)

The Large Hadron Collider(LHC) is an accelerator located at CERN, at the boundaries
of France and Switzerland, 20 kilometers from the center of Geneva. The concept of this
machine was started in the meddle of the 80s. Before LEP start taking data, scientists
already thought of a machine at a high center of mass energy and luminosity that no
machine had ever explored, to uncover the structure of mater to a deeper understanding.
This project was approved by CERN Council in December 1994 and started its construc-
tion from then. Now, this miracle has almost become true and will start running this
summer.

The LHC is a proton-proton collider. Its center of mass energy is 14 TeV, hosted in
circle tunnel of about 27 km, 100 meters underground(Figure 2.1). In order to keep the 7
TeV proton beam in track, there are about 1232 superconducting dipole magnets in the
tunnel. Each of them is 14.2 meters long, and the magnetic field at its maximum is 8.4
tesla [4].

The luminosity of collider can be calculated from:

L =
1

4π

N1 ·N2 · f
σx · σy · t (2.1)
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Figure 2.1: over view of the CERN accelerator facilities [18]
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Figure 2.2: Channels cross section as a function of center mass [19]
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Where N1, N2 are the protons numbers in the two crossing bunches. σx, σy are the
transverse sizes of the bunches, f is the fraction of effective bunches, t is the time between
two neighboring collisions. The design luminosity of LHC is 1034 cm−2s−1. There are
abundant physics at the energy scale of LHC. Each cross of two bunches will have an
average of 23 inelastic interactions of proton to proton. All these reactions in one bunch
crossing is defined as one event. Figure 2.2 shows the production cross section of possible
physics channels as a function of the center of mass energy at proton-proton collision.
Under the center of mass energy of LHC, the total production cross section is about
100mb. Table 2.1 lists the main design parameters of LHC.

LHC parameters value LHC parameters value
Center mass energy 14 TeV Dipole field 8.4 T

Luminosity 1034cm−2s−1 Beam-Beam parameter 0.0034
Injection energy 450 GeV circulating current 0.53 A

number of bunchs 2835 Particles per bunch 1.051011

stored energy 334MJ bunch space 25ns
Beam Lifetime 22h Luminorsity Lifetime 10h

Table 2.1: part of LHC important design parameters

The main physics goals of LHC are Higgs searching and precision tests of electro-
weak theory. There are four detectors at LHC: ATLAS, CMS, ALICE and LHC-b, of which
ATLAS and CMS are general purpose detectors. ALICE is a special purpose detector for
heavy ion collision physics. LHC-b is a B physics dedicated detector.

2.2 The ATLAS detector

2.2.1 ATLAS detector requirements to fulfill the physics goals

The ATLAS(A Toroidal ApparatuS) detector is a general purpose detector at LHC. The
primary physics goals of this experiment are Higgs searching and electro-weak precision
tests, and possible new physics searching. Due to the high luminosity, extreme center
of mass energy, and high background over signal ratio at LHC, ATLAS must satisfy the
constrains as following:

� Due to the extreme experimental conditions at LHC, ATLAS detector must uses
very fast and radiation-hard electronics and sensors. In order to reduce the overlap
at high particle fluxes, all sub detectors need fine granularity.

� Large acceptance of pseudorapidity and azimuthal angle coverage are required, to
tag and reconstruct physics events of particular interest.

� Good charge particle identification and momentum resolution are required. Mean-
while, in order to reconstruct and identify τ lepton and b − jets, good vertexing
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ability is needed for vertex detector near the interaction point, to precisely measure
the secondary vertexes.

� Good energy measurement and resolution are needed in the electromagnetic calorime-
ter, in order to identify photon, electron. And almost full azimuthal coverage of
hadron calorimeters is needed, in order to give the precise measurement of missing
transverse energy.

� High muon identification efficiency and good muon momentum resolution, of a wide
range for both coverage and energy are essential in physics with final states that
include muons. Good charge determination even for very high energy muons is also
needed.

� Heavy gauge bosons W ′ and Z ′ may be produced at LHC. Considering their leptonic
decays, ATLAS needs good identification, energy resolution and charge separation
power at the level of several TeV.

� In order to reduce the events rates to an acceptable level, and keep as much as pos-
sible interesting physics events, a high efficiency trigger system is needed to handle
the 40 MHz input to an output of about 200Hz.

2.2.2 ATLAS designed performance

To fulfill the above requirements, the designed ATLAS performance are list in table 2.2:

Detector Component Required Resolution η Coverage
Measurement Trigger

Tracking σpT
/pT = 0.05%pT ⊕ 1% ±2.5

EM calorimetry σE/E = 10%/
√

E ⊕ 0.7% ±3.2 ±2.5
Hadronic calorimetry

barrel and end-cap σE/E = 50%/
√

E ⊕ 3% ±3.2 ±3.2

forward σE/E = 100%/
√

E ⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9
Muon spectrometer σpT

/pT = 10% at pT =1TeV ±2.7 ±2.4

Table 2.2: General performance goals of the ATLAS detector. Note that, for high− pT

muons, the muon-spectrometer performance is independent of the inner-detector system.
The units for E and pT are in GeV [20].
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2.2.3 ATLAS overview

The ATLAS detector is composed of an Inner Detector(ID), a calorimeter system, a muons
spectrometer, a trigger and Data Acquisition(DAQ) system. Its dimension are 44 meters
long and 25 meters high, for a total of about 7000 tons. The ATLAS detector is located at
the IP1(impact point 1) of the tunnel of LHC, about 100 meters underground. Figure 2.4
and 2.3 show the overview of the ATLAS detector and the schematic of its components.
The function of the Inner Detector is for vertexing, charge particles tracking and identi-
fication. And the Calorimeter system is used for photon, electron, jets identification and
energy measurements, the Muon spectrometer is used to track and measure the energy
of muons. Magnet system that provides the bending power on charged particles. The
coordinate system of ATLAS is defined as following: the beam direction defines the z-axis
and the x− y plane is transverse to the beam direction. The positive x− axis is defined
as pointing from the interaction point to the center of the LHC ring and the positive
y-axis is defined as pointing upwards. The side − A of the detector is corresponding to
positive z and side − C to negative z. The azimuthal angle φ is measured around the
beam axis, and the polar angle θ is the angle from the beam axis. The pseudorapidity
is defined as η ≡ − ln (tan (θ/2)). The transverse momentum pT , the transverse energy
ET , and the missing transverse energy ET are defined in the x-y plane unless stated
otherwise. The distance ∆R in the pseudorapidity-azimuthal angle space is defined as
∆R ≡

√
∆η2 + ∆φ2 [20]. The following sections will introduce each component of the

ATLAS detector.

2.2.3.1 Inner Detector

The design goals of ATLAS ID are: Large coverage in azimuthal and pseudorapidity.
robust pattern recognizability. Good momentum resolution and secondary vertexing for
charged particles in the acceptance of |η| < 2.5 and above a pT threshold(the threshold
is usually 0.5 GeV, while it is possible to have 0.1 GeV at early stages for some minimal
deviation events measurements). Meanwhile, it can provide electron identification of
|η| < 2.0 and energy between 0.5 GeV and 150 GeV, even at high luminosity runs of
LHC [21] [22]. Its construction reaches the utmost of the modern technics.

ID hosts inside one cylinder of dimension ±3512 mm long, semidiameter of 1150
mm. It is in a solenoid of magnet 2 tesla field (Figure 2.5). The parameters are shown in
table 2.3, and the plan view are shown in figure 2.6. Figure 2.7 and figure 2.8 demonstrate
a 10 GeV track travels through the barrel and end cap ID sensors separately.

The ID consists of three independent but complementary sub-detectors. At small
radii region, there are silicon pixel layers and solid stereo pairs silicon microstrip layers to
achieve a robust pattern recognition. At larger radii region, there are Transition Radiation
Tracker(TRT), which is composed of multi-layers, up to 73 layers of straws interleaved with
fibres (barrel) and 160 straw planes interleaved with foils (end-cap). All charged tracks
with pT > 0.5 GeV and |η| < 2.0 will traverse at least 36 straws of the most regions,
which provide a continuous track and therefore enhance the pattern recognition as well
as improve the electron identification performance. Table 2.4 lists the track parameters
resolution of each ID sub-detector.
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Figure 2.3: ATLAS detector components
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Figure 2.4: Overview of ATLAS detector

Figure 2.5: Overview of ATLAS inner detector
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Item Radial extension(mm) Length(mm)
Overall ID envelope 0 < R < 1150 0 < |z| < 3512
Beam-pipe 29 < R < 36
Pixel Overall envelope 45.5 < R < 242 0 < |z| < 3092
3 cylindrical layers Sensitive barrel 50.5 < R < 122.5 0 < |z| < 400.5
2 x 3 disks Sensitive end-cap 88.8 < R < 149.6 495 < |z| < 650

SCT Overall envelope 255 < R < 549(barrel) 0 < |z| < 805
251 < R < 610(endcap) 810 < |z| < 2797

4 cylindrical layers Sensitive barrel 299 < R < 514 0 < |z| < 749
2 x 9 disks Sensitive end-cap 275 < R < 560 839 < |z| < 2735

TRT Overall envelope 554 < R < 1082(barrel) 0 < |z| < 780
617 < R < 1106(endcap) 827 < |z| < 2744

73 straw planes Sensitive barrel 563 < R < 1066 0 < |z| < 712
160 straw planes Sensitive end-cap 644 < R < 1004 848 < |z| < 2710

Table 2.3: Main parameters of inner detector

Figure 2.6: Plan view of a quarter-section of the ATLAS inner detector showing each of
the major detector elements with its active dimensions and envelopes. The labels PP1,
PPB1 and PPF1 indicate the patch-panels for the ID services.
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Figure 2.7: Drawing showing the sensors and structural elements traversed by a charged
track of 10 GeV pT in the barrel inner detector (η = 0.3). The track traverses successively
the beryllium beam-pipe, the three cylindrical silicon pixel layers with individual sensor
elements of 50 × 400µm2, the four cylindrical double layers (one axial and one with
a stereo angle of 40 mrad) of barrel silicon microstrip sensors (SCT) of pitch 80 µm
and approximately 36 axial straws of 4 mm diameter contained in the barrel transition
radiation tracker modules within their support structure.
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Figure 2.8: Drawing showing the sensors and structural elements traversed by two
charged tracks of 10 GeV pT in the end-cap inner detector (η = 1.4 and 2.2). The
end-cap track at η = 1.4 traverses successively the beryllium beam-pipe, the three cylin-
drical silicon pixel layers with individual sensor elements of 50 × 400µm2, four of the
disks with double layers (one radial and one with a stereo angle of 40 mrad) of end-cap
silicon microstrip sensors (SCT) of pitch ∼ 80µm and approximately 40 straws of 4 mm
diameter contained in the end-cap transition radiation tracker wheels. In contrast, the
end-cap track at η = 2.2 traverses successively the beryllium beam-pipe, only the first of
the cylindrical silicon pixel layers, two end-cap pixel disks and the last four disks of the
end-cap SCT. The coverage of the end-cap TRT does not extend beyond |η| = 2

Track Parameter 0.25 < |η| < 0.5 1.50 < |η| < 1.75
σx(∞) pX (GeV) σx(∞) pX (GeV)

Inverse transverse momentum(1/pT ) 0.34 TeV −1 44 0.41 TeV −1 80
Azimuthal angle (φ) 70 µ rad 39 92 µ rad 49
Polar angle(cot θ) 0.7 ×10−3 5.0 1.2 ×10−3 10
Transverse impact parameter(d0) 10 µ m 14 12 µ m 20
Longitudinal impact parameter(z0 × sin θ) 91 µ m 2.3 71 µ m 3.7

Table 2.4: Expected track-parameter resolutions (RMS) at infinite transverse momen-
tum, σx(∞), and transverse momentum, pX , at which the multiple-scattering contribu-
tion equals that from the detector resolution. The momentum and angular resolutions
are shown for muons, whereas the impact-parameter resolutions are shown for pions. The
values are shown for two η-regions, one is in the barrel inner detector where the amount of
material is close to its minimum and one is in the end-cap where the amount of material
is close to its maximum.



32 Introduction of LHC and ATLAS

The high radiation environment is a challenge for inner detector sensors, the elec-
tronics, and the mechanical structure. Over the life time of 10 years of the designed
detector, pixel inner vertexing layer must be replaced after approximately three years of
operation at design luminosity. The other pixel layers and the pixel disks must withstand
up to ∼ 8× 1014cm−2 1MeV neutron equivalent fluency(Fneq, the equivalent radiation of
1 MeV neutron). While the innermost parts of the SCT must withstand ∼ 2× 1014cm−2

Fneq. In order to maintain an adequate noise performance after radiation damage, the
silicon sensors must be kept at low temperature of −5◦C ∼ −10◦C by a cooling material
of −25◦C. In contrast, the TRT is designed to operate at room temperature.

The above operating specifications imply requirements on the alignment precision
which are summarized in table 2.5 and which serve as stringent upper limits on the silicon-
module build precision, the TRT straw-tube position, and the measured module placement
accuracy and stability.

� Pixel

The pixel modules are 2715 arranged in three barrel layers and two end-caps each
with three disk layers. A total of 112 barrel staves and 48 end-cap sectors (8 sectors
per disk) form the barrel and disk layers. The minimum pixel module(innermost)
size is 50×400 mm2, dictated by the readout pitch of the front-end electronics. There
are 47232 pixels on each sensor, but for reasons of space there are four ganged pix-
els in each column of the front-end chip, thus leading to a total of 46080 readout
channels. Each pixel of a sensor is bump-bonded through a hole in the passivation
layer to an element of the front-end readout integrated circuit as part of the module.

� SCT

SCT consists of 4088 modules tiling four coaxial cylindrical layers in the barrel region
and two end-caps each containing nine disk layers. The modules cover a surface of
63m2 of silicon and provide almost hermetic coverage with at least four precision
space-point measurements over the fiducial coverage of the inner detector.

The 2112 barrel SCT modules use 80 µm pitch micro-strip sensors, The sensors are
connected to binary signal readout chips. The main parameter of SCT are listed in
table 2.6.

� TRT

The TRT contains up to 73 layers of straws interleaved with fibres (barrel) and 160
straw planes interleaved with foils (end-cap), which provide transition radiation for
electron identification. All charged tracks with pT > 0.5GeV, |η| < 2.0 will traverse
at least 36 straws, except in the barrel-end-cap transition region(0.8 < η < 1.0).
where this number decreases to a minimum of 22 crossed straws. Typically, seven
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Item Intrinsic accuracy Alignment tolerances
(µ m) (µ m)

Radial(R) Axial(z) AZIMUTH(R-φ)
Pixel
Layer-0 10(R-φ) 115(Z) 10 20 7
Layer-1 and -2 10(R-φ) 115(Z) 20 20 7
Disks 10(R-φ) 115(R) 20 100 7

SCT
Barrel 17(R-φ) 580(Z)1 100 50 12
Disks 17(R-φ) 580(R)1 50 200 12

TRT 130 302

1. Arises from the 40 mrad stereo angle between back-to-back sensors on the SCT modules

with axial (barrel) or radial (end cap) alignment of one side of the structure

The z-resolution results from two axial-stereo points with opposite stereo directions

The result is pitch-dependent for end cap SCT modules

2. The quoted alignment accuracy is related to the TRT drift-time accuracy

Table 2.5: Intrinsic measurement accuracies and mechanical alignment tolerances for the
inner-detector sub-systems, as defined by the performance requirements of the ATLAS
experiment.

to ten high-threshold hits from transition radiation are expected for electrons with
energies above 2 GeV.

The barrel TRT is divided into three rings of 32 modules each, supported at each
end by a space frame, which is the main component of the barrel support struc-
ture. Each module consists of a carbon-fibre laminate shell and an internal array of
straws embedded in a matrix of 19 µm-diameter polypropylene fibres serving as the
transition radiation material. The straws, form a uniform axial array with a mean
spacing of ∼7 mm. The module shells are non projective to reduce the dead region
for high pT tracks

The dimensional specifications are set by the intrinsic straw R−φ resolution of 130
µm. implying that each wire position is constrained to within ±50µm. The module
shell, made of 400 µm thick carbon fibre with high thermal conductivity and flat to
within 250 µm, is measured to satisfy maximum distortions of < 40µm under full
load.
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Parameter Description
Strips 2 × 768 active strips, ± 20 mrad stereo rotation
Nominal resolution 17 µ m in-plane lateral(R-φ)

580 µ m in-plane longitudinal(z or R)
Mudule dimensions
-barrel Active length 126.09 mm + 2.09 mm dead space between sensors
-outer end-cap Active length 119.14 mm + 2.09 mm dead space, radius 438.77 - 560.00 mm
-middle end-cap Active length 115.61 mm + 2.09 mm dead space, radius 337.60 - 455.30 mm
-short-middle end-cap Active length 52.48 mm, radius 402.82 - 455.30 mm
-inner end-cap Active length 59.1 mm, radius 275.00 - 334.10 mm
Specified build Barrel back-to-back in plane: < 8 µ m(lateral) < 20 µ m(longitudinal)
tolerance End-cap back-to-back in plane: < 5 µ m(lateral) < 10 µ m(longitudinal)

Barrel out-of-plane(module thickness and sensor bowing): < 70 µ m
Barrel envelope: < 200 µ m
End-cap envelope: < 115 µ m
Barrel module fixation points with respect to module center: < 40 µ m
End-cap module fixation points with respect to module center: < 20 µ m

Build accuracy Barrel back-to-back in plane: ± 2.1 µ m(lateral)± 2.7 µ m(longitudinal)
of accepted End-cap back-to-back in plane: ± 1.6 µ m(lateral)± 1.3 µ m(longitudinal)
modules(RMS) Barrel module thickness: ± 33 µ m

Barrel out-of-plane(sensor bowing): ± 9 µ m
End-cap module thickness: ± 15 µ m
End-cap out-of-plane(sensor bowing): ± 20 µ m
Barrel module fixation points with respect to module center ± 10 µ m
End-cap module fixation points with respect to module center ± 6 µ m

Hybrid power 5.5 - 7.5 W
consumption
Sensor power Up to 460 V bias, < 1W at -7◦C
consumption

Table 2.6: SCT barrel and end-cap module specifications and the RMS build accuracy
for accepted modules. The barrel out-of-plane bowing specifications and the measured
results are with respect to an average module shape.
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2.2.3.2 Calorimeter system

The ATLAS calorimeters consist of a number of sampling detectors with full φ-symmetry
and coverage around the beam axis. The calorimeters closest to the beam-line are housed
in three cryostats, one barrel and two end-caps. The barrel cryostat contains the electro-
magnetic barrel calorimeter, whereas the two end-cap cryostats each contains an electro-
magnetic end-cap calorimeter (EMEC), a hadronic end-cap calorimeter (HEC), located
behind the EMEC, and a forward calorimeter (FCal) to cover the region closest to the
beam. All these calorimeters use liquid argon as the active detector medium; liquid argon
has been chosen for its intrinsic linear behavior, its stability of response over time and its
intrinsic radiation-hardness [23] [24].

Figure 2.9: The Cut-away view of ATLAS calorimeter

The precision electromagnetic calorimeters are lead-liquid argon detectors with ac-
cordion shape absorbers and electrodes. This geometry allows to have several active
layers in depth, three in the precision-measurement region(0 < |η| < 2.5) and two in the
2.5 < |η| < 3.2 region and in the overlap region between the barrel and the EMEC. In
the precision-measurement region, an accurate position measurement is obtained by finely
segmenting the first compartment in η. The η-direction of photons is determined by the
position of the photon cluster in the first and the second compartments. in the region
(0 < |η| < 1.8) the electromagnetic calorimeters are complemented by presamplers, an
instrumented argon layer, which provides a measurement of the energy lost in front of the
electromagnetic calorimeters.

For the outer hadronic calorimeter, the sampling medium consists of scintillator
tiles and the absorber medium is steel. The tile calorimeter is composed of three parts,
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Barrel End-cap

EM calorimeter
Number of layers and |η| coverage

presampler 1 |η| < 1.52 1 1.5 < |η| < 1.8
Calorimeter 3 |η| < 1.35 2 1.375 < |η| < 1.5

2 1.35 < |η| < 1.475 3 1.5 < |η| < 2.5
2 2.5 < |η| < 3.2

Granularity ∆η ×∆φversus|η|
presampler 0.025× 0.1 |η| < 1.52 0.025× 0.1 1.5 < |η| < 1.8

Calorimeter 1st layer 0.025/8× 0.1 |η| < 1.40 0.050× 0.1 1.375 < |η| < 1.425
0.025× 0.025 1.40 < |η| < 1.475 0.025× 0.1 1.425 < |η| < 1.5

0.025/8× 0.1 1.5 < |η| < 1.8
0.025/6× 0.1 1.8 < |η| < 2.0
0.025/4× 0.1 2.0 < |η| < 2.4
0.025× 0.1 2.4 < |η| < 2.5
0.1× 0.1 2.5 < |η| < 3.2

Calorimeter 2nd layer 0.025× 0.025 |η| < 1.40 0.05× 0.025 1.375 < |η| < 1.425
0.075× 0.025 1.40 < |η| < 1.475 0.025× 0.025 1.425 < |η| < 2.5

0.1× 0.1 2.5 < |η| < 3.2
Calorimeter 3rd layer 0.05× 0.025 |η| < 1.35 0.05× 0.025 1.5 < |η| < 2.5

Number of readout channels
Presampler 7808 1536(both sides)
Calorimeter 101760 62208(both sides)

LAr hadronic end-cap
|η|coverage 1.5 < |η| < 3.2

Number of layers 4
Granularity ∆η ×∆φ 0.1× 0.1 1.5 < |η| < 2.5

0.2× 0.2 2.5 < |η| < 3.2
Readout channels 5632(both sides)

LAr forward calorimeter
|η|coverage 3.1 < |η| < 4.9

Number of layers 3
Granularity ∆x×∆y(cm) FCal1 : 3.0× 2.6 3.15 < |η| < 4.30

FCal1 :∼ 4xfiner 3.10 < |η| < 3.15
4.30 < |η| < 4.83

FCal2 : 3.3× 4.2 3.24 < |η| < 4.50
FCal2 :∼ 4xfiner 3.20 < |η| < 3.24

4.50 < |η| < 4.81
FCal3 : 3.3× 4.2 3.32 < |η| < 4.60
FCal3 :∼ 4xfiner 3.29 < |η| < 3.32

4.60 < |η| < 4.75
Readout channels 3524(both sides)

Scintillator tile calorimeter
Barrel Extended barrel

|η|coverage |η| < 1.0 0.8 < |η| < 1.7
Number of layers 3 3

Granularity ∆η ×∆φ 0.1× 0.1 0.1× 0.1
last layer 0.2× 0.1 0.2× 0.1

Readout channels 5760 4092(both sides)

Table 2.7: Main parameters of ATLAS Calorimeter
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Figure 2.10: Cumulative amount of material, in units of interaction length, as a function
of |η|, in front of the electromagnetic calorimeters, in the electromagnetic calorimeters
themselves, in each hadronic compartment, and the total amount at the end of the active
calorimetry. Also shown for completeness is the total amount of material in front of the
first active layer of the muon spectrometer (up to |η| < 3.0).

one central barrel and two extended barrels. The choice of this technology provides
maximum radial depth for the least cost for ATLAS. The tile calorimeter covers the range
of 0 < |η| < 1.7. The hadronic calorimetry is extended to larger pseudorapidity by
the HEC, a copper/liquid-argon detector, and the FCal, a copper-tungsten/liquid-argon
detector. The hadronic calorimetry thus reaches one of its main design goals, namely
coverage 3850 over |η| < 4.9. Figure 2.9 shows the schematic drawing of the calorimeter
system. Table 2.7 show the main design parameters of the calorimeter. Figure 2.10 show
the mater distribution before and in the calorimeter. The structure of the calorimeter will
be introduced in the following section.

� Electromagnetic Calorimeter:

An accordion geometry has been chosen for the absorbers and the electrodes of the
barrel and end cap electromagnetic calorimeters. Such a geometry provides naturally
a full coverage in φ without any cracks, and a fast extraction of the signal at the rear
or at the front of the electrodes. In the barrel, the accordion waves are axial and run
in φ, and the folding angles of the waves vary with radius to keep the liquid-argon
gap constant. In the end-caps, the waves are parallel to the radial direction and run
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axially. Since the liquid-argon gap increases with radius in the end-caps, the wave
amplitude and the folding angle of the absorbers and electrodes vary with radius.
All these features of the accordion geometry lead to a very uniform performance in
terms of linearity and resolution as a function of φ.

Figure 2.11: Sketch of a barrel module where the different layers are clearly visible with
the ganging of electrodes in φ . The granularity in η and φ of the cells of each of the three
layers and of the trigger towers is also shown.

The barrel electromagnetic calorimeter is made of two half-barrels [25], centered
around the z-axis. One half-barrel covers the region with z > 0(0 < η < 1.475) and
the other one the region with z < 0(−1.475 < η < 0). The length of each half-barrel
is 3.2 m, their inner and outer diameters are 2.8 m and 4 m respectively, and each
half-barrel weighs 57 tonnes. One of the module is shown as figure 2.11.

The EMEC calorimeters consist of two wheels, on each side of the electromagnetic
barrel. Each wheel is 63 cm thick and weighs 27 tonnes, with external and internal
radii at ambient temperature of 2098 mm and 330 mm, respectively. It covers the
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region of 1.375 < |η| < 3.2.

� Hadron Calorimeter:

ATLAS Hadron Calorimeter system is composed of the tile calorimeter, the liquid-
argon hadronic end-cap calorimeter (HEC) and the liquid-argon forward calorimeter
(FCal). Of which Tile calorimeter is a sampling calorimeter using steel as the
absorber and scintillator as the active medium. It is subdivided into a central
barrel, 5.8 m in length, and two extended barrels, 2.6 m in length and each having
an inner radius of 2.28 m and an outer radius of 4.25 m. One of its modules is shown
in figure 2.12.

The hadronic end-cap calorimeter (HEC) [26] is a copper/liquid-argon sampling
calorimeter with a flat plate design, which covers the range 1.5 < η < 3.2. The
HEC shares each of the two liquid argon end-cap cryostats with the electromagnetic
end-cap (EMEC) and forward (FCal) calorimeters. The HEC consists of two wheels
in each end-cap cryostat: a front wheel (HEC1) and a rear wheel (HEC2), each wheel
containing two longitudinal sections. The wheels are cylindrical with an outer radius
of 2030 mm. Each of the four HEC wheels is constructed of 32 identical wedge-
shaped modules. The forward calorimeters (FCal) provide coverage over 3.1 <
η < 4.9. The FCal modules are located at high η, at a distance of approximately
4.7 m from the interaction point, they are exposed to high particle fluxes. It is
composed with 3 layers, one is electromagnet calorimeters and the other two are
hadron calorimeters.

2.2.3.3 Muon Spectrometer

The Muon Spectrometer forms the outer part of the ATLAS detector and it is designed
to detect charged particles exiting the barrel and end-cap calorimeters and to measure
their momentum in the pseudorapidity range |η| < 2.7. It is also designed to trigger
these particles in the region |η| < 2.4. The driven performance goal is a stand-alone
transverse momentum resolution of approximately 10% for 1 TeV tracks. The schematic
picture of Muon Spectrometer are shown in figure 2.13 and the main parameters of Muon
Spectrometer are listed in table 2.8.

The identification and measurements of muon particles are dependent on the tracks
deflexions by the magnetic system. It is very import to have a precisely known magnetic
field to ensure the precise measurement of muon.

Region of |η| < 1.4 are surrounded by a toroidal magnetic field generated by a eight-
lateral symmetry of the superconducting magnets; In the 1.6 < |η| < 2.7, the magnetic
field is provided by two superconducting magnets of flat coils from eight radial symmetrical
position. In the 1.4 < |η| < 1.6 region (known as the transition zone), the magnetic field
is provided by both end cap and barrel magnets. This magnetic field is designed so that
most of magnetic force lines are vertical to the µ’s track and lead to the establishment of a
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Figure 2.12: Schematic showing how the mechanical assembly and the optical readout
of the tile calorimeter are integrated together. The various components of the optical
readout, namely the tiles, the fibres and the photomultipliers, are shown.
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Figure 2.13: The cut-away plots of ATLAS Muon Spectrometer
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Monitored drift tubes MDT
- Coverage |η| < 2.7(innermostlayer : |η| < 2.0)

- Number of chambers 1088(1150)
- Number of channels 339 000(354 000)

- Function Precision tracking
Cathode strip chambers CSC

- Coverage 2.0 < |η| < 2.7
- Number of chambers 32
- Number of channels 31 000

- Function Precision tracking
Resistive plate chambers RPC

- Coverage |η| < 1.05
- Number of chambers 544(606)
- Number of channels 359 000(373 000)

- Function Triggering, second coordinate
Thin gap chambers TGC

- Coverage 1.05 < |η| < 2.7(2.4 for triggering)
- Number of chambers 3588
- Number of channels 318 000

- Function Triggering, second coordinate

Table 2.8: Main parameters of muon spectrometer. Numbers in brackets for the MDT’s
and the RPC’s refer to the final configuration of the detector in 2009

high precision and high coverage, stable and independent µ spectrometer, with minimum
impact to the calorimeter and inner detector measurements.

Muon spectrometer magnets are air-core superconducting magnets, which can reduce
the degradation of resolution caused by multiple scattering. The barrel magnet is 25.3
meters long, with inner diameter of 9.4 meters, outer diameter of 20.1 meters. The end
cap magnets are located at the end of the barrel, with inner diameter of 1.65 meters, and
outer diameter of 10.7 meters. The typical magnetic field strength of the barrel is 0.5
Tesla, and the end cap is one Tesla. Because of the limited magnet coils, the magnetic
field does not have a perfect cylindrical shape, especially in the transitional zone, of which
the magnetic field has more radial component.

The barrel MDT (Monitored Drift Tube) are based on three cylinders, coaxial to
the beam lines, of a radius of 5 m, 7.5m, 10m, in the middle of the magnetic field
and two marginal. They are used to measure the momentum of muons. In the end
cap(Pseudorapidity of |η| > 1.6), the low-temperature superconducting magnet system
prevents detectors to be fully in the magnetic field, the distances of the three MDT discs
from the impact point are 7 m, 14m, 21m. Point-to-angle measurement method is used
in order to get the best µ momentum resolution. As the region of 2 < |η| < 2.7, there
is high radiation intensity, CSC (Cathode Strip Chamber) are used to measure muon
properties instead of the MDT. Trigger detectors cover the range of |η| < 2.4. RPC are
used as barrels trigger detectors, while TGC are used as end cap trigger detectors. These
two detectors will provide the information of the secondary coordinate position which is
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perpendicular to the µ deflection plane(and almost parallel to the magnetic field). During
the running time of ATLAS experiment, alignment system is used to monitor the small
position changes of the sub detectors. The performance of various detectors of muon
spectrometer are given in the following parts.

� MDT:

The MDT module is composed of 30 mm diameter Aluminum tubes and a 50 µm
coaxial Tungsten-Rhenium wire [27]. Both ends of the tube are gagged by stop-
pers [28]. The stoppers are responsible for fixing the position of anode wire, keeping
and exchanging the gas and electronics readout. The working gas of MDT is Ar-
gon and Carbon dioxide mixtures at 3 bar. One end of the anode wire in the drift
chamber is connected to a low-impedance current amplifier, a differential amplifier,
a shaper and a discriminator. Then, the signal is sent to a 24 bit TDC, which mea-
sures the drifting time with an accuracy of 300 ps. MDT has a good space - time
relation. In addition to extremely close to the anode wire particles, the typical MDT
spatial resolution is 80 µm [29, 30, 31]. In order to improve the spatial resolution,
MDT drift tubes are assembled into three or four-layers structure. ATLAS detector
has three sections of MDT, the innermost is 2× 4 MDT tubes structure, while the
middle and outer are 2× 3 MDT tubes structure. This combination of multi-MDT
can further improve th spatial resolution.

� CSC:

The distance between neighboring CSC anode wire is 2.54 mm, the width of the
cathode is 1.13 mm with a gap of 1.72 mm between the two cathodes. Their mutual
interval is 0.25 mm. By measuring the faradic charge of the adjacent cathode, and
calculate the charge center by using charge interpolation method, CSC can deter-
mine the exact particle tracks positions up to an accuracy of 30 µm [32].

� RPC:

RPC is a gas detector with a typical spatial resolution of 1 cm and time resolution of
1 ns [33]. The module of RPC is composed with two parallel high resistance artificial
gum board of 2mm. Its internal electric field is uniformly distributed, with a typical
field of 4.9 kV/mm. Early ionizing electrons lead to the electron avalanche [34]. The
typical induction charge of outer copper strips is 0.5 pC [35]. Their working gas is
the mixture of C2H2F4 and butane.

� TGC:
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TGC detector is a special multi-wire chamber, similar to multi-wire proportional
chamber. It have very small(1.4 mm) gap between its cathode plane and anode
plane, therefore name of so Thin Gap Chamber (TGC).

Table 2.9 lists the main performance of MDT, CSC, RPC and TGC sub detectors.

Chamber resolution(RMS) in Measurements/track
Type Function z/R φ time barrel end-cap
MDT tracking 35µm(z) - - 20 20
CSC tracking 40µm(R) 5mm 7ns - 4
RPC trigger 10mm(z) 10mm 1.5ns 6 -
TGC trigger 2-6mm(R) 3-7mm 4ns - 9

Table 2.9: Parameters of the four sub-systems of the muon detector. The quoted spatial
resolution (columns 3, 4) does not include chamber-alignment uncertainties. Column 5
lists the intrinsic time resolution of each chamber type, to which contributions from signal-
propagation and electronics contributions need to be added. Numbers in brackets refer
to the complete detector configuration as planned for 2009.

2.2.3.4 Magnet system

ATLAS magnet system has one solenoid and three toroids. They are all superconducting
magnets. The solenoid magnet field is two tesla, providing bending power for the Inner
Detector. A barrel toroid of 0.5 tesla, provides bending power for the muon spectrom-
eter barrel. Two end cap toroids of 1 tesla each, provide bending power for the muon
spectrometer end cap. Figure 2.14 shows the real picture of ATLAS magnets system, and
table 2.10 shows the main parameters for these magnets.

Since these magnet system are essential for measuring the momentum of charged
particles and charge identification. It is important to have a detail knowledge of the mag-
netic field mapping. The modeling of ATLAS magnets and detecting system can provide
a precise magnet fields mapping, which guaranties the high precision measurements.

2.2.3.5 Trigger and DAQ

There are 40M collisions of proton-proton bunches crossing per second at LHC. Each
collision has an average of about 23 inelastic reactions. Technically it is impossible to
record all these information. But it is not necessary to record all of them since the events
we are interested in are only a very small fraction of them. So, a trigger system is needed,
to select the events of specific interest. The ATLAS trigger system has three levels of
triggers. The first level(L1) is a hardware based trigger system while the second(L2) and
third trigger(EF) are software based high level trigger. Each trigger is use the output of
the upper trigger, with more accurate reconstructed information to trigger events. The
following will introduce the triggers of each level.
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Figure 2.14: Picture of ATLAS Magnets system

� Level one trigger(L1):

The L1 trigger is used for triggering high pT muons, electromagnetic calorimeter
energetic clusters, jets and hadronic decay τ leptons, as well as high total transverse
energy events and high missing transverse energy(Emiss

T ) events. It uses reduced-
granularity information from a subset of detectors: the Resistive Plate Chambers
(RPC) and Thin-Gap Chambers (TGC) for highpT muons, and all the calorime-
ter sub-systems for electromagnetic clusters, jets, τ -leptons, Emiss

T , and large total
transverse energy. The maximum L1 accept rate which the detector readout sys-
tems can handle is 75 kHz (upgrade able to 100 kHz), and the L1 decision must
reach the front-end electronics within 2.5 µs after the bunch-crossing with which it
is associated.

� Level two(L2):

The L2 trigger is seeded by Regions-of-Interest (RoI′s). These are regions of the de-
tector where the L1 trigger has identified possible trigger objects within the event.
The L2 trigger uses RoI information on coordinates, energy, and type of signatures
to limit the amount of data which must be transferred from the detector readout.
The L2 trigger reduces the event rate to below 3.5 kHz, with an average event pro-
cessing time of approximately 40 ms.
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Figure 2.15: Schematic view of ATLAS trigger system
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Property Feature Unit Solenoid Barrel toroid Endcap toroid

Size Inner diameter m 2.46 9.4 1.65
Outer diameter m 2.56 20.1 10.7
Axial length m 5.8 25.3 5.0
Number of coils 1 8 2× 8

Mass Conductor t 3.8 118 2× 20.5
Cold mass t 5.4 370 2× 140
Total assembly t 5.7 830 2× 239

Coils Turns per coil 1154 120 116
Nominal current kA 7.73 20.5 20.5
Magnet stored energy GJ 0.04 1.08 2× 0.25
Peak field in the windings T 2.6 3.9 4.1
Field range in the bore T 0.9-2.0 0.2-2.5 0.2-3.5

Conductor Overall size mm2 30 x 4.25 57 x 12 41 x 12
Ratio Al:Cu:NbTi 15.6:0.9:1 28:1.3:1 19:1.3:1
Number of strands(NbTi) 12 38-40 40
Strand diameter(NbTi) mm 1.22 1.3 1.3
Critical current(at 5T and 4.2k) kA 20.4 58 60
Operatingcritical-current ratio at 4.5K % 20 30 30
Residual resistivity ratio(RRR) for Al > 500 > 800 > 800
Temperature margin K 2.7 1.9 1.9
Number of units × length m 4 x 2290 8x4x1730 2x8x2x800
Total length(produced) km 10 56 2 x 13

Heat load At 4.5 K W 130 990 330
At 60-80 K kW 0.5 7.4 1.7
Liquid helium mass flow g/s 7 410 280

Table 2.10: The main parameters of ATLAS magnets

� Event Filter(EF):

The event filter uses offline analysis procedures on fully-built events to further se-
lect events down to a rate which can be recorded for subsequent offline analysis. It
reduces the event rate to approximately 200 Hz, with an average event processing
time of the order of four seconds.

The L2 and EF trigger are called High Level Triggers (HLT). The HLT algorithms
use the full granularity and precision of calorimeter and muon chamber data, as well
as the data from the inner detector, to refine the trigger selections. Better information
on energy deposition improves the threshold cuts, while track reconstruction in the in-
ner detector significantly enhances the particle identification (for example distinguishing
between electrons and photons). The event selection at both L1 and L2 primarily uses
inclusive criteria, for example high-ET objects above defined thresholds.

The data acquisition system (DAQ) receives and buffers the event data from the
detector specific readout electronics at the L1 trigger rate. The data transmission is
performed over point to point Readout Links (ROL′s). It transmits any data to the L2
trigger requested by the trigger (typically the data corresponding to RoI′s) and, for those
events fulfilling the L2 selection criteria, event-building is performed. The assembled
events are then moved by the data acquisition system to the event filter, and the events
selected there are moved to permanent event storage. These events that passed the trigger
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Stream e µ Jet γ Emiss
T &τ B-physics

e 31± 7.9 0.0056± 0.00058 0.00053± 6.2 ∗ 10−5 1.2± 0.4 1.4± 0.035 (1.3± 1.3) ∗ 10−5

µ - 34± 8.7 0.021± 0.015 0.0028± 0.002 0.22± 0.022 0.076± 0.0043
Jet - - 38± 5.9 0.48± 0.4 0.71± 0.4 0± 0
γ - - - 22± 5.7 0.22± 0.073 0± 0

Emiss
T &τ - - - - 32± 7.9 15± 6.4 ∗ 10−6

B-physics - - - - - 9.5± 5.5

Table 2.11: Overlap(Hz) between the data streams at a luminosity of 1033cm−2s−1

will be recorded according to the stream classification made by the event-filter processing
task. The ATLAS-defined data streams are: electrons, muons, jets, photons, Emiss

T , τ -
leptons, and B-physics. The peak event rate of up to 400 Hz. Table 2.11 shows the event
rates of each stream (diagonal elements) and their overlaps.

In addition to the data streams mentioned above, a subset of the events is also
written to calibration streams and an express stream. The express stream is a subset of
the events selected by the event filter and fulfil additional criteria which select the events
as being useful for monitoring the quality of the data and the detector. The calibration
stream provides the minimum amount of information needed for detector calibration,
possibly at a rate higher than the data streams provide. These events will only contain a
subset of the event data.

2.3 Data transportation, storage and analysis of AT-

LAS

The important data formats of ATLAS are listed and described as following [36]:

� RAW data:

RAW data is the output of event filter(the last level of trigger). It is used for events
reconstruction, and of size of about 1.6 MB per event. The output rates is about
200 Hz, with the format of byte-stream of detector direct output.

� ESD data:

ESD(Event Summary Data) is the output of reconstruction. It records most of the
information that we are interested in physics analysis except the calibration and
reconstruction. The format of ESD storage is POOL ROOT of object-oriented rep-
resentation, and about 500 kB per event.

� AOD data:

AOD(Analysis Object Data) is a reduced event presentation from ESD. It include
the physics objects and others physics information common in physics analysis,
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record in the object-oriented POOL ROOT files. The event size of AOD is about
100 kB per event.

� TAG data:

TAG data are the metadata at event level. It records very few information which
could be identify and select events of interesting at a very high efficiency. TAG data
are stored in relation database, which makes it is very easy to access. It allow to
navigate back to AOD, ESD or even RAW data. The average size of TAG is about
1 kB per event.

� DPD data:

DPD(Derived Physics Data) is a representation of events based on ntuple. It is used
for end-user analysis and histogramming.

� SIM data:

SIM(Simulated Event Data) are the data from Menta Carlo generation(e.g. Pythia)
to the simulation of interactions with detector and detector response(Digitization).
It is even include pile-up, cavern background. All the events at different stages could
be stored to the format of POOL ROOT. The events after digitization could be save
a byte-stream, and include trigger information. All these SIM events have ”truth”
information stored, which make them bigger that real data. it is about 2 MB per
event.

The storage and analysis of ATLAS data is very much Grid based. It could be
separated into several layers by their functions:

� Tier-0:

The computation equipments at Tire-0 of CERN are used to store and transform
RAW data of event filter outputs. It provides calibration stream and express stream
reconstruction. Then, reconstruct and distribute the output of first round recon-
struction outputs of ESD, AOD, TAG to Tier-1s facilities described below. More
automated calibration tasks will also be run by the Tier-0.

� Tier-1:
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There are about 10 Tier-1s all over the world servers for ATLAS. They will keep part
of the RAW data for long term access. Meanwhile, they also proved the capacity
of reprocessing the RAW data. Tile-1s mainly provide world wide access of ESD,
AOD and TAG.

� Tier-2:

Tier-2 will provide the computation resources for calibration constants, MC simu-
lation and physics analysis. They usually keep one third of the AOD and whole set
of TAG samples, as well as subsets of DPD. Meanwhile, they perform almost all
ATLAS simulation tasks, and transport the output back to Tier-1. They also may
store some RAW and ESD data for code development.

� Tier-3:

Tire-3s are used to store user ntuples and analysis work allowed to work off grid.
These Tire-3s may be of only numbers of desktop or cluster, with the function of
access grid, submit grid jobs and retrieve the output of grid jobs.

The resources needed for physics analysis will be distributed on ATLAS servers
world wide. The priorities giving by the fair share, and determine whether this jobs will
be executed and when. In principle, users could access all the computation and storage
resources of ATLAS sites if they follow certain security and priority rules. Due to the
limitation of the resources that one user working at, they need a distributed analysis tool
to do the distribution analysis, which will submit jobs to the sites which have the required
resources and execute there. The MC sample used in this analysis are using distributed
analysis tool, generated on grid. Figure 2.16 shows the network from ATLAS data taking
to user analysis.
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Figure 2.16: From RAW data to Analysis
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3.1 Introduction

The Yukawa coupling is an important property of Higgs. Its measure will give information
on fermion mass origin. Yukawa coupling measurement will become important once the
Higgs is discovered at LHC. tt̄H, H → WW (∗) is a good channel to measure the top
quark Yukawa coupling at the intermediate Higgs mass range given in table 1.3. Its
main production feynman diagrams are shown in fig 3.1. The tt̄ production cross section
decreases as the Higgs mass increases while the branching ratio of H → WW (∗) increases
then decrease as shown in table 3.1. However, this channel suffers a lot from several
type of backgrounds. Compared to tt̄ and QCD processes, tt̄H(H → WW (∗)) Next to
Leading Order(NLO) calculation have a cross section of 291 fb at the most favorable
mass point of 160 GeV(table 3.2), which is only 10−3 of the tt̄, or 10−4 to 10−5 of QCD
jets(shown in table 3.2 and table 3.1). Besides that, initial states radiations(ISR) and final
states radiations(FSR) will generate extra jets in such a TeV scale high energy, almost
identical to these from quarks. It is difficult to suppress tt̄ by only looking at the different
jet multiplicity. So, the lepton multiplicity becomes the dominate rejection criteria for
tt̄. At high transverse energy, jets especially jets from b-quark decays, have a certain
probability contain leptons. If these leptons have been reconstructed, tt̄ will containment
tt̄H(H → WW (∗)) signal because of the large cross sections. So, the discrimination of
leptons from jets(un-isolated leptons) and leptons from W/Z decays(isolated leptons) is
the key point to suppress tt̄ background in tt̄H(H → WW (∗)) analysis. Moreover, QCD
jets process can be suppressed to an appropriate level by requiring well isolated leptons.

Table 3.1: tt̄H production cross sections(LO and NLO) and H → WW (∗) branching
ratios at different Higgs masses [17].

mH [GeV] 120 130 140 150 160 170 180 190 200
σtt̄H LO [fb] 537 428 345 282 232 193 162 137 117
σtt̄H NLO [fb] 669 534 431 352 291 243 204 174 149
BRH→WW (∗) .1331 .2888 .4854 .6831 .9015 .9654 .9346 .7761 .7347

The t → Wb branching ratio is almost 100%, and W decays leptonically or hadron-
ically. The topology of tt̄H, H → WW (∗) are shown in figure 3.3. In this thesis, we
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Table 3.2: main background production cross sections
process Z+jets tt̄ tt̄W + jets tt̄Z
σ[fb] 52,700,000 833,000 582 1188

Figure 3.1: Feynman diagrams for the main LO contributions to ttH, H → WW (∗)

production.
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Figure 3.2: Dependence of σ × BR for the channel tt̄H, H → WW on the Higgs boson
mass.
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denote tt̄H(H → WW (∗)) by the different leptons number in the final states, ttHWW1L
to ttHWW4L for the final states containing one to four leptonic decay W(s). Here, lepton
refers to electron and muon, and do not include τ since τ lepton decays hadronically or
leptonically, and reconstruction performance is different from electron and muon.

Since ttHWW1L is suffering from a huge tt̄ background and ttHWW4L is only ∼ 3%
of total ttHWW cross section, which is too low to be considered at the first few years
of low luminosity data, we only study ttHWW2L and ttHWW3L here. Table 3.1 lists
the cross section of ttH and branching ratio of H → WW (∗) as a function of Higgs
mass. Figure 3.2 shows ttH*Br(H → WW ) Leading Order(LO) and Next to Leading
Order(NLO) cross section as a function of Higgs mass. It reaches a maximum around
160GeV for the tt̄H, H → WW combined cross section.

Figure 3.3: tt̄H, H → WW topology of different final states, here p refers to proton, t
refers to top quark, H refers to Higgs, W refers to W boson, b refers to b jets, the double
line with no label refers to neutrino

The studies of tt̄H, H → WW (∗) are based on Computing System Commission-
ing(CSC) MC full simulation data. The main goal of CSC is to test the computing and
software infrastructure, develop Event Data Model(EDM), and get them ready for data
taking. CSC data are widely used in many physics studies. These studies will be assem-
bled in a TDR-like CSC book. tt̄H, H → WW (∗) study is one of these studies, performed
within the ATLAS Higgs Working Group.

The contents of this chapter are: First, an introdution of the Monte Carlo sample
from the settings of the generators to the simulation for all signals and backgrounds.
Then a study of the trigger effects is given with emphasis on the ATLAS physics objects
spectra. Following that are the events selection and objects identification, with some ded-
icated lepton isolation studies. These steps are common and essential in both two leptons
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and three leptons final states of tt̄H, H → WW (∗) analysis. Then, the complete analy-
sis of ttHWW2L and ttHWW3L are presented. Detailed pileup impact and systematic
uncertainties are presented in sequence after that. Finally, the results of the top quark
Yukawa coupling measurement and conclusions are given.

3.2 Generation of Monte Carlo Sample

3.2.1 Signal Generation

Signal Monte Carlo samples were produced with the W -boson decays forced to generate
the desired lepton signatures. Samples for tt̄H → 2b4j2l2ν and tt̄H → 2b2j3l3ν were
generated for different Higgs boson masses between 120 and 200 GeV in Leading Order,
using the pythia 6.4 [37] [38] generator. The different signature of same charge were
forced by turning on W+ → l+ν, W− → qq̄ or W− → l−ν, W+ → qq̄, and three leptons
final state samples were generated by an event decay model selector. In three leptons final
state, there are two kinds of topologies that can lead to the same signature: in the first
case one of the W -bosons from the Higgs boson decays hadronically, and the other three
W -bosons decay leptonically, while in the second case the hadronically decaying W -boson
originates from one of the two top quarks. Both topologies were generated and considered
together. Results obtained with these samples were scaled to the NLO cross sections and
branching ratios that are given in [39]. The characteristics of the samples were generated
for Higgs boson masses between 120 and 200 GeV are summarized in Table 3.3.

Table 3.3: Signal samples generated for the tt̄H, H → WW analysis. The ID refers to
the ATLAS MC generation management global ID
process generator σ ∗BR Nevents εfilter

∫ Ldt[fb−1] ID
tt̄H → 2b4j2l2ν,mH=120 GeV pythia 6.4 3.9 fb 19k 0.929 5581 6549, 6550
tt̄H → 2b4j2l2ν,mH=130 GeV pythia 6.4 6.7 fb 15k 0.937 2483 9039, 9040
tt̄H → 2b4j2l2ν,mH=140 GeV pythia 6.4 9.1 fb 7k 0.940 880 9041, 9042
tt̄H → 2b4j2l2ν,mH=150 GeV pythia 6.4 10.3 fb 17k 0.940 1851 9043, 9044
tt̄H → 2b4j2l2ν,mH=160 GeV pythia 6.4 11.1 fb 18k 0.945 1715 6385, 6386
tt̄H → 2b4j2l2ν,mH=170 GeV pythia 6.4 9.9 fb 10k 0.940 1049 9045, 9046
tt̄H → 2b4j2l2ν,mH=180 GeV pythia 6.4 8.0 fb 10k 0.948 1397 9047, 9048
tt̄H → 2b4j2l2ν,mH=190 GeV pythia 6.4 5.8 fb 5k 0.948 845 9049, 9050
tt̄H → 2b4j2l2ν,mH=200 GeV pythia 6.4 4.7 fb 19k 0.949 4473 6555, 6556
tt̄H → 2b2j3l3ν,mH=120 GeV pythia 6.4 2.5 fb 36k 1 15465 6551 - 6554
tt̄H → 2b2j3l3ν,mH=130 GeV pythia 6.4 4.3 fb 33k 1 8148 9015 - 9018
tt̄H → 2b2j3l3ν,mH=140 GeV pythia 6.4 5.8 fb 20k 1 3681 9019 - 9022
tt̄H → 2b2j3l3ν,mH=150 GeV pythia 6.4 6.6 fb 26k 1 4095 9023 - 9026
tt̄H → 2b2j3l3ν,mH=160 GeV pythia 6.4 7.1 fb 17k 1 2462 5344 - 5347
tt̄H → 2b2j3l3ν,mH=170 GeV pythia 6.4 6.3 fb 28k 1 4586 9027 - 9030
tt̄H → 2b2j3l3ν,mH=180 GeV pythia 6.4 5.2 fb 30k 1 5937 9031 - 9034
tt̄H → 2b2j3l3ν,mH=190 GeV pythia 6.4 3.8 fb 21k 1 5983 9035 - 9038
tt̄H → 2b2j3l3ν,mH=200 GeV pythia 6.4 3.1 fb 30k 1 10393 6557 - 6560
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3.2.2 Generation of Background Samples

The main backgrounds for the studied tt̄H final states are tt̄, tt̄W , tt̄Z, tt̄tt̄ and tt̄bb̄.
Single top backgrounds are negligible. Also QCD jets and WZ+X processes could be
sources of backgrounds. However, lepton identification and isolation requirements and
high jets multiplicity requirements are expected to reject a large fraction of these. The
QCD background is considered to be under control and will not be further discussed here.

Two different mc@nlo [40] tt̄ samples were used for this analysis. The generated
cross sections of both samples are normalized to the value of σNLO+NLL

tt̄ = 833 pb [5]. The
standard mc@nlo sample forced with at least one leptonic W -decay (electron or muon
or tau),does not contain sufficient events for a reliable estimation of the tt̄ background
contribution accepted by the complete event selection. Therefore, the second mc@nlo
sample is filtered at generator level with a pair of same-sign leptons (electrons or muons),
which satisfy pT > 13 GeV and |η| < 2.6(and a historical crack of when there are three
or more generated leptons, events with oppositely charged leptons from W bosons falling
into a special domain ( pT ≥ 30GeV and ||η| − 1.5| ≤ 0.2 for electron, pT ≥ 15GeV
and ||η| − 1.25| ≤ 0.2 for muon ) were rejected.), which results in a filter efficiency of
0.0384. This filter provides a huge increase in statistics, at the cost of introducing a bias,
as effects like lepton fakes or charge flips cannot be correctly described by this sample
and there is an additional internal kinematic cut on the leptons in the filter code. For
the tt̄H (2L) analysis, another (15 ± 10)% were added to compensate this loss. This
number was obtained by comparing the filtered and standard sample at the level of the
requirement of exactly two well isolated same-sign leptons in the cut flow described in
section 3.6. For the tt̄H (3L) analysis the loss was estimated to be 135%, with a large
statistical uncertainty due to the small number of filtered Monte Carlo events surviving
the event selection. Hence it is considered too large and not known precisely enough, to
ensure a reliable estimation of the tt̄ expectation from this sample. The standard sample
was therefore used for the analysis of this final state.

Since tt̄W + 2jets is expected to be the dominant irreducible background(have two
isolated same-sign lepton and 6 jets), dedicated tt̄W samples were produced with alp-
gen [41]. Samples of tt̄W + 0 parton, tt̄W + 1 parton, and tt̄W + 2 or more partons
were produced separately. The minimum pT for the additional jets was set to 15 GeV,
while the maximum |η| was set to 6.0. In addition, the generated jets were required to be
separated by at least 0.4 cone radius. MLM matching [41] was performed to avoid double
counting of additional jets, and a multi-lepton filter was applied. In order to be consistent
with the results obtained for the signal, the LO cross section for this process was scaled
to NLO. Since no NLO calculations are available, a K-factor of 1.2 was assumed to ensure
a conservative estimation of the background contribution.

The leading order generator acermc [42] was used to produce samples for tt̄Z,
tt̄tt̄, tt̄bb̄ and tt̄bb̄(EW), which contains the electroweak contribution to tt̄bb̄. Again, the
LO cross sections were scaled by K-factors of 1.2, except for the tt̄bb̄ sample from EW
production. In order to avoid double counting, tt̄tt̄ events found in the mc@nlo tt̄ data
sets were excluded from the analysis. The tt̄bb̄ samples were analyzed as a cross check
and were not taken into account for the calculation of total background expectations.



3.2 Generation of Monte Carlo Sample 59

Table 3.4 summarizes the characteristics of all background samples relevant for the
tt̄H analyzes.

Table 3.4: List of the samples used to estimate the background contribution to the
tt̄H, H → WW analyzes. Numbers marked with a * denote numbers after mc@nlo
re-weighting (N−/N+ = 1/6.5 for the no all-hadronic and N−/N+ = 1/6.7 for the pre-
filtered tt̄ samples). Note that σ × BR in the fourth row refers to the branching ratio of
the decays that were forced by the generator or filtered on generator level. The ID refers
to the ATLAS MC generation management global ID.

Process Generator σtot [fb] σ ×BR Nevents εfilter Kfactor

tt̄ no all-hadronic mc@nlo 833000 450000 fb 440k* 1 -
tt̄ pre-filtered mc@nlo 833000 833000 fb 350k* 0.0384 -
tt̄bb̄(EW)→ lνjj4b,(l = e, µ) acermc 3.3 900 259 fb 25k 0.943 1.0
tt̄bb̄ → lνjj4b,(l = e, µ) acermc 3.3 8200 2360 fb 50k 0.951 1.2
tt̄W + 0 partons alpgen 189 61.1 fb 20k 0.414 1.2
tt̄W + 1 partons alpgen 156 50.5 fb 20k 0.410 1.2
tt̄W + ≥ 2 partons alpgen 237 76.9 fb 20k 0.442 1.2
tt̄Z, Z → ll, (l = e, µ, τ) acermc 3.4 1188 120 fb 20k 0.790 1.2
gg → tt̄tt̄ acermc 3.4 2.2 2.2 fb 25k 0.655 1.2
qq → tt̄tt̄ acermc 3.4 0.48 0.48 fb 10k 0.651 1.2

3.2.3 Monte Carlo simulation and reconstruction

After generation of a particular channel, events are passed to ATLAS detector Geant
4(G4) simulation, with a real detector geometry of misalignment and distortion, includ-
ing the simulation of trigger and pileup. The output files of simulation are called sim
files. Then, these sim files are sent to digitalization and reconstruction. Finally, Analysis
Objects Data(AOD) are obtained, ready for individual analysis. The pile up events are
included at digitalization level by superposing minimum bias events, and simulated cavern
background [36].

The current status of CSC simulation has good description and simulation of the
three levels of trigger, and provides us a set of trigger menus, such as the hardware first
level trigger L1 EMXX, L1 MUXX, L1 XETXX, the corresponding second level trigger
L2 XXXX and the software third level trigger EF XXX. The last two digits are the
pT threshold the trigger(the internal pT threshold to insure the trigger pT threshold is
lower than trigger pT threshold, depends on the accuracy of pT reconstruction at different
trigger levels). The pT definitions at different trigger levels are different. Level one pT is
hardware sum, with very fast speed, but less accurate. Level two and level three trigger
pT is reconstructed with fast reconstruction algorithm, of different optimizations, and
gives more accurate information on the objects ID as well as isolation information. The
reconstruction speed is decreased for these three trigger levels, while the accuracy of the
information used in trigger menus is increased.

Full simulation and reconstruction need huge CPU time and storage, typically, 8
minutes for one event per CPU, and 1.0M storage needed for one event of reconstructed
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AOD, with an even larger size of pileup event are included. So, in order to generate and
store these MC events, all generation samples are validated, then, sent to CERN center
production system managers, and submitted to LHC Computing Grid. Tens of thousands
CPUs and storage resources are available on Grid. These resources deal with the MC
simulation and store the outputs. The center production system guaranties the quality of
these simulation. The outputs are so called ”official” MC sample.

3.3 Trigger study

At LHC, with a collision frequency of 40MHz and hardware, software and technical
limitations, it is impossible to record every events. Most of these events are proton-
proton elastic or inelastic scattering, The trigger is then aim to select these interesting
events.

In ttH, H → WW analysis, all final states contain well isolated leptons and hence
can be triggered by demanding either one isolated high-pT lepton or two isolated leptons
of lower pT . Currently, the two lepton trigger menu is not fully implemented in the trigger
simulation, therefore this study concentrates on the single high-pT lepton triggers.

The single-electron triggers studied for the tt̄H, H → WW final states are the Level
1 trigger L1 EM25I, the Level 2 trigger L2 e25i and EF e25i at the Event Filter level [43],
which require one isolated electron candidate above a threshold of pT = 25 GeV. In case of
the muons L1 MU20, L1 MU40, L2 mu20i and EF mu20i [44] are considered, which trigger
isolated muon candidates with transverse momenta above 20 GeV. Table 3.5 summarized
all the trigger menu and its criteria used in this analysis.

Figure 3.4 shows the linearity and uniformity of trigger efficiency for electron and
muon, at three different trigger levels. Tables 3.6 and 3.7 list the resulting event level trig-
ger efficiencies for the tt̄H (2L) and tt̄H (3L) signals and for the most relevant backgrounds
before and after the event selection criteria being applied. The absolute efficiency εabs is
given by the fraction of all events passing the electron or muon trigger, while the off-line
efficiency εoff is defined by the ratio of events at a given cut that in addition pass the
lepton trigger requirements over the total number of events at the same cut level.

As shown, the requirement of the high-pT lepton trigger causes only a small loss in
the event rates accepted by the off-line selection for both final states. and the impact on
the lepton pT , η, φ spectra is smooth.

Table 3.5: Trigger menu and its criteria
Trigger menu criteria
L1 EM25 pT > 25GeV , electron or gamma candidates
L2 e25i pT > 25GeV , isolated, electron candidates
EF e25i pT > 25GeV , isolated, electron candidates
L1 MU20+L1 MU40 pT > 20GeV , muon candidates
L2 mu20i pT > 20GeV , isolated, muon candidates
EF mu20i pT > 20GeV , isolated, muon candidates
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Figure 3.4: Electron and muon trigger efficiencies at the three trigger levels as functions
of pT , η and φ. The plots on the left show the trigger efficiency for electrons above pthres.

T =
25GeV , on the right, the corresponding efficiencies for muons above pthres.

T = 20GeV are
shown. The upward triangles denote the L1 trigger efficiency, while the circles mark the
efficiencies at the L2- and black triangles at the EF stage.

Table 3.6: Absolute trigger efficiencies εabs at the event level for the studied tt̄H final
states and the most relevant backgrounds.

tt̄H (2L) tt̄H (3L) tt̄ tt̄W+2j tt̄Z
L1 (93.2±0.3)% (97.7±0.2)% (66.2±0.1)% (91.4±0.3)% (92.8±0.3)%
L2 (86.2±0.4)% (94.2±0.3)% (51.6±0.1)% (81.5±0.4)% (85.4±0.4)%
EF (81.7±0.4)% (91.3±0.3)% (46.6±0.1)% (76.4±0.4)% (81.1±0.4)%

Table 3.7: Event level EF trigger efficiencies εoff after the offline event selection described
as following. The efficiency for tt̄ is given at the level of the first subset of cuts (“basic
selection”) because of lack of statistics.

tt̄H (2L) tt̄H (3L) tt̄ tt̄W+2j tt̄Z
2L selection[%] (95.6±0.5) (98.0+0.6

−1.0) (81.4±0.6) (96.4±1.0) (94.8+0.1.4
−2.4 )

3L selection[%] (100+0
−33) (99.1±0.3) (88.3±0.7) (98.5+0.7

−1.9) (99.5+0.3
−1.2)
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3.4 Electron, Muon, Jet Definition and Identification

In this section, The electron, muon and jets identification algorithm are described in first
part and the selection criteria used in this analysis are described in second part.

3.4.1 Common Electron, Muon, Jet identification at ATLAS

A brief description of ATLAS electron, muon, jet identification algorithm are as following:

3.4.1.1 Electron ID

At present, two algorithms have been implemented in the ATLAS off-line reconstruction
software, both integrated into one single package and a common event data model.

� The standard one, calorimetry based, starts from the cluster reconstructed in the
calorimeters and then builds the identification variables based on information from
the inner detector and calorimeter.

Electrons with high transverse momentum are likely to deposit the majority of
their energy in the electromagnetic (EM) calorimeter; and given the busy tracking
environment expected in physics events, the reconstruction and identification of hard
electrons are seeded by calorimeter based measurements.

In the standard reconstruction of electrons and photons, a seed is taken from the
electromagnetic calorimeter and a matching track is searched for among all recon-
structed tracks. Additionally, the candidate is flagged if it matches to an early
conversion reconstructed in the Inner Detector. Electron and photon candidates are
then separated by requiring electrons to have an associated track and not having
been identified as a conversion. The cluster and the track are required to lie within
a broad ∆η×∆φ window of 0.025×0.05 (tracks are extrapolated to the calorimeter)
and the ratio of the energy of the cluster to the momentum of the track to be lower
than 10. These requirements define an electron candidate. Approximately 93% of
true electrons are selected as electron candidates. The loss comes from a poor re-
construction of the track. This should be improved in the near future, thanks to
back-tracking techniques. Clusters that do not fit these requirements are defined as
photon candidates.

After separating electron from photon clusters, several criterias can be defined based
on shower shapes, track and TRT information as well as combined variables in order
to discriminate jets and background electrons from signal. A variable so called isEM
is defined for each electron candidates based on those criteria for electron candidates.

� A track seeded algorithm, optimized for electron with low transverse energy range
between 8-30 GeV, starts by selecting good quality tracks which provide a seed.
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Loose cuts
ClusterEtaRange Acceptance of the detector : |η| < 2.47

ClusterHadronicLeakage The ratio of ET in the first sampling of the
hadronic calorimeter to the ET of the EM cluster

ClusterMiddleEnergy The energy deposit
ClusterMiddleEratio37 Second sampling Ratio of cell energies of 3 × 7 to 7 × 7
ClusterMiddleWidth The lateral width of the shower

Medium cuts (includes loose cuts)
ClusterStripsDeltaEmax2 The second maximal deposit
ClusterStripsDeltaE The difference between

the second maximal and the minimal deposit
ClusterStripsWtot First sampling The total shower width
ClusterStripsFracm The energy outside core of the shower
ClusterStripsWeta1c The width in η

TrackPixel The number of hits in the pixel layer (>0)
TrackSi Track quality The number of hits in the pixel and SCT (>8)
TrackA0 The transverse impact parameter (<0.1 cm)

Tight cuts (includes medium cuts)
ClusterIsolation Isolation The ratio of transverse energy in a cone

to the total transverse energy of the cluster
TrackBlayer B-layer The number of hits in the B-layer (>0)
TrackMatchEta ∆η between the cluster and the track (< 0.005)
TrackMatchPhi Track matching ∆φ between the cluster and the track (< 0.02)

TrackMatchEoverP The ratio of the energy of the cluster
to the momentum of the matched track ()

TrackTRThits The number of hits in the TRT
TrackTRTratio TRT The ratio of the number of high

threshold hits to the number of hits in the TRT
Tight No Isolation cuts (includes tight cuts without ClusterIsolation)

TrackTRTratio90 TRT Replaces the previous cut with tighter values

Table 3.8: Summary of identification cuts. Cut values are given only when they are
independant of η and pT . The names of the first colum are common name used in the
ATLAS software
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3.4.1.2 Muon ID

ATLAS employs a variety of strategies for identifying and reconstructing muons. The
direct approach is to reconstruct standalone muons by finding tracks in the muon spec-
trometer and then extrapolating these to the beam line. Combined muons are found
by matching standalone muons to nearby inner detector tracks and then combining the
measurements from the two systems. Spectrometer tagging algorithms start from inner
detector tracks and extrapolate those to the spectrometer detectors and search for nearby
hits. Calorimeter tagging algorithms are also being developed to tag inner detector tracks
using the presence of a minimum ionizing signal in calorimeter cells.

Multiple independent algorithms have been developed to implement each of these
strategies and the current ATLAS baseline reconstruction includes two algorithms for each
strategy. Here we briefly describe the algorithms that are included in this reconstruction.

The algorithms are grouped into families such that each family includes one algo-
rithm for each strategy. The event data intended for use in physics analysis includes two
collections of muons, one for each family. The containers (and families) are named after
the corresponding combined algorithms: Staco and Muid. The former has been declared
the default for physics analysis but future analyses may make use of the other container
or make use of muons from both.

Both of the muon combination algorithms, Staco and Muid, pair muon-spectrometer
tracks with inner detector tracks to identify combined muons. The match chi-square,
defined as the difference between outer and inner track vectors weighted by their combined
error matrix:

c2
match = (TMS − TID)(CID + CMS)−1(TMS − TID) (3.1)

provides an important measure of the quality of this match and is used to decide which
pairs are retained. Here T denotes a track vector and C its error matrix. Staco does a
statistical combination of the of the inner and outer track vectors to obtain the combined
track vector:

T = (C−1
ID + C−1

MS)−1(C−1
IDTID + C−1

MSTMS) (3.2)

Muid fits the combined track, at present starting from the inner track fit and adding the
points from the muon-spectrometer track.

3.4.1.3 Jets ID

A jet algorithm or jet finding procedure or jet clustering procedure consists basically in
grouping some 4-momentums from a given set (the jets constituents) into different sub-
sets (the jets, the jet 4momentum being the sum of 4momentum in the subset). For
these procedures to have a physical sense, they must represent a correct QCD calculation.
But from the algorithmic point of view, jet finding is simply ”grouping 4-momentum into
subsets”. There are two types of jets by default:

� Cone:

A geometrical algorithm. A jet is the subset of constituents lying in a cone with
a given radius in the (η, φ) plan. The requirement is that the cone axis is aligned
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with the jets 4-momentum. The default cone algorithm (release 13 and below) is
a seeded algorithm (it searches cones around highest pt constituent only). Some
implementation of seedless algorithm (theoretically better) are available and a fast
version is under consideration for a replacement of the default. All cone algorithm
require and use a split-merge procedure to define non overlapping exclusive jets.
The default cone has a seed pt of 1 GeV (2 GeV). Split-merge algorithm is run with
overlap fraction=50% to decide split or merge. Radius=0.4 or 0.7, corresponding to
so-called cone4 and cone7 jets.

� Kt:

A recursively aggregative algorithm. Kt algorithms group constituents (or proto-
jets) having minimal ’Jet distance’ in the (η, φ) plan. The jet distance and rules to
stop the aggregation process differ in the different variants of the algorithms. The
current default is the Atlas fast-kt version with ”standard” inclusive Kt variant.
and D parameter =0.4 or 0.6 corresponding to two different sets of jets.

3.4.2 Electron, Muon, Jets ID in this analysis

All analysis are based on physics objects as provided by the ATLAS software athena, at
the period of Computing System Commissioning. The electron, muon, jets definition and
identification are as following:

� Electrons:

Electron candidates are required to be reconstructed and identified with the high-
pT electron reconstruction algorithm egammaRec [45]. Only electron candidates
that match the “medium” electron definition requirements are taken into account
for the analysis. This choice was made as the optimal trade-off between sufficient
rejection of jets and a reasonable efficiency for the selection of electrons. It means
that the electron candidate has passed a set of cuts on the electromagnetic shower
shape, and that a track has been reconstructed and matched to the cluster, which
satisfies several track quality criteria. Figure 3.5 shows the reconstructed electron
spectra for tt̄H signal and the identification efficiency as a function of pT and η.
The ID efficiency is almost flat at high energy region and decrease slightly under 40
GeV, the ID efficiency decrease at gaps(η = 0, |η| ≈ 1.3) and high |η| region due to

inefficiency of of tracking.

� Muons:

The selected muon candidates are reconstructed and identified in the muon spec-
trometer with the Staco algorithm [46]. In addition, a match to an inner detector
track segment is required to reduce the contribution of fakes and ensure the best
possible pT -resolution. Among all track segments that could match the muon spec-
trometer tracks, the best matching one is chosen. Figure 3.6 shows the muon spectra
and muon identification efficiency as functions of pT and η. the ID efficiency is high
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(b) electron η(ttH) distribution for medium ID cuts
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Figure 3.5: electron and electron identification efficiency as a function of pT and η at
medium ID cuts
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and almost flat as function of pT , and there are 3 gap as η, corresponding to the
three gaps of barrel-barrel ar η=0 and barrel-endcap at η ≈ ±1.3.
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Figure 3.6: muon and muon identification efficiency as a function of pT and η

� Jets:

The tt̄H analysis require jets which are reconstructed with the cone tower clustering
algorithm [47] using a cone size of ∆R = 0.4 (“cone-0.4”) to ensure the reconstruc-
tion of individual jets despite the huge activity in the final states considered(if 6
cone-7 jets in one event, these jets will have many cells shared, which may decrease
the performance of of jets). Jet fakes from electrons are removed by retaining only
those jets which fulfil ∆R(jet, ele) > 0.1 or Eele/Ejet < 0.65 with respect to an
electron tagged as isolated by the calorimeter- and tracker isolation requirements
described below. Figure 3.7 shows the jets pT and η spectra.

The identification efficiencies for isolated leptons and the corresponding purities
(defined as the lepton candidates matched these form W/Z decay over all lepton candidates
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Figure 3.7: jet pT and η spectra

that pass the identification criteria ) in the tt̄H data sets are listed in Table 3.9. All physics
objects used in the tt̄H analysis have to fulfil the kinematic requirements of pT > 15 GeV
and |η| < 2.5, to be inside the acceptance regions of the trigger and the inner detector.

Table 3.9: Selection efficiencies for leptons from W -decays and corresponding purities
with respect to non-isolated lepton background in the tt̄H signal samples.

tt̄H (2L) tt̄H (3L)
efficiency purity efficiency purity

muon ID 92.7% 86.6% 92.4% 91.0%
electron ID 70.5% 95.3% 71.2% 96.5%

3.5 Lepton Isolation

Lepton isolation is crucial for the effective suppression of the main reducible background
tt̄, with a cross section of 3 order of magnitude higher than that for signals. Though the
lepton identification described above provide good efficiency and isolated lepton purity,
It is not enough to suppress tt̄ to a accepted level. So, the calorimeter- and track-based
isolation requirements (“calorimeter isolation” and “tracker isolation”) are exploited, as
well as the angular separation of leptons and its closest jets, which is further referred to
as “cone isolation”.

� Calorimeter Isolation:

The transverse energy deposit in the calorimeter in a cone of ∆R = 0.2 around the
lepton1, including electromagnetic and hadronic calorimeter cells, is required to be

1The lepton ET -contribution is removed by subtracting the energy deposited in 5 × 14 calorimeter
cells in η × φ-direction for electrons and all cells within a 0.05-cone for muons.
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less than 10 GeV for both electrons and muons.
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Figure 3.8: Energy deposited in calorimeter of a cone ∆R = 0.2 for isolated and non-
isolated lepton(left:electron, right:muon)

� Tracker Isolation:

Additional tracks in the vicinity of a lepton can also be exploited for the selection
of isolated leptons, by cutting on quantities like the number of additional tracks in
a certain cone around the lepton, the sum of their transverse momenta or the pT

of the hardest track. A cut on the latter was chosen for the tt̄H analysis, which
requires pmax

T < 2 GeV within a 0.2 ∆R-cone. In order to suppress contributions
from pile-up tracks, only tracks are considered that fulfil additional requirements on
the track quality and maximum transverse and longitudinal impact parameters.

� Cone Isolation:

Leptons from semi-leptonic heavy quark decays are expected to be found close to
the direction of a jet. This characteristic can be used to reject them, by demanding
a minimum distance ∆Rmin between the lepton and the closest jet. Figure 3.10(a)
shows the ∆Rmin-distribution for muons from W -decays as well as for non-W muons.
Obviously, the latter show an enhancement at small ∆Rmin. For the tt̄H analy-
sis, the muons are required to be separated from their neighboring jet by at least
∆Rmin > 0.25. Due to the ambiguity in the reconstruction of electron clusters and
jets, electron candidates usually are found in close vicinity of a jet candidate. Al-
though electrons from W -decays tend to be closer to this fake jet candidate than
those from semi-leptonic heavy quark decays are to their corresponding jet, this
is not sufficient to reliably remove the overlap with jets and reject electrons from
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Figure 3.9: maxim pt of tracks in inner detector around isolated and non isolated lep-
ton(left:electron, right:muon) within ∆R = 0.2

heavy quark decays. Therefore, in addition to cuts on ∆Rmin, a cut on the en-
ergy ratio Eele/Ejet is applied. The distributions of the two variables are shown in
figures 3.10(b) and 3.10(c). Identified electron objects are considered as isolated
electrons, as long as they satisfy ∆Rmin > 0.2 or ∆Rmin < 0.1 and Eele/Ejet > 0.65.

Cone isolation is the strongest means to reject background from semi-leptonic heavy quark
decays. Although all three isolation variables are strongly correlated, each of them adds
further separation power if they are used in combination, because the tracker is more ro-
bust to the presence of pile-up, while the calorimeter is more sensitive to neutral particles.
Since the determination of the tt̄ background contribution, which is expected to be the
dominant background to tt̄H and also one of the largest backgrounds for WH, from data
will be very challenging, it is essential to suppress it as far as possible.

3.6 tt̄H, H → WW (∗) two lepton final states analysis

The decay chain of tt̄H, H → WW (∗) is tt̄H → WbWbWW (∗) → 2b4j2l2ν(l = eµ), the
final state observed in detector is: two b-jets, four light jets, two same sign charge isolated
leptons and missing Et for two neutrinos. Of the two same charged leptons, one is from top
decayed W, while the other one from Higgs boson decayed W. The possible backgrounds
are tt̄,tt̄W + jets, tt̄Z, tt̄tt̄,tt̄bb̄, tt̄WW . These backgrounds can be classified into two
categories, one is that has the same final states as signal, such as tt̄W + jets, which have
small production cross sections, and need to be suppressed using the differences of physics
shapes; the other one has different final states compared to signal, but have big production
cross sections, such as tt̄. They pass the selection due to un-isolated leptons from heavy
quark decays or lepton fakes, and ISR/FSR generate extra jets. They are suppressed by



3.6 tt̄H, H → WW (∗) two lepton final states analysis 71

muon-jet
R∆min 

0 0.5 1 1.5 2 2.5 3

E
nt

rie
s 

ra
te

s 
[1

/0
.0

6]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4  from W-decaysµ

-decaysτ not from W/µ

(a) ∆Rmin muon-jet in tt̄H

elec-jet
R∆min 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 E
nt

rie
s 

ra
te

s 
[1

/0
.0

1]
 

-410

-310

-210

-110

electron from W-decays

-decaysτelectron not from W/

(b) ∆Rmin electron-jet in tt̄H

jet/EeE
0 0.2 0.4 0.6 0.8 1 1.2

E
nt

rie
s 

ra
te

s 
[1

/0
.0

24
]

0

0.02

0.04

0.06

0.08

0.1

0.12

electron from W-decays

-decaysτelectron not from W/

(c) Electron-jet energy ratio in tt̄H

Figure 3.10: Distributions of the variables used for the cone isolation of muons (a) and
electrons (b, c) in the tt̄H analysis, all variables are calculated with respect to cone-0.4
jets. All distributions are normalized to integral 1.
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using isolation criteria. The selection criteria and the performance of each samples are
presented here.

3.6.1 Event selection and background suppression

tt̄H, H → WW (∗) two leptons final state event selection criteria are as following:

� At least two good reconstructed leptons and six jets full fill the identification criteria
described as 3.4, which is called as basic selection. A typical selection efficiency of
signal at Higgs mass 160 GeV is 38%. while the main background tt̄ lost more than
98% statistics.
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Figure 3.11: Lepton Multiplicity and Jet Multiplicity

� Since this background rejection rate is not sufficient, the selected leptons are in addi-
tion required to pass the cuts on calorimeter-, tracker- and cone-isolation described
in section 3.5. Then at least two leptons are required. Signal loss is about 50%
while more than 75% for tt̄, with mainly are tt̄ full leptonic events.

� A lepton veto of lepton number exactly equal to two is required, this mainly reject
ttZ since ttZ could have three isolated lepton from W or Z.

� A same sign charge is required for these two leptons, this will kill tt̄ full leptonic
decays drastically. Only 3% tt̄ pass this criteria and almost all the signal passed(if
no same sign charge required at generation level, two thirds of signal lost).
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� Since ttZ may have three isolated leptons from W/Z decays, but due to kinematical
reason(ex. out of detector acceptance), reconstruction efficiency or isolation effi-
ciency, one of them did not pass lepton selection, then, this event probably pass our
selection criteria of two leptons and six jets. In order to get rid of these kind of ttZ
events, a Z veto is applied, which requires:

– Release pT criteria of leptons to 6 GeV, and requires to pass the lepton selection
criteria described in section 3.4, except for the pT -requirement.

– pairing these leptons with same flavor, opposite sign charge as Z candidates.

– If these Z candidates have invariant mass between 75 and 100 GeV, then, this
event will be rejected since it is considered as a event with Z meson.

The reconstructed Z candidates mass spectra for signal and ttZ are shown in fig-
ure 3.12(a), a clear Z peak found in ttZ events and flat for signal. This criteria get
rid of one quarter of ttZ while keeps about 98% or other samples.
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Figure 3.12: (a) Di-lepton invariant mass distributions in tt̄H (2L) and tt̄Z and (b)
pT -distributions of muons passing the isolation criteria listed in Section 3.4. The solid
distribution shows electrons from W -decays in the 160GeV signal sample, the dotted
distribution shows muons in tt̄, which could not be matched to a truth muon from a W -
of τ -decay. All distributions are normalized to integral 1.

� Tighten muon pT : at this stage of the selection, 73% of all remaining tt̄ events con-
tain a muon from a semi-leptonic heavy quark decay, while the fraction of events
with electrons of this origin is only 20%. This discrepancy in rejection can partly
be explained by the electron identification criteria, which suppress a sizable fraction
of the background electrons, as demonstrated by the lepton selection purities given
in Section 3.4. In addition, the cone isolation works differently for the two lepton
flavors and performs more efficiently in the electron case, where in fact two vari-
ables are combined. Further rejection of these muon events is achieved by a cut on
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the minimum muon pT at 20 GeV, since leptons from heavy quark decays tend to
be softer than leptons from weak boson decays, as shown in Figure 3.12(b). This
equalizes the contributions from electrons and muons to 41% and 46%, respectively.

Table 3.10: Origin of the second selected like-sign lepton in the pre-filtered tt̄ data set
before and after the requirement of pmuon

T >20GeV (2L analysis). The category “others”
sums up the contributions by fake leptons, charge mismeasurement, pion- and tau lepton
decays etc.

pT (µ) > 15GeV pT (µ) > 20GeV
µ from heavy quark decays (73 ± 4)% (46 ± 6)%
e from heavy quark decays (20 ± 3)% (41 ± 6)%
others (7 ± 2)% (14 ± 4)%

An overview on the cut flow in the tt̄H, H → WW (2L) analysis and the correspond-
ing accepted signal cross sections is given in table 3.11, from 120 GeV to 200 GeV. And
the background cut flow is given in table 3.12. After the selection, for a 160 GeV Higgs
mass, the signal selection efficiency is 17.6%. For the three years of low luminosity run
and an integrated luminosity of 30 fb−1, it correspond to 56 events, and the backgrounds
are greatly suppressed, for a S/B of 1/6.

Table 3.11: Cut flow and expected cross sections (fb) for the tt̄H (2L) analysis signals
at Higgs mass point from 120 GeV to 200 GeV.
Sample Tot. Basic sel. Calo iso. Track iso. Cone iso Like-sign Z-veto pµ

T

tt̄H2L,120 GeV 3.9 1.05±0.01 0.80±0.01 0.65±0.01 0.52±0.01 0.52±0.01 0.51±0.01 0.45±0.01
tt̄H2L,130 GeV 6.7 1.98±0.03 1.50±0.03 1.25±0.02 0.97±0.02 0.95±0.02 0.95±0.02 0.84±0.02
tt̄H2L,140 GeV 9.1 2.96±0.06 2.28±0.05 1.93±0.05 1.57±0.04 1.57±0.04 1.54±0.04 1.38±0.04
tt̄H2L,150 GeV 10.3 3.55±0.04 2.69±0.04 2.26±0.04 1.83±0.03 1.82±0.03 1.78±0.03 1.63±0.03
tt̄H2L,160 GeV 11.1 4.01±0.05 3.02±0.04 2.57±0.04 2.09±0.03 2.09±0.03 2.04±0.03 1.87±0.03
tt̄H2L,170 GeV 9.9 3.67±0.06 2.76±0.05 2.38±0.05 1.92±0.04 1.91±0.04 1.86±0.04 1.70±0.04
tt̄H2L,180 GeV 8.0 3.06±0.05 2.31±0.04 1.98±0.04 1.61±0.03 1.61±0.03 1.58±0.03 1.28±0.04
tt̄H2L,190 GeV 5.8 2.20±0.05 1.69±0.05 1.45±0.04 1.21±0.04 1.20±0.04 1.18±0.04 1.10±0.04
tt̄H2L,200 GeV 4.7 1.83±0.02 1.43±0.02 1.24±0.02 1.05±0.02 1.04±0.02 1.02±0.01 0.95±0.01

3.6.2 Optimization of isolation

At the selection level described above, an optimization procedure was performed to find
the best lepton isolation criteria to improve the statistics significance of the tt̄H signal by
using S√

S+B
, where B includes all the listed backgrounds: tt̄, tt̄bb̄, tt̄tt̄, tt̄W + jets, tt̄Z.

� Variables optimized:
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Table 3.12: Cut flow and expected cross sections (fb) for the tt̄H (2L) analysis back-
grounds.
sample total basic sel. calo iso. track iso. cone iso. like-sign Z-veto pµ

T

tt̄ 833k 6170±80 1970±50 870±30 500±20 16±1 16 ±1 7.41±1.11
tt̄bb̄(EW) 259 15.8±0.8 4.1±0.4 0.9±0.2 0.3±0.1 0.2±0.1 0.2±0.1 0.11±0.07
tt̄bb̄ 2693 213±4 38±2 7.6±0.7 2.2±0.4 1.0±0.3 1.0±0.3 0.55±0.18
gg → tt̄tt̄ 2.64 0.65±0.01 0.33±0.01 0.26±0.00 0.20±0.00 0.07±0.00 0.07±0.00 0.06±0.00
qq → tt̄tt̄ 0.58 0.13±0.00 0.07±0.00 0.05±0.00 0.04±0.00 0.01±0.00 0.01±0.00 0.01±0.00
tt̄W+0j 73.3 1.40±0.05 0.55±0.03 0.36±0.02 0.23±0.02 0.12±0.01 0.12±0.01 0.11±0.01
tt̄W+1j 60.6 2.51±0.06 1.11±0.04 0.79±0.03 0.58±0.03 0.28±0.02 0.28±0.02 0.25±0.02
tt̄W+2j 92.3 10.3±0.2 5.9±0.1 4.9±0.1 3.9±0.1 1.89±0.07 1.85±0.07 1.68±0.06
tt̄Z 1440 33.6±0.4 26.8±0.4 23.7±0.4 17.9±0.3 2.1±0.1 1.57±0.10 1.49±0.09
total background 11.0± 1.1

All the variables that are used to do the lepton isolation are optimized, such as
electron and muon etcone; the maximum pT of the tracks around leptons in a cone
size of 0.2 in the inner detector; the electron upper and lower boundary of ∆Rele,jet

min

and Eele/Ejet, and ∆Rmuon,jet
min for cone isolation. There are unknown correlations

between these variables.

� Steps of optimization

– Give a set of initial values to these isolation criteria

– Scan the first variable, find the value to maximum S√
S+B

.

– Adjust this variable to the value found of last step.

– Scan second variable, find and adjust it to maximum S√
S+B

.

– Scan and adjust the variables one by one, start scan the first variable once the
last variable is scanned and adjusted.

– Stop scan once S√
S+B

can not be improved by scanning every variables. The
variable value of the last scan is the best criteria value for this multi-dimensional
scans.

Figure 3.13 shows that under the best isolation criteria, S√
S+B

shifts according to the
changing of each variable. It is found that the most sensitive variables are cone isolation
variables Eelec/Ejet and min∆Rmuon,jet. and other variables have small impact on the
significance.

3.7 tt̄H, H → WW (∗) three leptons final state analysis

The decay chain of tt̄H, H → WW (∗) three final state is tt̄H → Wb Wb WW (∗) →
2b 2j 3l 3ν(l = eµ), the final state observed in detector is: two b-jets, two light jets,
three isolated leptons and missing energy(three neutrinos). The possible backgrounds are
tt̄,tt̄W + jets, tt̄Z.
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Figure 3.13: Optimization scan of each isolation variable

3.7.1 Event selection and background suppression

tt̄H, H → WW (∗) three leptons final state event selection criteria are as following:

� At least three leptons and four jets fully satisfied the identification criteria described
in section 3.4. So-called the basic selection. A typical selection efficiency of sig-
nal at Higgs mass of 160 GeV, is 35%. while the backgrounds efficiencies are:
tt̄W + 2j : 8.2%; tt̄Z : 17.2%; tt̄ : 0.4%.

� Then, the selected leptons are in addition required to pass the cuts on calorimeter-,
tracker- and cone-isolation described in section 3.5. and ask exactly three leptons.
Signal have 45% passed while tt̄ have only about 1/200 passed.

� The same Z-veto as ttHWW2L analysis is used in order to suppress tt̄Z. 83% signal
passed while 80% tt̄Z are suppressed.

� To further suppress tt̄ background, as in ttHWW2L analysis, muon pT request to
be greater than 20 GeV.

An overview on the cut flow in the tt̄H, H → WW (3L) analysis and the correspond-
ing accepted signal cross sections is given in table 3.13, from 120 GeV to 200 GeV. And
the background cut flow is given in table 3.14. After the selection, for a 160 GeV Higgs
mass, the signal selection efficiency is 11.5%. For the three years of low luminosity run
and integrated luminosity of 30 fb−1, it correspond to 25 events, and greatly suppressed
backgrounds, for a S/B of 1/4.5.
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Table 3.13: Cut flow and expected cross sections (fb) for the tt̄H (3L) analysis signal at
Higgs mass point from 120 GeV to 200 GeV.
Sample Total Basic sel. Calo iso. Track iso. Cone iso. Z-veto pµ

T

tt̄H (3L, 120 GeV) 2.5 0.66±0.01 0.46±0.01 0.38±0.00 0.29±0.00 0.24±0.00 0.20±0.00
tt̄H (3L, 130 GeV) 4.3 1.27±0.01 0.89±0.01 0.73±0.01 0.56±0.01 0.48±0.01 0.40±0.01
tt̄H (3L, 140 GeV) 5.8 1.90±0.02 1.34±0.02 1.11±0.02 0.86±0.02 0.72±0.01 0.63±0.01
tt̄H (3L, 150 GeV) 6.6 2.22±0.02 1.56±0.02 1.28±0.02 0.99±0.02 0.81±0.01 0.70±0.01
tt̄H (3L, 160 GeV) 7.1 2.53±0.03 1.78±0.03 1.47±0.02 1.14±0.02 0.95±0.02 0.82±0.02
tt̄H (3L, 170 GeV) 6.3 2.34±0.02 1.64±0.02 1.37±0.02 1.08±0.02 0.88±0.01 0.77±0.01
tt̄H (3L, 180 GeV) 5.2 1.93±0.02 1.38±0.02 1.16±0.01 0.92±0.01 0.73±0.01 0.65±0.01
tt̄H (3L, 190 GeV) 3.8 1.42±0.02 1.02±0.01 0.86±0.01 0.70±0.01 0.54±0.01 0.49±0.01
tt̄H (3L, 200 GeV) 3.1 1.16±0.01 0.82±0.01 0.70±0.01 0.55±0.01 0.43±0.01 0.39±0.01

Table 3.14: Cut flow and expected cross sections (fb) for the tt̄H (3L) analysis back-
grounds.

sample total basic sel. calo iso. track iso. cone iso. Z-veto pµ
T

tt̄ 833k 1600±40 230± 20 50± 7 9.3±3.1 7.2±2.7 2.06±2.06
tt̄W+0j 73.3 0.94±0.04 0.20± 0.02 0.09±0.01 0.05±0.01 0.04±0.01 0.03±0.01
tt̄W+1j 60.6 1.28±0.04 0.33± 0.02 0.17±0.01 0.10±0.01 0.09±0.01 0.07±0.01
tt̄W+2j 92.3 3.32±0.09 1.02± 0.05 0.72±0.04 0.60±0.04 0.50±0.03 0.45±0.03
tt̄Z 1440 19.6±0.3 11.2±0.3 8.9±0.2 7.0±0.2 1.37±0.09 1.12±0.08
total background 3.7± 2.1

3.8 Pileup study

At LHC, under the designed low luminosity of 1·1033 cm2/s, there will be average of 2.3
inelastic proton-proton scattering per bunch crossing. Moreover, a cloud of slow neu-
trons from earlier collisions is expected to constitute the so-called “cavern background”
in the muon spectrometer. These effects results in extra action in the detector and de-
grade the reconstruction and identification of physics objects. In order to simulate these
effects, A set of low transverse momentum proton-proton inelastic scattering events are
simulated(minimum bias events), and added to the events at the digitization step, pro-
portional to the luminosity.

Though pileup did not bring in high pT objects, it smear energy all over the detector.
This will affect lepton identification and isolation. Pileup have un-neglectable impact on
jets since it will increase low energy jets candidates, impact calibration of calorimeters
and makes the jet energy scale systematically overestimated.

3.8.1 Pileup impact on lepton ID efficiency

Figure 3.14 compared lepton reconstruction efficiency before and after pileup as a function
of pT and η. 1% decrease due to pileup for both electrons and muons.
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Figure 3.14: lepton ID efficiency: before (black) and after pileup (gray/red)

3.8.2 Pileup impact on jets

Since pileup brings extra energy activities in the calorimeters, and results in extra jets
reconstructed in low pT region. The average multiplicity of jets with pT > 15 GeV in
signal events increases by 2.9%, while for the tt̄ and tt̄W backgrounds it increases by 5.2%
and 4.6%, respectively. Figure 3.15 shows the the jet multiplicity and pt distribution
before and after pileup.

3.8.3 Pileup impact on lepton isolation

Comparing the distributions of lepton isolation variables before and after pileup (Fig-
ure 3.16), calorimeter isolation variables are cut on the tails of safe region; tracker iso-
lation variables are very similar since there is a criteria on impact parameter in track
selections, which suppress pileup tracks; and more jets candidates at low energy decrease
discrimination power of Eele/Ejet. All these effects are at 1% level for isolated electrons.
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(a) jet multiplicity before and after pileup (b) jet pt before and after pileup

Figure 3.15: jet multiplicity and pt distributions: before (black) and after pileup
(gray/red)

3.8.4 Pileup impact on signal and background

The effectiveness of the lepton isolation variables is expected to degrade as a result of
pile-up. Calorimeter-based isolation variables suffer more from the presence of pile-up
than track-based variables. The restriction to tracks close to the primary vertex helps to
keep the pile-up effects small. In this analysis, the cone isolation is hardly exploited, so
the effect of pile-up on the lepton isolation efficiency is negligible.

Over all, for the signal as well as for all backgrounds, one has to expect a decrease in
the lepton selection efficiency due to additional jets. At the same time, backgrounds with
relatively low jet multiplicities in the final state are selected more efficiently by requiring
six jets in the final state. This results in an overall reduction of the signal significance.
In order to estimate the size of this decrease, the available data sets were fed through
the baseline selection procedure. Taking into account the weights of the mc@nlo tt̄ data
set, no event from the tt̄+pile-up sample survives the selection because of the limited
statistics. In order to estimate the expected contribution from this background, the
standard cut flow was therefore re-ordered such that the like-sign and the cone isolation
requirement on the lepton candidates are tested at the beginning. The like-sign cut
ensures the comparability of the two tt̄ data sets. The cone isolation criterion is much
more critical in terms of pile-up than the calorimeter and tracker isolation and veto cuts,
which were applied afterwards. The selection efficiency at this stage, together with the
selection efficiency for the remaining cuts as obtained from the pre-filtered tt̄ data set
without pile-up was used to estimate the expected number of tt̄ events in the presence of
pile-up. Still, there is a large systematic error on the tt̄ expectation in the pile-up case.
The results are summarized in Table 3.15. As can be seen, for the signal and the tt̄W
sample, the selection efficiency for the second half of the re-ordered cut flow, including two
out of three lepton isolation cuts, does not change in the presence of pile-up. Therefore,
the assumption of equal efficiency for this part of the selection is justified also for tt̄.
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Figure 3.16: lepton isolation: before (black) and after pileup (gray/red)

For the remaining backgrounds, especially for tt̄Z, no pile-up samples are available.
In order to estimate the overall signal significance under the effect of pile-up, the expec-
tations in these channels in absence of pile-up were scaled to the 28% increase observed
for the tt̄W -contribution. As expected, the signal significance S/

√
B decreases by roughly

20% down to 2.4 from a starting value of 3.0 in the non-pile-up case. This number is,
however, only a rough estimate, due to large statistical errors and the additional uncer-
tainties introduced by the methods to estimate the accepted cross sections in the presence
of pile-up.

3.9 Systematic uncertainties

Predictions of signal expectations are affected not only by the available Monte Carlo statis-
tics, but also by systematic uncertainties introduced e.g. by limited description of physics
processes and the detector performance. Even more important, the signal significance
that can be achieved to claim an observation of the Higgs boson in the tt̄H, H → WW
channel, as well as the accuracy of a subsequent σtt̄H × BR(H → WW ) measurement
depend strongly on the accuracy of the background estimation. Since the reconstruction
of the Higgs boson is difficult in the complex final states of the signal, background estima-
tion from data, will be very challenging. No strategy has yet been studied to determine
the background contribution in the data with sufficient precision. In the following, an
estimation of the uncertainty on the Monte Carlo predictions on the number of expected
signal and background events is presented. The three main sources of systematic uncer-
tainties that are considered are the limited accuracy of the luminosity measurement as
well as uncertainties from the theory and the description of the detector performance.
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Table 3.15: Selection efficiencies and accepted cross sections for the standard scenario
and under the influence of pile-up. The background numbers for the no-pileup case vary
somewhat from those given in Table 3.12, since slightly different sub-sets of the available
data sets have been analysed.

no pile-up
signal tt̄ tt̄W tt̄Z tt̄tt̄

(pre-filtered)
εg (generator level filter) 0.95 0.038 0.42 0.79 0.65
ε1 (6jets+S.S+coneIso.) 0.23 2.8 · 10−3 0.032 0.050 0.07
ε2 (remaining cuts) 0.77 0.071 0.65 0.26 0.48
εtot = εg · ε1 · ε2 0.17 8 · 10−6 0.009 0.010 0.022
accepted σ [fb] 1.85±0.03 7.21±0.9 2.00±0.07 1.50±0.09 0.067±0.003

pile-up + cavern background
signal tt̄ tt̄W tt̄Z tt̄tt̄

εg (generator level filter) 0.95 0.54 0.42 no pile-up samples
ε1 (6jets+S.S+coneIso.) 0.23 0.34 · 10−3 0.040 expectations
ε2 (remaining cuts) 0.76 0.071 0.67 extrapolated
εtot = εg · ε1 · ε2 0.16 13 · 10−6 0.011 from tt̄W

accepted σ [fb] 1.81±0.04 10.73±3.27 2.55±0.12 1.91±0.16 0.087±0.007

3.9.1 Luminosity

The measurement of the luminosity that will be delivered by the LHC is expected to
introduce an uncertainty of ±3% on the determination of reaction cross sections and on
Monte Carlo-based event yield predictions.

3.9.2 Theoretical uncertainties

Monte Carlo predictions suffer from systematic uncertainties inherent in the theoretical
description of the physics processes involved.

� Cross sections and higher order calculations

The total cross section of the main background tt̄ has been calculated at next-
to-leading order to an accuracy of ±12%. The resulting uncertainty on the total
background expectation can be obtained by weighting this value with the fractions
of 66% tt̄-contribution in the 2L and 56% in the 3L background.

It has to be admitted, however, that this number certainly underestimates the im-
pact of the background cross section uncertainty for two reasons: First, the uncer-
tainty on the cross sections of the non-tt̄ contributions is neglected completely. Since
for these so far only LO calculations exist and therefore K-factors had to be guessed,
the uncertainty on their cross sections is presumably larger than that for the inclu-
sive tt̄ cross-section. Second, the inclusive tt̄ cross section introduces only a small
fraction of the overall error, which is caused by the fact that the tt̄H final states
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require several additional hard jets. Therefore the relevant cross sections would be
those for tt̄+n jets with n ≥ 2, which cannot be accessed by NLO calculations and
thus have to be assumed to carry much larger uncertainty, as long as they are not
measured experimentally.

� Generator settings uncertainties on the signal expectation

To estimate the influence of the uncertainties of the generation input parameters
on the prediction of the signal cross section and the event selection efficiency, the
impact of variations to the “standard” pythia settings used to generate the tt̄H
signal samples described in Section 3.2 was studied. The input parameters that
were considered are the Q2-scale, the choice of the parton distribution functions
(PDFs), the description of initial- and final state radiation (ISR and FSR) as well
as heavy- and light quark fragmentation. The changes to these inputs were applied
independently one after the other. While the 2L and 3L final state “standard”
samples contain 100k and 80k events, respectively, 40k events were generated for
both final states for a Higgs boson mass of 160 GeV with each of the changes to the
generator settings.

The CTEQ6L1 PDFs were replaced by the MRST2001-LO parametrization, in order
to estimate the influence of the choice of the PDFs. To test the dependence on
the Q2-scale, Q2 was changed from the average squared transverse mass of the
outgoing objects to the squared center-of-mass energy. To quantify the sensitivity to
changes in the ISR and FSR modeling, two samples were generated where the ΛQCD

and kT cut-off parameters were varied by consistently inserting half or twice the
default values in the pT -ordered ISR/FSR description in pythia 6.4. To determine
the impact of the fragmentation description, the values of the quark fragmentation
parameters were varied according to the range allowed for by the results of the
fits by the OPAL collaboration [48, 49], which are εb = −0.0041 ± 0.0004 and
εc = −0.031±0.011 for the b- and c-quarks and b = 0.52±0.04 and σq = 0.40±0.03
for the fragmentation of light quarks. As expected, only the change of the PDFs
caused a sizable change of +7.8% in the total production cross section.

The resulting effects on the event selection efficiency were estimated from samples
reconstructed with the ATLAS fast detector simulation atlfast [50]. The basic
event selection criteria for the tt̄H 2L and 3L analyses were implemented by the
requirement of isolated leptons that pass pe

T >15 GeV and pµ
T >20 GeV and jets

that satisfy pT >15 GeV. For the 2L final state, events that fulfil Nlep ≥ 2 and
Njets ≥ 6 were selected, whereas Nlep ≥ 3 and Njets ≥ 4 were the corresponding
requirements for the 3L analysis.

The relative differences of the selection efficiencies on the “varied” and “standard”
signal data sets were used to quantify the effects of the changes. The modifications
to the ISR/FSR description were found to cause the dominant uncertainty of +4.8%
and -1.5% for the 2L and -1.7% and -3.4% for the 3L analysis, The uncertainties on
the fragmentation parameters were found to be ±1.0% for the 2L and ±2.8% for the
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3L analysis, All results were combined to a total systematic theory error which in-
cludes the uncertainty on the cross section as well as on the event selection efficiency.

� Description of background processes

The effects studied for the signal also cause uncertainties on the selection of back-
ground events. Especially for tt̄, the uncertainty on the multiplicity and pT -spectra
of jets caused by the choice of the generator is expected to introduce sizable uncer-
tainties in the backgrounds.

However, estimating the size of these uncertainties from testing samples with var-
ied input parameters or other event generators in a similar way as was done for
the signal is not feasible with the fast detector simulation. Since the rejection of
non-isolated leptons and contributions of jets faking leptons strongly influence the
selection efficiency of background events, it is doubtful that reasonable results can
be obtained from fast simulation studies. Changes introduced in the description
of the ISR/FSR require adjusting the jet energy scales properly. The softer the jet
spectrum of a process is expected to be, the more important this is, which causes es-
pecially the tt̄ background to be very sensitive and hence cannot be neglected as has
been done for the signal. This recalibration procedure needs to be well understood
before corresponding studies can provide reliable results for the background.

Table 3.16 gives an overview on the standard and varied generator settings that were used
to determine the systematic uncertainties on the signal description.

3.9.3 Detector performance uncertainties

Various effects due to limited knowledge of the detector performance give rise to further
uncertainties. To determine the impact of energy scale and resolution uncertainties, as well
as reconstruction and identification efficiency uncertainties, the corresponding quantities
of leptons and jets were modified according to the expected uncertainties [47, 45, 46].
The changes were applied one after the other and the result of the event selection on
the modified objects was compared to the standard selection efficiency to determine the
uncertainties on the accepted cross sections given in Table 3.19.

� Energy scale

Systematic errors on the energy scale of electrons and jets are caused by calorime-
ter calibration uncertainties, while the muon energy scale suffers from the limited
knowledge of the magnetic field in the muon spectrometer. To account for these
effects, the ET of the reconstructed electrons was varied by ±0.5%, while the muon-
pT was shifted by ±1% of the original value. In the case of the jets, the complete
four-vector was scaled by ±7%, to account for the uncertainty on the measurement
of E. Positive and negative corrections were considered separately in all cases.
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Table 3.16: Variation of the pythia input parameters used for the estimation of the
generator uncertainties to the signal cross sections and selection efficiencies. Note that
the statistical uncertainty on the results is of the order of 1% and small changes were
therefore neglected in the combination.

Standard configuration Varied settings ∆ε(signal selection)
2L 3L

PDF CTEQ6L1 MRST2001-LO +1.0% +0.02%
+7.8% (σtot)

Q2 MSTP(32) = 8 MSTP(32) = 4 +0.3% −0.2%
FSR ΛQCD PARJ(81) = 0.14 GeV PARJ(81) = 0.28 GeV
ISR ΛQCD PARP(61) = 0.192 GeV PARP(61) = 0.096 GeV −1.5% −3.4%
ISR kT PARP(62) = 1.0 GeV PARP(62) = 2.0 GeV

PARJ(81) = 0.07 GeV
PARP(61) = 0.384 GeV +4.8% −1.7%
PARP(62) = 0.5 GeV

εb PARJ(55) = −0.006 PARJ(55) = −0.0037 +0.4% −0.4%
PARJ(55) = −0.0045 +0.9% −1.3%

εc PARJ(54) = −0.07 PARJ(54) = −0.020 −1.0% −1.1%
PARJ(54) = −0.042 +0.1% −1.4%

b PARJ(42) = 0.58 PARJ(42) = 0.48 +0.1% −1.1%
PARJ(42) = 0.56 +0.2% −0.4%

σq PARJ(21) = 0.36 PARJ(21) = 0.37 +0.1% −1.2%
PARJ(21) = 0.43 −0.1% −2.0%

Fragmentation combined ±1.0% ±2.8%

Total −1.8%
+9.2%

−4.4%
+7.8%
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� Energy resolution

Due to incomplete modeling of the material distribution inside the detector, ad-
ditional smearing of the energy measurement caused by multiple scattering has to
be expected. To evaluate the impact of this contribution, the transverse energy
resolution of the electrons was enhanced by an additional Gaussian smearing with
σ(ET ) = 0.0073 · ET . For jets, further smearing with σ(E) = 0.45 · √E was ap-
plied to all components of the four-momentum. In the case of muons, additional
uncertainties are expected due to misalignment uncertainties. To take both effects
into account, the width of the 1/pT -distribution of the muons was enhanced by an
additional Gaussian of width σ(1/pT ) = 0.011/pT .

� Reconstruction efficiency

To estimate the impact of the uncertainties on the lepton reconstruction and iden-
tification, a certain fraction of all leptons were removed randomly before the event
selection. A 1% fraction was discarded in case of the muons, while 0.2% of the
electrons were removed.

� Isolation efficiency

For many analysis, the uncertainty on the lepton isolation efficiency will be deter-
mined from data in clean Z → e+e− or Z → µ+µ− control samples. However,
leptons in events with high jet multiplicity and pile-up are less isolated than lep-
tons in final states with little jet activity. Semi-leptonic tt̄ events will be produced
abundantly at the LHC with a cross section of 360 pb and their final state contains
at least four jets, of which two are b-jets. This event topology is much closer to the
jet signature of the signal events than Z → `+`−, and can therefore be used for a
more realistic estimation of the lepton isolation uncertainty from data.

Selection of a control sample:

To determine the lepton isolation efficiency, a control sample of tt̄ events with one
isolated lepton in the final state needs to be selected. The selection of a sample
which contains about 600k events will be possible with an integrated luminosity of
about 1 fb−1. A sufficiently high purity of the selected tt̄ sample can be achieved by
requiring that two top quarks be reconstructed: Based on a selection of leptons and
jets and the electron/jet overlap removal as described in Section 3.4, at least one
lepton, two b-jets, two light jets and missing ET greater than 20 GeV are required,
which leads to a selection efficiency of 10%. All possible combinations of two light
jets and a b-jet are built and the combination which yields an invariant light-jet pair
mass closest to the nominal W -boson mass and overall invariant mass closest to the
nominal top quark mass is assigned to the hadronic top. The W -mass constraint on
the lepton-neutrino pair and the measured /ET can be exploited to reconstruct the
four-momentum of the neutrino. Out of two possible solutions, the neutrino four-
momentum which provides the invariant mass closest to the top quark mass, when
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combined with the selected lepton and the remaining b-jet, is chosen. Mass window
cuts of ±20 GeV around MW and of ±35 GeV around Mt ensure a high probability
that the selected event really is a tt̄ event, and that the correct combination is
chosen. 14% of all events satisfying the number of jet and lepton-cuts pass these
additional requirements. Finally, the lepton control sample can be defined from
leptons assigned to the leptonic top-decay, which are further required to be well
separated from the b-tagged jet by ∆R(lepton,b-jet)> 0.4.

(a) hadronic W mass in tt̄ con-
trol sample

(b) jet pt before and after pileup (c) jet pt before and after pileup

Figure 3.17: hadronic W, hadronic and lepton top reconstructed mass distribution of
control sample

Contamination of the lepton sample:

Sources of contamination of the leptons tagged as W -decay products according to the
procedure described above are leptons from τ - or semi-leptonic heavy quark decays
and fake leptons. Their contributions are below 10%, as shown in Table 3.17.

Table 3.17: Contamination of the lepton (in %) control sample.
Lepton source W τ b Other
Electron 90.9 6.7 < 0.1 2.3
Muon 91.2 7.0 0.8 1.0

Table 3.18 shows the isolation efficiencies for the leptons in the lepton control sample
after applying corrections for this contamination and for the differences in the tt̄
and tt̄H, H → WW final states. The latter correction factor accounts for the
deviations of the pT - and η-distributions in the tt̄ control sample from those in
the tt̄H Monte Carlo prediction by η- and φ-dependent weights, which are obtained
from a comparison of the tt̄ and tt̄H Monte Carlo distributions. The statistical
uncertainty on the isolation efficiencies reduces to < 0.3% for 30 fb−1 of data. Taking
the uncertainties on the correction factors to be 5% each, the overall uncertainty on
the calorimeter-, tracker- and cone-isolation efficiency can be controlled at the level
of 1% for both electrons and muons. This value scales up to a resulting event-level
uncertainty of 1% for the 2L and 1.5% for the 3L final state, assuming an average
of one (1.5) electron(s) or muon(s) per 2L (3L) event.
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Table 3.18: Isolation efficiencies in the semi-leptonic tt̄ control sample. Only statistical
errors are given.

Control sample (after correction) tt̄H (2L)
Calo iso. Track iso. Cone iso. Calo iso. Track iso. Cone iso.

Electron (93.3±1.4)% (89.8±1.4)% (81.4±1.4)% (93.1±1.0)% (90.3±1.0)% (82.7±1.4)%
Muon (88.9±1.2)% (87.2±1.2)% (82.1±1.2)% (89.4±0.9)% (87.7±0.9)% (85.2±0.9)%

3.9.4 Systematic uncertainty on Monte Carlo based predictions

Table 3.19 lists all considered systematic uncertainties and the impact on the number of
expected signal and background events at 30 fb−1 for a Higgs mass of 160 GeV. For the
2L analysis, these contributions sum to a total uncertainty of roughly 10% for the signal
and 11% for the background, if they are added in quadrature (i.e. neglecting possible
correlations). In case of the 3L analysis, the total uncertainty for the signal is 9% and
14% for the background.

Table 3.19: Overview of the systematic uncertainties on the signal and background
predictions.

tt̄H (2L) tt̄H (3L)
Nsig Nbkg Nsig Nbkg

Standard(mH = 160 GeV) 56.1 330 24.6 112

Luminosity ±3% ±3% ±3% ±3% ±3%
Electron ID efficiency ±0.2% ±0.2% ±0.2% ±0.3% ±0.3%
Muon ID efficiency ±1% ±1.0% ±1.0% ±1.5% ±1.5%
Electron ET scale ±0.5% ±0.1% < 0.1% ±0.2% ±0.3%
Muon ET scale ±1% ±0.5% ±0.2% ±0.7% ±1.0%
Electron pT resolution < 0.1% < 0.1% −0.1% +0.2%
Muon ET resolution −0.6% +2.2% +0.3% +0.9%
Jet E scale ±7% −1.2% −4.9% ±2.7% ±10.1%
Jet E resolution −1.0% −1.4% −1.9% −5.7%
Electron isolation efficiency ±1% ±1% ±1.5% ±1.5%
Muon isolation efficiency ±1% ±1% ±1.5% ±1.5%

Total experimental uncertainty ±3.9% (±6.5%) ±5.2% (±12%)

σtt̄ ± 12% - (±8.0%) - (±6.7%)

Theoretical +9.2%
−1.8%

+7.8%
−4.4%

Total uncertainty ±10% (±11%) ±9% (±14%)

The list of sources that were considered here is not complete, as the size of major
contributions like e.g. the uncertainty on tt̄+n jets discussed above, or the non-isolated
lepton rejection can hardly be estimated with our present knowledge. Even so, this study
reveals that a reliable Monte Carlo based background subtraction will hardly be feasible,
as the Monte Carlo prediction already suffers from sizable uncertainties on the order of
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the expected signal yield already at the level of the considered uncertainties. To con-
trol the background to this channel, it will therefore be mandatory to find a means to
measure the background from the data in future analysis. Moreover, the cross section
uncertainties-big contribution to systematics-will be reduced once have the real data and
do the corresponding measurement. So, in the following, predictions of signal signifi-
cance and coupling measurement accuracies will be given for the case of a maximum 10%
uncertainty, which hopefully can be achieved with real data.

3.10 Top quark and Higgs boson Yukawa Coupling

measurement

For an intermediate Higgs mass, above the WW threshold but still too low for the “golden”
ZZ → 4l signatures, tt̄H and WH associated production with Higgs boson decaying to
WW are key channels for observing the Higgs boson. Both production channels are
of particular interest since they provide access to important Higgs boson couplings and
therefore give valuable contributions to tests of the Standard Model.

3.10.1 Significance of signal

Table 3.20 and Figure 3.18 summarize the signal significance that can be achieved by
the analysis as a function of Higgs mass for the statistical only and a assumption of 10%
uncertainties both on signal and backgrounds(which is hopefully achieved with real data
studies). It indicate that for Higgs masses close to the W -pair mass, the observation of an
excess of more than 2σ will be feasible in tt̄H, H → WW channels with the first 30 fb−1.

3.10.2 Precision of σtt̄H ∗BrH→WW measurement at 30 fb−1

σtt̄H ∗BrH→WW is an observable from real data, and have less relevant on modeling. Once
Higgs boson found at given mass at LHC, we can give the results of this observable.

If SnL = NnL
observed − BnL signal events are observed in the nL (n = 2, 3) final state

of tt̄H, H → WW or WH, H → WW , where BnL is the estimated Standard Model
background for the channel, the σtt̄H ×BR can be calculated as

σtt̄H ×BRH→WW =
SnL

L · εnL · CnL

. (3.3)

The integrated luminosity L needs to be measured and the signal event selection effi-
ciency εnL must be determined from Monte Carlo studies. The factor CnL accounts for
the combinatorics and W -decay branching ratios leading to the observed final state. The
branching ratios are known to good precision [53] and therefore their errors can be ne-
glected. Since the uncertainties on L and εnL are considered to be negligible as well, the
relative accuracy of the σ × BR measurements is given by the statistical uncertainty of
Nobserved and the relative systematic uncertainty a of the measurement of the background
contribution according to:
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Table 3.20: Overview on the signal significances that can be reached by the considered
tt̄H, H → WW channels at 30 fb−1, taking into account once only the statistical errors
and once in addition a systematic uncertainty on the background subtraction. The cal-
culation of the significances for tt̄H was performed with frequentist approaches as imple-
mented in the LEPStats4LHCs (no systematic errors) and ProfileCombination (including
systematic errors) tools [51, 52].

stat. error only ±10% systematic unc.
2L 3L combined 2L 3L combined

tt̄H (MH = 120GeV ) 0.7 0.5 0.9 0.4 0.4 0.6
tt̄H (MH = 130GeV ) 1.4 1.0 1.8 0.7 0.7 1.1
tt̄H (MH = 140GeV ) 2.2 1.6 2.8 1.2 1.1 1.6
tt̄H (MH = 150GeV ) 2.6 1.8 3.3 1.4 1.3 1.9
tt̄H (MH = 160GeV ) 3.0 2.1 3.8 1.5 1.5 2.1
tt̄H (MH = 170GeV ) 2.8 2.0 3.6 1.4 1.4 2.0
tt̄H (MH = 180GeV ) 2.3 1.7 3.0 1.2 1.2 1.7
tt̄H (MH = 190GeV ) 1.9 1.3 2.5 1.0 0.9 1.4
tt̄H (MH = 200GeV ) 1.5 1.0 1.9 0.8 0.7 1.1

δ(σ ×BRH→WW )

σ ×BRH→WW

=

√
S + B + (a ·B)2

S
. (3.4)

of which a is the relative uncertainties of total background, 10% assumed. The depen-
dence on the Higgs boson mass of the relative accuracy of σtt̄H × BRH→WW is shown
in Figure 3.19 for an integrated luminosity of 30 fb−1. The best accuracy is found in
the case MH = 160 GeV, where 68.7% is possible in the 2L and 65.5% in the 3L final
state, including 10% systematic background uncertainty. The combination of both mea-
surements allows for an accuracy of 47.4%. Figure 3.19 up plots show the accuracy of
σtt̄H ×BRH→WW as a function of Higgs mass between 120 GeV and 200 GeV.

3.10.3 Precision of gt measurement at 30 fb−1

For a Higgs boson in the intermediate mass range, measurements of these cross-sections
can be valuable inputs to tests of the Standard Model. The process tt̄H, H → WW is of
special interest as a probe of the top Yukawa coupling constant gt. Under the assumption
of Standard Model, the top quark Yukawa coupling can be written as following:

g2
t =

SnL

L · εnL · I(mH) ·BRH→WW · CnL

. (3.5)

the factor I(MH) is the integral over the parton’s momenta in initial states, propagator
(width) of gluon or quark (Higgs/W) in middle states and leptons/jets phase space in
the final states. Except for the Higgs mass, its dependence are well known on parton



90 Analysis of tt̄H(H → WW (∗)) production channel

 [GeV]Hm
120 140 160 180 200

si
gn

al
 s

ig
ni

fic
an

ce

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 WW (combined)→H, Htt
WW (2L)→H, Htt
WW (3L)→H, Htt

-1L = 30 fb∫

statistical errors only

ATLAS

 [GeV]Hm
120 140 160 180 200

si
gn

al
 s

ig
ni

fic
an

ce

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 WW (combined)→H, Htt
WW (2L)→H, Htt
WW (3L)→H, Htt

-1L = 30 fb∫

10% background uncertainty±

ATLAS

Figure 3.18: Signal significances in the tt̄H, H → WW final states as a function of MH

for 30 fb−1 integrated luminosity.

distribution functions, strong interaction αs, top mass, hadronization/fragmentation. For
this compact expression we had assumed a scalar type for the Lorentz structure between
Higgs boson and top quark, and a near pole production for Higgs/W boson, however this
factor I(MH) is still caculatable/known for more complex situations at certain accuracy.
The accuracy of gt can be given as:

δgt

gt

=

√
S + B + (a ·B)2

2S
⊕ δBRH→WW

BRH→WW

⊕ δI(mH)

I(mH)
. (3.6)

Assume δBRH→WW

BRH→WW
= δI(mH)

BRH→WW
= 0.1 and neglect the correlation of these uncertainties,

around Higgs mass of 160 GeV for an integrated luminosity of 30 fb−1, The accuracy of
gtis found to be 34.3% in the 2L and 32.7% in the 3L final state, including 10% systematic
background uncertainty. The combination of both measurements allows for an accuracy
of 23.7%. Figure 3.19 down plots show the accuracy of gt as a function of Higgs mass
between 120 GeV and 200 GeV.

3.11 Conclusion and discussion

� Based on ATLAS full simulation Monte Carlo, ttH, H → WW two leptons final
state and three leptons final state analysis are performed. For a 160 GeV Higgs
boson mass, at 30fb−1, the signal are expected to be 56 for two lepton final state
and 25 for three lepton final state, while the statistical significance are 3.0 and 2.1
separately.
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� A set of detailed analysis performed on trigger, isolation, and pileup effects. The
trigger have a impact less than 1% on the significance when a high pT isolated lepton
is required. Pileup decrease the lepton identification efficiency, isolation selection
performance and increase jets multiplicity, all these have a total decrease of ∼ 20%
of the significance, mostly blamed for the tt̄ because of the decrease of isolation
performance on non-isolated lepton rejection and increase of jet multiplicity.

� A complete study of the systematics uncertainty studies on luminosity and detector
performance has been performed, the total uncertainties is 4%(5%) for 2L(3L) signal
and 7%(12%) for backgrounds. While the theoretical uncertainties are 8%.

� After three years of low luminosity run of ATLAS and a 30fb−1 integrated luminos-
ity, combining all the two lepton and three lepton channels, the combined branching
ratio of σttH × BRH→WW (∗) could reach an accuracy of 47.4%, while the top quark
Yukawa Coupling could reach 23.7%.

� tt̄H, H → WW (∗) is a number counting experiment, the systematics uncertainties
analysis showed that the precision of Yukawa coupling constant measurement is
dominated by the level and uncertainty of backgrounds. Therefore, it is mandatory
to develop real data control samples to estimate the backgrounds and uncertainties.
This will be the next important direction for the tt̄H, H → WW (∗) analysis

� The use of fitting with the constrains of W and top mass to reconstruction tt̄H, H →
WW (∗) events(so called mass constraint fit), and the use of multivariate analysis to
distinguish the signal and backgrounds, are also directions to improve the perfor-
mance of this analysis.
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4.1 Introduction

It is important to know the detector performances before and for physics analysis, es-
pecially for the systematic uncertainties studies. Test beam is one of the key methods
to know the performance of detector before data taking. It can be used to study the
identification and reconstruction of certain particles. Every module of the detector was
tested during the building phase and with test beams as standardalone detector with
minimal mater in front. Therefore, it is important to know the performance by putting
all components of the detector as close as possible to the real detector geometry and ma-
terial distributions. In detector combined mode, it is possible to identify particles using
combined detector information. For example, the energy of low pT electrons, should be
measured by combining the calorimeter and inner detector information, since the energy
resolution of the calorimeter is worsen at low energy while inner detector has better per-
formance of momentum measurement at low pT region. Moreover, it is important to have
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similar mater distribution as much as possible since mater distribution can affects the
performances, especially for very lower energy(VLE) particles.

During summer and autumn of 2004, ATLAS combined test beam (CTB) was per-
formed at beam line H8 of Super Proton Synchrotron at CERN [54]. This was the first
time to put all ATLAS sub-detector together and tested in combined model. The goal
of this CTB was to demonstrate that all the ATLAS sub-detectors (barrel slice) can take
combined data using ATLAS (prototypes and/or series production) read-out electronics
and software. The goals of these tests are:

� Integrate the DAQ system, level 1 trigger, the detectors. Test level 1 trigger at LHC
collision frequency. This can be seen as a pre-commissioning of the TDAQ system.

� Combined Reconstruction of muons, electrons and pions using the information from
the Inner Detector, the combined Calorimetry and the Muon Spectrometer.

� Test of the reconstruction and simulation software, tuning of the Monte Carlo to
the test beam data.

� Energy and position resolutions, efficiencies and noise.

� ID: Global system performance and data handling, pixel spatial resolution, and ef-
ficiency vs beam intensity.

� Calorimeters: energy calibration and sharing, electronic vs hadronic energy mea-
surements, linearity and uniformity versus energy and eta, shower containment
and profiles, studies of energy losses in passive material(cryostat walls), and jet
reconstruction. In CTB2004, special runs were taken at very low energy(VLE) of
pT < 10GeV . These are first dedicated runs for calorimeter very low energy response
study.

� Muon Spectrometer: General stability and uniformity studies of MDT chambers.
Test of the barrel and end-cap trigger and alignment systems. Muon momentum
measurements in the end-cap stand.

4.2 ATLAS Test Beam detector setup

The test beam table setup use final production modules of the various sub detectors, and
mimic to ATLAS final configuration as much as possible. The set-up of the combined test
beam is shown in figure 4.1.
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Figure 4.1: Schematic of test beam table setup. The beam particles first hit the pixel
and SCT modules, and then continue towards the TRT, Calorimeters,and Muon modules.
In the coordinate system used, the beam travels in the positive x direction, y points
upwards, and z points out of the paper, which also is the positive eta direction. The table
containing the calorimeters could be translated and totated to simulate that the particles
come from the interaction point at different η.

The first part of the detector system in the beam line is the Inner Detector, repre-
sented by 6 modules of pixel, 2 in the pixel B layer and 2 for pixel layer 1 and 2 each,
with an active size of x × y = 60.8 × 16.4mm2; 4 SCT layers with 2modules per layer
covering an area of x × y = 120 × 120mm2; two TRT barrel wedges, each is equivalent
to 1/16 of the circumference of a cylinder, with inner radius of 558 mm and outer radius
of 1080 mm and overall length(along the x axis) of 1425.5mm. Both Pixel and SCT were
installed inside a 2 T magnetic field created by the MBPS dipole magnet. However the
TRT was always kept outside for technical reason, which is different from the ATLAS
detector configuration. Then followed, the prototype of EM calorimeter, housed in a
cryostat filled with liquid argon. For the hadronic Tile calorimeter, three barrel and three
extended barrel modules were used. A couple of meters behind the table, there are a frac-
tion of the barrel Muon Spectrometer, a Monitored Drift Tube(MDT) BOS(Barrel Outer
Small) chamber, and four more barrel MDT stations(seven chambers) were placed further
downstream. One end-cap Cathode Strip Chamber, six end-cap MDT chambers at three
stations, one end-cap Thin Gap Chamber(TGC) triplet, and two TGC doublets placed in
sequence. There was also a muon trigger consisting of two 10 × 10cm2 scintillators, two
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trigger stations of barrel Resistive Plate Counters and magnets installed.

4.3 The test beam line

The beam in the H8 beam line is produced by protons extracted for the SPS at energies
up to 400GeV. The typical intensity of the primary beam is about 1012 protons per burst.
The proton beam from the SPS is guided to the North Area, direct onto T4 target of up
to 300 mm thick Beryllium plate, where a shower of secondary particles is produced. In
the North Area, there are 4 beamlines, two from the T4 taget(H6,H8), and two from the
T2 target(H2,H4). In standard conditions, the secondary beam energy in the H8 beam
line can be adjusted between 10 GeV and 350 GeV. A secondary filter target can be used
to achieve a higher electron or pion fraction in the beam. As secondary target, one can
choose either 8 or 16 mm lead, or 1000 mm of Polyethylene plus an absorber, air or lead,
to obtain pure electrons or pions.

The beamline consists of a number of magnets, quadrapole and dipoles, for focusing
and bending the particles and selecting the right momentum by controlling the magnet
currents of a vertical magnetic spectrometer.

In addition, the H8 beamline offers the possibility of very low energy beams. To
achieve this, the beam is directed on an additional target further downstream (T48), close
to the experiment, and a dedicated magnetic spectrometer, to provide energies from 1 to
9 GeV particles.

4.4 Beamline instrumentation

In addition to the detector modules, various beam instruments have been placed in the
H8 beam line [54]. The data from this elements have been recorded together with the
event data to allow off line data quality control. Some of the scintillators were also used
to trigger the readout. The layout of the beam instruments is shown in 4.2, including
the configuration of scintillators, beam chambers and Čerenkov detector. The detailed
position of each beamline instrumentation is shown in table 4.1.

4.4.1 Čerenkov counters

There are three one meter long Čerenkov counters along the H8 beam line: CHRV1(HE,Helium)
is furthest upstream, CHRV2(HE/VLE) are names of two Čerenkov counters, one is on
the High Energy beam line path and the other is on the Very Low Energy beam line
path. They are used to identify muon/pion/electrons. These Čerenkov counters operate
as threshold counter, only the velocity of particles above a certain threshold will produce
a signal. For a given momentum of beam, the pressure of the gas can be set so that only
certain particle bellow a mass threshold will reach the velocity threshold. The sperate
possibility for Helium and Nitrogen are show in figure 4.3.
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Figure 4.2: Schematic outline of the beamline instrumentation, and also of the ATLAS
sub-detector elements.

Beam element z position Beam element z position
VLE target -45219 S2 -7558,-7558,NA

CHRV1 -114294 S3 -7523,-7523,NA
CHRV2,HE -18677 BC2 -4813,-7590,NA
CHRV2,VLE -20877 Pixel box 146

SMV -17677 SCT 512
BC-2 -19862(x ∼ 511) TRT1 1152
BC-1 -13685 LAr 3768(η = 0)
BC0 -12540 SC 4568
BC1 -9190 TileCal 4598(η = 0)
S1 -8843 Muon Wall 7394

SMH 8083,NA,NA SMT 20669

Table 4.1: The distances are given in mm, z(=y=x)=0, is at the front surface of the

ID magnet, the position is given at the start of the Čerenkov’s. For the detectors it
is as follows: front wall of Pixel box, geometrical center of the SCT box, center of the
cylindrical arc of the TRT, start of LAr module, and start of the TileCal modules. Some
of the Beam line instruments was in different position and is divided into three periods;
Period1 from 2 August until 22 September, Period2 from 22 September until 3 November,
and Period3 from 3 November until 15 of November. NA = Not Available in that run
period. SMV is only used during VLE runs [55].
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Figure 4.3: The threshold pressure as a function of the beam momentum for different
particles in Helium(up) and Nitrogen(bottom) gas. The dotted line indicates the mini-
mum(29 mbar) and maximum(3 bar) pressure possible in the Čerenkov counters.
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4.4.2 Beam Chambers

There are in total five beam line chambers, which are used to detect the profile of beam.
Beam Chamber BC-2 is the beam chamber which is only located in the VLE beam line,
while BC-1, BC0, BC1, BC2 are common to both beam line. BC-2, BC-1, BC0, together
with a magnet B8(which is local between BC-2 and BC-1), formed a spectrometer to
determine the energy of the VLE beam.

There are four readouts concerning to the x, y position determination, The Beam
Profile Chamber reconstruction algorithm calculates the x and the y position on the
chamber from the four TDC(Time to Digital Converter) measurements with the calibra-
tion constants of a factor and an offset that converts the time-difference between the two
TDC values into a position. These calibration constants are obtained by calibration pro-
cedure. And the calculation is reliable only when all these four TDC read out exist. The
spacial resolution of x and y directions both are about 200 µm.

4.4.3 Scintillators

There are several kinds of scintillators in the beamline, Some of them were used for
trigger purposes, others used for beam qualities selections. The signal amplitudes of the
scintillators were digitized and written out together with the detector data. For some of
the scintillators the signal phase with respect to the readout clock was measured as well.

� S0: In VLE beam line path and only functional in VLE mode, just after BC-2 and
CHRV2(VLE). It has a big size of 10× 10cm2 and it is used for checking the beam
intensity and quality, and also for the Time-Of-Flight(TOF) measurement.

� S1: This is a big (10×10cm2) scintillator located after the last quadrupole magnet.
The amplitude as well as the phase of the signal of this scintillator is measured.

� S2 and S3: These are two small scintillators (3× 3cm2) used in the trigger. They
are read out by two photomultipliers. The signal phase was measured for both pho-
tomultipliers, the amplitude only for one.

� Muon Veto: This scintillator is located in the high energy beam line and used to
veto muon passing through the high energy beam stop during low energy runs.

� Muon Halo: This is also a big scintillator with a small hole in the center. It was
used to veto muon outside of the beam axis.

� Muon Tag: This scintillator was placed behind the beam dump in order to identify
muons.
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� Muon Wall: This was a set of 12 scintillators behind the Tile Calorimeter.

� Cryostat Scintillators: Two large scintillators located between the liquid argon
cryostat and the Tile Calorimeter.

4.4.4 Trigger and readout

At the test beam, the main beam trigger consists of scintillators S1, S2 and S3. While
other scintillators such as SMH, SMV and SMT were also used as additional sources. A
beam particle which gives a signal in all the triggers will give rise to a Master trigger, and
a Level 1 Accept. The Master trigger will start the common crate TDC, and open up a
gate for reading out ADC. A dedicated computer is used to monitor the data at different
stage. Figure 4.4 shows the schematic overview of trigger logic.

Figure 4.4: Simplified schema of CTB trigger logic. The Cental Trigger Processor(CTP)
is emulated, except for the 25 ns run periods

4.5 Energy Reconstruction in Liquid Argon

Different particles can be identified and reconstructed using ID, Calorimeter or Muon
spectrometer information, and almost all physics objects we are interested in will leave
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energy signal in the calorimeter system. Here I only concentrate on electron reconstruction
performance studies in EM calorimeter. Energy measurement is the most important
function of a calorimeter, and in the following will present energy reconstruction in the
EM calorimeter.

4.5.1 Energy reconstruction of single cell

The Signal is collected by Front End Boards, where it pass through a pre-amplifier, a
shaper and then sampled by a 12 bit ADC, which has a pedestal about 1000 ADC counts
of the undershoot of the shaper. Figure 4.5 shows the triangular shape as well as the
shaped signal. The samples are sent to Read-Out-Driver in the counting room via an
optical link. The single cell energy is computed off-line using the formula:

Figure 4.5: Form of the ionization signal(a) and the shaped ionization signal(b)

E = FDAC→µA · FµA→MeV · Mphys

Mcali

∑
j=0,2

Rj[ADCpeak]
j, (4.1)

While the electronic calibration constants used are the following [56]:
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4.5.1.1 ADCpeak

This factor is the peak of the shaped ionization signal computed by optimal filtering or
by some alternative methods.

� Optimal Filtering method: The method of Optimal Filtering (OF) is an elegant way
to compute the peak of a shaped ionization signal and at the same time minimizing
the noise contribution. The amplitude A and the time offset τ of such a signal can
be computed by the formulas:

A =
∑

aisi, (4.2)

Aτ =
∑

bisi, (4.3)

where ai and bi respectively are the energy and time Optimal Filtering Coefficients
(OFC) and si are the pedestal-subtracted ADC samples. Note that the time infor-
mation is only meaningful if the ionization signal is sufficiently above noise.

The OFC are computed for each cell and gain using the following formula for the
signal:

S(t) = A · (g(t)− τg′(t) + n(t)), (4.4)

where g(t) is the normalized shape of the ionization signal, g′(t) is its first derivative
and n(t) is the noise component given by the noise autocorrelation matrix.

� Highest Sample: Use the highest ADC sample. This leads to a positive bias since
the noise does not cancel out.

� Fixed sample: Use a sample which index is fixed in certain period.

� Cubic or Parabolic Interpolation: Interpolate a 2nd or 3rd order polynomial on 3 or
4 samples respectively (if the maximum is above a given threshold). Since the signal
shape is not parabolic neither cubic around the maximum, these interpolations lead
to biased results. One can derive corrections to these biases using calibration run.
For historical reasons, this has been done for the parabolic case, but not the cubic
one. Therefore, one mainly use the parabolic bias-corrected method as an alterna-
tive reconstruction method when OFC are not available.

4.5.1.2 Ramp factors Rj

These factors are the second order electronics ramps factors converting the ADC to DAC.
The relation of ADC counts to DAC is measured on a regular basis by the electronic
calibration system. Figure 4.6 shows a simple graphical representation on the way detector
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Figure 4.6: Description of the pattern pulsed by each calibration line [57]
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cells are pulsed by calibration board. The polynomial ramp is used to take possible non-
linearities of the electronic chain into account.

To extract Rj, one need to obtain the ADCpeak versus DAC curves. Typically, input
100 times of 16 values of DAC currents, and get an averaged calibration wave for each
DAC. subtract the wave corresponding to DAC=0 of all other waves. Then, reconstruct
ADCpeak. The relation of DAC and ADCpeak for each component of calorimeter are shown
in figure 4.7:

Figure 4.7: ADCpeak versus DAC curves obtained in a high gain ramp run for the 4
layers of the module (low η cabling). Because of the shortage of FEBs, MID2 and MID3
FEBs were used for MID0 and MID1 cells; this explains the two slopes observed in the
distribution for the Middle layer as the preamplifiers have different gains.

A parabolic interpolation on the non-saturating points is then used to extract the
ADCpeak to DAC relation:

DAC = R0 + R1 · ADCpeak + R2 · ADC2
peak, (4.5)

where R0,R1andR2 are ramp coefficients.



4.5 Energy Reconstruction in Liquid Argon 105

4.5.1.3 FDAC→µA and FµA→MeV

These two factors are converting the DAC into MEV.
The FDAC→µA factor is determined by the calibration board specificities and the

injection resistor on the mother board. The amplitude of the signal is controlled by a 16
bit DAC, providing a voltage between 0 and 1 V, with

FDAC→µA(µA/DAC) =
76.295µV

Rinj

, (4.6)

where Rinj is the injection resistor.
The factor FµA→MeV converts the current (µA) into energy(MeV). It is different

for the accordion and presampler parts of the calorimeter and could determined through
several means. In the straight sections of the accordion folds, where the electric field is
simple and homogeneous the conversion factor from energy deposit to the induced current
can be easily calculated from the drift time and the average energy needed to create a
single electron/ion pair. For argon, this corresponds to W=23.6 eV per e−/ion-pair. An
energy deposit of one eV frees electrons with a total charge of e/W and the same amount
of ions (e is the elementary charge). The ions drift very slowly inducing a small current
that is neglected in the following calculation. The electrons drift quickly and induce a
current at the signal electrode. As the electrons get absorbed at the anode, the current
decreases. This leads to the triangular shape of the signal. The peak current is induced
by the charge of all the electrons drifting with the velocity v over the distance d. The
peak current per deposited charge q is given by:

I =
q · v
d

(4.7)

Since the drift time is determined by the gap width and the velocity td = d/v and
the charge per deposited eV is given by q/E = e/W, then:

I/E =
e

W · td (4.8)

The drift velocity v depends on the electric field and the temperature of the argon.
The Geant4 simulation of the Liquid Argon Calorimeter includes a detailed description
of the electrical field and charge-collection in the folds of the accordion, yields a results
of I/E = 14.2 nA/MeV. The I/E factor can be derived by comparing the energy deposit
predicted by the simulation with the current measured in the beam test, assuming that
all other effects are properly described in the simulation. This gives I/E = 16 nA/MeV,
from 2002 Test Beam data. There is still some uncertainty about the I/E factor(such as
the temperature of Liquid Argon. In CTB2004, a factor 1.03 is applied to correct this
current to energy factor derived from 2002 test beam) and thus the absolute calibration
of the accordion calorimeter. The final verification of this value will be based on physics
data, mainly by exploiting the precise knowledge of the mass and shape of the Z boson,
using the so-called in-situ calibration.
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4.5.1.4
Mphys

Mcali

This factor corrects the ramp factors for the difference between the calibration and physics
signal heights. It is mainly because of the presence of the inductance L between the in-
jection points of the two currents. Figure 4.8 shows the

Mphys

Mcali
in CTB2004.

Figure 4.8:
Mphys

Mcali
factor as obtained from the RTM parameters for Middle layer cells,

High gain, Barrel.

4.5.1.5 Pedestal and noise

Pedestal is the output of each channel without beamline or calibration signal, It depends
on the electronic of FEB and temperature of FEB. Pedestals stored in the databases were
measured every 8 hours with dedicated runs. In addition and when available, pedestals
from random triggers taken during physics runs were added to cope with the FEB tem-
perature instability. The pedestal is computed for each cell and shaper gain by an average
over a given number of periodic triggers (typically about 1000 ADC counts during the
2004 CTB) and over the number of samples (typically 7) leading to an uncertainty of
σ=84 ADC counts. The RMS of pedestal is noise.

4.5.1.6 Cross-Talk

The readout signal of the calorimeter cells is affected by mostly capacitive cross-talk.
Detailed measurements have been performed during previous beam tests [58, 59] and a
cross-talk map has been produced. The biggest cross-talk (about 7%) can be observed
between neighboring strip cells.
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(a) Pedestal distribution for one channel over 6 sam-
ples and 2000 event

(b) Typical pedestal RMS distributions for low η
FEBs

Figure 4.9: Typical Pedestal and its RMS(noise) in CTB2004

The cross-talk has two major effects on the readout signal: first, a fraction of the
energy of a cell is spread out to its neighbors and second, the pulse shape is distorted. Since
neighboring cells will be contained in the same cluster the loss of signal to the neighbors
does not change the cluster energy significantly. But the situation for calibration runs is
different: every cell is pulsed individually and independently from its neighbors, so signal
gets lost to the neighbors and the reconstructed calibration pulse peak is lower. The
reconstructed ramp coefficients are therefore higher by this fraction (they compensate
the cross talk induced loss of signal). This effect is relevant in the strips and has to be
corrected.

4.5.2 Performance of electron energy reconstruction in EM calorime-
ter

Electron always deposit energy in EM calorimeter, the number of particles in its shower
fluctuates statistically, and the total ionization signal is proportional to the number of
charged particles, so, the reconstruction energy fluctuates in the same way, with a gaussian
approximation. This is the so called sampling(stochastic) term of the calorimeter. Further
more, a constant term is needed to account for instrumentation effects independent from
the shower development like non-uniform absorber thickness. So, the resolution of electron
energy can be expressed as following:

σ(E)

E
=

a√
E(GeV )

⊕ b (4.9)

However, the electron resolution results should base on well calibrated energy. Fig-
ure 4.11 shows the linearity and resolution achieved with Test Beam 2002 electrons. It
shows that from pT ≥ 15 GeV , the non-linearity is under 0.1%, while the resolution
stochastic term is 10%/

√
E and the constant term is 0.17%. This test beam had less
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Figure 4.10: Cross-talk measured in module M13

material in front of calorimeter compared to ATLAS real detector configuration, which
makes the linearity and resolution optimistic. So, the combined test beam 2004 is neces-
sary for us to understand the expected performance of ATLAS calorimeter. From these
two plots, we can see clearly that at the VLE region point of 10 GeV, both the linearity
and resolution are degraded. Energy point lower than 10 GeV was not probed then. One
reason of this degradation is that calorimeter VLE electron performance is more sensi-
tive to the material distribution in front of calorimeter, this VLE electron performance
needs further studies, especially when the calorimeter with the real detector configuration,
having more material in front than Test Beam 2002. However, in ATLAS real detector,
the linearity and resolution of VLE electrons can be improved by using Inner Detector
information, which is more accurate for electron momentum measurement at low energy
region. Meanwhile, an independent linearity study of calorimeter VLE particles is also
very important. In the Combined Test Beam 2004, the slice of ATLAS detector has almost
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the final material distribution, and dedicates runs were taken for VLE particles studies.
This is the motivation of the combined test beam 2004 VLE electron studies introduced
in the following chapter.
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(a) electron linearity,All points are normalized to the value measured at Ebeam =
100 GeV.

(b) electron resolution,Electronic noise was subtracted from the data before plotting
the results. The curve represents the results of a fit to the data using 4.9

Figure 4.11: Linearity and fractional resolution of response as a function of the electron
beam energy, Ebeam, for a barrel LAr electromagnetic module at |η| = 0.687, energy from
10 to 245 GeV, note this results is from test beam 2002, the calorimeter is a standalone
detector and with minimal mater in front [60]
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The linearity of electron energy measurement is essential in the in-situ calibration of
electron using Z → ee events. The in-situ calibration constrains the di-electron invariant
mass distribution to the well-known Z boson line shape, and obtain the absolute energy
scale. In ATLAS, electron energy resolution are expected to be better in electromagnetic
calorimeter than in Inner Detector in a big pT range. The electron energy is obtained from
calorimeter information reconstruction, possible combining Inner Detector information at
low energy region. In order to achieve the global constant term < 0.7%, the calorimeter
inter-calibrate |η| < 2.4 region constant term must within 0.5%, which is satisfied by
construction uniformity of LAr and confirmed in Test Beam2002(shown in figure 4.11).
However, these results are from standalone detector with minimal mater distribution in
front, and only probe energy >= 10GeV (the linearity of 10 GeV point is ∼ 1%). It is
interesting to know the performance of physics objects reconstruction if all sub detectors
are implemented, mater distribution highly similar to real ATLAS detector, and explore
ET < 10 GeV region. Combined Test Beam 2004 provide an unique condition of combined
detectors, real mater distribution, and dedicated VLE runs for VLE electron studies. The
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following will show the studies on Linearity of Very Low Energy electrons, both with real
test beam data and possible improvement calibration schema based on MC studies.

5.1 CTB VLE electron energy linearity studies

The energy of test beam electrons Ebeam can be determined by other means than calorime-
ter detector, such as magnet spectrometer, to a very high precision. This Ebeam could be
used as the truth energy of the electron to determine the linearity and resolution. For the
VLE beam line, the trajectory of each particle can be determined using beam chambers
and magnet, which can be used to calculate the single particle truth energy with high
precision. For the reconstruction in the calorimeter Ereco, the default parametrization
of Ereco = offset + w0 · E0 + w01 ·

√
E0 × E1

1
fsampling

(E1 + E2 + E3) + w3 · E3 is used,

with w01 ·
√

E0 × E1 term represent the energy deposit between presample and accordion.
Here, E0, E1, E2, E3 are the energy deposited in presample, strips, middle and back part
of EM calorimeter, offset, w0, w01, w3, fsampling are the corresponding electron calibration
constant. In this part, the linearity of VLE electron is presented and compared to HE
configuration electron using beam energy. The run numbers used in this analysis are listed
as following.

Energy point [GeV] Run Number η φ beam energy [GeV]
1 2102101 0.442 0 0.988± 0.025
2 2102099 0.442 0 1.990± 0.013
3 2102098 0.442 0 2.985± 0.008
5 2102097 0.442 0 5.016± 0.005
9 2102096 0.442 0 9.011± 0.003

9(HE) 1004161 0.442 0 9.198± 0.003

Table 5.1: electron Run and its nominal energy, η position used in this study

5.1.1 VLE electron selection criteria

All the selection criteria of electrons are described as following:

� Good Event Selection:
Events mush have good trigger signatures(Trigger==1), and have reconstructed only
one energy cluster in electromagnetic calorimeter(cl nc tb em == 1).

� Scintillator Identification:
Events must have less hits in muTag scintillator(sADC muTag < 460, not a muon
event), and have more hits in CHRV2(sADC C2 > 650, electron candidate) as
shown in fig 5.1.

� Calorimeter electron ID:
The shower shape of the particles is electron like, which has less fraction of energy
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Figure 5.1: The distribution of scintillator CHRC2 ADC counts, the peak events at
lower region are electron candidates

leakage in the hadronic calorimeter first sampling(Eh Tile < 700MeV ) compared
to muon events as shown in fig 5.2; and have more fraction of energy deposit in the
electromagnetic calorimeter first sampling(cl eemb1 tb em/cl ecluster tb em > 0.2)
compared to π events, these two criteria mainly reject muon and π events to ensure
a pure electron sample is selected

� Good Beam Chamber information:
Since the beam chamber information is used to determinate the trajectory of each
electron, it is important to make sure that these beam chamber(BC-2, BC-1, BC0)
information are in good value region. That is, every beam chamber read out is
correct and the combined information is reliable(fig 5.3,5.4):

– The read out of X direction have a meaning for every beam chamber, It is not
zero.

– The X position read out of each beam chamber is in the physics region.

After the selection described above, the energy spectra of 9GeV VLE and HE con-
figurations are shown in fig 5.5 and very consistent with each other. The energy deposit
in each EM compartments are shown in fig 5.6. Since there is more material in HE than
in VLE configuration, HE shower is earlier and more likely to have more energy deposited
in presampler than electron from the VLE beam line. However, despite the material dif-
ference, VLE and HE beam line electron reconstructed energy have very similar behavior.
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(a) Hadronic calorimeter first sampling energy
distribution

(b) The energy fraction distribution of strips to
the reconstructed energy, the peak events around
zero are muon candidates while higher region are
electron candidates

Figure 5.2: Hadronic calorimeter first sampling energy distribution and the energy frac-
tion distribution of strips to the reconstructed energy

5.1.2 Reconstruction of single VLE electron true energy

Instead of using the nominal energy Ebeam as the truth energy, we prefer to measure the
true energy of each particle to calculate the linearity, which will give more precise results.
Here, a method of measuring single electron energy by magnet and beam chamber is
presented for precision electron linearity studies at event level.

� Deflection angle of each VLE electron at B8 magnet:
Since VLE electrons are deflected at B8 magnet and pass three beam chambers(BC-
2,BC-1,BC0,as figure 5.7) before they enter the detector, it is possible to determine
their trajectories with these beam chambers and magnet up to a high precision. The
deflection angle of electron at B8 can be expressed in equation 5.1 or a approximate
form in equation 5.2.

α = cos−1
L1(L4 − L3) + (x3L4−x4L4

L4−L3
− x1 − L1tanθ0)(x4 − x3)√

L2
1 + (x3L4−x4L4

L4−L3
− x1 − L1tanθ0)2

√
(L4 − L3)2 + (x4 − x3)2

, (5.1)

α =
x1 − x3L4−x4L4

L4−L3
cos(θ0)

L1/cos(θ0)
+

x4 − x3

L4 − L3

+ θ0 , (5.2)

of which, L1 = 4258mm is the distance of BC-2 to the center of B8 magnet;
L3 = 1919mm is the distance of BC-1 to the center of B8 magnet; L4 = 3064mm is
the distance of BC0 to the center of B8 magnet; θ0 = 0.120rad is the nominal de-
flection angle of VLE configuration at B8; x1, x3, x4 corresponding to the X position
measured by BC-2,BC-1,BC0 separately(in mm). The HE particles and VLE par-
ticles beam line are in the same trajectory between BC0 and BC-1. The measured
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Figure 5.3: The ADC counts of beam chamber X direction output, the zero bin indicates
that this beam chamber measurement is not reliable

XBC0 and XBCm1 differences of HE electron and VLE electron are all off zero and
similarly around -3.6 mm as shown in figure 5.8. Beam line along z axis is assumed
in this part of beam, which means that the differences of XBC0 and XBCm1 should
be around zero. In order to recover this alignment correction, a shift of +3.6 mm is
added on XBC0(similar results obtained either subtract 3.6 mm of XBCm1 or add
1.8 mm to XBC0 and subtract 1.8 mm of XBCm1). Figure 5.9 shows the distri-
bution of single electron deflection angle after the assumption of beam along z axis
correction. We can get that:

– The distribution of electron deflection angle is not a Gaussian. and slightly
asymmetric of the mean value.

– The mean value of the deflection angle is very close to the nominal deflection
angle of electron, for all the VLE electron 9,5,3,2,1GeV runs.

� Single Electron Energy:
Once get the deflection angle of electron at B8, one can calculate the energy mea-
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Figure 5.4: The beam chamber measured X position [mm] of Beam Chamber -2, -1, 0
and 2, the zero bin means that the beam chamber measurement is not reliable

sured by beam chamber according to:
∫

Bdl =
6∑

i=0

ai · I i , (5.3)

EBCmeasured[GeV ] =
299.79

α[mrad]

∫
Bdl[Tm] . (5.4)

of which I is the current of B8 magnet, a0 − a6 are the coefficients concerning the
magnet itself, and given by table 5.2. α is the electron deflection angle, given in
mard. EBCmeasured is the electron energy, given in GeV.

Figure 5.10 shows the Beam Chamber measured energy for VLE electrons. The mean
value is very close to the nominal beam energy for each point. And an asymmetric behavior
is found for the distributions. These electron energy measurement, so called EBCmeasured,
could improve the accuracy of linearity and resolution compared to the method using only
nominal beam energy as shown in the next section.
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(a) Reconstructed LAr energy of VLE 9 GeV run 2102096, unit in GeV.
The gaussian fitted mean value is 8.973 GeV

(b) Reconstructed LAr energy of HE 9 GeV run 1004161, unit in GeV.
The gaussian fitted mean value is 9.097 GeV

Figure 5.5: Energy reconstructed in LAr for VLE and HE electrons, they consistent with
each other. The small differences are due to the beam energy differences of VLE and HE
electrons
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(a) Reconstructed LAr energy in presampler(up-left), strips(up-right), middle(down-
left), back(down-right) of VLE 9 GeV run 2102096, unit in GeV

(b) Reconstructed LAr energy presampler(up-left), strips(up-right), middle(down-
left), back(down-right) of HE 9 GeV run 1004161, unit in GeV

Figure 5.6: Energy reconstructed in LAr compartments for VLE and HE electrons

a0 a1 a2 a3

−0.2417× 10−3 0.5727× 10−2 0.3993× 10−6 0.2999× 10−8

a4 a5 a6

−0.1256× 10−10 0.6386× 10−14 0.1034× 10−17

Table 5.2: B8 magnet coefficients for charged particle momentum calculation
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Figure 5.7: configuration of beam chamber and B8 magnet for VLE beam

(a) Beam Chamber 0 and Beam Chamber
-1 measured X position differences of VLE
electron 9 GeV run

(b) Beam Chamber 0 and Beam Chamber
-1 measured X position differences of HE
electron 9 GeV run

Figure 5.8: Beam Chamber 0 and Beam Chamber -1 measured X position differences of
VLE and HE electron 9 GeV runs, they all have a shift around -3.6 mm. since the beam
along z axis assumption, this -3.6 shift is recovered by adding 3.6 mm to XBC0
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(a) 9GeV electron deflection angle (b) 5GeV electron deflection angle

(c) 3GeV electron deflection angle (d) 2GeV electron deflection angle

(e) 1GeV electron deflection angle

Figure 5.9: Beam Chamber measured deflection angle of VLE electrons
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Figure 5.10: Beam Chamber measured energy of VLE electrons
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5.1.3 Calculation of VLE electron EBCmeasured/Ereco

In order to check the possible improvement of using such Beam Chamber measured
energy,EBCmeasured, in the electron energy linearity study, we check its correlation with
Ereco in VLE runs. Good correlations between VLE electron Beam Chamber measured
energy obtained as described in last section and Liquid Argon Calorimeter reconstructed
energy are obtained for VLE electrons, and 9GeV run’s correlation is shown in figure 5.11.
Which is a prof that using EBCmeasured is better than a fixed Ebeam in linearity calcula-
tion.

Figure 5.11: Beam Chamber measured vs LAr Calorimeter measured energy for VLE 9
GeV electrons

The profile plot of EBCmeasured/Ereco as a function of EBCmeasured shows good lin-
earity between these two. And the factor of EBCmeasured/Ereco is almost flat for different
EBCmeasured. In order to obtain this factor, a line of constant is used to fit the profile of
EBCmeasured/Ereco as function of EBCmeasured(Left plot of 5.12). A factor of 1.007± 0.001
is obtained for 9GeV VLE electron EBCmeasured/Ereco.

5.1.4 Linearity of VLE electron LAr measured energy

To Check the consistence of VLE electrons linearity and HE electrons, we compare the
factor EBCmeasured/Ereco of VLE 9GeV electrons and Ebeam/Ereco of HE 9GeV electrons,
these are the only energy points that HE and VLE configuration electrons that have the
same injection energy. Although there are material distribution differences and different
beam instrumentation, after electron selection and gaussian fit on the energy peak of HE
electron, a factor of 1.009 is obtained for HE 9GeV electron Ebeam/Ereco, which is in good
agreement with the VLE electron.
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Figure 5.12: the factor EBCmeasured/Ereco as a function of EBCmeasured for VLE 9 GeV
electrons, similar plots are obtained for different VLE electron runs

To obtain the VLE electron energy linearity, the same procedure for other VLE
electron runs up to 1GeV are performed to obtain the factor of EBCmeasured/Ereco as for
9 GeV VLE electrons. The figure 5.13 shows the VLE configuration electron linearity
from 1 GeV to 9 GeV. The linearity of VLE is roughly within 1% from 9 GeV to 5 GeV
electrons, while it degrades at lower energy. Therefore, this LAr energy reconstruction
scheme could used for the low energy linearity. Anyhow, further research are needed for
detail studies to improve the calorimeter linearity for the energy in the 1 GeV to 5 GeV
range.

5.2 Calibration of electron energies in EM calorime-

ter

In order to explore the possible improvements on the linearity of VLE electrons, different
sets of VLE electron energy calibration procedures are tried. Since there are dead material
in the front and within the calorimeter, the energy deposited in active material is not the
only energy deposit of the electron. In addition, there are also possible leakage and out of
the electron cone energy losses. So, the sum of these active energy cells is not the correct
representation of this electron’s true energy. In order to obtain correct energy, with good
linearity and resolution, a calibration procedure is performed at the cell energy level. At
the region of 15 GeV ≤ pT ≤ 245 GeV , the current default calibration is good enough
for a good non-linearity less than 0.1% and decrease to about 1% at 10GeV as shown in
figure 4.11 in Test Beam 2002 studies, upon good knowledge of the material distribution
and modeling, as well as proper calibration formula and constants. But for energy less
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Figure 5.13: Linearity of LAr Calorimeter measured energy for electrons, they agrees
well at 9GeV of HE and VLE configuration

than 10 GeV VLE electrons, with the real detector matter distribution, the calibration
procedure need to be optimized by comparing MC and data since the energy measurement
is sensitive to material in front of the calorimeter, especially for VLE particles.

5.2.1 Combined Test Beam electron simulation

VLE electron MC simulation start from a particle gun which generate single electron at a
given energy, and point at a fix η, φ direction. Then, these electrons pass the simulation
of CTB2004 geometry configuration as described in figure 5.14.

Geant4 [61] has been chosen as the main simulation tool in the ATLAS simulation,
including CTB2004. It was shown that it describes electromagnetic interactions with a
good accuracy, for both QGSP EMV and QGSP BERT at high energy region, while better
performance but with a factor 2 slower of QGSP BERT for VLE electron at low energy.
Geant4 is incorporated in the ATLAS software framework. It is configured by python-
based job options. The generation of CTB electrons by particle gun and simulation with
Geant4 are done in one step.

The output of the detector simulation are so-called hits, an energy deposit in a
certain active volume of the detector. In case of the calorimeter, this volume corresponds
to a cell. At this point, the effect of the varying electric field in the accordion folds is
simulated as well. The hits can be stored in POOL files for further processing or written
to a ntuple for visualization with ROOT. During the digitization step the simulated hits
are converted to a raw-data like format. This involves introducing effects of the readout
chain like electronic noise and cross-talk. This is in general done by applying correction
factors and not by a detailed simulation of the detector readout.
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Figure 5.14: The geometry of the CTB beamline used in Geant4 simulation. The beam
instrumentation is included in details

The file obtained at the digitization can be fed into a reconstruction job that is almost
identical to the reconstruction of real data and produces the same combined ntuple that
contain all needed reconstructed variables for the analysis. This is the reconstruction step
of CTB Monte Carlo.

An important feature of the ATLAS simulation software are the so-called Calibration
Hits. This allows to access the energy deposited in all regions of the detector, including
inactive regions like the absorbers of the calorimeter or ”dead” regions like the cryostat
subdivided into electromagnetic and hadronic interactions as well as invisible energy and
escaped energy. Calibration hits labeled as ”active” give the true energy deposited in the
active part of a cell. The normal hits in contrast give the energy deposit corrected by
the electric field effects in the accordion folds. These energies are used to calculate the
calibration constants for real data.

Here, a calibration method based on 5× 5 1 clustering algorithm is presented, using
a set of VLE electron Monte Carlo runs. Energy point of 9, 5, 3, 2, 1 GeV are used to
compute the calibration constants and High Energy runs of 20, 50, 100 GeV electrons
are used as a reference for calibration. Table 5.3 lists the main aspects of the used runs,
including energy, and the injection position in the detector.

1It is 5 elemental η cells × 5 φ elemental cells, since most elemental cell of calorimeter of the dimension
of ∆η ×∆φ = 0.025× 0.025, so, the 5× 5 is within the range of ∆η ×∆φ = 0.125× 0.125
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Energy[GeV] Run Number η φ
1 2102101 0.442 0
2 2102099 0.442 0
3 2102098 0.442 0
5 2102097 0.442 0
9 2102096 0.442 0
20 2102397 0.438 0
50 2102404 0.440 0
100 2102398 0.438 0

Table 5.3: Monte Carlo Run and its nominal energy, η position used in this study

5.2.2 Standard 5× 5 Clustering

For VLE Test Beam, the beam particles are injected in the detector slice at a fixed
position. This feature makes the calorimeter clustering simpler than that for ATLAS
detector. There are several kinds of clustering in CTB2004 data: the default clustering
size is 3× 3 cells of EM calorimeter η × φ, which is widely used and proved to be robust
at least in electron energy greater than 15 GeV; also there are 5× 5 and 3× 7 clustering
algorithms, which are expected to be more robust with respect to the out of cone energy
losses. The typical 5× 5 clustering schema is as following:

� Seeding: Start from middle compartment of EM calorimeter, search over all the
cells, and take the most energetic cell and take its η, φ as a seed.

� energy and direction of cluster: Take the seed as center, calculate the total
5 × 5 cells energy as the energy of this cluster, and use the energy weighted η, φ
from all the cluster cells as the η, φ of the cluster. Then, use the same seed and
same procedure to get the energy of the presample, strip, middle and back layer of
the calorimeter.

5.2.3 5× 5 Multiple seeds clustering

The normal 5× 5 clustering works well for electron candidates with energy greater than
15 GeV. Since high energy electron have a big fraction of energy deposited in the middle
layer, the proper seed can always be found. However, for the very low energy electrons,
especially for energy less than 3 GeV, there is a good fraction of energy deposited before
the middle layer. Therefore, if only use the middle compartment, the uncertainties of the
seed became an important reason of miscalculation of cluster energy. In order to improve
seeding performance, a so called Multiple Seeds Clustering(MSC) procedure is used [62]:

� η,φ of Seeds:

– Seed from strips: Since the strips are much finer in η than for the middle
compartment, a new cell energy is defined as:
Eη,φ = 1

3
[Eη,φ + Eη−4∗∆η,φ + Eη+4∗∆η,φ],
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Figure 5.15: demonstration of electron EM barrel calorimeter energy reconstruction at
η = 0.3

where ∆η is the width of a strip cell. The η1, φ1 of the cell which can maximize
this variable is taken as seed1.

– Seed from middle: Same as normal seeding, find the most energetic cell and
its η2, φ2 as seed2.

� Energy of each EM layer: Energies deposited in each compartment of EM
calorimeter are seeded either with seed1 or seed2 or the combination.

– Energy of strips: Take η1, φ1 as seed, sum up 5×5 cells around seed of strips
layer.

– Energy of middle, back: Middle and back energy calculation seeded using
η2, φ2.

– Energy of presampler: Presample energy calculation seeded using η1, φ2.

� η, φ of each layer: Presampler,strips,middle and back use the energy weighted η, φ
from the corresponding MSC 5× 5 EM calorimeter cluster as defined above.

5.2.4 Electron energy calibration

Since there are material distributed in front of calorimeter, and also dead mater between
presampler, strips, middle and back layers. These material absorb certain amount of
particle’s energy. The sum of the measured energy deposited in the active material is
different from the total energy of the injected EM energy. Moreover, due to the clustering
procedure, the injected EM energy may spread out of the limited size of the cluster.
In order to recover all these effects for different EM injected particles, a calibration is
performed based on the calibrated hits(Figure 5.15). There are several parameterizations
for electron. The default one used in the CTB2004 reconstruction is not perfect since the
linearity of

√
E0 · E1 and the energy deposited between presampler-strips are proven not

to be good, especially at very lower energy region. Therefore, in this VLE electron study,
this term is removed in the following formula which is now used:
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a0/b0 a1/b1 a2/b2

w0 0.2733143± 0.0061573 0.0552639± 0.0106134 0.0132300± 0.0012546
offset 0.6610342± 0.0151541 0.7112527± 0.0343073 0.0321833± 0.0020202

Table 5.4: global fitted parameters of w0 and offset

E = offset + w0 · E0 +
1

fsampling

(E1 + E2 + E3) + w3 (5.5)

Of which, E0, E1, E2, E3 are the energy deposited in the presampler, strips, mid-
dle and back separately, they are calculated using the 5 × 5 MSC clustering procedure.
A linearity relationship is assumed for the energy deposited in presampler and before
presampler and between presampler-strips with respect to the energy measured in pre-
sampler, which is represented as offset + w0 · E0.

1
fsampling

(E1 + E2 + E3) represents the

energy correction of accordion parts of EM calorimeter, taking into account the inactive
material. w3 is the energy leakage correction. Here, all there calibration constant are
using a energy dependence parameterizations. And they are dependent on η. Since these
constants are related to the configuration of the detector, they are obtained from MC
studies.

5.2.4.1 Calculation of offset and w0

Offset and w0 are determined by the energy deposit in the material before presampler
Eupstream

DM , the energy that deposit in presampler active material Eactive
PS and in the passive

material Epassive
PS , the energy deposit in the passive material between presampler and strips

EPS−strips
DM . A linearity of these energy to the presampler measured energy is given by:

offset + w0 ∗ Eactive
PS = Eupstream

DM + EPS−strips
DM + Eactive

PS + Epassive
PS . A fit is performed to

give the offset and w0 for each MC energy point. Figure 5.16 shows the fit for the energy
point of 100, 50, 20, 9, 5, 3, 2, 1 GeV electron.

To obtain offset and w0 for all energies other than these points, a fit of offset and
w0 is performed, with the formula:

w0 = b0 + b1 · log(Ebeam) + b2 ·
√

Ebeam , (5.6)

offset = a0 + a1 · Ebeam + a2 · E2
beam , (5.7)

Figure 5.17 shows w0 and offset as a function of beam energy, table 5.4 gives the
parameter of these two formulas.

5.2.4.2 Calculation of fsampling

The Energy deposited in the passive material in accordion EM calorimeter is recovered
by a 1/fsampling factor applied on the measured energy in the accordion:

fsampling =
E

E + Epassive
acc

(5.8)
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Figure 5.16: (Etrue
PS +Eupstream

DM +EPS−strips
DM ) vs Ereco

PS ,for Energy point of 100GeV, 50GeV,
20GeV, 9GeV, 5GeV, 3GeV, 2GeV, 1GeV.

Here, acc denotes the energy deposit in accordion EM calorimeter(strips, middle and back
calorimeter), and passive indicate the passive material in EM calorimeter. After obtaining
fsampling for each energy point from simulation, a fit of function shown in equation 5.9 is
applied.

fsampling = c0 + c1 · Ec2
beam , (5.9)

And c0 = 1.0006456, c1 = 0.1432732, c2 = −0.8084607 for the fsampling.
Figure 5.18 shows the fit of (E + Epassive

acc )/E as a function of energy measured in
accordion.

5.2.4.3 Energy leakage calculation

The leaked energy w3 can be calculated from:

w3 = ETile
active + ETile

passive + EDMTileLeak (5.10)

with ETile
active + ETile

passive + EDMTileLeak is the total energy leakage in tile calorimeter,
including the deposited energy of active, passive material of Tile, dead material between
LAr and Tile and Tile leakage. Figure 5.19 shows the distribution of w3(left) and the fit
results. The fitting formula is:

w3 = d0 × E + d1 × E2 (5.11)

with a assumption that the energy leakage is zero if the particle energy extrapolated to
zero. The fitted parameters are d0 = 1.7564358e− 03, d1 = 1.5190291e− 05.
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Figure 5.17: parametrization of w0(left plot) and offset(right plot) as function of beam
energy

5.2.4.4 Calculation of total energy Ereco

After having obtained the fitted parameters of these constants, one can calculate the
reconstructed energy using formula 5.5 with:

� E0
beam =

∑3
i=0 Ereco

i .

� Ej
beam = offset(Ej−1

beam)+w0(E
j−1
beam)×Ereco

PS + 1

fsampling(Ej−1
beam)

(Ereco
strips+Ereco

middle+Ereco
back))+

w3(E
j−1
beam).

� Stop when |(Ej
beam − Ej−1

beam)/(Ej
beam − Ej−1

beam)| < 10−6.

� computation stops at roughly three iterations to get the right energy.

Figure 5.20 shows the reconstructed energy of each MC sample. They show a good
gaussian distributions of the energy shape at high energy part of the energy spectra,
and a small tail at low energy region due to bremsstrahlung, which are expected in the
simulation. The gaussian fitted mean values are taken as the reconstructed energy Ereco.
Figure 5.21 up plots shows the ratio of MC reconstructed energy over input beam energy
as function of beam energy, the non linearity is roughly within 1% from 1 GeV to 9 GeV.
The bottom plot shows MC resolution as function of beam energy.

The calorimeter energy linearity of CTB 2004 MC electrons can achieve 1% level
by using 5 × 5 MSC clustering and deposited energy parametrization. This calibration
formula and constants can be used in future CTB real data reconstruction, with all other
corrections, to study the linearity and resolution of VLE electrons under the real detector
configuration.
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Figure 5.18: distribution of (E + Epassive
acc )/E for different energy points(left) and

parametrization of fsampling as a function of beam energy(right)

Figure 5.19: Eleakage distribution(left) and its fitted correction curve(right)
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Figure 5.20: MC Ereco distribution of different energy point, a gaussian is fitted on the
peak

5.3 Conclusion and discussion

For electron energy less than 10 GeV, the calibration is not as accurate as for HE electrons,
partly due to seeding efficiency not as good as in high energy cases, partly due to the
calibration procedure that can not describe electrons at very lower energy especially to
recover energy between Presample(PS) and Strips. A method based on the beam chamber
information, was introduced in the first part to measure single electron injected energy of
test beam VLE data, and to check the linearity at event-by-event level, using current CTB
default calibration configuration. The non-linearity is within 1% from 9GeV to 5GeV, and
degraded to 5% for 1 GeV to 5 GeV. This is the first time the VLE electron linearity is
studied. Meanwhile, VLE electron linearity matches very well with HE electrons at 9 GeV.
The second part of this chapter introduces a multiple seed 5×5 clustering procedure, and
an energy parameterizations to calibrate VLE electrons. This calibration schema do not
use the square root term of PS and Strips which is used to estimate the energy deposited
in PS and Strips, instead, it implement this term into weighting factor of PS energy. This
solve the problem of wrong seeding and energy deposited in dead mater between PS and
Strips non linearity at very low energy problem, and reach 1% non linearity from 1 GeV
to 9 GeV. It shows a possible improvement to the VLE electron energy linearity. This
method allow to measure with a good precision the energy of VLE electron without the
use of the inner detector which provide a very interesting and independent method.

However, electron linearity can be improved by combining the information of Inner
Detector, which is more accurate at low energy region than high energy region. This is
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what will be done to reconstruct the electron energy in ATLAS at low energy region. The
study of electron combined sub-detector measurements can also be done in the Combined
Test Beam 2004, which has the inner detector in front of the calorimeter and with or
without magnet filed. However, this is beyond the scope of this thesis.



Chapter 6

Summary and prospects

Using ATLAS Computing System Commissioning Monte Carlo full simulation data, this
thesis studies the measurement of the top-quark Yukawa Coupling at 30fb−1 integrated
luminosity for low luminosity run by studying tt̄H, H → WW (∗) channel within the inter-
mediate Higgs mass range from 120 to 200 GeV. This thesis is the first to present a detailed
analysis of trigger and pileup effects as well as all possible systematic uncertainties. For a
Higgs mass of 160 GeV, and including all the systematics, the signal significance has been
exceed 2σ by combining two leptons and three leptons final states results. The combined
branching ratio of σtt̄H ×BRH→WW (∗) can reach an accuracy of 47%, and gives important
information on the top quark Yukawa Coupling. This work is the first complete study of
the tt̄H, H → WW (∗) channel using full simulation data, including a detailed estimate of
the systematic uncertainties.

The most difficult part of the tt̄H, H → WW (∗) analysis is to extract the signal
from the abundant background since the total cross section of signal is only 0.1% of the
typical tt̄ background. Moreover, signal have a complex final state of at least four jets, two
leptons, two neutrinos. It is very difficult to reconstruct the Higgs mass spectra. Lepton
isolation is one of the most important method to suppress reducible backgrounds. This
thesis develops a dedicated Cone Isolation procedure, which suppress the main background
of tt̄ by a factor 5.

The next challenge of this analysis is to have a more precise estimation of the back-
grounds. Since tt̄H, H → WW (∗) is a number counting experiment, the systematic uncer-
tainty analysis showed that the precision on the Yukawa coupling constant measurement
is dominated by the level and uncertainty of backgrounds. Therefore, it needs to develop
a real data control sample to estimate the backgrounds and related uncertainties. This
will be the next important direction of tt̄H, H → WW (∗) analysis.

In addition, the use of fitting with the constrains of W and top mass to reconstruc-
tion tt̄H, H → WW (∗) events(so called mass constraint fit), and the use of multivariate
analysis to distinguish the signal and backgrounds, are also the directions to improve the
performance of this analysis.

The measurement of Higgs and top quark Yukawa Coupling constant need accurate
information on the H → WW (∗) branching ratio, or accurate measurement of the Higgs
width. The resolution of Higgs boson mass at LHC is of the order of a GeV [7], More
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accurate measurement of the Higgs width will need the ILC.
However, in addition to measuring the LHC σtt̄H×BRH→WW (∗) combined branching

ratio, one can also, through a combination of other Higgs decay model studies such as
the H → bb, give the partial-width ratio, and thus access the relationship between the
coupling constants of Higgs to different fermions and bosons, and give the information on
the origin of the mass [10].

Lepton energy scale uncertainty is one of the important systematics uncertainty
sources for the tt̄H, H → WW (∗) analysis, and a good linearity of Very Low Energy(VLE)
electron can improve the performance of estimating the electron energy scale. This thesis
also presents my work on the VLE electron calibration of Combined Test Beam(CTB)
data. The linearity of the CTB real data VLE electron is extracted, on an event by event
basis, with a new method based on beam chamber information and is shown to reach a
non linearity better than 1% from 5 to 9 GeV and 5% from 1 to 5 GeV. Using Monte Carlo
calibration constant, from a 5× 5 Multiple Seeding Clustering method, and only applied
for the time being on simulated data, a 1% non linearity from 1 to 9 GeV is achieved,
indicating a very promising technic to be used on real data.
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Abstract

The Higgs boson is one of the elementary particles which is predicted by the Stan-
dard Model, and which is the only one unobserved experimentally. Searching for the Higgs
particles is the primary goal of many high energy experiments in the last decades. Ac-
cording to the Standard Model, W±, Z0 bosons obtain masses from vacuum spontaneous
symmetry breaking via the Higgs Mechanism, while fermions obtain masses via Yukawa
Couplings with Higgs boson. Yukawa Coupling, as one of the most important properties
of Higgs boson, can distinguish whether the Higgs is Standard Model like or not.

The Large Hadron Collider(LHC) at CERN is a proton-proton collider with a de-
signed center of mass energy of 14TeV. ATLAS is a general purpose particle detector
located at one of the colliding point of the LHC. Data taking is expected to start this
summer. The primary physics goals of the ATLAS experiment are Higgs searches, SUSY
particles searches and Electro-Weak precision measurements...

Using ATLAS Computing System Commissioning(CSC) Monte Carlo full simulation
data of the tt̄H, H → WW (∗) channel, this thesis studies the feasibility of measuring
top-quark Yukawa Coupling up to 30fb−1 integrated luminosity, within the intermediate
Higgs mass range from 120 to 200 GeV. For the first time, trigger, pileup effects as
well as all possible systematic uncertainties are extensively studied. For a Higgs mass
of 160 GeV, with the detailed systematics uncertainties studied, the signal significance
is shown to exceed 2σ by combining two leptons and three leptons final states together.
The combined branching ratio of σtt̄H × BRH→WW (∗) can reach an accuracy of 47%, and
gives important information on the top quark Yukawa Coupling. This is the first study
of the tt̄H, H → WW (∗) channel based on full simulation data, including a complete and
detailed study of the systematic uncertainties.

The most difficult part of the tt̄H, H → WW (∗) analysis is to extract signal from
an abundant background since the total cross section of signal is only 0.1% of the main
background. Moreover, signals have a complex final state of at least four jets, two leptons,
two neutrinos, making the Higgs mass reconstruction very difficult. Lepton isolation is
one of the most powerful method to suppress reducible backgrounds. This thesis develops
a special Cone Isolation procedure, which suppress by a factor 5 the main tt̄ background.

Lepton energy scale uncertainty is one of the important systematics for the tt̄H, H →
WW (∗) analysis. A good linearity of Very Low Energy(VLE) electrons can improve the
performance of estimating electron energy scale. The second part of this thesis presents
a study of the linearity of VLE electron from 2004 ATLAS Combined Test Beam(CTB)
data. First, a method based on beam chamber information is used to extract the linearity
on a event by event basis. Then, a method based on calibration constants from 5 × 5
Multiple Seeding Clustering is presented, and tested on MC data only, showing a possible
method to further improve the linearity of VLE electron energy on real data.

keywords: Higgs, Yukawa Coupling, ATLAS, Test Beam





Abstract

Le boson de Higgs est l’une des particules élémentaires prédites par le modèle standard, et
la seule pas encore observée expérimentalement. La recherche de la particule de Higgs est
l’objectif premier de nombreuses expériences à haute énergie au cours des dix dernières
années. Selon le modèle standard, les bosons W±, Z0 bosons obtiennent leurs masses
de la brisure spontanée de la symétrie du vide par le mécanisme de Higgs, tandis que
les fermions obtiennent leurs masses par couplage de Yukawa avec le boson Higgs. Ce
couplage est une des plus importantes propriétés du Higgs et permet de distinguer si il
est de type modèle standard ou non.
Le Grand Collisioneur de Hadron (Large Hadron Collider ou LHC) au CERN est un
collisionneur proton-proton avec une énergie dans le centre de masse de 14 TeV. ATLAS
est un détecteur de particules de type généraliste situé auprès d’un des points de collision
du LHC. Le début de la prise des données est prévue pour cet été. Les principaux objectifs
de physique de l’expérience ATLAS sont les recherches du boson de Higgs, de particules
SUSY et les mesures de précision électro-faibles.
Utilisant des données Monte-Carlo ATLAS CSC (Computing System Commissioning) en
simulation complète du canal tt̄H, H → WW (∗), cette thèse présente une étude de la
mesure du couplage de Yukawa du quark top pour une lumisosité intégrée de 30fb−1 dans
la gamme de masses du boson de Higgs allant de 120 à 200GeV/c2. Pour la première
fois, les effets du système de déclenchement, de l’empilement des événements, ainsi que de
toutes les erreures systématiques possibles ont été extensivement étudiés. Pour une masses
du Higgs de 160GeV/c2, en incluant toutes les erreures systématiques, la significance
obtenue du signal est supérieure à 2σ en combinant les états finaux à deux et trois leptons.
Le rapport d’embranchement combiné σtt̄H ×BrH→WW (∗) peut atteindre une précision de
47 % et donner des informations importantes sur le couplage de Yukawa du quark top.
C’est la première étude du canal tt̄H, H → WW (∗) en simulation détaillée du détecteur
ATLAS, incluant une étude complète et détaillée des erreures systématiques.
La partie la plus difficile de l’analyse de tt̄H, H → WW (∗) est d’extraire le signal du bruit
de fond abondant car la section efficace du signal est seulement 0.1% de celle du bruit de
fond tt̄. En outre, le signal présente un état final complexe d’au moins quatre jets, deux
leptons et deux neutrinos qui rendent très difficile la reconstruction du spectre de masse
du Higgs. L’isolation leptonique est un des moyens les plus importants pour supprimer le
bruit de fond réductible. Cette thèse développe une procédure dédiée d’isolation en cone
permettant de supprimer le bruit principal tt̄ par un facteur 5.
L’incertitude sur l’échelle d’énergie leptonique est l’une des principales sources
d’incertitude systématique pour cette analyse tt̄H, H → WW (∗). Une bonne linéarité
de réponse pour des électrons de très basses énergies(VLE) permettrait d’améliorer la
performance de l’estimation de l’échelle d’énergie des électrons. Cette thèse comprend
également une étude de la linéarité de la réponse à des électrons VLE avec des données
de tests en faisceau combiné (CTB) d’un secteur du détecteur ATLAS. Une première
méthode basée sur l’utilisation, événement par événement,de chambre à fils proche du
faisceau est présentée. Puis une autre méthode est étudiée par simulation Monte-Carlo.
Elle est basée sur l’utilisation d’un étalonnage s’appuyant sur une constante de calibration
obtenue par une aggrégation des énergies par graine multiple de 5 par 5. Les résultats de
simulation de cette méthode permettent d’envisager une amélioration future de la linéarité
de réponse à des électrons VLE.

mots-clés: Higgs, Yukawa Coupling, ATLAS, Test Beam


