ntroduction	
1	

Modélisation

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Conclusion

Thèse

Présentée par David Zanuttini En vue de l'obtention du Doctorat de l'université de Caen

Simulation des molécules de métaux alcalins M₂⁺ immergées dans des agrégats de néon Structures, propriétés spectroscopiques, dynamiques non-adiabatiques

Thèse dirigée par **Benoit Gervais**

/ 30

Introduction

11.1

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Introduction : Sujet et motivations

- Impact des excitations électroniques sur les matériaux
- Étude des matériaux réels trop complexe
 - \rightarrow Systèmes modèles

Introduction

Structures $M_2^+ Ne_n$

Dynamiques M₂⁺Ne_n

Conclusion

Introduction : Sujet et motivations

- Impact des excitations électroniques sur les matériaux
- Étude des matériaux réels trop complexe

 \rightarrow Systèmes modèles

- Molécules dans des agrégats de gaz rare
 - Accessibles à l'expérience et à la modélisation
 - Agrégat chimiquement inerte
 - Description simple de la structure électronique
 - Excitation contrôlée par laser : Transparence de l'agrégat

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Conclusion

Introduction : Sujet et motivations

- Impact des excitations électroniques sur les matériaux
- Étude des matériaux réels trop complexe

 \rightarrow Systèmes modèles

- Molécules dans des agrégats de gaz rare
 - Accessibles à l'expérience et à la modélisation
 - Agrégat chimiquement inerte
 - Description simple de la structure électronique
 - Excitation contrôlée par laser : Transparence de l'agrégat
- Historique
 - Li en matrice : Spectroscopie, effet Jahn-Teller
 - Cl_2Rg_n : Effet de cage et pression, probabilité de dissociation
 - Ca_2Ar_n : Spectroscopie, croisement de niveaux évités
 - $Na_2^{(+)}Ar_n$: Décalage des transitions, effet de cage
 - $I_2^-Ar_n$ photoexcité : Effet de cage, étude des fragments chargés

Introduction

1.0

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Introduction : Objectifs de la thèse

- Molécule alcaline chargée dans du néon : M_2^+ Ne_n
 - Li_2^+ , Na_2^+ , K_2^+
 - Forte solvatation de la molécule ≠ sur la surface
 - Calcul fiable des états électroniques

Introduction

Modélisation

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Conclusion

Introduction : Objectifs de la thèse

- Molécule alcaline chargée dans du néon : M⁺₂Ne_n
 - Li_2^+ , Na_2^+ , K_2^+
 - Forte solvatation de la molécule \neq sur la surface
 - Calcul fiable des états électroniques
- Effet de la solvatation sur les propriétés de la molécule
 - Géométries d'équilibre dans l'état fondamental
 - Perturbation du spectre d'absorption
- Relaxation de l'énergie d'excitation
 - Influence du couplage « molécule-néon » sur la dynamique
 - Description des transitions non-radiatives
 - Présence de croisements de surfaces
 - Dynamique non-adiabatique

Table des matières

Modélisation Position du problème Structure électronique Dynamique des ions Dynamique non-adiabatique

2 Structures des systèmes M⁺₂Ne_n Méthode de relaxation Géométries d'équilibre Spectroscopie d'absorption

Oynamiques des systèmes M₂⁺Ne_n Aspects techniques Influence de l'ordre des transitions Probabilité de dissociation Effet de cage Analyse globale

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion

Modélisation

Modélisation Position du problème Structure électronique Dynamique des ions Dynamique non-adiabatique

2 Structures des systèmes M₂⁺Ne_n Méthode de relaxation Géométries d'équilibre Spectroscopie d'absorption

Oynamiques des systèmes M⁺₂Ne_n Aspects techniques Influence de l'ordre des transitions Probabilité de dissociation Effet de cage Analyse globale

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion
Position du	ı problème			

- Système complexe composé de noyaux et d'électrons
- Évolution régie par l'équation de Schrödinger
 - Résolution directe impossible !

- Position du problème
 - Système complexe composé de noyaux et d'électrons
 - Évolution régie par l'équation de Schrödinger
 - Résolution directe impossible !
 - Traitement séparé des électrons et des noyaux •

- Représentation adiabatique
- Évolution des noyaux sur une surface d'énergie potentielle

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion

Structure électronique : Hamiltonien modèle

- Systèmes $M_2^+Ne_n: 1$ seul électron de valence
- Hamiltonien modèle à 1 électron

$$\hat{\mathscr{H}}_{\textit{elec}} = -\frac{1}{2}\nabla_{\pmb{r}}^2 + \sum_a \hat{V}_a^{\textit{ps}} + \sum_a \hat{V}_a^{\textit{pol}} + \sum_{a,b>a} V_{ab}^{\textit{pol}}$$

Structure électronique : Hamiltonien modèle

- Systèmes $M_2^+Ne_n : 1$ seul électron de valence
- Hamiltonien modèle à 1 électron

$$\hat{\mathscr{H}}_{elec} = -\frac{1}{2}\nabla_{r}^{2} + \sum_{a}\hat{V}_{a}^{ps} + \sum_{a}\hat{V}_{a}^{pol} + \sum_{a,b>a}V_{ab}^{pol}$$

Pseudo-potentiels : Réduction du nombre d'électrons

Dynamiques M_2^+ Ne_n

Conclusion

Structure électronique : Hamiltonien modèle

- Systèmes $M_2^+Ne_n: 1$ seul électron de valence
- Hamiltonien modèle à 1 électron

$$\hat{\mathcal{H}}_{elec} = -\frac{1}{2}\nabla_{r}^{2} + \sum_{a}\hat{V}_{a}^{ps} + \sum_{a}\hat{V}_{a}^{pol} + \sum_{a,b>a}V_{ab}^{pol}$$

Pseudo-potentiels : Réduction du nombre d'électrons

$$\hat{V}_{a}^{ps} = -\frac{Z_{eff}}{r_{a}} + \sum_{l,m} V_{l}^{eff} |Y_{lm}\rangle \langle Y_{lm}|$$

Polarisation dipolaire des électrons de cœur

$$\hat{V}_{a}^{\textit{pol}} = -\frac{\alpha_{a}}{2} \big[\boldsymbol{f}_{a}^{\textit{elec}} - \sum_{b \neq a} \boldsymbol{F}_{a}^{\textit{ion}\,b} \big]^{2}$$

Dynamiques M_2^+ Ne_n

Conclusion

Structure électronique : Hamiltonien modèle

- Systèmes $M_2^+Ne_n: 1$ seul électron de valence
- Hamiltonien modèle à 1 électron

$$\hat{\mathscr{H}}_{\textit{elec}} = -\frac{1}{2}\nabla_{r}^{2} + \sum_{a} \hat{V}_{a}^{\textit{ps}} + \sum_{a} \hat{V}_{a}^{\textit{pol}} + \sum_{a,b>a} V_{ab}^{\textit{pol}}$$

Pseudo-potentiels : Réduction du nombre d'électrons

$$\hat{V}_{a}^{ps} = -\frac{Z_{eff}}{r_{a}} + \sum_{l,m} V_{l}^{eff} |Y_{lm}\rangle \langle Y_{lm}|$$

Polarisation dipolaire des électrons de cœur

$$\hat{V}_{a}^{\textit{pol}} = -\frac{\alpha_{a}}{2} \left[\boldsymbol{f}_{a}^{\textit{elec}} - \sum_{b \neq a} \boldsymbol{F}_{a}^{\textit{ion}\,b} \right]^{2}$$

• Diagonalisation sur une base de gaussiennes cartésiennes

Introduction Modélisation Structures $M_2^+ Ne_n$ Dynamiques $M_2^+ Ne_n$ Conc

Structure électronique : Test de la modélisation

• Spectres atomique et anionique, potentiels M_2^+ , M_2 , MNe

• Présence de croisements entre niveaux excités

¹I. Schmidt-Mink, W. Müller and W. Meyer. Chem. Phys., 92 263, 1985.

Dynamique des ions

- Surface d'énergie potentielle \rightarrow Propagation des noyaux
- Dynamique classique : Résolution des équations de Newton

$$\frac{\mathrm{d}\boldsymbol{R}_a}{\mathrm{d}t} = \frac{\boldsymbol{P}_a}{M_a} \qquad et \qquad \frac{\mathrm{d}\boldsymbol{P}_a}{\mathrm{d}t} = \boldsymbol{F}_a$$

- Intégration numérique de $oldsymbol{R}$ et $oldsymbol{V}$: Algorithme de Beeman 1

¹D. Beeman. *J. Comp. Phys.*, 20 : 130, 1976. ²R. P. Feynman. *Phys. Rev.*, 56 : 340, 1939. ³P. Pulay. *Mol. Phys.*, 17(2) : 197, 1969.

David ZANUTTIN

Dynamique des ions

- Surface d'énergie potentielle \rightarrow Propagation des noyaux
- Dynamique classique : Résolution des équations de Newton

$$\frac{\mathrm{d}\boldsymbol{R}_a}{\mathrm{d}t} = \frac{\boldsymbol{P}_a}{M_a} \qquad et \qquad \frac{\mathrm{d}\boldsymbol{P}_a}{\mathrm{d}t} = \boldsymbol{F}_a$$

- Intégration numérique de $oldsymbol{R}$ et $oldsymbol{V}$: Algorithme de Beeman 1
- Calcul des forces sur la PES de l'état i

$$F_a = -\frac{\partial \mathscr{E}_i}{\partial \boldsymbol{R}_a} = -\sum_{\mu\nu} c^*_{i\mu} (\frac{\partial h_{\mu\nu}}{\partial \boldsymbol{R}_a} - \mathscr{E}_i \frac{\partial S_{\mu\nu}}{\partial \boldsymbol{R}_a}) c_{i\nu}$$

Théorème de Feynman² et correction de Pulay³

¹D. Beeman. *J. Comp. Phys.*, 20 : 130, 1976. ²R. P. Feynman. *Phys. Rev.*, 56 : 340, 1939. ³P. Pulay. *Mol. Phys.*, 17(2) : 197, 1969. David ZANUTTINI Simulation des systèmes M⁺₀ Ne_n

Lundi 30 novembre 2009 9 /

Dynamique non-adiabatique

- Approximation de Born-Oppenheimer
 - Hamiltonien diagonal : Couplages interdits entre états

¹J. C. Tully. J. Chem. Phys., 93(2) : 1061, 1990.

Dynamique non-adiabatique

- Approximation de Born-Oppenheimer
 - Hamiltonien diagonal : Couplages interdits entre états
- Approximation invalide pour les croisements évités

$$\Phi^{init} = \varphi_1$$

$$\downarrow$$
Dépeuplement
$$\downarrow$$

$$\Phi^{final} = a_1 \varphi_1 + a_2 \varphi_2$$

đ

¹ J. C. Tul	y. J.	Chem.	Phys.,	93(2)	:	1061,	1990.
------------------------	-------	-------	--------	-------	---	-------	-------

Dynamique non-adiabatique

- Approximation de Born-Oppenheimer
 - Hamiltonien diagonal : Couplages interdits entre états
- Approximation invalide pour les croisements évités

• Solution algorithmique : Méthode de saut de surface de Tully¹

 ¹J. C. Tully. J. Chem. Phys., 93(2): 1061, 1990.

 David ZANUTTINI
 Simulation des systèmes M⁺₂Ne_n
 Lundi <u>30 novembre 2009</u>
 10 / 3

Introduction	Modélisation	Structures M_2^+ Ne _n	Dynamiques $M_2^+ Ne_n$	Conclusion

Dynamique non-adiabatique : Algorithme de saut de surface

• Calcul de la variation de population

$$\frac{\partial |a_i|^2}{\partial t} = \sum_j b_{ij} = -2 \sum_j \Re(a_{ij}^* \boldsymbol{V} \underbrace{\langle \varphi_i | \, \partial \varphi_j / \partial \boldsymbol{R} \rangle}_{\boldsymbol{d}_{ij}})$$

Dynamique non-adiabatique : Algorithme de saut de surface

• Calcul de la variation de population

$$\frac{\partial |a_i|^2}{\partial t} = \sum_j b_{ij} = -2 \sum_j \Re(a_{ij}^* \boldsymbol{V} \underbrace{\langle \varphi_i | \, \partial \varphi_j / \partial \boldsymbol{R} \rangle}_{\boldsymbol{d}_{ij}})$$

• Algorithme basé sur la probabilité g_{ij} du saut $i \rightarrow j$

$$g_{ij} = b_{ij} \delta t/|a_i^2|$$
 • Si $g_{ij} < 0$: Saut interdit
• Si $g_{ij} > 0$: Saut permis si $g_{ij} > \rho_{rand}$

Dynamique non-adiabatique : Algorithme de saut de surface

• Calcul de la variation de population

$$\frac{\partial |a_i|^2}{\partial t} = \sum_j b_{ij} = -2 \sum_j \Re(a_{ij}^* \mathbf{V} \underbrace{\langle \varphi_i | \, \partial \varphi_j / \partial \mathbf{R} \rangle}_{\mathbf{d}_{ij}})$$

• Algorithme basé sur la probabilité g_{ij} du saut $i \rightarrow j$

$$g_{ij} = b_{ij} \delta t / |a_i^2|$$
 • Si $g_{ij} < 0$: Saut interdit
• Si $g_{ij} > 0$: Saut permis si $g_{ij} > \rho_{rand}$

Conservation de l'énergie

 ${m p'}_a = {m p}_a + eta {m q}_a$ • Correction des impulsions ioniques

1 / 30

roduction	Ν
	1

- Initialisation
 - Paramètres d'entrée : $\{oldsymbol{R}_0, oldsymbol{V}_0,$ état $i\}$
 - Résolution de l'hamiltonien électronique : $\{\mathscr{E}_k, |\varphi_k\rangle\}$

- Initialisation
 - Paramètres d'entrée : $\{oldsymbol{R}_0, oldsymbol{V}_0,$ état $i\}$
 - Résolution de l'hamiltonien électronique : $\{\mathscr{E}_k, |\varphi_k\rangle\}$
- Propagation des ions
 - Calcul des forces dans l'état i
 - Algorithme de Beeman : $\{m{R},\,m{V}\}$

- Initialisation
 - Paramètres d'entrée : $\{oldsymbol{R}_0, oldsymbol{V}_0,$ état $i\}$
 - Résolution de l'hamiltonien électronique : $\{\mathscr{E}_k, |\varphi_k\rangle\}$
- Propagation des ions
 - Calcul des forces dans l'état i
 - Algorithme de Beeman : $\{m{R},\,m{V}\}$
- Calcul de la structure électronique
 - Résolution de l'hamiltonien électronique : $\{\mathscr{E}_k, |\varphi_k\rangle\}$
 - Suivi des orbitales par continuité de la fonction d'onde

- Initialisation
 - Paramètres d'entrée : $\{oldsymbol{R}_0, oldsymbol{V}_0,$ état $i\}$
 - Résolution de l'hamiltonien électronique : $\{\mathscr{E}_k,\,|\varphi_k\rangle\}$
- Propagation des ions
 - Calcul des forces dans l'état i
 - Algorithme de Beeman : $\{m{R},\,m{V}\}$
- Calcul de la structure électronique
 - Résolution de l'hamiltonien électronique : $\{\mathscr{E}_k, |\varphi_k\rangle\}$
 - Suivi des orbitales par continuité de la fonction d'onde
- Traitement non-adiabatique
 - Calcul des couplages non-adiabatiques et des populations
 - Algorithme de saut de surface de Tully
 - i' = i : Conservation de l'état : $\{\mathscr{E}_i, |\varphi_i\rangle\}$
 - i' = j : Changement d'état et d'impulsions : $\{\mathscr{E}_j, |\varphi_j\rangle, p'\}$
 - Retour à l'étape de propagation avec $i=i^\prime$

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Conclusion

Structures des systèmes $M_2^+Ne_n$

Modélisation Position du problème Structure électronique Dynamique des ions Dynamique non-adiabatique

2 Structures des systèmes M⁺₂Ne_n Méthode de relaxation Géométries d'équilibre Spectroscopie d'absorption

Oynamiques des systèmes M₂⁺Ne_n Aspects techniques Influence de l'ordre des transition Probabilité de dissociation Effet de cage Analyse globale

- Géométries d'équilibre : Minima de l'énergie totale
- Choix d'une géométrie initiale
- Dynamique amortie jusqu'à un minimum local : Isomère
 - Vitesse remise à zéro si $oldsymbol{F}_X^a.oldsymbol{V}_X^a < 0$
 - Dynamique terminée quand l'énergie cinétique est nulle
- Test de plusieurs géométries initiales pour explorer la PES
- Obtention de l'isomère le plus stable

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques M_2^+ Ne $_n$	Conclusion

Géométries d'équilibre : $Li_2^+Ne_n$

Première couche de solvatation pour n = 22 de symétrie D_{4h}

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion
Céomótrios	d'équilibre			

Géométries d'équilibre : $Na_2^+Ne_n$

Première couche de solvatation pour n = 27 de symétrie D_{5h}

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques M_2^+ Ne $_n$	Conclusion
<u> </u>	17.2			

Géométries d'équilibre : $K_2^+ Ne_n$

		1111		
Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion

Géométries d'équilibre : $K_2^+ Ne_n$

Première couche de solvatation autour de n=100?

David ZANUTTIN

3 / 30

Géométries d'équilibre : Analyse globale

• Dépendance de la forme de l'orbitale $1^2\Sigma_q^+$

¹J. Douady. J. Chem. Phys., 129(18) : 4303, 2008.

¹V. S. Batista. J. Chem. Phys., 106(17): 7102, 1997.

David ZANUTTIN

Simulation des systèmes $M_2^+ Ne_n$

Géométries d'équilibre : Analyse globale

• Dépendance de la forme de l'orbitale $1^2\Sigma_q^+$

- Dépendance du rapport des énergies E_{M^+Ne} et E_{NeNe}
 - $Li_2^+Ne_n$: La liaison M^+Ne impose la symétrie D_{4h}
 - $Na_2^+Ne_n$: Équilibre entre les liaisons favorisant la symétrie D_{5h}
 - $K_2^+ Ne_n$: La liaison NeNe impose l'arrangement icosaédrique
- ¹J. Douady. J. Chem. Phys., 129(18) : 4303, 2008.
- ¹V. S. Batista. J. Chem. Phys., 106(17): 7102, 1997.

David ZANUTTINI

Simulation des systèmes M_2^+ Ne_n

Géométries d'équilibre : Analyse globale

• Dépendance de la forme de l'orbitale $1^2\Sigma_q^+$

- Dépendance du rapport des énergies E_{M^+Ne} et E_{NeNe}
 - $Li_2^+Ne_n$: La liaison M^+Ne impose la symétrie D_{4h}
 - $\mathrm{Na}_2^+\mathrm{Ne}_n$: Équilibre entre les liaisons favorisant la symétrie D_{5h}
 - $K_2^+ Ne_n^-$: La liaison NeNe impose l'arrangement icosaédrique
- Similitudes avec les systèmes $Na_2^+Ar_n^{-1}$ et $I_2^-Ar_n^{-2}$

¹J. Douady. J. Chem. Phys., 129(18) : 4303, 2008.

¹V. S. Batista. J. Chem. Phys., 106(17): 7102, 1997. < □ > < ∂ > < ≥ > < ≥ >

David ZANUTTINI

Spectroscopie d'absorption : $Na_2^+Ne_n$

• Forte influence de l'agrégat sur les transitions

- Inversion de l'ordre naturel des états $1^2\Sigma_u^+$ et $1^2\Pi_u$

Dynamiques des systèmes $M_2^+Ne_n$

Modélisation Position du problème Structure électronique Dynamique des ions Dynamique non-adiabatique

2 Structures des systèmes M⁺₂Ne_n Méthode de relaxation Géométries d'équilibre Spectroscopie d'absorption

Oynamiques des systèmes M₂⁺Ne_n Aspects techniques Influence de l'ordre des transitions Probabilité de dissociation Effet de cage Analyse globale

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques M ⁺ ₂ Ne _n ∎	Conclusion

Aspects techniques

Temps des dynamiques

- Pas de temps 25-30 u.a. : Conservation de l'énergie
- Temps total 5 ps : Systèmes « stable »
- Temps de calcul : Proportionnel à N^3
- Conditions initiales
 - Distribution de Maxwell-Boltzman à 15 K
 - Thermalisation pendant 1 ps
- Photo-excitation de la molécule « à la main »
- Analyse des fragments
 - Énergies, distances, charges
 - Algorithme de nucléation

Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusio
TITIT		101111	111

Influence de l'ordre des transitions

• $Na_2^+Ne_6$: Ordre naturel $\mathscr{E}_{1^2\Sigma_u^+} < \mathscr{E}_{1^2\Pi_u}$

Modélisation Structures $M_2^+ Ne_n$ Dynamiques $M_2^+ Ne_n$

Influence de l'ordre des transitions

• $Na_2^+Ne_6$: Ordre naturel $\mathscr{E}_{1^2\Sigma_u^+} < \mathscr{E}_{1^2\Pi_u}$

Dynamique sur l'état $1^2 \Pi_u$ -0.1 Énergie potentielle (u.a.) 1²Π_u -0.15 $1^{2}\Sigma_{1}^{+}$ -0.2 0 50000 100000 Temps (u.a.) Absence de croisement Stabilisation

Faible éjection du néon

Modélisation Structures M_2^+ Ne_n Dynam

Dynamiques $M_2^+ Ne_n$

Conclusion

Influence de l'ordre des transitions

• $Na_2^+Ne_6$: Ordre naturel $\mathscr{E}_{1^2\Sigma_u^+} < \mathscr{E}_{1^2\Pi_u}$

Modélisation Structures M_2^+ Ne_n Dynam

Dynamiques $M_2^+ Ne_n$

Conclusion

Influence de l'ordre des transitions

• $Na_2^+Ne_6$: Ordre naturel $\mathscr{E}_{1^2\Sigma_u^+} < \mathscr{E}_{1^2\Pi_u}$

Similaire au cas libre : Faible influence de l'agrégat

uction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques M ⁺ ₂ Ne _n	Conclus

Influence de l'ordre des transitions

• $Na_2^+Ne_{12}$: Ordre inversé $\mathscr{E}_{1^2\Pi_u} < \mathscr{E}_{1^2\Sigma_u^+}$

n Modélisation Structures $M_2^+ Ne_n$ Dynamiques $M_2^+ Ne_n$

Conclusion

Influence de l'ordre des transitions

• $Na_2^+Ne_{12}$: Ordre inversé $\mathscr{E}_{1^2\Pi_u} < \mathscr{E}_{1^2\Sigma_u^+}$

Dynamique sur l'état $1^2 \Pi_u$

 $\begin{array}{cccc} \mathsf{Introduction} & \mathsf{Modélisation} & \mathsf{Structures} \ \mathsf{M}_2^+ \ \mathsf{Ne}_n & \mathsf{Dynamiques} \ \mathsf{M}_2^+ \ \mathsf{Ne}_n & \mathsf{Conclusion} \\ \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} \\ \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} & \mathsf{Introduction} \\ \mathsf{Introduction} & \mathsf{Ne}_2 & \mathsf{Introduction} & \mathsf{Introduc$

Influence de l'ordre des transitions

• $Na_2^+Ne_{12}$: Ordre inversé $\mathscr{E}_{1^2\Pi_u} < \mathscr{E}_{1^2\Sigma_u^+}$

iction Modélisation Structures M_2^+ Ne_n Dynamiques M_2^+ Ne_n

Influence de l'ordre des transitions

• $Na_2^+Ne_{12}$: Ordre inversé $\mathscr{E}_{1^2\Pi_u} < \mathscr{E}_{1^2\Sigma_u^+}$

Dynamique sur l'état $1^2 \Pi_u$

Structures $M_2^+ Ne_n$

Dynamiques $M_2^+ Ne_n$

Зр

²П.,

3s

30000

Influence de l'ordre des transitions

 $Na_2^+Ne_{12}$: Ordre inversé $\mathscr{E}_{1^2\Pi_u} < \mathscr{E}_{1^2\Sigma_u^+}$

Dynamique sur l'état $1^2 \Pi_u$

Transition sur l'état $1^2\Sigma_u^+$

Modélisation Structures M⁺₂Ne_n Dynamiq

Dynamiques $M_2^+ Ne_n$

Conclusion

Influence de l'ordre des transitions

• $Na_2^+Ne_{12}$: Ordre inversé $\mathscr{E}_{1^2\Pi_u} < \mathscr{E}_{1^2\Sigma_u^+}$

Dynamique sur l'état $1^2 \Pi_u$

Transition sur l'état $1^2\Sigma_u^+$

Probabilité de dissociation : $Li_2^+Ne_n$

- Nombre de trajectoires dissociatives
- Ordre des transitions inversé ∀ n (Cas Na⁺₂Ne₁₂)

- $0 \le n \le 1$: Pas de couplage : Similaire au cas libre
- $2 \leq n \leq 17$: Couplages forts : Déséquilibre entre sauts \uparrow et \downarrow
- $18 \le n \le 22$: Apparition de l'effet de cage

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion

Effet de cage : $Li_2^+Ne_{21}$

 Introduction
 Modélisation
 Structures $M_2^+ Ne_n$ Dynamiques $M_2^+ Ne_n$

 III
 IIIIIII
 IIIIIII
 IIIIIIII

Effet de cage : $Li_2^+Ne_{21}$

- **1** Excitation $1^2 \Sigma_q^+ \rightarrow 1^2 \Pi_u$
- **2** Transformation $1^2 \Pi_u \rightarrow 1^2 \Sigma_u^+$
- ${\scriptstyle 60}$ Élongation de Li $_2^+$
- O Transfert d'énergie au néon
- Saut sur le fondamental
- 6 Localisation de l'électron
- 70 Recombinaison de la molécule

Introduction	Modélisation	Structures M_2^+ Ne $_n$	Dynamiques M ⁺ ₂ Ne _n	Conclusion
Analyse glo	obale			

- Ordre naturel des états $1^2\Sigma_u^+$ et $1^2\Pi_u$
 - Pas de croisement
 - Trajectoires similaires au cas libre
- Ordre inversé des états $1^2\Sigma^+_u$ et $1^2\Pi_u$
 - Présence de croisements
 - $1^2 \Pi_u$ dissociatif car saut interdit
 - $1^2\Sigma_u^+$ dissociatif selon force du couplage
- Couplages et évaporation plus importants pour Li que Na et K
- Effet de cage pour Li_2^+Ne_n avec $n\gtrsim 18$

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques M_2^+ Ne $_n$	Conclusion
Conclusion				

- Méthode adaptée pour l'analyse de la relaxation
 - Calcul précis et rapide des états électroniques
 - Insertion des couplages non-adiabatiques
- Propriétés statiques
 - Obtention des géométries d'équilibre
 - Spectre d'absorption fortement perturbé par l'environnement
- Dynamiques
 - Importance de l'ordre des transitions
 - Influence forte de l'environnement sur la dissociation
 - Effet de cage pour Li⁺₂Ne_n

Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques $M_2^+ Ne_n$	Conclusion
-				

Perspectives

- Traitement quantique des noyaux pour n petit
 - Confrontation modèle de saut de surface
 - Effet des interférences
- Systèmes plus complexes en méthode DIM
 - Référence pour la mise en place
- Confrontation expérimentale
 - Expérience de type pompe-sonde
 - Spectre de photo-électrons

	Introduction	Modélisation	Structures $M_2^+ Ne_n$	Dynamiques M_2^+ Ne $_n$	Conclusion
--	--------------	--------------	-------------------------	----------------------------	------------

Merci de votre attention...

