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Chapter 1 

 

 

 

1 INTRODUCTION 

Light is a powerful tool to investigate: at distance, complex, unstable and reactive systems. It is by 
itself a subject of researches and especially when it interacts with matter, and more particularly 
particles transported, produced or consumed in multiphase flows. The scattering of light by small 
particles is a wonderful research domain but it is a rather complex one as it mixes sophisticated 
physical theories and mathematic tools (e.g. Van de Huslt 1957, Bohren and Huffman 1998), and 
interdisciplinary applications (e.g. Xu 2001)  

 
 

Figure 1.1 Bubbles in Nature (foam, desaturation), laboratory (propeller cavitation, coalescence) and 
industry (bioreactor, reduction of hydrodynamic drag of ships, calibrated particles). 

In Fluid Mechanics, as well as in the day to day life, a bubble is defined as “small particle” which 
density is lower than the one of the surrounding medium. It rises up in the surrounding fluid 
because its net buoyancy forces balance is positive. Indeed, it can be either an air bubble in water 
or an oil droplet in water. So now, what is a bubble from the electromagnetic point of view? To 
answer such question let first point out the parallel between the mass density of an object and its 
refractive index. Obviously, the link is not direct and it can be totally contrary for some specific 
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material or wavelengths. However, in the optical domain, a bubble is defined as a “small particle”  
which has a refractive index with a real part smaller than the one of the surrounding fluid.  It can 
be either an air bubble in water or a water droplet in oil. So that, both definitions of a bubble 
does not always match. 

 

Bubbles and bubbly flows occur in a wide range of natural systems and industrial processes, 
including, for example, boiling heat transfer, cloud cavitation, biological or chemical reactors, 
ship drag reduction systems. Therefore both the understanding of the properties of bubbly flows 
and controlling their evolution are of great technological and scientific interests (Sommerfeld  
2003). In recent years computational fluid dynamics modelling of bubbly flows based on Euler–
Lagrange and the Euler–Euler models has become a viable technique of good predictive 
capabilities (Dhotre et al. 2007). However, this requires a suitable approach as well as closure laws 
for mass, momentum and energy transfers between the phases and for modelling turbulence 
effects for instance. Direct numerical simulations can generate a good insight to the basic 
behaviour of bubbly flows, but they are mostly limited to relatively low Reynolds numbers 
(Tryggvason et al. 2006).  Consequently, experimental data and diagnoses are still required to 
validate closure laws, as well as to control and monitor real bubbly flows.  

Various optical techniques have been developed for the characterization of a single bubble size 
(Phase Doppler anemometry, critical scattering, optical probes, defocusing PIV…) and the size 
distribution of a bubble cloud (laser diffractometry, shadowgraphy …). It should be noted that a 
technique like the Phase Doppler anemometry (e.g. Qiu and Hsu 2004, Albrecht et al. 2003) 
allows characterizing the concentration and the velocity of the bubbles. In the same manner, the 
defocusing PIV (David et al. 2003) is able to determine simultaneously the size distribution and 
dynamics of an ensemble of bubbles. Nevertheless, except the critical scattering technique, none 
of all the aforementioned techniques is able to recognize the composition of the bubbles or the 
one of the surrounding fluid. This is particularly frustrating as the characterization of the bubble 
composition could be a key factor for bubble mixing and coalescence investigations, multiphase 
flows characterization. In fact, with elastic light scattering techniques the only way to determine 
the composition of a particle is to measure its relative refractive index.  

The Critical Angle Refractometry was developed originally for the characterization of the size of 
a single bubble of known composition (Marston 1979, Marston and Kingsbury 1981;) and 
afterwards, to determine simultaneously the size and relative refractive index of a flowing bubble 
(Onofri F., 1999a). These information are obtained from the analysis of the angular spacing of 
the fringes observed near the critical angle, when a bubble is passing through an optical probe 
volume whose dimensions are comparable to the mean size of the studied bubbles. In some 
aspects this technique shows great similarities with the forward diffraction (e.g. Xu 2001) and the 
rainbow techniques (e.g. Van Beeck 1997), see Figure 1.2. To obtain the size distribution and the 
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statistical moments, temporal integration is required, which may be a limiting point for some 
applications. In addition, the critical scattering diagrams can be noisy and difficult to analyse.  

 

 
Figure 1.2 This chart point out the similarities that exist between the scattering patterns produced by three 

diffraction or pseudo-diffraction phenomena: forward diffraction (refractive index discontinuity on the 
particle edges, i.e. Fraunhofer diffraction), the rainbow (maximum deviation angle and an internal caustic 
for the second order refracted rays, Airy’s theory) and the critical scattering (pseudo-discontinuity of the 

amplitude of the reflected rays at the vicinity of the critical angle, Marston’s theory). Each of these 
phenomena produce a cone of fringes (rings pattern) with well defined cone angle.  

The aim of this Ph. D. thesis is to solve the aforementioned problems, by analysing the critical 
scattering of bubbles ensemble rather than the scattering of individual bubbles. Our objectives 
are also to test the limits and advantages of this technique for fluid mechanics applications 
(Onofri et al. 2007a). This requires the development of dedicated light scattering models, 
inversion methods as well as experimental validations (Onofri et al. 2009a).  

Before the plan of manuscript is detailed it is important to recall that this work was completed in 
“cotutelle” between the laboratory IUSTI UMR CNRS n° 6595 and the Chair of Electronics and 
Photonics (CEPM), the Aix-Marseille university and the Wroclaw University of Technology, 
France and Poland.   

 

The manuscript is organized as follows:  

Chapter 2 recalls the various models to predict the scattering of a single bubble, and the 
principle of the critical angle refractometry and sizing technique (CARS),  
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Chapter 3 presents various methods we have developed to inverse experimental critical 
scattering patterns,  

Chapter 4 presents the various experimental setups, software and procedures that we have 
built and developed to investigate and validate the proposed technique, to analyze bubbly flows, 

Chapter 5 reports various experiments for the measurement of spherical bubbles 
(diameters below 1 mm). 

Chapter 6 deals with the sizing of large non spherical bubbles,  

Chapter 7 details the work done to study two particular effects: trajectory effects induced 
by the laser beam intensity profile and spatial filter effects induced by the collection optics,  

Chapter 8 reports numerical and preliminary experimental results of the bows of color that 
can produce by air-bubbles in water around the critical scattering angle, 

Chapter 9 is an overall conclusion on the work done with perspectives for future. 
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Chapter 2 

 

 

 

 

2 NEAR-CRITICAL-ANGLE SCATTERING OF 
LIGHT BY A SPHERICAL BUBBLE 

2.1 Geometrical optics model 
From Snell-Descartes’ refraction optics laws we know that in the case of light rays passing from a 
medium of higher refractive index sm  to a medium with a lower refractive m , / 1b sm m m= < , 
there exists an angle of incidence ( )1sinc mφ −=   leading to an abrupt transition to total reflection 
for cφ φ> , see Figure 2.1. In the case of light rays incident on a spherical bubble, with radius a, 
the same phenomenon occurs but for a curved surface (Fiedler-Ferrari et al., 1991), giving rise to 
a complex scattering pattern around the critical 
scattering angle c2cθ π φ= − . The scattering pattern 
of an air bubble in water ( 1/1.332m = ) with 
diameter 100D µm= , illuminated by a plane wave 
with parallel polarization and wavelength 

0.488µmλ = , is shown in Figure 2.2. Different 
approaches are used to predict this pattern: i) the 
Lorenz-Mie Theory (LMT), which is perfectly 
rigorous (Bohren and Huffman, 1998; Gouesbet et 
al., 1988; Onofri et al., 1995); ii) Geometrical Optics 
(GO) when only reflected (p=0) and refracted (p=1) 
processes are considered (Davis G.E., 1955; van de 
Hulst, 1957), iii) the Physical Optics Approximation (POA, §2.2) with the reflected light only 
(p=0) or the reflected and the refracted light (p=0 and p=1). LMT predicts a scattering diagram 
which is characterized by strong oscillations: a coarse structure (large ‘bright’ and ‘dark’ fringes) 
superimposed on a fine structure (small amplitude and high frequency fringes, that are due to the 
interference of rays p=0, 1 with rays p=2’). Note that the critical scattering is highly sensitive to 

��

Ej, j=1 j=2,

p=0

p=2
,

p=2
p=1

�

�

mm
,

a

k

x

z

�1

�1

y

 
Figure 2.1 Sckematic of the rays scattered at the 

vicinity of the critical scattering angle. 
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the polarization of the incident wave. The parallel polarization is the one that gives the most 
contrasted scattering patterns (see Figure 2.11). So that, in the following, most results are given 
for this polarization state.  
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Figure 2.2 Near-critical-angle light scattering pattern produced by a single air bubble in water, according to 
the Lorenz-Mie Theory (LMT), the Physical Optics Approximation (POA, p=0 for reflection and 

diffraction, p=1 for first order refraction) and the Geometrical Optics (GO). 

 

2.2 Physical optics approximation (POA) 

2.2.1 Background 

Marston (1979), Marston and Kingsbury (1981) have developed a physical optics approximation 
(POA) for the critical scattering phenomena. In the framework of the POA, the contribution of 
surface reflection is treated by a procedure similar to the Airy’s theory of the rainbow (Airy 1838): 
a Kirchhoff-type approximation is applied to the amplitude distribution along a virtual reflected 
wave front. The amplitude of the reflection contribution ( 0p = ) is approximated as a step 
function. In the far field, this “edge reflectivity” (Fiedler-Ferrari et al. 1991) gives rise to a 
diffraction scattering pattern allowing to account for the coarse fringes observed in the CSP. In 
the same time, the fine structure in CSP is due to interferences phenomena between near side 
and far side refracted rays (p=0-2 with p=2’, see Figure 2.1).   

In fact, the total scattering can be considered as the contribution of all orders of interaction 
between the bubble surface and the incident light: 
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 0 1 2 2 ' 3 ...p
p

S S S S S S S= = + + + + +∑  (1) 

The complex amplitude functions read as:  

 exp
2p p p
ikaS F iγ− ⎡ ⎤= ⎣ ⎦  (2) 

where 2 /k π λ=  is the wave number,  with  0 / smλ λ= .  The total scattered intensity is then 
given by ( )2 2/I S kr∝  (Bohren and Huffman 1998). Only the reflection (p=0) and refraction 
(p=1) will be taken into account in what follows for the scattering amplitude function near the 
critical-angle.  

 

2.2.2 Reflected contribution (p=0) 

 The reflection process is treated with Fresnel integrals (Goodman 1996) and leads, for the 
amplitude of the scattering function, to:  

 ( ) ( ) [ ]0 exp / 4 / 2F F F iω π= − −∞ −  (3) 

where parameter ( ) ( )sin / cos caω η λ φ=  depends on the bubble’s radius a , its relative 
refractive index and the incident wavelength (Langley and Marston 1984). The angle cη θ θ= −   is 
a deviation from the position of the critical angle predicted by geometrical optics, with   

 ( )( )1sin / / cos c caθ ω λ φ θ−= +  (4) 

The oscillatory function ( )F ω  is defined with the Fresnel’s cosine ( )C ω  and sine ( )S ω  
integrals (Chang et al. 1996): 

 ( ) ( ) ( ) 2 2

0 0
cos sin

2 2
F C iS d i d

ω ωπ πω ω ω ς ς ς ς⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  (5) 

where ς  is an integral variable. The phase term in Eq. (2) can be deduced from geometrical and 
physical considerations (Marston and Kingsbury, 1981): 

 ( ) [ ]0 0 0 02 cos ckaγ τ θ θ δ= − − Λ −  (6) 

where Λ  is the Heaviside function with  

 
[ ]
[ ]

0

0

 0
 for 

1  
C c

cc

θ θ θ θ
θ θθ θ

⎧ Λ − = >⎧⎪
⎨ ⎨ ≤Λ − = ⎩⎪⎩

 (7) 
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In Eq. (6) the first term comes from the classical phase delay due to the path of geometrical rays 
with  ( )0 0 / 2τ π θ= −  and  0 0ρ τ=  (van de Hulst 1957, Bultynck 1998). The second term 0δ  is a 
phase delay due to the tunneling effect (Lötsch 1971, Nussenzweig 1992, see also Figure 2.5): 

 ( ) 2 2 2
0 0 0tan / 2 sin / cosm mδ τ τ−= −  (8) 

If only the reflected/diffracted process is taken into account in Eq. (1), the intensity scattered 
near the critical scattering angle is of the following form:  

 ( ) ( ) ( ) ( )2 2
0 , , , 1 / 2 1/ 2I D m C S Hθ λ ω ω ω∝ ⎡ + ⎤ + ⎡ + ⎤ ≡⎣ ⎦ ⎣ ⎦  (9) 

The angular positions of the bright and dark fringes in the coarse structure of the CSP are 
determined by the zeros nω  of the first derivative of the oscillating function ( )H ω  (Onofri, 
1999a).   

 

 

        Figure 2.3 Evolution of Fresnel’s integral based function H(ω)  

They can be found numerically with an iterative scheme. The seven first zeros are shown in Table 
2.1.  Depending on the bubble radius and relative refractive index, the angular position nθ  of the 

thn fringes is 

 ( ) ( )( )1, sin / / cosn n n n c ca m aθ ω λ φ θ−= +  (10) 

where the subscript n  refers to a quantity that can be obtained from the thn fringe. If the relative 

refractive index m  (i.e. the bubble and the surrounding medium compositions) is known, the 

n
Location of the nth extremes

  ω n 

1 1.2171982507 

2 1.8725190624 

3 2.3448538242 

4 2.7390080864 

5 3.0881958234 

6 3.3913355077 

7 3.6741104772 

 

Table 2.1 Tabulation of the 
location of nth extremum 
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bubble radius can be deduced directly from the measurement of the angular position of the thn   

fringe: 

 
( )

2
0

2sin cos
n

n
c n c

ma λ ω
θ θ φ

=
−

 (11) 

If neither the bubble relative index nor radius is known, they can be determined by measuring the 
angular position of two fringes of the CSP (Onofri 1999a) that are denoted ( ),   n υ κ κ υ= >  : 

 ( )sin / 2  m mυκ υ υκπ θ≈ = − − Ω⎡ ⎤⎣ ⎦  (12) 

 
( ) ( )
2 2

0 2

2 cos
sin sin / 2

a a m υ κ υ κ υκ
υκ υκ

υκ υ υκ

ω ω ω ωλ
θ

+ − Δ
≈ =

Δ − Ω⎡ ⎤⎣ ⎦
 (13) 

where    

 ( )1tan sin / cos /υκ υκ υκ κ υω ω−Ω = Δ Δ −⎡ ⎤⎣ ⎦  (14) 

 υκ κ υθ θΔ = −  (15) 

Compared with GO predictions, the first term of the POA provides a significant improvement in 
the description of the near-critical-scattering pattern, see Figure 2.2. However, the first term of 
the POA gives a very poor estimation of the angular position of the other fringes ( 2nθ θ≥ ) and of 
their relative amplitude, Figure 2.2. The angular position of the first two extremes (i.e. 1 2,  θ θ ) are 
in rather good agreement with the ones predicted by LMT. This is confirmed by Figure 2.4 which 
presents POA and LMT’s predictions for 1θ , for various bubble sizes and bubble relative 
refractive indices.  

(a) (b)  
Figure 2.4 Angular position of the first critical fringe according to the Lorenz-Mie Theory and the Physical 

Optics Approximation (p=0 only): a) versus the bubble size and b) the relative refractive index.   



CHAPTER 2 - CRITICAL SCATTERING OF LIGHT BY A SPHERICAL BUBBLE 

 

20 

2.2.3 Refracted contribution (p=1) 

According to van de Hulst (1957), the phase and amplitude of the contribution of the refracted 
process (p=1) read as: 

 ( )1 1 12 cos coska mγ ρ θ= −  (16) 

 ( ) [ ]2
1 1 12 1 cF r D θ θ= − Λ −&  (17) 

where ( ) ( )1 1 1 1 tan / tanr τ ρ τ ρ= − +&  is the Fresnel amplitude coefficient for parallel polarization. 
Note that in Eq. (16) the phase shifts due to the focal lines (van de Hulst 1957) are not taken into 
account. 1D   is a divergence function which takes into account the effect of the particle surface 
curvature in the Fresnel coefficients : 

 ( )1
1 1 1 1 1sin cos / 2sin 1 cos / cosD mτ τ θ τ ρ−= −  (18) 

where 1τ   and  1ρ  are respectively the angles made by the bubble surface with the incident ray 
and the internally refracted ray (van de Hulst 1957). They can be expressed as functions of the 
scattering angle of the refracted rays (p=1):  

 ( )
( ) ( )

1
11 1 11

1 1 11
1

sin / 2
tan ,    sin sin .

2 cos / 2 1
m

m
m

θθτ ρ τ
θ

−
− − −

−

⎛ ⎞
= − + =⎜ ⎟⎜ ⎟−⎝ ⎠

 (19) 

Without doubt the predictions of the POA are significantly improved by taking into account the 
refracted term, as earlier shown in Figure 2.2. The positions of the fringes are always in good 
agreement to those of LMT. The prediction of the relative amplitude is also greatly improved 
although the results are not as good for smaller bubbles (see Figure 2.9). 

2.3 Lorenz-Mie’s and Debye’s theories 

2.3.1  Lorenz-Mie’s theory 

The « Mie » or « Lorenz-Mie » theory (LMT; Mie, 1908) is a reference for all particle light 
scattering techniques. It solves in an exact manner the problem of the scattering of a 
monochromatic plane wave by a spherical particle whose material is homogeneous, isotropic and 
linear (a so-called “Mie scatter”).  The external medium must be transparent. Basically, LMT 
solves the wave equation with a separation variable method and appropriate boundary conditions. 
Expressions for electrical and the magnetic fields are then related through the Maxwell equations. 
Note that Debye has proposed a quite different formulation for this problem (see §2.3.2).  
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2.3.1.1 Wave equation and the separation variable method  

To be a solution of Maxwell’s equations an electromagnetic wave has to satisfy the following 
equations, with 2 2k ω εμ=  :  

 
2 2

2 2

0
0

k
k

⎧∇ + =⎪
⎨
∇ + =⎪⎩

E E
H H

 (20) 

This problem can be reduce to the solving of the scalar wave equation :  

 2 2 0kψ ψ∇ + =  (21) 

where ψ  is a function connected to the spherical harmonics by ( )ψ= ∇ ×M r  and 
( ) / k= ∇ ×N M . In the spherical coordinates system the scalar wave equation reads as:  

 
2

2 2
2 2 2

1 1 1sin 0
sin sin

r k
r r r r r

ψ ψ ψθ ψ
θ θ θ θ φ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (22) 

The Lorenz-Mie theory uses a separation variable method (SVM) to solve the previous equation:  

 ( ), , ( ) ( ) ( )r R rψ θ φ θ φ= Θ Φ  (23) 

This procedure allows obtaining three equations (where m  and n  are separation constants):  

 

( )

( ) ( )

( ) ( )

2
2

2

2

2

2 2 2

0                                                       a

1 sin 1 0        b
sin sin

1 0                      c

d m
d

d d mn n
d d

d dRr k r n n R
dr dr

φ
φ

θ
θ θ θ θ

⎧ Φ
+ =⎪

⎪
⎪ ⎡ ⎤Θ⎪ ⎛ ⎞ + + − =⎨ ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦⎪
⎪ ⎛ ⎞⎪ ⎡ ⎤+ − + =⎜ ⎟ ⎣ ⎦⎪ ⎝ ⎠⎩

 (24) 

The solutions of Eq. (24) a) are of the following type:  

 
( )
( )

cos      

sin
e

o

m

m

φ

φ

⎧Φ =⎪
⎨

Φ =⎪⎩
 (25) 

The solutions of Eq. (24)-(b) are the Legendre’s polynomials ( )cosm
nP θ  and the associated 

Legendre’s functions. The solutions of Eq. (24)-(c) are obtained by introducing the change of 
variable krρ =  and by introducing the function Z R ρ= , Eq. (24)-(c) can then be written as:  

 
2

2 1 0
2

d dZ n Z
d d

ρ ρ ρ
ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

 (26) 
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We are looking for linearly independents solutions which are combinations of spherical Bessel’s 
functions (1) (2),  ,  ,  n n n nj y k k  (e.g. Bohren and Huffamn 1998).  So that the solutions of Eq. (23) are 
of the following form :  

 
( ) ( )
( ) ( )

cos( ) cos

sin( ) cos

m
emn n n

m
omn n n

m P z kr

m P z kr

ψ φ θ

ψ φ θ

=

=
  (27) 

Note that for a plane wave illumination only the terms with 1m =  are not null. 

2.3.1.2 Fields formula and continuity criteria 

The different spherical Bessel functions  (1) (2),  ,  ,  n n n nj y k k  do not exist for all point of space. For 
instance, ny → ∞  when 0r → .  Then the later function cannot be used to describe the internal 
electrical and magnetic fields (i.e. inside the particle).   In opposite, it can be used to describe the 
scattered fields (i.e. 1/ny r→   when r → ∞ ). 

Similar considerations allow obtaining the following formula for the internal fields (subscript p)  
and the scattered ones (subscript s)  : 

 
( )

( )

( )

( )

(1) (1) (3) (3)
1 1 1 1

1 1

(1) (1) (3) (3)
1 1 1 1

1 1

p n n o n n e n s n n e n n o n
n n

p
p n n e n n o n s n n o n n e n

n np

E c id E ia b

k kE d ic E ib a
ωμ ωμ

∞ ∞

= =

∞ ∞

= =

⎧ ⎧= − = −⎪ ⎪⎪ ⎪
⎨ ⎨−⎪ ⎪= − = −
⎪ ⎪⎩⎩

∑ ∑

∑ ∑

E M N E N M

H M N H N M
 (28) 

with  ( ) ( )0 2 1 / 1n
nE i E n n n= + + . 

In Eq. (28) the electric and magnetic fields are described by a linear combination of an infinite 
number of spherical harmonics with complexes coefficients. The coefficients ,n na b  are the so-
called “external scattering coefficients”,  ,n nc d  are the “internal scattering coefficients” 

Tangential components of the electromagnetic fields’ have to fulfill boundary conditions onto the 
particle surface:  

 
( ) ( )
( ) ( )

ˆ 0

ˆ 0

p e

p e

⎧⎡ ⎤− × =⎪⎣ ⎦
⎨

⎡ ⎤− × =⎪⎣ ⎦⎩

E X E X n

H X H X n
 (29) 

which gives for / 2r D= :  

 i s p i s p

i s p i s p

E E E E E E

H H H H H H
θ θ θ φ φ φ

θ θ θ φ φ φ

+ = + =⎧ ⎧⎪ ⎪
⎨ ⎨+ = + =⎪ ⎪⎩ ⎩

 (30) 

These relations permit to obtain the following relations for the external scattering coefficients :  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

' '
' '

' '
' '

n n n n
n

n n n n

n n n n
n

n n n n

m mx x x mx
a

m mx x x mx

mx x m x mx
b

mx x m x mx

ψ ψ ψ ψ
ψ ξ ξ ψ

ψ ψ ψ ψ
ψ ξ ξ ψ

−
=

−

−
=

−

 (31) 

where the Ricatti-Bessel functions are defined by  ( ) ( ) ( ) ( )(1),      n n n nj x x h xψ ρ ρ ξ ρ= =  

To compute efficiently the ,n na b  coefficients, it is necessary to introduce the logarithmic 
derivatives of the Riccati-Bessel functions: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

(1) (1)
(3)

(2) (1)

(1) (1)
(3)

(2) (1)

n n
n n

n n

n n
n n

n n

mD x D mx
a D

mD x D mx

D x mD mx
b D

D x mD mx

−
=

−

−
=

−

 (32) 

where 

 ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

' '
(1) (2) (3),   ,     n n n
n n n

n n n

z z z
D z D z D z

z z z
ψ ξ ψ
ψ ξ ξ

= = =  (33) 

2.3.1.3 Expressions for the phase functions and extinction efficiencies 

For spherical particles the expressions for the scattered field (subscript s) can be expressed as 
functions of the amplitude of the incident field (subscript i), for the two polarizations (parallel &  
and perpendicular ⊥  to the scattering plane) and the two amplitude functions 1S  and 2S : 

 
( )

2

1

0
0

ik r z
s i

s i

E ESe
E ESikr

−

⊥ ⊥

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠

& &  (34) 

with  

 
( )

( )

1
1

2
1

(2 1)
( 1)

(2 1)
( 1)

n n n n
n

n n n n
n

nS a b
n n

nS a b
n n

π τ

τ π

∞

=

∞

=

+
= +

+

+
= +

+

∑

∑
 (35) 

 
1 1

,     
sin sin

n n
n n

P dP
π τ

θ θ
= =  (36) 

In the far-field we have for the electrical scattered field:  

 
( )

( )

( )

( )

0 2 0 2

0 1 0 1

cos cos cos cos

sin cos sin cos

ikr ikr

s s

ikr ikr

s s

e eE E S E E S
ikr ikr

e eE E S E E S
ikr ikr

θ θ

φ φ

φ θ φ θ

φ θ φ θ

⎧ ⎧
⎪ ⎪⎪ ⎪− −
⎨ ⎨
⎪ ⎪
⎪ ⎪− −⎩ ⎩

∼ ∼

∼ ∼
 (37) 
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from the previous equation and using the Poynting vector it is easy to derive the relations for the 
scattering intensities 2

|| 2i S∼  and 2
1i S⊥ ∼ . 

For the extinction cross section we get also (the subscripts abs , ext  and sca  stand respectively 
for absorption, extinction and scattering) 

 

( )
{ }

2 2
2

1

2
1

2 (2 1)

2 (2 1) Re

sca n n
n

ext n n
n

abs ext sca

C n a b
k

C n a b
k

C C C

π

π

∞

=

∞

=

= + +

= + +

= −

∑

∑  (38)   

               
Figure 2.5 Intensity of the electromagnetic field inside and around an air bubble in water (D=100µm, 

mb=1.0, ms=1.333) calculated with LMT for a parallel polarized plane wave (λ0=0.532µm).  

Several important remarks: 
- Numerically these infinite expansions series are truncated for  1/34 2stopn x x= + +  .  

- According to the localization principle (van de Hulst, 1957), the expansion term n  may be 
interpreted as rays that impinge onto the particle surface at distance nR  from the particle axis :  

 1
2 2nR n λ

π
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (39) 
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- During the last twenty years this theory has been generalized to the case where the incident 
wave is a Gaussian beam (Gouesbet et al. 1988, Barton et al. 1988) or a laser sheet (Ren et al. 
1994). In the same way it has been extended to spherical particles with internal refractive index 
gradients (Onofri et al. 1995), cylindrical particles (Ren et al.  1997), etc. 

- This theory allows also computing quantities like the intensity of the electromagnetic field inside 
and at the vicinity of the external surface of a particle (Barber et Hill, 1989). As example, we have 
computed the intensity of the electromagnetic field inside and outside an air bubble in water 
illuminated by a plane wave with parallel polarization, see Figure 2.5 . Despite the huge dynamic 
range and the complexity of the intensity map, the critical scattering phenomena appears clearly 
as a sharp transition from a low to high scattering region and then, by what may be called 
“fringes”.  Note that in the right part of the zoomed subfigure, the electromagnetic intensity 
reaches its first maxima inside the bubble and just before the first critical scattering “fringe”. This 
small region may be reasonably associated to input region of the tunneling effects depicted by 
Lötsch, 1971.  
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Figure 2.6 Debye decomposition: the incident, internal and scattered fields are decomposed into partial 

waves which have experienced reflections with the particle/environment interface. 

2.3.2 Debye’s theory 

It follows from the work of Debye that we can reorganize the terms of LMT’s expansion series in 
contributions corresponding to waves that are partially reflected and partially transmitted by the 
particle. These partial waves are spherical and propagate out or within the particle. This leads to 
the introduction, like with geometrical optics (see §2.4.1), of reflection and transmission 
coefficients for these partial waves. Figure 2.6 presents a schematic of Debye’s decomposition 
method, as reformulated by Hovenac and Lock (1992). The particle is associated with the 
medium 1 ( )b≡  and the external environment to the medium 2 ( )s≡ , with: 

 - (22)
nR  : Coefficient of reflection of the incident wave which is partially reflected (specular 

reflection and diffraction) to the external environment, 
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 - (21)
nT  : Coefficient of transmission of external partial waves into the particle, so that a part 

of the incident wave is transmitted inside the particle (see Figure 2.5), 

 - (11)
nR  : Coefficient of reflection of the internal waves onto the inner surface of the particle, 

         - (12)
nT  : Coefficient of transmission of internal partial waves to the external environment.  

 

For the partial wave p and the order n expansion, the Debye coefficients read as: 

 ( )
( ) ( )

(22)

1(21) (11) (12)

1 p=01    pour   
p 12

nn
p

n n n n

Ra p
b p T R T

−

⎧ −⎫ ⎧⎪ ⎪=⎬ ⎨ ⎨ ≥−⎪ ⎩⎭ ⎪⎩
 (40)  

0p =   corresponds to the diffraction and specular reflection, 1p =  to single refraction, 2p =  to 

the partial wave which has undergone an internal reflection, 3p =  with two internal reflections, 

etc.  

 
Figure 2.7 a) Comparison of the predictions of Geometrical optics, Lorenz-Mie and Debye theories for 
the scattering diagrams of a D=100µm water droplet: a) full diagrams and b) first rainbow region only, 

with λ=0.6328µm and ⊥  polarisation.  

It is important to note that there is a strict equivalence between the external scattering  
coefficients of the theory of Lorenz-Mie and the theory of Debye (provided that the order of 
decomposition p → ∞ , although in practice 100p ≥  is usually large enough):   

 ( ) 1(22) (21) (11) (12)

1

11 1  pour   et   et  p
12

pn
n n n n

pn LMT

a m
R T R T

b m
α β

∞ −

=

⎫ ⎡ ⎤⎧ ⎧ ⎧⎪ = − − = = → ∞⎨ ⎬ ⎨ ⎨⎢ ⎥
⎪ ⎩ ⎩⎩ ⎣ ⎦⎭

∑  (41) 

The direct numerical calculation of these series is relatively stable. In fact, Debye’s series require 

complex summation of more functions than LMT. The calculation of these series is therefore 

more sensitive to the development of numerical noise. 
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Figure 2.7 illustrates the interest of the Debye theory by comparing the scattering diagrams of a 
water droplet calculated with geometrical optics, LMT and Airy. Indeed, the predictions of the 
Debye theory are significantly more accurate than those of any geometrical or physical optics 
theories and, at the same time, this theory provides more physical insight than the Lorenz-Mie 
theory.  

 
Figure 2.8 Comparison of scattering diagrams in the near-critical-scattering region according to various 

models and theories.  

60 65 70 75 80 85 90
Scattering angle, � [deg]

�
C

4

2

3

3

2

4

1

1

S
ca

tt
er

ed
in

te
ns

it
y

[A
.U

]

1

2
3

4

�
0
=0.488µm, m

-1
=1.3340

D=1000 µm

D=200µm

D=50µm

1- OG(p=0) 3- CAM
2- POA(p=0+1) 4- LMT

limit

 
Figure 2.9 CSP of a single air bubble in water according to LMT, CAM, POA (p=0 and 1) and GO, for 

three different bubble sizes. 
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We did also calculations with the Debye theory around the critical scattering angle, see for 
instance Figure 2.8. But, surprisingly, these results are not in agreement with the Lorenz-Mie 
theory, even for p → ∞ . From the theoretical point of view we have no explanation for this 
discrepancy. So we have repeated these calculations with codes developed by other groups, 
without more success. This problem is then still open and will be the subject of future works.  

2.4 Complex Angular momentum theory 
Fiedler-Ferrari et al. (1991) have developed a zero order approximation of the near-critical-angle 
scattering from a curved interface. It is based on the Complex Angular Moment theory (CAM, 
e.g. Nussenzweig 1992).  The description of the CAM theory is clearly beyond the scope of this 
Ph.D. work. Our objective, here, was only to evaluate the potentialities of this theory in order to 
predict the CSP. Let say nevertheless that the CAM theory is based on two theoretical concepts: 
(i) the scattering particle can be described by a Debye electromagnetic potential (Fiedler-Ferrari et 
al. 1991); (ii) the localization principle, allows establishing a relation between the expansion order 
of the electromagnetic fields and the impact parameter of rays onto the particle (van de Hulst 
1957).  

As an illustration of the accuracy of this CAM approximation, we compare in Figure 2.9 the CSP 
predicted by different methods: LMT, POA for p=0 and p=1, GO for p=0  and CAM only for 
the rays 2p ≤ . It should be noted that our CAM code is based on the Fortran code available on 
the Wiscombe’s ftp site (Wiscombe, 2006). The only modification we have made in Wiscombe’s 
code was to replace the subroutine used to calculate the Airy function for large and complex 
arguments (this subroutine was not properly working in the initial code).  

We find from Figure 2.9 that the CAM approximation provides only a good description of the 
CSP’s coarse structure for very large bubbles (typically D> 1000 µm). This last result was already 
noticed by Fiedler-Ferrari et al. (1991). But, to our opinion, as such large bubbles are usually not  
spherical; the interest of the CAM theory appears to be more theoretical than practical.  

2.5 Additional numerical results for a single bubble  
In this section we use the LMT and the POA to point out the behavior of the critical scattering 
regarding to various parameters: the size of the bubbles, their refractive index, the laser 
wavelength and polarization, a low coherence illumination.  

Figure 2.10 shows the evolution of the CSP for air bubbles in water regarding to their size, and 
for the parallel polarization. From these figures it appears clearly that the CSP intensity and 
fringes number (or frequency) increases rapidly with the size of the bubbles. The CSP shifts 
toward larger scattering angles as far as the size of the bubbles increases. Indeed, CSP tend to be 
closer and closer to the critical scattering angle predicted by geometrical optics ( 82.9≈ °  for these 
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parameters). POA for p=0 and p=1 shows the same tendencies as LMT, except for the CSP-
intensity dependence with the size of the bubbles which is strongly underestimated with this 
approach.  
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Figure 2.10 LMT and POA (p=0 & p=1) predictions of the CSP intensity profiles CSP of air bubbles in 

water with different sizes. 

Figure 2.11 puts on view, for two totally different bubble sizes, the evolution of the CSP for the 
parallel and the perpendicular polarizations. For both cases, with the parallel polarization, the low 
frequency structure of the CSP is more contrasted: higher amplitude range and more cleary 
harmonic nature of the fringe pattern. This can be explained by the fact that for the parallel 
polarization the Fresnel coefficients associated to the reflected rays (p=0) are stronger than for 
the other polarization (see § 2.2 and §5). For the same reason, the CSP obtained with the 
perpendicular polarization exhibits a much powerful high frequency structure (due to 1p ≥ ). 
From an experimental point of view, it is easier to detect and process high contrast fringes. This 
is why in all the following, we consider only the parallel polarization. 
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Figure 2.11 Effect of the polarization state of the incident beam onto the contrast of the CSP, for a small 

and a large bubble (i.e. D=50 and 500µm).  

Figure 2.12 (with LMT) and Figure 2.13 (with POA) present for the two previous bubbles 
sizes the evolution of their CSP for three different relative index, 1 1.3305,1.3405m− =  and 
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1.3505.  Despite a slight increase of the CSP intensity with refractive index, the main effect of this 
parameter is to shift towards larger scattering angles the whole diagram. This is in agreement with 
geometrical optics predictions (see §2.1). This displacement (or rotation) is done without 
significant modification in the shape of the CSP. The latter feature will be used in §3.2.2. 
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Figure 2.12 CSP calculated with LMT for a) D=100µm and b) D=500µm, and various bubbles’ 

compositions 1 1.3305 1.3505m− = ∼    

In real flows, particles, droplets or bubbles are not necessarily composed of the same pure 
product. There can be some dispersion in their refractive index.  Figure 2.14 shows the evolution 
of these CSP for a population of 200D µm=  bubbles with mean refractive index 1 1.3345m− ≈ , 
and an increasing refractive index dispersion: 1 0.0015, 0.0030m−Δ =  and 0.0045 . Noticeably, the 
major effect of the refractive index dispersion (bubble composition) is to smooth the CSP, to 
decrease their visibility (like a band pass filter would make). 
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Figure 2.13 CSP calculated with POA (p=0 and p=1) for a) D=100µm and b) D=500µm, and various 

bubbles’ compositions 1 1.3305 1.3505m− = ∼    

        Figure 2.15 illustrates the influence of the laser wavelength on CSP patterns of air bubbles 
in water. Note that for these calculations, performed with LMT, we took into account the 
dispersion of the refractive index of water with the wavelength.  Indeed, the main effect of the 
wavelength is rather similar to the one obtained when we change the bubble size.  
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 Figure 2.14 Effect of bubble refractive index dispersion of the CSP, LMT and D=200µm. 
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        Figure 2.15 LMT predictions a D=200µm air bubble in water, different wavelengths λ=480~650nm.   
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Figure 2.16 CSP obtained with LMT for a D=200µm air bubble in water illuminated with three different 

low coherence light beams (i.e. three wavelength dispersions). 
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This is not surprising as the bubble size parameters ( )( )0 0/ / sx D mπ λ λ=  is much more sensitive 
to the bubble diameter D  than to the dependence ( )0sm λ . In LMT formalism  ( )0sm λ  appears 
also in the expressions of the scattered fields but, once again, the variation of ( )0sm λ  are really 
small in comparison to those of x . 

 

Figure 2.16 shows the influence on the CSP of the spectral coherence on the incident beam. For 
that purpose we have averaged the CSP of the same bubble over 20 wavelengths. The mean 
wavelength is kept constant but we consider three different widths for the wavelength 
distribution (Gaussian probability function). Indeed, this kind of simulation may be thought as a 
first step to model the CSP produce by a bubble illuminated by a low coherence laser or a 
collimated light emitting diode.  Clearly, with the broadening of the incident spectrum, we get 
almost the same behavior as when we have simulated the influence of dispersion in the bubble 
refractive index (see Figure 2.14). The contrast of the CSP decreases with the incident light 
source spectral width. Effects of the bubble absorption is discussed in §5.2.3, see for instance 
Figure 5.34. 
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2.6 CARS technique for bubble clouds characterization 

2.6.1 Scattering of a cloud of bubbles under single scattering assumption 

When the bubbles are randomly distributed in an optical probe volume and the multiple 
scattering is negligible (e.g. Onofri et al. 1999b), the scattering of a cloud of bubbles can be 
considered as the result of the incoherent summation of the contributions of all bubbles. Once 
the intensity scattered by a single bubble ( )0, , ,I D mθ λ  is calculated by the LMT, the POA or the 
CAM, the total intensity scattered by the cloud is obtained by 

 ( ) ( ) ( )
max

min

0 0, , , , ,
D

t
D

I m N I D m f D dDθ λ θ λ= ∫  (42) 

where N is the bubble number concentration, ( )f D  is the normalized Bubble Size Distribution 
(BSD) in number such that:  

 
max

min

( ) 1
D

D

f D dD =∫  (43) 

In principle, from the measured collective scattering intensity pattern ( )0, ,tI mθ λ , we can deduce 
the size distribution ( )f D  and the mean refractive index m  (see § 5.2.1).   

 

Regarding to the concentration limit, the validity of Eq. (42) can be estimated like it is done for 
laser diffractometry, with the photon mean free path concept. In a bubbly flow the mean free 
path of a photon between two scattering events is given by ( ) 1

extNC −Λ = . extC   is the mean 
efficiency cross section of the bubbles (Bohren et Huffman, 1983). Let L  be the path length of 
the beam through the cloud of bubbles (Onofri et al. 2008a-b, 2009a). It is usually admitted that 
multiple scattering effects can be neglected if LΛ <  which leads to ( ) 1

extN LC −< .  

For numerical calculation, the integral limits minD  and maxD  are set equal to the roots of the 
equation { }( ) / max ( )f D f D 1/1000= . Given ( )f D  the mean diameter D  and the standard 
deviation Dσ  can be deduced: 

 

( )

( ) ( )

max

max max

min min

2

2 2

                 
min

D

D

D D

D
D D

D f D DdD

f D D dD f D DdDσ

=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠

∫

∫ ∫
 (44) 

The size distribution of a large variety of particle systems can be reasonably approximated by 
analytical particle size distribution laws such as log-normal, power, Gamma-distribution, etc. In 
our study the log-normal distribution with two free parameters ,µ s   is exclusively used:  
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21 1 ln( ) exp

  22
Df D
sDs

μ
π

⎡ ⎤− −⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (45) 

The parameters µ , s , the mean diameter D  and the standard deviation Dσ  are related by 

 ( )2 2 2ln / 1      ln / 2  Ds D D sσ μ= + = −  (46) 

 ( )2 2 2 2exp / 2      exp 1DD s D sμ σ ⎡ ⎤⎡ ⎤= + = −⎣ ⎦ ⎣ ⎦  (47) 

Figure 2.17 illustrates the behavior of the CSP regarding to the bubble clouds characteristics, with 

0 0.532µmλ =  like for all calculations presented in this section. This figure shows the intensity 
profiles simulated by using Eq. (42) and the LMT, for various log-normal BSD and the following 
cases:  

a) clouds of air bubbles in water 1 1.3334m− =  with different mean diameters 
12.5 800D µm= ∼  keeping the relative width of the size distribution constant / 0.05D Dσ = ;  

b) clouds of air bubbles in water with different BSD widths / 0.025 0.5D Dσ = ∼  keeping 
the mean size diameter constant 100D µm=  ; 

c) clouds with different bubble compositions 1 1.33 1.52m− = ∼  and with the same BSD, 
with parameters 100D µm=  and / 0.25D Dσ = . 

 

In addition to classical effects (like the strong dependence of the scattered intensity on the bubble 
size), Figure 2.17 shows clearly that ,  /DD Dσ  and 1m−  have a particular and determinant 
influence on the three main characteristics of the CSP (Onofri et al. 2006 a-b):  

a) the mean diameter controls the angular spreading of CSP (i.e. the latter parameter is 
somewhat connected to the local radius of curvature of the bubble surface),   

b) the size distribution width acts mainly on the fringes visibility (i.e. adding CSP patterns 
with different angular frequencies damps the overall signal intensity modulation), 

c)  the main influence of refractive index is on the global angular position of the CSP (in 
agreement with GO predictions, see Davis 1955). 

 

These remarks will be the basis for the development of the 3-points inverse method (see §3.2.2). 

Figure 2.18 illustrates the evolution of the main characteristics of CSP produced by various air-
water bubble clouds, according to LMT, CAM and POA. For this purpose, we have plotted 
respectively the evolution of the position of the first fringe 1θ , the angular distance between the 
two first fringes 12 1 2θ θ θΔ = −  and the visibility of the CSP defined here as 

( ) ( )12,13 1 3 1 2/V I I I I= − −  (see § 3.2.2.2 and Onofri et al. 2008a).   
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Figure 2.17 CSP calculated by LMT for a log-normal BSD showing the influence of  a) the mean size, b) 
the size distribution width and c) the composition of the bubble cloud onto the CSP main characteristics: 

angular spreading, visibility (contrast) and absolute angular position.   

Conclusion 
To conclude on the modeling of CSP produced by cloud of bubbles, we found that only the 
results obtained by the LMT can be considered as reliable. The POA provides analytical 
expressions and allows fast calculations but it gives only a rough estimation of parameters like the 
fringes visibility. From a metrological point of view, the interest of the CAM approximation is 



CHAPTER 2 - CRITICAL SCATTERING OF LIGHT BY A SPHERICAL BUBBLE 

 

36 

found quite limited. In fact, CAM appears to be not really computational efficient and its 
predictions are only correct for large bubbles that usually are not spherical (see later one).   
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Figure 2.18 Comparison of the evolution of the angular position, the angular spreading and the visibility 
of CSP versus with the bubble cloud mean size, according to LMT, CAM and POA.  
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Chapter 3 

 

 

 

 

3 INVERSION PROCEDURES  

The intensity profile of the critical scattering pattern generated by a cloud of bubbles is described 
by the integral equation Eq. (42),  known to be an inhomogeneous Fredholm equation of the first 
kind. Our problem is to find ( )f D  from the measurement of ( )0, ,tI mθ λ  by using the calculated 
kernel ( )0, , ,I D mθ λ . This problem requires a specific inverse procedure. In what follows, 
different approaches to solve this problem are compared.   

3.1 Solving the linear algebra problem (NNLSQ method) 

3.1.1 Principle and mathematical formalism 

The right hand term of Eq. (42) can be discretized as follows 

 ( ) ( )
max

min

0 ,
1

, , ,
D M

i j j
jD

I D m f D dD S Fθ λ
=

= ∑∫  (48) 

where ,  1,2 ,jF j M= "  is the discretized form of ( )f D  and  ,i jS  represents the intensity 
scattered at angle ,  1,2 ,i i Nθ = "   by a bubble of diameter jD . Further on, ( )jFF  is considered 
as the unknown vector to be determined and ( ),i jSS  is a N M×  scattering matrix defined by 

 ( )
1

, 0, , ,
j

j

D

i j i
D

S I D m dDθ λ
+

= ∫  (49) 

where ( )0, , ,iI D mθ λ  can be calculated by the LMT as well as the POA. A measured CSP can be 
represented as a vector tI  whose element Ii  represents the intensity scattered at angle iθ  by 
bubbles cloud of size distribution F . The latter is the solution of the linear algebraic equation:   

 t = ⋅I S F  (50) 
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One of the possible solutions can be expressed as: 

 ( ) t=
-1T TF S S S I  (51) 

In fact, Eq.(51) is known as ill conditioned and numerically unstable. Thus, the solving strategy 
we use here is to minimize iteratively the square of the difference  t⋅ −S F I ,  taking into account 
the fact that the BSD is always positive ( )0iF > . This can be done by minimizing the residuals 
with a Non Negative Least-SQuare scheme (NNLSQ, Twomey 1979) : 

 22

0F F
r Min

>
= ⋅ −S F I  (52) 

This minimization process can be performed by using orthogonal numerical algorithms (Lawson 
and Hanson, 1974) which are available in the literature or in Matlab environment. 

The mean refractive index of the bubble cloud can be determined by minimizing the overall 
residual: 

 ( ){ }2
n Fm m Min r=  (53) 

3.1.2 Implementation  

Practically, the inversion procedure runs as follows: 

          - A scattering matrix S  is calculated for a given wavelength and a specific refractive index. 
For all calculations presented below the nominal matrix size is 565 550N M× = × , with  

71.1,71.12 82.4iθ = °"  and 100,102jD = 1200µm" . On an up-to-date computer desktop, this 
step takes several hours with the LMT and several ten seconds with the full POA. If the bubble 
relative refractive index is not known in advance, scattering matrices are calculated for all 
expected refractive indices (for Figure 3.1 or the results presented in Table 5.2 and Table 5.5, we 
have computed 50 scattering matrices with  1 1.3305,  1.3310 1.3550m− = " ).  

          - Each vector ( ), , 1,2i jS j M= "  of a matrix S  is normalized by the maximal intensity of 
the corresponding first fringe.  

          - The experimental CSP profiles are automatically band-pass filtered, calibrated, rescaled 
and normalized by the intensity of the first fringe (see §3.2.2).  

          - The NNLSQ algorithm is applied to minimize the residual Eq.(52) and to get F . 
Obviously the length of the unknown vector can be reduced (i.e. the bins width is increased) 
according to the expected BSD. With a matrix 565 100N M× = ×  the computational time is 
limited to few seconds. 

          - When the refractive index is to be determined, both Eq. (52) and Eq. (53) must be used 
to determine F  and m . To further improve the refractive index measurement, the corresponding 
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residuals are fitted with a 4th degree polynomial. Figure 3.1 shows typical results obtained with 
this method when processing experimental CSP. 

          - F  is directly used to obtain the bubble mean size and standard deviation by Eq. (44) 
(NNLSQ-raw method). 

          - To damp the noise generated by the inverse procedure, i.e. to reject the “ghost” bubbles 
(see for instance Figure 5.2),  F  can be low pass filtered prior to calculate the statistical moments 
(NNLSQ-filt. method). Filtering matrices can also be used (e.g. Xu 2007, Onofri et al. 2009b). 
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Figure 3.1 Evolution of the residual of the NNLSQ method versus the estimated bubble cloud mean 

refractive index: cases 1 to 4 corresponds to experiments performed on different iar-xater bubbly flows, 
respectively presented in Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5. 

 

 

3.1.3 Exemplifying numerical results  

From Figure 5.2, Figure 5.4, Figure 5.5 and Figure 5.3 we can have a good idea of the efficiency 
of the NNLSQ method to inverse experimental CSP. This technique gives good results but, with 
experimental data it is extremely difficult to fully evaluate the capability of this technique. In fact, 
with experimental CSP we are limited by the capacities of the bubble generators and the accuracy 
of the so-called “reference” techniques. So, the objective of the present section is not to be 
exhaustive but simply to give some overview about the minimum size width that can be 
determinated with this method or the minimum distance between two distributions that can be 
separated (bimodal distribution).  

For this purpose we have simulated a bimodal bubble size distribution composed of two log-
normal samples with the same width and different weights for the modes. For all cases the first 
mode is centered on  400D mμ=  as it corresponds to a stable regime of the piezo-jet (see §4.2.1).  
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The second mode starts at 400D mμ=  and it is moved successively to 420,450,500,D = 700,  
and 1000 mμ . We consider finally four different cases: 

      - Figure 3.2 shows the results obtained for 4D mσ μ= ; and modes  weights 50% and 50%.  

      - Figure 3.3 shows the results obtained for 20D mσ μ=  and mode weights 50% and 50%.  

      - Figure 3.4 shows the results obtained for 10D mσ μ=  and mode weights 75% and 25%.  

      - Figure 3.5 shows the results obtained for 10D mσ μ=  and mode weights 25% and 75%.  

 

For all these figures we present on the right the corresponding CSP, as it could be observed 
experimentally. The Bubble size distributions are plotted on the left: the simulated one is 
represented as a histogram with bars while the reconstructed one takes the form of a histogram 
with a continuous red line.  

Looking at these figures, we may first say that the NNLSQ inverse method works pretty well. All 
modes are detected and correctly localized. Their relative weights are also correctly estimated. For 
relatively large distribution widths this parameter is well estimated for the two modes, see Figure 
3.3. However, the NNLSQ method overestimates the width of the narrower distributions (see for 
instance Figure 3.2). This effect may be explain by that fact that the size resolution of the 
scattering matrix used as a kernel of the Fredholm integral (Eq. (48) and §3.1.2) is necessarily 
limited. One additional reason is probably that high frequency oscillations of the CSP (due to 

1p ≥ ) are not dumped by narrow BSD. These oscillations may be considered, in some extend, as 
a source of noise for the NNLSQ method. By the way, it may be noticed that for the narrowest 
modes (see Figure 3.2) some noise appears (what we call “ghost” bubbles in the experimental 
part, see for instance Figure 5.2).  
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Figure 3.2 Bimodal bubble size distributions composed of  two log-normal distributions with equal widths 

4D mσ μ=  and mode weights 50% and 50%.  
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Figure 3.3 Bimodal bubble size distributions composed of  two log-normal distributions with equal widths 

20D mσ μ=  and modes weights 50% and 50% . 



CHAPTER 3 - INVERSION PROCEDURES  

 

43 

57 60 63 66 69 72 75 78 81 84
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 CSP for Bi-modal distribution m=1.3345

1
st

D=400[ m], �=10[ m], 100% BSD proportion

Sc
att

ere
di

nt
en

sit
y[

-]

Scattering angle, � [deg]
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Diameter, D [ m]

Theoretical distribution
NNLSQ-LMT (Independant model)

 

57 60 63 66 69 72 75 78 81 84
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 CSP for Bi-modal distribution m=1.3345

1
st

D=400[ m], �=10[ m], 75% BSD proportion

2
nd

D=420[ m], �=10[ m], 25% BSD proportion

Sc
att

ere
di

nt
en

sit
y[

-]

Scattering angle, � [deg]
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Diameter, D [ m]

Theoretical distribution
NNLSQ-LMT (Independant model)

 

57 60 63 66 69 72 75 78 81 84
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 CSP for Bi-modal distribution m=1.3345

1
st

D=400[ m], �=10[ m], 75% BSD proportion

2
nd

D=450[ m], �=10[ m], 25% BSD proportion

Sc
att

ere
di

nt
en

sit
y[

-]

Scattering angle, � [deg]
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Diameter, D [ m]

Theoretical distribution
NNLSQ-LMT (Independant model)

 

57 60 63 66 69 72 75 78 81 84
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 CSP for Bi-modal distribution m=1.3345

1
st

D=400[ m], �=10[ m], 75% BSD proportion

2
nd

D=500[ m], �=10[ m], 25% BSD proportion

Sc
att

ere
di

nt
en

sit
y[

-]

Scattering angle, � [deg]
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Diameter, D [ m]

Theoretical distribution
NNLSQ-LMT (Independant model)

 

57 60 63 66 69 72 75 78 81 84
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 CSP for Bi-modal distribution m=1.3345

1
st

D=400[ m], �=10[ m], 75% BSD proportion

2
nd

D=700[ m], �=10[ m], 25% BSD proportion

Sc
att

ere
di

nt
en

sit
y[

-]

Scattering angle, � [deg]
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Diameter, D [ m]

Theoretical distribution
NNLSQ-LMT (Independant model)

 

57 60 63 66 69 72 75 78 81 84
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 CSP for Bi-modal distribution m=1.3345

1
st

D=400[ m], �=10[ m], 75% BSD proportion

2
nd

D=1000[ m], �=10[ m], 25% BSD proportion

Sc
att

ere
di

nt
en

sit
y[

-]

Scattering angle, � [deg]
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Diameter, D [ m]

Theoretical distribution
NNLSQ-LMT (Independant model)

 
Figure 3.4 Bimodal bubble size distributions composed of  two log-normal distributions with equal widths 

10D mσ μ=  and modes weights 75% and 25%. 
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Figure 3.5 Bimodal bubble size distributions composed of  two log-normal distributions with equal widths 

10D mσ μ=  and modes weights 25%  and 75%. 
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3.2 Dependent models  

3.2.1 Full correlation estimator (LSQ-LMT-LogNorm. method) 

3.2.1.1 Principle 

We have mentioned earlier that the assumption of a particular size distribution is a quite common 
procedure to inverse experimental data (e.g. Xu, 2007). In what follows, and for what will be 
called further on the “LSQ method”, we assume a log-normal BSD  and try to minimize the 
following residual:  

 ( )
2

2
, ., ,

1
,

D

M

i j Log Norm D iD m j
j

r S F D Iσ σ−
=

= −∑  (54) 

where ( ). ,Log Norm D j
F D σ−  is the BSD of a Log-Normal type with only two unknown parameters D  

and Dσ . The inverse problem is here strongly constraint. This allows canceling out the inversion 
noise, but can lead to totally misleading results if the BSD is not correctly chosen (like in case of 
multimode distributions).  

 

 

 

3.2.1.2 Numerical results 

To test the accuracy of this method we basically did the same as for the 3-points methods (see 
next section). To resume, the idea is simply to produce noisy signals from LMT-CSP and to 
analyze them as they were experimental signals, see Figure 3.6 to Figure 3.9. For all figures we use 
Eq. (54) and a least-square method, with as an input: the scattering models, i.e. LMT in Figure 3.6 

and Figure 3.7, and POA (p=0+p=1) in Figure 3.8 and Figure 3.9 

For all these figures the results obtained with the 3-points method are presented on the left, and 
the ones with the LSQ method, on the right. According to our terminology we are presenting 
here numerical results from the 3pts-LMT-LogNorm, the LSQ-LMT-LogNorm and the LSQ-
POA-LogNorm. inverse methods. 

 

From these figures it appears that the overall error with the  LSQ-LMT-LogNorm  is about 1.5%  
for D , 1.3% for / Dσ , and 0.15% for relative refractive index. The resolution of the 3-points 
method is lower. In the same way, LMT allows more accurate predictions than POA. Figure 3.9 
clearly shows that with inverse techniques the resolution of the measurements does not only 
depends on the quality of the inversion scheme, it also strongly dependents from the quality of 
the approach used to model the response of the system (i.e. light scattering theories).   
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Figure 3.6 Predictions of the 3-points (left) and the LSQ (right) inverse methods for the mean diameter 
and the relative size distribution width. For both cases we use a Log-Normal BSD and the data tabulated 

from LMT calculations (green stars). 
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Figure 3.7  Same parameters as in the previous figure but in the mean diameter-refractive index plane. 
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Figure 3.8 Same parameters as in Figure 3.6 but for POA (p=0 & p=1) as the scattering theory. 
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Figure 3.9 Comparision of the results obtained with the LSQ method for a Log-Normal bubble size 
distribution, with  LMT or POA (p=0 & p=1)  as scattering theories.  

 

3.2.2 Partial correlation estimator (3points-LMT-LogNorm. method) 

3.2.2.1 Principle 

The two previous inverse methods require rather large computational resources as, basically, they 
compare the simulated and the measured CSP over all measured angular range. A simple 
approach to speed up the inversion procedure consists in only comparing the three main 
characteristics of experimental and theoretical CSP, namely the angular position, the angular 
spreading, and the visibility. So the idea here is to look for the values , ,DD mσ  that minimize the 
following correlation estimator:  

 ( ) ( ) ( )2 2 22
1 1 12 12 12,13 12,13, , , , , ,Th Exp Th Exp Th Exp

D D DD m D m V D m Vα θ σ θ β θ σ θ γ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Γ = − + Δ − Δ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (55)   

where α , β  andγ  are normalization and weighting parameters, while superscripts  Th  and Exp  
stand for calculated and experimental quantities respectively. This method requires creation of a 
look-up table containing all possible expected values for  1

Thθ , 12
ThθΔ   and  12,13

ThV . This is done by 
using the matrix S   and by iterating along the parameters , DD σ   and m   with a log-normal BSP 
assumption. With this method the inversion procedure is almost “instantaneous” (Onofri et al. 
2006 a-b).  Note that rather similar method was introduced by Onofri et al. (2004) to inverse with 
a lot of success forward diffraction patterns. We call this inverse method the “3-points” method 
which can be either based on LMT or POA predictions.  
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Figure 3.10 Evolution of the full correlation estimator for two size distributions ranges in size and width. 

3.2.2.2 Implementation  

To implement the “3-points” inverse method the first step is to extract the three basic 
aforementioned quantities.   

In a CSP the main or easily remarkable point is the maxima of the first bright fringe 1I  and its 
angular localization 1θ , then it is the first dark fringe or “valley” with  2I  and 2θ , then the second 
bright fringe with  3I  and 3θ , see Figure 3.11. From the measurement of these quantities we can 
defined a contrast or “Visibility” criteria for this pattern:   

 1 2

3 2

I IV
I I

−
=

−
 (56) 

The CARS technique use a Fourier setup which gives us absolute angle measurements but not, 

absolute intensity measurements. Let assume that the response of the optical system is linear (i.e. 
the response of the CCD chip). The measured intensity ( )I θ  is then equal to 

( ) ( )I aI b nθ θ′= + + , where ( )I θ′  is the “true” scattered intensity; a  a scaling factor which 

depends on the camera gain, laser power, etc.; b  is an offset due to the CCD chip, the 

background noise (supposed constant);  n  is some white noise. So for the instantaneous CSP 

visibility we get: 

 
( )
( )

' '' '
1 2 1 21 1 2 2

' ' ' '
3 3 2 2 3 2 3 2

( ) ( )
( ) ( )

a I I n naI b n aI b nV
aI b n aI b n a I I n n

− + −+ + − + +
= =

+ + − + + − + −
 (57) 
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Figure 3.11 Three main characteristics of the critical scattering pattern for the “3-points” inverse method. 

As we need to integrate CSP over a certain time (i.e. camera time exposure), statistically the time-
averaged CSP is:  

 
' ' ' '
1 2 1 2
' ' ' '
3 2 3 2

t

I I n n I IV
I I n n I I

− + − −
= =

− + − −
 as 0i t

n =  (58) 

Regarding to our hypothesizes, Eq. (58) gives us a measured visibility that can be directly 
compared to the theory.  

 

Based on the above considerations we have built with LMT a database containing these three 
characteristic points θ1, θ2, V for many Log-Normal BSD mean size D , size distribution width 

Dσ , and relative reflective index m . With this database, we can use Eq. (55) to inverse 
experimental CSP.  

To accelerate the inversion procedure, an another solution is to find some analytical relations 
between (θ1, θ2, V)  and ( ), ,DD mσ . For reasons already mentioned above, it is better to find 
relations between (θ1, θ2, V)   and ( ), / ,DD D mσ . To do so, two different software were used : 
Origin (OriginLab 2003) for two dimensional fitting and DataFit (Okdale – Engineering 2006) 
for multidimensional fitting. We begin this work by finding equations that can describe correctly 
the sensitivity of 1θ  with D  . From POA equations (see also Figure 3.12) we start with  

 
1

1 1
1 1( )

1 c

a bD b
D

θ −
= +

−
 (59) 
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where 1 1,a b  and 1c  are coefficients to be determined numerically. Then, to add some dependency 
to the refractive index, we use a linear angular translation (see §2.5 ):  

 
1

1 1
1 1 1 1( , )

1 c

a bD m b d m e
D

θ −
= + + ⋅ +

−
 (60) 

where 1d  and 1e  are two additional unknown coefficients. To take into account the stretching of 
CSP diagrams with the BSD relative width we transform the previous equation in : 

 ( ) ( )
1

1 1
1 1 1 1 1 1 1 1( , , ) /

1D Dc

a bD m b f s g d m e h D i
D

θ σ σ−⎛ ⎞= + ⋅ ⋅ + + ⋅ + + ⋅ +⎜ ⎟−⎝ ⎠
 (61) 

where 1 1 1, ,f g h  and 1i  are four more coefficients to be determined.  

We can do basically the same for the two other functions so that we get finally, a system of three 
equations with 3 unknown variables and 29 unknown coefficients (see Table 3.1): 

 ( )
1

1 1
1 1 1 1 1 1 1 1( , , ) / /

1
D Dc

a bD m b f D g d m e h D i
D

θ σ σ σ
⎛ ⎞−

= + + + + + +⎜ ⎟
−⎝ ⎠

 (62) 

 ( )
2

2 2
2 2 2 2 2 2 2 2( , , ) / /

1D Dc

a bD m b f D g d m e h D i
D

θ σ σ σ−⎛ ⎞= + + + + + +⎜ ⎟−⎝ ⎠
 (63) 
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3 3

3 3 3
3 3 3 3 3 3

3

( , , ) /
1

1
D c j

a b hV D m b f D g d m e k
D D

i

σ σ
⎛ ⎞−

= + + + + + +⎜ ⎟
⎛ ⎞−⎝ ⎠

+ ⎜ ⎟
⎝ ⎠

 (64) 
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Figure 3.12 Change of 1cθ θ− dependant on mean size diameter of bubble D , comparizon beetwen LMT 

and prediction based on (Onofri, 1999). 
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3.2.2.3 Numerical results 

Table 3.1 shows the parameters obtained numerically with the multidimensional fitting software 
“DataFit”. The next figures, from Figure 3.13 to Figure 3.18, show some comparisons between 
LMT predictions and the ones obtained with Eqs.(62)-(64) and the parameters of Table 3.1. The 
agreement is very good. So that, with this method, by measuring θ1, θ2, V and solving the system 
of three equations, we can get directly the three main parameters of the BSD:  , , DD m σ . 
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Figure 3.13 Comparison beetween the predictions of LMT and Eq. (62) for ( )1 Dθ  
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                  Table 3.1 Coefficients obtained with LMT for the “3-points” method 
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Figure 3.16 Prediction of 1 ( , , )Df D mθ σ=  : left for fixed size distributions relative widths : / 0.10Dσ = ; 

right: for a fix refractive index 1 1.3400m− = . Results of Eq. (62)  correspond to the colored and 
continuous surface and those of LMT to the black circles (●). 
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Figure 3.17 For / 0.10Dσ = , left : predictions of 2 ( , , )Df D mθ σ=  with Eq. (63)  and LMT ; right: 

predictions of  ( , , )DV f D mσ=  with Eq. (64) and LMT.  The analytical results correspond to the colored 
and continuous surfaces and those of LMT, to the black circles (●). 

 

 

Coeff. 1( , , )DD mθ σ
 2 ( , , )DD mθ σ

 
( , , )DV D m σ  

a -31,11588 -79,78361 -2,68715 
b 82,23532 82,10626 0,36734 
c 0,59423 0,5748 0,5225 
d 98,5244532101951 100,466938928936 0,474595356975684 
e -131,072124932896 -133,708211236054 -0,631365816542236 
f -0,362546228715568 -0,225230854193662 -2,15292145129313 
g 1,01767560948619 1,00668330332316 0,983936238257257 
h 29,738510659132 18,1800845686661 1,23018295907996 
i -1,41489744758847 -0,497482181874814 0,253798543061762 
j   -1,95509526223828 
k   0,00900972843721926 
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To evaluate the accuracy of this inverse method in terms of BSD parameters we have prepared a 
large database of LMT-CSP, that were scaled and shifted randomly with some additional white 
noise (7%). So that these CSP can be considered as realistic “experimental” signals. Figure 3.18 
and Table 3.2 compare the results obtained with the 3-points method: Figure 3.18 when we use 
the tabulated results, i.e. Eq. (55) and a data base; and Table 3.2  with the fitting equations, i.e. 
Eq.(62)-(64).The accuracy of both methods is found to be about 5%Dδ = , ( )/ 15%Dδ σ =  and 
for 0.0001mΔ = ± . The fitting method is nevertheless faster. Note that these estimated resolutions 
do not take into account misalignment of the optics, bubbles non sphericity, etc.  

50 100 150 200 250 300 350 400 450 500 550 600 650

0.05

0.10

0.15

0.20

0.25

0.30
 Theoretical  Predicted with lookup table method

                                         m-1
=1.3350

Mean diamter, D [μm]

Re
lat

iv
e 

st
an

da
rd

 d
ev

iat
io

n,
 σ

/D
 [-

]

 

Figure 3.18 Prediction of 3points-LMT method for relative refractive index m=1.3350 

 

Table 3.2 Table of predictions of the 3points-LMT on numerical CSP: mean size and size distribution 
width. 
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3.2.3 Conclusion 

The biggest interest of the NNLSQ inverse method is that it does not require any strong physical 
assumption on the shape of the bubble size distribution (BSD). So, we are not limited to size 
distributions that are described by an analytical shape, a mono mode BSD. Indeed we were rather 
surprised by the quality and the stability of the NNLSQ inverse method (see also chapter 5). The 
results are not always perfect as the method can generate some ghost bubbles, but regarding to 
other inverse methods or other optical sizing methods, the results are already very satisfactory. 
The resolution between two modes seems to be about 50 mμ∼ . It is hard to be more precise as it 
depends on the width and relative weight of the modes, the size range, the noise…. In its current 
state, it overestimates the width of mono-disperse size distributions. However, without any 
doubt, the performance of the NNLSQ could be improved by pre-processing the CSP (i.e. pass 
band angular filtering).  

The 3-points method is the fastest inverse methods and it does not require large computation 
resources when compared to the NNLSQ or the LSQ methods. Although its accuracy is quite 
limited, it could be enough for some applications. The 3-points method could be used to inverse 
data from an integrated sensor using the principle of the CARS technique to characterize on-line 
bubbly flows. The LSQ method, with LMT as a scattering theory is limited by the bubble size 
distribution assumption and it is not really faster than the NNLSQ method, so its practical 
interest appears to be quite limited.  
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Chapter 4 

 

 

 

 

 

4 EXPERIMENTAL SETUPS AND PROCEDURES  

In this chapter we present the different setups and procedures we have developed to generate 
controlled bubbly flows, the optical setup and calibration procedures for the recording of 
experimental critical scattering patterns, and the principles and setups of two techniques used to 
validate our experimental results.  

4.1 Hydrodynamic considerations  
To validate the principle of the CARS technique it is necessary to produce bubbly flows with 
different mean size, polydispersions and compositions. At the same time, it is interesting to recall 
and point out some basic characteristics of bubbles and bubbly flows regarding to hydrodynamics 
conditions.  

 

4.1.1 Bubbles’ shapes according to Grace’s stability diagram  

The shape and the aspect ratio of a bubble depend on its velocity, its size, as well as the 
properties of the two fluids (surrounding and internal). Bubbles and drops in free motion are 
described already by (Clift et al. 1978) considering free rising or falling bubbles and drops in semi 
infinite media.  From observations it appears that the shape of the bubbles (and drops) can be 
classified in three main categories:  

          Spherical shape, generally speaking, bubbles and drops are closely approximated by spheres if 
the interfacial tension and/or viscous forces are much more important than inertia forces. For 
our purposes, fluid particles will be termed "spherical" if the minor to major axis ratio lies within 
10% of unity. Spherical fluid particles in free rise or fall are discussed in Chapters 3 and 5.  
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          Ellipsoidal shape, generally this shape is used to refer to bubbles and drops which are oblate 
with a convex interface (viewed from inside) around the entire surface.  

         Spherical-cap or ellipsoidal-cap shapes, large bubbles and drops tend to adopt flat or indented 
bases and to lack any semblance of fore-and-aft symmetry (see Figure 4.1). Such fluid particles 
may look very similar to segments cut from spheres or from oblate spheroids of low eccentricity.   

 

For free rising bubbles and free falling droplets, in a semi infinite media, it is possible to prepare a 
generalized graphical correlation of the aforementioned shapes in terms of the Eotvos number 
(Eo), Morton number (Mo), Reynolds number (Re) and Weber number (We). 

 l T
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=  (65) 
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where lρ , lμ  are respectively the surrounding liquid density and dynamic viscosity, σ  the surface 
tension; D , TV  and gρ  the diameter, the terminal velocity and the density of the bubble; g  the 
gravitational constant. The resulting diagram took from Grace 1976,  is shown in Figure 4.1.  
From this diagram we can estimate terminal velocities as well as the particle shape (i.e. bubble or 
drop), although more accurate and predictive correlations are usually available in the literature 
(see later on). It is noticable that dynamic viscosity does not play an important role in 
determining terminal velocities and shape regimes since it does not appear in any of the three 
groups used to construct the diagram. The role of dynamic viscosity may be significant, however, 
for very pure (surfactant-free) systems or for large fluid particles in high Morton number liquids. 
While the boundaries between the principal shape regimes are somewhat arbitrary, it is clear that 
bubbles and drops are ellipsoidal at relatively high Re number and intermediate Eo number, while 
the spherical- or ellipsoidal-cap regime correspond to relatively large Eo and Re numbers. Note 
that we have reported on this diagram some of our experimental data points (triangular symbols) 
to gives an overview of the regimes and bubbles shapes investigated with our different bubble 
generators, i.e.  from almost perfectly spherical to highly ellipsoidal shapes. 
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Figure 4.1. Grace’s diagram showing shape regimes for bubbles and drops, Grace (1976). 

As already mentioned bubbly flows occur in a wide range of natural systems and industrial 
processes, and sophisticated computational fluid dynamics codes are already available to simulate 
bubbly flows (see Chapter 1). In parallel to these models that require high computational 
resources, some authors try to develop and validate simplified models based on correlations.  For 
instance, Celata et al. (2007) have developed a dedicated experiment to compare the prediction of 
these correlation models for immiscible fluids (mostly gas in liquid) and for adiabatic conditions. 
Most of the models tested in this study assume that the shape of the bubbles is ruled by the 
balance of buoyancy and drag forces, and describe it in terms of three dimensionless groups, 
generally the Reynolds, Eotvos and Morton numbers (see next paragraph). To conclude on that 
part, it must be pointed out that, from our literature review on bubbly flow studies several 
phenomena of interest were noticed, like:  

          - the bubbles’ terminal velocity is influenced by the degree of fluid contamination (i.e. 
mainly by surfactants), which affects the dynamics of their interface;  

          - the bubbles’ velocity fluctuate in connection to the oscillations of the bubbles shapes;  

          - the wakes produced by the preceding bubbles in a train may influence the terminal 
velocity when the bubbles are closely spaced; 
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          - the bubbles trajectories may be either rectilinear, planar zigzagging or spiraling and may 
also shift from one mode to another one with increasing distance from the injection, etc. 

 

4.1.2 Correlation models for bubbles’ aspect ratios 

Several attempts have been made in literature to correlate the aspect ratio ξ  as a function of a 
single dimensionless parameter which could group all experimental data. The aspect ratio ξ  
(sometimes written E) is defined as /a bξ = , where a  is the minor axis (vertical) and b  the 
major axis (horizontal) of the bubble.  

Some authors have accomplished this task using the Eotvos number, others have adopted the 
Weber number, while Tadaki and Maeda (Tadaki & Maeda 1961) have proposed an original 
dimensionless group named nowadays the Tadaki number:  

 0.23ReTa Mo=  (69) 

As noted by Fan and Tsuchiya (1990), if in the above equation the exponent of Mo was equal to 
0.25, the dynamic viscosity would be cancelled out in the product (complete independence of 
dynamic viscosity). This is equivalent to say that the bubble shape (for low-Mo liquids) is only 
determined by the balance among surface tension, inertial and gravity forces, and that the viscous 
forces are negligible. In the contrary, by adopting an exponent 0.23, a weak dependence on 
dynamic viscosity is retained (Tomiyama et al. 2001). When measuring the rising velocity of air 
bubbles in stagnant water it is observed that the aspect ratio, which depends on the magnitude of 
initial shape oscillation, is strongly correlated to the Weber number. For all the liquids they have 
tested ( 42.5 10Mo −< ⋅ ), except surfactant solutions, they have found the following correlations: 
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Later, Vakhrushev and Efremov (1970) have proposed to modify the above correlation as 
follows: 
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 (71) 

Eq. (71) contains nine empirical parameters, but only five among them are independent. Here is 
the set of coefficients suggested by Fan and Tsuchiya (Fan et al. 1990) for pure water: 
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For example, Figure 6.2 compares the evolution of the aspect ratio of air bubbles in water versus 
the Tadaki number, according to Eq. (72) and experimental results we have obtained with the 
micro-video imaging system (see also Figure 6.3). Table 6.2 resumes the parameters used for the 
calculations. The results are really in good agreements.  It is one of the reasons why, in Chapter 6 
we have tried to use Eq. (72) to better estimate the volume of non spherical bubbles. 

4.2 Bubbles and bubbly flows generators 
To investigate the response of the CARS technique to different bubble size ranges and 
compositions, we have developed five different systems to generate bubbles. 

4.2.1 Solenoid valve (piezo-jet) 

The best and most used system is a drop on demand generator based on a piezo-jet, see Figure 
4.2. The VHS-LT solenoid valves from Lee Co. (2009) are designed for applications requiring 
high speed and precision dispensing of fluids. The valves can dispense small, consistent, 
undisturbed fluid droplets that can travel relatively long distances. This is attributed to a patented 
integral valve feature designed to absorb valve actuation induced fluidic disturbances. The closed 
coil design minimizes coil exposure to incidental splashing and corrosion and depending on the 
application. The VHS-LT valves feature low power consumption and the ability to consistently 
dispense a wide range of fluids despite low percentages of entrained air. Tested chemicals include 
many alcohols, organic solvents, and aqueous solutions. For us the basic properties of the piezo-
jet are: integral nozzle for precise operation, response time as low as 0.25ms, high speed 
operation (up to 1000Hz). 

 
Figure 4.2 Lee Co piezo-jet VHS-LT (from Lee Co., 2009) 
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Figure 4.3 Piezo-jet  connection system to our experimental tank.  

 
Figure 4.4 Typical water droplet dispense volumes (from Lee Co., 2009) 

For water at ambient temperature, Figure 4.4 shows the typical volume of the droplets that can 
be dispensed on demand versus the opening time of the valve and for various diameters of the 
nozzle exit (172µm, 123µm, 74µm) and the water input pressure. This graph is only supplied for 
reference information. Results vary with fluids viscosity, density, surface tension and temperature.  

 
Figure 4.5 High Speed VHS Valve Driver (IUSTI, S. Martinez) 

In our study we have mainly used the piezo-jet, with the smaller nozzle exit, to generate air 
bubbles on demand, the air supply being ensured by a small electrical pomp as well as a high 
pressure tank. The piezo-jet was also used to generate air bubbles in ethanol or water droplets in 
silicon oil. To power up and control the generator we have developed a dedicated electronics, see 
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Figure 4.5, which is it self controlled via a PC through the RS232 COM port. The parameters of 
the whole injection system are selected via a software, see Figure 4.6, allowing to select the 
bubble rate (0-1kHz) and size (spherical and stable bubbles only for the range 400 700 mμ− ), the 
synchronization with other systems (flash lamp, CARS system…).   

 
Figure 4.6 Main screen of the software developped to control the Piezo-jet (IUSTI) 

  

 
Figure 4.7 Schematics and images of the electrolytic bubble generator plugging and connection systems. 

 

4.2.2   Electrolytic bubble generators  

Electrolysis is a process that permits to induce a chemical change through the use of  electrical 
energy. The most familiar example of electrolysis is the decomposition of water into small 
hydrogen and oxygen bubbles. Thus we have to develop a multidimensional electrolytic bubble 
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generator able to produce clouds of very small bubble from the electrolyze of the surrounding 
fluid, see Figure 4.7.  

 
Basic phenomena 
In any sample of water, some small fraction of molecules exists in the form of ions, or charged 
particles. Ions are formed in water when water molecules break apart to form positively charged 
hydrogen ions and negatively charged hydroxide ions (Vanýsek 2007). Chemists describe that 
process with the following chemical equation: 2H O H OH+ −→ + . Seawater can be electrolyzed, 
because it contains many positively charged sodium ions ( )Na+ and negatively charged chloride 
ions ( )Cl− .  Normally, only one water molecule out of two billion ionizes. In contrast, sodium 
chloride breaks apart completely when dissolved in water.  In our study, to work under controlled 
conditions and to avoid the development of bacteria, we have used bi-distilled and demineralised 
water. Electrolyze was then impossible without adding some substance to increase the liquid 
electrical conductivity. We did not want to use sodium chloride as it changes significantly the 
liquid refractive index. A bibliography review indicates that the best additive is a dilute solution of 
sulfuric acid ( )2 4H SO . The latter is a strong electrolyte which is fully dissociated in aqueous 
solution 2

2 4 42H SO H SO+ −→ + . Bringing electrons to the system with a power unit and two 
electrodes: one anode and one cathode, we get hydrogen bubbles on the cathode 

24 4 4 2 2H OH e H OH+ − − −+ + → +
G

. Water reacts also on anode, loosing electrons, to produce 
oxygen bubbles 2 22 4 4H O O H e+ −→ + +

G
 producing oxygen in this reaction. The general equation 

may written as  

 2 2 26 2 ( ) ( ) 4 4H O H cathode O anode H OH+ −→ + + +
GG

 (73) 

Electrolytic bubble generator  
To produce the bubbles to be analyzed, we develop an multi electrode head composed of 25 
golden needles arrange in grid 5x5 on area 2x2cm. This grid was connected through special 
connectors allowing controlling the powered needles. In this way, the electrolytic bubble 
generator is able to produce bubbly flow plus or less dense and with different patterns : single 
stream, a curtain, square patterns, etc. The second electrode, with a golden coating, was simply 
put at the top of the tank in order to avoid any disturbance of the critical scattering patterns. The 
differential voltage between the two electrodes was adjusted with a stabilized power unit. Indeed, 
we found that this voltage has an influence of the bubbles rate and size. The size dependence is 
quite surprising, but probably due to some coalescence effects. For oxygen, the bubble size range 
obtained is within the range 50 100µm−  (see Table 4.1).  
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Table 4.1 Size of bubbles – voltage dependency.  

 
Figure 4.8 co-assisted air/water jet. 

4.2.3 Capillary jet (natural and assisted)  

The simplest idea to produce bubbles is to inject air in a needle with a small internal diameter. By 
changing the pressure of the air inlet one can expect to cover a large size range. Indeed, this 
simple injection technique leads to the formation of large bubbles, bigger than 200 mμ . 
According to Oguz and Prosperetti (1993) model, two parameters influence the diameter of  air 
bubbles in water when they are detaching from the needle output. The critical air flow rate 
through the needle Qcr  and the equilibrium bubble radius RF. The latter can be determined from 
the balance between buoyancy forces and the surface tension forces during detachment 

 3
2F

l

aR
g

γ
ρ

=  (74) 

where γ  is the surface tension, a is the inner radius of the needle, lρ  is the density of the 
surrounding liquid and g is the gravity constant. On other part, there is a limiting value crQ  for 
the air flow through the needle  

 
5/61/6

2

16
3cr

l

aQ
g

γπ
ρ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (75) 

So that all the bubbles generated will detach from the needle with the same equilibrium size, 
given by equation (74). However, if the airflow rate is larger than this critical value, the volume of 
the bubbles will be proportional to crQ . Disadvantage of this technique is that the bubble size is a 
pressure dependant parameter. Pressure also imposes the number of bubbles produced in time. It 
can be a quite limiting aspect if we want to adjust in parallel the flow rate. 

Differential voltage [V] 6.4 7.4 8.4 9.4 10.4 

Mean size [ ]D mμ  (by Micro-Video system) 90.0 98.0 111.0 127.0 137.0 
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In water, and with the previous system, the air bubbles obtained with reasonably small needle 
(not less than 100µm in diameter) are usually too large to be in the spherical regime. To solve this 
problem we have developed empirically a so-called “assisted jet”. Basically the idea is to increase 
the slip velocity between the air stream and water, by using a co-axial double injection system, see 
Figure 4.8 This is why we use an additional pump to suck the water from the experimental tank 
toward the assisted jet water inlet, as a close loop. This system is hard to control and it produces 
largely polydisperse bubbles. One possible solution to limit the size distribution width is to place 
the injector horizontally and to select the bubble size range by adjusting its position in respect to 
the water tank inlet, see Figure 4.8.  With this reverse “sedimentation technique” it was also 
possible to vary the mean size range. 

 It was impossible with these systems to produce reasonably small (less than 1 mm) bubbles 
of water in silicon oil, due to surface tension and viscosity differences. So, the solution found was 
to generate water droplets above the silicon free surface and to let them to drop down into the 
silicon oil. Note that the needle output distance from the silicon surface was about the size of the 
diameter of the water drop we want to generate, se  Figure 4.9. 

 
Figure 4.9 Jet surface breaking system to produce falling water drops in silicone oil. 

4.2.4 Porous plate 

We did several experiments by injecting air through a porous plate (we have tested several of 
them: paper, ceramics, polymer). At low flow rate, the porous plates produce few columns of 
rising bubbles that are rather mono-disperse. Unfortunately, from one experiment to another 
one, it is impossible to predict where the bubbling sites will appear onto the porous plate. When 
we increase the flow rate the bubbling rate rapidly increases. But, due to coalescence effects 
between bubbles produced by short distance bubbling sites, we get very large bubbles (above 1 
mm). So this system was found to be not very convenient to carry out well controlled 
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experiments. Nevertheless porous plates were used to test the limit of the CARS technique 
regarding to the high bubbly flow density and non spherical bubbles.  

4.3 CARS system to record and analyze critical scattering patterns  
We detail here the different optical, mechanical, electrical and numerical components we have 
developed to record experimental critical scattering patterns (CSP).  Results and their analyses are 
presented in the next chapters. 

4.3.1 Experimental setup 

We have built a full setup allowing absolute angle measurements of the far-field CSP generated 
by all bubbles present in a optical probe volume of about 1 cm3, see Figure 4.10 to Figure 4.13. 
The cell (or  “tank”) in which the scattering take place is basically a 300x100x100mm rectangular 
glass-walled aquarium in PVC with four glass walls (glass thickness: 3 mm). It is alternatively 
filled with bi-distilled and dematerialized water; water-ethanol and water-glycerin solutions, 
silicon oil. The bubble generators (see § 4.2) are usually placed at the bottom, sometimes at the 
top. The incident beam from a (2) 50mW YAG laser is (3) coupled to a mono-mode optical fiber 
with polarization conservation and finally (4) expanded (x10) to obtain a parallel polarized and 
collimated beam, with diameter 12 mm and wavelength 0 0.532λ = μm. The laser beam divergence 
is negligible ( 0.001°≤ ). Note that in this setup, the beam polarization can be rotated continuously 
with a (5) / 2λ  plate, whatever we use mostly the parallel polarization. The main purpose of the 
mono-mode fiber is to adjust finely the laser beam intensity by controlling the coupling 
efficiency. The later point is important to calibrate the experiments since the beam must be sent 
onto the CCD chip (see later on). For some experiments the beam expander magnification was 
reduced from a factor x5, and even totally removed.    

The rising bubbles (17) are produced at the bottom of the tank by different bubble generators 
(see §4.2): piezo-jet, assisted air jet, porous plate and electrolytic bubble generator.  

Gaussian beam effects can be neglected as the diameter of the bubbles is always much smaller 
than the diameter of the incident laser beam (ratio 1: 70≈  to 1:10≈ , see also §7.1). 

To minimize the depth-of-fields effects, the scattering of all bubbles located in the probe volume 
is collected by an optical system working in a Fourier configuration, see Figure 4.12.  The 
collection optics is first composed of a (7) high Numerical Aperture camera lens (Nikon AF 
NIKKOR 50mm, N.A.=1.4). This lens collects the scattered light to form an image of the bubbly 
flow within the optical probe volume onto a (8) circular iris diaphragm with adjustable size 
aperture. This later component plays the role of a spatial filter and allows to control the lateral 
dimension of the optical probe volume (see §7.2). A pair of (9) achromatic doublets is used to 
obtain the Fourier Transform of the bubbly flow image onto a (11) CCD chip, see Figure 4.12. 
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Note that an (10) interference filter centered on the laser line 0λ  is used to minimize the 
surrounding optical noise.  

The far field CSP are recorded by a (11) 12 bits and 1024 1024× digital camera, transferred and 
analyzed onto a (18) PC. For that purpose we have developed software that fully control via the 
RS 232 COM port the camera frame rate, exposure time, binning, digitizing depth, external and 
internal synchronization, etc. Figure 4.14 shows a screen copy of this acquisition and processing 
software (that work for rainbow technique too).  Note that all components of the CARS system 
are fixed on a single optical bench ( )400 400x mm≈ . This allows getting a rather compact and 
stable system.  With this setup and a water solution, the typical angular range and resolution of 
this system are 70.3 82.8θ = °∼ and 0.02θΔ ≈ ° respectively. This angular range can be adjusted by 
moving with respect to the collection lens, the Fourier lens and the camera.  

Whatever they are not truly part of the CARS setup, Figure 4.10 and Figure 4.11 show additional 
systems used during our experiments. In (14) we see the camera of the Interferometric Laser 
Imaging for Droplet-Sizing system (ILIDS, see §4.5). The optical axis of this camera makes an 
angle of 37° with the laser beam of the CARS system (which is used to generate also the ILIDS 
images). These figures also show the (12) flash lamp and the (13) long distance micro-video 
imaging-system used to obtain shadowgraphy images of the bubbly flows (see § 4.4).  The CARS 
and micro-video systems are synchronized via TTL signals.  Note that it was necessary to develop 
an additional (15) optical triggering system to visualize and study large non spherical bubbles. 
This system (a lens, a spatial filter, a silicon diode and its electronics) detects the presence of each 
bubble presents in the probe volume. The latter system is helpful to trig and synchronize the two 
other systems. 

 

 

4.3.2 Acquisition and pre-processing software 

As mentioned in the previous paragraph the Critical Scattering Patterns (CSP) are recorded by a 
12 bits and 1024 1024× digital camera from DALSA. The digital signal (LDVS) is processed by a 
PC embedding a NI PCI 5112 digital video board. A MS-Windows based software has been 
developed under DELPHI-Borland to control the video board and the camera. Figure 4.14 
shows a copy of the main window of this software. The latter allows via the RS232 COM port 
and the LDVS digital link to fully control the camera configuration and operating mode:  camera 
frame rate (up to 30Hz), exposure time (from 1µs to 1s), binning (1x, 2x, 8x), digitizing depth (8 
and 12 bits), external and internal synchronization (TTL and software), etc. CSPs are directly 
saved on the PC hard disk or they can be time-averaged before to be analyzed and saved. 
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Figure 4.10 Experimental setup: (1) experimental tank; (2) YAG-Laser 50mW-532nm; (3) optical fiber; (4) 

beam expander; (5) λ/2 wave plate; (6) mirror; (7) Nikon AF NIKKOR lens 50mm 1:1.4D; (8) 
diaphragm; (9) Fourier/magnification lenses; (10) interference filter centered on for YAG line; (11) 

1Mpix-12bits-B/W digital CCD camera; (12) flash lamp; (13) micro-video system; (14) ILIDS system: 
1Mpix-8bits-B/W digital CCD camera with Nikon AF NIKKOR 35-80mm 1:4-5.6D lens; (15) bubble 

detector: lens, spatial filter and APD; (16) step-motor goniometer; (17) bubble generator, (18) PC. 
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Figure 4.11 Picture of the experimental setup: (1) experimental tank; (2) YAG-Laser 50mW-532nm; (3) 

optical fiber; (4) beam expander; (5) λ/2 wave plate; (6) mirror; (7) Nikon AF NIKKOR lens 50mm 
1:1.4D; (8) diaphragm; (9) Fourier/magnification lenses; (10) interference filter centered on for YAG line; 
(11) 1Mpix-12bits-B/W digital CCD camera; (12) flash lamp; (13) micro-video system; (14) ILIDS system: 

1Mpix-8bits-B/W digital CCD camera with Nikon AF NIKKOR 35-80mm 1:4-5.6D lens; (15) bubble 
detector: lens, spatial filter and APD; (16) step-motor goniometer; (17) bubble generator, (18) PC. 
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Figure 4.12 Details of the CARS collection optics 
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Figure 4.13 Schematic top view of the CARS setup 

                             



CHAPTER 4 - EXPERIMENTAL SETUPS AND PROCEDURES  

 

70 

 

 
Figure 4.14 CARS acquisition and pre-processing software 

 

For each image the intensity profiles can be extracted and averaged automatically within a given 
angular range (defined by the two white lines in Figure 4.14). Prior to be exported, the intensity 
profiles can be normalized and low pass filtered (Fourier, Butterworth...), etc. Different 
estimators (pixel saturation, maximum and minimum intensity, peak angular position, etc.) are 
also provided to facilitate the alignment procedure.  

 

4.3.3 Analyzing and inversion software 

Since acquisition software give raw images, raw CSPs intensity profiles and, if necessary, angularly 
and time averaged CSP, different processing software were developed to inverse CSP and to get 
the bubbly flows characteristics. 

The main processing software is also developed under Borland-DELPHI. This software basically 
refines the filtering of the experimental signals (see Figure 4.15), normalizes them so they can be 
compared directly to the theory, and extracts automatically the positions of all fringes (brights 
and darks). For direct inversion, it uses three different methods: the so-called 3-points method, 
the LSQ-LMT and the Hybrid ones (see §3.2). This is reason why it allows performing iterative 
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Lorenz-Mie, CAM and POA calculations, as well as to process them in order to create look-up 
tables (see §3.2). A least-square correlation scheme is used to minimize the differences between 
experimental and theoretical CSPs (see Figure 4.15) and in fine, to deduce the bubbly flow 
parameters.  

  
Figure 4.15 Main processing software: left, windows to control the CSP filtering and normalization step; 

right, window to control CSP inversion with the 3-points and the LSQ-LMT methods. 

A second processing software was developed under Matlab environment. It allows to get with the 
so-called NNLSQ method (see § 3.1) the bubble size distributions from the inversion of 
experimental CSP are pre-processed with the software depicted in  Figure 4.15. 

 

4.3.4 Calibration and alignment procedures 

The CARS technique is based on a Fourier optics system. In theory, this configuration allows 
absolute angular measurements wherever the bubbles are located within the probe volume. In 
practice this is not totally true as the measured intensity is not bubbles position independent. 
Indeed, the collected intensity is sensitive to the bubbles distance from the collecting lens and, in 
addition, it is weighted by the laser beam Gaussian intensity profile.  

We have developed a specific calibration procedure to align the system and to get a pixel-angle 
relation. The first step is to align all components of the emission unit, optical fiber, half-plate and 
the beam expander, as well as the beam expander magnification. This last point is realized by 
controlling the beam collimation at a distance of 5 meters. The second step is to proper select the 
beam polarization. This is simply done by carefully adjusting the optical axis of the half-plate with 
respect to the transmission of the beam with a polarizer. The third step is to set the collection 
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optics axis perpendicular to the output windows so that, in a image, the CSP are equally distorted 
(from left to right) by refraction effects at the windows-air interface. Fourth step, all optical 
components are aligned with a classical auto collimation procedure: reflection on the camera 
chip, onto the Fourier lens and then, on the collection lens. Newton’s rings are helpful for this 
task (look for instance the center of the CSP image of Figure 4.14). Note that for mechanical 
reasons it was not possible to set the chip of the DALSA camera exactly at the center of the 
optical bench, but this is not required by the CARS technique.  

 
autocollimation n°1 + autocollimation n°3

autocollimation n°1

fix miror

rotating
miror

Collection’s optical-axis
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�C

�


�	 �	�	

glass walls
liquid

air  
Figure 4.16 Schematic of the angular calibration procedure 

Fifth step of the alignment procedure, the angular magnification of the system is chosen by 
moving the Fourier lens and the camera with respect to the collection lens. To do so, the best is 
to observe simultaneously rising bubbles and to scan with a goniometer the collection lens. The 
smallest possible spot onto the CCD chip corresponds to a Fourier configuration. To do so and 
to prevent any damage of the CCD we reduce the coupling efficiency of the laser beam into the 
mono-mode fiber (component 13 in Figure 4.10). Sixth step, it is necessary to angularly calibrate 
the system. For this purpose a high precision goniometer is used (component 16 in Figure 4.10). 
A mirror is fixed onto this goniometer (the mirror surface contains the goniometer rotation axis) 
and immersed in the cell.  
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Figure 4.17 A typical pixel-angle calibration curve of the CARS system 
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This angular calibration is performed in three steps, see Figure 4.16. We first auto-collimate the 
laser beam with itself, to get a reference point. If we want to deduce the liquid refractive index 
from Snell-Descartes refraction law, we can turn the mirror so that we have a second auto 
collimation condition when the transmitted beam is perpendicular to the first glass wall (i.e. 
refraction angle 3β  in Figure 4.16). Finally we turn up to the desired angle Cθ  so that the laser 
beam is perpendicular to the second glass-wall and superimposed to the optical axis of the 
collection optics. By rotating the mirror around this angle we obtain a calibration curve like the 
one presented in Figure 4.17. The same procedure can be used to calibrate in intensity the system 
(see also §7.2).  

4.4 Micro-video imaging system (shadowgraphy) 
We review and discuss now the working principle and setup requirements of the long distance 
micro-video imaging technique. Figure 4.18 sketches the formation of the image of a circular disk 
onto a CCD chip, when this object is in focus and out-focus. 
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Figure 4.18 Schematic of the formation of an image  

4.4.1 Simple model for the formation of images 

The full calculation of the image of a particle lighted by a laser requires complex calculations. 
Nevertheless, for a particle lighted by an incoherent light source, this image can be reasonably 
modeled as the convolution product of its luminance profile and the point spread function (PSF) 
of the optical system (e.g. Goodman 1996;  Fdida, 2008):  

 ( , ) ( , ) ( , )i x y o x y s x y= ⊗  (76) 

where ( , )o x y  is profile of luminance of the particle, i.e. how it transmits/blocks light, ( , )s x y  is 
the impulse response of the optical system, considered as linear. These two functions are defined 
in the image plane on digital sensor of the optical system. 
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Figure 4.19 Illustration of the convolution product 

If τ  is the rate of transmission of light through the particle, the luminance function of the latter 
can be approximate by 
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 (77) 

For the PSF of a classical optical system, Pentland (1987) recommends to use a Gaussian 
function,  

 
2

2 2

2 2( ) exp rs r
πχ χ

⎛ ⎞
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⎝ ⎠
 (78) 

where 2 2 2r x y= +  is the radial coordinate, χ  the half-width of the impulse response at 2e− , γ  
the image magnification. Note that the predictions of this simple model have been compared 
successfully with more rigorous models using the GLMT (see Ren et al., 1996). In practice both 
χ  and γ  depend of the optical system size aperture, the wavelength, the particle distance to the 
object plane (out-of-focus effects).   

The analytical result of the convolution product Eq. (76) is given by  

 
2
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∫  (79) 

The resulting image intensity profile depends on the real radius a  of the particle, the radial 
coordinate r  in the object plane, the half-width χ  of the impulse response, the optics 
magnification factor g ,  a variable ρ  of integration in the image plane. Let’s introduce the 
following three non dimensional quantities:  

 2 2, ,a ra r
a
ρρ

χ χ
= = =�� �  (80) 
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From equations (79) and (80) we obtain the expression of the transmitted light intensity in the 
plane of the camera (image plane), in cylindrical coordinates: 

 ( ) ( ) ( ) ( )2 2
00

1 2(1 )exp exp 2
a

i r r I r dτ ρ ρ ρ ρ= − − − −∫
�

� � �  (81) 

where r�  is the polar radius and a� the reduced radius of the objetc. The distribution of light 
intensity ( )i r�  being a function of radius r� , it depends of two parameters: 

          - the rate τ  of transmission of light corresponding to the minimum level of gray in the 
image. This parameter is related to the contrast.  

         - the reduced particle radius a�  . 
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Figure 4.20 a) Intensity profiles obtained for different reduced  radius and light intensity transmissions, 

with 1γ = ; b) Schematic of the influence of the thresold onto the measured diameter. 

The influence of these two parameters onto the intensity profile of an image is shown in Figure 
4.20 (a). It appears clearly that the light transmission parameter τ  plays only a role in the global 
contrast of the image (mean gray level). The reduced radius a�  , which is proportional to a  and 
inversely proportional to χ , influences what may be called “the sharpness” of the image border 
(i.e. slope of the intensity curve in the border region).  

 

The profile height of the image is equal to the height of the object if the latter is large enough. 
For low values of a� , i.e. when the object is small in the impulse response, the minimum level of 
intensity is greater than τ , which implies a high profile level. Looking at Figure 4.20 (a) it appears 
difficult to get a single particle radius from a given profile. To do so, the idea is to first consider 
the height max minh i i= − (see Figure 4.20 b) and to define an intensity threshold level  minrefi i lh= +  
(Fdida, 2008). To each value of l  corresponds an image half-width lr�  . As can be seen in Figure 
4.20 (a) the true particle radius corresponds to a value of h  which is close to 50%. According to 
the literature the best optimization and compromise seems to be for 0.61l ≈ . Note that for large 
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particles (mostly our case except for electrolytic bubbles) and low impulse response (we use a 
long distance microscope), the particle image profile is rather sharp.  

 

 
Figure 4.21 View of the experimental setup from the micro-video imaging system side. 

 

4.4.2 Experimental setup  

Figure 4.21 shows a picture of the micro video imaging setup that we have developed. The 
corresponding schematics are shown in Figure 4.22, as well as in Figure 4.11. The system 
basically uses a broadband light source which generates short time (few microseconds) and low 
coherence pulses of light (it covers the visible spectrum). The output of this flash lamp is focused 
onto the aperture of a polymer fiber (1 mm core) before to be collimated and directed to the 
experimental cell. The camera is located on the other side of the cell, so that the CCD chip 
surface is perpendicular to the low coherence light beam. In front of the camera it was necessary 
to use a band pass filter to block the light from the laser beam (CARS system). The camera lens is 
a long distance microscope objective, which allows high magnification and high field depth. This 
objective has a fix working distance of 90 mm. The camera, from “Imaging Source” 
(ImagingSource, 2007) is a digital USB camera with 8 bits depth and 1024x1024 pixels. The 
camera was fully controlled (exposure time, frame rate, data storage, compression…) with a 
software provided by the “Imaging Source”.  

We have also built a complete synchronization system. The imaging measurements can be 
independent; meaning that only the camera and the flash lamp are synchronized together or the 
measurements can be conditioned by an external event, the CARS system or the “bubble 
detector”. The latter system was very helpful to detect bubbles passing through the probe 
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volume, randomly (i.e. large non spherical bubbles have complex trajectories), and to trig 
simultaneously the CARS and the imaging systems.  
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Figure 4.22 ILIDS and Shadowgraphy setups: a) ILIDS fringes pattern obtained for the out-focused image 
of a bubble, b) ILIDS  image of “glare points” when the image is in-focus, c) like image (b) but when the 

bubble is also illumitated by a white light beam too.   

4.4.3 Signal processing and statistics 

To analyze automatically the recorded image we have used a classical blob analysis. For that 
purpose we have developed scripts using the image analysis software called “Matrox Inspector 
2.1” (see Matrox Electronics Systems, 1997). For the blob analyze, two different intensity 
thresholds are defined so that for each detected particle within an image, we get two diameters. If 
the two measured diameter deviates from more than few percent, the corresponding particle was 
rejected from the analysis. In fact, this procedure may be thought as a rejection criteria based on 
the image sharpness (see §4.4.1). Additional criteria are used in this analysis like: the minimum 
and maximum particle size, the maximum roughness of the image (i.e. signature of an out-
focused image), the particle maximum non sphericity (based on the measurements of the two 
Ferets’s diameters), the particle center location, etc.  Figure 4.23 shows a screen copy of the 
Matrox Inspector application with a typical image to be processed, a part of the script and some 
of the raw results of the analysis. The particles detected by the blob analysis are indicated by a 
blue circle and an identification number (“label”). Note that particles with truncated images are 
rejected. The blob analysis output is a text file containing several thousands to several tens 
thousands of lines corresponding each to a particle which has been detected, with its label and all 
measured parameters. For the post-processing of these data, mainly to apply the different filters 
(sharpness, sphericity, aspect ratio, orientation angle…) and to perform statistics, we have 
developed a windows application under Borland Delphi environment, see Figure 4.24.  
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Figure 4.23  The blob analysis (particle image detection and analyse) is performed with a script that we 

have developped under Matrox Inspector 2.1 software environment. 

 
Figure 4.24 Copy of the main screen of the post-processing software of raw blob analysis output. 
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4.4.4 Remarks and conclusion 

The imaging system and software that we have developed are rather efficient for the analysis of 
spherical bubbles and low density flows (see comparisons with CARS technique in Chapters 5 & 
6).  

The imaging method needs really a lot of computational resources to digitize, store and process 
(blob analysis and statistics) these images. In the present study, to get reliable statics, it was 
usually necessary to acquire about one thousands images, and to processes several tens thousands 
of particles images. This means really a lot of time and disk space when performing parametric 
studies. Nevertheless, the major limitations of this technique are in respect to the smaller particles 
and high density bubbly flows.  

Small particles require a higher optical magnification. But in this case, as shown in §4.4.1, we get 
rapidly low contrast images that are difficult to analyze. This is particularly true when we have a 
broad band size distribution since, in this case, it is extremely difficult to adjust properly the 
detection thresholds for all size classes. For small particles, depth of focus effects may be really 
severe and the size distribution is surely biased by these effects. Large non spherical bubbles can 
be missed by the blob analysis if the parameters are not properly adjusted. High bubbly flow 
density means, partial or total overlapping of bubbles images, loss of contrast of all images. 
Partial overlapping cannot be managed by our system (but some do), so bubbles are simply 
rejected.  Indeed, to threat the overlapping it is necessary to use much more efficient detection 
scheme and then, more computational resources. Total overlapping means that some particles 
have totally “disappeared” from the image. Once again this introduce a bias on the particle count 
number. In that case, the size distribution is bias towards the smaller particles which have a 
greater probability to be totally masked by a bigger one. So, although the imaging technique is 
very flexible and easy to use (or seems to), it suffers from several draw backs (e.g Dehaeck, 2007).  
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Figure 4.25 Basic setup of an interferometric laser imaging droplet sizing system. On the right two images 

of an air bubble in water are presented: out focus (top) and in focus (bottom). 
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4.5 Interferometric sizing of particle by out-of-focus imaging of 
the glare spots  

4.5.1 Principle 

This rather new technique was developed by several authors (Hess 1998, Pagot 1998, Maeda et al. 
2000, Semidetnov 2004) even if, various aspects of this techniques were prior known (Koning et 
al. 1986, Glover et al. 1995). According to the authors this technique is called « Interferometric Laser 
Imaging Droplet Sizing technique (ILIDS) » or  « Interferometic Particle Imaging (IPI) ». In our opinion a 
better name for this technique would have been something like “Interferometric particle sizing 
technique by out-of-focus imaging of the glare spots” but, for convenience, we will use further 
on the acronym ILIDS to designate this laser technique.  

 

ILIDS allows getting the diameter and two velocity components of all particles lighted by a laser 
sheet, provided the particles are spherical, transparent and not too small, and if the particle 
number density is not too high. The optical setup is identical to the one of a PIV/PTV system 
(i.e. Raffel et al. 1998). Basically, it is composed of a double pulse YAG laser which generates two 
superimposed and time delayed laser sheets, and of a digital camera from a PIV-type (Figure 
4.25). One significant particularity to notice here is that the camera is localized at an observation 
angle where the scattering pattern is dominated by only two scattering processes (for a water 
droplet in air and for the perpendicular polarization, reflected and refracted rays have the same 
intensity at 67θ ≈ ° ). Indeed, this technique has been mainly used to characterize droplets 
( )1m > , and only few studies were devoted to the sizing of bubbles (i.e. Kawaguchi et al. 2002, 
Dehaeck 2007). Let us remember that for an air bubble in water and parallel polarization, 
refracted and reflected rays have the same intensity for 45 .θ ≈ °  For such particular angle, if the 
camera lens is perfectly focused onto the bubble surface, we do not really observe the contour of 
the bubble since its surface is a specular one. In fact we observe only two bright spots : the so-
called “glare points” which correspond to the two exit points of the refracted and reflected rays 
which are scattered in the camera direction. These points are noted 0gl  et 1gl  in Figure 4.25. 
From the measurement of the distance ( )01l  between the two glare spots one can deduce the 
diameter of a spherical particle, but the accuracy and dynamics will be quite limited. If now we 
slightly un-focus the camera lens, the particle image will take the form of a circular disk 
containing a fringe pattern (see Figure 4.25). The number N  of fringes in each disk depends of 
the particle diameter D  and refractive index m , the laser wavelength 0λ  and the camera optical 
aperture, A . The principle of ILIDS is then to determine the angular frequency of the fringe 
pattern in each disk present to infer the size of the corresponding particle, i.e. the particle size 
distribution. In the next paragraphs we present the work we have done to derive analytical 
expressions and build numerical tools to predict the response of ILIDS, with both geometrical 
optics and the Lorenz-Mie theory.  
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4.5.2 Modeling the fringe patterns  

Geometrical Optics model  
The glare spots are rather punctual sources. Their close distance makes them coherent each other 
and, like in the famous Young’s interference experiment with two slits, they interfere at infinity.  

When the camera lens is in focus, positioned in the forward scattering domain, the particle image 
onto the CCD chip is composed of two bright spots, noted 0GL and 1GL  in Figure 4.25. If the 
camera lens is out of  focus ( fz z<  or fz z> , but the first condition gives less optical 
aberrations) the images of the glare spots superimpose each other and interfere onto the CCD 
chip, which explains the observed fringes. The diameter of the disk which contains the fringes 
can be deduced from simple geometrical considerations (see Albrecht et al. 2004):  

 ( ) ( )1 11P Pa z A z f z− −= − −  (82) 

where , ,A z f et Pz  correspond respectively to the lens aperture diameter, the distance between 
the aperture (diaphragm) and the CCD chip, the back focal of the camera lens and the distance 
between the particle and the camera lens. We notice that the diameter of the image of the disk 
changes with the distance ( )Pz . This feature can be used to measure the particle distance from 
the camera lens and then, to get the 3D coordinates ( ), ,x y z of the bubble.  At this step it is 
important to note that, by some aspects, ILIDS technique is halfway between the shadowgraphy 
technique, which works in the space domain, and the CARS technique, which works in the 
Fourier Domain.  

 

Lets now calculate, with geometrical optics, the properties of the interference pattern produced 
by the refracted and reflected rays, with respect to the scattering angle (observation) θ , the laser 
wavelength in vacuum 0λ , the refractive index of the surrounding medium sm  and the bubble 
properties (diameter D  and refractive index bm ). To simplify, we define a reference plan ( )Σ  for 
the incident wave and a reference plan ( )′Σ  for the scattered rays. Figure 4.26 shows on the right 
the path of the aforementioned rays for a droplet ( )1m > and, on the right, for a bubble ( )1m < . 
We also define a reference ray coming from and perpendicular to the reference plan ( )Σ . 
Afterwards, this reference ray passes through the particle centre and stop onto the reference ( )′Σ  
being perpendicular to this plan. The corresponding optical path is equal to 2Ref m Dδ = . The 
optical path difference between the optical path 0δ  and the reference ray scattered in the 
direction θ  is  

 ( ) ( )0 1 2 sin / 2s s sm a a m D m Dδ δ θ− = + − = −Ref  (83) 

From the previous equation we can derive the related phase delay 0φ : 
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(a) (b)  
Figure 4.26 Geometry of our ILIDS model: sketch of the refracted (p=1) and reflected (p=0) rays 

scattered by a droplet (left) and a bubble (right) in the scattering direction θ . 

For a droplet as well as a bubble, in the scattering direction θ , the optical path difference of the 
refracted ray compared to the reference ray scattered is 

 ( )1 1 2 3s b s sm b m b m b m Dδ δ− = + + −Ref  (85) 

with ( )3 1 1 sinb b R τ= = −  and 2 sinb D τ ′= , we obtain the phase delay of the refracted rays 1φ : 

 ( ) ( )1 1
0 0

2 2 sin sin
/ s b s

s

m D m m
m

π πφ δ δ τ τ
λ λ

′= − = −Ref  (86) 

It is better to reformulated Eq. (86) as a function of the scattering angle θ  (Bultynck 1998). To 
do this the relative refractive index /b sm m m=  is introduced and the quantity 

sin sinb sm mτ τ′ −  is transformed as follows:  

 

( )
( ) ( )

( ) ( )
( )

2

2 22 2

2 22 2

22

sin sin

sin 2 sin sin sin

cos 1 cos 2 sin sin

1 cos cos 2 cos cos

b sm m

m m m

m m m

m m m

τ τ

τ τ τ τ

τ τ τ τ

τ τ τ

′ −

′ ′= − +

′ ′= − + − −

′= + − − −

                                

                                

                                2 sin sinmτ τ τ′ ′−

 (87) 

We now introduce the Snell-Descartes relation cos cosmτ τ ′=  (Van de Hulst 1957), to get 

 ( ) ( )2 2sin sin 1 2 cosb sm m m mτ τ τ τ′ ′− = + − −  (88) 
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The first refracted ray is scattered in the direction 2 2θ τ τ ′= −  (Van de Hulst 1957), so that Eq. 
(88) simplifies to  

 ( ) ( )2 2sin sin 1 2 cos / 2b sm m m mτ τ θ′ − = + −  (89) 

Finally, with the above expression, Eq. (86) becomes : 

 ( ) ( )2
1

0

21 1 2 cos / 2i
sm D m mπφ θ

λ
= − + −  (90) 

In Eq. (90) 2i =  for a droplet and 1i = for a bubble. The latter condition has been introduce to 
take into account that 1 0δ δ− ≥Ref  for a droplet (i.e. sin sin 0b sm mτ τ′ − ≥  in Eq.(86), see  
Figure 4.26) and 1 0δ δ− ≤Ref  for a bubble (i.e. sin sin 0b sm mτ τ′ − ≤  in Eq.(86), see Figure 
4.26). It comes up that for the scattering direction θ  the phase delay between the reflected and 
the first refracted rays read as:  

 ( ) ( ) ( )2
01 0 1

0

2 sin / 2 1 1 2 cos / 2
/

i

s

D m m
m

πφ φ φ θ θ
λ

⎡ ⎤Δ = − = − + − + −
⎣ ⎦

 (91) 

Assuming an equal amplitude for these rays, noted I , the  interference scattering pattern 
produced by these rays is of the general form:  

 ( ) ( )0 0 01, , , 2 1 cosI m D Iθ λ φ= + Δ⎡ ⎤⎣ ⎦  (92) 

We are looking for periodicity in θ  of Eq. (92), i.e. when ( )0, , ,I m Dθ λ =  ( )0, , ,I d m Dθ θ λ+ . 
It requires to determine the occurrence of the maxima of 01φΔ . For an harmonic function it 
means that ( )01 / 2d d Nφ θ πΔ ≡ , where N is a natural integer quantifying the number of 
indeterminate cycles or more simply the “fringe count”. With Eq. (91) and derivating Eq. (91) we 
obtain that, in the vicinity of θ , over a small angle region [ ]/ 2, / 2θ θ θ θ− Δ + Δ  with 0θΔ ≈ ° , 
the particle diameter can be infer from the optical parameters of the setup and from the 
measurement of the number N of fringes present in one disk :  

 ( ) ( ) ( )
( )

1

0
2

1 sin / 22 cos / 2
1 2 cos / 2

i

s

mND
m m m

θλ θ
θ θ

−
⎡ ⎤−
⎢ ⎥≈ +

Δ ⎢ ⎥+ −⎣ ⎦
  (93) 

Physically θΔ , in radians, represents the collection angle of the camera lens. For a low aperture 
camera lens the collection angle is about /A fθΔ ≈ . It can also be measured with a goniometer 
(as we did, see later on) or deduced both from the camera lens numerical aperture (N.A.) as well 
its aperture number (#F/D) : 
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 ( ) [ ]12 . . /   N A F D radθ −Δ ≈ ≈  (94) 

The quantity /aF N θ= Δ  is an angular frequency averaged onto the angular range θΔ  . This 
frequency can be obtained with a Fourier analysis of the recorded image pattern, or by any other 
fringes counting technique.  

To conclude, the basic equation to get the particle diameter read as :  

 ( )0, , ,b s aD m m Fω θ λ≈  (95) 

with  

 ( ) ( ) ( ) ( ) ( )
1

2
02 / cos / 2 1 sin / 2 / 1 2 cos / 2i

sm m m mω λ θ θ θ
−

⎡ ⎤≈ + − + −
⎣ ⎦

 (96) 

where ω  is an optical constant which only depends on the particle  relative refractive index and 
the angular position of the camera lens axis, with 1i =  for bubbles ( 1m < ),  and 2i =  for 
droplets and other spherical particles with ( 1m > ).  Eq. (96) relates directly the measured 
frequency to the diameter to be determined.  As a example, for air bubble in water with 

1 1.334m− = , 0 0.532µmλ =  and 67θ = °  we get that 8.59µmω ≈ . For the latter parameters,  
the angular frequency of the ILIDS fringes pattern of a 400D µm=  bubble is of 

1/ 46.6 aF D radω −= ≈ , i.e. 0.26  fringes per degree, which is in rather good agreement with 
LMT predictions . 

Basically, the main limitation of the model we derive above is in the assumption of the existence 
of two dominant scattering processes: reflection and first refraction with, in addition, similar 
intensities. For air bubbles in water for instance, this model is only valid for 30 60θ≤ ≤ °  as, 
outer of this region, other scattering processes may be not negligible and even more intense that 
rays 1p = , see Figure 4.27.  
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Figure 4.27 Intensity of p=1, 2, 3, 4 rays for air bulles in water (Fresnel coefficients only)    
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Figure 4.28 a) LMT caculations of the ILIDS fringes main angular frequency versus the bubble size; b) 

raw Fourier spectra of the corresponding scattering diagrams.  

Lorenz-Mie theory and numerical examples 
According to the Lorenz-Mie theory the ILIDS fringes correspond only to the natural oscillations 
of the scattering diagrams, i.e. “Mie’s lobes”. Thus, it turns out that this technique is simply based 
on the counting of the periodical structures observed in any scattering diagram. Indeed, in the 
LMT framework, it is known from the beginning that the number of lobes is related to particle 
size parameter ( )/m Dπ λ . To determine with LMT the relation between the number of fringes 
in an image and the particle diameter, it is just necessary to calculate the angular frequency of the 
scattering patterns over the angular range corresponding to the view angle of the camera. It is 
obvious that the scattering diagram must be calculated for the appropriate polarization, laser 
wavelength and refractive indices. Figure 4.28 shows the calibration curve calculated with the 
LMT and the parameter used in the experiment (see next section). 

 

4.5.3 Experimental setup and exemplifying results  

The ILIDS setup is rather simple. Basically we use the CARS laser beam to light the bubbles and 
a third digital CCD camera (similar to the one used for the shadowgraphy tectnique, but with a 
color sensor) located at 37 .θ = °  This angle was imposed by the fact that it remains only a limited 
access around the experimental cell. The ILIDS camera was equipped with an out-focused 
photographic camera lens. For the camera control and the images recording we use the same 
software as the micro-video imaging system (see §4.4). 

For the alignment we use the same procedure as the CARS technique. The idea is to scan the 
ILIDS camera lens with a strongly reduced laser power and a mirror fixed onto a motorized 
goniometer. Knowing the angular position of the mirror, we can deduce the relation between the 
number of pixels and the scattering angle. The big difference with CARS  is the size of the beam 
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onto the CCD chip, as ILIDS does not operate with a Fourier configuration. So, for the 
calibration of ILIDS it is necessary to reduce the laser beam size (with a diaphragm). Figure 4.29 
shows the typical results obtained during the calibration of the ILIDS system. Figure 4.29 a) 
shows the intensity profile recorded when the laser beam was hitting the ILIDS camera under 7 
different scattering angles. By extracting the position of the various maxima, the pixel-angle 
calibration curve of the system is obtained as visible on Figure 4.29 b). 
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Figure 4.30 Calibration and signal processing steps for the ILIDS system.  

 

Figure 4.30 shows images of air-bubbles in water recorded with the ILIDS system, after the 
alignment and the calibration steps. In this figure we have from left to right: the ILDS image of a 
single bubble, its intensity profile averaged over the fringes axis and the corresponding amplitude 
spectra. From the localization of the main peak in the Fourier spectrum we get the angular 
frequency of the fringe pattern and, with help of the previously derived equations, we get the 
bubble diameter. 
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Figure 4.31 Different ILIDS images obtained when there is several bubbles within the probe volume. 

If now we generate a denser bubbly flow, we get overlapping ILIDS images such as the four ones 
presented in Figure 4.31. From the image processing point of view, it seems extremely difficult to 
detect all bubbles and to perform a reliable frequency analysis for ILIDS images presented in 
Figure 4.31. This is a general drawback of this technique (see §4.5.1) and it is the reason why we 
only use ILIDS to characterize very dilute bubbly flows. 
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             Figure 4.32 Comparison between three techniques: Shadowgraphy, CARS and ILIDS 

As an example, Figure 4.32 compares bubble sizes measured with ILIDS, the micro-video 
imaging (shadowgraphy) and the CARS systems, see also Table 4.2. This comparison was done 
for air bubbles in water produced by the piezo-jet. The observed angular range was of  
~ 72.0 86.0°−  for the CARS and ~ 36.2 39.2°−  for ILIDS systems. Note that there were too few 
measurements with the ILIDS system to put error bars. But, the agreement between the three 
methods is nevertheless already rather satisfactory (better than 5%).  
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4.5.4 Discussion and conclusion  

The raw results of ILIDS are really aesthetic, but in its classical version this technique is limited 
to very dilute flows (to avoid images superimposition, see Figure 4.31). As remedy to this 
problem Kawaguchi et al. (2002) have proposed to compress the images along the fringes 
direction (Figure 4.33) by inserting cylindrical optics (lenses) between the collection lens and the 
CCD. This solution increases somewhat the number of particles per image that can be managed 
and then the size and bubble density number of the flow field. Some authors put a slit (thin 
aperture) in front of the camera lens instead using cylindrical lenses. Unfortunately, optically the 
slit method is not as good and it leads to a significant loss of energy.  

Another important limitation of ILIDS is that it requires transparent particles of known 
refractive index. To overcome this constraint, Semidetnov and Tropea (2004) have proposed to 
light the particles with two laser beam crossing each other with a small angle. This setup, named 
“Global Phase Doppler System (GPDS)”, allows in addition to control the number of fringes in a 
particle image. In principle, the latter feature allows to measure small particles (one key limitation 
of classical ILIDS) but, in practice, the so-called Mie resonances limit its applicability. Due to the 
beam crossing, the GPDS configuration limits also strongly the field of view that can be 
observed.   

 

The signal processing of ILIDS images is also a difficult point as it requires large computational 
resources and storage capacities. For the particle detection one interesting solution to simplify the 
problem is to use a PIV system working in parallel to the ILIDS system, but localized at 90θ = ° . 
In PIV images, with minimum distortion (90° angle view of the laser sheet), all particles are 
identified by spots of few pixels. These PIV spots can be used  to make easier the localization of 
the centers of the disks in the ILIDS image. This setup is rather bulky, difficult to align and not 
so cost effective.  

Air bubble in water Micro.Video LSQ-LMT-log-norm. ILIDS 
Experiment label [um] [um/um] [ - ] [um] [um/um] [ - ] [um] angular freq. 
Piezo_ilids_10_ 746 0,014 1,3345 752 0,025 1,3345 723 4,828 
Piezo_ilids_11_ 761 0,004 1,3345 762 0,010 1,3345 745,50 3,610 
Piezo_ilids_13_ 551 0,006 1,3345 548 0,025 1,3345 539,98 4,980 
Piezo_ilids_14_ 537 0,002 1,3345 537 0,025 1,3345 542 3,620 
Piezo_ilids_15_ 967 0,021 1,3345 988 0,030 1,3345 950 6,337 
Piezo_ilids_16_ 702 0,007 1,3345 712 0,010 1,3340 677 4,526 
Piezo_ilids_17_ 721 0,006 1,3345 732 0,010 1,3340 700 4,677 
Piezo_ilids_18_ 908 0,027 1,3345 908 0,030 1,3350 1085 7,243 

          Table 4.2 Comparison between three techniques: Shadowgraphy, CARS and ILIDS 
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Figure 4.33 Two techniques to compress interferometric images along the fringes axis: slit based method 
and the cylindrical optics one. The real images presented on the right were obtained for water droplets by 

Kawaguchi et al. (2002). 

To conclude on ILIDS, from our own experience and from the literature review, this technique 
suffers from severe drawbacks. However, it is still under development with good potentials 
(particle size and position in 2D/3D, two velocity components). In our opinion, the CARS 
technique is more simple to implement and much less costly. The CARS technique does not 
provide any information about the bubble velocity and position, but it gives information on the 
bubble composition and it is much less sensitive to bubbles non-sphericity. Another major 
difference between both techniques is that CARS is an integral technique which requires low 
computational resources to get bubble size distributions in contrary to the ILIDS technique, it 
can manage denser flows.  
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5 EXPERIMENTAL RESULTS FOR CLOUDS OF 
SPHERICAL BUBBLES 

In this chapter we present experimental results on the measurement of the size distribution 
and the relative refractive index, for bubbly flow conditions where the bubbles are reasonably 
spherical.  

5.1 Bubble size distribution measurements 

5.1.1 Natural & rather dilute bubbly flows 

Figure 5.1 shows a small region the micro-video images for four different bubbly flows 
generated by (a) the assisted jet; the piezo-jet operating in (b) a stable mode, (c) a quasi-stable 
mode and (d) unstable mode. The bubble mean sizes are respectively of 275,550,550,∼  and 
960 .µm  These bubbly flows are dilute. However, they are denser than it is suggested by Figure 
5.1. Indeed these images only show the bubbles that are in the effective depth-of-view of the 
micro-video system. From our own experience and for the considered cases and settings, the 
particle number in volume is estimated to be about 3 to 4 times larger than what we see in the 
micro-video images. Thus, we estimate that for results presented in this section the bubbles 
concentration is in the range 10 to 200 bubbles/cm3,  i.e. void fraction ε ∼ 0.001–0.1%. In 
Figure 5.2 to Figure 5.5 we present the results obtained for the flow depicted by, respectively, 
Figure 5.1 (a) to (d). All of these figures contain subfigures showing: 

(a) a typical CARS image;  

(b) the corresponding pass band filtered and calibrated profile that is compared to the 
reconstructed one;  

(c) the BSD obtained by the micro-video imaging-system;   
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(d) the BSD measured by the CARS system with the LSQ inverse method, using LMT 
as a scattering theory and the Log-Norm. BSD; 

 (e) the BSD measured by the CARS system with the NNLSQ method using LMT and 
without any low pass filtering (raw-method).   

 

                                   
Figure 5.1 Partial micro-video images of four different bubbly flows. 

 

The CSP in Figure 5.2 exhibits a low angular frequency modulation that is characteristic of 
rather small bubbles. The experimental and reconstructed CSP are similar whatever the latter 
overestimates the decay of the visibility for high order fringes. However, the BSD obtained by 
the micro-video system and by the CARS are in good agreement, they are of a log-normal 
type, with D  centered between 274 mμ  and 300 mμ . All the corresponding statistics are 
summarized in Table 5.2. The NNLSQ method, with LMT as a scattering theory and a low 
pass filtering procedure, gives clearly the best results when compared to micro-video and 
Abbe refractomer measurements. The POA (p=0) gives here a very good estimation of the 
mean diameter, however from our experience, it is not always the case. The same holds for the 
refractive index. In fact the way we use here the POA is rather sensitive to CSP noise and 
distortion (due to the poor statistics).  

In Figure 5.3, which corresponds to the case presented in  Figure 5.1 (b), the experimental and 
reconstructed CSP are in perfect agreement except for the higher order fringes. The mean 
diameter for all measured BSD is centered between 269 mμ  and 474 mμ . Both the micro-



CHAPTER 5 - EXPERIMENTAL RESULTS FOR CLOUDS OF SPHERICAL BUBBLES 

 

92 

video imaging-system and the NNLSQ-LMT method show that the BSD is bimodal, this is 
due to the fact that the piezo-jet was operating in an unstable regime.  

 
Figure 5.2 Experimental results for bubbly flows produced by a water assisted air injector: a) critical 

scattering pattern; b) experimental and reconstructed intensity profiles; BSD obtained with c) the 
micro-video imaging-system; (d-e) the CARS technique with d) the LSQ-LMT-log-norm and e) the 

NNLSQ-LMT as inverse methods. 

 
Figure 5.3 Same as Figure 5.2 but for larger bubbles, produced by the piezo-jet operating in a stable 

mode (for very narrow size distribution). 
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Figure 5.4 Same as Figure 5.2 but for larger bubbles produced the piezo-jet operating in a quasi-stable 

mode (bi-modal size distribution). 

 

 
Figure 5.5 Same as Figure 5.2 but for larger bubbles produced by the piezo-jet running is an unstable 

mode (largest bubbles). 
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If positions of the two modes are in very good agreement, relative weights are not as good. 
On the other hand, it should be noted that the NNLSQ-LMT-raw method generates noise, or 
‘ghost bubbles”, that induces a strong overestimation of the bubble size standard deviation 
(Table 5.1). The noise generated by the inversion is clearly a problem. Although it is not totally 
surprising as it is a general drawback when dealing with ill-posed inverse problems. This could 
be managed by improving the regularization scheme of the scattering matrix. For the moment, 
to get reliable statistics with the NNLSQ method, the BSD must be low pass filtered  
(NNLSQ-Filt.) prior calculating the standard deviation with Eq. (44). This filtering procedure 
can not correct the fact that the weight of the first mode is slightly overestimated, but it 
significantly improves the estimation of the standard deviation on the bubble size (see Table 

5.1, Table 5.2). For this bi-modal distribution, the agreement between the CARS technique 
(with the NNLSQ-LMT-Filt. method) and the micro-video & Abbe refractomer 
measurements is better that 1 and 4% for the mean value of the diameter and standard 
deviation, and 0.03% for the relative refractive index. The results obtained with other inverse 
methods are less satisfactory. Compare to case presented in Figure 5.2 POA (0+1) gives much 
better estimation of the bubble cloud parameters. The latter remark explains why combined 
with its high computation efficiency POA is always interesting to get a first estimation of the 
parameters of the bubble clouds.  

 

Table 5.1 Statistics corresponding to Figure 5.2.   

 

Table 5.2 Statistics corresponding to Figure 5.4. 

Figure 5.6 and Figure 5.7 compare statistics obtained simultaneously with the micro-video 
imaging systems and the CARS technique (mainly with the LSQ-LMT-Log. Norm inversion 
procedure) for D  and /D Dσ , and various air/water bubbly flows. The agreement is about 
5%  and 0.05±  for these two parameters respectively. In these experiments, the bubble 

 D  [µm] Dσ  [µm] m [ - ] 

Micro video / Abbe  refract. 277 69 1.3345 
POA (0)  275 - 1.3424 

POA (0+1) 243 51 1.3432 
LMT-3pts 256 49 1.3374 

LMT-Log-norm. 256 49 1.3390 
LMT- NNLSQ-filt. 283 55 1.3359 
LMT-NNLSQ-raw 296 63 1.3359 

 D  [µm] Dσ  [µm] m [ - ] 

Micro video / Abbe refract. 574 54 1.3345 
POA (0)  491 - 1.3428 

POA (0+1) 550 55 1.3393 
LMT-3pts 495 50 1.3382 

LMT-Log-norm. 575 55 1.3350 
LMT-NNLSQ-filt. 569 56 1.3349 
LMT-NNLSQ-raw 471 130 1.3349 
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relative refractive index is determined also by the CARS technique.  For the results presented 
in Figure 5.6 and Figure 5.7, the standard deviation on the measured refractive index, 
compared with Abbe refractometry measurements, is 0.0015±  with the LSQ-LMT-Log-
Norm. inverse method and  0.0005±  with the NNLSQ- LMT-raw one. 
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Figure 5.6 Comparison of the bubble mean diameter measured for air/water bubbly flows, with the 

micro-video system and the CARS (with the LSQ-LMT-Log-Norm. inverse method).  
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Figure 5.7 Same as Figure 5.6 but for the relative standard deviation of the bubble size, and for two 

different inverse methods. 
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Figure 5.8 typical micro-video image and CSP for an air-water flow generated by a porous medium.  

(Exp. Porus_big flow_1). 
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Figure 5.9 Typical micro-video image and CSP for a air-water flow generated by a porous medium 

(Exp. Porus_big flow_2).   
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Figure 5.10 Typical micro-video image and CSP for a air-water flow generated by a porous medium 
(Exp. Porus_big flow_4). 

Figure 5.8, Figure 5.9 and Figure 5.10 show typical micro-video images and the related CSP 
for denser air-water bubbly flows that were generated by a porous medium.  The 
corresponding statistics are summerized in Table 5.3 (see last rows). Note that in Figure 5.9 
the micro-video image contains a lot of particle images that strongly overlap. Indeed, the 
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validation rate of our image processing method (see §4.4.3) was very low.  The corresponding 
CSP is easily recognizable, but the visibility of higher order fringes is almost null. The latter 
remark is in agreement with numerical simulations (see §2.5): the contrast of CSP is dumped 
by the broadening of the bubble size distribution (and not with the particle number). The 
statistics obtain with both methods, and with the Abbe refractometer, are in rather good 
agreement. But it is difficult to say, except for refractive index, which method is more accurate 
than the other one.  

Table 5.3 Statistics for dense bubbly flows (centered porous medium) and the experiment with the 
curtain on bubbles (porous medium on the side ways of the CARS probe volume).  

 

5.1.2 Bubbly flows with particular configurations 

The CARS technique is based on the assumption that each bubble within the probe volume 
scatters a part of the incident beam independently from the presence of the other bubbles, see 
Eq. (42).  This assumption means that interference effects and multiple scattering phenomena 
are negligible, as well as the disturbances induced by the surrounding bubbles on the incident 
laser beam and the scattered light. Note that this is a classical assumption made by most 
optical sizing methods.  In this section we present results that give some physical insight about 
the above mentioned effects. For this purpose, bubbly flows with a special configurations 
were produced: twins bubbles, bubbles outside the probe volume and densely packed streams 
of bubbles. 

 

5.1.2.1 Twins bubbles (interference between two close bubbles) 

The CARS technique like, to our knowledge, all optical particle characterization, assumes that 
the scattering of all bubbles within the probe volume can be threaten as an incoherent 
process. This is a key underlying hypothesis used in the integral equation Eq. (42).  

Under particular operating conditions, the piezo-jet injector can generates in silicon two twins 
water bubbles at the same time. So, there is way to study with this system the coherent 
interactions, multiple scattering effects, between the light scattered by both bubbles. The goal 
of this section is not to present a complete study but some insight about interaction effects.  

Experiment N of 
particles 

recognized 
(Micro-

Video) 

Micro.Video /Abbe refract. LSQ-LMT-log-norm. LMT-3pts 
D 

[um] 
σ/D 
[ - ] 

m 
[ - ] 

D 
[um] 

σ/D 
[ - ] 

m 
[ - ] 

D 
[um] 

σ/D 
[ - ] 

m 
[ - ] 

Piezo_cur_alone_ 185 565,0 0,010 1,3345 548,0 0,010 1,3340 507,0 0,040 1,3350 
Piezo_cur_left_ 55 559,0 0,010 1,3345 556,0 0,010 1,3330 576,0 0,010 1,3330 

Piezo_cur_right_ 11 574,0 0,015 1,3345 549,0 0,010 1,3340 542,0 0,040 1,3340 
Piezo_curt_back_ 117 560,0 0,010 1,3345 546,0 0,010 1,3340 518,0 0,040 1,3350 
Piezo_curt_front_ 219 562,0 0,010 1,3345 546,0 0,010 1,3340 576,0 0,010 1,3310 
Porus_big_flow_1 37208 285,0 0,377 1,3350 280,0 0,450 1,3360 266,0 0,308 1,3390 
Porus_big_flow_2 5508 308,0 0,339 1,3350 340,0 0,500 1,3320 208,0 0,290 1,3470 
Porus_big_flow_4 - 411,0 0,360 1,3350 514,0 0,130 1,3320 426,0 0,114 1,3345 
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Figure 5.11 Coordinate system for the twins bubbles. 

Due to hydrodynamics interactions between the two falling bubbles, they are not exactly 
located each other in the same way from one experiment to another one. However, by 
carrying many experiments and with the help of the micro-video imaging system, it is possible 
to trig the CARS system and record CSP patterns for specific twin bubble patterns. Figure 
5.11 sketchs the twin’s bubbles geometry. The micro-video imaging system gives an image of 
the twins bubbles in the (yx)-plane while the CARS system collection optics is parallel the x-
axis. With the micro-video-imaging system we can estimate yφ  and TwL  but not xφ . So, the 
latter is just estimated visually. From Figure 5.12 to Figure 5.16 we present exemplifying 
results for different pairs of bubbles configurations with from left to right: the micro-video 
image, the recorded CSP and its corresponding intensity profiles, the reconstructed CSP. The 
size of the bubbles is about D=700 µm. The more severe interference effects are observed for 
the case presented in Figure 5.12: when the main axis of the twins bubbles is almost parallel to 
the CARS system collection optics. Indeed, in that case CSP exhibits an unusual high 
frequency fringes pattern which is superimposed to the low frequency (and usual) one. For the 
other cases, interferences effects change only the amplitude of the critical fringes. In Figure 
5.15, where two bubbles with different size are very close from each other, we have a mix of 
both effects: high frequency fringes and reduced visibility. Figure 5.17 summarizes 
comparisons between the mean diameter measured with the micro-video and the CARS 
systems for different orientations of the twins bubbles. In most cases the CARS and micro-
video system agree at better that 5%. For some cases, close to the one presented in Figure 
5.12, the error is more significant. However, it must be kept in mind that even with the micro-
video system errors come out when the twins bubbles are aligned along its optical collection 
axis (one bubble is in the shadow of the other one, so it is “non-visible”) or partially aligned 
with it (the two images are superimposed and the imaging software fail to detect properly the 
two bubbles, or reject one or both of them, see next paragraph). 
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Figure 5.12 Twins water bubbles in silicon oil oriented along the CARS collection axis: 0y xφ φ °∼ ∼  

and 1.1TwL D≈  (Exp:  SiP1200_2Tw_2) 

 
Figure 5.13 Twins water bubbles in silicon oil oriented close to the vertical axis (perpendicular to the 

CARS collection axis): 5 ; 0y xφ φ° °∼ ∼  and 1.1TwL D≈  (Exp. SiP1200_2Tw_6)  

 
Figure 5.14 Twins water bubbles in silicon oil oriented like 20 ; 45y xφ φ° − °∼ ∼  (the bubble at the top 

is behind the bottom one, with respect to z-axis) and 1.3TwL D≈  (Exp. SiP1200_2Tw_8) 
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Figure 5.15 Twins water bubbles in silicon oil oriented like 20 ; 40y xφ φ− ° °∼ ∼  (the bubble at the top 

is in front of the bottom one, with respect to x-axis) and 1.0TwL D≈  (Exp.  SiP1200_2Tw_9) 

 
Figure 5.16 Twins water bubbles in silicon oil oriented like 5 ; 45y xφ φ− ° °∼ ∼  (the bubble at the top is 

in front of the bottom one, with respect to x-axis) and 1 21.0( ) / 2TwL D D≈ +  (Exp. SiP1200_2Tw_12) 
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Figure 5.17 Comparison of the mean diameter measured with the micro-video and the CARS systems 

for different orientations of the twins water bubbles in silicon oil.  
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5.1.2.2 Bubbles out of the probe volume (influence of) 

In the following experiment we have tried to get insight about the influence on CARS 
measurements of the bubbles that are outside the probe volume (i.e. surrounding bubbles). To 
do so, we use the piezo-jet to generate a stream of mono disperse bubbles within the probe 
volume. For producing surrounding bubbles we have used a long but narrow porous medium 
to generate a curtain of bubbles. 

      
Figure 5.18 a) Schematic of the experimental setup to test the effect of bubbles outside the probe 

volume (i.e. in the present case it is on the “left side”); Micro-video images of monodisperse bubbles 
passing through CARS probe volume when the curtain of bubbles is b) on the front and c) back sides. 

Four cases have been considered: the curtain of bubbles is in front of the CARS collection 
lens, behind the probe volume with respect to the CARS collection lens, on the left side and 
on the right sides, see Figure 5.18. The axis of the curtain of bubbles was kept parallel to the 
glass windows at a distance of about 30 40mmΛ −∼  from the probe volume center.  

Figure 5.19 shows two typical images recorded with the micro-video systems when the curtain 
of bubbles was on the left side and, Figure 5.20, when the curtain of bubbles was on the right 
side. The bubble generated within the probe volume is pointed out with a red circle and an 
arrow. As the micro-video system was focused onto the bubble within the probe volume, the 
images of the surrounding bubbles are blurred (out-of-focus). Figure 5.21 shows the 
corresponding recorded CSP. Each subfigure corresponds to a particular position of the 
curtain of bubbles. Note that the CSP obtain for a single bubble, without curtain of bubbles, is 
supposed to be a reference. The corresponding statistical results are presented in the first five 
rows of Table 5.3.  
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Figure 5.19 Typical micro-video images for a curtain of bubbles localized on the right side of the cell. 

 

 
Figure 5.20 Typical micro-video images for a curtain of bubbles localized on the left side of the cell. 

Looking at Figure 5.21 we may be first surprise by the weak influence of the bubble curtain on 
the recorder CSP. However, it can be noticed in Figure 5.21 that the right and the back side 
CSP are very similar and show almost the same deviation from the CSP obtained for single 
bubble. From this remark we can conclude that the single bubble case is probably not a true 
reference one. In fact we do not find any physical reason for the CSP to be sensitive to the 
surrounding bubbles when they are located in these two regions. The more convincing 
explanation is that the piezo-jet has slightly changed of operating regime during these 
experiments. They could be many reasons for that (noise, vibrations, temperature…), it could 
also be induced by the curtain of bubbles (which induces recirculation of the fluid within the 
experimental cell). So, we produce Figure 5.8 to compare only the most interesting cases: the 
left side (input beam blocked, wave front perturbed) and the front side case (scattered light 
attenuated, distorted), while the right side case being considered here as a reference one. Even 
with this simplified figure, the effects of surrounding bubbles onto the laser beam 
characteristics and the scattered light transmission towards the CARS system appears to be 
weak or, at least, difficult to detect visually. Table 5.3 which resumes the corresponding 
statistics tell us the same: the size and refractive index measurements obtained with the CARS 
technique are not really dependent on the surrounding bubbles. One additional interesting 
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result in this table is that the micro-imaging validation count appears to be extremely sensitive 
to the location of the surrounding bubbles, this may be understood looking at Figure 5.19 
(due to the curtain of bubbles, the image background appears to be noisy). Statistics with the 
micro-video system are then biased by this phenomenon too.  
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Figure 5.21 Comparison of CSP of a stream of monodisperse air-bubbles in water when a curtain of 
bubbles is blocking alternatively one of the four optical accesses of the experimental tank (see Figure 

5.18). 
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Figure 5.22 Comparison of CSP for a stream of single bubbles when a curtain of bubbles is blocking 

partly the incoming laser beam or the light scattered by bubbles towards the collection optics.  
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For a question of time, as well as technical reasons, it was not really possible to change the 
bubble curtain distance Λ  with respect to the probe volume center. This could be an 
interesting study. In any case, and whatever this study has to be completed, we have shown 
that the CARS technique can manage complex flows and that it realizes a real local 
measurement. 

5.1.2.3 Densely packed bubbles 

Using the setup depicted in §5.1.2.1 and increasing the water flow rate it is possible to produce 
in silicon oil, streams of densely packet water bubbles. By doing so, we can test and illustrate 
the response of the CARS technique under such conditions whatever, we repeat ourselves: 
this technique is normally devoted to characterize dilute bubbly flows. Note that from 
refractive index measurements with the Abbe refractometer we have 1 1.0522m− ≈  

Figure 5.23 shows a micro-video image of a stream of mono disperse bubbles that are not well 
aligned, the corresponding CSP (integrated over 1 second, i.e. hundred of the presented 
bubbles), the extracted intensity profile and the reconstructed one (with the LSQ-LMT-Log. 
Norm. inverse method). These results are rather similar to the one obtained for twins bubbles 
(see Figure 5.14 and Figure 5.15). 

 
Figure 5.23 Stream of water droplets (i.e. optical bubbles) in silicon oil, cooresponding CSP with the 

reconstructed profile. 

Figure 5.24 show different results and analyses for a stream of densely packed water bubbles 
in silicon. Visually, the stream seems to be composed of bubbles with a bi-modal size 
distribution:  large bubbles and intermediate to small size bubbles. All bubbles within the 
micro-video image are not validated by the imaging system (i.e. their image is not surrounded 
by a red circle). The non validated bubbles are usually the one that seems to be behind the 
validated one. It is additional evidence that statistics obtained with the video imaging system 
are “not totally reliable. For the CARS system, it is not trivial to infer this particular bubbly 
flow arrangement from the observation of the corresponding CSP. The fact is that both the 
LSQ (with LMT and a single mode distribution) and the NNLSQ (with LMT) inverse 
methods fail to reconstruct a satisfactory CSP intensity profile.  
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Figure 5.24 Stream of densely packed water droplets in silicon oil, corresponding CSP with the 

intensity profiles reconstructed with two inverse methods (NNLSQ-LMT and LSQ-LMT), the size 
distributions measured with NNLSQ-LMT and the micro-video system. (Exp. SiWP_8_) 

 

 
Figure 5.25 Same parameters as in Figure 5.24 but a denser flow (Exp. SiWP_4_). 
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Indeed, looking at the bubble size histogram it is clear that the NNLSQ method predicts a 
two mode BSD but, unfortunately, the position of the two modes are not really correct in the 
sense that the larger bubbles ( )1.5D mm≈  are not “detected”.  
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Figure 5.26 Results of LMT-Log. Norm. inverse method for densly packed bubbly flows. Results in 

color circles corresponds to the one with the same colour in Table 5.4 

If we use the POA (p=0) with 1 29.31 ,θ ≈ ° 1 28.04 ,θ ≈ °  the CARS technique gives  
1 1.0394m− ≈  and 0.385 .D mm= This refractive index is in good agreement with the expected 

one. For the diameter, it corresponds to the main mode of the size distribution measured with 
the micro-video imaging system. In the case presented in Figure 5.25 the BSD obtain with the 
NNLSQ method fits better with the one given by the micro-video imaging analysis, at least for 
the larger mode. The presence of high frequency oscillations in CSP intensity profile indicates 
that the bubbly flow is rather mono-disperse or, that there is interference effects between the 

Dye water drop 
Micro.Video LMT-log-norm. 

D [μm] σ/D [ - ] m-1 [ - ] D [μm] σ/D [ - ] m-1 [ - ]
SiP1200_2Tw_13_ 
Bi-modal distribution 

280.0 
750.0 

0.05 
0.02 1,0525 715.0 0.001 1.0525 

SiP1200_2Tw_14_ 
3-mod distribution 

280.0 
580.0 
720.0 

0.002 
0.002 
0.002 

1,0525 610.0 0.150 1.0520 

SiP1200_2Tw_15_ 430.0 0.180 1,0525 440.0 0.150 1.0510 
SiP1200_2Tw_16_ 470.0 0.160 1,0525 590.0 0.150 1.0505 

SiWP_1_ 
Bi-modal distribution 

220.0 
720.0 

0.03 
0.02 1,0525 720.0 0.001 1.0515 

SiWP_4_ 
Bi-modal distribution 

320.0 
820.0 

0.15 
0.01 1,0525 850.0 0.001 1.0520 

SiWP_5_ 
Bi-modal distribution 

420.0 
1120.0 

0.150 
0.001 1,0525 1090.0 0.001 1.0520 

SiWP_8_ 
Bi-modal distribution 

320.0 
1200.0 

0.200 
0.001 1,0525 1180.0 0.150 1.0520 

SiWP_9_ 
Bi-modal distribution 

370.0 
1200.0 

0.300 
0.080 1,0525 1390.0 0.001 1,0525 

Table 5.4 Tabuled data for experiments with densely packed water bubbles in silicon oil. 
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bubbles within the probe volume. Note that the mode corresponding to the smaller bubbles is 
not detected.  

Table 5.4 and Figure 5.26 displays the results obtained with the LMT-Log.Norm. and micro-
video imaging technique. The color coding of the data in the same in the table and the figure. 
We can see that for densely packed bubbles, with a multimodal distribution, the NNLSQ-
LMT method gives usually the mode corresponding to the biggest diameter with accuracy 
about 5%. This can be understood in the sense that large particles (compared to the 
wavelength) scatter more light that the smaller one.  

 

5.2 Relative refractive index and absorption measurements 
With the CARS technique the measurement of the bubble clouds relative refractive index is 
possible. This is a quite unique feature when compared to other optical sizing methods. We 
are speaking about a relative refractive index, so that it means that CARS could be able to 
probe at the same time the particle composition and the surrounding medium one. Obviously, 
the measurement of the refractive index of particles is only interesting if they are not of a 
gaseous type as, in this case, changes in refractive index would be too small to be measured. 
For liquid bubbles (e.g. aqueous droplets in oil) the measurement of their refractive index 
could be a way to characterize their composition and to study coalescence effects for instance 
(e.g. pure water / water-ethanol droplets in oil). For the surrounding medium the change in 
refractive index could be a way to detect changes in composition, temperature or pressure. 
But, like the rainbow or the Fraunhofer diffraction, the CARS technique would not work if 
there is refractive index gradient within the surrounding medium. The reason for that is that 
the incident beam as well as the scattered waves usually not propagate straightly in such 
medium. In this section we will consider the two cases: changes of the bubble composition 
and afterwards, changes in the surrounding medium composition.  

 

Let first recall some basic properties of refractive index. The refractive index is a complex 
number, .m m i k= +�  Its real part m  quantify the light velocity in the medium with respect to 
its velocity in vacuum, 0 / 1m c c= ≥ . Its imaginary part 0k ≥  quantify the medium absorption. 
It is usual to introduce the absorption constant 04 /K kmπ λ=  as, according to the Beer-
Lambert law, the absorption 1-T of a light beam travelling over a distance L  in an absorbing 
medium is just: 

 01 / exp( )T I I KL− = = −  (97) 

where T if the beam transmission. 
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 Indeed both the real and the imaginary part of refractive index are wavelength dependent 
with ( ) ( ) ( )0 0 0 .m m i kλ λ λ= +�  ( )m λ�  is the dispersion equation of the medium. For some 
particular transparent medium, there exists empirical relationships between the real part of the 
refractive index and the wavelength. Sellmeier and Cauchy’s have derived for instance a 
general expression for modeling dispersion:  

 ( )
2 22 2

2 31 2
2 2 2 2

1 2 3

1 ... n

n

B BB Bm
C C C C

λ λλ λλ
λ λ λ λ

= + + +
− − − −

  (98) 

where  Bn and Cn  are constants which are characteristic from the material. Unfortunately, we 
cannot find in the literature values of these parameters for all materials. One of the reasons for 
that is that Eq. (98) works well for glasses, crystals… it does work too much for organic 
material, and liquids. Clearly, the determination of the refractive index of particles is a 
common problem for all optical sizing techniques. Fortunately in our case, we are working 
mainly with liquids. So in what follows the refractive index of all used liquids was controlled 
with an Abbe-Refractometer. It is interesting to recall here that both the CARS technique and 
the Abbe refractometry are based on the detection of the total reflection angle.  

 

Figure 5.27 Image of prepared 
water/glycerin solutions 

 Water – Glycerin mass mixture 
Mixture  [%] 0.00 4.00 8.02 12.00 14.01 

m-1 λ0=532nm 1.3354 1.3398 1.3448 1.3495 1.3517 

m-1 λ0=589nm 1.33303 1.33762 1.34238 1.34729 1.34980 

Table 5.5 Refractive index for different water-glyceryn 
mass fractions, with λ0=532nm at T =21.9°C and for 

λ0=589nm at T = 20.0°C 

0.00% 4.00% 8.02% 12.00% 14.01%
1.3340

1.3360

1.3380

1.3400

1.3420

1.3440

1.3460

1.3480

1.3500

1.3520

1.3540

 Experimental data
 Interpolated values

           λ
0
 = 532nm, T= 21.9oC
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       Figure 5.28 Refractive index of a water-glycerin solution versus the mass fraction of glycerin  
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5.2.1 Refractive index of bubbles 

To test bubbles refractive index measurements with the CARS technique, bubbly flows of 
water-glycerin droplets in a silicon oil (from Clearco) were produced. The latter has a low 
refractive index ( 1.4042m =  at 532nmλ = ) and a low viscosity (20 cSt) at ambient 
temperature. Note that the density of these droplets ( )1.0≈  is larger than the one of the 
silicon oil ( 0.953≈ ). Indeed they are bubbles from the optical point of view but droplets from 
the mechanical one. To change bubbles refractive index we prepare water-glycerin solutions of 
different mass-fractions, see Figure 5.27, Figure 5.28 and Table 5.5. A mentioned above the 
refractive index of the different solutions was controlled with an Abbe refractometer. For this 
purpose we sample with an optical fiber a part of the light from the YAG-laser of the CARS 
system to light a liquid sample within the Abbe refractometer.   
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Figure 5.29 Typicall results for pure water bubbles with, of the left, the recorded CSP pattern and the 
reconstructed one and, on the right, bubble size distributions measured with the CARS and the micro-

vido imaging systems.  
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         Figure 5.30 Like Figure 5.29 but for water-glycerin bubbles containing 4% of glycerin in mass. 

To produce water-glycerin bubbly flows we use the piezo-jet in the reverse direction as the 
water-glycerin bubbles sink in silicon oil.  Figure 5.29 and Figure 5.30 show for rather mono 
disperses bubbles, respectively: a typical experimental CSP pattern and the reconstructed one, 
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the size distributions measured with the CARS and micro-video imaging techniques. With this 
silicon oil/water-glycerin experiment, we did not succeed to produce really polydisperse as 
well as small bubbles (by increasing the water-glycerin flow rate we were just able to produce 
larger and densely packed bubbles). 

Figure 5.31 a) compares the mean diameter measured with the CARS and the micro-video 
imaging techniques for droplets containing different mass fractions of glycerin (0-12% in 
mass). Figure 5.31 b) compares refractive indices measured by the CARS (on sinking bubbles) 
and the Abbe refractometer techniques (on sample solutions). The next Table summarize all 
data obtain during the present test. As it can be easily remark, the measurements obtained 
with the CARS techniques, size and refractive index, are in very good to the “reference” 
techniques.   
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Figure 5.31 Comparisons of the statistics obtained on water-glycerin droplets with the micro-video 

imaging system (mean diameter) and Abbe refractometry measurements (refractive index). 

 

              Table 5.6 Tabuled data for experiments with water-glycerin bubbles in silicon oil. 

Solution m-1 of glycerin 
Abbe Refract.  

m-1 (m of  
silicon 1.4049)

Micro.Video LMT-log-norm. 
[%] D [μm] σ/D [-] m-1 [-] D [μm] σ/D[-] m-1  

[ - ] 
0.00% 1.3354 1,0522 1527,0 0,001 1,0522 1520,0 0,001 1,0525 
0.00% 1.3354 1,0522 2082,0 0,001 1,0522 2060,0 0,001 1,0525 
0.00% 1.3354 1,0522 2635,0 0,001 1,0522 2680,0 0,001 1,0520 
4.00% 1.3398 1,0487 1558,0 0,001 1,0487 1540,0 0,001 1,0490 
4.00% 1.3398 1,0487 1849,0 0,001 1,0487 1890,0 0,030 1,0485 
4.00% 1.3398 1,0487 2667,0 0,001 1,0487 2640,0 0,001 1,0490 
8.02% 1.3448 1,0448 1540,0 0,001 1,0448 1560,0 0,001 1,0450 
8.02% 1.3448 1,0448 1920,0 0,001 1,0448 1990,0 0,001 1,0445 
8.02% 1.3448 1,0448 2645,0 0,001 1,0448 2660,0 0,001 1,0445 
12.00% 1.3495 1,0410 1533,0 0,001 1,0410 1570,0 0,001 1,0410 
12.00% 1.3495 1,0410 2053,0 0,001 1,0410 2070,0 0,010 1,0410 
14.01% 1.3517 1,0395 1464,0 0,001 1,0395 1550,0 0,001 1,0385 
14.01% 1.3517 1,0395 2083,0 0,001 1,0395 2090,0 0,001 1,0390 
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5.2.2 Refractive index of the surrounding medium 

The CARS was not initially thought as a technique that can measure the refractive index of the 
surrounding medium. But, at least, it was thought to be necessary to study the effect of a 
change of this parameter on bubbles size and absolute refractive measurements. Indeed, each 
time the refractive index of the surrounding medium changes, it should be necessary to 
recalibrate the system (with the goniometer procedure). If true, this would be a severe 
drawback of this new optical sizing method.  
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Figure 5.32 Comparison of the mean size measured with the micro video and the CARS (without 

reclalibration) systems, when the refractive index of the surrounding medium is changing  from 1.335 
to 1.355 

Indeed, the recalibration is not strictly necessary.  To demonstrate this, the piezo-jet is used to 
produce air bubbles in different water-ethanol solutions. Figure 5.32 and Table 5.6 shows 
statistics obtained for mass fractions in ethanol increasing from 0 up to 40%, giving a relative 
refractive index ranging from 1 1.3345 m− = to 1 1.3555.m− =  Figure 5.32 compares the mean 
diameters measured with two inverse methods, while Figure 5.33 shows the relative refractive 
index measurements obtained with the NNLSQ-LMT method. Table 5.7 summarized all 
results. CARS and Abbe refractometry measurements are in good agreement.  The size 
measurements seem almost non-sensitive to changes in the liquid composition. Refractive 
index measurements with CARS, on rising bubbles, are better than 0.002± . In fact, the 
standard deviation between CARS and Abbe refractometry measurements is equal to 0.0002± . 
So that CARS can estimate the water/ethanol concentration at better 4% (i.e. 0.4% when 
considering the global standard deviation). From these results it is clear that for most 
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applications requiring bubbles size characterization, the recalibration of the CARS system 
would be not necessary for similar conditions.   

Figure 5.33 shows the results obtained for the measurement of the refractive index of water-
ethanol solutions: with CARS (from rising air bubbles’ relative index, without recalibration of 
the system), and with the Abbe refractometer (onto a liquid sample). The results of the CARS 
technique fit rather well the measurements obtained with the Abbe refractometer whatever, 
CARS underestimates continuously the relative refractive index (i.e. the mass fraction in 
ethanol is overestimated of 4% around 25% in mass).  
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Figure 5.33 Comparison of the refractive index measured by the Abbe refractometer (on a liquid 

sample) and with the CARS (on rising bubbles and without reclalibration) systems, when the refractive 
index of the surrounding medium is changing  from 1.335 to 1.355 

Table 5.7 For different air bubbles/water-ethanol compositions, comparison between the measured 
mean sizes, standard deviations and refractive indices.   

Experiment 
Micro.Video /Abbe refract. LMT-log-norm. LMT-3pts POA (p=0) 
D 

[ μm ] 
σ 

[ − ] 
m-1 

[ - ] 
D 

[ μm ] 
σ 

[ − ] 
m-1 

[ - ] 
D 

[ μm ] 
σ 

 [ − ] 
m-1 

[ - ] 
D 

[ μm ] 
m-1 

[ - ] 
Eta_0_v_200_10 344.65 0.027 1.33453 337 0.030 1.3350 351 0.010 1.3340 355.4 1.3381 
Eta_0_v_210_10 476.38 0.113 1.33453 438 0.030 1.3360 390 0.070 1.3390 392.4 1.3433 
Eta_0_v_220_10 517.86 0.013 1.33453 512 0.015 1.3350 545 0.040 1.3333 528.5 1.3372 
Eta_5_v_200_10 388.81 0.020 1.3375 394 0.030 1.3375 373 0.020 1.3390 383.8 1.3421 
Eta_5_v_210_10 520.11 0.012 1.3375 522 0.020 1.3370 545 0.030 1.3360 537.4 1.3398 
Eta_5_v_220_10 564.47 0.012 1.3375 576 0.020 1.3360 579 0.060 1.3360 602.1 1.3387 
Eta_10_v_200_10 381.73 0.042 1.3395 385 0.025 1.3395 377 0.010 1.3400 389.4 1.3433 
Eta_10_v_210_10 501.52 0.036 1.3395 505 0.020 1.3390 521 0.040 1.3380 526.1 1.3417 
Eta_10_v_220_10 576.79 0.011 1.3395 575 0.015 1.3395 558 0.050 1.3400 562.5 1.3433 
Eta_20_v_200_10 385.81 0.166 1,3440 365 0.105 1.3455 400 0.120 1.3430 413.6 1.3469 
Eta_20_v_210_10 531.11 0.029 1,3440 529 0.030 1.3445 564 0.060 1.3430 492.7 1.3497 
Eta_20_v_220_10 600.20 0.095 1,3440 604 0.025 1.3445 579 0.130 1.3430 541 1.3503 
Eta_30_v_200_10 395.09 0.120 1.3505 347 0.075 1.3500  342 0.128 1.3520 379.0 1.3573 
Eta_30_v_210_10 539.83 0.048 1.3505 546 0.045 1.3505  440 0.092 1.3525 480.5 1.3573 
Eta_40_v_200_10 387.12 0.062 1.3555 391 0.025 1.3550 366 0.084 1.3545 347.5 1.3638 
Eta_40_v_210_10 479.87 0.016 1.3555 482 0.020 1.3550 440 0.078 1.3545 473.8 1.3596 
Eta_40_v_220_10 561.89 0.019 1.3555 563 0.025 1.3550 518 0.080 1.3545 538.6 1.3601 
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This effect is due to refraction effects at the wall that are not taken into account. In the Annex 
of this manuscript, we present briefly a simple model we have developed to take partly 
account the latter effects. CARS results corrected with this model are also shown in Figure 
5.33. This model clearly contributes to decrease the small discrepancy between CARS and 
Abbe refractometer measurements (i.e. the mass fraction in ethanol is now only overestimated 
of 2% around 25% in mass). This correction is not perfect but however the resolution reached 
can be sufficient for some applications.  

 

5.2.3 Effects of bubbles absorption (imaginary refractive index) 

5.2.3.1 Background and setup 

 As the scattering of a bubble near the critical angle is dominated by a diffraction process of 
the “reflected” rays, we may assume that CSP should not be too sensitive to the bubble 
absorption. Indeed, as already suggested by Figure 2.5, the things are not so simple. The 
behavior of CSP regarding to bubble absorption may be somewhat understood from Figure 
5.34. This figure presents simulations for absorbing bubbles (for water-ink droplets in silicon 
oil, with different imaginary part k ). For this bubble size, there is no significant absorption 
effects when 410k −≤ : the CSP are characterized by low and high frequency fringes. For k  
increasing from 410−≈  to 25 10−≈  the amplitude of the high frequency fringes is more and 
more dumped so that they rapidly disappear, the large fringes do the same but their dumping 
rate is much smaller. For huge absorptions, the scattering diagrams are totally flat in the near-
critical scattering angle region.  
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Figure 5.34 CSP calculated with LMT for water-dye bubbles in silicon oil with an increasing ink 

concentration ( i.e. absorption), 1 0.926.m− ≈   
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To test experimentally bubbles absorption we have produced water-dye droplets in silicon oil, 
when the piezo-jet is impacting onto the silicon oil free surface. The dye was indeed an 
aqueous solution charged with “Red acid G” (from Colorey, see www.colorey.fr). The latter is 
a chemical dye commonly used in industry to color detergents, creams, paper, etc. It is non-
toxic and miscible in water. We prepare different water-ink solutions with different 
absorptions, see Figure 5.35.  

 
            Figure 5.35 Image of water-ink (using “Rouge Acide G” dye) used in experiment. 

To measure the absorption of these solutions we built a setup to measure the transmission of 
a collimated and chopped laser beam through a spectrophotometric cell (square cross section, 
width L) and filled with different water-dye solutions, see Figure 5.36. The Beer-Lambert law 
was used to deduce the samples absorption (i.e. their refractive index imaginary part). For that 
purpose we use the CCD camera of the ILIDS system as a photometric detector, and took 
advantage of its large dynamic range (adjustable integration time).  Table 5.8 and Figure 5.37 
show the results obtained for the imaginary part of the refractive index of the different water-
dye solutions shown in Figure 5.35. 

 
Figure 5.36 Experimental setup for absorption measurements. (1) Color digital camera, (2) 

spectrophotometric cell, (3) mirror, (4) YAG-Laser output beam  

Table 5.8 Results for the imaginary part of water-dye refractive index 

Exp. Mass of Dye Mass of water Concentration k 
[g] [g] [ - ] [ - ] 

sol1 1.00000 249.90 0.004 4.23796e-4 
sol2 0.07887 250.30 3.15159e-4 3.36302e-5 
sol4 0.03165 235.70 1.3426e-4 1.44841e-5 
sol5 0.00511 250.30 2.04358e-5 2.43723e-6 
sol6 0.00826 274.80 3.00471e-5 3.45447e-6 
sol7 0.01943 262.40 7.40475e-5 8.11137e-6 
sol8 0.02606 250.90 1.03874e-4 1.12682e-5 
sol9 0.69000 2.25 0.30667 3.24572e-2 
sol10 1.02000 11.00 0.09273 9.81434e-3 
sol11 1.09000 21.90 0.04977 5.26801e-3 
sol12 1.02000 86.28 0.01182 1.25149e-3 
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Figure 5.37 Experimental data for the laser beam transmission through the spectrophotometric cell, for 

different mass concentrations in Dye.  
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Figure 5.38 For dyed-water bubbles in silicon oil with D=565μm, σ=0.020, m-1=1.052, k=4.2e-4 we 

have different comparions with the experimental profile: a) when the CARS technique infer all unkown 
properties; b) when D and m-1 are given by the micro-video system and the Abbe Refractometer;  c) 
when D and σ are given by the micro-video system, m-1  is deduced by the CARS system with LSQ-

LMT-Log.Norm. inverse method and k is calculated from beam transmission measurements; d) 
experimental CSP   (Exp. _Dye_TW_2_). 
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Figure 5.39 Same as Figure 5.38 but for D=585μm, σ=0.005, m-1=1.050, k=1.24e-3 (SiW_Dye_S12_1) 
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Figure 5.40 Same as Figure 5.38 but for  D=732μm, σ=0.005, m-1=1.042, k=5.2e-3 (SiW_Dye_S11_1_) 
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 d)              
Figure 5.41 Same as Figure 5.38 but for  D=570μm, σ=0.005,  

m-1=1.0420,k=9.7e-3 (SiW_Dye_S10_1_) 

 

5.2.3.2 Results on falling bubbles 

From Figure 5.38 to Figure 5.41 are presented typical results for the CSP, and the intensity 
profiles (experimental and reconstructed) of dye-water droplets in silicon oil with increasing 
absorption and different size. All statistics are summarized in Table 5.9 

Table 5.9 For different dyed water drops in silicon, comparison of the measured mean sizes, standard 
deviations and refractive indices 

 

Name / Solution 
Micro-video system LMT-Logn-Norm. 

D 
[μm] 

/ Dσ  
 [μm/ μm] 

m 
[ - ] 

k 
[ - ] 

D 
[μm] 

/ Dσ  
[μm/ μm] 

m 
[ - ] 

SiW_Dye_in_line_1_/  Sol1 582.0 0.005 1.0520 4.2e-4 580.0 0.50 1.0520 
SiW_Dye_in_line_2_/  Sol1 585.0 0.005 1.0520 4.2e-4 580.0 0.50 1.0520 
SiW_Dye_dense_2_ /  Sol1 596.0 0.050 1.0520 4.2e-4 590.0 0.50 1.0515 
SiW_Dye_TW_1_   /  Sol1 565.0 0.020 1.0520 4.2e-4 580.0 0.50 1.0515 
SiW_Dye_TW_2_   /  Sol1 565.0 0.020 1.0520 4.2e-4 580.0 0.50 1.0515 
SiW_Dye_TW_3_   /  Sol1 565.0 0.020 1.0520 4.2e-4 600.0 0.50 1.0510 
SiW_Dye_S12_1_  /Sol12 585.0 0.005 1.0520 1.24e-3 580.0 0.100 1.0500 
SiW_Dye_S11_1_  /Sol11 732.0 0.005 1.0520 5.2e-3 970.0 0.050 1.0420 
SiW_Dye_S10_1_  /Sol10 570.0 0.005 1.0520 9.7e-3 700.0 0.50 1.0420 



 

 

118 

Figure 6.1 
Schematic of 
ellipsoidal bubbles  

Chapter 6 

 

 

 

6 NON SPHERICAL BUBBLES 

The CARS technique is intended to characterize spherical bubbles. 
However, in many bubbly flows bubble shapes can deviate notably from the 
spherical one. According to the bubble-shape diagram of Grace et al. (1976), 
the ellipsoidal shape appears to be the most common when the bubbles 
begin to deviate from the sphericity (see §4.1). For this shape the interesting 
thing is that the response of the CARS technique could be interpreted, at 
least to a certain extent. Indeed, according to the POA, the CSP is mainly 
sensitive to the radius of curvature of the bubble in the scattering plane. For 
a bubble aspect ratio / / 1a bξ α β= ≡ ≤ , where a α≡   is the small axis 
(gravity direction) and b β≡  is the major axis (horizontal/scattering plane) 
of the bubble; the diameter measured is expected to be CARSD b∼  . At the 
same time it is easy to show that the imaging technique gives us an 
equivalent surface diameter: µ videoD bξ− ∼  . So from an experimental point 
of view, there is a possibility to study the effect on the CSP of ellipsoidal 
bubbles (Onofri 2006 a-b, Onofri 2007a).  

In this chapter we first give some insight on the aspect ratio of the bubbles that can be generated 
with our experimental setup, we present exemplifying results and comparisons with  micro-video 
imaging analyses, and we introduce the bases of a simple geometrical optics model to predict the 
change in curvature of the CSP fringes with respect to ξ .  

6.1 Production of non spherical bubbles  
To investigate the response of CARS system to non spherical bubbles it is important to generate 
appropriate bubbly flows. For free rising air bubbles in water, non-sphericity appears to be 
significant for equivalent diameter above 1.3mm≈ (Clift et al. 1978). Indeed, it is the reason why 
in the previous chapter we limit the study to bubble sizes below  1mm≈ . Figure 6.2 summarizes 
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the aspect-ratio covered in our experiments versus the Tadaki number calculated with Eq. (69) 
and the parameters of Table 6.2. The aspect ratio and the terminal velocity of the bubbles were 
measured with the micro-video imaging system. The evolution of ξ  predicted by the correlation 
equation, Eq. (71), is also shown in this figure. Note the good agreement found between the 
Vakhrushev and Efremov (1970) model and our experimental results see also Table 6.1.  
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                Figure 6.2 Aspect-ratio of bubbles: measured values and values predicted by Eq. (71). 

 

Table 6.1 Data calculated for ellipsoidal air-bubbles in water 

Non dimensional numbers Micro-video imaging system 
Parameters based on Tadaki 

number 

Morton  
number 

Reynolds 
 number 

Eotvos 
 number 

Tadaki  
number 

b (=β) 
[um] 

a(=α) 
[um] 

velocity  
terminal 

[m/s] 

R eq.  
sphere 
[um] 

ξ aspect 
ratio  
[ - ] 

ξ aspect  
ratio 
[ - ] 

b 
[um] 

a 
[um] 

1,7251 10-11 280,0 0,1277 0,935 1008,9 896,4 0,26 969,9 0,89 0,867 1017 882 
1,7251 10-11 339,5 0,1574 1,135 1127,1 982,9 0,28 1076,8 0,87 0,824 1148 947 
1,7251 10-11 397,6 0,1779 1,330 1233,8 985,9 0,31 1144,9 0,8 0,784 1242 974 
1,7251 10-11 606,2 0,3136 2,027 1781,4 1106,9 0,36 1520,1 0,62 0,659 1747 1151 
1,7251 10-11 703,6 0,4035 2,353 2121,6 1138,6 0,37 1724,1 0,54 0,612 2030 1244 
1,7251 10-11 808,0 0,6147 2,703 2678,5 1343,2 0,34 2128,0 0,5 0,57 2565 1464 
1,7251 10-11 828,3 0,6521 2,770 2744,2 1398 0,34 2191,6 0,51 0,563 2654 1495 
1,7251 10-11 794,0 0,5867 2,656 2611,6 1317,3 0,34 2078,8 0,5 0,576 2499 1439 
1,7251 10-11 795,5 0,6755 2,661 2697,8 1525,2 0,32 2230,7 0,57 0,575 2682 1543 
1,7251 10-11 786,0 0,5977 2,629 2598,3 1368,6 0,34 2098,3 0,53 0,579 2518 1458 
1,7251 10-11 285,4 0,1307 0,954 1023,3 902,2 0,26 981,2 0,88 0,863 1031 890 
1,7251 10-11 249,4 0,1220 0,834 982,9 882 0,24 948,1 0,9 0,889 986 877 
1,7251 10-11 797,0 0,6510 2,666 2628,6 1519,9 0,33 2189,9 0,58 0,574 2634 1514 
1,7251 10-11 808,0 0,6282 2,703 2684,5 1381,3 0,34 2151,2 0,51 0,57 2593 1480 
1,7251 10-11 231,5 0,1093 0,774 925,3 844,6 0,23 897,5 0,91 0,902 929 838 
1,7251 10-11 834,6 0,6555 2,792 2765,8 1387,1 0,34 2197,4 0,5 0,561 2664 1495 
1,7251 10-11 161,2 0,0838 0,539 798,4 761 0,18 785,7 0,95 0,95 799 760 
1,7251 10-11 523,1 0,2500 1,750 1539,3 1055 0,34 1357,1 0,69 0,704 1525 1075 
1,7251 10-11 586,1 0,2971 1,960 1723,7 1089,6 0,35 1479,3 0,63 0,669 1691 1132 
1,7251 10-11 658,1 0,3582 2,201 1960,1 1115,5 0,367 1624,4 0,57 0,633 1891 1198 
1,7251 10-11 671,0 0,3693 2,245 2000,5 1121,3 0,37 1649,4 0,56 0,627 1927 1209 
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Property  Water 
Dynamic Viscosity 
Surface tension 
Density 

lμ  [Pa s] 
lσ  [N/m] 
lρ  [kg/m3] 

0.9*10-3 

0.072 
1.000 

Other properties  Others 
Density of gas 
Gravitational acceleration 

gρ  [kg/m3] 
g    [m/s2] 

1.98 
9.80665 

Table 6.2 Some thermophysical properties of water 

To perform the present study, it was necessary to change the micro-video system. Instead of the 
Imaging Source camera we have utilized a fast digital camera from Photron. This camera has also 
a resolution of 1024x1024 pixels B/W but for a frame rate of 500Hz. This camera can also be 
operated at higher frame rate if its resolution is reduced (e.g. 2 kHz for 512x512pixels). Equipped 
with the long distance camera lens, the nominal resolution of the micro-video imaging was of 
173.5 pixels/mm. To ensure as possible that the bubbles have reached their terminal velocity TV , 
we have performed the analyses (CARS and micro-video) 100mm above the piezo-jet nozzle. 
With the high speed micro-video system and Matrox Inspector’s scripts, it was possible to 
analysis precisely the bubble ellipticity and deformation along their trajectory. For this study the 
CARS system was trigged via the TTL-signal of the “bubble detector” (§4.3). 

Figure 6.3 compares measurements of major and minor axes of elliptical bubbles, obtained with 
the  micro-video system, with those deduced from the Tadaki number and bubble velocity 
measurements (bubble tracking with high speed camera).  

 
                Figure 6.3  Ellipsoidal  air bubbles in water: comparison between predictions based on Tadaki 

number and measurements obtained with the micro-video system. 
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6.2 Experimental results  

6.2.1 Bubble axis parallel to the CARS optical axis (no tilt angle ) 

As a first step and to not mix several complex effects, we consider non spherical bubbles that are 
symmetric with respect to the gravity direction. They are referenced as bubbles with a tilt angle 
equal to zero 0 .δ = °  To do so, the CARS system is only trigged on the corresponding bubbles. 
Increasing the piezo-jet input pressure and valve opening time generates different bubbles 
ellipticities, see Figure 6.4 to Figure 6.7. Each of these figures presents a recorded CSP image, its 
intensity profile and the profile reconstructed with the LSQ-LMT-LogNorm.  inverse method.  

These figures show that the experimental and the reconstructed profiles match almost perfectly. 
This is an important result, as it means that in the scattering plane the CSP of these elliptical 
bubbles are equivalent to the ones of spheres. CSP of ellipsoid bubbles are “understandable” ( 
which is not necessarily the case for the rainbow scattering for instance). Table 6.3 presents the 
different parameters measured for these bubbles: the diameter and the refractive index measured 
with the CARS technique, the two axes of the ellipsoid and its equivalent spherical diameter 
measured with the imaging system; their refractive index, measured with the Abbe refractometer. 
Note that, for drawing considerations and because they were rather similar to case 1, we did not 
show figures for case 2. 

                Table 6.3 Results corresponding to Figure 6.4 to Figure 6.7, plus one case. 

 

Figure 6.8 compares the diameter measured with the CARS system and the two bubbles axis 
lengths measured with the high-speed micro-video imaging system. We found what we infer at 
the beginning of this chapter: the CARS measurement corresponds to the axis b  of the ellipsoid. 
Indeed, the CARS technique measures the radius of curvature of the bubbles near the impact 
parameter corresponding to the critical angle and within the scattering plane. In fact, all CARS 
measurements in Figure 6.8 are almost aligned on the y=x axis. Good results are also obtained 
for the refractive index of these bubbles (see Table 6.3). However, by measuring the axis b  as a 
diameter of the bubble instead of its equivalent spherical diameter CARS underestimates the 
volume of the bubbles (i.e. void fraction). 

Case/ N° Exp / 
FPS  

Micro.Video/Abbe 
refract. 

LMT-log-norm. Micro-Video-Calculations 

 Equivalen
t 

   Sphere 
    [um] 

Refract.  
index 
[ - ] 

Size 
 

[um] 

σ /D 
 

[ - ] 

Refract. 
index 
[ - ] 

Velocit 
 [m/s] 

     b  
   [um] 

   a  
[um] 

Aspect 
        

ratio 
  [ - ] 

 Tilt  
Angle 
[deg] 

1/ 10 / 1000Hz   949,0 1,3345 1040,0 0,0001 1,3355 0,2599 1008,9 896,4 0,897 0,0 
2/ 8  / 1000Hz   1048,9 1,3345 1140,0 0,0001 1,3355 0,2843 1127,1 982,9 0,872 0,0 
3/ 29 / 1000Hz   1098,9 1,3345 1270,0 0,0001 1,3355 0,3132 1233,8 985,9 0,799 0,0 
4/ 32 / 500Hz     1395,3 1,3345 1820,0 0,0001 1,3355 0,3596 1781,4 1106,9 0,621 0,0 
5/ 35 / 500Hz     1544,9 1,3345 2180,0 0,0001 1,3355 0,3680 2121,6 1138,6 0,537 0,0 
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Figure 6.4 Micro-video image, CSP, experimental and reconstructed intensity profiles for a slightly 

elliptical air bubble in water  (Case 1,  “Exp. FastCam_10”) 

 
              Figure 6.5 Like in Figure 6.4 but foe a larger aspect ratio (Case 3,  “Exp. FastCam_09”) 

 
                Figure 6.6 Like in Figure 6.5 but for a larger aspect ratio (Case 4,  “Exp. FastCam_32”) 

 
             Figure 6.7 Like in Figure 6.6 but for a larger aspect ratio (Case 5,  “Exp. FastCam_35”) 
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Figure 6.8 Comparison of the diameter measured with the CARS system with the two bubbles axis lengths 

measured with the high-speed micro-video imaging system.  

Obviously, in natural bubbly flows, bubbles have random tilt angles so that this effect is expected 
to be less pronounced than for the results obtained when the tilt angle is null. To get an estimate 
of the spherical equivalent diameter with the CARS technique we need to access to the ellipsoid 
axis a . We have indentified two strategies to access to the ellipsoid axis a : 

          - This axis length could be deduced by analyzing more in details CSP characteristics (see 
§6.3).  

          - We could try to use hydrodynamics considerations to infer the bubble ellipticity ξ . For 
that purpose we have derived with the help of Maple (i.e. symbolic computational software), the 
dependence of the Tadaki number with the bubble aspect ratio: 

 ( )
2 2

2 1 2
2

3 1 24

21 ln
2 ( )10 10

c c c
c c ccTa

ξ ξ
ξξ

⎛ ⎞+ − +
− −⎜ ⎟⎜ ⎟− +⎝ ⎠=  (99) 

         Using the definition of the Tadaki number and remarking that the equivalent spherical 
diameter is 1/3D bξ= ,  we get the following equation: 

 
3/2 /2 3 3 2 2

2 1 2
3 3 2

3 1 24

2 / /1 ln
2 / ( )0.23 10 10

c D b D b c c
c D b c ccl T

l

V D Moρ
μ

⎛ ⎞+ − +
− −⎜ ⎟⎜ ⎟− +⎝ ⎠=  (100) 

        Knowing the fluid properties and measuring b  with the CARS technique one could expect 
to get the second axis length a . Unfortunately in Eq. (100) the terminal velocity is undetermined 
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too.   To our opinion there must be some way to cancel out TV  in the above expression but we 
did not have time to solve this problem. It will be the subject of a future work.  

 

6.2.2 Ellipsoid bubble with a tilt angle 

There is many publications in the literature that investigate tilt angle of free falling droplets (e.g. 
Pruppacher and Keltt, 1997). One main conclusion of these works is that, statistically, droplets 
tilt angle is null 0δ = ° . For rain droplets, the standard deviation of the tilt angle is 3 .δσ ≈ °  We 
did not find such studies for bubbles. But, from analogy and symmetry considerations, we can 
infer that the mean tilt angle of bubbles should be also null. The underling idea is that, if positive 
and negative tilt angles produce CSP that statistically compensate each other, we could interpret 
CSP produced by non spherical bubbles with an equivalent spherical model. 

Figure 6.9 present CSP and the correspond micro-video images for air-bubbles in water with 
aspect ratio 0.5ξ ≈  and a equivalent spherical diameter slightly below 2mm≈ .  Five bubble tilt 
angles are considered (cases 1 to 5). First of all, it is interesting to notice that if the shape of the 
bubbles is close to the ellipsoidal one, it is not totally true as bubbles are slightly more flat on 
their front part than their back one (in respect to their trajectory). Second important remark: the 
fringe patterns are tilted with respect to the vertical axis and the fringes spacing is not constant, 
this is particularly visible for case 5.  Without any surprise, case 3, which corresponds to a 
bubbles with a tilt angle close to zero, gives a CSP which is rather similar to the one of a large 
spherical bubble: the fringes visibility is important even for scattering angles far from the first 
critical fringe.  On the opposite, the visibility of a tilted bubble is weaker and even, quite 
fluctuating along the whole pattern. The analyses of these CSP are shown in Figure 6.10 to Figure 
6.14. To get the size distributions we have used the NNLSQ-LMT and the LSQ-LMT-LogNorm. 
inverse methods (spherical bubble model).  It is easy to notice that, with both inverse methods, 
we obtain rather broadband size distributions where as we should get a monodisperse one (there 
is only one bubble in the probe volume at a given time !). The narrower size distribution is 
obtained for case 3 (tilt angle close to zero). Indeed, these distributions may be understood by the 
fact that CARS measures a local radius of curvature. At the same time, we must keep in mind that 
the CARS-camera needs a certain integration time to get images with a reasonable signal to noise 
ratio. So, the collected scattering pattern is the result of moving bubbles with various radius of 
curvature regarding to the scattering plane. This is our explanation for the broadening of the 
BSD that we observe for such bubbles.  

For all cases 1-5 from extracted profile it was done measurements using CARS for LSQ-LMT 
and NNLSQ-LMT inverse method. Shadowgraphy system was used as reference technique.  
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Figure 6.9 Micro-video image, CSP image and intensity profile of a single air bubble in water, with a large 
aspect ratio and a tilt angle with respect to the scattering plane.  
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           Figure 6.10 Analysis of the CSP of case 1 in Figure 6.9 (Exp: Angle_FastCam_18) 

 
                   Figure 6.11 Analysis of the CSP of case 2 in Figure 6.9  (files: Angle_FastCam_17) 
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                                Figure 6.12 Analysis of the CSP of case 3 in Figure 6.9 (Exp: FastCam_7) 

 
                           Figure 6.13 Analysis of the CSP of case 4 in Figure 6.9 (Exp: FastCam_20) 
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Figure 6.14 Analysis of the CSP of case 5 in Figure 6.9 (Exp: FastCam_2) 

                    Table 6.4 Results for the five all tilt angles (Figure 6.9, Figure 6.10 to Figure 6.14) 

 
Figure 6.15 For tilted bubbles, comparison of the diameter measured with the CARS system (LMT-

LogNorm. inverse method)  with the two bubbles axis lengths measured with the micro-video system. 

Case/ Nexp / FPS  Micro.Video LMT-log-norm. Micro-Video-Calculations 
 Equivalent  

Sphere 
[um] 

Refract. 
 index 

[ - ] 

Size 
 

[um] 

σ /D 
 

[ - ] 

Refract. 
index 
[ - ] 

Velocity 
 

[m/s] 

b  
 

[um] 

a  
 

[um] 

Aspect  
ratio 
[ - ] 

Angle 
 

[deg] 

1/ 18 / 500Hz     1879 1,3345 2010 0,015 1,3345 0,3424 2677 1343 0,501  +24 
2/ 17 / 500Hz     1927 1,3345 2580 0,010 1,3360 0,3408 2744 1398 0,509    9 
3/  7 / 500Hz     1838 1,3345 2680 0,020 1,3365 0,3444 2612 1317 0,504    +4 
4/ 20 / 500Hz     2008 1,3345 2060 0,030 1,3350 0,3216 2698 1525 0,565 -21 
5/  2 / 500Hz     1869 1,3345 2030 0,030 1,3350 0,3378 2598 1369 0,527 -25 
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6.3 Geometrical model for the curvature of critical fringes 
It was mentioned in the previous experimental part that the fringes of the CSP pattern of an 
ellipsoid bubble appears to be curved, tilted and with a variable fringe spacing, depending on the 
bubble aspect ratio and tilt angle. So, in this section, we introduce the formalism of a simple 
geometrical model to predict the above mentioned effects.  

 

6.3.1 Model 

As depicted in Figure 6.16, the bubble is modeled by a spheroid. In the Cartesian coordinate 
system ( ), , ,O x y zΓ , the spheroid is centered and it is defined by its explicit equation, see Eq 
(101). Its horizontal and transverse radius at the equator and, its vertical radius, are noted 
respectively:  b y≡ , c z≡  and a x≡ . As the oblate case is the most interesting for rising bubbles, 
we will consider with more details the axisymmetrical case where ,  /b c a b ξ= =  with 1ξ < , 
where ξ  is referred further on as the bubble ellipticity. 

 

 
                 Figure 6.16 Coordinate systems, bubble surface and reflection process. 

Incident rays are moving parallel to the z-axis, coming from a point source A localized in a plan 
perpendicular to the z-axis. Depending on the location of A, some of these rays hit the spheroid 
surface S , at point P, and are reflected in the critical scattering direction 2c cθ π φ= − . The latter 
is simply defined by the direction corresponding to a reflection angle equal to the critical incident 
angle. So, it is necessary to define for all point P the normal to the spheroid surface.  
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6.3.1.1 Ellipsoid equation and normal to the surface 

The equation of the spheroid surface S is  : 

 
2 2 2

2 2 2( , , ) 1 0x y zF x y z
a b c

= + + − =  (101) 

In a general way, the equation of the normal to a surface defined by an equation of the form  
( , , ) 0F x y z = , is given by 

 ( , , ) , ,F F FF x y z
x y z

⎛ ⎞∂ ∂ ∂
≡ ∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠

N  (102) 

The symbol ∇  stands for the gradient operator. For each point ( ), ,P x y z S∈  the unit normal 
(directed outward) is given by: 

 
22 2

( , , )

F F F
F x x xx y z
F F F F

x y z

∂ ∂ ∂
+ +∇ ∂ ∂ ∂=

∇ ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

x y z
n  (103) 

with 2/ 2 /F x x a∂ ∂ = , 2/ 2 /F y y b∂ ∂ = , 2/ 2 /F z z c∂ ∂ = , we get finally the equation of the normal 

 

2

22 2 2

2 2 2

2

1( , , )
x

y

z

x
a n
yx y z n

bx y z nza b c
c

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟= ≡ ⎜ ⎟⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟+ + ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎝ ⎠

n  (104) 

6.3.1.2 Parametric equation of the incident ray or “photon”  

In space, the trajectory of the initial ray is defined by a parametric equation depending on the 
localization of the point source A and its nominal (“launching” or “emission”) direction d. 

Starting from point ( ), ,A A AA x y z , we want to determine the parametric coordinate of all points 
( ), ,M x y z  of this line. The components of vector AM  are 

 
A

A

A

x x
y y
z z

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

AM  (105) 

The direction followed by the photon is described by a unit vector d  directed toward the 
spheroid, so that we have: 

 ,  t t= ∈AM d \  (106) 
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2 2 2

1 ; ¨ 1
x

y

x y z
z

d
d

d d d d

⎛ ⎞
⎜ ⎟= =⎜ ⎟+ + ⎜ ⎟
⎝ ⎠

d d  (107) 

The parametric trajectory of the ray or “photon” is then : 

 
x A

y A

z A

x td x
y td y
z td z

+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (108) 

First intersection, point P  
After leaving point A the photon intercepts the spheroid’s surface  if the following condition is 
fulfilled: M P≡ , which means:  

 ( ) ( ) ( )
22 2

2 2 2 1 0y Ax A z A
td ytd x td z

a b c
++ +

+ + − =  (109) 

 ( ) ( ) ( )22 22 2 2 2 2 2 2 2 2
x A y A z Ab c td x a c td y a b td z a b c+ + + + + =  (110) 

To get the parameter t  we have to solve the following equation: 

 2
1 2 32 0t tκ κ κ+ + =  (111) 

with 

 

2 2 2 2 2 2 2 2 2
1

2 2 2 2 2 2
2

2 2 2 2 2 2 2 2 2 2 2 2
3

x y z

x A y A z A

A A A

b c d a c d a b d

b c d x a c d y a b d z

b c x a c y a b z a b c

κ

κ

κ

⎧ = + +
⎪⎪ = + +⎨
⎪

= + + −⎪⎩

 (112) 

The general solutions is  

 ( )2 1/t κ κ± = − ± Δ  (113) 

with 2
2 1 3κ κ κΔ = − . There is no intersection when 0Δ < , we are at grazing incidence when 0Δ =  

and there is two intersections when 0Δ > : the ray input  ( )0Pz <  and the ray ouput ( )0z > . We 
are only interested in the input ray, corresponding to parameter Pt t−≡ . So the coordinate of the 
point P are  

 
P P x A

P P y A

P P z A

x t d x
y t d y
z t d z

+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (114) 
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At point P, the normal to S is given by 

 ( , , )P P Px y zn  (115) 

 
Figure 6.17 Reflected ray at point P 

Reflected ray 
For specula reflection on surface S, the vector equation of the reflected ray is:  

 ( )
( )

2
2

−
=

−
d d n n

r
d d n n

i
i

 (116) 

where r  is the unit vector of the reflected ray, Figure 6.17.  For normalized vectors we have: 

 
( )

( )
( )
( )

2
1 2

2
2

x x x

y y y

z z z

r d n
r d n
r d n

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = −⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

d n
d n

d d n n
d n

i
i

i
i

 (117) 

 
( )( ) ( )( ) ( )( )22 2

2
1 2

2 2 2 1 2

x z x

y z y

x x y y z zz z z

r n n
r n n

d n d n d nr n n

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− + − + − −⎝ ⎠ ⎝ ⎠d n d n d ni i i

 (118) 

  

with ≡d z it comes that 

 
( ) ( ) ( )22 2

2
1 2

2 2 1 2 1 2

x z x

y z y

z x z y z zz z z

r n n
r n n

n n n n n nr n n

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− + − + − −⎝ ⎠ ⎝ ⎠

 (119) 

 

Note that for a sphere a b c= = =1 and / 4Cφ π= , ( ) ( )0 2 2; 0; 0 2 2P P Px y z≡ + = ≡ −  we get 
( ) ( )0 0 1

t t
x y zr r r = . 
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6.3.1.3 Critical curve 

Critical scattering appears when the incident ray hits the bubble surface S with an angle φ  above 
the critical incident angle Cφ :  

 ( )1sinC mφ φ −> =  (120) 

where 1m <  is the bubble relative refractive index. For a spherical bubble this critical curve 
(partly sketched in yellow in Figure 6.16) is a circle centered on z-axis (which explains the shape 
of critical bows).  

We want here to determine the equation of this critical curve for a spheroid surface. To do so, we 
simply need to determine the ensemble of points P where the following condition is fulfilled:  

 2cos 1C zn mφ = = = −d.n  (121) 

With previous results and conventions we get 

 
( )( ) 2 2 22 2 2 2 2 2

0
1cos 0 .

.
1

t
x

z
C y

x y zx y z x y z
z

n
nn

n n nd d d n n n n
φ

⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ + ++ + + +⎝ ⎠ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

d.n d.n
d n

 (122) 

with  

 
2

2 2 2

2 2 2

cos C

z
c

x y z
a b c

φ =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (123) 

Finally all these points are at the intersection of the surface S and a cone with z-axis and with an 
elliptical cross-section: 

 
2 2 2

2
2 2 2

1 1 1 tan C
x y z

a a b b c c
φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (124) 

Note that for a spherical particle with 1a b c= = =  and / 4Cφ π= , we get 2 2 2x y z+ =  as the 
equation of the cone. By using Eq. (101)  we obtain finally that the equation of the critical curve 
is 2 2 1 2x y+ = , i.e. a circle with radius 2 2 . 

 

From the equation of the spheroid we have 
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2 2 2

2 2 21z x y
c a b

= − −  (125) 

By putting Eq. (124) into Eq. (125) we obtain:  

 
2 2 2 2

2
2 2 2 2 2

1 1 1 1 tan C
x y x y

a a b b c a b
φ

⎛ ⎞⎛ ⎞ ⎛ ⎞+ = − −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (126) 

which gives 

 
( )

( )

2
2 2 2 2 2 2 2

2 2 2 2

tan tan

tan

C C

C

ya b a c b
bx a

b c a

φ φ

φ

⎛ ⎞− +⎜ ⎟
⎝ ⎠= ±

+
 (127) 

 

After some calculations we get the first equation of the critical line for the general case a b c≠ ≠  
and φ = Cφ . This is the projection of the critical line on Oxy plane: 

 ( )
( )

( )

2
2 2 2 2 2 2 2

2 2 2 2

tan tan
0

tan

C C

P
C

ya b a c b
bx y x a

b c a

φ φ

φ

⎛ ⎞− +⎜ ⎟
⎝ ⎠≡ = ± >

+
 (128) 

A second equation is necessary to define the critical line in space (i.e. the projection on the Oyz-
plane).  By injecting Eq.(128)  into the spheroid equation (Eq. (125)): 

 

 ( )
( )

( )

2
2 2 2 2 2 2 2

2

22 2 2 2

tan tan
1 0

tan

C C

P
C

ya b a c b
ybz y z c
bb c a

φ φ

φ

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟≡ = ± − − <

⎜ ⎟+
⎜ ⎟
⎝ ⎠

 (129)  

It is interesting to derive expressions for the axis-symmetrical oblate spheroid case where:  

 ; / 1b c cte a bξ= = = ≤  (130) 

By replacing in Eq. (128) we get a more simple expression for the critical line in the ( ),x y  
cartesien plan:  

 ( )
( )

2
2 2

2 2

tan 1 tan
0

1 tan

C C

P
C

y
ax y x a

ξφ φ
ξ

ξ φ

⎛ ⎞− +⎜ ⎟
⎝ ⎠≡ = ± >
+

 (131) 
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To get the critical line equation in the cartesien plan ( ),z y  we have to inject Eq. (131)  into the 
spheroid equation Eq. (125), so that we get : 

 ( )
( )

2
2 2

2 2
2

2 2 2

tan 1 tan
1 0

1 tan

C C

P
C

y
a yaz y z

a

ξφ φ
ξξ

ξ ξ φ

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟≡ = ± − − <

⎜ ⎟+
⎜ ⎟
⎝ ⎠

 (132) 

To visualize the critical bows we restrict the domain to { }0 ,  0 ,  0P P Px a y b c z≤ ≤ ≤ ≤ − ≤ ≤   

 

Two limit cases of practical interest:  

          - for an oblate spheroid with /b c a ξ= =  we have  

 ( ) ( )2
2 2

1 10 1 0;   0 0
1 1P P

az x aξ ξ
ξ ξ ξ

⎛ ⎞
≡ ± − < ≡ ± >⎜ ⎟+ +⎝ ⎠

 (133) 

        - for a sphere 1a b c= = = , ( ) ( )0 2 2 0.707; 0 2 2 0.707P Px z≡ + ≈ − ≡ − ≈ −  
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Figure 6.18 Evolution of the coordinates of point P, i.e. the critical curve, left: ( )Px f y= and, right 
( )Pz g y=  for 0 :1y =  . The red curve corresponds to a sphere: x(y) describes a circle and z(y) is a 

constant. 

Numerical example :  
Figure 6.18 shows the critical curve onto the spheroid surface projected on the cartesien plans 
( ),x y  and ( ),z y , for b=1, 1,0.9,0.8ξ =  and / 4.Cφ π=  Note that, for instance, ( ),1f y  stands 
for ( ), 1 0x f y ξ= = > , and ( ),1g z stands for ( ), 1 0z g y ξ= = < . The red curve corresponds to a 
spherical bubble.  
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6.3.2 Projection plane and critical bows 

In the CARS set-up the scattering diagrams are observed at infinity by using a collecting lens 
operating in a Fourier configuration. To model this system, we simply consider a projection plane 

'Σ  which satisfies the following criteria:  

   (i)   'Σ  is far from the bubble { }, ,R Max a b c�  ,  

  (ii) 'Σ  is perpendicular to a direction defined by a scattering  angle 0 02θ π φ= − . Note that in 
experiments we have generally 0 Cφ φ≈ , but they are usually not equal.   'Σ  is parallel to the x-axis 
(like the CCD sensor)  

 
Figure 6.19 Link between the incident ray coordinate system and the coordinate system stick to the 

projection plan. 

Looking at Figure 6.19, the projection plan 'Σ  crosses y-axis at point J    

 
( )0

0, ,0
sin 2

RJ
φ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (134) 

'Σ  has a unit normal  

 ( )
( )

0

0

0
sin 2
cos 2

φ
φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

 (135) 

The equation of Σ  is obtained by posing that the scalar product of a vector JM  and the normal 
of 'Σ  is null:  

 
( ) ( )

( )
0

0
0

0 0
sin 2 0

sin 2
cos 2

0

x
Ry

z

φ
φ

φ

⎛ ⎞−
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟− =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ −⎝ ⎠⎜ ⎟−⎝ ⎠

i  (136) 
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So the equation of projection 'Σ  is 

 ( ) ( )0 0sin 2 cos 2 0y z Rφ φ− − =  (137) 

The parametric equation of the ray reflected, from point P toward direction r  is 

 
q x P

q y P

q z P

x t r x
y t r y
z t r z

⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟ = +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (138) 

This ray hits the projection plane 'Σ  if there is a value of qt  such as:  
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( ) ( )
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cos 2 sin 2
sin 2 cos 2

q y P q z P

P P
q

y z

t r y t r z R
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 (139) 

if ( ) ( )0 0sin 2 cos 2 0y zr rφ φ− ≠  

 ( )
( )

0

0

tan 2
tan 2
P P

q
y z

R z y
t

r r
φ

φ
+ −

=
−

 (140) 

 P
q

y

R yt
r
−

=  (141) 

When ( ) ( )0 0sin 2 cos 2 0y zr rφ φ− ≠  the crossing point is noted ( ), ,C C CC x y z  with 

 
C q x P

C q y P

C q z P

x t r x
y t r y
z t r z

⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟ = +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (142) 

 P
q

y

R yt
r
−

=  

Bows equation in the projection plan  
Eq. (142) describes the critical bows in a the 3D coordinate system ( , , , )O x y zΓ . This 
representation is difficult to understand, except when 0 / 4φ π=  as in this particular case 'Σ  is 
parallel to the (xOz) plan. In the general case, it is better to express this equation in a 2D 
coordinate system '( ', ' , ', 0)O x x y zΓ = ≡  simulating the plane of the CCD or a screen on which 
the critical bows are observed, see Figure 6.16. To move from ( , , , )O x y zΓ  to '( ', , , )O x x y z′ ′ ′Γ =  
we need a translation and a rotation. 

Translation from 'O O→ : 
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 ( )
( )

( )
( )

0 0

0 0

'
' sin 2 sin 2
' cos 2 cos 2

x x x
y y R y R
z z R z R

π φ φ
π φ φ
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⎜ ⎟ ⎜ ⎟⎜ ⎟ = − − = −⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (143) 

Rotation from ( , , , )O x y zΓ → '( , , , )O x x y z′ ′ ′Γ = : 

 ( ) ( )
( ) ( )

0 0

0 0

' 1 0 0
' 0 cos 2 sin 2
' 0 sin 2 cos 2

x x
y y
z z

φ φ
φ φ
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 (144) 

Composing the two transformations we get the equation of the bows in the 2D projection plane 
'Γ  : 
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⎛ ⎞ ⎛ ⎞⎛ ⎞
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⎜ ⎟⎜ ⎟⎜ ⎟ − +⎝ ⎠⎝ ⎠⎝ ⎠

 (145) 

see Eq.  (142) for the expressions of ( ) ( ),C Cx y y y  and ( )Cz y . 

 

By plotting  ( )' 'x f y=  we can visualize the bows as they are observed on a paper sheet or on the 
CCD for { }, ,R Max a b c� .  To get relative angular quantities, we have to plot something like 

( ) ( )( )1 1tan '/ tan '/x R f y R− −= . 
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Chapter 7 

 

 

 

 

7 GAUSSIAN BEAM AND SPATIAL FILTER 
EFFECTS  

As already mentioned earlier the CARS technique is mostly a angular based technique but, any 
angular technique is also partly intensity dependant. Two important intensity weighting effects 
contribute to the CSP: the laser beam intensity profile within the probe volume and the CARS 
collection optics spatial filtering. From chapters 5 and 6, it is clear that when the beam waist 
diameter and the spatial filter aperture are properly chosen, these two effects do not create any 
problem as we obtained reliable size distributions and refractive indices measurements. However, 
in this chapter we investigate these two effects to bring more physical understanding on CARS 
working principle, as well to clarify the limits of the CARS technique with respect to these two 
effects.  

7.1 Gaussian beam effects 

7.1.1 Exemplifying numerical results 

To introduce the principle of the CARS technique, as well as for all numerical results presented 
earlier we did not take into account the intensity gradients within the probe volume (see §2.6). 
The reason for that is that we restrict ourselves to bubble sizes much smaller than the probe 
volume dimensions (see §4.3.1). Indeed, as a technique allowing instantaneous spatial statistics, 
there is no need to consider probe volumes smaller than the bubble size. However, for some 
applications, it can be necessary to study the bubbles one by one (low bubble concentrations), i.e. 
to use a small probe volume (huge bubble concentrations, correlation with other technique, time 
resolution, etc.). In fact it was the original operating mode of the CARS technique (see Onofri 
1999a).  
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Most optical sizing techniques use lasers producing TM00 beams (Gaussian intensity profile). It is 
also the case of the CARS technique. For small bubble diameter/laser beam waist diameter ratios: 

0/ 2 3,D ω ≤  it is necessary to consider the bubble position in respect to the laser beam waist 
center, see Figure 7.1.  

 
Figure 7.1 Positions (x,y=z=0) of the bubbles in respct to the laser beam-waist center (the CARS 

collection optical axis is close to the x-axis) 

As an example Figure 7.2 shows the evolution of the scattering diagram of an air bubble in water 
lighted by a laser beam with beam-waist diameter 02 1.5mmω = , parallel polarization and 

0 0.532nmλ = , and for three positions of the bubble along the x-axis, with y=z=0. Note that the 
CARS optical axis is along the z-axis (see Figure 7.1). The calculations were performed with the 
generalized Lorenz-Mie theory (Gouesbet et al. 1988). 
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Figure 7.2 Scattering diagrams for three positions of a 465D mμ=  air-bubble in water in a gaussian beam 
with diameter 1.5 mm, parallel polarisation, z=y=0. From left to right, scattered intensities are presented 

with logarithm and linear scales.   

In the above two figures we remark that the scattered patterns are rather similar although with 
significant amplitude differences. Only for the case where 0.9x mm= +  we see that the scattering 
diagram around the critical angle appears less contrasted.  Indeed, this latter case corresponds to 
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an impact parameter which is on the bubble surface side which is opposite to the side where the 
critical scattering takes place. Figure 7.3 shows a zoom of the previous scattering diagrams, in the 
critical scattering region and for more bubble positions. The bubble position for which the low 
frequency fringes (characteristic of the CSP, 0p = ) are maximum and the high frequency fringes 
are minimum (characteristic of 2p ≥ ) is 0.3x mm≈ − . For that position, in the geometrical optics 
framework, we can say that the critical scattering pattern is enhanced by the laser beam intensity 
profile. Indeed, the impact parameters of the ray 0p =  at Cθ  corresponds to 1 / 2x m D−= − , i.e. 

174x µm≈ −  for an air-bubble in water. For optical sizing techniques like phase Doppler 
interferometry, this effect is called “particle trajectory effect” or “Gaussian beam effect”(see 
Naqwi et al. 1992).           
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Figure 7.3 Scattering diagrams of an air bubble in water with D 465µm= , for parallel polarisation with  

0 532nmλ = , and different location along the x-axis in a gaussian beam with 02 =1.5mm.ω . 
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Figure 7.4 Scattering diagrams of a D=465µm air bubble in water, for parallel polarisation with 

0 532nmλ = , and different locations along the x-axis in a gaussian beam with 02 =75 mω μ  (from left to right, 
the scattered intensites are in logarithm and linear scales).  
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Figure 7.4 shows the full scattering pattern for a much smaller beam size, 02 =75 mω μ , of a 
D 465µm=  air-water bubble localized at different positions along the beam x-axis. Here the 
Gaussian beam effects are much more pronounced. It is obvious that the maximum amplification 
of the critical scattering is reached for 200x µm≈ − : the CSP is only composed of law frequency 
fringes and there is no more signature of contribution from rays with 2p ≥ . Eliminating the case 

100x µm≈ −  (which is rather similar to the previous case), the second CSP with maximum 
intensity appears for 100x µm≈ + . The corresponding CSP is rather flat in the critical scattering 
region. Looking at Figure 2.1 this position seems to correspond to rays 2'.p =  
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Figure 7.5 Sckematic and photography of the micro-displacement system developped to test Gaussian  

beam and spatial filter effects onto CARS measurements.  

 

Figure 7.6 Image of the laser beam onto the CCD chip; and the related raw and low pass filtered 2D-
profiles.  

7.1.2 Setup and procedure  

To study experimentally the influence of the diameter of the input beam as well the spatial filter 
aperture onto the response of the CARS technique we have developed a 2D-motorized bench 
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controlled via a PC, see Figure 7.5. With this system it is possible to adjust precisely ( )10µm± , 
regarding to the CARS probe volume, the position of the piezo-jet ( ),x y .  By removing the 
beam expander and using a focusing lens we can reduce the laser beam diameter from 

02 15mmω ≈  down to 50 1500 .mμ≈ ∼  To analyze the intensity profile of the input beam we have 
used a CCD camera located at the same distance from the laser output than the true CARS probe 
volume (but not in water). Figure 7.6 shows that the laser beam profile exhibits a ripple structure 
that can reasonably be attributed to some back reflected light and interference effects.  

From the low pass 2D-profile we get two 1D intensity profiles along the x- and y-axes, see            
Figure 7.7. Fitting these profiles with the normal distribution:  
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we have found for the laser beam-waist dimensions 2 2 1.5x y mmω ω≈ ≈ .  
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           Figure 7.7  Measured laser beam intensity profiles within the probe volume, along y and x-axes.  

To test Gaussian beam effect we produced with the piezo-jet injector streams of 400~500µm  
mono-disperse bubbles in interval of 4Hz (see §4.2.1). Statistics were performed over 100 
bubbles, then the stream of bubbles (rising up along the y-axis for a given x and for z=0) was 
moved along the x-axis with the micro-displacement system (steps: -900, -800…900µm).  

 

7.1.3 Experimental results and comparisons with the theory  

The bubbles were analyzed with the micro-video system and with the CARS system (inverse 
method: LSQ-LMT-LogNorm.). Figure 7.8 show a typical micro-video image and the CSP of a 
bubble localized at , , 0x y z µm≈ . Figure 7.9 shows the results of the analysis of the previous CSP.  
Indeed, for all results presented in this section the bubble mean diameter is D ≈ 465μm and the 
size distribution is very narrow ( /D 0.05σ ≈ , close to the resolution limit of both methods – see 
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chapter 5). Figure 7.10 compares experimental results (averaged over 100 bubbles) and numerical 
results for the above parameters. The agreement is extremely good. Even the high frequency 
fringes are observed. Note that the dynamic of the experiment signals is a little bit smaller than 
for the numerical ones, but this may be attributed to the CCD electronic and scaling effects.  

 

             
 

Figure 7.8 Typical micro-video and CSP images for mono-disperse bubbles at the center of the probe 
volume (x=y=z=0)                            
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Figure 7.9 Experimental and reconstructed CSP profiles corresponding to Figure 7.9, and the size 
distribution obtained with the LSQ-LMT inverse method.  

To go in this way we have reduced the probe volume size by focusing with a spherical lens the 
laser beam down to 2 75µmω ≈ . In that case the bubbles are almost six time bigger that the 
nominal probe volume diameter. Note that the trajectories of bubbles generated with the piezo-
jet are close to a pure vertical line but, as there is some recirculation and wakes in the tank, there 
is some jitter in their trajectory. So that, with an injector at few centimeter from the probe 
volume, it was not possible to control the position of the bubble at better 100µm≈  over x and 
z . Figure 7.12 shows six CSP intensity profiles selected randomly from a set of one hundred of 
them. Figure 7.13 displays the mean CSP obtained by adding one hundred CSP, the size 
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distribution obtained with the micro-video system. Table 7.1 compares statistics obtained with 
both methods, there are in very good agreement provided that bubbles are really random 
trajectories in the probe volume.  
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Figure 7.10 Comparison of experimental and numerical critical scattering diagrams averaged over 100 air-

bubble in water with diameter 465μm, a  laser beam diameter of 750µm and 0.532 mλ μ= .  
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Figure 7.11 Same parameters as in Figure 7.10 but for a single bubble and a probe volume diameter of 
75µm. 
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To conclude on that part let first point out this important result: bubbles can have rather random 
trajectories within the probe volume, their CSP can be complex and impossible to analyze 
individually (see Figure 7.12), if we average many of these CSP we get an average CSP that can be 
analyzed without any difficulty (see Figure 7.13). Indeed, all is like Gaussian beam effects 
compensate each other when integrating over a large number of bubbles and trajectories. It 
means that, these effects are totally negligible when we use the CARS technique as a spatial 
integrating technique (i.e. large laser beam).  
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 Figure 7.12 CSP intensity profiles for six random trajectories within the probe volume. 
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Figure 7.13 Mean CSP over 100 single bubbles and trajectories, size distribution obtained with the micro-

video system. 

 D [um] σ/D [ - ] m-1 [ - ]
Micro-Video / Abbe refract. 548,0 0,027 1,3355
Full-LSQ-LMT 523,0 0,025 1,3375
3points-LMT 456,0 0,030 1,3400

Table 7.1 Comparison of statistical results for 100 bubbles with random trajectories within the 
probe volume. 
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7.2 Spatial filter effects  

7.2.1 Necessity and limit  

In section §4.3 we explained that the collection optics of the CARS system requires an “optical 
diaphragm” or “spatial filter” (see Figure 7.15). In fact, the aperture of the collection optics is 
already limited by the clear aperture of all lenses. But, it is well known that to limit optical 
aberrations, barrel effects, etc. it is better to use only the center of lenses. Nevertheless, by doing 
this, we also reduce the useful angular range of the optical system. There is an additional and 
more constraining reason to integrate a spatial filter into the collection optics: it is to control the 
probe volume width. Indeed, the nominal probe volume of the CARS system is limited by the 
laser beam diameter but the collection optics aperture. Note that the effective probe volume size 
depends also of the laser beam power and the camera amplification settings. Without any spatial 
filter, the width of the nominal probe volume would be too large. Indeed, a large probe volume 
width means a lower spatial resolution of the system (which is not interesting from the fluid 
mechanics view point) and more optical aberrations related to bubble side locations within the 
probe volume. As an example, Figure 7.14 compares CSP images recorded when the spatial filter 
is fully opened and a stream of mono disperse air-bubbles is passing through the center of the 
probe volume, or on the edge of this one (large z, see Figure 7.1) . It is clear that in both cases 
the fringes are located at the same positions  (absolute angular measurement) but that the 
intensity transmitted by the optics depends on the bubble location (CSP are weighted by the 
transmission of the collection optics).   

       
Figure 7.14 CSP images of a stream of mono disperse air-bubbles in water when the spatial filter is fully 
open: on the left, when bubbles pass through the center of the probe volume; on the right right, when 

they pass of the edge of the probe volume.  

 

7.2.2 Experimental setup and results 

7.2.2.1 Setup and procedure 

To investigate the effect of the spatial filter aperture onto the CARS technique we consider three 
cases: 1st case, the spatial filter (optical diaphragm with round aperture) is fully open so that its 
clear aperture is of 23mm;  2nd case its clear aperture is reduced to 13mm;  3rd its clear aperture is 
only 6mm. The nominal laser beam diameter was of 15 mm. 

limit 
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Figure 7.15 Image and schematic of the collection optics 
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Figure 7.16 Cartesian mesh of the micro-displacement system used to localize the stream of monodisperse 

bubbles within the probe volume. 

To generate well controlled stream of D=465µm air-water bubbles we have used the piezo-jet 
fixed onto the micro-displacement system (see § 7.1.2). With the latter system we create a 
Cartesian mesh of 8 x 8mm with steps of 2mm. Due to experimental constraint the mesh was 
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parallel to the laser beam axis, making an angle of 14≈ °  with the collection optics optical axis, 
see Figure 6.16 

7.2.2.2 Results 

Figure 7.17 and Figure 7.18 show results obtained for case 1 (spatial filter fully open) and the 25 
nodes of the probe volume’s mesh. Figure 7.17 displays the CSP averaged over 100 bubbles. 
Figure 7.18 shows the corresponding intensity profiles. To simplify the understanding of these 
results let’s point out that, as a first approximation, results in the same “column” (i.e. x axis≈ − ) 
are mainly sensitive to the laser beam intensity profile whereas, results in the same “row” (i.e. 

z axis≈ − ) are more sensitive to spatial filter effects. For this first case, we can already remark 
that the intensity of CSP change with locations of the bubble within the probe volume. In colons, 
CSP intensity profiles change but without significant modification in shape. In rows, the shape of 
the CSP intensity profiles change on the side ways. Indeed, when the bubbles are on the probe 
volume side 0z >  a part of the light they scatter at cθ θ<  is blocked by the collection optics. In 
opposite, when the bubbles are located in the 0z <  side of the probe volume, it is the light 
scattered at cθ θ>  that is blocked.  

All these effects are much more pronounced for the second case (intermediate aperture), see 
Figure 7.19 and Figure 7.20 ; and the third case (small aperture), see Figure 7.21 and Figure 7.22. 
For the intermediate spatial filter aperture, the shape of the CSP is only “normal” for bubble 
positions corresponding to the interval 4z mmΔ ≤ . For the smallest spatial filter aperture, the 
CSP are almost invisible for 6z mmΔ ≥ , strongly perturbated for 2z mmΔ =  and somewhat  
perturbated for 0z mmΔ ≈ .  

Looking at the previous results one can be afraid about the influence of the disturbed CSP to 
CARS measurements. However, to conclude on that point, let first remember that, under real 
bubbly flow conditions, bubbles have random trajectories within the probe volume. It is the 
reason why, in Figure 7.23 to Figure 7.25, we compare for the three spatial filter apertures: the 
CSP obtained when bubbles are passing through the center of the probe volume with the average 
CSP obtained for all bubble positions in the probe volume (all CSP presented respectively in 
Figure 7.17 to Figure 7.19). The results are clear: the smaller is the spatial filter aperture, the 
smaller is the distortion of the averaged CSP. So it means that the spatial filter avoid excessive 
optical aberrations in the collection system and allows better measurements, see also                       
Table 7.2.   

                             Table 7.2 Effet of the spatial filter aperture onto CARS measurements.  

 Bubble at the center Average CSP/positions  
Spatial filter aperture 

[mm] 
D  

[ ]mμ
/ Dσ  

[ ]−
m  
[ ]−

D  
[ ]mμ

/ Dσ  
[ ]−  

m  
[ ]−  

23  600 0,030 1,3350 612 0,030 1,335 
13  614 0,010 1,3350 625 0,015 1,3345 
6  604 0,010 1.3350 605 0,010 1,3350 
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Figure 7.17 For full spatial filter aperture (1st case, 23 mm): recorded CSP for bubbles localized at the 

nodes of the spatial mesh of the probe volume. 
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Figure 7.18 For full spatial filter aperture (1st case, 23 mm): intensity profiles for bubbles localized at the 

nodes of the spatial mesh of the probe volume.  
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Figure 7.19 For intermediate spatial filter aperture (2nd case, 13 mm): recorded CSP for bubbles localized 

at the nodes of the spatial mesh of the probe volume. 
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Figure 7.20 For fully open spatial filter (2nd case, 13 mm): intensity profiles for bubbles localized at the 

nodes of the spatial mesh of the probe volume. 
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Figure 7.21 For reduced spatial filter aperture (3rd case, 6 mm): recorded CSP for bubbles localized at the 

nodes of the spatial mesh of the probe volume. 
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Figure 7.22 For reduced open spatial filter (3rd case, 6 mm): intensity profiles for bubbles localized at the 

nodes of the spatial mesh of the probe volume. 
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Figure 7.23 Comparison of CSP obtained when bubbles are passing through the center of the probe 
volume with average CSP obtained for all bubble positions in the probe volume, large spatial filter. 
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Figure 7.24 Like Figure 7.23 but an intermediate spatial filter aperture. 
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Figure 7.25 Like Figure 7.23 but for a small spatial filter aperture.  
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7.3 Conclusions  
Gaussian beam and spatial filter effects weight the intensity of critical scattering diagrams. For 
highly focused laser beam and small spatial filter aperture, their effects are significant. Both 
effects can highly distort the CSP so that the latter cannot be analyzed with conventional inverse 
methods. With GLMT, Gaussian beam effects can be investigated numerically but, for spatial 
filter effects, we do not have the corresponding numerical tools.  

 Mixing numerical and experimental investigations we can nevertheless draw some conclusions 
on both effects: 

          - Gaussian beam or “trajectory” effects compensate each other for bubbles passing with 
random trajectories in the probe volume. If the bubbles are much smaller than the laser beam 
diameter, the CARS analyze is insensitive to Gaussian beam effects even for bubbles with a 
particular position within the probe volume. 

          - The intensity of the laser beam controls the width of the probe volume (i.e. its dimension 
along the collection optics optical axis, ≈ x-axis).  

          - The spatial filter controls the probe volume length (i.e.  its dimension perpendicular to 
the collection optics optical axis, ≈ z-axis), but it produces distorted CSP when bubbles pass on 
the side ways of the probe volume. 

          - The distortions induced by the spatial filter are more or less symmetric in respect to the 
collection optics optical ( ≈ x-axis). They cancel each other for bubbles with random trajectories 
within the probe volume. This is particularly true for the smaller spatial filter aperture. It is the 
reason why, for the measurements presented in other chapters, we have chosen an aperture width 
of 10 mm and we have got good results for real bubbly flows (see Chapter 5).  
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Chapter 8 

 

 

 

8 BOWS OF COLORS PRODUCED BY CRITICAL 
SCATTERING – A NATURAL PHENOMENA- 

 

8.1 Introduction 
According to geometrical optics the critical scattering angle ( )12sinc mθ π −= −  depends only on 
the bubbles relative refractive index / 1b sm m m= < .  It means that CSP are sensitive to the 
equation of dispersion of the materials that compose the bubbles and their surrounding medium. 
According to the physical optics approximation, the critical scattering is the result of the 
diffraction of reflected rays at the vicinity of the total reflection angle. For spherical bubbles, 
critical scattering produces fringes or “bows” that are axisymmetric with respect to the beam 
optical axis and with a large cone angle. On the other hand, we have mentioned in the 
introduction that there are great similarities between critical scattering, rainbow scattering and 
forward diffraction.  

On the basis of these arguments and remarks, we can assume that bubbles could create bows of 
colors at the vicinity of the critical scattering angle. Then two questions come out: can we 
observe these bows of color in Nature ? Could we use them for some metrological applications ? 
In this last chapter, we try to answer both questions for air-bubbles in water, giving comparisons 
with rainbows produced by water droplets in air (as a symmetrical or reverse case) 

 

8.2 Modeling of white-light scattering patterns 
To investigate the dependency of critical scattering patterns (CSP) with the dispersion of bubble 
material as well as the spectral bandwidth of the input beam, we have used the Lorenz-Mie theory 
(LMT).   
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To predict the spectral irradiance of Sun, we use the Planck’s law with a black body at 
T=5777°K: 

 
3

2

2 1( , )
1

h
kT

hI T
c e

ν
νν =

−
 (147) 

where 34 6.626 10 Jsh −≈ is the Planck’s constant, 82.998 10 m / sc ≈ is the speed of light in vacuum, 
23 1.381 10 J / Kk −= is the Boltzmann’s constant, ν  the frequency of electromagnetic waves and 

T  the temperature of the emitting source. The above irradiance will be used as an input function 
in the LMT to adjust the incident plane wave intensity for a specific wavelength, 1cλ ν −= .    
Figure 8.1 shows the spectral emission of black bodies at different temperatures. 

With thermal sources or large spectral bandwidth it is not possible to get a perfectly collimated 
beam over a long distance, so that we have to take into account the beam divergence. From 
Earth, it is usually admit that Sun’s angular aperture is about 0.4o∼ . This will be our divergence 
angle over all spectrum. Classically, the divergence of the incident beam will be threaded as a low 
path angular filter to be applied to the scattering diagrams. At the ground level,  we consider the 
Sun light has an unpolarized.  
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   Figure 8.1 Spectral irradiance of the black body T=5777°K.  

According to Birch K.P. et Downs M.J. (1994) refractive index for air is equal to 

 
where  

 ( ) ( ) ( )1 18 2 2m  1   10  8342.54  2406147 130  15998 38.9 air σ σ
− −

− × = + − + −  (148) 
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 where (σ = k wave number in vacuum) (m-1)tp is a parameters that depends on air temperature 
and pressure. In the visible region (λ=405–705 nm) the following approximation is more 
convenient and gives a maximum discrepancy of only 1.4 × 10−8, 

 ( ) 12 1  0.0472326 173.3 airm σ
−

− = −  (149) 

For our conditions, we take a constant value for the refractive index airm m 1.000237b ≡ = .  For 
the dispersion equation of water the things are more complicated. In fact there is many available 
data in the literature but they are not always totally consistent.  In what follows, we use the data 
provided by Querry et al. (1991). Their spectral resolution is fine enough so that we do not need 
to interpolate them. Table 8.1 shows few values of the real and the imaginary parts of water’s 
refractive index. The latter one is so small that it will be neglected in the next paragraphs.                       
Figure 8.2 shows the equation of dispersion of water for T=24°C and pressure 1013,25hPa. 

 

 

 

                                  Table 8.1 Water refractive index dependancy with wavelength 
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                                  Figure 8.2 Evolution of the dispersion equation of pure water. 

Our procedure to model white-light critical scattering patterns is the following one. For a given 
bubble size we calculate its CSP for a given wavelength and the corresponding refractive index. 
To take into account the beam divergence we filter out the CSP with a filter of angular width 

0.2θΔ = ± ° .  We then repeat this operation for bubbles within the size range 100 600D mμ= ∼  
with step 5D mμΔ = , and the scattering angle range 65 84θ = °∼  with step 0.02θΔ = ° . Figure 8.3 
and Figure 8.4 show the diagrams respectively, for a collimated beam and a diverging beam. 

 Refractive index of water 
Wavelength [nm] Real part Imaginary part 

299.9 1.371437 4.148E-9 
444.6 1.344418 8.685E-10 
590.2 1.333609 6.365E-9 
734.5 1.327652 1.348E-7 
879.0 1.324074 4.053E-7 
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Colors patterns are similar although, for the collimated beam finer structures are observed. The 
spacing of the colored fringes increases as far as we are getting closer to the critical scattering 
angle. These two diagrams exhibits a lot of similarities with the ones calculated by Lee (1998), for 
the rainbow.  
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Figure 8.3 Simulation with LMTof the color intensity of the critical scattering diagrams produced by mono 

disperse air-bubbles in water, under a collimated white-light beam illumination. 
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Figure 8.4 Same parameters as in  Figure 8.3  but for a slightly diverging white-light beam illumination. 
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         Figure 8.5 Emmission spectrum of the Microtek HL-2000 lamp (polynomial fit with symbols). 

8.3 Preliminary experimental results 
To observe critical bows of colors in laboratory environment we must use a wide spectra light 
beam. To do so, we have utilized an fiberized and stabilized halogen lamp from Ocean Optics 
(Microtek HL-2000). Figure 8.5 shows (in blue) the output spectrum of this thermal source. For 
computational efficiency reasons, we have fitted this spectrum with a third order polynomial 
function:  2 3

1 2 3( )I A B B Bλ λ λ λ= + + +  with for the constants: A=1.0658009 , 1B 0.0078540= − , 
5

2B 1.7128427 10−=  and 9
3B 9.25925926 10−= − . The piezo-jet was used to produce a cloud of 

monodisperse air bubbles in water, with 420D µm=  and / 0.01.Dσ =  To record the multi-
wavelength CSP we have used a color CCD camera from “The Imaging Source” (see §4.5). The 
latter was equipped with a Nikkon camera lens in a Fourier configuration. The white balance of 
the camera was adjusted carefully using a color reference target. 

 
Figure 8.6 Critical bows of colors: numerical and experimental critical scattering patterns produced by 

monodisperse air-bubble in water lighted with a collimated white-light beam  
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8.4 Conclusion  
In this chapter we have shown numerically that critical scattering phenomenon can generate 
bows of color in the same way that the rainbow does (e.g. Lee, 1998). This phenomenon has also 
been observed experimentally, however we did not have enough time to perform more detailed 
experiments and more specially, concerning the influence of the width of the bubble size 
distributions. However, from numerical results we can already conclude that bows produced by 
the critical scattering patterns are more spread angularly than the ones observed for the rainbow. 
It implies that colors are more difficult to distinguish. In addition, as for air-bubbles in water the 
critical angle is close to 90°, the fringes are less curved than those of the rainbow. Indeed, the 
bows produced by the critical scattering look like parallel fringes than circular ones. This is not 
detailed as, clearly, one of the main distinguishing property of the rainbow is the fringes 
curvature. On the other hand, we know that CSP are more sensitive to bubble sizes than the 
rainbow is sensitive to droplets diameter. As a consequence, for polydisperse bubble size 
distributions, the color of CSP should be more dumped by the size distribution width than the 
rainbow. In our opinion, if it can be observed, the critical scattering in Nature must be an 
underwater phenomenon. If true, it is expected to be sensitive to the refraction angle of Sun rays 
through the water surface. We have tried to observe this phenomenon in sea water, around 
midday, looking at the bubbles produced by the breaking of waves. But we did not succeed yet.  

From the metrological point of view, it is obvious to conclude that additional colors could give us 
more information about the bubbles properties. When we are dealing with very polydisperse 
bubbles for instance, the CARS technique is limited by the CSP-visibility which tends to zero. 
With a second laser beam, with a different wavelength, this problem could be solved.  
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Chapter 9 

 

 

 

 

9 CONCLUSION AND PERSPECTIVES  

This manuscript present the Ph. D work completed in “cotutelle” between the laboratory 
IUSTI UMR CNRS n° 6595 (Marseille, France) and the Chair of Electronics and Photonics 
(Wroclaw, Poland). The main objective of this work was to study the properties of the critical 
scattering pattern produced by a cloud of bubbles. Second, to propose a new optical method, 
based on this phenomenon, which allows inferring the bubble clouds properties (size distribution 
and refractive index) for fluid mechanics applications. 

After an introduction, the first part of this manuscript concerns the development and the 
test of models and theories to predict the scattering of a single and spherical bubble. We have 
found that the Lorenz-Mie theory (LMT) is the only one which is sufficiently accurate for all 
aspects of the problem. The Debye and Complex Angular theories were considered as in adapted. 
The physical optics approximation (POA) from Marston (Marston 1979) has some interest for 
applications requiring fast calculations with limited computational resources (i.e. integrated 
sensor). In fact, from POA we can obtaine useful analytical relations that allow getting directly 
from the CSP the bubble mean size and refractive index (Onofri 1999a, Onofri et al. 2007a-b).  

To model the scattering of a cloud of bubbles we have assumed a single scattering regime, 
so that the intensity profile is described by a Fredholm integral equation of the first kind. To 
access to the bubble clouds properties it is necessary to develop inverse methods. We have 
developed several of them. The best method is based on the resolution of the discretized 
Fredholm integral with a non negative least square method (NNLSQ). We have also developed 
methods based on some correlation estimator or fitting functions (LSQ, 3-points methods). 
Numerical studies were performed to tests, with success, the stability and resolution of these 
inverse methods, using LMT or POA as scattering theories. 

To test all basic assumptions, as well as scattering models and inversion procedures, we 
have built up a complete optical and mechanical setup. The optical setup to record critical 
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scattering patterns (CSP) is called “critical angle refractometry and sizing” (CARS) system. It  
allows recording the CSP produced by all bubbles within a probe volume of 31cm≈ . In this 
experiment, bubbles are produced by different injectors: piezo-jet on a micro-displacement 
system, assisted jet, porous injection system, etc. To validate the experimental results obtained 
with this new optical method we have built two additional optical sizing systems: a micro-video 
imaging system (MVIS) operating as a shadowgraphic system and an interferometric laser 
imaging droplet sizing system (ILIDS).    

Our experimental results show clearly the accuracy of the models and the inverse methods 
we have developed, as well as the resolution and reliability of the CARS system. For all cases we 
have found a good agreement with reference techniques, for the bubbles mean size, size 
distribution width and refractive index (Onofri et al. 2009a, 2010). This was proven for several 
bubble/surrounding medium compositions: air/water, air/ethanol solution, water/silicon oil, etc. 
It is important to point out that, from these tests, it appears to us the CARS technique is more 
suitable for denser flows than conventional imaging techniques (MVIS, and ILIDS). 

To further improve the CARS technique we have investigated various effects: bubbles non 
sphericity, Gaussian beam intensity profile and spatial filter effects. For the two latter cases, we 
have shown that for bubbles with random trajectories in the probe volume these effects are 
naturally compensated. However, for some particular flows, composed of a regular stream of 
bubbles, caution must be paid to centre the bubbles within the probe volume. For non sphericity, 
we have demonstrate that CSP of ellipsoid bubbles without tilt angle correspond to the ones of 
spherical bubbles with a diameter equal to the ellipsoid axis length in the scattering plane. For 
tilted ellipsoids, the measured diameter is a rather complex mixing between different radiuses of 
curvature of the ellipsoids surface, around the scattering plane. We have proposed two 
approaches to infer the equivalent spherical diameter of ellipsoids: from the analysis of the 
curvature of CSP fringes and to use some hydrodynamics assumptions. We have also studied the 
scattering of a white-light beam by a cloud of monodisperse bubbles. As a model of Sun light, 
with beam divergence, it was shown numerically that the CSP obtained under such conditions 
should exhibits colours that make the CSP quite similar to the rainbow observed in Nature. This 
was observed experimentally, but we did not have enough time to study this phenomenon for 
polydisperse bubble size distributions.  

Perspectives for this work will be in the elimination of “ghost bubbles” generated 
sometimes by the inversion procedures, to improve the measurement of non spherical bubbles 
with a tilt angle, the use of several laser wavelengths to get more information on widely 
polydisperse size distributions, to access to the bubble concentration. However, we truly believe 
that CARS could be already used in its current state, or as an integrated sensor, for some fluid 
mechanics applications requiring a characterization of bubbles size distributions and 
composition.   
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10 ANNEX 

Correction method for refraction effects at the walls 
When the refractive index of the surrounding liquid is changing the refraction of the incident 
beam and the scattered light does the same. The Fourier optics of the CARS system measure the 
angle of the scattered rays in air, so the recorded CSP is biased by the refraction effects at the 
wall. The problem is solved with the calibration procedure, provided the liquid composition does 
not change during the experiment.  If it changes, we have shown that it has not a severe influence 
on the size measurements but a slight effect on the measurement of bubbles refractive index. So I 
have developed a very simple model to compensate the aforementioned effects.   

I develop a small ray tracing code to follows the rays paths in the cell. It uses the Snell-
Descartes’s laws at the cell glass windows and the critical scattering law onto the particle surface. 
Note that in this model we neglect the glass walls, that are considered to be thin and parallel (the 
rays are transmitted parallel to them self with a negligible displacement). For given refractive 
indices, see Figure 10.1, knowing the input angle 1iθ  we can calculate easily the output angle 2oθ , 
with for the first refraction angle 

( )1
2 0 2 1sin / sini im mθ θ−=  (150) 

And the critical angle 

( )1
1 2sin /c m mθ −=  (151) 

The output ray refraction angle is  

( )2 22 45o
o c iθ θ θ= − −  (152) 

Finally we get for the ray measured by 

the CARS    system  

( )( )1
1 2 2 0sin sin /o o m mθ θ−= ⋅  (153) 

Changing the refractive index of the liquid we can see the displacement of the scattering beam 
onto the CCD chip. We did this calculation for two cases: a full calculation (as described above) 
and a calculation without refraction at the walls (i.e. 1o cθ θ≡  ). The difference in displacement of 
the rays onto the CCD chip is took as the angular correction to add to CSP, see Figure 5.33.  

 

Figure 10.1 Ray tracing model of the ray 
paths from the laser to the CCD chip 
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12 RÉSUMÉ EN FRANCAIS (EXTENDED ABSTRACT 
IN FRENCH LANGUAGE) 

Ce manuscrit présente mes travaux de thèse, réalisés en “cotutelle” entre le laboratoire IUSTI, 
unité mixte de recherche du CNRS et de l’Université de Provence (France), et la Chaire de 
Métrologie Electronique et Photonique de l’Université Technologique de Wroclaw (Pologne). 
L'objectif principal de ce travail de recherche est d'étudier les propriétés des diagrammes de 
diffusion produits au voisinage de l’angle critique par des nuages de bulles. Puis en second lieu, de 
proposer et de tester les potentialités d’une méthode optique nouvelle, fondée sur l’analyse de la 
diffusion critique, qui permet de remonter aux caractéristiques granulométriques et à la 
composition du nuages de bulles et ceci, en vue d’applications possibles dans le domaine de la 
Mécanique des Fluides. 

 
Figure F1. Schéma illustrant les grandes similarités qui existent entre les trois phénomènes de diffraction 
(ou pseudo-diffraction) que sont la diffraction vers l’avant, la diffusion dans les régions de l’angle de l’arc-
en-ciel et de la diffusion critique (Onofri et al. 2008). 

 Après une introduction générale sur la nécessité de caractériser les écoulements à bulles, les 
avantages et les limites des techniques optiques actuellement disponibles, le 2nd chapitre porte sur 
le développement et le test de modèles et de théories pour prédire la diffusion de la lumière par 
une bulle sphérique unique. La diffusion critique y est présentée, dans le cadre de l’approximation 
d’optique physique  (acronyme anglais : POA) de Marston (1979), comme un pseudo-phénomène 
de diffraction lié à l’existence d’une discontinuité dans le coefficient de réflexion des rayons 
réfléchis (notés p=0) au voisinage de l’angle critique. A partir de cette théorie nous avons montré 
que l’on peut dériver des équations analytiques, Eqs. (12)-(13), pour relier simplement la position 
angulaire des franges critiques au diamètre et à l’indice de réfraction relatif d’une bulle.  Les 
études numériques ont cependant montré que la précision des prédictions de la POA, même en 
incluant la contribution des rayons réfractés (notés p=1), n’est pas suffisante pour toutes les 
applications (Onofri 1999a, Onofri et al. 2007a).  La POA reste cependant intéressante si l’on 
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envisage le développement d’un capteur intégré, aux capacités de calcul limitées. Nous montrons 
également dans ce chapitre que la théorie de Lorenz-Mie (acronyme anglais : LMT) est la seule à 
pouvoir modéliser de manière satisfaisante la diffusion critique. Contre toute attente, nous 
montrons en effet que les théories de Debye et du Moment Complexe Angulaire sont trop 
imprécises, tout en étant lourdes en termes de calculs. Afin de modéliser la diffusion d'un nuage 
de bulles, nous nous plaçons dans l’hypothèse d’un régime de diffusion simple, c.-à-d. un milieu 
optiquement dilué et sans diffusion multiple significative. Dans ce cadre, le profil d'intensité du  
diagramme de diffusion critique (acronyme anglais : CSP) est décrit par une équation intégrale de  
Fredholm de première espèce, voir l’Eq. (42). Ceci signifie que, à partir du profil d’intensité d’un 
CSP et pour accéder aux propriétés du nuage de bulles, il est nécessaire de développer des 
méthodes inverses. Dans ce chapitre, comme dans l’introduction, nous mettons en avant et pour 
la première fois les grandes similitudes qui existent entre la diffraction de Fraunhofer, le 
phénomène d’Arc-en-ciel (théorie D’Airy) et la diffusion critique, voir la Figure F1. 
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Figure F2  Résultats numériques obtenus avec la théorie de Lorenz-Mie pour un nuage de bulles d’air dans 
l’eau et dont on fait varier a) le diamètre moyen, b) la largeur de la distribution granulométrique et la 
composition (indice). Trois faits sont particulièrement remarquables: le diamètre moyen joue 
principalement sur l’étalement angulaire des diagrammes, la poly-disperion joue sur la visibilité des franges 
et l’indice de réfraction, sur la position angulaire globale des diagrammes.  

Dans le 3ème chapitre nous exposons le principe et testons numériquement (voir la Figure F2) les 
différentes techniques d’inversion développées au cours de ces trois années de thèse. La plus 
performante est basée sur la résolution d’une forme discrétisée de l’intégrale de Fredholm. Pour 
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ce faire, nous utilisons une méthode de moindres carrés dont la contrainte unique est l’obtention 
de solutions non négatives (acronyme anglais : NNLSQ, Lawson and Hanson, 1974). Cette 
méthode ne nécessite pas d’hypothèse sur la forme des distributions granulométriques. Pour 
obtenir l’indice de réfraction, cette méthode algébrique minimise le résidu global obtenu pour 
différentes matrices de diffusion (noyau de l’intégrale de Fredholm calculé avec la LMT). Nous 
avons également développés des méthodes inverses basées sur un estimateur de corrélation entre 
CSP expérimentaux et théoriques (méthode LSQ voir l’Eq. (55)), ou sur la résolution analytique 
d’un système de trois équations empiriques (méthode 3-points, voir Eqs. (62) à (64)). Dans ce 
dernier cas, les équations décrivent la position et la visibilité des deux premières franges des CSP, 
en fonction du diamètre moyen et de son écart-type, de l’indice de réfraction des bulles. Les 
méthodes LSQ et 3-points nécessitent de poser un modèle de distribution granulométrique, nous 
avons choisi en l’occurrence celui d’une distribution Log-Normale.    

 
Figure F3  Schéma de principe de l’expérience réalisée étudier et valider le principe de la technique de 
granulométrie et réfractométrie de nuage de bulles par analyse de la diffusion critique.   

Pour tester toutes les hypothèses faites, ainsi que les modèles de diffusion et les méthodes 
inverses, nous avons construit une expérience complète. Ces travaux d’instrumentation et de 
programmation sont détaillés dans le chapitre 4, voir à ce propos la figure F3. Le montage 
optique qui permet d’enregistrer les CSP est désigné comme système de « granulométrie et de 
réfractométrie par angle critique » (acronyme anglais : CARS). Il permet d'enregistrer le CSP 
produit par toutes les bulles contenues dans un volume de mesure de l’ordre de # 1cm3. Dans 
cette expérience, les bulles sont produites par différents injecteurs: jet-piézoélectrique, injecteur 
assisté, milieu poreux et un système électrolytique multipoints. Afin de valider par comparaison 
les résultats expérimentaux obtenus avec la technique CARS, nous avons construit deux autres 
systèmes optiques: un système d’imagerie micro-vidéo à longue distance avec éclairement 
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ombroscopique et un système d’imagerie interférométrique par défaut de mise au point 
(acronyme anglais : ILIDS).   

 
Figure F4 Exemple de résultats expérimentaux types: a) image dans le champ lointain des arcs de diffusion 
critique ; b) Profil expérimental et profil théorique reconstruit ; c) histogramme des tailles de bulles 
mesurées par imagerie micro-video ; d) même histogramme mais obtenu avec la technique CARS et une 
inversion par corrélation et e) idem mais avec la méthode d’inversion algébrique.  

Pour produire des bulles de différentes compositions, nous avons utilisés différents couples de 
fluides pour la bulle et le milieu environnant : air/eau, air/solution d'éthanol, eau/huile de 
silicone, etc. Les résultats obtenus pour des bulles sphériques sont comparés et discutés dans le 
chapitre 5, voir la figure F4. Pour tous les cas considérés, nous avons trouvé un bon accord avec 
les techniques de référence, pour les diamètres moyens, la largeur des distributions 
granulométriques et l’indice de réfraction (Onofri et al. 2009). De cette étude il ressort également 
que la technique CARS semble pouvoir caractériser des milieux dont la concentration en bulles 
est supérieure à celles que peuvent traiter les techniques d'imagerie conventionnelles, mais sans 
pouvoir mesurer cette concentration. 

Le chapitre 6 traite de la mesure des bulles non sphériques.  La technique CARS déduit le 
diamètre des bulles d’une mesure de la courbure locale des bulles au voisinage du paramètre 
d’impact des rayons réfléchis à l’angle critique. Dans le cas d’une bulle ellipsoïdale non inclinée 
(grand axe orienté suivant l’axe optique de la détection du système CARS), la mesure restituée 
correspond à celui de la sphère de même rayon de courbure. La quantité mesurée est donc 
précisément définie mais elle ne rend pas compte du rayon de courbure de la bulle suivant son 
petit axe. Le volume de la bulle est de ce fait surestimé. Nous proposons dans ce chapitre deux 
méthodes de correction pour cet effet: l’une est basée sur l’analyse de la courbure des franges des 
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CSP et l’autre, sur l’utilisation d’une corrélation entre ellipticité et nombre de Tadaki. La 
deuxième méthode pourrait apporter une correction appréciable. Pour les ellipsoïdes inclinés de 
manière aléatoire, la mesure CARS rend compte d’un rayon de courbure intermédiaire. 
Dans le chapitre 7 nous étudions l’influence sur la forme des CSP de deux phénomènes : le profil 
d'intensité du faisceau laser, supposé gaussien, et les effets liés à la présence d’un filtre spatial au 
niveau de l’optique de collection. La conclusion sur ces deux effets est que, globalement, ceux-ci 
s’auto-compensent lorsque les bulles ont des trajectoires aléatoires, c.-à-d. que les bulles sont 
équi-réparties dans le volume de mesure. Pour les écoulements naturels, classiques, ces effets 
peuvent donc être négligés. Cependant, si l’écoulement est fortement non symétrique au niveau 
du volume de mesure, ou si les bulles ne passent que d’un côté du volume de mesure, les CSP 
peuvent apparaître déformés. L’ajustement du diamètre du filtre spatial peut contribuer à 
résoudre ce problème, mais ce dernier doit être envisagé.   

Le chapitre 8 présente des travaux préliminaires sur la possibilité d’observer et d’utiliser des arcs 
de couleurs avec la diffusion critique, à l’image des arcs-en-ciel produit par les gouttes. Nos 
simulations numériques montrent qu’il est possible d’observer ces arcs-critiques, mais que ceux-ci 
sont plus étalés angulairement que les arcs-en-ciel. Une expérience préliminaire, avec un faisceau 
polychromatique collimaté, a permis de confirmer que cela est effectivement possible. Cependant, 
l’observabilité de ce phénomène dans la Nature nous semble délicate du fait qu’il faille l’observer 
dans l’eau (la mer par exemple), de la nécessité d’avoir une surface libre parfaitement lisse (c-a-d 
des bulles sans vagues, et pas qui ne soient pas trop poly-disperses) pour ne pas trop perturber les 
rayons solaires qui pénètrent la couche d’eau chargée en bulles.   

 Les perspectives de ce travail portent notamment sur l’élimination des "bulles fantômes" (bruit 
numérique) qui sont générées parfois par les techniques inverses, l'amélioration de la mesure des 
bulles non sphériques, l'utilisation de plusieurs longueurs d'onde laser pour obtenir plus 
d'informations sur les écoulements très poly-disperses, etc. Au-delà de ces améliorations 
possibles, nous sommes toutefois intimement convaincus que dans son état actuel, ou sous la 
forme d’un capteur intégré, cette technique pourrait d’ores et déjà permettre l’étude 
d’écoulements nécessitant une caractérisation de la taille et de la compostion des bulles. D’un 
point de vue plus théorique, les perspectives envisagées pour ce travail portent sur la théorie de 
Debye, une généralisation de l’approximation d’optique physique à des particules non sphériques, 
une modélisation plus complète du système optique.  

Mots clefs : 

Réflexion totale, diffusion de la lumière, théorie de Lorenz-Mie, optique physique, problèmes 
inverses, bulles, granulométrie, indice de réfraction, composition, écoulements multiphasiques. 
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13 ABSTRAKT PO POLSKU (EXTENDED ABSTRACT 
IN POLISH LANGUAGE) 

„Problem odwrotny do scharakteryzowania układów cząstek przez 
inwersję modelu dla krytycznego kąta rozproszonego” 

 

Światło jest potężnym narzędziem do badania zarówno prostych jak i skomplikowanych układów 
cząstek. Można je zaobserwować w naturalnych zjawiskach i przemysłowych procesach (wymiana 
ciepła, kawitacja, przepływ erytrocytów we krwi czy system redukcji oporu wody w transporcie 
wodnym). Dlatego pomiar parametrów cząstek jest dla nauki bardzo ważny. 

Szereg metod pomiarowych zostało zaprojektowanych pod kątem charakterystyki wielkości 
pojedynczej cząstki, np. fazowa interferometria dopplerowska, PDI (ang. Phase Doppler 
Interferometry), technika rozproszenia w kącie krytycznym, a inne w celu charakterystyki układów 
cząstek w opisie rozkładu ich wielkości, np. anemometria laserowa w analizie pól prędkości,  PIV 
(ang. Particle Image Velocimetry) czy PTV (ang. Particle Tracking Velocimetry), dyfraktometria, 
mikroskopia, a także klasyczne metody przetwarzania obrazów).  

Niektóre z metod umożliwiają jednoczesny pomiar wielu wielkości fizycznych. Dla przykładu, 
anemometria PIV pozwala na pomiar rozkładu wielkości układu cząstek i prędkości 
pojedynczych obiektów rozpraszających światło (David i in. 2003). 

Żadna z powyższych metod nie jest w stanie mierzyć kompozycji układów cząstek oraz 
otaczającego go medium. Współczynnik załamania światła jest kluczowym badaniem do 
scharakteryzowania układów cząstek czy przepływów wielofazowych. 

W pracy autor wskazuje na podobieństwa trzech zjawisk dla rozproszenia światła: dyfrakcji, tęczy 
i krytycznego kąta. 

Zarówno dyfrakcji jak i tęczy zostało poświęcone wiele uwagi, która zaowocowała publikacjami  
i pracami naukowymi(Van de Huslt 1957, Mroczka J. 1991, Bohren and Huffman 1998).  
W odróżnieniu od tych dwóch przykładów, zjawisko rozproszenia światła dla krytycznego kąta 
załamania nie doczekało się jeszcze gruntownej analizy.  

Głównym celem niniejszej pracy było zbadanie właściwości światła rozproszonego na cząstkach 
w kącie krytycznym. Zaproponowano metodę pomiarową, wykorzystującą rozwiązanie problemu 
odwrotnego w eksperymencie z rozpraszaniem światła przez cząstki w kącie krytycznym. Metoda 
ta, w drodze pomiaru pośredniego, umożliwia uzyskanie informacji o właściwościach mierzonych 
cząstek, takich jak średnia wielkość oraz kompozycja (pomiar względnego współczynnika 
załamania światła). Zaproponowana  technika pomiarowa wykorzystuje monochromatyczne, 
spolaryzowane, koherentne promieniowanie laserowe i umożliwia prowadzenie pomiarów w 
czasie rzeczywistym. 



ABSTRAKT PO POLSKU 

 

175 

 
Rysunek P1. Schemat ilustrujący trzy zjawiska: dyfrakcji, rozproszenie światła w regionie tęczy i 
krytycznego kąta załamania. 

Rozdział pierwszy poświęcony jest ogólnemu wprowadzeniu oraz analizie potrzeby 
charakterystyki przepływu cząstek, korzyści i ograniczeń technik optycznych aktualnie 
stosowanych. 
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Rysunek P3 Wykresy przedstawiające profil rozproszenia światła na sferycznej cząstce dla krytycznego 
kata załamania opisany przez różne teorie. 

W rozdziale drugim skoncentrowano się na rozwoju i testowaniu modeli oraz teorii aproksymacji 
rozproszenia światła na pojedynczej cząstce sferycznej. Rozproszenie światła dla rejonu kąta 
krytycznego został opisany z wykorzystaniem aproksymacji według fizyki optycznej (ang. Physical 
Optics Approximation, skrót: POA) a zaprezentowany przez Marstona (1979) jako zjawisko 
dyfrakcji związane z występowaniem nieciągłości we współczynniku odbicia w rejonie kąta 
krytycznego (opisywanych w literaturze jako p=0). Dzięki tej teorii pokazano, że jest możliwe 
wyprowadzenie analitycznego równania ukazującego ten związek (Onofri 1999, patrz wzory P1, 
P2). 

( )sin / 2  mυκ υ υκπ θ= ⎡ − − Ω ⎤⎣ ⎦                                          (P1) 
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Δ ⎡ − Ω ⎤⎣ ⎦

                          (P2) 

W nieskomplikowanym opisie przedstawiono zależność położenia kątowego w rejonie 
krytycznego kąta i relatywnego współczynnika załamania światła (dla m-1>1) dla cząstek 
sferycznych. Analiza numeryczna pokazała jednak, iż aproksymacja POA nawet zawierająca w 
swoim opisie promienie załamane (oznaczone p=1) nie jest wystarczająca dla wszystkich aplikacji 
(Onofri 1998, Onofri i in. 2007). POA jest interesującą teorią, jeśli weźmie się pod uwagę rozwój 
zintegrowanych czujników i przetworników.  
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Rysunek P4  Wyniki dla teorii Lorenz-Mie dla grupy cząstek powietrza w wodzie dla zmiennych 
parametrów: a) wielkości cząstek, b) szerokość rozkładu dystrybucji wielkości i c) kompozycji (relatywny 
współczynnik załamania światła). Trzy główne cechy są znaczące: średnica jest głównie odpowiedzialna za 
 kątowe „rozciąganie” profilu, szerokość dystrybucji wielkości wpływa na kontrast maksimów funkcji, a 
współczynnik załamania światła za zmianę położenia kątowego profilu. 

W tym rozdziale wykazaliśmy również, że teoria Lorenza-Mie (skrót z ang. LMT) jako jedyna jest 
w stanie w sposób zadowalający opisać rozproszenie światła w rejonie kąta krytycznego. 
Przedstawiono, iż inne modele rozproszenia światła jak teoria Debye’go i CAM (ang. Complex 
Angular Momentum) dostarczają zbyt ogólnego opisu zjawiska rozpraszania. 

 

W dalszym etapie pracy zdefiniowano podstawowe kryteria dla grupy cząstek do zamodelowania 
przez rozproszenie światła: średnia wielkość cząstki, optycznie rozcieńczone bez 
zwielokrotnionych rozproszeń. W tym kontekście, profil pola rozproszonego CSP (ang. Critical 
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Scattering Patern) jest opisany przez równanie całkowe Fredholma pierwszego rodzaju  
(patrz wzór P5). 

( ) ( ) ( )
max

min

0 0, , , , ,
D

t
D

I m N I D m f D dDθ λ θ λ= ∫                (P5) 

Opis całkowy przedstawia pole rozproszone na grupie cząstek jako sumę rozproszonego światła 
przez poszczególne cząstki dla założonego rozkładu wielkości. 

Oznacza to, że z profilu intensywność CSP i opisywanych przez niego właściwości grupy cząstek, 
koniecznym było opracowanie metod odwrotnych, co zostało ujęte w rozdziale trzecim. 
Wykazano szereg podobieństw między dyfrakcją, zjawiskiem tęczy (według modelu Airy) oraz 
rozproszeniem światła dla krytycznego kąta załamania ( rys. P1.) 

Rozdział trzeci został poświęcony zasadom różnych technik inwersji oraz analizie wyników 
eksperymentów opracowanych w ramach pracy. Najlepsze wyniki uzyskano wykorzystując 
dyskretną formę funkcji całkowej Fredholma. Problem odwrotny dla tego przypadku bazuje na 
metodzie najmniejszych kwadratów z ograniczeniem dla nie ujemnych rozwiązań (ang. Non 
Negative Least-SQuare problem, ang. skrót: NNLSQ) (Lawson i Hanson, 1974). Metoda ta nie 
wymaga żadnych założeń dotyczących funkcji rozkładu wielkości cząstek.  

Dla wyznaczenia współczynnika załamania światła, zminimalizowano algebraicznie wynik 
macierzy uzyskanych dla różnych funkcji rokładu wielkości (jądra funkcji całkowej Fredholma 
obliczanej dla teori Lorenza-Mie). Stworzono rozwiązania oparte na metodzie odwrotnej 
obliczającej korelację pomiędzy profilem eksperymentalnym i teoretycznym CSP (metoda 
najmniejszych kwadratów,  ang. Least-Square method, ang. skrót: LSQ), lub korelację dla trzch 
charakterystycznych punktów profilu eksperymantalnego i teoretycznego (patrz wzór P6). 
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dla układu trzech równań empirycznych (metoda 3-punktowa) 
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W ostatnim przypadku, równania opisujące położenie i kontrast pierwszych maksimów profilu 
CSP (patrz wzory P7-P9) bazują na podstawie wartości średniej i odchyleniu standardowemu 
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wielkości cząstek oraz względnemu współczynnikowi załamania światła. Metody LSQ i 3-
punktowa muszą być zdefiniowane dla danego modelu rozkładu wielkości. Dla potrzeb analiz 
wybrany został rozkład logarytmiczno-normalny.  

Aby przetestować wszystkie hipotezy i modele dla rozproszenia światła w rejonie krytycznego 
kąta załamania oraz metod odwrotnych, zbudowano układ eksperymentalny, Rys.P10. 

 
Rysunek P10: Schemat układu eksperymentalnego: (1) obiekt pomiarowy, (2) Laser YAG 50mW , (3) 
światłowód. (4) expander wiązki laserowej, (6) lustro, (7) obiektyw Nikon AF NIKKOR 50mm 1:1.4D , 
(8) przysłona, (9) soczewka, (10) filtr interferencyjny dla długości światła 532nm, (11) kamera czarno-biała 
CCD 1Mpix 12bits, (12) stroboskop, (13) kamera z trybem makro, (14) system pomiaru 
interferometrycznego (ILIDS) – kamera Imaging System CCD B/W z obiektywem Nikon AF NIKKOR 
35-80mm 1:4-5.6D, (15) fotodetektor, (16) silnik krokowy, (17) dysze generujące cząstki sferyczne, (18) 
komputer 

Zaprojektowany instrument badawczy jak i oprogramowanie umożliwiające analizę wyników 
pomiaru zostały opisane szczegółowo w rozdziale czwartym. Układ optyczny, który pozwala na 
rejestrowanie CSP został nazwany CARS (ang. Critical Angle Refractometry Sizing). Rejestruje on 
CSP tworzone przez grupę cząstek znajdujących się w przestrzeni pomiarowej o objętości około 
1cm3. W eksperymencie tym, cząstki (sferyczne bąbelki powietrza) są produkowane przez różne 
dysze. 

Do porównania wyników uzyskanych w sposób doświadczalny przez CARS, stworzono dwa 
dodatkowe systemy optyczne: system rejestracji obrazu w trybie makro oraz interferometryczny 
układ pomiarowy ILIDS (ang. Interferometric Laser  Imaging Droplet  Sizing). 

Wytworzenie cząstek dla różnych kompozycji (wielu współczynników załamania światła) 
wymagało wykorzystania różnych par cieczy dla cząstki i otaczającego ją środowiska: 
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powietrze/woda, powietrze/roztwór etanolu, woda/olej silikonowy, itp.. Wyniki uzyskane dla 
sferycznych cząstek zostały porównane i omówione w rozdziale piątym. Dla wszystkich 
przypadków otrzymano dobre wyniki dla podstawowych parametrów grupy cząstek: średniej 
wielkości, szerokość rozkładów wielkości i współczynnika załamania światła (Onofri i in., 2009). 

 

 
Rysunek P10 Przykład wyników doświadczeń: a) obraz rozproszenia światła dla kąta krytycznego (CSP) b) 
eksperymentalny i teoretyczny profil CSP c) histogram wielkości cząstek zmierzony przez układ  w trybie 
makro d) histogram uzyskany przez metodę odwrotną dla CARS, e) wynik dla algebraicznej metody 
odwrotnej LMT-NNLSQ. 

Przeprowadzone badania dowodzą, że przy użyciu techniki CARS możliwa jest charakterystyka  
środowiska, w których zagęszczenie cząstek jest znacznie większe, dla których analiza metodami 
klasycznymi nie jest już możliwa. 

W rozdziale szóstym przedyskutowano problematykę cząstek elipycznych. Technika CARS daje 
wynik średnicy cząstki poprzez pomiar lokalnej krzywizny w rejonie kąta krytycznego. W 
przypadku cząstki eliptycznej, dla której wielkość wzdłuż jej osi poziomej jest położona w 
płaszczyźnie układu optycznego CARS, wynik układu będzie odpowiadał sferze dla tej wielkości 
elipsy. Wielkość cząstki zostanie wiec przeestymowana. W celu korekcji tego efektu 
zaproponowano dwie metody korekcji tego efektu: jeden oparty jest na analizie krzywizny profilu 
CSP i inne rozważania bazujące na hydrodynamicznym podejściu poprzez stosowanie korelacji 
między eliptycznością a wartością wielkością bezwymiarowej liczby Tadaki. Drugi sposób 
zapewnia znaczne poprawienie wyniku. Dla losowo rozmieszczonych elipsoid system CARS 
mierzy średni promień krzywizny. 
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W rozdziale siódmym został zbadano wpływ dwóch zjawisk na kształt CSP: profil intensywności 
wiązki laserowej dla rozkładu Gaussa i efektów związanych z obecnością przysłony w układzie 
optycznym. Oba efekty naturalnie się kompensują dla losowo rozmieszczonych cząstek w 
układzie pomiarowym. Dla naturalnych przepływów efekty te mogą być pominięte. Przy 
przepływie, który jest bardzo niesymetryczny lub jego cząstki znajdują się z jednej strony układu 
pomiarowego, profil CSP może być zniekształcony, przez co wynik pomiaru może być 
obarczony większym błędem. Dostosowanie średnicy przestrzennego filtru pomogło rozwiązać 
ten problem. 

Rozdział ósmy przedstawia wstępne prace i analizy dla możliwości obserwowania i wykorzystania 
kolorowych łuków dla rozproszenia światła w rejonie krytycznego kąta, podobnie jak dla tęczy 
stworzonej przez krople wody w powietrzu. Symulacje  numeryczne pokazują, że możliwa jest 
obserwacja różnobarwnych łuków, lecz kąt występowania tego zjawiska jest bardziej zbliżony do 
kąta 90 stopni niż w przypadku zjawiska tęczy (rys. P1). Wstępny eksperyment potwierdził 
możliwość obserwacji tego efektu przez rozproszenie światła białego na sferycznych cząstkach tej 
samej wielkości. Obserwacja tego zjawiska w przyrodzie jest bardzo utrudniona ze względu na 
fakt, iż może być zaobserwowana pod wodą (np. w morzu). Powierzchnia wody musi być przy 
tym płaska i gładka (tzn. bez pęcherzyków, zanieczyszczeń i fal), aby nie zniekształcić trajektorii 
dla równoległej wiązki promieni słonecznych przechodzących przez tę powierzchnię. 

 

Perspektywa dalszych prac obejmuje: wyeliminowanie niedogodnych błędów w problemie 
odwrotnym LMT-NNLSQ (wynikających z szumu numerycznego), rozwinięcie opisu dla 
sferycznej cząstki, przez użycie wielu długości fali lasera dzięki temu będzie możliwe uzyskanie 
większej ilości informacji na temat przepływów cząstek o różnych współczynnikach załamania 
światła.  

W opinii autora pracy, technika ta może pozwolić na badania przepływów wymagających 
charakterystyki wielkości i kompozycji sferycznych cząstek biorąc pod uwagę obecny stan 
zintegrowanych czujników. Ze strony teoretycznej perspektywy prac należy przeprowadzić 
dokładnej analizy teorii Debye’go (ze względy na problem tej teorii w opisie rozproszenia światła 
dla tego rejonu i cząstek dla którego względny współczynnik światła m-1>1), uogólnienie teorii 
POA dla cząstek sferycznych oraz dokładniejsze zamodelowanie układu optycznego. 

 

Słowa kluczowe: 
kąt krytyczny, rozpraszanie światła, teoria Lorenza-Mie, aproksymacja według optyki fizycznej, 
problem odwrotny, bąbelki, pomiar wielkości, refraktometria, kompozycja, przepływy 
wielofazowe 
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14 SHORT ABSTRACT AND KEYWORDS  

This Ph. D. work deals with the scattering of light by a cloud of bubbles (i.e. particles with 
relative refractive index below unit) near the critical-scattering-angle. Under a single scattering 
assumption, a critical scattering pattern (CSP) can be accurately modeled with the Lorenz-Mie 
theory and a Fredholm integral of the first kind. A CSP is basically composed of several bows 
that are very similar to those observed in the forward diffraction zone and the rainbow region. By 
measuring the angular spreading, the visibility and the global position of these bows it is possible 
to deduce the bubbles mean size, polydispersion and mean refractive index (i.e. composition). We 
have developed several inverse methods and experiments to recover these properties, 
demonstrating the validity of what can be called the “Critical-Angle Refractometry and Sizing” 
(CARS) technique. Various effects like the laser Gaussian intensity profile or the laser beam 
spectrum width have also been studied. This new optical particle characterization technique is 
thought to be a useful tool to study real bubbly flows as well as for laboratory experiments 
requiring bubbles material recognition.   

 

 

Keywords: 
Critical-angle, light scattering, Lorenz-Mie theory, physical optics approximation, inverse 
problem, bubble, sizing, refractometry, composition, multiphase flows.  

 

 


