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stitut Néel, CEA or ESRF: Olivier Dhez, Florence Marchi, Nicolas Venant,
Julien Lopez, Michele Manfredda, Hua Gao, J-F. Motte, Aurelien Drezet,



4

Alexis Mosset, Herman Sellier, Sebastien Labarthe, Justine Laurent, Pierre
Mallet, Fanny Hiebel, Roberto Felici, Didier Wermeille, Monique Navizet,
Irina Snigireva, Isabelle Combe, Philippe Andreucci, Bruno Raig, Valerie
Nguyen, Eric Ollier, Sebastien Hentz, Nevine Rochat and Geoffroy Auvert (I
am very sorry if I am missing someone!).
A major contribution for this thesis come from a group that is not involved
with the science world. I am speaking about all the friends I met at the
Ju-Jitsu here in Grenoble. I thank Jacques, Laurent, Thierry, Greg, Cedric,
Vincent, Vanessa, Philippe, Denis, Laurent, Olivier and all the others at the
Dojo in Sassenage.
A big “thank you” is for the friends in Genova and here in Grenoble:
Alessandro, “magister”, and Elf, they have been very nice and kind with me;
they were ready to come here in Grenoble to have fun together. They have
been always with me when I came back home during holidays;
Giorgio and Giulia to have been always honest with me and to have found
time to spent with me all the times I went back in Genova;
G. to have been my mate in all the stupid and dangerous things I have done...
Giovanni and Luca for all the good dinners, for biking and climbing together
here in Grenoble;
Carlotta... ok maybe You should thank me again for the 4 month you spent
here!!
Mini, Pippo, Patty, Teo, Ilaria, Dani C., Dani M. and Dani G., Enri and all
the other friends in Genova;
Gauthier, Ben, Elie, Pierre, Miguel, Camille, Nicolas D., Nicolas P. Helene,
Mathilde, Laurent etc., etc., etc. for the good time in Grenoble.
A very particular acknowledgement is for Simon and Lise. They have been
very good friends here in Grenoble from the very beginning of this experi-
ence. Without them the permanence in Grenoble would have been hard. I
thank them very much for the good times we spent together.
Finally I thank “Cuiche”; she came with me from Genova and since I am
here in Grenoble she has been with me and she has supported me every day.





Contents

1 Interactions at nanoscale 16
1.1 Micro and Nano Electromechanical Systems (MEMS and NEMS) 16
1.2 Interactions between surfaces at nanoscale . . . . . . . . . . . 19
1.3 Towards a reliable measurement of plane-plane interaction forces 23

2 Micro Electro Mechanical System in a simple fluid 28
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Fiber optics based interferometer . . . . . . . . . . . . 31
2.3 Cantilever Dynamics . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Cantilever thermal noise . . . . . . . . . . . . . . . . . 36
2.4 Navier Stokes equation . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 No slip boundary conditions (Couette problem) . . . . 41
2.4.2 Perfect slip boundary conditions . . . . . . . . . . . . . 43

2.5 Cavity damping of the cantilever . . . . . . . . . . . . . . . . 46
2.5.1 Plane misalignment correction . . . . . . . . . . . . . . 47

2.6 Cavity freezing of a cantilever . . . . . . . . . . . . . . . . . . 48
2.7 MEMS and NEMS application . . . . . . . . . . . . . . . . . . 49

3 X-ray interactions with Micro Electro Mechanical Systems 56
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 European Synchrotron Radiation Facility (ESRF) . . . . . . . 58

3.2.1 X-ray absorption . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . 60

3.3 Mechanical effects of an X-ray beam on a MEMS . . . . . . . 60
3.3.1 X-ray induced mechanical oscillation . . . . . . . . . . 62
3.3.2 X-ray photons absorbed processes . . . . . . . . . . . . 63
3.3.3 Thermal actuation mechanism: Center Of Mass in-

duced deformation . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Mechanical detection of germanium EXAFS spectrum . 67

3.4 MEMS based high frequency X-ray chopper . . . . . . . . . . 68

6



Contents 7

3.4.1 Diffracted beam oscillation induced by cantilever peri-
odic motion . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Radiative heat transfer at the nanoscale 80
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Radiative heat transfer . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Electromagnetic treatment of the problem . . . . . . . 82
4.2.2 Surface waves contribution . . . . . . . . . . . . . . . . 88
4.2.3 Derjaguin approximation for radiative heat transfer . . 93

4.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Radiative heat transfer measurements . . . . . . . . . . . . . . 99

4.4.1 Fluxmeter calibration . . . . . . . . . . . . . . . . . . . 99
4.4.2 Surface roughness analysis . . . . . . . . . . . . . . . . 101

4.5 Radiative heat transfer: comparison between experimental re-
sults and theoretical model . . . . . . . . . . . . . . . . . . . . 102

5 Conclusions and Perspectives 108

A Viscous cavity damping of a cantilever in a simple fluid 118

B X-ray pushing of a mechanical microswing 124

C A MEMS based high frequency X-ray chopper 130

D Radiative heat transfer at the nanoscale 136



List of Figures

1.1 SEM image of Micro Electro Mechanical Systems. . . . . . . . 17
1.2 Schema of Micro and Nano Electro Mechanical Systems. . . . 20

2.1 SEM image of AFM cantilevers for liquid imaging (from Biosen-
sor web-site). . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Scheme of the experimental setup (not to scale). The analyzed
mechanical system is a standard AFM CL. A cleaved optical
fiber (bottom) is used as mobile substrate forming a cavity
with the CL. An etched optical fiber (top) is used for the
interferometric detection of the CL Brownian motion. The
main geometrical parameters used in the text are identified,
the z origin is taken on the flat cleaved-fiber surface. . . . . . 30

2.3 Schema of the optical interferometer (Courtesy of Guillaume
Jourdan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Optical interferometer response as function of the gap between
the lever and the fiber end. . . . . . . . . . . . . . . . . . . . . 33

2.5 The driven damped harmonic oscillator represented as a me-
chanical system with spring k and a damping γ . . . . . . . . 34

2.6 Amplitude and phase shift for a driven and damped oscillator 35
2.7 Spatial profile of the first 3 resonant modes for a simple can-

tilever. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 The experimental Brownian oscillation power spectrum of the

microlever for different cavity gaps. . . . . . . . . . . . . . . . 37
2.9 Experimental results: a) Evolution of the quality factor as

function of the cavity gap. b) Evolution of the resonance fre-
quency as function of the cavity gap . . . . . . . . . . . . . . 38

2.10 Quality factor evolution with the distance for the small gap
regime. The red line represents the expression of the quality
factor as in equation 2.21. . . . . . . . . . . . . . . . . . . . . 39

2.11 Difference between the experimental datas and the value ob-
tained by equation 2.21. . . . . . . . . . . . . . . . . . . . . . 40

8



List of Figures 9

2.12 Scheme of the confinement of the fluid. The mobile plate rep-
resents the cantilever moving in the z direction with velocity
Uz. The fluid motion is shown as vx, the larger component of
the fluid velocity . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.13 Scheme of the confinement of the fluid. The mobile plate rep-
resents the cantilever moving in the z direction with velocity
Uz. The fluid motion is shown as a two components velocity
vector ~v = vx, vz. Fz is the dissipating force acting on the
mobile plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.14 The quality factor as a function of the cavity gap. Black dots
represent the experimental data. The red curve exhibits the
theoretical prediction based on eq. 2.48. . . . . . . . . . . . . 46

2.15 The quality factor as a function of the cavity gap. Black dots
represent the experimental data. The red curve exhibits the
theoretical prediction based on eq. 2.48. The blue dotted
curve exhibits the theoretical prediction based on eq. 2.48
when the misalignment between the planes has taken into ac-
count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.16 The resonance frequency as function of the cavity gap in the
small gap regime. Like in Fig.2.14, the red dashed, respec-
tively blue dash-dotted curves is the prediction of the NS
model for the perfectly aligned, respectively slightly misaligned,
cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.17 Optical microscope image of 10G-100-100 MEMS realized at
the CEA-LETI in Grenoble. . . . . . . . . . . . . . . . . . . . 50

2.18 Evolution of critical gap as a function of frequency for a Si
(black line), SiC (red line), GaAs (green line), and Au (blue
line), respectively. Experimental data points for the lever
studied in previuos paragraph are also shown for distances d
close to the overdamping regime (black crosses). Red crosses
and circles correspond to NEMS with a distance to the sub-
strate d = 400nm. . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.19 Evolution of the critical gap as a function of the ratio t/L for
the same lever materials as in Fig. 2.18. Colors lines and data
points have the same meaning as in Fig. 2.18. . . . . . . . . . 53

3.1 The European Synchrotron Radiation Facility (ESRF) in Greno-
ble (from ESRF web-site). . . . . . . . . . . . . . . . . . . . . 58



List of Figures 10

3.2 (a) Experimental setup. Blue ray is the X-ray beam on the Ge
micro-crystal at orange Si lever end. Grey cylinder represents
the optical fiber and the red ray is the laser beam used to
detect the lever position with sub-Angstrom precision. (b and
c) SEM image of the Ge cubes glued on Si levers. In (b) the
cut and soldered Ge crystal using a Focus Ion Beam, has been
positioned at the end of the lever in a symmetrical position.
In (c) a Ge crystal has been manually glued on the side in a
very asymmetrical position. . . . . . . . . . . . . . . . . . . . 61

3.3 Measured resonance curve of the first oscillating mode for all
levers. In red the X-ray beam energy is set below the K1s
edge (Eph = 11.07 keV), in black it is set at the K1s edge
(Eph = 11.103 keV). (a) Uncoated cantilever (k = 0.025 N/m,
Q = 86, I0 = 7.4 1010ph/s) with Ge block glued on the side and
X-ray beam parallel to the oscillation direction. (b) Coated
cantilever (k = 0.027 N/m, Q = 60, I0 = 3.5 1010 ph/s) with
Ge block glued on the side and X-ray beam parallel to the
oscillation direction. (c) Uncoated cantilever (k = 0.135 N/m,
Q = 75, I0 = 2.4 1012 ph/s) with Ge block glued below and X-
ray beam parallel to the oscillation direction. (d) Same than
(c) with X-ray beam perpendicular to the oscillation direction. 62

3.4 Schema of the actuation mechanism. In (a) is presented the
very asymmetric configuration and in (b) a symmetric geom-
etry. The dotted squares represent the Ge crystal thermal
expansion and the black arrows indicate direction of the effec-
tive displacement of the Ge crystal COM. . . . . . . . . . . . 66

3.5 Response function of the lever shown in figure 3.2(b). Black
curve is the measured amplitude of the lever oscillation as
the beam intensity is modulated from 100 to 2500 Hz . Red
curve is the calculated expression using experimental param-
eters. The error bar in red curve has been determined using
the Brownian motion. Red curve calculation involves the mis-
alignement of the Ge microcrystal on the Si lever as the single
adjustable parameter. In the inset a zoom on the resonant
peak is presented. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Cantilever oscillation amplitude in function of beam energy.
We show in black, our experimental data and in red, the hand-
book reference EXAFS spectrum at Ge K edge. . . . . . . . . 68



List of Figures 11

3.7 Experimental set up. In orange is represented the AFM can-
tilever used to stop or transmit the dark blue X-ray beam
impacting around the Bragg angle. The reflection of the X-
ray beam is detected with a photodiode. The white cylinder
represents the optical fiber for the interferometric detection of
the lever position with sub-Angstrom precision. . . . . . . . . 69

3.8 Theoretical Si (400) Bragg profile for a 2 µm thick perfect Si
crystal in the kinematic approximation. The black dot indi-
cates the flex point used as the reference position of silicon
cantilever. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9 (a) Optically measured mechanical response of the AFM can-
tilever when it is mechanically excited around its first resonant
frequency of 13 kHz. (b) Diode photo-current measured by
the photodiode at the 2 θ Bragg position. In (a) and (b) the
black curve represents the oscillation amplitude and the red
curve the phase lag. . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Measured photodiode signal as a function of lever’s excitation
frequency. The different curves refer to different excitation
amplitudes as specified by the color code. . . . . . . . . . . . . 73

3.11 Photodiode signal as a function of different cantilever excita-
tion amplitudes. The continuous curve is from equation 3.14
(normalized), while the points represent the experimental data
with their error. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Geometry of the system analyzed. . . . . . . . . . . . . . . . . 84
4.2 Geometry of the system analyzed. . . . . . . . . . . . . . . . . 86
4.3 Vibrational mode of the lattice for a diatomic material . . . . 89
4.4 Reflectivity for a diatomic material as a function of the frequency 90
4.5 Imaginary part of the dielectric function for a diatomic mate-

rial (glass in this case) . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Electromagnetic energy density above a flat interface of SiC . 92
4.7 Monochromatic electromagnetic energy density above a flat

interface of SiC (a) and SiO2 (b), for different distances from
the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Total radiative transfer coefficient between two flat interfaces
of SiC, and two interfaces of glass. . . . . . . . . . . . . . . . . 93

4.9 Derjaguin approximation for the radiative heat transfer. . . . . 94



List of Figures 12

4.10 Theoretical thermal conductance between a silica sphere and a
silica plane using the Derjaguin approximation. A 1/d regime,
characteristic of the near-field contribution, is observed for
distances smaller than 10 nm. The conductance tends to the
far-field constant value for distances larger than 10 µm. . . . . 95

4.11 Coherence and decay length for a silica sample. The arrows
are in correspondace of the surface resonance. The sphere
radius is refered to the samples used during the measurements
of radiative heat transfer . . . . . . . . . . . . . . . . . . . . . 95

4.12 a) Photo of the experimental set-up. b) Schema of the exper-
imental set-up. Red lines stand for light; black lines stand for
electrical wires. A feedback loop keeps the distance bimorph-
optical fiber constant by applying a voltage on a piezoelectric
actuator holding the optical fiber. The setup is in a vacuum
chamber working at P ≈ 10−6 mbar. . . . . . . . . . . . . . . 97

4.13 Equivalent circuit of the experiment. Tp is the hot plate tem-
perature. The end of the bimorph is at the ambient temper-
ature Ta. Tsd denote the temperature of the sphere surface.
Rr denotes the radiative thermal resistance of the gap, Rs the
sphere thermal resistance, Rg the thermal resistance of the
glue and Rc the cantilever thermal resistance. . . . . . . . . . 98

4.14 Cantilever bending versus distance sphere-plane. The zero
in the z-axis has been determined for this plot by the direct
contact of the sphere with the plate. . . . . . . . . . . . . . . 100

4.15 Cantilever bending versus the thermal flux when the sphere is
exclusively in the far-field regime. The distance between the
sphere and the plate is around 50 µm. The conversion factor
H is extracted from the slope of the fit. . . . . . . . . . . . . . 100

4.16 a) SEM picture of the 40 µm sphere. b) SEM picture of the
22 µm sphere. c) Definition of the fitting parameter b. . . . . 101

4.17 Thermal conductance between the sphere and the plate as
a function of the gap distance. Black dots are experimental
data and red line is the theoretical model. The temperature
difference between the plate and the sphere is 21 K. . . . . . 103

4.18 a) Flux versus distance for three temperature differences. The
sphere diameter is 40 µm. b) Thermal conductance derived
from three different sets of measurements. The same value of
H was used for the three curves. . . . . . . . . . . . . . . . . . 104



List of Figures 13

4.19 Thermal conductance between the sphere and the plate as a
function of the gap for two sphere diameters (40 and 22 µm).
Black dots are experimental data and red line is the theoretical
model. The dashed blue line is the asymptotic contribution
varying as 1/d. This contribution is dominant for gaps smaller
than 10 nm. For the 22 µm sphere the smallest separation is
150 nm due to roughness. . . . . . . . . . . . . . . . . . . . . 105

5.1 Misalignment effect on radiative heat transfer . . . . . . . . . 112
5.2 Sample realized for the measurement of radiative heat transfer

between two plates. The FIB realization has been performed
at the CEA/LETI-MINATEC . . . . . . . . . . . . . . . . . . 113

5.3 Schema of the experimental set-up realized for the measure-
ment of radiative heat transfer between two plates . . . . . . . 114

5.4 Evolution of the flux variation between the far field regime
and the near field (here measured before the contact between
the 2 planes) as a function of tilting angle . . . . . . . . . . . 115

5.5 Alignement of two plane surfaces using X-ray diffraction . . . 116



Systèmes Nano Électro
Mécaniques et interactions à
l’échele nanomètrique

Les Systèmes Nano et Micro Électro Mécaniques intègrent des fonctionalités
électrique et mécanique à l’échelle nano- et micrométriques. Même si on peut
imaginer les MEMS et NEMS comme des machine miniatures trés soophis-
tiqués, elles sont aujourd’hui de simples oscillateurs mécaniques.
Le comportement de ces oscillateurs dépend de leur environnement de travail.
Si ils fonctionnent dans le vide et/ou à température cryogénique, leur pro-
priétés dynamiques différent sensiblement par rapport à leur fonctionnement
à température et pression ambiante. Si ces oscillateurs vibrent proche d’un
échantillon, l’apparition des forces d’interaction entre l’échantillon et les oscil-
lateurs, induit un changement des paramétres caractéristiques d’oscillation.
L’utilisation de ces structures est aujourd’hui largement répandue et couvre
nombre d’applications différentes, allant de la topographie de surface ou anal-
yse chimique à la mesure des forces d’interaction à l’échelle nanométrique.
Malgré la variété des formes complexes des MEMS et NEMS, ils partagent
tous le même schéma de base. Une partie mobile est suspendue au dessus
d’un substrat par une série de ressorts. Dans une configuration standard, la
partie mobile et le substrat sont dans une géométrie plan.
La partie mobile oscille autour de sa position d’équilibre avec une fréquence
de résonance propre donnée par sa masse et la raideur des ressorts. L’écart
entre la partie mobile et le substrat peut varier entre dix nanomètres et
quelques microns. Lorsque cet écart est inférieur au micron, le comporte-
ment du système mécanique est dominé par les forces d’interactions entre le
substrat et la partie mobile.
La compréhension des forces d’interaction à l’échelle nanométrique est cru-
ciale pour le fonctionnement et le développement des NEMS.
Poursuivant le travail de Gauthier Torricelli et de Guillaume Jourdan, dans
cette thèse nous traitons les interactions entre surfaces lorsque l’écart en-
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tre elles est de l’ordre de dix nanomètres à quelques microns. Toutes les
expériences présentées ici ont été réalisées soit dans le vide soit dans l’air;
nous ne traiterons pas le problème des interaction en liquide.
Dans le chapitre 2, nous analyserons l’amortissement d’un micro-oscillateur
lorsqu’il est graduellemnt approché d’un substrat dans une géométrie plan-
plan. Nous étudierons le comportement du système mécanique en fonction de
la distance de confinement montrant ainsi que l’amortissement effectif, due
à l’air, dépend de cette distance. Une explication du comportement observé
peut être obtenue en résolvant l’équation de Navier-Stokes.
Dans le chapitre 3 nous nous pencherons sur l’effet de la lumiére synchrotron
agissant sur un NEMS. Nous montrerons comment l’interaction entre le fais-
ceau de rayons X et le système mécanique peut potentiellement ouvrir une
nouvelle famille d’outils pour la manipulation de rayons X.
La radiation thermique entre une surface plane et une sphère micrométrique
sera le sujet du chapitre 4. Après avoir présenté le traitement électromagnétique
de la radiation thermique, nous comparerons les résultats expérimentaux avec
le modèle théorique.
En conclusion, nous introduirons le probèlme des mesures de forces en géométrie
plan-plan.
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1.1 Micro and Nano Electromechanical Sys-

tems (MEMS and NEMS)

Micro and Nano Electro Mechanical Systems are devices integrating electri-
cal and mechanical functionalities at the micro- and nanoscale. Even though
we can imagine MEMS or NEMS as very sophisticate miniaturized machine,
today they are usually simple mechanical oscillators.
The behavior of such oscillators depends on the environment they work into.
If the oscillators are working in vacuum and/or cryogenic temperature, their
dynamical properties slightly differ from those at ambient temperature and
pressure. If the oscillators are vibrating close to a sample, the arising inter-
action forces between the sample and the oscillators, induce a change in the
oscillation characteristic parameters of the system.
The use of these structures is nowadays widespread and it covers a number of
different applications, ranging from the surface topography or chemical anal-
ysis to measurement of interaction forces at the nanoscale [1, 2, 3, 4, 5, 6, 7, 8].
The real power of this emerging technology is that many of such devices can
be built at the same time across the surface of a wafer without any required
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Figure 1.1: SEM image of Micro Electro Mechanical Systems.

assembly procedure. Since the production process is like a photographic pro-
cess, it is just as easy to build a million of system on the wafer as it would
be to build one. This is clearly a very interesting aspect for microelectronic
applications that require the repetition of the same action a huge amount of
time.
We see how these system can be realized. Microsystems involve dimensions
that vary from 1 to 100 µm, while nanosystems involve dimensions that varies
from 1 to 100 nm.
Usually MEMS and NEMS are made on Silicon since it is standardly used
in microelectronic manufacturing process. From a flat wafer of single crystal
silicon the systems are realized through chemical processes.

Photolitography

Lithography in MEMS context is typically the transfer of a pattern into a
photosensitive material by selective exposure to a radiation source such as
light.
If a photosensitive material is selectively exposed to radiation (e.g. by mask-
ing some of the radiation) the pattern of the radiation on the material is
transferred to the material exposed, as the properties of the exposed and
unexposed regions differs.
The wafer is covered with photo resist by spin coating, to produce a uniformly
thick layer between 0.5 and 2.5 micrometres thick. The spin coating process
results in a uniform thin layer, usually with uniformity of within 5 to 10
nanometres. This uniformity can be explained by detailed fluid-mechanical
modeling, which shows that essentially the resist moves much faster at the
top of the layer than at the bottom, where viscous forces bind the resist to
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the wafer surface. The top resist is then removed by the spinning, while the
bottom resist stays on the surface.
The photoresist is then exposed to a pattern of intense light. Optical lithog-
raphy typically uses ultraviolet light. Positive photoresist, the most common
type, becomes soluble in the basic (chemical) developer when exposed; neg-
ative photoresist becomes insoluble in the developer. The use of developers
removes a part of the resist allowing to realize a mask with the suitable ge-
ometry.
The wafer covered with the resist mask is then chemically etched.

Etching

Etching is used in micro- and nanofabrication to remove layers from the sur-
face of a wafer during manufacturing, using a chemical etcher.
If the etch is intended to make a cavity in a material, the depth of the cav-
ity may be controlled approximately using the etching time and the known
etching rate. More often etching must entirely remove the top layer of a mul-
tilayer structure without damaging the underlying or masking layers. The
effectivness of the process depends on the ratio of etching rates in the two
materials.
Some etches undercut the masking layer and form cavities with sloping side-
walls. The undercutting distance is called bias. Etchants with large bias are
called isotropic, because they erode the substrate equally in all directions.
Modern processes prefer anisotropic etches, since they produce sharp, well-
controlled features.
There are two basic categories of etching processes: wet and dry etching. In
the former, the material is dissolved when immersed in a chemical solution.
In the latter, the material is sputtered or dissolved using reactive ions or a
vapor phase etchant.

Wet etching
Wet chemical etching consists in a selective removal of material by dipping
a substrate into a solution that can dissolve it. Since the chemical nature of
the etching process, it is possible to choose the etching solution so that the
etching rate of the target material is considerably higher than that of the
mask material. This turns into a good selectivity.
Wet etchants are usually isotropic, which leads to large bias when etching
thick films. However some wet etchants etch crystalline materials at very dif-
ferent rates depending upon which crystal face is exposed. In single-crystal
materials (e.g. silicon wafers), this effect can allow very high anisotropy.
Dry etching
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A good alternative to the wet etching is the so-called dry etching which in-
volves plasma etchers instead of liquid ones. Normally the dry etching is
performed in vacuum, and it mainly consists in etcher ions impinging on the
wafer surface with suitable angle and energy. Since impinging ions is highly
directionale, the dry etching is extremely anisotropic.
The biggest advantage compared with the wet etching is the lack of toxic
waste, making the dry etching suitable for the preparation of very large scale
systems.

Surface micromachining

A typical Surface Micromachining process is a repetitive sequence made up of
depositing thin films on a wafer, photopatterning the films, and then etching
the patterns into the films. In order to create movable parts, structural
layers (typically silicon) are alterned with sacrificial layers (typically silicon
dioxide). The structural material will form the mechanical elements, and
the sacrificial material creates the gaps and spaces between the mechanical
elements. At the end of the process, the sacrificial material is removed and
the structural elements are let to freely move and function.
For the case of the structural level being silicon, and the sacrificial material
being silicon dioxide, the final release process is performed by placing the
wafer in Hydrofluoric Acid. The Hydrofluoric Acid quickly etches away the
silicon dioxide, leaving the silicon undisturbed.
The wafers are typically then sawn into individual chips, which are packaged
in an appropriate manner for the given application.

1.2 Interactions between surfaces at nanoscale

Despite the variety of complicated shapes MEMS and NEMS might come
in, they all share a common underlying schema, presented in figure 1.2. A
mobile part is suspended over a substrate thanks to a series of restoring
springs. In a standard configuration both mobile part and substrate are in
plane geometry.
The mobile part oscillates around the equilibrium position with a typical
resonance frequency given by the mass of the mobile part and the stiffness
of the restoring springs.
The gap between the mobile part and the substrate can vary from tens of
nanometers up to several micrometers. When the gap is in the sub-micron
range the interaction forces between the substrate and the mobile part can
dominate the behavior of the mechanical systems. The comprehension of the
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Figure 1.2: Schema of Micro and Nano Electro Mechanical Systems.

interaction forces at the nanoscale is crucial for the functioning and further
development of Nano Electro Mechanical Systems.
The interactions between the surfaces that can play a major role in the NEMS
functioning are:

Van der Waals and Casimir forces

Van der Waals force (VdW) originates from transient dipoles created between
molecules without any permanent bi-pole moment. Transient dipoles result
in uneven distribution of electrons around a nucleus, which result in a weak
positive charge on one side of the molecule and a negative one on the other
side. This transient behavior occurs in all molecules of given object. If
two materials are brought in close proximity it results as an attractive force
between these two objects. Van der Waals force appears between all neutral
atoms and molecules independent on this kind. This force typically extend
up to the tens nanometers of distance.
When the distance between two objects increases the retardation effect due
the finite speed of light has to be taken into account in the formulation of
the Van der Waals force.
Such a retarded force names after the Dutch scientist H. Casimir, who first
described it. In his first formulation, Casimir related the retarded force
to the quantum fluctuation of the electromagnetic field inside the cavity
formed between the two surfaces. In particular, Casimir (1948) calculated
the attractive force between two ideal mirrors in vacuum. Since then, this
effect has attracted much interest in many areas such as micro- and nano
mechanical systems, quantum field theory and gravitation. With up-to-date
technique in force measurements at sub-micron scale, the Casimir force has
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been precisely measured [9, 10, 11, 12, 13].
In this thesis work we are interested in gap ranges where the VdW force are
negligible compared to other interaction forces.
The precise measurement of the Casimir force has been subject of the thesis
of Gauthier Torricelli [9] and Guillaume Jourdan [10]. They have performed
measurements between two gold surfaces in a sphere-plane geometry.

Chemical forces

The atomic bonds hold together by sharing or exchanging electrons. Strong
chemical bonds are found in molecules, crystals or in solid metals and they
organize the atoms in ordered structures. Weak chemical bonds are classically
explained to be consequence of polarity between molecules which contain
strong polar bonds.
The molecular bonding between flat surfaces, based on chemical forces, found
important industrial application. The Silicon On Insulator (SOI) technique
realizes wafer for microtechnology using the strong interaction forces due to
the chemical interactions between a flat surface of Silicon and a flat surface
of Silicon Oxide.
In this thesis work we are interested in gap ranges where the chemical forces
are negligible compared to other interaction forces.

Electrostatic forces

When a voltage difference is applied to two approached surfaces, an attrac-
tive force is applied to the surfaces, due to the electrostatic field. This force
depends by the geometry and the materials in analysis.
Even if the applied voltage difference is zero, when two objects are ap-
proached at close separations, the electrostatic forces arising from trapped
charges and patch potentials at the surfaces give rise to forces that can easily
dominate the interaction.
The precise measurement of the electrostatic forces has been subject of the
thesis of Gauthier Torricelli [9] and Guillaume Jourdan [10]. They have per-
formed measurements between two gold surfaces in a sphere-plane geometry.

Magnetic forces

Magnetic forces arise when the probe and the sample are based on magnetic
material. The interaction between the magnetic dipoles generates a force
acting on the micro cantilever. This kind of technique can be extremely
sensible to the measurement of magnetic dipole and allowes the measurement
the spin of a single electron [2].
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This kind of interaction forces have not been subject of analysis in this thesis
work. Interesting experimental studies can be found in [1, 2].

Hydrodynamic forces

When the mechanical system oscillates in a viscous environment its dynam-
ical behavior is modified by fluid resistance. If the oscillator is closed to a
surface the behavior of the fluid is modified by its confinement, which results
in the modification of the system mechanical properties.
The way the oscillator is consequently affected, depends by the particular
boundary conditions for the fluid at the solid-fluid interface.
The hydrodynamic forces can mediate the interaction between two approached
surfaces if the cavity gap is smaller then the hydrodynamic characteristic
length scale, which depends on the fluid viscosity and on the dynamical
properties of the oscillator. For Micro and Nano Electro Mechanical Systems
working in air, this characteristic length scale can be up to several tens of
micrometers.
This kind of interaction forces will be the subject of chapter 2. We will an-
alyze the damping of a micro-oscillator as it is gradually approached to a
substrate, in a plane-plane geometry. We will study the evolution of the me-
chanical system behavior as a function of the confinement gap showing that
the effective damping, due to the air, is depending on the gap size. An expla-
nation of the observed behavior will be obtained solving the Navier-Stokes
equations for the case in analysis.

Optical forces

Considering the schema of the NEMS presented in figure 1.2, from an optical
point of view the system is like a Fabry-Perot cavity, being its properties
determined by reflection and transmission coefficients of the two boundary
surfaces. Optical forces can be then applied to the two surfaces; they may
originate radiation pressure effect or thermal switch effect acting on the ma-
terials [14, 15, 16, 17, 18, 19, 20].
The effect of optical forces has been addressed also in the thesis of Guillaume
Jourdan [10]. In particular he has studied the optical cooling of a microlever
induced by a laser beam.
In chapter 3 we will address the effect of synchrotron light acting on a me-
chanical system. The biggest advantage of using X-ray beam is the possibility
to be completely quantitative in the analysis since the radiation-matter in-
teraction at X-wavelenghts is well described in literature. We will show how
the interaction X-ray with the mechanical system can potentially offer a new
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family of tools for the X-ray beam manipulation. We will show how a X-ray
chopper can be realized coupling the mechanical and optical properties of a
silicon cantilever, offering the possibility to shape and tune an X-ray beam
wave-front.

Near field thermal radiation

The thermal transfer at micro- and nanoscale does not follow the textbook
law for the energy transfer. When two surfaces are kept at sub-micron sep-
aration, in fact, the contribution of the near field components, which can be
neglected for larger gaps, gives rise to important contributions that cannot
be neglected. Although the presence of this near field component has been
already experimentally verified, a comparison between the theory and the
experience is still lacking.
The thermal radiation between a plane surface and a micrometric sphere
will be the subject of chapter 4. After having presented the electromagnetic
treatment of the thermal radiation, we will show a comparison between the
experimental results and the theoretical model.

Following the work of Gauthier Torricelli [9] and Guillaume Jourdan [10],
in this thesis work we will address the physical interactions between sur-
faces when the gap is in the range from tens of nanometers up to several
micrometers. The working condition of all the experiments here shown will
be vacuum or air; we will not address the problem of interactions in liquid.

1.3 Towards a reliable measurement of plane-

plane interaction forces

In the gap range studied in this thesis work the interaction forces that can
dominate the behavior of a NEMS are: hydrodynamic forces, electrostatic
forces, near-field thermal radiation and Casimir forces. In the standard plane-
plane geometry we can define the dependency of the interactions on the
distance.

• Hydrodynamic force (perfect slip boundary conditions):

F = −γ · v = −2ηAv

d
⇒ F → 1/d; (1.1)

(see page 30) Chapter 2
Characteristic length given by fluid layer around oscillator: dc ≈ 20 µm
determines an upper limit for the behavior in (1.1)
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• Electrostatic force between two conductors:

F = −1

2

εV 2A

d2
⇒ F → 1/d2; (1.2)

No characteristic length as expected for unscreened electrostatic inter-
action.

• Radiative heat transfer between dielectric materials:

φ → 1/d2; (1.3)

(see page 74) Chapter 4
Characteristic length given by radiation wavelength: dc ≈ 1 µm at
T = 300 K

• Hydrodynamic force (no slip boundary conditions):

F = −γ · v = −ηwL3

d3
⇒ F → 1/d3; (1.4)

(see page 28) Chapter 2
Characteristic length given by fluid layer around oscillator: dc ≈ 20 µm
determines an upper limit for the behavior in (1.4)

• Casimir force between two perfect mirrors (dielectric constant ǫ =
−∞):

F =
h̄cπ2A

240d4
⇒ F → 1/d4. (1.5)

Characteristic length given by plasmon wavelength: dc ≈ 150 nm
Casimir regime holds in the limit d >> dc, VdW regime holds in the
limit d << dc

Although the plane-plane geometry is the easiest configuration for the the-
oretical description, from an experimental point of view a measurement of
interaction forces is very hard.
All the interaction forces listed above are depending on the gap between the
two surfaces. If the two surfaces are not perfectly parallel, the misalignment
can modify the measured interaction. This is more delicate, stronger is the
dependency on the distance.
This is precisely the reason why Gauthier Torricelli and Guillaume Jourdan,
together with scientists of other groups [11, 12, 13], have performed mea-
surement in a sphere-plane geometry, since in this case the problem of the
parallelism is removed.
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Working in the sphere-plane geometry induces two major issues. First of all,
the exact theory for the interaction forces is usually developed for the plane-
plane geometry. The treatment of a sphere-plane configuration is based on
the Derjaguin approximation [21], also called Proximity Force Approximation
(PFA). In this approximation the sphere is modeled as a series of infinitesi-
mal planes parallel to the second plane surface. The total interaction force is
calculated as the summation of forces between infinitesimal planes and the
plane surface.
In sphere-plane geometry the problem of the parallelism is removed; but the
one of the surface roughness is introduced. In fact, if, thanks to the lithog-
raphy and etching processes, it is possible to obtain a plane surface with a
nanomete sized roughness, this is not possible for micrometric spheres. The
average roughness for a micrometric sphere is in the order of tens of nanome-
ters. To be able to perform a reliable plane-plane interactions measurement
is a real challenge.
In this thesis we will enter the problem of plane-plane geometry. We will
show how it is possible to measure the hydrodynamic forces (with perfect
slip boundary conditions) in the demanding plane-plane geometry, thanks
to the weak dependency of the interaction on the distance (chapter 2). In
the case of hydrodynamic forces studied the dependecy of the force is like
the inverse of the gap size. The experimental set-up developed has not the
possibility to tune the misalignement angle between the surfaces. However a
static set-up can allow an alignement better then 1 deg. We will se that this
will be enough for a precise measurement of this interaction force.
We performed measurement of radiative heat transfer between two surfaces
in the sphere-plane geometry, providing a very precise measurement of en-
ergy transfer at nanoscale (chapter 4).
We have tried a measurement of near-field thermal radiation in the plane-
plane geometry with a full dedicated experimental set-up (chapter 5). As
we will discuss in chapter 5, for a reliable measurement of the radiative heat
transfer in the demanding plane-plane geometry a parallelism much better
than 0.1 deg is needed. In this case a static set-up cannot achieve such a
precision and a tuning of the misalignement angle has to be implemented.
We will propose then a new experimental set-up based on micro-goniometers
able to control the angle with a precision of ≈ 10−4 deg.
All the other interaction forces listed above presents a dependency on the dis-
tance that is equal to, or stronger than the radiative heat transfer. A static
experimental set-up is then not enough for a measurement in the plane-plane
geometry. The experimental set-up that we propose will be shown to be accu-
rate enough to allow measurements also for the strongest dependency force,
the Casimir force .



Micro-oscillator dans un fluide
simple

Un simple levier oscillant est l’exemple le plus représentatif de MEMS ou
NEMS. En effet les micro et nano-leviers ont été utilisés dans de nombreuses
études fondamentales ou applicatives. Parmi les résultats les plus spectac-
ulaires obtenus avec ces leviers oscillants, on trouve la mesure de masse
à l’échelle du zeptogramme, la mesure de force à l’échelle sub-atonewton
et le refroidissement optique d’un oscillateur. Ces résultats se basent sur
l’extraordinaire facteur de qualité des leviers fonctionnant dans le vide ou à
température cryogénique. Le comportement de ces systèmes est différent si
ils fonctionnent dans l’air ou en liquide à cause de la dissipation dans le fluide
lui-même. Dans ce chapitre on décrira la dynamique d’un micro-oscillateur
dans l’air, on montrera que le confinement du fluide change le couplage avec
le bain thermique autant en terme de fluctuation que de dissipation. On verra
que le confinement peut sensiblement modifié le comportement du levier et
éventuellement supprimer l’oscillation mécanique
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Chapter 2

Micro Electro Mechanical
System in a simple fluid
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2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 28
2.2 Experimental set-up . . . . . . . . . . . . . . . . . 30

2.2.1 Fiber optics based interferometer . . . . . . . . . . 31
2.3 Cantilever Dynamics . . . . . . . . . . . . . . . . 32

2.3.1 Cantilever thermal noise . . . . . . . . . . . . . . . 36
2.4 Navier Stokes equation . . . . . . . . . . . . . . . 40

2.4.1 No slip boundary conditions (Couette problem) . . 41
2.4.2 Perfect slip boundary conditions . . . . . . . . . . 43
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2.1 Introduction

The most representative example of Micro or Nano Electro Mechanical Sys-
tems (MEMS or NEMS) is a simple tiny oscillating silicon cantilever. Indeed
micro- and nano-scale mechanical levers are used as sensors and actuators in
a large variety of fundamental studies and applications. Mass detection at
the zeptogram scale [3, 4, 5], sub-attonewton force detection [1, 2, 6, 7, 8]
and optical cooling of microlevers [14, 15, 16, 17, 18, 19] are among the most
spectacular achievements of oscillating cantilevers (CLs). These realizations
mainly rely upon the extraordinary high quality (Q) factors of oscillating
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Figure 2.1: SEM image of AFM cantilevers for liquid imaging (from Biosensor
web-site).

CLs in vacuum and/or cryogenic temperatures where values exceeding 100
000 are attainable.
The behavior of these systems is different if they are working in air or liq-
uid, since the damping in the surrounding fluid dramatically degrades the
quality factor. This has been partially circumvented by using ultrasmall self-
sensing nano-electromechanical systems actuated mechanical devices made
from submicron mechanical components facing each other operating in am-
bient conditions of temperature and pressure [22].
Oscillating CLs are used in viscous environments on many occasions [23, 24,
25, 26]. In Atomic Force Microscopy (AFM) for example, a resonant CL is
used to measure surface topography and physico-chemical properties of var-
ious materials not only in air [27] but also in liquids for, e.g., identifying the
supramolecular assemblies and functional conformation of native membrane
proteins in biological specimens [27, 28].
The interaction between an AFM CL and a surrounding liquid has been used
for a distance calibration in a Casimir force measurement [29, 30] and has led
very recently to the spectacular demonstration of a repulsive Casimir force
[31].
In this chapter we describe the dynamics of a micro-oscillator in a simple
fluid, the air. When a CL beam vibrates in a viscous fluid, the fluid offers
resistance to the beam displacement [32, 33]. If the CL is vibrating close to a
solid surface, the behavior of the fluid and, consequently, that of the lever are
modified by the surface due to confinement. The Navier-Stokes (NS) equa-
tion gives a complete description of the fluid behavior taking into account
the particular environment under analysis. However an analytical solution
of the NS equation is possible only for a restricted number of geometries and
comparison of theory with experimentally relevant configurations is in gen-
eral a complex matter or is even lacking, especially at the deep micron and
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Figure 2.2: Scheme of the experimental setup (not to scale). The analyzed
mechanical system is a standard AFM CL. A cleaved optical fiber (bottom) is
used as mobile substrate forming a cavity with the CL. An etched optical fiber
(top) is used for the interferometric detection of the CL Brownian motion.
The main geometrical parameters used in the text are identified, the z origin
is taken on the flat cleaved-fiber surface.

submicron scales [34, 35, 36, 37, 38, 39, 40, 41]. We focus on the dynamical
behavior of a microlever close to a planar rigid surface in the air. The NS
equation can be solved analytically for this plane-plane model geometry that
mimics a basic part of a MEMS device operating in the air.
We will show how the confinement of the fluid changes the coupling to ther-
mal bath, both in terms of fluctuation and dissipation and how this can sig-
nificantly modify the lever behavior and eventually freeze out the mechanical
oscillation.

2.2 Experimental set-up

The experimental setup developed for the study of the micro lever dynamics
in a simple fluid is shown schematically in Fig. 2.2.
The cantilever is a thin silicon AFM CL for liquid imaging with dimensions
L × w × t = 107 × 30 × 0.18 µm3 with ≈ 30 nm of gold coating (see AFM
cantilever presented in fig. 2.1). The tip has been removed using a Focus
Ion Beam. The lever is not externally driven but is actuated by the stochas-
tic thermal noise only. This induces sub-Angstrom oscillations at the CL
resonance frequency (≈ 50 kHz). Here we are interested in the effect of
the geometry on the damping of the oscillator and in particular on the fluid
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confinement effect. A planar rigid surface facing the CL forming a parallel-
plate cavity is then approached to the lever. This second surface is made
of a cleaved optical fiber with a diameter of 125 µm that is mounted over
a three-axis inertial motor so as to be able to adjust the cavity gap. This
positioning system offers a large displacement range (8 mm each axis full
range) with a good accuracy (40 nm per step). The advantage of using a
cleaved optical fiber as movable plate is that it is possible to inject a laser
beam into it for the purpose of calibrating with high accuracy (better than 1
nm) its displacement towards the CL. This was extracted from the evolution
of the interference pattern formed between the cleaved fiber end and the CL
(see section 2.2.1). Finally, the CL motion is measured by means of a non
invasive interferometric detection based on the use of a very thin optical fiber
facing the CL at a 2 µm distance. This fiber has been chemically etched so as
to reduce its diameter to 5 µm. This corresponds basically to the fiber core
diameter plus a residual amount of the optical cladding for better light guid-
ance. The large ratio in excess of 600 between the areas of the cleaved and
detection fibers insures that only the cleaved one induces air confinement,
not the etched one, which is used for detection purpose only. Therefore,
no additional uncontrolled confinement and damping are produced by the
detection fiber.

2.2.1 Fiber optics based interferometer

The cantilever position, and consequently its displacement, has been mea-
sured using a fibered optical interferometer. In figure 2.3 the device is
schematically presented.
The main components are a stabilized laser source, a beam coupler for the
injection of the laser in the optical fiber, a beam divider, called Coupler X,
working as a cube separator, and a photodiode to convert the optical signal
in an electric one.
Analyzing the experimental configuration as shown in figure 2.3, a laser beam
is injected in a Silicon optic fiber. The laser beam passes through the coupler
X and it arrives to extremity P0. A part is reflected (S1 beam in the inset)
by the fiber end while the other part reaches the lever surface before to be
reflected back into the fiber (S2 beam in the inset).
The two beams together pass again through the coupler X to get finally the
photodiode. The intensity detected at the level of the photodiode is modu-
lated by the path difference of the beam S1 and S2 equal to 2d, where d is
the distance between the fiber end and the lever surface.
Considering the reflection coefficient of the interface silicon oxide-air (≈ 4%),
with good accuracy we can consider that the photodiode detect a two weaves
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Figure 2.3: Schema of the optical interferometer (Courtesy of Guillaume
Jourdan)

interference pattern:

I(d) = I0 + ∆I0 sin

(

4π

λ
d + φ

)

(2.1)

where λ = 635 nm is the laser wavelength. The cantilever displacement δd
is translated in a variation of intensity δI detected by the photodiode. The
maximum of the sensibility is obtained for a set-point d0 so that the measured
intensity is equal to I0, corresponding to the flex of the sinusoid (fig. 2.4).
In first approximation the conversion factor between δd and δI is given by
the first order development of the equation for the intensity:

δd =
λ

4π∆I0

δI (2.2)

2.3 Cantilever Dynamics

An AFM CL vibrating in a viscous fluid may be viewed as a driven and
damped 1D harmonic oscillator (fig. 2.5) whose equation of motion reads

mz̈(t) + γż(t) + klevz(t) = Fext (2.3)

(m, z(t), klev are the CL effective mass, time-dependent position, and stiff-
ness, respectively, γ is the damping factor and Fext the external driving force).
If the cantilever is driven by a periodic external force Fext(t) = Fexte

iωextt,
the solution of equation 2.3 has a form z(t) = ẑeiωextt that reads:

[

(iωext)
2 ẑ + iωext

γ

m
ẑ + ω0ẑ

]

eiωextt =
Fext

m
eiωextt (2.4)
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Figure 2.4: Optical interferometer response as function of the gap between
the lever and the fiber end.

so that

ẑ =
Fext

m(ω2
0 − ω2

ext) + iγωext

= χ(ωext) · Fext (2.5)

where ω0 = 2πf0 =
√

k
m

is the CL natural frequency and

χ(ω) =
1

m(ω2
0 − ω2) + iγω

(2.6)

the cantilever transfer function. This shows that, if the driving force has a
form Fext(t) = Fext · cos (ωextt), the movement of the cantilever is

z(t) = z0 cos (ωextt) + φ) (2.7)

where z0 is the vibration amplitude ad φ is the phase shift to the driving
signal in the settle state of the oscillator. The vibration amplitude z0 can be
written as

z0 =
Fext

√

m2(ω2
0 − ω2

ext)
2 + γ2ω2

ext

(2.8)

and the phase shift

φ = arctan

(

γωext

m(ω2
0 − ω2

ext)

)

. (2.9)
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Figure 2.5: The driven damped harmonic oscillator represented as a mechan-
ical system with spring k and a damping γ

The amplitude and phase diagrams for such a driven damped oscillator are
shown in figure 2.6.
The oscillator has a resonance for a frequency

ω′ =

√

ω2
0 −

1

2

( γ

m

)2

(2.10)

that for the limit of small damping, i.e. γ

m
<< ω0, coincides with the CL

natural frequency ω0.
The model here presented describes the cantilever as a single mode oscillator
where only the first and most significant harmonic mode has been taken
into account. This model is actually very useful in describing the behavior
of a CL working around the first resonance frequency, as done during this
thesis. However to describe the cantilever behavior as accurately as possible
and to consider higher harmonic modes, more complex models have to be
introduced, describing the cantilever as a flexible beam. In such a model, the
cantilever is described as a beam clamped at one end and freely oscillating
at the other end. This description includes different modes of vibration with
their specific resonant frequencies. Here we do not develop longer this aspect
but a complete treatment of the cantilever behavior can been found in [10].
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Figure 2.6: Amplitude and phase shift for a driven and damped oscillator

Spatial profile of the cantilever resonant modes

The spatial profile of an AFM cantilever can be obtained solving the Euler-
Bernoulli equation [42, 43]

ρ(x)
∂2U(x, t)

∂t2
+ EI

∂4U(x, t)

∂x4
= f(x, t) (2.11)

where U(x, t) is the cantilever profile as function of time and position, ρ(x)
is the material density, E the Young’s modulus and I = t3w

12
the inertia

momentum of the cantilever. General solution for the n− th mode profile is
[42, 43]

Un(x) = Cn [(cos (kn · x) − cosh (kn · x))] +

+ Gn [(sin (kn · x) − sinh (kn · x))] (2.12)

where the n − th mode vector kn is linked with the n − th mode resonant
frequency by the relation k4

n = ρA

EI
ω2

n.
Applying the boundary condition, relation between coefficient C and G is
found to be

Cn

Gn

= −cos (kn · L) + cosh (kn · L)

sin (kn · L) + sinh (kn · L)
. (2.13)

In figure 2.7 the spatial profile of the first three resonant modes for a simple
cantilever are shematically represented.
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Figure 2.7: Spatial profile of the first 3 resonant modes for a simple cantilever.

2.3.1 Cantilever thermal noise

Figure 2.8 shows the response of a Cl in air at room temperature, when no
external driving force has been applied. As it is clear the CL displacement
power spectrum presents a resonance, meaning that actually even if we do
not apply any force the oscillator is still excited.
The origin of this excitation is already well known and it is due to a ran-
dom force induced by the coupling of the CL with the thermal bath. The
behavior of a cantilever under a random excitation is well described by the
displacement power spectral density

Szz(ω) =< ẑ2(ω) >=

∫

∞

−∞

Czz(τ)e−iωτdτ (2.14)

defined as the Fourier transform of the cantilever position autocorrelation
function

Czz(τ) = 〈z(t) · z(t − τ)〉. (2.15)

The power spectral density is extremely useful in the description of Linear
Time Invariant (LTI) dynamic systems with a complex response function
χ(ω) and a random input signal of power spectral density SFF ω, as in the
case of a cantilever coupled with a thermal bath. The output power spectrum
can be written as

Szz(ω) = SFF (ω)|χ(ω)|2 (2.16)

where χ(ω) for the case in analysis is the cantilever transfer function.
According to the fluctuation-dissipation theorem, the random thermal ex-
citation of the thermal bath at temperature T is described by a frequency
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Figure 2.8: The experimental Brownian oscillation power spectrum of the
microlever for different cavity gaps.

independent force power spectrum given by the Nyquist theorem:

SFF (ω) = 2kBTγ (2.17)

where kB is the Boltzmann constant.
The position dispersion of the oscillator induced by the thermal excitation
then is given by:

< z2
T (t) >=

∫

∞

0

SFF (f)|χ(f)|2df (2.18)

with f = ω
2π

At the thermal equilibrium the equipartition theorem set the
position dispersion of the oscillator1

1

2
klev < z2

T (t) >=
1

2
kBT. (2.19)

In Fig. 2.8, the experimental thermal excited power spectrum is presented
for different cavity gaps. It is clearly seen that the resonance peak dramat-
ically broadens and softens to lower frequencies with decreasing gap. This
is represented in figure 2.9 where the oscillator quality factor and resonant
frequency are shown as function of the cavity gap.

1we have then a relation for the cantilever stiffness that give us for the case in analysis
klev = 0.0396 N/m
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Figure 2.9: Experimental results: a) Evolution of the quality factor as func-
tion of the cavity gap. b) Evolution of the resonance frequency as function
of the cavity gap
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Within the experimental accuracy, the area under the resonance curves in
Fig.2.8 remains constant and always equal to the thermal energy. This shows
that the CL damping increases with decreasing gap.
Quantitative information on the damping factor can be obtained from the
analysis of the CL quality factor, defined as f0

∆fFWHM
, where ∆fFWHM is the

full-width at half-maximum of the resonance curve (see Fig.2.8). This is be-
cause the two quantities are linked together by the relation Q = k

ω0γ
.

We expect that the damping factor γ is function of the fluid viscosity η, the
cantilever surface A and, of course, the cavity gap d:

γ = C · η · Aα · dβ (2.20)

where C is an adimensional constant. From the experimental evidence pre-
sented in figure 2.9 a), where the quality factor evolves linearly with the
distance, we have β = −1. For dimensional reasons, then, α = 1. The nu-
merical constant is set to be very close to 2 leading to an expression of the
damping factor

γ =
2ηA

d
. (2.21)

In figure 2.10 and 2.11, we can see how the expression of the damping factor
as expressed in equation 2.21 is consistent with the experimental evidence.

Figure 2.10: Quality factor evolution with the distance for the small gap
regime. The red line represents the expression of the quality factor as in
equation 2.21.
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Figure 2.11: Difference between the experimental datas and the value ob-
tained by equation 2.21.

2.4 Navier Stokes equation

A theoretical prediction of the damping factor should be obtained solving the
Navier-Stokes equation with appropriate boundary conditions. Choosing the
appropriate boudary conditions it is not a simple task. However only those
leading to a theoretical expression consistent with eq. 2.21 can be considered
valid to describe our system.
The fluid responsible for the CL damping is the air confined between the CL
and the mobile fiber. The behavior of such a confined fluid can be described
by the generalized Navier-Stokes equation:

ρ

[

∂~v

∂t
+ ~v · ∇~v

]

= η∇2~v −∇p (2.22)

where ~v is the fluid velocity, ρ its density, η its viscosity and p the pressure. In
the limit of small Reynolds numbers (here Re := v d ρ

η
< 0.001 for d = 50 µm)

the fluid is in its laminar regime and equation 2.22 is slightly simplified in

η∇2~v = ∇p (2.23)

The solution of eq. 2.23 implies a full knowledge of the boundary conditions
existing at the fluid-solid interface. While for macroscopic hydrodynamic
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Figure 2.12: Scheme of the confinement of the fluid. The mobile plate rep-
resents the cantilever moving in the z direction with velocity Uz. The fluid
motion is shown as vx, the larger component of the fluid velocity

applications we can accept that the fluid do not slip against solid wall, this
is not generally true for microfluidic problem involving MEMS or NEMS.
The critical parameter in this respect is the Knudsen number Kn = λ/d
which depends on the gas mean free path λ. For air at ambient conditions
λ ≈ 60 nm, leading here to Kn ≈ 0.001 − 0.06. In this range of values it is
already known that fluid slip can occur over a solid interface [44, 40, 41].
The theoretical model has to be consistent with the experimental evidence
as presented in fig. 2.9, i.e. a damping factor with a dependecy over the
distance as in equation 2.21

2.4.1 No slip boundary conditions (Couette problem)

We try now to solve the problem using the standard no slip boundary con-
dition (see [44]). This is the well known Couette problem as presented in
figure 2.12 In the hypothesis of Couette like problem, for the fluid velocity
components we have vz << vx and ∂vx

∂x
<< ∂vx

∂z
.

Equation 2.23 becomes:
η∂2

zvx = ∂xp. (2.24)
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Since at the lever extremity x = 0 and x = L, p = p0 for all the z value, p is
only a function of x, then

vx(x, z) =
1

2η
p′(x)z2 + α(x)z + β(x). (2.25)

From the no slip boundary conditions, vx(x, z = 0) = vx(x, z = d) = 0, we
have

vx(x, z) =
1

2η
p′(x)

(

z2 − zd
)

. (2.26)

The fluid incompressibility condition ∂xvx + ∂zvz = 0 gives the expression of
vz:

vz(x, z) =
1

2η
p′′(x)

(

z3

3
− z2

2
d

)

. (2.27)

For z = d the fluid vertical velocity vz is equal to the cantilever speed Uz.
This gives a condition for the pressure p expression

p(x) = p0 +
6η

d3
Uz(xL − x2). (2.28)

The viscous force along z direction (per surface unit) acting on the cantilever
moving plate is given by:

fz = σzz = η(∂zvz + ∂zvz)(z = d), (2.29)

where σzz is the fluid deformation tensor along the z direction. The fluid
velocity component in eq. 2.27 leads to a null viscous force acting to the
lever.
The only non null force acting on the lever is a pressure force induced by the
squeezing of the fluid:

F =

∫ w

0

dy

∫ L

0

dx(pext − pint) =

∫ w

0

dy

∫ L

0

dx

[

−6η

d3
Uz(xL − x2)

]

= −ηL3w

d3
Uz.

(2.30)
Therefore the damping factor takes the simple form:

γ =
F

Uz

=
ηL3w

d3
(2.31)

This relation is not consistent and it cannot be compared with the experi-
mental evidence as presented in figures 2.8, 2.9 a) and b).
The no slip boundary conditions cannot be applied to the system here in
analysis. Such boundary conditions, generally accepted for macroscopic sys-
tem, seem to fail when applied to fluid confined in sub micron cavities.
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Figure 2.13: Scheme of the confinement of the fluid. The mobile plate rep-
resents the cantilever moving in the z direction with velocity Uz. The fluid
motion is shown as a two components velocity vector ~v = vx, vz. Fz is the
dissipating force acting on the mobile plate

2.4.2 Perfect slip boundary conditions

To solve the Navier-Stokes equation as simplified in eq. 2.23 we now can
suppose that vx = f(x). This is a very demanding hypothesis as it formally
leads to assume a slip boundary condition. From the fluid incompressibility
condition ∂xvx + ∂zvz = 0 we have another condition on the fluid velocity
component vz = g(z).
The linearized Navier-Stokes equations become then:

∂p

∂x
= η

d2vx

dx2

∂p

∂z
= η

d2vz

dz2
(2.32)

This implies ∂p

∂x
= a(x) and ∂p

∂z
= b(z) or

p(x, z) =

∫ L

0

a(x)dx +

∫ d

0

b(z)dz = A(x) + B(z). (2.33)

However the only solution possible is here p(x, z) = p(x) = A(x) since at the
lever extremity x = 0 and x = L we have p = p0 for all the z value.
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Equation 2.32 then reads:

η
d2vx

dx2
=

∂p

∂x
(2.34)

d2vz

dz2
= 0. (2.35)

The second equation leads to

vz(z) = αz + β. (2.36)

Since vz(z = 0) = 0 and vz(z = d) = Uz we deduce:

vz(z) =
Uz

d
z. (2.37)

Such expression of the fluid component leads to a viscous force along z acting
on the plate (per surface unit)

fz = σzz = η(∂zvz + ∂zvz)(z = d) = −2ηUz

d
, (2.38)

where σzz is the fluid deformation tensor along the z direction. Therefore
the damping factor takes the simple form:

γ =
Fz

Uz

=

∫

A
fzdS

Uz

=
2ηA

d
(2.39)

Equation 2.39 gives a relation of the damping factor with the cavity gap.
This relation is consistent and it can be compared with the experimental
evidence as presented in figures 2.8, 2.9 a) and 2.9 b).
Such boundary conditions, generally not applied to macroscopic systems, well
reproduce the experimental evidence for fluid confined sub micron cavities.

Slip conditions

We can now come back to definition of the slip condition. As precedently
reminded the slip condition formally coincides to ∂zvx = 0. From eq. 2.37
we can now deduce the expression of the velocity component vx. From the
incompressibility condition ∂xvx + ∂zvz = 0

vx(x) = −Uz

d
x + δ (2.40)
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which indeed satisfies eq. 2.34 and implies dp

dx
= 0 and p = p0.

At x = 0 we have vx = v0 and at x = L, for symmetry we have vx = −v0,
meaning v0 = δ = UzL

2d
that gives:

vx(x) =
Uz

d

(

L

2
− x

)

. (2.41)

Clearly from eq. 2.37 we have vx = f(x) coinciding with the previously
defined slip conditions. This reminds the old Navier boundary conditions
which has been subject of controversy since the 19th century.

Energy conservation

As a further check we can verify the energy conservation during the process.
From the Navier-Stokes equation, considering a plate that is moving at the
velocity Uz, we have [44]:

dEf

dt
=

d

dt

∫

fluid

ρv2

2
d3x =

= − 1

2η

∫

fluid

∑

i,j

σ2
i,jd

3x −
∮

[

(vj − Uj) ρv2/2 + vjp − viσi,j

]

dSj (2.42)

with σi,j = η(∂ivj + ∂jvi). In the stationary regime,
dEf

dt
= 0, we have:

− 1

2η

∫

fluid

∑

i,j

σ2
i,jd

3x =

∮

[

(vj − Uj) ρv2/2 + vjp − viσi,j

]

dSj (2.43)

The right side of eq. 2.43, i. e. the loss term, is

− 1

2η

∫

fluid

∑

i,j

σ2
i,jd

3x = − 1

2η

(

σ2
xx + σ2

zz

)

· A · d = −4ηU2
z

d
A. (2.44)

The surface integral is divided into 4 integrals. The integral along the moving
plate reads:

∫

z=d

[

− (vz + Uz) ρv2/2 − vzp + vzpσzz

]

dSz =
2ηU2

z

d
A + Uzp0A. (2.45)

The integral along the static plate is formally equal to that of the moving
plate and vanishes. The other two integrals are:

∫

x=L

[−vxp + vxpσxx] dSx =
ηU2

z

d
A − Uzp0A

2
(2.46)

and

−
∫

x=0

[−vxp + vxpσxx] dSx =
ηU2

z

d
A − Uzp0A

2
. (2.47)

Consequently the equation 2.43 for the energy conservation is verified.
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2.5 Cavity damping of the cantilever

Starting from equation 2.39, we obtain a theoretical expression for the can-
tilever quality factor, in the small gap regime:

Q =
k

2ω0ηA
d. (2.48)

Eq. 2.48 predicts a linear dependence of the quality factor with the gap width
and provides us with the opportunity of comparing theory and experiment
without including any adjustable parameter whatsoever since all physical pa-
rameters are known 2.

Figure 2.14: The quality factor as a function of the cavity gap. Black dots
represent the experimental data. The red curve exhibits the theoretical pre-
diction based on eq. 2.48.

Fig. 2.14 depicts the quality factor as function of the cavity gap. Two
different regimes can be distinguished. For large gaps above 40 µm, the
quality factor remains constant. This is the unconfined fluid regime where
no additional damping can take place with decreasing gap. For smaller gaps
however, the quality factor tends to decrease with a decreasing gap. We will
focus below on the small gap regime where the hypothesis of infinite planes

2The CL dimensions have been measured by electron microscopy. The air viscosity
was taken as 1.8× 10−5kg/ms. The CL stiffness k = 0.0396N/m has been experimentally
determined from Fig. 2.8 using the energy equipartition theorem.
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is physically justified. From fig. 2.14 we clearly see that dlim ≈ 20µm.

2.5.1 Plane misalignment correction

Figure 2.15: The quality factor as a function of the cavity gap. Black dots
represent the experimental data. The red curve exhibits the theoretical pre-
diction based on eq. 2.48. The blue dotted curve exhibits the theoretical
prediction based on eq. 2.48 when the misalignment between the planes has
taken into account

As shown in fig. 2.15 the experimental results and the theoretical pre-
diction of Eq. 2.48 coincide to within 5% for gaps larger than 5 µm but for
smaller separations, the agreement worsens, to reach 100% at the smallest
gap, 400 nm. We argue now that this increasing disagreement is not due to
a failure of our approach, but that it originates from a residual small mis-
alignment of the two facing parallel plates.
In the hypothesis of a small angular misalignment, the problem can be
treated within an approximation similar to the Proximity Force Approxi-
mation (PFA) used, for instance, for the Casimir force formulation in the
sphere-plane geometry [21]. Using this approximation, we compute the cor-



2.6 Cavity freezing of a cantilever 48

rected damping factor to be:

γ =

∫ L

0

∫ w

0

2η
dx · dy

d0 + x tan α + y tan β
(2.49)

where d0 is the shortest distance from the inclined CL to the substrate, α (re-
spectfully β) is the lateral tilt angle of the CL with the mobile surface in the
x (respectfully y) direction. The angle values that permit to reproduce the
evolution of the disagreement between experiment and theory, as presented
in Fig. 2.15, are α ≈ β ≈ 10 mrad. Considering these misalignment angles,
the good agreement between theory and experiment can now be extended
down to the smallest gap range that we have measured as can be seen in Fig.
2.15. Over the entire range 400 nm − 20 µm, the remaining disagreement is
≈ 5%.

2.6 Cavity freezing of a cantilever

Figure 2.16: The resonance frequency as function of the cavity gap in the
small gap regime. Like in Fig.2.14, the red dashed, respectively blue dash-
dotted curves is the prediction of the NS model for the perfectly aligned,
respectively slightly misaligned, cavity.
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We now discuss the frequency softening of the CL oscillation, the other
salient experimental fact revealed by Fig. 2.8.
In the limit of large damping, i.e. the approximation γ

m
<< ω0 no longer

holds, the power spectrum has a down-shifted resonance frequency ω′ given
by equation 2.10. Fig. 2.16 shows that the resonance frequency shift ω′ −ω0

can be extremely large. We can see that actually if the cavity gap is small
enough the resonant frequency value tends to zero.
Considering the damping factor expression in eq. 2.39 we can then define
another characteristic length which is the gap width canceling the resonance
frequency in Eq. 2.10. This characteristic length is determined by the CL
dynamics and the fluid viscosity and is given by:

dcrit =

√
2η

m

A

ω0

=

√
2η

ρtω0

. (2.50)

with ρ the lever material density and t its thickness. From equation 2.50
we would expect a critical gap of about 500 nm, however experimentally it
has been impossible to achieve the complete freezing because of the residual
angular misalignment discussed above that prevents any step further below
400nm.
Taking into account for data analysis of the misalignment obtained from
Fig. 2.14, we can quantitatively model the measurements in Fig. 2.16 using
equation 2.10.

2.7 MEMS and NEMS application

Along this chapter we have presented measurements of the damping of a
thermally driven CL in a simple fluid confined in a microcavity formed by
this CL facing an infinite wall. As the cavity length decreases, the fluid
confinement induces a dramatic damping of the CL Brownian motion which
can lead to its complete freezing at small gaps. A consequence of what here
revealed, is that micro- or nano-oscillators can either present high Q factors
or be overdamped systems depending on their actual geometry, resonance
frequency, oscillator substrate gap and, of course, on the ambient viscosity.
What is worth to note is the gap size involved. For example we have seen that
for the lever in analysis the complete freezing happens for cavities smaller
than 500 nm. These values are indeed closed to the standard application of
NEMS and MEMS.
The definition of the critical gap as in equation 2.50 shows a dependency by
the dynamical and material properties of the oscillator.
In fig. 2.17 it is shown an example of MEMS realized at the CEA-LETI in
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Figure 2.17: Optical microscope image of 10G-100-100 MEMS realized at the
CEA-LETI in Grenoble.

Grenoble. This kind of MEMS is a silicon membrane oscillating out of plane.
The lateral size varies from 10 × 10 µm2 to 100 × 100 µm2 (as presented in
figure 2.17). while the thickness is constant at 200 nm, The gap with the
substrate is 400 nm. The membrane is suspended using four beams. This
is the most interesting aspect of such kind of structure. In fact even if the
lateral size is kept constant, only modifying the size of the four beams, it is
possible to change the resonant frequency (see table 2.1).
Since the membrane surface is much bigger than the the beams surface the
cavity formed with the substrate can be considered constant.
Fig. 2.18 shows the variations of dc as a function of f0 = ω0/(2π) for a thin
oscillator with t = 180 nm and for different commonly used materials.
For low frequencies in the 10 kHz range and below, the overdamping regime
appears already at large separation distance dc ≥ 0.1-1 µm. Oppositely, for
very high oscillator frequencies in the 100 kHz range and beyond we have
dc ≤ 10− 100 nm and the overdamping regime becomes a fundamental issue
only at the nanoscale.
For comparison we show on the same graph the experimental data points
taken from figure 2.8 and corresponding to working distances d which are de-
creasing until the overdamped regime at dc is reached. Additionally, we show
also the physical characteristics recorded (i.e., internal resonance frequency
f0, and fixed distance gap d = 400 nm with the substrate) of typical Si made
NEMS realized at the LETI. These NEMS can be with a good approximation
described by the simple geometry considered here.
Clearly, working with such NEMS in a gaseous environment may strongly af-
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MEMS Membrane size Beam width Beam length Resonance

XG-10-1 10 µm 3 µm 1 µm 18.7 MHz
XG-10-10 10 µm 3 µm 10 µm 2.4 MHz
XG-10-50 10 µm 3 µm 50 µm 217.5 kHz
XG-50-1 50 µm 3 µm 1 µm 4.8 MHz
XG-50-10 50 µm 3 µm 10 µm 482.8 kHz
XG-50-50 50 µm 3 µm 50 µm 43.5 kHz

10G-100-50 100 µm 3 µm 50 µm 10.7 kHz
10G-100-100 100 µm 3 µm 100 µm 26.5 kHz
50G-100-50 100 µm 10 µm 50 µm 19.5 kHz
50G-100-100 100 µm 10 µm 100 µm 48.3 kHz

Table 2.1: CEA-LETI mechanical system characteristics. For all these struc-
tures the cavity gap with the substrate is 400 nm

fect their dynamics and only for very high f0 could the overdamping regime
actually be overcome. This is indeed confirmed for those NEMS annexed by
a red cross in Fig. 2.18 which we studied experimentally. The experiment
showed that NEMS with such gaps do not resonate in air at room temper-
ature confirming therefore the role played by overdamping. For the NEMS
indicated by a red circle, i.e., with frequency in the 100 kHz and MHz range
we were out of the detection sensibility of our setup and no data were avail-
able.
Reminding that for the simple mechanical system here analysed we have

ω0 =
√

E
12ρ

r2
0 · t

L2 , (where r0 gives informations about the geometry of the

oscillator) as a complementary analysis, we show in fig. 2.19 the explicit de-
pendence of dc on the aspect ratio t/L for different materials. In the typical
range of aspect ratio considered the overdamping regime covers distance gaps
d going from the micrometer range to the nanoscale and, therefore, cannot
be neglected. Again, this fact is confirmed by comparing these graphs with
available experimental data (see Fig. 2.19 and compare with Fig. 2.18). It
is evident that the confinement effect cannot be neglected while speaking of
NEMS and MEMS operating in viscous environments. Interesting extensions
of the present work include the study of even smaller gaps and of damping
as function of air pressure to link the viscous and the molecular regimes [22].
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Figure 2.18: Evolution of critical gap as a function of frequency for a Si (black
line), SiC (red line), GaAs (green line), and Au (blue line), respectively.
Experimental data points for the lever studied in previuos paragraph are
also shown for distances d close to the overdamping regime (black crosses).
Red crosses and circles correspond to NEMS with a distance to the substrate
d = 400nm.



2.7 MEMS and NEMS application 53

Figure 2.19: Evolution of the critical gap as a function of the ratio t/L for
the same lever materials as in Fig. 2.18. Colors lines and data points have
the same meaning as in Fig. 2.18.



Interactions entre rayons X et
oscillateur mécanique

Les MEMS et NEMS sont souvent utilisés pour mesurer les interactions
et les accélérations à l’échelle nanométrique. Les NEMS sont d’excellents
détecteurs de forces. Ainsi de petits effets comme les propriétés mécaniques
de la lumière ont éte étudier grâce à ces systémes. En effet la pression de ra-
diation et le switch thermique ont été utilisés comme moyen d’actionnement
pour les systèmes mécaniques. Dans ce chapitre nous nous pencherons sur
l’effet de la lumière synchrotron agissant sur un MEMS. Nous montrerons
comment l’interaction entre le faisceau de rayons X et le système mécanique
peut potentiellement ouvrir une nouvelle famille d’outils pour la manipula-
tion de rayons X.
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3.1 Introduction

Nanoelectromechanical Systems are frequently used to measure interactions
and accelerations at nanoscale [3, 4, 5], especially when resonating oscillators
are used with high quality factor [6, 7, 8].
NEMS are excellent force detectors and even small effects as the mechanical
properties of the light have been addressed thanks to them. Indeed radiation
pressure and thermal switch effects in the lever [14, 15, 16, 17, 18, 19, 20]

56



3.1 Introduction 57

have been shown as actuation mechanisms for mechanical systems.
In chapter 2 we have seen that nano oscillating cantilevers can be used for
the study of fluid behavior at micron and sub-micron scale.
In this chapter that Micro and possibly Nano Electro Mechanical Systems
can be considered suitable for developing new tools in the domain of Syn-
chrotron light techniques.
Typical X-ray beam spot size was in the millimeter or sub-millimeter scale.
Nowadays it is in the micron and it will reach the sub-micron regime. At
the European Synchrotron Radiation Facility, the recently started upgrade
program should bring at X-ray beams with a size in the tens of nanometers.
Power transported by these X-ray beams, with 1012 ph/sec at 10 keV is
W = 1 mW ; the force in case of full absorption is W/c = 10 pN . These
numbers are the classical ones when opto-mechanical effects are studied us-
ing visible light.
It then appears that effects usually observed using visible laser should also
be observed using X-ray beams, with a clear advantage that light-matter
interaction can be made quantitavive as we shall see using both absorption
and diffraction instead of reflection and refraction. A drawback is, however,
that the wavelenght is not so easily precisely defined. Effect such as optical
cooling will be very hard to produce using X-ray.
The first part of this chapter will be dedicated to the study of the interaction
between X-rays and MEMS and how it can be actually controlled.
We shall also enter the use of MEMS to shape in real time the X-ray beams.
Nowadays many experiments in physics, biology, chemistry and material sci-
ence require irradiation of a sample by a short burst of X-ray radiation to
study in details the time response of the sample under a particular excita-
tion [45, 46, 47]. X-ray techniques are extremely important to investigate
the chemistry and structure of materials [48, 49]. In a typical experiment
the system to be analyzed is excited by a short X-ray burst and information
about the response is obtained studying the fluorescence emitted during the
system’s de-excitation [50, 51].
In a pump-probe experiment, the sample is pumped in a metastable state
by laser excitation and a delayed X-ray pulse is used to monitor the time
evolution of the system [52, 53, 54]. A common aspect of these two kinds
of experiment is the required duration of the X-ray pulse. Since the time
scale involved can be smaller than microsecond, X-ray pulses with duration
less than a microsecond are then required [55, 56, 57]. Today, short duration
X-ray burst are typically produced when a continuous X-ray beam passes
through a mechanical shutter that is open for a short time [58]. The major
limitations of rotating mechanical shutters are the size and the operation
environment required. They actually need to work under vacuum condition



3.2 European Synchrotron Radiation Facility (ESRF) 58

especially if a very short X-ray pulse has to be realized.
Considering the characteritic parameters of nano- and micro-oscillator it
would be envisagable to show that it is possible to shape a beam with a
MEMS or NEMS. For this reason in the second part of the chapter we will
focus the attention on this particular application for a MEMS and we will
show how it is possible to realize a fast X-ray chopper using a standard AFM
silicon microcantilever.

3.2 European Synchrotron Radiation Facility

(ESRF)

The experiments presented in this chapter have been performed at the Eu-
ropean Synchrotron Radiation Facility in Grenoble. The ESRF is a joint
facility supported by almost 20 european coutries, employing 600 people and
hosting more then 5000 researchers over the year.
As can be seen in official web-site, it operates the most powerful synchrotron
radiation source in Europe and one the three most powerful in the world
(together with APS in USA and Spring8 in Japan).

Figure 3.1: The European Synchrotron Radiation Facility (ESRF) in Greno-
ble (from ESRF web-site).

The European Synchtron Radiation Facility can be seen as a 800 m diame-
ter microscope. The size is not that of a conventional microspope and also
the perfomances are not the same. Any other conventional laboratory X-ray
source can be compared to facility like ESRF for flux, energy range and res-
olution of X-ray radiation.
The actual size of the inner ring diameter is 844 m and the electrons inside
have an energy of 6 GeV. Around the inner ring, forty tangential beamlines
have been constructed, helping researchers in fields as diverse as protein crys-
tallography, earth science, material science, chemistry and physics.
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Along this chapter we will see two different types of experiment that can be
performed in a Synchrotron facility: the first one will be a simple example
of X-ray absorption, while the second one will be an example of diffraction.
Before entering in the analysis of the experiments is then opportune to make
a short introduction to these two standard synchrotron techniques.

3.2.1 X-ray absorption

When an X-ray beam impacts onto a material body, a part of the incident
photons is absorbed by the matter. The amount of the absorption depends on
the particular material. The Lambert-Beer’s law gives the intensity I(ω) after
a beam with incident intensity I0(ω) has passed through a slab of thickness
d:

I(ω) = I0(ω)e−µ(ω)d (3.1)

where µ(ω) is the absorption cross section, strongly dependent on the sam-
ple’s composition. µ(ω) presents sharp steps denominated absorption edges
for incident photon energy close to the energy of an electron binded to a
specific shell. The energy position of the steps depends on the chemical ar-
rangment of the particular atom being studied, and it is very different from
element to element. Furthermore it may present oscillations after the edge
which are the result of the interaction between differently scattered electron
waves. This richness of in fine structure makes X-ray absorption an impor-
tant tool for the characteristization and study of any type of material i.e.
atoms, molecules, surface solids or liquids.
A particular absorption technique we will discuss in the chapter, is the so
called Extended X-ray Absorption Fine Structure (EXAFS). When a photon
is absorbed by an atom above an absorption edge, the excess energy takes the
form of a photoelectron leaving the atom in an excited state. Since electron
are wave like particle they can interfere with the wave reflected back, chang-
ing the final state, increasing or decreasing then the probability of absorbing
the incoming photon. The condition for constructive or destructive interfer-
ence depends on the path traveled by the elecron waves, i.e. the position
of the atom respect with the others, and on the photoelectron wavelength.
This results in oscillations of the absorption probability as a function of in-
cident photon energy. They are visible few eV up to thousands eV after
the edge. From the oscillation periodicity one can calculate the distances
between different atom shells.
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3.2.2 X-ray diffraction

Diffraction involves the illumination of a crystal sample, or an ensemble of
crystals. Every atoms of the material can interact with incoming X-ray
beam. If the material is ordered the diffusion of the X-ray beam can present
conditions for constructive or destructive interference. The Bragg’s law give
a satifactory description of this intereference pattern:

2d sin θ

(

1 − δ

sin2 θ

)

= nλn (3.2)

where λ is the wavelength of the incoming radiation, (1 − δ) the real part
of the refraction index. The factor

(

1 − δ
sin2 θ

)

is usually considered equal to
one, leading to an approximate relationship; d here is the distance between
diffracting planes and θ is the incidence angle of the X-ray beam.. For a
certain set of planes there is a characteristic angle that fulfils the diffraction
condition for a given energy

3.3 Mechanical effects of an X-ray beam on

a MEMS

In this paragraph we focus the attention onto the interaction between an in-
tensity modulated X-ray beam and a simple micro-oscillator. In this partic-
ular experiment the MEMS is a microswing constituted by a Ge microcrystal
attached to a Si microcantilever. The X-ray beam is impinging on the Ge
block and force the cantilever to oscillate. Understanding and controlling the
oscillation amplitude require to be able to control and tune the interaction
MEMS/X-rays.
The experimental set-up is presented in fig. 3.2. SEM images of the mi-
croswings used are shown in fig. 3.2(b) and 3.2(c). The first Ge microcrystal
in fig. 3.2(b) has been directly cut to Ge wafer by a Focus Ion Beam (FIB).
In order to fabricate the micro-oscillator, a cubic like germanium crystal has
been etched from a germanium wafer using the FIB Strata400 from FEI. The
cube was welded to the cantilever, in a symmetrical position, using localized
FIB deposition of metal. The cubic Ge crystal is 43 µm thick. The lever is a
standard Silicon AFM cantilever whose dimensions are 350x35x2 µm3. This
lever has no metallic coating. The second Ge microcrystal is about 23 µm
thick (fig. 3.2(c)). It has been manually glued on the side of the cantilever
in a very asymmetrical position. For asymmetrically mounted crystals, two
types of levers have been used: one without metallic coating and another
with metallic coating.
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Figure 3.2: (a) Experimental setup. Blue ray is the X-ray beam on the Ge
micro-crystal at orange Si lever end. Grey cylinder represents the optical
fiber and the red ray is the laser beam used to detect the lever position with
sub-Angstrom precision. (b and c) SEM image of the Ge cubes glued on Si
levers. In (b) the cut and soldered Ge crystal using a Focus Ion Beam, has
been positioned at the end of the lever in a symmetrical position. In (c) a Ge
crystal has been manually glued on the side in a very asymmetrical position.

The microswing position is measured through the interference between the
light reflected from the back of the lever and from a cleaved fiber end, as
presented in chapter 2.
The beamlines involved for this experiment were the Anomalous Scattering
Beamline (ID01) and Surface Science X-Ray Diffraction (SXRD) Beamline
(ID03). In ID01 the radiation from the undulators can be tuned from 2.5 to
40 keV with a Si(111) double crystal monochromator. Focusing is achieved
by using beryllium Compound Refractive Lenses (CRLs) [59]. The effective
focus size is ≈ 4 × 6 µm2 with ≈ 1010 photons/second on the focal spot.
At the SXRD beamline the photons were tuned at the Ge K edge using a liq-
uid nitrogen cooled monolithic double crystal Si (111) monochromator. The
beam was focused at the sample by a Kirkpatrick-Baez (KB) mirror system
located 43 m from the photon source. The beam size at the sample, 1 m
from the KB system, is ≈ 3×5µm2 with ≈ 1012 photons/second on the focal
spot.
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Figure 3.3: Measured resonance curve of the first oscillating mode for all
levers. In red the X-ray beam energy is set below the K1s edge (Eph =
11.07keV), in black it is set at the K1s edge (Eph = 11.103keV). (a) Uncoated
cantilever (k = 0.025 N/m, Q = 86, I0 = 7.4 1010 ph/s) with Ge block glued
on the side and X-ray beam parallel to the oscillation direction. (b) Coated
cantilever (k = 0.027 N/m, Q = 60, I0 = 3.5 1010 ph/s) with Ge block glued
on the side and X-ray beam parallel to the oscillation direction. (c) Uncoated
cantilever (k = 0.135 N/m, Q = 75, I0 = 2.4 1012 ph/s) with Ge block glued
below and X-ray beam parallel to the oscillation direction. (d) Same than
(c) with X-ray beam perpendicular to the oscillation direction.

3.3.1 X-ray induced mechanical oscillation

Figure 3.3 presents the mechanical response measured around the first reso-
nance frequency ω0 for different geometries and experimental setups.
In fig 3.3 the intensity of the X-ray beam impacting onto the Ge crystal is
modulated at a frequency ω sweeping through the lever resonant frequency
ω0. For X-ray energies below the absorption edge, the lever is already forced
to oscillate with amplitudes larger than the thermally induced noise. For
energies above the absorption edge we observe an increase of oscillation am-
plitude for all the geometries.
On the basis of the experimental evidence presented in fig. 3.3, we can iden-
tify the oscillation driving force.
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Radiation pressure can be ruled out as the oscillation is the same whatever
the direction of the beam (figure 3.3(c) and 3.3(d)) with respect to the oscil-
lation direction.
From fig. 3.3 it is evident that the oscillation amplitude is a function of the
absorption of the photons by the germanium block. We explored then the
hypothesis that the absorbed energy is promptly turned into heat leading
to a temperature increase dependent on how the heat is evacuated. Conse-
quently the driving force acting on the microswing should have a thermal
origin.

3.3.2 X-ray photons absorbed processes

As a first approximation, the number of photons that contributes to a tem-
perature increase, is the difference between the number of absorbed photons
and fluorescence photons that escape from the sample, considering that the
fluorescence emission can be photoelectrically reabsorbed. Neglecting the
reflectivity, the overall number of photons Ih that induce the temperature
increase is then:

Ih = I0(1 − TE
Ge)(1 − wE

GeT
Ef
wGe) (3.3)

where I0 is the incoming intensity, TE
Ge the Ge transmission coefficient, func-

tion of the photon energy and sample thickness, and wE
Ge the fluorescence

yield. T
Ef
wGe is the rate of fluorence at energy Ef which escape from the sam-

ple. This last coefficient is dependent on sample thickness.
At energies below the Ge-K edge, the main process is the Auger electron pro-
duction [60]. Most of the absorbed photons contribute then to the heating
because of short mean free path (few nanometer) of the Auger electrons and
their cascades. At energies higher than the Ge K edge the absorbed photons
generate fluorescence, Coster-Kronig and Auger electrons.
In table 3.1 the absorbed photon flux Ih is calculated for two lever/crystal
configurations, for two X-ray beam directions, and for coated and uncoated
levers. The ratio of the measured oscillation amplitudes x(ω0) above and
below K-edge energy is consistent with the ratio of calculated absorbed pho-
tons.
This says that the hypothesis of a thermal origin of the interaction X-ray
beam - microoscillator is valid.
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l0 = 23µm Uncoated Coated
Eph TGe wGe TwGe

Ih x(ω0) [nm] x(ω0) [nm]
11.07 0.72 0 - 0.28 I0 1.053 0.113
11.103 0.083 0.535 0.83 0.51 I0 1.902 0.199

Ratio 1.82 1.81 1.76

l0 = 43µm Paral. Perp.
Eph TGe wGe TwGe

Ih x(ω0) x(ω0)
11.07 0.54 0 - 0.47 I0 4.066 4.713
11.103 0.009 0.535 0.33 0.63 I0 5.898 6.959

Ratio 1.34 1.47 1.48

Table 3.1: Correspondance between absorbed photon and oscillation ampli-
tude for different levers and geometries. The ratio of the calculated ratio
between absorbed photons Ih, in bold in the fifth column, has to be com-
pared with the ratio of the measured oscillation amplitude x0, in bold in the
sixth and seventh columns.

3.3.3 Thermal actuation mechanism: Center Of Mass
induced deformation

We want now identify the driving force acting on the cantilever. The first
step is the evaluation of the temparature increase induced by the photons
absorption. ∆T can be calculated taking into account the overall energy
deposited in the crystal and the heat flow through the lever. The absorbed
power W is then:

W = CṪ (t) + G(T (t) − T0) (3.4)

T (t) = T0 +
W

G

(

1 − e−
G
C

t
)

(3.5)

where T0 is the ambient temperature and T (t) the block temperature as
function of time. ∆T (ω) is then

∆T (ω) =
W

G

1

(1 + ωτ)
(3.6)

τ =
C

G
(3.7)

ω is the beam chopper frequency, τ is the ratio between C, the thermal ca-
pacity of the Ge block, and G, the thermal conductivity of the Si lever.
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For the uncoated and the coated lever of (fig. 3.3(a) and 3.3(b)) the experi-
mental conditions are nearly identical whereas the oscillation amplitude is 10
times larger in 3.3(a) than in 3.3(b). This difference can be described using
those last equations when considering the good values of thermal conductiv-
ity (Silicon for the first case and Silicon with a small coating of gold in the
second one) and X-ray beam intensity.
However this description cannot explain the difference of the amplitude of os-
cillation between the (fig. 3.3(a) and 3.3(c)). The oscillation amplitude in fig.
3.3(c) is 3 times larger than in 3.3(a) against a photon flux 40 times bigger
and an absorption rate 25% higher because of the difference in Ge-crystal
dimensions. The difference in the mechanical properties of the cantilever
(3.3(a) k = 0.025 N/m, 3.3(c) k = 0.135 N/m) cannot explain such a large
descrepancy.
So far we have considered only the absorption effect on the temperature of
the microswing but we have neglected the MEMS geometry. The position
of the Ge crystal and this symmetry with respect to the lever has not been
analyzed.
The absorption of the photons in the Germanium block induces an increasing
in the Ge crystal size.
In the hypothesis of uniform temperature in the Ge block the displacement
of the center of mass (COM) with respect to the lever axis can be calculated
using

∆l(ω) = l0α∆T (ω). (3.8)

l0 is the distance between the block COM and the lever axis and α the linear
thermal expansion coefficient.
If the absorption of photons is modulated in frequency, the COM motion is
consenquentely modulated at the same frequency. Following the description
of the cantilever presented in chapter 2 we have that the cantilever oscillation
amplitude is given by

x(ω) = ∆l(ω)

√

√

√

√

ω2
0Q

2

Q2

ω2

0

(ω2 − ω2
0)

2 + ω2
. (3.9)

As it is described in fig 3.4, when the Ge cube is glued on the side of the
lever, the thermal expansion induces a COM displacement along the can-
tilever oscillation direction. This is no more true when the block is welded
below the lever in a symmetric configuration; in this case the effective COM
desplacement along the lever oscillation direction is negligible. As a conse-
quence, from the expression presented in Eq. 3.9, the oscillation amplitude
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Figure 3.4: Schema of the actuation mechanism. In (a) is presented the
very asymmetric configuration and in (b) a symmetric geometry. The dotted
squares represent the Ge crystal thermal expansion and the black arrows
indicate direction of the effective displacement of the Ge crystal COM.

in the asymmetric configuration is expected to be much more important than
in the symmetric one.
For the system in fig. 3.2(c), l0 = 13µm close to half the Ge crystal thickness.
For an intensity I0 = 7.4 1010 ph/s the temperature increase is found to be
∆T (ω0) = 0.24 K. Using αGe = 5.9 10−6 K−1, according to equation 3.8, the
induced COM displacement is ∆l(ω0) = 19pm. Using equation 3.9, with the
measured quality factor of 86 and the amplitude at the resonance of 1.9 nm,
the COM displacement is found to be ∆l(ω0) = 22 pm which is consistent
with the value calculated from equation 3.8. The error bar on the measured
lever position is determined by the thermal fluctuations of the lever position
and is xi(kBT ) = 1.6 pm.
The system in fig. 3.2(b) presents a much more symmetrical geometry. l0
value in this case must be smaller than the one in the case of fig. 3.2(c), but
it is not easily measurable. A rough estimate of the residual misalignment
between the COM of Ge microcrystal and the Si lever axis is the incertitude
in the FIB positioning device that is about 1 µm.
The distance l0 that best fits the data while all other parameters are known
is 1.5 µm which is indeed close to the precision of the FIB motor.
The comparison between the model (equation 3.9) and the measured oscil-
lation is presented in figure 3.5 as the excitation frequency is swept from
100 Hz to 2500 Hz. The agreement further establishes that the thermally
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Figure 3.5: Response function of the lever shown in figure 3.2(b). Black curve
is the measured amplitude of the lever oscillation as the beam intensity is
modulated from 100 to 2500 Hz . Red curve is the calculated expression using
experimental parameters. The error bar in red curve has been determined us-
ing the Brownian motion. Red curve calculation involves the misalignement
of the Ge microcrystal on the Si lever as the single adjustable parameter. In
the inset a zoom on the resonant peak is presented.

forced displacement of the COM is at the origin of the observed lever oscil-
lation equiped with the Ge crystal. Results for all configurations are then
consistently explained using this single actuation mechanism.

3.3.4 Mechanical detection of germanium EXAFS spec-
trum

Figure 3.6 reports the mechanical response of the cantilever at the resonance,
when the X-ray energy is scanned through the germanium K-edge energy.
The mechanical response of the microswing matches well the XAS reference
spectrum of germanium [61] . The two curves have been normalised below
the edge and in the continuum atomic part above the edge. Even though a
mechanical detection of EXAFS has already been shown [62], this is the first
time utilising a MEMS.
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Figure 3.6: Cantilever oscillation amplitude in function of beam energy. We
show in black, our experimental data and in red, the handbook reference
EXAFS spectrum at Ge K edge.

The decreased amplitude of the XAFS peak and oscillations after the K-edge
with respect to the reference spectra are due to the intrinsic self-absorption
effect analyzed along the paragraph.
Tuning the energy of the X-ray beam allows to modify in a fully controlled
way the oscillation of the cantilever showing that it is possible to tune the
interaction between the X-rays and the MEMS as envisaged at the beginning
of the chapter.

3.4 MEMS based high frequency X-ray chop-

per

In this section we show that the interaction MEMS/X-rays can be used to
shape a beam. In particular coupling the optical and mechanical properties
of a silicon cantilever we show that it is possible to realize a X-ray chopper.
Figure 3.7 shows schematically the experimental set-up. The mechanical sys-
tem used during the experiment is a standard Si (100) AFM cantilever with
dimensions 300 × 35 × 2 µm3. The cantilever displacement is measured by
the interference between the light reflected from the end of a cleaved optical
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Figure 3.7: Experimental set up. In orange is represented the AFM can-
tilever used to stop or transmit the dark blue X-ray beam impacting around
the Bragg angle. The reflection of the X-ray beam is detected with a photo-
diode. The white cylinder represents the optical fiber for the interferometric
detection of the lever position with sub-Angstrom precision.

fiber and the beam reflected by the back of the lever.
For this particular experiment the beamline involved was the Surface X-Ray
Diffraction (SXRD) beamline (ID03). The incoming X-ray beam set at 18.98
keV is impinging on the cantilever at rest at Bragg condition and the X-ray
photo detector is positioned at the corresponding 2Θ angle. At the SXRD
beamline the photons are tuned in energy with a resolution ∆E

E
≈ 10−4. To

maintain the photons parallel, in this experiment no lenses have been posi-
tioned between the monochromator and the sample. The direct beam from
the monochromator at the sample, located 44 m from the photon source, has
a size ≈ 50×50 µm2 with ≈ 1010 ph/s; the beam divergence is ≈ 10−4 degrees.

3.4.1 Diffracted beam oscillation induced by cantilever
periodic motion

When the cantilever is at rest in Bragg conditions , the photodiode detects
a constant flux of photon. When the AFM lever is periodically excited by a
piezo-electric ceramic, the X-ray incidence angle is consequently modified by
the lever motion. If the lever oscillation amplitude is larger than the Bragg
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peak width, the cantilever will periodically sweep through the Bragg condi-
tions. A periodically modulated current will be measured at the output of
the photodiode.
Fig 3.8 presents the theoretical Bragg peak for a Si (400) reflection, calculated
in the hypothesis of perfect 2µm thick single crystal in kinematic approxi-
mation [63, 64]. It is worth to note that due to the small thickness (2µm)
of the Si cantilever with respect to the extintion lenght of the Silicon, the
Bragg (400) reflection is very broad. In the case in analysis the Bragg width
is ≈ 100 times larger than the incoming X-ray beam divergence (10 µrad
for divergence Vs 103 µrad for Bragg width). The oscillating cantilever is
operating as a mechanical chopper on the incoming beam. On the contrary,
in the case of Bragg peak sharper than the beam divergence the oscillating
cantilever would act more as a monochromator than as a chopper.

Figure 3.8: Theoretical Si (400) Bragg profile for a 2 µm thick perfect Si
crystal in the kinematic approximation. The black dot indicates the flex
point used as the reference position of silicon cantilever.

Considering the shape of the Bragg peak, the X-ray intensity modulation
is maximum when the set-point angle of the X-rays on the lever is set in
correspondence of the flex point of the Bragg peak (see black point in fig.
3.8); in this condition, moreover, the diffracted signal, when the cantilever is
oscillating with modulation ω, is modulated at ω and not at 2 ω as it would
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be if the set-point is at the maximum of the curve.
The amplitude of the photon flux oscillation is thus directly constrained by
the oscillation amplitude of the cantilever.
Reminding what done in chapter 2, we can approximate the lever with a 1D
harmonic oscillator whose response to a modulated applied force is given by

x(ω) =
F (ω)

√

m2 (ω2
0 − ω2)

2
+ γ2ω2

(3.10)

tan φ =
γω

m(ω2
0 − ω2)

(3.11)

where ω is the applied force frequency, ω0 the oscillator resonant frequency,
m the effective mass and γ the system damping factor.
Equation 3.10 gives the lever oscillation amplitude when a modulated force
F (ω) is applied; equation 3.11 gives the phase lag of the cantilever oscillation
respect with the applied force.
In fig 3.9(a) are shown the cantilever oscillation amplitude (black) and phase
lag (red) as a function of frequency when the mechanical system is mechan-
ically excited at the resonance. This is measured using the optical fiber as
shown in fig 3.7.
Fig 3.9 (b) shows the current (amplitude and phase) at the output of the
X-ray photodiode as a function of the frequency. For the specific chosen
case the current has the same functional shape of the cantilever mechanical
response presented in 3.9(a).
This validates the concept of chopper realized with an oscillating microlever.
The mechanical oscillation is directly translated in an oscillating X-ray beam
detected by the photodiode.

Cantilever profile effect on the diffracted beam oscillations

Figure 3.10 presents the phodiode output as a function of the excitation
frequency for different excitation amplitudes. The non linear behavior for
the largest cantilever excitation amplitude is due to the cantilever bending
induced by the oscillation. In other words, at any given time the X-ray
beam does not find a specific incidence angle but an angle gradient over the
cantilever.
The angle shift ∆Θ(x) induced by the lever deformation at a position x on
the lever is

∆Θ(x) = arctan

(

∂U0(x)

∂x

)

(3.12)

where U0(x) is the cantilever first mode profile described in chapter 2.
The calculated diffracted flux of photons is then obtained integrating the
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Figure 3.9: (a) Optically measured mechanical response of the AFM can-
tilever when it is mechanically excited around its first resonant frequency
of 13 kHz. (b) Diode photo-current measured by the photodiode at the 2
θ Bragg position. In (a) and (b) the black curve represents the oscillation
amplitude and the red curve the phase lag.
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Figure 3.10: Measured photodiode signal as a function of lever’s excitation
frequency. The different curves refer to different excitation amplitudes as
specified by the color code.

Bragg peak profile B(Θ(x)) over all the X-ray effective beam spot size.

Icalc =

∫ LB

0

B

[

ΘSP + arctan

(

∂U0(x)

∂x

)]

dx. (3.13)

where ΘSP is the setpoint angle as defined in figure 3.3. The origin, that is
the zero position, is experimentally for this specific case the clamped part of
the lever. LB is the irradiated portion of the lever, smaller than the full lever
lenght.
The expression B(Θ(x)) used for this calculation leads to the Rocking curve
for (400) reflection of a perfect silicon single crystal with 2 µm thickness
in kinematic approximation [63, 64]. This theoretical Rocking curve is pre-
sented in fig 3.8.
The theoretical estimation of the diffracted signal emitted by the Si lever
when it oscillated can be obtained from equation 3.13. Considering the peri-
odic motion of the cantilever around the set-point angle, the expected mod-
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ulation of the diffracted beam is given by

∆Imod =

∫ LB

0

B

[

ΘSP + arctan

(

∂U0(x)

∂x

)]

dx

−
∫ LB

0

B

[

ΘSP − arctan

(

∂U0(x)

∂x

)]

dx. (3.14)

∆Imod represents the change in intensity between the two extreme positions
of the oscillating lever.
In fig. 3.11 we present the photodiode current as a function of the cantilever
oscillation amplitude. This photodiode current measures the full amplitude
variation of X-ray intensity produced by the oscillating cantilever excited at
the resonance. This photodiode current is in fact the output of the lock-in
amplifier that demodulates the instantaneous current variation at the lever
resonance frequency.
The mechanical oscillation amplitude is separately measured at the free end
through interferometric detection. The blue points represent the photocur-
rent amplitude measured at the resonant frequency (intersection of the dif-
ferent curves with the green dotted straight line in fig 3.10); the continuous
curve is a normalized theoretical prediction from eq. 3.14.
It is interesting to note the shape of the black curve in fig 3.10, representing
the measured diffracted amplitude for the largest cantilever oscillation am-
plitude (≈ 320 nm). This peculiar shape presents two measured symmetric
maxima as a function of cantilever oscillation frequency.
This shape is easily explained considering that at resonance the oscillation
amplitude reaches the maximum, that given the functional shape of fig. 3.11
gives indeed a local minimum in the lock in output.
The functional shape of the curves (experimental and theoretical) in fig. 3.11,
reflects the fact that the modulation of the diffracted signal increases when
the mechanical oscillation of the AFM cantilever extends from the set-point
at the flex (see definition of flex point in fig 3.8) to include the maximum of
the Bragg peak and beyond. For increasing deflections, however the active
footprint actually diffracting the beam is progressively decreasing, leading to
the slow decay of the modulated intensity.

3.5 Conclusions

In the first part of the chapter we have shown that the interactions between
MEMS and X-rays can be controlled and tuned. Using the absorption of
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Figure 3.11: Photodiode signal as a function of different cantilever excitation
amplitudes. The continuous curve is from equation 3.14 (normalized), while
the points represent the experimental data with their error.

an intesity modulated X-ray micro-beam a mechanical oscillator has been
excited around the resonant frequency. The actuation mechanism for the
MEMS, it has been shown to be the periodic displacement of the center of
mass around the equilibrium position.
The MEMS actuation mechanism based on light absorption could be cer-
tainly applyed to a NEMS. Considering a Si lever of 1×0.1×0.1 µm and a Ge
block of 100×100×100 nm with thermal conductivity of G = 3.7 ·10−8 W/K
and thermal capacity of C = 1.7 · 10−15 J/K [65] leads, according to Eq.
3.6, to a substantial temperature increase at a frequency in the MHz regime,
typical for the resonance of such a NEMS. If a 1 µW beam is absorbed in
this nanometric Ge block, the induced thermal expansion will be several pm.
As NEMS with lateral size close to 100 nm can exhibit quality factors of
1000, a forced COM oscillation with amplitude of several pm can result at
resonance in a nanometric NEMS oscillation amplitude. This is far above
the thermally induced fluctuations of NEMS position. The interaction origin
would be a strain-free thermally induced change in mass spatial distribution
in asymmetric structure.
In the second part of the chapter we have seen that, using diffraction, Si
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single crystal MEMS appear as a good candidate for the high frequency ma-
nipulation of X-ray microbeam. This could offer new tools either to change
X-ray wavefront, or to rapidly modulate the intensity of X-ray beams that is
so important for real time studies of fast dynamical processes in chemistry
and in biology [66].
In this chapter we have seen that a standard Si lever can be a fast X-ray chop-
per. However the curved shape of the lever has been shown to be a limit for
an intensity modulation in this set-up. Moreover, during this experiment the
X-ray beam spot size was larger than the cantilever width and the diffracted
beam detected by the photodiode was consequently less intense than the in-
coming beam. Rigid silicon single crystal tiles inserted in MEMS would not
present these limitations and would maximize the diffracted intensity.
In this experiment the X-ray beam has been chopped at 13 kHz. This mod-
erate operating frequency is related to the resonance frequency of the AFM
lever in this proof of concept experiment. The resonance frequency can be
easily increased to values much higher then 100 kHz by using others types
of cantilever. Specific set-up based on MEMS could be certainly designed
so that efficient X-ray choppers could operate at frequency in MHz regime.
Considering a simple torsional rigid membrane, ultrafast burst can be real-
ized. A single crystal Silicon square membrane with 10 × 10 × 2 µm3 can
easily achieve a resonant frequency of several hundreds MHz.
The burst duration would be defined as the time that the membrane takes
to cover the Bragg peak that is a time much shorter than the full time for
a complete oscillation. If the MEMS system is combined with a multilayer
deposition technology, the effective reflectivity can be improved and a Bragg
peak hundred times sharper than what have been shown in this paper can be
produced. A nanometric MEMS oscillation at the resonant frequency (e.g.
400 MHz as shown for a MEMS in [67]) is then translated in a less than
a picosecond burst. Furthermore, as already mentioned, the rigid geometry
will remove the efficiency limitation discussed in the chapter and the chopped
beam will be characterized by pulse with the same shape of the Bragg peak.
Therefore the combination of MEMS and NEMS technologies with intense
X-ray microbeam, can potentially open a wealth of new experiments based
on X-ray examination of time dependent processes requiring high repetition
speed.





Transfer thermique radiative à
l’échelle nanométrique

La chaleur peut être échangée entre deux surfaces par conduction ou par
radiation. Le transfert thermique à l’échelle micro et nano-métrique ne suit
pas les lois classiques du transfert radiatif. Quand deux surfaces sont séparées
de quelques dizaines à quelques centaines de nanométres, la contribution
des effets champ proche ne peut plus être négligée. Dans ce chapitre on
analyse le transfert thermique radiatif entre deux surfaces de verre. Pour
éviter les problèmes de parrallélisme dans la géométrie plan-plan, on utilise
une géométrie sphère-plan. Un modèle théorique couplant la description
électromagnétique du transfert thermique avec l’approximation de Derjaguin
pour la géométrie sphère-plan a été développée. A la fin du chapitre nous
montrerons une comparaison entre les données expérimentales et le modèle
théorique.
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Chapter 4

Radiative heat transfer at the
nanoscale
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4.1 Introduction

Heat can be exchanged between two surfaces through conduction in the sep-
arating medium and radiation.
We shall experimentally demonstrate that the thermal transfer at micron and
nanoscale does not follow the textbook laws for the energy transfer. When
two surfaces are kept at sub-micron separation, in fact, the contribution of
the near field components gives rise to important contributions that cannot
be neglected.
In the late sixties, the near field contribution to radiative heat transfer be-
tween flat metallic surfaces was reported by Domoto at cryogenic tempera-
tures and by Hargreaves at room temperature [68]. In both cases, an increase

80
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of the flux was measured for separation gaps in the micrometer range. A the-
oretical explanation was given by Polder and Van Hove [69] in the framework
of stochastic electrodynamics introduced by Rytov [70] few years before.
The proposed theory accounts for electromagnetic fluctuations, both quan-
tum and thermodynamic, and it has been successfully applied also to model
Casimir forces [71].
Although significant progresses have been made in the past on the precise
measurement of the Casimir force [9, 10, 11, 12, 13], a detailed quantita-
tive comparison between theory and experiments in the nanometer regime
is still lacking when speaking about heat transfer. The first attempt to de-
tect quantitatively the heat transfer for sub-micron gaps was reported by Xu
et al. [72] but was inconclusive. More recently, it has been demonstrated
unambiguously that heat transfer increases as the distance decreases in the
sub-micron range [73, 74]. The heat transfer has been studied between a gold
coated scanning tunneling microscope (STM) and a plate of gold or GaN.
Unfortunately, the geometry of the experiment was too complex to allow a
quantitative comparison with theory.
In this chapter we analyze the radiative heat transfer betwen two surfaces of
glass. After a description of radiative transfer in the framework of stochastic
electrodynamics, we present measurements of heat transfer between surfaces
at the nanometer scale.
To avoid parallelism difficulties in the plane-plane geometry, we use a sphere-
plane geometry as for recent Casimir force measurement [10, 11, 12, 13]. A
theoretical model for the sphere-plane geometry have been developed start-
ing from the Derjaguin approximation [21], as used for the Casimir force
formulation in sphere-plane geometry. Justification of this procedure will be
shown here to be somewhat delicate.

4.2 Radiative heat transfer

For a standard macroscopic system the thermal radiation can be treated us-
ing Planck’s law and Stefan’s law. These two fundamental laws allow the
evaluation of the intensity emitted by a body at temperature T .
For the case of a black body (i. e. object that absorbs all the incidence radi-
ation, no matter the radiation wavelength, incidence angle or polarization),
the Planck’s law gives the monochromatic emitted intensity as a function of
the body temperature T :

I0
ω(T ) =

h̄ω3

4π3c2

1

e
h̄ω

kBT − 1
(4.1)
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where h̄ = 1.054 · 10−34 J · s is the Planck’s constant, c = 2.99 · 108m/s the
speed of light and kB = 1.38 · 10−23 J/K the Boltzmann’s constant.
The Stefan’s law gives the total intensity emitted by a black body at the
temperature T :

I0(T ) =
σT 4

π
(4.2)

where σ = 5.67 · 10−8 W · m−2 · sr−1 · K−4 is the Stefan’s constant.
The evaluation for real body can be obtained taking into account the direc-
tional monochromatic emissivity of the body ε(T, ω, θ, φ, polarization). The
monochromatic emitted intensity is then given by

Ireal
ω (T ) = ε(T, ω, θ, φ, polarization)I0

ω(T ). (4.3)

This formalism is good for the analysis of a macroscopic system but it fails in
the description of micro and sub-micro systems. In the second case, a reliable
theory can be obtained in the framework of the classical electrodynamics. It
will be possible to calculate the energy density emitted by a thermal source
and consequently the heat transfer between two surfaces, in the general case
only knowing the material dielectric constant.

4.2.1 Electromagnetic treatment of the problem

Let us consider a material body at temperature T > 0 K. The temperature
fluctuations around the equilibrium induce a movement of the constituent
electrons, creating, as a consequence, an electric current that irradiates an
electromagnetic field. If we consider a volume element of the body dV around
the position ~r, we can write the fluctuating current at the frequency ω as
~jf (~r, ω). Introducing such fluctuating sources in the problem and in the
Maxwell equations, allows to study the thermal radiation in the framework
of the classical electromagnetism.

Electromagnetic field generated by fluctuating sources

The fluctuating currents have a zero first order momentum. The second order
momentum, formally equal to the correlation function of the currents, is not
null and it is given by the fluctuation dissipation theorem.
We consider now a non-magnetic material described, from an electromagnetic
point of view, by its complex dielectric constant ǫ(ω) = ǫ′(ω) + iǫ′′(ω). The
material is supposed to be in a local thermodynamic equilibrium, i. e. it is
possible to define a local equilibrium temperature T . In this approximation
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we consider two current elements ~jf (~r, ω) and ~jf (~r′, ω′). According to the
fluctuation-dissipation theorem the correlation function of the two elements
is given by [75]:

〈jf
m(~r, ω)jf

n(~r′, ω′)∗〉 =
2ωǫ0

π
ǫ′′Θ(ω, T )δm,nδ(~r − ~r′)δ(ω − ω′) (4.4)

where the index m, n = x, y, z are the different spatial components of the
currents, ǫ0 the vacuum dielectric permittivity and ǫ′′(ω) the imaginary part
of the medium dielectric constant. Θ(ω, T ) is the average energy of a quan-
tum harmonic oscillator at pulsation ω and temperature T .
From equation 4.4 we note that knowing the dielectric constant, one can de-
termine radiation of the medium in the space. Starting from this equation
we can evaluate the electromagnetic field linked to the thermal radiation.
The electromagnetic problem that we have to solve, is the way to link the
fluctuating currents ~jf (~r, ω) to the electromagnetic field represented by the
~E(~r, ω) and ~H(~r, ω). In the hypothesis of linear, homogeneous and non-
magnetic medium, following the linearity of the Maxwell’s equations, we
have a linear relation between the currents and the fields. The Green’s for-
malism allows to write the correct relation. Let us consider an element of
punctual current ~jf (~r′, ω) at the position ~r′, and at the pulsation ω; the elec-
tromagnetic field irradiated at position ~r oscillating at pulsation ω is given
by:

~E(~r, ω) = iωµ0G
E(~r, ~r′, ω) ·~jf (~r′, ω)

~H(~r, ω) = GH(~r, ~r′, ω) ·~jf (~r′, ω) (4.5)

where GE and GH are the Green’s tensor for the electric and magnetic field
respectively. These tensors represent the propagation of fields with pulsation
ω, from ~r′ to ~r. All the informations about the geometry and electromagnetic
properties of the system are given by these two tensors. This definition is
the most general possible for the treatment of the electromagnetic radiation
problems.

Energy density above an interface

We evaluate now the electromagnetic energy density above a flat interface.
We consider, here, that the space is divided in two semi-infinite parts: for
z < 0 the medium is a material characterized by its dielectric constant ǫ(ω)
and by a constant temperature T > 0; for z > 0 there is the vacuum (ǫ = 1).

A point in the space is defined by ~r = (~R, z) = (x, y, z) (fig. 4.1).
The substrate is at a temperature T > 0. Let us indicate with ~jf (~r′, ω) the
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Figure 4.1: Geometry of the system analyzed.

volume current density generated at ~r′ with the pulsation ω. These currents
irradiate an electromagnetic field ~E(~r, ω), ~H(~r, ω).
We denote with u(~r, ω, T ) the electromagnetic energy density given by1:

u(~r, ω, T ) = 2 ×
[ǫ0

2
〈 ~E(~r, ω) · ~E(~r, ω)∗〉 +

µ0

2
〈 ~H(~r, ω) · ~H(~r, ω)∗〉

]

(4.6)

where we can see two different contributions, the electric part

ue(~r, ω, T ) = 2 × ǫ0

2
〈 ~E(~r, ω) · ~E(~r, ω)∗〉 (4.7)

and the magnetic part

um(~r, ω, T ) = 2 × µ0

2
〈 ~H(~r, ω) · ~H(~r, ω)∗〉. (4.8)

The total energy density can be calculating integrating equation 4.6 over the
all spectrum

u(~r, T ) =

∫

∞

0

dω u(~r, ω, T ). (4.9)

According to 4.4 and 4.5 we have

〈 ~E(~r, ω) · ~E(~r, ω)∗〉 = µ2
0ω

2

∫

V

d3r′
∫

V

d3r′′GE(~r, ~r′, ω)GE(~r, ~r′′, ω)∗

× 〈jf
m(~r′, ω)jf

n(~r′′, ω′)∗〉

=
2ω3ǫ0µ

2
0

π
ǫ′′(ω)Θ(ω, T )δm,n ×

∫

V

d3r′GE(~r, ~r′, ω)GE(~r, ~r′, ω)∗ (4.10)

1The factor 2 in equation 4.6 is due to the fact we are working with analytical signals.
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and

〈 ~H(~r, ω) · ~H(~r, ω)∗〉 =

∫

V

d3r′
∫

V

d3r′′GH(~r, ~r′, ω)GH(~r, ~r′′, ω)∗

× 〈jf
m(~r′, ω)jf

n(~r′′, ω′)∗〉

=
2ωǫ0

π
ǫ′′(ω)Θ(ω, T )δm,n ×

∫

V

d3r′GH(~r, ~r′, ω)GH(~r, ~r′, ω)∗. (4.11)

An exhaustive description of the solution for equations 4.10 and 4.11 it is
clearly not our objective in this experimental thesis and it can be found
in [75]. The solution is based on the development in plane waves of the
electromagnetic field:

~E(~r, ω) =

∫

d3k

(2π)3
~̂E(~k, ω)ei~k·~r

~H(~r, ω) =

∫

d3k

(2π)3
~̂H(~k, ω)ei~k·~r. (4.12)

Here ~̂E(~k, ω), ~̂H(~k, ω) are the amplitudes of a plane wave with wave vector
~k = ( ~K, γ). ~K represents the component of the wave vector parallel to the
the interface while γ the component perpendicular to the interface.
~k, ~K and γ are linked together by a simple relation

γ2
0 = k2

0 − K2

γ2 = k2
0ǫ − K2 (4.13)

where k0 = ω/c is the wave vector modulus of a plane wave in the vacuum.
The first expression gives the wave vector component in vacuum while the
second one in the medium. Looking to equations 4.12 and 4.13 we note that
if γ2

0 < 0 (respectively γ2) the electromagnetic field is characterized by an
evanescent wave in the z-direction, exponentially decaying with z. On the
contrary if γ2

0 > 0 (respectively γ2) the electromagnetic field is characterized
by a propagative wave in the z-direction.
Taking into account this description, the solution for the monochromatic
energy density, calculated in the vacuum at distance z over the interface, is
found to be (see ref [75] for more details)

uprop(z, ω, T ) =
ω2Θ(ω, T )

π2c3

∫ k0

0

KdK

k0 |γ0|
1

2

[(

1 − |rs|2
)

+
(

1 − |rp|2
)]

uevan(z, ω, T ) =
4ω2Θ(ω, T )

π2c3

∫

∞

k0

K3dK

k3
0 |γ0|

1

2
[Im(rs) + Im(rp)] e

−2Im(γ)z

u(z, ω, T ) = uprop(z, ω, T ) + uevan(z, ω, T ). (4.14)
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where rs and rp are the Fresnel reflection coefficients for a incidence plane
wave polarized s or p. In equation 4.14 we can clearly see that the energy
density has two contributions, one that is propagative and not attenuated
with the vertical distance from the interface, and one that is evanescent and
strongly attenuated with the distance. The presence of this second contribu-
tion is the most important result of the electromagnetic treatment of thermal
radiation.

Radiation transfer between two surfaces

We consider now the system as shown in figure 4.2. The space is divided in
three parts. The first medium, filling the space for z < 0, is characterized
by a dielectric constant ǫ1(ω) and by a uniform temperature T1. The second
medium, filling the space for z > d, is characterized by a dielectric constant
ǫ2(ω) and by a uniform temperature T2. Between them we suppose there is
vacuum (ǫ = 1).

Figure 4.2: Geometry of the system analyzed.

The two media are at a temperature T1 and T2, then they exchange en-
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ergy through thermal radiation. Fluctuating currents in medium 1 irradiate
an electromagnetic field everywhere in the space and clearly also inside the
medium 2, where the field is absorbed through Joule effect. The same thing
happens on the other direction. A electromagnetic quantity that can de-
scribe such energy transfer is the Poynting vector 〈Π〉. The Poyinting vector
represents the energy flux crossing a surface per time.
The Poynting average value is defined to be2

〈~Π(~r, ω)〉 = 4 ×
[

1

2
〈Re( ~E(~r, ω) × ~H∗(~r, ω))〉

]

(4.15)

where ~E(~r, ω)) and ~H(~r, ω)) are the electric and magnetic fields generated
by fluctuating currents.
In the particular geometry analyzed we are interested only in the z-component
of the vector Πz. Considering the two directions, the net energy exchange
can be deduced from the flux difference between the two surfaces, indicated
as P (d, ω, T1, T2) = 〈Πz(d, ω)〉−〈Πz(0, ω)〉, where the dependence by the two
different temperatures T1 and T2 has been clearly expressed.
A useful quantity that can be defined for the analysis of the thermal exchange
is the monochromatic radiative transfer coefficient

hω(d, T1) = lim
T2→T1

P (d, ω, T1, T2)

T2 − T1

(4.16)

that integrated over the whole spectrum gives a total radiative transfer co-
efficient

h(d, T ) =

∫

∞

0

dωhω(d, T ), (4.17)

so that the exchanged net energy flux per surface between two media with
temperature difference ∆T is given by

∆Φ = h(d, T )∆T. (4.18)

The monochromatic radiative transfer coefficient can be evaluated following
the procedure presented for the calculation of the energy density above an
interface, starting by the definition of the Poynting vector as in eq. 4.15.
The full solution can be found in [75]; here we report only the result. The

2The factor 4 in equation 4.15 is due to the fact we are working with analytical signals.
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radiative coefficient for a temperature T and at a distance d is given by:

hω(d, T ) = (4.19)

= π
∂I0

ω

∂T
(T ) ×

{

∫ k0

0

KdK

k2
0

[

(1 − |rs
31|)2(1 − |rs

32|)2

∣

∣1 − rs
31r

s
32e

2iγ′

3
d
∣

∣

2 +
(1 − |rp

31|)2(1 − |rp
32|)2

∣

∣1 − rp
31r

p
32e

2iγ′

3
d
∣

∣

2

]}

+ π
∂I0

ω

∂T
(T ) ×

{

∫

∞

k0

KdK

k2
0

[

4Im(rs
31)Im(rs

32)
∣

∣1 − rs
31r

s
32e

2γ′′

3
d
∣

∣

2 +
4Im(rp

31)Im(rp
32)

∣

∣1 − rp
31r

p
32e

2γ′′

3
d
∣

∣

2

]}

where I0
ω is the intensity emitted by a black body as defined in equation

4.1, k0 = ω/c and rs,p
31,32 the Fresnel reflection coefficient at the interface

vacuum/medium 1 (r31) and vacuum/medium 2 (r32) in polarization s or p.
γ′

3 and γ′′

3 are the real and imaginary part of z component (γ3) of the wave
vector for a plane wave in the vacuum between the two media.
In equation 4.19 we have separated the case when γ3 is real and when is
imaginary. Looking to equation 4.13, we can note that:

• 0 ≤ K ≤ k0, γ3 is real and the electromagnetic wave is propagating in
vacuum without attenuation with the distance in z;

• K > k0, γ3 is imaginary and the electromagnetic wave is purely evanes-
cent with strong attenuation with the distance in z.

We can see that the radiative coefficient has two contributions, one prop-
agative and one evanescent. The propagative term is not depending by the
distance and it gives the Stephan’s law for the radiative transfer.
The second term is the evanescent contribution to the radiative heat transfer
that is strongly dependent by the distance. This term is the major result of
the electromagnetic treatment of the radiative transfer.

4.2.2 Surface waves contribution

The expression of the energy density (equation 4.14) and radiative transfer
coefficient (equation 4.17) is valid for all the materials. Knowing the dielectric
constant of the material, it is possible to evaluate the emitted energy above
a flat surface, or the energy exchange between two flat surfaces.
From a technological point of view, it would be interesting to analyze the
case of diatomic materials. Members of this family are Silicon Carbide (SiC)
glass (SiO2), Gallium Arsenide (ArGa) and doped Silicon.
The dielectric constant can be obtained by a microscopic treatment of the
matter within the Lorentz model for the description of diatomic materials.
Diatomic material is characterized by two different kinds of elastic vibrations
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Figure 4.3: Vibrational mode of the lattice for a diatomic material

of the lattice as presented in figure 4.3.
The optical mode have a not null dipolar momentum and it can be coupled
with an electric field with the appropriate frequency and wave vector; such
coupling is called polariton. The behavior of diatomic material when excited
by an electromagnetic field can be described by a dielectric function ǫ(ω)
calculated within the so called oscillator model :

ǫ(ω) = ǫ∞

[

1 +
ω2

L − ω2
T

ω2
T − ω2 − iΓω

]

(4.20)

where ǫ∞ represents the contribution of the crystal lattice to the polarization,
while ωL and ωT are characteristic parameters of the material in analysis,
representing, respectively, the frequency of longitudinal optical phonons with
zero wave vector, and the frequency of transverse optical phonons with large
wave vector.
Such dielectric costant leads to a reflectivity as presented in figure 4.4.
Between ωT and ωL the reflectivity is closed to 1, meaning that there is no
propagation of electric field inside the bulk material. In this gap we observe
no coupling between elastic vibration of the lattice and electric field.
Very closed to an interface vacuum-material a diatomic material present a
surface wave due to a polariton exponentially decaying with the distance
from the interface. The surface polariton is characterized by a resonance in
the infrared regime. Such electromagnetic wave are analytically described by
the imaginary part of the dielectric function ǫ(ω) (see fig 4.5).
Volume and surface polaritons should slightly modify the energy density
above a surface and the radiative transfer coefficient.
Figure 4.6 represents the electromagnetic energy density above a flat interface
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Figure 4.4: Reflectivity for a diatomic material as a function of the frequency

of SiC, at temperature T = 300 K as a function of the distance z from the
interface. We can see that for distances larger then 10 µm the energy density
is constant. This correspond to the far-field regime where the propagative
contribution is the main term for the energy density. For distances smaller
then 10 µm an enhancement of the emitted energy is observed. This is the
evanescent contribution to the energy density. An asymptotic expression of
equation 4.14 can be obtained for small distances:

utot(z, ω, T ) ≈ uevan(z, ω, T ) ≈ 1

8π2ωz3
Im

(

ǫ − 1

ǫ + 1

)

Θ(ω, T ). (4.21)

It is worth to note that the nature of the energy density in the far-field is
different from that in near-field. As shown in figure 4.7 the far-field regime
is similar to the black body emission spectrum (modulated by the material
emissivity), while the near-field is quasi-monochromatic. This is the signa-
ture of the electromagnetic surface wave resonance.
We can now analyze the radiative transfer coefficient around a temperature
T = 300 K (fig. 4.8).
As for the energy density, we see an enhancement effect for separation gaps
smaller then 10 µm. This corresponds, again, to the evanescent contribu-
tion. The difference between the SiC and the glass is due to the difference of
the surface resonance parameters. However, independently on the material,
where the evanescent contribution is dominant the radiative transfer coeffi-
cient diverges as 1/d2.
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Figure 4.5: Imaginary part of the dielectric function for a diatomic material
(glass in this case)

The radiative heat transfer at nanometer scale is then much more important
than what predicted by the the Planck’s law of radiation. For the far-field
regime, where only the propagative contribution is present, the Planck’s law
reproduces well the radiation transfer; in near-field regime, where the evanes-
cent contribution is dominant, the Planck’s law fails. This failing is moreover
quite important. At 100 nm, as shown in figure 4.8, the energy transfer is
two orders of magnitude larger than the far-field value.
For the further development of nano scale devices, the radiative heat transfer
has to be analyzed in the framework of the classical electrodynamic.
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Figure 4.6: Electromagnetic energy density above a flat interface of SiC

Figure 4.7: Monochromatic electromagnetic energy density above a flat in-
terface of SiC (a) and SiO2 (b), for different distances from the interface.
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Figure 4.8: Total radiative transfer coefficient between two flat interfaces of
SiC, and two interfaces of glass.

4.2.3 Derjaguin approximation for radiative heat trans-
fer

The electromagnetic treatment of the radiative transfer coefficient describes
very well the case of transfer between two plane surfaces. A model for differ-
ent geometries can be evaluated following the same procedure here presented.
For an asymmetric geometry an analytical solution has not been yet devel-
oped. However if we consider the case of sphere-plane geometry we could use
the Derjaguin approximation [21], as already done for the formulation of the
Casimir force between a sphere and a plane.
The Derjaguin approximation [21] for the radiative heat transfer consists es-
sentially to locally describe the flux between the sphere and the plate as a flux
between two parallel plates separated by a distance d using the heat trans-
fer coefficient h(d, T) derived numerically [76, 77] (see fig 4.10). Note that
h(d, T ) accounts for both near-field and far-field contributions [76, 78, 79].
We integrate over the whole area to obtain the theoretical conductance:

Gtheo(d, T ) =

∫ R

0

h[d(r), T ]2πr dr (4.22)

where R is the radius of the sphere and d(r) = d+R−
√

R2 − r2 is the local
distance between the plane and the sphere surface.
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Figure 4.9: Derjaguin approximation for the radiative heat transfer.

For two infinite planes and for distances smaller than d = 500 nm, the
flux increases as 1/d2 in the short distance regime. If we retain only this
asymptotic near-field contribution and integrate over the sphere surface, we
find a 1/d behavior for the conductance. The theoretical conductance versus
the sphere-plate distance is displayed in Fig. 4.10. It is clearly seen that
the conductance strongly deviates from the 1/d law for distances larger than
10 nm.
This approach does not account for Mie resonances of the sphere. This is
an excellent approximation so far the coherence length [80] along the surface
and decay length in the medium are much smaller than the sphere radius.
For wavelengths corresponding to silica resonances (20 µm and 8.5 µm),
coherence and decay lengths are smaller than 1 µm (fig 4.11).
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Figure 4.10: Theoretical thermal conductance between a silica sphere and a
silica plane using the Derjaguin approximation. A 1/d regime, characteristic
of the near-field contribution, is observed for distances smaller than 10 nm.
The conductance tends to the far-field constant value for distances larger
than 10 µm.

Figure 4.11: Coherence and decay length for a silica sample. The arrows are
in correspondace of the surface resonance. The sphere radius is refered to
the samples used during the measurements of radiative heat transfer
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4.3 Experimental set-up

In figure 4.12a) it is shown a photo of the experimental set-up developed
for the measurement of the near-field thermal radiation. A heated up plane
sample is positioned over three piezo inertial axis motors, while the sphere
sample (at T=300 K) is glued on a AFM cantilever. The plate is heated
in order to produce a temperature difference ∆T between the sphere and
the plate, typically on the order of 10-20 K. The temperature of the plate is
measured with a type-K thermocouple.
The near-field radiative heat flux is on the order of nanoWatts so that con-
duction through air must be suppressed by working in a vacuum (10−6 mbar)
As fluxmeter we used the sphere glued on a bimorph cantilever based on an
AFM cantilever as proposed by Barnes et al. [81, 82]. The experiments have
been performed using spheres with 2 different diameters, 22 µm and 40 µm.
Such fluxmeters can measure fluxes variations on the order of tens of pW . We
use cantilevers commercially available from Veeco (length=320 µm, width=22
µm, thickness=0.6 µm) made of silicon nitride (thickness 525 nm) with a gold
layer (60 nm) deposited on a chromium layer (15 nm).
The sphere is glued to the cantilever using a aluminium epoxy glue. This
assures a good thermal contact between the sphere and the lever. The tem-
perature of the sphere can be considered constant during the measurement;
the power absorbed by the sphere is dissipated along the lever directly to the
cantilever holder.
We can analyze the system in details. First of all we can assume that the
system is in steady state. Indeed, the sphere becomes isothermal in a typical
time 0.5 ms and the bimorph becomes isothermal in a typical time of 2 ms.
All time constants in the experiment are greater than 100 ms.
We can now use an electrical analogy with thermal resistances. The thermal
circuit is sketched fig. 4.13. It is composed of several resistances in series
connecting the hot plate at Tp to the end of the bimorph at the ambient
temperature at Ta.
The average thermal conductivity of the cantilever is λ = 60 W/(m · K)
leading to a thermal resistance Rc = L/(λ · w · t) = 0.4 × 106 K/W . The
sphere thermal conductance is close to Rs ≈ 1/(λ · R) = 0.04 × 106 K/W
where R is the sphere radius.
We approximate the glue by a cylinder with length smaller than one mi-
cron and radius larger than one micron. Its thermal conductivity is λ =
1.6 W/(m·K) leading to a thermal resistance smaller than Rg = L/(λ·t·w) =
0.6 × 106 K/W .
From fig. 4.10 for a distance of 100 nm the expected thermal conductance is
≈ 10 nW/K leading to a thermal resistance of the gap Rr ≈ 100× 106K/W .
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Figure 4.12: a) Photo of the experimental set-up. b) Schema of the experi-
mental set-up. Red lines stand for light; black lines stand for electrical wires.
A feedback loop keeps the distance bimorph-optical fiber constant by apply-
ing a voltage on a piezoelectric actuator holding the optical fiber. The setup
is in a vacuum chamber working at P ≈ 10−6 mbar.
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Figure 4.13: Equivalent circuit of the experiment. Tp is the hot plate tem-
perature. The end of the bimorph is at the ambient temperature Ta. Tsd

denote the temperature of the sphere surface. Rr denotes the radiative ther-
mal resistance of the gap, Rs the sphere thermal resistance, Rg the thermal
resistance of the glue and Rc the cantilever thermal resistance.

Despite the near-field contribution increases the conductance, the gap resis-
tance remains the largest thermal resistance in the system. It is at least
two orders of magnitude larger than other thermal resistances in the cir-
cuit. It follows that the temperature of the sphere is equal to the ambient
temperature within the accuracy of the thermocouples

Tsd − Tp =
Rr

Rr + Rs + Rg + Rc

(Ta − Tp). (4.23)

The heat absorption induces a bending of the cantilever. The cantilever
bending is measured by a fiber interferometric technique as shown in fig 4.12
a) and schematically explained in chapter 2. A drawback of using an op-
tical read-out is that part of the optical beam is absorbed and introduces
a spurious flux term. It is thus fundamental to keep it constant during the
measurement. A feedback loop keeps the distance between the cantilever and
the optical fiber constant. In addition, a thermally stabilized laser is used in
order to reduce the absorption fluctuations by the fluxmeter.
The cantilever is perpendicular to the plane (see fig. 4.12) to avoid bending
due to electrostatic or Casimir forces. The displacements done with piezo-
electric stages from Attocube have been calibrated using an interferometric
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method as explained in [10].
All the measurements have been performed in a static mode. The Peltier
heating element is actuated with a DC current, assuring a constant temper-
ature all over the plate.
A static measurement is affected by a noise induced by the thermal drift of
the differents elements. The drift of the lever respect with the fiber can be
easily measured studying the evolution of the feedback voltage applied to
the piezolectric stage in order to keep the distance fiber-lever constant, with
the heating element put in the far-field regime and at a constant distance.
Before each measurement the drift of the lever has been measured (average
drift measured is ≈ 1.5 nm/min).
The hot plate is approached to the sphere using a PC controlled piezoele-
ment. The approaching speed has been tuned from 15 nm/s to 60 nm/s;
there is no difference between experiments made at different speeds once the
thermal drift is accounted for.

4.4 Radiative heat transfer measurements

4.4.1 Fluxmeter calibration

During all the experiments the raw data consist in the bending δ of the
cantilever versus the sphere-plate distance as presented in figure 4.14. The
cantilever bending is detected using the feedback voltage applied to the op-
tical fiber actuator in the constant-distance mode.
However for a consistent comparison of the experimental results with theory
we need to convert such bending value in a heat flux value. In order to cal-
ibrate the cantilever response, we use the same experimental setup working
in the far-field regime. The gap between the plate and the sphere is approx-
imatively 50 µm. We measure the cantilever bending when increasing the
temperature of the hot plate.
The far-field flux is determined from: φ = 8πσεR2T 3∆T where σ is the
Stefan-Boltzmann constant, R the sphere radius, T=300 K the mean tem-
perature, ε = 0.354 the mean emissivity taken from the exact calculation
between two infinite planes. ∆T is the temperature difference between the
sphere and the plate. From 4.15 we have that the conversion between the
bending of the lever and the absorbed flux is given by a simple linear relation;
such result is indeed consistent with Barnes et al. [81, 82].
The conversion factor H can be extracted from the slope of the curve 4.15. It
is found to be H = 2.30 nW/nm. The total uncertainty on H is estimated to
be 10% due to uncertainties on the temperature T and the total emissivity.
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Figure 4.14: Cantilever bending versus distance sphere-plane. The zero in
the z-axis has been determined for this plot by the direct contact of the
sphere with the plate.

Figure 4.15: Cantilever bending versus the thermal flux when the sphere is
exclusively in the far-field regime. The distance between the sphere and the
plate is around 50 µm. The conversion factor H is extracted from the slope
of the fit.
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4.4.2 Surface roughness analysis

Figure 4.16: a) SEM picture of the 40 µm sphere. b) SEM picture of the 22
µm sphere. c) Definition of the fitting parameter b.

Before entering the comparison between the experimental data and the
theoretical model, we analyze the origin of the distance axis in figure 4.14.
The definition of the zero of distance is a crucial point when a force measure-
ment is performed. A reliable comparison between theory and experiments
can be done only if the experimental origin is consistent with the theoretical
one.
If the theoretical model does not take into account the surface roughness of
the samples, then the zero of the distance between the average surfaces of
the samples has to be calibrated. The way of obtaining this fundamental
information depends on the experimental conditions in analysis.
In the case of Casimir force measurement between metallic materials, the
calibration of the zero can be obtained using the well known electrostatic
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force between the two objects. Measuring the electrostatic force simultane-
ously with the Casimir force allows a consistent and reproducible calibration
of the distance between the average surfaces [10].
For the measurement of Casimir force in viscous environment, the distance
calibration can be performed using the hydrodynamic forces as reference
[29, 30].
In both cases the calibration of the zero between the average surfaces is ob-
tained using the dependency on the distance of a well known force. The
evolution of the calibration force with the distance allows to obtain the zero
without any direct contact between the samples.
In the case in the analysis however we cannot use such calibration method.
In fact we are working with dielectric material in vacuum condition. The
zero of the z-axis has to be determined by the direct contact of the sphere
with plane. Then the sample surface roughness is an important parameter
to take into account.
Because of the sphere roughness, in this experiment the zero obtained by the
contact is actually shifted respect with the zero of the average surface that is
important for the thermal transfer. For a correct comparison between theory
and experiment we have consequently introduced a shift b in the definition
of the theoretical thermal conductance:

Gtheo(d, T ) =

∫ R

0

h[d(r) + b, T ]2πr dr. (4.24)

4.5 Radiative heat transfer: comparison be-

tween experimental results and theoreti-

cal model

Starting form the raw data it is now possible to convert the bare bending δ
of the cantilever in a value of the thermal conductance:

Gexp(d) =
H

∆T
δ + Gff . (4.25)

In equation 4.25 we have added the value of the far-field conductance Gff =
8πσεR2T 3 = 5.45 nW/K. In fact even if the raw data tend to zero of the
deflection for distance larger then 5 µm it is worth to note that the measure-
ment of the deflection is actually a relative measurement respect with the
far-field regime.
The comparison between the theory and the experiments finally becomes a
comparison between equations 4.24 and 4.25. In this comparison we have
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Figure 4.17: Thermal conductance between the sphere and the plate as a
function of the gap distance. Black dots are experimental data and red line
is the theoretical model. The temperature difference between the plate and
the sphere is 21 K.

two parameters given by experimental constraints: shift value b and the con-
version factor H.
The b parameter essentially shifts the zero position of the abscisses. H is a
scaling factor on the ordinates. Although as seen these two parameters have
been experimentally studied, we prefer to use them here as fitting parameters
so that the PFA approximation is clearly addressed. Fitted values are finally
very close to the measured values. This is consistent within this procedure.
Fig.4.17 shows a comparison of the data with the model for a particular ap-
proach curve. We found H = 2.162nW/nm. This value is consistent with the
calibration value H=2.30 nW/nm obtained with the calibration. The shift
b is of the order of 50 nm which is consistent with the SEM images of the
sphere surface roughness.
In Fig.4.18 a) it is shown the flux variation when decreasing the distance
between the sphere and the plate for three different temperatures. We plot
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Figure 4.18: a) Flux versus distance for three temperature differences. The
sphere diameter is 40 µm. b) Thermal conductance derived from three dif-
ferent sets of measurements. The same value of H was used for the three
curves.

in Fig.4.18 b) the thermal conductance for the three temperature differences
after determining the shift b. The response coefficient H used for the three
curves has the same value as the same cantilever is used. It is seen that
the three measurements yield the same conductance. This shows that for
different temperature shifts (DT up to nearly 10 %), i.e. for different out of
equilibrium situations, the curve shape is the same within the experimental
error.
The key result in Fig. 4.17 is the agreement better than 4 % between the
data and the theory. We emphasize that the theory reproduces correctly the
non-trivial transition between the far-field and the near-field regime in the
range 30 nm - 5 µm. The agreement between the theoretical conductance and
the data shows that the theory based on the coupling of the electromagnetic
treatment of the radiative heat transfer with the Derjaguin approximation is
valid.
As a further check of the theory, we make measurements with a sphere with
a different radius. Fig. 4.19 presents the data in logarithmic scales for two
spheres with radii 20 µm and 11 µm. The curves are different indicating a
non-trivial dependence of the conductance on the sphere radius. The red line
is the result of the numerical integral using Derjaguin approximation. The
dashed blue curve is the 1/d asymptotic dependence for the sphere-plane
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Figure 4.19: Thermal conductance between the sphere and the plate as a
function of the gap for two sphere diameters (40 and 22 µm). Black dots are
experimental data and red line is the theoretical model. The dashed blue line
is the asymptotic contribution varying as 1/d. This contribution is dominant
for gaps smaller than 10 nm. For the 22 µm sphere the smallest separation
is 150 nm due to roughness.

geometry.
We found that the data agree with the theory with a 4% accuracy in the
range 50 nm - 5 µm. This agreement with theory confirms that radiative
heat transfer can be significantly enhanced at distances in the nanometer
regime.
The results obtained strongly support previous theoretical works and pave
the way to engineering radiative heat transfer in the mesoscopic regime.
Moreover we have shown that also for the radiative heat transfer the Der-
jaguin approximation for sphere-plane geometry leads to results consistent
with the experimental evidence.
The results obtained should play a major role in the further development of
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Nano Electro Mechanical Systems (NEMS). In addition other technological
application can be surely envisaged as heat-assisted magnetic recording or
heat- assisted lithography applications.
From a fundamental point of view, other important aspects of the radiative
heat transfer at nanoscale remain to be explored: just to mention, it has been
predicted that the flux can be quasi monochromatic [77, 79] and strongly de-
pends on the matching between optical properties of both materials. The
understanding of the role of non-local effects at distances smaller than 10
nm is also a subject in progress in the literature [73, 83, 84] so that further
experiments are needed in this regime.





Chapter 5

Conclusions and Perspectives

Micro and Nano Electro Mechanical Systems (MEMS and NEMS) are among
the best tools for the characterization and manipulation of the nanoworld.
NEMS and MEMS are also among the best candidates for the characteriza-
tions of interaction forces at the nanoscale.
In this thesis we have addressed different aspects of the physics at the
nanoscale using a very simple example of MEMS: a tiny silicon micro can-
tilever.
We can now make a summary of the most important results obtained along
this work.
In chapter 2 we have analyzed the dynamics of a micro lever in a simple fluid,
air in our case. In particular we have analyzed what has happened to the
cantilever dynamics if the lever is vibrating closed to a solid surface. The
behavior of the fluid and consequently that of the lever is modified by the
presence of the surface due to the fluid confinement. The complete under-
standing of lever dynamics in a confined fluid is known to be a fundamental
issue. Oscillating cantilevers in viscous environments are used in many appli-
cations, for example to measure the topography or the properties of biological
specimens.
We have considered the problem of oscillation damping in air of a thermally
actuated microlever as it gradually approaches an infinite wall in parallel ge-
ometry. As the gap d is decreased from 20 µm down to 400 nm, we observe
a decreasing of the oscillation amplitude, therefore an increasing damping of
the lever Brownian motion.
Experimentally we observe a linear relation between the cantilever damping
factor and the cavity gap:

γ =
2ηA

d
(5.1)
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where η is the fluid viscosity and A the cantilever surface.
We have been able to theoretically explain such behavior by solving the
Navier-Stokes equation for the given geometry. The no slip boundary con-
ditions for the fluid at the solid fluid interface, that are generally accepted
for macroscopic hydrodynamics problem, do not allow to reproduce the ex-
perimental evidence. A good agreement theory-experiments can be obtained
accepting the perfect slip boundary conditions for the fluid.
We have seen that, moreover, it is possible to determine a critical gap, so
that for cavity size lower than this value the mechanical oscillator is in an
over-damped regime. The gap value have been evaluated to be in the sub-
micron and nanometer region. Consequently it can modify the behavior of
MEMS and NEMS. These results can have important implications in the
field of NEMS.
Micro and Nano mechanical oscillator have been proposed to measure the
mechanical effect of light. In chapter 3 we have applied this idea to the syn-
chrotron radiation.
We have seen that a micro oscillator, composed by silicon cantilever with
a germanium microblock attached at its extremity, can be actuated by an
intensity modulated X-ray beam. Coupling the optical properties of the ger-
manium block with the mechanical properties of the cantilever we have seen
how the MEMS oscillation can be tuned. When the impinging X-ray beam
energy is swept trough the germanium absorption edge, we observe an in-
crease of the oscillation amplitude consistent with the evolution of the X-ray
beam absorption coefficient. This has led to a mechanical detection of the
germanium EXAFS, using as detector the oscillation amplitude of the can-
tilever.
In the same chapter we have also seen how the coupling between MEMS
and X-ray can be inverted. A MEMS can be used to shape an X-ray beam.
Using oscillating single crystal silicon cantilever we have realized a fast X-ray
chopper. The incoming X-ray beam was set to the Bragg condition for the
diffraction on the silicon cantilever. The driven oscillation of cantilever mod-
ified the X-ray incidence angle changing the actual Bragg condition. The
diffracted beam intensity was consequently modulated at the frequency of
the cantilever oscillations.
Finally in chapter 4 we have addressed the problem of radiative heat transfer
at the nanoscale. The thermal conductance is observed to increase at the
nanoscale, when electromagnetic coupling occurs due to the overlapping of
the evanescent waves.
The full control of the heat transfer is then crucial for a reliable development
of nano systems.
From a scientific point of view the analysis of transfer at nano scale has its
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own interest. It has been predicted that at the nanometer scale the thermal
radiation exceed the Plank’s description because of the near-field contribution
of the thermal radiation. Although the presence of this anomalous thermal
effect has been shown, a comparison theory-experiments was still lacking.
In chapter 4 we have presented measurement of radiative heat transfer at the
nanoscale between a hot plane and a cold sphere glued to a silicon microcan-
tilever. The agreement between the experimental results and a theoretical
model was better than 4 % in the range 50 nm - 5 µm. The theoretical model
has been obtained coupling the electromagnetic treatment of the thermal ra-
diation with the Derjaguin approximation for the sphere-plane geometry.
This thesis has been dedicated to the measurement of forces and interactions
at the nanoscale. MEMS have been implemented in the work as probe for
the different measurements.
Interaction forces between objects at the nanoscale have been measured since
the development of Atomic Force Microscopy for many years. Van der Waals
forces, hydrodynamic forces and Casimir forces have been studied using mi-
cro cantilevers.
So far a good precision in the force measurements have been achieved in
the sphere-plane geometry. Standard experimental set-up involves a sphere
glued to a oscillating silicon cantilever approaching to a plane sample. Iden-
tical experimental set-up has been used in chapter 4 of this thesis. Using
this configuration avoids parallelism difficulties of the plane-plane geometry.
From an experimental point of view this configuration simplify the task: the
measurement can be performed. However a major issue arises for the the-
ory. The sphere-plane expression can be obtained only within the Derjaguin
approximation. The limit of the validity of this approximation is nowadays
questioned, for example in the debate of the precise measurement of the
Casimir force and thermal radiative heat transfer.
The possibility to achieve a good parallelism would allow to make a compar-
ison between theory and experience without any approximation. In chapter
2 we have seen that a comparison theory-experiments in the demanding par-
allel plates geometry can be done, within the 5 % of agreement, for the
hydrodynamic forces induced by a fluid confinment. In that case any par-
ticular treatment of the misalignment has been accomplished. The residual
misalignment of 10 mrad has not affected the validity of the measurements.
This has made possible thanks to the weak dependency of the hydrodynamic
forces with the distance. In the case which has been analyzed it has a de-
pendency as 1/d.
We now consider how the other interactions vary with the distance in the
demanding plane-plane geometry.
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• Hydrodynamic force (perfect slip boundary conditions):

F = −γ · v = −2ηAv

d
⇒ F → 1/d; (5.2)

(see page 30)

• Electrostatic force between two conductors:

F = −1

2

εV 2A

d2
⇒ F → 1/d2; (5.3)

• Radiative heat transfer between dielectric materials:

φ → 1/d2; (5.4)

(see page 74)

• Hydrodynamic force (no slip boundary conditions):

F = −γ · v = −ηwL3

d3
⇒ F → 1/d3; (5.5)

(see page 28)

• Casimir force between two perfect mirrors (ε = −∞):

F =
h̄cπ2A

240d4
⇒ F → 1/d4. (5.6)

Considering the distance dependency it is clear that, with the exception of
the hydrodynamic force with perfect slip boundary conditions, the problem
of the misalignment has to be taken into account.
This aspect has been the subject of the very last part of this thesis. An
experimental set-up for the measurement of radiative heat transfer between
flat surfaces has been realized.
A simulation has been performed before starting the measurement to under-
stand the effect of a small misalignment between the planes on the radiative
transfer. From fig. 5.1 it is evident that a control of the angle much better
than 0.1 degree, i.e 1.7 mrad, is needed.
For the measurement of radiative transfer between a sphere and a plane, the
sphere has been manually glued to a cantilever. In the case of plane-plane
measurement the realization of the sample deserves particular attentions.
For this reason, remembering what done in chapter 3, a Focus Ion Beam has
been used for the sample realization. A cubic like block has been extracted
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Figure 5.1: Misalignment effect on radiative heat transfer

by a flat wafer of silicon. This block has been welded to the cantilever using
the FIB. The surface of the block has been polished so that the roughness
was below 10 nm rms.
The two flat samples were not assembled together. They are put on different

stages which have been approached towards each other. For this reason a 2
angle tilter systems have been added to the experimental set-up presented in
chapter 4, allowing angular precision better than 0.1 millidegree.
The precision achieved in the angle control was in principle enough to assure
a reliable comparison theory-experiments. To find minimal angular misaigne-
ment, curves of flux as function of distance have been measured varying the
sample tilt (see figure 5.4).
The procedure is an iterative process; after having roughly adjusted one an-
gle, the same thing had to be done with the other. This would allow us to
find the minimum of the angles with a coarse sweep. Increasing the precision
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Figure 5.2: Sample realized for the measurement of radiative heat trans-
fer between two plates. The FIB realization has been performed at the
CEA/LETI-MINATEC

of the sweep would allow us to increase the precision in the zero definition.
Unfortunately, the parallelism between the two surfaces has not been achieved
in this first series of measurement.
In chapter 3 we have seen that diffraction of an X-ray beam is very sensitive
to the incidence angle of the beam on the surface sample. We now propose
the use of X-ray diffraction for the alignment of two flat surfaces.
As shown in figure 5.5 a X-ray beam can imping to the first surface at the
Bragg condition angle. The diffracted beam will have the same properties
of the incoming beam. Then it will imping on the second flat surface. The
X-ray beam will be diffracted again only if the two surfaces are parallel. The
precision of the parallelism is given by the width of the Bragg peak. As
discussed in chapter 3 the width of the Bragg peak in the case of Silicon (1
0 0) for a crystal thckness t > 20 µm is ≈ 10−4 deg.
This technique can be implemented in a force measurement experimental
set-up. Using a laboratory X-ray tube, a X-ray beam can imping on the
sample that is fixed. A photodiode can be positioned on the other side of
the experimental set-up. The second surface can be mounted over a tilter
systems as previously presented. Only when the parallelism between the two
surfaces is achieved, the photodiode will detect an outcoming X-ray beam.
The precision that can be obtained coupling the FIB realization of the sam-
ple with the angle control by means of inertial steppers should be enough to
perform measurement in plane-plane geometry also for the Casimir force.
The experimental set-up here presented differs to today existing set-up for



114

Figure 5.3: Schema of the experimental set-up realized for the measurement
of radiative heat transfer between two plates
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Figure 5.4: Evolution of the flux variation between the far field regime and
the near field (here measured before the contact between the 2 planes) as a
function of tilting angle

measurements in plane-plane geometry. The group of Valéry Nesvizhevsky
at the Institut Laue Langevin (ILL) in Grenoble developed an experimental
set-up for the measurement of the quantum states of neutrons in the Earth’s
gravitational field [85]. The set-up main elements are a mirror and a neutron
absorber whose sized was around 10 cm. The two flat surface had to be
parallel and perpendicular to the Earth’s gravitational field. This has been
obtained using a high precision torsion balance. The precision achieved in
the parallism was ≈ 10−6 rad (10−4 deg). However in the case of Valéry
Nesvizhevsky any force detection system was related to the flat surfaces as
it should be in the case of interaction forces measurements.
Bressi and coworkers implemented a capacitive measurement in a force ma-
chine [86]. The precision in the parallelism was ≈ 3 × 10−5 rad (≈ 2 × 10−3

deg). They measured the Casimir effect between two metallic planes with
agreement between theory and experience ≈ 15%. This experimental set-
up, even if allowed a precise measurement of the Casimir effect, it was very
complicated and did not allowed the measurement of the effect with different
samples or materials.
The set-up presented here should allow the measurement of interactions in
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Figure 5.5: Alignement of two plane surfaces using X-ray diffraction

plane-plane geometry with the possibility to change the sample very easily.
The precision in the parallelism that could be achieved should allow a very
precise measurement of the plane-plane interaction forces (for the Casimir
force an agreement theory-experiments much better than 15 % should be
achieved). This will open new possibilities to study the effect of material and
surface nanostructurization on interactions forces acting at the nanoscale.





Appendix A

Viscous cavity damping of a
cantilever in a simple fluid

118



Viscous Cavity Damping of a Microlever in a Simple Fluid

A. Siria,1,2 A. Drezet,1 F. Marchi,1,3 F. Comin,3 S. Huant,1 and J. Chevrier1
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We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually

approaches an infinite wall in parallel geometry. As the gap is decreased from 20 �m down to 400 nm, we

observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests

itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance,

and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this

behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our

findings may have implications for microfluidics and micro- and nanoelectromechanical applications.
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Micro- and nanoscale mechanical levers are increasingly

used as sensors and actuators in a large variety of funda-

mental studies and applications. Mass detection at the

zeptogram scale [1], subattonewton force detection [2],

and optical cooling of microlevers [3] are among the

most spectacular achievements of oscillating cantilevers

(CLs). These realizations mainly rely upon the extraordi-

nary high quality factors (Q) of oscillating CLs in vacuum

and/or cryogenic temperatures where values exceeding 100

000 are attainable. Clearly, maintaining such performances

in air or in a liquid is a very challenging issue as oscillation

damping in the surrounding fluid dramatically degrades Q.

This has been partially circumvented by using ultrasmall

self-sensing nanoelectromechanical systems (NEMS, i.e.,

actuated mechanical devices made from submicron me-

chanical components facing each other) operating in am-

bient conditions of temperature and pressure [4].

However, oscillating CLs are also used in viscous envi-

ronments on many occasions [5–8]. In atomic force mi-

croscopy (AFM), for example, a resonant CL is used to

measure surface topography and physicochemical proper-

ties of various materials not only in air but also in liquids

[9] for, e.g., visualizing dynamic biomolecular processes at

video rate [10]. The interaction between an AFM CL and a

surrounding liquid has been used for a distance calibration

in a Casimir force measurement [11] and has led very

recently to the spectacular demonstration of a repulsive

Casimir force [12]. Therefore, the need for a quantitative

study of the CL behavior in viscous micro- and nanoscale

environments is increasing. In this Letter, we report such a

quantitative study and show, down to the submicron scale

and in the demanding plane-plane geometry, how confine-

ment and boundary conditions at the solid-fluid interfaces

conspire to change the coupling to thermal bath and how

this can freeze out the lever oscillation.

When a CL beam vibrates in a viscous fluid, the fluid

offers resistance to the beam displacement [13,14]. If the

CL is vibrating close to a solid surface, the behavior of the

fluid and, consequently, that of the lever are modified by

the surface due to confinement. The Navier-Stokes (NS)

equations give a complete description of the fluid behavior,

taking into account the particular environment under

analysis. However, an analytical solution of NS equations

is possible only for a restricted number of geometries, and

comparison of theory with experimentally relevant con-

figurations is in general a complex matter or is even lack-

ing, especially at the deep micron and submicron scales

[15–20] where boundary conditions at the fluid-solid inter-

faces are strongly modified [21–24]. In this Letter, we

focus on the dynamical behavior of a microlever close to

a planar rigid surface in the air. Provided that adapted

boundary conditions are used, the NS equations can be

solved analytically for this plane-plane model geometry

that mimics a basic part of a MEMS (the counterpart of a

NEMS in the micron range) device operating in the air.

FIG. 1 (color online). Scheme of the experimental setup (not to

scale). The analyzed mechanical system is a standard AFM CL.

A cleaved optical fiber (bottom) is used as mobile substrate

forming a cavity with the CL. An etched optical fiber (top) is

used for the interferometric detection of the CL Brownian

motion. The main geometrical parameters used in the text are

identified; the z origin is taken on the flat cleaved-fiber surface.
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This, combined with the use of the fluctuation-dissipation

theorem and of an experimental arrangement specially

designed to gain access to the intrinsic behavior of the

CL, enables us to make a quantitative comparison between

theory and experiment in a wide range of cavity lengths

down to a few hundred nanometers.

Our setup is shown schematically in Fig. 1. Its first

specification is that the CL—a commercial thin silicon

AFM CL [25] for liquid imaging with dimensions

L� w� t ¼ 107� 30� 0:18 �m3—is actuated by the

stochastic thermal noise only. This induces sub-Angstrom

oscillations at the CL resonance frequency [!0=ð2�Þ ’
49:5 kHz], thereby allowing us to consider the fluid in

the cavity in the laminar regime. Second, the planar rigid

surface facing the CL to form a parallel-plate cavity is

made of a cleaved optical fiber with a diameter of 125 �m

that is mounted over a three-axis inertial motor so as to be

able to adjust the cavity gap. This positioning system offers

a large displacement range (8 mm each axis full range)

with a good accuracy (40 nm per step). Finally, the CL

Brownian motion is measured by means of a noninvasive

interferometric detection based on the use of a very thin

optical fiber facing the CL at a 2 �m distance. This fiber

has been chemically etched so as to reduce its diameter to

5 �m. This corresponds basically to the fiber core diame-

ter plus a residual amount of the optical cladding for better

light guidance. The large ratio in excess of 600 between the

areas of the cleaved and detection fibers ensures that only

the cleaved one induces air confinement, not the etched

one, which is used for detection purpose only. Therefore,

no additional uncontrolled confinement and damping are

produced by the detection fiber.

An AFM CL vibrating in a viscous fluid may be viewed

as a driven and damped 1D harmonic oscillator whose

equation of motion reads

m€zðtÞ þ � _zðtÞ þ kzðtÞ ¼ Fext; (1)

where m, zðtÞ, k are the CL effective mass, time-dependent

position, and stiffness, respectively, � is the damping

factor, and Fext the external (i.e., thermal) driving force.

According to the fluctuation-dissipation theorem, the ther-

mal Brownian motion of the CL at temperature T is ac-

counted for by a frequency independent force power

spectrum defined as SFð!Þ ¼ 2kBT� [kB is the

Boltzmann constant, and ! the pulsation linked to the

frequency f ¼ !=ð2�Þ]. Starting from Eq. (1) we obtain

the CL displacement power spectrum as Szð!Þ ¼
SFð!Þj�ð!Þj2, where the CL transfer function �ð!Þ is

given by

�ð!Þ ¼ 1

mð!2
0 �!2Þ � i�!

(2)

with!0 ¼
ffiffiffi
k
m

q

. In the limit of small damping, i.e., �
m
� !0,

Szð!Þ has a resonance at !0. In Fig. 2, the experimental

Brownian oscillation power spectrum 2Szð!Þ is presented

as a function of frequency f for different cavity gaps d. It is
clearly seen that the resonance peak dramatically broadens

and softens to lower frequencies with decreasing gap.

Within the experimental accuracy, we find that the area

under the resonance curves in Fig. 2 remains constant and

equals to the thermal energy. This shows that the CL

damping increases with decreasing gap.

Now, we turn to a quantitative analysis of the experi-

ment. The fluid responsible for the CL damping is the air

confined between the CL and the mobile fiber. The dy-

namic of such an incompressible fluid is described by the

NS equations

�

�
@ ~v

@t
þ ~v � r ~v

�

¼ �r2 ~v� ~rp; (3)

where ~v is the fluid velocity, � its density, � its dynamical

viscosity, and p the gas pressure. In the laminar regime,

i.e., in the limit of small Reynolds numbers, Eq. (3) sim-

plifies to �r2 ~v ’ ~rp. In order to solve the NS equations,

one needs to know the specific boundary conditions exist-

ing at the fluid-solid interfaces (for simplicity we assume

the cavity plates to be infinitely extended). While for

macroscopic hydrodynamic applications one usually ac-

cepts that fluids do not slip against solid walls, this is

generally not true for microfluidic problems involving

MEMS or NEMS [21]. A critical parameter in this respect

is the Knudsen number [21] Kn ¼ ��=d which depends on

the gas mean free path ��. For air at ambient conditions �� ’
60 nm, which leads here to Kn � 0:001–0:06. In this range
of Kn values, it is already known that fluid slip can occur

over a solid interface [21–23]. In particular, partial fluid

slip has been recently observed in the plane-sphere geome-

try in air using an AFM in dynamic mode [24]. However,

none of the previous works investigated the regime of

Brownian oscillations with typical CL amplitudes �z�
0:05 nm much smaller than �� (i.e., ��=�z� 103). In such a

regime, boundary conditions are expected to be even more

strongly modified [21] compared with the macroscopic

FIG. 2 (color online). The experimental Brownian oscillation

power spectrum of the microlever for different cavity gaps.
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regime, although it is not yet known how much they are

modified. Here, we make the hypothesis of perfect slip,

historically anticipated by Navier [26], for which friction

along the solid interface is prohibited, and show that we

can obtain a consistent quantitative description of our

experimental data. This hypothesis results in a velocity

gradient along the z direction which leads to a Stokes

friction coefficient:

� ¼ 2�A

d
; (4)

where A ¼ wL is the cantilever surface. The usual no-slip

condition at the fluid-solid interface would predict � ’
�wL3=d3, in clear disagreement with the experiment (see

below). As a direct consequence, Eq. (4) leads to a much

smaller decay of the friction force with d than usually

predicted.

Quantitative information on the damping factor is ob-

tained from the analysis of the CL quality factor. Both

quantities are linked together by the relation Q ¼ k
!0�

,

which becomes for small gaps

Q ¼ k

2!0�A
d: (5)

Equation (5) predicts a linear dependence of Q on d that

can be compared with experiments.

Figure 3 depicts the quality factor as function of the

cavity gap. Two different regimes can be distinguished. For

large gaps above 40 �m, the quality factor remains con-

stant. This is the unconfined fluid regime where no addi-

tional damping can take place with decreasing gap. For

smaller gaps, however, the quality factor tends to decrease

with a decreasing gap. We will focus below on the small

gap regime where the hypothesis of infinite planes is

physically justified. Since the AFM CL has a surface 10

times smaller than the substrate fiber; the gap limit for the

hypothesis of infinite planes to remain physically sound

can be estimated by taking the apparent CL surface as a

reference, i.e., dlim : � 15 �m.

As shown in the inset of Fig. 3 the experimental results

and the theoretical prediction of Eq. (5), with no adjustable

parameter [27], coincide to within 5% for gaps larger than

5 �m, but for smaller separations, the disagreement wor-

sens to reach 100% at the smallest gap, 400 nm. We

interpret this difference with a residual small angular mis-

alignment of the two facing parallel plates. For small

misalignment, the problem can be treated within an ap-

proximation similar to the proximity force approximation

used, for instance, in the Casimir force formulation in the

sphere-plane geometry [28]. In this approximation, the

corrected damping factor becomes

� ¼
Z L

0

Z w

0

2�
dx dy

d0 þ x tan	þ y tan

; (6)

where d0 is the shortest distance from the inclined CL

to the substrate, and 	 and 
 are the lateral tilt angles

of the CL with the mobile surface in the x and y direc-

tions, respectively. The best fit between experiment and

theory is obtained for 	 � 
 � 10 mrad. Considering

these misalignment angles, the good agreement between

theory and experiment can now be extended down to the

smallest gap range that we have measured, as can be seen

in Fig. 3. Over the entire range 400 nm–15 �m, the re-

maining disagreement is �5% only [29].

We now discuss the frequency softening of the CL

oscillation, the other salient experimental fact revealed

by Fig. 2. In the limit of large damping, i.e., the approxi-

mation �
m
� !0 no longer holds, the power spectrum of

Eq. (2) has a downshifted resonance pulsation !0 given by

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
0 �

1

2

�
�

m

�
2

s

: (7)

Figure 4 shows that the resonance frequency shift ð!0 �
!0Þ=ð2�Þ can be extremely large. One step farther below

400 nm, a complete freezing of the CL oscillation would

have been observed. This was precluded by the residual

angular misalignment discussed above. Taking into ac-

count the misalignment obtained from Fig. 3, we can

quantitatively model the data in Fig. 4 without any adjust-

able parameter whatsoever. Therefore, besides the CL

width that governs the Q factor behavior at large scale

(Fig. 3), another shorter characteristic length is here em-

phasized in the submicron range, i.e., dcrit: ¼
ffiffi
2

p
�

m
A
!0

(around 500 nm in our case), which is the gap width

canceling the resonance frequency in Eq. (7). This charac-

FIG. 3 (color online). The quality factor as a function of the

cavity gap. The black dots are the experimental points. The insert

depicts a zoom of the small gap range. In both cases, the red

dashed curves exhibit the theoretical prediction based on Eq. (5),

i.e., the prediction of the NS equation in the perfect parallel-plate

geometry. The blue dash-dotted line in the insert shows the

prediction of the NS model, taking into account a residual

angular misalignment of the cavity as discussed in the text.
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teristic length is determined by the CL dynamics and the

fluid viscosity.

In conclusion, we have presented high sensitivity mea-

surements of the damping of a thermally driven CL in a

simple fluid confined in a microcavity formed by this CL

facing an infinite wall. As the cavity length decreases, the

fluid confinement induces a dramatic damping of the CL

Brownian motion which can lead to its complete freezing

at small gaps. A consequence of our work is that micro- or

nano-oscillators can either present high Q factors or be

overdamped systems depending on their actual geometry,

resonance frequency, oscillator substrate gap, and, of

course, ambient viscosity. These findings may impact the

design of modern NEMS and microfluidic devices since

the 1=d dependence strongly reduces dissipation even for

separations d as large as thousands of mean free path �� (see

Fig. 3). This 1=d behavior can be furthermore described by

solving the Navier-Stokes equation with perfect solid-fluid

slip boundary conditions. The agreement between experi-

ment and our model is found over a broad range of cavity

lengths, including the submicron range. Interesting exten-

sions of the present work include the study of parameters

affecting boundary conditions, such as external actuation

of CLs (to obtain large oscillation amplitude) [30], nano-

structuration [4], and surface chemical properties [8].
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Jean-Francois Motte. This research was partly supported
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Abstract

We report here for the first time the combination of x-ray synchrotron light and a

micro-electro-mechanical system (MEMS). We show how it is possible to modulate in real time

a MEMS mass distribution to induce a nanometric and tunable mechanical oscillation. The

quantitative experimental demonstration we present here uses periodic thermal dilatation of a

Ge microcrystal attached to a Si microlever, induced by controlled absorption of an intensity

modulated x-ray microbeam. The mechanism proposed can be envisaged either for the

detection of small heat flux or for the actuation of a mechanical system.

(Some figures in this article are in colour only in the electronic version)

Nanoelectromechanical systems (NEMS) are among the best

candidates to measure interactions and accelerations at the

nanoscale [1–6], especially when resonating oscillators are

used with high quality factor [7–9]. Indeed NEMS and

MEMS have been used for the detection of the mechanical

effects of light and radiation pressure [10] and thermal

switching effects in a lever [11] have been shown as actuation

mechanisms for mechanical systems. We show here, for

the first time, the interaction between a mechanical system

and x-rays. To demonstrate this interaction efficiency we

show how mechanical nanodisplacements of a MEMS are

triggered using modulated x-ray microbeams. The MEMS is

a microswing constituted by a Ge microcrystal attached to a Si

microcantilever. The interaction is mediated by Ge absorption

of the intensity modulated x-ray microbeam impinging on

the microcrystal. We show then that radiation pressure or

thermal-strain-induced effects are not effective enough to

induce the observed oscillation amplitude in our experiments.

The measured oscillation amplitudes can be understood by

the changes of the mass distribution at the nanoscale induced

by controlled thermal dilation. The small but finite thermal

expansion of the Ge microcrystal is large enough to force

a nanodisplacement of the Ge microcrystal’s center of mass

(COM). This mechanism is based on the small temperature

variation induced by a local heating absorption (20 K mW−1)

and, as a consequence, this strategy can be used as a local

thermal flux sensor. Moreover this mechanism represents a

new actuation scheme for NEMS and MEMS and we show how

this effect can be potentially scaled down to offer an actuation

mechanism on the nanoscale.

The experimental set-up is presented in figure 1. The

microswing position is measured through the interference

between the light reflected from the back of the lever and

from a cleaved fiber end. This experimental set-up has

been shown to produce a sub-Ångström precision in position

measurements [5, 6, 11]. SEM images of the microswings used

are shown in figures 1(b) and (c). The first Ge microcrystal

in figure 1(b) has been directly cut from a Ge wafer by

a focused ion beam (FIB). In order to fabricate the micro-

oscillator, a cubic-like germanium crystal has been etched from

a germanium wafer using the FIB Strata400 from FEI. The

cube was welded to the cantilever, in a symmetrical position,

using localized FIB deposition of metal. The cubic Ge crystal

is 43 µm thick. The lever is a standard silicon AFM cantilever

whose dimensions are 350 × 35 × 2 µm3. This lever has no

metallic coating. The second Ge microcrystal is about 23 µm

thick (figure 1(c)). It has been manually glued on the side of the

cantilever in a very asymmetrical position. For asymmetrically

mounted crystals, two types of levers have been used: one bare

and another with a metallic coating.

0957-4484/08/445501+05$30.00 © 2008 IOP Publishing Ltd Printed in the UK1
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Figure 1. (a) Experimental set-up. The small cylinder (blue ray) is
the x-ray beam on the Ge microcrystal at the Si lever end. The big
(gray) cylinder represents the optical fiber and the inner (red) ray is
the laser beam used to detect the lever position with sub-Ångström
precision. ((b) and (c)) SEM images of the Ge cubes glued on the Si
levers. In (b) the cut and soldered Ge crystal, using a focused ion
beam, has been positioned at the end of the lever in a symmetrical
position. In (c) a Ge crystal has been manually glued on the side in a
very asymmetrical position.

The experiments were performed at the European

Synchrotron Radiation Facility (ESRF). The beamlines

involved were the anomalous scattering beamline (ID01) and

surface science x-ray diffraction (SXRD) beamline (ID03). In

ID01 the radiation from the undulators can be tuned from 2.5

to 40 keV with a Si(111) double-crystal monochromator.

Focusing is achieved by using beryllium compound refractive

lenses (CRLs) [12]. The effective focus size is ≈4 × 6 µm2

with ≈1010 photons s−1 on the focal spot. At the SXRD

beamline the photons were tuned at the Ge K edge using

a liquid-nitrogen-cooled monolithic double-crystal Si(111)

monochromator. The beam was focused on the sample by a

Kirkpatrick–Baez (KB) mirror system located 43 m from the

Table 1. Comparison between the calculated resonant frequency and
the measured value for the resonant peaks presented in figure 2.

Mechanical
system

Simulated
resonant
frequency (Hz)

Measured
resonant
frequency (Hz)

2 (a) 2110 2140
2 (b) 3560 3750
2 ((c)–(d)) 1410 1270

photon source. The beam size at the sample, 1 m from the KB

system, is ≈3 × 5 µm2 with ≈1012 photons s−1 on the focal

spot.

Figure 2 presents the mechanical response measured

around the first resonance frequency ω0 for different

geometries and experimental set-ups. In table 1 a comparison

between the simulated resonant frequency values and the

measured ones is presented. The calculated values are obtained

using the hypothesis of a simple 1D harmonic oscillator.

In figure 2 the intensity of the x-ray beam impacting on

the Ge crystal is modulated at a frequency ω sweeping through

the lever resonant frequency ω0. For x-ray energies below

the absorption edge, the lever is already forced to oscillate

with amplitudes larger than the thermally induced noise. For

energies above the absorption edge we observe an increase of

oscillation amplitude for all geometries. The amount of this

increase as a function of geometry, microswing characteristic

and the position of the Ge microcrystal is the basis of our

findings.

Figure 3 reports the mechanical response of the cantilever

at resonance, when the x-ray energy is scanned through the

germanium K-edge energy. The mechanical response of the

microswing matches well the XAS reference spectrum of

germanium [13]. The two curves have been normalized below

the edge and in the continuum atomic part above the edge.

Figure 2. Measured resonance curve of the first oscillating mode for all levers. In gray (red) the x-ray beam energy is set below the K1s edge
(Eph = 11.07 keV), while in black it is set at the K1s edge (Eph = 11.103 keV). (a) Uncoated cantilever (k = 0.025 N m−1, Q = 86,
I0 = 7.4 × 1010 ph s−1) with Ge block glued on the side and x-ray beam parallel to the oscillation direction. (b) Coated cantilever
(k = 0.027 N m−1, Q = 60, I0 = 3.5 × 1010 ph s−1) with Ge block glued on the side and x-ray beam parallel to the oscillation direction.
(c) Uncoated cantilever (k = 0.135 N m−1, Q = 75, I0 = 2.4 × 1012 ph s−1) with Ge block glued below and x-ray beam parallel to the
oscillation direction. (d) Same as in (c) with x-ray beam perpendicular to the oscillation direction.
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Figure 3. Cantilever oscillation amplitude as a function of beam
energy. We show (in black) our experimental data with superposed
(and in red) the handbook reference EXAFS spectrum at the Ge K
edge.

Even though a mechanical detection of EXAFS has already

been shown [14], this is the first time utilizing an MEMS. On

the basis of the experimental evidence presented in figure 2, we

can identify the oscillation driving force. Radiation pressure

can be ruled out, as the oscillation is the same whatever the

direction of the beam (figures 2(c) and (d)) with respect to the

oscillation direction.

From figures 2 and 3 it is evident that the oscillation

amplitude is a function of the absorption cross section. Indeed,

its spectrum follows well the absorption coefficient for bulk

germanium. We then explored the hypothesis that the absorbed

energy is promptly turned into heat, leading to a temperature

increase dependent on how the heat is evacuated.

As a first approximation, the number of photons that

contributes to a temperature increase is the difference between

the number of absorbed photons and fluorescence photons

that escape from the sample considering that the fluorescence

emission can be photoelectrically reabsorbed. The overall

number of photons Ih that induce the temperature increase is

then

Ih = I0(1 − T E
Ge)(1 − wE

GeT Ef
wGe

) (1)

where I0 is the incoming intensity, T E
Ge the Ge transmission

coefficient, a function of the photon energy and sample

thickness, and wE
Ge the fluorescence yield. T Ef

wGe
is the rate of

fluorescence at energy Ef which escapes from the sample. This

last coefficient is dependent on sample thickness.

At energies below the Ge K edge, the main process is

the Auger electron production [15]. Most of the absorbed

photons then contribute to the heating because of the short

mean free path (a few nanometers) of the Auger electrons and

their cascades. At energies higher than the Ge K edge the

absorbed photons generate fluorescence, Coster–Kronig and

Auger electrons.

The decreased amplitude of the XAFS peak and

oscillations after the K edge with respect to the reference

spectra are due to this intrinsic self-absorption effect. In table 2

the absorbed photon flux Ih is calculated for two lever/crystal

configurations, for two x-ray beam directions, and for coated

and uncoated levers. The ratio of the measured oscillation

amplitudes x(ω0) above and below the K-edge energy is

consistent with the ratio of absorbed photons. The temperature

increase �T can be calculated taking into account the overall

energy deposited in the crystal and the heat flow through the

lever (cooling by radiation and convection is negligible here).

The absorbed power W is then

W = CṪ (t) + G(T (t) − T0) (2)

T (t) = T0 +
W

G

(

1 − e− G
C

t
)

(3)

where T0 is the ambient temperature and T (t) the block

temperature as a function of time. �T (ω) is then

�T (ω) =
W

G

1

(1 + ωτ)
(4)

τ =
C

G
(5)

ω is the beam chopper frequency and τ is the ratio between the

thermal capacity of the Ge block and the thermal conductivity

of the Si lever. For the uncoated and coated levers of

figures 2(a) and (b) the experimental conditions are nearly

identical whereas the oscillation amplitude is 10 times larger

in 2(a) than in 2(b). This difference can be described

using those last equations. The presence of the metallic

coating increases the thermal conductivity G of the system and

therefore induces a consequent decrease of �T compared to

the uncoated lever.

However, this description cannot explain the difference

of the amplitude of oscillation between figures 2(a) and (c).

The oscillation amplitude in figure 2(c) is 3 times larger than

in 2(c) against a photon flux 40 times bigger and an absorption

rate 25% higher because of the difference in Ge crystal

dimensions. The difference in the mechanical properties of the

cantilever (2(a) k = 0.025 N m−1, 2(c) k = 0.135 N m−1)

cannot explain such a large discrepancy. However, the position

of the Ge crystal and this symmetry with respect to the lever has

not been considered. This remark is essential to the conclusion

of this paper. We show that the thermally induced change in

the distance between the Ge crystal COM and the lever axis

controls the system dynamics.

The thermally induced change in the COM position is

determined by

�l(ω) = l0α�T (ω) (6)

where l0 is the distance between the block COM and the lever

axis and α the linear thermal expansion coefficient.

For a simple 1D mechanical oscillator the oscillation

amplitude is given by

x(ω) = xi (ω)
√

|ψ(ω)|2

= xi (ω)

√

ω2
0 Q2

(Q2/ω2
0)(ω

2 − ω2
0)

2 + ω2
(7)

where ψ(ω) is the oscillator transfer function. Here, xi(ω)

corresponds to �l(ω).

Considering the MEMS as the whole system constituted

by the cantilever and the Ge microcrystal, the induced increase

in the Ge crystal size can be read as an induced change in the

mass distribution of the mechanical system.
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Table 2. Correspondence between absorbed photon and oscillation amplitude for different levers and geometries. The top part presents the
comparison for a coated and an uncoated lever with an asymmetrical geometry like in figure 1(c). The x-ray beam is here parallel to the
direction of oscillation. The second part presents the comparison for an uncoated lever with a symmetric geometry. The x-ray beam is here
either parallel or perpendicular to the direction of oscillation.

l0 = 23 µm Uncoated Coated
Eph TGe wGe TwGe

Ih x(ω0) (nm) x(ω0) (nm)

11.07 0.72 0 — 0.28 I0 1.053 0.113
11.103 0.083 0.535 0.83 0.51 I0 1.902 0.199

Ratio 1.82 1.81 1.76

l0 = 43 µm Para. Perp.
Eph TGe wGe TwGe

Ih x(ω0) x(ω0)

11.07 0.54 0 — 0.47 I0 4.066 4.713
11.103 0.009 0.535 0.33 0.63 I0 5.898 6.959

Ratio 1.34 1.47 1.48

Figure 4. Schema of the actuation mechanism. In (a) is presented a
very asymmetric configuration and in (b) a symmetric geometry. The
dotted squares represent the Ge crystal thermal expansion and the
black arrows indicate the direction of the effective displacement of
the Ge crystal COM.

In the hypothesis of uniform temperature in the Ge block

the displacement of the COM with respect to the lever axis

is easily calculated using equation (6). As is described in

figure 4, when the Ge cube is glued on the side of the lever,

the thermal expansion induces a COM displacement along

the cantilever oscillation direction. This is no longer true

when the block is welded below the lever in a symmetric

configuration; in this case the effective COM displacement

along the lever oscillation direction is negligible. As a

consequence, from the expression presented in equation (7),

the oscillation amplitude in the asymmetric configuration is

expected to be much more important than in the symmetric

one. The use of two Ge crystals mounted in different positions

is then crucial to validate the actuation mechanism based on

COM-induced nanodisplacement.

For the system in figure 1(c), l0 = 13 µm, close to half the

Ge crystal thickness. For an intensity I0 = 7.4×1010 ph s−1 the

temperature increase is found to be �T (ω0) = 0.24 K. Using

αGe = 5.9 × 10−6 K−1, according to equation (6), the induced

COM displacement is �l(ω0) = 19 pm. Using equation (7),

with the measured quality factor of 86 and the amplitude at

resonance of 1.9 nm, the COM displacement is found to be

�l(ω0) = 22 pm, which is consistent with the value calculated

Figure 5. Response function of the lever shown in figure 1(b). The
(black) curve presented is the measured amplitude of the lever
oscillation as the beam intensity is modulated from 100 to 2500 Hz.
The superposed (red) curve is the calculated expression using
experimental parameters. The error bar on the theoretical (red) curve
has been determined using Brownian motion. The theoretical (red)
curve calculation involves the misalignment of the Ge microcrystal
on the Si lever as the single adjustable parameter. In the inset a zoom
on the resonant peak is presented.

from equation (6). The error bar on the measured lever position

is determined by the thermal fluctuations of the lever position

and is xi(kBT ) = 1.6 pm.

The system in figure 1(b) presents a much more

symmetrical geometry. The l0 value in this case must be

smaller than the one in the case of figure 1(c), but it is not easily

measurable. A rough estimate of the residual misalignment

between the COM of the Ge microcrystal and the Si lever axis

is the uncertainty in the FIB positioning device, which is about

1 µm.

The distance l0 that best fits the data while all other

parameters are known is 1.5 µm, which is indeed close to

the precision of the FIB motor. The comparison between the

model (equation (7)) and the measured oscillation is presented

in figure 5 as the excitation frequency is swept from 100 to

2500 Hz. The agreement further establishes that the thermally

forced displacement of the COM is at the origin of the observed

lever oscillation equipped with the Ge crystal. Results for

all configurations are then consistently explained using this

single actuation mechanism. The MEMS actuation mechanism

shown here can be extended to NEMS actuation. Considering

4
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an Si lever of 1×0.1×0.1 µm3 and a Ge block of 100×100×

100 nm3 with a thermal conductivity of G = 3.7×10−8 W K−1

and thermal capacity of C = 1.7 × 10−15 J K−1 [16] leads,

according to equation (4), to a substantial temperature increase

at a frequency in the MHz regime, typical for the resonance of

such an NEMS. If a 1 µW laser beam is absorbed in this Ge

block, the induced thermal expansion will be several pm. As

NEMS with lateral sizes close to 100 nm can exhibit quality

factors of 1000, a forced COM oscillation with an amplitude

of several pm can result at resonance in a nanometric NEMS

oscillation amplitude. This is far larger than the thermally

induced fluctuations of the NEMS position. This strategy of

NEMS excitation can be compared to photothermal actuation

based on thermally induced strain [17–23]. The essential

difference is in the origin of the NEMS displacement. This

origin is, in the mechanism that we propose, a strain-free

thermally induced change in mass spatial distribution in an

asymmetric structure.

We have demonstrated that the COM displacement

mechanism is a very sensitive method to detect local

temperature variation induced by low heating absorption. In

the case of a highly asymmetric geometry we have shown it to

be sensitive to an absorbed power of 10 µW while the detection

limit, given by the thermal noise (kBT ), is below 1 µW. This

set-up is then a very good candidate for measuring low thermal

flux in the near-field condition with high accuracy [24].

Furthermore the use of MEMS as Si single-crystal micro-

oscillators can provide x-ray choppers at high frequencies.

Using diffraction, an Si single-crystal MEMS appears to be

a good candidate for the high frequency manipulation of

x-ray microbeams. This could offer new tools either to

change the phase x-ray wavefront, or to produce a rapidly

modulated intensity of x-ray beams that are so important in

real-time studies of fast dynamical processes in chemistry and

in biology [25].
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Abstract

Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced

rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon

microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency

x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and

NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz.

Working at such a frequency can open a wealth of possibilities in chemistry, biology and

physics time-resolved experiments.

(Some figures in this article are in colour only in the electronic version)

Nowadays many experiments in physics, biology, chemistry

and material science require irradiation of a sample by a short

burst of x-ray radiation to study in detail the time response

of the sample under a particular excitation [1–3]. X-ray

techniques are extremely important to investigate the chemistry

and structure of materials [4, 5]. In a typical experiment the

system to be analyzed is excited by a short x-ray burst and

information about the response is obtained by studying the

fluorescence emitted during the system’s de-excitation [6, 7].

In a pump–probe experiment, the sample is pumped into a

metastable state by laser excitation and a delayed x-ray pulse

is used to monitor the time evolution of the system [8–10].

A common aspect of these two kinds of experiment is the

required duration of the x-ray pulse. Since the timescale

involved can be smaller than a microsecond, x-ray pulses with

durations less than a microsecond are then required [11–13].

Short-duration x-ray bursts are typically produced when a

continuous x-ray beam passes through a mechanical shutter

that is open for a short time [14]. The major limitations of

rotating mechanical shutters are the size and the operational

environment required. They actually need to work under

vacuum conditions, especially if a very short x-ray pulse has

to be realized.

The interactions between x-ray techniques and MEMS

technology have been recently shown in work where a

modulated x-ray beam has been used to excite a mechanical

system around its first-order resonance [15]. At variance we

show here how the inverse mechanism can be used to modulate

an x-ray beam. The simplest MEMS that can be imagined

is a single-crystal silicon cantilever. We used the controlled

oscillations of this tiny single crystal to get periodically in and

out of the Bragg conditions. This is the basic principle of this

high frequency mechanical x-ray chopper.

Figure 1 shows schematically the experimental set-up.

The mechanical system used during the experiment is a

standard Si(100) AFM cantilever with dimensions 300 × 35 ×

2 µm3. The cantilever displacement is measured by the

interference between the light reflected from the end of a

cleaved optic fiber and the beam reflected by the back of the

lever. This interferometric technique has been shown to lead to

sub-ångström precision in position measurement [15–18].

The experiment has been performed at the European

Synchrotron Radiation Facility. The beamline involved was

the surface x-ray diffraction (SXRD) beamline (ID03). The

incoming x-ray beam set at 18.98 keV is impinging on

the cantilever at rest at the Bragg condition and the x-ray

photodetector is positioned at the correspondent 2� angle.

At the SXRD beamline the beam was monochromatized by

a liquid-nitrogen-cooled monolithic Si(111) double crystal,

0957-4484/09/175501+04$30.00 © 2009 IOP Publishing Ltd Printed in the UK1
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Figure 1. Experimental set-up. The AFM cantilever used to stop or
transmit the dark blue x-ray beam impacting around the Bragg angle
is represented in orange. The reflection of the x-ray beam is detected
with a photodiode. The white cylinder represents the optical fiber for
the interferometric detection of the lever position with sub-ångström
precision.

resulting in an energy resolution �E
E

≈ 10−4. To maintain

the collimation of the source no focusing system has been

used. The beam delivered by the monochromator, at the sample

located 44 m from the source, has a size of ≈50×50 µm2 with

≈1010 photons s−1 and a divergence of the order of ≈10 µrad,

a few 10−4 degrees.

When the cantilever is at rest in Bragg conditions, the

photodiode detects a constant flux of photons. When the

AFM lever is periodically excited by a piezoelectric ceramic,

the x-ray incidence angle is consequently modified by the

lever motion. If the lever oscillation amplitude is larger

than the Bragg peak width, the cantilever will periodically

sweep through the Bragg conditions. A periodically modulated

current will be measured at the output of the photodiode.

The chopper uses the diffraction properties of a silicon

crystal. The average angle is set around the Bragg angle.

Working at higher energies will impose more grazing angles

of incidence. When grazing incidence is getting closer to the

critical incidence angle the chopper will behave as a mirror and

one could better envisage passing at higher-order reflections,

with the consequent loss of efficiency.

During this experiment the x-ray spot size is larger than

the cantilever width. The intensity diffracted in the photodiode

is consequently lower than the incoming one. Cantilevers of

larger width will permit us to handle larger beams without

changing the essentials of the experiment. For even larger

beams it will be necessary to pass to pixellated systems as will

be discussed in the conclusions.

Figure 2 presents the theoretical Bragg peak for a Si(400)

reflection, calculated in the hypothesis of a perfect 2 µm thick

single crystal in the kinematic approximation [19, 20]. It is

worth noting that, due to the small thickness of the cantilever Si

single crystal (2 µm, much smaller than the extinction length),

the Bragg (400) reflection is very broad. In our case the Bragg

width is ≈100 times larger than the incoming x-ray beam

Figure 2. Theoretical Si(400) Bragg profile for a 2 µm thick perfect
Si crystal in the kinematic approximation. The black dot indicates
the flex point used as the reference position of the silicon cantilever.

divergence. The oscillating cantilever will operate then as a

rotating mirror chopper on the incoming beam.

Considering the shape of the Bragg peak, the x-ray

intensity modulation is maximum when the set-point angle of

the x-rays on the lever is set in correspondence of the flex point

of the Bragg peak (see the black point in figure 2); in this

condition, moreover, the diffracted signal, when the cantilever

is oscillating with modulation ω, is modulated at ω and not at

2ω, as it would be if the set-point is at the maximum of the

curve.

The amplitude of the photon flux oscillation is thus

directly constrained by the oscillation amplitude of the

cantilever.

As a first step in the analysis we use the so-called single-

mode approximation of the AFM lever behavior. The lever can

be approximated with a 1D harmonic oscillator whose response

to a modulated applied force is characterized by its transfer

function:

x(ω) =
F(ω)

m

1
√

(ω2
0 − ω2)2 + γ 2ω2

(1)

tan α =
γω

ω2
0 − ω2

(2)

where ω is the applied force frequency, ω0 the oscillator

resonant frequency and γ the system damping factor.

Equation (1) gives the lever oscillation amplitude when a

modulated force F(ω) is applied; equation (2) gives the phase

lag of the cantilever oscillation with respect to the applied

force. In figure 3(a) is shown the cantilever oscillation

amplitude (black) and phase lag (red) as a function of

frequency when the mechanical system is mechanically excited

at resonance. This is measured using the optical fiber as shown

in figure 1.

Figure 3(b) shows the current (amplitude and phase) at the

output of the x-ray photodiode as a function of the frequency.

For the specific chosen case the current has the same functional

shape of the cantilever mechanical response presented in 3(a).
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Figure 3. (a) Optically measured mechanical response of the AFM
cantilever when it is mechanically excited around its first resonant
frequency of 13 kHz. (b) Diode photocurrent measured by the
photodiode at the 2θ Bragg position. In (a) and (b) the black (dotted)
curve represents the oscillation amplitude and the red (line) curve
represents the phase lag.

Figure 4 presents the photodiode output as a function of

the excitation frequency for different excitation amplitudes.

The nonlinear behavior for the largest cantilever excitation

amplitude is due to the cantilever bending induced by the

oscillation. In other words, at any given time the x-ray beam

does not find a specific incidence angle but an angle gradient

over the cantilever.

The AFM cantilever can be quantitatively described with

a vibrating beam whose dynamical deflection is well described

by the Euler–Bernoulli equation [21, 22]:

ρ(x)
∂2U(x, t)

∂ t2
+ E I

∂4U(x, t)

∂x4
= f (x, t) (3)

where U(x, t) is the cantilever profile as a function of time and

position, ρ(x) is the material density, E the Young’s modulus

and I = t3w
12

the inertia momentum of the cantilever. The

general solution for the nth mode profile is the well-known

equation

Un(x) = C[(cos(kn · x) − cosh(kn · x))]

+ G[(sin(kn · x) − sinh(kn · x))] (4)

where the nth mode vector kn is linked with the nth mode

resonant frequency by the relation k4
n =

ρ

E I
ω2

n . Applying the

boundary condition, the relation between coefficients C and G

Figure 4. Measured photodiode signal as a function of the lever’s
excitation frequency. The different curves refer to different excitation
amplitudes as specified by the color code.

is found to be

C

G
= −

cos (kn · L) + cosh (kn · L)

sin (kn · L) + sinh (kn · L)
. (5)

The angular shift ��(x) induced by the lever deformation at

a position x on the lever is

��(x) = arctan

(

∂U0(x)

∂x

)

(6)

where U0(x) is the cantilever first-mode profile. The calculated

diffracted flux of photons is then obtained integrating the Bragg

peak profile B(�(x)) over all the x-ray effective beam spot

size:

Icalc =

∫ L B

0

B

[

�SP + arctan

(

∂U0(x)

∂x

)]

dx (7)

where �SP is the set-point angle as defined in figure 2. The

origin, that is the zero position, is experimentally for this

specific case the clamped part of the lever. L B is the irradiated

portion of the lever, smaller than the full lever length.

The expression B(�(x)) used for this calculation leads

to the rocking curve for (400) reflection of a perfect

silicon single crystal with 2 µm thickness in the kinematic

approximation [19, 20]. This theoretical rocking curve is

presented in figure 2.

The theoretical estimation of the diffracted signal emitted

by the Si lever when it is oscillated can be obtained from

equation (7). Considering the periodic motion of the cantilever

around the set-point angle, the expected modulation of the

diffracted beam is given by

�Imod =

∫ L B

0

B

[

�SP + arctan

(

∂U0(x)

∂x

)]

dx

−

∫ L B

0

B

[

�SP − arctan

(

∂U0(x)

∂x

)]

dx . (8)

�Imod represents the change in intensity between the two

extreme positions of the oscillating lever.
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Figure 5. Photodiode signal as a function of different cantilever
excitation amplitudes. The continuous curve is from equation (8)
(normalized), while the points represent the experimental data with
their errors.

In figure 5 we present the photodiode current as a function

of the cantilever oscillation amplitude. This photodiode

current measures the full amplitude variation of x-ray intensity

produced by the oscillating cantilever excited at resonance.

This photodiode current is, in fact, the output of the lock-in

amplifier that demodulates the instantaneous current variation

at the lever resonance frequency.

The mechanical oscillation amplitude is separately

measured at the free end through interferometric detection. The

blue points represent the photocurrent amplitude measured at

the resonant frequency (intersection of the different curves with

the green dotted straight line in figure 4); the continuous curve

is a normalized theoretical prediction from equation (8).

It is interesting to note the shape of the black curve in

figure 4, representing the measured diffracted amplitude for

the largest cantilever oscillation amplitude (≈320 nm). This

peculiar shape presents two measured symmetric maxima as a

function of cantilever oscillation frequency.

This shape is easily explained considering that at

resonance the oscillation amplitude reaches the maximum,

which, given the functional shape of figure 5, gives indeed a

local minimum in the lock-in output.

The functional shape of the curves (experimental and

theoretical) in figure 5, reflects the fact that the modulation of

the diffracted signal increases when the mechanical oscillation

of the AFM cantilever extends from the set-point at the flex (see

the definition of flex point in figure 2) to include the maximum

of the Bragg peak and beyond. For increasing deflections,

however, the active footprint actually diffracting the beam is

progressively decreasing, leading to the slow decay of the

modulated intensity.

In conclusion, we have shown that an x-ray beam can be

modulated in intensity by an oscillating AFM lever. The curved

shape of the lever has been shown to be a limit for intensity

modulation in this set-up. Rigid silicon single-crystal tiles

inserted in the MEMS would not present this limitation and

would maximize the diffracted intensity. In this experiment

the x-ray beam has been chopped at 13 kHz. This moderate

operating frequency is related to the resonance frequency of the

AFM lever in this proof-of-concept experiment. The resonance

frequency can be easily increased to values much higher than

100 kHz by using other types of cantilevers. A specific set-up

based on MEMS could certainly be designed so that efficient

x-ray choppers could operate at frequencies in the megahertz

regime. Considering a simple torsional rigid membrane, an

ultrafast burst can be realized. A single-crystal silicon square

membrane of 10 × 10 × 2 µm3 can easily achieve a resonant

frequency of several hundred megahertz.

The burst duration is defined as the time that the

membrane takes to cover the Bragg peak, which is a time

much shorter than the full time for a complete oscillation. If

the MEMS system is combined with a multilayer deposition

technology, the effective reflectivity can be improved and a

Bragg peak hundred times sharper than what have been shown

in this paper can be produced. A nanometric MEMS oscillation

at the resonant frequency (e.g. 400 MHz as shown for an

MEMS in [23]) is then translated into a less than a picosecond

burst. Furthermore, as already mentioned, the rigid geometry

will remove the efficiency limitation discussed in this paper

and the chopped beam will be characterized by a pulse with

the same shape of the Bragg peak.

Therefore the combination of MEMS and NEMS

technologies with an intense x-ray microbeam can potentially

open up a wealth of new experiments based on x-ray

examination of time-dependent processes requiring high

repetition speed.

References

[1] Larson B C, Tischler J Z and Mills D M 1986 J. Mater. Res.

1 144–54
[2] Chen P, Tomov I V and Rentzepis P M 1996 J. Chem. Phys.

104 10001–7
[3] Rischel C et al 1997 Nature 390 490–2
[4] Srajer V et al 1996 Science 274 1726–9
[5] Schoenlein R W et al 1996 Science 274 236–8
[6] Van Bokhoven J A, Lee T L, Dreakopoulos M, Lamberti C,

Thiess S and Zegenhagen J 2008 Nat. Mater. 7 551–5
[7] Cheng L, Fenter P, Bedzyk M J and Sturchio N C 2003 Phys.

Rev. Lett. 90 255503–7
[8] Ayanagi H, Kolobov A and Tanaka K 1998 J. Synchrotron

Radiat. 5 1001–3
[9] Ingold G, Abela R, Beand P, Johnson S L and Stanb U 2008

Z. Kristallogr. 223 292–306
[10] Plech A, Kataidis V, Istonim K and Wulff M 2007

J. Synchrotron Radiat. 14 288–94
[11] Rentzepis P M and Helliwell J R (ed) 1997 Time-Resolved

Diffraction (Oxford: Oxford University Press)
[12] Bergsma J P et al 1986 J. Chem. Phys. 84 6151–60
[13] Wark J 1996 Contemp. Phys. 37 205–18
[14] Le Grand A D et al 1989 Nucl. Instrum. Methods Phys. Res. A

275 442–6
[15] Siria A et al 2008 Nanotechnology 19 445501
[16] Cleland A N and Roukes M L 1998 Nature 392 160–2
[17] Rugar D, Budakian R, Mamin H J and Chui W 2004 Nature

430 329–32
[18] Metzger C H and Karrai K 2004 Nature 432 1002–5
[19] Zachariasen W H 1945 Theory of X-Ray Diffraction in Crystals

(New York: Dover)
[20] Fingerland A 1971 Acta Crystallogr. A 27 280–4
[21] Witmer E A 1991–1992 Elementary Bernoulli–Euler beam

theory MIT Unified Engineering Course Notes pp 5-114–64
[22] Mendels D A et al 2006 J. Micromech. Microeng. A 27 280–4
[23] Bhushan B 2007 Springer Handbook of Nanotechnology

(Berlin: Springer) pp 424–7

4





Appendix D

Radiative heat transfer at the
nanoscale

136



Radiative heat transfer at the nanoscale
Emmanuel Rousseau1‡, Alessandro Siria2,3‡, Guillaume Jourdan3, Sebastian Volz5†, Fabio Comin4,

Joël Chevrier2 and Jean-Jacques Greffet1*

Heat can be exchanged between two surfaces through emission
and absorption of thermal radiation. It has been predicted
theoretically that for distances smaller than the peak wave-
length of the blackbody spectrum, radiative heat transfer can
be increased by the contribution of evanescent waves1–8. This
contribution can be viewed as energy tunnelling through the
gap between the surfaces. Although these effects have
already been observed9–14, a detailed quantitative comparison
between theory and experiments in the nanometre regime is
still lacking. Here, we report an experimental setup that
allows measurement of conductance for gaps varying
between 30 nm and 2.5 mm. Our measurements pave the way
for the design of submicrometre nanoscale heaters that could
be used for heat-assisted magnetic recording or heat-
assisted lithography.

In the late 1960s, an anomalous radiative heat transfer between flat
metallic surfaces was reported by Domoto at cryogenic temperatures15

and by Hargreaves at room temperature9. In both cases, an increase of
the flux was measured for separation gaps in the micrometre range. A
theoretical explanation was given by Polder and Van Hove1 in the fra-
mework of stochastic electrodynamics introduced by Rytov2 a few
years previously. Further theoretical studies are summarized in two
recent reviews5,7. The theory accounts for both quantum and thermo-
dynamic fluctuations and has been successfully applied to model
Casimir forces16. Although quantum fluctuations yield a force that
agrees quantitatively with theory, thermodynamic fluctuations are
difficult to observe when measuring forces17–19. Instead, heat transfer
is only due to thermodynamic fluctuations. The first attempt to quan-
titatively detect heat transfer for submicrometre gaps was reported by
Xu and colleagues20, but was inconclusive. More recently, the
Oldenburg group10,11has demonstrated unambiguously a heat transfer
that increases as the distance decreases in the submicrometre range.
They studied heat transfer between a gold-coated scanning tunnelling
microscope and a plate of gold orGaN.Unfortunately, the geometryof
the experiment was too complex to allow a quantitative comparison
with theory. It was predicted that heat transfer between dielectric
surfaces is more efficient because of surface-phonon polariton contri-
butions21. The first measurements between two dielectric materials
were reported by the MIT group13,14. They measured heat transfer
between a sphere and a plate, both made of silica, over a range of
30 nm and 10 mm. The comparison of these results with theoretical
calculations based either on the Derjaguin approximation22 or on
sphere–sphere geometry23 led these authors to the conclusion that
the Derjaguin approximation is not valid for near-field radiative
heat transfer.

To avoid parallelism difficulties in the plane–plane geometry,
we used a sphere–plane geometry, as for recent Casimir force

measurements17–19,24 and near-field heat transfer experiments13,14.
The distance-dependent thermal conductance is given by
G(d,T)¼ w(d)/DT, where w(d) is the thermal flux through the
gap d and DT is the temperature difference between the sphere
and the plate. The plate was heated to produce a temperature differ-
ence DT between the sphere and the plate, typically on the order of
10–20 K. Although the radiative resistance of the gap decreased
significantly in the near field, it remained much larger than all
the other thermal resistances at all distances explored (30 nm–
2.5 mm). Thus, the temperature difference across the gap could be
considered to be constant as distance varied (quantitative details
are given in the Supplementary Information). The temperatures
were measured with a type-K thermocouple. The near-field radiative
heat flux was of the order of nanowatts, so conduction through air
had to be suppressed by working in a vacuum (1026 mbar). It was
also necessary to use a very sensitive fluxmeter. Following the pro-
cedure in ref. 13, we glued the sphere onto a bimorph cantilever
based on an atomic force microscope cantilever as proposed by
Barnes and colleagues25,26. Such fluxmeters can measure fluxes
variations in the order of tens of picowatts. We used commercially
available cantilevers from Veeco (length¼ 320 mm, width¼
22 mm, thickness¼ 0.6 mm) made of silicon nitride (thickness
525 nm) with a gold layer (60 nm) deposited on a chromium
layer (15 nm). The cantilever bending was measured using a fibre
interferometric technique (Fig. 1). A drawback of using an optical
readout is that part of the optical beam is absorbed and introduces
a spurious flux term. It is therefore fundamental to keep it constant
during measurement. A feedback loop keeps the distance between
the cantilever and the optical fibre constant. In addition, a thermally
stabilized laser is used to reduce the absorption fluctuations by the
fluxmeter. The cantilever is perpendicular to the plane (Fig. 1) to
avoid bending due to electrostatic or Casimir forces. The displace-
ments carried out with the piezoelectric stages from Attocube
were calibrated using an interferometric method. The z-displace-
ment steps were 7 nm.

The raw data were gathered by measuring the bending d of the
cantilever in relation to the sphere–plate distance. From Barnes
and colleagues25,26, the bimorph deformation d is assumed pro-
portional to the flux. H is denoted as the proportionality factor.
Cantilever bending was detected using the feedback voltage
applied to the optical-fibre actuator in constant-distance mode.
The contact between the plate and the sphere defined the zero of
the z-axis. Note that for distances larger than 10 mm, the thermal
conductance tends to its far-field value Gff¼ 2pR24s1(T)T3, where
R is the sphere radius, s the Stefan constant and 1(T)¼ 0.354 is
the silica emissivity evaluated using optical data from ref. 27.
We found Gff to be equal to 5.45 nW K21. The proportionality
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factor can be measured independently. We found H to be
2.30 nW nm21, with an accuracy of 2%. The conductance is the
sum of the far-field contribution Gff and the near-field contribution
Hd(d)/DT

GexpðdÞ ¼ Gff þ
H

DT
dðdÞ ð1Þ

The theoretical model of the near-field heat transfer is now dis-
cussed. The flux between the sphere and the plate is locally
described as a flux between two parallel plates separated by a dis-
tance d using the heat transfer coefficient h(d,T) derived numeri-
cally7,21. This is known as the Derjaguin approximation22

(Fig. 2a). We integrate over the whole area to obtain the theoretical
conductance:

Gtheoðd;TÞ ¼
ðR

0

h½~dðrÞ;T�2pr dr ð2Þ

where R is the radius of the sphere and ~dðrÞ ¼ d þ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

is
the local distance between the plane and the sphere surface (Fig. 2a).
For two infinite planes and for distances smaller than d¼ 500 nm,
the flux increases as 1/d2 in the short distance regime. If we retain
only this asymptotic near-field contribution and neglect the other
contributions to h(d,T), integration over the sphere surface yields a
1/d behaviour for the conductance. This approximation has been
used in refs 13 and 14. It is also the standard approach for computing
the Casimir force17–19,24 owing to its rapid decay (1/d4) with distance.
Here, we show that it is necessary to include all contributions when
dealing with radiative heat transfer. The theoretical conductance
versus the sphere–plate distance is displayed in Fig. 2b. It is clearly
seen that the conductance strongly deviates from the 1/d law for
distances larger than 10 nm. Finally, note that this approach does
not account for Mie resonances of the sphere. This is an excellent
approximation, because in the domain where heat transfer is large,
the medium is lossy, so coherence length28 along the surface and the
decay length in the medium are much smaller than the sphere
radius. For wavelengths corresponding to silica resonances27 (21 mm
and 9 mm), coherence and decay lengths are smaller than 1 mm.

The data can now be compared with the model. Although the
distance d is calibrated and the zero is given by the contact, we
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Figure 1 | Experimental setup. (Red lines are used for the optical part and black lines for the electrical part of the setup.) Reflection of the laser beam on the

cantilever produces an interference pattern. A feedback loop keeps the bimorph–optical fibre distance constant by applying a voltage to a piezoelectric

actuator holding the optical fibre. The feedback loop and the thermally stabilized laser maintain spurious heating from the laser constant, and ensure that flux

variations are only due to the conductance variations as the separation d is changed, with constant temperature difference DT between the sphere and the

plate. The plate is heated and mounted on a piezoelectric actuator. The measured signal is the voltage applied to the fibre-actuator supply.
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have found that the experimental data for different approach curves
are shifted. A microscope image of the sphere shows a characteristic
roughness of �40 nm, which is consistent with the shifts observed
between different curves. To account for this roughness, we intro-
duce a shift b when comparing the experimental data of each
approach curve with the theoretical conductance:

Gtheoðd þ b;TÞ ¼ Gff þHdðdÞ=DT ð3Þ

Figure 3 shows a comparison of the data with the model for a par-
ticular approach curve. Because the noise on the cantilever bending
measurements was below 0.1 nm, we prefer to considerH as a fitting
parameter so that the calculated curve shape and the one given by
experimental data can be best compared. The scaling factor found
following this method is H¼ 2.162+0.005 nW nm21. This value
is consistent with the calibration value H¼ 2.30 nW nm21 found
for another cantilever of the same batch but with different exact
dimensions. Indeed, the cantilever length dispersion is 10%, yielding
an H dispersion of 30%.

It is seen in Fig. 3 that the sphere–plane conductance increases
from 6 to 18 nW K21 in the range 30 nm to 2.5 mm. In this
range, the coefficient h(d,T) increases by a factor of 407 from 7.22
to 2,938 W m22 K21. We emphasize that the theory reproduces
correctly the non-trivial transition between the far- and near-field
regime in the range 30 nm to 2.5 mm. The agreement between the
theoretical conductance and the data shows that the Derjaguin
approximation is valid, in contrast with the conclusions of refs 13
and 14. As a further check of the theory, we made measurements
with a sphere of different radius. Figure 4 presents the data in log-
arithmic scales for two spheres of diameters 40 and 22 mm. It is
seen that the curves are different, indicating a non-trivial depen-
dence of the conductance on the sphere radius. The red line is the
result of the numerical integral using the Derjaguin approximation.
The dashed blue curve is the 1/d asymptotic dependence for the
sphere–plane geometry.

In summary, we have reported experimental measurements of
the radiative conductance in the near-field regime. We found that

the data agree with the theory in the range 2.5 mm to 30 nm. This
agreement with theory confirms that radiative heat transfer can be
significantly enhanced at distances in the nanometre regime. Our
results strongly support previous theoretical works and pave the
way to engineering radiative heat transfer in the mesoscopic
regime. Possible applications include nano-electro-mechanical
systems, heat-assisted magnetic recording29 or heat-assisted litho-
graphy. Further aspects of radiative heat transfer at the nanoscale
remain to be explored. For example, it has been predicted that the
flux can be quasi-monochromatic21,30 and strongly depends on
the matching between the optical properties of both materials.
The understanding of the role of non-local effects at distances
smaller than 10 nm is also a subject under examination in the
literature8,10,31, so further experiments are needed in this field.
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Supplementary materials : 

Flux and Thermal conductance for three temperature differences : 

For the sphere with radius 40 μm, we plot in Fig S1-a the flux variation when decreasing the distance 

between the sphere and the plate for three different temperatures. We plot in Fig S1-b the thermal 

conductance for the three temperature differences derived from a fit of H and b using eq. (3). The 

coefficient H used for the three curves has the same value as the same cantilever is used. It is seen that the 

three measurements yield the same conductance. 

Roughness of the sphere: 

In the comparison between the data and the theory, we have included a shift. FigS2a illustrates the 

definition of the parameter b. Fig. S2 b  is a scanning electron microscope view of the 22 µm sphere. The 

roughness of the sphere is seen. These images allows to estimate the roughness of the spheres. We found 

150 nm for the 22 µm sphere and 40 nm for the 40 µm sphere. This is consistent with the values found 

when fitting the experimental data.  

Comparison of thermal resistances. 

In this section, we analyse the thermal resistances on the experimental setup. The key conclusion is that 

the thermal resistance of the gap is always the larger resistance so that the temperature difference across 

the gap does not vary when the gap is reduced.  First of all, we can assume the system to be in steady 

state. Indeed, the sphere becomes isothermal in a typical time 0.5 ms and the bimorph becomes isothermal 

in a typical time of 2 ms whereas all other time constants in the experiment are larger than 100 ms. We 

can now use an electrical analogy with thermal resistances.  The thermal circuit is sketched in Fig. S3. It 

is composed of several resistances in series connecting the hot plate at Tp to the end of the bimorph at the 

ambient temperature at Ta.

The average thermal conductivity of the cantilever is λ=60 W/(m.K)  leading to a thermal resistance 

Rc=L/λtw = 0.4 106 K/W.  (L=320 μm, t=0.6 μm, w=22 μm). The sphere thermal conductance is close to 
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Rs=1/(λR)=40 103 K/W where R is the sphere radius. We approximate the glue by a cylinder with length 

smaller than one micron and radius larger than one micron.  Its thermal conductivity is λ=1.6 W/(m.K)  

leading to a thermal resistance smaller than Rg=L/λtw = 0.6 106 K/W. This calculation clearly 

overestimates the thermal resistance of the glue.

 The thermal conductance varies from 6 nW/K in the far-field to 18 nW/K at 50 nanometers. So thermal 

resistance vary from Rr=160 106 K/W in the far-field to Rr=53 106 K/W at 50 nanometers.  Despite the 

near-field increase, the gap resistance remains the largest resistance. It is at least two orders of magnitude 

larger than other thermal resistances in the circuit. It follows that the temperature of the sphere is equal to 

the ambiant temperature within the accuracy of the thermocouples.  

Tsd − Tp = Rr

Rr + Rs + Rg + Rc

(Ta − Tp )

Cantilever calibration

In order to calibrate the cantilever response, we have used the same experimental setup working in the 

far-field regime. The gap between the plate and the sphere was approximatively 50 μm. We measured the 

cantilever bending when increasing the temperature of the hot plate. The temperatures of the plate and the 

bimorph were measured with a type-K thermocouple. The far-field flux was found from: 

ϕ = 8πσε(T)R2T 3ΔT  where σ is the Stefan-Boltzmann constant, R the sphere radius, T=300K the 

mean temperature, ε(Τ)=0.354 the mean emissivity derived from the exact calculation between two 

infinite planes. ΔT is the temperature difference between the sphere and the plate. The conversion factor 

H can be extracted from the slope of the curve FIG S4. It is found to be H=2.30 ±0.05 nW/nm. The total 

uncertainty on H is estimated to be 10% due to uncertainties on the temperature T and the total emissivity 

ε(Τ). The former is measured using a type-K thermocouple, the latter is estimated from hff/4σT3 where σ
is the Stefan-Boltzmann constant, T the room temperature and hff is the far-field value of the heat transfer 

coefficient between two infinite planes computed using optical properties of glass from ref 27. The 

proportionality factor value depends on each cantilever. The cantilever used for the data presented in Fig. 

© 2009 Macmillan Publishers Limited.  All rights reserved. 



NATURE PHOTONICS | www.nature.com/naturephotonics 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHOTON.2009.144

3 has not been calibrated. H/ΔT was obtained by fitting the data according to equation (3). Using 

ΔT=10,17,21 K, we found H=2.17; 2.16; 2.14. The dispersion on these values is consistent with the 

thermocouple accuracy.  

Supplementary figure caption : 

FIG.S1: a) : Flux versus distance for three temperature differences. The 

sphere diameter is 40 μm. b): Thermal conductance derived using eq (3) 

from three different sets of measurements. The same value of H was used 

for the three curves. 

© 2009 Macmillan Publishers Limited.  All rights reserved. 
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FIG.S2: a) Definition of the fitting parameter b.

b) : SEM picture of the sphere. The sphere diameter is 22 μm.The roughness 

is typically 150 nm for the 20 μm (diameter) sphere and 50 nm for the 40 μm

(diameter) sphere. 

© 2009 Macmillan Publishers Limited.  All rights reserved. 
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FIG.S3 : Thermal equivalent circuit of the experiment. Tp is the hot plate 

temperature. The end of the bimorph is at the ambient temperature Ta. Tsd

denote the temperature of the sphere surface. Rr denotes the radiative thermal 

resistance of the gap, Rs the sphere thermal resistance, Rg the thermal 

resistance of the glue and Rc the cantilever thermal resistance.

© 2009 Macmillan Publishers Limited.  All rights reserved. 
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FIG.S4 : Fluxmeter calibration. This figure presents the cantilever bending 

versus the thermal flux when the sphere is in the far-field regime.  The distance 

between the sphere and the plate is around 50 μm. The conversion factor H is 

extracted from the slope of the fit. Its value is 2.30 ±0.05 nW/nm. The bars in 

this curve are due to the thermocouple reader precision. 

© 2009 Macmillan Publishers Limited.  All rights reserved. 
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Résumé

Les Micro et Nano Electro Mechanical Systems (MEMS et NEMS) font
partis des meilleurs candidats pour les mesures d’interactions á l’échelle
nanométrique. La résolution en force de l’ordre de l’attonewton a été ex-
ploitée avec succès aussi bien pour mesurer le poids de molécules uniques
que pour la mesure du spin d’un électron unique.
Les NEMS et les MEMS sont généralement des systèmes fabriqués à partir
de composants sub-microniques l’un en face de l’autre. Lorsque leur dis-
tance atteint l’échelle sub-micronique, phénoménes généralement négligés,
doivent être pris en compte lors d’applications microscopiques. Les inter-
actions mécaniques entre deux surfaces séparées de moins d’un micron sont
régies par des forces qui, dans des systèmes macroscopiques, sont souvent
négligeables.
Dans ce travail de thèse, nous étudions les forces d’interaction entre sur-
faces séparées par une distance allant de quelques nanomètres à plusieurs
micromètres.
Premièrement nous traiterons du problème des forces hydrodynamiques agis-
sant sur des micro-structures oscillantes en environnement visqueux. Nous
montrerons que l’effet d’amortissement d’un fluide confiné dépend de la taille
du confinement. Nous étudierons comment cet effet de confinement peut
modifier les propriétés de cet oscillateur mécanique.
Dans un second temps nous poserons le problème des forces optiques agis-
sant sur les micro-oscillateurs mécaniques. Par l’utilisation de l’absorption
et de la diffraction des faisceaux de rayons X nous verrons que les effets
habituellement observés en lumière visible le sont aussi par rayons X. Nous
montrerons que les MEMS et potentiellement les NEMS sont des systèmes
adéquates pour le développement de nouveaux outils pour les techniques de
la lumière Synchrotron. Enfin nous étudierons la radiation thermique entre
deux surfaces à une distance micronique et sub-micronique où la contribu-
tion des composantes champs proche ne peuvent plus être négligées. Nous
présenterons les mesures de radiation thermique entre deux surfaces de verres
amenant une comparaison avec la théorie de la radiation thermique basée sur
l’électrodynamique stochastique.
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Résumé

Micro and Nano Electro Mechanical Systems (MEMS and NEMS) are among
the best candidates for the measurement of interactions at the nanoscale.
Resolution in force in the range of attonewton has been successfully exploited
for the weighting of single molecules or the measurement of the spin of a sin-
gle electron.
NEMS and MEMS are generally mechanical devices made from submicron
components facing each other. When the distance between the components
reaches the sub-micron scale, phenomena generally neglected during macro-
scopic applications have to be taken into account. For example, the interac-
tion mechanisms between the two surfaces moving at sub-micron separations
are mediated by forces that, in macroscopic devices, are often irrelevant.
In this thesis work we study interaction forces between surfaces when the the
gap separating them is in the range from tens of nanometers up to several
micrometers.
First we address the problem of hydrodynamic forces acting on micro-structures
oscillating in viscous environment. We show that the effect damping of a con-
fined fluid is depending by the gap size of the confinement cavity. We study
how this confinement effect can modify the properties of the mechanical os-
cillator.
Second we address the problem of optical forces acting on micro mechanical
oscillators. Using absorption and diffraction of X-ray beams we will see that
effects usually observed using visible light can also be observed using X-rays.
We show that Micro and possibly Nano Electro Mechanical System can be
suitable for developing new tools in the domain of Synchrotron light tech-
niques.
Finally we study the thermal radiation between surfaces when the gap is the
micron and sub-micron scale where the contribution of near field components
cannot be neglected. We show measurement of thermal radiation between
surfaces of glass providing a comparison with the theory of thermal radiation
based on stochastic electrodynamics.
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