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capillarité et métastabilité dans deux liquides d’exception

From helium to water:
capillarity and metastability in two exceptional liquids

Soutenue le 2 Novembre 2009 devant le jury composé de :
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“The face of the water, in time, became a wonderful book [. . .].
And it was not a book to be read once and thrown aside,

for it had a new story to tell every day.”

Mark Twain, Life on the Mississippi.
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Introduction

Water and helium: two exceptional liquids

Water is the most familiar liquid, and yet it hides a number of secrets. An inter-
esting website1 lists a total of 66 anomalous properties of water. Probably the most
famous one is its density maximum, which occurs near 4oC under atmospheric pres-
sure: whereas usual liquids expand upon warming, water expands upon cooling, at
least between 0 and 4oC.

This can be seen as a macroscopic manifestation of a fundamental microscopic
property of water: the existence of hydrogen bonds. Each water molecule is made of one
oxygen and two hydrogen atoms; the electronic charges are not uniformly distributed
among the three atoms, which leads to an attraction of the hydrogen atoms towards
the oxygen atoms of other molecules. The hydrogen bond is not a real permanent
bond: it is weaker than the covalent bond inside the molecule, but still strong enough
(around 5 times the thermal energy kBT ) to determine a number of water properties.
The distance between molecules is larger when a hydrogen bond is formed. At low
temperature, many hydrogen bonds are present, and the liquid has a low density; when
the temperature increases, hydrogen bonds are broken, and the density increases, which
explains the unusual expansion of water upon cooling. In hexagonal ice, all the possible
hydrogen bonds are formed, so that the density is even lower than the liquid, which
explains why ice cubes float over water, and why the liquid-hexagonal ice equilibrium
line has a negative slope in the phase diagram shown on Fig. 1.

Interestingly, helium 4 also has a line of density maxima, and even a line of density
minima. But its most prominent peculiarity is a macroscopic manifestation of its
quantum nature: superfluidity. Below a temperature of around 2K, liquid helium
becomes a super -fluid, able to flow without viscosity. This is one of its quantum
properties. Another one is that, because of the quantum zero point motion of the light
helium atoms, the solid phase forms only at high pressure: there is no triple point and
the liquid can be observed down to the absolute zero (Fig. 1).

Capillarity and metastability

Capillarity covers all the phenomena associated with interfaces, like the shape of
soap bubbles, or that of a liquid meniscus near a wall or in a pore.

Metastability describes the states of matter when it exists in a phase which is not
the most stable one. An example of a metastable phase of water is the liquid phase,
when cooled below 0oC under atmospheric pressure: if the water is pristine and its
container very clean, the liquid will not freeze right away, and instead remain in a
supercooled state. The droplets in a freezing drizzle are in this state, but they freeze

1http://www.lsbu.ac.uk/water/anmlies.html
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12 INTRODUCTION

Figure 1: Phase diagram of water (left) and helium 4 (right) in the pressure-temperature
plane.

when they hit the ground, which can have hazardous consequences. Similarly, a liquid
can be superheated above its boiling point, until cavitation (the nucleation of bubbles)
occurs.

Metastability is related to capillarity because of the importance of interfaces. Be-
cause of the relative stability of phases, it is energetically favorable to transform a
metastable sample into the stable phase. However, for this to happen, the new phase
has to nucleate, i. e. to appear as a tiny seed inside the metastable sample: this
involves the creation of an interface which is energetically costly. The competition
between the favorable volume energy and the costly interfacial energy results in an
energy barrier to be overcome before the new phase can grow steadily.

In this report, we will illustrate the concepts of capillarity and metastability with
examples mostly involving helium or water. The study of metastable liquids can bring
original information about their structure. In the case of water, we have measured how
far the liquid could be brought away from equilibrium with the vapor: we have thus
explored the region of negative pressures, where the liquid is put under mechanical
tension. Its density is then reduced, and the experiments probe the long range attrac-
tion part of the interaction between molecules. Our results point out a new anomaly
of water in this region. In helium, we have explored another kind of metastability, this
time by applying pressure above freezing: the liquid becomes denser and metastable
compared to the solid. This raises interesting questions about the evolution of super-
fluidity, which is based on quantum exchange of atoms, when the atoms become more
and more packed together.

Chapter 1 focuses on capillarity, with particular attention given to the liquid-solid
interface of helium and the liquid-vapor interface of water. Some elements concerning
adsorption in pores are also given. Chapter 2 discusses metastability from a theoretical
point of view; it gives a quantitative relation with capillarity, and makes the connection
between cavitation and the above mentioned lines of density maxima in helium and
water. It also adresses the quantum properties of metastable helium, and makes a
brief digression about nucleation in confined geometry. Chapter 3 summarizes our
experiments on cavitation in water and crystallization in helium, based on the same
acoustic technique.



Chapter 1
Capillarity

Capillarity is the study of interfacial phenomena. A recent book [1] gives an excel-
lent introduction to the field. In this chapter we will review our contribution, which
concerns mainly the liquid-solid interface of helium and the liquid-vapor interface of
water. Section 1.1 reports an important experiment on grain boundaries in solid he-
lium. We are interested in their wetting properties, i.e. how the interface between
solid grains is wet by the liquid, and how it is affected by the cell walls. These prop-
erties have consequences in the debate about supersolidity of helium and also in the
more general field of interfacial melting. An interpretation based on the simple capil-
lary approximation, where interfaces are infinitely thin, will be described. Section 1.2
addresses the general topic of liquids confined in nanopores, where the interaction
with the substrate must be taken into account. Section 1.3 goes beyond the capillary
approximation, introducing density functional theory to treat interfaces.

1.1 Grain boundaries in solid helium

Helium can remain liquid down to the absolute zero (Fig. 1 in the Introduction).
This makes it a unique substance which can be obtained with an outstanding purity.
To produce solid helium, one has to apply pressures above 2.5MPa, because of the
quantum zero point motion of the very light helium atoms. Thanks to the high purity
and low temperature, helium crystals can be grown with very few defects. The surface
of helium crystals is a fascinating system which has been extensively studied, see
Ref. [2] for a review. In particular, the liquid-solid interface is very mobile at low
temperature, and is able to sustain the propagation of capillary waves, just as those
generated by a small stone thrown in a pond. This makes helium one of the rare
substances where the liquid-solid interfacial tension could be directly measured: ¾LS

varies from 0.16 to 0.18mJm−2 depending on orientation [2]; in the following we will
neglect this small anisotropy. We will now review our work on the interface between
two crystals, which is called a grain boundary (GB).

1.1.1 Observations

In this section we describe our recent measurements of the wetting properties of
GBs between helium crystals at low temperature (50mK), made during the post-doc of
Satoshi Sasaki [C1]1. A detailed description of the experimental setup and procedure is
given in Ref. [C2]. In brief, we use an optical dilution cryostat to look at crystals grown
in a square cell whose dimensions are 11mm× 11mm× 3mm. The small thickness of
3mm is chosen so that the GBs lie in planes oriented nearly perpendicular to the two

1F. Caupin’s publications cited in the text are distinguished from other references by the letter C,
and two separate bibliographies are provided.
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Figure 1.1: Left panel : Three couples of images showing equilibrium shapes (a,c,e) together
with growth shapes which reveal the crystal orientation (b,d,f). When the two crystal grains
have a large difference in orientation (a,b), their boundary ends as a deep groove at the liquid-
solid interface. A zoom of (a) shows that the contact lines of the GB with the windows are in
fact liquid channels (g). Crystals with similar orientations can be obtained by direct growth
(c-f). In this case, the groove is shallow with no liquid channels on the windows. Two crosses
carved on the windows (lower right corners) help adjusting the focusing. The cell dimensions
are 11mm×11mm×3mm. Upper right panel : The dihedral angle 2µ is determined by fitting
each crystal profile with the Laplace equation near the groove nadir. Lower right panel : The
half-width w as a function of depth z for 5 different samples. Good agreement with Eq. 1.4
is found. Each data set has been shifted upward starting from the lowest one, in increments
of 0.025mm to avoid overlaps [C1,C3].

windows, that is parallel to the optical axis. At the same time, 3mm is large enough
compared to the capillary length lc =

√
¾LS/ [(½S − ½L)g] ≃ 1mm (g is the gravity and

½i the mass per unit volume of the phase i=L for liquid, S for solid), and to reduce
the effect of the windows on the crystal shape at the center of the cell. Results in
a thicker cell (10mm) are qualitatively similar, but the GBs are not perpendicular
to the windows, making quantitative measurements difficult. We shine parallel white
light through the sample and take images with a CCD camera. Both liquid and solid
are transparent, but they have a small difference in refractive index that makes the
interface visible. To prepare a GB, we use the following procedure: we first fill the cell
with liquid at a pressure near freezing; we then inject mass sufficiently rapidly to avoid
closing the fill line with a solid plug, and we obtain a cell full of a solid sample with
many grains;2 we then melt the sample slowly until we keep only two grains which can
finally be grown slowly to fill the lower part of the cell and exhibit a nearly vertical GB
in the middle. An example of the bicrystal obtained is shown on Fig. 1.1 (a). When

2It is interesting to mention that we were able to detect strong light scattering from such sam-
ples, revealing the presence of inhomogeneities in density (for instance liquid droplets) with sizes
comparable to the wavelength of light (600 nm) [C3].
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the crystals grow at low temperature, they exhibit facets that reveal the difference in
orientation (Fig. 1.1 (b)). Two main features appear in Fig. 1.1 (a): the groove at the
liquid-solid interface and the two roughly vertical lines; see Fig. 1.1 (g) for a zoom.

The groove is created by the GB when emerging at the liquid-solid interface in
order to satisfy the mechanical equilibrium between the three interfaces involved. We
have measured µ1 and µ2, the angles at the nadir of the groove between the liquid-solid
interface and the extrapolation of the GB plane into the liquid; the dihedral angle is
then defined as 2µ = µ1 + µ2. The equilibrium condition is:

¾GB = ¾LS(cos µ1 + cos µ2), (1.1)

where ¾GB is the GB energy. Photographs such as the one displayed on Fig. 1.1 (upper
right panel) show that µ is not zero, that is that the GB is not wet by the liquid, even
at the liquid-solid equilibrium. In other words, the GB energy ¾GB is less than 2¾LS.
To measure µ1 and µ2, we fitted the interface profiles near the bottom of the groove
with a one dimensional Laplace equation [C2]. We obtained µ = 11 ± 3, 16 ± 3, and
14.5 ± 4 o for three different samples. The dihedral angle may vary from one sample
to another, because of the various misorientation between the two grains.

We now turn to the roughly vertical lines on Figs. 1.1 (a,b,g). They correspond
to liquid channels opening on the windows, because of the interfacial energy gained
by replacing some solid on the window by the liquid. We have measured the channel
width 2w and found that it was inversely proportional to the depth z below the top
of the grains (Fig. 1.1, lower right panel). The liquid channel exists for all samples
we made by fast injection. On the other hand, we could make two grains with similar
orientation by nucleation in the cell in response to a pressure pulse made by closing
a valve on the fill line (Figs. 1.1 (c-f)): they showed a shallower groove with larger µ
(indicating a low energy GB, perhaps a stacking fault), and no liquid channel. These
features can be explained with a simple capillary model described in the next section.

1.1.2 Capillary model

As shown on Fig. 1.1 (a,b,g), a liquid channel can exist at the contact line between
the GB and the glass window of the cell. This phenomenon is due to the glass wall
being preferentially wet, although not completely, by the liquid phase. It occurs when
the GB energy ¾GB is large enough.

Figure 1.2 (a) shows a schematic view of a liquid channel. In the present treatment
we neglect elasticity, and assume the surface tensions to be isotropic. Gravity and the
force balance on the contact line between the liquid and GB then require the GB to lie
in a vertical plane perpendicular to the wall, and the liquid channel to be symmetric
with respect to this plane. Let µc and µGB = 2µ be the contact angle of the liquid-solid
interface on the wall, and the opening angle at the liquid-GB contact line, respectively.
We have

cos µc =
¾SW − ¾LW

¾LS

and cos µ =
¾GB

2¾LS

, (1.2)

where ¾LS, ¾SW, ¾LW, and ¾GB the liquid-solid, solid-wall, liquid-wall, and GB surface
tensions, respectively.

e and 2w are the maximum thickness and width of the liquid channel, and R the
horizontal radius of curvature of the liquid-solid interface (see Fig. 1.2 (b)). Trigonom-
etry gives the relations:

e = R (cos µc − sin µ) , (1.3)
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Figure 1.2: (a) Three dimensional view of the contact between a grain boundary (dash-
dotted line) and a wall. The hatched area shows the contact of the wall with the solid. (b)
Horizontal cross section of the liquid channel near the wall [C1,C3].

and
w = R (cos µ − sin µc) . (1.4)

We can also calculate the cross section of the channel:

Σ = R2
[
(cos µc − sin µ) (cos µ − sin µc) + cos(µ + µc) + µ + µc − ¼

2

]
. (1.5)

Our aim is to compute e and w as a function of the depth z. We take z = 0 at the
flat liquid-solid interface at the top of the grains, where the pressure is the equilibrium
pressure Peq (see Fig. 1.2 (a)). Hydrostatic equilibrium in the liquid implies that the
liquid pressure is PL(z) = Peq + ½Lgz. The chemical potential must be uniform:

¹L[PL(z)]− gz = ¹L[Peq] = ¹S[PS(z)]− gz = ¹S[Peq] +
PS(z)− Peq

½S
− gz. (1.6)

As ¹S[Peq] = ¹L[Peq] = ¹eq, this implies hydrostatic equilibrium in both phases:
PL(z) = Peq + ½Lgz and PS(z) = Peq + ½Cgz. The pressure difference through the
liquid-solid interface sets its curvature. At depths large enough compared to the cap-
illary length lc, the curvature in the horizontal plane dominates, and the liquid-solid
interfaces in a horizontal plane are circular arcs of radius:

R =
¾LS

PS(z)− PL(z)
=

lc
2

z
, (1.7)

with the liquid on the convex side. The measurements confirm that e and w are
inversely proportional to z (Fig. 1.1, lower right panel); the coefficient is compatible
with the value of the contact angle on the glass wall (µc ≃ 45 o) that we have also
measured directly [C2].

The liquid channel exists if and only if e and w are positive, that is µc < ¼/2,
µ < ¼/2, and µ + µc < ¼/2. It is easy to see from Fig. 1.2 (b) that these are the
conditions required to construct an arc with the correct contact angles, and the liquid
on the convex side. This condition also explains why when µ is too large, as for
the shallow grooves on Figs. 1.1 (c-f), the GB remains in contact with the window.
Reasoning with the energy shows that, when the above conditions is satisfied, the
channel is stable and that there is no energy barrier separating it from the state with
no channel: it forms spontaneously [C2].
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1.1.3 Consequences

Interfacial melting

At the free surface of a crystal, the particles are in a state intermediate between
the bulk solid and the bulk liquid. Therefore it seems reasonable to expect that the
free surfaces will melt more easily. This explains why, usually, a crystal cannot be
superheated, that is heated to a temperature above its bulk melting temperature: it
melts from its free surface. Surface melting has been observed experimentally; see for
instance Ref. [3] for a review. What should we expect if the free surfaces are absent?
This can be achieved by enclosing tightly the crystal in a box, or by heating only the
center of a crystal away from its boundaries. One may expect that internal surfaces,
namely the GBs in a polycrystal, may play a role: they could provide a favorable site
for melting. The issue of GB melting has been a subject of debate [3]. Our observations
on solid helium shed new light on the phenomenon.

We have found that the dihedral angle was always non zero, showing that the GB
was only partially wet by the liquid, even at the liquid-solid equilibrium. It means that
the thickness of the GB remains microscopic: it is not invaded by a thick liquid layer.
This is in agreement with recent simulations [4], that found a GB thickness around 3
atomic layers. It is also consistent with a general argument from Lipowsky [5]: systems
with long range forces, such as helium, should exhibit only partial GB wetting, whereas
systems with short ranges forces can show complete wetting and premelting of a GB. In
a review of this topic [C4], we have discussed other works on GB melting. A colloidal
system, with short range forces, does show GB premelting [6]. Our findings also point
out that observations on films, like those on the face centered cubic phase of helium at
high pressure [7] must be taken with caution: liquid channels may exist at the contact
between a GB and a wall; when the bulk melting temperature is approached, the
channels could become as thick as the film and make the grains detach, even if bulk
grains would not. The advantage of studying GB in helium is also to avoid melting
due to impurities [3].

Supersolidity

Another consequence of our results lies in the context of supersolidity of helium.
Superfluidity occurs when indistinguishable and delocalized particles can flow without
resistance, as in liquid helium at low temperature. The supersolid state of matter
would be realized when superfluidity coexists with the broken translational symmetry
associated with the crystalline state. This topic was revived in 2004 with the exper-
iments of Kim and Chan [8, 9]. They studied a torsional oscillator filled with solid
helium 4. They noticed that the period of the oscillator dropped below a critical tem-
perature around 200mK, just as if part of the solid mass decoupled from the oscillating
container. Furthermore, they observed that the period drop disappeared if the oscil-
lator exceeded a critical velocity, and also if a barrier was put to block circular flow
in a torsional oscillator with an annular channel. These features are similar to what
is observed with liquid helium 4, with the difference that only part of the solid mass
decouples, whereas all the liquid does. Moreover, the quantum nature of the atoms
play a role: the effect, present with helium 4 which is a boson, was not detected with
solid helium 3, made of fermions. These observations were interpreted as evidence for
supersolidity, and triggered numerous theoretical and experimental investigations; see
Ref. [C5] for a review.

Our contribution to the field deals with the search for continuous mass flow through
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Figure 1.3: Left : Photograph of the Torricellian experiment on solid helium [C6,C7]. Right :
Decrease of the inner liquid-solid interface in a sample that showed flow at 50mK.

the solid. With our post-docs Ryosuke Ishiguro and Satoshi Sasaki, we performed a
Torricellian experiment with solid helium [C6, C7]. We used an inverted test tube
(10mm diameter) with the top of the tube closed, and the bottom dipped in solid
helium but kept 8mm above the bottom of the cell (Fig. 1.3). We managed to have
a level difference ℎ between the liquid-solid interface inside and outside the tube. We
observed that, in good quality crystals at 50mK, ℎ remained constant within 50¹m
over 4 hours, corresponding to v at least 300 times less than what one would expect
from the torsional oscillator results. However, in two lower quality crystals with GBs
(as revealed by the presence of cusps at the liquid-solid interface), flow did occur
at 50mK (Fig. 1.3), with a different but constant velocity in each crystal, which is
characteristic of superflow. If one assumes that GBs with a few atomic layers thickness
are superfluid, this would correspond to a critical velocity vc of a few m s−1. A similar
value was measured in liquid films of atomic thickness [10]. Finally, in a third crystal
with many cusps, we observed a similar superflow at 1.13K, suggesting that a GB could
be thick enough to exhibit a high critical temperature. We decided to investigate more
closely the behavior of a single GB, as explained above.

Our findings about the wetting properties of GBs question the interpretation of
our DC flow experiments: the flow in the test tube requires a GB, but it could take
place either along the GB, or along the two liquid channels it makes on the tube
walls according to Sec. 1.1.1. In the latter case, taking 870¹m2 for the cross section
area of a channel at a depth z = 10mm below the free liquid-solid interface [C2], we
find a critical velocity vc ≃ 3ms−1 along the channel. This is a reasonable value for
this channel size [11]. If mass was really transported along these channels, it would
explain why relaxation took place at least up to 1.1K while GBs are predicted to
become superfluid only around 0.5K [4]. Measurements in different cell geometries are
required in order to decide which mechanism is relevant. It would also be interesting
to study the temperature dependence in detail.

Another experiment has found DC flow through the solid [12], but off the melting
curve, in contrast to our experiment. The flow was observed to exist at low tempera-
ture, and to disappear upon heating above 500mK. As at that time the flow was not
seen to reappear upon cooling, we proposed [C8] that it could be due to liquid channels
that exist inside the solid at the junction between 3 GBs [C2]. However, subsequent
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runs showed an example of flow disappearing upon warming and reappearing upon
cooling [13]. There are many other issues related to supersolidity [C5], but they fall
beyond the scope of this report.

1.2 Capillarity in nanopores

A consequence of capillary is the displacement of phase equilibrium for a curved
interface. This leads to the phenomenon of capillary condensation: a vapor will con-
dense within small pores before its pressure reaches the saturated vapor pressure. In
addition, an hysteresis has been noticed between condensation and desorption: to start
emptying the pore, the pressure of the vapor has to be reduced below the value for
condensation. Much work has been devoted to this issue and our contribution is mod-
est. Nevertheless, we find it interesting to report in the next section our discussion of
recent papers in this field. Then we will revisit the early problem of capillary rise, and
discuss how the classical laws which apply to small but still macroscopic pores have
to be modified to describe pores at the nanoscale.

1.2.1 Capillary condensation

Condensation in a cylindrical nanopore

The equilibrium vapor pressure for a liquid-vapor interface with curvature C is
given by the classical Kelvin equation [1]:

Peq = Psat exp

(
−¾V C

RT

)
, (1.8)

where Psat is the saturated vapor pressure (i.e. the equilibrium pressure for a flat inter-
face), ¾ the surface tension, and V the molar volume of the liquid.3 This equilibrium
is stable if the curvature is positive.

The simplest explanation of the hysteresis between adsorption and desorption is
due to Cohan in 1938 [14]. It is based on the identification of the two possible states
for a liquid in a pore: adsorbed as a film along the pore walls (Fig. 1.4 (a)), or
condensed so as to form a bridge connecting the walls of the pores (Fig. 1.4 (b)).
For a cylindrical pore of radius R, the film state is an annular film with a curvature
C > 1/R, whereas the condensed state exhibits hemispherical menisci with a total
curvature 2/R in case of complete wetting (zero contact angle). Eq. 1.8 thus explains
the difference between adsorption and desorption pressures (PA and PD, respectively).
They satisfy the relation PA

2 = PsatPD. For a slit pore (the space between two flat
walls) of thickness d, PA = Psat and PD is given by Eq. 1.8 with C = 1/d.

This simple model does not explain why the film state forms: for vapor pressures
less than that given by Eq. 1.8 when C = 1/R, the pore should be completely dry,
with no liquid at all. Sometimes an ad hoc film thickness is introduced, to match the
measured value of PA so that C = 1/(R − t). To improve the description, one has to
consider the interaction between the adsorbate and the pore walls. This has been done
by Cole and Saam [15,16]. The interaction with the pore walls results in an additional
term U(z) in the chemical potential of the fluid, where z is the shortest distance to
the wall. For a plane surface and non-retarded interaction forces:

U(z) = − A

6¼V z3
, (1.9)

3We use the convention of positive curvature (C > 0) when the liquid is on the convex side.
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Figure 1.4: Possible states of a fluid adsorbed in a nanopore: film state (a) and condensed
state (b). (c) Comparison of adsorption (#) and desorption ( ) data [17] with CST for a
single pore radius R = 11.8 nm (dashed curves), and a gaussian distribution of pore radii
(average R = 11.8 nm, rms deviation 2.5 nm) (solid curves).

where A is the Hamaker constant for the interacting system. The confined geometry
in a cylindrical pore reinforces the interaction and leads to a modified expression for
U(z). We refer the reader to Ref. [16] for full details. This additional term explains
why the denser phase creates a film, even at low vapor pressures. The full adsorption-
desorption curve can now be predicted, including the values of PA and PD. When,
during filling, the pressure is increased between PD and PA, the condensed state is the
most stable one, but it does not form because it would require a large fluctuation to
form the capillary bridge from the film state; instead the film continues to grow in
metastable equilibrium with the vapor, until it becomes unstable at a pressure PA.
The pore is then filled with liquid with menisci at both ends, whose curvature depends
on the vapor pressure. When the vapor pressure is decreased and reaches PD, the
menisci recede inside the pore, leaving a film in equilibrium with the vapor and the
condensed state.

Numerous studies of capillary condensation have been performed over the last
decades. To obtain pores with a small diameter, the early studies had to rely on disor-
dered porous materials made of networks of tortuous, interconnected pores will variable
size and shape. Recently, the advent of efficient synthesis techniques has allowed the
production of assemblies of independent, straight, and cylindrical pores, which render
the comparison with theory more direct. Nanoporous alumina is one of the new well-
defined substrate available; it consists in a parallel arrangement of cylindrical pores
around 20 nm in diameter, with a very large aspect ratio (1:5000). Alvine et al. [17]
have used such a system to study adsorption-desorption of a solvent (perfluoromethyl-
cyclohexane) at room temperature. They observed the usual hysteretic transition, and
argued that its width (0.4K) was five times smaller than the prediction by Cohan [14]
(1.9K), and that the data agree better with Cole and Saam theory (CST) [15, 16].
However, we have shown that they made only a partial comparison with CST [C9].
Adsorption is usually measured at constant temperature T by increasing the pressure
P of a vapor from 0 to the saturated vapor pressure Psat(T ). CST calculates the
liquid volume fraction V as a function of p = P/Psat(T ). Alvine et al. measure V
as a function of the temperature offset ΔT between the porous sample at Ts and a
liquid reservoir at Tr. They find that the volume fractions at the onset of filling (Vc)
and the completion of emptying (Vm) compare well with the CST. However, according
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to them, in CST, “there is no prediction of the ΔT where the desorption transition
initiates [ΔTm], and it is not possible to translate Vc and Vm into a hysteresis width.”
We have shown that it was in fact straightforward to express the results of CST with
their experimental parameter, the temperature offset ΔT , instead of the usual reduced
pressure p = P/Psat(T ) [C9]. Indeed, as Ts goes down to Tr, p increases up to 1, and
we can write a first integral of the Clausius-Clapeyron equation:

ΔT = −(NAkBTr
2/Hvap) ln p , (1.10)

where Hvap = 33.9 kJmol−1 [17] is the latent heat for vaporization, and where we have
ignored the T -dependence of other parameters, as ΔT/Tr is only a few percents. As
can be seen on Fig. 1.4, the data do not agree with CST, even if the polydispersity
of the pores is taken into account. We have suggested that a reason may be found in
the existence of a hysteresis critical temperature Tch, at which hysteresis vanishes [18].
From the ratio between the molecular diameter of perfluoromethylcyclohexane and R,
we estimate Tch ≃ 430K, and Tr/Tch ≃ 0.71.

Condensation near an AFM tip

Another type of pore is the one formed between two surfaces brought close together.
Capillary condensation will occur most likely at the point where the distance between
the surfaces is minimal, which depends on their geometries and on their asperities.
The existence of capillary bridges will result in a strong attractive force between the
surfaces, and is one of the aspects of the field of adhesion; see Ref. [19] for a recent
review. A way to achieve a well controlled geometry is to use the sphere-plane system,
which can be realized using the tip of an atomic force microscope (AFM) and a flat
silicon wafer (Fig. 1.5 (a)). Such a system has been extensively studied, either with a
sphere glued at the AFM tip, or directly with the AFM tip which is often approximated
by a paraboloid. Recently, Yang et al. [20] have used the latter geometry to measure
the pull-off force Fpo needed to separate the surfaces as a function of the relative
humidity, RH = PV/Psat. They decompose the pull-off force into the sum of two
components of the capillary force (the Laplace force, FL, and the line tension force
FT) and other forces Fothers (van der Waals, chemical bonding, electrostatic. . . ):

Fpo = FL + FT + Fothers . (1.11)

Assuming that Fothers is the same whether a liquid bridge is present or not, they
identify the difference between the force at a given RH and that in ultrahigh vacuum
(RH = 0) with the capillary force Fcap = FL + FT due to a water capillary bridge.
Then they use a simple capillary model based on the Kelvin equation (Eq. 1.8) and the
macroscopic contact angle of the liquid on the substrate to predict the curvature and
the overall geometry of the bridge. Finally they calculate FT and deduce the negative
pressure inside the water PL = −FL/A where A is the cross section area of the waist
of the bridge. With this analysis, they obtain pressures as low as −120± 40MPa (at
RH = 1%) inside the water in the bridge.

We have criticized this analysis [C10]. We have shown that, if the Kelvin equation
held for their system, then it would lead directly to the value of the pressure inside
the bridge; to first order:

PL = Psat +
RT

Vsat

ln(RH), (1.12)

where R = 8.3145 JK−1 mol−1 is the perfect gas constant, T the temperature, and Vsat

the molar volume of the liquid at Psat. This formula leads to values markedly different
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Figure 1.5: (a) Sketch of the liquid meniscus adsorbed between a spherical tip and a flat
substrate. (b) Estimated pressure PL inside the capillary bridge as a function of RH, based on
the combination of pull-off force measurements and the Kelvin equation [20] (empty circles),
and based on the Kelvin equation alone [C10] (full circles).

from those deduced from the above approach (Fig 1.5 (b)). We have proposed several
explanations of this discrepancy [C10]. We cite here the two main problems with the
above analysis. The assumption that Fothers does not change with the presence of a
liquid bridge is highly questionable: the dielectric properties of the medium between
the surfaces screen the van der Waals force by an amount comparable to Fcap itself.
However, this would lead to an even more negative pressure. The problem is that the
most negative pressures are obtained for very low RH, at which the bridge becomes of
molecular dimension. For a tip in contact with the wafer, using the same formulas as
in Ref. [20], we find that the numerical value of the maximum thickness ℎ of the liquid
layer varies from 0.2 to 1 nm, for RH from 1% to 40%. This is to be compared with
the size of a water molecule (around 0.3 nm), the thickness of a planar liquid-vapor
interface (around 1 nm [C11]), and the wafer average roughness (0.4 nm [20]). The use
of the contact angle µ of water on silicon taken from measurements on macroscopic
drops, the description of the wafer as a flat surface, and the use of a simple capillary
description (with a sharp water-vapor interface, the bulk surface tension ¾ and the
Kelvin equation) are therefore highly questionable. In fact, for water confined to such
small scales, the pressure itself is not defined as a scalar quantity: it is rather a non-
diagonal stress tensor which includes the effect of water-water and water substrate
interaction.

Consequences for the study of water

We have seen that the state of the confined liquid can be peculiar, and it is not
always straightforward to describe it based on the sole knowledge of the outside con-
trol parameter such as the vapor pressure. In our opinion, this gives a caveat to the
conclusions about the phase diagram of water that are drawn from measurements on
the confined liquid. In a recent series of papers [21–26], the groups of Chen and Malla-
mace have been able to observed water at very low temperature in a state identified as
liquid by confining it into narrow pores (less than 2 nm in diameter). Crystallization
can then be avoided because of the favorable wetting of the walls by the liquid. They
have discovered interesting anomalies, such as the existence of a density minimum
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Figure 1.6: Capillary rise H as a function of well-depth D1 of hydrogen H2 (a) and water (b).
Bold full and dashed curves denote the rise for a cylindrical pore without and with spherical
Earth correction of the gravitational field, respectively. Lighter curves represent results for
the slit pore case. The arrow indicates the threshold for wetting on a flat surface [C12].

around 210oC for D2O [23] and 203oC for H2O [25]. These anomalies could be evi-
dence for the crossing of the Widom line emanating from a liquid-liquid critical point
in the supercooled region; more details will be given in Sec. 2.2.1. Here we note that,
in the first experiments, the pores were filled at a pressure somewhere above but close
to the capillary filling transition. This suggests that the actual pressure in the liquid
is negative, because of the meniscus curvature. However, the small dimensions make
the direct use of Laplace’s law uncertain, and the interaction with the walls may in
fact result in a non diagonal pressure tensor. In experiments using helium gas as a
transmitting pressure medium, the anomalies vanish above a helium pressure of around
150MPa [23], but we think that the pressure of the liquid remains to be determined.

1.2.2 Capillary rise

The history of capillarity begins with the observation that liquids can rise inside a
narrow tube. The physical law that predicts the height of this capillary rise is Jurin’s
law [1]. In the case of a perfectly wet cylindrical tube of radius R,

Hmacro =
2°

½gR
, (1.13)

where g = 9.81m s−2 is the gravitational acceleration. One is thus tempted to use
as narrow a capillary as possible to achieve a maximal rise. For example, the for-
mula yields Hmacro ≃ 30 km for the case of water at 20oC and R = 0.5 nm. Beyond
the problem of experimentally realizing such long capillaries (to which we come back
later), the use of a law based on a macroscopic capillary model is questionable at the
nanoscale. During his visit to our group, Milton W. Cole (Penn State Univ.) had
the idea to resort to a first principle analysis to give the nanoscopic counterpart of
Jurin’s law [C12]. We write that the gravitational energy lost during the rise must be
compensated by the binding energy gained when transferring a fluid particle from the
bulk to the confined space in the pore:

MgH = E − Ebulk . (1.14)

We have considered Lennard-Jones (6-12) interactions, and two pore geometries (slit
and cylinder). The size of the pore can be optimized to give the strongest binding



24 CHAPTER 1. CAPILLARITY

E [27]. We have calculated the rise for a series of adsorbates confined in graphite and
MgO. It depends on the well depth D1 of the attraction between the adsorbate and the
substrate; the examples of hydrogen and water are given on Fig. 1.6. Imbibition occurs
if D1 exceeds a threshold value. We found that it is lower than that for wetting on
a flat surface. This is a consequence of the enhanced substrate attraction in the pore
compared to the single planar surface. The largest rise would be 857 km, obtained for
hydrogen confined in a graphite tube with a radius of 0.277 nm; at these heights one
would even have to consider a correction to Earth’s gravity! Of course, such values
seem completely out of reach. Even if such tremendously tall capillaries could be
realized, we have estimated from the Lucas-Washburn equation [1] that it would take
around 5 109 years to fill a capillary of radius 1 nm with water at 20oC! Nevertheless, we
still think that an experimental test could be performed. The trick would be to use an
ultracentrifuge to increase g to an apparent value which could be around N = 4.8 105

times as large with a commercially available apparatus. The actual rise would then be
divided by N and the time required for filling by N2. A rise of a few centimeters in a
porous glass like Vycor could then be measured.

1.3 Density functional theory of interfaces

The simplest approach to interfacial phenomena is the capillary approximation. It
consists in neglecting the thickness of the interface separating two phases. The system
can then be described as two subsystems identical to the bulk phases, and an interfacial
part carrying an extra free energy ¾ per unit surface, where ¾ is the interfacial tension.
This energy arises from the different environment experienced by the particles near the
interface compared to the bulk ones. This approach is an approximation, because the
interfacial region is not atomically sharp. In Sec. 1.3.1 we describe a more elaborate
theory, which we apply to the liquid-vapor interface of water in Sec. 1.3.2 and to the
liquid-solid interface of helium in Sec 1.3.3.

1.3.1 Density functional formalism

For a one component system, the coexistence of two phases with different densities
in a system with fixed temperature, volume, and number of particles, will lead to an
interfacial density profile ½(z), where z is a coordinate along the direction perpendicular
to the interface. The free energy per unit volume of the substance varies with density.
By definition, the two coexisting phases have the same, lowest free energy. This implies
that the intermediate densities explored by the interfacial profile give rise to an excess
free energy. This excess energy could be reduced to zero by making the interface
infinitely thin; however, such a sharp density jump is not allowed at the atomic scale:
inhomogeneities in the local average density are energetically costly. To describe the
competition between these two contributions, Cahn and Hilliard have introduced the
concept of density functional theory (DFT) [28]; the idea can be traced back to Van
der Waals’ thesis. The free energy F of the system is a function of the function ½(r)
describing the profile - hence the term functional. The simplest version is called the
square gradient approximation:

F [½] =

∫
d3r

[
f (½(r)) + ¸ (∇½(r))2

]
, (1.15)

where f is the free energy per unit volume, and ¸ a parameter. One can use the
rules of variational calculation to solve for the optimum profile at equilibrium [28].
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To enforce the condition of mass conservation, we introduce a Lagrange multiplier
¹, and minimize the quantity F − ¹N where N =

∫
d3r ½(r) is the total number

of particles. It is easily shown that, if the system contains homogeneous regions at
different densities, ¹ is the common chemical potential at coexistence, and F − ¹N is
thus the grand potential. For a planar interface across the z direction separating two
phases at densities ½1 and ½2, the solution is conveniently written in the form:

z(½) =

∫ ½(z=0)

½

√
¸

Á(½)
d½ , (1.16)

where Á(½) = f(½)− f(½1)− ¹(½− ½1). We get now to the key point that, combining
Eqs. 1.15 and 1.16, DFT gives a formula for the interfacial tension:

¾ = 2

∫ ½2

½1

√
¸Á(½) d½ . (1.17)

With the input of the function f and the value of ¾, Eq. 1.17 shows how the value
of the parameter ¸ can be adjusted. DFT now becomes predictive, as it provides the
shape of the interface (Eq. 1.16) and in particular its thickness, which can be compared
to an independent determination.

We will now explain how we have used this approach to describe the liquid-vapor
interface of water (Sec. 1.3.2) [C11], and a modified quantum version for the case of
the liquid-solid interface of helium (Sec. 1.3.3) [C13–C16].

1.3.2 Liquid-vapor interface of water

In Ref. [C11], we use the DFT formalism introduced in Sec. 1.3.1 to treat the specific
case of the liquid-vapor interface of water. We need as input the free energy per unit
volume f and the surface tension ¾. For the latter, we use the IAPWS formula [29]
that reproduces the experimental values from the triple point to the critical point.
For the former, we need the equation of state (EoS), but we cannot simply use the
experimental data, because they are available only in the stable phases: if ½v and ½l
are the vapor and liquid density at coexistence, respectively, the data is missing for
½v < ½ < ½l. It could be measured in principle in the metastable states, but certainly
not in the density range lying between the liquid-vapor and vapor-liquid spinodals4.
We have therefore to rely on an extrapolation. To extrapolate from the liquid side, we
have used the simple, yet accurate form of the EoS proposed by Speedy [30]:

1− P

PS(T )
= B(T )

(
½

½s(T )
− 1

)2

, (1.18)

with three adjustable parameters: B, and PS and ½s which are the liquid-vapor spinodal
pressure and density, respectively. Eq. 1.18 can be integrated to find f for ½ ≥ ½s:

f(½) =
½

½0
f(½0) + ½

∫ ½

½0

P (½′)
½′2

d½′, (1.19)

where ½0 ≥ ½s is a reference density (e.g. ½0 = ½l); the constant f(½0) can be chosen
arbitrarily and cancels out in the results. To determine f for 0 ≤ ½ ≤ ½s, we have then
used two different interpolation schemes, see Ref. [C11] for details.

4Section 2.1.2 will recall the definition of a spinodal line and discuss its importance in water and
helium.
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The motivation of the work was actually to compare two EoS for water with a qual-
itatively different behavior. They correspond to two completely different scenarios to
explain the anomalies of supercooled water. We postpone the description of these
scenarios to Sec. 2.2.1. At this stage, we just want to mention the following features.
The EoS was obtained in one case by a fit with Eq. 1.18 using experimental data only,
while we derived the other by fitting results of molecular dynamics simulations. The
resulting liquid-vapor spinodal are qualitatively different: the former gives a minimum
in the spinodal pressure around 310K, and the latter gives a spinodal pressure increas-
ing monotonically with temperature. As the interfacial profile explores densities in the
vicinity of the spinodal, we expected that the different qualitative behaviors would
show up in the variation of the interfacial thickness with temperature. That this is
indeed the case can be seen on Fig. 1.7. The temperature variation of the spinodal
pressure is reflected in the prediction for l10−90:

l10−90 =

∫ 0.1½v+0.9½l

0.9½v+0.1½l

√
¸

Á(½, ½l)
d½ . (1.20)

Although the absolute value of l10−90 depends on the choice of the extrapolation, the
temperature dependence does not. The comparison with experimental data favors
the monotonic spinodal. However, we would like to emphasize that the ellipsometry
data shown on Fig. 1.7 gives a larger l10−90 than many other ellipsometry measure-
ments, available only at room temperature, which give around 0.4 nm. The test is not
fully conclusive. A more direct way to approach the spinodal is to study directly the
metastable liquid, at a pressure below the saturated vapor pressure. This route will
be discussed theoretically in Chapter 2 and experimentally in Chapter 3.

1.3.3 Liquid-solid interface of helium

DFT can be extended to describe the liquid-solid interface. The idea of the
Ramakrishnan-Yussouff method (RY) [31, 32] is to treat the solid as a spatially pe-
riodic perturbation (density ½s(r)) of the uniform liquid (density ½l). The difference
in energy between both phases is obtained by a Taylor expansion truncated to second
order:

ΔE[½] = Eid[½]+

∫
dr

(
±Eint

±½(r)

)

l

±½(r)+
1

2

∫
drdr′

(
±2Eint

±½(r)±½(r′)

)

l

±½(r)±½(r′), (1.21)

with ±½(r) = ½s(r) − ½l, Eid the energy of the noninteracting inhomogeneous system
and Eint the interacting part of the energy. The quantum version of RY is described
in Refs. [33,34]. For Bose particles of mass m, Eid is the kinetic energy:

Eid =
ℏ2

2m

∫
dr

{
∇

[√
½(r)

]}2

. (1.22)

The second term on the right hand side of Eq. 1.21 is the mass term: the derivative
of Eint is the chemical potential ¹l of the liquid. The third term involves the direct
correlation function (DCF)

(
±2Eint

±½(r)±½(r′)

)

l

= v(∣r− r′∣; ½l), (1.23)

which is the quantum analog of the classical Ornstein-Zernike DCF. Dealing with a
periodic density, the calculations are more conveniently carried out in Fourier space;
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Figure 1.7: Left : 10-90% thickness of the liquid-vapor interface of water vs. tempera-
ture [C11]. The thin and thick lines were calculated using the EoS with a minimum in the
spinodal and with a monotonic spinodal, respectively. The solid and dashed lines corresponds
to the two extrapolations used for f(½). The thick dash-dotted line shows ellipsometry mea-
surements (the hatched area indicates the scatter of the data). The crosses (with error
bars) show the values derived from several x-ray scattering experiments. The corresponding
references are given in Ref. [C11]. Right : Liquid-solid interface of helium 4 predicted by

DFT [C15], shown by means of equal density contour lines (drawn between ½ = 0.02 Å−3

and ½ = 0.05 Å−3 ) in a plane perpendicular to the interface plane. Constant density surfaces

(at ½ = 0.08 Å−3) are also shown to identify the atoms in the solid slab.

the Fourier transform of v is related to the static linear response function Â of the
liquid:

v(q; ½l) =
1

Â0(q)
− 1

Â(q)
, (1.24)

where Â0 is the non-interacting limit: Â0(q) = −(4m½l)/(ℏ2q2).
To find equilibrium one usually considers the grand-canonical system. Choosing a

liquid density ½l in a fixed volume V at zero temperature, one finds the most stable solid
at the same chemical potential ¹ = ¹l by minimizing the grand-potential difference
ΔΩ = ΔE−¹V (½s−½l). The minimum in ΔΩ results from the competition between the
interaction term in Eq. 1.21, which favors localization, and the kinetic term which tends
to homogenize the system. Instead of performing the full minimization, one usually
resorts to a variational approach, parameterizing the solid by gaussians centered at
the lattice sites [33, 34]. The fcc lattice is usually chosen, although helium actually
freezes into hcp at zero temperature; fcc is easier to handle, and the two symmetries
were found to give scarcely distinct results [35].

We have followed the variational minimization procedure [C13], using as an input
for Â the formulation provided by the Orsay-Trento functional [36], a DFT based on a
hamiltonian description of superfluid helium, with parameters fitted to reproduce many
experimental properties, including Â at the saturated vapor pressure, and its pressure
dependence predicted by simulations. We find that the solid is always too stable.
Then we have tried to rescale Â by a constant factor (0.9369), fitted to reproduce the
experimental freezing density. With no more adjustable parameters, we were then able
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to reproduce the experimental equation of state of the solid [C13].
We then tried to describe a flat interface extending perpendicularly to an axis

ẑ. This is possible within DFT of freezing, which is in principle able to predict the
interfacial tension and the interfacial profile. The density profile can be written as:

½(r) = ½l

[
1 +

∑
j

¹j(z) e
ikj ⋅r

]
, (1.25)

where the kj’s are the reciprocal lattice vectors (RLVs) and the order parameters ¹j

vary through the interface, from the solid to the liquid values. The excess energy of the
interface is again given by Eq. 1.21. When the ¹j’s vary slowly on the distance between
two atomic layers, their second order Taylor expansion may be used to calculate the
interacting part; this is called the square gradient approximation (SGA) [37]. We
have adapted SGA to the quantum case and tried to find a variationally optimized
profile [C14]. We find an interfacial tension ° = 0.47mJm−2 and a thickness of the
interface » = 0.56 nm. We can compare to the experimental value ° = 0.17mJm−2 [2],
or to the results of variational Monte Carlo simulations: ° = 0.25 ± 0.1mJm−2 and
» = 1 − 1.25 nm [38]. Unfortunately, in our result, the interface extends over only 3
lattice planes, which is not enough to justify the SGA.

We finally turned to a full, non variational minimization [C15]. Most of the calcu-
lations were performed by Francesco Ancilotto, from the University of Padova, Italy,
following a project which was initiated during our common visit to the group of Manuel
Barranco, at the University of Barcelona. We had to introduce an ad hoc modifica-
tion of the Orsay-Trento functional to obtain the experimental freezing values, using
adjustable parameters to reproduce the experimental equation of state for the solid.
Nevertheless, it was an interesting result that the simulations converged to the stable
solid structure, even if the initial configuration used had not the correct lattice param-
eter. Within this frame, we could get some indication of the interfacial structure and
energy (° = 0.1mJm−2 and » = 0.93 nm) (see Fig. 1.7), but the numerical convergence
was too slow to provide accurate values.

We also note that we made a technical contribution by comparing the different
minimization schemes [C16]. We concluded that the shortcoming of the RY method
was due to the poor quality of the second order approximation, rather than to the use
of isotropic variational functions.



Chapter 2
Theoretical limits of metastability

The existence of surface tension is characteristic of first order transitions: the in-
terface between two phases of the same substance costs some energy. We have seen in
Chapter 1 how this affects stable equilibrium properties. But it is also responsible for
the phenomenon of metastability : a phase can be observed for a finite time outside its
stability region. As already mentioned in the Introduction, the liquid can be cooled
down below the line of liquid-solid equilibrium in a supercooled state, metastable with
respect to the solid. Similarly, the liquid can be warmed up above the line of liquid-
vapor equilibrium, in a superheated state, metastable with respect to the vapor; or
equivalently, the liquid can be depressurized below the line of liquid-vapor equilib-
rium, even to negative pressure, to reach a metastable stretched state. The common
explanation for these phenomena is that, even if the metastable phase has a lower
energy, its nucleation also involves an energy cost due to the creation of an interface.

However, metastable states have a finite lifetime, which decreases when the distance
to the equilibrium line increases. Eventually, there are limits to the metastability; some
limits are absolute ones, based on strong thermodynamic conditions; some depend on
the experimental conditions and involve kinetic aspects. We will discuss the theory of
these limits in this chapter, first from a general point of view in Sec. 2.1. Then we will
address the case of stretched water in Sec. 2.2, and make the connection with water
anomalies. In Sec. 2.3.1 we will discuss the metastability of liquid helium, not only
with respect to the vapor, but also with respect to the solid. We will finally consider
in Sec. 2.4 the technologically relevant issue of melting and freezing of nanocrystals.

2.1 Theoretical background

When a substance is in a metastable state, it is by definition favorable to convert the
particles of the substance from the metastable state to the stable one: this represents a
gain in energy proportional to the volume. However, this phase transition involves an
interface between both phases, which represents a cost in energy proportional to the
surface. For a small nucleus of the new phase, the surface cost exceeds the volume gain,
whereas the balance is reversed for a large enough nucleus. This leads to the existence
of a critical nucleus, for which the maximum energy is realized, which represents an
energy barrier for the nucleation of the new phase. A review of the fascinating field of
metastability and nucleation is available in an excellent book [39]. Here we will focus
on the features required to understand our work on water and helium. We will first
give a simple quantitative theory of nucleation in Sec. 2.1.1. Then we will explain in
Sec. 2.1.2 why the energy barrier is bound to vanish in some cases, before presenting
in Sec. 2.1.3 a density functional approach to nucleation that includes this absolute
limit of metastability.

29
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2.1.1 Classical nucleation theory

A derivation of the classical nucleation theory (CNT) can be found in Refs. [39–41]
for instance. Here we briefly present the case of a one component system, evolving
at constant temperature T , pressure P , and number of particles. We assume that P
is below the equilibrium pressure Peq between two phases 1 and 2, so that phase 1
is metastable with respect to phase 2. Let us call ¾ the interfacial energy between
both phases. CNT makes the capillary approximation which consists in treating the
interface as infinitely thin, with an energy ¾ per unit surface. The minimum work
required to form a volume V of phase 2 in phase 1 is given by the variation of the

thermodynamic potential G̃ = U − TS + PV . For an isotropic ¾, the minimum value
will be reached for spherical nuclei of phase 2, at a pressure P2 such that the chemical
potential of the particles of phase 2 in the nucleus will be equal to that of phase 1
outside, determined by the pressure P . For instance, for incompressible phases, we
have:

ΔP = P − P2 =

(
1− ½2

½1

)
(P − Peq), (2.1)

where ½i is the density of phase i. The minimum work required as a function of the
radius R of the nucleus is:

G̃ =
4¼R3

3
ΔP + 4¼R2¾. (2.2)

It results from the competition between the gain in volume energy and the cost in
surface energy when creating the nucleus. At a critical radius

Rc =
2¾

ΔP
, (2.3)

G̃ goes through a maximum

Eb =
16¼¾3

3ΔP 2 . (2.4)

Nuclei with a radius less than Rc decay spontaneously, whereas those with a radius
above Rc will grow. Eb is therefore the energy barrier which has to be overcome for nu-
cleation to take place. This explains why the new phase does not appear immediately,
and why the other phase can be metastable; as this requires the existence of a finite
interfacial energy, this holds only for first-order transitions. Note that the calculation
was made for a bulk, pure substance: this corresponds to the situation of homogeneous
nucleation, which is an intrinsic property of the substance. In many experiments, the
influence of a wall or an impurity can reduce Eb, leading to heterogeneous nucleation.
In most cases, nucleation is a stochastic phenomenon. It will occur at a rate Γ per
unit volume and time. Γ is related to Eb through a Boltzmann law:

Γ = Γ0 exp

(
− Eb

kBT

)
, (2.5)

where Γ0 is a prefactor. It can be determined from microscopic parameters in the
case of nucleation of a liquid in a supersaturated vapor [39], but its value for other
transitions is more ambiguous. We usually write Γ0 as the product of a thermal
frequency by the density of independent critical nuclei:

Γ0 ≃ kBT

ℎ

(
4

3
¼Rc

3

)−1

, (2.6)
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Figure 2.1: (a) Pressure as a function of volume, showing the regions where the fluid is stable,
metastable, and unstable. (b) Sketch of a phase diagram with the liquid-vapor equilibrium
(binodal) and the corresponding spinodals.

where ℎ is Planck’s constant. For an experiment performed in a volume V and during
a time ¿ , the cavitation probability is Σ = 1− exp(−ΓV ¿), and reaches 1

2
when

Γ0V ¿ exp

(
− Eb

kBT

)
= ln 2. (2.7)

This equation shows that the nucleation threshold is essentially determined by Eb. It
reduces the importance of large uncertainties in Γ0 or of large variations in V ¿ between
experiments. In the case of cavitation (nucleation of the vapor in the metastable liquid
at P < Psat, the saturated vapor pressure), Psat−P2 ≪ ∣P ∣ and the cavitation pressure
is:

Pcav = Psat −
(
16¼¾3

3 kBT

1

ln(Γ0V ¿/ ln 2)

)1/2

. (2.8)

2.1.2 Spinodal limits

In the case of the nucleation of the vapor in a metastable liquid, CNT predicts that
the energy barrier scales as the inverse of (P − Psat)

2 (Eq. 2.4), and therefore never
vanishes, even for infinitely negative pressure. However, this picture seems rather
unphysical, because if the degree of stretching increases without limit, the particles will
eventually explore separations beyond the inflexion point in the tail of the interparticle
potential, which are unstable from a mechanical point of view. From a thermodynamic
point of view, it corresponds to a region of low density where the free energy F of
the liquid would be a concave function, which is forbidden by the second principle.
Equivalently, as P = −(∂F/∂V )T , it corresponds to a positive value of (∂P/∂V )T
(Fig. 2.1 (a)). The locus of points where (∂P/∂V )T vanishes, i.e. the compressibility
diverges, is called a spinodal limit. For the liquid-vapor transition, at temperatures
below the critical point, two spinodal limits exist (Fig. 2.1 (b)): one for the transition
from the liquid to the vapor and one from the vapor to the liquid. On the spinodal
limit, the fluid becomes macroscopically unstable, and long wavelengths fluctuations
can grow spontaneously, resulting in spinodal decomposition of the system. This is
obviously not accounted for in CNT, and we present in the next section an improved
theoretical approach.
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2.1.3 Density functional theory of nucleation

The reason for the failure of CNT is that, at large degrees of metastability, the
critical nucleus becomes very small: for cavitation, Rc scales as the inverse of ΔP
(Eq. 2.3). Yet CNT treats the interface between both phases as a sharp wall with
zero width, an approximation which fails when the critical nucleus is comparable in
size to the interfacial thickness. One way to improve the theory is to resort to density
functional theory (DFT), already introduced in Sec. 1.3. DFT can treat inhomogeneous
systems, providing the free energy of a density profile. In nucleation theory, by allowing
the interface to have a finite width, the free energy will be reduced. For a given point
of the metastable region, DFT provides the optimal spherical profile that minimizes
the energy barrier, and connects a low density region at the center to a region at the
metastable density outside. One has to solve the Euler-Lagrange equation:

2¸Δ½ =
∂Á

∂½
. (2.9)

The notations are defined in Sec. 1.3.1. From the optimal profile, the energy barrier
is calculated, and the nucleation rate follows as in Sec. 2.1.1. Because DFT is based
on the specification of the free energy, it has the spinodal limits “built in”. For the
metastable liquid, as the density is reduced, the core of the critical nucleus becomes
denser and denser, and when the spinodal density is approached, the profile becomes
very shallow with a large radius, leading to a vanishing energy barrier, in contrast to
CNT. On the other hand, when the system is close to equilibrium, the profile is very
sharp, and ignoring the interfacial thickness becomes a good approximation: DFT and
CNT approach each other asymptotically. We will use DFT to study cavitation in
water in Sec. 2.2.2.

2.2 Stretched water

We now turn to the specific case of water at negative pressure, in a stretched
state. We first review in Sec. 2.2.1 the different predictions that have been proposed
for its liquid-vapor spinodal, and its relation to water anomalies. We then explain in
Sec. 2.2.2 how these different predictions for the spinodal translate into qualitatively
different cavitation limits that could be in principle checked experimentally.

2.2.1 Competing scenarios

The location of the liquid-vapor spinodal is well defined theoretically, as the line
where the compressibility of the liquid diverges. However, its experimental determina-
tion is not straightforward, as measurements are difficult to perform in the metastable
region. Consequently, one has often to rely on extrapolation of data measured in the
stable region. This was done by Speedy for water [30]. He noticed that experimental
isotherms [42] were accurately represented by the 3-parameters formula:

1− P

Ps(T )
= B(T )

(
½

½s(T )
− 1

)2

. (2.10)

This is the simplest functional form expected from a Taylor expansion in density from
the spinodal point, and reproduces surprisingly well the data at positive pressure. The
striking result is that the spinodal line Ps(T ) exhibits a minimum. Speedy gave an



2.2. STRETCHED WATER 33

α=0

liq-gas
C

Pr
es

su
re

0
liq-sol

spinodal

T Temperature

C’

Temperature

α=0 spinodal

Pr
es

su
re

0

liq-gas

liq-solliq-liq

T

C

Figure 2.2: Sketch of the phase diagram of water illustrating two scenarios proposed to
explain its anomalies. Left : Reentrant spinodal scenario [30]: the line of density maxima
of water reaches the spinodal, which turns back to positive pressure and creates a line of
instability where water properties diverge. Right : Second critical point scenario [47]: the line
of density maxima avoids the spinodal which remains monotonic; the anomalies are explained
by the proximity of a critical point ending a first-order transition between two liquid phases.

interesting physical explanation for the existence of this minimum. He showed that,
if a line of density maxima intersects a spinodal line, the latter has to change slope
(Figs. 2.2 (a)). Extrapolation of the line of density maxima measured in water at
positive pressure suggests that this is the case and explains the minimum in Ps(T ).
Speedy carries on the argument by proposing that the spinodal retraces to positive
pressures, where it would become a line of instability for the supercooled liquid [30,43].
The nature of this line is not clear, and its thermodynamic consistency has been
debated [44–46]. Nevertheless, Speedy’s scenario is attractive as it could explain the
divergence of many properties of liquid water when approaching the spinodal limit.
Moreover, it might be that a minimum in Ps(T ) exists, while the spinodal does not
retrace up to positive pressure.

On the other hand, molecular dynamic simulations of water disagree with Speedy’s
scenario. Simulations are based on a microscopic interaction potential, whose param-
eters are fitted to reproduce some of water properties. Although none of them is able
to reproduce quantitatively all the features of water, they are useful tools to explore
highly metastable regions sometimes inaccessible to the experiments. Some of them
have been used to calculate isotherms, including a metastable part. The simulation
data can be extrapolated using Eq. 2.10 to find the corresponding spinodal. This leads
to a monotonic Ps(T ), while the line of density maxima reaches a maximum temper-
ature and then changes slope to avoid the spinodal, thus satisfying thermodynamic
consistency (Figs. 2.2 (b)) [47]. In all the simulations, the supercooled liquid does not
exhibit a line of instability, but rather a liquid-liquid transition: it means that deeply
supercooled water could exist in two distinct liquid phases with different structure.
The transition between the low density liquid and the high density liquid is a first
order transition, and it ends at a liquid-liquid critical point (LLCP). In this scenario,
it is the LLCP that is responsible for the observed anomalies. Thermodynamic quan-
tities can diverge only at the LLCP; however, they will show maximum values in its
vicinity. The simulations predict that they will occur close to the Widom line, which
is a line of correlation length maxima emanating from the LLCP.

For completeness, we note that other scenarios exist, but we will not develop them
here, and we refer the reader to the reviews given in Refs. [44,48] and references therein.
Our present purpose is to discuss if the distinct behavior of the spinodal curve Ps(T )



34 CHAPTER 2. THEORETICAL LIMITS OF METASTABILITY

-300

-250

-200

-150

-100

280 300 320 340

P s (
M

Pa
)

T (K)

-180

-140

-100

-60

280 300 320 340

P ca
v (

M
Pa

)

T (K)

Figure 2.3: (a) Spinodal pressure vs. temperature. The thin (resp. thick) line is deduced
from Speedy (resp. TIP5P) EoS. (b) Cavitation pressure vs. temperature. The dotted line
shows the prediction of the CNT. The thin solid (resp. dashed) line was calculated using
Speedy EoS, and the thick solid (resp. dashed) line using TIP5P EoS with our first (resp.
second) extrapolation for f(½). The filled diamond is the largest tension at which cavitation
was observed in a quartz inclusion [49]; Pcav is calculated assuming that the volume of the
inclusion remains constant; the arrow indicates the correction due to the matrix compliance
effect.

predicted by each scenario could be observed experimentally. An experiment cannot
reach the spinodal, because thermal fluctuations will trigger nucleation of the vapor
phase before. Therefore, we decided to calculate the cavitation line associated with a
typical example of each scenario.

2.2.2 Density functional predictions for cavitation

The classical nucleation theory ignores the existence of a liquid-vapor spinodal,
and will therefore predict the same cavitation line for the different scenarios. In con-
trast, DFT has the liquid-vapor spinodal built-in through the equation of state. This
is the reason why we decided to use DFT to predict the cavitation line [C11], choos-
ing two equations of state representative of each of the two scenarios discussed above
(Fig. 2.3 (a)). They are described in Sec. 1.3.2. We have seen in Sec. 1.3.1 how, for
a given EoS, we can adjust the parameter ¸ involved in the square gradient approx-
imation to fit the value of the surface tension. DFT then becomes predictive for the
energy of any inhomogeneous density configuration. In particular, it can be used to
find the critical nucleus that realizes the energy barrier Eb for nucleation of the vapor
inside the metastable liquid [50]. We calculate Eb as a function of the liquid density,
and from Eq. 2.4, we obtain the cavitation line. The results are shown on Fig. 2.3 (b).
As expected, DFT predicts a less negative Pcav than CNT, but, more interestingly,
the shape of the cavitation line reflects qualitatively that of the spinodal line: the EoS
with a minimum in Ps(T ) leads to a shallow minimum in Pcav(T ), whereas the EoS
with a monotonic Ps(T ) leads to a monotonic Pcav(T ).

This result motivated us to measure Pcav(T ), with the hope to distinguish between
the two competing scenarios. Our experimental work will be presented in Sec. 3.1. We
anticipate by saying that we measured cavitation pressures much less negative than
the DFT predictions. We propose different interpretations that will be described in
Secs. 3.1.3 and 3.2.2.
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2.3 Metastable helium

Liquid helium can also become metastable: with respect to the vapor, when it is
stretched; and with respect to the solid, when it is overpressurized. We have reviewed
our work in Refs. [C17–C19]. We present in Sec. 2.3.1 our conclusions on helium at
negative pressure. We also consider overpressurized helium, describing our theoretical
work on a possible liquid-solid spinodal (Sec. 2.3.2) and a theory for the nucleation of
the solid that goes beyond CNT (Sec. 2.3.3).

2.3.1 Shape of the liquid-vapor spinodal

In our early work we have measured the cavitation pressure in liquid helium using an
acoustic method which will be described in Sec. 3.1. We made the first measurements
on helium 3 and verified previous ones on helium 4 [C20, C21]. We mention one of
the results here because of its analogy with water. We found that the cavitation
line Pcav(T ) in helium 3 had a smaller temperature variation than predicted by a DFT
prediction. We attributed this to the existence of a minimum in the liquid-gas spinodal
of helium 3, which was not present in the EoS used in the DFT treatment [C22].
Helium 3, like water, exhibits a line of density maxima; therefore, as explained by
Speedy [30] (Sec. 2.2.1), if the LDM intersects the spinodal line Ps(T ), the latter must
have a minimum at the intersection. To check this possibility, we extrapolated sound
velocity measurements to find Ps(T ), and obtained a minimum of −0.29MPa around
0.4K, which falls exactly on the linear extrapolation of the LDM. The negative isobaric
expansion coefficient ®P of helium 3 at low temperature is due to the variation of its
effective mass m∗ with density, and extrapolation of experimental values of m∗ down
to the spinodal suggests that ®P remains negative at 0K down to the spinodal, which
is consistent with the above picture [C22].

The case of superfluid helium 4 has also been addressed. Helium 4 exhibits a line
of density minima around 1K, and a line of density maxima just above the superfluid
transition, around 2K. The density minimum arises because of the increasing number
of collective excitations called rotons : their contribution to the expansion coefficient is
negative, and exceeds the positive one of the phonons when the temperature increases.
Using the simple model of Landau for superfluidity, we have estimated their relative
contribution near the spinodal [C23]. As the sound velocity approaches zero whereas
the roton energy does not, the positive contribution of the phonons becomes domi-
nant, up to temperatures where the Landau model ceases to be correct. This suggests
that the expansion coefficient is positive along the spinodal, and that the spinodal is
monotonic. We also predicted that helium 4 remains superfluid down to the spinodal
at low temperature. A more elaborate approach was proposed by Maris and Edwards
which confirms these results [51]. They find that the two lines of density extrema oscu-
late the superfluid transition at negative pressure, the three lines intersecting around
−0.53MPa, above the spinodal line (around −0.7MPa at the superfluid transition,
and −0.95MPa at 0K).

2.3.2 A liquid-solid spinodal?

Because the liquid-solid transition is first order as the liquid-gas transition, it is
possible to observe helium in a metastable state, as an overpressurized liquid. We
may wonder about a possible absolute limit to this metastability, which we call a
liquid-solid spinodal. It is not a spinodal in the usual sense, that is a line of diverg-
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ing compressibility, because the compressibility of helium decreases with increasing
pressure. Another feature could cause an instability of the overpressurized liquid.The
spectrum of excitations of helium shows a local minimum, called the roton. It has a
non-zero energy Δ at a finite wavenumber k0, which is close to the reciprocal lattice
vector of solid hcp helium. Schneider and Enz suggested that the transition from the
superfluid to the solid was associated with the softening of the roton mode, that is
Δ going to zero [52]. They were talking about the liquid-solid equilibrium line, but
Δ has been measured to be around 7K near this line. However, it is known that Δ
decreases with increasing pressure. Using a linear extrapolation, we proposed that it
would vanish at PΔ=0 ≃ 15MPa. A spatial density perturbation with the same period
as the solid could then form without any energy cost, leading to an instability of the
liquid towards the solid. Using the Landau model for superfluidity, we found that
helium would remain superfluid at low temperature up to PΔ=0, and proposed that
the superfluid transition temperature would reach 0K at this pressure [C23]. With the
more elaborated approach used in Ref. [51], we noticed that there was also the possi-
bility that superfluidity breaks by a Pomeranchuk instability below this pressure [C24].
We note however that later Monte-Carlo simulations [53] found that helium 4 remains
superfluid with a nonzero Δ up to at least 27.5 MPa.

2.3.3 Correction to classical nucleation theory

The experimental implications of the theoretical considerations presented in the
last section depend on the possibility to prepare metastable liquid helium at large
overpressures. Nucleation of the solid phase might occur before any interesting fea-
tures are observed. Therefore it is important to estimate the pressure threshold for
crystallization. This is also useful to discuss our acoustic crystallization experiments
that will be described in Sec. 3.3. The first idea is to use CNT (Sec. 2.1.1). We find
that, at 1K, crystallization requires a pressure of around 3.7MPa above the equi-
librium freezing line at Pf = 2.53MPa [C19]. However, one may wonder about the
validity of CNT. It predicts a critical radius less than 1 nm, whereas the thickness of the
liquid-solid interface is calculated to be 1− 1.3 nm [38]. The capillary approximation
made by CNT is therefore dubious.

We first planned to use DFT to go beyond this approximation; however, the theory
we used was not able to give a full description of the liquid-solid interface (Sec. 1.3.3).
Therefore we resorted to a more phenomenological modification of CNT [C25]. We
took the compressibility of both phases into account, and most importantly, allowed
the effective interfacial energy to vary. The interfacial energy arises because atoms in
the interfacial region are displaced compared to the bulk solid. The number of such
atoms per unit area of the interface is of the order of a−2, where a is the interatomic
spacing. We take the extra energy per unit area to be of the order of ¯(±x)2/(2a2),
where ¯ is an effective spring constant between atoms and ±x is the displacement of
the atom. Assuming that the arrangement of the interfacial layer does not change
with pressure, we take ±x/a constant, and find that the interfacial energy varies like
¯. We then notice that the bulk modulus B is related to ¯: ¯ ∝ Ba ∝ B½−1/3 with ½
the density. Finally, we take an interfacial energy which depends on pressure:

¾(P ) = ¾(Pf)
BL(P ) ½L(Pf)

1/3

BL(Pf) ½L(P )1/3
, (2.11)

where (Pf) indicates values taken at the freezing pressure. This gives ¾(P ) increasing
almost linearly with pressure. Using this value of ¾(P ) with CNT (and including the
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compressibility), we find that the variation is large enough to give surprising results.
The critical radius is increased to above 10 nm, which makes the capillary approx-
imation more acceptable. Moreover, the energy barrier levels around 180K, which
corresponds to an extremely low nucleation rate and renders crystallization nearly im-
possible! Quantum nucleation may help, but it is difficult to estimate it here [C25]. Of
course, experimentally, solid helium does exist, but this is because its nucleation occurs
heterogeneously on favorable impurities on the cell walls. We will see in Sec. 3.3.2 how
we have performed experiments far away from any wall.

2.4 Melting and freezing of nanoclusters

To end this chapter and before coming back to helium and water in the next one,
we make a short diversion in the field of nanocrystals (NCs). NCs are crystal grains
whose size is in the nanometer range. Recently, nanofabrication techniques have been
developed to prepare embedded NCs, that is nanoinclusions inside a host matrix. They
are candidates for novel optoelectronic and nonvolatile memory device applications.

We are interested in the connection between capillarity and nucleation, which can
be particularly well illustrated by the thermal behavior of embedded nanoclusters.
Small crystals are known to melt at a different temperature than the bulk melting
point T0; it is usually lower for free-standing nanocrystals. However, the size-dependent
melting temperature is often analyzed with approximate formulas, corresponding to the
absolute limits of metastability of the solid cluster, instead of accounting for nucleation
at an intermediate temperature. In addition, for embedded NCs, the different inter-
actions of the matrix with the solid and the liquid phases must be taken into account.
We have addressed the issue of freezing and melting of spherical inclusions (Fig. 2.4)
with a thermodynamically consistent model for nucleation of the new phase [C26].
Our model is basically a variant of CNT, where the role of the matrix is included
through the contact angle µc of the liquid-solid interface on the matrix material, which
strongly affects the nucleation behavior. In addition, the matrix curvature modifies
the classical result for heterogeneous nucleation on a plane surface.

We introduce the following notations: L is the latent heat per unit volume of the
solid, ½i is the density of phase i, and °ij is the surface tension between phases i and
j, where i and j take the values L for liquid, S for solid, and V for vapor, respectively.
For simplicity, the model assumes ½L = ½S and neglects elasticity. The liquid does not
necessarily wet the solid completely, especially for embedded NCs. If °LS+ °LM > °SM
and °LS + °SM > °LM, there is a contact angle of the liquid on the matrix:

µc = arccos

(
°SM − °LM

°LS

)
. (2.12)

An interesting quantity is the temperature T ′′
0 at which the Gibbs’ free energies of

a frozen and a melted NC are equal [54]:

ΔT ′′
0 = T ′′

0 − T0 = −3T0

LR
(°SV − °LV) = −3T0

LR
°LS cos µc . (2.13)

Our interest for this topic was triggered by Xu et al. [55], who proposed a nucleation
model for embedded NCs, to interpret their experimental finding of a large hysteresis
of melting and freezing of Ge in amorphous silica. Because the hysteresis is symmetric
around T0, they deduced from Eq. 2.13 that µc = ¼/2 and °LM ≃ °SM, and performed
the calculation of the nucleation temperatures for this particular case. µc = ¼/2 is a
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Figure 2.4: Left : Sketch of a liquid nucleus in the metastable solid phase. Right : Contour
plot of the reduced energy barrier ²3 for melting in the µc–´ plane. The solid curves show
the contours from ²3 = 0.1 (bottom) to ²3 = 0.9 (top), every 0.1. ²3 is not defined in the
lower right corner, under the dashed red line.

coincidence due to the specific properties of the system studied. It may vary for other
materials. This is what motivated our generalization of the theory of Xu et al. to the
case of an arbitrary µc. We have also criticized some of their numerical values and
analysis [C27].

We use CNT to calculate the energy barrier for heterogeneous nucleation in a
spherical inclusion of radius R at a temperature T = T0 + ΔT , with an arbitrary
contact angle µc. We first consider melting at T > T ′′

0 . The liquid phase will appear
as a lenticular nuclei of volume VL (Fig. 2.4). Let SLS and SLM be the areas of the
interfaces between the two phases and between the liquid and the matrix, respectively;
the other notations are given in Fig. 2.4. The contact angle of the liquid on the matrix
being fixed at µc, the nuclei is fully characterized by the azimuthal angle µ of its circular
boundary. We assume that the inclusion remains a sphere of radius R throughout the
nucleation process. We also take the external pressure to be constant at P0. One has
then to consider the Gibbs free energy change, which writes:

ΔG(µ) = −L
ΔT

T0

VL(µ) + °LSSLS(µ) + (°LM − °SM)SLM(µ). (2.14)

The detailed expressions of VL, SLS and SLM are obtained with simple trigonometry
and given in Ref. [C26]. For each value of the pair (µc,ΔT ), ΔG(µ) exhibits a maxi-
mum which corresponds to the energy barrier for nucleation of the liquid in the solid,
ES→L

b (µc,ΔT ). The case of freezing at T < T ′′
0 can be treated by a simple symmetry:

EL→S
b (µc,ΔT ) = ES→L

b (¼ − µc,−ΔT ). There is a correspondence between the melting
of a superheated NC and the freezing of a supercooled nanodroplet. This holds only
inasmuch the density difference between liquid and solid has been neglected.

Introducing non dimensional quantities, we were able to give universal plots to
describe melting and freezing [C26]. We give one of them here to illustrate how the
matrix curvature modifies the classical result for heterogeneous nucleation on a plane
surface. We define

ΔTmax =
3T0 °LS
LR

, (2.15)
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E3 =
¼

3
(2 + cos µc)(1− cos µc)

2 °LSRc
2, (2.16)

Rc =
2°LS
L

T0

∣ΔT ∣ . (2.17)

ΔTmax is the maximum melting point shift that can be obtained for a given inclusion:
ΔT ′′

0 = −ΔTmax for µc = 0, and ΔT ′′
0 = ΔTmax for µc = ¼ (see Eq. 2.13). E3 is the

energy barrier for heterogeneous nucleation on a plane surface [41]. Rc is the critical
radius for homogeneous nucleation [C28]. Fig. 2.4 shows a contour plot of the reduced
energy barrier ²3 = Eb/E3 in the µc–´ plane, where ´ = R/Rc is a reduced radius. We
have ´ = 3¿/2, where ¿ = ΔT/ΔTmax is a reduced temperature. Fig. 2.4 shows that,
for any given temperature above T0, the classical result for heterogeneous nucleation
on a plane surface is recovered for R ≫ Rc, as expected. Note that although ²3
vanishes at T0, Eb does not: this behavior arises from the divergence of Rc and E3

at T0. Note also that for µc → 0, ²3 is only defined by taking the limit, being the
ratio of two vanishing quantities. One may use Fig. 2.4 to see below which size of
the inclusion it becomes necessary to use the present model instead of the classical
model for heterogeneous nucleation on a plane surface. The effect of confinement on
melting or on freezing should be more easily seen in a system with a low or high value
of µc, respectively. Our model also allowed us to reinterpret experimental data on the
melting of indium NCs in amorphous silica [56].





Chapter 3
Experimental study of metastable liquids

There are numerous ways of preparing a liquid in a metastable state. One of the
most successful ones uses emulsified samples, where the liquid to be studied is dispersed
as small droplets in a host liquid that remains stable in the temperature range explored.
For water, this technique is able to achieve the highest degrees of supercooling and
superheating: at 0.1MPa, liquid water was observed down to −38oC [57] and up to
300oC (see for instance [58]). The success of the method lies in the reduction of the
risk of heterogeneous nucleation: small samples are less likely to contain an impurity,
and as they are numerous, the ones that do will nucleate, leaving the others reach
the homogeneous nucleation limit. The container is also replaced by a host liquid,
which provides a clean and smooth surface, which does not affect nucleation if it wets
completely the metastable liquid.

However, this technique is not useful to generate negative pressures. We have
rather resorted to an acoustic technique. As an acoustic wave is a pressure oscillation,
at large enough amplitudes it can stretch a liquid. In order to study a small sample
far away from any wall we chose a focused, high frequency wave. We first detail the
case of water. Sec. 3.1 introduces the method and the way it was used to estimate the
cavitation pressure. It allows to reach higher metastability than other techniques. In
Sec. 3.2, we report the density measurement that we have performed on metastable
water, and the scenario we propose to explain the two cavitation limits observed in
water. Finally, we go back to helium in Sec. 3.3: the positive swing of the sound wave
can be used to overpressurize superfluid helium until it crystallizes; we describe the
different regimes of nucleation (homogeneous and heterogeneous) that we have found.

3.1 Acoustic cavitation in water

To stretch water, we use the negative swing of a focused acoustic wave at 1MHz.
Actually, this method was introduced by Joel Nissen [59] and we used it to study
cavitation in helium during our PhD [C21]. We adapeted the method to water during
the PhD of Eric Herbert. A detailed account can be found in Ref. [C29]. We briefly
describe the setup in Sec. 3.1.1. We can repeat a stretching experiment under given
conditions a large number of times, in order to measure accurately the statistics of the
cavitation events (Sec. 3.1.2). We have used two methods to estimate the threshold
pressure for cavitation (Sec. 3.1.3): typically, we find around −25MPa at room tem-
perature. This is among the largest metastability reported for stretched water, only
exceeded by one experiment based on a different technique (Sec. 3.1.4).
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Figure 3.1: Left panel : Sketch of the experimental setup. The high pressure part contains
the cell with the transducer, the pressure gauge and the bellow for pressure control; it can
be isolated from the rest by a valve. The use of two other valves allows evacuation (with
an oil pump through a nitrogen trap or a dry scroll pump) and filling from a flask with
degassed water. The cell is immersed in a thermostatic bath (operated between -10 and
80oC). All the seals are made of stainless steel or bulk Teflon, except the one at the bottom
of the cell, which is made with an indium wire. Right panel : (a) Cavitation probability
versus excitation voltage for 4-cycles bursts at T = 20oC and Pstat = 1.7MPa. Each of
the 25 data points was measured over 1000 repeated bursts. The standard deviation on the
probability (calculated with the binomial law) is shown as error bars. The data are well
fitted with Eq. 3.1 (solid line). The inset focuses on the low probability region, to show that
zero probability is actually reached in the broad foot of the S-curve. (b) Cavitation pressure
as a function of temperature. Pcav was obtained with the static pressure method (Sec. 3.1.3).
Run 0 (filled circles) [C29] is compared to our preliminary results [C30] (empty circles).

3.1.1 Experimental setup

The central element of our setup (Fig. 3.1) is the ultrasonic emitter: a lead-
zirconium-titanate hemispherical transducer (i.d. 16mm, o.d. 20mm), excited by
short electrical bursts at the resonance frequency of its thickness mode (1MHz). The
hemispherical shape allows a tight focusing, far away from any walls. Acoustic maps
show that only (100¹m)3 of liquid experience a large negative pressure during around
100 ns. This brings about the conditions to observe homogeneous nucleation: a cavi-
tation event corresponds to a nucleation rate of 1019 m−3 s−1.

Experiments can be performed in an open container. To ensure the cleanest con-
ditions, we have also constructed a cell entirely made of stainless steel, with stainless
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steel, teflon and indium seals, where the liquid can be transferred under vacuum. This
allows to work with degassed water without exposing it to air. Thanks to a bellow, the
cell could be operated at pressures up to 10MPa for calibration purposes (Sec. 3.1.3).

When the excitation of the transducer is sufficient large, bubbles nucleate at the
focus. They can be detected by three methods: by optical imaging, sound detection,
and the echo method. The last method is based on the fact that, when a bubble ap-
pears at the center of the hemisphere, it reflects the sound wave back to the transducer
surface. The corresponding random change in the transducer voltage, occurring after
the time of flight of the sound wave over twice the transducer radius, is easily distin-
guished from the reproducible ringing down of the transducer voltage. After checking
the consistency of all three methods, we have routinely used the echo.

3.1.2 Statistics of cavitation

We can set the conditions of the experiment: temperature, static pressure, exci-
tation voltage Vrms of the transducer, burst characteristics (number of cycles, central
frequency, repetition rate). When we repeat the bursts many times, we find that, for
fixed conditions in some range of Vrms, cavitation occurs randomly; we define the cav-
itation probability Σ as the ratio between the number of bursts showing a cavitation
event and the total number of bursts. When scanning Vrms, we find that Σ varies from
0 to 1, and exhibits a characteristic shape which we call an S-curve (Fig. 3.1 (a)). A
cavitation voltage Vcav can be sharply defined as the value of Vrms at which Σ = 1/2.
Moreover, we can make high-quality fits of the S-curves with the following formula:

Σ = 1− exp

{
− ln 2 exp

[
»

(
Vrms

Vcav

− 1

)]}
, (3.1)

where » and Vcav are free parameters. This is deduced for a thermally activated process
through a linear expansion of the energy barrier Eb for nucleation around Vcav [C29].
» measures the steepness of the probability curve, and is related to the energy barrier
through:

» = −Vcav

kBT

(
∂Eb

∂V

)

Σ=1/2

. (3.2)

We would like to emphasize that the S-curves are very reproducible, not only for
a given sample under given conditions, but also from one sample to another or for
different static pressures, once the excitation voltage is renormalized by the relevant
Vcav. We will see more directly in Sec. 3.1.3 that the cavitation pressure is reproducible.
We have only noted a difference on the low voltage side when we use tap water: its
numerous impurities induce heterogeneous cavitation at lower sound amplitude, but
their probability of presence at the focus is small enough to leave the main slope of
the S-curve unaffected.

3.1.3 Estimate of the cavitation pressure

In the closed cell, we can work with a constant mass of water and change its
volume with a bellow. We thus vary the static pressure Pstat of the liquid. Assuming
that the cavitation pressure does not depend on the static pressure, an increase in Pstat

requires an increase in the excitation voltage of the transducer to obtain cavitation.
It can be shown [C31] that if the focusing is linear, the pressure swing in the wave
ΔP = Pstat − Pmin is proportional to ½(Pstat)Vrms, where ½(Pstat) is the density of the
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liquid at rest; the marginal variation of ½ with pressure and temperature was taken
into account in our analysis. Therefore, the data Pstat versus ½(Pstat)Vcav should fall
on a line crossing the axis Vcav = 0 at the pressure Pcav. We have thus obtained Pcav

by linear extrapolation of the data taken for Pstat between 1 and 10MPa. Taking the
nonlinearities into account, the intercept thus obtained should give an upper bound
for Pcav [C31].

We have also used a commercial piezoelectric needle hydrophone. Its gain is cali-
brated with a 14% accuracy, and it can be used only at low amplitude to avoid damage.
Nevertheless, it gives a value consistent with the static pressure method. Furthermore,
as it should give a lower bound for Pcav [C31], it shows that the non-linearities are
limited and that we have a reliable estimate.

The final results are shown on Fig. 3.1 (b). We find a monotonous temperature
variation, with Pcav becoming less negative as T is increased: it varies from −26.4MPa
at 0.1oC to −16.5MPa at 80oC. The original motivation of the work was to discrimi-
nate between two spinodals proposed for water, by looking for a minimum in Pcav(T )
(Sec. 2.2.2). There is no obvious minimum, or if a minimum exists it is very shallow.
Anyhow, the experimental results disagree with both theories as regards the magni-
tude of Pcav (≃ −24 instead of −120MPa). In the next section we compare our results
to other experiments.

3.1.4 Comparison with other experiments

The discrepancy with the theoretical predictions points towards a comparison with
other experiments, to assess the quality of our experimental data. For a detailed
presentation of other experiments, we refer the reader to our extensive review of the
subject of cavitation in water [C32]. To summarize, we note that most experiments find
much less negative pressure than we do, and a few find similar values (Fig. 3.2 (a)). The
interesting point is that they are based on very different techniques: centrifugation,
acoustic standing waves, or metallic Berthelot tube. We also note that the sharp
increase in Pcav at low temperature in the centrifuge experiment [60] is an artifact.
This has implications for the survival of trees during cold weather, while their sap
is still under negative pressure: our measurements suggest that it is not limited by
homogeneous cavitation of water, as was verified by centrifugation of tree shoots by
Hervé Cochard at Clermont Ferrand University [C33].

There is only one other method which was reported to reach more negative pres-
sures, as large as −140MPa (Fig. 3.2 (b)): the use of quartz inclusions in the group
of Austen Angell [49]. The principle is the following. Fractured quartz crystals are
autoclaved with a known amount of ultrapure water. The fissures heal and water is
trapped in inclusions at a desired density, depending on the autoclaving temperature
and pressure. Angell and his group then followed Berthelot’s method. The inclusion
is heated along the saturated vapor pressure curve, until the last vapor bubble disap-
pears, at a temperature Td from which the liquid density is deduced. When the sample
is cooled down, the bubble does not reappear immediately, and liquid water follows
a nearly isochoric path, until cavitation occurs at Tcav. To deduce Pcav, they have to
rely on an EoS: they chose to extrapolate the so-called HGK EoS to negative pressure.
The HGK EoS is a multi-parameter EoS fitted on data measured at pressures where
the liquid is stable; it is qualitatively similar to Speedy EoS (Sec. 2.2.1), but quanti-
tatively different, giving for the coordinates of the minimum in the spinodal around
60oC and −160MPa. There are two distinct cavitation behaviors. When Td > 250oC
(autoclaving temperature higher than 400oC ), Tcav is the same within ±2oC for all



3.1. ACOUSTIC CAVITATION IN WATER 45

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80

Berthelot
Berthelot
Berthelot
centrifuge

shock wave
acoustic
acoustic
acoustic

C
av

ita
tio

n
 p

re
ss

u
re

 (
M

P
a)

Temperature (°C)

(a)

-200

-150

-100

-50

0

0 100 200 300 400

P
re

ss
u

re
 (

M
P

a)

Temperature (°C)

T
C

(b)

Figure 3.2: (a) Cavitation pressure versus temperature for different experiments: the corre-
sponding method and reference are given in the legend. Only the experiments with the most
negative cavitation pressures were selected, except the inclusion work, for sake of clarity. An
arrow means that cavitation was not observed. The error bars on the filled circles represent
the uncertainty on the pressure calibration. (b) Cavitation pressure versus temperature,
calculated with CNT [C11] (dotted line), or using DFT with Speedy’s EoS [30] (solid line)
or with the EoS from a recent molecular dynamics simulation [61] (short-dashed line). The
parameters used are V = (10¹m)3, ¿ = 1 s, and Γ0 from Eq. 2.6. The dash-dotted line
shows the saturated vapor pressure from the triple point (T) to the critical point (C). Some
experimental results are also shown. Filled diamonds correspond to experiments on mineral
inclusions [49]; the arrow shows a correction to the pressure estimate to account for the
quartz compressibility. Filled circles show our data obtained with an acoustic method, and
empty circles the spinodal we once proposed to interpret them [C29].

inclusions in a given sample, whereas when Td < 250oC (high density inclusions), Tcav

is scattered. Angell and his group attribute the scatter to heterogeneous nucleation,
and its source to “possibly surfactant molecules cluster destroyed by annealing at the
higher temperatures”.

For low density inclusions in quartz, Pcav is positive, and compares well with the
maximum temperature at which liquid water can be superheated, as measured by
Skripov [58]. The maximum tension of −140MPa is obtained in one sample with high
density inclusions (0.91 gmL−1 and Td = 160oC); Angell and his group report that
“some [inclusions] could be cooled to -40oC without cavitation, and one was observed
in repeated runs to nucleate randomly in the range 40 to 47oC and occasionally not
at all” [49]: they estimate nucleation occurred at Pcav ≃ −140MPa. The fact that “no
inclusion that survived cooling to 40oC ever nucleated bubbles during cooling to lower
temperatures”was interpreted as an evidence that the isochore crosses the metastable
LDM, thus retracing to less negative pressure at low temperature. This gives support
to Speedy’s scenario, at least in the sense that the LDM keeps a negative slope, deep
in the negative pressure region in the P − T plane.

How then can we understand the discrepancy between the quartz inclusions results
and all other experiments? One may argue that other experiments observe hetero-
geneous nucleation. However, the reproducibility of our measurements, their lack of
scattering, and their agreement with other methods, make this hypothesis unlikely.
If nucleation was heterogeneous, the relevant impurities would have to be incredibly
calibrated and ubiquitous to always lead to the same results.

One possibility would then be that the extrapolated EoS used in the inclusion work
is wrong: thermodynamic properties of water should then exhibit dramatic changes in
the negative pressure region to make all data compatible. This could happen for ex-
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ample if the spinodal pressure Ps was much less negative than expected from Speedy’s
extrapolations or molecular dynamics simulations (Sec. 2.2.1). We have tried to make
this speculation more quantitative [C29]. If cavitation in our experiments is homoge-
neous, then we have access to two quantities related to the EoS: the energy barrier
and its slope at Pcav. Indeed, we write:

Eb(Pcav) = kBT ln

(
Γ0V ¿

ln 2

)
≃ 47.5 kBT, (3.3)

taking for Γ0 the value from Eqs. 2.6 (with Rc = 1nm) and for V ¿ the value for our
acoustic setup. The slope is given by:

(
∂Eb

∂P

)

Pcav

= −»kBT

Pcav

, (3.4)

which ranges from 500 to 780 KMPa−1 from 0.1 to 80oC. By definition, Eb(Ps) = 0.
To locate Ps, we extrapolate linearly Eb to zero with this slope; the result is shown
on Fig. 3.2 (b). To get an idea of the accuracy of such an extrapolation, we can look
at the curve Eb(P ) calculated with DFT [C11]: it is convex, and nearly linear in the
relevant range of Eb. We would thus expect the actual Ps to be slightly more negative
than the extrapolated value.

However, we have now shown unequivocally that the discrepancy between the cavi-
tation thresholds for the acoustic method and for the inclusions is real. We will present
the corresponding experiments in the next section, along with the new scenario we pro-
pose to interpret the available data.

3.2 Thermodynamic properties
of metastable water

The comparison between experiments is sometimes made complicated because of
the use of an extrapolated EoS to convert the measured quantities. In particular, the
inclusion work has access to the density rather than the pressure. To allow a direct
comparison, we have performed a measurement of the density oscillation at the acous-
tic focus of our experiment (Sec. 3.2.1). This shows a real discrepancy between the
inclusion work and the other techniques. To explain this discrepancy, we propose that
cavitation in water depends on the thermodynamic path followed in the experiment,
a feature that could arise from the existence of a liquid-liquid transition at negative
pressure (Sec. 3.2.2). We are currently looking for an experimental confirmation of
this conjecture by measuring the sound velocity in metastable water (Sec. 3.2.3).

3.2.1 Density

To measure the density of water during the application of an acoustic burst, we
have constructed, as part of the post-doc of Kristina Davitt and the PhD of Arnaud
Arvengas, a fiber optic probe hydrophone (FOPH) [62]. A sketch of the setup is
displayed in Fig. 3.3 (a). Reflection at the bare fiber tip immersed in the liquid
is detected by a photodiode (PD) located on the other branch of a 2x2 step index
coupler. The detected light power, I(t), is proportional to the sum of the reflection
from the bare tip,

R (t) =

(
n(t)− nf

n(t) + nf

)2

, (3.5)
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Figure 3.3: (a) Largest reduction in density with respect to the static one as a function of
V/Vcav at 20oC. The solid line is a parabolic fit to the data where V/Vcav ≤ 0.6; data at
higher fractions of Vcav illustrate that the extrapolation holds. The inset shows a sketch
of the apparatus. (b) Cavitation density as a function of temperature. The red circles are
averages over at least 2 experiments at each temperature. The statistical error bar, derived
from the spread in 27 measurements at 20oC, is of the size of the symbols. The blue curve
gives the density of water at atmospheric pressure. The green diamonds correspond to our
previous estimate of Pcav with the same acoustic technique [C29], converted into density.
The open black squares show the inclusions results below 150oC [64]. Also shown are re-
sults of cavitation in inclusions along the metastable ice-liquid equilibrium (closed black
squares) [64]. The arrows illustrate the different thermodynamic path followed: isentropic
(quasi-isothermal [C29]) in the acoustic experiment, isochoric in the usual inclusion exper-
iments. For illustration, we show the liquid-liquid transition (brown dashed line) and its
metastable critical point (MCP) (brown open circle) at negative pressure in ST2 water [65].

and a stray light term, S, included to account for any reflection from the unused arm
and the non-zero cross talk of the coupler itself: I (t) = I0 [R (t) + S]. Here n(t) is the
index of water at the fiber tip, modulated in time by the acoustic wave, and nf = 1.453
is the index of the pure silica fiber core at the laser wavelength of 808 nm. In absence
of the acoustic wave, n(t) = n0 and R(t) = R0. At 20oC and atmospheric pressure,
n0 = 1.328 ± 0.001 at 808 nm [63], and R0 = 0.202%. With the application of an
acoustic wave the detected light can be broken down into its AC and DC components,
I(t) = IAC(t) + IDC, and their ratio computed as

IAC(t)

IDC

=
R (t)−R0

R0 + S
. (3.6)

From Eqs. (3.5) and (3.6) and with knowledge of S, the time varying index of water
in the acoustic wave is determined. Note that the precise value of I0 is not needed. A
series of calibrated microscope immersion liquids was used to map the reflected light as
a function of index. A fit with a fixed value of nf = 1.453 yielded S = (3±0.8)×10−5.

To convert indices to densities, we use a semi-empirical formulation from the
IAPWS [63] based on a modified Lorentz-Lorenz relation. The modulation of the
reflected light intensity is very low (≈ 10¹W at 0.5Vcav), therefore we use an average
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over 100 bursts at each voltage to improve the signal-to-noise. At each temperature,
the excitation voltage on the transducer is ramped from 0.1 to 0.6Vcav. An S-curve is
measured before and after each ramp. The drift in Vcav is always less than 5%, and
the average is used in the analysis.

The largest reduction in density at the focus with respect to the static density,
Δ½min, is plotted as a function of V/Vcav (Fig. 3.3 (a)). We note that the variation
is less than linear (see below). We have extrapolated the data below 0.6Vcav with a
parabola up to Vcav. We have checked at 1, 12, 20 (Fig. 3.3 (a)), and 47oC that this
extrapolation reproduces correctly the data up to 0.9Vcav. For other temperatures, the
ramp was limited to below 0.6Vcav to avoid cavitation on the fiber tip. Repeated checks
of the data at 20oC were performed to ensure that no damage occurred, otherwise the
fiber was re-cleaved.

The cavitation densities, ½cav, determined from extrapolations of the parabolic fit
are shown in Fig. 3.3 (b). First, we compare these results with previous work in
which an indirect estimate of Pcav was made by two independent methods that gave
consistent values [C29] (Sec. 3.1.3). To convert between pressures and densities, we
use a parabolic extrapolation of the EoS measured at positive pressure, as suggested
by Speedy [30] and following the procedure of Ref. [C11]. The result is shown in
Fig. 3.3 (b): the direct measurements are systematically slightly lower than the ones
converted from Pcav. This is consistent with the existence of non-linearities in the
focusing of the sound wave, as observed in Fig. 3.3 (a). The present measurements
account for the non-linearities, in contrast to the previous method [C29].

3.2.2 Path dependent cavitation

We have argued in Sec. 3.1.4 that the discrepancy between our experiment and
the inclusion work is not likely to be due to impurities. We propose another, more
fundamental, explanation: the nucleation mechanism depends on the thermodynamic
path followed. Whereas in other experiments water is stretched starting from a stable
state at room temperature, the inclusion samples enter the metastable region at high
temperatures, and they are already under large tensions when they approach room
temperature (Fig. 3.3 (b)). Different experiments could thus reach regions of the
phase diagram where the cavitation mechanism is different. In addition, this picture
is able to explain the surprising behavior of ice-melting in inclusions [64], which has
hitherto been overlooked. Water in the inclusions could be frozen by cooling to −60oC.
When the ice melts upon heating, because of the higher density of the liquid, the
system is put under tension, until cavitation occurs. The pressure can be estimated
from the metastable liquid-solid equilibrium line, which extrapolates linearly from the
stable part, as confirmed experimentally down to −24MPa [66]. Surprisingly, the
largest Pcav obtained with this method is −22.8MPa (Fig. 3.3 (b), lowest closed black
square): cavitation occurred at 1.7oC during melting, in an inclusion which cavitated
at −103.7MPa with the usual isochoric liquid cooling method [64]. This internal
discrepancy in the inclusion work is strikingly similar to the one between the inclusion
work and other techniques.

Nucleation occurs by thermal density fluctuations when their energy (≈ kBT ) is
able to overcome the energy barrier, Eb, due to surface tension which separates the
metastable liquid from the stable vapor phase. In classical nucleation theory (CNT),
using the surface tension of bulk water, ¾ = 72mNm−1, to compute Eb, one finds
Pcav ≃ −180MPa at room temperature [C29]. This is not so far from the inclusion
estimate. However, nucleation could occur through an intermediate metastable state
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which would lower Eb: this is called the Ostwald step rule, often invoked in crystal-
lization, and recently verified experimentally [67]. For cavitation, as Pcav scales as
¾3/2 in CNT, to explain −30MPa at 20oC requires an effective ¾ = 22mNm−1 [C29].
Furthermore, simulations of a model globular protein have shown how the vicinity of
a fluid-fluid MCP in the phase diagram of the protein largely reduces Eb for its crys-
tallization [68]. The same result was obtained with DFT [69]. In the case of water, we
propose that Eb at a given temperature is not a monotonic function of pressure. This
could be caused by an MCP at negative pressure, separating two liquid polymorphs,
which has been found in some simulations [65,70] (an example is shown in Fig. 3.3 (b)).
This is in addition to the MCP found by all molecular dynamics simulations at positive
pressure in the supercooled regions [44, 48, 70–72]. In experiments that stretch water
from room temperature, nucleation would thus be affected by the vicinity of the MCP
at negative pressure. On the other hand, the isochoric path followed by the inclusions
goes through a region of large tension at high temperature. Thus, it may avoid the
critical region and yield Pcav expected from CNT with ¾ of bulk water. Far from the
MCP, any path should lead to the same Pcav. Indeed, this is the situation above 300oC,
where the inclusion method agrees with direct superheating experiments [49].

To confirm this scenario, we will: (i) study acoustic cavitation at higher tempera-
ture, and (ii) measure the EoS of the metastable liquid to look for a signature of an
MCP, for example, via evidence of an anomaly in the compressibility. To motivate
further simulations, we estimate the deficit number of molecules in the critical nucleus
: using our cavitation statistics [C29] and invoking the nucleation theorem [73], we
find 270 at 40oC for the acoustic experiment, versus ≃ 120 expected from CNT for the
inclusion results.

3.2.3 Sound velocity

We briefly describe our current efforts to measure the sound velocity in metastable
water. During her post-doc, Kristina Davitt has developed a time-resolved Brillouin
scattering experiment. When light is scattered from a liquid, its frequency can re-
main the same (elastic scattering), or it can be shifted by absorption or emission of a
phonon (Brillouin scattering). The frequency shift is proportional to the product of
the refractive index of the liquid and the speed of sound. The aim of the experiment
is to measure this shift, but only during the short time (100 ns) where the liquid is
at maximum negative pressure. The refractive index being known from the FOPH
data (Sec. 3.2.1), the sound velocity is deduced. The combination of the Brillouin
and FOPH experiments will give the equation of state of metastable water down to
the acoustic cavitation threshold. The Brillouin experiment is particularly difficult,
because many repetitions of the acoustic bursts are needed to accumulate enough
scattered photons: each measurement thus takes several hours, which requires a high
stability of the system. Preliminary results are shown in Fig. 3.4

3.3 Acoustic crystallization in helium

We now get back to helium, in which the acoustic setup used for cavitation can
also be used to study crystallization. As can be seen from its phase diagram (see Fig. 1
in the Introduction), a positive pressure swing can bring the liquid above its freezing
line (at 2.53MPa). This opens the way to investigate how the superfluid transition
evolves when the liquid density is increased (Sec. 2.3.2). But the first step is to know



50 CHAPTER 3. EXPERIMENTAL STUDY OF METASTABLE LIQUIDS

15

20

25

30

12

16

20

24

 

G
at

e 
A

 -
 to

ta
l c

ou
nt

s

G
at

e 
B

 -
 to

ta
l c

ou
nt

s 
(1

04 )

~ 11 hours experimental time

~ 7x103 photons/sec count rate

0 1 2 3 4
0

5

10

0

4

8

G
at

e 
A

 -
 to

ta
l c

ou
nt

s

frequency (GHz)

G
at

e 
B

 -
 to

ta
l c

ou
nt

s 
(1

0

PmaxPmin P = atm

0.168

0.170

0.172

0.174

0.176

0.178

0.180

0.182

0.184

2 0 2 5 3 0 3 5

11.0 Volt
10.4 Volts
static density

D
E

N
S

IT
Y

  (
g.

cm
-

3 )

TIME  (µs )

Figure 3.4: Left : Experimental spectra of the light scattered from water: the black smooth
line shows a spectrum at atmospheric pressure, with the Rayleigh peaks on the sides and the
Brillouin peaks at the center. The red and blue curves correspond to spectra from the focus
of the acoustic wave at the minimum and maximum pressure, respectively; they are noisier
than the black line because of the comparatively smaller number of photons, but they allow
to measure the change in sound velocity. Right : Two recordings of the helium density at the
acoustic focus as a function of time. One trace corresponds to an excitation (10.4 V) below
the crystallization threshold; the other one (11.0 V) is superimposed on the first one and
shows a peak corresponding to the nucleation of solid helium.

how far the liquid can be overpressurized, and this is what we have studied in a series
of experiments.

3.3.1 Heterogeneous crystallization

A first observation of acoustic crystallization was made by Xavier Chavanne during
his post-doc [C34]. The aim of the experiment was at first to obtain a direct mea-
surement of the liquid density. An approach based on the same principle as the fiber
optic hydrophone (Sec. 3.2.1) was used. A glass plate was introduced at the acous-
tic focus, and a laser beam focused at the glass-helium interface. The focused laser
spot is around 30¹m, much less than the acoustic wavelength of 360¹m. Because
of the difference in refractive indices, the light is reflected. When a sound wave is
present, the reflection is modulated because of the density variations in helium. Aver-
aging repeated measurements and following a reasoning similar to the one presented
in Sec. 3.2.1, the time trace of the density oscillation is obtained (see Fig. 3.4). It was
found that high density peaks appeared at a well defined threshold, with a probability
increasing from 0 to 1 in a narrow range of transducer voltage (similarly to cavitation,
see Sec. 3.1.2). At large excitation, the density saturated at 191 kgm−3, indicative of
hcp solid helium. Near the threshold, the maximum density reached gives the size of
the crystallite, around 15¹m in diameter for the trace on Fig. 3.4.

The growth rate of the nucleated crystals is very high, around 100m s−1, close to the
speed of sound, 366.3m s−1. This is possible because of the ability of helium crystals
to grow very fast at low temperature [2], in contrast to classical crystals where for in-
stance the evacuation of latent heat introduces a resistance to growth. The nucleation
density can be compared to theory. For this, it is easier to convert it into pressure,
using a short extrapolation of the experimental equation of state of the stable liquid:
we obtained 3.0± 0.03MPa, 0.47MPa above the freezing line. This is 2 to 3 orders of
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magnitude larger than in previous experiments (cited in Ref. [C34]), but much lower
than the 7MPa overpressure predicted by classical nucleation theory (Sec. 2.1.1). At
low temperature, as the prediction of CNT diverges, one expects quantum nucleation
through the energy barrier to take the relay; even in that case, the overpressure needed
for crystallization should saturate around 4.1MPa [74]. This shows that nucleation
on the glass plate is heterogeneous, but on impurities less favorable to solid than in
previous experiments, where graphite particles may play a role [75]. We should also
mention that heterogeneous cavitation and non-linear focusing were studied in the
same setup. Different kinds of heterogeneous nucleation regimes were found, depend-
ing on the position on the glass plate: the nucleation pressure were estimated to be
−0.3MPa, and even 0MPa on a weak spot slightly out of focus [C35]. This is much
less negative than the previous estimate for cavitation without the glass plate (between
−1.04 and −0.8MPa) [C20], and quite surprising, as liquid helium wets perfectly most
surfaces, so that the glass plate was not expected to affect nucleation. For high ampli-
tude sound wave, the measured density oscillation becomes distorted, with sharp and
narrow positive peaks, and broad and shallow negative swings. These features, due
to the curvature of the equation of state (the compressibility varies with pressure) are
quantitatively reproduced in simulations of the focusing [C31]. A consequence is that
the static pressure method described in Sec. 3.1.3 gives an upper bound on the actual
cavitation pressure.

3.3.2 Homogeneous crystallization

After observing heterogeneous crystallization of helium on a glass plate, we tried
to observe homogeneous nucleation in the bulk liquid.

Hemispherical geometry

The first attempt simply used the same system as for heterogeneous crystallization
(Sec. 3.3.1), but with the glass plate removed [C36]. The lens was kept in order to
improve the sensitivity of the detection at high pressure, for which the acoustic focus is
in the focal plane of the lens. It is better to start with a high static pressure to achieve
crystallization, in order to reach higher sound amplitudes before cavitation occurs
during the negative swing of the wave, destroying the focusing of the wave. Looking
at the light scattered from the focus, we were able to detect nucleation events between
1.8 and 2.53MPa. The variation of the nucleation voltage with pressure was linear,
and extrapolated to −0.945MPa. We therefore concluded that we were observing
cavitation, near the spinodal pressure predicted at −0.965MPa. This means that an
excitation voltage of 105V produced a pressure swing of 2.5 − (−0.94) = 3.44MPa.
By switching the polarity of the excitation voltage, we tried to reach a higher positive
pressure, before cavitation occurred during the next negative swing. We did not see any
nucleation up to 265V, which in a linear approximation corresponds to a maximum
pressure of 2.5 + 265/1053.44 = 11MPa. To achieve higher pressures, we directly
discharged high voltage from a capacitor into the transducer. We observed cavitation
at 340V, reversed the polarity, and did not observe nucleation up to 1370V. The
above reasoning lead us to conclude that no crystallization occurred up to 16.3MPa
at 55mK. This seems to exceed the prediction from classical nucleation theory. This
lead us to propose a modified version which suggested that homogeneous crystallization
could be nearly impossible, because the variation of surface energy with pressure would
prevent the energy barrier to become sufficiently low (Sec. 2.3.3).
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Spherical geometry

We then turned to spherical geometry, obtained by putting two hemispherical trans-
ducers together. Our hope was to increase the non-linearities of the focusing, thus
reaching larger peak positive pressures while keeping negative swings small enough
to avoid cavitation. As the focal length of the lens in helium changes with pressure,
the signal is eventually lost. We decided to remove this lens and to focus the laser
beam from a lens outside. We now used the low frequency (132 kHz) breathing mode
of the transducer, to leave more time for the crystals to grow. At the beginning of
his post-doc, Ryosuke Ishiguro performed a careful study of the time of flight of the
signals [C37]. Cavitation events were observed when starting from low static pressure,
and crystallization events when starting from high static pressure, at a time shifted
by half a period from the cavitation events. We thus reached the limit of homoge-
neous nucleation. The problem is that we do not know the nucleation pressure, and
the non-linearities render the estimate difficult. This also leads us to reconsider the
previous search for crystallization in the experiments with hemispherical geometry
and a 1MHz wave (Sec. 3.3.2). The time of flight could not be studied as accurately
as in the spherical geometry, where echoes of the sound wave across the diameter of
the sphere served to determine the sphere radius accurately. Our main argument to
conclude that the nucleation events we observed at that time were due to cavitation,
was the positive slope of the static pressure as a function of nucleation voltage. It
might be that the non-linearities of the sound wave resulted in this behavior, even if
crystallization actually occured.



Conclusion and prospects

Overview

At first sight, water, the familiar everyday liquid, and helium, the paradigm of a
quantum fluid, seem to live in unrelated worlds. Yet in our opinion, they provide a con-
nex playground to illustrate and investigate the basic concepts of capillarity, wetting,
phase transitions and metastability. Because of its purity, helium allows experiments
to reach the conditions to test theoretical predictions which are otherwise sometimes
obscured by extrinsic factors. Its theoretical description has also reached a very high
degree of elaborateness, and at the same time some puzzles remain, like supersolidity.
Water is full of surprises, and each model developed to reproduce some its fascinating
properties may lack some other feature, which calls for extensive experimental studies.

More specifically, we have seen that the wetting properties of the grain bound-
aries between helium crystals (Sec. 1.1) allowed to test ideas coming from the field of
metallurgy. If cavitation in helium seems fairly well understood, crystallization in the
metastable liquid (Sec. 3.3) still keeps some puzzles. The current efforts are focused on
supersolidity; in our group, Sébastien Balibar is exploring the relation between crystal
quality and elastic anomalies.

Our study of cavitation in water (Sec. 3.1) ends with a huge interrogation mark.
We have found a new no man’s land in the phase diagram: in addition to the one that
exists in the supercooled range (between homogeneous crystallization of the liquid
and crystallization of amorphous ice), one lies at negative pressure where cavitation
depends on the thermodynamic path followed. It is a strong encouragement to inves-
tigate further the stretched liquid state, whose properties have up to now only been
grazed.

Prospects

An immediate follow-up of our work is to extend the measurements of the acoustic
cavitation density to high temperatures, in order to see if it merges with the cavitation
density obtained in the inclusion work. We cannot use the fiber optic probe hydrophone
at high temperature, because its positionning requires an open container. However,
the static pressure method can be used even at temperature above 100oC in the high
pressure cell. We have seen that it gives an overestimate of the actual threshold, but
the difference gets smaller with higher temperature.

Although the acoustic technique we have been using is very well suited to produce
reproducible, large negative pressures, thermodynamic measurements on the stretched
liquid state are delicate because of the short timescale of the experiment (100 ns per
burst). Recently, the group of Abraham Stroock at Cornell University was able to
produce large static pressures down to −24MPa [76]. They use liquid filled cavities
(100¹m in diameter) in a hydrogel (artificial tree, see Fig. 3.5); the structure of the
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focused ultrasound artificial tree inclusion in quartz
 

inclusion in quartz 

Figure 3.5: Three setups that we will use to measure properties of liquid water at negative
pressure.

gel allows to equilibrate the liquid with its undersaturated vapor outside. When the
system reaches a uniform chemical potential, set by a saturated salt solution outside
the gel, the liquid in the cavity is put under tension. We are starting a collaboration
with Abraham Stroock to combine his technique with optical measurements of the
liquid properties. Control of the vapor pressure will allow a fine tuning of the chemical
potential. We plan to use Brillouin scattering (but this time in a much easier static
experiment) to get the sound velocity in the stretched liquid, and hence the equation
of state. This will however provide data at moderate metastability. Therefore, we
want also to use quartz inclusions prepared by a group at Orléans University during
the SURCHAUF project (P.I.: Lionel Mercury) (Fig. 3.5); they can reach pressures
in the range of −100MPa [77]. Brillouin scattering was already performed on such
samples [78], but we would like to repeat these study in a more systematic way. The
combination of density and sound velocity as a function of temperature would allow to
check equations of state in the metastable range. As some inclusions can be supercooled
without cavitation, we even hope to explore the doubly metastable region, where the
liquid is metastable with respect to the vapor and to the solid. We can also think of
performing other types of measurements, e.g. Raman scattering. With this battery
of tests, we will try to detect a signature of a possible metastable critical point at
negative pressure.
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De l’hélium à l’eau :
capillarité et métastabilité dans deux liquides d’exception

Frédéric CAUPIN

Dans ce manuscrit, nous illustrons les concepts de capillarité et de métastabilité
avec des exemples mettant en jeu surtout l’hélium ou l’eau. L’étude de liquides mé-
tastables peut apporter des informations originales sur leur structure. Dans le cas de
l’eau, nous avons mesuré à quel degré le liquide pouvait être porté au-delà de l’équilibre
avec la vapeur : nous avons ainsi exploré la région des pressions négatives, où le liquide
est mis sous tension mécanique, à densité réduite. Nos résultats indiquent une nou-
velle anomalie de l’eau dans cette région. Dans l’hélium, nous avons exploré une autre
sorte de métastabilité, cette fois en appliquant une pression supérieure à la pression
de cristallisation : le liquide devient plus dense et métastable comparé au solide. Cela
soulève des questions intéressantes à propos du maintien de la superfluidité.

Tout d’abord, nous nous intéressons à la capillarité, en portant une attention par-
ticulière à l’interface liquide-solide de l’hélium et à l’interface liquide-vapeur de l’eau.
Nous présentons également quelques éléments concernant l’adsorption dans des pores.
Ensuite nous discutons la métastabilité d’un point de vue théorique ; nous donnons
une relation quantitative avec la capillarité et faisons le lien entre la cavitation et cer-
taines anomalies de l’hélium et de l’eau. Nous traitons aussi des propriétés quantiques
de l’hélium métastable et faisons une brève digression à propos de la nucléation en
géométrie confinée. Enfin, nous récapitulons nos expériences sur la cavitation dans
l’eau et la cristallisation dans l’hélium, basées sur la même technique acoustique.

From helium to water:
capillarity and metastability in two exceptional liquids

Frédéric CAUPIN

In this manuscript, we illustrate the concepts of capillarity and metastability with
examples mostly involving helium or water. The study of metastable liquids can bring
original information about their structure. In the case of water, we have measured
how far the liquid could be brought away from equilibrium with the vapor: we have
thus explored the region of negative pressures, where the liquid is put under mechanical
tension at reduced density. Our results point out a new anomaly of water in this region.
In helium, we have explored another kind of metastability, this time by applying
pressure above freezing: the liquid becomes denser and metastable compared to the
solid. This raises interesting questions about the persistence of superfluidity.

First, we focus on capillarity, with a particular attention given to the liquid-solid
interface of helium and the liquid-vapor interface of water. Some elements concerning
adsorption in pores are also given. Then we discuss metastability from a theoretical
point of view; we give a quantitative relation with capillarity, and make the connection
between cavitation and some anomalies of helium and water. We also adress the
quantum properties of metastable helium, and make a brief digression about nucleation
in confined geometry. Finally, we summarize our experiments on cavitation in water
and crystallization in helium, based on the same acoustic technique.


