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Abstract 
 

This PhD work is based on field, petrographic, and geochemical observations of rocks 

originated at the base of the sheeted dike complex, in the Oman ophiolite and at IODP Site 

1256, coupled with an experimental study. It provides new constrains on processes that occur 

at the magma / hydrothermal system transition in oceanic crust formed at fast spreading 

ridges. 

The base of the sheeted dike complex is truncated by intrusive isotropic gabbros, and 

therefore reheated and recrystallized to the "granoblastic dikes" under temperatures up to 

1030°C. Xenoliths of granoblastic microgabbros and microgabbronorites derived from the 

granoblastic dikes are commonly observed in the about 100 meters thick horizon of isotropic 

gabbro that underlies the sheeted dike complex. These features can be explained by upward 

migrations of the melt lens that is present at fast spreading centers. The occurrence of several 

assimilation features (xenoliths and granoblastic patches) in the isotropic gabbro horizon 

supports the hypothesis that this horizon represents the fossilization of the upper melt lens. 

The experimental study was designed to simulate experimentally the effect of partial melting 

of hydrothermally altered sheeted dikes. The results show that melting starts at 850°C, 

confirm the residual origin of granoblastic dikes and xenoliths, and attest to the anatectic 

origin of the oceanic plagiogranites that are commonly present close to the base of the sheeted 

dike complex. The major and trace element composition of the experimental anatectic melt 

that represents the main contaminant for primitive MORBs at fast spreading ridges has been 

determined. 

The upper axial melt lens at fast spreading mid-ocean ridges is herein described as a 

dynamic system that can migrate vertically, and which fossilizes when moving off-axis. 
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Résumé 
 

Ce travail de thèse est basé sur des observations de terrain, sur une étude 

pétrographique et géochimique des roches formées à la base du complexe filonien dans 

l’ophiolite d’Oman et au niveau du Site IODP 1256, ainsi que sur une étude expérimentale. 

De nouvelles contraintes sont apportées sur les processus se produisant à la transition magma 

/ système hydrothermal dans la croute océanique formée au niveau des dorsales à expansion 

rapide. 

L’intrusion de gabbros isotropes dans la base du complexe filonien a provoqué son 

réchauffement et sa recrystallization en « dikes granoblastiques » jusqu’à des températures de 

1030°C. Des xénolites de microgabbro à orthopyroxene dérivées des dikes granoblastiques 

sont souvent observées dans le niveau de gabbros isotropes épais de 100 mètres environ qui 

est présent à la base du complexe filonien. Ces différentes caractéristiques sont à relier à des 

migrations verticales vers le haut du sommet de la lentille magmatique supérieure qui est 

observée aux dorsales rapides. Les nombreuses évidences d’assimilation (xénolites et patchs 

granoblastiques) dans le niveau des gabbros isotropes appuient l’hypothèse que ce niveau 

représente la fossilisation de la lentille magmatique supérieure. L’étude expérimentale a 

consisté à tester l’effet de la fusion partielle du complexe filonien préalablement 

hydrothermalisé. Les résultats montrent que la fusion commence à 850°C, confirment 

l’origine résiduelle des dikes granoblastiques et des xénolites associées, et attestent de 

l’origine anatectique des plagiogranites océaniques qui sont couramment observés à proximité 

de la base du complexe filonien. La composition en éléments majeurs et traces du liquide 

anatectique a été déterminée. Ce liquide représente le principal contaminant pour les MORBs 

primitifs émis au niveau des dorsales rapides. 

La lentille magmatique supérieure présente au niveau des dorsales médio-océaniques à 

expansion rapide est ici décrite comme un système dynamique qui peut migrer verticalement, 

et qui est fossilisée lorsqu’elle se déplace hors axe. 
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Zusammenfassung 
 

Die vorliegende Dissertation basiert auf geländebezogenen, petrographischen und 

geochemischen Untersuchungen an Gesteinen vom Gabbro / Dike - Übergang vom Oman-

Ophiolith und von der IODP-Bohrung 1256 vom ostpazifischen Rücken, in Verbindung mit 

einer experimentellen Studie, und soll neue Einblicke in die Geodynamik von schnell-

spreizenden ozeanischen Rückensystemen gewinnen. 

 In beiden Vorkommen wird die Basis der Sheeted Dikes durch Intrusionen von 

isotropen Gabbros abgeschnitten, die auch eine Rekristallisation der Basalte zu den 

"Granoblastischen Dikes" bewirkte, wobei Gleichgewichtstemperaturen bis zu 1030°C 

ermittelt wurden. Alle Natur-Beobachtungen zusammengenommen implizieren, dass die 

axiale Schmelzlinse eine sehr dynamische Struktur ist, die vertikal zu wandern vermag. Die 

weite Verbreitung von Assimilationsstrukturen im isotropen Gabbro (Xenolithe und 

granoblastische Domänen), unterstützen ein Modell, dass der isotrope Gabbro der 

fossilisierten Schmelzlinse entspricht, nach einer Phase der Entleerung und Bewegung in eine 

"off-axis" - Position.  

 Eine experimentelle Studie wurde durchgeführt, um den Prozess des Aufschmelzens 

von hydrothermal alteriertem Dike-Material am Top der axialen Schmelzlinse zu simulieren. 

Phasengleichgewichte und Zusammensetzungen der experimentellen Phasen incl. 

Spurenelemente der Gläser implizieren, dass die an der Basis der Sheeted Dikes verbreiteten 

ozeanischen Plagiogranite als Aufschmelzprodukte der hydrothermal alterierten Dikes 

angesehen werden können, während die granoblastischen Lithologien die entsprechenden 

Residuen darstellen. Die vorliegende Studie charakterisiert die axiale Schmelzlinse als ein 

sehr dynamisches System, das sich  aufwärts- und abwärtsgerichtet bewegen kann, und 

fossilisiert, wenn es von der  "on-axis"- in die "off-axis" - Position wandert. 



 

 6

 



 

 7

Table of contents 
 
Introduction ................................................................................................................................ 9 
Chapter I. Magmatic accretion at fast spreading ridges .................................................... 15 

I.1. Architecture of oceanic crust at fast spreading ridges.............................................. 17 
I.1.a. General structure .............................................................................................. 17 
I.1.b. Magma chamber models .................................................................................. 19 
I.1.c. Ridge segmentation .......................................................................................... 22 

I.2. The upper melt lens, a key horizon .......................................................................... 22 
I.2.a. Structure ........................................................................................................... 22 
I.2.b. Melt storage, composition and delivery ........................................................... 26 

I.3. The melt lens and the root zone of the sheeted dike complex: relations and evolution
 30 

I.3.a. General presentation......................................................................................... 30 
I.3.b. Interaction processes ........................................................................................ 30 
I.3.c. Geological settings ........................................................................................... 32 
I.3.d. Lithostratigraphy .............................................................................................. 33 
I.3.e. Conceptual models and implications................................................................ 34 

I.4. Key questions and hypotheses to be tested .............................................................. 39 
Chapter II. “Magmatic / hydrothermal transition in IODP Hole 1256D” .......................... 41 

II.1. Geological context.................................................................................................... 43 
II.2. Petrology of the granoblastic microgabbronorite dikes and gabbros....................... 45 
II.3. Mineral major element compositions....................................................................... 56 

Chapter III. “Magmatic / hydrothermal  interactions in the Oman ophiolite”..................... 63 
III.1. Visited areas ......................................................................................................... 65 
III.2. Lithostatigraphy ................................................................................................... 66 
III.3. Interactions between magma and hydrothermal system in Oman ophiolite and in 
IODP Hole 1256D: fossilization of a dynamic melt lens at fast spreading ridges............... 74 
III.4. Aswad area: further constrains on the model ..................................................... 105 
III.5. Reheating of the Aswad sheeted dikes............................................................... 111 
III.6. Conclusion.......................................................................................................... 117 

Chapter IV. “Melting the hydrothermally altered sheeted dike complex: experimental 
study” 119 

IV.1. Introduction ........................................................................................................ 120 
IV.2. Detailed experimental techniques ...................................................................... 121 

IV.2.a. Sample preparation......................................................................................... 121 
IV.2.b. Cold-seal pressure vessel ............................................................................... 122 
IV.2.c. Internally heated pressure vessel.................................................................... 124 

IV.3. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: 
Experiments and nature...................................................................................................... 126 

IV.3.a. Abstract .......................................................................................................... 126 
IV.3.b. Introduction .................................................................................................... 127 
IV.3.c. Natural occurrences and previous experiments on hydrous partial melting of 
mafic rocks ..................................................................................................................... 128 
IV.3.d. Experimental and analytical techniques......................................................... 130 

IV.3.d.1. Starting material ..................................................................................... 130 
IV.3.d.2. Experimental method ............................................................................. 132 
IV.3.d.3. Analytical method .................................................................................. 134 

IV.3.e. Experimental results....................................................................................... 134 



 

 8

IV.3.e.1. Attainment of equilibrium...................................................................... 134 
IV.3.e.2. Phase relations in the partial molten system .......................................... 137 
IV.3.e.3. Prehnite break-down reaction................................................................. 139 
IV.3.e.4. Phase compositions in the partial molten system................................... 140 

IV.3.f. Discussion ...................................................................................................... 143 
IV.3.f.1. Melt evolution: Origin of oceanic plagiogranites at the base of the 
Sheeted Dikes............................................................................................................. 143 
IV.3.f.2. Evolution of the residual minerals: formation of "granoblastic dikes" .. 145 
IV.3.f.3. MORB contamination at the base of the sheeted dikes.......................... 149 

IV.3.g. Conclusion...................................................................................................... 151 
IV.4. Mineral recrystallization during experiments: a preliminary study ................... 151 
IV.5. Melting the hydrothermally altered sheeted dike complex: an experimental / trace 
elements study .................................................................................................................... 156 

IV.5.a. Abstract .......................................................................................................... 156 
IV.5.b. Introduction .................................................................................................... 157 
IV.5.c. Experimental and analytical techniques......................................................... 159 
IV.5.d. Trace element contents................................................................................... 159 
IV.5.e. Discussion ...................................................................................................... 161 
IV.5.f. DR 1: Analytical methods: ............................................................................. 165 
IV.5.g. DR 2: Major element compositions ............................................................... 166 
IV.5.h. DR 3: Trace element compositions ................................................................ 166 

IV.6. Conclusion.......................................................................................................... 166 
Chapter V. “Further discussion: Recrystallization in gabbros”........................................ 169 
Conclusion.............................................................................................................................. 183 
References .............................................................................................................................. 189 
 



Introduction 

 9

 

Introduction





Introduction 

 11

Oceanic crust represents about two thirds of the Earth surface, and nearly half of it 

formed at fast-spreading mid-ocean ridges. The structure and composition of oceanic crust are 

constrained by off shore geophysical studies, and in-situ geological mapping and sampling 

(dredging and drilling), and ophiolitic complexes studies. Geophysical studies of fast-

spreading ridges, primarily the East Pacific Rise (e.g., Sinton and Detrick, 1992), have shown 

that the ridge axis is composed of a magma chamber at depth, which is overlaid by a thin, 

narrow, and nearly continuous melt lens at its top, and of an upper lid formed by the sheeted 

dyke complex and the volcanics that seems to be injected from the axial melt lens (Figure 1). 

The upper melt lens is a key horizon in oceanic crust genesis, as it feeds at least part of the 

upper and lower crust. Understanding processes acting in and around the melt lens is therefore 

of major importance to precisely constrain the oceanic crust genesis at fast-spreading ridges. 

The upper melt lens is also the uppermost known nearly steady-state occurrence of melt at the 

ridge axis, and it corresponds to the sheeted dike / gabbro transition, where the magmatic 

system (that builds the crust) and the convecting hydrothermal one (that cools the crust) 

interact. 

 

 
Figure 1: Cross axis view of a ridge accreted at fast spreading centers (Modified from Sinton 
and Detrick, 1992, Nicolas and Boudier, 1995, Boudier et al., 1996; MacLeod and Yaouancq, 
2000; and Nedimovic et al., 2005). A melt lens is present at the bottom of the upper crust and 
at the moho level. Gabbros are vertically foliated to the top and horizontally layered to the 
bottom. The mush underneath the upper melt lens is intruded by sills. 
 

Interactions between the magmatic and the hydrothermal systems can modify the 

composition of the melt lens and therefore influence the whole oceanic crust composition, in 

particular the mid-ocean ridge basalts (MORB) composition, which are the most accessible, 
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and therefore most commonly studied oceanic rocks. Several studies have focused on the root 

zone of the sheeted dike complex and have lead to apparently contrasting models. Some 

authors have proposed that the melt lens is a steady state horizon (e.g., Nicolas et al., 2008), 

when others have proposed that it behaves as a dynamic horizon (e.g., Gillis, 2008). The 

origin of the isotropic gabbro horizon (~100-200m thick) below the sheeted dike complex is 

either attributed to the melt lens fossilization (e.g., MacLeod and Yaouancq, 2000) or to 

hydrous partial melting of the root zone of the sheeted dike complex (Nicolas et al., 2008). 

Hence the fundamental questions I have addressed in this work are: is the interface between 

the melt lens and the hydrothermal system a steady-state or a dynamic system? Is water 

incorporated to the melt, and if so through which process(es)? Does the isotropic gabbros 

represent the fossilization of part (or of all) of the melt lens? 

 

In 2005, the Integrated Ocean Drilling Program (IODP) has drilled Hole 1256D on the 

Cocos plate, in an oceanic crust formed at the East Pacific Rise at a superfast spreading rate 

(> 20cm/y). For the first time, IODP Hole 1256D has sampled a complete, intact section of 

the upper oceanic crust (Wilson et al., 2006). It has reached the upper isotropic gabbros, 

sampling the contact between the sheeted dike complex and these gabbros. This drillhole 

gives us the first opportunity to compare this peculiar horizon in an intact portion of present-

day oceanic crust with ophiolites and the derived "Penrose" model oceanic lithosphere 

generated at fast-spreading ridges. This comparison provides further constraints on the 

dynamic of this complex geological and petrological interface, and allows the elaboration of a 

common model for its evolution in time. 

The main objective of this thesis was to identify processes acting at the gabbro / 

sheeted dike transition, and to identify the feedbacks between the magmatic and the 

hydrothermal systems in oceanic crust formed at fast-spreading ridges. Two complementary 

approaches have been implemented: 

 A compared field work, and petrological study of IODP Hole 1256D and the 

Oman ophiolite was carried out. In the Oman ophiolite, two field-work 

campaigns have been realized (6 weeks during winter 2006-07 and 6 weeks 

during winter 2007-08). The isotropic gabbro horizon corresponding to the 

transition from the sheeted dike complex to the foliated gabbros has been studied 

in details in three areas of the southern massifs in the Oman ophiolite; ~10 other 

areas have been visited in other massifs to verify the widespread occurrence of 

the observed relations, hence the proposed model. IODP core 1256D has been 
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relogged and described in details during a visit in College Station in summer 

2007. A petrological study of all samples (from Oman and IODP Hole 1256D) 

has been conducted, including mineral major element compositions of all 

lithologies. A comparison between the observations made in Oman and at IODP 

Site 1256 leads to the elaboration of a common coherent model for the 

interactions between the magmatic and the hydrothermal systems at fast 

spreading ridges. 

 The approach based on natural rocks was complemented by an experimental 

petrology study that has been performed in the “Institut für Mineralogie” of the 

Leibniz University Hannover. The objective of this work was to reproduce the 

melting of the hydrothermally altered base of the sheeted dike complex under 

pressure, temperature, and redox conditions that match the natural processes. A 

natural altered dike from the Oman ophiolite has been used as starting material. 

The composition of the newly formed melt is compared with typical 

plagiogranitic rocks from oceanic lithosphere, and the coexisting experimental 

minerals to rocks associated to these oceanic plagiogranites. The trace element 

composition of the experimental melts is also studied for the first time. 

 

The manuscript is organized in six chapters: 

I. A short overview of crustal accretion processes at fast spreading ridges, and a 

review of what is known to date about processes acting at the gabbro / sheeted 

dike transition is presented. 

II. The main lithologies recovered at the bottom of IODP Hole 1256D are 

described, and the major element composition of the mineral phases are 

documented. 

III. The sheeted dike / gabbro transition was studied in the Oman ophiolite and 

results are compared with IODP Hole 1256D. A general model integrating 

previously published models and new observations is proposed in an article 

published in Geochemistry Geophysics Geosystems. 

IV. An experimental study reproducing the melting of hydrothermally altered 

sheeted dikes is presented. The experimental method is precisely described, and 

the main results are presented in an article submitted to Contributions to 

Mineralogy and Petrology. A specific and innovative study of the trace element 
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concentration of the experimental products is also presented in an article that will 

be submitted to Geology. 

V. The isotropic gabbro horizon, believed to represent the fossilized melt lens, is 

then studied to test the model proposed in parts III and IV. Several observations 

attest to the assimilation of previously hydrothermally altered sheeted dikes 

within the melt lens. 

VI. The conclusion summarizes the main results, and outlines some prospective 

directions of future research. 

 

The appendix is divided in five parts: 

A. Other papers linked to this PhD work and used in the different chapters are 

presented. 

B. The dataset used in Chapters 2 and 4 is given. 

C. Abstract of other papers written during this PhD work are presented. 

D. Conference abstracts presented during my PhD work are presented. 

E. Samples locations and characteristics. 
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I.1. Architecture of oceanic crust at fast spreading ridges 

I.1.a. General structure 

For decades, scientists have explored oceanic crust to understand its structure, the way 

it is formed, and the processes that are active at the ridge axis. In April 1961, the Mohole 

project (Bascom, 1961) attempted to drill the whole oceanic crust down to the Moho (this has 

been reported in the Life magazine by John Steinbeck). The drillhole was situated to the west 

of the Mexico’s Baja California and was the first scientific attempt to drill hard rocks. 

Although limited (only 13 meters of basalts have been recovered below the sediments), the 

success of drilling hard rocks was promising. The Penrose field conference (Conference 

Participants, 1972) has led to the elaboration of a consensual model for the oceanic crust 

structure. During this conference, the oceanic crust seismic models (e.g., Raitt, 1963; Shor et 

al., 1970) have been put in relation with the ophiolite structures and petrology (Figure I-1). 

The seismic model displays different layers that correspond to variable P wave velocities (VP 

in km/s). The petrological model (ophiolitic model) is composed from the top to the bottom of 

the basalts (layer 2A), of the sheeted dike complex (layer 2B), of the gabbros (layer 3) and of 

the peridotites (layer 4). 

 
Figure I-1: Petrologic (or ophiolitic; left; after Nicolas et al., 1988) and seismologic (right, 
Mével, 2003) models for oceanic crust formed at fast spreading centers. Vertical scale shows 
the depth below the sea floor (b.s.f.) in km. The layer 2A is believed to correspond to the 
pillow-lavas and lava-flows; the 2B to the sheeted dike complex; the layer 3 to the gabbro pile 
and the layer 4 to the mantle. 
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Drilling operations at site 504B (eastern equatorial pacific) have nevertheless reached 

the layer 3 within the sheeted dike complex horizon (Detrick et al., 1994; Alt et al., 1996) and 

the recent IODP Hole 1256D (Cocos plate) has reached the gabbros within the layer 2 (Teagle 

et al., 2006; Wilson et al., 2006). These observations support that parameters such as porosity 

and alteration are more important than the grain size or the rock type on the control of the 

location of layer 2 / 3 transition (Wilson et al., 2006). 

Porosity is related to fracturing and alteration, and allows hydrothermal circulation, 

which is mainly concentrated in the upper crust. Recent geochemical and structural studies of 

the Oman ophiolite show that very high temperature fluids can reach the magma chamber 

margins in the lower crust (Bosch et al., 2004; Nicolas et al., 2003; Nicolas and Mainprice, 

2005). The hydrothermal circulation is classically depicted across-axis, forming cells that are 

perpendicular to the ridge axis (e.g., Alt et al., 1986). These are believed to be represented by 

a recharge system with cold sea water injections, away from the ridge axis along off-axis 

faults, and by a discharge system that rise up to the surface after the reheating occurring close 

to the magma chamber (e.g., Alt et al., 1986; Lowell et al., 1995; Kelley et al. 2002; Fisher, 

2003). At 9°50’N, beneath a well-studied hydrothermal vent field on the East Pacific Rise, 

microearthquakes hypocenter relocations using the double-difference algorithm (relative 

location errors are 50 m in average; Waldhauser and Ellsworth, 2000) have been performed 

(Figure I-2; Tolstoy et al., 2008).  

 

 
Figure I-2: a) Along axis cross section of the East Pacific Rise between 9°49’N and 9°51’N 
(Tolstoy et al., 2008). AMC: axial magma chamber or upper melt lens. The features of the 
best-defined hydrothermal cell are shown with black arrows, and the features inferred in 
adjacent cells are shown with grey arrows. Light blue dots illustrate the area where tectonic 
stresses are likely to dominate earthquake generation, creating a zone of permeability. Light 
grey dots illustrate where hydrothermal stresses probably dominate. Red triangles are high-
temperature vents (with their associated names); yellow stars are low temperature vents. b) 
200 m wide cross-axis section at 9°49.3’N; AST: axial summit trough; the grey line 
represents the melt lens reflector. 
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The hypocenters cluster in a vertical pipe-like zone (Figure I-2b), and in a band that 

lies directly above the melt lens (Figure I-2a). These data highlight that the convecting 

hydrothermal system forms along axis cells rather than cross axis ones (Figure I-2). 

 

I.1.b.  Magma chamber models 

In early models (Figure I-3), the organization of fast-spreading ridge magma chambers 

was envisioned as a large, mostly molten reservoir (e.g., Cann, 1974; Dewey and Kidd, 1977; 

Smewing, 1981; Pallister and Hopson, 1981; Casey and Karson, 1981; Nicolas et al., 1988). 

 

 
Figure I-3: Early models for the structure of the magma chamber (cross-axis views) that is 
represented by a large molten domain. a) Cann (1974) model; b) Smewing (1981) model [a]: 
magma imput; [b]: olivine+spinel fractionation; [c]: main magma body; [d]: limited mixing 
with primary melts; [e]: olivine-rich cumulates; [g]: cystallization; c) Pallister and Hopson 
(1981) model: Solidification stages, X= sandwich horizon where downward crystallization 
from the roof and upward crystal accumulation from the floor converge. 
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In these models crystal fractionation is expected to produce the evolved composition 

of most of the mid-ocean ridge basalts (MORB; e.g., Bryan et al., 1976; Stolper, 1980; Grove 

and Bryan, 1983). Seismic reflection profiles (Morton and Sleep, 1985; Kent et al., 1990), 

multi-channel seismic imaging (Detrick et al., 1987), and tomographic studies of mid-ocean 

ridges (Toomey et al., 1989; Caress et al., 1992), and petrological studies of oceanic 

lithologies (e.g., Smewing, 1981; Browning, 1984; Langmuir et al., 1986; Bloomer et al., 

1989; Sinton et al., 1991; Lamoureux et al., 1999) have ruled out the large magma chamber 

model. The magmatic system is better represented by a thin and narrow, mostly liquid melt 

lens present at the base of the sheeted dike complex, and that overly a crystal-rich mush 

(Figure I-4). The size and structure of the melt lens has been further constrained by recent 

experiments at the East Pacific Rise (Singh et al., 1998; Kent et al., 2000) as outlined in 

section I.2.a. The presence of melt lenses close to the Moho has also been inferred from ocean 

bottom seismograph observations (Garmany, 1989), tomographic studies (Dunn et al., 2001), 

compliance studies (Crawford and Webb, 2002), multi-channel seismic data (Nedimovic et 

al., 2005), and three dimensional seismic reflection images (Singh et al., 2006). Recently, 

melt lenses within different levels of the lower crust (~850-900 m above, and at the Moho 

transition zone) have been observed through seismic reflection images (Figure I-4b; Canales 

et al., 2009). 

These different melt lenses are expected to play a key role in controlling the crustal 

accretion. The upper melt lens is considered to be the source of the upper crust extrusives 

(sheeted dike complex and lavas). The different models for the formation of the lower crust 

which is typically composed of foliated and layered gabbros can be summarized in two end-

members: (1) all the crystallization occurs in the shallow melt lens resulting in the subsidence 

of crystals in a “gabbro-glacier” building the lower crust (Figure I-5a; e.g., Henstock et al., 

1993; Phipps Morgan and Chen, 1993; Quick and Denlinger, 1993); and (2) the lower crust 

crystallized mainly in-situ through injection of sills (Figure I-5c; Browning, 1982; Bedard et 

al., 1988; Gudmundsson, 1990; Kelemen et al., 1997; MacLeod and Yaouancq, 2000). An 

hybrid model of ductile flow resulting in subsidence from the shallow melt lens (Nicolas et 

al., 2009; see Appendix A1), with the occurrence of sill injections in the Moho transition zone 

(Kelemen et al., 1997) is also proposed (Figure I-5b; Boudier et al., 1996). 
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Figure I-4: a) Cross-axis view; the melt lens is restricted to a small domain at or close to, the 
sheeted dike base, it overlies a mush zone containing less than 20% of melt (Sinton and 
Detrick, 1992). b) Melt lenses are imaged at different levels of the crust (Canales et al., 
2009): AMC=Axial magma chamber, it represents the melt lens depicted in a); 
LCML=Lower-crustal melt lens, and Moho the Moho melt lens. The section between the AMC 
and the Moho melt lens is considered to be mostly mushy (<20% melt according Lamoureux 
et al., 1999). The white dotted line represents the ridge axis. 
 

 
Figure I-5: Oceanic crust accretion models after Korenaga and Kelemen (1998) (B. Ildefonse 
personal com.). a) The “gabbro glacier” model: all the lower crust is crystallized through 
subsidence from the upper melt lens (e.g., Henstock et al., 1993; Phipps Morgan and Chen, 
1993). b) Mixed model in which the lower crust is fed from the top through subsidence and 
from the bottom through sill injections (Boudier et al., 1996). c) The “sheeted sill” model in 
which most of the lower crust crystallize through sill injections (e.g., Kelemen et al., 1997; 
MacLeod and Yaouancq, 2000). 
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I.1.c. Ridge segmentation 

The ridge present at fast spreading centers is not a continuous feature (e.g., Macdonald 

et al., 1988); it is segmented at different scales. The largest scale segmentation is represented 

by the large transform faults that separate ridge segments; the transform offset is tens to 

hundreds of kilometers. These are believed to be originated from mantle heterogeneities. The 

second order segmentation is represented by the overlapping of oceanic spreading centers 

(OSC); these discontinuities offset the ridge by typically 5 to 20 kilometers and are believed 

to have a significant effect in the mantle. The third order segmentation is defined by changes 

in the volcanic morphology of the ridge axis and changes in its trend. It is inherited from 

shallow mantle melt distribution. The finest-scale segmentation is defined by offsets in axial 

summit trough, and is inferred to be induced by lateral dike intrusions. All these 

discontinuities are associated to variations in the physical properties and structure of the melt 

lens (Carbotte, 2008), and should be considered when studying the melt lens evolution. 

 

I.2. The upper melt lens, a key horizon 

As discussed in part I.1, the upper melt lens present at the axis of fast spreading ridges 

feeds most of the upper crust and at least part of the lower one. It is therefore a key horizon 

for understanding the genesis of the oceanic crust. Several processes or interactions can occur 

within the melt lens or at its boundaries with surrounding rocks, magmas and hydrothermal 

fluids. These processes can be fractional crystallization, magma mixing, assimilation of fresh 

and / or of hydrothermalized rocks, partial melting of the surrounding rocks, and hydration of 

the magma at different stages of the crystallization. These can occur jointly and at different 

levels in the melt lens. All these possible processes have the potential to influence the 

composition of the formed melt, in particular of the MORBs that are the most accessible and 

therefore most studied oceanic hard rocks for shedding light on the mantle and crustal 

magmatic processes. All processes operating within and around the upper melt lens have thus 

important implications on our understanding of the global ridge system, and should be 

precisely constrained. 

I.2.a. Structure 

Morton and Sleep (1985) were the firsts to report the presence of a reflector at ~3500 

m (below the ridge axis) depth, and interpret it as being related to an upper small melt lens at 
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the ridge axis at the top of a crystal mush containing a small percentage of melt. This melt 

lens is located at the bottom of the 2B layer representing the sheeted dike complex. Thermal 

structure at the axis, inferred from the tomographic study of Dunn et al. (2000), is in 

agreement with the presence of a small melt lens at the bottom of the sheeted dike complex 

(Figure I-6). Purdy et al. (1992) and Phipps Morgan and Chen (1993) have shown that the 

melt lens depth is proportional to the spreading rate; this has been recently confirmed in the 

Cocos plate where the first gabbros below the sheeted dike (considered as representing the 

melt lens) have been reached at relatively shallow depth (1157 meters below seafloor 

basement) by the IODP drilling operations performed at site 1256D (Figure I-7; Wilson et al., 

2006). Along axis surveys along the East Pacific Rise show that the range of depth variation 

of the melt lens is about 1000 m, over tens to hundreds of km (e.g., Hooft et al., 1997; Figure 

I-8a). 

 

 
Figure I-6: Cross axis tomographic model of the East Pacific Rise at 9°31.74’N (Dunn et al., 
2000). Velocity perturbations are calculated against a one dimensional velocity model.  
 

Canales et al. (2005) have shown at the Juan de Fuca Ridge that the melt lens is 

present along axis over tens of km (Figure I-8b). The recent study of Canales et al. (2009), 

using higher resolution seismic reflection data, confirms the along axis continuity over several 

km of the narrow upper melt lens (Figure I-4b). Preliminary results of a recent multi-streamer 

3D seismic reflection study of the 9°50’ area of the East Pacific Rise show that the melt lens 

is divided into a series of discrete magma lens events that are continuous ~5-10 km (Carton et 

al., 2008; Carbotte, 2008). Cross-axis seismic reflection profiles beneath the East Pacific Rise 

at 9°30’N (Canales et al;, 2005) show that the width of the melt lens ranges between 600 and 

1700 m, which is in good agreement with the first estimates done by Kent et al. (1990). The 
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width of the melt lens is not correlated to depth variations (Figure I-8c). The erupted melt 

volume is not correlated to the melt lens depth but well correlated to its width (Bergmanis et 

al., 2007). 

 

 
Figure I-7: Depth to the upper axial melt lens reflector against spreading rate (Wilson et al., 
2006, after Purdy et al., 1992, and Carbotte et al., 1998). Two models of Phipps Morgan and 
Chen (1993) are shown (black lines) and extrapolated to higher spreading rates (dashed 
lines). The penetration of IODP Holes 504B and 1256D are added (black vertical lines) 
considering ~300 m of off-axis lavas for Hole 1256D (Wilson et al., 2006). The depth of the 
first gabbros encountered at IODP Hole 1256D fit well the extrapolations of the Phipps 
Morgan and Chen (1993) model. MAR=Mid Atlantic Ridge; JdF=Juan de Fuca Ridge; 
Lau=Valu Fa Ridge in Lau Basin; CRR=Costa Rica Rift; EPR=East Pacific Rise. 
 

Collier and Singh (1997) have performed a detailed study of the top of the melt body 

beneath the East Pacific Rise at 9°40N, and have estimated the thickness of the narrow upper 

melt lens to be ~30 m. They also show that the melt lens contain less than 30% of crystals. 

Singh et al. (1998), using single-ship and two-ship multichannel seismic reflection profile 

near 14°S at the East Pacific Rise, both along- and across-axis, have shown that the melt lens 

is ~50 m thick, and that its internal properties change rapidly along axis, ranging from nearly 

pure melt (>90% of melt) to mush containing 40-60% of melt. Over the ~60 km of imaged 

melt lens, three 2-4 km long zones consist of, nearly pure melt, separated by 15-20 km long 

mushy zones. Singh et al. (1998) also noted that basaltic samples from the East Pacific Rise 

contain on average 7-10% of phenocrysts (Batiza and Niu, 1992), which suggest that 

eruptions originated in nearly pure melt lens segments. Singh et al. (1999) performed a full 

waveform inversion of the Singh et al. (1998) data, and showed that the ~50 m thick melt lens 

is underlain by a nearly solid floor (at least 100-150 m thick) and overlain by a 50-60 m thick 



Chapter I. Magmatic accretion at fast spreading ridges 

 25

solid roof. They also showed that a low velocity zone (150-200 m thick) is present above the 

melt lens roof and may correspond to the base of the hydrothermal convecting system. 

 

 
Figure I-8: Along axis imaging of the upper melt lens. a) Depth to the melt lens reflector 
along the East Pacific Rise between 16° and 20°S (Hooft et al., 1997). Vertical lines indicate 
the locations of overlapping spreading centers. b) Seismic reflection profile along the Juan de 
Fuca Ridge between 44°30N and 45°30N (Canales et al., 2005). Black arrows indicate the 
melt lens position (AMC); white arrows indicate the basement of layer 2A. Vertical black 
lines and associated numbers show the position of cross axis profiles shown in Canales et al. 
(2005). c) Melt lens depth (circles; left axis) and width (grey stars; right axis) vs. latitude 
along the Juan de Fuca Ridge between 44°30N and 45°30N (Canales et al., 2005). Solid line 
and solid circles correspond to the average melt lens depth estimated from cross-axis profiles. 
Open and grey circles correspond to two different along axis parallel segments. 
 

Using the hydrothermal plume distribution along the South East Pacific Rise 

determined by Backer and Urabe (1996), and the mush – melt distribution from the same area 

proposed by Singh et al. (1998), Singh et al. (1999) proposed that hydrothermal plumes, 



 

 26

which correspond to the discharge part of the system, are associated to melt-rich segments of 

the axial melt lens. This is also in agreement with the recent study of the hydrothermal system 

at 9°50'N at the East Pacific Rise (Tolstoy et al., 2008), which shows that the hydrothermal 

recharge occurs in a location where no reflector is observed, and therefore no melt lens, is 

present (Figure I-2). These different results are summarized in Figure I-9 (Singh et al., 1999). 

 

 
Figure I-9: Schematic along axis model of the melt lens area and associated velocity 1D 
models (Singh et al., 1999). The left model corresponds to the mush zones and the right one to 
the melt domains. Note that in melt domains, the S wave velocity is nearly zero at the melt 
lens depth. Hydrothermal discharge occurs above the melt domains.  
 

I.2.b. Melt storage, composition and delivery 

The composition of the melt filling the melt lens is believed to be well represented by 

the compositions of the sheeted dike complex and the lava erupted on the sea floor (e.g., 

Sinton and Detrick, 1992), and is therefore similar to typical N-MORB. However, Natland 

and Dick (1996) proposed that differentiation that is believed to occur in the melt lens can 

produce iron-rich melts that are too dense to erupt, and that may lie on the melt lens floor. 

This hypothesis builds on the discovery of ferro-andesitic samples within the isotropic gabbro 

section below the sheeted dike at Hess Deep. Similar rocks have also been observed in the 

Oman ophiolite, but structural relationships suggest that they formed by differentiations at the 

melt lens margins (MacLeod and Yaouancq, 2000). These rocks therefore represent late 

processes occurring after the dike injections. Dike (and lava) composition is therefore 
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expected to represent an average composition of the melt lens, and the overall melt lens 

composition can be considered to be well represented by N-MORB. MacLeod and Yaouancq 

(2000) proposed that the varytextured gabbro horizon that underlies the sheeted dike complex 

represent the fossilized melt lens. Using the compositions and the proportions of the different 

lithologies forming this horizon, they have calculated an average composition that 

corresponds to typical MORB melts (with Mg#=65 where Mg#=Mg/[Mg+Fe] and 

TiO2=1.1wt%). 

N-MORB melts represent evolved liquids regarding primitive mantle melts (e.g., 

Stolper, 1980) and must have fractionated before reaching the upper melt lens. Koga et al. 

(2001) noted that most of the clinopyroxenes in samples from the Moho transition zone in 

Oman (>90% of the samples) are equilibrated with MORB melts, and that mixing of various 

polybaric partial melts of mantle peridotite must have occurred at or below this zone to give 

the MORB signature. Determining the origin of the MORB composition is beyond the goals 

of this study. It is just worth noting here that the MORB composition appears to be consistent 

with channelized, reactive melt transport. For a given degree of partial melting (or a given 

amount of melt), this results in higher amounts of mineral consumption and higher amounts of 

newly formed olivine, compared to a melting reaction without channelization / fossilization 

(e.g., Kelemen et al., 1995; Asimow and Stolper, 1999; Lambart et al., 2009). 

The MORB compositions follow the tholeiitic fractionation trend of increasing 

FeOtotal, Na2O, and TiO2 and decreasing Al2O3 and CaO with decreasing MgO (Klein and 

Langmuir, 1987; Klein et al., 1991). The major variations are attributed to differentiation 

processes occurring within the melt lens but some variations in composition can also be 

attributed to physical parameters such as the melt lens morphology and/or depth. For 

example, the MgO content of the erupted lavas at the East Pacific Rise, 17°30'S, is higher 

when the melt lens is deeper, and these most primitive lavas are less abundant and derived 

from narrower melt lens in contrast with more evolved lavas with lower MgO content 

(Bergmanis et al., 2007). Melt compositions are also correlated to the ridge axis water depth. 

Klein and Langmuir (1987) have shown that the Na8.0 (i.e., the Na2O calculated value at 8 

wt% of MgO, allowing to compare compositions that are not affected by fractional 

crystallization) increases with increasing water depth at the ridge axis. 

Some MORB samples display high chlorine contents that are interpreted as indications 

of sea water contamination of the melt lens through assimilation of hydrothermally altered 

crustal rocks (e.g., Michael and Schilling, 1989; Michael and Cornell, 1998). The 

incorporation of sea water, hence of chlorine into MORB flows during their emplacement on 
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the seafloor is also possible (Soule et al., 2006). However, Cl incorporation during 

emplacement cannot account for the higher Cl/K ratio observed in fast spreading ridges 

MORB vs. slow spreading ridges MORB (Michael and Cornell, 1998), and assimilation 

effects as proposed by Michael and Cornell (1998) is likely to play a role. Nevertheless partly 

digested xenocrysts or amphibolite blocks are only rarely observed in MORB, and the Cl 

assimilation at the melt lens level is not well understood (Michael and Schilling, 1989). More 

recently, Coogan et al. (2003) have shown that assimilation processes do occur around the 

melt lens; this will be outlined in chapter I.3. 

Significant differentiation is believed to occur occasionally in the melt lens; this is 

inferred from the occurrence of highly silicic rocks (>60 wt% SiO2) observed as lavas erupted 

on the seafloor (Fornari et al., 1983; Haase et al., 2005) and as plutonic rocks (oceanic 

plagiogranites) present at the sheeted dike base and in the gabbro unit (e.g., Pallister and 

Hopson, 1981). These silica-rich rocks can alternatively be generated by hydrous partial 

melting of mafic rocks (variously altered dikes and gabbros; e.g., Koepke et al., 2007). These 

two processes are not necessarily mutually exclusive, and may operate jointly (e.g., Pedersen 

and Malpas, 1984). The melt lens crystallization leading to differentiation is believed to be 

fast if no new magma injection occur (~50 years to crystallize a 50 m thick melt lens 

according to Singh et al., 1999). Constraining the timescales of magma replenishment and 

storage in the melt lens, and of magma supply is therefore a critical parameter. These are 

reviewed in detail together with the timescales for transfers from the mantle and for the melt 

lens dynamics in France et al. (2009a; section 6.5). Here, only a short overview of the 

timescale constrains for the replenishment time, residence time and eruptive events associated 

to the upper melt lens is given. 

Using a mathematical model and basalt geochemical data, Rannou et al. (2006) have 

estimated the replenishment period of the melt lens to be ~750 years. Using the MORB major 

and trace elements composition, Rubin and Sinton (2007) proposed that this replenishment is 

achieved in less than 1000 years. Rannou et al. (2006) also proposed that the magma 

residence time in the melt lens is around 300 years, which is in agreement with the Rubin et 

al. (2005) study that proposed, using 210Pb-226Ra-230Th radioactive disequilibria in samples 

from the East Pacific Rise, that the magma resides and mixes in the melt lens over periods of 

~200-400 years. The eruptive events (or supply events) are believed to occur over periods of 

10 to a few hundreds of years (Hooft et al., 1997; Sinton et al., 2002; Bergmanis et al., 2007).  

Do eruptive events have a significant influence on the melt lens structure and 

volume? Recent studies around 9°50’N at the East Pacific Rise seem to show that eruptions 
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do have an impact on the melt lens volume and on its melt proportion. Seismic measurements 

have been done in 1985 and 2008 in this area where two eruptions occur in 1991 and 2005-

2006. Preliminary results from the recent multi-streamer reflection imaging experiment 

(Mutter et al., 2008), suggest that significant variations in the depth of the melt lens reflector 

have occurred between 1985 and 2008 at 9°50’N, below the location of the 2005-2006 

eruption. No significant variation is observed at 9°30’N and 9°40’N, away from the eruption 

event. The reflectivity strength of the melt lens under the eruption locality is weaker than the 

one of the melt lens immediately to the North and South (Carton et al., 2008). This may 

indicate that a lower melt percentage is present in the melt lens that has fed the eruption. 

Are the erupted volumes significant comparable to the volume of the melt lens? 

Soule et al. (2007) have described lava flows over 18 km along axis at the East Pacific Rise, 

9°50'N, and estimated the erupted volume of the 2005-2006 eruption to be ~22 x 106 m3. They 

estimated that the dike feeding this eruption should be on average ~1 m wide (which is the 

average thickness of sheeted dikes in the Oman ophiolite), 1.4 km high and 18 km long, and 

should be filled with ~25 x 106 m3 of magma. However, based on the studies of Singh et al. 

(1998; 1999) at the Southern East Pacific Rise, and on the preliminary results of Carton et al. 

(2008) at 9°50’N, the melt lens cannot be considered as a continuous melt horizon over 18 

km. Singh et al. (1998) proposed that the melt lens containing nearly pure melt and that have 

the potential to feed eruptions are ~2-4 km long. The eruptible melt lens volume can be 

estimated by considering an average width of ~1000m (Bergmanis et al., 2007) and an 

average thickness of 40 m (30 m for Collier and Singh, 1997 and 50 m for Singh et al., 1999), 

i.e., ~120 x 106 m3. If we consider that the dike feeding the 2005-2006 eruption rooted in a 

~2-4 km long melt lens rather than in a 18 km long melt lens, its volume can be considered to 

be ~4 x 106 m3 resulting in an total supplied volume of ~26 x 106 m3. The supplied volume is 

therefore roughly one fifth of the eruptible melt lens volume. As the whole melt lens is 

probably not homogeneously involved in the eruption, some parts may have supplied even 

more magma; it is therefore expected that significant variations in the seismic properties of 

the melt lens can locally occur, and the variations in the depth of the axial melt lens observed 

by Mutter et al. (2008) are possibly linked to the eruption.  

Lagabrielle and Cormier (1999), Lagabrielle et al. (2001) and Garel et al. (2002) have 

shown that periods of waning magma supply and of melt lens replenishment are associated to 

axial morphological variations. Along axis troughs interpreted as collapsed calderas (40-110m 

deep) may form when the melt supply of a previously inflated melt lens wanes or ceases. In 

contrast, the axial morphology is believed to be a broad, smooth dome structure when the 
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melt supply is higher. Along axis variations of the axial morphology are interpreted by 

Carbotte (2008) to represent the 4th order of fast spreading ridges segmentation; on each side 

of this 4th order discontinuity, geochemical compositions are different. This is consistent with 

Lagabrielle and Cormier (1999) who proposed that axial morphology variations correspond to 

differences in the magma supply. Hence, variations in basalt composition should be correlated 

with different axial morphologies. For example, Caroff et al. (1997) have shown that the 

presence of axial trough is associated to larger geochemical heterogeneities than in zones with 

dome-shaped axial morphology, and are associated to lavas enriched in rare-earth elements, 

deriving from melts that have evolved during periods of lesser replenishment. 

 

I.3. The melt lens and the root zone of the sheeted dike complex: 

relations and evolution 

I.3.a. General presentation 

In this part, I discuss the available models for the melt lens evolution and for the 

evolution of the associated root zone of the sheeted dike complex. These zones are spatially 

associated, and correspond to the interface where the hydrothermal convecting system and the 

magmatic one are acting together. Several chemical and thermal exchanges can occur during 

the melts, fluids and rocks transfers. The thermal gradient (~7°/m) is believed to be one of the 

highest nearly stable thermal gradients on earth (Nicolas et al., 2008; See Appendix A2). 

Although the foliated gabbros origin is discussed (Boudier et al., 1996; MacLeod and 

Yaouancq, 2000; Nicolas et al., 2009_Appendix A1), in all models they represent the melt 

lens floor. I focus here on lithologies occurring above this horizon: the isotropic gabbro 

horizon and on the base of the sheeted dike complex. 

I.3.b. Interaction processes 

Several processes can operate in the melt lens, in the root zone of the sheeted dike 

complex and at the interface between them (Figure I-10). First of all, eruptions can occur 

(Figure I-10b), draining out some melt. Consequently, the axial morphology can be modified 

(Lagabrielle and Cormier, 1999). Crystallization at the melt lens margins (Figure I-10c) may 

occur when the magma supply decreases or when the thermal regime reaches lower 

temperatures; such a crystallization stage may lead to magma differentiation (e.g., MacLeod 
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and Yaouancq, 2000). New melt injections may come from the main, mushy magma chamber 

below the melt lens (Figure I-10d); this would result in magma mixing and melt lens 

replenishment. The replenishment can be associated to an inflation of the ridge axis 

morphology (Lagabrielle and Cormier, 1999) and to assimilation of the melt lens roof (Figure 

I-10e; e.g., Coogan et al., 2003). The melt lens roof is assumed to be hydrothermalized (see 

below) and its assimilation may account for the chlorine enrichment observed in some 

MORBs (Michael and Schilling, 1989; Coogan et al., 2003). As the melt lens feeds at least 

part of the lower crust through subsidence (Boudier et al., 1996; Nicolas et al., 2009), it may 

also account for the lower crust contamination documented by Coogan (2003). Some authors 

consider the melt lens to be a steady state horizon that cannot assimilate its roof (e.g., Nicolas 

et al., 2008). It this case, the chlorine enrichment / contamination may be explained by the 

incorporation of Cl-rich brine contained in the roof and / or wall rocks (Figure I-10e; e.g., 

Michael and Schilling, 1989; Michael and Cornell, 1998). 

Even if the contamination mechanism is not fully understood, the incorporation of 

fluids and especially of water into the melt lens is very obvious. The addition of water to the 

melt lens, even at low concentrations, has strong implications. It lowers the melt viscosity 

(Giordano et al., 2008); lowers the solidus and liquidus temperatures (e.g., Berndt et al., 

2005); increases the oxygen fugacity for a given hydrogen fugacity (Botcharnikov et al., 

2005), and therefore stabilizes the Fe-Ti oxides (Berndt et al., 2005; Feig et al., 2006). The 

liquid line of descent is consequently modified and a differentiation trend characteristic of 

calc-alkaline series can be observed (Berndt et al., 2005). The mineral composition of erupted 

basalts can also be modified by water assimilation; as an example, the olivine and pyroxene 

Mg# and the An content of plagioclase are expected to increase (Kvassnes et al., 2004; Berndt 

et al., 2005; Feig et al., 2006; Koepke et al., 2009). High water activities in the melt lens due 

to assimilation also lowers the solidus temperature of rocks from the roof and the margins of 

the melt lens, with the potential to trigger hydrous partial melting and to incorporate the 

newly formed silicic melts into the melt lens. Such a partial melting event can occurs either 

when fluids are transported into recently crystallized, still hot rocks (Nicolas et al., 2008) or 

when previously hydrothermally altered rocks are reheated. 
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Figure I-10: Schematic cross-axis section showing the melt lens and the root of the sheeted 
dike complex (not to scale). a) General organization, lithologies and temperatures. After 
Nicolas et al. (2008). For details see Nicolas et al. (2008). b) Magma drained out during an 
eruption. c) Melt crystallization at the melt lens margins. d) New magma injection leading to 
partial or total replenishment of the melt lens. e) Hydrothermal circulation in the crust 
overlying the melt lens; fluids can be incorporated in the melt lens through assimilation of 
either hydrothermally altered rocks or brine. 
 

I.3.c. Geological settings 

Depending on the geological setting, the melt lens (and associated base of the sheeted 

dike complex) structure, composition and evolution may vary. As an example, in back-arc 

systems the higher amount of water present in the melt will influence the crystallization 

sequence and the solidus and liquidus temperatures. The ridge segmentation can also 

influence the system, and ridge segments close to transform faults, or close to overlapping 

segments, may be disturbed by tectonics, allowing deep penetration of water. Boudier et al. 

(2000) have proposed that the occurrence of gabbronorites in areas of the Oman ophiolite that 
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are inferred to be located at the tip of propagating segments is related to high oxygen 

fugacities linked to melt hydration. 

I.3.d. Lithostratigraphy 

Generally, the basalts forming the sheeted dike complex display intergranular, 

doleritic textures. The root of the sheeted dike complex has been first described in the 

Troodos ophiolite (Allen, 1975), and then in the Oman ophiolite (Rothery, 1983; Nicolas and 

Boudier, 1991; Nicolas et al., 2008). Dikes root into the isotropic upper gabbros (Figure 

I-11a), the chilled margins progressively disappear in gabbros and the center of dike roots is 

similar to the surrounding isotropic gabbros (Allen, 1975; Rothery, 1983). 

 

 
Figure I-11: a) Dikes rooting in the isotropic upper gabbros in the Oman ophiolite, line tone 
represents high-level gabbro, and dot tone represents doleritic textured microgabbro 
(Rothery, 1983). The center of the dike roots is similar to the surrounding isotropic gabbros. 
b-c) Outcrop photograph and sketch of the recrystallized base of the sheeted dike complex 
truncated by gabbros in the Troodos ophiolite (Gillis and Roberts, 1999). 
 

Nicolas and Boudier (1991) and Nicolas et al. (2008) made similar general 

observations and describe further the nature of the dike roots. They show that these roots, 

called “protodikes”, display microgranular margins that have a well defined preferred 

crystallographic orientation, parallel to the dike margin, which records the upward magmatic 

flow. Dikes are sometimes crosscut by gabbro, diorite or plagiogranites injections (Figure 
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I-11b-c; Pallister and Hopson, 1981; Gillis and Roberts, 1999). They are then recrystallized 

and display microgranular textures ("granoblastic" textures in Wilson et al., 2006; Koepke et 

al., 2008; "hornfelsic" textures in Gillis and Roberts, 1999). 

A thin (~100m) and complex horizon mainly composed of varytextured gabbros is 

present below the base of the sheeted dike complex (e.g., MacLeod and Yaouancq, 2000). 

The varytextured gabbro horizon is mainly composed of isotropic fine grained gabbros but 

also isotropic coarse grained gabbros (or pegmatitic gabbros) often with subophitic rock 

textures, diorites, and plagiogranites. Gabbros may be locally foliated (MacLeod and 

Yaouancq, 2000), and sometimes crosscut by late dikes. 

Below the varytextured gabbro horizon, the gabbros display more equilibrated 

granular textures with a vertical foliation (Nicolas et al., 2009_Appendix A1), these are 

believed to result either from subsidence from the floor of the melt lens (Nicolas et al., 

2009_Appendix A1) or from the upward moving melt that is believed to orientate crystals 

(MacLeod and Yaouancq, 2000). 

 

I.3.e. Conceptual models and implications 

Since the discovery of the upper melt lens (Morton and Sleep, 1985; Detrick et al., 

1987), its role in the oceanic crust accretion has been questioned. The geological setting (mid-

ocean ridge, back-arc, propagator tip) is believed to influence the tectonics at or close to the 

ridge axis, and the water budget and should therefore affect the magmatic processes occurring 

in the melt lens (Nicolas et al., 2008_Appendix A2). 

Nicolas and Boudier (1991) proposed that, as a result of water ingression into the still 

hot, just crystallized upper gabbros, the latter can undergo hydrous partial melting and the 

newly formed melts can crystallize to gabbro-diorites. Such a wet anatexis is considered to 

occur in a steady state system, in which the melt lens is a stable horizon. Hooft et al. (1997) 

have shown at the Southern East Pacific Rise that the melt lens depth varies along axis, 

probably in response to variations in the magma supply from below or in response to variable 

hydrothermal cooling (Figure I-12). This model suggests that during periods of weak 

hydrothermal cooling, the melt lens migrates upward with the potential to trigger hydrous 

partial melting to the roof. 

In the Troodos ophiolite, the base of the sheeted dike complex is intruded by gabbros 

and recrystallized to hornfelsic lithologies (Figure I-11b-c; Gillis and Roberts, 1999; Gillis, 

2002). At the same structural level, the sheeted dikes can locally melt during the intrusion of 
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gabbroic mushes (Gillis and Coogan, 2002). Gillis and Coogan (2002) have attributed the 

gabbro intrusion in the Troodos ophiolite to upward movements of the melt lens, and the 

recrystallization of the base of the sheeted dike complex to contact metamorphism associated 

to this upward movement (Figure I-13). 

 

 
Figure I-12: Top: Cartoon showing two scenarios for the melt lens position depending on the 
strength of hydrothermal cooling. Bottom: along-axis seismic reflection profile (between 
18°13’S and 18°02’S along the East Pacific Rise) illustrating apparent local depth variations 
of the magma sill (Hooft et al., 1997). 
 

Intrusions of gabbronorites in gabbros and in the sheeted dike complex are known 

from the Oman ophiolite and according to Boudier et al. (2000) and Nicolas et al. (2000) only 

in areas of segment propagation. In such areas, a ridge segment is propagating in an older 

lithosphere (Figure I-14) with the potential to remobilize rocks that have been hydrothermally 

altered. According to Boudier et al. (2000) gabbronorite injections occur while the main 

gabbro unit is still deforming as a magmatic mush; the occurrence of orthopyroxene is 

attributed to the water-rich conditions prevailing in these environments where there is active 

tectonics at or near the ridge axis (Boudier et al., 2000). Nicolas et al. (2008) postulated that 

intrusions of gabbronoritic rocks in the base of the sheeted dike base can only occur in these 
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peculiar areas that correspond to tips of propagating segments (Figure I-14), and cannot be 

considered as being representative of a "standard" mid-ocean ridge process. According to 

Yamasaki et al. (2006) gabbronorites are rather related to a late magmatism stage that is 

probably related to the shallow subduction zone process occurring during the early obduction. 

 

 
Figure I-13: Migrations of the melt lens can trigger recrystallization at its roof (Gillis (2008), 
as described in the Troodos ophiolite (Gillis and Roberts, 1999; Gillis, 2002). AMC= Axial 
Magma Chamber, i.e. the melt lens in this study; x= xenoliths. 
 

 
Figure I-14: Tip of a propagating segment that reopens an old domain (Nicolas and Boudier, 
2008). Remobilization of hydrothermalized rocks is possible and tectonics at the ridge axis 
may result in the involvement of water in magmatic processes. 
 

MacLeod and Yaouancq (2000) have studied the Abyad area in the Oman ophiolite, 

which is considered to be close to the tip of a propagating segment. Despite this peculiar 
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environment, they have described in this area a steady state system with nearly no gabbro 

intrusion in base of the sheeted dike. 

 

 
Figure I-15: Melt lens model from MacLeod and Yaouancq (2000). a) Focus on the melt lens 
and surrounding areas; b) Schematic section across the axis of a fast spreading ridge. In a), 
1. shows the foliated gabbros; 2. shows the zoning observed in some plagioclase grains of the 
sub-melt lens region. 3. shows that some foliated gabbros can also be observed in the 
varytextured gabbro horizon and 4. proposes that at the melt lens margins some trapped 
melts can fractionate to form the Fe-Ti pegmatitic gabbro pockets observed in the 
varytextured gabbro horizon. In this model, MacLeod and Yaouancq (2000) interpret the 
varytextured gabbro horizon as the crystallized melt lens. 
 

The occurrence of pegmatitic gabbros enriched in Fe-Ti (up to 4.4 wt % of TiO2) that 

can only be interpreted as fractionated melts under reducing condition has led MacLeod and 

Yaouancq (2000) to propose that the varytextured gabbro horizon represent the fossilized melt 

lens (Figure I-15). They therefore interpret these rocks, present as meter sized pockets in the 

isotropic gabbros, as trapped melts that have crystallized at the margins of the melt lens. 

Coogan et al. (2003) combined geophysical results obtained at the East Pacific Rise 

with geochemical studies, and with field observations in the Troodos and Oman ophiolites to 

show that assimilation of roof fragments is common in the melt lens (Figure I-13). They 

propose that such a process can account for the chlorine enrichment observed in some MORB 

(Michael and Schilling, 1989). Nevertheless, they do not discuss the possibility of relating this 

process to tectonics related to segment propagation. 

IODP Hole 1256D was drilled in an intact portion of oceanic crust in the Cocos plate 

formed at the EPR (Teagle et al., 2006), and is assumed to represent a regular ridge segment, 

away from mid-ocean ridge discontinuities. In this area, Wilson et al. (2006) described, at the 

base of the sheeted dike complex, truncated dikes with characteristic granoblastic textures 
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interpreted as reheated, contact-metamorphosed rocks. A detailed study of these granoblastic 

dikes (Koepke et al., 2008) shows an evolution of the recrystallization downward when 

approaching the isotropic gabbros, which are believed to intrude the base of the sheeted dike 

complex. This recrystallization is ascribed to reheating triggered by the melt lens upward 

migration. Gillis (2008) described similar hornfelsic lithologies present at the base of the 

sheeted dike complex and as xenoliths in the varytextured gabbro horizon of Pito Deep, Hess 

Deep, the Troodos ophiolite, and the Him area in the Oman ophiolite. She also ascribed these 

rocks to recrystallization in an environment of increasing temperature resulting from upward 

movements of the melt lens (Figure I-13). Gillis (2008) also proposed that the protodikes 

(Nicolas and Boudier, 1991) microgranular textures do not represent the dike roots but former 

dikes with chilled margins that have recrystallized during reheating events. 

Following the renewed interest in the root zone of the sheeted dike complex triggered 

by the drilling of IODP Hole 1256D (Teagle et al., 2006), Nicolas et al. (2008) proposed a 

revised model that build on an older model of Nicolas and Boudier (1991), and is based on 

about 20 years of structural mapping of the Oman ophiolite, on recent observations, and on 

recent detailed mappings of selected area, away from discontinuities. It is briefly presented in 

this chapter, as the corresponding paper is presented in Appendix A2. The studied area is 

located in the well studied Sumail massif (Nicolas et al., 2000). The bottom-line is the 

confirmation that protodikes represent the dike roots, and in these areas situated away of ridge 

tectonics the melt lens is considered as a steady state horizon (Figure I-16). In this model, the 

steady state melt lens is not fossilized but pinches out at its margins where its roof meets its 

floor. The varytextured gabbro horizon hence does not represent the melt lens fossilization; 

most of it is interpreted as resulting from hydrous partial melting triggered by the ingression 

of hydrothermal fluids into the still hot, crystallized sheeted dike base. The fine grained 

isotropic gabbros are interpreted as representing protodikes cores and may be the only rocks 

of the varytextured gabbro horizon that are not originated in the hydrous partial melting of the 

dikes root zone. Based on these new results they questioned the origin of areas where 

gabbronorite intrusions in the sheeted dike base has been observed. Considering the presence 

of gabbronorites as product of ridge tectonic processes (Boudier et al., 2000), Nicolas et al. 

(2008) propose that nearly half the Oman ophiolite may have formed under the influence of 

ridge segmentation. 
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Figure I-16: Conceptual model for the root zone region (varytextured gabbro horizon) from 
Nicolas et al. (2008) presented in Figure I-10. The bottom of the injected dikes display 
microgranular margins (protodike) that evolve upward to a dike with chilled margins. The 
dry ophitic gabbro horizon (thickness <1m) is believed to represent the thermal boundary 
layer separating the magmatic system from the hydrothermal one. Most of the lithologies 
present in the root zone of the sheeted dike complex are believed to result from hydrous 
partial melting (red dots) of protodikes. Microgranular lenses are interpreted as relicts of 
protodikes after hydrous partial melting.  
 

I.4. Key questions and hypotheses to be tested 

In section I.3.e “Conceptual models and implications” I have presented several aspects 

dealing with the melt lens organization and evolution that are still debated. The key 

unresolved questions are: 

*Is the melt lens fossilized off-axis? 

*Do the varytextured gabbros represent the melt lens fossilization or the product of 

hydrous partial melting of the root zone lithologies? 

*Is the melt lens a steady-state or a dynamic system? 

*Does the geological context (e.g., tips of propagating segments) influence the 

processes occurring in and around the melt lens, and how? 

*Does the partial melting of the dikes proposed in most published models results from 

a temperature increase or from a fluid ingress in still hot, recently crystallized rocks? 

*What are the petrological and geochemical properties of the products of partial 

melting of hydrothermally altered dikes? 

*How hydrous partial melting of the hydrothermally altered dikes can influence the 

composition of MORB? 

The main objective of this PhD work was to try answering these questions by using 

field work, petrology on root zone lithologies, experimental petrology and geochemistry, and 

by comparing our results with the geophysical data at the mid-ocean ridge axis. Sr and O 

isotopic systems may be used to infer the effect of HT fluids, however these two isotopic 
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systems are the ones that are the most affected by low temperature hydrothermal alteration. 

Therefore the use of isotopes to discuss high temperature (>700°C) processes is hampered. 

Isotopic in-situ analyses of magmatic mineral cores may help to solve the problem of 

retrograde metamorphism; nevertheless I did not have access to such techniques. 
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II.1. Geological context 

IODP Hole 1256D was recently drilled on the Cocos plate in a 15Ma old crust formed at 

the East Pacific Rise at superfast (full spreading rate > 20mm/year) spreading rate (Figure 

II-1; Teagle et al., 2006; Wilson et al., 2006). This drilling hole is of major relevance for this 

study as it is the first borehole which reached the sheeted dike / gabbro transition in an intact 

section of fast-spread oceanic crust (Figure II-2). The choice of superfast spread crust was 

motivated by the correlation between the depth of the melt lens and spreading rate (Figure I-7; 

Purdy et al., 1992; Phipps Morgan and Chen, 1993), hence the anticipation to reach the base 

of the sheeted dike at shallower depth (Wilson et al., 2006). 

 

 
Figure II-1: Age map of the western Pacific seafloor (Teagle et al., 2006). IODP Site 1256 is 
located on the Cocos plate. Isochrons at 5 m.y. intervals are converted from magnetic 
anomaly identifications according to the timescale of Cande and Kent (1995). Other numbers 
correspond to earlier DSDP and ODP sites where the basement was drilled. 
 

The uppermost part of the section recovered at Site 1256 is composed of ~100m lava 

interval (including a single flow ~75 m thick) that is considered to correspond to an off-axis 

lava pond (Wilson et al., 2006). In total, 284 m of sheeted and massive flow, and minor pillow 

flows are interpreted to correspond to off axis eruptions (Wilson et al., 2006). The sheeted and 

massive flow erupted at the ridge axis are then present from that depth down to 1004 mbsf 

(meters below sea floor; Figure II-2). 54 meters of mineralized breccias associated to 

subvertical intrusive contacts mark the transition zone to the relatively thin (~350 m thick) 

sheeted dike complex. 
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Figure II-2: Simplified igneous lithostratigraphy of IODP Core 1256D recovered during 
ODP Leg 206 and IODP Expeditions 309 and 312 (Teagle et al., 2006). 
 

The sheeted dike complex is composed of massive basalts/diabases that locally display 

doleritic textures, and that are crosscut by subvertical dikes with brecciated and mineralized 

chilled margins. The alteration grade increases downhole from the lavas to the dikes. In lavas, 

alteration phases are mostly phyllosilicates and iron oxyhydroxides, attesting to temperatures 

< 150°C, whereas in dikes chlorite and other greenschist phases are observed indicating 

temperatures > 250°C. Downhole, in the sheeted dikes, the alteration intensity increases. 

Actinolite is the major alteration phase and is associated with magnesiohornblende, indicating 
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temperatures close to 400°C. In the lowermost dikes (from 1348 to 1407 mbsf), dikes are 

partially to pervasively recrystallized to granoblastic textures composed of plagioclase, 

clinopyroxene, orthopyroxene, oxides, and amphiboles that are interpreted to result from 

contact metamorphism (Wilson et al., 2006). A detailed petrological study of these 

granoblastic microgabbronorite dikes is proposed in Koepke et al. (2008). The base of the 

granoblastic microgabbronorite dikes is crosscut by a trondhjemitic dikelet (20 mm wide), and 

a quartz oxide diorite is described in the uppermost gabbros. At 1407 msbf, the first gabbros 

are encountered (=1157 meters sub-basement [msb]=mbsf-sediment thickness); they intrude 

the granoblastic microgabbronorite dikes (Teagle et al., 2006). The gabbro horizon is complex 

and contains various gabbros types (gabbro, oxide-gabbros, olivine-gabbro, gabbronorite) of 

variable grain sizes (fine, medium and coarse grained), some xenoliths of granoblastic 

microgabbronorite representing recrystallized dikes, and a ~ 24 m thick screen of granoblastic 

microgabbronorite dikes (Wilson et al., 2006). The lowermost recovered sample is a diabase, 

presumably a dike, which displays a doleritic texture and contains actinolite and Ti-augite; it 

is interpreted as a late off axis dike (Wilson et al., 2006). 

Below are described the granoblastic microgabbronorite dikes petrology (also described 

in Koepke et al., 2008), the gabbro horizon petrology, and the mineral compositions of these 

rocks. These data are compared with observations and data from the Oman ophiolite, and 

discussed in Chapter III. 

 

II.2. Petrology of the granoblastic microgabbronorite dikes and 

gabbros 

I describe hereafter the IODP Hole 1256D samples studied during this work. The Sheeted 

dikes / gabbro transition zone, down to the bottom of Hole 1256D, may be subdivided in 8 

zones (Figure II-3):  

- zone 1 corresponds to the sheeted dike complex, 

- zone 2 corresponds to the granoblastic microgabbronorite dikes (~60 m thick), 

- zone 3 is the upper part of the gabbros, which display white patches (~5 m thick), 

- zone 4 is an interval that shows a close association of fine and coarse grained gabbros 

(~45 m thick); zones 3 and 4 correspond to the gabbro 1 interval in Wilson et al. 

(2006), 

- zone 5 is the granoblastic microgabbronorite horizon (24 m thick) interpreted as a 

screen of granoblastic microgabbronorite dikes (Wilson et al., 2006), 
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- zone 6 is the second gabbro section (~15 m thick), 

- zone 7 correspond to the lower granoblastic microgabbronorites (lower dike screen 

after Wilson), 

- zone 8 is the lowermost diabase, interpreted as an off-axis dike (Wilson et al., 2006). 

 

 
Figure II-3: Schematic lithostratigraphy of the bottom section of IODP Hole 1256D (after 
Teagle et al., 2006). Yellow and red dots indicate the locations of the studied samples (red: 
shipboard samples _C. Laverne and B. Ildefonse_; yellow: samples collected in College 
Station in August 2007). 
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The sheeted-dike complex displays in general an intergranular, doleritic texture, and 

contains various alteration phases such as actinolite (Figure II-4a); sub-vertical chilled 

margins are observed in some samples. 

 

 
Figure II-4: Microphotographs of IODP Hole 1256D sheeted dike samples. a) diabase (zone 
1; sample 176R-2_3-7 (where 176 represents the core number, R2 the section number, 3 the 
top position in cm and 7 the bottom position in cm); cross-polarized light); b) weakly 
recrystallization in diabase ~150 m above the contact with gabbros (zone 1; sample 173R-
2_6-10; plane-polarized light); c) Stronger granoblastic recrystallization ~38 m above the 
contact with gabbros (zone 2, sample 198R-1_45-49; plane-polarized light); d) Strong 
granoblastic recrystallization ~25 m above the contact with gabbros (zone 2, sample 205R-
1_10-14; plane-polarized light); e) Coarser grained recrystallized texture close to the contact 
with gabbro (~10 m above the contact), small pink granular grains are orthopyroxene (zone 
2, sample 209R-1_17-19; plane-polarized light). Microphotographs b-d are from IODP 
database (Teagle et al., 2006). 
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The granoblastic microgabbronorite dikes display a fine-grained recrystallized texture 

with increasing recrystallization downsection (Figure II-4b-d; Koepke et al., 2008). However, 

close to the base of the sheeted dike, some samples display coarser grained texture and seem 

to be less recrystallized (Figure II-4e). Such less recrystallized meta-dikes, close to the 

sheeted dike / gabbro transition may be opposed to the model in which the recrystallization is 

linked to a contact metamorphism event with heat supplied from the bottom (Wilson et al., 

2006; Koepke et al., 2008). However, these coarser grained dikes containing orthopyroxene 

are also recrystallized, and the grain size may instead represent lateral variations in single 

dikes, the center of dikes being coarser grained than the chilled margins. ~1-2 m above the 

base of the sheeted dike complex, a small trondhjemitic dikelet (20 mm wide) is observed 

(Figure II-5a), and may be interpreted as resulting from local anatexis at the base of the 

sheeted dike complex (Koepke et al., 2008). 

 

 
Figure II-5: Photographs of cores from IODP Hole 1256D (images are from the data base of 
Expedition 312 in Teagle et al., 2006). a) Trondhjemitic intrusion in the granoblastic 
microgabbronorite dikes close to the sheeted dike complex / gabbro transition (sample 212R-
1_24-33); b) Gabbroic dikelet (left pieces) in a granoblastic microgabbronorite dike ~4 cm 
above the contact with the first recovered gabbro (right pieces, sample 213R-1_44-61). 
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The contact between the sheeted dike complex and gabbro (1407 mbsf) is sharp 

(Figure II-5b), and the grain size decreases in the gabbro toward the contact (Figure II-6), 

indicating the intrusive nature of the gabbro. This gabbro is composed of plagioclase (1-2 

mm), heterogranular clinopyroxene (1-5 mm), oxides, actinolite, and locally olivine (Figure 

II-7a). 2-3 cm below the sheeted dike / gabbro contact, a small xenolith of granoblastic 

microgabbronorite is observed (Figure II-8a). Less than two meters below the contact, a 

quartz oxide diorite intrusion is observed. It is composed of primary and secondary amphibole 

(actinolite, and magnesiohornblende), plagioclase, quartz, ilmenite, magnetite and apatite, 

rutile, and sphene traces (Figure II-7b). Its whole rock composition (Teagle et al., 2006) is 

characteristic of evolved MORB obtained in differentiation experiments performed in a Fe-Ti 

MORB system (experiment Fe-21 in Toplis & Carroll, 1995). 

 

 
Figure II-6: Whole thin section microphotograph (sample 213R-1_52-55; cross-polarized 
light). The sample displays the contact between granoblastic microgabbronorite dikes and the 
first encountered gabbro. Note the decreasing grain size in the gabbro toward the contact. 
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Figure II-7: Microphotographs of the upper plutonic rocks. a) First gabbro encountered 
below the contact with granoblastic microgabbronorite dikes (zone 3, sample 214R-1_24-26; 
cross-polarized light). Minerals are plagioclase, clinopyroxene, oxides, olivine, and 
secondary actinolite. b) Quartz-oxide-diorite present in the plutonic rocks less than two 
meters below the contact with the recrystallized sheeted dike complex (zone 3, sample 214R-
1_43-47; cross-polarized light). Minerals primary and secondary amphibole (actinolite and 
magnesiohornblende), intergrowths of plagioclase and quartz, ilmenite, magnetite and some 
traces of apatite. 
 

 
Figure II-8: Photographs of gabbro cores IODP Hole 1256D (images are from the data base 
of Expedition 312 in Teagle et al., 2006). a) Sharp contact between the granoblastic 
microgabbronorite dikes and the underlying gabbros; a xenolith with diffuse margins is 
present in the gabbros (red arrows; sample 213R-1_43-61); b) Typical gabbro with white 
patches from zone 3. The white domains are highly altered zones (see text for further details; 
sample 214R-2_61-70). 
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Below the quartz oxide diorite, gabbros (zone 3) display white patches that can make 

up to 35 % of the whole rock (Figure II-8b). These white patches are composed of actinolite, 

plagioclase, prehnite and pumpelleyite and sometimes quartz (Figure II-9a), whereas the dark 

areas are gabbroic and composed of plagioclase (0.4 to 2 mm), large poikilitic clinopyroxene 

(up to 1.5 cm), ilmenite, magnetite, and rare olivine (Figure II-9b). Teagle et al. (2006) 

proposed that the white areas represent a second magmatic episode (an evolved melt 

composition is required to account for the assemblage plagioclase + quartz). However, these 

zones do not display sharp contacts with the surrounding gabbro and are more strongly altered 

at low temperature than the surrounding gabbros (presence of prehnite and pumpellyite; 

Figure II-9a). In gabbro hand specimens of ophiolites and oceanic crust, white color of 

plagioclases is usually associated to a high grade of low temperature alteration. A low 

temperature alteration overprinting the plagioclase rich zones representing a second magmatic 

episode (Teagle et al., 2006) is therefore expected for the white patches of zone 3. The white 

patches disappear progressively downward and the transition to zone 4 is not well defined. 

 

 
Figure II-9: Microphotographs (cross-polarized light) of sample 215R-1_20-23 from zone 3 
(gabbro with white patches). a) White patches domains composed of plagioclase, prehnite, 
pumpellyite, actinolite and sometimes quartz; b) gabbro is composed of plagioclase, 
poecilitic-clinopyroxene, ilmenite, magnetite and rare olivine. 
 

Zone 4 is composed of varytextured gabbros (Figure II-10); some are fine grained (1-3 

mm) and others coarse grained (0.5-1 cm). The coarse grained gabbros represent less than 30 

% of zone 4 and the contact between fine- and coarse-grained gabbros is usually diffuse 

(Figure II-11). 
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Figure II-10: Photograph of core 223R-2_43-55 from IODP Hole 1256D (zone 4). Fine and 
coarse grained gabbroic domains are observed (image is from the data base of Expedition 
312 in Teagle et al., 2006). 
 

 
Figure II-11: Whole thin section microphotograph of sample 221R-1_54-57 (zone 4; left: 
plane-polarized light; right: cross-polarized light). The transition from fine grained gabbro to 
coarse grained gabbro is continuous. 
 

The fine-grained gabbro is composed of plagioclase, slightly poikilitic clinopyroxene, 

oxides and rare olivine that can be associated to orthopyroxene close to coarser grained 

domains (Figure II-12a). Coarse grained areas are composed of plagioclase, orthopyroxene, 

clinopyroxene and oxides (Figure II-12b). Sparse, centimeter sized xenoliths of granoblastic 

microgabbronorite are observed in the lowermost few meters of zone 4; these xenoliths are 

similar to zone 5 (see below) and rimmed by coarse-grained gabbro. The lowermost sample of 

zone 4 (sample 224R-1_7-9) is composite and contains domains with poikilitic clinopyroxene 



Chapter II. Magmatic / hydrothermal transition in IODP Hole 1256D 
 

 53

associated with plagioclase and secondary amphiboles (actinolite, and magnesiohornblende), 

and domains with quartz and plagioclases intergrowths associated with oxides and apatite 

(Figure II-12c-d). 

 

 
Figure II-12: Microphotographs of IODP Hole 1256D samples. a) Fine-grained gabbro from 
zone 4 composed of plagioclase, clinopyroxene, oxides, secondary actinolite and rare olivine 
(not visible on picture; cross-polarized light; sample 218R-1_46-49); b) coarse-grained 
gabbro from zone 4 composed of plagioclase, clinopyroxene, secondary actinolite and rare 
orthopyroxene (not visible on picture; cross-polarized light; sample 220R-1_18-18); c) 
domain with poikilitic clinopyroxene in the lowermost sample of zone 4 (cross-polarized light, 
sample 224R-1_7-9); d) domain with quartz-plagioclase intergrowths associated to oxide and 
apatite in the lowermost sample of zone 4 (cross-polarized light, sample 224R-1_7-9); e) 
granoblastic microgabbronorite sample from zone 5 composed of plagioclase, clinopyroxene, 
orthopyroxene (pink), oxides, and secondary actinolite (plane-polarized light, sample 227R-
1_30-34). 
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Figure II-13: Photographs of cores from IODP Hole 1256D displaying leucocratic intrusions 
within the “screen of granoblastic microgabbronorite dikes” (zone 5; images are from the 
data base of Expedition 312 in Teagle et al., 2006). a) Sharp contact (Sample 227R-1_12-15); 
b), diffuse contact (sample 227R-2_8-17). 
 

 
Figure II-14: Microphotographs of samples from the bottom of IODP Hole 1256D. a) 
Granoblastic texture in a microgabbronorite xenolith from a gabbro in zone 6 (plane-
polarized light, sample 230R-1_87-90); b) preferential orientation of plagioclases in a 
microgabbronorite xenolith from a gabbro in zone 6, the preferential orientation is nearly 
orthogonal to the contact with the host gabbro (cross-polarized light, sample 230R-1_15-20); 
c) altered olivine rimed by orthopyroxene in a gabbro in zone 6 (cross-polarized light, sample 
232R-1_82-85); d) lowermost sample in zone 6 displaying gabbroic assemblage with 
plagioclase and clinopyroxene associated to intergrowth of quartz-plagioclase (cross-
polarized light, sample 232R-2_98-100). 
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Zone 5 is composed of granoblastic microgabbronorites with grain size, similar to the 

coarser granoblastic microgabbronorite dikes in zone 2 (Figure II-12e). The main paragenesis 

is plagioclase, clinopyroxene, orthopyroxene, ilmenite, magnetite, secondary amphibole 

(actinolite, and magnesiohornblende), and rare quartz; inclusions of apatite in orthopyroxene 

have been observed in one sample. Several leucocratic intrusions of coarser grained material 

are observed (Figure II-13). The granoblastic microgabbronorite / leucocratic intrusion 

contact is either sharp (Figure II-13a) or diffuse but without any change in grain size (Figure 

II-13b). The recovery is very low (< 30%) in zone 5. 

Zone 6 is composed of gabbro, which contains several xenoliths of granoblastic 

microgabbronorite that are similar to those in zone 5 (Figure II-14a). Some of the xenolith 

contain abundant orthopyroxene, one is noritic (plagioclase + orthopyroxene), and one 

displays a strong shape preferred orientation of plagioclases that forms a large angle with the 

gabbro contact (Figure II-14b). One xenolith contains olivine that is rimed by orthopyroxene 

and inverse zoning in plagioclase (Figure II-15); this peculiar sample is discussed in section 

II.3. The gabbro (grain-size 1-4 mm) is composed of plagioclase, heterogranular to pseudo-

poikilitic clinopyroxene, usually orthopyroxene and rare olivine that is mostly decomposed to 

a phyllosilicate assemblage (Figure II-14c); olivine or its alteration products is locally rimed 

by orthopyroxene (Figure II-14c). The deepest sample in zone 6 (232R-2_98-100) is 

composite, with gabbroic domains and domains of quartz-plagioclase intergrowths coexisting 

with primary amphibole mostly altered to actinolite (Figure II-14d). 

 
Figure II-15: Backscattered electron image of a xenolith of granoblastic olivine- 
microgabbronorite of zone 6 (sample 232R-1_82-85). Ol: olivine; Opx: orthopyroxene; Pl: 
plagioclase; Hi-An Pl: plagioclase rims that are brighter on the BSE image and that 
correspond to An-rich plagioclase (see section II.3). 
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The contact between zone 6 and zone 7 is not recovered. Zone 7 is poorly recovered (< 

15%) and is composed of granoblastic microgabbronorite that is similar to xenoliths of zone 

6. It is composed of plagioclase, clinopyroxene, orthopyroxene, ilmenite and magnetite 

(Figure II-16a). 

The contact between zone 7 and zone 8 is not recovered. Zone 8 is diabase with 

intergranular texture composed of plagioclase, pink-Ti-augite and some rare oxides (Figure 

II-16b) not affected by granoblastic overprint. 

 

 
Figure II-16: Microphotographs of IODP Hole 1256D samples from zone 7 (a) and zone 8 
(b). a) Granoblastic microgabbronorite composed of plagioclase, clinopyroxene, 
orthopyroxene and oxides assemblage (sample 234R-1_7-9; plane-polarized light); b) late 
off-axis diabase composed of intergranular plagioclase, pink-Ti-augite and some rare oxides 
(sample 234R-1_19-22; plane-polarized light). 
 

II.3. Mineral major element compositions 

In-situ mineral major element compositions have been determined for minerals of all the 

described lithologies (Appendix B1; Figure II-17). Average mineral compositions of the lava 

pond, lava flows and sheeted dikes (Dziony et al., 2008) are given for comparison. Analyses 

have been performed at Géosciences Montpellier and at the Institut für Mineralogie, Hannover 

using a Cameca SX 100 electron microprobe equipped with 5 spectrometers and an operating 

system “Peak sight”. Data were acquired using a 15KV acceleration potential, a static (fixed) 

beam, Kα emission from all elements, and the “PAP” matrix correction (Pouchou and Pichoir, 

1991) in Hannover or a modified matrix correction (Merlet, 1994) in Montpellier. Most element 

concentrations were obtained with a beam current of 15nA and a counting time of 10 to 120s on 

peak and background. In all samples, mineral cores have been analyzed, and except in the 

white patches areas of zone 3, mineral (cores) compositions are homogeneous and averages 

are used in the text below. 
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Plagioclase compositions range from An41 in diorite (between zone 4 and zone 5) to 

An70 in fine-grained olivine-gabbro (zone 4) (Figure II-17a). Plagioclase An contents in 

gabbros are in average higher than plagioclase An content in granoblastic microgabbronorites 

from zones 2, 5, 6, and 7. One gabbro sample from zone 6 has plagioclase An contents similar 

to the ones of granoblastic microgabbronorites, this gabbro is in contact with a xenolith 

(sample 230R-1_118-121). In granoblastic microgabbronorite dikes, plagioclase An content is 

in average slightly lower than the one plagioclases of sheeted dike complex, lava flow and 

lava pond. No correlation is observed between the plagioclase An content and the plagioclase 

FeOt contents (Figure II-17a; and see Appendix A3 for a discussion on the iron content of 

plagioclases). The large heterogeneity in composition of plagioclases of the white patches 

areas (with An content ranging from 14 to 59) is attributed, first to initial plagioclases with 

lower An content than in the surrounding gabbro (cf. the “second magmatic episode” of 

Teagle et al., 2006), and second to various degrees of plagioclase albitisation during 

hydrothermal alteration. 

Clinopyroxene is Ti-augite in the off-axis dolerite of zone 8 and augite in all other 

samples. Clinopyroxene Mg# (Mg#=Mg/[Mg+Fe] in molar proportions) ranges from 61 in 

zone 8 to 83 in coarse-grained gabbros in zone 4, and correlates roughly with the An content 

of plagioclase (Figure II-17b). In Figure II-17b, dry and wet fractionation trends calculated 

with MELTS (Ghiorso and Sack, 1995) by Kvassnes et al. (2004) are shown; the studied 

samples are on average closer to the dry fractionation trends. Al2O3 in clinopyroxene range 

from 0.46 wt% in a granoblastic microgabbronorite sample of zone 5 to 2.86 wt% in the lava 

flows and is roughly correlated to An content in plagioclase (Figure II-17c). On average, 

Al2O3 in clinopyroxene from granoblastic microgabbronorites in zones 2, 5, 6, and 7 is lower 

than in clinopyroxene from gabbros in zone 3 and 4 and from basalt and diabase from lava 

pond, lava flows, sheeted dike, and zone 8 (Figure II-17c). The FeOt content of clinopyroxene 

is not correlated to the one of plagioclase (Figure II-17d), it may result from variations in the 

redox conditions during crystallization or subsequent reequilibration (Appendix A3). TiO2 

and Al2O3 in clinopyroxene are correlated in granoblastic microgabbronorites from zones 2, 5, 

6, and 7; most of the gabbro, lava pond, lava flow and sheeted dikes samples have 

clinopyroxenes slightly enriched in Al2O3 (Figure II-17e). Clinopyroxene from one gabbro 

from zone 6 has low Al2O3 content similar to the granoblastic microgabbronorites; it 

corresponds to the gabbro that is in contact with a xenolith (sample 230R-1_118-121). 

Orthopyroxene is enstatite in all samples; its Mg# range from 59 in zone 2 to 71 in 

coarse-grained gabbros in zone 4. It is correlated to the clinopyroxene Mg# (Figure II-17f). 
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Fo content of olivine present in fine-grained gabbro in zone 4 is 63-64. 

 
Figure II-17: Mineral compositions of samples from IODP Hole 1256D. a) FeOt (wt%) in 
plagioclase vs. An% in plagioclase; b) Mg# in clinopyroxene vs. An% in plagioclase; the dry 
and wet fractionation trends are from Kvassnes et al. (2004), and calculated using MELTS 
(Ghiorso and Sack, 1995); the two fractionation trends for the dry and wet case are 
calculated for two different starting compositions; c) Al2O3 (wt%) in clinopyroxene vs. An% 
in plagioclase; d) FeOt (wt%) in clinopyroxene vs. FeOt (wt%) in plagioclase; e) TiO2 (wt%) 
in clinopyroxene vs. Al2O3 (wt%) in clinopyroxene; f) Mg# in orthopyroxene vs. Mg# in 
clinopyroxene. 
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In the xenolith of granoblastic olivine-microgabbronorite from zone 6 that contains 

olivine rimmed by orthopyroxene and plagioclase with inverse zonations in plagioclases (Figure 

II-15), olivine Fo content is 70. Plagioclase An content is lower in the grain cores (58) than in 

the grain margins (75). The association of orthopyroxene rims around olivine together with 

An-rich plagioclase margins may be interpreted as product of a hydrous partial melting event 

in this xenolith (Koepke et al., 2005a; 2005b). 

Amphiboles are actinolites, and magnesiohornblendes (Figure II-18). Oxides are ilmenite, 

magnetite and titanomagnetite; the low TiO2 content of magnetite in most of the samples attests to 

the low temperature equilibration and prevents the use of the 2-oxides thermo-oxybarometer 

(Sauerzapf et al., 2008). Calculations with magnetite and ilmenite are possible in the diorite 

sample close to the zone 4 / zone 5 transition (673°C; ΔNNO=1.34; where NNO is the Ni-NiO 

solid oxygen buffer equilibrium), in two xenoliths of zone 6 (612°C; ΔNNO=2.66 for sample 

230R-1_15-20, and 611°C; ΔNNO=2.52 for sample 230R-1_87-90), and in one gabbro of zone 6 

(620°C; ΔNNO=2.46 for sample 230R-2_71-73). Titanomagnetite is present in the lava pond 

(904°C; ΔNNO=-1.1) and in granoblastic microgabbronorite dikes of zone 2 (851°C; 

ΔNNO=0.75). Obviously, the highly oxidizing conditions associated to temperatures that are 

characteristic of greenschist facies conditions constrain the conditions prevailing during the 

hydrothermal overprint of the samples. Redox conditions prevailing during the high temperature 

granoblastic overprint are probably closer to the value (ΔNNO=0.75) obtained at 851°C in the 

granoblastic microgabbronorite dikes from zone 2. Koepke et al. (2008) also show that highly 

oxidizing conditions (ΔNNO varying from 2.6 to 3.3) are associated to low temperature 

equilibration (<650°C) in the granoblastic microgabbronorite dikes. In their study, only one 

granoblastic microgabbronorite is equilibrated at higher temperature (716°C) and as an 

intermediary redox value (ΔNNO=1.7); it is consistent with an increase of the redox conditions 

during the cooling. 

Thermometry calculations are done using the amphibole-plagioclase thermometer 

(Holland and Blundy, 1994), the Ti in amphibole semiquantitative thermometer (Ernst and Liu, 

1998) and the two-pyroxene thermometer (Andersen et al., 1993). The errors on these temperature 

estimates are ±35-40°C for the Holland and Blundy (1994) thermometer, are not estimated by 

Ernst and Liu (1998) for their semi-quantitative thermometer, and are indicated in the Table of 

Appendix B1 for the two-pyroxene thermometer. Temperature estimations performed with Ti in 

amphibole, and with the amphibole-plagioclase compositions are relatively coherent (Figure 

II-19a). They range between ~550°C and 890°C. Temperatures lower than 700°C are associated 
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to green magnesiohornblende and attest to the retrograde evolution of the rock. Temperatures 

obtained with the two-pyroxenes thermometer are significantly higher and ranges from ~950°C to 

~1065°C (Figure II-19b). 

The petrological and geochemical descriptions of IODP Hole 1256D presented herein, 

together with the article describing the root zone of the sheeted dike complex in the Oman 

ophiolite (Nicolas et al., 2008; Appendix A2), are used in the following chapters as a 

background for discussions. 

 

 
Figure II-18: Amphibole compositions in IODP Hole 1256D samples. pfu=per formula unit, 
AlIV=tetrahedral Al; same symbols as Figure II-17. No pargasite (amphiboles with 
[Na+K]>0.5) is observed. 
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Figure II-19: Comparison of temperature estimations obtained with a) the amphibole-
plagioclase thermometer (Holland and Blundy, 1994; “Amp-Pl H&B”) and the Ti in 
amphibole semi-quantitative thermometer (Ernst and Liu, 1998; “Ti in amphibole”), and with 
b) the two-pyroxene thermometer (Andersen et al., 1993; “2Px QUILF”) and the Ti in 
amphibole semi-quantitative thermometer (Ernst and Liu, 1998; “Ti in amphibole”). Black 
lines represent the 1:1 correlation. 
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III.1. Visited areas 

The Cretaceous Oman ophiolite is regarded to present the best proxy of fast-spreading 

oceanic crust on land. Nevertheless controversial debates are on-going since decades, and 

questioned the mid-ocean ridge (MOR) versus supra-subduction zone (SSZ) initial setting 

(e.g., Warren et al., 2005; Boudier and Nicolas, 2007; Warren et al., 2007). Today, for most 

scientists at least part of the Oman ophiolite is regarded as subduction zone-related, but the 

nature of this subduction zone is still under controversial discussion. Many scientists believe 

that the subduction process is linked to the early stage of obduction (e.g., Boudier et al., 1988; 

Koepke et al., 2009), and is responsible for a second stage of magmatism (“V2” or “Lassai” 

lavas) following the major accretion of normal fast-spread crust (“V1” or “Geotimes” lavas). 

The main difference between lavas is that the "V2" lavas are interpreted as resulting of fluid-

enhanced melting of previously depleted mantle, and contrast in composition with the "V1" 

lavas which resemble modern MORB (for details, and nomenclature of the lavas see Godard 

et al., 2003). The areas selected in this work are not notably affected by the late- stage 

magmatism (“V2”), thus the observed field record described here can be exclusively related to 

the primary magmatic processes of a “normal” fast-spreading ridge. 

The Oman ophiolite represents an ideal complement to the detailed studies done on 

IODP cores related to fast-spread crust, as it provides spatial relationships in three dimensions 

that a single borehole does not offer. In order to relate the IODP Hole 1256D core in a 3D 

model, about ten areas along the 500 km long Oman ophiolite have been visited (Figure III-1). 

Among these, 3 areas where the outcrop continuity is best have been selected for detailed 

studies. These are located in the southern massifs (Gideah, Al Ahmadi Hills, and Aswad 

areas). Some peculiar samples from the isotropic gabbro horizon of the Rajmi area located in 

the northern massif will also be described in Chapter V (Figure III-1). 

In all visited areas, the transition between the foliated gabbros and the sheeted dike 

complex has been examined. The main objective was to understand the structure and the 

organisation of the isotropic gabbro horizon, and its relations with the underlying foliated 

gabbros, and with the overlying sheeted dike complex. I present hereafter the different 

lithologies encountered and the relations observed in the visited areas. An evolutionary model 

is then presented using detailed mapping descriptions made in the Gideah area, in the Al 

Ahmadi Hills, and in the core recovered in IODP Hole 1256D; it is the topic of an article 

published in Geochemistry, Geophysics, and Geosystems (France et al., 2009a). The outcome 

of this paper, a general model on the dynamics of the melt lens system and its key lithologies, 
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was applied to a third field target, the Aswad area, supporting the validity of the proposed 

model. 

 

 
Figure III-1: Simplified geological map of the Oman ophiolite and location of the visited and 
described sites (after Nicolas et al., 2000). 
 

III.2. Lithostatigraphy 

I describe hereafter the main lithologies encountered in various cross-sections, from the 

sheeted dike complex to the foliated gabbros. 

The sheeted dike complex is typically composed of ~1 to 1.5 meters wide dikes 

intruding each others (Figure III-2), with chilled margins. From the chilled margins toward 

the dike interior, the texture progressively becomes intergranular, doleritic in the dike centers 

(Figure III-3). Samples are in general strongly hydrothermally altered, as attested by abundant 

actinolites and chlorites. 
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Figure III-2: Classical sheeted dike complex in the Oman ophiolite (Hilti massif). 
 

 
Figure III-3: Microphotographs of an Oman sheeted dike sample (Al Ahmadi Ridge area; 
sample 07OL01a) composed of plagioclase, clinopyroxene, actinolite, chlorite, and oxides. a) 
plane-polarized light; b) cross-polarized light. 
 

Below the sheeted dike complex is the isotropic gabbro horizon, also named 

“varytextured gabbros” (e.g., MacLeod and Yaouancq, 2000). This horizon is approximately 

100 meters thick and is mainly composed of isotropic fine-grained ophitic gabbros (Figure 

III-4a). These are composed of plagioclase, clinopyroxene, and locally amphibole (Figure 

III-5a-b). Coarser-grained isotropic gabbros are locally present is the varytextured gabbro 

horizon (Figure III-4b); they are 10 centimeters to a few meters large domains, and can be 

mingled with fine-grained gabbros (Figure III-4c-d). Coarse-grained gabbros are composed of 

plagioclase, clinopyroxene, amphibole, and locally orthopyroxene (Figure III-5c-d). They are 

commonly associated to xenoliths consisting of microgranular gabbros with well equilibrated 

textures that are frequently observed in the isotropic gabbro horizon (Figure III-6a; Figure 

III-7). These are composed of plagioclase, clinopyroxene, orthopyroxene, oxide, and 

secondary amphiboles; Figure III-7) 
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Figure III-4: Various gabbro facies underlying the sheeted dike complex: a) fine-grained 
isotropic ophitic gabbro (Wadi Gideah area); b) coarse-grained isotropic ophitic gabbro (Al 
Ahmadi Hills area); c-d) heterogeneous, fine- and coarse-grained isotropic gabbro (Wadi 
Abyad); e-f) foliated granular gabbro (Aswad area). 
 

Microgabbro xenoliths with well equilibrated textures are observed at all levels in the 

isotropic gabbro horizon, but are commonly concentrated close to the transition with the 

sheeted dike complex and close to the transition with the foliated gabbros (Figure III-6). 

Magmatic breccias with a plagiogranitic, dioritic or gabbroic matrix and microgranular 

xenoliths of gabbro with well equilibrated textures are locally observed (Figure III-6), and are 

frequently located close to the sheeted dike complex base. 
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Figure III-5: Microphotographs of Oman fine-grained (a-b), and coarse grained (c-d) 
isotropic gabbros. a-b) fine-grained isotropic gabbros are composed of plagioclase, 
clinopyroxene, oxides; this rock also contains locally amphibole and olivine which are not 
visible in the picture (Sarur area; sample 07OL15); c-d) coarse-grained isotropic gabbros 
are composed of plagioclase, clinopyroxene; this rock also contains amphibole, and locally 
orthopyroxene which are not visible in the picture (Sarami area; sample 07OL26a). a, c) 
plane-polarized light; b, d) cross-polarized light. 
 

About 100-200 meters below the base of the sheeted dike complex, gabbros grade to 

more granular textures and are foliated (Figure III-4e-f). This magmatic foliation is usually 

sub-parallel to the overlying sheeted dike and is interpreted as resulting from subsidence at 

the melt lens floor (Nicolas et al., 2009; see Appendix A1) or from the buoyant ascent of 

magma through the mush pile (MacLeod and Yaouancq, 2000). Foliated gabbros are 

composed of plagioclase, clinopyroxene, and locally amphibole, olivine, orthopyroxene 

(Figure III-8). 

In most of the visited areas, the transition from the foliated gabbros to the isotropic 

gabbros and from the isotropic gabbros to the sheeted dike complex is not observed. These 

transitions, which occur over a few meters, only, are usually located in river beds (Wadi) that 

crosscut the outcrops and prevent detailed observation (e.g. Figure III-9, and Figure 1 in 

MacLeod and Yaouancq, 2000). Three selected zones where the transitions outcrop better are 
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described in details in sections III.3, III.4, and III.5. I rapidly present hereafter the complex 

intrusive relationships between isotropic gabbros and microgranular dikes that display well 

equilibrated textures. 

 

 
Figure III-6: Magmatic breccias and xenoliths observed in the isotropic gabbro horizon. a) 
Microgabbro xenoliths with well equilibrated textures in isotropic gabbro (Gideah area); b-c) 
magmatic breccias observed close to the base of the sheeted dike (plagiogranitic matrix; b: 
Aswad area; c: Haymiliyah area); d-f) xenolith accumulation in the isotropic gabbros horizon 
(d: Aswad area; e: Sarur area; f: Haymiliyah area). 
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Figure III-7: Microphotographs of a microgranular xenolith with a well equilibrated texture 
present in the isotropic gabbros of the Aswad area consisting of plagioclase, clinopyroxene, 
orthopyroxene, and secondary amphibole (Oman ophiolite; sample 07OL54a). a) plane-
polarized light; b) cross-polarized light. 
 

 
Figure III-8: Microphotographs of a foliated gabbro of the Al Ahmadi Hills area composed of 
plagioclase and clinopyroxene (Oman ophiolite; sample 08OL29b). a) plane-polarized light; 
b) cross-polarized light. 
 

 
Figure III-9: SE-NW view of the area studied by Nicolas et al (2008) in the Aswad area. 
According Nicolas et al. (2008), the main hill (on the right hand of the picture) is composed 
of foliated gabbros and the small hills (on the left hand of the picture) are composed of 
sheeted dikes. The transition between foliated gabbros and the sheeted dike complex is 
located in the Wadi and outcrops poorly. 
 

Understanding the chronology of intrusions at the base of the sheeted dike complex 

and in the isotropic gabbro horizon is particularly important to understand processes acting 

within and around the upper melt lens. Several intrusive relationships observed in this zone 
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are unclear, and it is difficult to determine which facies is intrusive and which one is intruded 

(Figure III-10a). The 3 main intrusion types encountered are: (i) gabbro intrusion in another 

gabbro; (ii) protodike intrusion in a gabbro; (iii) gabbro intrusion in dikes. This late situation 

is more complex due to the later intrusion of dikes into gabbro and the presence of 

xenoliths/enclaves in the gabbros. The cross-cutting relationships are sometimes relatively 

easy to interpret, for example when small intrusions of the intruding material are observed in 

the intruded one (Figure III-10b). 

 

 
Figure III-10: Igneous contacts observed in the isotropic gabbro horizon: a) intrusion of 
gabbro in another gabbro, the chronology of intrusion is unclear (Gideah area); b) coarse-
grained gabbro intruding microgranular dikes (Aswad area). 
 

The gabbro intruding the base of the sheeted dike complex is either fine or coarse 

grained. It is composed of plagioclase, clinopyroxene, oxide, amphibole and when fine 

grained, locally containing olivine (Figure III-11). 

In the Aswad area a peculiar outcrop allows discussing the intrusive relationships 

(Figure III-12). Several contacts between gabbro, diorite, and microgranular gabbro are 

observed. This outcrop is only ~4 x 5 meters large, and disconnected from neighbouring 

outcrops; relations with the underlying gabbros and with the overlying sheeted dikes are 

therefore very hard to identify. On this narrow outcrop, the relative timing of intrusions is 

locally very hard to identify (Figure III-12b-c). Locally, the gabbro appears clearly intrusive 

in microgranular gabbros (Figure III-12d). In order to replace these different intrusions in a 

general evolutionary model for the melt lens region, continuous outcrops are necessary. 
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Figure III-11: Microphotographs of fined grained gabbros that intrude the sheeted dike 
complex. a-b) Al Ahmadi Hills area; sample 07OL01f1; c-d) wadi Gideah area; sample 
08OL01c. Isotropic fine-grained gabbros are composed of plagioclase, clinopyroxene, 
amphibole, oxide, and locally olivine. a, c) plane-polarized light; b, d) cross-polarized light. 

 
Figure III-12: a) Outcrop displaying multiple intrusive relationships (Aswad area); letters 
correspond to b), c), and d) pictures. b-c) Contacts between microgranular gabbro and 
diorite / gabbro, the chronology of intrusion is unclear. d) Microgranular gabbro (µ) 
intruded by a coarse-grained gabbro (G); contact is pointed by arrows. 
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III.3. Interactions between magma and hydrothermal system in Oman 

ophiolite and in IODP Hole 1256D: fossilization of a dynamic melt lens 

at fast spreading ridges 

France, L., Ildefonse, B., and Koepke, J. (2009) Interactions between magma and 
hydrothermal system in Oman ophiolite and in IODP Hole 1256D: fossilization of a dynamic 
melt lens at fast spreading ridges. Geochem. Geophys. Geosyst. 10, Q10O19, 
doi:10.1029/2009GC002652 
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[1] The transition between the small melt lens observed on top of fast spreading ridge magma chambers and
the overlying sheeted dike complex marks the interface between magma and the hydrothermal convective
system. It is therefore critical to our understanding of fast spreading ridge accretion processes. We present
maps of two areas of the Oman ophiolite where this transition zone is observed as continuous outcrops. Our
observations, which include the base of the sheeted dike being crosscut by gabbros, are consistent with
episodic dike injections in a steady state model but also suggest that the root of these dikes is commonly
erased by vertical movements of the top of the melt lens. Dike assimilation is a possible mechanism for
incorporating hydrated phases, which result from hydrothermal alteration, to the melt lens during upward
migrations of its upper boundary. Upward migrations are also responsible for a granoblastic overprint of the
root of the dikes that is also observed in the stoped diabase xenoliths. This granoblastic overprint attests to
reheating of previously hydrothermally altered lithologies which can even trigger hydrous partial melting due
to the lowering of the solidus of mafic lithologies by the presence of a water activity. Clinopyroxenes present
in these granoblastic lithologies are typically low in Ti and Al content, thus strongly contrasting with
corresponding magmatic clinopyroxene. This may attest to the recrystallization of clinopyroxenes after
amphiboles under the peculiar conditions present at the root zone of the sheeted dike complex. Downward
migrations of the top of the melt lens result in the crystallization of the isotropic gabbros at its roof, which
represent the partly fossilized melt lens. Melt lens fossilization eventually occurs when magma supply is
stopped or at the melt lens margins where the thermal conditions become cooler. Melt lens migration,
recrystallization of hydrothermally altered sheeted dikes during reheating stages, and assimilation processes
observed in the Oman ophiolite are consistent with the observations made in IODP Hole 1256D.We propose
a general dynamic model in which the melt lens at fast spreading ridges undergoes upward and downward
movements as a result of either eruption/replenishment stages or variations in the hydrothermal/magmatic
fluxes.
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Theme: Formation and Evolution of Oceanic Crust Formed at Fast Spreading Rates
Guest Editors: D. A. H. Teagle and D. Wilson

1. Introduction

[2] The structure of fast spreading ridges is inferred
from geophysical studies [e.g., Morton and Sleep,
1985; Detrick et al., 1987; Harding et al., 1989;
Kent et al., 1990] and from structural observations
and mapping in ophiolites, in particular the Oman
ophiolite [e.g., Hopson et al., 1981; Pallister and
Hopson, 1981;Nicolas et al., 1988a, 2000;Umino et
al., 2003]. Geophysical studies have revealed the
presence of a partly to totally molten melt lens (�30
to 100 m thick) at the top of the mostly crystallized
magma chamber [e.g., Sinton and Detrick, 1992;
Hussenoeder et al., 1996; Collier and Singh, 1997;
Singh et al., 1998; Dunn et al., 2000]. The compo-
sition and evolution of this thin melt lens play a key
role in oceanic crust genesis as it feeds, at least
partly, the upper and lower crust [e.g., Sinton and
Detrick, 1992; Boudier et al., 1996]. This horizon is
also a major exchange interface between seawater
and the oceanic crust as it is located at the root of the
sheeted dike complex, where the hydrothermal
convective system and the melt lens can meet and
interact. Several descriptions of the gabbro/sheeted
dike transition zone in ophiolites have been pub-
lished, to attempt understanding the complex struc-
tural and petrological relationships within this zone
[Rothery, 1983; Nicolas and Boudier, 1991;
MacLeod and Rothery, 1992; Gillis and Roberts,
1999;MacLeod and Yaouancq, 2000;Coogan et al.,
2003; Gillis, 2008; Nicolas et al., 2008].

[3] The IODP (Integrated Ocean Drilling Program)
drilled Hole 1256D into a�15Ma crust that formed
at the East Pacific Rise at a superfast spreading rate
[Teagle et al., 2006]. It is to date the only place in
present-day oceanic crust where the uppermost
gabbros below the sheeted dike complex has been
sampled in situ below a continuous, intact section of
upper oceanic crust [Teagle et al., 2006; Wilson et
al., 2006; Alt et al., 2007]. Studies in ophiolites or in

present-day oceanic crust have led to the elaboration
of a variety of models for the evolution of the
complex magmatic/hydrothermal interface that con-
stitutes the gabbro/sheeted dike transition zone. It is
presented either as a steady state boundary layer
[Rothery, 1983; Nicolas and Boudier, 1991;
MacLeod and Yaouancq, 2000; Nicolas et al.,
2008], or as a dynamic one [Gillis and Roberts,
1999; Coogan et al., 2003; Wilson et al., 2006;
Gillis, 2008; Koepke et al., 2008]. The processes
occurring in this transition zone, and the relation-
ships between observed present-day lithologies and
the melt lens at the time of accretion are still debated
[e.g., MacLeod and Yaouancq, 2000; Gillis, 2008;
Nicolas et al., 2008].

[4] Nicolas et al. [2008] postulated that understand-
ing the complex processes acting at the sheeted dike/
gabbro transition requires studying undisturbed
portions of the ridge, away from domains where
accretion was under the influence of discontinuities
due to ridge propagation or segmentation. In the
present study, we havemapped in details the gabbro/
sheeted dike transition zone in two localities of the
Oman ophiolite that are, based on large-scale struc-
tural mapping [Nicolas et al., 2000], away from
major ridge axis tectonic activity. This study bears
information on the evolution of the melt lens, and
suggests a way to reconcile the apparently contrast-
ing, previously published models.

2. Background

[5] At fast spreading ridges, the upper oceanic crust
is composed of, from top to bottom, lavas, sheeted
dikes, and isotropic ophitic gabbros (and associated
coarse-grained gabbros and ‘‘oceanic plagiogran-
ites’’). The foliated gabbros, and layered gabbros
form the lower crust. Many models, based on
thermal modeling and/or ophiolite field data, have
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been proposed for the formation of the igneous
lower crust [e.g., Sleep, 1975; Nicolas et al.,
1988b;Nicolas, 1989;Henstock et al., 1993; Phipps
Morgan and Chen, 1993; Quick and Denlinger,
1993; Nicolas and Boudier, 1995; Boudier et al.,
1996; Kelemen et al., 1997; MacLeod and
Yaouancq, 2000; Garrido et al., 2001]. Most recent
models predict that the lower crust is fed from the
top, through subsidence of the crystallized material
from the melt lens, and/or from the bottom through
sill injections [Boudier et al., 1996; Kelemen et al.,
1997;MacLeod and Yaouancq, 2000; Nicolas et al.,
2009]. The balance between these two processes,
however, remains poorly constrained and is still
debated [e.g., VanTongeren et al., 2008; Webb,
2008]. MacLeod and Yaouancq [2000] proposed
that the lower crust is not fed from the axial melt
lens, and that the foliated gabbros in the upper part
of the igneous section only preserve the last incre-
ment of strain during crystallization in an upwelling
melt flow. They observed that plagioclase zoning
tends to increase up-section from the layered
gabbros to the foliated gabbro, possibly reflecting
the evolution of the melt as it migrates toward the
top of the crystal mush pile. In contrast, other
detailed studies of the high-level gabbros in the
Oman ophiolite suggest that the melt lens does play
a role in the genesis of the lower crust through
subsidence processes [Coogan et al., 2002; Nicolas
et al., 2009].

[6] The upper crust (volcanics and sheeted dike) is
considered to be injected from the melt lens [e.g.,
MacLeod and Yaouancq, 2000]. However, it may
not sample the whole melt lens. Based on observa-
tions made at Hess Deep (ODP Site 894), Natland
and Dick [1996] proposed that the melt lens is partly
filled with highly fractionated melts, too dense to
erupt. These uneruptable melts are expelled from the
underlying crystal mush column and seem to play a
minor role in the upper crust accretion as they are
expected to lie on the melt lens floor. The detailed
structural, petrological, and geochemical study of
the Wadi Abyad section, in the Oman ophiolite
[MacLeod and Yaouancq, 2000] shows that, even
if some highly fractionated pegmatitic gabbros may
form up to 40% of the outcrops in some parts of the
isotropic ophitic gabbro horizon, they are always
subordinated to finer-grained and more magnesian
gabbro.MacLeod and Yaouancq [2000] interpret the
Fe-Ti pegmatitic gabbros as melts differentiated
under reducing conditions and low water activities,
at the border of the melt lens. They also propose that
the average composition of the whole isotropic
gabbro horizon represents the melt lens composi-

tion; their calculations lead toMg # of 65 and a TiO2

content of 1.1 wt %, which is relatively similar to the
associated sheeted dikes and to typical N-MORB
erupted at intermediate to fast spreading ridges [e.g.,
Klein, 2003].

[7] The evolution and stability of the melt lens, as
well as its relationships with the overlying hydro-
thermally altered lithologies are also debated. These
points are discussed through detailed studies of the
root zone of the sheeted dike complex. This zone is
composed of fine-grained isotropic ophitic gabbro,
pegmatitic gabbro, some Fe-Ti gabbro and diorite,
and oceanic plagiogranites. It has been described in
the Oman ophiolite [Rothery, 1983; Nicolas and
Boudier, 1991] and recently revisited in details
[Nicolas et al., 2008]. Based on petrological and
structural observations,Nicolas et al. [2008] present
a new steady state model for the evolution of the
melt lens. They propose that most of the isotropic
gabbro horizon, called ‘‘root zone of the sheeted
dike complex,’’ is generated by hydrous partial
melting triggered by the intrusion of hydrothermal
fluids in the recently crystallized, still hot, base of
the sheeted dike complex. In this model, the root
zone lithologies do not represent the crystallization
of the melt lens, which is assumed to pinch out at its
tips. Macleod and Yaouancq [2000] also describe
the root zone of the sheeted dike complex in the
Oman ophiolite as a steady state horizon, but in
contrast with Nicolas and Boudier [1991] and
Nicolas et al. [2008], they interpret it as the crystal-
lized melt lens under anhydrous and reducing con-
ditions, implying little assimilation of hydrated
doleritic roof material. However, they show some
assimilation evidences [MacLeod and Yaouancq,
2000, Figure 2d]. Reheating and assimilation in
the root zone are documented in the Oman ophiolite
[Coogan et al., 2003; Gillis, 2008], in the Troodos
ophiolite [Gillis and Roberts, 1999; Gillis, 2002;
Gillis and Coogan, 2002; Gillis, 2008], and at Pito
Deep and Hess Deep [Gillis, 2008]. Wilson et al.
[2006] and Koepke et al. [2008] recently described
assimilation and reheating features within the root
zone of the sheeted dike complex in the IODP Hole
1256D, the first and so far only borehole in present-
day intact ocean crust that reaches the contact
between sheeted dikes and gabbro. Nicolas et al.
[2008] discuss these results by pointing out that
reheating and assimilation features are well known
in the Oman ophiolite in areas affected by ridge
segmentation [Juteau et al., 1988; MacLeod and
Rothery, 1992; Nicolas and Boudier, 1995; Boudier
et al., 2000; Adachi andMiyashita, 2003;Miyashita
et al., 2003; Umino et al., 2003], but have not been
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described in ‘‘undisturbed’’ zones, away from dis-
continuities, yet. They suggest that reheating and
assimilation, in the Oman and Troodos ophiolite,
and in the IODP borehole could be related to ridge
segmentation.

[8] To further constrain the characteristics of the
transition from gabbros to the sheeted dike complex
(i.e., the interface between the magmatic and the
hydrothermal systems), we have mapped in details
this transition in two ‘‘undisturbed’’ areas of the
Oman ophiolite (Wadi Gideah area, in the Wadi
Tayin Massif, and Al Ahmadi Hills area, in the Ibra
plain at the southern end of the Wadi Tayin Massif).
Because of its lithological heterogeneity, and of the
presence of many igneous contacts and fractures, the
root zone of the sheeted dike complex is a zone of
preferential meteoric alteration and outcrops very
poorly (see, e.g., MacLeod and Yaouancq [2000,

Figure 1], which shows the outcrops discontinuity).
Observations from these two regions are made over
continuous outcrops and are consistent with many
other visited sites where outcrops are not continuous.

3. Field Observations

[9] The two studied areas are located in the well-
exposed Wadi Tayin Massif, one of the southern
Massifs in the Oman ophiolite where ridge segmenta-
tion effects are minor [Nicolas et al., 2000] (Figure 1).
The southern massifs are large and flat-bottomed
synclines with the sheeted dike and subvertical
gabbro foliation trending �NW–SE. The NW–SE
segments are opened in an older domain where the
sheeted dike trends �NE–SW. The Wadi Gideah
area is situated in the Jebel Dimh, 10 km to the north
of Ibra and �10 km to the east of the main road

Figure 1. Simplified geological and structural map of the southern massifs and location (red box) in the Oman
ophiolite [afterNicolas et al., 2000]. Red circles indicate the locations of the studied zones (WG,Wadi Gideah; AAH, Al
Ahamadi Hills).
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between Muscat and Ibra. The Al Ahmadi Hills are
located in the large Wadi Nam, 6 km to the NW of
the Al Ahmadi village and 10 km to the NNWof the
town of Ibra.

3.1. Wadi Gideah Area

[10] The mapped area in Wadi Gideah extends from
the foliated gabbro in the north to the sheeted dikes
in the south, and includes in between the heteroge-
neous, isotropic ophitic gabbro horizon (Figure 2a).
The foliated gabbros present the same character-
istics as anywhere else in the Oman ophiolite; they
are granular, and display a subvertical foliation
trending N–S (Figure 3). Close to the contact with
the foliated gabbros, the isotropic ophitic gabbro
horizon is very heterogeneous; it is composed of
coarse-grained lithologies such as hornblende-oliv-
ine-gabbro or hornblende-gabbro, which contain
some strongly altered xenoliths of predominantly
fine-grained recrystallized diabase, but also gabbro
and hornblende-diorite. The relationships between
the different lithologies in this particular place are
unclear because of the intense weathering. To the
south, up-section, isotropic ophitic gabbros become
more homogeneous. Some isolated narrow and
elongated meter sized zones display a foliation
(�N–S, subvertical) that seems to underline the
contacts with gabbro injections. Rounded xenoliths
of gabbro and diabase, about 10 � 10 cm on
average, are accumulated at small hill summits in
the whole isotropic gabbro horizon (Figures 2 and
4a). Magmatic breccias with a leucocratic matrix
enclosing gabbro or dike xenoliths are also observed
(Figures 2 and 4b). Except for one occurrence close
to the foliated gabbro (Figure 2), these breccias are
located close to, or at the contact between the
isotropic ophitic gabbro horizon and the sheeted
dikes. Figures 2b and 2c show two hills in the
ophitic gabbros topped by sheeted dike. No fault is
observed between these two hills. The vertical offset
of the contact between gabbros and sheeted dike is
consequently assumed to represent initial depth
variations of this contact along the ridge axis. To
the south, the sheeted dikes present the same char-
acteristics as anywhere else in the Oman ophiolite,
and trend N–S, subvertical (Figure 3). Each dike is
about 1 to 1.5 m wide and present chilled margins
against other dikes. Some later dikes with chilled
margins, also 1 to 1.5 m wide, crosscut the isotropic
gabbros and the previous sheeted dikes; they are
subparallel to the sheeted dike complex (Figure 5).

[11] Isotropic ophitic gabbros intrude the base of the
sheeted dikes, and locally assimilate dike fragments

(Figure 6). Sparse diabase xenoliths are locally
observed. Gabbros clearly crosscut former chilled
margins (Figure 6), and locally intrude the sheeted
dike base, but do not invade it further than about 1 m
above the main contact. Some contact outcrops
show a gradation toward the contact from gabbroic
rocks to more leucocratic ones (Figures 6c and 6e).
Coarse-grained isotropic ophitic gabbros are also
common in the root zone and at the contact with
xenoliths (Figure 6f).

[12] Dikes truncated by ophitic gabbro show well-
equilibrated (with �120� triple junctions), fine-
grained granular textures, called hereafter ‘‘grano-
blastic textures’’ (Figure 7a). These textures are
clearly distinct from the doleritic textures classically
observed in Oman ophiolite sheeted dikes. Recrys-
tallized texture is observed on both sides of dike
margins; that is, it overprints both last and former
dikes (Figures 7a and 7b). The average grain size in
the granoblastic margins overprinting the chilled
margins is �10 mm. Ten centimeters away from
the margins, the recrystallized textures display
coarser granular grains (�50 mm; Figure 7b); pla-
gioclases are largely less recrystallized than pyrox-
enes. Patches with granoblastic texture (0.5 to 1 mm
wide) are also observed in the uppermost isotropic
gabbros (Figure 7c). The paragenesis of granoblas-
tic domains includes plagioclase, clinopyroxene,
amphibole, magnetite, and ilmenite. Granoblastic
texture lithologies are particularly rich in oxides
(Figures 7a, 7b, 7e, and 7g). The corresponding
mineral assemblages are commonly complex with
different generations of clinopyroxenes and
amphiboles (Figure 7f) and clinopyroxenes com-
monly contain numerous tiny oxide inclusions.
Oxide inclusion-rich clinopyroxene veins (100 to
200 mm wide) in the base of the sheeted dikes are
crosscut by intrusive gabbros (Figures 7g and 7h).
The leucocratic lithologies (oceanic plagiogranites)
that are sometimes present at the base of the dikes
contain tiny clinopyroxenes (20 to 50 mm) associ-
ated with oxides, suggesting that these correspond to
relics of parageneses from the granoblastic stage.
These minerals have rounded shapes and appear to
be relics of former larger grains. This observation is
critical to constrain the origin (differentiation versus
hydrous partial melting) of these oceanic plagiog-
ranites (see discussion below). All samples are
moderately to strongly altered in the greenschist
facies; actinolite and albitized plagioclases replace
magmatic ones, clinopyroxenes and higher-temper-
ature amphibole (hornblende and pargasite). In
some samples the granoblastic texture is so strongly
altered that it is hardly recognizable (Figure 7d).
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Figure 2. Wadi Gideah area. (a) Geological and structural map. The black rectangle represents the location of
Figure 2b. (b) Zoom on the two hills that have their summits and southern flanks composed of sheeted dikes and their
northern flanks composed of gabbros. The yellow line indicates the position of the cross section in Figure 2c. (c) Cross
section showing the two hills from Figure 2b. The thick gray line indicates the gabbro/sheeted dike transition that is
precisely mapped in Figure 2b. No fault has been observed.
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Figure 3. Stereonets (lower hemisphere, nonpolar data, geographical reference system) showing field structural
measurements: (left) sheeted dike and (right) magmatic foliations in foliated gabbros (top) in the Wadi Gideah area and
(bottom) in the Al Ahmadi Hills area.

Figure 4. (a) Xenoliths of granoblastic dikes in isotropic ophitic gabbro and (b) magmatic breccia consisting of recrys-
tallized sheeted dike within a silicic (oceanic plagiogranite) matrix. Both outcrops are in the Wadi Gideah area.
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3.2. Al Ahmadi Hills

[13] The Al Ahmadi Hills are aligned along a small,
3000m long and�50m high ridge that trends NW–
SE (Figure 8a). At the northern tip of this ridge, the
first lithology encountered is olivine gabbro, with a
steep, strong magmatic foliation oriented 160E75
on average (Figures 3 and 9a). In some rare, about
1 to 5 m large domains, the foliation is hardly
identifiable in the field. Microscopic observations
show that the foliation is similar to what is observed
in the other foliated samples, with olivine mantled
by orthopyroxene and pargasite (Figure 9b). This
assemblage is described by Koepke et al. [2005a,
2005b] and Nicolas et al. [2003], and may trace late
magmatic processes such as hydrous partial melting
reactions or late crystallization in the presence of
water.

[14] The transition to the next horizon above, mostly
composed of isotropic ophitic gabbros, is sharp. It
occurs over less than 10 m. This horizon is strongly
altered in the greenschist facies, as shown by the
abundance of actinolite. Immediately above this
contact, the ophitic gabbros contain numerous large
xenoliths (up to 1.5 m large; Figures 8a, 8b, and 8d),
which are composed either of oxide-rich grano-
blastic overprinted dikes (Figure 9c) or of gabbroic
rocks. This area is composed of about 60% isotropic
ophitic gabbros, 30% xenoliths, and nearly 10%
pegmatitic gabbros very similar to those of Wadi
Gideah (Figures 6d and 6f), forming the matrix
around the xenoliths. In some localized (�10 m)
zones, xenoliths represent up to 90% of the outcrop-
ping material. Xenolith accumulation appears more
abundant in the lower third of the isotropic ophitic
gabbro section (Figures 8a and 8d). Xenoliths and
pegmatitic gabbros become less abundant, and nearly

disappear up-section, to finally reappear close to the
contact with the sheeted dikes.

[15] As observed in Wadi Gideah (Figure 6), the
contact between the isotropic ophitic gabbros and
the overlying sheeted dike complex is very sharp.
Gabbros are again intrusive in the sheeted dike and
crosscut former dike margins. Close to this contact,
dike xenoliths are locally accumulated, generally
small (�10 cm, Figure 8c), and form �1 m wide
clusters (Figures 8c and 8d). These xenoliths have
granoblastic textures; they are totally metamor-
phosed in the greenschist facies and the granoblastic
texture is commonly blurred. The base of the dikes is
also very altered but the recrystallized granular
texture, associated to an enrichment in granular
oxides, is still recognizable in some samples (Figure
9d); these are interpreted as relics, after subsequent
alteration, of the granoblastic overprint. Because of
the strong greenschist facies overprint and of the
strong weathering, it is not possible to estimate the
vertical extent of the granoblastic overprint. These
textures are identical to those observed in the same
structural position in the Wadi Gideah area.

[16] Up-section, the Al Ahmadi hills continue over
�1000 m with the sheeted dike complex, oriented
0E50 on average (Figure 3). The sheeted dikes are
typical of what is observed elsewhere in the Oman
ophiolite; it is made of parallel, about 1 to 1.5 m
wide, greenschist altered dikes, bounded by dark
chilled margins against other dikes.

[17] In the whole section, late dikes crosscut other
lithologies. In the lower part of the section, late dikes
display microgranular margins that are nearly free of
oxides (Figure 9e), and ophitic coarser grained
center (Figure 9f). They grade up-section, close to

Figure 5. Late diabase dikes crosscutting isotropic ophitic gabbros in the Wadi Gideah area.
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Figure 6. Outcrops in the root zone of the sheeted dikes. (a) Recrystallized sheeted dike (granoblastic dike) intruded
by gabbro. Recrystallized chilled margins are crosscut by the intrusive gabbro. A late dike (‘‘dike 2’’) crosscuts
the gabbro and recrystallized dikes (‘‘dike 1’’). (b) Dioritic intrusion that crosscuts a recrystallized dike margin with
granoblastic texture. (c and e) Gabbro assimilating recrystallized sheeted dike. The gradation to more leucocratic
lithology at the contact is visible. A small shear zone affecting the dikes and gabbro is visible on the right side of
Figure 106c. (d and f) Xenoliths of recrystallized dikes showing granoblastic texture in isotropic gabbro. Patches of
coarser grained gabbro are observed around the xenolith in d), and all surrounding gabbro is pegmatitic in Figure 6f.
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Figure 7
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Figure 7. Photomicrographs and BSE images of samples from the Wadi Gideah area. (a) Fine-grained granoblastic
texture with a high oxide concentration in a recrystallized dike margin (plane-polarized light). (b) Coarser-grained
recrystallized texture in the center of a recrystallized dike (plane-polarized light). (c) Granoblastic patch in isotropic
gabbro in the center of the picture (plane-polarized light). (d) Coarse-grained recrystallized texture partially erased by
a strong greenschist facies alteration in a granoblastic dike (plane-polarized light). Arrows indicate granular grains.
(e) BSE image of the granoblastic texture in a recrystallized dike. Dark gray minerals are plagioclases, light gray
minerals are clinopyroxene + amphibole, and white minerals are oxides. (f) BSE image focusing on Fe-Mg minerals
present in the granoblastic dikes. Different generations of clinopyroxenes (Cpx) and amphiboles are present (orange
numbers indicate temperatures estimated with Ernst and Liu [1998]). The white phase is a mixture of ilmenite and
magnetite. Redox and temperature estimates are calculated using Sauerzapf et al. [2008]. (g) Isotropic gabbro cross-
cutting a recrystallized granoblastic dike. In the recrystallized dike, the truncated clinopyroxene vein is believed to
derivate from a former amphibole bearing hydrothermal vein (cross-polarized light). The red square indicates the
position of the BSE in Figure 7h. (h) BSE image of the truncated clinopyroxene vein in Figure 7g. Note the occurrence
of numerous tiny oxide inclusions in the clinopyroxenes.

Figure 8. Al Ahmadi Hills area. (a) Geological and structural map. The dotted line indicates the location of the cross
section in Figure 8d. (b) Large xenoliths of recrystallized dike fragments close to the foliated gabbro/isotropic gabbro
transition. (c) Decimeter-sized xenoliths of recrystallized dikes close to the transition between isotropic gabbro and
recrystallized sheeted dikes. (d) NW–SE cross section. Vertical exaggeration is �3; the isotropic gabbro horizon is
�100 m thick. The base of the sheeted dike is reheated and recrystallized over a distance that is not constrained because
of the strong weathering.
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Figure 9. Photomicrographs of samples from the Al Ahmadi Hills area. (a) Foliated olivine-gabbro (cross-polarized
light). (b) Altered olivine (Ol) surrounded by orthopyroxene (Opx) and pargasite (Parg) in the foliated gabbro domains
where the foliation is hardly identifiable in the field (cross-polarized light). (c) Granoblastic overprint in a diabase
xenolith. Arrows indicate the small granoblastic grains (plane-polarized light). (d) Strongly altered coarser-grained
recrystallized texture from the base of the sheeted dike complex (center of a recrystallized dike: plane-polarized light).
Arrows indicate granular grains. (e) Microgranular texture of a protodike margin (plane-polarized light). (f) Protodike
center showing a texture similar to the isotropic ophitic gabbro (plane-polarized light).
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the contact with the sheeted dikes, to diabase dikes
with chilled margins. Nicolas and Boudier [1991]
and Nicolas et al. [2008] described in the root zone
of the sheeted dike complex similar dikes with
ophitic texture in the center and microgranular
margins, which they name ‘‘protodikes,’’ and as-
cribed to slow cooling in a hot and hydrous envi-
ronment. The magmatic protodikes depart from the
metamorphic granoblastic truncated dikes in that
only their margins display microgranular textures
(e.g., compare Figure 7a with Figure 9e for the
margins and Figure 7b with Figure 9f for the center
of dikes). We interpret the late dikes observed in the
mapped areas as protodikes that intrude the still hot,
recently crystallized gabbros. Because a single pro-
todike cannot be followed in the field over hundreds
of meters, the textural transition from protodikes
with microgranular margins to dikes with chilled
margins up-section is not precisely located.

4. IODP Hole 1256D

[18] IODP Hole 1256D reached for the first time the
sheeted dikes/gabbro transition in ultrafast spread
oceanic crust [Teagle et al., 2006; Wilson et al.,
2006; Alt et al., 2007]. The sheeted dikes/gabbro
transition is sharp and represents an intrusive con-
tact similar to those observed in Oman (Wilson et al.
[2006, Figure 4c] and Figure 6 herein). The base of
the sheeted dike complex comprises recrystallized,
granoblastic texture domains (granulitic facies) over
�60 m; this texture is identical to the granoblastic
one described herein in samples from Oman (see for
example the concordance between Figures 7a and
10a for the fine granoblastic lithologies and 7b and
10b for coarser-grained recrystallized ones). The
section below the sheeted dike/gabbro contact has
been resampled for this study (Table A1).

[19] Wilson et al. [2006] describe two granoblastic
intervals that are interpreted as ‘‘screens of grano-
blastic dikes,’’ the first one (�15 to 25 m thick) is
located between two gabbroic bodies (‘‘gabbro 1’’
(�45 m) and deeper ‘‘gabbro 2’’ (�15 m)) and the
second one (very poorly recovered) at the bottom of
the ‘‘gabbro 2’’ interval, close to the bottom of Hole
1256D. The first thick ‘‘screen of granoblastic
dikes’’ (Figure 10c) is poorly recovered (<30%;
Figure 11). However, even in the most contin-
uous cores of this interval, granoblastic lithologies
are crosscut by thin intrusions of gabbros and
oceanic plagiogranites, with diffuse to sharp con-
tacts (Figure 11).

[20] We have also observed in the core the presence
of sparse, small (cm to �10 cm) xenoliths in the
upper part of the ‘‘gabbro 1’’ interval, at the contact
with the base of the granoblastic dikes and, as
described by Wilson et al. [2006], higher concen-
trations of xenoliths deeper in the ‘‘gabbro 2’’
interval, close to the bottom of the drilling hole.
The sampled xenoliths show recrystallized textures
similar to the ones of the base of the granoblastic
dikes and to the ones of the thick ‘‘screen of
granoblastic dikes’’ located between the ‘‘gabbro
1’’ and ‘‘gabbro 2’’ intervals. Granoblastic patches
similar to those observed inWadi Gideah (Figure 7c)
are also observed in the ‘‘gabbro 1’’ and ‘‘gabbro 2’’
intervals (Figure 10d).

5. Mineral Compositions
and Thermometry

[21] Mineral electron microprobe analyses were
performed at Géosciences Montpellier and at the
Institut für Mineralogie, Hannover using a Cameca
SX 100 electron microprobe equipped with 5 spec-
trometers and an operating system ‘‘Peak sight.’’
Data were obtained using a 15 KV acceleration
potential, a static (fixed) beam, Ka emission from
all elements, and the ‘‘PAP’’ matrix correction
[Pouchou and Pichoir, 1991] in Hannover and its
modification [Merlet, 1994] in Montpellier. Most
element concentrations were obtained with a beam
current of 15 nA and a counting time of 10 to 120 s
on peak and background.

[22] Analyses presented herein (Table A1) were
acquired on samples from the base of the Oman
sheeted dike (granoblastic domains), from diabase
xenoliths that are present in the isotropic ophitic
gabbros, from coarse-grained gabbros that surround
these xenoliths, from oceanic plagiogranites sam-
pled at the base of the sheeted dikes, from a proto-
dike, and from foliated gabbros. All Oman samples
come from the Al Ahmadi Hills and Wadi Gideah
areas. We also present for comparison analyses of
IODP Hole 1256D samples. These samples come
from the lowermost granoblastic dikes (just above
the first recovered gabbro), from the ‘‘screen of
granoblastic dikes’’ located between the ‘‘gabbro
1’’ and ‘‘gabbro 2’’ intervals, and from granoblastic
xenoliths in gabbros.

5.1. Root Zone Lithologies and Protodikes

[23] In Oman samples, plagioclase compositions are
very variable; they range from An10 to An57 in

Geochemistry
Geophysics
Geosystems G3G3

france et al.: fossilization of a dynamic melt lens 10.1029/2009GC002652

13 of 3087

Chapter III. Magmatic / hydrothermal interactions in the Oman ophiolite

87



granoblastic lithologies and xenoliths, and reach
An74 in the protodike (Figure 12). Clinopyroxene
Mg # ranges from 59 to 72 in granoblastic litholo-
gies and reaches 75 in the protodike (Figure 12).
Al2O3 and TiO2 are significantly low compared to
typically magmatic clinopyroxenes from oceanic
mafic rocks and to those obtained experimentally
in corresponding tholeiitic systems (Figure 13).
TiO2 is strongly correlated with Al2O3 (with
Al2O3/TiO2� 3) and shows an apparent linear trend
pronounced at low concentrations (Figure 13). CaO
contents are high, and Cr2O3 is nearly always under
detection limits. Orthopyroxenes are present only
in protodikes and have an Mg # of 68. Amphibole

compositions are variables, including actinolite,
hornblende, edenite, and pargasite. One granoblas-
tic dike sample from the Wadi Gideah area contains
zoned plagioclases, with An22 cores and An38 rims.
Granoblastic patches observed in the isotropic
ophitic gabbros (Figure 7c) are similar in composi-
tions to other granoblastic lithologies, with An48
plagioclases and Mg # = 69 for clinopyroxenes.
Oxide bearing clinopyroxene from the truncated
veins observed at the sheeted dike/gabbro transition
(Figures 7g and 7h) plot in the TiO2 versus Al2O3

linear trend (Figure 13).

[24] In oceanic plagiogranites, plagioclases are al-
bite to oligoclase with An ranging from 7 to 27.

Figure 10. Photomicrographs of samples from IODPHole 1256D (plane-polarized light). Photographs in Figures 10a
and 10d are from the IODP database (Expedition 312; http://iodp.tamu.edu/janusweb/imaging/tsmicro.shtml). (a) High
oxide concentration in a fine-grained granoblastic dike (recrystallized base of the sheeted dike complex; sample
312_1256D_205R1_10-14). (b) Coarser-grained, partially recrystallized texture (pyroxenes are granular and recrys-
tallized) in diabase at the base of the granoblastic dike interval (sample 312_1256D_209R1_170-19). (c) Coarser-
grained, partially recrystallized texture in the ‘‘granoblastic screen’’ located between gabbro 1 and gabbro 2 (interpreted
as xenoliths of recrystallized dikes in the present study (see section 6.3 for further discussion); sample 312_1256D_
227R1_30-34). Pyroxenes are granular, and oxide-bearing clinopyroxenes are inferred to crystallize after former
amphiboles. (d) Patch with structure interpreted as a former granoblastic domain in isotropic gabbro (sample 312_
1256D_223R3_1-6).
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Small clinopyroxenes, which show petrographic
features similar to those from granoblastic litholo-
gies are characteristically low in Al, Ti, and Cr, and
plot on the TiO2 versusAl2O3 linear trend (Figure 13).

[25] Mineral compositions from the IODP Hole
1256D granoblastic lithologies are similar to those
from the same lithologies in Oman (Table A1 and
Figure 12). Plagioclase composition ranges from

Figure 11. IODP 1256D drilled cores between 1450.8 and 1484.4 mbsf. From top to bottom, encountered lithologies
are xenolith-bearing gabbro 1, granoblastic lithologies described as a ‘‘screen of granoblastic dikes’’ by Wilson et al.
[2006], and xenolith-bearing gabbro 2. The two photographs show some of the felsic to mafic ‘‘melts’’ that crosscut the
recrystallized granoblastic lithologies. Red circles highlight the xenoliths of granoblastic lithologies, and orange stars
highlight the occurrence of felsic to gabbroic coarse-grained material. Intervals with recrystallized granoblastic texture
are highlighted by thick red lines along the core margins. The dotted green lines represent the upper and lower limits
of the ‘‘screen of granoblastic dikes’’ described by Wilson et al. [2006]. The continuous granoblastic domains are less
than 1 m thick.
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andesine (An41) to labradorite (An67). Clinopyrox-
enes range from augite to diopside, with Mg #
between 63 and 74, low Al2O3 and low TiO2 con-
tents, high CaO content, and Cr2O3 always under
the detection limit (Figure 13). These clinopyrox-
enes plot in the TiO2 versus Al2O3 linear trend
(Figure 13). Orthopyroxenes are enstatite, with Mg
# between 58 and 66. Amphiboles are hornblende
and pargasite with late actinolite.

5.2. Isotropic/Foliated Gabbro Transition
in Wadi Gideah

[26] Xenolith samples contain plagioclase ranging
from An31 to An57. Clinopyroxenes are either augite
or diopside, and haveMg # between 61 and 77. They
are depleted in Al2O3 and TiO2, and enriched in
CaO; Cr2O3 is always under detection limits; they
plot in the TiO2 versusAl2O3 linear trend (Figure 13).
Amphiboles are hornblende.

[27] Gabbroic samples contain olivine with Mg # of
78; plagioclases range from An57 to An86 and
clinopyroxenes are mostly diopside with Mg # of
86. Clinopyroxenes have high Al2O3 contents and
high Cr2O3 contents (up to�1 wt %) and plot out of
the TiO2 versus Al2O3 linear trend defined by
clinopyroxenes from granoblastic lithologies at the
base of the sheeted dikes. Amphiboles are pargasite.

5.3. Foliated Gabbros

[28] In foliated gabbros olivine is Fo73, and plagio-
clase is bytownite with An84. Clinopyroxenes range
from augite to diopside, withMg # of 88 on average,
and plot out of the TiO2 versus Al2O3 linear trend
defined by clinopyroxenes from the granoblastic
samples. Cr2O3 content is 0.55 wt %, clearly above
the detection limit. Amphiboles are hornblende,
edenite and pargasite. In the domains of foliated
gabbros that contain late orthopyroxene and parga-
site rims around olivine, plagioclase is bytownite
with An83, clinopyroxenes are augite to diopside
with Mg # of 82 in average and also plot out of the
TiO2 versus Al2O3 linear trend defined by grano-
blastic clinopyroxenes. Cr2O3 contents are also
above the detection limit (0.17 wt %). Orthopyrox-
ene that rims olivine is enstatite with an average Mg
# of 73.

5.4. Thermometry

[29] Calculated temperatures obtained from amphi-
bole compositions with the Ernst and Liu [1998]
semiquantitative thermometer, from coexisting am-
phibole and plagioclase with the Holland and
Blundy [1994] thermometer, and from coexisting
clinopyroxenes and orthopyroxenes with the Ander-
sen et al. [1993] thermometer, are summarized in
Table 1. The errors on these temperature estimates
are indicated in Table 1 for the two-pyroxene
thermometer, are ±35–40�C for the Holland and
Blundy [1994] thermometer, and are not estimated
by Ernst and Liu [1998] for their semiquantitative
thermometer. Temperatures obtained from amphib-
oles compositions reach �1020�C with the Ernst
and Liu [1998] thermometer, �820�C with the
Holland and Blundy [1994] thermometer, and are
consistent with granulite facies conditions. Temper-
atures obtained with the Andersen et al. [1993]
thermometer reach 1030�C in granoblastic litholo-
gies (xenoliths and truncated dikes) and 950�C in
protodikes.

6. Discussion

6.1. A Dynamic Melt Lens

[30] The occurrence of a sharp contact between
sheeted dikes and underlying gabbro, with abruptly
truncated sheeted dikes, and of gabbroic to oceanic
plagiogranitic dikelets intruding the sheeted dike,
together with the evidence that gabbroic and oceanic
plagiogranitic bodies crosscut former dike margins,
imply a magmatic contact that is not disturbed by

Figure 12. Mg # of clinopyroxene versus An content
of plagioclases for recrystallized granoblastic dikes and
xenoliths from Oman and from IODP Hole 1256D
(average values for each sample). Protodike, foliated
gabbro, and coarse-grained gabbro compositions are
given for comparison. As low-temperature alteration has
led to a late albitisation of some samples, the maximum
values of the An content are used.
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tectonics (Figure 6). This magmatic contact could be
the consequence of either the upwelling of a magma
body which intrudes the dikes, or hydrous partial
melting of the dikes. The latter could be induced
either by an injection of hydrous fluids in a still hot
(>850�C) environment [Nicolas et al., 2008], or by
the upwelling of the magma body which reheats
some previously hydrothermally altered lithologies
above their hydrous solidus [e.g., Coogan et al.,
2003; Wilson et al., 2006]. Both hydrous melting
processes lead to the generation of felsic to mafic

melts, depending on temperature [Beard and
Lofgren, 1991; Koepke et al., 2005b]. Observa-
tions made in Oman and in IODP Hole 1256D
allow the identification of active processes in the
root zone of the sheeted dike complex.

[31] The granoblastic textures at the base of the
sheeted dikes could be ascribed to contact metamor-
phism, as proposed for IODPHole 1256D [Wilson et
al., 2006; Koepke et al., 2008], the Troodos ophio-
lite [Gillis and Roberts, 1999], or Wadi Him in

Figure 13. TiO2 versus Al2O3 in clinopyroxene for recrystallized granoblastic dikes and xenoliths from Oman and
from IODP Hole 1256D. Fields represent data from literature for comparison: (a) natural samples and (b) experimental
samples. Natural sample data are from Dziony et al. [2008] for the IODP Hole 1256D sheeted dikes not affected by
granoblastic imprint (SD), fromMiyashita et al. [2003] and Pallister and Hopson [1981] for the Oman ophiolite sheeted
dikes and gabbros, and from Boudier et al. [2000] and Gerbert-Gaillard [2002] for the Oman gabbronorites.
Experimental data are from Snyder et al. [1993], Toplis and Carroll [1995], and Toplis et al. [1994] for Fe-Ti MORB
crystallization experiments (Xp Fe-Ti MORB); from Berndt et al. [2005] and Feig et al. [2006] for hydrous
crystallization experiments in primitive MORB-type system; from Grove and Bryan [1983] and Kinzler and Grove
[1992] for MORB crystallization experiments (Xp MORB); and from Koepke et al. [2004] for clinopyroxenes formed
during hydrous partial melting of gabbros. Note that the clinopyroxene in the granoblastic lithologies form a
characteristic linear trend at low concentrations, which is not shown by data for typical MORB magmatic processes,
neither from natural occurrences nor from experiments.
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Oman [Gillis, 2008]. However, in contrast to what is
postulated by Gillis [2008], contact metamorphism
is not the only process producing well-equilibrated
fine-grained textures. Alternatively, Rothery [1983],
Nicolas and Boudier [1991], and Nicolas et al.
[2008] argue that microgranular textures of ‘‘proto-
dike’’ margins are magmatic and represent, in a
steady state system, the roots of the sheeted dikes.
We propose that the late dikes described herein
correspond to such protodikes. However, several
features described in the dikes truncated by gabbro
and in granoblastic xenoliths depart from the proto-
dike description:

[32] 1. The core of truncated dikes is also grano-
blastic (Figures 7b and 9d) while the core of proto-
dikes is described as texturally close to isotropic
ophitic gabbro [Nicolas et al., 2008] (Figure 9f).

[33] 2. All granoblastic xenoliths and truncated
dikes described in this study contain either high
oxide concentrations (up to 10% of ilmenite +
magnetite), or numerous oxide inclusions in pyrox-
enes, or both (Figures 7, 9c, and 9d). The observed
oxide concentrations depart from the published
protodike descriptions [see, e.g., Nicolas et al.,
2008, Figure 6a], and the occurrence of numerous
tiny oxides inclusions in the clinopyroxenes of
granoblastic lithologies is interpreted as a conse-
quence of the granulitic overprint of previously
hydrothermally altered dike rocks. Koepke et al.
[2008] described the evolution of the granoblastic
metamorphism in the drilled core from site 1256D
and show that similar clinopyroxenes with oxide
inclusions, present in the granoblastic dikes from
IODP Hole 1256D, recrystallized from former
amphiboles. In Oman, the occurrence of veins
composed of oxide-bearing clinopyroxenes at the
base of the truncated granoblastic sheeted dikes
(Figures 7g and 7h) also points to a metamorphic
origin. Amphibole-bearing hydrothermal veins are
common at the base of the sheeted dike complex,
but magmatic clinopyroxenite veins have not been
described. We postulate here that these peculiar
veins result from the recrystallization of amphibole-
bearing hydrothermal veins through dehydration
reactions during a reheating episode.

[34] 3. Clinopyroxenes from the prograde veins
have compositions similar to those in the granoblas-
tic dikes and xenoliths (Table A1 and Figure 13).
They are poor in Al2O3, rich in CaO and plot in the
TiO2 versus Al2O3 linear trend defined by grano-
blastic clinopyroxenes (Figure 13). These com-
positions clearly differ from published ones for

magmatic natural and experimental clinopyroxenes
in oceanic lithologies (Figure 13). Such compo-
sitions with uncommon low Al2O3 contents may
indicate, as shown by Spear and Markussen [1997],
inframagmatic temperature equilibration (<1000�C),
and are consistent with granulite facies condi-
tions. The correlation of Al2O3 with TiO2 could be
explained by the fact that Ti stability in clinopyrox-
ene is linked to its Al content [Lundstrom et al.,
1998]. The very low Cr2O3 content (always under
detection limits) also supports the metamorphic
origin of these minerals, as magmatic oceanic
pyroxenes contain higher amounts of Cr [Koepke
et al., 2008]. An incongruent origin linked to low
degrees of hydrous partial melting of previously
hydrothermally altered dikes may also be proposed
as it would also result in the destabilization and
dehydration of amphibole-bearing lithologies.

[35] All granoblastic xenoliths and truncated dikes
have similar petrological and geochemical charac-
teristics, which are clearly different from protodikes.
Their occurrence attests to a reheating stage that we
relate to the upwelling of the top of the melt lens.
The presence of granoblastic xenoliths and patches
in the isotropic ophitic gabbros, which are believed
to represent some reheated pieces of previously
hydrothermally altered sheeted dike, attests to as-
similation processes, and is consistent with an
upwelling stage. Upward migration of the melt lens
summit can be triggered either by an upward mi-
gration of the whole melt lens, or by an inflation of
its volume. Alternatively, the intrusive contact of
gabbro with sheeted dikes, and associated reheating
could be related to the off-axis injection of a new
melt lens, as recently imaged at the East Pacific
Rise by Canales et al. [2008].

[36] The common occurrence of leucocratic rocks
(oceanic plagiogranites) at the contact between the
sheeted dikes and the underlying gabbros may be
related either to differentiation at the top of the melt
lens or to hydrous partial melting of the sheeted
dikes [Pedersen and Malpas, 1984; Beard and
Lofgren, 1991]. In the present case, because reheat-
ing and magma upwelling are documented, and
temperatures up to 920�C and 1000�C are calculated
for the granoblastic dikes and the xenoliths, respec-
tively, leucocratic rocks are likely generated by
hydrous partial melting induced by reheating of
hydrothermally altered dikes. This hypothesis is
also supported by the occurrence, in the oceanic
plagiogranites, of relic pyroxenes that are chem-
ically identical to those of the reheated granoblastic
dikes (Table A1). The reverse zoning observed in
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plagioclases at the base of one granoblastic dike in
Wadi Gideah may result from an early hydrothermal
alteration stage leading to the albitisation of plagio-
clases (An22), followed by hydrous partial melting
that leads to the generation of wet dioritic melts
percolating through the base of dikes and crystal-
lizing An38 plagioclase rims.

[37] The late dikes (hereafter ‘‘dike 2,’’ Figure 5)
that crosscut the isotropic ophitic gabbros postdate
the contact between the gabbro and the sheeted
dikes, and imply the crystallization of the isotropic
ophitic gabbros subsequently to a downward migra-
tion of the melt lens. Dikes 2 could either be injected
from the remaining melt lens, or be injected laterally
along axis, or be related to an off-axis magmatic
episode. Because dikes 2 grade downward to pro-
todikes, they must be emplaced in a still hot envi-
ronment (�950�C according to the two-pyroxene
thermometer), hence not far off axis. The low Al
content of the clinopyroxenes present in protodikes
also attests to a relatively low temperature equili-
bration that can correspond to subsolidus condi-
tions. The equilibration of pyroxenes at these
temperatures may result from slow cooling of the
isotropic gabbro body.We interpret dikes 2 intrusion
in ophitic gabbro as illustrating the downward
migration of the top of the melt lens. This downward
movement results in the crystallization of the iso-
tropic ophitic gabbros, and allows injection of new
dikes in this still hot environment from the under-
lying melt lens or laterally, along axis. The down-
ward movement could be triggered either by
downward migration of the whole melt lens or by
a deflation of its volume.

[38] In Wadi Gideah, the sheeted dikes/gabbro tran-
sition is a well-defined contact that can bemapped in
the field (Figure 2). We interpret the mapped contact
(Figure 2c) as reflecting a �50 m depth variation of
the melt lens roof over a distance of �150 m.
However, one cannot exclude that this offset is
related to a thin fault or shear zone, which is not
visible due to the poor outcropping conditions
between the two hills. Larger amplitude (one to
several kilometers) variations of the melt lens sum-
mit depth have been documented by seismic imag-
ing at the East Pacific Rise [Cormier, 1997;
Hussenoeder et al., 1996; Solomon and Toomey,
1992; Singh et al., 1998]. An along-axis ‘‘fine-scale
segmentation’’ of the melt lens reflector has been
recently imaged in the 9�50N region of the East
Pacific Rise [Carbotte et al., 2008], and reveals
comparable depth variations of tens of meters.

6.2. Stoping, Assimilation,
and Coarse-Grained Gabbros

[39] In the context of magma upwelling at the root of
the sheeted dikes, the occurrence of oxide-rich,
granoblastic xenoliths in the isotropic ophitic
gabbros is significant. Some xenoliths are located
near the contact with sheeted dikes, but most of them
appear to be accumulated at the base of the isotropic
ophitic gabbro horizon, as seen in Al Ahmadi Hills,
above the contact with foliated gabbros (Figure 8).
The density of granoblastic xenoliths is �3.02 g
cm�3 (by considering the modal proportions from
our petrological observations and crystal densities at
1000�C [Fei, 1995]: �60% plagioclase, d � 2.6 g
cm�3; �30% clinopyroxene, d � 3.3 g cm�3; �5%
magnetite, d � 4.9 g cm�3 and �5% ilmenite, d �
4.5 g cm�3). Because plagioclase is the only mineral
of the granoblastic assemblage that has a density
lower than the estimated whole rock, and samples
with plagioclase contents >60% are rare, this esti-
mated density is a lower bound. It is significantly
higher than the density of a dry basaltic melt that is
thought to fill the melt lens, which is �2.7 g cm�3,
(calculated with a pressure of 1 kbar and a temper-
ature of 1100�C [e.g., Lange and Carmichael,
1990]). The melt density can be slightly higher if
more evolved, and slightly lower if hydrous, but
such melts are not expected to be dominant in the
melt lens. Stoping is also controlled by the rheology
of the host magma. It requires that the crystal
content in the melt lens is low enough that it does
not change significantly the density and viscosity of
the magma. Geophysical and petrophysical studies
show that underneath the melt lens is the main
magma chamber, which contains on average a
minimum of 80% of crystals [e.g., Caress et al.,
1992; Collier and Singh, 1997; Singh et al., 1998;
Lamoureux et al., 1999; Dunn et al., 2000; Craw-
ford and Webb, 2002]. Xenoliths have therefore
sunk through the mostly liquid melt lens to accu-
mulate at its floor. These xenoliths are now observed
in the lower part of the isotropic ophitic gabbros,
which we must then interpret as representing the
melt lens fossilized once away from the axis. As the
floor of the melt lens is believed to continuously
subside [e.g.,Nicolas et al., 2009], we speculate that
the xenolith accumulation that we observe occurred
close to the off-axis margin of the melt lens. Pre-
sumably, dike fragments are also stoped on axis, but
they cannot be preserved as they are either fully
assimilated or entrained and transposed downward
within the foliated gabbros [Boudier et al., 1996;
Nicolas et al., 2009] in which they are observed as
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recrystallized microgabbronorite centimeter to deci-
meter thick lenses [Boudier et al., 2000]. Singh et al.
[1998] have shown that the melt lens is not contin-
uous along the ridge axis but that it ranges from pure
melt to mush. The partly crystallized zones may
represent the first step toward the fossilization of the
melt lens occurring when a decrease in themagmatic
activity happens in a given section of the ridge.

[40] We also interpret the granoblastic patches (0.5
to 1 mm wide) in the ophitic gabbros as relics
resulting from the partial assimilation of sheeted
dike fragments (Figure 7c). The oxide-rich grano-
blastic texture of xenoliths is consistent, as de-
scribed above, with a granulitic overprint, and
related dehydration of previously hydrothermally
altered lithologies. Enclosing gabbros contain
amphiboles that record temperatures (�1020�C)
higher than the hydrous solidus of gabbro, which
points to the hydrated nature of the magma sur-
rounding the xenoliths [Koepke et al., 2005b;Feig et
al., 2006]. The concentration of coarse-grained
gabbro around xenoliths (Figure 6f) is also consis-
tent with magma hydration, as water is known to
enhance crystal growth. In natural settings, high
water pressure generally leads to more oxidizing
conditions [e.g., Botcharnikov et al., 2005]. How-
ever, the hydrated nature of magmas that produced
coarse-grained gabbros is not consistent with differ-
entiation under reducing conditions as proposed by
MacLeod and Yaouancq [2000]. Nicolas et al.
[2008] have proposed that coarse-grained gabbros
could also be generated by the arrival of hydrother-
mal fluids in the root zone at high temperature
(�1100–1200�C), leading to local, nearly total
melting of gabbroic rocks. The coarse-grained
gabbros described herein are spatially associated
to granoblastic xenoliths that come from the base
of the sheeted dike (�100 m above in the section),
and sunk through the melt lens. Therefore, we
propose an alternative process for the genesis of
coarse-grained gabbro present in the studied areas
that involves fluids brought by the dehydration of
stoped and assimilated hydrothermally altered dia-
bases in the melt lens. A way to test the role of
recycled water in the genesis of coarse-grained
gabbro would be to analyze the fluorine and chlorine
contents of amphiboles [Coogan et al., 2001].
Amphiboles with high chlorine contents and low
fluorine contents attest to a hydrothermal origin, and
the ones with low chlorine contents and high fluo-
rine contents attest to a magmatic origin. We postu-
late that amphibole crystallizing from melts that are
hydrated through recycling of previously hydrother-
mally altered dikes may have high fluorine and high

chlorine contents. Coogan [2003] proposed that the
fluids leading to the crystallization of many of the
magmatic amphiboles that are present in the Oman
ophiolite gabbros are brought by such recycling
processes. A review of the amphibole compositions
presented by Coogan [2003] shows that many of
them are fluorine and chlorine rich (>1000 ppm),
which is consistent with our hypothesis. Gillis et al.
[2003] show that magmatic amphiboles from fast
spreading ridges are chlorine enriched regarding the
ones from slow spreading ridges; it also argues for
important recycling of hydrothermally altered li-
thologies at fast spreading centers.

[41] Another consequence of stoping and assimila-
tion of hydrothermally altered diabases is the geo-
chemical contamination of the melt lens.
Assimilation processes in the melt lens should have
a significant effect on the composition of the melts,
in particular for volatile elements [Gillis et al.,
2003]. Our results are consistent with the model
[Coogan et al., 2003], which states, from the chlo-
rine content of EPR basalts [e.g., Michael and
Schilling, 1989; Michael and Cornell, 1998], that
�20% of the oceanic crust may go through a cycle
of crystallization, alteration, and assimilation.

6.3. Comparison With IODP Hole 1256D

[42] Many features in IODP Hole 1256D match the
observations made in the Oman ophiolite. In partic-
ular, the root of the sheeted dike complex is recrys-
tall ized to granoblastic textures, oceanic
plagiogranites are present close to the dike root
zone, the isotropic ophitic gabbro horizon contains
granoblastic xenoliths and patches, and the compo-
sitions of minerals that form the granoblastic tex-
tures are similar to Oman ones (Table A1 and
Figures 10–13). IODP Hole 1256D can therefore
be included in the same general model for the melt
lens dynamics and for the relationships between the
hydrothermal and magmatic systems.

[43] In the Al Ahmadi Hills section, large xenoliths
(up to 1.5 m) displaying granoblastic textures are
observed close to the isotropic ophitic gabbros/
foliated gabbros transition, and are highly concen-
trated in some areas. These xenoliths can be partly
assimilated by enclosing gabbro, and be associated
to felsic melts at their border. In IODP Hole 1256D,
the �20 m thick ‘‘screen of granoblastic dikes’’
located �50 m below the sheeted dike/gabbro
contact [Wilson et al., 2006] is poorly recovered
(<30%), and several thin horizons of gabbros and
oceanic plagiogranites isolate larger (<1 m) grano-
blastic zones (Figure 11). In the light of the obser-
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vations made in Oman, we propose that this zone
may correspond to granoblastic xenoliths, sur-
rounded by silicic to gabbroic melts, which are
accumulated in the isotropic gabbro horizon about
50 m below the sheeted dike/gabbro contact. It also
suggests that the bottom of Hole 1256D is close to
the transition with the foliated gabbros and so to the
bottom of the fossilized melt lens that would be
�100 m thick. This interpretation is in contrast with
the model presented by Koepke et al. [2008, Figure
14c]; they interpreted the two gabbro screens as two
separate intrusions into the lowermost part of the
granoblastic dikes, shortly above the top of the
fossilized magma chamber, which was hence not
yet reached in Hole 1256D.

6.4. A general Model

[44] The model presented here elaborates on de-
tailed mapping, sampling and descriptions made in
the Wadi Gideah and Al Ahmadi Hills areas, and on
subsequent petrological and geochemical study. We
visited �10 other areas in the Oman ophiolite,
which are consistent with our model. As described
above, observations and analyses made on samples
from the sheeted dikes/gabbro transition zone in
IODP Hole 1256D, are also consistent with what is
observed in Oman, and with our model.

[45] The evolution of a melt lens can be tracked
through the observed geological and petrological
features (Figure 14). We first assume an episodic,
steady state melt lens that injects dikes in the upper
crust (Figure 14b). The base of these dikes is made
of protodikes with microgranular margins and grade

Figure 14. General schematic model for the dynamics
of the melt lens. (a) Schematic cross section at the axis of
a fast spreading ridge (modified after Sinton and Detrick
[1992]). The red rectangle indicates the location of the
axial melt lens. (b) Steady state stage with injection of
dikes that have at their base microgranular margins
(protodikes). Hydrous partial melting is proposed to
occur in the root zone of the sheeted dike complex as a
result of hydrothermal fluid intrusion [Nicolas et al.,
2008]. (c) Upward migration of the top of the melt lens
resulting in reheating and recrystallization of the base
of the dikes (red dots) to granoblastic dikes and in
assimilation of xenoliths in the melt lens. Hydrous partial
melting of the hydrothermally altered base of the dikes
can also occur. (d) Downward migration of the top of the
melt lens resulting in the crystallization of the isotropic
ophitic gabbros. New dikes can be injected laterally or
from below; their root is typical of protodikes, with micro-
granular margins, and they grade upward to ‘‘classical’’
dikes with chilled margins (see section 6.4 for further
discussion).
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upward to ‘‘normal’’ dikes with chilled margins
[Rothery, 1983; Nicolas and Boudier, 1991; Nicolas
et al., 2008]. In this steady state system, the injection
of hydrothermal fluids in the dike root zone may
trigger, locally, hydrous partial melting [Nicolas et
al., 2008]. This steady state system can evolve as a
dynamic one with upward and downward migra-
tions of the top of the melt lens (Figures 14c and
14d) as proposed by Hooft et al. [1997], Gillis
[2002, 2008], Gillis and Roberts [1999], Gillis
and Coogan [2002], Coogan et al. [2003], and
Koepke et al. [2008]. Thesemigrations can represent
either vertical movements of the melt lens itself or
inflation and deflation of its volume. Lateral migra-
tions or injections may also be proposed as near-axis
melt lenses have recently been observed at the East
Pacific Rise [Canales et al., 2008].

[46] Upward migrations or lateral intrusions can
be for example triggered by magma replenish-
ment and result in the assimilation of the hydro-
thermally altered dikes, with the formation of
xenoliths (Figure 14c). The roof is reheated by
magma upwelling, and hydrothermally altered
sheeted dikes recrystallize in a granulitic granoblas-
tic assemblage; they may locally undergo hydrous
melting. Granoblastic lithologies also develop in
xenoliths, which are partly to totally assimilated
while sinking through the melt lens. If not totally
assimilated, xenoliths sink down to the melt lens
floor where they accumulate. They can then either
be entrained downward in the igneous lower crust
and be transposed in foliated gabbros, or be fossil-
ized with the isotropic ophitic gabbros.

[47] Downward or lateral migrations can be trig-
gered by awaningmagmatic activity of themelt lens
and/or by an eruption-related draining stage, and
result in the crystallization of the isotropic gabbros
at the roof and/or at the sides of the melt lens
(Figure 14d). This crystallization corresponds to a
partial fossilization of the melt lens which would
become complete if melt supply to the melt lens was
stopped.

[48] Numerous scenarios can be elaborated combin-
ing the three stages described above: steady state,
upward migration of the top of the melt lens, and
downward migration of the top of the melt lens.
Several episodes of upward and downward migra-
tions may alternate, and only the highest level
reached by the top of the melt lens will be eventually
recorded at the contact with the sheeted dike. In the
case of an upward migration following a downward
one, the melt lens would assimilate the recently
crystallized gabbros, and the overlying recrystal-

lized sheeted dike if the upward migration is large
enough. The presence of gabbroic xenoliths in the
isotropic ophitic gabbro horizon attests to this
process.

6.5. Time Scale Constraints

[49] At fast spreading ridges, the time scales asso-
ciated with magma migration, its residence within
the main magma chamber and within the melt lens,
and depth variations of the melt lens represent major
parameters of the dynamics of oceanic crust forma-
tion. Unfortunately these time scales remain poorly
constrained. We compile here published data deal-
ing with these different time scales in order to
replace our model on the evolution of a dynamic
melt lens into a possible time frame.

[50] Seismic reflection profiles of the East Pacific
Rise (EPR) at 19�S (spreading rate: �15 cm/y
[Hooft et al., 1997]) suggest variations in themagma
supply on a time scale of �100,000 years. Hooft et
al. [1997] also propose that spreading events like
dike intrusions and eruptions occur on much shorter
time scales (tens to hundred years). Lagabrielle and
Cormier [1999] propose that elongated summit
troughs present at the EPR (17–18�S, spreading
rate: �15 cm/y) represent elongated collapsed calde-
ras that form every �100,000 years when a given
ridge section deflates as a result of waning magma
supply.Pollock et al. [2009] propose, based on spatial
and temporal variations of basalt MgO contents at the
EPR (Pito Deep, spreading rate: �14 cm/y), that the
magmatic temperatures, hence the magma supply,
remain constant over time scales of tens of thousands
of years, suggesting a nearly continuous magma
recharge of the system at that time scale. It is in
agreement with the observations of Sinton et al.
[2002] on the south EPR that suggest, based on
the MgO content of successive units, that magmatic
temperatures can remain constant over hundreds to
tens of thousands of years.

[51] Rannou et al. [2006] use a mathematic model
based on geochemical data to infer that the mag-
matic system of the EPR at 17–19�S has a replen-
ishment period of �750 years for a magma
residence time of �300 years. This residence time
is in good agreement with the estimate of Rubin et
al. [2005] who propose, based on 210Pb-226Ra-230Th
radioactive disequilibria on samples from the EPR at
9�N (spreading rate: �11 cm/y) and 17�S, and from
the Juan de Fuca Ridge (spreading rate:�5.6 cm/y),
that melt can be transferred within decades from the
mantle to melt lens where it mixes and resides
during �200–400 years. Rubin and Sinton [2007]
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also propose a magma replenishment time <1000
years at fast spreading ridges. Using the chemical
zonations of olivine crystals present in four samples
from the EPR (9�300N and 10�300N), Pan and
Batiza [2002] have proposed that magma mixing
events and eruptions may be in some cases separated
by times as short as a few months.

[52] Preliminary results of the recent multistreamer
reflection imaging experiment in the 9�500N region
of the EPR [Mutter et al., 2008] show significant
variation in the depth of the melt lens reflector
between 1985 and 2008 at 9�500N, possibly as a
result of the 1991 and/or 2005–2006 eruptions in
that area, while there is no significant variation
observed at 9�300N and 9�400N. Carton et al.
[2008] report a variation in the reflectivity strength
of the melt lens that they interpret as indicating a
lower melt percentage between 9�45.20N and
9�51.90N, consistent with melt drainage during
1991 and 2005–2006 eruptions. These observations
suggest that if replenishment has occurred or started
since the last eruption, it is either incomplete or
reduced (compared to the eruptedmelt volume). The
timing between these events is in agreement with the
time scale of ten to tens of years proposed for

spreading events by Hooft et al. [1997]. Sinton et
al. [2002] and Bergmanis et al. [2007] also propose
that eruptions along intermediate to superfast
spreading centers are highly episodic and have
repose times of ten years to a few hundred years.

[53] Gillis [2008] and Koepke et al. [2008] have
tried to estimate the duration of the thermal over-
print, which we link to upward movements of the
melt lens summit, by studying plagioclase zoning in
granoblastic domains. Gillis [2008] estimates a
minimum duration of 50 years for Hess Deep
sample (spreading rate: �13.5 cm/year). Koepke et
al. [2008] propose an overprint duration of�10,000
years for a sample from IODP Hole 1256D.

[54] In summary, multidisciplinary results provide
indirect constraints on time scales for the vertical
fluctuations of the melt lens ranging from a few tens
of years to �100,000 years. In Figure 15, we
propose a way to take into account these apparently
contrasting results and to interpret them in a single
schematic model. Four different time scales, con-
sistent with published estimates, are used to describe
the evolution of the summit of the melt lens:
100,000, 10,000, 750 and tens of years (Figure 15).

Figure 15. Compilation of estimated time scales for the dynamics of the melt lens in a depth versus time schematic
graph. Four periods of depth variation are displayed (100,000, 10,000, 750, �10 years). The insert on a portion of the
curve allows the visualization of the shortest time period (�10 years). See section 6.5 for further discussion.
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These different time scales correspond to different
processes and/or to different spatial scales. The long
period (�100,000 years) proposed by Hooft et al.
[1997] may represent variations in the magma
supply from the mantle and correspond to varia-
tions of the depth of the melt lens in the scale of
several hundreds of meters. The higher the spread-
ing rate (hence the magma supply), the shallower
the depth of the melt lens [Purdy et al., 1992;
Phipps Morgan and Chen, 1993; Wilson et al.,
2006]. The �10,000 year period is identified by
Koepke et al. [2008] and Pollock et al. [2009] and
may correspond to temporary high positions of the
melt lens related to shorter-term variations in the
magma supply. The �750 years period is the one
identified by Rannou et al. [2006], Rubin et al.
[2005], and Rubin and Sinton [2007] for the melt
lens replenishment. The shortest period corre-
sponds to local, individual eruptions [e.g., Hooft
et al., 1997; Mutter et al., 2008]. The oscillatory
evolution proposed in Figure 15 is an attempt to
integrate published time scales constraints that are
currently available. However, it remains schematic
and probably too simplistic to illustrate natural
processes. The regular oscillatory evolution is
probably too simple and irregularities are likely
to occur at each time scale. The very short time
between magma mixing and eruptions documented
by Pan and Batiza [2002] may be an example of
such episodic irregularities. The insert in Figure 15
proposes, as an example, an irregular evolution of
the 750 year period for a portion of the curve. The
depth variations of the summit of the melt lens
identified in the present study range from meters to
several tens of meters and match the short and
middle time scales (�10,000 years).

7. Conclusions

[55] New detailed mapping and petrological studies
of the gabbro/sheeted dikes transition zone per-
formed in ‘‘undisturbed’’ zones of the Oman ophio-
lite provide information about the evolution of the
melt lens at fast spreading ridges. It further con-
strains the interactions between the magmatic sys-
tem and the convective hydrothermal system at the
ridge axis. The comparison of the Oman ophiolite
with IODP Hole 1256D results in a global coherent
model, which reconciles the apparently contrasting
previous published ones (Figure 14).

[56] We assume that sheeted dikes can be injected
from an episodically steady state melt lens as
described by Nicolas et al. [2008]. However, this
steady state behavior is overprinted by upward

migrations of the melt lens that are documented in
the Oman ophiolite and at the East Pacific Rise.
These upward migrations induce reheating, dehy-
dration, and hydrous partial melting at the roof of the
melt lens, leading to the occurrence of oceanic
plagiogranites and assimilation of hydrothermally
altered rocks in the melt lens. These processes imply
a contamination of the melt lens by silicic melts
formed during hydrous partial melting and by hy-
drothermal fluids recycled through assimilation.
Downward migrations of the top of the melt lens
can also occur and result in the crystallization of the
isotropic ophitic gabbros that represent a fossilized
melt lens.Melt lens crystallization eventually occurs
at the melt lens margins where the thermal regime is
cooler.

[57] We also show that the well-equilibrated, fine-
grained diabase textures observed in numerous
oceanic or ophiolitic sites can have either a mag-
matic origin (protodikes) or a metamorphic origin
(granoblastic dikes). Composition (e.g., Ti, Al, Cr in
clinopyroxene), mineralogy (abundance of oxides),
detailed petrographic observations (e.g., presence of
clinopyroxenes with characteristic oxide inclu-
sions), and description of associated lithologies
(e.g., texture in the dike cores) are required to
distinguish these two origins.

[58] At fast spreading ridges, the top of the melt
lens, which corresponds to the magmatic/hydrother-
mal interface, should be considered as a dynamic
interface. On the first order, the melt supply from the
underlying main magma chamber, the occurrence of
eruptions, and the vigor of the hydrothermal con-
vecting system regulate its position. Short wave-
length variations of the depth of the summit of the
melt lens are observed (50 m of variation for
distance of 150 m along axis).

Appendix A

[59] Mineral compositions of samples from the
Oman ophiolite and from IODP Hole 1256D are
presented in Table A1. FeO is the FeO total, Mg # =
MgO/(MgO + FeOt) in molar proportions, and An
% = CaO/(CaO + Na2O + K2O) in molar propor-
tions; in the lithology names, RZmeans root zone of
the sheeted dikes. Foliated gabbro A is the ‘‘nor-
mal’’ foliated gabbro, and foliated gabbro B repre-
sents the foliated gabbro domains where the
foliation is hardly identifiable in the field and that
contain orthopyroxene and pargasite. The asterisks
identifies samples analyzed in Montpellier; other
samples were analyzed in Hannover. Plc means
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plagioclase core, Plb means plagioclase rim, Amp
means amphibole, ilm means ilmenite, magt means
magnetite, Cpx means clinopyroxene, Chlo means
chlorite, Ol means olivine, Opx means orthopyrox-
ene, and Qz means quartz.
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III.4. Aswad area: further constrains on the model 

In order to test and constrain further the model proposed in France et al. (2009a), I have 

done detailed mapping in the Aswad area (Sumail massif, Oman ophiolite; Figure III-13). The 

studied area includes the zone mapped and described by Nicolas et al. (2008) (Figure III-14). 

 

 
Figure III-13: Simplified geological and structural map of the southern massifs and location 
(Red box) in the Oman ophiolite (after Nicolas et al., 2000). The red circle indicates the 
location of the Aswad area. 
 

The studied area is ~2.5 x 2.5 km large, and extends from the foliated gabbros to the 

sheeted dike complex. A preliminary petrological study of the collected samples has been 

done and is presented in section III.5. The mapping work consisted in precisely located field 

observations (lithology identification, structure measurements, and sampling) that are reported 

on the geological map (Figure III-14; Figure III-15). The foliation in the foliated gabbros is 

generally parallel to the sub-vertical sheeted dike orientation (trending ~140°N). As in the 

sections studied in France et al. (2009a), isolated foliated gabbro domains (a few meters large) 

are observed within the isotropic gabbro horizon; the foliation is parallel to the general 

direction defined by the foliated gabbros and by the sheeted dike complex. The contact 

between the isotropic gabbros and the sheeted dike complex is observed in several places 

(“SD/gabbro contact” in Figure III-15), and is always sharp (Figure III-16) and intrusive 
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(Figure III-17; Figure III-11). Coarse-grained isotropic gabbros are abundant along the 

contact (Figure III-15). Consistent with observations of France et al. (2009a), coarse-grained 

gabbros are commonly concentrated around the microgranular gabbro xenoliths (Figure 

III-18). Microgranular xenoliths are present at nearly all the SD/gabbro contact outcrops 

(Figure III-15), but are also observed sparsely in the isotropic gabbros (Figure III-15). The 

sharp contact between the microgranular base of the sheeted dike complex and the isotropic 

gabbros, together with the abundance of microgranular xenoliths (Figure III-15), attest to 

upward migrations of the top of the melt lens associated to important assimilation processes 

(France et al., 2009a). The microgranular base of the sheeted dike complex, and the 

microgranular gabbro xenoliths are therefore recrystallized after a reheating event and can be 

called granoblastic. 

 

 
Figure III-14: Google Earth ® view of the Aswad area. a) studied area; the green box 
indicates the area mapped and described in Nicolas et al. (2008). b) The studied area is 
located between the sheeted dike complex (yellow) and the foliated gabbros (blue). c) 
Measurement and sampling stations (~250 stations). 
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Figure III-15: Aswad area structural and lithological information on a Google Earth ® view 
(a) and on a geological map (b). The root zone outcrops represent zones of contact between 
the sheeted dike complex base and the isotropic gabbros. Purple dashed line: cross-section of 
Figure III-19. 1: location of photographs in Figure III-16; 2 is discussed in text at the end of 
this section and indicates the location of the outcrop presented in Figure III-20; 3: location of 
samples presented in section III.5. The dashed box indicates the area mapped and described 
in Nicolas et al. (2008). 
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The main difference with the areas studied in France et al. (2009a) is that several 

sheeted dike complex bodies (some meters wide) are observed within the isotropic gabbros 

(see “SD/gabbro contact” in Figure III-15). These bodies correspond to outcrops where 

gabbros intrude the base of the sheeted dike complex (recrystallized to granoblastic 

microgabbro), and represent the fossilized roof of the melt lens. The widespread occurrence of 

these “SD/gabbro contact” outcrops lead to propose the schematic and interpretative cross 

section of Figure III-19. As no fault has been identified in these areas, the depth variation of 

the sheeted dike / gabbro contact is interpreted as initial depth variations of the melt lens roof. 

 

 
Figure III-16: Sharp contact between intrusive isotropic gabbro (G) and the recrystallized 
sheeted dike complex / granoblastic microgabbro dikes (µ SD). This outcrop corresponds to 
station 1 on Figure III-15. The red box indicates the location of the photograph in b) and 
arrows point the contact. 
 

 
Figure III-17: Recrystallized sheeted dike complex (µ SD) / isotropic gabbro (G) contact. The 
contact (pointed by arrows) is sharp and fine-grained isotropic gabbro intrudes the 
granoblastic microgabbro dikes. 
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Figure III-18: Coarse-grained (pegmatitic) gabbros are preferentially located at the margins 
of a granoblastic microgabbro xenolith within granular gabbros. The occurrence of coarse-
grained gabbro around xenoliths representing previously hydrothermally altered sheeted 
dikes is attributed to dehydration of xenoliths (France et al., 2009a). 
 

 
Figure III-19: Schematic and interpretative NW-SE cross-section from the Aswad area (see 
location in Figure III-15). The dashed line represents the contact between the sheeted dike 
complex and the isotropic gabbro horizon (inferred melt lens roof), and the dotted line 
represents the foliated gabbros / isotropic gabbros transition (inferred melt lens bottom). 
Symbols are the same as in Figure III-15. 
 

Upward migrations are supported by the truncated base of the sheeted dike complex 

that are recrystallized to granoblastic microgabbro, and by granoblastic microgabbro xenoliths 

present in the isotropic gabbro horizon, but large downward migrations are also suggested by 

precise inspection of the sheeted dike complex. Within the sheeted dike complex, ~50-100m 

above the contact with the isotropic gabbros, some rare isotropic gabbro screens, ≤1 meter 

large, are observed (e.g., station 2 on Figure III-15; Figure III-20). These may be relicts of a 

former higher level of the melt lens that has migrated downward and crystallized these 

isotropic gabbros. Following this downward migration, new dikes have been injected and 

compose the new sheeted dike complex. One of these gabbro screens contains a granoblastic 

microgabbro xenolith (Figure III-20). The presence of xenoliths in these gabbro screens 

highlights former upward migrations of the melt lens that have resulted in assimilation.  
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Figure III-20: Zone 2 on map of Figure III-15; gabbro screen containing a microgranular 
xenolith (or former granoblastic microgabbro dike [“dike-1]) within the sheeted dike 
complex. The dashed box in a) corresponds to the phototograph in b). In b) green arrows 
point the isotropic gabbro (G) / microgranular xenolith (µX) contact, and yellow arrows point 
the dike chilled margin (D). 
 

Observations made in the Aswad area support upward and downward migrations of the 

melt lens, its fossilization, and assimilation processes, as proposed in France et al. (2009a). 

However in the Aswad area xenoliths are more abundant and assimilation of hydrothermally 

altered dikes and therefore upward migrations of the melt lens seems to be more abundant. 
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III.5. Reheating of the Aswad sheeted dikes 

Samples from the Aswad area have been studied in collaboration with Christian Nicollet 

during the research practice of Baptiste Debret (first Master year) at the Laboratory “Magmas 

& Volcans” of Clermont-Ferrand (France). An article that will be submitted to Lithos is in 

preparation. I present hereafter the purpose of this study and the main results that are relevant 

to my PhD work. 

The objective of this study was to determine the metamorphic evolution of Oman 

samples that have been exposed to high temperature after their crystallization. Samples from 

different depths of the ophiolitic complex are used (the sheeted dike base; the upper isotropic 

gabbros; the lower layered gabbros; meta-gabbro dikes from the Moho transition zone). 

Samples are studied through petrographic observations, in-situ microanalyses, and 

thermometry. Results highlight two different metamorphic evolutions, corresponding to the 

upper and lower gabbroic complex, that are mainly controlled by temperature, presence and 

quantity of fluids, cooling rate, deformation, and initial texture and mineralogy. 

I present here petrological descriptions and mineral in-situ analyses of a sample 

(08OLC6) from the center of a dike close to the sheeted dike / gabbro transition; the sample 

location is station 3 in Figure III-15. In this area and similarly to other visited areas, the 

isotropic gabbros intrude the base of the sheeted dike complex base (Figure III-12d; Figure 

III-16; Figure III-17) and contain several microgranular enclaves (Figure III-15). 

The studied sample is composed of plagioclase, clinopyroxene, different generations 

of amphibole, magnetite, and ilmenite. Microprobe in-situ analyses are given in Table III.1. 

Isotropic gabbros and dikes show a similar retrograde evolution from the magmatic 

stage (plagioclase + clinopyroxene), through amphibolite facies conditions (brown amphibole 

crystallization [edenite and pargasite]), to green schist / low amphibolite facies conditions 

(green amphibole crystallization [edenite and hornblende]). Under green schist facies 

conditions, amphibole can also recrystallize as actinolites. The retrograde evolution can be 

observed in single amphibole grains that display zonations (Figure III-21). 
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mineral SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO Total X Pl/Hb 
(°C) 

Ti in 
Amp 
(°C) 

Hbb 44.94 8.96 3.36 10.66 2.18 0.23 0.24 13.74 13.33 0.01 0.02 97.66 64.76 812 973 

Hbb 44.24 8.77 3.40 10.90 2.16 0.25 0.17 13.39 13.71 0.05 0.00 97.04 63.50 820 976 

Hbb 44.88 9.02 3.11 11.32 1.89 0.29 0.17 13.19 12.87 0.00 0.04 96.78 64.62 843 953 

Hbb 43.76 9.44 3.76 10.81 2.21 0.22 0.21 13.36 12.89 0.03 0.00 96.70 64.87 885 998 

Hbb 43.91 9.57 3.45 11.44 2.12 0.27 0.15 12.01 14.12 0.03 0.02 97.11 60.26 828 979 

Hbb 44.28 8.95 3.51 10.71 2.09 0.21 0.25 13.25 13.56 0.00 0.03 96.85 63.54 819 983 

Hbb-g 46.11 9.07 0.61 11.78 1.75 0.34 0.15 14.44 13.06 0.03 0.03 97.39 66.34 808 608 

Hbg 46.47 8.35 0.48 11.37 1.59 0.18 0.18 14.37 12.78 0.00 0.02 95.80 66.71 771 582 

Hbg 46.22 8.80 0.71 11.65 1.69 0.42 0.23 13.48 13.89 0.02 0.05 97.16 63.37 792 627 

Hbg 44.23 11.05 0.45 11.50 1.98 0.38 0.19 13.27 13.17 0.07 0.04 96.32 64.24 860 576 

Hbg 49.94 5.28 1.29 11.56 0.91 0.18 0.15 14.68 12.33 0.05 0.05 96.41 67.97 647 729 

Hbg 51.54 4.81 1.05 11.50 0.80 0.21 0.13 15.50 12.30 0.17 0.02 98.04 69.21 624 687 

Hbb (2) 51.16 4.66 0.59 11.65 0.80 0.20 0.20 15.06 12.23 0.05 0.04 96.64 68.70 608 604 

Hbb (2) 47.15 7.26 1.89 11.60 1.45 0.41 0.22 13.41 14.50 0.00 0.00 97.89 59.38 470 818 

Hbb (2) 45.87 7.91 2.16 11.37 1.54 0.45 0.20 12.76 14.30 0.08 0.04 96.68 61.39 761 855 

Hbg (2) 48.48 4.26 0.76 11.52 1.54 0.27 0.21 15.93 13.61 0.02 0.02 96.63 67.59 678 636 

Hbg (2) 43.03 10.19 0.33 11.42 1.62 0.37 0.19 13.60 12.59 0.00 0.06 93.41 65.80 857 551 
Actinolite 

(2) 52.95 2.99 0.46 11.45 0.54 0.08 0.26 16.34 11.57 0.08 0.01 96.73 71.57 544 577 

Pl 58.82 25.49 0.05 8.14 6.92 0.27 0.00 0.03 0.41 0.00 0.00 100.13 38.8   

Pl 58.52 25.67 0.08 8.20 6.94 0.22 0.04 0.02 0.46 0.00 0.00 100.14 39.0   

Pl 49.31 32.33 0.10 15.59 2.89 0.06 0.00 0.03 0.64 0.00 0.00 100.94 74.6   

Pl 48.59 32.02 0.05 15.49 2.73 0.11 0.04 0.01 0.65 0.00 0.00 99.69 75.3   

Pl 51.44 28.73 0.01 13.93 3.18 0.15 0.00 0.32 2.64 0.00 0.00 100.39 70.1   

Cpx 53.76 0.39 0.07 24.03 0.12 0.04 0.19 14.34 7.25 0.00 0.01 100.22 77.9   

magnetite 3.22 0.49 3.62 2.99 0.00 0.03 0.00 0.10 81.89 1.91 0.00 94.27    

Ilmenite 0.03 0.04 47.48 0.06 0.00 0.01 1.30 0.07 53.19 0.04 0.00 102.22    

Table III.1: Microprobe data for sample 08OLC6 from the Aswad area of the Oman ophiolite. 
X: compositional parameter (mol %): plagioclase- An %; clinopyroxene and amphibole-Mg# 
(where Mg#=Mg/[Mg+Fet]); Pl/Hb: temperature calculated with the plagioclase-amphibole 
thermometer (Holland and Blundy, 1994); Ti in Amp: temperature calculated with the Ti in 
amphibole semiquantitative thermometer (Ernst and Liu, 1998), which is valid if Ti-oxides 
(e.g., ilmenite or titanomagnetite) coexist with amphibole; Hbb: brown hornblende; Hbg: 
green hornblende; (2): second generation (granoblastic); Pl: plagioclase; Cpx: 
clinopyroxene. 
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Figure III-21: Microphotograph of an isotropic gabbro sample (sample 08OLC3b) showing 
the retrograde evolution from the magmatic stage to the green schist facies conditions (plane-
polarized light). Altered clinopyroxenes (blue arrows) attest to the magmatic conditions, 
brown amphibole attests to the amphibolite facies conditions and green amphibole attests to 
the green schist / amphibolite facies conditions. 
 

Temperature estimations have been performed for retrograde amphiboles using the 

amphibole-plagioclase thermometer (Holland and Blundy, 1994) and the Ti in amphibole 

semiquantitative thermometer as Ti-bearing oxides are present (Ernst and Liu, 1998), and 

range from 885°C to 624°C and from 998°C to 582°C, respectively. For both thermometers, 

the higher estimated temperatures correspond to brown amphiboles, and the lower to green 

amphiboles. Another amphibole generation (brown/green amphiboles [hornblende and 

edenite] and actinolites) is observed in granoblastic assemblages (Figure III-22). Some areas 

are totally recrystallized to granoblastic assemblages and mimic the magmatic ophitic texture 

(Figure III-22c-d). These assemblages are present in the whole sample and can develop after 

former large amphibole grains (Figure III-23). 
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Figure III-22: Microphotographs of granoblastic amphibole assemblages (Amp 2) (a, c: 
plane-polarized light; b, d: cross-polarized light). Former large amphibole grains are also 
observed (Amp 1). Amp 1 seems to mimic former clinopyroxenes, and granoblastic 
assemblages of Amp 2 overprint former Amp 1 grains. The granoblastic assemblages of Amp 
2 mimic the magmatic ophitic texture. Sample 08OLC6. 
 

Temperature estimations for the granoblastic assemblages range from 857°C to 470°C 

using the amphibole-plagioclase thermometer (Holland and Blundy, 1994), and from 855°C 

to 551°C using the Ti in amphibole semiquantitative thermometer (Ernst and Liu, 1998). In 

contrast with the large amphibole grains, the granoblastic domains do not crystallize after 

clinopyroxenes in a purely retrograde system. It should either overprint the larger grains 

during a deformation stage or under increasing temperatures (prograde evolution). In the 

present case, no deformation is evidenced (e.g., plagioclase grains display magmatic textures; 

Figure III-21; Figure III-22; Figure III-23), and the overgrowths relations show that brown-

amphibole granoblastic assemblages recrystallize after large green-amphibole grains (Figure 

III-23). The green-amphibole granoblastic assemblages are equilibrated at lower temperatures 

than the brown-amphibole granoblastic assemblages. It shows that the green-amphibole 

granoblastic assemblages overprint the brown-amphibole granoblastic assemblage during a 

second retrograde evolution. 
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Figure III-23: Microphotograph of sample 08OLC6 from the base of the sheeted dike complex 
(plane-polarized light). The large green amphibole is overgrown by aggregates of 
granoblastic brown amphibole. The granoblastic brown amphibole assemblage has 
crystallized at higher temperature than the large green amphibole grain. 
 

 
Figure III-24: Temperature evolution for different generations of amphiboles in sample 
08OLC6: 1) large brown amphibole grains (B-Amp) crystallize, 2) following a retrograde 
evolution (Amp 1), large green amphibole (G-Amp) grains form. 3) Following a prograde 
event (reheating), granoblastic brown amphibole assemblages crystallize before 4) a second 
retrograde evolution (Amp 2) that leads to the crystallization of the granoblastic green 
assemblages (replacing the brown ones). 
 

The succession of different amphibole types is: 1) large brown-amphibole grains, 2) 

large green-amphibole grains, 3) small granoblastic assemblages of brown-amphibole, 4) 

small granoblastic assemblages of green-amphibole, and 5) the lower temperature alteration to 
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actinolites. This evolution is summarized in Figure III-24 and is characterized by a reheating 

event (between stages 2 and 3). 

Similar brown-amphibole granoblastic domains (as in stage 3) are observed in 

isotropic gabbro samples, and also attest to prograde metamorphism of these rocks (Figure 

III-25). 

 

 
Figure III-25: Microphotographs of amphibole granoblastic assemblages is fine-grained 
isotropic gabbros (a-b: sample 07OL47b; c-d: sample 07OL57a; e-f: sample 07OL53a). a, c, 
e) plane-polarized light; b, d, f) cross-polarized light. In a-d amphibole granoblastic 
assemblages are pointed by arrows; in e-f the large brow-amphibole assemblage is 
overprinted and recrystallized to a brown-amphibole granoblastic assemblage. 
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The petrographic and micro-analytical characteristics observed in lithologies at the base 

of the sheeted dike complex from the Aswad area show that it has been reheated, which is 

consistent with the field observations (gabbro intrusion in the base of the sheeted dike 

complex, and occurrence of granoblastic microgabbro xenoliths in gabbros). The petrological 

characteristics observed in the Aswad area are consistent with the general model proposed in 

France et al. (2009a), in which the top of the melt lens is a dynamic horizon that can move up 

and down with the potential to reheat the previously hydrothermally altered lithologies. 

III.6. Conclusion 

Coupled structural, petrological, and geochemical studies of different areas of the Oman 

ophiolite, and a comparison with the IODP Hole 1256D support a common general model 

(France et al., 2009a) reconciling previous, apparently contrasting models for the interactions 

between the base of the sheeted dike complex and the upper melt lens present at fast 

spreading ridges. The results of this study are consistent with the hypothesis that the melt lens 

is a dynamic horizon that can migrate upward and downward, and that becomes fossilized off 

axis. Upward migrations results in prograde metamorphic reactions in the base of the sheeted 

dikes, which recrystallize to granoblastic dikes. Depending on the temperature increase 

occurring during upward migrations and on the extent of previous hydrothermal alteration, the 

granoblastic dikes represent either dehydrated previously altered dike rocks or hydrous partial 

melting residues. Assimilation is evidenced by the occurrence of granoblastic xenoliths in the 

isotropic gabbro horizon, and by the microgranular lenses observed in the foliated gabbros. 

The assimilation process can be responsible for the high chlorine content measured in the 

MORB melts of fast spreading ridges. Downward migrations of the melt lens result in the 

crystallization of isotropic gabbros at its roof and margins. Some gabbro screens present 

within the sheeted dike complex (50-100 m above their truncated base) attest to former higher 

levels of the melt lens. 

The precise recrystallization processes, and the detailed evolution of the mineral 

assemblages in the granoblastic dikes have been described by Koepke et al. (2008). However 

the origin of the peculiar composition of the granoblastic dikes minerals remain poorly 

constrained. The melt formed during the hydrous partial melting of the base of the sheeted 

dike complex can mix with the melt lens magma and contaminate it. Constraining the 

composition of the formed melt is therefore of major importance to discuss the composition of 

MORB present at fast spreading ridges. In order to test the evolution of the mineral 

assemblages, to precise the recrystallization processes, and to better understand the melting 
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processes occurring at the base of the sheeted dike complex, we present in Chapter IV an 

experimental study reproducing the melting of hydrothermally altered dikes at the base of the 

sheeted dike complex. 
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IV.1. Introduction 

In Chapter III, I have shown, through a study of the root zone of the sheeted dike 

complex in the Oman ophiolite and a comparison with rocks recovered in IODP Hole 1256D, 

that the upper melt lens present at fast spreading ridges is a dynamic system, which can 

migrate vertically (Gillis, 2008; France et al., 2009a). Upward migrations are associated to 

reheating of the previously hydrothermally altered roof (sheeted dikes and isotropic gabbros), 

and hydrous partial melting can proceed as a result of lowering the solidus temperature in the 

presence of water (Gillis and Coogan, 2002; Coogan et al., 2003; France et al., 2009a). The 

granoblastic dikes present at the base of the sheeted dike complex, and the granoblastic 

xenoliths that are observed in isotropic gabbros in association with plagiogranitic rocks result 

from recrystallization under amphibolite to granulite facies conditions, and may have 

undergone hydrous partial melting (France et al., 2009a). The melt formed during partial 

melting of hydrothermally altered dikes is believed to be compositionally close to typical 

oceanic plagiogranites (for low degrees of partial melting; Beard and Lofgren, 1991); for 

definition of the term "ocean plagiogranites" see Koepke et al., (2008). The associated residue 

may be similar to granulites, and may contain amphiboles depending on the temperature, and 

on the water activity. The hydrous solidus temperature is around 900°C (Beard and Lofgren, 

1991). Redox conditions have a strong influence on the composition of the newly formed 

melt, on the composition of the residual phases, and on their liquidus temperatures (e.g., 

Appendix A3). Gillis and Coogan (2002), Coogan et al. (2003), and France et al. (2009a) have 

shown that hydrous partial melting of altered dikes at the base of the sheeted dike complex, 

has the potential of mixing the newly generated melt with primitive MORB in the melt lens, 

thus playing a significant role in MORB contamination at fast spreading ridges. This is 

potentially an effective crustal contamination process, as attested by the chlorine content of 

MORBs (Michael and Schilling, 1989; Michael and Cornell, 1998). Determining the precise 

composition (major, trace and volatile elements) of the melt formed during partial melting of 

previously hydrothermally altered dikes is therefore of major importance to evaluate the 

MORB components (primary melt, assimilated melt, and fractionated melt), and to constrain 

the composition of anatectic plagiogranites and discuss the origin of oceanic plagiogranites. 

Determining the mode and the mineral compositions of the residual assemblage and 

comparing these with the granoblastic rocks will help to test the dynamic model proposed by 

France et al. (2009a). 
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I have performed partial melting experiments using a hydrothermally altered sheeted 

dike sample as starting material. The starting material sample comes from the Oman ophiolite, 

and matches the average sheeted dike complex composition; it is highly hydrothermally 

altered, and no relics of magmatic phases are present. Experimental conditions have been 

selected to match the ones present at the base of the sheeted dike complex: a pressure of 

100MPa, a temperature ranging from 750°C to 1030°C, water saturated conditions, and 

precisely constrained redox conditions (~NNO where NNO is the Ni-NiO solid buffer 

equilibrium). Experiments have been performed at the Institut für Mineralogie of the Leibniz 

Univeristy Hannover (Germany) using a cold-seal pressure vessel (CSPV; below 850°C), and 

at higher temperature, an internally heated pressure vessel (IHPV) equipped with a Shaw 

membrane (for details see below). Details on starting material, experimental conditions and 

results are presented in a paper submitted to Contributions to Mineralogy and Petrology 

(section IV.3); I present hereafter details on the experimental procedure. 

 

IV.2. Detailed experimental techniques 

IV.2.a. Sample preparation 

The starting material (sample 08OL30) has been crushed to a powder, and then sieved 

in order to obtain a powder homogeneous in grain size. Precious metal tubes were used as 

capsule containers; in the present case I have used gold that prevent iron loss toward the 

capsule wall. 15-20 mm long tubes (diameter=2.8 mm) were used (N°1 in Figure IV-1). First, 

tubes were cleaned using an acetone bath plunged in an ultrasonic cleaner (~15 min); then 

gold tubes were placed at 800°C in a one atmosphere oven for ~20 min. Then, one tube end 

was pinched (N°2 in Figure IV-1) and welded (N°3 in Figure IV-1). Subsequently the capsule 

was filled; for water added experiments (see details in section IV.3), ~5 mg of distilled water 

was first added into the capsule, then ~50 mg of rock powder was added, and the whole 

assemblage was compressed in the capsule. The other tube end was then pinched and welded 

(N°4 in Figure IV-1). Because the welding heat could trigger water loss, a special cooling 

procedure using liquid nitrogen was required. After the welding, the capsule was weighed and 

placed in a 110°C furnace for 5 min, and then weighed again to verify that no water loss 

occurred during the welding process. Capsule is weighed after each preparation step, and if 

the weight remains stable during the different stages, the capsule is considered closed and can 

be used for experiments. 
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Figure IV-1: Steps in the capsule making (1 cent coin for scale). 1) 1.5 cm long tube; 2) one 
tube end has been pinched, and 3) welded; 4) after the filling, the second capsule end has 
been pinched and welded. 
 

IV.2.b. Cold-seal pressure vessel 

The used CSPV are horizontal externally heated vessels (Figure IV-2) that are 

pressurized with water. Pressure was controlled with a pressure transducer calibrated against a 

strain gauge manometer, and temperature was controlled using an external Ni-CrNi 

thermocouple. Before this study, ovens were calibrated to identify the hottest zone. The 

capsules were centered in this zone. In CSPV, the redox conditions were controlled using a 

solid buffer (a Ni-NiO assemblage in the present case). However, Scaillet et al. (1992) have 

shown that the maximum buffer lifetime is in the order of a few days, which is much less than 

the time spanned by our experiments. The redox conditions are nevertheless considered to be 

close to the NNO buffer because of the vessel composition (Ni), and of the use of water for 

pressurization (Klimm et al., 2003). 

To run an experiment, the oven was first pre-heated to the desired temperature in order 

to shorten the heating time for samples. The vessel that contains the sample was then 

pressurized to the desired pressure (~100 MPa) before being introduced in the oven. The 

heating results in a pressure increase; pressure was therefore decreased during the heating 

stage to maintain ~100 MPa. When pressure and temperature were stable (after 30-60 min), 

the experiment was started, and pressure and temperature were controlled twice a day. At the 

end of the experiment, the vessel was removed from the oven and immediately exposed to a 
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flux of compressed air (initial cooling rate ~200°/min). In order to ensure isobaric quenching, 

pressure was increased during the cooling. 

 

 
Figure IV-2: Water pressurized CSPV ramp of the experimental lab of the Institut für 
Mineralogie of the Leibniz Univeristy Hannover. a) ovens, and b) hot vessel just removed 
from the oven. 
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IV.2.c. Internally heated pressure vessel 

The used IHPV are vertical internally heated vessels (Figure IV-3) that are pressurized 

with argon. Pressure was controlled with a strain gauge manometer, and temperature was 

controlled using four S-type thermocouples. Details are given in Berndt et al. (2002). 

 

 
Figure IV-3: Argon pressurized IHPV equipped with a Shaw membrane as used in the 
experimental lab of the Institut für Mineralogie of the Leibniz Univeristy Hannover. a) IHPV 
before the sample loading; b) vessel internal structure; c-d) focus on the sample area, 
capsules are hanged using a thin platinum wire, which is fused electrically at the end of the 
experiment to allow rapid quenching (see text for further description); 4 S-type 
thermocouples are used to control the temperature gradient present around the sample, and a 
Shaw membrane is present to control the redox conditions. 
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In the IHPV, redox conditions were fixed by the given H2 pressure which was 

measured using a Shaw membrane (e.g., Scaillet et al., 1992; Berndt et al., 2002; Figure 

IV-3d). Berndt et al. (2002) have shown that H2 pressure in the used pressure vessel is 

constant during experiment duration, after an initial phase of equilibration. They have also 

shown that osmotic hydrogen equilibrium between membrane and vessel is obtained in less 

than 48 hours at 1000°C and 207 MPa. As the experiments presented herein were longer, it is 

expected that the final H2 pressure measured within the membrane corresponds to the vessel 

one. 

Capsules were hanged into the sample holder using a thin platinum wire (the "quench" 

wire; Figure IV-3c-d) and introduced horizontally in the vessel (Figure IV-3a). The whole 

IHPV was then toppled over vertically and thermocouples, Shaw membrane, and high 

pressure tubes were connected. Then, the vessel was first evacuated and then flushed with 

hydrogen. Then, the initial H2 pressure of the run was applied, and the vessel was isolated 

from the H2-reservoir. Afterwards, about 50% of the final Argon pressure was applied from 

the intensifier (Figure IV-3a) and the vessel was isolated from the Argon-pressure line. 

Temperature was then continuously rose (~30°/min), up to the desired temperature reached 

after ~30 min. Temperature, pressure and H2 pressure were continuously recorded, and 

controlled after experiment to check the experiment conditions stability. At the end of the 

experiment, the quench wire was fused electrically and the capsules dropped isobarically into 

the cold quench area (~20°C); the cooling rate was ~150°/s. Effective quenching is evidenced 

by the absence of “quench minerals” (Figure IV-4). 

 

 
Figure IV-4: The quenching quality is evidenced by the absence of “quench minerals” (a). 
When quenching fails, melt is partially to totally recrystallized to “quench minerals” (b) 
(experiments at 1000°C). 
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IV.3. Hydrous partial melting in the sheeted dike complex at fast 

spreading ridges: Experiments and nature 

Article submitted to Contributions to Mineralogy and Petrology (August 6, 2009). 

Lydéric France1,2,*, Juergen Koepke2, Benoit Ildefonse1, Sarah B. Cichy2, 
Fabien Deschamps3 
1: Géosciences Montpellier, CNRS, Université Montpellier 2, CC60, F-34095 Montpellier Cedex 05, France 
2: Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover, Germany 
3: LGCA UMR CNRS 5025, université Joseph-Fourier, BP 53, 38041 Grenoble cedex, France 

IV.3.a. Abstract 

In ophiolites and in present day oceanic crust formed at fast spreading ridges, oceanic 

plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. 

They can be produced either by differentiation of mafic melts, or by hydrous partial melting 

of the hydrothermalized sheeted dikes. In addition, the hydrothermalized base of the sheeted 

dike complex, which is often infiltrated by plagiogranitic veins, is locally recrystallized into 

granoblastic dikes that are commonly interpreted as a result of prograde granulitic 

metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting 

experiments on a natural hydrothermalized dike, under conditions that match those prevailing 

at the base of the sheeted dike complex. 

All generated melts are water saturated, transitional between tholeiitic and calc-

alkaline, and match the compositions of oceanic plagiogranites observed close to the base of 

the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have 

compositions that are characteristic of the same minerals in granoblastic dikes. Published 

silicic melt compositions obtained in classical MORB fractionation experiments also broadly 

match the compositions of oceanic plagiogranites; however, the compositions of the 

coexisting experimental minerals significantly deviate from those of the granoblastic dikes. 

Our results demonstrate that hydrous partial melting is a likely common process in the 

root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly 

formed melt can either crystallize to form oceanic plagiogranites, or may be recycled within 

the melt lens resulting in hybridized and contaminated MORB melts. The residue after the 

partial melting event is represented by the granoblastic dikes. Our results support a model 

with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in 

the previously hydrothermalized sheeted dikes. 
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IV.3.b. Introduction 

At fast spreading ridges, the root zone of the sheeted dike complex is a peculiar 

geological horizon where the thermal gradient can be as high as 7°C/m, one of the highest, 

nearly stable gradient observed on earth (Nicolas et al., 2008). Moreover, the contact of the 

sheeted dike with the underlying melt lens can be regarded as an interface between two 

convecting systems, the magmatic and the hydrothermal one. Highly hydrothermalized 

basaltic rocks from the base of the sheeted dike complex are therefore in the vicinity of a 

relatively constant heat source, which has the potential to trigger dehydration and/or melting 

reactions. Nicolas et al. (2008) have studied in the Oman ophiolite the varytextured gabbro 

horizon located directly below the sheeted dike complex, and have interpreted most of the 

observed lithologies as hydrous partial melting products. Gillis and Coogan (2002), Wilson et 

al. (2006), Gillis (2008) and Koepke et al. (2008) investigated the base of the sheeted dike 

complex in the Troodos ophiolite, in the Oman ophiolite, and in IODP (Integrated Ocean 

Drilling Program) Hole 1256D. They described typical granoblastic, hornfelsic lithologies in 

amphibolite- to granulite-facies, and relate them to reheated, dehydrated sheeted dike 

("granoblastic dikes"). To further understand the active processes at the sheeted dike / gabbro 

transition, France et al. (2009a) have compared this zone in the Oman ophiolite with the 

recent IODP Hole 1256D, and propose a dynamic model with up- and downward migrations 

of the gabbro/sheeted dike interface that is consistent with published models and descriptions 

of Gillis and Coogan (2002), Wilson et al. (2006), Gillis (2008) and Koepke et al. (2008). The 

mobility of the melt lens is supported by the observed reheating of the base of the sheeted 

dike, and recycling of the previously hydrothermalized sheeted dike in the underlying 

varytextured gabbros. The occurrence of partly assimilated sheeted dike fragments within the 

uppermost gabbros suggests that the lowermost sheeted dikes underwent hydrous partial 

melting. 

Oceanic plagiogranites, as defined in Koepke et al. (2007), are common in the oceanic 

crust, in particular at the base of the sheeted dike complex (e.g., Pallister and Hopson, 1981), 

where they are generally found as relatively small bodies (Koepke et al., 2004; 2007). These 

oceanic plagiogranites are believed to represent products of either differentiated MORB, 

liquid immiscibility between a mafic and a felsic melt, or hydrous partial melting of gabbros 
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or sheeted dikes. Formation from MORB differentiation has been proposed in natural settings 

(e.g., Beccaluva et al., 1977; Coleman and Donato, 1979; Dubois, 1983; Lippard et al., 1986; 

Amri et al., 1996; Floyd et al., 1998; Selbekk et al., 1998; Beccaluva et al., 1999; Niu et al., 

2002; Rao et al., 2004; Bonev and Stampfli, 2009; Rollinson, 2009) and has also been verified 

in experimental studies (Dixon-Spulber and Rutherford, 1983; Berndt et al., 2005, Feig et al., 

2006). Liquid immiscibility has been observed in rapidly quenched basaltic flows from the 

upper oceanic crust (e.g., Sato, 1978; Philpotts, 1982), inferred from ophiolites (Ménot, 1987; 

Ulrich and Borsien, 1996; Shastry et al., 2001) and described experimentally (Dixon and 

Rutherford, 1979). 

IV.3.c. Natural occurrences and previous experiments on hydrous partial 

melting of mafic rocks 

Hydrous partial melting of mafic rocks has been proposed or described in several 

studies (e.g., Malpas 1979; Gerlach et al., 1981; Pedersen and Malpas, 1984; Flagler and 

Spray, 1991; Spray and Dunning, 1991; Twinning, 1996; Floyd et al., 1998; Selbekk et al., 

1998; Gillis and Coogan, 2002; Coogan et al., 2003; Stakes and Taylor, 2003; Koepke et al., 

2004, 2005a; Luchitskaya et al., 2005; Koepke et al., 2007; Nicolas et al., 2008; Rollinson, 

2009). Most of these studies deal with ophiolites and attempt to determine the origin of 

plagiogranitic rocks. The interpretation of an anatectic origin is based on structural evidences, 

and/or on trace element geochemical modeling. Evidences of hydrous partial melting of mafic 

lithologies have also been reported from young oceanic crust at both slow spreading (e.g., 

Mével, 1988) and fast spreading (e.g., Koepke et al., 2005b; 2008) centers. The partial to 

complete assimilation of previously hydrothermalized sheeted dike, in magma chambers at 

fast spreading ridges, implies that the assimilated hydrothermalized rocks undergo hydrous 

partial melting. This recycling process is described in ophiolites (Coogan et al., 2003; Gillis, 

2008; France et al., 2009a), and in present day oceanic crust (Wilson et al., 2006; Koepke et 

al., 2008; France et al., 2009a), or inferred from chlorine contents in amphiboles (Coogan, 

2003; Coogan et al., 2003) and MORB (e.g., Michael & Schilling, 1989). 

Experimental work that precisely matches the conditions (low pressure, high 

temperature, hydrous and highly oxidizing conditions, basaltic composition, hydrothermal 

alteration) prevailing at the base of the sheeted dike is lacking. Several experimental studies 

(e.g., Beard and Lofgren, 1989; Hacker 1990; Beard and Lofgren, 1991; Rapp et al., 1991; 

Rushmer 1991, 1993; Sen and Dunn, 1994; Wolf and Wyllie, 1994; Rapp and Watson, 1995; 
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Patino Douce and Beard, 1995; Prouteau et al., 1999; Johannes and Koepke, 2001) have 

focused on the melting of mafic lithologies to investigate the origin of Archean tonalites, 

trondhjemites and granodiorites (TTG rocks; Barker 1979), which are believed to result from 

dehydration melting of amphibolites. Other authors have studied the melting of basalts in 

hydrous environment (Holloway and Burnham, 1972; Helz 1973; Beard and Lofgren, 1991; 

Kawamoto, 1996). Although some of these works approach the appropriate natural conditions 

(e.g., Beard and Lofgren, 1991), they are not fully relevant to the study of hydrous melting at 

the base of the sheeted dikes. These studies deal with subduction processes and most of them 

are conducted at pressures (in general ≥500 MPa) that are much higher than those (~100 MPa) 

prevailing at the base of the upper, basaltic oceanic crust. Moreover, most of these studies use 

dehydration melting experiments which are valid for the subduction environment but not for 

the base of the sheeted dikes where a lot of water is available at low pressure, resulting in 

water saturated conditions. The study of Beard and Lofgren (1991) approaches those 

conditions relevant to partial melting/assimilation of hydrothermalized sheeted dike at the 

gabbro/dike transition. Unfortunately, they don’t provide the mineral compositions, and the 

redox conditions are not fixed but roughly estimated. The redox conditions, which are 

influenced by the presence of a high temperature hydrothermal system at the base of the 

sheeted dike (Nicolas et al., 2008), must be precisely controlled to understand and follow the 

evolution of melt and minerals with temperature. Koepke et al. (2004) have performed 

hydrous partial melting experiments on gabbroic lithologies from the lower oceanic crust with 

controlled redox conditions, but these experiments are not applicable to hydrous partial 

melting at the base of the sheeted dike complex. Hydrous partial melting of sheeted dike and 

gabbro may produce different melts and different residual phases because of different 

composition and mineralogy of the used starting material. While typical oceanic gabbros 

show a marked refractory character (e.g., extremely depleted in incompatible elements like Ti 

and K; mostly high in Mg#, with Mg#=Mg/[Mg+Fe]), most sheeted dikes are more evolved 

with compositions of evolved MORB. Another characteristic feature of the dikes at the 

gabbro/dike transition is related to significant hydrothermal alteration responsible for the 

formation of considerable amounts of hydrous minerals, which affects the melting behavior of 

a rock, in particular at lower temperatures, where the completion of a global equilibrium is 

often hampered. 
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IV.3.d. Experimental and analytical techniques 

IV.3.d.1. Starting material 
In order to closely match natural processes, we have selected a representative sample 

(08OL30) of typically altered sheeted dikes from the Oman ophiolite. It has been sampled in 

the Aswad area located in the southern Sumail massif, which is inferred to correspond to 

typical oceanic crust away from ridge discontinuities, and not affected by ridge tectonics or 

obduction-related deformation (Nicolas et al., 2000; Nicolas et al., 2008). Its whole rock 

composition is representative of typical sheeted dike from the Oman ophiolite (Fig. 1; Table 

1). Compared to the average sheeted dike rocks sampled at ODP/IODP Hole 1256D and ODP 

Hole 504B, at Hess Deep, and at the Blanco Depression (Table 1), the chosen starting 

material is slightly more evolved. It is strongly altered due to a static hydrothermal overprint, 

which is a common feature of the sheeted dike complex in the studied area. The selected 

sample is composed of albitized plagioclase (An03), actinolite, prehnite, pumpellyite, titanite, 

and some magnetite (Fig. 2), an assemblage typical of greenschist-facies conditions (see 

section “phase compositions in the partly molten system” for mineral compositions). Primary 

magmatic phases are not observed. 

 

 
Figure 1: Comparison of the bulk rock composition of the starting material (08OL30) with 
those of sheeted dike complex and extrusives of the Oman ophiolite in a TiO2 vs Mg# diagram 
(with Mg#=Mg/[Mg+Fetotal]); after Miyashita et al. (2003). Symbols are black star: starting 
material, red small circle: sheeted dike complex by Miyashita et al. (2003), green large 
circle: sheeted dike complex by Lippard et al. (1986), and Type 1 dikes by Rochette et al. 
(1991), blue diamonds: Geotimes volcanics by Lippard et al. (1986) and V1 lava by Einaudi 
et al. (2000). 
 

After crushing the starting rock, three grain size fractions were obtained by sieving 

(30-100 µm, 100-150 µm, and 150-250 µm) and were used for preliminary experiments. 

These experiments were performed at a temperature of 1000°C to study the effect of grain 
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size of the starting material on the kinetics of the melting reaction (Table 2). In the three 

experimental products, minerals and melts have identical compositions within the analytical 

errors. Moreover, the phases are homogeneous, crystals display no zonation, and 

compositions are identical within the whole capsule volume, independent of the grain size of 

the starting material (Fig. 3a). No relict phases of the starting material were observed. As 

experiments performed with coarser grain size produce larger experimental crystals and melt 

pools, which are more suitable for electron microprobe measurements, we chose the 150-250 

µm fraction as starting material (Table 1). 

 
 SiO2 TiO2 Al2O3 Fe2O3(t) MnO MgO CaO Na2O K2O P2O5 LOI total Mg

# 

080L30 50.38 1.40 15.04 10.29 0.06 4.99 7.19 4.44 0.19 0.11 4.74 98.8 - 
080L30_recalc

ulated 53.55 1.48 15.98 10.94 0.07 5.30 7.64 4.72 0.20 0.12 - 100 49.0 

Oman, Umino 
et al., 2003 

52.51 
± 2.09 

1.17 ± 
0.45 

16.06 ± 
0.92 

10.41 ± 
1.83 

0.15 ± 
0.05 

6.68 ± 
1.28 

8.51 ± 
2.81 

4.21 ± 
1.34 

0.18 ± 
0.15 

0.11 ± 
0.03 - 100 56.0 

Oman, 
Miyashita et 

al., 2003 

52.59 
± 1.72 

1.33 ± 
0.50 

15.64 ± 
0.76 

10.89 ± 
2.16 

0.16 ± 
0.05 

6.03 ± 
1.55 

8.86 ± 
2.68 

4.24 ± 
1.39 

0.16 ± 
0.12 

0.11 ± 
0.05 - 100 52.3 

1256D, Teagle 
et al., 2006 50.56 1.55 13.75 13.57 0.23 6.88 10.75 2.53 0.05 0.13 - 100 50.1

Hess Deep, 
Pollock et al., 

2009 
50.57 1.37 14.31 11.58 0.20 8.02 10.82 2.78 0.05 0.31 - 100 57.8 

504B, Bach et 
al., 1996 49.36 0.80 16.12 9.60 0.15 8.93 13.11 1.86 0.01 0.06 - 100 64.8 

Blanco 
Depression, 

Cordier et al., 
2007; Juteau 
et al., 1995 

50.08 1.99 13.97 13.15 0.21 6.79 10.60 2.82 0.22 0.16 - 100 50.5 

Table 1: Whole rock compositions of the starting material and of sheeted dike complex from 
different oceanic localities. Composition of the sheeted dike complex from Oman (Umino et 
al., 2003; Miyashita et al., 2003), from IODP Hole 1256D in the Cocos plate (Teagle et al., 
2006), from Hess Deep (East Pacific Rise [EPR]; Pollock et al., 2009), from ODP Hole 504B 
(Bach et al., 1996), and from the Blanco Fracture Zone on the Juan de Fuca ridge (average 
of data from Juteau et al., 1995 and Cordier et al., 2007). For comparison, compositions of 
sample 08OL30 (starting material) are recalculated at 100%. Standard deviations are given 
for the Oman sheeted dike. Mg#=Mg/(Mg+Fetotal); LOI=loss on ignition. 
 

 
Figure 2: Microphotographs of the starting material (08OL30). a) plane-polarized light; b) 
cross-polarized light. 
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Figure 3: Comparison of melt compositions from experiments performed with identical 
starting compositions (wt%) for different grain sizes of the starting material (a). Each data 
point represents the average for one oxide (as indicated). The corresponding experiments 
were performed at 1000°C. b) Comparison of melt compositions from experiments performed 
with identical starting compositions (wt%) for experiments with and without water added 
shown for the TiO2, Na2O, Al2O3 and SiO2 at different temperatures. In both logarithmic 
plots, the line represents the 1:1 correlation. Grain size (a), and the addition of water to the 
starting material (b) have no influence on the melt composition. 

 

IV.3.d.2. Experimental method 
Melting experiments (≥850°C) have been performed in an internally heated pressure 

vessel (IHPV) at the experimental lab of the Institut für Mineralogie (Hannover, Germany), 

equipped with a Shaw membrane and a rapid quench device. Details of the IHPV are 

presented in Berndt et al. (2002). The vessel was pressurized with argon at 100 MPa, a 

pressure relevant to the level of the axial melt lens within the ocean crust. The pressure was 

controlled with a strain gauge manometer (uncertainty of ±5 MPa). Previous calibrations on 

the vessel show that temperature is homogeneous over the sample with less than 10° of 

variation and a measurement accuracy better than ±10°. This is also indicated by the regular 

evolution of the melt and mineral compositions with temperature (see below). Experimental 

conditions are summarized in Table 2. In all experiments, the prevailing fO2 corresponds to 

FMQ+1 – FMQ+2, where FMQ is the fayalite-magnetite-quartz oxygen buffer equilibrium 

(for values see Table 2). At the beginning of the experiment, the temperature rises 

continuously (30°C/min) to reach the final experimental temperature after ~30 min. At the 

end of experiments, the samples were quenched isobarically using a rapid quench facility to 

prevent crystallization during cooling (~150°/s). Effective quenching is evidenced by the 

absence of “quench minerals” in melts in spite of the presence of low viscous basaltic melts 

with high water content. 
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RUN N° Capsule Temp. 
(°C) f(H2) ΔFMQ Phases duration grain size 

#10[D] #3 
#12[W] 

1030 2.18 1.38 melt, Ol, Cpx 72h 150-250µm

#2c[W] 150-250µm
#3b[W] 100-150µm#1 
#4a[W] 

1000 2.77 1.56 melt, Ol, Cpx, Pl, TiMagt, Plm 72h 
30-100µm 

#13[D] #4 
#14[W] 

970 1.89 1.51 melt, Ol, Cpx, Pl, TiMagt, Plm 96h 150-250µm

#23 [D] #7 
#25[W] 

955 2.63 1.24 melt, Ol, Cpx, Pl, TiMagt, Ilm, 
Plm 96h 150-250µm

#17[D] #6 
#18[W] 

940 2.02 1.45 melt, Ol, Cpx, Pl, Amp, Opx, 
TiMagt, Ilm, Plm, Titanite, Apatite 96h 150-250µm

#5[D] #2 #8[W] 910 2.24 1.36 melt, Cpx, Pl, Amp, Opx, TiMagt, 
Ilm, Plm, Titanite 120h 150-250µm

#15[D] #5 
#16[W] 

880 0.97 2.09 melt, Cpx, Pl, Amp, Opx, TiMagt, 
Ilm, Plm, Titanite, Act 120h 150-250µm

#24[D] #8 
#26[W] 

850 2.53 1.13 melt, Cpx, Pl, Amp, Opx, TiMagt, 
Ilm, Plm, Titanite, Act 144h 150-250µm

#9[D] #metam 
1 #11[W] 

800 - 0.79 Pl, Amp, Opx, TiMagt, Ilm, 
Titanite, Act, Ab (+Plm+Cpx) 504h 150-250µm

#21[D] #metam 
2 #22[W] 

750 - 0.80 Pl, Amp, Opx, TiMagt, Ilm, 
Titanite, Act, Ab (+Plm+Cpx) 624h 150-250µm

Table 2: Experimental conditions. Temp.=temperature; D = experiment without water 
addition, W = experiment with water addition. The oxygen fugacity is given in log units 
relative to the FMQ oxygen buffer. Minerals in parentheses (+Plm+Cpx) are localized in the 
prehnite reaction zones (see “prehnite break-down reaction” part for further details). 
Ol=olivine, Cpx=clinopyroxene, Pl=plagioclase, TiMagt=titanomagnetite, Plm=metastable 
plagioclase, Ilm= ilmenite, Amp=amphibole, Opx=orthopyroxene, Act=actinolite, Ab=albite, 
Magt=magnetite. 

 

In addition to the high temperature runs in the partially molten regime, subsolidus 

experiments (750°C and 800°C) have been performed in an externally heated cold-seal 

pressure vessel (CSPV). This vessel was pressurized with water at 100 MPa and controlled 

with a pressure transducer calibrated against a strain gauge manometer. The accuracy of 

pressure measurements was 1 MPa and pressure variations during the experiments were less 

than ±5 MPa. The temperature was controlled with an external Ni-CrNi thermocouple (vessels 

were calibrated for temperature). The temperature variations were less than 5°C, while the 

accuracy was estimated to be ±10°C. Experiment conditions are summarized in Table 2. In all 

experimental runs, fO2 corresponds to the NNO oxygen buffer (≈FMQ+1), established by 

adding a solid buffer composed of a Ni-NiO assemblage around the gold capsule. After 

experiments, samples were quenched isobarically by using a flux of compressed air (initial 
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cooling rate ~200°/min). For all the experiments gold was used as capsule material. Thus, iron 

diffusion into the capsule material can be neglected.  

Since the natural samples from the root zone of the sheeted dike complex contain high 

amounts of hydroxyl-bearing minerals (actinolite, prehnite, pumpellyite), it was expected that 

water would be released in the partial melting experiments (dehydration melting). Due to the 

relatively low water solubility in basaltic melts at the given shallow pressure of 100 MPa (~ 

3%; Berndt et al., 2002), water-saturating in the experiments was expected. We performed 

one experimental series under water-saturated conditions by adding distilled water (5 mg) to 

the starting material (50 mg) and another series without adding water, corresponding to 

typical dehydration experiments. The two capsules (with and without water addition) were run 

simultaneously at each temperature. For each temperature, results from both capsules are 

identical for the phase relations and phase compositions (Fig. 3b), suggesting that in both 

experimental series, water saturation was reached, and that the dehydration melting produces 

enough water for reaching water-saturated condition. In all experiments bubbles are present, 

attesting fluid (mainly composed of water) saturation (Fig. 4). The similarity between the two 

series show that experiments are reproducible. 

IV.3.d.3. Analytical method 
Experimental results were analyzed using a Cameca SX100 electron microprobe 

(Institut für Mineralogie, Hannover, Germany) equipped with 5 spectrometers, “Peak sight” 

software is used. All analyses were performed using a 15 kV acceleration potential, a static 

(fixed) beam, Kα emission from all elements. The matrix correction is based on Pouchou and 

Pichoir (1991). Analyses of crystals were performed with a beam current of 15 nA using a 

focused beam and a counting time of 10 to 30 s on peak and background. Analyses of glass 

were performed with a beam current, which was set to 6 nA to minimize migration and 

volatilization of the alkali elements. Counting time was from 2 to 5 s for Na and K and from 5 

to 10 for other elements (Si, Ti, Al, Mg, Fe, Ca, Mn, Cr). In the experiments where melt pools 

are large enough, the beam was defocused to a spot size of 5 to 20 µm. Backscattered electron 

(BSE) images were also obtained on the Cameca SX100 electron microprobe. 

IV.3.e. Experimental results 

IV.3.e.1. Attainment of equilibrium 
The use of fine grained starting material (≤1 µm) in partial melting experiments 

enhances the achievement of global equilibrium. Unfortunately, it prevents suitable 
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microprobe analyses due to very small newly formed experimental phases. The advantage of 

using coarser grained starting material is the formation of relatively large crystals in the 

experimental products, which enables easy microprobe analyses of the experimental phases. 

However, too coarse-grained starting material may prevent the achievement of global 

equilibrium, since cores of unreacted starting material may be still present after the 

experiment, as observed in many typical dehydration melting experiments of mafic protoliths 

(e.g., Hacker, 1990; Beard and Lofgren, 1991; Patino Douce and Beard, 1995; Johannes and 

Koepke, 2001). This effect is most pronounced concerning plagioclase, which is the rate-

controlling phase in many basaltic systems (Johannes and Koepke, 2001). These authors show 

that reaction kinetics can be significantly enhanced in water-saturated systems, as it was the 

case in our experiments. Moreover, the starting material in our experiments shows a pervasive 

alteration overprint (plagioclase with An<03, actinolite, titanite, prehnite, pumpellyite, 

magnetite), and no typical primary magmatic phases (e.g., olivine, pyroxene, An-rich 

plagioclase, or magmatic amphibole) were present. Hence, the phase assemblage had to 

change completely during the melting reaction, thus minimizing the risk of formation of 

typical core/rim complexes of the reacting minerals. Due to the favorable conditions in our 

melting experiments, no relics of the starting material are present in most of the melting 

experiments, in particular those experiments performed at temperatures > 910°C. 

Several lines of evidence are listed below, which suggest that a state close to 

equilibrium has been attained in our "magmatic" experiments (i.e., temperatures > 910°C): (1) 

No zonations in newly formed crystals are observed (Fig. 4) and crystal compositions are 

homogeneous within each experiment and between the two series (with and without addition 

of water). (2) Newly formed crystals are euhedral (e.g., Ol) or mimic previous minerals that 

are not present anymore (e.g., Cpx and Pl; Fig. 4). (3) No relictic phases from the starting 

materials are observed (for temperature > 910°C). (4) All phase compositions vary 

systematically with temperature, and compositional trends are consistent with the ones 

expected from literature (e.g., rise of the plagioclase An content; see “phase compositions in 

the partly molten system” section). (5) Glass compositions also vary systematically with 

temperature (see “phase compositions in the partly molten system” section), and are 

homogeneous within each experiment and between the two series (with and without addition 

of water). 
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Figure 4: Backscattered electron images of the experimental results in the partly molten 
system for different temperatures a) 1030°C with water added (melt proportion is not 
representative for the whole sample which shows >90% melt); b) 1000°C with water added; 
c) 970°C with water added; d) 940°C without water addition; e) 910°C without water 
addition; f) 880°C without water addition; g) numerous tiny oxide-inclusions in 
clinopyroxene and olivine in the experiment performed at 970°C without water addition; h) 
“metastable plagioclase” in the experiment performed at 1000°C with water added. Minerals 
abbreviations are the same as in Table 2. 
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Nevertheless, a second type of plagioclase was observed in all experiments at 

temperatures ≤ 1000°C. Compared to the equilibrium plagioclase which shows an 

idiomorphic habit, these are spongy with very irregular grain boundaries (Fig. 4h) and highly 

enriched in An component (Table in Appendix B2). These crystals are interpreted to represent 

metastable phases which were recrystallized after prehnite (for further details see section 

“Prehnite break-down reaction”). Since these crystals occur only very rarely, we consider that 

the approaching of global equilibrium in these experiments is not hampered. 

In subsolidus experiments, reactions are not complete and new phases are only 

observed as coronitic assemblages. Therefore, these experiments will only be used to 

understand the metastable assemblages present in the partly molten system (see section 

“prehnite break-down reaction”).  

IV.3.e.2. Phase relations in the partial molten system 
The evolution of the phase relations (Fig. 5) was established with the help of 

backscattered electron images (BSE) images (e.g., Fig. 4). 

 

 
Figure 5: Phases present in the products of partial melting and subsolidus experiments as a 
function of temperature. Minerals abbreviations are the same as in Table 2. 
 

 
Figure 6: Phase proportions in the partly molten system calculated with a least square model 
according Albarède and Provost (1977). Standard deviation < 1 for all values. Values 
obtained for experiments at temperatures < 950°C are less accurate. Incoherent values are 
obtained at 850°C. Minerals abbreviations are the same as in Table 2. 
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Figure 6 gives a rough estimate of the phase proportions which were obtained via least 

square calculations (Albarède and Provost, 1977). The first melt was observed at temperatures 

as low as 850°C, and the liquidus temperature is slightly higher than 1030°C. While in the 

low-temperature experiment performed at 850°C melt pools seem to remain isolated, at 

temperatures > 910°C the melt phase forms a connected framework. Melt proportion is low 

(<10%) for temperatures < 910°C, and a large increase is observed between 940°C and 970°C 

(Fig. 4); above 970°C the melt proportion continues to increase linearly until the liquidus is 

reached. The liquidus phases are olivine and clinopyroxene; plagioclase and titanomagnetite 

are present below 1000°C. The saturation of olivine and clinopyroxene at near liquidus 

condition in tholeiitic systems is somewhat uncommon, but can be ascribed to the high water 

activities as experiments are water saturated (e.g., Gaetani et al. 1993, Feig et al., 2006). First 

olivine appears at 940°C. Amphibole is stable in experiments up to 940°C. At this 

temperature, when applying the TiO2 contents of amphibole to the semi-quantitative TiO2-in-

amphibole thermometer of Ernst and Liu (1998), the estimated temperature is 950°C and 

matches very well the run temperature, implying the achievement of equilibrium condition. 

The application of this thermometer is justified, since the amphibole in our experiments is 

coexisting with a Ti-rich oxide phase (Ernst and Liu, 1998). 

Orthopyroxene is stable up to 940°C. Application of the 2-pyroxene thermometer 

(Andersen et al., 1993) reveals equilibrium temperatures which are largely overestimated: 

1092±31°C for the 940°C run; 1039±30°C for the 910°C run; 1041±36°C for the 880°C run, 

and 1056±14°C for the 850°C run (data of Table in Appendix B2 are used, these are averages 

of experiments with and without water addition). This large discrepancy can be explained by 

the presence of a high water activity, as the presence of water shifts the Mg# of clinopyroxene 

and orthopyroxene to higher values and consequently to higher calculated temperatures (Feig 

et al., 2006). Ilmenite is present up to temperatures of 955°C; at higher temperatures, only 

titanomagnetite is stable. Application of the 2-oxide thermo-oxybarometer (Sauerzapf et al., 

2008) reveals an equilibrium temperature of 929°C and ΔNNO=+0.58 for the 955°C 

experiment, 901°C and ΔNNO=+1.01 for the 940°C experiment, 872°C and ΔNNO=+0.83 for 

the 910°C experiment, 814°C and ΔNNO=1.35 for the 880°C experiment, 779°C and 

ΔNNO=+0.82 for the 850°C experiment, and 719°C and ΔNNO=+0.89 for the 750°C 

subsolidus experiment (data of Table in Appendix B2 are used, these are averages of 

experiments with and without water addition). The accuracy of the 2-oxide thermo-

oxybarometer is ±70° for the temperature and ±0.4 log units for the oxygen fugacity 

(Sauerzapf et al., 2008). Hence, these estimations are consistent with the conditions of the 
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experiments (Table 2). Numerous tiny oxides with grain sizes < 5 µm were observed as 

inclusions in nearly all olivine and clinopyroxene grains (Fig. 4g). This observation is of 

significance, since similar features are observed in clinopyroxenes from the granulite-facies 

granoblastic dikes in natural settings (e.g., Koepke et al., 2008; France et al., 2009a), 

providing a tool for identifying such clinopyroxenes as residual phases after hydrous partial 

melting. Titanite is stable from low temperature experiments to 940°C. In experiments from 

910°C to 1000°C, some rare grains of a metastable plagioclase (Plm) are observed (Fig. 4h). 

IV.3.e.3. Prehnite break-down reaction 
In the subsolidus experiments, some sparse, complex mineral assemblages with an 

apparent coronitic structure are locally present (Fig. 7). 

 
Figure 7: Backscattered electron image of a coronitic assemblage (750°C with water added 
experiment) that displays in the center (a) a mineral assemblage compositionally similar to 
“dry prehnite”; it is interpreted as an anorthite+wollastonite assemblage. At the rim (b) of 
this assemblage, an assemblage of metastable plagioclase (Plm) and Ca-Al-rich clinopyroxene 
is observed (brighter). This assemblage is interpreted to be derived from the prehnite break-
down reaction (see the part “Prehnite break-down reaction” for more details). 
 

In the center of these assemblages, the composition is similar to that of a “dry prehnite”. The 

margins consist of a close intergrowth of plagioclase, which is slightly enriched in An 

compared to the equilibrium plagioclase, and clinopyroxene. Clinopyroxene is not present 

elsewhere in the subsolidus experiments, but these ones present in the coronitic assemblages 

are enriched in CaO and Al2O3 compared to the ones of partial melting experiments. 

According to Liou (1971), prehnite, which is present in our starting material, should react to 

an assemblage of anorthite + wollastonite when temperature increases (1 prehnite  2 

anorthite + 1 wollastonite + H2O). The composition of the assemblage "2 anorthite + 1 

wollastonite" corresponds exactly to that of the “dry prehnite” which was analyzed in the 

corresponding run (Table in Appendix B2). Since the compositions of the phases forming the 
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close intergrowth network of the rim also deviate slightly from the corresponding equilibrium 

compositions of plagioclase and clinopyroxene, we interpret the whole coronitic assemblage 

as a metastable product of the prehnite breakdown reaction. We speculate that the sparse 

plagioclases with an apparent spongy structure as presented in Figure 4h, which are much 

richer in An compared to the equilibrium plagioclases, correspond to metastable relics of such 

prehnite breakdown reactions. It should be noted that in experimental dehydration melting of 

mafic systems relics of An-rich plagioclases may persist metastably for a very long time, even 

at high water activities (more than 36 days in experiments of Johannes and Koepke, 2001). 

IV.3.e.4. Phase compositions in the partial molten system 
The phase compositions of the starting material and of the experimental products are 

listed in Table in Appendix B2; indicated compositions are averages of mineral compositions 

in experiments with and without water addition (Fig. 3b). Detailed compositions for each 

series (with and without water addition) are provided as supplementary material. The 

dependence of olivine composition on temperature is shown in Figure 8a. The forsterite 

content (Fo) is nearly identical between the 1000°C and the 1030°C experiments; it may 

reflect the identical Mg# of the melt in these two runs. The partitioning of Fe and Mg between 

olivine and melt ( ++−
=−

22 Fe
Ol

Fe
Liq

Mg
Ol

Mg
LiqmeltOl

D XX

XX
K

MgFe
) is classically considered to be 0.30±0.02 (Roeder 

and Emslie, 1970). Toplis (2005) has reviewed this partitioning coefficient, and has proposed 

a new equation to calculate meltOl
D MgFe

K −
−

 that can vary as a function of temperature, alkalis, and 

water. Using this equation for the conditions of our experiments leads to a predicted value of 

0.30±0.02. meltOl
D MgFe

K −
−

 measured in our experiments is ~0.25 by using the FeOtot of the melt, 

which is not in the accepted error range. However, as the oxygen fugacity is known in our 

experiments, the real FeO value (including only the Fe2+) in the melt can be calculated using 

the Kress and Carmichael (1991) model; the resulting average meltOl
D MgFe

K −
−

 is 0.28 which is in the 

accepted range of error according to Toplis (2005), which support the assumption that 

equilibrium is nearly attained in our experiments. 

In the melting experiments, typical clinopyroxene is augite. As expected, its 

composition varies systematically with temperature. With rising temperature, the wollastonite 

component and the Mg# increase (from 38 to 44, and from 66 to 78, respectively), as well as 

the concentration of TiO2 and Al2O3. Clinopyroxene Al2O3 content decreases with 

temperature from 3 to 1.26 wt% (Fig. 8b) whereas the melt Al2O3 content is nearly stable. 
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This demonstrates the dependence of the partition coefficient meltCpx
OAlD −

32
 on temperature. It 

decreases by a factor of ~2 (from ~0.2 to ~0.1) with temperature. Orthopyroxene is 

clinoenstatite; the wollastonite component and Mg# are, for all temperatures, between 3 and 

4, and between 63 and 72, respectively. 

 

 
Figure 8: Compositional features of the experimental phases as a function of temperature. a) 
Forsterite content in olivine; b) Al2O3 content of clinopyroxene in the partly molten system; c) 
Anorthite content of plagioclase in the partly molten and subsolidus systems; d) Mg# in melt; 
e) SiO2 in melt; f) TiO2 in melt; g) K2O in melt; h) Na2O in melt. 
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The anorthite (An) content of plagioclase increases with temperature from 26 to 59. 

For comparison, subsolidus plagioclase compositions are indicated in Figure 8c; the An 

content increases with temperature from 27 to 31.5. In the partly molten system the FeOt 

content of plagioclase increases with temperature, reaching 0.94 wt% in the 1000°C run. This 

increase is correlated with increasing FeOt content in the melt. In contrast, the partition 

coefficient meltPl
FeOt

D −  increases with decreasing temperature. Lundgaard and Tegner (2004) 

have shown that meltPl
FeOt

D −  depends on the redox conditions and on the silica content of the melt 

( meltPl
FeOt

D −  is higher for more oxidizing conditions and for higher silica contents). As our 

experiments are performed at very similar redox conditions, we attribute this increase of 
meltPl

FeOt
D −  to the increase in silica content of the melt with decreasing temperature. 

Titanomagnetite is present from 850°C to 1000°C; it contains between 8 and 14 wt% 

of TiO2 while the Al2O3 and MgO contents increase with temperature (from 1.55% to 4.21%, 

and from 1.26% to 4.39%, respectively). Ilmenite is present from 850°C to 955°C; minor 

components as SiO2, Al2O3, and MgO globally increase with temperature. The amount of 

Cr2O3 in both oxides is below detection limit. 

Amphiboles in the experiments with melt present are edenite and pargasite. As expected, their 

TiO2, Al2O3, and Na2O contents increase with temperature. For comparison, they vary from 

actinolite to hornblende in subsolidus experiments. 

 

 
Figure 9: a) FeO*/MgO versus SiO2 diagram from Miyashiro (1974). FeO*=FeOtotal; 
TH=tholeiitic field, CA=Calc-alkaline field b) Alkaline (Na2O+K2O)-FeOtotal-MgO 
discriminating diagram from Irvine and Baragar (1971). 
 

Melt is saturated with water in all experiments (presence of bubbles). In the 

experimental melt obtained with the highest temperature (1030°C), which displays the largest 
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melt pools, a water content of 4.8 wt% has been determined by FTIR (Fourier Transformed 

InfraRed spectroscopy). The Mg# of the melt increases with temperature from 22 to 42.2 (Fig. 

8d). The SiO2 and K2O contents decrease with increasing temperature, whereas the TiO2, 

MgO, FeO and CaO contents increase (Fig. 8). Those melts formed at the lowermost 

temperature (~850°C) reach SiO2 contents of 72.6 wt%. In a FeOtotal/MgO versus SiO2 

discriminating diagram (Miyashiro, 1974), and in an Alkaline (Na2O+K2O)-FeOtotal-MgO 

discriminating diagram (Irvine and Baragar, 1971), the experimental melts plot close to the 

transition between the calc-alkaline and tholeiitic series (Fig. 9). 

IV.3.f. Discussion 

IV.3.f.1. Melt evolution: Origin of oceanic plagiogranites at the base of 
the Sheeted Dikes 

Our experimental melts are compared with other experimental results and with natural 

data in Figure 10. For comparison with experimental data, we used MORB fractionation 

experiments (Dixon-Spulber and Rutherford, 1983; Berndt et al., 2005), Fe-Ti MORB 

fractionation experiments (Juster et al., 1989; Toplis and Carroll, 1995), immiscible melt 

compositions (Dixon and Rutherford, 1979), and gabbro, amphibolite and basalt anatexis 

experiments (Koepke et al., 2004, Beard and Lofgren, 1991, and Thy et al., 1999, 

respectively). Our experiments are relatively similar to those of Beard and Lofgren (1991), 

and the melt compositions are therefore similar. Nevertheless, our experiments reach lower 

silica contents despite lower temperature equilibration (850°C in our experiments and 900°C 

in the Beard and Lofgren ones). The K2O contents of our experimental melts are similar to 

most of the Beard and Lofgren (1991) experiments, except for one of their series that display 

lower contents, and which corresponds to a highly K2O depleted starting composition. Fe-Ti 

MORB fractionation melts and immiscible liquids are depleted in Al2O3 and enriched in TiO2 

regarding other experiments. Interestingly, in our lower temperature experiments, the 

composition of the melt is below the line of saturation for TiO2 in basaltic melts defined by 

Koepke et al. (2007) (Fig. 10). This allows us to discriminate between gabbro melting 

(Koepke et al., 2004) and hydrothermalized dikes melting (Beard and Lofgren, 1991, and this 

study) as only hydrothermalized dikes melts reach silica contents higher than 68 wt% for TiO2 

concentrations <0.5wt% (Fig. 10). Our experimental melts are relatively similar with those 

formed in MORB fractionation experiments, except for the lower temperatures (i.e., with the 

higher silica content), which are slightly depleted in MgO and CaO and slightly enriched in 

K2O (Fig. 10). 
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Figure 10: Harker diagrams (Oxide versus SiO2). Comparison of melts from this study with 
other experimental melts (left column) and with natural rocks (right column). Experimental 
data are from Dixon-Spulber and Rutherford (1983) and Berndt et al. (2005) for MORB 
fractionation experiments, from Juster et al. (1989) and Toplis and Carroll (1995) for Fe-Ti 
MORB fractionation experiments, from Dixon and Rutherford (1979) for immiscible liquid 
compositions and from Koepke et al. (2004), Beard and Lofgren (1991), and Thy et al. (1999) 
for gabbro, amphibolite and basalt anatexis, respectively. Natural data are from Gillis and 
Coogan (2002) for rocks interpreted as sheeted dikes partial melts, from Gerlach et al. 
(1981), Pedersen and Malpas (1984) and Flagler and Spray (1991) for rocks interpreted as 
amphibolite partial melts and from Beccaluva et al. (1977), Beccaluva et al. (1999) and Ghazi 
et al. (2004) for rocks interpreted as MORB fractionation. The dashed line corresponds to the 
regression line for the experimental melt compositions of this study. The dashed-dotted line in 
TiO2 vs. SiO2 diagrams represent the saturation of TiO2 in basaltic melts defined by Koepke et 
al. (2007). 
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To compare our experimental results with natural data, we used published analyses of 

oceanic plagiogranites interpreted as sheeted dikes partial melts (Gillis & Coogan, 2002), as 

amphibolite partial melts (Gerlach et al., 1981; Pedersen and Malpas, 1984; Flagler and 

Spray, 1991), and as differentiated MORB (Beccaluva et al., 1977; Beccaluva et al., 1999; 

Ghazi et al., 2004). In these studies, the oceanic plagiogranite origin has been inferred from 

trace element concentrations and structural relationships. These natural rocks have relatively 

homogeneous compositions, and globally match our experimental melts. Nevertheless, the 

melts formed in our lower temperature experiments and oceanic plagiogranites interpreted as 

differentiated MORB are slightly enriched in K2O compared to other natural oceanic 

plagiogranites (Fig. 10). Our experimental melts are also slightly enriched in Al2O3 compared 

to all natural plagiogranites (Fig. 10). 

To summarize, despite small differences, the melts produced during the experimental 

hydrous partial melting of hydrothermalized sheeted dike have major element compositions 

that are similar to other experimental works testing the partial melting of oceanic lithologies, 

and to natural plagiogranites interpreted as products of oceanic lithologies anatexis (Fig. 10). 

However, the observed major element trends are also very similar to those obtained by 

experiments simulating MORB fractionation and to oceanic plagiogranites interpreted as 

resulting from MORB fractionation (Fig. 10). Thus, whole rock major element compositions 

of our experimental melts cannot be used as a tool for discriminating different processes of 

oceanic plagiogranite genesis. Field studies and major element compositions have been 

combined with trace element compositions (especially rare earth elements) to better constrain 

their origin (e.g., Gerlach et al., 1981; Flagler and Spray, 1991; Floyd et al., 1998; 

Luchitskaya et al., 2005; Bonev and Stampfli, 2009; Brophy, 2008, 2009; Rollinson, 2009). 

At fast spreading ridges, the granoblastic dikes that are spatially associated to oceanic 

plagiogranites present at or close to the base of the sheeted dike complex, and as xenoliths in 

plagiogranites, may help to further constrain the plagiogranites origin. If these granoblastic 

dikes represent the residue after a hydrous partial melting event (Coogan et al., 2003; Gillis, 

2008; France et al., 2009a), then their forming mineral compositions should match the ones of 

our experimental residual minerals. 

IV.3.f.2. Evolution of the residual minerals: formation of "granoblastic 
dikes" 

Detailed petrological descriptions of the granoblastic dike horizon from the Oman 

ophiolite and from IODP Hole 1256D are given in France et al. (2009a), and Koepke et al. 

(2008). Gillis (2008) also describe granoblastic dikes (called hornfelsic lithologies) from Pito 
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Deep, Hess Deep, and the Troodos ophiolite. A typical granoblastic assemblage is composed 

of clinopyroxene, plagioclase and two oxides (ilmenite and magnetite to titanomagnetite). In 

IODP Hole 1256D, orthopyroxene is also present. This paragenesis matches well the residual 

mineral assemblage observed in our partial melting experiments coexisting with a 

plagiogranitic melt. Olivine, which is a stable residual phase in experiments performed at 

temperatures > 940°C, is absent from the described natural granoblastic dikes. This implies 

relatively low temperatures associated to their formation. 

In natural granoblastic dikes, plagioclase compositions range from An20 to An60, and 

clinopyroxene is augite with Mg# varying from 60 to 75. These compositions are similar to 

our experimental results, in which plagioclases vary from An26 to An59 (Fig. 8c) and 

clinopyroxene showing Mg# varying from 66 to 78. Magnetite from granoblastic dikes have 

lower TiO2 contents than residual magnetite in our experiments, but as shown by Koepke et 

al., (2008), they were probably re-equilibrated at lower temperature (~600°C) during a later, 

retrograde step ("second" hydrothermal alteration; see Koepke et al., 2008). In contrast, the 

composition of plagioclase and pyroxene obtained in MORB differentiation experiments 

(Berndt et al., 2005) does not match the composition of those from granoblastic assemblages. 

In differentiation experiments, plagioclase compositions range from An55 to An88 and 

clinopyroxene is mostly augites with Mg# varying from 72 to 86. 

Gillis (2008), Koepke et al. (2008), and France et al. (2009a) have shown that clinopyroxene 

from granoblastic dikes are particularly low in Al2O3 and TiO2 (Fig. 11). France et al. (2009a) 

propose that such compositions are characteristic of granoblastic lithologies (Fig. 11a). 

Residual clinopyroxene in the present study displays also very low, correlated Al2O3 and TiO2 

contents that follow a trend similar to that for granoblastic dike clinopyroxene (Fig. 11b). For 

comparison, clinopyroxene in MORB differentiation experiments from Berndt et al. (2005) 

has higher Al2O3 contents (between 3.3 and 6.8 wt% instead of 1.2 to 3 wt% in the present 

study). This difference may be related to the much higher temperature in differentiation 

experiments. The peculiar TiO2 vs. Al2O3 trend obtained for clinopyroxene in the present 

study seems to be characteristic of hydrous partial melting of previously hydrothermalized 

basaltic lithologies, and may be linked to the low temperature conditions coupled to water 

saturated conditions at high oxygen fugacities in our experiments. These peculiar conditions 

prevail in the root zone of the sheeted dike complex. A critical parameter controlling this 

trend is the oxygen fugacity, which controls the stability of Fe-Ti oxides; the latter in turn 

controls the Ti budget for Ti partioning between clinopyroxene and melt. 
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Figure 11: Correlation between TiO2 and Al2O3 in clinopyroxene. a) Comparison between 
clinopyroxenes in granoblastic dikes (diamonds; compositions from France et al., 2009a) and 
experimental and natural data from oceanic crust lithologies; after France et al. (2009a). 
Experimental data (dashed field) are from Snyder et al. (1993), Toplis and Carroll (1995) and 
Toplis et al. (1994) for Fe-Ti MORB crystallization experiments, from Berndt et al. (2005) 
and Feig et al. (2006) for hydrous crystallization experiments in primitive MORB-type 
system; from Grove and Bryan (1983) and Kinzler and Grove (1992) for MORB 
crystallization experiments, and from Koepke et al. (2004) for clinopyroxenes formed during 
hydrous partial melting of gabbros. Natural data (grey field) for oceanic crust lithologies are 
from Dziony et al. (2008) for IODP Hole 1256D sheeted dikes not affected by granoblastic 
imprint, from Miyashita et al. (2003) and Pallister and Hopson (1981) for Oman ophiolite 
sheeted dikes and gabbros, and from Boudier et al. (2000) and Gerbert-Gaillard (2002) for 
Oman gabbronorites. b) Comparison between clinopyroxenes of granoblastic rocks (dikes 
and xenoliths; grey field) and clinopyroxenes in the partly molten system of the present study 
equilibrated at different temperatures. Note that the grey field corresponds to the diamonds of 
a). 
 

The experimental trend in the present study has a slightly lower slope than in natural 

granoblastic dikes; the correspondence between the two trends is best at low TiO2 and Al2O3 

contents of clinopyroxene (Fig. 11b). For the strongly oxidizing conditions of our 
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experiments, the stability field of Fe-Ti oxides is larger, and TiO2 is consequently 

incorporated in lesser amount into silicates, resulting in a lower TiO2/Al2O3 ratio for 

clinopyroxene. The observed difference suggests that dehydration and melting reactions at the 

base of the sheeted dike complex in natural settings proceed at slightly less oxidizing 

conditions than in our experiments, which were performed at redox conditions corresponding 

to an oxygen fugacity between QFM+1 and QFM+2. 

Figures 11 and 12 show that TiO2 and Al2O3 contents in clinopyroxene strongly 

depend on temperature. The relation between Al2O3 and temperature can be fitted by a 

regression curve (R²=0.98) with: 

T = 93.145 Al2O3 + 742 

Where T is temperature in °C and Al2O3 the Al2O3 content in clinopyroxene in wt%. The 

result can be considered accurate with an uncertainty of ±40°C. This thermometer seems 

appropriate for estimating equilibration temperatures of the granoblastic dikes and related 

lithologies at the base of the sheeted dike complex in the oceanic crust. Since pressure and 

composition also strongly influence the Al2O3 content in clinopyroxene, the use of this 

thermometer is restricted to shallow pressure (100 MPa in this study). 

 

 
Figure 12: Al2O3 content (wt%) in clinopyroxene from our experiments as a function of 
temperature. Standard deviations of analyses are shown. The dashed line is the linear 
regression with the equation y=93.145x+742 (R²=0.976). 
 

One interesting feature of typical granoblastic dikes is reproduced by our experiments. 

Granoblastic dikes usually contain clinopyroxenes with countless inclusions of tiny oxide 

with grain sizes from <1 µm to some tens of µm (Koepke et al., 2008; France et al., 2009a). 

Oxides associated to clinopyroxene have also been observed in hydrothermalized altered 

gabbros but in close association with amphibole (Manning and MacLeod, 1996). In 

granoblastic dikes, oxide represents inclusions in pure clinopyroxene, and amphibole is not 
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associated to the inclusions. The oxide inclusions present in granoblastic dikes have been 

ascribed to the prograde evolution of secondary clinopyroxenes developing from complex 

alteration assemblages originating from primary clinopyroxenes which include fibrous 

actinolitic amphibole and extremely fine-grained (<5 µm) coexisting ilmenite and magnetite 

oxide phases (for details see Koepke et al., 2008, and France et al., 2009a). In our 

experiments, primary material does not contain clinopyroxene and new clinopyroxene 

crystallizes mostly after amphibole. However, we observe similar features, i.e., newly 

crystallized clinopyroxenes that contain numerous tiny oxide inclusions (Fig. 4g). The 

presence of these oxide inclusions can be explained by the Mg/Fe budget of the minerals 

involved in the reaction. Amphibole from the starting material has a lower Mg# (~61) than 

that of the newly crystallized clinopyroxene (e.g., 78 at 1000°C). An iron excess is therefore 

available during clinopyroxene crystallisation, resulting in the concentration of iron in the tiny 

oxides. Since our experiments were performed under highly oxidizing conditions, the stability 

of Fe-Ti oxides is possible. 

The results of our experiments (phase relations, mineral and melt compositions, and 

other petrographic characteristics such as tiny oxide inclusion in clinopyroxene) support the 

working models in which granoblastic dikes and associated oceanic plagiogranites at the base 

of the sheeted dike complex at fast-spreading ridges are formed by dehydration and partial 

melting of previously hydrothermalized sheeted dikes. Temperatures as high as 1000°C has 

been recorded in the granoblastic dikes from several natural settings (Gillis, 2008; Koepke et 

al., 2008; France et al., 2009a), this is clearly above the hydrous solidus temperature 

determined in this study (~850°C), and implies that hydrous partial melting locally proceeded. 

Koepke et al. (2008) observed in the granoblastic dikes from IODP Hole 1256D the presence 

of domains of both "dry" and "hydrous" parageneses. Such "dry" domains, for which 

significantly higher equilibration temperatures were recorded, probably represent zones which 

were not, or less hydrothermalized, preventing the triggering of hydrous partial melting, since 

the temperature did not exceed the corresponding dry solidus. These similarities between our 

experimental results and the corresponding natural settings strongly support an anatectic 

origin of those plagiogranites that are commonly observed at the base of the sheeted dike 

complex and that are associated with granoblastic lithologies. 

IV.3.f.3. MORB contamination at the base of the sheeted dikes  
Our experimental study supports models in which, at fast-spreading ridges, the 

magmatic / hydrothermal interface is a dynamic horizon with magma that can reheat 
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previously hydrothermalized sheeted dikes during upward migrations of the top of the melt 

lens. The absence of olivine in granoblastic dikes of all studied natural settings implies that 

the temperatures for the partial melting process did not exceed 940 °C (Figs. 5, 6), 

corresponding to a melt fraction ≤ 30 %. In our experiments, such melts are highly silicic 

(SiO2 of ≥ 68.5 %; Fig. 8). Hence, they are expected to be highly viscous (for the 850°C 

experimental melt, and using a theoretical water content of 5wt%, η=104.4 Pa.s, when 

calculated using Giordano et al., 2008). Due to the very strong thermal gradient at the 

interface between the melt lens and the sheeted dikes, melt formation is restricted to a 

relatively narrow zone at the base of the sheeted dikes, and the amount of such silicic melts is 

probably relatively low. As the formed melts are of relative low temperature and highly 

viscous, they probably do not have the potential to erupt, and can therefore get trapped as 

small intrusive veins near the location of generation. Such a scenario is described in the core 

recovered in IODP Hole 1256D; a 20 mm-wide vein of trondhjemitic composition intrudes 

the granoblastic dikes at 1404 meters below sea-floor (mbsf), ~ two meters above the first 

appearance of gabbro marking the top of the fossil melt lens (Teagle et al., 2006). Felsic 

igneous rocks are also relatively abundant in the coarse-grained material recovered in junk 

baskets during hole clearing operations at 1373 mbsf (Teagle et al., 2006). These leucocratic 

rock fragments, which consist of plagioclase, quartz, and altered green hornblende, are 

probably derived from leucocratic intrusions that were not recovered in the core. These felsic 

lithologies most likely represent products of hydrous partial melting of previously 

hydrothermalized sheeted dikes. As hydrous partial melting is believed to occur during 

upward migrations of the melt lens, the newly formed, highly viscous, silica-rich melt can 

also be assimilated into the MORB melt within the melt lens. This melt is transitional between 

tholeiitic and calc-alkaline (Fig. 9) and represents a source of contamination for primary 

tholeiitic MORB. It will in particular increase the SiO2 content of the MORB melt, but also 

the amount of K2O, rare earth elements and chlorine. This assimilation process may be 

responsible for the formation of andesitic extrusives which are locally observed in recent 

oceanic crust (e.g., Haase et al., 2005) and for the chlorine contamination of MORB (e.g., 

Michael and Schilling, 1989). On the other hand, the residual phases of the hydrous partial 

melting reaction behave rather refractory, resulting in the occurrence of residual enclaves in 

the corresponding melts, which display granulite facies granoblastic parageneses consisting of 

clinopyroxene + plagioclase + Fe-Ti oxides ± orthopyroxene. These enclaves are described in 

IODP Hole 1256D (Teagle et al., 2006; Koepke et al., 2008; France et al., 2009a), at Pito 

Deep and Hess Deep (Gillis, 2008), and in the Troodos and Oman ophiolites (Gillis, 2008; 
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Nicolas et al., 2009; France et al., 2009a). All of these geological settings are portions of 

present-day or fossil mid-ocean ridges where a dynamic dike / gabbro transition has been 

proposed. 

IV.3.g. Conclusion 

Partial melting experiments of a sample of the hydrothermalized sheeted dike complex 

from the Oman ophiolite have been performed to test the origin of oceanic plagiogranites 

present at the base of the sheeted dike complex at fast spreading centers. These oceanic 

plagiogranites are associated to granoblastic lithologies that form the base of the sheeted dike 

complex and xenoliths in plagiogranites and gabbros. Our experimental results show that: 

• Melts produced during partial melting of hydrothermalized sheeted dikes are 

highly silicic (up to 72.6 wt%) and match the composition of oceanic 

plagiogranites. 

• The residue of the partial melting experiments matches the modal and peculiar 

chemical compositions of granoblastic lithologies. Granoblastic lithologies are 

therefore interpreted to represent the residue after the partial melting event that 

produce the oceanic plagiogranites.  

• The heat source necessary to trigger the partial melting event is believed to be 

provided by the underlying melt lens. This study therefore supports a model in 

which the sheeted dike complex / gabbro transition is a dynamic horizon that 

migrates vertically, with the potential to locally reheat the base of the sheeted 

dike complex during upward movements. 

• Partial melting of hydrothermalized sheeted dikes, and partial assimilation of 

newly formed melts in the axial melt lens are potential candidates for the 

contamination (e.g., the chlorine enrichment) observed in some MORB. 

 

IV.4. Mineral recrystallization during experiments: a preliminary study 

In France et al. (2010a), we have studied the evolution of mineral mode, and mineral 

and melt compositions with increasing temperature. The evolution of mineral shapes, fabrics 

and associations can also bring information on the recrystallization processes, and on 

incongruent reactions. Using the electron back-scattered diffraction (EBSD) technique, I 

present hereafter a preliminary study of the mineral orientations in the experimental results, 

and compare these results to natural samples. 
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EBSD measurements are performed using a CamScan X500FE “crystal probe” at the 

Geosciences Montpellier laboratory. For each measurement point, EBSD result is a diffraction 

diagram displaying Kikuchi bands that are characteristic of one crystal orientation for one 

given mineral. A software (Channel 5, HKL technology) is then used to convert Kikuchi 

bands to crystallographic orientation maps (e.g., Figure IV-5) and pole figures. EBSD results 

can be used to build modal maps (Figure IV-5a) and crystal orientation maps (Figure IV-5b-

d). 

France et al. (2010a) show that in experimental results, assemblages (100-250 µm large) of 

several small grains (~10 µm) mimic starting material mineral shapes. For example, 

clinopyroxene assemblages mimic previous large actinolite assemblages (e.g., Figure 4b-d in 

section IV.3.e.1, and Figure IV-5a herein), and newly formed plagioclase assemblages mimic 

previous large albite grains. Nevertheless, clinopyroxenes crystallized after actinolite 

aggregates formed of millions of fine needles that are either parallel or randomly oriented, and 

it is therefore expected that in a single clinopyroxene assemblage, the small apparently 

individual newly formed grains have different crystal orientations. 

For this preliminary study, I have mapped the crystallographic orientations of a portion of 

the 970°C experimental product (with water added). At this temperature all minerals are 

newly formed and no relic of starting material is observed. Crystal orientation maps show that 

clinopyroxene assemblages are composed of small grains that have uniform crystal orientation 

in a single assemblage (Figure IV-5). This suggests that each “assemblage” represent one 

single, sponge-like grain with coherent orientation, rather than an aggregate of small, 

individual, randomly orientated grains. In plagioclase assemblages, small grains mostly show 

uniform crystal orientation, and some are organized along narrow sub-parallel bands with 

coherent crystal orientation in an individual band (Figure IV-5b). The observed structures 

imply that crystallization was not a random process starting from individually orientated 

nuclei in the melt, as it would be expected for typical crystallization experiments using a 

homogeneous glass as starting material. Here, it is indicated that the characteristic properties 

of the starting material (hydrothermally altered dolerite) with its characteristic textural and 

structural mineral features represent special precursor leading to the observed crystal 

orientation in plagioclase and clinopyroxene aggregates. Olivine grains have grown from the 

melt through the melting reactions, and display random crystallographic orientations. 
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Figure IV-5: EBSD maps; in b) and c) the color is a function of crystal orientation generated 
using the “all euler” function in HKL software. a) modal map; b) plagioclase crystals 
orientations, the grain in the central bottom part is composed of narrow sub-parallel bands 
that display uniform crystal orientation in a single band, other grain assemblages as the 
white one, have uniform crystal orientation; c) clinopyroxene crystals orientations, the grain 
assemblages have uniform crystal orientations. 
 

The observed orientation effect in the experiments can be related to the drilled natural 

rocks from the EPR: In strongly recrystallized microgabbronorite xenoliths present in the 

isotropic gabbro horizon of IODP Hole 1256D, and described by France et al. (2009a), 

clinopyroxenes showing a characteristic poikilitic to poikiloblastic feature, are locally 
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observed (Figure IV-6), suggesting that recrystallization processes are similar in nature and 

experiments. In natural recrystallized samples similar poikiloblastic plagioclases are not 

observed. However, clinopyroxene and orthopyroxene inclusions are observed in some 

plagioclase grains (Figure IV-7). These inclusions are localized in a given plagioclase grain, 

along domains that display different optical properties and different chemical compositions 

(lower An content) than the main plagioclase grain, attesting to distinct plagioclase 

generations (Figure IV-7). The occurrence of such inclusions is not well understood but may 

attest to former poikilitic plagioclases similar to the ones observed in experimental results. 

These poikilitic plagioclases would have then recrystallized in the presence of melt. This 

process would result in the occurrence of the second generation of plagioclase associated to 

pyroxenes inclusions. 

 

 
Figure IV-6: Sponge-like clinopyroxenes in xenolith with granoblastic features in zone 6 
gabbros from the bottom of IODP Hole 1256D (see Chapter II, sample 232R-2_37-41). The 
two domains (a-b and c-d) display sponge-like poikiloblastic clinopyroxene grains containing 
plagioclase inclusions. These textures are similar to those observed in experimental results 
(Figure IV-5). Note that both clinopyroxenes show homogeneous interference colors implying 
that these represent single crystals with a sponge-like structure. a and c: plane-polarized light 
microphotographs, b and d : cross-polarized light microphotographs. 
 

To summarize, EBSD measurements in the experimental products can help to explain 

specific structures observed in the natural rocks from the dike / gabbro transition, as steps of 
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complex crystallization events using specific components of granoblastic lithologies as 

precursors (e.g., clinopyroxenes with poikiloblastic features). They also show that, despite a 

randomly orientated starting material, newly formed minerals in a given assemblage can show 

a unique crystallographic orientation, suggesting that they form one single grain. The detailed 

processes occurring during recrystallization and their evolution with temperature are not well 

understood and further studies are needed. A systematic EBSD survey using products of 

experiments performed at different temperatures (from 750°C to 1030°C in a subsolidus and 

partly molten regime) by France et al. (2010a) would help to shed light on the details and 

mechanisms of the recrystallization processes occurring during the melting of hydrothermally 

altered dikes. 

 

 
Figure IV-7: Plane- (a) and cross- (b) polarized light microphotographs of a plagioclase 
grain containing clinopyroxene and orthopyroxene inclusions (IODP Hole 1256D, sample 
233R-1_8-12). 
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IV.5. Melting the hydrothermally altered sheeted dike complex: an 

experimental / trace elements study 

Preliminary version of an article that will be submitted to Geology. 

Lydéric France1,2,, Benoit Ildefonse1, Juergen Koepke2, Chris J. MacLeod3, 
Marguerite Godard1  
1: Géosciences Montpellier, CNRS, Université Montpellier 2, CC60, F-34095 Montpellier Cedex 05, France 
2: Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover, Germany 
3: School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 
3YE, UK 

IV.5.a. Abstract 

Oceanic plagiogranites are ubiquitously sampled in oceanic crust. At fast spreading 

ridges, they are preferentially located close to the gabbro / sheeted dike transition. The origin 

of oceanic plagiogranites is still debated; the favored formation processes are late-stage 

fractionation of tholeiitic melt, and hydrous partial melting of mafic rocks. Experimental 

studies have shown that major element compositions alone are not sufficient to discriminate 

between these two processes. Geochemical modeling is needed, but because melting and 

crystallization are complex processes, models need experimental verifications. Here we 

present the first in-situ trace element measurements of partial melts generated in partial 

melting experiments of hydrothermally altered sheeted dikes. The experiments were 

performed at those conditions prevailing at the base of the sheeted dike complex overlying 

active axial magma chambers. We also present for comparison trace element analyses of 

natural samples from the Oman ophiolite. An anatectic origin for the oceanic plagiogranites 

that are observed close to the root of the sheeted dike complex is supported by similar trace 

element patterns of experimental and natural melts. Experiment residue have the same 

composition as the so-called "granoblastic microgabbro dikes" sampled at the base of the 

sheeted dike complex, which is consistent with their interpretation as reheated and partially 

molten hydrothermally altered dikes. These results finally support a model in which the top of 

the melt lens representing the interface between magmatic and hydrothermal system is a 

dynamic horizon that can migrates vertically and interact with the overlying sheeted dikes. 

Our results imply that anatectic plagiogranitic melt formed during upward melt lens 

migrations represent the main crustal contaminant for the MORB-type melts filling the melt 

lens. The trace element compositions of anatectic silicic melts presented in this study is 

therefore of major importance to understand and simulate real MORB compositions under 

fast-spreading ridges. 
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Key words: oceanic plagiogranites, fast spreading mid-ocean ridge, hydrous partial melting, trace element, 

experimental petrology, granoblastic dikes. 

 

IV.5.b. Introduction 

Oceanic crust commonly contains relatively small intrusions of leucocratic, evolved 

material generally called oceanic plagiogranites (e.g., Koepke et al., 2004, 2007). These are 

most commonly believed to be generated either by differentiation of MORB melts (e.g., 

Coleman and Peterman, 1975; Pallister and Knight, 1981; Bonev and Stampfli, 2009), or by 

hydrous partial melting of mafic rocks (e.g., Pedersen and Malpas, 1984; Amri et al., 1996; 

Koepke et al., 2004). At slow spreading ridges, hydrous partial melting of mafic rocks is 

commonly described associated to shear zones that allow hydrothermal influx (e.g., Flagler 

and Spray, 1991; Koepke et al., 2007). In oceanic crust formed at fast spreading centers away 

from ridge segmentation and tectonic discontinuities, the origin of oceanic plagiogranites, 

commonly present at the base of the sheeted dike complex (SDC; Fig. 1a) remains debated. In 

these zones, the thermal regime and the magma supply are believed to remain stable over 

periods of tens of thousand of years (Pollock et al., 2009) preventing differentiation; only 

gaps in the magma supply would result in strongly differentiated igneous rocks. Large shear-

zones in fast-spread crust are spatially associated to ridge segmentation zones (Nicolas et al., 

2000; Nicolas and Boudier, 2008), and cannot provide hydrous fluids, with the potential to 

trigger hydrous partial melting, away from these zones. In segment centers, away from 

discontinuities, only the hydrothermal convecting system has the potential to bring fluids 

close to the magma chamber (Manning et al., 1996). Nicolas et al. (2008) propose that the 

intrusion of hydrothermal fluids in the recently crystallized, still hot, root zone of the SDC can 

trigger hydrous partial melting without any reheating event. Gillis and Coogan (2002), 

Coogan et al. (2003) and France et al. (2009a) propose that the melt lens underneath the SDC 

is a dynamic horizon that migrates vertically, with the potential of locally triggering hydrous 

partial melting in the reheated base of the hydrothermally altered SDC. In this dynamic 

model, the new melts formed during upward migrations of the melt lens can subsequently be 

incorporated into the melt lens, thus providing a source of contamination of MORB melts 

(e.g., Haase et al. 2005). 
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Figure 1: a) Outcrop in the Aswad area of the Oman ophiolite (coordinates: 23°07’23N 
58°12’06E) showing oceanic plagiogranites (felsic rocks) at the base of the sheeted dike 
complex (dark rocks). The microgabbro xenoliths and the sheeted dike complex base are 
recrystallized to granoblastic textures. 

 

Discriminating between fractionation and hydrous partial melting is not trivial and 

both processes may operate jointly in modern ocean crust (e.g., Brophy, 2008, 2009). 

Experimental studies have shown that major element compositions of oceanic plagiogranites 

are similar for the two processes (e.g., Koepke et al., 2004; France et al., 2010a). Several 

authors have proposed to model the trace element evolution of melts during both MORB 

fractionation and hydrous partial melting in order to reproduce natural trace element trends 

(e.g., Gerlach et al., 1981; Pedersen and Malpas, 1984; Flagler and Spray, 1995; Floyd et al., 

1995; Luchitskaya et al., 2005; Bonev and Stampfli, 2009). One weakness of these models is 

that hydrous partial melting of hydrothermally altered lithologies results in the simultaneous 

destabilization and stabilization of different mineral phases (incongruent melting), which 

complicate the models. However, the modal evolution is known from some relevant 

experimental studies (e.g., Beard and Lofgren; 1991, Berndt et al., 2005; France et al., 2010a) 

and can be used to improve the models (e.g., Haase et al., 2005; Brophy, 2008). Direct 

measurement of trace elements in experimental products matching the base of the SDC 

conditions is lacking for crystallization experiments simulating crystal fractionation, and only 

Fisk et al. (1995) have analyzed trace element contents of melt formed during partial melting 

experiments. However, these experiments were performed at one atmosphere and under dry 

conditions, thus, at conditions which are not relevant to those anatectic processes ongoing at 

the base of the hydrothermally altered SDC. In order to shed light on the origin of oceanic 

plagiogranites at the base of the SDC, to provide new constraints for the associated modeling, 

and to constrain the composition of the main crustal MORB contaminant, we have analyzed 
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for the first time the trace element contents of melts formed by the experimental melting of 

hydrothermally altered sheeted dikes from experiments performed by France et al. (2010a). 

These results are compared to natural samples from the Oman ophiolite, which is the best 

analogue for a fast-spreading ridge on land. 

IV.5.c. Experimental and analytical techniques 

Hydrous partial melting experiments have been performed using a representative 

sample of hydrothermally altered SDC from the Oman ophiolite as starting material (08OL30, 

details on experiments and starting material in France et al., 2010a). After crushing, two 

fractions (100-150µm and 150-250µm) have been used in a preliminary experiment to control 

the effect of grain size on the experimental results; the 150-250µm fraction has been used as it 

allowed us to obtain larger melt pools. Conditions were selected to match those prevailing at 

the base of the SDC; pressure was 100MPa, oxygen fugacity corresponded to FMQ+1.2 to 

+1.6 (where FMQ is the fayalite-magnetite-quartz oxygen buffer equilibrium) and 

temperature ranged from 850 to 1030°C. Two capsules containing 50mg of rock powder were 

run simultaneously at each temperature, one of them containing 5mg of additional distilled 

water. 

Major elements were measured using a Cameca SX 100 electron microprobe (Institut 

für Mineralogie, Hannover, Germany) and trace elements in experimental melts using a 

Cameca IMS4f ion probe (Géosciences Montpellier, France). Natural sample trace element 

contents have been measured using an ICP-MS (Department of Earth Sciences, Cardiff, UK). 

Details on analytical methods can be found in the Data Repository DR1. Analytical results 

can be found in the Data Repository DR2 and DR3. 

IV.5.d. Trace element contents 

The chondrite normalized rare earth element (REE) concentrations of the starting 

material show convex shape from the light REE to the middle REE, a slight Eu positive 

anomaly and slightly decreasing values from the middle REE to the heavy REE (Fig. 2a). 

Trace element contents of the experimental melts have been measured for 

experimental runs from 1030°C to 955°C (Figs. 2a and 2d). At lower temperatures (i.e., 

higher silica content and lower degree of partial melting) melt-pools are too small (<20µm) to 

be analyzed. REE and other trace elements continuously evolve with temperature. For 
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example, light REE continuously increase, to more than 30 times the chondrite, by 

progressively decreasing the temperature to 955°C (Fig. 2a). 

 

 
Figure 2: Chondrite normalized REE and trace elements contents (normalization after Anders 
and Grevesse, 1989). a) Experimental melts: black crosses: 955°C (40% of melt); red circles: 
970°C (50% of melt); pink diamonds: 1000°C (70% of melt); blue boxes: 1030°C (93% of 
melt), and starting material (08OL30): black dots. b): Oman samples: green triangles: 
oceanic plagiogranites (this study + Pallister and Knight, 1981); red circles: sheeted dike 
complex; black dots: granoblastic microgabbro dikes and xenoliths. c) Green triangles: newly 
formed plagiogranitic melt (955°C); red circles: starting material (highly hydrothermally 
altered sheeted dike); black dots: calculated residue (with a melt proportion of 40% estimated 
by France et al., 2010a from experiments). d) Trace element concentrations of experimental 
melts and starting material (08OL30); same symbols as a). 

 

Experiments performed to test the grain size effect (France et al., 2010a) show that 

concentrations are slightly higher when using the coarser grain size. Nevertheless, trace 

element concentrations are similar and fractionations of REE are of the same order (e.g., 

(La/Sm)N=1.18 in the finer grained experiment and 1.23 in the coarser one). The small 

differences in concentration may be linked to a slight difference in the mode of the starting 

material probably related to a sieving artifact. For each temperature, experiments containing 

only the starting material and those containing additional water have similar REE and other 

trace element contents. Light REE normalized concentrations (Fig. 2a) show convex shapes 

from La to Sm with a depletion of the lighter elements. A negative europium anomaly is 
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observed, which increases with decreasing temperature. From Gd to Lu, spectrums are mostly 

flat or slightly decrease (Fig. 2a). Normalized trace element contents (Fig. 2d) show U, and 

Zr-Hf positive anomalies, low Ba and Th values and a Sr negative anomaly; these anomalies 

are more pronounced when temperature decreases. V also strongly decreases with 

temperature. Ti/V ratio increases from ~20 at 1030°C to more than 50 at 955°C. 

Natural samples from the SDC / gabbro transition of the Oman ophiolite (Wadi 

Abyad; for map and details on the locality see MacLeod and Yaouancq, 2000) show 

interesting similarities with our experimental results (Fig. 2b). Sheeted dike complex samples 

display nearly flat REE spectrums with normalized concentrations ranging from 10 to 30 

times the chondrite. Plagiogranites are enriched in REE compared to the SDC; chondrite 

normalized spectrums show a convex shape from La to Sm and a negative Eu anomaly. 

Normalized contents slightly decrease from Gd to Lu. Enrichments reach 50 times the 

chondrite. The granoblastic microgabbro dikes, intruded by gabbros at the base of the SDC 

and the associated granoblastic microgabbro xenoliths present in the isotropic gabbros are 

largely depleted in light REE, display a positive Eu anomaly, and show slightly decreasing 

contents from middle REE to heavy REE (Fig. 2b). 

IV.5.e. Discussion 

France et al. (2010a) have shown that in the corresponding sheeted dike melting 

experiments, that the modal content of plagioclase increases with decreasing temperature. 

This is the rationale for the low BaN contents and the negative Eu, and Sr anomalies present in 

the partial melts, since theses elements are strongly incorporated in plagioclase. In 

experimental melts Sr shows a compatible behavior, whereas Eu is slightly incompatible. The 

incompatible behavior of Eu probably reflects the highly oxidizing conditions prevailing 

during the experimental runs, as the oxidized species (Eu3+) is more incompatible in a 

plagioclase / melt system, than the reduced one (Eu2+; Wilke and Behrens, 1999). The 

evolution of Ti/V ratio in natural compositions is classically used to determine the tectonic 

settings of ophiolitic rocks (Shervais, 1982). However, the presence of titanomagnetite in 

experimental results (France et al., 2010a) and the large increase of the Ti/V ratio in the 

experimental melts (from 20 to more than 50) with decreasing temperature clearly attests to 

the incorporation of V in titanomagnetite ( 1>>−meltTiMgt
VD ), and prevents the use of the Ti/V 

ratio as a discrimination tool. As experimental conditions (pressure, temperature, redox 
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conditions and composition) closely match those external parameter controlling the natural 

process, the discriminating use of such a ratio should be carefully evaluated. 

Experimental melts formed during partial melting of hydrothermally altered dikes 

reproduce the REE contents of most of the analyzed Oman plagiogranites samples (Fig. 2a-b). 

However, some natural plagiogranites show REE concentrations which are notably higher 

than those of the experimental runs (Fig. 2b). Figure 2a shows that the REE content of 

experimental melts increase by decreasing the temperature (from 1030 to 955°C). It is 

therefore to expect that in those runs performed at lower temperature, where the melt pools 

are too small to be analyzed by SIMS, the REE contents continuously increase, probably 

matching values of those natural plagiogranites with higher REE contents. Pallister and 

Knight (1981) have shown that the REE contents of Oman plagiogranites (Fig. 2c) can also be 

reproduced by MORB fractionation modeling. Thus, the mineral associations left back after 

melt extraction for both processes (incongruent mineral assemblage or residue for partial 

melting and fractionated cumulate minerals for fractional crystallization) may have similar 

REE compositions, but correspond to distinct lithologies. The residue of partial melting of the 

base of the SDC would be represented by the recrystallized base of the SDC, and by the 

associated granoblastic microgabbro xenoliths observed in underlying gabbros. The cumulate 

after the fractionation of a basaltic melt within the melt lens would be represented by plutonic 

rocks as gabbros, troctolites or werhlites. France et al. (2009a, 2010a) have shown that the 

granoblastic microgabbro dikes and xenoliths represent reheated parts of the SDC that may 

have suffered hydrous partial melting. To test this hypothesis, we have calculated the trace 

element composition of the residue present in our experiments, using the relation: 

[concentration]starting material = x [concentration]melt + (1-x) [concentration]residue, 

with x the melt fraction. The melt fraction present in our experiments has been determined by 

France et al. (2010a) via least square calculations using major element compositions of the 

starting material (corresponding to the composition of the system), the melt, and the residual 

minerals (93% of melt at 1030°C; 70% at 1000°C; 50% at 970°C and 40% at 955°C). Since 

the starting material and the melt compositions are known, the composition of the residue in 

equilibrium with the plagiogranitic melt can be calculated (Fig. 2c). Experimental melts have 

been analyzed in experiments performed between 1030°C and 955°C; as the melt formed at 

the lower temperature is the closest of plagiogranitic compositions, this experiment is used to 

calculate the residue composition. The calculated residue REE pattern is largely depleted in 

light REE, displays a positive Eu anomaly and has a convex shape from the middle REE to 
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the heavy REE, thus matching the corresponding patterns of natural granoblastic dikes and 

xenoliths from the Oman ophiolite (Fig. 2b), implying a residual origin for these rocks.  

 

 
Figure 3: La vs. Nb plot ruling out a pure dehydration origin for granoblastic dikes and 
xenoliths: average of Oman ophiolite sheeted dike (SDC Oman); starting material from the 
Oman ophiolite (08OL30); Oman ophiolite plagiogranites (Plgt); experimental melts formed 
at 955°C (955°C melt); average of Oman ophiolite granoblastic microgabbro dikes and 
xenoliths (Granob. Oman); calculated residue in equilibrium with the experimental 
plagiogranitic melt formed at 955°C (Resid. Xp). During pure dehydration, Nb is not 
mobilized by fluids and its concentration in the dehydrated rock should be similar to the 
concentration in the altered SDC. La can be mobilized by fluids and would be depleted in the 
dehydrated rock. During partial melting, both La and Th are incompatible elements and are 
enriched in the newly formed melt and depleted in the residue. 
 

Alternatively, the granoblastic lithologies may represent previously hydrothermally 

altered lithologies that have been reheated very slowly allowing dehydration without any 

partial melting. Figure 3 compares the evolution of incompatible elements that have different 

behavior during hydrous fluid percolation; La has a mobile behavior when Nb is an immobile 

element. In comparison to the sheeted dike average composition, the granoblastic 

microgabbro dikes and xenoliths are depleted in both La and Nb, whereas oceanic 

plagiogranites are enriched (Fig. 3). Similar observation can be done with experimental 

results (Fig. 3). In the case of an origin through SDC dehydration, the granoblastic 

microgabbro dikes would have Nb contents similar to the SDC ones. Figure 3 clearly attests 

of the incompatible behavior of La and Nb during partial melting process and rules out a pure 

dehydration origin. The composition similarities between experimental melts and oceanic 



 

 164

plagiogranites, between the experimental residue and granoblastic microgabbros and the close 

association of plagiogranitic rocks with granoblastic microgabbros in natural settings clearly 

attest of the anatectic origin of oceanic plagiogranites present at the sheeted dike gabbro 

transition. Granoblastic microgabbro dikes and xenoliths are therefore interpreted as residue 

of partial melting of previously hydrothermally altered dikes. 

The anatectic origin of oceanic plagiogranites present at the base of the SDC, and the 

prograde origin of granoblastic microgabbros support recent models proposing that the upper 

melt lens imaged at the base of the SDC of fast spreading centers is a dynamic horizon (e.g., 

Gillis and Coogan, 2002; Coogan et al., 2003; Koepke et al., 2008; France et al., 2009a). 

Upward migrations of this melt lens should therefore be responsible for the reheating stage 

triggering partial melting of the previously hydrothermally altered SDC base. During the melt 

lens upward migrations, the formed plagiogranitic liquid can be mixed into the melt lens and 

contribute to MORB composition. Melt lens migrations are inferred from several oceanic 

settings as the EPR (e.g., Hooft et al., 1997; Koepke et al., 2008; France et al., 2009a), the 

Troodos ophiolite (e.g., Gillis and Coogan, 2002), and the Oman ophiolite (e.g., Gillis, 2008; 

France et al., 2009a), and 20% of the oceanic crust are considered to go through a cycle of 

crystallization, alteration, and then assimilation (Coogan et al., 2003). The melt formed during 

melting of hydrothermally altered dikes is hence the main contaminant component at the melt 

lens level, and the knowledge of its composition determined herein is therefore of major 

interest. 
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IV.5.f. DR 1: Analytical methods: 

Experimental results were analyzed using a Cameca SX100 electron microprobe 

(Institüt für Mineralogie, Hannover) equipped with 5 spectrometers, “Peak sight” software is 

used. All analyses were performed using a 15kV acceleration potential, a static (fixed) beam, 

Kα emission from all elements. The matrix correction is based on Pouchou and Pichoir 

(1991). Analyses of glass were performed with a beam current which was set to 6nA to 

minimize migration and volatilization of the alkali elements. Counting time was from 2 to 5 s 

for Na and K and from 5 to 10 for other elements (Si, Ti, Al, Mg, Fe, Ca, Mn, Cr). In the 

experiments where melt pools are large enough, the beam was defocused to a spot size of 5 to 

20µm. Backscattered electron (BSE) images were also obtained on the Cameca SX100 

electron microprobe. 

Trace element analyses on experimental results were carried out at the Géosciences 

Montpellier lab (Montpellier, France) using a Cameca IMS4f ion probe. Polished sections of 

the experimental results were carbon-coated. We used a 15 kV accelerating voltage of O- 

primary beam with a 10 nA intensity. To reduce mass interference by molecular ion species, 

the energy filtering method was used where secondary ions were subjected a 4500 V 

accelerating voltage with a -80 V offset with ±30 eV energy window (Shimizu and Hart, 

1982). A mass resolving power of 500, and a projected beam size between 20 and 30 µm were 

used. Each analysis consists of 10 cycles starting from 25.7 mass (used as background and for 

magnet adjustment), then 30Si (2 s), 45Sc (2 s), 47Ti (2 s), 51V (2 s), 88Sr (2 s), 89Y (2 s), 90Zr (2 

s), 93Nb (10 s), 137Ba (10 s), 180Hf (20 s), 232Th (30 s), 238U (30 s) and almost all the rare earth 

isotopes (10 s) (counting time in bracket). The counting time is 30 s for Eu and 20 s for Lu. 

The data were corrected for oxide interferences (e.g., Fahey et al., 1987). Concentrations 

recalculated using 30Si as the reference mass showed no systematic offset induced by the 

choice of the reference element. The calibration factor was determined from the measurement 

of NIST 610 (Reed, 1992; Pearce et al., 1997) at the beginning and the end of each analytical 

session. Typical error on the samples (1 sigma error of mean: s/pn, n = number of cycles) is 

less than 15% for all trace elements, except for Tb, Er, Lu, Hf (<17.5%), Th (23%) and U 

(32%). Signal stability was also carefully monitored for every analysis. 

Trace element contents of Oman samples have been performed at the Department of 

Earth Sciences at the Cardiff University by using an ICP-MS. 
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IV.5.g. DR 2: Major element compositions  

Sample Phase SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg#

08OL30 whole rock 53.55 15.98 1.48 7.64 4.72 0.20 0.07 5.30 9.84 - - 0.12 98.90 1 49.0 

1030 melt_recalc. 55.48 17.25 1.54 7.77 5.09 0.20 0.05 3.66 8.94 0.00 0.00 0.00 100.00 58 42.2 

1000 melt_recalc. 59.16 17.80 1.29 5.90 5.98 0.27 0.07 2.77 6.76 0.00 0.00 0.00 100.00 33 42.2 

970 melt_recalc. 62.99 17.81 1.18 4.40 5.85 0.37 0.05 1.99 5.29 0.00 0.00 0.09 100.00 38 40.2 

955 melt_recalc. 64.36 17.66 1.03 3.83 5.76 0.44 0.04 1.67 4.99 0.02 0.00 0.11 100.00 22 37.3 

940 melt_recalc. 69.34 17.72 0.71 1.98 5.66 0.91 0.02 0.71 2.70 0.08 - 0.13 100.00 35 28.0 

910 melt_recalc. 69.29 17.35 0.49 2.25 5.46 1.16 0.02 0.65 2.93 0.13 0.00 0.06 100.00 27 28.5 

880 melt_recalc. 71.19 16.90 0.40 1.88 5.56 1.32 0.02 0.42 2.01 0.06 0.00 0.04 100.00 27 27.0 

850 melt_recalc. 72.63 16.54 0.29 1.30 4.92 2.21 0.00 0.25 1.62 0.08 0.00 0.02 100.00 12 22.0 
The sample name is 08OL30 for the starting material; for experiments, it corresponds to the 
experimental temperature (in °C); “melt_recalc.”: melt composition recalculated at 100%; n: 
number of analyses; Mg#=Mg/[Mg+Fe] in molar proportions. 
 

IV.5.h. DR 3: Trace element compositions 

These are presented in Appendix B3. 
 

IV.6. Conclusion 

The experimental study and associated geochemical investigations presented in this 

chapter, coupled with the field and petrological studies presented in Chapter III, support the 

interpretation of oceanic plagiogranites that are present close to the base of the sheeted dike 

complex at fast spreading ridges, as anatectic rocks formed during the reheating of altered 

sheeted dikes. Such a reheating stage is consistent with the models presented by Gillis (2008), 

Koepke et al. (2008), and France et al. (2009a), which describe the melt lens present at fast 

spreading ridges as a dynamic system that can migrate vertically. The chemical composition 

(major and trace elements) of the experimentally formed melt, which can mix within the melt 

lens, is also determined for the first time, well-suited for the quantification of MORB 

contamination at fast-spreading ridges. 

The performed experiments also provide new constraints on the origin of granoblastic 

microgabbros occurring at the base of the SDC, and as xenoliths in the isotropic gabbro 

horizon below the SDC. The granoblastic microgabbronorite dikes and xenoliths have lower 

incompatible element contents (e.g., light REE) than the regular diabases from the sheeted 

dike complex, resulting from dehydration and / or partial melting. Granoblastic 

microgabbronorite dikes and xenoliths therefore should be distinguished from those 
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microgabbros which are regarded as the roots of late basaltic dikes emplaced in the very hot 

environment at base of the SDC and slowly cooled to typical protodikes (e.g., Nicolas et al., 

2008). A partial melting event, locally triggered by a fluid ingression in recently crystallized 

rocks as proposed by Nicolas et al. (2008) is also ruled out. In that model, the fluids migrate 

downward along localized pathways (cracks and/or faults); hence one should expect to see 

gradients of recrystallization from fully recrystallized rocks close to fluid pathways to 

doleritic rocks away of these pathways. This is in contrast with the base of the sheeted dike 

complex that is pervasively recrystallized to granoblastic microgabbronorites. 

The occurrence of numerous tiny oxide inclusions in newly formed clinopyroxenes, 

interpreted as results from prograde metamorphism (Chapter II), is reproduced 

experimentally, and results from recrystallization after amphibole. Manning and MacLeod 

(1996) have described metamorphic retrograde clinopyroxenes that are associated to oxides. 

However, these oxides occur in association with granular clinopyroxene grains at the contact 

with amphibole, close to amphibole bearing veins, and not as inclusions in clinopyroxenes as 

in granoblastic microgabbro dikes. These retrograde oxide-clinopyroxene assemblages may 

recall the petrology of granoblastic microgabbro dikes that contain several granular oxides; 

nevertheless in the case of retrograde evolution, it only occurs in normal gabbros close to late 

hydrothermal veins in contrast with granoblastic microgabbro dikes where the oxides occurs 

pervasively and associated to fully recrystallized textures. 

The peculiar characteristics of granoblastic microgabbro dikes presented herein (mineral 

major element compositions, whole-rock trace element composition, occurrence of oxide 

inclusions in clinopyroxenes, and occurrence of granoblastic microgabbro xenoliths in the 

isotropic gabbro and foliated gabbro) clearly show that their formation is related to prograde 

metamorphism, i.e. reheating. Trace elements also support a residual origin after partial 

melting rather than a metamorphic one in the sub-solidus regime (where rocks are reheated 

and dehydrated without any partial melting). Nevertheless, both processes may co-exist. 

Samples with the lowest TiO2 and Al2O3 contents in clinopyroxenes are expected to be 

equilibrated under temperatures that are below the hydrous solidus, and may represent 

dehydrated rocks that have not undergone any hydrous partial melting. Koepke et al. (2008) 

have shown that in a single sample, “dry” and “wet” domains coexist. Hence, it is expected 

that both pure dehydration and anatexis can occur in a single sample, depending on the 

previous hydrothermal alteration extent and heterogeneity. 

The experimental results also provide the basis for a new thermometer, which can be 

applied to tholeiitic to calc-alkaline rocks crystallized at shallow pressure (~100 MPa) at the 
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transition between magmatic and metamorphic processes, under water-saturated conditions 

and relatively oxidizing conditions (slightly higher than the FMQ equilibrium). It is based on 

the temperature dependence of Al incorporation in clinopyroxene under these conditions. 
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In Chapters 3 and 4, I have shown that the melt lens is a dynamic horizon that can 

migrates upward with the potential to reheat and assimilate the base of the hydrothermally 

altered sheeted dike. I have also shown that the isotropic ophitic gabbros that are found below 

the sheeted dike complex represent the fossilization of this melt lens. Several successive 

upward and downward migrations of the melt lens roof can also result in the reheating and 

assimilation of some isotropic gabbros (Chapter 3). 

A detailed study of the isotropic gabbro horizon is required to highlight the 

assimilation processes and should help to constrain the fossilization processes. 

A detailed study of the isotropic gabbros recovered at IODP Site 1256 is presented in a 

paper submitted to Geochemistry Geophysics Geosystems (Koepke et al.; Appendix A4). It 

shows that assimilation of previously hydrothermally altered dikes is a widely developed 

process and confirms the model presented in France et al. (2009a). This study also shows that 

the isotropic gabbros are highly heterogeneous with different generations of melts 

crystallizing in close association, and that the isotropic gabbros have in average more evolved 

compositions than the overlying sheeted dike complex and lavas. 

A similar study of the Oman ophiolite isotropic gabbro horizon would help to further 

constrain the fossilization process. I present hereafter a preliminary study of two peculiar 

coarse-grained gabbros sampled in the Wadi Rajmi area, in the northern massifs of the Oman 

ophiolite (Figure III-1). This preliminary study shows that high water activities can locally 

occur in the melt lens, in association with recycled lithologies. The Wadi Rajmi area is 

located close to a segment boundary and large shear zones are observed in the mantle section, 

hence results presented here cannot be generalized for sure to a single model of evolution of a 

dynamic melt lens. The objective of this preliminary study is to highlight petrological 

processes occurring when hydrothermally altered lithologies are reheated and recycled. 

Two peculiar coarse grained gabbros have been studied (07OL34 and 07OL36). Figure 

V-1 presents the outcrop of sample 07OL36. A spotty, coarse-grained gabbro containing 

orthopyroxene megacrysts intrudes a fine-grained isotropic gabbro that is characteristic of the 

isotropic gabbro horizon (Figure V-1). Some thin leucocratic dikelets are observed in the fine-

grained isotropic gabbro; these probably represent products of anatexis. The coarse-grained 

gabbro either represents the anatectic product of the fine-grained gabbro, or the crystallization 

of a melt originated deeper in the section. 
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Figure V-1: Outcrop showing the sampling area of sample 07OL36. Two main facies are 
observed: a fine-grained gabbro and a spotty coarse-grained one containing orthopyroxene 
megacrysts. 
 

Sample 07OL36 contains two domains; the first one is composed of large poikilitic 

plagioclase grains, which contain smaller granular clinopyroxene chadacrysts (Figure V-2a-b, 

Figure V-3, Figure V-4). Some poikilitic orthopyroxene and amphibole grains containing 

granular clinopyroxene chadacrysts are also observed (Figure V-4). The second domain is 

mainly composed of clinopyroxene grains containing tiny oxide inclusions and subordinated 

amphibole (Figure V-3b). The two domains are organized as patches and are homogeneously 

distributed in the sample (Figure V-4). Close to the contact between the two domains, some 

clinopyroxene grains containing tiny oxide inclusions are included in the poikilitic 

plagioclases. Some quartz is locally observed. 

Sample 07OL34 is composed of large clinopyroxene and plagioclase grains. 

Plagioclase grains contain numerous small individual clinopyroxene inclusions (Figure V-2c-

f). Back-scattered electron (BSE) images show that clinopyroxene grains are compositionally 

heterogeneous. The inclusions display a zonation with a relatively sharp contact between the 

core and the margin (Figure V-5a-b). Large clinopyroxene grains display heterogeneous cores 

and homogeneous thin margin (<100µm; Figure V-5c-d). 
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Figure V-2: Microphotographs of samples 07OL36 (a-b), and 07OL34 (c-f); plane-polarized 
light for a, c, e, and cross-polarized light for b, d, f. a-b) poikilitic plagioclase grains contain 
several individual granular clinopyroxene grains that are devoid of oxide. On the left side of 
the picture, a dark domain exclusively composed of clinopyroxenes containing tiny oxide 
inclusions is observed. c-f) Large plagioclase grains containing numerous individual 
clinopyroxene inclusions. 
 

In-situ mineral compositions have been analysed using a CAMECA SX-100 

microprobe (Montpellier) and are presented in Appendix B4. In sample 07OL36, minerals 

from different domains display different compositions. The granular clinopyroxenes included 

in the poikilitic plagioclases have higher Al2O3, TiO2 and Cr2O3, and lower CaO contents than 
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the clinopyroxenes containing numerous tiny oxide inclusions in the clinopyroxene rich 

domains. Close to the poikilitic plagioclase domains, clinopyroxenes containing tiny oxide 

inclusions have margins with compositions similar to the granular clinopyroxenes contained 

in plagioclases. 

 

  
Figure V-3: Back-scattered images of sample 07OL36. left image: poikilitic plagioclase 
containing free of oxide granular clinopyroxene grains; right image: two zones are present in 
sample 07OL36 and separated by the yellow line: the left domain is composed of poikilitic 
plagioclase containing granular clinopyroxene grains that are devoid of oxide, and the right 
domain is nearly exclusively composed of oxide-bearing clinopyroxenes and subordinated 
amphiboles. 

 

In 07OL36 the Mg# of clinopyroxenes is 77 on average; plagioclases have An 

contents up to 93 (88 on average). Amphiboles are actinolite, hornblende and edenite. 

Temperature estimations using the semi-quantitative thermometer of Ernst and Liu (1998) are 

up to 780°C. Temperature estimations using the two-pyroxene thermometer of Andersen et al. 

(1993) give 895±45°C using the granular clinopyroxenes contained in poikilitic plagioclases 

and 862±67°C using the clinopyroxenes containing tiny oxide inclusions. Temperature 

estimations using the Al in clinopyroxene thermometer of France et al. (2010a) give 922°C 

for the granular clinopyroxenes contained in poikilitic plagioclases and 822°C using the 

clinopyroxenes that contain tiny oxide inclusions. In 07OL34, plagioclases have An contents 

up to 99 (96 on average). Two different types of clinopyroxene, bright and dark, are observed 

on the BSE images (Figure V-5). The bright ones, which compose the core of clinopyroxene 

inclusions observed in large plagioclase grains, are enriched in iron (Mg#=83) compared to 

the dark ones (Mg#=92). The core of large clinopyroxene grains is heterogeneous and 

composed of both clinopyroxene species (bright and dark in the BSE images; Figure V-5c-d), 

and the margin is homogeneous and composed of the dark species. Temperature estimation 
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using the Al in clinopyroxene thermometer of France et al. (2010a) gives on average 816°C 

(811°C for the “bright” clinopyroxenes and 821°C for the “dark” ones). Amphiboles are 

actinolites and hornblendes; temperature estimations using the semiquantitative thermometer 

of Ernst and Liu (1998) are up to 841°C. 

 

 
Figure V-4: Compositional image (Al+Ca+Mg) of sample 07OL36 (image width: 1.5cm). 
Blue: plagioclase; yellow: granular clinopyroxene devoid of oxide; green: clinopyroxene 
containing tiny oxide inclusions; red: orthopyroxene; purple: amphibole. Note the patchy 
texture of the sample with zones composed exclusively of clinopyroxene containing tiny oxide 
inclusions and subordinated amphibole and zones composed of poikilitic plagioclase 
containing granular and clinopyroxene grains that are devoid of oxide. A poikilitic amphibole 
grain is observed in the central-left lower part of the image and poikilitic orthopyroxenes are 
observed in the central upper part and in the lower right part of the image. The white box 
indicates the location of the picture in Figure V-3b. 
 

Although they represent only minor amounts of the recovered lithologies in present 

day oceanic crust and in ophiolites, samples containing high-An content plagioclases, high-

Mg# clinopyroxenes, and / or clinopyroxene crystallizing before plagioclase are commonly 
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described (e.g., Ridley et al., 2006; Cordier et al., 2007; Koepke et al., 2009). Such peculiar 

samples should bring important information on processes occurring at least locally within the 

oceanic crust. 

 

 
Figure V-5: Back-scattered images of sample 07OL34. a-b) zoned clinopyroxene inclusions in 
a plagioclase grain; the contact between the core (iron enriched) and the margin (magnesium 
enriched) is sharp. c-d) Large clinopyroxene grain displaying a heterogeneous core and a 
homogeneous margin (magnesium enriched). 
 

The occurrence of clinopyroxene inclusions in plagioclase of sample 07OL34, and of 

poikilitic plagioclases containing granular clinopyroxenes in sample 07OL36 (Figure V-2, 

Figure V-3, Figure V-4, Figure V-5), highlights the late crystallization of plagioclase with 

respect to clinopyroxene. This feature is not characteristic of typical dry MORB melts that 

crystallize plagioclase first (e.g., Grove and Bryan, 1983). Alternatively, it is described in 

subduction settings where water activities are high (e.g., Gaetani et al., 1993). The early 

crystallization of clinopyroxene is also observed in the crystallization of evolved MORB 

melts in water-rich environments corresponding to highly oxidizing conditions (Berndt et al., 

2005), and in the crystallization of primitive tholeiitic basalts under high water activities and 

oxidizing conditions (Feig et al., 2006; Figure V-6). The early crystallization of clinopyroxene 
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with respect to plagioclase is therefore always associated to high water activities. Hence in 

both studied samples (07OL34 and 07OL36), the early crystallization of clinopyroxene is 

attributed to a water rich environment. 

 

 
Figure V-6: Temperature vs. water content phase relations diagram for hydrous tholeiitic 
basalt at 200MPa (after Feig et al., 2006). Curves with “+” represent the stability curves of 
minerals and curve with “-” show the end of the stability field. Yellow field highlight the field 
where clinopyroxene crystallizes before plagioclase. 
 

Hydrous conditions are usually not expected at mid-ocean ridges (e.g., Michael and 

Chase, 1987) but as shown in Chapters 3 and 4 and in recent studies (e.g., Coogan, 2003; 

Bosh et al., 2004; Cordier et al., 2007; Nicolas et al., 2008; Koepke et al., 

submitted_Appendix A4) high temperature hydrothermalism and / or melt lens dynamics may 

result, at least locally, in melt hydration. The poikilitic texture of some amphiboles, 

containing granular clinopyroxenes, points to their magmatic origin and also support the 

crystallization after a hydrous melt. However, maximum temperature estimations performed 

on these amphiboles are up to 780°C and point to a subsolidus equilibration, probably 

indicating a re-equilibration at lower temperature during the retrograde evolution. The 

occurrence of orthopyroxene in sample 07OL36 is also consistent with the crystallization of a 

hydrous melt (Boudier et al., 2000; Feig et al., 2006). 

Mineral major element compositions, especially those of clinopyroxene and 

plagioclase, are peculiar and also uncommon for MORB systems. Clinopyroxene Mg# is up to 

96 in sample 07OL34 and up to 82 in sample 07OL36, and plagioclase An contents are up to 

99 in sample 07OL34 and up to 93 in sample 07OL36. These values are clearly higher than 

classical minerals in typical dry MORB systems. They can be attributed either to Mg-Ca rich 
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melts nearly free of Fe-Na (Panjasawatong et al., 1995; Kohut and Nielsen, 2003; Ridley et 

al., 2006), or to the crystallization under high water activities (e.g., Hattori and Sato, 1996; 

Kuritani, 1998; Ginibre et al., 2002; Landi et al., 2004; Feig et al., 2006; Cordier et al., 2007; 

Koepke et al., 2009). The occurrence of a gabbro xenolith recovered in basalts at the East 

Pacific Rise (Ridley et al., 2006), which contain high-An plagioclase, has been attributed to 

the crystallization of a Ca-supra rich melt principally because water-rich magmas are 

unexpected at oceanic spreading centers. Nevertheless such Ca-rich melt (or Ca-Mg-rich 

melts) have never been sampled and alternatively, we have shown in Chapters 3 and 4 and in 

Koepke et al. (submitted; Appendix A4) that hydrous melts can occur at the melt lens level. 

Using the melt fractionation trend calculations performed by Kvassnes et al. (2004) using 

MELTS (Ghiorso and Sack, 1995), mineral compositions of the studied samples (07OL34 and 

07OL36) are consistent with a wet fractionation trend (Figure V-7). Taking into account the 

uncommon crystallization sequence and mineral compositions, the studied samples (07OL34 

and 07OL36) are interpreted as resulting from the crystallization of a hydrous melt. Although 

the hydrated nature of the melt is established, the hydration origin remains unclear and has yet 

to been constrained. 

 

 
Figure V-7: Mg# in clinopyroxene vs. An content of plagioclase (after Kvassnes et al., 2004. 
The dry and wet fractionation trends are from Kvassnes et al. (2004), and calculated using 
MELTS (Ghiorso and Sack, 1995); both fractionation trends are calculated for different 
initial compositions. The studied samples (07OL34 and 07OL36) overlap the wet 
fractionation trend. 
 

In sample 07OL36, the origin of oxide-bearing clinopyroxene domains is unclear. The 

origin of oxide inclusions can be attributed either to low-temperature alteration occurring 
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during the retrograde evolution (Manning and MacLeod, 1996), or to recrystallization after 

amphibole of previously hydrothermally altered lithologies occurring during a reheating stage 

(France et al., 2009a, 2010a). The mineralogical distribution in the sample, with two different 

domains (domains with poikilitic plagioclases containing granular clinopyroxenes that are 

devoid of oxide, and domains with oxide-bearing clinopyroxenes) can be used to discuss 

further the origin of oxide inclusions. The absence of oxide in granular clinopyroxene 

chadacrysts hosted by poikilitic plagioclase may be explained by the fact that they are isolated 

from percolating hydrothermal fluids, and therefore not altered. However, the local 

occurrence of oxide-bearing clinopyroxenes in unaltered poikilitic plagioclases rules out this 

hypothesis, and attests to the earlier origin of oxide-bearing clinopyroxenes with respect to the 

poikilitic plagioclases. This early crystallization of oxide-bearing clinopyroxenes is also 

supported by the occurrence at the borders of domains composed of oxide-bearing 

clinopyroxenes, of some oxide-bearing clinopyroxenes that display margins with 

compositions similar to oxide-free granular clinopyroxenes hosted by poikilitic plagioclases 

(Figure V-8). A secondary origin of the free of oxide granular clinopyroxenes and associated 

to poikilitic plagioclases with respect to the oxide-bearing clinopyroxenes is therefore 

attested. 

The absence of plagioclase in the oxide-bearing clinopyroxene domains is also unclear 

(Figure V-4). The hydrous partial melting of previously hydrothermally altered dikes leads to 

the stabilisation of clinopyroxene at higher temperature than plagioclase, and have therefore 

the potential to stabilize clinopyroxenitic residue (France et al., 2010a). During such a 

hydrous partial melting stage, the recrystallization of clinopyroxene after amphibole leads to 

the occurrence of oxide-bearing clinopyroxene similar to those observed here (France et al., 

2010a). The oxide-bearing clinopyroxene domains are therefore interpreted as representing a 

residue after the hydrous partial melting of a previously hydrothermally altered protolith. This 

hydrous partial melting event produces a hydrous melt that may mix with classical MORB 

melts contained within the melt lens and results in the crystallization of the surrounding 

domains where clinopyroxene crystallize before plagioclase and where mineral compositions 

attest to a water rich environment. Clinopyroxene from the two domains have different 

compositions, which is consistent with this scenario (Figure V-8). Oxide-bearing 

clinopyroxenes interpreted as residues have lower Cr2O3 and Al2O3 contents than the oxide-

free clinopyroxenes interpreted as magmatic, and hence are equilibrated at lower temperature 

(France et al., 2010a). Furthermore, oxide-bearing clinopyroxenes plot well within the field of 

residual clinopyroxenes from granoblastic dikes and of residual clinopyroxenes formed after 
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the melting of hydrothermally altered dikes (France et al., 2009a, 2010a), whereas the oxide-

free granular clinopyroxenes plot on average off that trend (Figure V-8), pointing to a likely 

magmatic origin. Temperature estimations performed using the two-pyroxene thermometer 

(Andersen et al., 1993) and using the Al in clinopyroxene thermometer (France et al., 2010a) 

also give higher temperature for the oxide-free granular clinopyroxene, consistent with a 

magmatic origin (the solidus temperature of hydrothermally altered dikes is 850°C according 

France et al., 2010a). 

 

 
Figure V-8: Correlation between TiO2 and Al2O3 in clinopyroxene. The studied samples 
(07OL34 and 07OL36) are compared to clinopyroxenes in granoblastic dikes (green field; 
compositions from France et al., 2009a), and to experimental and natural data from oceanic 
crust lithologies. Experimental data (dashed field) are from Snyder et al. (1993), Toplis and 
Carroll (1995) and Toplis et al. (1994) for Fe-Ti MORB crystallization experiments, from 
Berndt et al. (2005) and Feig et al. (2006) for hydrous crystallization experiments in primitive 
MORB-type system, from Grove and Bryan (1983) and Kinzler and Grove (1992) for MORB 
crystallization experiments, and from Koepke et al. (2004) for clinopyroxenes formed during 
hydrous partial melting of gabbros. Natural data (grey field) for oceanic crust lithologies are 
from Dziony et al. (2008) for IODP Hole 1256D sheeted dikes not affected by granoblastic 
imprint, from Miyashita et al. (2003) and Pallister and Hopson (1981) for Oman ophiolite 
sheeted dikes and gabbros, and from Boudier et al. (2000) and Gerbert-Gaillard (2002) for 
Oman gabbronorites. “07OL34 dark” corresponds to the dark parts of clinopyroxenes on 
BSE images; “07OL34 bright” corresponds to the bright parts of clinopyroxenes on BSE 
images; “07OL36 magmat.” corresponds to free of oxide granular clinopyroxenes hosted by 
poikilitic plagioclases; “07OL36 recycl.” corresponds to the oxide-bearing clinopyroxenes; 
“07OL36 recycl. margins” corresponds to the margins of the oxide-bearing clinopyroxenes. 
 

 In sample 07OL34 the hydrated nature of the originated melt is supported by the 

crystallization sequence and the mineral compositions. The high water activity of the 

crystallizing melt can’t be related to magmatic fluids as only minor amounts are present in 
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normal MORBs. The water origin can be either attributed to the tectonic setting of the studied 

area (segment end; Boudier et al., 2000), or to the shallow subduction occurring during the 

early obduction (see discussion in section III.1; e.g., Koepke et al., 2009), or to recycling of 

previously hydrothermally altered rocks (e.g., France et al., 2009a).  

The occurrence of clinopyroxene zoned inclusions in plagioclase is meaningful: this 

zonation is reverse with cores enriched in iron in comparison with the margins, and the 

contact between cores and margins is sharp. The margins are therefore equilibrated with a 

more primitive melt (containing at least the same water content to account for the high An 

content of plagioclases) and / or with a melt with higher water activities. The sharp contact 

between inclusions cores and margins can be attributed either to a sudden magma recharge 

(with a more primitive composition and / or higher water activities) or to an inherited origin 

of the cores. The Al2O3 contents are similar in cores and margins, and suggest a similar 

equilibration temperature (~815°C according France et al., 2010a). The low Al content, and so 

the low temperature recorded in inclusion cores can’t be attributed to re-equilibration with 

surrounding minerals as a sharp contact is observed with inclusion margins. Furthermore only 

the crystallization of a highly primitive melt or of a hydrous melt can account for the Mg# 

(83) of the inclusion cores. Temperature (~810°C) obtained for inclusion cores is incoherent 

with highly primitive melts; these cores have therefore probably crystallized after a water rich 

melt similarly to the inclusion margins. The origin of water (linked to the tectonic setting, to 

the early obduction, or to recycling) can’t be determined without doubt, but the sharp contact 

between inclusion cores and margins point to a recycled origin. Hydrous magmas are indeed 

expected at segment ends and during the shallow subduction process but sudden change in the 

magma composition is not expected while it does during recycling. Sample 07OL34 has 

therefore crystallized under high water activities, probably consequently to the recycling of 

hydrothermally altered lithologies. 

The recycling event proposed in the genesis of both studied samples can be attributed 

either to vertical movements of the upper melt lens present at fast spreading ridges (e.g., 

France et al., 2009), or to a magma intrusion close to previously hydrothermalized lithologies 

(e.g., Koepke et al., 2007). Such intrusions are observed in the Oman ophiolite and attributed 

to a second magmatic stage triggered by the early obduction (e.g., Boudier et al., 1988; 

Koepke et al., 2009). Finally, the cause of the recycling stage can’t be determined, and this 

preliminary study can’t be used to further constrain the general dynamic model highlighted by 

France et al. (2009). Nevertheless, it highlights processes occurring when recycling of 

hydrothermally altered lithologies occurs. 
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At least part of the upper and lower oceanic crust formed at fast spreading ridges is fed 

by the upper melt lens that is imaged at the base of the sheeted dike complex. Hence the role 

of the melt lens in oceanic crust genesis is critical. Interactions between the melt lens and the 

overlying, hydrothermally altered sheeted dike complex may have first-order consequences on 

the melt composition, and therefore on the whole oceanic crust composition. The objective of 

this study was to identify the different processes occurring within the melt lens and at the 

interface between this melt lens and the overlying sheeted dikes. To study these processes, I 

carried out comparison between the Oman ophiolite and IODP Hole 1256D, the first drilling 

hole that has reached the sheeted dikes / gabbro transition. Detailed field studies have been 

performed in the Oman ophiolite, and the Oman samples have been petrologically and 

geochemically studied, and compared to samples from IODP Hole 1256D. An experimental 

study that reproduces partial melting of hydrothermally altered dikes at the top of the melt 

lens has also been carried out.  

The main results are: 

 In the Oman ophiolite and at IODP Site 1256, the base of the sheeted dike 

complex is truncated by isotropic gabbros. These gabbros locally contain 

olivine and can be either fine or coarse grained. 

 The base of the truncated dikes is recrystallized to a well equilibrated 

(granoblastic texture) granulitic assemblage. The granoblastic dikes are 

composed of plagioclase, clinopyroxene, oxides, and orthopyroxene. The 

clinopyroxenes contain numerous tiny oxide inclusions. 

 Numerous xenoliths of either gabbro or granoblastic microgabbro and 

granoblastic microgabbronorite are observed within the isotropic gabbro 

horizon. A xenolith accumulation is also observed close to the isotropic / 

foliated gabbro transition. 

 Numerous granoblastic patches and other evidences of assimilation are 

observed within the isotropic gabbro horizon. 

 Experimental melts formed during partial melting of hydrothermally altered 

dikes are highly silicic and similar to the oceanic plagiogranites observed close 

to the sheeted dikes / gabbro transition. 

 Patterns of trace element analysed with SIMS in the experimental melts are 

similar to those of typical oceanic plagiogranites observed close to the sheeted 

dikes / gabbro transition. 
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 The residual assemblage after the experimental partial melting of 

hydrothermally altered sheeted dikes is petrographically and geochemically 

similar to the granoblastic dikes and xenoliths. 

 

These different observations support the following conclusions: 

 The sheeted dikes / gabbro transition (hydrothermal / magma transition) in the 

Oman ophiolite and at IODP Site 1256 can be described in a single coherent 

model, which reconciles apparently contrasting previous models. This model 

proposes that the melt lens underlying the sheeted dike complex is a dynamic 

horizon that can inflate and deflate and / or migrate upward and downward. A 

review of the associated time-scales is presented in the article that describes 

this model (France et al., 2009a); it shows that the identified melt lens 

migrations are associated to time scales ≤10,000 years. 

 Upward migrations of the top of the melt lens result in the reheating of the base 

of the sheeted dike complex, and in the assimilation of hydrothermally altered 

diabases (France et al., 2009a; Koepke et al., submitted_Appendix A4). 

 The origin of microgranular dikes and xenoliths present at the base of the 

sheeted dike complex is bimodal. Some have crystallized in a still hot, hydrous 

environment and have a pure magmatic origin (protodikes; Nicolas et al., 1991, 

2008), and some are recrystallized in the amphibolite to granulite facies during 

the reheating event associated to upward migrations, and can therefore be 

regarded as metamorphic products (granoblastic dikes). Both processes result 

in very similar textures, and a multi-disciplinary study (field observations, 

petrological characterization, and geochemical characterization) is necessary to 

decipher the origin of a given sample. 

 The partial melting of hydrothermally altered diabase start at temperatures as 

low as 850°C. 

 The chemical composition (major and trace elements) of the melt formed 

experimentally during hydrous partial melting of the base of the sheeted dikes, 

and the associated phase relations have been determined (France et al., 2010a, 

2010b). The obtained trace element composition is a useful reference for future 

detailed geochemical MORB investigations. 
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 Hydrous partial melting of the base of the hydrothermally altered sheeted dike 

complex produces a plagiogranitic hydrous melt, and a residue that is 

compositionally similar to granoblastic dikes (France et al., 2010a, 2010b). 

 Assimilation of hydrothermally altered diabases in the melt lens is a common 

process and results in contamination processes in the melt lens (France et al., 

2009a; 2010b). 

 Downward migrations of the top of the melt lens result in the crystallization of 

isotropic gabbros. The isotropic gabbro horizon represents the fossilized melt 

lens (France et al., 2009a). 

 At IODP Site 1256, the bottom of the hole is expected to be very close to the 

melt lens / magma chamber transition, which is assumed to be the isotropic / 

foliated gabbro transition (France et al., 2009a). 

 A new thermometer relevant for rocks crystallized at the melt lens level has 

been elaborated (France et al., 2010a). It is based on the Al content of 

clinopyroxenes: 

T = 93.145 Al2O3 + 742 

 

The proposed model could be further tested by complementary studies, which include 

the following: 

 As proposed in France et al. (2009a), analyzing the Cl and F content of 

amphiboles present in the isotropic gabbros should attest of the recycled origin 

of the fluid crystallizing the magmatic amphiboles. 

 A detailed petrological and geochemical study of the isotropic gabbro horizon 

in the Oman ophiolite, compared with the precise study of this horizon at IODP 

Site 1256 (Koepke et al., submitted; Appendix A4), and an in-situ trace 

element study of the different minerals from the isotropic gabbro horizon, in 

both the Oman ophiolite and IODP Hole 1256D, should bring further 

constraints to our understanding of the processes occurring within the melt 

lens, and of the processes that result in the melt lens fossilization. 

 An experimental study of the melting of partially hydrothermally altered 

sheeted dikes containing magmatic minerals relics may precise the melting 

reactions occurring during the upward migrations of the top of the melt lens. 
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Results presented in by France et al. (2010a) are obtained using a fully altered 

starting material which may be to simplistic to reproduce natural processes. 

 An in-situ measurement of the Fe3+/Fe2+ ratio in minerals of the different 

oceanic lithologies will help to further constrain the available models for the 

accretion of ocean crust, of lower crustal rocks, down to the base of the crust. It 

will also help to constrain the influence of water during the crystallization of 

the different oceanic lithologies. Such analyses should be performed with the 

help of synchrotron radiation tools. A corresponding proposal was submitted to 

ESRF (European Synchrotron Radiation Facility) in September 2009 (L. 

France: “A Redox log of the oceanic crust from plagioclases Fe3+/Fe2+ micro-

XANES in-situ measurements”). The results are expected to provide the first 

redox log of an oceanic crust section and will also help to further constrain the 

new oxybarometer proposed in France et al. (2009b; Appendix A3). This 

oxybarometer is based on microprobe analyses of two of the most common 

minerals present is basaltic series (clinopyroxene + plagioclase). It will be 

useful for all petrological and geochemical studies of oxidizing magmatic 

systems. 
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Interactions entre processus magmatiques et hydrothermaux aux dorsales océaniques à 
expansion rapide: implications pour la dynamique de la lentille magmatique axiale 
_________________________________________________________________________________ 
Résumé : Ce travail de thèse est basé sur des observations de terrain, sur une étude pétrographique et 
géochimique des roches formées à la base du complexe filonien dans l’ophiolite d’Oman et au niveau du Site 
IODP 1256, ainsi que sur une étude expérimentale. De nouvelles contraintes sont apportées sur les processus se 
produisant à la transition magma / système hydrothermal dans la croute océanique formée au niveau des dorsales 
à expansion rapide. 
L’intrusion de gabbros isotropes dans la base du complexe filonien a provoqué son réchauffement et sa 
recrystallization en « dikes granoblastiques » jusqu’à des températures de 1030°C. Des xénolites de microgabbro 
à orthopyroxene dérivées des dikes granoblastiques sont souvent observées dans le niveau de gabbros isotropes 
épais de 100 mètres environ qui est présent à la base du complexe filonien. Ces différentes caractéristiques sont à 
relier à des migrations verticales vers le haut du sommet de la lentille magmatique supérieure qui est observée 
aux dorsales rapides. Les nombreuses évidences d’assimilation (xénolites et patchs granoblastiques) dans le 
niveau des gabbros isotropes appuient l’hypothèse que ce niveau représente la fossilisation de la lentille 
magmatique supérieure. L’étude expérimentale a consisté à tester l’effet de la fusion partielle du complexe 
filonien préalablement hydrothermalisé. Les résultats montrent que la fusion commence à 850°C, confirment 
l’origine résiduelle des dikes granoblastiques et des xénolites associées, et attestent de l’origine anatectique des 
plagiogranites océaniques qui sont couramment observés à proximité de la base du complexe filonien. La 
composition en éléments majeurs et traces du liquide anatectique a été déterminée. Ce liquide représente le 
principal contaminant pour les MORBs primitifs émis au niveau des dorsales rapides. 
La lentille magmatique supérieure présente au niveau des dorsales médio-océaniques à expansion rapide est ici 
décrite comme un système dynamique qui peut migrer verticalement, et qui est fossilisée lorsqu’elle se déplace 
hors axe. 
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hypothesis that this horizon represents the fossilization of the upper melt lens. The experimental study was 
designed to simulate experimentally the effect of partial melting of hydrothermally altered sheeted dikes. The 
results show that melting starts at 850°C, confirm the residual origin of granoblastic dikes and xenoliths, and 
attest to the anatectic origin of the oceanic plagiogranites that are commonly present close to the base of the 
sheeted dike complex. The major and trace element composition of the experimental anatectic melt that 
represents the main contaminant for primitive MORBs at fast spreading ridges has been determined. 
The upper axial melt lens at fast spreading mid-ocean ridges is herein described as a dynamic system that can 
migrate vertically, and which fossilizes when moving off-axis. 
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In the Oman ophiolite, the horizon where the melt lens pinched during drifting away from the ocean ridge
axis has been identified. Starting in the Root Zone of the Sheeted Dike Complex (RZSDC) located above this
horizon, 18 sections down to the upper gabbros unit have been mapped in great detail, in selected areas of
the southern massifs of this ophiolite. They are complemented by 133 sites, located throughout the entire
ophiolite, where the transition from the RZSDC to the uppermost foliated gabbros is well exposed. Altogether,
half the sites and 11 cross sections display, within a few tens of meters beneath the RZSDC, a magmatic
foliation which is parallel to the overlying sheeted dikes. In the other sites and cross sections, the gabbro
foliation is either flat-lying or steep but not parallel to the sheeted dikes. Compared to the RZSDC isotropic
ophitic gabbros where clinopyroxene is interstitial between plagioclase laths, in the topmost steeply foliated
gabbros, clinopyroxene is idiomorphic, becoming rapidly granular and tabular down section by
recrystallization and peripheral alteration to hornblende. Moving down from these uppermost gabbros
and over one hundred meters, the steep foliation becomes stronger and the poorly recovered top gabbros
grade into the recrystallized, granular gabbros of the gabbro unit. These repeated observations indicate to
ascribe these gabbros to subsidence of a compacting mush from the floor of the melt lens into the underlying,
main magma chamber. The topmost gabbros beneath RZSDC, which were expelled from the melt lens by
drifting very soon after settling on the melt lens floor, display in plagioclase a spectacular zoning pointing to a
fast cooling. Moving downwards, stronger foliation, increased compaction and recovery–recrystallization are
explained by the time spent by the subsiding mush inside the magma chamber increasing by one order of
magnitude (~50 to 500 yr) over this vertical distance. This field-based study brings compelling field evidence
supporting the former models of subsidence which were based on the assumption that the mush that settled
onto the floor of the melt lens is sucked downwards during drifting of the crust away from the ridge axis.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The Oman ophiolite is regarded as being issued from a fast,
possibly super fast, spreading ridge (review in Nicolas et al., 2000). By
reference to such oceanic ridges, it is legitimate to look in this
ophiolite for the traces of a melt lens at the top of an axial magma
chamber (Morton and Sleep, 1985; Detrick et al., 1987; Kent et al.,
1993; Collier and Singh, 1997). Melt lenses are located between 1 and
3 km below seafloor. They extend ~1 km on each side of the ridge
(Kent et al., 1993) and they are only about 50 m thick (Collier and
Singh, 1997), though a recent 3D study imaging both top and bottom
of the melt lens shows that it could be 200–300 m thick (Singh and
Arnulf, personal communication). The roof of a melt lens is the Root
Zone of the Sheeted Dike Complex (RZSDC). The RZSDC has been
recently revisited in Oman in order to achieve an updated comparison
with the section crossed by the IODP hole 1256D (Nicolas et al., 2008).
This study made it possible to identify where, in a vertical cross
.fr (F. Boudier).

ll rights reserved.
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section through the gabbro unit, was located the level of the active
melt lens at the oceanic ridge axis of origin. Structural studies
conducted around this critical level at a very high resolution now give
some hints on the transition from RZSDC gabbros to gabbros
generated on the floor of this lens and subsiding from there to
generate the main gabbro unit (Quick and Denlinger, 1993; Henstock
et al., 1993; Phipps Morgan and Chen, 1993; Chenevez et al., 1998). In
contrast with the melt lens which is filled by a high melt/crystal
basaltic magma, thus with a low viscosity, the accreting gabbro unit
below, down to the Moho, is a low melt/crystal mush fraction near
that of a solid (Nicolas and Ildefonse, 1996; Lamoureux et al., 1999).

We wish here to study the mechanism of gabbro subsidence from
the floor of the melt lens down into the main gabbro unit and, in
particular, to understand the sharp transition between the RZSD
gabbros, to the uppermost part of the gabbro unit. In our first model of
a magma chamber (Nicolas et al., 1988), it was recognized that a
magmatic mush had been flowing down parallel to the steep magma
chamber walls but, even after the concept of subsidence had became
explicit, 5 to 10 yr later, we never investigated further the subsidence
mechanism. Herewe address how themagmatic foliation in gabbros is
age 3
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Fig. 1. (a) Location in the Oman ophiolite of the stations where uppermost gabbros display a good contact with the RZSDC (triangles), and of the new detailed cross sections (stars)
(see Table 1). In a box, the small mapped area of Jabal Dihm (Fig. 3). (b) Field orientations of the magmatic foliations and lineations with reference to the averaged local sheeted dike
complex attitude, for all the indexed sites in (a). Lower hemisphere of projection, geographical reference system, contours at 1, 2, x times uniform distribution; N, number of
measurements.
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generated and how, over a surprisingly short distance, it rotates to
steep attitudes.

2. Floor of the melt lens

In Oman, it is only possible to observe the end-product of the
RZSDC, once the system has drifted away from the melt lens. At ~1 km
away from the ridge axis the melt lens pinches out (according to
marine seismic images) and its roof comes in contact with its floor.
Locating, in a vertical section through the ophiolite, the horizon of this
vanished lens has been a major result of our study of the RZSDC
(Nicolas et al., 2008). Wemaintain here that the lower RZSDC gabbros
are amphibole-bearing isotropic gabbros with a comparatively even
and fine-grained (~1 mm) ophitic texture. They locally grade down-
ward into dry, isotropic and coarser-grained ophitic gabbros. This
horizon, a few meters thick, is regarded as the very roof of the melt
lens, representing the thermal boundary layer between the magmatic
system of the melt lens, and the high temperature (HT) hydrothermal
system cleansing the RZSDC. Where the melt lens closes, this level
should come in contact with the gabbros issued from the floor of this
lens. In sharp contrast with the RZSDC gabbros, gabbros from the floor
have a magmatic foliation, also displaying distinct textures as shown
below. There is another piece of evidence allowing us to locate this
critical level, which is the occurrence of anorthosite lenses which are
under study. They are commonly observed within the foliated gabbros
beneath the melt lens level, but never above in the RZSDC.

3. Systematic measurements

3.1. Local measurements from the entire ophiolite belt

During the course of the systematic structural mapping of the
Oman ophiolite which was based on 6000 field stations (Nicolas et al.,
2000), the transition from RZSDC to uppermost gabbros had been
commonly observed and 133 stations have been selected here. The
total number of sites studied is 183 because the cross sections which
are specifically considered below contribute 50 new individual sites
(location in Fig. 1).

The stereographic projection of Fig. 1b shows a dominant
orientation of the foliations close to that of the sheeted dikes with,
however, a minor fraction of foliations which are horizontal.
Lineations are steeply plunging to the NW. Few lineations are
horizontal, mostly parallel to the sheeted dikes trend. Histograms of
Fig. 2 provide a more detailed analysis of these structural relations.
They present the angular relations measured in each site between
foliation–lineation in gabbros and the attitude of the local sheeted
dikes.

As histograms cannot convey the complete structural information
which is derived from a given site, three orientation cases are defined,
referring to the sheeted dikes attitude (Fig. 2c). Assuming that the
sheeted dikes attitude defines the vertical ridge plane, the cases are
the three orthogonal orientations in the ridge system: 1) vertical
plane parallel to ridge axis, 2) horizontal plane and 3) vertical plane
normal to ridge axis (Fig. 2c). Their respective orientations can be
approximately retrieved on the histograms (Fig. 2a and b). In the first
case, the foliation plane is within 30° in azimuth and nomore than 35°
in dip to the sheeted dikes. The scattering is explained by many
uncertainties, including the difficulty to measure the nascent foliation
in the field. This case corresponds to 47% of the 183 sites studied. The
lineation plunges on average 50° (Figs. 1b and 2c). In the two next
Fig. 2. Histograms and classes of orientation of foliated gabbros measured within the first ten
and dip, between foliation and local sheeted dikes. In a sheeted dike referential restored t
attitudes considered separately. c) visualization of dominant structural relations between
gabbros with foliations parallel or close to the SD attitude and case (2), to those which have a
at a high azimuthal angle to the SD. Lineatiosn (L) show a steep plunge in steep foliations (c
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cases, foliations are at variable azimuths to the sheeted dikes. The case
of flat-lying foliations typically has dips relative to the sheeted dikes
larger than 45°. It is present in 22% of the sites, and its average
lineation trend relative to that of the sheeted dikes is 25° (Fig. 2b). The
third case, with steep foliations at high angles to the sheeted dikes, is
present in 31% of the sites. Lineations have an average plunge of 50°
(Fig. 2c).

3.2. New cross sections

The present and the preceding study on the RZSDC are based on
very detailed field mapping at the scale of a few tens of meters,
drastically contrasting with previous, low resolution mapping at
scales from the kilometer to a few hundreds meters (Nicolas et al.,
2000). However, thanks to this general knowledge of the entire
ophiolite belt, it has been possible to select the proper areas for these
new studies. As explained in the high resolution study on RZSDC, areas
of detailed mapping have been selected inside massifs which are clear
from local tectonic and magmatic complexities related to ridge
segmentation. This is why the field work was conducted in the SE
massifs of the Oman ophiolite (Fig. 1). The field data are based on 18
short cross sections. They are located mainly in the southern Wadi
Tayin and Semail massifs, with a few sections in the Nakhl and
Haylayn massifs, all sections being located away from segmented
areas (stars in Fig. 1).

The cross sections cover several hundred meters starting from the
RZSDC down to the upper gabbros of the main gabbro unit. In 11
sections out of the 18, foliations and lineations immediately below the
melt lens horizon are steep. These sections which are described here
(Table 1) contrast with the 7 other sections, where foliations in the
uppermost foliated gabbros are parallel or at a small angle to the floor
of the former melt lens and to RZSDC horizon, before steepening
down section. Because they unveil the floor of the melt lens and its
magmatic settling, these 7 sections deserve a further study. However,
foliation and lineation attitudes from all the 18 sections, referred to
the local attitude of the sheeted dike complex, are incorporated in the
stereonets of Fig. 1.

Half of the 11 cross sections described here are located in a Jabal
Dihm area of Wadi Tayin massif (box in Fig. 1a and map in Fig. 3a).
They are the main reference, but cross sections in other areas totally
support the results obtained in Jabal Dihm. Cross sections in Jabal
Dihm start from the base of the sheeted dikes and extend, over a
average distance of 1500 m in a NNW to N direction to within the
homogeneous, granular upper gabbros of the gabbro unit (Fig. 3a).
The distance between structural measurements and rock specimens
sampling in view of lab studies varies between ~20 m and ~200 m.
The main features of these cross sections are presented in Table 1 and
only two typical cross sections from Jabal Dihm are presented here
(Fig. 3b and c). Stereographic projection of foliations and lineations in
the mapped area of Jebel Dihm (Fig. 3d) exhibits the close parallelism
of foliations with sheeted dike trends in this area, and the steep NW
plunge of lineations. There is a clear similarity of foliations and
lineations attitudes with those from field stations scattered through-
out the ophiolite (Fig. 1).

The Farah crustal section is comparatively thin, with a gabbro unit
some 3 km thick and the Him section somewhat thicker (~4 km).
These estimates rely, at depth to the north, on dips inmantle foliations
and lower gabbros layering which are generally parallel on each side
of the Moho and, above to the south in the lid of the Ibra synform, on
the steep attitude of the sheeted dikes feeding flat-lying lava flows
s of meters beneath RZSDC (sites Fig. 1a). a) Histogram of angular difference, in azimuth
o vertical, the histograms show azimuth and dip of the foliation. b) Classes of gabbro
sheeted dikes attitude and gabbro foliations and lineations; case(1), corresponds to
trend at high angle to the SD and a flat-lying dip; case (3) corresponds to steep foliations
ase (1) and (3)), and a dominant parallelism with SD in flat-lying foliations (case (2)).
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(box in Fig. 1). In both sections, exposures are excellent and very
similar, except a tectonic discontinuity due to a small north-directed
thrust in Him (Fig. 3c). This thrust is underlined by trondhjemite and
diabase breccias, showing that the thrust was active very close to the
ridge axis. The Farah section which is continuous is briefly described
now (Fig. 3b).

The detailed mapping starts in basal isotropic gabbros from the
RZSDC, only a few tens of meters above the presumed level of the melt
lens. This level is marked by coarser-grained and rusty, isotropic
gabbros. Immediately below, slightly foliated gabbros, rich in stocky
clinopyroxenes, are regarded as issued from the melt lens floor.
Within less than 30 m to the NW, the foliation, parallel to a poor
layering defined by plagioclase enrichment with respect to pyroxene
and olivine, is measured in the field, with a steep dip and a plunging
lineation. At 150mNW from the lens floor, the foliation becomes quite
obvious and the plagioclase segregation evolves into anorthosite
lenses, from 3 to 30 cm thick; at 250 m from the start, some
anorthosites are nearly pure plagioclase. Northward and down
section, the mapping has been stopped where the first outcrops of
foliated, granular gabbros, clearly belonging to the main gabbro unit
were reached. The NNW–SSE trend of the first granular, foliated
gabbros records the progressive rotation toward the E–W trending
lower gabbros (Fig. 3a).
4. Transition from RZSDC to gabbro unit

From the base of the RZSDC, down into the gabbro unit, the
uppermost foliated gabbros evolve mainly in the first 100–150 m,
developingwithin ~20mvertically beneath theRZSDC, steep foliations
and lineations as shown in Figs. 1b and 3d. These foliations are
remarkably parallel to the overlying sheeted dike complex attitude,
except locally where foliation is contorted in response to local hydrous
melting and recrystallization of the foliated gabbros (Nicolas et al.,
2008). This plastic softening has been described in an environment of
large hydrous melting (Bosch et al., 2004). These foliations are quite
conspicuous at 50 m beneath the RZSDC and well recovered, as typical
upper granular gabbros at 100–150 m beneath this limit. Moving 1–
2 km down section from the upper gabbros into the layered gabbros,
the foliations progressively depart from their attitude concordant with
that of sheeted dikes and their average dip decreases. The thick and
contrasted layers are thought to derive from sill injections which are
interlayered with the tight, laminar layering prevailing in the upper
gabbros (Boudier et al.,1996). Despite the difficulty to discriminate the
contribution of subsidence versus sills intrusion in the lower gabbros,
constraints are provided by Coogan (2003) tracing lower crust
contamination by seawater-derived chlorine. Transitions in gabbro
textures are describednow, focusing on thefirst tens ofmeters beneath
the RZSDC where they mostly evolve.
4.1. Transition in thin sections

4.1.1. Isotropic, ophitic gabbros from the base of the RZSDC
Ophitic gabbros from the RZSDC are isotropic, fine-grained and

hydrated as evoked in Fig. 4a. Locally, they grade down section at the
very roof of the lens into coarser-grained and dry gabbros, where
temperature was in excess of 1000 °C, due to proximity with the melt
lens, itself at 1200 °C (Nicolas et al., 2008). In both facies, the
clinopyroxene is interstitial and poikilitic between plagioclase laths. It
is largely replaced by hornblende in the first one and essentially fresh
in the second one. Similarly, olivine is totally altered in the first one
and much less in the second, to HT hydrothermal assemblages (Bosch
et al., 2004). In the “dry” gabbros, the limited HT alteration is assumed
to have originated when the gabbros drifted outside the protective
environment of the melt lens.
Annex p
4.1.2. Lens floor gabbros
This new gabbro facies is observed right beneath the contact with

the preceding RZSDC ophitic gabbros (Fig. 4b). In the field, these
gabbros are identified by their incipient foliation, their association
with anorthosite lenses, never observed above and the habitus of
clinopyroxene. The incipient foliation is moderately dipping, before
getting steeper downward. In thin section, differences with the
overlying gabbros are striking (Fig. 4a and b). Plagioclase is elongated
in thin, heavily twinned laths, usually 0.5–2 mm long, locally up to
4 mm. A striking feature is an spectacular zoning, with altered pla-
gioclase cores (first enlarged thin section of Fig. 4b). In tiny voids
between the last plagioclase outgrowth, quartz has been identified.
Plagioclase analyses on three samples from the same level inWadi Gaz
and Nahr (Nicolas et al., 2008) show normal zoning with An77–80 core
and An65–70 rim. In the same level of Jebel Dihm area, Pallister and
Hopson (1981) measured in their hypidiomorphic textured gabbros, a
similar normal zoningof plagioclasewithAn77–84 core andAn37–55 rim.
Such features reflect conditions of crystallization out of equilibrium
which we tend to ascribe to fast cooling. Melt compaction being
reduced at the top of the section, magma pockets crystallize in gabbros
and anorthosites as poikilitic clinopyroxene, brown hornblende or
opaque phases as illustrated on the second enlarged thin section of Fig.
4b. Whereas in the isotropic gabbro, clinopyroxene is interstitial
betweenplagioclase laths, it is here idiomorphic (enlarged thin section
in Fig. 4b), grading down section into tabular grains with plagioclase
either in laths molded around or in tiny tablets inside clinopyroxene.
Olivine which is present in all gabbros throughout the main gabbro
unit is here nearly always altered by HT hydrothermal fluids (Bosch et
al., 2004). As clinopyroxene, it contains tiny plagioclase inclusions,
pointing to an early nucleation of plagioclase compared to the other
phases.

4.1.3. Foliated uppermost gabbros
Below the RZSDC base, a foliation develops in gabbros (Fig. 4c),

becoming more conspicuous and steeper down section over a vertical
distance of around one hundred meters. Within this distance, the
extreme zoning of plagioclase has vanished and the poikilitic
assemblage of clinopyroxene are reduced. Beyond 100 m depth,
foliation is very strong, grading into the granular gabbros.

4.1.4. Foliated, granular, upper gabbros
In these gabbros, plagioclase laths and twins tend to thicken,

zoning is absent, grain boundaries are curvilinear with 120° triple
junctions and the overall grain size increases, mainly by thickening of
plagioclase laths, all signs indicating that recrystallization is progres-
sing (Fig. 4d). Clinopyroxene becomes more tabular, defining a strong
magmatic foliation together with elongated olivine aggregates. Also
contrasting with the overlying gabbros where the clinopyroxene is
largely replaced by hornblende and the olivine, totally altered, the
granular gabbros are only moderately affected by the same HT to VHT
(up to 1000 °C) hydrothermal metamorphism (Bosch et al., 2004). A
highly significant feature is the observation of mutual impingements
in plagioclase tablets, indicative of stress-induced dissolution at grain
contact. This has been ascribed to suspension flow occurring in a very
thick mush during its subsidence within the magma chamber.
Flow would be controlled by dissolution–recrystallization processes
(Nicolas and Ildefonse, 1996). The attenuated layering locally devel-
oped in these gabbros is defined by anorthosite lenses and stretched
microgabbronorites lenses parallel to the foliation. Such occurrences
have been described by Boudier et al. (2000) and are ascribed to roof
pendants stoped in the melt lens.

4.2. Transition in crystallographic fabrics and strain measurements

Increasing strain moving down section deduced from strength of
foliation in these upper gabbros can be quantified bymeasurements of
age 7



Table 1
Description of the 18 sections (see locations on Fig. 1a) crossing from the RZSDC lower limit, through the uppermost foliated gabbros and down to the upper granular gabbros
belonging to the gabbro unit.

Section Haylayn Gaz Narh Farah W Farah center Farah E

UTM coordinates 51582E/261383N 62310E/255626N 64705E/25210N 66551E/25292N 66631E/252963N 66651E/252959N

Length, trend 750 m, NE–SW 800 m SE–NW 1000 m SE–NW 1200 m, S–N 800 m S–N 2000 m
Sheeted dikes NW–SE NW–SE vertical NW–SE N–S vertical N–S vertical SE–NW
Tilt 20°SE Vertical 20°S 20°S NNW–SSE
Field conditions Fair Excellent Excellent Excellent Good Vert.

20°S
Excellent

Lens horizon Exposed Exposed Exposed Exposed Exposed Exposed
RZSDC thickness 100 m 75 m 100 m 60 m
Top gabbro Fine grain Coarse grain Fine grain Fine grain Fine grain Fine grain
Plag Strongly zoned Weakly zoned Strongly zoned Weakly zoned No Strongly
Cpx Euhedral stocky Euhedral stocky Stocky, tabular Stocky, tabular Stocky Zoned
Interstitial opaque Yes Yes Yes Yes Abundant Euhedral
Opx Abundant Yes Stocky

Yes
Abundant

Top foliation NW–SE vertical NW–SE vertical NW–SE N–S vertical N–S vertical N–S W dip
Lineation SW steep SE steep Vertical N steep NE steep N steep

Shear sense 4, SW down NW steep N 1, W down 3, W down 1, W down
Lower foliation SW steep NW–SE vertical N–S vertical N–S W dip N–S vertical N–S W dip
Lineation SW steep N plunge N steep plunge N steep NW plunge

Transition to main gabbro unit No ~200 m ~400 m 400 m 170 m 350 m
70 m Complex ~130 m thick 60 m thick 100 m thick

Intrusions Trondjhemite Sheeted dike HT dikes HT dikes HT dikes HT dikes
Trondjhemite Breccias Microgabbros Microgabbros

Anorthosite lens Common thin Common Abundant Abundant Abundant Abundant
Thickest 20 cm 40 cm 80 cm 100 cm 40 cm, folded 30 cm
HT hydro.alter. No No Important Present Very important Important
LT tectonics Locally No No No No No
HT tectonics NW–SE graben Small grabens? No Yes Shear bands

Foliated gabbro/sheeted dikes Parallel Parallel Top, parallel Parallel Parallel Top, parallel
Below 30°N Below 30°W

Section Him W Him center Him E Batin Andam

UTM coordinates 66828E/252937N 66931E/252888N 67327E/25272N 67116E/25210N 60743E/254012N

Length, trend 2200 m N–S 2000 m NW–SE 2000 m S–N 300 m N–S 2500 m SE–NW
Sheeted dikes NNE–SSW steep N–S vertical N–S vertical NW–SE 45°W NW–SE vertical
Tilt 20°S 20°S 20°S
Field conditions Good Excellent Good Excellent Good
Lens horizon Exposed Exposed Exposed Exposed Not exposed
RZSDC thickness 100 m 130 m 100 m
Top gabbro Fine grain Fine grain Coarse grain Fine grain Fine grain
Plag Strongly zoned Weakly zoned Weakly zoned No
Cpx Euhedral Stocky, tabular Stocky tabular Stocky
Interstitial opaque Yes Yes Yes
Opx Yes Yes Abundant
Top foliation N–S W dip N–S vertical NW–SE N–S vertical NW–SE SE dip
lineation N steep N steep Vertical N very steep NW plunge
Shear sense NW steep
Lower foliation NW–SE W dip NW–SE vertical N–S vertical NW–SE steep NE–SW E dip
Lineation NW plunge NW plunge N plunge N plunge NE plunge
Transition to main gabbro unit 300 m 600 m ~400 m

100 m thick 200 m thick
Intrusions HT dikes HT dikes HT dikes HT dikes

Microgabbros Trondjhemite Trondjhemites Wherlites
Anorthosite lens Common Uncommon No Abundant Common
Thickest 20 cm 80 cm 15 cm
HT hydro.alter. Very important Important Very important Important Common
LT tectonics No No No Major thrusts
HT tectonics N thrust large N thrust No
Foliated gabbro/sheeted dikes Top, parallel Top, parallel Parallel Top parallel

Below 30°W Below 20°W Below45°NE

Coordinates are those of the starting point in RZSDC (Ttransverse Mercator, WGS, zone 40). First line deals with general features of the section; starting from RZSDC and pointing
down section;“trend”, as all other orientations in the table, are averaged; “field conditions” refer to quality of outcrops and their continuity. Third line emphasizes critical paragenetic
features in uppermost gabbros. Grain size is normally “fine grain” (plagioclase laths, 1–2 mm on average); it is “coarse grain”when a few grains or more are in the range of 2–4 mm;
similarly, orthopyroxene (“opx”) is noted even if very scarce. In sixth line, distance horizontally along the section, from lens horizon to granular gabbros belonging to themain gabbro
unit, is estimated with its thickness, when possible. “Intrusions” line points to unusual abundance of mainly trondjhemites and werhlites. HT dikes refer to diabase dikes emplaced in
country rocks still at high temperature (HT~800 °C) which are exposed as dikes, sills and breccias and correspond, in RZSDC, to protodikes and, beneath in foliated gabbros, to
microgabbros lenses. “HT hydrothermal alteration” line refers to the occurrence of hydrous anatexis and hydrous gabbro diking (Bosch et al., 2004) which alter the foliated gabbros.
“LT tectonics” refers to emplacement related events and “HT tectonics”, to ridge related events.
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Fig. 3.Map and sections in the Dihm area ofWadi Tayinmassif. (a) Detailedmap from the sheeted dikes (south) to the lower gabbros (north) (box in Fig.1). (b) and (c) East Farah and
East Him cross sections from the RZSDC (simplified) and transition from uppermost, foliated gabbros to foliated, granular gabbros, with location in map (a). (d) Field orientations of
themagmatic foliations and lineations with reference to the local sheeted dike complex attitude, in themapped area. Lower hemisphere of projection, geographical reference system,
contours at 1, 2, x times uniform distribution, N, number of measurements.
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plagioclase crystallographic fabrics (Fig. 5). The fabric strength is
measured by the pfJ index, as described by (Mainprice and Silver,
1993) and derived of the Orientation Distribution Function (ODF)
(Bunge, 1982). The pfJ index provides a comparative measurement of
the fabric strength, thus of the strain. Samples have been chosen along
Annex p
Wadi Farah, at increasing depth from ~10 m below the RZSDC to 80 m
and finally down to 365 m, into the upper gabbro unit. We notice in
Fig. 5 that the plagioclase preferred orientation; with [010] maximum
perpendicular to the gabbro foliation (see Lamoureux et al. (1999);
Yaouancq and MacLeod (2000)), increases drastically between 10 and
age 9



Fig. 4. Progressive evolution of gabbro textures from the RZSDC to the top of the main gabbro unit. When foliation is present, thin sections are presented in their original attitude.
(a) Isotropic ophitic gabbro from the RZSDC. (b) Gabbro from the floor of the melt with idiomorphic clinopyroxene and extreme zoning in plagioclase thin laths, also illustrating
the development of a steep foliation; (c) Uppermost foliated gabbro with a good foliation, thicker and less zoned plagioclase, and recrystallized clinopyroxene in large tabular grains.
(d) Foliated granular gabbro, 100 m below floor of melt lens, recording a strong foliation and recrystallization. Width field of view is 12 mm for low magnification, 3 mm for high
magnification. Samples (a) 89OA12b; (b) 06OA20i and 890A34; (c) 90OA97; (d) 06OA3.
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Fig. 5. Crystallographic orientations of plagioclase in samples selected along Wadi Farah, at depths between ~10 and 365 m below the RZSDC, represented with their position in the
upper gabbro section. Crystallographic preferred orientations are Electron BackScattering Diffraction (EBSD) measurements; lower hemisphere, non polar data, stereoplot in the
geographical reference frame with north marked; contours at 1, 1.5, 2, 2.5…times uniform distribution. pfJ indexes of Mainprice and Silver (1993) measure strengths of
crystallographic axes preferred orientation. Samples: 07OA20a, c1, d, e and 072OA13.
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45 m, and then evolves only slightly. The b100N axes, form a girdle in
the foliation plane for the shallower samples, then tend to concentrate
in a maximum parallel to the flat-lying lineation for the deepest
Annex p
sample. The plagioclase fabrics record the rapid strain increase related
with rotation of individual markedly anisometric crystals, defining the
steeply dipping foliation.
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5. Discussion

5.1. General model of subsidence through the magma chamber

Near Moho, gabbro layering and foliation show a flat attitude
parallel to this limit. Upsection, these structures rotate progressively to
the steep attitude of uppermost gabbros, generally parallel to the
average orientation of the sheeted dike complex. Based on their
mapping in Jebel Dihm and in Nakhl massif respectively, Pallister and
Hopson (1981) and Browning (1984) suggested that the inclinedwalls
of the magma chamber were oriented towards the ridge axis. Our
systematic mapping confirmed the steepening up section of foliations
but, under the control of structural and kinematic data in the
underlying mantle, it was concluded that facing was away from the
ridge axis (Nicolas et al., 1988). In this model, the foliation is not
developed by magmatic settling but by plating along the magma
chamber walls and eventually cooling along these walls, of a highly
viscous suspension, down flowing parallel to the walls (Nicolas and
Ildefonse,1996). In the upper gabbros, theflow results essentially from
the downwards subsidence of the mush crystallizing on the melt lens
floor. In contrast with this, MacLeod and Yaouancq (2000) have
explained the steep foliations in Oman upper gabbros as recording
ascent of a mush through the magma chamber towards the melt lens.
This view is not supported by petrological results favoring in Oman the
subsidencemodel (Coogan et al., 2002) and by the newdata presented
here. At shallow depth in the gabbro unit, subsidence is induced by the
drift of the crust away from the ridge axis which sucks downwards the
material settling onto the floor of the melt lens (see the glacier model
of Quick andDenlinger (1993), and the physicalmodelling of Chenevez
et al. (1998)). In the latter paper, a new horizontal magmatic flow
component is added to this vertical subsidence flow, in the gabbro unit
near Moho. It is due to coupling with the forced mantle flow drifting
away from the ridge axis. A last evidence for the subsiding process from
the melt lens is the presence of microgabbronorites lenses aligned in
the foliation. These are ascribed to roof pendants stopping in the melt
lens and subsiding below its floor (Nicolas et al., 2008).
Fig. 6.Models of subsidence, (a) sketch of lid and top kilometer in gabbro unit and (b) detaile
gabbros by subsidence of the mush crystallized on the floor of the lens. Left side: magmatic
lineations. Right side: frozen foliations in gabbros outside themagma chamber (bright blue).
subsidence, in micronorites which are stretched in lenses parallel to the gabbro foliation. (b)
triple junction, the RZSDC isotropic gabbros from the roof of themelt lens join the gabbros fro
the top gabbros subsiding on a shorter distance than deeper gabbros which are issued from th
(a) are isochrons tracing the subsidence of a layer from the lens. Dashes in (b) trace the n
legend, the reader is referred to the web version of this article.)
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Based on the new data presented here an updated interpretation of
subsidence is sketched in Fig. 6. The foliation attitude of uppermost
gabbros below the RZSDC is close to that of the sheeted dikes (Figs. 1b
and 2). Thus, the foliation plane of gabbros is parallel to the ridge
symmetry plane, which also controls the shape of the magma chamber
(Chenevez et al.,1998).While it is subsiding from themelt lensfloor into
the magma chamber, the highly viscous gabbroic mush progressively
develops a magmatic foliation which rotates to become parallel to the
magma chamber walls (Fig. 6b). Lineations which are, on average,
steeply plunging (Figs.1b and2), register thedownwardparticlemotion.

5.2. Deformation analysis in the subsiding gabbros

The physical analysis of the subsidence process at the scale of a
spreading ridge, as envisaged here, is described by Chenevez et al.
(1998). Near the top of the magma chamber where the walls are
vertical, Fig. 7 illustrates qualitatively the three contributions to the
deformation during subsidence of a layer which had settled on the
floor of the melt lens.

As the strain illustrated in Figs. 5 and 6 is time-dependent, one
caveat is that strain is significantly reduced near the surfacewhere the
transit time through the chamber is shorter, resulting in a foliation
which is less steep and less pronounced there than in gabbros deeper
down. This is illustrated in Figs. 6 and 7 showing that gabbros issued
more internally on the floor of the lens reach themagma chamber wall
at greater depths and aremore affected bymagmatic flowand crystal/
melt interactions.

5.3. Subsidence initiation on melt lens floor

When the crust issued from a stable melt lens drifts away from the
ridge axis, only the points issued from the pinching limit of the lens
and drifting through the triple junction carry information on the
nature and structure of the lens floor, because they have subsided and
rotated only over meters before crossing and being frozen at the
magma chamber wall. This opens a window on the active processes
d view on the triple junction at the closure of melt lens. (a) Origin of layered and foliated
flow surface, internal to the magma chamber wall, with imprint of the plunging flow

Roof pendants (light blue), falling from the RZSDC into themelt lens, recrystallize during
Closure of the melt lens at a triple junction which is stationary in a drifting crust. At the
m its floor. Just below, the steep foliated gabbroswere deposited near the triple junction,
e floor further away from the triple junction. Inside the magma chamber, dotted lines in
ascent magmatic foliation. (For interpretation of the references to colour in this figure
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Fig. 7. Deformation in the gabbro mush of the magma chamber with subsidence from the melt lens floor. The small model on the left illustrates the subsidence of layers or isochrons
(red lines) within the gabbro mush filling the magma chamber below the melt lens (yellow) and the lid (blue bars) (section in the vertical plane parallel to the spreading direction,
simplified from Chenevez et al., 1998). The boxes on the right represent the three contributions to the deformation of a subsiding layer, before it reaches themagma chamber wall and
freezes. This wall (on the right of the boxes) is taken as vertical in the uppermost levels which are here considered. a) Simple shear with O, the triple junction, as a fixed origin. The
segment OA, belonging to a layer deposited on the lens floor, is transformed by simple shear along the AA′ direction into O′. The red line is the trajectory of finite strain (orientation of
foliation), showing how the long axis of the strain ellipse rotates with successive strain increments. It illustrates the layering-foliation rotationwith depth. Finite shear strain (γ=3)
is derived from assumption that a 1 km half length for the lens subsides to the Moho, over the 3 km height of the magma chamber. Near the melt lens, strain is smaller because
interrupted by drifting. b) Qualitative effects of compaction by expelling intergranular melt and by magmatic flow assisted by dissolution–recrystallization (Nicolas and Ildefonse,
1996). Being time-dependent, flattening increases with depth and transforms O′A′ in O′A″. c) Spreading-related translation. With a drift of O′A″ and the point A″ transposed into O′,
the initial layer OA has entirely crossed the magma chamber wall (red dashed line). It is now nearly vertical and stretched nearly 3 times. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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taking place in the melt lens. The texture acquired during settling on
the floor of the melt lens is slightly altered by initiation of foliation.
Compaction is reduced, as shown by the presence of oikocrysts,
crystallized from the residual melt which was trappedwithin the solid
frame and which rapidly disappears down section by compaction of
the melt. Clinopyroxene is idiomorphic and strikingly different from
its interstitial habit in the immediately overlying isotropic ophitic
gabbros. Down section, it rapidly recrystallizes in stocky and tabular
grains. Finally in plagioclase, disequilibrium growth is indicated by the
elongated laths with very thin growth twins and by their extreme
zoning. Final crystallization and this zoning occur during cooling in
these gabbros while crossing themagma chamber wall. At the shallow
RZSDC depth, gabbros are efficiently cooled by seawater convection
(Nicolas et al., 2008) and the cooling is very fast.

From the vertical distances of subsiding gabbros beneath the lens
floor, it is possible to estimate the timewhich they spent in themagma
chamber. Accounting for vertical stretching and the estimated dip of
RZSDC base in the field, the depth beneath the melt lens where
gabbros have recrystallized and developed the strong foliation of the
granular gabbros is in the range of 100 m. The required time lapse is
estimated between 500 and 1000 yr, based on this distance and the
half spreading of 5–10 cm/y accepted above. The spectacular textural
changes illustrated in Fig. 4 are also possible because, during sub-
sidence, gabbros are still a sponge soaked by a basaltic liquid.

6. Conclusion

Shifting from mapping at the scale of Oman ophiolite belt (Nicolas
et al., 2000) to that of a few tens of meters makes it possible to study
fine-scale structures, specifically the paleo-melt lens of a fast spreading
ridge. A first study at this scale dealt with the RZSDC (Nicolas et al.,
2008), a side result ofwhichwas to identify in thefield thehorizonof the
pinchedmelt lens, between the RZSDC and themain gabbro unit. Based
Annex p
on 183 stations throughout the beltwhere this horizonwas exposed and
18 detailed sections crossing from this horizon downwards, a compre-
hensive study brings field evidence for subsidence of a gabbro mush
from the floor of the melt lens, through the magma chamber, during
accretion of the gabbro unit. So far, subsidence was only a model based
on the assumption that drifting of the crust away from the ridge axis
sucked downwards the gabbro mush settling onto the floor of the melt
lens. Subsidence is demonstratedhere by thefield datadisplaying inhalf
the stations in the gabbros beneath the pinched melt lens floor, a dis-
cordant and steep magmatic foliation parallel to the sheeted dike
complex and to the ridge plane. One quarter of the stations have folia-
tions parallel or close to the floor of the RZSDC. They reveal information
on the melt lens floor and will be studied in a next contribution. Steep
foliations appearwithin ten to a few tens of meters below this floor. The
top gabbroswhich settled on themelt lensfloor near its closure, slightly
subsided before being expelled by drifting through the cold wall of the
magma chamber. As a result, their texture suggest a very fast cooling.
The time spent by the immediately underlying gabbros inside the
magma chamber, before drifting outside, being in the range of only
100 yr, the textures are still poorly compacted and recovered, in contrast
with well recrystallized gabbros derived from 100 m below the lens
floor which subsided for 500–1000 yr. The steep foliation induced by
subsidence is traced downward in the upper gabbros over 1 to 1.5 km,
before progressively rotating into the flat-lying lower gabbros.
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[1] In the Oman ophiolite crustal section, a contact zone between the gabbro unit and the volcanics and
diabase sheeted dikes, called the root zone of the sheeted dike complex, has been recently mapped at a fine
scale in a selected area. The Oman ophiolite is derived from a fast spreading ridge which had a melt lens
located between the main gabbro unit and the root zone of the sheeted dike complex. With a few
exceptions accounted for, this horizon has a fairly constant thickness, �100 m, and a crude internal
pseudo-stratigraphy. At the base of the root zone are isotropic ophitic gabbros interpreted as a thermal
boundary layer. This layer is transitional between the magmatic system of the melt lens, convecting at
1200�C, and a high-temperature (<1100�C) hydrothermal system, convecting within the root zone. Above
this level, the isotropic gabbros have been, locally, largely molten due to an influx of seawater, at
�1100�C, thus generating varitextured ophitic and pegmatitic gabbros. These latter gabbros constitute the
upper part of the root zone and are associated with trondjhemitic intrusions as screens in the lower sheeted
dikes. Diorites and trondjhemites were also generated by hydrous melting, at temperatures below 1000�C.
The whole root zone is a domain of very sharp average thermal gradient (�7�C/m). At the top of the root
zone, a new thermal boundary layer, with diabase dikes hydrated in amphibolite facies conditions,
separates the preceding high-temperature convective system from the well-known greenschist facies
(<450�C) hydrothermal system operating throughout the sheeted dike complex, up to the seafloor. The
isotropic gabbros near the base of the root zone are intruded by protodikes with distinctive microgranular
margins and an ophitic center. Protodike swarms are exceptional because, intruding a medium at �1100�C,
they are largely destroyed by dike-in-dike intrusions and by hydrous melting. However, they demonstrate
that this zone was generated by melt conduits issued from the underlying melt lens. Each dike of the
sheeted dike complex is thus fed by one protodike. As this zone has been recently drilled by IODP in the
eastern Pacific Ocean, a brief comparison is proposed.
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1. Introduction

[2] A small melt lens has been imaged by multi-
channel seismic profiles in the late 1980s below
fast spreading centers, extending <1 to 4 km on
each side of the ridge axis and locally as thin as 30
m [e.g., Detrick et al., 1987; Harding et al., 1989;
Collier and Singh, 1997; Singh et al., 1998, 2006;
Kent et al., 2000]. This discovery has raised the
question of how this lens relates to the overlying
sheeted dike complex, as previously described
from oceanic drilling [e.g., Alt et al., 1993, 1996;
Bach et al., 2003] and in tectonic windows such as
Hess Deep [Karson et al., 1992, 2002b] and
fracture zones [e.g., Juteau et al., 1995; Karson
et al., 2002a]. The recent IODP hole in the eastern
Pacific Ocean in Hole 1256D [Wilson et al., 2006],
has penetrated, at 1400 m below seafloor, 100 m of
gabbros at the base of the sheeted dike complex. It
is not certain that the last cored gabbros have
attained the level of the former melt lens and
represent the top of the gabbro unit. On the basis
of field studies in Oman, we will propose criteria to
distinguish gabbros which have settled on the floor
of the former melt lens from gabbros crystallized at
and above its roof. This zone between the base of
the sheeted dikes and the top of the gabbro unit is
called herein the root zone of the sheeted dike
complex (RZSDC).

[3] The RZSDC has recently raised interest with
petrological studies in Cyprus [Gillis and Roberts,
1999; Gillis, 2002; Gillis and Coogan, 2002] and
in Oman [MacLeod and Yaouancq, 2000], follow-
ing earlier descriptions of the RZSCD by Pallister
and Hopson [1981] and Rothery [1983]. More
general studies have been conducted by Coogan
et al. [2003] and in Oman ophiolite, by MacLeod
and Rothery [1992] and by Nicolas and Boudier
[1991], whose comprehensive structural study is
expanded here. General descriptions regard the
RZSDC as a thin and complex assemblage of
hydrous gabbros and more acidic, plutonic bodies,
increasingly intruded upsection by diabase dikes,
thus grading into the sheeted dike complex. In
some studies, this zone has been ascribed to the
final stage of the magmatic differentiation of the
gabbro unit. This differentiation would occur at

the top of a magma chamber, in the presence of
residual water of deep origin. The RZSCD has also
been regarded as originating at and above the melt
lens roof as a thermal boundary layer between two
main convective systems: below, the melt lens
filled with a basaltic magma at �1200�C, and
above, the diabase sheeted dike complex and
associated volcanics which are cooled by seawater
hydrothermal cells [Nicolas and Boudier, 1991;
Chenevez and Nicolas, 1997; Gillis and Roberts,
1999]. We depart here from our former interpreta-
tion, by introducing a new hydrothermal convec-
tion system, operating at very high temperature
between the two systems mentioned above.

[4] We regard the well-known hydrothermal sys-
tem [e.g., Nehlig et al., 1994; Alt et al., 1996] as
low temperature (LT, up to 400–450�C), because it
is shown below that the RZSDC, when it was
active above the melt lens, was altered by a high
temperature (HT > 400–450�C) hydrothermal
system, just as the gabbro unit located below
[Manning et al., 1996; Nicolas et al., 2003; Bosch
et al., 2004]. The LT hydrothermal cells close at a
depth of �1–2 km, at the base of the sheeted
dike complex.

[5] Considering the renewed interest in this zone
arising from the recent drilling of IODP Hole
1256D [Wilson et al., 2006], it seemed appropriate
to revisit our 1991 study in Oman ophiolite,
incorporating it in a new detailed map. This ophio-
lite is both very large with magnificent outcrops,
and inferred to be derived from a fast spreading
oceanic ridge [Nicolas et al., 2000], where melt
lenses are actually inferred from seismic-velocity
inversions. This study is focused on a limited area
in the Sumail Massif, which is located in the
southern part of the belt where our mapping is
more detailed. In this area, all units from the lavas
to the Moho are parallel and gently tilted, in
contrast with domains affected by ridge segmenta-
tion, as briefly recalled below. Petrostructural
descriptions from a few tens of sites from other
massifs studied during the structural mapping of
the Oman ophiolite show that RZSCD in this
ophiolite generally have many common features
throughout the belt [Nicolas et al., 2000]. However,
significant differences are noted depending on
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whether the RZSDC belong to a domain affected by
ridge segmentation or not. The results presented
here on RZSDC should apply to ocean ridges
spreading in steady state conditions, but we will
briefly envisage how RZSDC would be modified in
situations affected by ridge segmentation.

[6] Finally, as a word of caution, it should be
stressed that RZSCD are complex interface zones
where several processes have been active at differ-
ent times. In particular, field observations are the
end product of superimposed processes initiated
above the melt lens and continued off-axis on a few
tens of kilometers.

2. Choice of the Studied Area

[7] Magmatic intrusions are observed in a number
of RZSDC in the Oman ophiolite. They were
mapped as ‘‘late intrusive’’ [Lippard et al., 1986;
Ministry of Petroleum and Minerals, 1986], encom-
passing, wehrlites and gabbronorites, uralitic
gabbros, diorites and tronjhemites, the last one
making up magmatic breccias with diabase dikes.
Olivine gabbros have not been reported among
these intrusions These ‘‘late intrusive’’ have been
related to domains where accretion was under the
influence of major tectonic and magmatic activity
related to ridge propagation [Juteau et al., 1988;
MacLeod and Rothery, 1992; Nicolas and Boudier,
1995; Boudier et al., 2000; Adachi and Miyashita,
2003; Miyashita et al., 2003; Umino et al., 2003].
Here, they are referred to as domains of ‘‘ridge
segmentation’’ and opposed to domains where the
accretion should have been steady state, called here
‘‘normal’’ domains, considering their continuity
and homogeneity. To better identify and estimate
the fraction of the Oman ophiolite affected by
ridge segmentation we used, as first criterion,
the occurrence of gabbronorite and large diorite-
trondjhemite bodies; both are, without ambiguity,
late intrusions in RZSDC and they have been
attributed to hydrated magmas [Boudier et al.,
2000]. However, trondjhemites are also present,
as small bodies, in domains away from segmented
areas. Consequently, only the bodies larger than
1 km in extension were considered to define the
domains of ridge segmentation. With these criteria,
we have estimated, from the geological map of
northern Oman at a scale of 1/250,000 [Ministry of
Petroleum and Minerals, 1992], that the total
surface fraction of gabbro areas affected in Oman
ophiolite by these large intrusions is 47% versus
53% of ‘‘normal’’ gabbro areas.

[8] Our field study is located in the Sumail massif,
one of the southern massifs in the Oman ophiolite
where the effects of ridge segmentation are minor
(Figure 1). This very large and flat-bottomed syn-
form has been mapped with the highest density of
field stations during the systematic structural map-
ping in this ophiolite, over the last 25 years. The
general structure of the ophiolite is dominated by a
central, NW-SE trending system which was opened
inside a NE-SW trending external domain [Nicolas
and Boudier, 1995; Nicolas et al., 2000]. The large
NW-SE ridge segment extends in the Nakhl and
Haylayn massifs to the NW, and in the Wadi Tayin
massif to the SE. It is subdivided in individual
segments which are centered on a few mantle
diapirs.

[9] The area considered here is located between
Samrah oasis andWadi Abda (Figures 1 and 2). This
oceanic crust was generated by the NW-SE trending
spreading center of Maqsad [e.g., Jousselin et al.,
1998].

3. Main Petrostructural Units in the
Mapped Area

[10] The map in Figure 2 is based on �100 main
field stations, each one generally covering small
cross sections or a few sites of individual measure-
ments. The map also integrates a few geological
limits from the geological map of Oman at
the 1:100,000 scale [Ministry of Petroleum and
Minerals, 1986]. For mapping purposes, the fol-
lowing operational units, from top to bottom of the
ophiolitic sequence, are retained (see cross section
in Figure 2): 1, lavas; 2, sheeted dike complex;
3, RZSDC; and 4, main gabbro unit represented at
this level by the uppermost foliated gabbros. The
RZSDC lower limit with these foliated gabbros is
remarkably sharp, generally marked by a discor-
dance (Figure 2). Its upper boundary is traced
where the diabase dikes fraction attains �90%.
These unit boundaries depart only marginally from
those of Nicolas and Boudier [1991].

3.1. Lavas

[11] Lavas crop out close to Wadi Abda (Figure 2a)
and in a small area. In Wadi Abda, lava flows have
an orientation of 95S25�, with some dispersion;
they are conformable with the underlying sheeted
dike unit. As this locality is close to the eastern
limit of the Sumail synform, next to an extrusion of
the underlying Hawasina sedimentary units, the
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lava flows may have been locally tilted with
respect to more internal units.

3.2. Sheeted Dikes

[12] This unit is composed of parallel, �1 m thick,
diabase dikes, bounded by dark and very fine-
grained chilled margins. Older dikes are commonly
larger, and seem to be more altered by hydrother-
mal fluids, grading into epidosites and bounded by
epidote-rich veins. Younger dikes are thinner, black

and less altered. Average field orientations at each
measurement station are based on 10 to 50 indi-
vidual chilled margins measurements.

[13] In the deepest diabase dikes (2b in cross sec-
tion, Figure 2), chilled margins are less conspicuous
and internal texture is coarser (0.1–0.2 mm) than in
the dikes above (2a, Figure 2). They are little
affected by greenschist facies, LT, hydrothermal
alteration and display, with a brown hornblende an
amphibolite, HT, metamorphism (Figure 3a).

Figure 1. Simplified geological and structural map of Sumail and Wadi Tayin massifs, and location in the Oman
ophiolite [after Nicolas et al., 2000]. The black rectangle shows the location of the map in Figure 2. Blue dotted
lines are inferred ridge axes, and yellow lines are limits of the large NW-SE segment opened in a NE-SW ridge
system.
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3.3. Root Zone of the Sheeted
Dike Complex

[14] Gabbroic rocks in this critical zone are isotro-
pic (3b in cross section, Figure 2) and varitextured
gabbros (3a, Figure 2), characterized by an ophitic
texture, where the meshes between the network of
plagioclase laths are filled by clinopyroxene oikoc-
rysts, usually altered to hornblende, and olivine

grains which usually are totally altered (Figures 3b
and 3c). Collectively, we refer to these rocks as
‘‘ophitic gabbros.’’

[15] A crude order of superimposition and relative
chronology within the RZSDC can be established
from the relations between different ophitic
gabbros and other related facies described below,
pointing to a decrease of temperature with time. In

Figure 2. Map and cross section in the upper ophiolite units, from Samrah to Wadi Abda (Sumail massif) (location
in Figure 1). Dotted ellipse is Wadi Gaz location. The upper cross section, along the A-A0 profile in map, locates the
main units, and the lower cross section (box in the upper section) illustrates the RZSDC structure and petrology.
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Figure 3. Microphotographs of (a) lowermost HT diabase dike from the sheeted dike complex, characterized by a
medium-grained texture and brown hornblende (06OA-31k), (b) varitextured ophitic gabbro where clinopyroxene has
been totally replaced by brown and green amphibole (06OA-20a), (c) fine-grained isotropic ophitic gabbro with
interstitial brown hornblende and clinopyroxenes altered in green hornblende (OM06-25), (e) dry to nearly dry
coarse-grained isotropic ophitic gabbro from the base of the RZSDC in which olivine presents a thin rim of HT
hydrous alteration (06OA-2), (e) foliated, ophitic gabbro with plagioclase laths molded around subhedral
clinopyroxene, from a few meters below the RZSDC, and (f) foliated granular upper gabbro from the gabbro unit
(OM06-17).
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this respect, it is critical to integrate the results on a
HT seawater alteration, ubiquitously present in the
main gabbro unit [Gregory and Taylor, 1981; Stakes
and Taylor, 1992; Manning et al., 2000; Nicolas et
al., 2003; Bosch et al., 2004]. Mineral assemblages
resulting fromHT (�1000�C) reactions described in
the gabbro unit are also recorded in the RZSDC,
with generally a complete HTalteration of olivine in
a mixture of pale hornblende and chlorite, and of
clinopyroxene in brown hornblende. The �1000�C
hydrous reactions that develop orthopyroxene are
not common in the RZSDC described here, in
contrast with areas related to ridge segmentation
[Boudier et al., 2000].

[16] At the base of the RZSDC, just above the
foliated gabbros described below, locally, restricted
gabbro outcrops present a coarser isotropic ophitic

texture, where olivine is still present in stocky
crystals together with disordered plagioclase laths
(plagioclase is also present in olivine as minute
inclusions)(larger green dots in cross section,
Figure 2). The meshes within the plagioclase
framework are occupied by poikilitic clinopyrox-
ene and opaque minerals (Figure 3d). Such gabbros
have only a limited HT hydrous alteration, follow-
ing the terminology defined by Bosch et al. [2004]
in the main gabbro unit. In order to distinguish
them from the overlying ophitic gabbros, we call
them the dry ophitic gabbros. The transition from
this thin horizon of mildly or no hydrated gabbros
to the largely hydrated, overlying ophitic gabbros
can be traced in the field. Small hills with reddish,
weathered blocks of dry ophitic gabbros and un-
derlying granular gabbros contrast with more gray-
ish low lands formed by hydrated ophitic gabbros.

Figure 4. Facies of varitextured gabbros (scale bar is 10 cm). (a) Isotropic ophitic gabbro evolving in varitextured
gabbro within nests of pegmatitic recrystallization (06OA20). (b) Varitextured ophitic gabbro with nests of LT
(greenschist facies) crystallization with epidote-rich cores, indicative of an evolution ending with an episode of
‘‘autometamorphism’’ (06OA23). (c) Varitextured and pegmatitic ophitic gabbro with rooting of a pegmatitic dike
(05OA17).
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Figure 5. Diabase protodikes (scale bar is 10 cm). (a) Swarm of protodikes and dioritic intrusions (outcrop
06OA31, with reference to microprobe analysis sampling). (b) Sliver of a protodike with its microgranular margin
intruding an ophitic gabbro (top, left) and grading internally into an ophitic gabbro (89OA101). (c and d) Same
outcrop as Figure 5b, showing in Figure 5c a dark and fine-grained protodike margins and in Figure 5d a brecciated
protodike, both being dismembered and assimilated by a gabbroic matrix. (e and f) HT pegmatitic gabbro dikes
crosscutting protodikes (06OA2) (scale bar in Figure 5f is 3 cm).
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[17] Isotropic ophitic gabbros may recrystallize in
varitextured, locally, pegmatitic gabbros (Figure 4).
In the varitextured gabbros, olivine is totally altered;
clinopyroxene oikocrysts are largely or totally
replaced by a brown hornblende grading into green-
ish hornblende (Figure 3b). In the field, pegmatitic
varitextured gabbros are found as veins and inside
circular patches, some 10 cm across, with dark green
amphibole at the margin, whitish plagioclase in
between and, commonly, epidote in the center
(Figure 4b). Pegmatitic gabbros intrusions are
either parallel to the sheeted dikes or flat-lying sills
(Figure 4c).

[18] Diorites and trondjhemites occur as later intru-
sions of restricted size in the studied area, but can
be hundreds of meters in segmentation-related
areas. Trondjhemites are located close to, or within,
the sheeted dike complex, commonly making up
the dominant screen in the transition zone to the
100% sheeted dike unit. Trondjhemites are also
observed in magmatic, brecciated dikes and sills in
which they constitute the matrix surrounding cor-
roded diabase fragments.

3.4. Protodikes With Microgranular
Margins

[19] Nicolas and Boudier [1991] described ‘‘dia-
base protodikes’’ in the Oman RZSDC. They differ
from other diabase dikes by their microgranular
versus chilled margins and by a coarser and occa-
sionally fluidal, ophitic texture, slightly different in
this respect from their ophitic gabbros country
rocks. When the protodikes are not brecciated,
their orientations are within 10–20� to those of
sheeted dikes (Figure 8). They can be isolated or
mutually intrusive as in any dike swarm (Figure 5a),
but most commonly, they are dispersed in an
ophitic gabbro matrix. Protodike margin texture
is microgranular and mosaic-shaped, with stocky
plagioclase (Figure 6a). An anomalous concentra-
tion in opaque phases is locally noted in these
fine-grained margins. Although hardly visible in
thin section, protodikes contain a good preferred
crystallographic orientation parallel to that of
the dike, thus recording upward magmatic flow
(Figures 6a and 6b). This fabric concerns mainly
plagioclase, and is stronger in the microgranular
margins (Figure 6a) than in the center (Figure 6b).
In contrast with protodike cores which vanish into
their ophitic gabbro matrix, the microgranular
margins are very symptomatic because they survive
to dike-in-dike intrusions, either as thin lenses

inducing a fluidal aspect to (Figures 5b and 5c), or
as blocks in magmatic breccias (Figure 5d). Ortho-
pyroxene occurrence in the microgranular margins
of protodikes is uncommon and restricted to some
localities.

[20] Protodikes are usually emplaced in isotropic
ophitic gabbros. They are, in turn, intruded by
varitextured pegmatitic gabbros (Figures 5e and
5f). This demonstrates that their intrusion com-
monly occurred in the RZSDC after crystallization
of the isotropic gabbros but before that of the
varitextured gabbros. However, there is a continu-
um between protodikes and the LT diabase dikes
with typical chilled margins. Some basaltic dikes
are devoid of chilled margins and are coarser-
grained in their center. The presence of diabase
protodikes with their typical microgranular margins
can be considered as a specific attribute of RZSDC.
Finally, it should be mentioned that the micro-
granular texture is similar to that observed in
microgabbronorites in the granular gabbros where
they form lenses parallel to the gabbro layering
(see below).

3.5. Foliated, Ophitic, and Granular
Gabbros

[21] The base of the RZSDC is locally difficult to
identify, despite the fact that it is a sharp discor-
dance between overlying isotropic, ophitic gabbros
and underneath foliated, ophitic gabbros (4a in
cross section, Figure 2). Their foliation is magmatic
(Figure 3e) commonly underlined by anorthosite
layers. Foliation and layering are parallel to the
general trend of the overlying sheeted complex and
the associated lineation is steep. In the field,
foliation and layering are commonly obliterated by
large and irregular zones of recrystallized gabbros
which had been ascribed to hydrous partial melting
triggered by seawater intrusion at the wall of the
magma chamber below the melt lens [Nicolas et al.,
2003; Bosch et al., 2004] (Figure 4).

[22] Downward, the foliated, ophitic gabbros grade
into the gabbro unit, through the foliated, granular
gabbros (4b, Figure 2). Their texture is dominated
by preferentially oriented tabular plagioclase laths,
defining a strong magmatic foliation, together with
elongated olivine aggregates and more stocky
clinopyroxene grains (Figure 3f).

[23] In both the foliated, ophitic and granular
gabbros, the layering is generally absent, or de-
fined by anorthosite and microgabbro lenses, usu-
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ally no more than 10 cm thick. Textures in micro-
gabbro and microgabbronorite lenses compare with
the microgranular margins of protodikes, though
generally more foliated. They are thought to derive
from diabase dikes stopping into the melt lens, and
recrystallizing in the water which they introduced

[MacLeod and Rothery, 1992; Nicolas et al., 2000;
Coogan et al., 2003].

[24] In the Aswad area (Figure 2), within the upper
granular gabbros about 100 m below the transition
to the RZSDC doleritic gabbros, the steep mag-
matic foliation is locally sharply crosscut by a
�50 m thick sill complex of pegmatitic doleritic

Figure 6. (a) (top) Plane polarized light microphotograph across the margin of a vertical protodike (06OA31) with,
superimposed, enlarged and plain light view of the microgranular texture and (below) related crystallographic
preferred orientation. (b) (top) Plane polarized light microphotograph of the ophitic protodike center (same sample as
Figure 6a), with, superimposed, enlarged and plain light view of the ophitic texture and (bottom) related
crystallographic preferred orientation. Crystallographic preferred orientations are Electron BackScattering Diffraction
(EBSD) measurements (lower hemisphere, nonpolar data, stereoplot in the structural reference frame with dike
margin NS vertical).
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gabbro and protosills (similar to a protodike, but in
a sill orientation) (Figure 7).

4. Structural Relationships in Map

[25] The orientation of diabase dikes in the sheeted
dike complex is fairly homogeneous (Figure 8), on
average 135�E, vertical (Figure 8) which remains
unchanged within the RZSDC. The LT hydrother-
mal veins and the protodikes are oriented 135�E,
vertical too and, more loosely, the pegmatitic
gabbros and trondjhemite intrusions, which are
either close to the sheeted dikes or flat-lying.
Foliations in the uppermost foliated gabbros are
also, on average, parallel to the sheeted dikes.

[26] Another striking feature of the RZSDC is its
limited thickness. Its horizontal extension in the
field varies from less than 500 m, which is an
upper limit, to less than 200 m in a few places. The
average lava flow orientation, 95S25�, may exceed
the general dip of the paleohorizontal, because they
are located close to the thrust limit of the Sumail
massif. We rather rely on the many measurements
indicating that in the northern area, between Wadi
Abda and north of Ibra road, the crust/mantle

boundary is on average oriented 90S15�. An aver-
age ESE dip of �20� seems to be a good estimate
for the RZSDC in the considered domain. Brack-
eting the RZSDC lateral extension between 200
and 500 m, with a 20� dip, its thickness ranges
from 70 to 170 m. We retain an average thickness
of 100 m which is consistent with previous esti-
mates in Oman [Rothery, 1983; Nicolas and Boud-
ier, 1991; MacLeod and Yaouancq, 2000]. There
are, however, minor local variations in thickness, in
addition to the major ones described below. A
vertical variation of the upper limit of 30 m, over
a distance of 100 m has been locally measured in
northern Oman.

5. Wadi Gaz Section: Microprobe
Analysis

[27] A detailed petrographic and microprobe anal-
ysis has been carried on a sampling of Wadi Gaz
(Figure 2), in an area covering a complete section
from the upper level foliated ophitic gabbros to the
sheeted dike complex (Figure 9). The RZSDC
extends over �70 m in thickness, on the eastern
slope of the wadi, but continuous exposure is

Figure 7. (a) Sill with multiple intrusions of varitextured ophitic gabbros and one protosill, emplaced in the
uppermost foliated gabbros (06OA2). (b) Contact between the steeply foliated gabbro (bottom) and the base of the sill
(top). Scale bar is 10 cm.
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Figure 8. Stereonets of field structures (geographical reference frame, lower hemisphere of projection, nonpolar
data). Thirty percent of the measurements come from small areas near Aswad.

Figure 9. Photograph of the Wadi Gaz area sampled for detailed textural and petrographical study. Analyzed
samples (Tables 1 and 2) are plotted; see also Figure 2.
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limited between the wadi bed and the terrace where
the upper road circulates (Figure 9). The terrace
level is some 10 m below the sheeted dike com-
plex. The base of the RZDSC is well marked by a
sharp contact between foliated and isotropic ophitic
gabbro. Above this horizon, there is a zone of
isotropic gabbros, locally intruded by a sheeted
protodike complex, cropping out horizontally and
vertically over 10 to 20 m (Figure 5a), a feature
which is uncommon and specially well exposed in
Wadi Gaz. Protodikes are associated with dioritic
intrusions. The center of these dikes is composed
of ophitic gabbros, locally displaying a fluidal
texture with a crystallographic fabric (Figure 6b),
grading outward into microgranular margins
(Figure 6a). Microgranular margins are also isolated

in the ophitic gabbro matrix, either as slivers or as
brecciated blocks. The upper level of the RZSDC is
marked by a rapidly increasing abundance of dia-
base dikes, reaching 50%diabase dikes at the terrace
level. Varitextured gabbros, together with trondjhe-
mitic intrusions, are the predominant screens be-
tween diabase dikes. The first diabase dikes are
metamorphosed in amphibolite facies conditions,
containing a brown-green hornblende (Figure 3a), in
contrast with the overlying dikes which are in the
greenschist facies.

[28] The studied samples are located on Figure 9,
their textures are imaged in Figures 3 and 10, they
are described in Table 1, and their major elements
analyses are presented in Table 2.

Figure 10. Microphopographs of critical zones studied. (a) Development of granoblastic texture in ophitic gabbro at
contact of a microgranular protodike (sample OM06-22). Both ophitic gabbro and protodike contain pargasitic
amphibole, specially developed along a microcrack in the protodike. (b) Subophitic domain in contact with
intergranular domain at scale of the thin section, in varitextured gabbros (sample OM06-30). The subophitic domain
is remarkably fresh and contains poikilitic Ti-rich pargasite associated with poikilitic ilmenite; the intergranular
domain is weathered and devoid of oxides.
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Table 1. Description of Analyzed Samples

Sample Description Texture Grain Size Photograph

OM06-17 foliated granular olivine-gabbro located
900 m beneath the RZSDC,
2 km west of Aswad farm,
foliation marked by plagioclase
tablets elongation
and by alignment of tabular clinopyroxene
fresh olivine except oxidation in microcracks,
small amount of brown amphibole.

foliated granular 1–2 mm Figure 3f

OM06-18 foliated equigranular microgabbro
lens in OM06-17 gabbro
plagioclase, clinopyroxene, no oxides;
alteration microveins including mylonite.

microgranular 0.5 mm

OM06-22 microgranular margin of a protodike
including larger (0.1 mm) pargasitic amphiboles
and its contact with ophitic gabbro,
with pargasitic amphibole.

microgranular
(margin)

0.02 mm Figure 10a

ophitic
(gabbro)

1 mm

OM06-24 and 25 ophitic gabbro, variable grain size,
clinopyroxene interstitial and locally
replaced by brown and green hornblende.

ophitic 1–5 mm Figure 3c

OM06-26 microgabbro, margin of a protodike,
rich in oxides (magnetite and ilmenite);
except for their rim clinopyroxene
phenocrysts have a
composition significantly
different from clinopyroxene in the matrix.

microgranular 0.1 mm Figure 5a

OM06-27 ophitic gabbro with HT pargasitic
amphibole largely replaced
by magnesio-hornblende, both interstitial around
clinopyroxene and reactional inside them.

ophitic 3–5 mm Figure 5a

OM06-28 diorite with plagioclase, interstitial
clinopyroxene replaced
by magnesio-hornblende rare high-T
amphiboles, magnetite, ilmenite.

ophitic 1 mm Figure 5a

OM06-29 ophitic gabbro with poikilitic clinopyroxene
replaced by medium-T magnesiohornblende,
totally altered olivine, rare oxides.

ophitic 1 mm Figure 5a

OM06-30 varitextured ophitic gabbro with 10 mm poikilitic
clinopyroxene including plagioclase laths,
poikilitic iron oxide,
in contact with an intergranular finer-grained
domain devoid of iron oxides.

ophitic Figure 10b

06OA-31b and c respectively margin and center of a
protodike intruding
and brecciating ophitic gabbro center and margin
of the dike have similar minerals composition.

Figures 6a and 6b

.margin fine-grained (Figure 6a) with
polygonal plagioclase,
clinopyroxene with 1% titanium value,
totally altered olivine
and �10% interstitial iron oxides.

microgranular 0.1 mm

.center ophitic gabbro with prismatic pl
and granular clinopyroxene
evolving locally in clots of
polygonal grains, oxidized olivine.

ophitic 1 mm
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[29] On the basis of plagioclase-clinopyroxene
compositions, most rocks are highly primitive, with
plagioclase, 86% An and clinopyroxene, Mg# 86
(Figure 11). They grade into moderately differen-
tiated gabbroic rocks. The most differentiated rock
is dioritic with plagioclase 43% An and clinopyr-
oxene, Mg# 73. No orthopyroxene has been ob-
served in the samples analyzed. The composition
of amphiboles is shown in Figure 12, where the
estimated thermometry is derived from Koepke et
al. [2005a], on the basis of reliability of the TiO2-
in-amphibole thermometry, and coexisting amphi-
bole-plagioclase thermometer of Holland and
Blundy [1994], applied to oceanic gabbros (see
detail in Figure 12a). Thus the amphibole compo-
sitions constrain the crystallization path of these
gabbros. One typical protodike microgranular mar-
gin (OM06-22) (see Figure 10a) contains a parga-
sitic amphibole grown at very high temperature
(�1000�C). All sampled gabbros contain, as inter-
stitial or overgrowth phases, pargasites formed
at >900�C, down to edenites and magnesio-
hornblendes, formed at 800–700�C. TiO2 content
of amphiboles is highly variable. We notice that
amphiboles with high TiO2 content (2.55 to 5.07)
are high-T pargasitic amphibole that coexist with
ilmenite (see Figure 10b), as outlined in the com-
position of oceanic gabbros [Koepke et al., 2005a].
We notice the wide range in values of TiO2 (0 to
5% for whole rock) coupled with variable An
content in plagioclase that also characterize the
varitextured gabbro and dike root zone in the best
documented gabbro section of Wadi Abyad in
Oman [MacLeod and Yaouancq, 2000]. The par-
gasitic amphiboles in the present study are also rich
in fluor (Figure 12b) and, by comparison with

compilation of oceanic gabbros by Coogan et al.
[2001], pargasites from Wadi Gaz area exhibit high
chlorine content (1000–2000 ppm), in the same
order as amphiboles from the Oman gabbro section
compiled by Coogan [2003].

6. Discussion

6.1. Structure of the RZSDC in the
Mapped Area

[30] A remarkable feature of RZSDC is the com-
mon, dominant orientation of all structures parallel
to diabase dikes in the sheeted complex (Figure 8):
LT hydrothermal veins, tonalite-trondjhemite intru-
sions, diabase protodikes and foliated gabbros
below the RZSDC. As the sheeted dike complex
is generally assumed to be parallel to the ridge
symmetry plane, most structures in the RZSDC and
below should be parallel to the ridge symmetry
plane, which also controls the shape of the magma
chamber [Nicolas et al., 1988; Chenevez et al.,
1998].

[31] This simple RZSDC model is locally modi-
fied in different ways, some of which being
illustrated in the studied area (Figure 2). West of
the Aswad farm, RZSDC formations constitute a
sill, 10 m thick, which transects steeply dipping
foliated gabbros from the gabbro unit (Figure 7).
This may relate to lateral or downward migration
of the melt lens position with time. Near the
Luzugh oasis (Sumail massif), the RZSDC over-
lies a flat-lying foliated ophitic gabbros. This is
possibly due to rapid lateral migration or subsi-
dence of the melt lens. Subsidence of melt lens
has been documented at the East Pacific Rise

Table 1. (continued)

Sample Description Texture Grain Size Photograph

06OA-2b coarse-grained ‘‘dry’’ ophitic gabbro, located
at contact with a foliated ophitic gabbro,
with plagioclase laths randomly oriented,
locally included
in 5 to 10 mm sized poikilitic clinopyroxene.

coarse ophitic 3–5 mm Figure 3d

hydrous alteration limited to
fibrous rims of chlorite
and actinolite surrounding olivine
interstitial amphiboles (<1%)
zoned from brown to blue-green.

06OA-20a varitextured ophitic gabbro, pl (�1 mm)
zoned and altered,
interstitial clinopyroxene (5 to 10 mm),
grading into brown, then green amphibole.

ophitic 1 mm Figure 3b

5–10 mm
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[Hooft et al., 1997; Lagabrielle and Cormier,
1999; Garel et al., 2002]. Conversely, a rise of
the melt lens would result in an assimilation of its
roof, as also envisaged by Coogan et al. [2003].
This could explain the local abundance of micro-
gabbro-norite lenses locally interlayered within
the foliated and layered gabbros.

6.2. Wadi Gaz as a Typical Section
Through the RZDSC

[32] We have defined the base of the RZDSC in the
Wadi Gaz section (location in Figure 2) as coin-
ciding with both the floor and the roof of a melt
lens (cross section in Figure 2). This important
boundary has been traced in the field on the
western side of the Wadi Gaz (Figure 9). It is
where the floor and the roof of the melt lens were
squeezed together when the melt lens closed, due
to drifting away from the ridge axis. After settling
on the floor of the lens, the gabbro mush subsided
within the magma chamber and rotated, developing
a steep foliation which was frozen when this mush
solidified as a gabbro and drifted out of the magma
chamber [Quick and Denlinger, 1993; Chenevez et
al., 1998] (Figure 13a). The uppermost, crude and
steep foliation taken as the top of the RZSDC has
been developed right at the limit of the melt lens.
The roof of the melt lens has crystallized at
<1200�C in dry conditions as a coarse and dry

ophitic gabbro, representing the base of the
RZSDC and locally preserved (Figure 13c).
Above, we interpret the RZSDC isotropic ophitic
gabbros as related to successive stages of protodike
intrusions. The protodikes were injected near the
roof of the melt lens where temperature was in the
range of 1100�C–1000�C (Figure 13c). The center
of the dikes crystallizes as isotropic ophitic gabbros
with microgranular margins resulting from a rapid
cooling at the contact with the hot and hydrated
ophitic gabbros. Protodikes would be split by
subsequent dike-in-dike intrusions in a medium
also submitted to hydrous recrystallization and
anatexis. As a result, protodikes would be mostly
destroyed and, usually, only recalled by slivers or
breccias of their microgranular margins within an
ophitic gabbro matrix. This is typically seen in
Wadi Gaz where, exceptionally, a small sheeted
protodike complex has been preserved. A few tens
of meters above this complex, the isotropic ophitic
gabbros partly recrystallize and melt by hydrous
anatexis. Pegmatitic veins in varitextured gabbros
and minor trondjhemite intrusions are generated by
this anatexis. Finally, we have described at the base
of the greenschist facies sheeted dike complex a
limited horizon of amphibolite facies diabase dikes.
They would represent a thermal boundary layer
between the HT RZSDC and the overlying LT
sheeted dike complex.

Figure 11. Composition of plagioclases and clinopyroxenes of the Wadi Gaz dike rocks (see analyses in Table 1).
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Figure 12. (a) Compositions of amphiboles from the Wadi Gaz dike rocks (see analyses in Table 1). For the
estimation of equilibrium temperatures based on coexisting amphibole-plagioclase, we used the thermometer of
Holland and Blundy [1994]. Moreover, temperatures for amphibole formation were derived by applying the
semiquantitative geothermometer of Ernst and Liou [1998] based on the Ti content in amphiboles. For this, only
those amphiboles were used which coexist with a titanian oxide phase (titanomagnetite or ilmenite). Previous studies
in basaltic systems showed the general good agreement between the Ti-in-amphibole and amphibole-plagioclase
temperatures [Koepke et al., 2005a]. Moreover, the reliability of the TiO2-in-amphibole thermometer was confirmed
by an experimental study of Koepke et al. [2004] where temperatures derived from the TiO2 content in amphiboles of
experimental products correspond well to the temperatures of the experimental runs. (b) F versus Cl in amphiboles
from the Wadi Gaz rocks (see analyses in Table 1). Fields shown are from Coogan et al. [2001], vein and replacive
(dotted line), bleb and interstitial (full line).
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Figure 13
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6.3. Hydrous Anatexis

[33] As already concluded by Nicolas and Boudier
[1991], field observations convincingly suggest
that the varitextured gabbros and their pegmatitic
patches grading in pegmatite veins as well as the
diorite and trondjhemite bodies are in situ prod-
ucts of hydrous anatexis. This interpretation has
been confirmed by the discovery in Oman
gabbros of a massive alteration by large fluxes
of seawater heated to temperatures up to 1000�C
which locally trigger hydrous anatexis [Nicolas et
al., 2003; Bosch et al., 2004]. As the same
evidence is present in RZSDC, this general inter-
pretation is extended here, noting that seawater
ingression should be easier at this shallow level
than deeper in the gabbro unit. The interpretation
of the observed phase relations as hydrous melt-
ing is in agreement with experiments, which have
been conducted at the appropriate pressure, tem-
perature, oxygen fugacity (see Figure 14 and
Appendix A). On the basis of the mineral analy-
ses reported in Table 2, we can extend the role of
water to lower temperatures. Thus, in varitextured
gabbros, hydrous reactions responsible for zona-
tion in amphiboles record temperatures dropping
from T > 900�C to T < 750�C (Figures 3b and
12a). We have also described within pegmatitic
patches, the latest stage of magmatic evolution
which were converted into greenschist facies
probably by autometamorphism (Figure 4b). Also
as a product of a very late stage magmatism,
veins, dikelets or small stocks of diorite to
trondjhemite can be observed. These felsic com-
positions can be generated either by advanced
differentiation of the hydrous gabbroic mush
freezing later to varitextured gabbros or by partial
melting of the just frozen gabbro by the introduc-
tion of a small amount of seawater at temper-
atures between 900 and 980�C [Koepke et al.,

2004] (Figure 4c). A model-dependent confirma-
tion is provided by Coogan et al. [2003]. By
balancing the Cl content observed in fresh EPR
MORBs with a potential contaminator, the authors
conclude that �20% of hydrothermally altered
crust was assimilated and mixed in the melt lens
basalt by stopping of altered dikes that can
contain high amounts of water due to the presence
of hydrated minerals. This also implies that the
generation of hydrous magmas within the RZSDC
is easily possible, since the addition of small
amounts of water at the given shallow pressure
may lead to high water activities (see section 6.4
and Appendix A).

6.4. Origin of Water

[34] The question raised here is whether water of
mantle origin, carried by the basaltic melt to the
melt lens would be sufficient to generate the
hydrous reactions recorded in the RZSDC or
whether seawater infiltration is necessary. In the
experiments reported in Appendix A, under the
chosen pressure of 50 MPa, the solubility of water
in a primitive MORB melt is 2.2 wt% [Berndt et
al., 2002]. Thus, high water activities can be
reached easily, with the addition of relative small
amounts of water. Even less than 2.2 wt% water is
sufficient for reaching water-saturated melts, when
the melt fraction is reduced. For instance, only
�1 wt% total water is necessary, for shifting the
system of Figure 14 at 1060�C from the dry
solidus into a hydrous partly molten regime
with �50% water-saturated melt and 50% anhy-
drous crystals. Lower water contents are enough to
stabilize water-saturated trondjhemitic melts at
lower temperatures, where the melt fractions are
low (e.g., �0.1 to 0.4 wt% total water as a function
of temperatures and melt fraction). Such low
fractions of water can be attained by fractional
crystallization of a basaltic melt issued from the

Figure 13. Sketches illustrating, with increasing detail, the internal structure and dynamics of the RZSDC.
(a) Convective structure and RZSDC zonation above and away from the melt lens (vertical scale is exaggerated;
realistic thickness shown in the close-up). The magmatic convection in the lens (white lines) is separated from the HT
hydrothermal convection (red lines) by a dry isotropic ophitic gabbro horizon forming a thermal boundary layer. LT
(greenschist facies) hydrothermal convection coincides with the top of the RZSDC, being separated from the
underlying HT hydrothermal system by a second thermal boundary layer (amphibolite facies diabase). In the HT
hydrothermal regime, hydrous melting of the isotropic gabbros and crystallization generates the varitextured gabbros
and trondjhemites. (b) See box in Figure 13a. Intermittent generation of new RZSDC to replace the one drifted off-
axis, by cracking of the dry gabbro layer, with injection of new melt through the crack. Dry gabbros crystallize from
this new melt which can also be injected as a protodike that extends upsection into a new dike in the sheeted dike
complex. (c) See box in Figure 13b. Melt surge through a protodike and minor intrusion at the base of the RZSDC,
yielding the crystallization of the isotropic ophitic gabbros presumably in wet conditions, followed by abundant HT
hydrous melting in the main body of the RZSDC, generating varitextured and pegmatitic gabbros, diorite, and
trondjhemite.
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mantle where the initial water fraction is �0.05%.
The validity of the concept of fractional crystalli-
zation when dealing with a melt lens functioning in
steady state conditions could be questioned. Thus,
it seems quite possible that a minor fraction of
deep water can be introduced within the RZSDC.
However, on the basis of oxygen isotopes [Greg-
ory and Taylor, 1981; Bosch et al., 2004] volumes
of water much larger than a few percent are
probably available. They indicate that the amount
water which permeated Oman gabbros at HT was
of the order of magnitude of the mass of these
gabbros.

[35] Most gabbros in RZSDC contain pargasitic
amphiboles as interstitial or overgrowth phases.

According to Coogan et al. [2001], the generally
high chlorine content of pargasitic amphiboles, like
the ones here, indicate that they crystallized in
presence of seawater derived fluids. However, the
Wadi Gaz pargasitic amphiboles have also a high
TiO2 content, correlated with a high fluor content
(Figures 12a and 12b). High values of these two
elements are considered as the signature of mag-
matic amphiboles [MacLeod and Yaouancq, 2000;
Coogan et al., 2001]. At this stage, we discern that
the question of magmatic versus hydrothermal
origin of pargasitic amphiboles cannot be settled
by our data. Koepke et al. [2005a] point out in
oceanic gabbros, a correlation of TiO2 enrichment
in pargasitic amphiboles and their association with
ilmenite. This correlation is also observed here and

Figure 14. Phase relations in a hydrous primitive tholeiitic system at 50 MPa in the RZSDC. The solid black lines
correspond to the phase boundaries of olivine (Ol), plagioclase (Plag), clinopyroxene (Cpx), orthopyroxene (Opx)
under oxidizing (ox) and reducing (red) redox conditions, and amphibole (Am). See text for further details on the
cooling paths and outlined fields; see Appendix A for background data of the phase diagram.
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we refer to the discussion of this topic in their
paper.

6.5. A General Model for the RZSDC
Formation

[36] The model developed now integrates the
observations reported above in Wadi Gaz. It
applies to RZSDC generation in the situation
where, as deduced from the continuity of structures
over a transversal distance in map of 15 km
(Figure 2), the spreading has been steady state
and, expectedly, the melt lens, fairly stable over a
period of �300,000 years (assuming a half spread-
ing rate of 5 cm/a). Subsequently, we will examine
the situation of RZSDC in the environment of ridge
segmentation.

[37] A dry basaltic melt crystallizes at the roof of
the melt lens as a thin layer of coarse-grained and
little altered ophitic gabbro. This layer is a thin
thermal boundary layer between the magma con-
vection in the melt lens, at �1200�C, and the HT
(>450�C) hydrothermal convection above. Hydro-
thermal convection rapidly decreases the temper-
ature upsection but the temperature is as high as
�1100�C at the contact with the dry ophitic
gabbros (Figures 13a and 14). The complex
RZSDC lithology demonstrates the presence of
HT fluids inducing both wet anatexis and meta-
morphic hydrous reactions. The mechanism by
which seawater penetrates the RZSDC at high
temperatures seems to be simpler here than in
the case of the ubiquitous HT hydrothermal
alteration of the gabbro unit located below the
RZSDC [Nicolas et al., 2003; Nicolas and
Mainprice, 2005]. In contrast with the latter
situation, where HT fluids have to progress sev-
eral kilometers below the limit of the elastic
lithosphere (�600�C), this limit is located here
at the base of the sheeted dike complex, �100 m
above the RZSDC. Consequently, seawater can be
introduced through tensile stress driven cracks in
the elastic lithosphere.

[38] Constrained by experimental studies on the
dependence of gabbro stability on water content, at
50 MPa (the approximate pressure conditions of
the RZSDC at the ridge axis) (see Appendix A),
the phase diagram of Figure 14 describes the
formation sequence of igneous rocks in the
RZSDC. The dry gabbros plated at the roof of
the melt lens crystallized around 1180�C at the dry
solidus. From there, they follow the red path in
Figure 14. This path is also possible for the
overlying isotropic ophitic gabbros which would

then also be within the thermal boundary layer.
However, because they display distinct textures
(Figure 3), these isotropic ophitic gabbros are
thought to be related to the HT hydrothermal
system above the thermal boundary layer. These
isotropic ophitic gabbros would crystallize from a
hydrous melt which, at >1100�C following the blue
path in Figure 14. This melt would result from the
reaction of <1% of hydrothermal fluids with either
the dry and solid gabbros from the roof of the melt
lens or a dry melt injected through the protodikes.

[39] Protodikes are expected to play a major role in
generating the isotropic gabbros (Figures 13b and
13c). Let us assume that a basaltic melt surge
cracks the dry gabbro layer from the melt lens roof
and progresses to the surface through the sheeted
dike complex. It will cross the RZSDC as a melt
conduit with possibly lateral injections into the
surrounding medium. Just above the roof thermal
boundary layer, this will be an active protodike
with a microgranular margin. This margin will
subsequently remain little changed, possibly be-
cause it is fine-grained and not porous. After the
melt surge, the interior of the conduit crystallizes in
the presence of a hydrous fluid at >1100�C, form-
ing isotropic doleritic gabbro. Related to drifting
off-axis, the RZSDC is continuously created by
similar melt conduit injections and crystallizations.

[40] Above this lower horizon, more seawater-
derived fluids injected at temperatures between
1100�C–1050�C locally induce, in the isotropic
ophitic gabbros, hydrous anatexis resulting in crys-
tallization of HT vary-textured and pegmatitic
gabbros (Figure 14). The 1100–1050�C tempera-
ture interval for intrusion of hydrous fluids is
controlled by the fact that below a melt fraction
of 50%, it seems difficult, in melting varitextured
gabbros, to separate and inject pegmatitic dikes
without preserving restitic assemblage. Moreover
no restitic assemblages are identified in the field.
Due to continuous hydrous intrusion and melting,
diorites and trondjhemites can be generated either
by advanced closed-system differentiation of the
hydrous magma or by subsequent hydrous partial
melting events at lower temperatures 900 to 950�C
(Figure 14) [Koepke et al., 2005b]. Below this
temperature, further hydrothermal alteration takes
place only by solid-state metamorphic reactions.

[41] A second thermal boundary layer, located at
the base of the sheeted dike complex, exists be-
tween the HT and LT hydrothermal convection
systems. In Oman, it can be traced by the presence
in diabase dikes of HT (amphibolite facies) alter-
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ation (Figure 3a), without significant evidence of
the LT (greenschist facies) ubiquitous alteration
which is present in the overlying dikes.

[42] With seafloor spreading, RZSDC lithologies
drift off-axis, probably without any significant
change until they pass over the lateral limit of the
lens. Beyond this limit, because of the related sharp
drop in temperature, the dry doleritic gabbros are
submitted, for a short time, to HT hydrothermal
alteration. A few outcrops have nearly escaped this
alteration and could still represent the roof horizon
of the melt lens (Figure 3d).

[43] If melt pulses renew the gabbro boundary
layer through melt fractures (Figure 13b) then
each diabase dike in the sheeted dike complex
is connected to one protodike in the RZSDC.
However, protodikes are not that common in the
RZSDC. We, therefore infer that the protodikes
are massively destroyed, mainly by dike-in-dike
intrusions at melting temperatures, and/or by
hydrous remelting. As illustrated by Figure 13c,
this hypothesis is supported by the observation of
protodikes being commonly dismembered, with
dispersal of microgranular margins, mainly as
breccias and aligned lenses in an ophitic gabbro
matrix (Figure 5). The margins of the protodikes
have a tighter texture and are more resistant to
assimilation than the ophitic center of protodikes.
The margins are the only relicts of a former sheeted
protodike complex.

6.6. RZSDC in Domains Affected by Ridge
Segmentation

[44] We have selected a domain located away from
ridge segment limits and related propagating rifts,
where ridge segmentation has induced major ridge-
related tectonic deformations and magmatic intru-
sions within the RZSDC. Using the presence of
symptomatic gabbronorite and diorite-trondjhemite
bodies, restricted to these domains, it is inferred
that nearly half the lithosphere has been generated
in the Oman ophiolite under the influence of ridge
segmentation.

[45] In RZSDC from ridge segmentation domains,
the large magmatic intrusions can induce by reheat-
ing a local contact metamorphism, as described
around a gabbronorite intrusion in Troodos [Gillis
and Roberts, 1999; Gillis and Coogan, 2002].
Conversely, in our RZSDC where no such intru-
sions are observed, reheating to HT conditions can
be induced only along the protodikes emplaced in

the hotter, basal part of the RZSDC (Figure 10a).
Such contact metamorphism has been observed,
but restricted to a centimeter scale. This is not
surprising considering that, with a �7�C/m thermal
gradient, the RZSDC experiences an incredibly
sharp cooling.

6.7. Comparison of RZSDC in Oman and
in the IODP Hole 1256D

[46] The first results of the successful drilling
through the floor of a RZSDC in the East Pacific
Rise [Wilson et al., 2006] show many similarities
with what is observed in Oman (Figure 15) and in
other ophiolites, such as Troodos [Gillis and Rob-
erts, 1999]. Two features seem particularly charac-
teristic. The IODP and Oman RZSDC have a
comparable �100 m thickness if, according to
Wilson et al. [2006], the top gabbros from the
gabbro unit are represented by the last meters of
the core. Most textures observed in the Hole
1256D also match those in Oman, as illustrated
by the comparison of ophitic gabbros (Figures 15a
and 15b; see also for Troodos ophiolite [Gillis and
Coogan, 2002]). Interestingly, the ‘‘completely
recrystallized granoblastic’’ texture of Figure 4B
ofWilson et al. [2006] observed in the lower sheeted
dikes and equilibrated at �650�C, matches, in
terms of texture and position, our lowermost HT
diabase dikes, which corresponds to the thermal
boundary layer between the HT and LT hydrother-
mal systems (Figures 15c and 15d). However, in
the IODP leg, the granoblastic dikes section, strati-
graphically above the gabbros, is 60 m thick
[Wilson et al., 2006], which is somewhat thicker
than the HT alteration front at the base of Oman
sheeted dike complex.

[47] On the basis of the observation of prograde
mineral reactions in the granoblastic dikes, the
‘‘granoblastic’’ textures are ascribed by Teagle et
al. [2006] and Wilson et al. [2006] to ‘‘contact
metamorphism by underlying gabbro intrusions.’’
This agrees with the Troodos ophiolite study [Gillis
and Roberts, 1999], where a large metamorphic
aureole has been observed in sheeted dikes at the
margins of a gabbronorite intrusion. In the part of
the Oman RZSDC devoid of late magmatic intru-
sions, there is no evidence of any reheating, except
on a centimeter scale at the margin of a dike. We
suggest that Troodos ophiolite, as well as the IODP
hole in the Cocos oceanic lithosphere were both
accreted in a domain of ridge segmentation and not
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in a domain of steady state seafloor spreading as in
the area selected in Oman for this study.

7. Conclusion

[48] The object of this paper was to revisit RZSDC
zones in the Oman ophiolites, at a time when this
critical zone has been drilled in the ocean for the
first time with IODP Hole 1256D. We wish to
insist on the exceptional interest of the RZSDC, as
a key to understand crustal accretion at fast spread-
ing centers. A large part of the lower crust is issued
from a tiny melt lens, only �2 km in cross section
and �30 m thick. On top of it, the slightly thicker
RZSDC (�100 m) is a horizon in which the
temperature drops �800�C, from 1200�C in the
melt lens to 450–400�C at the base of the sheeted
dike complex. This represents the most energetic
system in dynamic equilibrium at the surface of the

Planet that results in the complex and varied
lithology described herein. A brief comparison
between the RZSDC in Oman and the first descrip-
tions from IODP Hole 1256D suggests that the
present study could help to constrain the three-
dimensional context of this most important section
drilled in the ocean.

Appendix A: Experimental Constraints
on the Phase Relations in a Hydrous
Primitive Tholeiitic System for a
Pressure of 50 MPa (Figure 14)

[49] The rationale behind the understanding of the
different magmatic lithologies in the RZSDC is
based on the knowledge of the phase relations in a
hydrous primitive to moderately evolved tholeiitic
system for the pressure conditions of the RZSDC,
which is assumed to be 50 MPa (corresponding to

Figure 15. Comparison of textures in the Oman and IODP Hole 1256D RZSDC. The top micrographs show
isotropic hydrated ophitic gabbro from (a) IODP sample 1256D216R1 and (b) site 90OF15 in Oman. The bottom
micrographs show HT diabase with polygonized Cpx crystals and development of brown hornblende from (c) IODP
sample 1256D194R1 and (d) site 03OA62 in Oman.
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a thickness of �1 km for the crustal lid, plus 2–
3 km water column). The role of water and oxygen
fugacity on the phase equilibria and differentiation
in tholeiitic, MORB-type systems at shallow pres-
sures has been studied in recent experiments by
Feig et al. [2006] and S. T. Feig et al. (Effect of
oxygen fugacity on phase equilibria in a hydrous
tholeiitic basalt, submitted to Contributions to
Mineralogy and Petrology, 2008). They studied
the pressure dependence (100, 200, and 500 MPa)
and the role of oxygen fugacity (corresponding to
QFM-3 to QFM+4, with QFM = quartz-fayalite-
magnetite oxygen buffer) of a primitive tholeiitic
system (Mg# = 73.5, with Mg# = molar 100 �
MgO/(MgO + FeO)). The phase diagram of
Figure 10 is based on an extrapolation of the phase
relations to 50 MPa for an oxygen fugacity
corresponding to �QFM-1 at dry conditions and
QFM+2 at water-saturated conditions. Feig et al.
[2006] showed that typical thermodynamic models
for predicting magmatic evolution trends like
‘‘MELTS’’ [Ghiorso and Sack, 1995] and
‘‘Comagmat’’ [Ariskin, 1999] fail to predict the
experimental phase relations under hydrous con-
ditions at shallow pressure. Therefore, the extrap-
olation of their results to 50 MPa seems the only
possible way to estimate reliable evolution trends
of a primitive hydrous tholeiitic system at the
magmatic conditions prevailing in the RZSDC.

A1. Relation Between Water and Oxygen
Fugacity

[50] In a hydrogen-buffered system, as it is the case
for such experiments, the prevailing oxygen fugac-
ity strongly depends on the water activity of the
system. For the dry and water-poor conditions
of Figure 10, we choose an oxygen fugacity
corresponding to QFM-1 to QFM which is in
accord with recent studies estimating the redox
conditions of natural MORB [e.g., Bezos and
Humler, 2005]. A further hydration of the system
consequently leads to more oxidizing conditions
resulting in an oxygen fugacity �QFM+2 for a
water activity of 1 (water-saturation). The quanti-
tative treatment of the relation between water
activity and redox conditions (and oxidation state
of iron) is given by Botcharnikov et al. [2005]. The
water-saturation curve included in the phase dia-
grams is obtained from the water solubility in a
primitive MORB of Berndt et al. [2002] and from
the temperature and pressure dependence on water
solubility of Holtz et al. [1995].

A2. Stability of Oxides

[51] Chrome spinel, which is always stable in the
experiments at near liquidus conditions, is not
included into the phase diagram of Figure 10. Fe-
Ti oxides were not stable under the given redox
conditions in the experiments of Feig et al. [2006;
submitted manuscript, 2008]; they are stable only
at more oxidizing conditions. However, since the
experimental system is primitive (FeOtot content of
6.5 wt%), it is expected that in a more evolved
system, Fe-Ti oxides would be stable at lower
temperatures, at least at the more oxidizing con-
ditions in the hydrated regime. The amphibole,
which is stable at low temperatures typically shows
a pargasite composition.

A3. Effect of Water

[52] The main effect of water on the phase relations
in the given system is to displace the stability
curves of the minerals at lower temperatures.
Under the low pressure of 50 MPa, water is not
changing the order of crystallization, in contrast to
what is observed at higher pressure. The well-
known depression of plagioclase stability (plagio-
clase crystallizing after clinopyroxene) with in-
creasing water content was observed in the
experiments of Feig et al. [2006] only at pressures
�200 MPa. Moreover, water content also affects
the mineral compositions. According to Feig et al.
[2006], the An content of plagioclase may increase
about 10 to 15 mol% when increasing the water
activity from 0 to 1 at a given temperature, while
the Mg# of olivine and clinopyroxene is shifted to
higher values (maximum of 5 to 10) due to the
increased oxygen fugacity with water. Thus, the
overall effect of water is to stabilize crystal mushes
with moderate or high melt fractions to lower
temperatures, and thereby shifting the An content
of plagioclase and the Mg# of clinopyroxene and
olivine to higher values. Amphibole, the only
hydrated phase in the system, is only stable at very
low temperatures. Thus, it should be emphasized
that the absence of amphibole in crystallized gab-
bro does not necessarily mean that the conditions
in the magma chamber were ‘‘dry.’’

A4. Effect of Composition

[53] The system used for our phase diagram is
fairly mafic in composition, thus corresponding
to one end-member of the range of melts leaving
the magma chamber. This has several consequen-
ces: (1) liquidus temperatures (and the saturation
temperatures of the individual minerals) are high;
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(2) olivine is stable down to the lowest temper-
atures; (3) the stability of orthopyroxene is restrict-
ed to the lowest temperatures while olivine is still
present; (4) the iron content in the low-temper-
atures melts are too low for saturating Fe-Ti oxides
at the applied redox condition. By using a slightly
more evolved system, e.g., a normal MORB with a
Mg# of 67 [Berndt et al., 2005], the liquidus
temperature of the system (and the saturation
temperatures of the individual minerals) are slightly
lower (e.g., 1220�C for the dry solidus), but the
phase topology is the same and the other points
mentioned above are still valid. Only when the
system evolves further (e.g., Mg# < 60), notable
changes in the phase relations are expected. These
can be extrapolated from the experiments in hy-
drous MORB by Berndt et al. [2005], who studied
both primitive and evolved MORB: (1) liquidus
temperature (and the saturation temperatures of the
individual minerals) are lower (e.g., �1200�C for
the dry solidus); (2) olivine may become unstable;
(3) the stability of orthopyroxene is enhanced to
higher temperatures; (4) Fe-Ti oxides become sta-
ble in the lower temperature part of the diagram
(but still strongly depending on the prevailing
redox condition).

A5. Stability of Orthopyroxene in a
Primitive System

[54] According to Feig et al. [2006], at a given
pressure, the orthopyroxene stability is increased
by oxidizing redox conditions, and decreased with
increasing water activities. Therefore, two ortho-
pyroxene saturation curves are displayed in the
phase diagram of Figure 14, one for reducing and
one for oxidizing conditions, related to oxygen
fugacities corresponding to QFM and QFM+2 at
dry conditions, respectively. In the chosen primi-
tive system, orthopyroxene always crystallizes late,
with the potential to produce typically interstitial
growth. Earlier orthopyroxene crystallization can
be expected at the chosen low pressure only by a
significant increase of silica activity of the system.
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this journal.  I agree with almost all of the comments from the three reviewers.   A modest 
revision is required to modify some of the details of the introduction and discussion of the 
results presented.  The core data and ideas in the paper appear sound and publication should 
be timely after the authors address the reviewers comments.  I particularly support the 
suggestions of reviewer Robert Luth who suggests a little more discussion of some of the 
statements made in the introduction section regarding the nature and importance of oxygen 
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revised submission out to external reviewers when we receive it. 
 
Malcolm J Rutherford 
Editor  
 
 
Reviewer #1: #60 An other method is the intrinsic fugacity measurement on the bulk rock 
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equilibrium with the glass matrix. Unfortunatly the rim is generally 5-10µ thick and the same 
analytical problems as in experimental run products arise. For this reason Lundgaard did not 
use the measured Fe content BUT the content computed using Sugawara's method. You 
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iron in plagioclase. 
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Apparent contradiction : you use first reduced experiments to estimated the FERROUS iron 
partition coefficient (#206-208 ) and then lines #215-217 you use McCanta's reduced 
experiments to estimate the FERRIC iron partition coefficient 
#218-235 Confused discussion. McCanta relationship (fig 3a) is poorly constrainted at 
?FMQ>-1 because of the very large uncertainties and your best fit don't take in account this 
uncertainty. Probably this is the reason why the dashed curve does not fit the experimental 
data at high fO2. You reintroduce the uncertainty effect when you use the 0.4±0.4 constant 
value (dotted curve) 
#391 reference omitted : Contrib Mineral Petrol 
fig 1 : not useful 
Excel spreadsheet : the Xoxydename nomenclature is confusing to indicate the oxyde wt%. 
Usually X prefix is used to indicate a fraction (i.e. XFe = Fe molar fraction) 
 
 
 
Reviewer #2: This is an excellent paper, and I strongly recommend it for publication. It 
embodies an idea that I would never have thought of (perhaps many others, too?). There are 
indeed many problems with current methods available for estimating the redox conditions of 
basaltic magma. Although this new method has a +-1 log unit uncertainty, its ease of use for 
the average petrologist makes it an oxybarometer that I suspect will be widely employed. 
I could not find any problems with the way it has been formulated, although I confess to being 
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not too familiar with most of the literature cited. 
I will forward an annotated copy of the ms to the journal office. I made some changes in word 
order, deleted a lot of "have"s, changed "could" to "can", etc. I would suggest the authors not 
use "evolution" on page 10, because it is not quite the same as "magma evolution", in which 
deltaFMQ can go either way. They might add: Ghiorso & Evans, Am J Sci 2008, 308, 957-
1039 to the references on the FeTi oxybarometer. 
              Bernard W. Evans, Sept. 2, 2009 
 
 
 
Reviewer #3: None - the attached review can go in full to the authors; I have identified myself 
explicitly at the end of the review. Robert W. Luth 
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Comments on “A new method to estimate the oxidation state of basaltic series from 
microprobe analyses” by L. France, J. Koepke, B. Ildefonse, and F. Bech. Submitted 
to JVGR. 

General comments: 

 The goal of producing a technique by which one could infer the relative fO2 of a basaltic 
melt using only the electron microprobe is truly a ‘holy grail’ of igneous petrology and 
petrologists. The authors propose such a technique, based on the different partitioning of iron 
between basaltic melt and clinopyroxene, and basaltic melt and plagioclase. I think the authors 
are on the right track, but suggest that their model could be significantly improved by a more 
comprehensive analysis of the partitioning behaviour of Fe2+ between melt and clinopyroxene. 
Figure 2 illustrates the inadequacy of the approach in the current paper, so I would suggest that 
they do such an analysis prior to publication. 

Specific comments: 

lines 33-36: This introduction presumes that fO2 is an independent variable in magmatic systems, 
rather than merely a convenient monitor of oxidation state. The authors might want to clarify 
their thinking here. 

lines 51-54: C. Herd had a useful article on estimation of  fO2 in basalts in the recent ‘Oxygen in 
the Solar System” RIMG volume. Would be useful to reference it for other techniques for 
estimation of fO2 beyond those discussed here. 

lines 67-68: Luth and Canil (1993) never claimed their oxybarometer was useful for basaltic 
systems; their interest was in more ultramafic systems. 

lines 76-78: I’m puzzled by the apparent contradiction in the statement that ܦ௉௟ି௠௘௟௧
ி௘ି௧௢௧௔௟ is 

dependent on fO2 but the two components of that D (ܦ௉௟ି௠௘௟௧
ி௘ଶା and ܦ௉௟ି௠௘௟௧

ி௘ଷା d) do not. A bit more 
explanation would be most helpful here. 

lines 83-84: In what sense is a ‘tholeiitic basalt system’ be a ‘precisely constrained compositional 
system’? Wouldn’t you have a large range in Mg/(Mg+Fe) in such a system? How might that 
affect the partitioning behaviour of Fe? And would a ‘tholeiitic’ system really be appropriate at 
oxidizing conditions, such as those for which this calibration is intended? 

line 85: It would be useful to define the difference between the notation used for plag (e.g., 
௉௟ି௠௘௟௧ܦ
ி௘ି௧௢௧௔௟) and that used for cpx (e.g., ܦ௖௣௫ି௠௘௟௧

ி௘ଶାכ ). 

lines 87-95: The authors might want to rephrase this – measurements of Fe2+/Fe3+ cannot be 
correlated to the fO2 of a magmatic system without knowledge of the functional relationship 
between Fe2+/Fe3+ and fO2. 
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Throughout the manuscript, the authors need to specify the units for Fe2O3, FeO, Fe௖௣௫ଷା , Fe௖௣௫ଶା , 
etc – are these wt.% oxides, molar quantities, cations per six oxygens or ? 

A more logical arrangement of the manuscript would place the section on ‘Controlling 
parameters’ BEFORE the section on the “Model”. 

line 131: again, specify units of concentration. wt. %? molar? 

There is an irritating change in notation between equations (3) and (5). 

In equation (6), the authors need to specify how the mole fractions are calculated – are these 
mole fractions of the oxides assuming an anhydrous composition? 

line 171: The authors should discuss why they consider the model of Kress and Carmichael 
(1991) appropriate for hydrous melts. 

lines 205-206: Given the poor quality of fit (R2= 0.60), the authors need to justify why they did 
not regress against other compositional parameters in the same fashion as Lundgaard and Tegner 
(2004) did. I suspect had they done so, they could have improved the fit of this parameter (D) 
considerably. 

Also, crucial in their analysis is the assumption that there was no Fe3+ in either the liquid or the 
cpx in the experiments they selected. Based on McCanta et al’s work, I could agree with the 
latter assumption, but they should outline their justification for the former. 

line 210: Again, if this parameter is so strongly influenced by melt composition, why was only 
SiO2 regressed against? 

lines 217-218: Maybe I missed it, but I did not see where McCanta et al (2004) “proposed an 
estimation of  ܦ௖௣௫ି௠௘௟௧

ி௘ଷା  as a function of the redox conditions.” 

line 220: The authors need to justify why they chose to fit five data points with a quadratic 
equation, especially given the uncertainties attributed to the two values at more oxidized 
conditions. Further, given that they show in the next paragraph that this equation does not 
extrapolate well to higher fO2, and abandon it in favour of an fO2-independent  ܦ௖௣௫ି௠௘௟௧

ி௘ଷା , should 
this section be re-written or omitted entirely? 

lines 231-232: How does a constant  ܦ௖௣௫ି௠௘௟௧
ி௘ଷା  of 0.4 agree with the data of McCanta et al? If 

anything, a lower value would agree better with the low fO2 data… 

lines 257-258: In the error propagation analysis, the authors need to justify the neglect of 
covariance. Having said that, I congratulate the authors for even this level of analysis of 
propagation of errors; more papers should do this. 

Annex page 52



lines 261-273 (Model Testing section): I think this section needs to be expanded. First, did all 
these data fulfill the criteria (e.g., SiO2 < 60 wt.% and fO2 > FMQ)? Second, there are “error” 
bars plotted in Figure 4 – are these from propagating the errors as per above, and are they 1 or 
2? The agreement of the data points to the predicted values needs to be addressed. For example, 
the model appears to predict a systematic trend in the fO2 of the data of Berndt et al. (2005) that 
appears to be an artefact, but what caused this trend? 

line 473: This is not a linear regression in Figure 3. 

 

Robert W. Luth 
Edmonton, Alberta 
22 September 2009 
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Abstract 
The oxygen fugacity and therefore the iron redox state of a melt is known to have a strong 

influence on the liquid line of descent of magmas and thus on the composition of the 

coexisting melts and crystals. We present a new method to estimate this critical parameter 

from electron probe microanalyses of two of the most common minerals of basaltic series, 

plagioclase and clinopyroxene. This method is not based on stoichiometric calculations, but 

on the different partioning behaviour of Fe3+ and Fe2+ between both minerals and a melt 

phase: plagioclase can incorporate more Fe3+ than Fe2+, while clinopyroxene can incorporate 

more Fe2+ than Fe3+. For example, the effect of oxidizing a basaltic partly molten system (Fe3+ 

is stabilized with respect to Fe2+) results in an increase of FeOtotal in plagioclase, but a 

decrease in the associated clinopyroxene. We propose an equation, based on published 

partition coefficients, that allows estimating the redox melt state from these considerations. 

An application to a set of experimental and natural data attests the validity of the proposed 

model. The associated error can be calculated and is in average ±1 log unit of the prevailing 

oxygen fugacity. 

In order to reduce the different variables influencing the Fe2+/Fe3+ mineral/melt equilibrium, 

our model is restricted to basaltic series with SiO2 < 60% that have crystallised at intermediate 

to low pressure (< 0.5 GPa) and under relatively oxidizing conditions (∆FMQ > 0; where 

FMQ is the fayalite-magnetite-quartz oxygen buffer equilibrium), but may be parameterized 

for other conditions. A spreadsheet is provided to assist the use of equations, and to performe 

the error propagation analysis. 
 

31 Key words: oxygen fugacity, partition coefficient, clinopyroxene, plagioclase, EPMA 
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The oxygen fugacity (fO2) of basaltic melts is a critical controlling parameter of magmatic 

processes. It controls the iron redox state of the melt (Kilinc et al., 1983; Kress and 

Carmichael, 1991; Ottonello et al., 2001; Moretti, 2005; Botcharnikov et al., 2005), and it 

strongly influences the crystallisation sequences and the composition of crystallising minerals. 

Grove and Baker (1984), and references therein have shown that the tholeiitic differentiation 

trend leads to an iron-enrichment of the magma (the “Fenner trend”), while calc-alkaline 

differentiation trend, which usually corresponds to more oxidizing conditions, allows the 

early appearance of orthopyroxene and oxides thus forcing a silica enrichment (the “Bowen 

trend”). More recently Berndt et al. (2005) and Feig et al. (2006) have shown that in a given 

tholeiitic series, the oxidation state modifies (i) the liquidus temperature of the different 

mineral phases, and (ii) the order of crystallization of mineral phases. In a H2-buffered system 

the iron redox state of the melt is closely linked to the H2O content (e.g., Botcharnikov et al., 

2005), the knowledge of the redox state therefore brings information on the evolution of 

magmatic series (e.g., wet versus dry trends) and finally on processes/reactions occurring in 

magma chambers (e.g., Kuritani, 1998; Ginibre et al., 2002; Cordier et al., 2007). The iron 

redox state of basaltic magmas is also considered to place an upper limit to the fO2 of their 

mantle source (e.g., Basaltic Volcanism Study Project, 1981; Carmichael and Ghiorso, 1986; 

Wood et al., 1990; Carmichael, 1991; Ballhaus, 1993; Ballhaust and Frost, 1994). 

In basaltic series, the fO2 is usually estimated by using the geooxybarometer based on the 

equilibrium between ilmenite and magnetite (Buddington and Lindsley, 1964; Anderson and 

Lindsley, 1985; Bacon and Hirschmann, 1988; Ghiorso and Sack, 1991; Sauerzapf et al., 

2008). However, this method has limitations as coexisting ilmenite and magnetite are not 

always present in basaltic series. Moreover, oxide minerals are easily reequilibrated at lower 

temperature (e.g., Venezky and Rutherford, 1999; Koepke et al., 2008), either during slow 

 2
Annex page 55



cooling or during hydrothermal alteration processes. Another common method is to measure 

the Fe

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

3+/Fe2+ ratio (or Fe2O3/FeO) of either fresh glasses representing frozen melts, or 

minerals. For fresh lavas, this ratio can be directly determined from the whole rock 

composition (e.g., Rhodes and Vollinger, 2005), by measuring both ferrous iron and total iron 

contents. The alternate solution is to determine the Fe3+/Fe2+ ratio in minerals and to calculate 

the value of the corresponding melt using partition coefficients (Tegner et al., 2003). The Fe3+ 

content in minerals is commonly estimated using formula calculations based on appropriate 

mineral stoichiometry. However, Canil and O’Neill (1996) and Sobolev et al. (1999) have 

shown that these calculations for silicates such as clinopyroxene (Cpx) or plagioclase (Pl) are 

not valid. Therefore, the best way to constrain the prevailing fO2 in a magmatic system is to 

measure the Fe3+/Fe2+ ratio in minerals directly. For example, Luth and Canil (1993) proposed 

an oxybarometer based on Mössbauer spectroscopy analysis of Fe3+ and Fe2+ in Cpx. Delaney 

et al. (1998) have shown that synchrotron micro-XANES probe can be used to measure 

Fe3+/Fe2+ even in minerals like Pl that have only very small bulk iron contents. Thanks to this 

method, Tegner et al. (2003) constrained the fO2 in the Skaergaard layered intrusion by 

measuring the Fe3+ contents in Pl. However, one problem by constraining the redox conditions 

of melt from Fe3+/Fe2+ ratio in minerals is that the partition coefficient of Fe3+ and of Fe2+ 

between mineral and melt must be known (Tegner et al., 2003). For Pl, Sato (1989) and 

Phinney (1992) have proposed that the partition coefficient of FeOtotal ( ) increases 

with the fO

totalFe
meltPlD _

−

2 due to substitution of Al2O3 by Fe2O3. Lundgaard and Tegner (2004), using the 

same thermodynamic model as Sugawara (2000, 2001), have shown that  and 

 do not depend on fO

+
−
2Fe
meltPlD

+
−
3Fe
meltPlD 2, while  does. In addition, their data show that 

 is much larger than  (0.19-0.92 and 0.008-0.05, respectively) and that both 

depend on the melt composition. Consequently, Pl incorporates Fe

totalFe
meltPlD _

−

+
−
3Fe
meltPlD +

−
2Fe
meltPlD

3+ better than Fe2+. In Cpx, 
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McCanta et al. (2004) give  values ranging from 0 to 0.77. As Fe+
−

3Fe
meltCpxD 2+ in typical 

magmatic Cpx is a major element, it does not follow the Henry’s law, and partition 

coefficients should be used with caution. Nevertheless, for a precisely constrained 

compositional system, as it is the case for the tholeiitic basaltic system, a rough estimate of an 

“apparent partition coefficient” (noted ) could be made by the evaluation of 

available experimental data (see section “Controlling parameters”). 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

+
−

2*Fe
meltCpxD

Other methods are available to determine the fO2 of magmatic systems, such as measurements 

with the EELS technique (e.g., Van Aken et al., 1998; Van Aken and Liebscher, 2002). King 

et al. (2000) have shown that the partitioning of Fe3+/Fetotal between amphibole and melt is 

close to unity and thus Fe3+ contents in Amphibole reflect the fO2 of the melt. 

Fialin et al. (2001 and 2004) have shown that the Fe3+/Fetotal of some minerals and glasses 

could be estimated with the electron microprobe using the self-absorption-induced shift of the 

FeLα peak. Estimating the fO2 from the partitioning of Eu between Pl and melt (Wilke and 

Behrens, 1999) or from the partitioning of V between olivine and melt (Canil, 1997) is also 

largely used. 

A problem resulting from constraining the melt fO2 from micro-XANES via synchrotron 

radiation, EELS, Mössbauer or trace element in plagioclase or olivine is that such facilities 

are not easily accessible to the whole community and couldn’t be use as routine analyses. 

In the present paper we propose a new simple method to estimate the fO2 of basaltic series 

based on microprobe analyses of two of the most common minerals of basaltic series (Pl and 

Cpx). This method does not include stoichiometric estimations based on formula calculations; 

it is restricted to basaltic systems under relatively oxidizing conditions (∆FMQ>0). Hence, it 

is well-suited for an application to subduction zone-related basaltic series which are 

characterized by relatively oxidizing redox conditions (e.g., Johnson et al., 1994; Kelley and 

Cottrell, 2009). Moreover, since the presence of water has generally an oxidizing effect on the 
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106 

107 

108 

109 

110 

111 

112 

113 

114 

redox conditions (e.g., Botcharnikov et al., 2005), this method is also well-suited for an 

application to hydrous MORB-type systems, e.g., the melts produced at the gabbro/dike 

transition from fast-spreading mid-ocean ridges, where magmatic and hydrothermal reactions 

interfere (e.g., Nicolas et al., 2008; Koepke et al., 2008; France et al., 2009a, 2009b). 

 

2. Model 

The model presented here allows the estimation of the redox conditions, expressed as ∆FMQ, 

at which a basaltic rock has crystallised, based on microprobe analyses of FeOtotal in Cpx and 

Pl. 

Our model is based on the different behaviour of the partioning coefficients 
meltCpx

FeOOFeDK −
/32  and 

. These K

115 

116 

117 

meltPl
FeOOFeDK −

/32 D are equivalent to the ratio of the partition coefficient of Fe2O3 and 

FeO between Cpx and melt, and between Pl and melt, respectively: 

meltCpx
FeOOFeDK −

/32 = /  and = / . In basaltic series 

the K

+
−

3Fe
meltCpxD +

−
2*Fe

meltCpxD meltPl
FeOOFeDK −

/32

+
−
3Fe
meltPlD +

−
2Fe
meltPlD118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

D are around 0.4 and 18 for Cpx and Pl, respectively (see the next section “controlling 

parameters” for estimation of D , ,  and ). Thus, D  

is lower than D  and  is significantly higher than D . Consequently, 

when a melt is oxidized (Fe

+
−

3Fe
meltCpx

+
−

2*Fe
meltCpxD +

−
3Fe
meltPlD +

−
2Fe
meltPlD +

−
3Fe

meltCpx

+
−

2*Fe
meltCpx

+
−
3Fe
meltPlD +

−
2Fe
meltPl

2+ content decreases and Fe3+ content increases) FeOtotal decreases 

in Cpx and increases in Pl (Figure 1).  

The ratio between the total iron contents in Cpx and Pl could be written as the ratio of the 

sums of ferric and ferrous iron in Cpx and Pl, respectively : 

 

++

++

+
+

== 23

23

PlPl

CpxCpx
total
Pl

total
Cpx

total
Pl

total
Cpx

FeFe
FeFe

Fe
Fe

FeO
FeO

(1)     
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The partition coefficients (“D” for trace elements) and apparent partition coefficients (“D*” 

for major element for a small range of melt composition) are defined by the relation: 

129 

130 

melteral
element

melteral concconcD .][.][ minmin =− . 131 

132 

133 

134 

(2)    135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

Where “conc.” is the concentration of the considered element. By using partition coefficients, 

the ratio between the total iron contents in Cpx and Pl can be expressed from the composition 

of the melt : 

( ) ( )[ ]
( ) ( )[ ]+

−
++

−
+

+
−

++
−

+

×+×
×+×

= 2233

2233total *FeO
Fe

meltPlmelt
Fe

meltPlmelt

Fe
meltCpxmelt

Fe
meltCpxmelt

total
Pl

Cpx

DFeDFe
DFeDFe

FeO
 

A factorisation of (2) leads to : 

 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
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Fe
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meltFe
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Fe
meltCpx
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meltFe
meltCpx

total
Pl

Cpx

D
Fe
FeD

D
Fe
FeD

FeO
(3)     

 

 

A reorganisation of equation (3) by using the relation (4) (where MFeO and MFe2O3 are the 

molar masses of the oxides: 71.85 and 159.69g/mol, respectively) leads to equation 5 : 

32

232
2

3

OFe

FeO

meltmelt

melt

M
M

FeO
OFe

Fe
Fe ×

×⎟
⎠
⎞

⎜
⎝
⎛=+

+ (4)     

 

 

(5)  
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⎠
⎞

⎜
⎝
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−

FeO

OFe

meltPltotal
Pl

total
Cpx

meltCpx

meltPltotal
Pl

total
Cpx

meltCpx

melt M
M

DFeO
FeOD

DFeO
FeOD

FeO
OFe

 

Equation (5) links the Fe2O3/FeO ratio of the melt to the total iron content of the Cpx and Pl 

for a set of parameters (partitions coefficients and molar masses). The Fe2O3/FeO ratio is 

directly linked to the oxidation state of the melt. According to Kress and Carmichael (1991) 

the Fe2O3/FeO ratio of the melt is linked to its fO2 by the empirical relation :  
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with a=0.207; b=12 980; c=-6.115; dSiO2=-2.368; dAl2O3=-1.622 and dCaO=2.073. With T the 

temperature in K and Xi between 0 and 1. The equation (7) should be used if high pressure 

and high temperature (>1630°) are considered : 
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TediXic
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FeO
OFe

fO imelt

299
0

9

0

032

2

101010ln1ln
explog)log(

(7) 

with a=0.196; b=11 492; c=-6.675; e=-3.36; f=-7.01 10-7; g=-1.54 10-10; h=3.85 10-17; 

dAl2O3=-2.243; dFeO*=-1.828; dCaO=3.201; dNa2O=5.854; dK2O=6.215 and T0=1673. With P the 

pressure in GPa and T in K and Xi between 0 and 1. 

Ottonello et al. (2001) have proposed a new thermodynamic model for calculating the 

oxidation state of Fe in dry silicate melts and glasses at atmospheric pressure. Moretti (2005) 

have extended this model considering the pressure and water content effect. In their Figure 12, 

Botcharnikov et al. (2005) have shown that the differences between these different models are 

small. The use of the model proposed by Moretti (2005) is restricted to melt of known water 

content. However, since the water content of those natural melts crystallizing plagioclase and 

pyroxene is generally unknown, the general application of the model of Moretti (2005) is 

hampered. Therefore, we use the model of Kress and Carmichael (1991). 

The redox state of a melt can be better understood by comparing the fO2 to oxygen buffers. 

We recall here the relations corresponding to the FMQ (equation 8) and to the NNO (where 

NNO is the Ni-NiO solid oxygen buffer equilibrium; equation 9) oxygen buffers from 

Ballhaus et al. (1991): 
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( )PTPTTTfOFMQ 02.0940log45.243068100484.075.82log 2 −+−−+−=Δ  (8) 176 

( )PTPTTfONNO 025.0450log1.12507378.12log 2 ++−−−=Δ    (9) 177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

From (8) and (9) the redox state of a melt could be obtained by knowing P, T, the composition 

of the melt, and the composition in total iron of Cpx and Pl ( and ). We 

provide an EXCEL spreadsheet (supplementary material) in order to facilitate the use of 

equations (5), (6) and (8). The estimation of partition coefficients D , , 

 and apparent partition coefficient  is discussed in the following part. 

total
CpxFeO total

PlFeO

+
−

3Fe
meltCpx

+
−
3Fe
meltPlD

+
−
2Fe
meltPlD +

−
2*Fe

meltCpxD

 

2.1. Controlling parameters 

To estimate the redox state of a melt with the model presented here, it is necessary to know 

the partition coefficients D , ,  and apparent partition coefficient 

 (equation 5). 

+
−
3Fe
meltPl

+
−
2Fe
meltPlD +

−
3Fe

meltCpxD

+
−

2*Fe
meltCpxD

We estimate these parameters by evaluating the existing literature data. It should be noted that 

the accuracy of our model can by improved in the future, with new data on partition 

coefficients. 

+
−
3Fe
meltPlD  and  can be calculated from the melt composition by using equation (10) 

determined by Lundgaard and Tegner (2004) who presented an important and detailed study 

on this subject: 

+
−
2Fe
meltPlD

(10)    ∑=
i

biXiaD)ln(
 

Parameters determined by Lundgaard and Tegner (2004) for equation (10) are summarized in 

Table 1. 
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+
−

2*Fe
meltCpxD  and  remain poorly constrained in literature. As recalled in the 

introduction, a prerequisite for the estimation of  is to identify the compositional 

field of interest, since  is strongly dependent on the composition of the system. 

Since our study focuses on basaltic systems, we derive  empirically by evaluating 

experimental data in basaltic and andesitic systems with SiO

+
−

3Fe
meltCpxD198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

+
−

2*Fe
meltCpxD

+
−

2*Fe
meltCpxD

+
−

2*Fe
meltCpxD

2<60 wt%. For this, we use the 

studies of Snyder et al. (1993), Toplis et al. (1994), Toplis et Carroll (1995), Berndt et al. 

(2005), Freise et al. (2009), Botcharnikov et al. (2008), and unpublished data from S. Feig. 

Based on more than 100 experiments, we find a correlation between the SiO2 content of the 

melt and the (R²=0.6; Figure 2): SiO+
−

2*Fe
meltCpxD 2= 10.431 + 41.784. Because we 

use only experimental data from reducing experiments (∆FMQ<0), we assume that the 

estimated apparent partition coefficient is a good approximation for the case of ferrous iron. 

Taking into account that the parameter is only an apparent partition coefficient, 

strongly influenced by the melt composition, we chose to consider a relatively large error for 

this parameter, corresponding to twice the standard deviation (Figure 2). Several studies on 

basaltic series (e.g., Dale and Henderson, 1972; Bougault and Hekinian, 1974; Jones and 

Layne, 1997) have bracketed  between 0.714 and 1, which is in agreement with 

Figure 2. 

+
−

2*Fe
meltCpxD

+
−

2*Fe
meltCpxD

+
−

2*Fe
meltCpxD

To estimate , we use the work of McCanta et al. (2004), who have performed 

experiments at reducing conditions (∆FMQ varies between -5.0 and 0.5), and calculated the 

associated . Despite the large standard deviations in their results (Figure 3a), 

McCanta et al. (2004) have proposed an estimation of  as a function of the redox 

conditions. This evolution is best fitted (R²=0.998) by equation 11 (Figure 3a): 

+
−

3Fe
meltCpxD

+
−

3Fe
meltCpxD

+
−

3Fe
meltCpxD

 9
Annex page 62



( ) 6522.03038.00348.0 23 +Δ×+Δ×=+
− FMQFMQD Fe

meltCpx   (11) 220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

With this equation, the evolution of  with increasing ∆FMQ values can be calculated. 

Figure 3b displays the evolution of the /  ratio, for increasing ∆FMQ 

values if equation (11) is applied (dashed curve). In the Figure 3b model (dashed curve) we 

use an average temperature of 1150°C and a  = 1 that correspond to the average 

values of the experimental data (diamonds); for this reason, the scattering of experimental 

data cannot be reproduced by the model. It is obvious that the curve calculated using equation 

(11) does not reproduce oxidizing experimental data (∆FMQ>0) from literature (Figure 3b). 

For oxidizing conditions, data from literature display a /  ratio which is 

on average lower than 1 (Figure 3b). As a melt oxidation results in an increase of its ferric 

content, the variation of /  with the ∆FMQ value, attests to the influence of 

 on . It shows that > . If we use =0.4±0.4, 

which is in agreement (Figure 3a) with the data of McCanta et al. (2004), without considering 

the evolution of this partition coefficient with the redox conditions (equation 11), the 

oxidizing experimental data (∆FMQ>0) from literature are better reproduced (Figure 3b; 

dotted curve). 

totalFe
meltCpxD _

−

totalFe
meltCpxD _

−
+
−

2*Fe
meltCpxD

+
−

2*Fe
meltCpxD

totalFe
meltCpxD _

−
+
−

2*Fe
meltCpxD

totalFe
meltCpxD _

−
+
−

2*Fe
meltCpxD

+
−

3Fe
meltCpxD totalFe

meltCpxD _
−

+
−

2*Fe
meltCpxD +

−
3Fe

meltCpxD +
−

3Fe
meltCpxD

 

2.2. Limitations 

The model is valid for Cpx-Pl pairs crystallized under equilibrium conditions. As the partition 

coefficients are derived from basaltic series with SiO2<60%, the model should be restricted to 

such compositions. Moreover, it has been elaborated for lavas and since the partition 

coefficients have been derived from experiments performed under shallow pressures ranging 

between 10-4 GPa (1 atm) and 0.5 GPa, we recommend using the model within this pressure 
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249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

interval. To apply this model to other systems or pressures, a re-evaluation of the 

corresponding partition coefficients is necessary. 

Another important limitation comes from the concept of the model itself. Discriminating 

between reducing and oxidizing conditions is possible because of the different partioning 

behaviour of Fe3+ with respect to Pl/melt and Cpx/melt. Since under reducing conditions, the 

Fe3+ content of the melt is very small, the error in the estimation increases drastically. 

Therefore, we recommend to apply the model only for relatively oxidizing conditions with an 

oxygen fugacity equal to, or higher than the FMQ oxygen buffer. 

 

2.3. Error propagation analysis 

For each parameter (partition coefficients), an associated error is given. For  and 

 the used associated errors are large (± 0.4 for  and ± 0.2 for ) 

to account for the poor constrains on these parameters. Errors on , , melt 

composition, T and P are also considered in the error propagation analysis. The error 

propagation analysis has been performed following Ku (1966) by considering all variables as 

independent. Details of the calculation are summarized in the Appendix. The error 

propagation analysis is also included in the spreadsheet provided as supplementary material. 

+
−

3Fe
meltCpxD

+
−

2*Fe
meltCpxD +

−
3Fe

meltCpxD +
−

2*Fe
meltCpxD

total
CpxFeO total

PlFeO

 

3. Model Testing 

In order to test our model, we have selected a set of natural and experimental data (Figure 4), 

where Cpx, Pl and melt compositions are given together with an estimation of the redox state 

for basaltic compositions with SiO2 contents below 60 wt%. For natural data, we use the 

study of Cordier et al. (2007) from the Blanco Deep at the East Pacific Rise. Experimental 

data are taken from Berndt et al. (2005), Feig et al. (2006), Freise et al. (2009), Parat et al. 
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268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

(2008), and Feig (personal communication). It should be noted that the experimental data 

from Berndt et al. (2005), Freise et al. (2009), and Feig (personal communication) used in 

Figure 2 for calibration under reducing condition are not the same as those under oxidizing 

conditions used here to test the model. 

Taking into account the errors calculated for our model, most of the calculated oxygen 

fugacity expressed in log units relative to the FMQ oxygen buffer are in good agreement with 

the published ones (Figure 4).  

 

4. Conclusion 

The model presented here allows us to estimate the redox state in basaltic rocks that contain 

plagioclase and clinopyroxene. It is based on the different partitioning behaviour of ferric and 

ferrous iron between clinopyroxene and melt and plagioclase and melt. Input data are FeOtotal 

contents of these minerals which can be easily measured using an electron microprobe, melt 

composition and approximate equilibrium temperature. The application of our model is 

restricted to basaltic series containing less than 60% of SiO2 equilibrated under shallow 

pressures and under oxidizing conditions (∆FMQ>0). The accuracy of this method is about ±1 

log unit, and the exact associated error can easily be calculated along with the ∆FMQ using a 

spreadsheet provided within the supplementary material. 
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Appendix: Error-propagation analysis 292 

293 Error associated to the ∆FMQ value obtained with equations (8-6-5) can be calculated using the equation: 
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Where Sc and Sp represent the FeOtotal content of clinopyroxene and plagioclase, respectively. 
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Table 1: Parameters determined by Lundgaard and Tegner (2004) to use in equation (10). 451 
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Regression coefficients bi
SiO 0.0167 0.00298 0.0176 0.0655 2
TiO2

Al2O3

FeOtotal
MgO 
CaO 
Na2O 
K2O 

 
a 

-0.0578 
-0.0394 
-0.0779 
-0.0295 

-0.000558 
-0.0292 
0.130 

 
-0.211 

-0.0201 
-0.0589 
-0.0559 
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-0.00484 
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-0.0430 
 

-1.555 
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-0.0395 -0.0155 
-0.107 0.0115 

-0.0872 -0.0363 
-0.0252 0.100 
-0.114 0.0122 
0.0530 0.0642 

  
0.980 -8.263 
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Figures captions: 462 

463 

464 

465 

Figure 1: Rationale for the proposed model. FeOtotal decreases in Cpx and increases in Pl 

when the parental melt is oxidized. 

 

Figure 2: SiO2 vs.  plot for experimental data of experiments performed under 

reducing conditions. Data are from Snyder et al. (1993), Toplis et al. (1994), Toplis & Carroll 

(1995), Berndt et al. (2005), Freise et al. (2009), Botcharnikov et al. (2008), and Feig 

(personal communication). The thick lines correspond to the range of accepted error (~2σ). 

The thin line is the regression line with SiO

+
−

2*Fe
meltCpxD466 
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471 

=10.431 +41.784 (R²~0.6). +
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Figure 3: a) Values for  as a function of the oxygen fugacity expressed in log units 

relative to the FMQ oxygen buffer; after McCanta et al. (2004). The equation is for the linear 

regression (black line); standard deviations (black bars) are given in McCanta et al. (2004). b) 

Oxygen fugacity expressed in log units relative to the FMQ oxygen buffer as function of 

/ , showing the influence of  on the evolution of  when 

oxidizing conditions are varying. The dashed curve is calculated using equation (11), after 

McCanta et al. (2004), and the doted curve is calculated using a value of =0.4 (±0.4), 

which is in agreement with the data of McCanta et al. (2004). In b), both models (dotted and 

dashed lines) use fixed values: T=1150°C and  = 1. Data in b) are from Snyder et 

al. (1993), Toplis et al. (1994), Toplis & Carroll (1995), Berndt et al. (2005), and Feig et al. 

(2006). 
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Figure 4: Comparison of oxygen fugacity expressed in log units relative to the FMQ oxygen 

buffer calculated with our model and given in literature for the same data. Data are from 

Berndt et al. (2005), Feig et al. (2006), Cordier et al. (2007), Parat et al. (2008), Freise et al. 

(2009), and Feig et al. (personal communication). Error bars are those for values calculated 

with our model. Most of the calculated values are consistent with literature in the range of ±1 

log unit (shaded area), which corresponds to the average standard deviation calculated with 

the model.  
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Abstract 1 

The ODP/IODP three-leg campaign at Site 1256 (Leg 206, Expeditions 309 and 312) provides 2 

the first continuous in situ sampling of fast-spread ocean crust from the extrusive lavas, 3 

through the sheeted dikes and down into the uppermost gabbros (Cocos plate; East Pacific 4 

Rise; eastern equatorial Pacific). This paper focuses on a detailed petrographic and 5 

microanalytical investigation of the gabbro section drilled during Expedition 312. 6 

 We identified three principal components making up the gabbros of Hole 1256D 7 

which are closely associated in domains of different lithologies/textures and of varying 8 

amounts and which are responsible for the marked patchiness and spotty appearances 9 

observed in many gabbros: (1) subophitic, (2) granular, and (3) microgranular domains. Each 10 

of these units derived from different parental sources and was formed under quite different 11 

conditions of crystallization. In a first high-temperature stadium, a relative primitive high-12 

temperature component of an ascending axial melt lens progressed into the overlying 13 

conducting boundary layer. Stoping and assimilation of previously metamorphosed dikes (the 14 

"granoblastic" dikes) were very effective, expressed by high amounts of microgranular 15 

patches in the gabbros. At a later stage, at distinctly lower temperatures, the high temperature 16 

mush was intermingled by a low-temperature magma of highly evolved composition.  17 

 None of the analyzed minerals in the investigated domains match those compositions 18 

to be expected for the crystallization of normal MORB. Instead, it is implied that the magma 19 

chamber was filled with melts/magmas of strange compositions, e.g., of highly fractionated, 20 

uneruptable liquids.  21 

 22 
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Index Terms 23 

3625 Petrography, microstructures, and textures; 3660 Metamorphic petrology; 1012 24 

Reactions and phase equilibria; 1021 Composition of the oceanic crust; 8416 Mid-oceanic 25 

ridge processes. 26 

 27 

1. Introduction 28 

1.1. IODP Hole 1256D 29 

IODP (Integrated Ocean Drilling Program) Site 1256 is located in the eastern equatorial 30 

Pacific on 15 Ma oceanic crust of the Cocos plate formed at the East Pacific Rise under 31 

superfast spreading conditions (220 mm/yr full spreading rate). Hole 1256D, initiated by ODP 32 

Leg 206 and continued by IODP Expeditions 309 and 312 penetrated the entire upper oceanic 33 

crust, passing through a ~ 250-m thick sediment sequence, a ~ 800-m thick lava series and a 34 

relatively thin, ~350-m thick sheeted dike complex before finally extending ~100 m into the 35 

uppermost gabbros [Teagle et al., 2006; Wilson et al., 2006]. Hole 1256D represents the first 36 

complete penetration of the upper oceanic crust reaching the gabbroic section and is 37 

necessarily an important reference section for the dike/gabbro transition of fast-spreading 38 

ocean crust. Initial drilling results from Site 1256, together with site maps and details on the 39 

geological setting and the observed lithostratigraphic units can be found in Teagle et al., 40 

[2006] and Teagle et al. [2007]. 41 

Previous paper related to the petrology and geochemistry of the drilled rocks at Site 42 

1256 dealt with basalt alteration processes [Busigny et al., 2005; Laverne et al., 2006; Sano et 43 

al., 2008] and with basalt formation [Umino et al., 2008; Tartarotti et al., 2009]. Koepke et al. 44 

[2008] identified the so-called “granoblastic dikes”, a ~ 60 m thick horizon of contact-45 

metamorphic, previously altered sheeted dikes as a boundary layer between the active magma 46 
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system of the melt lens and the low-temperature, convecting hydrothermal system  within the 47 

sheeted dike section. Hole 1256D provides the first in situ access for petrological and 48 

geochemical investigation of this geochemically important zone. Two pyroxene equilibrium 49 

temperatures for this zone range between 930°C and 1050°C, implying that conditions within 50 

the granoblastic zone were appropriate for hydrous anatexis, with the potential to generate 51 

partial melts of trondhjemitic composition. The downhole evolution of the granoblastic 52 

overprint is expressed by systematic changes in texture, phase composition and calculated 53 

equilibrium temperature, consistent with thermal metamorphism by a deeper heat source. 54 

Thermal modeling implies a long-lasting heat source located beneath the granoblastic dikes, 55 

corresponding to a steady-state, high-level axial magma chamber (AMC) located at the base 56 

of the sheeted dike section.  57 

The drilled record of the gabbro section below the granoblastic dikes was initially 58 

interpreted to be composed of two individual bodies (named “Gabbro 1” and “Gabbro 2” in 59 

this paper) separated by a screen of granoblastic dikes (“Upper Dike Screen”) and underlain 60 

by another horizon of granoblastic dikes (“Lower Dike Screen”) as depicted in Fig. 1a 61 

[Teagle et al., 2006; Wilson et al., 2006; Koepke et al., 2008]. Investigations in sections 62 

displaying the dike/gabbro transition in the Oman ophiolite revealed very similar petrographic 63 

and structural features compared to Site 1256 [France et al., 2009]. In a comparative 64 

petrographical and geochemical study, France et al. [2009] re-interpreted the drilled gabbro 65 

section at Site 1256 as one continuous gabbro body representing the fossilized axial melt lens 66 

(AML), where the upper and the lower dike screens correspond to stoped clasts of partially 67 

resorbed granoblastic dikes which were accumulated in the lower part of the axial melt lens 68 

(Fig. 1b).  69 

This paper focuses on a detailed petrographic and microanalytical investigation of the 70 

gabbro section drilled during Expedition 312, and is based on the shipboard petrographical 71 

work. The basic materials for this paper are the original shipboard thin sections, which were 72 

Annex page 81



 - 5 -

petrographically initially investigated during the ship cruise. In the course of this study, the 73 

same sections were carefully reinvestigated including a very detailed microanalytical survey. 74 

Individual descriptions of the analyzed sections can be found in Teagle et al. [2006] including 75 

detailed information about structural and metamorphic features, estimates of the modal 76 

amounts of primary and secondary minerals, and presentation of various microscopic images. 77 

Corresponding numbers of those figures of Teagle et al. [2006] presenting petrographic 78 

details of samples used in this study are included in Table 1.  79 

1.2. Methods 80 

Sample names are shortened from the original IODP descriptions [see Teagle et al., 2006]. 81 

Details are given in Table 1. Petrographic features of the investigated samples are given in 82 

Table 2. Electron probe microanalyses (EPMA) were performed using a Cameca SX100 83 

electron microprobe equipped with 5 spectrometers and an operating system "Peak sight". All 84 

data were obtained using 15 kV acceleration potential, a static (fixed) beam, Kα emission 85 

from all elements, and the "PAP" matrix correction [Pouchou and Pichoir, 1991]. Most 86 

element concentrations were obtained with a beam current of 15 nA and a counting time of 20 87 

to 120 seconds on peak and background. Averages are presented in Table 3. For completeness 88 

and comparison, some diagrams also include mineral compositions from lavas and dikes of 89 

the upper section [Dziony et al., 2008; Yamazaki et al., 2009], as well as from selected 90 

lithologies of the gabbroic section [e.g., upper and lower dike screen, xenoliths, from \France 91 

et al., 2009; Yamazaki et al., 2009]. The whole data set of mineral compositions from lavas, 92 

dikes, granoblastic dikes, and gabbros based on more than 5000 single analyses can be 93 

provided as spreadsheet on request.   94 

 We used three independent geothermometers to estimate equilibrium temperatures: the 95 

2-pyroxene thermometer ["QUILF", Andersen et al., 1993]; the amphibole-plagioclase 96 

thermometer [Holland and Blundy, 1994], and the Ti-in-amphibole thermometer [Ernst and 97 
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Liu, 1998] which is applicable, since all amphiboles considered coexist with Fe-Ti oxides. 98 

The results are presented in Table 2. 99 

2. Petrography of the gabbro section 100 

2.1. Primary magmatic features  101 

2.1.1. General characteristics 102 

Gabbroic rocks from Hole 1256D span a wide range of compositions covering gabbro 103 

(clinopyroxene gabbro), oxide gabbro, gabbronorite, norite, and highly differentiated rocks 104 

like quartz-rich diorites. Detailed petrographic descriptions of the different gabbroic units as 105 

well as of the upper and lower dike screens can be found in Teagle et al. [2006]. Primitive 106 

members characteristic for the lower oceanic crust from fast-spreading ridges like olivine 107 

gabbros [see review in Coogan, 2007] are missing. The olivines observed in the 1256D 108 

gabbros are relatively iron-rich and coexist with orthopyroxene and oxide mostly in the 109 

absence of clinopyroxene, thus not typical for primitive olivine gabbros. Typical “foliated 110 

gabbros” where constituent minerals show in general a steep magmatic foliation observed in a 111 

high crustal level from Hess Deep [MacLeod et al., 1996] or from the Oman ophiolite 112 

[parallel to the strike of the sheeted dyke complex, MacLeod et al., 2002; Nicolas et al., 2008; 113 

France et al., 2009; Nicolas et al., 2009], are not recovered.  114 

 Compared to the Oman ophiolite, the recovered gabbros at Site 1256 show some 115 

similarities with the uppermost gabbro horizon, directly below the sheeted dikes often named 116 

“varitextured gabbro” [Lippard et al., 1986; MacLeod et al., 2002; Nicolas et al., 2008], a 50 117 

to 100 m thick horizon characterized by extreme variability in texture, grain size and chemical 118 

composition, generally lacking any foliation. However there are some differences between 119 

both locations. First, pegmatitic varieties with grain sizes of several cm common in Oman 120 

were not observed in the 1256D gabbros. Second, different gabbro types like subophitic and 121 
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granular facies mixed together in the Oman ophiolite are more coherent units with uniform 122 

lithologies within a meter to decameter level, while the varitextured characteristics in the 123 

1256D gabbros are varying in a very small scale, often within a thin section level, as 124 

demonstrated below. 125 

A key feature of the 1256D gabbros is the strong variation in mineralogy and texture 126 

within a mm to cm scale. This is expressed by a marked patchiness and spotty appearances in 127 

many gabbros [Teagle et al., 2006]. Detailed petrographic investigations revealed that this is 128 

mostly due to different domains closely associated representing different types of gabbro, 129 

mostly also contrasting in texture. Best examples for very patchy rocks are represented by 130 

Gabbro 1, where locally two domains of different lithologies are intimately mixed together: 131 

cm-sized spots of gabbro composed only of plagioclase enclosed in clinopyroxene oikocrysts 132 

in a subophitic style swimming in a network of granular oxide norite [e.g., Fig. F210 in 133 

Teagle et al., 2006]. An overview of the petrographic characteristic of the investigated 1256D 134 

gabbros is presented in Table 2. 135 

2.1.2. Principal lithological/textural components 136 

We identified three principal components making up the gabbros of Hole 1256D which are 137 

closely associated in domains of different lithologies/textures and of varying amounts (Fig. 138 

2): 139 

(1) Subophitic domains - composed of mm-sized poikilitic clinopyroxene enclosing 140 

plagioclase chadacrysts which sometimes show hollows and skeletal growth (for details see 141 

section 2.1.3). No other minerals are present. Characteristic are very primitive compositions 142 

of both phases (see section 3.1.). 143 

(2) Granular domains - mostly composed of prismatic plagioclase, amphibole, orthopyroxene, 144 

and granular oxide. True primary amphiboles characterized by pargasitic composition and 145 

idiomorphic crystal shape [e.g., Fig. AF3D in Teagle et al., 2006] only rarely survived a 146 
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secondary overprint where they were altered to hornblende or actinolitic aggregates. While 147 

clinopyroxene is widely absent, relatively iron-rich olivine may join this assemblage. Rarely, 148 

quartz is present forming interstitial graphophyric intergrowths with plagioclase. The phase 149 

assemblage and the generally evolved mineral compositions (see section 3.1.) imply that this 150 

lithology represents a more differentiated stage of magmatic evolution. 151 

(3) Microgranular domains - composed of wormy intergrowth of plagioclase, clinopyroxene, 152 

orthopyroxene and oxide mostly as roundish inclusions within the granular gabbro. Often,  153 

clinopyroxene grains bear numerous inclusions of tiniest oxide spots. This feature, the overall 154 

textural appearance, and the mineral compositions (see section 3.1.) imply that these domains 155 

represent relics of previously stoped granoblastic dikes. A variety within this domain are 156 

patches composed of poikilitic orthopyroxenes filled with numerous very small inclusions of 157 

clinopyroxene, which are also interpreted to represent relics of former granoblastic dikes stage 158 

(see section 3.4.2. for details).  159 

  In all rocks investigated in this study at least two domains were indentified (Table 2). 160 

Rocks with subophitic domains are more common in Gabbro 1, whereas rocks with 161 

microgranular patches are more common in Gabbro 2. The arrangement of different domains 162 

can be rather complex as demonstrated in Fig. 3 showing sample 232_2_98_100 from Gabbro 163 

2 composed of 4 different domains. 164 

It is important to note that the contacts between the different domains are always 165 

smooth and continuous, sometimes of lobate style [Fig. 3 and Fig. F210 in Teagle et al., 166 

2006], reflecting the result of mingling of different crystal mushes or magmas in the pure 167 

magmatic regime. Only in Gabbro 2 typical comb layering developed in medium grained 168 

oxide gabbro at the contact to fine-grained gabbros characterized by high amounts of 169 

microgranular domains [Table 2; Fig. F236E in Teagle et al., 2006], implying the presence of 170 

a larger thermal contrast between these units. This is discussed in section 4. 1.  171 
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2.1.3. Record of fast quenching processes within the subophitic domains  172 

Some plagioclase chadacrysts within clinopyroxene oikocrysts in the subophitic domains of 173 

Gabbro 1 show characteristic fillings and skeletal growth, as demonstrated in Fig. 2a and 4a, 174 

b. Such features are indicative for fast crystal growth [e.g., Bryan, 1972], not typical for slow 175 

crystal growth conditions in oceanic magma chambers. Similar features, but generally in a 176 

finer scale, are well known from the dikes and basalts of the upper section [e.g., Figs. F222 177 

and AF1 in Teagle et al., 2006], where a high degree of undercooling is indicated, due to the 178 

efficiently hydrothermally cooled environment. 179 

The filling of the 1 mm long plagioclase needles in Fig. 4 is composed of 180 

clinopyroxene with identical composition as the hosting oikocryst, suggesting a formation 181 

simultaneously to the crystallization of the oikocryst framework. This implies the following 182 

scenario. First, plagioclases crystallized initially very fast under high undercooling conditions, 183 

producing well-known effects, such as skeletal growth and the presence of cavities and 184 

hollows. Continuous undercooling supported further growth of plagioclase (including the 185 

hollows) up to mm-sized aggregates, until clinopyroxene started to grow from the 186 

intercumulus liquid enclosing plagioclases and filling the hollows and cavities within the 187 

latter.  188 

 The source of cooling is probably the relative cold conducting boundary layer (CBL) 189 

at the roof of a dynamic AML, which is a decameter-thick zone with a very strong 190 

temperature gradient [e.g., Coogan et al., 2003]. This is conform with the lithostratigraphy of 191 

Hole 1256D, where the interval of granoblastic dikes directly above the gabbros was recently 192 

identified as part of a dynamic CBL overlying the AML [Koepke et al., 2008]. Provided that 193 

an upward moving melt lens progresses fast into the granoblastic dikes, thereby consuming 194 

the lowermost thin zone of the CBL which is in thermal equilibrium with the magma, colder 195 

zones of the CBL may be reached by the ascending magma, maintaining the very special 196 

conditions of undercooling in such a dynamic system. It should be noted that such features up 197 
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to now are not described from any oceanic gabbro. Such features are also unknown from 198 

typical static magma chamber systems like Layered Intrusions, where characteristic roof 199 

crystallization at the top of the magma chamber occurs, displaying textures identical with 200 

those resulting from the main crystallization in the interior of the magma body [e.g., Wager 201 

and Brown, 1968]. Possible petrological consequences of such reactions (e.g., the addition of 202 

water to the system) are discussed below. 203 

2.2. Hydrothermal alteration 204 

All gabbroic rocks suffered a pervasive hydrothermal alteration mostly under greenschist 205 

facies condition, expressed by the presence of patches and veins mainly filled with chlorite, 206 

epidote, actinolite, secondary plagioclase, and secondary magnetite. Moreover, many gabbros 207 

show the record of an isostatic hydrothermal overprint at significantly higher temperatures, 208 

expressed by the presence of diopsidic pyroxene and true hornblende which often forms 209 

pseudomorphs after idiomorphic magmatic amphibole, which is pargasitic in composition. 210 

Single-clinopyroxene thermometry using QUILF for secondary diopsides of two samples 211 

(compositions in Table 3) revealed equilibration temperatures between 740 and 760°C, so 212 

well within the amphibolite facies, matching also the observation of secondary ortho-213 

amphibole overgrowth in Gabbro 1 [Teagle et al., 2006]. The Ti-in-amphibole temperatures 214 

estimated for hornblendes vary between 601 and 714 °C (Table 2).  215 

3. Microanalytical investigations 216 

3.1. Mineral compositions in the principal domains 217 

The strong difference in texture and mineralogy between the different domains composing the 218 

1256D gabbros is also reflected by a significant contrast in phase chemistry. 219 
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3.1.1. Subophitic domain 220 

Clinopyroxene and plagioclase of the subophitic domain from Gabbro 1 are significantly 221 

more primitive in composition compared to all the other lithologies of the gabbroic section 222 

(Fig. 5). While the TiO2 and Al2O3 contents of the clinopyroxenes show similar values like 223 

those from fresh lavas and dikes (Fig. 5a), the Mg# (MgO/(MgO+FeO)*100; molar) with 224 

values between 82 – 85 are generally very high, even higher than most of the corresponding 225 

values from fresh lavas and dikes (Fig. 5b). Plagioclase chadacrysts vary only slightly in An 226 

content, showing generally extreme high values between 76 and 80 mol%. Three of four 227 

averages are higher in An content than the highest values from plagioclases from fresh lava 228 

and dikes (Fig. 5b). In the plagioclase An content versus clinopyroxene Mg# diagram of Fig. 229 

5b, a crystallization path is included which was modeled with COMAGMAT [Ariskin, 1999] 230 

for the case of equilibrium crystallization using the most primitive basalt composition of 231 

recovered lava and dikes as starting composition [sample 1256D, 309, 161R, 2-1cm, piece 9; 232 

composition in Teagle et al., 2006]. While the analyzed minerals of fresh lavas and dikes fit 233 

well with the modeled trend, the plagioclase chadacrysts of the subophitic domain clearly plot 234 

away from the trend, mainly due to too An-rich plagioclases. The most plausible explanation 235 

for this is a crystallization in a hydrous system instead of in a dry system, shifting the An 236 

content of the plagioclase to significant higher values [Gaetani et al., 1993; Feig et al., 2006; 237 

Koepke et al., 2009]. Due to the oxidizing effect of water, the Mg# of the clinopyroxenes is 238 

also shifted to higher values in such a case [Feig et al., 2006; Koepke et al., 2009].  We 239 

assume that the source of water is due to the incorporation of granoblastic dikes typically 240 

containing hydrous phases [Koepke et al., 2008; France et al., 2009] at the top of an 241 

ascending AML. This interpretation is also in agreement with the observed strong 242 

undercooling effects during the crystallization of the subophitic domains of Gabbro 1 (see 243 

section 2.1.3.) 244 
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 Both clinopyroxenes and plagioclases show typical normal zoning effects towards the 245 

rims of the crystals, which is expressed by lower Mg# and Cr2O3 contents (Fig. 4c), and lower 246 

An contents (Fig. 6b), respectively (Table 3). 247 

 Some clinopyroxene oikocrysts in the subophitic domains show a characteristic 248 

structure of wormy lamellae in the outer rims, in part with symplectitic quartz-plagioclase 249 

intergrowths at the contact to primary amphibole of the granular network domain. For details 250 

see Fig. AF3 in Teagle et al. [2006]. The composition of these zones is distinct from the 251 

clinopyroxene core compositions, with lower Mg# and contents of Ti, Al, Na (Fig. 4d, Table 252 

3). Striking is the low Cr2O3 content approaching zero, while the corresponding values of the 253 

core vary between 0.3 and 0.7 wt%. These zones are also compositionally different from the 254 

“normal” zoned rims of the clinopyroxene oikocrysts which have Cr2O3 contents between 0.2 255 

and 0.6 wt% and which develop more or less continuously from the cores towards the borders 256 

of the crystals (Fig. 4c, Table 3).  257 

 We interpret the complex zoning effects observed in the clinopyroxene oikocrysts as a 258 

result of magma reactions at two different stages during the magmatic evolution. The 259 

continuous zoning (Fig. 4c) reflects variations in melt composition from a very primitive 260 

MORB (Mg# of the cores from 82-85) to a less primitive compositions (Mg# of the rims 74-261 

78) during a primary high-temperature stage. On the other hand, the wormy intergrowth was 262 

formed by reaction with a much more differentiated melt (Cr2O3 content near zero) during a 263 

secondary stage at much lower temperatures probably under hydrous conditions (involvement 264 

of primary amphibole).  265 

3.1.2. Granular domain 266 

The principal phases of the granular domain are significantly more evolved compared to the 267 

corresponding phases in the subophitic domain, as shown for clinopyroxene  and plagioclase 268 

in Fig. 5 with Mg# varying from 68 to 74, and An contents varying from 50 to 65 mol%, 269 
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respectively (Table 3). Relatively low Mg# were also obtained for coexisting orthopyroxene 270 

(63 -75; Table 3). Low values in Mg#  are also typical for the coexisting olivines in this 271 

domain with values between 65 and 74 [Table 3 and data of Yamazaki et al., 2009], thus not 272 

corresponding to the olivines with higher forsterite contents of typical primitive olivine 273 

gabbros. Most data fit with the modeled evolution trend of Figure 5b, but plot at the end of 274 

these paths, compatible with 50 to 80 % of crystallization starting from the most primitive 275 

basaltic composition recovered.   276 

The plagioclases of the granular domain show a marked and often very complex 277 

zoning. Within a single microprobe profile, An contents may vary from ~ 30 up to ~80 mol% 278 

as demonstrated in Fig. 6a for sample 214_2_0_6 (Gabbro 1). The high An contents in this 279 

profile are related to more or less euhedral “ghost” crystals  enclosed by plagioclase with 280 

equilibrium composition significantly lower in An (Fig. 6a). Since the An contents of the 281 

"ghost" crystals approach those values typical for plagioclase chadacrysts from the adjacent 282 

subophitic domains, we interpret these as relics from the high-temperature subophitic stage 283 

survived during the magmatic reaction with a low-temperature evolved magma.  284 

Interestingly,  the data for the subophitic and the granular domain, even from the same 285 

sample, form distinct fields at the beginning and the end of the modeled evolution path, 286 

without any overlap (Fig. 5b), in accord with a scenario that two different magmas were 287 

mechanically mingled together without significant chemical mixing producing intermediate 288 

compositions.  However this is only valid when considering the averages of the corresponding 289 

minerals interpreted as equilibrium compositions. Reaction rims at the border between 290 

clinopyroxene of the subophitic domains and hornblende of the granular domains (see above), 291 

as well as the “ghost” plagioclases strongly enriched in An inherited in the plagioclases of the 292 

granular domain content, are identified products of magmatic reactions related to the mixing 293 

event.   294 
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3.1.3. Microgranular domain 295 

As shown in Fig. 5a, most of the clinopyroxenes in the microgranular domain plot in the TiO2 296 

versus Al2O3 diagram in the field for the “granoblastic trend” of France et al. [2009], 297 

supporting the hypothesis based on textural arguments (e.g., Fig. 2c) that these domains 298 

represent former granoblastic dikes incorporated and assimilated during the ascent of the 299 

AML. With one exception, there is no overlap with the clinopyroxenes from fresh lavas and 300 

dikes, which should be the case when these domains would be related to cumulates derived 301 

from the main crystallization process in the AML. The high amount of survived 302 

microgranular patches, and their individual clinopyroxene compositions preserved from the 303 

granoblastic stage, which were mostly not reset to equilibrium values, implies that 304 

assimilation was highly incomplete and that the AML persisted in a general state of 305 

disequilibrium until it finally was frozen. Similar microgranular patches have been described 306 

in gabbros from the Oman ophiolite, and ascribed to assimilation of the granoblastic dikes 307 

[France et al., 2009]  308 

3.2. Record of striking intra-sample heterogeneity in mineral compositions 309 

It is a striking feature of the 1256D gabbros that they generally  consist of domains with 310 

strongly contrasting mineralogy which is reflected in a marked heterogeneity of mineral 311 

compositions even within one section. This is demonstrated in Fig. 3, showing gabbro 312 

232_2_98_100 (Gabbro 2) with 4 different lithological/textural domains within one thin 313 

section and the corresponding mineral compositions for plagioclase and clinopyroxene. As 314 

expected, the intra-sample variation for the minerals is extremely large, e.g. for plagioclase 315 

spanning a range in An content from 20 to 65 mol%. The clinopyroxene compositions enable 316 

the assignment to the main crystallization stage ("fresh lava/dikes" field for the compositions 317 

of the subophitic domain) or to the granoblastic stage ("granoblastic" field  for the 318 
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compositions of the granular fine and the microgranular domains). No clinopyroxene was 319 

observed in the granular coarse domain.    320 

Another example for a large intra-sample contrast is shown for plagioclase from 321 

gabbro 214_2_0_6 (Gabbro 1) where subophitic domains and granular domains are in 322 

intimate contact. All these examples reveal that the chemical composition of a given sample is 323 

governed by the presence and amount of different domains implying that bulk chemical 324 

approaches for these rocks are of less value.  325 

3.3. Comparison with oceanic gabbros from recent oceans 326 

For comparison with oceanic gabbros from other locations, only data points of the subophitic 327 

and the granular domains are considered, since the microgranular domain is a very special 328 

feature of the 1256D gabbros, not observed in other oceanic gabbros from recent oceans. In 329 

the TiO2 versus Al2O3 diagram (Fig. 7a), the clinopyroxenes of the subophitic domains plot 330 

into the middle of the field spanned by most ocean gabbros, while clinopyroxenes from the 331 

granular domain plot at the left margin of the field, towards more evolved compositions. This 332 

is in accord with our findings from above that the formation of the subophitic domains 333 

corresponds to a (early) high-temperatures crystallization stage and the formation of the 334 

granular domains to a (late) evolved magmatic stage at lower temperatures.     335 

In Fig. 7b, the plagioclase An content versus clinopyroxene Mg# is plotted, including 336 

the differentiation trend modeled with COMAGMAT using the most primitive bulk 337 

composition from lava/dike recovered at Site 1256 as starting composition. Data from the 338 

fast-spreading East Pacific Rise (Hess Deep and Pito Deep) match the trend, as well as most 339 

of the data from the granular domains of the 1256D gabbros which plot towards the more 340 

evolved compositions of the trend. However, the modeled path does not fit with the 341 

compositions from the slow-spreading ridges which follow a trend with a generally lower 342 

Ca/Na ratio, which was also demonstrated by Coogan [2007] who successfully modeled the 343 
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magma evolution from slow-spreading systems by using a more evolved starting composition 344 

compared to that used in this study. 345 

Fig. 7b points out that the data for the subophitic domains in Gabbro 1 show the 346 

highest An content for a given clinopyroxene Mg# compared to all oceanic gabbros from the 347 

different locations, emphasizing the very special compositional feature of these domains, 348 

which we interpret as consequence of the presence of water in the system. 349 

3.4. Record of incorporation/assimilation of granoblastic dikes 350 

The results of the petrographic investigation of the gabbros performed during the Expedition 351 

312 emphasized the significance of metamorphic effects in the 1256D gabbros, not observed 352 

in other oceanic gabbros so far [Teagle et al., 2006]. Particularly, these are : (1) large 353 

orthopyroxene grains that contain tiny inclusions of granular clinopyroxene, and appear to 354 

have formed in the solid state; (2) typical crystalloblastic intergrowths that include 355 

orthopyroxene and clinopyroxene, and are similar to those described for the granoblastic 356 

dikes (e.g., Koepke et al., 2008]; (3) concentration of orthopyroxene along veins; (4) the 357 

presence of microgranular patches interpreted as former domains of granoblastic dikes. The 358 

results of the microanalytical characterization of such features presented in the following 359 

imply that most of these effects can be attributed to the incorporation of granoblastic dikes 360 

into an ascending magma and to assimilation processes involved in a regime were magmatic 361 

and metamorphic processes interfere. 362 

3.4.1. Inclusions in pyroxenes 363 

Many pyroxenes in granular and microgranular domains especially from Gabbro 2 contain 364 

numerous inclusions of tiniest roundish minerals with typical structures well-known from 365 

metamorphic rocks but not from oceanic gabbros. Mostly, these are clinopyroxenes included 366 

in orthopyroxene [Fig. 8; see also Figure F241 in Teagle et al., 2006], sometimes plagioclases 367 

included in orthopyroxene and clinopyroxene [Figure F240 in Teagle et al., 2006]. Textural 368 

Annex page 93



 - 17 -

arguments, as "classical" poikiloblastic structures and the dihedral nature of the inclusions, 369 

exclude that these are simple poikilitic assemblages formed in a magmatic regime. Analyzed 370 

inclusions of clinopyroxene in orthopyroxene follow the granoblastic trend in the TiO2 versus 371 

Al2O3 diagram of Fig. 5, implying that these could be regarded as constituents of former 372 

granoblastic dikes, especially the analyzed inclusion with only 0.7 wt% of Al2O3 and 0.2 wt% 373 

of TiO2 which can hardly be attributed to "normal" crystallization within an axial magma 374 

chamber.  375 

 Details of the microanalytical investigation are presented in Fig. 8 where an 376 

orthopyroxene is shown which is filled with numerous of roundish 10 to 20 µm sized 377 

clinopyroxene inclusions. Some of the clinopyroxene inclusions show, in turn, µm-sized 378 

inclusions of ilmenite. This is a key feature for the granoblastic stage, implying that the 379 

roundish clinopyroxene grains within the orthopyroxene correspond to inherited, relictic dike 380 

material once incorporated into the gabbroic mush.  381 

 Another interesting feature is that prismatic orthopyroxene in the granular domain of 382 

Gabbro 2 may contain Fe-Ti oxide [Figure F240 and F243 in Teagle et al., 2006] and even 383 

sulfide as inclusion (Fig. 9b), a feature fully unknown for oceanic gabbros. Orthopyroxene - 384 

sulfide assemblages and sulfide inclusion within orthopyroxene are well-known from the 385 

granoblastic dikes, which were grown there during the granoblastic re-crystallization event 386 

[Koepke et al., 2008]. Most probably, the granoblastic orthopyroxene grew from alteration 387 

haloes which included sulfide minerals produced by the first hydrothermal alteration prior to 388 

the prograde metamorphic event. We interpret the presence of primary sulfide inclusion in 389 

orthopyroxene of the 1256D gabbros as robust evidence that orthopyroxene-sulfide cluster 390 

from the granoblastic stage were involved during the formation of these gabbros 391 
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3.4.2. Effect of hydrous partial melting of granoblastic dikes 392 

A marked feature of both Gabbro 1 and 2 are plagioclases in granular and microgranular 393 

domains showing structures implying that partial melting reactions proceeded. Typical are 394 

zones of An-enriched plagioclase, representing the residual plagioclase after such an event, 395 

and more or less rectangular zones corresponding to the former melt pools, now frozen to Ab-396 

richer plagioclase. BSE image and related concentration profiles are shown in Fig. 10 for 397 

plagioclases from Gabbro 1 and 2. Striking is the similarity of the observed structures with 398 

those produced by experiments in the partly molten regime [e.g., Figures in Johannes and 399 

Holtz, 1992].  400 

3.5. Basaltic xenoliths in the gabbros 401 

A characteristic feature especially within Gabbro 2 is the presence of basaltic enclaves. 402 

Among the investigated samples was also one (sample 230_1_54_56) where the contact to a 403 

basaltic enclave is displayed. The main lithology of the xenolith is gabbronoritic with fine-404 

grained granular to microgranular texture, similar in appearance as other domains observed in 405 

the gabbro section. Directly at the contact, a mm-sized zone enriched in oxides is developed 406 

where no clinopyroxene was observed. The matrix is a granular hornblende-bearing oxide 407 

gabbro, with a zone at the contact where the amount of oxide decreases. 408 

 The clinopyroxene of the xenoliths [included those from France et al., 2009] clearly 409 

follow the granoblastic trend in the TiO2 versus Al2O3 diagram in Fig. 5, confirming the 410 

hypothesis that these xenoliths went through a stage of  granoblastic overprint before 411 

incorporation into the gabbroic mush. Temperature of equilibration for the xenolith center 412 

(ortho- and clinopyroxene stable) was estimated using QUILF to 1014 ± 73°C.  413 
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3.6. The Upper and Lower Dike screen 414 

Gabbro 1 and Gabbro 2 are separated by the Upper Dike Screen, while Gabbro 2 is underlain 415 

by another dike screen named the Lower Dike screen [Teagle et al., 2006]. Although assigned 416 

to the granoblastic dikes, some of the samples of the dike screens show typical magmatic, 417 

granular textures very similar to those observed in other domains of the gabbroic section. 418 

Characteristic is the stability of euhedral orthopyroxene, and the presence of numerous of 419 

tiniest inclusions in both  pyroxenes and even in plagioclases, implying a derivation from the 420 

granoblastic dikes (see above). Concerning the decision whether these rocks are metamorphic 421 

or magmatic, the shipboard scientists from Expedition 312 stated "The multiplicity of 422 

orthopyroxene occurrences, including magmatic orthopyroxene in gabbronorite, apparently 423 

metamorphic orthopyroxene in granoblastic domains within gabbronorite, and similar 424 

orthopyroxene along contact zones, both in the intruding gabbronorite and in the host 425 

metabasalt, emphasizes that within and beneath the dike screen there is an important interface 426 

where the distinction between magmatic and metamorphic processes is blurred " [Teagle et 427 

al., 2006].  428 

 In the TiO2 versus Al2O3 diagram the clinopyroxenes of both dike screens 429 

clearly follow the granoblastic trend of France et al. [2009]. Some clinopyroxenes high in 430 

Al2O3 and TiO2 overlap with the true magmatic granular or microgranular domains, conform 431 

with the evaluation of Teagle et al. [2006] that these rocks represent an interface between 432 

magmatic and metamorphic processes. One important feature of theses rocks is that the 433 

change in metamorphic/magmatic facies from sample to sample is highly abrupt. Since many 434 

samples of the dike screens show rather a "magmatic" than a "metamorphic" texture, implying 435 

a direct involvement into magma chamber processes, we follow the hypothesis of  France et 436 

al. [2009], that the upper and the lower dike screens correspond rather to stoped clasts of 437 

partially resorbed granoblastic dikes which were accumulated in the lower part of the axial 438 

melt lens (Fig. 1b), than to contact-metamorphosed dikes.  439 

Annex page 96



 - 20 -

4. Discussion 440 

4.1. Hydrous magma mixing/mingling processes in the AML 441 

The microanalytical results for the three principal lithological/textural units (subophitic, 442 

granular, and microgranular domains) composing the gabbroic section at Site 1256 reveal 443 

quite different ways of formation for the each different unit. 444 

 The subophitic domains were most likely formed under high water activities and under 445 

high undercooling conditions, probably at the top of the AML progressing into the relatively 446 

cold environment of a CBL. This fits with the observation, that these domains, characterized 447 

by plagioclases very high in An (for a given Mg# in clinopyroxene), only occur in the 448 

uppermost section of the gabbro core but not in the deeper part, e.g., in Gabbro 2. The only 449 

analyzed domain with subophitic texture in a sample from Gabbro 2 (232_2_98_100; see Fig. 450 

3) is quite evolved (Table 3). The evaluation of the parental magma for the subophitic 451 

domains of Gabbro 1 seems difficult. Primitive MORB would crystallize olivine before 452 

clinopyroxene, which is not the case for the observed domains. Probably, the silica activity 453 

was increased preventing the crystallization of early olivine.  Temperatures of crystallization 454 

could be estimated from phase relations in hydrous MORB at shallow pressures [e.g., Berndt 455 

et al., 2005; Feig et al., 2006; Botcharnikov et al., 2008] to values of 1100 and 1150°C 456 

(assumed stability of clinopyroxene and a water content of 2 wt%). 457 

 Quite different are the assumed parental composition and temperature conditions for 458 

the formation of the typical granular domain. According to experiments on hydrous partial 459 

melting of different oceanic gabbros at a pressure of 200 MPa from Koepke et al. [2004], the 460 

stability of orthopyroxene ± olivine ± amphibole and absence of clinopyroxene limits the 461 

temperature of formation to below 980°C. The observation of euhedral amphibole with 462 

primary  compositions (pargasite, sample 215_1_84_88, Table 3) is of importance, since it is 463 

a first-order observation that the corresponding magmas prevailed under high aH2O [Johnson 464 
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et al., 1994]. Moreover, it limits the temperature of the magma at this crystallization stage to 465 

the relatively low value of ~1050°C, since this is the maximum temperature for amphibole 466 

stability observed in basaltic systems at shallow pressure [e.g., Ernst and Liu, 1998]. 2 – 467 

pyroxene geothermometry using QUILF reveal equilibrium temperatures varying between 468 

981 and 1059°C, and Ti-in-amphibole thermometry for the most freshest amphiboles revealed 469 

temperatures between 906 and 1003°C (Table 2). To summarize, temperatures for 470 

crystallization of the granular domains can be averaged to values from ~950 to 1050°C. Phase 471 

chemistry of  the phases of the granular domains reveal quite evolved compositions, which is 472 

in accord with the presence of quartz in some of these domains. Thus it seems very probable 473 

that the parental composition correspond to a highly evolved, FeO- and TiO2-rich late stage 474 

composition corresponding to typical Fe-Ti basalts, which are interpreted as the final product 475 

of MORB differentiation, and which can be rarely found as erupted liquids at the seafloor 476 

[e.g., Ludden et al., 1980; Fornari et al., 1983].  477 

 Temperatures for the equilibration of the microgranular domains estimated with 478 

QUILF for two patches vary within a small interval between 1021 and 1041°C (Table 2). This 479 

fits well with the observed partial melting of granoblastic protoliths, provided high water 480 

activities prevailed. This is in concordance with the phase relations obtained for MORB-type 481 

systems at shallow pressures under hydrous conditions [e.g., Berndt et al., 2005; Feig et al., 482 

2006; Botcharnikov et al., 2008].  The addition of water into the otherwise rather dry MORB-483 

system can be explained by the incorporation of granoblastic dikes, which typically bear 484 

considerable amounts of hornblende, which may deliberate water during its breakdown at 485 

temperatures above ~ 1000°C. The required high aH2O for stabilizing hydrous partial melting 486 

of plagioclase of ~ An 70  in a MORB mush can be easily achieved, since the water solubility 487 

in MORB melts at those shallow pressures prevailing in the AML is low [e.g., only ~2.5 wt% 488 

at 100 MPa according to Berndt et al., 2002]. 489 
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 To summarize, the petrography and phase chemistry of the gabbroic section drilled at 490 

Site 1256 revealed highly complex magmatic mingling and mixing processes which probably 491 

proceeded under hydrous conditions. In a first high-temperature stadium, a relative primitive 492 

high-temperature component of an ascending AML, eventually related to a replenishment 493 

event of the AML, progressed into the overlying CBL. Stoping, incorporation, and 494 

assimilation of previously metamorphosed granoblastic dikes were very effective, expressed 495 

by the numerous amounts of microgranular patches. Hydrous partial melting of the stoped 496 

granoblastic roof material produced silicic melts, which were obviously mixed with the high-497 

temperatures melts, thereby increasing the silica activity of the melt. The residuals after the 498 

partial melting of the granoblastic protolith, now denser than the basaltic melts [see density 499 

calculation in France et al., 2009], were accumulated in the lower part of the AML (level of 500 

Gabbro 2) as enclaves difficult to 'digest'. At a later stage, at distinctly lower temperatures, the 501 

high temperature mush was intermingled by a low-temperature magma of highly evolved 502 

composition. The temperature contrast is also expressed by typical comb layering developed 503 

in some oxide gabbros.  504 

 Interestingly, none of the investigated domains match those clinopyroxene and 505 

plagioclase compositions typical for the fresh lavas and dikes (Fig. 5 b). Thus, it seems that 506 

the corresponding AML was filled with melts/magmas of strange compositions, e.g., highly 507 

fractionated, uneruptable liquids [e.g., Natland and Dick, 1996], and not by pooled basaltic 508 

liquids derived from the underlying mush pile and equivalent in composition to the upper 509 

crust [e.g., Sinton and Detrick, 1992].  510 

4.2. Mechanism of MORB contamination at the top of the melt lens 511 

Geochemical studies on chlorine contents in MORB imply that assimilation is much more 512 

pronounced at fast-spreading ridges than at slow-spreading systems (using Cl as proxy for 513 

contamination [e.g., Michael and Schilling, 1989; Jambon et al., 1994; Michael and Cornell, 514 
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1998]. Our petrographic and microanalytical results reveal that a considerable part of AML is 515 

composed of enclaves of stoped granoblastic dike material from the roof region of the AML. 516 

Thus, it is indicated that this process can be responsible for the observed 517 

contamination/assimilation processes ongoing at fast-spreading ridges. The most relevant 518 

parameters necessary to understand this important process, are only poorly constrained: e.g., 519 

source of the contaminant, the detailed mechanisms, the involved volumes, the contamination 520 

rate. One of the most sophisticated studies aimed to understand details of the contamination 521 

process is provided by Coogan et al. [2003] who presented a hypothesis based on 522 

geochemical modeling that contamination occurs at the roof of a vertical oscillating AMC by 523 

assimilation/stoping of previously hydrothermalized dikes. For the vertical fluctuations, a 524 

timescale of decades was assumed. Compared with the compilation of possible time scales in 525 

section 2.1.3., this value is extremely short. The model allows to extract a "contamination 526 

rate", which is ~ 20 cm/year in average, corresponding to an assimilation of 20 cm of dikes 527 

per year. However, some of the input parameters of this model are uncertain. Most important, 528 

the accumulation of extreme chlorine-enriched material derived by brines was neglected, 529 

although it is known that brines generated after fluid phase separation may form a dense layer 530 

at the base of the sheeted dikes [e.g., Bischoff and Rosenbauer, 1989]. Interestingly, the only 531 

analyzed amphibole with primary magmatic amphibole from a granular domain composition 532 

(pargasite from sample 215_1_84_88 with 10.9 wt% Al2O3 and 0.7 wt% K2O, Table 3) shows 533 

with 0.61 wt% Cl the highest Cl values of all analyzed amphiboles (including those of the 534 

granoblastic dikes), implying that the incorporation of  brines eventually cannot be neglected. 535 

Further studies will shed light on this important topic. 536 

5. Conclusion 537 

The IODP drilling at Site 1256 provides the first continuous in situ sampling of fast-spread 538 

ocean crust from the extrusive lavas, through the sheeted dikes and down into the uppermost 539 
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gabbros. The detailed investigation of the petrography and the phase chemistry of the drilled 540 

gabbros from Site 1256 revealed an amazing insight into highly complex magmatic reaction 541 

including mingling, mixing, and partial melting of previously altered dike proceeding in the 542 

axial melt lens. Surprisingly, a high water activity was involved, although it is well-known 543 

that typical MORB differentiation at fast-spreading ridges occurs under dry conditions.  544 

 One of the most unexpected results of our study is that none of the analyzed minerals 545 

in the investigated gabbros match those compositions to be expected for the crystallization of 546 

normal MORB. Instead, it is implied that the magma chamber was filled with melts/magmas 547 

of strange compositions, e.g., of highly fractionated, uneruptable liquids. 548 

 The first in-situ drilling of the gabbro/dike transition at Site 1256 presents now direct 549 

evidence for stoping and assimilation of previously hydrothermalized dikes, thus providing an 550 

opportunity to shed light on the important contamination process by future detailed 551 

geochemical and microanalytical investigation.  552 
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Figure captions 736 

Figure 1.  Cartoons illustrating the drilled dike/gabbro transition at Site 1256D, as interpreted 737 

by the results of different authors. Included is the location of the drill core. Both cartoons 738 

reproduce the lithostratigraphy recorded in the drill core of Hole 1256D as presented in 739 

Teagle et al. [2006].  The size of the fragments of granoblastic dikes observed in the gabbros 740 
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is out of scale. See text for detail. For clarity, the lowermost rock recovered from Hole 741 

1256D, a basaltic dike that lacks granoblastic textures, which is interpreted to be a late dike 742 

crosscutting the gabbros [Teagle et al., 2006] is not included into the cartoon. 743 

 744 

Figure 2. Microphotographs showing the principle textural/lithological domains occurring in 745 

the 1256D gabbros. For details see text and Table 2. All images with plane-polarized light. 746 

Images are from the data base of  Expedition 312 in Teagle et al. [2006].  747 

(a) Subophitic domain: Medium grained gabbro showing mm-sized poikilitic clinopyroxene. 748 

Note that the enclosed plagioclase shows hollows and skeletal growth. These features are 749 

discussed in section 2.1.1. Sample 215_1_84_88; field of view 2.4 mm. 750 

(b) Granular domain: Medium grained oxide noritic domain showing a framework composed 751 

of prismatic plagioclase, orthopyroxene, and granular oxide. This sample shows some 752 

peculiar features which are not so often visible in similar domains: the presence of interstitial 753 

quartz (lower left) and slightly curved grain boundaries between the interlocking plagioclase 754 

crystals which is interpreted as typical cumulate features. Sample 232_2_98_100; field of 755 

view 2.4 mm. 756 

(c) Microgranular domain: wormy intergrowth of plagioclase, clinopyroxene and oxide as 757 

inclusion within a granular oxide gabbro. Note that the clinopyroxene grains bear numerous 758 

inclusions of tiniest oxide spots. This feature and the overall textural appearance are well-759 

known from the granoblastic dikes, implying that these domains present relics of previously 760 

stoped granoblastic dikes. Sample 223_2_57_60; field of view 1.2 mm. 761 

 762 

Figure 3. Sample 232_2_98_100 from Gabbro 2 as example for extreme patchiness in the 763 

1256D gabbros showing 4 different lithological/textural domains within one thin section. For 764 

details see text. Images a-c with plane-polarized light. Image d with cross-polarized light is 765 

from the data base of  Expedition 312 in Teagle et al. [2006].  766 
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(a) Thin section scan with marked boundaries between the different domains. This is not the 767 

original ship section but a reproduced one from the shipboard rock billet. Length of the 768 

section is 4.8 cm. 769 

(b) Subophitic gabbronoritic domain (“subophitic” in Table 1, 2). Clinopyroxene (cpx) and 770 

one orthopyroxene (opx) oikocrysts with plagioclase (pl) laths as chadacrysts form subophitic 771 

domains. Note the dusty appearance of the plagioclase which is a common feature for gabbro 772 

2.  773 

(c) Microgranular gabbronoritic domain (“microgranular” in Table 1, 2). Wormy intergrowths 774 

between granular ortho- and clinopyroxene and plagioclase forming a typical microgranular 775 

network which is well-known from the granoblastic dikes. Note the numerous inclusions of 776 

tiny oxides and silicates crystals in the pyroxenes which are interpreted as inherited from the 777 

former granoblastic stage. Some inclusions in orthopyroxene could be identified as 778 

clinopyroxene (white arrows) with the same composition as those from the microgranular 779 

network.. 780 

(d) Granular noritic domain (“granular coarse” in Table 1, 2).  Characteristic are strongly 781 

zoned, tabular plagioclases forming an interlocking network with granophyric intergrowth 782 

between quartz and plagioclase (qz/pl) in the interstices. Note that tabular plagioclases show 783 

corroded boundaries at the contact (blue arrows) implying reactions between the tabular 784 

plagioclase and the late quartz-saturated melt. Primary mafic minerals within the interstices 785 

are orthopyroxene and probably amphibole, now completely altered to a mix of 786 

actinolite/chlorite (act). 787 

(e) Compositional relations between the plagioclases in the different lithological domains 788 

including zoning effects within individual grains. “Coarse” and “fine” means “granular 789 

coarse” and “granular fine”, respectively. Filled symbols: core compositions; open symbols: 790 

rim compositions (for granular coarse domain: normal rim [open circle with thick line] and 791 

outermost rim [open circle with thin line]). 792 
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(f) Compositional relations between clinopyroxene cores in the different lithological domains. 793 

Included are the fields for fresh lava/dikes and for the granoblastic dikes of the extrusive 794 

section of Hole 1256D from Koepke et al. [2008]. Symbols as in (e).  795 

 796 

Figure 4. Microphotographs of clinopyroxene oikocrysts in subophitic domains of Gabbro 1 797 

showing assumed quench effects (a, b), zoning effects (c), and high-temperature reaction 798 

effects (d). Numbers in c and d correspond to the average Cr2O3 contents (wt% ) as listed in 799 

Table 3. 800 

(a, b) 1 mm long plagioclase needle as chadacrysts within a clinopyroxene oikocryst showing 801 

characteristic fillings composed of clinopyroxene (arrows) with identical composition as the 802 

oikocryst in sample 214_2_15_17. Such features are indicative for very fast growth, not 803 

compatible with a crystal growth in typical magma chamber. These textural features are well 804 

known from the dike rocks (see Fig. 1-8). See text for details. (a) with plane-polarized light; 805 

(b) BSE image.   806 

(c) “Normal”, continuous zoning at the borders to the plagioclase chadacrysts with lower 807 

Mg#, Ti, Al, and Cr. Note that the adjacent plagioclases also show normal zoning towards the 808 

rim, indicated by slightly darker grey levels. Sample 215_1_84_88 (BSE image). 809 

(b) Symplectitic intergrowth in the upper part of the image at the rim of a clinopyroxene 810 

oikocryst in the lower part (with exsolution lamellae) in sample 214_2_15_17 (BSE image). 811 

The wormy inclusions in the intergrowth are composed of orthoamphibole (EDX-checked), 812 

which are mostly heavily altered to chlorite. 813 

 814 

Figure 5.  Selected compositional parameters for clinopyroxenes and plagioclases from the 815 

gabbroic section of Hole 1256D. Data points correspond to averages presented in Table 3 816 

(only compositions of the central parts of the grains). Included are data points from fresh 817 

lavas and dikes from Leg 206 and Expedition 309 published in Dziony et al. [2008] and 818 
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Yamazaki et al. [2009], and from granoblastic dikes published in Koepke et al. [2008]. 819 

Analyses from basaltic enclaves ("xenolith") are from this study and from France et al. 820 

[2009]. Data points from the upper dike screen and from the subophitic domain (only Gabbro 821 

1) include data from Yamazaki et al. [2009]. Data from the lower dike screen are from 822 

Yamazaki et al. [2009]. 823 

(a) TiO2 versus Al2O3 in the clinopyroxenes. The red field for the granoblastic trend is from 824 

France et al. [2009]; the blue field for oceanic gabbro corresponds to data from key locations 825 

for oceanic gabbro presented in Fig. 7. 826 

(b) Plagioclase An content versus clinopyroxene Mg#. The modeling trend included was 827 

calculated with COMAGMAT [Ariskin, 1999] using the most primitive bulk composition of 828 

recovered lava as starting composition. Note that the analyzed minerals of the fresh lavas and 829 

dikes fit well with the modeled trend. The data points from the subophitic domain, however, 830 

plot away from the trend, mainly due to too An-rich plagioclases implying a crystallization in 831 

a wet system.  832 

 833 

Figure 6. BSE images of clusters of plagioclases showing striking zoning patterns of two 834 

different lithological domains from the sample 214_2_0_6 (Gabbro 1) and related 835 

concentration profiles for An content. The arrows in the BSE images indicate the position of 836 

the profile acquisition. Averages of the compositions of the different zones are presented in 837 

Table 3. 838 

(a) Granular domain. 839 

(b) Subophitic domain. 840 

 841 

Figure 7.  Variation in the major-element composition of minerals in the 1256D rocks and in 842 

gabbros from key locations for deep crustal rocks in recent oceans. Data points correspond to 843 

averages presented in Table 3. The subophitic domain data (only Gabbro 1) includes analyses 844 
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from Yamazaki et al. [2009]; analyses from fresh lavas and dikes are from Dziony et al. 845 

[2008] and Yamazaki et al. [2009]. 846 

(a) TiO2 versus Al2O3 in the clinopyroxenes. 847 

(b) Plagioclase An content versus clinopyroxene Mg#. The modeling trend included was 848 

calculated with COMAGMAT [Ariskin, 1999] using the most primitive bulk composition of 849 

recovered lava as starting composition.  850 

Data are from Southwest Indian Ridge [SWIR, Dick et al., 2002], Mid-Atlantic Ridge near 851 

Kane fracture zone [MARK, Coogan et al., 2000a; Coogan et al., 2000b; Koepke et al., 2005; 852 

Lissenberg and Dick, 2008], Mid-Atlantic Ridge near Atlantis Massif [Atlantis M., Suhr et 853 

al., 2008], East Pacific Rise from Pito Deep [Perk et al., 2007], and East Pacific Rise from 854 

Hess Deep [Dick and Natland, 1996; Miller et al., 1996; Natland and Dick, 1996; Coogan et 855 

al., 2002]. 856 

 857 

Figure 8. Microphotographs of orthopyroxene containing millions of inclusions of tiniest 858 

roundish clinopyroxenes within a granular noritic gabbro (sample 230_2_36_40).  See text for 859 

details. 860 

(a) cross-polarized light. Image is from the data base of  Expedition 312 in Teagle et al. 861 

[2006]. 862 

(b) BSE image. The identified cpx inclusions are indicated by white arrows. Note that some 863 

of the cpx inclusions show very small inclusions of ilmenite (black arrows). This is a key 864 

feature for the granoblastic stadium, implying that the roundish clinopyroxene grains within 865 

the orthopyroxene are relics of former granoblastic dikes incorporated into the gabbroic mush. 866 

Alteration patches are also visible. In principle, the tiny oxide spots could also be explained 867 

by a later alteration processes. However, the composition of typical secondary oxides in the 868 

1256D gabbros is always magnetite with very low concentrations of TiO2, but never ilmenite 869 

as in the situation presented.  870 
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 871 

Figure 9. BSE images showing sulfide inclusions in orthopyroxene formed metamorphically 872 

in a granoblastic dike and magmatically in a gabbro.  873 

(a) In the granoblastic dike orthopyroxene forms clusters of single grains that are surrounded 874 

by fine coronas of sulfide granules (arrows). The pyroxene-sulfide assemblage is clearly 875 

grown during the granoblastic recrystallization event, and is not product of the later 876 

hydrothermal alteration process. Two-pyroxene thermometry implies equilibration 877 

temperatures >1000°C for the formation. Sample 209_1_8_10. 878 

(b)  Inclusion of sulfide (arrows) and plagioclase (~An 55 mol%) in a mm-sized prismatic 879 

orthopyroxene in a complex 4-domain gabbro from Gabbro 2. Carefully evaluation of the 880 

textural relations reveals a primary formation of the sulfides (also evidenced from other 881 

samples), despite signs of a secondary alteration (plagioclase inclusion with albitic rims, 882 

patches of actinolite/chlorite in the orthopyroxene). Sample 232_2_98_100.  883 

 884 

Figure 10. BSE images of plagioclases from both Gabbro 1 and 2 showing the record of 885 

proceeded partial melting reactions and related concentration profiles for An content. The 886 

arrows in the BSE images indicate the position of the profile acquisition. Averages of the 887 

compositions of the different zones (An-rich, Ab-rich) are presented in Table 3. 888 

(a) Record of a more or less single partial melting event in a plagioclase grain of the 889 

microgranular domain of sample 223_3_1_6 (Gabbro 1), expressed by zones strongly 890 

enriched in An rimming more or less rectangular zones of Ab-rich plagioclase. Note further 891 

similar structures visible in the smaller plagioclase grains in the lower left corner. We 892 

interpret these structures as evidence for proceeded partial melting within the microgranular 893 

domain, where the An-rich zones correspond to residual plagioclase, and the rectangular 894 

zones to former melt pools, now frozen to Ab-rich plagioclase. Striking is the similarity of the 895 
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observed structures with those produced by experiments in the partly molten regime [e.g., Fig. 896 

2 in Koepke et al., 2005]. 897 

(b) Very complex zoning pattern interpreted as partial melting structures visible in a 898 

plagioclase grain of the granular domain of sample 230_2_36_40 (Gabbro 2) and related 899 

microprobe profile. Identical structures were obtained experimentally by partial melting of a 900 

plagioclase single crystal by [Johannes and Holtz, 1992] , Fig. 2]. 901 
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Table 1. Samples from the drillcore of Hole 1256D used in this study 

Expa Core Scb Top
(cm)

Bot.
(cm) Piece Depth

(mbsf) Unit  Lithology Thin- c

section  Description d

312 214 2 0 6 1 1412.4 84 Gabbro 1 63 214_2_0_6
312 214 2 15 17 4a 1412.5 84 Gabbro 1 69 214_2_15_17
312 215 1 84 88 17 1416.5 85 Gabbro 1 71 215_1_84_88
312 223 2 57 60 1a 1451.4 89A Gabbro 1 93 223_2_57_60
312 223 3 1 6 1 1452.3 89A Gabbro 1 95 223_3_1_6
312 225 1 10 14 3 1459.0 90A Up. dike screen - 225_2_10_14
312 227 1 23 28 5a 1468.7 90A Up. dike screen 100 227_1_23_28
312 230 1 54 56 8 1483.5 91A Gabbro 2 - 230_1_54_56
312 230 2 36 40 6b 1484.9 91A Gabbro 2 110 230_2_36_40
312 232 1 97 100 5c 1493.9 91A Gabbro 2 113 232_1_97_100
312 232 2 52 54 2 1494.5 93 Gabbro 2 115 232_2_52_54
312 232 2 98 100 9 1495.0 93/94 Gabbro 2 116 232_2_98_100
a) Expedition b) Section of the core c) Shipboard thin section #
d) Abbreviated sample designation used in this study
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Table 2. Petrographic features of the investigated samples and calculated equilibrium temperatures 

Sample Textural
domains Primary phases a Special petrographic features

Equilibrium
temperatures b

 Figure# in Teagle et 
al.  [2006] c

subophitic cpx,plag
granular plag,am,ox Ti-in-am: 611
subophitic cpx,plag rapid quench features; high-temperature reactions in cpx
granular plag,am,ox Ti-in-am: 601
subophitic cpx,plag rapid quench features; high-temperature reactions in cpx

granular opx,plag,am,ox opx with granular inclusions of cpx; hydrous partial melting 
structures in plag

2-pyr: 1071±54d

Ti-in-am: 1009
am-plag: 925

subophitic cpx,plag high-temperature reactions in cpx
granular opx,ol,plag,am,ox textural relics of granoblastic dikes; poikilitic oxides Ti-in-am: 908
microgranular cpx,plag,ox

granular opx,ol,plag,am,ox textural relics of granoblastic dikes; hydrous partial melting 
structures in plag; opx with tiny granular inclusions of cpx Ti-in-am: 906

microgranular cpx,plag,ox
225_2_10_14 granoblastic cpx,plag,am,ox 1-py: 971 no shipboard section
227_1_23_28 granular cpx,opx,pl,am,ox tiny cpx and opx inclusions in plag 2-py: 981±91 F290A; F291; F308I

granular cpx,plag,am,ox close to xenolith contact: no more oxides
xenolith cpx,opx,pl,ox xenolith core; at the contact more oxides and absence of cpx 2-py: 1014±73

granular opx,plag,am,ox millions of cpx inclusions in opx; cpx inclusions bear tiniest 
inclusions of il; hydrous partial melting structures in plag Ti-in-am: 682

microgranular cpx,opx,plag,ox 2-py: 1043±35

granular cpx,opx,plag,am,ox
both pyroxenes are poikilitic containing numerous plag grains;
plag contains tiny inclusions of opx and cpx; contains secondary 
diopside

2-py: 1045+57
Ti-in-am: 714

microgranular cpx,plag,ox

granular cpx,opx,plag,ox comb structure at the contact between both lithologies; opx with 
inclusions of oxides and plag 2-py: 1084±70

microgranular cpx,opx,plag,ox poikilitic sulfides 2-py: 1021±40

subophitic cpx,opx,plag texturally and compositionally different compared to the 
subophitic domains from Gabbro 1

granular coarse opx,plag,am,qz,ox quarz-bearing; typical cumulate features; opx with sulfide 
inclusions; contains secondary diopside

granular fine cpx,opx,plag,ox 2-py:1059±36
microgranular cpx,plag,ox

223_2_57_60 F236C,D

223_3_1_6 F295

215_1_84_88

214_2_0_6

214_2_15_17

F210; F233B; F303E

F286A,B; F289; 
F303D; AF3B,C,D

F233A; F303C

230_1_54_56 no shipboard section

230_2_36_40 F241

232_2_98_100 F242; F244; F246; 
F247; F286E,F

232_1_97_100 F240

232_2_52_54 F243; F245

a) cpx - clinopyroxene, opx - orthopyroxene, ol - olivine, plag - plagioclase, am - amphibole, qz - quartz, ox - oxides, il - ilmenite.
b) Used thermometers: 1-pyr, 2-pyr: single- and two-pyroxenes (QUILF); Ti-in-am: TiO 2-in-amphibole; am-plag: amphibole-plagioclase; see text for details.
c) Number of Fig. in Teagle et al.  [2006] in which petrographic details of the corresponding samples are presented.
d) Calculated for opx host and cpx inclusions.
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Table 3. Mineral compositions

litha domb tex domc phad ane qualf nog SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O K2O F Cl Total Mg#h Ani

214_2_0_6
gb1 2-dom suboph cpx 21 51.90 0.59 2.82 0.40 6.37 0.16 16.27 20.75 0.24 - 99.49 81.99

0.48 0.09 0.54 0.15 0.26 0.03 0.50 0.64 0.03 0.96
suboph pl co 14 47.92 32.88 0.44 0.05 16.66 2.33 0.02 100.31 79.72

0.35 0.27 0.04 0.03 0.29 0.17 0.01 1.41
suboph pl ri 44 50.74 30.83 0.52 0.10 14.29 3.61 0.06 100.15 68.41

0.96 0.64 0.17 0.12 0.53 0.33 0.12 2.61
granul pl co rel 30 47.30 32.20 0.67 0.06 16.24 2.22 0.24 98.93 79.05

1.76 1.41 0.15 0.11 0.99 0.23 0.65 1.42
granul pl co matrix 57 53.37 28.35 0.63 0.05 11.77 4.94 0.16 99.28 56.33

1.60 1.07 0.17 0.07 0.80 0.44 0.04 3.39
granul am 12 51.34 0.63 3.51 13.84 0.20 15.21 11.42 0.90 0.05 0.07 0.16 97.33 66.19

1.38 0.11 0.90 2.65 0.06 1.61 0.81 0.11 0.02 0.05 0.02 6.42
granul il int 7 - 47.07 0.03 - 50.73 1.07 0.33 - - - 99.24

0.67 0.01 1.17 0.18 0.04
granul mt int 9 0.18 20.06 0.62 - 73.95 0.52 0.30 - - - 95.62

0.20 4.49 0.11 4.23 0.21 0.13
214_2_15_17
gb1 2-dom suboph cpx 9 51.76 0.60 2.82 0.34 6.52 0.18 17.13 20.76 0.24 - 100.36 82.42

0.24 0.07 0.26 0.06 0.40 0.04 0.27 0.69 0.04 0.77
suboph cpx intergr 9 51.99 0.57 2.22 0.08 8.18 0.23 16.61 20.30 0.21 - 100.38 78.35

0.16 0.02 0.10 0.04 0.24 0.03 0.15 0.22 0.02 0.58
suboph pl rel 5 47.16 31.78 0.58 0.05 16.24 2.42 0.06 98.27 78.53

2.49 1.61 0.04 0.09 0.46 0.16 0.04 1.44
granul pl matrix 41 54.65 27.75 0.60 0.03 10.96 5.37 0.14 99.49 52.59

1.74 0.92 0.09 0.03 0.58 0.39 0.06 2.91
granul am cluster 19 49.42 0.58 4.34 - 17.46 0.27 - 12.71 11.22 0.93 0.14 - 0.26 97.33 56.36

0.84 0.19 0.57 2.25 0.04 1.69 0.34 0.15 0.08 0.09 6.58
granul il foc 5 - 45.57 0.04 - 49.97 0.90 0.24 0.06 - - 96.78

0.51 0.01 0.36 0.04 0.01 0.06
granul mt int 6 0.16 25.48 0.69 0.07 66.95 0.28 0.12 - - - 93.75

0.07 12.03 0.18 0.03 11.20 0.22 0.06
215_1_84_88
gb1 2-dom suboph cpx co 27 52.21 0.52 2.56 0.42 6.25 0.17 17.18 20.71 0.24 - 100.25 83.07

0.48 0.10 0.51 0.13 0.53 0.03 0.41 0.55 0.04 1.21
suboph cpx ri 4 51.56 1.06 1.98 0.19 9.66 0.26 15.59 19.76 0.23 - 100.29 74.22

0.23 0.17 0.06 0.00 0.66 0.01 0.69 1.34 0.01 0.91
suboph cpx intergr 5 52.56 0.50 1.59 - 8.32 0.23 17.36 19.43 0.22 - 100.22 78.81

0.13 0.02 0.04 0.26 0.03 0.12 0.17 0.01 0.63
granul cpx inc/opx 3 51.44 0.76 1.70 - 12.12 0.34 14.68 18.88 0.24 - 100.16 68.36

0.25 0.07 0.18 0.63 0.04 0.28 0.21 0.01 1.49
granul opx prism 3 52.56 0.44 0.86 - 22.42 0.50 21.86 2.06 0.03 - 100.72 63.47

0.23 0.06 0.19 1.10 0.08 0.75 0.03 0.03 1.93
suboph pl co 54 48.22 32.44 0.43 0.06 16.22 2.53 0.03 99.92 77.87

0.41 0.31 0.05 0.07 0.31 0.18 0.01 1.55
suboph pl ri 30 50.61 30.88 0.46 0.08 14.30 3.67 0.05 100.06 68.11

0.39 0.30 0.07 0.08 0.30 0.18 0.01 1.49
granul pl rel 8 51.70 30.03 0.63 0.06 13.59 4.08 0.07 100.16 64.57

0.58 0.47 0.07 0.03 0.55 0.30 0.04 2.60
granul pl co matrix 59 54.70 27.90 0.61 0.05 10.98 5.56 0.14 99.94 51.75

0.77 0.50 0.05 0.03 0.56 0.33 0.05 2.71
granul pl ri matrix 22 61.52 24.05 0.45 - 5.64 8.53 0.22 100.41 26.41

2.66 1.47 0.08 1.97 1.06 0.07 9.28
granul am cluster 3 40.85 3.98 10.93 16.92 0.19 9.96 11.39 2.42 0.70 - 0.61 97.95 51.22

0.39 0.77 0.36 0.35 0.04 0.17 0.21 0.39 0.49 0.11 0.89
granul il int 13 - 47.23 0.11 - 51.08 0.98 0.22 - - - 99.63

1.02 0.04 0.82 0.12 0.09
granul il foc exsol 10 - 48.21 0.05 - 49.87 1.03 0.05 - - - 99.21

0.62 0.02 0.47 0.09 0.05
granul il foc host 5 - 48.79 0.05 - 49.38 0.97 0.23 - - - 99.42

0.32 0.02 0.53 0.04 0.10
granul mt int image 0.03 19.84 1.04 0.06 74.37 0.47 0.08 - - 95.89
granul mt foc exsol 5 - 2.71 0.66 0.07 91.01 0.04 - - - - 94.48

0.26 0.35 0.04 1.03 0.02
granul mt foc host 16 0.05 4.40 1.58 0.08 87.71 0.16 0.10 - - - 94.07

0.02 0.46 0.17 0.02 0.74 0.03 0.04
223_2_57_60
gb1 3-dom suboph cpx co 17 51.78 0.43 2.57 0.69 5.39 0.16 17.40 20.73 0.24 - 99.39 85.21

0.59 0.05 0.47 0.27 0.24 0.03 0.32 0.37 0.02 0.47
suboph cpx ri 6 51.30 0.48 2.39 0.63 7.69 0.21 15.59 20.53 0.34 - 99.16 78.33

0.30 0.13 0.16 0.11 0.30 0.06 0.33 0.44 0.05 0.88
microgran cpx co 6 52.15 0.40 2.31 0.50 6.41 0.16 16.79 20.90 0.26 - 99.87 82.36

0.21 0.03 0.06 0.08 0.78 0.04 0.33 0.53 0.02 2.00
microgran cpx ri pop1 5 51.30 0.73 2.13 0.25 8.41 0.27 15.74 20.11 0.34 - 99.29 76.93

0.51 0.23 0.13 0.07 0.37 0.04 0.46 0.41 0.07 1.08
microgran cpx ri pop2Cr 3 50.27 0.57 2.93 1.07 9.34 0.26 14.64 20.02 0.38 - 99.48 73.65

0.08 0.09 0.05 0.05 0.17 0.06 0.08 0.54 0.02 0.28
granul opx 11 52.97 0.52 1.02 - 18.18 0.42 24.15 1.99 0.04 - 99.29 70.31

0.38 0.07 0.15 0.48 0.05 0.27 0.15 0.02 0.75
granul ol 5 37.11 - - - 29.66 0.46 0.11 32.42 0.08 - - 99.84 66.09

0.11 0.17 0.03 0.02 0.19 0.03 0.23
suboph pl 12 47.99 31.43 0.59 0.04 15.73 2.72 0.02 98.52 76.08
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0.45 0.40 0.08 0.02 0.36 0.19 0.01 1.63
granul pl rel 30 48.14 31.24 0.63 - 15.78 2.79 0.02 98.60 75.67

0.65 0.37 0.09 0.41 0.25 0.01 2.15
granul pl matrix 27 51.20 29.22 0.53 - 13.19 4.22 0.04 98.41 63.19

1.57 1.15 0.12 0.65 0.34 0.02 2.82
microgran pl co 10 49.12 31.59 0.61 - 15.16 3.02 0.02 99.53 73.42

0.62 0.42 0.12 0.55 0.30 0.01 2.63
microgran pl ri 8 52.05 29.57 0.50 - 12.76 4.45 0.04 99.36 61.18

0.12 0.07 0.09 0.11 0.08 0.00 0.57
granul am cluster 17 43.03 2.63 9.52 0.04 13.11 0.14 - 13.10 11.38 2.62 0.18 - 0.43 96.18 64.05

0.46 0.21 0.26 0.01 0.39 0.02 0.28 0.12 0.07 0.02 0.03 1.04
granul il int 9 0.03 49.38 0.08 0.08 48.11 2.12 0.07 - - - 99.87

0.01 0.94 0.04 0.03 0.76 0.14 0.02
granul mt int 7 0.07 4.74 1.75 0.81 84.82 0.20 0.22 - - - 92.62

0.02 0.96 0.07 0.06 1.08 0.06 0.04
223_3_1_6
gb1 2-dom microgran cpx 11 51.93 0.71 1.95 0.18 9.47 0.26 15.21 20.49 0.34 - 100.54 74.15

0.57 0.09 0.10 0.12 0.61 0.06 0.41 0.97 0.04 1.00
granul opx poik 8 53.19 0.55 1.09 - 18.08 0.38 24.98 1.99 0.04 - 100.29 71.13

0.28 0.04 0.07 0.35 0.05 0.15 0.10 0.01 0.47
granul opx prism 4 55.00 0.37 1.16 - 15.58 0.38 26.91 2.24 0.05 - 101.70 75.49

0.19 0.02 0.06 0.19 0.04 0.20 0.11 0.01 0.14
granul ol 18 36.93 - - - 30.86 0.43 0.08 32.59 0.17 - - 101.06 65.31

0.51 1.28 0.05 0.03 0.76 0.35 1.45
microgran pl An-rich 17 49.21 31.77 0.63 - 15.64 2.83 0.03 100.12 75.18

0.49 0.30 0.05 0.28 0.15 0.01 1.32
microgran pl matrix 28 51.61 30.08 0.62 0.05 13.62 3.95 0.04 99.96 65.42

0.63 0.54 0.25 0.09 0.47 0.22 0.01 1.88
microgran pl Ab-rich 24 54.05 28.65 0.61 0.05 11.85 4.98 0.06 100.25 56.63

0.80 0.49 0.14 0.08 0.59 0.33 0.01 2.83
granul pl 7 53.94 28.78 0.64 0.09 12.20 4.87 0.05 100.57 57.90

0.19 0.23 0.19 0.15 0.13 0.12 0.01 0.79
microgran am cluster 9 44.85 2.61 9.36 0.10 12.60 0.17 - 14.22 11.50 2.48 0.25 0.06 0.41 98.59 66.79

0.49 0.16 0.31 0.03 0.25 0.02 0.23 0.17 0.07 0.02 0.05 0.01 0.64
granul il int 14 0.08 50.09 0.08 0.05 48.77 1.50 0.23 - - - 100.80

0.06 0.33 0.04 0.03 0.56 0.22 0.07
granul mt int 21 0.16 4.45 2.34 0.62 85.65 0.21 0.32 - - - 93.75

0.09 0.93 0.24 0.12 1.18 0.08 0.08
225_1_10_14
Udi-s 1-dom granbl cpx 10 51.99 0.68 1.49 - 9.66 0.24 15.19 20.79 0.33 - 100.36 73.70

0.22 0.08 0.15 0.31 0.04 0.19 0.31 0.02 0.62
granbl pl 22 54.21 28.47 0.65 0.03 11.31 5.35 0.06 100.07 53.73

0.41 0.28 0.12 0.03 0.30 0.18 0.01 1.43
granbl am flaky 6 51.12 0.94 4.48 - 10.78 0.15 - 16.64 11.58 1.18 0.08 - 0.14 97.08 73.33

1.08 0.22 0.61 0.35 0.04 0.47 0.20 0.17 0.01 0.04 1.09
227_1_23_28
Udi-s 1-dom granul cpx 19 52.52 0.13 0.48 - 9.42 0.32 14.13 22.15 0.31 - 99.46 72.82

0.57 0.08 0.23 0.99 0.04 0.36 1.04 0.13 2.35
granul cpx inc/plag 6 52.10 0.24 0.70 0.05 10.54 0.31 13.94 21.09 0.38 - 99.35 70.20

0.33 0.09 0.24 0.06 0.39 0.04 0.41 0.27 0.18 1.04
granul opx 15 52.19 0.40 0.80 - 22.34 0.52 21.78 2.04 0.04 - 100.10 63.48

0.15 0.01 0.02 0.30 0.04 0.22 0.12 0.01 0.40
granul opx inc/plag 9 51.90 0.41 0.81 - 22.63 0.54 21.50 2.02 0.03 - 99.84 62.88

0.20 0.01 0.04 0.29 0.05 0.12 0.04 0.02 0.42
granul pl co 22 53.27 28.19 0.68 0.05 11.69 5.08 0.06 99.01 55.80

1.00 0.52 0.36 0.04 0.73 0.44 0.01 3.63
granul pl ri 3 58.73 25.09 0.47 - 7.66 7.24 0.09 99.29 36.71

0.71 0.31 0.04 0.37 0.18 0.01 1.64
granul am inc/plag 2 46.14 0.78 8.27 - 13.56 0.18 14.36 11.55 1.90 0.15 96.90 65.38

0.18 0.05 0.41 0.10 0.02 0.21 0.04 0.06 0.02 0.17
granul il int 7 - 47.40 0.06 0.04 49.71 1.44 0.23 - - - 98.89

1.11 0.05 0.01 1.00 0.06 0.11
granul mt int 8 0.07 3.40 1.02 0.34 86.97 0.22 0.19 - - - 92.20

0.05 0.19 0.07 0.03 0.49 0.03 0.12
230_1_54_56
gb2 gb/xeno m granul cpx 8 51.92 0.50 1.10 - 12.00 0.34 13.99 20.03 0.26 100.18 67.53

0.24 0.07 0.05 0.15 0.03 0.14 0.32 0.02 0.36 0.26
m granul(-) cpx 7 51.91 0.43 1.09 - 12.19 0.34 13.82 20.16 0.27 100.24 66.91

0.20 0.11 0.20 0.08 0.03 0.31 0.43 0.02 0.12 0.96
xeno core cpx 8 52.03 0.47 1.19 - 11.35 0.29 14.13 20.62 0.28 100.39 68.94

0.19 0.09 0.12 0.25 0.04 0.07 0.32 0.02 0.26 0.53
xeno core opx 6 52.05 0.40 0.83 - 23.44 0.52 20.77 1.95 0.03 100.02 61.23

0.14 0.02 0.03 0.20 0.03 0.26 0.19 0.01 0.21 0.41
xeno rim opx 10 52.37 0.43 0.78 - 22.98 0.51 21.21 1.99 0.03 100.31 62.20

0.22 0.01 0.06 0.24 0.02 0.20 0.20 0.01 0.43 0.27
m granul pl 8 55.28 27.79 0.60 - 10.31 5.62 0.07 99.75 50.14

0.24 0.19 0.15 0.12 0.13 0.01 0.27 0.81
m granul(-) pl 10 54.62 28.01 0.80 - 10.47 5.52 0.12 99.65 50.83

1.16 0.33 0.85 0.49 0.33 0.16 0.53 2.33
xeno core pl co 8 53.50 29.04 0.47 - 11.80 4.85 0.05 99.82 57.20

0.54 0.45 0.06 0.68 0.36 0.00 0.50 3.18
xeno core pl ri 5 56.63 27.05 0.49 - 9.53 6.18 0.07 100.01 45.83

1.18 0.69 0.06 0.78 0.44 0.00 0.42 3.74
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xeno rim pl co 5 50.92 30.58 0.45 - 14.16 3.60 0.04 99.82 68.31
1.48 0.97 0.09 1.25 0.71 0.02 0.23 6.20

xeno rim pl ri 5 47.70 26.53 0.52 - 11.41 4.11 0.06 90.40 60.31
0.56 0.44 0.20 0.31 0.21 0.04 0.36 1.66

m granul il int 6 - 46.71 0.09 0.04 51.05 1.46 0.07 - - - 99.48
0.51 0.01 0.06 0.51 0.38 0.02

xeno core il int 8 - 45.60 0.06 0.05 51.96 1.07 0.07 - - - 98.83
0.51 0.02 0.04 0.36 0.08 0.02 0.70

xeno rim il int 8 - 46.66 0.07 0.06 51.01 1.18 0.08 - - - 99.10
0.49 0.01 0.06 0.60 0.08 0.02 0.38

m granul mt int 6 - 3.56 1.61 0.19 87.70 0.21 0.53 - - - 93.83
0.05 0.04 0.07 0.40 0.05 0.09

xeno core mt int 8 - 3.27 0.90 0.35 88.13 0.17 0.15 - - - 93.05
0.48 0.11 0.03 0.54 0.04 0.09 0.23

xeno rim mt int 8 - 3.51 1.71 0.30 87.20 0.16 0.37 - - - 93.34
0.13 0.08 0.04 0.38 0.04 0.11 0.44

230_2_36_40
gb2 2-dom granul cpx inc/opx 3 51.73 0.68 1.71 - 10.90 0.29 15.50 19.02 0.30 - 100.14 71.78

0.20 0.08 0.15 1.33 0.02 0.65 1.64 0.02 1.67
microgran cpx 13 51.33 0.62 1.61 - 10.25 0.30 14.49 20.33 0.28 - 99.21 71.59

0.23 0.03 0.07 0.28 0.03 0.21 0.37 0.03 0.54
granul opx 14 52.42 0.49 0.94 - 20.71 0.48 22.55 1.90 0.03 - 99.52 66.00

0.39 0.03 0.05 0.60 0.04 0.36 0.19 0.01 0.92
microgran opx 9 52.42 0.47 1.01 - 19.74 0.47 23.45 1.80 - - 99.36 67.93

0.14 0.04 0.10 0.35 0.04 0.13 0.14 0.47
granul pl co 12 51.36 29.86 0.62 0.06 12.98 4.19 0.07 99.16 62.85

0.97 0.45 0.12 0.11 0.64 0.36 0.04 3.03
granul pl ri 6 53.43 28.63 0.55 0.04 11.62 5.04 0.08 99.38 55.79

0.55 0.29 0.05 0.03 0.33 0.19 0.01 1.54
granul pl An-rich 53 47.08 33.26 0.26 - 16.76 2.08 0.02 99.47 81.51

0.40 0.27 0.07 0.32 0.17 0.01 1.52
granul pl Ab-rich 13 51.32 30.31 0.42 0.04 13.38 4.07 0.06 99.61 64.23

0.39 0.28 0.11 0.07 0.34 0.21 0.02 1.75
microgran pl 15 51.98 29.53 0.65 0.04 12.52 4.57 0.08 99.37 59.95

0.98 0.67 0.14 0.03 0.73 0.42 0.03 3.55
granul am 6 49.91 1.01 4.52 0.03 12.85 0.20 - 15.32 11.43 1.08 0.10 - 0.25 96.70 68.02

0.48 0.08 0.37 0.01 0.45 0.02 0.27 0.12 0.06 0.02 0.03 1.09
granul il foc 13 - 47.84 0.07 0.08 50.65 1.17 0.14 - - - 99.95

0.57 0.01 0.05 0.50 0.14 0.06
granul mt foc 15 0.07 4.22 1.66 0.59 85.85 0.22 0.26 - - - 92.88

0.03 0.45 0.47 0.48 0.45 0.06 0.10
232_1_97_100
gb2 2-dom granul cpx poik 10 51.30 0.72 1.89 0.20 9.16 0.24 14.91 20.48 0.29 - 99.20 74.37

0.33 0.06 0.19 0.21 0.32 0.03 0.21 0.40 0.03 0.59
granul cpx diop 13 52.75 0.11 0.53 - 9.08 0.26 14.21 22.35 0.28 - 99.55 73.62

0.27 0.04 0.15 0.72 0.05 0.38 0.42 0.05 2.01
microgran cpx 10 51.35 0.87 1.85 - 10.62 0.24 14.77 19.89 0.35 - 99.94 71.29

0.70 0.15 0.09 1.00 0.05 0.40 0.86 0.03 2.04
granul opx poik 14 52.90 0.50 0.99 - 18.68 0.43 24.09 1.85 - - 99.44 69.69

0.20 0.03 0.05 0.14 0.04 0.13 0.13 0.16
granul pl co 48 52.28 29.36 0.62 0.07 12.56 4.50 0.06 99.45 60.44

1.03 0.02 0.63 0.02 0.16 0.02 0.11 0.72 0.44 0.01 3.62
granul pl ri 7 55.22 27.60 0.55 - 10.33 5.82 0.08 99.59 49.27

1.59 0.04 0.77 0.00 0.13 0.02 1.19 0.74 0.02 6.02
microgran pl 12 54.43 28.33 0.59 0.04 11.06 5.47 0.07 99.99 52.55

0.54 0.41 0.13 0.03 0.35 0.22 0.01 1.75
granul am cluster 19 49.69 1.20 5.05 0.07 12.49 0.18 - 15.48 11.37 1.34 0.11 0.05 0.23 97.26 68.79

1.34 0.26 0.97 0.02 0.75 0.03 0.85 0.13 0.20 0.03 0.03 0.07 2.45
granul il foc 11 - 47.46 0.07 0.15 50.86 1.09 0.36 - - - 99.99

0.27 0.02 0.03 0.37 0.10 0.37
microgran il foc 10 - 49.01 0.05 0.04 45.60 5.66 0.07 0.08 - - 100.51

0.31 0.02 0.02 0.50 0.24 0.01 0.04
granul mt int 11 0.07 4.11 1.64 1.23 85.46 0.22 0.62 - - - 93.34

0.04 0.52 0.26 0.05 0.57 0.04 0.22
microgran mt int 7 2.04 2.42 1.73 0.40 84.44 0.35 0.76 0.53 - - 92.67

1.27 1.33 0.69 0.03 2.41 0.17 0.53 1.02
232_2_52_54
gb2 2-dom granul cpx 27 51.67 0.68 1.85 0.08 10.09 0.26 15.48 20.05 0.28 - 100.44 73.23

0.60 0.32 0.37 0.06 1.22 0.05 0.87 1.18 0.03 2.90
microgran cpx 10 51.91 0.75 1.65 - 9.82 0.28 14.89 20.79 0.28 - 100.36 73.02

0.24 0.10 0.18 0.43 0.03 0.22 0.72 0.02 0.64
granul opx 18 53.32 0.50 1.02 - 18.73 0.41 24.62 1.99 0.05 - 100.64 70.08

0.29 0.06 0.11 0.91 0.04 0.85 0.21 0.02 1.71
microgran opx 8 52.78 0.49 0.95 - 20.15 0.45 23.93 1.66 0.03 - 100.45 67.92

0.25 0.05 0.09 0.27 0.04 0.21 0.14 0.02 0.39
granul pl 47 52.85 29.47 0.58 0.04 12.65 4.64 0.06 100.29 59.91

1.53 1.01 0.15 0.04 1.16 0.66 0.01 5.60
microgran pl 10 53.75 28.91 0.55 0.04 11.91 5.05 0.06 100.27 56.39

0.73 0.44 0.09 0.04 0.49 0.31 0.01 2.49
granul il int 8 - 46.04 0.03 0.15 51.56 0.93 0.56 - - - 99.27

0.30 0.01 0.02 0.28 0.20 0.21
granul mt int 4 0.34 2.69 0.66 1.54 87.30 0.16 0.17 0.06 - - 92.94

0.21 0.45 0.04 0.08 0.54 0.06 0.12 0.04
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232_2_98_100
gb2 4-dom coarse cpx diop 24 53.12 0.07 0.38 - 9.21 0.25 14.20 22.57 0.32 - 100.12 73.33

0.34 0.03 0.12 0.71 0.06 0.48 0.50 0.11 2.01
fine cpx 16 51.84 0.58 1.23 - 11.51 0.30 14.43 19.99 0.29 - 100.16 69.09

0.17 0.04 0.10 0.34 0.04 0.23 0.46 0.03 0.40
microgran cpx 18 51.45 0.68 1.70 0.09 10.50 0.30 14.40 19.93 0.34 - 99.38 71.00

0.29 0.07 0.13 0.04 0.63 0.04 0.26 0.64 0.03 1.04
suboph cpx 37 50.77 0.92 2.52 0.06 8.46 0.23 14.83 21.17 0.28 - 99.24 75.76

0.41 0.09 0.25 0.03 0.53 0.05 0.41 0.82 0.04 1.07
coarse opx 21 52.88 0.43 0.89 - 20.22 0.45 23.49 1.98 0.03 - 100.39 67.43

0.25 0.05 0.11 0.67 0.05 0.43 0.07 0.01 1.10
fine opx 14 52.50 0.48 0.88 - 21.60 0.50 22.61 1.94 0.04 - 100.55 65.11

0.21 0.05 0.06 0.63 0.04 0.46 0.19 0.01 1.09
coarse pl co 16 54.44 27.93 0.67 0.03 10.91 5.48 0.05 99.52 52.26

0.97 0.45 0.13 0.02 0.64 0.37 0.01 3.07
coarse pl ri 4 59.83 24.89 0.41 - 6.82 7.78 0.08 99.81 32.50

1.03 0.62 0.07 0.59 0.33 0.01 2.79
coarse pl ri out rim 6 64.34 22.68 0.33 - 3.71 9.49 0.11 100.67 17.67

0.43 0.31 0.11 0.31 0.17 0.02 1.48
fine pl co 9 51.28 30.01 0.64 0.03 13.50 3.99 0.04 99.48 65.02

0.54 0.01 0.46 0.01 0.21 0.03 0.48 0.23 0.01 2.09
fine pl ri 5 55.13 27.62 0.66 0.05 10.42 5.61 0.06 99.56 50.47

1.51 0.03 0.74 0.02 0.26 0.07 1.19 0.63 0.01 5.70
microgran pl co 8 52.49 29.28 0.66 - 12.60 4.45 0.05 99.53 60.86

0.80 0.01 0.47 0.01 0.09 0.55 0.34 0.01 2.81
microgran pl ri 9 53.86 28.31 0.74 - 11.43 5.10 0.05 99.48 55.15

0.42 0.01 0.23 0.01 0.15 0.30 0.15 0.00 1.30
suboph pl 20 52.04 0.07 29.24 0.63 0.05 12.82 4.40 0.04 99.31 61.54

0.58 0.03 0.27 0.16 0.06 0.29 0.21 0.01 1.56
fine il int 10 - 44.59 0.09 0.21 53.32 1.03 0.26 - - - 99.49

0.58 0.01 0.03 0.41 0.11 0.10
coarse il int 7 - 45.98 0.03 0.09 52.34 0.90 0.31 - - - 99.65

0.33 0.01 0.03 0.25 0.20 0.07
fine mt int 16 0.09 3.58 1.39 1.84 86.66 0.19 0.23 - - - 93.98

0.18 0.70 0.09 0.05 0.79 0.04 0.09

a) Lithology: gb1  - Gabbro 1; gb2  - Gabbro  2; Udi-s  - upper dike screen
b) Domains: number of identified textural/lithological domains; gb/xeno  - gabbro hosting a xenolith
c) Textural domain: coarse - granular coarse-grained; fine - granular fine-grained; granbl - granoblastic; granul - granular; m granul - granular matrix hosting
xenolith; m granul(-) - granular matrix near the contact to a xenolith without oxides; microgran - microgranular; suboph - subophitic; xeno core - core region of a
xenolith; xeno rim  - rim of a xenolith
d) Phase: am  - amphibole; cpx  - clinopyroxene; il  - ilmenite; mt  - magnetite; ol  - olivine; opx  - orthopyroxene; pl  - plagioclase 
e) Details of the analysis: co  - core; ri  - rim; empty space: central part of the crystal. For oxides: foc  - focused analysed; int  - integral analysed
f) Phase qualifier: Ab-rich, An-rich - Ab- and An-enriched zone in partial molten plagioclase; diop - diopsidic clinopyroxene; exsol - exsolutions; host - host crystal
bearing exsolutions; image - calculated composition via image analysis; inc/opx , inc/plag : tiny inclusions in orthopyroxene and plagioclase, respectively; intergr -
intrgrowth formed by reaction; out rim - outermost rim; poik - poikilitic; poikbl - poikiloblastic; pop1 - population 1; pop2Cr - population 2 rich in Cr; prism -
prismatic; rel  - An-rich relict. For details see text
g) Number of analyses h) MgO/(MgO + FeOtot)*100, molar i) An content of the plagioclase, mol %

- below limit of detection; empty space - not analyzed; FeO = FeO tot; italics: one standard deviation
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Fig. 2; Koepke et al.
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Annex B1: Mineral compositions (weight %) of rocks from the bottom of IODP Hole 1256D. 
 

mbsf sample min. unit thermometry SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg# An% 

~300 9R-2, 7-10 Cpx pond 914 52.65 1.85 0.52 18.51 0.27 - 0.25 17.18 8.96 - - - 100.33 8 77 - 
~300 9R-2, 7-10 pig pond - 53.27 0.88 0.37 4.82 0.08 - 0.49 21.90 18.95 - - - 100.77 17 67 - 
~300 9R-2, 7-10 Pl pond - 53.21 28.78 - 12.48 4.50 0.05 - 0.16 0.75 - - - 99.93 5 - 60 
~300 9R-2, 7-10 Ilm pond - - 0.04 49.36 - - - 0.54 0.43 47.90 - - - 98.35 10 - - 

~300 9R-2, 7-10 Ti-
magt pond - 0.14 0.86 20.96 - - - 1.00 0.30 71.75 0.05 - - 95.08 21 - - 

~700 flow average Cpx flow 1009 51.84 2.86 0.61 17.17 0.19 0.01 0.23 18.42 8.64 0.30 - - 100.19 12 79 - 
~700 flow average pig flow - 54.69 0.87 0.19 4.82 0.06 - 0.34 26.89 12.80 - - - 100.72 4 79 - 
~700 flow average Pl flow - 52.08 29.16 - 13.38 3.95 0.06 - 0.24 0.85 - - - 99.71 12 - 65 

~700 flow average Ti-
magt flow - 0.23 1.99 21.50 0.11 - - 1.21 0.29 69.30 - - - 94.57 10 - - 

~1100 dike average Cpx dike 969 51.20 2.43 0.68 17.33 0.22 - 0.28 16.75 11.03 - - - 100.01 3 73 - 
~1100 dike average Pl dike - 53.54 28.19 - 12.09 4.70 0.05 - 0.14 0.87 - - - 99.58 3 - 59 

~1100 dike average Ti-
magt dike - 0.63 1.39 23.04 0.51 - - 1.44 0.11 66.27 - - - 93.43 3 - - 

1373 202R-1_8-10 Amp zone 2 Tmax=592 52.64 2.42 0.34 9.61 0.35 0.00 0.47 15.51 16.40 0.01 0.01 0.03 97.81 4 65 - 
1373 202R-1_8-10 Pl zone 2 604 54.31 28.52 0.06 11.46 5.04 0.00 0.00 0.05 0.88 0.00 0.00 0.02 100.41 5 - 56 
1373 202R-1_8-10 Cpx zone 2 856 51.63 1.22 0.52 19.19 0.24 0.00 0.41 13.54 13.31 0.02 0.01 0.04 100.14 3 64 - 
1373 202R-1_8-10 Opx zone 2 1010+-24 52.53 0.59 0.32 1.88 0.02 0.00 0.69 19.73 24.86 0.00 0.00 0.01 100.63 2 59 - 
1373 202R-1_8-10 Ilm zone 2 - 0.48 0.10 42.48 0.56 0.00 0.00 1.48 0.06 51.87 0.09 0.01 0.02 97.16 4 - - 

1373 202R-1_8-10 Ti-
magt zone 2 - 0.33 0.86 10.85 0.64 0.02 0.00 0.30 0.83 77.71 0.18 0.01 0.02 91.76 1 - - 

1373 202R-1_8-10 magt zone 2 - 0.98 0.65 1.52 0.61 0.07 0.00 0.10 0.11 87.80 0.32 0.01 0.00 92.20 2 - - 

1375 203R-1_0-2 Amp zone 2 Tmax=589 52.09 2.70 0.38 10.95 0.39 0.04 0.30 15.20 13.41 0.02 0.02 0.06 95.56 3 69 - 
1375 203R-1_0-2 Pl zone 2 660 52.65 29.02 0.05 11.85 4.89 0.07 0.02 0.05 0.82 - - 0.05 99.48 2 - 57 
1375 203R-1_0-2 Cpx zone 2 872 50.64 1.39 0.53 19.34 0.26 0.01 0.33 13.63 11.17 0.03 0.02 0.06 97.40 2 68 - 
1375 203R-1_0-2 Ilm zone 2 - 2.04 0.12 45.55 0.36 0.04 0.00 1.60 0.19 45.76 0.02 - 0.00 95.68 1 - - 
1375 203R-1_0-2 magt zone 2 - 0.33 0.66 1.48 0.28 0.03 - 0.02 0.01 85.33 0.32 0.01 0.06 88.53 1 - - 

1396.5 209R-1_4-7 Amp zone 2 Tmax=552 52.55 2.22 0.31 10.83 0.31 0.03 0.33 16.74 11.32 0.01 0.01 0.02 94.69 2 74 - 
1396.5 209R-1_4-7 Pl zone 2 538 52.57 28.69 0.06 11.45 5.07 0.05 0.00 0.06 0.76 0.00 - 0.02 98.74 7 - 56 
1396.5 209R-1_4-7 Cpx zone 2 852 50.91 1.18 0.42 20.33 0.28 0.00 0.37 14.13 9.45 0.01 - 0.04 97.11 3 73 - 
1396.5 209R-1_4-7 Opx zone 2 1011+-48 51.99 0.65 0.27 2.02 0.02 0.00 0.73 21.59 20.48 - 0.00 -0.03 97.76 2 65 - 
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mbsf sample min. unit thermometry SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg# An% 

1411 214R-1_43-47 Pl diorite 618 55.32 27.09 0.05 10.03 5.93 0.00 0.01 0.06 0.60 0.01 0.00 0.04 99.22 9 - 48 
1411 214R-1_43-47 Ilm diorite - 0.08 0.02 49.99 0.01 0.00 0.00 1.76 0.23 46.85 0.01 0.00 0.01 98.98 3 - - 
1411 214R-1_43-47 magt diorite - 0.66 0.50 1.58 0.13 0.00 0.00 0.07 0.21 90.19 0.04 0.02 0.03 93.43 2 - - 
1411 214R-1_43-47 Qz diorite - 99.01 0.06 0.07 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 99.17 3 - - 
1411 214R-1_43-47 Amp diorite Tmax=651 52.86 1.66 0.28 12.05 0.39 0.00 0.23 13.71 16.52 0.00 0.01 0.02 97.75 9 61 - 

1416 215R-1_20-23 Amp 
zone 3 
(white 

patches) 
Tmax=599 52.76 2.04 0.40 11.47 0.45 0.00 0.21 14.84 15.19 0.00 0.04 0.05 97.48 3 65 - 

1416 215R-1_20-23 Pl 
zone 3 
(white 

patches) 
632 57.03 26.69 0.06 8.90 6.60 0.00 0.01 0.03 0.44 0.01 0.01 0.04 99.93 7 - 43 

1416 215R-1_20-23 Preh
nite 

zone 3 
(white 

patches) 
- 41.12 29.08 0.09 22.00 0.78 0.00 0.03 0.15 1.82 0.01 0.01 0.05 95.13 1 - - 

1416 215R-1_20-23 
Pum
pellyi

te 

zone 3 
(white 

patches) 
- 37.43 24.91 0.07 22.88 0.03 0.00 0.09 1.06 7.42 0.02 0.00 0.12 94.03 4 - - 

1416 215R-1_20-23 Chlo zone 3 
(gabbro) - 41.91 10.04 0.02 3.32 0.07 0.00 0.07 15.29 15.96 0.01 0.12 0.04 86.88 7 63 - 

1416 215R-1_20-23 Ilm zone 3 
(gabbro) - 0.16 0.04 48.59 0.01 0.00 0.00 1.20 0.08 49.60 0.01 0.02 0.01 99.72 3 - - 

1416 215R-1_20-23 magt zone 3 
(gabbro) - 1.77 1.34 2.64 0.49 0.01 0.00 0.09 0.66 84.81 0.04 0.03 0.10 91.97 3 - - 

1416 215R-1_20-23 Pl zone 3 
(gabbro) - 50.51 30.87 0.06 14.28 3.58 0.00 0.01 0.07 0.52 0.00 0.01 0.02 99.98 20 - 69 

1416 215R-1_20-23 Cpx zone 3 
(gabbro) 970 51.73 2.44 0.59 19.95 0.24 0.00 0.22 16.30 8.03 0.30 0.02 0.05 99.89 22 78 - 

1430.4 219R-1_38-41 Pl 
zone 4 

(coarse-
grained) 

- 51.78 30.18 0.05 13.37 3.93 0.05 0.00 0.07 0.62 0.00 0.01 - 100.06 6 - 65 

1430.4 219R-1_38-41 Cpx 
zone 4 

(coarse-
grained) 

921 53.45 1.92 0.40 19.61 0.21 0.00 0.19 17.34 6.48 0.18 0.02 - 99.80 5 83 - 

1430.4 219R-1_38-41 Ol zone 4 (fine-
grained) - 37.32 0.00 0.02 0.11 0.01 0.00 0.47 31.00 31.66 0.00 0.07 - 100.67 3 64 - 

1430.4 219R-1_38-41 Pl zone 4 (fine-
grained) - 50.93 30.86 0.03 14.26 3.35 0.06 0.00 0.05 0.57 0.00 0.00 - 100.12 1 - 70 

1430.4 219R-1_38-41 Cpx zone 4 (fine-
grained) 871 51.91 1.39 0.65 19.19 0.23 0.00 0.30 14.67 10.69 0.01 0.01 - 99.05 1 71 - 

1430.4 219R-1_38-41 Opx zone 4 (fine-
grained) 1051+-24 53.78 0.83 0.42 1.96 0.02 0.00 0.47 22.53 20.39 0.00 0.04 - 100.44 2 66 - 

1430.4 219R-1_38-41 Serp zone 4 (fine-
grained) - 52.51 0.01 0.02 0.54 0.08 0.05 0.05 24.88 12.97 0.01 0.10 - 91.20 2 77 - 
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mbsf sample min. unit thermometry SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg# An% 

1451.4 223R-2_50-53 Pl 
zone 4 

(coarse-
grained) 

- 51.04 30.71 0.05 13.89 3.59 0.04 0.00 0.05 0.65 0.01 0.00 - 100.03 9 - 68 

1451.4 223R-2_50-53 Cpx 
zone 4 

(coarse-
grained) 

935 52.96 2.08 0.43 20.87 0.23 0.00 0.21 16.39 6.13 0.26 0.02 - 99.58 10 83 - 

1453 223R-3_5-7 Amp 
zone 4 

(coarse-
grained) 

Tmax=553 53.07 2.81 0.33 11.31 0.60 0.00 0.15 15.55 14.36 0.00 0.05 0.04 98.31 2 69 - 

1453 223R-3_5-7 Ilm 
zone 4 

(coarse-
grained) 

- 0.13 0.01 48.12 0.00 0.00 0.00 0.89 0.37 49.94 0.06 0.00 0.01 99.53 1 - - 

1453 223R-3_5-7 Pl 
zone 4 

(coarse-
grained) 

688 52.81 29.27 0.08 12.41 4.62 0.00 0.01 0.14 0.79 0.01 0.01 0.03 100.20 7 - 60 

1453 223R-3_5-7 Cpx 
zone 4 

(coarse-
grained) 

926 52.03 1.97 0.63 19.54 0.26 0.00 0.23 16.65 8.47 0.13 0.02 0.04 99.97 4 78 - 

1453 223R-3_5-7 Opx 
zone 4 

(coarse-
grained) 

1055+-68 53.61 1.03 0.49 2.10 0.04 0.00 0.41 24.72 18.32 0.02 0.02 0.00 100.77 3 71 - 

1453 223R-3_5-7 Ol zone 4 (fine-
grained) - 37.14 0.01 0.03 0.07 0.00 0.00 0.42 32.35 31.60 0.01 0.12 0.06 101.82 2 65 - 

1453 223R-3_5-7 Pl zone 4 (fine-
grained) - 50.90 30.43 0.07 13.65 3.88 0.00 0.01 0.08 0.63 0.01 0.01 0.05 99.76 6 - 66 

1453 223R-3_5-7 Cpx zone 4 (fine-
grained) 929 51.37 2.00 0.78 19.75 0.31 0.00 0.26 15.09 10.17 0.16 0.02 0.06 99.98 9 73 - 

1454.4 224R-1_7-9 Amp 
diorite 

(contact 
zone 4/5) 

Tmax=726 50.80 2.76 0.53 11.54 0.61 0.00 0.28 12.88 18.67 0.01 0.07 0.03 98.26 6 56 - 

1454.4 224R-1_7-9 Pl 
diorite 

(contact 
zone 4/5) 

756 57.23 26.31 0.07 8.62 6.78 0.00 0.00 0.09 0.68 0.01 0.01 0.03 99.89 8 - 41 

1454.4 224R-1_7-9 Cpx 
diorite 

(contact 
zone 4/5) 

845 52.24 1.10 0.39 20.98 0.27 0.00 0.35 14.09 10.85 0.00 0.01 0.05 100.33 7 70 - 

1454.4 224R-1_7-9 Pl? 
diorite 

(contact 
zone 4/5) 

- 41.48 24.18 0.07 9.72 4.81 0.00 0.00 0.07 0.66 0.01 0.01 0.09 81.15 10 - - 

1454.4 224R-1_7-9 Apat. 
diorite 

(contact 
zone 4/5) 

- 0.51 0.01 0.02 51.10 0.01 0.00 0.04 0.00 0.14 0.00 0.01 38.5 90.34 2 - - 

1454.4 224R-1_7-9 Ilm 
diorite 

(contact 
zone 4/5) 

- 0.25 0.07 47.34 0.10 0.00 0.00 1.71 0.12 49.25 0.02 0.01 0.00 98.89 2 - - 
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mbsf sample min. unit thermometry SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg# An% 

1454.4 224R-1_7-9 magt 
diorite 

(contact 
zone 4/5) 

- 0.66 4.12 5.99 0.01 0.00 0.00 0.20 0.63 79.93 0.08 0.03 0.00 91.66 1 - - 

1454.4 224R-1_7-9 Qz 
diorite 

(contact 
zone 4/5) 

- 99.57 0.03 0.05 0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.01 99.72 3 - - 

1459 225R-1_4-8 Amp zone 5 (top) Tmax=887 51.05 4.17 1.10 11.27 0.90 0.00 0.22 16.22 12.88 0.07 0.02 0.03 98.07 16 72 - 
1459 225R-1_4-8 Ilm zone 5 (top) - 0.18 0.02 46.57 0.26 0.01 0.00 1.47 0.13 49.93 0.16 0.01 0.01 98.75 4 - - 
1459 225R-1_4-8 magt zone 5 (top) - 0.24 1.18 2.63 0.19 0.01 0.00 0.16 0.15 86.62 1.38 0.04 0.02 92.62 4 - - 
1459 225R-1_4-8 Pl zone 5 (top) 742 52.51 29.69 0.07 12.71 4.38 0.00 0.01 0.05 0.74 0.01 0.01 0.04 100.26 11 - 62 
1459 225R-1_4-8 Cpx zone 5 (top) 816 53.13 0.79 0.23 22.26 0.24 0.00 0.29 14.26 9.26 0.07 0.00 0.04 100.58 3 73 - 
1459 225R-1_4-8 Opx zone 5 (top) 973+-77 52.88 0.87 0.39 2.00 0.03 0.00 0.46 22.55 21.36 0.03 0.01 0.01 100.60 5 65 - 

1463.9 226R-1_4-6 Amp zone 5 Tmax=823 53.73 4.12 1.11 10.69 1.06 0.05 0.17 16.95 11.22 0.01 0.01 - 99.12 2 76 - 

1463.9 226R-1_4-6 Pl zone 5 724 54.11 28.65 0.07 11.60 4.93 0.03 0.02 0.23 1.03 0.00 0.00 - 100.69 16 - 57 
1463.9 226R-1_4-6 Cpx zone 5 892 52.56 1.62 0.62 19.67 0.37 0.00 0.28 13.96 11.22 0.02 0.02 - 100.34 4 69 - 
1463.9 226R-1_4-6 Opx zone 5 1019+-34 53.50 0.79 0.37 1.87 0.03 0.00 0.53 20.90 22.38 0.01 0.02 - 100.41 4 62 - 
1463.9 226R-1_4-6 Apat. zone 5 - 11.47 0.49 0.06 44.94 0.07 0.01 0.13 2.96 2.84 0.01 0.01 - 62.99 2 - - 
1463.9 226R-1_4-6 magt zone 5 - 0.74 0.57 0.86 0.22 0.00 0.00 0.10 0.33 87.60 0.44 0.05 - 90.91 1 - - 

1469 227R-1_30-34 Amp zone 5 Tmax=632 52.70 2.59 0.50 11.32 0.51 0.00 0.24 16.21 13.36 0.02 0.02 0.01 97.52 2 71 - 
1469 227R-1_30-34 Ilm zone 5 - 0.15 0.00 47.84 0.22 0.00 0.00 1.45 0.12 48.86 0.03 0.02 0.01 98.71 1 - - 
1469 227R-1_30-34 Pl zone 5 665 55.55 27.55 0.05 9.98 5.96 0.00 0.01 0.04 0.70 0.00 0.01 0.03 99.94 3 - 48 
1469 227R-1_30-34 Cpx zone 5 784 52.43 0.46 0.07 22.14 0.17 0.00 0.31 13.61 10.35 0.01 0.00 0.03 99.57 2 70 - 
1469 227R-1_30-34 Opx zone 5 956+-77 52.11 0.86 0.40 2.11 0.01 0.00 0.52 21.40 22.59 0.01 0.01 0.02 100.06 3 63 - 
1469 227R-1_30-34 Qz zone 5 - 99.11 0.03 0.11 0.04 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 99.65 1 - - 

1483.2 230R-1_15-20 Ilm zone 6 
(xenolith) - 0.11 0.01 46.13 0.06 0.01 0.00 2.59 0.07 50.28 0.08 0.01 0.01 99.37 2 - - 

1483.2 230R-1_15-20 magt zone 6 
(xenolith) - 0.16 1.01 3.03 0.10 0.00 0.00 0.12 0.18 87.39 0.64 0.03 0.03 92.69 3 - - 

1483.2 230R-1_15-20 Pl zone 6 
(xenolith) - 53.87 28.67 0.07 11.25 5.27 0.00 0.01 0.02 0.71 0.01 0.00 0.05 99.98 5 - 54 

1483.2 230R-1_15-20 Cpx zone 6 
(xenolith) 883 51.58 1.51 0.62 20.27 0.33 0.00 0.26 13.93 11.83 0.04 0.00 0.10 100.48 1 68 - 

1483.2 230R-1_15-20 Opx zone 6 
(xenolith) 1017+-30 52.27 0.86 0.41 1.90 0.02 0.00 0.53 20.69 23.68 0.02 0.01 0.01 100.41 5 61 - 

1483.7 230R-1_73-80 Amp zone 6 
(xenolith) Tmax=713 49.66 5.28 1.16 11.37 1.37 0.00 0.20 15.55 12.92 0.04 0.02 0.04 97.71 2 74 - 

1483.7 230R-1_73-80 Ilm zone 6 
(xenolith) - 0.16 0.05 46.15 0.05 0.00 0.00 1.30 0.03 50.83 0.05 0.02 0.03 98.69 2 - - 
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mbsf sample min. unit thermometry SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg# An% 

1483.7 230R-1_73-80 magt zone 6 
(xenolith) - 4.44 0.81 2.52 1.96 0.03 0.00 0.20 1.29 82.68 0.26 0.04 0.01 94.24 5 - - 

1483.7 230R-1_73-80 Pl zone 6 
(xenolith) 769 53.80 28.84 0.07 11.38 5.13 0.00 0.01 0.02 0.63 0.00 0.01 0.03 99.96 10 - 55 

1483.7 230R-1_73-80 Cpx zone 6 
(xenolith) 862 51.67 1.29 0.53 20.10 0.31 0.00 0.33 13.71 11.88 0.02 0.01 0.04 99.90 5 67 - 

1483.7 230R-1_73-80 Opx zone 6 
(xenolith) 1030+-35 52.34 0.75 0.36 1.89 0.02 0.00 0.50 21.08 22.90 0.02 0.02 0.01 99.89 5 62 - 

1483.9 230R-1_87-90 Amp zone 6 
(xenolith) Tmax=704 49.77 7.96 1.14 11.16 1.67 0.00 0.16 14.78 13.26 0.01 0.05 0.05 100.23 1 76 - 

1483.9 230R-1_87-90 Ilm zone 6 
(xenolith) - 0.10 0.06 46.43 0.06 0.00 0.00 1.11 0.14 50.84 0.04 0.01 0.00 98.80 3 - - 

1483.9 230R-1_87-90 magt zone 6 
(xenolith) - 0.15 1.43 3.35 0.02 0.00 0.00 0.15 0.29 87.64 0.28 0.02 0.01 93.33 2 - - 

1483.9 230R-1_87-90 Pl zone 6 
(xenolith) 753 54.00 28.60 0.08 11.23 5.28 0.02 0.01 0.02 0.59 0.01 0.00 0.04 99.92 6 - 54 

1483.9 230R-1_87-90 Cpx zone 6 
(xenolith) 886 51.38 1.54 0.63 19.63 0.33 0.00 0.32 14.12 12.08 0.01 0.01 0.03 100.10 6 68 - 

1483.9 230R-1_87-90 Opx zone 6 
(xenolith) 1028+-21 52.55 0.77 0.39 1.78 0.02 0.00 0.53 21.12 23.49 0.00 0.01 0.01 100.67 4 62 - 

1484.2 230R-1_118-
121 Pl zone 6 

(gabbro) - 53.65 28.04 0.08 11.34 5.07 0.05 0.01 0.18 0.82 0.00 0.00 - 99.23 4 - 55 

1484.2 230R-1_118-
121 Cpx zone 6 

(gabbro) 819 52.09 0.82 0.42 21.08 0.45 0.00 0.29 14.28 10.41 0.03 0.01 - 99.87 5 71 - 

1485.2 230R-2_71-73 Pl zone 6 
(gabbro) 714 51.91 29.28 0.07 12.57 4.36 0.07 0.00 0.10 0.67 0.01 0.01 - 99.05 12 - 61 

1485.2 230R-2_71-73 Cpx zone 6 
(gabbro) 925 51.18 1.96 0.73 19.08 0.30 0.00 0.27 15.38 10.46 0.06 0.01 - 99.43 9 72 - 

1485.2 230R-2_71-73 Opx zone 6 
(gabbro) 1065+-20 52.85 0.91 0.51 1.88 0.02 0.00 0.43 23.72 20.14 0.02 0.02 - 100.50 2 68 - 

1485.2 230R-2_71-73 Amp zone 6 
(gabbro) Tmax=652 50.93 4.03 0.79 11.04 0.86 0.08 0.23 15.46 13.94 0.03 0.02 - 97.41 2 70 - 

1485.2 230R-2_71-73 Ilm zone 6 
(gabbro) - 0.18 0.04 46.14 0.03 0.00 0.00 1.53 0.09 50.66 0.11 0.00 - 98.80 5 - - 

1485.2 230R-2_71-73 Magt zone 6 
(gabbro) - 0.20 1.14 3.51 0.01 0.01 0.00 0.19 0.16 87.36 1.16 0.02 - 93.76 5 - - 

1492 231R-4_7-10 Pl zone 6 
(gabbro) 707 51.12 29.88 0.05 13.23 4.07 0.03 0.01 0.14 0.72 0.00 0.00 - 99.25 5 - 64 

1492 231R-4_7-10 Cpx zone 6 
(gabbro) 1011 51.54 2.89 0.45 20.14 0.26 0.00 0.18 16.47 7.12 0.69 0.03 - 99.77 5 80 - 

1492 231R-4_7-10 Opx zone 6 
(gabbro) 1000+-121 52.59 0.92 0.49 2.03 0.03 0.01 0.46 22.93 20.77 0.02 0.01 - 100.25 4 66 - 

1492 231R-4_7-10 Amp zone 6 
(gabbro) Tmax=709 50.52 4.31 0.61 11.30 0.89 0.06 0.20 14.38 15.24 0.05 0.02 - 97.58 6 67 - 

1493.7 232R-1_82-85 Ol zone 6 
(xenolith) - 37.86 0.01 0.03 0.04 0.00 0.00 0.46 36.02 26.86 0.00 0.07 - 101.36 2 70 - 
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mbsf sample min. unit thermometry SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO P2O5 Total n Mg# An% 

1493.7 232R-1_82-85 Plc 
zone 6 

(xenolith) - 53.25 29.27 0.08 12.07 4.79 0.10 0.00 0.04 0.60 0.01 0.00 - 100.22 3 - 58 

1493.7 232R-1_82-85 Plm zone 6 
(xenolith) - 48.69 31.76 0.02 15.31 2.86 0.05 0.01 0.11 0.82 0.00 0.01 - 99.65 5 - 75 

1493.7 232R-1_82-85 Opx zone 6 
(xenolith) - 54.21 0.93 0.25 1.08 0.01 0.00 0.43 26.72 17.07 0.01 0.01 - 100.73 10 74 - 

1493.7 232R-1_82-85 magt zone 6 
(xenolith) - 0.25 2.30 0.89 0.03 0.02 0.00 0.19 0.54 89.22 0.02 0.06 - 93.53 2 - - 

1497.6 233R-1_8-12 Ilm zone 7 - 0.16 0.05 47.64 0.03 - - 0.95 0.16 47.85 0.00 0.01 - 96.84 1 - - 
1497.6 233R-1_8-12 magt zone 7 - 0.49 1.61 4.00 0.22 0.05 - 0.15 0.33 83.60 0.15 0.01 0.01 90.63 4 - - 
1497.6 233R-1_8-12 Pl zone 7 - 52.27 29.18 0.06 11.89 4.94 0.04 0.01 0.03 0.58 0.00 0.00 0.03 99.06 21 - 57 
1497.6 233R-1_8-12 Cpx zone 7 883 50.81 1.51 0.53 20.28 0.37 0.00 0.26 14.16 9.80 0.02 0.01 0.05 97.80 8 72 - 
1497.6 233R-1_8-12 Opx zone 7 956+-31 51.93 0.81 0.38 1.58 0.03 - 0.48 22.49 20.26 0.00 0.01 0.01 98.00 3 66 - 
1497.6

4 233R-1_14-18 Ilm zone 7 - 0.22 0.04 46.79 0.08 0.02 0.00 1.84 0.11 49.78 0.07 0.01 0.01 98.98 3 - - 

1497.6
4 233R-1_14-18 magt zone 7 - 0.17 0.79 3.03 0.16 0.00 0.00 0.14 0.14 87.68 0.83 0.05 0.02 93.01 5 - - 

1497.6
4 233R-1_14-18 Pl zone 7 - 53.44 29.16 0.05 11.84 5.00 0.00 0.00 0.02 0.57 0.01 0.01 0.03 100.15 6 - 57 

1497.6
4 233R-1_14-18 Cpx zone 7 854 52.10 1.20 0.42 21.24 0.30 0.00 0.28 14.38 10.21 0.02 0.00 0.04 100.18 6 72 - 

1497.6
4 233R-1_14-18 Opx zone 7 1003+-50 52.49 0.88 0.41 1.90 0.03 0.00 0.49 22.27 21.78 0.01 0.00 0.01 100.28 3 65 - 

1502.6 234R-1_10-13 Pl 
zone 8 (off 

axis 
dolerite) 

- 55.90 27.15 0.09 10.25 5.65 0.00 0.01 0.11 0.91 0.01 0.01 0.07 100.23 2 - 50 

1502.6 234R-1_10-13 Cpx 
zone 8 (off 

axis 
dolerite) 

986 49.93 2.61 1.03 17.83 0.29 0.00 0.32 13.10 14.99 0.02 0.01 0.04 100.19 5 61 - 

1502.6 234R-1_10-13 Qz 
zone 8 (off 

axis 
dolerite) 

- 99.57 0.12 0.04 0.02 0.00 0.00 0.00 0.00 0.12 0.02 0.00 0.01 99.90 1 - - 

Mineral compositions for lava-pond, lava flow, and sheeted dike are averages calculated from Dziony et al. (2008). Abbreviations are: mbsf=meter 
below sea-floor; min=mineral; n=number of analyses; Mg#=Mg/(Mg+Fe) in moles; An%=Ca/(Ca+Na+K) in moles; -=not analyzed or below 
detection limit; Cpx=clinopyroxene; pig=pigeonite; Pl=plagioclase; Plm=plagioclase margin; Plc=plagioclase core; Ilm=ilmenite; Ti-
magt=titanomagnetite; Amp=amphibole; Opx=orthopyroxene; magt=magnetite; Qz=quartz; Chlo=chlorite; Ol=olivine; Serp=serpentine; 
Apat.=apatite. Temperature estimations indicated for amphibole are from Ernst and Liu (1998); for plagioclase from Holland and Blundy (1994); for 
Opx from Andersen et al. (1993), and for Cpx from France et al. (2009b; see section IV). 
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Annex B2: Major element composition (weight %) of starting material (08OL30), and of the experimental products. 
 

Sample Phase AVG / 
+/- SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 P2O5 Total n Mg# An% T 

max 
T 

AVG

Start. 
mat. Amp AVG 52.46 2.47 0.31 11.70 0.42 0.05 0.22 13.82 16.01 0.00 - 97.47 29 62.28 - - 550 

- - +/- 1.16 0.99 0.08 0.69 0.42 0.03 0.06 0.57 1.20 0.04 - 1.17 - - - - 17 
Start. 
mat. magt AVG 0.67 0.28 0.96 0.20 0.03 0.00 0.02 0.08 88.45 0.06 - 90.77 12 - - - - 

- - +/- 0.40 0.19 0.39 0.09 0.03 0.01 0.05 0.08 1.24 0.02 - 0.89 - - - - - 
Start. 
mat. Pl AVG 67.92 20.27 0.01 0.54 11.46 0.07 0.01 0.01 0.15 0.00 - 100.45 16 - 2.53 - - 

- - +/- 0.76 0.44 0.02 0.28 0.31 0.07 0.03 0.02 0.10 0.03 - 0.66 - - - - - 
Start. 
mat. Prehnite AVG 43.48 23.64 0.00 27.09 0.12 0.01 0.05 0.00 0.11 0.01 - 94.52 3 - - - - 

- - +/- 0.15 0.15 0.01 0.13 0.05 0.00 0.02 0.01 0.02 0.00 - 0.07 - - - - - 
Start. 
mat. Pumpellyite AVG 38.97 21.62 0.10 22.44 0.05 0.01 0.06 1.61 11.68 0.02 - 96.56 6 - - - - 

- - +/- 2.12 2.95 0.07 1.55 0.05 0.01 0.08 2.06 0.49 0.02 - 0.50 - - - - - 
Start. 
mat. sphene AVG 30.61 1.12 36.66 28.34 0.02 0.01 0.01 0.22 1.79 0.02 - 98.83 7 - - - - 

- - +/- 0.77 0.68 1.92 0.44 0.02 0.01 0.03 0.43 0.34 0.04 - 0.28 - - - - - 
- - - - - - - - - - - - - - - - - - - - 

1030 melt AVG 53.48 16.62 1.48 7.49 4.90 0.20 0.05 3.52 8.62 0.00 - 96.39 58 42.2 - - - 
- - +/- 0.28 0.15 0.07 0.07 0.10 0.07 0.02 0.07 0.17 0.02 - 0.40 - - - - - 

1000 melt AVG 55.15 16.60 1.20 5.50 5.58 0.25 0.06 2.58 6.30 - - 93.22 33 42.2 - - - 
- - +/- 0.86 0.31 0.09 0.18 0.68 0.04 0.07 0.11 0.31 - - 1.28 - - - - - 

970 melt AVG 60.50 17.11 1.13 4.23 5.62 0.35 0.05 1.91 5.08 0.00 0.09 96.05 38 40.2 - - - 
- - +/- 0.61 0.27 0.07 0.17 0.74 0.07 0.03 0.09 0.25 0.10 0.03 0.76 - - - - - 

955 melt AVG 60.18 16.51 0.97 3.58 5.39 0.41 0.04 1.56 4.66 0.01 0.10 93.51 22 37.3 - - - 
- - +/- 0.54 0.16 0.05 0.15 1.00 0.03 0.03 0.06 0.23 0.15 0.05 0.90 - - - - - 

940 melt AVG 63.85 16.63 0.82 2.35 4.62 0.77 0.02 0.87 2.94 0.01 0.11 93.11 94 29.6 - - - 
- - +/- 2.11 1.03 0.40 1.23 1.62 0.26 0.07 0.92 1.35 0.20 0.04 1.74 - - - - - 

910 melt AVG 66.05 16.54 0.47 2.15 5.21 1.11 0.02 0.62 2.79 0.12 0.06 95.32 27 28.5 - - - 
- - +/- 0.98 1.18 0.11 0.70 0.84 0.20 0.10 0.10 0.37 0.31 0.04 1.60 - - - - - 

880 melt AVG 68.04 16.15 0.38 1.79 5.31 1.26 0.02 0.40 1.92 0.06 0.04 95.58 27 27.0 - - - 
- - +/- 1.68 1.16 0.08 0.62 0.71 0.23 0.07 0.12 0.48 0.37 0.04 1.70 -  - - - 

850 melt AVG 68.76 15.66 0.28 1.23 4.66 2.09 0.00 0.24 1.54 0.08 0.02 94.67 12 22.0 - - - 
- - +/- 1.25 1.22 0.07 0.38 0.73 0.33 0.09 0.08 0.38 0.14 0.02 2.31 - - - - - 

1030 melt_recalc. AVG 55.48 17.25 1.54 7.77 5.09 0.20 0.05 3.66 8.94 0.00 0.00 100.00 - - - - - 
1000 melt_recalc. AVG 59.16 17.80 1.29 5.90 5.98 0.27 0.07 2.77 6.76 0.00 0.00 100.00 - - - - - 
970 melt_recalc. AVG 62.99 17.81 1.18 4.40 5.85 0.37 0.05 1.99 5.29 0.00 0.09 100.00 - - - - - 
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Sample Phase AVG / 
+/- SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 P2O5 Total n Mg# An% T 

max 
T 

AVG

955 melt_recalc. AVG 64.36 17.66 1.03 3.83 5.76 0.44 0.04 1.67 4.99 0.02 0.11 100.00 - - - - - 
940 melt_recalc. AVG 68.58 17.86 0.88 2.53 4.96 0.83 0.02 0.93 3.16 0.01 0.12 100.00 - - - - - 
910 melt_recalc. AVG 69.29 17.35 0.49 2.25 5.46 1.16 0.02 0.65 2.93 0.13 0.06 100.00 - - - - - 
880 melt_recalc. AVG 71.19 16.90 0.40 1.88 5.56 1.32 0.02 0.42 2.01 0.06 0.04 100.00 - - - - - 
850 melt_recalc. AVG 72.63 16.54 0.29 1.30 4.92 2.21 0.00 0.25 1.62 0.08 0.02 100.00 - - - - - 

- - - - - - - - - - - - - - - - - - - - 
1030 Ol AVG 39.21 0.11 0.06 0.32 0.01 0.00 0.14 37.87 22.79 0.00 - 100.54 40 74.76 - - - 

- - +/- 0.40 0.36 0.06 0.28 0.03 0.02 0.01 0.78 0.63 0.01 - 0.37 - - - - - 
1000 Ol AVG 38.40 0.17 0.04 0.29 0.04 0.01 0.17 38.68 23.21 - - 101.01 37 74.80 - - - 

- - +/- 0.38 0.44 0.02 0.13 0.09 0.01 0.05 0.97 0.49 - - 0.56 - - - - - 
970 Ol AVG 38.44 0.09 0.04 0.30 0.02 0.00 0.21 36.63 24.25 0.00 - 99.98 26 72.91 - - - 

- - +/- 0.26 0.18 0.02 0.26 0.03 0.01 0.01 0.48 0.41 0.01 - 0.45 - - - - - 
955 Ol AVG 37.39 0.05 0.04 0.25 0.03 0.01 0.22 33.34 27.95 0.02 - 99.34 21 68.01 - - - 

- - +/- 0.41 0.08 0.03 0.05 0.02 0.01 0.06 0.39 0.64 0.09 - 0.58 - - - - - 
940 Ol AVG 38.64 0.44 0.05 0.46 0.09 0.01 0.23 32.99 27.41 0.00 - 100.34 19 68.21 - - - 

- - +/- 0.68 0.54 0.03 0.25 0.10 0.01 0.01 0.81 0.88 0.02 - 0.74   - - - 
1030 Cpx AVG 51.92 2.98 0.70 21.37 0.39 0.00 0.08 15.26 7.77 0.01 - 100.50 42 77.77 - - - 

- - +/- 0.43 0.40 0.15 0.79 0.03 0.04 0.02 0.48 0.39 0.02 - 0.49 - - - - - 
1000 Cpx AVG 51.18 2.93 0.65 20.90 0.44 0.01 0.11 15.78 8.16 0.03 - 100.17 34 77.52 - - - 

- - +/- 0.61 0.37 0.19 0.72 0.05 0.01 0.04 0.44 0.58 0.04 - 0.65 - - - - - 
970 Cpx AVG 51.79 2.50 0.60 20.34 0.48 0.01 0.13 15.36 8.53 0.01 - 99.74 30 76.25 - - - 

- - +/- 0.36 0.23 0.11 0.75 0.07 0.01 0.02 0.36 0.41 0.01 - 0.47 - - - - - 
955 Cpx AVG 51.92 2.17 0.58 19.90 0.48 0.01 0.14 15.07 9.16 0.00 - 99.46 39 74.56 - - - 

- - +/- 0.38 0.26 0.15 0.62 0.05 0.01 0.05 0.47 0.54 0.12 - 0.44 - - - - - 
940 Cpx AVG 52.76 2.13 0.47 18.83 0.57 0.00 0.16 15.17 10.08 0.01 - 100.20 25 72.87 - - - 

- - +/- 0.55 0.49 0.13 0.85 0.09 0.06 0.02 0.52 0.89 0.01 - 0.51 - - - - - 
910 Cpx AVG 52.54 1.73 0.41 18.86 0.53 0.02 0.16 14.61 11.11 0.00 - 99.99 47 70.14 - - - 

- - +/- 0.78 0.40 0.17 1.38 0.06 0.02 0.03 0.57 0.95 0.05 - 0.75 - - - - - 
880 Cpx AVG 52.56 1.47 0.42 18.60 0.56 0.01 0.17 15.52 10.49 0.00 - 99.83 1 72.56 - - - 

- - +/- 0.74 0.31 0.12 1.55 0.09 0.03 0.04 0.70 1.17 0.05 - 0.94 - - - - - 
850 Cpx AVG 51.42 1.26 0.37 18.22 0.47 0.02 0.16 14.17 13.01 0.00 - 99.13 33 66.08 - - - 

- - +/- 0.49 0.39 0.11 1.67 0.12 0.02 0.04 0.64 1.39 0.09 - 0.99 - - - - - 
850 Cpx_reaction AVG 49.69 2.59 0.49 22.02 0.45 0.02 0.11 11.51 13.13 0.06 - 100.07 5 60.80 - - - 

- - +/- 1.47 0.47 0.13 1.32 0.19 0.01 0.03 1.49 1.62 0.10 - 0.23 - - - - - 
800 Cpx_reaction AVG 50.81 1.94 0.47 21.14 0.27 0.00 0.12 12.12 13.19 0.05 - 100.10 2 62.09 - - - 

- - +/- 0.02 0.03 0.00 0.22 0.01 0.00 0.01 0.05 0.09 0.01 - 0.24 - - - - - 
750 Cpx_reaction AVG 50.30 2.19 0.56 20.05 0.50 0.02 0.20 12.21 12.55 0.00 - 98.61 17 63.40 - - - 

- - +/- 0.94 0.76 0.44 1.81 0.17 0.03 0.12 0.88 0.86 0.09 - 0.74 - - - - - 

Annex page 140



Sample Phase AVG / 
+/- SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 P2O5 Total n Mg# An% T 

max 
T 

AVG

1000 Pl AVG 52.87 28.92 0.06 12.15 4.59 0.03 0.00 0.12 0.94 - - 99.69 19 - 59.38 - - 
- - +/- 0.46 0.36 0.03 0.31 0.18 0.01 0.04 0.06 0.13 - - 0.44 - - - - - 

970 Pl AVG 55.34 27.78 0.08 10.54 5.62 0.04 0.00 0.10 0.79 - - 100.31 27 - 50.92 - - 
- - +/- 0.60 0.47 0.05 0.40 0.29 0.01 0.01 0.12 0.24 - - 0.41 - - - - - 

955 Pl AVG 56.51 27.03 0.05 9.69 5.94 0.04 0.00 0.05 0.59 - - 99.96 28 - 47.43 - - 
- - +/- 0.37 0.24 0.01 0.28 0.19 0.01 0.03 0.01 0.07 - - 0.34 - - - - - 

940 Pl AVG 58.76 25.88 0.06 8.20 6.97 0.05 0.00 0.06 0.66 - - 100.66 24 - 39.37 - - 
- - +/- 0.59 0.35 0.03 0.45 0.22 0.04 0.01 0.06 0.12 - - 0.36 - - - - - 

910 Pl AVG 60.98 24.28 0.05 6.46 7.81 0.16 0.00 0.05 0.67 - - 100.48 26 - 31.41 - - 
- - +/- 0.88 0.40 0.03 0.49 0.56 0.03 0.01 0.05 0.26 - - 0.75 - - - - - 

880 Pl AVG 61.37 23.92 0.06 5.86 7.92 0.17 0.01 0.03 0.55 - - 99.91 17 - 29.10 - - 
- - +/- 0.80 0.43 0.03 0.49 0.56 0.02 0.02 0.01 0.09 - - 1.07 - - - - - 

850 Pl AVG 61.48 23.76 0.04 5.21 8.35 0.30 0.00 0.02 0.41 - - 99.62 24 - 25.66 - - 
- - +/- 0.78 0.44 0.02 0.53 0.31 0.03 0.03 0.02 0.09 - - 0.56 - - - - - 

800 Pl AVG 60.02 24.49 0.02 6.35 7.62 0.22 0.01 - 0.35 - - 99.12 21 - 31.54 - - 
- - +/- 0.92 0.53 0.01 0.34 0.22 0.02 0.03 - 0.07 - - 1.34 - - - - - 

750 Pl AVG 60.87 24.00 0.02 5.57 8.22 0.27 0.00 0.02 0.35 - - 99.35 36 - 27.22 - - 
- - +/- 1.36 0.77 0.01 0.96 0.48 0.05 0.04 0.05 0.12 - - 0.42 - - - - - 

1000 Plm AVG 47.99 30.55 0.27 15.74 2.09 0.05 0.01 0.53 2.61 - - 99.86 3 - 80.62 - - 
- - +/- 0.22 0.66 0.05 0.44 0.17 0.01 0.05 0.08 0.43 - - 0.86 - - - - - 

970 Plm AVG 51.16 29.45 0.20 13.73 3.32 0.06 0.01 0.32 1.76 - - 100.04 18 - 69.60 - - 
- - +/- 2.06 1.73 0.15 1.59 0.91 0.03 0.01 0.25 0.83 - - 0.79 - - - - - 

955 Plm AVG 50.27 29.98 0.12 14.14 3.11 0.04 0.00 0.18 1.38 - - 99.29 10 - 71.44 - - 
- - +/- 2.55 1.46 0.06 1.81 0.89 0.02 0.03 0.07 0.42 - - 0.59 - - - - - 

940 Plm AVG 55.64 27.50 0.10 11.01 5.22 0.07 0.00 0.14 0.99 - - 100.67 8 - 53.79 - - 
- - +/- 1.16 1.08 0.09 0.89 0.32 0.03 0.01 0.08 0.28 - - 0.79 - - - - - 

910 Plm AVG 58.54 24.93 0.07 7.58 6.56 0.17 0.02 0.08 0.98 0.04 - 98.96 3 - 39.02 - - 
- - +/- 0.50 0.41 0.03 0.26 0.40 0.06 0.00 0.03 0.52 0.05 - 0.72 - - - - - 

880 Plm AVG 60.74 24.50 0.07 6.79 6.60 0.21 0.03 0.06 0.71 0.01 - 99.13 2 - 36.23 - - 
- - +/- 0.89 0.27 0.02 0.32 1.28 0.04 0.01 0.02 0.09 0.01 - 0.76 - - - - - 

850 Plm AVG 52.79 28.06 0.03 12.57 4.56 0.11 - 0.31 1.41 0.08 - 99.94 2 - 60.53 - - 
- - +/- 2.34 1.55 0.01 1.47 1.05 0.03 0.01 0.17 0.42 0.01 - 0.16 - - - - - 

800 Plm AVG 58.48 25.82 0.02 7.97 7.00 0.17 0.02 0.04 0.48 0.01 - 100.03 11 - 38.62 - - 
- - +/- 0.93 0.52 0.01 0.68 0.31 0.01 0.01 0.09 0.19 0.06 - 0.68 - - - - - 

750 Plm AVG 49.43 28.54 0.04 14.32 3.34 0.09 0.01 0.8 1.24 0.02 - 97.88 11 - 70.35 - - 
- - +/- 2.65 4.00 0.05 1.96 1.13 0.03 0.02 1.36 1.24 0.10 - 0.87 - - - - - 
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Sample Phase AVG / 
+/- SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 P2O5 Total n Mg# An% T 

max 
T 

AVG

1000 TiMagt AVG 0.32 4.21 10.42 0.18 0.02 0.00 0.15 4.39 75.38 - - 95.08 25 - - - - 
- - +/- 0.57 0.13 0.95 0.27 0.05 0.01 0.05 0.22 0.84 - - 0.71 - - - - - 

970 TiMagt AVG 0.33 3.61 11.98 0.15 0.01 0.00 0.17 3.89 74.47 0.06 - 94.69 20 - - - - 
- - +/- 0.26 0.10 0.47 0.07 0.02 0.01 0.01 0.07 0.69 0.02 - 0.65 - - - - - 

955 TiMagt AVG 0.11 3.07 13.75 0.11 0.04 0.00 0.18 3.40 73.52 0.04 - 94.25 14 - - - - 
- - +/- 0.03 0.06 0.40 0.05 0.03 0.01 0.07 0.09 0.82 0.10 - 0.78 - - - - - 

940 TiMagt AVG 0.53 2.80 11.01 0.24 0.04 0.00 0.17 3.02 76.58 0.04 - 94.45 16 - - - - 
- - +/- 0.54 0.09 0.44 0.16 0.17 0.01 0.02 0.14 0.58 0.02 - 0.85 - - - - - 

910 TiMagt AVG 1.57 2.13 11.21 0.63 0.03 0.01 0.16 2.53 76.81 0.04 - 95.11 3 - - - - 
- - +/- 1.73 0.06 0.54 0.58 0.00 0.00 0.00 0.45 0.85 0.01 - 1.34 - - - - - 

880 TiMagt AVG 0.24 1.74 8.27 0.15 0.01 0.00 0.13 2.01 81.32 0.04 - 93.91 5 - - - - 
- - +/- 0.11 0.09 0.87 0.02 0.02 0.00 0.01 0.09 0.67 0.02 - 0.24 - - - - - 

850 TiMagt AVG 0.27 1.55 9.61 0.20 0.04 0.00 0.14 1.26 82.28 0.05 - 95.42 12 - - - - 
- - +/- 0.13 0.05 2.15 0.07 0.03 0.01 0.03 0.27 2.65 0.10 - 1.70 - - - - - 

800 TiMagt AVG 0.51 1.69 10.38 0.18 0.03 0.01 0.13 1.09 80.65 0.07 - 94.79 4 - - - - 
- - +/- 0.16 0.03 0.79 0.08 0.04 0.00 0.01 0.13 1.54 0.02 - 0.48 - - - - - 

750 TiMagt AVG 0.35 1.85 8.21 0.23 0.05 0.01 0.14 1.04 81.41 0.06 - 93.36 15 - - - - 
- - +/- 0.30 0.15 2.53 0.37 0.06 0.01 0.05 0.36 4.16 0.07 - 1.02 - - - - - 

955 Ilm AVG 0.62 0.37 45.13 0.45 0.05 0.01 0.21 4.85 45.93 0.00 - 97.65 7 - - - - 
- - +/- 0.68 0.04 0.80 0.35 0.02 0.01 0.02 0.19 0.67 0.08 - 0.55 - - - - - 

940 Ilm AVG 2.53 0.78 41.41 1.03 0.12 0.00 0.19 4.49 46.76 0.02 - 97.35 6 - - - - 
- - +/- 1.74 0.52 1.30 1.02 0.09 0.04 0.01 0.33 1.51 0.01 - 0.87 - - - - - 

910 Ilm AVG 1.78 0.69 43.22 0.46 0.42 0.02 0.18 3.61 47.60 0.00 - 98.00 3 - - - - 
- - +/- 2.17 0.61 1.68 0.27 0.57 0.02 0.02 0.04 1.55 0.01 - 0.44 - - - - - 

880 Ilm AVG 0.32 0.29 42.65 0.46 0.04 0.00 0.18 3.34 50.18 0.00 - 97.49 3 - - - - 
- - +/- 0.31 0.12 1.49 0.16 0.04 0.00 0.01 0.13 0.66 0.04 - 1.04 - - - - - 

850 Ilm  0.03 0.12 46.84 0.34 0.00 0.00 0.14 2.03 50.51 0.00 - 100.00 1 - - - - 
750 Ilm AVG 4.31 0.50 45.21 2.00 0.16 0.04 0.29 2.26 44.53 0.00 - 99.30 5 - - - - 

- - +/- 4.47 0.44 4.28 1.33 0.18 0.07 0.06 0.78 3.53 0.05 - 1.14 - - - - - 
940 Opx AVG 54.72 1.42 0.19 1.96 0.09 0.00 0.23 24.60 17.02 0.01 - 100.26 9 72.03 - - - 

- - +/- 0.42 0.25 0.06 0.28 0.04 0.02 0.01 0.30 0.24 0.02 - 0.52 - - - - - 
910 Opx AVG 53.74 0.99 0.19 1.71 0.07 0.01 0.25 23.38 19.24 0.00 - 99.60 18 68.41 - - - 

- - +/- 0.78 0.21 0.03 0.19 0.04 0.01 0.03 0.39 0.44 0.05 - 1.21 - - - - - 
880 Opx AVG 54.15 1.24 0.23 1.59 0.15 0.02 0.24 24.93 17.35 0.01 - 99.94 7 71.91 - - - 

- - +/- 0.78 0.43 0.06 0.28 0.11 0.06 0.04 0.76 0.64 0.05 - 1.22 - - - - - 
850 Opx AVG 51.82 0.76 0.23 1.96 0.10 0.01 0.27 21.27 22.16 0.01 - 98.62 9 63.11 - - - 

- - +/- 0.33 0.24 0.06 0.19 0.07 0.01 0.05 0.52 0.81 0.06 - 1.41 - - - - - 
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Sample Phase AVG / 
+/- SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 P2O5 Total n Mg# An% T 

max 
T 

AVG

800 Opx AVG 52.41 1.15 0.18 1.82 0.05 0.00 0.22 18.85 26.28 0.01 - 100.98 3 56.11 - - - 
- - +/- 0.41 0.45 0.04 0.28 0.04 0.00 0.02 0.30 0.86 0.01 - 0.26 - - - - - 

750 Opx AVG 51.37 1.14 0.17 1.52 0.10 0.01 0.25 19.30 24.26 0.03 - 98.16 16 58.60 - - - 
- - +/- 0.65 0.60 0.03 0.35 0.08 0.01 0.05 1.11 1.25 0.06 - 0.97 - - - - - 

940 Amp AVG 45.37 9.32 3.21 11.03 2.89 0.09 0.09 14.45 11.86 - - 98.31 27 74.52 - 1020 950 
- - +/- 1.56 1.11 0.62 0.54 0.42 0.04 0.02 0.44 0.38 - - 0.51 - - - - 60 

910 Amp AVG 50.18 5.18 1.03 11.40 1.54 0.09 0.14 14.46 12.76 - - 96.81 13 71.06 - 888 680 
- - +/- 2.16 2.44 0.64 0.92 0.61 0.04 0.04 0.65 0.90 - - 1.21 - - - - 106 

880 Amp AVG 52.23 3.78 0.57 11.37 1.12 0.07 0.17 15.08 13.17 - - 97.59 9 71.20 - 820 600 
- - +/- 1.35 0.94 0.47 0.64 0.30 0.04 0.03 0.79 1.36 - - 1.20 - - - - 80 

850 Amp AVG 51.90 3.31 0.37 10.98 1.04 0.06 0.17 14.49 14.43 - - 96.78 25 66.95 - 620 558 
- - +/- 0.55 2.22 0.10 1.56 0.43 0.02 0.03 0.73 0.98 - - 0.91 - - - - 20 

800 Amp AVG 52.13 3.61 0.55 11.52 1.18 0.06 0.17 14.11 15.55 - - 98.89 23 66.33 - 810 590 
- - +/- 1.87 1.82 0.42 0.53 0.51 0.03 0.05 0.49 0.67 - - 0.83 - - - - 75 

750 Amp AVG 50.71 3.87 0.47 10.98 1.26 0.14 0.16 13.76 15.06 - - 96.45 53 64.97 - 910 580 
- - +/- 1.46 2.70 0.37 1.98 0.43 0.28 0.06 1.07 1.57 - - 0.71 - - - - 60 

800 “Dry prehnite” AVG 45.50 25.39 - 26.76 0.36 0.01 0.08 - 0.91 - - 99.01 1 - - - - 
750 “Dry prehnite” AVG 45.65 25.77 0.01 26.68 0.48 0.02 0.02 0.00 0.86 - - 99.49 5 - - - - 

  +/- 0.11 0.20 0.01 0.46 0.08 0.00 0.04 0.01 0.08 - - 0.49 - - - - - 

 
Composition of the experimental phases and of the starting material minerals. In the sample name column, numbers correspond to the 
experimental temperature. Compositional values are averages, the detailed compositions of all experiments with and without water addition are 
provided as supplementary material. Abbreviations are the same as Table 2 and: Start. Mat.=starting material, Tmax=maximum temperature 
calculated with Ernst and Liu (1998), TAVG=average temperature calculated with Ernst and Liu (1998), Mg#=Mg/(Mg+Fetotal) (molar basis), 
An%=Ca/(Ca+Na+K) (molar basis), AVG=average, n=number of analyses, ±=standard deviations, melt_recalc.=melt composition recalculated 
for a sum=100%, Cpx_reaction=Ca-Al-rich clinopyroxene observed in the coronitic assemblages (see “prehnite break-down reaction” part for 
more details).  
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Annex B3: Trace element composition of experimental melts, and of natural samples from the Oman ophiolite. Sample name format for 
experimental products is: [run]-[analyzed point]_[temperature]; AVG: average; +/- is the standard deviation for a given experiment; 08OL30: 
starting material; SDC: sheeted dike complex; coarse: coarser grained SDC; fine: finer grained SDC; PG: plagiogranite. 
 

sample Ti Zr Nb Ba La Ce Nd Sm Eu Tb Gd Dy Er Yb Lu Hf Th U Sc V Sr Y 
10-01_1030 8392.38 70.13 2.01 9.05 3.01 8.84 7.65 2.72 0.85 0.71 4.07 4.26 2.89 2.89 0.46 2.31 0.19 0.11 41.56 374.99 100.89 26.72 
10-02_1030 8344.32 69.64 1.89 9.08 2.96 8.58 7.72 2.45 0.93 0.66 3.74 4.62 2.96 2.93 0.42 2.54 0.19 0.09 39.93 373.68 99.32 27.37 
10-03_1030 8366.52 72.24 2.03 9.06 2.87 8.68 8.23 2.38 0.94 0.67 3.56 4.41 2.70 2.64 0.47 2.39 0.22 0.09 41.53 369.28 97.79 26.79 

10_1030-AVG 8367.74 70.67 1.97 9.06 2.95 8.70 7.87 2.52 0.91 0.68 3.79 4.43 2.85 2.82 0.45 2.41 0.20 0.10 41.01 372.65 99.33 26.96 
10_1030_+/- 19.64 1.13 0.06 0.01 0.06 0.10 0.26 0.15 0.04 0.02 0.21 0.15 0.11 0.13 0.02 0.10 0.01 0.01 0.76 2.44 1.27 0.29 
12-01_1030 8032.67 70.45 2.06 8.34 2.93 8.50 7.41 2.58 0.86 0.62 3.59 4.27 2.84 2.92 0.44 2.44 0.19 0.13 37.95 389.05 99.01 26.38 
12-02_1030 7922.54 69.96 2.11 9.68 2.91 8.31 7.81 2.58 0.87 0.65 3.67 4.24 2.76 2.91 0.42 2.32 0.17 0.12 41.05 350.97 97.81 24.62 
12-03_1030 7886.61 72.42 2.03 9.51 2.91 8.30 7.39 2.32 0.88 0.63 3.67 4.35 2.83 2.54 0.45 2.63 0.20 0.12 38.47 376.99 102.60 26.75 

12_1030-AVG 7947.28 70.94 2.07 9.18 2.92 8.37 7.54 2.49 0.87 0.63 3.64 4.29 2.81 2.79 0.44 2.47 0.19 0.12 39.16 372.34 99.80 25.92 
12_1030_+/- 62.14 1.07 0.03 0.60 0.01 0.09 0.20 0.13 0.01 0.01 0.04 0.05 0.03 0.18 0.01 0.13 0.02 0.01 1.36 15.89 2.04 0.93 
C-01_1000 7538.50 94.03 3.92 13.65 4.48 12.70 10.71 3.36 1.17 0.82 5.03 5.53 3.53 3.34 0.51 3.26 0.29 0.13 34.21 226.45 98.62 34.13 
C-02_1000 7642.16 95.17 3.25 12.69 3.96 11.79 9.45 3.39 1.15 0.84 4.81 5.23 3.26 3.40 0.52 3.29 0.28 0.18 29.25 235.25 97.62 33.64 
C-03_1000 7584.36 98.31 2.62 12.29 3.89 11.22 9.61 3.29 1.08 0.79 4.54 5.19 3.46 3.46 0.54 3.48 0.27 0.18 32.30 220.85 95.70 31.46 

C_1000-AVG 7588.34 95.83 3.26 12.88 4.11 11.91 9.92 3.34 1.13 0.81 4.79 5.32 3.42 3.40 0.53 3.34 0.28 0.16 31.92 227.52 97.31 33.08 
C_1000_+/- 42.41 1.81 0.53 0.57 0.26 0.61 0.56 0.04 0.04 0.02 0.20 0.15 0.11 0.05 0.01 0.10 0.01 0.02 2.04 5.93 1.21 1.16 
B-01_1000 6850.56 89.93 2.88 12.62 3.51 10.51 9.25 3.22 1.05 0.71 4.19 4.56 3.06 3.19 0.49 3.35 0.26 0.14 29.60 228.97 97.60 30.23 
B-02_1000 7025.84 84.02 3.99 13.26 3.49 9.99 8.36 2.84 0.93 0.68 4.17 4.30 3.07 3.26 0.53 3.13 0.23 0.14 33.76 217.23 93.53 26.29 
B-03_1000 7006.44 88.98 3.22 12.23 3.45 10.04 7.91 2.79 0.87 0.74 4.01 5.02 3.23 3.18 0.49 3.04 0.25 0.13 29.60 223.23 96.86 29.40 

B_1000-AVG 6960.95 87.64 3.36 12.70 3.48 10.18 8.51 2.95 0.95 0.71 4.13 4.63 3.12 3.21 0.50 3.17 0.25 0.14 30.99 223.14 96.00 28.64 
B_1000_+/- 78.45 2.59 0.46 0.43 0.03 0.23 0.56 0.19 0.07 0.02 0.08 0.30 0.08 0.04 0.02 0.13 0.01 0.00 1.96 4.79 1.77 1.69 
13-01_970 6100.81 121.44 3.45 18.42 5.01 14.30 12.19 3.61 1.08 0.91 5.31 5.61 3.97 4.04 0.65 3.96 0.43 0.26 30.37 121.49 74.12 34.37 
13-02_970 6095.83 122.94 3.50 17.88 5.12 14.02 11.98 3.61 1.02 0.95 5.35 5.72 3.92 4.10 0.60 3.94 0.38 0.24 27.37 137.55 78.67 38.33 

13_970-AVG 6098.32 122.19 3.48 18.15 5.06 14.16 12.09 3.61 1.05 0.93 5.33 5.66 3.94 4.07 0.62 3.95 0.41 0.25 28.87 129.52 76.39 36.35 
13_970_+/- 2.49 0.75 0.03 0.27 0.06 0.14 0.11 0.00 0.03 0.02 0.02 0.06 0.02 0.03 0.02 0.01 0.03 0.01 1.50 8.03 2.27 1.98 
14-01_970 6343.26 115.54 3.79 15.06 5.03 14.67 12.63 3.65 1.11 0.88 5.69 5.82 4.08 3.80 0.60 3.81 0.32 0.21 32.04 136.64 78.10 33.84 
14-02_970 6228.12 123.50 3.62 15.71 4.94 14.44 11.95 3.99 1.11 0.97 5.19 5.90 3.68 3.88 0.61 4.39 0.36 0.21 26.45 147.61 78.54 38.67 

14_970-AVG 6285.69 119.52 3.71 15.39 4.99 14.55 12.29 3.82 1.11 0.93 5.44 5.86 3.88 3.84 0.60 4.10 0.34 0.21 29.24 142.12 78.32 36.26 
14_970_+/- 57.57 3.98 0.08 0.33 0.05 0.11 0.34 0.17 0.00 0.05 0.25 0.04 0.20 0.04 0.01 0.29 0.02 0.00 2.79 5.49 0.22 2.41 
23-01_955 4713.45 131.64 3.77 18.25 5.77 16.45 13.14 3.82 1.10 0.93 4.47 5.63 4.35 4.35 0.59 4.38 0.37 0.23 30.49 102.78 72.01 47.48 
23-03_955 5402.62 148.45 4.20 19.56 6.61 19.10 15.46 4.63 1.21 1.13 5.49 6.53 4.46 4.72 0.71 5.56 0.51 0.27 27.36 79.50 68.13 43.22 

23_955-AVG 5058.04 140.04 3.98 18.91 6.19 17.78 14.30 4.22 1.16 1.03 4.98 6.08 4.40 4.54 0.65 4.97 0.44 0.25 28.93 91.14 70.07 45.35 
23_955_+/- 344.59 8.40 0.21 0.66 0.42 1.33 1.16 0.40 0.05 0.10 0.51 0.45 0.06 0.19 0.06 0.59 0.07 0.02 1.57 11.64 1.94 2.13 
25-01_955 5258.30 155.88 4.17 18.82 6.49 18.50 13.66 4.30 1.11 1.04 6.37 6.56 4.55 4.79 0.71 5.49 0.49 0.32 3.69 97.55 80.90 43.55 
25-02_955 5479.43 141.83 5.33 19.90 6.50 18.81 15.45 4.48 1.23 0.94 6.16 6.69 4.48 4.30 0.71 5.15 0.52 0.31 27.36 96.55 70.04 39.52 
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sample Ti Zr Nb Ba La Ce Nd Sm Eu Tb Gd Dy Er Yb Lu Hf Th U Sc V Sr Y 
25-03_955 5540.13 136.10 5.09 17.89 6.19 18.53 14.13 3.97 1.15 1.05 5.71 6.42 4.26 4.57 0.74 5.06 0.40 0.25 23.41 104.78 68.46 43.38 
25-04_955 5183.15 130.26 4.62 18.58 6.21 17.58 14.34 4.65 1.10 1.12 6.15 6.81 4.92 4.34 0.62 4.52 0.39 0.27 70.61 182.56 54.41 66.84 

25_955-AVG 5365.25 141.02 4.80 18.80 6.35 18.35 14.40 4.35 1.15 1.03 6.10 6.62 4.55 4.50 0.69 5.05 0.45 0.29 31.27 120.36 68.45 48.32 
25_955_+/- 148.51 9.50 0.45 0.72 0.15 0.46 0.66 0.25 0.05 0.06 0.24 0.15 0.24 0.20 0.05 0.35 0.05 0.03 24.42 36.05 9.42 10.81 
08OL30 8872.59 69.00 2.00 18.00 2.90 8.10 7.60 2.40 1.08 0.70 3.40 4.60 2.80 2.50 0.39 2.10 0.30 0.10 29.00 396.00 120.00 23.00 

residue-955_60 11313.22 21.31 0.41 17.43 0.65 1.46 3.10 1.14 1.03 0.48 1.97 3.43 1.68 1.15 0.20 0.16 0.20 0 28.27 589.50 153.83 7.11 
granoblastic 

dike_95OC42 7479.37 7.55 0.42 53.43 0.42 1.30 1.96 0.97 0.76 0.38 1.69 2.61 1.51 1.50 0.23 - 0.04 0.02 - 306.24 148.56 12.01 

granoblastic 
dike_95OC43 5275.59 6.21 0.19 100.5

9 0.33 1.10 1.77 0.91 0.78 0.33 1.58 2.35 1.45 1.27 0.19 - 0.00 - - 262.48 150.69 10.92 

granoblastic 
xenolith_95OG2

7 
1829.38 20.44 1.10 17.81 0.43 1.36 1.56 0.61 0.34 0.18 1.00 1.23 0.79 0.73 0.12 - 0.02 - - 140.63 103.52 7.51 

granoblastic 
dike_97OC25 4583.89 15.47 0.44 26.14 0.69 2.35 3.47 1.55 0.93 0.55 2.40 3.81 2.17 2.08 0.31 - 0.04 0.02 - 254.83 154.43 17.33 

granoblastic 
dike_97OC29 6779.07 18.48 0.67 315.3

4 0.95 3.07 4.22 1.95 1.39 0.64 2.93 4.47 2.70 2.57 0.38 - 0.02 0.02 - 248.85 185.15 21.09 

AVG_ 
granoblastic 

rocks 
5167.92 13.63 0.56 102.6

6 0.57 1.83 2.60 1.20 0.84 0.42 1.92 2.89 1.72 1.63 0.25 - 0.02 0.02 - 242.61 148.47 13.77 

SDC_99OC215 12126.14 52.63 3.00 73.63 3.18 9.55 9.66 3.49 1.30 0.89 4.68 5.86 3.91 3.69 0.55 1.52 0.15 0.04 - 554.33 152.96 37.42 
SDC_01OC14 6938.39 50.62 1.70 152.8 3.79 9.06 7.26 2.51 1.05 0.62 3.23 4.10 2.70 2.52 0.38 1.31 0.24 0.08 - 333.36 132.55 26.54 
SDC_01OC18 5290.36 53.99 1.84 65.80 2.34 6.39 5.97 2.12 0.83 0.54 2.82 3.62 2.40 2.26 0.34 1.43 0.21 0.05 - 243.10 110.17 23.22 

SDC (N-
S)_01OC19 11061.66 128.71 4.25 57.81 5.70 15.31 12.97 4.14 1.40 1.01 5.37 6.63 4.46 4.34 0.66 3.16 0.50 0.20 - 412.16 137.97 43.28 

SDC_01OC20 10850.04 96.75 3.54 26.22 5.29 14.33 12.24 3.96 1.43 0.91 4.93 6.04 3.99 3.82 0.57 2.41 0.44 0.15 - 426.65 116.48 39.31 
SDC 

(coarse)_01OC
21 

8414.91 50.89 2.57 44.03 3.23 8.93 8.14 2.79 1.05 0.71 3.71 4.69 3.15 2.96 0.45 1.48 0.34 0.09 - 456.03 120.79 30.57 

SDC 
(fine)_01OC22 12902.42 94.78 3.96 59.46 3.92 12.14 11.51 3.93 1.40 0.95 5.03 6.25 4.22 4.00 0.61 2.44 0.36 0.13 - 600.03 109.41 40.58 

SDC_01OC24 12421.38 116.33 3.72 34.47 5.77 15.91 13.77 4.63 1.58 1.11 5.77 7.23 4.84 4.62 0.70 2.91 0.48 0.21 - 541.17 113.56 47.75 
AVG Abyad 

SDC 10000.66 80.59 3.07 64.28 4.15 11.45 10.19 3.45 1.26 0.84 4.44 5.55 3.71 3.53 0.53 2.08 0.34 0.12 - 445.85 124.24 36.08 

PG intruding 
SDC_97OC68 3991.80 762.56 4.18 5.65 11.1

2 31.54 25.86 7.45 1.66 1.93 10.78 12.47 7.57 7.47 0.99 - 0.54 0.07 - 21.71 56.91 74.76 
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Annex B4: Mineral compositions (weight %) of samples 07OL34 and 07OL36 from the Rajmi area of the Oman ophiolite. 
 

 mineral Comment SiO2 Al2O3 TiO2 CaO Na2O K2O MnO MgO FeO Cr2O3 NiO Total n Mg# An% 

07OL34                  
AVG Cpx bright on BSE images 53.66 0.74 0.14 24.51 0.20 0.00 0.18 15.67 5.54 0.04 0.00 100.69 42 83 - 

+/- Cpx  0.78 0.35 0.09 0.80 0.08 0.00 0.07 0.83 1.38 0.05 0.00 0.68 - 4 - 
AVG Cpx dark on BSE images 54.34 0.85 0.10 25.14 0.16 0.00 0.07 16.82 2.71 0.03 0.02 100.24 50 92 - 

+/- Cpx  0.68 0.66 0.13 0.39 0.08 0.00 0.04 0.52 0.61 0.04 0.01 0.70 - 2 - 
AVG Pl An_max=99 44.08 35.79 0.00 19.51 0.50 0.00 0.01 0.01 0.06 0.01 0.01 99.98 32 - 96 

+/- Pl  1.47 0.93 0.01 1.15 0.71 0.00 0.01 0.02 0.03 0.02 0.01 0.43 - - 6 
AVG Amp T max=841°C 50.89 5.42 0.78 12.67 0.87 0.03 0.12 17.77 8.91 0.19 0.00 97.66 37 84 - 

+/- Amp  2.88 2.33 0.55 0.33 0.48 0.04 0.03 1.39 1.03 0.17 0.00 0.58 - 2 - 

                  
07OL36                  

AVG Cpx “magmatic” 52.28 1.93 0.39 22.02 0.29 0.00 0.19 14.79 7.86 0.24 0.02 100.00 26 77 - 
+/- Cpx “magmatic” 0.41 0.19 0.10 0.38 0.02 0.00 0.03 0.33 0.35 0.05 0.01 0.34 - 1 - 

AVG Cpx “recrystallized” 53.24 0.86 0.19 23.13 0.20 0.00 0.20 15.01 7.36 0.10 0.01 100.28 34 78 - 
+/- Cpx “recrystallized” 0.45 0.31 0.09 0.82 0.06 0.00 0.03 0.36 0.42 0.05 0.01 0.31 - 1 - 

AVG Cpx margins of 
“recrystallized” 51.90 1.84 0.45 22.15 0.27 0.00 0.17 15.09 7.99 0.16 - 100.01 4 77 - 

+/- Cpx margins of “recrystallized” 0.17 0.26 0.06 0.24 0.02 0.00 0.03 0.15 0.16 0.06 - 0.22 - 0 - 
AVG Opx  54.39 1.20 0.13 1.14 0.01 0.00 0.35 24.63 18.50 0.11 0.02 100.49 19 70 - 

+/- Opx  0.43 0.22 0.06 0.37 0.01 0.00 0.04 0.82 1.19 0.02 0.01 0.31 - 2 - 
AVG Pl An_max=93 45.93 34.09 0.01 17.95 1.36 0.03 0.01 0.01 0.39 0.01 0.00 99.79 39 - 88 

+/- Pl  0.80 0.70 0.01 0.61 0.35 0.02 0.01 0.01 0.07 0.02 0.01 0.50 - - 3 
AVG Amp T max=780°C 52.10 4.39 0.76 11.66 0.70 0.09 0.18 17.56 10.12 0.20 0.02 97.79 42 79 - 

+/- Amp  2.96 2.37 0.55 1.01 0.45 0.07 0.11 1.70 1.87 0.12 0.02 0.40 - 4 - 
AVG Magt  1.31 0.20 0.35 0.78 0.02 0.00 0.19 0.39 83.26 3.80 - 90.30 15 - - 

+/- Magt  2.71 0.18 0.25 0.75 0.02 0.01 0.11 0.79 3.36 1.72 - 2.14 - - - 
AVG Ilm  0.19 0.02 51.13 0.71 0.01 0.00 2.50 0.20 43.85 0.13 - 98.74 6 - - 

+/- Ilm  0.10 0.01 0.89 0.19 0.01 0.01 0.97 0.11 1.13 0.07 - 0.87 - - - 
AVG Qz  99.70 0.03 0.04 0.02 0.01 0.00 0.01 0.00 0.03 0.03 - 99.88 23 - - 

+/- Qz  0.21 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.06 0.04 - 0.21 - - - 

Abbreviations are: n=number of analyses; Mg#=Mg/(Mg+Fe) in moles; An%=Ca/(Ca+Na+K) in moles; -=not analyzed or below detection limit; 
Cpx=clinopyroxene; Pl=plagioclase; Ilm=ilmenite; Amp=amphibole; Opx=orthopyroxene; magt=magnetite; Qz=quartz. 
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CMAS 3D, a new program to visualize and project major elements
compositions in the CMAS system$
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a b s t r a c t

CMAS 3D, developed in MATLABs, is a program to support visualization of major

element chemical data in three dimensions. Such projections are used to discuss

correlations, metamorphic reactions and the chemical evolution of rocks, melts or

minerals. It can also project data into 2D plots. The CMAS 3D interface makes it easy to

use, and does not require any knowledge of Matlabs programming. CMAS 3D uses data

compiled in a Microsoft ExcelTM spreadsheet. Although useful for scientific research, the

program is also a powerful tool for teaching.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Major element chemical data of rocks and minerals are
of great use in the study of the origins and evolution of
magmatic and metamorphic rocks. Petrologists mostly
use binary plots to evaluate correlation between chemical
elements or oxides, but some reduced systems have been
developed to take into account more than 2 elements in
the same diagram. For example some software packages
such as MinPet (Richard, 1997), IgPet (Carr, 1995), NewPet
(Clarke, 1993), Petrograph (Petrelli, 2003) or GeoPlot
(Zhou and Li, 2006) have been developed for better data
visualization and interpretation. Smith and Beermann

(2006) proposed to use multivector diagrams to represent
up to nine components. O’Hara (1968) introduced the use
of the CaO–MgO–Al2O3–SiO2 (CMAS) system allowing
representation of 13 oxides in a 4D representation. This
pseudo-quaternary projection has been largely used as it
is the simplest way to represent the major element
composition of mafic and ultramafic rocks (Garrido and
Bodinier, 1999), as well as the main crustal and mantle
minerals (Kornprobst, 1970; Kornprobst and Conquéré,
1972) or extraterrestrial objects (Grossman and Fedkin,
2003; Grossman et al., 2002; Yoneda and Grossman, 1995)
and serves as a good model for dry basaltic melts (Schiano
et al., 2000, 2004). It is also largely used in experimental
petrology (Hirschmann et al., 2003; Kogiso et al., 2003,
2004).

Here we present CMAS 3D, a program written in
MATLAB 6.5s. It converts oxide data to CMAS coordinates
and allows visualization of these data in three dimensions,
and projects the data onto 2D plots. Using CMAS 3D does
not require MATLAB programming expertise. It reads data
from a Microsoft ExcelTM spreadsheet. The visualization
uses the virtual reality modeling language (VRML) allow-
ing the rotation of the CMAS tetrahedron in all directions
in order to evaluate different correlations and reactions.
CMAS 3D also permits the addition of lines or planes

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences
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$ Code available from server at http://www.iamg.org/CGEditor/

index.htm.
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Petrological and Geochemical Study of Late-Orogenic 

Mantle Garnet Pyroxenites. Implications on Magmatism 

in Old Orogenic Regions. 

                          To be submitted to Journal of Petrology  
FRANCE Lydéric1,2*, CHAZOT Gilles3,4 , KORNPROBST Jacques5, DALLAI 

Luigi6, VANNUCCI Riccardo7, TEMDJIM Robert8. 

 
Abstract 

Pyroxenites are mantle heterogeneities which could represent recycling of oceanic 

crust in mantle domains or mantle cumulates. Uncommon petrological and geochemical 

(major and trace elements, Sr-Nd and O isotopes) data of xenolith samples coming from 

various localities (French Massif-Central, Jordan, Morocco and Cameroon) show that they 

represent crystallized melts. They formed in the mantle domains at pressures of 1-2 GPa 

during post-collisional magmatism that follows orogenic events (Hercynian for the French 

Massif-Central and Morocco, and Panafrican for the others). Most of the samples display 

metasomatic overprint that is probably linked to the recent volcanism episodes of the different 

studied regions. The thermal reequilibration of lithospheric domains, typical of the late stage 

of exhumations, is also recorded by the samples. 

The pyroxenites crystallization during late orogenic events has implications on the 

subsequent evolution of the mantle domains. The presence of large amounts of mantle 

pyroxenites in old orogenic regions indeed confers physical and chemical particularities to 

these domains. Among others, global solidus temperature of the whole lithospheric domain 

will be lowered; it follows that old orogenic regions are refertilized zones where the magmatic 

activity would be enhanced. 
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Goldschmidt Conference Abstracts 2007  A112

Weathering over a large range of 
erosion solid products: Insights from 

Amazon river depth-samplings 
J. BOUCHEZ1, J. GAILLARDET1, C. FRANCE-LANORD2,

V. GALY2 AND L. MAURICE-BOURGOIN3

1IPGP, 4, Place Jussieu, 75252 Paris cedex 05, France 
(bouchez@ipgp.jussieu.fr) 

2CRPG, BP 20, 54501 Vandoeuvre les Nancy, France 
3LMTG, 14 Avenue Edouard Belin, 31400 Toulouse, France 

Continental erosion processes produce dissolved material 
plus sediments. The latter are heterogeneous in terms of 
mineralogy, grain size, chemical composition and weathering 
intensity. Within large rivers, these particles are vertically 
sorted during their transport to the oceans, following their 
physical properties and stream hydrodynamics. 

In order to take in account this internal variability, we 
sampled the Amazon along depth profiles, and carried out 
granulometric and chemical analysis of suspended sediments 
as well as bedload. 

The vertical profiles of suspended sediments concentration 
increase exponentially downward, and can be explained by a 
simple sedimentary transport model, based on an equilibrium 
between sedimentation velocity and bedload turbulent 
diffusivity. This model allows depth-integrated estimates of 
Amazon suspended matter fluxes (total and elemental) to the 
oceans. 

Major elements composition, along with microscopic and 
mineralogic analysis, shows a rather strong evolution from 
clay-dominated sediments near the surface towards quartz and 
other silicon-rich minerals downward. 

The weathering indexes of Na, K and Ca (as defined by 
Gaillardet et al (1999)) in the sediments of the Solimoes river, 
show respectively a three-fold, two-fold and two-fold increase 
from the bottom to the surface. In Madeira surface sediments, 
the apparent depletion in soluble elements is amplified by a 
factor of two by the granulometric sortingwith respect to the 
integrated weathering index. 

The results obtained on the Amazon system are compared 
with those from the Ganga-Brahmaputra system (Galy et al,
submitted) and are interpreted in terms of weathering/erosion 
intensities, bedrock lithology and rivers hydrodynamics.  

References 
Gaillardet J., Dupré B., and Allègre C.J. (1999) Geochemistry 

of large rivers suspended sediments : silicate weathering 
or recycling tracers? Geochim. Cosmochim. Acta
63(23/24), 4037-4051 

Root zone of sheeted dike complex in 
Oman ophiolite-petrological model 

F. BOUDIER1, J. KOEPKE2, L. FRANCE1 AND C. MEVEL3

1Univ. Montpellier II, France (boudier@gm.univ-montp2.fr) 
2Institut fuer Mineralogie der Universitaet Hannover, 

Germany (koepke@mineralogie.uni-hannover.de) 
3IPGP, Paris (mevel@ipgp.jussieu.fr) 

Recently, IODP (Integrated Ocean Drilling Program) has 
penetrated in the eastern Pacific Ocean (Hole 1256D) the root 
zone of the sheeted dike complex (RZSDC). In Oman 
ophiolites, it is a well exposed horizon ~100m thick between 
the main gabbro unit and above, the crustal lid (sheeted dikes 
and lavas). To compare with the IODP hole, a new petro-
structural study was conducted in Oman. We explain this 
complex zone by interference between the magmatic system 
of the melt lens present in fast spreading ridges, and a 
hydrothermal system operating at very high temperatures 
penetrating down to the roof of this lens where it induces 
successive stages of hydrous anatexis. This results in a crude 
stratigraphy throughout the RZSDC with doleritic isotropic 
gabbros evolving upwards in vari-textured, pegmatitic gabbros 
and trondjhemite intrusions. New melt intrusions from the 
melt lens proceed through basaltic ‘protodikes’ which are, in 
the RZSDC, a relay to the overlying sheeted dikes. Injected in 
gabbros still at solidus temperature, protodikes develop 
against these gabbros a typical microgranular margin. The 
following phase diagram constructed for pressure 50MPa, 
issued from Feig et al., 2006 allows to follow the sequence of 
formation of the successive magmatic facies described in the 
RZSDC.

References 
Feig, S., Koepke, J., Snow, J., 2006. Contrib. Mineral. Petrol.

152, 611-638 
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Geophysical Research Abstracts,
Vol. 10, EGU2008-A-00000, 2008
EGU General Assembly 2008
© Author(s) 2008

Processes governing the magmatic-hydrothermal
interface at the sheeted dike complex-gabbro
transition: From the comparison between the IODP
Hole 1256D and the Oman ophiolite to a general
model?
L. France (1), B. Ildefonse(1), J. Koepke(2)
(1) Université Montpellier 2/ CNRS, France, (2) Institut fuer Mineralogie, Universitaet
Hannover, Germany, (lyderic.france@gm.univ-montp2.fr / Fax: +334 67 14 36 03 / Phone:
+334 67 14 39 44)

The Integrated Ocean Drilling Program (IODP) has recently cored the root zone of
the sheeted dike complex in the eastern Pacific Ocean (IODP Hole 1256D). In the
Oman ophiolite, this zone is a well exposed horizon,∼100m thick, between the main
gabbro unit and the basaltic (sheeted dikes and lavas) upper crustal lid. To compare
with recent observations in IODP Hole 1256D, we have performed detailed map-
ping and petrological analysis in various areas in the Oman ophiolite. The complex
lithologies of the transition zone between sheeted dikes and gabbros most probably
results from vertical movements of the magma lens, which in turn allow the hy-
drothermal system to move up and down. Ascent of the melt lens seems to be ac-
companied by reheating and assimilation of the root zone lithologies, as observed in
the studied areas. This reheating lead to dehydration metamorphic reactions (such as
Hornblende=>Clinopyroxene+Orthopyroxene+Plagioclase+H2O) and to dehydration
melting processes (this latter being linked to hydrous partial melting). These reactions
mark the transition from green-schist/amphibolite facies to dry and wet granulitic fa-
cies, respectively, probably depending on the kinetics of reheating. Dehydration reac-
tions also occur in stopped dike fragments that are observed in the underlying gabbros,
and allow the introduction of water in the melt lens.
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A new method to constrain the oxidation state of
basaltic series from microprobe analysis.
L. France (1), B. Ildefonse (1), J. Koepke (2), C. Cordier (1), F. Bech (3).
(1) Université Montpellier 2/ CNRS, France, (2) Institut fuer Mineralogie, Universitaet
Hannover, Germany, (3) Université de Clermont-Ferrand/ CNRS, France,
(lyderic.france@gm.univ-montp2.fr / Fax: +334 67 14 36 03 / Phone: +334 67 14 39 44)

The oxygen fugacity (fO2) of basaltic magmas is a critical controlling parameter of
magmatic processes. It controls the iron redox state of the melt, and it strongly in-
fluences the crystallisation sequences and the composition of minerals crystallising.
We propose a new simple method for constraining fO2 of parental magmas of ig-
neous rocks. It uses FeOtot electronic microprobe analysis in clinopyroxene (Cpx)
and plagioclase (Pl). The results do not depend on stoechiometric calculations. The
method is based on the difference between the exchange coefficients:KD

Cpx−melt
Fe2O3/FeO

andKD
Pl−melt
Fe2O3/FeO. These coefficients are equivalent to the ratio of the partition co-

efficient of Fe2O3 and FeO between Cpx and melt and between Pl and melt, respec-
tively: KPl−melt

D (Fe2O3/FeO) = DFe3+
Pl−melt/D

Fe2+
Pl−melt. Using published partition

coefficients, these KD are around 0.5 and 20 for Cpx and Pl, respectively. These val-
ues show that increasing oxidation of a melt results in a decreasing of FeOtot in Cpx
and an increasing of FeOtot in Pl. We propose an equation, based on these partition
coefficients, that allows calculating the redox conditions of a partly molten system
expressed in∆FMQ values (FMQ = oxygen fugacity corresponding to the fayalite-
magnetite-quartz oxygen buffer), by the input of analysed FeOtot in Cpx and Pl, and
an estimation of the pressure, temperature and melt composition. Error propagation
reveals the limits of the model. An application to literature data attests the validity of
the proposed model.
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Petrological and geochemical study of late-orogenic
mantle garnet pyroxenites. Implications on magmatism
in old orogenic regions.
L. FRANCE (1), G. CHAZOT (2), J. KORNPROBST (3), L. DALLAI (4), R.
VANNUCCI (5), C. BOSQ (3).
(1) Université de Montpellier 2/ CNRS, Montpellier, France, (2) Université de Bretagne
Occidentale/ CNRS, Plouzané, France, (3) Université de Clermont-Ferrand II/ CNRS,
Clermont-Ferrand, France, (4) CNR-IGG, Pisa, Italia, (5) Università degli Studi di Pavia/ CNR,
Italia, (lyderic.france@gm.univ-montp2.fr / Fax: +334 67 14 36 03 / Phone: +334 67 14 39 44)

The petrological and geochemical study of garnet bearing pyroxenites from four local-
ities (FMC, Morocco, Jordan, Cameroon) demonstrates that these rocks are cumulates
crystallised in the lithospheric mantle domain. Metamorphic reactions, exsolutions
and trace elements WR analysis demonstrate that their crystallisation pressure ranges
between 1 and 2GPa (30 to 60km). The elaboration of the PTt paths for the studied
samples attests of important movements in the respective lithospheres. Replaced in
the geodynamical contexts, the samples are interpreted to represent the crystallisation
of melts formed during exhumation of orogenic domains. Radiogenic isotopes (Sr-
Nd) show that in a very same region, the samples are isotopicaly heterogeneous but
are similar to the respective regional lithosphere. Initial isotopic ratios lead to propose
that the FMC samples have crystallised at the end of the Hercynian orogen and that the
samples from the other localities (Morocco, Jordan and Cameroon) have crystallised
at the end of the Pan-African orogen. After recalculation at the crystallisation time, the
isotopic compositions are in good agreement with the respective regional lithosphere
ones and so samples of this study could represent the product of the melting of these
lithospheres. The analyses of oxygen stable isotopes allow to precise the model; they
show that twelve of the samples come from the melting of a lherzolitic mantle and that
the four others come from the melting of a heterogeneous mantle formed of lherzolites
and eclogites. The presence of some hydrous minerals such as amphiboles and micas
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and the trace elements WR analyses show that some of the samples were affected by
a late metasomatic event.

Results of our study show that thermal relaxation following orogenic events lead to the
crystallisation of pyroxenites in the lithosphere. The presence of lage amounts of man-
tle pyroxenites in old orogenic regions confers physical and chemical particularities
to these domains. Among others, global solidus temperature of the whole lithospheric
domain will be lowered; it follows that old orogenic regions such as FMC, Morocco,
Jordan and Cameroon represent more fertile lithospheric zones in which magmatic
activity will be facilitated.
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Search Results

Cite abstracts as Author(s) (2008), Title, Eos Trans. AGU,
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Your query was:
ildefonse

HR: 0800h
AN: V51F-2111
TI:  The fossilisation of  a dynamic melt  lens at  fast  spreading
centers: insights from the Oman ophiolite
AU: * France, L
EM: france@gm.univ-montp2.fr
AF:  Géosciences Montpellier  Université  Montpellier  2  CNRS, CC60
Place Eugène Bataillon, Montpellier, 34095, France
AU: Ildefonse, B
EM: ildefonse@gm.univ-montp2.fr
AF:  Géosciences Montpellier  Université  Montpellier  2  CNRS, CC60
Place Eugène Bataillon, Montpellier, 34095, France
AU: Koepke, J
EM: koepke@mineralogie.uni-hannover.de
AF:  Institut  fuer  Mineralogie  Leibniz  Universitaet  Hannover,
Callinstrasse 3, Hannover, D-30167, Germany
AB: Thin and narrow melt lenses are observed on top of crystal-rich
magma chambers  at  fast  spreading ridges.  This  particular  horizon,
which  marks  the  interface  between  the  magmatic  and  the
hydrothermal  system,  presents  complex  petrological  and  structural
features.  Its  dynamics remain poorly  constrained.  We present  here
new detailed mapping of continuous, undisturbed areas of the Oman
ophiolite and discuss evidences for a dynamic system with upward
and  downward  vertical  movements  of  the  melt  lens.  These
observations are consistent with episodic dikes injections in a steady
state  model,  but  also  suggest  that  the  root  of  the  sheeted  dike
complex is generally overprinted by the upward vertical movements of
the melt lens. The latter trigger prograde recrystallization in the dikes.
However,  because  of  later,  low-temperature  alteration,  the  upward
extent of such a possible recrystallization front is unconstrained. Dike
assimilation is evidenced in the field; it provides a mechanism for the
incorporation of hydrated phases in the melt lens during its upward
migrations. Recrystallized-dike-enclaves accumulations are observed
at  the  foliated  gabbro/isotropic  gabbro  transition,  and  inferred  to
represent fragment of the assimilated dikes, stoped at the bottom of
the  melt  lens  during  its  upward  migration.  In  the  isotropic  gabbro
horizon,  some  coarse  grained  gabbros  display  a  crystallisation
sequence  with  the  clinopyroxenes  crystallizing  earlier  than  the
plagioclases,  which  is  uncommon  in  oceanic  gabbros.  Plagioclase
composition is also abnormal with anorthite content reaching An99.
These unusual observations are consistent with crystallization under
hydrous conditions. In these samples relict domains (reaching 5mm)
display Al-Ti poor clinopyroxenes. They contain small oxide inclusions
(1mm), which we interpret as an evidence of prograde metamorphic
recrystallization of amphiboles. These domains illustrate the recycling
of  previously  hydrothermalized  lithologies  in  the  melt  lens.  The
described melt lens upward migration, which results in reheating and
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assimilation  of  hydrothermalized  sheeted  dikes,  is  consistent  with
observations made in IODP Hole 1256D. A general dynamic model for
the melt lens evolution at fast spreading ridges is proposed, in which
episodic dike injections during steady state regime stages alternate
with  vertical  migrations  of  the  melt  lens.  Upward  and  downward
movements of the lens result in reheating/assimilation of dikes, and
crystallization of varitextured isotropic gabbros, respectively.
DE: 3614 Mid-oceanic ridge processes (1032, 8416)
DE: 3618 Magma chamber processes (1036)
DE: 3690 Field relationships (1090, 8486)
DE: 8140 Ophiolites (3042)
DE:  8424  Hydrothermal  systems  (0450,  1034,  3017,  3616,  4832,
8135)
SC: Volcanology, Geochemistry, Petrology [V]
MN: 2008 Fall Meeting

   New Search
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V31C-2173 
 
Late-orogenic mantle garnet pyroxenites evidence mantle refertilization during 
exhumation of orogenic belt. 
 
Chazot G. 1, France L.2,*, Kornprobst J.3, Dallai L.4, Vannucci R.5
(1) Université de Bretagne Occidentale/ CNRS, Plouzané, France, (2) Université de Montpellier 2/ CNRS, Montpellier, 
France, (3) Université de Clermont-Ferrand II/ CNRS, Clermont-Ferrand, France, (4) CNR-IGG, Pisa, Italia, (5) Università 
degli Studi di Pavia/ CNR, Italia, *corresponding author (lyderic.france@gm.univ-montp2.fr / Fax: +334 67 14 36 03 / 
Phone: +334 67 14 39 44) 
 
 
The petrological and geochemical study of garnet bearing pyroxenites from four localities 

(FMC, Morocco, Jordan, Cameroon) demonstrates that these rocks are cumulates crystallised 

in the lithospheric mantle domain. Metamorphic reactions, exsolutions and trace elements WR 

analysis demonstrate that their crystallisation pressure ranges between 1 and 2GPa (30 to 

60km). The elaboration of the PTt paths for the studied samples attests of important 

movements in the respective lithospheres. Replaced in the geodynamical contexts, the 

samples are interpreted to represent the crystallisation of melts formed during exhumation of 

orogenic domains. Radiogenic isotopes (Sr-Nd) show that in a very same region, the samples 

are isotopicaly heterogeneous but are similar to the respective regional lithosphere. Initial 

isotopic ratios lead to propose that the FMC samples have crystallised at the end of the 

Hercynian orogen and that the samples from the other localities (Morocco, Jordan and 

Cameroon) have crystallised at the end of the Pan-African orogen. After recalculation at the 

crystallisation time, the isotopic compositions are in good agreement with the respective 

regional lithosphere ones and so samples of this study could represent the product of the 

melting of these lithospheres. The analyses of oxygen stable isotopes allow to precise the 

model; they show that twelve of the samples come from the melting of a lherzolitic mantle 

and that the four others come from the melting of a heterogeneous mantle formed of 

lherzolites and eclogites. The presence of some hydrous minerals such as amphiboles and 

micas and the trace elements WR analyses show that some of the samples were affected by a 

late metasomatic event.   Results of our study show that thermal relaxation following orogenic events lead to the 

crystallisation of pyroxenites in the lithosphere. The presence of lage amounts of mantle 

pyroxenites in old orogenic regions confers physical and chemical particularities to these 

domains. Among others, global solidus temperature of the whole lithospheric domain will be 

lowered; it follows that old orogenic regions such as FMC, Morocco, Jordan and Cameroon 

represent refertilized lithospheric zones in which magmatic activity will be facilitated. 
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Dynamics of the Axial Melt Lens/Dike transition at fast spreading ridges:
assimilation and hydrous partial melting
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Recent detailed field studies performed in the Oman ophiolite on the gabbro/sheeted dike transition, compared
to corresponding rocks from the EPR drilled by IODP (Site 1256), constrain a general model for the dynamics
of the axial melt lens (AML) present at fast spreading ridges (France et al., 2008). This model implies that the
AML/dike transition is a dynamic interface migrating up- and downward, and that the isotropic gabbro horizon
on top of the igneous section represents its fossilization. It is also proposed that upward migrations are associated
to reheating of the base of the sheeted dike complex and to assimilation processes. Plagiogranitic lithologies are
observed close to the truncated base of the dikes and are interpreted to represent frozen melts generated by partial
melting of previously hydrothermalized sheeted dikes. Relicts of previously hydrothermalized lithologies are also
observed in the fossil melt lens, and are associated to lithologies that have crystallized under high water activities,
with clinopyroxene crystallizing before plagioclase, and An-rich plagioclase.
To better understand our field data, we performed hydrous partial melting experiments at shallow pressures (0.1
GPa) under slightly oxidizing conditions (NNO oxygen buffer) and water saturated conditions on hydrothermal-
ized sheeted dike sample from the Oman ophiolite. These experiments have been performed between 850°C and
1030°C; two additional experiments in the subsolidus regime were also conducted (750°C and 800°C). Clinopy-
roxenes formed during incongruent melting at low temperature (<910°C) have compositions that match those
from the corresponding natural rocks (reheated base of the sheeted dike and relicts of assimilated lithologies). In
particular, the characteristic low TiO2 and Al2O3 contents are reproduced. The experimental melts produced at
low temperatures correspond to compositions of typical natural plagiogranites. In natural settings, these silicic
liquids would be mixed with the basaltic melt of the AML, resulting in intermediate compositions that can be
observed in the isotropic gabbro horizon.
Our study suggests that assimilation of previously hydrothermalized lithologies in the melt lens is a common
process at fast spreading ridges. This process should consequently be carefully considered in geochemical studies
that deal with the origin of MORB.

France L., Ildefonse B., Koepke J., (2008) The fossilisation of a dynamic melt lens at fast spreading cen-
ters: insights from the Oman ophiolite. Eos Trans. AGU, 89(53), Fall Meet. Suppl. Abstract V51F-2111
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Annex E: Samples locations and characteristics. Transverse Mercator projection; alt: altitude; SDC: sheeted-dike complex; RZSDC: root zone 
outcrop that shows the truncated base of the sheeted dike complex (gabbro intrusion). 
 

Sample Zone type Way-point E N alt (m) comment 
07OL01a Al Ahamadi Hills SDC 07_05 647 652 2 520 726 513 core 

07OL01b1 Al Ahamadi Hills SDC 07_05 647 652 2 520 726 513 margin 
07OL01b2 Al Ahamadi Hills SDC 07_05 647 652 2 520 726 513 margin 
07OL01c1 Al Ahamadi Hills SDC 07_05 647 652 2 520 726 513 margin 
07OL01c2 Al Ahamadi Hills SDC 07_05 647 652 2 520 726 513 margin 

07OL01d Al Ahamadi Hills fine-grained 
isotropic gabbro 07_06 647 642 2 520 744 516  

07OL01e Al Ahamadi Hills coarse-grained 
isotropic gabbro 07_07 647 598 2 520 857 521  

07OL01e2 Al Ahamadi Hills plagiogranite 07_07 647 598 2 520 857 521  

07OL01f1 Al Ahamadi Hills fine-grained 
isotropic gabbro 07_08 647 581 2 520 905 520  

07OL01f2 Al Ahamadi Hills fine-grained 
isotropic gabbro 07_08 647 581 2 520 905 520  

07OL01g1 Al Ahamadi Hills microgranular 
dike 07_10 647 631 2 520 751 519 + fine-grained gabbro 

07OL01g2 Al Ahamadi Hills microgranular 
dike 07_10 647 631 2 520 751 519 core 

07OL01g3 Al Ahamadi Hills microgranular 
dike 07_10 647 631 2 520 751 519 margin 

07OL02 Gideah Composite 07_12 656 600 2 525 755 573 SDC+gabbro+plagiogranite

07OL03 Gideah foliated gabbro 07_13 656 572 2 525 844 575  
07OL04 Gideah SDC 07_14 656 529 2 526 092 580  

07OL05a Gideah microgranular 
dike 07_15 656 505 2 526 120 573  

07OL05b Gideah microgranular 
dike 07_15 656 505 2 526 120 573  

07OL05c Gideah microgranular 
dike 07_15 656 505 2 526 120 573  

07OL06 Gideah Composite 07_16 656 542 2 526 466 574 SDC+gabbro+plagiogranite

07OL07a Gideah magmatic breccia 07_17 656 342 2 526 371 561  
07OL07b Gideah magmatic breccia 07_17 656 342 2 526 371 561  
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07OL08a Gideah SDC GUIDI 1 656 254 2 525 246 544 margin 
07OL08b Gideah SDC GUIDI 1 656 254 2 525 246 544 core 

07OL08c Gideah fine-grained 
isotropic gabbro GUIDI 1 656 254 2 525 246 544  

07OL08d Gideah coarse-grained 
isotropic gabbro GUIDI 1 656 254 2 525 246 544  

07OL09 Gideah wehrlites 07_105 656 411 2 526 710 573  

07OL10 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10a1 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10a2 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10a3 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10b Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10a4 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10c1 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL10c2 Farah fine-grained 
isotropic gabbro 07_18 666 518 2 529 598 572  

07OL11a1 Farah Composite 07_19 666 534 2 529 553 562 microgranular dike + 
coarse-grained gabbro 

07OL11a2 Farah Composite 07_19 666 534 2 529 553 562 microgranular dike + 
coarse-grained gabbro 

07OL12 Farah fine-grained 
isotropic gabbro 07_20 666 581 2 529 498 547  

07OL13 Farah coarse-grained 
isotropic gabbro 07_21 666 600 2 529 497 541  

07OL13b Farah plagiogranite 07_21 666 600 2 529 497 541  
07OL14a Farah plagiogranite 07_21 666 600 2 529 497 541  

07OL14b Farah Composite 07_21 666 600 2 529 497 541 SDC + plagiogranite 

07OL14c Farah SDC 07_21 666 600 2 529 497 541 core 
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07OL15 Sarur fine-grained 
isotropic gabbro 07_30 613 692 2 583 897 277  

07OL15b Sarur xenolith 07_30 613 692 2 583 897 277 within foliated gabbros 

07OL16 Sarur fine-grained 
isotropic gabbro 07_31 614 110 2 583 949 293  

07OL16a Sarur layered gabbro 07_32 614 154 2 583 850 301 granular 

07OL16b Sarur fine-grained 
isotropic gabbro 07_32 614 154 2 583 850 301  

07OL17a Sarur Composite 07_33 614 116 2 583 861 311 granular gabbro + xenolith 

07OL18 Sarur Composite 07_35 614 122 2 583 822 325 gabbro + microgranular 
dike 

07OL19a Luzugh Composite 07_39 614 616 2 582 438 325 fine-grained gabbro + 
microgranular dike 

07OL20 Luzugh layered gabbro 07_41 614 807 2 582 755 369 granular 

07OL21 Luzugh Composite 07_44 614 941 2 582 626 324 coarse-grained gabbro + 
xenolith 

07OL21a Luzugh RZSDC 07_44 614 941 2 582 626 324  
07OL21b Luzugh RZSDC 07_44 614 941 2 582 626 324  
07OL21c Luzugh foliated gabbro 07_44 614 941 2 582 626 324  
07OL22a Luzugh plagiogranite 07_47 615 172 2 582 281 295  
07OL22b Luzugh plagiogranite 07_47 615 172 2 582 281 295  

07OL23a N Hilti microgranular 
dike 07_49 444 383 2 679 011 334 core 

07OL23b N Hilti microgranular 
dike 07_49 444 383 2 679 011 334 margin 

07OL23c N Hilti Composite 07_49 444 383 2 679 011 334 microgranular dike + 
foliated gabbro 

07OL23d N Hilti Composite 07_49 444 383 2 679 011 334 microgranular dike + 
foliated gabbro 

07OL23e N Hilti Composite 07_49 444 383 2 679 011 334 microgranular dike + 
foliated gabbro 

07OL23f N Hilti anorthosite 07_49 444 383 2 679 011 334  
07OL24 N Hilti xenolith 07_50 443 887 2 678 169 362  

07OL26a Sarami coarse-grained 
isotropic gabbro 07_55 469 151 2 650 687 310  
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07OL26b Sarami Composite 07_55 469 151 2 650 687 310 microgranular dike intruded 
by plagiogranite 

07OL26c1 Sarami fine-grained 
isotropic gabbro 07_56 468 376 2 650 085 344  

07OL26c2 Sarami fine-grained 
isotropic gabbro 07_56 468 376 2 650 085 344  

07OL26c3 Sarami fine-grained 
isotropic gabbro 07_56 468 376 2 650 085 344  

07OL27 Sarami composite 07_57 468 229 2 650 041 366 
fine & coarse-grained 

gabbro + microgranular 
dike 

07OL28 Sarami wehrlites 07_57 468 229 2 650 041 366  
07OL29b Shaïq SDC 07_59 443 973 2 707 651 162 margin 
07OL29a Shaïq SDC 07_59 443 973 2 707 651 162 core 
07OL29a’ Shaïq SDC 07_59 443 973 2 707 651 162 core 
07OL30a Shaïq SDC 07_59 443 973 2 707 651 162  
07OL30b Shaïq SDC 07_59 443 973 2 707 651 162  
07OL31a Shaïq RZSDC 07_62 444 878 2 707 586 149  
07OL31b Shaïq RZSDC 07_62 444 878 2 707 586 149  

07OL32 Shaïq composite 07_63 445 578 2 707 539 151 microgranular dike + 
foliated gabbro 

07OL32a Shaïq microgranular 
dike 07_64 431 210 2 723 757 260 core 

O7OL32b1 Shaïq microgranular 
dike 07_64 431 210 2 723 757 260 margin + gabbro 

O7OL32b2 Shaïq microgranular 
dike 07_64 431 210 2 723 757 260 margin + gabbro 

07OL32c Shaïq magmatic breccia 07_64 431 210 2 723 757 260  
07OL32d1 Shaïq magmatic breccia 07_64 431 210 2 723 757 260  

d2 Shaïq magmatic breccia 07_64 431 210 2 723 757 260  

07OL33a Rajmi microgranular 
dike 07_65 431 029 2 724 346 269 margin 

07OL33b Rajmi microgranular 
dike 07_65 431 029 2 724 346 269 core 

07OL34 Rajmi coarse-grained 
isotropic gabbro 07_66 431 157 2 724 497 261  

07OL35a Rajmi xenolith 07_68 430 517 2 723 711 285  
07OL35b Rajmi xenolith 07_68 430 517 2 723 711 285  
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07OL36a Rajmi coarse-grained 
isotropic gabbro 07_70 430 565 2 723 695 285  

07OL36b Rajmi pegmatitic gabbro 07_70 430 565 2 723 695 285  
07OL36 Rajmi plagiogranite 07_71 430 723 2 723 664 279  
07OL37 Rajmi RZSDC 07_72 430 936 2 723 698 281  

07OL38a Rajmi microgranular 
dike 07_64 431 210 2 723 757 260 margin 

07OL38b Rajmi microgranular 
dike 07_64 431 210 2 723 757 260  

07OL38f Rajmi microgranular 
dike 07_64 431 210 2 723 757 260  

07OL38c Rajmi RZSDC 07_64 431 210 2 723 757 260  
07OL38d Rajmi RZSDC 07_64 431 210 2 723 757 260  
07OL38e Rajmi RZSDC 07_64 431 210 2 723 757 260  
07OL38g Rajmi xenolith 07_64 431 210 2 723 757 260 core 
07OL38h Rajmi xenolith 07_64 431 210 2 723 757 260 core 

07OL39b Rajmi microgranular 
dike 07_73 433 116 2 724 012 246  

07OL39a Rajmi fine-grained 
isotropic gabbro 07_73 433 116 2 724 012 246  

07OL39c Rajmi SDC 07_73 433 116 2 724 012 246 core 
07OL39d Rajmi SDC 07_73 433 116 2 724 012 246 margin 
07OL40a Rajmi foliated gabbro 07_74 433 111 2 723 981 236 granular 
07OL40b Rajmi foliated gabbro 07_74 433 111 2 723 981 236 granular 

07OL41a1 Rajmi fine-grained 
isotropic gabbro 07_75 433 205 2 723 771 221  

07OL41a2 Rajmi fine-grained 
isotropic gabbro 07_75 433 205 2 723 771 221  

07OL41b Rajmi SDC 07_75 433 205 2 723 771 221 margin 
07OL41c Rajmi SDC 07_75 433 205 2 723 771 221 core 
07OL42 Rajmi SDC 07_76 433 198 2 723 806 229  

07OL43 Rajmi coarse-grained 
isotropic gabbro 07_77 433 175 2 723 866 229  

07OL44 Rajmi SDC 07_77 433 175 2 723 866 229 core 

07OL45a Aswad coarse-grained 
isotropic gabbro 07_78 624 228 2 557 071 800  

07OL45a1 Aswad coarse-grained 
isotropic gabbro 07_78 624 228 2 557 071 800  

Annex page 167



07OL45a1’ Aswad coarse-grained 
isotropic gabbro 07_78 624 228 2 557 071 800  

07OL45a2 Aswad coarse-grained 
isotropic gabbro 07_78 624 228 2 557 071 800  

07OL45b Aswad coarse-grained 
isotropic gabbro 07_78 624 228 2 557 071 800  

07OL45c Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45d Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45e Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45f Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45g Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45h Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45i Aswad RZSDC 07_78 624 228 2 557 071 800  

07OL45j = 
45j1 Aswad RZSDC 07_78 624 228 2 557 071 800  

07OL45j2 Aswad microgranular 
dike 07_78 624 228 2 557 071 800 margin 

07OL45k Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45l Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45n Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45p Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45q Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45r Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45s Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45t Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45u Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45v Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45w Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45x Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45y Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45z Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL45v’ Aswad RZSDC 07_78 624 228 2 557 071 800  
07OL46a Aswad SDC 07_79 624 102 2 556 847 787 core 
07OL46b Aswad SDC 07_79 624 102 2 556 847 787 core 

07OL47a Aswad microgranular 
dike 07_82 624 630 2 557 361 814  

07OL47b Aswad microgranular 
dike 07_82 624 630 2 557 361 814  
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07OL47c Aswad fine-grained 
isotropic gabbro 07_91 624 654 2 557 157 800  

07OL47d Aswad microgranular 
dike 07_92 624 706 2 557 063 805 margin 

07OL47e Aswad microgranular 
dike 07_92 624 706 2 557 063 805 core 

07OL47f Aswad composite 07_93 624 810 2 556 937 806 microgranular dike + fine-
grained gabbro 

07OL48a Gideah SDC 07_102 656 238 2 524 895 554  
07OL48b Gideah SDC 07_102 656 238 2 524 895 554 core 
07OL48c Gideah SDC 07_102 656 238 2 524 895 554 core 
07OL48d Gideah plagiogranite 07_102 656 238 2 524 895 554  
07OL49a Gideah RZSDC 07_105 656 411 2 526 710 573  
07OL49b Gideah RZSDC 07_105 656 411 2 526 710 573  

07OL49c1 Gideah coarse-grained 
isotropic gabbro 07_105 656 411 2 526 710 573  

07OL49c2 Gideah coarse-grained 
isotropic gabbro 07_105 656 411 2 526 710 573  

07OL49d1 Gideah wehrlites 07_105 656 411 2 526 710 573  
07OLd2 Gideah wehrlites 07_105 656 411 2 526 710 573  

07OL50a Zafani/Him fine-grained 
isotropic gabbro 07_114 669 417 2 529 281 539  

07OL50b Zafani/Him xenolith 07_114 669 417 2 529 281 539 in plagiogranite 

07OL50c1 Zafani/Him composite 07_115 669 405 2 529 288 539 xenolith + plagiogranite 

07OL50c2 Zafani/Him composite 07_115 669 405 2 529 288 539 xenolith + plagiogranite 

07OL50e Zafani/Him plagiogranite 07_116 669 425 2 529 344 535  
07OL50f Zafani/Him plagiogranite 07_116 669 425 2 529 344 535  
07OL51a Gideah RZSDC 07_102 656 238 2 524 895 554  

51b Gideah RZSDC 07_102 656 238 2 524 895 554  
07OL 52a Kadir plagiogranite 07_117 654 781 2 522 602 513  

07OL53a Farah doleritic micro-
gabbro 07_131 666 535 2 529 307 538  

07OL54a Aswad RZSDC 07_137 623 690 2 557 313 876 + coarse-grained gabbro 
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07OL55a1, 2, 
3 Aswad microgranular 

dike 07_147 622 988 2 557 767 866 crosscut by plagiogranite 

07OL55b Aswad RZSDC 07_147 622 988 2 557 767 866 + plagiogranite 

07OL55c Aswad microgranular 
dike 07_147 622 988 2 557 767 866  

07OL56a Aswad composite 07_152 625 517 2 555 898 773 microgranular dike + 
coarse-grained gabbro 

07OL56b Aswad composite 07_152 625 517 2 555 898 773 microgranular dike + 
coarse-grained gabbro 

07OL56c Aswad composite 07_152 625 517 2 555 898 773 microgranular dike + 
coarse-grained gabbro 

07OL57a Aswad composite 07_150 625 292 2 556 087 768 microgranular dike + 
coarse-grained gabbro 

07OL58a Aswad foliated gabbro 07_160 626 195 2 555 531 759  
07OL59 Aswad granular gabbro 07_173 626 533 2 556 691 842  

07OL60a Aswad composite 07_178 626 117 2 556 589 876 microgranular dike + fine-
grained gabbro 

60b Aswad composite 07_178 626 117 2 556 589 876 microgranular dike + fine-
grained gabbro 

07OL61 Aswad composite 07_182 625 528 2 555 878 772 microgranular dike + fine-
grained gabbro 

07OL62a Aswad granular gabbro 07_189 624 078 2 557 455 820  
07OL62b Aswad foliated gabbro 07_189 624 078 2 557 455 820  

07OL62c Aswad composite 07_193 624 283 2 557 584 872 microgranular dike + 
foliated gabbro 

07OL62d Aswad composite 07_194 624 310 2 557 588 861 
fine & coarse-grained 

gabbro + microgranular 
dike 

07OL63a1 Luzugh plagiogranite 07_205 614 991 2 582 268 301  
07OL63a2 Luzugh plagiogranite 07_205 614 991 2 582 268 301  
07OL63b1 Luzugh plagiogranite 07_205 614 991 2 582 268 301  
07OL63b2 Luzugh plagiogranite 07_205 614 991 2 582 268 301  
07OL63c1 Luzugh gabbro 07_205 614 991 2 582 268 301  
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07OL63c2 Luzugh gabbro 07_205 614 991 2 582 268 301  
07OL64a Luzugh tectonized gabbro 07_206 615 546 2 582 142 311  
07OL64b Luzugh tectonized gabbro 07_206 615 546 2 582 142 311  
07OL64c Luzugh tectonized gabbro 07_206 615 546 2 582 142 311  
08OL01a Gideah RZSDC 08_10 656 265 2 524 710 579  
08OL01b Gideah RZSDC 08_10 656 265 2 524 710 579  
08OL01c Gideah RZSDC 08_10 656 265 2 524 710 579  
08OL01d Gideah RZSDC 08_10 656 265 2 524 710 579  
08OL01e Gideah RZSDC 08_10 656 265 2 524 710 579  

08OL02 Gideah "grey layer" 
(diorite) 08_22 656 164 2 525 190 552 subhorizontal 

08OL02b Gideah coarse-grained 
isotropic gabbro 08_23 656 174 2 525 168 559  

08OL03 Gideah RZSDC 07_104 656 248 2 524 892 559  
08OL03b Gideah gabbro 07_104 656 248 2 524 892 559  
08OL04a Gideah RZSDC 08_25 656 343 2 524 747 569  
08OL04b Gideah RZSDC 08_25 656 343 2 524 747 569  
08OL05a Gideah RZSDC 08_25 656 343 2 524 747 569  
08OL05b Gideah RZSDC 08_25 656 343 2 524 747 569  

08OL06a Gideah gabbro/gabbro 
contact 08_44 657 285 2 524 479 546  

08OL06b Gideah xenolith 08_44 657 285 2 524 479 546  
08OL06c Gideah xenolith 08_44 657 285 2 524 479 546  

08OL06d Gideah "grey layer" 
(diorite) 08_46 656 947 2 524 916 544  

08OL06e Gideah "grey layer" 
(diorite) 08_46 656 947 2 524 916 544  

08OL06f Gideah xenolith 08_48 656 692 2 525 069 555 within coarse-grained 
gabbro 

08OL06g Gideah xenolith 08_51 656 812 2 525 668 559  
08OL06h Gideah foliated gabbro 08_01 656 714 2 525 177 550  
08OL06i Gideah RZSDC 08_52 655 920 2 525 586 566  

08OL06j Gideah gabbro/gabbro 
contact 08_54 656 000 2 525 683 564  

08OL07a Al Ahamadi Hills RZSDC 08_56 648 796 2 518 672 510  
08OL07b Al Ahamadi Hills RZSDC 08_56 648 796 2 518 672 510  
08OL08a Aswad RZSDC 08_59 624 400 2 556 684 772  
08OL08b Aswad RZSDC 08_59 624 400 2 556 684 772  
08OL09a Aswad microgranular 08_61 624 081 2 556 716 768  
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dike 

08OL09b Aswad microgranular 
dike 08_61 624 081 2 556 716 768  

08OL09c1 Aswad microgranular 
dike 08_61 624 081 2 556 716 768  

08OL09c2 Aswad microgranular 
dike 08_61 624 081 2 556 716 768  

08OL09c Aswad fine-grained 
isotropic gabbro 08_62 623 710 2 556 480 765  

08OL09d Aswad xenolith 08_62 623 710 2 556 480 765 within coarse-grained 
gabbro 

08OL09e Aswad SDC 08_63 623 745 2 556 500 772  
08OL09f Aswad SDC 08_63 623 745 2 556 500 772  
08OL09g Aswad SDC 08_63 623 745 2 556 500 772  
08OL09h Aswad SDC 08_64 623 769 2 556 470 776  
08OL09i Aswad SDC 08_65 623 829 2 556 427 805  

08OL10a Aswad composite 08_66 622 465 2 556 383 760 microgranular dike + 
foliated gabbro 

08OL10b Aswad xenolith 08_67 622 519 2 556 434 762 within coarse-grained 
gabbro 

08OL10c Aswad SDC 08_68 622 608 2 556 419 761  
08OL10d Aswad RZSDC 08_77 623 122 2 556 474 748  
08OL10e Aswad RZSDC 08_77 623 122 2 556 474 748  
08OL10f Aswad RZSDC 08_81 623 191 2 556 386 751  
08OL10g Aswad RZSDC 08_81 623 191 2 556 386 751  

08OL10h Aswad xenolith 08_93 622 874 2 556 333 760 within fine-grained gabbro 

08OL11 Aswad microgranular 
dike 08_100 624 809 2 556 919 793  

08OL12a Aswad fine-grained 
isotropic gabbro 08_102 623 874 2 557 375 828  

08OL12b Aswad xenolith 08_106 623 836 2 557 293 871 within coarse-grained 
gabbro 

08OL12c Aswad xenolith 08_106 623 836 2 557 293 871 within coarse-grained 
gabbro 

08OL12d Aswad xenolith 08_113 623 614 2 557 420 809 within fine-grained gabbro 

08OL12e1 Aswad RZSDC 08_116 623 681 2 557 316 872  
08OL12e2 Aswad RZSDC 08_116 623 681 2 557 316 872  
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08OL12f Aswad RZSDC 08_151 623 546 2 557 459 782  

08OL13a Aswad microgranular 
dike 08_120 624 392 2 557 133 795  

08OL13b Aswad xenolith 08_126 624 268 2 557 408 871 within coarse-grained 
gabbro 

08OL13c Aswad xenolith 08_126 624 268 2 557 408 871 within coarse-grained 
gabbro 

08OL13d Aswad composite 08_129 624 240 2 557 578 896 fine & coarse-grained 
gabbro 

08OL13e Aswad xenolith 08_131 624 164 2 557 764 921 within coarse-grained 
gabbro 

08OL13f Aswad microgranular 
dike 08_133 624 154 2 557 857 917  

08OL13g Aswad composite 08_133 624 154 2 557 857 917 microgranular dike + 
gabbro 

08OL13h Aswad composite 08_135 624 152 2 557 956 901 microgranular dike + 
gabbro 

08OL14a Aswad composite 08_138 624 657 2 557 262 802 microgranular dike + 
gabbro 

08OL13i Aswad microgranular 
dike 08_143 623 903 2 557 606 836  

08OL13j Aswad RZSDC 08_133 624 154 2 557 857 917  
08OL13k Aswad RZSDC 08_133 624 154 2 557 857 917  
08OL13l Aswad plagiogranite 08_133 624 154 2 557 857 917  

08OL13m Aswad SDC 08_144 624 155 2 557 937 918 core 
08OL13n Aswad xenolith 08_147 624 206 2 558 550 869  
08OL13o Aswad xenolith 08_147 624 206 2 558 550 869  
08OL12f Aswad xenolith      
08OL15a Gideah RZSDC 08_08 656 266 2 525 065 582  
08OL15b Gideah RZSDC 08_08 656 266 2 525 065 582  
08OL15c Gideah RZSDC 08_08 656 266 2 525 065 582  
08OL15d Gideah RZSDC 08_08 656 266 2 525 065 582  
08OL15e Gideah RZSDC 08_08 656 266 2 525 065 582  
08OL15f Gideah RZSDC 08_09 656 246 2 525 063 582  
08OL15g Gideah RZSDC 08_09 656 246 2 525 063 582  
08OL15h Gideah RZSDC 08_14 656 288 2 524 730 584  
08OL15i Gideah RZSDC 08_14 656 288 2 524 730 584  
08OL15j Gideah xenolith 07Guidi1 656 254 2 525 246 544  
08OL15k Gideah xenolith 07Guidi1 656 254 2 525 246 544  
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08OL15l Gideah fine-grained 
isotropic gabbro 07Guidi1 656 254 2 525 246 544  

08OL15m Gideah gabbro/gabbro 
contact 07Guidi1 656 254 2 525 246 544  

08OL15n Gideah gabbro/gabbro 
contact 07Guidi1 656 254 2 525 246 544  

08OL16 Aswad composite 08_181 623 842 2 556 799 797 microgranular dike + 
gabbro 

08OL16b Aswad xenolith 08_184 623 704 2 557 039 868 within coarse-grained 
gabbro 

08OL17a Aswad RZSDC 08_185 623 726 2 557 205 924  

08OL17b Aswad xenolith 08_188 623 639 2 557 080 887 within coarse-grained 
gabbro 

08OL17c Aswad RZSDC 08_189 623 610 2 557 047 906  
08OL18 Aswad RZSDC 08_110 623 459 2 557 272 793  

08OL19a Aswad RZSDC 08_203 623 334 2 557 544 827  
08OL19b Aswad RZSDC 08_204 623 311 2 557 499 833  
08OL19c Aswad xenolith 08_213 623 024 2 557 684 813  
08OL19d Aswad xenolith 08_224 622 973 2 557 036 794  

08OL20 Aswad composite 08_237 623 442 2 557 172 814 microgranular dike + 
coarse-grained gabbro 

08OL21a Aswad RZSDC 08_243 623 884 2 556 686 785  
08OL21b Aswad RZSDC 08_247 623 774 2 556 776 833  
08OL21c Aswad RZSDC 08_247 623 774 2 556 776 833 dike margin 
08OL21d Aswad SDC 08_248 623 752 2 556 783 852 dike core 
08OL22a Haymiliyah xenolith 08_264 521 006 2 606 897 346  
08OL22b Haymiliyah xenolith 08_265 521 279 2 606 818 330  

08OL23a Al Hoqayn microgranular 
lens pr Juergen 537 389 2 605 319 232  

08OL23b Al Hoqayn microgranular 
lens pr Juergen 537 389 2 605 319 232  

08OL23c Al Hoqayn microgranular 
lens pr Juergen 537 389 2 605 319 232  

08OL24a Al Abyad composite Al Abiyad 569 300 2 597 000 190 fine and coarse-grained 
gabbro 

08OL24b Al Abyad composite Al Abiyad 569 300 2 597 000 190 fine and coarse-grained 
gabbro 
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08OL24c Al Abyad composite Al Abiyad 569 300 2 597 000 190 fine and coarse-grained 
gabbro 

08OL25a Gideah SDC 08_171 656 309 2 524 698 596  
08OL25b Gideah SDC 08_171 656 309 2 524 698 596  
08OL25c Gideah SDC 08_173 656 321 2 524 638 570  

08OL26 Gideah gabbro/gabbro 
contact 07Guidi1 656 254 2 525 246 544  

08OL27 Aswad RZSDC 08_266 lost lost lost  
08OL27b Aswad RZSDC 08_267 lost lost lost  
08OL27b' Aswad RZSDC 08_267 lost lost lost  
08OL28 Aswad xenolith 08_268 lost lost lost  

08OL29a Al Ahamadi Hills foliated gabbro 08_270 lost lost lost  
08OL29b Al Ahamadi Hills foliated gabbro 08_271 lost lost lost  

08OL29c Al Ahamadi Hills microgranular 
dike 08_272 lost lost lost margin 

08OL29d Al Ahamadi Hills microgranular 
dike 08_272 lost lost lost core 

08OL29e Al Ahamadi Hills xenolith 08_276 lost lost lost within coarse-grained 
gabbro 

08OL29f Al Ahamadi Hills xenolith 08_277 lost lost lost within coarse-grained 
gabbro 

08OL29g Al Ahamadi Hills xenolith 08_279 lost lost lost within coarse-grained 
gabbro 

08OL29h Al Ahamadi Hills xenolith 08_280 lost lost lost within coarse-grained 
gabbro 

08OL29i Al Ahamadi Hills xenolith 08_262 648 541 2 519 969 528  
08OL30 Al Ahamadi Hills SDC 08_281 lost lost lost  

08OL29j Al Ahamadi Hills fine-grained 
isotropic gabbro 08_260 648 430 2 520 243 519  

08OL29k Al Ahamadi Hills medium-grained 
gabbro 08_260 648 430 2 520 243 519  

08OL29l Al Ahamadi Hills foliated gabbro 08_283 lost lost lost  

08OL31 Aswad medium-grained 
gabbro 08_291 lost lost lost  

08OL32a Aswad SDC 08_292 lost lost lost  
08OL32b Aswad SDC 08_292 lost lost lost  
08OLC06 Aswad RZSDC 08_247 623 774 2 556 776 833  
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