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Abstract

We present a complete existence theory for the physical system consisting of a viscous com-
pressible fluid and a number of rigid bodies in it. We assume a bounded domain and ho-
mogeneous Dirichlet boundary conditions for the velocity. Both the fluid and the bodies are
allowed to be heat-conducting and share the heat. The existence of global-in-time variational
solutions is proved via the viscosity penalization method due to SAN MARTIN, STAROVOITOV,
TUCSNAK [30], whereas the existence theory for a viscous compressible fluid developed by
FEIREISL [14] is used in the approximations as well as in the last high-viscosity limit.

The second subject is an improvement of the existence theory for steady barotropic flows.
We use L> estimates for the inverse Laplacian of the pressure introduced by PLOTNIKOV,
SOKOLOWSKI [39] and FREHSE, (GOJ, STEINHAUER [19] together with the non-linear potential
theory due to ADAMS and HEDBERG [1], to get a priori estimates and to prove existence
of weak solutions. Our approach admits physically relevant adiabatic constants v > %( 1+
V/13) = 1.53 for the flows powered by volume non-potential forces and v > %(34— V4l) =~ 1.175
in the case of potential volume forces and arbitrary non-volume forces. The solutions are
constructed in a rectangular domain with periodic boundary conditions.
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Preface

Throughout our life, we are in continuous contact with fluids. We can not live without
breathing the air and drinking the water. Despite of this lifelong experience, we are still far
from the complete understanding of their dynamics. At the end of the nineteenth century,
Navier and Stokes have independently derived a system of equations describing the evolution
of a viscous incompressible fluid based on the classical conservation laws for the mass, the
linear and the angular momentum. In 1934, Leray introduced a concept of weak solutions and
he proved the existence of global-in-time solutions in this class. Throngs of mathematicians
have investigated the Navier-Stokes system since and there is a vast number of practical
applications of this model. Yet, the existence of strong global-in-time solution is still one of
the most challenging open problems of contemporary mathematics.

In the case of compressible fluids, the full system consists of equations for the density, the
velocity, and the temperature, which are based on the conservation of the mass, the linear
momentum, and the energy, respectively. If heat conduction and heat production caused
by dissipation can be neglected, the complete system splits into the smaller system for the
density and the velocity and the heat equation. Then we speak of a barotropic flow. The
first existence result for a compressible fluid is due to Lions (1998). Although he assumed a
barotropic flow with a physically unrealistic adiabatic constant, his work contains already two
fundamental tools for the mathematical theory of compressible fluids, namely compactness
properties of the effective viscous pressure and the renormalized solutions to the continuity
equation. Developing further these ideas, Feireisl (2003) presented the existence theory for
the complete system with physically relevant constitutive equations.

This thesis deals with two distinct topics. The main subject is the existence result for
the problem of rigid bodies in a viscous compressible fluid, where both are heat-conducting
materials. Using the penalization method developed by Conca, San Martin, Tucsnak, and
Starovoitov (1999, 2002) for an incompressible fluid, we have shown that the problem of rigid
bodies is a limit case of a heterogeneous compressible fluid as the viscosity tends to infinity
on the solid region. This limit could be of independent interest, though it turns out that
possibly better result can be proved, if the high viscosity limit is made previously in the chain
of approximations. The high viscosity limit is performed in Chapter 4, while an existence
theory for the heterogeneous fluid is presented in Chapter 3. Some further ideas and open
problems are collected in Section 4.9.

The second topic are steady state solutions for the barotropic flows. The first existence
result has been achieved again by Lions (1998). Despite several improvements made by
Novotny and Novo (2002) the existence theory in three dimensions was applicable only for
non-physical adiabatic constants at least for a general external force. The problem was a

vii



lack of sufficient a priori estimates for the density. In 2005, Frehse, Goj, Steinhauer and
Plotnikov, Sokolowski have presented new estimates based on the potential theory. However
the both works have assumed a priori L'-estimate for the quantity pou?. In Chapter 4, we
use a bootstrapping technique together with the potential estimates to prove the existence
of weak solutions, without any a priory knowledge about their regularity. Our result is
applicable for the monatomic gas and general external force or for the considerably wider
interval of adiabatic constants for a potential force.

Appropriate physical background for the both topics is explained in Chapter 1. The mathe-
matical tools and the notation we will use, are summarized in Chapter 2.



Chapter 1

Physical background

In this chapter, we present the physical origin of the equations that describe a motion of
the rigid bodies in the viscous compressible heat-conducting fluid, fluid-solid interaction, and
thermodynamics of this system.

A fluid as well as solid bodies consist of particles. Matter is quantized and discontinuous.
Nevertheless, if there is a sufficient number of particles small enough with respect to the
volume of our interest, the distribution of the mass could be considered continuous, at least
if no macroscopic discontinuities are present. We can imagine that the density at the point x
is an average density of an elementary volume located at . The elementary volume should
be nearly point from macroscopic view, but still contain enough particles. Similarly, the
macroscopic velocity is average velocity of the particles in the elementary volume, while the
kinetic energy of the particles could be represented by the temperature. The existence of the
temperature is derived only for a system in thermodynamical equilibrium, therefore we have
to assume that microscopical events are fast enough with respect to the macroscopic velocity.

This deliberation justify the concept of continuum. A fluid or a solid body in three dimen-
sional space is represented by a domain in the Euclidean space R3. Their state in the time ¢
and at the point x is given by the density o(t, ) and the temperature ¥(¢, ) functions. The
evolution of the continuum can be described by a displacement mapping

nlt] : xzo € R® — x € R?, (1.1)

where an elementary volume that was at the point x( in the time 0 moves to the new position
x = N[t](xo) in the time ¢. The displacement mapping is at least absolutely continuous in time
and n[t] in the time ¢ is a diffeomorphism. It has to satisfy det(Vn[t]) # 0, which means that
an elementary volume can not degenerate to surface. This condition implies det(Vn[t]) > 0.
Equivalently, the motion of the continuum can be described by the velocity field w(¢, x),
which is interrelated with the displacement mapping through a differential equation

gltlo) = ult nlfzo),  ml0](zo) = 2. (12)

For description of a fluid, we rather use the velocity, since the fluid is invariant with respect
to deformations. In this case, unknowns are the density o(t, ), the velocity u(¢, x), and the
temperature 9¥(t,x) on a space-time domain @ = I x Q, where I = (0,7T) is a finite time
interval and Q2 C R3 a spatial domain.
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The rigid body is a physical model of an ideal solid-state object that does not deform at
all. Formally, it shall be represented by a connected compact subset of R3. Using the
displacement mapping (1.1), the body in the time ¢ is a set S(¢) = n[t](Sy), where Sy is
the body in the initial position. Compactness of the body is preserved because n[t] is a
diffeomorphism. Since the body does not deform, we shall choose a local Cartesian system
connected with it. In particular, we can choose the local system in the time ¢t = 0 parallel to
the system of ambient space with the origin X*(0). We will write 7 for the local coordinates.
Body itself as well as its physical features, namely the density, the weight

m® ::/Sg(r) dr

and its thermal properties, remain constant in the local system. Therefore the motion of the
body is given by motion of the local system, which consists only of rotation and translation.
In other words, n[t] restricted to the body is an affine isometry ng[t], namely

Nn[t](zo) = nglt](xo) := X*(t) + Oft](xg — X*(0)) for any xg € So, (1.3)

where the rotation is represented by an orthonormal tensor Q[t] and the translation is given
by the motion of the local origin X g(t). It is convenient to identify the origin X ¢(0) with
the center of mass. Then we have
1
Xo(t) = — o(t,x)x dw = n[t](X°(0)) Vtel.

m= Js(t)
The mapping n*[t] extended to the whole R? can also be viewed as a transformation from
the local system of the body to the system of the ambient space

x =n°[t](r + X°(0)) = X°(t) + O[t]r.

In order to simplify notation, we shall define p and ng for the negative times as a corre-
sponding inverse mappings

7 [t)(zo) = X
Q[t|O[t)r (1.4)

where V' = X* is the velocity of the center of mass. The tensor of angular velocity Q[t] acts

in the actual system, therefore @ = QO. Furthermore, as Q[t] is orthogonal, we have
0=I=07T0=Q" +Q.
Accordingly, tensor Q[t] is antisymmetric and can be written in terms of the vector product

with the angular velocity w. From the right-hand side of (1.4), we can read the velocity field
on the body

u’(t,x) =V({t)+wx (x—X3(t)) VeSS,
u’(t,r) :=u’(t,x), ==n’[t](r+X%).
Thus in problem of evolution of a heat conducting rigid body, the unknowns are the velocity

of the center of mass V' (¢), the angular velocity w(t) in the time interval I = (0,7"), and the
temperature ¥(¢, ) on the domain .



1.1 Balance laws 3

1.1 Balance laws

After we have clarified what are the unknowns, we turn our attention to the equations. These
are based on the balance of the mass, the linear momentum, the angular momentum, and
the total energy, which have a common form

d
— g dx = boundary flux + volume sources, (1.5)
dt B(t)

where ¢ is a balanced quantity and B(t) = n[t](B) is evolution of some volume B. In order
to compute the left-hand side of (1.5), we apply Reynold’s transport theorem.

Theorem 1.1.1. Let I be a finite time interval and Q C R? a bounded domain. Let the
velocity field w € WH>°(; R3) and the displacement mapping n according to (1.2) be given.
Finally, let g € CY(I x Q). Then for any B[t] C Q, B[t] = n[t](B0]) it holds

d
—/ qdx = / Orq + div(qu) de. (1.6)
dt Jppy Blt]

Proof. Take f € D(B[t]) and define x(t, z) by x(¢,n[t](y)) = f(y). By definition, we have

d
Oz&xzatxwwrvx.

Then, we compute

d
— qx dx = / Oiqx —qu - Vyx doe = / (8tq + div(qu))x dx.
dt /gy R3 Blt]
Let the f tend to the characteristic function of B[t] and the statement follows. O

1.1.1 Continuity equation

If we consider fluid enclosed in an impermeable vessel, there are no boundary fluxes nor
internal sources of the mass. Thus applying Reynold’s transport theorem, we get so called
continuity equation

Oro + div(ou) = 0. (1.7)

For a rigid body the same equation holds. Indeed, a direct calculation yields
d
00’ + div(p’u’) = ags(t, x(t)) + o°divu’® = 0, (1.8)

where divu® = 0, since ¢ is a rigid velocity.

1.1.2 Equations of motion

By the virtue of Newton’s second law of motion, we deduce following balance of the linear
momentum

d

— [ou](t, x) da = / F(t,z) de + T(t,z,n)do. (1.9)
dt ey Bl

OBI1]
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The first term on the right-hand side represents external volume forces F' = pof, while the
second is integral of surface forces T'. According to the Cauchy law [45, Chapter 2] the surface
force has a form

T(t,x,n) =T, x)n,

where T is called the Cauchy stress tensor. Then using Theorem 1.1.1 and the Green theorem
we we obtain a pointwise form of the balance law (1.9)

O(ou) + div(pou ® u) = div(T) + of (1.10)
called the momentum equation.

A similar balance law holds for the angular momentum

d
—/ r X ou dx = / rx F(t,z) do —|—/ r x (Tn)do. (1.11)
dt /) B(t) aB(t)

If we subtrace (1.10) multipied by = and integrated over B, we obtain symmetry condition
for T:

02/ Eijk(alrj)Tkl da:—i—/ sijkrj(&Tkl) da:—/ Eijij(ﬁlTkl) dIL‘Z/ Eij;chj dx.
B B B B

The motion of the body is given by the translation velocity V' and the angular velocity w.
The former is governed by the conservation law for the linear momentum of the whole body:

d
T o°u’ da = msd—Vs(t) = F%(t) := / TndJJr/ o’ f d. (1.12)
tJsp t 8SIt] S[1]

For the later one, we have conservation of the angular momentum

d

T " rx (0°r X w(t)) dr =

r x (o°u’)dr = at /s

M?(t) ::/ X Tndo+/ rx (o°f(t,x)) de. (1.13)
aS[t] (1)

On the right-hand side of (1.12) and (1.13), there appears a surface force Tn, which represents
mechanical interaction between the fluid and the body.

1.1.3 Energy balance

The total energy E of an elementary volume consist of the kinetic energy %g|u|2 and the
internal energy ge(p,d). In accordance with the first law of thermodynamics, which we will
discuss in the next section, the change of the total energy in the volume Blt] is caused partly
by the work of volume and surface forces and partly by the heat flux gq. The energy balance
reads

d 1 9
— —olul|® + pe(p, dzc:/
i [, 30+ eeled)

B[]

Qf~udw+/

(Tn) -uda—/ g-ndo. (1.14)
2Bl1]

OBI1]



1.2 Thermodynamics and constitutive equations 5

Using again the transport theorem 1.1.1, we infer the pointwise form of the total energy
equation

1 1
8t(§g\u|2 + 0e(p,9)) + div(§Q|u|2u + oe(o,9)u) + divg = div(Tu) + of - u. (1.15)

Multiplying (1.10) by w and using (1.7), we arrive at the kinetic energy equation
1 1
3t(§g|u|2) + div(§g|u|2u) —div(Tu) = —-T : Vu + of - u. (1.16)

It can be subtracted from (1.15), which yields the internal energy equation

Oi(0e) + div(geu) + divg =T : Vu. (1.17)

As we will see later, for the fluid, the stress tensor has a form T = S — pl, where p is the
pressure and S the viscous stress tensor. Then there appears a new term pdivu in (1.17),
which can be used to expres the energy balance also in terms of the entropy. Using continuity
equation (1.7) and Gibbs equation (1.24), one gets

9y (0e) + div(geu) + pdivu — [0 + divou] (g + e) = (1.18)
| S
0

o olohe — po20,0] + ou - [Ve — po?Vo] =

Gibbs V[00s + ou - Vs| = 9]0 (0s) + div(osu)].

Thus dividing (1.17) by ¥, we obtain entropy equation

0¢(0s) + div(psu) + div(%) = %(S v — 1 §ﬁ> =0, (1.19)

where o is called the entropy production rate.

On the solid region, the equations (1.15), (1.17), and (1.19) remain valid in particular since
the symmetric part of the velocity gradient Du is zero for the rigid velocity (c.f. Lemma
4.1.3). For example, (1.17) reduces to the usual heat equation

oc’ 99 + oc’ VI - u + divg = 0,

where ¢V = % is the specific heat at constant volume.

1.2 Thermodynamics and constitutive equations

The equations we have derived up to now are valid for the general continuum, in particular
they do not reflect any material properties of matter in the question. On the other hand the
system of equations (1.7), (1.10), (1.15) is not complete. We have to determinate the stress
T, the heat flux g, as well as the pressure p, the internal energy e, and the entropy s in terms
of of the state variables o, u, ¥.

Widely accepted definition of the fluid says that a fluid deforms as long as the shear stress
is applied. It means that the shear stress is independent of the deformation. Usually the
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fluid is also isotropic that is invariant with respect to the rotation of the coordinate system.
Symbolically:

OTT(E)O = T(OTEQ), for any orthonormal matrix O, (1.20)
whenever T is a function of a tensor E. Consequently, the stress tensor has a form
T = S(ﬁa 0, VU) 7p(197 Q)]Iv (121)

where the pressure p is a general function of the temperature and the density and it represents
a bulk deformation. The viscous stress tensorS depends on the rate of deformation, i.e. on the
gradient of the velocity, and possibly on the temperature and the density. As a consequence
of the isotropy condition (1.20), the viscous stress S depends only on the symmetric part of
the velocity gradient

Du = %(Vu + vauT).

In this work, we consider a Newtonian fluid, which is characterized by the linearity of the
viscous stress with respect to Du. The constitutive relation then reads

S = 2u(Du — %divu]l) + ¢dival. (1.22)

The shear viscosity p and the bulk viscosity ¢ are in general functions of ¥ and p. However,
because our mathematical theory does not cope with the viscosities dependent on the density,
we assume they are only functions of the temperature.

For the heat flux q, we consider Fourier’s law
qg = —x(9) V9. (1.23)

In general, the heat conductivity coefficient x is a function of both the density and the
temperature, but for the simplicity, we assume only the dependence only on temperature.

The heat transfer is caused by two different mechanisms. On the one hand the heat spreads by
the chaotic motion of the particles. This process is called heat advection and it is significant
mainly at low temperatures. On the other hand, at high temperatures, collisions between
particles have enough energy to change their internal quantum states, which is accompanied
by the release of photons. This radiation is absorbed elsewhere and effectively produce the
heat transfer. According to these considerations, the heat conductivity compose of two parts

K= Kag+ KR,

where the classical conductivity kg of the prefect gas is of the same order as the viscosity
x(19) ~ p(v9), while the radiation part behaves like kg & 92, see for example [3].

In accordance with the second law of thermodynamics, the entropy production is non-negative

az%(S:Vu—q'19v19>ZO.

This is also called the Clausius-Duhem inequality. Consequently, in view of relations (1.22)
and (1.23), it has to be
Hs Ca k> 0.
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1.2.1 Equation of state

In order to obtain constitutive relations for the remaining functions p(¢J, ), e(1J, o) and s(¥, o),
we assume an elementary volume in thermodynamical equilibrium, so that we can apply the
classical thermodynamics. According to the first law of thermodynamic, the change of the
internal energy is equal to the absorbed heat minus the work performed by the gas. In the
language of differentials, this can be written as the so-called the Gibbs equation

de =vds—pdV. (1.24)
Equivalently, for the free energy A = e — si}, we have
dA =9ds —pdV — ds¥ — sdv = —sdd — pdV.
Differentiating with respect to 9 and V', we obtain one of the Mazwell relations
2A
(ﬁ) _ (@) __o4 (1.25)
oV /e oT /v oV 09

The equations (1.24) and (1.25) imply general constrains for the choice of the functions
p(¥,0), e(0,9), s(g, ), namely

2 - (3), S -02) =
25, -5 oo
Lo (2),(5), - 51 oo

Through the last equation, we have also defined ¢, — the specific heat at the constant volume.

Similarly as in the case of the heat conductivity, we assume that the pressure consist from
the pressure of the perfect gas pg and the pressure caused by radiation pg,

P = pG + PR-
For the perfect gas the pressure is related to the specific internal energy by a relation

2

PG = 50¢G; (1.29)

one can consult for example [31, Chapter 4]. On the other hand, referring to [11, Chapter
15], the radiation part has a form

PR = %94. (1.30)

Having a constitutive relation for the pressure, the equation (1.26) can be to determine e up
to the function of the temperature. We consider the specific internal energy

e(o, V) = ec(o, V) + er(?),

where in accordance with (1.26) the radiation part is given by

a
E€R = 71947
0
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while e as well as pg has to be resolved from (1.29) and (1.26). For p = pg, we obtain an
equation

3 dp 2 0Op

—o— + -v—.

5°0p b5 09

It can be integrated as follows. On the line ¢ = 0, one has p(0,9) = 019%, which suggest
solution in the form p(p, ) = P(p,9)¥2. Such a substitution yields

_3 0P 0P

0—5 8—@—# Tk (1.31)
One can see that P is constant on the lines given by equation
90 _30
oy 29
Its solution is satisfies 919_% = const., thus the pressure p = pg is
pc(0,¥) =93P(Y), Y =002 (1.32)

and the internal energy
3 _
ea(0,9) = SOP(Y)Y Y,

where P(Y) is a suitable C1[0, 00) function.

In accordance with principles of statistical physics, the pressure is positive non-decreasing
function of the density, and it should be zero for the vanishing density. Consequently the
function P has to satisfy

P(0) =0, and P'(Y) > 0 on [0, 00). (1.33)

The later condition is called thermodynamics stability condition. Furthermore, the specific
heat at constant volume ¢, is always positive, which leads to

de  310p 9 (5

0<eV)i=g5=5 55 =17 (3P0 - P’(Y)Y). (1.34)

3

Hence we deduce

and therefore
inf P(Y)Y ™3 = lim P(Y)Y "5 >0. (1.35)
Y>0 Y Soo
However, when Y = 919’% approaches infinity, the gas exhibits degeneration phenomena
(see [11, Chapter 15] and [22, Chapters 2, 3]). For example, so-called Fermi gas (see [11,
Chapters 6, 15] and [31, Chapter 4]) keeps the pressure positive as the temperature tends to
the absolute zero, thus

I 9) = pe(0) >0 f 0.
Am, pe,9) =pc(e) >0 for any ¢ >

This limit always exists, since the pressure is non-negative and non-decreasing function of
the temperature in accordance with (1.33). On the other hand

pe(0) = g% 0lir(r]1+(g*%19)%P((g*%19)*%) = g%pc(l), for any o > 0.
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Hence, comparing to (1.35), we obtain even a sharp inequality

lim P(Y)Y "5 = p.(1) = Ps >0 (1.36)

Y —oo
as is required later in the hypotheses (3.15), (4.19). The growth condition present in these

hypotheses seems to be also physically relevant as according to [41], one has

PY) = aY's +bY'5 + lower order terms.

The specific entropy again consist from the classical and the radiation part
s = SR+ Sa,

where due to (1.28)
4a
83(’19) = 55193,

while for s = s¢, one can use also (1.27) and (1.29) to derive the equation

Os 1 2 Oe 2 9 0s

90 23%0 " 3009
In fact, this is very same equation as (1.31), thus the specific entropy s has to be a function
of Y, namely

s(0,9) = S(Y), Y = ﬁﬁ (1.37)
Moreover due to (1.28), one has
ds o 3 -5 1
55 =8 We(=5)vE = e,
which implies
SV = 2, (V)Y = —§y—2(§P(Y) - P’(Y)Y) (1.38)
37 2 3 . .

For a constant ¢,, the function S(Y') behave like —log(Y) and it is natural to fix an additive
constant by S(1) = 0. Doing the same in the general case, we can write

9 Y
SY)= —g/ co(s)s™ ds. (1.39)
1
Another possible normalization of the entropy follows form the third law of thermodynamics,
which states that the entropy tends to zero as 9 — 0. Then a natural normalization is given
by condition
lim S(Y)=0.

Y —oo

1.2.2 Barotropic flows

Because of an enormous complexity of the model based on the general constitutive laws, the
first mathematical theory for a compressible fluid [29] was done for the case of the barotropic
flow, where one assumes the pressure to be a function of the sole density. Possible physical
explanation and mathematical consequences of this simplification is the topic of this section.
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Let us consider the flow of a compressible fluid. If the velocity gradient and/or viscosities are
small, the dissipation (i.e. transformation of the kinetic energy into heat) may be neglected.
Similarly, in the case of small heat conductivity of the gas and/or small temperature gradients,
the heat flux ¢ may be neglected, as well. Such a flow called adiabatic. Taking into account
the entropy equation (1.19), it appears that in the adiabatic case, the entropy production
is zero and the specific entropy is constant along trajectories of fluid particles. This implies
that the pressure has a particular form

p(o) =ag”, a>0, y>1, (1.40)

where 7 > 1 is the so called adiabatic constant and a > 0 is a constant along any trajectory.
In the sequel, we will assume that the flow is isentropic, which means that a is constant
across all trajectories. This is a particular case of the barotropic flow.

In the barotropic case, the pressure is independent of the temperature. Consequently the
equations (1.7), (1.10) form an enclosed system, while, once (o, ) is known, (1.17) can be
used to determine the temperature field.

It is shown in statistical physics that the adiabatic constant 7 in (1.40) depends on the
number M of the degrees of freedom of the molecules of the gas. One has v = g ~ 1.66 for

the mono-atomic gas, vy = I = 1.4 for the air and in general v = 242

£ . Parameters similar
to v appear in the complete theory of the viscous compressible fluids described by the full
Navier-Stokes-Fourier system (1.7 — 1.17), and from the mathematical point of view, they
determine the quality of density estimates. That is why the simplified isentropic model for
compressible fluids is important, in spite of its slightly contradictory physical background.
Some new advances in the existence theory for the steady isentropic flow are presented in

Chapter 5.

1.2.3 Constitutive equations for solid state

On the solid region that correspond to the rigid bodies it is enough to prescribe constitutive
equations for the thermal quantities, namely the internal energy e®, the entropy s® and the
heat conductivity x°. From the physical point of view, the simplest model is a homogeneous
linear material with constitutive relations

e’ =e’(¥) = C¥, s* =s°(¥) = C"log, K° = k.

Nevertheless, the mathematical theory we are going to use needs presence of the radiation
part. Therefore, we assume

Still, this can be a physically relevant model, if we could allow different e, s on the fluid and
on the rigid region. Unfortunately this is not the case because of the technical difficulties in
the existence theory explained briefly in Section 4.9. Consequently, we have to assume the
same e, s on the both regions. However the heat conductivity is allowed to be different.
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1.3 Fluid-solid interaction

In order to obtain mathematically well-posed problem, we have to specify the boundary
conditions on 0S) as well as on the body surface 9S. Let us denote uf, u® the velocity field
on the fluid region and on the rigid region, respectively. Similarly, g, g* shall be the heat
flux on the fluid and on the solid region. We consider noslip boundary conditions for the
velocity on all surfaces

u/ =00n 0Q,  w[t] = u’[t] on AS[t], Vt € I. (1.41)
For the temperature, there are natural Neumann boundary conditions
q’ -n=0o0n 0N q’ -n[t]=q° -n[t] on dS[t], Vt € I. (1.42)

Another boundary conditions have appeared already in the boundary terms in (1.12) and
(1.13). To give a sense to all these boundary conditions, we have to assume that all quantities
in question, namely uf, ¢, T, and u®, ¢°, are continuous up to the boundary 9.5 U 9.
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Chapter 2

Mathematical apparatus,
Notation

We denote by N a set of positive integers and by R the real numbers. An N-dimensional
Euclidean space will be denoted by RY. Elements of R" are (column) vectors and we denote
them by bold letters. By a doubled typeface, e.g. A,B, ..., we will denote 2-tensors on R,
which can be understood as linear mappings from RY to RY as well as N x N matrices.

An open set Q C RY is called connected if every two points in Q can be connected be a
piecewise linear curve in ). By ) we usually denote a domain, i.e. an open and connected
set. If the boundary 99 of the domain  C R™ can be locally described by a finite system
of Lipschitz continuous mappings f; : RY-! — R, we speak about Lipschitz domain. If the
mappings f; are from CkH(RN=1) see definition below, we speak about domain of class C*#*
and we write 9Q € CF*,

Next, we denote B,.(z) := {y € RY ||z — y| < 7} the ball of radius r at the point x. A
ball at origin, B,.(0), we denote simply B,.. For a set M, we denote by 1,/ its characteristic
Sfunction.

2.1 Spaces

A vector a = (a,...,an) of non-negative integers is called a multiindex of dimension N.
The length of multiindez o is a number |a| = vazl a;. With help of multiindexes, we can
write N N
Daf e 8i ...8N£
Ozt ... 0z

for multiple partial derivatives of a function f of N variables.

For a domain €2, we introduce following linear spaces: a space C'(2) of functions continuous
on Q and Cy(2) C C(N) a space of functions with compact support in Q. For k € N, we
denote by C*(Q) a space of functions with continuous partial derivatives up to the order
k on Q and by C*(Q2) a space of functions, which derivatives up to the order k can be

13
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continuously extended up to the boundary. In particular, we have C°(Q) = C(2). Finally,
we shall denote AC(2) absolutely continuous functions on the domain 2. Let us recall that
the first derivative of an absolutely continuous function belongs to the space L'(2). The
space C*(2) and the spaces Cy(92), AC(Q2) C C*(Q) endowed with norm

HfHCk(Q) = Z S‘ég|Daf|~

lae<k|®
are Banach spaces. Moreover, we set
c>(Q) = ﬁzolek(Q), C>(Q) = m;‘;lck(ﬁ), and D(N) = C5°(Q) = Co(Q)NC*(Q).

The space D(2) is endowed with the topology of local uniform convergence, i.e. v, — v in
D(Q), iff there exists a compact K such that

supp v, C K, and D%,, — D%, in C(K) for all multiindices a.
A function f € C(Q) is Hélder continuous, if there exist constants p € (0, 1], L > 0 such that
|f($)7f(y)|§L|$7y‘uv Vm,yeQ.

If u = 1, we speak of Lipschitz functions. We define a Banach space C**(Q), k € 0,1,... of
the functions with Holder continuous derivatives up to order k& endowned with norm

S 12275 = D)

=k YR |z — y|»
z#yY

1 ll ooy = Il +
lex

If X is a metric space, one can define a Banach space C(Q; X) of continuous functions on
with values in the space X. Similarly one can define Banach spaces C*(; X) and C*#(Q; X).

We shall use standard the Lebesgue spaces LP(2), 1 < p < oo and the Lebesgue spaces of
functions with zero average

Lr(Q):={f € LP(Q) | /Qf dx = 0}.

Similarly, the standard notation W*:?(€2) is used for the Sobolev spaces with norm

e = 171y = (3 10@ )
|| =0
In particular, Wo?(Q2) = LP(Q) and ||fHLP(Q) = ||f||p. The space WP (Q) is closure of D(£)

in (k,p)-norm. We denote W~=%2'(Q) the dual space of W(f’p(Q), where p’ is dual exponent
1 = &+ . A natural extension are the spaces of vector valued functions W*?(Q; RY),

W(f’p(Q;RN). Developing further this idea, one obtains the Bochner spaces LP(I; X) of
LP-integrable functions with values in some Banach space X, where the norm is defined as

1l oy = Ol o r)-

For an unbounded domain Q, we denote C/#(Q), WP (Q) the functions that are in C*#(K),
WHP(K) for any compact K C Q.
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The Sobolev spaces have number of important and well known properties, in particular there
exist extension and trace operators for the Lipschitz domains. One can find for example in
monographs [2], [46], the corresponding theorems and proofs. Here, we cite only the most
important for us, the Rellich-Kondrachov compactness theorem:

Theorem 2.1.1. Let Q C RY be a bounded domain andp>1, k>0. Then

e if kp < N, the space Wéc’p(Q) is continuously imbedded in L1(QY) for any

1§q§p*=N7kp~

Moreover, the imbedding is compact if ¢ < px.
o Ifkp= N, the space WEP(Q) is compactly imbedded in LY(Q) for any 1 < ¢ < co.
o If kp> N+ u, up> 0, the space Wéc’p(Q) is compactly imbedded in CO* ().

Using the extension operator, the conclusion of the theorem remains valid even for the space
WFP(Q), provided € is a Lipschitz domain.

Next, we introduce smoothing kernels
() = 0y = w(@), (2.1)
||w5HL1(RN) 0

where w € D(R) is an even, non-negative function with support (—1,1). The smoothing
kernels can be used to construct smooth approximations of distributions. Let v € D'(Q),
then ws xv € D(RY) and if v € X (), where X stands for LP, W*P or C*# space, then

ws * v — v strongly in X (£2).

For a non-decreasing, concave function

t on[0,1],

2 on [3,00),

T e C™([0,00)), T(t) = {

we define cut-off functions.

T(t) = kT(é)

If f € LP(Q), then Ty (f) belongs in L>°(2) and by virtue of Levi’s theorem,
Te(f) — f strongly in LP(Q) as k — oc.

Poincaré inequalities allow to control W1P-norm by the LP-norm of the first derivatives and
L'-norm of the function. The following lemma is a version of such an inequality inspired by
Lemma 3.2 in [14].

Lemma 2.1.2. Let Q C RYN be a bounded domain, and let 0 < X\ < p, p > 1 be given. Let
v € WHP(Q), and let o be a non-negative function such that 0 < m < H9H1 and HQH’Y <M,

v > 1. Then

19l 0 gy < € A, 30) (HWHLP(QRN) + (/Q oo dw)*) | (2.2)
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Proof. Let assume by contradiction that the statement does not hold. Then for any n € N,
we can find vy, o, such that

1
HU"HLP(Q) Zn (HVU"HLP(Q;RN) + (/Q onlva* dx) A~> (2.3)

Consequently, for w,, = vnanH; (0 We have
IVl o) =0 and Jlwn|| = win L*(0)

because of compact imbedding, where w = |Q|7% This, in fact, yields strong convergence
wy, — w in WHP(Q).

On the other hand, as HQnH’Y < M, we can find k such that

Tr(0n) — Ti(0) weakly in L°(Q) for every § > 1,

where

/ (o) da > (2.4)
Q

m
5"

Here, we introduce a notation that f denotes the weak L'-limit of the sequence f,. The
former fact together with (2.3) leads to

0= lim [ on|wy,|* dz > lim /Tk(gn)|wn|A dw:|Q|7%/Tk(g) de,
n—oo Q n—oo Q O

which is in contrast with (2.4). O

We enclose this section by several auxiliary resutls. In the following lemma, we introduce the
Bogouskii operator B, which is a particular inverse operator of the divergence on a Lipschitz
domain. The full proof of the lemma as well as references to the original works, one can find
in Section 3.3 of [37].

Lemma 2.1.3. Let Q be a bounded Lipschitz domain. Then there exists a linear operator
B:TP(Q) — Wy P(Q;RY), 1<p< oo,

such that

divB(f) =f a.e. in Q for all f € LP(2).

This operator is continuous,

1B, < et D1f, (2.5)
and if f = divg for some g € L1(; RYN) (with divg € LP(R2)), then
1B, < ela:2)]gll,- (2.6)

Remark 2.1.4. The operator itself does not depend on p but only on the domain Q2. Fur-
thermore, the constants in (2.5) and (2.6) in fact depends only on the Lipschitz constant of
the boundary Of).
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Next, we recall the Gronwall lemma, which is essentially used in the energy estimates of
evolution equations.

Lemma 2.1.5. [26, Lemma 4.3.1] Let h € L>=(0,T), h >0, a € R, and b € L*(0,T), b >0
satisfy the inequality

h(t) <a+ /t b(s)h(s)ds, for allt € [0,T).
0

Then .
h(t) < aexp (/ b(s) ds) for a.e.t € [a,b].
0

We end with the Shauder fixed point theorem:

Theorem 2.1.6 (Theorem 2.1.2 in [33]). Let A be a closed bounded convex subset of a Banach
space X and f : A — A a compact mapping, i.e. continuous mapping that maps bounded sets
on the compats. Then, there exists v € A such that f(v) =v. Such v is called a fized point

of f.

2.2 Compactness tools

We say that a sequence v, in a Banach space X converges weakly to v € X, iff
(fyon) = (f,v) for every f € X7,

where X* denotes the dual of X. Similarly, a sequence f, in X* converges weakly-* to
fe X iff
(fn,v) = (f,v) for every v € X.

For reflexive spaces the weak and weak-* topology are equivalent. We shall denote X ,cqk a
linear space X with the weak topology, A crucial result in the theory of partial differential
equations is weak-* compactness of bounded sets stated in the Alaoglu-Bourbaki theorem:

Theorem 2.2.1. Let X* be the dual space of a Banach space X and M a bounded subset
of X*. Then M 1is precompact in weak-x topology of X*. In particular, from any sequence
vy, € M, one can take a subsequence (not relabeled) such that

vy — v weakly-x in X*.

If the space X is separable, the weak-x topology is metrizable on bounded sets of X*. Then
one can introduce the space C'(§; X ). For every its member f, the function (f(t),v) is
continuous uniformly with respect to the choice of v € X. Very usefull characterization of

compact sets in C(£2; X) is the following abstract Arzela-Ascoli theorem:

Theorem 2.2.2. [25, Chapter 7, Theorem 17] Let K C RN be compact and X a compact
metric space endowed with a metric dx. Let {v,}52 1 be a sequence of functions in C(K;X)
which is equi-continuous, that is for any € > 0 there is § > 0 such that

ly—z|<d = dx (vn(y), vn(z)) <eg, independently of n.
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Then {vy }$2, is precompact in C(K; X). In particular, there ezists a subsequence (not rela-
beled) and a function v € C(K; X) such that

sup dx (vn(y),v(y)) — 0 as n — oo.
yeK
In the next theorem, we have summarized some usefull properties of convex functions.

Theorem 2.2.3. [14, Theorem 2.11 and its Corollary 2.2] Let O C RN be a bounded mea-
surable set and ® : RM — (—o0,+0o0] be a lower semi-continuous convex function. Let
{v,}22, be a sequence of functions such that

v, — v weakly in L*(O; RM)

and
®(v,) — ®(v) weakly in L*(O).
Then
®(v) < ®(v) a.e. on O
and

/ ®(v)dy < liminf [ ®(v,)dy.
o

n—oo o

If, moreover, ® is strictly convex on an open convex set U C RM, and

®(v) = ®(v) a.e. on O,

then
vn(y) = v(y) for ae. yc ON{v e U},

extracting a subsequence as the case may be.

In general, the weak limits does not commute with multiplication, i.e. Wv # wv. However,
for certain products, the celebrated Div-Curl lemma due to TARTAR [44] can be used.

Lemma 2.2.4. Let Q C RY be a bounded domain. Let
v, — v weakly in LP(Q;RY),  w, — w weakly in LY(Q; RY),
where%+%:%<1, 1<p,q<ooandlet
divv, and curlw, be precompact in W~ (Q), W15 (Q; RV *N)
respectively, for some s > 1. Then
Uy w, —v-w  weakly in L"(RY).

We conclude with two results concerning the R-operator in R3, which is defined via Fourier
transform by the formula

Rijlv) = F (= &&; 16172 F(v) = ViV;A M, (2.7)
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where
A tofa] = F (- 1625 (0) = [ wle -yl de. (238)
R
It is a continuous operator from LP(R3?) to LP(R?), 1 < p < oo and it holds

Ri,j = ’R,j’i, /R3 Ri’j [v]w doe = /1;3 ’URZ‘J[U}} dx.

As a corollary of Lemma 2.2.4, we get the following commutator lemma (see [14, Corol-
lary 6.1])

Corollary 2.2.5. Let 1 < p,q < oo, %—1— = % <1 and

1
q
fn— f weakly in LP(R3),
gn — g weakly in LY(R?).

Then
FaRijlgn) — gnRijlfn] — fRijlg) — gRi;1f]  weakly in L™ (R?). (2.9)

Furthermore, we cite the result due to Feireisl [12] in spirit of COIFMAN and MEYER [6].

Lemma 2.2.6. Let V € L*(R* R?) and w € W™ (R3), r > . Then there exist constants
e(r) >0, w(r) >0, and p(r) > 1 such that

|Rij[wV)] — wRi [Vj]HWw,p(Rs,Rs) = C||w||W1v’“(R3)||V||L2(R3,R3)'

2.2.1 Young measures

Let Q C RY be a domain. We say that ¢(x, y) is a Carahheodory function on Q x R™ if

the function 1 (x, -) is continuous on R™ for a.a. = € Q} (2.10)

the function 9 ( -, y) is measurable on @ for all y € R™.

Let consider a family probablity measures {v,} parametrized by points & € Q. This family
we call Young measure if for every ¢ € C(R™) N L>®°(R™) the function

r— o(y) dve(y) = (Va, )
R

is meeasurable on . Young measures can be used to represent a limit of a weakly converging
sequence composed with a nonlinear function, which is statement of the following theorem.

Theorem 2.2.7. [38, Theorem 6.2] Let @ C RN be a domain and f, : Q — R™ a sequence
of functions converging weakly to f in LP(Q; R™) for some p > 1. Then there exists a Young
measure Vg such that

¥(z) = R U(x,y) dva(y)
whenever 1 is a Caratheodory function on @ x R™ and the sequence ¥(-, fn(-)) admits a
weak L'-limit 1.
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Chapter 3

Existence theory for a
non-homogeneous fluid

In this chapter, we shall treat the existence problem for a gas with heterogeneous constitutive
laws, which we will use later in Chapter 4 as an approximation for the problem of rigid bodies.
As a matter of fact, the variational formulation based on the entropy inequality does not cope
well with fully heterogeneous constitutive equation for the internal energy and the entropy.
The problem is explained in Section 4.9. Therefore we consider only the transport coefficients,
namely the viscosities p, A and the heat conductivity coefficient , to be space and/or time
dependent. More specifically, we shall assume that they are transported by some smooth
artificial velocity field U.

The first existence result for global-in-time solutions to the incompressible Navier-Stokes
system was achieved by LERAY [28] in 1934. In this pioneering work he also introduced the
concept of weak solutions. A similar result for a compressible fluid in isentropic regime was
proved by P.-L. LIONS in [29] (1998). Further essential contribution and extension of the
existence theory for the complete system with the temperature is mainly due to FEIREISL.
In [13] he introduced a concept of oscillation defect measure for the density, which allows to
treat an isentropic flow with realistic adiabatic constants in three dimensions. In the book
[14] he has presented complete existence theory for a compressible heat conducting fluid
with quite general constitutive laws. Later improvements cope, among other things, with
temperature dependent viscosities [12], the total energy equality and entropy formulation [9],
and the general constitutive equation for the ideal gas [17].

The existence theory presented in this chapter is based on papers [9], [17] with only slight
modifications in order to accommodate heterogeneous constitutive equations for the trans-
port coefficients. In Section 3.1, we define the variational solution and we state the main
result. Its proof, which is performed in subsequent sections, consists of the standard chain
of approximations. First, in Section 3.2, we construct local-in-time solution to the Faedo-
Galerkin approximation of modified system. Then, we gain the estimates independent of time
and extend the solution on an arbitrary time interval. In Section 3.4, we pass to the limit
in the sequence of Faedo-Galerkin approximations and we obtain a solution of the system
with several regularizing terms. The aim of the last two sections 3.5, 3.6 is to remove the
additional terms letting their coefficients tend to zero. These last two limits share a lot of

21
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features with the high viscosity limit in Chapter 4, where the proof is explained in full detail,
therefore in actual chapter we present finely only the different steps.

3.1 Problem Formulation

As usual, we denote o, u, ¥ the density, the velocity, and the temperature, respectively.

Following [14], we introduce a concept of wvariational solutions to the system of equations
(1.7), (1.10), and (1.17).

Definition 3.1.1. We shall say that functions
0 € L¥(I;L(Q), we L*(I; Wy 2(Q), ¥ € L*(I;W2(Q)) (3.1)

form a variational solution of problem (F) if

e The density o is non-negative function a.e. on I x Q and ¥ > 0 a.e. on I x Q)).

The continuity equation (1.7) is satisfied in the sense of distributions,
//98t<p+gu-V<p de dt =0, peD{xQ). (3.2)
1Jo
o The momentum equation (1.10) is satisfied in the sense of distributions as well,

//gu-@tcp—i—gu@u:Vgo+pdivgo—S:Vgo+gf-goda:dt:O (3.3)
1Ja

for any ¢ € D(I x ;R3).

e The specific entropy satisfies an inequality

. . 2
// 080tp + osu - Vip — A2 + (S : Vu + KVl )(p de dt <0 (3.4)
1Ja

) ) 92
for any ¢ € D(I x Q), ¢ > 0.

o At last, the total energy balance over the whole domain holds:
to
/ E[ts] — Eft1] de = / / of ~udx dt, fora.e ti, ty €I (3.5)
Q t1 Q

In Definition 3.1.1, we have replaced the equation for the temperature by the entropy in-
equality (3.4) and the energy balance (3.5). The idea is to get rid of the term T : Vu in
the internal energy equation (1.17). This term, as well as its counterparts in the equivalent
equations (1.19) and (1.15), is known to be only Ll-integrable in time. Using the entropy
inequality is convenient, since one part of T : Vu, namely S : Vu is convex and can be
treated via weak lower semi-continuity, while the other part, pdivu, disappears during the
calculation (1.18). The total energy balance has to be included into formulation, in order to
keep formal equivalence with the original problem.
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Indeed, if the solution (g, u,d) is smooth, we can take ¥ as a test function in (3.4) and
perform a reversed calculation (1.18) to deduce

T
/ / oepr + oeu -V — sV - Vo + (S: Vu — pdivu)p de dt <0 (3.6)
0 Ja

for any ¢ € D(I x Q), ¢ > 0. On the other hand for the smooth solution we easily obtain
the strong momentum equation (1.10) and the equation for the kinetic energy (1.16). The
later one can be integrated over  and subtracted from (3.5) to get

/Q (ce)[ta] da — /Q (0e)[t1] dm = /: /Q pdive — S : Vu da dt,

which excludes strict inequality in (3.6).

3.1.1 Renormalized Continuity Equation

In addition to the declarations of Definition (3.1.1), the solution we are going to construct
will satisfy the so-called renormalized continuity equation. The idea of renormalization for
the equations of hyperbolic type is due to DIPERNA, LiONs [8]. For regular solutions, one
can multiply (1.7) by B’(p), where

B € C'0,00), B(r) =Cy for r > M, (3.7)
and obtain
9;B(0) + div(B(o)u) + b(p)divu = 0, b(r) = B'(r)r — B(r). (3.8)

Similar renormalization procedure can be done even for the weak solutions provided the
density is square integrable.

Proposition 3.1.2. [14, Proposition 4.2] Let  C R? be a domain and
o€ L*(I; L*(Q)), u € L*(I; WH?(;R?)), and h € L*(I x Q)

satisfy
0o+ div(gu) =h in D'(I x Q).

Then
T
/ / B(0)dip + B(o)u - Vi — (b(o)divu + B'(0)h)p dz dt =0, ¢ € DI x Q) (3.9)
0o Ja
for any B satisfying (3.7).

In fact, equation (3.9) holds even for a larger family of functions B according to available
estimates of the density.
Proposition 3.1.3. Let Q C R? be a domain and
0 € LP(I; LP(Q)), w € L*(I;W*(; R?))
satisfy (3.9) for every B from the class (3.7). Then the same equation holds even for every
B e WE0,00), |B'(r)] < CA+r51). (3.10)

loc
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Proof. The functions (3.7) are dense in VVllocoo [0,00), thus we find among them a sequence

B,, approximating a function B from (3.10). Further, according to (3.10), we can assume

1B,.(0)|, |B(0)o— Ba(0)| < C(1+ 0%).

Consequently, we can find an integrable majorant for every term in the equation (3.9) and
use Lebesgue convergence theorem to pass to the limit in equation (3.9) as n — oc. O

Next, we report the validity of the renormalized continuity equation even on the whole space,
provided the renormalized density is square-integrable.

Proposition 3.1.4. [1/, see Proposition 4.1] Let  C R3 be a bounded Lipschitz domain
and B function such that

B(o) € L*(I; 1*(Q)), u € L*(I; Wy (% R?)).

satisfy
0:B(0) + div(B(o)u) + b(g)divu =0, in D'(I x Q). (3.11)

Then (3.11) holds even in D'(I x R?), assuming (o0, u) extended by zero outside <.

Applying the smoothing kernels w,(|& — y|), introduced in (2.1), on the both sides of (3.11),
we get

Oy (we * B(p)) + div((w: * B(0))u) + w. % (b(o)divu) = r. a.e. in I x R?, (3.12)
where by virtue of Lemma 4.3 in [14]

re = we xdiv(B(0)u) — div((we * B(p))u) — 0 in L"(R?)

as € — 0, provided B(o) € LP(2), w € WH2(;R?), and £ > 1 +

Sk

For a renormalized solution ¢ € L (I; L7(2)), one have
B(g) € O L],00 (@) and 0 € C(I3 L, (),

weak

see the discusion before (4.59). Then the question is, whether or not the identity

holds. The last result of this section gives a positive answer.

Proposition 3.1.5. [14, Proposition 4.3] Let  C R?® be a bounded domain. Let o > 0,
6
0 € LX(LY(Q), we (LW RY), 7> ¢,

be a solution of the renormalized continuity equation (3.9). Then

o€ C(I; LY(Q)). (3.13)
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3.1.2 Heterogeneous Constitutive equations

We suppose that the thermodynamic quantities p, e, s are functions of the state variables 9,
o according to the discussion in Section 1.2.1. More specifically, we consider the pressure

p(0,9) = pc(e,9) + pr(V)

. . a . (3.14)
pG(Q7 19) = 19§P(Q’l9_§>7 pR(,ﬂ) = gﬂ , 4> 07
where the function P meets hypothesis
P € C'[0,00), P(0) =0, non-decreasing,
5 , o 50
0<-PY)-P Y)Y <c(l+Y9), 0<a< —, (3.15)

3 39

lim P(Y)Y ™5 > Py > 0.

Y —oo

The growth condition on the second line is only technical and used only in the proof of strong
convergence of the density. As a direct consequence, we get

PY)<C(Y +Y3) and P(Y)<C(1+Y3). (3.16)
The internal energy is determined by (3.14) as
e(g, 19) = eG(Qv 19) + eR(’ﬁ)a

3 (3.17)
ca = 5pc(e.)e™, en =al'o™".
In view of (1.27) and (1.28) the corresponding specific entropy reads
s(0,9) = sa(0,9) + sr(d),
(3.18)

sG = S(Q,ﬂ_%)7 SR = %a,&Bg—l’

where S is a C''-function interrelated with P through the relation (1.38). Obviously S is
non-increasing in Y and since ¢, (Y) is positive, we have

2
s =85Y)<—-=CylogY, Cy = max ¢,(y), for0<Y < M. (3.19)
3 y€[0,M]

The Cauchy stress tensor T, the viscous stress tensor S, and the heat flux q are given by
(1.21), (1.22), and (1.23) respectively. The corresponding transport coefficients are allowed
to be also function of time and space, moreover they depends on w. More specificaly, the
constitutive functions of transport coeficients are given by a mapping

Z:ue LXQ) — (u,C kG, KR), (3.20)

with following properties. For a fixed w € L?(Q) the viscosities u[u](t, z;9) and ([u](t, z; V)
are C'-functions of ¥ and measurable in t and . Further, they obey growth conditions

{0 < p(1+9) < plt, 3 9); |9pp| < u,}

o (3.21)
0 < ¢(1+9) <((t,z;9); [0sC| < T,
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where constants u, i, C, ¢ are independent of u.

Having w still fixed, the heat conductivity x consists of the perfect gas part kg and the
radiation part kg, which are Wh2-functions of ¢, C?-functions of & and C'-functions of ¥.
Moreover they satisfy

0 <k <KC(tz;0) <R,
0 < k9 < KB(t,x;0) < F®,
|0:0: (kg + KkR)| < K92,
0 (ke + kr)(t, @;0)| < K (t, @)0°.

(3.22)

Here the constants &, & are independent of u, while the constant K, and the function K, from
L3(I; L*°(£2)) depends on HuHLQ(Q). The last two lines in (3.22) are only technical conditions,

which are used only at the very beginning in construction of the first approximation and they
can probably be eliminated.

Finally, we assume that the mapping Z satisfies a following compact property. Whenever
w, —u weakly in L?(I x O;R?),
there exists a subsequence (not relabeled) such that

Z(u,) — Z(u) ae. on I x Q x R. (3.23)

Now, we are ready to state the main result about the existence of global-in-time variational
solutions to problem (F)

Theorem 3.1.6. Let  C R3 be a bounded domain of class C?>1, v > 0. Assume p, e,
s are giwen through (3.14), (3.17), (3.18), respectively. Let p, A, K obey (3.21) and (3.22).
Then for any force f € L>=(;R3) and initial data 0o, 99 € L>(2), ug € L>(Q; R3), there
exists at least one variational solution of problem (F') in the sense of Definition 3.1.1, which
satisfies the initial conditions

olt] — o[0] = o in L' (),
(ou)[t] — (ow)[0] = pouo weakly in L*(Q;R3), p as t — 0+
E[t] — E[0] = Eo = E(00, wo, o)

and

esslim [ (0s(0,9))[t]¢ de > lim / /(gs(g,ﬁ)) dx dt:/gos(go,ﬁo)go dx
t—0+ Jo T—0+ /g Q Q

for any ¢ € D(Q), ¢ > 0.
Rest of the chapter is devoted to the proof, which consist of the following steps

e The continuity equation is equipped with an artificial viscosity term, the entropy in-
equality and the energy balance are replaced by the equation for the internal energy.
Several terms are added in order to improve the estimates. The Faedo-Galerkin ap-
proximation of the momentum equation is considered as a fixed point problem, which
is solved by means of Schauder fixed point theorem on a short time interval. Then the
solution is extended on the whole interval (0,T").
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e Passing to the limit in a sequence of solutions, where the velocity lives in an n-
dimensional approximation of the target space WO1 ’2, we obtain a weak solution of
the modified system.

e Next, we perform a vanishing viscosity limit, letting all the artificial terms but the
artificial pressure go to zero.

e We finish the proof, letting the artificial pressure go to zero.

3.2 Faedo-(Galerkin approximation

At the first approximation level, the system consists of the continuity equation augmented
by the artificial viscosity, the internal energy equation, and the Galerkin approximation of
the momentum equation. Our strategy is to construct solving operators of the first two
equations, then plug the solution into the momentum equation, and find a finite dimensional
approximation of the velocity field as the fixed point of a suitable non-linear operator. All
this on some small time interval J = (0,7).

3.2.1 Continuity Equation

We endow the continuity equation (3.2) by a parabolic perturbation, a homogeneous Neu-
mann boundary condition, and smoothed initial g . such that

00 € C?T7(Q), igf 00 >0, Vooe - nlog =0, (3.24)

and o tends to go in L?(Q2) as e — 0. After these modifications, we obtain a Neumann
problem
Oro + div(pu) =eAp on J x Q,

Vo -n=0 on J x 09, (3.25)
o[0] = g0 on Q.

For this problem, we report the following result.

Lemma 3.2.1. Let Q C R? “be a bounded domain of class C*, v > 0. Let u be a given
vector field from the space C(J; C2(;R?)). Then for any oo satisfying (3.24), there exists
a unique solution of the problem (3.25) from the space

X, =C(J;C*™(Q)) nCH(J; C"()).
This solution also satisfy the maximal principle
Qoe_U(T) < o(r,z) <oV for a.a. € J, xeQ, (3.26)

-
U(r) = /0 Hdivu”oo dt, o, = ess iIgllf 00,e, Og = €58 sgp 00,z

Finally, the solution operator uw — o[u] maps bounded sets in C(J; C3 (€ R?)) on the bounded
sets in X, and it is continuous mapping at least into the space C*(J x ).

The proofs of these statements one can find in [14, Chapter 7] and its references.
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3.2.2 Internal energy equation

Instead of the entropy inequality (3.4) and the total energy balance (3.5), we use the equation
for the internal energy. We add some regularizing terms, in particular modify the internal
energy and the heat conductivity as follows

es(0,9) = e(o, V) + 09, (3.27)
ke(t,x;0) = K(t, x;0) 4+ 69° + Ve L. (3.28)
We assume also smooth approximation ¥ . of the initial condition, which satisfies

Yoo € L®(Q)NW3(Q), ess inf PYo.c(x) >0, and Jp . — Jo in L' (Q). (3.29)

Finally, the equation for the temperature is represented by the following semi-linear parabolic
problem
9 (0es(0,))) + div(ges(o, V)u) — div(ke(t, ;9) V)
= 26|V o|2(B0° % +2) — ps(0,0)divi + S : Vu + (977 —9%) on J x Q,
Vi -n=0 on J x 09,
Y[0] = Jo.e on .

(3.30)

Concerning the problem (3.30), we claim the following result

Lemma 3.2.2. Let Q C R? be a bounded domain of class C*T. Let u € C(J;C3(Q;R?))
be a given velocity field and o = plu] € X, be the density according to Lemma 3.2.1, in
particular o(t,x) > 0. Then for ¥ satisfying (3.29), there exists a unique 9 in a class

. 11/1,2 2
) {19 € C(T;W'2(Q)), 00 € L*(J x Q) (3.31)

div(ke(t, 2;9)VY) € L*(J x Q)

such that (3.30) is satisfied a.e. on J x Q. For this solution, there ewist constants ¥, U
depending solely on

and ||olu

H“’ch;xn) ]ch?x@)’

such that 7
¥ < I(r,x) <. (3.32)

Moreover, there exists a continuous solution operator 9[u] from C(J;C3(Q)) to Xy.

Proof. Step 1 Maximum principle. Let ¥ be a subsolution and ¥ a supersolution of (3.30).
Then in accordance with assumptions about w and o[u], using hypotheses (3.14), (3.21), and
due to presence of the term 9¥° for 3 > 4, we infer

(0w + Vw - u|sgntw — div(k(t, z; 9) VI — k(t, z;9)VI)sgntw < C(¥ — J)sgntw  (3.33)

for the difference B

w = ges(0,9) — oes(0,9).

In (3.33) we have denoted sgn™ the positive part of the standard signum function. For any
v € WH2(J x Q), in particular for v = w, we have

O|v|T =sgnt(v)0w, V|u|T =sgnt(v)Vv
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(see [46]), which can be used in the first term of (3.33). Conserning the second term, as e; is
an increasing function of ¥, we can replace sgn™w by sgn™ (9 — 99). Further, we approximate
function sgn™ by the sequence

(0 nt  on (0,1)
S =
En sgnt(t) elsewhere.

Then we integrate by parts to get
/ div(k(t, z;9) VY — k(t, x;9)VI)sgn™w da =
Q
— lim [(k(t, 2;0) — K(t,2;0)) VO + k(t, 2;9)V (I — 9)|nV (I — I) da <
n—0oo {0<Q—5<%}

lim L 0ok L[VOIIV(I V)| de.  (3.34)
n—oo {O<Q—5<%}

If ¥ is homogeneous function in space, the right hand side is equal to zero. Using the
oposite spliting, we get the same inequality for the spatially homogeneous 1. Consequently,
integrating (3.33) over the time interval (0, 7), we arrive at

/Iw\*(T) dx < c/ /(1+ |diva|)|w|™ da dt.
Q 0 Q

Then an application of the Gronwall lemma 2.1.5 yields ¥ < ¥ a.a. on J x . It is easy to
check, that because of the term (9% —97) one can find constants 9, 9, which are subsolution
and supersolution of (3.30), respectively. Then (3.32) follows for any solution ¥ of (3.30).

Next, we take two (possibly) different solutions as ¥ and 9, both from the regularity class
Xy. We already know, they are uniformly bounded on J x 2. Then we can improve spatial
regularity of ¢ using the LP theory for the Laplace equation and hypothesis (3.22). We
estimate

)50 < [ 10s(t.250) 92" do <
" Q
0/ |div(n(t,m;ﬁ)Vﬁ)|2 + [0k (t, 2;9) 2| VI)? + |09r(t, 2;9) 2| VI|? de.  (3.35)
Q
Using conveniently the Young inequality on the right-hand side, we get

¥ bounded in L*(I; W?2(Q)),

since Jzk and Jdyk are bounded on bounded sets. Now we can use Holder inequality to
continue with calculation (3.34):

[ (@) V2V@ - T9)| de <
{

0<Q—E<E}

{o<w -9 < %H%HQHZQ,QHQ_EHLZQ — 0. (3.36)

Finally, we use the Gronwall lemma similarly as in the previous paragraph to deduce ¥ = 1
a.e. on J x €.
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Step 2. A priori estimates. Multiplying equation (3.30) by 9K (¢, ;1), where
W
Kt @) = / w(t, 2 0) d6,
1
0
VK(t, x;9) = k(t,z; ) VI + [(%K], [(%K] (t,x;9) = / Oz k(t,x;0)do,
1

9
OK(t, 23 0) = K(t, ;9)009 + [0, K|, [0, K](t,x;0) = / Ok(t, z; 0) do.
1

We get
4L gkp 20 e |
at . 3/ VEP et | CSSIOKP de = Q[am[(] VoK dz
Q865 865
+ /Q o [OK]OK — u- S SVIOK + G(t, x)0,K da, (3.37)

where, in view of (3.32),

0(oes)
do

Gt,x) =— (Oro+ Vo - u) — pesdivu

+S: Vu — psdivu + 6| Vol* (80”7 +2) + (07 —9%) (3.38)

is bounded in L (J x Q) while %% is uniformaly greater than zero and bounded.

Further, we can integrate by parts in the first and the most delicate term on the right-hand
side to estimate

27

/Q [0=K](t, @;9) - VOK(t, ;) daw < (||0xr]| || VO], + || [0:0=K]||,) || 0:K
where 5
(0,00 K] (1, 2;9) = / Du0ri(t, m: 0) d.
1

The norm HVﬁHz is dominated by ||VICH2 as follows
£|Voll; < [ 1xvof de < (9] + | 0.5

Similarly the norm Ha,gﬁHQ is dominated by ||8th||2. In accordance with hypotehesis (3.22),
we have

[0:K], [0k, [020-K] € L®(J x Q) and [0,K] € L*(J; L™(Q)).
Then a direct application of the Gronwall lemma yields
Vi, VK € C(J;L*(Q)); 99, 9,K € L*(I x Q).
Finally, using the equation again, we get also

div(k(t, z;9)V) € L*(I x Q).
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Step 3 Existence. To begin with, we rewrite the equation into the variable I = K(¢, ; 9)

O — A(t, x;9)AK = A(t, x; 19)div[8xK} + [atK]
—ou- (VK — [0.K]) + A(t,z; 9)G(t, z;9), (3.39)

where G(t,z;9) is the same as in (3.38) and

-1

At 2:9) = st 9)[oft. 2) 20 (o(t,2).9) + i + do(t. )

€q
09
Next, we continuously extend w, o[u] in time, in such a way that they are defined on the whole
R, but still have a compact support. Then also A, G are defined for all t € R. Consequently,
we can use mollifiers (2.1) with parameter w to smooth out A, and G in the time variable.

Moreover, we replace ¥ by
. NP
Yl w2
in
Alt,z;9), Gt x;0), [0.K](t,x;9) [0, K](t, ;).
For the smoothed equation one can apply Theorem 8.1 in Chapter V of [27] to obtain the
unique classical solution K, and thus also the temperature ¢,,. Then performing similar

estimates as in Step 1 and Step 2, one can pass to the limit as w — 0 and find the solution
of the equation (3.30) O

3.2.3 Momentum equation and existence of fixed point

The viscosity term in (3.25) involves a new term, eVuVyp, in the momentum equation in
order to preserve the total energy balance. Next,we enhance the pressure by an artificial
pressure term setting

ps(0,9) = p(o,9) + 60° + 60°

Finally, we project the resulting equation onto the n-dimensional space
X, CC(QRY) NC(%LR3) C L2 (4 R3),

endowed by the structure of the Hilbert space L?(2;R3). More specifically, we look for
u € X,,, which satisfies

/gu(t)~<pdm—/gou0-goda::
Q Q
t
/ /[gu @u—S]: Ve +ps(o,9)dive + [of —eVuVy] - deds (3.40)
0o Jo

for any ¢ € X,,.

We shall solve this equation on a short time interval J by means of the Schauder fixed point
theorem. In order to reformulate it as a fixed point problem on the Banach space C(J; X,,),
we have to set up a convenient notation. For a fixed o € L'(£2), we introduce an operator

Mlo] : X, — X = X,;  (M[o]v, w) ::/gv-wdw.
Q
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This is nothing else, then projection of an L!-function gv on the space X . Therefore, M|o]
is invertible provided ¢ > 0. Observing that

inf o(@)(v.w) < [ gv-w de < sup of) (v, w).
xeN Q xeN

we deduce
|21

[Q]HL(X,,“X;) = HQHC(Q)’ ||M[Q]71H£(X;;,X") S ||g71||C(Q) - (;}gg o))", (341)

Clearly, M[-] is Lipschitz continuous mapping form L'(Q) to £(X,, X,,), but the same is
true for M[-]71, at least on the sets {0 < o(-) < @}. Indeed, a simple calculation yields

[M[o1] ™" = Moa] 7' || = [[Mo2] ™' (MTo2] = Mloa) M[o1] 7' || < 07%8|e1 — 02 11 ) (3:42)

Finally, we denote
Un0 = M~ o 0](00.cu0)

Now, we are ready to define a mapping
T:B—C(J;X,); B={veC(J;X,)] Hv — umoHC(J;X”) <1}

given by formula

Thu)(t) == Mloful ) (oo + | Flelwwolu)(r)dr).  (343)

where for ¢ € X,,, we denote

(F(0,u,9), ) = /Q (ou®@u—S(u,d)) : Vo + ps(0, 9)divp + (of —e(Veo- V)u) - ¢ de,

((eu)n,0, ) = / 00,cUo - ¢ dax.
Q
The solution operators g[u] and ¥]u] of the equations (3.25) and (3.30) are given by Lemmas
3.2.1, 3.2.2 respectively. With help of the mapping 7, the equation (3.40) is equivalent to

Tu] = u.

Using Lemma 3.2.1, we can find ¢ and g such that
14 < QO,E(:B) < 0, on Q7
0 < olu](t,x) <o, onJxQ for any u € B.
Further, one can use Lemmas 3.2.1 and 3.2.2 to get

1F (ol w, ]|, 5y < Cl1+ 0" + Vol + 0* < Ofu|

||LP(J><Q) JiXn)’

for any p > 1. Let us note that once this bound holds for some J = Jy, it remains valid even
for shorter time interval, with the same constant. Then, for any uw € B, we have

|7t = ol < 270 f 1 Poful o)

+Q‘2?§g§!|@[u](t) = 0e0]| 1 [|eo,cuo[ < W (|T)),
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where ¥ is monotone function, which approach zero as T* = |J| goes to zero. Hence, there
exists a time interval J such that 7 is self-mapping on the set B. Similar calculation,

| T[] (t1) = Tul(t)]

to
w20 [ IF(elulw o)) dt
, "
yields equi-continuity of the set 7[B]. Consequently, by virtue of the Arzela-Ascoli theorem
2.2.2, the mapping 7 is compact on B. In order to apply the Schauder theorem it remains
to verify a continuity of 7. To this end we write

||T[u1]_7[u2]||C(J;X") = Q72§||Q[u1]_Q[U’Q]HC(J;Ll(Q))(HQOvEU’OHLl(Q)+||F[u1]HL1(J;X;;))
+ o7 || Fua] — F[UQ]HLl(J;X;)'

Further for the last term, we have

||F['LL1} - F[’U’Q]HLl(‘];X’:) < C[‘aé)p(s‘? ‘aﬂp5|7 |879(,LL7<)|] (HQ[ul} - Q[uQ]HL1(JXQ)
sl gy 0] = 9] 1 )+ €0 O] 92) — it sl 9] 1 -

Thus according to Lemmas 3.2.1, 3.2.2 and due to (3.23) the mapping 7 is continuous. Then
on can apply the Schauder theorem 2.1.6 to obtain the solution o = g[u], u, ¥ = J[u] of the
equations (3.25), (3.40), (3.30) on some short time interval J.

3.3 Time independent estimates

In the previous step, we have constructed the Galerkin approximation (o, w,?) = (0n, Un, I5)
on a short time interval and for a fixed n. Our next aim is to derive time independent
estimates and prolongate the solution on the whole time interval. In fact these estimates will
be also independent of the dimension n.

In order to enter the framework of variational solutions the equation (3.30) will be replaced
by the entropy equation and the balance of the energy. Since our solution is regular and the
temperature is strictly positive, a calculation similar to (1.18) can be performed to get the
entropy equality. Nevertheless, there are some extra terms because of the modification in the
continuity equation. We compute

1 . . e
3 (825(@6@) + div(oueg) + pgdlvu) = EAQ§+
1 Oeq 2 Oeq j el . _
. e
O¢(0sa) + div(ousg) + sAg(g + 1;—(; - 3G>. (3.44)

Applying a similar procedure for er, and §¢ one gets
1 . . .
3 (8,5(@65) + div(oues) + psdivu = 9y (0ss) + div(puss) + eApA.

where

Aclul(t, @59, 0) = %G + f;—j — 5+ 0(1 —log¥).
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Using the Green theorem one has
5/ ApA.p dx = —5/ Vo:-V00,A. +Vo-VU¥0yA. +Vo-Vp A, dz,
Q Q
where, due to Maxwell’s relations (1.27), (1.28),

1 1
8QA€ = fagp(;, OpA, = —7(6(; + Qageg + 519)

Yo 9
Then a weak form of the entropy equality reads
JulVo -V _
/ / 0Ss0rp + ouss - Vi — K[u]% +o.p—e¥? 4 2A.Vo- Vo
JJa
1
- 8@(66* + 00,eq + 69V -Vip de dt =0 (3.45)

for any ¢ € D(J x Q). The approximate entropy is
Ss = Sg + sr + dlog ¥

and the modified entropy production reads
[Vo|?

2 :
_ fel VY + S: Vu + ey Pl 4 5—6?;(; |Vo|? 4 de(B0° 2 4+ 2)——.

e T T2 9 9

In accordance with hypothesis (3.15), we have d,pe > 0, thus o, has a sign. Further, we can
test (3.40) by uw and obtain the balance of kinetic energy. This added to the internal energy
equation (3.30) integrated over € gives rise to the balance of total energy:

d 1, o , - o
T Q<2Q|u| +065(Q,19)+5(ﬁ_1+g ))[t] dm—/ng u+e( ¥7) dz  (3.46)
for a.e. t € J.

Now, we are ready to accomplish the estimates independent of time. We take a sequence
of spatially homogeneous functons, which approximates ¢ = 1), as the test functions in
(3.45). Then we add up the result and (3.46) together. Integrating by parts in time, we
arrive at

t
0

3
/QEn[t] dz +/ /Qas da dr < /QEn[O] — (05.)[0] + (035)[] da + ;Ij (3.47)
for a.e. t € J, where

1 0

t
ij:/ /Qf.u+a(z9*ﬁ—ﬁﬁ+q9ﬂ*1)+%(ecwagegwﬁ))vg-w dz dr
0 Q

j=1

In view of hypotheses (3.21), (3.22) and the Korn inequality, the entropy production rate o
dominates following quantities

Co. > 6 =|Viegd|? + |V(9?)? + [Vul? + §0° 2|V

2
+ VeI 3V 4+ 9P 4 6e(B0°2 + 2)% (3.48)
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where the constant C' is independent of T', n, €, 4.

In accordance with assumptions about g. o and 9. o in (3.25), (3.30), respectively, the zero
time terms on the right-hand side of (3.47) are bounded uniformly with respect to T, n, ¢,
and §. On the other hand, for the entropy term one can use (3.19) to infer

3
/g55§5(1)/ , odz+C , pologd—plogo dz
o 0031 09 3 <12

4 .
+5/ olog¥ + —a®® dz < C/ v +Q% dx — 5/ o|log ¥| d,
Q 3 Q Q
where the last term gives an estimate on the left-hand side and the rest is dominated by

CE,[t], in particular by the internal energy. Again the constant C is independent of T, n, ¢,
and 4.

In order to apply the Gronwall lemma, it remains to bound the terms I; by an integral

/0 wH&HLQ[T] + C(w)E,[7]dT,

where w is a suitable small parameter and C(w) is a possibly large constant independent of
T, n, e, and §. For the first term, we have

t
1 5 1
[11] < Hf||L°°(Q)/O /Q§Q|’LL| + 2@ dx dr.
For the second one, we use the interpolation (3.54) and Lemma 2.1.2 to get
t t
B < 0Ww) [ olljar+w [ <o) + 5|V ar
0 0

The third term I3 is more tricky. First, we observe that because of (1.26), (3.17), and (3.16)
one have

lec + 0dgec] = §ea — Foeu] < CO(PY)Y 7 +|P/(Y)]) < O(e5 +9).

Further, taking ¢ = ¢ as a test function in (3.25), we arrive at the “energy” equality for the
density

t t
||QHZ[1§] +2€/0 HVQszT = HQO’EHE —/0 /Qg2divu dx dr. (3.49)

t t
1
< [ [1ver amar < [ Sulf, + ol o
0 JQ 0

Then, taking € small enough, especially € < J, one can estimate I3 as follows

In particular,

t 2
03 +0
|13 SC(5)/ /s Sz Vel V9] dedr <
0 JQ
t |Vol?
/ / wie(Be” 7 + 2)=5— +C(w.4,8) 03| V|2
0 Q

t
+ C(w)e?|Vo|* 4+ w|Viogd)? dzdr < C(w)/ E[t]er/ & dxdr. (3.50)
0 Q
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After we have overcome all the terms on the right-hand side of (3.47), we can use the Gronwall
lemma to get estimates independent of the time, n, €, and §. In particular for the velocity,
we get

w bounded in L*(J; WH%(Q; R?)).

Since all norms are equivalent on X,,, the velocity is bounded also in L2(J; W%>°(€)). Then
by virtue of (3.26), the density is strictly positive and bounded in L*>(J X §2). Seeing that
also

olu|? is bounded in L>(J; L' (1)),

we conclude that the norm of the velocity ||, [t] is uniformly bounded on the interval

J = [0,T*] and therefore u[T*] € X,,. Lemma 3.2.2 ensures that the temperature ¥[T*]
is strictly positive and belongs in W12(Q2) N L>(9). Repeating this procedure one can
prolongate the solution up to any finite interval I = (0,7T). Consequently, the estimates we
have derived holds on the whole time interval I, namely

olul?, 03, 50°, 9%, Sollog¥| are bounded in L°°(I; L*(Q)). (3.51)
Further from (3.48),

Vul?, VO3, [Viog |2, 6]V0% 2,
V& |?
VeIV, g9 BHD) EégT are bounded in L'(Q), Q :=1x Q. (3.52)
Appling Lemma 2.1.2, we get also
u, 95, Vologd, V692 bounded in L*(I; W 2(Q)). (3.53)

Using an interpolation and the Sobolev imbedding, the temperature can be bounded also in
homogeneous spaces

_1._38 8 17
[0l gy < €475, a =5+ 3 M0l =Cr=75- (3.54)

Then a similar estimate follows for the density, namely
196 0 gy < 1971963 Pl 9], < 0060

for (1 + %) <1l,qg=p0+ %. Hence for a fixed e the density o is bounded in L"(I; L3"(9))
for some 7 > 1, which can be made arbitrary large taking an appropriate (.

3.4 Limit in Galerkin approximation

At this stage, we take a sequence of spaces X, C C5°(Q; R3) such that

U Xn = W52 R?).
n=1
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This is possible as VVO1 ’Q(Q; R?) is a separable space. For any n, we can perform the con-
struction procedure described above to get solution (g, u,d) = (0n, u,.¥,) to the system of
equations

Oron + div(gnu,) = €Ap,, onl xQ,

Vo, n=0 on I x 09, (3.55)
On [O] = 00,e on Q’

// Ontn - 0P + Opty @ Uy 2 Vo + ps(0n, U )dive
1Ja

—Splun] : Vo + (0nf —eVu,Vo,) @ dedt =0, (3.56)
for any ¢ € C3(I; X,,).

Ke n|tun| VU, - V
// Qnsts,natsp + OnUnSsm * V‘P — [ ]19 L4 + Oen®p + EAs,ann . v@
I1JQ

1
- 5197(6(;)71 + 0n0pecn + 0U,)Vo, - Vi, pde dt =0 (3.57)

n

for any ¢ € D(I x Q).

12
/ E,[t2] — Eplt1] de = / / onf - Un 4 (¥, —9°) da dt (3.58)
Q t1 Q
for a.e. t1, to € I, where

o8

En = Es(0n, tn,9,) = %gn|un|2 + Onésn + (5(5 =T+ 02).
In addition, o, w,, ¥, satisfy the initial conditions
0n[0]un [0] = ooug in X7, (3.59)
0n[0]8:(0,[0], ¥,[0]) = 00,£5:(00,¢,V0,) on £, (3.60)
E,[0] = En(00,6, 10, Jo,c)- (3.61)

The sequence (gn, Uy, ¥y,) complies with the n-independent estimates (3.51), (3.53). Conse-
quently, we can identify the limits using Theorem 2.2.1,

On — 0 weakly-+ in L>(I; L (Q)), (3.62)
Up — U weakly in L2(I; Wy (Q; R?)), (3.63)
O — 0 weakly-* in L>°(I; L*(Q)). (3.64)

Our next task is pass to the limit in the equations (3.55), (3.56), (3.57), and (3.58).

3.4.1 Limit in the continuity equation

To begin with, we shall need an equi-integrability of the terms 0;0,,, Ag,. This is of course
a direct consequence of the LP theory for parabolic equations, provided we can control the
term

div(gpu,) = Von - up, + ondivu,.
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in LP(I x Q), p > 1. Unfortunately, in view of (3.51), (3.53), the first term is merely
integrable with respect to time, so we need to gain better estimates. To this end, one can
test the continuity equation (3.55) by log o, +1 = (gn log 0,)’, to get

d Von| .
gn log 0, dx + 5/ ‘ @ dx = / ondivu,, dx.
Hence
\Y

/ Noul® 4z < (3.65)

Q On
Further, we can use the estimate for the kinetic energy to infer

Von

van UnHLz (I;LY(Q) = H LQ(IXQ)H\/EnunHLoo(I;LQ(Q)) < C(E)

On the other hand, Vg, -u,, is bounded also in L*(I; L? (Q)) and g, diva, in some L™ (I x€2),
1 < r(B) < 2. Then an interpolation argument keeps the term div(g,u,) bounded in
LP(I x ) for some p > 1 and we conclude

Oton, Ao, bounded in LP(I x Q), p > 1. (3.66)

In particular, g, is bounded in W1P(I x Q) for some p > 1, whence the compact imbedding
yields the strong convergence
on — 0 ae. on I x . (3.67)

Consequently, one can pass to the limit in the continuity equation (3.55) and obtain
Oo+div(ou) —eAp=0 ae. inlxQ, (3.68)
where o is non-negative and it satisfies
Vo-nlag =0, 0[0] = oo,.. (3.69)

Multiplying by a smooth function ¢ and integrating by parts we get also weak formulation
// 001+ ou -V —eVo-Veo dx dt =0, for any p € D(I x Q). (3.70)
1Jo

Then we take ¢ = p and we arrive at the “energy” equality for o, which subtraced from
(3.49), yields

T T
26/ / |Von|? = |Vo|? da dt = / (02 — 0*)[T] dz — / / 02 divu,, — o?dive da dt.
0 Jo Q 0 Jo

Since the right-hand side tends to zero, we have proved the strong convergence of gradients

Vo, — Vo in L*(I x Q).

3.4.2 Limit in the entropy equation

Our next goal is to establish the strong convergence of the temperature field and pass to the
limit in the entropy equation and the balance of the total energy. Following Section 4.6, we
shall apply Lemma 4.6.1 on the entropy equality (3.57). To this end, we need

0n55(0n,9,) bounded in L*(I; L (Q)) N L>(I; LY(Q)), p > g (3.71)
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From the hypothesis (3.18) we deduce
|0ss(0,9)| < C(9° + ollog | + oflog 9] + 1).

Then (3.71) is a straightforward consequence of estimates (3.51), (3.52). In fact (3.71) is
uniform with respect to . Further, we need to bound all other terms in the entropy equation
(3.57) at least in some L'(I;W~"P(Q)), p > 1. The entropy production o. is uniformly
bounded in L(I). For the other terms, we need also L!-estimates, nevertheless with future
application in mind, we shall gain even estimates in LP(I x ) for some p > 1 uniform with
respect to €.

Since 0,55(0n, ¥n) can be interpolated between the spaces in (3.71) and because the velocity
is bounded in L?(I; L%(Q; R?)) we easily deduce

Hgnsé(gnyﬁn)unHLP(IXQ) < C(é)

Next in view of hypothesis (3.22), we observe that

ks (t, ; 9,) VI,

B 3
S < C(6)(Vn + 92 [V(¥2)])

where, by virtue of (3.52) and (3.54), the right-hand side is bounded in LP(I x ). Similarly
the remaining epsilon part of the modified x can be estimated this way

‘ (ﬁﬁ;l)Vﬁn 1 1

TE (P 973 ) (3| V (07 2))).

I

<e
Iy -

The LP-norm of the right-hand side of both inequalities is dominated by €"C for some r > 0.
The term €A, ,, Vo, is more delicate. In accordance with hypotheses (3.14), (3.17), and
(3.18), we have

2

3
£l Acnl [Ven| < 2C(8)(1+ 2 + |log o] + [log D)) [V el

Omitting the index n, the terms on the right-hand side can be estimated as follows
e[| Vell, < veC(9),

b0, < e~ 10) ol 7107 5,1 VE Ve, < O,

g

\%
clhog 0%l < vEC@) el | 22 < vEC(),
and

1 1 |Vol 11
el[log ¥V ol = <[|(ollog ¥])= [log ¥|' = N e rcey

o -1 _
< ﬁuglogﬁHLx(I;Ll(Q))Hlogﬁuiz&;Lﬁ(Q))ﬁHQ 1|V9|2H1H9Hg <VEC(0) (3.72)

for some p > 1, provided S is large enough and « > g
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Concerning the last term in (3.57) we have at our disposal only the L!-estimate (3.50),

namely
VoV
leec + eduec + 80~ |, < VZC ().

Nevertheless, this is enough to meet the assumptions of Lemma 4.6.1 and conclude

%a(ﬁ@ —993) = (Vosq — ¥05c) + 6(Volog ¥ — Yologd). (3.73)

The right-hand side integrated over a ball B C I x 2 can be split,

lim [ on(sg(on,Vn)+ dlogdy) (9, —9) de dt =
B

lim On (SG(Qna Un) — 56(0n, 79))(1971 —9) + 5Qn(10g Uy — log ¥) (9, — V)
B

+ On (SG(Qna U) +dlog 19) (U, — 9) de dt,

whence, in accordance with hypothesis (3.18), the first two terms on the right-hand side
are non-negative, while the last one tends to zero, because of the strong convergence of the
density. Then (3.73) yields

939 > 939 a.e. on I x Q. (3.74)
Then using the Minty trick, we conclude
I — 9 in LI x Q). (3.75)

The point-wise convergence of the temperature and the compactness property (3.23) of the
mapping Z imply also the point-wise convergence of the quantities kg, kg, i, and ¢, which
are mainly functions of ¢, &, and 1, but depends also on the velocity through the non-local
mapping Z. Then the terms

Klun(t, x;9,) VY
I

tends to their counterparts as they are bounded in some LP (I x€2), p > 1. The same argument
is tacitly used in all succeeding limit processes.

" and S[u,](t, x;9,)

The strong convergence of the temperature allows us to pass to the limit in (3.57) and (3.58).
In view of the LP-estimates from the beginning of this section, the majority of the terms in
(3.57) tends to their counterparts. based on the limit quantities g, u, ¥. On the other hand
the L!'-terms tend to the Radon measures:

e(eq + ondoec,n + 619")1972 — I'., where HFHM(IXQ) < eC(6),
and
ke[u]|VI?2  S:Vu PR Y e J N |Vol|?
en— Y >0, = ) - 0e(Bo? 242
Oen — Xe >0 92 + 3 +e +e 90 Vol + de(B0” " + 2) 9

where ¥. > o, (in sense of distributions) is due to weak lower semi-continuity of the convex
term o, y, cf. Section 4.8. Thus the limit equation reads

9 -
// 0850rp + ouss - Vi — W +eAVo-Vydx dt
1JQ

+ (S, @) rxa — e — (Do, @) 1xn =0, forany ¢ € D(I x Q). (3.76)
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Concerning the initial condition, we use (3.60) and we denote s . = s-(00,e,%0.c). Then we
get

/mﬁwwm:/%ma%mmmwm
Q Q

lim f/ /gnss On,On)p dx dt, (3.77)

for any ¢ € D(Q) and every n. . Having g,5s., bounded in LP(I x Q), p > 1, one can pass
to the limit in this equality. Next, we test (3.76) by 1(t)p(x), where 1 is an aproximation of
the characteristic function of the interval [0,¢] and ¢ > 0. Letting ¢ go to zero we arrive at

esshm st(g,ﬂ)[ lp dz > lim 7/ / 0scp doe dt = / 00,50,c d. (3.78)
Q

t—0 T—0+ T

In order to pass to the limit in the total energy balance we rewrite it in the weak form:

1 &)
/(“),ﬂ/}(t)/ §Qn|un|2 + oneen + 5( On + Qi) dz dt = /w(t)/ onf uy + 519;5 dz dt
I Q I Q

6—1
(3.79)
for any 1) € D(I). Here all the terms are equi-integrable, thus we can pass to the limit and
use a sequence of test functions approaching the characteristic function of the interval [ty t3].
Finally, we get

to
EJ@}JLﬁﬂdwdxdt:u/ /}y%u+ew—ﬁ—w5dmdt for a.e. t1, to € I, (3.80)
Q Q

1 o°
Ek::§MuﬁA+QGAQJ”*%5(BijIA%Q%.
Finally, from (3.61) and (3.80) it follows

E.[t] — E.[0] = Es(00,c, w0, Vo,c)- (3.81)

3.4.3 Limit in the momentum equation

In view of the available estimates, one can use the momentum equation and the Arzela-Ascoli
theorem similarly as in (4.65) in order to get

ontty — owin O([0, T} L, (% RY), (3.82)

This space is compactly imbedded into C([0,T]; W—12(Q; R3)), thus taking into account
(3.53), we deduce

Ontly @ u, — ou @ u in L2(I; LP(Q; R® x R?)), p > 1.
Because of the strong convergence of the density gradients (3.67), we infer

VonVu, — VoVu in D'(I x ;R3?).
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The limit in the other terms is a straightforward consequence of the available estimates and
the strong convergence of the density and the temperature. Consequently we obtain the limit
of the momentum equation (3.56):

// ou-Op+ouu: Ve +psdivg —S: Ve +of -pdedt=0 (3.83)
1Ja

for all ¢ € D(I x Q;R3). Because of (3.82), we can pass to the limit in (3.59) as well and
get

(ou)[f] = (0w)[0] = oot weakly in L(2). (3.84)

3.5 Vanishing viscosity limit

In the previous section, we have constructed a solution (g, w, ) = (o¢, ue, J¢) of the equations
(3.70), (3.83), (3.76), and (3.80) for any fixed €. Our next goal is to let € tend to zero and
pass to the limit in our system. We can take advantage of estimates (3.51), (3.52), and (3.53),
which are uniform with respect to €. In particular, all the terms containing ¢ vanish in the
limit, since

HEV@EHLl(Q) + HEV@EVUEHLI(Q) < VEC(9)

and

e T L e

@ = @ S€

while the epsilon terms in the entropy inequality (3.76) either have sign and can be forgotten
or are dominated by "C(4), r(8) > 0 as was discussed in Section 3.4.2. In view of the
available estimates, we can choose a subsequence such that

0 — o inC(LE, (),
u. — u  weakly in L*(I; WH?(Q; R?)), (3.85)
e — 9 weakly in L*(I; W3(Q)).

3.5.1 Refined pressure estimates

According to the estimates (3.51 — 3.53), the artificial pressure as well as the corresponding
term in the energy balance are known to be bounded only in L'(Q), which is not enough
to exclude possible concentrations in the limit. Nevertheless, an additional estimate can be
gained from the momentum equation. Following [18], we test (3.83) by

wzw@amwzg—ﬁgm,
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where B is the Bogovskii operator on the domain 2 introduced in Lemma 2.1.3. A straight-
forward calculation yields

T 4 T
/ /wpggdwdt:ZIj:/ w/pdw/gdx dt (3.86)
0o Ja = 0 Q Q

T
—/0 /prf-B[w] +ou @ : VB[] + 0ppou - Blr] dx dt
T
f F 2 A diva) -
+/0 w/ﬂ (20 Du + (¢ H )dival) : VB[r] de dt
T
—/0 P ; ou - 0 B[r] de dt.

The first three terms Iy, I, I3 are bounded by virtue of estimates (3.51), (3.53). In the last
term I4, we use essentially the strong continuity equation (3.68) to deduce

HatB[T(]HLZ(IxQ) = ||BleAo - diV(Q“)]Hm(IxQ) < C(|loull, +<[[Vell,),

where the right hand side is bounded provided 8 > 3. Then I, is bounded as well and it
follows

lpc(e. D)o+ (™" + )| 1) < C- (3.87)

3.5.2 Limit passage

Using (3.85), one can pass to the limit in the continuity equation and get
// 00;p +ou-Vo dx dt =0 for all p € D(I x R?). (3.88)
1JR2

Moreover, thanks to the artificial pressure do”, the density is square integrable and Lemma
3.1.2 can be used to obtain also the renormalized equation.

Next, we turn our attention to the momentum equation. Employing the time term, it follows

octe — ouin C([0,T}; L (Q:R?)). (3.89)

5
1

Hence, thanks to the compact imbedding L — W12 we infer

weak

0 ® U — ou ® u weakly in LP(Q) (3.90)

for some p > 1. Moreover, in view of (3.87), the terms S, ps are also bounded in LP(Q),
p > 1. Then one can pass to the limit in the momentum equation (3.83) and obtain

// ou -0+ ou®@u: Dy + psdive — S : D + of - p da dt =0 (3.91)
1Ja

for any ¢ € D(I x Q; R?).
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3.5.3 Strong convergence of the temperature

Our next goal is to establish the strong convergence of the temperature field. We present
a method based on the Div-Curl lemma 2.2.4, which was probably first used in [16]. We
rewrite the entropy equation (3.76) as

Divi U, =%, —I'.
where

ke VO,

€

U, = 9556(957796);«9535(«961)3»196) + +5AEVQE

and Divy 5 is the divergence operator on the four-dimensional space-time. It follows that
Div; .U is relatively compact in W=1%(I x ) for some s > 1. Moreover, in view of the
estimates collected in Section 3.4.2, all terms in U, are bounded in LP(I x ) for some p > 1.
On the other hand, the field

V. =(4,0,0,0),

is bounded in any L(I x ;R*), 1 < ¢ < oo, provided J3 is large enough, and Curl; V. is
relatively compact in W~=15(I x ; R?*) for s > 1. Then a direct application of Lemma 2.2.4
yields

%a(ﬁ@ —993) = (Vosq — V05G). (3.92)

The right-hand side integrated over a ball B C I x €, can be split

1irr(1) 0:8G6(0e, ) (9 — ) dae dt =

E— B

liH(l) Oc (SG(stﬂs) - SG(Qs»ﬁ))(ﬁs =) + 0e56(0e, V) (Ve — ) dz dt,

E— B

where the former term is non-negative, while the later one tends to zero, by virtue of calcu-
lation (4.71) if we prove

B(o)G(9) = Blo) G(0)- (3.93)
Using the renormalized continuity equation, one can show similarly as in (4.59) that
B(g:) — Blo) in C([0,T]; L, .,1,(2)). (3.94)
for any B € W1°°(R). On the other hand in view of the estimate (3.53), we have
G(¥.) — G(Y) weakly in L?(I; W2(Q))

for any G € W1°°(R). Then (3.93) is a consequence of the compact imbedding LP(Q) «—
W=12(Q) for p > $. Finally, (3.92) yields

939 > 939 a.e. on I X (3.95)

and using the Minty trick, we conclude

I — 9 in LI x Q). (3.96)
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3.5.4 Strong convergence of the density field

In order to identify weak limits of the nonlinear terms, like p5(ge, ) , we have to prove the
strong convergence of the density field. Following Section 4.7, we begin with compactness
properties of the effective viscous pressure. Testing (3.83) by ¥, = ¥ (t)n(x)VA~E(x)o:))
and using the continuity equation (3.70), we get

/Q GE(N(pse — R 5 [1S.])) o da dt = (3.97)
/Qw(Sa — 0:U: R U) 1 VN ® P, — PpsVn - p,) de dt
- /Q no-u. - (b, + UVAVE - gu]) da di — /Q vnp, - (0-f) de dt
+e /Q (Voo - V)ue - V() + pno-u. - R - [€V0.] — onVA " Vr - V. da dt
+/Qwus (R - [no-ucléo: — nocu- - R[¢o:]) d dt.

On the other hand, (3.91) tested by ¥ne = ¥ (t)n(x) VA~L[E(x)o] together with the limit of
the continuity equation (3.88) gives

| vCs =R D) 0 de e = (3.8)
/Qw(S— ou®u): Ve —Yp;Vn - da dt
- /Q now - (007 + UVA[VE - oul) da dt — /Q i - (of) da dt
+/Qwu- (R - [nouléo — nou - R[Eg]) da dt.

The right-hand side of (3.97) tends to the right-hand side of (3.98), in particular for the very
last terms one can apply Corollary 2.2.5. Then the left-hand sides imply

21_1}(13 o 1/”75(130(95, Vo) + pr(Y:) + 6(9? + Q?) — (Ce + 4pe)div us)(@s — o) dz dt

= ;I_I% . PATIS (’R : [npeVue] — nueR - [Vue]) (0 — o) d dt. (3.99)

The right-hand side tends to zero by means of Lemma 2.2.6, the interpolation, and strong
convergence of the temperature. Then (3.99) reduces to

lim [ (C(0) + 2 p(9))divu.(o. — o) da dt
e—0 Q 3

=lim | o(p(ee,0e) +0(0f +02))(0: — o) dw dt  for any p € D(Q). (3.100)
Q

Since pg(o,9) + §(0” + 0?) is a non-decreasing function of g, one have

(pG (02, 9e) + 502 — pa(0,9:) — 60°)(0- — 0) > 0.
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Then because of the strong convergence of the temperature the right-hand side of (3.100) is
greater than zero and one gets

odivu — odivu > 0. (3.101)

Using Lemma 3.1.2, Lemma 3.1.3 and Lemma 3.1.4, one can check that o, u satisfy
dr(olog()) + div(elog(o)u) + odive =0 in D'(I x R?), (3.102)
provided p, u are extended by zero outside of 2.
On the other hand for a B € C?[0, 00), one can renormalize the equation (3.68) and deduce
9, B(0:) + div(B(0:)ue) + (B'(0c)0: — B(0eps))divu. =
ediv(1aVB(e:)) — elaB"(¢:)|Ve:|* in D'(I x R?).

Taking a convex function B(p) = glog g, integrating over 2 and letting € — 0, we infer

/ / dva de dt < / (olog 0)[0] — (2Tog o)1),

which combined with (3.102) and (3.101) yields

/(,Qlogg — plog o)[7] dz > / / odivu — pdivu de dt > 0.
Q 0o Ja

Then applying Theorem 2.2.3 we conclude
0. — o in LY(I xQ).

3.5.5 Limit passage - continued

With the strong convergence at hand, we can finish the passage to the limit in equations.
First, we can identify ps, S in the momentum equation with ps, S, respectively. Next, in the
entropy equation the epsilon terms vanish, while the other terms are equi-integrable except
the measure ¥.. Nevertheless, Y. is uniformly bounded in the space of Radon measures
M(I x Q), so up to the subsequence we have

(Ze, ) = (L5,0) ase—0
for any ¢ € D(I x ). Moreover,

I? S:
25205:%4—&95*2\%%,—% 19V’U/

in M(I x Q) because of the lower semi-continuity of the convex terms in o..

In the energy equality, one can use a similar argument as for the convective term to pass
with the kinetic energy term o|u|?, the artificial pressure is equi-integrable due to (3.87) and
the term (9~ — 97) tends to zero.

Finally, we obtain a solution (g, u,d) of the limit system

// B(0)0ip + B(o)u - Vo — b(g)divup dz dt =0, for p € D(I x Q) (3.103)
1Ja
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and any B satisfying (3.7),

//gu-@tcp—i—gu@u:ch—i—mdivcp—S[u]:V(p—i—gf—god:cdt:Q
1Ja

for p € D(I x ;R3), (3.104)

9 -
| [essrao+ (essyu- vo - SUIETE im0 aw ae -0,
1Jo
for >0, p € DI xQ), (3.105)
d 1 2 o’ 2
— [ (Golul® +oe+6(———+0%))tlde = [ of ‘udx forae tel. (3.106)
dt Jo \2 -1 o

It remains to clarify initial conditions. In view of (3.24) and the strong convergence of the
density, one can pass to the limit in the initial condition (3.69) to deduce

olt] — 0[0] = 0o weakly in L'(€2).
Moreover, applying Lemma 3.1.5, one obtains even the strong convergence.

Similarly we can treat the other initial conditions (3.84), (3.78), (3.81) using the limit equa-
tions and assumptions (3.24), (3.29). We conclude

olt] = 0l0] = 0o in L'(%),
(ouw)[t] — (ou)[0] = oouy  weakly in L'(; R?), (3.107)
Es[t] — Es[0] = E5(00, uo,90),

and

esslim [ (pss(0,9))[t]le dz > lim / /(QSg(Q,ﬁ)) dx dtz/g085(g0,190)<p de (3.108)
t=0+ Jo ™0+ Jo Ja Q

for any ¢ € D(Q), ¢ > 0.

3.6 Vanishing artificial pressure

Our ultimate goal is pass to the limit in the system (3.103 — 3.106) as § — 0 and remove
remaining artificial terms.

3.6.1 The estimates revisited

One can perform the same estimates as in Section 3.3. Integrating the total energy balance
(3.106) over the time interval [0,¢] and testing the entropy equation (3.105) by an approxi-
mating sequence of ¢ = 1o 4, we get

olul?, gg, 50°, 9%, 0sq, dollog®| bounded in L>®(I; L'()), (3.109)
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and
IVaul?, |VO3 2, [Viegd|?, §|VO%|> bounded in L'(I x Q) (3.110)

uniformly with respect to §.

In contrast to the previous limits, we have no uniform estimate for plog. However, using
the entropy inequality once again, one can proceed similarly as in (4.51), namely one can
find M, 6* > 0, independent of §, such that

[{9[r] > 6"} > M > 0, while / log 9[r] da < C
{9[r]=6*}

uniformly with respect to 7 € I and 6. Then the Poincaré inequality 2.1.2 leads to
u, 93, log®, Vo0? bounded in L2(I; W 2(Q)). (3.111)

Using these estimates, we have also ¢ bounded in L% (I x ) and S bounded in LP(I x Q)
for some p > 1.

3.6.2 Modification of pressure estimate

Similarly to Section 3.5.1, we have to derive better than L'-estimate for the pressure. How-
ever, several modifications have to be made because of weaker uniform estimates for the
density. On the other hand, we can take advantage of the renormalized continuity equation
(3.103) without the inconvenient elliptic term.

We use

p= w(t)B[ﬂg], Wg = we * 0} —][ we * 05 dx
Q

as a test function in (3.104). For the time derivative 0;¢p, we shall use the mollified version of
the renormalized continuity equation (3.12). Provided v > 0 is sufficiently small, specifically

v < %7 we deduce

1OBlelll s 1,2 0mey < C(H (e 05| s 1, oy T llowe (G5 iveas) e e )

+/I/Qw5 * (0% divus) + re da:) < C(||g§u,;||L1(L5) + Hggdivu(;HLl(L%) +1),

where the right-hand side is bounded independently of ¢ and . Now, testing (3.104) by ¢,
a straightforward calculation yields

T 4 T
/ / ps(we x 05) dae dt = le :/ w/ Ds da:][ we x 05 da dt (3.112)
0o Ja = 0 Q Q
T
*/ / Yosf - Blrl] + Yosus @ us : VB[] + Opposus - Bl de dt
0o Ja
r 2
+/ w/ 20/ Dus + (¢ - guf)divu(;]l) : VB9 da dt
0 Q

T
f/ 1/1/ osus - O B[rd] dx dt.
0 Q
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By virtue of estimates (3.109), (3.111) the first three integrals are bounded independently of
6 and e, where the most restrictive convective term leads to the condition v < g. For the
last integral, we have

Iy < HQ“HLQCU L Q))Hat Te HLl(I 5) = c
Finally, using Fatou’s lemma, we get
/ /p(; 05,0s)05 da dt < hrnlnf/ /p5 05, Us)we * 05 de dt < C, (3.113)

whence in view of the hypothesis (3.15), we conclude

< §r+v C.

HpG(Q‘s”ﬂ‘s)HLP(IXQ) < Cforsomep>1 and |[|d(c” + Q2)HL1(I><Q) >

3.6.3 Limit passage

In view of the uniform estimates (3.109 — 3.111), we can use the Alaoglu-Bourbaki theorem
2.2.1 to identify limits

05— 0 weakly-+ in L>®(I; L3 (9)), (3.114)
Uy — u weakly in L2(I; Wy (€ R?)), (3.115)
Vs — 0 weakly-+ in L°°(I; L*(1)). (3.116)
as 0 — 0, passing to the subsequence as the case may be. Moreover, since g5 satisfies (3.103)

and psus satisfies (3.104), we have even

05— 0 in C([0,T); L3 (), (3.117)
B(os) — B(o) in C([0,T); L%, . (), (3.118)
05Us — 0U in C([0,T); weak(Q R?)) (3.119)
for any
B(2) € C1[0,00), |B(x)] <14 2, A€ (0, g),

and p € (1, %)

Then one can pass to the limit in the continuity equation, i.e. (3.103) with B(z) = z, and
get

// 000 + ou -V dx dt =0 for anyp € D(I x R?). (3.120)
I1JR3
Further, as L3 (2; R3) is compactly imbedded into W ~12(Q; R?), the sequence gsus converge
strongly in C(I; W~12(Q)) and therefore

055 ® us — ou ® u weakly in L2(I; L (; R® x R?)).

Using the equi-integrability of S and ps, the artificial pressure vanishes as we pass to the
limit in the momentum equation and we get

// ou-Oyp+ou®@u:Dp+pdive —S : D + of - de dt =0 (3.121)
1J0
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for any ¢ € D(I x O; R3).

If we succeed in proving the strong convergence of the temperature and the density, we can
finish the limit process. We can pass to the limit in the renormalized continuity equation.
In the momentum equation (3.121), we identify p, S with p, S, respectively. In the entropy
inequality (3.105), we use the weak lower semi-continuity of the convex term o5 and the equi-
integrability of the other terms (see estimates in Section 3.6.4 later on). Finally, rewriting
the total energy balance int the weak form (3.79), we obtain the last equation in the target
system 3.2 — 3.5.

3.6.4 Pointwise convergence of the temperature
In order to prove the strong convergence of the temperature, we use again Proposition 4.6.1.
Direct use of the estimates (3.109) and (3.111) imply

30 6

0555(05,9s) bounded in L?(I; LP(Q)) N L>(I; L*(2)), p = 235 (3.122)

whence by the interpolation, gsssus is bounded in some LP(I x Q), p > 1. Further, in
accordance with hypothesis (3.22)

|6 (9s)05 Vs , < Cl[vos|, < C

Iz o I,

and by virtue of (3.54)

502w 0s||, < 63|V (03|, 57|05, 6 < O5FE .
3

Finally, o5 is uniformly bounded in L' (I x ). Then Proposition 4.6.1 applied on the entropy
inequality (3.105), using 35 > oy, yields

055(05,95) — 0s(0,9) in L*(I; W~12(Q)),

while
Soslogs — 0 at least in L'(I x Q).

Next, we use the structure of the entropy and the weak convergence of the temperature in
the space L?(I; W2(Q)) to conclude

4
ga(ﬁfﬁ?’ —993) = (Yosg — J05G)- (3.123)

Then, exactly as in Section 3.4.2, one can deduce the strong convergence of the temperature

s — ¥ in LI x Q). (3.124)

3.6.5 Strong convergence of the density field

Compactness of the density shall be proved in the very same way as in Section 4.7. In fact
it is simpler as one can work on the whole domain €.
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Testing (3.104) by ¢Ymps = ¥(t)n(x) VAT E(x)TY (05)], 0 < v < 1, and using the renormal-
ized continuity equation

O (T (05)) + div(Ty (0s)us) + [(T¥)' (0s)0s — T¥ (0s)]divees =0 in D'(I x ),

we get
/Q & (s — R : [nSs])) T (g5) dar dt = (3.125)
/Qng — 05us @ ug) : VN ® @5 — psVn - ps) da dt
- /Q nosus - (O + BVATVE - TY (05)us]) da dt
- /Q Ymosus - VATMETY) (e5)es — T (o5))divus) + g - (05 f) dae
+ Qi/)uts (R - [nosus)ETY, (05) — nosus - RIETY (05)]) da dt.

On the other hand, testing (3.121) by ¢ne@ = ¥ (t)n(z) VA~ E(x)TY (0)], 0 < v < 1 and
using L'-limit of the renormalized continuity equation

0(T7(@)) + div (T (@w) + [(T7) (e — ¥ (@)]diva =0 in DI x ),

we get

/ng(np — R : [nS]) T} (0) da dt = (3.126)
/Qq/)(S—Qu®u) :Vn@e —ypVn-p) de dt

_ /Q now - (045 + YVAVE - TP (o)) da dt

- /Q vnou - VAT E(TEY (@)e — TF (o)) divu] + i@ - (of ) da dt

4 / Y- (R - [nouleTP(g) — now - RETY()]) da dt.
Q

In view of the available estimates and using Corollary 2.2.5, the right-hand side of (3.125)
tends to the right-hand side of (3.126) and the left-hand sides yields

%i_ff(l)/Qlﬂ??f(pG(Qé, Us) + pr(Vs) — (G + dps)divus) (TY (0s) — T¥ (0)) de di

= 1im [ V(R IiisVus) — mus® : [Vus]) (T (05) ~ T{ (@) dw dt. (3.127)
—JQ

The right-hand side tends to zero by means of Lemma 2.2.6, the interpolation, and strong
convergence of the temperature, thus (3.127) reduces to

i [ () + S u(0))divug (T (05) — T{ @) da i
—JQ

= lim g ¢(pales,9s)) (T (05) — Tf (0)) da At for any ¢ € D(Q). (3.128)
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Using essentially this relation and hypothesis (3.14), we can proceed exactly as in Section
4.7.2 and deduce the bound for the oscillation defect measure

oscr[os — o] :=sup limsup/ |T:(05) — Ti(0)|” de dt < C' for some r > 2. (3.129)
k>1 -0 J@

In the next step, we prove that o, u solve the renormalized continuity equation. Taking
B(z) = Tk(z) in (3.103), then passing to the limit and applying Proposition 3.1.2, we arrive
at

O BTD))) + div(B(Th)w) + b(Tr(@))divu =
B'(Ti(0))[Ti(0) — T}(0)o]dive in D'(I x Q) (3.130)

for any B(z) satisfying (3.7). The weak lower semicontinuity of the norm yields

1 Ti(e) = ol 11 () < lign_é(l)lfHTk(Qé) = 06l 1) < sngQ&HLl({Qek}) <k7% Sl;DHQ&HLg(Q)-

Hence we have

B(Tk(0)) — B(o), b(Tk(e)) — b(e) in any L*(Q), p = 1, (3.131)

as k — oo. Then it remains to prove that the right-hand side of (3.130) tends to zero. To
this end, we estimate

|B'(Ti(0)) [Tk (o) — Ti.(0)e] divul| ,

< ax |B'(2)] sup|[divass | 2 g liminf([Tic(ea) — Ti(es)sl (g

where Qar = {Tk(0) < M}. We shall continue by interpolation of the last term

| Tk (05) — T;;(Qé)Q(SHLz(QM) < || Tk (0s) — Té(@s)géHzl(Q) HTIC(Q(S)H}/;(AQIM) (3.132)

for certain p > 2 and A\ € (0,1). Now the first norm tends to zero, since

T (05) = Ti(05) 05l 11 ) < /

o5 dx dt < k3 supHg(;‘
{os>k} 4

L@’
while the second is bounded

liisgp\\Tk(Qa)!\Lp(QM) < liﬂso%pHTk(m) = T(0)|| 1o () + 1 Tk0) = Tu(@)| 1o )
Tl o g,y < 20scplos — el(Q) + MIQ)7.

Finally, we can use Proposition 3.1.3 to extend the class of valid B-functions.
In particular, the function

* Ti(s)

B(z) = Li(2)z, L ::/ ds,

1 S



3.6 Vanishing artificial pressure 53

can be used in the renormalized equation (3.2). Taking a difference of (3.2) and the weak
limit of the equation (3.103) for gs, us, we obtain

/ (eLi() — oLu(o)](7) da = / [oLn(0) — oLi(0)](0) da+

Q

/ / (T (0) — Ti( ))dlvu dx dt+/ /Tk Ydivu — Ty (g)dive de dt. (3.133)

The first term on the right-hand side is in fact zero as p5[0] = 0¢, the second term tends to
zero as k — oo by the same argument as above, namely

< liminf| Ti(o) — Te(os)| (oscplos — )@ < Ok~

[74(0) ~ Tol@) 2 g < Vs

for suitable A € (0,1), p > 2. For the third term, we use the monotonicity of pressure with
respect to the density and (3.128) with v = 1 to deduce

Tk (0)divu — Ty (0)dive <0 a.e. on Q.

Then, passing to the limit in (3.133) as k — oo, we get

/Q@Iogg— olog 0)(r) dz < 0,

which implies the pointwise convergence of the density,

On — 0 a.e. onQ. (3.134)
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Chapter 4

Evolution of solid-fluid system

This chapter is devoted to the existence theory for the problem of rigid bodies drifted in
a compressible fluid. More specifically, we will show that one can get variational solutions
to this problem as a limit of solutions to the Navier-Stokes-Fourier system with spatially
dependent viscosities approaching infinity on the regions corresponding to the bodies. This
clever penalization method has been used by CONCA, SAN MARTIN, TUCSNAK [7] and SAN
MARTIN, STAROVOITOV, TUCSNAK [30] to treat a similar problem for an incompressible fluid.
Later, the same method was used by FEIREISL [15] for bodies in a compressible fluid in the
isentropic regime. Our aim is to extend this result to the case of a general heat conducting
gas in the spirit of the theory discussed in Chapter 3.

In the first section, we derive the definition of variational solutions and we state the main
existence result. Then in Section 4.2, we use Theorem 3.1.6 with suitably chosen transport
coefficients to construct a sequence of approximate solutions. The displacement mappings,
which describe the motion of approximate bodies, are constructed in Section 4.3. Then we
derive necessary estimates in Section 4.4 and prove the strong convergence of the temperature,
Section 4.6, and the density, Section 4.7. This allows us to pass to the limit in the equations
within Sections 4.5 and 4.8 and finish the proof of the main result.

During the work on my thesis, it appears that performing the high viscosity limit as the last
step is probably not optimal. It seems that one can obtain a better result inserting the high
viscosity limit before the vanishing viscosity limit similarly as in [15]. Some ideas in this
direction are presented in the last section 4.9.

4.1 Variational formulation

In the classical formulation, which was outlined in Chapter 1, there are separated equations
and state quantities for the fluid and for the solid region. The fluid-solid interaction was
represented by the continuity of the velocity and the temperature over the (smooth) boundary
of the bodies and also by the continuity of the stress and the heatflux in the normal direction.
The weak solutions need not to be continuous, therefore the interaction has to be treated
differently. We shall join the integral formulations of the equations for the fluid and for the

99
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solid part. Because of the continuity conditions on the boundary of the bodies, the boundary
integrals mutually vanish and we obtain unified weak formulation of the balance laws on the
whole domain €.

Description of the bodies and their motion is similar to the classical formulation. We shall call
the displacement (mapping) a family of diffeomorphisms n[t], n € AC(I; Cioe(R?)), which
describes motion of particles, cf. (1.1). Further, we shall say that n is the rigid displacement
(mapping) if it is an affine isometry (1.3).

For the weak solution the velocity need not be continuous. Consequently the relation (1.4)
has to be revisited. We shall say that a (velocity) field w is compatible with {n, S}, if n is a
displacement, S is an evolution of the compact set (the body) S[t] = n[t](So), and it holds

anltl(nl=1(-)) = u(t, -) on S[t]. (4.1)

The equality in (4.1) has to be understood in the sense of corresponding spaces. More
specifically, as the velocity lives in the space W12(Q; R?) the equality v = u on the compact
set S means u—wv € W, ?(R?\ S; R3). We shall also say that u is compatible with 7 if (4.1)
holds on the whole domain €.

In what follows, we consider the motion of fluid and rigid bodies ?i, i =1,...,N in the
domain 2 C R? during the time interval I = (0,7). The motion of the bodies is given by the

rigid displacements i’ through the formula Kk [t] :== n'[t] (gé), where ?f) is the body in the
initial position. The bodies S [t] are compact connected sets with non-empty interior and
boundary of zero measure for all times ¢ € I. In terms of n° we introduce domains

Q:=1xQ, Q ={(tx)|tel,zeS (1)}
N
s . 7," f:: s7
Q i:U1Q Q' :=0Q\Q 42)

Q°[¢]

LNJ S, Q] =0\ Q[

We merge the state quantities as follows

o (t,x) on Q7,
o(t,x) = ¢ 0% ('[~t](x)) on Q"

0 on R3\ Q,

uf(t,w) on Q,
ult,z) = u (t,x) = V(t) + w(t) x (& — Xgi(t)) on Q,

0 on R?\ ,

o) — 19f(t,a;) on Q7,

ot 2) = {ﬁi(t,r), r = n'[—t](x) — X*(0) on Q.

To keep the consistency between the global velocity w and the bodies S[t], we require that

u is compatible with {ni,gl} for all 4 = 1,... N. This condition, which can also be viewed
as an expresion of the boundary conditions (1.41), is enough to ensure the impermeability of
the bodies even in the case of weak solution.
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Lemma 4.1.1. [15, Lemma 3.1] Let the velocity w be compatible with {ni,gi} fori=1,2.
Define S* := (31)07 i =1,2. Then either S [t]NS?[t] =0 for allt € [0,T] or S'[t]NS>[t] #0
and n*[t] = n?[t] for all t € [0,T).

Proof. Assume that there exists y € S*[r]NS?[r] for some 7 € [0,T]. Since n° are continuous
and S'[t] are open, we can find ¢ such that

B.(y) C S*[t]n S?[t] Vt e B.(7).

Further, n* are both compatible with the same velocity and they are rigid displacements,
thus they obey (1.4). Consequently it holds

4X1(1) + Q' — X1 (1) = 2X3(1) + Qltl(w — X2(1)) Vi€ Bulr), @ € Bo(y).
Then for every ¢t € B.(7) it must be Q'[t] = Q?[t] = Q[t] while X* satisfy
H(X(0) = X3(1) = QU)X (1) — X*(1)). (4.3)

In accordance with (1.3) the displacement between times s and ¢ have a form
nls — tl(x) = nlt](n[-s](z)) = X () + Ofs — #)(z — X(s))
where Q[s — t] := O[t]O~[s]. As (1.3) is solution of (1.4) the solution of (4.3) reads
(X' (t) = X*(1) = Olr — (X () — X*(7))

Now it is easy to see that n'[r — t] = n?[r — t] for every t € B.(7). Finally, using the
continuity of n¢, we can extend this equality to the whole interval [0, 7. O

4.1.1 Continuity equation

In order to derive unified continuity equation, we apply the transport theorem 1.1.1 on a the
quantity op, ¢ € D(I x R?) considering successively the domains 7/ [t] and Q°[t]. Since the
function ¢ is compactly supported in (0,T") we get

0—/Td/ Q(pd.ﬂlc—i-g op da dt
0 dt Qf(t) dt Qs(t)

T
= / / 00rp + ou - Vo + [0ro + div(ou)]p da dt
o Jarw

T
+ / / 00rp + ou - Vo + [Oro + div(ou)]e da dt.
0o Jasu

By virtue of (1.7) and (1.8), the square brackets are equal to zero and the unified equation
follows:

T
/ / 00ip +ouVy dedt=0 ¢c DI xR?). (4.4)
0 R3

Conversely, provided g, u are solutions of (4.4) smooth in @7, one can test this equation by
any ¢ supported in Qf to get (1.7). On the other hand, the density on the solid region is
perfectly propagated even in the case of weak solution, in particular we claim:
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Lemma 4.1.2. [15, Lemma 3.2] Let o, w satisfy the continuity equation (4.4),
0 € L¥(LL(Q), we L(LW;*(Q), 7> 1, (4.5)
and let w be compatible with {n, S}, where n is a rigid displacement. Then

o(t,m[t](x)) = 0(0,z) for a.e. x € (?(0))O and any t € [0,T).

Proof. To begin with, let us recall that
u(t,x) = u'(t,x) = V(t) + Q(t)(x — X (t)) on every S'[t], (4.6)

where obviously u! € L?(I; W1 >°(R?)) and Du’ = 0. Next, we use the regularizing kernels
ws(y — x) as a test functions in (4.4). For the fixed time ¢t € I, we get

(015 = o)+ Vs x o) w)ly] = | o(e)(uly) ~ u(@)) - Vosly —=) de

:/, o(w— 2B U@ =2) G ade @)
R? ||

for any y € K;[t], dist(K;s[t], 2/ [t]) > §. Now, for any ball B[0] C 2°[0] we can find § such
that B[t] C K;[t] for all times ¢ € I. Thus (4.7) implies

| wsroltidy— [ wixololdy
BIt] BI0]

Passing to the limit for 6 — 0, the right-hand side tends to zero because of (4.5) and (4.6),

while the left-hand side yields
/ o[t] dx :/ 0[0] de.
Bl[t] B[0]

Then, using the Lebesgue point property, we conclude

S/o /B[s]B‘S(y)HHQ[S]HWHU[SHHOO dyds.  (4.8)

o(t,n'[t](x)) = 0(0,x) for a.e. € S*(0).

4.1.2 Momentum equation

Taking the scalar product of (1.12) with the fixed vector a one gets
d .
a- (— o(V+rxw) dr) [r] = a- [@(gu) + div(pu ® u)} dz =
dt Js S(r)

—_——
u
:a-/ Tnda—l—a-/ of dr.
2S(r) S(r)
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Similarly (1.13) multiplied by the vector b yields

(% S(t)g(r X (V4+rxw)) -bd'r) [7] = (% /S(t)(b X T) - Qudfr)[r] =

u

= /s( )(b x 1) [0(ou) + diviou @ u)| V(b x 7) : pu @ u dr =
0

:/ (bxr)~']l‘ndc7+/ (bxr)-of dr,
a5(1)

5(7)

where we have used the fact that the scalar product of the symmetric tensor ou ® u and
the antisymmetric tensor V(b x r) is zero. Adding up both equations and using substitution
r =x — X 3(7), we obtain

/S(T) [0, (ow)* + diviou ® u)’] - @ da = /

Tfn-go—i-/ o°f - pdx (4.9)
aS(r) S(1)

for every 7 € I and ¢ = a + b x (x — X g(7)). Equivalently, one can take any ¢ € D(R?),
D¢ = 0 on S(7), which is the statement of the following lemma.

Lemma 4.1.3. Let M be a domain in R then a set
A={f e WHY{(M)|Df =0 for a.e. x € M}

coincide with a set
B:={f(x)=a+x xb|a,bc R}

Proof. Apparently B C A. On the other hand every f in A have an antisymmetric gradient.
Hence taking second derivatives in the sense of distribution we observe

0=0;0,f;, = 0:0;f; = _aiai.fj
and
9i0;fr, = —0k0if j = 0;0kfi = —0:0; f .
Thus VVf = 0. Consequently, V f is a constant antisymmetric tensor and f has a form

f(x) = a+ Qz for some constant vector a and antisymmetric tensor Q. Since the antisym-
metric tensors operate like the vector product, we conclude f € B. O

Similarly as in the previous section, we apply the transport theorem on the quantity ou - ¢,
successively on the domains Q/[t] and Q*[t]. In view of Lemma 4.1.3, we choose ¢ € 7T,
where

T = {p € D(Q) | Dy = 0 on some open neighborhood of Q°}. (4.10)

Using (1.10), (4.9), and the Green theorem we compute

T T
d
O:/—/ Qu~cpdmdt:// (ou) 9,0 + (ou @ ) : Vi da dt
o dt Jar@nas @) o Jarw

T
+// Ve :T +¢ o f da:+/ cp(']I‘fn)dof/ e(T'n)do dt  (4.11)
0 JQr() aQ a0 (t)

T
+ / / (ou)’Orp+ (ou®@u)’ : Vo +¢-0°f de dt + / ©(T'n) do.
o Jas@ 995 (1)
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Since the scalar product of the symmetric and the anti-symmetric tensor is zero, we conclude
/(gu)~8t<p+(gu®u):]])godccdt:/T:]D)go—gf-cpdccdt peT. (4.12)
Q Q

Remark 4.1.4. Later, when we derive suitable estimates, one can use a density argument
to extend the set of admissible test function up to

T={p1+eale1 €T, 0 € Wy (Q))} (4.13)

for some p large enough.

Conversely, if (g, u) is a regular solution of (4.12), we can recover (1.10) on Qf taking
the test functions ¢ with suppe C @/ in the equation (4.11). Similarly, one can take a
sequence ¢,, € T, |supp ¢, NQf| — 0 to get (4.9) and then (1.12) and (1.13). Unfortunately,
the latter localizing procedure is applicable only in the times where no collision occurs, i.e.
95;N9S; =0 and 9S; NN = 0 for i # j.

4.1.3 Thermal inequalities

Like in the previous cases one can use the transport theorem and the entropy equation (1.19)
separately for the solid and the fluid part to get

T

-V

/ /Q58t<p+gsu-V<p+q 19<p+a<pd:1:dt§0 (4.14)
0 Ja

for any o € D(I x Q), ¢ > 0. Similarly, we get the global energy inequality

/ﬂE[tQ]—E[tl]dmg/tl /ng-ud:cdt. (4.15)

where E = 1 o|u|* + ge.

For a regular solution, indeed one can expect at most continuity of w and ¥ over 9Q%(t)
and p even with the jump, nevertheless we can use the transport theorem once again and
integrate by parts in (4.14). Using J¢ as the test function and performing the calculation
(1.18) separately on the fluid and the solid part, we get

T
/ / [0:(0e) + div(geu) — divg + S : V]l da dt
0o Jarpy
T
/ / [0 (0e) + div(geu) — divg + S : Vul’p dx dt
o Josy

T T
+/ / q-ngadadt+/ / l¢° — q'] -npdo dt > 0. (4.16)
o Joaa o Joas)

If we take ¢ = 1} 4 and add the kinetic energy equation (1.16), it became obvious that the
strict inequality in (4.16) is in contradiction with (4.15), so we recover the internal energy
equation (1.17).

Now we are ready to introduce the wvariational solutions of our system.
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Definition 4.1.5. We shall say that functions
0 € L¥(I;LY(9), we L*(I;Wy*(Q)), v € L*(I; W*(Q)) (4.17)

and rigid displacement mappings {0}, with bodies {S*}Y_; form the variational solution
of problem (B) if

o The density o is non-negative a.e. in Q, the temperature is positive a.e. in Q, and the
velocity w is compatible with {n',S'} for everyi=1...N.

e The weak formulation (4.4) of the continuity equation holds, provided the density and
the velocity are extended by zero outside of the domain €.

o The momentum equation holds in the sense of distributions, namely (4.12).

o The inequality (4.14) for the specific entropy and the opposite inequality (4.15) for the
total energy are satisfied.

Besides the properties specified in Definition 4.1.5, the solution we are going to construct
will satisfy also the renormalized continuity equation (3.9).

4.1.4 Constitutive equations - hypotheses

We assume that the pressure, as well as the internal energy and the entropy, are given by the
same functions on the solid and on the fluid region. Although the original aim was to allow
different pressure for the fluid and for the bodies, there appears a problem the formulation
based on the entropy inequality. We discuss it at the end of the chapter. However, we allow
the heat conductivity coefficient to be different.

Following discussion about the constitutive equations in Section 1.2.1, we assume the pressure

in the form
p = pc(0,V) + pr(¥),

PG = 19%P(g19*%), PR = 3194,a >0, (4.18)
where P meets hypotheses
P € C'0,00),P(0) =0,P'(Y) >0 on (0,00),
0< gP(Y)—P’(Y)ch(1+Y“)70<a< %, (4.19)

Jim P(Y)Y ™% = Py > 0.
Further, we assume the internal energy interrelated to the pressure by the Gibbs law (1.24).

In particular we assume
e=eq(o,9)+er()

3 ~ (4.20)
€c =50 'pa, er = ag M0
Finally, according to (1.27) and (1.28), we assume the entropy
s =sa(o0,9) + sr(9),
(4.21)

4
s =S(e0 1), sn= g0 0,
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where S is interrelated with P through the relation (1.38).

Besides these structural assumptions on the thermodynamical quantities, we assume that the
fluid viscosities uf, ¢f are C'-functions of temperature with linear growth:

p=p!(9), ¢=¢7(9) on Q
0<p(l+9)<p/ ) (W) <nm (4.22)
0<p(1+9) <) (KNI <m

On the other hand, the symmetric part of the velocity gradient is zero on the solid region
and thus the term S : Vu is zero independently of the viscosities. The same holds for the
term S : Vi in the momentum equation, since ¢ € 7.

The heat conductivity coefficient consists of the part due to the motion of the particles and
the part caused by the radiation. The former part should have a linear growth in accordance
with linear grow of the viscosities, while the latter one should behave like ¥3. We assume
different relations for the fluid and for the solid region, namely

(4.23)

where /{é, Kgas nlf%, K% are C-functions of the temperature.

Now we are ready to state the main result about the existence of global-in-time the variational
solutions to problem (B)

Theorem 4.1.6. Let Q C R3 be a bounded domain with C*T boundary (v > 0). Assume
p, e, s are given through (4.18), (4.20), (4.21) respectively. Let u, A, k obey (4.22), (4.23).
Finally, let the external force f € L (Q;R3) and the initial data 09,99 € L>®(Q), ug €
L (Q; R?) be given as well as the initial position of the bodies {Si}N.,, where Si are open,
connected sets with a C?-boundary. Then there exists at least one solution o, u, 9, {n*, S},
of problem (B) in the sense of Definition 3.1.1, which satisfies the initial conditions

o[t] — oo in L'(Q),
(ou)[t] — oouo weakly in L'(;R3),
esslim [ (os)[t]¢ dz > / oosop dz, Ve € D(Q), ¢ >0,
=0+ Jo Q

Elt] — Eo = E(eo, w0, 90).n'[0)(x) = x, S'[0] = S5,

where so(x) = s(0o(x), Jo(x)).

4.2 Approximating problems

As usual, the solution will be constructed via the sequence of approximate solutions. We
use a sequence of the solutions (g, u,,¥,) to Problem (F) from Chapter 3 with suitably
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chosen constitutive relations. In particular, we take viscosities approaching infinity on the
solid region given by

Nn('&n; t, .’I}) = ,uf(ﬁn) + an(ta w)a Cn(ta ] ﬁn) = Cf(ﬁn) + nX’lL(t? .’13) (424)

The heat conductivity is just a smooth approximation of the discontinuous relation (4.23),
namely

fn(t,259,) = (1 = xn(t, )67 (90) + Xn(t, 2)K5 (00, D), (4.25)
where Yy, is an approximation of the characteristic function of the solid region Q*, which will
be specified in the following section. For this setting, we can use Theorem 3.1.6 to get

0n € L¥(I; L3 (Q)), up, € L2(I; Wy 2 (4 R?)), 0, € LA(I; WH(Q)) N L=(I; LY()),

which satisfy
T
/ / B(0,)0rp + B(on)tn - Vo — b(0n) divu, p de dt =0, ¢ € D(I x R?’), (4.26)
0 JQ

T
/ / Oy - O + oty @ Uy : Vo + ppdivee — 2, Du - Vo
o Ja

2
= (Gn = GHn)divudive + onf ¢ dw dt =0, @ € D(I x O R%),  (4.27)

T
n 1971'
/ / Qnsnat@ + onSnUn - Vo — Hvﬁiw
0 JQ "
Sp:Vu, kK ‘19”|2 -
< > .
+( . + 52 )godazdt_O,goeD(IxQ),@_Q (4.28)
T T
/ V() Enlt] dt:/ 1/)/ onf dx dt, ¢ € D(I). (4.29)
0 0 Q

Moreover
onlt] — 0o in Ll(Q), (0nun)[t] — (ou)o weakly in Ll(Q)7 E[t] - Ey ast—0, (4.30)

and
ess lim [ (onsn)[tlp do > / 00sop dx Vo € D(Q), ¢ > 0. (4.31)
Q Q

t—0+

4.3 Construction of displacement mappings

For a nonvoid compact set K C R3, we define the distance function

dr(x) = ?IJI’(IC_III% |z —y|.

It is easy to see that dx is a Lipschitz continuous function with the amplitude of the gradient
equal to 1 a.e. on R®\ K. Further, for any set S C R3, we define a signed distance function
from the boundary 0S as
dbs(x) = dgsyg() — dg(x).
We shall say that a sequence of sets S,, C R? converges to S C R? in the sense of boundaries,
S, 25 5, if
dbsn — dbs in OlOC(Rg).

The following lemma, we shall find useful for the investigation of db-convergence.
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Lemma 4.3.1. Let f,g € CY*(R3;R?) be homeomorphisms on R® and A, B C R3. Then
it holds

[dbsca) — dbg(B)Hc(RS) = (HfHCO~“(R3) + HQHCM(RS)) [dba — deHg(R3) +|f - QHC(RS)'
Proof. The continuous properties of f imply R?\ f(K) = f(R*\ K), f(K) = f(K) for any
K c R? and the same holds for g. Then, from the definition of db distance function, it
follows

Hdbf(A) - dbg(B)Hc(RS) < Hdm - deC(Rs) + Hdm - dg(RS\B)Hc(RS)'

Both terms on the right-hand side can be further estimated this way

Hdif(A) — d@HC(R:’) S max { s&dﬁ(m), supdg(A)(cc)} .
zef(A) zef(B)

Again, it is enough to explore the first supremum. For any x € f(A), there is xo € A such
that f(xo) = « and there is y, € B such that dg(xz) = |zo — y,|. Following estimate then
finish the proof

dymy(@) = dy ) (f(@0)) < |f(20) — 9(yo)l
< |f(@0) = FWo)l + £ (W0) = 90| < [[£]] core ey |20 = wol* + | = 9ll sy

O

Finally, we introduce a notation of §-stretch and J-shrink of the set M as

BsM = U Bs(x), ©sM :={x|Bs(x) C M}, respectively.
xeM

Having collected the preliminary material, we introduce displacement mappings n,, for the
approximating problems. It can not be done directly through (4.1), since the velocities u,,
are not regular enough. Instead, we use the velocities smoothed over some §-neighborhood:

G [t](@o) = (w5 * wn)(t,m, ] (o)), 1, [0](0) = o, (4.32)

where ws are smoothing kernels introduced in (2.1). Although n,, are not compatible with
U,, we hope to get the limit displacement 1 and the limit velocity w such that Du = 0 on
the set M, where the viscosity penalization takes effect (roughly speaking it is the limit of
suppxr). In that case the limit velocity u should coincide with ws * uw on ©5M. On the
same set, 17 should be the rigid displacement compatible with w. This deliberation motivates
following definition of y,. First, we denote

N
0:=|J sS85, Onlt] :=n,[t](0). (4.33)

The sets O,, are bounded, open and non-empty since we assume bodies S§ with C2-boundary.
By the same token, we can choose ¢ > 0 such that $sO = USjj. At last, we define

Xn(t, @) := H(n(5 +dbo,, (), (4.34)
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where H € C*°(R) is a non-decreasing function such that H = 0 on (—o0,0], and H =1 on
(1, 400).

Let us show briefly that the constitutive relations (4.24), (4.25) completed with definition
(4.34) meet assumptions of Theorem 3.1.6, in particular hypotheses (3.21), (3.22), and (3.23).
The first two are satisfied because of (4.22) and (4.23). However, we have to check bounds for
Oz0zk and Oyk. The former is a direct consequence of (4.32) and assumption of C2-boundary
of the bodies. For the later bound we have

0ikc| < |0exn|CO,  |0ikr| < [Oixn|CY?

and
d _
003, (1.2)] < Cllorcbo, (&) < C0)[Tabo, o | 1z (o)

<C(n |ws * un(x)].

< CITn, (e | )] < Ol o)

Next, we have to prove the compactness property (3.23). Assuming u,, — u weakly in
L2(I x ©;R?) and using Lemma 4.3.1, we have

] (t, @5 0) — plul(t, z;9)| < Clx[um|(t, z) — x[u](t, )|
< Cldbo,,11)(x) — dbop(x)| < Cn,, [t — nltllc@)s

where n,,,  are displacements compatible with u,,, u respectively. The same holds for ¢,
while for the heat conductivity, we get

5[t (£, 39) = ] (2 0)] < X[t (t, ) — X[u] (1, @) |5° — 5|
< C(9)ldbo,, 1 (x) — dboyy ()] < CW)[m,u[t] = nlt]lc(@)-

To finish the proof, it suffices to apply the following compactness result for the displacement
mappings.

Lemma 4.3.2. Let v, be a sequence of (velocity) fields,
vy, uniformly bounded in LP(I; W4(R3*R?)), p>1, ¢ > 3.
Let n,, be a sequence of compatible (displacement) mappings, i.e. given through
Gt (o) = va(t,m,[t](20)), Mu[0)(20) = wo. (4.35)

Finally, let S,, C R3 be a sequence of sets, which converge to the set S in the sense of
boundaries. Then

v, — v weakly in LP(I; WH1(R?; R?)) (4.36)
passing to the subsequence as the case may be, and
N, [t] — n[t] in Croe(R?) uniformly in t € [0,T], (4.37)

where M[t] is compatible with v. Moreover

db

Sp(t) — S(t) (4.38)
uniformly in t € [0,T], where S, (t) :=n,[t](S,) and S(t) := n[t](S).
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Proof. Applying the Alaoglu-Bourbaki theorem 2.2.1 on the sequence v,, bounded in the
reflexive space LP(I; Wh4(R3; R?)), we get (4.36). Using the Sobolev imbedding, we have
vn,v € LP(I; CO%(R% R?))  for some 0 < o < 1, (4.39)

loc

which justify (4.35). Then (4.35) can be used to deduce

t
/ vn(T, nn(t>w))d7— < |t - S|1/p H’UHHLP(I;CO,Q(RS;RS)) (4'40)

malt] = mnlsllle = sup

which means that n,, are equi-continuous. Employing the abstract Arzela-Ascoli theorem
2.2.2 we conclude (4.37). Furthermore, it follows from (4.39) and (4.35) that n,, as well as n
belong to C(I; C%(R3; R3)). Thus one can use Lemma 4.3.1 with f =, [t], ¢ = n[t] and

loc

A = 5,(0), B=5(0) to verify (4.38). O

4.4 Uniform estimates

4.4.1 Energy estimate

Direct use of the total energy inequality (4.29) and the constitutive law for internal energy
(4.29) yields

E[r] = </Q 1gn|un|2 + (oneg + adl) dm) [1] <
/ / ontin - f da dt < E[0 / £ llonti2 | 2 llal|? dt (4.41)

Thanks to the particular form of eg, and due to the hypotheses about positive cold pressure
(1.36), (4.19), the left-hand side provides an estimate of the norms Hgnu%‘ QnHl. Thus
we can apply the Gronwall lemma to infer

1°

V@nty, bounded in L (I; L?(; RY)), (
Onén, Pn bounded in L>(I; LY(Q)), (4.43

0n bounded in L= (I; L5 (R)), (

¥, bounded in L™ (I; L*(Q)) (

4.4.2 Entropy estimate

Using a spatially homogeneous test function in the entropy inequality (4.28), initial condition
(4.31), and hypothesis (4.21) about the entropy, we arrive at

2 .
/ /mlw nl® | S .ﬁvfun A dtS/ (Qnsg(gn,ﬁnwgaﬂg)[f] dmf/ 0050 dx. (4.46)
Q Q

n

Since P € C[0, 00), there exists a constant Cy such that

)< Cy forany0<Y <1,
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c.f. (1.34). Hence we have

_3
2

3 5
005G(0n,9n) = 0nS(0n9n ?) < Cv(—0nlog 0n + 20n log¥,,) < C(08 + o). (4.47)
Furthermore, the function S is decreasing, thus
005G (0n, Un) = QnS(Qnﬁ_%) < 0,5(1) for Qﬂ_% =Y >1

Consequently, the right-hand side of (4.46) is bounded. Using the hypotheses (4.23) and
(4.22), the left-hand side yields estimates

Vlogd,, V(92), bounded in L3(Q), (4.48)
w, bounded in L?(W'2(I;Q;R?)), (4.49)
and
T
n/ /XnUD)un\2 dx dt is bounded. (4.50)
0o Jo

In order to keep the positivity of the temperature, we use (4.46) once again. We forget the
non-negative left-hand side and rearrange the remaining terms to get

4
/goso d:B—S(N)/deS/ 2 dw+/ . 0sg dx
Q Q o 3 (o9~ 3 <1}

+/ . 0sg dx + |S(N)| . odx, (4.51)
{1<e9™ 2 <N} {e9”2<N}

where we have denoted ¢ = g, [7], ¥ = ¥, [7]. Taking N large enough, we can make left-hand
side strictly positive, greater than some Sy > 0. Similarly as in (4.47) one gets

/ . osg de < C . (—ologo+ olog?) dw§0/193 dx,
{o0~ 3 <1} {o0~ 3 <1} o

while for the other terms, we have

/ . 08G d:L'SNS(l)/ﬁ% dz, / . gdeN/ﬁ% dz.
{1<00™ % <N} Q (o0~ 3 <N} Q

Consequently,
0<Sp< c/ Oplr]? + 9n[r]? da
Q

for a.a. 7 € I and uniformly in n. Then, by virtue of the Hélder inequality,
So— 190(8% + 83) < {0 = SHE|[0n | s o [{0n = 6}1E 0|7
0 = [Q1(6° +62) < [{dn = S} [[Vn 1 {On = SHF [9nl|Za )
Thus there exist constants M, § > 0, independent of n such that
{dn[r] > 6} > M >0 for a.a. t €1

while

/ log 9, [7] de < C uniformly in 7, n.
O [T]>6
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Now, one can apply Poincaré inequality formulated in Proposition 2.1.2, to get
log ¥, 92 bounded in L2(I; WH2(Q)). (4.52)

From the latter estimate we have 9J,, bounded in L3(I; L°(Q2)) due to the Sobolev imbedding.
Interpolating, we obtain ,, bounded in L%(Q) and consequently, using hypothesis (4.22)
and estimate (4.49), we get

S,, bounded in LP(Q) for some p > 1. (4.53)

4.4.3 Refined pressure estimate

In view of the estimates derived up to now, the pressure and the internal energy are known to
be bounded only in the non-reflexive space L°°(I; L'(2)). This is not enough to pass to the
limit neither with the pressure in the momentum equation nor with the internal energy in the
total energy balance. In contrast to Section 3.6.2, we can not test the momentum equation
by a function with non-zero support on @, since there we can not control the penalizing
term nx,Du,. Fortunately, in our formulation the test functions in (4.12) have a compact
support in Qf, thus for the pressure, we need only the local estimate in @Qf. On the other
hand, the L!-estimates for the internal energy are sufficient to get the total energy inequality.

Let J C I be an open time interval and U C ) be an open ball such that
K=JxUcQq

We use
@ =Y(t)By[rl], 7l =w:x o}, ¥ € D(J) —][ we x or da
K

as the test function in (4.27). Then, exactly as in Section 3.6.2, we derive the estimate
[ wenver dea<c.
K

Since, pg < C’(g% + oY) because of the hypothesis (4.18), we conclude
Hp(gmﬁn)HLp()Cf) < C for some p > 1 and any compact K/ c Q.
4.5 Limit passage

In view of the estimates (4.42 — 4.45) and (4.48 — 4.49), we can use Alaoglu-Bourbaki theorem
2.2.1. Passing to the subsequence as the case may be, one gets

On — 0 weakly-r in L*(I; L%(Q))7 (4.54)
Up — U weakly in L2(I; Wy (% R?)), (4.55)
U — 0 weakly-* in L>°(I; L*(Q2)). (4.56)

Due to (4.49) we have ws * u,, bounded in L?(I; W1>°(€; R?)), thus Lemma 4.3.2 yields

N, — 1 in C(I; Cloe(R?)); - On[t] -2 O[t] uniformly for ¢ € [0, T).
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Moreover, it holds x,[t] — x[t] = lg,0[ in C(I; LP (R?)) for any p > 1. Indeed, we can
compute

[xalt] = xA]]7 < /RS|H"(db®5O’"[t]) —la,0,00l" + las0,10 — lason” dz
1
< C—[0(@50n[t])] + C||dbo, 1y — dbops | [9(@sO])]. (4.57)

Further, we can pass to the limit in (4.50) to get Du = 0 a.e. on ©s0[t] for a.e. t € I.
Consequently ws x u coincide with u on O[t] and w is compatible with {n,©sS)} for i =
1...N, cf. definition (4.33). Then it is natural to assign to each body S? the corresponding
rigid displacement n’, setting

n'[t] = nt] on n[t)(Ss5p)-
Since i’ is defined on the whole R?, the velocity w is compatible with {n?, S}, i=1...N.

We consider the renormalized continuity equation (4.26) with some B(z) according to (3.7).
Testing it by some fixed ¢ € D(2), we obtain

d .
a(/Qf;(gn)ga dm) [t] = gn.olt] == —/Q(B(gn)un)[ﬂ Ve + (b(op)divau,)[tle dz (4.58)

where functions g, , are bounded in L?(I) independently of n. Moreover, in view of (3.7),
we have

B(0n)|| o) < Cp-
estsESIupH (o )HLP(Q) &

for any 1 < p < co. Then taking any fixed ¢ € LPI(Q), we estimate

‘/Q(B(Qn)[t] - B(Qn)[s])QZ dx‘ < OBH@ - <)0||Lp'(Q) + ‘ /Q(B(Qn)[t] - B(Qn)[s])@ dz|,

for any ¢ € D(€). This together with (4.58) yields equi-continuity of the functions

t—>/gB(gn)[t}g5 da

Then the Arzela-Ascoli theorem 2.2.2 can be applied on the ball B¢, (0) in the reflexive space
LP(Q), where the weak topology is metrizable, to conclude

B(n) — Blo) in C(I; Ll (), (4.59)

weak

for any 1 < p < oco. Using the density argument similarly as in Proposition 3.1.3, the same
is true for any

5
B(z) € C'[0,00), [B(2)| < 1+2% A€ (0,3),
but only for p € (1, 3%). In particular for B(z) = z we get
on — 0 C(T; LY, (). (4.60)

Since L3 () is compactly imbedded into W~12(Q), taking into account (4.55), we deduce

OnUy, — ou weakly-star in L™(I; L%(Q)), (4.61)
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where we have also used (4.44), (4.42) in order to estimate g,u,. Consequently, we can pass
to the limit in the continuity equation and get

// 00ip +ou-Vodx dt =0 forall o € D(I x R?). (4.62)
1J/R3

By the same token, we have

1 23 3 1
00V, — 09 weakly in L?(I; LP(Q)), where » =3~ ¢ + 6 (4.63)
Due to (4.55) and (4.61), we have
Only @ Uy — ou ® u weakly in LP(Q) (4.64)

for some p > 1. Now, consider (t,z) € @/ and its open neighborhood J x U such that
teJclI, U=B.(x)and Kf = J xU c Q7. Using the momentum equation (4.27) and
(4.61), we establish equi-continuity of functions

tﬁ/gnun-cpdm
U

for any fixed ¢ € L°(U) in the similar way as in the previous paragraph. Then, we can apply
the Arzela-Ascoli theorem, to get

Onttn — 0w in C(J; L (U)). (4.65)
Employing the compact imbedding L3 () € W~12(U), we obtain
OnUn @ Uy — ou @ u weakly in LP(J x U). (4.66)

Thus, with regard to (4.64), it must be

ou@u=opu®uae. onQ’.

This together with estimates (4.53) and (3.113) allow us to pass to the limit in the momentum
equation (4.27) and obtain

// ou - Op +ou®@u:Dp+pdive —S : Dy + of - de dt =0 (4.67)
1Ja

for any p € 7.

4.6 Pointwise convergence of the temperature

Let us start with following version of the Aubin-Lions lemma taken from [14] (Lemma 6.3)

Lemma 4.6.1. Let {v,}52, be a sequence of functions bounded in

L*(I; LY(Q)) N L*>(I; L*(Q)), for some q >

ans (4.68)
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Furthermore, we assume that
Oyvp > gn in D' (I x Q),

where g, are bounded in L*(I; W=""(Q)) for certain m > 1, r > 1. Then we have
v — v in L2(I; W 52(Q)) (4.69)

passing to the subsequence as the case may be.

In view of estimates (4.42 — 4.45), (4.52), we can apply Lemma 4.6.1 on the entropy inequality.
In particular, we have g, s, already bounded in L>(I; L(£2)) from the entropy estimate. On
the other hand, since

OnSn = Cﬁi + QnS(Qn’&r:%)a

we can estimate g,,s,, uniformly in L?(I; L4((2)) for some ¢ > % = { as follows

4
93 bounded in L®(I; L3 (Q)), 3> g
. 2 30 6
on log ¥, bounded in L*(I; LP(Q)), p = % > 3

gnS(gné‘;%) < C(onlog on + 04 log,,) bounded in L*(I; LP(2)), cf. (4.47).
Then Lemma 4.6.1 yields
OnSn — 08 in L2(I; W~12(Q)),
25 = 0sG + %aﬁ
which together with (4.52) implies

4 - — _
ga(q%‘z* —993) = (Yosg — VYosG) a.e. on Q. (4.70)
The right-hand side integrated over a ball B C @ can be split this way

lim 0n8G(0n, On)(Vy, — ) dae dt =

n—oo

lim On (SG(QTL? VUn) — 56(0n, 19))(7971 —9) + QnSG(Qna 19)(1971 — ) dz dt,
B

n—oo

where the first term is non-negative by virtue of (1.38) and (1.34). In the sequel, we shall

prove that the second term tends to zero. We use Theorem 2.2.7 to introduce Young measures
(e,9) o 9

(ta) Vit (t.2)
virtue of (4.59) and compact imbedding one deduces

v X and v corresponding to the sequences (¢,,9,), on, and 9, respectively. By

B(on) — B(p) strongly in L*(I; W~ %(Q))
for any B € W1>°(R). On the other hand (4.52) implies

G(9,) — G(9) weakly in L*(I; WH2(Q))
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for G € WH°(R) at least for a subsequence. Then we have B(p)G () = B(o) G(99), which
implies
(e,9) 0

9
Vi) = Yita) @ Vit):

Using this fact and Theorem 2.2.7, we can compute

n—0o0

Hm [ 0nsg(0n, )0y — ) da dt = / / Asa (X, 0(@)) (1 — 0()) dy(fn) (A, ) da dt =
B B JR2 ’

/B/R)\SG()\,ﬁ(:B)) dl/(gt’w)(/\) /Ru — J(x) duz’;,m)(,u) de dt=0 (4.71)

Consequently, (4.70) yields

939 > 939 a.e. on Q. (4.72)

To conclude the strong convergence we shall parform the so-called Minty trick. For any any
w € D(Q), we observe

0 < (03 — (9 +aw)®) (W, — (9 + aw)) — 9 — P39 — aw(¥3 — (9 + aw)?).

Then, using (4.72) and passing to the limit as a — 0, we get
0< / w(¥® —93) de dt.
Q

Hence 93 = 93 and Theorem 2.2.3 yields
I, — 9 in L*Q). (4.73)

4.7 Strong convergence of the density field

In order to finish the limit passage, we have to show the strong compactness of the density.
The proof is based on compactness properties of the quantity

P=p—(A—2u)divu

usually called the effective viscous pressure. Importance of this quantity in the theory of
compressible fluids was first observed by SERRE [42] and some regularity properties of P
were discovered by HOFF [24]. Later on, P.-L. LIONS has proved the celebrated relation

PB(o) = PBo). (4.74)

This result, together with the theory of renormalized solutions developed with DIPERNA in
[8], forms the corner stone of his existence theory for barotropic flows presented in [29].

Further significant improvements are due to FEIREISL. His concept of oscillations defect
measure allows to precisely analyse the transport of the density oscillations using the renor-
malized continuity equation, see Chapter 6 of [14]. Besides the better theory for barotropic
flows, this precise analysis can handle also the pressure and the viscosities dependent on the
temperature. In this section, we present Feireisl’s method with a little modification of the
estimates for the oscillations defect measure in Section 4.7.2. It seems that this approach
could be less restrictive for the growth of transport coefficients, but we rather do not present
the complete analysis in this direction in order to keep the complexity at a reasonable level.
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4.7.1 Compactness of the effective viscous pressure

We consider a time interval J C I and a ball U C 2 such that
IxUcQ!, vneN.

Then we take ¢ € D(J) and n,£ € D(U) and we use the function

Une, = V(@) VAT E(@)TY (0n)], 0<v <1,

as a test function in the momentum equation (4.12). Using the renormalized continuity
equation

0 (T}, (on)) + div(T¥ (on)un) + [(TF) (0n)on — Tf (0n)]dive, =0 in D'(I x Q),

for the time term, we deduce
/Q BE(mpn — R : [0Sa]) T (20) de dt = (4.75)
/Qw(Sn — OnUy @ Uy) : VN ® @, — Up, V- p,) de dt
- /Q Nontin - (O, + VTATVE - TY (0,)u,]) da db
- /Q Unonttn - VAT ETEY (0n)en — T (0a))div ] + e, - (0, ) de dt
+ /Q Yt - (R 1000nl€TE (00) — nowtin - RIETY (00)]) da dt.

On the other hand, testing the limit momentum equation (4.67) by the function

U@ = v(t)n(x) VAT E(@)TY (0)], 0<v <1,

using the L'-limit of the renormalized continuity equation:

O (T (0)) + div(T¥ (o)u) + [(TY) (0)o — T (0)|divu = 0 in D(I x Q), (4.76)

we get

/Qwﬁ(np —R: [US]) T} (0) dee dt = (4.77)
/Qq/}(S—Qué@u) :Vnee—ypVn-p) de dt

- /Q now - (0% + YV AV VE - TV (@)ul) de dt

—/angu VAT ) (0)0 — TY (0))divu] + ¢m@ - (of ) dx dt

+ /Q Yu - (R noul€TY (0) — now - R[ET,;’(Q)]) dz dt.
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In view of the available estimates, the right-hand side of (4.75) tends to the right-hand side of
(4.77). In particular for the last terms, one can employ Corollary 2.2.5, using (4.59), (4.65),
and a compact imbedding L4 ¢ W~%2 for some ¢ > g > g to get

R - [nonun )Ty (0n) — nonwn - RIETY, (0n)] — R - [nou]€TY (o) — now - RIETY (0)]

strongly in C(I; W~12(Q)). Then the left-hand sides of (4.75), (4.77) yields an equality

n— oo

lim 0 wﬁf(pc(gn, ﬁn) +p}f%(’l9n) - (C’n + %Mn)divun) (Tku(gn) - T]Z(Q)) de dt

= lim 2¢§(R: [ Vtn] — jinR - [Vun])(T,:(gn) ~T7 () dz dt  (4.78)

n—oo Q

Our next aim is to show that the right-hand side tend to zero. We apply Lemma 2.2.6 on the
components of Vu,, € L?(Q; R? x R3) and on the viscosity j,, = p(1,,), which is bounded
in L2(I; W12(Q)). As a consequence, we have

Ry =R : [nun V] — npnR : [Var,]  bounded in L'(I; WH(Q))

for some A > 0, ¢ > 1. On the other hand, the same sequence belongs also to L*(I; L3 (Q))
because of (4.45) and (4.49). Thus by an interplation argument we have R,, bounded in
LP(I; W’\,vp(Q) for certain A > 0, p > 1. Further, taking in to account (4.59), the right-hand
side of (4.78) tends to zero. Using the strong convergence of the temperature, the left-hand
side of (4.78) implies

tim [ (C00) + S p())divun (T (00) ~ TE(@)) dx i

n—oo Q

n—oo

= lim A epc(0n, ) (T} (00) — T¢ (0)) dz dt  for any ¢ € D(Q7). (4.79)

4.7.2 The density oscillations bounded
Our next task is to control the oscillations of the density estimating the quantity

0sCplon, — 0] = sup limsup/ |Tk(0n) — Tk (0)|P dae dt
of

k>1 m—oo

called oscillations defect measure. To this end we shall use few simple algebraic inequalities.
Let 0 < b <a < oo, then

a b
a’ —b" = / V7t dt > / Yt =)t dt = (a —b)?, for v > 1, (4.80)
b a

while, by the same token,
(a=b) >a” =07, for y < 1. (4.81)

Further, assuming v > 1, v < 1, v + v > 2, we observe that

vl—a™ <vl-2)?<(1-2)(v—vaz)<(1—-27)(1—2"), for0<ax <1,
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Then, taking x = 3, we obtain

—_

la — b7 < = (a” — b)(a” — b). (4.82)

X

With a help of these inequalities, taking ¢ = vp.(1), 1 > v > %, we can estimate the
oscillations defect measure as follows

clim sup / IT(0n) — Tul0) |5+ da dt < climsup / (0f — 05)(TY (0n) — TY(0)) da dt
Qf Qf

n—oo n—oo

~ Jim sup /Q pelon) (T (en) - TE@) do dt | (o) ~ po(0) (T (o) - TF(@)) do

n— 00 Qf

A

< limsup /Q Ipe(en) — po{ens B)IITE (en) ~ T(@)] A

n—oo

n— oo 3

+ lim sup /Q () + 2 (9 diven (TY (0n) — T7(0)) da dt.  (4.83)

The latter inequality, A > 0, is due to the convexity of the functions ¢ — ¢ and ¢ — —T%(0),
while in the very last term we have used (4.79). We continue by the estimate of the right-hand
side. In accordance with the hypothesis (4.18), we have

9 9
0 <pc(o, V) — pe(o) = /0 dopc (o, s)ds = /O gé(gP(Y) —~P(Y)Y)ds
<CW? +0072). (4.84)

Hence, by virtue of the estimates (4.44), (4.52), we conclude

6
Hpg<9n7 19n) - pc(Qn)HLq(Q) < C, for certain g >

5)
provided
g + 5—23()é < §
g 9 6’

which is equivalent to the condition for alpha in (4.18). On the other hand, due to (4.22),
for any ¢ > %, we get

1) + 2p(0)divan |, 0 < [[9a]

- dival|, < C.

L5 (Q)

In order to estimate the right-hand side of (4.83), we use weak lower semi-continuity of the
norm and inequality (4.81) to infer

n—oo

lim sup /Qf T (0n) — TY (0)[P dae dt < lim sup||Tx (0n) — Tk(0)| ’Zw(@f)

+ T 0) = T} g, < 20imsup||Tilea) = Tel@) [ g



76 4. EVOLUTION OF SOLID-FLUID SYSTEM

for any p > v~!. If we assume p = ¢’ and pv = % + v, we can estimate the right-hand side
of (4.83) and get

limsup/ 1Tk (0n) — Ti(0)| 3T da dt < Climsup||Tx(0,) — Tk(Q)Hng(Qf),
Qf n—oo

n—oo

while the condition ¢ > g is equivalent with v > % Then, using conveniently Young’s

inequality, we conclude
0s¢r[on — 0] < C  for some r > 2. (4.85)

4.7.3 Limit in the renormalized continuity equation

As a next step, we will proof that g, u solve the renormalized continuity equation (3.9).
Following the proof in [14, Proposition 6.3], we apply the renormalization procedure of Lemma
3.1.2 on the equation (4.76) with v = 1 in order to get

9¢(B(Ty(0))) + div(B(Ty)u) + b(Tk( ))dive =
B'(Tr(0) [Ti(0) — Ty(e)e]divu in D'(I x ©)  (4.86)

for any B(z) satisfying (3.7). In particular, we have B(z) = Cj for z > M. Due to the weak
lower semi-continuity of the norm we get an estimate

_z2
1Ti(0) = ell 1 gy < Hminf[|Ti(en) = enll 1 q) < i‘§{||9"||u<{gnzk}> sk i‘g”é’" 5.0
and consequently
B(Ti(e)) — B(eo) and b(Tk(e)) — b(e) in any LP(Q), p = 1, as k — oo. (4.87)

It remains to show that the right-hand side of (4.86) tends to zero. To this end, we estimate

|B'(T(e) [T(e) — Ti(@)e]dival |, o <

o215, B @) supdiven] .

(@ 1minf||Ti(en) = Tilen)en| 12 gy, )

Q4 = {Ti(o) < MY N @7,

where we have used fact that divu,, tends to zero on Q° as a consequence of (4.50). We shall
continue by interpolation of the last term

||Tk(9n) - TIQ(Qn)anLz(Q@) < HTk(Qn Tk On QnHLl Q") 2||Tk On ||Lp(Qf (4.88)

for certain p > 2 and A € (0,1). Now the first norm tends to zero, since

_2
HTk(Qn) - TI:?(Q’VI)KQTLHLI(QJ‘) < /{9712]@} on de dt < k75 igI;HQnHL%(Q)’

while the second is bounded due to (4.85):

+ HTk(Q)

Tk(@)HLp(Qf)

lim sup||Te(¢n) | s gy, < limsup||Ti(en) = Tk(@)|| v or)

+[|Te@) ] o1, < 20scplon — (@) + MIQ 5.
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4.7.4 Strong convergence

Having the renormalized continuity equation (3.9) satisfied by the limit fields g, u, we can
take its difference with L!-limit of (4.26). Using

B(z) := Li(2)z, Ly := /12

which is a valid B-function in view of Proposition 3.1.3, we have

/Q(QLk(Q) — oLy (0))[r] dz =/ (oLr(0) — oL (0))[0] da+

Q

// Ti(0) — Ti(0))divu dz dt+/ /T;C Ydivu — Tg(o)diva dae dt.  (4.89)

The first term on the right-hand side is in fact zero as 9,,[0] = go. The second term tends to
zero as k — oo by the same argument as above, namely

Tk (0) < lim inf||T% (o) Tk(gn)H;\(oscp[gn (@) < ok ?

Q)||27Qf lm in

for suitable A € (0,1), p > 2, while divu = 0 on @°. It remains to manage the third term.
Since the pressure pg(o,?) is a monotone function of the density, we have

(Pc(0n 9n) — pc(e,9)) (Ti(0) — Ti(en)) <0,
whereas, due to the strong convergence of the temperature,

pa (o, ﬁn)(m_ Ti(on)) = 0 asn— oo.
Then (4.79) with v = 1 yields

Ty (0)divu — T (0)dive <0 on Q7
while on the solid region Q*®, we have
Ty.(0)divu — Ty (o)dive = 0

because of (4.50).

Passing to the limit in (4.89) as k — oo, we conclude

/(glogg —ologo)(r) dz < 0.
Q
Hence by virtue of Theorem 2.2.3 we obtain the pointwise convergence of the density,

on — 0 a.e. on Q. (4.90)

4.8 Limit passage - continued

After we have established the strong convergence of the temperature and the density, we
can finish the limit passage. The continuity equation was well as its renormalized version are
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already verified. In the momentum equation (4.67), we identify p, S with p and S, respectively
and derive (4.12). Concerning the entropy inequality, the first three terms in (4.28), namely
OnSn, OnSnln, and q, 0,1 = —k[u,](9,)Vlog ¥,, are equi-integrable especially due to the
estimate (4.68) for the entropy g,s,. Consequently, these terms converge to its counterparts
in (4.14). Next, as the entropy production rate is a convex function, which is weakly lower
semi-continuous, we have

liminf/ o, de dt = liminf/ |Au)? + |Bn|? + |Cp|? dae dt > / |A]? + [B)* + [C|? dz dt

where

()
Un

()
U,

[un) (V)

A =
n '19n

1
(Z]D)un — gdiv un]I), B, = divu,, C,= Vi,.

Using the strong convergence of the temperature, we observe that A + B + 0’ = o, which
finish the proof of (4.14).

Finally, we have to deal with the energy inequality. As was mentioned above in Section 4.4.3
the internal energy is not equi-integrable on the solid region. Fortunately, it can be split into
the convex and the bounded part as follows

5 3
On€n = Qg + §(pG(Qn7’L9n) _pc(Qn)) + aﬁi

The first term is convex and thus weakly lower semi-continuous, while the other terms are
equi-integrable, in particular the second term can be treated like in (4.84). Since the other
terms in (4.29) are equi-integrable, we can pass to the limit and obtain (4.15). The initial
conditions are the direct consequence of the initial conditions specified in Theorem (3.1.6).

4.9 Partial results and open problems

I have started the work on my thesis with belief that the existence problem for a compressible
fluid with rigid bodies can be solved by a direct penalization of the corresponding problem
for a fluid with heterogeneous constitutive laws. We have proved that this can be done
assuming homogeneous constitutive equations for the pressure, the internal energy, and the
entropy. A distinct internal energy for the fluid and for the bodies can not be used, when the
high viscosity limit takes the last place in the chain of approximations. The reason is that
the variational formulation is based on the entropy inequality together with the total energy
balance, where a calculation similar to (1.18) is crucial for the formal representation as well
as for the construction of solutions. However, in the case of the heterogeneous internal energy
there appears a new term in this calculation:

1
3 (9¢(0e) + div(oue) + pdive) = o(u — U) - (9~ dze)+
1 Oe 2 Oe P D P
Q(ﬁaﬁ(atﬁ‘Fu V1) 30 8?9(8159"‘11 Vg)) + ﬂgﬁtg—k 19@“ Vo+ ﬂggdwu =

Or(0s) + div(ous) + o(u — U) - (97 0pe — Oz5),
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where U is some velocity field, which transports the heterogeneous constitutive equations,
namely if this field is compatible with some displacement 7, it holds

e(t, x; 0,9) = e(0,n[—t](x); 0,9).

Now it is clear that the term o(u —U) -0z D, D = €; 5 — Us; o has to be added into the total
energy balance. After the high viscosity limit this term should disappear, since 0, D = 0 on
the fluid part and w = U on the bodies, but the problem is how to prove it. The problem is
even how to bound this term, since a rough calculation

Oze(t, @) = Oze(0,n[—t)(2)) = Oay (0, o) - Vn[—t](),

< Vnll(20) = VUt nle (o)) Yl (o)

indicates that d, D could have an exponential grow in time.

4.9.1 Total energy equality

One of the considerable achievements in the theory of the full Navier-Stokes-Fourier system
is the possibility to construct weak solutions, which preserve the total energy. In particular
(4.15) holds with the equality sign. It is natural to ask whether or not the system fluid-bodies
enjoy the same property. After the first contact it is unlikely to be true, as the weak solutions
does not cope well with instantenous contacts of the rigid bodies. On the other hand, up to
the first contact it is probably true. In this section we shall outline some ideas of the proof.

The reason, why we were not able to prove the total energy balance with the equality sign, is
that we lack an LP-estimate for the pressure and/or the internal energy on the whole domain
Q. To overcome this obstacle, we can perform the high viscosity limit before the vanishing
viscosity limit. There one can use the term ! |gg |2 to control g%, the dominant part of the
pressure at this approximation level. After the high viscosity limit, the density is perfectly
transported on the bodies, thus we need an LP-estimate for the pressure only on Qf up to
the boundary. This problem, we shall discuss for the last step: vanishing artificial pressure
limit.

The idea is still the same as in [18] namely to test the momentum equation by divto”.
Unfortunately it seems that one can not use the Bogovskii operator, since it is composed in
the nonconstructive way from operators on star-shaped subdomains and therefore we don’t
know how to identify its time derivative, namely 0;Bq(0"”). Therefore, we better follow
GEISSERT, HECK, HIEBER [23] and use the Stokes problem to construct a sort of div™*
operator on the time dependent domain Q[t] as well as its time derivative.

Suitable inverse of the divergence

The classical result concerning the Stokes problem reads:

Proposition 4.9.1. Let 1 < g < 0o and § be a bounded domain with C? boundary. Then
for any f € W=L4(Q; RYN) and g € L4(RQ), there exists one and only one solution

(v,p) € Wy (% RY) x L1(Q)
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of the system
—Av+Vp=Ff, divv=g on €, (4.91)

which satisfies the estimate
HV"’HLq(Q) + HpHLq(Q) = C(Q’Q’N)(Hwaflwq(Q) + HgHLq(Q)' (4.92)
Moreover, for f € L1(Q), g € WH4(Q) we have

V00 gy + 12 lwiagy € CQa N oy + 1900 ge)- (4.93)

This version is taken from [23], but the original works are due to CATABRIGA [5] and GALDI,
SIMANDER [21], [20] and others. In addition to the estimates (4.92), (4.93), it holds

< O(Qq, N)( ) (4.94)

1]l Loy |’f’|w—2=q(Q;RN)+HgH

w142
Indeed, taking an arbitrary ¢ € Lq,(Q; RY), we can solve the Stokes problem
—Ap—-Vip=¢, divep=0 on €,
to get ¢ € WOQ’q,(Q;RN) and ¢ € W4 (Q) satisfying
e llwa @ + 1¥llwrv @) < Clll e @)

Now, if we test equations (4.91) by ¢, 1 respectively, we get

/Qf-so=A—U-Aw—pdivw=/§2v-¢+v-vwdw, (4.95)
/g¢ dw:—/v-Vz/) de. (4.96)
Q Q

Then we can estimate the L%-norm of v as follows

sup [ 0@ de=sup [ £+ g0 dw < Clflly o ol @l (@07
peLd JQ Q

Considering the problem (4.91) with f = 0, Proposition 4.9.1 yields the linear bounded
operator

H: L) — Wy (QRY),
defined by the formula H|[g] := v and satisfying
divH[g] = g.

Our next aim is to identify the time derivative 9;H][g] for an operator H on the time dependent
domain Q[t] and with time dependent g = g[t]. The proof of the following proposition is
inspirated by paper [43] due to SIMON, which deals with the related shape optimization
problem.
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Proposition 4.9.2. Let Qg be a bounded domain in R® and J = (0,7) a short time interval.
Let U[t] = U € WH(R3;R?), be some velocity field and m the displacement mapping
compatible with it on J. Let Qo as well as Qt] := n[t](Qo) be domains with C?-boundary.
Assume g[t] from LP(Q) N Wh4(Q) for a.e. t € J and denote v[t] = Hap(g[t]). Then if
0:g[0] belongs to L1(Q2), the time derivative Oyv = OyHap[g[t]]li=0 is the (unique) solution of
the non-homogeneous Stokes problem

—Adw +Vop =0, divow = 0:g[0] on Qo,
v =—(U -n)opv on 09, (4.98)
Op dx = —/ (U - n)p|0] do,
Qo BQO
and following estimates hold
||8t'v’|W1vQ(QO;R3) < C(||g”W1=‘1(QU)||U||W1v°°(QO;R3) + ||at9||m(90))7
HathLq(QO) < C(HgHLq(QO)HUHLm(QD) + ||3t9||w—1,q<go))~ (4.99)

Proof. By virtue of Proposition 4.9.1, the problem (4.91) with f = 0 and on the domain Q[t]
has the solution (v[t], p[t]) unique in class W, 9(Q; R?) x L4(Q) for a.e. t € J. Since the
right-hand sides of equations (4.91) are differentiable, we can differentiate both equations.
Further, we differentiate the condition v = 0 on 99Q[t]. For every = n[t](xo) from 9Q]t],
we have

d
~at”
Moreover, on 9Qt], the function v is constant in directions tangential to the boundary, thus
(U -V)v = (U - n)0pv, noting that v € W4(Q;R3) since g € WH4(Q2). Differentiating
also the condition 0 = [, [t]p[t] da, we obtain the system (4.98). Next, we transform this
non-homogeneous system to the homogeneous one in order to apply Proposition 4.9.1. Setting

0 (n[t](®0))li=0 = 0,v(0,@0) + (U(x0o) - V)v(0,20), @0 € 9.

=V and po=— [ (Ul do
a0t]
the functions 0yv + v, Jyp+ po form the solution of a homogeneous Stokes problem with the
right-hand side f = Awvg, § = 0;g + divwg. In accordance with our assumptions, we have
feW12(Q,R3) and § € LI(Q). It remains to show that § is even in L4(Q). First, we
compute

div vy de = / (U -n)(n-0pv)do = / (divoU)ndo = / div(gU),
Q[ a01] 00lt] Q[

where in the first two equalities we have used once more that v is the constant zero in the
directions tangential to the boundary. The third one is because of the fact, that divvo =g €
Wh4(Qp) has a trace on 9. Then

d
/Qdaz: 8tg—|—div(gU)da:=—/ g dx = 0.
Q Q dt Jopy

Now, we can apply Proposition 4.9.1 to obtain the solution (¥, p) of the homogeneous problem
and also the solution of the original non-homogeneous problem:

0w =9 — vy, Op=7p— Py,
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which is unique in the class W1 9(; R3) x L(Q2). Finally, by virtue of estimates (4.92),
(4.94), we infer

[y , < (llwoll,,, +llorll,) < E(llally U, + l1223]],)-
[orll, < C(lleoll, + 121l s, ) < C(llall |01l + 12eall_, ).

where all norms are considered on €. O

Refined pressure estimate on the whole fluid region

Since, we work on the time interval I up to the first contact, there exists an artificial velocity
field U € L?(I;W3°(Q;R?)), which coincides with the actual velocity w on the bodies.
There exists also displacement mapping 1, which coincide with 1* on the bodies and which
is compatible with U. We consider the operator H on the domain

Pl = /[ = nll(Fy), Fo=2\[J S,

We assume that F, is bounded domain of the class C2. Then the same holds for domains
F'[t] because of the regular velocity field U.

Next, taking a fixed € > 0, and ¢t € I, we shall use the following test function in the momentum

equation:

o = Hmd = Heglreltl], melt] = we * '] —]im word'll], V>0,

where w, are smoothing kernels (2.1) acting in the space variable. Obviously, 7[t] belongs to
Wh4(R3)NLe(F[t]) for any ¢ > 1 and for a.e. t € I. On the other hand, using the smoothed
renormalized continuity equation (3.12) with B(p) = ¢¥, we get

O (we * 0”) + div((we * 0”)u) + (¥ — Dw, % (0¥diva) = 7 a.e. on I x R3, (4.100)

where r. — 0in LP(I x R3),
t € I. Then Propositions 4.9.
equation, which yields

T T
/ / (0, V)we x 0¥ de dt = / / p(0,9) d:c][ wex 0¥ de dt (4.101)
o JF o JF F

T
_/ /Qf-H(WE)—i—gu@u:VH(?re) da dt
0o JF

> 32 4 1. Consequently, d;m[t] is bounded in LP(R?) for a.e.
4.

1
P
1, 4.9.2 ensure that ¢ is a valid test function for the momentum

+ /O /F (2p () Du + (¢ () - %u-f (9))divul) : VH(r.) dz dt

T
—/ /Qu~8tH[7re] da dt
o JF

By virtue of the energy and entropy estimates, the first three integrals are bounded indepen-
dently of €, where the most restrictive convective term leads to the condition v < % For the
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last one, we employ (4.99) to get

T
I, = / / ou - O H[r | de dt
o JF

T
< [ el o (Il

L5(Q)HU[t]HL°°(Q) + ||atﬂ.€[t]HW—1w5(F[t]))’

The terms on the right-hand side can be further estimated using the properties of the smooth-
ing kernels, equation (4.100), and the Sobolev imbedding as follows

el < Clle* 1]

1°

Hatﬂe[t]HW*lﬁ(F[t]) < C(H(gyu)[tmm(ﬂ) + H(deivu)[t]HLl(Q) + HTEHLl(Q) + |I5|)’

where

d

Iy = —
° T dt) ey

0" [t] * we de.

Taking v small enough, namely v < %, the integral I, will be bounded independently of e

as soon as the term I is integrable in time uniformly with respect to e.

And here an open problem arise, since we know that |F[t]| = |Fy| and
d
— [ [t]e"[t] dx =0
5 1o ae o

but it doesn’t need to be true for I5, because of smoothing over the boundary 0F[t]. So, the
question is whether one can find a regularization of the density field, which behaves better
on the boundary.
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Chapter 5

Steady barotropic flow for
monatomic gas

In this chapter we shall deal with the existence of steady (i.e. time independent) solutions
(0, u) to the system of equations for the isentropic flow of the Newtonian fluid. As was
explained in the Chapter 1, especialy in Section 1.2.2, for such a flow the Navier-Stokes-
Fourier system reduces to

div(ou) =0 (5.1)
div(ou ® u) — pAu — (u + A)Vdivu + Vp(o) = of + g.

Without loss of generality, we can set a = 1 in (1.40) and assume pressure p(o) = o”.

The first existence result for the system (5.1 — 5.2) is due to the pioneering work of LIONS
[29]. There he assumes v > 2. Later, NovoTNY, Novo [34] have adapted a method of
FEIREISL [13] to prove existence in the case of the potential f (and arbitrary g) with v > %,
see also [37]. Recently, FREHSE, GOJ, STEINHAUER [19] and PLOTNIKOV, SOKOLOWSKI [39]
have independently obtained new L> estimates for the quantity A~!p and have proposed
several methods to improve estimates of the density. Both works however assume a priori
bound for L' norm of pu? which is not available for the general system (5.1 — 5.2). Before
this these was finished, there appeared a new result of PLOTNIKOV, SOKOLOWSKI [40] in the

same spirit as ours.
The main goals of this chapter are:
e To put the FREHSE, GOJ, STEINHAUER [19] and the PLOTNIKOV, SOKOLOWSKI [39]
estimates into the context of the modern potential theory (see ADAMS, HEDBERG [1]).

e To show how the L™ estimate of A~!p can be combined with the standard energy and
density bounds even without the a priori L' bound for pu?.

e To use these observations to prove existence of solutions for small values of v, namely
v > %(1 + v13) ~ 1.53 in the case of three dimensional flows and arbitrary f, and

v > é(S +V/41) =~ 1.175, if f is potential.

85
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The condition for the general f allows to treat at least the monatomic gas. As the estimate
of A~'p is essentially of the local character we limit ourselves to the periodic boundary
conditions and periodic domain. In order to guarantee existence of space periodic solutions,
we assume f and g with certain symmetries.

5.1 Formulation of the problem and main results

We consider equations (5.1 — 5.2) on a periodic cell

3
Q= ([77“ +’/T] |{—7r,7r}) (53)
with the periodic boundary conditions and f, g with symmetry

filw) ==f(Yi(z), fi(z)=rfi(Y,;(x)) and
gz(w) = _gi(Yi(x))v gz(w) = gz(Y](:‘c)) fori# 7, 1,5 € {1’273}a (54)

where
YZ(,.’L'Z,):(7—.’EZ,)

This implies the same symmetry of w, and ¢ with the symmetry
o(x) = o(Yi(x)) fori=1,2,3. (5.5)

Consequently the investigated problem can be viewed also as the problem on the cube (0, 7)3
with slip boundary conditions

u-n=0, nST=0 bothond(0,7)>
see EBIN [10].

In addition to the notation introduced in Chapter 2, we shall use spaces of symmetric func-
tions: for example, W2 (€; R?) stands for the (vector valued) functions from W*'?(; R?)

that enjoy symmetric property (5.4) and L%, (€2) denotes (scalar) functions from LP(€) that
satisfy symmetry (5.5). Another rather uncommon notation is that a set as an index of a

measure (or a function) means the measure restricted to the set, e.g. pq is the measure
pa(M) =p(QN M) = [, p-

Suppose for a moment that (o, u) is a classical solution to (5.1 — 5.2) and let b € C*(0, 0).
Multiplying continuity equation (5.1) by (), we obtain the renormalized continuity equation

div(b(o)u) + (ob'(0) — b(o))divu = 0. (5.6)

To keep this equation valid even for a weak solution ¢ € LY(2) and u € W2(Q;R?)
(see Definition 5.1.1 later on) we require that (5.6) is satisfied in the sense of distributions
D'(Q) for any

b e C([0,00)) NC*((0,00))

sup [t*b' ()] < oo, for some a € [0, 1),
t€(0,1) | | 5
sup [t ()] < o0, for some o < % ~ 1.

te(1,00)
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Similarly, we take a scalar product of momentum equation (5.2) with u and we integrate
over ). Using continuity equation (5.1) and taking advantage of the periodicity of solutions,
after several integrations by parts, we obtain the energy equality

/,u|Vu\2+(u+/\)|divu\2dw:/Qf-u+g-udas. (5.8)
Q Q
Of course, due to the presence of the weakly lower semi-continuous functionals
Vu — / |Vu|*dz, Vu — / |divul|? de,
Q Q

on L?(Q;R?), for weak solutions, we can expect only the energy inequality

/ u|Vu\2+(u+)\)|divu\2dm§/ of u+g-ude. (5.9)

Q Q

Last but not least, integrating momentum equation (5.2) over the periodic cell Q, in accor-
dance with the periodicity of solutions, we obtain the compatibility relation

/gf+gda::0. (5.10)
Q

This condition is automatically satisfied by any solution induced by f and g with symmetry
(5.4). Finally, we denote by m > 0 the total mass of the gas in the volume €.

Following the terminology of [37] we define a renormalized bounded energy weak solution of
the periodic problem (5.1 — 5.2) on the domain Q as follows:

Definition 5.1.1. Let the viscosity coefficients p, A\ satisfy > 0, 2u + 3\ > 0. Suppose
that v > 1 and m > 0 are given constants and assume that both f,g € L>(Q) satisfy (5.4).
We say that a couple (0,u) is a renormalized bounded energy weak solution of the periodic
problem (5.1 — 5.2) on the periodic cell Q if

o€ LY, (), uecWkh2 (%R, (5.11)

sym sym
/ odx =m, (5.12)
Q
the renormalized continuity equation (5.6) is valid for any b satisfying (5.7), the momentum
equation (5.2) holds in D' (Q), and (5.9) is satisfied.
Remark 5.1.2. In view of (5.11) the simple density argument can be used to see that (5.2)

holds even in (W14(Q;R?))’ for any ¢ > max(2, 23—33)

Now we are ready to state the main result.

Theorem 5.1.3. Let Q, m, u, A\, f, g satisfy hypothesis of Definition 5.1.1. Let

1
v > Ygen. 1= g(l +V13) ~ 1.53 (5.13)
or let f be potential and
1
Y > Ypot. 1= §(3 +V41) = 1.175. (5.14)

Then there exists a renormalized bounded energy weak solution (o,wu) of the periodic problem

(5.1 — 5.2) which satisfies
0 € L), qg=—. (5.15)
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The rest of the chapter is devoted to the proof, In Section 3 we derive L™ estimates for
A~'p. Then in Section 4 we use the nonlinear potential theory due to ADAMS, HEDBERG
[1] to find a convenient L' bound for the quantity pu®. In Section 5 we use this estimate
together with standard energy and density bounds to estimate the density in the space L7,
q = % Finally, in Section 6, we combine this piece of information with the recently
discovered compactness properties of the so called effective viscous flux and with the notion
of the renormalized solutions to the continuity equation (cf. P.L. Lions’ results [29] and [14],
[37]). This makes possible to prove compactness of the set of weak solutions as well as to
construct weak solutions via a several level approximation scheme. The limit passage from
one level to another is standard, see e.g. [37]. Nevertheless, the necessary modifications in the
construction of approximations to accommodate the periodic boundary conditions, as well
as the last (and the most delicate) limit process are performed in all details in Sections 6.1
and 6.2.

5.2 Potential estimate

Let (05, us) be a sequence of renormalized bounded energy weak solutions to the problem
(5.1 — 5.2), where, as well as in sequel, p stands for ps. Our aim is to derive for g5 sufficiently
strong estimates independent of ¢ > 0 in terms of the external data || f||c, ||g]|cc (and, of
course, of the coefficients p, A).

Choose y € €. Since the periodic problem is invariant with respect to the translation of the
periodic cell, we can assume y = 0. As in [19] and [39], the main estimate of this section can
be obtained testing formally the momentum equation (5.2) by ¢(x) = (x —y)|z —y|~!. Since
this is not an admissible test function in the sense of Remark 5.1.2, we shall truncate it as
follows:

o= (z—yn(z—yl),

% — % on [0,7)
n(t) % — % on [r, R)
0 on [R,00)

where 0 <7 < § < R < 7. Denoting P = pu @ u + pl and n = (\i:zl)’ a short calculation
yields

] -8t efta) @i [ TE-9+(f+9) @-y)de
Tt(P-S)—P-S):n®n
.

|z -yl

+(of +9) -ndx =0, (5.16)

where B, = {x : | — y| < s}. Since o € L?() for a fixed §, we realize that the term
Q= (Tr(]P’ —S)+ (of +9) - (x — y)) belongs in L'(2). Thus the Lebesgue point property
implies

4 r?

1
f/ Qdm:—/ Qdx —0 asr—0.
rJB, | B | B,

Rearranging the remaining terms in (5.16) and estimating the resulting right-hand side, we
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obtain

TrP—-P: 1
sup/ r—mdazg—/ Te(P—S)+ (of +g) (x —y)dx
>0 JBr\B, ly — | R /gy

2|S
+/ |_| +lef +glde < CU+ [P,  +[S[|,q + el o)-
Br ly — | ’ , ’

Here and in the sequel, C' is a generic positive constant independent of §. Next, we observe
that
TrP-P:n®n=ou’+3p— (o(u-n)?+p)>2p>0.

Thus, recalling the structure of S, we get

2p
/ ——de < C(1+ [ow?[], o + [Pl o + [l 50)- (5.17)
Br \93 y|

3 . .
e (R?) again by p and extending
the integral at the left-hand side of (5.17) to the whole R3, we arrive at

(A" po)ly] == / ral®) 4y o /B P et [ pae

R3 |T — Y R|w—y| R Jq
<O+ HQUQHLQ + HpH1Q + Hqum) (5.18)

Finally, denoting the periodic extension of p from L*(2) to L}

5.3 An application of the potential theory

In this part we will apply the general potential theory developed by AbAMS, HEDBERG [1]
to obtain a convenient estimate for pu?. Similar estimate has been proved in [39], in a direct
way. Slightly weaker one, for the quantity p|u|, was derived in [19] via the theory of Morrey
spaces. The main advantage of our approach are accurate expressions for the best constants
(see (5.27)) of estimates, which will be crucial for the bootstrapping argument in Section 5.

We shall say that a function g on RY is a radially decreasing convolution kernel if g(x) =
go(|z|), for some non-negative, lower semi-continuous, non-increasing function go on R* for
which fol go(H)tN~1dt < co. The key ingredient of our proof is the following theorem.

Theorem 5.3.1. [1, Theorem 7.2.1] Let g be a radially decreasing convolution kernel, and
let p € MH(RYN) be a positive Radon measure. Then for 1 < p < q < oo the following
properties of p are equivalent:

(a) There is a constant Ay such that

1/q
([ Jowsra) < anfsl, (519)

for all f € LP(RY).
(b) There is a constant Ay such that

< Ay (KM (5.20)

Hg*,UK >

for all compact sets K C RN.
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Moreover, the least possible values of A1 and As are the same. As a matter of fact one can
take A1 = AQ.

The following preliminary material is taken again from [1, Chapter 1]. We shall be concerned
with the Bessel kernels G, which are defined for any real (or even complex) index « via the
Fourier transform by the formula

Go =F (1 +[¢7)%). (5.21)

The Bessel kernel G, is radially decreasing convolution kernel, in particular it is real and
positive. It has exponential decay at infinity and the following asymptotics at zero

Go(z) < Cla, N)|x|*™N as|z| -0, for0<a<N. (5.22)
Due to the definition (5.21) it is easy to see that the kernels G, form a group, namely
Go*Gs = Gayp. (5.23)
For the kernel G, one can define the Bessel potential space
LYP(RY) :={p = Gax f|f € LP(RV)},

with the norm
1Ga % £l sy = 1l o)

The fundamental theorem of A. P. CALDERON [4] identifies these spaces with the Sobolev
spaces.

Theorem 5.3.2. [1, Theorem 1.2.3] For o € N, W*P(RY) = L*P(RN), 1 < p < 0o, with
equivalence of norms. In particular, for all o € WP(RN) there exists a unique f € LP(RY)
such that ¢ = G, x f, and there is a constant A such that

~1

A ||<p||L0¢JJ(RN) = ng||WavP(RN) = AHSOHL‘%P(RN)'
Due to Theorem 5.3.2, for any u’ € W2(Q) there exists a unique f € L%*(Q) such that
E(u') = Gy * f, where E : W12(Q) — W12(R?) is a continuous extension operator. Now,

we are in the position to use Theorem 5.3.1 with N =3, p=q¢ =2, u = podx, g = G; and
f. First we apply Fubini’s theorem to check the condition (b) of Theorem 5.3.1

1G1 * pani|F = / / / Gr(y — ) pank (y) Gi(z — ) pork () dydzdz  (5.24)
R3 JR3 JR3

= /RB ((G1 *G1) *anK)(z)anK(z) dz (5.25)
< || G2 xpal| pa(K) < C||A™ pal| _ pa(K) < A3 pa(K), (5.26)
where on the last line we have used (5.23), (5.22), (5.18), and we have put
Az = O+ [low?lly +lplly + e, »)- (5.27)
Finally, using the statement (a) of Theorem 5.3.1 and Theorem 5.3.2 we conclude that

3 3
96200y = Y- [ B pde < 3 4By < CAfulnay - (529
=1 i=1
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5.4 Bootstrapping argument

There are two standard estimates for the renormalized bounded energy weak solutions we
have not yet exploited. First, if we use the energy inequality (5.9), Korn’s inequality, the
Young inequality, and the Sobolev imbedings we arrive at the estimate

lull, » < CE@|F]|cllell- (5.29)
Second, we introduce the so called Bogovskii operator, which is a particular solving operator
B: 9 LYQ) —veWH(QR?), 1<g<oo (5.30)

of the problem

divve =g 7][ edx in (—m,7)3,
Q

v=0 on (—m, 7).

(5.31)

The operator B is continuous, namely ||v||1’q <C H‘qu' For details see [37, Section 3] and

references quoted there. In view of Remark 5.1.2 we can test (5.2) by the function Bly],
where ¢ € L7 (), 1 < g < 2, to get

/Q pdiv(Bl]) de = / (S — uww) : VBlg] - (of +9) - Blg] d

Q
< C(flull, o + llow?[l, + llellg [ £l + gl llell, - (5:32)
For vq > £, the Young inequality together with (5.29) yields
Ipll,= sup || ;1/p<div8[go} +/ godm) de < O(1+ [ou?] ) (5.33)
peLd () Q Q
Next, we split the right-hand side,
lou?|[; = /(QVUQ)Z’U“ dz, q=7b, 2¢=2b+c,
Q
and apply the Holder inequality to get
low[[} < o1 Jull;. (5-34)
provided
b+ S<1lor equivalently ¢ < el (5.35)
6 — Ty+27 '
With help of estimates (5.29), (5.33) we can rewrite (5.28) as
o], < €+ flow?||, o] - (5.36)

Further application of the Holder inequality together with the imbeding L5(2) «— W1:2(()
and with (5.29) yields

lp?ll, < €+ el Mlelfg)llelfs - (5.37)
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In (5.36), (5.37), € can be chosen arbitrary from the interval (0,eq) where ¢ is sufficiently
small and C depends on €y but is independent of €. Taking into account (5.33), (5.34), and
(5.37) we arrive at

|| H2b+2q).

Ip)l2 = lo” +60%|12 < C(1 + lo]|: (5.38)

3+E
In the next step we shall interpolate the norms at the right-hand side of (5.38) between L!(Q)
and LY7(Q) as follows

= vq (r—1)
e, < el =l = 55 (539

Applying (5.39) to (5.38) Wlth r successively equal to 2 +¢cand § =, under the necessary
conditions vg > 5 3 and yq > ¢ = respectively, and noticing that HQHl =m, we get

R e o R o G [P

3 6

This formula yields
Jo" +80°||, < C(Qm, f.g)

provided
g y+2
v9—1 3v

The expression % is a decreasing function of g, consequently (5.41) can be understood as an

inequality to determine the lower bound for . Thus, in accordance with (5.35),

vqg >z = (5.41)

¢ = 375 Tep-
resents the optimal choice of g. Then (5.41) reduce to vg > 2 or equivalently 3y —2y—4 > 0.

The latter inequality leads directly to the condition v > vgen. (5.13).

If the volume force f is potential, the term fQ of - uw on the right-hand side of (5.9) is zero
thanks to (5.1). Thus we obtain, instead of (5.29), a priori bound for Hqu ,- Consequently
(5.37) takes the form

lpu?]l, < CO+ [low?]],,.) (5.42)
and interpolation (5.34) yields
low’[[; < Cllamw? | [[ully < €O+ [low]l7,). (5.43)
As b < ¢, we get estimate for ||gu2||q. Using (5.33), we arrive at
Hg +380°||7 < C(L+ ||ew?||) < C(2.m, f.,g) (5.44)
for every 1 < g < <5 5 and for all v > 1.
Summarizing all estimates, we have
5805 bounded in L?1(Q), o5 bounded in L7(Q), (5.45)
osu? bounded in L(Q), us bounded in W?(Q;R3) .

uniformly with respect to J, provided ¥ > 7gen., or provided v > 1 and f is potential.
To prove strong convergence of the density, we shall also need the estimate

losusl], < [los])?, esud]|? < € with some r > 8. (5.46)

This is true provided 2 > (1 + ) which is equivalent to condition (5.14).
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5.5 Existence of a solution

The first part of this section is devoted to the construction of the bounded energy weak
solutions to problem (5.1 — 5.2) by using several level approximation scheme. We also
explain (referring to the second part) how to pass to the limit between the levels. In the
second part we combine the estimates of Section 5 with the compactness properties of the
effective viscous flux and with the convenient estimates of oscillations to the density sequence
to carry out the last limit process 6 — 0+.

5.5.1 Approximations

In this section we explain how to construct the renormalized bounded energy weak solutions to
problem (5.1 — 5.2) on the periodic cell (5.3). We adopt the same chain of approximations
as described in Chapter 4 of [37], where a similar problem is treated for larger values of
the adiabatic constant and the homogeneous Dirichlet boundary conditions for the velocity.
The problem of density estimates for the small adiabatic constants was already treated in
Section 5. Due to this fact, we shall concentrate in this part essentially to the changes which
are necessary to be operated in order to accommodate the periodic boundary conditions and
the symmetries (5.4), (5.5).

To this end, we consider an approximating problem with positive parameters «, ¢, and §:
alo—h) +div(pu) —eAp =0, (5.47)

1
a(h+ o)u + 5 (div(gu ®u) + QuVu) + V(" + 695) —divS = of + g, (5.48)

on the periodic cell 2. Here h is a smooth periodic function with the symmetry (5.5) satisfying
Joh = m. Further, p and w are unknowns which has to obey symmetries (5.4) and (5.5),
respectively. Notice that in this case w - n and 9, 0 necessarily vanish on d(—m,7)3. In order
to solve this system we employ the Leray-Schauder fixed point theorem

Theorem 5.5.1 (see [37] Section 1.4.11.8). Let X be a Banach space and D C X bounded
open set. Let H : D x [0,1] — X be a homotopy of compact transformations, which means
that H is a compact mapping for every t € [0,1] and that it is uniformly continuous in t on
any bounded set B C D. Let

w—H(w,t)#0, Vtel0,1], YwedD. (5.49)

If there exists wyg € D such that H(wp,0) = wo, then, for any t € [0,1], there exists wy € D,
satisfying H(wy, t) = up as well.

We take v € WL (Q;R?) such that |jv|, < K for some K > 0. Using the standard

sym
theory of elliptic operators, see e.g. NECAS [32], we can construct solving operators

O e WP (N {fg&=m} — o€ (WEL(Q)N{[qo=m})

to the problems

—eAg, = —t(a(§ — h) + div(év)) in Q, / oode=m, telo0,1], (5.50)
Q
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which, for any 1 < p < oo, forms a homotopy of compact transformations by virtue of the
compact imbedding W2?, (Q) —<— WlP (Q). Testing

alp—h)+div(ev) —eAp=0 (5.51)

(compare with (5.47)) by ¢ and using conveniently a bootstrapping argument we realize that
any fixed point o, € WLE (Q) N { [ 0 = m} of II; satisfies

sym
o]l , < Cs(K.p.e,a,h), (5.52)
where Cg is a positive constant independent of ¢. As a consequence the domain

D ={€ e Wi @1l , <2Cs, [o=m}

verifies (5.49) with the homotopy H(-,t) = II;(-). We can therefore employ Theorem 5.5.1,
taking X = WP (Q) N{[q e =m}, to construct the operator S

S:veWhe (R — (o =11(p)) € WL (Q) (5.53)

sym sym

such that ¢ = S(v) solves equation (5.47).

Similarly we define operators T; : v — wuy, t € [0, 1] as the solving operators to the problems
—pAu — (pp+ A)Vdivu = —tF(S(v),v), (5.54)

on the periodic cell 2, where
1 1
F(o,v) :=a(h+ o)v + idiv(gv ®wv)+ igvVv + V(0" +60°) — of — g. (5.55)

The necessary condition to guarantee the existence of solutions to this system is fﬂ F =0.
This condition is always satisfied provided f, g, v and g, h posses symmetries (5.4) and (5.5),
respectively.

Referring to the standard results of the regularity to the elliptic systems, see again [32], we
conclude that

T, v € WEO(R?) — up € W2P (Q; R?) s WE(Q; R3)

sym sym sym
for any p > 3.
We test (5.48) by u, where (5.48) can be viewed as the Lamé type system (5.54) with v = wu.
After a long but standard calculation, employing among others (5.47), we get

/ p|Vau|? + (p+ \)|dive|? dz + 5(5HV(Q6/2)H(2) , < /(Qf +g)-udx+aC(h), (5.56)
Q ’ Q

where C(h) is a positive constant dependent on h. Taking advantage of the symmetries of u
and of the fact that fﬂ(g —h) = 0, one can use the Sobolev and Poincaré type inequalities as
well as a bootstrapping via F(S(u),u) and the elliptic regularity of (5.54) to conclude that

[ull, o+ olly 55 < Creb,e, frg,h). (5.57)

Now we shall take K = 2C7 in the definition of Cyg (see (5.52)) in order to have the operator
S well defined.
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The domain D = {v € WL (Q,R3) | ||'U||LOo < 2C7}, verifies (5.49) with H(-,t) = T;. Once

sym
again, we can use Theorem 5.5.1 with X = W}:>°(Q), to guarantee existence of a fixed point

u. = T1(u.) and then we set . = S(u.). Evidently, the couple (o., u.) solves (5.47 — 5.48).

To pass to the limit ¢ — 0+, we have on our disposal estimate (5.56) and another estimate
lelly 2 < C (6, £.9,h).

It can be obtained by testing the momentum equation (5.48) by the Bogovskii operator B[y],
see (5.30), (5.31), using the known bound (5.56), and applying conveniently the Sobolev
imbeddings and the Holder inequality in a way similar to (5.32). Both estimates provide

uniform bounds for HuE and HQE independent of ¢.

H1,2 Ho,zﬁ

These estimates are sufficient to pass to the limit in the continuity equation (5.47), the energy
inequality (5.56), and in all terms of the momentum equation (5.48) except the pressure term

pé(@6)~

To pass to the limit in ps(gc), one needs to show that the weak limits u and o of the sequences
u. and g, satisfy also the renormalized continuity equation similar to (5.6), namely

b/ (0) + div(b(o)u) + (0b' (o) — b(o))divu = )
5.58
ahb' () + ediv(b (o) Vo)) — b’ (0)|Vo|?

with a convenient function b € C?(0,00). This equation can be obtained via multiplying
equation (5.51) by V/(p). Further, one needs to prove that the quantity

Ps(0) = ps(0) — (2u + A)divu, (5.59)

called effective viscous pressure, satisfies the identity

P5(0)b(0) - P5(0) b(0) = (20 + ) (b(o)dives — b(o) divu) (5.60)

with another convenient function . Here and in what follows the overlined quantities denote
corresponding weak limits in D’(£2).

The same holds for the passage o — 0+, but now, (5.58) is replaced by the renormalized
continuity equation (5.6).

Importance of the effective viscous pressure (5.59) and some of their properties was recovered
in various contexts by several authors LIONS [29], SERRE [42], HOFF [24], NOVOTNY, PADULA
[36] and [35]. Finally it was successfully used in existence theory by LIONS [29]. Its rigorous
mathematical realization is deeply related to the quality of density estimates and therefore to
the value of v (resp. S, in the case of limits ¢ — 0+ and o — 0+ ). In fact, the difficulty of
the underlying mathematical analysis increases with decreasing values of adiabatic constant.
Intimately related to the DiPerna-Lions transport theory and to the Friedrich’s lemma about
commutators [8], the Lions method is applicable provided p is square integrable. Thus,
for general f, it could be used without additional restriction as the condition v > 7vgen. is
equivalent to ygq > 2 (cf. discussion after (5.41)). To treat also the case of potential f we shall
rather apply another method proposed by Feireisl [13] (see also [18]) which is better adapted
to investigate small adiabatic constants. We shall describe all details of this approach in the
next section.
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To conclude, both previous limit procedures, namely ¢ — 04+ and o — 04 have common
features with the limit passage 6 — 0+4. The latter (most difficult) limit contains all of
essential mathematical aspects of limits € — 0+, a — 0+. Consequently, the reader can, by
himself, adapt the arguments of Section 6.2 to these situations.

5.5.2 Vanishing artificial pressure

Let o5 € L8, (Q), us € W2 (2;R?) be sequence of bounded energy renormalized weak
solutions to the problem

div(b(os)us) + (050 (05 — b(os))divus =0 in D'(Q), (5.61)

div(gsus ® us) — pAus — (u+ A\)Vdivus + V(o) + 59?) =osf+g inD(QR?), (5.62)

/ | Vaus? + (u+ A)|divas|? de < /(951’ +9) usde, (5.63)
Q Q

where b is the same as in (5.6). By virtue of the estimates (5.45), (5.46), and the compact
imbedding W12(Q; R3) << LP(Q; R?), 1 < p < 6 we obtain following limits

50" =0 inD(Q),
os — 0 weakly in L17(Q),

5.64
us — u weakly in WH2(Q; R3), (5.64)
us —u in LP(Q;R3), 1<p<6,
osUs — ou weakly in L"(2), for some r > 6/5, (5.65)
OsUs @ us — pu ®u  weakly in LI(Q). '

at least for a chosen subsequence.

Using these facts and the weak lower semi-continuity of the left hand side of (5.63) we can
pass to the limit in (5.61 — 5.63) and we get

div(pu) =0 in D'(Q) (5.66)

div(b(o)u) + (ob' (0 — b(o))divu = 0 in D'(Q), (5.67)

div(ou @ u) — pAu — (u+ \)Vdivu + Vo7 = of + g in D' (4 R?), (5.68)

/ pwVu|? + (p+ N)|dive)? de < / (of +9) - udex. (5.69)
Q Q

The proof will be complete provided we show the strong convergence of g5 in L'(€). This
will be done in several steps following [37]. In the first step we shall prove identity (5.60)
with b = Ty, k > 0, where

Ti(2) = kT(%); T € C®(R"), concave; T(z) = z for 2 < 1; T(z) =2 for z > 3. (5.70)
In the second step, we deduce from (5.60) an estimate measuring oscillations of the sequence

of densities ps (see formula (5.77)). This information is used in the third step to prove that
the couple (o, u) satisfies the renormalized continuity equation (see Lemma 5.5.2). The last
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fourth step consists in comparing the weak limit of the renormalized continuity equation for
(05, us) with the renormalized continuity equation for the weak limit (o, u).

Step 1: Compactness properties of the effective viscous pressure (5.59). Testing (5.62) by
nps = nVATL(ET,(0s5)) with n, £ € D(Q) we obtain

/ né(of — (2p + A) divus) Ti (0s) de = GoodTerms; +/ an(ka(Q(g)ug)g(;uf; dx
Q Q

DivCurls

+/Q’U% - [€T%(05)Ri,j (nosus) — nosusR; ;(ETk(0s))] da, (5.71)

Commutators

GoodTerms; = / ((p+N)divus— 0] ) V-5 — 5g§div(n<p5) + (Vs — 05us @us) V@ p;
Q

—pVn®us : Vs + pus - Vn(ETr(0s)) — (fos + g)nes dze.  (5.72)

Similarly we can test (5.68) by np = nVA~L((Tk(0)) to get

/ né (977 —(2u+ N divu)Tk(g) dx = GoodTerms + / NRi; (ka(g)uj)gui dz
Q Q

DivCurl

+ /Q W - (€T (@)Ra s (now') — now'Re ,(€To(@)] da, (5.73)

Commutator

GoodTerms = / ((u + A)divu — F) Vn-p+ (,uVu —ou® u) Vn® e
Q

—uVn@u: Ve +pu-Vn(Ti(e) — (fo+ g)nedz. (5.74)
Next we shall pass to the limit in (5.71) as 6 — 0+. Realizing that ¢; — ¢ in any
LP(;R?), p > 1 and taking into account limits (5.64), (5.65) it is straightforward to
show that (GoodTermss;) — (GoodTerms). Furthermore, applying Lemma 2.2.4 and Lemma
2.2.5 we easily verify that (DivCurls) — (DivCurl) weakly in D'(Q2) and (Commutators) —
(Commutator) weakly in L"(2), respectively. This is the only place where we need quite
restrictive estimate (5.46).

Finally, subtracting (5.73) and the limit of (5.71) as 6 — 0+, we obtain the famous identity
for the effective viscous pressure, cf. (5.59), namely

0'Ty(0) — 07 Ti(0) = —(2u + A) (T (0)divu — Ty (0)divu) a.e. in Q. (5.75)

Step 2: Defect measure of oscillations. Using in succesive steps the elementary algebraic
inequality (a — b)Y < a¥ — b7, a > b > 0, weak lower semi-continuity of convex functionals
o — fQ o', 0 — —fQ Tr(0), and (5.75) we succeed to control oscillations of the density
sequence g; in the following way

1imsup/ Tk (0) — Ti(05)" " dae < limsup/(é”y — 03)(Tx(0) — T(0s)) dae
§—0+ Q §—0 Q

s/QmTk(@)fﬁTk(g)dmsCy|divua|}2h§m%3p||Tk(@)ka<ga>||2- (5.76)



98 5. STEADY BAROTROPIC FLOW FOR MONATOMIC GAS

Hence, thanks to (5.45),

sup limsup || T, (o) — Tk(g5)’|'y+1 <C. (5.77)
k>0 §—0+

Step 3: Renormalized continuity equation. The control of the density oscillations allows us to
keep the renormalized continuity equation (5.6) valid for the limits o, w even if the density
is not known to be square integrable. More precisely we claim (see e.g. [37, Lemma 4.50]):

Lemma 5.5.2. Let b belong to (5.7), us — u weakly in W12(Q; R?) and g5 — o weakly
in L*(Q), s > 1 and suppose that (5.61), (5.67) and (5.77) hold. Then (p,u) satisfies
renormalized continuity equation (5.6) in D'(§2).

If s > 2, Lemma 5.5.2 is a particular case of the DiPerna-Lions transport theory, which is,
in this case, a direct consequence of (5.66) and the Fridrichs’ lemma about commutators [8].

If s € (1,2) one may adapt to the steady situation the "nonsteady” aproach of FEIREISL [13]
(see also [18]). Since Tk (o) belongs, in particular, to L?({2), one can apply the Di-Perna,
Lions transport theory to (5.67) with b = T}, to conclude that

div (b(Tx(0))u) + (Tk(Q)b/ (Tk(0)) — b(Tk(Q))) dive = b'(Tx(0)) (¢Tk(0) — Ti(0))divu,
(5.78)
e.g. for any b € C1([0,00))NCy([0,00)). As the consequence of the weak lower semi-continuity
of norms we get

||Tk(g) - ng < CkP, ||Tk(g) - QH < CkP, for 1 < p < ~g. (5.79)

Using this fact and (5.77) one verifies that

v (T (0))(0Tk(0) — Ti(o))divu — 0 in L*(Q).

Consequently (5.78) yields (5.6) for a compactly supported b. The passage to general b given
by (5.7) can be performed via the Lebesgue dominated convergence theorem.

Step 4: Strong convergence of ps. Finally we use (5.6) to prove the strong convergence of g
in L'(2). We introduce functions Ly (z) ~ zlog(z) by the equation ¢L} (t) — Ly (t) = Tk(1).
Using Ly as b in (5.6) and (5.66) leads to [, Tx(¢)divae = 0 and [, Tidivu = 0, respectively.
With this information at hand, the revisited proof of formula (5.76) yields

. 1 .
hgniupHTk(Q) — Tk(g5)| ::L < C’/ diva(Tx (o) — Tk (0)) d
—0+ Q
a1 a2
< C||Ti(e) — Ti(o)||,” limsup||Tx(e) — Ti(es)||.%,-  (5.80)
0—0+ Las
Recalling (5.79), the right-hand side of (5.80) tends to zero with k. Now, we write
lim sup||os — o], < [les — Tic(es)||, +1im sup||Te(es) = Ti(@)|, + [|Ti(2) — o]
5—0+ 5—0+
By virtue of (5.79) and (5.80), the right hand side of the above formula tends to zero.

Consequently, the sequence ps converges strongly in L*(Q), for all 1 < s < yg and p7 in
equation (5.68) is equal to p?. This completes the proof of Theorem 5.1.3.
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