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Introduction générale

Pour rédiger ce mémoire d’habilitation, j’ai opéré deux choix :

❍ sur le fond, j’ai opté pour ne faire apparaître qu’une partie demes travaux de recherchemenés
depuis plus de 10 ans dans le domaine de la géométrie non commutative ;

❍ sur la forme, j’ai repris, comme chapitres principaux de ce mémoire, deux articles de revue
que j’ai écrit respectivement en 2006 et 2007 ([Masson, 2008a] et [Masson, 2008c]), qui sont des
comptes-rendus de conférences données lors de rencontres internationales.

Le but de cette introduction est de replacer dans leurs contextes respectifs ces deux revues, et de
les compléter sommairement sur certains points.

La géométrie non commutative

La géométrie non commutative a été conçue à la fois pour répondre à des besoins en mathé-
matiques et pour permettre d’aborder certains problèmes de physique théorique.

En mathématique, il s’agit de généraliser les outils de la géométrie ordinaire qui ont été déve-
loppés depuis plus d’un siècle : structures différentiables, métriques, actions de groupes, fibrations,
connexions. . . Ces constructions mathématiques sont désormais largement utilisées en physique
théorique, et l’essentiel des théories modernes (le Modèle Standard des particules élémentaires, la
Relativité Générale, la théorie quantique des champs) se fondent sur des propriétés mathématiques
fines élaborées dans ce contexte. C’est à A. Connes que l’on doit, en 1985, d’avoir donné les premières
voies concrètes de recherches dans le domaine de la géométrie non commutative, en définissant et
en étudiant la cohomologie cyclique [Connes, 1985]. Il montrait ainsi que la notion de calcul diffé-
rentiel sur les variétés admet un équivalent non commutatif, au sens expliqué ci-dessous.

En physique, dès le milieu des années 1950, les travaux sur les théories quantiques des champs
ont permis de faire émerger des notions devant faire cohabiter structures géométriques et struc-
tures algébriques : d’un côté les algèbres d’opérateurs, de l’autre les théories de jauge, c’est à dire la
théorie des connexions sur les fibrés. . . Cependant, la plus forte motivation reste encore aujourd’hui
l’espoir d’écrire une théorique quantique de la gravitation avec cette mathématique, puisque le prin-
cipe fondateur de la géométrie non commutative est de fusionner dans un même cadre conceptuel
l’aspect opératoriel de la mécanique quantique et l’aspect géométrique de la Relativité Générale (et
des théories de jauges).

L’idée maîtresse de la géométrie non commutative est d’abord de caractériser une classe d’es-
paces « géométriques » bien particulière par un type d’algèbres de fonctions adapté, en munissant
ces algèbres d’outils algébriques appropriés. Par exemple, il est possible de caractériser un espace
topologique compact et séparé par son algèbre de fonctions continues bornées, et un espace mesu-
rable par son algèbre des classes de fonctions mesurables bornées. Dans les cas favorables, ou bien
ces outils algébriques n’utilisent pas explicitement la commutativité des algèbres de fonctions, ou
bien des outils plus algébriques équivalents existent, ce qui rend alors possible l’étude des algèbres
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non commutatives du même type à l’aide de ces outils algébriques, sans avoir à mentionner d’espace
sous-jacent.

Cette démarche est largement encouragées par de nombreux résultats mathématiques : carac-
térisations des algèbres de von Neumann commutatives, théorème de Gelfand-Naïmark sur les C∗-
algèbres, théorème de Serre-Swan sur les fibrés, cohomologie cyclique de l’algèbre C∞(M), relations
entre opérateurs de Dirac et métriques riemanniennes, K-théorie des C∗-algèbres. . .

Le Chapitre 1 est une revue non exhaustive à vocation pédagogique de ces considérations gé-
nérales sur la géométrie non commutative. En particulier, l’effort pédagogique a été porté sur les
objets mathématiques de nature géométrique qui admettent une généralisation non commutative,
comme par exemple le caractère de Chern, pierre angulaire de nombreux résultats en géométrie non
commutative.

Ce chapitre ne constitue qu’une introduction à certaines structures algébriques et géométriques
qui fondent la géométrie non commutative. On trouvera dans mon ouvrage de 635 pages, Une
introduction aux (co)homologies, publié en 2008 aux éditions Hermann ([Masson, 2008b]), de quoi
largement compléter ce qui est exposé ici. 1 En particulier, on trouvera dans les nombreux exercices
proposés des exemples concrets d’utilisation de ces outils dans la démarche de la géométrie non
commutative. Pour des introductions plus complètes, je renvoie à [Connes, 1994], [Landi, 1997],
[Madore, 1999] et [Gracia-Bondía et al., 2001].

De plus, ce chapitre ne contient aucune contribution personnelle aux mathématiques de la géo-
métrie non commutative sur lesquelles j’ai pu travailler par le passé : problèmes cohomologiques sur
des algèbres associatives ([Dubois-Violette and Masson, 1996a]), notion de sous variétés non com-
mutatives et de variétés quotient non commutatives dans le cadre de la géométrie non commutative
basée sur les dérivations ([Masson, 1996]), étude de la notion d’opérateur différentiel du premier
ordre sur un bimodule en géométrie non commutative ([Dubois-Violette and Masson, 1996b]),
structure du calcul différentiel basé sur les dérivations de l’algèbre des matrices ([Masson, 1995],
[Masson, 2008b]). . .

Gravitation et géométrie non commutative

Une des motivations fortes de la géométrie non commutative est d’obtenir un cadre mathéma-
tique cohérent dans lequel il serait possible d’écrire une gravitation quantique. Bien que ce thème
ne soit pas repris plus loin dans ce mémoire, il me semble important de mentionner et discuter
quelques uns des travaux menés dans cette direction.

Une des pistes explorées a été de généraliser le formalisme utilisé dans le cadre de la Relativité
Générale d’Einstein à des situations opératorielles. Pour ce faire, une première étape incontournable
consiste d’abord à considérer les notions ordinaires de la géométrie riemannienne de façon plus
algébrique, et à envisager ensuite de se passer de la commutativité de l’algèbre des fonctions C∞.

J’ai mené par le passé, avec différents collaborateurs, des travaux dans cette direction. Ils consis-
taient à étudier une notion de connections linéaires non commutatives. Les connections linéaires
sont, dans le formalisme de la Relativité Générale, l’objet mathématique derrière les symboles de
Christoffel. La définition en elle-même des connections linéaires non commutatives ne pose pas
de problème, car elle est déjà de nature très algébrique en géométrie ordinaire. On trouvera dans
[Dubois-Violette et al., 1996] et [Dubois-Violette et al., 1995a] des considérations générales à pro-
pos de ces aspects algébriques.

Les géométries non commutatives sur lesquelles ces notions ont été testées sont très diverses : al-

1. Même si cet ouvrage, comme son titre l’indique, n’est pas un livre sur la géométrie non commutative.
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gèbre des matrices ([Madore et al., 1995]), plan quantique ([Dubois-Violette et al., 1995b]), groupes
quantiques ([Georgelin et al., 1996] et [Georgelin et al., 1997]). Depuis, d’autres auteurs ont exploré
d’autres classes d’exemples, comme le plan quantique h-déformé ([Cho et al., 1998]), des géomé-
tries de réseaux ([Dimakis and Mueller-Hoissen, 2003]), des géométries avec métriques pseudo-
riemaniennes ([Dimakis and Mueller-Hoissen, 2000]). . .

De tous ces travaux, il ressort que les contraintes non commutatives sont tellement fortes que
l’espace des connections linéaires se réduit très souvent à un espace de paramètres de dimension
finie. Ceci est souvent relié au fait que le centre de ces algèbres est lui même très petit, un espace
vectoriel de dimension finie. Cette situation est peu encourageante dans l’espoir de faire de la Rela-
tivité Générale au « sens ordinaire ».

Une autre approche possible consiste à envisager que la quantification de la Relativité Générale
induise une notion d’espace non commutatif, ayant pour paramètre de déformation la longueur de
Planck. Il ne s’agit donc pas de réécrire d’une façon ou d’une autre la Relativité Générale directe-
ment, mais d’en extraire d’éventuelles conséquences quantiques et de les encoder dans un espace-
temps non commutatif. Souvent, cet espace-temps non commutatif est étudié d’une point de vue
de sa géométrie « riemannienne », ou bien il est le support de théories des champs dont on étudie
les propriétés. Je renvoie à [Madore, 1999] pour de plus amples renseignements sur ce domaine de
recherche.

Enfin, une autre voie de recherche pour écrire une théorie de la gravitation au moyen de la
géométrie non commutative a été initiée et très largement explorée par A. Connes et A. Chamsed-
dine (voir [Chamseddine and Connes, 1997] pour la première proposition, et [Chamseddine et al.,
2007] pour la dernière version de ce modèle et les références bibliographiques). L’ambition de cette
démarche, qui aboutit à un modèle assez complet dans le dernier article cité, est de reconstruire
le Modèle Standard de la physique des particules élémentaires couplé à la gravitation, à partir de
principes issus d’idées de la géométrie non commutative.

Cette démarche ne cherche pas, contrairement aux précédentes, à envisager d’utiliser la géo-
métrie non commutative pour écrire une « gravitation quantique », puisque le modèle auquel elle
aboutit est classique. Dans un soucis de comparaison avec les autres approches mentionnés dans
les chapitres de ce mémoire (sur les théories de Yang-Mills-Higgs non commutatives), il est utile de
rappeler ici, en quelques lignes, en quoi consiste cette démarche.

La géométrie non commutative appliquée à la physique qu’A. Connes a développée est très dif-
férente de celle qui sera expliquée au chapitre 2. En effet, la construction d’A. Connes repose de
façon essentielle sur un triplet spectral, constitué d’une algèbre topologique, d’un espace de Hilbert
sur lequel cette algèbre se représente, et d’un opérateur de Dirac sur cet espace de Hilbert. Ces trois
objets satisfont à des relations de compatibilité, qui ne sont, ni plus, ni moins, que ce qu’il faut pour
que l’algèbre des fonctions C∞ sur une variété compacte à spin, muni de l’espace de Hilbert obtenu
par complétion des sections L2 d’un fibré des spineurs et de l’opérateur de Dirac naturel, soit un tel
triplet spectral. C’est le modèle commutatif de cette construction.

Cette notion de triplet spectral se transforme rapidement en un quintuplet spectral lorsqu’on
lui ajoute une éventuelle Z2-graduation et une notion de réalité. Ces deux concepts, formalisés par
deux opérateurs γ et J sur l’espace de Hilbert, trouvent leurs origines dans le Modèle Standard des
particules : γ est relié à la chiralité à travers l’opérateur usuel γ5, et J se relie à la conjugaison de
charge. Il ne s’agit pas ici d’exposer en détail ces constructions, de nombreux articles et ouvrages en
donnent des exposés très précis ([Connes, 1994] ou [Gracia-Bondía et al., 2001] sont de bons points
de départ).
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Dans cette approche, l’opérateur de Dirac représente la métrique, et ses fluctuations (non com-
mutatives) s’identifient à des champs de jauge. On peut, jusqu’à un certain point, comprendre ces
propriétés par l’argumentaire heuristique suivant.

La métrique sur une variété différentiable riemannienne est donnée par l’invariant de longueur
ds2 = gμνdx

μdxν. Il est bien connu que l’action naturelle que l’on écrit dans le cadre de la théorie de la
relativité, pour une particule libre (voir par exemple [Landau and Lifchitz, 1989]), est

S[γ] =
∫

γ
dτ

où γ est un chemin paramétré sur la variété, et dτ=
√
ds2 est ici le temps propre infinitésimal le long

de ce chemin (dans une signature Minkowskienne). Donc S[γ] est le temps propre de l’objet le long
de la trajectoire γ.

En mécanique quantique relativiste, on est amené à remplacer le formalisme des points et des
trajectoires par le formalisme des fonctions d’ondes et de leurs équations différentielles, grâce à la
« procédure de quantification » pμ 7→−i ∂

∂xμ
. Dans l’espace des impulsions, l’invariant correspondant

à ds2 est m2 = gμνpμpν, qui, quantifié, donne lieu au Laplacien Δ (généralisé, au sens où il peut s’agir
du d’Alembertien). Il est possible de reproduire la démarche qui conduit à l’action dans l’espace des
positions en considérant un opérateur D tel que D2 = Δ, c’est à dire un opérateur de Dirac. Une
action naturelle serait alors de la forme

∫
D, qui n’a de sens que dans le cadre de la théorie spectrale

d’une certaine classe d’opérateurs. L’action spectrale proposée par A. Connes et A. Chamseddine est
de la forme

S[D] =
∫
f (D)

où f est une fonction définie sur le spectre de D.

Imaginons maintenant que l’on permette à D d’avoir des fluctuations dans un espace suffisam-
ment « grand », par exemple de telle façon que les couplages minimaux, qui consistent à « faire
fluctuer » les pμ sous la forme pμ+Aμ (Aμ étant un champs de Yang-Mills), soient possibles. L’action
écrite ci-dessus sera alors une action contenant les champs gμν et Aμ. La structure de cette action
impose que S[D] produise des invariants mathématiques à partir de ces champs. Aussi, le travail
de A. Chamseddine, A. Connes et M. Marcolli, dans [Chamseddine et al., 2007], a consisté à per-
mettre les bonnes fluctuations de D (en choisissant, en particulier, l’algèbre et l’espace de Hilbert
du triplet spectral) de telle façon que cette action reproduise une version du Modèle Standard des
particules élémentaires (il s’agit d’un modèle inspiré des modèles see-saw, contenant un mélange
des neutrinos).

Il est bien connu que cette démarche soulève de nombreux problèmes. Techniquement, l’opé-
rateur de Dirac qu’il est possible de considérer dans cette approche est à résolvante compacte, ce
qui exclu de fait les opérateurs de Dirac de la physique sur espace-temps de Minkowski. Seuls les
cas euclidiens peuvent donner lieu à de telles modélisations, ce qui rend l’intérêt physique de cette
démarche, dans son formalisme actuel, assez peu encourageante. 2 Certains auteurs ont commencé
à explorer la possibilité d’un opérateur non elliptique. Pour cela, il a été suggéré d’amplifier encore
le tri(quintu)plet spectral en lui adjoignant un opérateur supplémentaire, un peu à la manière où un
espace de Krein est un espace de Hilbert muni d’un opérateur métrique qui relie le produit scalaire
indéfini au produit scalaire défini positif. . .

2. Même si de trop nombreux physiciens pensent qu’une « simple » rotation deWick suffirait à basculer d’une signa-
ture à une autre, ce que les mathématiques ne semblent pas étayer : combien de théorèmes valables dans le cas elliptiques
le sont aussi dans le cas hyperbolique ?
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Une autre difficulté de la construction d’A. Connes est qu’elle requiert une certaine forme de
compacité pour l’« espace » non commutatif. Dans [Gayral et al., 2004], la définition d’un triplet
spectral non compact a été proposée, et l’exemple d’une algèbre de Moyal (il y a de nombreuses
définitions possibles de l’« algèbre de Moyal ») y est donné. Cette approche requiert encore une fois
d’élargir le triplet, en ajoutant une algèbre topologique non unitale. . .

Je reviendrai plus loin sur les points plus positifs de cette approche. Il ressort cependant de
ce (très) bref tour d’horizon que la « gravitation quantique » est pour l’instant encore à un stade
d’investigation relativement préliminaire dans le cadre de la géométrie non commutative.

Relations entre la géométrie non commutative et la géométrie ordinaire

La géométrie non commutative se veut une généralisation de la géométrie différentielle ordi-
naire. Aussi, il n’est pas surprenant de s’attendre à ce qu’elle permette de reconsidérer les objets de la
géométrie ordinaire dans son propre langage. Il en est ainsi, par exemple, de la notion de feuilletage :
A Connes a montré qu’on pouvait associer et étudier une certaine C∗-algèbre à un feuilletage, même
(et surtout !) singulier. C’est l’un des succès majeurs de la géométrie non commutative d’avoir pu
prendre en considération des situations singulières de la géométrie ordinaire qu’il était très difficile,
voire impossible, à manœuvrer dans le formalisme géométrique usuel.

En collaboration avec M. Dubois-Violette d’abord, puis avec E. Sérié ensuite, j’ai exploré dans
différents articles une autre situation où la géométrie non commutative rejoint et jette un regard
nouveau sur la géométrie ordinaire. La publication [Masson, 2008c] est une revue de l’ensemble de
ce qui a été considéré jusqu’à présent sur ce sujet et constitue le Chapitre 2 de ce mémoire. Je donne
un bref aperçu, dans ce qui suit, des motivations derrière ce travail et des résultats essentiels obtenus.

Le point de départ des recherches publiées dans [Dubois-Violette and Masson, 1998] consistait
à généraliser des travaux antérieurs sur la géométrie non commutative basées sur les dérivations
de l’algèbre des fonctions à valeurs matricielles. Cette algèbre, étudiée par M. Dubois-Violette, R.
Kerner et J. Madore, avait montré que la partie purement non commutative (l’algèbre des matrices)
renfermait, du point de vue des théories de jauge non commutative, des degrés de liberté assimi-
lables, au moins dans des modèles simples, à des champs de Higgs.

La généralisation que nous avons considérée dans [Dubois-Violette and Masson, 1998] repose
sur la constatation que cette algèbre de fonctions à valeurs matricielles, isomorphe à C∞(M)⊗
Mn(C) (M est une variété différentiable paracompacte), n’est rien d’autre que l’algèbre des endo-
morphismes du fibré vectoriel M×Cn. Dans cette situation, ce fibré est trivial. Nous avons donc
amorcé l’étude de la géométrie non commutative basée sur les dérivations de l’algèbre des endomor-
phismes d’un fibré vectoriel orientable E de fibre Cn, qu’on notera de façon générale A par la suite.
Le groupe de structure d’un tel fibré pouvant être réduit à SU(n), nous avons souvent appelé cette
algèbre l’algèbre des endomorphismes d’un fibré SU(n).

Dans l’article [Dubois-Violette and Masson, 1998], nous avons montré que l’aspect non trivial
du fibré E modifiait en substance certains des résultats obtenus pour l’algèbre des fonctions à va-
leurs dans les matrices. Par exemple, et ceci joue une rôle crucial par la suite, l’algèbre de Lie des
dérivations de cette dernière algèbre se scinde, en tant qu’algèbre de Lie et module sur le centre, en
une partie purement non commutative (liée aux dérivations intérieures de l’algèbre des matrices)
et une partie géométrique (l’algèbre de Lie des champs de vecteurs sur M). Cette décomposition
canonique permet de considérablement simplifier l’analyse de cette géométrie. Au contraire, dans le
cas de l’algèbre associée à un fibré E non trivial, cette décomposition n’a plus lieu. Cependant, nous
avons montré qu’une connexion ordinaire sur E permet de scinder l’algèbre de Lie des dérivations
en tant que module sur le centre, mais pas en tant qu’algèbre de Lie, en une composante non com-
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mutative (le sous espace des dérivations intérieures de l’algèbre) et une composante « commutative »
(l’algèbre de Lie des champs de vecteurs surM). L’obstruction à la possibilité de scinder cette algèbre
de Lie en tant qu’algèbre de Lie est exactement mesurée par la courbure de la connexion choisie.

Le point essentiel de cette publication est que l’espace (affine) des connexions ordinaires sur E
est un sous espace de l’espace (vectoriel) des connexions non commutatives de cette algèbre des

endomorphismes (voir le Théorème 2.5.2). Les degrés de liberté ainsi disponibles en sus de ceux
d’une connexion ordinaire sont, comme dans le cas trivial, assimilables à des champs de Higgs.

D’autre part, nous avons relié cette géométrie à l’algébroïde de Lie d’Atiyah sur M.

Dans la publication [Masson, 1999], j’ai poursuivi l’étude de cette algèbre, en montrant en quoi
elle généralisait convenablement, sur de nombreux points, la géométrie ordinaire du fibré prin-
cipal P sous-jacent au fibré E . La possibilité de relier entre elles ces deux géométries repose sur
l’utilisation de mes travaux antérieurs sur les sous variétés non commutatives et les variétés quo-
tients non commutative dans le cadre des calculs différentiels basés sur les dérivations ([Masson,
1996]). En effet, on peut considérer que les deux géométries mentionnées, la géométrie ordinaire
de P et la géométrie non commutative de l’algèbre A, sont des géométries de « variétés quotient
non commutatives » de la géométrie non commutative de l’algèbre B des fonctions sur P à valeurs
dansMn(C). Cette dernière géométrie est triviale au sens du fibré vectoriel sous-jacent (voir la Sec-
tion 2.6). J’ai ainsi pu montrer que la réécriture des connexions ordinaires, comme connexions non
commutatives dans le cadre de l’algèbreA, complétait parfaitement le schéma géométrique habituel
des connexions qui consistait jusqu’à présent à les définir comme formes sur P (équivariantes et
horizontales, à valeurs dans une algèbre de Lie) ou comme une famille de formes locales sur M
(à valeurs dans une algèbre de Lie et satisfaisant à des relations de recollement non homogènes),
en définissant une telle connexion comme forme non commutative globale sur M « à valeurs dans
A ». Au niveau des courbures, cette dernière caractérisation existait auparavant (2-formes sur M à
valeurs dans un fibré associé à P). J’ai donc montré que la forme de connexion pouvait elle aussi se
définir à ce niveau intermédiaire (entre une notion locale sur M et une notion globale sur P) en
ayant recourt à des structures non commutatives (voir la Remarque 2.4.9).

Dans cette publication [Masson, 1999], j’ai aussi considéré la structure de l’espace de cohomo-
logie des formes différentielles non commutatives, et j’ai pu démontrer une généralisation non

commutative du théorème de Leray sur la cohomologie d’un fibré principal (Théorème 2.7.3).

En collaboration avec mon étudiant de thèse, E. Sérié, nous avons défini et étudié dans [Masson
and Sérié, 2005] la notion de connexions non commutatives invariantes sur cette géométrie non
commutative. Les connexions (ordinaires) invariantes sous l’action d’un groupe de Lie jouent un
rôle important en géométrie ordinaire et en physique des théories de jauge non abéliennes. En effet,
elles permettent bien souvent de trouver des solutions explicites des équations du mouvement en
présence d’un principe de symétrie réduisant considérablement les degrés de liberté.

La définition que nous avons prises pour les connexions non commutatives invariantes sous
l’action d’un groupe de Lie est une généralisation de la notion habituelle, au sens où l’espace des
connexions non commutatives contient l’espace (affine) des connexions ordinaires, et que les deux
notions de connexions invariantes coïncident sur ce sous espace.

Nous avons en outre caractérisé l’espace des connexions non commutatives invariantes et donné
plusieurs exemples, en particulier une généralisation de l’ansatz deWitten. La démarche a consisté à
caractériser les connexions non commutatives invariantes comme des objets au niveau de la grande
algèbreB. L’espace des connexions non commutatives invariantes est alors constitué de deux parties :
une algèbre et son calcul différentiel, et un module sur cette algèbre. On retrouve ainsi la décompo-
sition usuelle en une partie « connexion réduite » et une autre partie « champs scalaire ». Le langage
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géométrico-algébrique permet de considérer et manipuler ces objets de façon beaucoup plus aisée
que dans le cas de la géométrie ordinaire (voir la Section 2.8).

Le Chapitre 2 est une revue complète de tous ces travaux. En particulier, j’y insiste sur le lien
entre la géométrie ordinaire du fibré P et la géométrie non commutative de l’algèbre A. Dans cet
exposé, on trouvera aussi des résultats (non publiés par ailleurs) sur la façon de définir les classes
caractéristiques de E en terme de l’algèbre de Lie des dérivations de A. En effet, dans cette re-
vue, je montre que l’obstruction au fait que cette algèbre de Lie se scinde en tant qu’algèbre

de Lie contient les informations permettant de calculer les classes caractéristiques de E . Cette
démarche repose sur la notion de classes de cohomologie associées à une suite exacte courte d’al-
gèbres de Lie, définie et étudiée par Lecomte. On ne trouvera pas les démonstrations originales dans
cette revue, et je renvoie aux articles originaux pour les détails.

On peut résumer brièvement ce qui a été appris sur cette géométrie non commutative, en di-
sant qu’elle constitue un outil idéal pour le physicien désireux de considérer des modèles de type
Yang-Mills-Higgs. En effet, la géométrie différentielle des théories de jauge sur des fibrés SU(n) est
une sous géométrie d’une géométrie non commutative de l’algèbre des endomorphismes de E . Cette
caractérisation des théories de jauge permet de mieux comprendre l’origine et la place des champs
de Higgs vis-à-vis de la géométrie ordinaire, puisqu’ils s’interprètent, de façon tout à fait naturelle,
comme les degrés de liberté dans les directions purement non commutatives de la géométrie de cette
algèbre d’endomorphismes. Ils s’agit donc d’une partie non visible à travers la géométrie usuelle. Il
faut noter que dans le Modèle Standard élaboré par A. Connes évoqué plus haut, les champs de
Higgs sont aussi les composantes des connexions dans des directions purement non commutatives
(la « géométrie finie » de cemodèle). Ceci semble à la fois répondre à la question physique de l’origine
des Higgs, et à la question mathématique du statut exact de ces champs scalaires dans les modèles
de jauge à brisures spontanées de symétrie, qui jusqu’à présent n’avaient pas été identifiés mathé-
matiquement comme le sont aujourd’hui les champs de jauge (en tant que connexions).

La géométrie non commutative et les théories des champs

Ceci nous amène directement à l’un des thèmes de recherches les plus développés dans le do-
maine de la géométrie non commutative. Il concerne les théories de jauge non commutatives. Rap-
pelons que pour définir une telle théorie, c’est à dire définir des connexions non commutatives, il
faut trois ingrédients :

➀ une algèbre associative A, souvent unitale pour des raisons pratiques ;

➁ un calcul différentiel qui jouera le rôle de « géométrie différentielle non commutative », sans
lequel la notion de formes différentielles n’a pas de sens ;

➂ un module à droite sur l’algèbre A, qui sert de support à l’action de la connexion non com-
mutative (dans les modèles de physique des particules, il correspond à l’espace des champs de
matière).

Bien souvent, on simplifie le problème, tout en conservant une certaine généralité, en prenant
pour module sur A l’algèbre A elle-même, considérée comme module à droite sur elle-même.

C’est par exemple avec cette démarche qu’avec mes collaborateurs j’ai étudié les connexions or-
dinaires comme connexions non commutatives sur l’algèbre des endomorphismes d’un fibré SU(n)
(voir Section 2.5).

Une autre direction possible de recherche repose sur la constatation que les équivalents non
commutatifs des théories de jauge abéliennes sont des théories de jauge non commutatives dont les
degrés de libertés s’interprètent comme des champs de jauge non abéliens ! Par exemple, en prenant



12 Introduction générale

l’algèbre A comme module sur elle-même, la structure non commutative de A correspond, en un
certain sens, au groupe de jauge : dans le cas A = C∞(M)⊗Mn(C), on trouve pour groupe de
jauge C∞(M)⊗SU(n), ce qui rapproche la théorie de jauge (non commutative) considérée d’une
théorie de jauge de type Yang-Mills avec comme groupe de structure SU(n). Or, prendre l’algèbre
elle-même dans le cadre commutatif (A = C∞(M)) revient à considérer une théorie abélienne de
type Maxwell !

C’est dans cet esprit qu’en collaboration avec R. Kerner et notre étudiant de thèse E. Sérié, nous
avons introduit des théories de type Born-Infeld non abéliennes. En effet, le caractère non abélien
correspond au caractère non commutatif de l’algèbre A = C∞(M)⊗Mn(C), et nous avons alors
généralisé, dans une démarche purement non commutative, l’équivalent de l’action (abélienne) de
Born-Infeld. Ces travaux ont donné lieu à plusieurs publications. Dans [Kerner et al., 2003], en
guise de mise en place de cette démarche, nous avons explicitement calculé le lagrangien dans le
cas SU(2). Nous avons étudié (numériquement) les solutions statiques à symétrie sphérique de cette
action de Born-Infeld. Nous avons exhibé une famille à un paramètre de solutions d’énergie finie,
dont nous avons décrit les propriétés essentielles. Dans [Kerner et al., 2004], nous avons réduit le
type de lagrangien considéré précédemment à un ansatz ne faisant intervenir qu’un seul champ
scalaire. L’action obtenue est de type Dirac-Born-Infeld. Nous avons étudié des solutions de cette
action, dans des cas simples à symétrie sphérique. Il en ressort que ces solutions ne sont pas stables.

Dans [Cagnache et al., 2008], en collaboration avec E. Cagnache et J.-C. Wallet, nous avons
appliqué la technologie des calculs différentiels basés sur les dérivations à l’algèbre de Moyal, afin
d’étudier les conséquences possibles, au niveau des théories de jauge, du choix de ce calcul. En effet,
l’algèbre de Moyal, qu’on peut considérer sur certains points comme une algèbre généralisant l’al-
gèbre des matrices Mn(C) largement évoquées ci-dessus, n’admet que des dérivations intérieures.
Or, le calcul différentiel basé sur les dérivations qui a été utilisé jusqu’à présent dans ce cadre, n’uti-
lise pour espace de dérivations qu’un espace de dimension deux (pour simplifier, on ne traite dans
ce résumé que l’algèbre deMoyal surR2) : les « dérivées » dans les directions usuelles deR2. Comme
l’algèbre de Lie complète des dérivations est de dimension infinie, il semble très restrictif de ne
considérer que ces deux directions, tout en gardant à l’esprit qu’en vue de construire des théories de
jauge, il est raisonnable et souhaitable de se restreindre à une sous algèbre de Lie de dimension finie.
Aussi, nous avons montré qu’un choix tout aussi naturel serait de considérer une algèbre de Lie de
dimension 5, où, aux deux dérivations précédentes, on ajoute les directions du groupe des symplec-
tomorphismes. Cette algèbre de Lie est la plus grande sous algèbre de Lie des dérivations de l’espace
de Moyal pour laquelle les dérivations sont aussi des champs de vecteurs usuels sur les fonctions
ordinaires (dont certaines, comme par exemples les fonctions polynomiales, sont dans l’algèbre de
Moyal considérée). Nous avons étudié des théories de jauge dans cette situation, et montré que les
degrés de liberté supplémentaires introduits sur les champs de jauge dans ces trois nouvelles direc-
tions pouvaient jouer le rôle de champs de Higgs.

La géométrie non commutative face aux « théories unificatrices »

Je voudrais terminer cette introduction en donnantmon point de vue sur la place de la géométrie
non commutative dans le grand programme de recherche qui mobilise les esprits, assez vainement
malheureusement, depuis plus d’une cinquantaine d’années maintenant, et qui consiste à élaborer
une théorie dans laquelle les interactions électrofaibles, fortes et gravitationnelles trouveraient leur
place d’une façon unifiée.

Contrairement à d’autres approches du type « unificatrice » actuellement explorées, comme par
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exemple la théorie des cordes ou la théorie des boucles quantiques 3, la géométrie non commutative
ne se place pas au niveau d’un modèle particulier dans une cadre conceptuel déjà pré-défini (les
méthodes de quantification usuelles, la théorie quantique des champs et sa théorie des perturba-
tions. . .).

Dans les faits et les articles publiés, cette assertion peut largement sembler inexacte, puisque bon
nombre de chercheurs en géométrie non commutative n’adhèrent pas à ce point de vue. Pourtant,
il me semble que cette conception soit la seule défendable lorsqu’on travaille avec cette nouvelle ap-
proche : elle cherche en effet, avant tout, à puiser aux sources mêmes des théories afin de dénicher
ce qui les rassemble, dans le but de les réconcilier (on connaît déjà depuis bien longtemps ce qui
les divise !). Malheureusement, une large part des travaux se contente de reproduire et de répéter
des recettes bien trop classiques face aux enjeux que lancent cette unification, et dans la plupart du
temps éloignées de la philosophie même qui motive la géométrie non commutative. Cette dernière
cherche avant tout à fournir un nouveau cadre dans lequel penser et écrire une nouvelle physique,
susceptible d’accueillir à la fois les aspects les plus pertinents de la théorie quantique des champs,
et les caractéristiques les plus utiles des théories de nature géométriques. Par conséquent, les « re-
cettes » habituelles doivent aussi y être repensées profondément.

La géométrie non commutative n’a pas encore atteint cet objectif, car les mathématiques qui la
sous-tendent sont encore largement en gestation, et les physiciens ne se sont pas encore appropriés
cette nouvelle démarche. 4 Il n’est donc pas possible, à l’heure actuelle, de la comparer à d’autres
approches unificatrices.

Néanmoins, la possibilité de reformuler le Modèle Standard des particules en utilisant des outils
algébriques nouveaux est un indéniable et très encourageant succès de la « reconstruction » effectuée
par A. Connes et ses collaborateurs. En effet, l’élaboration des modèles de particules repose, depuis
les années 60, sur l’utilisation d’espaces de représentations de groupes, et tout l’art du «model buil-
der », grande spécialité de ces 40 dernières années, transmise de chercheurs aux thésards dans la
bonne vieille tradition du compagnonnage, 5 se révèle dans les choix adéquats des groupes de sy-
métrie et des espaces de représentation. Le Modèle Standard est la grande victoire de cet Art. Mais
depuis la fin des années 70, cette démarche semble s’essouffler, non pas dans la littérature, mais dans
ses succès, aussi bien pour dépasser le Modèle Standard (qui a bien besoin d’une cure de jouvence
depuis la récente confirmation que les neutrinos sont massifs par exemple), que dans sa capacité à
apporter des perspectives nouvelles grâce auxquelles des théories unificatrices sont concevables.

Aussi, l’approche non commutative pourrait être un nouveau souffle dans ce contexte. Dans
tous les modèles évoqués ci-dessus, aussi bien celui très « réaliste » construit par A. Connes et ses
collaborateurs que les modèles plus bruts issus des considérations du Chapitre 2, la notion de groupe
de structure disparaît : elle s’efface derrière celle d’algèbre associative (la non abélianité des groupes
se transformant en non commutativité des algèbres. . .), et les représentations sont remplacées par
des modules, pour lesquels l’irréductibilité est une contrainte plus forte. Enfin, la non abélianité/non
commutativité apporte avec elle, de façon structurellement inévitable, des champs supplémentaires
aux champs de jauge « ordinaires », interprétables comme des champs de Higgs dans les bons cas.

3. Bien que la gravitation quantique à boucles ne se revendique aucunement « unificatrice », elle présuppose que
la gravitation puisse être quantifiée avec des méthodes très semblables à celles utilisées pour manoeuvrer les autres
interactions, ce qui, de ce point de vue, est déjà un principe d’unification.

4. Il faudrait d’ailleurs pour cela que nombre d’entre eux acceptent un changement de paradigme, ce qui n’est pas
nécessairement le plus facile, compte-tenu des phénomènes demode ou des attachements psychologiques parfois rigides
à certaines démarches. . .

5. Il est étonnant de voir combien l’apprentissage de la science à travers l’itinéraire des « post-docs » ressemble à la
démarche du compagnonnage.
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La démarche d’A. Connes devrait être suivie avec beaucoup d’attention par les physiciens des
particules. En effet, la construction même de sa géométrie non commutative est intimement liée,
comme il l’avoue lui-même, aux structures géométrico-algébriques sous-jacentes au Modèle Stan-
dard, qu’elles aient été introduites en toute conscience par les physiciens, ou qu’elles soient le résul-
tat, au contraire, de contraintes fortes et inévitables face aux données expérimentales. Ainsi, les deux
opérateurs mentionnés auparavant, la graduation et la réalité, sont directement issus de ce chemi-
nement. Ils permettent de mieux comprendre la structure mathématique globale que semble avoir
le Modèle Standard (si le modèle de Chamseddine-Connes-Marcolli est « relativement » correct).

D’autre part, il est admis que la « gravitation quantique » 6 est un grand défi d’un point de vue
technique, en particulier parce que nombre de méthodes pertinentes dans d’autres contextes de
quantification semblent inefficientes dans le traitement de la gravitation. Cependant, il serait temps
d’admettre que le défi à relever est aussi et surtout de nature plus conceptuel. Je renvoie à l’excel-
lente revue de C. Isham [Isham, 1995] pour un exposé très complet et argumenté de ces questions
fondamentales, qui ne semblent pas trop embarrasser les tenants d’approches « classiques », mais
auxquelles il faudra pourtant bien apporter des réponses satisfaisantes avant même de vouloir s’atta-
quer aux problèmes techniques « concrets ». Ainsi, le statut de l’espace-temps est l’un des problèmes
les plus profonds et pertinents qu’on ait à traiter et à résoudre. Comme le rappelle C. Isham, toutes
les tentatives actuellement mises en œuvre pour élaborer une théorie quantique de la gravitation
(l’approche euclidienne, les cordes ou les boucles quantiques) présupposent une structure spatio-
temporelle très « classique » sous forme d’une variété différentiable on ne peut plus ordinaire. . . Face
à ce type de difficultés, la géométrie non commutative me semble beaucoup mieux armée car elle
ouvre des perspectives inconcevables par ailleurs. En effet, comme je l’ai rappelé dans cette intro-
duction, et comme l’illustre le Chapitre 1, c’est le concept même de variété différentiable que la
géométrie non commutative se propose, entre autres, de généraliser (avec succès !), sans qu’il soit
nécessaire d’avoir recours aux notions usuelles et embarrassantes (dans le contexte quantique) de
points et de trajectoires. C’est pourquoi je renouvelle mon espoir que la géométrie non commu-
tative, après avoir enrichi considérablement les mathématiques en jetant des regards nouveaux et
originaux sur bien des considérations, inspire enfin, un jour, des idées fondamentalement nouvelles
en physique.

Aussi, la piste géométrico-algébrique empruntée actuellement par la géométrie non commu-
tative, qui ne s’intéresse pour l’instant qu’aux théories de jauge, n’a pas encore rejoint la véritable
finalité qu’elle se propose d’atteindre en physique : permettre de penser une théorie (avant même de
la construire. . .) éclairant de façon élégante et pertinente les deux aspects antagonistes de la Nature :
le quantique et le géométrique. . .

6. L’usage des guillemets me permet d’avoir à éviter de préciser d’avantage de quoi il s’agit précisément. . .
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Ideas and concepts of

noncommutative geometry

1.1 Introduction

Once upon a time, in a perfect land, the idea of point was conceived.

This was a beautiful concept, full of potentiality, especially in Natural Science: how easy is it to
say where objects are when one has introduced such a precise definition of localization! How easy
is it to describe the kinematics of bodies when one assigns to them a point at each time. . .Well, at
least if time is there too! And then laws were found for the interactions of moving bodies, and then
predictions were formulated: Pluto, the former planet, was where it was calculated to be! Better:
generalized geometries where conceived, in which parallels can meet. And you know it: physicists
(one of them at least!) where fool enough to show us how useful these geometries can be to describe
gravitation.

But nature seems often more subtle than human mind. And the dream ceased when quantum
mechanics entered the game. We are no more allowed to say where an electron is exactly located
on its “orbit” around the proton in the hydrogen atom. What is the photon trajectory in the Young’s
double slit experiment? It is forbidden to know! Knowing destroys the diffraction pattern on the
target screen.

The main feature of quantum mechanics which exposes us to this annoying situation is the
non-commutativity of observables.

How can we accommodate this? Well, one of the reasonable answers can be found in mathe-
matics. Surprisingly enough, mathematicians discovered, not so long ago, that we can speak about
spaces without even mentioning them. The trick is to use algebraic objects, and the surprise is that
spaces (some of them at least, miracles are not the prerogative of mathematicians!) can be recon-
structed from them. In the language of mathematics, one has an equivalence of categories. . .

The algebraic objects we need to deal with are associative algebras, not only with their friendly
product but also with other structures, like involutions and norms. There, quantum mechanics is
at home: observables are special operators on a Hilbert space, so that they live in such an algebra!
Where are the “points” which were mentioned? Take a normal operator (it commutes with its ad-
joint) in such an operator algebra, consider the smallest subalgebra it generates. This subalgebra is
a commutative algebra, which can be shown to be the algebra of continuous functions on the spec-
trum of this normal operator. Associate to this element as many other normal operators as you
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can find, on the condition that they commute among themselves, and you get another algebra of
continuous functions on a topological space. Yes, we get it: a topological space from pure algebraic
objects!

This is one of the main results behind noncommutative geometry. The idea is the following: if
commutative algebras are ordinary topological spaces (in the category of C∗-algebra to be precise),
what are the noncommutative ones? How can we study them using the machinery that we are used
to manipulate the topological spaces? Is there somewhere another category of algebras in which
commutative algebras are differential functions on a differential manifold? If not (for the moment,
it is no!), can we manipulate them with some kind of differential structures?

I hope to show you in the following that these questions make sense, and that some answers can
be formulated. In section 1.2 we introduce C∗-algebras, and we make the precise statement about
commutative C∗-algebras. In section 1.3, we show that one of the machineries developed on topo-
logical spaces can be used on their noncommutative counterparts, the C∗-algebras. In section 1.4,
cyclic homology is shown to be a good candidate to fool us enough into thinking that wemanipulate
differential structures on algebras. Section 1.5 is devoted to the Chern character, an object which
can convince the more commutative geometer that noncommutative geometry does not only make
sense, but also is one of the most beautiful developments in modern mathematics.

1.2 C∗-algebras for topologists

In this section, we will explore some aspects of the theory of C∗-algebras. The main result, we would
like to explain, is the theorem by Gelfand and Neumark about commutative C∗-algebras.

1.2.1 General definitions and results

In order to be concise, only algebras over the field C will be considered.

Definition 1.2.1 (Involutive, Banach and C∗ algebras)

An involutive algebra A is an associative algebra equipped with map a 7→a∗ such that

a∗∗ =a (a+b)∗ =a∗+b∗ (λa)∗ =λa∗ (ab)∗ =b∗a∗

for any a,b∈A and λ∈C, and where λ denotes the ordinary conjugation on the complex numbers.

A Banach algebra A is an associative algebra equipped with a norm ‖ ·‖ :A→R+ such that the
topological space A is complete for this norm and such that

‖ab‖≤‖a‖‖b‖

If the algebra is unital, with unit denoted by 1, then it is also required that ‖1‖=1.
A C∗-algebra is an involutive and a Banach algebra A such that the norm satisfies the C∗-

condition

‖a∗a‖=‖a‖2 (1.2.1)

�

AC∗-algebra is then a normed complete algebra equippedwith an involution and a compatibility
condition between the norm and the involution. One can show that thisC∗-condition (1.2.1) implies
that ‖a‖≤‖a∗‖≤‖a∗∗‖=‖a‖. The adjoint is then an isometry in any C∗-algebra.
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Definition 1.2.2 (self-adjoint, normal, unitary and positive elements)

An element a in a C∗-algebra A is self-adjoint if a∗ = a, normal if a∗a= aa∗, unitary if a∗a= aa∗ =1

when A is unital, and positive if it is of the form a=b∗b for some b∈A. �

Self-adjoint and unitary elements are obviously normal, and positive elements are obviously self-
adjoint.

Example 1.2.3 (The algebra of matrices)

LetMn(C) be the algebra of n×nmatrices overC. This is an involutive algebra for the adjoint. This
algebra is complete for the three equivalent norms

‖a‖max =max{|aij| / i, j=1, . . . ,n} max norm

‖a‖= sup{‖av‖ / v∈Cn, ‖v‖≤1} operator norm

‖a‖∑ =
∑

i,j

|aij| sum norm

which are related by the inequalities

‖a‖max ≤‖a‖≤‖a‖∑≤n2‖a‖max

The algebraMn(C) is then a Banach algebra for any of these norms. Only the operator norm defines
onMn(C) a C

∗-algebraic structure. �

Example 1.2.4 (The algebra of bounded linear operators)

Let H be a separable Hilbert space, and B(H) = B the algebra of bounded linear operators on H.
Equipped with the adjointness operation and the operator norm

‖a‖= sup{‖au‖ / u∈H, ‖u‖≤1}

this algebra is a C∗-algebra. In the finite dimensional case, one recoversMn(C). �

Example 1.2.5 (The algebra of compact operators)

Let H be an Hilbert space. A finite rank operator a ∈ B is an operator such that dimRana < ∞.
Let BF denote the subalgebra of finite rank operators in B. The algebra K(H) = K of compact
operators is the closure of BF for the topology of the operator norm. The algebra K is a C∗-algebra,
which is not unital when H is infinite dimensional. In case H is finite dimensionnal, K=Mn(C) for
n=dimH.

For any integer n≥ 1, Mn(C) is identified as a subalgebra of B, as the operators which act only
on the first n vectors of a fixed orthonormal basis of H. Then one gets a direct system of C∗-algebras
inside B, in :Mn(C) →֒Mn+1(C) with in(a) =

(
a 0
0 0

)
. One has

K= lim
−−→Mn(C)

Using this identification, it is easy to see that K is an ideal in B. The quotient C∗-algebra Q =

B/K is the Calkin algebra. �

Example 1.2.6 (The algebra of continuous functions)

Let X be a compact Hausdorff space. Denote by C(X) the (commutative) algebra of continuous

functions on X, for pointwise addition and multiplication of functions. Define the involution f 7→ f
and the sup norm

‖f ‖∞ = sup
x∈X

|f (x)| (1.2.2)
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With these definitions, C(X) is a C∗-algebra.

If the topological space X is only a locally compact Hausdorff space, one defines C0(X) to be
the algebra of continous functions on X vanishing at infinity : for any ε> 0, there exists a compact
K ⊂X such that f (x)< ε for any x∈X\K. Equipped with the same norm and involution as C(X),
this is a C∗-algebra. �

Example 1.2.7 (The tensor product)

One can perform a lot of operations on C∗-algebras, some of them being described in the following
examples.

Let usmention that there exist somewell defined tensor products onC∗-algebras (see Chapter 11
in [Kadison and Ringrose, 1997] or Appendix T in [Wegge-Olsen, 1993]). In the following, we
denote by ⊗̂ the spatial tensor product. One of its properties is that C(X) ⊗̂C(Y) =C(X×Y) for any
compact spaces X,Y . �

Example 1.2.8 (The algebraMn(A))

Let A be a C∗-algebra. We denote by Mn(A) the set of n× n matrices with entries in A. This
is naturally an algebra. One can define the max norm and the sum norm on this algebra using
‖aij‖ instead of |aij| as in Example 1.2.3. For the operator norm, the situation is more subtle. One
has to take an injective representation ρ : A → B(H), which induces an injective representation
ρn :Mn(A) → B(Hn). The operator norm of a ∈ Mn(A) is defined as ‖a‖ = ‖ρn(a)‖ where the last
norm is on B(Hn). One can then show that this norm is independent of the choice of the injective
representation ρ and givesMn(A) a structure of C

∗-algebra.

This construction corresponds also to defineMn(A) asMn(C) ⊗̂A.

The natural inclusion Mn(A) →֒Mn+1(A) defines a direct system of C∗-algebras. One can show
that A ⊗̂K= lim

−−→Mn(A). �

Example 1.2.9 (The algebra C0(X,A))
Let X be a locally compact topological space and A a C∗-algebra. The space C0(X,A) of continuous
functions a : X → A vanishing at infinity, equipped with the involution induced by the involution
on A and the sup norm ‖a‖∞ = supx∈X ‖a(x)‖, is a C∗-algebra. Using the spatial tensor product, one
has C0(X,A) =C0(X) ⊗̂A.

If X is compact, we denote it by C(X,A). If A is unital and X is compact, this algebra is unital.�

Example 1.2.10 (The convolution algebra)

The algebra L1(R) for the convolution product

(f ∗g)(x) =
∫

R
f (x−y)g(y)dy

with the norm

‖f ‖1 =

∫

R
|f (x)|dx

and equipped with the involution

f ∗(x) = f (−x)

is a Banach algebra with involution but is not a C∗-algebra. �
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Definition 1.2.11 (Fréchet algebra)

A semi-norm of algebras p on A is a semi-norm on the vector space A for which p(ab)≤ p(a)p(b)
for any a,b∈A.

A Fréchet algebra is a topological algebra for the topology of a numerable set of algebra semi-
norms, which is complete. �

Example 1.2.12 (The Fréchet algebra C∞(M))

LetM be aC∞ finite dimension locally compact manifold. Then the algebraC∞(M) of differentiable
functions on M is an involutive algebra but is not a Banach algebra for the sup norm because it is
not complete. Nevertheless, this algebra can be equipped with a family of semi-norms pKr,N to make
it a Fréchet algebra. These semi-norms are defined as follows. For any α= (α1, . . . ,αn) where αr ∈N,

let us use the compact notationDα =
(

∂
∂x1

)α1 ·· ·
(

∂
∂xn

)αn
with |α|=α1+·· ·+αn. Then, for any compact

subspace K ⊂M and any integer N ≥ 0, define pK,N(f ) =max{|(Dαf )(x)| / x∈K, |α| ≤N}. With a
increasing numerable family of compact spaces Kr ⊂M such that

⋃
r≥0Kr =M, one gets a numerable

family of semi-norms pKr,N for the topology of which C∞(M) is complete. �

Example 1.2.13 (The irrational rotation algebra)

Let θ be an irrational number. On the Hilbert space L2(S1), consider the two unitary operators

(Uf )(t) = e2πitf (t) (Vf )(t) = f (t−θ)

where f : S1 → C is considered as a periodic function in the variable t ∈ R. Then one has UV =

e2πiθVU ∈ B(L2(S1)). The C∗-algebra Aθ generated by U and V is called the irrational rotation
algebra or the noncommutative torus.

Let us consider the Schwartz space S(Z2) of sequences (am,n)m,n∈Z of rapid decay i.e. (|m|+
|n|)q|am,n| is bounded for any q∈N. We define the algebra A∞

θ as the set of elements in Aθ which
can be written as

∑
m,n∈Zam,nU

mVn for a sequence (am,n)m,n∈Z ∈ S(Z2). The family of semi-norms
pq(a) = supm,n∈Z{(1+ |m|+ |n|)q|am,n|} gives to A∞

θ a structure of Fréchet algebra.
This algebra admits two continuous non inner derivations δi, i = 1,2, defined by δ1(U

m) =

2πimUm, δ1(V
n) =Vn, δ2(U

m) =Um and δ2(V
n) =2πinVn.

Using Fourier analysis, S(Z2) is isomorphic to the space C∞(T2) where T2 is the two-torus. The
algebra A∞

θ is then the equivalent of smooth functions on the noncommutative torus Aθ. �

Let us mention some general results about C∗-algebras:

Proposition 1.2.14 (Unitarisation)

Any C∗-algebra A is contained in a unital C∗-algebra A+ as a maximal ideal of codimension one.

The construction of the unitarization A+ is as follows: as a vector space, A+ = A+C; as an
algebra, (a+λ)(b+μ) =ab+λb+μa+λμ; as an involutive algebra, (a+λ)∗ =a∗+λ; as a normed algebra,
‖(a+λ)‖= sup{‖ab+λb‖ / b∈A, ‖b‖≤1}.
Theorem 1.2.15

For anyC∗-algebraA, there exist a Hilbert spaceH and an injective representationA→B(H). Then
every C∗-algebra is a subalgebra of the bounded operators on a certain Hilbert space.

The construction of this Hilbert space, which is not necessarily separable, is performed through
the GNS construction. This theorem implies that any C∗-algebra can be concretely realized as an
algebra of operators on a Hilbert space. Obviously, the converse is not true: there are many algebras
of operators on Hilbert spaces which are not C∗-algebras.
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Proposition 1.2.16

Any morphism between two C∗-algebras is norm decreasing.
The norm on a C∗-algebra is unique. An isomorphism of C∗-algebras is an isometry.

1.2.2 The Gelfand transform

Let A be a unital Banach algebra. Let us use the notation z= z1∈A for any z∈C.

Definition 1.2.17 (Resolvant, spectrum and spectral radius)

Let a be an element in A.
The resolvant of a, denoted by ρ(a), is the subspace of C:

ρ(a) ={z∈C / (a−z)−1 ∈A}

The spectrum of a, denoted by σ(a), is the complement of ρ(a) in C: σ(a) =C\ρ(a). One can
show that σ(a) is a compact subspace of C contained in the disk {z∈C / |z|≤‖a‖}.

The spectral radius of a is defined as

r(a) = sup{|z| / z∈σ(a)} �

For any a∈Mn(C), the spectrum of a contains the set of eigenvalues of a, but can contain other
values not associated to eigenvectors.

The spectrum of a∈A depends on the algebra A. Nevertheless, we will see exceptions to that.
The spectral radius can be computed using the relation

r(a) = lim
n→∞

‖an‖1/n

which can look surprising at first: on the left, the radius is defined using only the algebraic structure
of A (is an element (a−z) invertible?), on the right it is related to the norm. . .

Here are some interesting results about the spectrum of particular elements.

Proposition 1.2.18

If a is self-adjoint, then σ(a)⊂R. If a is unitary, then σ(a)⊂S1. If a is positive, then σ(a)⊂R+.

One can show the following:

Theorem 1.2.19 (Gelfand-Mazur)

Any unital Banach algebra in which every non zero element is invertible is isomorphic to C.

Definition 1.2.20 (The spectrum of an algebra and the Gelfand transform)

Let A be a Banach algebra. A (continuous) character on A is a non zero continuous morphism of
algebras χ :A→C. If A is unital, we require χ(1) =1.

The spectrum of A, denoted by Δ(A), is the set of characters of A. The spectrum Δ(A) is
a topological space for the topology induced by the pointwise convergence χn

n→∞
−−−−−→ χ ⇔ ∀a ∈

A, χn(a)
n→∞
−−−−−→ χ(a).

There is a natural map A → C(Δ(A)) defined by a 7→ â where â(χ) = χ(a). This is the Gelfand
transform of A. �

So, now that we have associated to elements in a Banach algebra, and to the algebra itself, some
topological spaces, it is time to introduce some functional spaces on them! The next example gives
us an insight to what will happen in the general case.
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Example 1.2.21 (The spectrum of C(X))

Let A = C(X) as in Example 1.2.6. For any function f ∈ C(X), σ(f ) is the set of values of f : σ(f ) =
f (X) ⊂ C. Any point x ∈ X defines a character χx ∈ Δ(A) by χx(f ) = f (x), so that X ⊂ Δ(A). The
topologies on X and Δ(A)makes this inclusion a continuous application. �

Example 1.2.22 (Unital commutative Banach algebra)

What happens when the Banach algebra is unital and commutative? In that case, one can show that
the maximal ideals in A are in a one-to-one correspondence with characters on A. Indeed, it is easy
to associate to any character χ ∈Δ(A), the maximal ideal Iχ =Kerχ. In the other direction, for any
maximal ideal I, one can show that every non zero element in the algebra A/I is invertible, which
means, by the Gelfand-Mazur’s theorem, that A/I=C. Associate to I the projection A→A/I. This
is the desired character.

Then, one can show that Δ(A) is a compact Hausdorff space. The Gelfand transform con-
nects two commutative unital Banach algebras A → C(Δ(A)) by a continuous morphism of alge-
bras. What is now a pleasant surprise, is that the spectrum of a in A is exactly the spectrum of â in
C(Δ(A)), which is the set of values of the function â on Δ(A):

σ(a) =σ(â) ={â(χ) = χ(a) / χ∈Δ(A)} �

When the commutative Banach algebra is not unital, the Gelfand transform realizes a continu-
ous morphism of algebras A→C0(Δ(A)). One important result is that Δ(A)+ =Δ(A+) where on the
left Δ(A)+ is the one-point compactification of the topological space Δ(A) and on the rightA+ is the
unitarization of A.

It is now possible to state the main theorem in this section:

Theorem 1.2.23 (Gelfand-Neumark)

For any commutative C∗-algebra A, the Gelfand transform is an isomorphism of C∗-algebras.

In the unital case, one gets A ≃ C(Δ(A)) and in the non unital case, A ≃ C0(Δ(A)) and A+ ≃
C(Δ(A)+).

In the language of categories, this theoremmeans that the category of locally compact Hausdorff
spaces is equivalent to the category of commutative C∗-algebras.

1.2.3 Functional calculus

The demonstration of the Gelfand-Neumark theorem relies on some constructions largely known
as functional calculus. These constructions are very important to understand the relations between
commutative C∗-algebras and topological spaces. Their understanding opens the door to the com-
prehension of noncommutative geometry.

The first example we consider is the polynomial functional calculus. This gives us the general
idea. Let a∈A, where A is any unital associative algebra. To every polynomial function p∈C[x] in
the real variable x, we can associate p(a)∈A as the element obtained by the replacement xn 7→an in
p. In particular, for the polynomial p(x) =x (resp. p(x) =1), one gets p(a) =a (resp. p(a) =1).

For algebras with supplementary structures, this can be generalized using other algebras of func-
tions.

First, consider an involutive unital algebra A, and let a ∈ A be a normal element. To every
polynomial function p∈C[z,z] of the complex variable z and its conjugate z, we associate p(a)∈A
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through the replacements zn 7→an and zn 7→ (a∗)n. Because a is normal, p(a) is a well defined element
in A.

Let A be now a unital Banach algebra. For any λ /∈σ(a) one introduces the resolvant of a at λ:

R(a,λ) =
1

λ−a
∈A

Consider any holomorphic function f :U →C, with U an open subset of C which strictly contains
the compact subspace σ(a), and Γ : [0,1]→C a closed path in U such that σ(a) is strictly inside Γ.

The usual Cauchy formula f (z) = 1
2πi

∫
Γ
f (λ)
λ−z

dλ∈C can be generalized in the form

f (a) =
1

2πi

∫

Γ

f (λ)

λ−a
dλ∈A

Indeed, λ 7→ R(a,λ) is a function which takes its values in a Banach space, and integration of
f (λ)R(a,λ) is meaningful along Γ. What can be shown is that this integration does not depend
on the choice of the surrounding closed path Γ.

This relation defines what is called the holomorphic functional calculus on A. In case f is a
polynomial function (of the variable z, but not of the variable z), f (a) coincides with the polynomial
functional calculus.

Let us consider now a unital C∗-algebra A. In that case, one would like to mix the two previous
functional calculi on involutive and Banach algebras.

In order to do that, consider a normal element a ∈ A. One can introduce C∗(a), the smallest
unital C∗-subalgebra of A which contains a and a∗ (and 1 since it is unital). Because 1,a and a∗

commute among themselves, the C∗-algebra C∗(a) is a commutative C∗-algebra. Let us summarize
some facts about this algebra:

Proposition 1.2.24

The spectrum of a in C∗(a) is the same as the spectrum of a in A. It will be denoted by σ(a).
The spectrum of the algebra C∗(a) is the spectrum of the element a, Δ(C∗(a)) =σ(a), so that

C∗(a) =C(σ(a))

The Gelfand transform maps a into the continuous function â : σ(a) → C which is identity:
σ(a)∋ z 7→ z∈C.

The inverse of the Gelfand transform associates to any continuous function f :σ(a)→C a unique
element f (a)∈C∗(a)⊂A such that

‖f (a)‖=‖f ‖∞ σ(f (a)) = f (σ(a))⊂C

In particular, the norm of f (a) in C∗(a) is the norm of f (a) in A.

The association f 7→ f (a) in this Proposition is the continuous functional calculus associated to
the normal element a. In case f is a polynomial function in the variables z and z (resp. f is an
holomorphic function), one recovers the polynomial functional calculus (resp. the holomorphic
functional calculus).

There are a lot of interesting normal elements in a C∗-algebras (self-adjoint, unitary, positive. . . )
for which the continuous functional calculus is very convenient. The next example illustrates such
a situation.
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Example 1.2.25 (Absolute value in A)

One can associate to any element a∈A its absolute value using the functional calculus associated

to the normal (and positive) element a∗a. Consider the continuous function R+ ∋ x 7→ f (x) = |x|1/2

and define |a|∈A+ by |a|= f (a∗a). �

What do we learn from these constructions? The main result here is that it is not necessary to
consider a commutative C∗-algebra in order to manipulate some topological spaces. Just consider
some normal elements commuting among themselves, build upon them the smallest C∗-algebra
they generate, and you have in hand a Hausdorff space!

The idea of noncommutative topology is to study C∗-algebras from the point of view that they
are “continuous functions on noncommutative spaces”. In order to do that, one needs some tools
that are common to the topological situation and to the algebraic one.

Such tools exist! One of them is K-theory.

1.3 K-theory for beginners

The K-theory groups are defined through a universal construction, the Grothendieck group associ-
ated to an abelian semigroup.

Definition 1.3.1 (Grothendieck group of an abelian semigroup)

An abelian semigroup is a set V equipped with an internal associative and abelian law⊞ :V×V→V.
A unit element is an element 0 such that v⊞0= v for any v∈V. Any abelian group is a semigroup.

The Grothendieck group associated to V is the abelian group (Gr(V),+) which satisfies the fol-
lowing universal property. There exits a semigroup map i : V → Gr(V) such that for any abelian
group (G,+) and any morphism of abelian semigroups ϕ :V→G, there exists a unique morphism of
abelian groups ϕ̂ :Gr(V)→G such that ϕ= ϕ̂◦ i. �

This means that the following diagram can be completed with ϕ̂ to get a commutative diagram:

Gr(V)
ϕ̂

""D

D

D

D

D

D

D

D

V

i

OO

ϕ // G

It is convenient to have in mind one of the possible constructions of the Grothendieck group
associated to V. On the set V×V consider the equivalence relation: (v1,v2)∼ (v′

1,v
′
2) if there exists

v∈V such that v1⊞v′
2⊞v= v′

1⊞v2⊞v∈V. Denote by 〈v1,v2〉 an equivalence class in V×V for this
relation and let Gr(V) = (V×V)/ ∼. The group structure on Gr(V) is defined by 〈v1,v2〉+ 〈v′

1,v
′
2〉 =

〈v1⊞v′
1,v2⊞v′

2〉, the unit is 〈v,v〉 for any v∈ V, the inverse of 〈v1,v2〉 is 〈v2,v1〉. The morphism of
abelian semigroups i : V → Gr(V) is v 7→ 〈v⊞ v′,v′〉 (independent of the choice of v′). Notice that
〈v1+v,v2+v〉= 〈v1,v2〉 in Gr(V).

Then one can show that Gr(V) is indeed the Grothendieck group associated to V and that

Gr(V) ={i(v)− i(v′) / v,v′ ∈V}

A useful relation is that i(v+w)− i(v′+w) = i(v)− i(v′)∈Gr(V) for any w∈V.
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Example 1.3.2 (The semigroup N)

The set of natural numbers defines an abelian semigroup (N,+). Its Grothendieck’s group is (Z,+).
In this situation, the morphism i : N → Z is injective. This is not always the case. Another par-
ticular property is that any relation n1 +n = n2 +n in N can be simplified into n1 = n2. This is the
simplification property, which is not satisfied by all abelian semigroups. �

Example 1.3.3 (The semigroup N∪{∞})
Consider the set N∪{∞} with the ordinary additive law for two elements in N and the new law
∞+n =∞+∞ =∞. Then its Grothendieck group is 0. Indeed, all couples (n,m), (n,∞), (∞,m)

and (∞,∞) are equivalent. �

1.3.1 The topological K-theory

It is useful to recall some facts and constructions about vector bundles over topological spaces. We
will restrict ourselves to locally trivial complex vector bundles over Hausdorff spaces.

Definition 1.3.4

Let π : E → X and π ′ : E′ → X two vector bundles over X, of rank n and n′. Then one defines the
Whitney sum E⊕E′ →X of rank n+n′ by E⊕E′ =∪x∈X(Ex⊕E′

x) ={(e,e′)∈E×E′ / π(e) =π ′(e′)}⊂
E×E′ and the tensor product E⊗E′ =∪x∈X(Ex ⊗E′

x) of rank nn
′.

We denote by Cn =X×Cn →X the trivial vector bundles of rank n.

For any continuous map f :Y →X and any vector bundle E→X, we define the pull-back f ∗E→
Y as f ∗E={(y,e)∈Y×E / f (y) =π(e)}⊂Y×E. �

When i :Y →֒X is an inclusion, the pull-back i∗E=E|Y is just the restriction of E to Y ⊂X. When
f0, f1 :Y →X are homotopic, the two vector bundles f ∗

0 E and f ∗
1 E are isomorphic.

We will use the following very important result in the theory of vector bundles:

Theorem 1.3.5 (Serre-Swan)

Let X be a compact topological space. For any vector bundle E→X there exist an integer N and a

second vector bundle E′ →X such that E⊕E′ ≃CN .

We introduce V(X), the set of isomorphic classes of vector bundles over X. Let use the notation
[E] for the isomorphic class of E. The set V(X) is an abelian semigroup for the law induced by the
Whitney sum: [E]+[E′] = [E⊕E′].

For any continuous map f : Y → X, the pull-back construction defines a morphism of abelian
semigroups f ∗ :V(X)→V(Y), which depends only on the homotopic class of f .

Definition 1.3.6 (K0(X) for X compact)

For any compact topological space X, we define K0(X) as the Grothendieck group of V(X). �

Remark 1.3.7 (Representatives in K0(X))

From the construction of the Grothendieck group, any element in K0(X) can be realized as a formal
difference [E]− [F] of two isomorphic classes in V(X). Adding the same vector bundle to E and F
does not change this element in the Grothendieck group. So, one can always find a representative of
the form [E]−[Cn] for some integer n. �

For any continuous map f : Y → X, the morphism f ∗ : V(X) → V(Y) induces a morphism of
abelian groups f ♯ :K0(X)→K0(Y).



1.3 K-theory for beginners 25

Example 1.3.8 (K0(∗) =Z)
Let ∗ denote the space reduced to a point. In that case any vector bundle E → ∗ is just a finite
dimensional vector space. It is well known that the isomorphic classes of finite dimensional vector
spaces are classified by their dimension, so that V(∗) =N, with the abelian semigroup structure of
Example 1.3.2. Then one getsK0(∗) =Z. Obviously this result is true for any contractible topological
space. �

Let x0 ∈X be a fixed point. Denote by i :∗={x0}→X the inclusion, and p :X→∗ the projection.
Then p◦ i is Id∗. These maps define two morphisms

p♯ :Z=K0(∗)→K0(X) i♯ :K0(X)→K0(∗) =Z

Because i♯p♯ = IdZ :Z→Z, p♯ is injective.

Definition 1.3.9 (Reduced K-group for pointed compact spaces)

We define the reduced K-group of the pointed compact topological space X by

K̃0(X) =Ker(i♯ :K0(X)→Z) =K0(X)/p♯Z �

The injective morphism p♯ splits the short exact sequence of abelian groups

0 //K̃0(X) //K0(X)
i♯ //K0(∗) =Z //0

so thatK0(X) = K̃0(X)⊕Z. The reducedK-theory, like the reduced singular homology, is the natural
K-theory of pointed compact spaces.

Remark 1.3.10 (Interpretation of K̃0(X))

An element in K̃0(X) is a formal difference [E]−[F] where now E and F have the same rank because

they must coincide over x0 in order to be in the kernel of i♯. It is possible to choose F =CN with
N = rankE. �

Definition 1.3.11 (K0(X) for any X)

Let X be a locally compact topological space X, not necessarily compact. Denote by X+ its one-point

compactification. Then one defines K0(X) = K̃0(X+). �

Let us make some comments about this construction.

Remark 1.3.12

In this situation, the natural fixed point in X+ is the point at infinity, so that i :∗ →X+ sends ∗ into
∞. The compactification adds a point to X and the reduced K-group construction removes the
contribution from this point.

In case X is compact, it is then easy to verify that K̃0(X+) identifies with the K-group as in
Definition 1.3.6. �

Remark 1.3.13 (Interpretation of K0(X))

In K̃0(X+), an element is a formal difference [E] − [F] with rankE = rankF. Because this element
is in the kernel of i♯, one has E|∞ = F|∞. So these two vector bundles are also isomorphic in a
neighborhood of ∞ ∈ X+. By definition of the one-point compactification, such a neighborhood
is the complement of a compact in X, so that E and F can be considered as vector bundles over X
which coincide outside some compact K ⊂X.
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One can go a step further. Because E and F coincide outside some compact K, one can add to
them a third vector bundle such that outside K the sums are isomorphic to a trivial vector bundle.
Adding such a vector bundle does not change the element [E]−[F]∈K0(X). Therefore, any element
in K0(X) can be represented by a formal difference [E]−[F] where E and F are not only isomorphic
outside some compact, but also trivial.

Owing to this interpretation, this definition of K0(X) = K̃0(X+) is also called, in the literature,
the K-theory with compact support (the non trivial part of the vector bundles is inside a compact).
For instance, it is denoted by Kcpt in [Lawson and Michelsohn, 1989]. �

The indice 0 in the definition of the K-group suggests that others K-groups can be defined. This
is indeed the case, but we will see that there are not so many!

Definition 1.3.14 (Higher orders K-groups)

Let X be a locally compact topological space X. For any n≥1, we define K−n(X) =K0(X×Rn). �

The corresponding reducedK-group is K̃−n(X) = K̃0(X∧Sn), where we recall that for two pointed
compact spaces (X,x0) and (Y,y0), their wedge product is X∧Y =X×Y/({x0}×Y∪X×{y0}). For
any n, one can show that K−n(X) = K̃−n(X+).

Proposition 1.3.15 (Long exact sequences)

Let X be a locally compact space and Y ⊂ X a closed subspace. Then there exist boundary maps
δ :K−n(Y)→K−n+1(X\Y) and a long exact sequence

·· · δ //K−n(X\Y) //K−n(X) //K−n(Y)
δ //K−n+1(X\Y) // ·· ·

·· · δ //K0(X\Y) //K0(X) //K0(Y)

In reduced K-theory, for pointed compact spaces Y ⊂X, one has the corresponding long exact
sequence

·· · δ //K̃−n(X/Y) //K̃−n(X) //K̃−n(Y)
δ //K̃−n+1(X/Y) // ·· ·

·· · δ //K̃0(X/Y) //K̃0(X) //K̃0(Y)

Proposition 1.3.16 (The ring structure)

The tensor product of vector bundles induces a ring structure on K0(X) and K̃0(X).
The external tensor product induces graded ring structures on K•(X) =

⊕
n≥0K

−n(X) and on
K̃•(X) =

⊕
n≥0 K̃

−n(X) which extend the ring structures on K0(X) and K̃0(X).

Example 1.3.17 (The 2-sphere)

Any vector bundle on the 2-sphere is characterized by its clutching function on the equator. This
is a continuous map S1 →U(n) for a vector bundle of rank n. In order to consider all the possible
ranks at the same time, the maps to consider are S1 → U(∞) = lim

−−→U(n). Studying these func-
tions, in particular their homotopic equivalence classes, gives the following result. Let H denote
the tautological vector bundle of rank 1 over CP1 = S2. Then one has (H⊗H)⊕C ≃ H⊕H and
as rings K0(S2) ≃ Z[H]/〈(H −C)2〉 where 〈(H −C)2〉 is the ideal in Z[H] generated by (H −C)2,
so that K0(S2) ≃ Z ·C⊕Z · (H −C) ≃ Z⊕Z. Because H −C ∈ Ker(i♯ : K0(S2) → Z), one has
K̃0(S2) =Z · (H−C)≃Z with a null product. �
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Example 1.3.18 (The ring K•(∗))
The ring structure of K•(∗) is easy to describe. One can show that K−2(∗) =K0(R2) = K̃0(S2) =Z.
Denote by ξ the generator of K−2(∗). Then, one can show that K•(∗) =Z[ξ]. As ξ is of degree −2,
one has K−2n(∗) =Z and K−(2n+1)(∗) =0. �

Here is now the main result in K-theory:

Theorem 1.3.19 (Bott periodicity)

For any locally compact space X, one has a natural isomorphism

K0(X×R2) =K−2(X)≃K0(X)

For any pointed compact space X, one has a natural isomorphism

K̃0(X∧S2) = K̃−2(X)≃ K̃0(X)

In reduced K-theory, for two pointed compact spaces X,Y , there is a natural (graded) product

K̃•(X)⊗ K̃•(Y)→ K̃•(X∧Y)

Using Y =S2, this product gives us an isomorphism

K̃0(X)⊗ K̃0(S2)
≃→ K̃0(X∧S2)

which is exactly the Bott periodicity. Indeed, we saw in Example 1.3.17 that K̃0(S2) is generated by
H−C (with (H−C)2 =0). The Bott periodicity is the isomorphism

β : K̃0(X)
≃→ K̃0(X∧S2) = K̃−2(X)

a 7→ (H−C) ·a
Example 1.3.20 (K-theories of spheres)

One has Sn ∧Sm ≃ Sn+m, so that K̃0(S2n) = K̃0(S2n−2 ∧S2) = K̃0(S2) =Z. For odd degrees, one only

needs to know K̃0(S1). Using standard arguments from topology of fiber bundles (see [Steenrod,
1951] for instance), there are no non trivial (complex) vector bundles over S1, so that V(S1) =N and
then K0(S1) =Z and K̃0(S1) = 0. This shows that K̃0(S2n+1) = K̃0(S1) = 0. Notice that because R+ =S1

(one-point compactification), one has K0(R) =0. �

Proposition 1.3.21 (Six term exact sequences in K-theory)

The Bott periodicity reduces the long exact sequences of Proposition 1.3.15 into two six term exact
sequences

K0(X\Y) // K0(X) // K0(Y)

δ
��

K−1(Y)

δ

OO

K−1(X)oo K−1(X\Y)oo

(1.3.3)

for locally compact spaces Y ⊂X with Y closed, and

K̃0(X/Y) // K̃0(X) // K̃0(Y)

δ
��

K̃−1(Y)

δ

OO

K̃−1(X)oo K̃−1(X/Y)oo

for pointed compact spaces Y ⊂X with Y closed.
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Example 1.3.22 (K-groups for some topological spaces)

Here is a table of some known K-groups for ordinary topological spaces.

Topological space K0 K−1

∗, compact contractible Hausdorff space Z 0

]0,1] 0 0

R, ]0,1[ 0 Z

R2n, n≥1 Z 0

R2n+1, n≥0 0 Z

S2n, n≥1 Z⊕Z 0

S2n+1, n≥0 Z Z

Tn Z2n−1 Z2n−1

Remark 1.3.23 (Real topological K-theory)

We have introduced the topological K-theory using the complex vector bundles over topological
spaces. It is possible to define a real topological K-theory in exactly the same way using real vector
bundles. The theory is different. For instance, there are non trivial real vector bundles over S1

(think at the Moebius trip), but there are no non trivial complex vector bundles. In real K-theory
the Bott periodicity is of period 8, and the six term exact sequence is replaced by a 24 terms exact
sequence. �

Remark 1.3.24 (The origin of Bott periodicity)

The first paper mentioning Bott periodicity, [Bott, 1959], was concerned with the homotopy of
classical groups, in particularU(n) andO(n). What Bott discovered is that if one denotes byU(∞) =

lim
−−→U(n) and O(∞) = lim

−−→O(n) the inductive limits for the natural inclusions U(n) →֒U(n+1) and
O(n) →֒O(n+1), then

πk(U(∞)) =πk+2(U(∞)) πk(O(∞)) =πk+8(O(∞))

In fact, for n large enough, πk(U(n)) = πk(U(n+1)) for n > k/2, so that this periodicity expresses
itself before infinity. The period 2 for the complex case U(∞) (resp. 8 for the real case O(∞)) is
related to the period 2 for K-theory (resp. real K-theory). See [Karoubi, 2005] for a review and
references. �

1.3.2 K-theory for C∗-algebras

Topological K-theory is defined using some explicit geometrical constructions on vector bundles
over a compact topological space X. These constructions, except the tensor product of vector bun-
dles, can be described using the C∗-algebra C(X).

Indeed, it is a well known fact that continuous sections of a vector bundle E → X is a C(X)-
module. Recall the following definitions about modules. From now on, every modules are left
modules.

Definition 1.3.25 (Finite projective modules)

Let A be a unital associative algebra.
M is a free A-module if it admits a free basis.
M is a projective A-module if there exists a A-module N such thatM⊕N is a free module.
M is a finite projectiveA-module if there exist aA-moduleN and an integerN such thatM⊕N ≃

AN . �
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Theorem 1.3.5 can then be written in the following algebraic form:

Theorem 1.3.26 (Serre-Swan, algebraic version)

The functor “continuous sections” realizes an equivalence of categories between the category of
vector bundles over a compact topological space X and the category of finite projective modules
over C(X).

Any finite projective module is characterized by themorphism ofA-modules p :AN →AN which
projects onto M. This morphism is representable as a projection p ∈ MN(A), p

2 = p, p∗ = p, such
that M = ANp. In particular, any vector bundle over X is given by a projection p ∈ MN(C(X)) =
C(X,Mn(C)) (see Example 1.2.9).

We have defined the topological K-theory via the isomorphic classes of vector bundles. In the
algebraic language, isomorphic classes correspond to some equivalence classes on projections. Let
us define some possible equivalence relations on projections in C∗-algebras.

Let us denote by P(A) ={p∈A / p2 =p∗ =p} the set of projections in a unital C∗-algebra A.

Definition 1.3.27 (Equivalences of projections)

A partial isometry is an element v ∈ A such that v∗v ∈ P(A). In that case, one can show that
vv∗ ∈P(A). An isometry is an element v∈A such that v∗v=1. Unitaries are in particular isometries.

Two projections p,q∈ P(A) are orthogonal if pq= qp= 0∈A. This means that they project on
direct summands of A. In this situation p⊕q∈P(A) is well defined.

There are three notions of equivalence for two projections p,q∈P(A):

homotopic equivalence: p∼h q if there exists a continuous path of projections inA connecting
p and q.

unitary equivalence: p∼u q if there exists a unitary element u∈A such that u∗pu=q.

Murray-von Neumann equivalence: p∼M. v.N. q if there exists a partial isometry v∈A such that
v∗v=p and vv∗ =q. �

One can show that

p∼h q=⇒p∼u q=⇒p∼M. v.N. q

Define Pn(A) ⊂ Mn(A), the set of projections in Mn(A). The natural inclusions in :Mn(A) →֒
Mn+1(A) with in(a) =

(
a 0
0 0

)
permits one to define M∞(A) =

⋃
n≥1Mn(A) and P∞(A) =

⋃
n≥1Pn(A).

The three equivalence relations defined above are well defined on P∞(A).

Proposition 1.3.28 (Stabilisation of the equivalence relations)

In P∞(A), the three equivalence relations coincide.

We will denote this relation by ∼.

Definition 1.3.29 (K0(A) for unital C
∗-algebra)

Let V(A) denote the set of equivalence classes in P∞(A) for the relation ∼. This is an abelian

semigroup for the addition p⊕q=
(
p 0
0 q

)
∈P∞(A).

The group K0(A) is the Grothendieck group associated to (V(A),⊕). �
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Example 1.3.30 (K0(Mn(C)))

Let us look at the algebra A=C. In that case, a projection p∈ P∞(C) is represented by a projection
p ∈ MN(C) for a sufficiently large N. Such a projection defines the vector space Ranp ⊂ CN of
dimension rankp. It is easy to see that the equivalence relation ∼ detects only this dimension, so
that V(C) =N and K0(C) =Z.

Let us consider now A=Mn(C). One has MN(Mn(C)) =MNn(C), so that P∞(Mn(C)) =P∞(C),
with the same equivalence relation. Then one has K0(Mn(C)) = Z. This result is an example of
Morita invariance of the K-theory. �

More generally, by the same argument, one can show:

Proposition 1.3.31 (Morita invariance of the K-theory)

K0(Mn(A)) =K0(A)

Example 1.3.32 (K0(C(X)))

Let X be a compact topological space. Then by Theorem 1.3.26 one has

K0(C(X)) =K
0(X) �

Any morphism of C∗-algebras ϕ :A→B gives rise to a natural map ϕ :P∞(A)→ P∞(B) com-
patible with the relation ∼ on both sides. This induces a morphism of semigroups V(A) → V(B)

and a morphism of abelian groups ϕ♯ :K0(A)→K0(B).
When the algebra A is not unital, consider its unitarization A+. Then one has the short exact

sequence of C∗-algebras

0 //A
i //A+

π //C //0

Definition 1.3.33 (K0(A) for non unital C∗-algebra)

For a non unital algebra A, one defines

K0(A) =Ker(π♯ :K0(A+)→K0(C) =Z) �

Remark 1.3.34

Exactly as in Remark 1.3.12, this construction adds a point (the unity) and removes its contribution
afterwards. In case A is unital, one can show that the two definitions coincide. More generally, as
abelian groups, one has K0(A+) =K0(A)⊕Z. �

Remark 1.3.35 (Interpretation of K0(A))

An element in K0(A) is a difference [p]−[q] for some projections p,q∈ Pn(A+), for large enough n,
such that [π(p)]−[π(q)] =0. In fact, it is possible to choose p and q such that p−q∈Mn(A)⊂Mn(A+)

(p−q is not a projection in this relation!). Adding a common projection, one can always represent
an element in K0(A) as [p]−[1n], where 1n ∈Mn(A+) is the unit matrix. �

Example 1.3.36 (K0(B))

For any integer n and infinite dimensional separable Hilbert space H, one hasMn(B)≃ B (because
Hn ≃ H here), so we only need to consider projections in B. Two projections in B are equivalent
precisely when their ranges are isomorphic. So that only the dimension (possibly infinite) is an
invariant, and one gets V(B) =N∪{∞}, which produces K0(B) =0 (see Example 1.3.3). �
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Definition 1.3.37 (Higher orders K-groups)

Let A be a C∗-algebra. The suspension of A is the C∗-algebra SA=C0(R,A) (see Example 1.2.9).
For any n≥1, we define Kn(A) =K0(S

nA) where SnA=S(Sn−1A) is the n-th suspension of A. �

This definition leads to the following useful result:

Proposition 1.3.38 (Long exact sequences)

For any short exact sequence of C∗-algebras

0 //I //A //A/I //0

there exist boundary maps δ :Kn(A/I)→Kn−1(I) and a long exact sequence

·· · δ //Kn(I) //Kn(A) //Kn(A/I)
δ //Kn−1(I) // ·· ·

·· · δ //K0(I) //K0(A) //K0(A/I)

Remark 1.3.39 (Other definition of K1(A))

Let us introduce the following groups

• GLn(A+), invertible elements inMn(A+)

• GL+n(A) = {a ∈ GLn(A+) / π(a) = 1n} where π : A+ → C is the projection associated to the
unitarization

• Un(A+), unitaries inMn(A+)

• U+
n (A) ={u∈Un(A+) / π(u) =1n}

These groups define some direct systems for the natural inclusion g 7→
(
g 0
0 1

)
. Denote by GL∞(A+),

GL+∞(A), U∞(A+) and U+
∞(A) their respective inductive limits.

One can show that for any C∗-algebra A, one has

K1(A) =GL∞(A+)/GL∞(A+)0 =GL
+
∞(A)/GL+∞(A)0

=U∞(A+)/U∞(A+)0 =U+
∞(A)/U+

∞(A)0

where the index 0 means the connected component of the unit element. �

Proposition 1.3.40 (Continuity for direct systems)

Let (Ai,αi) be a direct system of C∗-algebras. Then for any n one has Kn(lim−−→Ai) = lim−−→Kn(Ai).

Example 1.3.41 (K0(K))

The algebra of compact operators is the direct limitK= lim
−−→Mn(C). AsK0(Mn(C)) =Z is a stationary

system, one has K0(K) =Z. Explicitly, the isomorphism is realized as the trace [p] 7→Tr(p). �

More generally we have:

Proposition 1.3.42 (Morita invariance of K-theory)

For any C∗-algebra A, and any n, one has Kn(A ⊗̂K) =Kn(A).

Here is the version of Bott periodicity for K-theory of C∗-algebras:
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Theorem 1.3.43 (Bott periodicity)

For any C∗-algebra A, one has

K0(S
2A) =K2(A)≃K0(A)

Proposition 1.3.44 (Six term exact sequence)

The Bott periodicity theorem reduces the long exact sequence associated to any short exact sequence
of C∗-algebras to a six term exact sequence

K0(I) // K0(A) // K0(A/I)

δ
��

K1(A/I)

δ

OO

K1(A)oo K1(I)oo

Remark 1.3.45 (K-groups via homotopy groups)

We have seen in Remark 1.3.39 that the K1-group can be defined using the 0-th homotopy group as
K1(A) =π0(U∞(A+)). It is possible to show that more generally

Kn(A) =πn−1(U∞(A+))

Bott periodicity is then directly equivalent to

πn+2(U∞(A+))≃πn(U∞(A+))

Because Un(A+) and GLn(A+) have the same topology (one is the retraction of the other), these
relations make sense with GL∞(A+). �

Example 1.3.46 (K-groups for some C∗-algebras)

Here is a table of some known K-groups for ordinary C∗-algebras.

Algebra K0 K1

C,Mn(C), K(H) (compacts op.) Z 0

B(H) (bounded op.) 0 0

Q(H) (Calkin’s alg.) 0 Z

T (Tœplitz’ alg.) Z 0

On, n≥2 (Cuntz’ alg.) Zn−1 0

Aθ, θ irrationnal Z2 ≃θZ+Z Z2

C∗(Fn) (Fn free group with n generators) Z Zn

Mn(A), A ⊗̂K (stabilisation) K0(A) K1(A)

A+ (unitarization) K0(A)⊕Z K1(A)

SA=C0(]0,1[,A) (suspension) K1(A) K0(A)

CA=C0(]0,1],A) (cone) 0 0

Remark 1.3.47 (K-theory computed on dense subalgebras)

For a lot of examples, one can compute the K-groups of a C∗-algebra A using a dense subalgebra B.
For instance, for any compact finite dimensional manifold M, the K-theory of C(M) (continuous
functions) is the same as the K-theory of the Fréchet algebra C∞(M). The same situation occurs for
the irrational rotation algebra: Kn(Aθ) =Kn(A∞

θ ).
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In the geometric situation, it is possible to understand this result. Smooth structures are suf-
ficiently dense in continuous structures: any continuous vector bundle can be deformed into a
smooth one. . .

Here is a description of somemore general situations. LetA be C∗-algebra (or a Banach algebra)
and A∞ ⊂A a dense subalgebra (but not necessarily a C∗-subalgebra). The exponent ∞ does not
mean that we consider “differentiable” functions, even if in practice this can happen: think about
A∞

θ ⊂Aθ as a typical example. LetA+ andA
∞
+ their unitarizations. Suppose thatA∞

+ is stable under
holomorphic functional calculus, which means that for any a∈A∞

+ and any holomorphic function
f in a neighborhood of the spectrum of a, f (a)∈A∞

+ .
Using the topologies induced on A∞

+ and GLn(A
∞
+ ) by the topologies on A+ and GLn(A+), it

is possible to define K-groups by using the relations in Remark 1.3.45. Then one has the density
theorem: the inclusion i :A∞ →A induces isomorphisms

i♯ :Kn(A
∞)

≃→Kn(A)

for any n≥0. �

Remark 1.3.48 (K-homology)

As for many other ordinary homologies, there exists a dual version of the K-theory of C∗-algebras,
named K-homology, which we outline here.

A Fredholm module over the C∗-algebra A is a triplet (H,ρ,F) where H is a Hilbert space, ρ
is an involutive representation of A in B(H), and F is an operator on H such that for any a ∈ A,
(F2−1)ρ(a), (F−F∗)ρ(a) and [F,ρ(a)] are in K. Such a Fredholm module is called odd.

A Z2-graded Fredholm module is a Fredholm module (H,ρ,F) such that H=H+⊕H− and ρ(a)

is of even parity in this decomposition, and F is of odd parity: ρ(a) =
(
ρ+(a) 0
0 ρ−(a)

)
and F =

(
0 U+

U− 0

)
.

With these notations, U± :H∓ → H± are essentially adjoint (adjoint modulo compact operators).
Such a Fredholm module is called even.

In the even case, one has a natural grading map γ :H → H defined by γ=
(
1 0
0 −1

)
on the decom-

position H=H+⊕H−. It satisfies γ=γ∗, γ2 =1, γρ(a) =ρ(a)γ and γF =−Fγ.
Two Fredholm modules (H,ρ,F) and (H ′,ρ′,F ′) are unitary equivalent if there exists a unitary

map U :H ′ → H such that ρ′ =U∗ρU and F ′ =U∗FU. This defines an equivalence relation ∼U of
Fredholm modules.

A homotopy of Fredholm modules is a familly t 7→ (H,ρ,Ft) with [0,1]∋ t 7→ Ft continuous for
the operator norm in H. Two Fredholm modules are homotopic equivalent if they are connected
by a homotopy of Fredholm modules. This defines an equivalence relation ∼h.

The direct sum of two Fredholm modules (H,ρ,F) and (H ′,ρ′,F ′) is defined by

(H,ρ,F)⊕ (H ′,ρ′,F ′) =
(
H⊕H ′,

(
ρ 0

0 ρ′

)
,
(
F 0
0 F ′

))

The K-homology group K0(A) of A is the Grothendieck group of the abelian semigroup of
equivalence classes of even Fredholm modules for ∼U and ∼h. The unit for the addition is the class
of the Fredholm module (0,0,0), the inverse of the class of (H,ρ,F) is the class of (H,ρ,−F).

The K-homology group K1(A) is defined in the same manner using odd Fredholm modules.
A degenerated Fredholmmodule is a Fredholmmodule for which (F−F∗)ρ(a) =0, (F2−1)ρ(a) =0

and [F,ρ(a)] =0 for any a∈A. The equivalence class of such a Fredholm module is zero.
In each equivalence class, there is a representative for which F∗ =F (self-adjoint Fredholmmod-

ule) and F2 =1 (involutive Fredholm module).
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ForA=C, the representation ρ defines a projection p=ρ(1) onH, and one can show thatmodulo
compact operators, one has (H,ρ,F) = (pH,ρ,pFp)⊕((1−p)H,ρ,(1−p)F(1−p)). The representation
for the second Fredholm module is zero, so that its class is zero. pFp is an ordinary Fredholm
operator on H, and its index induces an isomorphism Ind :K0(C)

≃
−→Z.

For any C∗-algebra A, let p be a projection in Pn(A), and (H,ρ,F) a Fredholm module. Then, in
the Hilbert space ρ(p)(H⊗Cn), the operator ρ(p)(F⊗1n)ρ(p) is a Fredholm operator, and its index
defines a pairing between K0(A) and K0(A): 〈[p],[(H,ρ,F)]〉= Indρ(p)(F⊗1n)ρ(p)∈Z.

For more developments in K-homology, see [Blackadar, 1998] and [Higson and Roe, 2004]. �

1.3.3 Algebraic K-theory

Until now, K-theory has been defined using topological structures, either at the level of a space or at
the level of an algebra (remember that they are the manifestations of the same topological structure
in the commutative case).

Nevertheless the group K0(A) can be defined in the pure algebraic context. Indeed, to any ring
A, which we take unital from now on, one can associate its category of finite projective modules.

Definition 1.3.49 (K
alg
0 (A) for unital ring A)

The group K
alg
0 (A) is the Grothendieck group associated to the semigroup of isomorphic classes of

finite projective modules onA, on which the additive law is induced by the direct sum of modules.�

As in the topological case, every finite projectiveA-moduleM is characterized by a (non unique)
projector p∈Mm(A). Be aware of the different terminologies that are used. “Projection” is reserved
to the C∗-algebra context, because in that case p satisfies p2 = p and p∗ = p. “Projector” is more
general, in that case p satisfies only p2 =p.

The equivalence relation we use on these projectors is the following:

Definition 1.3.50 (Equivalence relation on projectors)

Two projectors p ∈ Mm(A) and q ∈ Mn(A) are equivalent if there exist an integer r ≥ m,n and an
invertible u∈GLr(A) such that p,q∈Mr(A) are conjugated by u: p = u−1qu. We donote by ∼ this
equivalence relation. �

If p∼q, then they define isomorphic finite projective modules.

In case A is a C∗-algebra, one can show that in the equivalence class of any projector p one can
find a projection. This means that the two semigroups which define the K-theories are the same :

K
alg
0 (A) =K0(A) (as a C

∗-algebra)

For higher order groups, the situation is no more equivalent. The Definition 1.3.37 (or their
equivalent ones given in Remark 1.3.45) uses extensively the topological structure of the algebra,
either to define continuous functions R → A or to compute the homotopy groups of the spaces
U∞(A+) in Remark 1.3.45.

Nevertheless, one can define K
alg
1 (A) as follows:

Definition 1.3.51 (K
alg
1 (A) for unital ring A)

One defines

K
alg
1 (A) =GL∞(A)/[GL∞(A),GL∞(A)] =GL∞(A)ab �
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Let A be a C∗-algebra. A well known fact about invertibles is that if u,v∈GL∞(A) then uv and
vu are homotopic. So that there is a natural morphism of groups

K
alg
1 (A)→K1(A) (as a C

∗-algebra)

which factors out by the homotopic relation.

For every n≥ 2, there is a definition which surprisingly uses some topological objects: K
alg
n (A)

is the πn group of a topological space associated to the classifying space BGL∞(A) where GL∞(A) is
considered as a discrete group.

In algebraic K-theory, there is no Bott periodicity, but there are some other beautiful and pow-
erful results which are beyond the scope of this introduction: in the following, we will only make

use of K
alg
0 (A) and K

alg
1 (A). For a review, see [Karoubi, 2003] or [Rosenberg, 1994].

1.4 Cyclic homology for (differential) geometers

Now we have in hand some tools to characterize noncommutative topological spaces. But topology
is not everything in life. Differential geometry has to be considered also! In this section, we will
explore other concepts that look very much like differential forms.

1.4.1 Differential calculi

Differential forms on a differentiable manifold define a differential graded commutative algebra.
This concept can be generalised:

Definition 1.4.1 (Differential calculus on an algebra)

Let A be an associative algebra. A differential calculus on A is a graded differential algebra (Ω•,d)
such thatΩ0 =A. �

Remember the definition of a graded differential algebra: Ω• is a graded algebra on which the
differential satisfies d(ωη) = (dω)η+(−1)|ω|ω(dη) for any ω,η∈Ω• and where |ω| is the degree of ω.

In this definition, one does not suppose this graded algebra to be a graded commutative algebra.

Example 1.4.2 (de Rham differential calculus)

Let M be a finite dimensional differential manifold. The graded differential algebra (Ω•(M),d) of
differential forms is a differential calculus on C∞(M). �

There are many possibilities to define a differential calculus on an algebra. One can summarize
the questing after noncommutative differential geometry to the search of some reasonable definition
of such a differential calculus on any algebra. Many propositions have been made, depending on
the context: associative algebra without any additional structure, topological or involutive algebras,
quantum groups. . .

Some examples will be given after we introduce three main examples which are the universal
differential calculi.

Example 1.4.3 (Universal differential calculus for associative algebra)

This differential calculus is defined to be the free graded differential algebra generated by A as ele-
ments in degree 0. It is denoted by (Ω•(A),d).
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Because it is freely generated, it has the following universal property: for any differential calculus
(Ω•,d) onA, there exists a uniquemorphism of differential calculi ϕ :Ω•(A)→Ω• (of degree 0) such
that ϕ(a) =a for any a∈A=Ω0(A) =Ω0.

This implies that if (Ω•,d) is generated (possibly with relations) by A=Ω0 then it is a quotient
of (Ω•(A),d) by a differential two-side ideal.

Concretely, any element inΩn(A) is a sum of terms either of the form adb1 . . .dbn or of the form
db1 . . .dbn. This property gives us an identification of left A-modules

Ωn(A) =A+⊗A⊗n

by the morphism adb1 . . .dbn 7→ (0+a)⊗b1 ⊗···⊗bn and db1 . . .dbn 7→ (1+0)⊗b1 ⊗···⊗bn, where
(0+a) and (1+0) are elements in A+ =C⊕A. Be aware of the fact that this identification is not an
identification of graded differential algebras, neither of bimodules. �

In the differential calculus (Ω•(A),d), if A is unital, d1 is not zero, because it is identified with
1⊗1∈A+ ⊗A. It is the aim of the following example to show that in the more restrictive situation
where A is unital, one can promote the unit of A to a unit of the differential calculus.

Example 1.4.4 (Universal differential calculus for associative unital algebra)

Let A be an associative unital algebra. The differential calculus (Ω•
U(A),dU) is defined to be the free

unital graded differential algebra generated by A in degree 0. The indice U stands for unital.
Because this algebra is required to have an unit, this unit is necessarily the unit in A =Ω0

U(A).
Then the derivative law for dU gives dU1= 0. This differential calculus admits a universal property
as the previous one does: for any unital differential calculus (Ω•,d) on A, there exists a unique
morphism of unital differential calculi ϕ : Ω•

U(A) → Ω• (of degree 0) such that ϕ(a) = a for any
a∈A=Ω0

U(A) =Ω
0.

Because (Ω•
U(A),dU) is a differential calculus generated by A, it is a quotient of (Ω•(A),d). This

quotient reveals itself in the concrete identification of Ω•(A): any element in Ωn
U(A) is a sum of

terms of the form adUb1 ·· ·dUbn. Here a can be 1, and in this case 1dUb1 ·· ·dUbn = dUb1 ·· ·dUbn. If
one of the bk is proportional to 1, one has adUb1 ·· ·dUbn = 0. This leads to the identification of left
modules

Ωn
U(A) =A⊗A

⊗n

by the map adUb1 . . .dUbn 7→a⊗b1⊗···⊗bn, where b is the projection of b∈A onto the vector space
A=A/C1. �

In these two examples, even if the algebra A is commutative, the graded algebras are not graded
commutative. For commutative algebras, it is possible to construct a differential calculus with a
graded commutative algebra.

Example 1.4.5 (Kähler differential calculus for commutative unital algebra)

Let A be an associative commutative unital algebra over a field K. The Kähler differential calculus
(Ω•

A|K,dK) is defined to be the free unital graded commutative differential algebra generated byA in
degree 0.

One can show that the algebra Ω•
A|K is an exterior algebra over A: Ω•

A|K =
∧•

AΩ
1
A|K. Moreover,

let I ⊂ A⊗A be the kernel of the product map μ : A⊗A → A. Consider A⊗A as an algebra
(commutative) and introduce I2, generated by the products of elements in I. Then one has the
explicit constructionΩ1

A|K = I/I
2.
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We denote by π• :Ω
•(A)→Ω•

A|C the universal projection, given explicitly by

πn(a0da0 ·· ·dan) =a0dKa1∧···∧dKan πn(da0 ·· ·dan) =dKa1∧···∧dKan

The cohomology of this differential algebra is denoted by H•
dR(A), and is called the de Rham

cohomologie of the commutative unital algebra A. This terminology comes from the fact that this
differential calculus looks very much like the de Rham differential calculus (see Example 1.4.6). �

Example 1.4.6 (Polynomial algebra)

Let V be a finite dimensional vector space overC. Consider the commutative algebra SV of polyno-
mials on V . Then one has the identification SV ⊗∧nV =Ωn

SV |C by the map a⊗v 7→ adKv in degree
1. This differential calculus is the “restriction” of the de Rham differential calculus of C∞ functions
to the subalgebra of polynomial functions. �

Example 1.4.7 (Spectral triplet)

Let A be an involutive unital associative algebra. A spectral triplet on A is a triplet (A,H,D) where
H is a Hilbert space on which an involutive representation ρ of A is given, and D is a self-adjoint
operator on H (not necessarily bounded), whose resolvant is compact, and such that [D,ρ(a)] is
bounded for any a∈A. The operator D is called a Dirac operator.

The map π : Ω•
U(A)→ B(H) defined by π(a0dUa1 ·· ·dUan) = a0[D,a1]·· ·[D,an] is an involutive

representation ofΩ•
U(A) on H.

Define J0 =
⊕

n≥0(Kerπ∩Ωn
U(A)). One can show that J = J0+dUJ0 is a differential two-sided ideal

inΩ•
U(A). The differential calculus defined by the spectral triplet (A,H,D) is the graded differential

algebraΩ•
D(A) =Ω

•
U(A)/J.

This construction is inspired by the definition of Fredholm modules, which are the building
blocks of K-homology (see Remark 1.3.48).

See [Connes, 1994] and [Gracia-Bondía et al., 2001] for more details and examples. �

Example 1.4.8 (Derivations based differential calculus for associative algebra)

Let A be an associative algebra. The space of derivations on A,

Der(A) ={X :A→A / X linear map and X(ab) = (Xa)b+a(Xb)}

is a Lie algebra and a module over the center Z(A) of A.

Let Ωn
Der(A) be the set of Z(A)-multilinear antisymmetric maps Der(A)n → A. Define on

Ω•
Der(A) =

⊕
n≥0Ω

n
Der(A) the product

(ωη)(X1, . . . ,Xp+q) =
1

p!q!

∑

σ∈Sp+q

(−1)sign(σ)ω(Xσ(1), . . . ,Xσ(p))η(Xσ(p+1), . . . ,Xσ(p+q))

for any Xi ∈ Der(A), any ω ∈ Ω
p
Der(A) and any η ∈ Ω

q
Der(A). Introduce on this graded algebra the

differential d̂ :Ωn
Der(A)→Ωn+1

Der(A):

d̂ω(X1, . . . ,Xn+1) =
n+1∑

i=1

(−1)i+1Xiω(X1, . . .
i
∨. . . . ,Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj], . . .
i
∨. . . .

j
∨. . . . ,Xn+1)
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Then (Ω•
Der(A), d̂) is a differential calculus on A.

This differential calculus is not a priori generated by A in degree 0. The differential calculus

generated by A in (Ω•
Der(A), d̂) is denoted by (Ω•

Der(A), d̂).
ForA=C∞(M), the Lie algebra Der(A) is the Lie algebra of vector fields on the manifoldM, and

this differential calculus (the two coincide here) is the de Rham differential calculus.
For A=Mn(C), the Lie algebra Der(A) identifies with sln(C), and the differential calculus iden-

tifies with the Lie complexMn(C)⊗
∧•sln(C)

∗ for the adjoint representation of sln(C) onMn(C).
See [Dubois-Violette, 1988], [Dubois-Violette et al., 1990b], [Dubois-Violette et al., 1990a],

[Dubois-Violette and Masson, 1998], [Masson, 1999], [Masson and Sérié, 2005] for more details,
examples and applications. �

1.4.2 Hochschild homology

TheHochschild homology will not be presented here in its full generality. We refer to [Pierce, 1982],
[Loday, 1998] and [Gerstenhaber and Schack, 1988] (for instance) to get further developments.
What will be presented here is the relation between Hochschild homology with values in the algebra
itself and the differential calculi introduced above. These constructions are necessary to introduce
and understand cyclic homology.

Let A be an associative algebra, not necessarily unital. As usual we denote by A+ = C⊕A its
unitarization.

The Hochschild homology we are interested in is defined using the following bicomplex, de-
noted by CC(2)

•,•(A), with only two non zero columns:

...

b
��

...

−b′

��
A⊗n+1

b
��

A⊗n+11−too

−b′

��
A⊗n

b
��

A⊗n1−too

−b′

��
...

b
��

...

−b′

��
A A

1−too

t :A⊗n →A⊗n is the cyclic operator:

t(a1⊗···⊗an) = (−1)
n+1an⊗a1⊗···⊗an−1

b :A⊗n+1 → A⊗n is the Hochschild boundary for the Hochschild complex
with values in A:

b(a0⊗···⊗an) =
n−1∑

p=0

(−1)pa0⊗···⊗apap+1⊗···⊗an

+(−1)nana0⊗a1⊗···⊗an−1

b′ :A⊗n+1 →A⊗n is the first part of the Hochschild boundary b:

b′(a0⊗···⊗an) =
n−1∑

p=0

(−1)pa0⊗···⊗apap+1⊗···⊗an

One can show the relations

b2 =b′2 =0 b(1− t) = (1− t)b′

The total complex of this bicomplex is given in degree n by CC(2)
n (A) =A⊗n+1 ⊕A⊗n, with the

total differential

bH =

(
b 1− t
0 −b′

)

in matrix form.
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Now, notice that CC(2)
n (A) =A⊗n+1 ⊕A⊗n =A+ ⊗A⊗n =Ωn(A) in degree n≥ 1 and CC(2)

0 (A) =A.
In this identification, the differential bH takes the very simple expression

bH(ωda) = (−1)
n[ω,a]

Definition 1.4.9 (Hochschild homology with values in the algebra)

Let A be an associative algebra. The Hochschild homology HH•(A) is the homology of the total
complex of the bicomplex CC(2)

•,•(A) defined above, i.e. the homology of the complex (Ω•(A),bH).�

This second complex takes the form

Ω0(A) ·· ·bHoo Ωn(A)
bHoo Ωn+1(A)

bHoo ·· ·bHoo

Notice that bH is of degree −1, but the differential, which has not appeared in this construction, is
of degree 1.

Remark 1.4.10 (The unital case)

When the algebra is unital, the second column (the one with b′) is exact: it admits the homotopy

s(a1⊗···⊗an) =1⊗a1⊗···⊗an (1.4.4)

Using standard spectral sequence arguments on this bicomplex, the homology of the total complex
is then the homology of the first column. In this case, one recovers the definition of the Hochschild
complex which is usually given in textbooks:

A ·· ·boo A⊗nboo A⊗n+1boo ·· ·boo (1.4.5)

One can even go a step further. It is possible to consider a quotient of this complex, called the
normalized complex, and to show, by standard arguments coming from the theory of simplicial
modules, that its homology is the same as the homology of the previous complex.

This normalized complex is defined by removing any contributions coming from elements pro-
portional to the unit in the last n factors in A⊗n+1. The first factor is not affected because it is in
fact the A-bimodule in which the Hochschild homology takes its values. The normalized complex
is then defined on the spaces A⊗A

⊗n
(where as before A=A/C1) on which it is easy to check that

the differential b is well-defined. But now, one has the identificationΩn
U(A) =A⊗A

⊗n
, so that in the

unital case, the Hochschild homology can be computed from the complex

Ω0
U(A) ·· ·boo Ωn

U(A)
boo Ωn+1

U (A)
boo ·· ·boo (1.4.6)

�

Definition 1.4.11 (The trace map)

The trace map Tr :CC(2)
n (Mn(A))→CC(2)

n (A) is the morphism of complexes defined by

Tr(α0⊗···⊗αn) =
∑

(i0,...,in)

a0,i0i1 ⊗···⊗an,ini0

where αr = (ar,ij)i,j ∈Mn(A). �
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Proposition 1.4.12 (Morita invariance of Hochschild homology)

For any unital algebra A and any integer n, the trace map induces an isomorphism

HH•(Mn(A))≃HH•(A)

In fact, Morita invariance of the Hochschild homology of unital algebras is stronger than the
one presented here. It is invariant for the Morita equivalence which we now define:

Definition 1.4.13 (Morita equivalence of algebras)

One says that two algebras A and B are Morita equivalent if there exist an A-B-module M and a
B-A-module N such that A≃M⊗BN and B≃N⊗AM as bimodules over A and B respectively. �

For instance, A is Morita equivalent to B =Mn(A) using M =An written as a row and N =An

written as a column.
Morita invariance of the Hochschild homology can be extended to the class ofH-unital algebras,

which contains the unital algebras.

Definition 1.4.14 (H-unital algebras)

A H-unital algebra is an algebra A for which the complex (A⊗•,b′) has trivial homology. �

Example 1.4.15 (The algebra C)

In the case A=C, one has

HH0(C) =C HHn(C) =0 for n≥1 �

Example 1.4.16 (Tensor algebra)

Let V be a finite dimensional vector space and A= T V the tensor algebra over V . Denote by t the
cyclic permutation acting on A in each degree (the t defining the bicomplex). Then

HH0(A) =⊕m≥0

(
V ⊗m/Ran(1− t)

)
co-invariants under the action of t

HH1(A) =⊕m≥1

(
V ⊗m

)t
invariants under the action of t

HHn(A) =0 for n≥2 �

Example 1.4.17 (Relation with Lie algebra homology)

Any associative algebra A gives rise to a Lie algebra ALie where the vector space is A and the Lie
bracket is the commutator: [a,b] =ab−ba. In the following, A is supposed to be unital.

The permutation group Sn acts on A⊗n by σ(a1 ⊗···⊗an) = aσ−1(1) ⊗···⊗aσ−1(n). Let us define
εn =

∑
σ∈Sn

(−1)sign(σ)σ :A⊗n →A⊗n the total antisymmetrisation. It induces a natural morphism

εn :
∧nA→A⊗n

a1∧···∧an 7→ εn(a1⊗···⊗an)

which can be shown to commute with the boundary ∂ of the Lie algebra complex
∧•ALie and

the boundary b of the Hochschild complex, so that the morphism of differential complexes ε• :

(
∧•ALie,∂)→ (A⊗•,b) induces a morphism in homologies

ε♯ :H•(
∧•ALie,∂)→HH•(A)

If one consider the universal enveloping algebra U(g) of a finite dimensional Lie algebra g, one
can show that HH•(U(g))≃H•(g;U(g)) where on the right it is the ordinary Lie algebra homology
defined with the complex (

∧•g,∂). �
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Example 1.4.18 (The commutative case)

Let us suppose that A is a commutative unital algebra.
Consider the constructions of Example 1.4.17. Here the Lie structure on ALie is trivial, so that

∂ =0, and the morphism ε♯ is in fact a morphism ε♯ :
∧•A→HH•(A).

One can show that there is a natural map

∧nA→Ωn
A|C

a1∧···∧an 7→da1∧···∧dan

through which ε♯ factors. One then get a natural map (also denoted by ε♯):

ε♯ :Ω
•
A|C →HH•(A)

da1∧···∧dan 7→ [εn(a1⊗···⊗an)]

where on the right hand side the brackets mean the homology class. �

Example 1.4.19 (Polynomial algebra)

For a finite dimensional vector space V and the commutative unital algebra SV of polynomials on
V , one has

HH•(SV ) = SV ⊗∧•V =Ω•
SV |C �

This is a particular situation of a more general theorem for which we need the following defini-
tion:

Definition 1.4.20 (Smooth algebras)

A commutative algebra A is a smooth algebra if for any algebra B and any ideal I in B such that
I2 = 0, the map HomC(A,B) → HomC(A,B/I) is surjective. This means that every morphism of
algebras A→B/I can be lifted to a morphism of algebras A→B. �

Then one has the following result:

Theorem 1.4.21 (Hochschild-Kostant-Rosenberg)

For any unital smooth commutative algebra A, the map ε♯ :Ω
•
A|C →HH•(A) of Example 1.4.18 is an

isomorphism of graded commutative algebras:

HH•(A)≃Ω•
A|C

The natural map which identifies a differential forms in Ωn(A) to a differential form in Ωn
A|C is

explicitly given by a0da0 ·· ·dan 7→ 1
n!
a0dKa0 ∧···∧dKan. Notice the extra factor

1
n!
compared to the

universal projection πn of Example 1.4.5. This factor is required to get a further identification of the
differential on the Kähler differential calculus with the B operator in cyclic homology (see [Loday,
1998]) and to get a morphism of graded commutative algebras.

Remark 1.4.22 (Extension to topological algebras)

One can generalize the definition of the Hochschild homology given above to take into account
some topological structure on the algebra A. In order to do that, one defines the spaces A⊗n using a
tensor product adapted to the topological structure on the algebra. The Hochschild homology one
obtains in this way is called the continuous Hochschild homology.

For Fréchet algebras, such a continuous homology is well defined and leads to the next two very
interesting examples. �
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Example 1.4.23 (The Fréchet algebra C∞(M))

Let M be a C∞ finite dimensional locally compact manifold. Then Connes computed its continu-
ous Hochschild homology in [Connes, 1985] and found the following result which generalizes the
Hochschild-Kostant-Rosenberg theorem:

HHCont
• (C∞(M)) =Ω•

C(M) (complexified de Rham forms)

For reasons that will be explained later, this isomorphism between vector spaces, which we denote
by ϕ, is explicitly given in terms of universal forms by

Ω2k(C∞(M))→Ω2k
C (M) Ω2k+1(C∞(M))→Ω2k+1

C (M)

ω 7→
(

i

2π

)k 1

(2k)!
π2k(ω) ω 7→

(
i

2π

)k+1 1

(2k+1)!
π2k+1(ω)

where π• :Ω
•(C∞(M))→Ω•

C(M) is the universal map defined in Example 1.4.5. �

Example 1.4.24 (The irrational rotation algebra)

The continuous Hochschild homology of the Fréchet algebra A∞
θ (θ irrational) has been computed

by Connes in [Connes, 1985]. Let λ= exp(2iπθ).
If λ satisfies some diophantine condition (there exists an integer k such that |1−λn|−1 is O(nk)),

then

HHCont
0 (A∞

θ ) =C HHCont
1 (A∞

θ ) =C2

For any λ:

HHCont
2 (A∞

θ ) =C HHCont
n (A∞

θ ) =0 for n≥3

If λ does not satisfy some diophantine condition,HHCont
0 (A∞

θ ) andHHCont
1 (A∞

θ ) are infinite dimen-
sional. �

Definition 1.4.25 (Hochschild cohomology)

Recall that the dual A∗ of an algebra A is a bimodule on A for the definition (aϕb)(c) = ϕ(bca) for
any ϕ∈A∗ and a,b,c∈A. The Hochschild complex (C•(A),δ) for the Hochschild cohomology with
values in the bimodule A∗ is defined by

Cn(A) =Hom(A⊗n,A∗) =Hom(A⊗n+1,C)

and by

δϕ(a0⊗a1⊗···⊗an+1) =
n∑

p=0

(−1)pϕ(a0⊗a1⊗···⊗apap+1⊗···⊗an+1)

+(−1)n+1ϕ(an+1a0⊗a1⊗···⊗an)

By construction, δ is the adjoint to b in homology.

The cohomology of this complex is denoted by HH•(A). �
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1.4.3 Cyclic homology

Cyclic homology is defined using a bicomplex CC•,•(A) constructed using the bicomplex CC(2)
•,•(A)

of the Hochschild homology. In order to do that, we need a new operator.
N :A⊗n →A⊗n is the norm operator defined by

N =1+ t+ ·· ·+ tn

Then one has the relations

(1− t)N =N(1− t) =0 b′N =Nb

The bicomplex CC•,•(A) is a repetition of the bicomplex CC(2)
•,•(A) infinitely on the right, using N to

connect them. In terms of the algebra A, one has

...

b
��

...

−b′

��

...

b
��

...

−b′

��
A⊗n+1

b
��

A⊗n+11−too

−b′

��

A⊗n+1Noo

b
��

A⊗n+11−too

−b′

��

·· ·Noo

A⊗n

b
��

A⊗n1−too

−b′

��

A⊗nNoo

b
��

A⊗n1−too

−b′

��

·· ·Noo

...

b
��

...

−b′

��

...

b
��

...

−b′

��
A A

1−too A
Noo A

1−too ·· ·Noo

Definition 1.4.26 (Cyclic homology)

Let A be an associative algebra. The cyclic homology HC•(A) of A is the homology of the total
complex of the bicomplex CC•,•(A) defined above. �

Any morphism of algebras φ : A → B induces a natural map CC•,•(A) → CC•,•(B) of bicom-
plexes, so that one gets an induced map in cyclic homology φ♯ :HC•(A)→HC•(B).

Remark 1.4.27 (The Connes complex)

In [Connes, 1985], Connes introduced cyclic cohomology, a dual version of cyclic homology. The
way he introduced it did not rely on a bicomplex, but on a subcomplex of the Hochschild complex
for cohomology. Some details of this construction are given in Example 1.4.53. In a dual version,
one can define the Connes complex to compute cyclic homology as a quotient of the Hochschild
complex for homology for a unital algebra.

To the bicomplex defined above, add a column on the left whose spaces are the cokernels of the
morphisms (1− t) :A⊗n+1 → A⊗n+1, which we denote by Cλ

n(A) =A⊗n+1/Ran(1− t). One can then
check that the operator b is a well-defined operator on Cλ

•(A) = ⊕n≥0C
λ
n(A) which satisfies b2 = 0.

Denote by Hλ
•(A) the homology of this complex. The total complex TCC•(A) of CC•,•(A) projects

onto the complex Cλ
•(A), sending the column p= 0 onto Cλ

•(A) and the other columns onto 0. One
then gets a morphism in homology

HC•(A)→Hλ
•(A)



44 Chapter 1 – Ideas and concepts of noncommutative geometry

When the field over which the algebra is defined containsQ, this is an isomorphism. To show that,
one introduces an explicit homotopy for the horizontal operators which shows that the horizontal
homology of CC•,•(A) is trivial. By standard arguments on bicomplexes, this proves the assertion.�

Remark 1.4.28 (The horizontal homology of CC•,•(A))

One can show that for any algebra A, the homology of any row of CC•,•(A) is the group homol-
ogy H•(Cn+1;A

⊗n+1) of the cyclic group Cn+1 with values in the Cn+1-module A⊗n+1 (for the action
induced by t). �

We have seen that the total complex of CC(2)
•,•(A) can be written in terms of the universal dif-

ferential calculus Ω•(A) with the boundary operator bH . We can do something similar here. Every
grouping of two columns isomorphic to CC(2)

•,•(A) can be “compressed” as we did for the Hochschild
bicomplex. The operators b,b′ and (1− t) are then replaced by the unique operator bH : Ωn(A) →
Ωn−1(A). The operatorN is replaced by a new operator B :Ωn(A)→Ωn+1(A), which takes the matrix
form

B=

(
0 0
N 0

)

in the decomposition Ωn(A) =A⊗n+1 ⊕A⊗n. In order to have a pleasant diagram representing the
new bicomplex, lift vertically each column on the right in proportion to its degree in the horizontal
direction. We then get the following (triangular) bicomplex

...

bH
��

...

bH
��

...

bH
��

...

bH
��

Ωn+1(A)

bH
��

Ωn(A)
Boo

bH
��

·· ·Boo Ω1(A)

bH
��

Boo Ω0(A)
Boo

Ωn(A)

bH
��

Ωn−1(A)
Boo

bH
��

·· ·Boo Ω0(A)
Boo

...

bH
��

...

bH
��

...

bH
��

Ω2(A)

bH
��

Ω1(A)

bH
��

Boo Ω0(A)
Boo

Ω1(A)

bH
��

Ω0(A)
Boo

Ω0(A)

The total homology of this bicomplex is again the cyclic homology of A.

Definition 1.4.29 (Mixed bicomplex)

Amixed bicomplex is a N-graded complexM• =
⊕

n≥0Mn equipped with a differential bM of degree
−1 and a differential BM of degree +1 such that

bMBM +BMbM =0
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The homology of the complex (M,bM) is called the Hochschild homology of the mixed bicom-
plex, and it is denoted by HH•M=H•(M,bM).

We associate to such a mixed bicomplex the N-graded complex M̃• defined by

M̃n =
⊕

p≥0

Mn−2p

on which we introduce the differential operator B′
M−bM where B′

M : M̃n → M̃n−1 is BM onMn−2p such
that 0< 2p≤n and 0 onMn. The cyclic homology of the mixed bicomplex is the homology of this
differential complex: HC•M=H•(M̃,B′

M −bM)
Twomixed bicomplexes (M•,bM,BM) and (N•,bN ,BN) are said to be b-quasi-isomorphic if there

exists a morphism of mixed bicomplexes φ : (M•,bM,BM)→ (N•,bN ,BN) (φ is of degree 0 and com-
mutes with the b’s and B’s) which induces an isomorphism in Hochschild homology. �

Proposition 1.4.30

Two b-quasi-isomorphic mixed bicomplexes have the same cyclic homology.

Example 1.4.31 (The mixed bicomplex (Ω•(A),bH,B))
The motivation for the above definition is the example of the N-graded module Ω•(A) with two
differentials bH and B. The definitions of Hochschild and cyclic homology reproduce the ones we
introduced before. �

Example 1.4.32 (The mixed bicomplex (HH•(A),0,B♯))

Because the differential B commutes with the differential bH , it defines a morphism B♯ on the
Hochschild homologyHH•(A). With this induced morphism, the triplet (HH•(A),0,B♯) is a mixed
bicomplex, whose Hochschild homology is the Hochschild homology of A. Indeed, when taking
Hochschild homology, bH is mapped to the zero operator.

Now, using standard argument on the spectral sequence constructed on the filtration by vertical
degree, one can see that this mixed complex computes the cyclic homology of A. �

Remark 1.4.33 (Some ideas to compute cyclic homology)

Example 1.4.32 tells us that in order to compute cyclic homology, one can first compute Hochschild
homology, then look at the operator B♯ induced by B, and compute the B♯-homology. Many exam-
ples of concrete computations of cyclic homology are performed this way. Obviously, this supposes
that Hochschild homology is computable!

Another approach is to consider the simplest possible differential complex which computes
the Hochschild homology of the algebra, and then guess a B operator on it in order to build a
mixed bicomplex b-quasi-isomorphic to one of the standard mixed bicomplexes given here. Be-
cause Hochschild homology can be defined through projective resolutions, such simple differential
complexes are usually possible to find. �

Example 1.4.34 (Mixed bicomplexes for the unital case)

Let us suppose now that the algebra A is unital. Then we know that the Hochschild homology can
be computed with the complex (1.4.5). Using the ideas of Remark 1.4.33, one can find a B operator
on this complex in order to make it into a mixed bicomplex.

This operator is defined by B = (1− t)sN :A⊗n → A⊗(n+1) where t and N have been introduced
before, and s :A⊗n →A⊗(n+1) is the homotopy (1.4.4). Explicitly, one has

B(a0⊗a1⊗···⊗an) =
n−1∑

p=0

[
(−1)np1⊗ap⊗···⊗an⊗a0⊗···⊗ap−1

−(−1)n(p−1)ap−1⊗1⊗ap⊗···⊗an⊗a0⊗···⊗ap−2
]
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In low degrees, these expressions take the following forms

B(a0) =1⊗a0+a0⊗1

B(a0⊗a1) = (1⊗a0⊗a1−1⊗a1⊗a0)+(a0⊗1⊗a1−a1⊗1⊗a0)

This mixed bicomplex (A⊗(•+1),b,B) is represented by the diagram

...

b
��

...

b
��

...

b
��

A⊗3

b
��

A⊗2

b
��

Boo A
Boo

A⊗2

b
��

A
Boo

A

Now, one can perform this procedure with the complex (1.4.6). Then one obtains the same oper-
ator B and the mixed bicomplex (Ω•

U(A),b,B) which is b-quasi-isomorphic to the mixed bicomplex
of Example 1.4.31 through the natural projectionΩ•(A)→Ω•

U(A). �

Example 1.4.35 (The commutative case)

Let us consider the notations and results of Example 1.4.18, where the algebra is over the field
C. One can introduce the mixed bicomplex (Ω•

A|C,0,dK) based on the Kähler differential calculus,
which takes the diagrammatic form

...

0
��

...

0
��

...

0
��

Ω2
A|C

0
��

Ω1
A|C

0
��

dKoo Ω0
A|C

dKoo

Ω1
A|C

0
��

Ω0
A|C

dKoo

Ω0
A|C

One can show that there is a natural morphism of mixed bicomplexes (Ω•
U(A),b,B)→ (Ω•

A|C,0,dK),
so that there is a natural map

HCn(A)→Ωn
A|C/dKΩ

n−1
A|C⊕Hn−2

dR (A)⊕Hn−4
dR (A)⊕···

the last term being H0
dR(A) or H

1
dR(A) depending on the parity of n.

Using Theorem 1.4.21, for any smooth unital commutative algebra A, one has the isomorphism

HC•(A)≃Ω•
A|C/dKΩ

•−1
A|C⊕H•−2

dR (A)⊕H•−4
dR (A)⊕···

In particular, this is the case for the polynomial algebra A = SV over a finite dimensional vector
space V . �
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There are a lot of structural properties on the cyclic homology groups which help a lot to com-
pute them. We refer to [Loday, 1998] to explore them. Let us just mention the following result:

Proposition 1.4.36 (Connes long exact sequence)

There are morphisms I and S which induce the following long exact sequence

·· · //HHn(A)
I //HCn(A)

S //HCn−2(A)
B //HHn−1(A)

I //·· ·

In low degrees, one gets

·· · //HH2(A)
I //HC2(A)

S //HC0(A)
B //HH1(A)

I //HC1(A)
S //0

and the isomorphism

0
B //HH0(A)

I //HC0(A)
S //0

This long exact sequence is a direct consequence of the fact that the bicomplex CC(2)
•,•(A) is

included as pairs of columns in the bicomplex CC•,•(A). This inclusion gives rise to the short exact
sequence of bicomplexes

0 //CC(2)
•,•(A)

I //CC•,•(A)
S //CC•−2,•(A) //0

which defines I and S. In homology this short exact sequence produces Connes long exact sequence.
The morphism S is called the periodic morphism.

Example 1.4.37 (HC•(C))

Using the results of Example 1.4.15 and the mixed bicomplex of Example 1.4.32, one easily gets

HC2n(C) =C HC2n+1(C) =0

Using Connes long exact sequence, one has an isomorphism S :HCn(C) → HCn−2(C). Denote by
un ∈ HC2n(C) = C the canonical generator. Then, one can show that there is an isomorphism of
coalgebras HC•(C)

≃
−→ C[u] explicitly given by un 7→ un, where the coproduct on C[u] is Δ(un) =∑

p+q=nu
p⊗uq.

For any algebra A, HC•(A) is a comodule over the coalgebra HC•(C):

HC•(A)→HC•(A)⊗C[u]

x 7→
∑

p≥0

Sp(x)⊗up

where Sp is the p-th iteration of S. This is a concrete interpretation of the periodic morphism S. �
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Let us now define the periodic and negative cyclic homologies. In order to do that, let us intro-
duce the bicomplex CCper

•,•(A), infinite in the two horizontal directions:

...

b
��

...

−b′

��

...

b
��

...

−b′

��
·· · A⊗n+1

b
��

Noo A⊗n+11−too

−b′

��

A⊗n+1Noo

b
��

A⊗n+11−too

−b′

��

·· ·Noo

·· · A⊗n

b
��

Noo A⊗n1−too

−b′

��

A⊗nNoo

b
��

A⊗n1−too

−b′

��

·· ·Noo

...

b
��

...

−b′

��

...

b
��

...

−b′

��
·· · A

Noo A
1−too A

Noo A
1−too ·· ·Noo

p= −2 −1 0 1 ·· ·
The bicomplex CC•,•(A) is naturally included in CCper

•,•(A) as the sub-bicomplex for which p ≥ 0.
Denote by CC−

•,•(A) the sub-bicomplex defined by p≤1.

Definition 1.4.38 (Periodic and negative cyclic homology)

The periodic cyclic homology HP•(A) of A is the homology of the total complex (for the product)
defined from CCper

•,•(A) by

TCCper
n (A) =

∏

p+q=n

CCper
p,q(A)

for any n∈Z.

The negative cyclic homology HC−
•(A) of A is the homology of the total complex (for the prod-

uct) defined from CC−
•,•(A) by

TCC−
n(A) =

∏

p+q=n
(p≤1)

CC−
p,q(A) �

Let us recall that in this situation, as the two bicomplexes we consider are infinite in the left
direction, direct sum and product do not coincide. An element in the direct sum contains only
a finite number of non zero elements in the spaces CC

per
p,q(A) for p+ q = n, but an element in the

product can be non zero in all of these spaces. If we were using direct sums to define their total
complexes, then it would be possible to show that the associated homologies were trivial if the base
field containsQ.

Using an adaptation of the procedure described for the cyclic homology, one can define the
cyclic periodic homology of a mixed bicomplex, as well as its cyclic negative homology. Then one
has:

Proposition 1.4.39

Two b-quasi-isomorphic mixed bicomplexes have the same cyclic periodic homology and the same
cyclic negative homology.
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The natural inclusion and the natural projection

I :CC−
•,•(A)→CCper

•,•(A) p :CCper
•,•(A)→CC•,•(A)

induce morphisms in homology

I :HC−
n(A)→HPn(A) p :HPn(A)→HCn(A)

Proposition 1.4.40 (2-periodicity ofHP•(A))

The periodic map S defined on the periodic bicomplex by translating on the left through two
columns is an isomorphism. It induces the natural 2-periodicity:

HPn(A)≃HPn−2(A)

which means that HP•(A) is Z2-graded.

From now on, we will use the notation HPν(A), with ν=0,1.
We saw a Z2-graded situation earlier for complex K-theory. Here is another similitude proved

in [Cuntz and Quillen, 1997]:

Proposition 1.4.41 (Six term exact sequence)

For any short exact sequence of associative algebras 0 //I //A //A/I //0 , one has the six
term exact sequence

HP0(I) // HP0(A) // HP0(A/I)

δ
��

HP1(A/I)

δ

OO

HP1(A)oo HP1(I)oo

Proposition 1.4.42 (Morita invariance)

For any integer n ≥ 1, the trace map defined in Definition 1.4.11 induces an isomorphism Tr♯ :

HPν(Mn(A))
≃
−→HPν(A).

Notice that we did not mention such a result for cyclic homology, because it is not true! There
is a Morita invariance for cyclic homology on H-unital algebras (see Definition 1.4.14), but not on
all algebras.

Example 1.4.43 (HPν(C) andHC−
•(C))

One has

HP0(C) =C HP1(C) =0

There is an isomorphism of algebras HC−
•(C)≃C[v] for a generator v∈HC−

−2(C). The product
by v corresponds to the operation S :HC−

n(C)→HC−
n−2(C). �

Example 1.4.44 (Tensor algebra)

Let us use the notations of Example 1.4.16. The inclusion C → T V induces an isomorphism in
periodic cyclic homology:

HP0(T V ) =C HP1(T V ) =0 �
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Example 1.4.45 (The Laurent polynomials)

Let A=C[z,z−1] be the Laurent polynomials for the variable z. Then one has

HP0(C[z,z
−1]) =C HP1(C[z,z

−1]) =C �

Example 1.4.46 (Unital smooth commutative algebras)

For any unital smooth commutative algebra A, one has

HP0(A) =H
even
dR (A) =

∏

p≥0

H
2p
dR(A) HP1(A) =H

odd
dR (A) =

∏

p≥0

H
2p+1
dR (A)

If we compare this result with the cyclic homology groups given at the end of Example 1.4.35, one
sees that periodic cyclic homology is not ill with the edge effects on the left of the cyclic bicomplex
which produce the contributionsΩ•

A|C/dKΩ
•−1
A|C. �

Remark 1.4.47 (Extension to topological algebras)

As for Hochschild homology, one can generalize the definitions given above to take into account
some topological structure on the algebra A, by replacing the tensor products with topological ten-
sor products. We then obtain “continuous” versions of these cyclic homologies.

In [Cuntz, 1997], Cuntz proved a six term exact sequence as in Proposition 1.4.41 for a restricted
class of topological algebras, calledm-algebras (see also [Cuntz et al., 2004]). �

Example 1.4.48 (Continuous cyclic homology of Banach algebras)

On Banach algebras, the continuous cyclic homologies are not interesting. For instance, for com-
mutative C∗-algebras, one gets

HPcont
0 (C(X)) ={bounded measures on X} HPcont

1 (C(X)) =0 �

This example shows that cyclic homology is not a very powerful theory for noncommutative
topological spaces. The following result confirms this fact. We need a

Definition 1.4.49 (Diffeotopic morphisms)

Let A and B be two associative algebras. Two morphisms of algebras φ0,φ1 :A→B are said to be
diffeotopic if there exists a morphism of algebras φ :A→B⊗C∞([0,1]) such that φt coincides with
φ0 (resp. φ1) when evaluated at t = 0 (resp. at t = 1) in the target algebra. Notice that the tensor
product B⊗C∞([0,1]) is purely algebraic. �

Proposition 1.4.50 (Diffeotopic invariance)

If φ0 and φ1 are diffeotopic then they induce the same morphism HPν(A)→HPν(B).

There is no general homotopic invariance result on periodic cyclic homology.
If you need a result more to convince you that cyclic homology is well adapted to differential

structures, here is the main result, obtained by Connes in [Connes, 1985], which is a generalisation
of Example 1.4.46:

Example 1.4.51 (Continuous periodic cyclic homology of C∞(M))

LetM be a C∞ finite dimensional locally compact manifold. Then one has

HPcont
0 (C∞(M)) =Heven

dR (M) HPcont
1 (C∞(M)) =Hodd

dR (M) �
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Remark 1.4.52 (Comparing cyclic homology with K-theory)

In the next section, we will establish a very strong relation between K-theory and periodic cyclic
homology. Z2-graduation, Morita invariance and the six term exact sequence give us obvious simi-
larities between these two theories.

But, we would like to make it clear that the two theories are very different on an essential point.
We notice in Remark 1.3.47 that K-theory can be computed using some dense subalgebra (stable by
holomorphic functional calculus). The situation is clearly not the same for periodic cyclic homol-
ogy: compare Example 1.4.48 with Example 1.4.51.

K-theory is an homology theory for noncommutative topological spaces. Periodic cyclic ho-
mology is an homology theory for algebras concealing some differentiable properties. �

Example 1.4.53 (First version of cyclic cohomology)

We define here the cyclic cohomology using the differential complex (C•
λ(A),δ), which is the first

version of cyclic cohomology exposed in [Connes, 1985].

By definition,

Cn
λ(A) ={ϕ∈Hom(A⊗n+1,C) / ϕ(a1⊗···⊗an⊗a0) = (−1)

nϕ(a0⊗a1⊗···⊗an)}
⊂Cn(A)

and δ is the Hochschild boundary operator for the complex C•(A) restricted to this subspace (see
Definition 1.4.25). Indeed, the main remark made by Connes to define its cyclic complex as a
subcomplex of a Hochschild complex was that the cyclic condition defining the ϕ’s in Cn(A) which
are elements of Cn

λ(A) is compatible with the boundary δ.
The cohomology of the complex (C•

λ(A),δ) is the cyclic cohomology HC•(A) of A.

For n = 0, a cycle ϕ is a trace on A, because (δϕ)(a0 ⊗ a1) = ϕ(a0a1) −ϕ(a1a0) = 0. The cyclic
complex of Connes is explicitly defined to generalize this property to higher degrees. So, cyclic
cohomology is a theory of generalized traces.

On this cohomology, the inclusion C•
λ(A) →֒ C•(A) at the level of complexes induces a map

I :HC•(A)→HH•(A) and Connes long exact sequence

·· · //HHn(A)
B //HCn−1(A)

S //HCn+1(A)
I //HHn+1(A)

B //·· ·

In this long exact sequence, the two maps B and S are not so easy to define as in the previous
construction for cyclic homology.

Nevertheless, one can show that the periodic map S :HCn(A)→HCn+2(A) can be used to define
periodic cyclic cohomology as

HP0(A) = lim
−−→(HC2n+1(A),S) HP1(A) = lim

−−→(HC2n(A),S)

which explains the name “periodic” for the cohomology group and the map S. �

One defines the dual bicomplex CC•,•(A) of CC•,•(A) replacing in each bidegree (p,n) the space
A⊗n+1 by the space Hom(A⊗n,A∗) = Hom(A⊗n+1,C), and adjoining the four maps b, b′, t and N.
Recall that the adjoint of b is the δ map introduced in Definition 1.4.25.

In the same manner, one defines the bicomplex CC•,•
per(A) from the bicomplex CCper

•,•(A). With
these bicomplexes one can define cyclic cohomology in its generality.
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Definition 1.4.54 (Cyclic cohomology)

The cyclic cohomology HC•(A) of A is the cohomology of the total complex of the bicomplex
CC•,•(A).

The cyclic periodic cohomology HP•(A) of A is the cohomology of the total complex of the
bicomplex CC•,•

per(A). Here, the total complex is constructed using direct sums. �

As for periodic cyclic homology, HP•(A) is Z2-graded.

Remark 1.4.55 (Entire cyclic cohomology)

In the definition of HP•(A), one uses the direct sum to construct the total complex. This is the
dual version of the direct product used for periodic cyclic homology. Indeed, one can show that the
direct product would produce a trivial cohomology. Using direct sum in periodic cyclic cohomology
permits one to define a natural pairing with periodic cyclic homology: cochains in periodic cyclic
cohomology have finite support, so that only a finite number of terms are non zero when evaluated
on a (infinite) chain in cyclic periodic homology.

Let A be a Banach algebra. Then one defines a norm on Hom(A⊗n+1,C) by ‖ϕn‖= sup{|ϕ(a0 ⊗
···⊗an)| / ‖ai‖≤1}.

Denote by TCC•∏(A) the total complex of CC•,•
per(A) obtained using direct product. Each ele-

ment in TCC
p∏(A) is an infinite sequence (ϕ2n) or (ϕ2n+1) according to parity of p. One defines a

subcomplex ECC•(A) of TCC•∏(A) imposing a growing condition on such an infinite sequence: the

radius of convergence of the series
∑

n≥0‖ϕ2n‖zn/n! (resp.
∑

n≥0‖ϕ2n+1‖zn/n!) is infinity.
The entire cyclic cohomology HE•(A) is defined as the cohomology of the complex ECC•(A).

One can show that HE•(A) is Z2-graded, as is the periodic cyclic cohomology.
Any cochain defining an element in HP•(A) has finite support, so that there is an natural map

HP•(A) → HE•(A). This map is an isomorphism in some cases, for instance A = C, but not in
general. See [Khalkhali, 1994] for examples of such isomorphisms. �

Example 1.4.56 (The irrational rotation algebra)

For irrational θ, one has

HPcont
0 (A∞

θ ) =C2 HPcont
1 (A∞

θ ) =HH1(A∞
θ )/RanB♯ =C

2

There is no need to mention any diophantine condition here (see Example 1.4.24).
In periodic cyclic cohomology, one of the two classes in HPν

cont(A∞
θ ) =C2 is Sτ where τ is the

unique normalised trace on A∞
θ , τ(

∑
m,n∈Zam,nU

mVn) = a0,0, and the second one is expressed in
terms of the continuous derivations δ1 and δ2:

φ(a0⊗a1⊗a2) =
1

2iπ
τ[a0(δ1(a1)δ2(a2)−δ2(a1)δ1(a2))] �

Remark 1.4.57 (Pairing with K-theories)

A Fredholm module (H,ρ,F) over the C∗-algebra A is called p-summable if [F,a]∈ Lp(H) for any
a∈A (we write a for ρ(a) from now on). The space Lp(H) ={T∈K /

∑∞
n=0μn(T)

p <∞} with μn(T)
the n-th eigenvalue of |T|= (T∗T)1/2, is the Schatten class. It is a two-sided ideal in B, and a Banach
space for the norm ‖T‖p = (

∑∞
n=0μn(T)

p)1/p =Tr(|T|p)1/p. For any S∈Lp(H) and T∈Lq(H), one has
ST∈Lr(H) for 1

r
= 1

p
+ 1

q
and ‖ST‖r ≤‖S‖p‖T‖q.

Let (H,ρ,F) be a p-summable Fredholm module (odd or even according to the parity of p−1)
and denote by γ its grading map if it is even. For any operator T on H such that FT +TF ∈ L1(H),
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let us define Tr′(T) = 1
2
Tr(F(FT +TF)). For any n≥ 0 such that 2n+1≥ p−1 in the odd case and

2n≥p−1 in the even case, and for any ai ∈A, the expressions

φ2n+1(a0⊗···⊗a2n+1) =Tr
′(a0[F,a1]·· ·[F,a2n+1]) in the odd case

φ2n(a0⊗···⊗a2n) =Tr
′(γa0[F,a1]·· ·[F,a2n]) in the even case

make sense and define an odd or an even cocyle inHC•(A), which depends only on theK-homology
class of the Fredholm module. In fact, using correct normalizations, this defines a natural pairing
HPν(A)×Kν(A)→C for ν=0,1. See [Connes, 1994] and [Gracia-Bondía et al., 2001] for details.

In the next section, the Chern character will realize a pairing HPν(A)×Kν(A)→C. �

1.5 The not-missing link: the Chern character

The Chern character is a special characteristic class defined first in the topological context. It was
used to related the K-theory of a topological space to its cohomology. When Connes introduced
cyclic homology, he saw immediately that a purely algebraic generalisation was possible, which
connects the K-theory for algebras and the periodic cyclic homology. Now, the Chern character is
extensively studied, because it helps interpret a lot of previous results in different areas of mathe-
matics, which where not so well understood.

1.5.1 The Chern character in ordinary differential geometry

Let us recall some basic facts about characteristic classes for vector bundles.
Let G be a topological group. Then one has:

Proposition 1.5.1 (Classifying space BG)

There exists a G-principal fibre bundle EG→BG such that for any G-principal fibre bundle P over
a topological space X, there exists a continuous map fP : P→BG such that P = f ∗

P EG (the pull-back
fibre bundle). BG is called the classifying space of the topological groupG and fP the classifying map
of P.

Recall that the pull-back P= f ∗Q of a fibre bundle Q→Y through a continuous map f :X→Y is
defined by Px =Qf (x) for any x∈X. If g :X→Y is homotopic to f then f ∗Q and g∗Q are isomorphic.

One can show that EG is a contractible space, so that its homology is not very interesting. The
important object in this proposition is BG:

Proposition 1.5.2 (Classification of G-principal fibre bundles)

The space of isomorphic classes of G-principal fibre bundles over X is [X;BG], the space of homo-
topic classes of continuous maps X→BG.

This space is not easy to compute, so that this classification remains just an identification with-
out any practical utility in general. This leads us to consider other objects to try to classify G-
principal fibre bundles, in terms of cohomology classes:

Definition 1.5.3 (Characteristic classes)

A characteristic class of P in a cohomology group H•(X;A) with coefficient in the abelian group A,
is the pull-back by fP of any cohomology class c∈H•(BG;A). �
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Characteristic classes depend upon the coefficient group A, which is often essential to make
some concrete interpretations of certain characteristic classes.

If one is interested in vector bundles instead of principal bundles, the previous construction can
be performed with the associated principal bundle. Any vector bundle is the pull-back through the
classifying map fP of a canonical vector bundle over BG. So that for any vector bundle E

π
−→X with

structure group G, one can introduce its characteristic classes as pull-back of classes in H•(BG;A).
We will use the notation c(E) for the pull-back of c∈H•(BG;A) in H•(X;A).

Proposition 1.5.4 (Functoriality of characteristic classes)

Let φ : X → Y be a continuous map, and E → Y a vector bundle on Y . Then for any character-
istic class c one has c(φ∗E) = φ♯c(E) where φ♯ : H•(Y) → H•(X) is the ring morphism induced in
cohomology.

Example 1.5.5 (Discrete groups)

In the case of a discrete group G, one can show that BG=K(G,1) is the Eilenberg-MacLane space of
type (G,1), so that H•(BG;Z) is the ordinary cohomology of groups H•(G). �

It is possible to construct explicitly the classifying spaces BG for a large class of groups. Here are
some examples.

Example 1.5.6 (Some usual classifying spaces)

G Z Zn Z2 U(1) =S1 U(n) O(n)
EG R Rn S∞

BG S1 Tn RP∞ CP∞ G(n,C∞) G(n,R∞)

�

S∞ is the sphere inR∞,RP∞ = lim
−−→RPn,CP∞ = lim

−−→CPn,G(n,C∞) = lim
−−→G(n,Cp) whereG(n,Cp) is

the complex Grassmanian manifold. . .

Example 1.5.7 (Cohomology groups of some classifying spaces)

Here are some examples of cohomology groups of some classifying spaces.
We denote by A[a1, . . . ,ap] the graded commutative ring generated over the abelian groups A by

the p elements ai (whose degrees will be given):

H•(BU(n);Z) =Z[c1,c2, . . . ,cn] H•(BSU(n);Z) =Z[c2, . . . ,cn]

where degck = 2k. The class ck is the k-th Chern class. The class c = 1+ c1 + c2 + ·· ·+ cn is the total
Chern class. It satisfies c(E⊕E′) = c(E)c(E′) for any vector bundles E and E′.

H•(BO(n);Z) =Z[p1,p2, . . . ,p[n/2]]

where degpk = 4k and [n/2] is the integer part of n/2. The class pk is the k-th Pontrjagin class. The
class p=1+p1+p2+ ·· ·+p[n/2] is the total Pontrjagin class which satisfies p(E⊕E′) =p(E)p(E′).

H•(BSO(2m+1);Z) =Z[p1,p2, . . . ,pm] H•(BSO(2m);Z) =Z[p1,p2, . . . ,pm−1,e]

where degpk =4k and dege=2m. The class e is called the Euler class, it satisfies e(E⊕E′) = e(E)e(E′).

H•(BO(n);Z2) =Z2[w1, . . . ,wn] H•(BSO(n);Z2) =Z2[w2, . . . ,wn]

where degwk = k is the k-th Stiefel-Whitney class. The class w = 1+w1 +w2 + ·· ·+wn is the total
Stiefel-Whitney class which satisfies w(E⊕E′) =w(E)w(E′). �
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Example 1.5.8 (Interpretation of w1 and w2)

Let M be a locally compact finite dimensional manifold. M is orientable if and only if the first
Stiefel-Whitney class w1(TM) of its tangent space TM is zero. If M is orientable, it admits a spin
structure if and only if the second Stiefel-Whitney class w2(TM) is zero. �

Example 1.5.9 (Classification of complex line vector bundles)

The first Chern class of c1(L)∈H2(X;Z) of a complex line vector bundle L→X is a total invariant
in the space of isomorphic classes of line vector bundles over X. �

Example 1.5.10 (Compact connected Lie groups)

For any compact connected Lie group G, one has

H2n(BG;R) =Pn
I (g) H2n+1(BG;R) =0

where g is the Lie algebra of G and P•
I (g) is the graded algebra of invariant polynomials on g.

For the compact Lie groups in Example 1.5.7, these invariant polynomials are generated by the
formulas:

det(λ1+
i

2π
X) =λn+c1(X)λ

n−1+c2(X)λ
n−2+ ·· ·+cn(X)

for any X∈u(n);

det(λ1−
1

2π
X) =λn+p1(X)λ

n−2+p2(X)λ
n−4+ ·· ·+pm(X)λn−2m

for any X∈o(n);

e(X) =
(−1)m

22mπmm!

∑

i1,...,i2m

εi1i2...i2m−1i2mXi1i2 . . .Xi2m−1i2m

for any X ∈ so(2m), where εi1i2...i2m−1i2m is completely antisymmetric with ε12...2m = 1. The quantity
Pf(X) = (2π)me(X) is called the Pfaffian of X. It is a square root of the determinant. The Euler class
is then associated to a very particular invariant polynomial. �

Example 1.5.11 (Characteristic classes through connections)

It is possible to construct characteristic classes directly using invariant polynomials in P•
I (g). In

order to do that, consider a differentiable principal fibre bundle P→M over a differential manifold
with structure group G. Let us denote by ω ∈ Ω1(P)⊗g a connection on P and Ω its curvature.
Recall that ω is a covariant object for the action R̃g of G on P by right multiplication and the adjoint
action Ad on g : R̃∗

gω = Adg−1ω for any g ∈ G. Its curvature is also covariant, R̃∗
gΩ = Adg−1Ω, and

satisfies the Bianchi identity dΩ+[ω,Ω]=0.

Let (U,ϕ) be a local trivialisation of P, where U is an open subset of M and ϕ : U ×G → P|U

is a diffeomorphism which intertwines the actions of G on P and G. Define by sU(x) = ϕ(x,e) the
section which trivializes P|U and by AU = s∗Uω and FU = s∗UΩ the local connection 1-form and the
local curvature 2-form. If (V,ψ) is a second trivialization of P, with U ∩V 6=∅, then one has the
relations

AV = g−1UVA
UgUV +g

−1
UVdgUV FV = g−1UVF

UgUV

where gUV :U∩V →G is the transition function between the two trivializations. The local forms FU

satisfy to a Bianchi identity.
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Let us consider p an invariant polynomial on g, of degree k. Then one can define p(FU , . . . ,FU)

as a local 2k-form on U by evaluating p on the values of FU in g. Because p is invariant, one has
p(FU , . . . ,FU) = p(FV , . . . ,FV) so that it defines a global 2k-form on M. Using the Bianchi identity,
one can then show that its differential is zero. We then have associated to p a cohomology class in
H2k(M;R), which can be shown to be independent of the choice of the connection ω. This map
Pk

I (g)→H2k(M;R) is the Chern-Weil map.

This class is exactly the characteristic class given by the invariant polynomial p in the identifica-
tion H2n(BG;R) =Pn

I (g) in Example 1.5.10.

One does not really need to express the connection 1-form and its curvature 2-form locally on
an open set of the base space M. Indeed, p(Ω, . . . ,Ω) makes sense as a 2k-form on P. Using the
properties of the curvature 2-form Ω and the invariance of the polynomial p, one can show that it
is a basic form for the action of G on P, and as such, it identifies with a 2k-form on the base space
M. �

Proposition 1.5.12 (Decomposition principle)

Let E1, . . . ,Ep → X be p complex vector bundles. Then there exist a manifold F and a continuous
map σ :F→X such that the pull-backs σ∗Ei →F are all decomposed as direct sum of complex line
vector bundles, and such that the map induced in cohomology σ♯ :H•(X)→H•(F) is injective.

Why decompose a vector bundle in a direct sum of line vector bundles? The answer is in the
following construction.

Let R(c(E1), . . . ,c(Ep)) be a polynomial relation inH•(X) between the Chern classes of the vector
bundles Ei. We would like to establish the relation R(c(E1), . . . ,c(Ep)) =0 for any vector bundles over
X, and for any X. Using the decomposition map σ :F→X and the functoriality of the Chern classes
(and the fact that the relation is a polynomial relation) we have

σ♯(R(c(E1), . . . ,c(Ep))) =R(c(σ
∗E1), . . . ,c(σ

∗Ep))

Now, let us assume that for any base space Y and any vector bundles Fi over Y which are direct sum
of line vector bundles, the relation R(c(F1), . . . ,c(Fp)) =0 can be established. Then, for any Ei over X,
the Fi = σ

∗Ei over Y =F are direct sums of line vector bundles, so that the relation is true for them.
The right hand side of the relation is then zero, which implies by injectivity of σ♯ :H•(X)→H•(F)

that the relation is also zero for the Ei’s.

So, in order to establish an abstract relation between the Chern classes, it is sufficient to show it
for any vector bundle decomposed as a direct sum of line vector bundles over any space.

Example 1.5.13 (Chern classes and elementary symmetric polynomials)

Let us apply the relation c(E⊕E′) = c(E)c(E′), where c is the total Chern class, to a direct sum of
line vector bundles E = ℓ1 ⊕ ··· ⊕ ℓn. Then c(E) = c(ℓ1)·· ·c(ℓn). For a line vector bundle, one has
c(ℓ) = 1+ c1(ℓ). Denote by xi = c1(ℓi) the first Chern classes of these line vector bundles. Then one
has

c(E) =
n∏

i=1

(1+xi) =
n∑

j=0

σj(x1, . . . ,xn)

where the functions σj are the elementary symmetric polynomials of total degree j. They are explic-
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itly given in terms of the n (commuting) variables Xi by

σ0(X1, . . . ,Xn) =1 σ1(X1, . . . ,Xn) =
∑

1≤i≤n

Xi σ2(X1, . . . ,Xn) =
∑

1≤i<j≤n

XiXj

·· · σn(X1, . . . ,Xn) =
∏

1≤i≤n

Xi

Any symmetric polynomial (resp. any formal symmetric series) in the n variables Xi can be ex-
pressed as a polynomial (resp. a formal series) in these elementary symmetric polynomials:

C[X1, . . . ,Xn]
Sn ={p∈C[X1, . . . ,Xn] / p(X1, . . . ,Xn) =p(Xσ−1(1), . . . ,Xσ−1(n))}

=C[σ1, . . . ,σn]

The previous computation shows us that the Chern classes can be written as cj(E) = σj(x1, . . . ,xn)
when E is decomposed. If E is not decomposed, then use σ∗E over F. �

Example 1.5.14 (Characteristic class associated to a symmetric polynomial)

The previous Example gives us another application of the decomposition principle, which is to
construct a new characteristic class in terms of the Chern classes, but writing it down explicitly
only in terms of the first Chern classes and a symmetric polynomial. Indeed, let p(X1, . . . ,Xn) be a
symmetric polynomials. Then it is a polynomial of the form R(σ1, . . . ,σn). For any vector bundle
E → X decomposed as E = ℓ1 ⊕ ··· ⊕ ℓn, define the characteristic class cp(E) = p(x1, . . . ,xn) where
xi = c1(ℓi). Then cp(E) = R(σ1(x1, . . . ,xn), . . . ,σn(x1, . . . ,xn)) = R(c1(E), . . . ,cn(E)). Now, if E is not
decomposed as a direct sum of line vector bundles, the last relation can be used to define, without
ambiguities, the class cp(E), thanks to the decomposition principle and the functoriality of the Chern
classes.

This construction can be generalised to any invariant formal series in n variables. �

Definition 1.5.15 (The Chern character)

Let E be a vector bundle over X. The Chern character ch(E) of E is defined to be the characteristic
class associated to the formal series

p(x1, . . . ,xn) = e
x1 + ·· ·+exn =n+

n∑

i=1

xi+
1

2

n∑

i=1

(xi)
2+ ·· ·

Notice that the coefficient group for the cohomology of this class is necessarily Q, because the
defining expression for ch(E)makes use of rational numbers. �

Example 1.5.16 (The invariant polynomial of the Chern character)

We saw in Example 1.5.11 that characteristic classes can be defined using a connection on the vector
bundle and an invariant polynomial. The Chern character is a particular characteristic class, and
its invariant polynomial (in fact an invariant formal series) is P(X) = Trexp( i

2π
X), so that ch(E) =

Tr◦exp
(
iF
2π

)
for any local curvature 2-form of a connection on E.

As a form on the principal fibre bundle, this expression is

ch(ω) =Tr◦exp
(
iΩ

2π

)
=

∞∑

k=0

1

k!

(
i

2π

)k

Tr(Ωk) �
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Proposition 1.5.17 (Product and additive properties of ch)

Using the decomposition principle, one can show that for any vector bundles E and E′:

ch(E⊕E′) = ch(E)+ch(E′) ch(E⊗E′) = ch(E)ch(E′)

Theorem 1.5.18 (The Chern character as an isomorphism)

The Chern Character defines a natural morphism of rings ch :K0(X)→Heven(X;Q) which induces
an isomorphism

ch :K0(X)⊗ZQ
≃
−→Heven(X;Q)

for locally compact finite dimensional manifolds X. In that case, the Chern character can be ex-
tended to a isomorphism ch :K1(X)⊗ZQ

≃
−→Hodd(X;Q).

Example 1.5.19 (The Chern character K−1(M)→Hodd(M;Q))

It is possible to give an expression of the Chern character in odd degrees using connections. Let ω0

and ω1 be connections on the principal fibre bundle P. Then ωt =ω0+t(ω1−ω0) is also a connection
for any t∈ [0,1]. We denote byΩt its curvature. One can show that the Chern-Simons form

cs(ω0,ω1) =

∫ 1

0
dtTr

(
(ω1−ω0)exp

(
iΩt

2π

))

satisfies dcs(ω0,ω1) = ch(ω1)−ch(ω0) where ch(ω) is given as in Example 1.5.16.

Let g :M→U(n) be a smooth map. Consider the trivial fibre bundle P=M×U(n), with the two
connections ω0 =0 and ω1 = g

−1dg. Then one defines

ch(g) = cs(0,g−1dg) =
∞∑

k=0

(−1)k
k!

(2k+1)!

(
i

2π

)k+1

Tr((g−1dg)2k+1)

This defines a map from the class of g in K−1(M) into Hodd(M;Q). �

1.5.2 Characteristic classes and Chern character in noncommutative geometry

It is possible to construct some characteristic classes, and in particular the Chern character, using
the algebraic setting of modules and differential calculi. The construction of these classes are based
upon some generalisation of the construction of the Chern classes in terms of the curvature of some
connection. In order to do that, one need to define the so-called noncommutative connections.

Let (Ω•,d) be a differential calculus on an associative unital algebra A, and let M be a finite
projective left module over A=Ω0.

Definition 1.5.20 (Noncommutative connection)

A noncommutative connection on M for the differential calculus (Ω•,d) is linear map ∇ :M →
Ω1⊗AM such that ∇(am) =da⊗m+a(∇m) for anym∈M and a∈A. �

Let us introduce M̃=Ω•⊗AM as a graded left module overΩ•, and End•
Ω(M̃) the graded algebra

of Ω•-linear endomorphisms on M̃ (any T ∈ EndkΩ(M̃) satisfies T(η) ∈ Ωm+k ⊗AM and T(ωη) =
(−1)nkωT(η) for any η∈Ωm⊗AM and any ω∈Ωn).

Let M ′ be a left module such that M⊕M ′ =AN and denote by p :AN →M the projection and
ϕ :M→AN the inclusion. Then pϕ= IdM.

Using right multiplication on ÃN , one can make the identification End•
Ω(Ã

N) =MN(Ω
•).
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Proposition 1.5.21 (General properties of noncommutative connections)

Any noncommutative connection ∇ can be extended into a map of degree +1 on M̃ such that for
anym∈M and ω∈Ωn,

∇(ω⊗Am) = (dω)⊗Am+(−1)nω(∇m)

The space of connections is an affine space over End1Ω(M̃).

Definition 1.5.22 (Curvature of a noncommutative connection)

The curvature of ∇ is the map Θ=∇2 =∇◦∇. �

We define the linear map δ :End•
Ω(M̃)→End•

Ω(M̃) by the relation δ(T) =∇T−(−1)kT∇, where
T∈EndkΩ(M̃). One can easily show that δ is a graded derivation of degree +1 on the graded algebra
End•

Ω(M̃).

Proposition 1.5.23

One has Θ∈End2Ω(M̃), δ(T) =ΘT−TΘ=[Θ,T]gr and the Bianchi identity δ(Θ)=0.

Example 1.5.24 (Existence of connections)

Let e ∈ EndA(A
N) be a projector, and define the left module M = e(AN). e is also a projector in

End0Ω(Ω
• ⊗AA

N) which is naturally extended byΩ•-linearity. Then, if ∇ is a connection on AN , the
mapm 7→ e(∇m) is a connection onM.

On AN there is a natural connection given by the differential map of the differential calculus:
AN ∋ (a1, . . . ,aN) 7→ (da1, . . . ,dan) ∈ Ω1 ⊗AA

N = (Ω1)N . Then any finite projective module on A

admits at least one connection. �

Example 1.5.25 (Direct sum of connections)

Let (M,∇M) and (N,∇N) be two finite projective modules over A for the same differential calculus.
Then ∇ :M⊕N →Ω1⊗A (M⊕N) defined by ∇(m⊕n) = (∇Mm)⊕(∇Nn) is a connection onM⊕N

which we denote by ∇M ⊕∇N . �

Definition 1.5.26 (Graded trace)

Let V • be a graded vector space. A graded trace on Ω• with values in V • is a linear morphism of
degree 0, τ :Ω• →V •, such that τ(ωη) = (−1)mnτ(ηω) for any ω∈Ωm and η∈Ωn. �

Notice that the restriction τ :A=Ω0 →V 0 is an ordinary trace on A.

Proposition 1.5.27 (The universal trace)

If we denote by [Ω•,Ω•]gr the subspace of Ω
• lineary generated by the graded commutators, then

the graded vector space Ω̂• = Ω•/[Ω•,Ω•]gr inherits the differential of Ω
•, which we denote by d̂,

and the projection τΩ :Ω
• → Ω̂• is a graded trace which commutes which the differentials.

For any graded trace τ : Ω• → V • there is a factorisation τ = ττΩ for a morphism τ : Ω̂• → V •.
This is why τΩ is called the universal trace onΩ•.

Example 1.5.28 (The trace on End•
Ω
(M̃))

Because of the identification End•
Ω(Ã

N) =MN(Ω
•), there is a natural trace on End•

Ω(Ã
N) with values

in Ω• induced by the trace on the matrix algebra MN(C), which we denote by Tr. For any T ∈
End•

Ω(M̃), one has T̂ =ϕTp∈End•
Ω(Ã

N), so that we can define τΩ(Tr(T̂))∈ Ω̂•. This map is a graded
trace which does not depend upon p, ϕ and N. The trace End•

Ω(M̃)→ Ω̂• will be denoted by TrΩ. It

satisfies TrΩδ= d̂TrΩ. �



60 Chapter 1 – Ideas and concepts of noncommutative geometry

Definition 1.5.29 (Characteristic classes ofM)

For any integer k, the cohomology class of TrΩ(Θ
k) in H2k(Ω̂•, d̂) is independent of the connection

∇. This is the k-th characteristic class ofM for the differential calculus (Ω•,d). �

Definition 1.5.30 (The Chern character ofM)

We define the Chern character ch(M)∈Heven(Ω̂•, d̂) associated toM by

chk(M) =

[
(−1)k

(2iπ)kk!
TrΩ(Θ

k)

]
∈H2k(Ω̂•, d̂)

ch(M) =
∑

k≥0

chk(M) =TrΩ◦exp
(
iΘ

2π

)
∈Heven(Ω̂•, d̂) �

Obviously, this definition is just an algebraic rephrasing of the expression that was given in
Example 1.5.16.

Example 1.5.31 (The connection induced by a projector)

We saw in Example 1.5.24 that there is a natural connection onM= e(AN) expressed in terms of the
projector e ∈ EndA(A

N). From now on, e will be identified with an element in the matrix algebra
MN(Ω

•), which acts onAN by multiplication on the right. One can compute explicitly the curvature
of this connection using this matrix algebra, and then one finds, for any a∈M⊂AN ,

Θ(a) =−a(de)(de)e

This expression can be used to express the Chern character ofM in terms of the matrix e :

ch(M) =
∑

k≥0

[
1

(2iπ)kk!
τΩTr(e(de)

2k)

]
�

Proposition 1.5.32 (Additive properties of ch)

For any two finite projective left modulesM and N on A, one has

ch(M⊕N) = ch(M)+ch(N)

Remark 1.5.33 (No product property!)

There is no product property which could satisfy this Chern character, because there is no possibility
to define a tensor product of two finite projective left modulesM and N . . .

Example 1.5.34 (The geometric Chern Character)

In the caseA=C∞(M) andΩ• =Ω•(M), the de Rham differential calculus, one has Ω̂• =Ω• because
Ω•(M) is graded commutative. Then the Chern character takes its values in the even de Rham
cohomology of M. By the Serre-Swan theorem in its algebraic version, Theorem 1.3.26, any finite
projective module on C∞(M) is the space of smooth sections of a vector bundle E overM. It is easy
to verify that a noncommutative connection is then an ordinary connection on E, seen as a covariant
derivative maps on sections. This identification uses the natural isomorphismΩ• ⊗AM=Ω•(M,E),
where Ω•(M,E) is the space of differential forms on M with values in E. The curvature is then an
element in Ω2(M,End(E)) =Ω2(M)⊗C∞(M)EndC∞(M)(Γ(E)), the space of 2-forms with values in the
associated vector bundle End(E) =E⊗E∗. In this context, one has End•

Ω(Ω
• ⊗AM) =Ω•(M,End(E))

and the trace is the ordinary trace on the fibres of End(E).
Using these considerations and the explicit formulas defining them, the two definitions of the

Chern characters coincide.
As an exercise, one can show that the relation δ(Θ)=0 is indeed the Bianchi identity! �
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1.5.3 The Chern character from algebraicK-theory to periodic cyclic homology

The definition of the (algebraic) Chern character we will use rests upon the two results concerning
the algebras C and C[z,z−1] given in Examples 1.4.43 and 1.4.45: HP0(C) =C and HP1(C[z,z

−1]) =

C. Recall that the trace map Tr defined in Definition 1.4.11 induces the Morita isomorphism in
periodic cyclic homology.

LetA be an associative unital algebra. Let p∈MN(A) be a projector. Then it defines a morphism
of algebras ip :C→MN(A) by λ 7→ λp. Indeed, 1∈C is mapped to p, and the relation p2 = p is the
required compatibility with 12 =1. This morphism is not a morphism of unital algebras.

Let u∈MN(A) be an invertible element. Then it defines a morphism of algebras iu :C[z,z
−1]→

MN(A) completely given by z 7→u and 1 7→1N .

Definition 1.5.35 (The algebraic Chern character)

With the previous notations, the Chern character [ch0(p)]∈HP0(A) of the projector p is the image
of 1∈HP0(C) in the composite map

HP0(C)
ip♯
−−→HP0(MN(A))

Tr♯
−−→HP0(A)

The Chern character [ch1(u)]∈HP1(A) of the invertible u is the image of 1∈HP1(C[z,z
−1]) in

the composite map

HP1(C[z,z
−1])

iu♯
−−→HP1(MN(A))

Tr♯
−−→HP1(A) �

Proposition 1.5.36 (The Chern character on algebraic K-theory)

The class [ch0(p)] ∈ HP0(A) (resp. [ch1(u)] ∈ HP1(A)) depends only on the class of p in K
alg
0 (A)

(resp. on the class of u in K
alg
1 (A)).

The Chern character is a map ch :Kalg
ν (A)→HPν(A) for ν=0,1.

Example 1.5.37 (Explicit formula for ch0(p) inΩ•(A))

In order to give an explicit formula for the representative ch0(p) of the class of the Chern character
in the mixed complex (Ω•(A),bH,B), one has to explicitly write down the generator 1∈HP0(C) =C.
It is convenient to do that in the same mixed bicomplex (Ω•(C),bH,B). In order to make notations
clear, let us denote by e∈C the unit element. Then one can show, using explicit formulas on bH and
B, that

e+
∑

n≥1

(−1)n
(2n)!

n!

(
e−

1

2

)
(de)2n

is the generator of the class 1, in the total complex of the mixed complex (Ω•(C),bH,B).
Using the composite map at the level of mixed bicomplexes (ip and Tr), one gets

ch0(p) =Tr(p)+
∑

n≥1

(−1)n
(2n)!

n!
Tr

((
p−

1

2

)
(dp)2n

)
�

Example 1.5.38 (Explicit formula for ch1(u) inΩ•
U(A))

In the mixed bicomplex (Ω•
U(A),bH,B), we can give an explicit formula for the representative ch1(u)

using the following expression of the representative of 1∈HP1(C[z,z
−1]) =C:

∑

n≥0

n!z−1dz(dz−1dz)n
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Then the element ch1(u) takes the form

ch1(u) =
∑

n≥0

n!Tr
(
u−1du(du−1du)n

)
�

Remark 1.5.39 (What is really a representative of the Chern character?)

The Chern character is well defined only in the periodic cyclic homology of the algebra. But it is
convenient to manipulate it as a cycle in the complex computing this homology.

But which complex to consider? Indeed, as we saw before, there are many possibilities, at least
as many mixed bicomplexes that are b-quasi-isomorphic (Proposition 1.4.39). So that one can ex-
pect some representative cycles in the complexes CCper

•,•(A), (Ω
•(A),b,B), (Ω•

U(A),b,B), and even
(Ω•

A|C,0,dK) if the algebra is a smooth commutative algebra. . .
The representatives given in Examples 1.5.37 and 1.5.38 are then only particular expressions.

For instance, for the algebra A = SV , one can use the Kähler differential calculus, in which any
element of degree ≥ dimV is 0. In that case, the Chern character is represented by a finite sum of
differential forms of odd or even degrees.

The expressions we gave above have the advantage that they are written in the universal dif-
ferential calculi, in which all the degrees can be represented. Let us give another expression for the
generator 1∈HP1(C[z,z

−1]) in the bicomplex CCper
•,•(C[z,z

−1]). In order to do that, define the family
of elements

αn = (n+1)!(z
−1−1)⊗ (z−1)⊗ [(z−1−1)⊗ (z−1)]⊗2n ∈C[z,z−1]⊗2n+2

βn = (n+1)!(z−1)⊗ [(z−1−1)⊗ (z−1)]⊗2n ∈C[z,z−1]⊗2n+1

then the representative of the generator is

c=
∑

n≥0

αn⊕βn ∈TCC
per
1 (C[z,z−1])

Using the identification Ω2n+1(C[z,z−1]) = C[z,z−1]⊗2n+2 ⊕C[z,z−1]⊗2n+1, this generator is also di-
rectly written as a generator in the mixed bicomplex (Ω•(C[z,z−1]),b,B).

Finally, notice that the explicit development of the Chern character in one of the complexes
mentioned above is completely determined by the lowest degrees, in which a normalisation is im-
posed, and the condition to be a cycle in the periodic complex. Hence this object is a very canonical
one. �

Proposition 1.5.40 (Naturality of the Chern character)

For any short exact sequence of associative algebras 0 //I //A //A/I //0 , one has the
commutative diagram

K
alg
1 (I)

ch
��

// K
alg
1 (A)

ch
��

// K
alg
1 (A/I)

ch
��

δ // K
alg
0 (I)

ch
��

// K
alg
0 (A)

ch
��

// K
alg
0 (A/I)

ch
��

HP1(I) // HP1(A) // HP1(A/I)
δ // HP0(I) // HP0(A) // HP0(A/I)

(1.5.7)

Remark 1.5.41 (The topological case)

When the algebra is a topological algebra, one can show that the Chern character is in fact a map
from the K-groups defined on topological algebras and the continuous cyclic periodic homology.
Indeed, one can show that it is homotopic invariant.
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Nevertheless, remember that in Remark 1.4.52 we mentioned that K-theory is well adapted to
C∗-algebras and continuous functional calculus in general, but that cyclic periodic homology is only
useful for topological algebras underlying some smooth structures. . .

If one wants to connect K-theory and cyclic periodic homology directly at the level of repre-
sentative cycles, one has to consider some intermediate algebras between “algebraic” and “C∗”, for
instance Fréchet or locally convex algebras. In these cases, unfortunately, the K-groups are not de-
fined using projections and unitaries, so that the interpretation of the Chern character is not at all
transparent whereas it looks so clear in the algebraic version. . .

When the Bott periodicity takes place inK-theory, the commutative diagram (1.5.7) connects in
reality the two six term exact sequences of Propositions 1.3.44 and 1.4.41. But there is a defect in this
closed relation, a factor 2πi is necessary in the morphism δ :K0(A/I)→K1(I) to get a commutative
diagram (see [Cuntz et al., 2004]).

Remark 1.5.42 (The Chern character as an isomorphism)

In Theorem 1.5.18, we saw that the Chern character realizes an isomorphism between K-theory
of topological spaces (in fact its torsion-free part) and the ordinary cohomology of the underlying
topological space.

In [Solleveld, 2005], it is shown that the Chern character for topological algebras realizes an
equivalent isomorphism for a large class of Fréchet algebras in the following form

ch⊗Id :K•(A)⊗C
≃
−→HP•(A)

In particular, the Fréchet algebras C∞(M) for a locally compact manifoldM is in this class. �

Remark 1.5.43 (Chern character and cyclic cohomology)

For a Banach algebraA, the Chern character can be realized as a pairingKν(A)×HPν(A)→C, using
the natural pairing between periodic cyclic cohomology and periodic cyclic homology.

Let us consider the case ν = 0. In Example 1.4.53, we defined cyclic cohomology using the
Connes complex. Let ϕ∈C2n

λ (A) be a cyclic cocycle and p∈MN(A) a projector. Define

〈[p],[ϕ]〉= 1

(2iπ)nn!

∑

i1,...,iN

ϕ(pi1i2 ,pi2i3 , . . . ,piN i1)

One can show that this pairing is well defined at the level of theK0 group and at the level ofHC
2n(A),

and that it satisfies 〈[p],S[ϕ]〉 = 〈[p],[ϕ]〉. Because the periodic cyclic cohomology group HP0(A)

can be defined as an inductive limit through the periodic operator S on the HC2n(A) spaces, the
previous pairing is indeed a pairing between K0(A) and HP0(A).

Using this construction, no extra structure is required. One then recovers that the Chern charac-
ter is indeed a canonical object in the context of K-theory and periodic cyclic (co)homology. There
is a similar expression for ν=1. �

Remark 1.5.44 (Comparing Chern characters)

The expressions in Examples 1.5.16, 1.5.19, 1.5.37 and 1.5.38 look very similar. But there are differ-
ences which are important to be noted. In order to make them clear, we will call “geometric Chern
character” the expressions given in Examples 1.5.16, 1.5.19 (and also 1.5.31), and “algebraic Chern
character” the expressions given in Examples 1.5.37 and 1.5.38.

First, the spaces on which these Chern characters are expressed as “differential forms” are not
the same in the two situations. In the geometric one, it is the de Rham differential calculus. In the
algebraic one, it is one of the universal differential calculi.
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In order to compare them, one has to take into account a situation in which they both make
sense, the case of the algebraA=C∞(M) for instance. In that case, one knows that the identification
of the Hochschild homology with de Rham forms can be expressed as in Example 1.4.23. Using
these expressions, one easily show that the following squares are commutative, where the vertical
isomorphisms concerning K-theories express the Serre-Swan Theorem 1.3.26,

K0(C
∞(M))

≃

��

chalg // HPcont
0 (C∞(M))

ϕ≃

��
K0(M)

chgeom // Heven(M;Q)

K1(C
∞(M))

≃

��

chalg // HPcont
1 (C∞(M))

ϕ≃

��
K−1(M)

chgeom // Hodd(M;Q)

This explains the extra factors used in the isomorphism ϕ in Example 1.4.23. Notice that the two
definitions of the Chern characters are constrained: the geometric case is normalised in such a
way that it is a ring morphism, the algebraic one is expressed as an infinite cycle in cyclic periodic
homology, so that all the terms are normalised by the first one. The only degree of freedom in this
square is the isomorphism of vector spaces ϕ (and fortunately not an isomorphism of algebras since
HPν(A) has no natural structure of algebra). �

1.6 Conclusion

There cannot be any conclusion to a subject that is still full of vivacity! Thousands of mathemati-
cians try everyday to conquest some new landmarks in this extraordinary vast and rich world. In
this lecture, only some selected aspects of this theory have been presented. For instance, nomention
has been made about “noncommutative measure theory”, in which von Neumann algebras play the
role of C∗-algebras for measurable spaces.

We have seen that one can reasonably manipulate “noncommutative topological spaces” using
the K-theory of C∗-algebras. One can convince oneself that differentiable structures are available in
the heart of cyclic homology.

Nevertheless this research project is facing a challenge which have not yet been solved: what
is the noncommutative counterpart of smooth functions? Does it exist? We have made it clear
that cyclic homology sees some smooth structures, but the right category of “noncommutative
smooth algebras” has not yet been identified. Some paths have been investigated. For instance,
Cuntz has considered m-algebras (see [Fragoulopoulou, 2005]), some kind of locally convex alge-
bras, on which he succeed to enrich K-theory and cyclic homology (see [Cuntz et al., 2004]). But
what is still missing is a Gelfand-Neumark theorem for smooth functions.



2

SU(n)-principal fiber bundles and

noncommutative geometry

2.1 Introduction

The geometry of fiber bundles is now widely used in the physical literature, mainly through the
concept of connections, which are interpreted as gauge fields in particle physics. It is worth to recall
why the structure of these gauge theories leads to this mathematical identification. The main points
which connect these two concepts are the common expression for gauge transformations and the
field strength of the gauge fields recognized as the curvature of the connection.

Since the introduction of the Higgs mechanics, some attempts have been made to understand
its geometrical origin in a same satisfactory and elegant way as the gauge fields. The reduction of
some higher dimensional gauge field theories to some more “conventional” dimensions has been
proposed to reproduce the Higgs part of some models.

Nevertheless, one of the more convincing constructions from which Higgs fields emerged nat-
urally and without the need to perform some dimensional reduction of some extra ad-hoc after-
ward arbitrary distortion of the model, was firstly exposed in [Dubois-Violette et al., 1990a], and
highly popularized in subsequent work by A. Connes in its noncommutative standard model (see
[Chamseddine and Connes, 2008] for a review of the recent developments in this direction). What
the pioneer work by Dubois-Violette, Kerner and Madore revealed is that the Higgs fields can be
identified with the purely noncommutative part of a noncommutative connection on an noncom-
mutative algebra “containing” an ordinary smooth algebra of functions over a manifold and a purely
noncommutative algebra.

The algebra used there is the tensor product C∞(M)⊗Mn of smooth functions on some man-
ifold M and the matrix algebra of size n. This “trivial” product does not reveal the richness of this
approach when some more intricate algebra is involved. In this review, we consider the algebra
of endomorphisms of a SU(n)-vector bundle. This algebra reduces to the previous situation for a
trivial vector bundle. This non triviality gives rise to some elegant and powerful constructions we
exposed in a series of previous papers, and to some results nowhere published before.

The first part deals with some reviews of the ordinary geometry of fiber bundles and connec-
tions. We think this is useful to fix notations, but also to highlight what the noncommutative differ-
ential geometry defined in the following extends from these constructions.

We then define the general settings of our noncommutative geometry, which is based on deriva-
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tions. The notion of noncommutative connections is exposed, and some important examples are
then given to better understand the general situation.

The algebra we are interested in is then introduced as the algebra of endomorphisms of a SU(n)-
vector bundle. We show how it is related to ordinary geometry, and how ordinary connections plays
an essential role to study its noncommutative geometry.

The noncommutative connections on this algebra are then studied, and here we recall why the
purely noncommutative part can be identified with Higgs fields.

Then it is shown that this algebra is indeed related, through the algebraic notion of Cartan
operations on a bigger algebra, to the geometry of the SU(n)-principal fiber bundle underlying the
geometry of the SU(n)-vector bundle.

Some considerations about the cohomology behind the endomorphism algebra are then ex-
posed, in particular a new construction of the Chern classes of the SU(n)-vector bundle which are
obtained from a short exact sequence of Lie algebras of derivations.

The last section is concerned with the symmetric reduction of noncommutative connections,
which generalizes a lot of previous works about symmetric reduction of ordinary connections.

2.2 A brief review of ordinary fiber bundle theory

The noncommutative geometry we will consider in the following contains, and relies in an essential
way to the ordinary differential geometry of the SU(n)-fiber bundles theory. This section is devoted
to some aspects of this differential geometry. Its aim is to fix notations but also to present some
constructions which will be generalized or completed by the noncommutative geometry introduced
later on.

2.2.1 Principal and associated fiber bundles

LetM be a smoothmanifold andG a Lie group. Denote by G //P π //M a (locally trivial) principal
fiber bundle for the right action of G on P , denoted by p 7→p·g = R̃gp.

For any p∈P , one defines Vp =Ker(Tpπ :TpP →Tπ(p)M), the vertical subspace of TpP . For any
X∈g, let

Xv(p) =

(
d

dt
p·exp(tX)

)

t=0

Then Vp ={Xv(p)/X∈g} and one has R̃g∗Vp =Vp·g .
This defines vertical vector fields over P and horizontal differential forms, which are differential

forms on P which vanish when one of its arguments is vertical.
Let (U,ϕ) be a local trivialisation of P over an open subset U ⊂ M, which means that there

exists a isomorphism ϕ : U ×G
≃
−→ π−1(U) such that π(ϕ(x,h)) = x and ϕ(x,hg) = ϕ(x,h)·g for any

x∈U and g,h∈G.
If (Ui,ϕi) and (Uj,ϕj) are two local trivialisations such that Ui∩Uj 6=∅, then there exists a differ-

entiable map gij :Ui ∩Uj →G such that, if ϕi(x,hi) = ϕj(x,hj) for hi,hj ∈G, then hi = gij(x)hj for any
x∈Ui∩Uj. The gij are called the transition functions for the system {(Ui,ϕi)}i of local trivialisations.
They satisfy gij(x) = g

−1
ji (x) for any x∈Ui ∩Uj and the cocycle condition gij(x)gjk(x)gki(x) = e for any

x∈Ui∩Uj∩Uk 6=∅.
Now, let F be a manifold on which G acts on the left: φ 7→ ℓgφ. On the manifold P × F we

define the right action (p,φ) 7→ (p·g,ℓg−1φ), and we denote by E = (P ×F)/G the orbit space for this
action. This is the associated fiber bundle to P for the couple (F ,ℓ). It is denoted by E =P ×ℓ F ,
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and [p,φ]∈ E is the projection of (p,φ) in the quotient P ×F → (P ×F)/G. By construction, one
has [p·g,φ] = [p,ℓgφ].

A (smooth) section of E is a (differentiable) map s :M →E such that π◦ s(x) =x for any x∈ M.
We denote by Γ(E) the space of differentiable sections of E .

The main point of this construction is the fact that one can show that Γ(E) identifies with the
space FG(P ,F) = {Φ :P → F / Φ(p·g) = ℓg−1Φ(p)} of G-equivariant maps P → F . This result will
be useful later on.

Let (U,ϕ) be a local trivialisation of P over U. Then the smooth map sU :U →π−1(U) given by
sU(x) =ϕ(x,e) is a local section of P .

Any section s of P is locally given by a local map h : U → G such that s(x) = sU(x)·h(x) =
ϕ(x,h(x)). We call sU a local gauge over U for P , because it is used as a local reference in P to
decompose sections on P .

In the same way, any section s of E is locally given by a local map φ :U → F such that s(x) =
[sU(x),φ(x)]. This means that the local gauge sU can also be used to decompose sections of any
associated fiber bundle.

Let (Ui,ϕi) and (Uj,ϕj) be two local trivialisations such that Ui∩Uj 6=∅. Then one has

sj(x) =ϕj(x,e) =ϕi(x,gij(x)) =ϕi(x,e)·gij(x) = si(x)·gij(x)

so that on P , if s(x) = si(x)·hi(x) = sj(x)·hj(x), then
hi(x) = gij(x)hj(x)

On E , if s(x) = [si(x),φi(x)] = [sj(x),φj(x)] for x∈Ui∩Uj 6=∅, then

φi(x) = ℓgij(x)φj(x)

These are the transformation laws for the local decompositions of sections in P and E .
Let F be a vector space and ℓ a representation (linear action) of G. In that case, the associated

fiber bundle E for the couple (F,ℓ) is called a vector bundle. The space of smooth sections Γ(E) is
then a C∞(M)-module for the pointwise multiplication: f (x)s(x) for any f ∈C∞(M), s∈Γ(E) and
x∈M.

Moreover, if E and E ′ are vector bundles, then E∗ (dual), E ⊕E ′ (Whitney sum), E ⊗E ′ (tensor
product) and

∧•E (exterior product) are defined. They are associated respectively to (F ∗,ℓ∗), (F ⊕
F ′,ℓ⊕ℓ′), (F ⊗F ′,ℓ⊗ℓ′) and (

∧•F,
∧

ℓ).
Here are now the main examples which will be at the root of the noncommutative geometry in-

troduced in the following, and will permits one to make connections between this noncommutative
geometry and the pure geometrical context.

Example 2.2.1 (Tangent and cotangent spaces)

The tangent space TM → M, and the cotangent space T∗M → M are canonical vector bundles
over M.

The space Γ(TM) will be denoted by Γ(M). It is the C∞(M)-module of vector fields on M. It
is also a Lie algebra for the bracket [X,Y]·f =X·Y·f −Y·X·f for any f ∈C∞(M).

One the other hand, by duality, Γ(T∗M) =Ω1(M) is the space of 1-forms on M. Extending this
construction, Γ(

∧•T∗M) =Ω•(M) is the algebra of (de Rham) differential forms on M.
If E is a vector bundle over M, then Γ(T∗M⊗E) =Ω•(M,E) is the space of differential forms

with values in the vector bundle E , which means that for any ω∈Ωp(M,E), Xi ∈Γ(M) and x∈M,
ω(X1, . . . ,Xp)(x)∈Ex. �
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Example 2.2.2 (The endomorphism bundle)

Consider the case where F is a finite dimensional vector space. Then E∗ ⊗E is associated to P for
the couple (F ∗ ⊗F,ℓ∗ ⊗ℓ).

One has the identification F ∗ ⊗F ≃End(F ) by (α⊗φ)(φ′) =α(φ′)φ, where End(F ) is the space
of endomorphisms of F .

The vector bundle End(E) =E∗ ⊗E is called the endomorphism fiber bundle of E .
There is a natural pairing Γ(E∗)⊗Γ(E)→C∞(M) denoted by x 7→ 〈α(x),s(x)〉. One can show

that Γ(E∗⊗E) =Γ(End(E)) is an algebra, which identifies with Γ(E∗)⊗C∞(M)Γ(E) and with the space
of C∞(M)-module maps Γ(E)→Γ(E) by (α⊗ s)(s′)(x) = 〈α(x),s′(x)〉s(x). �

Example 2.2.3 (The gauge group and its Lie algebra)

The groupG acts on itself by conjugaison: αg(h) = ghg
−1. The associated fiber bundleP×αG hasG as

fiber but is not a principal fiber bundle. In particular, this fiber bundle has a global section, defined
in any trivialisation by x 7→ e, where e∈G is the unit element. But one knows that the existence of a
global section on P is equivalent to P being trivial.

Denote by G = Γ(P ×αG) the space of smooth sections. It is a group, called the gauge group
of P : it is the sub-group of vertical automorphisms in Aut(P), the group of all automorphisms of
P . Indeed, any element in G is also a G-equivariant map Φ : P → G, which defines the vertical
automorphism p 7→ p·Φ(p). The compatibility condition is ensured by the G-equivariance: p·g 7→
(p·g)·Φ(p·g) = (p·g)·(g−1Φ(p)g) = (p·Φ(p))·g.

By construction, one has the short exact sequence of groups:

1 //G //Aut(P) //Aut(M) //1

G acts on the vector space g by the adjoint action Ad. Denote by AdP =P ×Ad g the associated
vector bundle. The vector space Γ(AdP) is the Lie algebra of the gauge group G, denoted hereafter
by LieG. �

2.2.2 Connections

Let G //P π //M be a principal fiber bundle, and let E →M be an associated vector bundle. There
is at least three ways to define a connection in this context:

Geometrical definition: A connection onP is a smooth distributionH in TP such that for any
p∈P and g∈G:

TpP =Vp⊕Hp and R̃g∗Hp =Hp·g

This defines horizontal vector fields and vertical differential forms (forms which vanish when
one of its arguments is horizontal).

One gets the geometrical notion of horizontal lifting of vector fields on M, which we denote
by Γ(M)∋X 7→Xh ∈Γ(P).

Algebraic definition: A connection on P is a 1-form on P taking values in the Lie algebra g,
ω∈Ω1(P)⊗g, such that for any g∈G and X∈g:

R̃∗
gω=Adg−1ω (equivariance) and ω(Xv) =X (vertical condition)

The associated horizontal distribution is Hp =Kerω|p.
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Analytic definition: A connection on E is a linear map ∇E
X : Γ(E)→ Γ(E) defined for any X ∈

Γ(M), such that for any f ∈C∞(M), s∈Γ(E), X,Y ∈Γ(M):

∇E
X(fs) = (X·f )s+ f∇E

Xs ∇E
fXs= f∇E

Xs ∇E
X+Ys=∇E

Xs+∇E
Ys

If s∈Γ(E) corresponds to Φ∈FG(P ,F), then ∇E
Xs corresponds to X

h·Φ.

The equivariance of the connection 1-form ω implies the relation

LXvω+[X,ω] =0

for any X∈g.
For each of these three definitions, the curvature of a connection can be introduced:

Geometrical definition: There exists a geometrical interpretation of the curvature as the ob-
struction to the closure of horizontal lifts of “infinitesimal” closed paths on M.

Let γ : [0,1] 7→ M be a closed path and let p∈ P . There exists a unique path γh : [0,1] 7→ P
such that γh(0) = p and γ̇h(t)∈Hγh(t) for any t ∈ [0,1]. γh is a horizontal lifting of γ. One has

γh(1) 6=γh(0) =p a priori, but they are in the same fiber, so that the deficiency is in G.

When the path γ is shrunk to an infinitesimal path, the deficiency is an element in g which
depends only on γ̇(0) and γ̇(1). This is the curvature.

Algebraic definition: The curvature is the equivariant horizontal 2-form Ω ∈ Ω2(P)⊗g de-
fined for any X ,Y ∈Γ(P) by

Ω(X ,Y) =dω(X ,Y)+[ω(X ),ω(Y)]

It satisfies the Bianchi identity
dΩ+[ω,Ω]=0

Analytic definition: Given ∇E
X : Γ(E)→Γ(E), the curvature RE(X,Y) is the map defined for any

X,Y ∈Γ(M) by
RE(X,Y) =∇E

X∇E
Y −∇E

Y∇E
X −∇E

[X,Y] : Γ(E)→Γ(E)

The remarkable fact is that this particular combinaison is a C∞(M)-module map.

One can connect these definitions by the following relations. Let η be the representation of g on
F induced by the representation ℓ of G. If s ∈ Γ(E) corresponds to Φ ∈ FG(P ,F), then RE(X,Y)s
corresponds to η(Ω(X ,Y))·Φ for any X ,Y such that π∗X =X and π∗Y =Y .

Let ω∈Ω1(P)⊗g be a connection 1-form on P , and Ω its curvature. Let (U,ϕ) be local trivial-
isation of P , and s its associated local section.

One can define the local expression of the connection and the curvature in this trivialisation as
the pull-back of ω andΩ by s :U →P :

A= s∗ω∈Ω1(U)⊗g F = s∗Ω∈Ω2(U)⊗g

If (Ui,ϕi) and (Uj,ϕj) are two local trivialisations, on Ui∩Uj 6=∅ one has the well-known relations

Aj = g
−1
ij Aigij+g

−1
ij dgij Fj = g

−1
ij Figij (2.2.1)
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Globally on P Locally on M
ω∈Ω1(P)⊗g, equivariant, vertical
condition.

Family of local 1-forms {Ai}i, Ai ∈Ω1(Ui)⊗g, satisfy-
ing gluing non homogeneous relations.

Ω ∈ Ω2(P) ⊗ g, equivariant and
horizontal.

Family of local 2-forms {Fi}i, Fi ∈Ω2(Ui)⊗g, satisfying
gluing homogeneous relations.

Table 2.1: The two ordinary constructions of the connections and curvature, the global one on P
and the local one on M.

with obvious notations. A family of 1-forms {Ai}i satisfying these gluing relations defines a con-
nection 1-form on P . This is (too) often used in the physical literature as a possible definition of a
connection and its curvature.

Remark 2.2.4 (Intermediate construction)

We summarize in Table 2.1 the two common ways to introduce a connection as differential objects,
either as a global 1-form on P or as a family of local 1-forms on M.

It is well known that, using the homogeneous gluing relations for the Fi’s, or using the equiv-
ariant and horizontal property of Ω, one can show that the curvature is also a section of the asso-
ciated vector bundle

∧2T∗M⊗AdP , i.e. a global 2-forms on M with values in the vector bundle
AdP =P ×Ad g. We denote by F∈Ω2(M,AdP) this 2-form.

Because of the inhomogeneous gluing relations for theAi’s, the connection cannot be the section
of such an “intermediate” construction between forms on P and local forms on the Ui’s.

Let us mention here that in the noncommutative geometry introduced in the following, this
intermediate construction is possible also for the connection 1-form. See Remark 2.4.9. �

2.2.3 Gauge transformations

We saw that the gauge groupG =Γ(P×αG) acts onP . To any a∈G one can associate aG-equivariant
mapΦ:P →G. The corresponding vertical diffeomorphism P →P defined by a is also denoted by
a

Let ω ∈ Ω1(P)⊗g be a connection on P . Then one can show that the pull-back a∗ω is also a
connection and a∗Ω is its curvature. Explicitly, one can establish the formulae a∗ω=Φ−1ωΦ+Φ−1dΦ
and a∗Ω=Φ−1ΩΦ, which look very similar to (2.2.1), but are not the same: here we perform some
active transformation on the space of connections while in (2.2.1) we look at the same connection
in different trivialisations. This is the difference between active and passive transformation laws.

In order to get the action of the Lie algebra of the gauge group, considerΦ= exp(ξ) with ξ :P →
g, G-equivariant, so that ξ defines an element in LieG = Γ(AdP). Then the infinitesimal action on
connections and curvatures take the form:

ω 7→dξ+[ω,ξ] Ω 7→ [Ω,ξ]

2.3 Derivation-based noncommutative geometry

In this section, we introduce the algebraic context in which the noncommutative geometry we
are interested in is constructed. The differential calculus we consider here has been introduced
in [Dubois-Violette, 1988] and has been exposed and studied for various algebras, for instance in
[Dubois-Violette et al., 1990b], [Dubois-Violette et al., 1990a], [Masson, 1996], [Masson, 1995],
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[Dubois-Violette andMasson, 1998],[Masson, 1999], [Dubois-Violette andMichor, 1994], [Dubois-
Violette and Michor, 1996], [Dubois-Violette and Michor, 1997].

2.3.1 Derivation-based differential calculus

Let A be an associative algebra with unit 1. Denote by Z(A) the center of A.

Definition 2.3.1 (Vector space of derivations of A)

The vector space of derivations of A is the space Der(A) = {X :A→A / X linear,X(ab) =X(a)b+
aX(b),∀a,b∈A} �

The essential properties of this space are contained in the following:

Proposition 2.3.2 (Structure of Der(A))

Der(A) is a Lie algebra for the bracket [X,Y]a=XYa−YXa (∀X,Y∈Der(A)) and a Z(A)-module
for the product (fX)a= f (Xa) (∀f ∈Z(A), ∀X∈Der(A)).

The subspace Int(A) = {ada : b 7→ [a,b] / a ∈ A} ⊂ Der(A), called the vector space of inner
derivations, is a Lie ideal and a Z(A)-submodule.

WithOut(A) =Der(A)/Int(A), there is a short exact sequence of Lie algebras andZ(A)-modules

0 //Int(A) //Der(A) //Out(A) //0 (2.3.2)

In case A has an involution a 7→a∗, one can define real derivations:

Definition 2.3.3 (Real derivations for involutive algebras)

If A is an involutive algebra, the derivation X ∈ Der(A) is real if (Xa)∗ = Xa∗ for any a ∈ A. We
denote by DerR(A) the space of real derivations. �

Definition 2.3.4 (The graded differential algebraΩ•
Der(A))

LetΩn
Der(A) be the set of Z(A)-multilinear antisymmetric maps from Der(A)n to A, withΩ0

Der(A) =

A, and let

Ω•
Der(A) =

⊕
n≥0Ω

n
Der(A)

We introduce onΩ•
Der(A) a structure of N-graded differential algebra using the product

(ωη)(X1, . . . ,Xp+q) =
1

p!q!

∑

σ∈Sp+q

(−1)sign(σ)ω(Xσ(1), . . . ,Xσ(p))η(Xσ(p+1), . . . ,Xσ(p+q))

and using the differential d (of degree 1) defined by the Koszul formula

dω(X1, . . . ,Xn+1) =
n+1∑

i=1

(−1)i+1Xiω(X1,·· ·
i
∨. . . . ,Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi,Xj],·· ·
i
∨. ·· ·

j
∨. . . . ,Xn+1) �

Definition 2.3.5 (The graded differential algebraΩ•
Der(A))

Denote byΩ•
Der(A)⊂Ω•

Der(A) the sub differential graded algebra generated in degree 0 by A. �
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Notice that by definition, every element in Ωn
Der(A) is a sum of terms of the form a0da1 ·· ·dan

for a0, . . . ,an ∈A.

The previous definitions are motivated by the following important example which shows that
these definitions are correct generalisations of the space of ordinary differential forms on amanifold:

Example 2.3.6 (The algebra A=C∞(M))

Let M be a smooth manifold and let A = C∞(M). The center of this algebra is A itself: Z(A) =

C∞(M). The Lie algebra of derivations is exactly the Lie algebra of smooth vector fields on M:
Der(A) =Γ(M). In that case, there is no inner derivations, Int(A) =0, so that Out(A) =Γ(M).

The two graded differential algebras coincide with the graded differential algebra of de Rham
forms on M: Ω•

Der(A) =Ω
•
Der(A) =Ω

•(M) �

In the previous definitions of the graded differential calculi, one is not bounded to consider the
entire Lie algebra of derivations:

Definition 2.3.7 (Restricted derivation-based differential calculus)

Let g⊂Der(A) be a sub Lie algebra and a sub Z(A)-module. The restricted derivation-based differ-
ential calculus Ω•

g(A) associated to g is defined as the set of Z(A)-multilinear antisymmetric maps
from gn to A for n≥0, using the previous formulae for the product and the differential. �

Now, let g be any Lie subalgebra of Der(A). Then g defines a natural operation in the sense
of H. Cartan on the graded differential algebra (Ω•

Der(A),d). The interior product is the graded
derivation of degree −1 onΩ•

Der(A) defined by

iX :Ω
n
Der(A)→Ωn−1

Der(A) (iXω)(X1, . . . ,Xn−1) =ω(X,X1, . . . ,Xn−1)

∀X∈g, ∀ω∈Ωn
Der(A) and ∀Xi ∈Der(A). By definition, iX is 0 onΩ0

Der(A) =A.

The associated Lie derivative is the graded derivation of degree 0 onΩ•
Der(A) given by

LX = iXd+diX :Ω
n
Der(A)→Ωn

Der(A)

One can easily verify the relations defining a Cartan operation:

iXiY+ iYiX =0 LXiY− iYLX = i[X,Y]

LXLY−LYLX =L[X,Y] LXd−dLX =0

One can then associate to this operation the following subspaces ofΩ•
Der(A):

• The horizontal subspace is the kernel of all the iX for X∈g. This is a graded algebra.

• The invariant subspace is the kernel of all the LX for X ∈ g. This is a graded differential
algebra.

• The basic subspace is the kernel of all the iX and LX for X ∈ g. This is a graded differential
algebra.

For instance, g= Int(A) defines such an operation.
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2.3.2 Noncommutative connections and their properties

Noncommutative connections play a central role in noncommutative differential geometry. They
are all based on some generalisation of what we called the analytic definition of ordinary connec-
tions, where one replaces the C∞-module of sections of a vector bundle by a more general (finitely
projective) module over the algebra. Various definitions has been proposed, for instance to take into
account some bimodule structures. Here we only consider right A-modules.

Definitions and general properties

LetM be a right A-module.

Definition 2.3.8 (Noncommutative connections, curvature)

A noncommutative connection on M for the differential calculus based on derivations is a linear

map ∇̂X :M →M, defined for any X∈Der(A), such that ∀X,Y∈Der(A), ∀a∈A, ∀m∈M, ∀f ∈
Z(A):

∇̂X(ma) =m(Xa)+(∇̂Xm)a, ∇̂fXm= f ∇̂Xm, ∇̂X+Ym= ∇̂Xm+∇̂Ym

The curvature of ∇̂ is the linear map R̂(X,Y) :M→M defined for any X,Y∈Der(A) by

R̂(X,Y)m= [∇̂X,∇̂Y]m−∇̂[X,Y]m �

This definition is an adaptation to the derivation-based noncommutative calculus of the ordi-
nary (analytic) definition of connections. Notice that we have to make use of the center Z(A) of the
algebra A for one of the above relations, which means that we have to differentiate the respective
roles of the algebra and of its center.

Proposition 2.3.9 (General properties)

The space of connections is an affine space modeled over the vector space HomA(M,M⊗AΩ
1
Der(A))

(right A-module morphisms fromM toM⊗AΩ
1
Der(A)).

R̂(X,Y) :M→M is a right A-module morphism.

Definition 2.3.10 (The gauge group)

The gauge group ofM is the group of automorphisms ofM as a right A-module. �

Proposition 2.3.11 (Gauge transformations)

For any Φ in the gauge group of M and any noncommutative connection ∇̂, the map ∇̂Φ
X =Φ−1 ◦

∇̂X ◦Φ:M→M is a noncommutative connection.
This defines the action of the gauge group on the space of noncommutative connections.

Suppose now that A is an involutive algebra and let as beforeM be a right A-module.

Definition 2.3.12 (Hermitean structure, compatible noncommutative connections)

A Hermitean structure on M is a sesquilinear form 〈−,−〉 :M×M → A such that, ∀m1,m2 ∈ M,
∀a1,a2 ∈A,

〈m1,m2〉∗ = 〈m2,m1〉 〈m1a1,m2a2〉=a∗
1〈m1,m2〉a2

A noncommutative connection ∇̂ is compatible with 〈−,−〉 if, ∀m1,m2 ∈M, ∀X∈DerR(A),

X〈m1,m2〉= 〈∇̂Xm1,m2〉+〈m1,∇̂Xm2〉 �
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Definition 2.3.13 (“Unitary” gauge transformations)

An elementΦ in the gauge group is compatible with the Hermitean structure if, for anym1,m2 ∈M,
one has 〈Φ(m1),Φ(m2)〉 = 〈m1,m2〉. In that case, we refer to such a gauge transformation as a
“unitary” gauge transformation. �

Lemma 2.3.14

The space of compatible noncommutative connections with 〈−,−〉 is stable under “unitary” gauge
transformations.

The rightA-moduleM =A

As a special case of the previous general situation, we consider the right A-module M = A. Let
∇̂X :A→A be a noncommutative connection.

Proposition 2.3.15 (Noncommutative connections onM =A)

The noncommutative connection ∇̂ is completely determined by ∇̂X1 = ω(X), with ω ∈ Ω1
Der(A),

by the relation
∇̂Xa=Xa+ω(X)a

The curvature of ∇̂ is the multiplication on the left on A by the noncommutative 2-form

Ω(X,Y) =dω(X,Y)+[ω(X),ω(Y)]

The gauge group is identified with the invertible elements g ∈A by Φg(a) = ga and the gauge trans-

formations on ∇̂ take the following form on ω andΩ:

ω 7→ωg = g−1ωg+g−1dg Ω 7→Ωg = g−1Ωg

∇̂0
X, defined by a 7→Xa, is a noncommutative connection on A.

The gauge transformations on the noncommutative formsω andΩ are clearly of the same nature
as the one encountered in ordinary differential geometry. Nevertheless, the relations are different:
the differential operator is the noncommutative differential here.

In the particular case when A is involutive, one can define a canonical Hermitean structure on
M by 〈a,b〉 = a∗b. Then, U(A) = {u ∈ A / u∗u = uu∗ = 1}, the group of unitary elements of A,
identifies with the unitary gauge group.

Let us stress the following important point.

Remark 2.3.16 (Vector space versus gauge transformations)

We saw that the space of noncommutative connections is an affine space, but here it looks like the
vector spaceΩ1

Der(A). In fact, one can show that gauge transformations are not compatible with this
linear structure:

(λ1ω1+λ2ω2)
u =u−1(λ1ω1+λ2ω2)u+u

−1du

λ1ω
u
1 +λ2ω

u
2 =λ1(u

−1ω1u+u
−1du)+λ2(u

−1ω2u+u
−1du)

are not equal except for λ1+λ2 =1. �

The following proposition applies in some important examples:
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Proposition 2.3.17 (Canonical gauge invariant noncommutative connection)

If there exists a noncommutative 1-form ξ ∈ Ω1
Der(A) such that da = [ξ,a] for any a ∈ A, then the

canonical noncommutative connection defined by ∇̂−ξ
X a = Xa− ξ(X)a can be written as ∇̂−ξ

X a =

−aξ(X).
Moreover, this canonical noncommutative connection is gauge invariant.

PROOF One has Xa= [ξ(X),a], so that ∇̂−ξ
X a= [ξ(X),a]−ξ(X)a=−aξ(X).

Let u∈U(A) be a unitary gauge transformation. Its action on the noncommutative 1-form −ξ
is (−ξ)u =−u−1ξu+u−1du=u−1(−ξu+[ξ,u]) =u−1(−uξ) =−ξ, which shows that this noncommutative
connection is indeed gauge invariant. �

As can be immediately seen, this situation can’t occur in the commutative case (ordinary differ-
ential geometry) because for any 1-form ξ, one has [ξ,a] = 0. Below, we will encounter a situation
where such a noncommutative 1-form exists, in the context of the algebraMn(C) of complex matri-
ces. An other important example where such an invariant noncommutative connection makes its
appearance is the Moyal algebra. These two examples share in common that they only have inner
derivations. They are highly noncommutative situation in this respect, even if the Moyal algebra
can be considered as a deformation of some commutative algebra of ordinary smooth functions.

The rightA-moduleM =AN

As an other special case of right A-modules, we consider now the case where the right A-module is
M=AN . Denote by ei = (0, . . . ,1, . . . ,0), for i=1, . . . ,N, a canonical basis of the right moduleAN . We
look at m= eia

i ∈M as a column vector for the ai’s, so that we use some matrix product notations.
We also use the notation Xm= ei(Xa

i) for any derivation X of A.
Let ∇̂X :A

N →AN be a noncommutative connection.

Proposition 2.3.18 (Noncommutative connections onM =AN)

The noncommutative connection ∇̂ is completely determined by N2 noncommutative 1-forms

ω
j
i ∈Ω1

Der(A) defined by ∇̂Xei = ejω
j
i(X), through the relation ∇̂Xm =Xm+ω(X)m, with ω = (ω

j
i)∈

MN(Ω
1
Der(A)).

The curvature of ∇̂ is the multiplication on the left on AN by the matrix of noncommutative
2-formsΩ=dω+[ω,ω]∈MN(Ω

2
Der(A)).

The gauge group of AN is GLN(A) (invertibles in MN(A)), which acts by left (matrix) multi-
plication. The gauge transformations take the forms ωg = g−1ωg + g−1dg and Ωg = g−1Ωg in matrix
notations.

∇̂0
X, defined bym 7→Xm, is a noncommutative connection on AN .

In the particular case when A is involutive, the natural Hermitean structure on M is defined
by 〈(ai),(bj)〉 =∑N

i=1(a
i)∗bi. Then, UN(A) = {u ∈ MN(A) / u∗u = uu∗ = 1N}, the group of unitary

elements ofMN(A), is the unitary gauge group.

The projective finitely generated rightA-modules

From the Serre-Swan theorem, one knows that any vector bundle on a smooth manifold M is char-
acterised by its space of smooth sections as a projective finitely generated right module (p.f.g.m.)
over C∞(M). The natural generalisation of vector bundles in noncommutative geometry is then
taken to be the projective finitely generated right A-modules.

LetM be such a projective finitely generated right A-modules. M is a direct summand in AN , so
that there exists a projection p∈MN(A) such thatM=pAN .
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Proposition 2.3.19 (Noncommutative connections on p.f.g.m.)

If ∇̂ is a noncommutative connection on the right A-module AN , then m 7→ p∇̂Xm defines a non-
commutative connection onM, wherem∈M⊂AN .

The curvature of the noncommutative connection obtained this way from the canonical non-
commutative connection ∇̂0

X of Proposition 2.3.18, is the multiplication on the left on M ⊂AN by
the matrix of noncommutative 2-forms pdpdp.

Example 2.3.20 (The algebra A=C∞(M))

We saw that the noncommutative derivation-based differential calculus is the ordinary de Rham
calculus. Using the equivalence given in the Serre-Swan theorem, the definitions of (ordinary) con-
nections and of noncommutative connections coincide. �

2.3.3 Two important examples

The algebraA=Mn(C) =Mn

Let us consider the case A=Mn(C) =Mn, the finite dimensional algebra of n×n complex matrices.
This is an involutive algebra for the adjointness of matrices.

First, we summarize the general properties of its derivation-based differential calculus, which is
described in [Dubois-Violette, 1988], [Dubois-Violette et al., 1990b] and [Masson, 1995].

Proposition 2.3.21 (General properties of the differential calculus)

One has the following results:

• Z(Mn) =C.

• Der(Mn) = Int(Mn)≃ sln = sl(n,C) (traceless matrices). The explicit isomorphism associates
to any γ∈ sln(C) the derivation adγ :a 7→ [γ,a].

DerR(Mn) = su(n) and Out(Mn) =0.

• Ω•
Der(Mn) = Ω•

Der(Mn) ≃ Mn ⊗∧•sl∗n, with the differential d′ coming from the differential of
the differential complex of the Lie algebra sln represented onMn by the adjoint representation
(commutator).

• There exits a canonical noncommutative 1-form iθ∈Ω1
Der(Mn) such that for any γ∈Mn(C)

iθ(adγ) =γ−
1
n
Tr(γ)1

This noncommutative 1-form iθmakes the explicit isomorphism Int(Mn(C))
≃
−→ sln.

• iθ satisfies the relation d′
(iθ)−(iθ)2 =0. This makes iθ look very much like the Maurer-Cartan

form in the geometry of Lie groups (here SLn(C)).

• For any a ∈ Mn, one has d′a = [iθ,a] ∈ Ω1
Der(Mn). This relation is no more true in higher

degrees.

Let us now introduce a particular basis of this algebra, which permits one to perform explicit
computations. Denote by {Ek}k=1,...,n2−1 a basis for sln of hermitean matrices. Then, it defines a basis
for the Lie algebra Der(Mn)≃ sln through the n

2−1 derivations ∂k =adiEk , which are real derivations.
Adjoining the unit 1 to the Ek’s, one gets a basis forMn.
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Let us define the θℓ’s in sl∗n by duality: θ
ℓ(∂k) = δℓ

k. Then {θℓ} is a basis of 1-forms in
∧•sl∗n. By

definition, they anticommute: θℓθk =−θkθℓ in this exterior algebra.
Define the structure constants by [Ek,Eℓ] = −iC

m
kℓEm. Then one can show that the differential d′

takes the explicit form:

d′
1=0 d′Ek =−C

m
kℓEmθ

ℓ d′θk =−
1

2
Ck

ℓmθ
ℓθm

The noncommutative 1-form iθ can be written as iθ = iEkθ
k ∈Mn ⊗∧1sl∗n. It is obviously inde-

pendent of the chosen basis.

Proposition 2.3.22 (The cohomology of the differential calculus)

The cohomology of the differential algebra (Ω•
Der(Mn),d

′
) is

H•(Ω•
Der(Mn),d

′) =I(∧•sl∗n)

the algebra of invariant elements for the natural Lie derivative.
Recall that the algebra I(∧•sl∗n) is the graded commutative algebra generated by elements cn2r−1

in degree 2r−1 for r∈{2,3, . . . ,n}.

Let us introduce the symmetric matrix gkℓ =
1
n
Tr(EkEℓ). Then the gkℓ’s define a natural metric

(scalar product) on Der(Mn) with the relation g(∂k,∂ℓ) = gkℓ.
Now, one can show that every differential form of maximal degree ω∈Ωn2−1

Der (Mn) can be written
uniquely in the form

ω=a
√

|g|θ1 ·· ·θn2−1

where a∈Mn and where |g| is the determinant of the matrix (gkℓ).

Definition 2.3.23 (Noncommutative integration)

One defines a noncommutative integration

∫

n.c.
:Ω•

Der(Mn)→C

by
∫
n.c.ω= 1

n
Tr(a) if ω∈Ωn2−1

Der (Mn) written as above, and 0 otherwise.
This integration satisfies the closure relation

∫

n.c.
d′ω=0 �

Let us now consider the right A-moduleM=A.
The noncommutative 1-form −iθ defines a canonical noncommutative connection by the rela-

tion ∇̂−iθ
X a=Xa− iθ(X)a for any a∈A.

Proposition 2.3.24 (Properties of ∇̂−iθ)

For any a∈Mn and X= adγ ∈Der(Mn) (with Trγ=0), one has

∇̂−iθ
X a=−aiθ(X) =−aγ

∇̂−iθ is gauge invariant.
The curvature of the noncommutative connection ∇̂−iθ is zero.
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PROOF This is a consequence of the existence of the canonical gauge invariant noncommutative
connection implied by the relation d′a= [iθ,a] (Proposition 2.3.17).

The curvature is the noncommutative 2-form Ω(X,Y) = d′
(−iθ)(X,Y)+ [(−iθ)(X),(−iθ)(Y)] =

−(d′iθ(X,Y)−(iθ)2(X,Y)) =0. �

Let us now consider the right A-module M =Mr,n, the vector space of r×n complex matrices
with the obvious right module structure and the Hermitean structure 〈m1,m2〉=m∗

1m2 ∈Mn.

Proposition 2.3.25 (∇̂−iθ, flat noncommutative connections)

The noncommutative connection ∇̂−iθ
X m = −miθ(X) is well defined, it is compatible with the Her-

mitean structure and its curvature is zero.
Any noncommutative connection can be written ∇̂Xa= ∇̂−iθ

X a+A(X)a forA=Akθ
k withAk ∈Mr.

The curvature of ∇̂ is the multiplication on the left by theMr-valued noncommutative 2-form

F =
1

2
([Ak,Aℓ]−C

m
kℓAm)θ

kθℓ

This curvature vanishes if and only if A : sln →Mr is a representation of the Lie algebra sln.
Two flat connections are in the same gauge orbit if and only if the corresponding Lie algebra

representations are equivalent.

For the proof, we refer to [Dubois-Violette et al., 1990b].

The algebraA=C∞(M)⊗Mn

As a second important example, we consider now the mixed of the two algebras C∞(M) andMn(C)

studied before, in the form of matrix valued functions on a smooth manifold M (dimM=m).
The derivation-based differential calculus for this tensor product algebra was first considered in

[Dubois-Violette et al., 1990a]:

Proposition 2.3.26 (General properties of the differential calculus)

One has the following results:

• Z(A) =C∞(M).

• Der(A) = [Der(C∞(M))⊗1]⊕[C∞(M)⊗Der(Mn)] =Γ(M)⊕[C∞(M)⊗sln] as Lie algebras
and C∞(M)-modules. In the following, we will use the notations: X=X+adγ with X∈Γ(M)

and γ∈C∞(M)⊗sln =A0 (traceless elements in A).

One can identify Int(A) =A0 and Out(A) =Γ(M).

• Ω•
Der(A) =Ω

•
Der(A) =Ω

•(M)⊗Ω•
Der(Mn)with the differential d̂=d+d

′, where d is the de Rham
differential and d′ is the differential introduced in the previous example.

• The noncommutative 1-form iθ is defined as iθ(X+adγ) =γ. It splits the short exact sequence
of Lie algebras and C∞(M)-modules

0 //A0
//Der(A) //

iθ
vv

Γ(M) //0 (2.3.3)

• Noncommutative integration is a well-defined map of differential complexes
∫

n.c.
:Ω•

Der(A)→Ω•−(n2−1)(M)

∫

n.c.
d̂ω=d

∫

n.c.
ω
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Using a metric h on M and the metric gkℓ =
1
n
Tr(EkEℓ) on the matrix part, one can define a

metric on Der(A) as follows,

ĝ(X+adγ,Y +adη) =h(X,Y)+ 1
m2 g(γη)

wherem is a positive constant which measures the relative “weight” of the two “spaces”. In physical
natural units, it has the dimension of a mass.

Consider now the right A-module M =A. As for the algebra Mn, the noncommutative 1-form
−iθ defines a canonical noncommutative connection by the relation ∇̂−iθ

X a = Xa− iθ(X)a for any
a∈A.

Proposition 2.3.27 (Properties of ∇̂−iθ)

For any a∈A and X=X+adγ ∈Der(A), one has ∇̂−iθ
X a=X·a−aγ.

The curvature of the noncommutative connection ∇̂−iθ is zero.

The gauge transformed connection ∇̂−iθg by g∈C∞(M)⊗GLn(C) is associated to the noncom-
mutative 1-form X 7→−iθ(X)+g−1(X·g) =−γ+g−1(X·g).

2.4 The endomorphism algebra of a vector bundle

The second example of the previous section mixes together two geometries: the de Rham ordinary
differential geometry, and the noncommutative derivation-based differential geometry of thematrix
algebra. This last geometry is very similar to the ordinary geometry of the Lie group SLn(C).

It is common in physics to consider the geometry of a based manifold with the geometry of a
Lie group (especially Lie groups of the type SU(n)): indeed, this is the geometry underlying gauge
theories as they are used in the Standard Model of particle physics. This kind of geometry is well
understood in the context of principal fiber bundles (see Section 2.2).

This section is devoted to the definition of a noncommutative geometry which generalizes and
contains in a precise meaning (see Section 2.6) some essential aspects of the ordinary geometry of
SU(n)-principal fiber bundles.

2.4.1 The algebra and its derivations

Let E be a SU(n)-vector bundle over M with fiber Cn. Consider End(E), the fiber bundle of endo-
morphisms of E (see Example 2.2.2). We denote by A the algebra of sections of End(E). This is the
algebra we will study using noncommutative differential geometry.

For later references, the trivial case is the situation where E =M×Cn is the trivial fiber bundle.
In that case, one has A = C∞(M)⊗Mn. Its noncommutative geometry is the one exposed as the
second example of the previous section. In general, A is (globally) more complicated.

Let us motivate the importance of this algebra by the following remarks:

Remark 2.4.1 (Relation to ordinary geometry)

The endomorphism fiber bundle End(E) is associated to a SU(n)-principal fiber bundle P for the
couple (Mn,Ad).

Because G = SU(n) ⊂ Mn(C) and g = su(n) ⊂ Mn(C), one has P ×αG ⊂ End(E) and AdP =

P ×Ad g⊂End(E) where αg(h) = g−1hg for any g,h∈G.
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This implies that the gauge group G = Γ(P ×αG) and its Lie algebra LieG = Γ(AdP) (see Exam-
ple 2.2.3) are subspaces of A.

We will see in the following that (ordinary) connections are also related to this noncommutative
geometry. �

Locally, using trivialisations of E , the algebra A looks like C∞(U)⊗Mn. This is very useful to
study some objects defined on A.

Proposition 2.4.2 (Basic properties)

One has Z(A) =C∞(M).

Involution, trace map and determinant (Tr,det :A→C∞(M)), are well defined fiberwise.

Let us define SU(A) as the unitaries in A of determinant 1, and su(A) as the traceless antiher-
mitean elements. Then G =SU(A) and LieG = su(A).

This identifies exactly the gauge group and its Lie algebra as natural and canonical subspaces of
A.

Let ρ :Der(A)→Der(A)/Int(A) =Out(A) be the projection of the short exact sequence (2.3.2).
This projection has an natural interpretation in this context:

Proposition 2.4.3 (The derivations of A)

One has Out(A) ≃ Der(C∞(M)) = Γ(M) and ρ is the restriction of derivations X ∈ Der(A) to
Z(A) =C∞(M). Int(A) is isomorphic to A0, the traceless elements in A.

The short exact sequence of Lie algebras and C∞(M)-modules of derivations looks like

0 // Int(A) // Der(A)
ρ // Γ(M) // 0

X
� // X

Real inner derivations are given by the adξ with ξ∈LieG = su(A).

The short exact sequence in this proposition describes the general situation which generalises
the splitting for the trivial situation encountered in (2.3.3). There is no a priori canonical splitting
in the non trivial case. Moreover, the noncommutative 1-form iθ is no more defined here. But one
can define a map of C∞(M)-modules:

iθ : Int(A)→A0 adγ 7→γ− 1
n
Tr(γ)1

Here is an important result which can be proved using local trivialisations:

Proposition 2.4.4

Ω•
Der(A) =Ω

•
Der(A)

The next proposition will be used in the study of ordinary connections on E and their relations
to the noncommutative geometry of A:

Proposition 2.4.5 (Horizontal forms for the operation of Int(A))

The space of sections Γ(
∧•T∗M ⊗End(E)) is the graded algebra of noncommutative horizontal

forms inΩ•
Der(A) for the operation of Int(A) onΩ•

Der(A).



2.4 The endomorphism algebra of a vector bundle 81

2.4.2 Ordinary connections

Let us now show how this noncommutative geometry is well adapted to not only study ordinary
connections on the vector bundle E , but also,as will be seen in the next section, to allow to some
natural generalisations of these connections.

Let ∇E be any (usual) connection on the vector bundle E . One can define the two associated
connections ∇E∗

on E∗ and ∇ on End(E) by the relations

X·〈φ,s〉= 〈∇E∗

X φ,s〉+〈φ,∇E
Xs〉 ∇X(φ⊗ s) = (∇E∗

X φ)⊗ s+φ⊗ (∇E
Xs)

with X∈Γ(M), φ∈Γ(E∗) and s∈Γ(E)
In the following, we will use the notation X =ρ(X)∈Γ(M) for any X∈Der(A).

Proposition 2.4.6 (The noncommutative 1-form α)

For any X∈Γ(M), ∇X is a derivation of A.

For any X∈Der(A), the difference X−∇X is an inner derivation. This permits one to introduce
X 7→α(X) = −iθ(X−∇X). By construction, α is a noncommutative 1-form α∈Ω1

Der(A) which gives
the decomposition

X=∇X −adα(X)

For any γ ∈ A0, one has α(adγ) = −γ, for any X ∈ Der(A), one has Trα(X) = 0, and for any
X∈DerR(A) one has α(X)

∗+α(X) =0.

Notice that by the decomposition given in this proposition, X 7→ ∇X is a splitting as C∞(M)-
modules of the short exact sequence

0 //A0
//Der(A) //Γ(M) //

∇ss
0 (2.4.4)

The obstruction to be a splitting of Lie algebras is nothing but the curvature of ∇ which we denote
by R(X,Y) = [∇X,∇Y]−∇[X,Y].

Remark 2.4.7 (α extends −iθ)

The relation α(adγ) =−γ shows that α extends −iθ : Int(A)→A0. As will be seen in Proposition 2.4.8,
any such extension is indeed related to a choice of an ordinary connection of E . �

One can then introduce the main result which connects the ordinary geometry of E and the
noncommutative differential geometry of A:

Proposition 2.4.8 (Ordinary connections and noncommutative forms)

The map ∇E 7→α is an isomorphism between the affine spaces of SU(n)-connections on E and the
traceless antihermitean noncommutative 1-forms on A such that α(adγ) =−γ.

The noncommutative 2-form (X,Y) 7→Ω(X,Y) = d̂α(X,Y)+[α(X),α(Y)] depends only on the
projections X and Y of X andY. This means that it is a horizontal noncommutative 2-form for the
operation of Int(A) onΩ•

Der(A).

The curvature RE of ∇E , considered as a section of
∧2T∗M ⊗AdP ⊂ ∧2T∗M ⊗End(E) (see

Proposition 2.4.5), is exactly the horizontal noncommutative 2-formΩ.
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Remark 2.4.9 (The intermediate construction in ordinary geometry)

We saw in Remark 2.2.4 that in the ordinary geometry of a principal fiber bundle, one is used to
introduce connections as 1-forms ω∈Ω1(P)⊗g, with two conditions: vertical normalisation and
equivariance. Its curvature is then a 2-form in Ω2(P)⊗g, equivariant and horizontal. The other
possibility is to introduce a family of local 1-formsA∈Ω1(U)⊗g on open subsetsU of trivialisations
of P , with some non homogeneous gluing relations. The curvature is represented by a family of 2-
forms F∈Ω2(U)⊗g satisfying some homogeneous gluing relations.

Using the “top” construction (equivariant and horizontal properties) or the “bottom” one (ho-
mogeneous gluing relations), one can show that the curvature is indeed a section of the vector
bundle

∧2T∗M⊗AdP ⊂∧2T∗M⊗End(E).
This proposition shows that this “intermediate” construction (the curvature as a section of a

vector bundle) can be completed at the level of the connection 1-form, at the price of using non-
commutative geometry (the noncommutative 1-form α) in order to take into account the non ho-
mogeneous gluing relations of the local connection 1-forms (see Remark 2.4.11). The vertical nor-
malisation and the equivariant conditions at the level of P are replaced by a unique condition on
inner derivations at the level of A. �

Let us now look at gauge transformations. Let u∈G =SU(A) and ξ∈LieG = su(A).

Proposition 2.4.10 (Gauge transformations)

The noncommutative 1-form αu corresponding to the gauge transformed connection ∇Eu is given
by the suggestive expression

αu =u∗αu+u∗d̂u

The infinitesimal gauge transformation induced by ξ is

α 7→−d̂ξ−[α,ξ] =Ladξα

This means that we can interpret infinitesimal gauge transformations on connections on E as Lie
derivative of real inner derivations on A.

Remark 2.4.11 (Local expressions)

It is instructive to look at the noncommutative 1-form α in some local trivialisation of E . LetUi ⊂M
be a local trivialisation system of E , and so of End(E). We denote by aloci :Ui →Mn the restriction of
the global section a∈A looked at in a local trivialisation.

Over Ui ∩Uj 6= ∅, one has the homogeneous gluing relations alocj = Adg−1ij a
loc
i = g−1ij a

loc
i gij, with

gij :Ui∩Uj →SU(n) the transition functions.

Locally a derivation X∈Der(A) can be written as Xloc
i =Xi+adγi , with γi :Ui →Mn (traceless)

and Xi a vector fields on Ui. Using the map ρ, one gets that Xi is the restriction of X =ρ(X) to Ui, so
that we can write X =Xi.

Using compatibility with the homogeneous gluing relations for sections, one finds that the γi’s
satisfy some non homogeneous gluing relations

γj = g
−1
ij γigij+g

−1
ij X·gij
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The noncommutative 1-form α is then locally given by the expressions

αloci (X+adγi) =Ai(X)−γi

where the Ai’s form the family of local trivialisation of the connection 1-form. It is then easy to
check that

αlocj (X+adγj) =Aj(X)−γj = (g
−1
ij Ai(X)gij+g

−1
ij X·gij)−(g−1ij γigij+g−1ij X·gij)

= g−1ij (Ai(X)−γi)gij = g
−1
ij α

loc
i (X+adγi)gij

so that these expressions indeed define a global section in A.
As can be noticed here, the global existence of the noncommutative 1-form α relies on the fact

that the Ai’s and the γi’s share the same non homogeneous gluing relations. �

2.5 Noncommutative connections onA

In this section, we study noncommutative connections on the rightA-moduleM=A equipped with
the canonical Hermitean structure (a,b) 7→a∗b.

2.5.1 Main properties

As we saw in Proposition 2.3.15, a noncommutative connection ∇̂ on the right A-module M =A

is given by a noncommutative 1-form ω∈Ω1
Der(A) by the relation ∇̂Xa=Xa+ω(X)a. This implies

that studying ∇̂ is equivalent to studying ω.
Let us first look at some particular noncommutative connections:

Proposition 2.5.1 (The noncommutative connection associated to α)

Let ∇E be a SU(n)-connection on E , and denote by α its associated noncommutative 1-form. Then,

the noncommutative connection ∇̂α defined by the noncommutative 1-form α is given by

∇̂α
Xa=∇Xa+aα(X) (2.5.5)

In particular, for any X∈Γ(M), one has ∇̂α
∇X

a=∇Xa.

This noncommutative connection ∇̂α is compatible with the canonical Hermitean structure.
The curvature of ∇̂α is R̂α(X,Y) =RE(X,Y).
A gauge transformation induced by u∈ G = SU(A) on the connection ∇E induces a (noncom-

mutative) gauge transformation on ∇̂α.

PROOF Recall that by definition, one hasX=∇X−adα(X) and ∇̂α
Xa=Xa+α(X)a. This proves (2.5.5).

One the other hand, the curvature of ∇̂α is the noncommutative 2-form d̂α(X,Y)+[α(X),α(Y)]

which has been identified with the curvature of ∇ in Proposition 2.4.8.
In a gauge transformation, one has αu = u∗αu+u∗d̂u, which is also the noncommutative gauge

transformation applied to ∇̂α. �
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We now arrive at the main result of this report:

Theorem 2.5.2 (Ordinary connections as noncommutative connections)

The space of noncommutative connections on the right A-module A compatible with the Her-
mitean structure (a,b) 7→a∗b contains the space of ordinary SU(n)-connections on E .

This inclusion is compatible with the corresponding definitions of curvature and gauge trans-
formations.

From now on, one can consider that an ordinary connection is a noncommutative connection
on the right A-module A. In this respect, this point of view generalizes the notion of connection
through the intermediate construction.

A natural question is: what are noncommutative connections from a physical point of view?

2.5.2 Decomposition of noncommutative connections on the moduleA

In order to answer the above question, one can look at some natural decompositions of noncom-
mutative connections, and compare these decompositions to “ordinary” connections.

Let us fix a connection ∇E on E , and denote by α its associated noncommutative 1-form. Then
any noncommutative connection ∇̂ can be decomposed as

∇̂Xa= ∇̂α
Xa+A(X)a

with A∈Ω1
Der(A), so that ω=α+A is the noncommutative 1-form for ∇̂.

Using the relation X =∇X − adα(X), one splits A as A(X) = a(X)−b(α(X)), where b :A0 →A is
defined by b(γ) =A(adγ).

A straightforward computation shows that the curvature of ∇̂ can then be written as

R̂(X,Y) =RE(X,Y)+∇XA(Y)−∇YA(X)−A([X,Y])+[A(X),A(Y)]

=RE,a(X,Y)−∇a
Xb(α(Y))+∇a

Yb(α(X))

+[b(α(X)),b(α(Y))]+b(α([X,Y]))

where RE,a is the curvature of the connection ∇E,a
X s = ∇E

Xs+ a(X)s on E and ∇a is its associated
connection on End(E).

Performing a gauge transformation with u∈G =SU(A), one has

Au =u∗Au+u∗(∇u) au =u∗au+u∗(∇u) bu =u∗bu

Notice the replacement of the differential by ∇ in these expressions.

Remark 2.5.3 (Local expressions)

In Remark 2.4.11, we looked at local expressions of the noncommutative 1-form α. Let us now look

at the previous decomposition in a local trivialisation of E . The noncommutative connection ∇̂
takes the local expression:

∇̂loc
Xloca

loc =X·aloc+
[
A(X)+aloc(X)−bloc(A(X))

]
aloc+bloc(γ)aloc−alocγ

where A is the local connection 1-form of ∇E and Xloc =X+adγ as before.
In a change of local trivialisation, the two local maps γ 7→bloc(γ) and X 7→aloc(X) transform as

γ 7→b′loc(γ) = g−1bloc(gγg−1)g X 7→a′loc(X) = g−1aloc(X)g

which are both homogeneous gluing relations. �



2.5 Noncommutative connections onA 85

In order to bemore explicit, consider now the trivial situation E =M×Cn andA=C∞(M)⊗Mn.
As a reference (ordinary) connection, one can take ∇E

Xs=X·s, so that, using the local expression
of α, one has

α(X) =α(X+adγ) =−γ=−iθ(X)

with Trγ=0. Then ∇̂α = ∇̂−iθ. Moreover, b(α(X)) =b(−γ) =−b(γ), so that

∇̂Xa=X·a+a(X)a+b(γ)a−aγ=∇a

Xa+b(γ)a−aγ

where ∇a
, defined in some local trivialization by ∇a

Xa=X·a+a(X)a, is an ordinary connection on
End(E), but is not ∇a, which takes the explicit local form ∇a

Xa=X·a+[a(X),a].
X 7→ a(X) behaves like a gauge potential with respect to gauge transformations (here ∇ = d).

The difference between ordinary connections and noncommutative connections is the presence
of b, which represents some additional fields in physics. These fields have homogeneous gauge
transformations.

The curvature can be written, for X=X+adγ andY=Y +adη,

R̂(X,Y) =RE,a(X,Y)+(∇̃a
Xb)(η)−(∇̃a

Yb)(γ)+[b(γ),b(η)]−b([γ,η])

where ∇̃a is the connection (∇̃a
Xb)(η) =X·b(η)−b(X·η)+[a(X),b(η)] on the space of C∞(M)-linear

maps A0 →A.

2.5.3 Yang-Mills-Higgs Lagrangian on the moduleA

Consider, as before, the trivial case A=C∞(M)⊗Mn and the right A-module A. Let a=aμdx
μ and

b=bkθ
k, with aμ,bk ∈C∞(M)⊗Mn.

The curvature is then the noncommutative 2-form

R̂= 1
2
(∂μaν−∂νaμ+[aμ,aν])dx

μdxν+(∂μbk+[aμ,bk])dx
μθk+ 1

2
([bk,bℓ]−C

m
kℓbm)θ

kθℓ

Using a metric (here euclidean) on Der(A) and an associated Hodge star operation, one can
define a Lagrangian. Using ordinary and noncommutative integration, one then defines the action:

S(R̂) =
∫
dxTr

{∑

μ,ν

1
4
(∂μaν−∂νaμ+[aμ,aν])

2

+m2
∑

μ,k

(∂μbk+[aμ,bk])
2+m4

∑

k,ℓ

1
4
([bk,bℓ]−C

m
kℓbm)

2
}

The integrand is zero when

a gauge equivalent to 0 db=0 [bk,bℓ] =C
m
kℓbm

so that the bk’s are constant and induce a representation of sln inMn.
For the right A-moduleM =C∞(M)⊗Mr,n, one would get similar results: flat connections are

classified by inequivalent representations of sln inMr.

Remark 2.5.4 (Physical interpretation)

From a fields theory point of view, one can notice that the aμ fields behave like ordinary Yang-Mills
fields, for a SU(n) gauge theory. On the other hand, the interesting point is that the bk fields behave
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as Higgs fields: in the above action, the vacuum states can be non trivial and the Higgs mechanism
of mass generation is possible. Finally, the coupling between these fields is a covariant derivative in
the adjoint representation. �

For a more general situation where A is not the trivial case, one can proceed in the same line:

• One has to use a reference connection on E to help to decompose noncommutative connec-
tions.

• The curvature looks similar except for the presence of the reference connection.

• The Hodge star operator is defined.

• The action splits into three terms, and the vacuum states are related to the global structure of
the vector fiber bundle E .

2.6 Relations with the principal fiber bundle

It is possible to look at the noncommutative geometry of A using the ordinary geometry of the
underlying SU(n)-principal fiber bundle P and the noncommutative geometry of a bigger algebra,
hereafter denoted by B.

2.6.1 The algebra B

As before, let P be the SU(n)-principal fiber bundle to which E is associated, and consider the as-
sociative algebra B = C∞(P)⊗Mn. This algebra is an example of the trivial situation mentioned
in 2.3.3, so that one has immediately the following facts: the center of B is Z(B) = C∞(P), its Lie
algebra and Z(B)-module of derivations splits, Der(B) =Γ(P)⊕[C∞(P)⊗sln], and its noncommu-
tative differential calculus is the tensor product of the two differential calculi associated to P and
Mn: Ω

•
Der(B) =Ω

•(P)⊗Ω•
Der(Mn) with the differential d̂=d+d′.

One can embed the real Lie algebra su(n) as a subalgebra of Der(B) in two ways:

ξ 7→ ξv vertical vector field on P ξ 7→ adξ inner derivation

This permits one to introduce the following two Lie subalgebras of Der(B):

gad ={adξ / ξ∈ su(n)} gequ ={ξv+adξ / ξ∈ su(n)}
Proposition 2.6.1

The algebra C∞(P) (resp. A) is the set of invariant elements for the action of gad (resp. gequ) on B.

PROOF C∞(P) is the invariants of gad because adξb = 0 for any ξ ∈ su(n) implies b ∈ Z(B). A is
the invariants of gequ because A is the set of sections of End(E), which is FSU(n)(P ,Mn), the space
of SU(n)-equivariant maps from P to Mn. The relation ξv·b+ adξb = 0 for any ξ ∈ su(n) is the
infinitesimal version of this equivariance. �

The two Lie subalgebras gad and gequ define Cartan operations on (Ω•
Der(B), d̂). The previous

proposition tells us that the algebras B, C∞(P) and A are related by these two operations.
Moreover, C∞(M) is itself the set of invariant elements for ξ 7→ ξv in C∞(P) and the invariants

in A for the operation of Int(A).
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Proposition 2.6.2 (Relations between the differential calculi)

At the level of differential calculi, all these relations generalize in the following structure:

Ω•(P)⊗Ω•
Der(Mn) Ω•(P)? _

basic elements

su(n)∋ ξ 7→ adξ

oo

Ω•
Der(A)

?�

basic elements
su(n)∋ ξ 7→ ξv +adξ

OO

Ω•(M)
?�

basic elements
su(n)∋ ξ 7→ ξv

OO

? _
basic elements

Int(A)
oo

In order to show these relations, one need the concept of noncommutative quotient manifold
introduced in [Masson, 1996]. We refer to [Masson, 1999] for the complete proof.

Notice that this proposition contains a well known result in ordinary differential geometry,
which says that the space of tensorial forms in Ω•(P)⊗g (horizontal and equivariant for the ac-
tion induced by right multiplication on P and the adjoint action on the Lie algebra g) is the space
Ω•(M,AdP) of forms on the base manifold M with values in the vector bundle AdP . This re-
sult permits one to indentify the curvature of a connection on P to a form in Ω2(M,AdP) (see
Proposition 2.4.8 and Remark 2.4.9).

In Proposition 2.3.26, we saw that the noncommutative integration is well defined on algebras
like B. This induces a map ∫

n.c.
:Ωr

Der(B)→Ωr−(n2−1)(P)

which has the following properties:

Proposition 2.6.3 (Noncommutative integration)

If ω∈Ωr
Der(B) is a horizontal (resp. basic) noncommutative form for one of the operations of gad or

gequ, then
∫
n.c.ω∈Ωr−(n2−1)(P) is horizontal (resp. basic) for the corresponding operation restricted

toΩ•(P)⊂Ω•
Der(B).

This noncommutative integration then restricts to a “noncommutative integration along the
noncommutative fiber”Ω•

Der(A)→Ω•−(n2−1)(M).
This noncommutative integration is compatible with the differentials, and it induces maps in

cohomologies

∫

n.c.
:H•(Ω•

Der(B), d̂)→H•−(n2−1)
dR (P)

∫

n.c.
:H•(Ω•

Der(A), d̂)→H•−(n2−1)
dR (M)

This situation looks very similar to the integration along the fibers of compactly supported
(along the fibers) differential forms in the theory of vector bundles.

2.6.2 Ordinary vs. noncommutative connections

It is instructive to identify ordinary connections in this setting. Let ∇̂ be a noncommutative con-
nection on the rightA-moduleA, and denote by α∈Ω1

Der(A) it associated noncommutative 1-form.
As a basic noncommutative 1-form inΩ1

Der(B) for the operation of gequ, one can write

α=ω−ϕ∈ [Ω1(P)⊗Mn]⊕ [C∞(P)⊗Mn⊗sl∗n]
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// 0
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Figure 2.1: Some relations between the derivations of B and A and some vector fields on P and M.

The basic condition implies the relations

(Lξv +Ladξ)ω=0 (Lξv +Ladξ)ϕ=0 iξvω− iadξϕ=0

for any ξ∈ su(n).

Proposition 2.6.4 (Ordinary connection)

Let ∇E be an ordinary connection on E and α ∈ Ω1
Der(A) its associated noncommutative 1-form.

Then, as a basic element inΩ1
Der(B), one has

α=ω− iθ

where ω∈Ω1(P)⊗su(n)⊂Ω1(P)⊗Mn is the connection 1-form on P associated to ∇E and iθ is
the canonical noncommutative 1-form defined inΩ1

Der(B) (Proposition 2.3.26).

In order to prove this formula, one has to use the equivariance and the vertical condition for ω,
and some of the properties listed before on iθ.

Notice that this inclusion of ordinary connection into the space of basic 1-forms on B is canon-
ical, since the noncommutative 1-form iθ is itself canonical.

2.6.3 Splittings coming from connections

The previous considerations show how the differential calculi connect together through some Car-
tan operations. There also exist some strong relations between the derivations of A, some deriva-
tions of B, and some vector fields on P and M. They are summarised in the diagram of Fig. 2.1.

In this diagram, one has the following short exact sequences of Lie algebras and C∞(M)-
modules:

• 0 //Int(A) //Der(A)
ρ //Γ(M) //0

This is the short exact sequence which relates vector fields on M, derivations on A and inner
derivations on A given in Proposition 2.4.3.

• 0 //ZDer(A) //NDer(A)
τ //Der(A) //0

NDer(A)⊂Der(B) is the subset of derivations on B which preserve A⊂B.
ZDer(A)⊂Der(B) is the subset of derivations on B which vanish on A. This is a Lie ideal in
NDer(A), and τ is the quotient map.
The Lie algebra ZDer(A) is generated as a C∞(P)-module by the elements ξv + adξ for any
ξ∈ su(n).
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• 0 //Γ(VP) //ΓM(P)
π∗ //Γ(M) //0

These are pure geometrical objects:
Γ(VP) is the Lie algebra of vertical vector fields on P .
ΓM(P) ={X ∈Γ(P)/π∗X (p) =π∗X (p′) ∀p,p′ ∈P s.t. π(p) =π(p′)} is the Lie algebra of vector
fields on P which can be mapped to vector fields on M using the tangent maps π∗ :TpP →
Tπ(p)M.

• 0 //Int(A) //NDer(A)
ρP //ΓM(P) //0

Here, the elements in Int(A) are identified to the adγ for γ ∈ A0 ⊂ B. Int(A) is then a Lie
subalgebra of NDer(A).
ρP is the restriction to NDer(A) of the projection on the first term in the splitting Der(B) =
Γ(P)⊕ [C∞(P)⊗Der(Mn)].

An ordinary connection ω∈Ω1(P)⊗su(n) splits these short exact sequences. Let us look more
closely at the central square of the diagram of Fig. 2.1. One can define splittings as follows:

NDer(A)
ρP // //

τ

����

ΓM(P)

π∗

����

(π∗X )h+ω(X )v+adω(X ) X�oo

ρ(X)h−adα(X)B Xh

X
_

OO

X
_

OO

∇X X
�oo

Der(A) ρ
// // Γ(M)

where:

• Γ(M)→Der(A), X 7→∇X:

This is the splittingmentioned in Proposition 2.4.6, which lifts vector fields onM into deriva-
tions on A.

• Γ(M)→ΓM(P), X 7→Xh:

This splitting lifts vector fields on M into horizontal vector fields Xh on P through the or-
dinary geometrical procedure. Using its equivariance, one can easily verify that the vec-
tor field Xh is indeed a π∗-projectable vector field. In fact, for any X ∈ ΓM(P), one has
X = (π∗X )h +X v, where X v is the vertical projection of X , explicitly given by the formula
X v =ω(X )v.

• Der(A)→NDer(A), X 7→ρ(X)h−adα(X)B :

This lifts derivations onA into derivations on B. Here, α(X)B is the basic element in B associ-
ated to α(X)∈A and ρ(X)h ∈Γ(P) is the horizontal lift of the vector field ρ(X). By construc-
tion, one has adα(X)B ∈ NDer(A). On the other hand, one verifies that for any X ∈ Γ(M) and
any ξ ∈ su(n), [ξv + adξ,X

h] = 0 (as an element in Der(B)), which shows that Xh ∈ NDer(A).
The relation τ(ρ(X)h − adα(X)B) =X relies on the two following facts: in the identification of
a∈A as an equivariant map aB :P →Mn, one has the identification of ∇Xa with Xh·aB, and
one has the decomposition X=∇ρ(X)−adα(X).
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• ΓM(P)→NDer(A), X 7→ (π∗X )h+ω(X )v+adω(X ):

Here, we lift π∗-projectable vector fields X on P into derivations on B. Notice that for any
X ∈ ΓM(P), one has the decomposition X = (π∗X )h+ω(X )v. The inner derivation adω(X ) is
there in order that ω(X )v+adω(X ) ∈NDer(A) (we know from the previous result that (π∗X )h ∈
NDer(A)). In fact, one has the more interesting result that

ω(X )v+adω(X ) ∈ZDer(A)

In order to better understand the two liftings ending in NDer(A), it is useful to characterize
derivations in NDer(A). Such a derivation can be decomposed, as an element in Der(B), as X̂ =

X +adb, with X ∈Γ(P) and b∈B0 =C
∞(P)⊗sln. Using the fact that ρP is just the restriction of X̂ to

C∞(P), one has ρP(X̂) =X ∈ΓM(P). The condition X̂∈NDer(A) implies that [ξv+adξ,X̂]∈ZDer(A)

for any ξ ∈ su(n). Using the structure of ZDer(A), one can write [ξv + adξ,X̂] = f i(ηvi + adηi) for
some f i ∈ C∞(P) and ηi ∈ su(n), which can be decomposed into two parts: [ξv,X ] = f iηvi and
ξv·b+[ξ,b] = f iηi.

Denote by L
equ
ξ =Lξv+adξ the Lie derivative associated to the Cartan operation of the Lie algebra

gequ on (Ω•
Der(B), d̂). The second relation is then L

equ
ξ b= f iηi. Applying now the connection 1-form

ω on the first relation, one gets ω([ξv,X ]) = f iηi, which can be written, using the equivariance of ω:
L
equ
ξ ω(X ) = f iηi. The difference a(X̂) =ω(X )−b is then Lequ-invariant, which means that a(X̂)∈A.

With X = τ(X̂), this is exactly the element α(X) ∈ A identified as an element in B, where α is the
noncommutative 1-form associated to the connection ω.

Using these constructions, one has the following decomposition of any X̂∈NDer(A):

X̂=X +adb = (π∗X )h+ω(X )v+adω(X )︸ ︷︷ ︸
∈ZDer(A)

−ad
a(X̂)︸ ︷︷ ︸

∈Int(A)

2.7 Cohomology and characteristic classes

In ordinary differential geometry, it is possible to relate the cohomology of a fiber bundle to the
cohomology of its base manifold using a spectral sequence based on a Čech-de Rham bicomplex
constructed using differential forms. We will show that such a construction can be performed with
the space of noncommutative differential forms.

Using the noncommutative geometry structures described above, it is also possible to recover
the Chern characteristic classes of the vector bundle E . The construction we present in the following
is purely algebraic, and relies on an adaptation of some work by Lecomte about characteristic classes
associated to splitting of short exact sequence of Lie algebras.

2.7.1 The cohomology ofΩ•
Der(A)

Let us recall the Leray theorem in ordinary differential geometry.

Theorem 2.7.1 (Leray)

For any fiber bundle F //E π //M , there exists a spectral sequence {Er} converging to the coho-
mology of the total space H•

dR(E) with
E
p,q
2 =Hp(U;Hq)
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Figure 2.2: The ordinary Čech-de Rham bicomplex associated to a fiber bundle F //E π //M

where Hq(U) =H
q
dR(π

−1U) is a locally constant presheaf on the good covering U of M.

If M is simply connected and H
q
dR(F) is finite dimensional, then

E
p,q
2 =H

p
dR(M)⊗H

q
dR(F)

One of the proofs of this theorem relies on the construction of a Čech-de Rham bicomplex as
illustrated in the diagram of Fig. 2.2 (see [Bott and Tu, 1995] for instance):

Kp,q =
∏

α0<···<αp

Ωq(EUα0...αp
) =

∏

α0<···<αp

Ωq(π−1Uα0...αp)

with Uα0...αp = Uα0 ∩ ··· ∩Uαp for Uαi ∈ U, where U is a good cover of M, d : Kp,q → Kp,q+1 is the

ordinary de Rham differential on the spacesΩ•(EUα0...αp
), and δ :Kp,q →Kp+1,q is the Čech differential

(δωp)α0...αp+1 =

p+1∑

i=0

(−1)iωα0...α̂i...αp+1 |Uα0...αp+1

One can introduce a noncommutative Čech-de Rham bicomplex for A. In order to do that,
denote by A(U)≃C∞(U)⊗Mn the sections of End(E) restricted over a local trivialisation U ⊂ M
with U ∈U, where as before U is a good cover of M. Denote by gUV :U∩V → SU(n) the transition
functions for E .

For any noncommutative p-form ω = a0d̂a1 ·· · d̂ap ∈ Ω
p
Der(A(U)) and any differential function

g :U →SU(n), define the action of g on ω by ωg = (g−1a0g)d̂(g
−1a1g)·· · d̂(g−1apg).

Lemma 2.7.2 (The presheafΩ•
Der(A(U)))

For any V ⊂U, the maps iVU :Ω
•
Der(A(U))→Ω•

Der(A(V)) given by ω 7→ (ω|V)
gUV (restriction to V and

action of gUV) give to U 7→Ω•
Der(A(U)) a structure of presheaf on M, which we denote by F .
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Using this presheaf, one can introduce the bicomplex

Cp,q(U;F) =
∏

α0<···<αp

Ω
q
Der(A(Uα0...αp))

where by convention the trivialisation over Uα0...αp is the one over Uαp . Let d̂ :C
p,q →Cp,q+1 be the

noncommutative differential, and define δ :Cp,q(U;F)→Cp+1,q(U;F) by (here gαβ = gUαUβ
)

(δω)α0...αp+1 =
p∑

i=0

(−1)i(ωα0...α̂i...αp+1
)|Uα0...αp+1

+(−1)p+1(ωα0...αp)
gαpαp+1
|Uα0...αp+1

Notice that in the last term, the action of gαpαp+1 performs the change of trivialisation from the one
above Uαp to the one above Uαp+1 .

Denote by C−1,q(U;F) =Ω
q
Der(A) and define δ :C−1,q(U;F)→C0,q(U;F) as the restrictions to the

trivialisations of the good cover.

One has the following results about the cohomology ofΩ•
Der(A):

Theorem 2.7.3 (Noncommutative Leray theorem)

The cohomology of the total complex of the bicomplex (C•,•(U;F), d̂,δ) is the cohomology of
Ω•

Der(A).

The spectral sequence {Er} associated to the filtration

FpC(U;F) =
⊕

s≥p

⊕
q≥0C

s,q(U;F)

converges to the cohomology ofΩ•
Der(A) and satisfies

E2 =H
•
dR(M)⊗I(∧•sl∗n)

Recall that the structure of I(∧•sl∗n) is known. One can find the proof of this result in [Masson,
1999].

2.7.2 Characteristic classes and short exact sequences of Lie algebras

Let us now show that the splitting (2.4.4) of the short exact sequence of derivations contains all the
informations needed to recover the Chern characteristic classes of the fiber bundle E . In order to
do that, one has first to introduce a construction by Lecomte (see [Lecomte, 1985]).

Let 0 //i //g
π //h //0 be a short exact sequence of Lie algebras, and let φ : h → g be a mor-

phism which splits it as vector spaces. Define Rφ = dhφ+
1
2
[φ,φ] :

∧2h∗ ⊗ g with dh the differen-
tial on

∧•h∗ ⊗g for the trivial representation of h on g. For any x,y ∈ h, the quantity Rφ(x,y) =
−φ([x,y])+[φ(x),φ(y)] is exactly the obstruction on φ to be a Lie algebra morphism, i.e. a splitting
of Lie algebras.

It is worth to note that Rφ looks like a curvature, and indeed, the following construction treats
it as if it were a curvature. One can show that Rφ belongs to

∧2h∗ ⊗ i and that it satisfies a Bianchi
identity dhRφ+[φ,Rφ] =0.

Now, let V be a vector space and ρ a representation of h on V . Denote by Sqρ(i,V ) the space of

linear symmetric maps ⊗qi→ V which intertwine the adjoint representation ad⊗q

of g on ⊗qi and
the representation ρ◦π of g on V . Let ε be the antisymmetrisation map ⊗•h∗ →∧•h∗.

One has the following result, shown in [Lecomte, 1985]:
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Proposition 2.7.4 (Characteristic classes of a short exact sequence of Lie algebras)

For any α∈ Sqρ(i,V ), let αφ = ε◦α(Rφ ⊗···⊗Rφ)∈∧2qh∗ ⊗V . Then one has dαφ = 0 where d is the
differential of the complex

∧•h∗ ⊗V .
The cohomology class of αφ in H2q(h;V ) does not depends on the choice of φ.
If the short exact sequence is split exact as a Lie algebra short exact sequence then this cohomol-

ogy class is zero.

Let us adapt this construction to the short exact sequence

0 //Int(A) //Der(A)
ρ //Γ(M) //0

It is possible to generalise the previous construction in order to take into account the extra structures
of Z(A)-modules.

We identify Int(A) with A0. The adjoint representation of Der(A) on Int(A) is explicitly given
by adX(ada) = [X,ada] = adX(a) so that it is (X,a) 7→X(a) on A0.

The vector space (and Z(A)-module) we consider is Z(A) itself, on which the representation ρ
is (X, f ) 7→ρ(X)·f .

Let S
q
Z(A)(A0,Z(A)) be the space of Z(A)-linear symmetric maps ⊗q

Z(A)A0 →Z(A) which inter-

twine the adjoint representation ad⊗q

of Der(A) on ⊗q
Z(A)Int(A) =⊗q

Z(A)A0 and the representation
ρ of Der(A) on Z(A).

Notice that, thanks to the Z(A)-linearity, maps in S
q
Z(A)(A0,Z(A)) are local on M, so that one

can look at them in local trivialisations of E . In such a trivialisation over an open set U, the inter-
twining relations can be written, with the usual notation Xloc =X+adγ:

q∑

i=1

ϕ(a1⊗···⊗X·ai⊗···⊗aq) =X·ϕ(a1⊗···⊗aq)

q∑

i=1

ϕ(a1⊗···⊗ [γ,ai]⊗···⊗aq) =0

for any ai :U → sln.

Proposition 2.7.5 (Characteristic classes of E)
The space S

q
Z(A)(A0,Z(A)) is well defined, whichmeans that theZ(A)-linearity and the intertwining

condition are compatible, and one has

S
q
Z(A)(A0,Z(A)) =Pq

I (sln)

the space of invariant polynomials on the Lie algebra sln.
The differential complex in which the characteristic classes for the splitting are defined is

HomZ(A)(
∧•

Z(A)Γ(M),Z(A))

which is the de Rham complex of differential forms on M.
The characteristic classes one computes in this way are precisely the ordinary Chern character-

istic classes of the vector bundle E (or of the principal fiber bundle P).

The last statement relies on the fact that any ordinary connection∇E on E gives rise to a splitting
of the short exact sequence whose curvature is exactly the obstruction to be a morphism of Lie
algebras. The construction based on S

q
Z(A)(A0,Z(A)) = Pq

I (sln) is then the ordinary Chern-Weil
morphism.
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2.8 Invariant noncommutative connections

Many works have been done in the theory of ordinary connections which are symmetric with re-
spect to the action of a Lie group. This leads to understand some ansatz used to get exact solutions
of Yang-Mills theories, and recover or introduce some Yang-Mills models coupled with scalar fields
through these symmetric reductions.

In this section, we generalize these considerations to noncommutative connections on the alge-
bra A, and show that the geometrico-algebraic structures introduced so far are very natural in the
theory of symmetric reductions.

This exposé is based on [Masson and Sérié, 2005], and we refer to this paper for more details
and references.

2.8.1 Action of a Lie group on a principal fiber bundle

Let us recall some general constructions that were introduced in the theory of symmetric reduction
of connections.

Let G //P π //M be a G-principal fiber bundle, and let H be a Lie group acting on the left on
P , such that the action commutes with the right action of G.

Then, the action of H on P induces a left action of H on M. In the following, we assume that
this action is simple, which means that M admits the fiber bundle structure H/H0

//M //M/H
where H0 is an isotropy subgroup: H0 =Hx0 = {h ∈ H / h·x0 = x0}. In particular, all the isotropy
subgroups are isomorphics to one of them. We fix H0 as such an isotropy subgroup.

Then we introduce the following spaces:

• N ={x∈M / Hx =H0} is the space of points in M whose isotropy subgroup is exactly H0.

• NH(H0) ={h∈H / hH0 =H0h} is the normalizer of H0 in H.

• H0 is a normal subgroup of NH(H0), and one has the principal fiber bundle

NH(H0)/H0
//N //M/H

The fiber bundle H/H0
//M //M/H is associated to this bundle for the natural action of

NH(H0)/H0 on H/H0 by (right) multiplication.

Define S=H×G. This group acts on the right on P by the following relation: (h,g)·p=h−1·p·g.
For any p∈ P , let λp :Hπ(p) →G be defined such that h·p= p·λp(h). Then one can show the follow-
ings:

• Sp ={(h,λp(h)) / h∈Hπ(p)} is the isotropy subgroup of p∈ P for the action of S. This implies
that the action of S on P is simple.

• Fix an isotropy subgroup S0 and let Q={p∈P / Sp =S0}. Then

S/S0 //P //M/H is associated to NS(S0)/S0 //Q //M/H

as for the (simple) action of H on M.
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Figure 2.3: In this diagram, some arrows represent true applications and other arrows are part of
diagrams of fibrations, most of them explicitly given before. Some horizontal arrows correspond
to the action of G (or subgroups of G) and some vertical arrows correspond to actions of groups
related to H and S.

Proposition 2.8.1 (Some properties of Q and λ)

The map λp :Hπ(p) →G such that h·p=p·λp(h) satisfies

λp·g(h) = g
−1λp(h)g

For any q∈Q, λq depends only on π(q)∈M: λq(h) =λq·g(h). For a fixed x0 in M whose isotropy
group is H0, we denote this map restricted to Q by λ :H0 →G.

The projection π :P →M induces the fiber bundle structure

ZG(λ(H0)) //Q πQ //π(Q)

with ZG(λ(H0)) ={g∈G / gλ(h0) =λ(h0)g,∀h0 ∈H0}, the centralizer of λ(H0) in G, and π(Q)⊂N .

We summarize in Fig. 2.3 all the fibrations one can obtain relating the spaces introduced so far.
In the following, we will concentrate more precisely on the diagram of fibrations:

NS(S0)/S0� _

��

// Q� _

��

// M/H

S/S0 // P // M/H

In order to connect this construction to some differential structures, we are now interested in
the Lie algebras of the different groups introduced before.

Let us look at the structure of the Lie algebra h of the groupH. One can introduce the following
spaces:
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• h0 is the Lie algebra of H0, the once for all fixed isotropy group.

• k is the Lie algebra of the quotient group NH(H0)/H0.

• n0 =h0⊕k is the Lie algebra of NH(H0), the normalizer of H0 in H.

• l is the vector space in the orthogonal decomposition h = n0 D l such that [n0,l] ⊂ l (this is
called a reductive decomposition of h along n0).

Denote by g the Lie algebra of the group G. As before, we can introduce the following spaces:

• z0 the Lie algebra of ZG(λ(H0)), the centralizer of λ(H0) in G.

• m the vector space in the orthogonal and reductive decomposition g= z0 Dm ([z0,m]⊂m).

The Lie algebra of the group S=H×G is s=h⊕g, and one has

• s0 ={(x0,λ∗x0) / x0 ∈h0} is the Lie algebra of S0, the fixed isotropy group.

• s0⊕k⊕z0 is the Lie algebra of NS(S0), the normalizer of S0 in S.

• k⊕z0 is the Lie algebra of the quotient group NS(S0)/S0.

With these spaces, one has the following result:

Proposition 2.8.2 (Decomposition of TP)

For any q∈Q, one has kQ
q ⊕z0

Q
q ⊂TqQ and TqP =TqQ⊕ lPq ⊕mP

q .

In this proposition, we use the following compact notation: aR
q is the space of tangent vectors

over q associated to elements x∈ a⊂ h or g through the fundamental vector fields on R =Q or P
for the action of the corresponding group H or G.

2.8.2 Invariant noncommutative connections

It is now possible to mix together the geometrical constructions of the previous subsection and the
noncommutative algebraic considerations on the endomorphism algebra associated to aG-principal
fiber bundle P with G=SL(n) or G=SU(n). Let then as beforeH be a compact connected Lie group
acting on P .

Proposition 2.8.3 (Operations of h onΩ•
Der(B) andΩ•

Der(A))

The operation of h on Ω•(P) induced by the action of H on P extends to an operation of h on
Ω•

Der(B) = Ω•(P)⊗Ω•
Der(Mn) (using a trivial action on the second factor). This operation com-

mutes with the operations of gad and gequ, and so reduces to the operation of h on Ω•(P) and to an
operation of h onΩ•

Der(A).

Definition 2.8.4 (Invariant noncommutative connection)

The operation of h onΩ•
Der(A) obtained in Proposition 2.8.3 is our definition of the (noncommuta-

tive) action of H on the algebra A.

A noncommutative connection ∇̂ on the right A-module M = A is said to be h-invariant if,
∀y∈h, ∀X∈Der(A) and ∀a∈A, one has Ly(∇̂Xa) = ∇̂[y,X]a+∇̂X(Lya), where Ly is the Lie derivative
of the operation of h onΩ•

Der(A). �



2.8 Invariant noncommutative connections 97

Using this definition, one obtains the equivalent characterization:

Proposition 2.8.5 (Invariance of the noncommutative 1-form α)

The noncommutative connection ∇̂ is h-invariant if and only if its noncommutative 1-form α is
invariant: Lyα=0 for all y∈h.

This last proposition, combined with the relations between the noncommutative geometries of
the algebrasA andB, permits one to reduce the problem of finding the h-invariant noncommutative
connections ∇̂ on the rightA-moduleM=A to the following problem: find all the noncommutative
1-forms written as α=ω−ϕ∈ [Ω1(P)⊗Mn]⊕ [C∞(P)⊗Mn⊗sl∗n] satisfying the four relations

(Lξv +Ladξ)ω=0 (Lξv +Ladξ)ϕ=0 iξvω− iadξϕ=0 Ly(ω−ϕ) =0

for all ξ∈g= sln and y∈h. The three first relations express the basicity of α for the operation of gequ
onΩ•

Der(B), and the last one is the h-invariance.
This last relation decomposes into two independent equations Lyω= 0 and Lyϕ= 0 for all y∈ h.

This implies in particular that one can restrict the study of ω and ϕ defined over P to the submani-
fold Q⊂P . For all q∈Q, one has then to characterize the maps

ωq :TqP =TqQ⊕ lPq ⊕mP
q →Mn ϕq :g→Mn

Now, the relation iξvω− iadξϕ=0 for all ξ∈g, says that ϕq(ξ) is completely determined by ωq(ξ
v
q).

It is then sufficient to study ωq.
Let us first consider the TqQ part of TqP . Denote by μq :TqQ→Mn the restriction of ωq to TqQ.

One has z0
Q
q ⊂TqQ, so that μ and ϕ are both defined on z0 ⊂ g, where they coincide: μ(zQ) = ϕ(z)

for any z∈ z0. Denote by ηq the restriction of ϕq to z0, which is then also the restriction of μq to z0
Q
q .

It is possible to write down these relations in a compact way through the following result:

Proposition 2.8.6 (The algebra W)

LetW=ZMn(λ∗g0) be the centralizer of λ∗g0 inMn. It is an associative algebra and z0 ⊂Der(W). Let
Ω•

z0
(W) =W⊗∧•z∗

0 be the restricted derivation-based differential calculus associated to it.

There is a natural operation of z0 onΩ•(Q)⊗Ω•
z0
(W), and μ−η∈

(
Ω•(Q)⊗Ω•

z0
(W)

)1
z0-basic

.

In order to take into account the remaining part of μq in TqQ, we introduce the following bigger
differential calculus:

Proposition 2.8.7 (The differential calculusΩ•
k⊕z0

(M/H;W))

There are natural operations of k⊂h and z0 ⊂g on the differential algebraΩ•(Q)⊗Ω•
z0
(W)⊗∧•k∗.

Define
Ω•

k⊕z0
(M/H;W) =

(
Ω•(Q)⊗Ω•

z0
(W)⊗∧•k∗

)
k⊕ z0-basic

The algebra C=Ω0
k⊕z0

(M/H;W) = (C∞(Q)⊗W)k⊕ z0-invariants
is the algebra of sections of a W-fiber

bundle associated to the principal fiber bundle

NS(S0)/S0 //Q //M/H

Recall that kQ
q ⊂TqQ. For any k∈ k, let us define νq(k) =μq(k

Q
q ), so that ν∈C∞(Q)⊗W⊗∧1k∗.

This element contains the dependence of μq over k
Q
q ⊂TqQ, but ν and μ|kQ are not equal as elements

in
(
Ω•(Q)⊗Ω•

z0
(W)⊗∧•k∗

)1
(they do not have the same tri-graduation).
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Proposition 2.8.8 (The TqQ part of TqP)

One has μ− η− ν ∈ Ω1
k⊕z0

(M/H;W), and this expression contains all the information about the
restriction of ω to TQ.

Let us now look at the lPq ⊕mP
q part of TqP .

Recall that [h0 ⊕k,l]⊂ l and [z0,m]⊂m, so that there are natural actions [h0,l⊕m]⊂ l⊕m and
[k⊕z0,l⊕m]⊂ l⊕m. On the other hand, recall that s0⊕k⊕z0 is the Lie algebra of NS(S0) and k⊕z0
is the Lie algebra of NS(S0)/S0, with s0 ={(x0,λ∗x0) / x0 ∈h0}.

On the restriction of ω to Q, the H-invariance and the G-invariance combine together into a
NS(S0)-invariance. One can treat this invariance in two steps: one for S0 and the other one for
NS(S0)/S0.

In order to encode the S0-invariance, let us define the vector space of S0-invariant linear maps
l⊕m→Mn:

F ={f : l⊕m→Mn / f ([x0,v])−[λ∗x0, f (v)] =0, ∀x0 ∈h0, ∀v∈ l⊕m}

on which k⊕ z0 acts naturally using the Lie derivative (Lk+zf )(v) = −f ([k,v])+ [z, f (v)] for any k∈ k

and z∈ z0.
The NS(S0)/S0-invariance is then encoded into the spaceM= (C∞(Q)⊗F )k⊕ z0-invariants

.

Proposition 2.8.9 (The lPq ⊕mP
q part of TqP)

M is the space of sections of the F -fiber bundle associated to the principal fiber bundle

NS(S0)/S0 //Q //M/H

It is a C-bimodule.
The restriction of ω to the subspaces lPq ⊕mP

q is inM.

Using the two previous decomposition of ω, one get the final identification:

Theorem 2.8.10 (The space ofH-invariant noncommutative connections)

The space of H-invariant noncommutative connections on the endomorphism algebra A over the
right A-module A is the spaceΩ1

k⊕z0
(M/H;W)⊕M.

It is important to notice the following facts:

Remark 2.8.11 (Naturality of the spaces)

In this result, all the spaces are constructed from the principal fiber bundle

NS(S0)/S0 //Q //M/H

with the help of geometrical or algebraic methods which are natural in this noncommutative frame-
work:

• C= (C∞(Q)⊗W)k⊕ z0-invariants
is modeled on the finite dimensional algebra W⊂Mn. It looks

like a “reduced algebra” constructed from A, as A itself is a reduced algebra for B.

• Ω•
k⊕z0

(M/H;W) is a natural differential calculus over C.

• M= (C∞(Q)⊗F )k⊕ z0-invariants
is a natural C-bimodule.
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• The space SU(C) acts naturally on the space Ω1
k⊕z0

(M/H;W)⊕M as restriction of noncom-
mutative gauge transformations.

• All these spaces are sections of fiber bundles over the base space M/H. �

We refer to [Masson and Sérié, 2005] for examples of such symmetric noncommutative restric-
tions, in particular the noncommutative generalisation of the well studied situation of spherical
SU(2) gauge fields over a flat four dimensional space-time. For purely noncommutative situations,
the problem reduces to the study of the decomposition of some representation of G in Mn into
irreducible representations.
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