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Žitná 25, 115 67, Praha 1, Czech Republic

e-mail: jan.brezina@matfyz.cz

phone: +420 485 353 032

Advisor: Eduard Feireisl,

Institute of Mathematics of the Academy of Sciences

of the Czech Republic
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Abstract

We present a complete existence theory for the physical system consisting of a viscous com-
pressible fluid and a number of rigid bodies in it. We assume a bounded domain and ho-
mogeneous Dirichlet boundary conditions for the velocity. Both the fluid and the bodies are
allowed to be heat-conducting and share the heat. The existence of global-in-time variational
solutions is proved via the viscosity penalization method due to San Martin, Starovoitov,
Tucsnak [30], whereas the existence theory for a viscous compressible fluid developed by
Feireisl [14] is used in the approximations as well as in the last high-viscosity limit.

The second subject is an improvement of the existence theory for steady barotropic flows.
We use L∞ estimates for the inverse Laplacian of the pressure introduced by Plotnikov,

Sokolowski [39] and Frehse, Goj, Steinhauer [19] together with the non-linear potential
theory due to Adams and Hedberg [1], to get a priori estimates and to prove existence
of weak solutions. Our approach admits physically relevant adiabatic constants γ > 1

3 (1 +√
13) ≈ 1.53 for the flows powered by volume non-potential forces and γ > 1

8 (3+
√

41) ≈ 1.175
in the case of potential volume forces and arbitrary non-volume forces. The solutions are
constructed in a rectangular domain with periodic boundary conditions.
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Preface

Throughout our life, we are in continuous contact with fluids. We can not live without
breathing the air and drinking the water. Despite of this lifelong experience, we are still far
from the complete understanding of their dynamics. At the end of the nineteenth century,
Navier and Stokes have independently derived a system of equations describing the evolution
of a viscous incompressible fluid based on the classical conservation laws for the mass, the
linear and the angular momentum. In 1934, Leray introduced a concept of weak solutions and
he proved the existence of global-in-time solutions in this class. Throngs of mathematicians
have investigated the Navier-Stokes system since and there is a vast number of practical
applications of this model. Yet, the existence of strong global-in-time solution is still one of
the most challenging open problems of contemporary mathematics.

In the case of compressible fluids, the full system consists of equations for the density, the
velocity, and the temperature, which are based on the conservation of the mass, the linear
momentum, and the energy, respectively. If heat conduction and heat production caused
by dissipation can be neglected, the complete system splits into the smaller system for the
density and the velocity and the heat equation. Then we speak of a barotropic flow. The
first existence result for a compressible fluid is due to Lions (1998). Although he assumed a
barotropic flow with a physically unrealistic adiabatic constant, his work contains already two
fundamental tools for the mathematical theory of compressible fluids, namely compactness
properties of the effective viscous pressure and the renormalized solutions to the continuity
equation. Developing further these ideas, Feireisl (2003) presented the existence theory for
the complete system with physically relevant constitutive equations.

This thesis deals with two distinct topics. The main subject is the existence result for
the problem of rigid bodies in a viscous compressible fluid, where both are heat-conducting
materials. Using the penalization method developed by Conca, San Martin, Tucsnak, and
Starovoitov (1999, 2002) for an incompressible fluid, we have shown that the problem of rigid
bodies is a limit case of a heterogeneous compressible fluid as the viscosity tends to infinity
on the solid region. This limit could be of independent interest, though it turns out that
possibly better result can be proved, if the high viscosity limit is made previously in the chain
of approximations. The high viscosity limit is performed in Chapter 4, while an existence
theory for the heterogeneous fluid is presented in Chapter 3. Some further ideas and open
problems are collected in Section 4.9.

The second topic are steady state solutions for the barotropic flows. The first existence
result has been achieved again by Lions (1998). Despite several improvements made by
Novotný and Novo (2002) the existence theory in three dimensions was applicable only for
non-physical adiabatic constants at least for a general external force. The problem was a

vii



lack of sufficient a priori estimates for the density. In 2005, Frehse, Goj, Steinhauer and
Plotnikov, Sokolowski have presented new estimates based on the potential theory. However
the both works have assumed a priori L1-estimate for the quantity ̺u2. In Chapter 4, we
use a bootstrapping technique together with the potential estimates to prove the existence
of weak solutions, without any a priory knowledge about their regularity. Our result is
applicable for the monatomic gas and general external force or for the considerably wider
interval of adiabatic constants for a potential force.

Appropriate physical background for the both topics is explained in Chapter 1. The mathe-
matical tools and the notation we will use, are summarized in Chapter 2.



Chapter 1

Physical background

In this chapter, we present the physical origin of the equations that describe a motion of
the rigid bodies in the viscous compressible heat-conducting fluid, fluid-solid interaction, and
thermodynamics of this system.

A fluid as well as solid bodies consist of particles. Matter is quantized and discontinuous.
Nevertheless, if there is a sufficient number of particles small enough with respect to the
volume of our interest, the distribution of the mass could be considered continuous, at least
if no macroscopic discontinuities are present. We can imagine that the density at the point x

is an average density of an elementary volume located at x. The elementary volume should
be nearly point from macroscopic view, but still contain enough particles. Similarly, the
macroscopic velocity is average velocity of the particles in the elementary volume, while the
kinetic energy of the particles could be represented by the temperature. The existence of the
temperature is derived only for a system in thermodynamical equilibrium, therefore we have
to assume that microscopical events are fast enough with respect to the macroscopic velocity.

This deliberation justify the concept of continuum. A fluid or a solid body in three dimen-
sional space is represented by a domain in the Euclidean space R3. Their state in the time t
and at the point x is given by the density ̺(t,x) and the temperature ϑ(t,x) functions. The
evolution of the continuum can be described by a displacement mapping

η[t] : x0 ∈ R3 → x ∈ R3, (1.1)

where an elementary volume that was at the point x0 in the time 0 moves to the new position
x = η[t](x0) in the time t. The displacement mapping is at least absolutely continuous in time
and η[t] in the time t is a diffeomorphism. It has to satisfy det(∇η[t]) 6= 0, which means that
an elementary volume can not degenerate to surface. This condition implies det(∇η[t]) > 0.
Equivalently, the motion of the continuum can be described by the velocity field u(t,x),
which is interrelated with the displacement mapping through a differential equation

d

dt
η[t](x0) = u(t,η[t](x0)), η[0](x0) = x0. (1.2)

For description of a fluid, we rather use the velocity, since the fluid is invariant with respect
to deformations. In this case, unknowns are the density ̺(t,x), the velocity u(t,x), and the
temperature ϑ(t,x) on a space-time domain Q = I × Ω, where I = (0, T ) is a finite time
interval and Ω ⊂ R3 a spatial domain.

1



2 1. PHYSICAL BACKGROUND

The rigid body is a physical model of an ideal solid-state object that does not deform at
all. Formally, it shall be represented by a connected compact subset of R3. Using the
displacement mapping (1.1), the body in the time t is a set S(t) = η[t](S0), where S0 is
the body in the initial position. Compactness of the body is preserved because η[t] is a
diffeomorphism. Since the body does not deform, we shall choose a local Cartesian system
connected with it. In particular, we can choose the local system in the time t = 0 parallel to
the system of ambient space with the origin Xs(0). We will write r for the local coordinates.
Body itself as well as its physical features, namely the density, the weight

ms :=

∫

S

̺(r) dr

and its thermal properties, remain constant in the local system. Therefore the motion of the
body is given by motion of the local system, which consists only of rotation and translation.
In other words, η[t] restricted to the body is an affine isometry ηS [t], namely

η[t](x0) = ηS [t](x0) := Xs(t) + O[t](x0 − Xs(0)) for any x0 ∈ S0, (1.3)

where the rotation is represented by an orthonormal tensor O[t] and the translation is given
by the motion of the local origin XS(t). It is convenient to identify the origin XS(0) with
the center of mass. Then we have

Xs(t) =
1

ms

∫

S(t)

̺(t,x)x dx = η[t]
(
Xs(0)

)
∀ t ∈ I.

The mapping ηs[t] extended to the whole R3 can also be viewed as a transformation from
the local system of the body to the system of the ambient space

x = ηs[t](r + Xs(0)) = Xs(t) + O[t]r.

In order to simplify notation, we shall define η and ηS for the negative times as a corre-
sponding inverse mappings

η[−t] := (η[t])−1, ηs[−t] := (ηs[t])−1.

Taking a time derivative of (1.3), we obtain condition for a rigid velocity

η̇
s
[t](x0) = Ẋ

s

(t) + Ȯ[t]r

= V (t) + Q[t]O[t]r (1.4)

= V (t) + ω(t) ×
(
ηs[t](x0) − Xs(t)

)
,

where V =
˙

Xs is the velocity of the center of mass. The tensor of angular velocity Q[t] acts

in the actual system, therefore Ȯ = QO. Furthermore, as O[t] is orthogonal, we have

0 = İ =
˙

OT O = QT + Q.

Accordingly, tensor Q[t] is antisymmetric and can be written in terms of the vector product
with the angular velocity ω. From the right-hand side of (1.4), we can read the velocity field
on the body

us(t,x) := V (t) + ω × (x − Xs(t)) ∀x ∈ S(t),

us(t, r) := us(t,x), x = ηs[t](r + Xs).

Thus in problem of evolution of a heat conducting rigid body, the unknowns are the velocity
of the center of mass V (t), the angular velocity ω(t) in the time interval I = (0, T ), and the
temperature ϑ(t,x) on the domain Ω.



1.1 Balance laws 3

1.1 Balance laws

After we have clarified what are the unknowns, we turn our attention to the equations. These
are based on the balance of the mass, the linear momentum, the angular momentum, and
the total energy, which have a common form

d

dt

∫

B(t)

q dx = boundary flux + volume sources, (1.5)

where q is a balanced quantity and B(t) = η[t](B) is evolution of some volume B. In order
to compute the left-hand side of (1.5), we apply Reynold’s transport theorem.

Theorem 1.1.1. Let I be a finite time interval and Ω ⊂ R3 a bounded domain. Let the
velocity field u ∈W 1,∞(Ω;R3) and the displacement mapping η according to (1.2) be given.
Finally, let q ∈ C1(I × Ω). Then for any B[t] ⊂ Ω, B[t] = η[t](B[0]) it holds

d

dt

∫

B[t]

q dx =

∫

B[t]

∂tq + div(qu) dx. (1.6)

Proof. Take f ∈ D(B[t]) and define χ(t,x) by χ(t,η[t](y)) = f(y). By definition, we have

0 =
d

dt
χ = ∂tχ+ u · ∇χ.

Then, we compute

d

dt

∫

B[t]

qχ dx =

∫

R3

∂tqχ− qu · ∇χ dx =

∫

B[t]

(
∂tq + div(qu)

)
χ dx.

Let the f tend to the characteristic function of B[t] and the statement follows.

1.1.1 Continuity equation

If we consider fluid enclosed in an impermeable vessel, there are no boundary fluxes nor
internal sources of the mass. Thus applying Reynold’s transport theorem, we get so called
continuity equation

∂t̺+ div(̺u) = 0. (1.7)

For a rigid body the same equation holds. Indeed, a direct calculation yields

∂t̺
s + div(̺sus) =

d

dt
̺s(t,x(t)) + ̺sdivus = 0, (1.8)

where divus = 0, since us is a rigid velocity.

1.1.2 Equations of motion

By the virtue of Newton’s second law of motion, we deduce following balance of the linear
momentum

d

dt

∫

B[t]

[̺u](t,x) dx =

∫

B[t]

F (t,x) dx +

∫

∂B[t]

T (t,x,n) dσ. (1.9)
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The first term on the right-hand side represents external volume forces F = ̺f , while the
second is integral of surface forces T . According to the Cauchy law [45, Chapter 2] the surface
force has a form

T (t,x,n) = T(t,x)n,

where T is called the Cauchy stress tensor. Then using Theorem 1.1.1 and the Green theorem
we we obtain a pointwise form of the balance law (1.9)

∂t(̺u) + div(̺u ⊗ u) = div(T) + ̺f (1.10)

called the momentum equation.

A similar balance law holds for the angular momentum

d

dt

∫

B(t)

r × ̺u dx =

∫

B(t)

r × F (t,x) dx +

∫

∂B(t)

r × (Tn) dσ. (1.11)

If we subtrace (1.10) multipied by r and integrated over B, we obtain symmetry condition
for T:

0 =

∫

B

εijk(∂lrj)Tkl dx +

∫

B

εijkrj(∂lTkl) dx −
∫

B

εijkrj(∂lTkl) dx =

∫

B

εijkTkj dx.

The motion of the body is given by the translation velocity V and the angular velocity ω.
The former is governed by the conservation law for the linear momentum of the whole body:

d

dt

∫

S[t]

̺sus dx = ms d

dt
V s(t) = F s(t) :=

∫

∂S[t]

Tn dσ +

∫

S[t]

̺sf dx. (1.12)

For the later one, we have conservation of the angular momentum

d

dt

∫

S[t]

r × (̺sus) dr =
d

dt

∫

S

r ×
(
̺sr × ω(t)

)
dr =

M s(t) :=

∫

∂S[t]

r × Tn dσ +

∫

S[t]

r ×
(
̺sf(t,x)

)
dx. (1.13)

On the right-hand side of (1.12) and (1.13), there appears a surface force Tn, which represents
mechanical interaction between the fluid and the body.

1.1.3 Energy balance

The total energy E of an elementary volume consist of the kinetic energy 1
2̺|u|2 and the

internal energy ̺e(̺, ϑ). In accordance with the first law of thermodynamics, which we will
discuss in the next section, the change of the total energy in the volume B[t] is caused partly
by the work of volume and surface forces and partly by the heat flux q. The energy balance
reads

d

dt

∫

B[t]

1

2
̺|u|2 + ̺e(̺, ϑ) dx =

∫

B[t]

̺f · u dx +

∫

∂B[t]

(Tn) · u dσ −
∫

∂B[t]

q · n dσ. (1.14)
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Using again the transport theorem 1.1.1, we infer the pointwise form of the total energy
equation

∂t(
1

2
̺|u|2 + ̺e(̺, ϑ)) + div(

1

2
̺|u|2u + ̺e(̺, ϑ)u) + divq = div(Tu) + ̺f · u. (1.15)

Multiplying (1.10) by u and using (1.7), we arrive at the kinetic energy equation

∂t

(1

2
̺|u|2

)
+ div

(1

2
̺|u|2u

)
− div(Tu) = −T : ∇u + ̺f · u. (1.16)

It can be subtracted from (1.15), which yields the internal energy equation

∂t(̺e) + div(̺eu) + divq = T : ∇u. (1.17)

As we will see later, for the fluid, the stress tensor has a form T = S − pI, where p is the
pressure and S the viscous stress tensor. Then there appears a new term pdivu in (1.17),
which can be used to expres the energy balance also in terms of the entropy. Using continuity
equation (1.7) and Gibbs equation (1.24), one gets

∂t(̺e) + div(̺eu) + pdivu −
[
∂t̺+ div̺u

]

︸ ︷︷ ︸

0

(p

̺
+ e

)

= (1.18)

C.E.
= ̺

[
∂te− p̺−2∂t̺

]
+ ̺u ·

[
∇e− p̺−2∇̺

]
=

Gibbs
= ϑ

[
̺∂ts+ ̺u · ∇s

]
= ϑ

[
∂t(̺s) + div(̺su)

]
.

Thus dividing (1.17) by ϑ, we obtain entropy equation

∂t(̺s) + div(̺su) + div
(q

ϑ

)

=
1

ϑ

(

S : ∇u − q · ∇ϑ
ϑ

)

= σ, (1.19)

where σ is called the entropy production rate.

On the solid region, the equations (1.15), (1.17), and (1.19) remain valid in particular since
the symmetric part of the velocity gradient Du is zero for the rigid velocity (c.f. Lemma
4.1.3). For example, (1.17) reduces to the usual heat equation

̺cv ∂tϑ+ ̺cv ∇ϑ · u + divq = 0,

where cv = ∂e
∂ϑ is the specific heat at constant volume.

1.2 Thermodynamics and constitutive equations

The equations we have derived up to now are valid for the general continuum, in particular
they do not reflect any material properties of matter in the question. On the other hand the
system of equations (1.7), (1.10), (1.15) is not complete. We have to determinate the stress
T, the heat flux q, as well as the pressure p, the internal energy e, and the entropy s in terms
of of the state variables ̺, u, ϑ.

Widely accepted definition of the fluid says that a fluid deforms as long as the shear stress
is applied. It means that the shear stress is independent of the deformation. Usually the
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fluid is also isotropic that is invariant with respect to the rotation of the coordinate system.
Symbolically:

OT T(E)O = T(OT EO), for any orthonormal matrix O, (1.20)

whenever T is a function of a tensor E. Consequently, the stress tensor has a form

T = S(ϑ, ̺,∇u) − p(ϑ, ̺)I, (1.21)

where the pressure p is a general function of the temperature and the density and it represents
a bulk deformation. The viscous stress tensor S depends on the rate of deformation, i.e. on the
gradient of the velocity, and possibly on the temperature and the density. As a consequence
of the isotropy condition (1.20), the viscous stress S depends only on the symmetric part of
the velocity gradient

Du =
1

2

(
∇u + ∇uT

)
.

In this work, we consider a Newtonian fluid, which is characterized by the linearity of the
viscous stress with respect to Du. The constitutive relation then reads

S = 2µ
(
Du − 1

3
divuI

)
+ ζdivuI. (1.22)

The shear viscosity µ and the bulk viscosity ζ are in general functions of ϑ and ̺. However,
because our mathematical theory does not cope with the viscosities dependent on the density,
we assume they are only functions of the temperature.

For the heat flux q, we consider Fourier’s law

q = −κ(ϑ)∇ϑ. (1.23)

In general, the heat conductivity coefficient κ is a function of both the density and the
temperature, but for the simplicity, we assume only the dependence only on temperature.

The heat transfer is caused by two different mechanisms. On the one hand the heat spreads by
the chaotic motion of the particles. This process is called heat advection and it is significant
mainly at low temperatures. On the other hand, at high temperatures, collisions between
particles have enough energy to change their internal quantum states, which is accompanied
by the release of photons. This radiation is absorbed elsewhere and effectively produce the
heat transfer. According to these considerations, the heat conductivity compose of two parts

κ = κG + κR,

where the classical conductivity κG of the prefect gas is of the same order as the viscosity
κ(ϑ) ≈ µ(ϑ), while the radiation part behaves like κR ≈ ϑ3, see for example [3].

In accordance with the second law of thermodynamics, the entropy production is non-negative

σ =
1

ϑ

(

S : ∇u − q · ∇ϑ
ϑ

)

≥ 0.

This is also called the Clausius-Duhem inequality. Consequently, in view of relations (1.22)
and (1.23), it has to be

µ, ζ, κ ≥ 0.
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1.2.1 Equation of state

In order to obtain constitutive relations for the remaining functions p(ϑ, ̺), e(ϑ, ̺) and s(ϑ, ̺),
we assume an elementary volume in thermodynamical equilibrium, so that we can apply the
classical thermodynamics. According to the first law of thermodynamic, the change of the
internal energy is equal to the absorbed heat minus the work performed by the gas. In the
language of differentials, this can be written as the so-called the Gibbs equation

de = ϑ ds− p dV. (1.24)

Equivalently, for the free energy A = e− sϑ, we have

dA = ϑ ds− pdV − dsϑ− sdϑ = −sdϑ− p dV.

Differentiating with respect to ϑ and V , we obtain one of the Maxwell relations

( ∂s

∂V

)

ϑ
=

( ∂p

∂T

)

V
= − ∂2A

∂V ∂ϑ
. (1.25)

The equations (1.24) and (1.25) imply general constrains for the choice of the functions
p(ϑ, ̺), e(̺, ϑ), s(̺, ϑ), namely

∂e

∂̺
= − 1

̺2

( ∂e

∂V

)

ϑ
=

1

̺2

(

p− ϑ
∂p

∂ϑ

)

(1.26)

∂s

∂̺
= − 1

̺2

( ∂s

∂V

)

ϑ
= − 1

̺2

∂p

∂ϑ
(1.27)

∂s

∂ϑ
=

(∂s

∂e

)

V

( ∂e

∂ϑ

)

V
=

1

ϑ

∂e

∂ϑ
=

1

ϑ
cv. (1.28)

Through the last equation, we have also defined cv — the specific heat at the constant volume.

Similarly as in the case of the heat conductivity, we assume that the pressure consist from
the pressure of the perfect gas pG and the pressure caused by radiation pR,

p = pG + pR.

For the perfect gas the pressure is related to the specific internal energy by a relation

pG =
2

3
̺eG; (1.29)

one can consult for example [31, Chapter 4]. On the other hand, referring to [11, Chapter
15], the radiation part has a form

pR =
a

3
ϑ4. (1.30)

Having a constitutive relation for the pressure, the equation (1.26) can be to determine e up
to the function of the temperature. We consider the specific internal energy

e(̺, ϑ) = eG(̺, ϑ) + eR(ϑ),

where in accordance with (1.26) the radiation part is given by

eR =
a

̺
ϑ4,



8 1. PHYSICAL BACKGROUND

while eG as well as pG has to be resolved from (1.29) and (1.26). For p = pG, we obtain an
equation

p =
3

5
̺
∂p

∂̺
+

2

5
ϑ
∂p

∂ϑ
.

It can be integrated as follows. On the line ̺ = 0, one has p(0, ϑ) = Cϑ
5
2 , which suggest

solution in the form p(̺, ϑ) = P (̺, ϑ)ϑ
5
2 . Such a substitution yields

0 =
3

2
̺
∂P

∂̺
+ ϑ

∂P

∂ϑ
. (1.31)

One can see that P is constant on the lines given by equation

∂̺

∂ϑ
=

3

2

̺

ϑ
.

Its solution is satisfies ̺ϑ−
3
2 = const., thus the pressure p = pG is

pG(̺, ϑ) = ϑ
5
2P (Y ), Y = ̺ϑ−

3
2 (1.32)

and the internal energy

eG(̺, ϑ) =
3

2
ϑP (Y )Y −1,

where P (Y ) is a suitable C1[0,∞) function.

In accordance with principles of statistical physics, the pressure is positive non-decreasing
function of the density, and it should be zero for the vanishing density. Consequently the
function P has to satisfy

P (0) = 0, and P ′(Y ) ≥ 0 on [0,∞). (1.33)

The later condition is called thermodynamics stability condition. Furthermore, the specific
heat at constant volume cv is always positive, which leads to

0 < cv(Y ) :=
∂e

∂ϑ
=

3

2

1

̺

∂p

∂ϑ
=

9

4Y

(5

3
P (Y ) − P ′(Y )Y

)

. (1.34)

Hence we deduce
(
P (Y )Y − 5

3

)′
= Y − 8

3

(
P ′(Y )Y − 5

3
P (Y )

)
< 0

and therefore
inf
Y >0

P (Y )Y − 5
3 = lim

Y →∞
P (Y )Y − 5

3 ≥ 0. (1.35)

However, when Y = ̺ϑ−
3
2 approaches infinity, the gas exhibits degeneration phenomena

(see [11, Chapter 15] and [22, Chapters 2, 3]). For example, so-called Fermi gas (see [11,
Chapters 6, 15] and [31, Chapter 4]) keeps the pressure positive as the temperature tends to
the absolute zero, thus

lim
ϑ→0+

p(̺, ϑ) = pc(̺) > 0 for any ̺ > 0.

This limit always exists, since the pressure is non-negative and non-decreasing function of
the temperature in accordance with (1.33). On the other hand

pc(̺) = ̺
5
3 lim

ϑ→0+
(̺−

2
3ϑ)

5
2P

(

(̺−
2
3ϑ)−

3
2

)

= ̺
5
3 pc(1), for any ̺ > 0.
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Hence, comparing to (1.35), we obtain even a sharp inequality

lim
Y →∞

P (Y )Y − 5
3 = pc(1) = P∞ > 0 (1.36)

as is required later in the hypotheses (3.15), (4.19). The growth condition present in these
hypotheses seems to be also physically relevant as according to [41], one has

P (Y ) ≈ aY
5
3 + bY

1
3 + lower order terms.

The specific entropy again consist from the classical and the radiation part

s = sR + sG,

where due to (1.28)

sR(ϑ) =
4

3

a

̺
ϑ3,

while for s = sG, one can use also (1.27) and (1.29) to derive the equation

∂s

∂̺
= − 1

̺2

2

3
̺
∂e

∂ϑ
= −2

3

ϑ

̺

∂s

∂ϑ
,

In fact, this is very same equation as (1.31), thus the specific entropy sG has to be a function
of Y , namely

s(̺, ϑ) = S(Y ), Y =
̺

ϑ
3
2

. (1.37)

Moreover due to (1.28), one has

∂s

∂ϑ
= S′(Y )̺

(

− 3

2

)

ϑ−
5
2 ,=

1

ϑ
cv(Y ),

which implies

S′(Y ) = −2

3
cv(Y )Y −1 = −3

2
Y −2

(5

3
P (Y ) − P ′(Y )Y

)

. (1.38)

For a constant cv, the function S(Y ) behave like − log(Y ) and it is natural to fix an additive
constant by S(1) = 0. Doing the same in the general case, we can write

S(Y ) = −2

3

∫ Y

1

cv(s)s−1 ds. (1.39)

Another possible normalization of the entropy follows form the third law of thermodynamics,
which states that the entropy tends to zero as ϑ→ 0. Then a natural normalization is given
by condition

lim
Y →∞

S(Y ) = 0.

1.2.2 Barotropic flows

Because of an enormous complexity of the model based on the general constitutive laws, the
first mathematical theory for a compressible fluid [29] was done for the case of the barotropic
flow, where one assumes the pressure to be a function of the sole density. Possible physical
explanation and mathematical consequences of this simplification is the topic of this section.
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Let us consider the flow of a compressible fluid. If the velocity gradient and/or viscosities are
small, the dissipation (i.e. transformation of the kinetic energy into heat) may be neglected.
Similarly, in the case of small heat conductivity of the gas and/or small temperature gradients,
the heat flux q may be neglected, as well. Such a flow called adiabatic. Taking into account
the entropy equation (1.19), it appears that in the adiabatic case, the entropy production
is zero and the specific entropy is constant along trajectories of fluid particles. This implies
that the pressure has a particular form

p(̺) = a̺γ , a > 0, γ > 1, (1.40)

where γ ≥ 1 is the so called adiabatic constant and a > 0 is a constant along any trajectory.
In the sequel, we will assume that the flow is isentropic, which means that a is constant
across all trajectories. This is a particular case of the barotropic flow.

In the barotropic case, the pressure is independent of the temperature. Consequently the
equations (1.7), (1.10) form an enclosed system, while, once (̺,u) is known, (1.17) can be
used to determine the temperature field.

It is shown in statistical physics that the adiabatic constant γ in (1.40) depends on the
number M of the degrees of freedom of the molecules of the gas. One has γ = 5

3 ≈ 1.66 for

the mono-atomic gas, γ = 7
5 = 1.4 for the air and in general γ = M+2

M . Parameters similar
to γ appear in the complete theory of the viscous compressible fluids described by the full
Navier-Stokes-Fourier system (1.7 − 1.17), and from the mathematical point of view, they
determine the quality of density estimates. That is why the simplified isentropic model for
compressible fluids is important, in spite of its slightly contradictory physical background.
Some new advances in the existence theory for the steady isentropic flow are presented in
Chapter 5.

1.2.3 Constitutive equations for solid state

On the solid region that correspond to the rigid bodies it is enough to prescribe constitutive
equations for the thermal quantities, namely the internal energy es, the entropy ss and the
heat conductivity κs. From the physical point of view, the simplest model is a homogeneous
linear material with constitutive relations

es = es(ϑ) = Cvϑ, ss = ss(ϑ) = Cv log ϑ, κs = κ.

Nevertheless, the mathematical theory we are going to use needs presence of the radiation
part. Therefore, we assume

es = es(̺, ϑ) = eG(̺, ϑ) + eR(ϑ), ̺eR = aϑ4,

ss = ss(̺, ϑ) = sG(̺, ϑ) + sR(ϑ), ̺sR = aϑ4,

κs = κs(ϑ) = κs
G(ϑ) + κs

R, κ
s
G ≈ ϑ, κs

R = asϑ4.

Still, this can be a physically relevant model, if we could allow different e, s on the fluid and
on the rigid region. Unfortunately this is not the case because of the technical difficulties in
the existence theory explained briefly in Section 4.9. Consequently, we have to assume the
same e, s on the both regions. However the heat conductivity is allowed to be different.
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1.3 Fluid-solid interaction

In order to obtain mathematically well-posed problem, we have to specify the boundary
conditions on ∂Ω as well as on the body surface ∂S. Let us denote uf , us the velocity field
on the fluid region and on the rigid region, respectively. Similarly, qf , qs shall be the heat
flux on the fluid and on the solid region. We consider noslip boundary conditions for the
velocity on all surfaces

uf = 0 on ∂Ω, uf [t] = us[t] on ∂S[t], ∀t ∈ I. (1.41)

For the temperature, there are natural Neumann boundary conditions

qf · n = 0 on ∂Ω qf · n[t] = qs · n[t] on ∂S[t], ∀t ∈ I. (1.42)

Another boundary conditions have appeared already in the boundary terms in (1.12) and
(1.13). To give a sense to all these boundary conditions, we have to assume that all quantities
in question, namely uf , qf , T, and us, qs, are continuous up to the boundary ∂S ∪ ∂Ω.
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Chapter 2

Mathematical apparatus,

Notation

We denote by N a set of positive integers and by R the real numbers. An N -dimensional
Euclidean space will be denoted by RN . Elements of RN are (column) vectors and we denote
them by bold letters. By a doubled typeface, e.g. A,B, . . . , we will denote 2-tensors on RN ,
which can be understood as linear mappings from RN to RN as well as N ×N matrices.

An open set Ω ⊂ RN is called connected if every two points in Ω can be connected be a
piecewise linear curve in Ω. By Ω we usually denote a domain, i.e. an open and connected
set. If the boundary ∂Ω of the domain Ω ⊂ RN can be locally described by a finite system
of Lipschitz continuous mappings fj : RN−1 → R, we speak about Lipschitz domain. If the
mappings fj are from Ck,µ(RN−1), see definition below, we speak about domain of class Ck,µ

and we write ∂Ω ∈ Ck,µ.

Next, we denote Br(x) := {y ∈ RN | |x − y| ≤ r} the ball of radius r at the point x. A
ball at origin, Br(0), we denote simply Br. For a set M , we denote by 1M its characteristic
function.

2.1 Spaces

A vector α = (α1, . . . , αN ) of non-negative integers is called a multiindex of dimension N .

The length of multiindex α is a number |α| =
∑N

i=1 αi. With help of multiindexes, we can
write

Dαf :=
∂α
1 . . . ∂

α
Nf

∂xα1
1 . . . ∂xαN

N

for multiple partial derivatives of a function f of N variables.

For a domain Ω, we introduce following linear spaces: a space C(Ω) of functions continuous
on Ω and C0(Ω) ⊂ C(Ω) a space of functions with compact support in Ω. For k ∈ N, we
denote by Ck(Ω) a space of functions with continuous partial derivatives up to the order
k on Ω and by Ck(Ω) a space of functions, which derivatives up to the order k can be

13
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continuously extended up to the boundary. In particular, we have C0(Ω) = C(Ω). Finally,
we shall denote AC(Ω) absolutely continuous functions on the domain Ω. Let us recall that
the first derivative of an absolutely continuous function belongs to the space L1(Ω). The
space Ck(Ω) and the spaces C0(Ω), AC(Ω) ⊂ Ck(Ω) endowed with norm

∥
∥f

∥
∥

Ck(Ω)
:=

∑

|α≤k|

sup
x∈Ω

|Dαf |.

are Banach spaces. Moreover, we set

C∞(Ω) = ∩∞
k=1C

k(Ω), C∞(Ω) = ∩∞
k=1C

k(Ω), and D(Ω) = C∞
0 (Ω) = C0(Ω) ∩ C∞(Ω).

The space D(Ω) is endowed with the topology of local uniform convergence, i.e. vn → v in
D(Ω), iff there exists a compact K such that

supp vn ⊂ K, and Dαvn → Dαv, in C(K) for all multiindices α.

A function f ∈ C(Ω) is Hölder continuous, if there exist constants µ ∈ (0, 1], L > 0 such that

|f(x) − f(y)| ≤ L|x − y|µ, ∀x,y ∈ Ω.

If µ = 1, we speak of Lipschitz functions. We define a Banach space Ck,µ(Ω), k ∈ 0, 1, . . . of
the functions with Hölder continuous derivatives up to order k endowned with norm

∥
∥f

∥
∥

Ck,µ(Ω)
:=

∥
∥f

∥
∥

k−1,µ
+

∑

|α|=k

sup
x,y∈Ω
x 6=y

|Dαf(x) −Dαf(y)|
|x − y|µ .

If X is a metric space, one can define a Banach space C(Ω;X) of continuous functions on Ω
with values in the spaceX. Similarly one can define Banach spaces Ck(Ω;X) and Ck,µ(Ω;X).

We shall use standard the Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞ and the Lebesgue spaces of
functions with zero average

Lp(Ω) := {f ∈ Lp(Ω) |
∫

Ω

f dx = 0}.

Similarly, the standard notation W k,p(Ω) is used for the Sobolev spaces with norm

∥
∥f

∥
∥

W k,p(Ω)
=

∥
∥f

∥
∥

k,p
:=

( k∑

|α|=0

∥
∥Dαf(x)

∥
∥

p

Lp(Ω)

) 1
p

.

In particular, W 0,p(Ω) = Lp(Ω) and
∥
∥f

∥
∥

Lp(Ω)
=

∥
∥f

∥
∥

p
. The space W k,p

0 (Ω) is closure of D(Ω)

in (k, p)-norm. We denote W−k,p′

(Ω) the dual space of W k,p
0 (Ω), where p′ is dual exponent

1 = 1
p + 1

p′
. A natural extension are the spaces of vector valued functions W k,p(Ω;RN ),

W k,p
0 (Ω;RN ). Developing further this idea, one obtains the Bochner spaces Lp(I;X) of

Lp-integrable functions with values in some Banach space X, where the norm is defined as

∥
∥f

∥
∥

Lp(I;X)
=

∥
∥
∥
∥f(t)

∥
∥

X

∥
∥

Lp(I)
.

For an unbounded domain Ω, we denote Ck,µ
loc (Ω), W k,p

loc (Ω) the functions that are in Ck,µ(K),
W k,p(K) for any compact K ⊂ Ω.
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The Sobolev spaces have number of important and well known properties, in particular there
exist extension and trace operators for the Lipschitz domains. One can find for example in
monographs [2], [46], the corresponding theorems and proofs. Here, we cite only the most
important for us, the Rellich-Kondrachov compactness theorem:

Theorem 2.1.1. Let Ω ⊂ RN be a bounded domain and p ≥ 1, k > 0. Then

• if kp < N , the space W k,p
0 (Ω) is continuously imbedded in Lq(Ω) for any

1 ≤ q ≤ p∗ =
Np

N − kp
.

Moreover, the imbedding is compact if q < p∗.
• If kp = N , the space W k,p

0 (Ω) is compactly imbedded in Lq(Ω) for any 1 ≤ q <∞.

• If kp > N + µ, µ > 0, the space W k,p
0 (Ω) is compactly imbedded in C0,µ(Ω).

Using the extension operator, the conclusion of the theorem remains valid even for the space
W k,p(Ω), provided Ω is a Lipschitz domain.

Next, we introduce smoothing kernels

ωδ(x) =
ω̃δ(x)

∥
∥ω̃δ

∥
∥

L1(RN )

, ω̃δ(x) = ω
( |x|
δ

)

, (2.1)

where ω ∈ D(R) is an even, non-negative function with support (−1, 1). The smoothing
kernels can be used to construct smooth approximations of distributions. Let v ∈ D′(Ω),
then ωδ ⋆ v ∈ D(RN ) and if v ∈ X(Ω), where X stands for Lp, W k,p, or Ck.µ space, then

ωδ ⋆ v → v strongly in X(Ω).

For a non-decreasing, concave function

T ∈ C∞([0,∞)), T (t) =

{

t on [0, 1],

2 on [3,∞),

we define cut-off functions.

Tk(t) := kT
( t

k

)

.

If f ∈ Lp(Ω), then Tk(f) belongs in L∞(Ω) and by virtue of Levi’s theorem,

Tk(f) → f strongly in Lp(Ω) as k → ∞.

Poincaré inequalities allow to control W 1,p-norm by the Lp-norm of the first derivatives and
L1-norm of the function. The following lemma is a version of such an inequality inspired by
Lemma 3.2 in [14].

Lemma 2.1.2. Let Ω ⊂ RN be a bounded domain, and let 0 < λ < p, p > 1 be given. Let
v ∈ W 1,p(Ω), and let ̺ be a non-negative function such that 0 < m ≤

∥
∥̺

∥
∥

1
and

∥
∥̺

∥
∥

γ
≤ M ,

γ > 1. Then

∥
∥v

∥
∥

Lp(Ω)
≤ c(p, λ,m,M)

(
∥
∥∇v

∥
∥

Lp(Ω;RN )
+

( ∫

Ω

̺|v|λ dx
) 1

λ

)

. (2.2)
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Proof. Let assume by contradiction that the statement does not hold. Then for any n ∈ N,
we can find vn, ̺n such that

∥
∥vn

∥
∥

Lp(Ω)
≥ n

(
∥
∥∇vn

∥
∥

Lp(Ω;RN )
+

( ∫

Ω

̺n|vn|λ dx
) 1

λ

.

)

(2.3)

Consequently, for wn = vn

∥
∥vn

∥
∥
−1

Lp(Ω)
, we have

∥
∥∇wn

∥
∥

Lp(Ω)
→ 0 and

∥
∥wn

∥
∥ → w in Lp(Ω)

because of compact imbedding, where w ≡ |Ω|− 1
p . This, in fact, yields strong convergence

wn → w in W 1,p(Ω).

On the other hand, as
∥
∥̺n

∥
∥

γ
≤M , we can find k such that

Tk(̺n) → Tk(̺) weakly in Lβ(Ω) for every β ≥ 1,

where ∫

Ω

Tk(̺) dx ≥ m

2
. (2.4)

Here, we introduce a notation that f denotes the weak L1-limit of the sequence fn. The
former fact together with (2.3) leads to

0 = lim
n→∞

∫

Ω

̺n|wn|λ dx ≥ lim
n→∞

∫

Ω

Tk(̺n)|wn|λ dx = |Ω|−λ
p

∫

Ω

Tk(̺) dx,

which is in contrast with (2.4).

We enclose this section by several auxiliary resutls. In the following lemma, we introduce the
Bogovskii operator B, which is a particular inverse operator of the divergence on a Lipschitz
domain. The full proof of the lemma as well as references to the original works, one can find
in Section 3.3 of [37].

Lemma 2.1.3. Let Ω be a bounded Lipschitz domain. Then there exists a linear operator

B : Lp(Ω) →W 1,p
0 (Ω;RN ), 1 < p <∞,

such that
divB(f) = f a.e. in Ω for all f ∈ Lp(Ω).

This operator is continuous,
∥
∥B(f)

∥
∥

1,p
≤ c(p,Ω)

∥
∥f

∥
∥

p
, (2.5)

and if f = div g for some g ∈ Lq(Ω;RN ) (with div g ∈ Lp(Ω)), then

∥
∥B(f))

∥
∥

q
≤ c(q,Ω)

∥
∥g

∥
∥

q
. (2.6)

Remark 2.1.4. The operator itself does not depend on p but only on the domain Ω. Fur-
thermore, the constants in (2.5) and (2.6) in fact depends only on the Lipschitz constant of
the boundary ∂Ω.



2.2 Compactness tools 17

Next, we recall the Gronwall lemma, which is essentially used in the energy estimates of
evolution equations.

Lemma 2.1.5. [26, Lemma 4.3.1] Let h ∈ L∞(0, T ), h ≥ 0, a ∈ R, and b ∈ L1(0, T ), b ≥ 0
satisfy the inequality

h(t) ≤ a+

∫ t

0

b(s)h(s) ds, for all t ∈ [0, T ].

Then

h(t) ≤ a exp
( ∫ t

0

b(s) ds
)

for a.e.t ∈ [a, b].

We end with the Shauder fixed point theorem:

Theorem 2.1.6 (Theorem 2.1.2 in [33]). Let A be a closed bounded convex subset of a Banach
space X and f : A→ A a compact mapping, i.e. continuous mapping that maps bounded sets
on the compats. Then, there exists v ∈ A such that f(v) = v. Such v is called a fixed point
of f .

2.2 Compactness tools

We say that a sequence vn in a Banach space X converges weakly to v ∈ X, iff

〈f, vn〉 → 〈f, v〉 for every f ∈ X∗,

where X∗ denotes the dual of X. Similarly, a sequence fn in X∗ converges weakly-∗ to
f ∈ X∗, iff

〈fn, v〉 → 〈f, v〉 for every v ∈ X.

For reflexive spaces the weak and weak-∗ topology are equivalent. We shall denote Xweak a
linear space X with the weak topology, A crucial result in the theory of partial differential
equations is weak-∗ compactness of bounded sets stated in the Alaoglu-Bourbaki theorem:

Theorem 2.2.1. Let X∗ be the dual space of a Banach space X and M a bounded subset
of X∗. Then M is precompact in weak-∗ topology of X∗. In particular, from any sequence
vn ∈M , one can take a subsequence (not relabeled) such that

vn → v weakly-∗ in X∗.

If the space X is separable, the weak-∗ topology is metrizable on bounded sets of X∗. Then
one can introduce the space C(Ω;X∗

weak). For every its member f , the function 〈f(t), v〉 is
continuous uniformly with respect to the choice of v ∈ X. Very usefull characterization of
compact sets in C(Ω;X) is the following abstract Arzelà-Ascoli theorem:

Theorem 2.2.2. [25, Chapter 7, Theorem 17] Let K ⊂ RN be compact and X a compact
metric space endowed with a metric dX . Let {vn}∞n=1 be a sequence of functions in C(K;X)
which is equi-continuous, that is for any ε > 0 there is δ > 0 such that

|y − z| < δ =⇒ dX

(
vn(y), vn(z)

)
≤ ε, independently of n.
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Then {vn}∞i=1 is precompact in C(K;X). In particular, there exists a subsequence (not rela-
beled) and a function v ∈ C(K;X) such that

sup
y∈K

dX

(
vn(y), v(y)

)
→ 0 as n→ ∞.

In the next theorem, we have summarized some usefull properties of convex functions.

Theorem 2.2.3. [14, Theorem 2.11 and its Corollary 2.2] Let O ⊂ RN be a bounded mea-
surable set and Φ : RM → (−∞,+∞] be a lower semi-continuous convex function. Let
{vn}∞n=1 be a sequence of functions such that

vn → v weakly in L1(O;RM )

and

Φ(vn) → Φ(v) weakly in L1(O).

Then

Φ(v) ≤ Φ(v) a.e. on O

and ∫

O

Φ(v) dy ≤ lim inf
n→∞

∫

O

Φ(vn) dy.

If, moreover, Φ is strictly convex on an open convex set U ⊂ RM , and

Φ(v) = Φ(v) a.e. on O,

then

vn(y) → v(y) for a.e. y ∈ O ∩ {v ∈ U},
extracting a subsequence as the case may be.

In general, the weak limits does not commute with multiplication, i.e. w v 6= w v. However,
for certain products, the celebrated Div-Curl lemma due to Tartar [44] can be used.

Lemma 2.2.4. Let Ω ⊂ RN be a bounded domain. Let

vn ⇀ v weakly in Lp(Ω;RN ), wn ⇀ w weakly in Lq(Ω;RN ),

where 1
p + 1

q = 1
r < 1, 1 < p, q <∞ and let

divvn and curlwn be precompact in W−1,s(Ω), W−1,s(Ω;RN×N )

respectively, for some s > 1. Then

vn · wn → v · w weakly in Lr(RN ).

We conclude with two results concerning the R-operator in R3, which is defined via Fourier
transform by the formula

Ri,j [v] := F−1
(
− ξiξj |ξ|−2 F(v)

)
= ∇i∇j∆

−1v, (2.7)
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where

∆−1v[x] = F−1
(
− |ξ|−2F(v)

)
=

∫

R3

v(y)|x − y|−1 dx. (2.8)

It is a continuous operator from Lp(R3) to Lp(R3), 1 < p <∞ and it holds

Ri,j = Rj,i,

∫

R3

Ri,j [v]w dx =

∫

R3

vRi,j [w] dx.

As a corollary of Lemma 2.2.4, we get the following commutator lemma (see [14, Corol-
lary 6.1])

Corollary 2.2.5. Let 1 < p, q <∞, 1
p + 1

q = 1
r < 1 and

fn → f weakly in Lp(R3),

gn → g weakly in Lq(R3).

Then
fnRi,j [gn] − gnRi,j [fn] −→ fRi,j [g] − gRi,j [f ] weakly in Lr(R3). (2.9)

Furthermore, we cite the result due to Feireisl [12] in spirit of Coifman and Meyer [6].

Lemma 2.2.6. Let V ∈ L2(R3;R3) and w ∈ W 1,r(R3), r > 6
5 . Then there exist constants

c(r) > 0, ω(r) > 0, and p(r) > 1 such that
∥
∥Ri,j [wVj ] − wRi,j [Vj ]

∥
∥

W ω,p(R3,R3)
≤ c

∥
∥w

∥
∥

W 1,r(R3)

∥
∥V

∥
∥

L2(R3,R3)
.

2.2.1 Young measures

Let Ω ⊂ RN be a domain. We say that ψ(x,y) is a Carahheodory function on Q× Rm if

the function ψ(x, · ) is continuous on Rm for a.a. x ∈ Q

the function ψ( · ,y) is measurable on Q for all y ∈ Rm.

}

(2.10)

Let consider a family probablity measures {νx} parametrized by points x ∈ Q. This family
we call Young measure if for every ϕ ∈ C(Rm) ∩ L∞(Rm) the function

x →
∫

Rm

ϕ(y) dνx(y) ≡ 〈νx, ϕ〉

is meeasurable on Q. Young measures can be used to represent a limit of a weakly converging
sequence composed with a nonlinear function, which is statement of the following theorem.

Theorem 2.2.7. [38, Theorem 6.2] Let Ω ⊂ RN be a domain and fn : Q→ Rm a sequence
of functions converging weakly to f in Lp(Ω;Rm) for some p > 1. Then there exists a Young
measure νx such that

ψ(x) =

∫

Rm

ψ(x,y) dνx(y)

whenever ψ is a Caratheodory function on Q × Rm and the sequence ψ( · , fn( · )) admits a
weak L1-limit ψ.
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Chapter 3

Existence theory for a

non-homogeneous fluid

In this chapter, we shall treat the existence problem for a gas with heterogeneous constitutive
laws, which we will use later in Chapter 4 as an approximation for the problem of rigid bodies.
As a matter of fact, the variational formulation based on the entropy inequality does not cope
well with fully heterogeneous constitutive equation for the internal energy and the entropy.
The problem is explained in Section 4.9. Therefore we consider only the transport coefficients,
namely the viscosities µ, λ and the heat conductivity coefficient κ, to be space and/or time
dependent. More specifically, we shall assume that they are transported by some smooth
artificial velocity field U .

The first existence result for global-in-time solutions to the incompressible Navier-Stokes
system was achieved by Leray [28] in 1934. In this pioneering work he also introduced the
concept of weak solutions. A similar result for a compressible fluid in isentropic regime was
proved by P.-L. Lions in [29] (1998). Further essential contribution and extension of the
existence theory for the complete system with the temperature is mainly due to Feireisl.
In [13] he introduced a concept of oscillation defect measure for the density, which allows to
treat an isentropic flow with realistic adiabatic constants in three dimensions. In the book
[14] he has presented complete existence theory for a compressible heat conducting fluid
with quite general constitutive laws. Later improvements cope, among other things, with
temperature dependent viscosities [12], the total energy equality and entropy formulation [9],
and the general constitutive equation for the ideal gas [17].

The existence theory presented in this chapter is based on papers [9], [17] with only slight
modifications in order to accommodate heterogeneous constitutive equations for the trans-
port coefficients. In Section 3.1, we define the variational solution and we state the main
result. Its proof, which is performed in subsequent sections, consists of the standard chain
of approximations. First, in Section 3.2, we construct local-in-time solution to the Faedo-
Galerkin approximation of modified system. Then, we gain the estimates independent of time
and extend the solution on an arbitrary time interval. In Section 3.4, we pass to the limit
in the sequence of Faedo-Galerkin approximations and we obtain a solution of the system
with several regularizing terms. The aim of the last two sections 3.5, 3.6 is to remove the
additional terms letting their coefficients tend to zero. These last two limits share a lot of

21
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features with the high viscosity limit in Chapter 4, where the proof is explained in full detail,
therefore in actual chapter we present finely only the different steps.

3.1 Problem Formulation

As usual, we denote ̺, u, ϑ the density, the velocity, and the temperature, respectively.
Following [14], we introduce a concept of variational solutions to the system of equations
(1.7), (1.10), and (1.17).

Definition 3.1.1. We shall say that functions

̺ ∈ L∞(I;Lγ(Ω)), u ∈ L2(I;W 1,2
0 (Ω)), ϑ ∈ L2(I;W 1,2(Ω)) (3.1)

form a variational solution of problem (F) if

• The density ̺ is non-negative function a.e. on I × Ω and ϑ > 0 a.e. on I × Ω)).

• The continuity equation (1.7) is satisfied in the sense of distributions,

∫

I

∫

Ω

̺∂tϕ+ ̺u · ∇ϕ dx dt = 0, ϕ ∈ D(I × Ω). (3.2)

• The momentum equation (1.10) is satisfied in the sense of distributions as well,

∫

I

∫

Ω

̺u · ∂tϕ + ̺u ⊗ u : ∇ϕ + pdivϕ − S : ∇ϕ + ̺f · ϕ dx dt = 0 (3.3)

for any ϕ ∈ D(I × Ω;R3).

• The specific entropy satisfies an inequality

∫

I

∫

Ω

̺s∂tϕ+ ̺su · ∇ϕ− κ∇ϑ · ∇ϕ
ϑ

+
(S : ∇u

ϑ
+
κ|∇ϑ|2
ϑ2

)

ϕ dx dt ≤ 0 (3.4)

for any ϕ ∈ D(I × Ω), ϕ ≥ 0.

• At last, the total energy balance over the whole domain holds:

∫

Ω

E[t2] − E[t1] dx =

∫ t2

t1

∫

Ω

̺f · u dx dt, for a.e. t1, t2 ∈ I. (3.5)

In Definition 3.1.1, we have replaced the equation for the temperature by the entropy in-
equality (3.4) and the energy balance (3.5). The idea is to get rid of the term T : ∇u in
the internal energy equation (1.17). This term, as well as its counterparts in the equivalent
equations (1.19) and (1.15), is known to be only L1-integrable in time. Using the entropy
inequality is convenient, since one part of T : ∇u, namely S : ∇u is convex and can be
treated via weak lower semi-continuity, while the other part, pdivu, disappears during the
calculation (1.18). The total energy balance has to be included into formulation, in order to
keep formal equivalence with the original problem.
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Indeed, if the solution (̺,u, ϑ) is smooth, we can take ϑϕ as a test function in (3.4) and
perform a reversed calculation (1.18) to deduce

∫ T

0

∫

Ω

̺eϕt + ̺eu · ∇ϕ− κδ∇ϑ · ∇ϕ+ (S : ∇u − p divu)ϕ dx dt ≤ 0 (3.6)

for any ϕ ∈ D(I × Ω), ϕ ≥ 0. On the other hand for the smooth solution we easily obtain
the strong momentum equation (1.10) and the equation for the kinetic energy (1.16). The
later one can be integrated over Ω and subtracted from (3.5) to get

∫

Ω

(̺e)[t2] dx −
∫

Ω

(̺e)[t1] dx =

∫ t2

t1

∫

Ω

p divu − S : ∇u dx dt,

which excludes strict inequality in (3.6).

3.1.1 Renormalized Continuity Equation

In addition to the declarations of Definition (3.1.1), the solution we are going to construct
will satisfy the so-called renormalized continuity equation. The idea of renormalization for
the equations of hyperbolic type is due to DiPerna, Lions [8]. For regular solutions, one
can multiply (1.7) by B′(̺), where

B ∈ C1[0,∞), B(r) ≡ CM for r > M, (3.7)

and obtain

∂tB(̺) + div(B(̺)u) + b(̺)divu = 0, b(r) = B′(r)r −B(r). (3.8)

Similar renormalization procedure can be done even for the weak solutions provided the
density is square integrable.

Proposition 3.1.2. [14, Proposition 4.2] Let Ω ⊂ R3 be a domain and

̺ ∈ L2(I;L2(Ω)), u ∈ L2(I;W 1,2(Ω;R3)), and h ∈ L1(I × Ω)

satisfy
∂t̺+ div(̺u) = h in D′(I × Ω).

Then
∫ T

0

∫

Ω

B(̺)∂tϕ+B(̺)u · ∇ϕ−
(
b(̺)divu +B′(̺)h)ϕ dx dt = 0, ϕ ∈ D(I × Ω) (3.9)

for any B satisfying (3.7).

In fact, equation (3.9) holds even for a larger family of functions B according to available
estimates of the density.

Proposition 3.1.3. Let Ω ⊂ R3 be a domain and

̺ ∈ Lp(I;Lp(Ω)), u ∈ L2(I;W 1,2(Ω;R3))

satisfy (3.9) for every B from the class (3.7). Then the same equation holds even for every

B ∈W 1,∞
loc [0,∞), |B′(r)| ≤ C(1 + r

p
2−1). (3.10)
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Proof. The functions (3.7) are dense in W 1,∞
loc [0,∞), thus we find among them a sequence

Bn approximating a function B from (3.10). Further, according to (3.10), we can assume

|Bn(̺)|, |B′
n(̺)̺−Bn(̺)| ≤ C(1 + ̺

p
2 ).

Consequently, we can find an integrable majorant for every term in the equation (3.9) and
use Lebesgue convergence theorem to pass to the limit in equation (3.9) as n→ ∞.

Next, we report the validity of the renormalized continuity equation even on the whole space,
provided the renormalized density is square-integrable.

Proposition 3.1.4. [14, see Proposition 4.1] Let Ω ⊂ R3 be a bounded Lipschitz domain
and B function such that

B(̺) ∈ L2(I;L2(Ω)), u ∈ L2(I;W 1,2
0 (Ω;R3)).

satisfy

∂tB(̺) + div(B(̺)u) + b(̺)divu = 0, in D′(I × Ω). (3.11)

Then (3.11) holds even in D′(I × R3), assuming (̺,u) extended by zero outside Ω.

Applying the smoothing kernels ωε(|x− y|), introduced in (2.1), on the both sides of (3.11),
we get

∂t(ωε ⋆ B(̺)) + div((ωε ⋆ B(̺))u) + ωε ⋆ (b(̺)divu) = rε a.e. in I × R3, (3.12)

where by virtue of Lemma 4.3 in [14]

rǫ = ωε ⋆ div(B(̺)u) − div((ωε ⋆ B(̺))u) → 0 in Lr(R3)

as ε→ 0, provided B(̺) ∈ Lp(Ω), u ∈W 1,2(Ω;R3), and 1
r ≥ 1

2 + 1
p .

For a renormalized solution ̺ ∈ L∞(I;Lγ(Ω)), one have

B(̺) ∈ C(I;Lγ
weak(Ω)) and ̺ ∈ C(I;Lγ

weak(Ω)),

see the discusion before (4.59). Then the question is, whether or not the identity

B(̺)[t] = B(̺[t]).

holds. The last result of this section gives a positive answer.

Proposition 3.1.5. [14, Proposition 4.3] Let Ω ⊂ R3 be a bounded domain. Let ̺ ≥ 0,

̺ ∈ L∞(I;Lγ(Ω)), u ∈ L2(I;W 1,2(Ω;R3)), γ >
6

5
,

be a solution of the renormalized continuity equation (3.9). Then

̺ ∈ C(I;L1(Ω)). (3.13)
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3.1.2 Heterogeneous Constitutive equations

We suppose that the thermodynamic quantities p, e, s are functions of the state variables ϑ,
̺ according to the discussion in Section 1.2.1. More specifically, we consider the pressure







p(̺, ϑ) = pG(̺, ϑ) + pR(ϑ)

pG(̺, ϑ) = ϑ
5
2P

(
̺ϑ−

3
2

)
, pR(ϑ) =

a

3
ϑ4, a > 0,







(3.14)

where the function P meets hypothesis







P ∈ C1[0,∞), P (0) = 0, non-decreasing,

0 <
5

3
P (Y ) − P ′(Y )Y ≤ c(1 + Y α), 0 < α <

50

39
,

lim
Y →∞

P (Y )Y − 5
3 ≥ P∞ > 0.







(3.15)

The growth condition on the second line is only technical and used only in the proof of strong
convergence of the density. As a direct consequence, we get

P (Y ) ≤ C(Y + Y
5
3 ) and P ′(Y ) ≤ C(1 + Y

2
3 ). (3.16)

The internal energy is determined by (3.14) as






e(̺, ϑ) = eG(̺, ϑ) + eR(ϑ),

eG =
3

2
pG(̺, ϑ)̺−1, eR = aϑ4̺−1.







(3.17)

In view of (1.27) and (1.28) the corresponding specific entropy reads






s(̺, ϑ) = sG(̺, ϑ) + sR(ϑ),

sG = S
(
̺ϑ−

3
2

)
, sR =

4

3
aϑ3̺−1,







(3.18)

where S is a C1-function interrelated with P through the relation (1.38). Obviously S is
non-increasing in Y and since cv(Y ) is positive, we have

sG = S(Y ) ≤ −2

3
CV log Y, CV = max

y∈[0,M ]
cv(y), for 0 < Y < M. (3.19)

The Cauchy stress tensor T, the viscous stress tensor S, and the heat flux q are given by
(1.21), (1.22), and (1.23) respectively. The corresponding transport coefficients are allowed
to be also function of time and space, moreover they depends on u. More specificaly, the
constitutive functions of transport coeficients are given by a mapping

Z : u ∈ L2(Q) −→ (µ, ζ, κG, κR), (3.20)

with following properties. For a fixed u ∈ L2(Q) the viscosities µ[u](t,x;ϑ) and ζ[u](t,x;ϑ)
are C1-functions of ϑ and measurable in t and x. Further, they obey growth conditions

{

0 < µ(1 + ϑ) ≤ µ(t,x;ϑ); |∂ϑµ| ≤ µ,

0 ≤ ζ(1 + ϑ) ≤ ζ(t,x;ϑ); |∂ϑζ| ≤ µ,

}

(3.21)
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where constants µ, µ, ζ, ζ are independent of u.

Having u still fixed, the heat conductivity κ consists of the perfect gas part κG and the
radiation part κR, which are W 1,2-functions of t, C2-functions of x and C1-functions of ϑ.
Moreover they satisfy







0 < κ ≤ κG(t,x;ϑ) ≤ κϑ,

0 < κϑ3 ≤ κR(t,x;ϑ) ≤ κϑ3,

|∂x∂x(κG + κR)| ≤ Kxϑ
3,

|∂t(κG + κR)(t,x;ϑ)| ≤ Kt(t,x)ϑ3.







(3.22)

Here the constants κ, κ are independent of u, while the constant Kx and the function Kt from
L2(I;L∞(Ω)) depends on

∥
∥u

∥
∥

L2(Q)
. The last two lines in (3.22) are only technical conditions,

which are used only at the very beginning in construction of the first approximation and they
can probably be eliminated.

Finally, we assume that the mapping Z satisfies a following compact property. Whenever

un ⇀ u weakly in L2(I × Ω;R3),

there exists a subsequence (not relabeled) such that

Z(un) → Z(u) a.e. on I × Ω × R. (3.23)

Now, we are ready to state the main result about the existence of global-in-time variational
solutions to problem (F)

Theorem 3.1.6. Let Ω ⊂ R3 be a bounded domain of class C2+ν , ν > 0. Assume p, e,
s are given through (3.14), (3.17), (3.18), respectively. Let µ, λ, κ obey (3.21) and (3.22).
Then for any force f ∈ L∞(Ω;R3) and initial data ̺0, ϑ0 ∈ L∞(Ω), u0 ∈ L∞(Ω;R3), there
exists at least one variational solution of problem (F) in the sense of Definition 3.1.1, which
satisfies the initial conditions

̺[t] → ̺[0] = ̺0 in L1(Ω),

(̺u)[t] → (̺u)[0] = ̺0u0 weakly in L1(Ω;R3),

E[t] → E[0] = E0 = E(̺0,u0, ϑ0)







as t→ 0+

and

esslim
t→0+

∫

Ω

(̺s(̺, ϑ))[t]ϕ dx ≥ lim
τ→0+

∫ τ

0

∫

Ω

(̺s(̺, ϑ)) dx dt =

∫

Ω

̺0s(̺0, ϑ0)ϕ dx

for any ϕ ∈ D(Ω), ϕ ≥ 0.

Rest of the chapter is devoted to the proof, which consist of the following steps

• The continuity equation is equipped with an artificial viscosity term, the entropy in-
equality and the energy balance are replaced by the equation for the internal energy.
Several terms are added in order to improve the estimates. The Faedo-Galerkin ap-
proximation of the momentum equation is considered as a fixed point problem, which
is solved by means of Schauder fixed point theorem on a short time interval. Then the
solution is extended on the whole interval (0, T ).
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• Passing to the limit in a sequence of solutions, where the velocity lives in an n-
dimensional approximation of the target space W 1,2

0 , we obtain a weak solution of
the modified system.

• Next, we perform a vanishing viscosity limit, letting all the artificial terms but the
artificial pressure go to zero.

• We finish the proof, letting the artificial pressure go to zero.

3.2 Faedo-Galerkin approximation

At the first approximation level, the system consists of the continuity equation augmented
by the artificial viscosity, the internal energy equation, and the Galerkin approximation of
the momentum equation. Our strategy is to construct solving operators of the first two
equations, then plug the solution into the momentum equation, and find a finite dimensional
approximation of the velocity field as the fixed point of a suitable non-linear operator. All
this on some small time interval J = (0, T ∗).

3.2.1 Continuity Equation

We endow the continuity equation (3.2) by a parabolic perturbation, a homogeneous Neu-
mann boundary condition, and smoothed initial ̺0,ε such that

̺0,ε ∈ C2+ν(Ω), inf
Ω
̺0,ε > 0, ∇̺0,ε · n|∂Ω = 0, (3.24)

and ̺0,ε tends to ̺0 in Lβ(Ω) as ε → 0. After these modifications, we obtain a Neumann
problem

∂t̺+ div(̺u) = ε∆̺ on J × Ω,

∇̺ε · n = 0 on J × ∂Ω,

̺[0] = ̺0,ε on Ω.







(3.25)

For this problem, we report the following result.

Lemma 3.2.1. Let Ω ⊂ R3 be a bounded domain of class C2+ν , ν > 0. Let u be a given
vector field from the space C(J ;C2

0 (Ω;R3)). Then for any ̺0,ε satisfying (3.24), there exists
a unique solution of the problem (3.25) from the space

X̺ = C(J ;C2+ν(Ω)) ∩ C1(J ;Cν(Ω)).

This solution also satisfy the maximal principle

̺
0
e−U(τ) ≤ ̺(τ,x) ≤ ̺0e

+U(τ)for a.a. τ ∈ J, x ∈ Ω, (3.26)

U(τ) =

∫ τ

0

∥
∥divu

∥
∥
∞

dt, ̺
0

= ess inf
Ω
̺0,ε, ̺0 = ess sup

Ω
̺0,ε.

Finally, the solution operator u → ̺[u] maps bounded sets in C(J ;C2
0 (Ω;R3)) on the bounded

sets in X̺ and it is continuous mapping at least into the space C1(J × Ω).

The proofs of these statements one can find in [14, Chapter 7] and its references.
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3.2.2 Internal energy equation

Instead of the entropy inequality (3.4) and the total energy balance (3.5), we use the equation
for the internal energy. We add some regularizing terms, in particular modify the internal
energy and the heat conductivity as follows

eδ(̺, ϑ) = e(̺, ϑ) + δϑ, (3.27)

κε(t,x;ϑ) = κ(t,x;ϑ) + δϑβ +
√
εϑ−1. (3.28)

We assume also smooth approximation ϑ0,ε of the initial condition, which satisfies

ϑ0,ε ∈ L∞(Ω) ∩W 1,2(Ω), ess inf
Ω
ϑ0,ε(x) > 0, and ϑ0,ε → ϑ0 in L1(Ω). (3.29)

Finally, the equation for the temperature is represented by the following semi-linear parabolic
problem

∂t(̺eδ(̺, ϑ))) + div(̺eδ(̺, ϑ)u) − div(κε(t,x;ϑ)∇ϑ)

= εδ|∇̺|2(β̺β−2 + 2) − pδ(̺, ϑ)divu + S : ∇u + ε(ϑ−β − ϑβ) on J × Ω,

∇ϑ · n = 0 on J × ∂Ω,

ϑ[0] = ϑ0,ε on Ω.







(3.30)

Concerning the problem (3.30), we claim the following result

Lemma 3.2.2. Let Ω ⊂ R3 be a bounded domain of class C2+ν . Let u ∈ C(J ;C2
0 (Ω;R3))

be a given velocity field and ̺ = ̺[u] ∈ X̺ be the density according to Lemma 3.2.1, in
particular ̺(t,x) > ̺. Then for ϑ0,ε satisfying (3.29), there exists a unique ϑ in a class

Xϑ

{

ϑ ∈ C(J ;W 1,2(Ω)), ∂tϑ ∈ L2(J × Ω)

div
(
κε(t,x;ϑ)∇ϑ

)
∈ L2(J × Ω)

(3.31)

such that (3.30) is satisfied a.e. on J × Ω. For this solution, there exist constants ϑ, ϑ
depending solely on

∥
∥u

∥
∥

C(J;Xn)
and

∥
∥̺[u]

∥
∥

C1(J×Ω)
,

such that
ϑ ≤ ϑ(τ,x) ≤ ϑ. (3.32)

Moreover, there exists a continuous solution operator ϑ[u] from C(J ;C2
0 (Ω)) to Xϑ.

Proof. Step 1 Maximum principle. Let ϑ be a subsolution and ϑ a supersolution of (3.30).
Then in accordance with assumptions about u and ̺[u], using hypotheses (3.14), (3.21), and
due to presence of the term ϑβ for β > 4, we infer

[
∂tw + ∇w · u

]
sgn+w − div

(
κ(t,x;ϑ)∇ϑ− κ(t,x;ϑ)∇ϑ

)
sgn+w ≤ C(ϑ− ϑ)sgn+w (3.33)

for the difference
w = ̺eδ(̺, ϑ) − ̺eδ(̺, ϑ).

In (3.33) we have denoted sgn+ the positive part of the standard signum function. For any
v ∈W 1,2(J × Ω), in particular for v = w, we have

∂t|v|+ = sgn+(v)∂tv, ∇|v|+ = sgn+(v)∇v
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(see [46]), which can be used in the first term of (3.33). Conserning the second term, as eδ is
an increasing function of ϑ, we can replace sgn+w by sgn+(ϑ− ϑ). Further, we approximate
function sgn+ by the sequence

sgn(t) =

{

nt on (0, 1
n )

sgn+(t) elsewhere.

Then we integrate by parts to get

∫

Ω

div
(
κ(t,x;ϑ)∇ϑ− κ(t,x;ϑ)∇ϑ

)
sgn+w dx =

− lim
n→∞

∫

{0<ϑ−ϑ<
1
n}

[(
κ(t, x;ϑ) − κ(t, x;ϑ)

)
∇ϑ+ κ(t, x;ϑ)∇(ϑ− ϑ)

]
n∇(ϑ− ϑ) dx ≤

lim
n→∞

∫

{0<ϑ−ϑ<
1
n}

∥
∥∂ϑκ

∥
∥
∞
|∇ϑ||∇(ϑ− ϑ)| dx. (3.34)

If ϑ is homogeneous function in space, the right hand side is equal to zero. Using the
oposite spliting, we get the same inequality for the spatially homogeneous ϑ. Consequently,
integrating (3.33) over the time interval (0, τ), we arrive at

∫

Ω

|w|+(τ) dx ≤ C

∫ τ

0

∫

Ω

(1 + |divu|)|w|+ dx dt.

Then an application of the Gronwall lemma 2.1.5 yields ϑ ≤ ϑ a.a. on J × Ω. It is easy to
check, that because of the term ε(ϑ−β−ϑβ) one can find constants ϑ, ϑ, which are subsolution
and supersolution of (3.30), respectively. Then (3.32) follows for any solution ϑ of (3.30).

Next, we take two (possibly) different solutions as ϑ and ϑ, both from the regularity class
Xϑ. We already know, they are uniformly bounded on J × Ω. Then we can improve spatial
regularity of ϑ using the Lp theory for the Laplace equation and hypothesis (3.22). We
estimate

κ2
∥
∥ϑ

∥
∥

2

2,2,Ω
≤

∫

Ω

∣
∣(κ(t,x;ϑ)∇ϑ

∣
∣
2

dx ≤

C

∫

Ω

∣
∣div(κ(t,x;ϑ)∇ϑ)

∣
∣
2

+ |∂xκ(t, x;ϑ)|2|∇ϑ|2 + |∂ϑκ(t,x;ϑ)|2|∇ϑ|2 dx. (3.35)

Using conveniently the Young inequality on the right-hand side, we get

ϑ bounded in L2(I;W 2,2(Ω)),

since ∂xκ and ∂ϑκ are bounded on bounded sets. Now we can use Hölder inequality to
continue with calculation (3.34):

∫

{0<ϑ−ϑ<
1
n}

∂ϑ|κ(t,x; ϑ̃)||∇ϑ||∇(ϑ−∇ϑ)| dx ≤

|{0 < ϑ− ϑ < 1
n}|

1
3

∥
∥ϑ

∥
∥

2,2,Ω

∥
∥ϑ− ϑ

∥
∥

1,2,Ω
→ 0. (3.36)

Finally, we use the Gronwall lemma similarly as in the previous paragraph to deduce ϑ = ϑ
a.e. on J × Ω.
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Step 2. A priori estimates. Multiplying equation (3.30) by ∂tK(t,x;ϑ), where

K(t,x;ϑ) =

∫ ϑ

1

κ(t,x; θ) dθ,

∇K(t,x;ϑ) = κ(t,x;ϑ)∇ϑ+
[
∂xK

]
,

[
∂xK

]
(t,x;ϑ) =

∫ ϑ

1

∂xκ(t,x; θ) dθ,

∂tK(t,x;ϑ) = κ(t,x;ϑ)∂tϑ+
[
∂tK

]
,

[
∂tK

]
(t,x;ϑ) =

∫ ϑ

1

∂tκ(t,x; θ) dθ.

We get

d

dt

∫

Ω

1

2
|∇K|2 dx +

∫

Ω

̺

κ

∂eδ

∂ϑ
|∂tK|2 dx =

∫

Ω

[
∂xK] · ∇∂tK dx

+

∫

Ω

̺

κ

∂eδ

∂ϑ

[
∂tK

]
∂tK − ̺u · ∂eδ

∂ϑ
∇ϑ∂tK +G(t,x)∂tK dx, (3.37)

where, in view of (3.32),

G(t,x) = −∂(̺eδ)

∂̺
(∂t̺+ ∇̺ · u) − ̺eδdivu

+ S : ∇u − pδdivu + εδ|∇̺|2(β̺β−2 + 2) + ε(ϑ−β − ϑβ) (3.38)

is bounded in L∞(J × Ω) while ̺
κ

∂eδ

∂ϑ is uniformaly greater than zero and bounded.

Further, we can integrate by parts in the first and the most delicate term on the right-hand
side to estimate

∫

Ω

[
∂xK](t,x;ϑ) · ∇∂tK(t,x;ϑ) dx ≤

(∥
∥∂xκ

∥
∥
∞

∥
∥∇ϑ

∥
∥

2
+

∥
∥
[
∂x∂xK

]∥
∥

2

)∥
∥∂tK

∥
∥

2
,

where
[
∂x∂xK

]
(t,x;ϑ) =

∫ ϑ

1

∂x∂xκ(t,x; θ) dθ.

The norm
∥
∥∇ϑ

∥
∥

2
is dominated by

∥
∥∇K

∥
∥

2
as follows

κ2
∥
∥∇ϑ

∥
∥

2

2
≤

∫

Ω

|κ∇ϑ|2 dx ≤ C(
∥
∥∇K

∥
∥

2

2
+

∥
∥
[
∂xK

]∥
∥

2

2
).

Similarly the norm
∥
∥∂tϑ

∥
∥

2
is dominated by

∥
∥∂tK

∥
∥

2
. In accordance with hypotehesis (3.22),

we have
[
∂xK

]
, [∂xκ],

[
∂x∂xK

]
∈ L∞(J × Ω) and

[
∂tK

]
∈ L2(J ;L∞(Ω)).

Then a direct application of the Gronwall lemma yields

∇ϑ, ∇K ∈ C(J ;L2(Ω)); ∂tϑ, ∂tK ∈ L2(I × Ω).

Finally, using the equation again, we get also

div(κ(t,x;ϑ)∇ϑ) ∈ L2(I × Ω).
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Step 3 Existence. To begin with, we rewrite the equation into the variable K = K(t,x;ϑ)

∂tK −A(t,x;ϑ)∆K = A(t,x;ϑ)div
[
∂xK

]
+

[
∂tK

]

− ̺u · (∇K −
[
∂xK

]
) +A(t,x;ϑ)G(t, x;ϑ), (3.39)

where G(t, x;ϑ) is the same as in (3.38) and

A(t,x;ϑ) = κ(t,x;ϑ)
[

̺(t,x)
∂eG

∂ϑ
(̺(t,x), ϑ) + aϑ3 + δ̺(t,x)

]−1

.

Next, we continuously extend u, ̺[u] in time, in such a way that they are defined on the whole
R, but still have a compact support. Then also A, G are defined for all t ∈ R. Consequently,
we can use mollifiers (2.1) with parameter ω to smooth out A, and G in the time variable.
Moreover, we replace ϑ by

θω =

√
ϑ2 + ω2

1 + ω
√
ϑ2 + ω2

in
A(t,x;ϑ), G(t,x;ϑ),

[
∂xK

]
(t,x;ϑ)

[
∂tK

]
(t,x;ϑ).

For the smoothed equation one can apply Theorem 8.1 in Chapter V of [27] to obtain the
unique classical solution Kω and thus also the temperature ϑω. Then performing similar
estimates as in Step 1 and Step 2, one can pass to the limit as ω → 0 and find the solution
of the equation (3.30)

3.2.3 Momentum equation and existence of fixed point

The viscosity term in (3.25) involves a new term, ε∇u∇̺, in the momentum equation in
order to preserve the total energy balance. Next,we enhance the pressure by an artificial
pressure term setting

pδ(̺, ϑ) = p(̺, ϑ) + δ̺β + δ̺2

Finally, we project the resulting equation onto the n-dimensional space

Xn ⊂ C∞(Ω;R3) ∩ C0(Ω;R3) ⊂ L2(Ω;R3),

endowed by the structure of the Hilbert space L2(Ω;R3). More specifically, we look for
u ∈ Xn, which satisfies

∫

Ω

̺u(t) · ϕ dx −
∫

Ω

̺0u0 · ϕ dx =

∫ t

0

∫

Ω

[̺u ⊗ u − S] : ∇ϕ + pδ(̺, ϑ)divϕ + [̺f − ε∇u∇̺] · ϕ dx ds (3.40)

for any ϕ ∈ Xn.

We shall solve this equation on a short time interval J by means of the Schauder fixed point
theorem. In order to reformulate it as a fixed point problem on the Banach space C(J ;Xn),
we have to set up a convenient notation. For a fixed ̺ ∈ L1(Ω), we introduce an operator

M [̺] : Xn → X∗
n ≡ Xn; 〈M [̺]v,w〉 :=

∫

Ω

̺v · w dx.
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This is nothing else, then projection of an L1-function ̺v on the space X∗
n. Therefore, M [̺]

is invertible provided ̺ > 0. Observing that

inf
x∈Ω

̺(x)〈v,w〉 ≤
∫

Ω

̺v · w dx ≤ sup
x∈Ω

̺(x)〈v,w〉,

we deduce
∥
∥M [̺]

∥
∥
L(Xn,X∗

n)
≤

∥
∥̺

∥
∥

C(Ω)
,

∥
∥M [̺]−1

∥
∥
L(X∗

n,Xn)
≤

∥
∥̺−1

∥
∥

C(Ω)
= ( inf

x∈Ω
̺(x))−1. (3.41)

Clearly, M [ · ] is Lipschitz continuous mapping form L1(Ω) to L(Xn, Xn), but the same is
true for M [ · ]−1, at least on the sets {̺ < ̺( · ) < ̺}. Indeed, a simple calculation yields
∥
∥M [̺1]

−1 −M [̺2]
−1

∥
∥ =

∥
∥M [̺2]

−1(M [̺2]−M [̺1])M [̺1]
−1

∥
∥ ≤ ̺−2̺

∥
∥̺1 − ̺2

∥
∥

L1(Ω)
. (3.42)

Finally, we denote
un,0 = M−1[̺ε,0](̺0,εu0)

Now, we are ready to define a mapping

T : B → C(J ;Xn); B := {v ∈ C(J ;Xn) |
∥
∥v − un,0

∥
∥

C(J;Xn)
≤ 1}

given by formula

T [u](t) := M [̺[u](t)]−1
(

(̺u)n,0 +

∫ t

0

F (̺[u],u, ϑ[u])(τ) dτ
)

, (3.43)

where for ϕ ∈ Xn, we denote

〈F (̺,u, ϑ),ϕ〉 =

∫

Ω

(
̺u ⊗ u − S(u, ϑ)

)
: ∇ϕ + pδ(̺, ϑ)div ϕ +

(
̺f − ε(∇̺ · ∇)u

)
· ϕ dx,

〈(̺u)n,0,ϕ〉 =

∫

Ω

̺0,εu0 · ϕ dx.

The solution operators ̺[u] and ϑ[u] of the equations (3.25) and (3.30) are given by Lemmas
3.2.1, 3.2.2 respectively. With help of the mapping T , the equation (3.40) is equivalent to

T [u] = u.

Using Lemma 3.2.1, we can find ̺ and ̺ such that

̺ ≤ ̺0,ε(x) ≤ ̺, on Ω,

̺ ≤ ̺[u](t,x) ≤ ̺, on J × Ω for any u ∈ B.
Further, one can use Lemmas 3.2.1 and 3.2.2 to get

∥
∥F (̺[u],u, ϑ[u]

∥
∥

Lp(J)
≤ C

∥
∥1 + ̺β + |∇̺| + ϑ4

∥
∥

Lp(J×Ω)
≤ C

∥
∥u

∥
∥

C(J;Xn)
,

for any p > 1. Let us note that once this bound holds for some J = J0, it remains valid even
for shorter time interval, with the same constant. Then, for any u ∈ B, we have

∥
∥T [u] − un,0

∥
∥

C(J;Xn)
≤ ̺−1

∫

J

|F (̺[u],u, ϑ[u])| dt

+ ̺−2̺ sup
t∈J

∥
∥̺[u](t) − ̺ε,0

∥
∥

L1

∥
∥̺0,εu0

∥
∥

L1 ≤ Ψ(|J |),
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where Ψ is monotone function, which approach zero as T ∗ = |J | goes to zero. Hence, there
exists a time interval J such that T is self-mapping on the set B. Similar calculation,

∥
∥T [u](t1) − T [u](t2)

∥
∥

Xn
≤ ̺−1

∫ t2

t1

|F (̺[u],u, ϑ[u])| dt,

yields equi-continuity of the set T [B]. Consequently, by virtue of the Arzelà-Ascoli theorem
2.2.2, the mapping T is compact on B. In order to apply the Schauder theorem it remains
to verify a continuity of T . To this end we write

∥
∥T [u1]−T [u2]

∥
∥

C(J;Xn)
≤ ̺−2̺

∥
∥̺[u1]−̺[u2]

∥
∥

C(J;L1(Ω))

(∥
∥̺0,εu0

∥
∥

L1(Ω)
+

∥
∥F [u1]

∥
∥

L1(J;X∗

n)

)

+ ̺−1
∥
∥F [u1] − F [u2]

∥
∥

L1(J;X∗

n)
.

Further for the last term, we have

∥
∥F [u1] − F [u2]

∥
∥

L1(J;X∗

n)
≤ C

[
|∂̺pδ|, |∂ϑpδ|, |∂ϑ(µ, ζ)|

](∥
∥̺[u1] − ̺[u2]

∥
∥

L1(J×Ω)

+
∥
∥u1−u2

∥
∥

C(J;X∗

n)
+

∥
∥ϑ[u1]−ϑ[u2]

∥
∥

L1(J×Ω)

)

+C
∥
∥(µ, ζ)[u1](ϑ2)−(µ, ζ)[u2](ϑ2)

∥
∥

L1(J×Ω)
.

Thus according to Lemmas 3.2.1, 3.2.2 and due to (3.23) the mapping T is continuous. Then
on can apply the Schauder theorem 2.1.6 to obtain the solution ̺ = ̺[u], u, ϑ = ϑ[u] of the
equations (3.25), (3.40), (3.30) on some short time interval J .

3.3 Time independent estimates

In the previous step, we have constructed the Galerkin approximation (̺,u, ϑ) = (̺n,un, ϑn)
on a short time interval and for a fixed n. Our next aim is to derive time independent
estimates and prolongate the solution on the whole time interval. In fact these estimates will
be also independent of the dimension n.

In order to enter the framework of variational solutions the equation (3.30) will be replaced
by the entropy equation and the balance of the energy. Since our solution is regular and the
temperature is strictly positive, a calculation similar to (1.18) can be performed to get the
entropy equality. Nevertheless, there are some extra terms because of the modification in the
continuity equation. We compute

1

ϑ

(
∂t(̺eG) + div(̺ueG) + pGdivu

)
= ε∆̺

eG

ϑ
+

̺
( 1

ϑ

∂eG

∂ϑ
(∂tϑ+ u · ∇ϑ) − 2

3̺

∂eG

∂ϑ
(∂t̺+ u · ∇̺)

)

+
pG

ϑ̺
(∂t̺+ u · ∇̺+ ̺divu) =

∂t(̺sG) + div(̺usG) + ε∆̺
(eG

ϑ
+
pG

ϑ̺
− sG

)

. (3.44)

Applying a similar procedure for eR, and δϑ one gets

1

ϑ

(
∂t(̺eδ) + div(̺ueδ) + pδdivu = ∂t(̺sδ) + div(̺usδ) + ε∆̺Aε

where
Aε[u](t,x;ϑ, ̺) =

eG

ϑ
+
pG

ϑ̺
− sG + δ(1 − log ϑ).
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Using the Green theorem one has

ε

∫

Ω

∆̺Aεϕ dx = −ε
∫

Ω

∇̺ · ∇̺ ∂̺Aε + ∇̺ · ∇ϑ∂ϑAε + ∇̺ · ∇ϕAε dx,

where, due to Maxwell’s relations (1.27), (1.28),

∂̺Aε =
1

ϑ̺
∂̺pG, ∂ϑAε = − 1

ϑ2
(eG + ̺∂̺eG + δϑ).

Then a weak form of the entropy equality reads

∫

J

∫

Ω

̺sδ∂tϕ+ ̺usδ · ∇ϕ− κε[u]∇ϑ · ∇ϕ
ϑ

+ σεϕ− εϑβ−1 + εAε∇̺ · ∇ϕ

− ε
1

ϑ2
(eG + ̺∂̺eG + δϑ)∇̺ · ∇ϑϕ dx dt = 0 (3.45)

for any ϕ ∈ D(J × Ω). The approximate entropy is

sδ = sG + sR + δ log ϑ

and the modified entropy production reads

σε =
κε|∇ϑ|2
ϑ2

+
S : ∇u

ϑ
+ εϑ−β−1 + ε

∂̺pG

ϑ̺
|∇̺|2 + δε(β̺β−2 + 2)

|∇̺|2
ϑ

.

In accordance with hypothesis (3.15), we have ∂̺pG ≥ 0, thus σε has a sign. Further, we can
test (3.40) by u and obtain the balance of kinetic energy. This added to the internal energy
equation (3.30) integrated over Ω gives rise to the balance of total energy:

d

dt

∫

Ω

(1

2
̺|u|2 + ̺eδ(̺, ϑ) + δ

( ̺β

β − 1
+ ̺2

))

[t] dx =

∫

Ω

̺f · u + ε(ϑ−β − ϑβ) dx (3.46)

for a.e. t ∈ J .

Now, we are ready to accomplish the estimates independent of time. We take a sequence
of spatially homogeneous functons, which approximates ϕ = 1(0,t), as the test functions in
(3.45). Then we add up the result and (3.46) together. Integrating by parts in time, we
arrive at

∫

Ω

En[t] dx +

∫ t

0

∫

Ω

σε dx dτ ≤
∫

Ω

En[0] − (̺sε)[0] + (̺sδ)[t] dx +

3∑

j=1

Ij (3.47)

for a.e. t ∈ J , where

En[t] = Eδ(̺,u, ϑ) = (
1

2
̺|u|2 + ̺eδ +

δ

β − 1
̺β + δ̺2)[t],

3∑

j=1

Ij =

∫ t

0

∫

Ω

̺f · u + ε(ϑ−β − ϑβ + ϑβ−1) +
ε

ϑ2
(eG + ̺∂̺eG + δϑ))∇̺ · ∇ϑ dx dτ

In view of hypotheses (3.21), (3.22) and the Korn inequality, the entropy production rate σε

dominates following quantities

Cσε ≥ σ̃ = |∇ log ϑ|2 + |∇(ϑ
3
2 )|2 + |∇u|2 + δϑβ−2|∇ϑ|2

+
√
εϑ−3|∇ϑ|2 + εϑ−(β+1) + δε(β̺β−2 + 2)

|∇̺|2
ϑ

(3.48)
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where the constant C is independent of T , n, ε, δ.

In accordance with assumptions about ̺ε,0 and ϑε,0 in (3.25), (3.30), respectively, the zero
time terms on the right-hand side of (3.47) are bounded uniformly with respect to T , n, ε,
and δ. On the other hand, for the entropy term one can use (3.19) to infer

∫

Ω

̺sδ ≤ S(1)

∫

̺ϑ−
3
2 ≥1

̺ dx + C

∫

̺ϑ−
3
2 <1

3

2
̺ log ϑ− ̺ log ̺ dx

+ δ

∫

Ω

̺ log ϑ+
4

3
aϑ3 dx ≤ C

∫

Ω

ϑ4 + ̺
5
3 dx − δ

∫

Ω

̺|log ϑ| dx,

where the last term gives an estimate on the left-hand side and the rest is dominated by
CEn[t], in particular by the internal energy. Again the constant C is independent of T , n, ε,
and δ.

In order to apply the Gronwall lemma, it remains to bound the terms Ij by an integral

∫ t

0

ω
∥
∥σ̃

∥
∥

1,Ω
[τ ] + C(ω)En[τ ] dτ,

where ω is a suitable small parameter and C(ω) is a possibly large constant independent of
T , n, ε, and δ. For the first term, we have

|I1| ≤
∥
∥f

∥
∥

L∞(Q)

∫ t

0

∫

Ω

1

2
̺|u|2 +

1

2
̺ dx dτ.

For the second one, we use the interpolation (3.54) and Lemma 2.1.2 to get

|I2| ≤ C(ω)

∫ t

0

∥
∥ϑ

∥
∥

4

4
dτ + ω

∫ t

0

ε
∥
∥ϑ−(β+1)

∥
∥

1
+ δ

∥
∥∇(ϑ

β
2 )

∥
∥

2

2
dτ.

The third term I3 is more tricky. First, we observe that because of (1.26), (3.17), and (3.16)
one have

|eG + ̺∂̺eG| = | 53eG − 2
3ϑcv| ≤ Cϑ(|P (Y )Y −1| + |P ′(Y )|) ≤ C(̺

2
3 + ϑ).

Further, taking ϕ = ̺ as a test function in (3.25), we arrive at the “energy” equality for the
density

∥
∥̺

∥
∥

2

2
[t] + 2ε

∫ t

0

∥
∥∇̺

∥
∥

2

2
dτ =

∥
∥̺0,ε

∥
∥

2

2
−

∫ t

0

∫

Ω

̺2divu dx dτ. (3.49)

In particular,

ε

∫ t

0

∫

Ω

|∇̺|2 dx dτ ≤
∫ t

0

1

2

∥
∥u

∥
∥

2

1,2
+

∥
∥̺

∥
∥

2

4
dτ.

Then, taking ε small enough, especially ε < δ, one can estimate I3 as follows

|I3| ≤ C(δ)

∫ t

0

∫

Ω

ε
̺

2
3 + ϑ

ϑ2
|∇̺||∇ϑ| dx dτ ≤

∫ t

0

∫

Ω

ωδε(β̺β−2 + 2)
|∇̺|2
ϑ

+ C(ω, δ, β) εϑ−3|∇ϑ|2

+ C(ω)ε2|∇̺|2 + ω|∇ log ϑ|2 dx dτ ≤ C(ω)

∫ t

0

E[t] + ω

∫

Ω

σ̃ dx dτ. (3.50)
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After we have overcome all the terms on the right-hand side of (3.47), we can use the Gronwall
lemma to get estimates independent of the time, n, ε, and δ. In particular for the velocity,
we get

u bounded in L2(J ;W 1,2(Ω;R3)).

Since all norms are equivalent on Xn, the velocity is bounded also in L2(J ;W 1,∞(Ω)). Then
by virtue of (3.26), the density is strictly positive and bounded in L∞(J × Ω). Seeing that
also

̺|u|2 is bounded in L∞(J ;L1(Ω)),

we conclude that the norm of the velocity
∥
∥u

∥
∥

Xn
[t] is uniformly bounded on the interval

J = [0, T ∗] and therefore u[T ∗] ∈ Xn. Lemma 3.2.2 ensures that the temperature ϑ[T ∗]
is strictly positive and belongs in W 1,2(Ω) ∩ L∞(Ω). Repeating this procedure one can
prolongate the solution up to any finite interval I = (0, T ). Consequently, the estimates we
have derived holds on the whole time interval I, namely

̺|u|2, ̺ 5
3 , δ̺β , ϑ4, δ̺|log ϑ| are bounded in L∞(I;L1(Ω)). (3.51)

Further from (3.48),

|∇u|2, |∇ϑ 3
2 |2, |∇ log ϑ|2, δ|∇ϑ β

2 |2,
√
ε|∇ϑ− 1

2 |2, εϑ−(β+1), εδ
|∇̺ β

2 |2
ϑ

are bounded in L1(Q), Q := I × Ω. (3.52)

Appling Lemma 2.1.2, we get also

u, ϑ
3
2 ,

√
δ log ϑ,

√
δϑ

β
2 bounded in L2(I;W 1,2(Ω)). (3.53)

Using an interpolation and the Sobolev imbedding, the temperature can be bounded also in
homogeneous spaces

∥
∥ϑ

∥
∥

Lq(Q)
≤ Cδ−

1
2

3β
3β+8 , q = β +

8

3
,

∥
∥ϑ

∥
∥

Lp(Q)
≤ C, p =

17

3
. (3.54)

Then a similar estimate follows for the density, namely

∥
∥∇̺ β

2

∥
∥

Lp(Q)
≤

∥
∥ϑ−1|∇̺ β

2 |2
∥
∥

2
p

∥
∥ϑ

∥
∥

2
qp

≤ C(δ, ε)

for p
2 (1 + 1

q ) ≤ 1, q = β + 8
3 . Hence for a fixed ε the density ̺ is bounded in Lr(I;L3r(Ω))

for some r > 1, which can be made arbitrary large taking an appropriate β.

3.4 Limit in Galerkin approximation

At this stage, we take a sequence of spaces Xn ⊂ C∞
0 (Ω;R3) such that

∞⋃

n=1

Xn = W 1,2
0 (Ω;R3).
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This is possible as W 1,2
0 (Ω;R3) is a separable space. For any n, we can perform the con-

struction procedure described above to get solution (̺,u, ϑ) = (̺n,un.ϑn) to the system of
equations

∂t̺n + div(̺nun) = ε∆̺n, on I × Ω,

∇̺n · n = 0 on I × ∂Ω,

̺n[0] = ̺0,ε on Ω,







(3.55)

∫

I

∫

Ω

̺nun · ∂tϕ + ̺nun ⊗ un : ∇ϕ + pδ(̺n, ϑn)divϕ

− Sn[un] : ∇ϕ + (̺nf − ε∇un∇̺n) · ϕ dx dt = 0, (3.56)

for any ϕ ∈ C1
0 (I;Xn).

∫

I

∫

Ω

̺nsδ,n∂tϕ+ ̺nunsδ,n · ∇ϕ− κε,n[un]∇ϑn · ∇ϕ
ϑ

+ σε,nϕ+ εAε,n∇̺n · ∇ϕ

− ε
1

ϑ2
n

(eG,n + ̺n∂̺eG,n + δϑn)∇̺n · ∇ϑn ϕ dx dt = 0 (3.57)

for any ϕ ∈ D(I × Ω).

∫

Ω

En[t2] − En[t1] dx =

∫ t2

t1

∫

Ω

̺nf · un + ε(ϑ−β
n − ϑβ) dx dt (3.58)

for a.e. t1, t2 ∈ I, where

En = Eδ(̺n,un, ϑn) =
1

2
̺n|un|2 + ̺neδ,n + δ

( ̺β
n

β − 1
+ ̺2

n

)
.

In addition, ̺n, un, ϑn satisfy the initial conditions

̺n[0]un[0] = ̺0u0 in X∗
n, (3.59)

̺n[0]sε(̺n[0], ϑn[0]) = ̺0,εsε(̺0,ε, ϑ0,ε) on Ω, (3.60)

En[0] = En(̺0,ε,u0, ϑ0,ε). (3.61)

The sequence (̺n,un, ϑn) complies with the n-independent estimates (3.51), (3.53). Conse-
quently, we can identify the limits using Theorem 2.2.1,

̺n → ̺ weakly-∗ in L∞(I;Lβ(Ω)), (3.62)

un → u weakly in L2(I;W 1,2
0 (Ω;R3)), (3.63)

ϑn → ϑ weakly-∗ in L∞(I;L4(Ω)). (3.64)

Our next task is pass to the limit in the equations (3.55), (3.56), (3.57), and (3.58).

3.4.1 Limit in the continuity equation

To begin with, we shall need an equi-integrability of the terms ∂t̺n, ∆̺n. This is of course
a direct consequence of the Lp theory for parabolic equations, provided we can control the
term

div(̺nun) = ∇̺n · un + ̺ndivun.
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in Lp(I × Ω), p > 1. Unfortunately, in view of (3.51), (3.53), the first term is merely
integrable with respect to time, so we need to gain better estimates. To this end, one can
test the continuity equation (3.55) by log ̺n + 1 = (̺n log ̺n)′, to get

d

dt

∫

Ω

̺n log ̺n dx + ε

∫

Ω

|∇̺n|2
̺n

dx =

∫

Ω

̺ndivun dx.

Hence

ε

∫

Ω

|∇̺n|2
̺n

dx ≤ C. (3.65)

Further, we can use the estimate for the kinetic energy to infer

∥
∥∇̺n · un

∥
∥

L2(I;L1(Ω))
≤

∥
∥
∥
∇̺n√
̺

n

∥
∥
∥

L2(I×Ω)

∥
∥
√
̺nun

∥
∥

L∞(I;L2(Ω))
≤ C(ε).

On the other hand, ∇̺n ·un is bounded also in L1(I;L
3
2 (Ω)) and ̺ndivun in some Lr(I×Ω),

1 < r(β) < 2. Then an interpolation argument keeps the term div(̺nun) bounded in
Lp(I × Ω) for some p > 1 and we conclude

∂t̺n, ∆̺n bounded in Lp(I × Ω), p > 1. (3.66)

In particular, ̺n is bounded in W 1,p(I ×Ω) for some p > 1, whence the compact imbedding
yields the strong convergence

̺n → ̺ a.e. on I × Ω. (3.67)

Consequently, one can pass to the limit in the continuity equation (3.55) and obtain

∂t̺+ div(̺u) − ε∆̺ = 0 a.e. in I × Ω, (3.68)

where ̺ is non-negative and it satisfies

∇̺ · n|∂Ω = 0, ̺[0] = ̺0,ε. (3.69)

Multiplying by a smooth function ϕ and integrating by parts we get also weak formulation
∫

I

∫

Ω

̺∂tϕ+ ̺u · ∇ϕ− ε∇̺ · ∇ϕ dx dt = 0, for any ϕ ∈ D(I × Ω). (3.70)

Then we take ϕ = ̺ and we arrive at the “energy” equality for ̺, which subtraced from
(3.49), yields

2ε

∫ T

0

∫

Ω

|∇̺n|2 − |∇̺|2 dx dt =

∫

Ω

(̺2
n − ̺2)[T ] dx −

∫ T

0

∫

Ω

̺2
ndivun − ̺2divu dx dt.

Since the right-hand side tends to zero, we have proved the strong convergence of gradients

∇̺n → ∇̺ in L2(I × Ω).

3.4.2 Limit in the entropy equation

Our next goal is to establish the strong convergence of the temperature field and pass to the
limit in the entropy equation and the balance of the total energy. Following Section 4.6, we
shall apply Lemma 4.6.1 on the entropy equality (3.57). To this end, we need

̺nsδ(̺n, ϑn) bounded in L2(I;Lp(Ω)) ∩ L∞(I;L1(Ω)), p >
6

5
. (3.71)
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From the hypothesis (3.18) we deduce

|̺sδ(̺, ϑ)| ≤ C(ϑ3 + ̺|log ̺| + ̺|log ϑ| + 1).

Then (3.71) is a straightforward consequence of estimates (3.51), (3.52). In fact (3.71) is
uniform with respect to ε. Further, we need to bound all other terms in the entropy equation
(3.57) at least in some L1(I;W−n,p(Ω)), p > 1. The entropy production σε is uniformly
bounded in L1(I). For the other terms, we need also L1-estimates, nevertheless with future
application in mind, we shall gain even estimates in Lp(I × Ω) for some p > 1 uniform with
respect to ε.

Since ̺nsδ(̺n, ϑn) can be interpolated between the spaces in (3.71) and because the velocity
is bounded in L2(I;L6(Ω;R3)) we easily deduce

∥
∥̺nsδ(̺n, ϑn)un

∥
∥

Lp(I×Ω)
≤ C(δ).

Next in view of hypothesis (3.22), we observe that

∣
∣
∣
∣

κδ(t,x;ϑn)∇ϑn

ϑn

∣
∣
∣
∣
≤ C(δ)

(
∇ϑn + ϑ

β
2
n |∇(ϑ

3
2
n )|

)

where, by virtue of (3.52) and (3.54), the right-hand side is bounded in Lp(I ×Ω). Similarly
the remaining epsilon part of the modified κ can be estimated this way

∣
∣
∣
∣

(
√
εϑ−1

n )∇ϑn

ϑn

∣
∣
∣
∣
≤ ε

1
4−

1
β+1 (ε

1
β+1 |ϑ− 1

2 |)(ε 1
4 |∇(ϑ−

1
2 )|).

The Lp-norm of the right-hand side of both inequalities is dominated by εrC for some r > 0.
The term εAε,n∇̺n is more delicate. In accordance with hypotheses (3.14), (3.17), and
(3.18), we have

ε|Aε,n||∇̺n| ≤ εC(δ)
(
1 +

̺
2
3
n

ϑn
+ |log ̺n| + |log ϑn|

)
|∇̺n|.

Omitting the index n, the terms on the right-hand side can be estimated as follows

ε
∥
∥∇̺

∥
∥

p
≤ √

εC(δ),

ε
∥
∥̺

2
3ϑ−1∇̺

∥
∥

p
≤ ε

1
2−

1
β+1C(δ)

∥
∥̺

∥
∥

β
ε

1
β+1

∥
∥ϑ−1

∥
∥

β+1

√
ε
∥
∥∇̺

∥
∥

2
≤ εr(β)C(δ),

ε
∥
∥log ̺∇̺

∥
∥

p
≤ √

εC(δ)(
∥
∥̺

∥
∥

2

β
+ ε

∥
∥
|∇̺|
̺

∥
∥

2

2
) ≤ √

εC(δ),

and

ε
∥
∥log ϑ∇̺

∥
∥

p
= ε

∥
∥(̺|log ϑ|) 1

α |log ϑ|1− 1
α
|∇̺|√
̺
̺

1
2−

1
α

∥
∥

Lp(I×Ω)

≤ √
ε
∥
∥̺ log ϑ

∥
∥

α

L∞(I;L1(Ω))

∥
∥log ϑ

∥
∥

1− 1
α

L2(I;L6(Ω))

√
ε
∥
∥̺−1|∇̺|2

∥
∥

1

∥
∥̺

∥
∥

β
≤ √

εC(δ) (3.72)

for some p > 1, provided β is large enough and α > 5
2 .
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Concerning the last term in (3.57) we have at our disposal only the L1-estimate (3.50),
namely

∥
∥ε(eG + ̺∂̺eG + δϑ)

∇̺ · ∇ϑ
ϑ2

∥
∥

1
≤ 4

√
εC(δ).

Nevertheless, this is enough to meet the assumptions of Lemma 4.6.1 and conclude

4

3
a(ϑϑ3 − ϑϑ3) = (ϑ̺sG − ϑ̺sG) + δ(ϑ̺ log ϑ− ϑ̺ log ϑ). (3.73)

The right-hand side integrated over a ball B ⊂ I × Ω can be split,

lim
n→∞

∫

B

̺n(sG(̺n, ϑn) + δ log ϑn)(ϑn − ϑ) dx dt =

lim
n→∞

∫

B

̺n

(
sG(̺n, ϑn) − sG(̺n, ϑ)

)
(ϑn − ϑ) + δ̺n

(
log ϑn − log ϑ)(ϑn − ϑ)

+ ̺n

(
sG(̺n, ϑ) + δ log ϑ

)
(ϑn − ϑ) dx dt,

whence, in accordance with hypothesis (3.18), the first two terms on the right-hand side
are non-negative, while the last one tends to zero, because of the strong convergence of the
density. Then (3.73) yields

ϑ3ϑ ≥ ϑ3ϑ a.e. on I × Ω. (3.74)

Then using the Minty trick, we conclude

ϑn → ϑ in L4(I × Ω). (3.75)

The point-wise convergence of the temperature and the compactness property (3.23) of the
mapping Z imply also the point-wise convergence of the quantities κG, κR, µ, and ζ, which
are mainly functions of t, x, and ϑ, but depends also on the velocity through the non-local
mapping Z. Then the terms

κ[un](t,x;ϑn)∇ϑn

ϑn
and S[un](t,x;ϑn)

tends to their counterparts as they are bounded in some Lp(I×Ω), p > 1. The same argument
is tacitly used in all succeeding limit processes.

The strong convergence of the temperature allows us to pass to the limit in (3.57) and (3.58).
In view of the Lp-estimates from the beginning of this section, the majority of the terms in
(3.57) tends to their counterparts. based on the limit quantities ̺, u, ϑ. On the other hand
the L1-terms tend to the Radon measures:

ε(eG + ̺n∂̺eG,n + δϑn)
∇̺n · ∇ϑn

ϑ2
n

→ Γε, where
∥
∥Γ

∥
∥
M(I×Ω)

≤ 4
√
εC(δ),

and

σε,n → Σε ≥ σε =
κε[u]|∇ϑ|2

ϑ2
+

S : ∇u

ϑ
+ εϑ−β−1 + ε

∂̺pG

ϑ̺
|∇̺|2 + δε(β̺β−2 + 2)

|∇̺|2
ϑ

,

where Σε ≥ σε (in sense of distributions) is due to weak lower semi-continuity of the convex
term σε,n, cf. Section 4.8. Thus the limit equation reads

∫

I

∫

Ω

̺sδ∂tϕ+ ̺usδ · ∇ϕ− κε[u]∇ϑ · ∇ϕ
ϑ

+ εAε∇̺ · ∇ϕ dx dt

+ 〈Σε, ϕ〉I×Ω − εϑβ−1 − 〈Γε, ϕ〉I×Ω = 0, for any ϕ ∈ D(I × Ω). (3.76)
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Concerning the initial condition, we use (3.60) and we denote s0,ε = sε(̺0,ε, ϑ0,ε). Then we
get

∫

Ω

̺0,εs0,εϕ dx =

∫

Ω

̺n[0]sε(̺n[0], ϑn[0])ϕ dx

= lim
τ→0+

1

τ

∫ τ

0

∫

Ω

̺nsε(̺n, ϑn)ϕ dx dt, (3.77)

for any ϕ ∈ D(Ω) and every n. . Having ̺nsε,n bounded in Lp(I × Ω), p > 1, one can pass
to the limit in this equality. Next, we test (3.76) by ψ(t)ϕ(x), where ψ is an aproximation of
the characteristic function of the interval [0, t] and ϕ ≥ 0. Letting t go to zero we arrive at

esslim
t→0+

∫

Ω

̺sε(̺, ϑ)[t]ϕ dx ≥ lim
τ→0+

1

τ

∫ τ

0

∫

Ω

̺sεϕ dx dt =

∫

Ω

̺0,εs0,εϕ dx. (3.78)

In order to pass to the limit in the total energy balance we rewrite it in the weak form:

∫

I

∂tψ(t)

∫

Ω

1

2
̺n|un|2 + ̺neε,n + δ

( ̺β
n

β − 1
+ ̺2

n

)
dx dt =

∫

I

ψ(t)

∫

Ω

̺nf · un + εϑ−β
n dx dt

(3.79)
for any ψ ∈ D(I). Here all the terms are equi-integrable, thus we can pass to the limit and
use a sequence of test functions approaching the characteristic function of the interval [t1, t2].
Finally, we get

∫

Ω

Eε[t2]−Eε[t1] dx dx dt =

∫ t2

t1

∫

Ω

̺f ·u+ε(ϑ−β−ϑβ) dx dt for a.e. t1, t2 ∈ I, (3.80)

Eε =
1

2
̺|u|2 + ̺eδ(̺, ϑ) + δ

( ̺β

β − 1
+ ̺2

)
.

Finally, from (3.61) and (3.80) it follows

Eε[t] → Eε[0] = Eδ(̺0,ε,u0, ϑ0,ε). (3.81)

3.4.3 Limit in the momentum equation

In view of the available estimates, one can use the momentum equation and the Arzelà-Ascoli
theorem similarly as in (4.65) in order to get

̺nun → ̺u in C([0, T ];L
5
4

weak(Ω;R3)). (3.82)

This space is compactly imbedded into C([0, T ];W−1,2(Ω;R3)), thus taking into account
(3.53), we deduce

̺nun ⊗ un → ̺u ⊗ u in L2(I;Lp(Ω;R3 × R3)), p > 1.

Because of the strong convergence of the density gradients (3.67), we infer

∇̺n∇un → ∇̺∇u in D′(I × Ω;R3).



42 3. EXISTENCE THEORY FOR A NON-HOMOGENEOUS FLUID

The limit in the other terms is a straightforward consequence of the available estimates and
the strong convergence of the density and the temperature. Consequently we obtain the limit
of the momentum equation (3.56):

∫

I

∫

Ω

̺u · ∂tϕ + ̺u ⊗ u : ∇ϕ + pδdivϕ − S : ∇ϕ + ̺f · ϕ dx dt = 0 (3.83)

for all ϕ ∈ D(I × Ω;R3). Because of (3.82), we can pass to the limit in (3.59) as well and
get

(̺u)[t] → (̺u)[0] = ̺0,εu0 weakly in L1(Ω). (3.84)

3.5 Vanishing viscosity limit

In the previous section, we have constructed a solution (̺,u, ϑ) = (̺ε,uε, ϑε) of the equations
(3.70), (3.83), (3.76), and (3.80) for any fixed ε. Our next goal is to let ε tend to zero and
pass to the limit in our system. We can take advantage of estimates (3.51), (3.52), and (3.53),
which are uniform with respect to ε. In particular, all the terms containing ε vanish in the
limit, since

∥
∥ε∇̺ε

∥
∥

L1(Q)
+

∥
∥ε∇̺ε∇uε

∥
∥

L1(Q)
≤ √

εC(δ)

and
∥
∥εϑ−β

∥
∥

L1(Q)
≤ ε

β
β+1 C,

∥
∥εϑβ

∥
∥

L1(Q)
≤ εC.

while the epsilon terms in the entropy inequality (3.76) either have sign and can be forgotten
or are dominated by εrC(δ), r(β) > 0 as was discussed in Section 3.4.2. In view of the
available estimates, we can choose a subsequence such that

̺ε → ̺ in C(I;L
5
3

weak(Ω)),

uε → u weakly in L2(I;W 1,2(Ω;R3)),

ϑε → ϑ weakly in L2(I;W 1,2(Ω)).







(3.85)

3.5.1 Refined pressure estimates

According to the estimates (3.51 − 3.53), the artificial pressure as well as the corresponding
term in the energy balance are known to be bounded only in L1(Q), which is not enough
to exclude possible concentrations in the limit. Nevertheless, an additional estimate can be
gained from the momentum equation. Following [18], we test (3.83) by

ϕ = ψ(t)B[π], π = ̺−−
∫

Ω

̺ dx,
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where B is the Bogovskii operator on the domain Ω introduced in Lemma 2.1.3. A straight-
forward calculation yields

∫ T

0

∫

Ω

ψpδ̺ dx dt =

4∑

j=1

Ij =

∫ T

0

ψ

∫

Ω

p dx

∫

Ω

̺ dx dt (3.86)

−
∫ T

0

∫

Ω

ψ̺f · B[π] + ψ̺u ⊗ u : ∇B[π] + ∂tψ̺u · B[π] dx dt

+

∫ T

0

ψ

∫

Ω

(
2µfDu +

(
ζf − 2

3
µf

)
div uI

)
: ∇B[π] dx dt

−
∫ T

0

ψ

∫

Ω

̺u · ∂tB[π] dx dt.

The first three terms I1, I2, I3 are bounded by virtue of estimates (3.51), (3.53). In the last
term I4, we use essentially the strong continuity equation (3.68) to deduce

∥
∥∂tB[π]

∥
∥

L2(I×Ω)
=

∥
∥B[ε∆̺− div(̺u)]

∥
∥

L2(I×Ω)
≤ C

(∥
∥̺u

∥
∥

2
+ ε

∥
∥∇̺

∥
∥

2

)
,

where the right hand side is bounded provided β > 3. Then I4 is bounded as well and it
follows

∥
∥pG(̺, ϑ)̺+ δ(̺β+1 + ̺3)

∥
∥

L1(Q)
≤ C. (3.87)

3.5.2 Limit passage

Using (3.85), one can pass to the limit in the continuity equation and get

∫

I

∫

R3

̺∂tϕ+ ̺u · ∇ϕ dx dt = 0 for all ϕ ∈ D(I × R3). (3.88)

Moreover, thanks to the artificial pressure δ̺β , the density is square integrable and Lemma
3.1.2 can be used to obtain also the renormalized equation.

Next, we turn our attention to the momentum equation. Employing the time term, it follows

̺εuε → ̺u in C([0, T ];L
5
4

weak(Ω;R3)). (3.89)

Hence, thanks to the compact imbedding L
5
4

weak →֒W−1,2, we infer

̺εuε ⊗ uε → ̺u ⊗ u weakly in Lp(Q) (3.90)

for some p > 1. Moreover, in view of (3.87), the terms S, pδ are also bounded in Lp(Q),
p > 1. Then one can pass to the limit in the momentum equation (3.83) and obtain

∫

I

∫

Ω

̺u · ∂tϕ + ̺u ⊗ u : Dϕ + pδdivϕ − S : Dϕ + ̺f · ϕ dx dt = 0 (3.91)

for any ϕ ∈ D(I × Ω;R3).
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3.5.3 Strong convergence of the temperature

Our next goal is to establish the strong convergence of the temperature field. We present
a method based on the Div-Curl lemma 2.2.4, which was probably first used in [16]. We
rewrite the entropy equation (3.76) as

Divt,xU ε = Σε − Γε

where

U ε =
[

̺εsδ(̺ε, ϑε), ̺εsδ(̺eps, ϑε) +
κε∇ϑε

ϑε
+ εAε∇̺ε

]

and Divt,x is the divergence operator on the four-dimensional space-time. It follows that
Divt.xU ε is relatively compact in W−1,s(I × Ω) for some s > 1. Moreover, in view of the
estimates collected in Section 3.4.2, all terms in U ε are bounded in Lp(I×Ω) for some p > 1.
On the other hand, the field

V ε = (ϑε, 0, 0, 0),

is bounded in any Lq(I × Ω;R4), 1 < q < ∞, provided β is large enough, and Curlt,xV ε is
relatively compact in W−1,s(I ×Ω;R4) for s > 1. Then a direct application of Lemma 2.2.4
yields

4

3
a(ϑϑ3 − ϑϑ3) = (ϑ̺sG − ϑ̺sG). (3.92)

The right-hand side integrated over a ball B ⊂ I × Ω, can be split

lim
ε→0

∫

B

̺εsG(̺ε, ϑε)(ϑε − ϑ) dx dt =

lim
ε→0

∫

B

̺ε

(
sG(̺ε, ϑε) − sG(̺ε, ϑ)

)
(ϑε − ϑ) + ̺εsG(̺ε, ϑ)(ϑε − ϑ) dx dt,

where the former term is non-negative, while the later one tends to zero, by virtue of calcu-
lation (4.71) if we prove

B(̺)G(ϑ) = B(̺)G(ϑ). (3.93)

Using the renormalized continuity equation, one can show similarly as in (4.59) that

B(̺ε) → B(̺) in C([0, T ];Lp
weak(Ω)). (3.94)

for any B ∈W 1,∞(R). On the other hand in view of the estimate (3.53), we have

G(ϑε) → G(ϑ) weakly in L2(I;W 1,2(Ω))

for any G ∈ W 1,∞(R). Then (3.93) is a consequence of the compact imbedding Lp(Ω) →֒
W−1,2(Ω) for p > 6

5 . Finally, (3.92) yields

ϑ3ϑ ≥ ϑ3ϑ a.e. on I × Ω (3.95)

and using the Minty trick, we conclude

ϑn → ϑ in L4(I × Ω). (3.96)
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3.5.4 Strong convergence of the density field

In order to identify weak limits of the nonlinear terms, like pδ(̺ε, ϑε) , we have to prove the
strong convergence of the density field. Following Section 4.7, we begin with compactness
properties of the effective viscous pressure. Testing (3.83) by ψηϕε = ψ(t)η(x)∇∆−1[ξ(x)̺ε)]
and using the continuity equation (3.70), we get

∫

Q

ψξ
(
η(pδ,ε −R : [ηSε])

)
̺ε dx dt = (3.97)

∫

Q

ψ(Sε − ̺εuε ⊗ uε) : ∇η ⊗ ϕε − ψpδ,ε∇η · ϕε) dx dt

−
∫

Q

η̺εuε ·
(
∂tψϕε + ψ∇∆−1[∇ξ · ̺εuε]

)
dx dt−

∫

Q

ψηϕε · (̺εf) dx dt

+ε

∫

Q

(∇̺ε · ∇)uε · ∇(ψηϕε) + ψη̺εuε · R · [ξ∇̺ε] − ψη∇∆−1[∇η · ∇̺ε] dx dt

+

∫

Q

ψuε ·
(
R · [η̺εuε]ξ̺ε − η̺εuε · R[ξ̺ε]

)
dx dt.

On the other hand, (3.91) tested by ψηϕ = ψ(t)η(x)∇∆−1[ξ(x)̺] together with the limit of
the continuity equation (3.88) gives

∫

Q

ψξ
(
ηpδ −R : [ηS]

)
̺ dx dt = (3.98)

∫

Q

ψ(S − ̺u ⊗ u) : ∇η ⊗ ϕ − ψpδ∇η · ϕ dx dt

−
∫

Q

η̺u ·
(
∂tψϕ + ψ∇∆−1[∇ξ · ̺u]

)
dx dt−

∫

Q

ψηϕ · (̺f) dx dt

+

∫

Q

ψu ·
(
R · [η̺u]ξ̺− η̺u · R[ξ̺]

)
dx dt.

The right-hand side of (3.97) tends to the right-hand side of (3.98), in particular for the very
last terms one can apply Corollary 2.2.5. Then the left-hand sides imply

lim
ε→0

∫

Q

ψηξ
(
pG(̺ε, ϑε) + pR(ϑε) + δ(̺β

ε + ̺2
ε) − (ζε + 4

3µε)div uε

)
(̺ε − ̺) dx dt

= lim
ε→0

∫

Q

2ψξ
(

R : [ηµε∇uε] − ηµεR : [∇uε]
)

(̺ε − ̺) dx dt. (3.99)

The right-hand side tends to zero by means of Lemma 2.2.6, the interpolation, and strong
convergence of the temperature. Then (3.99) reduces to

lim
ε→0

∫

Q

ϕ(ζ(ϑ) +
4

3
µ(ϑ))divuε(̺ε − ̺) dx dt

= lim
ε→0

∫

Q

ϕ
(
pG(̺ε, ϑε) + δ(̺β

ε + ̺2
ε)

)
(̺ε − ̺) dx dt for any ϕ ∈ D(Q). (3.100)

Since pG(̺, ϑ) + δ(̺β + ̺2) is a non-decreasing function of ̺, one have
(
pG(̺ε, ϑε) + δ̺β

ε − pG(̺, ϑε) − δ̺β
)
(̺ε − ̺) ≥ 0.
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Then because of the strong convergence of the temperature the right-hand side of (3.100) is
greater than zero and one gets

̺divu − ̺divu ≥ 0. (3.101)

Using Lemma 3.1.2, Lemma 3.1.3 and Lemma 3.1.4, one can check that ̺, u satisfy

∂t(̺ log(̺)) + div(̺ log(̺)u) + ̺div̺ = 0 in D′(I × R3), (3.102)

provided ̺, u are extended by zero outside of Ω.

On the other hand for a B ∈ C2[0,∞), one can renormalize the equation (3.68) and deduce

∂tB(̺ε) + div(B(̺ε)uε) +
(
B′(̺ε)̺ε −B(̺eps)

)
divuε =

εdiv(1Ω∇B(̺ε)) − ε1ΩB
′′(̺ε)|∇̺ε|2 in D′(I × R3).

Taking a convex function B(̺) = ̺ log ̺, integrating over Ω and letting ε→ 0, we infer
∫ τ

0

∫

Ω

̺divu dx dt ≤
∫

Ω

(̺ log ̺)[0] − (̺ log ̺)[τ ],

which combined with (3.102) and (3.101) yields
∫

Ω

(̺ log ̺− ̺ log ̺)[τ ] dx ≥
∫ τ

0

∫

Ω

̺divu − ̺divu dx dt ≥ 0.

Then applying Theorem 2.2.3 we conclude

̺ε → ̺ in L1(I × Ω).

3.5.5 Limit passage - continued

With the strong convergence at hand, we can finish the passage to the limit in equations.
First, we can identify pδ, S in the momentum equation with pδ, S, respectively. Next, in the
entropy equation the epsilon terms vanish, while the other terms are equi-integrable except
the measure Σε. Nevertheless, Σε is uniformly bounded in the space of Radon measures
M(I × Ω), so up to the subsequence we have

〈Σε, ϕ〉 → 〈Σδ, ϕ〉 as ε→ 0

for any ϕ ∈ D(I × Ω). Moreover,

Σδ ≥ σδ =
κ[u]|∇ϑ|2

ϑ2
+ δϑβ−2|∇ϑ|,+S : ∇u

ϑ

in M(I × Ω) because of the lower semi-continuity of the convex terms in σε.

In the energy equality, one can use a similar argument as for the convective term to pass
with the kinetic energy term ̺|u|2, the artificial pressure is equi-integrable due to (3.87) and
the term ε(ϑ−β − ϑβ) tends to zero.

Finally, we obtain a solution (̺,u, ϑ) of the limit system
∫

I

∫

Ω

B(̺)∂tϕ+B(̺)u · ∇ϕ− b(̺)divuϕ dx dt = 0, for ϕ ∈ D(I × Ω) (3.103)
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and any B satisfying (3.7),

∫

I

∫

Ω

̺u · ∂tϕ + ̺u ⊗ u : ∇ϕ + pδdiv ϕ − S[u] : ∇ϕ + ̺f · ϕ dx dt = 0,

for ϕ ∈ D(I × Ω;R3), (3.104)

∫

I

∫

Ω

(̺sδ)∂tϕ+ (̺sδ)u · ∇ϕ− κδ[u]∇ϑ · ∇ϕ
ϑ

+ 〈Σδ, ϕ〉 dx dt = 0,

for ϕ ≥ 0, ϕ ∈ D(I × Ω), (3.105)

d

dt

∫

Ω

(1

2
̺|u|2 + ̺e+ δ

( ̺β

β − 1
+ ̺2

))
[t] dx =

∫

Ω

̺f · u dx for a.e. t ∈ I. (3.106)

It remains to clarify initial conditions. In view of (3.24) and the strong convergence of the
density, one can pass to the limit in the initial condition (3.69) to deduce

̺[t] → ̺[0] = ̺0 weakly in L1(Ω).

Moreover, applying Lemma 3.1.5, one obtains even the strong convergence.

Similarly we can treat the other initial conditions (3.84), (3.78), (3.81) using the limit equa-
tions and assumptions (3.24), (3.29). We conclude

̺[t] → ̺[0] = ̺0 in L1(Ω),

(̺u)[t] → (̺u)[0] = ̺0u0 weakly in L1(Ω;R3),

Eδ[t] → Eδ[0] = Eδ(̺0,u0, ϑ0),







(3.107)

and

esslim
t→0+

∫

Ω

(̺sδ(̺, ϑ))[t]ϕ dx ≥ lim
τ→0+

∫ τ

0

∫

Ω

(̺sδ(̺, ϑ)) dx dt =

∫

Ω

̺0sδ(̺0, ϑ0)ϕ dx (3.108)

for any ϕ ∈ D(Ω), ϕ ≥ 0.

3.6 Vanishing artificial pressure

Our ultimate goal is pass to the limit in the system (3.103 − 3.106) as δ → 0 and remove
remaining artificial terms.

3.6.1 The estimates revisited

One can perform the same estimates as in Section 3.3. Integrating the total energy balance
(3.106) over the time interval [0, t] and testing the entropy equation (3.105) by an approxi-
mating sequence of ϕ = 1[0,t], we get

̺|u|2, ̺ 5
3 , δ̺β , ϑ4, ̺sG, δ̺|log ϑ| bounded in L∞(I;L1(Ω)), (3.109)
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and
|∇u|2, |∇ϑ 3

2 |2, |∇ log ϑ|2, δ|∇ϑ β
2 |2 bounded in L1(I × Ω) (3.110)

uniformly with respect to δ.

In contrast to the previous limits, we have no uniform estimate for ̺ log ϑ. However, using
the entropy inequality once again, one can proceed similarly as in (4.51), namely one can
find M , δ∗ > 0, independent of δ, such that

|{ϑ[τ ] ≥ δ∗}| ≥M > 0, while

∫

{ϑ[τ ]≥δ∗}

log ϑ[τ ] dx ≤ C

uniformly with respect to τ ∈ I and δ. Then the Poincaré inequality 2.1.2 leads to

u, ϑ
3
2 , log ϑ,

√
δϑ

β
2 bounded in L2(I;W 1,2(Ω)). (3.111)

Using these estimates, we have also ϑ bounded in L
17
3 (I × Ω) and S bounded in Lp(I × Ω)

for some p > 1.

3.6.2 Modification of pressure estimate

Similarly to Section 3.5.1, we have to derive better than L1-estimate for the pressure. How-
ever, several modifications have to be made because of weaker uniform estimates for the
density. On the other hand, we can take advantage of the renormalized continuity equation
(3.103) without the inconvenient elliptic term.

We use

ϕ = ψ(t)B[πδ
ε ], πδ

ε = ωε ⋆ ̺
ν
δ −−

∫

Ω

ωε ⋆ ̺
ν
δ dx

as a test function in (3.104). For the time derivative ∂tϕ, we shall use the mollified version of
the renormalized continuity equation (3.12). Provided ν > 0 is sufficiently small, specifically
ν < 1

18 , we deduce

∥
∥∂tB[πε]

∥
∥

L1(I;L5(Ω;R3))
≤ C

(∥
∥(ωε ⋆̺

ν
δ )uδ

∥
∥

L1(I;L5(Ω;R3))
+

∥
∥ωε ⋆ (̺ν

δdivuδ)+rε
∥
∥

L1(I;L
15
8 (Ω))

+

∫

I

∫

Ω

ωε ⋆ (̺ν
δdivuδ) + rε dx

)

≤ C(
∥
∥̺ν

δuδ

∥
∥

L1(L5)
+

∥
∥̺ν

δdivuδ

∥
∥

L1(L
15
8 )

+ 1),

where the right-hand side is bounded independently of δ and ε. Now, testing (3.104) by ϕ,
a straightforward calculation yields

∫ T

0

∫

Ω

ψpδ(ωε ⋆ ̺
ν
δ ) dx dt =

4∑

j=1

Ij =

∫ T

0

ψ

∫

Ω

pδ dx−
∫

Ω

ωε ⋆ ̺
ν
δ dx dt (3.112)

−
∫ T

0

∫

Ω

ψ̺δf · B[πδ
ε ] + ψ̺δuδ ⊗ uδ : ∇B[πδ

ε ] + ∂tψ̺δuδ · B[πδ
ε ] dx dt

+

∫ T

0

ψ

∫

Ω

(
2µfDuδ +

(
ζf − 2

3
µf

)
div uδI

)
: ∇B[πδ

ε ] dx dt

−
∫ T

0

ψ

∫

Ω

̺δuδ · ∂tB[πδ
ε ] dx dt.
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By virtue of estimates (3.109), (3.111) the first three integrals are bounded independently of
δ and ε, where the most restrictive convective term leads to the condition ν ≤ 5

9 . For the
last integral, we have

I4 ≤
∥
∥̺u

∥
∥

L∞(I;L
5
4 (Ω))

∥
∥∂tB[πε]

∥
∥

L1(I;L5(Ω)
≤ C

Finally, using Fatou’s lemma, we get

∫ T

0

∫

Ω

pδ(̺δ, ϑδ)̺
ν
δ dx dt ≤ lim inf

ε→0

∫ T

0

∫

Ω

pδ(̺δ, ϑδ)ωε ⋆ ̺
ν
δ dx dt ≤ C, (3.113)

whence in view of the hypothesis (3.15), we conclude
∥
∥pG(̺δ, ϑδ)

∥
∥

Lp(I×Ω)
≤ C for some p > 1 and

∥
∥δ(̺β + ̺2)

∥
∥

L1(I×Ω)
≤ δ

ν
β+ν C.

3.6.3 Limit passage

In view of the uniform estimates (3.109 – 3.111), we can use the Alaoglu-Bourbaki theorem
2.2.1 to identify limits

̺δ → ̺ weakly-∗ in L∞(I;L
5
3 (Ω)), (3.114)

uδ → u weakly in L2(I;W 1,2
0 (Ω;R3)), (3.115)

ϑδ → ϑ weakly-∗ in L∞(I;L4(Ω)). (3.116)

as δ → 0, passing to the subsequence as the case may be. Moreover, since ̺δ satisfies (3.103)
and ̺δuδ satisfies (3.104), we have even

̺δ → ̺ in C([0, T ];L
5
3

weak(Ω)), (3.117)

B(̺δ) → B(̺) in C([0, T ];Lp
weak(Ω)), (3.118)

̺δuδ → ̺u in C([0, T ];L
5
4

weak(Ω;R3)) (3.119)

for any

B(z) ∈ C1[0,∞), |B(z)| ≤ 1 + zλ, λ ∈ (0,
5

3
),

and p ∈ (1, 5
3λ ).

Then one can pass to the limit in the continuity equation, i.e. (3.103) with B(z) = z, and
get ∫

I

∫

R3

̺∂tϕ+ ̺u · ∇ϕ dx dt = 0 for anyϕ ∈ D(I × R3). (3.120)

Further, as L
5
4 (Ω;R3) is compactly imbedded intoW−1,2(Ω;R3), the sequence ̺δuδ converge

strongly in C(I;W−1,2(Ω)) and therefore

̺δuδ ⊗ uδ → ̺u ⊗ u weakly in L2(I;L
30
29 (Ω;R3 × R3)).

Using the equi-integrability of S and pδ, the artificial pressure vanishes as we pass to the
limit in the momentum equation and we get

∫

I

∫

Ω

̺u · ∂tϕ + ̺u ⊗ u : Dϕ + pdivϕ − S : Dϕ + ̺f · ϕ dx dt = 0 (3.121)
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for any ϕ ∈ D(I × Ω;R3).

If we succeed in proving the strong convergence of the temperature and the density, we can
finish the limit process. We can pass to the limit in the renormalized continuity equation.
In the momentum equation (3.121), we identify p, S with p, S, respectively. In the entropy
inequality (3.105), we use the weak lower semi-continuity of the convex term σδ and the equi-
integrability of the other terms (see estimates in Section 3.6.4 later on). Finally, rewriting
the total energy balance int the weak form (3.79), we obtain the last equation in the target
system 3.2 − 3.5.

3.6.4 Pointwise convergence of the temperature

In order to prove the strong convergence of the temperature, we use again Proposition 4.6.1.
Direct use of the estimates (3.109) and (3.111) imply

̺δsδ(̺δ, ϑδ) bounded in L2(I;Lp(Ω)) ∩ L∞(I;L1(Ω)), p =
30

23
>

6

5
, (3.122)

whence by the interpolation, ̺δsδuδ is bounded in some Lp(I × Ω), p > 1. Further, in
accordance with hypothesis (3.22)

∥
∥κ(ϑδ)ϑ

−1
δ ∇ϑδ

∥
∥

L2(I×Ω)
≤ C

∥
∥∇ϑδ

∥
∥

2
≤ C

and by virtue of (3.54)

δ
∥
∥ϑβ−1

δ ∇ϑδ

∥
∥

p
≤ δ

1
2

∥
∥∇(ϑ

3
2

δ )
∥
∥

2
δ

1
2

3β
3β+8

∥
∥ϑδ

∥
∥

β+ 8
3

δ
3β+12
3β+8 ≤ Cδ

3β+12
3β+8 → 0.

Finally, σδ is uniformly bounded in L1(I×Ω). Then Proposition 4.6.1 applied on the entropy
inequality (3.105), using Σδ ≥ σδ, yields

̺δs(̺δ, ϑδ) → ̺s(̺, ϑ) in L2(I;W−1,2(Ω)),

while
δ̺δ log ϑδ → 0 at least in L1(I × Ω).

Next, we use the structure of the entropy and the weak convergence of the temperature in
the space L2(I;W 1,2(Ω)) to conclude

4

3
a(ϑϑ3 − ϑϑ3) = (ϑ̺sG − ϑ̺sG). (3.123)

Then, exactly as in Section 3.4.2, one can deduce the strong convergence of the temperature

ϑδ → ϑ in L4(I × Ω). (3.124)

3.6.5 Strong convergence of the density field

Compactness of the density shall be proved in the very same way as in Section 4.7. In fact
it is simpler as one can work on the whole domain Ω.
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Testing (3.104) by ψηϕδ = ψ(t)η(x)∇∆−1[ξ(x)T ν
k (̺δ)], 0 < ν ≤ 1, and using the renormal-

ized continuity equation

∂t

(
T ν

k (̺δ)
)

+ div
(
T ν

k (̺δ)uδ

)
+

[
(T ν

k )′(̺δ)̺δ − T ν
k (̺δ)

]
divuδ = 0 in D′(I × Ω),

we get
∫

Q

ψξ
(
ηpδ −R : [ηSδ])

)
T ν

k (̺δ) dx dt = (3.125)

∫

Q

ψ(Sδ − ̺δuδ ⊗ uδ) : ∇η ⊗ ϕδ − ψpδ∇η · ϕδ) dx dt

−
∫

Q

η̺δuδ ·
(
∂tψϕδ + ψ∇∆−1[∇ξ · T ν

k (̺δ)uδ]
)

dx dt

−
∫

Q

ψη̺δuδ · ∇∆−1[ξ((T ν
k )′(̺δ)̺δ − T ν

k (̺δ))div uδ] + ψηϕδ · (̺δf) dx dt

+

∫

Q

ψuδ ·
(
R · [η̺δuδ]ξT

ν
k (̺δ) − η̺δuδ · R[ξT ν

k (̺δ)]
)

dx dt.

On the other hand, testing (3.121) by ψηϕ = ψ(t)η(x)∇∆−1[ξ(x)T ν
k (̺)], 0 < ν ≤ 1 and

using L1-limit of the renormalized continuity equation

∂t

(
T ν

k (̺)
)

+ div
(
T ν

k (̺)u
)

+
[
(T ν

k )′(̺)̺− T ν
k (̺)

]
divu = 0 in D(I × Ω),

we get
∫

Q

ψξ
(
ηp−R : [ηS]

)
T ν

k (̺) dx dt = (3.126)

∫

Q

ψ(S − ̺u ⊗ u) : ∇η ⊗ ϕ − ψp∇η · ϕ) dx dt

−
∫

Q

η̺u ·
(
∂tψϕ + ψ∇∆−1[∇ξ · T ν

k (̺)u]
)

dx dt

−
∫

Q

ψη̺u · ∇∆−1[ξ((T ν
k )′(̺)̺− T ν

k (̺))div u] + ψηϕ · (̺f) dx dt

+

∫

Q

ψu ·
(
R · [η̺u]ξT ν

k (̺) − η̺u · R[ξT ν
k (̺)]

)
dx dt.

In view of the available estimates and using Corollary 2.2.5, the right-hand side of (3.125)
tends to the right-hand side of (3.126) and the left-hand sides yields

lim
δ→0

∫

Q

ψηξ
(
pG(̺δ, ϑδ) + pR(ϑδ) − (ζδ + 4

3µδ)div uδ

)(
T ν

k (̺δ) − T ν
k (̺)

)
dx dt

= lim
δ→0

∫

Q

ψξ
(

R : [ηµδ∇uδ] − ηµδR : [∇uδ]
)(
T ν

k (̺δ) − T ν
k (̺)

)
dx dt. (3.127)

The right-hand side tends to zero by means of Lemma 2.2.6, the interpolation, and strong
convergence of the temperature, thus (3.127) reduces to

lim
δ→0

∫

Q

ϕ(ζ(ϑ) +
4

3
µ(ϑ))divuδ

(
T ν

k (̺δ) − T ν
k (̺)

)
dx dt

= lim
δ→0

∫

Q

ϕ
(
pG(̺δ, ϑδ)

)(
T ν

k (̺δ) − T ν
k (̺)

)
dx dt for any ϕ ∈ D(Q). (3.128)
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Using essentially this relation and hypothesis (3.14), we can proceed exactly as in Section
4.7.2 and deduce the bound for the oscillation defect measure

oscr[̺δ → ̺] := sup
k≥1

lim sup
δ→0

∫

Q

|Tk(̺δ) − Tk(̺)|r dx dt ≤ C for some r > 2. (3.129)

In the next step, we prove that ̺, u solve the renormalized continuity equation. Taking
B(z) = Tk(z) in (3.103), then passing to the limit and applying Proposition 3.1.2, we arrive
at

∂t(B(Tk(̺))) + div(B(Tk)u) + b(Tk(̺))divu =

B′(Tk(̺))
[
Tk(̺) − T ′

k(̺)̺
]
divu in D′(I × Ω) (3.130)

for any B(z) satisfying (3.7). The weak lower semicontinuity of the norm yields

∥
∥Tk(̺) − ̺

∥
∥

L1(Q)
≤ lim inf

δ→0

∥
∥Tk(̺δ) − ̺δ

∥
∥

L1(Q)
≤ sup

δ

∥
∥̺δ

∥
∥

L1({̺δ≥k})
≤ k−

2
5 sup

δ

∥
∥̺δ

∥
∥

L
5
3 (Q)

.

Hence we have

B(Tk(̺)) → B(̺), b(Tk(̺)) → b(̺) in any Lp(Q), p ≥ 1, (3.131)

as k → ∞. Then it remains to prove that the right-hand side of (3.130) tends to zero. To
this end, we estimate

∥
∥B′(Tk(̺))

[
Tk(̺) − T ′

k(̺)̺
]
divu

∥
∥

L1(Q)

≤ max
0≤z≤M

|B′(z)| sup
δ

∥
∥divuδ

∥
∥

L2(Q)
lim inf

δ→0

∥
∥Tk(̺δ) − T ′

k(̺δ)̺δ

∥
∥

L2(QM )
,

where QM = {Tk(̺) ≤M}. We shall continue by interpolation of the last term

∥
∥Tk(̺δ) − T ′

k(̺δ)̺δ

∥
∥

L2(QM )
≤

∥
∥Tk(̺δ) − T ′

k(̺δ)̺δ

∥
∥

λ

L1(Q)

∥
∥Tk(̺δ)

∥
∥

1−λ

Lp(QM )
(3.132)

for certain p > 2 and λ ∈ (0, 1). Now the first norm tends to zero, since

∥
∥Tk(̺δ) − T ′

k(̺δ)̺δ

∥
∥

L1(Q)
≤

∫

{̺δ≥k}

̺δ dx dt ≤ k−
2
5 sup

δ

∥
∥̺δ

∥
∥

L
5
3 (Q)

,

while the second is bounded

lim sup
n→∞

∥
∥Tk(̺δ)

∥
∥

Lp(QM )
≤ lim sup

n→∞

∥
∥Tk(̺δ) − Tk(̺)

∥
∥

Lp(Q)
+

∥
∥Tk(̺) − Tk(̺)

∥
∥

Lp(Q)

+
∥
∥Tk(̺)

∥
∥

Lp(QM )
≤ 2 oscp[̺δ → ̺](Q) +M |Q| 1p .

Finally, we can use Proposition 3.1.3 to extend the class of valid B-functions.

In particular, the function

B(z) = Lk(z)z, Lk :=

∫ z

1

Tk(s)

s2
ds,
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can be used in the renormalized equation (3.2). Taking a difference of (3.2) and the weak
limit of the equation (3.103) for ̺δ, uδ, we obtain

∫

Ω

[
̺Lk(̺) − ̺Lk(̺)

]
(τ) dx =

∫

Ω

[
̺Lk(̺) − ̺Lk(̺)

]
(0) dx+

∫ τ

0

∫

Ω

(
Tk(̺) − Tk(̺)

)
divu dx dt+

∫ τ

0

∫

Ω

Tk(̺)divu − Tk(̺)divu dx dt. (3.133)

The first term on the right-hand side is in fact zero as ̺δ[0] = ̺0, the second term tends to
zero as k → ∞ by the same argument as above, namely

∥
∥Tk(̺) − Tk(̺)

∥
∥

L2(Q)
≤ lim inf

δ→0

∥
∥Tk(̺) − Tk(̺δ)

∥
∥

λ

1
(oscp[̺δ → ̺](Q))1−λ ≤ Ck−

2
5

for suitable λ ∈ (0, 1), p > 2. For the third term, we use the monotonicity of pressure with
respect to the density and (3.128) with ν = 1 to deduce

Tk(̺)divu − Tk(̺)divu ≤ 0 a.e. on Q.

Then, passing to the limit in (3.133) as k → ∞, we get

∫

Ω

(̺ log ̺− ̺ log ̺)(τ) dx ≤ 0,

which implies the pointwise convergence of the density,

̺n → ̺ a.e. onQ. (3.134)
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Chapter 4

Evolution of solid-fluid system

This chapter is devoted to the existence theory for the problem of rigid bodies drifted in
a compressible fluid. More specifically, we will show that one can get variational solutions
to this problem as a limit of solutions to the Navier-Stokes-Fourier system with spatially
dependent viscosities approaching infinity on the regions corresponding to the bodies. This
clever penalization method has been used by Conca, San Martin, Tucsnak [7] and San

Martin, Starovoitov,Tucsnak [30] to treat a similar problem for an incompressible fluid.
Later, the same method was used by Feireisl [15] for bodies in a compressible fluid in the
isentropic regime. Our aim is to extend this result to the case of a general heat conducting
gas in the spirit of the theory discussed in Chapter 3.

In the first section, we derive the definition of variational solutions and we state the main
existence result. Then in Section 4.2, we use Theorem 3.1.6 with suitably chosen transport
coefficients to construct a sequence of approximate solutions. The displacement mappings,
which describe the motion of approximate bodies, are constructed in Section 4.3. Then we
derive necessary estimates in Section 4.4 and prove the strong convergence of the temperature,
Section 4.6, and the density, Section 4.7. This allows us to pass to the limit in the equations
within Sections 4.5 and 4.8 and finish the proof of the main result.

During the work on my thesis, it appears that performing the high viscosity limit as the last
step is probably not optimal. It seems that one can obtain a better result inserting the high
viscosity limit before the vanishing viscosity limit similarly as in [15]. Some ideas in this
direction are presented in the last section 4.9.

4.1 Variational formulation

In the classical formulation, which was outlined in Chapter 1, there are separated equations
and state quantities for the fluid and for the solid region. The fluid-solid interaction was
represented by the continuity of the velocity and the temperature over the (smooth) boundary
of the bodies and also by the continuity of the stress and the heatflux in the normal direction.
The weak solutions need not to be continuous, therefore the interaction has to be treated
differently. We shall join the integral formulations of the equations for the fluid and for the

55
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solid part. Because of the continuity conditions on the boundary of the bodies, the boundary
integrals mutually vanish and we obtain unified weak formulation of the balance laws on the
whole domain Ω.

Description of the bodies and their motion is similar to the classical formulation. We shall call
the displacement (mapping) a family of diffeomorphisms η[t], η ∈ AC(I;Cloc(R

3)), which
describes motion of particles, cf. (1.1). Further, we shall say that η is the rigid displacement
(mapping) if it is an affine isometry (1.3).

For the weak solution the velocity need not be continuous. Consequently the relation (1.4)
has to be revisited. We shall say that a (velocity) field u is compatible with {η, S}, if η is a
displacement, S is an evolution of the compact set (the body) S[t] = η[t](S0), and it holds

d
dtη[t]

(
η[−t]( · )

)
= u(t, · ) on S[t]. (4.1)

The equality in (4.1) has to be understood in the sense of corresponding spaces. More
specifically, as the velocity lives in the space W 1,2(Ω;R3) the equality v = u on the compact
set S means u−v ∈W 1,2

0 (R3 \S;R3). We shall also say that u is compatible with η if (4.1)
holds on the whole domain Ω.

In what follows, we consider the motion of fluid and rigid bodies S
i
, i = 1, . . . , N in the

domain Ω ⊂ R3 during the time interval I = (0, T ). The motion of the bodies is given by the

rigid displacements ηi through the formula S
i
[t] := ηi[t](S

i

0), where S
i

0 is the body in the

initial position. The bodies S
i
[t] are compact connected sets with non-empty interior and

boundary of zero measure for all times t ∈ I. In terms of ηi we introduce domains

Q := I × Ω, Qi := {(t,x) | t ∈ I,x ∈ S
i
(t)},

Qs :=
N⋃

i=1

Qi, Qf := Q \Qs,

Ωs[t] :=

N⋃

i=1

Si[t], Ωf [t] := Ω \ Ω
s
[t].







(4.2)

We merge the state quantities as follows

̺(t,x) =







̺f (t,x) on Qf ,

̺Si

(ηi[−t](x)) on Qi,

0 on R3 \ Ω,

u(t,x) =







uf (t,x) on Qf ,

uSi

(t,x) = V (t) + ω(t) × (x − XSi(t)) on Qi,

0 on R3 \ Ω,

ϑ(t,x) =

{

ϑf (t,x) on Qf ,

ϑi(t, r), r = ηi[−t](x) −Xi(0) on Qi.

To keep the consistency between the global velocity u and the bodies S[t], we require that

u is compatible with {ηi, S
i} for all i = 1, . . . N . This condition, which can also be viewed

as an expresion of the boundary conditions (1.41), is enough to ensure the impermeability of
the bodies even in the case of weak solution.
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Lemma 4.1.1. [15, Lemma 3.1] Let the velocity u be compatible with {ηi, S
i} for i = 1, 2.

Define Si :=
(
S

i)◦
, i = 1, 2. Then either S1[t]∩S2[t] = ∅ for all t ∈ [0, T ] or S1[t]∩S2[t] 6= ∅

and η1[t] = η2[t] for all t ∈ [0, T ].

Proof. Assume that there exists y ∈ S1[τ ]∩S2[τ ] for some τ ∈ [0, T ]. Since ηi are continuous
and Si[t] are open, we can find ε such that

Bε(y) ⊂ S1[t] ∩ S2[t] ∀ t ∈ Bε(τ).

Further, ηi are both compatible with the same velocity and they are rigid displacements,
thus they obey (1.4). Consequently it holds

d
dtX

1(t) + Q1[t](x − X1(t)) = d
dtX

2(t) + Q2[t](x − X2(t)) ∀ t ∈ Bε(τ), x ∈ Bε(y).

Then for every t ∈ Bε(τ) it must be Q1[t] = Q2[t] = Q[t] while Xi satisfy

d
dt (X

1(t) − X2(t)) = Q[t](X1(t) − X2(t)). (4.3)

In accordance with (1.3) the displacement between times s and t have a form

η[s→ t](x) := η[t]
(
η[−s](x)

)
= X(t) + O[s→ t](x − X(s))

where O[s→ t] := O[t]O−1[s]. As (1.3) is solution of (1.4) the solution of (4.3) reads

(X1(t) − X2(t)) = O[τ → t](X1(τ) − X2(τ))

Now it is easy to see that η1[τ → t] = η2[τ → t] for every t ∈ Bε(τ). Finally, using the
continuity of ηi, we can extend this equality to the whole interval [0, T ].

4.1.1 Continuity equation

In order to derive unified continuity equation, we apply the transport theorem 1.1.1 on a the
quantity ̺ϕ, ϕ ∈ D(I × R3) considering successively the domains Ωf [t] and Ωs[t]. Since the
function ϕ is compactly supported in (0, T ) we get

0 =

∫ T

0

d

dt

∫

Ωf (t)

̺ϕ dx +
d

dt

∫

Ωs(t)

̺ϕ dx dt

=

∫ T

0

∫

Ωf (t)

̺∂tϕ+ ̺u · ∇ϕ+ [∂t̺+ div(̺u)]ϕ dx dt

+

∫ T

0

∫

Ωs(t)

̺∂tϕ+ ̺u · ∇ϕ+ [∂t̺+ div(̺u)]ϕ dx dt.

By virtue of (1.7) and (1.8), the square brackets are equal to zero and the unified equation
follows: ∫ T

0

∫

R3

̺∂tϕ+ ̺u∇ϕ dx dt = 0 ϕ ∈ D(I × R3). (4.4)

Conversely, provided ̺, u are solutions of (4.4) smooth in Qf , one can test this equation by
any ϕ supported in Qf to get (1.7). On the other hand, the density on the solid region is
perfectly propagated even in the case of weak solution, in particular we claim:



58 4. EVOLUTION OF SOLID-FLUID SYSTEM

Lemma 4.1.2. [15, Lemma 3.2] Let ̺, u satisfy the continuity equation (4.4),

̺ ∈ L∞(I;Lγ(Ω)), u ∈ L2(I;W 1,2
0 (Ω)), γ > 1, (4.5)

and let u be compatible with {η, S}, where η is a rigid displacement. Then

̺(t,η[t](x)) = ̺(0,x) for a.e. x ∈
(
S(0)

)◦
and any t ∈ [0, T ].

Proof. To begin with, let us recall that

u(t,x) = ui(t,x) = V (t) + Q(t)(x − X(t)) on every Si[t], (4.6)

where obviously ui ∈ L2(I;W 1,∞(R3)) and Dui = 0. Next, we use the regularizing kernels
ωδ(y − x) as a test functions in (4.4). For the fixed time t ∈ I, we get

(
∂t(ωδ ⋆ ̺) + ∇(ωδ ⋆ ̺) · u

)
[y] =

∫

R3

̺(x)(u(y) − u(x)) · ∇ωδ(y − x) dx

=

∫

R3

̺(x − z)
u(x) − u(x − z)

|z| · ∇ωδ(z)|z|dz (4.7)

for any y ∈ Kδ[t], dist(Kδ[t],Ω
f [t]) > δ. Now, for any ball B[0] ⊂ Ωs[0] we can find δ such

that B[t] ⊂ Kδ[t] for all times t ∈ I. Thus (4.7) implies

∣
∣
∣
∣
∣

∫

B[t]

ωδ ⋆ ̺[t] dy −
∫

B[0]

ωδ ⋆ ̺[0] dy

∣
∣
∣
∣
∣
≤

∫ t

0

∫

B[s]

|Bδ(y)| 1
γ

∥
∥̺[s]

∥
∥

γ

∥
∥u[s]

∥
∥

1,∞
dy ds. (4.8)

Passing to the limit for δ → 0, the right-hand side tends to zero because of (4.5) and (4.6),
while the left-hand side yields

∫

B[t]

̺[t] dx =

∫

B[0]

̺[0] dx.

Then, using the Lebesgue point property, we conclude

̺(t, ηi[t](x)) = ̺(0,x) for a.e. x ∈ Si(0).

4.1.2 Momentum equation

Taking the scalar product of (1.12) with the fixed vector a one gets

a ·
( d

dt

∫

S(t)

̺ (V + r × ω)
︸ ︷︷ ︸

u

dr
)

[τ ] =

∫

S(τ)

a ·
[

∂t(̺u) + div(̺u ⊗ u)
]

dx =

= a ·
∫

∂S(τ)

Tn dσ + a ·
∫

S(τ)

̺f dr.
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Similarly (1.13) multiplied by the vector b yields

( d

dt

∫

S(t)

̺
(
r × (V + r × ω)

︸ ︷︷ ︸

u

)
· bdr

)

[τ ] =
( d

dt

∫

S(t)

(b × r) · ̺u dr
)

[τ ] =

=

∫

S(τ)

(b × r) ·
[
∂t(̺u) + div(̺u ⊗ u)

]
∇(b × r) : ̺u ⊗ u
︸ ︷︷ ︸

0

dr =

=

∫

∂S(τ)

(b × r) · Tn dσ +

∫

S(τ)

(b × r) · ̺f dr,

where we have used the fact that the scalar product of the symmetric tensor ̺u ⊗ u and
the antisymmetric tensor ∇(b× r) is zero. Adding up both equations and using substitution
r = x − XS(τ), we obtain

∫

S(τ)

[
∂t(̺u)s + div(̺u ⊗ u)s

]
· ϕ dx =

∫

∂S(τ)

Tfn · ϕ +

∫

S(τ)

̺sf · ϕ dx (4.9)

for every τ ∈ I and ϕ = a + b × (x − XS(τ)). Equivalently, one can take any ϕ ∈ D(R3),
Dϕ = 0 on S(τ), which is the statement of the following lemma.

Lemma 4.1.3. Let M be a domain in R3 then a set

A := {f ∈W 1,1(M) |Df = 0 for a.e. x ∈M}

coincide with a set
B := {f(x) = a + x × b |a, b ∈ R3}.

Proof. Apparently B ⊂ A. On the other hand every f in A have an antisymmetric gradient.
Hence taking second derivatives in the sense of distribution we observe

0 = ∂j∂if i = ∂i∂jf i = −∂i∂if j

and
∂i∂jfk = −∂k∂if j = ∂j∂kfi = −∂i∂jfk.

Thus ∇∇f = 0. Consequently, ∇f is a constant antisymmetric tensor and f has a form
f(x) = a + Qx for some constant vector a and antisymmetric tensor Q. Since the antisym-
metric tensors operate like the vector product, we conclude f ∈ B.

Similarly as in the previous section, we apply the transport theorem on the quantity ̺u · ϕ,
successively on the domains Ωf [t] and Ωs[t]. In view of Lemma 4.1.3, we choose ϕ ∈ T ,
where

T := {ϕ ∈ D(Q) |Dϕ = 0 on some open neighborhood of Qs}. (4.10)

Using (1.10), (4.9), and the Green theorem we compute

0 =

∫ T

0

d

dt

∫

Ωf (t)∩Ωs(t)

̺u · ϕ dx dt =

∫ T

0

∫

Ωf (t)

(̺u)f∂tϕ + (̺u ⊗ u)f : ∇ϕ dx dt

+

∫ T

0

∫

Ωf (t)

−∇ϕ : Tf + ϕ · ̺ff dx +

∫

∂Ω

ϕ(Tfn) dσ −
∫

∂Ωs(t)

ϕ(Tfn) dσ dt (4.11)

+

∫ T

0

∫

Ωs(t)

(̺u)s∂tϕ + (̺u ⊗ u)s : ∇ϕ + ϕ · ̺sf dx dt+

∫

∂Ωs(t)

ϕ(Tfn) dσ.
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Since the scalar product of the symmetric and the anti-symmetric tensor is zero, we conclude
∫

Q

(̺u) · ∂tϕ + (̺u ⊗ u) : Dϕ dx dt =

∫

Q

T : Dϕ − ̺f · ϕ dx dt ϕ ∈ T . (4.12)

Remark 4.1.4. Later, when we derive suitable estimates, one can use a density argument
to extend the set of admissible test function up to

T̃ = {ϕ1 + ϕ2 |ϕ1 ∈ T ,ϕ2 ∈W 1,p
0 (Qf )} (4.13)

for some p large enough.

Conversely, if (̺, u) is a regular solution of (4.12), we can recover (1.10) on Qf taking
the test functions ϕ with suppϕ ⊂ Qf in the equation (4.11). Similarly, one can take a
sequence ϕn ∈ T , |suppϕn∩Qf | → 0 to get (4.9) and then (1.12) and (1.13). Unfortunately,
the latter localizing procedure is applicable only in the times where no collision occurs, i.e.
∂Si ∩ ∂Sj = ∅ and ∂Si ∩ ∂Ω = ∅ for i 6= j.

4.1.3 Thermal inequalities

Like in the previous cases one can use the transport theorem and the entropy equation (1.19)
separately for the solid and the fluid part to get

∫ T

0

∫

Ω

̺s∂tϕ+ ̺su · ∇ϕ+
q · ∇ϕ
ϑ

+ σϕ dx dt ≤ 0 (4.14)

for any ϕ ∈ D(I × Ω), ϕ ≥ 0. Similarly, we get the global energy inequality

∫

Ω

E[t2] − E[t1] dx ≤
∫ t2

t1

∫

Ω

̺f · u dx dt. (4.15)

where E = 1
2̺|u|2 + ̺e.

For a regular solution, indeed one can expect at most continuity of u and ϑ over ∂Ωs(t)
and ̺ even with the jump, nevertheless we can use the transport theorem once again and
integrate by parts in (4.14). Using ϑϕ as the test function and performing the calculation
(1.18) separately on the fluid and the solid part, we get

∫ T

0

∫

Ωf [t]

[∂t(̺e) + div(̺eu) − divq + S : ∇u]fϕ dx dt

∫ T

0

∫

Ωs[t]

[∂t(̺e) + div(̺eu) − divq + S : ∇u]sϕ dx dt

+

∫ T

0

∫

∂Ω

q · nϕ dσ dt+

∫ T

0

∫

∂Ωs(t)

[qs − qf ] · nϕ dσ dt ≥ 0. (4.16)

If we take ϕ = 1[0,t] and add the kinetic energy equation (1.16), it became obvious that the
strict inequality in (4.16) is in contradiction with (4.15), so we recover the internal energy
equation (1.17).

Now we are ready to introduce the variational solutions of our system.
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Definition 4.1.5. We shall say that functions

̺ ∈ L∞(I;Lγ(Ω)), u ∈ L2(I;W 1,2
0 (Ω)), ϑ ∈ L2(I;W 1,2(Ω)) (4.17)

and rigid displacement mappings {ηi}N
i=1 with bodies {Si}N

i=1 form the variational solution
of problem (B) if

• The density ̺ is non-negative a.e. in Q, the temperature is positive a.e. in Q, and the

velocity u is compatible with {ηi, S
i} for every i = 1 . . . N .

• The weak formulation (4.4) of the continuity equation holds, provided the density and
the velocity are extended by zero outside of the domain Ω.

• The momentum equation holds in the sense of distributions, namely (4.12).

• The inequality (4.14) for the specific entropy and the opposite inequality (4.15) for the
total energy are satisfied.

Besides the properties specified in Definition 4.1.5, the solution we are going to construct
will satisfy also the renormalized continuity equation (3.9).

4.1.4 Constitutive equations - hypotheses

We assume that the pressure, as well as the internal energy and the entropy, are given by the
same functions on the solid and on the fluid region. Although the original aim was to allow
different pressure for the fluid and for the bodies, there appears a problem the formulation
based on the entropy inequality. We discuss it at the end of the chapter. However, we allow
the heat conductivity coefficient to be different.

Following discussion about the constitutive equations in Section 1.2.1, we assume the pressure
in the form 





p = pG(̺, ϑ) + pR(ϑ),

pG = ϑ
5
2P (̺ϑ−

3
2 ), pR =

a

3
ϑ4, a > 0,






(4.18)

where P meets hypotheses






P ∈ C1[0,∞), P (0) = 0, P ′(Y ) ≥ 0 on (0,∞),

0 <
5

3
P (Y ) − P ′(Y )Y ≤ c(1 + Y α), 0 < α <

50

39
,

lim
Y →∞

P (Y )Y − 5
3 = P∞ > 0.







(4.19)

Further, we assume the internal energy interrelated to the pressure by the Gibbs law (1.24).
In particular we assume 





e = eG(̺, ϑ) + eR(ϑ)

eG =
3

2
̺−1pG, eR = a̺−1ϑ4.






(4.20)

Finally, according to (1.27) and (1.28), we assume the entropy






s = sG(̺, ϑ) + sR(ϑ),

sG = S(̺ϑ−
3
2 ), sR =

4a

3
̺−1ϑ3,






(4.21)
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where S is interrelated with P through the relation (1.38).

Besides these structural assumptions on the thermodynamical quantities, we assume that the
fluid viscosities µf , ζf are C1-functions of temperature with linear growth:







µ = µf (ϑ), ζ = ζf (ϑ) on Qf

0 < µ(1 + ϑ) ≤ µf (ϑ); |(µf )′| ≤ µ

0 ≤ µ(1 + ϑ) ≤ ζf (ϑ); |(ζf )′| ≤ µ.







(4.22)

On the other hand, the symmetric part of the velocity gradient is zero on the solid region
and thus the term S : ∇u is zero independently of the viscosities. The same holds for the
term S : ∇ϕ in the momentum equation, since ϕ ∈ T .

The heat conductivity coefficient consists of the part due to the motion of the particles and
the part caused by the radiation. The former part should have a linear growth in accordance
with linear grow of the viscosities, while the latter one should behave like ϑ3. We assume
different relations for the fluid and for the solid region, namely







κ = κf = κf
G(ϑ) + κf

R(ϑ) on Qf ,

κ = κs = κs
G(ϑ) + κs

R(ϑ) on Qs,

0 < κ ≤ (κf
G(ϑ), κs

G(ϑ)) ≤ κϑ,

0 < κϑ3 ≤ (κf
R(ϑ), κs

R(ϑ)) ≤ κϑ3,







(4.23)

where κf
G, κs

G, κf
R, κs

R are C1-functions of the temperature.

Now we are ready to state the main result about the existence of global-in-time the variational
solutions to problem (B)

Theorem 4.1.6. Let Ω ⊂ R3 be a bounded domain with C2+ν boundary (ν > 0). Assume
p, e, s are given through (4.18), (4.20), (4.21) respectively. Let µ, λ, κ obey (4.22), (4.23).
Finally, let the external force f ∈ L∞(Ω;R3) and the initial data ̺0, ϑ0 ∈ L∞(Ω), u0 ∈
L∞(Ω;R3) be given as well as the initial position of the bodies {Si

0}N
i=1, where Si

0 are open,
connected sets with a C2-boundary. Then there exists at least one solution ̺, u, ϑ, {ηi, Si}N

i=1

of problem (B) in the sense of Definition 3.1.1, which satisfies the initial conditions

̺[t] → ̺0 in L1(Ω),

(̺u)[t] → ̺0u0 weakly in L1(Ω;R3),

esslim
t→0+

∫

Ω

(̺s)[t]ϕ dx ≥
∫

Ω

̺0s0ϕ dx, ∀ϕ ∈ D(Ω), ϕ ≥ 0,

E[t] → E0 = E(̺0,u0, ϑ0).η
i[0](x) = x, Si[0] = Si

0,

where s0(x) = s(̺0(x), ϑ0(x)).

4.2 Approximating problems

As usual, the solution will be constructed via the sequence of approximate solutions. We
use a sequence of the solutions (̺n,un, ϑn) to Problem (F) from Chapter 3 with suitably
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chosen constitutive relations. In particular, we take viscosities approaching infinity on the
solid region given by

µn(ϑn; t,x) = µf (ϑn) + nχn(t,x), ζn(t,x;ϑn) = ζf (ϑn) + nχn(t,x). (4.24)

The heat conductivity is just a smooth approximation of the discontinuous relation (4.23),
namely

κn(t,x;ϑn) = (1 − χn(t,x))κf (ϑn) + χn(t,x)κs(̺n, ϑn), (4.25)

where χn is an approximation of the characteristic function of the solid region Qs, which will
be specified in the following section. For this setting, we can use Theorem 3.1.6 to get

̺n ∈ L∞(I;L
5
3 (Ω)), un ∈ L2(I;W 1,2

0 (Ω;R3)), ϑn ∈ L2(I;W 1,2(Ω)) ∩ L∞(I;L4(Ω)),

which satisfy
∫ T

0

∫

Ω

B(̺n)∂tϕ+B(̺n)un · ∇ϕ− b(̺n) divun ϕ dx dt = 0, ϕ ∈ D(I × R3), (4.26)

∫ T

0

∫

Ω

̺nun · ∂tϕ + ̺nun ⊗ un : ∇ϕ + pndivϕ − 2µnDu : ∇ϕ

−
(
ζn − 2

3
µn

)
divu divϕ + ̺nf · ϕ dx dt = 0, ϕ ∈ D(I × Ω;R3), (4.27)

∫ T

0

∫

Ω

̺nsn∂tϕ+ ̺nsnun · ∇ϕ− κn∇ϑn · ∇ϕ
ϑn

+
(Sn : ∇un

ϑn
+
κn |ϑn|2
ϑ2

n

)

ϕ dx dt ≤ 0, ϕ ∈ D(I × Ω), ϕ ≥ 0, (4.28)

∫ T

0

ψ(t)En[t] dt =

∫ T

0

ψ

∫

Ω

̺nf dx dt, ψ ∈ D(I). (4.29)

Moreover

̺n[t] → ̺0 in L1(Ω), (̺nun)[t] → (̺u)0 weakly in L1(Ω), E[t] → E0 as t→ 0, (4.30)

and

ess lim
t→0+

∫

Ω

(̺nsn)[t]ϕ dx ≥
∫

Ω

̺0s0ϕ dx ∀ϕ ∈ D(Ω), ϕ ≥ 0. (4.31)

4.3 Construction of displacement mappings

For a nonvoid compact set K ⊂ R3, we define the distance function

dK(x) = min
y∈K

|x − y|.

It is easy to see that dK is a Lipschitz continuous function with the amplitude of the gradient
equal to 1 a.e. on R3 \K. Further, for any set S ⊂ R3, we define a signed distance function
from the boundary ∂S as

dbS(x) = d
R3\S

(x) − dS(x).

We shall say that a sequence of sets Sn ⊂ R3 converges to S ⊂ R3 in the sense of boundaries,

Sn
db−→ S, if

dbSn
→ dbS in Cloc(R

3).

The following lemma, we shall find useful for the investigation of db-convergence.
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Lemma 4.3.1. Let f, g ∈ C0,α(R3;R3) be homeomorphisms on R3 and A,B ⊂ R3. Then
it holds

∥
∥dbf(A) − dbg(B)

∥
∥

C(R3)
≤

(∥
∥f

∥
∥

C0,α(R3)
+

∥
∥g

∥
∥

C0,α(R3)

) ∥
∥dbA − dbB

∥
∥

α

C(R3)
+

∥
∥f − g

∥
∥

C(R3)
.

Proof. The continuous properties of f imply R3 \ f(K) = f(R3 \K), f(K) = f(K) for any
K ⊂ R3 and the same holds for g. Then, from the definition of db distance function, it
follows

∥
∥dbf(A) − dbg(B)

∥
∥

C(R3)
≤

∥
∥d

f(A)
− d

g(B)

∥
∥

C(R3)
+

∥
∥d

f(R3\A)
− dg(R3\B)

∥
∥

C(R3)
.

Both terms on the right-hand side can be further estimated this way

∥
∥d

f(A)
− d

g(B)

∥
∥

C(R3)
≤ max

{

sup
x∈f(A)

d
g(B)

(x), sup
x∈f(B)

d
g(A)

(x)

}

.

Again, it is enough to explore the first supremum. For any x ∈ f(A), there is x0 ∈ A such
that f(x0) = x and there is y0 ∈ B such that dB(x0) = |x0 − y0|. Following estimate then
finish the proof

d
g(B)

(x) = dg(B)(f(x0)) ≤ |f(x0) − g(y0)|
≤ |f(x0) − f(y0)| + |f(y0) − g(y0)| ≤

∥
∥f

∥
∥

C0,α(R3)
|x0 − y0|α +

∥
∥f − g

∥
∥

C(R3)
.

Finally, we introduce a notation of δ-stretch and δ-shrink of the set M as

⊕δM :=
⋃

x∈M

Bδ(x), ⊖δM := {x |Bδ(x) ⊂M}, respectively.

Having collected the preliminary material, we introduce displacement mappings ηn for the
approximating problems. It can not be done directly through (4.1), since the velocities un

are not regular enough. Instead, we use the velocities smoothed over some δ-neighborhood:

d
dtηn[t](x0) = (ωδ ⋆ un)(t,ηn[t](x0)), ηn[0](x0) = x0, (4.32)

where ωδ are smoothing kernels introduced in (2.1). Although ηn are not compatible with
un, we hope to get the limit displacement η and the limit velocity u such that Du = 0 on
the set M , where the viscosity penalization takes effect (roughly speaking it is the limit of
suppχn). In that case the limit velocity u should coincide with ωδ ⋆ u on ⊖δM . On the
same set, η should be the rigid displacement compatible with u. This deliberation motivates
following definition of χn. First, we denote

O :=

N⋃

i=1

⊖δS
i
0, On[t] := ηn[t](O). (4.33)

The sets On are bounded, open and non-empty since we assume bodies Si
0 with C2-boundary.

By the same token, we can choose δ > 0 such that ⊕δO = ∪Si
0. At last, we define

χn(t,x) := H(n(δ + dbOn[t](x))), (4.34)
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where H ∈ C∞(R) is a non-decreasing function such that H = 0 on (−∞, 0], and H = 1 on
(1,+∞).

Let us show briefly that the constitutive relations (4.24), (4.25) completed with definition
(4.34) meet assumptions of Theorem 3.1.6, in particular hypotheses (3.21), (3.22), and (3.23).
The first two are satisfied because of (4.22) and (4.23). However, we have to check bounds for
∂x∂xκ and ∂tκ. The former is a direct consequence of (4.32) and assumption of C2-boundary
of the bodies. For the later bound we have

|∂tκG| ≤ |∂tχn|Cϑ, |∂tκR| ≤ |∂tχn|Cϑ2

and

|∂tχn(t,x)| ≤ C(n)|∂tdbOn[t](x)| ≤ C(n)|∇dbOn[0]|
∣
∣
∣
∣

d

dt
η−1

n [t](x)

∣
∣
∣
∣

≤ C(n)|∇ηn[t](x0)|
∣
∣
∣
∣

d

dt
ηn[t](x0)

∣
∣
∣
∣
≤ C

(
n,

∥
∥un

∥
∥

L2(J×Ω)

)
|ωδ ⋆ un(x)|.

Next, we have to prove the compactness property (3.23). Assuming um → u weakly in
L2(I × Ω;R3) and using Lemma 4.3.1, we have

|µ[um](t,x;ϑ) − µ[u](t,x;ϑ)| ≤ C|χ[um](t,x) − χ[u](t,x)|
≤ C|dbOm[t](x) − dbO[t](x)| ≤ C|ηm[t] − η[t]|C(Ω),

where ηm, η are displacements compatible with um, u respectively. The same holds for ζ,
while for the heat conductivity, we get

|κ[um](t,x;ϑ) − κ[u](t,x;ϑ)| ≤ |χ[um](t,x) − χ[u](t,x)||κs − κf |
≤ C(ϑ)|dbOm[t](x) − dbO[t](x)| ≤ C(ϑ)|ηm[t] − η[t]|C(Ω).

To finish the proof, it suffices to apply the following compactness result for the displacement
mappings.

Lemma 4.3.2. Let vn be a sequence of (velocity) fields,

vn uniformly bounded in Lp(I;W 1,q(R3;R3)), p > 1, q > 3.

Let ηn be a sequence of compatible (displacement) mappings, i.e. given through

d
dtηn[t](x0) = vn(t,ηn[t](x0)), ηn[0](x0) = x0. (4.35)

Finally, let Sn ⊂ R3 be a sequence of sets, which converge to the set S in the sense of
boundaries. Then

vn ⇀ v weakly in Lp(I;W 1,q(R3;R3)) (4.36)

passing to the subsequence as the case may be, and

ηn[t] → η[t] in Cloc(R
3) uniformly in t ∈ [0, T ], (4.37)

where η[t] is compatible with v. Moreover

Sn(t)
db−→ S(t) (4.38)

uniformly in t ∈ [0, T ], where Sn(t) := ηn[t](Sn) and S(t) := η[t](S).
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Proof. Applying the Alaoglu-Bourbaki theorem 2.2.1 on the sequence vn bounded in the
reflexive space Lp(I;W 1,q(R3;R3)), we get (4.36). Using the Sobolev imbedding, we have

vn,v ∈ Lp(I;C0,α
loc (R3;R3)) for some 0 < α < 1, (4.39)

which justify (4.35). Then (4.35) can be used to deduce

∥
∥ηn[t] − ηn[s]

∥
∥

C
= sup

x∈R3

∣
∣
∣
∣

∫ t

s

vn(τ,ηn(t,x)) dτ

∣
∣
∣
∣
≤ |t− s|1/p′∥

∥vn

∥
∥

Lp(I;C0,α(R3;R3))
(4.40)

which means that ηn are equi-continuous. Employing the abstract Arzelà-Ascoli theorem
2.2.2 we conclude (4.37). Furthermore, it follows from (4.39) and (4.35) that ηn as well as η

belong to C(I;C0,α
loc (R3;R3)). Thus one can use Lemma 4.3.1 with f = ηn[t], g = η[t] and

A = Sn(0), B = S(0) to verify (4.38).

4.4 Uniform estimates

4.4.1 Energy estimate

Direct use of the total energy inequality (4.29) and the constitutive law for internal energy
(4.29) yields

E[τ ] =

(∫

Ω

1

2
̺n|un|2 + (̺neG + aϑ4

n) dx

)

[τ ] ≤

≤ E[0] +

∫ τ

0

∫

Ω

̺nun · f dx dt ≤ E[0] +

∫ τ

0

∥
∥f

∥
∥
∞

∥
∥̺nu2

n

∥
∥

1
2

1

∥
∥̺n

∥
∥

1
2

1
dt (4.41)

Thanks to the particular form of eG, and due to the hypotheses about positive cold pressure
(1.36), (4.19), the left-hand side provides an estimate of the norms

∥
∥̺nu2

n

∥
∥

1
,
∥
∥̺n

∥
∥

1
. Thus

we can apply the Gronwall lemma to infer

√
̺nun bounded in L∞(I;L2(Ω;R3)), (4.42)

̺nen, pn bounded in L∞(I;L1(Ω)), (4.43)

̺n bounded in L∞(I;L
5
3 (Ω)), (4.44)

ϑn bounded in L∞(I;L4(Ω)). (4.45)

4.4.2 Entropy estimate

Using a spatially homogeneous test function in the entropy inequality (4.28), initial condition
(4.31), and hypothesis (4.21) about the entropy, we arrive at

∫ τ

0

∫

Ω

κn|∇ϑn|2
ϑ2

n

+
Sn : ∇un

ϑn
dx dt ≤

∫

Ω

(
̺nsG(̺n, ϑn)+

4

3
aϑ3

n

)
[τ ] dx−

∫

Ω

̺0s0 dx. (4.46)

Since P ∈ C1[0,∞), there exists a constant CV such that

cv(Y ) ≤ CV for any 0 < Y < 1,
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c.f. (1.34). Hence we have

̺nsG(̺n, ϑn) = ̺nS
(
̺nϑ

− 3
2

n

)
≤ CV (−̺n log ̺n +

3

2
̺n log ϑn) ≤ C(̺

5
3 + ̺ϑ). (4.47)

Furthermore, the function S is decreasing, thus

̺nsG(̺n, ϑn) = ̺nS
(
̺nϑ

− 3
2

)
≤ ̺nS(1) for ̺ϑ−

3
2 = Y ≥ 1.

Consequently, the right-hand side of (4.46) is bounded. Using the hypotheses (4.23) and
(4.22), the left-hand side yields estimates

∇ log ϑn, ∇(ϑ
3
2
n ), bounded in L2(Q), (4.48)

un bounded in L2(W 1,2(I; Ω;R3)), (4.49)

and

n

∫ T

0

∫

Ω

χn|Dun|2 dx dt is bounded. (4.50)

In order to keep the positivity of the temperature, we use (4.46) once again. We forget the
non-negative left-hand side and rearrange the remaining terms to get

∫

Ω

̺0s0 dx − S(N)

∫

Ω

̺ dx ≤
∫

Ω

4a

3
ϑ3 dx +

∫

{̺ϑ−
3
2 ≤1}

̺sG dx

+

∫

{1≤̺ϑ−
3
2 ≤N}

̺sG dx + |S(N)|
∫

{̺ϑ−
3
2 ≤N}

̺ dx, (4.51)

where we have denoted ̺ = ̺n[τ ], ϑ = ϑn[τ ]. Taking N large enough, we can make left-hand
side strictly positive, greater than some S0 > 0. Similarly as in (4.47) one gets

∫

{̺ϑ−
3
2 ≤1}

̺sG dx ≤ C

∫

{̺ϑ−
3
2 ≤1}

(−̺ log ̺+ ̺ log ϑ) dx ≤ C

∫

Ω

ϑ3 dx,

while for the other terms, we have

∫

{1≤̺ϑ−
3
2 ≤N}

̺sG dx ≤ NS(1)

∫

Ω

ϑ
3
2 dx,

∫

{̺ϑ−
3
2 ≤N}

̺ dx ≤ N

∫

Ω

ϑ
3
2 dx.

Consequently,

0 < S0 ≤ C

∫

Ω

ϑn[τ ]3 + ϑn[τ ]
3
2 dx

for a.a. τ ∈ I and uniformly in n. Then, by virtue of the Hölder inequality,

S0 − |Ω|(δ3 + δ
3
2 ) ≤ |{ϑn ≥ δ}| 14

∥
∥ϑn

∥
∥

3

L4(Ω)
|{ϑn ≥ δ}| 58

∥
∥ϑn

∥
∥

3
2

L4(Ω)
.

Thus there exist constants M , δ > 0, independent of n such that

|{ϑn[τ ] ≥ δ}| ≥M > 0 for a.a. t ∈ I

while ∫

ϑn[τ ]≥δ

log ϑn[τ ] dx ≤ C uniformly in τ, n.
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Now, one can apply Poincaré inequality formulated in Proposition 2.1.2, to get

log ϑn, ϑ
3
2
n bounded in L2(I;W 1,2(Ω)). (4.52)

From the latter estimate we have ϑn bounded in L3(I;L9(Ω)) due to the Sobolev imbedding.

Interpolating, we obtain ϑn bounded in L
17
3 (Q) and consequently, using hypothesis (4.22)

and estimate (4.49), we get

Sn bounded in Lp(Q) for some p > 1. (4.53)

4.4.3 Refined pressure estimate

In view of the estimates derived up to now, the pressure and the internal energy are known to
be bounded only in the non-reflexive space L∞(I;L1(Ω)). This is not enough to pass to the
limit neither with the pressure in the momentum equation nor with the internal energy in the
total energy balance. In contrast to Section 3.6.2, we can not test the momentum equation
by a function with non-zero support on Qs, since there we can not control the penalizing
term nχnDun. Fortunately, in our formulation the test functions in (4.12) have a compact
support in Qf , thus for the pressure, we need only the local estimate in Qf . On the other
hand, the L1-estimates for the internal energy are sufficient to get the total energy inequality.

Let J ⊂ I be an open time interval and U ⊂ Ω be an open ball such that

K = J × U ⊂ Qf .

We use

ϕ = ψ(t)BU [πn
ε ], πn

ε = ωε ⋆ ̺
ν
n, ψ ∈ D(J) −−

∫

K

ωε ⋆ ̺
ν
n dx

as the test function in (4.27). Then, exactly as in Section 3.6.2, we derive the estimate
∫

K

p(̺n, ϑn)̺ν
n dx dt ≤ C.

Since, pG ≤ C(̺
5
3 + ̺ϑ) because of the hypothesis (4.18), we conclude

∥
∥p(̺n, ϑn)

∥
∥

Lp(Kf )
≤ C for some p > 1 and any compact Kf ⊂ Qf .

4.5 Limit passage

In view of the estimates (4.42 – 4.45) and (4.48 – 4.49), we can use Alaoglu-Bourbaki theorem
2.2.1. Passing to the subsequence as the case may be, one gets

̺n → ̺ weakly-∗r in L∞(I;L
5
3 (Ω)), (4.54)

un → u weakly in L2(I;W 1,2
0 (Ω;R3)), (4.55)

ϑn → ϑ weakly-∗ in L∞(I;L4(Ω)). (4.56)

Due to (4.49) we have ωδ ⋆ un bounded in L2(I;W 1,∞(Ω;R3)), thus Lemma 4.3.2 yields

ηn → η in C(I;Cloc(R
3)); On[t]

db−→ O[t] uniformly for t ∈ [0, T ].
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Moreover, it holds χn[t] → χ[t] = 1⊕δO[t] in C(I;Lp
loc(R

3)) for any p ≥ 1. Indeed, we can
compute

∥
∥χn[t] − χ[t]

∥
∥

p

p
≤

∫

R3

|Hn(db⊕δOn[t]) − 1⊕δOn[t]|p + |1⊕δOn[t] − 1⊕δO[t]|p dx

≤ C
1

n
|∂(⊕δOn[t])| + C

∥
∥dbOn[t] − dbO[t]

∥
∥

C
|∂(⊕δO[t])|. (4.57)

Further, we can pass to the limit in (4.50) to get Du = 0 a.e. on ⊕δO[t] for a.e. t ∈ I.
Consequently ωδ ⋆ u coincide with u on O[t] and u is compatible with {η,⊖δS

i
0} for i =

1 . . . N , cf. definition (4.33). Then it is natural to assign to each body Si the corresponding
rigid displacement ηi, setting

ηi[t] = η[t] on η[t](⊖δS
i
0).

Since ηi is defined on the whole R3, the velocity u is compatible with {ηi, Si
0}, i = 1 . . . N .

We consider the renormalized continuity equation (4.26) with some B(z) according to (3.7).
Testing it by some fixed ϕ ∈ D(Ω), we obtain

d

dt

( ∫

Ω

B(̺n)ϕ dx
)

[t] = gn,ϕ[t] := −
∫

Ω

(B(̺n)un)[t] · ∇ϕ+ (b(̺n)div un)[t]ϕ dx (4.58)

where functions gn,ϕ are bounded in L2(I) independently of n. Moreover, in view of (3.7),
we have

ess sup
t∈I

∥
∥B(̺n)

∥
∥

Lp(Ω)
≤ CB .

for any 1 < p <∞. Then taking any fixed ϕ̃ ∈ Lp′

(Ω), we estimate

∣
∣
∣

∫

Ω

(B(̺n)[t] −B(̺n)[s])ϕ̃ dx

∣
∣
∣ ≤ CB

∥
∥ϕ̃− ϕ

∥
∥

Lp′ (Ω)
+

∣
∣
∣

∫

Ω

(B(̺n)[t] −B(̺n)[s])ϕ dx

∣
∣
∣,

for any ϕ ∈ D(Ω). This together with (4.58) yields equi-continuity of the functions

t→
∫

Ω

B(̺n)[t]ϕ̃ dx

Then the Arzelà-Ascoli theorem 2.2.2 can be applied on the ball BCB
(0) in the reflexive space

Lp(Ω), where the weak topology is metrizable, to conclude

B(̺n) → B(̺) in C(I;Lp
weak(Ω)), (4.59)

for any 1 < p < ∞. Using the density argument similarly as in Proposition 3.1.3, the same
is true for any

B(z) ∈ C1[0,∞), |B(z)| ≤ 1 + zλ, λ ∈ (0,
5

3
),

but only for p ∈ (1, 5
3λ ). In particular for B(z) = z we get

̺n → ̺ in C(I;L
5
3

weak(Ω)). (4.60)

Since L
5
3 (Ω) is compactly imbedded into W−1,2(Ω), taking into account (4.55), we deduce

̺nun → ̺u weakly-star in L∞(I;L
5
4 (Ω)), (4.61)
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where we have also used (4.44), (4.42) in order to estimate ̺nun. Consequently, we can pass
to the limit in the continuity equation and get

∫

I

∫

R3

̺∂tϕ+ ̺u · ∇ϕ dx dt = 0 for all ϕ ∈ D(I × R3). (4.62)

By the same token, we have

̺nϑn → ̺ϑ weakly in L2(I;Lp(Ω)), where
1

p
=

23

30
=

3

5
+

1

6
. (4.63)

Due to (4.55) and (4.61), we have

̺nun ⊗ un → ̺u ⊗ u weakly in Lp(Q) (4.64)

for some p > 1. Now, consider (t,x) ∈ Qf and its open neighborhood J × U such that
t ∈ J ⊂ I, U = Bε(x) and Kf = J × U ⊂ Qf . Using the momentum equation (4.27) and
(4.61), we establish equi-continuity of functions

t→
∫

U

̺nun · ϕ dx

for any fixed ϕ ∈ L5(U) in the similar way as in the previous paragraph. Then, we can apply
the Arzelà-Ascoli theorem, to get

̺nun → ̺u in C(J ;L
5
4

weak(U)). (4.65)

Employing the compact imbedding L
5
4 (U) ⊂W−1,2(U), we obtain

̺nun ⊗ un → ̺u ⊗ u weakly in Lp(J × U). (4.66)

Thus, with regard to (4.64), it must be

̺u ⊗ u = ̺u ⊗ u a.e. on Qf .

This together with estimates (4.53) and (3.113) allow us to pass to the limit in the momentum
equation (4.27) and obtain

∫

I

∫

Ω

̺u · ∂tϕ + ̺u ⊗ u : Dϕ + pdivϕ − S : Dϕ + ̺f · ϕ dx dt = 0 (4.67)

for any ϕ ∈ T .

4.6 Pointwise convergence of the temperature

Let us start with following version of the Aubin-Lions lemma taken from [14] (Lemma 6.3)

Lemma 4.6.1. Let {vn}∞n=1 be a sequence of functions bounded in

L2(I;Lq(Ω)) ∩ L∞(I;L1(Ω)), for some q >
2N

N + 2
. (4.68)
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Furthermore, we assume that

∂tvn ≥ gn in D′(I × Ω),

where gn are bounded in L1(I;W−m,r(Ω)) for certain m ≥ 1, r > 1. Then we have

vn → v in L2(I;W−1,2(Ω)) (4.69)

passing to the subsequence as the case may be.

In view of estimates (4.42 – 4.45), (4.52), we can apply Lemma 4.6.1 on the entropy inequality.
In particular, we have ̺nsn already bounded in L∞(I;L1(Ω)) from the entropy estimate. On
the other hand, since

̺nsn = Cϑ3
n + ̺nS

(
̺nϑ

− 3
2

n

)
,

we can estimate ̺nsn uniformly in L2(I;Lq(Ω)) for some q > 2N
N+2 = 6

5 as follows

ϑ3
n bounded in L∞(I;L

4
3 (Ω)),

4

3
>

6

5
,

̺n log ϑn bounded in L2(I;Lp(Ω)), p =
30

23
>

6

5
,

̺nS
(
̺nϑ

− 3
2

n

)
≤ C(̺n log ̺n + ̺n log ϑn) bounded in L2(I;Lp(Ω)), cf. (4.47).

Then Lemma 4.6.1 yields

̺nsn → ̺s in L2(I;W−1,2(Ω)),

̺s = ̺sG +
4

3
aϑ3,

which together with (4.52) implies

4

3
a(ϑϑ3 − ϑϑ3) = (ϑ̺sG − ϑ̺sG) a.e. on Q. (4.70)

The right-hand side integrated over a ball B ⊂ Q can be split this way

lim
n→∞

∫

B

̺nsG(̺n, ϑn)(ϑn − ϑ) dx dt =

lim
n→∞

∫

B

̺n

(
sG(̺n, ϑn) − sG(̺n, ϑ)

)
(ϑn − ϑ) + ̺nsG(̺n, ϑ)(ϑn − ϑ) dx dt,

where the first term is non-negative by virtue of (1.38) and (1.34). In the sequel, we shall
prove that the second term tends to zero. We use Theorem 2.2.7 to introduce Young measures

ν
(̺,ϑ)
(t,x) , ν̺

(t,x), and νϑ
(t,x) corresponding to the sequences (̺n, ϑn), ̺n, and ϑn respectively. By

virtue of (4.59) and compact imbedding one deduces

B(̺n) → B(̺) strongly in L2(I;W−1,2(Ω))

for any B ∈W 1,∞(R). On the other hand (4.52) implies

G(ϑn) → G(ϑ) weakly in L2(I;W 1,2(Ω))
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for G ∈ W 1,∞(R) at least for a subsequence. Then we have B(̺)G(ϑ) = B(̺)G(ϑ), which
implies

ν
(̺,ϑ)
(t,x) = ν̺

(t,x) ⊗ νϑ
(t,x).

Using this fact and Theorem 2.2.7, we can compute

lim
n→∞

∫

B

̺nsg(̺n, ϑ)(ϑn − ϑ) dx dt =

∫

B

∫

R2

λsG(λ, ϑ(x))(µ− ϑ(x)) dν
(̺,ϑ)
(t,x) (λ, µ) dx dt =

∫

B

∫

R

λsG(λ, ϑ(x)) dν̺
(t,x)(λ)

∫

R

µ− ϑ(x) dνϑ
(t,x)(µ) dx dt = 0 (4.71)

Consequently, (4.70) yields
ϑ3ϑ ≥ ϑ3ϑ a.e. on Q. (4.72)

To conclude the strong convergence we shall parform the so-called Minty trick. For any any
w ∈ D(Q), we observe

0 ≤ (ϑ3
n − (ϑ+ αw)3)(ϑn − (ϑ+ αw)) → ϑ4 − ϑ3ϑ− αw(ϑ3 − (ϑ+ αw)3).

Then, using (4.72) and passing to the limit as α→ 0, we get

0 ≤
∫

Q

w(ϑ3 − ϑ3) dx dt.

Hence ϑ3 = ϑ3 and Theorem 2.2.3 yields

ϑn → ϑ in L4(Q). (4.73)

4.7 Strong convergence of the density field

In order to finish the limit passage, we have to show the strong compactness of the density.
The proof is based on compactness properties of the quantity

P = p− (λ− 2µ)divu

usually called the effective viscous pressure. Importance of this quantity in the theory of
compressible fluids was first observed by Serre [42] and some regularity properties of P
were discovered by Hoff [24]. Later on, P.-L. Lions has proved the celebrated relation

P B(̺) = P B(̺). (4.74)

This result, together with the theory of renormalized solutions developed with DiPerna in
[8], forms the corner stone of his existence theory for barotropic flows presented in [29].

Further significant improvements are due to Feireisl. His concept of oscillations defect
measure allows to precisely analyse the transport of the density oscillations using the renor-
malized continuity equation, see Chapter 6 of [14]. Besides the better theory for barotropic
flows, this precise analysis can handle also the pressure and the viscosities dependent on the
temperature. In this section, we present Feireisl’s method with a little modification of the
estimates for the oscillations defect measure in Section 4.7.2. It seems that this approach
could be less restrictive for the growth of transport coefficients, but we rather do not present
the complete analysis in this direction in order to keep the complexity at a reasonable level.
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4.7.1 Compactness of the effective viscous pressure

We consider a time interval J ⊂ I and a ball U ⊂ Ω such that

J × U ⊂ Qf
n, ∀n ∈ N.

Then we take ψ ∈ D(J) and η, ξ ∈ D(U) and we use the function

ψηϕn = ψ(t)η(x)∇∆−1[ξ(x)T ν
k (̺n)], 0 < ν ≤ 1,

as a test function in the momentum equation (4.12). Using the renormalized continuity
equation

∂t

(
T ν

k (̺n)
)

+ div
(
T ν

k (̺n)un

)
+

[
(T ν

k )′(̺n)̺n − T ν
k (̺n)

]
divun = 0 in D′(I × Ω),

for the time term, we deduce

∫

Q

ψξ
(
ηpn −R : [ηSn]

)
T ν

k (̺n) dx dt = (4.75)

∫

Q

ψ(Sn − ̺nun ⊗ un) : ∇η ⊗ ϕn − ψpn∇η · ϕn) dx dt

−
∫

Q

η̺nun ·
(
∂tψϕn + ψ∇∆−1[∇ξ · T ν

k (̺n)un]
)

dx dt

−
∫

Q

ψη̺nun · ∇∆−1[ξ((T ν
k )′(̺n)̺n − T ν

k (̺n))div un] + ψηϕn · (̺nf) dx dt

+

∫

Q

ψun ·
(
R · [η̺nun]ξT ν

k (̺n) − η̺nun · R[ξT ν
k (̺n)]

)
dx dt.

On the other hand, testing the limit momentum equation (4.67) by the function

ψηϕ = ψ(t)η(x)∇∆−1[ξ(x)T ν
k (̺)], 0 < ν ≤ 1,

using the L1-limit of the renormalized continuity equation:

∂t

(
T ν

k (̺)
)

+ div
(
T ν

k (̺)u
)

+
[
(T ν

k )′(̺)̺− T ν
k (̺)

]
divu = 0 in D(I × Ω), (4.76)

we get

∫

Q

ψξ
(
ηp−R : [ηS]

)
T ν

k (̺) dx dt = (4.77)

∫

Q

ψ(S − ̺u ⊗ u) : ∇η ⊗ ϕ − ψp∇η · ϕ) dx dt

−
∫

Q

η̺u ·
(
∂tψϕ + ψ∇∆−1[∇ξ · T ν

k (̺)u]
)

dx dt

−
∫

Q

ψη̺u · ∇∆−1[ξ
(
(T ν

k )′(̺)̺− T ν
k (̺)

)
div u] + ψηϕ · (̺f) dx dt

+

∫

Q

ψu ·
(
R · [η̺u]ξT ν

k (̺) − η̺u · R[ξT ν
k (̺)]

)
dx dt.
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In view of the available estimates, the right-hand side of (4.75) tends to the right-hand side of
(4.77). In particular for the last terms, one can employ Corollary 2.2.5, using (4.59), (4.65),
and a compact imbedding Lq ⊂W−1,2 for some q > 5

4 >
6
5 to get

R · [η̺nun]ξT ν
k (̺n) − η̺nun · R[ξT ν

k (̺n)] −→ R · [η̺u]ξT ν
k (̺) − η̺u · R[ξT ν

k (̺)]

strongly in C(I;W−1,2(Ω)). Then the left-hand sides of (4.75), (4.77) yields an equality

lim
n→∞

∫

Q

ψηξ
(
pG(̺n, ϑn) + pf

R(ϑn) − (ζn + 4
3µn)div un

)(
T ν

k (̺n) − T ν
k (̺)

)
dx dt

= lim
n→∞

∫

Q

2ψξ
(

R : [ηµn∇un] − ηµnR : [∇un]
)(
T ν

k (̺n) − T ν
k (̺)

)
dx dt (4.78)

Our next aim is to show that the right-hand side tend to zero. We apply Lemma 2.2.6 on the
components of ∇un ∈ L2(Q;R3 × R3) and on the viscosity µn = µ(ϑn), which is bounded
in L2(I;W 1,2(Ω)). As a consequence, we have

Rn := R : [ηµn∇un] − ηµnR : [∇un] bounded in L1(I;Wλ,q(Ω))

for some λ > 0, q > 1. On the other hand, the same sequence belongs also to L2(I;L
4
3 (Ω))

because of (4.45) and (4.49). Thus by an interplation argument we have Rn bounded in
Lp(I;Wλ′,p(Ω) for certain λ′ > 0, p > 1. Further, taking in to account (4.59), the right-hand
side of (4.78) tends to zero. Using the strong convergence of the temperature, the left-hand
side of (4.78) implies

lim
n→∞

∫

Q

ϕ(ζ(ϑ) +
4

3
µ(ϑ))divun(T ν

k (̺n) − T ν
k (̺)) dx dt

= lim
n→∞

∫

Q

ϕpG(̺n, ϑn)(T ν
k (̺n) − T ν

k (̺)) dx dt for any ϕ ∈ D(Qf ). (4.79)

4.7.2 The density oscillations bounded

Our next task is to control the oscillations of the density estimating the quantity

oscp[̺n → ̺] := sup
k≥1

lim sup
n→∞

∫

Qf

|Tk(̺n) − Tk(̺)|p dx dt

called oscillations defect measure. To this end we shall use few simple algebraic inequalities.
Let 0 ≤ b ≤ a <∞, then

aγ − bγ =

∫ a

b

γtγ−1 dt ≥
∫ b

a

γ(t− b)γ−1 dt = (a− b)γ , for γ ≥ 1, (4.80)

while, by the same token,

(a− b)γ ≥ aγ − bγ , for γ ≤ 1. (4.81)

Further, assuming γ ≥ 1, ν ≤ 1, γ + ν ≥ 2, we observe that

ν|1 − x|γ+ν ≤ ν(1 − x)2 ≤ (1 − x)(ν − νx) ≤ (1 − xγ)(1 − xν), for 0 ≤ x ≤ 1.
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Then, taking x = b
a , we obtain

|a− b|γ+ν ≤ 1

ν
(aγ − bγ)(aν − bν). (4.82)

With a help of these inequalities, taking c = νpc(1), 1 ≥ ν ≥ 1
3 , we can estimate the

oscillations defect measure as follows

c lim sup
n→∞

∫

Qf

|Tk(̺n) − Tk(̺)| 53+ν dx dt ≤ c lim sup
n→∞

∫

Qf

(̺
5
3
n − ̺

5
3 )(T ν

k (̺n) − T ν
k (̺)) dx dt

= lim sup
n→∞

∫

Qf

pc(̺n)
(
T ν

k (̺n) − T ν
k (̺)

)
dx dt−

∫

Qf

(pc(̺) − pc(̺))(T
ν
k (̺) − T ν

k (̺))
︸ ︷︷ ︸

△

dx dt

≤ lim sup
n→∞

∫

Qf

|pc(̺n) − pG(̺n, ϑn)||T ν
k (̺n) − T ν

k (̺)| dx dt

+ lim sup
n→∞

∫

Qf

(ζ(ϑ) +
4

3
µ(ϑ))divun(T ν

k (̺n) − T ν
k (̺)) dx dt. (4.83)

The latter inequality, △ ≥ 0, is due to the convexity of the functions ̺→ ̺γ and ̺→ −Tk(̺),
while in the very last term we have used (4.79). We continue by the estimate of the right-hand
side. In accordance with the hypothesis (4.18), we have

0 ≤ pG(̺, ϑ) − pc(̺) =

∫ ϑ

0

∂ϑpG(̺, s) ds =

∫ ϑ

0

3

2

̺

Y

(5

3
P (Y ) − P ′(Y )Y

)
ds

≤ C(ϑ
3
2 + ̺αϑ

5−3α
2 ). (4.84)

Hence, by virtue of the estimates (4.44), (4.52), we conclude

∥
∥pg(̺n, ϑn) − pc(̺n)

∥
∥

Lq(Q)
≤ C, for certain q >

6

5
,

provided

α
5
3

+
5−3α

2

9
<

5

6
,

which is equivalent to the condition for alpha in (4.18). On the other hand, due to (4.22),
for any q > 6

5 , we get

∥
∥(ζ(ϑ) +

4

3
µ(ϑ))divun

∥
∥

Lq(Ω)
≤

∥
∥ϑn

∥
∥

L
17
3 (Q)

∥
∥div u

∥
∥

L2(Q)
≤ C.

In order to estimate the right-hand side of (4.83), we use weak lower semi-continuity of the
norm and inequality (4.81) to infer

lim sup
n→∞

∫

Qf

|T ν
k (̺n) − T ν

k (̺)|p dx dt ≤ lim sup
n→∞

∥
∥Tk(̺n) − Tk(̺)

∥
∥

pν

Lpν(Qf )

+
∥
∥T ν

k (̺) − T ν
k (̺)

∥
∥

p

Lp(Qf )
≤ 2 lim sup

n→∞

∥
∥Tk(̺n) − Tk(̺)

∥
∥

pν

Lpν(Qf )
,
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for any p ≥ ν−1. If we assume p = q′ and pν = 5
3 + ν, we can estimate the right-hand side

of (4.83) and get

lim sup
n→∞

∫

Qf

|Tk(̺n) − Tk(̺)| 53+ν dx dt ≤ C lim sup
n→∞

∥
∥Tk(̺n) − Tk(̺)

∥
∥

L
5
3
+ν(Qf )

,

while the condition q > 6
5 is equivalent with ν > 1

3 . Then, using conveniently Young’s
inequality, we conclude

oscr[̺n → ̺] ≤ C for some r > 2. (4.85)

4.7.3 Limit in the renormalized continuity equation

As a next step, we will proof that ̺, u solve the renormalized continuity equation (3.9).
Following the proof in [14, Proposition 6.3], we apply the renormalization procedure of Lemma
3.1.2 on the equation (4.76) with ν = 1 in order to get

∂t(B(Tk(̺))) + div(B(Tk)u) + b(Tk(̺))divu =

B′(Tk(̺))
[
Tk(̺) − T ′

k(̺)̺
]
divu in D′(I × Ω) (4.86)

for any B(z) satisfying (3.7). In particular, we have B(z) = CM for z ≥M . Due to the weak
lower semi-continuity of the norm we get an estimate

∥
∥Tk(̺) − ̺

∥
∥

L1(Q)
≤ lim inf

n→∞

∥
∥Tk(̺n) − ̺n

∥
∥

L1(Q)
≤ sup

n≥1

∥
∥̺n

∥
∥

L1({̺n≥k})
≤ k−

2
5 sup

n≥1

∥
∥̺n

∥
∥

5
3 ,Q

and consequently

B(Tk(̺)) → B(̺) and b(Tk(̺)) → b(̺) in any Lp(Q), p ≥ 1, as k → ∞. (4.87)

It remains to show that the right-hand side of (4.86) tends to zero. To this end, we estimate

∥
∥B′(Tk(̺))

[
Tk(̺) − T ′

k(̺)̺
]
divu

∥
∥

L1(Q)
≤

max
0≤z≤M

|B′(z)| sup
n≥1

∥
∥divun

∥
∥

L2(Q)
lim inf
n→∞

∥
∥Tk(̺n) − T ′

k(̺n)̺n

∥
∥

L2(Qf
M

)
,

Qf
M = {Tk(̺) ≤M} ∩Qf ,

where we have used fact that divun tends to zero on Qs as a consequence of (4.50). We shall
continue by interpolation of the last term

∥
∥Tk(̺n) − T ′

k(̺n)̺n

∥
∥

L2(Qf
M

)
≤

∥
∥Tk(̺n) − T ′

k(̺n)̺n

∥
∥

λ

L1(Qf )
2
∥
∥Tk(̺n)

∥
∥

1−λ

Lp(Qf
M

)
(4.88)

for certain p > 2 and λ ∈ (0, 1). Now the first norm tends to zero, since

∥
∥Tk(̺n) − T ′

k(̺n)̺n

∥
∥

L1(Qf )
≤

∫

{̺n≥k}

̺n dx dt ≤ k−
2
5 sup

n≥1

∥
∥̺n

∥
∥

L
5
3 (Q)

,

while the second is bounded due to (4.85):

lim sup
n→∞

∥
∥Tk(̺n)

∥
∥

Lp(Qf
M

)
≤ lim sup

n→∞

∥
∥Tk(̺n) − Tk(̺)

∥
∥

Lp(Qf )
+

∥
∥Tk(̺) − Tk(̺)

∥
∥

Lp(Qf )

+
∥
∥Tk(̺)

∥
∥

Lp(Qf
M

)
≤ 2 oscp[̺n → ̺](Qf ) +M |Qf | 1p .
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4.7.4 Strong convergence

Having the renormalized continuity equation (3.9) satisfied by the limit fields ̺, u, we can
take its difference with L1-limit of (4.26). Using

B(z) := Lk(z)z, Lk :=

∫ z

1

Tk(s)

s2
ds,

which is a valid B-function in view of Proposition 3.1.3, we have

∫

Ω

(
̺Lk(̺) − ̺Lk(̺)

)
[τ ] dx =

∫

Ω

(
̺Lk(̺) − ̺Lk(̺)

)
[0] dx+

∫ τ

0

∫

Ω

(
Tk(̺) − Tk(̺)

)
divu dx dt+

∫ τ

0

∫

Ω

Tk(̺)divu − Tk(̺)divu dx dt. (4.89)

The first term on the right-hand side is in fact zero as ̺n[0] = ̺0. The second term tends to
zero as k → ∞ by the same argument as above, namely

∥
∥Tk(̺) − Tk(̺)

∥
∥

2,Qf ≤ lim inf
n→∞

∥
∥Tk(̺) − Tk(̺n)

∥
∥

λ

1
(oscp[̺n → ̺](Qf ))1−λ ≤ Ck−

2
5

for suitable λ ∈ (0, 1), p > 2, while divu = 0 on Qs. It remains to manage the third term.
Since the pressure pG(̺, ϑ) is a monotone function of the density, we have

(
pG(̺n, ϑn) − pG(̺, ϑn)

)
(Tk(̺) − Tk(̺n)) ≤ 0,

whereas, due to the strong convergence of the temperature,

pG(̺, ϑn)(Tk(̺) − Tk(̺n)) → 0 as n→ ∞.

Then (4.79) with ν = 1 yields

Tk(̺)divu − Tk(̺)divu ≤ 0 on Qf ,

while on the solid region Qs, we have

Tk(̺)divu − Tk(̺)divu = 0

because of (4.50).

Passing to the limit in (4.89) as k → ∞, we conclude
∫

Ω

(̺ log ̺− ̺ log ̺)(τ) dx ≤ 0.

Hence by virtue of Theorem 2.2.3 we obtain the pointwise convergence of the density,

̺n → ̺ a.e. on Q. (4.90)

4.8 Limit passage - continued

After we have established the strong convergence of the temperature and the density, we
can finish the limit passage. The continuity equation was well as its renormalized version are
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already verified. In the momentum equation (4.67), we identify p, S with p and S, respectively
and derive (4.12). Concerning the entropy inequality, the first three terms in (4.28), namely
̺nsn, ̺nsnun, and qnϑ

−1
n = −κ[un](ϑn)∇ log ϑn, are equi-integrable especially due to the

estimate (4.68) for the entropy ̺nsn. Consequently, these terms converge to its counterparts
in (4.14). Next, as the entropy production rate is a convex function, which is weakly lower
semi-continuous, we have

lim inf
n→∞

∫

Q

σn dx dt = lim inf
n→∞

∫

Q

|An|2 + |Bn|2 + |Cn|2 dx dt ≥
∫

Q

|A|2 + |B|2 + |C|2 dx dt

where

An =

√

µ(ϑn)

ϑn

(
2Dun − 1

3
div unI

)
, Bn =

√

ζ(ϑn)

ϑn
div un, Cn =

√

[un](ϑn)

ϑn
∇ϑn.

Using the strong convergence of the temperature, we observe that A
2
+B

2
+C

2
= σ, which

finish the proof of (4.14).

Finally, we have to deal with the energy inequality. As was mentioned above in Section 4.4.3
the internal energy is not equi-integrable on the solid region. Fortunately, it can be split into
the convex and the bounded part as follows

̺nen = ̺
5
3 +

3

2

(
pG(̺n, ϑn) − pc(̺n)

)
+ aϑ4

n.

The first term is convex and thus weakly lower semi-continuous, while the other terms are
equi-integrable, in particular the second term can be treated like in (4.84). Since the other
terms in (4.29) are equi-integrable, we can pass to the limit and obtain (4.15). The initial
conditions are the direct consequence of the initial conditions specified in Theorem (3.1.6).

4.9 Partial results and open problems

I have started the work on my thesis with belief that the existence problem for a compressible
fluid with rigid bodies can be solved by a direct penalization of the corresponding problem
for a fluid with heterogeneous constitutive laws. We have proved that this can be done
assuming homogeneous constitutive equations for the pressure, the internal energy, and the
entropy. A distinct internal energy for the fluid and for the bodies can not be used, when the
high viscosity limit takes the last place in the chain of approximations. The reason is that
the variational formulation is based on the entropy inequality together with the total energy
balance, where a calculation similar to (1.18) is crucial for the formal representation as well
as for the construction of solutions. However, in the case of the heterogeneous internal energy
there appears a new term in this calculation:

1

ϑ

(
∂t(̺e) + div(̺ue) + pdivu

)
= ̺(u − U) · (ϑ−1∂xe)+

̺
( 1

ϑ

∂e

∂ϑ
(∂tϑ+ u · ∇ϑ) − 2

3̺

∂e

∂ϑ
(∂t̺+ u · ∇̺)

)

+
p

ϑ̺
∂t̺+

p

ϑ̺
u · ∇̺+

p

ϑ̺
̺divu =

∂t(̺s) + div(̺us) + ̺(u − U) · (ϑ−1∂xe− ∂xs),
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where U is some velocity field, which transports the heterogeneous constitutive equations,
namely if this field is compatible with some displacement η, it holds

e(t,x; ̺, ϑ) = e(0,η[−t](x); ̺, ϑ).

Now it is clear that the term ̺(u−U) · ∂xD, D = et,x −ϑst,x has to be added into the total
energy balance. After the high viscosity limit this term should disappear, since ∂xD = 0 on
the fluid part and u = U on the bodies, but the problem is how to prove it. The problem is
even how to bound this term, since a rough calculation

∂xe(t,x) = ∂xe(0,η[−t](x)) = ∂x0
(0,x0) · ∇η[−t](x),

d

dt
∇η[t](x0) = ∇U(t,η[t](x0))∇η[t](x0)

indicates that ∂xD could have an exponential grow in time.

4.9.1 Total energy equality

One of the considerable achievements in the theory of the full Navier-Stokes-Fourier system
is the possibility to construct weak solutions, which preserve the total energy. In particular
(4.15) holds with the equality sign. It is natural to ask whether or not the system fluid-bodies
enjoy the same property. After the first contact it is unlikely to be true, as the weak solutions
does not cope well with instantenous contacts of the rigid bodies. On the other hand, up to
the first contact it is probably true. In this section we shall outline some ideas of the proof.

The reason, why we were not able to prove the total energy balance with the equality sign, is
that we lack an Lp-estimate for the pressure and/or the internal energy on the whole domain
Ω. To overcome this obstacle, we can perform the high viscosity limit before the vanishing

viscosity limit. There one can use the term ϑ−1|̺ β
2 |2 to control ̺β , the dominant part of the

pressure at this approximation level. After the high viscosity limit, the density is perfectly
transported on the bodies, thus we need an Lp-estimate for the pressure only on Qf up to
the boundary. This problem, we shall discuss for the last step: vanishing artificial pressure
limit.

The idea is still the same as in [18] namely to test the momentum equation by div−1̺ν .
Unfortunately it seems that one can not use the Bogovskii operator, since it is composed in
the nonconstructive way from operators on star-shaped subdomains and therefore we don’t
know how to identify its time derivative, namely ∂tBΩ[t](̺

ν). Therefore, we better follow

Geissert, Heck, Hieber [23] and use the Stokes problem to construct a sort of div−1

operator on the time dependent domain Ω[t] as well as its time derivative.

Suitable inverse of the divergence

The classical result concerning the Stokes problem reads:

Proposition 4.9.1. Let 1 < q < ∞ and Ω be a bounded domain with C2 boundary. Then
for any f ∈W−1,q(Ω;RN ) and g ∈ Lq(Ω), there exists one and only one solution

(v, p) ∈W 1,q
0 (Ω;RN ) × Lq(Ω)
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of the system

−∆v + ∇p = f , div v = g on Ω, (4.91)

which satisfies the estimate

∥
∥∇v

∥
∥

Lq(Ω)
+

∥
∥p

∥
∥

Lq(Ω)
≤ C(Ω, q,N)(

∥
∥f

∥
∥

W−1,q(Ω)
+

∥
∥g

∥
∥

Lq(Ω)
. (4.92)

Moreover, for f ∈ Lq(Ω), g ∈W 1,q(Ω) we have

∥
∥∇v

∥
∥

W 1,q(Ω)
+

∥
∥p

∥
∥

W 1,q(Ω)
≤ C(Ω, q,N)(

∥
∥f

∥
∥

Lq(Ω)
+

∥
∥g

∥
∥

W 1,q(Ω)
). (4.93)

This version is taken from [23], but the original works are due to Catabriga [5] and Galdi,

Simander [21], [20] and others. In addition to the estimates (4.92), (4.93), it holds

∥
∥v

∥
∥

Lq(Ω)
≤ C(Ω, q,N)

(∥
∥f

∥
∥

W−2,q(Ω;RN )+
∥
∥g

∥
∥

W−1,q(Ω)

)

. (4.94)

Indeed, taking an arbitrary ϕ̃ ∈ Lq′

(Ω;RN ), we can solve the Stokes problem

−∆ϕ −∇ψ = ϕ̃, div ϕ = 0 on Ω,

to get ϕ ∈W 2,q′

0 (Ω;RN ) and ψ ∈W 1,q′

(Ω) satisfying

∥
∥ϕ

∥
∥

W 2,q′ (Ω)
+

∥
∥ψ

∥
∥

W 1,q′ (Ω)
≤ C

∥
∥ϕ̃

∥
∥

Lq′ (Ω)
.

Now, if we test equations (4.91) by ϕ, ψ respectively, we get

∫

Ω

f · ϕ =

∫

Ω

−v · ∆ϕ − p divϕ =

∫

Ω

v · ϕ̃ + v · ∇ψ dx, (4.95)

∫

Ω

gψ dx = −
∫

Ω

v · ∇ψ dx. (4.96)

Then we can estimate the Lq-norm of v as follows

sup
ϕ̃∈Lq′

∫

Ω

v · ϕ̃ dx = sup

∫

Ω

f · ϕ + gψ dx ≤ C(
∥
∥f

∥
∥

W−2,q +
∥
∥g

∥
∥

W−1,q )
∥
∥ϕ̃

∥
∥

Lq′ . (4.97)

Considering the problem (4.91) with f = 0, Proposition 4.9.1 yields the linear bounded
operator

H : Lq(Ω) →W 1,q
0 (Ω;RN ),

defined by the formula H[g] := v and satisfying

divH[g] = g.

Our next aim is to identify the time derivative ∂tH[g] for an operator H on the time dependent
domain Ω[t] and with time dependent g = g[t]. The proof of the following proposition is
inspirated by paper [43] due to Simon, which deals with the related shape optimization
problem.
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Proposition 4.9.2. Let Ω0 be a bounded domain in R3 and J = (0, τ) a short time interval.
Let U [t] ≡ U ∈ W 1,∞(R3;R3), be some velocity field and η the displacement mapping
compatible with it on J . Let Ω0 as well as Ω[t] := η[t](Ω0) be domains with C2-boundary.
Assume g[t] from Lp(Ω) ∩W 1,q(Ω) for a.e. t ∈ J and denote v[t] = HΩ[t](g[t]). Then if
∂tg[0] belongs to Lq(Ω), the time derivative ∂tv = ∂tHΩ[t][g[t]]|t=0 is the (unique) solution of
the non-homogeneous Stokes problem

−∆∂tv + ∇∂tp = 0, div ∂tv = ∂tg[0] on Ω0,

∂tv = −(U · n)∂nv on ∂Ω0,
∫

Ω0

∂tp dx = −
∫

∂Ω0

(U · n)p[0] dσ,







(4.98)

and following estimates hold
∥
∥∂tv

∥
∥

W 1,q(Ω0;R3)
≤ C(

∥
∥g

∥
∥

W 1,q(Ω0)

∥
∥U

∥
∥

W 1,∞(Ω0;R3)
+

∥
∥∂tg

∥
∥

Lq(Ω0)
),

∥
∥∂tv

∥
∥

Lq(Ω0)
≤ C(

∥
∥g

∥
∥

Lq(Ω0)

∥
∥U

∥
∥

L∞(Ω0)
+

∥
∥∂tg

∥
∥

W−1,q(Ω0)
). (4.99)

Proof. By virtue of Proposition 4.9.1, the problem (4.91) with f = 0 and on the domain Ω[t]
has the solution (v[t], p[t]) unique in class W 1,q

0 (Ω;R3) × Lq(Ω) for a.e. t ∈ J . Since the
right-hand sides of equations (4.91) are differentiable, we can differentiate both equations.
Further, we differentiate the condition v = 0 on ∂Ω[t]. For every x = η[t](x0) from ∂Ω[t],
we have

0 =
d

dt
v(η[t](x0))|t=0 = ∂tv(0,x0) + (U(x0) · ∇)v(0,x0), x0 ∈ ∂Ω0.

Moreover, on ∂Ω[t], the function v is constant in directions tangential to the boundary, thus
(U · ∇)v = (U · n)∂nv, noting that v ∈ W 2,q(Ω;R3) since g ∈ W 1,q(Ω). Differentiating
also the condition 0 =

∫

Ω
[t]p[t] dx, we obtain the system (4.98). Next, we transform this

non-homogeneous system to the homogeneous one in order to apply Proposition 4.9.1. Setting

v0 = (U · ∇)v and p0 = −
∫

∂Ω[t]

(U [t] · n)p[t] dσ,

the functions ∂tv +v0, ∂tp+p0 form the solution of a homogeneous Stokes problem with the
right-hand side f̃ = ∆v0, g̃ = ∂tg + div v0. In accordance with our assumptions, we have
f̃ ∈ W−1,2(Ω0,R

3) and g̃ ∈ Lq(Ω0). It remains to show that g̃ is even in Lq(Ω). First, we
compute

∫

Ω[t]

div v0 dx =

∫

∂Ω[t]

(U · n)(n · ∂nv) dσ =

∫

∂Ω[t]

(divvU)n dσ =

∫

Ω[t]

div(gU),

where in the first two equalities we have used once more that v is the constant zero in the
directions tangential to the boundary. The third one is because of the fact, that divv = g ∈
W 1,q(Ω0) has a trace on ∂Ω0. Then

∫

Ω

g̃ dx =

∫

Ω

∂tg + div(gU) dx =
d

dt

∫

Ω[t]

g dx = 0.

Now, we can apply Proposition 4.9.1 to obtain the solution (ṽ, p̃) of the homogeneous problem
and also the solution of the original non-homogeneous problem:

∂tv = ṽ − v0, ∂tp = p̃− p0,
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which is unique in the class W 1,q(Ω;R3) × Lq(Ω). Finally, by virtue of estimates (4.92),
(4.94), we infer

∥
∥∂tv

∥
∥

1,q
≤ C

(∥
∥v0

∥
∥

1,q
+

∥
∥∂tg

∥
∥

q

)

≤ C
(∥
∥g

∥
∥

1,q

∥
∥U

∥
∥

1,∞
+

∥
∥∂tg

∥
∥

q

)

,

∥
∥∂tv

∥
∥

q
≤ C

(∥
∥v0

∥
∥

q
+

∥
∥∂tg

∥
∥
−1,q

)

≤ C
(∥
∥g

∥
∥

q

∥
∥U

∥
∥
∞

+
∥
∥∂tg

∥
∥
−1,q

)

,

where all norms are considered on Ω0.

Refined pressure estimate on the whole fluid region

Since, we work on the time interval I up to the first contact, there exists an artificial velocity
field U ∈ L2(I;W 3,∞(Ω;R3)), which coincides with the actual velocity u on the bodies.
There exists also displacement mapping η, which coincide with ηi on the bodies and which
is compatible with U . We consider the operator H on the domain

F [t] = Ωf [t] = η[t](F0), F0 = Ω \
N⋃

i=1

Si.

We assume that F0 is bounded domain of the class C2. Then the same holds for domains
F [t] because of the regular velocity field U .

Next, taking a fixed ǫ > 0, and t ∈ I, we shall use the following test function in the momentum
equation:

ϕ = H[πǫ] = HF [t][πǫ[t]], πǫ[t] = ωǫ ⋆ ̺
ν [t] −−

∫

F [t]

ωǫ ⋆ ̺
ν [t], ν > 0,

where ωǫ are smoothing kernels (2.1) acting in the space variable. Obviously, πǫ[t] belongs to
W 1,q(R3)∩Lq(F [t]) for any q > 1 and for a.e. t ∈ I. On the other hand, using the smoothed
renormalized continuity equation (3.12) with B(̺) = ̺ν , we get

∂t(ωǫ ⋆ ̺
ν) + div((ωǫ ⋆ ̺

ν)u) + (ν − 1)ωǫ ⋆ (̺νdivu) = rǫ a.e. on I × R3, (4.100)

where rǫ → 0 in Lp(I×R3), 1
p ≥ 3ν

5 + 1
2 . Consequently, ∂tπǫ[t] is bounded in Lp(R3) for a.e.

t ∈ I. Then Propositions 4.9.1, 4.9.2 ensure that ϕ is a valid test function for the momentum
equation, which yields

∫ T

0

∫

F

p(̺, ϑ)ωǫ ⋆ ̺
ν dx dt =

∫ T

0

∫

F

p(̺, ϑ) dx−
∫

F

ωǫ ⋆ ̺
ν dx dt (4.101)

−
∫ T

0

∫

F

̺f · H(πǫ) + ̺u ⊗ u : ∇H(πǫ) dx dt

+

∫ T

0

∫

F

(
2µf (ϑ)Du +

(
ζf (ϑ) − 2

3
µf (ϑ)

)
div uI

)
: ∇H(πǫ) dx dt

−
∫ T

0

∫

F

̺u · ∂tH[πǫ] dx dt

By virtue of the energy and entropy estimates, the first three integrals are bounded indepen-
dently of ǫ, where the most restrictive convective term leads to the condition ν ≤ 5

9 . For the
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last one, we employ (4.99) to get

I4 =

∫ T

0

∫

F

̺u · ∂tH[πǫ] dx dt

≤ C

∫ T

0

∥
∥(̺u)[t]

∥
∥

L
5
4 (Ω)

(∥
∥πǫ[t]

∥
∥

L5(Ω)

∥
∥U [t]

∥
∥

L∞(Ω)
+

∥
∥∂tπǫ[t]

∥
∥

W−1,5(F [t])

)
,

The terms on the right-hand side can be further estimated using the properties of the smooth-
ing kernels, equation (4.100), and the Sobolev imbedding as follows

∥
∥πǫ[t]

∥
∥

5
≤ C

∥
∥̺5ν [t]

∥
∥

1
,

∥
∥∂tπǫ[t]

∥
∥

W−1,5(F [t])
≤ C

(∥
∥(̺νu)[t]

∥
∥

L5(Ω)
+

∥
∥(̺νdivu)[t]

∥
∥

L1(Ω)
+

∥
∥rε

∥
∥

L1(Ω)
+ |I5|

)

,

where

I5 =
d

dt
−
∫

F [t]

̺ν [t] ⋆ ωǫ dx.

Taking ν small enough, namely ν ≤ 1
18 , the integral I4 will be bounded independently of ǫ

as soon as the term I5 is integrable in time uniformly with respect to ǫ.

And here an open problem arise, since we know that |F [t]| = |F0| and

d

dt

∫

F

[t]̺ν [t] dx = 0,

but it doesn’t need to be true for I5, because of smoothing over the boundary ∂F [t]. So, the
question is whether one can find a regularization of the density field, which behaves better
on the boundary.
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Chapter 5

Steady barotropic flow for

monatomic gas

In this chapter we shall deal with the existence of steady (i.e. time independent) solutions
(̺, u) to the system of equations for the isentropic flow of the Newtonian fluid. As was
explained in the Chapter 1, especialy in Section 1.2.2, for such a flow the Navier-Stokes-
Fourier system reduces to

div(̺u) = 0 (5.1)

div(̺u ⊗ u) − µ∆u − (µ+ λ)∇divu + ∇p(̺) = ̺f + g. (5.2)

Without loss of generality, we can set a = 1 in (1.40) and assume pressure p(̺) = ̺γ .

The first existence result for the system (5.1 − 5.2) is due to the pioneering work of Lions

[29]. There he assumes γ > 5
3 . Later, Novotny, Novo [34] have adapted a method of

Feireisl [13] to prove existence in the case of the potential f (and arbitrary g) with γ > 3
2 ,

see also [37]. Recently, Frehse, Goj, Steinhauer [19] and Plotnikov, Sokolowski [39]
have independently obtained new L∞ estimates for the quantity ∆−1p and have proposed
several methods to improve estimates of the density. Both works however assume a priori
bound for L1 norm of ̺u2 which is not available for the general system (5.1 − 5.2). Before
this these was finished, there appeared a new result of Plotnikov, Sokolowski [40] in the
same spirit as ours.

The main goals of this chapter are:

• To put the Frehse, Goj, Steinhauer [19] and the Plotnikov, Sokolowski [39]
estimates into the context of the modern potential theory (see Adams, Hedberg [1]).

• To show how the L∞ estimate of ∆−1p can be combined with the standard energy and
density bounds even without the a priori L1 bound for ̺u2.

• To use these observations to prove existence of solutions for small values of γ, namely
γ > 1

3 (1 +
√

13) ≈ 1.53 in the case of three dimensional flows and arbitrary f , and

γ > 1
8 (3 +

√
41) ≈ 1.175, if f is potential.
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The condition for the general f allows to treat at least the monatomic gas. As the estimate
of ∆−1p is essentially of the local character we limit ourselves to the periodic boundary
conditions and periodic domain. In order to guarantee existence of space periodic solutions,
we assume f and g with certain symmetries.

5.1 Formulation of the problem and main results

We consider equations (5.1 − 5.2) on a periodic cell

Ω =
(

[−π,+π]
∣
∣
{−π,π}

)3

(5.3)

with the periodic boundary conditions and f , g with symmetry

f i(x) = −f i(Y i(x)), f i(x) = f i(Y j(x)) and

gi(x) = −gi(Y i(x)), gi(x) = gi(Y j(x)) for i 6= j, i, j ∈ {1, 2, 3}, (5.4)

where
Y i(. . . , xi, . . . ) = (. . . ,−xi, . . . ).

This implies the same symmetry of u, and ̺ with the symmetry

̺(x) = ̺(Y i(x)) for i = 1, 2, 3. (5.5)

Consequently the investigated problem can be viewed also as the problem on the cube (0, π)3

with slip boundary conditions

u · n = 0, n S τ = 0 both on ∂ (0, π)3,

see Ebin [10].

In addition to the notation introduced in Chapter 2, we shall use spaces of symmetric func-
tions: for example, W 1,2

sym(Ω;R3) stands for the (vector valued) functions from W 1,2(Ω;R3)
that enjoy symmetric property (5.4) and Lp

sym(Ω) denotes (scalar) functions from Lp(Ω) that
satisfy symmetry (5.5). Another rather uncommon notation is that a set as an index of a
measure (or a function) means the measure restricted to the set, e.g. pΩ is the measure
pΩ(M) = p(Ω ∩M) =

∫

Ω∩M
p.

Suppose for a moment that (̺,u) is a classical solution to (5.1 − 5.2) and let b ∈ C1(0,∞).
Multiplying continuity equation (5.1) by b′(̺), we obtain the renormalized continuity equation

div(b(̺)u) +
(
̺b′(̺) − b(̺)

)
divu = 0. (5.6)

To keep this equation valid even for a weak solution ̺ ∈ Lγ(Ω) and u ∈ W 1,2(Ω;R3)
(see Definition 5.1.1 later on) we require that (5.6) is satisfied in the sense of distributions
D′(Ω) for any

b ∈ C
(
[0,∞)

)
∩ C1

(
(0,∞)

)

sup
t∈(0,1)

∣
∣tαb′(t)

∣
∣ <∞, for some α ∈ [0, 1),

sup
t∈(1,∞)

∣
∣t−αb′(t)

∣
∣ <∞, for some α ≤ γ

2
− 1.







(5.7)
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Similarly, we take a scalar product of momentum equation (5.2) with u and we integrate
over Ω. Using continuity equation (5.1) and taking advantage of the periodicity of solutions,
after several integrations by parts, we obtain the energy equality

∫

Ω

µ|∇u|2 + (µ+ λ)|divu|2 dx =

∫

Ω

̺f · u + g · u dx. (5.8)

Of course, due to the presence of the weakly lower semi-continuous functionals

∇u →
∫

Ω

|∇u|2 dx, ∇u →
∫

Ω

|divu|2 dx,

on L2(Ω;R3), for weak solutions, we can expect only the energy inequality
∫

Ω

µ|∇u|2 + (µ+ λ)|divu|2 dx ≤
∫

Ω

̺f · u + g · u dx. (5.9)

Last but not least, integrating momentum equation (5.2) over the periodic cell Ω, in accor-
dance with the periodicity of solutions, we obtain the compatibility relation

∫

Ω

̺f + g dx = 0. (5.10)

This condition is automatically satisfied by any solution induced by f and g with symmetry
(5.4). Finally, we denote by m > 0 the total mass of the gas in the volume Ω.

Following the terminology of [37] we define a renormalized bounded energy weak solution of
the periodic problem (5.1 − 5.2) on the domain Ω as follows:

Definition 5.1.1. Let the viscosity coefficients µ, λ satisfy µ > 0, 2µ + 3λ > 0. Suppose
that γ > 1 and m > 0 are given constants and assume that both f , g ∈ L∞(Ω) satisfy (5.4).
We say that a couple (̺,u) is a renormalized bounded energy weak solution of the periodic
problem (5.1 − 5.2) on the periodic cell Ω if

̺ ∈ Lγ
sym(Ω), u ∈W 1,2

sym(Ω;R3), (5.11)
∫

Ω

̺dx = m, (5.12)

the renormalized continuity equation (5.6) is valid for any b satisfying (5.7), the momentum
equation (5.2) holds in D′(Ω), and (5.9) is satisfied.

Remark 5.1.2. In view of (5.11) the simple density argument can be used to see that (5.2)
holds even in (W 1,q(Ω;R3))′ for any q ≥ max(2, 3γ

2γ−3 ).

Now we are ready to state the main result.

Theorem 5.1.3. Let Ω, m, µ, λ, f , g satisfy hypothesis of Definition 5.1.1. Let

γ > γgen. :=
1

3
(1 +

√
13) ≈ 1.53 (5.13)

or let f be potential and

γ > γpot. :=
1

8
(3 +

√
41) ≈ 1.175. (5.14)

Then there exists a renormalized bounded energy weak solution (̺,u) of the periodic problem
(5.1 − 5.2) which satisfies

̺ ∈ Lγq(Ω), q =
3γ

2 + γ
. (5.15)
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The rest of the chapter is devoted to the proof, In Section 3 we derive L∞ estimates for
∆−1p. Then in Section 4 we use the nonlinear potential theory due to Adams, Hedberg

[1] to find a convenient L1 bound for the quantity pu2. In Section 5 we use this estimate
together with standard energy and density bounds to estimate the density in the space Lγq,
q = 3γ

γ+2 . Finally, in Section 6, we combine this piece of information with the recently
discovered compactness properties of the so called effective viscous flux and with the notion
of the renormalized solutions to the continuity equation (cf. P.L. Lions’ results [29] and [14],
[37]). This makes possible to prove compactness of the set of weak solutions as well as to
construct weak solutions via a several level approximation scheme. The limit passage from
one level to another is standard, see e.g. [37]. Nevertheless, the necessary modifications in the
construction of approximations to accommodate the periodic boundary conditions, as well
as the last (and the most delicate) limit process are performed in all details in Sections 6.1
and 6.2.

5.2 Potential estimate

Let (̺δ,uδ) be a sequence of renormalized bounded energy weak solutions to the problem
(5.1 − 5.2), where, as well as in sequel, p stands for pδ. Our aim is to derive for ̺δ sufficiently
strong estimates independent of δ > 0 in terms of the external data ‖f‖∞, ‖g‖∞ (and, of
course, of the coefficients µ, λ).

Choose y ∈ Ω. Since the periodic problem is invariant with respect to the translation of the
periodic cell, we can assume y = 0. As in [19] and [39], the main estimate of this section can
be obtained testing formally the momentum equation (5.2) by ϕ(x) = (x−y)|x−y|−1. Since
this is not an admissible test function in the sense of Remark 5.1.2, we shall truncate it as
follows:

ϕ = (x− y)η(|x− y|),

η(t) =







1
r − 1

R on [0, r)
1
t − 1

R on [r,R)

0 on [R,∞)

where 0 < r < π
2 < R < π. Denoting P = ̺u ⊗ u + p I and n = (x−y)

|x−y| , a short calculation

yields

1

r

∫

Br

Tr(P − S) + (̺f + g) · (x − y) dx − 1

R

∫

BR

Tr(P − S) + (̺f + g) · (x − y) dx

+

∫

BR\Br

Tr(P − S) − (P − S) : n ⊗ n

|x − y| + (̺f + g) · n dx = 0, (5.16)

where Bs = {x : |x − y| < s}. Since ̺ ∈ Lβ(Ω) for a fixed δ, we realize that the term
Q :=

(
Tr(P − S) + (̺f + g) · (x − y)

)
belongs in L1(Ω). Thus the Lebesgue point property

implies
1

r

∫

Br

Qdx =
4π r2

|Br|

∫

Br

Qdx → 0 as r → 0.

Rearranging the remaining terms in (5.16) and estimating the resulting right-hand side, we
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obtain

sup
r>0

∫

BR\Br

Tr P − P : n ⊗ n

|y − x| dx ≤ 1

R

∫

BR

Tr(P − S) + (̺f + g) · (x − y) dx

+

∫

BR

2|S|
|y − x| + |̺f + g|dx ≤ C(1 +

∥
∥P

∥
∥

1,Ω
+

∥
∥S

∥
∥

2,Ω
+

∥
∥̺

∥
∥

1,Ω
).

Here and in the sequel, C is a generic positive constant independent of δ. Next, we observe
that

Tr P − P : n ⊗ n = ̺u2 + 3p− (̺(u · n)2 + p) ≥ 2p ≥ 0.

Thus, recalling the structure of S, we get
∫

BR

2p

|x − y| dx ≤ C
(
1 +

∥
∥̺u2

∥
∥

1,Ω
+

∥
∥p

∥
∥

1,Ω
+

∥
∥u

∥
∥

1,2,Ω

)
. (5.17)

Finally, denoting the periodic extension of p from L1(Ω) to L1
loc(R

3) again by p and extending
the integral at the left-hand side of (5.17) to the whole R3, we arrive at

(∆−1pΩ)[y] :=

∫

R3

pΩ(x)

|x − y| dx ≤
∫

BR

p

|x − y| dx +
1

R

∫

Ω

pdx

≤ C(1 +
∥
∥̺u2

∥
∥

1,Ω
+

∥
∥p

∥
∥

1,Ω
+

∥
∥u

∥
∥

1,2,Ω
). (5.18)

5.3 An application of the potential theory

In this part we will apply the general potential theory developed by Adams, Hedberg [1]
to obtain a convenient estimate for pu2. Similar estimate has been proved in [39], in a direct
way. Slightly weaker one, for the quantity p|u|, was derived in [19] via the theory of Morrey
spaces. The main advantage of our approach are accurate expressions for the best constants
(see (5.27)) of estimates, which will be crucial for the bootstrapping argument in Section 5.

We shall say that a function g on RN is a radially decreasing convolution kernel if g(x) =
g0(|x|), for some non-negative, lower semi-continuous, non-increasing function g0 on R+ for

which
∫ 1

0
g0(t)t

N−1dt <∞. The key ingredient of our proof is the following theorem.

Theorem 5.3.1. [1, Theorem 7.2.1] Let g be a radially decreasing convolution kernel, and
let µ ∈ M+(RN ) be a positive Radon measure. Then for 1 < p ≤ q < ∞ the following
properties of µ are equivalent:

(a) There is a constant A1 such that

(∫

RN

|g ⋆ f |q dµ

)1/q

≤ A1

∥
∥f

∥
∥

p
(5.19)

for all f ∈ Lp(RN ).

(b) There is a constant A2 such that

∥
∥g ⋆ µK

∥
∥

p′
≤ A2 µ(K)1/q′

(5.20)

for all compact sets K ⊂ RN .
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Moreover, the least possible values of A1 and A2 are the same. As a matter of fact one can
take A1 = A2.

The following preliminary material is taken again from [1, Chapter 1]. We shall be concerned
with the Bessel kernels Gα, which are defined for any real (or even complex) index α via the
Fourier transform by the formula

Gα := F−1
(
(1 + |ξ|2)−α

2

)
. (5.21)

The Bessel kernel Gα is radially decreasing convolution kernel, in particular it is real and
positive. It has exponential decay at infinity and the following asymptotics at zero

Gα(x) ≤ C(α,N)|x|α−N as |x| → 0, for 0 < α < N. (5.22)

Due to the definition (5.21) it is easy to see that the kernels Gα form a group, namely

Gα ⋆ Gβ = Gα+β . (5.23)

For the kernel Gα one can define the Bessel potential space

Lα,p(RN ) := {ϕ = Gα ⋆ f | f ∈ Lp(RN )},

with the norm
∥
∥Gα ⋆ f

∥
∥

Lα,p(RN )
:=

∥
∥f

∥
∥

Lp(RN )
.

The fundamental theorem of A. P. Calderon [4] identifies these spaces with the Sobolev
spaces.

Theorem 5.3.2. [1, Theorem 1.2.3] For α ∈ N, Wα,p(RN ) = Lα,p(RN ), 1 < p < ∞, with
equivalence of norms. In particular, for all ϕ ∈Wα,p(RN ) there exists a unique f ∈ Lp(RN )
such that ϕ = Gα ⋆ f , and there is a constant A such that

A−1
∥
∥ϕ

∥
∥

Lα,p(RN )
≤

∥
∥ϕ

∥
∥

W α,p(RN )
≤ A

∥
∥ϕ

∥
∥

Lα,p(RN )
.

Due to Theorem 5.3.2, for any ui ∈ W 1,2(Ω) there exists a unique f ∈ L2(Ω) such that
E(ui) = G1 ⋆ f , where E : W 1,2(Ω) → W 1,2(R3) is a continuous extension operator. Now,
we are in the position to use Theorem 5.3.1 with N = 3, p = q = 2, µ = pΩ dx, g = G1 and
f . First we apply Fubini’s theorem to check the condition (b) of Theorem 5.3.1

∥
∥G1 ⋆ pΩ∩K

∥
∥

2

2
=

∫

R3

∫

R3

∫

R3

G1(y − x) pΩ∩K(y) G1(z − x) pΩ∩K(z) dy dz dx (5.24)

=

∫

R3

(
(G1 ⋆ G1) ⋆ pΩ∩K

)
(z) pΩ∩K(z) dz (5.25)

≤
∥
∥G2 ⋆ pΩ

∥
∥
∞
pΩ(K) ≤ C

∥
∥∆−1pΩ

∥
∥
∞
pΩ(K) ≤ A2

2 pΩ(K), (5.26)

where on the last line we have used (5.23), (5.22), (5.18), and we have put

A2
2 = C(1 +

∥
∥̺u2

∥
∥

1
+

∥
∥p

∥
∥

1
+

∥
∥u

∥
∥

1,2
). (5.27)

Finally, using the statement (a) of Theorem 5.3.1 and Theorem 5.3.2 we conclude that

∥
∥pu2

∥
∥

L1(Ω)
=

3∑

i=1

∫

R3

E(ui)2 pΩ dx ≤
3∑

i=1

A2
1

∥
∥E(ui)

∥
∥

2

L1,2(R3)
≤ C A2

2

∥
∥u

∥
∥

2

W 1,2(Ω)
. (5.28)
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5.4 Bootstrapping argument

There are two standard estimates for the renormalized bounded energy weak solutions we
have not yet exploited. First, if we use the energy inequality (5.9), Korn’s inequality, the
Young inequality, and the Sobolev imbedings we arrive at the estimate

∥
∥u

∥
∥

1,2
≤ C(Ω)

∥
∥f

∥
∥
∞

∥
∥̺

∥
∥

6
5

. (5.29)

Second, we introduce the so called Bogovskii operator, which is a particular solving operator

B : ϕ ∈ Lq(Ω) → v ∈W 1,q(Ω;R3), 1 < q <∞ (5.30)

of the problem







div v = ϕ−−
∫

Ω

ϕ dx in (−π, π)3,

v = 0 on ∂(−π, π)3.






(5.31)

The operator B is continuous, namely
∥
∥v

∥
∥

1,q
≤ C

∥
∥ϕ

∥
∥

q
. For details see [37, Section 3] and

references quoted there. In view of Remark 5.1.2 we can test (5.2) by the function B[ϕ],
where ϕ ∈ Lq′

(Ω), 1 < q ≤ 2, to get

∫

Ω

p div(B[ϕ]) dx =

∫

Ω

(S − ̺u ⊗ u) : ∇B[ϕ] − (̺f + g) · B[ϕ] dx

≤ C
(∥
∥u

∥
∥

1,2
+

∥
∥̺u2

∥
∥

q
+

∥
∥̺

∥
∥

6
5

∥
∥f

∥
∥
∞

+
∥
∥g

∥
∥
∞

)∥
∥ϕ

∥
∥

q′
. (5.32)

For γq > 6
5 , the Young inequality together with (5.29) yields

∥
∥p

∥
∥

q
= sup

ϕ∈Lq′ (Ω)

∥
∥ϕ

∥
∥
−1

q′

∫

Ω

p
(

divB[ϕ] +

∫

Ω

ϕdx
)

dx ≤ C
(
1 +

∥
∥̺u2

∥
∥

q

)
. (5.33)

Next, we split the right-hand side,

∥
∥̺u2

∥
∥

q

q
=

∫

Ω

(̺γu2)buc dx, q = γb, 2q = 2b+ c,

and apply the Hölder inequality to get

∥
∥̺u2

∥
∥

q

q
≤

∥
∥̺γu2

∥
∥

b

1

∥
∥u

∥
∥

c

6
, (5.34)

provided

b+
c

6
≤ 1 or equivalently q ≤ 3γ

γ + 2
. (5.35)

With help of estimates (5.29), (5.33) we can rewrite (5.28) as

∥
∥pu2

∥
∥

1
≤ C(1 +

∥
∥̺u2

∥
∥

1+ε
)
∥
∥̺

∥
∥

2
6
5

. (5.36)

Further application of the Hölder inequality together with the imbeding L6(Ω) →֒ W 1,2(Ω)
and with (5.29) yields

∥
∥pu2

∥
∥

1
≤ C(1 +

∥
∥̺

∥
∥

3
2+ε

∥
∥̺

∥
∥

2
6
5

)
∥
∥̺

∥
∥

2
6
5

. (5.37)
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In (5.36), (5.37), ε can be chosen arbitrary from the interval (0, ε0) where ε0 is sufficiently
small and C depends on ε0 but is independent of ε. Taking into account (5.33), (5.34), and
(5.37) we arrive at

∥
∥p

∥
∥

q

q
=

∥
∥̺γ + δ̺β

∥
∥

q

q
≤ C(1 +

∥
∥̺

∥
∥

b
3
2+ε

∥
∥̺

∥
∥

2b+2q
6
5

). (5.38)

In the next step we shall interpolate the norms at the right-hand side of (5.38) between L1(Ω)
and Lγq(Ω) as follows

∥
∥̺

∥
∥

r
≤

∥
∥̺

∥
∥

x

1

∥
∥̺

∥
∥

y

γq
= C

∥
∥̺

∥
∥

y

γq
, y =

γq

(γq − 1)

(r − 1)

r
. (5.39)

Applying (5.39) to (5.38) with r successively equal to 3
2 + ε and 6

5 , under the necessary
conditions γq > 3

2 and γq ≥ 6
5 respectively, and noticing that

∥
∥̺

∥
∥

1
= m, we get

∥
∥̺γ + δ̺β

∥
∥

q

q
≤ C(1 +

∥
∥̺

∥
∥

z+Ĉε

γq
), z =

γq

γq − 1

(
b

3
+

2b+ 2q

6

)

, Ĉ ≤ γq

γq − 1

2

3
b (5.40)

This formula yields
∥
∥̺γ + δ̺β

∥
∥

q
≤ C(Ω,m,f , g)

provided

γq > z =
γq

γq − 1

γ + 2

3γ
q. (5.41)

The expression γq
γq−1 is a decreasing function of q, consequently (5.41) can be understood as an

inequality to determine the lower bound for q. Thus, in accordance with (5.35), q = 3γ
γ+2 rep-

resents the optimal choice of q. Then (5.41) reduce to γq > 2 or equivalently 3γ2−2γ−4 > 0.
The latter inequality leads directly to the condition γ > γgen. (5.13).

If the volume force f is potential, the term
∫

Ω
̺f · u on the right-hand side of (5.9) is zero

thanks to (5.1). Thus we obtain, instead of (5.29), a priori bound for
∥
∥u

∥
∥

1,2
. Consequently

(5.37) takes the form
∥
∥pu2

∥
∥

1
≤ C(1 +

∥
∥̺u2

∥
∥

1+ε
) (5.42)

and interpolation (5.34) yields
∥
∥̺u2

∥
∥

q

q
≤ C

∥
∥̺γu2

∥
∥

b

1

∥
∥u

∥
∥

c

6
≤ C(1 +

∥
∥̺u2

∥
∥

b

1+ε
). (5.43)

As b < q, we get estimate for
∥
∥̺u2

∥
∥

q

q
. Using (5.33), we arrive at

∥
∥̺γ + δ̺β

∥
∥

q

q
≤ C(1 +

∥
∥̺u2

∥
∥

q

q
) ≤ C(Ω,m,f , g) (5.44)

for every 1 < q ≤ 3γ
γ+2 and for all γ > 1.

Summarizing all estimates, we have

δ1/β̺δ bounded in Lβq(Ω), ̺δ bounded in Lγq(Ω),

̺δu
2
δ bounded in Lq(Ω), uδ bounded in W 1,2(Ω;R3)

(5.45)

uniformly with respect to δ, provided γ > γgen., or provided γ > 1 and f is potential.
To prove strong convergence of the density, we shall also need the estimate

∥
∥̺δuδ

∥
∥

r
≤

∥
∥̺δ

∥
∥

1
2

γq

∥
∥̺δu

2
δ

∥
∥

1
2

q
≤ C with some r > 6

5 . (5.46)

This is true provided 5
6 >

1
2q (1 + 1

γ ) which is equivalent to condition (5.14).
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5.5 Existence of a solution

The first part of this section is devoted to the construction of the bounded energy weak
solutions to problem (5.1 − 5.2) by using several level approximation scheme. We also
explain (referring to the second part) how to pass to the limit between the levels. In the
second part we combine the estimates of Section 5 with the compactness properties of the
effective viscous flux and with the convenient estimates of oscillations to the density sequence
to carry out the last limit process δ → 0+.

5.5.1 Approximations

In this section we explain how to construct the renormalized bounded energy weak solutions to
problem (5.1 − 5.2) on the periodic cell (5.3). We adopt the same chain of approximations
as described in Chapter 4 of [37], where a similar problem is treated for larger values of
the adiabatic constant and the homogeneous Dirichlet boundary conditions for the velocity.
The problem of density estimates for the small adiabatic constants was already treated in
Section 5. Due to this fact, we shall concentrate in this part essentially to the changes which
are necessary to be operated in order to accommodate the periodic boundary conditions and
the symmetries (5.4), (5.5).

To this end, we consider an approximating problem with positive parameters α, ε, and δ:

α(̺− h) + div(̺u) − ε∆̺ = 0, (5.47)

α(h+ ̺)u +
1

2

(
div(̺u ⊗ u) + ̺u∇u

)
+ ∇(̺γ + δ̺β) − divS = ̺f + g, (5.48)

on the periodic cell Ω. Here h is a smooth periodic function with the symmetry (5.5) satisfying
∫

Ω
h = m. Further, ρ and u are unknowns which has to obey symmetries (5.4) and (5.5),

respectively. Notice that in this case u · n and ∂n̺ necessarily vanish on ∂(−π, π)3. In order
to solve this system we employ the Leray-Schauder fixed point theorem

Theorem 5.5.1 (see [37] Section 1.4.11.8). Let X be a Banach space and D ⊂ X bounded
open set. Let H : D × [0, 1] → X be a homotopy of compact transformations, which means
that H is a compact mapping for every t ∈ [0, 1] and that it is uniformly continuous in t on
any bounded set B ⊂ D. Let

ω −H(ω, t) 6= 0, ∀t ∈ [0, 1], ∀ω ∈ ∂D. (5.49)

If there exists ω0 ∈ D such that H(ω0, 0) = ω0, then, for any t ∈ [0, 1], there exists ωt ∈ D,
satisfying H(ωt, t) = ut as well.

We take v ∈ W 1,∞
sym(Ω;R3) such that

∥
∥v

∥
∥

1,∞
≤ K for some K > 0. Using the standard

theory of elliptic operators, see e.g. Nečas [32], we can construct solving operators

Πt : ξ ∈W 1,p
sym(Ω) ∩

{
∫Ω ξ = m

}
→ ̺t ∈

(
W 2,p

sym(Ω) ∩
{
∫Ω ̺ = m

})

to the problems

−ε∆̺t = −t
(
α(ξ − h) + div(ξv)

)
in Ω,

∫

Ω

̺t dx = m, t ∈ [0, 1], (5.50)
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which, for any 1 < p < ∞, forms a homotopy of compact transformations by virtue of the
compact imbedding W 2,p

sym(Ω) →֒→֒W 1,p
sym(Ω). Testing

α(̺− h) + div(̺v) − ε∆̺ = 0 (5.51)

(compare with (5.47)) by ̺ and using conveniently a bootstrapping argument we realize that
any fixed point ̺t ∈W 1,p

sym(Ω) ∩ {∫Ω ̺ = m} of Πt satisfies

∥
∥̺t

∥
∥

1,p
≤ CS(K, p, ε, α, h), (5.52)

where CS is a positive constant independent of t. As a consequence the domain

D = {ξ ∈W 1,p
sym(Ω) |

∥
∥ξ

∥
∥

1,p
≤ 2CS , ∫

Ω
̺ = m}

verifies (5.49) with the homotopy H( · , t) = Πt( · ). We can therefore employ Theorem 5.5.1,
taking X = W 1,p

sym(Ω) ∩ {∫Ω ̺ = m}, to construct the operator S

S : v ∈W 1,∞
sym(Ω;R3) → (̺ = Π1(̺)) ∈W 1,p

sym(Ω) (5.53)

such that ̺ = S(v) solves equation (5.47).

Similarly we define operators Tt : v → ut, t ∈ [0, 1] as the solving operators to the problems

−µ∆u − (µ+ λ)∇divu = −tF (S(v),v), (5.54)

on the periodic cell Ω, where

F (̺,v) := α(h+ ̺)v +
1

2
div(̺v ⊗ v) +

1

2
̺v∇v + ∇(̺γ + δ̺β) − ̺f − g. (5.55)

The necessary condition to guarantee the existence of solutions to this system is
∫

Ω
F = 0.

This condition is always satisfied provided f , g, v and ̺, h posses symmetries (5.4) and (5.5),
respectively.

Referring to the standard results of the regularity to the elliptic systems, see again [32], we
conclude that

Tt : v ∈W 1,∞
sym(Ω;R3) → ut ∈W 2,p

sym(Ω;R3) →֒→֒W 1,∞
sym(Ω;R3)

for any p > 3.

We test (5.48) by u, where (5.48) can be viewed as the Lamé type system (5.54) with v = u.
After a long but standard calculation, employing among others (5.47), we get

∫

Ω

µ|∇u|2 + (µ+ λ)|divu|2 dx + εδ
∥
∥∇(̺β/2)

∥
∥

2

0,2
≤

∫

Ω

(̺f + g) · u dx + αC(h), (5.56)

where C(h) is a positive constant dependent on h. Taking advantage of the symmetries of u

and of the fact that
∫

Ω
(̺−h) = 0, one can use the Sobolev and Poincaré type inequalities as

well as a bootstrapping via F (S(u),u) and the elliptic regularity of (5.54) to conclude that
∥
∥u

∥
∥

2,6
+

∥
∥̺

∥
∥

0,3β
≤ CT (α, δ, ε,f , g, h). (5.57)

Now we shall take K = 2CT in the definition of CS (see (5.52)) in order to have the operator
S well defined.
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The domain D = {v ∈W 1,∞
sym(Ω,R3) |

∥
∥v

∥
∥

1,∞
≤ 2CT }, verifies (5.49) with H(·, t) = Tt. Once

again, we can use Theorem 5.5.1 with X = W 1,∞
sym(Ω), to guarantee existence of a fixed point

uε = T1(uε) and then we set ̺ε = S(uε). Evidently, the couple (̺ε,uε) solves (5.47− 5.48).

To pass to the limit ε→ 0+, we have on our disposal estimate (5.56) and another estimate

∥
∥̺

∥
∥

0,2β
≤ C(δ,f , g, h).

It can be obtained by testing the momentum equation (5.48) by the Bogovskii operator B[ϕ],
see (5.30), (5.31), using the known bound (5.56), and applying conveniently the Sobolev
imbeddings and the Hölder inequality in a way similar to (5.32). Both estimates provide
uniform bounds for

∥
∥uε

∥
∥

1,2
and

∥
∥̺ε

∥
∥

0,2β
independent of ε.

These estimates are sufficient to pass to the limit in the continuity equation (5.47), the energy
inequality (5.56), and in all terms of the momentum equation (5.48) except the pressure term
pδ(̺ε).

To pass to the limit in pδ(̺ε), one needs to show that the weak limits u and ̺ of the sequences
uε and ̺ε satisfy also the renormalized continuity equation similar to (5.6), namely

α̺b′(̺) + div(b(̺)u) + (̺b′(̺) − b(̺))divu =

αhb′(̺) + εdiv(b′(̺)∇̺)) − εb′′(̺)|∇̺|2
(5.58)

with a convenient function b ∈ C2(0,∞). This equation can be obtained via multiplying
equation (5.51) by b′(̺). Further, one needs to prove that the quantity

Pδ(̺) = pδ(̺) − (2µ+ λ)divu, (5.59)

called effective viscous pressure, satisfies the identity

Pδ(̺)b(̺) − Pδ(̺) b(̺) = (2µ+ λ)
(

b(̺)divu − b(̺) divu
)

(5.60)

with another convenient function b. Here and in what follows the overlined quantities denote
corresponding weak limits in D′(Ω).

The same holds for the passage α → 0+, but now, (5.58) is replaced by the renormalized
continuity equation (5.6).

Importance of the effective viscous pressure (5.59) and some of their properties was recovered
in various contexts by several authors Lions [29], Serre [42], Hoff [24], Novotný, Padula

[36] and [35]. Finally it was successfully used in existence theory by Lions [29]. Its rigorous
mathematical realization is deeply related to the quality of density estimates and therefore to
the value of γ (resp. β, in the case of limits ε→ 0+ and α→ 0+ ). In fact, the difficulty of
the underlying mathematical analysis increases with decreasing values of adiabatic constant.
Intimately related to the DiPerna-Lions transport theory and to the Friedrich’s lemma about
commutators [8], the Lions method is applicable provided ̺ is square integrable. Thus,
for general f , it could be used without additional restriction as the condition γ > γgen. is
equivalent to γq > 2 (cf. discussion after (5.41)). To treat also the case of potential f we shall
rather apply another method proposed by Feireisl [13] (see also [18]) which is better adapted
to investigate small adiabatic constants. We shall describe all details of this approach in the
next section.
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To conclude, both previous limit procedures, namely ε → 0+ and α → 0+ have common
features with the limit passage δ → 0+. The latter (most difficult) limit contains all of
essential mathematical aspects of limits ε→ 0+, α→ 0+. Consequently, the reader can, by
himself, adapt the arguments of Section 6.2 to these situations.

5.5.2 Vanishing artificial pressure

Let ̺δ ∈ Lβ
sym(Ω), uδ ∈ W 1,2

sym(Ω;R3) be sequence of bounded energy renormalized weak
solutions to the problem

div
(
b(̺δ)uδ

)
+

(
̺δb

′(̺δ − b(̺δ)
)
divuδ = 0 in D′(Ω), (5.61)

div(̺δuδ ⊗ uδ) − µ∆uδ − (µ+ λ)∇divuδ + ∇(̺γ
δ + δ̺β

δ ) = ̺δf + g in D′(Ω;R3), (5.62)
∫

Ω

µ|∇uδ|2 + (µ+ λ)|divuδ|2 dx ≤
∫

Ω

(̺δf + g) · uδ dx, (5.63)

where b is the same as in (5.6). By virtue of the estimates (5.45), (5.46), and the compact
imbedding W 1,2(Ω;R3) →֒→֒ Lp(Ω;R3), 1 ≤ p < 6 we obtain following limits

δ̺β → 0 in D′(Ω),

̺δ ⇀ ̺ weakly in Lqγ(Ω),

uδ ⇀ u weakly in W 1,2(Ω;R3),

uδ → u in Lp(Ω;R3), 1 ≤ p < 6,







(5.64)

̺δuδ ⇀ ̺u weakly in Lr(Ω), for some r > 6/5,

̺δuδ ⊗ uδ ⇀ ̺u ⊗ u weakly in Lq(Ω).

}

(5.65)

at least for a chosen subsequence.

Using these facts and the weak lower semi-continuity of the left hand side of (5.63) we can
pass to the limit in (5.61 − 5.63) and we get

div(̺u) = 0 in D′(Ω) (5.66)

div
(
b(̺)u

)
+

(
̺b′(̺− b(̺)

)
divu = 0 in D′(Ω), (5.67)

div(̺u ⊗ u) − µ∆u − (µ+ λ)∇divu + ∇̺γ = ̺f + g in D′(Ω;R3), (5.68)
∫

Ω

µ|∇u|2 + (µ+ λ)|divu|2 dx ≤
∫

Ω

(̺f + g) · u dx. (5.69)

The proof will be complete provided we show the strong convergence of ̺δ in L1(Ω). This
will be done in several steps following [37]. In the first step we shall prove identity (5.60)
with b = Tk, k > 0, where

Tk(z) = kT
( z

k

)

; T ∈ C∞(R+), concave; T (z) = z for z ≤ 1; T (z) = 2 for z ≥ 3. (5.70)

In the second step, we deduce from (5.60) an estimate measuring oscillations of the sequence
of densities ρδ (see formula (5.77)). This information is used in the third step to prove that
the couple (̺,u) satisfies the renormalized continuity equation (see Lemma 5.5.2). The last
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fourth step consists in comparing the weak limit of the renormalized continuity equation for
(̺δ,uδ) with the renormalized continuity equation for the weak limit (̺,u).

Step 1: Compactness properties of the effective viscous pressure (5.59). Testing (5.62) by
ηϕδ = η∇∆−1(ξTk(̺δ)) with η, ξ ∈ D(Ω) we obtain

∫

Ω

ηξ
(
̺γ

δ − (2µ+ λ) divuδ

)
Tk(̺δ) dx = GoodTermsδ +

∫

Ω

ηRi,j(ξTk(̺δ)u
j
δ)̺δu

i
δ

︸ ︷︷ ︸

DivCurlδ

dx

+

∫

Ω

u
j
δ · [ξTk(̺δ)Ri,j(η̺δu

i
δ) − η̺δu

i
δRi,j(ξTk(̺δ))]

︸ ︷︷ ︸

Commutatorδ

dx, (5.71)

GoodTermsδ =

∫

Ω

(
(µ+λ)divuδ−̺γ

δ

)
∇η ·ϕδ−δ̺β

δ div(ηϕδ)+
(
µ∇uδ−̺δuδ⊗uδ

)
∇η⊗ϕδ

− µ∇η ⊗ uδ : ∇ϕδ + µuδ · ∇η(ξTk(̺δ)) − (f̺δ + g)ηϕδ dx. (5.72)

Similarly we can test (5.68) by ηϕ = η∇∆−1(ξTk(̺)) to get
∫

Ω

ηξ
(
̺γ − (2µ+ λ) divu

)
Tk(̺) dx = GoodTerms +

∫

Ω

ηRi,j(ξTk(̺)uj)̺ui

︸ ︷︷ ︸

DivCurl

dx

+

∫

Ω

uj · [ξTk(̺)Ri,j(η̺u
i) − η̺uiRi,j(ξTk(̺))]

︸ ︷︷ ︸

Commutator

dx, (5.73)

GoodTerms =

∫

Ω

(
(µ+ λ)divu − ̺γ

)
∇η · ϕ +

(
µ∇u − ̺u ⊗ u

)
∇η ⊗ ϕ

− µ∇η ⊗ u : ∇ϕ + µu · ∇η(ξTk(̺)) − (f̺+ g)ηϕ dx. (5.74)

Next we shall pass to the limit in (5.71) as δ → 0+. Realizing that ϕδ → ϕ in any
Lp(Ω;R3), p > 1 and taking into account limits (5.64), (5.65) it is straightforward to
show that (GoodTermsδ) → (GoodTerms). Furthermore, applying Lemma 2.2.4 and Lemma
2.2.5 we easily verify that (DivCurlδ) ⇀ (DivCurl) weakly in D′(Ω) and (Commutatorδ) ⇀
(Commutator) weakly in Lr(Ω), respectively. This is the only place where we need quite
restrictive estimate (5.46).

Finally, subtracting (5.73) and the limit of (5.71) as δ → 0+, we obtain the famous identity
for the effective viscous pressure, cf. (5.59), namely

̺γTk(̺) − ̺γ Tk(̺) = −(2µ+ λ)
(
Tk(̺)divu − Tk(̺)divu

)
a.e. in Ω. (5.75)

Step 2: Defect measure of oscillations. Using in succesive steps the elementary algebraic
inequality (a − b)γ ≤ aγ − bγ , a ≥ b ≥ 0, weak lower semi-continuity of convex functionals
̺ →

∫

Ω
̺γ , ̺ → −

∫

Ω
Tk(̺), and (5.75) we succeed to control oscillations of the density

sequence ̺δ in the following way

lim sup
δ→0+

∫

Ω

|Tk(̺) − Tk(̺δ)|γ+1 dx ≤ lim sup
δ→0

∫

Ω

(̺γ − ̺γ
δ )

(
Tk(̺) − Tk(̺δ)

)
dx

≤
∫

Ω

̺γTk(̺) − ̺γ Tk(̺) dx ≤ C
∥
∥divuδ

∥
∥

2
lim sup
δ→0+

∥
∥Tk(̺) − Tk(̺δ)

∥
∥

2
. (5.76)
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Hence, thanks to (5.45),

sup
k>0

lim sup
δ→0+

∥
∥Tk(̺) − Tk(̺δ)

∥
∥

γ+1
≤ C. (5.77)

Step 3: Renormalized continuity equation. The control of the density oscillations allows us to
keep the renormalized continuity equation (5.6) valid for the limits ̺, u even if the density
is not known to be square integrable. More precisely we claim (see e.g. [37, Lemma 4.50]):

Lemma 5.5.2. Let b belong to (5.7), uδ ⇀ u weakly in W 1,2(Ω;R3) and ̺δ ⇀ ̺ weakly
in Ls(Ω), s > 1 and suppose that (5.61), (5.67) and (5.77) hold. Then (̺,u) satisfies
renormalized continuity equation (5.6) in D′(Ω).

If s ≥ 2, Lemma 5.5.2 is a particular case of the DiPerna-Lions transport theory, which is,
in this case, a direct consequence of (5.66) and the Fridrichs’ lemma about commutators [8].

If s ∈ (1, 2) one may adapt to the steady situation the ”nonsteady” aproach of Feireisl [13]
(see also [18]). Since Tk(̺) belongs, in particular, to L2(Ω), one can apply the Di-Perna,
Lions transport theory to (5.67) with b = Tk to conclude that

div
(
b
(
Tk(̺)

)
u

)
+

(

Tk(̺)b′
(
Tk(̺)

)
− b

(
Tk(̺)

))

divu = b′
(
Tk(̺)

)(
̺Tk(̺) − Tk(̺)

)
divu,

(5.78)
e.g. for any b ∈ C1([0,∞))∩C0([0,∞)). As the consequence of the weak lower semi-continuity
of norms we get

∥
∥Tk(̺) − ̺

∥
∥

1
≤ Ck1−p,

∥
∥Tk(̺) − ̺

∥
∥ ≤ Ck1−p, for 1 ≤ p < γq. (5.79)

Using this fact and (5.77) one verifies that

b′(Tk(̺))(̺Tk(̺) − Tk(̺))divu → 0 in L1(Ω).

Consequently (5.78) yields (5.6) for a compactly supported b. The passage to general b given
by (5.7) can be performed via the Lebesgue dominated convergence theorem.

Step 4: Strong convergence of ρδ. Finally we use (5.6) to prove the strong convergence of ̺δ

in L1(Ω). We introduce functions Lk(z) ≈ z log(z) by the equation tL′
k(t) − Lk(t) = Tk(t).

Using Lk as b in (5.6) and (5.66) leads to
∫

Ω
Tk(̺)divu = 0 and

∫

Ω
Tkdivu = 0, respectively.

With this information at hand, the revisited proof of formula (5.76) yields

lim sup
δ→0+

∥
∥Tk(̺) − Tk(̺δ)

∥
∥

γ+1

γ+1
≤ C

∫

Ω

divu(Tk(̺) − Tk(̺)) dx

≤ C
∥
∥Tk(̺) − Tk(̺)

∥
∥

γ−1
2γ

1
lim sup
δ→0+

∥
∥Tk(̺) − Tk(̺δ)

∥
∥

γ+2
2γ

γ+1
. (5.80)

Recalling (5.79), the right-hand side of (5.80) tends to zero with k. Now, we write

lim sup
δ→0+

∥
∥̺δ − ̺

∥
∥

1
≤

∥
∥̺δ − Tk(̺δ)

∥
∥

1
+ lim sup

δ→0+

∥
∥Tk(̺δ) − Tk(̺)

∥
∥

1
+

∥
∥Tk(̺) − ̺

∥
∥

1
.

By virtue of (5.79) and (5.80), the right hand side of the above formula tends to zero.
Consequently, the sequence ρδ converges strongly in Ls(Ω), for all 1 ≤ s < γq and ργ in
equation (5.68) is equal to ργ . This completes the proof of Theorem 5.1.3.
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[36] A. Novotný and M. Padula. Existence and uniquaness of stationary solutions for viscous
compressible heat-conductive fluid with large potential and small nonpotential external
forces. Sib. Math. J., 34:120–146, 1991.
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