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Présentation générale

Cette thése est consacrée & ’étude de ’approximation hydrostatique de Stokes ainsi qu’a 1’étude
d’une équation dégénérée posée dans le demi-espace Ri, puis dans un ouvert ) quelconque. Elle se
divise en trois partie.

Dans la premiére partie de la thése, nous donnons de nouveaux résultats sur ’approximation hydro-
statique de Stokes. Plus précisément, nous justifions 'existence et 'unicité d’une solution faible lorsque
l’on considére des conditions aux limites et des données non homogénes. Nous prouvons ce résultat
en réduisant I'approximation hydrostatique de Stokes & un systéme de type Stokes, en établissant un
lien trés proche entre ces deux modeéles. Dés lors, nous sommes amenés a étudier ce dernier modéle,
et & démontrer 'existence et 'unicité d’une solution faible, en considérant, ici encore, de nouvelles
situations.

Comme nous le justifierons plus tard, la difficulté liée a I’étude de ces deux modéles concerne la géo-
métrie du domaine  que 'on considére, voir (1). Pour travailler dans un domaine le plus générale
possible, c¢’est-a-dire avec une profondeur qui peut tendre vers 0, nous sommes amenés a considérer
un cadre fonctionnel particulier, constitué d’espaces avec poids. Enfin, le travail effectué dans cette
premiére partie s’inspire de résultats déja existants que nous nous permettrons de visiter & nouveau.
Par ailleurs, nous nous sommes intéressés & la question de la régularité des solutions faibles de 1’ap-
proximation hydrostatique de Stokes, toujours dans un domaine ou la profondeur tend vers 0. Le
probléme reste ouvert, méme en considérant le cas académique de conditions de Dirichlet homogénes.
C’est alors en voulant adapter des résultats déja existants, que nous somme naturellement conduit &
étudier une équation dégénérée, comme celle que 'on présente dans la suite de cette thése.

Nous ne dévoilerons plus de détails sur cette premiére partie, puisqu’une introduction trés détaillée de
cette partie est donné dans la suite.

Les parties 2 et 3 sont consacrées a ’étude d’un probléme elliptique avec un coefficient de diffusion
qui peut dégénérer. Ce type d’équations intervient également dans des problémes géophysiques, que ce
soit des questions de modélisation de circulation globale, mais aussi dans des problémes d’infiltration
et de milieux poreux. La partie 2 est la plus significative de ce travail. Elle est consacrée au demi-
espace R avec un coefficient de diffusion en 1/z3, voir (4.38). Comme nous I’expliquerons dans une
introduction détaillée, cette équation sort du cadre d’étude standard ou le poids, ici x3, est borné a
I'infini. Nous construisons donc un cadre fonctionnel adéquat et qui prend en considération des poids
non bornés 4 l'infini et tendant vers 0 au bord de Ri. Ces espaces, et d’autres intervenant dans la
résolution de I’équation de Laplace dans Ri, sont alors adaptés a la recherche d’existence et d’unicité
de solutions faibles de ce probléme. Nous établissons aussi deux résultats de régularité des solutions
faibles.

Certaines des idées mises en oeuvre dans la partie 2 nous ont permis, dans la troisiéme partie et derniére
partie de la thése, d’étudier le probléme plus général (4.39). La difficulté du cadre que ’on choisit ne
permet d’avoir des résultats aussi optimaux que ceux que 'on obtient dans le cas du demi-espace. Cela



étant, on établit un cas d’existence et d’unicité de solution faible et un résultat de régularité associé.

Le travail effectué dans la partie 1 fait ’objet d’une publication de niveau A accepté derniérement
dans la revue scientifique Differential Equations and Applications. Celui de la deuxiéme partie fait
lobjet d’un article en cours de soumission. C’est pourquoi nous avons choisi d’écrire la suite de ce
manuscrit en anglais.



Part 1

New conditions for the hydrostatic
Stokes approximation






Introduction

In the first part of the thesis, dedicated to the study of the hydrostatic Stokes approximation, let us
consider a bounded domain € C R? defined by

Q={z=(2,23) €R*/2’ €wand —h(z') <23 <0}, (1)

where w C R? is a bounded Lipschitz-continuous domain and where b is a positive Lipschitz-continuous
map over w, chosen such that Q has a Lipschitz-continuous boundary I'.

The boundary T' is split into three parts, each one with a non negative measure: the surface I'g, the
bottom I'p , and sidewalls I'y,, defined by:

I's=wx {0}, T'p={,—h)) /2 ew}, (2)
I'y={zeR®/2’ € dwand — h(z') < z3 <0}.

Finally, we denote by n the unit outward vector normal to T'.

Figure 1: The domain 2

ccu:]“S '

The hydrostatic Stokes approximation with homogeneous conditions, is a model used in oceanog-
raphy. As we will see later, lots of study have been dedicated to this problem or to generalized
versions combining non linear and time dependent cases, or with additional unknowns other than
the ones we consider in this work. Given f' = (fi, f2) : © — R2, it consists in finding a velocity
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u = (u, uz) : @ — R3 and a pressure p : Q — R solution to:

—Au' +V'p=f inQ, (3)
Ip :

871'3 =0 1in Q, (4)

V-u=0 inQ, (5)

(6)

!’

w =0, wusng3=0 onl. 6

In these equations, V' = (0;,,0x,)! is the gradient operator with respect to the variables z; and 5.
Then, we denote by A = 83? + 8?% + afg the Laplace operator. Equations (3) are the horizontal
momentum equations. Equation (4) is called the hydrostatic pressure hypothesis.

Regarding to the usual Stokes problem, the disappearance of the term —Auwug in (4) confers to
(3)-(6) a degenerate nature. Therefore, we expect from the vertical velocity us to be less regular than
the horizontal velocity u’, which explains why us and u’ have different boundary conditions. This
comment will be clearly justified in the following.

The study of system (3)-(6) is more or less difficult depending on whether the mapping h satisfies
the additional property: there is a constant o > 0, such that

inf h(z') > a. (7)

' Ew

If it is the case, we shall say that  has sidewalls, and then the piece of boundary I'y, is not empty.

Let us briefly recall two approaches, that we can find in the literature, and that enable the study of
(3)-(6). Firstly, Problem (3)-(6) is the limit, in a sense to be precised, of an anisotropic Stokes system
set in a thin domain?. Indeed, let ¢ €]0, 1], and consider the thin domain ). defined as in (1) by

Q. ={(2/,2) eR® /2’ €wand —eh(z') < 2 <0}. (8)

The open set (). is bounded, connected and has a Lipschitz-continuous boundary I'.. Next, for a
datum F = (F’, 0) : Q. — R3 let us introduce the following homogeneous Stokes system:

—Ave+Vr.,=F, V-v=0 1inQ,,
v=0 onl,,

9)

where A; = 92, + 82, + €202, stands for the anisotropic Laplacian operator. In the sequel, we want to
1 2 3
derive from Problem (9) a limit problem when e goes to 0. Therefore, let us proceed to the following
scaling
x3 = z/e,
and let us set

we) =o', 2, )= B ey —n ), fw) =P )

The new unknowns u. and p. are defined in the domain Q (see (1)), and are formally solution to the
following system:
A / / _ ! 2 I3 8p5 _ _ .
—Au. +V'p. = f, *5A“3+ax =0, V-u.=0 in Q,
3

(10)
u:. =0 on I

0
I'Throughout the report, we denote by the symbol Oz, the operator Y in the text sentences.
. Ti
2A thin domain has really different horizontal and vertical scales.
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Then, by establishing sufficient energy inequalities, we get an asymptotic problem when ¢ goes to zero,
that is problem (3)-(6).

The reader interested in the physical justification of such procedure can refer to the thesis of P.
Azérad [3] where he studied the Navier-Stokes equations in thin domains. The reader will find a
complete description of the above process in a more general situation (see Chapter 2 of [3]). In a few
lines, let us mention that P. Azérad considers the anisotropic time dependent Navier-Stokes equations
instead of (9), and renormalizes it, as we have done it to get (10) from (9). As he explains, the
renormalization has also physical sense, as well as passing to the limits when ¢ goes to 0.

As mentioned above, P. Azérad has been closely interested in the asymptotic analysis of Navier-
Stokes equations in a thin domain. In his thesis [3], he refers to the works of O. Besson, M. R.
Laydi and O. Touzani [7, 9], who initiate the mathematical study of the approximation of Stokes
and Navier-Stokes equations. In [7], the authors derive from the 2D version of (10) a limit problem
characterized by two variational formulations, and therefore, prove the existence and uniqueness of a
weak solution to the 2D hydrostatic Stokes equations. The previous work is improved in [9], where the
anisotropic stationary Navier-Stokes equations is considered in a thin domain as well as the hydrostatic
approximation of these equations. After establishing some estimates of the viscosity and convective
terms, appearing in the momentum equations, they prove the existence of a solution of the hydrostatic
approximation as a limit of the anisotropic Navier-Stokes equations.

The work of P. Azérad clearly enriches the mathematical and numerical analysis of the previous
ones. In addition to give a complete and detailed physical background, the reader will see, in Chapter
3 of [3], the well-posed-ness of the hydrostatique Stokes problem by the mean of an analysis which
is not based upon a limit process. The reader will also find a discretization of this problem relying
on a stable hydrostatic finite element method. In another chapter the author considers the case of
time-dependent linearized Navier-Stokes equations with hydrostatic approximation. The adding of
the time dependence, even for the linearized version, brings real difficulties that P. Azérad handles
by using a compacity method, based on energy a priori estimates. To finish, a complementary work
is done with F. Guillén Gonzalez [4, 5], using a limit process, on the hydrostatic approximation of
the time-dependent incompressible Navier-Stokes equations. They prove a convergence and existence
theorem for this model by means of anisotropic estimates and a new time-compactness criterion.

The second approach consists in reducing system (3)-(6) to the Stokes-type system (13). Indeed,
the simplifications of (3)-(6) arise from the hydrostatic pressure hypothesis:

o .
87333 =0 in S), (11)

ensuring that pg, the pressure at z3 = 0, is in fact the real unknown. Moreover, by integrating with
respect to x3 the incompressibility equation:

V-u=0 in, (12)

and taking into account the boundary conditions over ug, it appears that the vertical velocity ug is
given by the horizontal velocity w’. In this case, the equations of (3)-(6) are reduced to the following
system:

—Au' +V'ps = f in Q,
0
\4E / u' (2, x3)drs =0 in w, (13)

—h(x’)
u =0 onT.
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Then, we get back to uz and the global pressure p by setting:
0
T = (xlv I3) € Q? UB(I) = / vl ' ’u’l(x,v 5) dga p(l’) = pS(‘T/)' (14)
T3

Problem (13) is a simplified version of the more realistic model of the Primitive Equations, denoted
by PEs in the sequel.

The study of the PEs is of real interest as we propose to detail it in the following lines. In a general
way, studying system (13) or the PEs yields real difficulties when the mapping h vanishes on a non
negligible part of dw. This explains why most of the work dedicated to their study uses assumption
(7).

To our knowledge, the mathematical study of the PEs was initiated by J.L. Lions, R. Temam and
S. Wang in [43], where the authors address the existence proof for global weak solutions and local
strong solutions, and of time analyticity of these strong solutions.

The existence proof of weak solutions, given in [43], is reviewed by R. Lewandowski in [42] with
another approach, using the principle of truncated transports. In addition to give a complete mod-
elization of the PEs, R. Lewandowski studies other realistic turbulence models and introduces, again
in [42], a coupled model of the PEs with the geostrophico barotropic system. We can also find in [42]
the study of an improved hydrostatic equation, which is also the subject of the paper [20].

In the work of R. Temam and M. Ziane [48], we can find a uniqueness proof of the weak solution
to the PEs, as well as a regularity result. More recently C. Cao and Edriss S. Titi address in [17],
the global existence and uniqueness of strong solutions to the 3D viscous PEs, for which local-in-time
strong solutions, with H' data of arbitrary size, were obtained earlier by F. Guillén Gonzélez, N.
Masmoudi and M. A. Rodriguez-Bellido in [30]. See also [33, 34, 40, 41] for complementary results on
the study of strong solutions.

Other works are dedicated to the study of the 2D case, see for example [12, 13, 14, 31, 32, 36]. To
finish, we also refer to the PhD Thesis of M. E. Petcu [44] who has improved the above results.

We would not be complete without mentioning that other methods have been investigated to study
the hydrostatic Navier-Stokes equations. In [27], F. O. Gallego uses a suitable monotone regularization
from which follows a new proof of the existence of weak solutions to the original problem. The proof
relies on a version of De Rham’s lemma, that F. O. Gallego establishes in [26]. Then, E. Grenier
gives in [29] another approach, consisting in deriving the homogeneous hydrostatic equations starting
from 2D Euler equations, following for instance [10]. To finish, Chemin et al. [21] have considered the
three-dimensional Navier-Stokes equations with vanishing vertical viscosity. Assuming that the initial
velocity is square-integrable in the horizontal direction and H® in the vertical direction, they prove
existence of solutions for s > 1/2 and uniqueness of solutions for s > 3/2. In addition to this work, D.
Iftimié [38] has closed the gap between the existence and uniqueness, proving uniqueness of solutions
for s > 1/2.

Among the extensive work done on the hydrostatic approximation of the Stokes or Navier-Stokes
equations, the problem is open to consider non homogeneous boundary conditions on the vertical
velocity usg or/and a compressible condition. This is precisely to what is dedicated the first part of
this thesis. Given f' = (f1, fo) : Q2 —=R% ®:Q - R, and g = (¢, g3) : ' — R?, ® and g satisfying
adequate compatibility condition, see (4.21) or (4.11), we are interested in the study of the following
system:

—Au' +V'p=§f, @:O, V-u=® in Q
6373

u' = g/7 Bug = g3 on Fa

(SH)
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where Bug defines one of the following Dirichlet boundary conditions:
ug =gs3on ', or wugng=gsonl. (15)

Our principal preoccupation is to establish the existence and uniqueness of a weak solution to the
generalized System (SH). Our work enables us to consider a domain © with no sidewalls, and hence
a mapping h vanishing on a non negligible part of dw. Therefore, we will consider an ingenious array
of weighted spaces, where the weights depend on h. Our study is based on results already existing,
such as the existence and uniqueness of the weak solution to (3)-(6) and (13) in the Hilbertian case,
and we allow us to revisit it along this work.

As we shall see it later, it is possible to reduce (SH) to the Stokes type system (SH )y, defined
below. More precisely, we will prove that the unknowns »’ and p are solutions to the following system:

—~Au' +V'ps=f inQ,
0
(SH)pr { V/ / u'(2), x3)drs = ¢ inw,

—h(z')
u =g onl.

Moreover, we will also prove that we can recover us and p thanks to this two unknowns only, by
establishing a relation close to (14). This is why, a part of this work is dedicated to the existence and
uniqueness of a weak solution to (SH)s, always in a domain  with no sidewalls. Here again, the use
of weighted functional spaces is to take into consideration.

The first part of the thesis is divided into four chapters. In order to make the reading of our work
easier, we propose in the sequel to detail each chapter with a short sum up.

Chapter 1. In a first place, we give some notations and we set the basic functional framework of
the Sobolev space H'(£2). We also rewind the definition of the space Héé2(1"0) when I'y C T
Throughout the work, we need to compute integrals over I'. For given geometry of {2 see (1), any inte-
gral defined on I'g or I'g can be replaced by one defined on w. We gather few elements of computation
here.

Finally, we recall some properties of spaces related to the divergence operator and the well-known
lemma of De Rham, see Lemma 1.2.

Chapter 2. This chapter is dedicated to the study of weak solutions to System (SH). Our
work enables to consider a domain {2 with no sidewalls along dw, hence to assume that & is identically
equal to 0 on a non negligible part of Jw. Indeed, we will introduce a framework based on weighted
Lebesgue spaces (see (2.3) and (2.27)), with weights depending on the mapping h.

Firstly, we review in Proposition 2.12, the existence and uniqueness of a weak solution in the homoge-
neous boundary conditions case (13), by following the approach introduced in [27]. The proof we give
remains essentially on the existence of De Rham-like lemma, see Lemma 2.9; it is therefore necessary to
study basic properties of the operator M introduced in (2.4) and recall some notations on distributions
independent on z3 that we can find in [27].

Secondly, we consider the new situation to lift the conditions:

V-Mu =¢inw, v =g onl,

where ¢ € Lf/\/ﬁ(w) and g’ € Hll//\zm(F)Q, see (2.3) and (2.27), and satisfy the good compatibility

condition (2.34). To lift the above conditions, see Lemma 2.16, we will follow [28] by establishing
beforehand an isomorphism related to the operator V' - M, see (2.13). Then, since the homogeneous

15



case is already solved in Proposition 2.12, we deduce from the above lifting an existence and uniqueness
proof of a weak solution to System (SH )y, see Theorem 2.17.

Chapter 3. In Chapter 3, we study the weak solutions to (SH) in the case where ug satisfies the
following boundary condition:
usng = Oon I (16)

To begin with, we define the boundary condition (16) by introducing the anisotropic space H(0y,, 2)
and by reviewing useful properties related to this space [47].

Then, we review the existence and uniqueness of a weak solution to (3)-(6), by following the two
different approaches given in introduction. In the first one, which leads to Theorem 3.4, we give a
complete and justified asymptotic analysis of the anisotropic Stokes system (10). In the second one,
we give the mathematical justification to reduce Problem (3)-(6) to (13), see Proposition 3.16, which
is already solved in Proposition 2.12.

To finish, we will reduce the more general conditions:

Vu=dinQ, v'=g onl, usnz=0onT,

to the following ones:
V-Mu =¢inw, v =g onl,

see Lemma 3.18, in order to solve (SH) always in the case of the boundary condition (16).

Chapter 4. It is devoted to the existence and uniqueness of a weak solution to the general model
(SH) in the case where ug satisfies one of the non homogeneous conditions (15). Firstly, we investigate
the natural case of the boundary condition:

usn3 = gz on I (17)

By considering us in the space Hp(0,,, ), see (4.14), we prove in Proposition 4.4 that (uszng)|r
belongs to L?(T"). Therefore, by establishing new properties on the operator M and F', we reduce, in
a suitable situation, the conditions:

Vu=dinQ, v =g onl, usnz=gsonl,

to the following ones:
V' -Mu =¢inw, u =g onTl. (18)

As a consequence, we prove that solving (SH) reduces to solve (SH)ys, from which existence and
uniqueness of a weak solution is already known in Theorem 2.17. This constitutes an existence and
uniqueness proof of a weak solution to (SH) in the case of the boundary condition (17).

Then, we will consider the unexpected situation of the boundary condition:

uz =gz onI'. (19)

In the same way that we have handled the case of the boundary condition (17), we would like to reduce
the conditions:
V-u=®inQ, u=gonl,

o (18), for a different datum ¢, and then use Theorem 2.17. In Proposition 4.14 and under assumption
(7) only, we will see that if uz € H(9,,, ) then ug|r belongs to the weighted space L?(T, |n3|do)
defined in (4.24). Then, we will make the above reduction in Lemma 4.18, by proving additional
results such as Proposition 4.16 and Proposition 4.17, establishing one more time new properties for
the operators M and F. We therefore give an existence and uniqueness proof of a weak solution to
(SH) in the case of the boundary condition (19), and in the situation where € has sidewalls along Ow.
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Chapter 1

Basic functional framework

This chapter gathers notations, notions and results often used in this thesis. At first place, we recall
basic properties related to the Sobolev space H'(Q) and its space of traces H'/2(I"). We will also
review the definition of the partial traces space Holé 2(F0) for any I'y C T" with positive measure. Then,
we will give some requirements to compute surface integrals on I', taking into account the geometry
of 2 (2) and the properties of the unit outward normal vector n. We will establish therefore the
important relations (1.5) and (1.6). To finish, we will recall an essential result in the Stokes problem
theory, see Lemma 1.2, coming with the isomorphisms given in (1.8) and a lift operator in Proposition

1.3.

1.1 Notations and spaces

We define D(£2) to be the linear space of infinitely differentiable functions, with compact support in
Q, and D’'(Q) the space of distributions. Then we set:

D) ={¢la /v € DR)}.
Let us recall that L?(£2) denotes the space of the (almost everywhere classes of) measurable functions
u such that fQ u? dx < 0o, which is a Hilbert space for the usual norm:

1/2
lll oy = ( [ dw)
Q

We also mention the space L3(Q) = {u € L?(Q)/ [,udz =0}, which is a closed subspace of L*((),
and isomorphic to the quotient space L?(£2)/R.

We denote by H'(Q) the Sobolev space {u € L?(Q)/Vu € L?(Q)*} which is a Hilbert space for
the norm: 1
2 2
lull sy = (el + IVl ) -

Since  has a Lipschitz-continuous boundary T', we can define a trace u|r for any function u € H* ().
To this purpose, we denote by do the surface measure induced by the measure of Lebesgue dzx, and
we denote by L?(T") the space of do-measurable functions p : I' — R square integrable for the surface
measure do, endowed with the norm:

el ey = € / 12 do)' /2.
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Therefore, and since D(Q) is dense in H'($), the mapping

u — ulr,
defined on D(Q), can be extended in a unique way to a linear and continuous mapping, denoted in
the same way, from H'(Q) into L?*(T'). Moreover, if u and v belong to H'(£2), it satisfy the following
Green’s formula:

uavdxz—/vaudx—i—/uvmda, 1<i<3.
Q afL'z Q axz r

For convenience, we denote by H'/?(T) the space of traces of H'(2) functions:
HY(I) = {pe L*)/3ue H'(Q) such that u = pon T} .

Let us recall that H'/?(T) is a Hilbert space for the norm:

il 172y = i {1l 2y /w € H'(Q), u=pon T},

and that it is continuously embedded in L?(T): there is a constant! C' > 0 depending only on Q such
that:

Ve H'2 (), lulpay < Cllull ey -

Then, we consider the space
H3(Q) =D(Q)" ={ue H(Q) /u=00onT},
and we also introduce the space of distributions H~1(£), as the dual space of H{ ().

To finish, let us recall some definitions and properties of special spaces of traces. We refer to [22]
for a detailed study of these spaces. For an open set I'y C I with a positive measure, we define the
space:

Hi (Q)={ue H'(Q) /u=00nT\I'},

which is a Hilbert space endowed with the standard H'(Q2) norm. Then, we denote by H&f(I‘o) the
traces space of Hf, (Q) functions:

Hégz(Fo) ={ge L*(Iy)/3ue Hy, () such that u=gon T},
which is a Hilbert space for the norm:
190137200y = 08 { el 71y /0 € HE, () and w =g on Ty}

Finally, we introduce H~1/2(Ty) as the dual space of HOIéQ(FO). Let us also recall that Hééz(l"o) is
dense in L?(Tg), so that L?(I'y) can be identified to a subspace of H~'/2(Ty).

I'We will often use the character C' to denote any positive constant depending only on €.
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1.2 Surface computations

In this paragraph, we give some requirements to compute surface integrals such as:
//mida, 1<i<3,
r

where the function u belongs to the space L*(T') (L!(T") being defined similarly to L?(T")). We introduce
beforehand the following important notations. For any do-measurable function p: I' — R, we define
the functions pg and pup by setting:

/

v ew, ps(a) =p@,0), ppa)=p@’,—h("). (L.1)

Firstly, observe the following proposition, which enables to replace any integral defined on I'g or
I'p by one defined on w.

Proposition 1.1. Let p = 1 or 2. The mapping p — (us, pup) is linear and continvous from LP(T)
into LP(w)2. Moreover, one has:

/ /LdO'://LdeE/ and / udJ:/uB(1+\VlL\2)1/2dx’. (1.2)
I's w I'p w

Proof. Let p = 1 or 2. Notice that the integrals in (1.2) are well defined since w is bounded. Then,
Proposition 1.1 follows from a change of variables, given the geometry of Q, see (2). O

Secondly, and given the geometry of 2, see (2), note that n; satisfies for i = 1, 2:

oh
n; =0on FS, n; = 1 on FL7 (nl>B(1+‘Vh‘2)l/2 :_87 in w,
and also that the third component fulfills:
ng=1onTg, n3=0onTy, (ns)p(l+|Vh]*)/?=—1in w.

Therefore, if we combine these properties to Proposition 1.1, we obtain immediately, for u € L*(T),

the following relations:
Oh
ido = — dr’, i=1,2, 1.3
/FB/m o /wugaxix i (1.3)

/ ;mgdoz/usdx', / ungda:—/ugdx’. (1.4)
I's w I'p w

and finally, we have proved that for p =1 or 2:

Vu e LP(T), / un; do = /
r

Vu e LP(T), /ung do = / ws dr’ —
r

=1, 2 1.
axl ! T (1.5)

UB dL (16)

o [
I
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1.3 Properties of spaces related to the divergence operator

For any vector field v = (v1, va, v3), we define the divergence operator by:

3 o
d1vv:V~v:;axi.

In this work, we will often use the lemma of De Rham, see Lemma 1.2, which is an important tool in
the Stokes problem theory. This lemma is an adaptation of a powerful and difficult theorem, originally
proved by G. De Rham in [23], and which says essentially:
If a distribution field T € D'(Q)? satisfies:
Vo € D(Q)? with V- =0, (T, @)piays, pays = 0;
then T = Vp for some distribution p € D'(Q).

The adaptation we give now is proved in [28], see Lemma 2.1 page 22 of [28], with a different
approach inspired by L. Tatar in [46]. Beforehand, let us introduce the space:

V={veH)Q)?®/V - v=0inQ}. (1.7)
Lemma 1.2. If f € H=Y(Q)3 satisfies:
YoeV, (f, v>H*1(Q)37Hé(Q)3 =0,

then, there is p € L?(Q) such that Vp = f in Q. Since Q is connected, p is unique up to an additive
constant.

Observing that for any v € H}(2)? one has:

/V-'vdx:O,
Q

the range space of the divergence operator div is contained in LZ(Q). This observation and Lemma
1.2 yield two isomorphisms:

V:L*(Q)/R—V® and div:V*'— L2(Q), (1.8)

established in Corollary 2.4 page 24 in [28]. Here, V' denotes the orthogonal of V' for the scalar

product:
3
/ Vu : Vvdx:Z/ Vu; - Vv, dzx,
Q parirAe)

and V° denotes the polar space of V:

Ve — {f € HHQ)® /Yo € V. (£, 0) g (s iy = 0}. (1.9)

We finish this paragraph by giving a lift operator of boundary values, which is a consequence of
the second isomorphism in (1.8). We repeat here the statement of Lemma 2.2 page 24 of [28].
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Proposition 1.3. Let ® € L?(Q) and g € H'/?(T')? satisfying the compatibility condition

/<I>dm=/g~nda. (1.10)
Q r

Then, there is uw € H'(Q)3 such that:
Vu=®inQ, u=gonl, (1.11)

and the following estimate holds:

Il < C (Il + gz ) -
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Chapter 2

Weak solutions to System (SH)),

2.1 Introduction
Let f': Q — R? and consider the following problem to find u’ : @ — R? and pg : w — R such that:

—Au' +V'ps = f in Q,
V-Mu' =0 inw, (2.1)
u' =0 onT,

and where the operator M is defined after in (2.4). Initial studies on Problem (2.1) prove that existence
and uniqueness of a weak solution relies essentially on the existence of an inf-sup condition, see Remark
2.14. More recently, a new approach is given by F. O. Gallego in [26], where the authors establishes
a version of De Rham’s Lemma (see Lemma 1.2), adapted to this Problem or to a more general one,
issued from the PEs, that we pose in (2.14).

In this chapter, we revisit the existence and uniqueness of a weak solution to (2.1), by following
this new approach. Then, we go further by considering a new situation. More precisely, we establish
an existence and uniqueness proof of a weak solution to the following problem:

—~Au' +V'ps=f inQ,
V' -Mu' =¢ inw, (2.2)
u' =g onT,

where ¢ : w — R and g’ : ' — R? are suitable given data. Recall that we have denoted this problem
by (SH)ys in the introduction of Part L.

An outline of Chapter 2 is as follows. In Section 2.2, we will give a complete and easier proof of a
version of De Rham’s Lemma, adapted from [26], and stated in Lemma 2.9. To this purpose, we will
use an appropriate functional framework, adapted to a general domain € for which (7) does not hold.
Firstly, and after having introduced some suitable weighted spaces (see (2.3)), we will present in (2.4)
the operator M and will study in Proposition 2.2 some continuity properties of this operator. Then,
we will need to recall some results already proved in [26] concerning distributions independent on the
xz—variable (see Definition 2.4), such as a representation result in Proposition 2.5; this result explains
that we can associate to any distribution 7" independent on the x3—variable ; a distribution .S on the
surface w. As we will see, in Proposition 2.7 or in Proposition 2.8, the regularity of the distribution S
depends on the one of T. The result in Proposition 2.8 concerns a new situation, not investigated in
[26], from which will follow the expected version of De Rham’s Lemma stated in Lemma 2.9.
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We will complete Section 2.2, by establishing new isomorphisms related to the operators V' and V’'- M,
see Lemma 2.9, in order to solve Problem (2.2), for which to our knowledge we initiate the study.

In Section 2.3, we will apply Lemma 2.9 to give an existence and uniqueness proof of weak solution
to (2.1), in Proposition 2.12. Then, we will see how the second isomorphism of (2.13) and the particular
choice of a weighted space for the datum g’ (see (2.27)), will enable us to lift the following conditions:

V' -Mu' =¢inw, u =g onQ,

and therefore to solve the new problem (2.2).

2.2 Mathematical foundation

Let h be a positive Lipschitz-continuous mapping on w. In the most part of the work, we do not need
assumption (7), which enables us to consider a mapping h that vanishes on a non negligible part of
Ow. In this case, we offset the degeneracy of the domain Q by working with weighted spaces. Let us
start this section by introducing for o € {—1/2, 1/2}, the following weighted Lebesgue’s space:

Lia(w)={p:w—R/h*p € L*(w)}, (2.3)
which is a Hilbert space for the norm

1Pl L2, () = 1Pl 20y -

Among the properties that possesses these spaces, note that the following continuous embeddings hold:
12, (@) LA(w) = L2p(w),

and that the space D(w) is dense in L?.(w). As a consequence, the dual space of L7.(w) can be
identified to L7 _, (w).

Remark 2.1. Any measurable function p defined on w can be defined in Q by setting p(z) = p(z'),
for x € Q. In order to avoid confusions, we shall identify a function p defined on w with one defined
on () by setting

reQ, pz)=p).
Therefore, note that p belongs to Lf/ﬁ(w) if and only if p belongs to L?(Q2) and also that

HPHL?ﬁ(w) = ||Z7HL2(Q)-

Then, let u be a function defined in Q. In order to study System (2.15) or (2.21), it is necessary to
introduce and study the following operator:

0

¥ €w, Mu(z) = / u(z’, x3) das. (2.4)
,h(m/)

Let us briefly recall that if ¢ € D(Q), then My € C'(w), since one has for i =1, 2 :

Op oh

81‘) + %((ph‘)g in w. (25)

- (Mig) = M
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Then, if ¢ € D(Q), the following relation holds:

0

M) = M

amZ_) in w. (2.6)

The following proposition gives the first properties of the operator M. In particular, we extend relation
(2.5) and (2.6) to Lebesgue and Sobolev functions.

Proposition 2.2. Let h be a positive Lipschitz-continuous mapping on w. The operator M is linear

and continuous from L2(Q) into Lf/\/ﬁ(w), from HY(Q) into H'(w) N Lf/\/g(w), and one has for
i=1,2:

0 ou oh
1 ; .
Yu € H (), oz, (Mu) = M(axl) + oz, (ulr)p in w; (2.7)
Yu € H}(Q), ai« (Mu) = M(gs) in w. (2.8)

Proof. Let u € L?(9)). The inequality of Cauchy-Schwarz gives for almost all 2" in w

|2 0
| Mu(z")] </

’ 2
< ; drs.
h(z) hen lu(z’, x3)|” das

As a consequence Mu € Lf/ﬂ(w) and one has for any u € L?(w)
||MU\\L§/ﬁ(w) < lull g2 - (2.9)

Next, let v in H1(Q2) and ¢ € D(w). One has for i = 1, 2:

o ., [ [ 9
/wMuaxidx = Quaxid:v— Quamidac

:f/ Ou deJr/um{/;dcr.
o 0z r

Then, let us compute fr uni'z:/;da. Since {/; does not depend on x3, one has {/; =0 on I'g, from which
follows by relation (1.5) that:

- on
[ uniddr == [ ) g v o'

Consequently, one has proved that for any ¢ € D(w),

00 [ a0 oy
/wMuaxi do’ = /M[M(am)ju(mp)%xi i,

Since d,,u € L?*(Q), one deduces that M (9,,u) € L?(w), and since u|r € H'/?(T"), Proposition 1.1
ensures that

(U|F)B S L2(w).
Thus (2.7) holds in D’(w) and in L?(w), since h is Lipschitz-continuous. The same arguments give the
continuity of M from H'(f) into H'(w).
When u belongs to H}(Q2), the function (u|r)p vanishes on w. Therefore, we deduce (2.8) from relation
(2.7). O
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Remark 2.3. The assumption u € H*(£) is not sufficient to get

oh
(U|F)387$i € L?/\/E(W)a

and to conclude that 9, (Mu) belongs to L2 IR

(w) in (2.7).
Next, let v’ = (v1, v2) be a two-vector field defined on Q. From the operator M, we define the
divergence mean operator by setting:

VMy' =) %(Mvi).

i=1,2

We begin this paragraph by establishing a De Rham-like lemma, which is an adaptation of Lemma 1.2.
Here, we use the representation theorem of distributions independent on x3, proved by F. O. Gallego
in [26]. This result is at the heart of the resolution of problems related to the constraint V' - Mu' = 0,
as in System (2.15).

We start off with giving the definition of distributions independent on x3 and the representation
theorem (see [26] Theorem 1 page 337).

Definition 2.4. Let T € D'(Q2). We say that the distribution T is independent on z3 when

aT .
aim—()mﬁ.

Proposition 2.5. (Representation theorem)Let h be a positive Lipschitz-continuous mapping on w.
Let T € D'(Q). Then, the following assertions are equivalent.

1. The distribution T does not depend on x3.

2. There is a unique distribution S € D'(w) such that

\V/(p S D(Q), <T, §O>D’(Q),D(Q) = <S, NI(p>D'(w),D(w) . (210)

Remark 2.6. For any ¢ € D(12), one has My € D(w). Indeed, for the first differentiation order, the
compact support assumption kills the degenerated term

oh
oz, (¢lr)B, -

As a consequence, 9,,(My) € C*(w) and has a compact support in w. By a recursive argument, on
the order of differentiation, one deduces that ¢ € D(w), with for any multi-index o € N3:

D(Myp) = M(D%p) in w.
Besides, the regularity of the distribution S depends on the one of T' (see [26] Lemma 1 page 339).

Proposition 2.7. We keep the notations of Proposition 2.5. Let T € D'(Q) and S € D' (w) satisfying
(2.10). If T € H~Y(Q), then

o

S e HYK), forany compact set K C w.

If moreover, ess inf, h >0, then S € H }(w).
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Let us give, in the following proposition, the regularity of the distribution S when T belongs to
L?(€), a case that is not investigated in [26].

Proposition 2.8. We keep the notations of Proposition 2.5. If T € L?(2) then S € Lf/ﬁ(w), and one
has B
T=51inQ.

Proof. Firstly, let us prove that S belongs to Ll20c (w). Let us consider a compact set K C w, and set
0r = infyrcg h(2’).Then, let a € D(R) such that

0
supp a C (—0g, 0), and / a(xs) drs = 1.

.

Therefore, one deduces from relation (2.10), that for any ¢ € D(w) with supp ¢ C K:

(S, 77[}>D/(w)’p(w)‘ = ,(S, M(a®¢)>D/(w)7D(w)‘ = ’/S;Ta@)wdx

< ||T||L2(Q) ||a®7/)“L2(Q)
< ||T||L2(Q) ||a||L°°(R) Hw”LZ(K) :

We deduce that S € L?(K), hence the distribution S belongs to L2 .(w). Secondly, relation (2.10) also
gives for any ¢ € D(Q)

/Tcpdm:/SMgadx':/ggadx,
Q w Q

from which we get T = S in L2(2). To finish, we use Remark 2.1 and S belongs to Lf/g(w).

From now on, let us introduce the space
Vu= {’Ul € Hy(Q)?/V'-Mv =0in w}.

Thanks to the previous results, we are ready to state the expected De Rham-like lemma. Note that
a more general version is proved in [26] page 342 Lemma 2. However, we can prove our result in an
easier way.

Lemma 2.9. Let h be a positive Lipschitz-continuous mapping on w. If f' € H=1(Q)? satisfies
/
Yo' e Vo, <f 3 vl>H71(Q)2’Hé(Q)2 =0,
then, there is q € Lzﬁ(w), unique up to an additive constant, such that V'q = f' in Q.

Proof. Let us set f = (f', 0). Thanks to (2.8) and (3.21), any v € V is such that v/ € V. As a
consequence, the distribution f is exactly in the statement of Lemma 1.2. Therefore, there is a unique
function p in L?(2)/R such that

V'p = f and . =0in Q.
81'3

Then, since 0,,p = 0 in 2, we deduce from Proposition 2.5 and Proposition 2.8, that there is ¢ €
L%(w), unique up to an additive constant in this case, such that p = §. Hence ¢ satisfies V/§ = f’ in
O
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Lemma 2.9 yields the following isomorphism
V'L (W) /R — Vi, (2.11)

where V', is defined as in relation (1.9). To finish the paragraph, we want to derive the dual isomor-
phism to (2.11). Firstly, note that

VM (V) — (L2 (w)/R),

is the dual operator to (2.11). Next, one proves that the space (V$;)’ can be identified to V3, C
HL(Q)?, by using similar arguments as in the proof of Corollary 2.4 in [28]. To finish, let us characterize
the range space of the operator V' - M. One the one hand, observe that Green’s formula and (2.8)
yield:

Vo' € Hi(Q)?, /V’~MU’ dz’ = 0.

Thus the range space of V' - M is contained in a proper, closed subspace of Lf/\/ﬁ(w), that is

Lf/\/ﬁvo(w) = Lf/ﬁ(w) N LE(w). (2.12)
On the other hand, note that (L%/E(w)/R)’ can be identified with Lf/\/ﬁ(w) 1 R, the orthogonality

taken in the following sense

2 _ !
Vp e Ll/\/ﬁ(w), (p, 1>Lf/ﬁ(“’)’Lfm(‘”) = /wpdx =0,
and it follows that L? / /(@) L R can be identified to L2 IV, o(w). Finally, one has proved the following
lemma.

Lemma 2.10. Let h be a positive Lipschitz-continuous mapping on w. The following operators are
isomorphisms:

VL (w)/R—Vy and V'-M:Vy — Lf/\/ﬁ’o(w). (2.13)

Remark 2.11. Lemma 2.9 gives a characterization of the space Vﬁ. Indeed, one proves by adapting
the proof of Corollary 2.3 page 23 in [28] that u’ € V'3 if and only if there is ¢ € L%ﬁ(w) such that

—AY =Vgin Q.

By now, we are ready to study the weak solutions to System (2.21).

2.3 Existence and uniqueness of a weak solution

Thanks to the version of De Rham’s Lemma established in [26], adapted to our problem in Lemma
2.9, F. O. Gallego gives an existence proof of weak solutions to PEs:

—Au' +V'ps = f  in Q,
V' -Mu =0 inw,
78u’
8:(:3

(2.14)

w'=0onTgUTYy, =7 onlg,
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where A is an adapted operator, and where the assumption (7) is not considered. Indeed, he proves
that Problem (2.14) reduces to solve a variational formulation, for which only the existence of a solution
can be obtained.

We would like to adapt this approach to our homogeneous problem:

AW+ V'Ps=f  inQ,
V' -Mu' =0 inw, (2.15)
u' =0 onT,

and therefore give a detailed existence and uniqueness proof of a weak solution to (2.15). This first
result is important in a view to deal with another generalized problem, that we pose in (2.21), and for
which to our knowledge, we initiate the study.

Proposition 2.12. Let f' in H=1(Q)2. Then, there is a unique solution (u', pg) in the space H}(2)?x
(L%f(w)/]R) to Problem (2.15). Moreover, there is a constant C > 0 such that
R
!
||’u’/||H1(Q)2 + ”pSHL%(w)/R < c H-f HH*I(Q)Z . (2-16)

Proof. Let (u/, ps) € H}(Q)? x (Lfm(w)/R) be a solution to (2.15), and let v’ € V'j;. Then, one has
thanks to (2.8)

(V'Ps, V') 12, my ()2 = _/Q@V/ v'de= _/Ps M(V' ') de’
= —/psV’-Mu’dg;’:Q
w

since V- Mv' = 0 in w. As a consequence, u’ satisfies the following variational formulation:
Find v’ € Vs such that:

Vo' € Vi, / V' Vo' de = (f, v') (2.17)
Q

H=1(Q)2,Hy ()2
Conversely, any solution u’ € Vs to (2.17) is such that
’ / ro _
Yo' € V]LI7 <Au + f , U >H*1(Q)2,Hé(ﬂ)2 =0.

Hence Au'+f"is exactly in the statement of Lemma 2.9. Therefore, there is a unique ps in (L?-(w)/R)
such that
Vps = Au' + ' in Q, (2.18)

where u’ is a solution to Problem (2.15). As a consequence, we have proved that a pair (u/, p) €
HL(Q)? x (L%/E(w)/R) is a solution to (2.15) if and only if w/ is a solution to (2.17). To prove the
existence and uniqueness of a solution to (2.15), note that Lax-Milgram’s lemma provides a unique u’
in V'js satisfying (2.17). Then, by taking v = w in (2.17), we deduce that

IVl 2y < ClF Nl g1 g - (2.19)
To finish, Lemma (2.10) and relation (2.19), give the following estimates
||PS||L2ﬁ(w)/]R <C HVPSHLz(Q)
C(Hf,||H—1(Q)2 + ”AUIHH—l(Q)z)

<
<CNF N -1y
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Remark 2.13. The reader is also referred to [27] for another application of the version of De Rham’s
Lemma established in [26]. Indeed, in [27], F. O. Gallego studies a modified version of the hydrostatic
approximation: the differential equations for the horizontal velocity are perturbed with a certain
monotone expression. This approach has lead to another existence proof of (2.14) and to analyze a
one-equation hydrostatic turbulence model.

Remark 2.14. Another existence proof of weak solutions to (2.14) was given earlier by T. Chacon
Rebollo and F. Guillén Gonzalez in [19], where assumption (7) was not considered too, see Theorem 2
page 844. The authors perform a direct analysis of existence of solutions, based upon the existence of
the following reduced inf-sup condition that we adapt to our notations:

[, ps V' - Mv'da’
sup

>C”p8” 2 (o ,
vent@?—{0y  1Vllme L2 (w)/R

and which is in fact equivalent to the version of De Rham’s Lemma that we establish in Lemma 2.9.

F. Guillén Gonzélez and al. has established in [35], an existence and uniqueness proof of a weak
solution to the following modified version of (2.14):

AW+ Vs = inQ,
V- -Mu =¢ inw,
o
8%3

(2.20)

’U/ZOOHFBUFL, =0 onlyg,

see Theorem 2.5 page 812. To prove such a result, the authors needed to impose assumption (7), and
hence to consider a domain 2 with sidewalls along dw. In fact, their initial motivation was to establish
the existence and uniqueness of very weak solutions to the dual problem to (2.20), so they also needed
to study the strong solutions to (2.20), see Theorem 2.1 page 810.

Here, we want to generalize Theorem 2.5 of [35], to a case of inhomogeneous conditions exclusively,
and with the supplementary difficulty of not having to impose the condition (7). In other words, we
study now the following system:

—Au' +V'ps =f  inQ,
V' -Mu =¢ inw, (2.21)
u =g onl.

To our knowledge, the conditions:
V- -Mu =¢inw, and u' =g onT, (2.22)

have never been treated simultaneously, and even when (7) holds. We propose to handle this new
situation by building a lift operator related to the above conditions, and relying essentially on Lemma
2.10 established previously. As a consequence, we will prove that solving (2.21) reduces to solve (2.15)
for a good datum f’, and for which we can apply Theorem 2.17.

The following lines are, therefore, dedicated to the lift operator for the conditions (2.22). Firstly,
since we want to find w' € H'(Q)?, we need to consider g’ € H'/?(I')? in (2.22). In this case, and
since (2.7) yields:

V' -Mu' =MV -u)+V'h-(¢')p inw,
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we have to chose ¢ € L?(w) in (2.22), according to Proposition 2.2. Then, by integrating over w the
above relation, one has by (2.7), (1.3) and since n’ =0 on I'g:

/V’-Mu’d:c/:/M(V’-u/)dm/"‘/v/h'(!]/\F)Bdl’/

Z/V’-u’daz—/ g -n'do
Q T's
:/u’-n’do—/ g -n'do,
r I's
:/ g -n'do.
'L

As a consequence of these computations, we can conclude that:

peL’(w), ¢ eHYXD)? (2.23)

/ g -n'do= / ¢dx, (2.24)
FL w

are necessary conditions to the existence of a lifting w’ € H*(Q2)? for the conditions (2.22).
Secondly, let us see if the conditions (2.23) and (2.24) are sufficient. Let g’ € H'Y?(I")? and
v’ € H*(2)? such that v’ = g’ on I'. Then, thanks to the compatibility condition (2.24) and the above

computations, one has:
/ V' Mv'd’ :/ g’-n’do:/ pdx, (2.25)
w 'z w

and [ (V'- Mv' — ¢)dz’ = 0. Then, we want to apply the second isomorphism of (2.13) to exhibit
w’ € H}(Q)? such that V'- Mv' —¢ = V' Mw' on w, and v’ = w’ — v would be the expected lifting.
Unfortunately, we can not use this isomorphism, since V' - Mv’' — ¢ does not belong to Lf IV O(w),

and even if we take ¢ € Lf y \/ﬁ(w) We refer here to Remark 2.3. As a conclusion, conditions (2.23)

and (2.24) are not sufficient to establish the existence of the lifting w’ € H'(Q)2.

It is therefore necessary to consider functions v’ € H'(Q)? having the following supplementary
property:
V' -Mv € Lf/ﬂ(w). (2.26)

To this purpose, let us consider the following weighted subspace of H'/? (I"), denoted and defined by:

HY? (1) = {g e H/*(T)/ % e L?(r)} , (2.27)

1/vVh
5 1/2
LQ(F)> .

Proposition 2.15. Let v’ € H'(Q)? such that u/|p € Hll//?/E(F)2 Then, one has

and endowed with the following hilbertian norm:

gl e oo = (gl 2sem + || =
Hy/% (D) HY/2(T) N

Then, observe the following proposition.

V' -Mu' € Lf/ﬁ(w).
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Moreover, there is a constant C' > 0 such that

v’ MUJ’HL’;’/W(UJ) <C <|u/||H1(Q)2 + ||u/|F||H11//\2/E(F)2> : (2.28)

Proof. Let i = 1, 2. The assumptions on w;|r and Proposition 1.1 ensure that (u;|r)p € Lf/\/ﬁ(w),

and since the mapping h is Lipschitz-continuous, one has

oh
(ui|F)B‘87 € L?/\/g(w)' (2.29)

z;
Then, as u € H'(w), it follows from relation (2.7) that

OMu 9
0z, € L1/\/g(w)-

Next, since relation (1.3) gives

1 oh1* (ui|r)? Oh
/wﬁ [(ui|p)38%] dx’ = /1“5 h oz n; do

one obtains immediately by (2.9) that

2
ui|F

Vh

N

2
< llus .
X H Z|F||H11;f/ﬁ(r)7

L2(T)

8ui
83:1-

HBMui )

&vi

+ |‘1“|F||Hllffm(r)

L2

< HM(
l/ﬁ(w)

2
Ll/ﬁ(w)

<l 7HH1(Q) | z|F||H11//2ﬁ(F)

By summation on i = 1, 2, we establish (2.28). O

We are now in position to prove the following lemma where we build the expected lifting of condi-
tions (2.22) and which proof comes to correct the preliminary draft we have done before.

Lemma 2.16. Let g’ € Hll//f/ﬁ(F)2 and ¢ € Lf/ﬂ(w), satisfying the compatibility condition (2.34).

Then, there is u’' € H'(Q)? such that:
V- -Mu =¢inw, u =g onTl. (2.30)

Moreover, there is a constant C > 0 depending only on Q such that:

! !
Il < € (19173 o + 100z c)- (231)
Proof. Let g’ € Hll//?/ﬁ(l“)2 Then, there is v’ in H'(2)? such that v’ = g’ on I, and

,vl

Vh

€ L*(T)2 (2.32)

According to (2.25) one already has:

/V/~]V[’l)/d$/:/ g’~n’da:/¢dx’.
w FL w
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Moreover, one deduces from Proposition (2.15) that V' - Mv’ belongs to Li/\/ﬁ(w). As a consequence,
the function V' - Mv' — ¢ is in Lf/\/g o(@) (see (2.12)), and the isomorphism given in (2.13) provides

a unique 2’ in V7 satisfying
V' -Mz' =V'-Mv' —¢ inw.

Moreover, there is a constant C' > 0 depending only on €2 such that

/ ’ /
120 e S CIVE- MO = Bllz )

Then, one has by (2.28) and since v’ = ¢’ in Hll//f/ﬁ(l“)

’ l /
|E3 ||H1(Q)2 <C (”’U HHI(Q)Z + |jv |F||H11//fm(1—~)2 + ||¢||L?/ﬂ(w)>
/ !

By taking the infimum on the functions v’ € H'()? such that v’ = g’ on I', we deduce that

1 s < € (160172 oo+ 100z ) 239)

1

Consequently, v’ = v’ — 2’ satisfies (2.30) and (2.31). O

Finally, we give an existence and uniqueness proof of a weak solution to Problem (2.21). Recall
that we have precisely build the lifting of the conditions (2.22) in Lemma 2.16 to reach such result.

(w) and g’ € Hll//?/ﬁ(l")2 such that

/FL g -ndo= /w¢>dg;. (2.34)

Then, there is a unique pair (u', p) € H(Q)? x (Lf/ﬁ(w)/R) solution to (2.21), and a constant C' > 0
depending only on Q such that

Theorem 2.17. Let f' € H-Y(Q)?, ¢ € Lf/\/ﬁ

/ ! /
[|u ||H1(Q)2 + ||p5'||Lf/E(w)/lR <C (Hf HH”(Q)z + H‘b”Lf/ﬁ(w) +llg ||H1152W(F)2> ’

Proof. Let f' € H"Y(Q)?, ¢ € Lf/\/ﬁ(w) and g’ € Hll//?m(lj)2 satisfying the compatibility condition

(2.34). From Lemma 2.16, there is v’ € H'(Q)? satisfying the conditions (2.30). Moreover, from
Proposition 2.12, there is a unique pair (w’, pg) in the space H}(Q)? x (Lfm(w)/R) checking
“Aw +V'ps=f -AvinQ, V' Mw =0inw,

and there is a constant C > 0 such that

1|l 1 )2 + HPSHL?ﬁ(w)/R <O|f + AUIHH*1(52)2 :
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More precisely, as v’ satisfies the estimate (2.31), one deduces that
! ! !
W] 1 ()2 + ||pSHL§m(w)/R <CO|f' —Av HH*l(Q)z

<O (1 l-+(pe + 19l 202

/ !
<O (W s + 10 e o 16z ) @39

Then, u’ = w’ + v’ belongs to H*(2)? and is the unique solution, with pg, to the non homogeneous
Problem (2.21). We already have the estimates on ps. The one on u’ is immediate since (2.31) and
(2.35) imply that

||'U/HH1(Q)2 = [lv' + 'w/HHl(Q)z < ||vl||H1(Q)2 + ||wl||H1(Q)2

!/ !
<O (15 s+ s o+ 100z )

1

Remark 2.18. When assumption (7) is considered, Theorem 2.17 can also be stated by replacing the
space L?/\/ﬁ(w) by L?(w) and Hll//?/E(F) by H'Y?(T). In this case, the superficial pressure pg is in
L?(w).

Let us finish this chapter by summing up the work we have done. Firstly, any result we have proved
are available in a general domain €2, for which it is not necessary to impose (7). This is why we have
defined a suitable functional framework, based on weighted spaces, see (2.3) and (2.27). Secondly, we
have set the tools necessary to solve Problem (2.15) and its inhomogeneous version (2.21). We have
solved Problem (2.15) by using a De Rham’s like lemma, see Lemma 2.9, proper for the resolution
of Stokes type system. Then, we have solved Problem (2.21) by considering the new situation to lift
simultaneously the conditions (2.22), in order to bring back to the homogeneous case.

In the following chapter, we will investigate the uniqueness and existence of a weak solution to the
hydrostatic Stokes approximation with homogeneous Dirichlet boundary conditions (3.1). We will also
give the mathematical justification that enables to reduce (3.1) to (2.15), that we have already solved
in Proposition 2.12; and this will constitute a second existence and uniqueness proof of a weak solution

0 (3.1). We will also see that we can solve a more general problem (3.23), by reducing its equations
to (2.21) for a good datum ¢, which we have solved previously in Theorem 2.17.

We foresee now that this reduction process is the key which has enabled us to go beyond the
consideration of homogeneous conditions over ug, as it the case in the literature, and to treat the new
situation of non homogeneous boundary conditions over ug, see Chapter 4.
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Chapter 3

Weak solutions to (SH) with a
homogeneous condition on ujg

3.1 Introduction

Let f' : Q — R? and consider the homogeneous hydrostatic Stokes problem:

—Au' +V'p=§f, @:0, V-u=0 1inQ,
8353

u =0, usn3=0 onl.

(3.1)

The existence and uniqueness of a weak solution to (3.1) is well known. A first approach consists in
proving that (3.1) is the limit, in a precise sense, of an anisotropic Stokes system. This is what is
proposed by O. Besson, R. Laydi and M. Touzani in [7] on the 2D case. A second approach is to
solve (3.1) without using a limit process, and for example, P. Azérad proposed in [3] an existence and
uniqueness proof based on the existence of an inf-sup condition, see after Remark 3.7.

In this chapter, we revisit the existence and uniqueness of a weak solution to (3.1) by following
these two approaches. Instead of considering an inf-sup condition as in [3], we reduce the equations
of (3.1) in order to bring back to (2.15), for which we know the existence and uniqueness of a weak
solution, see Proposition 2.12. Then, we keep this second approach in order to solve the following more
general problem:

—~Au' +V'p=§f, 88719:0, V-u=® inQ,
3

u =g, usnz=0 onT,

(3.2)

and for which we initiate the study.

An outline of this chapter is as follows. In Section 3.2, we will give a meaning to the boundary
condition:
usng =0on I, (3.3)

by recalling some results on an anisotropic Sobolev space.

In Section 3.3, we will get interested in the study of weak solutions to Problem (3.1). Uniqueness
of a weak solution is investigated at first in Lemma 3.2, and the proof we give uses the generalized
Green’s formula (3.6). Regarding to the existence of a weak solution, we will give a first proof based
upon a limit process, see Theorem 3.4. More precisely, we give an asymptotic analysis of an anisotropic
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Stokes system, which goes to Problem (3.1). Recall that we have sketched out this approach in the
introduction of Part 1.

In Section 3.4, we give another existence and uniqueness proof of a weak solution to Problem (3.1),
by reducing the equations:

V-u=0inQ, 4 =00onT, wusn3=0onT,

to the following ones:
V' -Mu' =0inw, 4 =0onT,

and this is precisely the purpose of Lemma 3.14. We therefore prove that solving Problem (3.1) reduces
to solve (2.15), thing already done in Proposition 2.12. Our main preoccupation here is to give solid
mathematical foundations which enable the reduction of the above equations. We therefore introduce
the operator F defined in (3.18) for which we give some continuity properties in Proposition 3.9. Then,
we give an essential result in Proposition 3.12 concerning the characterization of the trace (Fu)ng for
functions u in L?(Q), and from which follows immediately Lemma 3.14, mentioned above.

As we will see later, this reduction process is the key to handle more general situations, such as
dealing with Problem (3.23) where we consider the new conditions:

Vu=®inQ, u'=g onl, usng=0onT.

We will give an existence and uniqueness proof of a weak solution to this problem, by reducing the
above conditions to the following ones:

V-Mu =¢inw, v =g onl,

where ¢ is a function depending on ® and g’, see Lemma 3.18. We recognize here the last two equations
of Problem (2.21) which is already solved in Theorem 2.17. To finish, as we will see in a later remark,
it is also possible to solve Problem (3.23) with a proof based on an asymptotic analysis of an adapted
Stokes system (see (3.31)).

For the moment, we will only consider the boundary condition (3.3) and we will save the case of
non homogeneous condition on ug for the next chapter, since it requires an important mathematical
investment.

3.2 The anisotropic space H(0,,, {2)

Let us begin with defining the boundary condition (3.3). For this purpose, we lean on the work done
by R. Temam in [47]. Let us consider the space

H(0,,,Q) = {u € L*(Q)/ % € L2(Q)} ,

which is a Hilbert space for the norm

2 2
lll o, ) = (lull 20y + 1zsull72(a)) .

The space D() is dense in H (0,4, {2), and any function of H(0,,, 2) has a trace, as it is stated in the
following proposition.

Proposition 3.1. The mapping
v3 1 u+— unslr,

defined on D(Q) can be extended in a unique way to a linear and continuous mapping, still denoted 3,
from H(0,,,Q) into H~Y/?(T).
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Moreover, we derive the following Green’s formula:

Vu € H(Dyy, Q), Yo € HL(Q),
3.4
/u@dw__ Qvaisc?,dxﬂund’ V), AT - (34)

As a consequence of Proposition 3.1, we understand now that the boundary condition (3.3) has to be
taken in the sense of H—'/2(T).

Now, let us consider the space
H(80y,Q)

Then, it is clear that the following Green’s formula holds:
ou
Vu € H(Oyy, ), Vv € Ho(Ogy, 2), / U 8—% dx = /Qv 923 dx, (3.6)

as well as the following inequality of Poincaré: there is a constant C' > 0, depending only on €, such

that
ou

I3

To finish, R. Temam has characterized functions of Hy(0y,, ) as functions of null traces on I' (see
[47] pages 376 and 377 Theorem 2.2). More precisely, the following equality holds:

Vu € Ho(al’a,a Q)7 Hu||L2(SZ) < ¢ H (37)

L2(Q) .
Ho(8s,, Q) = {u € H(s,, Q) /uns = 0'in H*1/2(F)} .

3.3 Weak solution for the homogeneous case

We are now in position to prove an existence and uniqueness result of a weak solution to the hydrostatic
Stokes Problem (3.1). Let us start by proving the uniqueness of a possible solution. For convenience,
we denote by X the space

Xo = H}(Q)? x Ho(0zs, Q). (3.8)

Lemma 3.2. For any f' € H-Y(Q)?, Problem (3.1) has at most one solution (u, p) in the space
X x (L*(Q)/R).

Proof. Let us consider a possible solution (u, p) related to the data f' = 0. By multiplying the first
equation of (3.1) by «/, and by using Green’s formula, one has

Vu’:Vu’dx:/pv/_u/dxz_ %dm,

Q Q o Oz

since V-u =0in Q. As uz € Hy(0z,, Q) and 9,,p = 0 in , relation (3.6) gives:

/Vu’:Vu’dm:/u;),@d:c:O,
Q Q Ox3

and, therefore, Vu' = 0 in . Since v/ = 0 on I' and since Q) is connected, one has v’ = 0 in . As
V-u =0 in Q, we deduce that d,,u3 = 0 in £, and from the inequality (3.7) we get uz = 0 in Q.
Then, as V/p = Au/ = 0 in ), one obtains that Vp = 0 in Q, hence p = 0 in L?(Q2)/R, since we recall
that 2 is connected.

As a conclusion, problem (SH) has at most one solution when f' = 0 which is is w = 0 and p = 0.
Consequently, Problem (3.1) has at most one solution in X x (L?(Q2)/R). O
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Then, let us prove the existence of a solution to (3.1). Here, we have decided to give an asymptotic
analysis of the following anisotropic Stokes system:

0
—AuL 4+ V'p. = f', —e2Auf+ 85; =0, V-u.=0 1inQ,

(3.9)
u. =0 onT,

where € €]0, 1], previously mentioned in the introduction of Part I.
For any (u., pe) in the space H{}(Q)? x (L?(2)/R) solution to (3.9), u. satisfies the following
variational problem:

Find u. € V' such that:

YveV

Vu, : Vv'de+e* | Vug-Vusdz = (f,v'),
0 0

3.10
()2, Hg(2)* ( )

(see (1.7) for the definition of V.) Conversely, let us consider any solution u. € V to (3.10). One has
for any ¢ € V:

<Aulg + f/7 Lp/> + <52AU§, @3> = 07

where the duality is taken in the sense of H ()2, H}(Q)?. Therefore, the distribution T' = (Aul +
f', e2Aug) is exactly in the statement of Lemma 1.2, hence there is a unique function p. in L?(Q)/R
such that

Vpe =T in (.

As a consequence, any pair (u., p.) in the space Hg ()3 x (L?(Q)/R) is a solution to (3.9) if and only if
u. satisfies (3.10). Therefore, we easily deduce, thanks to Lax-Milgram’s lemma, that there is a unique
u. in V satisfying (3.10). Hence, we have proved the first step of the asymptotic analysis consisting
in proving that Problem (3.9) has a unique solution (uc, p.) in the space H}(Q)3 x (L*(Q)/R).

Secondly, let us give some a priori estimates on the solution (u., p.). More precisely, let us prove
that there is a constant C' > 0, independent on ¢, such that:

||u,e||H1(Q)2 +e HugHHl(Q) + ||U§HH(am3,Q) + HPEHLQ(Q)/]R <C H-fIHH—l(Q)2 . (3.11)
By taking v = u,. in (3.10), we deduce that
2 2
||vul6HL2(Q) +é? HVU§||L2(Q) <C H-f/HH*I(Q) HVU/EHLZ(Q) )

which leads to
I8l 20y + € VS 2y < C 1 s e (3.12)

Since V - ue = 0 in Q, we deduce thanks to (3.12) that

ou§
8x3

= IV uill 20y < CIF | = -
L2(Q)

As u§ belongs to Hy(0y,,2), Poincaré’s inequality (3.7) and the above inequality imply that

H@HL?(Q) <C Hf/HHfl(Q)Q :
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Then, we are interested in the estimate of [|p|;2(q)/r- The gradient operator is an isomorphism from

L?(©2)/R onto V° (see (1.8)). As a consequence, since p. € L*(Q)/R, there is a constant C' > 0 such
that

Hp€||L2(Q)/]R CHVPEHH*l(Q)
C(||f/||H—1(Q)2 + ”Au/sHH*l(Q)Q +é’ ||AU§HH71(Q))

< C(H.f/HHfl(Q)Z + HVU/EHL?(Q) te ||Vu§HL2(Q))7

<
<

by reading equations of (3.9), and since ¢ < 1. We deduce thanks to (3.12) that (p:)e is bounded in
L?(Q)/R, and we get (3.11).

Remark 3.3. By writing the third equation of (3.9) in the following way
Ipe

Oz3 = <ta,
we deduce thanks to (3.12) that there is a constant C' > 0 independent on € such that
9pe
< elleVui]| ;- < eC. 3.13
5], ., <=1l 3.13)

Finally, let us finish the asymptotic analysis by passing to the limits as £ goes to 0 in (3.9). Thanks
to the estimates (3.11) and (3.13), we proved that (u., p.) is bounded in the space X x (L?(Q)/R)
(see (3.8) for the definition of X ). Since it is a reflexive space, there is a pair (u, p) in the space
X x (L*(Q)/R) and a subsequence of (u., p.), denoted in the same way, that converges weakly towards
the couple (u, p) in the space X x (L?(Q)/R). In particular, one has

u. —u' in L*(Q)? and Vul —Vd' in L*(Q)S,
Ous _, Ous
8$3 8I3

uj —ug in L?(Q) and in L*(Q),
pe —p in L*(Q).
Immediately, we see that
—Au. +V'p. = —Au' +V'p=f in H1(Q)*.
Then, we deduce from relation (3.13) that

Ope Op S
—~ 2 =0in HY(Q).
8x3 3I3 0in ( )

To finish, one has
V-u.—V-u=0in L*(9),

Then, the weak limit (u, p) is a solution to (3.1) and satisfies (3.14) by taking the infimum limit in
(3.11). We achieve the proof by using Lemma 3.2, ensuring that (u, p) is the unique solution to (3.1).
Consequently all the sequence (u., p.) converges to (u, p) in Xo x (L3(Q)/R).

As a conclusion, we have proved the following result.

Theorem 3.4. Let f' in H-1(Q)2. For any e > 0, let (u., p.) € H} ()3 x (L?(Q)/R) the solution to
Problem (3.9). Then, the sequence (uc, p-). converges to (u, p) in the space Xo x (L?(2)/R), unique
solution to Problem (3.1). Moreover, there is a constant C > 0 such that

16| g1 @y + lusll i1(a,,,0) + 1Pl L2 m < € Hf/HH—l(Q)Q : (3.14)
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Remark 3.5. By passing to the limits in the variational formulation (3.10), one obtains a variational
formulation for Problem (3.1):

Find u € V such that:

Vv € Vo, / V' Vv'dr = (3.15)
Q

(f', ”/>H—1(Q)2,H3(Q)2 )
where the space Vg is defined by

Vo={ve Xo/V-v=0in Q}.
Therefore, thanks to the generalized Poincaré’s inequality (3.7), one has

Ous
83:3

= ||V/ . u/“LQ(Q) < \/§||vu/”L2(Q)5 ’

L‘Z

which proves that the bilinear form
u,veEVy (u,v)— / vu' : Vv'dz,
Q

is coercive on V' for the norm (||u’||%,: (@2t ||“3||§1(0I3. Q))1/2. Thus, there is a unique function u € Vg
such that v’ satisfies relation (3.15). Hence, one has given another proof of Theorem 3.4.

Remark 3.6. Notice that the bilinear form in the variational formulation (3.15) does not act on the
unknown ugz. Here, ug is implicitly contained in the space of test functions. This remark suggests
to chose another space of test functions than VY, only related to u’, hence to give an equivalent
variational formulation to (3.15). Let us introduce the space

M= {u € LA(Q) /Fv € Hy(y,, ) such that u = 8(%} .
T3
The space M is a closed subspace of L?(£2), and thanks to the generalized Poincaré’s inequality (3.7),
there is a unique v € Ho(0,,, ) satisfying u = 9,,v in M. Then, we consider the subspace of H}(Q2)?
defined by
Vm={uw eHj(Q)?/V v eM},
which is a closed subspace of H{(2)2. Then, we prove that (3.15) is equivalent to

Find v’ € V o such that:

Vo' € Vg, / V' Vo' de = (f, V') (3.16)
Q

H=1(92)%, Hy ()2

Indeed (3.16) is a formulation of Problem (3.1) as does prove the following reasoning. Let (u, p) in the
space X x (L?(©2)/R). By using the arguments of the proof of the uniqueness of the pair (u, p) (see
Lemma 3.2), one proves that u’ satisfies the variational formulation (3.16). Conversely, let v’ € V oy
solution to (3.15). Firstly, by definition of the space V 4, there is ug € Ho(0z,, ) such that

V-u=0inQ, wusnz=0onT.

Secondly, one proves the existence of a p such that —Awu’ + V'p = f in Q, by noticing that the
distribution T' = (Awu’ + £, 0) is exactly in the statement of Lemma 1.2. Indeed, remark that for any
@ € V, one has ¢’ € V ,q. Hence, one gets for any ¢ € V:

<f1—'7 ’U>H*1(Q)3,HJ(Q)3 = <Au/ + f/, v > 1(Q)2, Hl 9)2 / Vu V'U dr = 0.
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Remark 3.7. P. Azérad uses in [3] another different approach to establish Theorem 3.4. To begin with,
he gives a variational formulation of (3.1) that takes into account the pressure. Note that in (3.15) or
(3.16) the pressure disappears. Indeed, by considering the space H, = H}(Q)? x Ho(0x,, Q) x L3(£2),
the following bilinear form a(-, -) defined for U = (u, p) and V = (v, ¢) in H,, by:

a(U, V):/VU’:VV’dx—/pV-'de—/qVﬂuJal:z:7
Q Q Q

he establishes that U € H,, is a solution to (3.1) if and only if:

YV € H,, aU,V)=(F,V)g & . (3.17)

Here, F = (F’', 0, 0). The weak formulation (3.17) traduces a mixed variational principle, since he
proved in Theorem 3 page 27 of [3], that U € H, satisfies (3.1) if and only if U is a sell point of of
the following functional:

1
E(U):*HvulHiz(sz)_ pV ude —(F,U)y g -
2 [e) p P

The pressure p (resp ug) can, therefore, be interpreted as the Lagrange multiplier related to the
constraint —V -« = 0 (resp 0,,p = 0). Then, by establishing the following inf-sup condition:

sup a(U, V)

i 2 CUllg,
ver,—{0} IVIg, Hy

he solves (3.17) thanks to the generalized version of Lax-Milgram’s Theorem in the non coercive case,
which he reviews in Theorem 1 page 22.

Remark 3.8. Let us compare the above asymptotic analysis of (3.9) with the one we can find in [7].
In the note, the authors consider a mixed variational formulation, and they obtain the estimates on w,.
as we did. Then, to get the estimates on the pressure p., they invoke the following inf-sup condition:

V-vd
sup 7119 pe var

2 Clpe|l ,
vEHL(Q)3-{0} ||UHH1(Q)3 FIEAE)

where C' > 0 is a constant depending only on 2, which is in fact equivalent to the first isomorphism of
(1.8) (see [28]), the one we actually use. Then, to go further into the work of [7], let us mention that
the authors give a mixed variational formulation of the limit problem (3.1), where the vertical velocity
disappears, in the same spirit than the one we give above, see (3.16).

3.4 Equivalence with (2.15) and applications

In the previous paragraph, we have seen a first approach of resolution of Problem (3.1), based pon a
limit process. As we have mentioned in the introduction of Part I, it is possible to reduce Problem (3.1)
to Problem (2.15), in an equivalent way, modulo relation (14). But, far from now, we have not brought
any justifications. This is why, we propose at first place to give the mathematical explanation of such
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a result. We give, therefore, the second uniqueness and existence proof, announced in paragraph 3.1.
In a second place, we will use the same process to reduce and solve a generalized version of Problem
(3.1) (see (3.23)).

Let u be a function defined in Q. Reducing the equations (3.1) to (2.15) requires to study the
following operators:

0

reQ, Fu(x)= / u(z’, €)dE, (3.18)
x€Q, Gu(zr)= /1‘3 u(a’, €) de.

—h(z’)

In the sequel, we will essentially focus on the operator F. The operator G is introduced only for
technical reasons. We start off with giving some continuity properties of the operator F' .

Proposition 3.9. The operator F is linear and continuous from L?(Q) into L?(Q) and the operator
G is the adjoint operator to F. Next,

Vu € L*(Q), Fu¢€ H(dy,, Q) and %(Fu) = —u in Q. (3.19)

As a consequence, there is a constant C > 0 depending at most on ) such that
Vu € L*(Q), [ull 20y < ”FUHH(BIS,Q) < Cllullg2q) - (3.20)

and F is continuous from L?(Q) into H(Oy,, ).

Proof. Let u € L*(Q). Thanks to the theorem of Fubini and since for almost all z €
0 2
Fu@f <ol [ Jule', 22) dos
=
/ / 2
< h(x )/ |lu(z’, xz3)|” ds,
—h(z’)

we deduce that Fu € L?(Q) and ||Fu||L2(Q) < Ao Hu||L2(Q) . Hence F is linear and continuous from
L2(Q) into L2().

Then, G is the adjoint to F for the scalar product of L?(2) since, thanks to Fubini’s theorem, one
has for any u and v in L?()

/QvFu dr = /w [/_i(cw /g: u(z', &) v(a', x3) dé dx3‘| dx’

0 3
:// u(x’, £) [/ v(x, l’g)dl’g] d¢ da’
w J—h(x") —h(z’)
:/qudx.
Q

Next, one has for any ¢ € D(Q)

dp / dy /
— Fudx = uG(=——)dx = up dx.
| o 0o =
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Hence (3.19) holds in D'(Q) and 0., (Fu) € L*(Q). As a consequence, Fu € H (9, Q). As u =
—0y,(F'u), one has

: O(Fu)||”
ullz2q) = Haxg

||FU||H(6

LQ(Q) 3 Q)

and since F is continuous from L?(Q) into L?(2), one has
2 2 2 2
1Fullera,,, o) = lullpz) + 1Fullz2 @) < Cllullpzg) -
Thus we establish (3.20). O

As a consequence of Proposition 3.9 and Proposition 3.1, one has (Fu)ns in H~'/?(T) for any
u € L?(Q). In the sequel, we want to characterize the trace (Fu)ns, and before, we require the
following technical lemma.

Proposition 3.10. Let u in H*(2), and set G = u|r. Then:

. ou .

7. M(ﬁ—%)_gs—gg m w.
.. ou ~

1. F(axg) Gs —u in Q.
G(%) —u—GpinQ
114. s = B in Q.

Proof. Proposition 1.1 implies that Gs and Gz belongs to L?(w). Then, one gets from relation (1.6),
that for any ¢ € D(w):

/uJM((aaZ)’)wdx':/zbdm—/wgngda
=/wwgsdx’—/wwg3d:c’.

:L<g3_g3>¢dm

and Claim ¢ is proved. Let us deal with Claim ii. By Remark 2.1, the function a; — u belongs to
L?(€2). Next, Proposition 3.9 and (1.6) again yield, for any ¢ € D(Q):

/ (9:53 gpdmf/ Gopdr

:—/ucpd:rJr/gs(Ggo)gdm’—/QB(Ggo)de.
Q w

w

Since (Gy)s = M and (Gp)p = 0 in w, we deduce that

/F(au)cpdx—f/ugoder/gNS(pdx,
Oxs Q Q

from which one deduces Claim ii. To prove Claim iii, note that

Gu:m—FuinQ.
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Remark 3.11. We also prove, by adapting the previous reasoning with Green’s formula (3.6) that

ou ou

Vu € Ho(Dgy, ), M(a—ajg) =0in w, F(a—zg) = —uin Q. (3.21)

Let us give and prove, now, the trace characterization announced few lines above.
Proposition 3.12. Let u € L*(Q). Then, one has
1. (Fu)ns=0 in H Y/*\I'p).
2. (Fu)ns = Muns in H Y*(T'p).
Proof. Let u € L?(Q2). By Proposition 3.9, one has Fu € H(9,,, ), and Proposition 3.1 ensures that
(Fu)ns € HY2(ID).

Then, Proposition 3.10 gives for any v € H(Q):

ov /
Fu)ns, v) - — Fudx — uv dr
(Fu)ns, v) g—r/2(r) w2y o 013 Q

ov
= uG(=— dx—/uvdsc
/g (3963) Q

:/Qu(v—(v|p)3)dz—/ﬂuvdx.
- f/w(vhﬂ)BMudx'.

Therefore we get

Vo e HH(Q), ((Fu)ns,v)g-1/2qr), gz = _/(U|F)B Muda'.

w

As a consequence, one deduces that

Yo e HY(Q), supp v|r C Ts, {((Fu)ns,v) =0,

H-1/2(T's),Hy}*(T)

and Claim 1 is proved. Let us focus on Claim 2. Since 813]\7[& = 0 in 2, the function Mu belongs to
H(0.,, Q). Hence, one has

Muns € H-/2(I).
Moreover, from Green’s formula (3.4), one gets for any v € H'(2)

<mn3,v> = m&dz
H=1/2(D),HV/2(T)  Jq Jz3

ov

w 3

Then, one uses Proposition 3.10 to deduce

_ - , ,
<Mun3,v>H71/2(F)’Hl/2(F) = /WMU(U|F)B dx +/wMu (v|r)s dx

= ((Fu)ns,0) g1/2(r), g1/2(r) +/ Mu (vlr)s dz’.
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Therefore, one has for any w € H*(Q) with supp v|r C '

<(FU) 3, U>H_1/2(FB)7HS(<2(FB) = <MU "3, U>H*1/2(FB),H1/2(FUU) ’
which proves Claim 3. O

We complete the study of the operator F' with the following statement, which is an immediate
consequence of Proposition 3.12. This last result establishes a link between the operators M (see
(2.4)) and the operator F, which is the key of the equivalence between Problem (3.1) and Problem
(2.15).

Corollary 3.13. Let u € L*(Q). Then, the following assertions are equivalent:

1. Mu=0in Lf/\/ﬁ(w).

2. (Fu)ng =0 in H-Y*(I).

From now on, we are in position to establish the equivalence between Problem (3.1) and Problem
(2.15). Firstly, let us prove the following lemma.

Lemma 3.14. Let u € H}(Q)? x H(8,,, Q). Then the following assertions are equivalent
1. V-u=0inQ, usns=0in H/3T).
2. V. (Mu)=0inw, wuz=F\V - u)inQ.
Proof. Assume claim 1. Then relation (3.21) give
MV -u)=0 and wuz=F((V - u).
Moreover, thanks to (2.8) one has M (V' -u') = V' - M/, which proves claim 2. Conversely, one has
by relation (3.19)
0
9% V' and V-u=0inQ.
81’3
Besides, and since M (V' - u') = 0, Corollary 3.13 ensures that
F(V'-4/)ng =0in H™Y3(T),
hence uznz = 0 in H~/2(T). O
Remark 3.15. Firstly, note that Lemma 3.14 is also true when:
w e HY(Q)? 4w =00onTpUTy,

situation that can also be found in the paper [20], see Lemma 2 page 531. Instead of considering a den-
sity argument to prove the implication 2 = 1, as it is the case in this paper, we use the characterization
of the trace (Fu)ns for functions u € L?(12), in accordance with Proposition 3.12, and therefore, we go
further into the properties of the operator F'. This approach appears to us more convenient, since by
implication 1 = 2 we have necessarily: uz = F(V’-u’). And therefore, the question to characterize the
trace usns|r naturally yields us to consider the more general situation of Proposition 3.12. Moreover,
note that we do not need assumption (7), meanwhile it is the case in [20].

Secondly, according to Lemma 3.14 and the fact that p does not depend on z3, see Proposition
2.8, solving Problem (3.1) reduces to solve Problem (2.15). Then, we get back to p and ug thanks to
relation (3.22) given below. We state this important result in the following Proposition.
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Proposition 3.16. Let f' € H1(Q)2. A pair (u, p) € X x (L%(Q)/R) is a solution to Problem
(3.1) if and only if (v, ps) € HE(Q)? x (L%/E(w)/R) is a solution to Problem (2.15) and

rxeQ, plx)=ps), wus(x)=FV  u)(x). (3.22)

Remark 3.17. As (2.15) is already solved in Proposition 2.12, we deduce from Proposition 3.16 a
new proof of Theorem 3.4.

The reduction process that we have set, and that lead us to Proposition 3.16, enables in fact to
solve the following more general Problem:

—Au' +V'p=§f, a‘lpzo, V-u=® inQ,
3

u =g, wuynz=0 onT,

(3.23)

where ® € L?(Q), g’ € H'/?(I')? and necessarily satisfying the compatibility condition:

/ g -ndo= /  dz. (3.24)
r Q

Indeed, observe the following lemma where we reduce the conditions:

Vu=dinQ, uw=g onl, usnz=0onT, (3.25)
to the following ones:
V- -Mu =¢inw, u =g onTl. (3.26)
1/2

Lemma 3.18. Let ® € L?(Q0), let g’ € H
us set:

)2 satisfying the compatibility condition (3.24). Let
1/vh

dp=MP+gp-Vhinw, U=-F®inQ. (3.27)

1. Then ¢ € Lf/\/ﬁ(w) and satisfies with g’ the compatibility condition (2.34).

2. Anyu € HY(Q)?x H(Oyy, Q) satisfies (3.25) if and only if u’ satisfies (3.26) and uz = F(V'-u')+U
in Q.

Proof. Claim 1. By (7), one has M® € LQ/\/E(w) (see Proposition 2.2), and relation (2.29) ensures

1
that g3 - V'h € Lf/\/ﬁ(w). Thus ¢ € L?, (w). Next, one has by relation (1.3)

/Vh

/¢dz’:/M¢dx+/gjgoV'hdx'
:/édxf/ g -n'do.
Q I'p
:/g“n’daf/ g'~n'd0:/ g -n'do,
r I'p I'p

as (3.24) holds and since n’ = 0 on T'g.
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Claim 2. As ® € L?(Q), g € Hll//?/E(F)2 and satisfy the compatibility condition (3.24), g =

(g', 0) € HY2(I')? (see (2.27)) and satisfies with @ relation (1.10). Thus, relation (1.11) provides a
v € HY(Q)? x H}(Q) such that

Vo=®inQ, v =g onl.

Then, the function w = w — v is exactly in the statement of Lemma 3.14. As relation (3.25) is
equivalent to:
V-w=0inQ, wsng=0in H Y3,

one deduces that it is also equivalent to:
V' (Mw)=0inw, ws3=FV - -w)inQ. (3.28)
The first part of (3.28) becomes:
V' -Mu =V M =MV v)+g5 Vh
= M(® - 2—2) +4g5-V'h
= M(®) + g -V'h =0,
thanks to relations (2.7) and (3.21). Then, the second part of (3.28) becomes:

ug=F(V' - w)+v3=FV -u)-F(V  v)+uvs

(9’03
=FV 4= F(d- =2
(V') ( &Ug) + v3
= F(V'-u/) — F®,
thanks to (3.21). Thus, we have proved the equivalence. O

Therefore, we are in position to give an existence and uniqueness proof of a weak solution to
Problem (3.23). For convenience, let us denote by Y the space:

Yo =HY(Q)? x Hy(0ps, Q). (3.29)
Theorem 3.19. Let f' € H 1 (Q)2, let ® € L*(Q) and g’ € Hll//f/ﬁ(lj)2 satisfying the compatibility

condition (3.24). Then, Problem (3.23) has a unique solution (u, p) in the space Yo x (L%(Q2)/R), and
there is a constant C > 0 such that:

19 s+ sl 0 + Wiy < © (17 s + 100y + Iy o) (330

Proof. As above, Lemma 3.18 enables to reduce the equations of (3.23) to (2.21), for the datum ¢
defined by (3.27). Therefore, Problem (3.23) is solved by virtue of Theorem 2.17. O

Remark 3.20. For any € > 0, let us counsider the following system:

0
—Aul +V'p. = 1, _52Au§ + azz =0, V-u.=® inQ,

u. =g, ujng=0 onl.

(3.31)
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Another proof of Theorem 3.19 consists in giving an asymptotic analysis of Problem (3.31), as we did
in Section 4.3. Firstly, by relation (1.11), there is v € H'(Q2)? x H} () such that

Vio=®inQ, v =g onl.

Then, by translation, the new unknown w. = u. — v satisfies (3.9) with f' — Av’ in the right-hand
side of the first equation, and with —e2Awvs in the right-hand side of the second equation, instead of 0.
Then, with similar techniques, we prove that there is a constant C' > 0, independent on ¢, such that

lwell 12 + € 1wl ) + w5l g o,, .0 + 1Pl L2y m < C I~ AU’HH—l(Q)z -

As a consequence, and since £2Awvs goes to 0 as € goes 0, a subsequence of (w., p.). converges weakly
to w € H}(Q)3 and p € L?(Q)/R, which are in fact the unique solution to

W _ 0 Viw=0 inQ,
8%3

w' =g, wsng=0 onT.

—Aw' +V'p=f — Av/,

Then, u = w+ v is solution with p to Problem (3.31). By passing to the limits in the above inequality,
estimates (3.30) holds.

We finish by giving a summary of the main points of the work we have done in this chapter. The
initial purpose was to give an existence and uniqueness proof of a weak solution to (3.1). The first proof
we have given was based on a limit process, where (3.1) appears as the limit of the anisotropic Stokes
system (3.9). Then, in order to give a second proof of this result, we have given the mathematical
justification that enables to reduce (3.1) to (2.15), and this last problem was solved in the previous
chapter, see Proposition 2.12. To finish, we have reduced the more general conditions (3.25) to (3.26).
This enabled us, in accordance with Theorem 2.17, to solve the general problem (3.23).

Far from now, we have not been interested yet in the case of inhomogeneous conditions for the
unknown wuz. We are lead up to wonder if such a reduction process is still applicable, and hence if it
is reasonable, for example, to reduce the following conditions:

Vu=dinQ, uv=g onl, usnz=gsonl,

and how to express in this case ug with respect to ®, g’ and g3. We propose to answer this question
in the next chapter.
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Chapter 4

Weak solutions to (SH) with a non
homogeneous condition on ujg

4.1 Introduction

In the previous chapter we have given an existence and uniqueness proof of a weak solution to the
Stokes hydrostatic approximation, always by considering a homogeneous condition on the unknown
ug, see Theorem 3.19. Our proof was based on the reduction of the conditions (3.25) to (3.26), see
Lemma 3.18. Let us study now what happens if we a consider a non homogeneous boundary condition
over uz. Given f': Q - R? ,®:Q — R and g : T' — R?, we pose naturally the following problem:

@:O, V-u=® inQ,
83;‘3

u' =g, ugnz=g3 onl.

/ I — !
—Au' +V'p=f, (4.1)

Intuitively, and in accordance with Proposition 3.1, we would like to find u € H*(Q)? x H (9., Q) and
p € L*(Q)/R solution to this problem for the data:

freHVAT)?, @cl?(Q), ¢ eHVAI), ge HVAD),

necessarily fulfilling the compatibility condition:

/Q‘I'dx = /Fg’ 1 do + (g3, 1) provjary, e -

In a view to solve Problem (4.1) in the above situation, let us see if it is possible to reduce the more
general conditions:
Vu=®inQ, v=g onl, wusnz=gsonl, (4.2)

to the following ones:
V' -Mu' =¢, 4w =g onT, (4.3)

where ¢ is uniquely determined by ® and g (as well as the unknown wg). If we succeed, then we will
solve Problem (4.1) by virtue of Theorem 2.17. Let us apply the operator M to the equality V-u = ®
in order to identify the function ¢ in (4.3). We will then apply the operator F' to the same equation
to see how necessarily us depends on v/, ® and g’. We have by (2.7):

8U3 8uS

J— /_ / — ) = /. /_ 4 . ! —_—
M(V -u) = M(V u)+M(8x3) V' Mu' —V'h gB+M(a,I3),
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from which we deduce, for the moment, that ¢ is necessarily equal to:

6= MO+ V'h-ghy— M(2) in w.
81‘3

Next, we would like to adapt Claim ¢ of Proposition 3.10 and write M(BUS) with respect to gs. Thanks
to Green s formula (3.4), one has for any ¢ € D(w):

(911,3 8’11,3 ~
M2 U Gy = 4.4
/¢ /w v = (o ¢>H-1/2(r>,H1/2<r>’ (4

and as we see, we are not able to go further on the computations without additional regularity on gs.
Note that the same problem appears when we apply F' to the equality V - u = ®. Indeed, one has

8u3

F(V u) = F(V' ) + (),

and if we apply Claim 7 of Proposition 3.10, we obtain that for any ¢ € D(Q):

Ous , Ous 0Gyp
/QSOF(TIE;;) dSC 875630 d /ng 8x3 de’ + <g3, G(’D>H*1/2(F),H1/2(F) . (45)
Here again, the H~'/2(T') regularity of g3 is not sufficient to write F(g—gg) with respect to g3 and us.

As a conclusion of this discussion, the reduction process may not be the good approach to solve
Problem (4.1) in the above situation, where we consider the optimal H~'/2(T") regularity for the datum
gs. Our purpose is not to study this optimal situation, but rather to deal with other ones for which
the reduction process is successful. This is why an outline of Chapter 4 is as follows.

In Section 4.2, we prove that it is possible to reduce (4.2) to (4.3) with an additional regularity on
g3, compatible with the unknown uz we want to find. As a consequence, we give in Theorem 4.1 an
existence and uniqueness proof of a weak solution to Problem (4.1).

More precisely, by considering the unknown us in the space Hp(Oy,, 2) defined here after in (4.14),
we prove in Proposition 4.4 that it is possible to define the trace (uzns)|r in L*(T).

Then, by extending Proposition 3.10 to any u in Hr(0,,, ), we are able to go further on the compu-
Zagions (4.4) and (4.5), and write ]M(g—;‘;) and F(g—;g) with respect to gs = (usns)|r, see Proposition
Finally, and always by considering uz € Hp(0.,, 2) and g3 € L?(T'), we are able to reduce (4.2) to
(4.3) in Lemma 4.10. The combination of this lemma and Theorem 2.17 constitutes the existence and
uniqueness proof announced few lines above.

In Section 4.3, we will consider another problem set in a domain with sidewalls along dw, where we
consider a Dirichlet boundary condition on uz. More precisely, we will give an existence and uniqueness
proof of a weak solution to:

Ip
— / ! = ! _— = . = 1
Au' +V'p=f', D25 0, V.-u=3d inQ, (4.6)
u=g onl,
for which the following boundary condition is a priori not defined:
uz =gz on I, (4.7)

Firstly, we will prove in Proposition 4.14 that it is possible to define, for any u € H(0,,, ), the trace
ulr in the weighted space L?(T',|n3|do) defined in (4.24), and hence that (4.7) is meaningful. Then,
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we will establish in Proposition 4.17 an essential result concerning the characterization of the trace
(Fu)|r for functions u € L?(1).

As in the previous section, we will extend Proposition 3.10 to any u in H (0., €2), and we will go
further on the computations (4.4) and (4.5), by writing M(g;;) and F(g—x) with respect to g3 = us|r,

see Proposition 4.16. We will achieve Section 4.3 with Lemma 4.18, by proving that it is possible to
reduce the conditions:

Vu=dinQ, u=gonl, (4.8)
to the following ones:

V' -Mu =¢, u =g onT, (4.9)

when we consider uz € H(9,,, Q) and g3 € L?(T, |n3|do). Finally, the combination of Lemma 4.18
and Theorem 2.17 will constitute the expected existence and uniqueness proof of a weak solution to
(4.6).

4.2 A first case of inhomogeneous boundary conditions on usg

In this section, we give an existence and uniqueness proof of a weak solution to the following problem:

AW +Vp=f, a—pzo, Vou==®& inQ,
x3
ul = g/7 usng = gs on Fa

(4.10)

available in a general domain Q where (7) is not necessary. In order to state this main result, we
require the space Hp(0x3,(2) defined and studied in the next paragraph. Then, we set:

XF = Hl(Q)2 X HF(al‘g,Q).

Theorem 4.1. Let f' € L*(Q)?, ® € L*(Q), ¢’ € Hll//\Q/E(I‘)2 and g3 € L*(T) such that g3 = 0 on

FsUTL. Assume the following compatibility condition:

/@dx:/g’~n’do+/ g3 do. (4.11)
Q r I'e

Then, there is a unique pair (u, p) € X x (L*(2)/R) solution to Problem (4.10) and satisfying the
estimate,

w1l 1.2 + lusll g o, o) + 1Pl L2y < O Hf/HLQ(Q)Q + 1l 2
L APV P PSS
where C' > 0 is a constant depending only on ().
The sequel is dedicated to the proof of Theorem 4.1. The one we give is essentially based on
reducing the following conditions:
Vu=dinQ, v=g onl, wusnz=gsonl, (4.12)

in the situation where us belongs to the new space Hr(0,,, ) and where g3 belongs to L2(T'). As
we prove it in the sequel, the space Hp(0y,, Q) introduced in (4.14), constitutes a sufficient functional
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framework to go further on the computations (4.4) and (4.5), see Proposition 4.8, and enables therefore
to reduce (4.12) to the following conditions:

V' -Mu =¢, u =g onT. (4.13)

We refer here to Lemma 4.10. Next, since the unknown p of (4.10) does not depend on z3, we deduce
from Lemma 4.10 that solving (4.10) reduces to solve (2.21), for which we know from Theorem 2.17
the existence and uniqueness of a weak solution.

Let us introduce the following subspace of H(0,,, Q) defined by:
Hp(92,y, Q) = {u € H(Dy,, Q) /v € L?(Q) such that u = Fv in Q}. (4.14)

We start with two obvious results on the space Hp(0z,,€2). In the first one, we state that Hp(0y,,2)
is a Hilbert space for the standard H(0,,, 2) norm. In the second one, we give a density property,
useful to build a trace operator in Proposition 4.4. We state and prove these results in a row.

Proposition 4.2. The space Hp (0.4, Q) is a Hilbert space for the standard H (0., ) norm.

Proof. Thanks to relation (3.20), F is a linear and continuous operator from L?(Q2) into H (0, 2).
Moreover, the inequality

1Full ga,,, o) 2 lullp2 o)

and classical completion arguments lead to the result. O
Lemma 4.3. The space F (D(R2)) is dense in Hp(Oyy, ) for the standard H(0,,, ) norm.

Proof. 1t is immediate since F is continuous from L?() into H (9., 2), see relation (3.20), and since
D(Q) is dense in L?(Q). O

Proposition 4.4. The linear mapping
YF U ung|r

defined on F (D(R2)) can be extended in a unique way to a linear and continuous mapping, denoted in
the same way, from Hp(0x3,Q) into L*(T).

Proof. Let u € F (D(Q)). Then, there is v € D(Q2) such that u = Fv in Q. Moreover, Fv € C*(Q)
and supp (Fv)|r C T'p. As a consequence, one has by relation (1.4) and since (Fv)p = Mv in w:

/(un3)2da:/ (Fv)*njdo = —/(Mv)2 (n3)p do’
r I'p w
2
<[ Mola ()

2
< Clollfzg) -
Next, note that v satisfies v = —0,,u in Q, thanks to relation (3.19). Therefore,
2
/F(ung)2 do < C HUHH(BM,Q) .

As a consequence, the mapping vr defined on F [D(Q)] is linear and continuous for the H(9,,, Q)
norm. By Lemma 4.3, we can extend yr in a unique way to a linear and continuous mapping, still
denoted by g, from Hp(0z3,Q) into L*(T). O
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Remark 4.5. Let u € Hp(0,,,). By construction, and in accordance with Proposition 3.12, the
trace ung|r satisfies:
ung = 0in L*(TsUTy). (4.15)

We understand now why it is necessary to impose g3 = 0 on I's UT', in Theorem 4.1.

We give in the following proposition a representation formula of the trace (ung)|r, for u € Hp (04, ),
very useful in the proof of Lemma 4.10.

Proposition 4.6. The following relation holds.

ou

(9713) (U‘F)B dx’. (416)

Vu € Hp(0y,,9), Yo € Hp (), / ungvdU:/M(
FB w

Proof. Let u € F(D(2)) and v € H}_(Q). Then, there is w € L?(Q) such that u = Fw. Moreover,
one has by relation (1.4)

/ ungvdaz/ (Fw)vngdaz—/]Wvada:’,
I's I'p w

B ou ,

As a consequence, one has proved that (4.16) holds for any v € F(D(R2)), and then, by density, for
any u € Hp(0y,, ), thanks to Lemma 4.3. O

Remark 4.7. From now on, we are in position to justify the compatibility condition (4.11). It comes
from the following Stokes formula:

Vu e Xp, /V-udx:/g’-n’da+/ gs do,
Q r I'p

which is satisfied thanks to Proposition 4.4 and Relation (4.16).

Next, recall that in the introduction, we have proved that is was not reasonable to consider uz €
H(0,,, Q) and g3 € H~Y/?(T) in (4.2), to reduce the conditions (4.2) to (4.3). Indeed, and according
to (4.4) and (4.5), we were not able to express M(g—zg’) and F(g—zg) with respect to g3 € H~Y/2(T'). In
the following proposition, we establish that if u € Hr(0,,, Q) and g3 € L?(T'), then it is possible to go
further on the computations we have done in (4.4) and (4.5), and express M(g—zj) with respect to g3
and compute easily F(g—;‘i)

Proposition 4.8. Let u in Hp(0y,, ) and set G = ung|r. Then, one has:

ou

i) M5 -) = Gn(1+ VAP in L) ().
i) F(%) = —u in L*(Q).

Proof. Let u € Hp(0y5,9Q) and ¢ € D(w). By Proposition 4.4, G € L?(T'), hence G € L*(w) in
accordance with Proposition 1.1. Then, since one has by relation (1.2):

G do = / Guw (1+ VA2 do,

I'p

53



one deduces from (4.16) that for any ¢ € D(w):

/M(aai)wx’:/gB(1+|Vh|2)1/2¢dx’.
w XT3 w

Consequently, Claim 1 holds since d,,u € L*(Q) and thanks to Proposition 2.2. Next, let us establish
Claim 2. Let u € L?(2) such that u = Fv. Therefore, one has by (3.19)

ou

F(—

)=—Fv=—uin Q.

O

Remark 4.9. Note that the main argument in Claim 1 of Proposition 4.8 is that when uz € Hp(0,,,2)
and g3 = (usn3)|r € L*(T'), the duality pairing in (4.4) is in fact an integral over I'p, and hence an
integral over w by relation (1.2). Besides, if we consider uz € Hp(0,,, Q) and g3 € L3(T) in (4.2), we
see by completing the reasoning hold in introduction that we necessarily have in (4.3):

¢=M>P+V'h-g5—(93)p(1+ |Vh|2)1/2 in w,

and uz = F(V' -4 — ®) in Q.

We are now in position to reduce the conditions (4.12) to (4.13). Before observing the following,
1/2 . :
recall that the space H1//\/E(F) is defined in (2.27).
2 / 1/2
Lemma 4.10. Let ® € L*(Q)), ¢’ € Hl/\/ﬁ

the compatibility condition (4.11) and set:

()2 and g3 € L*(T) such that g3 =0 on T's UT' 1. Assume

¢=M® - (g3)p(1+ [VA[)V2 + g)3 - Vh inw. (4.17)

1. Then ¢ € LQ/\/E(w) and satisfies with g’ the compatibility condition:

1
/ pdr’ = / g -n'do. (4.18)
w Iy

2. Any function u € X satisfies (4.12) if and only if ' € H'(Q)? satisfies the reduced conditions
(4.13) and ug = F(V' - v/ — ®) in Q.

Proof. Claim 1. Thanks to Proposition 2.2, one has M® ¢ Lf/\/ﬁ(w). Then, Corollary 4.8 gives
(9)5(1+ [VH*)'/2 € L2, (w).
To finish, as ¢’ € a2 (I')2, relation (2.28) ensures that g’y - Vh € L*(w). As a consequence, one

1/vVh
deduces that ¢ belongs to L? _(w). Next, one has by relations (1.6) and (1.3)

1/vVh

/¢d;p’:/Mcbdz’—/(gg)B(H|Vh\2)1/2d:c’+/gjg~Vhdx’
:/édx—/g;;do—/ g -n'do.
Q r I'e
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As (4.11) holds, one obtains

/ngdx’:/g’~n’da+/ggda—/ggda—/ g -n'do
w r r r I's
:/ g’-n’d0—|—/ g -n'do.
Fs FL

To finish, since n’ vanishes on I'g, one deduces that ¢ satisfies the compatibility condition (4.18).
Claim 2. Assume that V- u = ® and u3 = g3 in L?(T"). Relation (2.7) gives

V' -Mu =MV -u)—gp-Vh
8u3

=M(®—-—2)-g%5 -Vh
( 6$3) 9B \Y
3U3
=M®—- M(=—=)—g’s-Vh.
(8303) 9V

Moreover, one also has
8uS

(9.133 )
By applying Proposition 4.8 in the previous equalities, one obtains

F(V' -u')=F&— F(

V' -Mu =¢, uz=FV u —2).

Conversely, let ' € H(Q)? satisfying (4.13) and let u3 = F(V' -4 — ®). Then, uz belongs to
Hp(0y,, Q) and satisfies, thanks to Proposition 3.9:

Gus _ -V -u' + 9,
03:3

and V- u = ® in Q. Finally, since g3 = 0 on I's UT'1, let us establish that usnz = g3 in L?(I'). Let
p € Hi (Q). Then, relation (4.16) give:

/ u;gngudaz/fw(—vl'ul‘f'q)) (plr) B do.
I'p w

Next, by definition of ¢, one has

MV v —®)=V'"-Mu —Vh-uy— M®
— - Vh-gl— M®
= —(gs)B(1+ |Vh[*)'/2.

Hence, one deduces that

/ U:msudoz/(93)3(1+|Vh|2)1/2 (ulr)p dz’
FB w

= / gs pdo.
I'p

As a consequence, one has usnz = g3 in H~/?(I'p), hence in L*(T'p). O

Finally, let us give the proof of Theorem 4.1.
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Proof. Thanks to Lemma 4.10, and since p does not depend on z3 (see Proposition 2.8) we have proved
that solving (4.10) reduces to solve (2.21) for the datum ¢ defined in (4.17), and for which we can
apply Theorem 2.17. As a consequence, Theorem 4.1 is proved. O

Let us finish this this section with additional comments.

Remark 4.11. Let us consider the subspace
L% (M) ={geL*I)/g=00onTsUTp}.

As an immediate consequence of Theorem 4.1, we establish that the trace operator vp : u — uns|r,
defined in Proposition 4.4, is onto from Hp (0., ©2) into L 5(T'). Moreover, for any g € L% 5(T') and
any u € Hp (0,5, Q) such that uns|r = g in L*(T), one has:

lullro,,,0) < CllgllL2ry -

Remark 4.12. Note that Theorem 4.1 give a lift operator for the conditions (4.2). More precisely, let
deL?0),d € Hll//f/E(FV and g3 € L*(T') such that g3 = 0 on I's UT' ;. Assume the compatibility
condition (4.11). Then, there is u in X g satisfying:

Vu=®inQ, =g inl, wusng=g3inT,

and a constant C' > 0 depending at most on 2 such that:

19 e+ Tl )+ Wy < © (19 + e oo+ ol )

We see now, in the following section, an unexpected situation where we consider in (4.10) the
Dirichlet boundary condition ugz = g3 instead of the condition ugns = g3 that we have considered in
this section. We build an adapted functional framework that enables to reduce the conditions (4.8) to
(4.9) and to solve a new problem. As it will be justified, such a situation is only available when (7)
holds.

4.3 An unexpected inhomogeneous boundary conditions on u;

Throughout this section we assume that () has sidewalls, see the representation above. More precisely,
we make the assumption! (7) on the mapping h. Note, in this case, that the equalities L3, (w) = L?(w)

and Hll//?/E(F) = H'Y/2(T) hold (we refer to (2.3) and (2.27) for the definition of these weighted spaces).

lFar from now, this assumption was not needed.
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Figure 4.1: The domain ) with sidewalls

I

In this section, we give an existence and uniqueness proof of a weak solution to the following

problem:

—Au' +V'p=F, @:0, V-u=® inQ,

O3 (4.19)

u=g onl,

available only when (7) holds. As in the previous section, we state the main result at the beginning
of the section, and we require, beforehand, the space L?(T', |n3| do) defined in (4.24) and the following
notations:

9 1/2
X = H' (Q)? x H(Dyy, ), |ullx = (Hu’nHl(Q)Q + ||u3|\fq<aw3,m) . (4.20)

Theorem 4.13. Assume (7). Let f € H-1(Q)?, ® € L*(Q), ¢’ € HY*(I)? and g3 € L*(T, |n3| do)

satisfying the compatibility condition:
/g~nd0:/ D dx. (4.21)
r Q

Then, there is a unique pair (u, p) € X x (L*(Q)/R) solution to Problem (4.19) and satisfying the
estimate,

lullx + [Pl L2y e < C (H-f/HHfl(Q)Z F N2 oy + 19 | zr1/2 (1) + ||93||L2(r,\n3\da)> ,

where C' > 0 is a constant depending only on €.

The sequel is dedicated to the proof of Theorem 4.13. We repeat the main lines of the proof
of Theorem 4.1, adapted to the new framework we introduce after. Therefore, the proof we give is
essentially based on reducing the following conditions:

V-u=®inQ, u=gonl, (4.22)

in the situation where u3 belongs to H(9.,, ) and where g3 belongs to L*(T, |n3|do). As we prove it
in the sequel, and under assumption (7) only, the space H(0,,, ) constitutes a sufficient functional
framework to reduce (4.22) to the following conditions:

V' -Mu =¢, v =g onl. (4.23)
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We refer here to Lemma 4.18. Next, since the unknown p of (4.19) does not depend on x3, we deduce
from Lemma 4.18 that solving (4.19) reduces to solve (2.21), for which we know from Theorem 2.17
the existence and uniqueness of a weak solution.

According to our schedule, we start by giving a meaning to the boundary condition:
U3z = gs on Fa

To this purpose, let us introduce here after the weighted space L?(T', |n3| do). Before, recall that ng = 0
onT'y,n3 =1o0onI'g and n3 < 0 on I'g. As a consequence, since ng has a constant sign on I'g, ng
can be considered as a weight for the surface measure do. Therefore, it is meaningful to introduce the
expected Lebesgue space:

L3(T,|ns3| do) = {M :T — R, |ns|do — measurable / u |ns|"/? € LQ(F)} : (4.24)

endowed with the hilbertian norm
1 /2‘

el sty = [t -

Then, let us observe in the following proposition that for uz € H(0,,, ) it is possible to define a trace
uslr in L*(T, |ns| do).

Proposition 4.14. The linear mapping
v :u— ulp,

defined on D(R2), can be extended in a unique way to a linear and continuous mapping, denoted in the
same way, from H(y,, Q) into L*(T,|ns|do).

Proof. Let 0 = 0(x3) in D(R) such that
D oo gy —20/30 < O S T oo ), —a/3Ds
where « is defined in (7). Then, let us set
reQ, 08(x)=0(x3), 60°x)=1-0(z3).

Therefore |ng| % = n36° and |n3| 62 = —n36® over I'. Next, let u € D(Q). Then
/u2 |n3|d0:/u2(95+93) |ns| do
r r
:/u295n3 da—/u203n3 do
r r
= / u?(0° — 08)ns do.
r
From Green’s formula, we deduce
ou 0]
? |ns| d :2/ 05 — 0P )u-——d / 2— (05 —07)d
/Fu |n3| do Q( )uaac3 x + Qu Bxg( ) dz

2
< G llulla,,, o

where Cy > 0 is a constant depending on . Consequently, the mapping ~ is linear and continuous for
the norm of H(Jy,, ). The result holds by an extension argument. O
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In order to derive from Proposition 4.14 the Green’s formula given in (4.29), we need to prove that

the integral:
/ uvng do,
r

is meaningful for any u, v € H(0,,, ). Moreover, it will be convenient to replace the above surface
integral by one defined on w, as done in relation (1.6). We state therefore the following proposition.

Proposition 4.15. One has the following properties.
1. Let p € L*(T,|ns|do). Then

i) pmz e L*(T), and H/LWBHLZ ) S HNHL2(F7|TL3WU)§ (4.25)
it) ps € LP(w), and |pslpz) < Mellpzrgao ; (4.26)
iti) pp € L*(w), and ||NBHL2(W < el Lo (v, ngldo) - (4.27)
2. Let A\, p € L*(T,|n3|do). Then
Aung € LYT),  Aunz € L*(T). (4.28)

Proof. Claim 1. Let u € L?(T',|n3|do). Since |n3| < 1 almost every where on T, one has n3 < |ns].
Then

/F (ums)* do < / 12 0] do = 1l oo i) < 50

and ¢) is proved. Next, one deduces from relations (1.2) and (4.25) that

[ dde = [ i@ dn = [ nddo < unallag
w w I's

2
< ez, ng a0y < o©-

Moreover, one also has

[ s’ == [ siyn)sa+ ()2 == [ g do
w w I'p

2
S el 2 ngaoy < 0©-

As a consequence, one has established 4:) and 4i). To finish, Claim 2 is a consequence of the Holder’s
inequality, and of the fact that I" is bounded. U

As expected, we derive from the density of D(Q) in H (9, ) and from relation (4.28) the following
Green’s formula:

Vu,v € H(Oyy, ), /ua—x?’d /va—%d1+/uvn3da. (4.29)

As a consequence, the following Stokes formula holds:
Yu € HY(Q)? x H(Oy,, Q), / V- udz = / g-ndo,
Q r

and we are now able to justify the compatibility condition (4.21). Moreover, we deduce from (4.26),
(4.27) and Proposition 4.14, that for any u, v € H(0,,, Q):

/Fuvngddz/w(u|p)s(1)|p)sd.’£l7/U(U|F)B(’U|F)de/. (430)
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Next, let us give another consequence of relations (4.26) and (4.27), required in further computations.
Given the properties of n3 and since w is bounded, we deduce from these relations that for any

p € LT, |ng| do):
/,u|n3|d(7:/ ,udcrf/ ung do.
r T's I's

Then, (1.4) implies more generally that:

Yu € L*(T, |n3| do), /u |nsg|do = /,ugdx’—I—/,quac’. (4.31)
r w w

In the following result, we observe a situation complementary to the one in Proposition 4.8, where
it is possible to go further in the computations (4.4) and (4.5), and to write ]W(ZT“;) and F(g?;) with
respect to the trace ug|r. The above result is, in fact, the generalization of Proposition 3.10 where we

considered the case of H'(f2) functions.

Proposition 4.16. Let u in H(0y,, ), and set G = u|p. Then:

. 0" :

i) M(a—;;) —Gs—Gp inw.
g 0 P .
i1) F(—a;fd) =Gs —u in Q.

Proof. Thanks to assumption (7) and Proposition 4.14, the function u|r belongs to L?(T,|n3|do).
Then, relations (4.26) and (4.27) and Remark 2.1 gives

Gs—Gpel*w) and Gs—ue L)
i. We deduce, from (4.29) and (4.30), that for any ¢ € D(w):
ou ~ Ou ~
M(=——)ydx’ = —dzxr = d
[y = [ 5% dr= [ GGnado
= / ¥ Gs da' — / Y Gpda'.
éi. Proposition 3.9, relation (4.29) and (4.30), prove that for any ¢ € D(Q):
ou / ou
F(m—)pde= | — Gpdx
| PGede= [ Sty
= —/ ugodx—i—/ Gs(Gp)s dz' — / Gp(Gy)p dz.
Q w w
Since (Gy)s = M and (Gp)p = 0 in w, we deduce that
Ju ~
F(—)pdex=— [ updx+ | Gspdz.
o O3 Q Q

O

Before establishing the reduction Lemma 4.18, we give a characterization of the improved trace
(Fu)|p for u € L*(Q) in a last proposition.

60



Proposition 4.17. Let u € L*(Q). Then, one has
i) (Fu)lrs =0 in L*(Ts).
i) (Fu)lr, = Mu in L*(Tp).

Proof. From Proposition 4.14, one deduces that (Fu)|r € L%(T,|ns|do). Moreover, since Mu €
H(y,, Q), one also has (Mu)|r € L*(T, |ng| do). Hence relation (4.28) gives:

(Fu)lrng € L*(T),  (Mu)|rng € LA(T).
Thus, one deduces from Proposition 3.12, since Holéz (T's) is dense in L?(I's):
((Fu)lrns) [rs = (Fu)lrs =0 in L*(Ts),
and for the same reasons, one also has
(Fu)lens) ey = ((Mw)lens ) Iy in A(T).

To finish, as ng # 0 on ', one deduces

(Fu)lp, = Mu in L*(Tp).

We are now in position to reduce the conditions (4.22) to (4.23). Observe the following lemma.

Lemma 4.18. Let ® € L?(Q), g’ € H'/?(T')? and g3 € L*(T, |n3|do) satisfying (4.21). Let us set

¢=MP+ (93)B — (93)s + 95 - V'h inw, (4.32)

P

U=(g3)s —F® inQ. (4.33)

1. Then ¢ € L?(w) and satisfies with g’ the compatibility condition (2.34).
2. Any u € X satisfies (4.22) if and only if v’ satisfies (2.30) and us = F(V' -u') + U.

Proof. Claim 1. We use the arguments of the proof of Lemma 3.18 Claim 1, to prove that M® + g'5 -
V'h belongs to Lf/\/ﬁ(w), hence to L?(w) as (7) holds. Then, relation (4.26) and (4.27) imply that

(93)B — (93)s € L?(w), and ¢ € L?(w). Next, the same arguments combined with relation (4.30) give

/¢dx':/quﬁ/(gg)r(gg)sdxq/ g -ndo
w w I'p

:/g’-n’da+/g3n3da—/ g’-n’do:/ g -n'do.
T r I'p r'r

Claim 2. Let u € X satisfying (4.22). Relation (2.7) gives

V’-MU’:M(V’-u/)—g§~V’h=M(@—%)—g’B-v’h
:]VMD—M(g—Zz)—gﬂg-V’h.
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Moreover, one also has

ang
/ N __ _ hfbaicd

By applying Proposition 4.16 in the previous equalities, one obtains
V' Mu =¢, uz=FV -u)+U.

Conversely, let u’ € H() satisfying (2.30) and let uz = F(V' - ') + U, with U defined in (4.33).
Then, Proposition 3.9 ensures that uz € L?(Q2), and that

oU

8U3_ / /
v u+8a:3_

—_ 2 = -V -d (I)7
81‘3 wt

since one has noticed that (g3)s does not depend on z3. As a consequence, us belongs to H(0,, 2)
and V -u = ® in Q. Finally, let us establish that uz = g3 in L?(T,|n3|do). Firstly, let us compute
(us|r)s and (us|r)p. Note that v = V'-u’ — ® belongs to L?(2). Thus, one deduces from Proposition
4.17 the following equalities

(Fulr)g =0, (Fuvr)p =MV -u'—®) onw.
Then, by writing ug = Fv + (./g—;_);‘ and since {@I@} = [(Tq;iq} = (g93)s , one obtains:

(uslr)g = (g3)s, (uslr)p = M(V'-u' — @)+ (g3)s. (4.34)

As a consequence, one deduces from relation (4.34) and relation (4.31) that for any u € L?(T, |n3|do):
[ s inaldo = [ (waleysius o' + [ (usle) i '
r w w

:/(%)S#Sdl’/+/(gg)su3d9:'+/M(V“u'f(b)ugdx'.

Then, by using relations (2.7) and the definition of ¢ in (4.32), the following equalities hold:

MV v —®)=V"-Mu —uy-V'h
:¢—ujg-V'h—M<I>:
= (93)B — (93)s-

As a consequence, one deduces in the above equality that

/U:W In3|do = /(QS)SMS d$'+/(93)BuB dz’
r w w

=/93u Ins| do.
T

Therefore, uz = g3 in L?(T, |n3| do), which ends the proof. O

Finally, let us give the proof of Theorem 4.13.

Proof. Thanks to Lemma 4.18, and since p does not depend on z3 (see Proposition 2.8) we have proved
that solving (4.19) reduces to solve (2.21) for the datum ¢ defined in (4.32), and for which we can
apply Theorem 2.17. As a consequence, Theorem 4.13 is proved. Let us finish by making the following
comments. O
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As in the previous section, let us finish with supplementary comments.

Remark 4.19. Let us consider the subspace

LT, |n3| do) := {geLQ(I‘, Ins|do) / /gngdaz()}.
r

From Theorem 4.13, we have proved that the mapping 7 : u — ul|r, given by Proposition 4.14, is onto
from H(0,,, Q) into L3(T,|ns| do). Moreover, for any g € L3(T, |n3|do) and any u € H(0,,, ) such
that u|r = g, one has

Il (., ) < C 9l L2(r nsdo) -

Remark 4.20. Also note that Theorem 4.13 gives a lift operator for the conditions (4.22). Let
® € L?(Q), g € HY/*(T)? and g3 € L*(T, |n3| do) satisfying the compatibility condition (4.21). Then,
there is w in X satisfying the following conditions:

Viu=dinQ, u=ginl,

Moreover, there is a constant C' > 0 such that:

leullxe < C (N2l + 18l rys + 18l o mstas)) - (435)
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Conclusion and prospect of Part 1

As we have presented it, the aim of part I was to study the existence and uniqueness of weak solutions to
the hydrostatic Stokes approximation in various new cases. Firstly, we have revisited the homogeneous
case (3.1), see Theorem 3.4 and considered the new problem (3.2) solved in Theorem 3.19. In these two
cases, we have always considered an homogeneous boundary condition on u3. Then, we have studied
two other situations where we considered a non homogeneous boundary condition on ug, see (4.1)
solved Theorem 4.1, and (4.6) solved in Theorem 4.13, and this last result is proved under assumption
(7) only. In order to establish these results, we have reduced, in various situations, the following
conditions:

Vu=dinQ, =g onl, Busg=gzonl,

where Bug defines one of the boundary conditions (15), to the following ones:
V-Mu' =¢inw, u =g onT.

As a consequence, we have proved that any of the problems mentioned above reduce to Problem (2.2),
solved in 2.17.

Far from now, we have not been interested in the study of the regularity of the weak solution to
the hydrostatic Stokes approximation. In addition to the work already done, we have investigated the
question in the case of the homogeneous Problem (3.1), and when (7) is not assumed.

By noticing that for any ¢ > 0 and for f' € L?(Q)?, the solution (u., p.) given by Theorem 3.4
satisfies

u. € H*(Q)?, p. € HY(Q), (4.36)

we tried to improve the estimate (3.3) in order to get additional regularity on (u, p) solution to (3.1).

For technical reasons, we had to consider a domain € of class C''!, which excludes the definition
(1). Then, we would adapt to the case of Q as in (1). Thus, we tried to get local estimates on the pair
(ue, pe), along the lines of [6], by covering €2 with elementary open sets o of thickness the parameter
0 < A < 1. This means that o can be located in a horizontal band of thickness \.

The following result concerns estimates inside 2. Before, let us introduce some notations. We
denote by 6 a function of D(R?) with compact support in o C . Then, we set v. = fu. and g. = 0p..
Therefore, introducing the quantities

Le(0) = [0l g2(oy2 + € V5l 2oy + IV (02,02 T IV Nl L2002 5
Re,)\(o—) = H'f/HLQ(Q)Q + A va€HL2(U)3 + A Hvug||H(8x3,o)3 ’

the following estimates hold.
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Proposition 4.21. Lete > 0 and f' € L*(Q)%. Let (u., p.) be the solution to (3.9) given by Theorem
3.4 and (4.36). Let 0 < XA < 1 and assume that 0 has compact support in o CC Q.Then, there is a
constant Cy > 0 depending only on 0 such that

LE(O') < C@REM\(U).

Then, we have obtained estimates near the boundary of €2, by flattening the boundary of 2. Recall
that € is of class C1'!. This means here that  is connected and locally situated on one side of its
boundary I', a manifold of class C**'. More precisely, given a point P € T, there are positive numbers
A and b, and an orthonormalized system of cartesian coordinates x = (2/, x3) with origin at P, and
a function ¢(a’) defined and C*! on the sphere {2’ € R? / |2/| < b} such that: the point x for which
x3 = ¥(a’) belongs to I'; the point x for which ¥ (2') < 3 < A+ ¢(2’) belong to Q; the point x for
which —\ +9(2') < 3 < 9(z') belongs to R3\ (2. In other words, we define here the sets

o={zeR3¥/ 2| <b, - A+ ¢(2') <zs <A+ (')},

ot={zco/as>v(@)}, c={zco/xs=1()}. (4.37)

Moreover, the tangent plane to 99 at P coincides with the z’-plane, so that V¢ (0) = 0. To finish, we
can assume with no loss of generality that A < 1 and b < 1. Therefore we prove the following result.

Proposition 4.22. Lete > 0 and f' € L*(Q)%. Let (u., p.) be the solution to (3.9) given by Theorem

3.4 and (4.36). Then, there is b > 0 such that for any 0 in D(R®) with compact support in o+ Uo:
LE(U+) < CGRE,/\(U+>7

where Cy > 0 is a constant depending only on 0.

Unfortunately, these optimal estimates prevent us to choose correctly the parameter A, and get
strong estimates on the pair (u., p.). Therefore, it is not possible, by this way, to get some regularity
on the pair (u, p).

To our knowledge, the regularity of the solution to (3.1) in a domain  with a depth A vanishing
on the shore, is still an open problem. The closest result concerns the regularity of weak solutions of
(2.15) when the mapping h posses es the property (7). The following result is proved in the hand book
of R. Temam and M. Ziane [48], see Theorem 4.4 page 121:

Theorem 4.23. Assume that h satisfies (7) and let us consider the open set Q. defined in (8). Let
(ul, ps) be the solution to (2.15) given by Proposition 2.12. Then

uls € H2(Qa)27 Ps € Hl(QE)v
and there is a constant C' > 0 independent on € such that

”u/E”H?(QE)? +elpsllgr) <C ||f/||L2(Q)2 :

Theorem 4.23, combined with the close link between (3.1) and (2.15), brings a regularity result in
the case where the mapping h satisfies (7).
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Proposition 4.24. Assume that h satisfies (7). Let f' € L*(Q)? and let (u, p) be the solution to
(3.1) given by Theorem 3.4. Then

u' € H*(Q)?, Vuz € H(0.,, )3, pe HY(Q),
and there is a constant C > 0 such that
%'l g2z + IVusl g o,y + Pl 1) < C Hf/HL2(Q)2 ~
Here, it would be interesting to improve Theorem 4.23 along the line of [48] by considering weighted
functional spaces. This naturally leads us to the study of degenerate equations set on the surface w,

with a weight h blowing up. In the second part, we study one of these equations, set in the half-space
R3.
+
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Part 11

A degenerate equation in the half
space
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Introduction of Part II

This work is devoted to the study of a degenerate elliptic equation set in the half-space Ri. It is
ingpired by several models in oceanography when we consider a domain with a depth vanishing on the
shore. More precisely, for a datum g : ]Ri — R, our problem consists in seeking u : Ri — R formally
solution to:

1
—div (ww) =ginR3, u=0onT =R?x{0}. (4.38)
3

We start from the study of a degenerate equation, made by D. Bresch, J. Lemoine and F. Guillen-
Gonzalez in [11]. Let w be a two-dimensional domain. Given h: w — R and g : w — R, the authors
are interested in finding ¢ in H(w) solution to

1
—div (hV\Il) =ginw, ¥ =0ondw, (4.39)
where
2 v 20 32
Hw)=4qW el (w)/WEL (W)*, ¥ =0o0n dw ¢,
endowed with the norm [|¥|| ., = H% HL?(UJ)T Moreover, the weight h satisfies

heWh>®(w), h>0in w,

h(z) = ¢(6(z")) in a neighborhood of dw,

with §(z') = dist(2’, w). The function ¢ satisfies several assumptions, and we refer to [11] for the
complete statement.

As do explain the authors in [11], such degenerate equation (4.39) naturally appears in different
models issued from oceanography when hydrostatic pressure is assumed. It is the case of the Planetary
geostrophic equation [16], the Vertical-geostrophic equations [15], and the hydrostatic Stokes or Navier-
Stokes equations [5, 8, 18, 1, 48]. In particular, the authors are interested in obtaining information on
the regularity of the fluid’s velocity, and they prove the following result.

Theorem 4.25. Let g be such that §h'/?g € L?(w). There exists a unique solution ¥ of (4.39) such
that ¥ € H(w) and

v < CHMW ’ .
| ”H(w) g L2(w)

Moreover, if h'/?g € L?(w), then

}L1/2V(%v\1/) € (W), ‘ hl/QV(%V\IJ)

el

L2(w)4 L2(w)’
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The assumptions carried on w does not exclude to consider w = Ri. In this case, it is natural to
consider a mapping h having the same behavior than 2’ — x5 in a neighborhood of dw = R x {0}.
An additional difficulty would be to consider the mapping h(z’) = x5 that is no longer in L>=(RR%).
This is what we propose to investigate in this work, by studying Problem (4.38). Note that it is for
technical reasons, explained later, that we have decided to present the case of the dimension 3.

Our goal is to reach a similar result to Theorem 4.25, in our frame work. In particular, for
an adapted weighted space H(R3) := Wi; . (R3) see (5.9), we would like to prove the following

theorem.

Theorem 4.26. Let g be such that xg/Qg € L*(RY). There exists a unique solution u of (4.39) such
that v € H(RY) and

||u||H(R3 CH% g L)’

+
Moreover, if \/x39 € L*(R%), then
VT3 V( Vu) € L*(R%)? H\/ 3V( Vu) < CH\/IggHLz(R:;)
L2(R3)® *

For this, we propose to study (4.38) in a particular context of weighted spaces, where the weight
depends on z3. We will consider more general data g and give results of existence and uniqueness of
weak and strong solutions to (4.38). We will also present some regularity results for data g as in [11],
that includes Theorem 4.26.

The ideas contained in this work, can be adapted to the Rf—case where N > 3. In the Ri—case, it is
necessary to introduce an additional logarithmic weight, which complicates a bit more the presentation
of the results. This is why we limit our study to the case of the dimension 3.

In our sense, the ideas contained in this work would enable us to improve the result established in
Theorem [11].

We propose the following organization. In Chapter 5, we briefly recall some propertles of the
weighted Sobolev spaces W22(R%). Then, we introduce and study the family of spaces W2 (R%)
for non-negative «. In particular, we prove an 1nequahty of Hardy in Proposition 5.8, useful for
studying weak solutions to Problem (4.38) in the space W oz (RY).

Chapter 6 is devoted to the study of weak solutions for Problem (4.38): in Theorem 6.4, existence
and uniqueness in W' (3 +,(R3) when « € [0, 3/2[, and in Proposition 6.9, existence and uniqueness in
WL 2(R3) for a € [0, 1].

To finish, we prove in Chapter 7, two regularity results for Problem (4.38). In the first one, stated in
Theorem 7.2, we consider a datum g such that 23 *"?g € L?(R3), for a € [0, 3/2[. In the second one,

see Theorem 7.6, we consider a datum g satisfying =3 “*2g € L2(R3) N W, " *(R%) for a € [3/2, 5/2].
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Chapter 5

Functional framework

5.1 Fundamental results on weighted Sobolev spaces

In this section, we recall the fundamental properties of the weighted Sobolev spaces WéQ(Ri) In
order to control the behavior of our functions and distributions at infinity, we define the weight

reRY, pa) =1+, (5.1)

where |z| = (23 + 23 +22)!/? is Euclidean norm of z. For a € R, let us consider the following weighted
Sobolev space

Wa2(RE) ={ueD(R)/p* 'ue L*(RY) and p*Vu € L*(R3)?}. (5.2)

(see also [37] or [2]) It is a Hilbert space endowed with its natural norm:

L2 — Y
lullwz sy = (llo° Yullag, + o Vil )

The weight in (5.1) is chosen such that the space W2 2(R%) satisfies two fundamental properties. On

the one hand, D(R3) is dense in W2-2(R%) (see [37], page 230 Theorem L.1). On the other hand, the
following Poincaré-type inequality holds in W2:2(R%).

Proposition 5.1. There is a constant C > 0 such that

Vu € Wy 2(RY)/ Py, lullwi2gsy < Cllp*Vull L2 gs ys

where ¢ = min(0, [—a — 3]) is the highest degree of polynomials contained in W2 2(RY), with the
convention that Py = {0} if ¢ <O0.

Notation 5.2. Throughout this work, we denote by C any positive generic constant.

As % is bounded, note that for any o > 3, we have the following embedding:

Wa?(RY) — Wy *(RY), (5.3)
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and, from [37] page 235 Corollary 1.2, the mapping
u€ WhA(RE) — pou € Wy *(RY), (5.4)
is an isomorphism.
In the following theorem, proved in [37] page 258 Theorem I1.3, we give a trace operator for the space

W2 2(R3). The statement requires the space Wa/*(T) which is defined in [37] page 238 Definition
II.1.

Theorem 5.3. The mapping v : u — u(z’, 0) defined on D(ﬁ), can be extended in a unique way to
a linear and continuous mapping, still denoted by vy, from Wk2(RY) into Wi/2’2(F).

Then, let us define the space

WL2(R) = DRE) W7o, (5.5)

which can be characterized in the following way:
W12 RY)={ueW,?R%)/u=00onT}.

From that, we can introduce the space of distributions W:al’Q(]Ri) as the dual space of W§2(R3).
Then, note that we have the isomorphism

u€ WE2(RE) — pou € Wy 2(RY). (5.6)

In the sequel, we shall need another weighted space that is

v
W22(RE) = {u e D'(RY)/ % e L2(R3), 2L € LX(R3)®, D*u e LQ(Ri)g} , (5.7)
endowed with its natural norm:
1/2
— 2
ol 2 = ( H e HIP uHmi)g)

Here we denote by D?u any second-order derivative of the distribution w. In [37], it is proved that
the mapping u — dT(CE 0) defines, in a sense to be precised, the first-order trace for distributions of

VVO2 ’Q(Ri). Then, we also consider the space

W22(RE) .= DRE) a6 (5.8)

3

that is also characterized by:

V?/%Q(Ri) = {u € M/()l’2(Ri)/U: % =0 on I‘}.
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5.2 Weighted Sobolev spaces W'>, (R?)

—Q, T3
5.2.1 Definition and first properties

Let a be a non negative real number. Let us define a new family of weighted Sobolev spaces

2 U Vu
wh?  (R3):= {u eD'(R3)/ —o1 € L*(R%) and e € L2(Ri)3} , (5.9)
3
endowed with the norm
1/2
Jul e i
u 1,2 3y = ™ — .
W,z (R CB3+1 L2(R3) Z3 L2(R%)3
Proposition 5.4. Let o > 0. The space Wij 5 (R is a Hilbert space for the norm ||-|| ;1.2 (B2)"
e, w3

Proof. Let (uy), be a Cauchy sequence of W!.2  (R%). Then, there exists v € L?(R3) and w €
L*(R%)3 such that
V’U,k

) — v in L*(R3), = w in L*(R3)3. (5.10)
Then, let us set u = 3", and prove that u € W17 . (R3) and that

ug — u in Wl(fm(Ri)

Firstly, it is clear that ?“H = v € L*(R3). Moreover, # — ﬁ% in L*(R3). Secondly, one has in

the distributional sense -
Zg = V(Lav) =23Vv + (a+ 1)ves. (5.11)
L3 T3

u 1 /Vu u
V( Of‘rl):( ak_(a+1> of‘rl)’
Z3 I3 \ I3 x3

which implies by relation (5.10) that

Besides, one also has

23V = w — (o + 1)vez € L*(R3).

Thus one deduces in (5.11) that ¥ € L?(R2) and that Y% — Y in L2(R3). Finally, one has proved
3 3

T3
that ug converges to u Wiaz 25 (RY), hence that Wi,f 25 (R3) is a complete space. To finish, we prove
with no difficulty that

1,2 3 U v Vu Vv
u, v € W2r . (RY), (u,v) 7T —agT dT + — "~ dz,
R T3 T3 R3 T3 T3
defines a scalar product on Wi(f s (Ri) U

Remark 5.5. To the difference with the spaces Wi(f(Ri), there is no embedding channel as in relation
(5.3) for the family of spaces W' (R3).

—Q, T3
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Remark 5.6. Let « > 0. In the same way that we have the isomorphism (5.4), any distribution
u belongs to W2 (R3) if and only if u satisfies 23 %u € T/Volj3 (R3). Moreover, the following

—Q, T3
inequalities hold:

1 (0%
B12a2)72 ||U||W}; oy (BD) < s U||Wo{=j3 ®3) S (3 + 2a%)1/? ||U||W}; oy (B3) " (5.12)

5.2.2 A Hardy’s inequality

Then, let us consider the space

o 7”“ s
WhE o (BY) = D(RT) om0, (513

—Q, T3

[e]
In the sequel, we establish a Hardy’s inequality for functions of Wli s (Ri), which is essential to the
study of Problem (4.38). By definition of this space, we firstly prove the inequality for function of

D(R?).

Lemma 5.7. The following Hardy’s inequality holds:

v
Vu € D(R?), Hf“ <Co = : (5.14)
T3 L2(RY) T3 llr2(rs)s
where C,, is given by
2
C, = . 5.15
2a+1 ( )
Proof. For all 2’ € R?, one has by integration by parts
/-i-oc u 2 p 1 /+oo 1 ou? p
—| daz= == dx-
o 20T 5T o011 o 22071 Oy 3
2 /+°° u 1 Ou
= — | | 75— | dz3
2a0+1 Jq gt z§ Ox3
1/2 1/2
< 2 /+°° u 2d /+°° 1 6u2d
< —| dx — | dv ,
2+ 1\ J, xgt! s 0 x§ Ox3 ’
and one deduces that
—+00 2 2 +oo 2
U 2 ou
—| dxs< | ——— —| drs.
/0 :13§+1 3 (2a + 1) /0 O0xs 3
Then, integrate with respect to 2’ to establish that
U 2 Vu
Yue DR3), |—— < — .
+ Ig+1 LZ(Ri) 20( + 1 :L'g LQ(Ri)s
O

Then, it follows immediately the following proposition.
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Proposition 5.8. The following Hardy’s inequality holds:

\Y
Yue Wh2 (R, H‘il <Co |~ . (5.16)
Ty llLz(rs) T3 llL2(rs )
To finish, let us characterize the space W a2 (RY) as a space of null traces functions. From the
embedding
1,2 s
wh?, (R}) — WLX(RY), (5.17)

holding since z3 < p, any distribution u € W? %) has a trace u|p in V[/l/2 *2(T'). Thus let us

consider the space

awg(

W = {U€W12 (Ri)/u:OonF}.

—Q, T3

Proposition 5.9. The following identity holds algebraically

Whe L (R = W.

—Q, T3

Proof. As W is a closed subspace of W2 (R3), it is clear that

—Q, T3

wh2 o (R3)cw.

—Q, T3

Now let us prove the other 1nc1us1on For w € W, we prove in two steps that there is a sequence
(ug) C D(RY) converging to w in W2 (R%). Let us introduce the space

o, T3
He(RY) = {u € W /supp u compact C @} .

In the first part of the proof we prove that HC(REL) is dense in W. In the second part, we establish
that D(R3) is dense in H.(R3.), which lead to the inclusion

W wh? (R3).

—Q, T3

Step one. Let us prove that H.(R3) is dense in W. Let ¢ € D(R3) such that 0 < ¢ <1, p(z) = 1if
|z] <1, p(x) =0 if |x| > 2. Then, let us set for any integer k& > 0

x
TeRL, (@) =¢(7),  and ¥ = pxlps .
For u € W, let us establish that uy = wi)y, € H.(R?) and
kEToo lluk — uHWi’ci o (B = 0. (5.18)

Since ?“H belongs to L?(R%), one deduces that

Uk u 2 3
1 = Yk agr € IT(RY).
T3 T3

Then, let us prove that % € L*(R%)3. One has
3

Vuk o
xg wk Jr k

= (V).
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As ¥ a5 € L?(R%)3, one obtains ¢y, ¢ € L*(R%). To finish, note that supp (V) C {k < |z| < 2k},
and since one has for any z € R such that k < |z] <

a+1
T3

one deduces that 1 (V¢)k belongs to L*(R%.). Thus uy, € wh? (R % ). Finally, one has uy =0 on T’

—Q, T3

and supp up C ]R-H Wthh implies that uy € H (R +). Then, let us focus on (5.18). On the one hand,

Jur — uf® / o u? s u?
e e S 1| LS o — 12— gz
/Ri 22ty R} 23t (o >k} 23t

2

< 2/ L, (5.19)
{lz|2k} 123
and, in the same way, one has
2 2
/ de:/ e — 12 W“' x<2/ N (5.20)
R3 T3 {lz|>k}
On the other hand
\VmE u2 2
/ L ;ﬁ“ dw:/ [(V)el® e e dr < C UH dz. (5.21)
R3 T3 {k<|z|<2k} T3 {k<|z|<2k}

By collecting relations (5.19), (5.20) and (5.21), one deduces (5.18), thanks to the theorem of Lebesgue.

Step two. We prove that D(R3) is dense in H.(R%). Let u € Hc(R3). Then, let us consider the

extension of u by 0 to R3 outside Ri, that is the function w. Then, as u = 0 on I', w possesses the

following properties N B
e IP(RY), VU [2(R3)3,
| 3] 3]

Then, for 8 > 0, we introduce the function uy defined by
reR® ug(z) = u(x — fes). (5.22)

Let us notice that, since u = 0 on T', then (Vu)yp = Vuy. Therefore, thanks to Lemma 5.11, proved
here after, applied to v = u with o + 1 and Vu with «, one has ug € wh (]Ri) and

o, T3

ug — uin Wh? (R%), when 6 — 0.

&, T3

Thus, if we consider a mollifier sequence (p¢)c, the function ug * pE|R3+ € D(R3) for e small enough

and converges to u in W R3), as € and 6 go to 0. Consequently, D(R?) is dense in H.(R3). O

—Q, Ts(

Remark 5.10. It follows from Proposition 5.9 and from (5.17) that the following embedding holds

W2 (R WE2(RY). (5.23)

—a, mg,(
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Lemma 5.11. Let o > 0, let v € D'(RY) and such that % € L*(R3) . For any 6 > 0, let us

T3
consider the function vy defined in relation (5.22). Then, one has ;—g € L*(R3), and the sequence

(;—;)9 converges to ;; in L?(R3) as 0 goes to 0.

Proof. Let o > 0. Firstly, we check that & € L*(R?), since
3

2
/ d:z::/ dzi/
R R R

Next, let us establish that (2%)y converges to % in L?(R?). Introducing the integrals

g Zg
Lo = / do,  Iog = /
R R

(L1
o z§  (x3—0)*
dz < 2(L1p + I29).

J

Firstly, let us establish that I;9 — 0. By change of variables , one has

Iw:/R v (xg—(xgw)a)

% (1‘3 + 6)e
and I19 — 0 by the theorem of Beppo-Levi. Then, Iy — 0 by continuity of the translation in L? (Ri)

vy v 2 3
As a consequence, the sequence (E)(; converges to Zz in L*(R3). O

2 2

v,
0 dr < oo.

«
T3

v
(z3 +0)>

o
L3

3 3 3
+ + +

2

3 3
T +

one obtains
2
Vg — U

3 ¥
T 3

2
dx,

3
+

5.2.3 The dual space W, 1 *(R?)

a, T3

o
Let us introduce the space of distributions W 1 2(R% ) as the dual space of W12 | (R%). The following
proposition characterizes the distributions of W %2(R3).

Proposition 5.12. Any distribution g € D'(R%) belongs to W :2(RY), if and only if there is fo €
L*(R%) and f € L*(R3)® such that

Jo FY . o3
= V- Rz
9 x?“ + 5 in RS

Proof. Let fo € L*(R%) and f € L?*(R3)3. Then, one has for any ¢ € D(RY)

v
(- ()-9) [on(gm) o fr (55) =
T3 3 D/(R3),D(RY) RY -\ T3 R} 3

Vi

«
)

< ol 2 s F Il 2 e

’ @
a+1
L3

L2(R3) L2(RY)?

<Clelwez, @)
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This proves that the mapping

(e ()
T3 T3 D'(R2),D(R2)

is linear and continuous on D(RY) for the norm ||-|;1.2 (B2 ) and one deduces by density that
o w3

fo <f> 1,2 /13
+V- ew R
$g+1 xg a:L’g( )

Conversely, let g € W, 1 2(R%), and let us consider the mapping

( u Vu)

U= \—Q(71 o)

gt ag

from W 2 oo (RY) into L2(R3)%. This mapping is isometric; thus one can consider W 02 o, (RY) as

a closed sub-space of L2(R3)%. Thanks to the theorem of Hahn-Banach, if g € Wi 2 (R3 ), one can
extend ¢g to a linear and continuous form on LQ(Ri)‘l. As a consequence, one deduces from Riesz
representation, that there is (fo, f) € L2(R3)? such that:

\%
Vue W2, (RY), 9(“):/]1@ f“( ;}“) dx_/mf <x:> e

and one deduces that: P f
0 . 3
= V.| = RS
R <w3> e

Remark 5.13. Let o > 0. From Proposition 5.12 and Remark 5.6, any distribution ¢ belongs to
W, L2(R3) if and only if g satisfies 25g € W, " ?(R%). Moreover, the following inequalities hold:

a,T3

1 a 241/2
m HQHW—l 2(R3) ||x39||wgl>2(uz<3) < (3+42a7) ||9||w;%v32(ugi)~ (5.24)

T

Remark 5.14. From Proposition 5.8, the mapping u — || ¥4 @y’ , defines a norm on W s (R3)
xg
equivalent to H”Wif oo (BY) and in particular
1,2 3 2\1/2 V“
Yu € W Cows (RY), ”“”Wi’f L (B S <(1+0C) o . (5.25)
> 3 LQ(Ri)S

Therefore, a distribution g belongs to W5 % 2(R3) if and only if there is f € L?(R%)? such that
g = div (‘i) in Ri’r.
3
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5.2.4 The case a =0

o )
Proposition 5.15. The space Wéia (R3) is equal to Wé’z(Ri) and their norm are equivalent.

Proof. We already have the embedding (5.23) for o = 0. Let us prove that Wé’%Ri) is included in
W2 (RY). Let w € W *(RY) and (ux)r a sequence of D(R2) converging to u in W *(R2). Thanks
to Hardy’s inequality (5.14), the sequence (5 ) » is a Cauchy sequence in L?(R3). Moreover, it is clear
that 22 — 2 in D'(R3), thus that ;- € L2(R3) As we also have Vu € L?(R3)?, we have proved
that W *(R3) is included in WO . (]R3 ). Thus, they are the same spaces. This means in particular
that the identity

21,2 i12,1,2

WO,md(Ri) - WO (Ri—)v
is a continuous bijective linear mapping. As W(l)zd (R%) and Wé’Q(Ri) are both Banach spaces, it
follows from Banach theorem that 4 is an isomorphism, which ends the proof. O

Remark 5.16. As a consequence, one deduces from Proposition 5.9 that D(R%) is dense in W' *(R3)

o
for the norm ”'HWOI;fg (B2 ) and that any u € W 2(Ri) satisfies the Hardy’s inequality

u

3 Lz(Ri)

Yu € Wy 2(RY),

< “VU‘ILQ(Ri)S . (526)

Remark 5.17. Recall that any distribution F belongs to W, " *(R3) if and only if there s f, € L?(R%)
and f € L*(R%) such that

fo

F=—4+V. fln]R?’
P

Thanks to Proposition 5.15, we have also proved that F' belongs to W, 1’2(Ri) if and only if there is
fo € L*(RY) and f € L?(R3.) such that

fo

F = +v finR3.

Remark 5.18. Let us define, the space
2,2 3 rm3y W 23 @ 2313 2 2319
Wy o (RY) = ueD(R)/x2eL(R+),x € L*(R})” and D*u € L*(R7)" 5.
3 3

It is a Hilbert space for the norm

2 Va2 1/2
lullwzz @y = (2| +||~m + |[D%l|; -
e ] YT ) P
Then, let us consider
— Il
w2 s (RY) := D(R3) e,
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Firstly, one can prove that

W22 &) =duew2? ®)/u=2"~oonr!,
s s Oxs

by adapting the proof of Proposition 5.9. Secondly, the argument of the proof of Proposition 5.15 allows
to establish that WgQTJ (R3) is equal to W5*(R%) (see (5.8)). Moreover, their norm are equivalent.

5.3 The spaces W'’ (B.)

—Q, T3
For any ¢ > 0, let us consider the following subset of Ri
BE:{IERS/:E3>€},
(R%) to the spaces W12 | (B.)and Wb 2 | (B.).

Obviously, every properties of WLXQ 2, (R3) are true for Wif 23 (Be). In particular, the following
Hardy’s inequality holds

and extend the definition of W'.? | (R%) and w2

—o, T3 «, T3

Vu

[e3
T3

u

VueWh2 (B,

—Q, T3

< Ca
L2(B.)

: (5.27)
LQ(BE)S

where C\, given by (5.15), does not depend on €. Moreover, we shall also require the following relation:

Vu

5.28
(5.29)

—Q, T3

Vue Wh2  (B.), ||”||Wiﬁzs(B5) < (14 C02)Y2

2By

o
To finish, ng 2, (B:) can be characterized as a space of null traces functions:

Wwh2 (B = {u ew:2 (B.)/u=0on 638}.

—Q, T3 —Q, T3

Remark 5.19. Let o > 0. Like in Remark 5.6, any u belongs to Wiaz 5 (Be) if and only if u satisfies
xg “u € W&’i(BE), with (5.12) adapted to Be.

Remark 5.20. As we have seen it in Remark 5.5, there is no hierarchy for the spaces W' (R3).

—Q, T3
It is in this sense that we introduce the family of spaces Wio? =5 (Be), for the parameter «, since for
any « > > 0 the following embeddings hold

Wi, (B.) = Whi (B.). (5.29)
Whi(B.) = WhE | (B.). (5.30)
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Chapter 6

Weak solutions

6.1 Weak solutions in W', (R?)

—Q, T3
In this section, we study the weak solutions of Problem (4.38) in the space Wi; o (RY), with 0 <o <
3/2. We will start off with the case @ = 0, which is equivalent to find weak solutions in WO1 ’2(Ri),
according to Proposition 5.15. From the case a = 0 follows the case o = 1, and then we finish with
the case 0 < a < 3/2. In fact, similarly to Lemma 6.6, an open problem is to find weak solutions in
any space W12 (R%) for o > 3/2.
As mentioned above, let us start off with investigating the case a = 0. Here, we seek weak solutions
to Problem (4.38) in the space W01’2(Ri) by writing Problem (4.38) in the following way:
10
—Au + — & f inR%,
I3 8.’E3
u=0 onR?

(6.1)

where f = x39.
Proposition 6.1. Let f € W(;l’Q(Ri). Then, Problem (6.1) has a unique solution w in the space
W(l):ig (R3) and satisfying the estimate

||U||W(jjf3(]R1) < \/5||f||w(;1’2(Ri) : (6.2)

Proof. For any u € W *(R%), one has by Remark 5.17

1 3u —1.2 3
——— e W; 7 (RL),
T3 a(L’g 0 ( +)
and for any v € W *(R3),
< 1 du > ou v i
— v = — — axr.
T3 81173 WJI'Z(Ri),ﬁ/é’2(Ri) Ri 6x3 T3

[e]
As a consequence, u € Wé’g(Ri) is a solution to (6.1) if and only if u satisfies the formulation below

Yo e WhA(RY),
Ju v (6.3)

Vu-Vodr + ——drx={(f,v - I
R2 R2 Ox3 x3 (f >WJ>2(R1),WO«2(R1)
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Next, let us focus on the bilinear form

u,veﬁ/é’z(Ri), a(u, v) = Vu~Vvdx+/ 2 g,

3
R

Thanks to (5.26), it is clearly continuous. Moreover, one has for any u € D(R3)

/ u Ou 1
———dzx = =
R:jr T3 8$3 2

As D(R3) is dense in V(E/é’z(Ri) for the norm ||HW0133 (B2) (see Remark 5.16), relation (6.4) holds for

2
u

(6.4)
z3

L2m)

) o
any u € W(l)z(Ri) Hence af-, -) is coercive on W 2(]Ri). As a consequence, Lax-Milgram’s theorem

provides a unique u € Wé’z(]R'j_) solution to (6.3), hence to Problem (6.1). To finish, note that u
satisfies the following energy inequality

2
2 1 u
2 : -~ |l - 5 [} ) 6.5
Vliemr 2 ol = M e 9
which implies, by relation (5.25)
2 1 u 2
||VU||L2(R3+)3 + 2 || zs L) < ”fHWJl’z(Ri) ||U||Wo{~f,3 (R%)
< \/5||f||w(;1f2(]1{3_) ||Vu||L2(R§_)3
5 2 1 2
< ) HfHWO*l’?(Ri) + ) ||VU||L2(R§;)3 )
and one deduces estimate (6.2). O

As a consequence of Proposition 6.1, we study weak solutions in Wi’lz’mg (Ri’r), by using a duality
argument, as it is done in the following proposition.

2
1,x3

Proposition 6.2. Let g € Wo_l’Q(Ri). Then, there is a unique v € W5
and

(R3) solution to (4.38)

||uuwi’1?13(Ri) < 6vV10 ||g||W071‘2(Ri) :
Proof. From Proposition 6.1, the operator
21,2 s —1,2 /-
PrWEARY) — Wy bR
1
u +—  —div (Vu)
z3
[e]
is an isomorphism. Moreover, it is a self adjoint operator. Indeed, one has for any u € W(lj’ 2(]Ri) and

any v e Wh? (R3):

—1,11?3

1 1
<—div (Vu) , 11> . :/ Vu - <Vv> dx
1
= <u, —div (Vv>> . .
T3 Wé’z(Ri ,W071’2(]R3_)
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o
As a consequence P is an isomorphism from I/V1712 s (R%) into Wofl’Q(Ri). Hence, for any g €

Wofl’Q(Ri), there is a unique u € Wl_f 2, (R%) solution to Problem (4.38). Moreover, there is a
constant C' > 0 such that

||U‘|W}fw3(ugi) <C ||9||w(;1~2(R§r) . (6.6)

To finish, we use Lemma 6.6, proved here after. By Remark 5.6, note that the function u/x3 belongs

to Wé’Q(Ri). Then, the following Green’s formulas are justified:

1
<_div (w) , U> [ Yr g <U) do
T3 T3 WJ1’2(R3),V?/(1)’2(R1) Ri— T3 T3

+
Vul? 1 / 1 Ou?
=||— - = — o dx
3 || L2r2 ) 2 R T3 Or3
I T2 o 1
L3 12 (r3) 2 ||x3 L2(R3)
Consequently, u satisfies the following energy equality:
Vul? - U + 3wl
T3 2 (3 o 9 T3 —1,2/m3 21,2 /m3 2 332 2/m3 '
L2(R3) Wy ' 2(RE), Wi 2(RY) 3llL2(r3)
2 2
Thanks to Hardy’s inequality (5.16) for « = 1, one has ||% - < % % , and it follows
s llL2(RY) L2 (rY)
that
Vul|? u
- < 3 g -1,2 — .
I3 L2 (Ri) || ||W0 (Ri) I3 W(}’ 2(Ri)
Then, one has by relation (5.25)
2 |V \Y%
= gVSHv(“) <VB(1+ o) || = <25 ||~ :
Zs3 wh Z(Ri) €3 L2(R3)3 3 T3 L2(R3)3 €3 L2(R3)3
and the above inequality becomes
Vu
— <6v5 1, :
T3 llLz2(rs) ”g”WO R
To finish, we use relation (5.25) to prove (6.6). O

Then, let us study weak solutions in W' ? 2 (R3), that is the case a =1/2.
2

5

Proposition 6.3. Let g € W;lxj(Ri) Then, there is a unique u € W} 2 (R3) solution to Problem
2 29
(4.38) and satisfying

Itz s < Blobnoes ) (6.7)

— 5.3
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Proof. For any u e W} (R3)), one has by Proposition 5.12
3

T3
—div (L vu e W b2(R3)
xs3 éaJCS +5

and for any v € Wi; (R3),

1 Vu Vo
—div|( —Vu|,v)= / —  ——dz,
< (373 ) > R3 VT3 /T3

o [e]
where the duality is taken in the sense of W%_Ixf(Ri), Wl_g s (R3). Asaconsequence,u € W7 (R%)

2,73
is a solution to (4.38) if and only if u satisfies the formulation below

vwewh (R,

Vu Vo (6.8)
V5 Vi T ey s )
5 VT VT FE WL e

Next, the bilinear form

° 1,2 3 - Vu Vo
u,veW_%,IS(RJr), a(u, v) = » \/773\/773 x,
+

o

is clearly continuous and coercive on W'} v (R3) thanks to Hardy’s inequality (5.16). As a conse-

Lo

quence, Lax-Milgram’s theorem provides a unique u € W' ? 25 (R3) satisfying (6.8), hence a solution
3

to Problem (4.38). To finish, note that u satisfies the following energy inequality

HW 2 = (9, u) (6.9)
VI3 L2(R2 )3 a W%_llé(Ri), ‘2/17; IS(Ri) ’ '
which implies thanks to Hardy’s inequality (5.25)

Vu

— <V2 P,
and (6.2) by (5.24). 0

More generally, we have the following theorem.

Theorem 6.4. Let 0 < a < 3/2 and g € D'(RY) such that
mgo‘ﬂg € Wo_l’Q(Ri).
71,2

Then, there exists o unique u € W25 . (RY) solution to Problem (4.38) and there exists a constant
C > 0, depending at most on «, such that

—a+1
lllwr.z, ey < € llas ™ ollwgr 2y - (6.10)
More precisely, one can chose

2(1+c2)"?

T 1-(2a— 1)Ca\/5'

C
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Remark 6.5. Recall that C, = ﬁ (see (5.15)) and note that (2a — 1)C, < 1 since a < 3/2.

Moreover, according to Remark 5.13, we can replace z3*"'g € Wy " 2(R%) by g € W_22 .. (R3)
when 0 < a < 1, and in this case, the estimate (6.10) becomes

Lo sy < 2)1/2 _ . .
||u||W7,a$13(Ri) < C (3+20%) lgllvw-1.2 &) (6.11)

It is no more the case if 1 < o < 3/2, as the space W2 (R3) is not defined.

a—1,xz3

Before giving the proof of Theorem 6.4, let us give a technical lemma. This lemma uses the spaces
W2  (B.) which are defined and briefly studied in Section 5.3.

—Q, T3

Lemma 6.6. Let g € D'(B.) such that

w3y € Wy (B.),

and let u. € wh?

o, x5 (Be) be a solution to

1
—div (Vu5> =g in B..
3

Then, u. satisfies the following estimates

2(14C2)"?

| L 20+e) .12
”u”Wi; 23 (Be) S 1 — (20— 1)C, o

V5 ||m§a+19||wo—1v2(135) :

Proof. By Remark 5.19, one has 7& € Wé’z(BE). Then, as 23 *Tg € W(;l’Z(BE), one has

O
3

1 5 € €
<—x3("+1div (VUE) , u> _ / Vu RV < 2u_1> du
T3 xg B. T3 3"

_‘Vugz _2a—1/ 1 (L@d
=22 . 5 - 220%T Pgg
|| Vue 2 _2a—1 Uge 2

_‘ 2§ ey Ca llag™ L2

where the duality is taken in the sense of W ?(B.), W ?(B.), and where C,, is given by relation
(5.15). Consequently, u. satisfies the following energy equality:

V.|| B 2a—11 u |?
‘ u _ <x3a+1g, ua> ) == (6.13)
23 llr2(m.) 23 [wyramy,wizsy Coo 1287 I,
From Hardy’s inequality (5.27) one gets
[1— (20— 1)Ca] || L2 2 <oz gl || o
e o X 3 —1, e .
T3 llL2(B.)3 Wo T (Be) [l g W 2(B.)
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Then, one has thanks relations (5.28) and Hardy’s inequality (5.27)

£ £ V £ £
T3 (w2 (B, T3 T3 llL2(B.)3 T3 L2(B.)
v
< (1+4aC,) V5 ||t :
T3 llL2(B.)3

and the above estimate becomes

Vue (1+ aC’ ot
x§ L2(R3) T1- (20 — \/ ” gHW‘;Lz(BE) .
Then, notice that 1+ aC, < 2, which implies (6.12) thanks to (5.28). O

Proof of Theorem 6.4. We divide it into two steps.

Step one. For g € D(]Rg) we prove that there is a unique u € W . m (R3)) solution to (4.38). As

o
g € D(B:) then g € W1 . ?(B.), and by adapting Proposition 6.1, there exists a unique u. € W *(B.)
such that

1
—div (V%) =g in B..
T3

Therefore, by relation (5.30), the functions g and u. are exactly in the statement of Lemma 6.6. Thus,
there is a constant C' > 0 depending at most on « such that

—a+1 a+1
||u€||wi;j vy (BS) < Cllas g||W(;1’2(BE) < Czg g||W71 2(R3) (6.14)
Then, let us consider u, the extension by 0 of u,. outside B, to R:j_. As u. = 0 on 0B., one has
Vi = Vu. in R

Hence u; € w2 (R%) and

, T3

HUEHW1 2 (]RL‘) = HUEH{/Vl 2 (B ) S <C HQ;S a+1g||W[;1’2(R§-) . (615)

As a consequence, there is u € W_a s (R3.) such that u; converges weakly to u in W_a 2 (R3). In
the sequel, we want to prove that u is the solution to (4.38). Let ¢ € D(RY). As ¢ has a compact
support in Ri, there is €9 > 0 such that supp ¢ C B.,. Then, for any € < ¢y, it is clear that

1 _ 1
/‘ fVuE . V(pdm = / iVUE . V(pdl‘ = <g|BE7 SD>'D’(BE),'D(BE)
R3 T3 B. T3

=y, <P>D/(R ), D(RY) *

Since (éV&DE converges weakly to %VU in L2(R%)? as ¢ goes to 0, and since mg}*l Vo € L?(B.)3,
one deduces that

1
/ —VuE Vepdr — —Vu-Vpdz.
R3 x3 e—0 R3 T3
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Finally, u € W1,12 2, (RY) satisfies
. 1 . o3
—div| —Vu | =gin R7,
T3
and by taking the infimum limit in (6.15), one gets
—a+1
||“||Wif, vs (BY) Y ||333a QHW(;“(R?;) J
where C is exactly the constant appearing in (6.12). Therefore, u is the unique solution to Problem
(4.38), since the above estimates yield v = 0 if we take g = 0.

Step two. Let (gi)r C D(R3) a sequence such that (3! gy)) converges to 23 *'g in Wyt 2(Ri).

Thanks to the step one of the proof, there is a unique u € wh?2 (R‘i) such that

—Q, T3
. 1 . 3
—div | —Vuy | = gr in RS,
T3

and also satisfying
—a+1
leellwr2 | @y < Cll23 " gklly-1.2 g ) -

o
Consequently (ug)y is a Cauchy sequence of Wl_s o5

By taking the limit as k goes to 0 one deduces that

(R3) and converges to a given u € W52 _ (R3).

—Q, T3

1
—div (Vu) =gin Ri,
T3
with the precise estimates (6.10). O

Remark 6.7. If o > 3/2 and z;°"'g € ng’Q(Ri), the existence of weak solutions to (4.38) is an
open problem.

6.2 Weak solutions in W"(R?)

Problem (6.1), that we recall below

1 )
*Aquf%:f in R3,
T3 85(]3
u=0 on R?,

lends itself well to the study of weak solutions in the spaces W2 (R3), for values of o €0, 1] (note
that the case o = 0 is already treated in Proposition 6.1, according to Proposition 5.9). Indeed, one
has the following estimates.

Lemma 6.8. Let 0 < o < 1. Let f € W:;’Q(Ri) and u € WEO?(RE”F) a solution to Problem (6.1).
Then u satisfies the estimate below

1+«

lellwr2gsy < al=a)

— a) ”fHW:(i’Q(Ri)’
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Proof. Let f e W™ % and u € VCI)/l_a2 (R3). Thanks to the isomorphism (5.6), one has s2x € V?/}l 2(R3).
Then, thanks to the following formulas

1y 3« |z)? 0 1  pP+oad
A <po‘> = _‘pa+2 + O[(O[ + 2) pa+4, 871'3 -’E?,pa - x%pa_;’_Q 9

one deduces that

Vu - V(-5 )da
R3 p
2
1 1
:/ Vu de — - A(—z) v’ dx
3 | P° 2 Jpg P
Vu |’ ’ | |2 2
:/ dx+3a/ -5 dx—2a(a+1)/ ezl dz, (6.16)
3 | P° R3S | P* RS P

and

0 1 0 1 1 2 4+ 202
[ e b, () e b [, () s
RS T3p>* O3 2 Jry Oxz \w3p* 2 Jrs \ wzp?et

1 u? 2
== ———dz + a/
2 /]Ri x3p?e RS

dx. (6.17)
Now, let us multiply by pg% € W5 2(R3) the equation of Problem (6.1) and integrate over R3. By
collecting (6.16) and (6.17), one obtains the following energy equality

pa+1

2 2

Vul|? U 1 U
—| dr+4a —T dr + = —| dx,
R3 | P° R3 | P” 2 Jra |x3p
2
u 2" o
=/ > +2a(a+1)/ u® dx. (6.18)
< P2 wz e @) k) ry prote
Then, note that
/[ Ey /|z|2 u [’ </ .
u’dr = — T < — | du,
RS pRatd RS p2 | potl RS patl

and that « is such that 2a(a+ 1) < 4a. As a consequence, one deduces from (6.18) that

Vu |? u |? U

Vu dx+2a(1—oz)/ dz < || ]l - ’ (6.19)
/]R,jr pe Ri paJrl wWZ-, (]Ri) p2a Wéz(Ri’_)

Then, as

u u u
’ 5 < HaJrl + ‘ prv (m)

Prollwaz@yy NP7 lleemy) A

v
< H(Zl +‘: +20 |52
Pr ey P w2 (Y pp L2(RY)

< .
<21+ ) Hullwg;(m) )

90



one deduces from (6.19) that

14+«

lullwr2gsy < al=a)

— a) ”fHW:(i’Q(Ri)’

since 2a(1 — @) < 1. O

The following proposition is a version of Theorem 6.4 (see the remark below) and concerns weak
solutions having an isotropic behavior.

Proposition 6.9. Let 0 < oo < 1 and let f € W:;’Z(R:j_). Then, there is a unique u € Wl_z(Rj_)
solution to Problem (6.1) and salisfying the estimate

1+«

HUHw}j(Ri) < 70[(1

— a) ”fHW:;’Z(Ri)'

Proof. Let (fr)r C D(R3) converging to f in W:;’Q(Ri). By Proposition 6.1, let uy € Wé’Q(Ri) —
Wl,o%(Ri) (see (5.3)) such that

One deduces from Lemma 6.8 that

l1+a

lullw 2wy < Sa=

= iz (6.20)

o
From this inequality, one deduces that the sequence (uy)y is a Cauchy sequence of Wl_z(Ri) Hence,

[e] o
there is a unique u € W5 2(R3) such that (uy)), converges to u in W22(R%). Then, by taking the
limit when k goes to 400 in the previous equation and in the estimates, one proves that w satisfies in
the distributional sense

and that u satisfies the expected estimates. By Lemma 6.8 w is the unique solution to Problem
(6.1). O

Remark 6.10. Let us make the following comments.
HIHfa>1land f € W__l"z(Ri), the existence of weak solutions to (6.1) is an open problem.

«
ii) Let us note that the assumption z3; *™'g € W, " *(R3) is equivalent to z3;“f € W, "*(R3). And,
if f satisfies this last assumption, we easily prove that f € W:i’2(Ri) (the converse assertion being
not true). This means that when 0 < « < 1, the assumption given by Theorem 6.4 is stronger than

the one in Proposition 6.9.
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Chapter 7

Strong solutions for m_o‘+29 in L?(R3)

Let us consider the solution u € W o, _,“(]Ri) to Problem (4.38) given by Theorem 6.4, with 0 < a <
3/2. Then, let us multiply by x; 2272 the equation in the distributional sense. We readily see that u
satisfies

10
z3 M A+ — a—u =23 g in R3, uw=0onT.
z3

T3
Since we already have é% € L*(R}), we deduce that
29 e LX(RY) = 23T Au € L2(RY).

Thus, by taking such a distribution g, we expect that z3 "' D?u € L?(R3), where D?u denotes any
second order derivative of u.

Remark 7.1. The choice of such a distribution ¢ is relevant. Indeed, any distribution g on R'j_ such
that
g e LX(RY),

satisfies 23 *t1g € W b 2(R3 ). Moreover, there is a generic constant C > 0 such that

[E>y a+19’|wgl=2(mi) <C Hx:’?a+2g||L2(]Rfi)

Theorem 7.2. Let 0 < a < 3/2 and g € D'(R3) such that
29 € L*(RY).

Then, the solution u € W2 (Ri) given by Theorem 6.4 satisfies

—Q, T3
z3 M D*u e L*(RY),
and there is a constant C > 0 such that

||:c3_“+1D2“||L2(Ri) <C Hx3_a+2-g||L2(R§.) .
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Proof. Let us assume that xgo‘“g € LQ(Ri). According to Remark 7.1 the distribution ¢ satisfies

mg_‘”lg € Wo_l’Q(]Rf’r). Thus, thanks to Theorem 6.4, there is a unique u € W4 ?

oz (RY) solution to
(4.38) and a constant C' > 0 such that

—a+1 —a+2
H“”Wiﬁwg(ki) < Clzg® g”w(;l’z(Ri) < Cllwg” gHH(Ri)' (7.1)
Now, we set v = x;aﬂu . Then v satisfies in the distributional sense
U 1 Ou
—Av = -2 Au — a(- 1) ——= —2(— 1)——
v x5 u—al—a+ )gC?:Jrl (—a+ )xg‘ o5
— U 1 Ou
= —al(— 1)—— 4 (200 — 3)— ——
239779 —a(—a+ )x§‘+1 + (2c ):cg“ D2

=T.

Since u € W2 | (R%) it is clear that T € L*(R3). Therefore, one deduces from Corollary 3.4 of [2]

—Q, T3

page 274, that there is a unique w € W’ 2(]1%1) such that
—Aw=-Avin Ri, w=0onT,
and a constant C' > 0 satisfying according to the definition of 7' and thanks to (6.10):

—o+2
lollwz 2@ < ClITl sy < C 257420 e (7.2)

Moreover, from Remark 5.6, one has v € Wb (R%) and then v € WL(RY) by (5.23). Thus,
z = v — w satisfies
Az=0inR}, z=0onT,

which implies that z = 0 (see [2] page 272 Theorem 3.2). As a consequence, v = w belongs to
WO2’2(R1), and in particular one has for i, j =1, 2, 3

0 +1 23
3¢ LA (R7). 7.3
Moreover, from (7.2), one obtains:
82 +1 +2
- <Oz L 7.4
Haxial‘j (5 v L2(R3) de gHLz(Ri) (7.4)
As one has in the distributional sense
02 41 11 % 1 Ou 1 ou
—Q :/,—Oé - _ 1 6 - 61 e
O0x;0x; (2377 ) = 25 O0x;0x; +(—at 1 ]Bxg Ox; * 31‘% (%cj)
u
— jg(sig()é(—()é -+ ].)TH,
3
and since u € W12 | (R%), one deduces from (7.3) that
—a+1 82u c LQ(RB)
3 89318% +
and from (7.4) and (7.1) the expected estimates. O
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Theorem 7.2 does not hold for & = 3/2. The following result gives a sufficient condition on g to
provide the existence of strong solutions. Firstly, let us recall some basic results on the differential
quotient technique.

Notation 7.3. For any n € R? x {0} with n # 0, and any measurable function u defined on R?’H we

set
mu(z) — u(x)

In|

For any measurable functions u and v defined on R2, one has the following relation:

T € Ri, mu(z) = u(z +n), Dyu(z)=

Dy, (uwv) = 1yu Dyv + v Dyu. (7.5)

/Ri

Beside, for any u € H*(R?), the following estimate holds

and for any u, v € L*(R%) :
uD,vdx = / vD_,udz. (7.6)
]RS
+
||D'n“HL2(R3+) < ||VIUHL2(R3)2 : (7.7)
Finally, we also recall the following result whose proof is an exercise.
Proposition 7.4. Let u € L*(R%) such that
Vn € R? x {0} with n # 0, HDn“Hm(Ri) < C,
where C' > 0 is a constant not depending on n. Then

V'u e L*(RY)?  and IVl 2 g 2 < CV2.

Then, let us state the following result.
Theorem 7.5. Let g € D'(R3) such that
VTzg € LA(RY) nwy V2 (R3).
Then, the solution u given by Proposition 6.3 satisfies additionally:

V'u 1
T € L*(R%)?, @V(gvu) € L*(R})°. (7.8)
3

Moreover, there is a constant C > 0 such that

V'u
3/2
L3

lvav( v

< OlvVEsgll e sy -

+
L2(R%)? L2(RY)®

Proof. Recall that \/x3g € I/V(;1 2(Rﬂ3‘_) is equivalent to g € W;le (R3)). Thus, by virtue of Proposition
3
6.3, there is a unique u € W' 2 2 (R3.) solution to Problem (4.38). Moreover, u satisfies (6.8). Then,
3.

__(R%). Indeed, one has

s L3

Dn“_D u V<Dn“)_D (Vu)
gr - i\sE) —m R )
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[e]
for any 7 € R? x {0} with 7 # 0, one proves that D,u € W"7
2




and Dyu = 0 on I'. The same reasoning on D,u proves that D_, D,u € Wif 25 (R3), so that we can
3

consider the test-function v = D_, D,u in (6.8). As relation (7.6) gives:

1 D ?
/ —Vu-V(D_,Dyu)dx = Hn(vu) ,
Ri T3 VT3 L2(]Ri)3
the following equality holds
D, (Vu) 2
= <g7 D— D U> _ o . (79)
H VI3 LQ(Rﬁ_)?’ e W% 112 (Ri’r)»wgis (Ri)

Next, let us bound correctly the right-hand side of (7.9). Firstly, let us prove that D,g € W;llf(Ri)
2>

i.e. JT3Dyg € Wy "?(R2). Since \/z3g € L*(R3) it is clear that /z3D,g € L?(R%), and one has for
any ¢ € D(R3) and thanks to (7.7)

< Hv$39“L2(R1) ||D—77%0||L2(1Ri)

‘/3 oVasDygdr| = ’/3 Vg D_ypdx
R% R

< IVl L2es ) 1Vl L2 es s
< IVTsgll o e lellwe 2@y -

and we get the result by definition of the space W’ 2(Ri). Hence, one has thanks to (5.24) for o = 1/2

7
”Dng”W;};i(Ri) < \/gl\/m3Dng”W01’2(R3_) <2 H\/xSQHL%Ri)- (7'10)

z3

Since, in addition, g belongs to W;lz’f(]Ri), let us prove that for any v € Wh? (R3)
2 oh

<D71gv U> = <ga D—71U> (7'11)

o
wibr®3)wh

—1,2 21,2 2 .
Wi ERY)WT  (RY) WL (R
3:23 3:23 3 %3 3

r3

[e]
Let v € Wh? 2, (R3) and (vx)r C D(RY) a sequence converging to v in wh? 2, (R3). Then, one
2> 2
obtains that

(Dyg, v) (Dng, vk)

P o . . = hm . o
wib 2R3, wh? (RS k wib 2R3, wh? (RS
%,m3( +) 7%“13( +) —+00 %ng( +) 7%113( +)

= lim vy Dpgdx
k—-00 R:jr

= lim gD_jvdx.
k—-4o00 R:}F

Next, as Vuy/\/z3 converges to Vuv/\/z3 in L*(R3), one deduces that D_,(Vvy/\/T3) converges to
D_,(Vv/\/z3) in L*(R%). As a consequence D_,vj, converges to D_,v in W} », (R%) and relation
PR

(7.11) holds. Secondly, one deduces from relation (7.11), (7.10) and relation (5.16), the following
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estimates

{9, D—yDyu)

= '(Dng, Dnu>

o
W;T(Ri),wlj (R%)
273 2

W 12R W12 R3
CORGHINC

< ||D —1,2/53 || D; ,
|| ngHW%,lmZ(Ri) || nuﬂwi;ms(ﬂ{i)
V(Dyu)

< 2ﬁ||\/$39||L2(R§r) H \/E

To resume, by applying these estimates in (7.9), one proves that

V(Dyu)
T <2V2 ||z .
Hence, Hardy’s inequality (5.16) yields
. V(D D
v € R? x {0} with n # 0, H(nu) + SL/ZL < 4\/5”«/1’39“[/2(]1{3) .
3 L2(R3)? T3 2(R3 +
+ L2(R3)

As a consequence of Proposition 7.4, one obtains for ¢ = 1, 2

LV( ou 1 Ou
NCERT 3/2 Oz;

with the expected estimates. Moreover, by writing equation (4.38) in the following way:

0 1 Ou 1 0%u
\/587583 (563 3333) Z \/>6I \/597

) € L*(R3)?, € L*(R%),

one deduces from (7.13) and what precedes that

Vg (2 g ) € 12,

I3 8x3

with the matching estimates.

More generally, we have the following result.

Theorem 7.6. Let 3/2 < a < 5/2. Let g € D'(R3) such that

29 € 2R3 N W, 2(R3).

Then, the solution u € Wl_’jH’IS (R3.) given by Theorem 6.4 satisfies

V'u
«
L3

1
€ L*(R3)?, z;ga”wx—gw) € L*(R3)°.

Moreover, there is a constant C > 0 such that

V'u
[e3
T3

1
x5 T2V (—Vu)

+ < Clzz ]|
T3

L2(R3) "
LQ(Ri)Q +

L2(R3)?
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L2(R3)3

(7.12)

(7.13)

(7.14)

(7.15)



Proof. We divide the proof into two steps.
Step one. We prove that for g € D(RY) the solution u given by Theorem 6.4 satisfies (7.14) and
(7.15). Note that 1/2 < o — 1 < 3/2. Then, from the proof of Theorem 6.4, Step one, there is a

sequence (uc). C Wy 2(B.) of solutions to Problem (4.38), satisfying by relation (6.14) the following
estimate

Hua‘lwlf+1 vy

(Be) CHZ‘:” +2gHW L2(py (716)

and such that (ug). converges to u in Wgaﬂ_’ms (R%) as e goes to 0. If, for i = 1, 2, we prove that u.
satisfies -
1 Ou.
x§ Ox;

Ou.

a+1
Vi, ox;

+
Lz(Ri)z

) (7.17)

2R3 )0 < C Hl'ga+2gHL2(Ri)7
T

then we prove (7.14) and (7.15). Indeed, if (7.17) holds, one has immediately

1 ou ou
— L*(R3 Ta+l L2(R3 )3
5 O € L*(R}), =3 V(axl) € L*(R})°,
1 Ou 1o, Ou s
v +||lzz TV <O ||lzzet ,
$g aCL‘Z‘ L2(Ri)2 (a%, ) R+)6 || HLQ(R )
and it is clear that
0,1 6‘u 1 92 u [
—a+2 —a+2 9 3
Ira e O’ L“(R
s 5333(333 8:(;3 Z x5~ pa—1 81; x5 g € L7(RY),
0 1 ou
—a+2 C a2 N
‘ Tg 81;3 T3 axS L2(B.) ||l‘ gHL%Ri)

Therefore, let us establish estimates (7.17). As /739 € L? (Ri)ﬂW(;l’ 2(Ri), we automatically deduce,
by adapting Theorem 7.5 to the open set B, , that u. satisfies

V'u,

x3/

€ L*(B.)?, \ﬁV( VuE)GLQ(B) (7.18)

Then, let us set v, =

g;f,j, for i = 1, 2. Firstly, one has v. € VV1 7 (B.)— < W2 (B:). Secondly,

2 , T3 —a+1,z3
v, satisfies in the distributional sense

—div (1V1}5> = 99 in Be.
T3 811

Moreover, z; **2g € L?(B.) implies x;“”a%gi € Wy "?(B.), and there is a constant C' > 0 indepen-
dent on € > 0 such that
‘ i

Note that the constant C' > 0 comes from the Poincaré-type inequality given by Proposition (5.1). As
a consequence, one deduces from Theorem 7.2 adapted to B, that

—a+2 dg a+2

3 61'1 Hl’3

9|12 .
———— ) ||L (B.)

—a+2 3g

(B S C |73 Oz;

HUEHW1 2 vy

Tot2 —a+2
wg 2 (Be) <Cllea™ 0l ey < Cllos® 9||L2<1Ri>’
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thus one obtains for i =1, 2

1 Ou, 1 Ou, a2
o + o1 (7) <C T at qg 3y -
rg 0x; L2(B.) T3 b Oz L?(B.)3 H ’ HLQ(Ri)
Since one has in Ri
1ou; 1 0u 1 Gty _ 1 g Oue,
g 0x; n z§ Ox;’ gcg*1 dr;’ :)3?71 ox; "’

one deduces (7.17). This achieves the first step of the proof.
Step two. Let (g;)x C D(RY) a sequence such that (x5 *"?gy,), converges to z; “*?g in W071’2(Ri) N

L*(R%). Thanks to the step one of the proof, there is a unique uy € Wl!jﬂ,zs (R3)) such that
(1 .3
—div | —Vuy | = gx in Ry,
T3

and also satislying (7.14) and (7.15). Consequently (ug) is a Cauchy sequence of V(I)/'izHIS (R3) and

converges to u € Wl—’a2+1,m3 (R3) also satisfying (7.14) and (7.15). By taking the limit as k goes to 0
one deduces that

1
—div (Vu) =gin R‘i,
T3

with the precise estimates (7.15). O
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Conclusion and prospects of Part 11

Let us briefly review the results obtained in this work. In order to study the degenerate equation (4.38),
we have introduced, in Chapter 2, a suitable functional framework, constituted by the weighted Sobolev

spaces W2 (R3) and 2 (R3) (see (5.9) and (5.13)). Among the properties that possesses the

—Q, T3 —Q, T3
[e]
space Wiim (Ri), we have established a Hardy’s inequality in Proposition 5.8, necessary to study

the existence and uniqueness of a weak solution to (4.38). Besides, as the spaces V[/(l)zm3 (R3) and

Wé’Z(Ri) are the same (see Proposition 5.15), we have also proved a Hardy’s inequality for functions

of Wy *(R%) (see relation (5.26)).

In chapter 3, we have been interested in the study of weak solutions to (4.38) in the space
Wicf 5 (R3) and respectively in Wi; (R3). We have proved the existence and uniqueness of a weak
solution when « € [0, 3/2[ and respectively when 3 € [0, 1] (see Theorem 6.4 and Proposition 6.9).
The problem is still open for « > 3/2 and g > 1.

Finally, we have established in Chapter 4 two regularity results for the weak solution u given by
Theorem 6.4. In the first one, see Theorem 7.2, we have considered a datum g such that x§“+29 €

L*(R3Y) for o € [0, 3/2[. In the second one, see Theorem 7.6, we have used a datum g satisfying
232 € L2RY) N W, 2(R3) for a € [3/2, 5/2].

Let us get back to the goal set in the Introduction, that was to establish Theorem 4.26. In fact,
we have proved and improved Theorem 4.26. Firstly, the first part of Theorem 4.26 is a consequence
of Proposition 6.3. Indeed, it suffices to notice that if g satisfies xé/zg € L*(R%), then g € W:LQ

5,T3
(see Proposition 5.12). This last condition is also equivalent to /xzg € Wo_l’Q(]Ri), see Remark
5.13. Secondly, we have proved that if moreover g satisfies /3¢ € L? (R%), then the regularity of the
first-order horizontal derivatives of u is improved (see Theorem 7.5).

Remark 7.7. As a conclusion of this second part, we have proved a stronger result than Theorem
4.26, and we have extended this result to more general data g (see Theorem 7.6).

This study let us think that Theorem 4.25 is not optimal. We propose to investigate this in a
forthcoming work, where we shall study Problem (4.39) along the lines of the work we have done here.
Moreover, we shall also consider a weight h which does not belong to L>(R3).
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Part 111

A degenerate equation in a bounded
domain
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Introduction of Part 111

The last part of the thesis is devoted to the resolution of a degenerate equation, set in a bounded and
regular domain Q C R3. More precisely, for datum ¢ : 2 — R, and a weight h : Q — R vanishing on
the boundary I' = 02, our problem consists in finding u : 2 — R solution to:

1
—div (hVu> =ginQ, u=0onT =90 (7.19)

Recall that, in the introduction of Part II, we have already given the motivation of the study of
Problem (7.19). As we have mentioned it, this problem is studied in [11] in the case of the dimension
2, for a general class of weights h.

In a view to improve the results in [11], we consider a weight h figuring among the ones proposed
in this same paper. For the main assumptions on h, see (8.1)-(8.3). Among the improvements we
propose, we give an existence and uniqueness result of a weak solution to (7.19), for a datum g in a
negative weighted Sobolev space. We also prove a regularity result, by relaxing the assumptions on
the weight h and the regularity of the domain Q. It will be interesting to compare these results to the
ones obtained in the Ri—case of Part II.

Here, we present the case of dimension 3, in accordance with the Ri—case. In fact, these results are
also available in the case of the dimension IV > 2. For this reason and the one stated above, it will be
possible to compare our results to the ones proved in [11].

Part I1T is divided into two chapters. In Chapter 8, we set the functional framework, by introducing
weighted spaces (see (8.4) and (8.5)), adapted to the study of (7.19). We establish for the space (8.5)
a Hardy’s inequality, and we characterize it as a space of null trace functions. In Chapter 9, we prove
the existence and uniqueness result of a weak solution and the regularity result mentioned few lines
above.
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Chapter 8

Functional framework

Let us consider a bounded domain © C R3 with a Lipschitz-continuous boundary I'. The weight we
use in our work, is a mapping h defined on € and satisfying the following properties:

h>0in €, (8.1)

h e Wh>=(Q). (8.2)

Moreover, we control the weight near the boundary by assuming that:
h = 4§ in a neighborhood of T, (8.3)
where for x € Q, §(x) is the distance from z to I', defined as usual by:
d(x) = inf |z —y].
(x) inf |z =yl
Note that § is Lipschitz-continuous near the boundary T, which is compatible with assumption (8.2).

Then, let us introduce the following weighted space:

wh f () = {u € D’(Q)/W € L*(Q) and W € L2(Q)? } (8.4)
endowed with the hilbertian norm:
1/2
Jul [ g X /
u 1,2 -
W_ LT h3/2 2 () h1/2 L2(@)8
Next, let us consider the space
° 19 I1-1 112 )
w>i,(Q)=D( Q) =" . (8.5)
20

o
The first result we establish concerns functions of the space W'? L (©). It is the matter of a Hardy’s
3

inequality which is essential to study Problem (7.19). A similar result is stated and proved in [11] see
Lemma 2.3 page 6.
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We prove our inequality with the local maps technique, which requires to introduce, beforehand,
the following notations. Given two positive numbers a and b, a Lipschitz-continuous function ¢ defined
on the sphere {2’ € R? / |2/| < b} and satisfying V'1(0) = 0, we define the following sets:

oc={zeR3¥/|2/|<b, —a+ () <zz<a+(z)},

or={zxe€o/xs>¢Y)}, op={x€o/x3=v()}. (8.6)

Then, according to the definition of a Lipschitz-continuous domain (see for example [22, 24]), any point
P € T is the center of a neighborhood o. Therefore, and since I" is compact, we can cover I' by a
finite family of open sets (0;);=1,...;, where any o; possesses its own system of cartesian coordinates
z; = (z}, x}), with origin at P;, and is defined by its own mapping ;. Moreover, we shall assume
that any o; has the same sizes a and b, less or equal to 1, with no loss of generality. We add to this
covering of ' an open set og CC 2, such that (Uo;)i=1. 1 Uog covers . To finish this short paragraph
of notations, we shall enlighten the reading of the work by agreeing that o refers to any open set of
the famlly (Ui)izl,..,1~
We are now in position to prove the following result.

Lemma 8.1. The following Hardy’s inequality holds:

Vu

u
vu € D), H h3/2 ’ L2(Q) s¢ H ht/2

: (8.7)

LQ(Q)S

where C' is a constant depending only on €.

Proof. Let u € D(Q). The interior estimate is obvious since for o9 CC €, there are two positive
constants hg and ho such that hg < h < hs in og. Therefore, let us focus on the estimate near
the boundary T'. Let us consider the open sets o and o, as in (8.6). Firstly, we prove the following

inequality:
2 2
[ . . .
oy |zs — ()| o, T3 —1(2)|

For any |z/| < b and any z < ¢(2') + a, one has thanks to Green’s formula and Cauchy-Schwarz
inequality:

= u? 1 [* 1 ou?
— 3 dl‘g = 5 7/287 d$3
W) |v3 — ()] W) |v3 —P(a’)|” 03

7/z U 1 % e
vy \ w3 — (@)% ) \ |ws — w(@) /2 Oz )
= v JpS—
S o s —w@)f w(ary |3 = Y(a')] | Oxs

from which we deduce that

9 1/2
d$3> )

2
dng.

/z u? d < /z 1 ‘ ou
s < ou
vy |z —(a)® W) [T3 — ()] |Ozs

Then, (8.8) follows by integrating with respect to z’. Secondly, as ¢ is Lipschitz-continuous, it is
proved in [39] (page 24 Remark 4.7) that for any = € o,

r3 —P(a')

5L, < o(z) < as — (), (8.9)



implying that the quantities h(z) = d(x) and x5 — ¢ (a’) are equivalent on 0. Therefore, one deduces

that ) )
/ u—3 dr < C/ [Vl dx,
O’+ h O’+ h’

and we get (8.7), by using the covering of Q introduced above. This completes the proof of Lemma
8.1. O

Remark 8.2. From Lemma 8.1, there is a constant C' > 0 depending only on 2 such that:

VueWh? (Q), H#] (8.10)

bh

Vu
hl/2

L2(Q) b L2(Q)3 .

Moreover, the mapping v — ||hvl—/“2 )8 defines a norm on W2 ,(£2) which is equivalent to the
%

20
complete norm H'le«f Q)
-1

o
The following lines are dedicated to a characterization of functions of the space W' 2 , (). Firstly,
3

2
3.h
Indeed, for u € Wi; , () with a compact support in €2, let us consider u (resp. h) the extension of u

it is convenient to note that if u € W2 () has a compact support in Q, then v € W"? , ().
3

(resp. h) by 0 (resp. by 1) to R? outside Q. Then, @ has the following properties:
U@y, YU r2mdy,

h3/2 2
Therefore, if we consider a mollifier sequence (p.)., one proves that for ¢ small enough (p. * u)|q

converges to u in W'} , (). Secondly, let us characterize the space wh? , () as a space of null
2 2>

traces functions. From the embedding:

WhE (@) = HY(Q), (8.11)

3
holding since h € L (1), any distribution u € W' ? ,(§2) has a trace ulr in H'/?(T). Therefore, it is
3

meaningful to consider the following subspace of Hg (£2):

W(Q) = {u €W, (@) /u=00on r} .

o
We propose the following characterization of W' ? L (82).
3

Proposition 8.3. The following identity holds algebraically:

2

1
—1.h

(Q) = W(Q). (8.12)

Proof. As W(Q) is a closed subspace of W"? , (), it is clear that
3

o

Wi (@) cw(Q).

2
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By now, let us prove the inverse inclusion. Let u € W(@ and, according to the notations we have
adopted before, let (0;);=1,...1 Uop be an open covering of 2. Next, let us consider a partition of unity
(0;)i=1,...1 U By subordinate to the above covering. Then, we have:

I I
u = Zu@iJru@o = Zui+u0 in Q.
i=1 i=1

Therefore, the difficulty is reduced to prove that ug and any of the functions u; belong to W' ? , ().
3
Let us start with ug. It is clear that ug € Wif (©) and also that ug has a compact support included

in Q. Therefore, as we have seen it few lines above, the function u, belongs to W 5 (8). Then, let
us deal with u;, which is a beat more complicated. By sake of clarity, we drop the mdex 1 and denote
by o the open set o;. The idea we follow consists in flattening the piece of boundary op (see (8.6)),
as it is done for example in [6], with the change of independent variables y = H(z) given by:

y =2, y3 =3 —P().

Note that the inverse map 2 = H~!(y) is given by 2’ =y’ and 23 = y3 + ¥(2’). Also note that, since
¥ is a Lipschitz-continuous function, H defines a Lipschitz-continuous diffeomorphism establishing a
bijection between o4 Uop and Q4+ U @Qp, where:

Qr = H(op)={yeR®: |y|<band 0<y; <a},
Qe = H(op)={yeR’: |y| <bandy;=0}.

In the sequel, if ¢ is a function defined on o4, we denote by @ the function ¢(x) written with respect
to the y variables, i.e. P(y) = ¢ o H 1(y).

Before getting back to our purpose, let us make the following general remark. Note that the function
h satisfies assumptions (8.1)-(8.3), in the context of Q) , since relation (8.9) holds and is equivalent to:

1 fng <h(y) <ys, foranyye Q. (8.13)

Therefore, it is meaningful to consider the space W' 2 T(Q+) Then, we prove that for p € W f h(0+)
1R
and 1 € W} 7(Q4), one has p € W b2 7(Q4) and o H € w2 ,(0+), with the related estlmates.
— 32> R 27

”@”WEQE(QJF) < C”‘pllwi*;h(ﬁ) ) HwOH||Wi»;h(U+ C||1/J||W1 2 Q)

In other words, the diffeomorphism H switches the spaces W' 2 ,(0+) and wh2 7(Q+). This remark
2> -3
being made, let us consider v = ;. One has v € W' +(Q+) and also v € wh? y3<Q+)’ always by
-3 2

(8.13), with the following norm equivalence on W2 7(Q+):
1%
01 HUHWI 2 (Q+) ||1}||W1 2 » Q) S 02 ||UHW1 2 (Q+) (814)
Next, recall that in Proposition 5.9, we have proved the following equality:

wh? (RY) = {u ewh?

—3,Y3 5,93

(R3) /u=0on R? x {o}}.
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In fact, this equality still holds if we replace R3 by Q4 (repeat step two of the proof of Proposition
5.9) and therefore, we have the following characterization:

o

wh2 Q) = {u ew!? (@:)/u=0on aQ} . (8.15)

o

NI= N

» Y3

Consequently, since v = 0 on Q4+, we deduce from (8.15) that v € V?/if " (Q+), and it follows from
3.1

the first inequality in (8.14) that v € Wif E(QJF). To finish, by transporting v on o, one deduces,
3

according to the above general remark, that u; = vo H comes from a converging sequence a functions of

Wi’;h(m_) with a compact support in o . Therefore, u; belongs to Wi; R(o4), and u; € Wi; L (82).

This completes the proof of Proposition 8.3. O

Remark 8.4. If the open set  is not bounded, we bring back to the case of 2 bounded by truncation.

Indeed, we can adapt with no difficulty the proof of Proposition 5.9 step one, to prove that for any
u € W(Q), the sequence ux = ugpi, € W(2) has a compact support in 2 and that:

Al = ullyrz @) =0

h

where @y, is a truncating function.

—-1,2

From the space Wi;h(Q), let us introduce the space of distributions W%,h () as the dual space

of 12/1’2

1
—1.h

(Q). Let us characterize the distributions of W;ll;Q(Q) with the following proposition.
L

Proposition 8.5. Any distribution g € D'(Q2) belongs to W;l};z(Q), if and only if there is fo € L*(Q)
3
and f € L*(Q)3 such that
fo f .
Moreover one can take fo = 0.

Proof. Let fo € L*(Q) and f € L*(Q)*. Since + belongs to LY,.(?), 1% and £~ are distributions
on Q. Then, one has for any ¢ € D(RY):

etV ) e “1 ) 4 f 5 )
‘<h3/2 h1/2 D (@) D) Q <h3/2> Q hl/2
¢ Ve
< ol 2o HW‘ L 11220 ’hl/z L2(2)

< CH@HWi’;’L(Q)'

As a consequence, the mapping

7 (375) )
P = < +V- |75 y P s
h3/2 h1/2 D), D)

is linear and continuous on D() for the norm H-||W1,12 (0> and one deduces by density that:
-5.h

Jo f —1,2
732 +V- <h1/2) €Wy ().
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Conversely, let g € W;llf((l), and let us consider the mapping
3

u Vu
h3/2° hl/z)7

u— (

from W ? ,(Q) into L*(Q)*. This mapping is isometric, and one can consider wh? ,(Q) as a closed
2> 3
sub-space of L?(Q)*. Thanks to the theorem of Hahn-Banach, since g € W;lf(Q), one can extend g
3

to a linear and continuous form on L?(Q2)*. Then, one deduces from Riesz representation that there is
(fo, f) € L*(Q)* such that:

o
Vuewh?

_%7;1(9)» g(u) :/Qfo (%) dw—/ﬂf. (;7172) dz,

fo f\ .
g = W AV W in Q.
To complete this proof, note that Remark 8.2 enables to chose fy = 0, by considering the isometric
mapping:

which implies that:

Vu

u= hl/2’

instead of the one we consider above. O
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Chapter 9

Theoretical study

9.1 Existence and uniqueness of a weak solution

We begin the theoretical study of Problem (7.19), by investigating a case of existence and uniqueness
of a weak solution. A similar result is proved in [11] with a datum g satisfying h®/%2g € L?(Q). Here,
we consider a more general datum in a negative weighted space. As we will see later, we save the
assumption h3/2g € L?(Q) to prove a regularity result, complementary to Proposition 9.1.

2

o
Proposition 9.1. Let g € W;1h’2(Q), Then, there is a unique u € W7 W
2 3

(7.19) and satisfying

(Q) solution to Problem
Hu”vvi-;h(g) <C ||g||W%"1}'7/2(Q) : (9.1)

Proof. Firstly, the choice of g is compatible with a weak solution u € Wif h(Q) Indeed, if we set
5
f= Y% then f € L?(2)3 and one deduces from Proposition 8.5 that

h1/2>
(1 . ( f -
—div (hVu> = —div <h1/2> €W, Q).

o
1,2
Moreover, one has for any v € W1 , (),
PERLY

1 Vu Vo
—div (VU) , 11> = | —  —=dx.
< h wihe), Wt @ Jaht? Rl
1n

h

[SEEN]

Therefore, u € VOV&E , () is a solution to (7.19) if and only if u satisfies the following variational
5

formulation:

Vu Vv

o h1/2 " hi/2 (9-2)

voe Wi (), dz = (g, v)

wit(Q), W L@
20" —20n
Next, the bilinear form a(-, -) defined by

Vu Vo

wv e Whi (), a(u,v) = Y SVER VP L

1
—Ln
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2

o]
. . . 1 .
is clearly continuous and coercive on W1 , (Q) according to Remark 8.2. As a consequence, Lax-
3

Milgram’s theorem provides a unique u € W' ? , () satisfying (9.2), and hence a solution to Problem
3
(7.19). To finish, if we denote by C' > 0 the positive constant such that:

2
la(u, u)l = Cllullyrz (g,
Y
one deduces the following estimate:
1
Hunwi»;h(g) < C ||g||W%_11]‘7,2(Q)7

by taking v = u in (9.2). This completes the proof of Proposition 9.1. O

9.2 A regularity result

Let us consider the solution u € W ? ,(§2) to Problem (7.19) given by Proposition 9.1. The lack of
5

regularity of the mapping h, see assumption (8.2), prevent us to give a meaning to %Au in the classical
distributional sense, and hence to write:

A 1 Vh Vu .

Thus, we need to give a weaker meaning to the above computations. Let us introduce the space D; ()
constituted with function ¢ € C1(Q) with compact support in Q. In the same way that we define the
space of distributions D’(§2), we also define the space of first-order distributions D] (), as the set of
the linear and continuous form on D;(£2). The properties of D’(2) are also true for D} () (see [45]),
and in particular, we can define the product 67 for § € C1(Q) and T € D}(Q) by setting:

Vo € D1(Q), (0T, <P>DQ(Q)791(Q) = (T, 9@@;(9),@1(9) .

Let us get back to the reasoning we were holding. Let us assume that Q is of class C1'!, and let us
consider the extra assumption:
h € W2>(Q). (9.4)

Then, h € C1(Q) and the equality (9.3) holds in D} ().

Remark 9.2. According to [24], the regularity of the distance function ¢ near I' is given by the
regularity of I'. In this case, since I'is C1'!, § is C'>! in a neighborhood of I' which is compatible with
assumption (9.4).

Next, if we multiply the equation of (7.19) by h/2, we readily see that u satisfies:

—hY2Au+ Vh- % =h32ginQ, u=0onT. (9.5)

Since we already have ,7172 € L*(Q)3, we deduce that
R¥%g e L2(Q) = h'/2Au € L2(Q).

Thus, by taking such a distribution g, we expect that h'/2D?u € L?(2), where D?u denotes any second
order derivative of u.
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Remark 9.3. The choice of such a distribution g is relevant. Indeed, if ¢ satisfies h3/2g € L?(1Q),
then g € W;l}QQ(Q), by Proposition 8.5. Moreover, there is a constant C' > 0 depending only on
3

such that:
ol < € 2777

L2’

The approach we have introduced here, enables us to prove a new regularity result concerning the
weak solution u given by Proposition 9.1. The assumption we consider on g, that is h%/2¢g € L? (), is
used in [11] to prove the existence and uniqueness of u. Whereas to get a regularity result, the authors
need to consider h'/2g € L?(Q) and Q of class C3, see the remark below.

Theorem 9.4. Assume that Q is a of class C%' and that h satisfies (8.1)-(8.3) and (9.4). Let
g € D'(Q) such that
h32g € L2(Q).

Then, the solution u € Wi’;h(ﬂ) given by Proposition 9.1 satisfies additionally:

h/2D%y € L2(Q)°, th/2D2u‘

ol

L’-’(Q)9 L2()’
where C' > 0 is a constant depending only on ().

Proof. Let us assume that h3/2g € L?(Q). According to Remark 9.3, the distribution g belongs to
Wl_l}f(Q), and there is a constant C' > 0 such that
1,

3/2
Iollw; 20y < € [77%0]) . -

Thus, thanks to Proposition 9.1, there is a unique u € W h(Q) solution to (7.19) and a constant

C > 0 such that
w2 @ < Cllhw, 2@ < cHW?g\

: 9.6
L2 (9.6)

Now, we set v = h'/2u . Then v € Hl(Q) and we want to prove in the sequel that Av € L?(€2) in the
sense of first-order distributions. Firstly, note that Av € D{(Q). Then, one has for any ¢ € D1(Q):

1 U
(Av, @):—/hl/QVU-Vgde—f/ WVh-V(pd.r
/Vu V(h'/? )da:+/Vu V(h1/2)<pdx77/ hl/QVh Vdz,
Q

where the duality is taken in the sense of D (), D;(Q). Next, since we have Au € D} (), h'/%p €
D1(Q) and 5 Vh € L3, (), one deduces that:

(Av, ) = <Au, h1/2<p> + <Vu -V (RY?), <,O> < div (h1/2 Vh), g0>.
Finally, one obtains that:
Av = B2 Au+ AW ?)u+ 2V (RY?) . Vu =: T, (9.7)

in the sense of first-order distributions on . Next, observe from the following computations that
A(h'/?)u and V(h'/2) - Vu belong to L2(R), since u € W' (Q) and h € W2 >(Q):
3

hAR uw  |VA]* w
2 R3/2 4 p3/2’

Vh Vu
2 pl/2e

AWM ?)u = V(h'/?) . Vu =
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To finish, notice that h'/2Au € L?(Q2) thanks to relation (9.5), and Av € L?*(Q). If we sum up, v
satisfies the following properties:

ve H'(Q), AvelLl*Q), v=0onT,

implying finally that v € H?(Q2). In addition, there is a constant C' > 0 depending only on 2 such
that:

ooy < C Ty < € [0%29

iyl )

< CHh3/2g‘ (9.8)

L2’

according to the definition of T in (9.7) and thanks to (9.6). In particular, one has for 4, j =1, 2, 3:

ax?;xj (h'/?u) € L3 (), (9.9)
and from (9.8), it follows that:
Haz(hl/%) <C Hh?’/Qg’ (9.10)
0z;0z; L2(9) L2(Q)

Since one has in the first-order distributional sense:

0? 0%u 9%(h'/?)  9n'Y2 Ou  Oh'? Ou
= (BY2) = /2 = 47
895181]( U) 895181] tu 8128% + al'l &rj + 8:5]- 8952-’
and since u € W72 , () and h € W2 °°(Q), one deduces from (9.9) that
3
0?u
1/2 12(0
axiaxj < ( )7
and the expected estimate follows from (9.10) and (9.6). O

Remark 9.5. From Theorem 9.4, we deduce that if h3/2g € L?(Q), u satisfies

K32y (;Lvu> e L2()°, ‘ 32y <1Vu> <C Hh3/2g‘

L2(Q)9 r2(Q)’

Remark 9.6. Let us assume now that Q is of class C® and that h'/2g € L*(Q). By applying the
difference quotient technique adapted to weighted space, we can prove as in [11] that the solution u
given by Proposition 9.1 satisfies additionally:

h'/2v (llqu)

which is a supplementary step of regularity for the weak solution wu.

el

hl/2v (;Vu> € L2(Q)°, ‘

L2(Q)9 £2(Q)’
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Prospects

Compared with the work done in the Ri—case, some questions are still open. In the Ri—case, we
were able to write (4.38) in a different way, see (6.1), which enabled us to prove other existence and
uniqueness cases of weak solutions to (4.38). We refer to Proposition 6.1 and Proposition 6.2. In a
similar way, we are led to consider the following problem:

h
—Au + VT -Vu= fin (9.11)
where f = hg. Therefore, in accordance with Proposition 6.1, it would be interesting to find a weak

solution to Problem (9.11) in the space H}(Q), and for a datum f € H~1(Q).

Remark 9.7. Notice that the assumption hg € H~1(Q2) does not imply g € Wl_l}ZQ(Q) otherwise the
2
[e]
question is solved by Proposition 9.1, since W "7 L) C H ().
3
This question is still open, and we give in the sequel few elements of investigation. To begin with,
there is no suitable formal estimates on u. Indeed, by multiplying (9.11) by » and by integrating over

Q, it appears the following term:
h
/ div (V> u? de,
Q h

which is out of control. Besides, it does not seem reasonable to reinforce the assumptions on the weight
h in order to ensure the positivity of such integral.
Therefore, we were interested in the work of J. Droniou, who studies in [25] a similar problem to
(9.11), that is:
—Au+ B -Vu= fin Q, (9.12)

with B € L>=(Q)? and f € H~(Q). The author reaches to prove the existence and uniqueness of a
weak solution u € H}(Q) to (9.12) by studying the dual problem:

—Av —div (vB) = f, in Q.

Still, we are not in the framework of Problem (9.12), since B = ¥ is not in L*°(Q)* but only in
L2 (9)?, and his works do not guaranty yet the existence and uniqueness of a weak solution to our

problem. Given that, by considering h + ¢ instead of h in (9.11), for € > 0, we obtain the existence
and uniqueness of a weak solution u. to the following problem:

V(h+e)
h+e

The idea is then to pass to the limits in the above equation, which is still an open question.

Once this problem solved, it would be possible to foresee other cases of weak solutions in different
weighted spaces, similar to the ones we have considered in Part II (see (5.9)). Moreover, we would
adapt Theorem 9.4 to obtain new complementary regularity results.

—Aue + -Vue = fin Q.
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In a second time, it would be conceivable to generalize this work to a class of weights of the kind
of h. We have briefly thought about considering a mapping h > 0 that belongs to VVI})COC(Q) and that

satisfies:
h =% in a neighborhood of T,

for a given real power o > 0. Then, for a > 1 the mapping h is Lipschitz-continuous, and for 0 < o < 1
it is only continuous, which brings an additional difficulty. A priori, every results we have given in
this part are true for this special weight, expected Theorem 9.4 where we need a > 1.
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Résumé :

Dans ce travail, on étudie quelques problémes d’équations aux dérivées partielles elliptiques que 'on
rencontre dans la modélisation d’écoulements réels, comme par exemple la circulation océanique glob-
ale. La thése est divisée en trois parties. La partie 1 est consacrée i ’étude du probléme de Stokes
dit « hydrostatique » en dimension trois posé dans un domaine borné non nécessairement cylindrique.
L’originalité de ces travaux provient du fait que 1'on considére des données non homogeénes, tant dans
I’équation de conservation de la masse que sur la condition aux limites portée sur la vitesse verticale.
Pour traiter cette nouvelle situation, on se raméne par équivalence & résoudre un systéme d’équations
primitives linéarisées non homogénes, que ’on résout avec une approche entiérement fonctionnelle et
optimale grace au cadre fonctionnel que ’on considére. Par conséquent, on montre deux cas d’existence
et d’unicité d’une solution faible au probléme de Stokes hydrostatique avec conditions non homogénes.
Les partie 2 et 3 sont consacrées a I’étude d’un modéle elliptique avec un coefficient de diffusion qui
peut dégénérer. Ce type d’équations intervient également dans des problémes géophysiques, que ce soit
dans des questions de modélisation de circulation globale, mais aussi dans des problémes d’infiltration
et de milieux poreux. On étudie le cas du demi-espace pour lequel on obtient une théorie optimale de
régularité des solutions faibles. On traite enfin le cas général pour lequel on obtient un cas d’existence
et d’unicité de solution faible et un résultat de régularité associé.

Mots clés : approximation hydrostatique de Stokes, conditions non homogénes, équations primitives
linéarisées, inégalité de type Hardy, lemme de type De Rham, demi-espace, espaces & poids, théorie de
régularité.

ON THE HYDROSTATIC STOKES APPROXIMATION AND A DEGENERATED
EQUATION

Abstract :

In this work, we study some elliptic partial differential equations problems modelling fluid motion,
such as global oceanographic circulation. The thesis is divided into three parts. Part 1 is dedicated
to the so called « hydrostatic » Stokes problem in dimension three, set in a bounded domain non
necessarily cylindrical. The originality of this work relies in the fact that we consider non homogeneous
data, not only in the mass conservation equation but also in the boundary condition carried by the
vertical velocity. To handle this new situation, we prove that the difficulty is reduced to solve a
non homogeneous linearized primitive equations system, that we solve with an entirely functional and
optimal approach given the framework we consider. Therefore, we give two cases of existence and
uniqueness of a weak solution to the hydrostatic Stokes problem with non homogeneous conditions.
Part 2 and 3 are dedicated to the study of an elliptic model with a diffusion coefficient having a
possible degenerated behavior. We can also find these equations in geophysical problems, such as in
global circulation modelling questions or seepage and porous media problems. We study the half-space
case for which we obtain an optimal regularity theory of weak solutions. Finally, we deal with the
general case for which we establish an existence and uniqueness proof of a weak solution, jointly with
a regularity result.

Keywords : Stokes hydrostatic approximation, non homogeneous conditions, linearized primitive
equations, Hardy type inequality, De Rham-like lemma, half-space, weighted spaces, regularity theory.



